xref: /openbmc/linux/mm/page_alloc.c (revision 4f6cce39)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
73 
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
77 
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
82 
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 /*
85  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88  * defined in <linux/topology.h>.
89  */
90 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
94 
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98 
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
102 #endif
103 
104 /*
105  * Array of node states.
106  */
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 	[N_POSSIBLE] = NODE_MASK_ALL,
109 	[N_ONLINE] = { { [0] = 1UL } },
110 #ifndef CONFIG_NUMA
111 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
114 #endif
115 #ifdef CONFIG_MOVABLE_NODE
116 	[N_MEMORY] = { { [0] = 1UL } },
117 #endif
118 	[N_CPU] = { { [0] = 1UL } },
119 #endif	/* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122 
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125 
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129 
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132 
133 /*
134  * A cached value of the page's pageblock's migratetype, used when the page is
135  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137  * Also the migratetype set in the page does not necessarily match the pcplist
138  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139  * other index - this ensures that it will be put on the correct CMA freelist.
140  */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 	return page->index;
144 }
145 
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 	page->index = migratetype;
149 }
150 
151 #ifdef CONFIG_PM_SLEEP
152 /*
153  * The following functions are used by the suspend/hibernate code to temporarily
154  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155  * while devices are suspended.  To avoid races with the suspend/hibernate code,
156  * they should always be called with pm_mutex held (gfp_allowed_mask also should
157  * only be modified with pm_mutex held, unless the suspend/hibernate code is
158  * guaranteed not to run in parallel with that modification).
159  */
160 
161 static gfp_t saved_gfp_mask;
162 
163 void pm_restore_gfp_mask(void)
164 {
165 	WARN_ON(!mutex_is_locked(&pm_mutex));
166 	if (saved_gfp_mask) {
167 		gfp_allowed_mask = saved_gfp_mask;
168 		saved_gfp_mask = 0;
169 	}
170 }
171 
172 void pm_restrict_gfp_mask(void)
173 {
174 	WARN_ON(!mutex_is_locked(&pm_mutex));
175 	WARN_ON(saved_gfp_mask);
176 	saved_gfp_mask = gfp_allowed_mask;
177 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179 
180 bool pm_suspended_storage(void)
181 {
182 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 		return false;
184 	return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187 
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191 
192 static void __free_pages_ok(struct page *page, unsigned int order);
193 
194 /*
195  * results with 256, 32 in the lowmem_reserve sysctl:
196  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197  *	1G machine -> (16M dma, 784M normal, 224M high)
198  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201  *
202  * TBD: should special case ZONE_DMA32 machines here - in those we normally
203  * don't need any ZONE_NORMAL reservation
204  */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 	 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 	 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 	 32,
214 #endif
215 	 32,
216 };
217 
218 EXPORT_SYMBOL(totalram_pages);
219 
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 	 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 	 "DMA32",
226 #endif
227 	 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 	 "HighMem",
230 #endif
231 	 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 	 "Device",
234 #endif
235 };
236 
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 	"Unmovable",
239 	"Movable",
240 	"Reclaimable",
241 	"HighAtomic",
242 #ifdef CONFIG_CMA
243 	"CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 	"Isolate",
247 #endif
248 };
249 
250 compound_page_dtor * const compound_page_dtors[] = {
251 	NULL,
252 	free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 	free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 	free_transhuge_page,
258 #endif
259 };
260 
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264 
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268 
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281 
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288 
289 int page_group_by_mobility_disabled __read_mostly;
290 
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
293 {
294 	pgdat->first_deferred_pfn = ULONG_MAX;
295 }
296 
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 	int nid = early_pfn_to_nid(pfn);
301 
302 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 		return true;
304 
305 	return false;
306 }
307 
308 /*
309  * Returns false when the remaining initialisation should be deferred until
310  * later in the boot cycle when it can be parallelised.
311  */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 				unsigned long pfn, unsigned long zone_end,
314 				unsigned long *nr_initialised)
315 {
316 	unsigned long max_initialise;
317 
318 	/* Always populate low zones for address-contrained allocations */
319 	if (zone_end < pgdat_end_pfn(pgdat))
320 		return true;
321 	/*
322 	 * Initialise at least 2G of a node but also take into account that
323 	 * two large system hashes that can take up 1GB for 0.25TB/node.
324 	 */
325 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 		(pgdat->node_spanned_pages >> 8));
327 
328 	(*nr_initialised)++;
329 	if ((*nr_initialised > max_initialise) &&
330 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 		pgdat->first_deferred_pfn = pfn;
332 		return false;
333 	}
334 
335 	return true;
336 }
337 #else
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
339 {
340 }
341 
342 static inline bool early_page_uninitialised(unsigned long pfn)
343 {
344 	return false;
345 }
346 
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 				unsigned long pfn, unsigned long zone_end,
349 				unsigned long *nr_initialised)
350 {
351 	return true;
352 }
353 #endif
354 
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 							unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 	return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 	return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365 
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 	pfn &= (PAGES_PER_SECTION-1);
370 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376 
377 /**
378  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379  * @page: The page within the block of interest
380  * @pfn: The target page frame number
381  * @end_bitidx: The last bit of interest to retrieve
382  * @mask: mask of bits that the caller is interested in
383  *
384  * Return: pageblock_bits flags
385  */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 					unsigned long pfn,
388 					unsigned long end_bitidx,
389 					unsigned long mask)
390 {
391 	unsigned long *bitmap;
392 	unsigned long bitidx, word_bitidx;
393 	unsigned long word;
394 
395 	bitmap = get_pageblock_bitmap(page, pfn);
396 	bitidx = pfn_to_bitidx(page, pfn);
397 	word_bitidx = bitidx / BITS_PER_LONG;
398 	bitidx &= (BITS_PER_LONG-1);
399 
400 	word = bitmap[word_bitidx];
401 	bitidx += end_bitidx;
402 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404 
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 					unsigned long end_bitidx,
407 					unsigned long mask)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411 
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416 
417 /**
418  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419  * @page: The page within the block of interest
420  * @flags: The flags to set
421  * @pfn: The target page frame number
422  * @end_bitidx: The last bit of interest
423  * @mask: mask of bits that the caller is interested in
424  */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 					unsigned long pfn,
427 					unsigned long end_bitidx,
428 					unsigned long mask)
429 {
430 	unsigned long *bitmap;
431 	unsigned long bitidx, word_bitidx;
432 	unsigned long old_word, word;
433 
434 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435 
436 	bitmap = get_pageblock_bitmap(page, pfn);
437 	bitidx = pfn_to_bitidx(page, pfn);
438 	word_bitidx = bitidx / BITS_PER_LONG;
439 	bitidx &= (BITS_PER_LONG-1);
440 
441 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442 
443 	bitidx += end_bitidx;
444 	mask <<= (BITS_PER_LONG - bitidx - 1);
445 	flags <<= (BITS_PER_LONG - bitidx - 1);
446 
447 	word = READ_ONCE(bitmap[word_bitidx]);
448 	for (;;) {
449 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 		if (word == old_word)
451 			break;
452 		word = old_word;
453 	}
454 }
455 
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 	if (unlikely(page_group_by_mobility_disabled &&
459 		     migratetype < MIGRATE_PCPTYPES))
460 		migratetype = MIGRATE_UNMOVABLE;
461 
462 	set_pageblock_flags_group(page, (unsigned long)migratetype,
463 					PB_migrate, PB_migrate_end);
464 }
465 
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 	int ret = 0;
470 	unsigned seq;
471 	unsigned long pfn = page_to_pfn(page);
472 	unsigned long sp, start_pfn;
473 
474 	do {
475 		seq = zone_span_seqbegin(zone);
476 		start_pfn = zone->zone_start_pfn;
477 		sp = zone->spanned_pages;
478 		if (!zone_spans_pfn(zone, pfn))
479 			ret = 1;
480 	} while (zone_span_seqretry(zone, seq));
481 
482 	if (ret)
483 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 			pfn, zone_to_nid(zone), zone->name,
485 			start_pfn, start_pfn + sp);
486 
487 	return ret;
488 }
489 
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 	if (!pfn_valid_within(page_to_pfn(page)))
493 		return 0;
494 	if (zone != page_zone(page))
495 		return 0;
496 
497 	return 1;
498 }
499 /*
500  * Temporary debugging check for pages not lying within a given zone.
501  */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 	if (page_outside_zone_boundaries(zone, page))
505 		return 1;
506 	if (!page_is_consistent(zone, page))
507 		return 1;
508 
509 	return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 	return 0;
515 }
516 #endif
517 
518 static void bad_page(struct page *page, const char *reason,
519 		unsigned long bad_flags)
520 {
521 	static unsigned long resume;
522 	static unsigned long nr_shown;
523 	static unsigned long nr_unshown;
524 
525 	/*
526 	 * Allow a burst of 60 reports, then keep quiet for that minute;
527 	 * or allow a steady drip of one report per second.
528 	 */
529 	if (nr_shown == 60) {
530 		if (time_before(jiffies, resume)) {
531 			nr_unshown++;
532 			goto out;
533 		}
534 		if (nr_unshown) {
535 			pr_alert(
536 			      "BUG: Bad page state: %lu messages suppressed\n",
537 				nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
546 		current->comm, page_to_pfn(page));
547 	__dump_page(page, reason);
548 	bad_flags &= page->flags;
549 	if (bad_flags)
550 		pr_alert("bad because of flags: %#lx(%pGp)\n",
551 						bad_flags, &bad_flags);
552 	dump_page_owner(page);
553 
554 	print_modules();
555 	dump_stack();
556 out:
557 	/* Leave bad fields for debug, except PageBuddy could make trouble */
558 	page_mapcount_reset(page); /* remove PageBuddy */
559 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
560 }
561 
562 /*
563  * Higher-order pages are called "compound pages".  They are structured thusly:
564  *
565  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
566  *
567  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
569  *
570  * The first tail page's ->compound_dtor holds the offset in array of compound
571  * page destructors. See compound_page_dtors.
572  *
573  * The first tail page's ->compound_order holds the order of allocation.
574  * This usage means that zero-order pages may not be compound.
575  */
576 
577 void free_compound_page(struct page *page)
578 {
579 	__free_pages_ok(page, compound_order(page));
580 }
581 
582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 	int i;
585 	int nr_pages = 1 << order;
586 
587 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 	set_compound_order(page, order);
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++) {
591 		struct page *p = page + i;
592 		set_page_count(p, 0);
593 		p->mapping = TAIL_MAPPING;
594 		set_compound_head(p, page);
595 	}
596 	atomic_set(compound_mapcount_ptr(page), -1);
597 }
598 
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
605 
606 static int __init early_debug_pagealloc(char *buf)
607 {
608 	if (!buf)
609 		return -EINVAL;
610 	return kstrtobool(buf, &_debug_pagealloc_enabled);
611 }
612 early_param("debug_pagealloc", early_debug_pagealloc);
613 
614 static bool need_debug_guardpage(void)
615 {
616 	/* If we don't use debug_pagealloc, we don't need guard page */
617 	if (!debug_pagealloc_enabled())
618 		return false;
619 
620 	if (!debug_guardpage_minorder())
621 		return false;
622 
623 	return true;
624 }
625 
626 static void init_debug_guardpage(void)
627 {
628 	if (!debug_pagealloc_enabled())
629 		return;
630 
631 	if (!debug_guardpage_minorder())
632 		return;
633 
634 	_debug_guardpage_enabled = true;
635 }
636 
637 struct page_ext_operations debug_guardpage_ops = {
638 	.need = need_debug_guardpage,
639 	.init = init_debug_guardpage,
640 };
641 
642 static int __init debug_guardpage_minorder_setup(char *buf)
643 {
644 	unsigned long res;
645 
646 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
647 		pr_err("Bad debug_guardpage_minorder value\n");
648 		return 0;
649 	}
650 	_debug_guardpage_minorder = res;
651 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 	return 0;
653 }
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655 
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 				unsigned int order, int migratetype)
658 {
659 	struct page_ext *page_ext;
660 
661 	if (!debug_guardpage_enabled())
662 		return false;
663 
664 	if (order >= debug_guardpage_minorder())
665 		return false;
666 
667 	page_ext = lookup_page_ext(page);
668 	if (unlikely(!page_ext))
669 		return false;
670 
671 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672 
673 	INIT_LIST_HEAD(&page->lru);
674 	set_page_private(page, order);
675 	/* Guard pages are not available for any usage */
676 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
677 
678 	return true;
679 }
680 
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 				unsigned int order, int migratetype)
683 {
684 	struct page_ext *page_ext;
685 
686 	if (!debug_guardpage_enabled())
687 		return;
688 
689 	page_ext = lookup_page_ext(page);
690 	if (unlikely(!page_ext))
691 		return;
692 
693 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694 
695 	set_page_private(page, 0);
696 	if (!is_migrate_isolate(migratetype))
697 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
698 }
699 #else
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 			unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 				unsigned int order, int migratetype) {}
705 #endif
706 
707 static inline void set_page_order(struct page *page, unsigned int order)
708 {
709 	set_page_private(page, order);
710 	__SetPageBuddy(page);
711 }
712 
713 static inline void rmv_page_order(struct page *page)
714 {
715 	__ClearPageBuddy(page);
716 	set_page_private(page, 0);
717 }
718 
719 /*
720  * This function checks whether a page is free && is the buddy
721  * we can do coalesce a page and its buddy if
722  * (a) the buddy is not in a hole (check before calling!) &&
723  * (b) the buddy is in the buddy system &&
724  * (c) a page and its buddy have the same order &&
725  * (d) a page and its buddy are in the same zone.
