1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 69 #include <asm/sections.h> 70 #include <asm/tlbflush.h> 71 #include <asm/div64.h> 72 #include "internal.h" 73 74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 75 static DEFINE_MUTEX(pcp_batch_high_lock); 76 #define MIN_PERCPU_PAGELIST_FRACTION (8) 77 78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 79 DEFINE_PER_CPU(int, numa_node); 80 EXPORT_PER_CPU_SYMBOL(numa_node); 81 #endif 82 83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 84 /* 85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 88 * defined in <linux/topology.h>. 89 */ 90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 91 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 92 int _node_numa_mem_[MAX_NUMNODES]; 93 #endif 94 95 /* work_structs for global per-cpu drains */ 96 DEFINE_MUTEX(pcpu_drain_mutex); 97 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 98 99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 100 volatile unsigned long latent_entropy __latent_entropy; 101 EXPORT_SYMBOL(latent_entropy); 102 #endif 103 104 /* 105 * Array of node states. 106 */ 107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 108 [N_POSSIBLE] = NODE_MASK_ALL, 109 [N_ONLINE] = { { [0] = 1UL } }, 110 #ifndef CONFIG_NUMA 111 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 112 #ifdef CONFIG_HIGHMEM 113 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 114 #endif 115 #ifdef CONFIG_MOVABLE_NODE 116 [N_MEMORY] = { { [0] = 1UL } }, 117 #endif 118 [N_CPU] = { { [0] = 1UL } }, 119 #endif /* NUMA */ 120 }; 121 EXPORT_SYMBOL(node_states); 122 123 /* Protect totalram_pages and zone->managed_pages */ 124 static DEFINE_SPINLOCK(managed_page_count_lock); 125 126 unsigned long totalram_pages __read_mostly; 127 unsigned long totalreserve_pages __read_mostly; 128 unsigned long totalcma_pages __read_mostly; 129 130 int percpu_pagelist_fraction; 131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 132 133 /* 134 * A cached value of the page's pageblock's migratetype, used when the page is 135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 136 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 137 * Also the migratetype set in the page does not necessarily match the pcplist 138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 139 * other index - this ensures that it will be put on the correct CMA freelist. 140 */ 141 static inline int get_pcppage_migratetype(struct page *page) 142 { 143 return page->index; 144 } 145 146 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 147 { 148 page->index = migratetype; 149 } 150 151 #ifdef CONFIG_PM_SLEEP 152 /* 153 * The following functions are used by the suspend/hibernate code to temporarily 154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 155 * while devices are suspended. To avoid races with the suspend/hibernate code, 156 * they should always be called with pm_mutex held (gfp_allowed_mask also should 157 * only be modified with pm_mutex held, unless the suspend/hibernate code is 158 * guaranteed not to run in parallel with that modification). 159 */ 160 161 static gfp_t saved_gfp_mask; 162 163 void pm_restore_gfp_mask(void) 164 { 165 WARN_ON(!mutex_is_locked(&pm_mutex)); 166 if (saved_gfp_mask) { 167 gfp_allowed_mask = saved_gfp_mask; 168 saved_gfp_mask = 0; 169 } 170 } 171 172 void pm_restrict_gfp_mask(void) 173 { 174 WARN_ON(!mutex_is_locked(&pm_mutex)); 175 WARN_ON(saved_gfp_mask); 176 saved_gfp_mask = gfp_allowed_mask; 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 178 } 179 180 bool pm_suspended_storage(void) 181 { 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 183 return false; 184 return true; 185 } 186 #endif /* CONFIG_PM_SLEEP */ 187 188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 189 unsigned int pageblock_order __read_mostly; 190 #endif 191 192 static void __free_pages_ok(struct page *page, unsigned int order); 193 194 /* 195 * results with 256, 32 in the lowmem_reserve sysctl: 196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 197 * 1G machine -> (16M dma, 784M normal, 224M high) 198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 201 * 202 * TBD: should special case ZONE_DMA32 machines here - in those we normally 203 * don't need any ZONE_NORMAL reservation 204 */ 205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 206 #ifdef CONFIG_ZONE_DMA 207 256, 208 #endif 209 #ifdef CONFIG_ZONE_DMA32 210 256, 211 #endif 212 #ifdef CONFIG_HIGHMEM 213 32, 214 #endif 215 32, 216 }; 217 218 EXPORT_SYMBOL(totalram_pages); 219 220 static char * const zone_names[MAX_NR_ZONES] = { 221 #ifdef CONFIG_ZONE_DMA 222 "DMA", 223 #endif 224 #ifdef CONFIG_ZONE_DMA32 225 "DMA32", 226 #endif 227 "Normal", 228 #ifdef CONFIG_HIGHMEM 229 "HighMem", 230 #endif 231 "Movable", 232 #ifdef CONFIG_ZONE_DEVICE 233 "Device", 234 #endif 235 }; 236 237 char * const migratetype_names[MIGRATE_TYPES] = { 238 "Unmovable", 239 "Movable", 240 "Reclaimable", 241 "HighAtomic", 242 #ifdef CONFIG_CMA 243 "CMA", 244 #endif 245 #ifdef CONFIG_MEMORY_ISOLATION 246 "Isolate", 247 #endif 248 }; 249 250 compound_page_dtor * const compound_page_dtors[] = { 251 NULL, 252 free_compound_page, 253 #ifdef CONFIG_HUGETLB_PAGE 254 free_huge_page, 255 #endif 256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 257 free_transhuge_page, 258 #endif 259 }; 260 261 int min_free_kbytes = 1024; 262 int user_min_free_kbytes = -1; 263 int watermark_scale_factor = 10; 264 265 static unsigned long __meminitdata nr_kernel_pages; 266 static unsigned long __meminitdata nr_all_pages; 267 static unsigned long __meminitdata dma_reserve; 268 269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 272 static unsigned long __initdata required_kernelcore; 273 static unsigned long __initdata required_movablecore; 274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 275 static bool mirrored_kernelcore; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 281 282 #if MAX_NUMNODES > 1 283 int nr_node_ids __read_mostly = MAX_NUMNODES; 284 int nr_online_nodes __read_mostly = 1; 285 EXPORT_SYMBOL(nr_node_ids); 286 EXPORT_SYMBOL(nr_online_nodes); 287 #endif 288 289 int page_group_by_mobility_disabled __read_mostly; 290 291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 292 static inline void reset_deferred_meminit(pg_data_t *pgdat) 293 { 294 pgdat->first_deferred_pfn = ULONG_MAX; 295 } 296 297 /* Returns true if the struct page for the pfn is uninitialised */ 298 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 299 { 300 int nid = early_pfn_to_nid(pfn); 301 302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 303 return true; 304 305 return false; 306 } 307 308 /* 309 * Returns false when the remaining initialisation should be deferred until 310 * later in the boot cycle when it can be parallelised. 311 */ 312 static inline bool update_defer_init(pg_data_t *pgdat, 313 unsigned long pfn, unsigned long zone_end, 314 unsigned long *nr_initialised) 315 { 316 unsigned long max_initialise; 317 318 /* Always populate low zones for address-contrained allocations */ 319 if (zone_end < pgdat_end_pfn(pgdat)) 320 return true; 321 /* 322 * Initialise at least 2G of a node but also take into account that 323 * two large system hashes that can take up 1GB for 0.25TB/node. 324 */ 325 max_initialise = max(2UL << (30 - PAGE_SHIFT), 326 (pgdat->node_spanned_pages >> 8)); 327 328 (*nr_initialised)++; 329 if ((*nr_initialised > max_initialise) && 330 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 331 pgdat->first_deferred_pfn = pfn; 332 return false; 333 } 334 335 return true; 336 } 337 #else 338 static inline void reset_deferred_meminit(pg_data_t *pgdat) 339 { 340 } 341 342 static inline bool early_page_uninitialised(unsigned long pfn) 343 { 344 return false; 345 } 346 347 static inline bool update_defer_init(pg_data_t *pgdat, 348 unsigned long pfn, unsigned long zone_end, 349 unsigned long *nr_initialised) 350 { 351 return true; 352 } 353 #endif 354 355 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 356 static inline unsigned long *get_pageblock_bitmap(struct page *page, 357 unsigned long pfn) 358 { 359 #ifdef CONFIG_SPARSEMEM 360 return __pfn_to_section(pfn)->pageblock_flags; 361 #else 362 return page_zone(page)->pageblock_flags; 363 #endif /* CONFIG_SPARSEMEM */ 364 } 365 366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 367 { 368 #ifdef CONFIG_SPARSEMEM 369 pfn &= (PAGES_PER_SECTION-1); 370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 371 #else 372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 374 #endif /* CONFIG_SPARSEMEM */ 375 } 376 377 /** 378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 379 * @page: The page within the block of interest 380 * @pfn: The target page frame number 381 * @end_bitidx: The last bit of interest to retrieve 382 * @mask: mask of bits that the caller is interested in 383 * 384 * Return: pageblock_bits flags 385 */ 386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 387 unsigned long pfn, 388 unsigned long end_bitidx, 389 unsigned long mask) 390 { 391 unsigned long *bitmap; 392 unsigned long bitidx, word_bitidx; 393 unsigned long word; 394 395 bitmap = get_pageblock_bitmap(page, pfn); 396 bitidx = pfn_to_bitidx(page, pfn); 397 word_bitidx = bitidx / BITS_PER_LONG; 398 bitidx &= (BITS_PER_LONG-1); 399 400 word = bitmap[word_bitidx]; 401 bitidx += end_bitidx; 402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 403 } 404 405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 406 unsigned long end_bitidx, 407 unsigned long mask) 408 { 409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 410 } 411 412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 413 { 414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 415 } 416 417 /** 418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 419 * @page: The page within the block of interest 420 * @flags: The flags to set 421 * @pfn: The target page frame number 422 * @end_bitidx: The last bit of interest 423 * @mask: mask of bits that the caller is interested in 424 */ 425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 426 unsigned long pfn, 427 unsigned long end_bitidx, 428 unsigned long mask) 429 { 430 unsigned long *bitmap; 431 unsigned long bitidx, word_bitidx; 432 unsigned long old_word, word; 433 434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 435 436 bitmap = get_pageblock_bitmap(page, pfn); 437 bitidx = pfn_to_bitidx(page, pfn); 438 word_bitidx = bitidx / BITS_PER_LONG; 439 bitidx &= (BITS_PER_LONG-1); 440 441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 442 443 bitidx += end_bitidx; 444 mask <<= (BITS_PER_LONG - bitidx - 1); 445 flags <<= (BITS_PER_LONG - bitidx - 1); 446 447 word = READ_ONCE(bitmap[word_bitidx]); 448 for (;;) { 449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 450 if (word == old_word) 451 break; 452 word = old_word; 453 } 454 } 455 456 void set_pageblock_migratetype(struct page *page, int migratetype) 457 { 458 if (unlikely(page_group_by_mobility_disabled && 459 migratetype < MIGRATE_PCPTYPES)) 460 migratetype = MIGRATE_UNMOVABLE; 461 462 set_pageblock_flags_group(page, (unsigned long)migratetype, 463 PB_migrate, PB_migrate_end); 464 } 465 466 #ifdef CONFIG_DEBUG_VM 467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 468 { 469 int ret = 0; 470 unsigned seq; 471 unsigned long pfn = page_to_pfn(page); 472 unsigned long sp, start_pfn; 473 474 do { 475 seq = zone_span_seqbegin(zone); 476 start_pfn = zone->zone_start_pfn; 477 sp = zone->spanned_pages; 478 if (!zone_spans_pfn(zone, pfn)) 479 ret = 1; 480 } while (zone_span_seqretry(zone, seq)); 481 482 if (ret) 483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 484 pfn, zone_to_nid(zone), zone->name, 485 start_pfn, start_pfn + sp); 486 487 return ret; 488 } 489 490 static int page_is_consistent(struct zone *zone, struct page *page) 491 { 492 if (!pfn_valid_within(page_to_pfn(page))) 493 return 0; 494 if (zone != page_zone(page)) 495 return 0; 496 497 return 1; 498 } 499 /* 500 * Temporary debugging check for pages not lying within a given zone. 501 */ 502 static int bad_range(struct zone *zone, struct page *page) 503 { 504 if (page_outside_zone_boundaries(zone, page)) 505 return 1; 506 if (!page_is_consistent(zone, page)) 507 return 1; 508 509 return 0; 510 } 511 #else 512 static inline int bad_range(struct zone *zone, struct page *page) 513 { 514 return 0; 515 } 516 #endif 517 518 static void bad_page(struct page *page, const char *reason, 519 unsigned long bad_flags) 520 { 521 static unsigned long resume; 522 static unsigned long nr_shown; 523 static unsigned long nr_unshown; 524 525 /* 526 * Allow a burst of 60 reports, then keep quiet for that minute; 527 * or allow a steady drip of one report per second. 528 */ 529 if (nr_shown == 60) { 530 if (time_before(jiffies, resume)) { 531 nr_unshown++; 532 goto out; 533 } 534 if (nr_unshown) { 535 pr_alert( 536 "BUG: Bad page state: %lu messages suppressed\n", 537 nr_unshown); 538 nr_unshown = 0; 539 } 540 nr_shown = 0; 541 } 542 if (nr_shown++ == 0) 543 resume = jiffies + 60 * HZ; 544 545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 546 current->comm, page_to_pfn(page)); 547 __dump_page(page, reason); 548 bad_flags &= page->flags; 549 if (bad_flags) 550 pr_alert("bad because of flags: %#lx(%pGp)\n", 551 bad_flags, &bad_flags); 552 dump_page_owner(page); 553 554 print_modules(); 555 dump_stack(); 556 out: 557 /* Leave bad fields for debug, except PageBuddy could make trouble */ 558 page_mapcount_reset(page); /* remove PageBuddy */ 559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 560 } 561 562 /* 563 * Higher-order pages are called "compound pages". They are structured thusly: 564 * 565 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 566 * 567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 569 * 570 * The first tail page's ->compound_dtor holds the offset in array of compound 571 * page destructors. See compound_page_dtors. 572 * 573 * The first tail page's ->compound_order holds the order of allocation. 574 * This usage means that zero-order pages may not be compound. 575 */ 576 577 void free_compound_page(struct page *page) 578 { 579 __free_pages_ok(page, compound_order(page)); 580 } 581 582 void prep_compound_page(struct page *page, unsigned int order) 583 { 584 int i; 585 int nr_pages = 1 << order; 586 587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 588 set_compound_order(page, order); 589 __SetPageHead(page); 590 for (i = 1; i < nr_pages; i++) { 591 struct page *p = page + i; 592 set_page_count(p, 0); 593 p->mapping = TAIL_MAPPING; 594 set_compound_head(p, page); 595 } 596 atomic_set(compound_mapcount_ptr(page), -1); 597 } 598 599 #ifdef CONFIG_DEBUG_PAGEALLOC 600 unsigned int _debug_guardpage_minorder; 601 bool _debug_pagealloc_enabled __read_mostly 602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 603 EXPORT_SYMBOL(_debug_pagealloc_enabled); 604 bool _debug_guardpage_enabled __read_mostly; 605 606 static int __init early_debug_pagealloc(char *buf) 607 { 608 if (!buf) 609 return -EINVAL; 610 return kstrtobool(buf, &_debug_pagealloc_enabled); 611 } 612 early_param("debug_pagealloc", early_debug_pagealloc); 613 614 static bool need_debug_guardpage(void) 615 { 616 /* If we don't use debug_pagealloc, we don't need guard page */ 617 if (!debug_pagealloc_enabled()) 618 return false; 619 620 if (!debug_guardpage_minorder()) 621 return false; 622 623 return true; 624 } 625 626 static void init_debug_guardpage(void) 627 { 628 if (!debug_pagealloc_enabled()) 629 return; 630 631 if (!debug_guardpage_minorder()) 632 return; 633 634 _debug_guardpage_enabled = true; 635 } 636 637 struct page_ext_operations debug_guardpage_ops = { 638 .need = need_debug_guardpage, 639 .init = init_debug_guardpage, 640 }; 641 642 static int __init debug_guardpage_minorder_setup(char *buf) 643 { 644 unsigned long res; 645 646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 647 pr_err("Bad debug_guardpage_minorder value\n"); 648 return 0; 649 } 650 _debug_guardpage_minorder = res; 651 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 652 return 0; 653 } 654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 655 656 static inline bool set_page_guard(struct zone *zone, struct page *page, 657 unsigned int order, int migratetype) 658 { 659 struct page_ext *page_ext; 660 661 if (!debug_guardpage_enabled()) 662 return false; 663 664 if (order >= debug_guardpage_minorder()) 665 return false; 666 667 page_ext = lookup_page_ext(page); 668 if (unlikely(!page_ext)) 669 return false; 670 671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 672 673 INIT_LIST_HEAD(&page->lru); 674 set_page_private(page, order); 675 /* Guard pages are not available for any usage */ 676 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 677 678 return true; 679 } 680 681 static inline void clear_page_guard(struct zone *zone, struct page *page, 682 unsigned int order, int migratetype) 683 { 684 struct page_ext *page_ext; 685 686 if (!debug_guardpage_enabled()) 687 return; 688 689 page_ext = lookup_page_ext(page); 690 if (unlikely(!page_ext)) 691 return; 692 693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 694 695 set_page_private(page, 0); 696 if (!is_migrate_isolate(migratetype)) 697 __mod_zone_freepage_state(zone, (1 << order), migratetype); 698 } 699 #else 700 struct page_ext_operations debug_guardpage_ops; 701 static inline bool set_page_guard(struct zone *zone, struct page *page, 702 unsigned int order, int migratetype) { return false; } 703 static inline void clear_page_guard(struct zone *zone, struct page *page, 704 unsigned int order, int migratetype) {} 705 #endif 706 707 static inline void set_page_order(struct page *page, unsigned int order) 708 { 709 set_page_private(page, order); 710 __SetPageBuddy(page); 711 } 712 713 static inline void rmv_page_order(struct page *page) 714 { 715 __ClearPageBuddy(page); 716 set_page_private(page, 0); 717 } 718 719 /* 720 * This function checks whether a page is free && is the buddy 721 * we can do coalesce a page and its buddy if 722 * (a) the buddy is not in a hole (check before calling!) && 723 * (b) the buddy is in the buddy system && 724 * (c) a page and its buddy have the same order && 725 * (d) a page and its buddy are in the same zone. 726 * 727 * For recording whether a page is in the buddy system, we set ->_mapcount 728 * PAGE_BUDDY_MAPCOUNT_VALUE. 729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 730 * serialized by zone->lock. 731 * 732 * For recording page's order, we use page_private(page). 733 */ 734 static inline int page_is_buddy(struct page *page, struct page *buddy, 735 unsigned int order) 736 { 737 if (page_is_guard(buddy) && page_order(buddy) == order) { 738 if (page_zone_id(page) != page_zone_id(buddy)) 739 return 0; 740 741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 742 743 return 1; 744 } 745 746 if (PageBuddy(buddy) && page_order(buddy) == order) { 747 /* 748 * zone check is done late to avoid uselessly 749 * calculating zone/node ids for pages that could 750 * never merge. 751 */ 752 if (page_zone_id(page) != page_zone_id(buddy)) 753 return 0; 754 755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 756 757 return 1; 758 } 759 return 0; 760 } 761 762 /* 763 * Freeing function for a buddy system allocator. 764 * 765 * The concept of a buddy system is to maintain direct-mapped table 766 * (containing bit values) for memory blocks of various "orders". 767 * The bottom level table contains the map for the smallest allocatable 768 * units of memory (here, pages), and each level above it describes 769 * pairs of units from the levels below, hence, "buddies". 770 * At a high level, all that happens here is marking the table entry 771 * at the bottom level available, and propagating the changes upward 772 * as necessary, plus some accounting needed to play nicely with other 773 * parts of the VM system. 774 * At each level, we keep a list of pages, which are heads of continuous 775 * free pages of length of (1 << order) and marked with _mapcount 776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 777 * field. 778 * So when we are allocating or freeing one, we can derive the state of the 779 * other. That is, if we allocate a small block, and both were 780 * free, the remainder of the region must be split into blocks. 781 * If a block is freed, and its buddy is also free, then this 782 * triggers coalescing into a block of larger size. 783 * 784 * -- nyc 785 */ 786 787 static inline void __free_one_page(struct page *page, 788 unsigned long pfn, 789 struct zone *zone, unsigned int order, 790 int migratetype) 791 { 792 unsigned long combined_pfn; 793 unsigned long uninitialized_var(buddy_pfn); 794 struct page *buddy; 795 unsigned int max_order; 796 797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 798 799 VM_BUG_ON(!zone_is_initialized(zone)); 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 801 802 VM_BUG_ON(migratetype == -1); 803 if (likely(!is_migrate_isolate(migratetype))) 804 __mod_zone_freepage_state(zone, 1 << order, migratetype); 805 806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 807 VM_BUG_ON_PAGE(bad_range(zone, page), page); 808 809 continue_merging: 810 while (order < max_order - 1) { 811 buddy_pfn = __find_buddy_pfn(pfn, order); 812 buddy = page + (buddy_pfn - pfn); 813 814 if (!pfn_valid_within(buddy_pfn)) 815 goto done_merging; 816 if (!page_is_buddy(page, buddy, order)) 817 goto done_merging; 818 /* 819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 820 * merge with it and move up one order. 821 */ 822 if (page_is_guard(buddy)) { 823 clear_page_guard(zone, buddy, order, migratetype); 824 } else { 825 list_del(&buddy->lru); 826 zone->free_area[order].nr_free--; 827 rmv_page_order(buddy); 828 } 829 combined_pfn = buddy_pfn & pfn; 830 page = page + (combined_pfn - pfn); 831 pfn = combined_pfn; 832 order++; 833 } 834 if (max_order < MAX_ORDER) { 835 /* If we are here, it means order is >= pageblock_order. 836 * We want to prevent merge between freepages on isolate 837 * pageblock and normal pageblock. Without this, pageblock 838 * isolation could cause incorrect freepage or CMA accounting. 839 * 840 * We don't want to hit this code for the more frequent 841 * low-order merging. 842 */ 843 if (unlikely(has_isolate_pageblock(zone))) { 844 int buddy_mt; 845 846 buddy_pfn = __find_buddy_pfn(pfn, order); 847 buddy = page + (buddy_pfn - pfn); 848 buddy_mt = get_pageblock_migratetype(buddy); 849 850 if (migratetype != buddy_mt 851 && (is_migrate_isolate(migratetype) || 852 is_migrate_isolate(buddy_mt))) 853 goto done_merging; 854 } 855 max_order++; 856 goto continue_merging; 857 } 858 859 done_merging: 860 set_page_order(page, order); 861 862 /* 863 * If this is not the largest possible page, check if the buddy 864 * of the next-highest order is free. If it is, it's possible 865 * that pages are being freed that will coalesce soon. In case, 866 * that is happening, add the free page to the tail of the list 867 * so it's less likely to be used soon and more likely to be merged 868 * as a higher order page 869 */ 870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 871 struct page *higher_page, *higher_buddy; 872 combined_pfn = buddy_pfn & pfn; 873 higher_page = page + (combined_pfn - pfn); 874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 875 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 876 if (pfn_valid_within(buddy_pfn) && 877 page_is_buddy(higher_page, higher_buddy, order + 1)) { 878 list_add_tail(&page->lru, 879 &zone->free_area[order].free_list[migratetype]); 880 goto out; 881 } 882 } 883 884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 885 out: 886 zone->free_area[order].nr_free++; 887 } 888 889 /* 890 * A bad page could be due to a number of fields. Instead of multiple branches, 891 * try and check multiple fields with one check. The caller must do a detailed 892 * check if necessary. 893 */ 894 static inline bool page_expected_state(struct page *page, 895 unsigned long check_flags) 896 { 897 if (unlikely(atomic_read(&page->_mapcount) != -1)) 898 return false; 899 900 if (unlikely((unsigned long)page->mapping | 901 page_ref_count(page) | 902 #ifdef CONFIG_MEMCG 903 (unsigned long)page->mem_cgroup | 904 #endif 905 (page->flags & check_flags))) 906 return false; 907 908 return true; 909 } 910 911 static void free_pages_check_bad(struct page *page) 912 { 913 const char *bad_reason; 914 unsigned long bad_flags; 915 916 bad_reason = NULL; 917 bad_flags = 0; 918 919 if (unlikely(atomic_read(&page->_mapcount) != -1)) 920 bad_reason = "nonzero mapcount"; 921 if (unlikely(page->mapping != NULL)) 922 bad_reason = "non-NULL mapping"; 923 if (unlikely(page_ref_count(page) != 0)) 924 bad_reason = "nonzero _refcount"; 925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 928 } 929 #ifdef CONFIG_MEMCG 930 if (unlikely(page->mem_cgroup)) 931 bad_reason = "page still charged to cgroup"; 932 #endif 933 bad_page(page, bad_reason, bad_flags); 934 } 935 936 static inline int free_pages_check(struct page *page) 937 { 938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 939 return 0; 940 941 /* Something has gone sideways, find it */ 942 free_pages_check_bad(page); 943 return 1; 944 } 945 946 static int free_tail_pages_check(struct page *head_page, struct page *page) 947 { 948 int ret = 1; 949 950 /* 951 * We rely page->lru.next never has bit 0 set, unless the page 952 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 953 */ 954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 955 956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 957 ret = 0; 958 goto out; 959 } 960 switch (page - head_page) { 961 case 1: 962 /* the first tail page: ->mapping is compound_mapcount() */ 963 if (unlikely(compound_mapcount(page))) { 964 bad_page(page, "nonzero compound_mapcount", 0); 965 goto out; 966 } 967 break; 968 case 2: 969 /* 970 * the second tail page: ->mapping is 971 * page_deferred_list().next -- ignore value. 972 */ 973 break; 974 default: 975 if (page->mapping != TAIL_MAPPING) { 976 bad_page(page, "corrupted mapping in tail page", 0); 977 goto out; 978 } 979 break; 980 } 981 if (unlikely(!PageTail(page))) { 982 bad_page(page, "PageTail not set", 0); 983 goto out; 984 } 985 if (unlikely(compound_head(page) != head_page)) { 986 bad_page(page, "compound_head not consistent", 0); 987 goto out; 988 } 989 ret = 0; 990 out: 991 page->mapping = NULL; 992 clear_compound_head(page); 993 return ret; 994 } 995 996 static __always_inline bool free_pages_prepare(struct page *page, 997 unsigned int order, bool check_free) 998 { 999 int bad = 0; 1000 1001 VM_BUG_ON_PAGE(PageTail(page), page); 1002 1003 trace_mm_page_free(page, order); 1004 kmemcheck_free_shadow(page, order); 1005 1006 /* 1007 * Check tail pages before head page information is cleared to 1008 * avoid checking PageCompound for order-0 pages. 1009 */ 1010 if (unlikely(order)) { 1011 bool compound = PageCompound(page); 1012 int i; 1013 1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1015 1016 if (compound) 1017 ClearPageDoubleMap(page); 1018 for (i = 1; i < (1 << order); i++) { 1019 if (compound) 1020 bad += free_tail_pages_check(page, page + i); 1021 if (unlikely(free_pages_check(page + i))) { 1022 bad++; 1023 continue; 1024 } 1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1026 } 1027 } 1028 if (PageMappingFlags(page)) 1029 page->mapping = NULL; 1030 if (memcg_kmem_enabled() && PageKmemcg(page)) 1031 memcg_kmem_uncharge(page, order); 1032 if (check_free) 1033 bad += free_pages_check(page); 1034 if (bad) 1035 return false; 1036 1037 page_cpupid_reset_last(page); 1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1039 reset_page_owner(page, order); 1040 1041 if (!PageHighMem(page)) { 1042 debug_check_no_locks_freed(page_address(page), 1043 PAGE_SIZE << order); 1044 debug_check_no_obj_freed(page_address(page), 1045 PAGE_SIZE << order); 1046 } 1047 arch_free_page(page, order); 1048 kernel_poison_pages(page, 1 << order, 0); 1049 kernel_map_pages(page, 1 << order, 0); 1050 kasan_free_pages(page, order); 1051 1052 return true; 1053 } 1054 1055 #ifdef CONFIG_DEBUG_VM 1056 static inline bool free_pcp_prepare(struct page *page) 1057 { 1058 return free_pages_prepare(page, 0, true); 1059 } 1060 1061 static inline bool bulkfree_pcp_prepare(struct page *page) 1062 { 1063 return false; 1064 } 1065 #else 1066 static bool free_pcp_prepare(struct page *page) 1067 { 1068 return free_pages_prepare(page, 0, false); 1069 } 1070 1071 static bool bulkfree_pcp_prepare(struct page *page) 1072 { 1073 return free_pages_check(page); 1074 } 1075 #endif /* CONFIG_DEBUG_VM */ 1076 1077 /* 1078 * Frees a number of pages from the PCP lists 1079 * Assumes all pages on list are in same zone, and of same order. 