1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 int _node_numa_mem_[MAX_NUMNODES]; 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 DEFINE_MUTEX(pcpu_drain_mutex); 107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return section_to_usemap(__pfn_to_section(pfn)); 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 mem_cgroup_uncharge(page); 674 __free_pages_ok(page, compound_order(page)); 675 } 676 677 void prep_compound_page(struct page *page, unsigned int order) 678 { 679 int i; 680 int nr_pages = 1 << order; 681 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 683 set_compound_order(page, order); 684 __SetPageHead(page); 685 for (i = 1; i < nr_pages; i++) { 686 struct page *p = page + i; 687 set_page_count(p, 0); 688 p->mapping = TAIL_MAPPING; 689 set_compound_head(p, page); 690 } 691 atomic_set(compound_mapcount_ptr(page), -1); 692 } 693 694 #ifdef CONFIG_DEBUG_PAGEALLOC 695 unsigned int _debug_guardpage_minorder; 696 697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 699 #else 700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 701 #endif 702 EXPORT_SYMBOL(_debug_pagealloc_enabled); 703 704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 705 706 static int __init early_debug_pagealloc(char *buf) 707 { 708 bool enable = false; 709 710 if (kstrtobool(buf, &enable)) 711 return -EINVAL; 712 713 if (enable) 714 static_branch_enable(&_debug_pagealloc_enabled); 715 716 return 0; 717 } 718 early_param("debug_pagealloc", early_debug_pagealloc); 719 720 static void init_debug_guardpage(void) 721 { 722 if (!debug_pagealloc_enabled()) 723 return; 724 725 if (!debug_guardpage_minorder()) 726 return; 727 728 static_branch_enable(&_debug_guardpage_enabled); 729 } 730 731 static int __init debug_guardpage_minorder_setup(char *buf) 732 { 733 unsigned long res; 734 735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 736 pr_err("Bad debug_guardpage_minorder value\n"); 737 return 0; 738 } 739 _debug_guardpage_minorder = res; 740 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 741 return 0; 742 } 743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 744 745 static inline bool set_page_guard(struct zone *zone, struct page *page, 746 unsigned int order, int migratetype) 747 { 748 if (!debug_guardpage_enabled()) 749 return false; 750 751 if (order >= debug_guardpage_minorder()) 752 return false; 753 754 __SetPageGuard(page); 755 INIT_LIST_HEAD(&page->lru); 756 set_page_private(page, order); 757 /* Guard pages are not available for any usage */ 758 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 759 760 return true; 761 } 762 763 static inline void clear_page_guard(struct zone *zone, struct page *page, 764 unsigned int order, int migratetype) 765 { 766 if (!debug_guardpage_enabled()) 767 return; 768 769 __ClearPageGuard(page); 770 771 set_page_private(page, 0); 772 if (!is_migrate_isolate(migratetype)) 773 __mod_zone_freepage_state(zone, (1 << order), migratetype); 774 } 775 #else 776 static inline bool set_page_guard(struct zone *zone, struct page *page, 777 unsigned int order, int migratetype) { return false; } 778 static inline void clear_page_guard(struct zone *zone, struct page *page, 779 unsigned int order, int migratetype) {} 780 #endif 781 782 static inline void set_page_order(struct page *page, unsigned int order) 783 { 784 set_page_private(page, order); 785 __SetPageBuddy(page); 786 } 787 788 /* 789 * This function checks whether a page is free && is the buddy 790 * we can coalesce a page and its buddy if 791 * (a) the buddy is not in a hole (check before calling!) && 792 * (b) the buddy is in the buddy system && 793 * (c) a page and its buddy have the same order && 794 * (d) a page and its buddy are in the same zone. 795 * 796 * For recording whether a page is in the buddy system, we set PageBuddy. 797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 798 * 799 * For recording page's order, we use page_private(page). 800 */ 801 static inline int page_is_buddy(struct page *page, struct page *buddy, 802 unsigned int order) 803 { 804 if (page_is_guard(buddy) && page_order(buddy) == order) { 805 if (page_zone_id(page) != page_zone_id(buddy)) 806 return 0; 807 808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 809 810 return 1; 811 } 812 813 if (PageBuddy(buddy) && page_order(buddy) == order) { 814 /* 815 * zone check is done late to avoid uselessly 816 * calculating zone/node ids for pages that could 817 * never merge. 818 */ 819 if (page_zone_id(page) != page_zone_id(buddy)) 820 return 0; 821 822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 823 824 return 1; 825 } 826 return 0; 827 } 828 829 #ifdef CONFIG_COMPACTION 830 static inline struct capture_control *task_capc(struct zone *zone) 831 { 832 struct capture_control *capc = current->capture_control; 833 834 return capc && 835 !(current->flags & PF_KTHREAD) && 836 !capc->page && 837 capc->cc->zone == zone && 838 capc->cc->direct_compaction ? capc : NULL; 839 } 840 841 static inline bool 842 compaction_capture(struct capture_control *capc, struct page *page, 843 int order, int migratetype) 844 { 845 if (!capc || order != capc->cc->order) 846 return false; 847 848 /* Do not accidentally pollute CMA or isolated regions*/ 849 if (is_migrate_cma(migratetype) || 850 is_migrate_isolate(migratetype)) 851 return false; 852 853 /* 854 * Do not let lower order allocations polluate a movable pageblock. 855 * This might let an unmovable request use a reclaimable pageblock 856 * and vice-versa but no more than normal fallback logic which can 857 * have trouble finding a high-order free page. 858 */ 859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 860 return false; 861 862 capc->page = page; 863 return true; 864 } 865 866 #else 867 static inline struct capture_control *task_capc(struct zone *zone) 868 { 869 return NULL; 870 } 871 872 static inline bool 873 compaction_capture(struct capture_control *capc, struct page *page, 874 int order, int migratetype) 875 { 876 return false; 877 } 878 #endif /* CONFIG_COMPACTION */ 879 880 /* 881 * Freeing function for a buddy system allocator. 882 * 883 * The concept of a buddy system is to maintain direct-mapped table 884 * (containing bit values) for memory blocks of various "orders". 885 * The bottom level table contains the map for the smallest allocatable 886 * units of memory (here, pages), and each level above it describes 887 * pairs of units from the levels below, hence, "buddies". 888 * At a high level, all that happens here is marking the table entry 889 * at the bottom level available, and propagating the changes upward 890 * as necessary, plus some accounting needed to play nicely with other 891 * parts of the VM system. 892 * At each level, we keep a list of pages, which are heads of continuous 893 * free pages of length of (1 << order) and marked with PageBuddy. 894 * Page's order is recorded in page_private(page) field. 895 * So when we are allocating or freeing one, we can derive the state of the 896 * other. That is, if we allocate a small block, and both were 897 * free, the remainder of the region must be split into blocks. 898 * If a block is freed, and its buddy is also free, then this 899 * triggers coalescing into a block of larger size. 900 * 901 * -- nyc 902 */ 903 904 static inline void __free_one_page(struct page *page, 905 unsigned long pfn, 906 struct zone *zone, unsigned int order, 907 int migratetype) 908 { 909 unsigned long combined_pfn; 910 unsigned long uninitialized_var(buddy_pfn); 911 struct page *buddy; 912 unsigned int max_order; 913 struct capture_control *capc = task_capc(zone); 914 915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 916 917 VM_BUG_ON(!zone_is_initialized(zone)); 918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 919 920 VM_BUG_ON(migratetype == -1); 921 if (likely(!is_migrate_isolate(migratetype))) 922 __mod_zone_freepage_state(zone, 1 << order, migratetype); 923 924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 925 VM_BUG_ON_PAGE(bad_range(zone, page), page); 926 927 continue_merging: 928 while (order < max_order - 1) { 929 if (compaction_capture(capc, page, order, migratetype)) { 930 __mod_zone_freepage_state(zone, -(1 << order), 931 migratetype); 932 return; 933 } 934 buddy_pfn = __find_buddy_pfn(pfn, order); 935 buddy = page + (buddy_pfn - pfn); 936 937 if (!pfn_valid_within(buddy_pfn)) 938 goto done_merging; 939 if (!page_is_buddy(page, buddy, order)) 940 goto done_merging; 941 /* 942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 943 * merge with it and move up one order. 944 */ 945 if (page_is_guard(buddy)) 946 clear_page_guard(zone, buddy, order, migratetype); 947 else 948 del_page_from_free_area(buddy, &zone->free_area[order]); 949 combined_pfn = buddy_pfn & pfn; 950 page = page + (combined_pfn - pfn); 951 pfn = combined_pfn; 952 order++; 953 } 954 if (max_order < MAX_ORDER) { 955 /* If we are here, it means order is >= pageblock_order. 956 * We want to prevent merge between freepages on isolate 957 * pageblock and normal pageblock. Without this, pageblock 958 * isolation could cause incorrect freepage or CMA accounting. 959 * 960 * We don't want to hit this code for the more frequent 961 * low-order merging. 962 */ 963 if (unlikely(has_isolate_pageblock(zone))) { 964 int buddy_mt; 965 966 buddy_pfn = __find_buddy_pfn(pfn, order); 967 buddy = page + (buddy_pfn - pfn); 968 buddy_mt = get_pageblock_migratetype(buddy); 969 970 if (migratetype != buddy_mt 971 && (is_migrate_isolate(migratetype) || 972 is_migrate_isolate(buddy_mt))) 973 goto done_merging; 974 } 975 max_order++; 976 goto continue_merging; 977 } 978 979 done_merging: 980 set_page_order(page, order); 981 982 /* 983 * If this is not the largest possible page, check if the buddy 984 * of the next-highest order is free. If it is, it's possible 985 * that pages are being freed that will coalesce soon. In case, 986 * that is happening, add the free page to the tail of the list 987 * so it's less likely to be used soon and more likely to be merged 988 * as a higher order page 989 */ 990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 991 && !is_shuffle_order(order)) { 992 struct page *higher_page, *higher_buddy; 993 combined_pfn = buddy_pfn & pfn; 994 higher_page = page + (combined_pfn - pfn); 995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 996 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 997 if (pfn_valid_within(buddy_pfn) && 998 page_is_buddy(higher_page, higher_buddy, order + 1)) { 999 add_to_free_area_tail(page, &zone->free_area[order], 1000 migratetype); 1001 return; 1002 } 1003 } 1004 1005 if (is_shuffle_order(order)) 1006 add_to_free_area_random(page, &zone->free_area[order], 1007 migratetype); 1008 else 1009 add_to_free_area(page, &zone->free_area[order], migratetype); 1010 1011 } 1012 1013 /* 1014 * A bad page could be due to a number of fields. Instead of multiple branches, 1015 * try and check multiple fields with one check. The caller must do a detailed 1016 * check if necessary. 1017 */ 1018 static inline bool page_expected_state(struct page *page, 1019 unsigned long check_flags) 1020 { 1021 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1022 return false; 1023 1024 if (unlikely((unsigned long)page->mapping | 1025 page_ref_count(page) | 1026 #ifdef CONFIG_MEMCG 1027 (unsigned long)page->mem_cgroup | 1028 #endif 1029 (page->flags & check_flags))) 1030 return false; 1031 1032 return true; 1033 } 1034 1035 static void free_pages_check_bad(struct page *page) 1036 { 1037 const char *bad_reason; 1038 unsigned long bad_flags; 1039 1040 bad_reason = NULL; 1041 bad_flags = 0; 1042 1043 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1044 bad_reason = "nonzero mapcount"; 1045 if (unlikely(page->mapping != NULL)) 1046 bad_reason = "non-NULL mapping"; 1047 if (unlikely(page_ref_count(page) != 0)) 1048 bad_reason = "nonzero _refcount"; 1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1052 } 1053 #ifdef CONFIG_MEMCG 1054 if (unlikely(page->mem_cgroup)) 1055 bad_reason = "page still charged to cgroup"; 1056 #endif 1057 bad_page(page, bad_reason, bad_flags); 1058 } 1059 1060 static inline int free_pages_check(struct page *page) 1061 { 1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1063 return 0; 1064 1065 /* Something has gone sideways, find it */ 1066 free_pages_check_bad(page); 1067 return 1; 1068 } 1069 1070 static int free_tail_pages_check(struct page *head_page, struct page *page) 1071 { 1072 int ret = 1; 1073 1074 /* 1075 * We rely page->lru.next never has bit 0 set, unless the page 1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1077 */ 1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1079 1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1081 ret = 0; 1082 goto out; 1083 } 1084 switch (page - head_page) { 1085 case 1: 1086 /* the first tail page: ->mapping may be compound_mapcount() */ 1087 if (unlikely(compound_mapcount(page))) { 1088 bad_page(page, "nonzero compound_mapcount", 0); 1089 goto out; 1090 } 1091 break; 1092 case 2: 1093 /* 1094 * the second tail page: ->mapping is 1095 * deferred_list.next -- ignore value. 1096 */ 1097 break; 1098 default: 1099 if (page->mapping != TAIL_MAPPING) { 1100 bad_page(page, "corrupted mapping in tail page", 0); 1101 goto out; 1102 } 1103 break; 1104 } 1105 if (unlikely(!PageTail(page))) { 1106 bad_page(page, "PageTail not set", 0); 1107 goto out; 1108 } 1109 if (unlikely(compound_head(page) != head_page)) { 1110 bad_page(page, "compound_head not consistent", 0); 1111 goto out; 1112 } 1113 ret = 0; 1114 out: 1115 page->mapping = NULL; 1116 clear_compound_head(page); 1117 return ret; 1118 } 1119 1120 static void kernel_init_free_pages(struct page *page, int numpages) 1121 { 1122 int i; 1123 1124 for (i = 0; i < numpages; i++) 1125 clear_highpage(page + i); 1126 } 1127 1128 static __always_inline bool free_pages_prepare(struct page *page, 1129 unsigned int order, bool check_free) 1130 { 1131 int bad = 0; 1132 1133 VM_BUG_ON_PAGE(PageTail(page), page); 1134 1135 trace_mm_page_free(page, order); 1136 1137 /* 1138 * Check tail pages before head page information is cleared to 1139 * avoid checking PageCompound for order-0 pages. 1140 */ 1141 if (unlikely(order)) { 1142 bool compound = PageCompound(page); 1143 int i; 1144 1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1146 1147 if (compound) 1148 ClearPageDoubleMap(page); 1149 for (i = 1; i < (1 << order); i++) { 1150 if (compound) 1151 bad += free_tail_pages_check(page, page + i); 1152 if (unlikely(free_pages_check(page + i))) { 1153 bad++; 1154 continue; 1155 } 1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1157 } 1158 } 1159 if (PageMappingFlags(page)) 1160 page->mapping = NULL; 1161 if (memcg_kmem_enabled() && PageKmemcg(page)) 1162 __memcg_kmem_uncharge(page, order); 1163 if (check_free) 1164 bad += free_pages_check(page); 1165 if (bad) 1166 return false; 1167 1168 page_cpupid_reset_last(page); 1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1170 reset_page_owner(page, order); 1171 1172 if (!PageHighMem(page)) { 1173 debug_check_no_locks_freed(page_address(page), 1174 PAGE_SIZE << order); 1175 debug_check_no_obj_freed(page_address(page), 1176 PAGE_SIZE << order); 1177 } 1178 arch_free_page(page, order); 1179 if (want_init_on_free()) 1180 kernel_init_free_pages(page, 1 << order); 1181 1182 kernel_poison_pages(page, 1 << order, 0); 1183 if (debug_pagealloc_enabled()) 1184 kernel_map_pages(page, 1 << order, 0); 1185 1186 kasan_free_nondeferred_pages(page, order); 1187 1188 return true; 1189 } 1190 1191 #ifdef CONFIG_DEBUG_VM 1192 /* 1193 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1194 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1195 * moved from pcp lists to free lists. 1196 */ 1197 static bool free_pcp_prepare(struct page *page) 1198 { 1199 return free_pages_prepare(page, 0, true); 1200 } 1201 1202 static bool bulkfree_pcp_prepare(struct page *page) 1203 { 1204 if (debug_pagealloc_enabled()) 1205 return free_pages_check(page); 1206 else 1207 return false; 1208 } 1209 #else 1210 /* 1211 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1212 * moving from pcp lists to free list in order to reduce overhead. With 1213 * debug_pagealloc enabled, they are checked also immediately when being freed 1214 * to the pcp lists. 1215 */ 1216 static bool free_pcp_prepare(struct page *page) 1217 { 1218 if (debug_pagealloc_enabled()) 1219 return free_pages_prepare(page, 0, true); 1220 else 1221 return free_pages_prepare(page, 0, false); 1222 } 1223 1224 static bool bulkfree_pcp_prepare(struct page *page) 1225 { 1226 return free_pages_check(page); 1227 } 1228 #endif /* CONFIG_DEBUG_VM */ 1229 1230 static inline void prefetch_buddy(struct page *page) 1231 { 1232 unsigned long pfn = page_to_pfn(page); 1233 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1234 struct page *buddy = page + (buddy_pfn - pfn); 1235 1236 prefetch(buddy); 1237 } 1238 1239 /* 1240 * Frees a number of pages from the PCP lists 1241 * Assumes all pages on list are in same zone, and of same order. 1242 * count is the number of pages to free. 1243 * 1244 * If the zone was previously in an "all pages pinned" state then look to 1245 * see if this freeing clears that state. 1246 * 1247 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1248 * pinned" detection logic. 1249 */ 1250 static void free_pcppages_bulk(struct zone *zone, int count, 1251 struct per_cpu_pages *pcp) 1252 { 1253 int migratetype = 0; 1254 int batch_free = 0; 1255 int prefetch_nr = 0; 1256 bool isolated_pageblocks; 1257 struct page *page, *tmp; 1258 LIST_HEAD(head); 1259 1260 while (count) { 1261 struct list_head *list; 1262 1263 /* 1264 * Remove pages from lists in a round-robin fashion. A 1265 * batch_free count is maintained that is incremented when an 1266 * empty list is encountered. This is so more pages are freed 1267 * off fuller lists instead of spinning excessively around empty 1268 * lists 1269 */ 1270 do { 1271 batch_free++; 1272 if (++migratetype == MIGRATE_PCPTYPES) 1273 migratetype = 0; 1274 list = &pcp->lists[migratetype]; 1275 } while (list_empty(list)); 1276 1277 /* This is the only non-empty list. Free them all. */ 1278 if (batch_free == MIGRATE_PCPTYPES) 1279 batch_free = count; 1280 1281 do { 1282 page = list_last_entry(list, struct page, lru); 1283 /* must delete to avoid corrupting pcp list */ 1284 list_del(&page->lru); 1285 pcp->count--; 1286 1287 if (bulkfree_pcp_prepare(page)) 1288 continue; 1289 1290 list_add_tail(&page->lru, &head); 1291 1292 /* 1293 * We are going to put the page back to the global 1294 * pool, prefetch its buddy to speed up later access 1295 * under zone->lock. It is believed the overhead of 1296 * an additional test and calculating buddy_pfn here 1297 * can be offset by reduced memory latency later. To 1298 * avoid excessive prefetching due to large count, only 1299 * prefetch buddy for the first pcp->batch nr of pages. 1300 */ 1301 if (prefetch_nr++ < pcp->batch) 1302 prefetch_buddy(page); 1303 } while (--count && --batch_free && !list_empty(list)); 1304 } 1305 1306 spin_lock(&zone->lock); 1307 isolated_pageblocks = has_isolate_pageblock(zone); 1308 1309 /* 1310 * Use safe version since after __free_one_page(), 1311 * page->lru.next will not point to original list. 1312 */ 1313 list_for_each_entry_safe(page, tmp, &head, lru) { 1314 int mt = get_pcppage_migratetype(page); 1315 /* MIGRATE_ISOLATE page should not go to pcplists */ 1316 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1317 /* Pageblock could have been isolated meanwhile */ 1318 if (unlikely(isolated_pageblocks)) 1319 mt = get_pageblock_migratetype(page); 1320 1321 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1322 trace_mm_page_pcpu_drain(page, 0, mt); 1323 } 1324 spin_unlock(&zone->lock); 1325 } 1326 1327 static void free_one_page(struct zone *zone, 1328 struct page *page, unsigned long pfn, 1329 unsigned int order, 1330 int migratetype) 1331 { 1332 spin_lock(&zone->lock); 1333 if (unlikely(has_isolate_pageblock(zone) || 1334 is_migrate_isolate(migratetype))) { 1335 migratetype = get_pfnblock_migratetype(page, pfn); 1336 } 1337 __free_one_page(page, pfn, zone, order, migratetype); 1338 spin_unlock(&zone->lock); 1339 } 1340 1341 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1342 unsigned long zone, int nid) 1343 { 1344 mm_zero_struct_page(page); 1345 set_page_links(page, zone, nid, pfn); 1346 init_page_count(page); 1347 page_mapcount_reset(page); 1348 page_cpupid_reset_last(page); 1349 page_kasan_tag_reset(page); 1350 1351 INIT_LIST_HEAD(&page->lru); 1352 #ifdef WANT_PAGE_VIRTUAL 1353 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1354 if (!is_highmem_idx(zone)) 1355 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1356 #endif 1357 } 1358 1359 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1360 static void __meminit init_reserved_page(unsigned long pfn) 1361 { 1362 pg_data_t *pgdat; 1363 int nid, zid; 1364 1365 if (!early_page_uninitialised(pfn)) 1366 return; 1367 1368 nid = early_pfn_to_nid(pfn); 1369 pgdat = NODE_DATA(nid); 1370 1371 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1372 struct zone *zone = &pgdat->node_zones[zid]; 1373 1374 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1375 break; 1376 } 1377 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1378 } 1379 #else 1380 static inline void init_reserved_page(unsigned long pfn) 1381 { 1382 } 1383 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1384 1385 /* 1386 * Initialised pages do not have PageReserved set. This function is 1387 * called for each range allocated by the bootmem allocator and 1388 * marks the pages PageReserved. The remaining valid pages are later 1389 * sent to the buddy page allocator. 1390 */ 1391 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1392 { 1393 unsigned long start_pfn = PFN_DOWN(start); 1394 unsigned long end_pfn = PFN_UP(end); 1395 1396 for (; start_pfn < end_pfn; start_pfn++) { 1397 if (pfn_valid(start_pfn)) { 1398 struct page *page = pfn_to_page(start_pfn); 1399 1400 init_reserved_page(start_pfn); 1401 1402 /* Avoid false-positive PageTail() */ 1403 INIT_LIST_HEAD(&page->lru); 1404 1405 /* 1406 * no need for atomic set_bit because the struct 1407 * page is not visible yet so nobody should 1408 * access it yet. 1409 */ 1410 __SetPageReserved(page); 1411 } 1412 } 1413 } 1414 1415 static void __free_pages_ok(struct page *page, unsigned int order) 1416 { 1417 unsigned long flags; 1418 int migratetype; 1419 unsigned long pfn = page_to_pfn(page); 1420 1421 if (!free_pages_prepare(page, order, true)) 1422 return; 1423 1424 migratetype = get_pfnblock_migratetype(page, pfn); 1425 local_irq_save(flags); 1426 __count_vm_events(PGFREE, 1 << order); 1427 free_one_page(page_zone(page), page, pfn, order, migratetype); 1428 local_irq_restore(flags); 1429 } 1430 1431 void __free_pages_core(struct page *page, unsigned int order) 1432 { 1433 unsigned int nr_pages = 1 << order; 1434 struct page *p = page; 1435 unsigned int loop; 1436 1437 prefetchw(p); 1438 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1439 prefetchw(p + 1); 1440 __ClearPageReserved(p); 1441 set_page_count(p, 0); 1442 } 1443 __ClearPageReserved(p); 1444 set_page_count(p, 0); 1445 1446 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1447 set_page_refcounted(page); 1448 __free_pages(page, order); 1449 } 1450 1451 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1452 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1453 1454 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1455 1456 int __meminit early_pfn_to_nid(unsigned long pfn) 1457 { 1458 static DEFINE_SPINLOCK(early_pfn_lock); 1459 int nid; 1460 1461 spin_lock(&early_pfn_lock); 1462 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1463 if (nid < 0) 1464 nid = first_online_node; 1465 spin_unlock(&early_pfn_lock); 1466 1467 return nid; 1468 } 1469 #endif 1470 1471 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1472 /* Only safe to use early in boot when initialisation is single-threaded */ 1473 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1474 { 1475 int nid; 1476 1477 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1478 if (nid >= 0 && nid != node) 1479 return false; 1480 return true; 1481 } 1482 1483 #else 1484 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1485 { 1486 return true; 1487 } 1488 #endif 1489 1490 1491 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1492 unsigned int order) 1493 { 1494 if (early_page_uninitialised(pfn)) 1495 return; 1496 __free_pages_core(page, order); 1497 } 1498 1499 /* 1500 * Check that the whole (or subset of) a pageblock given by the interval of 1501 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1502 * with the migration of free compaction scanner. The scanners then need to 1503 * use only pfn_valid_within() check for arches that allow holes within 1504 * pageblocks. 1505 * 1506 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1507 * 1508 * It's possible on some configurations to have a setup like node0 node1 node0 1509 * i.e. it's possible that all pages within a zones range of pages do not 1510 * belong to a single zone. We assume that a border between node0 and node1 1511 * can occur within a single pageblock, but not a node0 node1 node0 1512 * interleaving within a single pageblock. It is therefore sufficient to check 1513 * the first and last page of a pageblock and avoid checking each individual 1514 * page in a pageblock. 1515 */ 1516 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1517 unsigned long end_pfn, struct zone *zone) 1518 { 1519 struct page *start_page; 1520 struct page *end_page; 1521 1522 /* end_pfn is one past the range we are checking */ 1523 end_pfn--; 1524 1525 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1526 return NULL; 1527 1528 start_page = pfn_to_online_page(start_pfn); 1529 if (!start_page) 1530 return NULL; 1531 1532 if (page_zone(start_page) != zone) 1533 return NULL; 1534 1535 end_page = pfn_to_page(end_pfn); 1536 1537 /* This gives a shorter code than deriving page_zone(end_page) */ 1538 if (page_zone_id(start_page) != page_zone_id(end_page)) 1539 return NULL; 1540 1541 return start_page; 1542 } 1543 1544 void set_zone_contiguous(struct zone *zone) 1545 { 1546 unsigned long block_start_pfn = zone->zone_start_pfn; 1547 unsigned long block_end_pfn; 1548 1549 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1550 for (; block_start_pfn < zone_end_pfn(zone); 1551 block_start_pfn = block_end_pfn, 1552 block_end_pfn += pageblock_nr_pages) { 1553 1554 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1555 1556 if (!__pageblock_pfn_to_page(block_start_pfn, 1557 block_end_pfn, zone)) 1558 return; 1559 } 1560 1561 /* We confirm that there is no hole */ 1562 zone->contiguous = true; 1563 } 1564 1565 void clear_zone_contiguous(struct zone *zone) 1566 { 1567 zone->contiguous = false; 1568 } 1569 1570 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1571 static void __init deferred_free_range(unsigned long pfn, 1572 unsigned long nr_pages) 1573 { 1574 struct page *page; 1575 unsigned long i; 1576 1577 if (!nr_pages) 1578 return; 1579 1580 page = pfn_to_page(pfn); 1581 1582 /* Free a large naturally-aligned chunk if possible */ 1583 if (nr_pages == pageblock_nr_pages && 1584 (pfn & (pageblock_nr_pages - 1)) == 0) { 1585 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1586 __free_pages_core(page, pageblock_order); 1587 return; 1588 } 1589 1590 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1591 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1592 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1593 __free_pages_core(page, 0); 1594 } 1595 } 1596 1597 /* Completion tracking for deferred_init_memmap() threads */ 1598 static atomic_t pgdat_init_n_undone __initdata; 1599 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1600 1601 static inline void __init pgdat_init_report_one_done(void) 1602 { 1603 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1604 complete(&pgdat_init_all_done_comp); 1605 } 1606 1607 /* 1608 * Returns true if page needs to be initialized or freed to buddy allocator. 1609 * 1610 * First we check if pfn is valid on architectures where it is possible to have 1611 * holes within pageblock_nr_pages. On systems where it is not possible, this 1612 * function is optimized out. 1613 * 1614 * Then, we check if a current large page is valid by only checking the validity 1615 * of the head pfn. 1616 */ 1617 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1618 { 1619 if (!pfn_valid_within(pfn)) 1620 return false; 1621 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1622 return false; 1623 return true; 1624 } 1625 1626 /* 1627 * Free pages to buddy allocator. Try to free aligned pages in 1628 * pageblock_nr_pages sizes. 1629 */ 1630 static void __init deferred_free_pages(unsigned long pfn, 1631 unsigned long end_pfn) 1632 { 1633 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1634 unsigned long nr_free = 0; 1635 1636 for (; pfn < end_pfn; pfn++) { 1637 if (!deferred_pfn_valid(pfn)) { 1638 deferred_free_range(pfn - nr_free, nr_free); 1639 nr_free = 0; 1640 } else if (!(pfn & nr_pgmask)) { 1641 deferred_free_range(pfn - nr_free, nr_free); 1642 nr_free = 1; 1643 touch_nmi_watchdog(); 1644 } else { 1645 nr_free++; 1646 } 1647 } 1648 /* Free the last block of pages to allocator */ 1649 deferred_free_range(pfn - nr_free, nr_free); 1650 } 1651 1652 /* 1653 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1654 * by performing it only once every pageblock_nr_pages. 1655 * Return number of pages initialized. 1656 */ 1657 static unsigned long __init deferred_init_pages(struct zone *zone, 1658 unsigned long pfn, 1659 unsigned long end_pfn) 1660 { 1661 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1662 int nid = zone_to_nid(zone); 1663 unsigned long nr_pages = 0; 1664 int zid = zone_idx(zone); 1665 struct page *page = NULL; 1666 1667 for (; pfn < end_pfn; pfn++) { 1668 if (!deferred_pfn_valid(pfn)) { 1669 page = NULL; 1670 continue; 1671 } else if (!page || !(pfn & nr_pgmask)) { 1672 page = pfn_to_page(pfn); 1673 touch_nmi_watchdog(); 1674 } else { 1675 page++; 1676 } 1677 __init_single_page(page, pfn, zid, nid); 1678 nr_pages++; 1679 } 1680 return (nr_pages); 1681 } 1682 1683 /* 1684 * This function is meant to pre-load the iterator for the zone init. 1685 * Specifically it walks through the ranges until we are caught up to the 1686 * first_init_pfn value and exits there. If we never encounter the value we 1687 * return false indicating there are no valid ranges left. 1688 */ 1689 static bool __init 1690 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1691 unsigned long *spfn, unsigned long *epfn, 1692 unsigned long first_init_pfn) 1693 { 1694 u64 j; 1695 1696 /* 1697 * Start out by walking through the ranges in this zone that have 1698 * already been initialized. We don't need to do anything with them 1699 * so we just need to flush them out of the system. 