xref: /openbmc/linux/mm/page_alloc.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 #include "swap.h"
85 
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88 
89 /* No special request */
90 #define FPI_NONE		((__force fpi_t)0)
91 
92 /*
93  * Skip free page reporting notification for the (possibly merged) page.
94  * This does not hinder free page reporting from grabbing the page,
95  * reporting it and marking it "reported" -  it only skips notifying
96  * the free page reporting infrastructure about a newly freed page. For
97  * example, used when temporarily pulling a page from a freelist and
98  * putting it back unmodified.
99  */
100 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
101 
102 /*
103  * Place the (possibly merged) page to the tail of the freelist. Will ignore
104  * page shuffling (relevant code - e.g., memory onlining - is expected to
105  * shuffle the whole zone).
106  *
107  * Note: No code should rely on this flag for correctness - it's purely
108  *       to allow for optimizations when handing back either fresh pages
109  *       (memory onlining) or untouched pages (page isolation, free page
110  *       reporting).
111  */
112 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
113 
114 /*
115  * Don't poison memory with KASAN (only for the tag-based modes).
116  * During boot, all non-reserved memblock memory is exposed to page_alloc.
117  * Poisoning all that memory lengthens boot time, especially on systems with
118  * large amount of RAM. This flag is used to skip that poisoning.
119  * This is only done for the tag-based KASAN modes, as those are able to
120  * detect memory corruptions with the memory tags assigned by default.
121  * All memory allocated normally after boot gets poisoned as usual.
122  */
123 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
124 
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128 
129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
130 /*
131  * On SMP, spin_trylock is sufficient protection.
132  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
133  */
134 #define pcp_trylock_prepare(flags)	do { } while (0)
135 #define pcp_trylock_finish(flag)	do { } while (0)
136 #else
137 
138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
140 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
141 #endif
142 
143 /*
144  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145  * a migration causing the wrong PCP to be locked and remote memory being
146  * potentially allocated, pin the task to the CPU for the lookup+lock.
147  * preempt_disable is used on !RT because it is faster than migrate_disable.
148  * migrate_disable is used on RT because otherwise RT spinlock usage is
149  * interfered with and a high priority task cannot preempt the allocator.
150  */
151 #ifndef CONFIG_PREEMPT_RT
152 #define pcpu_task_pin()		preempt_disable()
153 #define pcpu_task_unpin()	preempt_enable()
154 #else
155 #define pcpu_task_pin()		migrate_disable()
156 #define pcpu_task_unpin()	migrate_enable()
157 #endif
158 
159 /*
160  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161  * Return value should be used with equivalent unlock helper.
162  */
163 #define pcpu_spin_lock(type, member, ptr)				\
164 ({									\
165 	type *_ret;							\
166 	pcpu_task_pin();						\
167 	_ret = this_cpu_ptr(ptr);					\
168 	spin_lock(&_ret->member);					\
169 	_ret;								\
170 })
171 
172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
173 ({									\
174 	type *_ret;							\
175 	pcpu_task_pin();						\
176 	_ret = this_cpu_ptr(ptr);					\
177 	spin_lock_irqsave(&_ret->member, flags);			\
178 	_ret;								\
179 })
180 
181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
182 ({									\
183 	type *_ret;							\
184 	pcpu_task_pin();						\
185 	_ret = this_cpu_ptr(ptr);					\
186 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
187 		pcpu_task_unpin();					\
188 		_ret = NULL;						\
189 	}								\
190 	_ret;								\
191 })
192 
193 #define pcpu_spin_unlock(member, ptr)					\
194 ({									\
195 	spin_unlock(&ptr->member);					\
196 	pcpu_task_unpin();						\
197 })
198 
199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
200 ({									\
201 	spin_unlock_irqrestore(&ptr->member, flags);			\
202 	pcpu_task_unpin();						\
203 })
204 
205 /* struct per_cpu_pages specific helpers. */
206 #define pcp_spin_lock(ptr)						\
207 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
208 
209 #define pcp_spin_lock_irqsave(ptr, flags)				\
210 	pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
211 
212 #define pcp_spin_trylock_irqsave(ptr, flags)				\
213 	pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
214 
215 #define pcp_spin_unlock(ptr)						\
216 	pcpu_spin_unlock(lock, ptr)
217 
218 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
219 	pcpu_spin_unlock_irqrestore(lock, ptr, flags)
220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221 DEFINE_PER_CPU(int, numa_node);
222 EXPORT_PER_CPU_SYMBOL(numa_node);
223 #endif
224 
225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
226 
227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
228 /*
229  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232  * defined in <linux/topology.h>.
233  */
234 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
236 #endif
237 
238 static DEFINE_MUTEX(pcpu_drain_mutex);
239 
240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
241 volatile unsigned long latent_entropy __latent_entropy;
242 EXPORT_SYMBOL(latent_entropy);
243 #endif
244 
245 /*
246  * Array of node states.
247  */
248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 	[N_POSSIBLE] = NODE_MASK_ALL,
250 	[N_ONLINE] = { { [0] = 1UL } },
251 #ifndef CONFIG_NUMA
252 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
253 #ifdef CONFIG_HIGHMEM
254 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
255 #endif
256 	[N_MEMORY] = { { [0] = 1UL } },
257 	[N_CPU] = { { [0] = 1UL } },
258 #endif	/* NUMA */
259 };
260 EXPORT_SYMBOL(node_states);
261 
262 atomic_long_t _totalram_pages __read_mostly;
263 EXPORT_SYMBOL(_totalram_pages);
264 unsigned long totalreserve_pages __read_mostly;
265 unsigned long totalcma_pages __read_mostly;
266 
267 int percpu_pagelist_high_fraction;
268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
270 EXPORT_SYMBOL(init_on_alloc);
271 
272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
273 EXPORT_SYMBOL(init_on_free);
274 
275 static bool _init_on_alloc_enabled_early __read_mostly
276 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
277 static int __init early_init_on_alloc(char *buf)
278 {
279 
280 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
281 }
282 early_param("init_on_alloc", early_init_on_alloc);
283 
284 static bool _init_on_free_enabled_early __read_mostly
285 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
286 static int __init early_init_on_free(char *buf)
287 {
288 	return kstrtobool(buf, &_init_on_free_enabled_early);
289 }
290 early_param("init_on_free", early_init_on_free);
291 
292 /*
293  * A cached value of the page's pageblock's migratetype, used when the page is
294  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296  * Also the migratetype set in the page does not necessarily match the pcplist
297  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298  * other index - this ensures that it will be put on the correct CMA freelist.
299  */
300 static inline int get_pcppage_migratetype(struct page *page)
301 {
302 	return page->index;
303 }
304 
305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
306 {
307 	page->index = migratetype;
308 }
309 
310 #ifdef CONFIG_PM_SLEEP
311 /*
312  * The following functions are used by the suspend/hibernate code to temporarily
313  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314  * while devices are suspended.  To avoid races with the suspend/hibernate code,
315  * they should always be called with system_transition_mutex held
316  * (gfp_allowed_mask also should only be modified with system_transition_mutex
317  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318  * with that modification).
319  */
320 
321 static gfp_t saved_gfp_mask;
322 
323 void pm_restore_gfp_mask(void)
324 {
325 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
326 	if (saved_gfp_mask) {
327 		gfp_allowed_mask = saved_gfp_mask;
328 		saved_gfp_mask = 0;
329 	}
330 }
331 
332 void pm_restrict_gfp_mask(void)
333 {
334 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
335 	WARN_ON(saved_gfp_mask);
336 	saved_gfp_mask = gfp_allowed_mask;
337 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
338 }
339 
340 bool pm_suspended_storage(void)
341 {
342 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
343 		return false;
344 	return true;
345 }
346 #endif /* CONFIG_PM_SLEEP */
347 
348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
349 unsigned int pageblock_order __read_mostly;
350 #endif
351 
352 static void __free_pages_ok(struct page *page, unsigned int order,
353 			    fpi_t fpi_flags);
354 
355 /*
356  * results with 256, 32 in the lowmem_reserve sysctl:
357  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358  *	1G machine -> (16M dma, 784M normal, 224M high)
359  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
361  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
362  *
363  * TBD: should special case ZONE_DMA32 machines here - in those we normally
364  * don't need any ZONE_NORMAL reservation
365  */
366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
367 #ifdef CONFIG_ZONE_DMA
368 	[ZONE_DMA] = 256,
369 #endif
370 #ifdef CONFIG_ZONE_DMA32
371 	[ZONE_DMA32] = 256,
372 #endif
373 	[ZONE_NORMAL] = 32,
374 #ifdef CONFIG_HIGHMEM
375 	[ZONE_HIGHMEM] = 0,
376 #endif
377 	[ZONE_MOVABLE] = 0,
378 };
379 
380 static char * const zone_names[MAX_NR_ZONES] = {
381 #ifdef CONFIG_ZONE_DMA
382 	 "DMA",
383 #endif
384 #ifdef CONFIG_ZONE_DMA32
385 	 "DMA32",
386 #endif
387 	 "Normal",
388 #ifdef CONFIG_HIGHMEM
389 	 "HighMem",
390 #endif
391 	 "Movable",
392 #ifdef CONFIG_ZONE_DEVICE
393 	 "Device",
394 #endif
395 };
396 
397 const char * const migratetype_names[MIGRATE_TYPES] = {
398 	"Unmovable",
399 	"Movable",
400 	"Reclaimable",
401 	"HighAtomic",
402 #ifdef CONFIG_CMA
403 	"CMA",
404 #endif
405 #ifdef CONFIG_MEMORY_ISOLATION
406 	"Isolate",
407 #endif
408 };
409 
410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 	[NULL_COMPOUND_DTOR] = NULL,
412 	[COMPOUND_PAGE_DTOR] = free_compound_page,
413 #ifdef CONFIG_HUGETLB_PAGE
414 	[HUGETLB_PAGE_DTOR] = free_huge_page,
415 #endif
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
418 #endif
419 };
420 
421 int min_free_kbytes = 1024;
422 int user_min_free_kbytes = -1;
423 int watermark_boost_factor __read_mostly = 15000;
424 int watermark_scale_factor = 10;
425 
426 static unsigned long nr_kernel_pages __initdata;
427 static unsigned long nr_all_pages __initdata;
428 static unsigned long dma_reserve __initdata;
429 
430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long required_kernelcore __initdata;
433 static unsigned long required_kernelcore_percent __initdata;
434 static unsigned long required_movablecore __initdata;
435 static unsigned long required_movablecore_percent __initdata;
436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
437 bool mirrored_kernelcore __initdata_memblock;
438 
439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
440 int movable_zone;
441 EXPORT_SYMBOL(movable_zone);
442 
443 #if MAX_NUMNODES > 1
444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
445 unsigned int nr_online_nodes __read_mostly = 1;
446 EXPORT_SYMBOL(nr_node_ids);
447 EXPORT_SYMBOL(nr_online_nodes);
448 #endif
449 
450 int page_group_by_mobility_disabled __read_mostly;
451 
452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
453 /*
454  * During boot we initialize deferred pages on-demand, as needed, but once
455  * page_alloc_init_late() has finished, the deferred pages are all initialized,
456  * and we can permanently disable that path.
457  */
458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
459 
460 static inline bool deferred_pages_enabled(void)
461 {
462 	return static_branch_unlikely(&deferred_pages);
463 }
464 
465 /* Returns true if the struct page for the pfn is uninitialised */
466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
467 {
468 	int nid = early_pfn_to_nid(pfn);
469 
470 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
471 		return true;
472 
473 	return false;
474 }
475 
476 /*
477  * Returns true when the remaining initialisation should be deferred until
478  * later in the boot cycle when it can be parallelised.
479  */
480 static bool __meminit
481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
482 {
483 	static unsigned long prev_end_pfn, nr_initialised;
484 
485 	if (early_page_ext_enabled())
486 		return false;
487 	/*
488 	 * prev_end_pfn static that contains the end of previous zone
489 	 * No need to protect because called very early in boot before smp_init.
490 	 */
491 	if (prev_end_pfn != end_pfn) {
492 		prev_end_pfn = end_pfn;
493 		nr_initialised = 0;
494 	}
495 
496 	/* Always populate low zones for address-constrained allocations */
497 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
498 		return false;
499 
500 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
501 		return true;
502 	/*
503 	 * We start only with one section of pages, more pages are added as
504 	 * needed until the rest of deferred pages are initialized.
505 	 */
506 	nr_initialised++;
507 	if ((nr_initialised > PAGES_PER_SECTION) &&
508 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
509 		NODE_DATA(nid)->first_deferred_pfn = pfn;
510 		return true;
511 	}
512 	return false;
513 }
514 #else
515 static inline bool deferred_pages_enabled(void)
516 {
517 	return false;
518 }
519 
520 static inline bool early_page_uninitialised(unsigned long pfn)
521 {
522 	return false;
523 }
524 
525 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
526 {
527 	return false;
528 }
529 #endif
530 
531 /* Return a pointer to the bitmap storing bits affecting a block of pages */
532 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
533 							unsigned long pfn)
534 {
535 #ifdef CONFIG_SPARSEMEM
536 	return section_to_usemap(__pfn_to_section(pfn));
537 #else
538 	return page_zone(page)->pageblock_flags;
539 #endif /* CONFIG_SPARSEMEM */
540 }
541 
542 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
543 {
544 #ifdef CONFIG_SPARSEMEM
545 	pfn &= (PAGES_PER_SECTION-1);
546 #else
547 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
548 #endif /* CONFIG_SPARSEMEM */
549 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
550 }
551 
552 static __always_inline
553 unsigned long __get_pfnblock_flags_mask(const struct page *page,
554 					unsigned long pfn,
555 					unsigned long mask)
556 {
557 	unsigned long *bitmap;
558 	unsigned long bitidx, word_bitidx;
559 	unsigned long word;
560 
561 	bitmap = get_pageblock_bitmap(page, pfn);
562 	bitidx = pfn_to_bitidx(page, pfn);
563 	word_bitidx = bitidx / BITS_PER_LONG;
564 	bitidx &= (BITS_PER_LONG-1);
565 	/*
566 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
567 	 * a consistent read of the memory array, so that results, even though
568 	 * racy, are not corrupted.
569 	 */
570 	word = READ_ONCE(bitmap[word_bitidx]);
571 	return (word >> bitidx) & mask;
572 }
573 
574 /**
575  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
576  * @page: The page within the block of interest
577  * @pfn: The target page frame number
578  * @mask: mask of bits that the caller is interested in
579  *
580  * Return: pageblock_bits flags
581  */
582 unsigned long get_pfnblock_flags_mask(const struct page *page,
583 					unsigned long pfn, unsigned long mask)
584 {
585 	return __get_pfnblock_flags_mask(page, pfn, mask);
586 }
587 
588 static __always_inline int get_pfnblock_migratetype(const struct page *page,
589 					unsigned long pfn)
590 {
591 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
592 }
593 
594 /**
595  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
596  * @page: The page within the block of interest
597  * @flags: The flags to set
598  * @pfn: The target page frame number
599  * @mask: mask of bits that the caller is interested in
600  */
601 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
602 					unsigned long pfn,
603 					unsigned long mask)
604 {
605 	unsigned long *bitmap;
606 	unsigned long bitidx, word_bitidx;
607 	unsigned long word;
608 
609 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
610 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
611 
612 	bitmap = get_pageblock_bitmap(page, pfn);
613 	bitidx = pfn_to_bitidx(page, pfn);
614 	word_bitidx = bitidx / BITS_PER_LONG;
615 	bitidx &= (BITS_PER_LONG-1);
616 
617 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
618 
619 	mask <<= bitidx;
620 	flags <<= bitidx;
621 
622 	word = READ_ONCE(bitmap[word_bitidx]);
623 	do {
624 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
625 }
626 
627 void set_pageblock_migratetype(struct page *page, int migratetype)
628 {
629 	if (unlikely(page_group_by_mobility_disabled &&
630 		     migratetype < MIGRATE_PCPTYPES))
631 		migratetype = MIGRATE_UNMOVABLE;
632 
633 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
634 				page_to_pfn(page), MIGRATETYPE_MASK);
635 }
636 
637 #ifdef CONFIG_DEBUG_VM
638 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
639 {
640 	int ret = 0;
641 	unsigned seq;
642 	unsigned long pfn = page_to_pfn(page);
643 	unsigned long sp, start_pfn;
644 
645 	do {
646 		seq = zone_span_seqbegin(zone);
647 		start_pfn = zone->zone_start_pfn;
648 		sp = zone->spanned_pages;
649 		if (!zone_spans_pfn(zone, pfn))
650 			ret = 1;
651 	} while (zone_span_seqretry(zone, seq));
652 
653 	if (ret)
654 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
655 			pfn, zone_to_nid(zone), zone->name,
656 			start_pfn, start_pfn + sp);
657 
658 	return ret;
659 }
660 
661 static int page_is_consistent(struct zone *zone, struct page *page)
662 {
663 	if (zone != page_zone(page))
664 		return 0;
665 
666 	return 1;
667 }
668 /*
669  * Temporary debugging check for pages not lying within a given zone.
670  */
671 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
672 {
673 	if (page_outside_zone_boundaries(zone, page))
674 		return 1;
675 	if (!page_is_consistent(zone, page))
676 		return 1;
677 
678 	return 0;
679 }
680 #else
681 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
682 {
683 	return 0;
684 }
685 #endif
686 
687 static void bad_page(struct page *page, const char *reason)
688 {
689 	static unsigned long resume;
690 	static unsigned long nr_shown;
691 	static unsigned long nr_unshown;
692 
693 	/*
694 	 * Allow a burst of 60 reports, then keep quiet for that minute;
695 	 * or allow a steady drip of one report per second.
696 	 */
697 	if (nr_shown == 60) {
698 		if (time_before(jiffies, resume)) {
699 			nr_unshown++;
700 			goto out;
701 		}
702 		if (nr_unshown) {
703 			pr_alert(
704 			      "BUG: Bad page state: %lu messages suppressed\n",
705 				nr_unshown);
706 			nr_unshown = 0;
707 		}
708 		nr_shown = 0;
709 	}
710 	if (nr_shown++ == 0)
711 		resume = jiffies + 60 * HZ;
712 
713 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
714 		current->comm, page_to_pfn(page));
715 	dump_page(page, reason);
716 
717 	print_modules();
718 	dump_stack();
719 out:
720 	/* Leave bad fields for debug, except PageBuddy could make trouble */
721 	page_mapcount_reset(page); /* remove PageBuddy */
722 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
723 }
724 
725 static inline unsigned int order_to_pindex(int migratetype, int order)
726 {
727 	int base = order;
728 
729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
730 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
731 		VM_BUG_ON(order != pageblock_order);
732 		return NR_LOWORDER_PCP_LISTS;
733 	}
734 #else
735 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
736 #endif
737 
738 	return (MIGRATE_PCPTYPES * base) + migratetype;
739 }
740 
741 static inline int pindex_to_order(unsigned int pindex)
742 {
743 	int order = pindex / MIGRATE_PCPTYPES;
744 
745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
746 	if (pindex == NR_LOWORDER_PCP_LISTS)
747 		order = pageblock_order;
748 #else
749 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
750 #endif
751 
752 	return order;
753 }
754 
755 static inline bool pcp_allowed_order(unsigned int order)
756 {
757 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
758 		return true;
759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 	if (order == pageblock_order)
761 		return true;
762 #endif
763 	return false;
764 }
765 
766 static inline void free_the_page(struct page *page, unsigned int order)
767 {
768 	if (pcp_allowed_order(order))		/* Via pcp? */
769 		free_unref_page(page, order);
770 	else
771 		__free_pages_ok(page, order, FPI_NONE);
772 }
773 
774 /*
775  * Higher-order pages are called "compound pages".  They are structured thusly:
776  *
777  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
778  *
779  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
780  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
781  *
782  * The first tail page's ->compound_dtor holds the offset in array of compound
783  * page destructors. See compound_page_dtors.
784  *
785  * The first tail page's ->compound_order holds the order of allocation.
786  * This usage means that zero-order pages may not be compound.
787  */
788 
789 void free_compound_page(struct page *page)
790 {
791 	mem_cgroup_uncharge(page_folio(page));
792 	free_the_page(page, compound_order(page));
793 }
794 
795 static void prep_compound_head(struct page *page, unsigned int order)
796 {
797 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
798 	set_compound_order(page, order);
799 	atomic_set(compound_mapcount_ptr(page), -1);
800 	atomic_set(compound_pincount_ptr(page), 0);
801 }
802 
803 static void prep_compound_tail(struct page *head, int tail_idx)
804 {
805 	struct page *p = head + tail_idx;
806 
807 	p->mapping = TAIL_MAPPING;
808 	set_compound_head(p, head);
809 }
810 
811 void prep_compound_page(struct page *page, unsigned int order)
812 {
813 	int i;
814 	int nr_pages = 1 << order;
815 
816 	__SetPageHead(page);
817 	for (i = 1; i < nr_pages; i++)
818 		prep_compound_tail(page, i);
819 
820 	prep_compound_head(page, order);
821 }
822 
823 void destroy_large_folio(struct folio *folio)
824 {
825 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
826 
827 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
828 	compound_page_dtors[dtor](&folio->page);
829 }
830 
831 #ifdef CONFIG_DEBUG_PAGEALLOC
832 unsigned int _debug_guardpage_minorder;
833 
834 bool _debug_pagealloc_enabled_early __read_mostly
835 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
836 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
837 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
838 EXPORT_SYMBOL(_debug_pagealloc_enabled);
839 
840 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
841 
842 static int __init early_debug_pagealloc(char *buf)
843 {
844 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
845 }
846 early_param("debug_pagealloc", early_debug_pagealloc);
847 
848 static int __init debug_guardpage_minorder_setup(char *buf)
849 {
850 	unsigned long res;
851 
852 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
853 		pr_err("Bad debug_guardpage_minorder value\n");
854 		return 0;
855 	}
856 	_debug_guardpage_minorder = res;
857 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
858 	return 0;
859 }
860 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
861 
862 static inline bool set_page_guard(struct zone *zone, struct page *page,
863 				unsigned int order, int migratetype)
864 {
865 	if (!debug_guardpage_enabled())
866 		return false;
867 
868 	if (order >= debug_guardpage_minorder())
869 		return false;
870 
871 	__SetPageGuard(page);
872 	INIT_LIST_HEAD(&page->buddy_list);
873 	set_page_private(page, order);
874 	/* Guard pages are not available for any usage */
875 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
876 
877 	return true;
878 }
879 
880 static inline void clear_page_guard(struct zone *zone, struct page *page,
881 				unsigned int order, int migratetype)
882 {
883 	if (!debug_guardpage_enabled())
884 		return;
885 
886 	__ClearPageGuard(page);
887 
888 	set_page_private(page, 0);
889 	if (!is_migrate_isolate(migratetype))
890 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
891 }
892 #else
893 static inline bool set_page_guard(struct zone *zone, struct page *page,
894 			unsigned int order, int migratetype) { return false; }
895 static inline void clear_page_guard(struct zone *zone, struct page *page,
896 				unsigned int order, int migratetype) {}
897 #endif
898 
899 /*
900  * Enable static keys related to various memory debugging and hardening options.
901  * Some override others, and depend on early params that are evaluated in the
902  * order of appearance. So we need to first gather the full picture of what was
903  * enabled, and then make decisions.
904  */
905 void init_mem_debugging_and_hardening(void)
906 {
907 	bool page_poisoning_requested = false;
908 
909 #ifdef CONFIG_PAGE_POISONING
910 	/*
911 	 * Page poisoning is debug page alloc for some arches. If
912 	 * either of those options are enabled, enable poisoning.
913 	 */
914 	if (page_poisoning_enabled() ||
915 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
916 	      debug_pagealloc_enabled())) {
917 		static_branch_enable(&_page_poisoning_enabled);
918 		page_poisoning_requested = true;
919 	}
920 #endif
921 
922 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
923 	    page_poisoning_requested) {
924 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
925 			"will take precedence over init_on_alloc and init_on_free\n");
926 		_init_on_alloc_enabled_early = false;
927 		_init_on_free_enabled_early = false;
928 	}
929 
930 	if (_init_on_alloc_enabled_early)
931 		static_branch_enable(&init_on_alloc);
932 	else
933 		static_branch_disable(&init_on_alloc);
934 
935 	if (_init_on_free_enabled_early)
936 		static_branch_enable(&init_on_free);
937 	else
938 		static_branch_disable(&init_on_free);
939 
940 #ifdef CONFIG_DEBUG_PAGEALLOC
941 	if (!debug_pagealloc_enabled())
942 		return;
943 
944 	static_branch_enable(&_debug_pagealloc_enabled);
945 
946 	if (!debug_guardpage_minorder())
947 		return;
948 
949 	static_branch_enable(&_debug_guardpage_enabled);
950 #endif
951 }
952 
953 static inline void set_buddy_order(struct page *page, unsigned int order)
954 {
955 	set_page_private(page, order);
956 	__SetPageBuddy(page);
957 }
958 
959 #ifdef CONFIG_COMPACTION
960 static inline struct capture_control *task_capc(struct zone *zone)
961 {
962 	struct capture_control *capc = current->capture_control;
963 
964 	return unlikely(capc) &&
965 		!(current->flags & PF_KTHREAD) &&
966 		!capc->page &&
967 		capc->cc->zone == zone ? capc : NULL;
968 }
969 
970 static inline bool
971 compaction_capture(struct capture_control *capc, struct page *page,
972 		   int order, int migratetype)
973 {
974 	if (!capc || order != capc->cc->order)
975 		return false;
976 
977 	/* Do not accidentally pollute CMA or isolated regions*/
978 	if (is_migrate_cma(migratetype) ||
979 	    is_migrate_isolate(migratetype))
980 		return false;
981 
982 	/*
983 	 * Do not let lower order allocations pollute a movable pageblock.
984 	 * This might let an unmovable request use a reclaimable pageblock
985 	 * and vice-versa but no more than normal fallback logic which can
986 	 * have trouble finding a high-order free page.
987 	 */
988 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
989 		return false;
990 
991 	capc->page = page;
992 	return true;
993 }
994 
995 #else
996 static inline struct capture_control *task_capc(struct zone *zone)
997 {
998 	return NULL;
999 }
1000 
1001 static inline bool
1002 compaction_capture(struct capture_control *capc, struct page *page,
1003 		   int order, int migratetype)
1004 {
1005 	return false;
1006 }
1007 #endif /* CONFIG_COMPACTION */
1008 
1009 /* Used for pages not on another list */
1010 static inline void add_to_free_list(struct page *page, struct zone *zone,
1011 				    unsigned int order, int migratetype)
1012 {
1013 	struct free_area *area = &zone->free_area[order];
1014 
1015 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1016 	area->nr_free++;
1017 }
1018 
1019 /* Used for pages not on another list */
1020 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1021 					 unsigned int order, int migratetype)
1022 {
1023 	struct free_area *area = &zone->free_area[order];
1024 
1025 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1026 	area->nr_free++;
1027 }
1028 
1029 /*
1030  * Used for pages which are on another list. Move the pages to the tail
1031  * of the list - so the moved pages won't immediately be considered for
1032  * allocation again (e.g., optimization for memory onlining).
1033  */
1034 static inline void move_to_free_list(struct page *page, struct zone *zone,
1035 				     unsigned int order, int migratetype)
1036 {
1037 	struct free_area *area = &zone->free_area[order];
1038 
1039 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1040 }
1041 
1042 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1043 					   unsigned int order)
1044 {
1045 	/* clear reported state and update reported page count */
1046 	if (page_reported(page))
1047 		__ClearPageReported(page);
1048 
1049 	list_del(&page->buddy_list);
1050 	__ClearPageBuddy(page);
1051 	set_page_private(page, 0);
1052 	zone->free_area[order].nr_free--;
1053 }
1054 
1055 /*
1056  * If this is not the largest possible page, check if the buddy
1057  * of the next-highest order is free. If it is, it's possible
1058  * that pages are being freed that will coalesce soon. In case,
1059  * that is happening, add the free page to the tail of the list
1060  * so it's less likely to be used soon and more likely to be merged
1061  * as a higher order page
1062  */
1063 static inline bool
1064 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1065 		   struct page *page, unsigned int order)
1066 {
1067 	unsigned long higher_page_pfn;
1068 	struct page *higher_page;
1069 
1070 	if (order >= MAX_ORDER - 2)
1071 		return false;
1072 
1073 	higher_page_pfn = buddy_pfn & pfn;
1074 	higher_page = page + (higher_page_pfn - pfn);
1075 
1076 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1077 			NULL) != NULL;
1078 }
1079 
1080 /*
1081  * Freeing function for a buddy system allocator.
1082  *
1083  * The concept of a buddy system is to maintain direct-mapped table
1084  * (containing bit values) for memory blocks of various "orders".
1085  * The bottom level table contains the map for the smallest allocatable
1086  * units of memory (here, pages), and each level above it describes
1087  * pairs of units from the levels below, hence, "buddies".
1088  * At a high level, all that happens here is marking the table entry
1089  * at the bottom level available, and propagating the changes upward
1090  * as necessary, plus some accounting needed to play nicely with other
1091  * parts of the VM system.
1092  * At each level, we keep a list of pages, which are heads of continuous
1093  * free pages of length of (1 << order) and marked with PageBuddy.
1094  * Page's order is recorded in page_private(page) field.
1095  * So when we are allocating or freeing one, we can derive the state of the
1096  * other.  That is, if we allocate a small block, and both were
1097  * free, the remainder of the region must be split into blocks.
1098  * If a block is freed, and its buddy is also free, then this
1099  * triggers coalescing into a block of larger size.
1100  *
1101  * -- nyc
1102  */
1103 
1104 static inline void __free_one_page(struct page *page,
1105 		unsigned long pfn,
1106 		struct zone *zone, unsigned int order,
1107 		int migratetype, fpi_t fpi_flags)
1108 {
1109 	struct capture_control *capc = task_capc(zone);
1110 	unsigned long buddy_pfn;
1111 	unsigned long combined_pfn;
1112 	struct page *buddy;
1113 	bool to_tail;
1114 
1115 	VM_BUG_ON(!zone_is_initialized(zone));
1116 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1117 
1118 	VM_BUG_ON(migratetype == -1);
1119 	if (likely(!is_migrate_isolate(migratetype)))
1120 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1121 
1122 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1123 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1124 
1125 	while (order < MAX_ORDER - 1) {
1126 		if (compaction_capture(capc, page, order, migratetype)) {
1127 			__mod_zone_freepage_state(zone, -(1 << order),
1128 								migratetype);
1129 			return;
1130 		}
1131 
1132 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1133 		if (!buddy)
1134 			goto done_merging;
1135 
1136 		if (unlikely(order >= pageblock_order)) {
1137 			/*
1138 			 * We want to prevent merge between freepages on pageblock
1139 			 * without fallbacks and normal pageblock. Without this,
1140 			 * pageblock isolation could cause incorrect freepage or CMA
1141 			 * accounting or HIGHATOMIC accounting.
1142 			 */
1143 			int buddy_mt = get_pageblock_migratetype(buddy);
1144 
1145 			if (migratetype != buddy_mt
1146 					&& (!migratetype_is_mergeable(migratetype) ||
1147 						!migratetype_is_mergeable(buddy_mt)))
1148 				goto done_merging;
1149 		}
1150 
1151 		/*
1152 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1153 		 * merge with it and move up one order.
1154 		 */
1155 		if (page_is_guard(buddy))
1156 			clear_page_guard(zone, buddy, order, migratetype);
1157 		else
1158 			del_page_from_free_list(buddy, zone, order);
1159 		combined_pfn = buddy_pfn & pfn;
1160 		page = page + (combined_pfn - pfn);
1161 		pfn = combined_pfn;
1162 		order++;
1163 	}
1164 
1165 done_merging:
1166 	set_buddy_order(page, order);
1167 
1168 	if (fpi_flags & FPI_TO_TAIL)
1169 		to_tail = true;
1170 	else if (is_shuffle_order(order))
1171 		to_tail = shuffle_pick_tail();
1172 	else
1173 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1174 
1175 	if (to_tail)
1176 		add_to_free_list_tail(page, zone, order, migratetype);
1177 	else
1178 		add_to_free_list(page, zone, order, migratetype);
1179 
1180 	/* Notify page reporting subsystem of freed page */
1181 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1182 		page_reporting_notify_free(order);
1183 }
1184 
1185 /**
1186  * split_free_page() -- split a free page at split_pfn_offset
1187  * @free_page:		the original free page
1188  * @order:		the order of the page
1189  * @split_pfn_offset:	split offset within the page
1190  *
1191  * Return -ENOENT if the free page is changed, otherwise 0
1192  *
1193  * It is used when the free page crosses two pageblocks with different migratetypes
1194  * at split_pfn_offset within the page. The split free page will be put into
1195  * separate migratetype lists afterwards. Otherwise, the function achieves
1196  * nothing.
1197  */
1198 int split_free_page(struct page *free_page,
1199 			unsigned int order, unsigned long split_pfn_offset)
1200 {
1201 	struct zone *zone = page_zone(free_page);
1202 	unsigned long free_page_pfn = page_to_pfn(free_page);
1203 	unsigned long pfn;
1204 	unsigned long flags;
1205 	int free_page_order;
1206 	int mt;
1207 	int ret = 0;
1208 
1209 	if (split_pfn_offset == 0)
1210 		return ret;
1211 
1212 	spin_lock_irqsave(&zone->lock, flags);
1213 
1214 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1215 		ret = -ENOENT;
1216 		goto out;
1217 	}
1218 
1219 	mt = get_pageblock_migratetype(free_page);
1220 	if (likely(!is_migrate_isolate(mt)))
1221 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1222 
1223 	del_page_from_free_list(free_page, zone, order);
1224 	for (pfn = free_page_pfn;
1225 	     pfn < free_page_pfn + (1UL << order);) {
1226 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1227 
1228 		free_page_order = min_t(unsigned int,
1229 					pfn ? __ffs(pfn) : order,
1230 					__fls(split_pfn_offset));
1231 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1232 				mt, FPI_NONE);
1233 		pfn += 1UL << free_page_order;
1234 		split_pfn_offset -= (1UL << free_page_order);
1235 		/* we have done the first part, now switch to second part */
1236 		if (split_pfn_offset == 0)
1237 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1238 	}
1239 out:
1240 	spin_unlock_irqrestore(&zone->lock, flags);
1241 	return ret;
1242 }
1243 /*
1244  * A bad page could be due to a number of fields. Instead of multiple branches,
1245  * try and check multiple fields with one check. The caller must do a detailed
1246  * check if necessary.
1247  */
1248 static inline bool page_expected_state(struct page *page,
1249 					unsigned long check_flags)
1250 {
1251 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1252 		return false;
1253 
1254 	if (unlikely((unsigned long)page->mapping |
1255 			page_ref_count(page) |
1256 #ifdef CONFIG_MEMCG
1257 			page->memcg_data |
1258 #endif
1259 			(page->flags & check_flags)))
1260 		return false;
1261 
1262 	return true;
1263 }
1264 
1265 static const char *page_bad_reason(struct page *page, unsigned long flags)
1266 {
1267 	const char *bad_reason = NULL;
1268 
1269 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1270 		bad_reason = "nonzero mapcount";
1271 	if (unlikely(page->mapping != NULL))
1272 		bad_reason = "non-NULL mapping";
1273 	if (unlikely(page_ref_count(page) != 0))
1274 		bad_reason = "nonzero _refcount";
1275 	if (unlikely(page->flags & flags)) {
1276 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1277 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1278 		else
1279 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1280 	}
1281 #ifdef CONFIG_MEMCG
1282 	if (unlikely(page->memcg_data))
1283 		bad_reason = "page still charged to cgroup";
1284 #endif
1285 	return bad_reason;
1286 }
1287 
1288 static void check_free_page_bad(struct page *page)
1289 {
1290 	bad_page(page,
1291 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1292 }
1293 
1294 static inline int check_free_page(struct page *page)
1295 {
1296 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1297 		return 0;
1298 
1299 	/* Something has gone sideways, find it */
1300 	check_free_page_bad(page);
1301 	return 1;
1302 }
1303 
1304 static int free_tail_pages_check(struct page *head_page, struct page *page)
1305 {
1306 	int ret = 1;
1307 
1308 	/*
1309 	 * We rely page->lru.next never has bit 0 set, unless the page
1310 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1311 	 */
1312 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1313 
1314 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1315 		ret = 0;
1316 		goto out;
1317 	}
1318 	switch (page - head_page) {
1319 	case 1:
1320 		/* the first tail page: ->mapping may be compound_mapcount() */
1321 		if (unlikely(compound_mapcount(page))) {
1322 			bad_page(page, "nonzero compound_mapcount");
1323 			goto out;
1324 		}
1325 		break;
1326 	case 2:
1327 		/*
1328 		 * the second tail page: ->mapping is
1329 		 * deferred_list.next -- ignore value.
1330 		 */
1331 		break;
1332 	default:
1333 		if (page->mapping != TAIL_MAPPING) {
1334 			bad_page(page, "corrupted mapping in tail page");
1335 			goto out;
1336 		}
1337 		break;
1338 	}
1339 	if (unlikely(!PageTail(page))) {
1340 		bad_page(page, "PageTail not set");
1341 		goto out;
1342 	}
1343 	if (unlikely(compound_head(page) != head_page)) {
1344 		bad_page(page, "compound_head not consistent");
1345 		goto out;
1346 	}
1347 	ret = 0;
1348 out:
1349 	page->mapping = NULL;
1350 	clear_compound_head(page);
1351 	return ret;
1352 }
1353 
1354 /*
1355  * Skip KASAN memory poisoning when either:
1356  *
1357  * 1. Deferred memory initialization has not yet completed,
1358  *    see the explanation below.