1080 * count is the number of pages to free. 1081 * 1082 * If the zone was previously in an "all pages pinned" state then look to 1083 * see if this freeing clears that state. 1084 * 1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1086 * pinned" detection logic. 1087 */ 1088 static void free_pcppages_bulk(struct zone *zone, int count, 1089 struct per_cpu_pages *pcp) 1090 { 1091 int migratetype = 0; 1092 int batch_free = 0; 1093 unsigned long nr_scanned, flags; 1094 bool isolated_pageblocks; 1095 1096 spin_lock_irqsave(&zone->lock, flags); 1097 isolated_pageblocks = has_isolate_pageblock(zone); 1098 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1099 if (nr_scanned) 1100 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1101 1102 while (count) { 1103 struct page *page; 1104 struct list_head *list; 1105 1106 /* 1107 * Remove pages from lists in a round-robin fashion. A 1108 * batch_free count is maintained that is incremented when an 1109 * empty list is encountered. This is so more pages are freed 1110 * off fuller lists instead of spinning excessively around empty 1111 * lists 1112 */ 1113 do { 1114 batch_free++; 1115 if (++migratetype == MIGRATE_PCPTYPES) 1116 migratetype = 0; 1117 list = &pcp->lists[migratetype]; 1118 } while (list_empty(list)); 1119 1120 /* This is the only non-empty list. Free them all. */ 1121 if (batch_free == MIGRATE_PCPTYPES) 1122 batch_free = count; 1123 1124 do { 1125 int mt; /* migratetype of the to-be-freed page */ 1126 1127 page = list_last_entry(list, struct page, lru); 1128 /* must delete as __free_one_page list manipulates */ 1129 list_del(&page->lru); 1130 1131 mt = get_pcppage_migratetype(page); 1132 /* MIGRATE_ISOLATE page should not go to pcplists */ 1133 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1134 /* Pageblock could have been isolated meanwhile */ 1135 if (unlikely(isolated_pageblocks)) 1136 mt = get_pageblock_migratetype(page); 1137 1138 if (bulkfree_pcp_prepare(page)) 1139 continue; 1140 1141 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1142 trace_mm_page_pcpu_drain(page, 0, mt); 1143 } while (--count && --batch_free && !list_empty(list)); 1144 } 1145 spin_unlock_irqrestore(&zone->lock, flags); 1146 } 1147 1148 static void free_one_page(struct zone *zone, 1149 struct page *page, unsigned long pfn, 1150 unsigned int order, 1151 int migratetype) 1152 { 1153 unsigned long nr_scanned, flags; 1154 spin_lock_irqsave(&zone->lock, flags); 1155 __count_vm_events(PGFREE, 1 << order); 1156 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1157 if (nr_scanned) 1158 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1159 1160 if (unlikely(has_isolate_pageblock(zone) || 1161 is_migrate_isolate(migratetype))) { 1162 migratetype = get_pfnblock_migratetype(page, pfn); 1163 } 1164 __free_one_page(page, pfn, zone, order, migratetype); 1165 spin_unlock_irqrestore(&zone->lock, flags); 1166 } 1167 1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1169 unsigned long zone, int nid) 1170 { 1171 set_page_links(page, zone, nid, pfn); 1172 init_page_count(page); 1173 page_mapcount_reset(page); 1174 page_cpupid_reset_last(page); 1175 1176 INIT_LIST_HEAD(&page->lru); 1177 #ifdef WANT_PAGE_VIRTUAL 1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1179 if (!is_highmem_idx(zone)) 1180 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1181 #endif 1182 } 1183 1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1185 int nid) 1186 { 1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1188 } 1189 1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1191 static void init_reserved_page(unsigned long pfn) 1192 { 1193 pg_data_t *pgdat; 1194 int nid, zid; 1195 1196 if (!early_page_uninitialised(pfn)) 1197 return; 1198 1199 nid = early_pfn_to_nid(pfn); 1200 pgdat = NODE_DATA(nid); 1201 1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1203 struct zone *zone = &pgdat->node_zones[zid]; 1204 1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1206 break; 1207 } 1208 __init_single_pfn(pfn, zid, nid); 1209 } 1210 #else 1211 static inline void init_reserved_page(unsigned long pfn) 1212 { 1213 } 1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1215 1216 /* 1217 * Initialised pages do not have PageReserved set. This function is 1218 * called for each range allocated by the bootmem allocator and 1219 * marks the pages PageReserved. The remaining valid pages are later 1220 * sent to the buddy page allocator. 1221 */ 1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1223 { 1224 unsigned long start_pfn = PFN_DOWN(start); 1225 unsigned long end_pfn = PFN_UP(end); 1226 1227 for (; start_pfn < end_pfn; start_pfn++) { 1228 if (pfn_valid(start_pfn)) { 1229 struct page *page = pfn_to_page(start_pfn); 1230 1231 init_reserved_page(start_pfn); 1232 1233 /* Avoid false-positive PageTail() */ 1234 INIT_LIST_HEAD(&page->lru); 1235 1236 SetPageReserved(page); 1237 } 1238 } 1239 } 1240 1241 static void __free_pages_ok(struct page *page, unsigned int order) 1242 { 1243 int migratetype; 1244 unsigned long pfn = page_to_pfn(page); 1245 1246 if (!free_pages_prepare(page, order, true)) 1247 return; 1248 1249 migratetype = get_pfnblock_migratetype(page, pfn); 1250 free_one_page(page_zone(page), page, pfn, order, migratetype); 1251 } 1252 1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1254 { 1255 unsigned int nr_pages = 1 << order; 1256 struct page *p = page; 1257 unsigned int loop; 1258 1259 prefetchw(p); 1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1261 prefetchw(p + 1); 1262 __ClearPageReserved(p); 1263 set_page_count(p, 0); 1264 } 1265 __ClearPageReserved(p); 1266 set_page_count(p, 0); 1267 1268 page_zone(page)->managed_pages += nr_pages; 1269 set_page_refcounted(page); 1270 __free_pages(page, order); 1271 } 1272 1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1275 1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1277 1278 int __meminit early_pfn_to_nid(unsigned long pfn) 1279 { 1280 static DEFINE_SPINLOCK(early_pfn_lock); 1281 int nid; 1282 1283 spin_lock(&early_pfn_lock); 1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1285 if (nid < 0) 1286 nid = first_online_node; 1287 spin_unlock(&early_pfn_lock); 1288 1289 return nid; 1290 } 1291 #endif 1292 1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1295 struct mminit_pfnnid_cache *state) 1296 { 1297 int nid; 1298 1299 nid = __early_pfn_to_nid(pfn, state); 1300 if (nid >= 0 && nid != node) 1301 return false; 1302 return true; 1303 } 1304 1305 /* Only safe to use early in boot when initialisation is single-threaded */ 1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1307 { 1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1309 } 1310 1311 #else 1312 1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1314 { 1315 return true; 1316 } 1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1318 struct mminit_pfnnid_cache *state) 1319 { 1320 return true; 1321 } 1322 #endif 1323 1324 1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1326 unsigned int order) 1327 { 1328 if (early_page_uninitialised(pfn)) 1329 return; 1330 return __free_pages_boot_core(page, order); 1331 } 1332 1333 /* 1334 * Check that the whole (or subset of) a pageblock given by the interval of 1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1336 * with the migration of free compaction scanner. The scanners then need to 1337 * use only pfn_valid_within() check for arches that allow holes within 1338 * pageblocks. 1339 * 1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1341 * 1342 * It's possible on some configurations to have a setup like node0 node1 node0 1343 * i.e. it's possible that all pages within a zones range of pages do not 1344 * belong to a single zone. We assume that a border between node0 and node1 1345 * can occur within a single pageblock, but not a node0 node1 node0 1346 * interleaving within a single pageblock. It is therefore sufficient to check 1347 * the first and last page of a pageblock and avoid checking each individual 1348 * page in a pageblock. 1349 */ 1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1351 unsigned long end_pfn, struct zone *zone) 1352 { 1353 struct page *start_page; 1354 struct page *end_page; 1355 1356 /* end_pfn is one past the range we are checking */ 1357 end_pfn--; 1358 1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1360 return NULL; 1361 1362 start_page = pfn_to_page(start_pfn); 1363 1364 if (page_zone(start_page) != zone) 1365 return NULL; 1366 1367 end_page = pfn_to_page(end_pfn); 1368 1369 /* This gives a shorter code than deriving page_zone(end_page) */ 1370 if (page_zone_id(start_page) != page_zone_id(end_page)) 1371 return NULL; 1372 1373 return start_page; 1374 } 1375 1376 void set_zone_contiguous(struct zone *zone) 1377 { 1378 unsigned long block_start_pfn = zone->zone_start_pfn; 1379 unsigned long block_end_pfn; 1380 1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1382 for (; block_start_pfn < zone_end_pfn(zone); 1383 block_start_pfn = block_end_pfn, 1384 block_end_pfn += pageblock_nr_pages) { 1385 1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1387 1388 if (!__pageblock_pfn_to_page(block_start_pfn, 1389 block_end_pfn, zone)) 1390 return; 1391 } 1392 1393 /* We confirm that there is no hole */ 1394 zone->contiguous = true; 1395 } 1396 1397 void clear_zone_contiguous(struct zone *zone) 1398 { 1399 zone->contiguous = false; 1400 } 1401 1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1403 static void __init deferred_free_range(struct page *page, 1404 unsigned long pfn, int nr_pages) 1405 { 1406 int i; 1407 1408 if (!page) 1409 return; 1410 1411 /* Free a large naturally-aligned chunk if possible */ 1412 if (nr_pages == pageblock_nr_pages && 1413 (pfn & (pageblock_nr_pages - 1)) == 0) { 1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1415 __free_pages_boot_core(page, pageblock_order); 1416 return; 1417 } 1418 1419 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1420 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1422 __free_pages_boot_core(page, 0); 1423 } 1424 } 1425 1426 /* Completion tracking for deferred_init_memmap() threads */ 1427 static atomic_t pgdat_init_n_undone __initdata; 1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1429 1430 static inline void __init pgdat_init_report_one_done(void) 1431 { 1432 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1433 complete(&pgdat_init_all_done_comp); 1434 } 1435 1436 /* Initialise remaining memory on a node */ 1437 static int __init deferred_init_memmap(void *data) 1438 { 1439 pg_data_t *pgdat = data; 1440 int nid = pgdat->node_id; 1441 struct mminit_pfnnid_cache nid_init_state = { }; 1442 unsigned long start = jiffies; 1443 unsigned long nr_pages = 0; 1444 unsigned long walk_start, walk_end; 1445 int i, zid; 1446 struct zone *zone; 1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1449 1450 if (first_init_pfn == ULONG_MAX) { 1451 pgdat_init_report_one_done(); 1452 return 0; 1453 } 1454 1455 /* Bind memory initialisation thread to a local node if possible */ 1456 if (!cpumask_empty(cpumask)) 1457 set_cpus_allowed_ptr(current, cpumask); 1458 1459 /* Sanity check boundaries */ 1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1462 pgdat->first_deferred_pfn = ULONG_MAX; 1463 1464 /* Only the highest zone is deferred so find it */ 1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1466 zone = pgdat->node_zones + zid; 1467 if (first_init_pfn < zone_end_pfn(zone)) 1468 break; 1469 } 1470 1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1472 unsigned long pfn, end_pfn; 1473 struct page *page = NULL; 1474 struct page *free_base_page = NULL; 1475 unsigned long free_base_pfn = 0; 1476 int nr_to_free = 0; 1477 1478 end_pfn = min(walk_end, zone_end_pfn(zone)); 1479 pfn = first_init_pfn; 1480 if (pfn < walk_start) 1481 pfn = walk_start; 1482 if (pfn < zone->zone_start_pfn) 1483 pfn = zone->zone_start_pfn; 1484 1485 for (; pfn < end_pfn; pfn++) { 1486 if (!pfn_valid_within(pfn)) 1487 goto free_range; 1488 1489 /* 1490 * Ensure pfn_valid is checked every 1491 * pageblock_nr_pages for memory holes 1492 */ 1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1494 if (!pfn_valid(pfn)) { 1495 page = NULL; 1496 goto free_range; 1497 } 1498 } 1499 1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1501 page = NULL; 1502 goto free_range; 1503 } 1504 1505 /* Minimise pfn page lookups and scheduler checks */ 1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1507 page++; 1508 } else { 1509 nr_pages += nr_to_free; 1510 deferred_free_range(free_base_page, 1511 free_base_pfn, nr_to_free); 1512 free_base_page = NULL; 1513 free_base_pfn = nr_to_free = 0; 1514 1515 page = pfn_to_page(pfn); 1516 cond_resched(); 1517 } 1518 1519 if (page->flags) { 1520 VM_BUG_ON(page_zone(page) != zone); 1521 goto free_range; 1522 } 1523 1524 __init_single_page(page, pfn, zid, nid); 1525 if (!free_base_page) { 1526 free_base_page = page; 1527 free_base_pfn = pfn; 1528 nr_to_free = 0; 1529 } 1530 nr_to_free++; 1531 1532 /* Where possible, batch up pages for a single free */ 1533 continue; 1534 free_range: 1535 /* Free the current block of pages to allocator */ 1536 nr_pages += nr_to_free; 1537 deferred_free_range(free_base_page, free_base_pfn, 1538 nr_to_free); 1539 free_base_page = NULL; 1540 free_base_pfn = nr_to_free = 0; 1541 } 1542 /* Free the last block of pages to allocator */ 1543 nr_pages += nr_to_free; 1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1545 1546 first_init_pfn = max(end_pfn, first_init_pfn); 1547 } 1548 1549 /* Sanity check that the next zone really is unpopulated */ 1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1551 1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1553 jiffies_to_msecs(jiffies - start)); 1554 1555 pgdat_init_report_one_done(); 1556 return 0; 1557 } 1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1559 1560 void __init page_alloc_init_late(void) 1561 { 1562 struct zone *zone; 1563 1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1565 int nid; 1566 1567 /* There will be num_node_state(N_MEMORY) threads */ 1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1569 for_each_node_state(nid, N_MEMORY) { 1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1571 } 1572 1573 /* Block until all are initialised */ 1574 wait_for_completion(&pgdat_init_all_done_comp); 1575 1576 /* Reinit limits that are based on free pages after the kernel is up */ 1577 files_maxfiles_init(); 1578 #endif 1579 1580 for_each_populated_zone(zone) 1581 set_zone_contiguous(zone); 1582 } 1583 1584 #ifdef CONFIG_CMA 1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1586 void __init init_cma_reserved_pageblock(struct page *page) 1587 { 1588 unsigned i = pageblock_nr_pages; 1589 struct page *p = page; 1590 1591 do { 1592 __ClearPageReserved(p); 1593 set_page_count(p, 0); 1594 } while (++p, --i); 1595 1596 set_pageblock_migratetype(page, MIGRATE_CMA); 1597 1598 if (pageblock_order >= MAX_ORDER) { 1599 i = pageblock_nr_pages; 1600 p = page; 1601 do { 1602 set_page_refcounted(p); 1603 __free_pages(p, MAX_ORDER - 1); 1604 p += MAX_ORDER_NR_PAGES; 1605 } while (i -= MAX_ORDER_NR_PAGES); 1606 } else { 1607 set_page_refcounted(page); 1608 __free_pages(page, pageblock_order); 1609 } 1610 1611 adjust_managed_page_count(page, pageblock_nr_pages); 1612 } 1613 #endif 1614 1615 /* 1616 * The order of subdivision here is critical for the IO subsystem. 1617 * Please do not alter this order without good reasons and regression 1618 * testing. Specifically, as large blocks of memory are subdivided, 1619 * the order in which smaller blocks are delivered depends on the order 1620 * they're subdivided in this function. This is the primary factor 1621 * influencing the order in which pages are delivered to the IO 1622 * subsystem according to empirical testing, and this is also justified 1623 * by considering the behavior of a buddy system containing a single 1624 * large block of memory acted on by a series of small allocations. 1625 * This behavior is a critical factor in sglist merging's success. 1626 * 1627 * -- nyc 1628 */ 1629 static inline void expand(struct zone *zone, struct page *page, 1630 int low, int high, struct free_area *area, 1631 int migratetype) 1632 { 1633 unsigned long size = 1 << high; 1634 1635 while (high > low) { 1636 area--; 1637 high--; 1638 size >>= 1; 1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1640 1641 /* 1642 * Mark as guard pages (or page), that will allow to 1643 * merge back to allocator when buddy will be freed. 1644 * Corresponding page table entries will not be touched, 1645 * pages will stay not present in virtual address space 1646 */ 1647 if (set_page_guard(zone, &page[size], high, migratetype)) 1648 continue; 1649 1650 list_add(&page[size].lru, &area->free_list[migratetype]); 1651 area->nr_free++; 1652 set_page_order(&page[size], high); 1653 } 1654 } 1655 1656 static void check_new_page_bad(struct page *page) 1657 { 1658 const char *bad_reason = NULL; 1659 unsigned long bad_flags = 0; 1660 1661 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1662 bad_reason = "nonzero mapcount"; 1663 if (unlikely(page->mapping != NULL)) 1664 bad_reason = "non-NULL mapping"; 1665 if (unlikely(page_ref_count(page) != 0)) 1666 bad_reason = "nonzero _count"; 1667 if (unlikely(page->flags & __PG_HWPOISON)) { 1668 bad_reason = "HWPoisoned (hardware-corrupted)"; 1669 bad_flags = __PG_HWPOISON; 1670 /* Don't complain about hwpoisoned pages */ 1671 page_mapcount_reset(page); /* remove PageBuddy */ 1672 return; 1673 } 1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1677 } 1678 #ifdef CONFIG_MEMCG 1679 if (unlikely(page->mem_cgroup)) 1680 bad_reason = "page still charged to cgroup"; 1681 #endif 1682 bad_page(page, bad_reason, bad_flags); 1683 } 1684 1685 /* 1686 * This page is about to be returned from the page allocator 1687 */ 1688 static inline int check_new_page(struct page *page) 1689 { 1690 if (likely(page_expected_state(page, 1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1692 return 0; 1693 1694 check_new_page_bad(page); 1695 return 1; 1696 } 1697 1698 static inline bool free_pages_prezeroed(bool poisoned) 1699 { 1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1701 page_poisoning_enabled() && poisoned; 1702 } 1703 1704 #ifdef CONFIG_DEBUG_VM 1705 static bool check_pcp_refill(struct page *page) 1706 { 1707 return false; 1708 } 1709 1710 static bool check_new_pcp(struct page *page) 1711 { 1712 return check_new_page(page); 1713 } 1714 #else 1715 static bool check_pcp_refill(struct page *page) 1716 { 1717 return check_new_page(page); 1718 } 1719 static bool check_new_pcp(struct page *page) 1720 { 1721 return false; 1722 } 1723 #endif /* CONFIG_DEBUG_VM */ 1724 1725 static bool check_new_pages(struct page *page, unsigned int order) 1726 { 1727 int i; 1728 for (i = 0; i < (1 << order); i++) { 1729 struct page *p = page + i; 1730 1731 if (unlikely(check_new_page(p))) 1732 return true; 1733 } 1734 1735 return false; 1736 } 1737 1738 inline void post_alloc_hook(struct page *page, unsigned int order, 1739 gfp_t gfp_flags) 1740 { 1741 set_page_private(page, 0); 1742 set_page_refcounted(page); 1743 1744 arch_alloc_page(page, order); 1745 kernel_map_pages(page, 1 << order, 1); 1746 kernel_poison_pages(page, 1 << order, 1); 1747 kasan_alloc_pages(page, order); 1748 set_page_owner(page, order, gfp_flags); 1749 } 1750 1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1752 unsigned int alloc_flags) 1753 { 1754 int i; 1755 bool poisoned = true; 1756 1757 for (i = 0; i < (1 << order); i++) { 1758 struct page *p = page + i; 1759 if (poisoned) 1760 poisoned &= page_is_poisoned(p); 1761 } 1762 1763 post_alloc_hook(page, order, gfp_flags); 1764 1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1766 for (i = 0; i < (1 << order); i++) 1767 clear_highpage(page + i); 1768 1769 if (order && (gfp_flags & __GFP_COMP)) 1770 prep_compound_page(page, order); 1771 1772 /* 1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1774 * allocate the page. The expectation is that the caller is taking 1775 * steps that will free more memory. The caller should avoid the page 1776 * being used for !PFMEMALLOC purposes. 1777 */ 1778 if (alloc_flags & ALLOC_NO_WATERMARKS) 1779 set_page_pfmemalloc(page); 1780 else 1781 clear_page_pfmemalloc(page); 1782 } 1783 1784 /* 1785 * Go through the free lists for the given migratetype and remove 1786 * the smallest available page from the freelists 1787 */ 1788 static inline 1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1790 int migratetype) 1791 { 1792 unsigned int current_order; 1793 struct free_area *area; 1794 struct page *page; 1795 1796 /* Find a page of the appropriate size in the preferred list */ 1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1798 area = &(zone->free_area[current_order]); 1799 page = list_first_entry_or_null(&area->free_list[migratetype], 1800 struct page, lru); 1801 if (!page) 1802 continue; 1803 list_del(&page->lru); 1804 rmv_page_order(page); 1805 area->nr_free--; 1806 expand(zone, page, order, current_order, area, migratetype); 1807 set_pcppage_migratetype(page, migratetype); 1808 return page; 1809 } 1810 1811 return NULL; 1812 } 1813 1814 1815 /* 1816 * This array describes the order lists are fallen back to when 1817 * the free lists for the desirable migrate type are depleted 1818 */ 1819 static int fallbacks[MIGRATE_TYPES][4] = { 1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1823 #ifdef CONFIG_CMA 1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1825 #endif 1826 #ifdef CONFIG_MEMORY_ISOLATION 1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1828 #endif 1829 }; 1830 1831 #ifdef CONFIG_CMA 1832 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1833 unsigned int order) 1834 { 1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1836 } 1837 #else 1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1839 unsigned int order) { return NULL; } 1840 #endif 1841 1842 /* 1843 * Move the free pages in a range to the free lists of the requested type. 1844 * Note that start_page and end_pages are not aligned on a pageblock 1845 * boundary. If alignment is required, use move_freepages_block() 1846 */ 1847 int move_freepages(struct zone *zone, 1848 struct page *start_page, struct page *end_page, 1849 int migratetype) 1850 { 1851 struct page *page; 1852 unsigned int order; 1853 int pages_moved = 0; 1854 1855 #ifndef CONFIG_HOLES_IN_ZONE 1856 /* 1857 * page_zone is not safe to call in this context when 1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1859 * anyway as we check zone boundaries in move_freepages_block(). 1860 * Remove at a later date when no bug reports exist related to 1861 * grouping pages by mobility 1862 */ 1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1864 #endif 1865 1866 for (page = start_page; page <= end_page;) { 1867 if (!pfn_valid_within(page_to_pfn(page))) { 1868 page++; 1869 continue; 1870 } 1871 1872 /* Make sure we are not inadvertently changing nodes */ 1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1874 1875 if (!PageBuddy(page)) { 1876 page++; 1877 continue; 1878 } 1879 1880 order = page_order(page); 1881 list_move(&page->lru, 1882 &zone->free_area[order].free_list[migratetype]); 1883 page += 1 << order; 1884 pages_moved += 1 << order; 1885 } 1886 1887 return pages_moved; 1888 } 1889 1890 int move_freepages_block(struct zone *zone, struct page *page, 1891 int migratetype) 1892 { 1893 unsigned long start_pfn, end_pfn; 1894 struct page *start_page, *end_page; 1895 1896 start_pfn = page_to_pfn(page); 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1898 start_page = pfn_to_page(start_pfn); 1899 end_page = start_page + pageblock_nr_pages - 1; 1900 end_pfn = start_pfn + pageblock_nr_pages - 1; 1901 1902 /* Do not cross zone boundaries */ 1903 if (!zone_spans_pfn(zone, start_pfn)) 1904 start_page = page; 1905 if (!zone_spans_pfn(zone, end_pfn)) 1906 return 0; 1907 1908 return move_freepages(zone, start_page, end_page, migratetype); 1909 } 1910 1911 static void change_pageblock_range(struct page *pageblock_page, 1912 int start_order, int migratetype) 1913 { 1914 int nr_pageblocks = 1 << (start_order - pageblock_order); 1915 1916 while (nr_pageblocks--) { 1917 set_pageblock_migratetype(pageblock_page, migratetype); 1918 pageblock_page += pageblock_nr_pages; 1919 } 1920 } 1921 1922 /* 1923 * When we are falling back to another migratetype during allocation, try to 1924 * steal extra free pages from the same pageblocks to satisfy further 1925 * allocations, instead of polluting multiple pageblocks. 1926 * 1927 * If we are stealing a relatively large buddy page, it is likely there will 1928 * be more free pages in the pageblock, so try to steal them all. For 1929 * reclaimable and unmovable allocations, we steal regardless of page size, 1930 * as fragmentation caused by those allocations polluting movable pageblocks 1931 * is worse than movable allocations stealing from unmovable and reclaimable 1932 * pageblocks. 1933 */ 1934 static bool can_steal_fallback(unsigned int order, int start_mt) 1935 { 1936 /* 1937 * Leaving this order check is intended, although there is 1938 * relaxed order check in next check. The reason is that 1939 * we can actually steal whole pageblock if this condition met, 1940 * but, below check doesn't guarantee it and that is just heuristic 1941 * so could be changed anytime. 1942 */ 1943 if (order >= pageblock_order) 1944 return true; 1945 1946 if (order >= pageblock_order / 2 || 1947 start_mt == MIGRATE_RECLAIMABLE || 1948 start_mt == MIGRATE_UNMOVABLE || 1949 page_group_by_mobility_disabled) 1950 return true; 1951 1952 return false; 1953 } 1954 1955 /* 1956 * This function implements actual steal behaviour. If order is large enough, 1957 * we can steal whole pageblock. If not, we first move freepages in this 1958 * pageblock and check whether half of pages are moved or not. If half of 1959 * pages are moved, we can change migratetype of pageblock and permanently 1960 * use it's pages as requested migratetype in the future. 1961 */ 1962 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1963 int start_type) 1964 { 1965 unsigned int current_order = page_order(page); 1966 int pages; 1967 1968 /* Take ownership for orders >= pageblock_order */ 1969 if (current_order >= pageblock_order) { 1970 change_pageblock_range(page, current_order, start_type); 1971 return; 1972 } 1973 1974 pages = move_freepages_block(zone, page, start_type); 1975 1976 /* Claim the whole block if over half of it is free */ 1977 if (pages >= (1 << (pageblock_order-1)) || 1978 page_group_by_mobility_disabled) 1979 set_pageblock_migratetype(page, start_type); 1980 } 1981 1982 /* 1983 * Check whether there is a suitable fallback freepage with requested order. 1984 * If only_stealable is true, this function returns fallback_mt only if 1985 * we can steal other freepages all together. This would help to reduce 1986 * fragmentation due to mixed migratetype pages in one pageblock. 1987 */ 1988 int find_suitable_fallback(struct free_area *area, unsigned int order, 1989 int migratetype, bool only_stealable, bool *can_steal) 1990 { 1991 int i; 1992 int fallback_mt; 1993 1994 if (area->nr_free == 0) 1995 return -1; 1996 1997 *can_steal = false; 1998 for (i = 0;; i++) { 1999 fallback_mt = fallbacks[migratetype][i]; 2000 if (fallback_mt == MIGRATE_TYPES) 2001 break; 2002 2003 if (list_empty(&area->free_list[fallback_mt])) 2004 continue; 2005 2006 if (can_steal_fallback(order, migratetype)) 2007 *can_steal = true; 2008 2009 if (!only_stealable) 2010 return fallback_mt; 2011 2012 if (*can_steal) 2013 return fallback_mt; 2014 } 2015 2016 return -1; 2017 } 2018 2019 /* 2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2021 * there are no empty page blocks that contain a page with a suitable order 2022 */ 2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2024 unsigned int alloc_order) 2025 { 2026 int mt; 2027 unsigned long max_managed, flags; 2028 2029 /* 2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2031 * Check is race-prone but harmless. 