1700 */ 1701 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1702 if (*epfn <= first_init_pfn) 1703 continue; 1704 if (*spfn < first_init_pfn) 1705 *spfn = first_init_pfn; 1706 *i = j; 1707 return true; 1708 } 1709 1710 return false; 1711 } 1712 1713 /* 1714 * Initialize and free pages. We do it in two loops: first we initialize 1715 * struct page, then free to buddy allocator, because while we are 1716 * freeing pages we can access pages that are ahead (computing buddy 1717 * page in __free_one_page()). 1718 * 1719 * In order to try and keep some memory in the cache we have the loop 1720 * broken along max page order boundaries. This way we will not cause 1721 * any issues with the buddy page computation. 1722 */ 1723 static unsigned long __init 1724 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1725 unsigned long *end_pfn) 1726 { 1727 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1728 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1729 unsigned long nr_pages = 0; 1730 u64 j = *i; 1731 1732 /* First we loop through and initialize the page values */ 1733 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1734 unsigned long t; 1735 1736 if (mo_pfn <= *start_pfn) 1737 break; 1738 1739 t = min(mo_pfn, *end_pfn); 1740 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1741 1742 if (mo_pfn < *end_pfn) { 1743 *start_pfn = mo_pfn; 1744 break; 1745 } 1746 } 1747 1748 /* Reset values and now loop through freeing pages as needed */ 1749 swap(j, *i); 1750 1751 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1752 unsigned long t; 1753 1754 if (mo_pfn <= spfn) 1755 break; 1756 1757 t = min(mo_pfn, epfn); 1758 deferred_free_pages(spfn, t); 1759 1760 if (mo_pfn <= epfn) 1761 break; 1762 } 1763 1764 return nr_pages; 1765 } 1766 1767 /* Initialise remaining memory on a node */ 1768 static int __init deferred_init_memmap(void *data) 1769 { 1770 pg_data_t *pgdat = data; 1771 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1772 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1773 unsigned long first_init_pfn, flags; 1774 unsigned long start = jiffies; 1775 struct zone *zone; 1776 int zid; 1777 u64 i; 1778 1779 /* Bind memory initialisation thread to a local node if possible */ 1780 if (!cpumask_empty(cpumask)) 1781 set_cpus_allowed_ptr(current, cpumask); 1782 1783 pgdat_resize_lock(pgdat, &flags); 1784 first_init_pfn = pgdat->first_deferred_pfn; 1785 if (first_init_pfn == ULONG_MAX) { 1786 pgdat_resize_unlock(pgdat, &flags); 1787 pgdat_init_report_one_done(); 1788 return 0; 1789 } 1790 1791 /* Sanity check boundaries */ 1792 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1793 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1794 pgdat->first_deferred_pfn = ULONG_MAX; 1795 1796 /* Only the highest zone is deferred so find it */ 1797 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1798 zone = pgdat->node_zones + zid; 1799 if (first_init_pfn < zone_end_pfn(zone)) 1800 break; 1801 } 1802 1803 /* If the zone is empty somebody else may have cleared out the zone */ 1804 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1805 first_init_pfn)) 1806 goto zone_empty; 1807 1808 /* 1809 * Initialize and free pages in MAX_ORDER sized increments so 1810 * that we can avoid introducing any issues with the buddy 1811 * allocator. 1812 */ 1813 while (spfn < epfn) 1814 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1815 zone_empty: 1816 pgdat_resize_unlock(pgdat, &flags); 1817 1818 /* Sanity check that the next zone really is unpopulated */ 1819 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1820 1821 pr_info("node %d initialised, %lu pages in %ums\n", 1822 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1823 1824 pgdat_init_report_one_done(); 1825 return 0; 1826 } 1827 1828 /* 1829 * If this zone has deferred pages, try to grow it by initializing enough 1830 * deferred pages to satisfy the allocation specified by order, rounded up to 1831 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1832 * of SECTION_SIZE bytes by initializing struct pages in increments of 1833 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1834 * 1835 * Return true when zone was grown, otherwise return false. We return true even 1836 * when we grow less than requested, to let the caller decide if there are 1837 * enough pages to satisfy the allocation. 1838 * 1839 * Note: We use noinline because this function is needed only during boot, and 1840 * it is called from a __ref function _deferred_grow_zone. This way we are 1841 * making sure that it is not inlined into permanent text section. 1842 */ 1843 static noinline bool __init 1844 deferred_grow_zone(struct zone *zone, unsigned int order) 1845 { 1846 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1847 pg_data_t *pgdat = zone->zone_pgdat; 1848 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1849 unsigned long spfn, epfn, flags; 1850 unsigned long nr_pages = 0; 1851 u64 i; 1852 1853 /* Only the last zone may have deferred pages */ 1854 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1855 return false; 1856 1857 pgdat_resize_lock(pgdat, &flags); 1858 1859 /* 1860 * If deferred pages have been initialized while we were waiting for 1861 * the lock, return true, as the zone was grown. The caller will retry 1862 * this zone. We won't return to this function since the caller also 1863 * has this static branch. 1864 */ 1865 if (!static_branch_unlikely(&deferred_pages)) { 1866 pgdat_resize_unlock(pgdat, &flags); 1867 return true; 1868 } 1869 1870 /* 1871 * If someone grew this zone while we were waiting for spinlock, return 1872 * true, as there might be enough pages already. 1873 */ 1874 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1875 pgdat_resize_unlock(pgdat, &flags); 1876 return true; 1877 } 1878 1879 /* If the zone is empty somebody else may have cleared out the zone */ 1880 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1881 first_deferred_pfn)) { 1882 pgdat->first_deferred_pfn = ULONG_MAX; 1883 pgdat_resize_unlock(pgdat, &flags); 1884 /* Retry only once. */ 1885 return first_deferred_pfn != ULONG_MAX; 1886 } 1887 1888 /* 1889 * Initialize and free pages in MAX_ORDER sized increments so 1890 * that we can avoid introducing any issues with the buddy 1891 * allocator. 1892 */ 1893 while (spfn < epfn) { 1894 /* update our first deferred PFN for this section */ 1895 first_deferred_pfn = spfn; 1896 1897 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1898 1899 /* We should only stop along section boundaries */ 1900 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1901 continue; 1902 1903 /* If our quota has been met we can stop here */ 1904 if (nr_pages >= nr_pages_needed) 1905 break; 1906 } 1907 1908 pgdat->first_deferred_pfn = spfn; 1909 pgdat_resize_unlock(pgdat, &flags); 1910 1911 return nr_pages > 0; 1912 } 1913 1914 /* 1915 * deferred_grow_zone() is __init, but it is called from 1916 * get_page_from_freelist() during early boot until deferred_pages permanently 1917 * disables this call. This is why we have refdata wrapper to avoid warning, 1918 * and to ensure that the function body gets unloaded. 1919 */ 1920 static bool __ref 1921 _deferred_grow_zone(struct zone *zone, unsigned int order) 1922 { 1923 return deferred_grow_zone(zone, order); 1924 } 1925 1926 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1927 1928 void __init page_alloc_init_late(void) 1929 { 1930 struct zone *zone; 1931 int nid; 1932 1933 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1934 1935 /* There will be num_node_state(N_MEMORY) threads */ 1936 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1937 for_each_node_state(nid, N_MEMORY) { 1938 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1939 } 1940 1941 /* Block until all are initialised */ 1942 wait_for_completion(&pgdat_init_all_done_comp); 1943 1944 /* 1945 * We initialized the rest of the deferred pages. Permanently disable 1946 * on-demand struct page initialization. 1947 */ 1948 static_branch_disable(&deferred_pages); 1949 1950 /* Reinit limits that are based on free pages after the kernel is up */ 1951 files_maxfiles_init(); 1952 #endif 1953 1954 /* Discard memblock private memory */ 1955 memblock_discard(); 1956 1957 for_each_node_state(nid, N_MEMORY) 1958 shuffle_free_memory(NODE_DATA(nid)); 1959 1960 for_each_populated_zone(zone) 1961 set_zone_contiguous(zone); 1962 1963 #ifdef CONFIG_DEBUG_PAGEALLOC 1964 init_debug_guardpage(); 1965 #endif 1966 } 1967 1968 #ifdef CONFIG_CMA 1969 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1970 void __init init_cma_reserved_pageblock(struct page *page) 1971 { 1972 unsigned i = pageblock_nr_pages; 1973 struct page *p = page; 1974 1975 do { 1976 __ClearPageReserved(p); 1977 set_page_count(p, 0); 1978 } while (++p, --i); 1979 1980 set_pageblock_migratetype(page, MIGRATE_CMA); 1981 1982 if (pageblock_order >= MAX_ORDER) { 1983 i = pageblock_nr_pages; 1984 p = page; 1985 do { 1986 set_page_refcounted(p); 1987 __free_pages(p, MAX_ORDER - 1); 1988 p += MAX_ORDER_NR_PAGES; 1989 } while (i -= MAX_ORDER_NR_PAGES); 1990 } else { 1991 set_page_refcounted(page); 1992 __free_pages(page, pageblock_order); 1993 } 1994 1995 adjust_managed_page_count(page, pageblock_nr_pages); 1996 } 1997 #endif 1998 1999 /* 2000 * The order of subdivision here is critical for the IO subsystem. 2001 * Please do not alter this order without good reasons and regression 2002 * testing. Specifically, as large blocks of memory are subdivided, 2003 * the order in which smaller blocks are delivered depends on the order 2004 * they're subdivided in this function. This is the primary factor 2005 * influencing the order in which pages are delivered to the IO 2006 * subsystem according to empirical testing, and this is also justified 2007 * by considering the behavior of a buddy system containing a single 2008 * large block of memory acted on by a series of small allocations. 2009 * This behavior is a critical factor in sglist merging's success. 2010 * 2011 * -- nyc 2012 */ 2013 static inline void expand(struct zone *zone, struct page *page, 2014 int low, int high, struct free_area *area, 2015 int migratetype) 2016 { 2017 unsigned long size = 1 << high; 2018 2019 while (high > low) { 2020 area--; 2021 high--; 2022 size >>= 1; 2023 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2024 2025 /* 2026 * Mark as guard pages (or page), that will allow to 2027 * merge back to allocator when buddy will be freed. 2028 * Corresponding page table entries will not be touched, 2029 * pages will stay not present in virtual address space 2030 */ 2031 if (set_page_guard(zone, &page[size], high, migratetype)) 2032 continue; 2033 2034 add_to_free_area(&page[size], area, migratetype); 2035 set_page_order(&page[size], high); 2036 } 2037 } 2038 2039 static void check_new_page_bad(struct page *page) 2040 { 2041 const char *bad_reason = NULL; 2042 unsigned long bad_flags = 0; 2043 2044 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2045 bad_reason = "nonzero mapcount"; 2046 if (unlikely(page->mapping != NULL)) 2047 bad_reason = "non-NULL mapping"; 2048 if (unlikely(page_ref_count(page) != 0)) 2049 bad_reason = "nonzero _refcount"; 2050 if (unlikely(page->flags & __PG_HWPOISON)) { 2051 bad_reason = "HWPoisoned (hardware-corrupted)"; 2052 bad_flags = __PG_HWPOISON; 2053 /* Don't complain about hwpoisoned pages */ 2054 page_mapcount_reset(page); /* remove PageBuddy */ 2055 return; 2056 } 2057 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2058 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2059 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2060 } 2061 #ifdef CONFIG_MEMCG 2062 if (unlikely(page->mem_cgroup)) 2063 bad_reason = "page still charged to cgroup"; 2064 #endif 2065 bad_page(page, bad_reason, bad_flags); 2066 } 2067 2068 /* 2069 * This page is about to be returned from the page allocator 2070 */ 2071 static inline int check_new_page(struct page *page) 2072 { 2073 if (likely(page_expected_state(page, 2074 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2075 return 0; 2076 2077 check_new_page_bad(page); 2078 return 1; 2079 } 2080 2081 static inline bool free_pages_prezeroed(void) 2082 { 2083 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2084 page_poisoning_enabled()) || want_init_on_free(); 2085 } 2086 2087 #ifdef CONFIG_DEBUG_VM 2088 /* 2089 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2090 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2091 * also checked when pcp lists are refilled from the free lists. 2092 */ 2093 static inline bool check_pcp_refill(struct page *page) 2094 { 2095 if (debug_pagealloc_enabled()) 2096 return check_new_page(page); 2097 else 2098 return false; 2099 } 2100 2101 static inline bool check_new_pcp(struct page *page) 2102 { 2103 return check_new_page(page); 2104 } 2105 #else 2106 /* 2107 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2108 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2109 * enabled, they are also checked when being allocated from the pcp lists. 2110 */ 2111 static inline bool check_pcp_refill(struct page *page) 2112 { 2113 return check_new_page(page); 2114 } 2115 static inline bool check_new_pcp(struct page *page) 2116 { 2117 if (debug_pagealloc_enabled()) 2118 return check_new_page(page); 2119 else 2120 return false; 2121 } 2122 #endif /* CONFIG_DEBUG_VM */ 2123 2124 static bool check_new_pages(struct page *page, unsigned int order) 2125 { 2126 int i; 2127 for (i = 0; i < (1 << order); i++) { 2128 struct page *p = page + i; 2129 2130 if (unlikely(check_new_page(p))) 2131 return true; 2132 } 2133 2134 return false; 2135 } 2136 2137 inline void post_alloc_hook(struct page *page, unsigned int order, 2138 gfp_t gfp_flags) 2139 { 2140 set_page_private(page, 0); 2141 set_page_refcounted(page); 2142 2143 arch_alloc_page(page, order); 2144 if (debug_pagealloc_enabled()) 2145 kernel_map_pages(page, 1 << order, 1); 2146 kasan_alloc_pages(page, order); 2147 kernel_poison_pages(page, 1 << order, 1); 2148 set_page_owner(page, order, gfp_flags); 2149 } 2150 2151 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2152 unsigned int alloc_flags) 2153 { 2154 post_alloc_hook(page, order, gfp_flags); 2155 2156 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2157 kernel_init_free_pages(page, 1 << order); 2158 2159 if (order && (gfp_flags & __GFP_COMP)) 2160 prep_compound_page(page, order); 2161 2162 /* 2163 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2164 * allocate the page. The expectation is that the caller is taking 2165 * steps that will free more memory. The caller should avoid the page 2166 * being used for !PFMEMALLOC purposes. 2167 */ 2168 if (alloc_flags & ALLOC_NO_WATERMARKS) 2169 set_page_pfmemalloc(page); 2170 else 2171 clear_page_pfmemalloc(page); 2172 } 2173 2174 /* 2175 * Go through the free lists for the given migratetype and remove 2176 * the smallest available page from the freelists 2177 */ 2178 static __always_inline 2179 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2180 int migratetype) 2181 { 2182 unsigned int current_order; 2183 struct free_area *area; 2184 struct page *page; 2185 2186 /* Find a page of the appropriate size in the preferred list */ 2187 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2188 area = &(zone->free_area[current_order]); 2189 page = get_page_from_free_area(area, migratetype); 2190 if (!page) 2191 continue; 2192 del_page_from_free_area(page, area); 2193 expand(zone, page, order, current_order, area, migratetype); 2194 set_pcppage_migratetype(page, migratetype); 2195 return page; 2196 } 2197 2198 return NULL; 2199 } 2200 2201 2202 /* 2203 * This array describes the order lists are fallen back to when 2204 * the free lists for the desirable migrate type are depleted 2205 */ 2206 static int fallbacks[MIGRATE_TYPES][4] = { 2207 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2208 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2209 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2210 #ifdef CONFIG_CMA 2211 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2212 #endif 2213 #ifdef CONFIG_MEMORY_ISOLATION 2214 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2215 #endif 2216 }; 2217 2218 #ifdef CONFIG_CMA 2219 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2220 unsigned int order) 2221 { 2222 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2223 } 2224 #else 2225 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2226 unsigned int order) { return NULL; } 2227 #endif 2228 2229 /* 2230 * Move the free pages in a range to the free lists of the requested type. 2231 * Note that start_page and end_pages are not aligned on a pageblock 2232 * boundary. If alignment is required, use move_freepages_block() 2233 */ 2234 static int move_freepages(struct zone *zone, 2235 struct page *start_page, struct page *end_page, 2236 int migratetype, int *num_movable) 2237 { 2238 struct page *page; 2239 unsigned int order; 2240 int pages_moved = 0; 2241 2242 for (page = start_page; page <= end_page;) { 2243 if (!pfn_valid_within(page_to_pfn(page))) { 2244 page++; 2245 continue; 2246 } 2247 2248 if (!PageBuddy(page)) { 2249 /* 2250 * We assume that pages that could be isolated for 2251 * migration are movable. But we don't actually try 2252 * isolating, as that would be expensive. 2253 */ 2254 if (num_movable && 2255 (PageLRU(page) || __PageMovable(page))) 2256 (*num_movable)++; 2257 2258 page++; 2259 continue; 2260 } 2261 2262 /* Make sure we are not inadvertently changing nodes */ 2263 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2264 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2265 2266 order = page_order(page); 2267 move_to_free_area(page, &zone->free_area[order], migratetype); 2268 page += 1 << order; 2269 pages_moved += 1 << order; 2270 } 2271 2272 return pages_moved; 2273 } 2274 2275 int move_freepages_block(struct zone *zone, struct page *page, 2276 int migratetype, int *num_movable) 2277 { 2278 unsigned long start_pfn, end_pfn; 2279 struct page *start_page, *end_page; 2280 2281 if (num_movable) 2282 *num_movable = 0; 2283 2284 start_pfn = page_to_pfn(page); 2285 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2286 start_page = pfn_to_page(start_pfn); 2287 end_page = start_page + pageblock_nr_pages - 1; 2288 end_pfn = start_pfn + pageblock_nr_pages - 1; 2289 2290 /* Do not cross zone boundaries */ 2291 if (!zone_spans_pfn(zone, start_pfn)) 2292 start_page = page; 2293 if (!zone_spans_pfn(zone, end_pfn)) 2294 return 0; 2295 2296 return move_freepages(zone, start_page, end_page, migratetype, 2297 num_movable); 2298 } 2299 2300 static void change_pageblock_range(struct page *pageblock_page, 2301 int start_order, int migratetype) 2302 { 2303 int nr_pageblocks = 1 << (start_order - pageblock_order); 2304 2305 while (nr_pageblocks--) { 2306 set_pageblock_migratetype(pageblock_page, migratetype); 2307 pageblock_page += pageblock_nr_pages; 2308 } 2309 } 2310 2311 /* 2312 * When we are falling back to another migratetype during allocation, try to 2313 * steal extra free pages from the same pageblocks to satisfy further 2314 * allocations, instead of polluting multiple pageblocks. 2315 * 2316 * If we are stealing a relatively large buddy page, it is likely there will 2317 * be more free pages in the pageblock, so try to steal them all. For 2318 * reclaimable and unmovable allocations, we steal regardless of page size, 2319 * as fragmentation caused by those allocations polluting movable pageblocks 2320 * is worse than movable allocations stealing from unmovable and reclaimable 2321 * pageblocks. 2322 */ 2323 static bool can_steal_fallback(unsigned int order, int start_mt) 2324 { 2325 /* 2326 * Leaving this order check is intended, although there is 2327 * relaxed order check in next check. The reason is that 2328 * we can actually steal whole pageblock if this condition met, 2329 * but, below check doesn't guarantee it and that is just heuristic 2330 * so could be changed anytime. 2331 */ 2332 if (order >= pageblock_order) 2333 return true; 2334 2335 if (order >= pageblock_order / 2 || 2336 start_mt == MIGRATE_RECLAIMABLE || 2337 start_mt == MIGRATE_UNMOVABLE || 2338 page_group_by_mobility_disabled) 2339 return true; 2340 2341 return false; 2342 } 2343 2344 static inline void boost_watermark(struct zone *zone) 2345 { 2346 unsigned long max_boost; 2347 2348 if (!watermark_boost_factor) 2349 return; 2350 2351 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2352 watermark_boost_factor, 10000); 2353 2354 /* 2355 * high watermark may be uninitialised if fragmentation occurs 2356 * very early in boot so do not boost. We do not fall 2357 * through and boost by pageblock_nr_pages as failing 2358 * allocations that early means that reclaim is not going 2359 * to help and it may even be impossible to reclaim the 2360 * boosted watermark resulting in a hang. 2361 */ 2362 if (!max_boost) 2363 return; 2364 2365 max_boost = max(pageblock_nr_pages, max_boost); 2366 2367 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2368 max_boost); 2369 } 2370 2371 /* 2372 * This function implements actual steal behaviour. If order is large enough, 2373 * we can steal whole pageblock. If not, we first move freepages in this 2374 * pageblock to our migratetype and determine how many already-allocated pages 2375 * are there in the pageblock with a compatible migratetype. If at least half 2376 * of pages are free or compatible, we can change migratetype of the pageblock 2377 * itself, so pages freed in the future will be put on the correct free list. 2378 */ 2379 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2380 unsigned int alloc_flags, int start_type, bool whole_block) 2381 { 2382 unsigned int current_order = page_order(page); 2383 struct free_area *area; 2384 int free_pages, movable_pages, alike_pages; 2385 int old_block_type; 2386 2387 old_block_type = get_pageblock_migratetype(page); 2388 2389 /* 2390 * This can happen due to races and we want to prevent broken 2391 * highatomic accounting. 2392 */ 2393 if (is_migrate_highatomic(old_block_type)) 2394 goto single_page; 2395 2396 /* Take ownership for orders >= pageblock_order */ 2397 if (current_order >= pageblock_order) { 2398 change_pageblock_range(page, current_order, start_type); 2399 goto single_page; 2400 } 2401 2402 /* 2403 * Boost watermarks to increase reclaim pressure to reduce the 2404 * likelihood of future fallbacks. Wake kswapd now as the node 2405 * may be balanced overall and kswapd will not wake naturally. 2406 */ 2407 boost_watermark(zone); 2408 if (alloc_flags & ALLOC_KSWAPD) 2409 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2410 2411 /* We are not allowed to try stealing from the whole block */ 2412 if (!whole_block) 2413 goto single_page; 2414 2415 free_pages = move_freepages_block(zone, page, start_type, 2416 &movable_pages); 2417 /* 2418 * Determine how many pages are compatible with our allocation. 2419 * For movable allocation, it's the number of movable pages which 2420 * we just obtained. For other types it's a bit more tricky. 2421 */ 2422 if (start_type == MIGRATE_MOVABLE) { 2423 alike_pages = movable_pages; 2424 } else { 2425 /* 2426 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2427 * to MOVABLE pageblock, consider all non-movable pages as 2428 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2429 * vice versa, be conservative since we can't distinguish the 2430 * exact migratetype of non-movable pages. 2431 */ 2432 if (old_block_type == MIGRATE_MOVABLE) 2433 alike_pages = pageblock_nr_pages 2434 - (free_pages + movable_pages); 2435 else 2436 alike_pages = 0; 2437 } 2438 2439 /* moving whole block can fail due to zone boundary conditions */ 2440 if (!free_pages) 2441 goto single_page; 2442 2443 /* 2444 * If a sufficient number of pages in the block are either free or of 2445 * comparable migratability as our allocation, claim the whole block. 2446 */ 2447 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2448 page_group_by_mobility_disabled) 2449 set_pageblock_migratetype(page, start_type); 2450 2451 return; 2452 2453 single_page: 2454 area = &zone->free_area[current_order]; 2455 move_to_free_area(page, area, start_type); 2456 } 2457 2458 /* 2459 * Check whether there is a suitable fallback freepage with requested order. 2460 * If only_stealable is true, this function returns fallback_mt only if 2461 * we can steal other freepages all together. This would help to reduce 2462 * fragmentation due to mixed migratetype pages in one pageblock. 2463 */ 2464 int find_suitable_fallback(struct free_area *area, unsigned int order, 2465 int migratetype, bool only_stealable, bool *can_steal) 2466 { 2467 int i; 2468 int fallback_mt; 2469 2470 if (area->nr_free == 0) 2471 return -1; 2472 2473 *can_steal = false; 2474 for (i = 0;; i++) { 2475 fallback_mt = fallbacks[migratetype][i]; 2476 if (fallback_mt == MIGRATE_TYPES) 2477 break; 2478 2479 if (free_area_empty(area, fallback_mt)) 2480 continue; 2481 2482 if (can_steal_fallback(order, migratetype)) 2483 *can_steal = true; 2484 2485 if (!only_stealable) 2486 return fallback_mt; 2487 2488 if (*can_steal) 2489 return fallback_mt; 2490 } 2491 2492 return -1; 2493 } 2494 2495 /* 2496 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2497 * there are no empty page blocks that contain a page with a suitable order 2498 */ 2499 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2500 unsigned int alloc_order) 2501 { 2502 int mt; 2503 unsigned long max_managed, flags; 2504 2505 /* 2506 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2507 * Check is race-prone but harmless. 2508 */ 2509 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2510 if (zone->nr_reserved_highatomic >= max_managed) 2511 return; 2512 2513 spin_lock_irqsave(&zone->lock, flags); 2514 2515 /* Recheck the nr_reserved_highatomic limit under the lock */ 2516 if (zone->nr_reserved_highatomic >= max_managed) 2517 goto out_unlock; 2518 2519 /* Yoink! */ 2520 mt = get_pageblock_migratetype(page); 2521 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2522 && !is_migrate_cma(mt)) { 2523 zone->nr_reserved_highatomic += pageblock_nr_pages; 2524 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2525 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2526 } 2527 2528 out_unlock: 2529 spin_unlock_irqrestore(&zone->lock, flags); 2530 } 2531 2532 /* 2533 * Used when an allocation is about to fail under memory pressure. This 2534 * potentially hurts the reliability of high-order allocations when under 2535 * intense memory pressure but failed atomic allocations should be easier 2536 * to recover from than an OOM. 2537 * 2538 * If @force is true, try to unreserve a pageblock even though highatomic 2539 * pageblock is exhausted. 2540 */ 2541 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2542 bool force) 2543 { 2544 struct zonelist *zonelist = ac->zonelist; 2545 unsigned long flags; 2546 struct zoneref *z; 2547 struct zone *zone; 2548 struct page *page; 2549 int order; 2550 bool ret; 2551 2552 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2553 ac->nodemask) { 2554 /* 2555 * Preserve at least one pageblock unless memory pressure 2556 * is really high. 2557 */ 2558 if (!force && zone->nr_reserved_highatomic <= 2559 pageblock_nr_pages) 2560 continue; 2561 2562 spin_lock_irqsave(&zone->lock, flags); 2563 for (order = 0; order < MAX_ORDER; order++) { 2564 struct free_area *area = &(zone->free_area[order]); 2565 2566 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2567 if (!page) 2568 continue; 2569 2570 /* 2571 * In page freeing path, migratetype change is racy so 2572 * we can counter several free pages in a pageblock 2573 * in this loop althoug we changed the pageblock type 2574 * from highatomic to ac->migratetype. So we should 2575 * adjust the count once. 2576 */ 2577 if (is_migrate_highatomic_page(page)) { 2578 /* 2579 * It should never happen but changes to 2580 * locking could inadvertently allow a per-cpu 2581 * drain to add pages to MIGRATE_HIGHATOMIC 2582 * while unreserving so be safe and watch for 2583 * underflows. 2584 */ 2585 zone->nr_reserved_highatomic -= min( 2586 pageblock_nr_pages, 2587 zone->nr_reserved_highatomic); 2588 } 2589 2590 /* 2591 * Convert to ac->migratetype and avoid the normal 2592 * pageblock stealing heuristics. Minimally, the caller 2593 * is doing the work and needs the pages. More 2594 * importantly, if the block was always converted to 2595 * MIGRATE_UNMOVABLE or another type then the number 2596 * of pageblocks that cannot be completely freed 2597 * may increase. 2598 */ 2599 set_pageblock_migratetype(page, ac->migratetype); 2600 ret = move_freepages_block(zone, page, ac->migratetype, 2601 NULL); 2602 if (ret) { 2603 spin_unlock_irqrestore(&zone->lock, flags); 2604 return ret; 2605 } 2606 } 2607 spin_unlock_irqrestore(&zone->lock, flags); 2608 } 2609 2610 return false; 2611 } 2612 2613 /* 2614 * Try finding a free buddy page on the fallback list and put it on the free 2615 * list of requested migratetype, possibly along with other pages from the same 2616 * block, depending on fragmentation avoidance heuristics. Returns true if 2617 * fallback was found so that __rmqueue_smallest() can grab it. 2618 * 2619 * The use of signed ints for order and current_order is a deliberate 2620 * deviation from the rest of this file, to make the for loop 2621 * condition simpler. 2622 */ 2623 static __always_inline bool 2624 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2625 unsigned int alloc_flags) 2626 { 2627 struct free_area *area; 2628 int current_order; 2629 int min_order = order; 2630 struct page *page; 2631 int fallback_mt; 2632 bool can_steal; 2633 2634 /* 2635 * Do not steal pages from freelists belonging to other pageblocks 2636 * i.e. orders < pageblock_order. If there are no local zones free, 2637 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2638 */ 2639 if (alloc_flags & ALLOC_NOFRAGMENT) 2640 min_order = pageblock_order; 2641 2642 /* 2643 * Find the largest available free page in the other list. This roughly 2644 * approximates finding the pageblock with the most free pages, which 2645 * would be too costly to do exactly. 