726  *
727  * For recording whether a page is in the buddy system, we set ->_mapcount
728  * PAGE_BUDDY_MAPCOUNT_VALUE.
729  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730  * serialized by zone->lock.
731  *
732  * For recording page's order, we use page_private(page).
733  */
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
735 							unsigned int order)
736 {
737 	if (page_is_guard(buddy) && page_order(buddy) == order) {
738 		if (page_zone_id(page) != page_zone_id(buddy))
739 			return 0;
740 
741 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742 
743 		return 1;
744 	}
745 
746 	if (PageBuddy(buddy) && page_order(buddy) == order) {
747 		/*
748 		 * zone check is done late to avoid uselessly
749 		 * calculating zone/node ids for pages that could
750 		 * never merge.
751 		 */
752 		if (page_zone_id(page) != page_zone_id(buddy))
753 			return 0;
754 
755 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756 
757 		return 1;
758 	}
759 	return 0;
760 }
761 
762 /*
763  * Freeing function for a buddy system allocator.
764  *
765  * The concept of a buddy system is to maintain direct-mapped table
766  * (containing bit values) for memory blocks of various "orders".
767  * The bottom level table contains the map for the smallest allocatable
768  * units of memory (here, pages), and each level above it describes
769  * pairs of units from the levels below, hence, "buddies".
770  * At a high level, all that happens here is marking the table entry
771  * at the bottom level available, and propagating the changes upward
772  * as necessary, plus some accounting needed to play nicely with other
773  * parts of the VM system.
774  * At each level, we keep a list of pages, which are heads of continuous
775  * free pages of length of (1 << order) and marked with _mapcount
776  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777  * field.
778  * So when we are allocating or freeing one, we can derive the state of the
779  * other.  That is, if we allocate a small block, and both were
780  * free, the remainder of the region must be split into blocks.
781  * If a block is freed, and its buddy is also free, then this
782  * triggers coalescing into a block of larger size.
783  *
784  * -- nyc
785  */
786 
787 static inline void __free_one_page(struct page *page,
788 		unsigned long pfn,
789 		struct zone *zone, unsigned int order,
790 		int migratetype)
791 {
792 	unsigned long combined_pfn;
793 	unsigned long uninitialized_var(buddy_pfn);
794 	struct page *buddy;
795 	unsigned int max_order;
796 
797 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798 
799 	VM_BUG_ON(!zone_is_initialized(zone));
800 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801 
802 	VM_BUG_ON(migratetype == -1);
803 	if (likely(!is_migrate_isolate(migratetype)))
804 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
805 
806 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
808 
809 continue_merging:
810 	while (order < max_order - 1) {
811 		buddy_pfn = __find_buddy_pfn(pfn, order);
812 		buddy = page + (buddy_pfn - pfn);
813 
814 		if (!pfn_valid_within(buddy_pfn))
815 			goto done_merging;
816 		if (!page_is_buddy(page, buddy, order))
817 			goto done_merging;
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy)) {
823 			clear_page_guard(zone, buddy, order, migratetype);
824 		} else {
825 			list_del(&buddy->lru);
826 			zone->free_area[order].nr_free--;
827 			rmv_page_order(buddy);
828 		}
829 		combined_pfn = buddy_pfn & pfn;
830 		page = page + (combined_pfn - pfn);
831 		pfn = combined_pfn;
832 		order++;
833 	}
834 	if (max_order < MAX_ORDER) {
835 		/* If we are here, it means order is >= pageblock_order.
836 		 * We want to prevent merge between freepages on isolate
837 		 * pageblock and normal pageblock. Without this, pageblock
838 		 * isolation could cause incorrect freepage or CMA accounting.
839 		 *
840 		 * We don't want to hit this code for the more frequent
841 		 * low-order merging.
842 		 */
843 		if (unlikely(has_isolate_pageblock(zone))) {
844 			int buddy_mt;
845 
846 			buddy_pfn = __find_buddy_pfn(pfn, order);
847 			buddy = page + (buddy_pfn - pfn);
848 			buddy_mt = get_pageblock_migratetype(buddy);
849 
850 			if (migratetype != buddy_mt
851 					&& (is_migrate_isolate(migratetype) ||
852 						is_migrate_isolate(buddy_mt)))
853 				goto done_merging;
854 		}
855 		max_order++;
856 		goto continue_merging;
857 	}
858 
859 done_merging:
860 	set_page_order(page, order);
861 
862 	/*
863 	 * If this is not the largest possible page, check if the buddy
864 	 * of the next-highest order is free. If it is, it's possible
865 	 * that pages are being freed that will coalesce soon. In case,
866 	 * that is happening, add the free page to the tail of the list
867 	 * so it's less likely to be used soon and more likely to be merged
868 	 * as a higher order page
869 	 */
870 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 		struct page *higher_page, *higher_buddy;
872 		combined_pfn = buddy_pfn & pfn;
873 		higher_page = page + (combined_pfn - pfn);
874 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 		if (pfn_valid_within(buddy_pfn) &&
877 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 			list_add_tail(&page->lru,
879 				&zone->free_area[order].free_list[migratetype]);
880 			goto out;
881 		}
882 	}
883 
884 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885 out:
886 	zone->free_area[order].nr_free++;
887 }
888 
889 /*
890  * A bad page could be due to a number of fields. Instead of multiple branches,
891  * try and check multiple fields with one check. The caller must do a detailed
892  * check if necessary.
893  */
894 static inline bool page_expected_state(struct page *page,
895 					unsigned long check_flags)
896 {
897 	if (unlikely(atomic_read(&page->_mapcount) != -1))
898 		return false;
899 
900 	if (unlikely((unsigned long)page->mapping |
901 			page_ref_count(page) |
902 #ifdef CONFIG_MEMCG
903 			(unsigned long)page->mem_cgroup |
904 #endif
905 			(page->flags & check_flags)))
906 		return false;
907 
908 	return true;
909 }
910 
911 static void free_pages_check_bad(struct page *page)
912 {
913 	const char *bad_reason;
914 	unsigned long bad_flags;
915 
916 	bad_reason = NULL;
917 	bad_flags = 0;
918 
919 	if (unlikely(atomic_read(&page->_mapcount) != -1))
920 		bad_reason = "nonzero mapcount";
921 	if (unlikely(page->mapping != NULL))
922 		bad_reason = "non-NULL mapping";
923 	if (unlikely(page_ref_count(page) != 0))
924 		bad_reason = "nonzero _refcount";
925 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
928 	}
929 #ifdef CONFIG_MEMCG
930 	if (unlikely(page->mem_cgroup))
931 		bad_reason = "page still charged to cgroup";
932 #endif
933 	bad_page(page, bad_reason, bad_flags);
934 }
935 
936 static inline int free_pages_check(struct page *page)
937 {
938 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
939 		return 0;
940 
941 	/* Something has gone sideways, find it */
942 	free_pages_check_bad(page);
943 	return 1;
944 }
945 
946 static int free_tail_pages_check(struct page *head_page, struct page *page)
947 {
948 	int ret = 1;
949 
950 	/*
951 	 * We rely page->lru.next never has bit 0 set, unless the page
952 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
953 	 */
954 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
955 
956 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 		ret = 0;
958 		goto out;
959 	}
960 	switch (page - head_page) {
961 	case 1:
962 		/* the first tail page: ->mapping is compound_mapcount() */
963 		if (unlikely(compound_mapcount(page))) {
964 			bad_page(page, "nonzero compound_mapcount", 0);
965 			goto out;
966 		}
967 		break;
968 	case 2:
969 		/*
970 		 * the second tail page: ->mapping is
971 		 * page_deferred_list().next -- ignore value.
972 		 */
973 		break;
974 	default:
975 		if (page->mapping != TAIL_MAPPING) {
976 			bad_page(page, "corrupted mapping in tail page", 0);
977 			goto out;
978 		}
979 		break;
980 	}
981 	if (unlikely(!PageTail(page))) {
982 		bad_page(page, "PageTail not set", 0);
983 		goto out;
984 	}
985 	if (unlikely(compound_head(page) != head_page)) {
986 		bad_page(page, "compound_head not consistent", 0);
987 		goto out;
988 	}
989 	ret = 0;
990 out:
991 	page->mapping = NULL;
992 	clear_compound_head(page);
993 	return ret;
994 }
995 
996 static __always_inline bool free_pages_prepare(struct page *page,
997 					unsigned int order, bool check_free)
998 {
999 	int bad = 0;
1000 
1001 	VM_BUG_ON_PAGE(PageTail(page), page);
1002 
1003 	trace_mm_page_free(page, order);
1004 	kmemcheck_free_shadow(page, order);
1005 
1006 	/*
1007 	 * Check tail pages before head page information is cleared to
1008 	 * avoid checking PageCompound for order-0 pages.
1009 	 */
1010 	if (unlikely(order)) {
1011 		bool compound = PageCompound(page);
1012 		int i;
1013 
1014 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1015 
1016 		if (compound)
1017 			ClearPageDoubleMap(page);
1018 		for (i = 1; i < (1 << order); i++) {
1019 			if (compound)
1020 				bad += free_tail_pages_check(page, page + i);
1021 			if (unlikely(free_pages_check(page + i))) {
1022 				bad++;
1023 				continue;
1024 			}
1025 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 		}
1027 	}
1028 	if (PageMappingFlags(page))
1029 		page->mapping = NULL;
1030 	if (memcg_kmem_enabled() && PageKmemcg(page))
1031 		memcg_kmem_uncharge(page, order);
1032 	if (check_free)
1033 		bad += free_pages_check(page);
1034 	if (bad)
1035 		return false;
1036 
1037 	page_cpupid_reset_last(page);
1038 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 	reset_page_owner(page, order);
1040 
1041 	if (!PageHighMem(page)) {
1042 		debug_check_no_locks_freed(page_address(page),
1043 					   PAGE_SIZE << order);
1044 		debug_check_no_obj_freed(page_address(page),
1045 					   PAGE_SIZE << order);
1046 	}
1047 	arch_free_page(page, order);
1048 	kernel_poison_pages(page, 1 << order, 0);
1049 	kernel_map_pages(page, 1 << order, 0);
1050 	kasan_free_pages(page, order);
1051 
1052 	return true;
1053 }
1054 
1055 #ifdef CONFIG_DEBUG_VM
1056 static inline bool free_pcp_prepare(struct page *page)
1057 {
1058 	return free_pages_prepare(page, 0, true);
1059 }
1060 
1061 static inline bool bulkfree_pcp_prepare(struct page *page)
1062 {
1063 	return false;
1064 }
1065 #else
1066 static bool free_pcp_prepare(struct page *page)
1067 {
1068 	return free_pages_prepare(page, 0, false);
1069 }
1070 
1071 static bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 	return free_pages_check(page);
1074 }
1075 #endif /* CONFIG_DEBUG_VM */
1076 
1077 /*
1078  * Frees a number of pages from the PCP lists
1079  * Assumes all pages on list are in same zone, and of same order.
1080  * count is the number of pages to free.
1081  *
1082  * If the zone was previously in an "all pages pinned" state then look to
1083  * see if this freeing clears that state.
1084  *
1085  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086  * pinned" detection logic.