2032 */ 2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2034 if (zone->nr_reserved_highatomic >= max_managed) 2035 return; 2036 2037 spin_lock_irqsave(&zone->lock, flags); 2038 2039 /* Recheck the nr_reserved_highatomic limit under the lock */ 2040 if (zone->nr_reserved_highatomic >= max_managed) 2041 goto out_unlock; 2042 2043 /* Yoink! */ 2044 mt = get_pageblock_migratetype(page); 2045 if (mt != MIGRATE_HIGHATOMIC && 2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 2047 zone->nr_reserved_highatomic += pageblock_nr_pages; 2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 2050 } 2051 2052 out_unlock: 2053 spin_unlock_irqrestore(&zone->lock, flags); 2054 } 2055 2056 /* 2057 * Used when an allocation is about to fail under memory pressure. This 2058 * potentially hurts the reliability of high-order allocations when under 2059 * intense memory pressure but failed atomic allocations should be easier 2060 * to recover from than an OOM. 2061 * 2062 * If @force is true, try to unreserve a pageblock even though highatomic 2063 * pageblock is exhausted. 2064 */ 2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2066 bool force) 2067 { 2068 struct zonelist *zonelist = ac->zonelist; 2069 unsigned long flags; 2070 struct zoneref *z; 2071 struct zone *zone; 2072 struct page *page; 2073 int order; 2074 bool ret; 2075 2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2077 ac->nodemask) { 2078 /* 2079 * Preserve at least one pageblock unless memory pressure 2080 * is really high. 2081 */ 2082 if (!force && zone->nr_reserved_highatomic <= 2083 pageblock_nr_pages) 2084 continue; 2085 2086 spin_lock_irqsave(&zone->lock, flags); 2087 for (order = 0; order < MAX_ORDER; order++) { 2088 struct free_area *area = &(zone->free_area[order]); 2089 2090 page = list_first_entry_or_null( 2091 &area->free_list[MIGRATE_HIGHATOMIC], 2092 struct page, lru); 2093 if (!page) 2094 continue; 2095 2096 /* 2097 * In page freeing path, migratetype change is racy so 2098 * we can counter several free pages in a pageblock 2099 * in this loop althoug we changed the pageblock type 2100 * from highatomic to ac->migratetype. So we should 2101 * adjust the count once. 2102 */ 2103 if (get_pageblock_migratetype(page) == 2104 MIGRATE_HIGHATOMIC) { 2105 /* 2106 * It should never happen but changes to 2107 * locking could inadvertently allow a per-cpu 2108 * drain to add pages to MIGRATE_HIGHATOMIC 2109 * while unreserving so be safe and watch for 2110 * underflows. 2111 */ 2112 zone->nr_reserved_highatomic -= min( 2113 pageblock_nr_pages, 2114 zone->nr_reserved_highatomic); 2115 } 2116 2117 /* 2118 * Convert to ac->migratetype and avoid the normal 2119 * pageblock stealing heuristics. Minimally, the caller 2120 * is doing the work and needs the pages. More 2121 * importantly, if the block was always converted to 2122 * MIGRATE_UNMOVABLE or another type then the number 2123 * of pageblocks that cannot be completely freed 2124 * may increase. 2125 */ 2126 set_pageblock_migratetype(page, ac->migratetype); 2127 ret = move_freepages_block(zone, page, ac->migratetype); 2128 if (ret) { 2129 spin_unlock_irqrestore(&zone->lock, flags); 2130 return ret; 2131 } 2132 } 2133 spin_unlock_irqrestore(&zone->lock, flags); 2134 } 2135 2136 return false; 2137 } 2138 2139 /* Remove an element from the buddy allocator from the fallback list */ 2140 static inline struct page * 2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 2142 { 2143 struct free_area *area; 2144 unsigned int current_order; 2145 struct page *page; 2146 int fallback_mt; 2147 bool can_steal; 2148 2149 /* Find the largest possible block of pages in the other list */ 2150 for (current_order = MAX_ORDER-1; 2151 current_order >= order && current_order <= MAX_ORDER-1; 2152 --current_order) { 2153 area = &(zone->free_area[current_order]); 2154 fallback_mt = find_suitable_fallback(area, current_order, 2155 start_migratetype, false, &can_steal); 2156 if (fallback_mt == -1) 2157 continue; 2158 2159 page = list_first_entry(&area->free_list[fallback_mt], 2160 struct page, lru); 2161 if (can_steal && 2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC) 2163 steal_suitable_fallback(zone, page, start_migratetype); 2164 2165 /* Remove the page from the freelists */ 2166 area->nr_free--; 2167 list_del(&page->lru); 2168 rmv_page_order(page); 2169 2170 expand(zone, page, order, current_order, area, 2171 start_migratetype); 2172 /* 2173 * The pcppage_migratetype may differ from pageblock's 2174 * migratetype depending on the decisions in 2175 * find_suitable_fallback(). This is OK as long as it does not 2176 * differ for MIGRATE_CMA pageblocks. Those can be used as 2177 * fallback only via special __rmqueue_cma_fallback() function 2178 */ 2179 set_pcppage_migratetype(page, start_migratetype); 2180 2181 trace_mm_page_alloc_extfrag(page, order, current_order, 2182 start_migratetype, fallback_mt); 2183 2184 return page; 2185 } 2186 2187 return NULL; 2188 } 2189 2190 /* 2191 * Do the hard work of removing an element from the buddy allocator. 2192 * Call me with the zone->lock already held. 2193 */ 2194 static struct page *__rmqueue(struct zone *zone, unsigned int order, 2195 int migratetype) 2196 { 2197 struct page *page; 2198 2199 page = __rmqueue_smallest(zone, order, migratetype); 2200 if (unlikely(!page)) { 2201 if (migratetype == MIGRATE_MOVABLE) 2202 page = __rmqueue_cma_fallback(zone, order); 2203 2204 if (!page) 2205 page = __rmqueue_fallback(zone, order, migratetype); 2206 } 2207 2208 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2209 return page; 2210 } 2211 2212 /* 2213 * Obtain a specified number of elements from the buddy allocator, all under 2214 * a single hold of the lock, for efficiency. Add them to the supplied list. 2215 * Returns the number of new pages which were placed at *list. 2216 */ 2217 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2218 unsigned long count, struct list_head *list, 2219 int migratetype, bool cold) 2220 { 2221 int i, alloced = 0; 2222 unsigned long flags; 2223 2224 spin_lock_irqsave(&zone->lock, flags); 2225 for (i = 0; i < count; ++i) { 2226 struct page *page = __rmqueue(zone, order, migratetype); 2227 if (unlikely(page == NULL)) 2228 break; 2229 2230 if (unlikely(check_pcp_refill(page))) 2231 continue; 2232 2233 /* 2234 * Split buddy pages returned by expand() are received here 2235 * in physical page order. The page is added to the callers and 2236 * list and the list head then moves forward. From the callers 2237 * perspective, the linked list is ordered by page number in 2238 * some conditions. This is useful for IO devices that can 2239 * merge IO requests if the physical pages are ordered 2240 * properly. 2241 */ 2242 if (likely(!cold)) 2243 list_add(&page->lru, list); 2244 else 2245 list_add_tail(&page->lru, list); 2246 list = &page->lru; 2247 alloced++; 2248 if (is_migrate_cma(get_pcppage_migratetype(page))) 2249 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2250 -(1 << order)); 2251 } 2252 2253 /* 2254 * i pages were removed from the buddy list even if some leak due 2255 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2256 * on i. Do not confuse with 'alloced' which is the number of 2257 * pages added to the pcp list. 2258 */ 2259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2260 spin_unlock_irqrestore(&zone->lock, flags); 2261 return alloced; 2262 } 2263 2264 #ifdef CONFIG_NUMA 2265 /* 2266 * Called from the vmstat counter updater to drain pagesets of this 2267 * currently executing processor on remote nodes after they have 2268 * expired. 2269 * 2270 * Note that this function must be called with the thread pinned to 2271 * a single processor. 2272 */ 2273 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2274 { 2275 unsigned long flags; 2276 int to_drain, batch; 2277 2278 local_irq_save(flags); 2279 batch = READ_ONCE(pcp->batch); 2280 to_drain = min(pcp->count, batch); 2281 if (to_drain > 0) { 2282 free_pcppages_bulk(zone, to_drain, pcp); 2283 pcp->count -= to_drain; 2284 } 2285 local_irq_restore(flags); 2286 } 2287 #endif 2288 2289 /* 2290 * Drain pcplists of the indicated processor and zone. 2291 * 2292 * The processor must either be the current processor and the 2293 * thread pinned to the current processor or a processor that 2294 * is not online. 2295 */ 2296 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2297 { 2298 unsigned long flags; 2299 struct per_cpu_pageset *pset; 2300 struct per_cpu_pages *pcp; 2301 2302 local_irq_save(flags); 2303 pset = per_cpu_ptr(zone->pageset, cpu); 2304 2305 pcp = &pset->pcp; 2306 if (pcp->count) { 2307 free_pcppages_bulk(zone, pcp->count, pcp); 2308 pcp->count = 0; 2309 } 2310 local_irq_restore(flags); 2311 } 2312 2313 /* 2314 * Drain pcplists of all zones on the indicated processor. 2315 * 2316 * The processor must either be the current processor and the 2317 * thread pinned to the current processor or a processor that 2318 * is not online. 2319 */ 2320 static void drain_pages(unsigned int cpu) 2321 { 2322 struct zone *zone; 2323 2324 for_each_populated_zone(zone) { 2325 drain_pages_zone(cpu, zone); 2326 } 2327 } 2328 2329 /* 2330 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2331 * 2332 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2333 * the single zone's pages. 2334 */ 2335 void drain_local_pages(struct zone *zone) 2336 { 2337 int cpu = smp_processor_id(); 2338 2339 if (zone) 2340 drain_pages_zone(cpu, zone); 2341 else 2342 drain_pages(cpu); 2343 } 2344 2345 static void drain_local_pages_wq(struct work_struct *work) 2346 { 2347 /* 2348 * drain_all_pages doesn't use proper cpu hotplug protection so 2349 * we can race with cpu offline when the WQ can move this from 2350 * a cpu pinned worker to an unbound one. We can operate on a different 2351 * cpu which is allright but we also have to make sure to not move to 2352 * a different one. 2353 */ 2354 preempt_disable(); 2355 drain_local_pages(NULL); 2356 preempt_enable(); 2357 } 2358 2359 /* 2360 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2361 * 2362 * When zone parameter is non-NULL, spill just the single zone's pages. 2363 * 2364 * Note that this can be extremely slow as the draining happens in a workqueue. 2365 */ 2366 void drain_all_pages(struct zone *zone) 2367 { 2368 int cpu; 2369 2370 /* 2371 * Allocate in the BSS so we wont require allocation in 2372 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2373 */ 2374 static cpumask_t cpus_with_pcps; 2375 2376 /* Workqueues cannot recurse */ 2377 if (current->flags & PF_WQ_WORKER) 2378 return; 2379 2380 /* 2381 * Do not drain if one is already in progress unless it's specific to 2382 * a zone. Such callers are primarily CMA and memory hotplug and need 2383 * the drain to be complete when the call returns. 2384 */ 2385 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2386 if (!zone) 2387 return; 2388 mutex_lock(&pcpu_drain_mutex); 2389 } 2390 2391 /* 2392 * We don't care about racing with CPU hotplug event 2393 * as offline notification will cause the notified 2394 * cpu to drain that CPU pcps and on_each_cpu_mask 2395 * disables preemption as part of its processing 2396 */ 2397 for_each_online_cpu(cpu) { 2398 struct per_cpu_pageset *pcp; 2399 struct zone *z; 2400 bool has_pcps = false; 2401 2402 if (zone) { 2403 pcp = per_cpu_ptr(zone->pageset, cpu); 2404 if (pcp->pcp.count) 2405 has_pcps = true; 2406 } else { 2407 for_each_populated_zone(z) { 2408 pcp = per_cpu_ptr(z->pageset, cpu); 2409 if (pcp->pcp.count) { 2410 has_pcps = true; 2411 break; 2412 } 2413 } 2414 } 2415 2416 if (has_pcps) 2417 cpumask_set_cpu(cpu, &cpus_with_pcps); 2418 else 2419 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2420 } 2421 2422 for_each_cpu(cpu, &cpus_with_pcps) { 2423 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2424 INIT_WORK(work, drain_local_pages_wq); 2425 schedule_work_on(cpu, work); 2426 } 2427 for_each_cpu(cpu, &cpus_with_pcps) 2428 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2429 2430 mutex_unlock(&pcpu_drain_mutex); 2431 } 2432 2433 #ifdef CONFIG_HIBERNATION 2434 2435 void mark_free_pages(struct zone *zone) 2436 { 2437 unsigned long pfn, max_zone_pfn; 2438 unsigned long flags; 2439 unsigned int order, t; 2440 struct page *page; 2441 2442 if (zone_is_empty(zone)) 2443 return; 2444 2445 spin_lock_irqsave(&zone->lock, flags); 2446 2447 max_zone_pfn = zone_end_pfn(zone); 2448 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2449 if (pfn_valid(pfn)) { 2450 page = pfn_to_page(pfn); 2451 2452 if (page_zone(page) != zone) 2453 continue; 2454 2455 if (!swsusp_page_is_forbidden(page)) 2456 swsusp_unset_page_free(page); 2457 } 2458 2459 for_each_migratetype_order(order, t) { 2460 list_for_each_entry(page, 2461 &zone->free_area[order].free_list[t], lru) { 2462 unsigned long i; 2463 2464 pfn = page_to_pfn(page); 2465 for (i = 0; i < (1UL << order); i++) 2466 swsusp_set_page_free(pfn_to_page(pfn + i)); 2467 } 2468 } 2469 spin_unlock_irqrestore(&zone->lock, flags); 2470 } 2471 #endif /* CONFIG_PM */ 2472 2473 /* 2474 * Free a 0-order page 2475 * cold == true ? free a cold page : free a hot page 2476 */ 2477 void free_hot_cold_page(struct page *page, bool cold) 2478 { 2479 struct zone *zone = page_zone(page); 2480 struct per_cpu_pages *pcp; 2481 unsigned long pfn = page_to_pfn(page); 2482 int migratetype; 2483 2484 if (in_interrupt()) { 2485 __free_pages_ok(page, 0); 2486 return; 2487 } 2488 2489 if (!free_pcp_prepare(page)) 2490 return; 2491 2492 migratetype = get_pfnblock_migratetype(page, pfn); 2493 set_pcppage_migratetype(page, migratetype); 2494 preempt_disable(); 2495 2496 /* 2497 * We only track unmovable, reclaimable and movable on pcp lists. 2498 * Free ISOLATE pages back to the allocator because they are being 2499 * offlined but treat RESERVE as movable pages so we can get those 2500 * areas back if necessary. Otherwise, we may have to free 2501 * excessively into the page allocator 2502 */ 2503 if (migratetype >= MIGRATE_PCPTYPES) { 2504 if (unlikely(is_migrate_isolate(migratetype))) { 2505 free_one_page(zone, page, pfn, 0, migratetype); 2506 goto out; 2507 } 2508 migratetype = MIGRATE_MOVABLE; 2509 } 2510 2511 __count_vm_event(PGFREE); 2512 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2513 if (!cold) 2514 list_add(&page->lru, &pcp->lists[migratetype]); 2515 else 2516 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2517 pcp->count++; 2518 if (pcp->count >= pcp->high) { 2519 unsigned long batch = READ_ONCE(pcp->batch); 2520 free_pcppages_bulk(zone, batch, pcp); 2521 pcp->count -= batch; 2522 } 2523 2524 out: 2525 preempt_enable(); 2526 } 2527 2528 /* 2529 * Free a list of 0-order pages 2530 */ 2531 void free_hot_cold_page_list(struct list_head *list, bool cold) 2532 { 2533 struct page *page, *next; 2534 2535 list_for_each_entry_safe(page, next, list, lru) { 2536 trace_mm_page_free_batched(page, cold); 2537 free_hot_cold_page(page, cold); 2538 } 2539 } 2540 2541 /* 2542 * split_page takes a non-compound higher-order page, and splits it into 2543 * n (1<<order) sub-pages: page[0..n] 2544 * Each sub-page must be freed individually. 2545 * 2546 * Note: this is probably too low level an operation for use in drivers. 2547 * Please consult with lkml before using this in your driver. 2548 */ 2549 void split_page(struct page *page, unsigned int order) 2550 { 2551 int i; 2552 2553 VM_BUG_ON_PAGE(PageCompound(page), page); 2554 VM_BUG_ON_PAGE(!page_count(page), page); 2555 2556 #ifdef CONFIG_KMEMCHECK 2557 /* 2558 * Split shadow pages too, because free(page[0]) would 2559 * otherwise free the whole shadow. 2560 */ 2561 if (kmemcheck_page_is_tracked(page)) 2562 split_page(virt_to_page(page[0].shadow), order); 2563 #endif 2564 2565 for (i = 1; i < (1 << order); i++) 2566 set_page_refcounted(page + i); 2567 split_page_owner(page, order); 2568 } 2569 EXPORT_SYMBOL_GPL(split_page); 2570 2571 int __isolate_free_page(struct page *page, unsigned int order) 2572 { 2573 unsigned long watermark; 2574 struct zone *zone; 2575 int mt; 2576 2577 BUG_ON(!PageBuddy(page)); 2578 2579 zone = page_zone(page); 2580 mt = get_pageblock_migratetype(page); 2581 2582 if (!is_migrate_isolate(mt)) { 2583 /* 2584 * Obey watermarks as if the page was being allocated. We can 2585 * emulate a high-order watermark check with a raised order-0 2586 * watermark, because we already know our high-order page 2587 * exists. 2588 */ 2589 watermark = min_wmark_pages(zone) + (1UL << order); 2590 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2591 return 0; 2592 2593 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2594 } 2595 2596 /* Remove page from free list */ 2597 list_del(&page->lru); 2598 zone->free_area[order].nr_free--; 2599 rmv_page_order(page); 2600 2601 /* 2602 * Set the pageblock if the isolated page is at least half of a 2603 * pageblock 2604 */ 2605 if (order >= pageblock_order - 1) { 2606 struct page *endpage = page + (1 << order) - 1; 2607 for (; page < endpage; page += pageblock_nr_pages) { 2608 int mt = get_pageblock_migratetype(page); 2609 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2610 && mt != MIGRATE_HIGHATOMIC) 2611 set_pageblock_migratetype(page, 2612 MIGRATE_MOVABLE); 2613 } 2614 } 2615 2616 2617 return 1UL << order; 2618 } 2619 2620 /* 2621 * Update NUMA hit/miss statistics 2622 * 2623 * Must be called with interrupts disabled. 2624 */ 2625 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2626 { 2627 #ifdef CONFIG_NUMA 2628 enum zone_stat_item local_stat = NUMA_LOCAL; 2629 2630 if (z->node != numa_node_id()) 2631 local_stat = NUMA_OTHER; 2632 2633 if (z->node == preferred_zone->node) 2634 __inc_zone_state(z, NUMA_HIT); 2635 else { 2636 __inc_zone_state(z, NUMA_MISS); 2637 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2638 } 2639 __inc_zone_state(z, local_stat); 2640 #endif 2641 } 2642 2643 /* Remove page from the per-cpu list, caller must protect the list */ 2644 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2645 bool cold, struct per_cpu_pages *pcp, 2646 struct list_head *list) 2647 { 2648 struct page *page; 2649 2650 VM_BUG_ON(in_interrupt()); 2651 2652 do { 2653 if (list_empty(list)) { 2654 pcp->count += rmqueue_bulk(zone, 0, 2655 pcp->batch, list, 2656 migratetype, cold); 2657 if (unlikely(list_empty(list))) 2658 return NULL; 2659 } 2660 2661 if (cold) 2662 page = list_last_entry(list, struct page, lru); 2663 else 2664 page = list_first_entry(list, struct page, lru); 2665 2666 list_del(&page->lru); 2667 pcp->count--; 2668 } while (check_new_pcp(page)); 2669 2670 return page; 2671 } 2672 2673 /* Lock and remove page from the per-cpu list */ 2674 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2675 struct zone *zone, unsigned int order, 2676 gfp_t gfp_flags, int migratetype) 2677 { 2678 struct per_cpu_pages *pcp; 2679 struct list_head *list; 2680 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2681 struct page *page; 2682 2683 preempt_disable(); 2684 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2685 list = &pcp->lists[migratetype]; 2686 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list); 2687 if (page) { 2688 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2689 zone_statistics(preferred_zone, zone); 2690 } 2691 preempt_enable(); 2692 return page; 2693 } 2694 2695 /* 2696 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2697 */ 2698 static inline 2699 struct page *rmqueue(struct zone *preferred_zone, 2700 struct zone *zone, unsigned int order, 2701 gfp_t gfp_flags, unsigned int alloc_flags, 2702 int migratetype) 2703 { 2704 unsigned long flags; 2705 struct page *page; 2706 2707 if (likely(order == 0) && !in_interrupt()) { 2708 page = rmqueue_pcplist(preferred_zone, zone, order, 2709 gfp_flags, migratetype); 2710 goto out; 2711 } 2712 2713 /* 2714 * We most definitely don't want callers attempting to 2715 * allocate greater than order-1 page units with __GFP_NOFAIL. 2716 */ 2717 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2718 spin_lock_irqsave(&zone->lock, flags); 2719 2720 do { 2721 page = NULL; 2722 if (alloc_flags & ALLOC_HARDER) { 2723 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2724 if (page) 2725 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2726 } 2727 if (!page) 2728 page = __rmqueue(zone, order, migratetype); 2729 } while (page && check_new_pages(page, order)); 2730 spin_unlock(&zone->lock); 2731 if (!page) 2732 goto failed; 2733 __mod_zone_freepage_state(zone, -(1 << order), 2734 get_pcppage_migratetype(page)); 2735 2736 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2737 zone_statistics(preferred_zone, zone); 2738 local_irq_restore(flags); 2739 2740 out: 2741 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2742 return page; 2743 2744 failed: 2745 local_irq_restore(flags); 2746 return NULL; 2747 } 2748 2749 #ifdef CONFIG_FAIL_PAGE_ALLOC 2750 2751 static struct { 2752 struct fault_attr attr; 2753 2754 bool ignore_gfp_highmem; 2755 bool ignore_gfp_reclaim; 2756 u32 min_order; 2757 } fail_page_alloc = { 2758 .attr = FAULT_ATTR_INITIALIZER, 2759 .ignore_gfp_reclaim = true, 2760 .ignore_gfp_highmem = true, 2761 .min_order = 1, 2762 }; 2763 2764 static int __init setup_fail_page_alloc(char *str) 2765 { 2766 return setup_fault_attr(&fail_page_alloc.attr, str); 2767 } 2768 __setup("fail_page_alloc=", setup_fail_page_alloc); 2769 2770 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2771 { 2772 if (order < fail_page_alloc.min_order) 2773 return false; 2774 if (gfp_mask & __GFP_NOFAIL) 2775 return false; 2776 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2777 return false; 2778 if (fail_page_alloc.ignore_gfp_reclaim && 2779 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2780 return false; 2781 2782 return should_fail(&fail_page_alloc.attr, 1 << order); 2783 } 2784 2785 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2786 2787 static int __init fail_page_alloc_debugfs(void) 2788 { 2789 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2790 struct dentry *dir; 2791 2792 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2793 &fail_page_alloc.attr); 2794 if (IS_ERR(dir)) 2795 return PTR_ERR(dir); 2796 2797 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2798 &fail_page_alloc.ignore_gfp_reclaim)) 2799 goto fail; 2800 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2801 &fail_page_alloc.ignore_gfp_highmem)) 2802 goto fail; 2803 if (!debugfs_create_u32("min-order", mode, dir, 2804 &fail_page_alloc.min_order)) 2805 goto fail; 2806 2807 return 0; 2808 fail: 2809 debugfs_remove_recursive(dir); 2810 2811 return -ENOMEM; 2812 } 2813 2814 late_initcall(fail_page_alloc_debugfs); 2815 2816 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2817 2818 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2819 2820 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2821 { 2822 return false; 2823 } 2824 2825 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2826 2827 /* 2828 * Return true if free base pages are above 'mark'. For high-order checks it 2829 * will return true of the order-0 watermark is reached and there is at least 2830 * one free page of a suitable size. Checking now avoids taking the zone lock 2831 * to check in the allocation paths if no pages are free. 2832 */ 2833 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2834 int classzone_idx, unsigned int alloc_flags, 2835 long free_pages) 2836 { 2837 long min = mark; 2838 int o; 2839 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2840 2841 /* free_pages may go negative - that's OK */ 2842 free_pages -= (1 << order) - 1; 2843 2844 if (alloc_flags & ALLOC_HIGH) 2845 min -= min / 2; 2846 2847 /* 2848 * If the caller does not have rights to ALLOC_HARDER then subtract 2849 * the high-atomic reserves. This will over-estimate the size of the 2850 * atomic reserve but it avoids a search. 2851 */ 2852 if (likely(!alloc_harder)) 2853 free_pages -= z->nr_reserved_highatomic; 2854 else 2855 min -= min / 4; 2856 2857 #ifdef CONFIG_CMA 2858 /* If allocation can't use CMA areas don't use free CMA pages */ 2859 if (!(alloc_flags & ALLOC_CMA)) 2860 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2861 #endif 2862 2863 /* 2864 * Check watermarks for an order-0 allocation request. If these 2865 * are not met, then a high-order request also cannot go ahead 2866 * even if a suitable page happened to be free. 2867 */ 2868 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2869 return false; 2870 2871 /* If this is an order-0 request then the watermark is fine */ 2872 if (!order) 2873 return true; 2874 2875 /* For a high-order request, check at least one suitable page is free */ 2876 for (o = order; o < MAX_ORDER; o++) { 2877 struct free_area *area = &z->free_area[o]; 2878 int mt; 2879 2880 if (!area->nr_free) 2881 continue; 2882 2883 if (alloc_harder) 2884 return true; 2885 2886 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2887 if (!list_empty(&area->free_list[mt])) 2888 return true; 2889 } 2890 2891 #ifdef CONFIG_CMA 2892 if ((alloc_flags & ALLOC_CMA) && 2893 !list_empty(&area->free_list[MIGRATE_CMA])) { 2894 return true; 2895 } 2896 #endif 2897 } 2898 return false; 2899 } 2900 2901 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2902 int classzone_idx, unsigned int alloc_flags) 2903 { 2904 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2905 zone_page_state(z, NR_FREE_PAGES)); 2906 } 2907 2908 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2909 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 2910 { 2911 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2912 long cma_pages = 0; 2913 2914 #ifdef CONFIG_CMA 2915 /* If allocation can't use CMA areas don't use free CMA pages */ 2916 if (!(alloc_flags & ALLOC_CMA)) 2917 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 2918 #endif 2919 2920 /* 2921 * Fast check for order-0 only. If this fails then the reserves 2922 * need to be calculated. There is a corner case where the check 2923 * passes but only the high-order atomic reserve are free. If 2924 * the caller is !atomic then it'll uselessly search the free 2925 * list. That corner case is then slower but it is harmless. 2926 */ 2927 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 2928 return true; 2929 2930 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2931 free_pages); 2932 } 2933 2934 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2935 unsigned long mark, int classzone_idx) 2936 { 2937 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2938 2939 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2940 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2941 2942 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2943 free_pages); 2944 } 2945 2946 #ifdef CONFIG_NUMA 2947 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2948 { 2949 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 2950 RECLAIM_DISTANCE; 2951 } 2952 #else /* CONFIG_NUMA */ 2953 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2954 { 2955 return true; 2956 } 2957 #endif /* CONFIG_NUMA */ 2958 2959 /* 2960 * get_page_from_freelist goes through the zonelist trying to allocate 2961 * a page. 2962 */ 2963 static struct page * 2964 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2965 const struct alloc_context *ac) 2966 { 2967 struct zoneref *z = ac->preferred_zoneref; 2968 struct zone *zone; 2969 struct pglist_data *last_pgdat_dirty_limit = NULL; 2970 2971 /* 2972 * Scan zonelist, looking for a zone with enough free. 2973 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2974 */ 2975 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2976 ac->nodemask) { 2977 struct page *page; 2978 unsigned long mark; 2979 2980 if (cpusets_enabled() && 2981 (alloc_flags & ALLOC_CPUSET) && 2982 !__cpuset_zone_allowed(zone, gfp_mask)) 2983 continue; 2984 /* 2985 * When allocating a page cache page for writing, we 2986 * want to get it from a node that is within its dirty 2987 * limit, such that no single node holds more than its 2988 * proportional share of globally allowed dirty pages. 2989 * The dirty limits take into account the node's 2990 * lowmem reserves and high watermark so that kswapd 2991 * should be able to balance it without having to 2992 * write pages from its LRU list. 2993 * 2994 * XXX: For now, allow allocations to potentially 2995 * exceed the per-node dirty limit in the slowpath 2996 * (spread_dirty_pages unset) before going into reclaim, 2997 * which is important when on a NUMA setup the allowed 2998 * nodes are together not big enough to reach the 2999 * global limit. The proper fix for these situations 3000 * will require awareness of nodes in the 3001 * dirty-throttling and the flusher threads. 