2646 */ 2647 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2648 --current_order) { 2649 area = &(zone->free_area[current_order]); 2650 fallback_mt = find_suitable_fallback(area, current_order, 2651 start_migratetype, false, &can_steal); 2652 if (fallback_mt == -1) 2653 continue; 2654 2655 /* 2656 * We cannot steal all free pages from the pageblock and the 2657 * requested migratetype is movable. In that case it's better to 2658 * steal and split the smallest available page instead of the 2659 * largest available page, because even if the next movable 2660 * allocation falls back into a different pageblock than this 2661 * one, it won't cause permanent fragmentation. 2662 */ 2663 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2664 && current_order > order) 2665 goto find_smallest; 2666 2667 goto do_steal; 2668 } 2669 2670 return false; 2671 2672 find_smallest: 2673 for (current_order = order; current_order < MAX_ORDER; 2674 current_order++) { 2675 area = &(zone->free_area[current_order]); 2676 fallback_mt = find_suitable_fallback(area, current_order, 2677 start_migratetype, false, &can_steal); 2678 if (fallback_mt != -1) 2679 break; 2680 } 2681 2682 /* 2683 * This should not happen - we already found a suitable fallback 2684 * when looking for the largest page. 2685 */ 2686 VM_BUG_ON(current_order == MAX_ORDER); 2687 2688 do_steal: 2689 page = get_page_from_free_area(area, fallback_mt); 2690 2691 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2692 can_steal); 2693 2694 trace_mm_page_alloc_extfrag(page, order, current_order, 2695 start_migratetype, fallback_mt); 2696 2697 return true; 2698 2699 } 2700 2701 /* 2702 * Do the hard work of removing an element from the buddy allocator. 2703 * Call me with the zone->lock already held. 2704 */ 2705 static __always_inline struct page * 2706 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2707 unsigned int alloc_flags) 2708 { 2709 struct page *page; 2710 2711 retry: 2712 page = __rmqueue_smallest(zone, order, migratetype); 2713 if (unlikely(!page)) { 2714 if (migratetype == MIGRATE_MOVABLE) 2715 page = __rmqueue_cma_fallback(zone, order); 2716 2717 if (!page && __rmqueue_fallback(zone, order, migratetype, 2718 alloc_flags)) 2719 goto retry; 2720 } 2721 2722 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2723 return page; 2724 } 2725 2726 /* 2727 * Obtain a specified number of elements from the buddy allocator, all under 2728 * a single hold of the lock, for efficiency. Add them to the supplied list. 2729 * Returns the number of new pages which were placed at *list. 2730 */ 2731 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2732 unsigned long count, struct list_head *list, 2733 int migratetype, unsigned int alloc_flags) 2734 { 2735 int i, alloced = 0; 2736 2737 spin_lock(&zone->lock); 2738 for (i = 0; i < count; ++i) { 2739 struct page *page = __rmqueue(zone, order, migratetype, 2740 alloc_flags); 2741 if (unlikely(page == NULL)) 2742 break; 2743 2744 if (unlikely(check_pcp_refill(page))) 2745 continue; 2746 2747 /* 2748 * Split buddy pages returned by expand() are received here in 2749 * physical page order. The page is added to the tail of 2750 * caller's list. From the callers perspective, the linked list 2751 * is ordered by page number under some conditions. This is 2752 * useful for IO devices that can forward direction from the 2753 * head, thus also in the physical page order. This is useful 2754 * for IO devices that can merge IO requests if the physical 2755 * pages are ordered properly. 2756 */ 2757 list_add_tail(&page->lru, list); 2758 alloced++; 2759 if (is_migrate_cma(get_pcppage_migratetype(page))) 2760 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2761 -(1 << order)); 2762 } 2763 2764 /* 2765 * i pages were removed from the buddy list even if some leak due 2766 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2767 * on i. Do not confuse with 'alloced' which is the number of 2768 * pages added to the pcp list. 2769 */ 2770 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2771 spin_unlock(&zone->lock); 2772 return alloced; 2773 } 2774 2775 #ifdef CONFIG_NUMA 2776 /* 2777 * Called from the vmstat counter updater to drain pagesets of this 2778 * currently executing processor on remote nodes after they have 2779 * expired. 2780 * 2781 * Note that this function must be called with the thread pinned to 2782 * a single processor. 2783 */ 2784 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2785 { 2786 unsigned long flags; 2787 int to_drain, batch; 2788 2789 local_irq_save(flags); 2790 batch = READ_ONCE(pcp->batch); 2791 to_drain = min(pcp->count, batch); 2792 if (to_drain > 0) 2793 free_pcppages_bulk(zone, to_drain, pcp); 2794 local_irq_restore(flags); 2795 } 2796 #endif 2797 2798 /* 2799 * Drain pcplists of the indicated processor and zone. 2800 * 2801 * The processor must either be the current processor and the 2802 * thread pinned to the current processor or a processor that 2803 * is not online. 2804 */ 2805 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2806 { 2807 unsigned long flags; 2808 struct per_cpu_pageset *pset; 2809 struct per_cpu_pages *pcp; 2810 2811 local_irq_save(flags); 2812 pset = per_cpu_ptr(zone->pageset, cpu); 2813 2814 pcp = &pset->pcp; 2815 if (pcp->count) 2816 free_pcppages_bulk(zone, pcp->count, pcp); 2817 local_irq_restore(flags); 2818 } 2819 2820 /* 2821 * Drain pcplists of all zones on the indicated processor. 2822 * 2823 * The processor must either be the current processor and the 2824 * thread pinned to the current processor or a processor that 2825 * is not online. 2826 */ 2827 static void drain_pages(unsigned int cpu) 2828 { 2829 struct zone *zone; 2830 2831 for_each_populated_zone(zone) { 2832 drain_pages_zone(cpu, zone); 2833 } 2834 } 2835 2836 /* 2837 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2838 * 2839 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2840 * the single zone's pages. 2841 */ 2842 void drain_local_pages(struct zone *zone) 2843 { 2844 int cpu = smp_processor_id(); 2845 2846 if (zone) 2847 drain_pages_zone(cpu, zone); 2848 else 2849 drain_pages(cpu); 2850 } 2851 2852 static void drain_local_pages_wq(struct work_struct *work) 2853 { 2854 struct pcpu_drain *drain; 2855 2856 drain = container_of(work, struct pcpu_drain, work); 2857 2858 /* 2859 * drain_all_pages doesn't use proper cpu hotplug protection so 2860 * we can race with cpu offline when the WQ can move this from 2861 * a cpu pinned worker to an unbound one. We can operate on a different 2862 * cpu which is allright but we also have to make sure to not move to 2863 * a different one. 2864 */ 2865 preempt_disable(); 2866 drain_local_pages(drain->zone); 2867 preempt_enable(); 2868 } 2869 2870 /* 2871 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2872 * 2873 * When zone parameter is non-NULL, spill just the single zone's pages. 2874 * 2875 * Note that this can be extremely slow as the draining happens in a workqueue. 2876 */ 2877 void drain_all_pages(struct zone *zone) 2878 { 2879 int cpu; 2880 2881 /* 2882 * Allocate in the BSS so we wont require allocation in 2883 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2884 */ 2885 static cpumask_t cpus_with_pcps; 2886 2887 /* 2888 * Make sure nobody triggers this path before mm_percpu_wq is fully 2889 * initialized. 2890 */ 2891 if (WARN_ON_ONCE(!mm_percpu_wq)) 2892 return; 2893 2894 /* 2895 * Do not drain if one is already in progress unless it's specific to 2896 * a zone. Such callers are primarily CMA and memory hotplug and need 2897 * the drain to be complete when the call returns. 2898 */ 2899 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2900 if (!zone) 2901 return; 2902 mutex_lock(&pcpu_drain_mutex); 2903 } 2904 2905 /* 2906 * We don't care about racing with CPU hotplug event 2907 * as offline notification will cause the notified 2908 * cpu to drain that CPU pcps and on_each_cpu_mask 2909 * disables preemption as part of its processing 2910 */ 2911 for_each_online_cpu(cpu) { 2912 struct per_cpu_pageset *pcp; 2913 struct zone *z; 2914 bool has_pcps = false; 2915 2916 if (zone) { 2917 pcp = per_cpu_ptr(zone->pageset, cpu); 2918 if (pcp->pcp.count) 2919 has_pcps = true; 2920 } else { 2921 for_each_populated_zone(z) { 2922 pcp = per_cpu_ptr(z->pageset, cpu); 2923 if (pcp->pcp.count) { 2924 has_pcps = true; 2925 break; 2926 } 2927 } 2928 } 2929 2930 if (has_pcps) 2931 cpumask_set_cpu(cpu, &cpus_with_pcps); 2932 else 2933 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2934 } 2935 2936 for_each_cpu(cpu, &cpus_with_pcps) { 2937 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2938 2939 drain->zone = zone; 2940 INIT_WORK(&drain->work, drain_local_pages_wq); 2941 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2942 } 2943 for_each_cpu(cpu, &cpus_with_pcps) 2944 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2945 2946 mutex_unlock(&pcpu_drain_mutex); 2947 } 2948 2949 #ifdef CONFIG_HIBERNATION 2950 2951 /* 2952 * Touch the watchdog for every WD_PAGE_COUNT pages. 2953 */ 2954 #define WD_PAGE_COUNT (128*1024) 2955 2956 void mark_free_pages(struct zone *zone) 2957 { 2958 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2959 unsigned long flags; 2960 unsigned int order, t; 2961 struct page *page; 2962 2963 if (zone_is_empty(zone)) 2964 return; 2965 2966 spin_lock_irqsave(&zone->lock, flags); 2967 2968 max_zone_pfn = zone_end_pfn(zone); 2969 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2970 if (pfn_valid(pfn)) { 2971 page = pfn_to_page(pfn); 2972 2973 if (!--page_count) { 2974 touch_nmi_watchdog(); 2975 page_count = WD_PAGE_COUNT; 2976 } 2977 2978 if (page_zone(page) != zone) 2979 continue; 2980 2981 if (!swsusp_page_is_forbidden(page)) 2982 swsusp_unset_page_free(page); 2983 } 2984 2985 for_each_migratetype_order(order, t) { 2986 list_for_each_entry(page, 2987 &zone->free_area[order].free_list[t], lru) { 2988 unsigned long i; 2989 2990 pfn = page_to_pfn(page); 2991 for (i = 0; i < (1UL << order); i++) { 2992 if (!--page_count) { 2993 touch_nmi_watchdog(); 2994 page_count = WD_PAGE_COUNT; 2995 } 2996 swsusp_set_page_free(pfn_to_page(pfn + i)); 2997 } 2998 } 2999 } 3000 spin_unlock_irqrestore(&zone->lock, flags); 3001 } 3002 #endif /* CONFIG_PM */ 3003 3004 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3005 { 3006 int migratetype; 3007 3008 if (!free_pcp_prepare(page)) 3009 return false; 3010 3011 migratetype = get_pfnblock_migratetype(page, pfn); 3012 set_pcppage_migratetype(page, migratetype); 3013 return true; 3014 } 3015 3016 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3017 { 3018 struct zone *zone = page_zone(page); 3019 struct per_cpu_pages *pcp; 3020 int migratetype; 3021 3022 migratetype = get_pcppage_migratetype(page); 3023 __count_vm_event(PGFREE); 3024 3025 /* 3026 * We only track unmovable, reclaimable and movable on pcp lists. 3027 * Free ISOLATE pages back to the allocator because they are being 3028 * offlined but treat HIGHATOMIC as movable pages so we can get those 3029 * areas back if necessary. Otherwise, we may have to free 3030 * excessively into the page allocator 3031 */ 3032 if (migratetype >= MIGRATE_PCPTYPES) { 3033 if (unlikely(is_migrate_isolate(migratetype))) { 3034 free_one_page(zone, page, pfn, 0, migratetype); 3035 return; 3036 } 3037 migratetype = MIGRATE_MOVABLE; 3038 } 3039 3040 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3041 list_add(&page->lru, &pcp->lists[migratetype]); 3042 pcp->count++; 3043 if (pcp->count >= pcp->high) { 3044 unsigned long batch = READ_ONCE(pcp->batch); 3045 free_pcppages_bulk(zone, batch, pcp); 3046 } 3047 } 3048 3049 /* 3050 * Free a 0-order page 3051 */ 3052 void free_unref_page(struct page *page) 3053 { 3054 unsigned long flags; 3055 unsigned long pfn = page_to_pfn(page); 3056 3057 if (!free_unref_page_prepare(page, pfn)) 3058 return; 3059 3060 local_irq_save(flags); 3061 free_unref_page_commit(page, pfn); 3062 local_irq_restore(flags); 3063 } 3064 3065 /* 3066 * Free a list of 0-order pages 3067 */ 3068 void free_unref_page_list(struct list_head *list) 3069 { 3070 struct page *page, *next; 3071 unsigned long flags, pfn; 3072 int batch_count = 0; 3073 3074 /* Prepare pages for freeing */ 3075 list_for_each_entry_safe(page, next, list, lru) { 3076 pfn = page_to_pfn(page); 3077 if (!free_unref_page_prepare(page, pfn)) 3078 list_del(&page->lru); 3079 set_page_private(page, pfn); 3080 } 3081 3082 local_irq_save(flags); 3083 list_for_each_entry_safe(page, next, list, lru) { 3084 unsigned long pfn = page_private(page); 3085 3086 set_page_private(page, 0); 3087 trace_mm_page_free_batched(page); 3088 free_unref_page_commit(page, pfn); 3089 3090 /* 3091 * Guard against excessive IRQ disabled times when we get 3092 * a large list of pages to free. 3093 */ 3094 if (++batch_count == SWAP_CLUSTER_MAX) { 3095 local_irq_restore(flags); 3096 batch_count = 0; 3097 local_irq_save(flags); 3098 } 3099 } 3100 local_irq_restore(flags); 3101 } 3102 3103 /* 3104 * split_page takes a non-compound higher-order page, and splits it into 3105 * n (1<<order) sub-pages: page[0..n] 3106 * Each sub-page must be freed individually. 3107 * 3108 * Note: this is probably too low level an operation for use in drivers. 3109 * Please consult with lkml before using this in your driver. 3110 */ 3111 void split_page(struct page *page, unsigned int order) 3112 { 3113 int i; 3114 3115 VM_BUG_ON_PAGE(PageCompound(page), page); 3116 VM_BUG_ON_PAGE(!page_count(page), page); 3117 3118 for (i = 1; i < (1 << order); i++) 3119 set_page_refcounted(page + i); 3120 split_page_owner(page, order); 3121 } 3122 EXPORT_SYMBOL_GPL(split_page); 3123 3124 int __isolate_free_page(struct page *page, unsigned int order) 3125 { 3126 struct free_area *area = &page_zone(page)->free_area[order]; 3127 unsigned long watermark; 3128 struct zone *zone; 3129 int mt; 3130 3131 BUG_ON(!PageBuddy(page)); 3132 3133 zone = page_zone(page); 3134 mt = get_pageblock_migratetype(page); 3135 3136 if (!is_migrate_isolate(mt)) { 3137 /* 3138 * Obey watermarks as if the page was being allocated. We can 3139 * emulate a high-order watermark check with a raised order-0 3140 * watermark, because we already know our high-order page 3141 * exists. 3142 */ 3143 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3144 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3145 return 0; 3146 3147 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3148 } 3149 3150 /* Remove page from free list */ 3151 3152 del_page_from_free_area(page, area); 3153 3154 /* 3155 * Set the pageblock if the isolated page is at least half of a 3156 * pageblock 3157 */ 3158 if (order >= pageblock_order - 1) { 3159 struct page *endpage = page + (1 << order) - 1; 3160 for (; page < endpage; page += pageblock_nr_pages) { 3161 int mt = get_pageblock_migratetype(page); 3162 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3163 && !is_migrate_highatomic(mt)) 3164 set_pageblock_migratetype(page, 3165 MIGRATE_MOVABLE); 3166 } 3167 } 3168 3169 3170 return 1UL << order; 3171 } 3172 3173 /* 3174 * Update NUMA hit/miss statistics 3175 * 3176 * Must be called with interrupts disabled. 3177 */ 3178 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3179 { 3180 #ifdef CONFIG_NUMA 3181 enum numa_stat_item local_stat = NUMA_LOCAL; 3182 3183 /* skip numa counters update if numa stats is disabled */ 3184 if (!static_branch_likely(&vm_numa_stat_key)) 3185 return; 3186 3187 if (zone_to_nid(z) != numa_node_id()) 3188 local_stat = NUMA_OTHER; 3189 3190 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3191 __inc_numa_state(z, NUMA_HIT); 3192 else { 3193 __inc_numa_state(z, NUMA_MISS); 3194 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3195 } 3196 __inc_numa_state(z, local_stat); 3197 #endif 3198 } 3199 3200 /* Remove page from the per-cpu list, caller must protect the list */ 3201 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3202 unsigned int alloc_flags, 3203 struct per_cpu_pages *pcp, 3204 struct list_head *list) 3205 { 3206 struct page *page; 3207 3208 do { 3209 if (list_empty(list)) { 3210 pcp->count += rmqueue_bulk(zone, 0, 3211 pcp->batch, list, 3212 migratetype, alloc_flags); 3213 if (unlikely(list_empty(list))) 3214 return NULL; 3215 } 3216 3217 page = list_first_entry(list, struct page, lru); 3218 list_del(&page->lru); 3219 pcp->count--; 3220 } while (check_new_pcp(page)); 3221 3222 return page; 3223 } 3224 3225 /* Lock and remove page from the per-cpu list */ 3226 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3227 struct zone *zone, gfp_t gfp_flags, 3228 int migratetype, unsigned int alloc_flags) 3229 { 3230 struct per_cpu_pages *pcp; 3231 struct list_head *list; 3232 struct page *page; 3233 unsigned long flags; 3234 3235 local_irq_save(flags); 3236 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3237 list = &pcp->lists[migratetype]; 3238 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3239 if (page) { 3240 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3241 zone_statistics(preferred_zone, zone); 3242 } 3243 local_irq_restore(flags); 3244 return page; 3245 } 3246 3247 /* 3248 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3249 */ 3250 static inline 3251 struct page *rmqueue(struct zone *preferred_zone, 3252 struct zone *zone, unsigned int order, 3253 gfp_t gfp_flags, unsigned int alloc_flags, 3254 int migratetype) 3255 { 3256 unsigned long flags; 3257 struct page *page; 3258 3259 if (likely(order == 0)) { 3260 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3261 migratetype, alloc_flags); 3262 goto out; 3263 } 3264 3265 /* 3266 * We most definitely don't want callers attempting to 3267 * allocate greater than order-1 page units with __GFP_NOFAIL. 3268 */ 3269 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3270 spin_lock_irqsave(&zone->lock, flags); 3271 3272 do { 3273 page = NULL; 3274 if (alloc_flags & ALLOC_HARDER) { 3275 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3276 if (page) 3277 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3278 } 3279 if (!page) 3280 page = __rmqueue(zone, order, migratetype, alloc_flags); 3281 } while (page && check_new_pages(page, order)); 3282 spin_unlock(&zone->lock); 3283 if (!page) 3284 goto failed; 3285 __mod_zone_freepage_state(zone, -(1 << order), 3286 get_pcppage_migratetype(page)); 3287 3288 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3289 zone_statistics(preferred_zone, zone); 3290 local_irq_restore(flags); 3291 3292 out: 3293 /* Separate test+clear to avoid unnecessary atomics */ 3294 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3295 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3296 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3297 } 3298 3299 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3300 return page; 3301 3302 failed: 3303 local_irq_restore(flags); 3304 return NULL; 3305 } 3306 3307 #ifdef CONFIG_FAIL_PAGE_ALLOC 3308 3309 static struct { 3310 struct fault_attr attr; 3311 3312 bool ignore_gfp_highmem; 3313 bool ignore_gfp_reclaim; 3314 u32 min_order; 3315 } fail_page_alloc = { 3316 .attr = FAULT_ATTR_INITIALIZER, 3317 .ignore_gfp_reclaim = true, 3318 .ignore_gfp_highmem = true, 3319 .min_order = 1, 3320 }; 3321 3322 static int __init setup_fail_page_alloc(char *str) 3323 { 3324 return setup_fault_attr(&fail_page_alloc.attr, str); 3325 } 3326 __setup("fail_page_alloc=", setup_fail_page_alloc); 3327 3328 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3329 { 3330 if (order < fail_page_alloc.min_order) 3331 return false; 3332 if (gfp_mask & __GFP_NOFAIL) 3333 return false; 3334 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3335 return false; 3336 if (fail_page_alloc.ignore_gfp_reclaim && 3337 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3338 return false; 3339 3340 return should_fail(&fail_page_alloc.attr, 1 << order); 3341 } 3342 3343 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3344 3345 static int __init fail_page_alloc_debugfs(void) 3346 { 3347 umode_t mode = S_IFREG | 0600; 3348 struct dentry *dir; 3349 3350 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3351 &fail_page_alloc.attr); 3352 3353 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3354 &fail_page_alloc.ignore_gfp_reclaim); 3355 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3356 &fail_page_alloc.ignore_gfp_highmem); 3357 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3358 3359 return 0; 3360 } 3361 3362 late_initcall(fail_page_alloc_debugfs); 3363 3364 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3365 3366 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3367 3368 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3369 { 3370 return false; 3371 } 3372 3373 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3374 3375 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3376 { 3377 return __should_fail_alloc_page(gfp_mask, order); 3378 } 3379 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3380 3381 /* 3382 * Return true if free base pages are above 'mark'. For high-order checks it 3383 * will return true of the order-0 watermark is reached and there is at least 3384 * one free page of a suitable size. Checking now avoids taking the zone lock 3385 * to check in the allocation paths if no pages are free. 3386 */ 3387 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3388 int classzone_idx, unsigned int alloc_flags, 3389 long free_pages) 3390 { 3391 long min = mark; 3392 int o; 3393 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3394 3395 /* free_pages may go negative - that's OK */ 3396 free_pages -= (1 << order) - 1; 3397 3398 if (alloc_flags & ALLOC_HIGH) 3399 min -= min / 2; 3400 3401 /* 3402 * If the caller does not have rights to ALLOC_HARDER then subtract 3403 * the high-atomic reserves. This will over-estimate the size of the 3404 * atomic reserve but it avoids a search. 3405 */ 3406 if (likely(!alloc_harder)) { 3407 free_pages -= z->nr_reserved_highatomic; 3408 } else { 3409 /* 3410 * OOM victims can try even harder than normal ALLOC_HARDER 3411 * users on the grounds that it's definitely going to be in 3412 * the exit path shortly and free memory. Any allocation it 3413 * makes during the free path will be small and short-lived. 3414 */ 3415 if (alloc_flags & ALLOC_OOM) 3416 min -= min / 2; 3417 else 3418 min -= min / 4; 3419 } 3420 3421 3422 #ifdef CONFIG_CMA 3423 /* If allocation can't use CMA areas don't use free CMA pages */ 3424 if (!(alloc_flags & ALLOC_CMA)) 3425 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3426 #endif 3427 3428 /* 3429 * Check watermarks for an order-0 allocation request. If these 3430 * are not met, then a high-order request also cannot go ahead 3431 * even if a suitable page happened to be free. 3432 */ 3433 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3434 return false; 3435 3436 /* If this is an order-0 request then the watermark is fine */ 3437 if (!order) 3438 return true; 3439 3440 /* For a high-order request, check at least one suitable page is free */ 3441 for (o = order; o < MAX_ORDER; o++) { 3442 struct free_area *area = &z->free_area[o]; 3443 int mt; 3444 3445 if (!area->nr_free) 3446 continue; 3447 3448 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3449 if (!free_area_empty(area, mt)) 3450 return true; 3451 } 3452 3453 #ifdef CONFIG_CMA 3454 if ((alloc_flags & ALLOC_CMA) && 3455 !free_area_empty(area, MIGRATE_CMA)) { 3456 return true; 3457 } 3458 #endif 3459 if (alloc_harder && 3460 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3461 return true; 3462 } 3463 return false; 3464 } 3465 3466 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3467 int classzone_idx, unsigned int alloc_flags) 3468 { 3469 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3470 zone_page_state(z, NR_FREE_PAGES)); 3471 } 3472 3473 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3474 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3475 { 3476 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3477 long cma_pages = 0; 3478 3479 #ifdef CONFIG_CMA 3480 /* If allocation can't use CMA areas don't use free CMA pages */ 3481 if (!(alloc_flags & ALLOC_CMA)) 3482 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3483 #endif 3484 3485 /* 3486 * Fast check for order-0 only. If this fails then the reserves 3487 * need to be calculated. There is a corner case where the check 3488 * passes but only the high-order atomic reserve are free. If 3489 * the caller is !atomic then it'll uselessly search the free 3490 * list. That corner case is then slower but it is harmless. 3491 */ 3492 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3493 return true; 3494 3495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3496 free_pages); 3497 } 3498 3499 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3500 unsigned long mark, int classzone_idx) 3501 { 3502 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3503 3504 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3505 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3506 3507 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3508 free_pages); 3509 } 3510 3511 #ifdef CONFIG_NUMA 3512 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3513 { 3514 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3515 node_reclaim_distance; 3516 } 3517 #else /* CONFIG_NUMA */ 3518 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3519 { 3520 return true; 3521 } 3522 #endif /* CONFIG_NUMA */ 3523 3524 /* 3525 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3526 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3527 * premature use of a lower zone may cause lowmem pressure problems that 3528 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3529 * probably too small. It only makes sense to spread allocations to avoid 3530 * fragmentation between the Normal and DMA32 zones. 3531 */ 3532 static inline unsigned int 3533 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3534 { 3535 unsigned int alloc_flags = 0; 3536 3537 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3538 alloc_flags |= ALLOC_KSWAPD; 3539 3540 #ifdef CONFIG_ZONE_DMA32 3541 if (!zone) 3542 return alloc_flags; 3543 3544 if (zone_idx(zone) != ZONE_NORMAL) 3545 return alloc_flags; 3546 3547 /* 3548 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3549 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3550 * on UMA that if Normal is populated then so is DMA32. 3551 */ 3552 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3553 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3554 return alloc_flags; 3555 3556 alloc_flags |= ALLOC_NOFRAGMENT; 3557 #endif /* CONFIG_ZONE_DMA32 */ 3558 return alloc_flags; 3559 } 3560 3561 /* 3562 * get_page_from_freelist goes through the zonelist trying to allocate 3563 * a page. 3564 */ 3565 static struct page * 3566 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3567 const struct alloc_context *ac) 3568 { 3569 struct zoneref *z; 3570 struct zone *zone; 3571 struct pglist_data *last_pgdat_dirty_limit = NULL; 3572 bool no_fallback; 3573 3574 retry: 3575 /* 3576 * Scan zonelist, looking for a zone with enough free. 3577 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3578 */ 3579 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3580 z = ac->preferred_zoneref; 3581 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3582 ac->nodemask) { 3583 struct page *page; 3584 unsigned long mark; 3585 3586 if (cpusets_enabled() && 3587 (alloc_flags & ALLOC_CPUSET) && 3588 !__cpuset_zone_allowed(zone, gfp_mask)) 3589 continue; 3590 /* 3591 * When allocating a page cache page for writing, we 3592 * want to get it from a node that is within its dirty 3593 * limit, such that no single node holds more than its 3594 * proportional share of globally allowed dirty pages. 3595 * The dirty limits take into account the node's 3596 * lowmem reserves and high watermark so that kswapd 3597 * should be able to balance it without having to 3598 * write pages from its LRU list. 3599 * 3600 * XXX: For now, allow allocations to potentially 3601 * exceed the per-node dirty limit in the slowpath 3602 * (spread_dirty_pages unset) before going into reclaim, 3603 * which is important when on a NUMA setup the allowed 3604 * nodes are together not big enough to reach the 3605 * global limit. The proper fix for these situations 3606 * will require awareness of nodes in the 3607 * dirty-throttling and the flusher threads. 3608 */ 3609 if (ac->spread_dirty_pages) { 3610 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3611 continue; 3612 3613 if (!node_dirty_ok(zone->zone_pgdat)) { 3614 last_pgdat_dirty_limit = zone->zone_pgdat; 3615 continue; 3616 } 3617 } 3618 3619 if (no_fallback && nr_online_nodes > 1 && 3620 zone != ac->preferred_zoneref->zone) { 3621 int local_nid; 3622 3623 /* 3624 * If moving to a remote node, retry but allow 3625 * fragmenting fallbacks. Locality is more important 3626 * than fragmentation avoidance. 3627 */ 3628 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3629 if (zone_to_nid(zone) != local_nid) { 3630 alloc_flags &= ~ALLOC_NOFRAGMENT; 3631 goto retry; 3632 } 3633 } 3634 3635 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3636 if (!zone_watermark_fast(zone, order, mark, 3637 ac_classzone_idx(ac), alloc_flags)) { 3638 int ret; 3639 3640 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3641 /* 3642 * Watermark failed for this zone, but see if we can 3643 * grow this zone if it contains deferred pages. 3644 */ 3645 if (static_branch_unlikely(&deferred_pages)) { 3646 if (_deferred_grow_zone(zone, order)) 3647 goto try_this_zone; 3648 } 3649 #endif 3650 /* Checked here to keep the fast path fast */ 3651 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3652 if (alloc_flags & ALLOC_NO_WATERMARKS) 3653 goto try_this_zone; 3654 3655 if (node_reclaim_mode == 0 || 3656 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3657 continue; 3658 3659 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3660 switch (ret) { 3661 case NODE_RECLAIM_NOSCAN: 3662 /* did not scan */ 3663 continue; 3664 case NODE_RECLAIM_FULL: 3665 /* scanned but unreclaimable */ 3666 continue; 3667 default: 3668 /* did we reclaim enough */ 3669 if (zone_watermark_ok(zone, order, mark, 3670 ac_classzone_idx(ac), alloc_flags)) 3671 goto try_this_zone; 3672 3673 continue; 3674 } 3675 } 3676 3677 try_this_zone: 3678 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3679 gfp_mask, alloc_flags, ac->migratetype); 3680 if (page) { 3681 prep_new_page(page, order, gfp_mask, alloc_flags); 3682 3683 /* 3684 * If this is a high-order atomic allocation then check 3685 * if the pageblock should be reserved for the future 3686 */ 3687 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3688 reserve_highatomic_pageblock(page, zone, order); 3689 3690 return page; 3691 } else { 3692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3693 /* Try again if zone has deferred pages */ 3694 if (static_branch_unlikely(&deferred_pages)) { 3695 if (_deferred_grow_zone(zone, order)) 3696 goto try_this_zone; 3697 } 3698 #endif 3699 } 3700 } 3701 3702 /* 3703 * It's possible on a UMA machine to get through all zones that are 3704 * fragmented. If avoiding fragmentation, reset and try again. 