1087  */
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 					struct per_cpu_pages *pcp)
1090 {
1091 	int migratetype = 0;
1092 	int batch_free = 0;
1093 	unsigned long nr_scanned, flags;
1094 	bool isolated_pageblocks;
1095 
1096 	spin_lock_irqsave(&zone->lock, flags);
1097 	isolated_pageblocks = has_isolate_pageblock(zone);
1098 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1099 	if (nr_scanned)
1100 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1101 
1102 	while (count) {
1103 		struct page *page;
1104 		struct list_head *list;
1105 
1106 		/*
1107 		 * Remove pages from lists in a round-robin fashion. A
1108 		 * batch_free count is maintained that is incremented when an
1109 		 * empty list is encountered.  This is so more pages are freed
1110 		 * off fuller lists instead of spinning excessively around empty
1111 		 * lists
1112 		 */
1113 		do {
1114 			batch_free++;
1115 			if (++migratetype == MIGRATE_PCPTYPES)
1116 				migratetype = 0;
1117 			list = &pcp->lists[migratetype];
1118 		} while (list_empty(list));
1119 
1120 		/* This is the only non-empty list. Free them all. */
1121 		if (batch_free == MIGRATE_PCPTYPES)
1122 			batch_free = count;
1123 
1124 		do {
1125 			int mt;	/* migratetype of the to-be-freed page */
1126 
1127 			page = list_last_entry(list, struct page, lru);
1128 			/* must delete as __free_one_page list manipulates */
1129 			list_del(&page->lru);
1130 
1131 			mt = get_pcppage_migratetype(page);
1132 			/* MIGRATE_ISOLATE page should not go to pcplists */
1133 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1134 			/* Pageblock could have been isolated meanwhile */
1135 			if (unlikely(isolated_pageblocks))
1136 				mt = get_pageblock_migratetype(page);
1137 
1138 			if (bulkfree_pcp_prepare(page))
1139 				continue;
1140 
1141 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1142 			trace_mm_page_pcpu_drain(page, 0, mt);
1143 		} while (--count && --batch_free && !list_empty(list));
1144 	}
1145 	spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147 
1148 static void free_one_page(struct zone *zone,
1149 				struct page *page, unsigned long pfn,
1150 				unsigned int order,
1151 				int migratetype)
1152 {
1153 	unsigned long nr_scanned, flags;
1154 	spin_lock_irqsave(&zone->lock, flags);
1155 	__count_vm_events(PGFREE, 1 << order);
1156 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1157 	if (nr_scanned)
1158 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1159 
1160 	if (unlikely(has_isolate_pageblock(zone) ||
1161 		is_migrate_isolate(migratetype))) {
1162 		migratetype = get_pfnblock_migratetype(page, pfn);
1163 	}
1164 	__free_one_page(page, pfn, zone, order, migratetype);
1165 	spin_unlock_irqrestore(&zone->lock, flags);
1166 }
1167 
1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 				unsigned long zone, int nid)
1170 {
1171 	set_page_links(page, zone, nid, pfn);
1172 	init_page_count(page);
1173 	page_mapcount_reset(page);
1174 	page_cpupid_reset_last(page);
1175 
1176 	INIT_LIST_HEAD(&page->lru);
1177 #ifdef WANT_PAGE_VIRTUAL
1178 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 	if (!is_highmem_idx(zone))
1180 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1181 #endif
1182 }
1183 
1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 					int nid)
1186 {
1187 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188 }
1189 
1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191 static void init_reserved_page(unsigned long pfn)
1192 {
1193 	pg_data_t *pgdat;
1194 	int nid, zid;
1195 
1196 	if (!early_page_uninitialised(pfn))
1197 		return;
1198 
1199 	nid = early_pfn_to_nid(pfn);
1200 	pgdat = NODE_DATA(nid);
1201 
1202 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 		struct zone *zone = &pgdat->node_zones[zid];
1204 
1205 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 			break;
1207 	}
1208 	__init_single_pfn(pfn, zid, nid);
1209 }
1210 #else
1211 static inline void init_reserved_page(unsigned long pfn)
1212 {
1213 }
1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215 
1216 /*
1217  * Initialised pages do not have PageReserved set. This function is
1218  * called for each range allocated by the bootmem allocator and
1219  * marks the pages PageReserved. The remaining valid pages are later
1220  * sent to the buddy page allocator.
1221  */
1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 {
1224 	unsigned long start_pfn = PFN_DOWN(start);
1225 	unsigned long end_pfn = PFN_UP(end);
1226 
1227 	for (; start_pfn < end_pfn; start_pfn++) {
1228 		if (pfn_valid(start_pfn)) {
1229 			struct page *page = pfn_to_page(start_pfn);
1230 
1231 			init_reserved_page(start_pfn);
1232 
1233 			/* Avoid false-positive PageTail() */
1234 			INIT_LIST_HEAD(&page->lru);
1235 
1236 			SetPageReserved(page);
1237 		}
1238 	}
1239 }
1240 
1241 static void __free_pages_ok(struct page *page, unsigned int order)
1242 {
1243 	int migratetype;
1244 	unsigned long pfn = page_to_pfn(page);
1245 
1246 	if (!free_pages_prepare(page, order, true))
1247 		return;
1248 
1249 	migratetype = get_pfnblock_migratetype(page, pfn);
1250 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1251 }
1252 
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 	unsigned int nr_pages = 1 << order;
1256 	struct page *p = page;
1257 	unsigned int loop;
1258 
1259 	prefetchw(p);
1260 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 		prefetchw(p + 1);
1262 		__ClearPageReserved(p);
1263 		set_page_count(p, 0);
1264 	}
1265 	__ClearPageReserved(p);
1266 	set_page_count(p, 0);
1267 
1268 	page_zone(page)->managed_pages += nr_pages;
1269 	set_page_refcounted(page);
1270 	__free_pages(page, order);
1271 }
1272 
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275 
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277 
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 	static DEFINE_SPINLOCK(early_pfn_lock);
1281 	int nid;
1282 
1283 	spin_lock(&early_pfn_lock);
1284 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 	if (nid < 0)
1286 		nid = first_online_node;
1287 	spin_unlock(&early_pfn_lock);
1288 
1289 	return nid;
1290 }
1291 #endif
1292 
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 					struct mminit_pfnnid_cache *state)
1296 {
1297 	int nid;
1298 
1299 	nid = __early_pfn_to_nid(pfn, state);
1300 	if (nid >= 0 && nid != node)
1301 		return false;
1302 	return true;
1303 }
1304 
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310 
1311 #else
1312 
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 	return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 					struct mminit_pfnnid_cache *state)
1319 {
1320 	return true;
1321 }
1322 #endif
1323 
1324 
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 							unsigned int order)
1327 {
1328 	if (early_page_uninitialised(pfn))
1329 		return;
1330 	return __free_pages_boot_core(page, order);
1331 }
1332 
1333 /*
1334  * Check that the whole (or subset of) a pageblock given by the interval of
1335  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336  * with the migration of free compaction scanner. The scanners then need to
1337  * use only pfn_valid_within() check for arches that allow holes within
1338  * pageblocks.
1339  *
1340  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341  *
1342  * It's possible on some configurations to have a setup like node0 node1 node0
1343  * i.e. it's possible that all pages within a zones range of pages do not
1344  * belong to a single zone. We assume that a border between node0 and node1
1345  * can occur within a single pageblock, but not a node0 node1 node0
1346  * interleaving within a single pageblock. It is therefore sufficient to check
1347  * the first and last page of a pageblock and avoid checking each individual
1348  * page in a pageblock.
1349  */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 				     unsigned long end_pfn, struct zone *zone)
1352 {
1353 	struct page *start_page;
1354 	struct page *end_page;
1355 
1356 	/* end_pfn is one past the range we are checking */
1357 	end_pfn--;
1358 
1359 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 		return NULL;
1361 
1362 	start_page = pfn_to_page(start_pfn);
1363 
1364 	if (page_zone(start_page) != zone)
1365 		return NULL;
1366 
1367 	end_page = pfn_to_page(end_pfn);
1368 
1369 	/* This gives a shorter code than deriving page_zone(end_page) */
1370 	if (page_zone_id(start_page) != page_zone_id(end_page))
1371 		return NULL;
1372 
1373 	return start_page;
1374 }
1375 
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 	unsigned long block_start_pfn = zone->zone_start_pfn;
1379 	unsigned long block_end_pfn;
1380 
1381 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 	for (; block_start_pfn < zone_end_pfn(zone);
1383 			block_start_pfn = block_end_pfn,
1384 			 block_end_pfn += pageblock_nr_pages) {
1385 
1386 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387 
1388 		if (!__pageblock_pfn_to_page(block_start_pfn,
1389 					     block_end_pfn, zone))
1390 			return;
1391 	}
1392 
1393 	/* We confirm that there is no hole */
1394 	zone->contiguous = true;
1395 }
1396 
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 	zone->contiguous = false;
1400 }
1401 
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 					unsigned long pfn, int nr_pages)
1405 {
1406 	int i;
1407 
1408 	if (!page)
1409 		return;
1410 
1411 	/* Free a large naturally-aligned chunk if possible */
1412 	if (nr_pages == pageblock_nr_pages &&
1413 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 		__free_pages_boot_core(page, pageblock_order);
1416 		return;
1417 	}
1418 
1419 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 		__free_pages_boot_core(page, 0);
1423 	}
1424 }
1425 
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429 
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 		complete(&pgdat_init_all_done_comp);
1434 }
1435 
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 	pg_data_t *pgdat = data;
1440 	int nid = pgdat->node_id;
1441 	struct mminit_pfnnid_cache nid_init_state = { };
1442 	unsigned long start = jiffies;
1443 	unsigned long nr_pages = 0;
1444 	unsigned long walk_start, walk_end;
1445 	int i, zid;
1446 	struct zone *zone;
1447 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449 
1450 	if (first_init_pfn == ULONG_MAX) {
1451 		pgdat_init_report_one_done();
1452 		return 0;
1453 	}
1454 
1455 	/* Bind memory initialisation thread to a local node if possible */
1456 	if (!cpumask_empty(cpumask))
1457 		set_cpus_allowed_ptr(current, cpumask);
1458 
1459 	/* Sanity check boundaries */
1460 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 	pgdat->first_deferred_pfn = ULONG_MAX;
1463 
1464 	/* Only the highest zone is deferred so find it */
1465 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 		zone = pgdat->node_zones + zid;
1467 		if (first_init_pfn < zone_end_pfn(zone))
1468 			break;
1469 	}
1470 
1471 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 		unsigned long pfn, end_pfn;
1473 		struct page *page = NULL;
1474 		struct page *free_base_page = NULL;
1475 		unsigned long free_base_pfn = 0;
1476 		int nr_to_free = 0;
1477 
1478 		end_pfn = min(walk_end, zone_end_pfn(zone));
1479 		pfn = first_init_pfn;
1480 		if (pfn < walk_start)
1481 			pfn = walk_start;
1482 		if (pfn < zone->zone_start_pfn)
1483 			pfn = zone->zone_start_pfn;
1484 
1485 		for (; pfn < end_pfn; pfn++) {
1486 			if (!pfn_valid_within(pfn))
1487 				goto free_range;
1488 
1489 			/*
1490 			 * Ensure pfn_valid is checked every
1491 			 * pageblock_nr_pages for memory holes
1492 			 */
1493 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 				if (!pfn_valid(pfn)) {
1495 					page = NULL;
1496 					goto free_range;
1497 				}
1498 			}
1499 
1500 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 				page = NULL;
1502 				goto free_range;
1503 			}
1504 
1505 			/* Minimise pfn page lookups and scheduler checks */
1506 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 				page++;
1508 			} else {
1509 				nr_pages += nr_to_free;
1510 				deferred_free_range(free_base_page,
1511 						free_base_pfn, nr_to_free);
1512 				free_base_page = NULL;
1513 				free_base_pfn = nr_to_free = 0;
1514 
1515 				page = pfn_to_page(pfn);
1516 				cond_resched();
1517 			}
1518 
1519 			if (page->flags) {
1520 				VM_BUG_ON(page_zone(page) != zone);
1521 				goto free_range;
1522 			}
1523 
1524 			__init_single_page(page, pfn, zid, nid);
1525 			if (!free_base_page) {
1526 				free_base_page = page;
1527 				free_base_pfn = pfn;
1528 				nr_to_free = 0;
1529 			}
1530 			nr_to_free++;
1531 
1532 			/* Where possible, batch up pages for a single free */
1533 			continue;
1534 free_range:
1535 			/* Free the current block of pages to allocator */
1536 			nr_pages += nr_to_free;
1537 			deferred_free_range(free_base_page, free_base_pfn,
1538 								nr_to_free);
1539 			free_base_page = NULL;
1540 			free_base_pfn = nr_to_free = 0;
1541 		}
1542 		/* Free the last block of pages to allocator */
1543 		nr_pages += nr_to_free;
1544 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545 
1546 		first_init_pfn = max(end_pfn, first_init_pfn);
1547 	}
1548 
1549 	/* Sanity check that the next zone really is unpopulated */
1550 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551 
1552 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 					jiffies_to_msecs(jiffies - start));
1554 
1555 	pgdat_init_report_one_done();
1556 	return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559 
1560 void __init page_alloc_init_late(void)
1561 {
1562 	struct zone *zone;
1563 
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 	int nid;
1566 
1567 	/* There will be num_node_state(N_MEMORY) threads */
1568 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 	for_each_node_state(nid, N_MEMORY) {
1570 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 	}
1572 
1573 	/* Block until all are initialised */
1574 	wait_for_completion(&pgdat_init_all_done_comp);
1575 
1576 	/* Reinit limits that are based on free pages after the kernel is up */
1577 	files_maxfiles_init();
1578 #endif
1579 
1580 	for_each_populated_zone(zone)
1581 		set_zone_contiguous(zone);
1582 }
1583 
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 	unsigned i = pageblock_nr_pages;
1589 	struct page *p = page;
1590 
1591 	do {
1592 		__ClearPageReserved(p);
1593 		set_page_count(p, 0);
1594 	} while (++p, --i);
1595 
1596 	set_pageblock_migratetype(page, MIGRATE_CMA);
1597 
1598 	if (pageblock_order >= MAX_ORDER) {
1599 		i = pageblock_nr_pages;
1600 		p = page;
1601 		do {
1602 			set_page_refcounted(p);
1603 			__free_pages(p, MAX_ORDER - 1);
1604 			p += MAX_ORDER_NR_PAGES;
1605 		} while (i -= MAX_ORDER_NR_PAGES);
1606 	} else {
1607 		set_page_refcounted(page);
1608 		__free_pages(page, pageblock_order);
1609 	}
1610 
1611 	adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614 
1615 /*
1616  * The order of subdivision here is critical for the IO subsystem.