3002 */ 3003 if (ac->spread_dirty_pages) { 3004 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3005 continue; 3006 3007 if (!node_dirty_ok(zone->zone_pgdat)) { 3008 last_pgdat_dirty_limit = zone->zone_pgdat; 3009 continue; 3010 } 3011 } 3012 3013 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3014 if (!zone_watermark_fast(zone, order, mark, 3015 ac_classzone_idx(ac), alloc_flags)) { 3016 int ret; 3017 3018 /* Checked here to keep the fast path fast */ 3019 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3020 if (alloc_flags & ALLOC_NO_WATERMARKS) 3021 goto try_this_zone; 3022 3023 if (node_reclaim_mode == 0 || 3024 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3025 continue; 3026 3027 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3028 switch (ret) { 3029 case NODE_RECLAIM_NOSCAN: 3030 /* did not scan */ 3031 continue; 3032 case NODE_RECLAIM_FULL: 3033 /* scanned but unreclaimable */ 3034 continue; 3035 default: 3036 /* did we reclaim enough */ 3037 if (zone_watermark_ok(zone, order, mark, 3038 ac_classzone_idx(ac), alloc_flags)) 3039 goto try_this_zone; 3040 3041 continue; 3042 } 3043 } 3044 3045 try_this_zone: 3046 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3047 gfp_mask, alloc_flags, ac->migratetype); 3048 if (page) { 3049 prep_new_page(page, order, gfp_mask, alloc_flags); 3050 3051 /* 3052 * If this is a high-order atomic allocation then check 3053 * if the pageblock should be reserved for the future 3054 */ 3055 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3056 reserve_highatomic_pageblock(page, zone, order); 3057 3058 return page; 3059 } 3060 } 3061 3062 return NULL; 3063 } 3064 3065 /* 3066 * Large machines with many possible nodes should not always dump per-node 3067 * meminfo in irq context. 3068 */ 3069 static inline bool should_suppress_show_mem(void) 3070 { 3071 bool ret = false; 3072 3073 #if NODES_SHIFT > 8 3074 ret = in_interrupt(); 3075 #endif 3076 return ret; 3077 } 3078 3079 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3080 { 3081 unsigned int filter = SHOW_MEM_FILTER_NODES; 3082 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3083 3084 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3085 return; 3086 3087 /* 3088 * This documents exceptions given to allocations in certain 3089 * contexts that are allowed to allocate outside current's set 3090 * of allowed nodes. 3091 */ 3092 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3093 if (test_thread_flag(TIF_MEMDIE) || 3094 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3095 filter &= ~SHOW_MEM_FILTER_NODES; 3096 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3097 filter &= ~SHOW_MEM_FILTER_NODES; 3098 3099 show_mem(filter, nodemask); 3100 } 3101 3102 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3103 { 3104 struct va_format vaf; 3105 va_list args; 3106 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3107 DEFAULT_RATELIMIT_BURST); 3108 3109 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 3110 debug_guardpage_minorder() > 0) 3111 return; 3112 3113 pr_warn("%s: ", current->comm); 3114 3115 va_start(args, fmt); 3116 vaf.fmt = fmt; 3117 vaf.va = &args; 3118 pr_cont("%pV", &vaf); 3119 va_end(args); 3120 3121 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask); 3122 if (nodemask) 3123 pr_cont("%*pbl\n", nodemask_pr_args(nodemask)); 3124 else 3125 pr_cont("(null)\n"); 3126 3127 cpuset_print_current_mems_allowed(); 3128 3129 dump_stack(); 3130 warn_alloc_show_mem(gfp_mask, nodemask); 3131 } 3132 3133 static inline struct page * 3134 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3135 unsigned int alloc_flags, 3136 const struct alloc_context *ac) 3137 { 3138 struct page *page; 3139 3140 page = get_page_from_freelist(gfp_mask, order, 3141 alloc_flags|ALLOC_CPUSET, ac); 3142 /* 3143 * fallback to ignore cpuset restriction if our nodes 3144 * are depleted 3145 */ 3146 if (!page) 3147 page = get_page_from_freelist(gfp_mask, order, 3148 alloc_flags, ac); 3149 3150 return page; 3151 } 3152 3153 static inline struct page * 3154 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3155 const struct alloc_context *ac, unsigned long *did_some_progress) 3156 { 3157 struct oom_control oc = { 3158 .zonelist = ac->zonelist, 3159 .nodemask = ac->nodemask, 3160 .memcg = NULL, 3161 .gfp_mask = gfp_mask, 3162 .order = order, 3163 }; 3164 struct page *page; 3165 3166 *did_some_progress = 0; 3167 3168 /* 3169 * Acquire the oom lock. If that fails, somebody else is 3170 * making progress for us. 3171 */ 3172 if (!mutex_trylock(&oom_lock)) { 3173 *did_some_progress = 1; 3174 schedule_timeout_uninterruptible(1); 3175 return NULL; 3176 } 3177 3178 /* 3179 * Go through the zonelist yet one more time, keep very high watermark 3180 * here, this is only to catch a parallel oom killing, we must fail if 3181 * we're still under heavy pressure. 3182 */ 3183 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 3184 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3185 if (page) 3186 goto out; 3187 3188 /* Coredumps can quickly deplete all memory reserves */ 3189 if (current->flags & PF_DUMPCORE) 3190 goto out; 3191 /* The OOM killer will not help higher order allocs */ 3192 if (order > PAGE_ALLOC_COSTLY_ORDER) 3193 goto out; 3194 /* The OOM killer does not needlessly kill tasks for lowmem */ 3195 if (ac->high_zoneidx < ZONE_NORMAL) 3196 goto out; 3197 if (pm_suspended_storage()) 3198 goto out; 3199 /* 3200 * XXX: GFP_NOFS allocations should rather fail than rely on 3201 * other request to make a forward progress. 3202 * We are in an unfortunate situation where out_of_memory cannot 3203 * do much for this context but let's try it to at least get 3204 * access to memory reserved if the current task is killed (see 3205 * out_of_memory). Once filesystems are ready to handle allocation 3206 * failures more gracefully we should just bail out here. 3207 */ 3208 3209 /* The OOM killer may not free memory on a specific node */ 3210 if (gfp_mask & __GFP_THISNODE) 3211 goto out; 3212 3213 /* Exhausted what can be done so it's blamo time */ 3214 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3215 *did_some_progress = 1; 3216 3217 /* 3218 * Help non-failing allocations by giving them access to memory 3219 * reserves 3220 */ 3221 if (gfp_mask & __GFP_NOFAIL) 3222 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3223 ALLOC_NO_WATERMARKS, ac); 3224 } 3225 out: 3226 mutex_unlock(&oom_lock); 3227 return page; 3228 } 3229 3230 /* 3231 * Maximum number of compaction retries wit a progress before OOM 3232 * killer is consider as the only way to move forward. 3233 */ 3234 #define MAX_COMPACT_RETRIES 16 3235 3236 #ifdef CONFIG_COMPACTION 3237 /* Try memory compaction for high-order allocations before reclaim */ 3238 static struct page * 3239 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3240 unsigned int alloc_flags, const struct alloc_context *ac, 3241 enum compact_priority prio, enum compact_result *compact_result) 3242 { 3243 struct page *page; 3244 3245 if (!order) 3246 return NULL; 3247 3248 current->flags |= PF_MEMALLOC; 3249 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3250 prio); 3251 current->flags &= ~PF_MEMALLOC; 3252 3253 if (*compact_result <= COMPACT_INACTIVE) 3254 return NULL; 3255 3256 /* 3257 * At least in one zone compaction wasn't deferred or skipped, so let's 3258 * count a compaction stall 3259 */ 3260 count_vm_event(COMPACTSTALL); 3261 3262 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3263 3264 if (page) { 3265 struct zone *zone = page_zone(page); 3266 3267 zone->compact_blockskip_flush = false; 3268 compaction_defer_reset(zone, order, true); 3269 count_vm_event(COMPACTSUCCESS); 3270 return page; 3271 } 3272 3273 /* 3274 * It's bad if compaction run occurs and fails. The most likely reason 3275 * is that pages exist, but not enough to satisfy watermarks. 3276 */ 3277 count_vm_event(COMPACTFAIL); 3278 3279 cond_resched(); 3280 3281 return NULL; 3282 } 3283 3284 static inline bool 3285 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3286 enum compact_result compact_result, 3287 enum compact_priority *compact_priority, 3288 int *compaction_retries) 3289 { 3290 int max_retries = MAX_COMPACT_RETRIES; 3291 int min_priority; 3292 bool ret = false; 3293 int retries = *compaction_retries; 3294 enum compact_priority priority = *compact_priority; 3295 3296 if (!order) 3297 return false; 3298 3299 if (compaction_made_progress(compact_result)) 3300 (*compaction_retries)++; 3301 3302 /* 3303 * compaction considers all the zone as desperately out of memory 3304 * so it doesn't really make much sense to retry except when the 3305 * failure could be caused by insufficient priority 3306 */ 3307 if (compaction_failed(compact_result)) 3308 goto check_priority; 3309 3310 /* 3311 * make sure the compaction wasn't deferred or didn't bail out early 3312 * due to locks contention before we declare that we should give up. 3313 * But do not retry if the given zonelist is not suitable for 3314 * compaction. 3315 */ 3316 if (compaction_withdrawn(compact_result)) { 3317 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3318 goto out; 3319 } 3320 3321 /* 3322 * !costly requests are much more important than __GFP_REPEAT 3323 * costly ones because they are de facto nofail and invoke OOM 3324 * killer to move on while costly can fail and users are ready 3325 * to cope with that. 1/4 retries is rather arbitrary but we 3326 * would need much more detailed feedback from compaction to 3327 * make a better decision. 3328 */ 3329 if (order > PAGE_ALLOC_COSTLY_ORDER) 3330 max_retries /= 4; 3331 if (*compaction_retries <= max_retries) { 3332 ret = true; 3333 goto out; 3334 } 3335 3336 /* 3337 * Make sure there are attempts at the highest priority if we exhausted 3338 * all retries or failed at the lower priorities. 3339 */ 3340 check_priority: 3341 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3342 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3343 3344 if (*compact_priority > min_priority) { 3345 (*compact_priority)--; 3346 *compaction_retries = 0; 3347 ret = true; 3348 } 3349 out: 3350 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3351 return ret; 3352 } 3353 #else 3354 static inline struct page * 3355 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3356 unsigned int alloc_flags, const struct alloc_context *ac, 3357 enum compact_priority prio, enum compact_result *compact_result) 3358 { 3359 *compact_result = COMPACT_SKIPPED; 3360 return NULL; 3361 } 3362 3363 static inline bool 3364 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3365 enum compact_result compact_result, 3366 enum compact_priority *compact_priority, 3367 int *compaction_retries) 3368 { 3369 struct zone *zone; 3370 struct zoneref *z; 3371 3372 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3373 return false; 3374 3375 /* 3376 * There are setups with compaction disabled which would prefer to loop 3377 * inside the allocator rather than hit the oom killer prematurely. 3378 * Let's give them a good hope and keep retrying while the order-0 3379 * watermarks are OK. 3380 */ 3381 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3382 ac->nodemask) { 3383 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3384 ac_classzone_idx(ac), alloc_flags)) 3385 return true; 3386 } 3387 return false; 3388 } 3389 #endif /* CONFIG_COMPACTION */ 3390 3391 /* Perform direct synchronous page reclaim */ 3392 static int 3393 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3394 const struct alloc_context *ac) 3395 { 3396 struct reclaim_state reclaim_state; 3397 int progress; 3398 3399 cond_resched(); 3400 3401 /* We now go into synchronous reclaim */ 3402 cpuset_memory_pressure_bump(); 3403 current->flags |= PF_MEMALLOC; 3404 lockdep_set_current_reclaim_state(gfp_mask); 3405 reclaim_state.reclaimed_slab = 0; 3406 current->reclaim_state = &reclaim_state; 3407 3408 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3409 ac->nodemask); 3410 3411 current->reclaim_state = NULL; 3412 lockdep_clear_current_reclaim_state(); 3413 current->flags &= ~PF_MEMALLOC; 3414 3415 cond_resched(); 3416 3417 return progress; 3418 } 3419 3420 /* The really slow allocator path where we enter direct reclaim */ 3421 static inline struct page * 3422 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3423 unsigned int alloc_flags, const struct alloc_context *ac, 3424 unsigned long *did_some_progress) 3425 { 3426 struct page *page = NULL; 3427 bool drained = false; 3428 3429 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3430 if (unlikely(!(*did_some_progress))) 3431 return NULL; 3432 3433 retry: 3434 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3435 3436 /* 3437 * If an allocation failed after direct reclaim, it could be because 3438 * pages are pinned on the per-cpu lists or in high alloc reserves. 3439 * Shrink them them and try again 3440 */ 3441 if (!page && !drained) { 3442 unreserve_highatomic_pageblock(ac, false); 3443 drain_all_pages(NULL); 3444 drained = true; 3445 goto retry; 3446 } 3447 3448 return page; 3449 } 3450 3451 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3452 { 3453 struct zoneref *z; 3454 struct zone *zone; 3455 pg_data_t *last_pgdat = NULL; 3456 3457 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3458 ac->high_zoneidx, ac->nodemask) { 3459 if (last_pgdat != zone->zone_pgdat) 3460 wakeup_kswapd(zone, order, ac->high_zoneidx); 3461 last_pgdat = zone->zone_pgdat; 3462 } 3463 } 3464 3465 static inline unsigned int 3466 gfp_to_alloc_flags(gfp_t gfp_mask) 3467 { 3468 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3469 3470 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3471 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3472 3473 /* 3474 * The caller may dip into page reserves a bit more if the caller 3475 * cannot run direct reclaim, or if the caller has realtime scheduling 3476 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3477 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3478 */ 3479 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3480 3481 if (gfp_mask & __GFP_ATOMIC) { 3482 /* 3483 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3484 * if it can't schedule. 3485 */ 3486 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3487 alloc_flags |= ALLOC_HARDER; 3488 /* 3489 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3490 * comment for __cpuset_node_allowed(). 3491 */ 3492 alloc_flags &= ~ALLOC_CPUSET; 3493 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3494 alloc_flags |= ALLOC_HARDER; 3495 3496 #ifdef CONFIG_CMA 3497 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3498 alloc_flags |= ALLOC_CMA; 3499 #endif 3500 return alloc_flags; 3501 } 3502 3503 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3504 { 3505 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3506 return false; 3507 3508 if (gfp_mask & __GFP_MEMALLOC) 3509 return true; 3510 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3511 return true; 3512 if (!in_interrupt() && 3513 ((current->flags & PF_MEMALLOC) || 3514 unlikely(test_thread_flag(TIF_MEMDIE)))) 3515 return true; 3516 3517 return false; 3518 } 3519 3520 /* 3521 * Maximum number of reclaim retries without any progress before OOM killer 3522 * is consider as the only way to move forward. 3523 */ 3524 #define MAX_RECLAIM_RETRIES 16 3525 3526 /* 3527 * Checks whether it makes sense to retry the reclaim to make a forward progress 3528 * for the given allocation request. 3529 * The reclaim feedback represented by did_some_progress (any progress during 3530 * the last reclaim round) and no_progress_loops (number of reclaim rounds without 3531 * any progress in a row) is considered as well as the reclaimable pages on the 3532 * applicable zone list (with a backoff mechanism which is a function of 3533 * no_progress_loops). 3534 * 3535 * Returns true if a retry is viable or false to enter the oom path. 3536 */ 3537 static inline bool 3538 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3539 struct alloc_context *ac, int alloc_flags, 3540 bool did_some_progress, int *no_progress_loops) 3541 { 3542 struct zone *zone; 3543 struct zoneref *z; 3544 3545 /* 3546 * Costly allocations might have made a progress but this doesn't mean 3547 * their order will become available due to high fragmentation so 3548 * always increment the no progress counter for them 3549 */ 3550 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3551 *no_progress_loops = 0; 3552 else 3553 (*no_progress_loops)++; 3554 3555 /* 3556 * Make sure we converge to OOM if we cannot make any progress 3557 * several times in the row. 3558 */ 3559 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3560 /* Before OOM, exhaust highatomic_reserve */ 3561 return unreserve_highatomic_pageblock(ac, true); 3562 } 3563 3564 /* 3565 * Keep reclaiming pages while there is a chance this will lead 3566 * somewhere. If none of the target zones can satisfy our allocation 3567 * request even if all reclaimable pages are considered then we are 3568 * screwed and have to go OOM. 3569 */ 3570 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3571 ac->nodemask) { 3572 unsigned long available; 3573 unsigned long reclaimable; 3574 unsigned long min_wmark = min_wmark_pages(zone); 3575 bool wmark; 3576 3577 available = reclaimable = zone_reclaimable_pages(zone); 3578 available -= DIV_ROUND_UP((*no_progress_loops) * available, 3579 MAX_RECLAIM_RETRIES); 3580 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3581 3582 /* 3583 * Would the allocation succeed if we reclaimed the whole 3584 * available? 3585 */ 3586 wmark = __zone_watermark_ok(zone, order, min_wmark, 3587 ac_classzone_idx(ac), alloc_flags, available); 3588 trace_reclaim_retry_zone(z, order, reclaimable, 3589 available, min_wmark, *no_progress_loops, wmark); 3590 if (wmark) { 3591 /* 3592 * If we didn't make any progress and have a lot of 3593 * dirty + writeback pages then we should wait for 3594 * an IO to complete to slow down the reclaim and 3595 * prevent from pre mature OOM 3596 */ 3597 if (!did_some_progress) { 3598 unsigned long write_pending; 3599 3600 write_pending = zone_page_state_snapshot(zone, 3601 NR_ZONE_WRITE_PENDING); 3602 3603 if (2 * write_pending > reclaimable) { 3604 congestion_wait(BLK_RW_ASYNC, HZ/10); 3605 return true; 3606 } 3607 } 3608 3609 /* 3610 * Memory allocation/reclaim might be called from a WQ 3611 * context and the current implementation of the WQ 3612 * concurrency control doesn't recognize that 3613 * a particular WQ is congested if the worker thread is 3614 * looping without ever sleeping. Therefore we have to 3615 * do a short sleep here rather than calling 3616 * cond_resched(). 3617 */ 3618 if (current->flags & PF_WQ_WORKER) 3619 schedule_timeout_uninterruptible(1); 3620 else 3621 cond_resched(); 3622 3623 return true; 3624 } 3625 } 3626 3627 return false; 3628 } 3629 3630 static inline struct page * 3631 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3632 struct alloc_context *ac) 3633 { 3634 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3635 struct page *page = NULL; 3636 unsigned int alloc_flags; 3637 unsigned long did_some_progress; 3638 enum compact_priority compact_priority; 3639 enum compact_result compact_result; 3640 int compaction_retries; 3641 int no_progress_loops; 3642 unsigned long alloc_start = jiffies; 3643 unsigned int stall_timeout = 10 * HZ; 3644 unsigned int cpuset_mems_cookie; 3645 3646 /* 3647 * In the slowpath, we sanity check order to avoid ever trying to 3648 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3649 * be using allocators in order of preference for an area that is 3650 * too large. 3651 */ 3652 if (order >= MAX_ORDER) { 3653 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3654 return NULL; 3655 } 3656 3657 /* 3658 * We also sanity check to catch abuse of atomic reserves being used by 3659 * callers that are not in atomic context. 3660 */ 3661 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3662 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3663 gfp_mask &= ~__GFP_ATOMIC; 3664 3665 retry_cpuset: 3666 compaction_retries = 0; 3667 no_progress_loops = 0; 3668 compact_priority = DEF_COMPACT_PRIORITY; 3669 cpuset_mems_cookie = read_mems_allowed_begin(); 3670 3671 /* 3672 * The fast path uses conservative alloc_flags to succeed only until 3673 * kswapd needs to be woken up, and to avoid the cost of setting up 3674 * alloc_flags precisely. So we do that now. 3675 */ 3676 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3677 3678 /* 3679 * We need to recalculate the starting point for the zonelist iterator 3680 * because we might have used different nodemask in the fast path, or 3681 * there was a cpuset modification and we are retrying - otherwise we 3682 * could end up iterating over non-eligible zones endlessly. 3683 */ 3684 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3685 ac->high_zoneidx, ac->nodemask); 3686 if (!ac->preferred_zoneref->zone) 3687 goto nopage; 3688 3689 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3690 wake_all_kswapds(order, ac); 3691 3692 /* 3693 * The adjusted alloc_flags might result in immediate success, so try 3694 * that first 3695 */ 3696 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3697 if (page) 3698 goto got_pg; 3699 3700 /* 3701 * For costly allocations, try direct compaction first, as it's likely 3702 * that we have enough base pages and don't need to reclaim. Don't try 3703 * that for allocations that are allowed to ignore watermarks, as the 3704 * ALLOC_NO_WATERMARKS attempt didn't yet happen. 3705 */ 3706 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER && 3707 !gfp_pfmemalloc_allowed(gfp_mask)) { 3708 page = __alloc_pages_direct_compact(gfp_mask, order, 3709 alloc_flags, ac, 3710 INIT_COMPACT_PRIORITY, 3711 &compact_result); 3712 if (page) 3713 goto got_pg; 3714 3715 /* 3716 * Checks for costly allocations with __GFP_NORETRY, which 3717 * includes THP page fault allocations 3718 */ 3719 if (gfp_mask & __GFP_NORETRY) { 3720 /* 3721 * If compaction is deferred for high-order allocations, 3722 * it is because sync compaction recently failed. If 3723 * this is the case and the caller requested a THP 3724 * allocation, we do not want to heavily disrupt the 3725 * system, so we fail the allocation instead of entering 3726 * direct reclaim. 3727 */ 3728 if (compact_result == COMPACT_DEFERRED) 3729 goto nopage; 3730 3731 /* 3732 * Looks like reclaim/compaction is worth trying, but 3733 * sync compaction could be very expensive, so keep 3734 * using async compaction. 3735 */ 3736 compact_priority = INIT_COMPACT_PRIORITY; 3737 } 3738 } 3739 3740 retry: 3741 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3742 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3743 wake_all_kswapds(order, ac); 3744 3745 if (gfp_pfmemalloc_allowed(gfp_mask)) 3746 alloc_flags = ALLOC_NO_WATERMARKS; 3747 3748 /* 3749 * Reset the zonelist iterators if memory policies can be ignored. 3750 * These allocations are high priority and system rather than user 3751 * orientated. 3752 */ 3753 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3754 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3755 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3756 ac->high_zoneidx, ac->nodemask); 3757 } 3758 3759 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3760 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3761 if (page) 3762 goto got_pg; 3763 3764 /* Caller is not willing to reclaim, we can't balance anything */ 3765 if (!can_direct_reclaim) 3766 goto nopage; 3767 3768 /* Make sure we know about allocations which stall for too long */ 3769 if (time_after(jiffies, alloc_start + stall_timeout)) { 3770 warn_alloc(gfp_mask, ac->nodemask, 3771 "page allocation stalls for %ums, order:%u", 3772 jiffies_to_msecs(jiffies-alloc_start), order); 3773 stall_timeout += 10 * HZ; 3774 } 3775 3776 /* Avoid recursion of direct reclaim */ 3777 if (current->flags & PF_MEMALLOC) 3778 goto nopage; 3779 3780 /* Try direct reclaim and then allocating */ 3781 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3782 &did_some_progress); 3783 if (page) 3784 goto got_pg; 3785 3786 /* Try direct compaction and then allocating */ 3787 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3788 compact_priority, &compact_result); 3789 if (page) 3790 goto got_pg; 3791 3792 /* Do not loop if specifically requested */ 3793 if (gfp_mask & __GFP_NORETRY) 3794 goto nopage; 3795 3796 /* 3797 * Do not retry costly high order allocations unless they are 3798 * __GFP_REPEAT 3799 */ 3800 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT)) 3801 goto nopage; 3802 3803 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3804 did_some_progress > 0, &no_progress_loops)) 3805 goto retry; 3806 3807 /* 3808 * It doesn't make any sense to retry for the compaction if the order-0 3809 * reclaim is not able to make any progress because the current 3810 * implementation of the compaction depends on the sufficient amount 3811 * of free memory (see __compaction_suitable) 3812 */ 3813 if (did_some_progress > 0 && 3814 should_compact_retry(ac, order, alloc_flags, 3815 compact_result, &compact_priority, 3816 &compaction_retries)) 3817 goto retry; 3818 3819 /* 3820 * It's possible we raced with cpuset update so the OOM would be 3821 * premature (see below the nopage: label for full explanation). 3822 */ 3823 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3824 goto retry_cpuset; 3825 3826 /* Reclaim has failed us, start killing things */ 3827 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3828 if (page) 3829 goto got_pg; 3830 3831 /* Avoid allocations with no watermarks from looping endlessly */ 3832 if (test_thread_flag(TIF_MEMDIE)) 3833 goto nopage; 3834 3835 /* Retry as long as the OOM killer is making progress */ 3836 if (did_some_progress) { 3837 no_progress_loops = 0; 3838 goto retry; 3839 } 3840 3841 nopage: 3842 /* 3843 * When updating a task's mems_allowed or mempolicy nodemask, it is 3844 * possible to race with parallel threads in such a way that our 3845 * allocation can fail while the mask is being updated. If we are about 3846 * to fail, check if the cpuset changed during allocation and if so, 3847 * retry. 3848 */ 3849 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3850 goto retry_cpuset; 3851 3852 /* 3853 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 3854 * we always retry 3855 */ 3856 if (gfp_mask & __GFP_NOFAIL) { 3857 /* 3858 * All existing users of the __GFP_NOFAIL are blockable, so warn 3859 * of any new users that actually require GFP_NOWAIT 3860 */ 3861 if (WARN_ON_ONCE(!can_direct_reclaim)) 3862 goto fail; 3863 3864 /* 3865 * PF_MEMALLOC request from this context is rather bizarre 3866 * because we cannot reclaim anything and only can loop waiting 3867 * for somebody to do a work for us 3868 */ 3869 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 3870 3871 /* 3872 * non failing costly orders are a hard requirement which we 3873 * are not prepared for much so let's warn about these users 3874 * so that we can identify them and convert them to something 3875 * else. 3876 */ 3877 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 3878 3879 /* 3880 * Help non-failing allocations by giving them access to memory 3881 * reserves but do not use ALLOC_NO_WATERMARKS because this 3882 * could deplete whole memory reserves which would just make 3883 * the situation worse 3884 */ 3885 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 3886 if (page) 3887 goto got_pg; 3888 3889 cond_resched(); 3890 goto retry; 3891 } 3892 fail: 3893 warn_alloc(gfp_mask, ac->nodemask, 3894 "page allocation failure: order:%u", order); 3895 got_pg: 3896 return page; 3897 } 3898 3899 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 3900 struct zonelist *zonelist, nodemask_t *nodemask, 3901 struct alloc_context *ac, gfp_t *alloc_mask, 3902 unsigned int *alloc_flags) 3903 { 3904 ac->high_zoneidx = gfp_zone(gfp_mask); 3905 ac->zonelist = zonelist; 3906 ac->nodemask = nodemask; 3907 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 3908 3909 if (cpusets_enabled()) { 3910 *alloc_mask |= __GFP_HARDWALL; 3911 if (!ac->nodemask) 3912 ac->nodemask = &cpuset_current_mems_allowed; 3913 else 3914 *alloc_flags |= ALLOC_CPUSET; 3915 } 3916 3917 lockdep_trace_alloc(gfp_mask); 3918 3919 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3920 3921 if (should_fail_alloc_page(gfp_mask, order)) 3922 return false; 3923 3924 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 3925 *alloc_flags |= ALLOC_CMA; 3926 3927 return true; 3928 } 3929 3930 /* Determine whether to spread dirty pages and what the first usable zone */ 3931 static inline void finalise_ac(gfp_t gfp_mask, 3932 unsigned int order, struct alloc_context *ac) 3933 { 3934 /* Dirty zone balancing only done in the fast path */ 3935 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3936 3937 /* 3938 * The preferred zone is used for statistics but crucially it is 3939 * also used as the starting point for the zonelist iterator. It 3940 * may get reset for allocations that ignore memory policies. 