3705 */ 3706 if (no_fallback) { 3707 alloc_flags &= ~ALLOC_NOFRAGMENT; 3708 goto retry; 3709 } 3710 3711 return NULL; 3712 } 3713 3714 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3715 { 3716 unsigned int filter = SHOW_MEM_FILTER_NODES; 3717 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3718 3719 if (!__ratelimit(&show_mem_rs)) 3720 return; 3721 3722 /* 3723 * This documents exceptions given to allocations in certain 3724 * contexts that are allowed to allocate outside current's set 3725 * of allowed nodes. 3726 */ 3727 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3728 if (tsk_is_oom_victim(current) || 3729 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3730 filter &= ~SHOW_MEM_FILTER_NODES; 3731 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3732 filter &= ~SHOW_MEM_FILTER_NODES; 3733 3734 show_mem(filter, nodemask); 3735 } 3736 3737 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3738 { 3739 struct va_format vaf; 3740 va_list args; 3741 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3742 DEFAULT_RATELIMIT_BURST); 3743 3744 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3745 return; 3746 3747 va_start(args, fmt); 3748 vaf.fmt = fmt; 3749 vaf.va = &args; 3750 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3751 current->comm, &vaf, gfp_mask, &gfp_mask, 3752 nodemask_pr_args(nodemask)); 3753 va_end(args); 3754 3755 cpuset_print_current_mems_allowed(); 3756 pr_cont("\n"); 3757 dump_stack(); 3758 warn_alloc_show_mem(gfp_mask, nodemask); 3759 } 3760 3761 static inline struct page * 3762 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3763 unsigned int alloc_flags, 3764 const struct alloc_context *ac) 3765 { 3766 struct page *page; 3767 3768 page = get_page_from_freelist(gfp_mask, order, 3769 alloc_flags|ALLOC_CPUSET, ac); 3770 /* 3771 * fallback to ignore cpuset restriction if our nodes 3772 * are depleted 3773 */ 3774 if (!page) 3775 page = get_page_from_freelist(gfp_mask, order, 3776 alloc_flags, ac); 3777 3778 return page; 3779 } 3780 3781 static inline struct page * 3782 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3783 const struct alloc_context *ac, unsigned long *did_some_progress) 3784 { 3785 struct oom_control oc = { 3786 .zonelist = ac->zonelist, 3787 .nodemask = ac->nodemask, 3788 .memcg = NULL, 3789 .gfp_mask = gfp_mask, 3790 .order = order, 3791 }; 3792 struct page *page; 3793 3794 *did_some_progress = 0; 3795 3796 /* 3797 * Acquire the oom lock. If that fails, somebody else is 3798 * making progress for us. 3799 */ 3800 if (!mutex_trylock(&oom_lock)) { 3801 *did_some_progress = 1; 3802 schedule_timeout_uninterruptible(1); 3803 return NULL; 3804 } 3805 3806 /* 3807 * Go through the zonelist yet one more time, keep very high watermark 3808 * here, this is only to catch a parallel oom killing, we must fail if 3809 * we're still under heavy pressure. But make sure that this reclaim 3810 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3811 * allocation which will never fail due to oom_lock already held. 3812 */ 3813 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3814 ~__GFP_DIRECT_RECLAIM, order, 3815 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3816 if (page) 3817 goto out; 3818 3819 /* Coredumps can quickly deplete all memory reserves */ 3820 if (current->flags & PF_DUMPCORE) 3821 goto out; 3822 /* The OOM killer will not help higher order allocs */ 3823 if (order > PAGE_ALLOC_COSTLY_ORDER) 3824 goto out; 3825 /* 3826 * We have already exhausted all our reclaim opportunities without any 3827 * success so it is time to admit defeat. We will skip the OOM killer 3828 * because it is very likely that the caller has a more reasonable 3829 * fallback than shooting a random task. 3830 */ 3831 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3832 goto out; 3833 /* The OOM killer does not needlessly kill tasks for lowmem */ 3834 if (ac->high_zoneidx < ZONE_NORMAL) 3835 goto out; 3836 if (pm_suspended_storage()) 3837 goto out; 3838 /* 3839 * XXX: GFP_NOFS allocations should rather fail than rely on 3840 * other request to make a forward progress. 3841 * We are in an unfortunate situation where out_of_memory cannot 3842 * do much for this context but let's try it to at least get 3843 * access to memory reserved if the current task is killed (see 3844 * out_of_memory). Once filesystems are ready to handle allocation 3845 * failures more gracefully we should just bail out here. 3846 */ 3847 3848 /* The OOM killer may not free memory on a specific node */ 3849 if (gfp_mask & __GFP_THISNODE) 3850 goto out; 3851 3852 /* Exhausted what can be done so it's blame time */ 3853 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3854 *did_some_progress = 1; 3855 3856 /* 3857 * Help non-failing allocations by giving them access to memory 3858 * reserves 3859 */ 3860 if (gfp_mask & __GFP_NOFAIL) 3861 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3862 ALLOC_NO_WATERMARKS, ac); 3863 } 3864 out: 3865 mutex_unlock(&oom_lock); 3866 return page; 3867 } 3868 3869 /* 3870 * Maximum number of compaction retries wit a progress before OOM 3871 * killer is consider as the only way to move forward. 3872 */ 3873 #define MAX_COMPACT_RETRIES 16 3874 3875 #ifdef CONFIG_COMPACTION 3876 /* Try memory compaction for high-order allocations before reclaim */ 3877 static struct page * 3878 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3879 unsigned int alloc_flags, const struct alloc_context *ac, 3880 enum compact_priority prio, enum compact_result *compact_result) 3881 { 3882 struct page *page = NULL; 3883 unsigned long pflags; 3884 unsigned int noreclaim_flag; 3885 3886 if (!order) 3887 return NULL; 3888 3889 psi_memstall_enter(&pflags); 3890 noreclaim_flag = memalloc_noreclaim_save(); 3891 3892 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3893 prio, &page); 3894 3895 memalloc_noreclaim_restore(noreclaim_flag); 3896 psi_memstall_leave(&pflags); 3897 3898 /* 3899 * At least in one zone compaction wasn't deferred or skipped, so let's 3900 * count a compaction stall 3901 */ 3902 count_vm_event(COMPACTSTALL); 3903 3904 /* Prep a captured page if available */ 3905 if (page) 3906 prep_new_page(page, order, gfp_mask, alloc_flags); 3907 3908 /* Try get a page from the freelist if available */ 3909 if (!page) 3910 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3911 3912 if (page) { 3913 struct zone *zone = page_zone(page); 3914 3915 zone->compact_blockskip_flush = false; 3916 compaction_defer_reset(zone, order, true); 3917 count_vm_event(COMPACTSUCCESS); 3918 return page; 3919 } 3920 3921 /* 3922 * It's bad if compaction run occurs and fails. The most likely reason 3923 * is that pages exist, but not enough to satisfy watermarks. 3924 */ 3925 count_vm_event(COMPACTFAIL); 3926 3927 cond_resched(); 3928 3929 return NULL; 3930 } 3931 3932 static inline bool 3933 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3934 enum compact_result compact_result, 3935 enum compact_priority *compact_priority, 3936 int *compaction_retries) 3937 { 3938 int max_retries = MAX_COMPACT_RETRIES; 3939 int min_priority; 3940 bool ret = false; 3941 int retries = *compaction_retries; 3942 enum compact_priority priority = *compact_priority; 3943 3944 if (!order) 3945 return false; 3946 3947 if (compaction_made_progress(compact_result)) 3948 (*compaction_retries)++; 3949 3950 /* 3951 * compaction considers all the zone as desperately out of memory 3952 * so it doesn't really make much sense to retry except when the 3953 * failure could be caused by insufficient priority 3954 */ 3955 if (compaction_failed(compact_result)) 3956 goto check_priority; 3957 3958 /* 3959 * compaction was skipped because there are not enough order-0 pages 3960 * to work with, so we retry only if it looks like reclaim can help. 3961 */ 3962 if (compaction_needs_reclaim(compact_result)) { 3963 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3964 goto out; 3965 } 3966 3967 /* 3968 * make sure the compaction wasn't deferred or didn't bail out early 3969 * due to locks contention before we declare that we should give up. 3970 * But the next retry should use a higher priority if allowed, so 3971 * we don't just keep bailing out endlessly. 3972 */ 3973 if (compaction_withdrawn(compact_result)) { 3974 goto check_priority; 3975 } 3976 3977 /* 3978 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3979 * costly ones because they are de facto nofail and invoke OOM 3980 * killer to move on while costly can fail and users are ready 3981 * to cope with that. 1/4 retries is rather arbitrary but we 3982 * would need much more detailed feedback from compaction to 3983 * make a better decision. 3984 */ 3985 if (order > PAGE_ALLOC_COSTLY_ORDER) 3986 max_retries /= 4; 3987 if (*compaction_retries <= max_retries) { 3988 ret = true; 3989 goto out; 3990 } 3991 3992 /* 3993 * Make sure there are attempts at the highest priority if we exhausted 3994 * all retries or failed at the lower priorities. 3995 */ 3996 check_priority: 3997 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3998 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3999 4000 if (*compact_priority > min_priority) { 4001 (*compact_priority)--; 4002 *compaction_retries = 0; 4003 ret = true; 4004 } 4005 out: 4006 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4007 return ret; 4008 } 4009 #else 4010 static inline struct page * 4011 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4012 unsigned int alloc_flags, const struct alloc_context *ac, 4013 enum compact_priority prio, enum compact_result *compact_result) 4014 { 4015 *compact_result = COMPACT_SKIPPED; 4016 return NULL; 4017 } 4018 4019 static inline bool 4020 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4021 enum compact_result compact_result, 4022 enum compact_priority *compact_priority, 4023 int *compaction_retries) 4024 { 4025 struct zone *zone; 4026 struct zoneref *z; 4027 4028 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4029 return false; 4030 4031 /* 4032 * There are setups with compaction disabled which would prefer to loop 4033 * inside the allocator rather than hit the oom killer prematurely. 4034 * Let's give them a good hope and keep retrying while the order-0 4035 * watermarks are OK. 4036 */ 4037 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4038 ac->nodemask) { 4039 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4040 ac_classzone_idx(ac), alloc_flags)) 4041 return true; 4042 } 4043 return false; 4044 } 4045 #endif /* CONFIG_COMPACTION */ 4046 4047 #ifdef CONFIG_LOCKDEP 4048 static struct lockdep_map __fs_reclaim_map = 4049 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4050 4051 static bool __need_fs_reclaim(gfp_t gfp_mask) 4052 { 4053 gfp_mask = current_gfp_context(gfp_mask); 4054 4055 /* no reclaim without waiting on it */ 4056 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4057 return false; 4058 4059 /* this guy won't enter reclaim */ 4060 if (current->flags & PF_MEMALLOC) 4061 return false; 4062 4063 /* We're only interested __GFP_FS allocations for now */ 4064 if (!(gfp_mask & __GFP_FS)) 4065 return false; 4066 4067 if (gfp_mask & __GFP_NOLOCKDEP) 4068 return false; 4069 4070 return true; 4071 } 4072 4073 void __fs_reclaim_acquire(void) 4074 { 4075 lock_map_acquire(&__fs_reclaim_map); 4076 } 4077 4078 void __fs_reclaim_release(void) 4079 { 4080 lock_map_release(&__fs_reclaim_map); 4081 } 4082 4083 void fs_reclaim_acquire(gfp_t gfp_mask) 4084 { 4085 if (__need_fs_reclaim(gfp_mask)) 4086 __fs_reclaim_acquire(); 4087 } 4088 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4089 4090 void fs_reclaim_release(gfp_t gfp_mask) 4091 { 4092 if (__need_fs_reclaim(gfp_mask)) 4093 __fs_reclaim_release(); 4094 } 4095 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4096 #endif 4097 4098 /* Perform direct synchronous page reclaim */ 4099 static int 4100 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4101 const struct alloc_context *ac) 4102 { 4103 int progress; 4104 unsigned int noreclaim_flag; 4105 unsigned long pflags; 4106 4107 cond_resched(); 4108 4109 /* We now go into synchronous reclaim */ 4110 cpuset_memory_pressure_bump(); 4111 psi_memstall_enter(&pflags); 4112 fs_reclaim_acquire(gfp_mask); 4113 noreclaim_flag = memalloc_noreclaim_save(); 4114 4115 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4116 ac->nodemask); 4117 4118 memalloc_noreclaim_restore(noreclaim_flag); 4119 fs_reclaim_release(gfp_mask); 4120 psi_memstall_leave(&pflags); 4121 4122 cond_resched(); 4123 4124 return progress; 4125 } 4126 4127 /* The really slow allocator path where we enter direct reclaim */ 4128 static inline struct page * 4129 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4130 unsigned int alloc_flags, const struct alloc_context *ac, 4131 unsigned long *did_some_progress) 4132 { 4133 struct page *page = NULL; 4134 bool drained = false; 4135 4136 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4137 if (unlikely(!(*did_some_progress))) 4138 return NULL; 4139 4140 retry: 4141 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4142 4143 /* 4144 * If an allocation failed after direct reclaim, it could be because 4145 * pages are pinned on the per-cpu lists or in high alloc reserves. 4146 * Shrink them them and try again 4147 */ 4148 if (!page && !drained) { 4149 unreserve_highatomic_pageblock(ac, false); 4150 drain_all_pages(NULL); 4151 drained = true; 4152 goto retry; 4153 } 4154 4155 return page; 4156 } 4157 4158 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4159 const struct alloc_context *ac) 4160 { 4161 struct zoneref *z; 4162 struct zone *zone; 4163 pg_data_t *last_pgdat = NULL; 4164 enum zone_type high_zoneidx = ac->high_zoneidx; 4165 4166 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4167 ac->nodemask) { 4168 if (last_pgdat != zone->zone_pgdat) 4169 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4170 last_pgdat = zone->zone_pgdat; 4171 } 4172 } 4173 4174 static inline unsigned int 4175 gfp_to_alloc_flags(gfp_t gfp_mask) 4176 { 4177 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4178 4179 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4180 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4181 4182 /* 4183 * The caller may dip into page reserves a bit more if the caller 4184 * cannot run direct reclaim, or if the caller has realtime scheduling 4185 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4186 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4187 */ 4188 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4189 4190 if (gfp_mask & __GFP_ATOMIC) { 4191 /* 4192 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4193 * if it can't schedule. 4194 */ 4195 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4196 alloc_flags |= ALLOC_HARDER; 4197 /* 4198 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4199 * comment for __cpuset_node_allowed(). 4200 */ 4201 alloc_flags &= ~ALLOC_CPUSET; 4202 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4203 alloc_flags |= ALLOC_HARDER; 4204 4205 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4206 alloc_flags |= ALLOC_KSWAPD; 4207 4208 #ifdef CONFIG_CMA 4209 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4210 alloc_flags |= ALLOC_CMA; 4211 #endif 4212 return alloc_flags; 4213 } 4214 4215 static bool oom_reserves_allowed(struct task_struct *tsk) 4216 { 4217 if (!tsk_is_oom_victim(tsk)) 4218 return false; 4219 4220 /* 4221 * !MMU doesn't have oom reaper so give access to memory reserves 4222 * only to the thread with TIF_MEMDIE set 4223 */ 4224 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4225 return false; 4226 4227 return true; 4228 } 4229 4230 /* 4231 * Distinguish requests which really need access to full memory 4232 * reserves from oom victims which can live with a portion of it 4233 */ 4234 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4235 { 4236 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4237 return 0; 4238 if (gfp_mask & __GFP_MEMALLOC) 4239 return ALLOC_NO_WATERMARKS; 4240 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4241 return ALLOC_NO_WATERMARKS; 4242 if (!in_interrupt()) { 4243 if (current->flags & PF_MEMALLOC) 4244 return ALLOC_NO_WATERMARKS; 4245 else if (oom_reserves_allowed(current)) 4246 return ALLOC_OOM; 4247 } 4248 4249 return 0; 4250 } 4251 4252 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4253 { 4254 return !!__gfp_pfmemalloc_flags(gfp_mask); 4255 } 4256 4257 /* 4258 * Checks whether it makes sense to retry the reclaim to make a forward progress 4259 * for the given allocation request. 4260 * 4261 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4262 * without success, or when we couldn't even meet the watermark if we 4263 * reclaimed all remaining pages on the LRU lists. 4264 * 4265 * Returns true if a retry is viable or false to enter the oom path. 4266 */ 4267 static inline bool 4268 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4269 struct alloc_context *ac, int alloc_flags, 4270 bool did_some_progress, int *no_progress_loops) 4271 { 4272 struct zone *zone; 4273 struct zoneref *z; 4274 bool ret = false; 4275 4276 /* 4277 * Costly allocations might have made a progress but this doesn't mean 4278 * their order will become available due to high fragmentation so 4279 * always increment the no progress counter for them 4280 */ 4281 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4282 *no_progress_loops = 0; 4283 else 4284 (*no_progress_loops)++; 4285 4286 /* 4287 * Make sure we converge to OOM if we cannot make any progress 4288 * several times in the row. 4289 */ 4290 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4291 /* Before OOM, exhaust highatomic_reserve */ 4292 return unreserve_highatomic_pageblock(ac, true); 4293 } 4294 4295 /* 4296 * Keep reclaiming pages while there is a chance this will lead 4297 * somewhere. If none of the target zones can satisfy our allocation 4298 * request even if all reclaimable pages are considered then we are 4299 * screwed and have to go OOM. 4300 */ 4301 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4302 ac->nodemask) { 4303 unsigned long available; 4304 unsigned long reclaimable; 4305 unsigned long min_wmark = min_wmark_pages(zone); 4306 bool wmark; 4307 4308 available = reclaimable = zone_reclaimable_pages(zone); 4309 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4310 4311 /* 4312 * Would the allocation succeed if we reclaimed all 4313 * reclaimable pages? 4314 */ 4315 wmark = __zone_watermark_ok(zone, order, min_wmark, 4316 ac_classzone_idx(ac), alloc_flags, available); 4317 trace_reclaim_retry_zone(z, order, reclaimable, 4318 available, min_wmark, *no_progress_loops, wmark); 4319 if (wmark) { 4320 /* 4321 * If we didn't make any progress and have a lot of 4322 * dirty + writeback pages then we should wait for 4323 * an IO to complete to slow down the reclaim and 4324 * prevent from pre mature OOM 4325 */ 4326 if (!did_some_progress) { 4327 unsigned long write_pending; 4328 4329 write_pending = zone_page_state_snapshot(zone, 4330 NR_ZONE_WRITE_PENDING); 4331 4332 if (2 * write_pending > reclaimable) { 4333 congestion_wait(BLK_RW_ASYNC, HZ/10); 4334 return true; 4335 } 4336 } 4337 4338 ret = true; 4339 goto out; 4340 } 4341 } 4342 4343 out: 4344 /* 4345 * Memory allocation/reclaim might be called from a WQ context and the 4346 * current implementation of the WQ concurrency control doesn't 4347 * recognize that a particular WQ is congested if the worker thread is 4348 * looping without ever sleeping. Therefore we have to do a short sleep 4349 * here rather than calling cond_resched(). 4350 */ 4351 if (current->flags & PF_WQ_WORKER) 4352 schedule_timeout_uninterruptible(1); 4353 else 4354 cond_resched(); 4355 return ret; 4356 } 4357 4358 static inline bool 4359 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4360 { 4361 /* 4362 * It's possible that cpuset's mems_allowed and the nodemask from 4363 * mempolicy don't intersect. This should be normally dealt with by 4364 * policy_nodemask(), but it's possible to race with cpuset update in 4365 * such a way the check therein was true, and then it became false 4366 * before we got our cpuset_mems_cookie here. 4367 * This assumes that for all allocations, ac->nodemask can come only 4368 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4369 * when it does not intersect with the cpuset restrictions) or the 4370 * caller can deal with a violated nodemask. 4371 */ 4372 if (cpusets_enabled() && ac->nodemask && 4373 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4374 ac->nodemask = NULL; 4375 return true; 4376 } 4377 4378 /* 4379 * When updating a task's mems_allowed or mempolicy nodemask, it is 4380 * possible to race with parallel threads in such a way that our 4381 * allocation can fail while the mask is being updated. If we are about 4382 * to fail, check if the cpuset changed during allocation and if so, 4383 * retry. 4384 */ 4385 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4386 return true; 4387 4388 return false; 4389 } 4390 4391 static inline struct page * 4392 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4393 struct alloc_context *ac) 4394 { 4395 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4396 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4397 struct page *page = NULL; 4398 unsigned int alloc_flags; 4399 unsigned long did_some_progress; 4400 enum compact_priority compact_priority; 4401 enum compact_result compact_result; 4402 int compaction_retries; 4403 int no_progress_loops; 4404 unsigned int cpuset_mems_cookie; 4405 int reserve_flags; 4406 4407 /* 4408 * We also sanity check to catch abuse of atomic reserves being used by 4409 * callers that are not in atomic context. 4410 */ 4411 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4412 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4413 gfp_mask &= ~__GFP_ATOMIC; 4414 4415 retry_cpuset: 4416 compaction_retries = 0; 4417 no_progress_loops = 0; 4418 compact_priority = DEF_COMPACT_PRIORITY; 4419 cpuset_mems_cookie = read_mems_allowed_begin(); 4420 4421 /* 4422 * The fast path uses conservative alloc_flags to succeed only until 4423 * kswapd needs to be woken up, and to avoid the cost of setting up 4424 * alloc_flags precisely. So we do that now. 4425 */ 4426 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4427 4428 /* 4429 * We need to recalculate the starting point for the zonelist iterator 4430 * because we might have used different nodemask in the fast path, or 4431 * there was a cpuset modification and we are retrying - otherwise we 4432 * could end up iterating over non-eligible zones endlessly. 4433 */ 4434 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4435 ac->high_zoneidx, ac->nodemask); 4436 if (!ac->preferred_zoneref->zone) 4437 goto nopage; 4438 4439 if (alloc_flags & ALLOC_KSWAPD) 4440 wake_all_kswapds(order, gfp_mask, ac); 4441 4442 /* 4443 * The adjusted alloc_flags might result in immediate success, so try 4444 * that first 4445 */ 4446 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4447 if (page) 4448 goto got_pg; 4449 4450 /* 4451 * For costly allocations, try direct compaction first, as it's likely 4452 * that we have enough base pages and don't need to reclaim. For non- 4453 * movable high-order allocations, do that as well, as compaction will 4454 * try prevent permanent fragmentation by migrating from blocks of the 4455 * same migratetype. 4456 * Don't try this for allocations that are allowed to ignore 4457 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4458 */ 4459 if (can_direct_reclaim && 4460 (costly_order || 4461 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4462 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4463 page = __alloc_pages_direct_compact(gfp_mask, order, 4464 alloc_flags, ac, 4465 INIT_COMPACT_PRIORITY, 4466 &compact_result); 4467 if (page) 4468 goto got_pg; 4469 4470 if (order >= pageblock_order && (gfp_mask & __GFP_IO)) { 4471 /* 4472 * If allocating entire pageblock(s) and compaction 4473 * failed because all zones are below low watermarks 4474 * or is prohibited because it recently failed at this 4475 * order, fail immediately. 4476 * 4477 * Reclaim is 4478 * - potentially very expensive because zones are far 4479 * below their low watermarks or this is part of very 4480 * bursty high order allocations, 4481 * - not guaranteed to help because isolate_freepages() 4482 * may not iterate over freed pages as part of its 4483 * linear scan, and 4484 * - unlikely to make entire pageblocks free on its 4485 * own. 4486 */ 4487 if (compact_result == COMPACT_SKIPPED || 4488 compact_result == COMPACT_DEFERRED) 4489 goto nopage; 4490 } 4491 4492 /* 4493 * Checks for costly allocations with __GFP_NORETRY, which 4494 * includes THP page fault allocations 4495 */ 4496 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4497 /* 4498 * If compaction is deferred for high-order allocations, 4499 * it is because sync compaction recently failed. If 4500 * this is the case and the caller requested a THP 4501 * allocation, we do not want to heavily disrupt the 4502 * system, so we fail the allocation instead of entering 4503 * direct reclaim. 4504 */ 4505 if (compact_result == COMPACT_DEFERRED) 4506 goto nopage; 4507 4508 /* 4509 * Looks like reclaim/compaction is worth trying, but 4510 * sync compaction could be very expensive, so keep 4511 * using async compaction. 4512 */ 4513 compact_priority = INIT_COMPACT_PRIORITY; 4514 } 4515 } 4516 4517 retry: 4518 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4519 if (alloc_flags & ALLOC_KSWAPD) 4520 wake_all_kswapds(order, gfp_mask, ac); 4521 4522 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4523 if (reserve_flags) 4524 alloc_flags = reserve_flags; 4525 4526 /* 4527 * Reset the nodemask and zonelist iterators if memory policies can be 4528 * ignored. These allocations are high priority and system rather than 4529 * user oriented. 4530 */ 4531 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4532 ac->nodemask = NULL; 4533 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4534 ac->high_zoneidx, ac->nodemask); 4535 } 4536 4537 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4538 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4539 if (page) 4540 goto got_pg; 4541 4542 /* Caller is not willing to reclaim, we can't balance anything */ 4543 if (!can_direct_reclaim) 4544 goto nopage; 4545 4546 /* Avoid recursion of direct reclaim */ 4547 if (current->flags & PF_MEMALLOC) 4548 goto nopage; 4549 4550 /* Try direct reclaim and then allocating */ 4551 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4552 &did_some_progress); 4553 if (page) 4554 goto got_pg; 4555 4556 /* Try direct compaction and then allocating */ 4557 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4558 compact_priority, &compact_result); 4559 if (page) 4560 goto got_pg; 4561 4562 /* Do not loop if specifically requested */ 4563 if (gfp_mask & __GFP_NORETRY) 4564 goto nopage; 4565 4566 /* 4567 * Do not retry costly high order allocations unless they are 4568 * __GFP_RETRY_MAYFAIL 4569 */ 4570 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4571 goto nopage; 4572 4573 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4574 did_some_progress > 0, &no_progress_loops)) 4575 goto retry; 4576 4577 /* 4578 * It doesn't make any sense to retry for the compaction if the order-0 4579 * reclaim is not able to make any progress because the current 4580 * implementation of the compaction depends on the sufficient amount 4581 * of free memory (see __compaction_suitable) 4582 */ 4583 if (did_some_progress > 0 && 4584 should_compact_retry(ac, order, alloc_flags, 4585 compact_result, &compact_priority, 4586 &compaction_retries)) 4587 goto retry; 4588 4589 4590 /* Deal with possible cpuset update races before we start OOM killing */ 4591 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4592 goto retry_cpuset; 4593 4594 /* Reclaim has failed us, start killing things */ 4595 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4596 if (page) 4597 goto got_pg; 4598 4599 /* Avoid allocations with no watermarks from looping endlessly */ 4600 if (tsk_is_oom_victim(current) && 4601 (alloc_flags == ALLOC_OOM || 4602 (gfp_mask & __GFP_NOMEMALLOC))) 4603 goto nopage; 4604 4605 /* Retry as long as the OOM killer is making progress */ 4606 if (did_some_progress) { 4607 no_progress_loops = 0; 4608 goto retry; 4609 } 4610 4611 nopage: 4612 /* Deal with possible cpuset update races before we fail */ 4613 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4614 goto retry_cpuset; 4615 4616 /* 4617 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4618 * we always retry 4619 */ 4620 if (gfp_mask & __GFP_NOFAIL) { 4621 /* 4622 * All existing users of the __GFP_NOFAIL are blockable, so warn 4623 * of any new users that actually require GFP_NOWAIT 4624 */ 4625 if (WARN_ON_ONCE(!can_direct_reclaim)) 4626 goto fail; 4627 4628 /* 4629 * PF_MEMALLOC request from this context is rather bizarre 4630 * because we cannot reclaim anything and only can loop waiting 4631 * for somebody to do a work for us 4632 */ 4633 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4634 4635 /* 4636 * non failing costly orders are a hard requirement which we 4637 * are not prepared for much so let's warn about these users 4638 * so that we can identify them and convert them to something 4639 * else. 4640 */ 4641 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4642 4643 /* 4644 * Help non-failing allocations by giving them access to memory 4645 * reserves but do not use ALLOC_NO_WATERMARKS because this 4646 * could deplete whole memory reserves which would just make 4647 * the situation worse 4648 */ 4649 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4650 if (page) 4651 goto got_pg; 4652 4653 cond_resched(); 4654 goto retry; 4655 } 4656 fail: 4657 warn_alloc(gfp_mask, ac->nodemask, 4658 "page allocation failure: order:%u", order); 4659 got_pg: 4660 return page; 4661 } 4662 4663 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4664 int preferred_nid, nodemask_t *nodemask, 4665 struct alloc_context *ac, gfp_t *alloc_mask, 4666 unsigned int *alloc_flags) 4667 { 4668 ac->high_zoneidx = gfp_zone(gfp_mask); 4669 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4670 ac->nodemask = nodemask; 4671 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4672 4673 if (cpusets_enabled()) { 4674 *alloc_mask |= __GFP_HARDWALL; 4675 if (!ac->nodemask) 4676 ac->nodemask = &cpuset_current_mems_allowed; 4677 else 4678 *alloc_flags |= ALLOC_CPUSET; 4679 } 4680 4681 fs_reclaim_acquire(gfp_mask); 4682 fs_reclaim_release(gfp_mask); 4683 4684 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4685 4686 if (should_fail_alloc_page(gfp_mask, order)) 4687 return false; 4688 4689 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4690 *alloc_flags |= ALLOC_CMA; 4691 4692 return true; 4693 } 4694 4695 /* Determine whether to spread dirty pages and what the first usable zone */ 4696 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4697 { 4698 /* Dirty zone balancing only done in the fast path */ 4699 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4700 4701 /* 4702 * The preferred zone is used for statistics but crucially it is 4703 * also used as the starting point for the zonelist iterator. It 4704 * may get reset for allocations that ignore memory policies. 