1359  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1360  *    see the comment next to it.
1361  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1362  *    see the comment next to it.
1363  *
1364  * Poisoning pages during deferred memory init will greatly lengthen the
1365  * process and cause problem in large memory systems as the deferred pages
1366  * initialization is done with interrupt disabled.
1367  *
1368  * Assuming that there will be no reference to those newly initialized
1369  * pages before they are ever allocated, this should have no effect on
1370  * KASAN memory tracking as the poison will be properly inserted at page
1371  * allocation time. The only corner case is when pages are allocated by
1372  * on-demand allocation and then freed again before the deferred pages
1373  * initialization is done, but this is not likely to happen.
1374  */
1375 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1376 {
1377 	return deferred_pages_enabled() ||
1378 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1379 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1380 	       PageSkipKASanPoison(page);
1381 }
1382 
1383 static void kernel_init_pages(struct page *page, int numpages)
1384 {
1385 	int i;
1386 
1387 	/* s390's use of memset() could override KASAN redzones. */
1388 	kasan_disable_current();
1389 	for (i = 0; i < numpages; i++)
1390 		clear_highpage_kasan_tagged(page + i);
1391 	kasan_enable_current();
1392 }
1393 
1394 static __always_inline bool free_pages_prepare(struct page *page,
1395 			unsigned int order, bool check_free, fpi_t fpi_flags)
1396 {
1397 	int bad = 0;
1398 	bool init = want_init_on_free();
1399 
1400 	VM_BUG_ON_PAGE(PageTail(page), page);
1401 
1402 	trace_mm_page_free(page, order);
1403 
1404 	if (unlikely(PageHWPoison(page)) && !order) {
1405 		/*
1406 		 * Do not let hwpoison pages hit pcplists/buddy
1407 		 * Untie memcg state and reset page's owner
1408 		 */
1409 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1410 			__memcg_kmem_uncharge_page(page, order);
1411 		reset_page_owner(page, order);
1412 		page_table_check_free(page, order);
1413 		return false;
1414 	}
1415 
1416 	/*
1417 	 * Check tail pages before head page information is cleared to
1418 	 * avoid checking PageCompound for order-0 pages.
1419 	 */
1420 	if (unlikely(order)) {
1421 		bool compound = PageCompound(page);
1422 		int i;
1423 
1424 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1425 
1426 		if (compound) {
1427 			ClearPageDoubleMap(page);
1428 			ClearPageHasHWPoisoned(page);
1429 		}
1430 		for (i = 1; i < (1 << order); i++) {
1431 			if (compound)
1432 				bad += free_tail_pages_check(page, page + i);
1433 			if (unlikely(check_free_page(page + i))) {
1434 				bad++;
1435 				continue;
1436 			}
1437 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1438 		}
1439 	}
1440 	if (PageMappingFlags(page))
1441 		page->mapping = NULL;
1442 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1443 		__memcg_kmem_uncharge_page(page, order);
1444 	if (check_free)
1445 		bad += check_free_page(page);
1446 	if (bad)
1447 		return false;
1448 
1449 	page_cpupid_reset_last(page);
1450 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1451 	reset_page_owner(page, order);
1452 	page_table_check_free(page, order);
1453 
1454 	if (!PageHighMem(page)) {
1455 		debug_check_no_locks_freed(page_address(page),
1456 					   PAGE_SIZE << order);
1457 		debug_check_no_obj_freed(page_address(page),
1458 					   PAGE_SIZE << order);
1459 	}
1460 
1461 	kernel_poison_pages(page, 1 << order);
1462 
1463 	/*
1464 	 * As memory initialization might be integrated into KASAN,
1465 	 * KASAN poisoning and memory initialization code must be
1466 	 * kept together to avoid discrepancies in behavior.
1467 	 *
1468 	 * With hardware tag-based KASAN, memory tags must be set before the
1469 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1470 	 */
1471 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1472 		kasan_poison_pages(page, order, init);
1473 
1474 		/* Memory is already initialized if KASAN did it internally. */
1475 		if (kasan_has_integrated_init())
1476 			init = false;
1477 	}
1478 	if (init)
1479 		kernel_init_pages(page, 1 << order);
1480 
1481 	/*
1482 	 * arch_free_page() can make the page's contents inaccessible.  s390
1483 	 * does this.  So nothing which can access the page's contents should
1484 	 * happen after this.
1485 	 */
1486 	arch_free_page(page, order);
1487 
1488 	debug_pagealloc_unmap_pages(page, 1 << order);
1489 
1490 	return true;
1491 }
1492 
1493 #ifdef CONFIG_DEBUG_VM
1494 /*
1495  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1496  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1497  * moved from pcp lists to free lists.
1498  */
1499 static bool free_pcp_prepare(struct page *page, unsigned int order)
1500 {
1501 	return free_pages_prepare(page, order, true, FPI_NONE);
1502 }
1503 
1504 static bool bulkfree_pcp_prepare(struct page *page)
1505 {
1506 	if (debug_pagealloc_enabled_static())
1507 		return check_free_page(page);
1508 	else
1509 		return false;
1510 }
1511 #else
1512 /*
1513  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1514  * moving from pcp lists to free list in order to reduce overhead. With
1515  * debug_pagealloc enabled, they are checked also immediately when being freed
1516  * to the pcp lists.
1517  */
1518 static bool free_pcp_prepare(struct page *page, unsigned int order)
1519 {
1520 	if (debug_pagealloc_enabled_static())
1521 		return free_pages_prepare(page, order, true, FPI_NONE);
1522 	else
1523 		return free_pages_prepare(page, order, false, FPI_NONE);
1524 }
1525 
1526 static bool bulkfree_pcp_prepare(struct page *page)
1527 {
1528 	return check_free_page(page);
1529 }
1530 #endif /* CONFIG_DEBUG_VM */
1531 
1532 /*
1533  * Frees a number of pages from the PCP lists
1534  * Assumes all pages on list are in same zone.
1535  * count is the number of pages to free.
1536  */
1537 static void free_pcppages_bulk(struct zone *zone, int count,
1538 					struct per_cpu_pages *pcp,
1539 					int pindex)
1540 {
1541 	int min_pindex = 0;
1542 	int max_pindex = NR_PCP_LISTS - 1;
1543 	unsigned int order;
1544 	bool isolated_pageblocks;
1545 	struct page *page;
1546 
1547 	/*
1548 	 * Ensure proper count is passed which otherwise would stuck in the
1549 	 * below while (list_empty(list)) loop.
1550 	 */
1551 	count = min(pcp->count, count);
1552 
1553 	/* Ensure requested pindex is drained first. */
1554 	pindex = pindex - 1;
1555 
1556 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1557 	spin_lock(&zone->lock);
1558 	isolated_pageblocks = has_isolate_pageblock(zone);
1559 
1560 	while (count > 0) {
1561 		struct list_head *list;
1562 		int nr_pages;
1563 
1564 		/* Remove pages from lists in a round-robin fashion. */
1565 		do {
1566 			if (++pindex > max_pindex)
1567 				pindex = min_pindex;
1568 			list = &pcp->lists[pindex];
1569 			if (!list_empty(list))
1570 				break;
1571 
1572 			if (pindex == max_pindex)
1573 				max_pindex--;
1574 			if (pindex == min_pindex)
1575 				min_pindex++;
1576 		} while (1);
1577 
1578 		order = pindex_to_order(pindex);
1579 		nr_pages = 1 << order;
1580 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1581 		do {
1582 			int mt;
1583 
1584 			page = list_last_entry(list, struct page, pcp_list);
1585 			mt = get_pcppage_migratetype(page);
1586 
1587 			/* must delete to avoid corrupting pcp list */
1588 			list_del(&page->pcp_list);
1589 			count -= nr_pages;
1590 			pcp->count -= nr_pages;
1591 
1592 			if (bulkfree_pcp_prepare(page))
1593 				continue;
1594 
1595 			/* MIGRATE_ISOLATE page should not go to pcplists */
1596 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1597 			/* Pageblock could have been isolated meanwhile */
1598 			if (unlikely(isolated_pageblocks))
1599 				mt = get_pageblock_migratetype(page);
1600 
1601 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1602 			trace_mm_page_pcpu_drain(page, order, mt);
1603 		} while (count > 0 && !list_empty(list));
1604 	}
1605 
1606 	spin_unlock(&zone->lock);
1607 }
1608 
1609 static void free_one_page(struct zone *zone,
1610 				struct page *page, unsigned long pfn,
1611 				unsigned int order,
1612 				int migratetype, fpi_t fpi_flags)
1613 {
1614 	unsigned long flags;
1615 
1616 	spin_lock_irqsave(&zone->lock, flags);
1617 	if (unlikely(has_isolate_pageblock(zone) ||
1618 		is_migrate_isolate(migratetype))) {
1619 		migratetype = get_pfnblock_migratetype(page, pfn);
1620 	}
1621 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1622 	spin_unlock_irqrestore(&zone->lock, flags);
1623 }
1624 
1625 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1626 				unsigned long zone, int nid)
1627 {
1628 	mm_zero_struct_page(page);
1629 	set_page_links(page, zone, nid, pfn);
1630 	init_page_count(page);
1631 	page_mapcount_reset(page);
1632 	page_cpupid_reset_last(page);
1633 	page_kasan_tag_reset(page);
1634 
1635 	INIT_LIST_HEAD(&page->lru);
1636 #ifdef WANT_PAGE_VIRTUAL
1637 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1638 	if (!is_highmem_idx(zone))
1639 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1640 #endif
1641 }
1642 
1643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1644 static void __meminit init_reserved_page(unsigned long pfn)
1645 {
1646 	pg_data_t *pgdat;
1647 	int nid, zid;
1648 
1649 	if (!early_page_uninitialised(pfn))
1650 		return;
1651 
1652 	nid = early_pfn_to_nid(pfn);
1653 	pgdat = NODE_DATA(nid);
1654 
1655 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 		struct zone *zone = &pgdat->node_zones[zid];
1657 
1658 		if (zone_spans_pfn(zone, pfn))
1659 			break;
1660 	}
1661 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1662 }
1663 #else
1664 static inline void init_reserved_page(unsigned long pfn)
1665 {
1666 }
1667 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1668 
1669 /*
1670  * Initialised pages do not have PageReserved set. This function is
1671  * called for each range allocated by the bootmem allocator and
1672  * marks the pages PageReserved. The remaining valid pages are later
1673  * sent to the buddy page allocator.
1674  */
1675 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1676 {
1677 	unsigned long start_pfn = PFN_DOWN(start);
1678 	unsigned long end_pfn = PFN_UP(end);
1679 
1680 	for (; start_pfn < end_pfn; start_pfn++) {
1681 		if (pfn_valid(start_pfn)) {
1682 			struct page *page = pfn_to_page(start_pfn);
1683 
1684 			init_reserved_page(start_pfn);
1685 
1686 			/* Avoid false-positive PageTail() */
1687 			INIT_LIST_HEAD(&page->lru);
1688 
1689 			/*
1690 			 * no need for atomic set_bit because the struct
1691 			 * page is not visible yet so nobody should
1692 			 * access it yet.
1693 			 */
1694 			__SetPageReserved(page);
1695 		}
1696 	}
1697 }
1698 
1699 static void __free_pages_ok(struct page *page, unsigned int order,
1700 			    fpi_t fpi_flags)
1701 {
1702 	unsigned long flags;
1703 	int migratetype;
1704 	unsigned long pfn = page_to_pfn(page);
1705 	struct zone *zone = page_zone(page);
1706 
1707 	if (!free_pages_prepare(page, order, true, fpi_flags))
1708 		return;
1709 
1710 	migratetype = get_pfnblock_migratetype(page, pfn);
1711 
1712 	spin_lock_irqsave(&zone->lock, flags);
1713 	if (unlikely(has_isolate_pageblock(zone) ||
1714 		is_migrate_isolate(migratetype))) {
1715 		migratetype = get_pfnblock_migratetype(page, pfn);
1716 	}
1717 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1718 	spin_unlock_irqrestore(&zone->lock, flags);
1719 
1720 	__count_vm_events(PGFREE, 1 << order);
1721 }
1722 
1723 void __free_pages_core(struct page *page, unsigned int order)
1724 {
1725 	unsigned int nr_pages = 1 << order;
1726 	struct page *p = page;
1727 	unsigned int loop;
1728 
1729 	/*
1730 	 * When initializing the memmap, __init_single_page() sets the refcount
1731 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1732 	 * refcount of all involved pages to 0.
1733 	 */
1734 	prefetchw(p);
1735 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1736 		prefetchw(p + 1);
1737 		__ClearPageReserved(p);
1738 		set_page_count(p, 0);
1739 	}
1740 	__ClearPageReserved(p);
1741 	set_page_count(p, 0);
1742 
1743 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1744 
1745 	/*
1746 	 * Bypass PCP and place fresh pages right to the tail, primarily
1747 	 * relevant for memory onlining.
1748 	 */
1749 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1750 }
1751 
1752 #ifdef CONFIG_NUMA
1753 
1754 /*
1755  * During memory init memblocks map pfns to nids. The search is expensive and
1756  * this caches recent lookups. The implementation of __early_pfn_to_nid
1757  * treats start/end as pfns.
1758  */
1759 struct mminit_pfnnid_cache {
1760 	unsigned long last_start;
1761 	unsigned long last_end;
1762 	int last_nid;
1763 };
1764 
1765 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1766 
1767 /*
1768  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1769  */
1770 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1771 					struct mminit_pfnnid_cache *state)
1772 {
1773 	unsigned long start_pfn, end_pfn;
1774 	int nid;
1775 
1776 	if (state->last_start <= pfn && pfn < state->last_end)
1777 		return state->last_nid;
1778 
1779 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1780 	if (nid != NUMA_NO_NODE) {
1781 		state->last_start = start_pfn;
1782 		state->last_end = end_pfn;
1783 		state->last_nid = nid;
1784 	}
1785 
1786 	return nid;
1787 }
1788 
1789 int __meminit early_pfn_to_nid(unsigned long pfn)
1790 {
1791 	static DEFINE_SPINLOCK(early_pfn_lock);
1792 	int nid;
1793 
1794 	spin_lock(&early_pfn_lock);
1795 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1796 	if (nid < 0)
1797 		nid = first_online_node;
1798 	spin_unlock(&early_pfn_lock);
1799 
1800 	return nid;
1801 }
1802 #endif /* CONFIG_NUMA */
1803 
1804 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1805 							unsigned int order)
1806 {
1807 	if (early_page_uninitialised(pfn))
1808 		return;
1809 	__free_pages_core(page, order);
1810 }
1811 
1812 /*
1813  * Check that the whole (or subset of) a pageblock given by the interval of
1814  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1815  * with the migration of free compaction scanner.
1816  *
1817  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1818  *
1819  * It's possible on some configurations to have a setup like node0 node1 node0
1820  * i.e. it's possible that all pages within a zones range of pages do not
1821  * belong to a single zone. We assume that a border between node0 and node1
1822  * can occur within a single pageblock, but not a node0 node1 node0
1823  * interleaving within a single pageblock. It is therefore sufficient to check
1824  * the first and last page of a pageblock and avoid checking each individual
1825  * page in a pageblock.
1826  */
1827 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1828 				     unsigned long end_pfn, struct zone *zone)
1829 {
1830 	struct page *start_page;
1831 	struct page *end_page;
1832 
1833 	/* end_pfn is one past the range we are checking */
1834 	end_pfn--;
1835 
1836 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1837 		return NULL;
1838 
1839 	start_page = pfn_to_online_page(start_pfn);
1840 	if (!start_page)
1841 		return NULL;
1842 
1843 	if (page_zone(start_page) != zone)
1844 		return NULL;
1845 
1846 	end_page = pfn_to_page(end_pfn);
1847 
1848 	/* This gives a shorter code than deriving page_zone(end_page) */
1849 	if (page_zone_id(start_page) != page_zone_id(end_page))
1850 		return NULL;
1851 
1852 	return start_page;
1853 }
1854 
1855 void set_zone_contiguous(struct zone *zone)
1856 {
1857 	unsigned long block_start_pfn = zone->zone_start_pfn;
1858 	unsigned long block_end_pfn;
1859 
1860 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1861 	for (; block_start_pfn < zone_end_pfn(zone);
1862 			block_start_pfn = block_end_pfn,
1863 			 block_end_pfn += pageblock_nr_pages) {
1864 
1865 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1866 
1867 		if (!__pageblock_pfn_to_page(block_start_pfn,
1868 					     block_end_pfn, zone))
1869 			return;
1870 		cond_resched();
1871 	}
1872 
1873 	/* We confirm that there is no hole */
1874 	zone->contiguous = true;
1875 }
1876 
1877 void clear_zone_contiguous(struct zone *zone)
1878 {
1879 	zone->contiguous = false;
1880 }
1881 
1882 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1883 static void __init deferred_free_range(unsigned long pfn,
1884 				       unsigned long nr_pages)
1885 {
1886 	struct page *page;
1887 	unsigned long i;
1888 
1889 	if (!nr_pages)
1890 		return;
1891 
1892 	page = pfn_to_page(pfn);
1893 
1894 	/* Free a large naturally-aligned chunk if possible */
1895 	if (nr_pages == pageblock_nr_pages &&
1896 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1897 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1898 		__free_pages_core(page, pageblock_order);
1899 		return;
1900 	}
1901 
1902 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1903 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1904 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1905 		__free_pages_core(page, 0);
1906 	}
1907 }
1908 
1909 /* Completion tracking for deferred_init_memmap() threads */
1910 static atomic_t pgdat_init_n_undone __initdata;
1911 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1912 
1913 static inline void __init pgdat_init_report_one_done(void)
1914 {
1915 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1916 		complete(&pgdat_init_all_done_comp);
1917 }
1918 
1919 /*
1920  * Returns true if page needs to be initialized or freed to buddy allocator.
1921  *
1922  * First we check if pfn is valid on architectures where it is possible to have
1923  * holes within pageblock_nr_pages. On systems where it is not possible, this
1924  * function is optimized out.
1925  *
1926  * Then, we check if a current large page is valid by only checking the validity
1927  * of the head pfn.
1928  */
1929 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1930 {
1931 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1932 		return false;
1933 	return true;
1934 }
1935 
1936 /*
1937  * Free pages to buddy allocator. Try to free aligned pages in
1938  * pageblock_nr_pages sizes.
1939  */
1940 static void __init deferred_free_pages(unsigned long pfn,
1941 				       unsigned long end_pfn)
1942 {
1943 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1944 	unsigned long nr_free = 0;
1945 
1946 	for (; pfn < end_pfn; pfn++) {
1947 		if (!deferred_pfn_valid(pfn)) {
1948 			deferred_free_range(pfn - nr_free, nr_free);
1949 			nr_free = 0;
1950 		} else if (!(pfn & nr_pgmask)) {
1951 			deferred_free_range(pfn - nr_free, nr_free);
1952 			nr_free = 1;
1953 		} else {
1954 			nr_free++;
1955 		}
1956 	}
1957 	/* Free the last block of pages to allocator */
1958 	deferred_free_range(pfn - nr_free, nr_free);
1959 }
1960 
1961 /*
1962  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1963  * by performing it only once every pageblock_nr_pages.
1964  * Return number of pages initialized.
1965  */
1966 static unsigned long  __init deferred_init_pages(struct zone *zone,
1967 						 unsigned long pfn,
1968 						 unsigned long end_pfn)
1969 {
1970 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1971 	int nid = zone_to_nid(zone);
1972 	unsigned long nr_pages = 0;
1973 	int zid = zone_idx(zone);
1974 	struct page *page = NULL;
1975 
1976 	for (; pfn < end_pfn; pfn++) {
1977 		if (!deferred_pfn_valid(pfn)) {
1978 			page = NULL;
1979 			continue;
1980 		} else if (!page || !(pfn & nr_pgmask)) {
1981 			page = pfn_to_page(pfn);
1982 		} else {
1983 			page++;
1984 		}
1985 		__init_single_page(page, pfn, zid, nid);
1986 		nr_pages++;
1987 	}
1988 	return (nr_pages);
1989 }
1990 
1991 /*
1992  * This function is meant to pre-load the iterator for the zone init.
1993  * Specifically it walks through the ranges until we are caught up to the
1994  * first_init_pfn value and exits there. If we never encounter the value we
1995  * return false indicating there are no valid ranges left.
1996  */
1997 static bool __init
1998 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1999 				    unsigned long *spfn, unsigned long *epfn,
2000 				    unsigned long first_init_pfn)
2001 {
2002 	u64 j;
2003 
2004 	/*
2005 	 * Start out by walking through the ranges in this zone that have
2006 	 * already been initialized. We don't need to do anything with them
2007 	 * so we just need to flush them out of the system.
2008 	 */
2009 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2010 		if (*epfn <= first_init_pfn)
2011 			continue;
2012 		if (*spfn < first_init_pfn)
2013 			*spfn = first_init_pfn;
2014 		*i = j;
2015 		return true;
2016 	}
2017 
2018 	return false;
2019 }
2020 
2021 /*
2022  * Initialize and free pages. We do it in two loops: first we initialize
2023  * struct page, then free to buddy allocator, because while we are
2024  * freeing pages we can access pages that are ahead (computing buddy
2025  * page in __free_one_page()).
2026  *
2027  * In order to try and keep some memory in the cache we have the loop
2028  * broken along max page order boundaries. This way we will not cause
2029  * any issues with the buddy page computation.
2030  */
2031 static unsigned long __init
2032 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2033 		       unsigned long *end_pfn)
2034 {
2035 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2036 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2037 	unsigned long nr_pages = 0;
2038 	u64 j = *i;
2039 
2040 	/* First we loop through and initialize the page values */
2041 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2042 		unsigned long t;
2043 
2044 		if (mo_pfn <= *start_pfn)
2045 			break;
2046 
2047 		t = min(mo_pfn, *end_pfn);
2048 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2049 
2050 		if (mo_pfn < *end_pfn) {
2051 			*start_pfn = mo_pfn;
2052 			break;
2053 		}
2054 	}
2055 
2056 	/* Reset values and now loop through freeing pages as needed */
2057 	swap(j, *i);
2058 
2059 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2060 		unsigned long t;
2061 
2062 		if (mo_pfn <= spfn)
2063 			break;
2064 
2065 		t = min(mo_pfn, epfn);
2066 		deferred_free_pages(spfn, t);
2067 
2068 		if (mo_pfn <= epfn)
2069 			break;
2070 	}
2071 
2072 	return nr_pages;
2073 }
2074 
2075 static void __init
2076 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2077 			   void *arg)
2078 {
2079 	unsigned long spfn, epfn;
2080 	struct zone *zone = arg;
2081 	u64 i;
2082 
2083 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2084 
2085 	/*
2086 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2087 	 * can avoid introducing any issues with the buddy allocator.
2088 	 */
2089 	while (spfn < end_pfn) {
2090 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2091 		cond_resched();
2092 	}
2093 }
2094 
2095 /* An arch may override for more concurrency. */
2096 __weak int __init
2097 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2098 {
2099 	return 1;
2100 }
2101 
2102 /* Initialise remaining memory on a node */
2103 static int __init deferred_init_memmap(void *data)
2104 {
2105 	pg_data_t *pgdat = data;
2106 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2107 	unsigned long spfn = 0, epfn = 0;
2108 	unsigned long first_init_pfn, flags;
2109 	unsigned long start = jiffies;
2110 	struct zone *zone;
2111 	int zid, max_threads;
2112 	u64 i;
2113 
2114 	/* Bind memory initialisation thread to a local node if possible */
2115 	if (!cpumask_empty(cpumask))
2116 		set_cpus_allowed_ptr(current, cpumask);
2117 
2118 	pgdat_resize_lock(pgdat, &flags);
2119 	first_init_pfn = pgdat->first_deferred_pfn;
2120 	if (first_init_pfn == ULONG_MAX) {
2121 		pgdat_resize_unlock(pgdat, &flags);
2122 		pgdat_init_report_one_done();
2123 		return 0;
2124 	}
2125 
2126 	/* Sanity check boundaries */
2127 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2128 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2129 	pgdat->first_deferred_pfn = ULONG_MAX;
2130 
2131 	/*
2132 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2133 	 * interrupt thread must allocate this early in boot, zone must be
2134 	 * pre-grown prior to start of deferred page initialization.
2135 	 */
2136 	pgdat_resize_unlock(pgdat, &flags);
2137 
2138 	/* Only the highest zone is deferred so find it */
2139 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2140 		zone = pgdat->node_zones + zid;
2141 		if (first_init_pfn < zone_end_pfn(zone))
2142 			break;
2143 	}
2144 
2145 	/* If the zone is empty somebody else may have cleared out the zone */
2146 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2147 						 first_init_pfn))
2148 		goto zone_empty;
2149 
2150 	max_threads = deferred_page_init_max_threads(cpumask);
2151 
2152 	while (spfn < epfn) {
2153 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2154 		struct padata_mt_job job = {
2155 			.thread_fn   = deferred_init_memmap_chunk,
2156 			.fn_arg      = zone,
2157 			.start       = spfn,
2158 			.size        = epfn_align - spfn,
2159 			.align       = PAGES_PER_SECTION,
2160 			.min_chunk   = PAGES_PER_SECTION,
2161 			.max_threads = max_threads,
2162 		};
2163 
2164 		padata_do_multithreaded(&job);
2165 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2166 						    epfn_align);
2167 	}
2168 zone_empty:
2169 	/* Sanity check that the next zone really is unpopulated */
2170 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2171 
2172 	pr_info("node %d deferred pages initialised in %ums\n",
2173 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2174 
2175 	pgdat_init_report_one_done();
2176 	return 0;
2177 }
2178 
2179 /*
2180  * If this zone has deferred pages, try to grow it by initializing enough
2181  * deferred pages to satisfy the allocation specified by order, rounded up to
2182  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2183  * of SECTION_SIZE bytes by initializing struct pages in increments of
2184  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2185  *
2186  * Return true when zone was grown, otherwise return false. We return true even
2187  * when we grow less than requested, to let the caller decide if there are
2188  * enough pages to satisfy the allocation.
2189  *
2190  * Note: We use noinline because this function is needed only during boot, and
2191  * it is called from a __ref function _deferred_grow_zone. This way we are
2192  * making sure that it is not inlined into permanent text section.
2193  */
2194 static noinline bool __init
2195 deferred_grow_zone(struct zone *zone, unsigned int order)
2196 {
2197 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2198 	pg_data_t *pgdat = zone->zone_pgdat;
2199 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2200 	unsigned long spfn, epfn, flags;
2201 	unsigned long nr_pages = 0;
2202 	u64 i;
2203 
2204 	/* Only the last zone may have deferred pages */
2205 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2206 		return false;
2207 
2208 	pgdat_resize_lock(pgdat, &flags);
2209 
2210 	/*
2211 	 * If someone grew this zone while we were waiting for spinlock, return
2212 	 * true, as there might be enough pages already.
2213 	 */
2214 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2215 		pgdat_resize_unlock(pgdat, &flags);
2216 		return true;
2217 	}
2218 
2219 	/* If the zone is empty somebody else may have cleared out the zone */
2220 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2221 						 first_deferred_pfn)) {
2222 		pgdat->first_deferred_pfn = ULONG_MAX;
2223 		pgdat_resize_unlock(pgdat, &flags);
2224 		/* Retry only once. */
2225 		return first_deferred_pfn != ULONG_MAX;
2226 	}
2227 
2228 	/*
2229 	 * Initialize and free pages in MAX_ORDER sized increments so
2230 	 * that we can avoid introducing any issues with the buddy
2231 	 * allocator.
2232 	 */
2233 	while (spfn < epfn) {
2234 		/* update our first deferred PFN for this section */
2235 		first_deferred_pfn = spfn;
2236 
2237 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2238 		touch_nmi_watchdog();
2239 
2240 		/* We should only stop along section boundaries */
2241 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2242 			continue;
2243 
2244 		/* If our quota has been met we can stop here */
2245 		if (nr_pages >= nr_pages_needed)
2246 			break;
2247 	}
2248 
2249 	pgdat->first_deferred_pfn = spfn;
2250 	pgdat_resize_unlock(pgdat, &flags);
2251 
2252 	return nr_pages > 0;
2253 }
2254 
2255 /*
2256  * deferred_grow_zone() is __init, but it is called from
2257  * get_page_from_freelist() during early boot until deferred_pages permanently
2258  * disables this call. This is why we have refdata wrapper to avoid warning,
2259  * and to ensure that the function body gets unloaded.
2260  */
2261 static bool __ref
2262 _deferred_grow_zone(struct zone *zone, unsigned int order)
2263 {
2264 	return deferred_grow_zone(zone, order);
2265 }
2266 
2267 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2268 
2269 void __init page_alloc_init_late(void)
2270 {
2271 	struct zone *zone;
2272 	int nid;
2273 
2274 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2275 
2276 	/* There will be num_node_state(N_MEMORY) threads */
2277 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2278 	for_each_node_state(nid, N_MEMORY) {
2279 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2280 	}
2281 
2282 	/* Block until all are initialised */
2283 	wait_for_completion(&pgdat_init_all_done_comp);
2284 
2285 	/*
2286 	 * We initialized the rest of the deferred pages.  Permanently disable
2287 	 * on-demand struct page initialization.
2288 	 */
2289 	static_branch_disable(&deferred_pages);
2290 
2291 	/* Reinit limits that are based on free pages after the kernel is up */
2292 	files_maxfiles_init();
2293 #endif
2294 
2295 	buffer_init();
2296 
2297 	/* Discard memblock private memory */
2298 	memblock_discard();
2299 
2300 	for_each_node_state(nid, N_MEMORY)
2301 		shuffle_free_memory(NODE_DATA(nid));
2302 
2303 	for_each_populated_zone(zone)
2304 		set_zone_contiguous(zone);
2305 }
2306 
2307 #ifdef CONFIG_CMA
2308 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2309 void __init init_cma_reserved_pageblock(struct page *page)
2310 {
2311 	unsigned i = pageblock_nr_pages;
2312 	struct page *p = page;
2313 
2314 	do {
2315 		__ClearPageReserved(p);
2316 		set_page_count(p, 0);
2317 	} while (++p, --i);
2318 
2319 	set_pageblock_migratetype(page, MIGRATE_CMA);
2320 	set_page_refcounted(page);
2321 	__free_pages(page, pageblock_order);
2322 
2323 	adjust_managed_page_count(page, pageblock_nr_pages);
2324 	page_zone(page)->cma_pages += pageblock_nr_pages;
2325 }
2326 #endif
2327 
2328 /*
2329  * The order of subdivision here is critical for the IO subsystem.
2330  * Please do not alter this order without good reasons and regression
2331  * testing. Specifically, as large blocks of memory are subdivided,
2332  * the order in which smaller blocks are delivered depends on the order
2333  * they're subdivided in this function. This is the primary factor
2334  * influencing the order in which pages are delivered to the IO
2335  * subsystem according to empirical testing, and this is also justified
2336  * by considering the behavior of a buddy system containing a single
2337  * large block of memory acted on by a series of small allocations.
2338  * This behavior is a critical factor in sglist merging's success.
2339  *
2340  * -- nyc
2341  */
2342 static inline void expand(struct zone *zone, struct page *page,
2343 	int low, int high, int migratetype)
2344 {
2345 	unsigned long size = 1 << high;
2346 
2347 	while (high > low) {
2348 		high--;
2349 		size >>= 1;
2350 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2351 
2352 		/*
2353 		 * Mark as guard pages (or page), that will allow to
2354 		 * merge back to allocator when buddy will be freed.
2355 		 * Corresponding page table entries will not be touched,
2356 		 * pages will stay not present in virtual address space
2357 		 */
2358 		if (set_page_guard(zone, &page[size], high, migratetype))
2359 			continue;
2360 
2361 		add_to_free_list(&page[size], zone, high, migratetype);
2362 		set_buddy_order(&page[size], high);
2363 	}
2364 }
2365 
2366 static void check_new_page_bad(struct page *page)
2367 {
2368 	if (unlikely(page->flags & __PG_HWPOISON)) {
2369 		/* Don't complain about hwpoisoned pages */
2370 		page_mapcount_reset(page); /* remove PageBuddy */
2371 		return;
2372 	}
2373 
2374 	bad_page(page,
2375 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2376 }
2377 
2378 /*
2379  * This page is about to be returned from the page allocator
2380  */
2381 static inline int check_new_page(struct page *page)
2382 {
2383 	if (likely(page_expected_state(page,
2384 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2385 		return 0;
2386 
2387 	check_new_page_bad(page);
2388 	return 1;
2389 }
2390 
2391 static bool check_new_pages(struct page *page, unsigned int order)
2392 {
2393 	int i;
2394 	for (i = 0; i < (1 << order); i++) {
2395 		struct page *p = page + i;
2396 
2397 		if (unlikely(check_new_page(p)))
2398 			return true;
2399 	}
2400 
2401 	return false;
2402 }
2403 
2404 #ifdef CONFIG_DEBUG_VM
2405 /*
2406  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2407  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2408  * also checked when pcp lists are refilled from the free lists.
2409  */
2410 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2411 {
2412 	if (debug_pagealloc_enabled_static())
2413 		return check_new_pages(page, order);
2414 	else
2415 		return false;
2416 }
2417 
2418 static inline bool check_new_pcp(struct page *page, unsigned int order)
2419 {
2420 	return check_new_pages(page, order);
2421 }
2422 #else
2423 /*
2424  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2425  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2426  * enabled, they are also checked when being allocated from the pcp lists.
2427  */
2428 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2429 {
2430 	return check_new_pages(page, order);
2431 }
2432 static inline bool check_new_pcp(struct page *page, unsigned int order)
2433 {
2434 	if (debug_pagealloc_enabled_static())
2435 		return check_new_pages(page, order);
2436 	else
2437 		return false;
2438 }
2439 #endif /* CONFIG_DEBUG_VM */
2440 
2441 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2442 {
2443 	/* Don't skip if a software KASAN mode is enabled. */
2444 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2445 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2446 		return false;
2447 
2448 	/* Skip, if hardware tag-based KASAN is not enabled. */
2449 	if (!kasan_hw_tags_enabled())
2450 		return true;
2451 
2452 	/*
2453 	 * With hardware tag-based KASAN enabled, skip if this has been
2454 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2455 	 */
2456 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2457 }
2458 
2459 static inline bool should_skip_init(gfp_t flags)
2460 {
2461 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2462 	if (!kasan_hw_tags_enabled())
2463 		return false;
2464 
2465 	/* For hardware tag-based KASAN, skip if requested. */
2466 	return (flags & __GFP_SKIP_ZERO);
2467 }
2468 
2469 inline void post_alloc_hook(struct page *page, unsigned int order,
2470 				gfp_t gfp_flags)
2471 {
2472 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2473 			!should_skip_init(gfp_flags);
2474 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2475 	int i;
2476 
2477 	set_page_private(page, 0);
2478 	set_page_refcounted(page);
2479 
2480 	arch_alloc_page(page, order);
2481 	debug_pagealloc_map_pages(page, 1 << order);
2482 
2483 	/*
2484 	 * Page unpoisoning must happen before memory initialization.
2485 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2486 	 * allocations and the page unpoisoning code will complain.
2487 	 */
2488 	kernel_unpoison_pages(page, 1 << order);
2489 
2490 	/*
2491 	 * As memory initialization might be integrated into KASAN,
2492 	 * KASAN unpoisoning and memory initializion code must be
2493 	 * kept together to avoid discrepancies in behavior.
2494 	 */
2495 
2496 	/*
2497 	 * If memory tags should be zeroed (which happens only when memory
2498 	 * should be initialized as well).
2499 	 */
2500 	if (init_tags) {
2501 		/* Initialize both memory and tags. */
2502 		for (i = 0; i != 1 << order; ++i)
2503 			tag_clear_highpage(page + i);
2504 
2505 		/* Note that memory is already initialized by the loop above. */
2506 		init = false;
2507 	}
2508 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2509 		/* Unpoison shadow memory or set memory tags. */
2510 		kasan_unpoison_pages(page, order, init);
2511 
2512 		/* Note that memory is already initialized by KASAN. */
2513 		if (kasan_has_integrated_init())
2514 			init = false;
2515 	} else {
2516 		/* Ensure page_address() dereferencing does not fault. */
2517 		for (i = 0; i != 1 << order; ++i)
2518 			page_kasan_tag_reset(page + i);
2519 	}
2520 	/* If memory is still not initialized, do it now. */
2521 	if (init)
2522 		kernel_init_pages(page, 1 << order);
2523 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2524 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2525 		SetPageSkipKASanPoison(page);
2526 
2527 	set_page_owner(page, order, gfp_flags);
2528 	page_table_check_alloc(page, order);
2529 }
2530 
2531 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2532 							unsigned int alloc_flags)
2533 {
2534 	post_alloc_hook(page, order, gfp_flags);
2535 
2536 	if (order && (gfp_flags & __GFP_COMP))
2537 		prep_compound_page(page, order);
2538 
2539 	/*
2540 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2541 	 * allocate the page. The expectation is that the caller is taking
2542 	 * steps that will free more memory. The caller should avoid the page
2543 	 * being used for !PFMEMALLOC purposes.