3941 */ 3942 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3943 ac->high_zoneidx, ac->nodemask); 3944 } 3945 3946 /* 3947 * This is the 'heart' of the zoned buddy allocator. 3948 */ 3949 struct page * 3950 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3951 struct zonelist *zonelist, nodemask_t *nodemask) 3952 { 3953 struct page *page; 3954 unsigned int alloc_flags = ALLOC_WMARK_LOW; 3955 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 3956 struct alloc_context ac = { }; 3957 3958 gfp_mask &= gfp_allowed_mask; 3959 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags)) 3960 return NULL; 3961 3962 finalise_ac(gfp_mask, order, &ac); 3963 3964 /* First allocation attempt */ 3965 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3966 if (likely(page)) 3967 goto out; 3968 3969 /* 3970 * Runtime PM, block IO and its error handling path can deadlock 3971 * because I/O on the device might not complete. 3972 */ 3973 alloc_mask = memalloc_noio_flags(gfp_mask); 3974 ac.spread_dirty_pages = false; 3975 3976 /* 3977 * Restore the original nodemask if it was potentially replaced with 3978 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 3979 */ 3980 if (unlikely(ac.nodemask != nodemask)) 3981 ac.nodemask = nodemask; 3982 3983 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3984 3985 out: 3986 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 3987 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 3988 __free_pages(page, order); 3989 page = NULL; 3990 } 3991 3992 if (kmemcheck_enabled && page) 3993 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3994 3995 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3996 3997 return page; 3998 } 3999 EXPORT_SYMBOL(__alloc_pages_nodemask); 4000 4001 /* 4002 * Common helper functions. 4003 */ 4004 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4005 { 4006 struct page *page; 4007 4008 /* 4009 * __get_free_pages() returns a 32-bit address, which cannot represent 4010 * a highmem page 4011 */ 4012 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4013 4014 page = alloc_pages(gfp_mask, order); 4015 if (!page) 4016 return 0; 4017 return (unsigned long) page_address(page); 4018 } 4019 EXPORT_SYMBOL(__get_free_pages); 4020 4021 unsigned long get_zeroed_page(gfp_t gfp_mask) 4022 { 4023 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4024 } 4025 EXPORT_SYMBOL(get_zeroed_page); 4026 4027 void __free_pages(struct page *page, unsigned int order) 4028 { 4029 if (put_page_testzero(page)) { 4030 if (order == 0) 4031 free_hot_cold_page(page, false); 4032 else 4033 __free_pages_ok(page, order); 4034 } 4035 } 4036 4037 EXPORT_SYMBOL(__free_pages); 4038 4039 void free_pages(unsigned long addr, unsigned int order) 4040 { 4041 if (addr != 0) { 4042 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4043 __free_pages(virt_to_page((void *)addr), order); 4044 } 4045 } 4046 4047 EXPORT_SYMBOL(free_pages); 4048 4049 /* 4050 * Page Fragment: 4051 * An arbitrary-length arbitrary-offset area of memory which resides 4052 * within a 0 or higher order page. Multiple fragments within that page 4053 * are individually refcounted, in the page's reference counter. 4054 * 4055 * The page_frag functions below provide a simple allocation framework for 4056 * page fragments. This is used by the network stack and network device 4057 * drivers to provide a backing region of memory for use as either an 4058 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4059 */ 4060 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4061 gfp_t gfp_mask) 4062 { 4063 struct page *page = NULL; 4064 gfp_t gfp = gfp_mask; 4065 4066 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4067 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4068 __GFP_NOMEMALLOC; 4069 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4070 PAGE_FRAG_CACHE_MAX_ORDER); 4071 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4072 #endif 4073 if (unlikely(!page)) 4074 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4075 4076 nc->va = page ? page_address(page) : NULL; 4077 4078 return page; 4079 } 4080 4081 void __page_frag_cache_drain(struct page *page, unsigned int count) 4082 { 4083 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4084 4085 if (page_ref_sub_and_test(page, count)) { 4086 unsigned int order = compound_order(page); 4087 4088 if (order == 0) 4089 free_hot_cold_page(page, false); 4090 else 4091 __free_pages_ok(page, order); 4092 } 4093 } 4094 EXPORT_SYMBOL(__page_frag_cache_drain); 4095 4096 void *page_frag_alloc(struct page_frag_cache *nc, 4097 unsigned int fragsz, gfp_t gfp_mask) 4098 { 4099 unsigned int size = PAGE_SIZE; 4100 struct page *page; 4101 int offset; 4102 4103 if (unlikely(!nc->va)) { 4104 refill: 4105 page = __page_frag_cache_refill(nc, gfp_mask); 4106 if (!page) 4107 return NULL; 4108 4109 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4110 /* if size can vary use size else just use PAGE_SIZE */ 4111 size = nc->size; 4112 #endif 4113 /* Even if we own the page, we do not use atomic_set(). 4114 * This would break get_page_unless_zero() users. 4115 */ 4116 page_ref_add(page, size - 1); 4117 4118 /* reset page count bias and offset to start of new frag */ 4119 nc->pfmemalloc = page_is_pfmemalloc(page); 4120 nc->pagecnt_bias = size; 4121 nc->offset = size; 4122 } 4123 4124 offset = nc->offset - fragsz; 4125 if (unlikely(offset < 0)) { 4126 page = virt_to_page(nc->va); 4127 4128 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4129 goto refill; 4130 4131 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4132 /* if size can vary use size else just use PAGE_SIZE */ 4133 size = nc->size; 4134 #endif 4135 /* OK, page count is 0, we can safely set it */ 4136 set_page_count(page, size); 4137 4138 /* reset page count bias and offset to start of new frag */ 4139 nc->pagecnt_bias = size; 4140 offset = size - fragsz; 4141 } 4142 4143 nc->pagecnt_bias--; 4144 nc->offset = offset; 4145 4146 return nc->va + offset; 4147 } 4148 EXPORT_SYMBOL(page_frag_alloc); 4149 4150 /* 4151 * Frees a page fragment allocated out of either a compound or order 0 page. 4152 */ 4153 void page_frag_free(void *addr) 4154 { 4155 struct page *page = virt_to_head_page(addr); 4156 4157 if (unlikely(put_page_testzero(page))) 4158 __free_pages_ok(page, compound_order(page)); 4159 } 4160 EXPORT_SYMBOL(page_frag_free); 4161 4162 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4163 size_t size) 4164 { 4165 if (addr) { 4166 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4167 unsigned long used = addr + PAGE_ALIGN(size); 4168 4169 split_page(virt_to_page((void *)addr), order); 4170 while (used < alloc_end) { 4171 free_page(used); 4172 used += PAGE_SIZE; 4173 } 4174 } 4175 return (void *)addr; 4176 } 4177 4178 /** 4179 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4180 * @size: the number of bytes to allocate 4181 * @gfp_mask: GFP flags for the allocation 4182 * 4183 * This function is similar to alloc_pages(), except that it allocates the 4184 * minimum number of pages to satisfy the request. alloc_pages() can only 4185 * allocate memory in power-of-two pages. 4186 * 4187 * This function is also limited by MAX_ORDER. 4188 * 4189 * Memory allocated by this function must be released by free_pages_exact(). 4190 */ 4191 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4192 { 4193 unsigned int order = get_order(size); 4194 unsigned long addr; 4195 4196 addr = __get_free_pages(gfp_mask, order); 4197 return make_alloc_exact(addr, order, size); 4198 } 4199 EXPORT_SYMBOL(alloc_pages_exact); 4200 4201 /** 4202 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4203 * pages on a node. 4204 * @nid: the preferred node ID where memory should be allocated 4205 * @size: the number of bytes to allocate 4206 * @gfp_mask: GFP flags for the allocation 4207 * 4208 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4209 * back. 4210 */ 4211 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4212 { 4213 unsigned int order = get_order(size); 4214 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4215 if (!p) 4216 return NULL; 4217 return make_alloc_exact((unsigned long)page_address(p), order, size); 4218 } 4219 4220 /** 4221 * free_pages_exact - release memory allocated via alloc_pages_exact() 4222 * @virt: the value returned by alloc_pages_exact. 4223 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4224 * 4225 * Release the memory allocated by a previous call to alloc_pages_exact. 4226 */ 4227 void free_pages_exact(void *virt, size_t size) 4228 { 4229 unsigned long addr = (unsigned long)virt; 4230 unsigned long end = addr + PAGE_ALIGN(size); 4231 4232 while (addr < end) { 4233 free_page(addr); 4234 addr += PAGE_SIZE; 4235 } 4236 } 4237 EXPORT_SYMBOL(free_pages_exact); 4238 4239 /** 4240 * nr_free_zone_pages - count number of pages beyond high watermark 4241 * @offset: The zone index of the highest zone 4242 * 4243 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4244 * high watermark within all zones at or below a given zone index. For each 4245 * zone, the number of pages is calculated as: 4246 * managed_pages - high_pages 4247 */ 4248 static unsigned long nr_free_zone_pages(int offset) 4249 { 4250 struct zoneref *z; 4251 struct zone *zone; 4252 4253 /* Just pick one node, since fallback list is circular */ 4254 unsigned long sum = 0; 4255 4256 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4257 4258 for_each_zone_zonelist(zone, z, zonelist, offset) { 4259 unsigned long size = zone->managed_pages; 4260 unsigned long high = high_wmark_pages(zone); 4261 if (size > high) 4262 sum += size - high; 4263 } 4264 4265 return sum; 4266 } 4267 4268 /** 4269 * nr_free_buffer_pages - count number of pages beyond high watermark 4270 * 4271 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4272 * watermark within ZONE_DMA and ZONE_NORMAL. 4273 */ 4274 unsigned long nr_free_buffer_pages(void) 4275 { 4276 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4277 } 4278 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4279 4280 /** 4281 * nr_free_pagecache_pages - count number of pages beyond high watermark 4282 * 4283 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4284 * high watermark within all zones. 4285 */ 4286 unsigned long nr_free_pagecache_pages(void) 4287 { 4288 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4289 } 4290 4291 static inline void show_node(struct zone *zone) 4292 { 4293 if (IS_ENABLED(CONFIG_NUMA)) 4294 printk("Node %d ", zone_to_nid(zone)); 4295 } 4296 4297 long si_mem_available(void) 4298 { 4299 long available; 4300 unsigned long pagecache; 4301 unsigned long wmark_low = 0; 4302 unsigned long pages[NR_LRU_LISTS]; 4303 struct zone *zone; 4304 int lru; 4305 4306 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4307 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4308 4309 for_each_zone(zone) 4310 wmark_low += zone->watermark[WMARK_LOW]; 4311 4312 /* 4313 * Estimate the amount of memory available for userspace allocations, 4314 * without causing swapping. 4315 */ 4316 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4317 4318 /* 4319 * Not all the page cache can be freed, otherwise the system will 4320 * start swapping. Assume at least half of the page cache, or the 4321 * low watermark worth of cache, needs to stay. 4322 */ 4323 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4324 pagecache -= min(pagecache / 2, wmark_low); 4325 available += pagecache; 4326 4327 /* 4328 * Part of the reclaimable slab consists of items that are in use, 4329 * and cannot be freed. Cap this estimate at the low watermark. 4330 */ 4331 available += global_page_state(NR_SLAB_RECLAIMABLE) - 4332 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 4333 4334 if (available < 0) 4335 available = 0; 4336 return available; 4337 } 4338 EXPORT_SYMBOL_GPL(si_mem_available); 4339 4340 void si_meminfo(struct sysinfo *val) 4341 { 4342 val->totalram = totalram_pages; 4343 val->sharedram = global_node_page_state(NR_SHMEM); 4344 val->freeram = global_page_state(NR_FREE_PAGES); 4345 val->bufferram = nr_blockdev_pages(); 4346 val->totalhigh = totalhigh_pages; 4347 val->freehigh = nr_free_highpages(); 4348 val->mem_unit = PAGE_SIZE; 4349 } 4350 4351 EXPORT_SYMBOL(si_meminfo); 4352 4353 #ifdef CONFIG_NUMA 4354 void si_meminfo_node(struct sysinfo *val, int nid) 4355 { 4356 int zone_type; /* needs to be signed */ 4357 unsigned long managed_pages = 0; 4358 unsigned long managed_highpages = 0; 4359 unsigned long free_highpages = 0; 4360 pg_data_t *pgdat = NODE_DATA(nid); 4361 4362 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4363 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4364 val->totalram = managed_pages; 4365 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4366 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4367 #ifdef CONFIG_HIGHMEM 4368 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4369 struct zone *zone = &pgdat->node_zones[zone_type]; 4370 4371 if (is_highmem(zone)) { 4372 managed_highpages += zone->managed_pages; 4373 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4374 } 4375 } 4376 val->totalhigh = managed_highpages; 4377 val->freehigh = free_highpages; 4378 #else 4379 val->totalhigh = managed_highpages; 4380 val->freehigh = free_highpages; 4381 #endif 4382 val->mem_unit = PAGE_SIZE; 4383 } 4384 #endif 4385 4386 /* 4387 * Determine whether the node should be displayed or not, depending on whether 4388 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4389 */ 4390 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4391 { 4392 if (!(flags & SHOW_MEM_FILTER_NODES)) 4393 return false; 4394 4395 /* 4396 * no node mask - aka implicit memory numa policy. Do not bother with 4397 * the synchronization - read_mems_allowed_begin - because we do not 4398 * have to be precise here. 4399 */ 4400 if (!nodemask) 4401 nodemask = &cpuset_current_mems_allowed; 4402 4403 return !node_isset(nid, *nodemask); 4404 } 4405 4406 #define K(x) ((x) << (PAGE_SHIFT-10)) 4407 4408 static void show_migration_types(unsigned char type) 4409 { 4410 static const char types[MIGRATE_TYPES] = { 4411 [MIGRATE_UNMOVABLE] = 'U', 4412 [MIGRATE_MOVABLE] = 'M', 4413 [MIGRATE_RECLAIMABLE] = 'E', 4414 [MIGRATE_HIGHATOMIC] = 'H', 4415 #ifdef CONFIG_CMA 4416 [MIGRATE_CMA] = 'C', 4417 #endif 4418 #ifdef CONFIG_MEMORY_ISOLATION 4419 [MIGRATE_ISOLATE] = 'I', 4420 #endif 4421 }; 4422 char tmp[MIGRATE_TYPES + 1]; 4423 char *p = tmp; 4424 int i; 4425 4426 for (i = 0; i < MIGRATE_TYPES; i++) { 4427 if (type & (1 << i)) 4428 *p++ = types[i]; 4429 } 4430 4431 *p = '\0'; 4432 printk(KERN_CONT "(%s) ", tmp); 4433 } 4434 4435 /* 4436 * Show free area list (used inside shift_scroll-lock stuff) 4437 * We also calculate the percentage fragmentation. We do this by counting the 4438 * memory on each free list with the exception of the first item on the list. 4439 * 4440 * Bits in @filter: 4441 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4442 * cpuset. 4443 */ 4444 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4445 { 4446 unsigned long free_pcp = 0; 4447 int cpu; 4448 struct zone *zone; 4449 pg_data_t *pgdat; 4450 4451 for_each_populated_zone(zone) { 4452 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4453 continue; 4454 4455 for_each_online_cpu(cpu) 4456 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4457 } 4458 4459 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4460 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4461 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4462 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4463 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4464 " free:%lu free_pcp:%lu free_cma:%lu\n", 4465 global_node_page_state(NR_ACTIVE_ANON), 4466 global_node_page_state(NR_INACTIVE_ANON), 4467 global_node_page_state(NR_ISOLATED_ANON), 4468 global_node_page_state(NR_ACTIVE_FILE), 4469 global_node_page_state(NR_INACTIVE_FILE), 4470 global_node_page_state(NR_ISOLATED_FILE), 4471 global_node_page_state(NR_UNEVICTABLE), 4472 global_node_page_state(NR_FILE_DIRTY), 4473 global_node_page_state(NR_WRITEBACK), 4474 global_node_page_state(NR_UNSTABLE_NFS), 4475 global_page_state(NR_SLAB_RECLAIMABLE), 4476 global_page_state(NR_SLAB_UNRECLAIMABLE), 4477 global_node_page_state(NR_FILE_MAPPED), 4478 global_node_page_state(NR_SHMEM), 4479 global_page_state(NR_PAGETABLE), 4480 global_page_state(NR_BOUNCE), 4481 global_page_state(NR_FREE_PAGES), 4482 free_pcp, 4483 global_page_state(NR_FREE_CMA_PAGES)); 4484 4485 for_each_online_pgdat(pgdat) { 4486 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4487 continue; 4488 4489 printk("Node %d" 4490 " active_anon:%lukB" 4491 " inactive_anon:%lukB" 4492 " active_file:%lukB" 4493 " inactive_file:%lukB" 4494 " unevictable:%lukB" 4495 " isolated(anon):%lukB" 4496 " isolated(file):%lukB" 4497 " mapped:%lukB" 4498 " dirty:%lukB" 4499 " writeback:%lukB" 4500 " shmem:%lukB" 4501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4502 " shmem_thp: %lukB" 4503 " shmem_pmdmapped: %lukB" 4504 " anon_thp: %lukB" 4505 #endif 4506 " writeback_tmp:%lukB" 4507 " unstable:%lukB" 4508 " pages_scanned:%lu" 4509 " all_unreclaimable? %s" 4510 "\n", 4511 pgdat->node_id, 4512 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4513 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4514 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4515 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4516 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4517 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4518 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4519 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4520 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4521 K(node_page_state(pgdat, NR_WRITEBACK)), 4522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4523 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4524 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4525 * HPAGE_PMD_NR), 4526 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4527 #endif 4528 K(node_page_state(pgdat, NR_SHMEM)), 4529 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4530 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4531 node_page_state(pgdat, NR_PAGES_SCANNED), 4532 !pgdat_reclaimable(pgdat) ? "yes" : "no"); 4533 } 4534 4535 for_each_populated_zone(zone) { 4536 int i; 4537 4538 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4539 continue; 4540 4541 free_pcp = 0; 4542 for_each_online_cpu(cpu) 4543 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4544 4545 show_node(zone); 4546 printk(KERN_CONT 4547 "%s" 4548 " free:%lukB" 4549 " min:%lukB" 4550 " low:%lukB" 4551 " high:%lukB" 4552 " active_anon:%lukB" 4553 " inactive_anon:%lukB" 4554 " active_file:%lukB" 4555 " inactive_file:%lukB" 4556 " unevictable:%lukB" 4557 " writepending:%lukB" 4558 " present:%lukB" 4559 " managed:%lukB" 4560 " mlocked:%lukB" 4561 " slab_reclaimable:%lukB" 4562 " slab_unreclaimable:%lukB" 4563 " kernel_stack:%lukB" 4564 " pagetables:%lukB" 4565 " bounce:%lukB" 4566 " free_pcp:%lukB" 4567 " local_pcp:%ukB" 4568 " free_cma:%lukB" 4569 "\n", 4570 zone->name, 4571 K(zone_page_state(zone, NR_FREE_PAGES)), 4572 K(min_wmark_pages(zone)), 4573 K(low_wmark_pages(zone)), 4574 K(high_wmark_pages(zone)), 4575 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4576 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4577 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4578 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4579 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4580 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4581 K(zone->present_pages), 4582 K(zone->managed_pages), 4583 K(zone_page_state(zone, NR_MLOCK)), 4584 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 4585 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 4586 zone_page_state(zone, NR_KERNEL_STACK_KB), 4587 K(zone_page_state(zone, NR_PAGETABLE)), 4588 K(zone_page_state(zone, NR_BOUNCE)), 4589 K(free_pcp), 4590 K(this_cpu_read(zone->pageset->pcp.count)), 4591 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4592 printk("lowmem_reserve[]:"); 4593 for (i = 0; i < MAX_NR_ZONES; i++) 4594 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4595 printk(KERN_CONT "\n"); 4596 } 4597 4598 for_each_populated_zone(zone) { 4599 unsigned int order; 4600 unsigned long nr[MAX_ORDER], flags, total = 0; 4601 unsigned char types[MAX_ORDER]; 4602 4603 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4604 continue; 4605 show_node(zone); 4606 printk(KERN_CONT "%s: ", zone->name); 4607 4608 spin_lock_irqsave(&zone->lock, flags); 4609 for (order = 0; order < MAX_ORDER; order++) { 4610 struct free_area *area = &zone->free_area[order]; 4611 int type; 4612 4613 nr[order] = area->nr_free; 4614 total += nr[order] << order; 4615 4616 types[order] = 0; 4617 for (type = 0; type < MIGRATE_TYPES; type++) { 4618 if (!list_empty(&area->free_list[type])) 4619 types[order] |= 1 << type; 4620 } 4621 } 4622 spin_unlock_irqrestore(&zone->lock, flags); 4623 for (order = 0; order < MAX_ORDER; order++) { 4624 printk(KERN_CONT "%lu*%lukB ", 4625 nr[order], K(1UL) << order); 4626 if (nr[order]) 4627 show_migration_types(types[order]); 4628 } 4629 printk(KERN_CONT "= %lukB\n", K(total)); 4630 } 4631 4632 hugetlb_show_meminfo(); 4633 4634 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4635 4636 show_swap_cache_info(); 4637 } 4638 4639 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4640 { 4641 zoneref->zone = zone; 4642 zoneref->zone_idx = zone_idx(zone); 4643 } 4644 4645 /* 4646 * Builds allocation fallback zone lists. 4647 * 4648 * Add all populated zones of a node to the zonelist. 4649 */ 4650 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4651 int nr_zones) 4652 { 4653 struct zone *zone; 4654 enum zone_type zone_type = MAX_NR_ZONES; 4655 4656 do { 4657 zone_type--; 4658 zone = pgdat->node_zones + zone_type; 4659 if (managed_zone(zone)) { 4660 zoneref_set_zone(zone, 4661 &zonelist->_zonerefs[nr_zones++]); 4662 check_highest_zone(zone_type); 4663 } 4664 } while (zone_type); 4665 4666 return nr_zones; 4667 } 4668 4669 4670 /* 4671 * zonelist_order: 4672 * 0 = automatic detection of better ordering. 4673 * 1 = order by ([node] distance, -zonetype) 4674 * 2 = order by (-zonetype, [node] distance) 4675 * 4676 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4677 * the same zonelist. So only NUMA can configure this param. 4678 */ 4679 #define ZONELIST_ORDER_DEFAULT 0 4680 #define ZONELIST_ORDER_NODE 1 4681 #define ZONELIST_ORDER_ZONE 2 4682 4683 /* zonelist order in the kernel. 4684 * set_zonelist_order() will set this to NODE or ZONE. 4685 */ 4686 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4687 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4688 4689 4690 #ifdef CONFIG_NUMA 4691 /* The value user specified ....changed by config */ 4692 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4693 /* string for sysctl */ 4694 #define NUMA_ZONELIST_ORDER_LEN 16 4695 char numa_zonelist_order[16] = "default"; 4696 4697 /* 4698 * interface for configure zonelist ordering. 4699 * command line option "numa_zonelist_order" 4700 * = "[dD]efault - default, automatic configuration. 4701 * = "[nN]ode - order by node locality, then by zone within node 4702 * = "[zZ]one - order by zone, then by locality within zone 4703 */ 4704 4705 static int __parse_numa_zonelist_order(char *s) 4706 { 4707 if (*s == 'd' || *s == 'D') { 4708 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4709 } else if (*s == 'n' || *s == 'N') { 4710 user_zonelist_order = ZONELIST_ORDER_NODE; 4711 } else if (*s == 'z' || *s == 'Z') { 4712 user_zonelist_order = ZONELIST_ORDER_ZONE; 4713 } else { 4714 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4715 return -EINVAL; 4716 } 4717 return 0; 4718 } 4719 4720 static __init int setup_numa_zonelist_order(char *s) 4721 { 4722 int ret; 4723 4724 if (!s) 4725 return 0; 4726 4727 ret = __parse_numa_zonelist_order(s); 4728 if (ret == 0) 4729 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4730 4731 return ret; 4732 } 4733 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4734 4735 /* 4736 * sysctl handler for numa_zonelist_order 4737 */ 4738 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4739 void __user *buffer, size_t *length, 4740 loff_t *ppos) 4741 { 4742 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4743 int ret; 4744 static DEFINE_MUTEX(zl_order_mutex); 4745 4746 mutex_lock(&zl_order_mutex); 4747 if (write) { 4748 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4749 ret = -EINVAL; 4750 goto out; 4751 } 4752 strcpy(saved_string, (char *)table->data); 4753 } 4754 ret = proc_dostring(table, write, buffer, length, ppos); 4755 if (ret) 4756 goto out; 4757 if (write) { 4758 int oldval = user_zonelist_order; 4759 4760 ret = __parse_numa_zonelist_order((char *)table->data); 4761 if (ret) { 4762 /* 4763 * bogus value. restore saved string 4764 */ 4765 strncpy((char *)table->data, saved_string, 4766 NUMA_ZONELIST_ORDER_LEN); 4767 user_zonelist_order = oldval; 4768 } else if (oldval != user_zonelist_order) { 4769 mutex_lock(&zonelists_mutex); 4770 build_all_zonelists(NULL, NULL); 4771 mutex_unlock(&zonelists_mutex); 4772 } 4773 } 4774 out: 4775 mutex_unlock(&zl_order_mutex); 4776 return ret; 4777 } 4778 4779 4780 #define MAX_NODE_LOAD (nr_online_nodes) 4781 static int node_load[MAX_NUMNODES]; 4782 4783 /** 4784 * find_next_best_node - find the next node that should appear in a given node's fallback list 4785 * @node: node whose fallback list we're appending 4786 * @used_node_mask: nodemask_t of already used nodes 4787 * 4788 * We use a number of factors to determine which is the next node that should 4789 * appear on a given node's fallback list. The node should not have appeared 4790 * already in @node's fallback list, and it should be the next closest node 4791 * according to the distance array (which contains arbitrary distance values 4792 * from each node to each node in the system), and should also prefer nodes 4793 * with no CPUs, since presumably they'll have very little allocation pressure 4794 * on them otherwise. 4795 * It returns -1 if no node is found. 4796 */ 4797 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4798 { 4799 int n, val; 4800 int min_val = INT_MAX; 4801 int best_node = NUMA_NO_NODE; 4802 const struct cpumask *tmp = cpumask_of_node(0); 4803 4804 /* Use the local node if we haven't already */ 4805 if (!node_isset(node, *used_node_mask)) { 4806 node_set(node, *used_node_mask); 4807 return node; 4808 } 4809 4810 for_each_node_state(n, N_MEMORY) { 4811 4812 /* Don't want a node to appear more than once */ 4813 if (node_isset(n, *used_node_mask)) 4814 continue; 4815 4816 /* Use the distance array to find the distance */ 4817 val = node_distance(node, n); 4818 4819 /* Penalize nodes under us ("prefer the next node") */ 4820 val += (n < node); 4821 4822 /* Give preference to headless and unused nodes */ 4823 tmp = cpumask_of_node(n); 4824 if (!cpumask_empty(tmp)) 4825 val += PENALTY_FOR_NODE_WITH_CPUS; 4826 4827 /* Slight preference for less loaded node */ 4828 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4829 val += node_load[n]; 4830 4831 if (val < min_val) { 4832 min_val = val; 4833 best_node = n; 4834 } 4835 } 4836 4837 if (best_node >= 0) 4838 node_set(best_node, *used_node_mask); 4839 4840 return best_node; 4841 } 4842 4843 4844 /* 4845 * Build zonelists ordered by node and zones within node. 4846 * This results in maximum locality--normal zone overflows into local 4847 * DMA zone, if any--but risks exhausting DMA zone. 4848 */ 4849 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4850 { 4851 int j; 4852 struct zonelist *zonelist; 4853 4854 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4855 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4856 ; 4857 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4858 zonelist->_zonerefs[j].zone = NULL; 4859 zonelist->_zonerefs[j].zone_idx = 0; 4860 } 4861 4862 /* 4863 * Build gfp_thisnode zonelists 4864 */ 4865 static void build_thisnode_zonelists(pg_data_t *pgdat) 4866 { 4867 int j; 4868 struct zonelist *zonelist; 4869 4870 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK]; 4871 j = build_zonelists_node(pgdat, zonelist, 0); 4872 zonelist->_zonerefs[j].zone = NULL; 4873 zonelist->_zonerefs[j].zone_idx = 0; 4874 } 4875 4876 /* 4877 * Build zonelists ordered by zone and nodes within zones. 