4705 */ 4706 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4707 ac->high_zoneidx, ac->nodemask); 4708 } 4709 4710 /* 4711 * This is the 'heart' of the zoned buddy allocator. 4712 */ 4713 struct page * 4714 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4715 nodemask_t *nodemask) 4716 { 4717 struct page *page; 4718 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4719 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4720 struct alloc_context ac = { }; 4721 4722 /* 4723 * There are several places where we assume that the order value is sane 4724 * so bail out early if the request is out of bound. 4725 */ 4726 if (unlikely(order >= MAX_ORDER)) { 4727 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4728 return NULL; 4729 } 4730 4731 gfp_mask &= gfp_allowed_mask; 4732 alloc_mask = gfp_mask; 4733 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4734 return NULL; 4735 4736 finalise_ac(gfp_mask, &ac); 4737 4738 /* 4739 * Forbid the first pass from falling back to types that fragment 4740 * memory until all local zones are considered. 4741 */ 4742 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4743 4744 /* First allocation attempt */ 4745 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4746 if (likely(page)) 4747 goto out; 4748 4749 /* 4750 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4751 * resp. GFP_NOIO which has to be inherited for all allocation requests 4752 * from a particular context which has been marked by 4753 * memalloc_no{fs,io}_{save,restore}. 4754 */ 4755 alloc_mask = current_gfp_context(gfp_mask); 4756 ac.spread_dirty_pages = false; 4757 4758 /* 4759 * Restore the original nodemask if it was potentially replaced with 4760 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4761 */ 4762 if (unlikely(ac.nodemask != nodemask)) 4763 ac.nodemask = nodemask; 4764 4765 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4766 4767 out: 4768 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4769 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4770 __free_pages(page, order); 4771 page = NULL; 4772 } 4773 4774 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4775 4776 return page; 4777 } 4778 EXPORT_SYMBOL(__alloc_pages_nodemask); 4779 4780 /* 4781 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4782 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4783 * you need to access high mem. 4784 */ 4785 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4786 { 4787 struct page *page; 4788 4789 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4790 if (!page) 4791 return 0; 4792 return (unsigned long) page_address(page); 4793 } 4794 EXPORT_SYMBOL(__get_free_pages); 4795 4796 unsigned long get_zeroed_page(gfp_t gfp_mask) 4797 { 4798 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4799 } 4800 EXPORT_SYMBOL(get_zeroed_page); 4801 4802 static inline void free_the_page(struct page *page, unsigned int order) 4803 { 4804 if (order == 0) /* Via pcp? */ 4805 free_unref_page(page); 4806 else 4807 __free_pages_ok(page, order); 4808 } 4809 4810 void __free_pages(struct page *page, unsigned int order) 4811 { 4812 if (put_page_testzero(page)) 4813 free_the_page(page, order); 4814 } 4815 EXPORT_SYMBOL(__free_pages); 4816 4817 void free_pages(unsigned long addr, unsigned int order) 4818 { 4819 if (addr != 0) { 4820 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4821 __free_pages(virt_to_page((void *)addr), order); 4822 } 4823 } 4824 4825 EXPORT_SYMBOL(free_pages); 4826 4827 /* 4828 * Page Fragment: 4829 * An arbitrary-length arbitrary-offset area of memory which resides 4830 * within a 0 or higher order page. Multiple fragments within that page 4831 * are individually refcounted, in the page's reference counter. 4832 * 4833 * The page_frag functions below provide a simple allocation framework for 4834 * page fragments. This is used by the network stack and network device 4835 * drivers to provide a backing region of memory for use as either an 4836 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4837 */ 4838 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4839 gfp_t gfp_mask) 4840 { 4841 struct page *page = NULL; 4842 gfp_t gfp = gfp_mask; 4843 4844 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4845 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4846 __GFP_NOMEMALLOC; 4847 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4848 PAGE_FRAG_CACHE_MAX_ORDER); 4849 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4850 #endif 4851 if (unlikely(!page)) 4852 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4853 4854 nc->va = page ? page_address(page) : NULL; 4855 4856 return page; 4857 } 4858 4859 void __page_frag_cache_drain(struct page *page, unsigned int count) 4860 { 4861 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4862 4863 if (page_ref_sub_and_test(page, count)) 4864 free_the_page(page, compound_order(page)); 4865 } 4866 EXPORT_SYMBOL(__page_frag_cache_drain); 4867 4868 void *page_frag_alloc(struct page_frag_cache *nc, 4869 unsigned int fragsz, gfp_t gfp_mask) 4870 { 4871 unsigned int size = PAGE_SIZE; 4872 struct page *page; 4873 int offset; 4874 4875 if (unlikely(!nc->va)) { 4876 refill: 4877 page = __page_frag_cache_refill(nc, gfp_mask); 4878 if (!page) 4879 return NULL; 4880 4881 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4882 /* if size can vary use size else just use PAGE_SIZE */ 4883 size = nc->size; 4884 #endif 4885 /* Even if we own the page, we do not use atomic_set(). 4886 * This would break get_page_unless_zero() users. 4887 */ 4888 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4889 4890 /* reset page count bias and offset to start of new frag */ 4891 nc->pfmemalloc = page_is_pfmemalloc(page); 4892 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4893 nc->offset = size; 4894 } 4895 4896 offset = nc->offset - fragsz; 4897 if (unlikely(offset < 0)) { 4898 page = virt_to_page(nc->va); 4899 4900 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4901 goto refill; 4902 4903 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4904 /* if size can vary use size else just use PAGE_SIZE */ 4905 size = nc->size; 4906 #endif 4907 /* OK, page count is 0, we can safely set it */ 4908 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4909 4910 /* reset page count bias and offset to start of new frag */ 4911 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4912 offset = size - fragsz; 4913 } 4914 4915 nc->pagecnt_bias--; 4916 nc->offset = offset; 4917 4918 return nc->va + offset; 4919 } 4920 EXPORT_SYMBOL(page_frag_alloc); 4921 4922 /* 4923 * Frees a page fragment allocated out of either a compound or order 0 page. 4924 */ 4925 void page_frag_free(void *addr) 4926 { 4927 struct page *page = virt_to_head_page(addr); 4928 4929 if (unlikely(put_page_testzero(page))) 4930 free_the_page(page, compound_order(page)); 4931 } 4932 EXPORT_SYMBOL(page_frag_free); 4933 4934 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4935 size_t size) 4936 { 4937 if (addr) { 4938 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4939 unsigned long used = addr + PAGE_ALIGN(size); 4940 4941 split_page(virt_to_page((void *)addr), order); 4942 while (used < alloc_end) { 4943 free_page(used); 4944 used += PAGE_SIZE; 4945 } 4946 } 4947 return (void *)addr; 4948 } 4949 4950 /** 4951 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4952 * @size: the number of bytes to allocate 4953 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4954 * 4955 * This function is similar to alloc_pages(), except that it allocates the 4956 * minimum number of pages to satisfy the request. alloc_pages() can only 4957 * allocate memory in power-of-two pages. 4958 * 4959 * This function is also limited by MAX_ORDER. 4960 * 4961 * Memory allocated by this function must be released by free_pages_exact(). 4962 * 4963 * Return: pointer to the allocated area or %NULL in case of error. 4964 */ 4965 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4966 { 4967 unsigned int order = get_order(size); 4968 unsigned long addr; 4969 4970 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4971 gfp_mask &= ~__GFP_COMP; 4972 4973 addr = __get_free_pages(gfp_mask, order); 4974 return make_alloc_exact(addr, order, size); 4975 } 4976 EXPORT_SYMBOL(alloc_pages_exact); 4977 4978 /** 4979 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4980 * pages on a node. 4981 * @nid: the preferred node ID where memory should be allocated 4982 * @size: the number of bytes to allocate 4983 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4984 * 4985 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4986 * back. 4987 * 4988 * Return: pointer to the allocated area or %NULL in case of error. 4989 */ 4990 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4991 { 4992 unsigned int order = get_order(size); 4993 struct page *p; 4994 4995 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4996 gfp_mask &= ~__GFP_COMP; 4997 4998 p = alloc_pages_node(nid, gfp_mask, order); 4999 if (!p) 5000 return NULL; 5001 return make_alloc_exact((unsigned long)page_address(p), order, size); 5002 } 5003 5004 /** 5005 * free_pages_exact - release memory allocated via alloc_pages_exact() 5006 * @virt: the value returned by alloc_pages_exact. 5007 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5008 * 5009 * Release the memory allocated by a previous call to alloc_pages_exact. 5010 */ 5011 void free_pages_exact(void *virt, size_t size) 5012 { 5013 unsigned long addr = (unsigned long)virt; 5014 unsigned long end = addr + PAGE_ALIGN(size); 5015 5016 while (addr < end) { 5017 free_page(addr); 5018 addr += PAGE_SIZE; 5019 } 5020 } 5021 EXPORT_SYMBOL(free_pages_exact); 5022 5023 /** 5024 * nr_free_zone_pages - count number of pages beyond high watermark 5025 * @offset: The zone index of the highest zone 5026 * 5027 * nr_free_zone_pages() counts the number of pages which are beyond the 5028 * high watermark within all zones at or below a given zone index. For each 5029 * zone, the number of pages is calculated as: 5030 * 5031 * nr_free_zone_pages = managed_pages - high_pages 5032 * 5033 * Return: number of pages beyond high watermark. 5034 */ 5035 static unsigned long nr_free_zone_pages(int offset) 5036 { 5037 struct zoneref *z; 5038 struct zone *zone; 5039 5040 /* Just pick one node, since fallback list is circular */ 5041 unsigned long sum = 0; 5042 5043 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5044 5045 for_each_zone_zonelist(zone, z, zonelist, offset) { 5046 unsigned long size = zone_managed_pages(zone); 5047 unsigned long high = high_wmark_pages(zone); 5048 if (size > high) 5049 sum += size - high; 5050 } 5051 5052 return sum; 5053 } 5054 5055 /** 5056 * nr_free_buffer_pages - count number of pages beyond high watermark 5057 * 5058 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5059 * watermark within ZONE_DMA and ZONE_NORMAL. 5060 * 5061 * Return: number of pages beyond high watermark within ZONE_DMA and 5062 * ZONE_NORMAL. 5063 */ 5064 unsigned long nr_free_buffer_pages(void) 5065 { 5066 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5067 } 5068 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5069 5070 /** 5071 * nr_free_pagecache_pages - count number of pages beyond high watermark 5072 * 5073 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5074 * high watermark within all zones. 5075 * 5076 * Return: number of pages beyond high watermark within all zones. 5077 */ 5078 unsigned long nr_free_pagecache_pages(void) 5079 { 5080 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5081 } 5082 5083 static inline void show_node(struct zone *zone) 5084 { 5085 if (IS_ENABLED(CONFIG_NUMA)) 5086 printk("Node %d ", zone_to_nid(zone)); 5087 } 5088 5089 long si_mem_available(void) 5090 { 5091 long available; 5092 unsigned long pagecache; 5093 unsigned long wmark_low = 0; 5094 unsigned long pages[NR_LRU_LISTS]; 5095 unsigned long reclaimable; 5096 struct zone *zone; 5097 int lru; 5098 5099 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5100 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5101 5102 for_each_zone(zone) 5103 wmark_low += low_wmark_pages(zone); 5104 5105 /* 5106 * Estimate the amount of memory available for userspace allocations, 5107 * without causing swapping. 5108 */ 5109 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5110 5111 /* 5112 * Not all the page cache can be freed, otherwise the system will 5113 * start swapping. Assume at least half of the page cache, or the 5114 * low watermark worth of cache, needs to stay. 5115 */ 5116 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5117 pagecache -= min(pagecache / 2, wmark_low); 5118 available += pagecache; 5119 5120 /* 5121 * Part of the reclaimable slab and other kernel memory consists of 5122 * items that are in use, and cannot be freed. Cap this estimate at the 5123 * low watermark. 5124 */ 5125 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5126 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5127 available += reclaimable - min(reclaimable / 2, wmark_low); 5128 5129 if (available < 0) 5130 available = 0; 5131 return available; 5132 } 5133 EXPORT_SYMBOL_GPL(si_mem_available); 5134 5135 void si_meminfo(struct sysinfo *val) 5136 { 5137 val->totalram = totalram_pages(); 5138 val->sharedram = global_node_page_state(NR_SHMEM); 5139 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5140 val->bufferram = nr_blockdev_pages(); 5141 val->totalhigh = totalhigh_pages(); 5142 val->freehigh = nr_free_highpages(); 5143 val->mem_unit = PAGE_SIZE; 5144 } 5145 5146 EXPORT_SYMBOL(si_meminfo); 5147 5148 #ifdef CONFIG_NUMA 5149 void si_meminfo_node(struct sysinfo *val, int nid) 5150 { 5151 int zone_type; /* needs to be signed */ 5152 unsigned long managed_pages = 0; 5153 unsigned long managed_highpages = 0; 5154 unsigned long free_highpages = 0; 5155 pg_data_t *pgdat = NODE_DATA(nid); 5156 5157 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5158 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5159 val->totalram = managed_pages; 5160 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5161 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5162 #ifdef CONFIG_HIGHMEM 5163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5164 struct zone *zone = &pgdat->node_zones[zone_type]; 5165 5166 if (is_highmem(zone)) { 5167 managed_highpages += zone_managed_pages(zone); 5168 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5169 } 5170 } 5171 val->totalhigh = managed_highpages; 5172 val->freehigh = free_highpages; 5173 #else 5174 val->totalhigh = managed_highpages; 5175 val->freehigh = free_highpages; 5176 #endif 5177 val->mem_unit = PAGE_SIZE; 5178 } 5179 #endif 5180 5181 /* 5182 * Determine whether the node should be displayed or not, depending on whether 5183 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5184 */ 5185 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5186 { 5187 if (!(flags & SHOW_MEM_FILTER_NODES)) 5188 return false; 5189 5190 /* 5191 * no node mask - aka implicit memory numa policy. Do not bother with 5192 * the synchronization - read_mems_allowed_begin - because we do not 5193 * have to be precise here. 5194 */ 5195 if (!nodemask) 5196 nodemask = &cpuset_current_mems_allowed; 5197 5198 return !node_isset(nid, *nodemask); 5199 } 5200 5201 #define K(x) ((x) << (PAGE_SHIFT-10)) 5202 5203 static void show_migration_types(unsigned char type) 5204 { 5205 static const char types[MIGRATE_TYPES] = { 5206 [MIGRATE_UNMOVABLE] = 'U', 5207 [MIGRATE_MOVABLE] = 'M', 5208 [MIGRATE_RECLAIMABLE] = 'E', 5209 [MIGRATE_HIGHATOMIC] = 'H', 5210 #ifdef CONFIG_CMA 5211 [MIGRATE_CMA] = 'C', 5212 #endif 5213 #ifdef CONFIG_MEMORY_ISOLATION 5214 [MIGRATE_ISOLATE] = 'I', 5215 #endif 5216 }; 5217 char tmp[MIGRATE_TYPES + 1]; 5218 char *p = tmp; 5219 int i; 5220 5221 for (i = 0; i < MIGRATE_TYPES; i++) { 5222 if (type & (1 << i)) 5223 *p++ = types[i]; 5224 } 5225 5226 *p = '\0'; 5227 printk(KERN_CONT "(%s) ", tmp); 5228 } 5229 5230 /* 5231 * Show free area list (used inside shift_scroll-lock stuff) 5232 * We also calculate the percentage fragmentation. We do this by counting the 5233 * memory on each free list with the exception of the first item on the list. 5234 * 5235 * Bits in @filter: 5236 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5237 * cpuset. 5238 */ 5239 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5240 { 5241 unsigned long free_pcp = 0; 5242 int cpu; 5243 struct zone *zone; 5244 pg_data_t *pgdat; 5245 5246 for_each_populated_zone(zone) { 5247 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5248 continue; 5249 5250 for_each_online_cpu(cpu) 5251 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5252 } 5253 5254 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5255 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5256 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5257 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5258 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5259 " free:%lu free_pcp:%lu free_cma:%lu\n", 5260 global_node_page_state(NR_ACTIVE_ANON), 5261 global_node_page_state(NR_INACTIVE_ANON), 5262 global_node_page_state(NR_ISOLATED_ANON), 5263 global_node_page_state(NR_ACTIVE_FILE), 5264 global_node_page_state(NR_INACTIVE_FILE), 5265 global_node_page_state(NR_ISOLATED_FILE), 5266 global_node_page_state(NR_UNEVICTABLE), 5267 global_node_page_state(NR_FILE_DIRTY), 5268 global_node_page_state(NR_WRITEBACK), 5269 global_node_page_state(NR_UNSTABLE_NFS), 5270 global_node_page_state(NR_SLAB_RECLAIMABLE), 5271 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5272 global_node_page_state(NR_FILE_MAPPED), 5273 global_node_page_state(NR_SHMEM), 5274 global_zone_page_state(NR_PAGETABLE), 5275 global_zone_page_state(NR_BOUNCE), 5276 global_zone_page_state(NR_FREE_PAGES), 5277 free_pcp, 5278 global_zone_page_state(NR_FREE_CMA_PAGES)); 5279 5280 for_each_online_pgdat(pgdat) { 5281 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5282 continue; 5283 5284 printk("Node %d" 5285 " active_anon:%lukB" 5286 " inactive_anon:%lukB" 5287 " active_file:%lukB" 5288 " inactive_file:%lukB" 5289 " unevictable:%lukB" 5290 " isolated(anon):%lukB" 5291 " isolated(file):%lukB" 5292 " mapped:%lukB" 5293 " dirty:%lukB" 5294 " writeback:%lukB" 5295 " shmem:%lukB" 5296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5297 " shmem_thp: %lukB" 5298 " shmem_pmdmapped: %lukB" 5299 " anon_thp: %lukB" 5300 #endif 5301 " writeback_tmp:%lukB" 5302 " unstable:%lukB" 5303 " all_unreclaimable? %s" 5304 "\n", 5305 pgdat->node_id, 5306 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5307 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5308 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5309 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5310 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5311 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5312 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5313 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5314 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5315 K(node_page_state(pgdat, NR_WRITEBACK)), 5316 K(node_page_state(pgdat, NR_SHMEM)), 5317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5318 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5319 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5320 * HPAGE_PMD_NR), 5321 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5322 #endif 5323 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5324 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5325 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5326 "yes" : "no"); 5327 } 5328 5329 for_each_populated_zone(zone) { 5330 int i; 5331 5332 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5333 continue; 5334 5335 free_pcp = 0; 5336 for_each_online_cpu(cpu) 5337 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5338 5339 show_node(zone); 5340 printk(KERN_CONT 5341 "%s" 5342 " free:%lukB" 5343 " min:%lukB" 5344 " low:%lukB" 5345 " high:%lukB" 5346 " active_anon:%lukB" 5347 " inactive_anon:%lukB" 5348 " active_file:%lukB" 5349 " inactive_file:%lukB" 5350 " unevictable:%lukB" 5351 " writepending:%lukB" 5352 " present:%lukB" 5353 " managed:%lukB" 5354 " mlocked:%lukB" 5355 " kernel_stack:%lukB" 5356 " pagetables:%lukB" 5357 " bounce:%lukB" 5358 " free_pcp:%lukB" 5359 " local_pcp:%ukB" 5360 " free_cma:%lukB" 5361 "\n", 5362 zone->name, 5363 K(zone_page_state(zone, NR_FREE_PAGES)), 5364 K(min_wmark_pages(zone)), 5365 K(low_wmark_pages(zone)), 5366 K(high_wmark_pages(zone)), 5367 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5368 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5369 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5370 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5371 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5372 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5373 K(zone->present_pages), 5374 K(zone_managed_pages(zone)), 5375 K(zone_page_state(zone, NR_MLOCK)), 5376 zone_page_state(zone, NR_KERNEL_STACK_KB), 5377 K(zone_page_state(zone, NR_PAGETABLE)), 5378 K(zone_page_state(zone, NR_BOUNCE)), 5379 K(free_pcp), 5380 K(this_cpu_read(zone->pageset->pcp.count)), 5381 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5382 printk("lowmem_reserve[]:"); 5383 for (i = 0; i < MAX_NR_ZONES; i++) 5384 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5385 printk(KERN_CONT "\n"); 5386 } 5387 5388 for_each_populated_zone(zone) { 5389 unsigned int order; 5390 unsigned long nr[MAX_ORDER], flags, total = 0; 5391 unsigned char types[MAX_ORDER]; 5392 5393 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5394 continue; 5395 show_node(zone); 5396 printk(KERN_CONT "%s: ", zone->name); 5397 5398 spin_lock_irqsave(&zone->lock, flags); 5399 for (order = 0; order < MAX_ORDER; order++) { 5400 struct free_area *area = &zone->free_area[order]; 5401 int type; 5402 5403 nr[order] = area->nr_free; 5404 total += nr[order] << order; 5405 5406 types[order] = 0; 5407 for (type = 0; type < MIGRATE_TYPES; type++) { 5408 if (!free_area_empty(area, type)) 5409 types[order] |= 1 << type; 5410 } 5411 } 5412 spin_unlock_irqrestore(&zone->lock, flags); 5413 for (order = 0; order < MAX_ORDER; order++) { 5414 printk(KERN_CONT "%lu*%lukB ", 5415 nr[order], K(1UL) << order); 5416 if (nr[order]) 5417 show_migration_types(types[order]); 5418 } 5419 printk(KERN_CONT "= %lukB\n", K(total)); 5420 } 5421 5422 hugetlb_show_meminfo(); 5423 5424 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5425 5426 show_swap_cache_info(); 5427 } 5428 5429 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5430 { 5431 zoneref->zone = zone; 5432 zoneref->zone_idx = zone_idx(zone); 5433 } 5434 5435 /* 5436 * Builds allocation fallback zone lists. 5437 * 5438 * Add all populated zones of a node to the zonelist. 5439 */ 5440 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5441 { 5442 struct zone *zone; 5443 enum zone_type zone_type = MAX_NR_ZONES; 5444 int nr_zones = 0; 5445 5446 do { 5447 zone_type--; 5448 zone = pgdat->node_zones + zone_type; 5449 if (managed_zone(zone)) { 5450 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5451 check_highest_zone(zone_type); 5452 } 5453 } while (zone_type); 5454 5455 return nr_zones; 5456 } 5457 5458 #ifdef CONFIG_NUMA 5459 5460 static int __parse_numa_zonelist_order(char *s) 5461 { 5462 /* 5463 * We used to support different zonlists modes but they turned 5464 * out to be just not useful. Let's keep the warning in place 5465 * if somebody still use the cmd line parameter so that we do 5466 * not fail it silently 5467 */ 5468 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5469 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5470 return -EINVAL; 5471 } 5472 return 0; 5473 } 5474 5475 static __init int setup_numa_zonelist_order(char *s) 5476 { 5477 if (!s) 5478 return 0; 5479 5480 return __parse_numa_zonelist_order(s); 5481 } 5482 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5483 5484 char numa_zonelist_order[] = "Node"; 5485 5486 /* 5487 * sysctl handler for numa_zonelist_order 5488 */ 5489 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5490 void __user *buffer, size_t *length, 5491 loff_t *ppos) 5492 { 5493 char *str; 5494 int ret; 5495 5496 if (!write) 5497 return proc_dostring(table, write, buffer, length, ppos); 5498 str = memdup_user_nul(buffer, 16); 5499 if (IS_ERR(str)) 5500 return PTR_ERR(str); 5501 5502 ret = __parse_numa_zonelist_order(str); 5503 kfree(str); 5504 return ret; 5505 } 5506 5507 5508 #define MAX_NODE_LOAD (nr_online_nodes) 5509 static int node_load[MAX_NUMNODES]; 5510 5511 /** 5512 * find_next_best_node - find the next node that should appear in a given node's fallback list 5513 * @node: node whose fallback list we're appending 5514 * @used_node_mask: nodemask_t of already used nodes 5515 * 5516 * We use a number of factors to determine which is the next node that should 5517 * appear on a given node's fallback list. The node should not have appeared 5518 * already in @node's fallback list, and it should be the next closest node 5519 * according to the distance array (which contains arbitrary distance values 5520 * from each node to each node in the system), and should also prefer nodes 5521 * with no CPUs, since presumably they'll have very little allocation pressure 5522 * on them otherwise. 5523 * 5524 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5525 */ 5526 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5527 { 5528 int n, val; 5529 int min_val = INT_MAX; 5530 int best_node = NUMA_NO_NODE; 5531 const struct cpumask *tmp = cpumask_of_node(0); 5532 5533 /* Use the local node if we haven't already */ 5534 if (!node_isset(node, *used_node_mask)) { 5535 node_set(node, *used_node_mask); 5536 return node; 5537 } 5538 5539 for_each_node_state(n, N_MEMORY) { 5540 5541 /* Don't want a node to appear more than once */ 5542 if (node_isset(n, *used_node_mask)) 5543 continue; 5544 5545 /* Use the distance array to find the distance */ 5546 val = node_distance(node, n); 5547 5548 /* Penalize nodes under us ("prefer the next node") */ 5549 val += (n < node); 5550 5551 /* Give preference to headless and unused nodes */ 5552 tmp = cpumask_of_node(n); 5553 if (!cpumask_empty(tmp)) 5554 val += PENALTY_FOR_NODE_WITH_CPUS; 5555 5556 /* Slight preference for less loaded node */ 5557 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5558 val += node_load[n]; 5559 5560 if (val < min_val) { 5561 min_val = val; 5562 best_node = n; 5563 } 5564 } 5565 5566 if (best_node >= 0) 5567 node_set(best_node, *used_node_mask); 5568 5569 return best_node; 5570 } 5571 5572 5573 /* 5574 * Build zonelists ordered by node and zones within node. 5575 * This results in maximum locality--normal zone overflows into local 5576 * DMA zone, if any--but risks exhausting DMA zone. 5577 */ 5578 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5579 unsigned nr_nodes) 5580 { 5581 struct zoneref *zonerefs; 5582 int i; 5583 5584 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5585 5586 for (i = 0; i < nr_nodes; i++) { 5587 int nr_zones; 5588 5589 pg_data_t *node = NODE_DATA(node_order[i]); 5590 5591 nr_zones = build_zonerefs_node(node, zonerefs); 5592 zonerefs += nr_zones; 5593 } 5594 zonerefs->zone = NULL; 5595 zonerefs->zone_idx = 0; 5596 } 5597 5598 /* 5599 * Build gfp_thisnode zonelists 5600 */ 5601 static void build_thisnode_zonelists(pg_data_t *pgdat) 5602 { 5603 struct zoneref *zonerefs; 5604 int nr_zones; 5605 5606 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5607 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5608 zonerefs += nr_zones; 5609 zonerefs->zone = NULL; 5610 zonerefs->zone_idx = 0; 5611 } 5612 5613 /* 5614 * Build zonelists ordered by zone and nodes within zones. 5615 * This results in conserving DMA zone[s] until all Normal memory is 5616 * exhausted, but results in overflowing to remote node while memory 5617 * may still exist in local DMA zone. 5618 */ 5619 5620 static void build_zonelists(pg_data_t *pgdat) 5621 { 5622 static int node_order[MAX_NUMNODES]; 5623 int node, load, nr_nodes = 0; 5624 nodemask_t used_mask; 5625 int local_node, prev_node; 5626 5627 /* NUMA-aware ordering of nodes */ 5628 local_node = pgdat->node_id; 5629 load = nr_online_nodes; 5630 prev_node = local_node; 5631 nodes_clear(used_mask); 5632 5633 memset(node_order, 0, sizeof(node_order)); 5634 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5635 /* 5636 * We don't want to pressure a particular node. 5637 * So adding penalty to the first node in same 5638 * distance group to make it round-robin. 5639 */ 5640 if (node_distance(local_node, node) != 5641 node_distance(local_node, prev_node)) 5642 node_load[node] = load; 5643 5644 node_order[nr_nodes++] = node; 5645 prev_node = node; 5646 load--; 5647 } 5648 5649 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5650 build_thisnode_zonelists(pgdat); 5651 } 5652 5653 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5654 /* 5655 * Return node id of node used for "local" allocations. 5656 * I.e., first node id of first zone in arg node's generic zonelist. 5657 * Used for initializing percpu 'numa_mem', which is used primarily 5658 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5659 */ 5660 int local_memory_node(int node) 5661 { 5662 struct zoneref *z; 5663 5664 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5665 gfp_zone(GFP_KERNEL), 5666 NULL); 5667 return zone_to_nid(z->zone); 5668 } 5669 #endif 5670 5671 static void setup_min_unmapped_ratio(void); 5672 static void setup_min_slab_ratio(void); 5673 #else /* CONFIG_NUMA */ 5674 5675 static void build_zonelists(pg_data_t *pgdat) 5676 { 5677 int node, local_node; 5678 struct zoneref *zonerefs; 5679 int nr_zones; 5680 5681 local_node = pgdat->node_id; 5682 5683 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5684 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5685 zonerefs += nr_zones; 5686 5687 /* 5688 * Now we build the zonelist so that it contains the zones 5689 * of all the other nodes. 