2544 	 */
2545 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2546 		set_page_pfmemalloc(page);
2547 	else
2548 		clear_page_pfmemalloc(page);
2549 }
2550 
2551 /*
2552  * Go through the free lists for the given migratetype and remove
2553  * the smallest available page from the freelists
2554  */
2555 static __always_inline
2556 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2557 						int migratetype)
2558 {
2559 	unsigned int current_order;
2560 	struct free_area *area;
2561 	struct page *page;
2562 
2563 	/* Find a page of the appropriate size in the preferred list */
2564 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2565 		area = &(zone->free_area[current_order]);
2566 		page = get_page_from_free_area(area, migratetype);
2567 		if (!page)
2568 			continue;
2569 		del_page_from_free_list(page, zone, current_order);
2570 		expand(zone, page, order, current_order, migratetype);
2571 		set_pcppage_migratetype(page, migratetype);
2572 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2573 				pcp_allowed_order(order) &&
2574 				migratetype < MIGRATE_PCPTYPES);
2575 		return page;
2576 	}
2577 
2578 	return NULL;
2579 }
2580 
2581 
2582 /*
2583  * This array describes the order lists are fallen back to when
2584  * the free lists for the desirable migrate type are depleted
2585  *
2586  * The other migratetypes do not have fallbacks.
2587  */
2588 static int fallbacks[MIGRATE_TYPES][3] = {
2589 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2590 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2591 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2592 };
2593 
2594 #ifdef CONFIG_CMA
2595 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2596 					unsigned int order)
2597 {
2598 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2599 }
2600 #else
2601 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2602 					unsigned int order) { return NULL; }
2603 #endif
2604 
2605 /*
2606  * Move the free pages in a range to the freelist tail of the requested type.
2607  * Note that start_page and end_pages are not aligned on a pageblock
2608  * boundary. If alignment is required, use move_freepages_block()
2609  */
2610 static int move_freepages(struct zone *zone,
2611 			  unsigned long start_pfn, unsigned long end_pfn,
2612 			  int migratetype, int *num_movable)
2613 {
2614 	struct page *page;
2615 	unsigned long pfn;
2616 	unsigned int order;
2617 	int pages_moved = 0;
2618 
2619 	for (pfn = start_pfn; pfn <= end_pfn;) {
2620 		page = pfn_to_page(pfn);
2621 		if (!PageBuddy(page)) {
2622 			/*
2623 			 * We assume that pages that could be isolated for
2624 			 * migration are movable. But we don't actually try
2625 			 * isolating, as that would be expensive.
2626 			 */
2627 			if (num_movable &&
2628 					(PageLRU(page) || __PageMovable(page)))
2629 				(*num_movable)++;
2630 			pfn++;
2631 			continue;
2632 		}
2633 
2634 		/* Make sure we are not inadvertently changing nodes */
2635 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2636 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2637 
2638 		order = buddy_order(page);
2639 		move_to_free_list(page, zone, order, migratetype);
2640 		pfn += 1 << order;
2641 		pages_moved += 1 << order;
2642 	}
2643 
2644 	return pages_moved;
2645 }
2646 
2647 int move_freepages_block(struct zone *zone, struct page *page,
2648 				int migratetype, int *num_movable)
2649 {
2650 	unsigned long start_pfn, end_pfn, pfn;
2651 
2652 	if (num_movable)
2653 		*num_movable = 0;
2654 
2655 	pfn = page_to_pfn(page);
2656 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2657 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2658 
2659 	/* Do not cross zone boundaries */
2660 	if (!zone_spans_pfn(zone, start_pfn))
2661 		start_pfn = pfn;
2662 	if (!zone_spans_pfn(zone, end_pfn))
2663 		return 0;
2664 
2665 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2666 								num_movable);
2667 }
2668 
2669 static void change_pageblock_range(struct page *pageblock_page,
2670 					int start_order, int migratetype)
2671 {
2672 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2673 
2674 	while (nr_pageblocks--) {
2675 		set_pageblock_migratetype(pageblock_page, migratetype);
2676 		pageblock_page += pageblock_nr_pages;
2677 	}
2678 }
2679 
2680 /*
2681  * When we are falling back to another migratetype during allocation, try to
2682  * steal extra free pages from the same pageblocks to satisfy further
2683  * allocations, instead of polluting multiple pageblocks.
2684  *
2685  * If we are stealing a relatively large buddy page, it is likely there will
2686  * be more free pages in the pageblock, so try to steal them all. For
2687  * reclaimable and unmovable allocations, we steal regardless of page size,
2688  * as fragmentation caused by those allocations polluting movable pageblocks
2689  * is worse than movable allocations stealing from unmovable and reclaimable
2690  * pageblocks.
2691  */
2692 static bool can_steal_fallback(unsigned int order, int start_mt)
2693 {
2694 	/*
2695 	 * Leaving this order check is intended, although there is
2696 	 * relaxed order check in next check. The reason is that
2697 	 * we can actually steal whole pageblock if this condition met,
2698 	 * but, below check doesn't guarantee it and that is just heuristic
2699 	 * so could be changed anytime.
2700 	 */
2701 	if (order >= pageblock_order)
2702 		return true;
2703 
2704 	if (order >= pageblock_order / 2 ||
2705 		start_mt == MIGRATE_RECLAIMABLE ||
2706 		start_mt == MIGRATE_UNMOVABLE ||
2707 		page_group_by_mobility_disabled)
2708 		return true;
2709 
2710 	return false;
2711 }
2712 
2713 static inline bool boost_watermark(struct zone *zone)
2714 {
2715 	unsigned long max_boost;
2716 
2717 	if (!watermark_boost_factor)
2718 		return false;
2719 	/*
2720 	 * Don't bother in zones that are unlikely to produce results.
2721 	 * On small machines, including kdump capture kernels running
2722 	 * in a small area, boosting the watermark can cause an out of
2723 	 * memory situation immediately.
2724 	 */
2725 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2726 		return false;
2727 
2728 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2729 			watermark_boost_factor, 10000);
2730 
2731 	/*
2732 	 * high watermark may be uninitialised if fragmentation occurs
2733 	 * very early in boot so do not boost. We do not fall
2734 	 * through and boost by pageblock_nr_pages as failing
2735 	 * allocations that early means that reclaim is not going
2736 	 * to help and it may even be impossible to reclaim the
2737 	 * boosted watermark resulting in a hang.
2738 	 */
2739 	if (!max_boost)
2740 		return false;
2741 
2742 	max_boost = max(pageblock_nr_pages, max_boost);
2743 
2744 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2745 		max_boost);
2746 
2747 	return true;
2748 }
2749 
2750 /*
2751  * This function implements actual steal behaviour. If order is large enough,
2752  * we can steal whole pageblock. If not, we first move freepages in this
2753  * pageblock to our migratetype and determine how many already-allocated pages
2754  * are there in the pageblock with a compatible migratetype. If at least half
2755  * of pages are free or compatible, we can change migratetype of the pageblock
2756  * itself, so pages freed in the future will be put on the correct free list.
2757  */
2758 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2759 		unsigned int alloc_flags, int start_type, bool whole_block)
2760 {
2761 	unsigned int current_order = buddy_order(page);
2762 	int free_pages, movable_pages, alike_pages;
2763 	int old_block_type;
2764 
2765 	old_block_type = get_pageblock_migratetype(page);
2766 
2767 	/*
2768 	 * This can happen due to races and we want to prevent broken
2769 	 * highatomic accounting.
2770 	 */
2771 	if (is_migrate_highatomic(old_block_type))
2772 		goto single_page;
2773 
2774 	/* Take ownership for orders >= pageblock_order */
2775 	if (current_order >= pageblock_order) {
2776 		change_pageblock_range(page, current_order, start_type);
2777 		goto single_page;
2778 	}
2779 
2780 	/*
2781 	 * Boost watermarks to increase reclaim pressure to reduce the
2782 	 * likelihood of future fallbacks. Wake kswapd now as the node
2783 	 * may be balanced overall and kswapd will not wake naturally.
2784 	 */
2785 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2786 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2787 
2788 	/* We are not allowed to try stealing from the whole block */
2789 	if (!whole_block)
2790 		goto single_page;
2791 
2792 	free_pages = move_freepages_block(zone, page, start_type,
2793 						&movable_pages);
2794 	/*
2795 	 * Determine how many pages are compatible with our allocation.
2796 	 * For movable allocation, it's the number of movable pages which
2797 	 * we just obtained. For other types it's a bit more tricky.
2798 	 */
2799 	if (start_type == MIGRATE_MOVABLE) {
2800 		alike_pages = movable_pages;
2801 	} else {
2802 		/*
2803 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2804 		 * to MOVABLE pageblock, consider all non-movable pages as
2805 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2806 		 * vice versa, be conservative since we can't distinguish the
2807 		 * exact migratetype of non-movable pages.
2808 		 */
2809 		if (old_block_type == MIGRATE_MOVABLE)
2810 			alike_pages = pageblock_nr_pages
2811 						- (free_pages + movable_pages);
2812 		else
2813 			alike_pages = 0;
2814 	}
2815 
2816 	/* moving whole block can fail due to zone boundary conditions */
2817 	if (!free_pages)
2818 		goto single_page;
2819 
2820 	/*
2821 	 * If a sufficient number of pages in the block are either free or of
2822 	 * comparable migratability as our allocation, claim the whole block.
2823 	 */
2824 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2825 			page_group_by_mobility_disabled)
2826 		set_pageblock_migratetype(page, start_type);
2827 
2828 	return;
2829 
2830 single_page:
2831 	move_to_free_list(page, zone, current_order, start_type);
2832 }
2833 
2834 /*
2835  * Check whether there is a suitable fallback freepage with requested order.
2836  * If only_stealable is true, this function returns fallback_mt only if
2837  * we can steal other freepages all together. This would help to reduce
2838  * fragmentation due to mixed migratetype pages in one pageblock.
2839  */
2840 int find_suitable_fallback(struct free_area *area, unsigned int order,
2841 			int migratetype, bool only_stealable, bool *can_steal)
2842 {
2843 	int i;
2844 	int fallback_mt;
2845 
2846 	if (area->nr_free == 0)
2847 		return -1;
2848 
2849 	*can_steal = false;
2850 	for (i = 0;; i++) {
2851 		fallback_mt = fallbacks[migratetype][i];
2852 		if (fallback_mt == MIGRATE_TYPES)
2853 			break;
2854 
2855 		if (free_area_empty(area, fallback_mt))
2856 			continue;
2857 
2858 		if (can_steal_fallback(order, migratetype))
2859 			*can_steal = true;
2860 
2861 		if (!only_stealable)
2862 			return fallback_mt;
2863 
2864 		if (*can_steal)
2865 			return fallback_mt;
2866 	}
2867 
2868 	return -1;
2869 }
2870 
2871 /*
2872  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2873  * there are no empty page blocks that contain a page with a suitable order
2874  */
2875 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2876 				unsigned int alloc_order)
2877 {
2878 	int mt;
2879 	unsigned long max_managed, flags;
2880 
2881 	/*
2882 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2883 	 * Check is race-prone but harmless.
2884 	 */
2885 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2886 	if (zone->nr_reserved_highatomic >= max_managed)
2887 		return;
2888 
2889 	spin_lock_irqsave(&zone->lock, flags);
2890 
2891 	/* Recheck the nr_reserved_highatomic limit under the lock */
2892 	if (zone->nr_reserved_highatomic >= max_managed)
2893 		goto out_unlock;
2894 
2895 	/* Yoink! */
2896 	mt = get_pageblock_migratetype(page);
2897 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2898 	if (migratetype_is_mergeable(mt)) {
2899 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2900 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2901 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2902 	}
2903 
2904 out_unlock:
2905 	spin_unlock_irqrestore(&zone->lock, flags);
2906 }
2907 
2908 /*
2909  * Used when an allocation is about to fail under memory pressure. This
2910  * potentially hurts the reliability of high-order allocations when under
2911  * intense memory pressure but failed atomic allocations should be easier
2912  * to recover from than an OOM.
2913  *
2914  * If @force is true, try to unreserve a pageblock even though highatomic
2915  * pageblock is exhausted.
2916  */
2917 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2918 						bool force)
2919 {
2920 	struct zonelist *zonelist = ac->zonelist;
2921 	unsigned long flags;
2922 	struct zoneref *z;
2923 	struct zone *zone;
2924 	struct page *page;
2925 	int order;
2926 	bool ret;
2927 
2928 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2929 								ac->nodemask) {
2930 		/*
2931 		 * Preserve at least one pageblock unless memory pressure
2932 		 * is really high.
2933 		 */
2934 		if (!force && zone->nr_reserved_highatomic <=
2935 					pageblock_nr_pages)
2936 			continue;
2937 
2938 		spin_lock_irqsave(&zone->lock, flags);
2939 		for (order = 0; order < MAX_ORDER; order++) {
2940 			struct free_area *area = &(zone->free_area[order]);
2941 
2942 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2943 			if (!page)
2944 				continue;
2945 
2946 			/*
2947 			 * In page freeing path, migratetype change is racy so
2948 			 * we can counter several free pages in a pageblock
2949 			 * in this loop although we changed the pageblock type
2950 			 * from highatomic to ac->migratetype. So we should
2951 			 * adjust the count once.
2952 			 */
2953 			if (is_migrate_highatomic_page(page)) {
2954 				/*
2955 				 * It should never happen but changes to
2956 				 * locking could inadvertently allow a per-cpu
2957 				 * drain to add pages to MIGRATE_HIGHATOMIC
2958 				 * while unreserving so be safe and watch for
2959 				 * underflows.
2960 				 */
2961 				zone->nr_reserved_highatomic -= min(
2962 						pageblock_nr_pages,
2963 						zone->nr_reserved_highatomic);
2964 			}
2965 
2966 			/*
2967 			 * Convert to ac->migratetype and avoid the normal
2968 			 * pageblock stealing heuristics. Minimally, the caller
2969 			 * is doing the work and needs the pages. More
2970 			 * importantly, if the block was always converted to
2971 			 * MIGRATE_UNMOVABLE or another type then the number
2972 			 * of pageblocks that cannot be completely freed
2973 			 * may increase.
2974 			 */
2975 			set_pageblock_migratetype(page, ac->migratetype);
2976 			ret = move_freepages_block(zone, page, ac->migratetype,
2977 									NULL);
2978 			if (ret) {
2979 				spin_unlock_irqrestore(&zone->lock, flags);
2980 				return ret;
2981 			}
2982 		}
2983 		spin_unlock_irqrestore(&zone->lock, flags);
2984 	}
2985 
2986 	return false;
2987 }
2988 
2989 /*
2990  * Try finding a free buddy page on the fallback list and put it on the free
2991  * list of requested migratetype, possibly along with other pages from the same
2992  * block, depending on fragmentation avoidance heuristics. Returns true if
2993  * fallback was found so that __rmqueue_smallest() can grab it.
2994  *
2995  * The use of signed ints for order and current_order is a deliberate
2996  * deviation from the rest of this file, to make the for loop
2997  * condition simpler.
2998  */
2999 static __always_inline bool
3000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3001 						unsigned int alloc_flags)
3002 {
3003 	struct free_area *area;
3004 	int current_order;
3005 	int min_order = order;
3006 	struct page *page;
3007 	int fallback_mt;
3008 	bool can_steal;
3009 
3010 	/*
3011 	 * Do not steal pages from freelists belonging to other pageblocks
3012 	 * i.e. orders < pageblock_order. If there are no local zones free,
3013 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3014 	 */
3015 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3016 		min_order = pageblock_order;
3017 
3018 	/*
3019 	 * Find the largest available free page in the other list. This roughly
3020 	 * approximates finding the pageblock with the most free pages, which
3021 	 * would be too costly to do exactly.
3022 	 */
3023 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3024 				--current_order) {
3025 		area = &(zone->free_area[current_order]);
3026 		fallback_mt = find_suitable_fallback(area, current_order,
3027 				start_migratetype, false, &can_steal);
3028 		if (fallback_mt == -1)
3029 			continue;
3030 
3031 		/*
3032 		 * We cannot steal all free pages from the pageblock and the
3033 		 * requested migratetype is movable. In that case it's better to
3034 		 * steal and split the smallest available page instead of the
3035 		 * largest available page, because even if the next movable
3036 		 * allocation falls back into a different pageblock than this
3037 		 * one, it won't cause permanent fragmentation.
3038 		 */
3039 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3040 					&& current_order > order)
3041 			goto find_smallest;
3042 
3043 		goto do_steal;
3044 	}
3045 
3046 	return false;
3047 
3048 find_smallest:
3049 	for (current_order = order; current_order < MAX_ORDER;
3050 							current_order++) {
3051 		area = &(zone->free_area[current_order]);
3052 		fallback_mt = find_suitable_fallback(area, current_order,
3053 				start_migratetype, false, &can_steal);
3054 		if (fallback_mt != -1)
3055 			break;
3056 	}
3057 
3058 	/*
3059 	 * This should not happen - we already found a suitable fallback
3060 	 * when looking for the largest page.
3061 	 */
3062 	VM_BUG_ON(current_order == MAX_ORDER);
3063 
3064 do_steal:
3065 	page = get_page_from_free_area(area, fallback_mt);
3066 
3067 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3068 								can_steal);
3069 
3070 	trace_mm_page_alloc_extfrag(page, order, current_order,
3071 		start_migratetype, fallback_mt);
3072 
3073 	return true;
3074 
3075 }
3076 
3077 /*
3078  * Do the hard work of removing an element from the buddy allocator.
3079  * Call me with the zone->lock already held.
3080  */
3081 static __always_inline struct page *
3082 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3083 						unsigned int alloc_flags)
3084 {
3085 	struct page *page;
3086 
3087 	if (IS_ENABLED(CONFIG_CMA)) {
3088 		/*
3089 		 * Balance movable allocations between regular and CMA areas by
3090 		 * allocating from CMA when over half of the zone's free memory
3091 		 * is in the CMA area.
3092 		 */
3093 		if (alloc_flags & ALLOC_CMA &&
3094 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3095 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3096 			page = __rmqueue_cma_fallback(zone, order);
3097 			if (page)
3098 				return page;
3099 		}
3100 	}
3101 retry:
3102 	page = __rmqueue_smallest(zone, order, migratetype);
3103 	if (unlikely(!page)) {
3104 		if (alloc_flags & ALLOC_CMA)
3105 			page = __rmqueue_cma_fallback(zone, order);
3106 
3107 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3108 								alloc_flags))
3109 			goto retry;
3110 	}
3111 	return page;
3112 }
3113 
3114 /*
3115  * Obtain a specified number of elements from the buddy allocator, all under
3116  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3117  * Returns the number of new pages which were placed at *list.
3118  */
3119 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3120 			unsigned long count, struct list_head *list,
3121 			int migratetype, unsigned int alloc_flags)
3122 {
3123 	int i, allocated = 0;
3124 
3125 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3126 	spin_lock(&zone->lock);
3127 	for (i = 0; i < count; ++i) {
3128 		struct page *page = __rmqueue(zone, order, migratetype,
3129 								alloc_flags);
3130 		if (unlikely(page == NULL))
3131 			break;
3132 
3133 		if (unlikely(check_pcp_refill(page, order)))
3134 			continue;
3135 
3136 		/*
3137 		 * Split buddy pages returned by expand() are received here in
3138 		 * physical page order. The page is added to the tail of
3139 		 * caller's list. From the callers perspective, the linked list
3140 		 * is ordered by page number under some conditions. This is
3141 		 * useful for IO devices that can forward direction from the
3142 		 * head, thus also in the physical page order. This is useful
3143 		 * for IO devices that can merge IO requests if the physical
3144 		 * pages are ordered properly.
3145 		 */
3146 		list_add_tail(&page->pcp_list, list);
3147 		allocated++;
3148 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3149 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3150 					      -(1 << order));
3151 	}
3152 
3153 	/*
3154 	 * i pages were removed from the buddy list even if some leak due
3155 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3156 	 * on i. Do not confuse with 'allocated' which is the number of
3157 	 * pages added to the pcp list.
3158 	 */
3159 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3160 	spin_unlock(&zone->lock);
3161 	return allocated;
3162 }
3163 
3164 #ifdef CONFIG_NUMA
3165 /*
3166  * Called from the vmstat counter updater to drain pagesets of this
3167  * currently executing processor on remote nodes after they have
3168  * expired.
3169  */
3170 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3171 {
3172 	int to_drain, batch;
3173 
3174 	batch = READ_ONCE(pcp->batch);
3175 	to_drain = min(pcp->count, batch);
3176 	if (to_drain > 0) {
3177 		unsigned long flags;
3178 
3179 		/*
3180 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3181 		 * so even though pcp->lock is not intended to be IRQ-safe,
3182 		 * it's needed in this context.
3183 		 */
3184 		spin_lock_irqsave(&pcp->lock, flags);
3185 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3186 		spin_unlock_irqrestore(&pcp->lock, flags);
3187 	}
3188 }
3189 #endif
3190 
3191 /*
3192  * Drain pcplists of the indicated processor and zone.
3193  */
3194 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3195 {
3196 	struct per_cpu_pages *pcp;
3197 
3198 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3199 	if (pcp->count) {
3200 		unsigned long flags;
3201 
3202 		/* See drain_zone_pages on why this is disabling IRQs */
3203 		spin_lock_irqsave(&pcp->lock, flags);
3204 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3205 		spin_unlock_irqrestore(&pcp->lock, flags);
3206 	}
3207 }
3208 
3209 /*
3210  * Drain pcplists of all zones on the indicated processor.
3211  */
3212 static void drain_pages(unsigned int cpu)
3213 {
3214 	struct zone *zone;
3215 
3216 	for_each_populated_zone(zone) {
3217 		drain_pages_zone(cpu, zone);
3218 	}
3219 }
3220 
3221 /*
3222  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3223  */
3224 void drain_local_pages(struct zone *zone)
3225 {
3226 	int cpu = smp_processor_id();
3227 
3228 	if (zone)
3229 		drain_pages_zone(cpu, zone);
3230 	else
3231 		drain_pages(cpu);
3232 }
3233 
3234 /*
3235  * The implementation of drain_all_pages(), exposing an extra parameter to
3236  * drain on all cpus.
3237  *
3238  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3239  * not empty. The check for non-emptiness can however race with a free to
3240  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3241  * that need the guarantee that every CPU has drained can disable the
3242  * optimizing racy check.
3243  */
3244 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3245 {
3246 	int cpu;
3247 
3248 	/*
3249 	 * Allocate in the BSS so we won't require allocation in
3250 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3251 	 */
3252 	static cpumask_t cpus_with_pcps;
3253 
3254 	/*
3255 	 * Do not drain if one is already in progress unless it's specific to
3256 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3257 	 * the drain to be complete when the call returns.
3258 	 */
3259 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3260 		if (!zone)
3261 			return;
3262 		mutex_lock(&pcpu_drain_mutex);
3263 	}
3264 
3265 	/*
3266 	 * We don't care about racing with CPU hotplug event
3267 	 * as offline notification will cause the notified
3268 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3269 	 * disables preemption as part of its processing
3270 	 */
3271 	for_each_online_cpu(cpu) {
3272 		struct per_cpu_pages *pcp;
3273 		struct zone *z;
3274 		bool has_pcps = false;
3275 
3276 		if (force_all_cpus) {
3277 			/*
3278 			 * The pcp.count check is racy, some callers need a
3279 			 * guarantee that no cpu is missed.
3280 			 */
3281 			has_pcps = true;
3282 		} else if (zone) {
3283 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3284 			if (pcp->count)
3285 				has_pcps = true;
3286 		} else {
3287 			for_each_populated_zone(z) {
3288 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3289 				if (pcp->count) {
3290 					has_pcps = true;
3291 					break;
3292 				}
3293 			}
3294 		}
3295 
3296 		if (has_pcps)
3297 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3298 		else
3299 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3300 	}
3301 
3302 	for_each_cpu(cpu, &cpus_with_pcps) {
3303 		if (zone)
3304 			drain_pages_zone(cpu, zone);
3305 		else
3306 			drain_pages(cpu);
3307 	}
3308 
3309 	mutex_unlock(&pcpu_drain_mutex);
3310 }
3311 
3312 /*
3313  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3314  *
3315  * When zone parameter is non-NULL, spill just the single zone's pages.
3316  */
3317 void drain_all_pages(struct zone *zone)
3318 {
3319 	__drain_all_pages(zone, false);
3320 }
3321 
3322 #ifdef CONFIG_HIBERNATION
3323 
3324 /*
3325  * Touch the watchdog for every WD_PAGE_COUNT pages.
3326  */
3327 #define WD_PAGE_COUNT	(128*1024)
3328 
3329 void mark_free_pages(struct zone *zone)
3330 {
3331 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3332 	unsigned long flags;
3333 	unsigned int order, t;
3334 	struct page *page;
3335 
3336 	if (zone_is_empty(zone))
3337 		return;
3338 
3339 	spin_lock_irqsave(&zone->lock, flags);
3340 
3341 	max_zone_pfn = zone_end_pfn(zone);
3342 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3343 		if (pfn_valid(pfn)) {
3344 			page = pfn_to_page(pfn);
3345 
3346 			if (!--page_count) {
3347 				touch_nmi_watchdog();
3348 				page_count = WD_PAGE_COUNT;
3349 			}
3350 
3351 			if (page_zone(page) != zone)
3352 				continue;
3353 
3354 			if (!swsusp_page_is_forbidden(page))
3355 				swsusp_unset_page_free(page);
3356 		}
3357 
3358 	for_each_migratetype_order(order, t) {
3359 		list_for_each_entry(page,
3360 				&zone->free_area[order].free_list[t], buddy_list) {
3361 			unsigned long i;
3362 
3363 			pfn = page_to_pfn(page);
3364 			for (i = 0; i < (1UL << order); i++) {
3365 				if (!--page_count) {
3366 					touch_nmi_watchdog();
3367 					page_count = WD_PAGE_COUNT;
3368 				}
3369 				swsusp_set_page_free(pfn_to_page(pfn + i));
3370 			}
3371 		}
3372 	}
3373 	spin_unlock_irqrestore(&zone->lock, flags);
3374 }
3375 #endif /* CONFIG_PM */
3376 
3377 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3378 							unsigned int order)
3379 {
3380 	int migratetype;
3381 
3382 	if (!free_pcp_prepare(page, order))
3383 		return false;
3384 
3385 	migratetype = get_pfnblock_migratetype(page, pfn);
3386 	set_pcppage_migratetype(page, migratetype);
3387 	return true;
3388 }
3389 
3390 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3391 		       bool free_high)
3392 {
3393 	int min_nr_free, max_nr_free;
3394 
3395 	/* Free everything if batch freeing high-order pages. */
3396 	if (unlikely(free_high))
3397 		return pcp->count;
3398 
3399 	/* Check for PCP disabled or boot pageset */
3400 	if (unlikely(high < batch))
3401 		return 1;
3402 
3403 	/* Leave at least pcp->batch pages on the list */
3404 	min_nr_free = batch;
3405 	max_nr_free = high - batch;
3406 
3407 	/*
3408 	 * Double the number of pages freed each time there is subsequent
3409 	 * freeing of pages without any allocation.
3410 	 */
3411 	batch <<= pcp->free_factor;
3412 	if (batch < max_nr_free)
3413 		pcp->free_factor++;
3414 	batch = clamp(batch, min_nr_free, max_nr_free);
3415 
3416 	return batch;
3417 }
3418 
3419 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3420 		       bool free_high)
3421 {
3422 	int high = READ_ONCE(pcp->high);
3423 
3424 	if (unlikely(!high || free_high))
3425 		return 0;
3426 
3427 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3428 		return high;
3429 
3430 	/*
3431 	 * If reclaim is active, limit the number of pages that can be
3432 	 * stored on pcp lists
3433 	 */
3434 	return min(READ_ONCE(pcp->batch) << 2, high);
3435 }
3436 
3437 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3438 				   struct page *page, int migratetype,
3439 				   unsigned int order)
3440 {
3441 	int high;
3442 	int pindex;
3443 	bool free_high;
3444 
3445 	__count_vm_event(PGFREE);
3446 	pindex = order_to_pindex(migratetype, order);
3447 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3448 	pcp->count += 1 << order;
3449 
3450 	/*
3451 	 * As high-order pages other than THP's stored on PCP can contribute
3452 	 * to fragmentation, limit the number stored when PCP is heavily
3453 	 * freeing without allocation. The remainder after bulk freeing
3454 	 * stops will be drained from vmstat refresh context.
3455 	 */
3456 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3457 
3458 	high = nr_pcp_high(pcp, zone, free_high);
3459 	if (pcp->count >= high) {
3460 		int batch = READ_ONCE(pcp->batch);
3461 
3462 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3463 	}
3464 }
3465 
3466 /*
3467  * Free a pcp page
3468  */
3469 void free_unref_page(struct page *page, unsigned int order)
3470 {
3471 	unsigned long flags;
3472 	unsigned long __maybe_unused UP_flags;
3473 	struct per_cpu_pages *pcp;
3474 	struct zone *zone;
3475 	unsigned long pfn = page_to_pfn(page);
3476 	int migratetype;
3477 
3478 	if (!free_unref_page_prepare(page, pfn, order))
3479 		return;
3480 
3481 	/*
3482 	 * We only track unmovable, reclaimable and movable on pcp lists.
3483 	 * Place ISOLATE pages on the isolated list because they are being
3484 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3485 	 * areas back if necessary. Otherwise, we may have to free
3486 	 * excessively into the page allocator
3487 	 */
3488 	migratetype = get_pcppage_migratetype(page);
3489 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3490 		if (unlikely(is_migrate_isolate(migratetype))) {
3491 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3492 			return;
3493 		}
3494 		migratetype = MIGRATE_MOVABLE;
3495 	}
3496 
3497 	zone = page_zone(page);
3498 	pcp_trylock_prepare(UP_flags);
3499 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3500 	if (pcp) {
3501 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3502 		pcp_spin_unlock_irqrestore(pcp, flags);
3503 	} else {
3504 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3505 	}
3506 	pcp_trylock_finish(UP_flags);
3507 }
3508 
3509 /*
3510  * Free a list of 0-order pages
3511  */
3512 void free_unref_page_list(struct list_head *list)
3513 {
3514 	struct page *page, *next;
3515 	struct per_cpu_pages *pcp = NULL;
3516 	struct zone *locked_zone = NULL;
3517 	unsigned long flags;
3518 	int batch_count = 0;
3519 	int migratetype;
3520 
3521 	/* Prepare pages for freeing */
3522 	list_for_each_entry_safe(page, next, list, lru) {
3523 		unsigned long pfn = page_to_pfn(page);
3524 		if (!free_unref_page_prepare(page, pfn, 0)) {
3525 			list_del(&page->lru);
3526 			continue;
3527 		}
3528 
3529 		/*
3530 		 * Free isolated pages directly to the allocator, see
3531 		 * comment in free_unref_page.
3532 		 */
3533 		migratetype = get_pcppage_migratetype(page);
3534 		if (unlikely(is_migrate_isolate(migratetype))) {
3535 			list_del(&page->lru);
3536 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3537 			continue;
3538 		}
3539 	}
3540 
3541 	list_for_each_entry_safe(page, next, list, lru) {
3542 		struct zone *zone = page_zone(page);
3543 
3544 		/* Different zone, different pcp lock. */
3545 		if (zone != locked_zone) {
3546 			if (pcp)
3547 				pcp_spin_unlock_irqrestore(pcp, flags);
3548 
3549 			locked_zone = zone;
3550 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3551 		}
3552 
3553 		/*
3554 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3555 		 * to the MIGRATE_MOVABLE pcp list.
3556 		 */
3557 		migratetype = get_pcppage_migratetype(page);
3558 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3559 			migratetype = MIGRATE_MOVABLE;
3560 
3561 		trace_mm_page_free_batched(page);
3562 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3563 
3564 		/*
3565 		 * Guard against excessive IRQ disabled times when we get
3566 		 * a large list of pages to free.
3567 		 */
3568 		if (++batch_count == SWAP_CLUSTER_MAX) {
3569 			pcp_spin_unlock_irqrestore(pcp, flags);
3570 			batch_count = 0;
3571 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3572 		}
3573 	}
3574 
3575 	if (pcp)
3576 		pcp_spin_unlock_irqrestore(pcp, flags);
3577 }
3578 
3579 /*
3580  * split_page takes a non-compound higher-order page, and splits it into
3581  * n (1<<order) sub-pages: page[0..n]
3582  * Each sub-page must be freed individually.
3583  *
3584  * Note: this is probably too low level an operation for use in drivers.
3585  * Please consult with lkml before using this in your driver.
3586  */
3587 void split_page(struct page *page, unsigned int order)
3588 {
3589 	int i;
3590 
3591 	VM_BUG_ON_PAGE(PageCompound(page), page);
3592 	VM_BUG_ON_PAGE(!page_count(page), page);
3593 
3594 	for (i = 1; i < (1 << order); i++)
3595 		set_page_refcounted(page + i);
3596 	split_page_owner(page, 1 << order);
3597 	split_page_memcg(page, 1 << order);
3598 }
3599 EXPORT_SYMBOL_GPL(split_page);
3600 
3601 int __isolate_free_page(struct page *page, unsigned int order)
3602 {
3603 	struct zone *zone = page_zone(page);
3604 	int mt = get_pageblock_migratetype(page);
3605 
3606 	if (!is_migrate_isolate(mt)) {
3607 		unsigned long watermark;
3608 		/*
3609 		 * Obey watermarks as if the page was being allocated. We can
3610 		 * emulate a high-order watermark check with a raised order-0
3611 		 * watermark, because we already know our high-order page
3612 		 * exists.
3613 		 */
3614 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3615 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3616 			return 0;
3617 
3618 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3619 	}
3620 
3621 	del_page_from_free_list(page, zone, order);
3622 
3623 	/*
3624 	 * Set the pageblock if the isolated page is at least half of a
3625 	 * pageblock
3626 	 */
3627 	if (order >= pageblock_order - 1) {
3628 		struct page *endpage = page + (1 << order) - 1;
3629 		for (; page < endpage; page += pageblock_nr_pages) {
3630 			int mt = get_pageblock_migratetype(page);
3631 			/*
3632 			 * Only change normal pageblocks (i.e., they can merge
3633 			 * with others)
3634 			 */
3635 			if (migratetype_is_mergeable(mt))
3636 				set_pageblock_migratetype(page,
3637 							  MIGRATE_MOVABLE);
3638 		}
3639 	}
3640 
3641 	return 1UL << order;
3642 }
3643 
3644 /**
3645  * __putback_isolated_page - Return a now-isolated page back where we got it
3646  * @page: Page that was isolated
3647  * @order: Order of the isolated page
3648  * @mt: The page's pageblock's migratetype
3649  *
3650  * This function is meant to return a page pulled from the free lists via
3651  * __isolate_free_page back to the free lists they were pulled from.
3652  */
3653 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3654 {
3655 	struct zone *zone = page_zone(page);
3656 
3657 	/* zone lock should be held when this function is called */
3658 	lockdep_assert_held(&zone->lock);
3659 
3660 	/* Return isolated page to tail of freelist. */
3661 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3662 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3663 }
3664 
3665 /*
3666  * Update NUMA hit/miss statistics
3667  *
3668  * Must be called with interrupts disabled.
3669  */
3670 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3671 				   long nr_account)
3672 {
3673 #ifdef CONFIG_NUMA
3674 	enum numa_stat_item local_stat = NUMA_LOCAL;
3675 
3676 	/* skip numa counters update if numa stats is disabled */
3677 	if (!static_branch_likely(&vm_numa_stat_key))
3678 		return;
3679 
3680 	if (zone_to_nid(z) != numa_node_id())
3681 		local_stat = NUMA_OTHER;
3682 
3683 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3684 		__count_numa_events(z, NUMA_HIT, nr_account);
3685 	else {
3686 		__count_numa_events(z, NUMA_MISS, nr_account);
3687 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3688 	}
3689 	__count_numa_events(z, local_stat, nr_account);
3690 #endif
3691 }
3692 
3693 static __always_inline
3694 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3695 			   unsigned int order, unsigned int alloc_flags,
3696 			   int migratetype)
3697 {
3698 	struct page *page;
3699 	unsigned long flags;
3700 
3701 	do {
3702 		page = NULL;
3703 		spin_lock_irqsave(&zone->lock, flags);
3704 		/*
3705 		 * order-0 request can reach here when the pcplist is skipped
3706 		 * due to non-CMA allocation context. HIGHATOMIC area is
3707 		 * reserved for high-order atomic allocation, so order-0
3708 		 * request should skip it.
3709 		 */
3710 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3711 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3712 		if (!page) {
3713 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3714 			if (!page) {
3715 				spin_unlock_irqrestore(&zone->lock, flags);
3716 				return NULL;
3717 			}
3718 		}
3719 		__mod_zone_freepage_state(zone, -(1 << order),
3720 					  get_pcppage_migratetype(page));
3721 		spin_unlock_irqrestore(&zone->lock, flags);
3722 	} while (check_new_pages(page, order));
3723 
3724 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3725 	zone_statistics(preferred_zone, zone, 1);
3726 
3727 	return page;
3728 }
3729 
3730 /* Remove page from the per-cpu list, caller must protect the list */
3731 static inline
3732 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3733 			int migratetype,
3734 			unsigned int alloc_flags,
3735 			struct per_cpu_pages *pcp,
3736 			struct list_head *list)
3737 {
3738 	struct page *page;
3739 
3740 	do {
3741 		if (list_empty(list)) {
3742 			int batch = READ_ONCE(pcp->batch);
3743 			int alloced;
3744 
3745 			/*
3746 			 * Scale batch relative to order if batch implies
3747 			 * free pages can be stored on the PCP. Batch can
3748 			 * be 1 for small zones or for boot pagesets which
3749 			 * should never store free pages as the pages may
3750 			 * belong to arbitrary zones.