1617  * Please do not alter this order without good reasons and regression
1618  * testing. Specifically, as large blocks of memory are subdivided,
1619  * the order in which smaller blocks are delivered depends on the order
1620  * they're subdivided in this function. This is the primary factor
1621  * influencing the order in which pages are delivered to the IO
1622  * subsystem according to empirical testing, and this is also justified
1623  * by considering the behavior of a buddy system containing a single
1624  * large block of memory acted on by a series of small allocations.
1625  * This behavior is a critical factor in sglist merging's success.
1626  *
1627  * -- nyc
1628  */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 	int low, int high, struct free_area *area,
1631 	int migratetype)
1632 {
1633 	unsigned long size = 1 << high;
1634 
1635 	while (high > low) {
1636 		area--;
1637 		high--;
1638 		size >>= 1;
1639 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640 
1641 		/*
1642 		 * Mark as guard pages (or page), that will allow to
1643 		 * merge back to allocator when buddy will be freed.
1644 		 * Corresponding page table entries will not be touched,
1645 		 * pages will stay not present in virtual address space
1646 		 */
1647 		if (set_page_guard(zone, &page[size], high, migratetype))
1648 			continue;
1649 
1650 		list_add(&page[size].lru, &area->free_list[migratetype]);
1651 		area->nr_free++;
1652 		set_page_order(&page[size], high);
1653 	}
1654 }
1655 
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 	const char *bad_reason = NULL;
1659 	unsigned long bad_flags = 0;
1660 
1661 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 		bad_reason = "nonzero mapcount";
1663 	if (unlikely(page->mapping != NULL))
1664 		bad_reason = "non-NULL mapping";
1665 	if (unlikely(page_ref_count(page) != 0))
1666 		bad_reason = "nonzero _count";
1667 	if (unlikely(page->flags & __PG_HWPOISON)) {
1668 		bad_reason = "HWPoisoned (hardware-corrupted)";
1669 		bad_flags = __PG_HWPOISON;
1670 		/* Don't complain about hwpoisoned pages */
1671 		page_mapcount_reset(page); /* remove PageBuddy */
1672 		return;
1673 	}
1674 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 	}
1678 #ifdef CONFIG_MEMCG
1679 	if (unlikely(page->mem_cgroup))
1680 		bad_reason = "page still charged to cgroup";
1681 #endif
1682 	bad_page(page, bad_reason, bad_flags);
1683 }
1684 
1685 /*
1686  * This page is about to be returned from the page allocator
1687  */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 	if (likely(page_expected_state(page,
1691 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 		return 0;
1693 
1694 	check_new_page_bad(page);
1695 	return 1;
1696 }
1697 
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 		page_poisoning_enabled() && poisoned;
1702 }
1703 
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 	return false;
1708 }
1709 
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 	return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 	return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 	return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724 
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 	int i;
1728 	for (i = 0; i < (1 << order); i++) {
1729 		struct page *p = page + i;
1730 
1731 		if (unlikely(check_new_page(p)))
1732 			return true;
1733 	}
1734 
1735 	return false;
1736 }
1737 
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 				gfp_t gfp_flags)
1740 {
1741 	set_page_private(page, 0);
1742 	set_page_refcounted(page);
1743 
1744 	arch_alloc_page(page, order);
1745 	kernel_map_pages(page, 1 << order, 1);
1746 	kernel_poison_pages(page, 1 << order, 1);
1747 	kasan_alloc_pages(page, order);
1748 	set_page_owner(page, order, gfp_flags);
1749 }
1750 
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 							unsigned int alloc_flags)
1753 {
1754 	int i;
1755 	bool poisoned = true;
1756 
1757 	for (i = 0; i < (1 << order); i++) {
1758 		struct page *p = page + i;
1759 		if (poisoned)
1760 			poisoned &= page_is_poisoned(p);
1761 	}
1762 
1763 	post_alloc_hook(page, order, gfp_flags);
1764 
1765 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 		for (i = 0; i < (1 << order); i++)
1767 			clear_highpage(page + i);
1768 
1769 	if (order && (gfp_flags & __GFP_COMP))
1770 		prep_compound_page(page, order);
1771 
1772 	/*
1773 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 	 * allocate the page. The expectation is that the caller is taking
1775 	 * steps that will free more memory. The caller should avoid the page
1776 	 * being used for !PFMEMALLOC purposes.
1777 	 */
1778 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 		set_page_pfmemalloc(page);
1780 	else
1781 		clear_page_pfmemalloc(page);
1782 }
1783 
1784 /*
1785  * Go through the free lists for the given migratetype and remove
1786  * the smallest available page from the freelists
1787  */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 						int migratetype)
1791 {
1792 	unsigned int current_order;
1793 	struct free_area *area;
1794 	struct page *page;
1795 
1796 	/* Find a page of the appropriate size in the preferred list */
1797 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 		area = &(zone->free_area[current_order]);
1799 		page = list_first_entry_or_null(&area->free_list[migratetype],
1800 							struct page, lru);
1801 		if (!page)
1802 			continue;
1803 		list_del(&page->lru);
1804 		rmv_page_order(page);
1805 		area->nr_free--;
1806 		expand(zone, page, order, current_order, area, migratetype);
1807 		set_pcppage_migratetype(page, migratetype);
1808 		return page;
1809 	}
1810 
1811 	return NULL;
1812 }
1813 
1814 
1815 /*
1816  * This array describes the order lists are fallen back to when
1817  * the free lists for the desirable migrate type are depleted
1818  */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1821 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1822 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830 
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 					unsigned int order)
1834 {
1835 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 					unsigned int order) { return NULL; }
1840 #endif
1841 
1842 /*
1843  * Move the free pages in a range to the free lists of the requested type.
1844  * Note that start_page and end_pages are not aligned on a pageblock
1845  * boundary. If alignment is required, use move_freepages_block()
1846  */
1847 int move_freepages(struct zone *zone,
1848 			  struct page *start_page, struct page *end_page,
1849 			  int migratetype)
1850 {
1851 	struct page *page;
1852 	unsigned int order;
1853 	int pages_moved = 0;
1854 
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 	/*
1857 	 * page_zone is not safe to call in this context when
1858 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 	 * anyway as we check zone boundaries in move_freepages_block().
1860 	 * Remove at a later date when no bug reports exist related to
1861 	 * grouping pages by mobility
1862 	 */
1863 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865 
1866 	for (page = start_page; page <= end_page;) {
1867 		if (!pfn_valid_within(page_to_pfn(page))) {
1868 			page++;
1869 			continue;
1870 		}
1871 
1872 		/* Make sure we are not inadvertently changing nodes */
1873 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874 
1875 		if (!PageBuddy(page)) {
1876 			page++;
1877 			continue;
1878 		}
1879 
1880 		order = page_order(page);
1881 		list_move(&page->lru,
1882 			  &zone->free_area[order].free_list[migratetype]);
1883 		page += 1 << order;
1884 		pages_moved += 1 << order;
1885 	}
1886 
1887 	return pages_moved;
1888 }
1889 
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 				int migratetype)
1892 {
1893 	unsigned long start_pfn, end_pfn;
1894 	struct page *start_page, *end_page;
1895 
1896 	start_pfn = page_to_pfn(page);
1897 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 	start_page = pfn_to_page(start_pfn);
1899 	end_page = start_page + pageblock_nr_pages - 1;
1900 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1901 
1902 	/* Do not cross zone boundaries */
1903 	if (!zone_spans_pfn(zone, start_pfn))
1904 		start_page = page;
1905 	if (!zone_spans_pfn(zone, end_pfn))
1906 		return 0;
1907 
1908 	return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910 
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 					int start_order, int migratetype)
1913 {
1914 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1915 
1916 	while (nr_pageblocks--) {
1917 		set_pageblock_migratetype(pageblock_page, migratetype);
1918 		pageblock_page += pageblock_nr_pages;
1919 	}
1920 }
1921 
1922 /*
1923  * When we are falling back to another migratetype during allocation, try to
1924  * steal extra free pages from the same pageblocks to satisfy further
1925  * allocations, instead of polluting multiple pageblocks.
1926  *
1927  * If we are stealing a relatively large buddy page, it is likely there will
1928  * be more free pages in the pageblock, so try to steal them all. For
1929  * reclaimable and unmovable allocations, we steal regardless of page size,
1930  * as fragmentation caused by those allocations polluting movable pageblocks
1931  * is worse than movable allocations stealing from unmovable and reclaimable
1932  * pageblocks.
1933  */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 	/*
1937 	 * Leaving this order check is intended, although there is
1938 	 * relaxed order check in next check. The reason is that
1939 	 * we can actually steal whole pageblock if this condition met,
1940 	 * but, below check doesn't guarantee it and that is just heuristic
1941 	 * so could be changed anytime.
1942 	 */
1943 	if (order >= pageblock_order)
1944 		return true;
1945 
1946 	if (order >= pageblock_order / 2 ||
1947 		start_mt == MIGRATE_RECLAIMABLE ||
1948 		start_mt == MIGRATE_UNMOVABLE ||
1949 		page_group_by_mobility_disabled)
1950 		return true;
1951 
1952 	return false;
1953 }
1954 
1955 /*
1956  * This function implements actual steal behaviour. If order is large enough,
1957  * we can steal whole pageblock. If not, we first move freepages in this
1958  * pageblock and check whether half of pages are moved or not. If half of
1959  * pages are moved, we can change migratetype of pageblock and permanently
1960  * use it's pages as requested migratetype in the future.
1961  */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 							  int start_type)
1964 {
1965 	unsigned int current_order = page_order(page);
1966 	int pages;
1967 
1968 	/* Take ownership for orders >= pageblock_order */
1969 	if (current_order >= pageblock_order) {
1970 		change_pageblock_range(page, current_order, start_type);
1971 		return;
1972 	}
1973 
1974 	pages = move_freepages_block(zone, page, start_type);
1975 
1976 	/* Claim the whole block if over half of it is free */
1977 	if (pages >= (1 << (pageblock_order-1)) ||
1978 			page_group_by_mobility_disabled)
1979 		set_pageblock_migratetype(page, start_type);
1980 }
1981 
1982 /*
1983  * Check whether there is a suitable fallback freepage with requested order.
1984  * If only_stealable is true, this function returns fallback_mt only if
1985  * we can steal other freepages all together. This would help to reduce
1986  * fragmentation due to mixed migratetype pages in one pageblock.
1987  */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 			int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 	int i;
1992 	int fallback_mt;
1993 
1994 	if (area->nr_free == 0)
1995 		return -1;
1996 
1997 	*can_steal = false;
1998 	for (i = 0;; i++) {
1999 		fallback_mt = fallbacks[migratetype][i];
2000 		if (fallback_mt == MIGRATE_TYPES)
2001 			break;
2002 
2003 		if (list_empty(&area->free_list[fallback_mt]))
2004 			continue;
2005 
2006 		if (can_steal_fallback(order, migratetype))
2007 			*can_steal = true;
2008 
2009 		if (!only_stealable)
2010 			return fallback_mt;
2011 
2012 		if (*can_steal)
2013 			return fallback_mt;
2014 	}
2015 
2016 	return -1;
2017 }
2018 
2019 /*
2020  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021  * there are no empty page blocks that contain a page with a suitable order
2022  */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 				unsigned int alloc_order)
2025 {
2026 	int mt;
2027 	unsigned long max_managed, flags;
2028 
2029 	/*
2030 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 	 * Check is race-prone but harmless.
2032 	 */
2033 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 	if (zone->nr_reserved_highatomic >= max_managed)
2035 		return;
2036 
2037 	spin_lock_irqsave(&zone->lock, flags);
2038 
2039 	/* Recheck the nr_reserved_highatomic limit under the lock */
2040 	if (zone->nr_reserved_highatomic >= max_managed)
2041 		goto out_unlock;
2042 
2043 	/* Yoink! */
2044 	mt = get_pageblock_migratetype(page);
2045 	if (mt != MIGRATE_HIGHATOMIC &&
2046 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 	}
2051 
2052 out_unlock:
2053 	spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055 
2056 /*
2057  * Used when an allocation is about to fail under memory pressure. This
2058  * potentially hurts the reliability of high-order allocations when under
2059  * intense memory pressure but failed atomic allocations should be easier
2060  * to recover from than an OOM.
2061  *
2062  * If @force is true, try to unreserve a pageblock even though highatomic
2063  * pageblock is exhausted.
2064  */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 						bool force)
2067 {
2068 	struct zonelist *zonelist = ac->zonelist;
2069 	unsigned long flags;
2070 	struct zoneref *z;
2071 	struct zone *zone;
2072 	struct page *page;
2073 	int order;
2074 	bool ret;
2075 
2076 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 								ac->nodemask) {
2078 		/*
2079 		 * Preserve at least one pageblock unless memory pressure
2080 		 * is really high.