4878 * This results in conserving DMA zone[s] until all Normal memory is 4879 * exhausted, but results in overflowing to remote node while memory 4880 * may still exist in local DMA zone. 4881 */ 4882 static int node_order[MAX_NUMNODES]; 4883 4884 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4885 { 4886 int pos, j, node; 4887 int zone_type; /* needs to be signed */ 4888 struct zone *z; 4889 struct zonelist *zonelist; 4890 4891 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4892 pos = 0; 4893 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4894 for (j = 0; j < nr_nodes; j++) { 4895 node = node_order[j]; 4896 z = &NODE_DATA(node)->node_zones[zone_type]; 4897 if (managed_zone(z)) { 4898 zoneref_set_zone(z, 4899 &zonelist->_zonerefs[pos++]); 4900 check_highest_zone(zone_type); 4901 } 4902 } 4903 } 4904 zonelist->_zonerefs[pos].zone = NULL; 4905 zonelist->_zonerefs[pos].zone_idx = 0; 4906 } 4907 4908 #if defined(CONFIG_64BIT) 4909 /* 4910 * Devices that require DMA32/DMA are relatively rare and do not justify a 4911 * penalty to every machine in case the specialised case applies. Default 4912 * to Node-ordering on 64-bit NUMA machines 4913 */ 4914 static int default_zonelist_order(void) 4915 { 4916 return ZONELIST_ORDER_NODE; 4917 } 4918 #else 4919 /* 4920 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4921 * by the kernel. If processes running on node 0 deplete the low memory zone 4922 * then reclaim will occur more frequency increasing stalls and potentially 4923 * be easier to OOM if a large percentage of the zone is under writeback or 4924 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4925 * Hence, default to zone ordering on 32-bit. 4926 */ 4927 static int default_zonelist_order(void) 4928 { 4929 return ZONELIST_ORDER_ZONE; 4930 } 4931 #endif /* CONFIG_64BIT */ 4932 4933 static void set_zonelist_order(void) 4934 { 4935 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4936 current_zonelist_order = default_zonelist_order(); 4937 else 4938 current_zonelist_order = user_zonelist_order; 4939 } 4940 4941 static void build_zonelists(pg_data_t *pgdat) 4942 { 4943 int i, node, load; 4944 nodemask_t used_mask; 4945 int local_node, prev_node; 4946 struct zonelist *zonelist; 4947 unsigned int order = current_zonelist_order; 4948 4949 /* initialize zonelists */ 4950 for (i = 0; i < MAX_ZONELISTS; i++) { 4951 zonelist = pgdat->node_zonelists + i; 4952 zonelist->_zonerefs[0].zone = NULL; 4953 zonelist->_zonerefs[0].zone_idx = 0; 4954 } 4955 4956 /* NUMA-aware ordering of nodes */ 4957 local_node = pgdat->node_id; 4958 load = nr_online_nodes; 4959 prev_node = local_node; 4960 nodes_clear(used_mask); 4961 4962 memset(node_order, 0, sizeof(node_order)); 4963 i = 0; 4964 4965 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4966 /* 4967 * We don't want to pressure a particular node. 4968 * So adding penalty to the first node in same 4969 * distance group to make it round-robin. 4970 */ 4971 if (node_distance(local_node, node) != 4972 node_distance(local_node, prev_node)) 4973 node_load[node] = load; 4974 4975 prev_node = node; 4976 load--; 4977 if (order == ZONELIST_ORDER_NODE) 4978 build_zonelists_in_node_order(pgdat, node); 4979 else 4980 node_order[i++] = node; /* remember order */ 4981 } 4982 4983 if (order == ZONELIST_ORDER_ZONE) { 4984 /* calculate node order -- i.e., DMA last! */ 4985 build_zonelists_in_zone_order(pgdat, i); 4986 } 4987 4988 build_thisnode_zonelists(pgdat); 4989 } 4990 4991 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4992 /* 4993 * Return node id of node used for "local" allocations. 4994 * I.e., first node id of first zone in arg node's generic zonelist. 4995 * Used for initializing percpu 'numa_mem', which is used primarily 4996 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4997 */ 4998 int local_memory_node(int node) 4999 { 5000 struct zoneref *z; 5001 5002 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5003 gfp_zone(GFP_KERNEL), 5004 NULL); 5005 return z->zone->node; 5006 } 5007 #endif 5008 5009 static void setup_min_unmapped_ratio(void); 5010 static void setup_min_slab_ratio(void); 5011 #else /* CONFIG_NUMA */ 5012 5013 static void set_zonelist_order(void) 5014 { 5015 current_zonelist_order = ZONELIST_ORDER_ZONE; 5016 } 5017 5018 static void build_zonelists(pg_data_t *pgdat) 5019 { 5020 int node, local_node; 5021 enum zone_type j; 5022 struct zonelist *zonelist; 5023 5024 local_node = pgdat->node_id; 5025 5026 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5027 j = build_zonelists_node(pgdat, zonelist, 0); 5028 5029 /* 5030 * Now we build the zonelist so that it contains the zones 5031 * of all the other nodes. 5032 * We don't want to pressure a particular node, so when 5033 * building the zones for node N, we make sure that the 5034 * zones coming right after the local ones are those from 5035 * node N+1 (modulo N) 5036 */ 5037 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5038 if (!node_online(node)) 5039 continue; 5040 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5041 } 5042 for (node = 0; node < local_node; node++) { 5043 if (!node_online(node)) 5044 continue; 5045 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5046 } 5047 5048 zonelist->_zonerefs[j].zone = NULL; 5049 zonelist->_zonerefs[j].zone_idx = 0; 5050 } 5051 5052 #endif /* CONFIG_NUMA */ 5053 5054 /* 5055 * Boot pageset table. One per cpu which is going to be used for all 5056 * zones and all nodes. The parameters will be set in such a way 5057 * that an item put on a list will immediately be handed over to 5058 * the buddy list. This is safe since pageset manipulation is done 5059 * with interrupts disabled. 5060 * 5061 * The boot_pagesets must be kept even after bootup is complete for 5062 * unused processors and/or zones. They do play a role for bootstrapping 5063 * hotplugged processors. 5064 * 5065 * zoneinfo_show() and maybe other functions do 5066 * not check if the processor is online before following the pageset pointer. 5067 * Other parts of the kernel may not check if the zone is available. 5068 */ 5069 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5070 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5071 static void setup_zone_pageset(struct zone *zone); 5072 5073 /* 5074 * Global mutex to protect against size modification of zonelists 5075 * as well as to serialize pageset setup for the new populated zone. 5076 */ 5077 DEFINE_MUTEX(zonelists_mutex); 5078 5079 /* return values int ....just for stop_machine() */ 5080 static int __build_all_zonelists(void *data) 5081 { 5082 int nid; 5083 int cpu; 5084 pg_data_t *self = data; 5085 5086 #ifdef CONFIG_NUMA 5087 memset(node_load, 0, sizeof(node_load)); 5088 #endif 5089 5090 if (self && !node_online(self->node_id)) { 5091 build_zonelists(self); 5092 } 5093 5094 for_each_online_node(nid) { 5095 pg_data_t *pgdat = NODE_DATA(nid); 5096 5097 build_zonelists(pgdat); 5098 } 5099 5100 /* 5101 * Initialize the boot_pagesets that are going to be used 5102 * for bootstrapping processors. The real pagesets for 5103 * each zone will be allocated later when the per cpu 5104 * allocator is available. 5105 * 5106 * boot_pagesets are used also for bootstrapping offline 5107 * cpus if the system is already booted because the pagesets 5108 * are needed to initialize allocators on a specific cpu too. 5109 * F.e. the percpu allocator needs the page allocator which 5110 * needs the percpu allocator in order to allocate its pagesets 5111 * (a chicken-egg dilemma). 5112 */ 5113 for_each_possible_cpu(cpu) { 5114 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5115 5116 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5117 /* 5118 * We now know the "local memory node" for each node-- 5119 * i.e., the node of the first zone in the generic zonelist. 5120 * Set up numa_mem percpu variable for on-line cpus. During 5121 * boot, only the boot cpu should be on-line; we'll init the 5122 * secondary cpus' numa_mem as they come on-line. During 5123 * node/memory hotplug, we'll fixup all on-line cpus. 5124 */ 5125 if (cpu_online(cpu)) 5126 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5127 #endif 5128 } 5129 5130 return 0; 5131 } 5132 5133 static noinline void __init 5134 build_all_zonelists_init(void) 5135 { 5136 __build_all_zonelists(NULL); 5137 mminit_verify_zonelist(); 5138 cpuset_init_current_mems_allowed(); 5139 } 5140 5141 /* 5142 * Called with zonelists_mutex held always 5143 * unless system_state == SYSTEM_BOOTING. 5144 * 5145 * __ref due to (1) call of __meminit annotated setup_zone_pageset 5146 * [we're only called with non-NULL zone through __meminit paths] and 5147 * (2) call of __init annotated helper build_all_zonelists_init 5148 * [protected by SYSTEM_BOOTING]. 5149 */ 5150 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 5151 { 5152 set_zonelist_order(); 5153 5154 if (system_state == SYSTEM_BOOTING) { 5155 build_all_zonelists_init(); 5156 } else { 5157 #ifdef CONFIG_MEMORY_HOTPLUG 5158 if (zone) 5159 setup_zone_pageset(zone); 5160 #endif 5161 /* we have to stop all cpus to guarantee there is no user 5162 of zonelist */ 5163 stop_machine(__build_all_zonelists, pgdat, NULL); 5164 /* cpuset refresh routine should be here */ 5165 } 5166 vm_total_pages = nr_free_pagecache_pages(); 5167 /* 5168 * Disable grouping by mobility if the number of pages in the 5169 * system is too low to allow the mechanism to work. It would be 5170 * more accurate, but expensive to check per-zone. This check is 5171 * made on memory-hotadd so a system can start with mobility 5172 * disabled and enable it later 5173 */ 5174 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5175 page_group_by_mobility_disabled = 1; 5176 else 5177 page_group_by_mobility_disabled = 0; 5178 5179 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 5180 nr_online_nodes, 5181 zonelist_order_name[current_zonelist_order], 5182 page_group_by_mobility_disabled ? "off" : "on", 5183 vm_total_pages); 5184 #ifdef CONFIG_NUMA 5185 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5186 #endif 5187 } 5188 5189 /* 5190 * Initially all pages are reserved - free ones are freed 5191 * up by free_all_bootmem() once the early boot process is 5192 * done. Non-atomic initialization, single-pass. 5193 */ 5194 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5195 unsigned long start_pfn, enum memmap_context context) 5196 { 5197 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5198 unsigned long end_pfn = start_pfn + size; 5199 pg_data_t *pgdat = NODE_DATA(nid); 5200 unsigned long pfn; 5201 unsigned long nr_initialised = 0; 5202 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5203 struct memblock_region *r = NULL, *tmp; 5204 #endif 5205 5206 if (highest_memmap_pfn < end_pfn - 1) 5207 highest_memmap_pfn = end_pfn - 1; 5208 5209 /* 5210 * Honor reservation requested by the driver for this ZONE_DEVICE 5211 * memory 5212 */ 5213 if (altmap && start_pfn == altmap->base_pfn) 5214 start_pfn += altmap->reserve; 5215 5216 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5217 /* 5218 * There can be holes in boot-time mem_map[]s handed to this 5219 * function. They do not exist on hotplugged memory. 5220 */ 5221 if (context != MEMMAP_EARLY) 5222 goto not_early; 5223 5224 if (!early_pfn_valid(pfn)) { 5225 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5226 /* 5227 * Skip to the pfn preceding the next valid one (or 5228 * end_pfn), such that we hit a valid pfn (or end_pfn) 5229 * on our next iteration of the loop. 5230 */ 5231 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5232 #endif 5233 continue; 5234 } 5235 if (!early_pfn_in_nid(pfn, nid)) 5236 continue; 5237 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5238 break; 5239 5240 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5241 /* 5242 * Check given memblock attribute by firmware which can affect 5243 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5244 * mirrored, it's an overlapped memmap init. skip it. 5245 */ 5246 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5247 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5248 for_each_memblock(memory, tmp) 5249 if (pfn < memblock_region_memory_end_pfn(tmp)) 5250 break; 5251 r = tmp; 5252 } 5253 if (pfn >= memblock_region_memory_base_pfn(r) && 5254 memblock_is_mirror(r)) { 5255 /* already initialized as NORMAL */ 5256 pfn = memblock_region_memory_end_pfn(r); 5257 continue; 5258 } 5259 } 5260 #endif 5261 5262 not_early: 5263 /* 5264 * Mark the block movable so that blocks are reserved for 5265 * movable at startup. This will force kernel allocations 5266 * to reserve their blocks rather than leaking throughout 5267 * the address space during boot when many long-lived 5268 * kernel allocations are made. 5269 * 5270 * bitmap is created for zone's valid pfn range. but memmap 5271 * can be created for invalid pages (for alignment) 5272 * check here not to call set_pageblock_migratetype() against 5273 * pfn out of zone. 5274 */ 5275 if (!(pfn & (pageblock_nr_pages - 1))) { 5276 struct page *page = pfn_to_page(pfn); 5277 5278 __init_single_page(page, pfn, zone, nid); 5279 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5280 } else { 5281 __init_single_pfn(pfn, zone, nid); 5282 } 5283 } 5284 } 5285 5286 static void __meminit zone_init_free_lists(struct zone *zone) 5287 { 5288 unsigned int order, t; 5289 for_each_migratetype_order(order, t) { 5290 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5291 zone->free_area[order].nr_free = 0; 5292 } 5293 } 5294 5295 #ifndef __HAVE_ARCH_MEMMAP_INIT 5296 #define memmap_init(size, nid, zone, start_pfn) \ 5297 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5298 #endif 5299 5300 static int zone_batchsize(struct zone *zone) 5301 { 5302 #ifdef CONFIG_MMU 5303 int batch; 5304 5305 /* 5306 * The per-cpu-pages pools are set to around 1000th of the 5307 * size of the zone. But no more than 1/2 of a meg. 5308 * 5309 * OK, so we don't know how big the cache is. So guess. 5310 */ 5311 batch = zone->managed_pages / 1024; 5312 if (batch * PAGE_SIZE > 512 * 1024) 5313 batch = (512 * 1024) / PAGE_SIZE; 5314 batch /= 4; /* We effectively *= 4 below */ 5315 if (batch < 1) 5316 batch = 1; 5317 5318 /* 5319 * Clamp the batch to a 2^n - 1 value. Having a power 5320 * of 2 value was found to be more likely to have 5321 * suboptimal cache aliasing properties in some cases. 5322 * 5323 * For example if 2 tasks are alternately allocating 5324 * batches of pages, one task can end up with a lot 5325 * of pages of one half of the possible page colors 5326 * and the other with pages of the other colors. 5327 */ 5328 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5329 5330 return batch; 5331 5332 #else 5333 /* The deferral and batching of frees should be suppressed under NOMMU 5334 * conditions. 5335 * 5336 * The problem is that NOMMU needs to be able to allocate large chunks 5337 * of contiguous memory as there's no hardware page translation to 5338 * assemble apparent contiguous memory from discontiguous pages. 5339 * 5340 * Queueing large contiguous runs of pages for batching, however, 5341 * causes the pages to actually be freed in smaller chunks. As there 5342 * can be a significant delay between the individual batches being 5343 * recycled, this leads to the once large chunks of space being 5344 * fragmented and becoming unavailable for high-order allocations. 5345 */ 5346 return 0; 5347 #endif 5348 } 5349 5350 /* 5351 * pcp->high and pcp->batch values are related and dependent on one another: 5352 * ->batch must never be higher then ->high. 5353 * The following function updates them in a safe manner without read side 5354 * locking. 5355 * 5356 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5357 * those fields changing asynchronously (acording the the above rule). 5358 * 5359 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5360 * outside of boot time (or some other assurance that no concurrent updaters 5361 * exist). 5362 */ 5363 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5364 unsigned long batch) 5365 { 5366 /* start with a fail safe value for batch */ 5367 pcp->batch = 1; 5368 smp_wmb(); 5369 5370 /* Update high, then batch, in order */ 5371 pcp->high = high; 5372 smp_wmb(); 5373 5374 pcp->batch = batch; 5375 } 5376 5377 /* a companion to pageset_set_high() */ 5378 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5379 { 5380 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5381 } 5382 5383 static void pageset_init(struct per_cpu_pageset *p) 5384 { 5385 struct per_cpu_pages *pcp; 5386 int migratetype; 5387 5388 memset(p, 0, sizeof(*p)); 5389 5390 pcp = &p->pcp; 5391 pcp->count = 0; 5392 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5393 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5394 } 5395 5396 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5397 { 5398 pageset_init(p); 5399 pageset_set_batch(p, batch); 5400 } 5401 5402 /* 5403 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5404 * to the value high for the pageset p. 5405 */ 5406 static void pageset_set_high(struct per_cpu_pageset *p, 5407 unsigned long high) 5408 { 5409 unsigned long batch = max(1UL, high / 4); 5410 if ((high / 4) > (PAGE_SHIFT * 8)) 5411 batch = PAGE_SHIFT * 8; 5412 5413 pageset_update(&p->pcp, high, batch); 5414 } 5415 5416 static void pageset_set_high_and_batch(struct zone *zone, 5417 struct per_cpu_pageset *pcp) 5418 { 5419 if (percpu_pagelist_fraction) 5420 pageset_set_high(pcp, 5421 (zone->managed_pages / 5422 percpu_pagelist_fraction)); 5423 else 5424 pageset_set_batch(pcp, zone_batchsize(zone)); 5425 } 5426 5427 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5428 { 5429 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5430 5431 pageset_init(pcp); 5432 pageset_set_high_and_batch(zone, pcp); 5433 } 5434 5435 static void __meminit setup_zone_pageset(struct zone *zone) 5436 { 5437 int cpu; 5438 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5439 for_each_possible_cpu(cpu) 5440 zone_pageset_init(zone, cpu); 5441 } 5442 5443 /* 5444 * Allocate per cpu pagesets and initialize them. 5445 * Before this call only boot pagesets were available. 5446 */ 5447 void __init setup_per_cpu_pageset(void) 5448 { 5449 struct pglist_data *pgdat; 5450 struct zone *zone; 5451 5452 for_each_populated_zone(zone) 5453 setup_zone_pageset(zone); 5454 5455 for_each_online_pgdat(pgdat) 5456 pgdat->per_cpu_nodestats = 5457 alloc_percpu(struct per_cpu_nodestat); 5458 } 5459 5460 static __meminit void zone_pcp_init(struct zone *zone) 5461 { 5462 /* 5463 * per cpu subsystem is not up at this point. The following code 5464 * relies on the ability of the linker to provide the 5465 * offset of a (static) per cpu variable into the per cpu area. 5466 */ 5467 zone->pageset = &boot_pageset; 5468 5469 if (populated_zone(zone)) 5470 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5471 zone->name, zone->present_pages, 5472 zone_batchsize(zone)); 5473 } 5474 5475 int __meminit init_currently_empty_zone(struct zone *zone, 5476 unsigned long zone_start_pfn, 5477 unsigned long size) 5478 { 5479 struct pglist_data *pgdat = zone->zone_pgdat; 5480 5481 pgdat->nr_zones = zone_idx(zone) + 1; 5482 5483 zone->zone_start_pfn = zone_start_pfn; 5484 5485 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5486 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5487 pgdat->node_id, 5488 (unsigned long)zone_idx(zone), 5489 zone_start_pfn, (zone_start_pfn + size)); 5490 5491 zone_init_free_lists(zone); 5492 zone->initialized = 1; 5493 5494 return 0; 5495 } 5496 5497 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5498 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5499 5500 /* 5501 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5502 */ 5503 int __meminit __early_pfn_to_nid(unsigned long pfn, 5504 struct mminit_pfnnid_cache *state) 5505 { 5506 unsigned long start_pfn, end_pfn; 5507 int nid; 5508 5509 if (state->last_start <= pfn && pfn < state->last_end) 5510 return state->last_nid; 5511 5512 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5513 if (nid != -1) { 5514 state->last_start = start_pfn; 5515 state->last_end = end_pfn; 5516 state->last_nid = nid; 5517 } 5518 5519 return nid; 5520 } 5521 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5522 5523 /** 5524 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5525 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5526 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5527 * 5528 * If an architecture guarantees that all ranges registered contain no holes 5529 * and may be freed, this this function may be used instead of calling 5530 * memblock_free_early_nid() manually. 5531 */ 5532 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5533 { 5534 unsigned long start_pfn, end_pfn; 5535 int i, this_nid; 5536 5537 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5538 start_pfn = min(start_pfn, max_low_pfn); 5539 end_pfn = min(end_pfn, max_low_pfn); 5540 5541 if (start_pfn < end_pfn) 5542 memblock_free_early_nid(PFN_PHYS(start_pfn), 5543 (end_pfn - start_pfn) << PAGE_SHIFT, 5544 this_nid); 5545 } 5546 } 5547 5548 /** 5549 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5550 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5551 * 5552 * If an architecture guarantees that all ranges registered contain no holes and may 5553 * be freed, this function may be used instead of calling memory_present() manually. 5554 */ 5555 void __init sparse_memory_present_with_active_regions(int nid) 5556 { 5557 unsigned long start_pfn, end_pfn; 5558 int i, this_nid; 5559 5560 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5561 memory_present(this_nid, start_pfn, end_pfn); 5562 } 5563 5564 /** 5565 * get_pfn_range_for_nid - Return the start and end page frames for a node 5566 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5567 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5568 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5569 * 5570 * It returns the start and end page frame of a node based on information 5571 * provided by memblock_set_node(). If called for a node 5572 * with no available memory, a warning is printed and the start and end 5573 * PFNs will be 0. 5574 */ 5575 void __meminit get_pfn_range_for_nid(unsigned int nid, 5576 unsigned long *start_pfn, unsigned long *end_pfn) 5577 { 5578 unsigned long this_start_pfn, this_end_pfn; 5579 int i; 5580 5581 *start_pfn = -1UL; 5582 *end_pfn = 0; 5583 5584 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5585 *start_pfn = min(*start_pfn, this_start_pfn); 5586 *end_pfn = max(*end_pfn, this_end_pfn); 5587 } 5588 5589 if (*start_pfn == -1UL) 5590 *start_pfn = 0; 5591 } 5592 5593 /* 5594 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5595 * assumption is made that zones within a node are ordered in monotonic 5596 * increasing memory addresses so that the "highest" populated zone is used 5597 */ 5598 static void __init find_usable_zone_for_movable(void) 5599 { 5600 int zone_index; 5601 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5602 if (zone_index == ZONE_MOVABLE) 5603 continue; 5604 5605 if (arch_zone_highest_possible_pfn[zone_index] > 5606 arch_zone_lowest_possible_pfn[zone_index]) 5607 break; 5608 } 5609 5610 VM_BUG_ON(zone_index == -1); 5611 movable_zone = zone_index; 5612 } 5613 5614 /* 5615 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5616 * because it is sized independent of architecture. Unlike the other zones, 5617 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5618 * in each node depending on the size of each node and how evenly kernelcore 5619 * is distributed. This helper function adjusts the zone ranges 5620 * provided by the architecture for a given node by using the end of the 5621 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5622 * zones within a node are in order of monotonic increases memory addresses 5623 */ 5624 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5625 unsigned long zone_type, 5626 unsigned long node_start_pfn, 5627 unsigned long node_end_pfn, 5628 unsigned long *zone_start_pfn, 5629 unsigned long *zone_end_pfn) 5630 { 5631 /* Only adjust if ZONE_MOVABLE is on this node */ 5632 if (zone_movable_pfn[nid]) { 5633 /* Size ZONE_MOVABLE */ 5634 if (zone_type == ZONE_MOVABLE) { 5635 *zone_start_pfn = zone_movable_pfn[nid]; 5636 *zone_end_pfn = min(node_end_pfn, 5637 arch_zone_highest_possible_pfn[movable_zone]); 5638 5639 /* Adjust for ZONE_MOVABLE starting within this range */ 5640 } else if (!mirrored_kernelcore && 5641 *zone_start_pfn < zone_movable_pfn[nid] && 5642 *zone_end_pfn > zone_movable_pfn[nid]) { 5643 *zone_end_pfn = zone_movable_pfn[nid]; 5644 5645 /* Check if this whole range is within ZONE_MOVABLE */ 5646 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5647 *zone_start_pfn = *zone_end_pfn; 5648 } 5649 } 5650 5651 /* 5652 * Return the number of pages a zone spans in a node, including holes 5653 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5654 */ 5655 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5656 unsigned long zone_type, 5657 unsigned long node_start_pfn, 5658 unsigned long node_end_pfn, 5659 unsigned long *zone_start_pfn, 5660 unsigned long *zone_end_pfn, 5661 unsigned long *ignored) 5662 { 5663 /* When hotadd a new node from cpu_up(), the node should be empty */ 5664 if (!node_start_pfn && !node_end_pfn) 5665 return 0; 5666 5667 /* Get the start and end of the zone */ 5668 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5669 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5670 adjust_zone_range_for_zone_movable(nid, zone_type, 5671 node_start_pfn, node_end_pfn, 5672 zone_start_pfn, zone_end_pfn); 5673 5674 /* Check that this node has pages within the zone's required range */ 5675 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5676 return 0; 5677 5678 /* Move the zone boundaries inside the node if necessary */ 5679 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5680 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5681 5682 /* Return the spanned pages */ 5683 return *zone_end_pfn - *zone_start_pfn; 5684 } 5685 5686 /* 5687 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5688 * then all holes in the requested range will be accounted for. 5689 */ 5690 unsigned long __meminit __absent_pages_in_range(int nid, 5691 unsigned long range_start_pfn, 5692 unsigned long range_end_pfn) 5693 { 5694 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5695 unsigned long start_pfn, end_pfn; 5696 int i; 5697 5698 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5699 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5700 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5701 nr_absent -= end_pfn - start_pfn; 5702 } 5703 return nr_absent; 5704 } 5705 5706 /** 5707 * absent_pages_in_range - Return number of page frames in holes within a range 5708 * @start_pfn: The start PFN to start searching for holes 5709 * @end_pfn: The end PFN to stop searching for holes 5710 * 5711 * It returns the number of pages frames in memory holes within a range. 5712 */ 5713 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5714 unsigned long end_pfn) 5715 { 5716 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5717 } 5718 5719 /* Return the number of page frames in holes in a zone on a node */ 5720 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5721 unsigned long zone_type, 5722 unsigned long node_start_pfn, 5723 unsigned long node_end_pfn, 5724 unsigned long *ignored) 5725 { 5726 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5727 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5728 unsigned long zone_start_pfn, zone_end_pfn; 5729 unsigned long nr_absent; 5730 5731 /* When hotadd a new node from cpu_up(), the node should be empty */ 5732 if (!node_start_pfn && !node_end_pfn) 5733 return 0; 5734 5735 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5736 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5737 5738 adjust_zone_range_for_zone_movable(nid, zone_type, 5739 node_start_pfn, node_end_pfn, 5740 &zone_start_pfn, &zone_end_pfn); 5741 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5742 5743 /* 5744 * ZONE_MOVABLE handling. 5745 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5746 * and vice versa. 