3751 			 */
3752 			if (batch > 1)
3753 				batch = max(batch >> order, 2);
3754 			alloced = rmqueue_bulk(zone, order,
3755 					batch, list,
3756 					migratetype, alloc_flags);
3757 
3758 			pcp->count += alloced << order;
3759 			if (unlikely(list_empty(list)))
3760 				return NULL;
3761 		}
3762 
3763 		page = list_first_entry(list, struct page, pcp_list);
3764 		list_del(&page->pcp_list);
3765 		pcp->count -= 1 << order;
3766 	} while (check_new_pcp(page, order));
3767 
3768 	return page;
3769 }
3770 
3771 /* Lock and remove page from the per-cpu list */
3772 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3773 			struct zone *zone, unsigned int order,
3774 			int migratetype, unsigned int alloc_flags)
3775 {
3776 	struct per_cpu_pages *pcp;
3777 	struct list_head *list;
3778 	struct page *page;
3779 	unsigned long flags;
3780 	unsigned long __maybe_unused UP_flags;
3781 
3782 	/*
3783 	 * spin_trylock may fail due to a parallel drain. In the future, the
3784 	 * trylock will also protect against IRQ reentrancy.
3785 	 */
3786 	pcp_trylock_prepare(UP_flags);
3787 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3788 	if (!pcp) {
3789 		pcp_trylock_finish(UP_flags);
3790 		return NULL;
3791 	}
3792 
3793 	/*
3794 	 * On allocation, reduce the number of pages that are batch freed.
3795 	 * See nr_pcp_free() where free_factor is increased for subsequent
3796 	 * frees.
3797 	 */
3798 	pcp->free_factor >>= 1;
3799 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3800 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3801 	pcp_spin_unlock_irqrestore(pcp, flags);
3802 	pcp_trylock_finish(UP_flags);
3803 	if (page) {
3804 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3805 		zone_statistics(preferred_zone, zone, 1);
3806 	}
3807 	return page;
3808 }
3809 
3810 /*
3811  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3812  */
3813 static inline
3814 struct page *rmqueue(struct zone *preferred_zone,
3815 			struct zone *zone, unsigned int order,
3816 			gfp_t gfp_flags, unsigned int alloc_flags,
3817 			int migratetype)
3818 {
3819 	struct page *page;
3820 
3821 	/*
3822 	 * We most definitely don't want callers attempting to
3823 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3824 	 */
3825 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3826 
3827 	if (likely(pcp_allowed_order(order))) {
3828 		/*
3829 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3830 		 * we need to skip it when CMA area isn't allowed.
3831 		 */
3832 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3833 				migratetype != MIGRATE_MOVABLE) {
3834 			page = rmqueue_pcplist(preferred_zone, zone, order,
3835 					migratetype, alloc_flags);
3836 			if (likely(page))
3837 				goto out;
3838 		}
3839 	}
3840 
3841 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3842 							migratetype);
3843 
3844 out:
3845 	/* Separate test+clear to avoid unnecessary atomics */
3846 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3847 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3848 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3849 	}
3850 
3851 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3852 	return page;
3853 }
3854 
3855 #ifdef CONFIG_FAIL_PAGE_ALLOC
3856 
3857 static struct {
3858 	struct fault_attr attr;
3859 
3860 	bool ignore_gfp_highmem;
3861 	bool ignore_gfp_reclaim;
3862 	u32 min_order;
3863 } fail_page_alloc = {
3864 	.attr = FAULT_ATTR_INITIALIZER,
3865 	.ignore_gfp_reclaim = true,
3866 	.ignore_gfp_highmem = true,
3867 	.min_order = 1,
3868 };
3869 
3870 static int __init setup_fail_page_alloc(char *str)
3871 {
3872 	return setup_fault_attr(&fail_page_alloc.attr, str);
3873 }
3874 __setup("fail_page_alloc=", setup_fail_page_alloc);
3875 
3876 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3877 {
3878 	if (order < fail_page_alloc.min_order)
3879 		return false;
3880 	if (gfp_mask & __GFP_NOFAIL)
3881 		return false;
3882 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3883 		return false;
3884 	if (fail_page_alloc.ignore_gfp_reclaim &&
3885 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3886 		return false;
3887 
3888 	if (gfp_mask & __GFP_NOWARN)
3889 		fail_page_alloc.attr.no_warn = true;
3890 
3891 	return should_fail(&fail_page_alloc.attr, 1 << order);
3892 }
3893 
3894 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3895 
3896 static int __init fail_page_alloc_debugfs(void)
3897 {
3898 	umode_t mode = S_IFREG | 0600;
3899 	struct dentry *dir;
3900 
3901 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3902 					&fail_page_alloc.attr);
3903 
3904 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3905 			    &fail_page_alloc.ignore_gfp_reclaim);
3906 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3907 			    &fail_page_alloc.ignore_gfp_highmem);
3908 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3909 
3910 	return 0;
3911 }
3912 
3913 late_initcall(fail_page_alloc_debugfs);
3914 
3915 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3916 
3917 #else /* CONFIG_FAIL_PAGE_ALLOC */
3918 
3919 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3920 {
3921 	return false;
3922 }
3923 
3924 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3925 
3926 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3927 {
3928 	return __should_fail_alloc_page(gfp_mask, order);
3929 }
3930 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3931 
3932 static inline long __zone_watermark_unusable_free(struct zone *z,
3933 				unsigned int order, unsigned int alloc_flags)
3934 {
3935 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3936 	long unusable_free = (1 << order) - 1;
3937 
3938 	/*
3939 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3940 	 * the high-atomic reserves. This will over-estimate the size of the
3941 	 * atomic reserve but it avoids a search.
3942 	 */
3943 	if (likely(!alloc_harder))
3944 		unusable_free += z->nr_reserved_highatomic;
3945 
3946 #ifdef CONFIG_CMA
3947 	/* If allocation can't use CMA areas don't use free CMA pages */
3948 	if (!(alloc_flags & ALLOC_CMA))
3949 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3950 #endif
3951 
3952 	return unusable_free;
3953 }
3954 
3955 /*
3956  * Return true if free base pages are above 'mark'. For high-order checks it
3957  * will return true of the order-0 watermark is reached and there is at least
3958  * one free page of a suitable size. Checking now avoids taking the zone lock
3959  * to check in the allocation paths if no pages are free.
3960  */
3961 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3962 			 int highest_zoneidx, unsigned int alloc_flags,
3963 			 long free_pages)
3964 {
3965 	long min = mark;
3966 	int o;
3967 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3968 
3969 	/* free_pages may go negative - that's OK */
3970 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3971 
3972 	if (alloc_flags & ALLOC_HIGH)
3973 		min -= min / 2;
3974 
3975 	if (unlikely(alloc_harder)) {
3976 		/*
3977 		 * OOM victims can try even harder than normal ALLOC_HARDER
3978 		 * users on the grounds that it's definitely going to be in
3979 		 * the exit path shortly and free memory. Any allocation it
3980 		 * makes during the free path will be small and short-lived.
3981 		 */
3982 		if (alloc_flags & ALLOC_OOM)
3983 			min -= min / 2;
3984 		else
3985 			min -= min / 4;
3986 	}
3987 
3988 	/*
3989 	 * Check watermarks for an order-0 allocation request. If these
3990 	 * are not met, then a high-order request also cannot go ahead
3991 	 * even if a suitable page happened to be free.
3992 	 */
3993 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3994 		return false;
3995 
3996 	/* If this is an order-0 request then the watermark is fine */
3997 	if (!order)
3998 		return true;
3999 
4000 	/* For a high-order request, check at least one suitable page is free */
4001 	for (o = order; o < MAX_ORDER; o++) {
4002 		struct free_area *area = &z->free_area[o];
4003 		int mt;
4004 
4005 		if (!area->nr_free)
4006 			continue;
4007 
4008 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4009 			if (!free_area_empty(area, mt))
4010 				return true;
4011 		}
4012 
4013 #ifdef CONFIG_CMA
4014 		if ((alloc_flags & ALLOC_CMA) &&
4015 		    !free_area_empty(area, MIGRATE_CMA)) {
4016 			return true;
4017 		}
4018 #endif
4019 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4020 			return true;
4021 	}
4022 	return false;
4023 }
4024 
4025 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4026 		      int highest_zoneidx, unsigned int alloc_flags)
4027 {
4028 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4029 					zone_page_state(z, NR_FREE_PAGES));
4030 }
4031 
4032 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4033 				unsigned long mark, int highest_zoneidx,
4034 				unsigned int alloc_flags, gfp_t gfp_mask)
4035 {
4036 	long free_pages;
4037 
4038 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4039 
4040 	/*
4041 	 * Fast check for order-0 only. If this fails then the reserves
4042 	 * need to be calculated.
4043 	 */
4044 	if (!order) {
4045 		long usable_free;
4046 		long reserved;
4047 
4048 		usable_free = free_pages;
4049 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4050 
4051 		/* reserved may over estimate high-atomic reserves. */
4052 		usable_free -= min(usable_free, reserved);
4053 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4054 			return true;
4055 	}
4056 
4057 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4058 					free_pages))
4059 		return true;
4060 	/*
4061 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4062 	 * when checking the min watermark. The min watermark is the
4063 	 * point where boosting is ignored so that kswapd is woken up
4064 	 * when below the low watermark.
4065 	 */
4066 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4067 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4068 		mark = z->_watermark[WMARK_MIN];
4069 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4070 					alloc_flags, free_pages);
4071 	}
4072 
4073 	return false;
4074 }
4075 
4076 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4077 			unsigned long mark, int highest_zoneidx)
4078 {
4079 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4080 
4081 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4082 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4083 
4084 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4085 								free_pages);
4086 }
4087 
4088 #ifdef CONFIG_NUMA
4089 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4090 
4091 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4092 {
4093 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4094 				node_reclaim_distance;
4095 }
4096 #else	/* CONFIG_NUMA */
4097 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4098 {
4099 	return true;
4100 }
4101 #endif	/* CONFIG_NUMA */
4102 
4103 /*
4104  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4105  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4106  * premature use of a lower zone may cause lowmem pressure problems that
4107  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4108  * probably too small. It only makes sense to spread allocations to avoid
4109  * fragmentation between the Normal and DMA32 zones.
4110  */
4111 static inline unsigned int
4112 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4113 {
4114 	unsigned int alloc_flags;
4115 
4116 	/*
4117 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4118 	 * to save a branch.
4119 	 */
4120 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4121 
4122 #ifdef CONFIG_ZONE_DMA32
4123 	if (!zone)
4124 		return alloc_flags;
4125 
4126 	if (zone_idx(zone) != ZONE_NORMAL)
4127 		return alloc_flags;
4128 
4129 	/*
4130 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4131 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4132 	 * on UMA that if Normal is populated then so is DMA32.
4133 	 */
4134 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4135 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4136 		return alloc_flags;
4137 
4138 	alloc_flags |= ALLOC_NOFRAGMENT;
4139 #endif /* CONFIG_ZONE_DMA32 */
4140 	return alloc_flags;
4141 }
4142 
4143 /* Must be called after current_gfp_context() which can change gfp_mask */
4144 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4145 						  unsigned int alloc_flags)
4146 {
4147 #ifdef CONFIG_CMA
4148 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4149 		alloc_flags |= ALLOC_CMA;
4150 #endif
4151 	return alloc_flags;
4152 }
4153 
4154 /*
4155  * get_page_from_freelist goes through the zonelist trying to allocate
4156  * a page.
4157  */
4158 static struct page *
4159 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4160 						const struct alloc_context *ac)
4161 {
4162 	struct zoneref *z;
4163 	struct zone *zone;
4164 	struct pglist_data *last_pgdat = NULL;
4165 	bool last_pgdat_dirty_ok = false;
4166 	bool no_fallback;
4167 
4168 retry:
4169 	/*
4170 	 * Scan zonelist, looking for a zone with enough free.
4171 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4172 	 */
4173 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4174 	z = ac->preferred_zoneref;
4175 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4176 					ac->nodemask) {
4177 		struct page *page;
4178 		unsigned long mark;
4179 
4180 		if (cpusets_enabled() &&
4181 			(alloc_flags & ALLOC_CPUSET) &&
4182 			!__cpuset_zone_allowed(zone, gfp_mask))
4183 				continue;
4184 		/*
4185 		 * When allocating a page cache page for writing, we
4186 		 * want to get it from a node that is within its dirty
4187 		 * limit, such that no single node holds more than its
4188 		 * proportional share of globally allowed dirty pages.
4189 		 * The dirty limits take into account the node's
4190 		 * lowmem reserves and high watermark so that kswapd
4191 		 * should be able to balance it without having to
4192 		 * write pages from its LRU list.
4193 		 *
4194 		 * XXX: For now, allow allocations to potentially
4195 		 * exceed the per-node dirty limit in the slowpath
4196 		 * (spread_dirty_pages unset) before going into reclaim,
4197 		 * which is important when on a NUMA setup the allowed
4198 		 * nodes are together not big enough to reach the
4199 		 * global limit.  The proper fix for these situations
4200 		 * will require awareness of nodes in the
4201 		 * dirty-throttling and the flusher threads.
4202 		 */
4203 		if (ac->spread_dirty_pages) {
4204 			if (last_pgdat != zone->zone_pgdat) {
4205 				last_pgdat = zone->zone_pgdat;
4206 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4207 			}
4208 
4209 			if (!last_pgdat_dirty_ok)
4210 				continue;
4211 		}
4212 
4213 		if (no_fallback && nr_online_nodes > 1 &&
4214 		    zone != ac->preferred_zoneref->zone) {
4215 			int local_nid;
4216 
4217 			/*
4218 			 * If moving to a remote node, retry but allow
4219 			 * fragmenting fallbacks. Locality is more important
4220 			 * than fragmentation avoidance.
4221 			 */
4222 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4223 			if (zone_to_nid(zone) != local_nid) {
4224 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4225 				goto retry;
4226 			}
4227 		}
4228 
4229 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4230 		if (!zone_watermark_fast(zone, order, mark,
4231 				       ac->highest_zoneidx, alloc_flags,
4232 				       gfp_mask)) {
4233 			int ret;
4234 
4235 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4236 			/*
4237 			 * Watermark failed for this zone, but see if we can
4238 			 * grow this zone if it contains deferred pages.
4239 			 */
4240 			if (static_branch_unlikely(&deferred_pages)) {
4241 				if (_deferred_grow_zone(zone, order))
4242 					goto try_this_zone;
4243 			}
4244 #endif
4245 			/* Checked here to keep the fast path fast */
4246 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4247 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4248 				goto try_this_zone;
4249 
4250 			if (!node_reclaim_enabled() ||
4251 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4252 				continue;
4253 
4254 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4255 			switch (ret) {
4256 			case NODE_RECLAIM_NOSCAN:
4257 				/* did not scan */
4258 				continue;
4259 			case NODE_RECLAIM_FULL:
4260 				/* scanned but unreclaimable */
4261 				continue;
4262 			default:
4263 				/* did we reclaim enough */
4264 				if (zone_watermark_ok(zone, order, mark,
4265 					ac->highest_zoneidx, alloc_flags))
4266 					goto try_this_zone;
4267 
4268 				continue;
4269 			}
4270 		}
4271 
4272 try_this_zone:
4273 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4274 				gfp_mask, alloc_flags, ac->migratetype);
4275 		if (page) {
4276 			prep_new_page(page, order, gfp_mask, alloc_flags);
4277 
4278 			/*
4279 			 * If this is a high-order atomic allocation then check
4280 			 * if the pageblock should be reserved for the future
4281 			 */
4282 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4283 				reserve_highatomic_pageblock(page, zone, order);
4284 
4285 			return page;
4286 		} else {
4287 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4288 			/* Try again if zone has deferred pages */
4289 			if (static_branch_unlikely(&deferred_pages)) {
4290 				if (_deferred_grow_zone(zone, order))
4291 					goto try_this_zone;
4292 			}
4293 #endif
4294 		}
4295 	}
4296 
4297 	/*
4298 	 * It's possible on a UMA machine to get through all zones that are
4299 	 * fragmented. If avoiding fragmentation, reset and try again.
4300 	 */
4301 	if (no_fallback) {
4302 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4303 		goto retry;
4304 	}
4305 
4306 	return NULL;
4307 }
4308 
4309 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4310 {
4311 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4312 
4313 	/*
4314 	 * This documents exceptions given to allocations in certain
4315 	 * contexts that are allowed to allocate outside current's set
4316 	 * of allowed nodes.
4317 	 */
4318 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4319 		if (tsk_is_oom_victim(current) ||
4320 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4321 			filter &= ~SHOW_MEM_FILTER_NODES;
4322 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4323 		filter &= ~SHOW_MEM_FILTER_NODES;
4324 
4325 	show_mem(filter, nodemask);
4326 }
4327 
4328 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4329 {
4330 	struct va_format vaf;
4331 	va_list args;
4332 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4333 
4334 	if ((gfp_mask & __GFP_NOWARN) ||
4335 	     !__ratelimit(&nopage_rs) ||
4336 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4337 		return;
4338 
4339 	va_start(args, fmt);
4340 	vaf.fmt = fmt;
4341 	vaf.va = &args;
4342 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4343 			current->comm, &vaf, gfp_mask, &gfp_mask,
4344 			nodemask_pr_args(nodemask));
4345 	va_end(args);
4346 
4347 	cpuset_print_current_mems_allowed();
4348 	pr_cont("\n");
4349 	dump_stack();
4350 	warn_alloc_show_mem(gfp_mask, nodemask);
4351 }
4352 
4353 static inline struct page *
4354 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4355 			      unsigned int alloc_flags,
4356 			      const struct alloc_context *ac)
4357 {
4358 	struct page *page;
4359 
4360 	page = get_page_from_freelist(gfp_mask, order,
4361 			alloc_flags|ALLOC_CPUSET, ac);
4362 	/*
4363 	 * fallback to ignore cpuset restriction if our nodes
4364 	 * are depleted
4365 	 */
4366 	if (!page)
4367 		page = get_page_from_freelist(gfp_mask, order,
4368 				alloc_flags, ac);
4369 
4370 	return page;
4371 }
4372 
4373 static inline struct page *
4374 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4375 	const struct alloc_context *ac, unsigned long *did_some_progress)
4376 {
4377 	struct oom_control oc = {
4378 		.zonelist = ac->zonelist,
4379 		.nodemask = ac->nodemask,
4380 		.memcg = NULL,
4381 		.gfp_mask = gfp_mask,
4382 		.order = order,
4383 	};
4384 	struct page *page;
4385 
4386 	*did_some_progress = 0;
4387 
4388 	/*
4389 	 * Acquire the oom lock.  If that fails, somebody else is
4390 	 * making progress for us.
4391 	 */
4392 	if (!mutex_trylock(&oom_lock)) {
4393 		*did_some_progress = 1;
4394 		schedule_timeout_uninterruptible(1);
4395 		return NULL;
4396 	}
4397 
4398 	/*
4399 	 * Go through the zonelist yet one more time, keep very high watermark
4400 	 * here, this is only to catch a parallel oom killing, we must fail if
4401 	 * we're still under heavy pressure. But make sure that this reclaim
4402 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4403 	 * allocation which will never fail due to oom_lock already held.
4404 	 */
4405 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4406 				      ~__GFP_DIRECT_RECLAIM, order,
4407 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4408 	if (page)
4409 		goto out;
4410 
4411 	/* Coredumps can quickly deplete all memory reserves */
4412 	if (current->flags & PF_DUMPCORE)
4413 		goto out;
4414 	/* The OOM killer will not help higher order allocs */
4415 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4416 		goto out;
4417 	/*
4418 	 * We have already exhausted all our reclaim opportunities without any
4419 	 * success so it is time to admit defeat. We will skip the OOM killer
4420 	 * because it is very likely that the caller has a more reasonable
4421 	 * fallback than shooting a random task.
4422 	 *
4423 	 * The OOM killer may not free memory on a specific node.
4424 	 */
4425 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4426 		goto out;
4427 	/* The OOM killer does not needlessly kill tasks for lowmem */
4428 	if (ac->highest_zoneidx < ZONE_NORMAL)
4429 		goto out;
4430 	if (pm_suspended_storage())
4431 		goto out;
4432 	/*
4433 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4434 	 * other request to make a forward progress.
4435 	 * We are in an unfortunate situation where out_of_memory cannot
4436 	 * do much for this context but let's try it to at least get
4437 	 * access to memory reserved if the current task is killed (see
4438 	 * out_of_memory). Once filesystems are ready to handle allocation
4439 	 * failures more gracefully we should just bail out here.
4440 	 */
4441 
4442 	/* Exhausted what can be done so it's blame time */
4443 	if (out_of_memory(&oc) ||
4444 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4445 		*did_some_progress = 1;
4446 
4447 		/*
4448 		 * Help non-failing allocations by giving them access to memory
4449 		 * reserves
4450 		 */
4451 		if (gfp_mask & __GFP_NOFAIL)
4452 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4453 					ALLOC_NO_WATERMARKS, ac);
4454 	}
4455 out:
4456 	mutex_unlock(&oom_lock);
4457 	return page;
4458 }
4459 
4460 /*
4461  * Maximum number of compaction retries with a progress before OOM
4462  * killer is consider as the only way to move forward.
4463  */
4464 #define MAX_COMPACT_RETRIES 16
4465 
4466 #ifdef CONFIG_COMPACTION
4467 /* Try memory compaction for high-order allocations before reclaim */
4468 static struct page *
4469 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4470 		unsigned int alloc_flags, const struct alloc_context *ac,
4471 		enum compact_priority prio, enum compact_result *compact_result)
4472 {
4473 	struct page *page = NULL;
4474 	unsigned long pflags;
4475 	unsigned int noreclaim_flag;
4476 
4477 	if (!order)
4478 		return NULL;
4479 
4480 	psi_memstall_enter(&pflags);
4481 	delayacct_compact_start();
4482 	noreclaim_flag = memalloc_noreclaim_save();
4483 
4484 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4485 								prio, &page);
4486 
4487 	memalloc_noreclaim_restore(noreclaim_flag);
4488 	psi_memstall_leave(&pflags);
4489 	delayacct_compact_end();
4490 
4491 	if (*compact_result == COMPACT_SKIPPED)
4492 		return NULL;
4493 	/*
4494 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4495 	 * count a compaction stall
4496 	 */
4497 	count_vm_event(COMPACTSTALL);
4498 
4499 	/* Prep a captured page if available */
4500 	if (page)
4501 		prep_new_page(page, order, gfp_mask, alloc_flags);
4502 
4503 	/* Try get a page from the freelist if available */
4504 	if (!page)
4505 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4506 
4507 	if (page) {
4508 		struct zone *zone = page_zone(page);
4509 
4510 		zone->compact_blockskip_flush = false;
4511 		compaction_defer_reset(zone, order, true);
4512 		count_vm_event(COMPACTSUCCESS);
4513 		return page;
4514 	}
4515 
4516 	/*
4517 	 * It's bad if compaction run occurs and fails. The most likely reason
4518 	 * is that pages exist, but not enough to satisfy watermarks.
4519 	 */
4520 	count_vm_event(COMPACTFAIL);
4521 
4522 	cond_resched();
4523 
4524 	return NULL;
4525 }
4526 
4527 static inline bool
4528 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4529 		     enum compact_result compact_result,
4530 		     enum compact_priority *compact_priority,
4531 		     int *compaction_retries)
4532 {
4533 	int max_retries = MAX_COMPACT_RETRIES;
4534 	int min_priority;
4535 	bool ret = false;
4536 	int retries = *compaction_retries;
4537 	enum compact_priority priority = *compact_priority;
4538 
4539 	if (!order)
4540 		return false;
4541 
4542 	if (fatal_signal_pending(current))
4543 		return false;
4544 
4545 	if (compaction_made_progress(compact_result))
4546 		(*compaction_retries)++;
4547 
4548 	/*
4549 	 * compaction considers all the zone as desperately out of memory
4550 	 * so it doesn't really make much sense to retry except when the
4551 	 * failure could be caused by insufficient priority
4552 	 */
4553 	if (compaction_failed(compact_result))
4554 		goto check_priority;
4555 
4556 	/*
4557 	 * compaction was skipped because there are not enough order-0 pages
4558 	 * to work with, so we retry only if it looks like reclaim can help.
4559 	 */
4560 	if (compaction_needs_reclaim(compact_result)) {
4561 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4562 		goto out;
4563 	}
4564 
4565 	/*
4566 	 * make sure the compaction wasn't deferred or didn't bail out early
4567 	 * due to locks contention before we declare that we should give up.
4568 	 * But the next retry should use a higher priority if allowed, so
4569 	 * we don't just keep bailing out endlessly.
4570 	 */
4571 	if (compaction_withdrawn(compact_result)) {
4572 		goto check_priority;
4573 	}
4574 
4575 	/*
4576 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4577 	 * costly ones because they are de facto nofail and invoke OOM
4578 	 * killer to move on while costly can fail and users are ready
4579 	 * to cope with that. 1/4 retries is rather arbitrary but we
4580 	 * would need much more detailed feedback from compaction to
4581 	 * make a better decision.
4582 	 */
4583 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4584 		max_retries /= 4;
4585 	if (*compaction_retries <= max_retries) {
4586 		ret = true;
4587 		goto out;
4588 	}
4589 
4590 	/*
4591 	 * Make sure there are attempts at the highest priority if we exhausted
4592 	 * all retries or failed at the lower priorities.
4593 	 */
4594 check_priority:
4595 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4596 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4597 
4598 	if (*compact_priority > min_priority) {
4599 		(*compact_priority)--;
4600 		*compaction_retries = 0;
4601 		ret = true;
4602 	}
4603 out:
4604 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4605 	return ret;
4606 }
4607 #else
4608 static inline struct page *
4609 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4610 		unsigned int alloc_flags, const struct alloc_context *ac,
4611 		enum compact_priority prio, enum compact_result *compact_result)
4612 {
4613 	*compact_result = COMPACT_SKIPPED;
4614 	return NULL;
4615 }
4616 
4617 static inline bool
4618 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4619 		     enum compact_result compact_result,
4620 		     enum compact_priority *compact_priority,
4621 		     int *compaction_retries)
4622 {
4623 	struct zone *zone;
4624 	struct zoneref *z;
4625 
4626 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4627 		return false;
4628 
4629 	/*
4630 	 * There are setups with compaction disabled which would prefer to loop
4631 	 * inside the allocator rather than hit the oom killer prematurely.
4632 	 * Let's give them a good hope and keep retrying while the order-0
4633 	 * watermarks are OK.
4634 	 */
4635 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4636 				ac->highest_zoneidx, ac->nodemask) {
4637 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4638 					ac->highest_zoneidx, alloc_flags))
4639 			return true;
4640 	}
4641 	return false;
4642 }
4643 #endif /* CONFIG_COMPACTION */
4644 
4645 #ifdef CONFIG_LOCKDEP
4646 static struct lockdep_map __fs_reclaim_map =
4647 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4648 
4649 static bool __need_reclaim(gfp_t gfp_mask)
4650 {
4651 	/* no reclaim without waiting on it */
4652 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4653 		return false;
4654 
4655 	/* this guy won't enter reclaim */
4656 	if (current->flags & PF_MEMALLOC)
4657 		return false;
4658 
4659 	if (gfp_mask & __GFP_NOLOCKDEP)
4660 		return false;
4661 
4662 	return true;
4663 }
4664 
4665 void __fs_reclaim_acquire(unsigned long ip)
4666 {
4667 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4668 }
4669 
4670 void __fs_reclaim_release(unsigned long ip)
4671 {
4672 	lock_release(&__fs_reclaim_map, ip);
4673 }
4674 
4675 void fs_reclaim_acquire(gfp_t gfp_mask)
4676 {
4677 	gfp_mask = current_gfp_context(gfp_mask);
4678 
4679 	if (__need_reclaim(gfp_mask)) {
4680 		if (gfp_mask & __GFP_FS)
4681 			__fs_reclaim_acquire(_RET_IP_);
4682 
4683 #ifdef CONFIG_MMU_NOTIFIER
4684 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4685 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4686 #endif
4687 
4688 	}
4689 }
4690 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4691 
4692 void fs_reclaim_release(gfp_t gfp_mask)
4693 {
4694 	gfp_mask = current_gfp_context(gfp_mask);
4695 
4696 	if (__need_reclaim(gfp_mask)) {
4697 		if (gfp_mask & __GFP_FS)
4698 			__fs_reclaim_release(_RET_IP_);
4699 	}
4700 }
4701 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4702 #endif
4703 
4704 /*
4705  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4706  * have been rebuilt so allocation retries. Reader side does not lock and
4707  * retries the allocation if zonelist changes. Writer side is protected by the
4708  * embedded spin_lock.
4709  */
4710 static DEFINE_SEQLOCK(zonelist_update_seq);
4711 
4712 static unsigned int zonelist_iter_begin(void)
4713 {
4714 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4715 		return read_seqbegin(&zonelist_update_seq);
4716 
4717 	return 0;
4718 }
4719 
4720 static unsigned int check_retry_zonelist(unsigned int seq)
4721 {
4722 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4723 		return read_seqretry(&zonelist_update_seq, seq);
4724 
4725 	return seq;
4726 }
4727 
4728 /* Perform direct synchronous page reclaim */
4729 static unsigned long
4730 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4731 					const struct alloc_context *ac)
4732 {
4733 	unsigned int noreclaim_flag;
4734 	unsigned long progress;
4735 
4736 	cond_resched();
4737 
4738 	/* We now go into synchronous reclaim */
4739 	cpuset_memory_pressure_bump();
4740 	fs_reclaim_acquire(gfp_mask);
4741 	noreclaim_flag = memalloc_noreclaim_save();
4742 
4743 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4744 								ac->nodemask);
4745 
4746 	memalloc_noreclaim_restore(noreclaim_flag);
4747 	fs_reclaim_release(gfp_mask);
4748 
4749 	cond_resched();
4750 
4751 	return progress;
4752 }
4753 
4754 /* The really slow allocator path where we enter direct reclaim */
4755 static inline struct page *
4756 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4757 		unsigned int alloc_flags, const struct alloc_context *ac,
4758 		unsigned long *did_some_progress)
4759 {
4760 	struct page *page = NULL;
4761 	unsigned long pflags;
4762 	bool drained = false;
4763 
4764 	psi_memstall_enter(&pflags);
4765 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4766 	if (unlikely(!(*did_some_progress)))
4767 		goto out;
4768 
4769 retry:
4770 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4771 
4772 	/*
4773 	 * If an allocation failed after direct reclaim, it could be because
4774 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4775 	 * Shrink them and try again
4776 	 */
4777 	if (!page && !drained) {
4778 		unreserve_highatomic_pageblock(ac, false);
4779 		drain_all_pages(NULL);
4780 		drained = true;
4781 		goto retry;
4782 	}
4783 out:
4784 	psi_memstall_leave(&pflags);
4785 
4786 	return page;
4787 }
4788 
4789 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4790 			     const struct alloc_context *ac)
4791 {
4792 	struct zoneref *z;
4793 	struct zone *zone;
4794 	pg_data_t *last_pgdat = NULL;
4795 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4796 
4797 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4798 					ac->nodemask) {
4799 		if (!managed_zone(zone))
4800 			continue;
4801 		if (last_pgdat != zone->zone_pgdat) {
4802 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4803 			last_pgdat = zone->zone_pgdat;
4804 		}
4805 	}
4806 }
4807 
4808 static inline unsigned int
4809 gfp_to_alloc_flags(gfp_t gfp_mask)
4810 {
4811 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4812 
4813 	/*
4814 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4815 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4816 	 * to save two branches.
4817 	 */
4818 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4819 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4820 
4821 	/*
4822 	 * The caller may dip into page reserves a bit more if the caller
4823 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4824 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4825 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4826 	 */
4827 	alloc_flags |= (__force int)
4828 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4829 
4830 	if (gfp_mask & __GFP_ATOMIC) {
4831 		/*
4832 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4833 		 * if it can't schedule.
4834 		 */
4835 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4836 			alloc_flags |= ALLOC_HARDER;
4837 		/*
4838 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4839 		 * comment for __cpuset_node_allowed().
4840 		 */
4841 		alloc_flags &= ~ALLOC_CPUSET;
4842 	} else if (unlikely(rt_task(current)) && in_task())
4843 		alloc_flags |= ALLOC_HARDER;
4844 
4845 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4846 
4847 	return alloc_flags;
4848 }
4849 
4850 static bool oom_reserves_allowed(struct task_struct *tsk)
4851 {
4852 	if (!tsk_is_oom_victim(tsk))
4853 		return false;
4854 
4855 	/*
4856 	 * !MMU doesn't have oom reaper so give access to memory reserves
4857 	 * only to the thread with TIF_MEMDIE set
4858 	 */
4859 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4860 		return false;
4861 
4862 	return true;
4863 }
4864 
4865 /*
4866  * Distinguish requests which really need access to full memory
4867  * reserves from oom victims which can live with a portion of it
4868  */
4869 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4870 {
4871 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4872 		return 0;
4873 	if (gfp_mask & __GFP_MEMALLOC)
4874 		return ALLOC_NO_WATERMARKS;
4875 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4876 		return ALLOC_NO_WATERMARKS;
4877 	if (!in_interrupt()) {
4878 		if (current->flags & PF_MEMALLOC)
4879 			return ALLOC_NO_WATERMARKS;
4880 		else if (oom_reserves_allowed(current))
4881 			return ALLOC_OOM;
4882 	}
4883 
4884 	return 0;
4885 }
4886 
4887 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4888 {
4889 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4890 }
4891 
4892 /*
4893  * Checks whether it makes sense to retry the reclaim to make a forward progress
4894  * for the given allocation request.
4895  *
4896  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4897  * without success, or when we couldn't even meet the watermark if we
4898  * reclaimed all remaining pages on the LRU lists.
4899  *
4900  * Returns true if a retry is viable or false to enter the oom path.
4901  */
4902 static inline bool
4903 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4904 		     struct alloc_context *ac, int alloc_flags,
4905 		     bool did_some_progress, int *no_progress_loops)
4906 {
4907 	struct zone *zone;
4908 	struct zoneref *z;
4909 	bool ret = false;
4910 
4911 	/*
4912 	 * Costly allocations might have made a progress but this doesn't mean
4913 	 * their order will become available due to high fragmentation so
4914 	 * always increment the no progress counter for them
4915 	 */
4916 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4917 		*no_progress_loops = 0;
4918 	else
4919 		(*no_progress_loops)++;
4920 
4921 	/*
4922 	 * Make sure we converge to OOM if we cannot make any progress
4923 	 * several times in the row.
4924 	 */
4925 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4926 		/* Before OOM, exhaust highatomic_reserve */
4927 		return unreserve_highatomic_pageblock(ac, true);
4928 	}
4929 
4930 	/*
4931 	 * Keep reclaiming pages while there is a chance this will lead
4932 	 * somewhere.  If none of the target zones can satisfy our allocation
4933 	 * request even if all reclaimable pages are considered then we are
4934 	 * screwed and have to go OOM.
4935 	 */
4936 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4937 				ac->highest_zoneidx, ac->nodemask) {
4938 		unsigned long available;
4939 		unsigned long reclaimable;
4940 		unsigned long min_wmark = min_wmark_pages(zone);
4941 		bool wmark;
4942 
4943 		available = reclaimable = zone_reclaimable_pages(zone);
4944 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4945 
4946 		/*
4947 		 * Would the allocation succeed if we reclaimed all
4948 		 * reclaimable pages?
4949 		 */
4950 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4951 				ac->highest_zoneidx, alloc_flags, available);
4952 		trace_reclaim_retry_zone(z, order, reclaimable,
4953 				available, min_wmark, *no_progress_loops, wmark);
4954 		if (wmark) {
4955 			ret = true;
4956 			break;
4957 		}
4958 	}
4959 
4960 	/*
4961 	 * Memory allocation/reclaim might be called from a WQ context and the
4962 	 * current implementation of the WQ concurrency control doesn't
4963 	 * recognize that a particular WQ is congested if the worker thread is
4964 	 * looping without ever sleeping. Therefore we have to do a short sleep
4965 	 * here rather than calling cond_resched().
4966 	 */
4967 	if (current->flags & PF_WQ_WORKER)
4968 		schedule_timeout_uninterruptible(1);
4969 	else
4970 		cond_resched();
4971 	return ret;
4972 }
4973 
4974 static inline bool
4975 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4976 {
4977 	/*
4978 	 * It's possible that cpuset's mems_allowed and the nodemask from
4979 	 * mempolicy don't intersect. This should be normally dealt with by
4980 	 * policy_nodemask(), but it's possible to race with cpuset update in
4981 	 * such a way the check therein was true, and then it became false
4982 	 * before we got our cpuset_mems_cookie here.