5690 * We don't want to pressure a particular node, so when 5691 * building the zones for node N, we make sure that the 5692 * zones coming right after the local ones are those from 5693 * node N+1 (modulo N) 5694 */ 5695 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5696 if (!node_online(node)) 5697 continue; 5698 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5699 zonerefs += nr_zones; 5700 } 5701 for (node = 0; node < local_node; node++) { 5702 if (!node_online(node)) 5703 continue; 5704 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5705 zonerefs += nr_zones; 5706 } 5707 5708 zonerefs->zone = NULL; 5709 zonerefs->zone_idx = 0; 5710 } 5711 5712 #endif /* CONFIG_NUMA */ 5713 5714 /* 5715 * Boot pageset table. One per cpu which is going to be used for all 5716 * zones and all nodes. The parameters will be set in such a way 5717 * that an item put on a list will immediately be handed over to 5718 * the buddy list. This is safe since pageset manipulation is done 5719 * with interrupts disabled. 5720 * 5721 * The boot_pagesets must be kept even after bootup is complete for 5722 * unused processors and/or zones. They do play a role for bootstrapping 5723 * hotplugged processors. 5724 * 5725 * zoneinfo_show() and maybe other functions do 5726 * not check if the processor is online before following the pageset pointer. 5727 * Other parts of the kernel may not check if the zone is available. 5728 */ 5729 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5730 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5731 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5732 5733 static void __build_all_zonelists(void *data) 5734 { 5735 int nid; 5736 int __maybe_unused cpu; 5737 pg_data_t *self = data; 5738 static DEFINE_SPINLOCK(lock); 5739 5740 spin_lock(&lock); 5741 5742 #ifdef CONFIG_NUMA 5743 memset(node_load, 0, sizeof(node_load)); 5744 #endif 5745 5746 /* 5747 * This node is hotadded and no memory is yet present. So just 5748 * building zonelists is fine - no need to touch other nodes. 5749 */ 5750 if (self && !node_online(self->node_id)) { 5751 build_zonelists(self); 5752 } else { 5753 for_each_online_node(nid) { 5754 pg_data_t *pgdat = NODE_DATA(nid); 5755 5756 build_zonelists(pgdat); 5757 } 5758 5759 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5760 /* 5761 * We now know the "local memory node" for each node-- 5762 * i.e., the node of the first zone in the generic zonelist. 5763 * Set up numa_mem percpu variable for on-line cpus. During 5764 * boot, only the boot cpu should be on-line; we'll init the 5765 * secondary cpus' numa_mem as they come on-line. During 5766 * node/memory hotplug, we'll fixup all on-line cpus. 5767 */ 5768 for_each_online_cpu(cpu) 5769 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5770 #endif 5771 } 5772 5773 spin_unlock(&lock); 5774 } 5775 5776 static noinline void __init 5777 build_all_zonelists_init(void) 5778 { 5779 int cpu; 5780 5781 __build_all_zonelists(NULL); 5782 5783 /* 5784 * Initialize the boot_pagesets that are going to be used 5785 * for bootstrapping processors. The real pagesets for 5786 * each zone will be allocated later when the per cpu 5787 * allocator is available. 5788 * 5789 * boot_pagesets are used also for bootstrapping offline 5790 * cpus if the system is already booted because the pagesets 5791 * are needed to initialize allocators on a specific cpu too. 5792 * F.e. the percpu allocator needs the page allocator which 5793 * needs the percpu allocator in order to allocate its pagesets 5794 * (a chicken-egg dilemma). 5795 */ 5796 for_each_possible_cpu(cpu) 5797 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5798 5799 mminit_verify_zonelist(); 5800 cpuset_init_current_mems_allowed(); 5801 } 5802 5803 /* 5804 * unless system_state == SYSTEM_BOOTING. 5805 * 5806 * __ref due to call of __init annotated helper build_all_zonelists_init 5807 * [protected by SYSTEM_BOOTING]. 5808 */ 5809 void __ref build_all_zonelists(pg_data_t *pgdat) 5810 { 5811 if (system_state == SYSTEM_BOOTING) { 5812 build_all_zonelists_init(); 5813 } else { 5814 __build_all_zonelists(pgdat); 5815 /* cpuset refresh routine should be here */ 5816 } 5817 vm_total_pages = nr_free_pagecache_pages(); 5818 /* 5819 * Disable grouping by mobility if the number of pages in the 5820 * system is too low to allow the mechanism to work. It would be 5821 * more accurate, but expensive to check per-zone. This check is 5822 * made on memory-hotadd so a system can start with mobility 5823 * disabled and enable it later 5824 */ 5825 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5826 page_group_by_mobility_disabled = 1; 5827 else 5828 page_group_by_mobility_disabled = 0; 5829 5830 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5831 nr_online_nodes, 5832 page_group_by_mobility_disabled ? "off" : "on", 5833 vm_total_pages); 5834 #ifdef CONFIG_NUMA 5835 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5836 #endif 5837 } 5838 5839 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5840 static bool __meminit 5841 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5842 { 5843 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5844 static struct memblock_region *r; 5845 5846 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5847 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5848 for_each_memblock(memory, r) { 5849 if (*pfn < memblock_region_memory_end_pfn(r)) 5850 break; 5851 } 5852 } 5853 if (*pfn >= memblock_region_memory_base_pfn(r) && 5854 memblock_is_mirror(r)) { 5855 *pfn = memblock_region_memory_end_pfn(r); 5856 return true; 5857 } 5858 } 5859 #endif 5860 return false; 5861 } 5862 5863 /* 5864 * Initially all pages are reserved - free ones are freed 5865 * up by memblock_free_all() once the early boot process is 5866 * done. Non-atomic initialization, single-pass. 5867 */ 5868 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5869 unsigned long start_pfn, enum memmap_context context, 5870 struct vmem_altmap *altmap) 5871 { 5872 unsigned long pfn, end_pfn = start_pfn + size; 5873 struct page *page; 5874 5875 if (highest_memmap_pfn < end_pfn - 1) 5876 highest_memmap_pfn = end_pfn - 1; 5877 5878 #ifdef CONFIG_ZONE_DEVICE 5879 /* 5880 * Honor reservation requested by the driver for this ZONE_DEVICE 5881 * memory. We limit the total number of pages to initialize to just 5882 * those that might contain the memory mapping. We will defer the 5883 * ZONE_DEVICE page initialization until after we have released 5884 * the hotplug lock. 5885 */ 5886 if (zone == ZONE_DEVICE) { 5887 if (!altmap) 5888 return; 5889 5890 if (start_pfn == altmap->base_pfn) 5891 start_pfn += altmap->reserve; 5892 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5893 } 5894 #endif 5895 5896 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5897 /* 5898 * There can be holes in boot-time mem_map[]s handed to this 5899 * function. They do not exist on hotplugged memory. 5900 */ 5901 if (context == MEMMAP_EARLY) { 5902 if (!early_pfn_valid(pfn)) 5903 continue; 5904 if (!early_pfn_in_nid(pfn, nid)) 5905 continue; 5906 if (overlap_memmap_init(zone, &pfn)) 5907 continue; 5908 if (defer_init(nid, pfn, end_pfn)) 5909 break; 5910 } 5911 5912 page = pfn_to_page(pfn); 5913 __init_single_page(page, pfn, zone, nid); 5914 if (context == MEMMAP_HOTPLUG) 5915 __SetPageReserved(page); 5916 5917 /* 5918 * Mark the block movable so that blocks are reserved for 5919 * movable at startup. This will force kernel allocations 5920 * to reserve their blocks rather than leaking throughout 5921 * the address space during boot when many long-lived 5922 * kernel allocations are made. 5923 * 5924 * bitmap is created for zone's valid pfn range. but memmap 5925 * can be created for invalid pages (for alignment) 5926 * check here not to call set_pageblock_migratetype() against 5927 * pfn out of zone. 5928 */ 5929 if (!(pfn & (pageblock_nr_pages - 1))) { 5930 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5931 cond_resched(); 5932 } 5933 } 5934 } 5935 5936 #ifdef CONFIG_ZONE_DEVICE 5937 void __ref memmap_init_zone_device(struct zone *zone, 5938 unsigned long start_pfn, 5939 unsigned long size, 5940 struct dev_pagemap *pgmap) 5941 { 5942 unsigned long pfn, end_pfn = start_pfn + size; 5943 struct pglist_data *pgdat = zone->zone_pgdat; 5944 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 5945 unsigned long zone_idx = zone_idx(zone); 5946 unsigned long start = jiffies; 5947 int nid = pgdat->node_id; 5948 5949 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 5950 return; 5951 5952 /* 5953 * The call to memmap_init_zone should have already taken care 5954 * of the pages reserved for the memmap, so we can just jump to 5955 * the end of that region and start processing the device pages. 5956 */ 5957 if (altmap) { 5958 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5959 size = end_pfn - start_pfn; 5960 } 5961 5962 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5963 struct page *page = pfn_to_page(pfn); 5964 5965 __init_single_page(page, pfn, zone_idx, nid); 5966 5967 /* 5968 * Mark page reserved as it will need to wait for onlining 5969 * phase for it to be fully associated with a zone. 5970 * 5971 * We can use the non-atomic __set_bit operation for setting 5972 * the flag as we are still initializing the pages. 5973 */ 5974 __SetPageReserved(page); 5975 5976 /* 5977 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 5978 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 5979 * ever freed or placed on a driver-private list. 5980 */ 5981 page->pgmap = pgmap; 5982 page->zone_device_data = NULL; 5983 5984 /* 5985 * Mark the block movable so that blocks are reserved for 5986 * movable at startup. This will force kernel allocations 5987 * to reserve their blocks rather than leaking throughout 5988 * the address space during boot when many long-lived 5989 * kernel allocations are made. 5990 * 5991 * bitmap is created for zone's valid pfn range. but memmap 5992 * can be created for invalid pages (for alignment) 5993 * check here not to call set_pageblock_migratetype() against 5994 * pfn out of zone. 5995 * 5996 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5997 * because this is done early in section_activate() 5998 */ 5999 if (!(pfn & (pageblock_nr_pages - 1))) { 6000 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6001 cond_resched(); 6002 } 6003 } 6004 6005 pr_info("%s initialised %lu pages in %ums\n", __func__, 6006 size, jiffies_to_msecs(jiffies - start)); 6007 } 6008 6009 #endif 6010 static void __meminit zone_init_free_lists(struct zone *zone) 6011 { 6012 unsigned int order, t; 6013 for_each_migratetype_order(order, t) { 6014 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6015 zone->free_area[order].nr_free = 0; 6016 } 6017 } 6018 6019 void __meminit __weak memmap_init(unsigned long size, int nid, 6020 unsigned long zone, unsigned long start_pfn) 6021 { 6022 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6023 } 6024 6025 static int zone_batchsize(struct zone *zone) 6026 { 6027 #ifdef CONFIG_MMU 6028 int batch; 6029 6030 /* 6031 * The per-cpu-pages pools are set to around 1000th of the 6032 * size of the zone. 6033 */ 6034 batch = zone_managed_pages(zone) / 1024; 6035 /* But no more than a meg. */ 6036 if (batch * PAGE_SIZE > 1024 * 1024) 6037 batch = (1024 * 1024) / PAGE_SIZE; 6038 batch /= 4; /* We effectively *= 4 below */ 6039 if (batch < 1) 6040 batch = 1; 6041 6042 /* 6043 * Clamp the batch to a 2^n - 1 value. Having a power 6044 * of 2 value was found to be more likely to have 6045 * suboptimal cache aliasing properties in some cases. 6046 * 6047 * For example if 2 tasks are alternately allocating 6048 * batches of pages, one task can end up with a lot 6049 * of pages of one half of the possible page colors 6050 * and the other with pages of the other colors. 6051 */ 6052 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6053 6054 return batch; 6055 6056 #else 6057 /* The deferral and batching of frees should be suppressed under NOMMU 6058 * conditions. 6059 * 6060 * The problem is that NOMMU needs to be able to allocate large chunks 6061 * of contiguous memory as there's no hardware page translation to 6062 * assemble apparent contiguous memory from discontiguous pages. 6063 * 6064 * Queueing large contiguous runs of pages for batching, however, 6065 * causes the pages to actually be freed in smaller chunks. As there 6066 * can be a significant delay between the individual batches being 6067 * recycled, this leads to the once large chunks of space being 6068 * fragmented and becoming unavailable for high-order allocations. 6069 */ 6070 return 0; 6071 #endif 6072 } 6073 6074 /* 6075 * pcp->high and pcp->batch values are related and dependent on one another: 6076 * ->batch must never be higher then ->high. 6077 * The following function updates them in a safe manner without read side 6078 * locking. 6079 * 6080 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6081 * those fields changing asynchronously (acording the the above rule). 6082 * 6083 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6084 * outside of boot time (or some other assurance that no concurrent updaters 6085 * exist). 6086 */ 6087 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6088 unsigned long batch) 6089 { 6090 /* start with a fail safe value for batch */ 6091 pcp->batch = 1; 6092 smp_wmb(); 6093 6094 /* Update high, then batch, in order */ 6095 pcp->high = high; 6096 smp_wmb(); 6097 6098 pcp->batch = batch; 6099 } 6100 6101 /* a companion to pageset_set_high() */ 6102 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6103 { 6104 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6105 } 6106 6107 static void pageset_init(struct per_cpu_pageset *p) 6108 { 6109 struct per_cpu_pages *pcp; 6110 int migratetype; 6111 6112 memset(p, 0, sizeof(*p)); 6113 6114 pcp = &p->pcp; 6115 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6116 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6117 } 6118 6119 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6120 { 6121 pageset_init(p); 6122 pageset_set_batch(p, batch); 6123 } 6124 6125 /* 6126 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6127 * to the value high for the pageset p. 6128 */ 6129 static void pageset_set_high(struct per_cpu_pageset *p, 6130 unsigned long high) 6131 { 6132 unsigned long batch = max(1UL, high / 4); 6133 if ((high / 4) > (PAGE_SHIFT * 8)) 6134 batch = PAGE_SHIFT * 8; 6135 6136 pageset_update(&p->pcp, high, batch); 6137 } 6138 6139 static void pageset_set_high_and_batch(struct zone *zone, 6140 struct per_cpu_pageset *pcp) 6141 { 6142 if (percpu_pagelist_fraction) 6143 pageset_set_high(pcp, 6144 (zone_managed_pages(zone) / 6145 percpu_pagelist_fraction)); 6146 else 6147 pageset_set_batch(pcp, zone_batchsize(zone)); 6148 } 6149 6150 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6151 { 6152 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6153 6154 pageset_init(pcp); 6155 pageset_set_high_and_batch(zone, pcp); 6156 } 6157 6158 void __meminit setup_zone_pageset(struct zone *zone) 6159 { 6160 int cpu; 6161 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6162 for_each_possible_cpu(cpu) 6163 zone_pageset_init(zone, cpu); 6164 } 6165 6166 /* 6167 * Allocate per cpu pagesets and initialize them. 6168 * Before this call only boot pagesets were available. 6169 */ 6170 void __init setup_per_cpu_pageset(void) 6171 { 6172 struct pglist_data *pgdat; 6173 struct zone *zone; 6174 6175 for_each_populated_zone(zone) 6176 setup_zone_pageset(zone); 6177 6178 for_each_online_pgdat(pgdat) 6179 pgdat->per_cpu_nodestats = 6180 alloc_percpu(struct per_cpu_nodestat); 6181 } 6182 6183 static __meminit void zone_pcp_init(struct zone *zone) 6184 { 6185 /* 6186 * per cpu subsystem is not up at this point. The following code 6187 * relies on the ability of the linker to provide the 6188 * offset of a (static) per cpu variable into the per cpu area. 6189 */ 6190 zone->pageset = &boot_pageset; 6191 6192 if (populated_zone(zone)) 6193 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6194 zone->name, zone->present_pages, 6195 zone_batchsize(zone)); 6196 } 6197 6198 void __meminit init_currently_empty_zone(struct zone *zone, 6199 unsigned long zone_start_pfn, 6200 unsigned long size) 6201 { 6202 struct pglist_data *pgdat = zone->zone_pgdat; 6203 int zone_idx = zone_idx(zone) + 1; 6204 6205 if (zone_idx > pgdat->nr_zones) 6206 pgdat->nr_zones = zone_idx; 6207 6208 zone->zone_start_pfn = zone_start_pfn; 6209 6210 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6211 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6212 pgdat->node_id, 6213 (unsigned long)zone_idx(zone), 6214 zone_start_pfn, (zone_start_pfn + size)); 6215 6216 zone_init_free_lists(zone); 6217 zone->initialized = 1; 6218 } 6219 6220 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6221 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6222 6223 /* 6224 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6225 */ 6226 int __meminit __early_pfn_to_nid(unsigned long pfn, 6227 struct mminit_pfnnid_cache *state) 6228 { 6229 unsigned long start_pfn, end_pfn; 6230 int nid; 6231 6232 if (state->last_start <= pfn && pfn < state->last_end) 6233 return state->last_nid; 6234 6235 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6236 if (nid != NUMA_NO_NODE) { 6237 state->last_start = start_pfn; 6238 state->last_end = end_pfn; 6239 state->last_nid = nid; 6240 } 6241 6242 return nid; 6243 } 6244 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6245 6246 /** 6247 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6248 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6249 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6250 * 6251 * If an architecture guarantees that all ranges registered contain no holes 6252 * and may be freed, this this function may be used instead of calling 6253 * memblock_free_early_nid() manually. 6254 */ 6255 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6256 { 6257 unsigned long start_pfn, end_pfn; 6258 int i, this_nid; 6259 6260 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6261 start_pfn = min(start_pfn, max_low_pfn); 6262 end_pfn = min(end_pfn, max_low_pfn); 6263 6264 if (start_pfn < end_pfn) 6265 memblock_free_early_nid(PFN_PHYS(start_pfn), 6266 (end_pfn - start_pfn) << PAGE_SHIFT, 6267 this_nid); 6268 } 6269 } 6270 6271 /** 6272 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6273 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6274 * 6275 * If an architecture guarantees that all ranges registered contain no holes and may 6276 * be freed, this function may be used instead of calling memory_present() manually. 6277 */ 6278 void __init sparse_memory_present_with_active_regions(int nid) 6279 { 6280 unsigned long start_pfn, end_pfn; 6281 int i, this_nid; 6282 6283 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6284 memory_present(this_nid, start_pfn, end_pfn); 6285 } 6286 6287 /** 6288 * get_pfn_range_for_nid - Return the start and end page frames for a node 6289 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6290 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6291 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6292 * 6293 * It returns the start and end page frame of a node based on information 6294 * provided by memblock_set_node(). If called for a node 6295 * with no available memory, a warning is printed and the start and end 6296 * PFNs will be 0. 6297 */ 6298 void __init get_pfn_range_for_nid(unsigned int nid, 6299 unsigned long *start_pfn, unsigned long *end_pfn) 6300 { 6301 unsigned long this_start_pfn, this_end_pfn; 6302 int i; 6303 6304 *start_pfn = -1UL; 6305 *end_pfn = 0; 6306 6307 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6308 *start_pfn = min(*start_pfn, this_start_pfn); 6309 *end_pfn = max(*end_pfn, this_end_pfn); 6310 } 6311 6312 if (*start_pfn == -1UL) 6313 *start_pfn = 0; 6314 } 6315 6316 /* 6317 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6318 * assumption is made that zones within a node are ordered in monotonic 6319 * increasing memory addresses so that the "highest" populated zone is used 6320 */ 6321 static void __init find_usable_zone_for_movable(void) 6322 { 6323 int zone_index; 6324 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6325 if (zone_index == ZONE_MOVABLE) 6326 continue; 6327 6328 if (arch_zone_highest_possible_pfn[zone_index] > 6329 arch_zone_lowest_possible_pfn[zone_index]) 6330 break; 6331 } 6332 6333 VM_BUG_ON(zone_index == -1); 6334 movable_zone = zone_index; 6335 } 6336 6337 /* 6338 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6339 * because it is sized independent of architecture. Unlike the other zones, 6340 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6341 * in each node depending on the size of each node and how evenly kernelcore 6342 * is distributed. This helper function adjusts the zone ranges 6343 * provided by the architecture for a given node by using the end of the 6344 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6345 * zones within a node are in order of monotonic increases memory addresses 6346 */ 6347 static void __init adjust_zone_range_for_zone_movable(int nid, 6348 unsigned long zone_type, 6349 unsigned long node_start_pfn, 6350 unsigned long node_end_pfn, 6351 unsigned long *zone_start_pfn, 6352 unsigned long *zone_end_pfn) 6353 { 6354 /* Only adjust if ZONE_MOVABLE is on this node */ 6355 if (zone_movable_pfn[nid]) { 6356 /* Size ZONE_MOVABLE */ 6357 if (zone_type == ZONE_MOVABLE) { 6358 *zone_start_pfn = zone_movable_pfn[nid]; 6359 *zone_end_pfn = min(node_end_pfn, 6360 arch_zone_highest_possible_pfn[movable_zone]); 6361 6362 /* Adjust for ZONE_MOVABLE starting within this range */ 6363 } else if (!mirrored_kernelcore && 6364 *zone_start_pfn < zone_movable_pfn[nid] && 6365 *zone_end_pfn > zone_movable_pfn[nid]) { 6366 *zone_end_pfn = zone_movable_pfn[nid]; 6367 6368 /* Check if this whole range is within ZONE_MOVABLE */ 6369 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6370 *zone_start_pfn = *zone_end_pfn; 6371 } 6372 } 6373 6374 /* 6375 * Return the number of pages a zone spans in a node, including holes 6376 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6377 */ 6378 static unsigned long __init zone_spanned_pages_in_node(int nid, 6379 unsigned long zone_type, 6380 unsigned long node_start_pfn, 6381 unsigned long node_end_pfn, 6382 unsigned long *zone_start_pfn, 6383 unsigned long *zone_end_pfn, 6384 unsigned long *ignored) 6385 { 6386 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6387 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6388 /* When hotadd a new node from cpu_up(), the node should be empty */ 6389 if (!node_start_pfn && !node_end_pfn) 6390 return 0; 6391 6392 /* Get the start and end of the zone */ 6393 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6394 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6395 adjust_zone_range_for_zone_movable(nid, zone_type, 6396 node_start_pfn, node_end_pfn, 6397 zone_start_pfn, zone_end_pfn); 6398 6399 /* Check that this node has pages within the zone's required range */ 6400 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6401 return 0; 6402 6403 /* Move the zone boundaries inside the node if necessary */ 6404 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6405 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6406 6407 /* Return the spanned pages */ 6408 return *zone_end_pfn - *zone_start_pfn; 6409 } 6410 6411 /* 6412 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6413 * then all holes in the requested range will be accounted for. 6414 */ 6415 unsigned long __init __absent_pages_in_range(int nid, 6416 unsigned long range_start_pfn, 6417 unsigned long range_end_pfn) 6418 { 6419 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6420 unsigned long start_pfn, end_pfn; 6421 int i; 6422 6423 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6424 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6425 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6426 nr_absent -= end_pfn - start_pfn; 6427 } 6428 return nr_absent; 6429 } 6430 6431 /** 6432 * absent_pages_in_range - Return number of page frames in holes within a range 6433 * @start_pfn: The start PFN to start searching for holes 6434 * @end_pfn: The end PFN to stop searching for holes 6435 * 6436 * Return: the number of pages frames in memory holes within a range. 6437 */ 6438 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6439 unsigned long end_pfn) 6440 { 6441 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6442 } 6443 6444 /* Return the number of page frames in holes in a zone on a node */ 6445 static unsigned long __init zone_absent_pages_in_node(int nid, 6446 unsigned long zone_type, 6447 unsigned long node_start_pfn, 6448 unsigned long node_end_pfn, 6449 unsigned long *ignored) 6450 { 6451 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6452 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6453 unsigned long zone_start_pfn, zone_end_pfn; 6454 unsigned long nr_absent; 6455 6456 /* When hotadd a new node from cpu_up(), the node should be empty */ 6457 if (!node_start_pfn && !node_end_pfn) 6458 return 0; 6459 6460 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6461 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6462 6463 adjust_zone_range_for_zone_movable(nid, zone_type, 6464 node_start_pfn, node_end_pfn, 6465 &zone_start_pfn, &zone_end_pfn); 6466 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6467 6468 /* 6469 * ZONE_MOVABLE handling. 6470 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6471 * and vice versa. 6472 */ 6473 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6474 unsigned long start_pfn, end_pfn; 6475 struct memblock_region *r; 6476 6477 for_each_memblock(memory, r) { 6478 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6479 zone_start_pfn, zone_end_pfn); 6480 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6481 zone_start_pfn, zone_end_pfn); 6482 6483 if (zone_type == ZONE_MOVABLE && 6484 memblock_is_mirror(r)) 6485 nr_absent += end_pfn - start_pfn; 6486 6487 if (zone_type == ZONE_NORMAL && 6488 !memblock_is_mirror(r)) 6489 nr_absent += end_pfn - start_pfn; 6490 } 6491 } 6492 6493 return nr_absent; 6494 } 6495 6496 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6497 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6498 unsigned long zone_type, 6499 unsigned long node_start_pfn, 6500 unsigned long node_end_pfn, 6501 unsigned long *zone_start_pfn, 6502 unsigned long *zone_end_pfn, 6503 unsigned long *zones_size) 6504 { 6505 unsigned int zone; 6506 6507 *zone_start_pfn = node_start_pfn; 6508 for (zone = 0; zone < zone_type; zone++) 6509 *zone_start_pfn += zones_size[zone]; 6510 6511 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6512 6513 return zones_size[zone_type]; 6514 } 6515 6516 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6517 unsigned long zone_type, 6518 unsigned long node_start_pfn, 6519 unsigned long node_end_pfn, 6520 unsigned long *zholes_size) 6521 { 6522 if (!zholes_size) 6523 return 0; 6524 6525 return zholes_size[zone_type]; 6526 } 6527 6528 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6529 6530 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6531 unsigned long node_start_pfn, 6532 unsigned long node_end_pfn, 6533 unsigned long *zones_size, 6534 unsigned long *zholes_size) 6535 { 6536 unsigned long realtotalpages = 0, totalpages = 0; 6537 enum zone_type i; 6538 6539 for (i = 0; i < MAX_NR_ZONES; i++) { 6540 struct zone *zone = pgdat->node_zones + i; 6541 unsigned long zone_start_pfn, zone_end_pfn; 6542 unsigned long size, real_size; 6543 6544 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6545 node_start_pfn, 6546 node_end_pfn, 6547 &zone_start_pfn, 6548 &zone_end_pfn, 6549 zones_size); 6550 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6551 node_start_pfn, node_end_pfn, 6552 zholes_size); 6553 if (size) 6554 zone->zone_start_pfn = zone_start_pfn; 6555 else 6556 zone->zone_start_pfn = 0; 6557 zone->spanned_pages = size; 6558 zone->present_pages = real_size; 6559 6560 totalpages += size; 6561 realtotalpages += real_size; 6562 } 6563 6564 pgdat->node_spanned_pages = totalpages; 6565 pgdat->node_present_pages = realtotalpages; 6566 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6567 realtotalpages); 6568 } 6569 6570 #ifndef CONFIG_SPARSEMEM 6571 /* 6572 * Calculate the size of the zone->blockflags rounded to an unsigned long 6573 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6574 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6575 * round what is now in bits to nearest long in bits, then return it in 6576 * bytes. 6577 */ 6578 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6579 { 6580 unsigned long usemapsize; 6581 6582 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6583 usemapsize = roundup(zonesize, pageblock_nr_pages); 6584 usemapsize = usemapsize >> pageblock_order; 6585 usemapsize *= NR_PAGEBLOCK_BITS; 6586 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6587 6588 return usemapsize / 8; 6589 } 6590 6591 static void __ref setup_usemap(struct pglist_data *pgdat, 6592 struct zone *zone, 6593 unsigned long zone_start_pfn, 6594 unsigned long zonesize) 6595 { 6596 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6597 zone->pageblock_flags = NULL; 6598 if (usemapsize) { 6599 zone->pageblock_flags = 6600 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6601 pgdat->node_id); 6602 if (!zone->pageblock_flags) 6603 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6604 usemapsize, zone->name, pgdat->node_id); 6605 } 6606 } 6607 #else 6608 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6609 unsigned long zone_start_pfn, unsigned long zonesize) {} 6610 #endif /* CONFIG_SPARSEMEM */ 6611 6612 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6613 6614 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6615 void __init set_pageblock_order(void) 6616 { 6617 unsigned int order; 6618 6619 /* Check that pageblock_nr_pages has not already been setup */ 6620 if (pageblock_order) 6621 return; 6622 6623 if (HPAGE_SHIFT > PAGE_SHIFT) 6624 order = HUGETLB_PAGE_ORDER; 6625 else 6626 order = MAX_ORDER - 1; 6627 6628 /* 6629 * Assume the largest contiguous order of interest is a huge page. 6630 * This value may be variable depending on boot parameters on IA64 and 6631 * powerpc. 