5747 */ 5748 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5749 unsigned long start_pfn, end_pfn; 5750 struct memblock_region *r; 5751 5752 for_each_memblock(memory, r) { 5753 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5754 zone_start_pfn, zone_end_pfn); 5755 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5756 zone_start_pfn, zone_end_pfn); 5757 5758 if (zone_type == ZONE_MOVABLE && 5759 memblock_is_mirror(r)) 5760 nr_absent += end_pfn - start_pfn; 5761 5762 if (zone_type == ZONE_NORMAL && 5763 !memblock_is_mirror(r)) 5764 nr_absent += end_pfn - start_pfn; 5765 } 5766 } 5767 5768 return nr_absent; 5769 } 5770 5771 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5772 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5773 unsigned long zone_type, 5774 unsigned long node_start_pfn, 5775 unsigned long node_end_pfn, 5776 unsigned long *zone_start_pfn, 5777 unsigned long *zone_end_pfn, 5778 unsigned long *zones_size) 5779 { 5780 unsigned int zone; 5781 5782 *zone_start_pfn = node_start_pfn; 5783 for (zone = 0; zone < zone_type; zone++) 5784 *zone_start_pfn += zones_size[zone]; 5785 5786 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5787 5788 return zones_size[zone_type]; 5789 } 5790 5791 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5792 unsigned long zone_type, 5793 unsigned long node_start_pfn, 5794 unsigned long node_end_pfn, 5795 unsigned long *zholes_size) 5796 { 5797 if (!zholes_size) 5798 return 0; 5799 5800 return zholes_size[zone_type]; 5801 } 5802 5803 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5804 5805 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5806 unsigned long node_start_pfn, 5807 unsigned long node_end_pfn, 5808 unsigned long *zones_size, 5809 unsigned long *zholes_size) 5810 { 5811 unsigned long realtotalpages = 0, totalpages = 0; 5812 enum zone_type i; 5813 5814 for (i = 0; i < MAX_NR_ZONES; i++) { 5815 struct zone *zone = pgdat->node_zones + i; 5816 unsigned long zone_start_pfn, zone_end_pfn; 5817 unsigned long size, real_size; 5818 5819 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5820 node_start_pfn, 5821 node_end_pfn, 5822 &zone_start_pfn, 5823 &zone_end_pfn, 5824 zones_size); 5825 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5826 node_start_pfn, node_end_pfn, 5827 zholes_size); 5828 if (size) 5829 zone->zone_start_pfn = zone_start_pfn; 5830 else 5831 zone->zone_start_pfn = 0; 5832 zone->spanned_pages = size; 5833 zone->present_pages = real_size; 5834 5835 totalpages += size; 5836 realtotalpages += real_size; 5837 } 5838 5839 pgdat->node_spanned_pages = totalpages; 5840 pgdat->node_present_pages = realtotalpages; 5841 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5842 realtotalpages); 5843 } 5844 5845 #ifndef CONFIG_SPARSEMEM 5846 /* 5847 * Calculate the size of the zone->blockflags rounded to an unsigned long 5848 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5849 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5850 * round what is now in bits to nearest long in bits, then return it in 5851 * bytes. 5852 */ 5853 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5854 { 5855 unsigned long usemapsize; 5856 5857 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5858 usemapsize = roundup(zonesize, pageblock_nr_pages); 5859 usemapsize = usemapsize >> pageblock_order; 5860 usemapsize *= NR_PAGEBLOCK_BITS; 5861 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5862 5863 return usemapsize / 8; 5864 } 5865 5866 static void __init setup_usemap(struct pglist_data *pgdat, 5867 struct zone *zone, 5868 unsigned long zone_start_pfn, 5869 unsigned long zonesize) 5870 { 5871 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5872 zone->pageblock_flags = NULL; 5873 if (usemapsize) 5874 zone->pageblock_flags = 5875 memblock_virt_alloc_node_nopanic(usemapsize, 5876 pgdat->node_id); 5877 } 5878 #else 5879 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5880 unsigned long zone_start_pfn, unsigned long zonesize) {} 5881 #endif /* CONFIG_SPARSEMEM */ 5882 5883 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5884 5885 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5886 void __paginginit set_pageblock_order(void) 5887 { 5888 unsigned int order; 5889 5890 /* Check that pageblock_nr_pages has not already been setup */ 5891 if (pageblock_order) 5892 return; 5893 5894 if (HPAGE_SHIFT > PAGE_SHIFT) 5895 order = HUGETLB_PAGE_ORDER; 5896 else 5897 order = MAX_ORDER - 1; 5898 5899 /* 5900 * Assume the largest contiguous order of interest is a huge page. 5901 * This value may be variable depending on boot parameters on IA64 and 5902 * powerpc. 5903 */ 5904 pageblock_order = order; 5905 } 5906 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5907 5908 /* 5909 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5910 * is unused as pageblock_order is set at compile-time. See 5911 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5912 * the kernel config 5913 */ 5914 void __paginginit set_pageblock_order(void) 5915 { 5916 } 5917 5918 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5919 5920 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5921 unsigned long present_pages) 5922 { 5923 unsigned long pages = spanned_pages; 5924 5925 /* 5926 * Provide a more accurate estimation if there are holes within 5927 * the zone and SPARSEMEM is in use. If there are holes within the 5928 * zone, each populated memory region may cost us one or two extra 5929 * memmap pages due to alignment because memmap pages for each 5930 * populated regions may not be naturally aligned on page boundary. 5931 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5932 */ 5933 if (spanned_pages > present_pages + (present_pages >> 4) && 5934 IS_ENABLED(CONFIG_SPARSEMEM)) 5935 pages = present_pages; 5936 5937 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5938 } 5939 5940 /* 5941 * Set up the zone data structures: 5942 * - mark all pages reserved 5943 * - mark all memory queues empty 5944 * - clear the memory bitmaps 5945 * 5946 * NOTE: pgdat should get zeroed by caller. 5947 */ 5948 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5949 { 5950 enum zone_type j; 5951 int nid = pgdat->node_id; 5952 int ret; 5953 5954 pgdat_resize_init(pgdat); 5955 #ifdef CONFIG_NUMA_BALANCING 5956 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5957 pgdat->numabalancing_migrate_nr_pages = 0; 5958 pgdat->numabalancing_migrate_next_window = jiffies; 5959 #endif 5960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5961 spin_lock_init(&pgdat->split_queue_lock); 5962 INIT_LIST_HEAD(&pgdat->split_queue); 5963 pgdat->split_queue_len = 0; 5964 #endif 5965 init_waitqueue_head(&pgdat->kswapd_wait); 5966 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5967 #ifdef CONFIG_COMPACTION 5968 init_waitqueue_head(&pgdat->kcompactd_wait); 5969 #endif 5970 pgdat_page_ext_init(pgdat); 5971 spin_lock_init(&pgdat->lru_lock); 5972 lruvec_init(node_lruvec(pgdat)); 5973 5974 for (j = 0; j < MAX_NR_ZONES; j++) { 5975 struct zone *zone = pgdat->node_zones + j; 5976 unsigned long size, realsize, freesize, memmap_pages; 5977 unsigned long zone_start_pfn = zone->zone_start_pfn; 5978 5979 size = zone->spanned_pages; 5980 realsize = freesize = zone->present_pages; 5981 5982 /* 5983 * Adjust freesize so that it accounts for how much memory 5984 * is used by this zone for memmap. This affects the watermark 5985 * and per-cpu initialisations 5986 */ 5987 memmap_pages = calc_memmap_size(size, realsize); 5988 if (!is_highmem_idx(j)) { 5989 if (freesize >= memmap_pages) { 5990 freesize -= memmap_pages; 5991 if (memmap_pages) 5992 printk(KERN_DEBUG 5993 " %s zone: %lu pages used for memmap\n", 5994 zone_names[j], memmap_pages); 5995 } else 5996 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 5997 zone_names[j], memmap_pages, freesize); 5998 } 5999 6000 /* Account for reserved pages */ 6001 if (j == 0 && freesize > dma_reserve) { 6002 freesize -= dma_reserve; 6003 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6004 zone_names[0], dma_reserve); 6005 } 6006 6007 if (!is_highmem_idx(j)) 6008 nr_kernel_pages += freesize; 6009 /* Charge for highmem memmap if there are enough kernel pages */ 6010 else if (nr_kernel_pages > memmap_pages * 2) 6011 nr_kernel_pages -= memmap_pages; 6012 nr_all_pages += freesize; 6013 6014 /* 6015 * Set an approximate value for lowmem here, it will be adjusted 6016 * when the bootmem allocator frees pages into the buddy system. 6017 * And all highmem pages will be managed by the buddy system. 6018 */ 6019 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6020 #ifdef CONFIG_NUMA 6021 zone->node = nid; 6022 #endif 6023 zone->name = zone_names[j]; 6024 zone->zone_pgdat = pgdat; 6025 spin_lock_init(&zone->lock); 6026 zone_seqlock_init(zone); 6027 zone_pcp_init(zone); 6028 6029 if (!size) 6030 continue; 6031 6032 set_pageblock_order(); 6033 setup_usemap(pgdat, zone, zone_start_pfn, size); 6034 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 6035 BUG_ON(ret); 6036 memmap_init(size, nid, j, zone_start_pfn); 6037 } 6038 } 6039 6040 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6041 { 6042 unsigned long __maybe_unused start = 0; 6043 unsigned long __maybe_unused offset = 0; 6044 6045 /* Skip empty nodes */ 6046 if (!pgdat->node_spanned_pages) 6047 return; 6048 6049 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6050 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6051 offset = pgdat->node_start_pfn - start; 6052 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6053 if (!pgdat->node_mem_map) { 6054 unsigned long size, end; 6055 struct page *map; 6056 6057 /* 6058 * The zone's endpoints aren't required to be MAX_ORDER 6059 * aligned but the node_mem_map endpoints must be in order 6060 * for the buddy allocator to function correctly. 6061 */ 6062 end = pgdat_end_pfn(pgdat); 6063 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6064 size = (end - start) * sizeof(struct page); 6065 map = alloc_remap(pgdat->node_id, size); 6066 if (!map) 6067 map = memblock_virt_alloc_node_nopanic(size, 6068 pgdat->node_id); 6069 pgdat->node_mem_map = map + offset; 6070 } 6071 #ifndef CONFIG_NEED_MULTIPLE_NODES 6072 /* 6073 * With no DISCONTIG, the global mem_map is just set as node 0's 6074 */ 6075 if (pgdat == NODE_DATA(0)) { 6076 mem_map = NODE_DATA(0)->node_mem_map; 6077 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6078 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6079 mem_map -= offset; 6080 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6081 } 6082 #endif 6083 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6084 } 6085 6086 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6087 unsigned long node_start_pfn, unsigned long *zholes_size) 6088 { 6089 pg_data_t *pgdat = NODE_DATA(nid); 6090 unsigned long start_pfn = 0; 6091 unsigned long end_pfn = 0; 6092 6093 /* pg_data_t should be reset to zero when it's allocated */ 6094 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6095 6096 reset_deferred_meminit(pgdat); 6097 pgdat->node_id = nid; 6098 pgdat->node_start_pfn = node_start_pfn; 6099 pgdat->per_cpu_nodestats = NULL; 6100 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6101 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6102 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6103 (u64)start_pfn << PAGE_SHIFT, 6104 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6105 #else 6106 start_pfn = node_start_pfn; 6107 #endif 6108 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6109 zones_size, zholes_size); 6110 6111 alloc_node_mem_map(pgdat); 6112 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6113 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 6114 nid, (unsigned long)pgdat, 6115 (unsigned long)pgdat->node_mem_map); 6116 #endif 6117 6118 free_area_init_core(pgdat); 6119 } 6120 6121 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6122 6123 #if MAX_NUMNODES > 1 6124 /* 6125 * Figure out the number of possible node ids. 6126 */ 6127 void __init setup_nr_node_ids(void) 6128 { 6129 unsigned int highest; 6130 6131 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6132 nr_node_ids = highest + 1; 6133 } 6134 #endif 6135 6136 /** 6137 * node_map_pfn_alignment - determine the maximum internode alignment 6138 * 6139 * This function should be called after node map is populated and sorted. 6140 * It calculates the maximum power of two alignment which can distinguish 6141 * all the nodes. 6142 * 6143 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6144 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6145 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6146 * shifted, 1GiB is enough and this function will indicate so. 6147 * 6148 * This is used to test whether pfn -> nid mapping of the chosen memory 6149 * model has fine enough granularity to avoid incorrect mapping for the 6150 * populated node map. 6151 * 6152 * Returns the determined alignment in pfn's. 0 if there is no alignment 6153 * requirement (single node). 6154 */ 6155 unsigned long __init node_map_pfn_alignment(void) 6156 { 6157 unsigned long accl_mask = 0, last_end = 0; 6158 unsigned long start, end, mask; 6159 int last_nid = -1; 6160 int i, nid; 6161 6162 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6163 if (!start || last_nid < 0 || last_nid == nid) { 6164 last_nid = nid; 6165 last_end = end; 6166 continue; 6167 } 6168 6169 /* 6170 * Start with a mask granular enough to pin-point to the 6171 * start pfn and tick off bits one-by-one until it becomes 6172 * too coarse to separate the current node from the last. 6173 */ 6174 mask = ~((1 << __ffs(start)) - 1); 6175 while (mask && last_end <= (start & (mask << 1))) 6176 mask <<= 1; 6177 6178 /* accumulate all internode masks */ 6179 accl_mask |= mask; 6180 } 6181 6182 /* convert mask to number of pages */ 6183 return ~accl_mask + 1; 6184 } 6185 6186 /* Find the lowest pfn for a node */ 6187 static unsigned long __init find_min_pfn_for_node(int nid) 6188 { 6189 unsigned long min_pfn = ULONG_MAX; 6190 unsigned long start_pfn; 6191 int i; 6192 6193 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6194 min_pfn = min(min_pfn, start_pfn); 6195 6196 if (min_pfn == ULONG_MAX) { 6197 pr_warn("Could not find start_pfn for node %d\n", nid); 6198 return 0; 6199 } 6200 6201 return min_pfn; 6202 } 6203 6204 /** 6205 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6206 * 6207 * It returns the minimum PFN based on information provided via 6208 * memblock_set_node(). 6209 */ 6210 unsigned long __init find_min_pfn_with_active_regions(void) 6211 { 6212 return find_min_pfn_for_node(MAX_NUMNODES); 6213 } 6214 6215 /* 6216 * early_calculate_totalpages() 6217 * Sum pages in active regions for movable zone. 6218 * Populate N_MEMORY for calculating usable_nodes. 6219 */ 6220 static unsigned long __init early_calculate_totalpages(void) 6221 { 6222 unsigned long totalpages = 0; 6223 unsigned long start_pfn, end_pfn; 6224 int i, nid; 6225 6226 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6227 unsigned long pages = end_pfn - start_pfn; 6228 6229 totalpages += pages; 6230 if (pages) 6231 node_set_state(nid, N_MEMORY); 6232 } 6233 return totalpages; 6234 } 6235 6236 /* 6237 * Find the PFN the Movable zone begins in each node. Kernel memory 6238 * is spread evenly between nodes as long as the nodes have enough 6239 * memory. When they don't, some nodes will have more kernelcore than 6240 * others 6241 */ 6242 static void __init find_zone_movable_pfns_for_nodes(void) 6243 { 6244 int i, nid; 6245 unsigned long usable_startpfn; 6246 unsigned long kernelcore_node, kernelcore_remaining; 6247 /* save the state before borrow the nodemask */ 6248 nodemask_t saved_node_state = node_states[N_MEMORY]; 6249 unsigned long totalpages = early_calculate_totalpages(); 6250 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6251 struct memblock_region *r; 6252 6253 /* Need to find movable_zone earlier when movable_node is specified. */ 6254 find_usable_zone_for_movable(); 6255 6256 /* 6257 * If movable_node is specified, ignore kernelcore and movablecore 6258 * options. 6259 */ 6260 if (movable_node_is_enabled()) { 6261 for_each_memblock(memory, r) { 6262 if (!memblock_is_hotpluggable(r)) 6263 continue; 6264 6265 nid = r->nid; 6266 6267 usable_startpfn = PFN_DOWN(r->base); 6268 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6269 min(usable_startpfn, zone_movable_pfn[nid]) : 6270 usable_startpfn; 6271 } 6272 6273 goto out2; 6274 } 6275 6276 /* 6277 * If kernelcore=mirror is specified, ignore movablecore option 6278 */ 6279 if (mirrored_kernelcore) { 6280 bool mem_below_4gb_not_mirrored = false; 6281 6282 for_each_memblock(memory, r) { 6283 if (memblock_is_mirror(r)) 6284 continue; 6285 6286 nid = r->nid; 6287 6288 usable_startpfn = memblock_region_memory_base_pfn(r); 6289 6290 if (usable_startpfn < 0x100000) { 6291 mem_below_4gb_not_mirrored = true; 6292 continue; 6293 } 6294 6295 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6296 min(usable_startpfn, zone_movable_pfn[nid]) : 6297 usable_startpfn; 6298 } 6299 6300 if (mem_below_4gb_not_mirrored) 6301 pr_warn("This configuration results in unmirrored kernel memory."); 6302 6303 goto out2; 6304 } 6305 6306 /* 6307 * If movablecore=nn[KMG] was specified, calculate what size of 6308 * kernelcore that corresponds so that memory usable for 6309 * any allocation type is evenly spread. If both kernelcore 6310 * and movablecore are specified, then the value of kernelcore 6311 * will be used for required_kernelcore if it's greater than 6312 * what movablecore would have allowed. 6313 */ 6314 if (required_movablecore) { 6315 unsigned long corepages; 6316 6317 /* 6318 * Round-up so that ZONE_MOVABLE is at least as large as what 6319 * was requested by the user 6320 */ 6321 required_movablecore = 6322 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6323 required_movablecore = min(totalpages, required_movablecore); 6324 corepages = totalpages - required_movablecore; 6325 6326 required_kernelcore = max(required_kernelcore, corepages); 6327 } 6328 6329 /* 6330 * If kernelcore was not specified or kernelcore size is larger 6331 * than totalpages, there is no ZONE_MOVABLE. 6332 */ 6333 if (!required_kernelcore || required_kernelcore >= totalpages) 6334 goto out; 6335 6336 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6337 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6338 6339 restart: 6340 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6341 kernelcore_node = required_kernelcore / usable_nodes; 6342 for_each_node_state(nid, N_MEMORY) { 6343 unsigned long start_pfn, end_pfn; 6344 6345 /* 6346 * Recalculate kernelcore_node if the division per node 6347 * now exceeds what is necessary to satisfy the requested 6348 * amount of memory for the kernel 6349 */ 6350 if (required_kernelcore < kernelcore_node) 6351 kernelcore_node = required_kernelcore / usable_nodes; 6352 6353 /* 6354 * As the map is walked, we track how much memory is usable 6355 * by the kernel using kernelcore_remaining. When it is 6356 * 0, the rest of the node is usable by ZONE_MOVABLE 6357 */ 6358 kernelcore_remaining = kernelcore_node; 6359 6360 /* Go through each range of PFNs within this node */ 6361 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6362 unsigned long size_pages; 6363 6364 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6365 if (start_pfn >= end_pfn) 6366 continue; 6367 6368 /* Account for what is only usable for kernelcore */ 6369 if (start_pfn < usable_startpfn) { 6370 unsigned long kernel_pages; 6371 kernel_pages = min(end_pfn, usable_startpfn) 6372 - start_pfn; 6373 6374 kernelcore_remaining -= min(kernel_pages, 6375 kernelcore_remaining); 6376 required_kernelcore -= min(kernel_pages, 6377 required_kernelcore); 6378 6379 /* Continue if range is now fully accounted */ 6380 if (end_pfn <= usable_startpfn) { 6381 6382 /* 6383 * Push zone_movable_pfn to the end so 6384 * that if we have to rebalance 6385 * kernelcore across nodes, we will 6386 * not double account here 6387 */ 6388 zone_movable_pfn[nid] = end_pfn; 6389 continue; 6390 } 6391 start_pfn = usable_startpfn; 6392 } 6393 6394 /* 6395 * The usable PFN range for ZONE_MOVABLE is from 6396 * start_pfn->end_pfn. Calculate size_pages as the 6397 * number of pages used as kernelcore 6398 */ 6399 size_pages = end_pfn - start_pfn; 6400 if (size_pages > kernelcore_remaining) 6401 size_pages = kernelcore_remaining; 6402 zone_movable_pfn[nid] = start_pfn + size_pages; 6403 6404 /* 6405 * Some kernelcore has been met, update counts and 6406 * break if the kernelcore for this node has been 6407 * satisfied 6408 */ 6409 required_kernelcore -= min(required_kernelcore, 6410 size_pages); 6411 kernelcore_remaining -= size_pages; 6412 if (!kernelcore_remaining) 6413 break; 6414 } 6415 } 6416 6417 /* 6418 * If there is still required_kernelcore, we do another pass with one 6419 * less node in the count. This will push zone_movable_pfn[nid] further 6420 * along on the nodes that still have memory until kernelcore is 6421 * satisfied 6422 */ 6423 usable_nodes--; 6424 if (usable_nodes && required_kernelcore > usable_nodes) 6425 goto restart; 6426 6427 out2: 6428 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6429 for (nid = 0; nid < MAX_NUMNODES; nid++) 6430 zone_movable_pfn[nid] = 6431 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6432 6433 out: 6434 /* restore the node_state */ 6435 node_states[N_MEMORY] = saved_node_state; 6436 } 6437 6438 /* Any regular or high memory on that node ? */ 6439 static void check_for_memory(pg_data_t *pgdat, int nid) 6440 { 6441 enum zone_type zone_type; 6442 6443 if (N_MEMORY == N_NORMAL_MEMORY) 6444 return; 6445 6446 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6447 struct zone *zone = &pgdat->node_zones[zone_type]; 6448 if (populated_zone(zone)) { 6449 node_set_state(nid, N_HIGH_MEMORY); 6450 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6451 zone_type <= ZONE_NORMAL) 6452 node_set_state(nid, N_NORMAL_MEMORY); 6453 break; 6454 } 6455 } 6456 } 6457 6458 /** 6459 * free_area_init_nodes - Initialise all pg_data_t and zone data 6460 * @max_zone_pfn: an array of max PFNs for each zone 6461 * 6462 * This will call free_area_init_node() for each active node in the system. 6463 * Using the page ranges provided by memblock_set_node(), the size of each 6464 * zone in each node and their holes is calculated. If the maximum PFN 6465 * between two adjacent zones match, it is assumed that the zone is empty. 6466 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6467 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6468 * starts where the previous one ended. For example, ZONE_DMA32 starts 6469 * at arch_max_dma_pfn. 6470 */ 6471 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6472 { 6473 unsigned long start_pfn, end_pfn; 6474 int i, nid; 6475 6476 /* Record where the zone boundaries are */ 6477 memset(arch_zone_lowest_possible_pfn, 0, 6478 sizeof(arch_zone_lowest_possible_pfn)); 6479 memset(arch_zone_highest_possible_pfn, 0, 6480 sizeof(arch_zone_highest_possible_pfn)); 6481 6482 start_pfn = find_min_pfn_with_active_regions(); 6483 6484 for (i = 0; i < MAX_NR_ZONES; i++) { 6485 if (i == ZONE_MOVABLE) 6486 continue; 6487 6488 end_pfn = max(max_zone_pfn[i], start_pfn); 6489 arch_zone_lowest_possible_pfn[i] = start_pfn; 6490 arch_zone_highest_possible_pfn[i] = end_pfn; 6491 6492 start_pfn = end_pfn; 6493 } 6494 6495 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6496 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6497 find_zone_movable_pfns_for_nodes(); 6498 6499 /* Print out the zone ranges */ 6500 pr_info("Zone ranges:\n"); 6501 for (i = 0; i < MAX_NR_ZONES; i++) { 6502 if (i == ZONE_MOVABLE) 6503 continue; 6504 pr_info(" %-8s ", zone_names[i]); 6505 if (arch_zone_lowest_possible_pfn[i] == 6506 arch_zone_highest_possible_pfn[i]) 6507 pr_cont("empty\n"); 6508 else 6509 pr_cont("[mem %#018Lx-%#018Lx]\n", 6510 (u64)arch_zone_lowest_possible_pfn[i] 6511 << PAGE_SHIFT, 6512 ((u64)arch_zone_highest_possible_pfn[i] 6513 << PAGE_SHIFT) - 1); 6514 } 6515 6516 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6517 pr_info("Movable zone start for each node\n"); 6518 for (i = 0; i < MAX_NUMNODES; i++) { 6519 if (zone_movable_pfn[i]) 6520 pr_info(" Node %d: %#018Lx\n", i, 6521 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6522 } 6523 6524 /* Print out the early node map */ 6525 pr_info("Early memory node ranges\n"); 6526 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6527 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6528 (u64)start_pfn << PAGE_SHIFT, 6529 ((u64)end_pfn << PAGE_SHIFT) - 1); 6530 6531 /* Initialise every node */ 6532 mminit_verify_pageflags_layout(); 6533 setup_nr_node_ids(); 6534 for_each_online_node(nid) { 6535 pg_data_t *pgdat = NODE_DATA(nid); 6536 free_area_init_node(nid, NULL, 6537 find_min_pfn_for_node(nid), NULL); 6538 6539 /* Any memory on that node */ 6540 if (pgdat->node_present_pages) 6541 node_set_state(nid, N_MEMORY); 6542 check_for_memory(pgdat, nid); 6543 } 6544 } 6545 6546 static int __init cmdline_parse_core(char *p, unsigned long *core) 6547 { 6548 unsigned long long coremem; 6549 if (!p) 6550 return -EINVAL; 6551 6552 coremem = memparse(p, &p); 6553 *core = coremem >> PAGE_SHIFT; 6554 6555 /* Paranoid check that UL is enough for the coremem value */ 6556 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6557 6558 return 0; 6559 } 6560 6561 /* 6562 * kernelcore=size sets the amount of memory for use for allocations that 6563 * cannot be reclaimed or migrated. 6564 */ 6565 static int __init cmdline_parse_kernelcore(char *p) 6566 { 6567 /* parse kernelcore=mirror */ 6568 if (parse_option_str(p, "mirror")) { 6569 mirrored_kernelcore = true; 6570 return 0; 6571 } 6572 6573 return cmdline_parse_core(p, &required_kernelcore); 6574 } 6575 6576 /* 6577 * movablecore=size sets the amount of memory for use for allocations that 6578 * can be reclaimed or migrated. 6579 */ 6580 static int __init cmdline_parse_movablecore(char *p) 6581 { 6582 return cmdline_parse_core(p, &required_movablecore); 6583 } 6584 6585 early_param("kernelcore", cmdline_parse_kernelcore); 6586 early_param("movablecore", cmdline_parse_movablecore); 6587 6588 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6589 6590 void adjust_managed_page_count(struct page *page, long count) 6591 { 6592 spin_lock(&managed_page_count_lock); 6593 page_zone(page)->managed_pages += count; 6594 totalram_pages += count; 6595 #ifdef CONFIG_HIGHMEM 6596 if (PageHighMem(page)) 6597 totalhigh_pages += count; 6598 #endif 6599 spin_unlock(&managed_page_count_lock); 6600 } 6601 EXPORT_SYMBOL(adjust_managed_page_count); 6602 6603 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6604 { 6605 void *pos; 6606 unsigned long pages = 0; 6607 6608 start = (void *)PAGE_ALIGN((unsigned long)start); 6609 end = (void *)((unsigned long)end & PAGE_MASK); 6610 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6611 if ((unsigned int)poison <= 0xFF) 6612 memset(pos, poison, PAGE_SIZE); 6613 free_reserved_page(virt_to_page(pos)); 6614 } 6615 6616 if (pages && s) 6617 pr_info("Freeing %s memory: %ldK\n", 6618 s, pages << (PAGE_SHIFT - 10)); 6619 6620 return pages; 6621 } 6622 EXPORT_SYMBOL(free_reserved_area); 6623 6624 #ifdef CONFIG_HIGHMEM 6625 void free_highmem_page(struct page *page) 6626 { 6627 __free_reserved_page(page); 6628 totalram_pages++; 6629 page_zone(page)->managed_pages++; 6630 totalhigh_pages++; 6631 } 6632 #endif 6633 6634 6635 void __init mem_init_print_info(const char *str) 6636 { 6637 unsigned long physpages, codesize, datasize, rosize, bss_size; 6638 unsigned long init_code_size, init_data_size; 6639 6640 physpages = get_num_physpages(); 6641 codesize = _etext - _stext; 6642 datasize = _edata - _sdata; 6643 rosize = __end_rodata - __start_rodata; 6644 bss_size = __bss_stop - __bss_start; 6645 init_data_size = __init_end - __init_begin; 6646 init_code_size = _einittext - _sinittext; 6647 6648 /* 6649 * Detect special cases and adjust section sizes accordingly: 6650 * 1) .init.* may be embedded into .data sections 6651 * 2) .init.text.* may be out of [__init_begin, __init_end], 6652 * please refer to arch/tile/kernel/vmlinux.lds.S. 6653 * 3) .rodata.* may be embedded into .text or .data sections. 6654 */ 6655 #define adj_init_size(start, end, size, pos, adj) \ 6656 do { \ 6657 if (start <= pos && pos < end && size > adj) \ 6658 size -= adj; \ 6659 } while (0) 6660 6661 adj_init_size(__init_begin, __init_end, init_data_size, 6662 _sinittext, init_code_size); 6663 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6664 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6665 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6666 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6667 6668 #undef adj_init_size 6669 6670 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6671 #ifdef CONFIG_HIGHMEM 6672 ", %luK highmem" 6673 #endif 6674 "%s%s)\n", 6675 nr_free_pages() << (PAGE_SHIFT - 10), 6676 physpages << (PAGE_SHIFT - 10), 6677 codesize >> 10, datasize >> 10, rosize >> 10, 6678 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6679 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6680 totalcma_pages << (PAGE_SHIFT - 10), 6681 #ifdef CONFIG_HIGHMEM 6682 totalhigh_pages << (PAGE_SHIFT - 10), 6683 #endif 6684 str ? ", " : "", str ? str : ""); 6685 } 6686 6687 /** 6688 * set_dma_reserve - set the specified number of pages reserved in the first zone 6689 * @new_dma_reserve: The number of pages to mark reserved 6690 * 6691 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6692 * In the DMA zone, a significant percentage may be consumed by kernel image 6693 * and other unfreeable allocations which can skew the watermarks badly. This 6694 * function may optionally be used to account for unfreeable pages in the 6695 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6696 * smaller per-cpu batchsize. 