4983 	 * This assumes that for all allocations, ac->nodemask can come only
4984 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4985 	 * when it does not intersect with the cpuset restrictions) or the
4986 	 * caller can deal with a violated nodemask.
4987 	 */
4988 	if (cpusets_enabled() && ac->nodemask &&
4989 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4990 		ac->nodemask = NULL;
4991 		return true;
4992 	}
4993 
4994 	/*
4995 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4996 	 * possible to race with parallel threads in such a way that our
4997 	 * allocation can fail while the mask is being updated. If we are about
4998 	 * to fail, check if the cpuset changed during allocation and if so,
4999 	 * retry.
5000 	 */
5001 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5002 		return true;
5003 
5004 	return false;
5005 }
5006 
5007 static inline struct page *
5008 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5009 						struct alloc_context *ac)
5010 {
5011 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5012 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5013 	struct page *page = NULL;
5014 	unsigned int alloc_flags;
5015 	unsigned long did_some_progress;
5016 	enum compact_priority compact_priority;
5017 	enum compact_result compact_result;
5018 	int compaction_retries;
5019 	int no_progress_loops;
5020 	unsigned int cpuset_mems_cookie;
5021 	unsigned int zonelist_iter_cookie;
5022 	int reserve_flags;
5023 
5024 	/*
5025 	 * We also sanity check to catch abuse of atomic reserves being used by
5026 	 * callers that are not in atomic context.
5027 	 */
5028 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5029 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5030 		gfp_mask &= ~__GFP_ATOMIC;
5031 
5032 restart:
5033 	compaction_retries = 0;
5034 	no_progress_loops = 0;
5035 	compact_priority = DEF_COMPACT_PRIORITY;
5036 	cpuset_mems_cookie = read_mems_allowed_begin();
5037 	zonelist_iter_cookie = zonelist_iter_begin();
5038 
5039 	/*
5040 	 * The fast path uses conservative alloc_flags to succeed only until
5041 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5042 	 * alloc_flags precisely. So we do that now.
5043 	 */
5044 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5045 
5046 	/*
5047 	 * We need to recalculate the starting point for the zonelist iterator
5048 	 * because we might have used different nodemask in the fast path, or
5049 	 * there was a cpuset modification and we are retrying - otherwise we
5050 	 * could end up iterating over non-eligible zones endlessly.
5051 	 */
5052 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5053 					ac->highest_zoneidx, ac->nodemask);
5054 	if (!ac->preferred_zoneref->zone)
5055 		goto nopage;
5056 
5057 	/*
5058 	 * Check for insane configurations where the cpuset doesn't contain
5059 	 * any suitable zone to satisfy the request - e.g. non-movable
5060 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5061 	 */
5062 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5063 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5064 					ac->highest_zoneidx,
5065 					&cpuset_current_mems_allowed);
5066 		if (!z->zone)
5067 			goto nopage;
5068 	}
5069 
5070 	if (alloc_flags & ALLOC_KSWAPD)
5071 		wake_all_kswapds(order, gfp_mask, ac);
5072 
5073 	/*
5074 	 * The adjusted alloc_flags might result in immediate success, so try
5075 	 * that first
5076 	 */
5077 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5078 	if (page)
5079 		goto got_pg;
5080 
5081 	/*
5082 	 * For costly allocations, try direct compaction first, as it's likely
5083 	 * that we have enough base pages and don't need to reclaim. For non-
5084 	 * movable high-order allocations, do that as well, as compaction will
5085 	 * try prevent permanent fragmentation by migrating from blocks of the
5086 	 * same migratetype.
5087 	 * Don't try this for allocations that are allowed to ignore
5088 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5089 	 */
5090 	if (can_direct_reclaim &&
5091 			(costly_order ||
5092 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5093 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5094 		page = __alloc_pages_direct_compact(gfp_mask, order,
5095 						alloc_flags, ac,
5096 						INIT_COMPACT_PRIORITY,
5097 						&compact_result);
5098 		if (page)
5099 			goto got_pg;
5100 
5101 		/*
5102 		 * Checks for costly allocations with __GFP_NORETRY, which
5103 		 * includes some THP page fault allocations
5104 		 */
5105 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5106 			/*
5107 			 * If allocating entire pageblock(s) and compaction
5108 			 * failed because all zones are below low watermarks
5109 			 * or is prohibited because it recently failed at this
5110 			 * order, fail immediately unless the allocator has
5111 			 * requested compaction and reclaim retry.
5112 			 *
5113 			 * Reclaim is
5114 			 *  - potentially very expensive because zones are far
5115 			 *    below their low watermarks or this is part of very
5116 			 *    bursty high order allocations,
5117 			 *  - not guaranteed to help because isolate_freepages()
5118 			 *    may not iterate over freed pages as part of its
5119 			 *    linear scan, and
5120 			 *  - unlikely to make entire pageblocks free on its
5121 			 *    own.
5122 			 */
5123 			if (compact_result == COMPACT_SKIPPED ||
5124 			    compact_result == COMPACT_DEFERRED)
5125 				goto nopage;
5126 
5127 			/*
5128 			 * Looks like reclaim/compaction is worth trying, but
5129 			 * sync compaction could be very expensive, so keep
5130 			 * using async compaction.
5131 			 */
5132 			compact_priority = INIT_COMPACT_PRIORITY;
5133 		}
5134 	}
5135 
5136 retry:
5137 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5138 	if (alloc_flags & ALLOC_KSWAPD)
5139 		wake_all_kswapds(order, gfp_mask, ac);
5140 
5141 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5142 	if (reserve_flags)
5143 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5144 
5145 	/*
5146 	 * Reset the nodemask and zonelist iterators if memory policies can be
5147 	 * ignored. These allocations are high priority and system rather than
5148 	 * user oriented.
5149 	 */
5150 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5151 		ac->nodemask = NULL;
5152 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5153 					ac->highest_zoneidx, ac->nodemask);
5154 	}
5155 
5156 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5157 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5158 	if (page)
5159 		goto got_pg;
5160 
5161 	/* Caller is not willing to reclaim, we can't balance anything */
5162 	if (!can_direct_reclaim)
5163 		goto nopage;
5164 
5165 	/* Avoid recursion of direct reclaim */
5166 	if (current->flags & PF_MEMALLOC)
5167 		goto nopage;
5168 
5169 	/* Try direct reclaim and then allocating */
5170 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5171 							&did_some_progress);
5172 	if (page)
5173 		goto got_pg;
5174 
5175 	/* Try direct compaction and then allocating */
5176 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5177 					compact_priority, &compact_result);
5178 	if (page)
5179 		goto got_pg;
5180 
5181 	/* Do not loop if specifically requested */
5182 	if (gfp_mask & __GFP_NORETRY)
5183 		goto nopage;
5184 
5185 	/*
5186 	 * Do not retry costly high order allocations unless they are
5187 	 * __GFP_RETRY_MAYFAIL
5188 	 */
5189 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5190 		goto nopage;
5191 
5192 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5193 				 did_some_progress > 0, &no_progress_loops))
5194 		goto retry;
5195 
5196 	/*
5197 	 * It doesn't make any sense to retry for the compaction if the order-0
5198 	 * reclaim is not able to make any progress because the current
5199 	 * implementation of the compaction depends on the sufficient amount
5200 	 * of free memory (see __compaction_suitable)
5201 	 */
5202 	if (did_some_progress > 0 &&
5203 			should_compact_retry(ac, order, alloc_flags,
5204 				compact_result, &compact_priority,
5205 				&compaction_retries))
5206 		goto retry;
5207 
5208 
5209 	/*
5210 	 * Deal with possible cpuset update races or zonelist updates to avoid
5211 	 * a unnecessary OOM kill.
5212 	 */
5213 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5214 	    check_retry_zonelist(zonelist_iter_cookie))
5215 		goto restart;
5216 
5217 	/* Reclaim has failed us, start killing things */
5218 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5219 	if (page)
5220 		goto got_pg;
5221 
5222 	/* Avoid allocations with no watermarks from looping endlessly */
5223 	if (tsk_is_oom_victim(current) &&
5224 	    (alloc_flags & ALLOC_OOM ||
5225 	     (gfp_mask & __GFP_NOMEMALLOC)))
5226 		goto nopage;
5227 
5228 	/* Retry as long as the OOM killer is making progress */
5229 	if (did_some_progress) {
5230 		no_progress_loops = 0;
5231 		goto retry;
5232 	}
5233 
5234 nopage:
5235 	/*
5236 	 * Deal with possible cpuset update races or zonelist updates to avoid
5237 	 * a unnecessary OOM kill.
5238 	 */
5239 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5240 	    check_retry_zonelist(zonelist_iter_cookie))
5241 		goto restart;
5242 
5243 	/*
5244 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5245 	 * we always retry
5246 	 */
5247 	if (gfp_mask & __GFP_NOFAIL) {
5248 		/*
5249 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5250 		 * of any new users that actually require GFP_NOWAIT
5251 		 */
5252 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5253 			goto fail;
5254 
5255 		/*
5256 		 * PF_MEMALLOC request from this context is rather bizarre
5257 		 * because we cannot reclaim anything and only can loop waiting
5258 		 * for somebody to do a work for us
5259 		 */
5260 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5261 
5262 		/*
5263 		 * non failing costly orders are a hard requirement which we
5264 		 * are not prepared for much so let's warn about these users
5265 		 * so that we can identify them and convert them to something
5266 		 * else.
5267 		 */
5268 		WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5269 
5270 		/*
5271 		 * Help non-failing allocations by giving them access to memory
5272 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5273 		 * could deplete whole memory reserves which would just make
5274 		 * the situation worse
5275 		 */
5276 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5277 		if (page)
5278 			goto got_pg;
5279 
5280 		cond_resched();
5281 		goto retry;
5282 	}
5283 fail:
5284 	warn_alloc(gfp_mask, ac->nodemask,
5285 			"page allocation failure: order:%u", order);
5286 got_pg:
5287 	return page;
5288 }
5289 
5290 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5291 		int preferred_nid, nodemask_t *nodemask,
5292 		struct alloc_context *ac, gfp_t *alloc_gfp,
5293 		unsigned int *alloc_flags)
5294 {
5295 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5296 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5297 	ac->nodemask = nodemask;
5298 	ac->migratetype = gfp_migratetype(gfp_mask);
5299 
5300 	if (cpusets_enabled()) {
5301 		*alloc_gfp |= __GFP_HARDWALL;
5302 		/*
5303 		 * When we are in the interrupt context, it is irrelevant
5304 		 * to the current task context. It means that any node ok.
5305 		 */
5306 		if (in_task() && !ac->nodemask)
5307 			ac->nodemask = &cpuset_current_mems_allowed;
5308 		else
5309 			*alloc_flags |= ALLOC_CPUSET;
5310 	}
5311 
5312 	might_alloc(gfp_mask);
5313 
5314 	if (should_fail_alloc_page(gfp_mask, order))
5315 		return false;
5316 
5317 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5318 
5319 	/* Dirty zone balancing only done in the fast path */
5320 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5321 
5322 	/*
5323 	 * The preferred zone is used for statistics but crucially it is
5324 	 * also used as the starting point for the zonelist iterator. It
5325 	 * may get reset for allocations that ignore memory policies.
5326 	 */
5327 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5328 					ac->highest_zoneidx, ac->nodemask);
5329 
5330 	return true;
5331 }
5332 
5333 /*
5334  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5335  * @gfp: GFP flags for the allocation
5336  * @preferred_nid: The preferred NUMA node ID to allocate from
5337  * @nodemask: Set of nodes to allocate from, may be NULL
5338  * @nr_pages: The number of pages desired on the list or array
5339  * @page_list: Optional list to store the allocated pages
5340  * @page_array: Optional array to store the pages
5341  *
5342  * This is a batched version of the page allocator that attempts to
5343  * allocate nr_pages quickly. Pages are added to page_list if page_list
5344  * is not NULL, otherwise it is assumed that the page_array is valid.
5345  *
5346  * For lists, nr_pages is the number of pages that should be allocated.
5347  *
5348  * For arrays, only NULL elements are populated with pages and nr_pages
5349  * is the maximum number of pages that will be stored in the array.
5350  *
5351  * Returns the number of pages on the list or array.
5352  */
5353 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5354 			nodemask_t *nodemask, int nr_pages,
5355 			struct list_head *page_list,
5356 			struct page **page_array)
5357 {
5358 	struct page *page;
5359 	unsigned long flags;
5360 	unsigned long __maybe_unused UP_flags;
5361 	struct zone *zone;
5362 	struct zoneref *z;
5363 	struct per_cpu_pages *pcp;
5364 	struct list_head *pcp_list;
5365 	struct alloc_context ac;
5366 	gfp_t alloc_gfp;
5367 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5368 	int nr_populated = 0, nr_account = 0;
5369 
5370 	/*
5371 	 * Skip populated array elements to determine if any pages need
5372 	 * to be allocated before disabling IRQs.
5373 	 */
5374 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5375 		nr_populated++;
5376 
5377 	/* No pages requested? */
5378 	if (unlikely(nr_pages <= 0))
5379 		goto out;
5380 
5381 	/* Already populated array? */
5382 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5383 		goto out;
5384 
5385 	/* Bulk allocator does not support memcg accounting. */
5386 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5387 		goto failed;
5388 
5389 	/* Use the single page allocator for one page. */
5390 	if (nr_pages - nr_populated == 1)
5391 		goto failed;
5392 
5393 #ifdef CONFIG_PAGE_OWNER
5394 	/*
5395 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5396 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5397 	 * removes much of the performance benefit of bulk allocation so
5398 	 * force the caller to allocate one page at a time as it'll have
5399 	 * similar performance to added complexity to the bulk allocator.
5400 	 */
5401 	if (static_branch_unlikely(&page_owner_inited))
5402 		goto failed;
5403 #endif
5404 
5405 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5406 	gfp &= gfp_allowed_mask;
5407 	alloc_gfp = gfp;
5408 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5409 		goto out;
5410 	gfp = alloc_gfp;
5411 
5412 	/* Find an allowed local zone that meets the low watermark. */
5413 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5414 		unsigned long mark;
5415 
5416 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5417 		    !__cpuset_zone_allowed(zone, gfp)) {
5418 			continue;
5419 		}
5420 
5421 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5422 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5423 			goto failed;
5424 		}
5425 
5426 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5427 		if (zone_watermark_fast(zone, 0,  mark,
5428 				zonelist_zone_idx(ac.preferred_zoneref),
5429 				alloc_flags, gfp)) {
5430 			break;
5431 		}
5432 	}
5433 
5434 	/*
5435 	 * If there are no allowed local zones that meets the watermarks then
5436 	 * try to allocate a single page and reclaim if necessary.
5437 	 */
5438 	if (unlikely(!zone))
5439 		goto failed;
5440 
5441 	/* Is a parallel drain in progress? */
5442 	pcp_trylock_prepare(UP_flags);
5443 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5444 	if (!pcp)
5445 		goto failed_irq;
5446 
5447 	/* Attempt the batch allocation */
5448 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5449 	while (nr_populated < nr_pages) {
5450 
5451 		/* Skip existing pages */
5452 		if (page_array && page_array[nr_populated]) {
5453 			nr_populated++;
5454 			continue;
5455 		}
5456 
5457 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5458 								pcp, pcp_list);
5459 		if (unlikely(!page)) {
5460 			/* Try and allocate at least one page */
5461 			if (!nr_account) {
5462 				pcp_spin_unlock_irqrestore(pcp, flags);
5463 				goto failed_irq;
5464 			}
5465 			break;
5466 		}
5467 		nr_account++;
5468 
5469 		prep_new_page(page, 0, gfp, 0);
5470 		if (page_list)
5471 			list_add(&page->lru, page_list);
5472 		else
5473 			page_array[nr_populated] = page;
5474 		nr_populated++;
5475 	}
5476 
5477 	pcp_spin_unlock_irqrestore(pcp, flags);
5478 	pcp_trylock_finish(UP_flags);
5479 
5480 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5481 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5482 
5483 out:
5484 	return nr_populated;
5485 
5486 failed_irq:
5487 	pcp_trylock_finish(UP_flags);
5488 
5489 failed:
5490 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5491 	if (page) {
5492 		if (page_list)
5493 			list_add(&page->lru, page_list);
5494 		else
5495 			page_array[nr_populated] = page;
5496 		nr_populated++;
5497 	}
5498 
5499 	goto out;
5500 }
5501 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5502 
5503 /*
5504  * This is the 'heart' of the zoned buddy allocator.
5505  */
5506 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5507 							nodemask_t *nodemask)
5508 {
5509 	struct page *page;
5510 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5511 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5512 	struct alloc_context ac = { };
5513 
5514 	/*
5515 	 * There are several places where we assume that the order value is sane
5516 	 * so bail out early if the request is out of bound.
5517 	 */
5518 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5519 		return NULL;
5520 
5521 	gfp &= gfp_allowed_mask;
5522 	/*
5523 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5524 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5525 	 * from a particular context which has been marked by
5526 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5527 	 * movable zones are not used during allocation.
5528 	 */
5529 	gfp = current_gfp_context(gfp);
5530 	alloc_gfp = gfp;
5531 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5532 			&alloc_gfp, &alloc_flags))
5533 		return NULL;
5534 
5535 	/*
5536 	 * Forbid the first pass from falling back to types that fragment
5537 	 * memory until all local zones are considered.
5538 	 */
5539 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5540 
5541 	/* First allocation attempt */
5542 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5543 	if (likely(page))
5544 		goto out;
5545 
5546 	alloc_gfp = gfp;
5547 	ac.spread_dirty_pages = false;
5548 
5549 	/*
5550 	 * Restore the original nodemask if it was potentially replaced with
5551 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5552 	 */
5553 	ac.nodemask = nodemask;
5554 
5555 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5556 
5557 out:
5558 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5559 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5560 		__free_pages(page, order);
5561 		page = NULL;
5562 	}
5563 
5564 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5565 
5566 	return page;
5567 }
5568 EXPORT_SYMBOL(__alloc_pages);
5569 
5570 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5571 		nodemask_t *nodemask)
5572 {
5573 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5574 			preferred_nid, nodemask);
5575 
5576 	if (page && order > 1)
5577 		prep_transhuge_page(page);
5578 	return (struct folio *)page;
5579 }
5580 EXPORT_SYMBOL(__folio_alloc);
5581 
5582 /*
5583  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5584  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5585  * you need to access high mem.
5586  */
5587 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5588 {
5589 	struct page *page;
5590 
5591 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5592 	if (!page)
5593 		return 0;
5594 	return (unsigned long) page_address(page);
5595 }
5596 EXPORT_SYMBOL(__get_free_pages);
5597 
5598 unsigned long get_zeroed_page(gfp_t gfp_mask)
5599 {
5600 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5601 }
5602 EXPORT_SYMBOL(get_zeroed_page);
5603 
5604 /**
5605  * __free_pages - Free pages allocated with alloc_pages().
5606  * @page: The page pointer returned from alloc_pages().
5607  * @order: The order of the allocation.
5608  *
5609  * This function can free multi-page allocations that are not compound
5610  * pages.  It does not check that the @order passed in matches that of
5611  * the allocation, so it is easy to leak memory.  Freeing more memory
5612  * than was allocated will probably emit a warning.
5613  *
5614  * If the last reference to this page is speculative, it will be released
5615  * by put_page() which only frees the first page of a non-compound
5616  * allocation.  To prevent the remaining pages from being leaked, we free
5617  * the subsequent pages here.  If you want to use the page's reference
5618  * count to decide when to free the allocation, you should allocate a
5619  * compound page, and use put_page() instead of __free_pages().
5620  *
5621  * Context: May be called in interrupt context or while holding a normal
5622  * spinlock, but not in NMI context or while holding a raw spinlock.
5623  */
5624 void __free_pages(struct page *page, unsigned int order)
5625 {
5626 	if (put_page_testzero(page))
5627 		free_the_page(page, order);
5628 	else if (!PageHead(page))
5629 		while (order-- > 0)
5630 			free_the_page(page + (1 << order), order);
5631 }
5632 EXPORT_SYMBOL(__free_pages);
5633 
5634 void free_pages(unsigned long addr, unsigned int order)
5635 {
5636 	if (addr != 0) {
5637 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5638 		__free_pages(virt_to_page((void *)addr), order);
5639 	}
5640 }
5641 
5642 EXPORT_SYMBOL(free_pages);
5643 
5644 /*
5645  * Page Fragment:
5646  *  An arbitrary-length arbitrary-offset area of memory which resides
5647  *  within a 0 or higher order page.  Multiple fragments within that page
5648  *  are individually refcounted, in the page's reference counter.
5649  *
5650  * The page_frag functions below provide a simple allocation framework for
5651  * page fragments.  This is used by the network stack and network device
5652  * drivers to provide a backing region of memory for use as either an
5653  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5654  */
5655 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5656 					     gfp_t gfp_mask)
5657 {
5658 	struct page *page = NULL;
5659 	gfp_t gfp = gfp_mask;
5660 
5661 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5662 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5663 		    __GFP_NOMEMALLOC;
5664 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5665 				PAGE_FRAG_CACHE_MAX_ORDER);
5666 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5667 #endif
5668 	if (unlikely(!page))
5669 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5670 
5671 	nc->va = page ? page_address(page) : NULL;
5672 
5673 	return page;
5674 }
5675 
5676 void __page_frag_cache_drain(struct page *page, unsigned int count)
5677 {
5678 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5679 
5680 	if (page_ref_sub_and_test(page, count))
5681 		free_the_page(page, compound_order(page));
5682 }
5683 EXPORT_SYMBOL(__page_frag_cache_drain);
5684 
5685 void *page_frag_alloc_align(struct page_frag_cache *nc,
5686 		      unsigned int fragsz, gfp_t gfp_mask,
5687 		      unsigned int align_mask)
5688 {
5689 	unsigned int size = PAGE_SIZE;
5690 	struct page *page;
5691 	int offset;
5692 
5693 	if (unlikely(!nc->va)) {
5694 refill:
5695 		page = __page_frag_cache_refill(nc, gfp_mask);
5696 		if (!page)
5697 			return NULL;
5698 
5699 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5700 		/* if size can vary use size else just use PAGE_SIZE */
5701 		size = nc->size;
5702 #endif
5703 		/* Even if we own the page, we do not use atomic_set().
5704 		 * This would break get_page_unless_zero() users.
5705 		 */
5706 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5707 
5708 		/* reset page count bias and offset to start of new frag */
5709 		nc->pfmemalloc = page_is_pfmemalloc(page);
5710 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5711 		nc->offset = size;
5712 	}
5713 
5714 	offset = nc->offset - fragsz;
5715 	if (unlikely(offset < 0)) {
5716 		page = virt_to_page(nc->va);
5717 
5718 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5719 			goto refill;
5720 
5721 		if (unlikely(nc->pfmemalloc)) {
5722 			free_the_page(page, compound_order(page));
5723 			goto refill;
5724 		}
5725 
5726 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5727 		/* if size can vary use size else just use PAGE_SIZE */
5728 		size = nc->size;
5729 #endif
5730 		/* OK, page count is 0, we can safely set it */
5731 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5732 
5733 		/* reset page count bias and offset to start of new frag */
5734 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5735 		offset = size - fragsz;
5736 		if (unlikely(offset < 0)) {
5737 			/*
5738 			 * The caller is trying to allocate a fragment
5739 			 * with fragsz > PAGE_SIZE but the cache isn't big
5740 			 * enough to satisfy the request, this may
5741 			 * happen in low memory conditions.
5742 			 * We don't release the cache page because
5743 			 * it could make memory pressure worse
5744 			 * so we simply return NULL here.
5745 			 */
5746 			return NULL;
5747 		}
5748 	}
5749 
5750 	nc->pagecnt_bias--;
5751 	offset &= align_mask;
5752 	nc->offset = offset;
5753 
5754 	return nc->va + offset;
5755 }
5756 EXPORT_SYMBOL(page_frag_alloc_align);
5757 
5758 /*
5759  * Frees a page fragment allocated out of either a compound or order 0 page.
5760  */
5761 void page_frag_free(void *addr)
5762 {
5763 	struct page *page = virt_to_head_page(addr);
5764 
5765 	if (unlikely(put_page_testzero(page)))
5766 		free_the_page(page, compound_order(page));
5767 }
5768 EXPORT_SYMBOL(page_frag_free);
5769 
5770 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5771 		size_t size)
5772 {
5773 	if (addr) {
5774 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5775 		unsigned long used = addr + PAGE_ALIGN(size);
5776 
5777 		split_page(virt_to_page((void *)addr), order);
5778 		while (used < alloc_end) {
5779 			free_page(used);
5780 			used += PAGE_SIZE;
5781 		}
5782 	}
5783 	return (void *)addr;
5784 }
5785 
5786 /**
5787  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5788  * @size: the number of bytes to allocate
5789  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5790  *
5791  * This function is similar to alloc_pages(), except that it allocates the
5792  * minimum number of pages to satisfy the request.  alloc_pages() can only
5793  * allocate memory in power-of-two pages.
5794  *
5795  * This function is also limited by MAX_ORDER.
5796  *
5797  * Memory allocated by this function must be released by free_pages_exact().
5798  *
5799  * Return: pointer to the allocated area or %NULL in case of error.
5800  */
5801 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5802 {
5803 	unsigned int order = get_order(size);
5804 	unsigned long addr;
5805 
5806 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5807 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5808 
5809 	addr = __get_free_pages(gfp_mask, order);
5810 	return make_alloc_exact(addr, order, size);
5811 }
5812 EXPORT_SYMBOL(alloc_pages_exact);
5813 
5814 /**
5815  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5816  *			   pages on a node.
5817  * @nid: the preferred node ID where memory should be allocated
5818  * @size: the number of bytes to allocate
5819  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5820  *
5821  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5822  * back.
5823  *
5824  * Return: pointer to the allocated area or %NULL in case of error.
5825  */
5826 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5827 {
5828 	unsigned int order = get_order(size);
5829 	struct page *p;
5830 
5831 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5832 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5833 
5834 	p = alloc_pages_node(nid, gfp_mask, order);
5835 	if (!p)
5836 		return NULL;
5837 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5838 }
5839 
5840 /**
5841  * free_pages_exact - release memory allocated via alloc_pages_exact()
5842  * @virt: the value returned by alloc_pages_exact.
5843  * @size: size of allocation, same value as passed to alloc_pages_exact().
5844  *
5845  * Release the memory allocated by a previous call to alloc_pages_exact.
5846  */
5847 void free_pages_exact(void *virt, size_t size)
5848 {
5849 	unsigned long addr = (unsigned long)virt;
5850 	unsigned long end = addr + PAGE_ALIGN(size);
5851 
5852 	while (addr < end) {
5853 		free_page(addr);
5854 		addr += PAGE_SIZE;
5855 	}
5856 }
5857 EXPORT_SYMBOL(free_pages_exact);
5858 
5859 /**
5860  * nr_free_zone_pages - count number of pages beyond high watermark
5861  * @offset: The zone index of the highest zone
5862  *
5863  * nr_free_zone_pages() counts the number of pages which are beyond the
5864  * high watermark within all zones at or below a given zone index.  For each
5865  * zone, the number of pages is calculated as:
5866  *
5867  *     nr_free_zone_pages = managed_pages - high_pages
5868  *
5869  * Return: number of pages beyond high watermark.
5870  */
5871 static unsigned long nr_free_zone_pages(int offset)
5872 {
5873 	struct zoneref *z;
5874 	struct zone *zone;
5875 
5876 	/* Just pick one node, since fallback list is circular */
5877 	unsigned long sum = 0;
5878 
5879 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5880 
5881 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5882 		unsigned long size = zone_managed_pages(zone);
5883 		unsigned long high = high_wmark_pages(zone);
5884 		if (size > high)
5885 			sum += size - high;
5886 	}
5887 
5888 	return sum;
5889 }
5890 
5891 /**
5892  * nr_free_buffer_pages - count number of pages beyond high watermark
5893  *
5894  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5895  * watermark within ZONE_DMA and ZONE_NORMAL.
5896  *
5897  * Return: number of pages beyond high watermark within ZONE_DMA and
5898  * ZONE_NORMAL.
5899  */
5900 unsigned long nr_free_buffer_pages(void)
5901 {
5902 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5903 }
5904 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5905 
5906 static inline void show_node(struct zone *zone)
5907 {
5908 	if (IS_ENABLED(CONFIG_NUMA))
5909 		printk("Node %d ", zone_to_nid(zone));
5910 }
5911 
5912 long si_mem_available(void)
5913 {
5914 	long available;
5915 	unsigned long pagecache;
5916 	unsigned long wmark_low = 0;
5917 	unsigned long pages[NR_LRU_LISTS];
5918 	unsigned long reclaimable;
5919 	struct zone *zone;
5920 	int lru;
5921 
5922 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5923 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5924 
5925 	for_each_zone(zone)
5926 		wmark_low += low_wmark_pages(zone);
5927 
5928 	/*
5929 	 * Estimate the amount of memory available for userspace allocations,
5930 	 * without causing swapping or OOM.
5931 	 */
5932 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5933 
5934 	/*
5935 	 * Not all the page cache can be freed, otherwise the system will
5936 	 * start swapping or thrashing. Assume at least half of the page
5937 	 * cache, or the low watermark worth of cache, needs to stay.
5938 	 */
5939 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5940 	pagecache -= min(pagecache / 2, wmark_low);
5941 	available += pagecache;
5942 
5943 	/*
5944 	 * Part of the reclaimable slab and other kernel memory consists of
5945 	 * items that are in use, and cannot be freed. Cap this estimate at the
5946 	 * low watermark.
5947 	 */
5948 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5949 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5950 	available += reclaimable - min(reclaimable / 2, wmark_low);
5951 
5952 	if (available < 0)
5953 		available = 0;
5954 	return available;
5955 }
5956 EXPORT_SYMBOL_GPL(si_mem_available);
5957 
5958 void si_meminfo(struct sysinfo *val)
5959 {
5960 	val->totalram = totalram_pages();
5961 	val->sharedram = global_node_page_state(NR_SHMEM);
5962 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5963 	val->bufferram = nr_blockdev_pages();
5964 	val->totalhigh = totalhigh_pages();
5965 	val->freehigh = nr_free_highpages();
5966 	val->mem_unit = PAGE_SIZE;
5967 }
5968 
5969 EXPORT_SYMBOL(si_meminfo);
5970 
5971 #ifdef CONFIG_NUMA
5972 void si_meminfo_node(struct sysinfo *val, int nid)
5973 {
5974 	int zone_type;		/* needs to be signed */
5975 	unsigned long managed_pages = 0;
5976 	unsigned long managed_highpages = 0;
5977 	unsigned long free_highpages = 0;
5978 	pg_data_t *pgdat = NODE_DATA(nid);
5979 
5980 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5981 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5982 	val->totalram = managed_pages;
5983 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5984 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5985 #ifdef CONFIG_HIGHMEM
5986 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5987 		struct zone *zone = &pgdat->node_zones[zone_type];
5988 
5989 		if (is_highmem(zone)) {
5990 			managed_highpages += zone_managed_pages(zone);
5991 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5992 		}
5993 	}
5994 	val->totalhigh = managed_highpages;
5995 	val->freehigh = free_highpages;
5996 #else
5997 	val->totalhigh = managed_highpages;
5998 	val->freehigh = free_highpages;
5999 #endif
6000 	val->mem_unit = PAGE_SIZE;
6001 }
6002 #endif
6003 
6004 /*
6005  * Determine whether the node should be displayed or not, depending on whether
6006  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6007  */
6008 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6009 {
6010 	if (!(flags & SHOW_MEM_FILTER_NODES))
6011 		return false;
6012 
6013 	/*
6014 	 * no node mask - aka implicit memory numa policy. Do not bother with
6015 	 * the synchronization - read_mems_allowed_begin - because we do not
6016 	 * have to be precise here.
6017 	 */
6018 	if (!nodemask)
6019 		nodemask = &cpuset_current_mems_allowed;
6020 
6021 	return !node_isset(nid, *nodemask);
6022 }
6023 
6024 #define K(x) ((x) << (PAGE_SHIFT-10))
6025 
6026 static void show_migration_types(unsigned char type)
6027 {
6028 	static const char types[MIGRATE_TYPES] = {
6029 		[MIGRATE_UNMOVABLE]	= 'U',
6030 		[MIGRATE_MOVABLE]	= 'M',
6031 		[MIGRATE_RECLAIMABLE]	= 'E',
6032 		[MIGRATE_HIGHATOMIC]	= 'H',
6033 #ifdef CONFIG_CMA
6034 		[MIGRATE_CMA]		= 'C',
6035 #endif
6036 #ifdef CONFIG_MEMORY_ISOLATION
6037 		[MIGRATE_ISOLATE]	= 'I',
6038 #endif
6039 	};
6040 	char tmp[MIGRATE_TYPES + 1];
6041 	char *p = tmp;
6042 	int i;
6043 
6044 	for (i = 0; i < MIGRATE_TYPES; i++) {
6045 		if (type & (1 << i))
6046 			*p++ = types[i];
6047 	}
6048 
6049 	*p = '\0';
6050 	printk(KERN_CONT "(%s) ", tmp);
6051 }
6052 
6053 /*
6054  * Show free area list (used inside shift_scroll-lock stuff)
6055  * We also calculate the percentage fragmentation. We do this by counting the
6056  * memory on each free list with the exception of the first item on the list.
6057  *
6058  * Bits in @filter:
6059  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6060  *   cpuset.
6061  */
6062 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6063 {
6064 	unsigned long free_pcp = 0;
6065 	int cpu, nid;
6066 	struct zone *zone;
6067 	pg_data_t *pgdat;
6068 
6069 	for_each_populated_zone(zone) {
6070 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6071 			continue;
6072 
6073 		for_each_online_cpu(cpu)
6074 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6075 	}
6076 
6077 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6078 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6079 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6080 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6081 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6082 		" kernel_misc_reclaimable:%lu\n"
6083 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6084 		global_node_page_state(NR_ACTIVE_ANON),
6085 		global_node_page_state(NR_INACTIVE_ANON),
6086 		global_node_page_state(NR_ISOLATED_ANON),
6087 		global_node_page_state(NR_ACTIVE_FILE),
6088 		global_node_page_state(NR_INACTIVE_FILE),
6089 		global_node_page_state(NR_ISOLATED_FILE),
6090 		global_node_page_state(NR_UNEVICTABLE),
6091 		global_node_page_state(NR_FILE_DIRTY),
6092 		global_node_page_state(NR_WRITEBACK),
6093 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6094 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6095 		global_node_page_state(NR_FILE_MAPPED),
6096 		global_node_page_state(NR_SHMEM),
6097 		global_node_page_state(NR_PAGETABLE),
6098 		global_zone_page_state(NR_BOUNCE),
6099 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6100 		global_zone_page_state(NR_FREE_PAGES),
6101 		free_pcp,
6102 		global_zone_page_state(NR_FREE_CMA_PAGES));
6103 
6104 	for_each_online_pgdat(pgdat) {
6105 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6106 			continue;
6107 
6108 		printk("Node %d"
6109 			" active_anon:%lukB"
6110 			" inactive_anon:%lukB"
6111 			" active_file:%lukB"
6112 			" inactive_file:%lukB"
6113 			" unevictable:%lukB"
6114 			" isolated(anon):%lukB"
6115 			" isolated(file):%lukB"
6116 			" mapped:%lukB"
6117 			" dirty:%lukB"
6118 			" writeback:%lukB"
6119 			" shmem:%lukB"
6120 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6121 			" shmem_thp: %lukB"
6122 			" shmem_pmdmapped: %lukB"
6123 			" anon_thp: %lukB"
6124 #endif
6125 			" writeback_tmp:%lukB"
6126 			" kernel_stack:%lukB"
6127 #ifdef CONFIG_SHADOW_CALL_STACK
6128 			" shadow_call_stack:%lukB"
6129 #endif
6130 			" pagetables:%lukB"
6131 			" all_unreclaimable? %s"
6132 			"\n",
6133 			pgdat->node_id,
6134 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6135 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6136 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6137 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6138 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6139 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6140 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6141 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6142 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6143 			K(node_page_state(pgdat, NR_WRITEBACK)),
6144 			K(node_page_state(pgdat, NR_SHMEM)),
6145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6146 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6147 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6148 			K(node_page_state(pgdat, NR_ANON_THPS)),
6149 #endif
6150 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6151 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6152 #ifdef CONFIG_SHADOW_CALL_STACK
6153 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6154 #endif
6155 			K(node_page_state(pgdat, NR_PAGETABLE)),
6156 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6157 				"yes" : "no");
6158 	}
6159 
6160 	for_each_populated_zone(zone) {
6161 		int i;
6162 
6163 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6164 			continue;
6165 
6166 		free_pcp = 0;
6167 		for_each_online_cpu(cpu)
6168 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6169 
6170 		show_node(zone);
6171 		printk(KERN_CONT
6172 			"%s"
6173 			" free:%lukB"
6174 			" boost:%lukB"
6175 			" min:%lukB"
6176 			" low:%lukB"
6177 			" high:%lukB"
6178 			" reserved_highatomic:%luKB"
6179 			" active_anon:%lukB"
6180 			" inactive_anon:%lukB"
6181 			" active_file:%lukB"
6182 			" inactive_file:%lukB"
6183 			" unevictable:%lukB"
6184 			" writepending:%lukB"
6185 			" present:%lukB"
6186 			" managed:%lukB"
6187 			" mlocked:%lukB"
6188 			" bounce:%lukB"
6189 			" free_pcp:%lukB"
6190 			" local_pcp:%ukB"
6191 			" free_cma:%lukB"
6192 			"\n",
6193 			zone->name,
6194 			K(zone_page_state(zone, NR_FREE_PAGES)),
6195 			K(zone->watermark_boost),
6196 			K(min_wmark_pages(zone)),
6197 			K(low_wmark_pages(zone)),
6198 			K(high_wmark_pages(zone)),
6199 			K(zone->nr_reserved_highatomic),
6200 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6201 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6202 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6203 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6204 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6205 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6206 			K(zone->present_pages),
6207 			K(zone_managed_pages(zone)),
6208 			K(zone_page_state(zone, NR_MLOCK)),
6209 			K(zone_page_state(zone, NR_BOUNCE)),
6210 			K(free_pcp),
6211 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6212 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6213 		printk("lowmem_reserve[]:");
6214 		for (i = 0; i < MAX_NR_ZONES; i++)
6215 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6216 		printk(KERN_CONT "\n");
6217 	}
6218 
6219 	for_each_populated_zone(zone) {
6220 		unsigned int order;
6221 		unsigned long nr[MAX_ORDER], flags, total = 0;
6222 		unsigned char types[MAX_ORDER];
6223 
6224 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6225 			continue;
6226 		show_node(zone);
6227 		printk(KERN_CONT "%s: ", zone->name);
6228 
6229 		spin_lock_irqsave(&zone->lock, flags);
6230 		for (order = 0; order < MAX_ORDER; order++) {
6231 			struct free_area *area = &zone->free_area[order];
6232 			int type;
6233 
6234 			nr[order] = area->nr_free;
6235 			total += nr[order] << order;
6236 
6237 			types[order] = 0;
6238 			for (type = 0; type < MIGRATE_TYPES; type++) {
6239 				if (!free_area_empty(area, type))
6240 					types[order] |= 1 << type;
6241 			}
6242 		}
6243 		spin_unlock_irqrestore(&zone->lock, flags);
6244 		for (order = 0; order < MAX_ORDER; order++) {
6245 			printk(KERN_CONT "%lu*%lukB ",
6246 			       nr[order], K(1UL) << order);
6247 			if (nr[order])
6248 				show_migration_types(types[order]);
6249 		}
6250 		printk(KERN_CONT "= %lukB\n", K(total));
6251 	}
6252 
6253 	for_each_online_node(nid) {
6254 		if (show_mem_node_skip(filter, nid, nodemask))
6255 			continue;
6256 		hugetlb_show_meminfo_node(nid);
6257 	}
6258 
6259 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6260 
6261 	show_swap_cache_info();
6262 }
6263 
6264 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6265 {
6266 	zoneref->zone = zone;
6267 	zoneref->zone_idx = zone_idx(zone);
6268 }
6269 
6270 /*
6271  * Builds allocation fallback zone lists.