2081 		 */
2082 		if (!force && zone->nr_reserved_highatomic <=
2083 					pageblock_nr_pages)
2084 			continue;
2085 
2086 		spin_lock_irqsave(&zone->lock, flags);
2087 		for (order = 0; order < MAX_ORDER; order++) {
2088 			struct free_area *area = &(zone->free_area[order]);
2089 
2090 			page = list_first_entry_or_null(
2091 					&area->free_list[MIGRATE_HIGHATOMIC],
2092 					struct page, lru);
2093 			if (!page)
2094 				continue;
2095 
2096 			/*
2097 			 * In page freeing path, migratetype change is racy so
2098 			 * we can counter several free pages in a pageblock
2099 			 * in this loop althoug we changed the pageblock type
2100 			 * from highatomic to ac->migratetype. So we should
2101 			 * adjust the count once.
2102 			 */
2103 			if (get_pageblock_migratetype(page) ==
2104 							MIGRATE_HIGHATOMIC) {
2105 				/*
2106 				 * It should never happen but changes to
2107 				 * locking could inadvertently allow a per-cpu
2108 				 * drain to add pages to MIGRATE_HIGHATOMIC
2109 				 * while unreserving so be safe and watch for
2110 				 * underflows.
2111 				 */
2112 				zone->nr_reserved_highatomic -= min(
2113 						pageblock_nr_pages,
2114 						zone->nr_reserved_highatomic);
2115 			}
2116 
2117 			/*
2118 			 * Convert to ac->migratetype and avoid the normal
2119 			 * pageblock stealing heuristics. Minimally, the caller
2120 			 * is doing the work and needs the pages. More
2121 			 * importantly, if the block was always converted to
2122 			 * MIGRATE_UNMOVABLE or another type then the number
2123 			 * of pageblocks that cannot be completely freed
2124 			 * may increase.
2125 			 */
2126 			set_pageblock_migratetype(page, ac->migratetype);
2127 			ret = move_freepages_block(zone, page, ac->migratetype);
2128 			if (ret) {
2129 				spin_unlock_irqrestore(&zone->lock, flags);
2130 				return ret;
2131 			}
2132 		}
2133 		spin_unlock_irqrestore(&zone->lock, flags);
2134 	}
2135 
2136 	return false;
2137 }
2138 
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 	struct free_area *area;
2144 	unsigned int current_order;
2145 	struct page *page;
2146 	int fallback_mt;
2147 	bool can_steal;
2148 
2149 	/* Find the largest possible block of pages in the other list */
2150 	for (current_order = MAX_ORDER-1;
2151 				current_order >= order && current_order <= MAX_ORDER-1;
2152 				--current_order) {
2153 		area = &(zone->free_area[current_order]);
2154 		fallback_mt = find_suitable_fallback(area, current_order,
2155 				start_migratetype, false, &can_steal);
2156 		if (fallback_mt == -1)
2157 			continue;
2158 
2159 		page = list_first_entry(&area->free_list[fallback_mt],
2160 						struct page, lru);
2161 		if (can_steal &&
2162 			get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 			steal_suitable_fallback(zone, page, start_migratetype);
2164 
2165 		/* Remove the page from the freelists */
2166 		area->nr_free--;
2167 		list_del(&page->lru);
2168 		rmv_page_order(page);
2169 
2170 		expand(zone, page, order, current_order, area,
2171 					start_migratetype);
2172 		/*
2173 		 * The pcppage_migratetype may differ from pageblock's
2174 		 * migratetype depending on the decisions in
2175 		 * find_suitable_fallback(). This is OK as long as it does not
2176 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 		 * fallback only via special __rmqueue_cma_fallback() function
2178 		 */
2179 		set_pcppage_migratetype(page, start_migratetype);
2180 
2181 		trace_mm_page_alloc_extfrag(page, order, current_order,
2182 			start_migratetype, fallback_mt);
2183 
2184 		return page;
2185 	}
2186 
2187 	return NULL;
2188 }
2189 
2190 /*
2191  * Do the hard work of removing an element from the buddy allocator.
2192  * Call me with the zone->lock already held.
2193  */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 				int migratetype)
2196 {
2197 	struct page *page;
2198 
2199 	page = __rmqueue_smallest(zone, order, migratetype);
2200 	if (unlikely(!page)) {
2201 		if (migratetype == MIGRATE_MOVABLE)
2202 			page = __rmqueue_cma_fallback(zone, order);
2203 
2204 		if (!page)
2205 			page = __rmqueue_fallback(zone, order, migratetype);
2206 	}
2207 
2208 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 	return page;
2210 }
2211 
2212 /*
2213  * Obtain a specified number of elements from the buddy allocator, all under
2214  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2215  * Returns the number of new pages which were placed at *list.
2216  */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 			unsigned long count, struct list_head *list,
2219 			int migratetype, bool cold)
2220 {
2221 	int i, alloced = 0;
2222 	unsigned long flags;
2223 
2224 	spin_lock_irqsave(&zone->lock, flags);
2225 	for (i = 0; i < count; ++i) {
2226 		struct page *page = __rmqueue(zone, order, migratetype);
2227 		if (unlikely(page == NULL))
2228 			break;
2229 
2230 		if (unlikely(check_pcp_refill(page)))
2231 			continue;
2232 
2233 		/*
2234 		 * Split buddy pages returned by expand() are received here
2235 		 * in physical page order. The page is added to the callers and
2236 		 * list and the list head then moves forward. From the callers
2237 		 * perspective, the linked list is ordered by page number in
2238 		 * some conditions. This is useful for IO devices that can
2239 		 * merge IO requests if the physical pages are ordered
2240 		 * properly.
2241 		 */
2242 		if (likely(!cold))
2243 			list_add(&page->lru, list);
2244 		else
2245 			list_add_tail(&page->lru, list);
2246 		list = &page->lru;
2247 		alloced++;
2248 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2249 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2250 					      -(1 << order));
2251 	}
2252 
2253 	/*
2254 	 * i pages were removed from the buddy list even if some leak due
2255 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2256 	 * on i. Do not confuse with 'alloced' which is the number of
2257 	 * pages added to the pcp list.
2258 	 */
2259 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2260 	spin_unlock_irqrestore(&zone->lock, flags);
2261 	return alloced;
2262 }
2263 
2264 #ifdef CONFIG_NUMA
2265 /*
2266  * Called from the vmstat counter updater to drain pagesets of this
2267  * currently executing processor on remote nodes after they have
2268  * expired.
2269  *
2270  * Note that this function must be called with the thread pinned to
2271  * a single processor.
2272  */
2273 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2274 {
2275 	unsigned long flags;
2276 	int to_drain, batch;
2277 
2278 	local_irq_save(flags);
2279 	batch = READ_ONCE(pcp->batch);
2280 	to_drain = min(pcp->count, batch);
2281 	if (to_drain > 0) {
2282 		free_pcppages_bulk(zone, to_drain, pcp);
2283 		pcp->count -= to_drain;
2284 	}
2285 	local_irq_restore(flags);
2286 }
2287 #endif
2288 
2289 /*
2290  * Drain pcplists of the indicated processor and zone.
2291  *
2292  * The processor must either be the current processor and the
2293  * thread pinned to the current processor or a processor that
2294  * is not online.
2295  */
2296 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2297 {
2298 	unsigned long flags;
2299 	struct per_cpu_pageset *pset;
2300 	struct per_cpu_pages *pcp;
2301 
2302 	local_irq_save(flags);
2303 	pset = per_cpu_ptr(zone->pageset, cpu);
2304 
2305 	pcp = &pset->pcp;
2306 	if (pcp->count) {
2307 		free_pcppages_bulk(zone, pcp->count, pcp);
2308 		pcp->count = 0;
2309 	}
2310 	local_irq_restore(flags);
2311 }
2312 
2313 /*
2314  * Drain pcplists of all zones on the indicated processor.
2315  *
2316  * The processor must either be the current processor and the
2317  * thread pinned to the current processor or a processor that
2318  * is not online.
2319  */
2320 static void drain_pages(unsigned int cpu)
2321 {
2322 	struct zone *zone;
2323 
2324 	for_each_populated_zone(zone) {
2325 		drain_pages_zone(cpu, zone);
2326 	}
2327 }
2328 
2329 /*
2330  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2331  *
2332  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2333  * the single zone's pages.
2334  */
2335 void drain_local_pages(struct zone *zone)
2336 {
2337 	int cpu = smp_processor_id();
2338 
2339 	if (zone)
2340 		drain_pages_zone(cpu, zone);
2341 	else
2342 		drain_pages(cpu);
2343 }
2344 
2345 static void drain_local_pages_wq(struct work_struct *work)
2346 {
2347 	/*
2348 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2349 	 * we can race with cpu offline when the WQ can move this from
2350 	 * a cpu pinned worker to an unbound one. We can operate on a different
2351 	 * cpu which is allright but we also have to make sure to not move to
2352 	 * a different one.
2353 	 */
2354 	preempt_disable();
2355 	drain_local_pages(NULL);
2356 	preempt_enable();
2357 }
2358 
2359 /*
2360  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2361  *
2362  * When zone parameter is non-NULL, spill just the single zone's pages.
2363  *
2364  * Note that this can be extremely slow as the draining happens in a workqueue.
2365  */
2366 void drain_all_pages(struct zone *zone)
2367 {
2368 	int cpu;
2369 
2370 	/*
2371 	 * Allocate in the BSS so we wont require allocation in
2372 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2373 	 */
2374 	static cpumask_t cpus_with_pcps;
2375 
2376 	/* Workqueues cannot recurse */
2377 	if (current->flags & PF_WQ_WORKER)
2378 		return;
2379 
2380 	/*
2381 	 * Do not drain if one is already in progress unless it's specific to
2382 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2383 	 * the drain to be complete when the call returns.
2384 	 */
2385 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2386 		if (!zone)
2387 			return;
2388 		mutex_lock(&pcpu_drain_mutex);
2389 	}
2390 
2391 	/*
2392 	 * We don't care about racing with CPU hotplug event
2393 	 * as offline notification will cause the notified
2394 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2395 	 * disables preemption as part of its processing
2396 	 */
2397 	for_each_online_cpu(cpu) {
2398 		struct per_cpu_pageset *pcp;
2399 		struct zone *z;
2400 		bool has_pcps = false;
2401 
2402 		if (zone) {
2403 			pcp = per_cpu_ptr(zone->pageset, cpu);
2404 			if (pcp->pcp.count)
2405 				has_pcps = true;
2406 		} else {
2407 			for_each_populated_zone(z) {
2408 				pcp = per_cpu_ptr(z->pageset, cpu);
2409 				if (pcp->pcp.count) {
2410 					has_pcps = true;
2411 					break;
2412 				}
2413 			}
2414 		}
2415 
2416 		if (has_pcps)
2417 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2418 		else
2419 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2420 	}
2421 
2422 	for_each_cpu(cpu, &cpus_with_pcps) {
2423 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2424 		INIT_WORK(work, drain_local_pages_wq);
2425 		schedule_work_on(cpu, work);
2426 	}
2427 	for_each_cpu(cpu, &cpus_with_pcps)
2428 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2429 
2430 	mutex_unlock(&pcpu_drain_mutex);
2431 }
2432 
2433 #ifdef CONFIG_HIBERNATION
2434 
2435 void mark_free_pages(struct zone *zone)
2436 {
2437 	unsigned long pfn, max_zone_pfn;
2438 	unsigned long flags;
2439 	unsigned int order, t;
2440 	struct page *page;
2441 
2442 	if (zone_is_empty(zone))
2443 		return;
2444 
2445 	spin_lock_irqsave(&zone->lock, flags);
2446 
2447 	max_zone_pfn = zone_end_pfn(zone);
2448 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2449 		if (pfn_valid(pfn)) {
2450 			page = pfn_to_page(pfn);
2451 
2452 			if (page_zone(page) != zone)
2453 				continue;
2454 
2455 			if (!swsusp_page_is_forbidden(page))
2456 				swsusp_unset_page_free(page);
2457 		}
2458 
2459 	for_each_migratetype_order(order, t) {
2460 		list_for_each_entry(page,
2461 				&zone->free_area[order].free_list[t], lru) {
2462 			unsigned long i;
2463 
2464 			pfn = page_to_pfn(page);
2465 			for (i = 0; i < (1UL << order); i++)
2466 				swsusp_set_page_free(pfn_to_page(pfn + i));
2467 		}
2468 	}
2469 	spin_unlock_irqrestore(&zone->lock, flags);
2470 }
2471 #endif /* CONFIG_PM */
2472 
2473 /*
2474  * Free a 0-order page
2475  * cold == true ? free a cold page : free a hot page
2476  */
2477 void free_hot_cold_page(struct page *page, bool cold)
2478 {
2479 	struct zone *zone = page_zone(page);
2480 	struct per_cpu_pages *pcp;
2481 	unsigned long pfn = page_to_pfn(page);
2482 	int migratetype;
2483 
2484 	if (in_interrupt()) {
2485 		__free_pages_ok(page, 0);
2486 		return;
2487 	}
2488 
2489 	if (!free_pcp_prepare(page))
2490 		return;
2491 
2492 	migratetype = get_pfnblock_migratetype(page, pfn);
2493 	set_pcppage_migratetype(page, migratetype);
2494 	preempt_disable();
2495 
2496 	/*
2497 	 * We only track unmovable, reclaimable and movable on pcp lists.