6632 */ 6633 pageblock_order = order; 6634 } 6635 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6636 6637 /* 6638 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6639 * is unused as pageblock_order is set at compile-time. See 6640 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6641 * the kernel config 6642 */ 6643 void __init set_pageblock_order(void) 6644 { 6645 } 6646 6647 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6648 6649 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6650 unsigned long present_pages) 6651 { 6652 unsigned long pages = spanned_pages; 6653 6654 /* 6655 * Provide a more accurate estimation if there are holes within 6656 * the zone and SPARSEMEM is in use. If there are holes within the 6657 * zone, each populated memory region may cost us one or two extra 6658 * memmap pages due to alignment because memmap pages for each 6659 * populated regions may not be naturally aligned on page boundary. 6660 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6661 */ 6662 if (spanned_pages > present_pages + (present_pages >> 4) && 6663 IS_ENABLED(CONFIG_SPARSEMEM)) 6664 pages = present_pages; 6665 6666 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6667 } 6668 6669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6670 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6671 { 6672 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6673 6674 spin_lock_init(&ds_queue->split_queue_lock); 6675 INIT_LIST_HEAD(&ds_queue->split_queue); 6676 ds_queue->split_queue_len = 0; 6677 } 6678 #else 6679 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6680 #endif 6681 6682 #ifdef CONFIG_COMPACTION 6683 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6684 { 6685 init_waitqueue_head(&pgdat->kcompactd_wait); 6686 } 6687 #else 6688 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6689 #endif 6690 6691 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6692 { 6693 pgdat_resize_init(pgdat); 6694 6695 pgdat_init_split_queue(pgdat); 6696 pgdat_init_kcompactd(pgdat); 6697 6698 init_waitqueue_head(&pgdat->kswapd_wait); 6699 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6700 6701 pgdat_page_ext_init(pgdat); 6702 spin_lock_init(&pgdat->lru_lock); 6703 lruvec_init(node_lruvec(pgdat)); 6704 } 6705 6706 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6707 unsigned long remaining_pages) 6708 { 6709 atomic_long_set(&zone->managed_pages, remaining_pages); 6710 zone_set_nid(zone, nid); 6711 zone->name = zone_names[idx]; 6712 zone->zone_pgdat = NODE_DATA(nid); 6713 spin_lock_init(&zone->lock); 6714 zone_seqlock_init(zone); 6715 zone_pcp_init(zone); 6716 } 6717 6718 /* 6719 * Set up the zone data structures 6720 * - init pgdat internals 6721 * - init all zones belonging to this node 6722 * 6723 * NOTE: this function is only called during memory hotplug 6724 */ 6725 #ifdef CONFIG_MEMORY_HOTPLUG 6726 void __ref free_area_init_core_hotplug(int nid) 6727 { 6728 enum zone_type z; 6729 pg_data_t *pgdat = NODE_DATA(nid); 6730 6731 pgdat_init_internals(pgdat); 6732 for (z = 0; z < MAX_NR_ZONES; z++) 6733 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6734 } 6735 #endif 6736 6737 /* 6738 * Set up the zone data structures: 6739 * - mark all pages reserved 6740 * - mark all memory queues empty 6741 * - clear the memory bitmaps 6742 * 6743 * NOTE: pgdat should get zeroed by caller. 6744 * NOTE: this function is only called during early init. 6745 */ 6746 static void __init free_area_init_core(struct pglist_data *pgdat) 6747 { 6748 enum zone_type j; 6749 int nid = pgdat->node_id; 6750 6751 pgdat_init_internals(pgdat); 6752 pgdat->per_cpu_nodestats = &boot_nodestats; 6753 6754 for (j = 0; j < MAX_NR_ZONES; j++) { 6755 struct zone *zone = pgdat->node_zones + j; 6756 unsigned long size, freesize, memmap_pages; 6757 unsigned long zone_start_pfn = zone->zone_start_pfn; 6758 6759 size = zone->spanned_pages; 6760 freesize = zone->present_pages; 6761 6762 /* 6763 * Adjust freesize so that it accounts for how much memory 6764 * is used by this zone for memmap. This affects the watermark 6765 * and per-cpu initialisations 6766 */ 6767 memmap_pages = calc_memmap_size(size, freesize); 6768 if (!is_highmem_idx(j)) { 6769 if (freesize >= memmap_pages) { 6770 freesize -= memmap_pages; 6771 if (memmap_pages) 6772 printk(KERN_DEBUG 6773 " %s zone: %lu pages used for memmap\n", 6774 zone_names[j], memmap_pages); 6775 } else 6776 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6777 zone_names[j], memmap_pages, freesize); 6778 } 6779 6780 /* Account for reserved pages */ 6781 if (j == 0 && freesize > dma_reserve) { 6782 freesize -= dma_reserve; 6783 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6784 zone_names[0], dma_reserve); 6785 } 6786 6787 if (!is_highmem_idx(j)) 6788 nr_kernel_pages += freesize; 6789 /* Charge for highmem memmap if there are enough kernel pages */ 6790 else if (nr_kernel_pages > memmap_pages * 2) 6791 nr_kernel_pages -= memmap_pages; 6792 nr_all_pages += freesize; 6793 6794 /* 6795 * Set an approximate value for lowmem here, it will be adjusted 6796 * when the bootmem allocator frees pages into the buddy system. 6797 * And all highmem pages will be managed by the buddy system. 6798 */ 6799 zone_init_internals(zone, j, nid, freesize); 6800 6801 if (!size) 6802 continue; 6803 6804 set_pageblock_order(); 6805 setup_usemap(pgdat, zone, zone_start_pfn, size); 6806 init_currently_empty_zone(zone, zone_start_pfn, size); 6807 memmap_init(size, nid, j, zone_start_pfn); 6808 } 6809 } 6810 6811 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6812 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6813 { 6814 unsigned long __maybe_unused start = 0; 6815 unsigned long __maybe_unused offset = 0; 6816 6817 /* Skip empty nodes */ 6818 if (!pgdat->node_spanned_pages) 6819 return; 6820 6821 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6822 offset = pgdat->node_start_pfn - start; 6823 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6824 if (!pgdat->node_mem_map) { 6825 unsigned long size, end; 6826 struct page *map; 6827 6828 /* 6829 * The zone's endpoints aren't required to be MAX_ORDER 6830 * aligned but the node_mem_map endpoints must be in order 6831 * for the buddy allocator to function correctly. 6832 */ 6833 end = pgdat_end_pfn(pgdat); 6834 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6835 size = (end - start) * sizeof(struct page); 6836 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6837 pgdat->node_id); 6838 if (!map) 6839 panic("Failed to allocate %ld bytes for node %d memory map\n", 6840 size, pgdat->node_id); 6841 pgdat->node_mem_map = map + offset; 6842 } 6843 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6844 __func__, pgdat->node_id, (unsigned long)pgdat, 6845 (unsigned long)pgdat->node_mem_map); 6846 #ifndef CONFIG_NEED_MULTIPLE_NODES 6847 /* 6848 * With no DISCONTIG, the global mem_map is just set as node 0's 6849 */ 6850 if (pgdat == NODE_DATA(0)) { 6851 mem_map = NODE_DATA(0)->node_mem_map; 6852 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6853 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6854 mem_map -= offset; 6855 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6856 } 6857 #endif 6858 } 6859 #else 6860 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6861 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6862 6863 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6864 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6865 { 6866 pgdat->first_deferred_pfn = ULONG_MAX; 6867 } 6868 #else 6869 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6870 #endif 6871 6872 void __init free_area_init_node(int nid, unsigned long *zones_size, 6873 unsigned long node_start_pfn, 6874 unsigned long *zholes_size) 6875 { 6876 pg_data_t *pgdat = NODE_DATA(nid); 6877 unsigned long start_pfn = 0; 6878 unsigned long end_pfn = 0; 6879 6880 /* pg_data_t should be reset to zero when it's allocated */ 6881 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6882 6883 pgdat->node_id = nid; 6884 pgdat->node_start_pfn = node_start_pfn; 6885 pgdat->per_cpu_nodestats = NULL; 6886 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6887 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6888 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6889 (u64)start_pfn << PAGE_SHIFT, 6890 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6891 #else 6892 start_pfn = node_start_pfn; 6893 #endif 6894 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6895 zones_size, zholes_size); 6896 6897 alloc_node_mem_map(pgdat); 6898 pgdat_set_deferred_range(pgdat); 6899 6900 free_area_init_core(pgdat); 6901 } 6902 6903 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6904 /* 6905 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6906 * pages zeroed 6907 */ 6908 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6909 { 6910 unsigned long pfn; 6911 u64 pgcnt = 0; 6912 6913 for (pfn = spfn; pfn < epfn; pfn++) { 6914 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6915 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6916 + pageblock_nr_pages - 1; 6917 continue; 6918 } 6919 mm_zero_struct_page(pfn_to_page(pfn)); 6920 pgcnt++; 6921 } 6922 6923 return pgcnt; 6924 } 6925 6926 /* 6927 * Only struct pages that are backed by physical memory are zeroed and 6928 * initialized by going through __init_single_page(). But, there are some 6929 * struct pages which are reserved in memblock allocator and their fields 6930 * may be accessed (for example page_to_pfn() on some configuration accesses 6931 * flags). We must explicitly zero those struct pages. 6932 * 6933 * This function also addresses a similar issue where struct pages are left 6934 * uninitialized because the physical address range is not covered by 6935 * memblock.memory or memblock.reserved. That could happen when memblock 6936 * layout is manually configured via memmap=. 6937 */ 6938 void __init zero_resv_unavail(void) 6939 { 6940 phys_addr_t start, end; 6941 u64 i, pgcnt; 6942 phys_addr_t next = 0; 6943 6944 /* 6945 * Loop through unavailable ranges not covered by memblock.memory. 6946 */ 6947 pgcnt = 0; 6948 for_each_mem_range(i, &memblock.memory, NULL, 6949 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6950 if (next < start) 6951 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6952 next = end; 6953 } 6954 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6955 6956 /* 6957 * Struct pages that do not have backing memory. This could be because 6958 * firmware is using some of this memory, or for some other reasons. 6959 */ 6960 if (pgcnt) 6961 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6962 } 6963 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6964 6965 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6966 6967 #if MAX_NUMNODES > 1 6968 /* 6969 * Figure out the number of possible node ids. 6970 */ 6971 void __init setup_nr_node_ids(void) 6972 { 6973 unsigned int highest; 6974 6975 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6976 nr_node_ids = highest + 1; 6977 } 6978 #endif 6979 6980 /** 6981 * node_map_pfn_alignment - determine the maximum internode alignment 6982 * 6983 * This function should be called after node map is populated and sorted. 6984 * It calculates the maximum power of two alignment which can distinguish 6985 * all the nodes. 6986 * 6987 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6988 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6989 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6990 * shifted, 1GiB is enough and this function will indicate so. 6991 * 6992 * This is used to test whether pfn -> nid mapping of the chosen memory 6993 * model has fine enough granularity to avoid incorrect mapping for the 6994 * populated node map. 6995 * 6996 * Return: the determined alignment in pfn's. 0 if there is no alignment 6997 * requirement (single node). 6998 */ 6999 unsigned long __init node_map_pfn_alignment(void) 7000 { 7001 unsigned long accl_mask = 0, last_end = 0; 7002 unsigned long start, end, mask; 7003 int last_nid = NUMA_NO_NODE; 7004 int i, nid; 7005 7006 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7007 if (!start || last_nid < 0 || last_nid == nid) { 7008 last_nid = nid; 7009 last_end = end; 7010 continue; 7011 } 7012 7013 /* 7014 * Start with a mask granular enough to pin-point to the 7015 * start pfn and tick off bits one-by-one until it becomes 7016 * too coarse to separate the current node from the last. 7017 */ 7018 mask = ~((1 << __ffs(start)) - 1); 7019 while (mask && last_end <= (start & (mask << 1))) 7020 mask <<= 1; 7021 7022 /* accumulate all internode masks */ 7023 accl_mask |= mask; 7024 } 7025 7026 /* convert mask to number of pages */ 7027 return ~accl_mask + 1; 7028 } 7029 7030 /* Find the lowest pfn for a node */ 7031 static unsigned long __init find_min_pfn_for_node(int nid) 7032 { 7033 unsigned long min_pfn = ULONG_MAX; 7034 unsigned long start_pfn; 7035 int i; 7036 7037 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7038 min_pfn = min(min_pfn, start_pfn); 7039 7040 if (min_pfn == ULONG_MAX) { 7041 pr_warn("Could not find start_pfn for node %d\n", nid); 7042 return 0; 7043 } 7044 7045 return min_pfn; 7046 } 7047 7048 /** 7049 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7050 * 7051 * Return: the minimum PFN based on information provided via 7052 * memblock_set_node(). 7053 */ 7054 unsigned long __init find_min_pfn_with_active_regions(void) 7055 { 7056 return find_min_pfn_for_node(MAX_NUMNODES); 7057 } 7058 7059 /* 7060 * early_calculate_totalpages() 7061 * Sum pages in active regions for movable zone. 7062 * Populate N_MEMORY for calculating usable_nodes. 7063 */ 7064 static unsigned long __init early_calculate_totalpages(void) 7065 { 7066 unsigned long totalpages = 0; 7067 unsigned long start_pfn, end_pfn; 7068 int i, nid; 7069 7070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7071 unsigned long pages = end_pfn - start_pfn; 7072 7073 totalpages += pages; 7074 if (pages) 7075 node_set_state(nid, N_MEMORY); 7076 } 7077 return totalpages; 7078 } 7079 7080 /* 7081 * Find the PFN the Movable zone begins in each node. Kernel memory 7082 * is spread evenly between nodes as long as the nodes have enough 7083 * memory. When they don't, some nodes will have more kernelcore than 7084 * others 7085 */ 7086 static void __init find_zone_movable_pfns_for_nodes(void) 7087 { 7088 int i, nid; 7089 unsigned long usable_startpfn; 7090 unsigned long kernelcore_node, kernelcore_remaining; 7091 /* save the state before borrow the nodemask */ 7092 nodemask_t saved_node_state = node_states[N_MEMORY]; 7093 unsigned long totalpages = early_calculate_totalpages(); 7094 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7095 struct memblock_region *r; 7096 7097 /* Need to find movable_zone earlier when movable_node is specified. */ 7098 find_usable_zone_for_movable(); 7099 7100 /* 7101 * If movable_node is specified, ignore kernelcore and movablecore 7102 * options. 7103 */ 7104 if (movable_node_is_enabled()) { 7105 for_each_memblock(memory, r) { 7106 if (!memblock_is_hotpluggable(r)) 7107 continue; 7108 7109 nid = r->nid; 7110 7111 usable_startpfn = PFN_DOWN(r->base); 7112 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7113 min(usable_startpfn, zone_movable_pfn[nid]) : 7114 usable_startpfn; 7115 } 7116 7117 goto out2; 7118 } 7119 7120 /* 7121 * If kernelcore=mirror is specified, ignore movablecore option 7122 */ 7123 if (mirrored_kernelcore) { 7124 bool mem_below_4gb_not_mirrored = false; 7125 7126 for_each_memblock(memory, r) { 7127 if (memblock_is_mirror(r)) 7128 continue; 7129 7130 nid = r->nid; 7131 7132 usable_startpfn = memblock_region_memory_base_pfn(r); 7133 7134 if (usable_startpfn < 0x100000) { 7135 mem_below_4gb_not_mirrored = true; 7136 continue; 7137 } 7138 7139 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7140 min(usable_startpfn, zone_movable_pfn[nid]) : 7141 usable_startpfn; 7142 } 7143 7144 if (mem_below_4gb_not_mirrored) 7145 pr_warn("This configuration results in unmirrored kernel memory."); 7146 7147 goto out2; 7148 } 7149 7150 /* 7151 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7152 * amount of necessary memory. 7153 */ 7154 if (required_kernelcore_percent) 7155 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7156 10000UL; 7157 if (required_movablecore_percent) 7158 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7159 10000UL; 7160 7161 /* 7162 * If movablecore= was specified, calculate what size of 7163 * kernelcore that corresponds so that memory usable for 7164 * any allocation type is evenly spread. If both kernelcore 7165 * and movablecore are specified, then the value of kernelcore 7166 * will be used for required_kernelcore if it's greater than 7167 * what movablecore would have allowed. 7168 */ 7169 if (required_movablecore) { 7170 unsigned long corepages; 7171 7172 /* 7173 * Round-up so that ZONE_MOVABLE is at least as large as what 7174 * was requested by the user 7175 */ 7176 required_movablecore = 7177 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7178 required_movablecore = min(totalpages, required_movablecore); 7179 corepages = totalpages - required_movablecore; 7180 7181 required_kernelcore = max(required_kernelcore, corepages); 7182 } 7183 7184 /* 7185 * If kernelcore was not specified or kernelcore size is larger 7186 * than totalpages, there is no ZONE_MOVABLE. 7187 */ 7188 if (!required_kernelcore || required_kernelcore >= totalpages) 7189 goto out; 7190 7191 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7192 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7193 7194 restart: 7195 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7196 kernelcore_node = required_kernelcore / usable_nodes; 7197 for_each_node_state(nid, N_MEMORY) { 7198 unsigned long start_pfn, end_pfn; 7199 7200 /* 7201 * Recalculate kernelcore_node if the division per node 7202 * now exceeds what is necessary to satisfy the requested 7203 * amount of memory for the kernel 7204 */ 7205 if (required_kernelcore < kernelcore_node) 7206 kernelcore_node = required_kernelcore / usable_nodes; 7207 7208 /* 7209 * As the map is walked, we track how much memory is usable 7210 * by the kernel using kernelcore_remaining. When it is 7211 * 0, the rest of the node is usable by ZONE_MOVABLE 7212 */ 7213 kernelcore_remaining = kernelcore_node; 7214 7215 /* Go through each range of PFNs within this node */ 7216 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7217 unsigned long size_pages; 7218 7219 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7220 if (start_pfn >= end_pfn) 7221 continue; 7222 7223 /* Account for what is only usable for kernelcore */ 7224 if (start_pfn < usable_startpfn) { 7225 unsigned long kernel_pages; 7226 kernel_pages = min(end_pfn, usable_startpfn) 7227 - start_pfn; 7228 7229 kernelcore_remaining -= min(kernel_pages, 7230 kernelcore_remaining); 7231 required_kernelcore -= min(kernel_pages, 7232 required_kernelcore); 7233 7234 /* Continue if range is now fully accounted */ 7235 if (end_pfn <= usable_startpfn) { 7236 7237 /* 7238 * Push zone_movable_pfn to the end so 7239 * that if we have to rebalance 7240 * kernelcore across nodes, we will 7241 * not double account here 7242 */ 7243 zone_movable_pfn[nid] = end_pfn; 7244 continue; 7245 } 7246 start_pfn = usable_startpfn; 7247 } 7248 7249 /* 7250 * The usable PFN range for ZONE_MOVABLE is from 7251 * start_pfn->end_pfn. Calculate size_pages as the 7252 * number of pages used as kernelcore 7253 */ 7254 size_pages = end_pfn - start_pfn; 7255 if (size_pages > kernelcore_remaining) 7256 size_pages = kernelcore_remaining; 7257 zone_movable_pfn[nid] = start_pfn + size_pages; 7258 7259 /* 7260 * Some kernelcore has been met, update counts and 7261 * break if the kernelcore for this node has been 7262 * satisfied 7263 */ 7264 required_kernelcore -= min(required_kernelcore, 7265 size_pages); 7266 kernelcore_remaining -= size_pages; 7267 if (!kernelcore_remaining) 7268 break; 7269 } 7270 } 7271 7272 /* 7273 * If there is still required_kernelcore, we do another pass with one 7274 * less node in the count. This will push zone_movable_pfn[nid] further 7275 * along on the nodes that still have memory until kernelcore is 7276 * satisfied 7277 */ 7278 usable_nodes--; 7279 if (usable_nodes && required_kernelcore > usable_nodes) 7280 goto restart; 7281 7282 out2: 7283 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7284 for (nid = 0; nid < MAX_NUMNODES; nid++) 7285 zone_movable_pfn[nid] = 7286 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7287 7288 out: 7289 /* restore the node_state */ 7290 node_states[N_MEMORY] = saved_node_state; 7291 } 7292 7293 /* Any regular or high memory on that node ? */ 7294 static void check_for_memory(pg_data_t *pgdat, int nid) 7295 { 7296 enum zone_type zone_type; 7297 7298 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7299 struct zone *zone = &pgdat->node_zones[zone_type]; 7300 if (populated_zone(zone)) { 7301 if (IS_ENABLED(CONFIG_HIGHMEM)) 7302 node_set_state(nid, N_HIGH_MEMORY); 7303 if (zone_type <= ZONE_NORMAL) 7304 node_set_state(nid, N_NORMAL_MEMORY); 7305 break; 7306 } 7307 } 7308 } 7309 7310 /** 7311 * free_area_init_nodes - Initialise all pg_data_t and zone data 7312 * @max_zone_pfn: an array of max PFNs for each zone 7313 * 7314 * This will call free_area_init_node() for each active node in the system. 7315 * Using the page ranges provided by memblock_set_node(), the size of each 7316 * zone in each node and their holes is calculated. If the maximum PFN 7317 * between two adjacent zones match, it is assumed that the zone is empty. 7318 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7319 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7320 * starts where the previous one ended. For example, ZONE_DMA32 starts 7321 * at arch_max_dma_pfn. 7322 */ 7323 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7324 { 7325 unsigned long start_pfn, end_pfn; 7326 int i, nid; 7327 7328 /* Record where the zone boundaries are */ 7329 memset(arch_zone_lowest_possible_pfn, 0, 7330 sizeof(arch_zone_lowest_possible_pfn)); 7331 memset(arch_zone_highest_possible_pfn, 0, 7332 sizeof(arch_zone_highest_possible_pfn)); 7333 7334 start_pfn = find_min_pfn_with_active_regions(); 7335 7336 for (i = 0; i < MAX_NR_ZONES; i++) { 7337 if (i == ZONE_MOVABLE) 7338 continue; 7339 7340 end_pfn = max(max_zone_pfn[i], start_pfn); 7341 arch_zone_lowest_possible_pfn[i] = start_pfn; 7342 arch_zone_highest_possible_pfn[i] = end_pfn; 7343 7344 start_pfn = end_pfn; 7345 } 7346 7347 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7348 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7349 find_zone_movable_pfns_for_nodes(); 7350 7351 /* Print out the zone ranges */ 7352 pr_info("Zone ranges:\n"); 7353 for (i = 0; i < MAX_NR_ZONES; i++) { 7354 if (i == ZONE_MOVABLE) 7355 continue; 7356 pr_info(" %-8s ", zone_names[i]); 7357 if (arch_zone_lowest_possible_pfn[i] == 7358 arch_zone_highest_possible_pfn[i]) 7359 pr_cont("empty\n"); 7360 else 7361 pr_cont("[mem %#018Lx-%#018Lx]\n", 7362 (u64)arch_zone_lowest_possible_pfn[i] 7363 << PAGE_SHIFT, 7364 ((u64)arch_zone_highest_possible_pfn[i] 7365 << PAGE_SHIFT) - 1); 7366 } 7367 7368 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7369 pr_info("Movable zone start for each node\n"); 7370 for (i = 0; i < MAX_NUMNODES; i++) { 7371 if (zone_movable_pfn[i]) 7372 pr_info(" Node %d: %#018Lx\n", i, 7373 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7374 } 7375 7376 /* 7377 * Print out the early node map, and initialize the 7378 * subsection-map relative to active online memory ranges to 7379 * enable future "sub-section" extensions of the memory map. 7380 */ 7381 pr_info("Early memory node ranges\n"); 7382 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7383 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7384 (u64)start_pfn << PAGE_SHIFT, 7385 ((u64)end_pfn << PAGE_SHIFT) - 1); 7386 subsection_map_init(start_pfn, end_pfn - start_pfn); 7387 } 7388 7389 /* Initialise every node */ 7390 mminit_verify_pageflags_layout(); 7391 setup_nr_node_ids(); 7392 zero_resv_unavail(); 7393 for_each_online_node(nid) { 7394 pg_data_t *pgdat = NODE_DATA(nid); 7395 free_area_init_node(nid, NULL, 7396 find_min_pfn_for_node(nid), NULL); 7397 7398 /* Any memory on that node */ 7399 if (pgdat->node_present_pages) 7400 node_set_state(nid, N_MEMORY); 7401 check_for_memory(pgdat, nid); 7402 } 7403 } 7404 7405 static int __init cmdline_parse_core(char *p, unsigned long *core, 7406 unsigned long *percent) 7407 { 7408 unsigned long long coremem; 7409 char *endptr; 7410 7411 if (!p) 7412 return -EINVAL; 7413 7414 /* Value may be a percentage of total memory, otherwise bytes */ 7415 coremem = simple_strtoull(p, &endptr, 0); 7416 if (*endptr == '%') { 7417 /* Paranoid check for percent values greater than 100 */ 7418 WARN_ON(coremem > 100); 7419 7420 *percent = coremem; 7421 } else { 7422 coremem = memparse(p, &p); 7423 /* Paranoid check that UL is enough for the coremem value */ 7424 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7425 7426 *core = coremem >> PAGE_SHIFT; 7427 *percent = 0UL; 7428 } 7429 return 0; 7430 } 7431 7432 /* 7433 * kernelcore=size sets the amount of memory for use for allocations that 7434 * cannot be reclaimed or migrated. 7435 */ 7436 static int __init cmdline_parse_kernelcore(char *p) 7437 { 7438 /* parse kernelcore=mirror */ 7439 if (parse_option_str(p, "mirror")) { 7440 mirrored_kernelcore = true; 7441 return 0; 7442 } 7443 7444 return cmdline_parse_core(p, &required_kernelcore, 7445 &required_kernelcore_percent); 7446 } 7447 7448 /* 7449 * movablecore=size sets the amount of memory for use for allocations that 7450 * can be reclaimed or migrated. 7451 */ 7452 static int __init cmdline_parse_movablecore(char *p) 7453 { 7454 return cmdline_parse_core(p, &required_movablecore, 7455 &required_movablecore_percent); 7456 } 7457 7458 early_param("kernelcore", cmdline_parse_kernelcore); 7459 early_param("movablecore", cmdline_parse_movablecore); 7460 7461 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7462 7463 void adjust_managed_page_count(struct page *page, long count) 7464 { 7465 atomic_long_add(count, &page_zone(page)->managed_pages); 7466 totalram_pages_add(count); 7467 #ifdef CONFIG_HIGHMEM 7468 if (PageHighMem(page)) 7469 totalhigh_pages_add(count); 7470 #endif 7471 } 7472 EXPORT_SYMBOL(adjust_managed_page_count); 7473 7474 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7475 { 7476 void *pos; 7477 unsigned long pages = 0; 7478 7479 start = (void *)PAGE_ALIGN((unsigned long)start); 7480 end = (void *)((unsigned long)end & PAGE_MASK); 7481 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7482 struct page *page = virt_to_page(pos); 7483 void *direct_map_addr; 7484 7485 /* 7486 * 'direct_map_addr' might be different from 'pos' 7487 * because some architectures' virt_to_page() 7488 * work with aliases. Getting the direct map 7489 * address ensures that we get a _writeable_ 7490 * alias for the memset(). 7491 */ 7492 direct_map_addr = page_address(page); 7493 if ((unsigned int)poison <= 0xFF) 7494 memset(direct_map_addr, poison, PAGE_SIZE); 7495 7496 free_reserved_page(page); 7497 } 7498 7499 if (pages && s) 7500 pr_info("Freeing %s memory: %ldK\n", 7501 s, pages << (PAGE_SHIFT - 10)); 7502 7503 return pages; 7504 } 7505 7506 #ifdef CONFIG_HIGHMEM 7507 void free_highmem_page(struct page *page) 7508 { 7509 __free_reserved_page(page); 7510 totalram_pages_inc(); 7511 atomic_long_inc(&page_zone(page)->managed_pages); 7512 totalhigh_pages_inc(); 7513 } 7514 #endif 7515 7516 7517 void __init mem_init_print_info(const char *str) 7518 { 7519 unsigned long physpages, codesize, datasize, rosize, bss_size; 7520 unsigned long init_code_size, init_data_size; 7521 7522 physpages = get_num_physpages(); 7523 codesize = _etext - _stext; 7524 datasize = _edata - _sdata; 7525 rosize = __end_rodata - __start_rodata; 7526 bss_size = __bss_stop - __bss_start; 7527 init_data_size = __init_end - __init_begin; 7528 init_code_size = _einittext - _sinittext; 7529 7530 /* 7531 * Detect special cases and adjust section sizes accordingly: 7532 * 1) .init.* may be embedded into .data sections 7533 * 2) .init.text.* may be out of [__init_begin, __init_end], 7534 * please refer to arch/tile/kernel/vmlinux.lds.S. 7535 * 3) .rodata.* may be embedded into .text or .data sections. 7536 */ 7537 #define adj_init_size(start, end, size, pos, adj) \ 7538 do { \ 7539 if (start <= pos && pos < end && size > adj) \ 7540 size -= adj; \ 7541 } while (0) 7542 7543 adj_init_size(__init_begin, __init_end, init_data_size, 7544 _sinittext, init_code_size); 7545 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7546 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7547 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7548 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7549 7550 #undef adj_init_size 7551 7552 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7553 #ifdef CONFIG_HIGHMEM 7554 ", %luK highmem" 7555 #endif 7556 "%s%s)\n", 7557 nr_free_pages() << (PAGE_SHIFT - 10), 7558 physpages << (PAGE_SHIFT - 10), 7559 codesize >> 10, datasize >> 10, rosize >> 10, 7560 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7561 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7562 totalcma_pages << (PAGE_SHIFT - 10), 7563 #ifdef CONFIG_HIGHMEM 7564 totalhigh_pages() << (PAGE_SHIFT - 10), 7565 #endif 7566 str ? ", " : "", str ? str : ""); 7567 } 7568 7569 /** 7570 * set_dma_reserve - set the specified number of pages reserved in the first zone 7571 * @new_dma_reserve: The number of pages to mark reserved 7572 * 7573 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7574 * In the DMA zone, a significant percentage may be consumed by kernel image 7575 * and other unfreeable allocations which can skew the watermarks badly. This 7576 * function may optionally be used to account for unfreeable pages in the 7577 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7578 * smaller per-cpu batchsize. 7579 */ 7580 void __init set_dma_reserve(unsigned long new_dma_reserve) 7581 { 7582 dma_reserve = new_dma_reserve; 7583 } 7584 7585 void __init free_area_init(unsigned long *zones_size) 7586 { 7587 zero_resv_unavail(); 7588 free_area_init_node(0, zones_size, 7589 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7590 } 7591 7592 static int page_alloc_cpu_dead(unsigned int cpu) 7593 { 7594 7595 lru_add_drain_cpu(cpu); 7596 drain_pages(cpu); 7597 7598 /* 7599 * Spill the event counters of the dead processor 7600 * into the current processors event counters. 7601 * This artificially elevates the count of the current 7602 * processor. 