6272  *
6273  * Add all populated zones of a node to the zonelist.
6274  */
6275 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6276 {
6277 	struct zone *zone;
6278 	enum zone_type zone_type = MAX_NR_ZONES;
6279 	int nr_zones = 0;
6280 
6281 	do {
6282 		zone_type--;
6283 		zone = pgdat->node_zones + zone_type;
6284 		if (populated_zone(zone)) {
6285 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6286 			check_highest_zone(zone_type);
6287 		}
6288 	} while (zone_type);
6289 
6290 	return nr_zones;
6291 }
6292 
6293 #ifdef CONFIG_NUMA
6294 
6295 static int __parse_numa_zonelist_order(char *s)
6296 {
6297 	/*
6298 	 * We used to support different zonelists modes but they turned
6299 	 * out to be just not useful. Let's keep the warning in place
6300 	 * if somebody still use the cmd line parameter so that we do
6301 	 * not fail it silently
6302 	 */
6303 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6304 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6305 		return -EINVAL;
6306 	}
6307 	return 0;
6308 }
6309 
6310 char numa_zonelist_order[] = "Node";
6311 
6312 /*
6313  * sysctl handler for numa_zonelist_order
6314  */
6315 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6316 		void *buffer, size_t *length, loff_t *ppos)
6317 {
6318 	if (write)
6319 		return __parse_numa_zonelist_order(buffer);
6320 	return proc_dostring(table, write, buffer, length, ppos);
6321 }
6322 
6323 
6324 static int node_load[MAX_NUMNODES];
6325 
6326 /**
6327  * find_next_best_node - find the next node that should appear in a given node's fallback list
6328  * @node: node whose fallback list we're appending
6329  * @used_node_mask: nodemask_t of already used nodes
6330  *
6331  * We use a number of factors to determine which is the next node that should
6332  * appear on a given node's fallback list.  The node should not have appeared
6333  * already in @node's fallback list, and it should be the next closest node
6334  * according to the distance array (which contains arbitrary distance values
6335  * from each node to each node in the system), and should also prefer nodes
6336  * with no CPUs, since presumably they'll have very little allocation pressure
6337  * on them otherwise.
6338  *
6339  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6340  */
6341 int find_next_best_node(int node, nodemask_t *used_node_mask)
6342 {
6343 	int n, val;
6344 	int min_val = INT_MAX;
6345 	int best_node = NUMA_NO_NODE;
6346 
6347 	/* Use the local node if we haven't already */
6348 	if (!node_isset(node, *used_node_mask)) {
6349 		node_set(node, *used_node_mask);
6350 		return node;
6351 	}
6352 
6353 	for_each_node_state(n, N_MEMORY) {
6354 
6355 		/* Don't want a node to appear more than once */
6356 		if (node_isset(n, *used_node_mask))
6357 			continue;
6358 
6359 		/* Use the distance array to find the distance */
6360 		val = node_distance(node, n);
6361 
6362 		/* Penalize nodes under us ("prefer the next node") */
6363 		val += (n < node);
6364 
6365 		/* Give preference to headless and unused nodes */
6366 		if (!cpumask_empty(cpumask_of_node(n)))
6367 			val += PENALTY_FOR_NODE_WITH_CPUS;
6368 
6369 		/* Slight preference for less loaded node */
6370 		val *= MAX_NUMNODES;
6371 		val += node_load[n];
6372 
6373 		if (val < min_val) {
6374 			min_val = val;
6375 			best_node = n;
6376 		}
6377 	}
6378 
6379 	if (best_node >= 0)
6380 		node_set(best_node, *used_node_mask);
6381 
6382 	return best_node;
6383 }
6384 
6385 
6386 /*
6387  * Build zonelists ordered by node and zones within node.
6388  * This results in maximum locality--normal zone overflows into local
6389  * DMA zone, if any--but risks exhausting DMA zone.
6390  */
6391 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6392 		unsigned nr_nodes)
6393 {
6394 	struct zoneref *zonerefs;
6395 	int i;
6396 
6397 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6398 
6399 	for (i = 0; i < nr_nodes; i++) {
6400 		int nr_zones;
6401 
6402 		pg_data_t *node = NODE_DATA(node_order[i]);
6403 
6404 		nr_zones = build_zonerefs_node(node, zonerefs);
6405 		zonerefs += nr_zones;
6406 	}
6407 	zonerefs->zone = NULL;
6408 	zonerefs->zone_idx = 0;
6409 }
6410 
6411 /*
6412  * Build gfp_thisnode zonelists
6413  */
6414 static void build_thisnode_zonelists(pg_data_t *pgdat)
6415 {
6416 	struct zoneref *zonerefs;
6417 	int nr_zones;
6418 
6419 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6420 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6421 	zonerefs += nr_zones;
6422 	zonerefs->zone = NULL;
6423 	zonerefs->zone_idx = 0;
6424 }
6425 
6426 /*
6427  * Build zonelists ordered by zone and nodes within zones.
6428  * This results in conserving DMA zone[s] until all Normal memory is
6429  * exhausted, but results in overflowing to remote node while memory
6430  * may still exist in local DMA zone.
6431  */
6432 
6433 static void build_zonelists(pg_data_t *pgdat)
6434 {
6435 	static int node_order[MAX_NUMNODES];
6436 	int node, nr_nodes = 0;
6437 	nodemask_t used_mask = NODE_MASK_NONE;
6438 	int local_node, prev_node;
6439 
6440 	/* NUMA-aware ordering of nodes */
6441 	local_node = pgdat->node_id;
6442 	prev_node = local_node;
6443 
6444 	memset(node_order, 0, sizeof(node_order));
6445 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6446 		/*
6447 		 * We don't want to pressure a particular node.
6448 		 * So adding penalty to the first node in same
6449 		 * distance group to make it round-robin.
6450 		 */
6451 		if (node_distance(local_node, node) !=
6452 		    node_distance(local_node, prev_node))
6453 			node_load[node] += 1;
6454 
6455 		node_order[nr_nodes++] = node;
6456 		prev_node = node;
6457 	}
6458 
6459 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6460 	build_thisnode_zonelists(pgdat);
6461 	pr_info("Fallback order for Node %d: ", local_node);
6462 	for (node = 0; node < nr_nodes; node++)
6463 		pr_cont("%d ", node_order[node]);
6464 	pr_cont("\n");
6465 }
6466 
6467 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6468 /*
6469  * Return node id of node used for "local" allocations.
6470  * I.e., first node id of first zone in arg node's generic zonelist.
6471  * Used for initializing percpu 'numa_mem', which is used primarily
6472  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6473  */
6474 int local_memory_node(int node)
6475 {
6476 	struct zoneref *z;
6477 
6478 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6479 				   gfp_zone(GFP_KERNEL),
6480 				   NULL);
6481 	return zone_to_nid(z->zone);
6482 }
6483 #endif
6484 
6485 static void setup_min_unmapped_ratio(void);
6486 static void setup_min_slab_ratio(void);
6487 #else	/* CONFIG_NUMA */
6488 
6489 static void build_zonelists(pg_data_t *pgdat)
6490 {
6491 	int node, local_node;
6492 	struct zoneref *zonerefs;
6493 	int nr_zones;
6494 
6495 	local_node = pgdat->node_id;
6496 
6497 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6498 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6499 	zonerefs += nr_zones;
6500 
6501 	/*
6502 	 * Now we build the zonelist so that it contains the zones
6503 	 * of all the other nodes.
6504 	 * We don't want to pressure a particular node, so when
6505 	 * building the zones for node N, we make sure that the
6506 	 * zones coming right after the local ones are those from
6507 	 * node N+1 (modulo N)
6508 	 */
6509 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6510 		if (!node_online(node))
6511 			continue;
6512 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6513 		zonerefs += nr_zones;
6514 	}
6515 	for (node = 0; node < local_node; node++) {
6516 		if (!node_online(node))
6517 			continue;
6518 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6519 		zonerefs += nr_zones;
6520 	}
6521 
6522 	zonerefs->zone = NULL;
6523 	zonerefs->zone_idx = 0;
6524 }
6525 
6526 #endif	/* CONFIG_NUMA */
6527 
6528 /*
6529  * Boot pageset table. One per cpu which is going to be used for all
6530  * zones and all nodes. The parameters will be set in such a way
6531  * that an item put on a list will immediately be handed over to
6532  * the buddy list. This is safe since pageset manipulation is done
6533  * with interrupts disabled.
6534  *
6535  * The boot_pagesets must be kept even after bootup is complete for
6536  * unused processors and/or zones. They do play a role for bootstrapping
6537  * hotplugged processors.
6538  *
6539  * zoneinfo_show() and maybe other functions do
6540  * not check if the processor is online before following the pageset pointer.
6541  * Other parts of the kernel may not check if the zone is available.
6542  */
6543 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6544 /* These effectively disable the pcplists in the boot pageset completely */
6545 #define BOOT_PAGESET_HIGH	0
6546 #define BOOT_PAGESET_BATCH	1
6547 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6548 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6549 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6550 
6551 static void __build_all_zonelists(void *data)
6552 {
6553 	int nid;
6554 	int __maybe_unused cpu;
6555 	pg_data_t *self = data;
6556 
6557 	write_seqlock(&zonelist_update_seq);
6558 
6559 #ifdef CONFIG_NUMA
6560 	memset(node_load, 0, sizeof(node_load));
6561 #endif
6562 
6563 	/*
6564 	 * This node is hotadded and no memory is yet present.   So just
6565 	 * building zonelists is fine - no need to touch other nodes.
6566 	 */
6567 	if (self && !node_online(self->node_id)) {
6568 		build_zonelists(self);
6569 	} else {
6570 		/*
6571 		 * All possible nodes have pgdat preallocated
6572 		 * in free_area_init
6573 		 */
6574 		for_each_node(nid) {
6575 			pg_data_t *pgdat = NODE_DATA(nid);
6576 
6577 			build_zonelists(pgdat);
6578 		}
6579 
6580 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6581 		/*
6582 		 * We now know the "local memory node" for each node--
6583 		 * i.e., the node of the first zone in the generic zonelist.
6584 		 * Set up numa_mem percpu variable for on-line cpus.  During
6585 		 * boot, only the boot cpu should be on-line;  we'll init the
6586 		 * secondary cpus' numa_mem as they come on-line.  During
6587 		 * node/memory hotplug, we'll fixup all on-line cpus.
6588 		 */
6589 		for_each_online_cpu(cpu)
6590 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6591 #endif
6592 	}
6593 
6594 	write_sequnlock(&zonelist_update_seq);
6595 }
6596 
6597 static noinline void __init
6598 build_all_zonelists_init(void)
6599 {
6600 	int cpu;
6601 
6602 	__build_all_zonelists(NULL);
6603 
6604 	/*
6605 	 * Initialize the boot_pagesets that are going to be used
6606 	 * for bootstrapping processors. The real pagesets for
6607 	 * each zone will be allocated later when the per cpu
6608 	 * allocator is available.
6609 	 *
6610 	 * boot_pagesets are used also for bootstrapping offline
6611 	 * cpus if the system is already booted because the pagesets
6612 	 * are needed to initialize allocators on a specific cpu too.
6613 	 * F.e. the percpu allocator needs the page allocator which
6614 	 * needs the percpu allocator in order to allocate its pagesets
6615 	 * (a chicken-egg dilemma).
6616 	 */
6617 	for_each_possible_cpu(cpu)
6618 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6619 
6620 	mminit_verify_zonelist();
6621 	cpuset_init_current_mems_allowed();
6622 }
6623 
6624 /*
6625  * unless system_state == SYSTEM_BOOTING.
6626  *
6627  * __ref due to call of __init annotated helper build_all_zonelists_init
6628  * [protected by SYSTEM_BOOTING].
6629  */
6630 void __ref build_all_zonelists(pg_data_t *pgdat)
6631 {
6632 	unsigned long vm_total_pages;
6633 
6634 	if (system_state == SYSTEM_BOOTING) {
6635 		build_all_zonelists_init();
6636 	} else {
6637 		__build_all_zonelists(pgdat);
6638 		/* cpuset refresh routine should be here */
6639 	}
6640 	/* Get the number of free pages beyond high watermark in all zones. */
6641 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6642 	/*
6643 	 * Disable grouping by mobility if the number of pages in the
6644 	 * system is too low to allow the mechanism to work. It would be
6645 	 * more accurate, but expensive to check per-zone. This check is
6646 	 * made on memory-hotadd so a system can start with mobility
6647 	 * disabled and enable it later
6648 	 */
6649 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6650 		page_group_by_mobility_disabled = 1;
6651 	else
6652 		page_group_by_mobility_disabled = 0;
6653 
6654 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6655 		nr_online_nodes,
6656 		page_group_by_mobility_disabled ? "off" : "on",
6657 		vm_total_pages);
6658 #ifdef CONFIG_NUMA
6659 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6660 #endif
6661 }
6662 
6663 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6664 static bool __meminit
6665 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6666 {
6667 	static struct memblock_region *r;
6668 
6669 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6670 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6671 			for_each_mem_region(r) {
6672 				if (*pfn < memblock_region_memory_end_pfn(r))
6673 					break;
6674 			}
6675 		}
6676 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6677 		    memblock_is_mirror(r)) {
6678 			*pfn = memblock_region_memory_end_pfn(r);
6679 			return true;
6680 		}
6681 	}
6682 	return false;
6683 }
6684 
6685 /*
6686  * Initially all pages are reserved - free ones are freed
6687  * up by memblock_free_all() once the early boot process is
6688  * done. Non-atomic initialization, single-pass.
6689  *
6690  * All aligned pageblocks are initialized to the specified migratetype
6691  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6692  * zone stats (e.g., nr_isolate_pageblock) are touched.
6693  */
6694 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6695 		unsigned long start_pfn, unsigned long zone_end_pfn,
6696 		enum meminit_context context,
6697 		struct vmem_altmap *altmap, int migratetype)
6698 {
6699 	unsigned long pfn, end_pfn = start_pfn + size;
6700 	struct page *page;
6701 
6702 	if (highest_memmap_pfn < end_pfn - 1)
6703 		highest_memmap_pfn = end_pfn - 1;
6704 
6705 #ifdef CONFIG_ZONE_DEVICE
6706 	/*
6707 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6708 	 * memory. We limit the total number of pages to initialize to just
6709 	 * those that might contain the memory mapping. We will defer the
6710 	 * ZONE_DEVICE page initialization until after we have released
6711 	 * the hotplug lock.
6712 	 */
6713 	if (zone == ZONE_DEVICE) {
6714 		if (!altmap)
6715 			return;
6716 
6717 		if (start_pfn == altmap->base_pfn)
6718 			start_pfn += altmap->reserve;
6719 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6720 	}
6721 #endif
6722 
6723 	for (pfn = start_pfn; pfn < end_pfn; ) {
6724 		/*
6725 		 * There can be holes in boot-time mem_map[]s handed to this
6726 		 * function.  They do not exist on hotplugged memory.
6727 		 */
6728 		if (context == MEMINIT_EARLY) {
6729 			if (overlap_memmap_init(zone, &pfn))
6730 				continue;
6731 			if (defer_init(nid, pfn, zone_end_pfn))
6732 				break;
6733 		}
6734 
6735 		page = pfn_to_page(pfn);
6736 		__init_single_page(page, pfn, zone, nid);
6737 		if (context == MEMINIT_HOTPLUG)
6738 			__SetPageReserved(page);
6739 
6740 		/*
6741 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6742 		 * such that unmovable allocations won't be scattered all
6743 		 * over the place during system boot.
6744 		 */
6745 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6746 			set_pageblock_migratetype(page, migratetype);
6747 			cond_resched();
6748 		}
6749 		pfn++;
6750 	}
6751 }
6752 
6753 #ifdef CONFIG_ZONE_DEVICE
6754 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6755 					  unsigned long zone_idx, int nid,
6756 					  struct dev_pagemap *pgmap)
6757 {
6758 
6759 	__init_single_page(page, pfn, zone_idx, nid);
6760 
6761 	/*
6762 	 * Mark page reserved as it will need to wait for onlining
6763 	 * phase for it to be fully associated with a zone.
6764 	 *
6765 	 * We can use the non-atomic __set_bit operation for setting
6766 	 * the flag as we are still initializing the pages.
6767 	 */
6768 	__SetPageReserved(page);
6769 
6770 	/*
6771 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6772 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6773 	 * ever freed or placed on a driver-private list.
6774 	 */
6775 	page->pgmap = pgmap;
6776 	page->zone_device_data = NULL;
6777 
6778 	/*
6779 	 * Mark the block movable so that blocks are reserved for
6780 	 * movable at startup. This will force kernel allocations
6781 	 * to reserve their blocks rather than leaking throughout
6782 	 * the address space during boot when many long-lived
6783 	 * kernel allocations are made.
6784 	 *
6785 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6786 	 * because this is done early in section_activate()
6787 	 */
6788 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6789 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6790 		cond_resched();
6791 	}
6792 }
6793 
6794 /*
6795  * With compound page geometry and when struct pages are stored in ram most
6796  * tail pages are reused. Consequently, the amount of unique struct pages to
6797  * initialize is a lot smaller that the total amount of struct pages being
6798  * mapped. This is a paired / mild layering violation with explicit knowledge
6799  * of how the sparse_vmemmap internals handle compound pages in the lack
6800  * of an altmap. See vmemmap_populate_compound_pages().
6801  */
6802 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6803 					      unsigned long nr_pages)
6804 {
6805 	return is_power_of_2(sizeof(struct page)) &&
6806 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6807 }
6808 
6809 static void __ref memmap_init_compound(struct page *head,
6810 				       unsigned long head_pfn,
6811 				       unsigned long zone_idx, int nid,
6812 				       struct dev_pagemap *pgmap,
6813 				       unsigned long nr_pages)
6814 {
6815 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6816 	unsigned int order = pgmap->vmemmap_shift;
6817 
6818 	__SetPageHead(head);
6819 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6820 		struct page *page = pfn_to_page(pfn);
6821 
6822 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6823 		prep_compound_tail(head, pfn - head_pfn);
6824 		set_page_count(page, 0);
6825 
6826 		/*
6827 		 * The first tail page stores compound_mapcount_ptr() and
6828 		 * compound_order() and the second tail page stores
6829 		 * compound_pincount_ptr(). Call prep_compound_head() after
6830 		 * the first and second tail pages have been initialized to
6831 		 * not have the data overwritten.
6832 		 */
6833 		if (pfn == head_pfn + 2)
6834 			prep_compound_head(head, order);
6835 	}
6836 }
6837 
6838 void __ref memmap_init_zone_device(struct zone *zone,
6839 				   unsigned long start_pfn,
6840 				   unsigned long nr_pages,
6841 				   struct dev_pagemap *pgmap)
6842 {
6843 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6844 	struct pglist_data *pgdat = zone->zone_pgdat;
6845 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6846 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6847 	unsigned long zone_idx = zone_idx(zone);
6848 	unsigned long start = jiffies;
6849 	int nid = pgdat->node_id;
6850 
6851 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6852 		return;
6853 
6854 	/*
6855 	 * The call to memmap_init should have already taken care
6856 	 * of the pages reserved for the memmap, so we can just jump to
6857 	 * the end of that region and start processing the device pages.
6858 	 */
6859 	if (altmap) {
6860 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6861 		nr_pages = end_pfn - start_pfn;
6862 	}
6863 
6864 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6865 		struct page *page = pfn_to_page(pfn);
6866 
6867 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6868 
6869 		if (pfns_per_compound == 1)
6870 			continue;
6871 
6872 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6873 				     compound_nr_pages(altmap, pfns_per_compound));
6874 	}
6875 
6876 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6877 		nr_pages, jiffies_to_msecs(jiffies - start));
6878 }
6879 
6880 #endif
6881 static void __meminit zone_init_free_lists(struct zone *zone)
6882 {
6883 	unsigned int order, t;
6884 	for_each_migratetype_order(order, t) {
6885 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6886 		zone->free_area[order].nr_free = 0;
6887 	}
6888 }
6889 
6890 /*
6891  * Only struct pages that correspond to ranges defined by memblock.memory
6892  * are zeroed and initialized by going through __init_single_page() during
6893  * memmap_init_zone_range().
6894  *
6895  * But, there could be struct pages that correspond to holes in
6896  * memblock.memory. This can happen because of the following reasons:
6897  * - physical memory bank size is not necessarily the exact multiple of the
6898  *   arbitrary section size
6899  * - early reserved memory may not be listed in memblock.memory
6900  * - memory layouts defined with memmap= kernel parameter may not align
6901  *   nicely with memmap sections
6902  *
6903  * Explicitly initialize those struct pages so that:
6904  * - PG_Reserved is set
6905  * - zone and node links point to zone and node that span the page if the
6906  *   hole is in the middle of a zone
6907  * - zone and node links point to adjacent zone/node if the hole falls on
6908  *   the zone boundary; the pages in such holes will be prepended to the
6909  *   zone/node above the hole except for the trailing pages in the last
6910  *   section that will be appended to the zone/node below.
6911  */
6912 static void __init init_unavailable_range(unsigned long spfn,
6913 					  unsigned long epfn,
6914 					  int zone, int node)
6915 {
6916 	unsigned long pfn;
6917 	u64 pgcnt = 0;
6918 
6919 	for (pfn = spfn; pfn < epfn; pfn++) {
6920 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6921 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6922 				+ pageblock_nr_pages - 1;
6923 			continue;
6924 		}
6925 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6926 		__SetPageReserved(pfn_to_page(pfn));
6927 		pgcnt++;
6928 	}
6929 
6930 	if (pgcnt)
6931 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6932 			node, zone_names[zone], pgcnt);
6933 }
6934 
6935 static void __init memmap_init_zone_range(struct zone *zone,
6936 					  unsigned long start_pfn,
6937 					  unsigned long end_pfn,
6938 					  unsigned long *hole_pfn)
6939 {
6940 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6941 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6942 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6943 
6944 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6945 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6946 
6947 	if (start_pfn >= end_pfn)
6948 		return;
6949 
6950 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6951 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6952 
6953 	if (*hole_pfn < start_pfn)
6954 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6955 
6956 	*hole_pfn = end_pfn;
6957 }
6958 
6959 static void __init memmap_init(void)
6960 {
6961 	unsigned long start_pfn, end_pfn;
6962 	unsigned long hole_pfn = 0;
6963 	int i, j, zone_id = 0, nid;
6964 
6965 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6966 		struct pglist_data *node = NODE_DATA(nid);
6967 
6968 		for (j = 0; j < MAX_NR_ZONES; j++) {
6969 			struct zone *zone = node->node_zones + j;
6970 
6971 			if (!populated_zone(zone))
6972 				continue;
6973 
6974 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6975 					       &hole_pfn);
6976 			zone_id = j;
6977 		}
6978 	}
6979 
6980 #ifdef CONFIG_SPARSEMEM
6981 	/*
6982 	 * Initialize the memory map for hole in the range [memory_end,
6983 	 * section_end].
6984 	 * Append the pages in this hole to the highest zone in the last
6985 	 * node.
6986 	 * The call to init_unavailable_range() is outside the ifdef to
6987 	 * silence the compiler warining about zone_id set but not used;
6988 	 * for FLATMEM it is a nop anyway
6989 	 */
6990 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6991 	if (hole_pfn < end_pfn)
6992 #endif
6993 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6994 }
6995 
6996 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6997 			  phys_addr_t min_addr, int nid, bool exact_nid)
6998 {
6999 	void *ptr;
7000 
7001 	if (exact_nid)
7002 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7003 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7004 						   nid);
7005 	else
7006 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7007 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7008 						 nid);
7009 
7010 	if (ptr && size > 0)
7011 		page_init_poison(ptr, size);
7012 
7013 	return ptr;
7014 }
7015 
7016 static int zone_batchsize(struct zone *zone)
7017 {
7018 #ifdef CONFIG_MMU
7019 	int batch;
7020 
7021 	/*
7022 	 * The number of pages to batch allocate is either ~0.1%
7023 	 * of the zone or 1MB, whichever is smaller. The batch
7024 	 * size is striking a balance between allocation latency
7025 	 * and zone lock contention.
7026 	 */
7027 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7028 	batch /= 4;		/* We effectively *= 4 below */
7029 	if (batch < 1)
7030 		batch = 1;
7031 
7032 	/*
7033 	 * Clamp the batch to a 2^n - 1 value. Having a power
7034 	 * of 2 value was found to be more likely to have
7035 	 * suboptimal cache aliasing properties in some cases.
7036 	 *
7037 	 * For example if 2 tasks are alternately allocating
7038 	 * batches of pages, one task can end up with a lot
7039 	 * of pages of one half of the possible page colors
7040 	 * and the other with pages of the other colors.
7041 	 */
7042 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7043 
7044 	return batch;
7045 
7046 #else
7047 	/* The deferral and batching of frees should be suppressed under NOMMU
7048 	 * conditions.
7049 	 *
7050 	 * The problem is that NOMMU needs to be able to allocate large chunks
7051 	 * of contiguous memory as there's no hardware page translation to
7052 	 * assemble apparent contiguous memory from discontiguous pages.
7053 	 *
7054 	 * Queueing large contiguous runs of pages for batching, however,
7055 	 * causes the pages to actually be freed in smaller chunks.  As there
7056 	 * can be a significant delay between the individual batches being
7057 	 * recycled, this leads to the once large chunks of space being
7058 	 * fragmented and becoming unavailable for high-order allocations.
7059 	 */
7060 	return 0;
7061 #endif
7062 }
7063 
7064 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7065 {
7066 #ifdef CONFIG_MMU
7067 	int high;
7068 	int nr_split_cpus;
7069 	unsigned long total_pages;
7070 
7071 	if (!percpu_pagelist_high_fraction) {
7072 		/*
7073 		 * By default, the high value of the pcp is based on the zone
7074 		 * low watermark so that if they are full then background
7075 		 * reclaim will not be started prematurely.
7076 		 */
7077 		total_pages = low_wmark_pages(zone);
7078 	} else {
7079 		/*
7080 		 * If percpu_pagelist_high_fraction is configured, the high
7081 		 * value is based on a fraction of the managed pages in the
7082 		 * zone.
7083 		 */
7084 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7085 	}
7086 
7087 	/*
7088 	 * Split the high value across all online CPUs local to the zone. Note
7089 	 * that early in boot that CPUs may not be online yet and that during
7090 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7091 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7092 	 * all online CPUs to mitigate the risk that reclaim is triggered
7093 	 * prematurely due to pages stored on pcp lists.
7094 	 */
7095 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7096 	if (!nr_split_cpus)
7097 		nr_split_cpus = num_online_cpus();
7098 	high = total_pages / nr_split_cpus;
7099 
7100 	/*
7101 	 * Ensure high is at least batch*4. The multiple is based on the
7102 	 * historical relationship between high and batch.
7103 	 */
7104 	high = max(high, batch << 2);
7105 
7106 	return high;
7107 #else
7108 	return 0;
7109 #endif
7110 }
7111 
7112 /*
7113  * pcp->high and pcp->batch values are related and generally batch is lower
7114  * than high. They are also related to pcp->count such that count is lower
7115  * than high, and as soon as it reaches high, the pcplist is flushed.
7116  *
7117  * However, guaranteeing these relations at all times would require e.g. write
7118  * barriers here but also careful usage of read barriers at the read side, and
7119  * thus be prone to error and bad for performance. Thus the update only prevents
7120  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7121  * can cope with those fields changing asynchronously, and fully trust only the
7122  * pcp->count field on the local CPU with interrupts disabled.
7123  *
7124  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7125  * outside of boot time (or some other assurance that no concurrent updaters
7126  * exist).
7127  */
7128 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7129 		unsigned long batch)
7130 {
7131 	WRITE_ONCE(pcp->batch, batch);
7132 	WRITE_ONCE(pcp->high, high);
7133 }
7134 
7135 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7136 {
7137 	int pindex;
7138 
7139 	memset(pcp, 0, sizeof(*pcp));
7140 	memset(pzstats, 0, sizeof(*pzstats));
7141 
7142 	spin_lock_init(&pcp->lock);
7143 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7144 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7145 
7146 	/*
7147 	 * Set batch and high values safe for a boot pageset. A true percpu
7148 	 * pageset's initialization will update them subsequently. Here we don't
7149 	 * need to be as careful as pageset_update() as nobody can access the
7150 	 * pageset yet.
7151 	 */
7152 	pcp->high = BOOT_PAGESET_HIGH;
7153 	pcp->batch = BOOT_PAGESET_BATCH;
7154 	pcp->free_factor = 0;
7155 }
7156 
7157 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7158 		unsigned long batch)
7159 {
7160 	struct per_cpu_pages *pcp;
7161 	int cpu;
7162 
7163 	for_each_possible_cpu(cpu) {
7164 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7165 		pageset_update(pcp, high, batch);
7166 	}
7167 }
7168 
7169 /*
7170  * Calculate and set new high and batch values for all per-cpu pagesets of a
7171  * zone based on the zone's size.
7172  */
7173 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7174 {
7175 	int new_high, new_batch;
7176 
7177 	new_batch = max(1, zone_batchsize(zone));
7178 	new_high = zone_highsize(zone, new_batch, cpu_online);
7179 
7180 	if (zone->pageset_high == new_high &&
7181 	    zone->pageset_batch == new_batch)
7182 		return;
7183 
7184 	zone->pageset_high = new_high;
7185 	zone->pageset_batch = new_batch;
7186 
7187 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7188 }
7189 
7190 void __meminit setup_zone_pageset(struct zone *zone)
7191 {
7192 	int cpu;
7193 
7194 	/* Size may be 0 on !SMP && !NUMA */
7195 	if (sizeof(struct per_cpu_zonestat) > 0)
7196 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7197 
7198 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7199 	for_each_possible_cpu(cpu) {
7200 		struct per_cpu_pages *pcp;
7201 		struct per_cpu_zonestat *pzstats;
7202 
7203 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7204 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7205 		per_cpu_pages_init(pcp, pzstats);
7206 	}
7207 
7208 	zone_set_pageset_high_and_batch(zone, 0);
7209 }
7210 
7211 /*
7212  * Allocate per cpu pagesets and initialize them.
7213  * Before this call only boot pagesets were available.
7214  */
7215 void __init setup_per_cpu_pageset(void)
7216 {
7217 	struct pglist_data *pgdat;
7218 	struct zone *zone;
7219 	int __maybe_unused cpu;
7220 
7221 	for_each_populated_zone(zone)
7222 		setup_zone_pageset(zone);
7223 
7224 #ifdef CONFIG_NUMA
7225 	/*
7226 	 * Unpopulated zones continue using the boot pagesets.
7227 	 * The numa stats for these pagesets need to be reset.
7228 	 * Otherwise, they will end up skewing the stats of
7229 	 * the nodes these zones are associated with.
7230 	 */
7231 	for_each_possible_cpu(cpu) {
7232 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7233 		memset(pzstats->vm_numa_event, 0,
7234 		       sizeof(pzstats->vm_numa_event));
7235 	}
7236 #endif
7237 
7238 	for_each_online_pgdat(pgdat)
7239 		pgdat->per_cpu_nodestats =
7240 			alloc_percpu(struct per_cpu_nodestat);
7241 }
7242 
7243 static __meminit void zone_pcp_init(struct zone *zone)
7244 {
7245 	/*
7246 	 * per cpu subsystem is not up at this point. The following code
7247 	 * relies on the ability of the linker to provide the
7248 	 * offset of a (static) per cpu variable into the per cpu area.
7249 	 */
7250 	zone->per_cpu_pageset = &boot_pageset;
7251 	zone->per_cpu_zonestats = &boot_zonestats;
7252 	zone->pageset_high = BOOT_PAGESET_HIGH;
7253 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7254 
7255 	if (populated_zone(zone))
7256 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7257 			 zone->present_pages, zone_batchsize(zone));
7258 }
7259 
7260 void __meminit init_currently_empty_zone(struct zone *zone,
7261 					unsigned long zone_start_pfn,
7262 					unsigned long size)
7263 {
7264 	struct pglist_data *pgdat = zone->zone_pgdat;
7265 	int zone_idx = zone_idx(zone) + 1;
7266 
7267 	if (zone_idx > pgdat->nr_zones)
7268 		pgdat->nr_zones = zone_idx;
7269 
7270 	zone->zone_start_pfn = zone_start_pfn;
7271 
7272 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7273 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7274 			pgdat->node_id,
7275 			(unsigned long)zone_idx(zone),
7276 			zone_start_pfn, (zone_start_pfn + size));
7277 
7278 	zone_init_free_lists(zone);
7279 	zone->initialized = 1;
7280 }
7281 
7282 /**
7283  * get_pfn_range_for_nid - Return the start and end page frames for a node
7284  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7285  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7286  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7287  *
7288  * It returns the start and end page frame of a node based on information
7289  * provided by memblock_set_node(). If called for a node
7290  * with no available memory, a warning is printed and the start and end
7291  * PFNs will be 0.