2498 	 * Free ISOLATE pages back to the allocator because they are being
2499 	 * offlined but treat RESERVE as movable pages so we can get those
2500 	 * areas back if necessary. Otherwise, we may have to free
2501 	 * excessively into the page allocator
2502 	 */
2503 	if (migratetype >= MIGRATE_PCPTYPES) {
2504 		if (unlikely(is_migrate_isolate(migratetype))) {
2505 			free_one_page(zone, page, pfn, 0, migratetype);
2506 			goto out;
2507 		}
2508 		migratetype = MIGRATE_MOVABLE;
2509 	}
2510 
2511 	__count_vm_event(PGFREE);
2512 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2513 	if (!cold)
2514 		list_add(&page->lru, &pcp->lists[migratetype]);
2515 	else
2516 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2517 	pcp->count++;
2518 	if (pcp->count >= pcp->high) {
2519 		unsigned long batch = READ_ONCE(pcp->batch);
2520 		free_pcppages_bulk(zone, batch, pcp);
2521 		pcp->count -= batch;
2522 	}
2523 
2524 out:
2525 	preempt_enable();
2526 }
2527 
2528 /*
2529  * Free a list of 0-order pages
2530  */
2531 void free_hot_cold_page_list(struct list_head *list, bool cold)
2532 {
2533 	struct page *page, *next;
2534 
2535 	list_for_each_entry_safe(page, next, list, lru) {
2536 		trace_mm_page_free_batched(page, cold);
2537 		free_hot_cold_page(page, cold);
2538 	}
2539 }
2540 
2541 /*
2542  * split_page takes a non-compound higher-order page, and splits it into
2543  * n (1<<order) sub-pages: page[0..n]
2544  * Each sub-page must be freed individually.
2545  *
2546  * Note: this is probably too low level an operation for use in drivers.
2547  * Please consult with lkml before using this in your driver.
2548  */
2549 void split_page(struct page *page, unsigned int order)
2550 {
2551 	int i;
2552 
2553 	VM_BUG_ON_PAGE(PageCompound(page), page);
2554 	VM_BUG_ON_PAGE(!page_count(page), page);
2555 
2556 #ifdef CONFIG_KMEMCHECK
2557 	/*
2558 	 * Split shadow pages too, because free(page[0]) would
2559 	 * otherwise free the whole shadow.
2560 	 */
2561 	if (kmemcheck_page_is_tracked(page))
2562 		split_page(virt_to_page(page[0].shadow), order);
2563 #endif
2564 
2565 	for (i = 1; i < (1 << order); i++)
2566 		set_page_refcounted(page + i);
2567 	split_page_owner(page, order);
2568 }
2569 EXPORT_SYMBOL_GPL(split_page);
2570 
2571 int __isolate_free_page(struct page *page, unsigned int order)
2572 {
2573 	unsigned long watermark;
2574 	struct zone *zone;
2575 	int mt;
2576 
2577 	BUG_ON(!PageBuddy(page));
2578 
2579 	zone = page_zone(page);
2580 	mt = get_pageblock_migratetype(page);
2581 
2582 	if (!is_migrate_isolate(mt)) {
2583 		/*
2584 		 * Obey watermarks as if the page was being allocated. We can
2585 		 * emulate a high-order watermark check with a raised order-0
2586 		 * watermark, because we already know our high-order page
2587 		 * exists.
2588 		 */
2589 		watermark = min_wmark_pages(zone) + (1UL << order);
2590 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2591 			return 0;
2592 
2593 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2594 	}
2595 
2596 	/* Remove page from free list */
2597 	list_del(&page->lru);
2598 	zone->free_area[order].nr_free--;
2599 	rmv_page_order(page);
2600 
2601 	/*
2602 	 * Set the pageblock if the isolated page is at least half of a
2603 	 * pageblock
2604 	 */
2605 	if (order >= pageblock_order - 1) {
2606 		struct page *endpage = page + (1 << order) - 1;
2607 		for (; page < endpage; page += pageblock_nr_pages) {
2608 			int mt = get_pageblock_migratetype(page);
2609 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2610 				&& mt != MIGRATE_HIGHATOMIC)
2611 				set_pageblock_migratetype(page,
2612 							  MIGRATE_MOVABLE);
2613 		}
2614 	}
2615 
2616 
2617 	return 1UL << order;
2618 }
2619 
2620 /*
2621  * Update NUMA hit/miss statistics
2622  *
2623  * Must be called with interrupts disabled.
2624  */
2625 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2626 {
2627 #ifdef CONFIG_NUMA
2628 	enum zone_stat_item local_stat = NUMA_LOCAL;
2629 
2630 	if (z->node != numa_node_id())
2631 		local_stat = NUMA_OTHER;
2632 
2633 	if (z->node == preferred_zone->node)
2634 		__inc_zone_state(z, NUMA_HIT);
2635 	else {
2636 		__inc_zone_state(z, NUMA_MISS);
2637 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2638 	}
2639 	__inc_zone_state(z, local_stat);
2640 #endif
2641 }
2642 
2643 /* Remove page from the per-cpu list, caller must protect the list */
2644 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2645 			bool cold, struct per_cpu_pages *pcp,
2646 			struct list_head *list)
2647 {
2648 	struct page *page;
2649 
2650 	VM_BUG_ON(in_interrupt());
2651 
2652 	do {
2653 		if (list_empty(list)) {
2654 			pcp->count += rmqueue_bulk(zone, 0,
2655 					pcp->batch, list,
2656 					migratetype, cold);
2657 			if (unlikely(list_empty(list)))
2658 				return NULL;
2659 		}
2660 
2661 		if (cold)
2662 			page = list_last_entry(list, struct page, lru);
2663 		else
2664 			page = list_first_entry(list, struct page, lru);
2665 
2666 		list_del(&page->lru);
2667 		pcp->count--;
2668 	} while (check_new_pcp(page));
2669 
2670 	return page;
2671 }
2672 
2673 /* Lock and remove page from the per-cpu list */
2674 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2675 			struct zone *zone, unsigned int order,
2676 			gfp_t gfp_flags, int migratetype)
2677 {
2678 	struct per_cpu_pages *pcp;
2679 	struct list_head *list;
2680 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2681 	struct page *page;
2682 
2683 	preempt_disable();
2684 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2685 	list = &pcp->lists[migratetype];
2686 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2687 	if (page) {
2688 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2689 		zone_statistics(preferred_zone, zone);
2690 	}
2691 	preempt_enable();
2692 	return page;
2693 }
2694 
2695 /*
2696  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2697  */
2698 static inline
2699 struct page *rmqueue(struct zone *preferred_zone,
2700 			struct zone *zone, unsigned int order,
2701 			gfp_t gfp_flags, unsigned int alloc_flags,
2702 			int migratetype)
2703 {
2704 	unsigned long flags;
2705 	struct page *page;
2706 
2707 	if (likely(order == 0) && !in_interrupt()) {
2708 		page = rmqueue_pcplist(preferred_zone, zone, order,
2709 				gfp_flags, migratetype);
2710 		goto out;
2711 	}
2712 
2713 	/*
2714 	 * We most definitely don't want callers attempting to
2715 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2716 	 */
2717 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2718 	spin_lock_irqsave(&zone->lock, flags);
2719 
2720 	do {
2721 		page = NULL;
2722 		if (alloc_flags & ALLOC_HARDER) {
2723 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2724 			if (page)
2725 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2726 		}
2727 		if (!page)
2728 			page = __rmqueue(zone, order, migratetype);
2729 	} while (page && check_new_pages(page, order));
2730 	spin_unlock(&zone->lock);
2731 	if (!page)
2732 		goto failed;
2733 	__mod_zone_freepage_state(zone, -(1 << order),
2734 				  get_pcppage_migratetype(page));
2735 
2736 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2737 	zone_statistics(preferred_zone, zone);
2738 	local_irq_restore(flags);
2739 
2740 out:
2741 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2742 	return page;
2743 
2744 failed:
2745 	local_irq_restore(flags);
2746 	return NULL;
2747 }
2748 
2749 #ifdef CONFIG_FAIL_PAGE_ALLOC
2750 
2751 static struct {
2752 	struct fault_attr attr;
2753 
2754 	bool ignore_gfp_highmem;
2755 	bool ignore_gfp_reclaim;
2756 	u32 min_order;
2757 } fail_page_alloc = {
2758 	.attr = FAULT_ATTR_INITIALIZER,
2759 	.ignore_gfp_reclaim = true,
2760 	.ignore_gfp_highmem = true,
2761 	.min_order = 1,
2762 };
2763 
2764 static int __init setup_fail_page_alloc(char *str)
2765 {
2766 	return setup_fault_attr(&fail_page_alloc.attr, str);
2767 }
2768 __setup("fail_page_alloc=", setup_fail_page_alloc);
2769 
2770 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2771 {
2772 	if (order < fail_page_alloc.min_order)
2773 		return false;
2774 	if (gfp_mask & __GFP_NOFAIL)
2775 		return false;
2776 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2777 		return false;
2778 	if (fail_page_alloc.ignore_gfp_reclaim &&
2779 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2780 		return false;
2781 
2782 	return should_fail(&fail_page_alloc.attr, 1 << order);
2783 }
2784 
2785 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2786 
2787 static int __init fail_page_alloc_debugfs(void)
2788 {
2789 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2790 	struct dentry *dir;
2791 
2792 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2793 					&fail_page_alloc.attr);
2794 	if (IS_ERR(dir))
2795 		return PTR_ERR(dir);
2796 
2797 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2798 				&fail_page_alloc.ignore_gfp_reclaim))
2799 		goto fail;
2800 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2801 				&fail_page_alloc.ignore_gfp_highmem))
2802 		goto fail;
2803 	if (!debugfs_create_u32("min-order", mode, dir,
2804 				&fail_page_alloc.min_order))
2805 		goto fail;
2806 
2807 	return 0;
2808 fail:
2809 	debugfs_remove_recursive(dir);
2810 
2811 	return -ENOMEM;
2812 }
2813 
2814 late_initcall(fail_page_alloc_debugfs);
2815 
2816 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2817 
2818 #else /* CONFIG_FAIL_PAGE_ALLOC */
2819 
2820 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2821 {
2822 	return false;
2823 }
2824 
2825 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2826 
2827 /*
2828  * Return true if free base pages are above 'mark'. For high-order checks it
2829  * will return true of the order-0 watermark is reached and there is at least
2830  * one free page of a suitable size. Checking now avoids taking the zone lock
2831  * to check in the allocation paths if no pages are free.
2832  */
2833 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2834 			 int classzone_idx, unsigned int alloc_flags,
2835 			 long free_pages)
2836 {
2837 	long min = mark;
2838 	int o;
2839 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2840 
2841 	/* free_pages may go negative - that's OK */
2842 	free_pages -= (1 << order) - 1;
2843 
2844 	if (alloc_flags & ALLOC_HIGH)
2845 		min -= min / 2;
2846 
2847 	/*
2848 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2849 	 * the high-atomic reserves. This will over-estimate the size of the
2850 	 * atomic reserve but it avoids a search.
2851 	 */
2852 	if (likely(!alloc_harder))
2853 		free_pages -= z->nr_reserved_highatomic;
2854 	else
2855 		min -= min / 4;
2856 
2857 #ifdef CONFIG_CMA
2858 	/* If allocation can't use CMA areas don't use free CMA pages */
2859 	if (!(alloc_flags & ALLOC_CMA))
2860 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2861 #endif
2862 
2863 	/*
2864 	 * Check watermarks for an order-0 allocation request. If these
2865 	 * are not met, then a high-order request also cannot go ahead
2866 	 * even if a suitable page happened to be free.
2867 	 */
2868 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2869 		return false;
2870 
2871 	/* If this is an order-0 request then the watermark is fine */
2872 	if (!order)
2873 		return true;
2874 
2875 	/* For a high-order request, check at least one suitable page is free */
2876 	for (o = order; o < MAX_ORDER; o++) {
2877 		struct free_area *area = &z->free_area[o];
2878 		int mt;
2879 
2880 		if (!area->nr_free)
2881 			continue;
2882 
2883 		if (alloc_harder)
2884 			return true;
2885 
2886 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2887 			if (!list_empty(&area->free_list[mt]))
2888 				return true;
2889 		}
2890 
2891 #ifdef CONFIG_CMA
2892 		if ((alloc_flags & ALLOC_CMA) &&
2893 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2894 			return true;
2895 		}
2896 #endif
2897 	}
2898 	return false;
2899 }
2900 
2901 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2902 		      int classzone_idx, unsigned int alloc_flags)
2903 {
2904 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2905 					zone_page_state(z, NR_FREE_PAGES));
2906 }
2907 
2908 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2909 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2910 {
2911 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2912 	long cma_pages = 0;
2913 
2914 #ifdef CONFIG_CMA
2915 	/* If allocation can't use CMA areas don't use free CMA pages */
2916 	if (!(alloc_flags & ALLOC_CMA))
2917 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2918 #endif
2919 
2920 	/*
2921 	 * Fast check for order-0 only. If this fails then the reserves
2922 	 * need to be calculated. There is a corner case where the check
2923 	 * passes but only the high-order atomic reserve are free. If
2924 	 * the caller is !atomic then it'll uselessly search the free
2925 	 * list. That corner case is then slower but it is harmless.