7603 */ 7604 vm_events_fold_cpu(cpu); 7605 7606 /* 7607 * Zero the differential counters of the dead processor 7608 * so that the vm statistics are consistent. 7609 * 7610 * This is only okay since the processor is dead and cannot 7611 * race with what we are doing. 7612 */ 7613 cpu_vm_stats_fold(cpu); 7614 return 0; 7615 } 7616 7617 #ifdef CONFIG_NUMA 7618 int hashdist = HASHDIST_DEFAULT; 7619 7620 static int __init set_hashdist(char *str) 7621 { 7622 if (!str) 7623 return 0; 7624 hashdist = simple_strtoul(str, &str, 0); 7625 return 1; 7626 } 7627 __setup("hashdist=", set_hashdist); 7628 #endif 7629 7630 void __init page_alloc_init(void) 7631 { 7632 int ret; 7633 7634 #ifdef CONFIG_NUMA 7635 if (num_node_state(N_MEMORY) == 1) 7636 hashdist = 0; 7637 #endif 7638 7639 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7640 "mm/page_alloc:dead", NULL, 7641 page_alloc_cpu_dead); 7642 WARN_ON(ret < 0); 7643 } 7644 7645 /* 7646 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7647 * or min_free_kbytes changes. 7648 */ 7649 static void calculate_totalreserve_pages(void) 7650 { 7651 struct pglist_data *pgdat; 7652 unsigned long reserve_pages = 0; 7653 enum zone_type i, j; 7654 7655 for_each_online_pgdat(pgdat) { 7656 7657 pgdat->totalreserve_pages = 0; 7658 7659 for (i = 0; i < MAX_NR_ZONES; i++) { 7660 struct zone *zone = pgdat->node_zones + i; 7661 long max = 0; 7662 unsigned long managed_pages = zone_managed_pages(zone); 7663 7664 /* Find valid and maximum lowmem_reserve in the zone */ 7665 for (j = i; j < MAX_NR_ZONES; j++) { 7666 if (zone->lowmem_reserve[j] > max) 7667 max = zone->lowmem_reserve[j]; 7668 } 7669 7670 /* we treat the high watermark as reserved pages. */ 7671 max += high_wmark_pages(zone); 7672 7673 if (max > managed_pages) 7674 max = managed_pages; 7675 7676 pgdat->totalreserve_pages += max; 7677 7678 reserve_pages += max; 7679 } 7680 } 7681 totalreserve_pages = reserve_pages; 7682 } 7683 7684 /* 7685 * setup_per_zone_lowmem_reserve - called whenever 7686 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7687 * has a correct pages reserved value, so an adequate number of 7688 * pages are left in the zone after a successful __alloc_pages(). 7689 */ 7690 static void setup_per_zone_lowmem_reserve(void) 7691 { 7692 struct pglist_data *pgdat; 7693 enum zone_type j, idx; 7694 7695 for_each_online_pgdat(pgdat) { 7696 for (j = 0; j < MAX_NR_ZONES; j++) { 7697 struct zone *zone = pgdat->node_zones + j; 7698 unsigned long managed_pages = zone_managed_pages(zone); 7699 7700 zone->lowmem_reserve[j] = 0; 7701 7702 idx = j; 7703 while (idx) { 7704 struct zone *lower_zone; 7705 7706 idx--; 7707 lower_zone = pgdat->node_zones + idx; 7708 7709 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7710 sysctl_lowmem_reserve_ratio[idx] = 0; 7711 lower_zone->lowmem_reserve[j] = 0; 7712 } else { 7713 lower_zone->lowmem_reserve[j] = 7714 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7715 } 7716 managed_pages += zone_managed_pages(lower_zone); 7717 } 7718 } 7719 } 7720 7721 /* update totalreserve_pages */ 7722 calculate_totalreserve_pages(); 7723 } 7724 7725 static void __setup_per_zone_wmarks(void) 7726 { 7727 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7728 unsigned long lowmem_pages = 0; 7729 struct zone *zone; 7730 unsigned long flags; 7731 7732 /* Calculate total number of !ZONE_HIGHMEM pages */ 7733 for_each_zone(zone) { 7734 if (!is_highmem(zone)) 7735 lowmem_pages += zone_managed_pages(zone); 7736 } 7737 7738 for_each_zone(zone) { 7739 u64 tmp; 7740 7741 spin_lock_irqsave(&zone->lock, flags); 7742 tmp = (u64)pages_min * zone_managed_pages(zone); 7743 do_div(tmp, lowmem_pages); 7744 if (is_highmem(zone)) { 7745 /* 7746 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7747 * need highmem pages, so cap pages_min to a small 7748 * value here. 7749 * 7750 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7751 * deltas control async page reclaim, and so should 7752 * not be capped for highmem. 7753 */ 7754 unsigned long min_pages; 7755 7756 min_pages = zone_managed_pages(zone) / 1024; 7757 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7758 zone->_watermark[WMARK_MIN] = min_pages; 7759 } else { 7760 /* 7761 * If it's a lowmem zone, reserve a number of pages 7762 * proportionate to the zone's size. 7763 */ 7764 zone->_watermark[WMARK_MIN] = tmp; 7765 } 7766 7767 /* 7768 * Set the kswapd watermarks distance according to the 7769 * scale factor in proportion to available memory, but 7770 * ensure a minimum size on small systems. 7771 */ 7772 tmp = max_t(u64, tmp >> 2, 7773 mult_frac(zone_managed_pages(zone), 7774 watermark_scale_factor, 10000)); 7775 7776 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7777 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7778 zone->watermark_boost = 0; 7779 7780 spin_unlock_irqrestore(&zone->lock, flags); 7781 } 7782 7783 /* update totalreserve_pages */ 7784 calculate_totalreserve_pages(); 7785 } 7786 7787 /** 7788 * setup_per_zone_wmarks - called when min_free_kbytes changes 7789 * or when memory is hot-{added|removed} 7790 * 7791 * Ensures that the watermark[min,low,high] values for each zone are set 7792 * correctly with respect to min_free_kbytes. 7793 */ 7794 void setup_per_zone_wmarks(void) 7795 { 7796 static DEFINE_SPINLOCK(lock); 7797 7798 spin_lock(&lock); 7799 __setup_per_zone_wmarks(); 7800 spin_unlock(&lock); 7801 } 7802 7803 /* 7804 * Initialise min_free_kbytes. 7805 * 7806 * For small machines we want it small (128k min). For large machines 7807 * we want it large (64MB max). But it is not linear, because network 7808 * bandwidth does not increase linearly with machine size. We use 7809 * 7810 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7811 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7812 * 7813 * which yields 7814 * 7815 * 16MB: 512k 7816 * 32MB: 724k 7817 * 64MB: 1024k 7818 * 128MB: 1448k 7819 * 256MB: 2048k 7820 * 512MB: 2896k 7821 * 1024MB: 4096k 7822 * 2048MB: 5792k 7823 * 4096MB: 8192k 7824 * 8192MB: 11584k 7825 * 16384MB: 16384k 7826 */ 7827 int __meminit init_per_zone_wmark_min(void) 7828 { 7829 unsigned long lowmem_kbytes; 7830 int new_min_free_kbytes; 7831 7832 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7833 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7834 7835 if (new_min_free_kbytes > user_min_free_kbytes) { 7836 min_free_kbytes = new_min_free_kbytes; 7837 if (min_free_kbytes < 128) 7838 min_free_kbytes = 128; 7839 if (min_free_kbytes > 65536) 7840 min_free_kbytes = 65536; 7841 } else { 7842 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7843 new_min_free_kbytes, user_min_free_kbytes); 7844 } 7845 setup_per_zone_wmarks(); 7846 refresh_zone_stat_thresholds(); 7847 setup_per_zone_lowmem_reserve(); 7848 7849 #ifdef CONFIG_NUMA 7850 setup_min_unmapped_ratio(); 7851 setup_min_slab_ratio(); 7852 #endif 7853 7854 return 0; 7855 } 7856 core_initcall(init_per_zone_wmark_min) 7857 7858 /* 7859 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7860 * that we can call two helper functions whenever min_free_kbytes 7861 * changes. 7862 */ 7863 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7864 void __user *buffer, size_t *length, loff_t *ppos) 7865 { 7866 int rc; 7867 7868 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7869 if (rc) 7870 return rc; 7871 7872 if (write) { 7873 user_min_free_kbytes = min_free_kbytes; 7874 setup_per_zone_wmarks(); 7875 } 7876 return 0; 7877 } 7878 7879 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7880 void __user *buffer, size_t *length, loff_t *ppos) 7881 { 7882 int rc; 7883 7884 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7885 if (rc) 7886 return rc; 7887 7888 return 0; 7889 } 7890 7891 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7892 void __user *buffer, size_t *length, loff_t *ppos) 7893 { 7894 int rc; 7895 7896 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7897 if (rc) 7898 return rc; 7899 7900 if (write) 7901 setup_per_zone_wmarks(); 7902 7903 return 0; 7904 } 7905 7906 #ifdef CONFIG_NUMA 7907 static void setup_min_unmapped_ratio(void) 7908 { 7909 pg_data_t *pgdat; 7910 struct zone *zone; 7911 7912 for_each_online_pgdat(pgdat) 7913 pgdat->min_unmapped_pages = 0; 7914 7915 for_each_zone(zone) 7916 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7917 sysctl_min_unmapped_ratio) / 100; 7918 } 7919 7920 7921 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7922 void __user *buffer, size_t *length, loff_t *ppos) 7923 { 7924 int rc; 7925 7926 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7927 if (rc) 7928 return rc; 7929 7930 setup_min_unmapped_ratio(); 7931 7932 return 0; 7933 } 7934 7935 static void setup_min_slab_ratio(void) 7936 { 7937 pg_data_t *pgdat; 7938 struct zone *zone; 7939 7940 for_each_online_pgdat(pgdat) 7941 pgdat->min_slab_pages = 0; 7942 7943 for_each_zone(zone) 7944 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7945 sysctl_min_slab_ratio) / 100; 7946 } 7947 7948 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7949 void __user *buffer, size_t *length, loff_t *ppos) 7950 { 7951 int rc; 7952 7953 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7954 if (rc) 7955 return rc; 7956 7957 setup_min_slab_ratio(); 7958 7959 return 0; 7960 } 7961 #endif 7962 7963 /* 7964 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7965 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7966 * whenever sysctl_lowmem_reserve_ratio changes. 7967 * 7968 * The reserve ratio obviously has absolutely no relation with the 7969 * minimum watermarks. The lowmem reserve ratio can only make sense 7970 * if in function of the boot time zone sizes. 7971 */ 7972 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7973 void __user *buffer, size_t *length, loff_t *ppos) 7974 { 7975 proc_dointvec_minmax(table, write, buffer, length, ppos); 7976 setup_per_zone_lowmem_reserve(); 7977 return 0; 7978 } 7979 7980 /* 7981 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7982 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7983 * pagelist can have before it gets flushed back to buddy allocator. 7984 */ 7985 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7986 void __user *buffer, size_t *length, loff_t *ppos) 7987 { 7988 struct zone *zone; 7989 int old_percpu_pagelist_fraction; 7990 int ret; 7991 7992 mutex_lock(&pcp_batch_high_lock); 7993 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7994 7995 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7996 if (!write || ret < 0) 7997 goto out; 7998 7999 /* Sanity checking to avoid pcp imbalance */ 8000 if (percpu_pagelist_fraction && 8001 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8002 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8003 ret = -EINVAL; 8004 goto out; 8005 } 8006 8007 /* No change? */ 8008 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8009 goto out; 8010 8011 for_each_populated_zone(zone) { 8012 unsigned int cpu; 8013 8014 for_each_possible_cpu(cpu) 8015 pageset_set_high_and_batch(zone, 8016 per_cpu_ptr(zone->pageset, cpu)); 8017 } 8018 out: 8019 mutex_unlock(&pcp_batch_high_lock); 8020 return ret; 8021 } 8022 8023 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8024 /* 8025 * Returns the number of pages that arch has reserved but 8026 * is not known to alloc_large_system_hash(). 8027 */ 8028 static unsigned long __init arch_reserved_kernel_pages(void) 8029 { 8030 return 0; 8031 } 8032 #endif 8033 8034 /* 8035 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8036 * machines. As memory size is increased the scale is also increased but at 8037 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8038 * quadruples the scale is increased by one, which means the size of hash table 8039 * only doubles, instead of quadrupling as well. 8040 * Because 32-bit systems cannot have large physical memory, where this scaling 8041 * makes sense, it is disabled on such platforms. 8042 */ 8043 #if __BITS_PER_LONG > 32 8044 #define ADAPT_SCALE_BASE (64ul << 30) 8045 #define ADAPT_SCALE_SHIFT 2 8046 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8047 #endif 8048 8049 /* 8050 * allocate a large system hash table from bootmem 8051 * - it is assumed that the hash table must contain an exact power-of-2 8052 * quantity of entries 8053 * - limit is the number of hash buckets, not the total allocation size 8054 */ 8055 void *__init alloc_large_system_hash(const char *tablename, 8056 unsigned long bucketsize, 8057 unsigned long numentries, 8058 int scale, 8059 int flags, 8060 unsigned int *_hash_shift, 8061 unsigned int *_hash_mask, 8062 unsigned long low_limit, 8063 unsigned long high_limit) 8064 { 8065 unsigned long long max = high_limit; 8066 unsigned long log2qty, size; 8067 void *table = NULL; 8068 gfp_t gfp_flags; 8069 bool virt; 8070 8071 /* allow the kernel cmdline to have a say */ 8072 if (!numentries) { 8073 /* round applicable memory size up to nearest megabyte */ 8074 numentries = nr_kernel_pages; 8075 numentries -= arch_reserved_kernel_pages(); 8076 8077 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8078 if (PAGE_SHIFT < 20) 8079 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8080 8081 #if __BITS_PER_LONG > 32 8082 if (!high_limit) { 8083 unsigned long adapt; 8084 8085 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8086 adapt <<= ADAPT_SCALE_SHIFT) 8087 scale++; 8088 } 8089 #endif 8090 8091 /* limit to 1 bucket per 2^scale bytes of low memory */ 8092 if (scale > PAGE_SHIFT) 8093 numentries >>= (scale - PAGE_SHIFT); 8094 else 8095 numentries <<= (PAGE_SHIFT - scale); 8096 8097 /* Make sure we've got at least a 0-order allocation.. */ 8098 if (unlikely(flags & HASH_SMALL)) { 8099 /* Makes no sense without HASH_EARLY */ 8100 WARN_ON(!(flags & HASH_EARLY)); 8101 if (!(numentries >> *_hash_shift)) { 8102 numentries = 1UL << *_hash_shift; 8103 BUG_ON(!numentries); 8104 } 8105 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8106 numentries = PAGE_SIZE / bucketsize; 8107 } 8108 numentries = roundup_pow_of_two(numentries); 8109 8110 /* limit allocation size to 1/16 total memory by default */ 8111 if (max == 0) { 8112 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8113 do_div(max, bucketsize); 8114 } 8115 max = min(max, 0x80000000ULL); 8116 8117 if (numentries < low_limit) 8118 numentries = low_limit; 8119 if (numentries > max) 8120 numentries = max; 8121 8122 log2qty = ilog2(numentries); 8123 8124 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8125 do { 8126 virt = false; 8127 size = bucketsize << log2qty; 8128 if (flags & HASH_EARLY) { 8129 if (flags & HASH_ZERO) 8130 table = memblock_alloc(size, SMP_CACHE_BYTES); 8131 else 8132 table = memblock_alloc_raw(size, 8133 SMP_CACHE_BYTES); 8134 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8135 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8136 virt = true; 8137 } else { 8138 /* 8139 * If bucketsize is not a power-of-two, we may free 8140 * some pages at the end of hash table which 8141 * alloc_pages_exact() automatically does 8142 */ 8143 table = alloc_pages_exact(size, gfp_flags); 8144 kmemleak_alloc(table, size, 1, gfp_flags); 8145 } 8146 } while (!table && size > PAGE_SIZE && --log2qty); 8147 8148 if (!table) 8149 panic("Failed to allocate %s hash table\n", tablename); 8150 8151 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8152 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8153 virt ? "vmalloc" : "linear"); 8154 8155 if (_hash_shift) 8156 *_hash_shift = log2qty; 8157 if (_hash_mask) 8158 *_hash_mask = (1 << log2qty) - 1; 8159 8160 return table; 8161 } 8162 8163 /* 8164 * This function checks whether pageblock includes unmovable pages or not. 8165 * If @count is not zero, it is okay to include less @count unmovable pages 8166 * 8167 * PageLRU check without isolation or lru_lock could race so that 8168 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8169 * check without lock_page also may miss some movable non-lru pages at 8170 * race condition. So you can't expect this function should be exact. 8171 */ 8172 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8173 int migratetype, int flags) 8174 { 8175 unsigned long found; 8176 unsigned long iter = 0; 8177 unsigned long pfn = page_to_pfn(page); 8178 const char *reason = "unmovable page"; 8179 8180 /* 8181 * TODO we could make this much more efficient by not checking every 8182 * page in the range if we know all of them are in MOVABLE_ZONE and 8183 * that the movable zone guarantees that pages are migratable but 8184 * the later is not the case right now unfortunatelly. E.g. movablecore 8185 * can still lead to having bootmem allocations in zone_movable. 8186 */ 8187 8188 if (is_migrate_cma_page(page)) { 8189 /* 8190 * CMA allocations (alloc_contig_range) really need to mark 8191 * isolate CMA pageblocks even when they are not movable in fact 8192 * so consider them movable here. 8193 */ 8194 if (is_migrate_cma(migratetype)) 8195 return false; 8196 8197 reason = "CMA page"; 8198 goto unmovable; 8199 } 8200 8201 for (found = 0; iter < pageblock_nr_pages; iter++) { 8202 unsigned long check = pfn + iter; 8203 8204 if (!pfn_valid_within(check)) 8205 continue; 8206 8207 page = pfn_to_page(check); 8208 8209 if (PageReserved(page)) 8210 goto unmovable; 8211 8212 /* 8213 * If the zone is movable and we have ruled out all reserved 8214 * pages then it should be reasonably safe to assume the rest 8215 * is movable. 8216 */ 8217 if (zone_idx(zone) == ZONE_MOVABLE) 8218 continue; 8219 8220 /* 8221 * Hugepages are not in LRU lists, but they're movable. 8222 * We need not scan over tail pages because we don't 8223 * handle each tail page individually in migration. 8224 */ 8225 if (PageHuge(page)) { 8226 struct page *head = compound_head(page); 8227 unsigned int skip_pages; 8228 8229 if (!hugepage_migration_supported(page_hstate(head))) 8230 goto unmovable; 8231 8232 skip_pages = compound_nr(head) - (page - head); 8233 iter += skip_pages - 1; 8234 continue; 8235 } 8236 8237 /* 8238 * We can't use page_count without pin a page 8239 * because another CPU can free compound page. 8240 * This check already skips compound tails of THP 8241 * because their page->_refcount is zero at all time. 8242 */ 8243 if (!page_ref_count(page)) { 8244 if (PageBuddy(page)) 8245 iter += (1 << page_order(page)) - 1; 8246 continue; 8247 } 8248 8249 /* 8250 * The HWPoisoned page may be not in buddy system, and 8251 * page_count() is not 0. 8252 */ 8253 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8254 continue; 8255 8256 if (__PageMovable(page)) 8257 continue; 8258 8259 if (!PageLRU(page)) 8260 found++; 8261 /* 8262 * If there are RECLAIMABLE pages, we need to check 8263 * it. But now, memory offline itself doesn't call 8264 * shrink_node_slabs() and it still to be fixed. 8265 */ 8266 /* 8267 * If the page is not RAM, page_count()should be 0. 8268 * we don't need more check. This is an _used_ not-movable page. 8269 * 8270 * The problematic thing here is PG_reserved pages. PG_reserved 8271 * is set to both of a memory hole page and a _used_ kernel 8272 * page at boot. 8273 */ 8274 if (found > count) 8275 goto unmovable; 8276 } 8277 return false; 8278 unmovable: 8279 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8280 if (flags & REPORT_FAILURE) 8281 dump_page(pfn_to_page(pfn + iter), reason); 8282 return true; 8283 } 8284 8285 #ifdef CONFIG_CONTIG_ALLOC 8286 static unsigned long pfn_max_align_down(unsigned long pfn) 8287 { 8288 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8289 pageblock_nr_pages) - 1); 8290 } 8291 8292 static unsigned long pfn_max_align_up(unsigned long pfn) 8293 { 8294 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8295 pageblock_nr_pages)); 8296 } 8297 8298 /* [start, end) must belong to a single zone. */ 8299 static int __alloc_contig_migrate_range(struct compact_control *cc, 8300 unsigned long start, unsigned long end) 8301 { 8302 /* This function is based on compact_zone() from compaction.c. */ 8303 unsigned long nr_reclaimed; 8304 unsigned long pfn = start; 8305 unsigned int tries = 0; 8306 int ret = 0; 8307 8308 migrate_prep(); 8309 8310 while (pfn < end || !list_empty(&cc->migratepages)) { 8311 if (fatal_signal_pending(current)) { 8312 ret = -EINTR; 8313 break; 8314 } 8315 8316 if (list_empty(&cc->migratepages)) { 8317 cc->nr_migratepages = 0; 8318 pfn = isolate_migratepages_range(cc, pfn, end); 8319 if (!pfn) { 8320 ret = -EINTR; 8321 break; 8322 } 8323 tries = 0; 8324 } else if (++tries == 5) { 8325 ret = ret < 0 ? ret : -EBUSY; 8326 break; 8327 } 8328 8329 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8330 &cc->migratepages); 8331 cc->nr_migratepages -= nr_reclaimed; 8332 8333 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8334 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8335 } 8336 if (ret < 0) { 8337 putback_movable_pages(&cc->migratepages); 8338 return ret; 8339 } 8340 return 0; 8341 } 8342 8343 /** 8344 * alloc_contig_range() -- tries to allocate given range of pages 8345 * @start: start PFN to allocate 8346 * @end: one-past-the-last PFN to allocate 8347 * @migratetype: migratetype of the underlaying pageblocks (either 8348 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8349 * in range must have the same migratetype and it must 8350 * be either of the two. 8351 * @gfp_mask: GFP mask to use during compaction 8352 * 8353 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8354 * aligned. The PFN range must belong to a single zone. 8355 * 8356 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8357 * pageblocks in the range. Once isolated, the pageblocks should not 8358 * be modified by others. 8359 * 8360 * Return: zero on success or negative error code. On success all 8361 * pages which PFN is in [start, end) are allocated for the caller and 8362 * need to be freed with free_contig_range(). 8363 */ 8364 int alloc_contig_range(unsigned long start, unsigned long end, 8365 unsigned migratetype, gfp_t gfp_mask) 8366 { 8367 unsigned long outer_start, outer_end; 8368 unsigned int order; 8369 int ret = 0; 8370 8371 struct compact_control cc = { 8372 .nr_migratepages = 0, 8373 .order = -1, 8374 .zone = page_zone(pfn_to_page(start)), 8375 .mode = MIGRATE_SYNC, 8376 .ignore_skip_hint = true, 8377 .no_set_skip_hint = true, 8378 .gfp_mask = current_gfp_context(gfp_mask), 8379 }; 8380 INIT_LIST_HEAD(&cc.migratepages); 8381 8382 /* 8383 * What we do here is we mark all pageblocks in range as 8384 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8385 * have different sizes, and due to the way page allocator 8386 * work, we align the range to biggest of the two pages so 8387 * that page allocator won't try to merge buddies from 8388 * different pageblocks and change MIGRATE_ISOLATE to some 8389 * other migration type. 8390 * 8391 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8392 * migrate the pages from an unaligned range (ie. pages that 8393 * we are interested in). This will put all the pages in 8394 * range back to page allocator as MIGRATE_ISOLATE. 8395 * 8396 * When this is done, we take the pages in range from page 8397 * allocator removing them from the buddy system. This way 8398 * page allocator will never consider using them. 8399 * 8400 * This lets us mark the pageblocks back as 8401 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8402 * aligned range but not in the unaligned, original range are 8403 * put back to page allocator so that buddy can use them. 8404 */ 8405 8406 ret = start_isolate_page_range(pfn_max_align_down(start), 8407 pfn_max_align_up(end), migratetype, 0); 8408 if (ret < 0) 8409 return ret; 8410 8411 /* 8412 * In case of -EBUSY, we'd like to know which page causes problem. 8413 * So, just fall through. test_pages_isolated() has a tracepoint 8414 * which will report the busy page. 8415 * 8416 * It is possible that busy pages could become available before 8417 * the call to test_pages_isolated, and the range will actually be 8418 * allocated. So, if we fall through be sure to clear ret so that 8419 * -EBUSY is not accidentally used or returned to caller. 8420 */ 8421 ret = __alloc_contig_migrate_range(&cc, start, end); 8422 if (ret && ret != -EBUSY) 8423 goto done; 8424 ret =0; 8425 8426 /* 8427 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8428 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8429 * more, all pages in [start, end) are free in page allocator. 8430 * What we are going to do is to allocate all pages from 8431 * [start, end) (that is remove them from page allocator). 8432 * 8433 * The only problem is that pages at the beginning and at the 8434 * end of interesting range may be not aligned with pages that 8435 * page allocator holds, ie. they can be part of higher order 8436 * pages. Because of this, we reserve the bigger range and 8437 * once this is done free the pages we are not interested in. 8438 * 8439 * We don't have to hold zone->lock here because the pages are 8440 * isolated thus they won't get removed from buddy. 8441 */ 8442 8443 lru_add_drain_all(); 8444 8445 order = 0; 8446 outer_start = start; 8447 while (!PageBuddy(pfn_to_page(outer_start))) { 8448 if (++order >= MAX_ORDER) { 8449 outer_start = start; 8450 break; 8451 } 8452 outer_start &= ~0UL << order; 8453 } 8454 8455 if (outer_start != start) { 8456 order = page_order(pfn_to_page(outer_start)); 8457 8458 /* 8459 * outer_start page could be small order buddy page and 8460 * it doesn't include start page. Adjust outer_start 8461 * in this case to report failed page properly 8462 * on tracepoint in test_pages_isolated() 8463 */ 8464 if (outer_start + (1UL << order) <= start) 8465 outer_start = start; 8466 } 8467 8468 /* Make sure the range is really isolated. */ 8469 if (test_pages_isolated(outer_start, end, false)) { 8470 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8471 __func__, outer_start, end); 8472 ret = -EBUSY; 8473 goto done; 8474 } 8475 8476 /* Grab isolated pages from freelists. */ 8477 outer_end = isolate_freepages_range(&cc, outer_start, end); 8478 if (!outer_end) { 8479 ret = -EBUSY; 8480 goto done; 8481 } 8482 8483 /* Free head and tail (if any) */ 8484 if (start != outer_start) 8485 free_contig_range(outer_start, start - outer_start); 8486 if (end != outer_end) 8487 free_contig_range(end, outer_end - end); 8488 8489 done: 8490 undo_isolate_page_range(pfn_max_align_down(start), 8491 pfn_max_align_up(end), migratetype); 8492 return ret; 8493 } 8494 #endif /* CONFIG_CONTIG_ALLOC */ 8495 8496 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8497 { 8498 unsigned int count = 0; 8499 8500 for (; nr_pages--; pfn++) { 8501 struct page *page = pfn_to_page(pfn); 8502 8503 count += page_count(page) != 1; 8504 __free_page(page); 8505 } 8506 WARN(count != 0, "%d pages are still in use!\n", count); 8507 } 8508 8509 #ifdef CONFIG_MEMORY_HOTPLUG 8510 /* 8511 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8512 * page high values need to be recalulated. 8513 */ 8514 void __meminit zone_pcp_update(struct zone *zone) 8515 { 8516 unsigned cpu; 8517 mutex_lock(&pcp_batch_high_lock); 8518 for_each_possible_cpu(cpu) 8519 pageset_set_high_and_batch(zone, 8520 per_cpu_ptr(zone->pageset, cpu)); 8521 mutex_unlock(&pcp_batch_high_lock); 8522 } 8523 #endif 8524 8525 void zone_pcp_reset(struct zone *zone) 8526 { 8527 unsigned long flags; 8528 int cpu; 8529 struct per_cpu_pageset *pset; 8530 8531 /* avoid races with drain_pages() */ 8532 local_irq_save(flags); 8533 if (zone->pageset != &boot_pageset) { 8534 for_each_online_cpu(cpu) { 8535 pset = per_cpu_ptr(zone->pageset, cpu); 8536 drain_zonestat(zone, pset); 8537 } 8538 free_percpu(zone->pageset); 8539 zone->pageset = &boot_pageset; 8540 } 8541 local_irq_restore(flags); 8542 } 8543 8544 #ifdef CONFIG_MEMORY_HOTREMOVE 8545 /* 8546 * All pages in the range must be in a single zone and isolated 8547 * before calling this. 8548 */ 8549 unsigned long 8550 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8551 { 8552 struct page *page; 8553 struct zone *zone; 8554 unsigned int order, i; 8555 unsigned long pfn; 8556 unsigned long flags; 8557 unsigned long offlined_pages = 0; 8558 8559 /* find the first valid pfn */ 8560 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8561 if (pfn_valid(pfn)) 8562 break; 8563 if (pfn == end_pfn) 8564 return offlined_pages; 8565 8566 offline_mem_sections(pfn, end_pfn); 8567 zone = page_zone(pfn_to_page(pfn)); 8568 spin_lock_irqsave(&zone->lock, flags); 8569 pfn = start_pfn; 8570 while (pfn < end_pfn) { 8571 if (!pfn_valid(pfn)) { 8572 pfn++; 8573 continue; 8574 } 8575 page = pfn_to_page(pfn); 8576 /* 8577 * The HWPoisoned page may be not in buddy system, and 8578 * page_count() is not 0. 8579 */ 8580 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8581 pfn++; 8582 SetPageReserved(page); 8583 offlined_pages++; 8584 continue; 8585 } 8586 8587 BUG_ON(page_count(page)); 8588 BUG_ON(!PageBuddy(page)); 8589 order = page_order(page); 8590 offlined_pages += 1 << order; 8591 #ifdef CONFIG_DEBUG_VM 8592 pr_info("remove from free list %lx %d %lx\n", 8593 pfn, 1 << order, end_pfn); 8594 #endif 8595 del_page_from_free_area(page, &zone->free_area[order]); 8596 for (i = 0; i < (1 << order); i++) 8597 SetPageReserved((page+i)); 8598 pfn += (1 << order); 8599 } 8600 spin_unlock_irqrestore(&zone->lock, flags); 8601 8602 return offlined_pages; 8603 } 8604 #endif 8605 8606 bool is_free_buddy_page(struct page *page) 8607 { 8608 struct zone *zone = page_zone(page); 8609 unsigned long pfn = page_to_pfn(page); 8610 unsigned long flags; 8611 unsigned int order; 8612 8613 spin_lock_irqsave(&zone->lock, flags); 8614 for (order = 0; order < MAX_ORDER; order++) { 8615 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8616 8617 if (PageBuddy(page_head) && page_order(page_head) >= order) 8618 break; 8619 } 8620 spin_unlock_irqrestore(&zone->lock, flags); 8621 8622 return order < MAX_ORDER; 8623 } 8624 8625 #ifdef CONFIG_MEMORY_FAILURE 8626 /* 8627 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8628 * test is performed under the zone lock to prevent a race against page 8629 * allocation. 8630 */ 8631 bool set_hwpoison_free_buddy_page(struct page *page) 8632 { 8633 struct zone *zone = page_zone(page); 8634 unsigned long pfn = page_to_pfn(page); 8635 unsigned long flags; 8636 unsigned int order; 8637 bool hwpoisoned = false; 8638 8639 spin_lock_irqsave(&zone->lock, flags); 8640 for (order = 0; order < MAX_ORDER; order++) { 8641 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8642 8643 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8644 if (!TestSetPageHWPoison(page)) 8645 hwpoisoned = true; 8646 break; 8647 } 8648 } 8649 spin_unlock_irqrestore(&zone->lock, flags); 8650 8651 return hwpoisoned; 8652 } 8653 #endif 8654