7292  */
7293 void __init get_pfn_range_for_nid(unsigned int nid,
7294 			unsigned long *start_pfn, unsigned long *end_pfn)
7295 {
7296 	unsigned long this_start_pfn, this_end_pfn;
7297 	int i;
7298 
7299 	*start_pfn = -1UL;
7300 	*end_pfn = 0;
7301 
7302 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7303 		*start_pfn = min(*start_pfn, this_start_pfn);
7304 		*end_pfn = max(*end_pfn, this_end_pfn);
7305 	}
7306 
7307 	if (*start_pfn == -1UL)
7308 		*start_pfn = 0;
7309 }
7310 
7311 /*
7312  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7313  * assumption is made that zones within a node are ordered in monotonic
7314  * increasing memory addresses so that the "highest" populated zone is used
7315  */
7316 static void __init find_usable_zone_for_movable(void)
7317 {
7318 	int zone_index;
7319 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7320 		if (zone_index == ZONE_MOVABLE)
7321 			continue;
7322 
7323 		if (arch_zone_highest_possible_pfn[zone_index] >
7324 				arch_zone_lowest_possible_pfn[zone_index])
7325 			break;
7326 	}
7327 
7328 	VM_BUG_ON(zone_index == -1);
7329 	movable_zone = zone_index;
7330 }
7331 
7332 /*
7333  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7334  * because it is sized independent of architecture. Unlike the other zones,
7335  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7336  * in each node depending on the size of each node and how evenly kernelcore
7337  * is distributed. This helper function adjusts the zone ranges
7338  * provided by the architecture for a given node by using the end of the
7339  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7340  * zones within a node are in order of monotonic increases memory addresses
7341  */
7342 static void __init adjust_zone_range_for_zone_movable(int nid,
7343 					unsigned long zone_type,
7344 					unsigned long node_start_pfn,
7345 					unsigned long node_end_pfn,
7346 					unsigned long *zone_start_pfn,
7347 					unsigned long *zone_end_pfn)
7348 {
7349 	/* Only adjust if ZONE_MOVABLE is on this node */
7350 	if (zone_movable_pfn[nid]) {
7351 		/* Size ZONE_MOVABLE */
7352 		if (zone_type == ZONE_MOVABLE) {
7353 			*zone_start_pfn = zone_movable_pfn[nid];
7354 			*zone_end_pfn = min(node_end_pfn,
7355 				arch_zone_highest_possible_pfn[movable_zone]);
7356 
7357 		/* Adjust for ZONE_MOVABLE starting within this range */
7358 		} else if (!mirrored_kernelcore &&
7359 			*zone_start_pfn < zone_movable_pfn[nid] &&
7360 			*zone_end_pfn > zone_movable_pfn[nid]) {
7361 			*zone_end_pfn = zone_movable_pfn[nid];
7362 
7363 		/* Check if this whole range is within ZONE_MOVABLE */
7364 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7365 			*zone_start_pfn = *zone_end_pfn;
7366 	}
7367 }
7368 
7369 /*
7370  * Return the number of pages a zone spans in a node, including holes
7371  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7372  */
7373 static unsigned long __init zone_spanned_pages_in_node(int nid,
7374 					unsigned long zone_type,
7375 					unsigned long node_start_pfn,
7376 					unsigned long node_end_pfn,
7377 					unsigned long *zone_start_pfn,
7378 					unsigned long *zone_end_pfn)
7379 {
7380 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7381 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7382 	/* When hotadd a new node from cpu_up(), the node should be empty */
7383 	if (!node_start_pfn && !node_end_pfn)
7384 		return 0;
7385 
7386 	/* Get the start and end of the zone */
7387 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7388 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7389 	adjust_zone_range_for_zone_movable(nid, zone_type,
7390 				node_start_pfn, node_end_pfn,
7391 				zone_start_pfn, zone_end_pfn);
7392 
7393 	/* Check that this node has pages within the zone's required range */
7394 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7395 		return 0;
7396 
7397 	/* Move the zone boundaries inside the node if necessary */
7398 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7399 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7400 
7401 	/* Return the spanned pages */
7402 	return *zone_end_pfn - *zone_start_pfn;
7403 }
7404 
7405 /*
7406  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7407  * then all holes in the requested range will be accounted for.
7408  */
7409 unsigned long __init __absent_pages_in_range(int nid,
7410 				unsigned long range_start_pfn,
7411 				unsigned long range_end_pfn)
7412 {
7413 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7414 	unsigned long start_pfn, end_pfn;
7415 	int i;
7416 
7417 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7418 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7419 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7420 		nr_absent -= end_pfn - start_pfn;
7421 	}
7422 	return nr_absent;
7423 }
7424 
7425 /**
7426  * absent_pages_in_range - Return number of page frames in holes within a range
7427  * @start_pfn: The start PFN to start searching for holes
7428  * @end_pfn: The end PFN to stop searching for holes
7429  *
7430  * Return: the number of pages frames in memory holes within a range.
7431  */
7432 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7433 							unsigned long end_pfn)
7434 {
7435 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7436 }
7437 
7438 /* Return the number of page frames in holes in a zone on a node */
7439 static unsigned long __init zone_absent_pages_in_node(int nid,
7440 					unsigned long zone_type,
7441 					unsigned long node_start_pfn,
7442 					unsigned long node_end_pfn)
7443 {
7444 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7445 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7446 	unsigned long zone_start_pfn, zone_end_pfn;
7447 	unsigned long nr_absent;
7448 
7449 	/* When hotadd a new node from cpu_up(), the node should be empty */
7450 	if (!node_start_pfn && !node_end_pfn)
7451 		return 0;
7452 
7453 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7454 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7455 
7456 	adjust_zone_range_for_zone_movable(nid, zone_type,
7457 			node_start_pfn, node_end_pfn,
7458 			&zone_start_pfn, &zone_end_pfn);
7459 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7460 
7461 	/*
7462 	 * ZONE_MOVABLE handling.
7463 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7464 	 * and vice versa.
7465 	 */
7466 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7467 		unsigned long start_pfn, end_pfn;
7468 		struct memblock_region *r;
7469 
7470 		for_each_mem_region(r) {
7471 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7472 					  zone_start_pfn, zone_end_pfn);
7473 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7474 					zone_start_pfn, zone_end_pfn);
7475 
7476 			if (zone_type == ZONE_MOVABLE &&
7477 			    memblock_is_mirror(r))
7478 				nr_absent += end_pfn - start_pfn;
7479 
7480 			if (zone_type == ZONE_NORMAL &&
7481 			    !memblock_is_mirror(r))
7482 				nr_absent += end_pfn - start_pfn;
7483 		}
7484 	}
7485 
7486 	return nr_absent;
7487 }
7488 
7489 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7490 						unsigned long node_start_pfn,
7491 						unsigned long node_end_pfn)
7492 {
7493 	unsigned long realtotalpages = 0, totalpages = 0;
7494 	enum zone_type i;
7495 
7496 	for (i = 0; i < MAX_NR_ZONES; i++) {
7497 		struct zone *zone = pgdat->node_zones + i;
7498 		unsigned long zone_start_pfn, zone_end_pfn;
7499 		unsigned long spanned, absent;
7500 		unsigned long size, real_size;
7501 
7502 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7503 						     node_start_pfn,
7504 						     node_end_pfn,
7505 						     &zone_start_pfn,
7506 						     &zone_end_pfn);
7507 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7508 						   node_start_pfn,
7509 						   node_end_pfn);
7510 
7511 		size = spanned;
7512 		real_size = size - absent;
7513 
7514 		if (size)
7515 			zone->zone_start_pfn = zone_start_pfn;
7516 		else
7517 			zone->zone_start_pfn = 0;
7518 		zone->spanned_pages = size;
7519 		zone->present_pages = real_size;
7520 #if defined(CONFIG_MEMORY_HOTPLUG)
7521 		zone->present_early_pages = real_size;
7522 #endif
7523 
7524 		totalpages += size;
7525 		realtotalpages += real_size;
7526 	}
7527 
7528 	pgdat->node_spanned_pages = totalpages;
7529 	pgdat->node_present_pages = realtotalpages;
7530 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7531 }
7532 
7533 #ifndef CONFIG_SPARSEMEM
7534 /*
7535  * Calculate the size of the zone->blockflags rounded to an unsigned long
7536  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7537  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7538  * round what is now in bits to nearest long in bits, then return it in
7539  * bytes.
7540  */
7541 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7542 {
7543 	unsigned long usemapsize;
7544 
7545 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7546 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7547 	usemapsize = usemapsize >> pageblock_order;
7548 	usemapsize *= NR_PAGEBLOCK_BITS;
7549 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7550 
7551 	return usemapsize / 8;
7552 }
7553 
7554 static void __ref setup_usemap(struct zone *zone)
7555 {
7556 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7557 					       zone->spanned_pages);
7558 	zone->pageblock_flags = NULL;
7559 	if (usemapsize) {
7560 		zone->pageblock_flags =
7561 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7562 					    zone_to_nid(zone));
7563 		if (!zone->pageblock_flags)
7564 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7565 			      usemapsize, zone->name, zone_to_nid(zone));
7566 	}
7567 }
7568 #else
7569 static inline void setup_usemap(struct zone *zone) {}
7570 #endif /* CONFIG_SPARSEMEM */
7571 
7572 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7573 
7574 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7575 void __init set_pageblock_order(void)
7576 {
7577 	unsigned int order = MAX_ORDER - 1;
7578 
7579 	/* Check that pageblock_nr_pages has not already been setup */
7580 	if (pageblock_order)
7581 		return;
7582 
7583 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7584 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7585 		order = HUGETLB_PAGE_ORDER;
7586 
7587 	/*
7588 	 * Assume the largest contiguous order of interest is a huge page.
7589 	 * This value may be variable depending on boot parameters on IA64 and
7590 	 * powerpc.
7591 	 */
7592 	pageblock_order = order;
7593 }
7594 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7595 
7596 /*
7597  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7598  * is unused as pageblock_order is set at compile-time. See
7599  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7600  * the kernel config
7601  */
7602 void __init set_pageblock_order(void)
7603 {
7604 }
7605 
7606 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7607 
7608 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7609 						unsigned long present_pages)
7610 {
7611 	unsigned long pages = spanned_pages;
7612 
7613 	/*
7614 	 * Provide a more accurate estimation if there are holes within
7615 	 * the zone and SPARSEMEM is in use. If there are holes within the
7616 	 * zone, each populated memory region may cost us one or two extra
7617 	 * memmap pages due to alignment because memmap pages for each
7618 	 * populated regions may not be naturally aligned on page boundary.
7619 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7620 	 */
7621 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7622 	    IS_ENABLED(CONFIG_SPARSEMEM))
7623 		pages = present_pages;
7624 
7625 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7626 }
7627 
7628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7629 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7630 {
7631 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7632 
7633 	spin_lock_init(&ds_queue->split_queue_lock);
7634 	INIT_LIST_HEAD(&ds_queue->split_queue);
7635 	ds_queue->split_queue_len = 0;
7636 }
7637 #else
7638 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7639 #endif
7640 
7641 #ifdef CONFIG_COMPACTION
7642 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7643 {
7644 	init_waitqueue_head(&pgdat->kcompactd_wait);
7645 }
7646 #else
7647 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7648 #endif
7649 
7650 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7651 {
7652 	int i;
7653 
7654 	pgdat_resize_init(pgdat);
7655 	pgdat_kswapd_lock_init(pgdat);
7656 
7657 	pgdat_init_split_queue(pgdat);
7658 	pgdat_init_kcompactd(pgdat);
7659 
7660 	init_waitqueue_head(&pgdat->kswapd_wait);
7661 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7662 
7663 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7664 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7665 
7666 	pgdat_page_ext_init(pgdat);
7667 	lruvec_init(&pgdat->__lruvec);
7668 }
7669 
7670 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7671 							unsigned long remaining_pages)
7672 {
7673 	atomic_long_set(&zone->managed_pages, remaining_pages);
7674 	zone_set_nid(zone, nid);
7675 	zone->name = zone_names[idx];
7676 	zone->zone_pgdat = NODE_DATA(nid);
7677 	spin_lock_init(&zone->lock);
7678 	zone_seqlock_init(zone);
7679 	zone_pcp_init(zone);
7680 }
7681 
7682 /*
7683  * Set up the zone data structures
7684  * - init pgdat internals
7685  * - init all zones belonging to this node
7686  *
7687  * NOTE: this function is only called during memory hotplug
7688  */
7689 #ifdef CONFIG_MEMORY_HOTPLUG
7690 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7691 {
7692 	int nid = pgdat->node_id;
7693 	enum zone_type z;
7694 	int cpu;
7695 
7696 	pgdat_init_internals(pgdat);
7697 
7698 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7699 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7700 
7701 	/*
7702 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7703 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7704 	 * when it starts in the near future.
7705 	 */
7706 	pgdat->nr_zones = 0;
7707 	pgdat->kswapd_order = 0;
7708 	pgdat->kswapd_highest_zoneidx = 0;
7709 	pgdat->node_start_pfn = 0;
7710 	for_each_online_cpu(cpu) {
7711 		struct per_cpu_nodestat *p;
7712 
7713 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7714 		memset(p, 0, sizeof(*p));
7715 	}
7716 
7717 	for (z = 0; z < MAX_NR_ZONES; z++)
7718 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7719 }
7720 #endif
7721 
7722 /*
7723  * Set up the zone data structures:
7724  *   - mark all pages reserved
7725  *   - mark all memory queues empty
7726  *   - clear the memory bitmaps
7727  *
7728  * NOTE: pgdat should get zeroed by caller.
7729  * NOTE: this function is only called during early init.
7730  */
7731 static void __init free_area_init_core(struct pglist_data *pgdat)
7732 {
7733 	enum zone_type j;
7734 	int nid = pgdat->node_id;
7735 
7736 	pgdat_init_internals(pgdat);
7737 	pgdat->per_cpu_nodestats = &boot_nodestats;
7738 
7739 	for (j = 0; j < MAX_NR_ZONES; j++) {
7740 		struct zone *zone = pgdat->node_zones + j;
7741 		unsigned long size, freesize, memmap_pages;
7742 
7743 		size = zone->spanned_pages;
7744 		freesize = zone->present_pages;
7745 
7746 		/*
7747 		 * Adjust freesize so that it accounts for how much memory
7748 		 * is used by this zone for memmap. This affects the watermark
7749 		 * and per-cpu initialisations
7750 		 */
7751 		memmap_pages = calc_memmap_size(size, freesize);
7752 		if (!is_highmem_idx(j)) {
7753 			if (freesize >= memmap_pages) {
7754 				freesize -= memmap_pages;
7755 				if (memmap_pages)
7756 					pr_debug("  %s zone: %lu pages used for memmap\n",
7757 						 zone_names[j], memmap_pages);
7758 			} else
7759 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7760 					zone_names[j], memmap_pages, freesize);
7761 		}
7762 
7763 		/* Account for reserved pages */
7764 		if (j == 0 && freesize > dma_reserve) {
7765 			freesize -= dma_reserve;
7766 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7767 		}
7768 
7769 		if (!is_highmem_idx(j))
7770 			nr_kernel_pages += freesize;
7771 		/* Charge for highmem memmap if there are enough kernel pages */
7772 		else if (nr_kernel_pages > memmap_pages * 2)
7773 			nr_kernel_pages -= memmap_pages;
7774 		nr_all_pages += freesize;
7775 
7776 		/*
7777 		 * Set an approximate value for lowmem here, it will be adjusted
7778 		 * when the bootmem allocator frees pages into the buddy system.
7779 		 * And all highmem pages will be managed by the buddy system.
7780 		 */
7781 		zone_init_internals(zone, j, nid, freesize);
7782 
7783 		if (!size)
7784 			continue;
7785 
7786 		set_pageblock_order();
7787 		setup_usemap(zone);
7788 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7789 	}
7790 }
7791 
7792 #ifdef CONFIG_FLATMEM
7793 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7794 {
7795 	unsigned long __maybe_unused start = 0;
7796 	unsigned long __maybe_unused offset = 0;
7797 
7798 	/* Skip empty nodes */
7799 	if (!pgdat->node_spanned_pages)
7800 		return;
7801 
7802 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7803 	offset = pgdat->node_start_pfn - start;
7804 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7805 	if (!pgdat->node_mem_map) {
7806 		unsigned long size, end;
7807 		struct page *map;
7808 
7809 		/*
7810 		 * The zone's endpoints aren't required to be MAX_ORDER
7811 		 * aligned but the node_mem_map endpoints must be in order
7812 		 * for the buddy allocator to function correctly.
7813 		 */
7814 		end = pgdat_end_pfn(pgdat);
7815 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7816 		size =  (end - start) * sizeof(struct page);
7817 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7818 				   pgdat->node_id, false);
7819 		if (!map)
7820 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7821 			      size, pgdat->node_id);
7822 		pgdat->node_mem_map = map + offset;
7823 	}
7824 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7825 				__func__, pgdat->node_id, (unsigned long)pgdat,
7826 				(unsigned long)pgdat->node_mem_map);
7827 #ifndef CONFIG_NUMA
7828 	/*
7829 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7830 	 */
7831 	if (pgdat == NODE_DATA(0)) {
7832 		mem_map = NODE_DATA(0)->node_mem_map;
7833 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7834 			mem_map -= offset;
7835 	}
7836 #endif
7837 }
7838 #else
7839 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7840 #endif /* CONFIG_FLATMEM */
7841 
7842 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7843 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7844 {
7845 	pgdat->first_deferred_pfn = ULONG_MAX;
7846 }
7847 #else
7848 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7849 #endif
7850 
7851 static void __init free_area_init_node(int nid)
7852 {
7853 	pg_data_t *pgdat = NODE_DATA(nid);
7854 	unsigned long start_pfn = 0;
7855 	unsigned long end_pfn = 0;
7856 
7857 	/* pg_data_t should be reset to zero when it's allocated */
7858 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7859 
7860 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7861 
7862 	pgdat->node_id = nid;
7863 	pgdat->node_start_pfn = start_pfn;
7864 	pgdat->per_cpu_nodestats = NULL;
7865 
7866 	if (start_pfn != end_pfn) {
7867 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7868 			(u64)start_pfn << PAGE_SHIFT,
7869 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7870 	} else {
7871 		pr_info("Initmem setup node %d as memoryless\n", nid);
7872 	}
7873 
7874 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7875 
7876 	alloc_node_mem_map(pgdat);
7877 	pgdat_set_deferred_range(pgdat);
7878 
7879 	free_area_init_core(pgdat);
7880 }
7881 
7882 static void __init free_area_init_memoryless_node(int nid)
7883 {
7884 	free_area_init_node(nid);
7885 }
7886 
7887 #if MAX_NUMNODES > 1
7888 /*
7889  * Figure out the number of possible node ids.
7890  */
7891 void __init setup_nr_node_ids(void)
7892 {
7893 	unsigned int highest;
7894 
7895 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7896 	nr_node_ids = highest + 1;
7897 }
7898 #endif
7899 
7900 /**
7901  * node_map_pfn_alignment - determine the maximum internode alignment
7902  *
7903  * This function should be called after node map is populated and sorted.
7904  * It calculates the maximum power of two alignment which can distinguish
7905  * all the nodes.
7906  *
7907  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7908  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7909  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7910  * shifted, 1GiB is enough and this function will indicate so.
7911  *
7912  * This is used to test whether pfn -> nid mapping of the chosen memory
7913  * model has fine enough granularity to avoid incorrect mapping for the
7914  * populated node map.
7915  *
7916  * Return: the determined alignment in pfn's.  0 if there is no alignment
7917  * requirement (single node).
7918  */
7919 unsigned long __init node_map_pfn_alignment(void)
7920 {
7921 	unsigned long accl_mask = 0, last_end = 0;
7922 	unsigned long start, end, mask;
7923 	int last_nid = NUMA_NO_NODE;
7924 	int i, nid;
7925 
7926 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7927 		if (!start || last_nid < 0 || last_nid == nid) {
7928 			last_nid = nid;
7929 			last_end = end;
7930 			continue;
7931 		}
7932 
7933 		/*
7934 		 * Start with a mask granular enough to pin-point to the
7935 		 * start pfn and tick off bits one-by-one until it becomes
7936 		 * too coarse to separate the current node from the last.
7937 		 */
7938 		mask = ~((1 << __ffs(start)) - 1);
7939 		while (mask && last_end <= (start & (mask << 1)))
7940 			mask <<= 1;
7941 
7942 		/* accumulate all internode masks */
7943 		accl_mask |= mask;
7944 	}
7945 
7946 	/* convert mask to number of pages */
7947 	return ~accl_mask + 1;
7948 }
7949 
7950 /*
7951  * early_calculate_totalpages()
7952  * Sum pages in active regions for movable zone.
7953  * Populate N_MEMORY for calculating usable_nodes.
7954  */
7955 static unsigned long __init early_calculate_totalpages(void)
7956 {
7957 	unsigned long totalpages = 0;
7958 	unsigned long start_pfn, end_pfn;
7959 	int i, nid;
7960 
7961 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7962 		unsigned long pages = end_pfn - start_pfn;
7963 
7964 		totalpages += pages;
7965 		if (pages)
7966 			node_set_state(nid, N_MEMORY);
7967 	}
7968 	return totalpages;
7969 }
7970 
7971 /*
7972  * Find the PFN the Movable zone begins in each node. Kernel memory
7973  * is spread evenly between nodes as long as the nodes have enough
7974  * memory. When they don't, some nodes will have more kernelcore than
7975  * others
7976  */
7977 static void __init find_zone_movable_pfns_for_nodes(void)
7978 {
7979 	int i, nid;
7980 	unsigned long usable_startpfn;
7981 	unsigned long kernelcore_node, kernelcore_remaining;
7982 	/* save the state before borrow the nodemask */
7983 	nodemask_t saved_node_state = node_states[N_MEMORY];
7984 	unsigned long totalpages = early_calculate_totalpages();
7985 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7986 	struct memblock_region *r;
7987 
7988 	/* Need to find movable_zone earlier when movable_node is specified. */
7989 	find_usable_zone_for_movable();
7990 
7991 	/*
7992 	 * If movable_node is specified, ignore kernelcore and movablecore
7993 	 * options.
7994 	 */
7995 	if (movable_node_is_enabled()) {
7996 		for_each_mem_region(r) {
7997 			if (!memblock_is_hotpluggable(r))
7998 				continue;
7999 
8000 			nid = memblock_get_region_node(r);
8001 
8002 			usable_startpfn = PFN_DOWN(r->base);
8003 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8004 				min(usable_startpfn, zone_movable_pfn[nid]) :
8005 				usable_startpfn;
8006 		}
8007 
8008 		goto out2;
8009 	}
8010 
8011 	/*
8012 	 * If kernelcore=mirror is specified, ignore movablecore option
8013 	 */
8014 	if (mirrored_kernelcore) {
8015 		bool mem_below_4gb_not_mirrored = false;
8016 
8017 		for_each_mem_region(r) {
8018 			if (memblock_is_mirror(r))
8019 				continue;
8020 
8021 			nid = memblock_get_region_node(r);
8022 
8023 			usable_startpfn = memblock_region_memory_base_pfn(r);
8024 
8025 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8026 				mem_below_4gb_not_mirrored = true;
8027 				continue;
8028 			}
8029 
8030 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8031 				min(usable_startpfn, zone_movable_pfn[nid]) :
8032 				usable_startpfn;
8033 		}
8034 
8035 		if (mem_below_4gb_not_mirrored)
8036 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8037 
8038 		goto out2;
8039 	}
8040 
8041 	/*
8042 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8043 	 * amount of necessary memory.
8044 	 */
8045 	if (required_kernelcore_percent)
8046 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8047 				       10000UL;
8048 	if (required_movablecore_percent)
8049 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8050 					10000UL;
8051 
8052 	/*
8053 	 * If movablecore= was specified, calculate what size of
8054 	 * kernelcore that corresponds so that memory usable for
8055 	 * any allocation type is evenly spread. If both kernelcore
8056 	 * and movablecore are specified, then the value of kernelcore
8057 	 * will be used for required_kernelcore if it's greater than
8058 	 * what movablecore would have allowed.
8059 	 */
8060 	if (required_movablecore) {
8061 		unsigned long corepages;
8062 
8063 		/*
8064 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8065 		 * was requested by the user
8066 		 */
8067 		required_movablecore =
8068 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8069 		required_movablecore = min(totalpages, required_movablecore);
8070 		corepages = totalpages - required_movablecore;
8071 
8072 		required_kernelcore = max(required_kernelcore, corepages);
8073 	}
8074 
8075 	/*
8076 	 * If kernelcore was not specified or kernelcore size is larger
8077 	 * than totalpages, there is no ZONE_MOVABLE.
8078 	 */
8079 	if (!required_kernelcore || required_kernelcore >= totalpages)
8080 		goto out;
8081 
8082 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8083 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8084 
8085 restart:
8086 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8087 	kernelcore_node = required_kernelcore / usable_nodes;
8088 	for_each_node_state(nid, N_MEMORY) {
8089 		unsigned long start_pfn, end_pfn;
8090 
8091 		/*
8092 		 * Recalculate kernelcore_node if the division per node
8093 		 * now exceeds what is necessary to satisfy the requested
8094 		 * amount of memory for the kernel
8095 		 */
8096 		if (required_kernelcore < kernelcore_node)
8097 			kernelcore_node = required_kernelcore / usable_nodes;
8098 
8099 		/*
8100 		 * As the map is walked, we track how much memory is usable
8101 		 * by the kernel using kernelcore_remaining. When it is
8102 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8103 		 */
8104 		kernelcore_remaining = kernelcore_node;
8105 
8106 		/* Go through each range of PFNs within this node */
8107 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8108 			unsigned long size_pages;
8109 
8110 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8111 			if (start_pfn >= end_pfn)
8112 				continue;
8113 
8114 			/* Account for what is only usable for kernelcore */
8115 			if (start_pfn < usable_startpfn) {
8116 				unsigned long kernel_pages;
8117 				kernel_pages = min(end_pfn, usable_startpfn)
8118 								- start_pfn;
8119 
8120 				kernelcore_remaining -= min(kernel_pages,
8121 							kernelcore_remaining);
8122 				required_kernelcore -= min(kernel_pages,
8123 							required_kernelcore);
8124 
8125 				/* Continue if range is now fully accounted */
8126 				if (end_pfn <= usable_startpfn) {
8127 
8128 					/*
8129 					 * Push zone_movable_pfn to the end so
8130 					 * that if we have to rebalance
8131 					 * kernelcore across nodes, we will
8132 					 * not double account here
8133 					 */
8134 					zone_movable_pfn[nid] = end_pfn;
8135 					continue;
8136 				}
8137 				start_pfn = usable_startpfn;
8138 			}
8139 
8140 			/*
8141 			 * The usable PFN range for ZONE_MOVABLE is from
8142 			 * start_pfn->end_pfn. Calculate size_pages as the
8143 			 * number of pages used as kernelcore
8144 			 */
8145 			size_pages = end_pfn - start_pfn;
8146 			if (size_pages > kernelcore_remaining)
8147 				size_pages = kernelcore_remaining;
8148 			zone_movable_pfn[nid] = start_pfn + size_pages;
8149 
8150 			/*
8151 			 * Some kernelcore has been met, update counts and
8152 			 * break if the kernelcore for this node has been
8153 			 * satisfied
8154 			 */
8155 			required_kernelcore -= min(required_kernelcore,
8156 								size_pages);
8157 			kernelcore_remaining -= size_pages;
8158 			if (!kernelcore_remaining)
8159 				break;
8160 		}
8161 	}
8162 
8163 	/*
8164 	 * If there is still required_kernelcore, we do another pass with one
8165 	 * less node in the count. This will push zone_movable_pfn[nid] further
8166 	 * along on the nodes that still have memory until kernelcore is
8167 	 * satisfied
8168 	 */
8169 	usable_nodes--;
8170 	if (usable_nodes && required_kernelcore > usable_nodes)
8171 		goto restart;
8172 
8173 out2:
8174 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8175 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8176 		unsigned long start_pfn, end_pfn;
8177 
8178 		zone_movable_pfn[nid] =
8179 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8180 
8181 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8182 		if (zone_movable_pfn[nid] >= end_pfn)
8183 			zone_movable_pfn[nid] = 0;
8184 	}
8185 
8186 out:
8187 	/* restore the node_state */
8188 	node_states[N_MEMORY] = saved_node_state;
8189 }
8190 
8191 /* Any regular or high memory on that node ? */
8192 static void check_for_memory(pg_data_t *pgdat, int nid)
8193 {
8194 	enum zone_type zone_type;
8195 
8196 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8197 		struct zone *zone = &pgdat->node_zones[zone_type];
8198 		if (populated_zone(zone)) {
8199 			if (IS_ENABLED(CONFIG_HIGHMEM))
8200 				node_set_state(nid, N_HIGH_MEMORY);
8201 			if (zone_type <= ZONE_NORMAL)
8202 				node_set_state(nid, N_NORMAL_MEMORY);
8203 			break;
8204 		}
8205 	}
8206 }
8207 
8208 /*
8209  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8210  * such cases we allow max_zone_pfn sorted in the descending order
8211  */
8212 bool __weak arch_has_descending_max_zone_pfns(void)
8213 {
8214 	return false;
8215 }
8216 
8217 /**
8218  * free_area_init - Initialise all pg_data_t and zone data
8219  * @max_zone_pfn: an array of max PFNs for each zone
8220  *
8221  * This will call free_area_init_node() for each active node in the system.
8222  * Using the page ranges provided by memblock_set_node(), the size of each
8223  * zone in each node and their holes is calculated. If the maximum PFN
8224  * between two adjacent zones match, it is assumed that the zone is empty.
8225  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8226  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8227  * starts where the previous one ended. For example, ZONE_DMA32 starts
8228  * at arch_max_dma_pfn.
8229  */
8230 void __init free_area_init(unsigned long *max_zone_pfn)
8231 {
8232 	unsigned long start_pfn, end_pfn;
8233 	int i, nid, zone;
8234 	bool descending;
8235 
8236 	/* Record where the zone boundaries are */
8237 	memset(arch_zone_lowest_possible_pfn, 0,
8238 				sizeof(arch_zone_lowest_possible_pfn));
8239 	memset(arch_zone_highest_possible_pfn, 0,
8240 				sizeof(arch_zone_highest_possible_pfn));
8241 
8242 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8243 	descending = arch_has_descending_max_zone_pfns();
8244 
8245 	for (i = 0; i < MAX_NR_ZONES; i++) {
8246 		if (descending)
8247 			zone = MAX_NR_ZONES - i - 1;
8248 		else
8249 			zone = i;
8250 
8251 		if (zone == ZONE_MOVABLE)
8252 			continue;
8253 
8254 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8255 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8256 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8257 
8258 		start_pfn = end_pfn;
8259 	}
8260 
8261 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8262 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8263 	find_zone_movable_pfns_for_nodes();
8264 
8265 	/* Print out the zone ranges */
8266 	pr_info("Zone ranges:\n");
8267 	for (i = 0; i < MAX_NR_ZONES; i++) {
8268 		if (i == ZONE_MOVABLE)
8269 			continue;
8270 		pr_info("  %-8s ", zone_names[i]);
8271 		if (arch_zone_lowest_possible_pfn[i] ==
8272 				arch_zone_highest_possible_pfn[i])
8273 			pr_cont("empty\n");
8274 		else
8275 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8276 				(u64)arch_zone_lowest_possible_pfn[i]
8277 					<< PAGE_SHIFT,
8278 				((u64)arch_zone_highest_possible_pfn[i]
8279 					<< PAGE_SHIFT) - 1);
8280 	}
8281 
8282 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8283 	pr_info("Movable zone start for each node\n");
8284 	for (i = 0; i < MAX_NUMNODES; i++) {
8285 		if (zone_movable_pfn[i])
8286 			pr_info("  Node %d: %#018Lx\n", i,
8287 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8288 	}
8289 
8290 	/*
8291 	 * Print out the early node map, and initialize the
8292 	 * subsection-map relative to active online memory ranges to
8293 	 * enable future "sub-section" extensions of the memory map.
8294 	 */
8295 	pr_info("Early memory node ranges\n");
8296 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8297 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8298 			(u64)start_pfn << PAGE_SHIFT,
8299 			((u64)end_pfn << PAGE_SHIFT) - 1);
8300 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8301 	}
8302 
8303 	/* Initialise every node */
8304 	mminit_verify_pageflags_layout();
8305 	setup_nr_node_ids();
8306 	for_each_node(nid) {
8307 		pg_data_t *pgdat;
8308 
8309 		if (!node_online(nid)) {
8310 			pr_info("Initializing node %d as memoryless\n", nid);
8311 
8312 			/* Allocator not initialized yet */
8313 			pgdat = arch_alloc_nodedata(nid);
8314 			if (!pgdat) {
8315 				pr_err("Cannot allocate %zuB for node %d.\n",
8316 						sizeof(*pgdat), nid);
8317 				continue;
8318 			}
8319 			arch_refresh_nodedata(nid, pgdat);
8320 			free_area_init_memoryless_node(nid);
8321 
8322 			/*
8323 			 * We do not want to confuse userspace by sysfs
8324 			 * files/directories for node without any memory
8325 			 * attached to it, so this node is not marked as
8326 			 * N_MEMORY and not marked online so that no sysfs
8327 			 * hierarchy will be created via register_one_node for
8328 			 * it. The pgdat will get fully initialized by
8329 			 * hotadd_init_pgdat() when memory is hotplugged into
8330 			 * this node.
8331 			 */
8332 			continue;
8333 		}
8334 
8335 		pgdat = NODE_DATA(nid);
8336 		free_area_init_node(nid);
8337 
8338 		/* Any memory on that node */
8339 		if (pgdat->node_present_pages)
8340 			node_set_state(nid, N_MEMORY);
8341 		check_for_memory(pgdat, nid);
8342 	}
8343 
8344 	memmap_init();
8345 }
8346 
8347 static int __init cmdline_parse_core(char *p, unsigned long *core,
8348 				     unsigned long *percent)
8349 {
8350 	unsigned long long coremem;
8351 	char *endptr;
8352 
8353 	if (!p)
8354 		return -EINVAL;
8355 
8356 	/* Value may be a percentage of total memory, otherwise bytes */
8357 	coremem = simple_strtoull(p, &endptr, 0);
8358 	if (*endptr == '%') {
8359 		/* Paranoid check for percent values greater than 100 */
8360 		WARN_ON(coremem > 100);
8361 
8362 		*percent = coremem;
8363 	} else {
8364 		coremem = memparse(p, &p);
8365 		/* Paranoid check that UL is enough for the coremem value */
8366 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8367 
8368 		*core = coremem >> PAGE_SHIFT;
8369 		*percent = 0UL;
8370 	}
8371 	return 0;
8372 }
8373 
8374 /*
8375  * kernelcore=size sets the amount of memory for use for allocations that
8376  * cannot be reclaimed or migrated.
8377  */
8378 static int __init cmdline_parse_kernelcore(char *p)
8379 {
8380 	/* parse kernelcore=mirror */
8381 	if (parse_option_str(p, "mirror")) {
8382 		mirrored_kernelcore = true;
8383 		return 0;
8384 	}
8385 
8386 	return cmdline_parse_core(p, &required_kernelcore,
8387 				  &required_kernelcore_percent);
8388 }
8389 
8390 /*
8391  * movablecore=size sets the amount of memory for use for allocations that
8392  * can be reclaimed or migrated.
8393  */
8394 static int __init cmdline_parse_movablecore(char *p)
8395 {
8396 	return cmdline_parse_core(p, &required_movablecore,
8397 				  &required_movablecore_percent);
8398 }
8399 
8400 early_param("kernelcore", cmdline_parse_kernelcore);
8401 early_param("movablecore", cmdline_parse_movablecore);
8402 
8403 void adjust_managed_page_count(struct page *page, long count)
8404 {
8405 	atomic_long_add(count, &page_zone(page)->managed_pages);
8406 	totalram_pages_add(count);
8407 #ifdef CONFIG_HIGHMEM
8408 	if (PageHighMem(page))
8409 		totalhigh_pages_add(count);
8410 #endif
8411 }
8412 EXPORT_SYMBOL(adjust_managed_page_count);
8413 
8414 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8415 {
8416 	void *pos;
8417 	unsigned long pages = 0;
8418 
8419 	start = (void *)PAGE_ALIGN((unsigned long)start);
8420 	end = (void *)((unsigned long)end & PAGE_MASK);
8421 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8422 		struct page *page = virt_to_page(pos);
8423 		void *direct_map_addr;
8424 
8425 		/*
8426 		 * 'direct_map_addr' might be different from 'pos'
8427 		 * because some architectures' virt_to_page()
8428 		 * work with aliases.  Getting the direct map
8429 		 * address ensures that we get a _writeable_
8430 		 * alias for the memset().
8431 		 */
8432 		direct_map_addr = page_address(page);
8433 		/*
8434 		 * Perform a kasan-unchecked memset() since this memory
8435 		 * has not been initialized.
8436 		 */
8437 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8438 		if ((unsigned int)poison <= 0xFF)
8439 			memset(direct_map_addr, poison, PAGE_SIZE);
8440 
8441 		free_reserved_page(page);
8442 	}
8443 
8444 	if (pages && s)
8445 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8446 
8447 	return pages;
8448 }
8449 
8450 void __init mem_init_print_info(void)
8451 {
8452 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8453 	unsigned long init_code_size, init_data_size;
8454 
8455 	physpages = get_num_physpages();
8456 	codesize = _etext - _stext;
8457 	datasize = _edata - _sdata;
8458 	rosize = __end_rodata - __start_rodata;
8459 	bss_size = __bss_stop - __bss_start;
8460 	init_data_size = __init_end - __init_begin;
8461 	init_code_size = _einittext - _sinittext;
8462 
8463 	/*
8464 	 * Detect special cases and adjust section sizes accordingly:
8465 	 * 1) .init.* may be embedded into .data sections
8466 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8467 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8468 	 * 3) .rodata.* may be embedded into .text or .data sections.
8469 	 */
8470 #define adj_init_size(start, end, size, pos, adj) \
8471 	do { \
8472 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8473 			size -= adj; \
8474 	} while (0)
8475 
8476 	adj_init_size(__init_begin, __init_end, init_data_size,
8477 		     _sinittext, init_code_size);
8478 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8479 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8480 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8481 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8482 
8483 #undef	adj_init_size
8484 
8485 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8486 #ifdef	CONFIG_HIGHMEM
8487 		", %luK highmem"
8488 #endif
8489 		")\n",
8490 		K(nr_free_pages()), K(physpages),
8491 		codesize >> 10, datasize >> 10, rosize >> 10,
8492 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8493 		K(physpages - totalram_pages() - totalcma_pages),
8494 		K(totalcma_pages)
8495 #ifdef	CONFIG_HIGHMEM
8496 		, K(totalhigh_pages())
8497 #endif
8498 		);
8499 }
8500 
8501 /**
8502  * set_dma_reserve - set the specified number of pages reserved in the first zone
8503  * @new_dma_reserve: The number of pages to mark reserved
8504  *
8505  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8506  * In the DMA zone, a significant percentage may be consumed by kernel image
8507  * and other unfreeable allocations which can skew the watermarks badly. This
8508  * function may optionally be used to account for unfreeable pages in the
8509  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8510  * smaller per-cpu batchsize.