2926 	 */
2927 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2928 		return true;
2929 
2930 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2931 					free_pages);
2932 }
2933 
2934 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2935 			unsigned long mark, int classzone_idx)
2936 {
2937 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2938 
2939 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2940 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2941 
2942 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2943 								free_pages);
2944 }
2945 
2946 #ifdef CONFIG_NUMA
2947 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2948 {
2949 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2950 				RECLAIM_DISTANCE;
2951 }
2952 #else	/* CONFIG_NUMA */
2953 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2954 {
2955 	return true;
2956 }
2957 #endif	/* CONFIG_NUMA */
2958 
2959 /*
2960  * get_page_from_freelist goes through the zonelist trying to allocate
2961  * a page.
2962  */
2963 static struct page *
2964 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2965 						const struct alloc_context *ac)
2966 {
2967 	struct zoneref *z = ac->preferred_zoneref;
2968 	struct zone *zone;
2969 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2970 
2971 	/*
2972 	 * Scan zonelist, looking for a zone with enough free.
2973 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2974 	 */
2975 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2976 								ac->nodemask) {
2977 		struct page *page;
2978 		unsigned long mark;
2979 
2980 		if (cpusets_enabled() &&
2981 			(alloc_flags & ALLOC_CPUSET) &&
2982 			!__cpuset_zone_allowed(zone, gfp_mask))
2983 				continue;
2984 		/*
2985 		 * When allocating a page cache page for writing, we
2986 		 * want to get it from a node that is within its dirty
2987 		 * limit, such that no single node holds more than its
2988 		 * proportional share of globally allowed dirty pages.
2989 		 * The dirty limits take into account the node's
2990 		 * lowmem reserves and high watermark so that kswapd
2991 		 * should be able to balance it without having to
2992 		 * write pages from its LRU list.
2993 		 *
2994 		 * XXX: For now, allow allocations to potentially
2995 		 * exceed the per-node dirty limit in the slowpath
2996 		 * (spread_dirty_pages unset) before going into reclaim,
2997 		 * which is important when on a NUMA setup the allowed
2998 		 * nodes are together not big enough to reach the
2999 		 * global limit.  The proper fix for these situations
3000 		 * will require awareness of nodes in the
3001 		 * dirty-throttling and the flusher threads.
3002 		 */
3003 		if (ac->spread_dirty_pages) {
3004 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3005 				continue;
3006 
3007 			if (!node_dirty_ok(zone->zone_pgdat)) {
3008 				last_pgdat_dirty_limit = zone->zone_pgdat;
3009 				continue;
3010 			}
3011 		}
3012 
3013 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3014 		if (!zone_watermark_fast(zone, order, mark,
3015 				       ac_classzone_idx(ac), alloc_flags)) {
3016 			int ret;
3017 
3018 			/* Checked here to keep the fast path fast */
3019 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3020 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3021 				goto try_this_zone;
3022 
3023 			if (node_reclaim_mode == 0 ||
3024 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3025 				continue;
3026 
3027 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3028 			switch (ret) {
3029 			case NODE_RECLAIM_NOSCAN:
3030 				/* did not scan */
3031 				continue;
3032 			case NODE_RECLAIM_FULL:
3033 				/* scanned but unreclaimable */
3034 				continue;
3035 			default:
3036 				/* did we reclaim enough */
3037 				if (zone_watermark_ok(zone, order, mark,
3038 						ac_classzone_idx(ac), alloc_flags))
3039 					goto try_this_zone;
3040 
3041 				continue;
3042 			}
3043 		}
3044 
3045 try_this_zone:
3046 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3047 				gfp_mask, alloc_flags, ac->migratetype);
3048 		if (page) {
3049 			prep_new_page(page, order, gfp_mask, alloc_flags);
3050 
3051 			/*
3052 			 * If this is a high-order atomic allocation then check
3053 			 * if the pageblock should be reserved for the future
3054 			 */
3055 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3056 				reserve_highatomic_pageblock(page, zone, order);
3057 
3058 			return page;
3059 		}
3060 	}
3061 
3062 	return NULL;
3063 }
3064 
3065 /*
3066  * Large machines with many possible nodes should not always dump per-node
3067  * meminfo in irq context.
3068  */
3069 static inline bool should_suppress_show_mem(void)
3070 {
3071 	bool ret = false;
3072 
3073 #if NODES_SHIFT > 8
3074 	ret = in_interrupt();
3075 #endif
3076 	return ret;
3077 }
3078 
3079 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3080 {
3081 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3082 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3083 
3084 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3085 		return;
3086 
3087 	/*
3088 	 * This documents exceptions given to allocations in certain
3089 	 * contexts that are allowed to allocate outside current's set
3090 	 * of allowed nodes.
3091 	 */
3092 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3093 		if (test_thread_flag(TIF_MEMDIE) ||
3094 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3095 			filter &= ~SHOW_MEM_FILTER_NODES;
3096 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3097 		filter &= ~SHOW_MEM_FILTER_NODES;
3098 
3099 	show_mem(filter, nodemask);
3100 }
3101 
3102 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3103 {
3104 	struct va_format vaf;
3105 	va_list args;
3106 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3107 				      DEFAULT_RATELIMIT_BURST);
3108 
3109 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3110 	    debug_guardpage_minorder() > 0)
3111 		return;
3112 
3113 	pr_warn("%s: ", current->comm);
3114 
3115 	va_start(args, fmt);
3116 	vaf.fmt = fmt;
3117 	vaf.va = &args;
3118 	pr_cont("%pV", &vaf);
3119 	va_end(args);
3120 
3121 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3122 	if (nodemask)
3123 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3124 	else
3125 		pr_cont("(null)\n");
3126 
3127 	cpuset_print_current_mems_allowed();
3128 
3129 	dump_stack();
3130 	warn_alloc_show_mem(gfp_mask, nodemask);
3131 }
3132 
3133 static inline struct page *
3134 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3135 			      unsigned int alloc_flags,
3136 			      const struct alloc_context *ac)
3137 {
3138 	struct page *page;
3139 
3140 	page = get_page_from_freelist(gfp_mask, order,
3141 			alloc_flags|ALLOC_CPUSET, ac);
3142 	/*
3143 	 * fallback to ignore cpuset restriction if our nodes
3144 	 * are depleted
3145 	 */
3146 	if (!page)
3147 		page = get_page_from_freelist(gfp_mask, order,
3148 				alloc_flags, ac);
3149 
3150 	return page;
3151 }
3152 
3153 static inline struct page *
3154 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3155 	const struct alloc_context *ac, unsigned long *did_some_progress)
3156 {
3157 	struct oom_control oc = {
3158 		.zonelist = ac->zonelist,
3159 		.nodemask = ac->nodemask,
3160 		.memcg = NULL,
3161 		.gfp_mask = gfp_mask,
3162 		.order = order,
3163 	};
3164 	struct page *page;
3165 
3166 	*did_some_progress = 0;
3167 
3168 	/*
3169 	 * Acquire the oom lock.  If that fails, somebody else is
3170 	 * making progress for us.
3171 	 */
3172 	if (!mutex_trylock(&oom_lock)) {
3173 		*did_some_progress = 1;
3174 		schedule_timeout_uninterruptible(1);
3175 		return NULL;
3176 	}
3177 
3178 	/*
3179 	 * Go through the zonelist yet one more time, keep very high watermark
3180 	 * here, this is only to catch a parallel oom killing, we must fail if
3181 	 * we're still under heavy pressure.
3182 	 */
3183 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3184 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3185 	if (page)
3186 		goto out;
3187 
3188 	/* Coredumps can quickly deplete all memory reserves */
3189 	if (current->flags & PF_DUMPCORE)
3190 		goto out;
3191 	/* The OOM killer will not help higher order allocs */
3192 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3193 		goto out;
3194 	/* The OOM killer does not needlessly kill tasks for lowmem */
3195 	if (ac->high_zoneidx < ZONE_NORMAL)
3196 		goto out;
3197 	if (pm_suspended_storage())
3198 		goto out;
3199 	/*
3200 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3201 	 * other request to make a forward progress.
3202 	 * We are in an unfortunate situation where out_of_memory cannot
3203 	 * do much for this context but let's try it to at least get
3204 	 * access to memory reserved if the current task is killed (see
3205 	 * out_of_memory). Once filesystems are ready to handle allocation
3206 	 * failures more gracefully we should just bail out here.
3207 	 */
3208 
3209 	/* The OOM killer may not free memory on a specific node */
3210 	if (gfp_mask & __GFP_THISNODE)
3211 		goto out;
3212 
3213 	/* Exhausted what can be done so it's blamo time */
3214 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3215 		*did_some_progress = 1;
3216 
3217 		/*
3218 		 * Help non-failing allocations by giving them access to memory
3219 		 * reserves
3220 		 */
3221 		if (gfp_mask & __GFP_NOFAIL)
3222 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3223 					ALLOC_NO_WATERMARKS, ac);
3224 	}
3225 out:
3226 	mutex_unlock(&oom_lock);
3227 	return page;
3228 }
3229 
3230 /*
3231  * Maximum number of compaction retries wit a progress before OOM
3232  * killer is consider as the only way to move forward.
3233  */
3234 #define MAX_COMPACT_RETRIES 16
3235 
3236 #ifdef CONFIG_COMPACTION
3237 /* Try memory compaction for high-order allocations before reclaim */
3238 static struct page *
3239 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3240 		unsigned int alloc_flags, const struct alloc_context *ac,
3241 		enum compact_priority prio, enum compact_result *compact_result)
3242 {
3243 	struct page *page;
3244 
3245 	if (!order)
3246 		return NULL;
3247 
3248 	current->flags |= PF_MEMALLOC;
3249 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3250 									prio);
3251 	current->flags &= ~PF_MEMALLOC;
3252 
3253 	if (*compact_result <= COMPACT_INACTIVE)
3254 		return NULL;
3255 
3256 	/*
3257 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3258 	 * count a compaction stall
3259 	 */
3260 	count_vm_event(COMPACTSTALL);
3261 
3262 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3263 
3264 	if (page) {
3265 		struct zone *zone = page_zone(page);
3266 
3267 		zone->compact_blockskip_flush = false;
3268 		compaction_defer_reset(zone, order, true);
3269 		count_vm_event(COMPACTSUCCESS);
3270 		return page;
3271 	}
3272 
3273 	/*
3274 	 * It's bad if compaction run occurs and fails. The most likely reason
3275 	 * is that pages exist, but not enough to satisfy watermarks.
3276 	 */
3277 	count_vm_event(COMPACTFAIL);
3278 
3279 	cond_resched();
3280 
3281 	return NULL;
3282 }
3283 
3284 static inline bool
3285 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3286 		     enum compact_result compact_result,
3287 		     enum compact_priority *compact_priority,
3288 		     int *compaction_retries)
3289 {
3290 	int max_retries = MAX_COMPACT_RETRIES;
3291 	int min_priority;
3292 	bool ret = false;
3293 	int retries = *compaction_retries;
3294 	enum compact_priority priority = *compact_priority;
3295 
3296 	if (!order)
3297 		return false;
3298 
3299 	if (compaction_made_progress(compact_result))
3300 		(*compaction_retries)++;
3301 
3302 	/*
3303 	 * compaction considers all the zone as desperately out of memory
3304 	 * so it doesn't really make much sense to retry except when the
3305 	 * failure could be caused by insufficient priority
3306 	 */
3307 	if (compaction_failed(compact_result))
3308 		goto check_priority;
3309 
3310 	/*
3311 	 * make sure the compaction wasn't deferred or didn't bail out early
3312 	 * due to locks contention before we declare that we should give up.
3313 	 * But do not retry if the given zonelist is not suitable for
3314 	 * compaction.
3315 	 */
3316 	if (compaction_withdrawn(compact_result)) {
3317 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3318 		goto out;
3319 	}
3320 
3321 	/*
3322 	 * !costly requests are much more important than __GFP_REPEAT
3323 	 * costly ones because they are de facto nofail and invoke OOM
3324 	 * killer to move on while costly can fail and users are ready
3325 	 * to cope with that. 1/4 retries is rather arbitrary but we
3326 	 * would need much more detailed feedback from compaction to
3327 	 * make a better decision.
3328 	 */
3329 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3330 		max_retries /= 4;
3331 	if (*compaction_retries <= max_retries) {
3332 		ret = true;
3333 		goto out;
3334 	}
3335 
3336 	/*
3337 	 * Make sure there are attempts at the highest priority if we exhausted
3338 	 * all retries or failed at the lower priorities.
3339 	 */
3340 check_priority:
3341 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3342 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3343 
3344 	if (*compact_priority > min_priority) {
3345 		(*compact_priority)--;
3346 		*compaction_retries = 0;
3347 		ret = true;
3348 	}
3349 out:
3350 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3351 	return ret;
3352 }
3353 #else
3354 static inline struct page *
3355 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3356 		unsigned int alloc_flags, const struct alloc_context *ac,
3357 		enum compact_priority prio, enum compact_result *compact_result)
3358 {
3359 	*compact_result = COMPACT_SKIPPED;
3360 	return NULL;
3361 }
3362 
3363 static inline bool
3364 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3365 		     enum compact_result compact_result,
3366 		     enum compact_priority *compact_priority,
3367 		     int *compaction_retries)
3368 {
3369 	struct zone *zone;
3370 	struct zoneref *z;
3371 
3372 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3373 		return false;
3374 
3375 	/*
3376 	 * There are setups with compaction disabled which would prefer to loop
3377 	 * inside the allocator rather than hit the oom killer prematurely.