6697 */ 6698 void __init set_dma_reserve(unsigned long new_dma_reserve) 6699 { 6700 dma_reserve = new_dma_reserve; 6701 } 6702 6703 void __init free_area_init(unsigned long *zones_size) 6704 { 6705 free_area_init_node(0, zones_size, 6706 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6707 } 6708 6709 static int page_alloc_cpu_dead(unsigned int cpu) 6710 { 6711 6712 lru_add_drain_cpu(cpu); 6713 drain_pages(cpu); 6714 6715 /* 6716 * Spill the event counters of the dead processor 6717 * into the current processors event counters. 6718 * This artificially elevates the count of the current 6719 * processor. 6720 */ 6721 vm_events_fold_cpu(cpu); 6722 6723 /* 6724 * Zero the differential counters of the dead processor 6725 * so that the vm statistics are consistent. 6726 * 6727 * This is only okay since the processor is dead and cannot 6728 * race with what we are doing. 6729 */ 6730 cpu_vm_stats_fold(cpu); 6731 return 0; 6732 } 6733 6734 void __init page_alloc_init(void) 6735 { 6736 int ret; 6737 6738 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6739 "mm/page_alloc:dead", NULL, 6740 page_alloc_cpu_dead); 6741 WARN_ON(ret < 0); 6742 } 6743 6744 /* 6745 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6746 * or min_free_kbytes changes. 6747 */ 6748 static void calculate_totalreserve_pages(void) 6749 { 6750 struct pglist_data *pgdat; 6751 unsigned long reserve_pages = 0; 6752 enum zone_type i, j; 6753 6754 for_each_online_pgdat(pgdat) { 6755 6756 pgdat->totalreserve_pages = 0; 6757 6758 for (i = 0; i < MAX_NR_ZONES; i++) { 6759 struct zone *zone = pgdat->node_zones + i; 6760 long max = 0; 6761 6762 /* Find valid and maximum lowmem_reserve in the zone */ 6763 for (j = i; j < MAX_NR_ZONES; j++) { 6764 if (zone->lowmem_reserve[j] > max) 6765 max = zone->lowmem_reserve[j]; 6766 } 6767 6768 /* we treat the high watermark as reserved pages. */ 6769 max += high_wmark_pages(zone); 6770 6771 if (max > zone->managed_pages) 6772 max = zone->managed_pages; 6773 6774 pgdat->totalreserve_pages += max; 6775 6776 reserve_pages += max; 6777 } 6778 } 6779 totalreserve_pages = reserve_pages; 6780 } 6781 6782 /* 6783 * setup_per_zone_lowmem_reserve - called whenever 6784 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6785 * has a correct pages reserved value, so an adequate number of 6786 * pages are left in the zone after a successful __alloc_pages(). 6787 */ 6788 static void setup_per_zone_lowmem_reserve(void) 6789 { 6790 struct pglist_data *pgdat; 6791 enum zone_type j, idx; 6792 6793 for_each_online_pgdat(pgdat) { 6794 for (j = 0; j < MAX_NR_ZONES; j++) { 6795 struct zone *zone = pgdat->node_zones + j; 6796 unsigned long managed_pages = zone->managed_pages; 6797 6798 zone->lowmem_reserve[j] = 0; 6799 6800 idx = j; 6801 while (idx) { 6802 struct zone *lower_zone; 6803 6804 idx--; 6805 6806 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6807 sysctl_lowmem_reserve_ratio[idx] = 1; 6808 6809 lower_zone = pgdat->node_zones + idx; 6810 lower_zone->lowmem_reserve[j] = managed_pages / 6811 sysctl_lowmem_reserve_ratio[idx]; 6812 managed_pages += lower_zone->managed_pages; 6813 } 6814 } 6815 } 6816 6817 /* update totalreserve_pages */ 6818 calculate_totalreserve_pages(); 6819 } 6820 6821 static void __setup_per_zone_wmarks(void) 6822 { 6823 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6824 unsigned long lowmem_pages = 0; 6825 struct zone *zone; 6826 unsigned long flags; 6827 6828 /* Calculate total number of !ZONE_HIGHMEM pages */ 6829 for_each_zone(zone) { 6830 if (!is_highmem(zone)) 6831 lowmem_pages += zone->managed_pages; 6832 } 6833 6834 for_each_zone(zone) { 6835 u64 tmp; 6836 6837 spin_lock_irqsave(&zone->lock, flags); 6838 tmp = (u64)pages_min * zone->managed_pages; 6839 do_div(tmp, lowmem_pages); 6840 if (is_highmem(zone)) { 6841 /* 6842 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6843 * need highmem pages, so cap pages_min to a small 6844 * value here. 6845 * 6846 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6847 * deltas control asynch page reclaim, and so should 6848 * not be capped for highmem. 6849 */ 6850 unsigned long min_pages; 6851 6852 min_pages = zone->managed_pages / 1024; 6853 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6854 zone->watermark[WMARK_MIN] = min_pages; 6855 } else { 6856 /* 6857 * If it's a lowmem zone, reserve a number of pages 6858 * proportionate to the zone's size. 6859 */ 6860 zone->watermark[WMARK_MIN] = tmp; 6861 } 6862 6863 /* 6864 * Set the kswapd watermarks distance according to the 6865 * scale factor in proportion to available memory, but 6866 * ensure a minimum size on small systems. 6867 */ 6868 tmp = max_t(u64, tmp >> 2, 6869 mult_frac(zone->managed_pages, 6870 watermark_scale_factor, 10000)); 6871 6872 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6873 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6874 6875 spin_unlock_irqrestore(&zone->lock, flags); 6876 } 6877 6878 /* update totalreserve_pages */ 6879 calculate_totalreserve_pages(); 6880 } 6881 6882 /** 6883 * setup_per_zone_wmarks - called when min_free_kbytes changes 6884 * or when memory is hot-{added|removed} 6885 * 6886 * Ensures that the watermark[min,low,high] values for each zone are set 6887 * correctly with respect to min_free_kbytes. 6888 */ 6889 void setup_per_zone_wmarks(void) 6890 { 6891 mutex_lock(&zonelists_mutex); 6892 __setup_per_zone_wmarks(); 6893 mutex_unlock(&zonelists_mutex); 6894 } 6895 6896 /* 6897 * Initialise min_free_kbytes. 6898 * 6899 * For small machines we want it small (128k min). For large machines 6900 * we want it large (64MB max). But it is not linear, because network 6901 * bandwidth does not increase linearly with machine size. We use 6902 * 6903 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6904 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6905 * 6906 * which yields 6907 * 6908 * 16MB: 512k 6909 * 32MB: 724k 6910 * 64MB: 1024k 6911 * 128MB: 1448k 6912 * 256MB: 2048k 6913 * 512MB: 2896k 6914 * 1024MB: 4096k 6915 * 2048MB: 5792k 6916 * 4096MB: 8192k 6917 * 8192MB: 11584k 6918 * 16384MB: 16384k 6919 */ 6920 int __meminit init_per_zone_wmark_min(void) 6921 { 6922 unsigned long lowmem_kbytes; 6923 int new_min_free_kbytes; 6924 6925 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6926 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6927 6928 if (new_min_free_kbytes > user_min_free_kbytes) { 6929 min_free_kbytes = new_min_free_kbytes; 6930 if (min_free_kbytes < 128) 6931 min_free_kbytes = 128; 6932 if (min_free_kbytes > 65536) 6933 min_free_kbytes = 65536; 6934 } else { 6935 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6936 new_min_free_kbytes, user_min_free_kbytes); 6937 } 6938 setup_per_zone_wmarks(); 6939 refresh_zone_stat_thresholds(); 6940 setup_per_zone_lowmem_reserve(); 6941 6942 #ifdef CONFIG_NUMA 6943 setup_min_unmapped_ratio(); 6944 setup_min_slab_ratio(); 6945 #endif 6946 6947 return 0; 6948 } 6949 core_initcall(init_per_zone_wmark_min) 6950 6951 /* 6952 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6953 * that we can call two helper functions whenever min_free_kbytes 6954 * changes. 6955 */ 6956 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6957 void __user *buffer, size_t *length, loff_t *ppos) 6958 { 6959 int rc; 6960 6961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6962 if (rc) 6963 return rc; 6964 6965 if (write) { 6966 user_min_free_kbytes = min_free_kbytes; 6967 setup_per_zone_wmarks(); 6968 } 6969 return 0; 6970 } 6971 6972 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6973 void __user *buffer, size_t *length, loff_t *ppos) 6974 { 6975 int rc; 6976 6977 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6978 if (rc) 6979 return rc; 6980 6981 if (write) 6982 setup_per_zone_wmarks(); 6983 6984 return 0; 6985 } 6986 6987 #ifdef CONFIG_NUMA 6988 static void setup_min_unmapped_ratio(void) 6989 { 6990 pg_data_t *pgdat; 6991 struct zone *zone; 6992 6993 for_each_online_pgdat(pgdat) 6994 pgdat->min_unmapped_pages = 0; 6995 6996 for_each_zone(zone) 6997 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 6998 sysctl_min_unmapped_ratio) / 100; 6999 } 7000 7001 7002 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7003 void __user *buffer, size_t *length, loff_t *ppos) 7004 { 7005 int rc; 7006 7007 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7008 if (rc) 7009 return rc; 7010 7011 setup_min_unmapped_ratio(); 7012 7013 return 0; 7014 } 7015 7016 static void setup_min_slab_ratio(void) 7017 { 7018 pg_data_t *pgdat; 7019 struct zone *zone; 7020 7021 for_each_online_pgdat(pgdat) 7022 pgdat->min_slab_pages = 0; 7023 7024 for_each_zone(zone) 7025 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7026 sysctl_min_slab_ratio) / 100; 7027 } 7028 7029 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7030 void __user *buffer, size_t *length, loff_t *ppos) 7031 { 7032 int rc; 7033 7034 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7035 if (rc) 7036 return rc; 7037 7038 setup_min_slab_ratio(); 7039 7040 return 0; 7041 } 7042 #endif 7043 7044 /* 7045 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7046 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7047 * whenever sysctl_lowmem_reserve_ratio changes. 7048 * 7049 * The reserve ratio obviously has absolutely no relation with the 7050 * minimum watermarks. The lowmem reserve ratio can only make sense 7051 * if in function of the boot time zone sizes. 7052 */ 7053 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7054 void __user *buffer, size_t *length, loff_t *ppos) 7055 { 7056 proc_dointvec_minmax(table, write, buffer, length, ppos); 7057 setup_per_zone_lowmem_reserve(); 7058 return 0; 7059 } 7060 7061 /* 7062 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7063 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7064 * pagelist can have before it gets flushed back to buddy allocator. 7065 */ 7066 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7067 void __user *buffer, size_t *length, loff_t *ppos) 7068 { 7069 struct zone *zone; 7070 int old_percpu_pagelist_fraction; 7071 int ret; 7072 7073 mutex_lock(&pcp_batch_high_lock); 7074 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7075 7076 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7077 if (!write || ret < 0) 7078 goto out; 7079 7080 /* Sanity checking to avoid pcp imbalance */ 7081 if (percpu_pagelist_fraction && 7082 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7083 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7084 ret = -EINVAL; 7085 goto out; 7086 } 7087 7088 /* No change? */ 7089 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7090 goto out; 7091 7092 for_each_populated_zone(zone) { 7093 unsigned int cpu; 7094 7095 for_each_possible_cpu(cpu) 7096 pageset_set_high_and_batch(zone, 7097 per_cpu_ptr(zone->pageset, cpu)); 7098 } 7099 out: 7100 mutex_unlock(&pcp_batch_high_lock); 7101 return ret; 7102 } 7103 7104 #ifdef CONFIG_NUMA 7105 int hashdist = HASHDIST_DEFAULT; 7106 7107 static int __init set_hashdist(char *str) 7108 { 7109 if (!str) 7110 return 0; 7111 hashdist = simple_strtoul(str, &str, 0); 7112 return 1; 7113 } 7114 __setup("hashdist=", set_hashdist); 7115 #endif 7116 7117 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7118 /* 7119 * Returns the number of pages that arch has reserved but 7120 * is not known to alloc_large_system_hash(). 7121 */ 7122 static unsigned long __init arch_reserved_kernel_pages(void) 7123 { 7124 return 0; 7125 } 7126 #endif 7127 7128 /* 7129 * allocate a large system hash table from bootmem 7130 * - it is assumed that the hash table must contain an exact power-of-2 7131 * quantity of entries 7132 * - limit is the number of hash buckets, not the total allocation size 7133 */ 7134 void *__init alloc_large_system_hash(const char *tablename, 7135 unsigned long bucketsize, 7136 unsigned long numentries, 7137 int scale, 7138 int flags, 7139 unsigned int *_hash_shift, 7140 unsigned int *_hash_mask, 7141 unsigned long low_limit, 7142 unsigned long high_limit) 7143 { 7144 unsigned long long max = high_limit; 7145 unsigned long log2qty, size; 7146 void *table = NULL; 7147 7148 /* allow the kernel cmdline to have a say */ 7149 if (!numentries) { 7150 /* round applicable memory size up to nearest megabyte */ 7151 numentries = nr_kernel_pages; 7152 numentries -= arch_reserved_kernel_pages(); 7153 7154 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7155 if (PAGE_SHIFT < 20) 7156 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7157 7158 /* limit to 1 bucket per 2^scale bytes of low memory */ 7159 if (scale > PAGE_SHIFT) 7160 numentries >>= (scale - PAGE_SHIFT); 7161 else 7162 numentries <<= (PAGE_SHIFT - scale); 7163 7164 /* Make sure we've got at least a 0-order allocation.. */ 7165 if (unlikely(flags & HASH_SMALL)) { 7166 /* Makes no sense without HASH_EARLY */ 7167 WARN_ON(!(flags & HASH_EARLY)); 7168 if (!(numentries >> *_hash_shift)) { 7169 numentries = 1UL << *_hash_shift; 7170 BUG_ON(!numentries); 7171 } 7172 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7173 numentries = PAGE_SIZE / bucketsize; 7174 } 7175 numentries = roundup_pow_of_two(numentries); 7176 7177 /* limit allocation size to 1/16 total memory by default */ 7178 if (max == 0) { 7179 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7180 do_div(max, bucketsize); 7181 } 7182 max = min(max, 0x80000000ULL); 7183 7184 if (numentries < low_limit) 7185 numentries = low_limit; 7186 if (numentries > max) 7187 numentries = max; 7188 7189 log2qty = ilog2(numentries); 7190 7191 do { 7192 size = bucketsize << log2qty; 7193 if (flags & HASH_EARLY) 7194 table = memblock_virt_alloc_nopanic(size, 0); 7195 else if (hashdist) 7196 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 7197 else { 7198 /* 7199 * If bucketsize is not a power-of-two, we may free 7200 * some pages at the end of hash table which 7201 * alloc_pages_exact() automatically does 7202 */ 7203 if (get_order(size) < MAX_ORDER) { 7204 table = alloc_pages_exact(size, GFP_ATOMIC); 7205 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 7206 } 7207 } 7208 } while (!table && size > PAGE_SIZE && --log2qty); 7209 7210 if (!table) 7211 panic("Failed to allocate %s hash table\n", tablename); 7212 7213 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7214 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7215 7216 if (_hash_shift) 7217 *_hash_shift = log2qty; 7218 if (_hash_mask) 7219 *_hash_mask = (1 << log2qty) - 1; 7220 7221 return table; 7222 } 7223 7224 /* 7225 * This function checks whether pageblock includes unmovable pages or not. 7226 * If @count is not zero, it is okay to include less @count unmovable pages 7227 * 7228 * PageLRU check without isolation or lru_lock could race so that 7229 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7230 * check without lock_page also may miss some movable non-lru pages at 7231 * race condition. So you can't expect this function should be exact. 7232 */ 7233 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7234 bool skip_hwpoisoned_pages) 7235 { 7236 unsigned long pfn, iter, found; 7237 int mt; 7238 7239 /* 7240 * For avoiding noise data, lru_add_drain_all() should be called 7241 * If ZONE_MOVABLE, the zone never contains unmovable pages 7242 */ 7243 if (zone_idx(zone) == ZONE_MOVABLE) 7244 return false; 7245 mt = get_pageblock_migratetype(page); 7246 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7247 return false; 7248 7249 pfn = page_to_pfn(page); 7250 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7251 unsigned long check = pfn + iter; 7252 7253 if (!pfn_valid_within(check)) 7254 continue; 7255 7256 page = pfn_to_page(check); 7257 7258 /* 7259 * Hugepages are not in LRU lists, but they're movable. 7260 * We need not scan over tail pages bacause we don't 7261 * handle each tail page individually in migration. 7262 */ 7263 if (PageHuge(page)) { 7264 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7265 continue; 7266 } 7267 7268 /* 7269 * We can't use page_count without pin a page 7270 * because another CPU can free compound page. 7271 * This check already skips compound tails of THP 7272 * because their page->_refcount is zero at all time. 7273 */ 7274 if (!page_ref_count(page)) { 7275 if (PageBuddy(page)) 7276 iter += (1 << page_order(page)) - 1; 7277 continue; 7278 } 7279 7280 /* 7281 * The HWPoisoned page may be not in buddy system, and 7282 * page_count() is not 0. 7283 */ 7284 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7285 continue; 7286 7287 if (__PageMovable(page)) 7288 continue; 7289 7290 if (!PageLRU(page)) 7291 found++; 7292 /* 7293 * If there are RECLAIMABLE pages, we need to check 7294 * it. But now, memory offline itself doesn't call 7295 * shrink_node_slabs() and it still to be fixed. 7296 */ 7297 /* 7298 * If the page is not RAM, page_count()should be 0. 7299 * we don't need more check. This is an _used_ not-movable page. 7300 * 7301 * The problematic thing here is PG_reserved pages. PG_reserved 7302 * is set to both of a memory hole page and a _used_ kernel 7303 * page at boot. 7304 */ 7305 if (found > count) 7306 return true; 7307 } 7308 return false; 7309 } 7310 7311 bool is_pageblock_removable_nolock(struct page *page) 7312 { 7313 struct zone *zone; 7314 unsigned long pfn; 7315 7316 /* 7317 * We have to be careful here because we are iterating over memory 7318 * sections which are not zone aware so we might end up outside of 7319 * the zone but still within the section. 7320 * We have to take care about the node as well. If the node is offline 7321 * its NODE_DATA will be NULL - see page_zone. 7322 */ 7323 if (!node_online(page_to_nid(page))) 7324 return false; 7325 7326 zone = page_zone(page); 7327 pfn = page_to_pfn(page); 7328 if (!zone_spans_pfn(zone, pfn)) 7329 return false; 7330 7331 return !has_unmovable_pages(zone, page, 0, true); 7332 } 7333 7334 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7335 7336 static unsigned long pfn_max_align_down(unsigned long pfn) 7337 { 7338 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7339 pageblock_nr_pages) - 1); 7340 } 7341 7342 static unsigned long pfn_max_align_up(unsigned long pfn) 7343 { 7344 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7345 pageblock_nr_pages)); 7346 } 7347 7348 /* [start, end) must belong to a single zone. */ 7349 static int __alloc_contig_migrate_range(struct compact_control *cc, 7350 unsigned long start, unsigned long end) 7351 { 7352 /* This function is based on compact_zone() from compaction.c. */ 7353 unsigned long nr_reclaimed; 7354 unsigned long pfn = start; 7355 unsigned int tries = 0; 7356 int ret = 0; 7357 7358 migrate_prep(); 7359 7360 while (pfn < end || !list_empty(&cc->migratepages)) { 7361 if (fatal_signal_pending(current)) { 7362 ret = -EINTR; 7363 break; 7364 } 7365 7366 if (list_empty(&cc->migratepages)) { 7367 cc->nr_migratepages = 0; 7368 pfn = isolate_migratepages_range(cc, pfn, end); 7369 if (!pfn) { 7370 ret = -EINTR; 7371 break; 7372 } 7373 tries = 0; 7374 } else if (++tries == 5) { 7375 ret = ret < 0 ? ret : -EBUSY; 7376 break; 7377 } 7378 7379 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7380 &cc->migratepages); 7381 cc->nr_migratepages -= nr_reclaimed; 7382 7383 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7384 NULL, 0, cc->mode, MR_CMA); 7385 } 7386 if (ret < 0) { 7387 putback_movable_pages(&cc->migratepages); 7388 return ret; 7389 } 7390 return 0; 7391 } 7392 7393 /** 7394 * alloc_contig_range() -- tries to allocate given range of pages 7395 * @start: start PFN to allocate 7396 * @end: one-past-the-last PFN to allocate 7397 * @migratetype: migratetype of the underlaying pageblocks (either 7398 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7399 * in range must have the same migratetype and it must 7400 * be either of the two. 7401 * @gfp_mask: GFP mask to use during compaction 7402 * 7403 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7404 * aligned, however it's the caller's responsibility to guarantee that 7405 * we are the only thread that changes migrate type of pageblocks the 7406 * pages fall in. 7407 * 7408 * The PFN range must belong to a single zone. 7409 * 7410 * Returns zero on success or negative error code. On success all 7411 * pages which PFN is in [start, end) are allocated for the caller and 7412 * need to be freed with free_contig_range(). 7413 */ 7414 int alloc_contig_range(unsigned long start, unsigned long end, 7415 unsigned migratetype, gfp_t gfp_mask) 7416 { 7417 unsigned long outer_start, outer_end; 7418 unsigned int order; 7419 int ret = 0; 7420 7421 struct compact_control cc = { 7422 .nr_migratepages = 0, 7423 .order = -1, 7424 .zone = page_zone(pfn_to_page(start)), 7425 .mode = MIGRATE_SYNC, 7426 .ignore_skip_hint = true, 7427 .gfp_mask = memalloc_noio_flags(gfp_mask), 7428 }; 7429 INIT_LIST_HEAD(&cc.migratepages); 7430 7431 /* 7432 * What we do here is we mark all pageblocks in range as 7433 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7434 * have different sizes, and due to the way page allocator 7435 * work, we align the range to biggest of the two pages so 7436 * that page allocator won't try to merge buddies from 7437 * different pageblocks and change MIGRATE_ISOLATE to some 7438 * other migration type. 7439 * 7440 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7441 * migrate the pages from an unaligned range (ie. pages that 7442 * we are interested in). This will put all the pages in 7443 * range back to page allocator as MIGRATE_ISOLATE. 7444 * 7445 * When this is done, we take the pages in range from page 7446 * allocator removing them from the buddy system. This way 7447 * page allocator will never consider using them. 7448 * 7449 * This lets us mark the pageblocks back as 7450 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7451 * aligned range but not in the unaligned, original range are 7452 * put back to page allocator so that buddy can use them. 7453 */ 7454 7455 ret = start_isolate_page_range(pfn_max_align_down(start), 7456 pfn_max_align_up(end), migratetype, 7457 false); 7458 if (ret) 7459 return ret; 7460 7461 /* 7462 * In case of -EBUSY, we'd like to know which page causes problem. 7463 * So, just fall through. We will check it in test_pages_isolated(). 7464 */ 7465 ret = __alloc_contig_migrate_range(&cc, start, end); 7466 if (ret && ret != -EBUSY) 7467 goto done; 7468 7469 /* 7470 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7471 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7472 * more, all pages in [start, end) are free in page allocator. 7473 * What we are going to do is to allocate all pages from 7474 * [start, end) (that is remove them from page allocator). 7475 * 7476 * The only problem is that pages at the beginning and at the 7477 * end of interesting range may be not aligned with pages that 7478 * page allocator holds, ie. they can be part of higher order 7479 * pages. Because of this, we reserve the bigger range and 7480 * once this is done free the pages we are not interested in. 7481 * 7482 * We don't have to hold zone->lock here because the pages are 7483 * isolated thus they won't get removed from buddy. 7484 */ 7485 7486 lru_add_drain_all(); 7487 drain_all_pages(cc.zone); 7488 7489 order = 0; 7490 outer_start = start; 7491 while (!PageBuddy(pfn_to_page(outer_start))) { 7492 if (++order >= MAX_ORDER) { 7493 outer_start = start; 7494 break; 7495 } 7496 outer_start &= ~0UL << order; 7497 } 7498 7499 if (outer_start != start) { 7500 order = page_order(pfn_to_page(outer_start)); 7501 7502 /* 7503 * outer_start page could be small order buddy page and 7504 * it doesn't include start page. Adjust outer_start 7505 * in this case to report failed page properly 7506 * on tracepoint in test_pages_isolated() 7507 */ 7508 if (outer_start + (1UL << order) <= start) 7509 outer_start = start; 7510 } 7511 7512 /* Make sure the range is really isolated. */ 7513 if (test_pages_isolated(outer_start, end, false)) { 7514 pr_info("%s: [%lx, %lx) PFNs busy\n", 7515 __func__, outer_start, end); 7516 ret = -EBUSY; 7517 goto done; 7518 } 7519 7520 /* Grab isolated pages from freelists. */ 7521 outer_end = isolate_freepages_range(&cc, outer_start, end); 7522 if (!outer_end) { 7523 ret = -EBUSY; 7524 goto done; 7525 } 7526 7527 /* Free head and tail (if any) */ 7528 if (start != outer_start) 7529 free_contig_range(outer_start, start - outer_start); 7530 if (end != outer_end) 7531 free_contig_range(end, outer_end - end); 7532 7533 done: 7534 undo_isolate_page_range(pfn_max_align_down(start), 7535 pfn_max_align_up(end), migratetype); 7536 return ret; 7537 } 7538 7539 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7540 { 7541 unsigned int count = 0; 7542 7543 for (; nr_pages--; pfn++) { 7544 struct page *page = pfn_to_page(pfn); 7545 7546 count += page_count(page) != 1; 7547 __free_page(page); 7548 } 7549 WARN(count != 0, "%d pages are still in use!\n", count); 7550 } 7551 #endif 7552 7553 #ifdef CONFIG_MEMORY_HOTPLUG 7554 /* 7555 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7556 * page high values need to be recalulated. 7557 */ 7558 void __meminit zone_pcp_update(struct zone *zone) 7559 { 7560 unsigned cpu; 7561 mutex_lock(&pcp_batch_high_lock); 7562 for_each_possible_cpu(cpu) 7563 pageset_set_high_and_batch(zone, 7564 per_cpu_ptr(zone->pageset, cpu)); 7565 mutex_unlock(&pcp_batch_high_lock); 7566 } 7567 #endif 7568 7569 void zone_pcp_reset(struct zone *zone) 7570 { 7571 unsigned long flags; 7572 int cpu; 7573 struct per_cpu_pageset *pset; 7574 7575 /* avoid races with drain_pages() */ 7576 local_irq_save(flags); 7577 if (zone->pageset != &boot_pageset) { 7578 for_each_online_cpu(cpu) { 7579 pset = per_cpu_ptr(zone->pageset, cpu); 7580 drain_zonestat(zone, pset); 7581 } 7582 free_percpu(zone->pageset); 7583 zone->pageset = &boot_pageset; 7584 } 7585 local_irq_restore(flags); 7586 } 7587 7588 #ifdef CONFIG_MEMORY_HOTREMOVE 7589 /* 7590 * All pages in the range must be in a single zone and isolated 7591 * before calling this. 7592 */ 7593 void 7594 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7595 { 7596 struct page *page; 7597 struct zone *zone; 7598 unsigned int order, i; 7599 unsigned long pfn; 7600 unsigned long flags; 7601 /* find the first valid pfn */ 7602 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7603 if (pfn_valid(pfn)) 7604 break; 7605 if (pfn == end_pfn) 7606 return; 7607 zone = page_zone(pfn_to_page(pfn)); 7608 spin_lock_irqsave(&zone->lock, flags); 7609 pfn = start_pfn; 7610 while (pfn < end_pfn) { 7611 if (!pfn_valid(pfn)) { 7612 pfn++; 7613 continue; 7614 } 7615 page = pfn_to_page(pfn); 7616 /* 7617 * The HWPoisoned page may be not in buddy system, and 7618 * page_count() is not 0. 7619 */ 7620 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7621 pfn++; 7622 SetPageReserved(page); 7623 continue; 7624 } 7625 7626 BUG_ON(page_count(page)); 7627 BUG_ON(!PageBuddy(page)); 7628 order = page_order(page); 7629 #ifdef CONFIG_DEBUG_VM 7630 pr_info("remove from free list %lx %d %lx\n", 7631 pfn, 1 << order, end_pfn); 7632 #endif 7633 list_del(&page->lru); 7634 rmv_page_order(page); 7635 zone->free_area[order].nr_free--; 7636 for (i = 0; i < (1 << order); i++) 7637 SetPageReserved((page+i)); 7638 pfn += (1 << order); 7639 } 7640 spin_unlock_irqrestore(&zone->lock, flags); 7641 } 7642 #endif 7643 7644 bool is_free_buddy_page(struct page *page) 7645 { 7646 struct zone *zone = page_zone(page); 7647 unsigned long pfn = page_to_pfn(page); 7648 unsigned long flags; 7649 unsigned int order; 7650 7651 spin_lock_irqsave(&zone->lock, flags); 7652 for (order = 0; order < MAX_ORDER; order++) { 7653 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7654 7655 if (PageBuddy(page_head) && page_order(page_head) >= order) 7656 break; 7657 } 7658 spin_unlock_irqrestore(&zone->lock, flags); 7659 7660 return order < MAX_ORDER; 7661 } 7662