8511  */
8512 void __init set_dma_reserve(unsigned long new_dma_reserve)
8513 {
8514 	dma_reserve = new_dma_reserve;
8515 }
8516 
8517 static int page_alloc_cpu_dead(unsigned int cpu)
8518 {
8519 	struct zone *zone;
8520 
8521 	lru_add_drain_cpu(cpu);
8522 	mlock_page_drain_remote(cpu);
8523 	drain_pages(cpu);
8524 
8525 	/*
8526 	 * Spill the event counters of the dead processor
8527 	 * into the current processors event counters.
8528 	 * This artificially elevates the count of the current
8529 	 * processor.
8530 	 */
8531 	vm_events_fold_cpu(cpu);
8532 
8533 	/*
8534 	 * Zero the differential counters of the dead processor
8535 	 * so that the vm statistics are consistent.
8536 	 *
8537 	 * This is only okay since the processor is dead and cannot
8538 	 * race with what we are doing.
8539 	 */
8540 	cpu_vm_stats_fold(cpu);
8541 
8542 	for_each_populated_zone(zone)
8543 		zone_pcp_update(zone, 0);
8544 
8545 	return 0;
8546 }
8547 
8548 static int page_alloc_cpu_online(unsigned int cpu)
8549 {
8550 	struct zone *zone;
8551 
8552 	for_each_populated_zone(zone)
8553 		zone_pcp_update(zone, 1);
8554 	return 0;
8555 }
8556 
8557 #ifdef CONFIG_NUMA
8558 int hashdist = HASHDIST_DEFAULT;
8559 
8560 static int __init set_hashdist(char *str)
8561 {
8562 	if (!str)
8563 		return 0;
8564 	hashdist = simple_strtoul(str, &str, 0);
8565 	return 1;
8566 }
8567 __setup("hashdist=", set_hashdist);
8568 #endif
8569 
8570 void __init page_alloc_init(void)
8571 {
8572 	int ret;
8573 
8574 #ifdef CONFIG_NUMA
8575 	if (num_node_state(N_MEMORY) == 1)
8576 		hashdist = 0;
8577 #endif
8578 
8579 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8580 					"mm/page_alloc:pcp",
8581 					page_alloc_cpu_online,
8582 					page_alloc_cpu_dead);
8583 	WARN_ON(ret < 0);
8584 }
8585 
8586 /*
8587  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8588  *	or min_free_kbytes changes.
8589  */
8590 static void calculate_totalreserve_pages(void)
8591 {
8592 	struct pglist_data *pgdat;
8593 	unsigned long reserve_pages = 0;
8594 	enum zone_type i, j;
8595 
8596 	for_each_online_pgdat(pgdat) {
8597 
8598 		pgdat->totalreserve_pages = 0;
8599 
8600 		for (i = 0; i < MAX_NR_ZONES; i++) {
8601 			struct zone *zone = pgdat->node_zones + i;
8602 			long max = 0;
8603 			unsigned long managed_pages = zone_managed_pages(zone);
8604 
8605 			/* Find valid and maximum lowmem_reserve in the zone */
8606 			for (j = i; j < MAX_NR_ZONES; j++) {
8607 				if (zone->lowmem_reserve[j] > max)
8608 					max = zone->lowmem_reserve[j];
8609 			}
8610 
8611 			/* we treat the high watermark as reserved pages. */
8612 			max += high_wmark_pages(zone);
8613 
8614 			if (max > managed_pages)
8615 				max = managed_pages;
8616 
8617 			pgdat->totalreserve_pages += max;
8618 
8619 			reserve_pages += max;
8620 		}
8621 	}
8622 	totalreserve_pages = reserve_pages;
8623 }
8624 
8625 /*
8626  * setup_per_zone_lowmem_reserve - called whenever
8627  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8628  *	has a correct pages reserved value, so an adequate number of
8629  *	pages are left in the zone after a successful __alloc_pages().
8630  */
8631 static void setup_per_zone_lowmem_reserve(void)
8632 {
8633 	struct pglist_data *pgdat;
8634 	enum zone_type i, j;
8635 
8636 	for_each_online_pgdat(pgdat) {
8637 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8638 			struct zone *zone = &pgdat->node_zones[i];
8639 			int ratio = sysctl_lowmem_reserve_ratio[i];
8640 			bool clear = !ratio || !zone_managed_pages(zone);
8641 			unsigned long managed_pages = 0;
8642 
8643 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8644 				struct zone *upper_zone = &pgdat->node_zones[j];
8645 
8646 				managed_pages += zone_managed_pages(upper_zone);
8647 
8648 				if (clear)
8649 					zone->lowmem_reserve[j] = 0;
8650 				else
8651 					zone->lowmem_reserve[j] = managed_pages / ratio;
8652 			}
8653 		}
8654 	}
8655 
8656 	/* update totalreserve_pages */
8657 	calculate_totalreserve_pages();
8658 }
8659 
8660 static void __setup_per_zone_wmarks(void)
8661 {
8662 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8663 	unsigned long lowmem_pages = 0;
8664 	struct zone *zone;
8665 	unsigned long flags;
8666 
8667 	/* Calculate total number of !ZONE_HIGHMEM pages */
8668 	for_each_zone(zone) {
8669 		if (!is_highmem(zone))
8670 			lowmem_pages += zone_managed_pages(zone);
8671 	}
8672 
8673 	for_each_zone(zone) {
8674 		u64 tmp;
8675 
8676 		spin_lock_irqsave(&zone->lock, flags);
8677 		tmp = (u64)pages_min * zone_managed_pages(zone);
8678 		do_div(tmp, lowmem_pages);
8679 		if (is_highmem(zone)) {
8680 			/*
8681 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8682 			 * need highmem pages, so cap pages_min to a small
8683 			 * value here.
8684 			 *
8685 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8686 			 * deltas control async page reclaim, and so should
8687 			 * not be capped for highmem.
8688 			 */
8689 			unsigned long min_pages;
8690 
8691 			min_pages = zone_managed_pages(zone) / 1024;
8692 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8693 			zone->_watermark[WMARK_MIN] = min_pages;
8694 		} else {
8695 			/*
8696 			 * If it's a lowmem zone, reserve a number of pages
8697 			 * proportionate to the zone's size.
8698 			 */
8699 			zone->_watermark[WMARK_MIN] = tmp;
8700 		}
8701 
8702 		/*
8703 		 * Set the kswapd watermarks distance according to the
8704 		 * scale factor in proportion to available memory, but
8705 		 * ensure a minimum size on small systems.
8706 		 */
8707 		tmp = max_t(u64, tmp >> 2,
8708 			    mult_frac(zone_managed_pages(zone),
8709 				      watermark_scale_factor, 10000));
8710 
8711 		zone->watermark_boost = 0;
8712 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8713 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8714 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8715 
8716 		spin_unlock_irqrestore(&zone->lock, flags);
8717 	}
8718 
8719 	/* update totalreserve_pages */
8720 	calculate_totalreserve_pages();
8721 }
8722 
8723 /**
8724  * setup_per_zone_wmarks - called when min_free_kbytes changes
8725  * or when memory is hot-{added|removed}
8726  *
8727  * Ensures that the watermark[min,low,high] values for each zone are set
8728  * correctly with respect to min_free_kbytes.
8729  */
8730 void setup_per_zone_wmarks(void)
8731 {
8732 	struct zone *zone;
8733 	static DEFINE_SPINLOCK(lock);
8734 
8735 	spin_lock(&lock);
8736 	__setup_per_zone_wmarks();
8737 	spin_unlock(&lock);
8738 
8739 	/*
8740 	 * The watermark size have changed so update the pcpu batch
8741 	 * and high limits or the limits may be inappropriate.
8742 	 */
8743 	for_each_zone(zone)
8744 		zone_pcp_update(zone, 0);
8745 }
8746 
8747 /*
8748  * Initialise min_free_kbytes.
8749  *
8750  * For small machines we want it small (128k min).  For large machines
8751  * we want it large (256MB max).  But it is not linear, because network
8752  * bandwidth does not increase linearly with machine size.  We use
8753  *
8754  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8755  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8756  *
8757  * which yields
8758  *
8759  * 16MB:	512k
8760  * 32MB:	724k
8761  * 64MB:	1024k
8762  * 128MB:	1448k
8763  * 256MB:	2048k
8764  * 512MB:	2896k
8765  * 1024MB:	4096k
8766  * 2048MB:	5792k
8767  * 4096MB:	8192k
8768  * 8192MB:	11584k
8769  * 16384MB:	16384k
8770  */
8771 void calculate_min_free_kbytes(void)
8772 {
8773 	unsigned long lowmem_kbytes;
8774 	int new_min_free_kbytes;
8775 
8776 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8777 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8778 
8779 	if (new_min_free_kbytes > user_min_free_kbytes)
8780 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8781 	else
8782 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8783 				new_min_free_kbytes, user_min_free_kbytes);
8784 
8785 }
8786 
8787 int __meminit init_per_zone_wmark_min(void)
8788 {
8789 	calculate_min_free_kbytes();
8790 	setup_per_zone_wmarks();
8791 	refresh_zone_stat_thresholds();
8792 	setup_per_zone_lowmem_reserve();
8793 
8794 #ifdef CONFIG_NUMA
8795 	setup_min_unmapped_ratio();
8796 	setup_min_slab_ratio();
8797 #endif
8798 
8799 	khugepaged_min_free_kbytes_update();
8800 
8801 	return 0;
8802 }
8803 postcore_initcall(init_per_zone_wmark_min)
8804 
8805 /*
8806  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8807  *	that we can call two helper functions whenever min_free_kbytes
8808  *	changes.
8809  */
8810 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8811 		void *buffer, size_t *length, loff_t *ppos)
8812 {
8813 	int rc;
8814 
8815 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8816 	if (rc)
8817 		return rc;
8818 
8819 	if (write) {
8820 		user_min_free_kbytes = min_free_kbytes;
8821 		setup_per_zone_wmarks();
8822 	}
8823 	return 0;
8824 }
8825 
8826 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8827 		void *buffer, size_t *length, loff_t *ppos)
8828 {
8829 	int rc;
8830 
8831 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8832 	if (rc)
8833 		return rc;
8834 
8835 	if (write)
8836 		setup_per_zone_wmarks();
8837 
8838 	return 0;
8839 }
8840 
8841 #ifdef CONFIG_NUMA
8842 static void setup_min_unmapped_ratio(void)
8843 {
8844 	pg_data_t *pgdat;
8845 	struct zone *zone;
8846 
8847 	for_each_online_pgdat(pgdat)
8848 		pgdat->min_unmapped_pages = 0;
8849 
8850 	for_each_zone(zone)
8851 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8852 						         sysctl_min_unmapped_ratio) / 100;
8853 }
8854 
8855 
8856 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8857 		void *buffer, size_t *length, loff_t *ppos)
8858 {
8859 	int rc;
8860 
8861 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8862 	if (rc)
8863 		return rc;
8864 
8865 	setup_min_unmapped_ratio();
8866 
8867 	return 0;
8868 }
8869 
8870 static void setup_min_slab_ratio(void)
8871 {
8872 	pg_data_t *pgdat;
8873 	struct zone *zone;
8874 
8875 	for_each_online_pgdat(pgdat)
8876 		pgdat->min_slab_pages = 0;
8877 
8878 	for_each_zone(zone)
8879 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8880 						     sysctl_min_slab_ratio) / 100;
8881 }
8882 
8883 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8884 		void *buffer, size_t *length, loff_t *ppos)
8885 {
8886 	int rc;
8887 
8888 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8889 	if (rc)
8890 		return rc;
8891 
8892 	setup_min_slab_ratio();
8893 
8894 	return 0;
8895 }
8896 #endif
8897 
8898 /*
8899  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8900  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8901  *	whenever sysctl_lowmem_reserve_ratio changes.
8902  *
8903  * The reserve ratio obviously has absolutely no relation with the
8904  * minimum watermarks. The lowmem reserve ratio can only make sense
8905  * if in function of the boot time zone sizes.
8906  */
8907 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8908 		void *buffer, size_t *length, loff_t *ppos)
8909 {
8910 	int i;
8911 
8912 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8913 
8914 	for (i = 0; i < MAX_NR_ZONES; i++) {
8915 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8916 			sysctl_lowmem_reserve_ratio[i] = 0;
8917 	}
8918 
8919 	setup_per_zone_lowmem_reserve();
8920 	return 0;
8921 }
8922 
8923 /*
8924  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8925  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8926  * pagelist can have before it gets flushed back to buddy allocator.
8927  */
8928 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8929 		int write, void *buffer, size_t *length, loff_t *ppos)
8930 {
8931 	struct zone *zone;
8932 	int old_percpu_pagelist_high_fraction;
8933 	int ret;
8934 
8935 	mutex_lock(&pcp_batch_high_lock);
8936 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8937 
8938 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8939 	if (!write || ret < 0)
8940 		goto out;
8941 
8942 	/* Sanity checking to avoid pcp imbalance */
8943 	if (percpu_pagelist_high_fraction &&
8944 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8945 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8946 		ret = -EINVAL;
8947 		goto out;
8948 	}
8949 
8950 	/* No change? */
8951 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8952 		goto out;
8953 
8954 	for_each_populated_zone(zone)
8955 		zone_set_pageset_high_and_batch(zone, 0);
8956 out:
8957 	mutex_unlock(&pcp_batch_high_lock);
8958 	return ret;
8959 }
8960 
8961 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8962 /*
8963  * Returns the number of pages that arch has reserved but
8964  * is not known to alloc_large_system_hash().
8965  */
8966 static unsigned long __init arch_reserved_kernel_pages(void)
8967 {
8968 	return 0;
8969 }
8970 #endif
8971 
8972 /*
8973  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8974  * machines. As memory size is increased the scale is also increased but at
8975  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8976  * quadruples the scale is increased by one, which means the size of hash table
8977  * only doubles, instead of quadrupling as well.
8978  * Because 32-bit systems cannot have large physical memory, where this scaling
8979  * makes sense, it is disabled on such platforms.
8980  */
8981 #if __BITS_PER_LONG > 32
8982 #define ADAPT_SCALE_BASE	(64ul << 30)
8983 #define ADAPT_SCALE_SHIFT	2
8984 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8985 #endif
8986 
8987 /*
8988  * allocate a large system hash table from bootmem
8989  * - it is assumed that the hash table must contain an exact power-of-2
8990  *   quantity of entries
8991  * - limit is the number of hash buckets, not the total allocation size
8992  */
8993 void *__init alloc_large_system_hash(const char *tablename,
8994 				     unsigned long bucketsize,
8995 				     unsigned long numentries,
8996 				     int scale,
8997 				     int flags,
8998 				     unsigned int *_hash_shift,
8999 				     unsigned int *_hash_mask,
9000 				     unsigned long low_limit,
9001 				     unsigned long high_limit)
9002 {
9003 	unsigned long long max = high_limit;
9004 	unsigned long log2qty, size;
9005 	void *table;
9006 	gfp_t gfp_flags;
9007 	bool virt;
9008 	bool huge;
9009 
9010 	/* allow the kernel cmdline to have a say */
9011 	if (!numentries) {
9012 		/* round applicable memory size up to nearest megabyte */
9013 		numentries = nr_kernel_pages;
9014 		numentries -= arch_reserved_kernel_pages();
9015 
9016 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9017 		if (PAGE_SHIFT < 20)
9018 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9019 
9020 #if __BITS_PER_LONG > 32
9021 		if (!high_limit) {
9022 			unsigned long adapt;
9023 
9024 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9025 			     adapt <<= ADAPT_SCALE_SHIFT)
9026 				scale++;
9027 		}
9028 #endif
9029 
9030 		/* limit to 1 bucket per 2^scale bytes of low memory */
9031 		if (scale > PAGE_SHIFT)
9032 			numentries >>= (scale - PAGE_SHIFT);
9033 		else
9034 			numentries <<= (PAGE_SHIFT - scale);
9035 
9036 		/* Make sure we've got at least a 0-order allocation.. */
9037 		if (unlikely(flags & HASH_SMALL)) {
9038 			/* Makes no sense without HASH_EARLY */
9039 			WARN_ON(!(flags & HASH_EARLY));
9040 			if (!(numentries >> *_hash_shift)) {
9041 				numentries = 1UL << *_hash_shift;
9042 				BUG_ON(!numentries);
9043 			}
9044 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9045 			numentries = PAGE_SIZE / bucketsize;
9046 	}
9047 	numentries = roundup_pow_of_two(numentries);
9048 
9049 	/* limit allocation size to 1/16 total memory by default */
9050 	if (max == 0) {
9051 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9052 		do_div(max, bucketsize);
9053 	}
9054 	max = min(max, 0x80000000ULL);
9055 
9056 	if (numentries < low_limit)
9057 		numentries = low_limit;
9058 	if (numentries > max)
9059 		numentries = max;
9060 
9061 	log2qty = ilog2(numentries);
9062 
9063 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9064 	do {
9065 		virt = false;
9066 		size = bucketsize << log2qty;
9067 		if (flags & HASH_EARLY) {
9068 			if (flags & HASH_ZERO)
9069 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9070 			else
9071 				table = memblock_alloc_raw(size,
9072 							   SMP_CACHE_BYTES);
9073 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9074 			table = vmalloc_huge(size, gfp_flags);
9075 			virt = true;
9076 			if (table)
9077 				huge = is_vm_area_hugepages(table);
9078 		} else {
9079 			/*
9080 			 * If bucketsize is not a power-of-two, we may free
9081 			 * some pages at the end of hash table which
9082 			 * alloc_pages_exact() automatically does
9083 			 */
9084 			table = alloc_pages_exact(size, gfp_flags);
9085 			kmemleak_alloc(table, size, 1, gfp_flags);
9086 		}
9087 	} while (!table && size > PAGE_SIZE && --log2qty);
9088 
9089 	if (!table)
9090 		panic("Failed to allocate %s hash table\n", tablename);
9091 
9092 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9093 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9094 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9095 
9096 	if (_hash_shift)
9097 		*_hash_shift = log2qty;
9098 	if (_hash_mask)
9099 		*_hash_mask = (1 << log2qty) - 1;
9100 
9101 	return table;
9102 }
9103 
9104 #ifdef CONFIG_CONTIG_ALLOC
9105 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9106 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9107 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9108 static void alloc_contig_dump_pages(struct list_head *page_list)
9109 {
9110 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9111 
9112 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9113 		struct page *page;
9114 
9115 		dump_stack();
9116 		list_for_each_entry(page, page_list, lru)
9117 			dump_page(page, "migration failure");
9118 	}
9119 }
9120 #else
9121 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9122 {
9123 }
9124 #endif
9125 
9126 /* [start, end) must belong to a single zone. */
9127 int __alloc_contig_migrate_range(struct compact_control *cc,
9128 					unsigned long start, unsigned long end)
9129 {
9130 	/* This function is based on compact_zone() from compaction.c. */
9131 	unsigned int nr_reclaimed;
9132 	unsigned long pfn = start;
9133 	unsigned int tries = 0;
9134 	int ret = 0;
9135 	struct migration_target_control mtc = {
9136 		.nid = zone_to_nid(cc->zone),
9137 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9138 	};
9139 
9140 	lru_cache_disable();
9141 
9142 	while (pfn < end || !list_empty(&cc->migratepages)) {
9143 		if (fatal_signal_pending(current)) {
9144 			ret = -EINTR;
9145 			break;
9146 		}
9147 
9148 		if (list_empty(&cc->migratepages)) {
9149 			cc->nr_migratepages = 0;
9150 			ret = isolate_migratepages_range(cc, pfn, end);
9151 			if (ret && ret != -EAGAIN)
9152 				break;
9153 			pfn = cc->migrate_pfn;
9154 			tries = 0;
9155 		} else if (++tries == 5) {
9156 			ret = -EBUSY;
9157 			break;
9158 		}
9159 
9160 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9161 							&cc->migratepages);
9162 		cc->nr_migratepages -= nr_reclaimed;
9163 
9164 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9165 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9166 
9167 		/*
9168 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9169 		 * to retry again over this error, so do the same here.
9170 		 */
9171 		if (ret == -ENOMEM)
9172 			break;
9173 	}
9174 
9175 	lru_cache_enable();
9176 	if (ret < 0) {
9177 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9178 			alloc_contig_dump_pages(&cc->migratepages);
9179 		putback_movable_pages(&cc->migratepages);
9180 		return ret;
9181 	}
9182 	return 0;
9183 }
9184 
9185 /**
9186  * alloc_contig_range() -- tries to allocate given range of pages
9187  * @start:	start PFN to allocate
9188  * @end:	one-past-the-last PFN to allocate
9189  * @migratetype:	migratetype of the underlying pageblocks (either
9190  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9191  *			in range must have the same migratetype and it must
9192  *			be either of the two.
9193  * @gfp_mask:	GFP mask to use during compaction
9194  *
9195  * The PFN range does not have to be pageblock aligned. The PFN range must
9196  * belong to a single zone.
9197  *
9198  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9199  * pageblocks in the range.  Once isolated, the pageblocks should not
9200  * be modified by others.
9201  *
9202  * Return: zero on success or negative error code.  On success all
9203  * pages which PFN is in [start, end) are allocated for the caller and
9204  * need to be freed with free_contig_range().
9205  */
9206 int alloc_contig_range(unsigned long start, unsigned long end,
9207 		       unsigned migratetype, gfp_t gfp_mask)
9208 {
9209 	unsigned long outer_start, outer_end;
9210 	int order;
9211 	int ret = 0;
9212 
9213 	struct compact_control cc = {
9214 		.nr_migratepages = 0,
9215 		.order = -1,
9216 		.zone = page_zone(pfn_to_page(start)),
9217 		.mode = MIGRATE_SYNC,
9218 		.ignore_skip_hint = true,
9219 		.no_set_skip_hint = true,
9220 		.gfp_mask = current_gfp_context(gfp_mask),
9221 		.alloc_contig = true,
9222 	};
9223 	INIT_LIST_HEAD(&cc.migratepages);
9224 
9225 	/*
9226 	 * What we do here is we mark all pageblocks in range as
9227 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9228 	 * have different sizes, and due to the way page allocator
9229 	 * work, start_isolate_page_range() has special handlings for this.
9230 	 *
9231 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9232 	 * migrate the pages from an unaligned range (ie. pages that
9233 	 * we are interested in). This will put all the pages in
9234 	 * range back to page allocator as MIGRATE_ISOLATE.
9235 	 *
9236 	 * When this is done, we take the pages in range from page
9237 	 * allocator removing them from the buddy system.  This way
9238 	 * page allocator will never consider using them.
9239 	 *
9240 	 * This lets us mark the pageblocks back as
9241 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9242 	 * aligned range but not in the unaligned, original range are
9243 	 * put back to page allocator so that buddy can use them.
9244 	 */
9245 
9246 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9247 	if (ret)
9248 		goto done;
9249 
9250 	drain_all_pages(cc.zone);
9251 
9252 	/*
9253 	 * In case of -EBUSY, we'd like to know which page causes problem.
9254 	 * So, just fall through. test_pages_isolated() has a tracepoint
9255 	 * which will report the busy page.
9256 	 *
9257 	 * It is possible that busy pages could become available before
9258 	 * the call to test_pages_isolated, and the range will actually be
9259 	 * allocated.  So, if we fall through be sure to clear ret so that
9260 	 * -EBUSY is not accidentally used or returned to caller.
9261 	 */
9262 	ret = __alloc_contig_migrate_range(&cc, start, end);
9263 	if (ret && ret != -EBUSY)
9264 		goto done;
9265 	ret = 0;
9266 
9267 	/*
9268 	 * Pages from [start, end) are within a pageblock_nr_pages
9269 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9270 	 * more, all pages in [start, end) are free in page allocator.
9271 	 * What we are going to do is to allocate all pages from
9272 	 * [start, end) (that is remove them from page allocator).
9273 	 *
9274 	 * The only problem is that pages at the beginning and at the
9275 	 * end of interesting range may be not aligned with pages that
9276 	 * page allocator holds, ie. they can be part of higher order
9277 	 * pages.  Because of this, we reserve the bigger range and
9278 	 * once this is done free the pages we are not interested in.
9279 	 *
9280 	 * We don't have to hold zone->lock here because the pages are
9281 	 * isolated thus they won't get removed from buddy.
9282 	 */
9283 
9284 	order = 0;
9285 	outer_start = start;
9286 	while (!PageBuddy(pfn_to_page(outer_start))) {
9287 		if (++order >= MAX_ORDER) {
9288 			outer_start = start;
9289 			break;
9290 		}
9291 		outer_start &= ~0UL << order;
9292 	}
9293 
9294 	if (outer_start != start) {
9295 		order = buddy_order(pfn_to_page(outer_start));
9296 
9297 		/*
9298 		 * outer_start page could be small order buddy page and
9299 		 * it doesn't include start page. Adjust outer_start
9300 		 * in this case to report failed page properly
9301 		 * on tracepoint in test_pages_isolated()
9302 		 */
9303 		if (outer_start + (1UL << order) <= start)
9304 			outer_start = start;
9305 	}
9306 
9307 	/* Make sure the range is really isolated. */
9308 	if (test_pages_isolated(outer_start, end, 0)) {
9309 		ret = -EBUSY;
9310 		goto done;
9311 	}
9312 
9313 	/* Grab isolated pages from freelists. */
9314 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9315 	if (!outer_end) {
9316 		ret = -EBUSY;
9317 		goto done;
9318 	}
9319 
9320 	/* Free head and tail (if any) */
9321 	if (start != outer_start)
9322 		free_contig_range(outer_start, start - outer_start);
9323 	if (end != outer_end)
9324 		free_contig_range(end, outer_end - end);
9325 
9326 done:
9327 	undo_isolate_page_range(start, end, migratetype);
9328 	return ret;
9329 }
9330 EXPORT_SYMBOL(alloc_contig_range);
9331 
9332 static int __alloc_contig_pages(unsigned long start_pfn,
9333 				unsigned long nr_pages, gfp_t gfp_mask)
9334 {
9335 	unsigned long end_pfn = start_pfn + nr_pages;
9336 
9337 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9338 				  gfp_mask);
9339 }
9340 
9341 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9342 				   unsigned long nr_pages)
9343 {
9344 	unsigned long i, end_pfn = start_pfn + nr_pages;
9345 	struct page *page;
9346 
9347 	for (i = start_pfn; i < end_pfn; i++) {
9348 		page = pfn_to_online_page(i);
9349 		if (!page)
9350 			return false;
9351 
9352 		if (page_zone(page) != z)
9353 			return false;
9354 
9355 		if (PageReserved(page))
9356 			return false;
9357 	}
9358 	return true;
9359 }
9360 
9361 static bool zone_spans_last_pfn(const struct zone *zone,
9362 				unsigned long start_pfn, unsigned long nr_pages)
9363 {
9364 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9365 
9366 	return zone_spans_pfn(zone, last_pfn);
9367 }
9368 
9369 /**
9370  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9371  * @nr_pages:	Number of contiguous pages to allocate
9372  * @gfp_mask:	GFP mask to limit search and used during compaction
9373  * @nid:	Target node
9374  * @nodemask:	Mask for other possible nodes
9375  *
9376  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9377  * on an applicable zonelist to find a contiguous pfn range which can then be
9378  * tried for allocation with alloc_contig_range(). This routine is intended
9379  * for allocation requests which can not be fulfilled with the buddy allocator.
9380  *
9381  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9382  * power of two, then allocated range is also guaranteed to be aligned to same
9383  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9384  *
9385  * Allocated pages can be freed with free_contig_range() or by manually calling
9386  * __free_page() on each allocated page.
9387  *
9388  * Return: pointer to contiguous pages on success, or NULL if not successful.
9389  */
9390 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9391 				int nid, nodemask_t *nodemask)
9392 {
9393 	unsigned long ret, pfn, flags;
9394 	struct zonelist *zonelist;
9395 	struct zone *zone;
9396 	struct zoneref *z;
9397 
9398 	zonelist = node_zonelist(nid, gfp_mask);
9399 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9400 					gfp_zone(gfp_mask), nodemask) {
9401 		spin_lock_irqsave(&zone->lock, flags);
9402 
9403 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9404 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9405 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9406 				/*
9407 				 * We release the zone lock here because
9408 				 * alloc_contig_range() will also lock the zone
9409 				 * at some point. If there's an allocation
9410 				 * spinning on this lock, it may win the race
9411 				 * and cause alloc_contig_range() to fail...
9412 				 */
9413 				spin_unlock_irqrestore(&zone->lock, flags);
9414 				ret = __alloc_contig_pages(pfn, nr_pages,
9415 							gfp_mask);
9416 				if (!ret)
9417 					return pfn_to_page(pfn);
9418 				spin_lock_irqsave(&zone->lock, flags);
9419 			}
9420 			pfn += nr_pages;
9421 		}
9422 		spin_unlock_irqrestore(&zone->lock, flags);
9423 	}
9424 	return NULL;
9425 }
9426 #endif /* CONFIG_CONTIG_ALLOC */
9427 
9428 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9429 {
9430 	unsigned long count = 0;
9431 
9432 	for (; nr_pages--; pfn++) {
9433 		struct page *page = pfn_to_page(pfn);
9434 
9435 		count += page_count(page) != 1;
9436 		__free_page(page);
9437 	}
9438 	WARN(count != 0, "%lu pages are still in use!\n", count);
9439 }
9440 EXPORT_SYMBOL(free_contig_range);
9441 
9442 /*
9443  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9444  * page high values need to be recalculated.
9445  */
9446 void zone_pcp_update(struct zone *zone, int cpu_online)
9447 {
9448 	mutex_lock(&pcp_batch_high_lock);
9449 	zone_set_pageset_high_and_batch(zone, cpu_online);
9450 	mutex_unlock(&pcp_batch_high_lock);
9451 }
9452 
9453 /*
9454  * Effectively disable pcplists for the zone by setting the high limit to 0
9455  * and draining all cpus. A concurrent page freeing on another CPU that's about
9456  * to put the page on pcplist will either finish before the drain and the page
9457  * will be drained, or observe the new high limit and skip the pcplist.
9458  *
9459  * Must be paired with a call to zone_pcp_enable().
9460  */
9461 void zone_pcp_disable(struct zone *zone)
9462 {
9463 	mutex_lock(&pcp_batch_high_lock);
9464 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9465 	__drain_all_pages(zone, true);
9466 }
9467 
9468 void zone_pcp_enable(struct zone *zone)
9469 {
9470 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9471 	mutex_unlock(&pcp_batch_high_lock);
9472 }
9473 
9474 void zone_pcp_reset(struct zone *zone)
9475 {
9476 	int cpu;
9477 	struct per_cpu_zonestat *pzstats;
9478 
9479 	if (zone->per_cpu_pageset != &boot_pageset) {
9480 		for_each_online_cpu(cpu) {
9481 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9482 			drain_zonestat(zone, pzstats);
9483 		}
9484 		free_percpu(zone->per_cpu_pageset);
9485 		free_percpu(zone->per_cpu_zonestats);
9486 		zone->per_cpu_pageset = &boot_pageset;
9487 		zone->per_cpu_zonestats = &boot_zonestats;
9488 	}
9489 }
9490 
9491 #ifdef CONFIG_MEMORY_HOTREMOVE
9492 /*
9493  * All pages in the range must be in a single zone, must not contain holes,
9494  * must span full sections, and must be isolated before calling this function.
9495  */
9496 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9497 {
9498 	unsigned long pfn = start_pfn;
9499 	struct page *page;
9500 	struct zone *zone;
9501 	unsigned int order;
9502 	unsigned long flags;
9503 
9504 	offline_mem_sections(pfn, end_pfn);
9505 	zone = page_zone(pfn_to_page(pfn));
9506 	spin_lock_irqsave(&zone->lock, flags);
9507 	while (pfn < end_pfn) {
9508 		page = pfn_to_page(pfn);
9509 		/*
9510 		 * The HWPoisoned page may be not in buddy system, and
9511 		 * page_count() is not 0.
9512 		 */
9513 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9514 			pfn++;
9515 			continue;
9516 		}
9517 		/*
9518 		 * At this point all remaining PageOffline() pages have a
9519 		 * reference count of 0 and can simply be skipped.
9520 		 */
9521 		if (PageOffline(page)) {
9522 			BUG_ON(page_count(page));
9523 			BUG_ON(PageBuddy(page));
9524 			pfn++;
9525 			continue;
9526 		}
9527 
9528 		BUG_ON(page_count(page));
9529 		BUG_ON(!PageBuddy(page));
9530 		order = buddy_order(page);
9531 		del_page_from_free_list(page, zone, order);
9532 		pfn += (1 << order);
9533 	}
9534 	spin_unlock_irqrestore(&zone->lock, flags);
9535 }
9536 #endif
9537 
9538 /*
9539  * This function returns a stable result only if called under zone lock.
9540  */
9541 bool is_free_buddy_page(struct page *page)
9542 {
9543 	unsigned long pfn = page_to_pfn(page);
9544 	unsigned int order;
9545 
9546 	for (order = 0; order < MAX_ORDER; order++) {
9547 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9548 
9549 		if (PageBuddy(page_head) &&
9550 		    buddy_order_unsafe(page_head) >= order)
9551 			break;
9552 	}
9553 
9554 	return order < MAX_ORDER;
9555 }
9556 EXPORT_SYMBOL(is_free_buddy_page);
9557 
9558 #ifdef CONFIG_MEMORY_FAILURE
9559 /*
9560  * Break down a higher-order page in sub-pages, and keep our target out of
9561  * buddy allocator.
9562  */
9563 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9564 				   struct page *target, int low, int high,
9565 				   int migratetype)
9566 {
9567 	unsigned long size = 1 << high;
9568 	struct page *current_buddy, *next_page;
9569 
9570 	while (high > low) {
9571 		high--;
9572 		size >>= 1;
9573 
9574 		if (target >= &page[size]) {
9575 			next_page = page + size;
9576 			current_buddy = page;
9577 		} else {
9578 			next_page = page;
9579 			current_buddy = page + size;
9580 		}
9581 
9582 		if (set_page_guard(zone, current_buddy, high, migratetype))
9583 			continue;
9584 
9585 		if (current_buddy != target) {
9586 			add_to_free_list(current_buddy, zone, high, migratetype);
9587 			set_buddy_order(current_buddy, high);
9588 			page = next_page;
9589 		}
9590 	}
9591 }
9592 
9593 /*
9594  * Take a page that will be marked as poisoned off the buddy allocator.
9595  */
9596 bool take_page_off_buddy(struct page *page)
9597 {
9598 	struct zone *zone = page_zone(page);
9599 	unsigned long pfn = page_to_pfn(page);
9600 	unsigned long flags;
9601 	unsigned int order;
9602 	bool ret = false;
9603 
9604 	spin_lock_irqsave(&zone->lock, flags);
9605 	for (order = 0; order < MAX_ORDER; order++) {
9606 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9607 		int page_order = buddy_order(page_head);
9608 
9609 		if (PageBuddy(page_head) && page_order >= order) {
9610 			unsigned long pfn_head = page_to_pfn(page_head);
9611 			int migratetype = get_pfnblock_migratetype(page_head,
9612 								   pfn_head);
9613 
9614 			del_page_from_free_list(page_head, zone, page_order);
9615 			break_down_buddy_pages(zone, page_head, page, 0,
9616 						page_order, migratetype);
9617 			SetPageHWPoisonTakenOff(page);
9618 			if (!is_migrate_isolate(migratetype))
9619 				__mod_zone_freepage_state(zone, -1, migratetype);
9620 			ret = true;
9621 			break;
9622 		}
9623 		if (page_count(page_head) > 0)
9624 			break;
9625 	}
9626 	spin_unlock_irqrestore(&zone->lock, flags);
9627 	return ret;
9628 }
9629 
9630 /*
9631  * Cancel takeoff done by take_page_off_buddy().
9632  */
9633 bool put_page_back_buddy(struct page *page)
9634 {
9635 	struct zone *zone = page_zone(page);
9636 	unsigned long pfn = page_to_pfn(page);
9637 	unsigned long flags;
9638 	int migratetype = get_pfnblock_migratetype(page, pfn);
9639 	bool ret = false;
9640 
9641 	spin_lock_irqsave(&zone->lock, flags);
9642 	if (put_page_testzero(page)) {
9643 		ClearPageHWPoisonTakenOff(page);
9644 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9645 		if (TestClearPageHWPoison(page)) {
9646 			ret = true;
9647 		}
9648 	}
9649 	spin_unlock_irqrestore(&zone->lock, flags);
9650 
9651 	return ret;
9652 }
9653 #endif
9654 
9655 #ifdef CONFIG_ZONE_DMA
9656 bool has_managed_dma(void)
9657 {
9658 	struct pglist_data *pgdat;
9659 
9660 	for_each_online_pgdat(pgdat) {
9661 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9662 
9663 		if (managed_zone(zone))
9664 			return true;
9665 	}
9666 	return false;
9667 }
9668 #endif /* CONFIG_ZONE_DMA */
9669