3378 	 * Let's give them a good hope and keep retrying while the order-0
3379 	 * watermarks are OK.
3380 	 */
3381 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3382 					ac->nodemask) {
3383 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3384 					ac_classzone_idx(ac), alloc_flags))
3385 			return true;
3386 	}
3387 	return false;
3388 }
3389 #endif /* CONFIG_COMPACTION */
3390 
3391 /* Perform direct synchronous page reclaim */
3392 static int
3393 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3394 					const struct alloc_context *ac)
3395 {
3396 	struct reclaim_state reclaim_state;
3397 	int progress;
3398 
3399 	cond_resched();
3400 
3401 	/* We now go into synchronous reclaim */
3402 	cpuset_memory_pressure_bump();
3403 	current->flags |= PF_MEMALLOC;
3404 	lockdep_set_current_reclaim_state(gfp_mask);
3405 	reclaim_state.reclaimed_slab = 0;
3406 	current->reclaim_state = &reclaim_state;
3407 
3408 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3409 								ac->nodemask);
3410 
3411 	current->reclaim_state = NULL;
3412 	lockdep_clear_current_reclaim_state();
3413 	current->flags &= ~PF_MEMALLOC;
3414 
3415 	cond_resched();
3416 
3417 	return progress;
3418 }
3419 
3420 /* The really slow allocator path where we enter direct reclaim */
3421 static inline struct page *
3422 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3423 		unsigned int alloc_flags, const struct alloc_context *ac,
3424 		unsigned long *did_some_progress)
3425 {
3426 	struct page *page = NULL;
3427 	bool drained = false;
3428 
3429 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3430 	if (unlikely(!(*did_some_progress)))
3431 		return NULL;
3432 
3433 retry:
3434 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3435 
3436 	/*
3437 	 * If an allocation failed after direct reclaim, it could be because
3438 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3439 	 * Shrink them them and try again
3440 	 */
3441 	if (!page && !drained) {
3442 		unreserve_highatomic_pageblock(ac, false);
3443 		drain_all_pages(NULL);
3444 		drained = true;
3445 		goto retry;
3446 	}
3447 
3448 	return page;
3449 }
3450 
3451 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3452 {
3453 	struct zoneref *z;
3454 	struct zone *zone;
3455 	pg_data_t *last_pgdat = NULL;
3456 
3457 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3458 					ac->high_zoneidx, ac->nodemask) {
3459 		if (last_pgdat != zone->zone_pgdat)
3460 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3461 		last_pgdat = zone->zone_pgdat;
3462 	}
3463 }
3464 
3465 static inline unsigned int
3466 gfp_to_alloc_flags(gfp_t gfp_mask)
3467 {
3468 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3469 
3470 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3471 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3472 
3473 	/*
3474 	 * The caller may dip into page reserves a bit more if the caller
3475 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3476 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3477 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3478 	 */
3479 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3480 
3481 	if (gfp_mask & __GFP_ATOMIC) {
3482 		/*
3483 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3484 		 * if it can't schedule.
3485 		 */
3486 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3487 			alloc_flags |= ALLOC_HARDER;
3488 		/*
3489 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3490 		 * comment for __cpuset_node_allowed().
3491 		 */
3492 		alloc_flags &= ~ALLOC_CPUSET;
3493 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3494 		alloc_flags |= ALLOC_HARDER;
3495 
3496 #ifdef CONFIG_CMA
3497 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3498 		alloc_flags |= ALLOC_CMA;
3499 #endif
3500 	return alloc_flags;
3501 }
3502 
3503 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3504 {
3505 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3506 		return false;
3507 
3508 	if (gfp_mask & __GFP_MEMALLOC)
3509 		return true;
3510 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3511 		return true;
3512 	if (!in_interrupt() &&
3513 			((current->flags & PF_MEMALLOC) ||
3514 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3515 		return true;
3516 
3517 	return false;
3518 }
3519 
3520 /*
3521  * Maximum number of reclaim retries without any progress before OOM killer
3522  * is consider as the only way to move forward.
3523  */
3524 #define MAX_RECLAIM_RETRIES 16
3525 
3526 /*
3527  * Checks whether it makes sense to retry the reclaim to make a forward progress
3528  * for the given allocation request.
3529  * The reclaim feedback represented by did_some_progress (any progress during
3530  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3531  * any progress in a row) is considered as well as the reclaimable pages on the
3532  * applicable zone list (with a backoff mechanism which is a function of
3533  * no_progress_loops).
3534  *
3535  * Returns true if a retry is viable or false to enter the oom path.
3536  */
3537 static inline bool
3538 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3539 		     struct alloc_context *ac, int alloc_flags,
3540 		     bool did_some_progress, int *no_progress_loops)
3541 {
3542 	struct zone *zone;
3543 	struct zoneref *z;
3544 
3545 	/*
3546 	 * Costly allocations might have made a progress but this doesn't mean
3547 	 * their order will become available due to high fragmentation so
3548 	 * always increment the no progress counter for them
3549 	 */
3550 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3551 		*no_progress_loops = 0;
3552 	else
3553 		(*no_progress_loops)++;
3554 
3555 	/*
3556 	 * Make sure we converge to OOM if we cannot make any progress
3557 	 * several times in the row.
3558 	 */
3559 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3560 		/* Before OOM, exhaust highatomic_reserve */
3561 		return unreserve_highatomic_pageblock(ac, true);
3562 	}
3563 
3564 	/*
3565 	 * Keep reclaiming pages while there is a chance this will lead
3566 	 * somewhere.  If none of the target zones can satisfy our allocation
3567 	 * request even if all reclaimable pages are considered then we are
3568 	 * screwed and have to go OOM.
3569 	 */
3570 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3571 					ac->nodemask) {
3572 		unsigned long available;
3573 		unsigned long reclaimable;
3574 		unsigned long min_wmark = min_wmark_pages(zone);
3575 		bool wmark;
3576 
3577 		available = reclaimable = zone_reclaimable_pages(zone);
3578 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3579 					  MAX_RECLAIM_RETRIES);
3580 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3581 
3582 		/*
3583 		 * Would the allocation succeed if we reclaimed the whole
3584 		 * available?
3585 		 */
3586 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3587 				ac_classzone_idx(ac), alloc_flags, available);
3588 		trace_reclaim_retry_zone(z, order, reclaimable,
3589 				available, min_wmark, *no_progress_loops, wmark);
3590 		if (wmark) {
3591 			/*
3592 			 * If we didn't make any progress and have a lot of
3593 			 * dirty + writeback pages then we should wait for
3594 			 * an IO to complete to slow down the reclaim and
3595 			 * prevent from pre mature OOM
3596 			 */
3597 			if (!did_some_progress) {
3598 				unsigned long write_pending;
3599 
3600 				write_pending = zone_page_state_snapshot(zone,
3601 							NR_ZONE_WRITE_PENDING);
3602 
3603 				if (2 * write_pending > reclaimable) {
3604 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3605 					return true;
3606 				}
3607 			}
3608 
3609 			/*
3610 			 * Memory allocation/reclaim might be called from a WQ
3611 			 * context and the current implementation of the WQ
3612 			 * concurrency control doesn't recognize that
3613 			 * a particular WQ is congested if the worker thread is
3614 			 * looping without ever sleeping. Therefore we have to
3615 			 * do a short sleep here rather than calling
3616 			 * cond_resched().
3617 			 */
3618 			if (current->flags & PF_WQ_WORKER)
3619 				schedule_timeout_uninterruptible(1);
3620 			else
3621 				cond_resched();
3622 
3623 			return true;
3624 		}
3625 	}
3626 
3627 	return false;
3628 }
3629 
3630 static inline struct page *
3631 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3632 						struct alloc_context *ac)
3633 {
3634 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3635 	struct page *page = NULL;
3636 	unsigned int alloc_flags;
3637 	unsigned long did_some_progress;
3638 	enum compact_priority compact_priority;
3639 	enum compact_result compact_result;
3640 	int compaction_retries;
3641 	int no_progress_loops;
3642 	unsigned long alloc_start = jiffies;
3643 	unsigned int stall_timeout = 10 * HZ;
3644 	unsigned int cpuset_mems_cookie;
3645 
3646 	/*
3647 	 * In the slowpath, we sanity check order to avoid ever trying to
3648 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3649 	 * be using allocators in order of preference for an area that is
3650 	 * too large.
3651 	 */
3652 	if (order >= MAX_ORDER) {
3653 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3654 		return NULL;
3655 	}
3656 
3657 	/*
3658 	 * We also sanity check to catch abuse of atomic reserves being used by
3659 	 * callers that are not in atomic context.
3660 	 */
3661 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3662 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3663 		gfp_mask &= ~__GFP_ATOMIC;
3664 
3665 retry_cpuset:
3666 	compaction_retries = 0;
3667 	no_progress_loops = 0;
3668 	compact_priority = DEF_COMPACT_PRIORITY;
3669 	cpuset_mems_cookie = read_mems_allowed_begin();
3670 
3671 	/*
3672 	 * The fast path uses conservative alloc_flags to succeed only until
3673 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3674 	 * alloc_flags precisely. So we do that now.
3675 	 */
3676 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3677 
3678 	/*
3679 	 * We need to recalculate the starting point for the zonelist iterator
3680 	 * because we might have used different nodemask in the fast path, or
3681 	 * there was a cpuset modification and we are retrying - otherwise we
3682 	 * could end up iterating over non-eligible zones endlessly.
3683 	 */
3684 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3685 					ac->high_zoneidx, ac->nodemask);
3686 	if (!ac->preferred_zoneref->zone)
3687 		goto nopage;
3688 
3689 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3690 		wake_all_kswapds(order, ac);
3691 
3692 	/*
3693 	 * The adjusted alloc_flags might result in immediate success, so try
3694 	 * that first
3695 	 */
3696 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3697 	if (page)
3698 		goto got_pg;
3699 
3700 	/*
3701 	 * For costly allocations, try direct compaction first, as it's likely
3702 	 * that we have enough base pages and don't need to reclaim. Don't try
3703 	 * that for allocations that are allowed to ignore watermarks, as the
3704 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3705 	 */
3706 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3707 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3708 		page = __alloc_pages_direct_compact(gfp_mask, order,
3709 						alloc_flags, ac,
3710 						INIT_COMPACT_PRIORITY,
3711 						&compact_result);
3712 		if (page)
3713 			goto got_pg;
3714 
3715 		/*
3716 		 * Checks for costly allocations with __GFP_NORETRY, which
3717 		 * includes THP page fault allocations
3718 		 */
3719 		if (gfp_mask & __GFP_NORETRY) {
3720 			/*
3721 			 * If compaction is deferred for high-order allocations,
3722 			 * it is because sync compaction recently failed. If
3723 			 * this is the case and the caller requested a THP
3724 			 * allocation, we do not want to heavily disrupt the
3725 			 * system, so we fail the allocation instead of entering
3726 			 * direct reclaim.
3727 			 */
3728 			if (compact_result == COMPACT_DEFERRED)
3729 				goto nopage;
3730 
3731 			/*
3732 			 * Looks like reclaim/compaction is worth trying, but
3733 			 * sync compaction could be very expensive, so keep
3734 			 * using async compaction.
3735 			 */
3736 			compact_priority = INIT_COMPACT_PRIORITY;
3737 		}
3738 	}
3739 
3740 retry:
3741 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3742 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3743 		wake_all_kswapds(order, ac);
3744 
3745 	if (gfp_pfmemalloc_allowed(gfp_mask))
3746 		alloc_flags = ALLOC_NO_WATERMARKS;
3747 
3748 	/*
3749 	 * Reset the zonelist iterators if memory policies can be ignored.
3750 	 * These allocations are high priority and system rather than user
3751 	 * orientated.
3752 	 */
3753 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3754 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3755 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3756 					ac->high_zoneidx, ac->nodemask);
3757 	}
3758 
3759 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3760 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3761 	if (page)
3762 		goto got_pg;
3763 
3764 	/* Caller is not willing to reclaim, we can't balance anything */
3765 	if (!can_direct_reclaim)
3766 		goto nopage;
3767 
3768 	/* Make sure we know about allocations which stall for too long */
3769 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3770 		warn_alloc(gfp_mask, ac->nodemask,
3771 			"page allocation stalls for %ums, order:%u",
3772 			jiffies_to_msecs(jiffies-alloc_start), order);
3773 		stall_timeout += 10 * HZ;
3774 	}
3775 
3776 	/* Avoid recursion of direct reclaim */
3777 	if (current->flags & PF_MEMALLOC)
3778 		goto nopage;
3779 
3780 	/* Try direct reclaim and then allocating */
3781 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3782 							&did_some_progress);
3783 	if (page)
3784 		goto got_pg;
3785 
3786 	/* Try direct compaction and then allocating */
3787 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3788 					compact_priority, &compact_result);
3789 	if (page)
3790 		goto got_pg;
3791 
3792 	/* Do not loop if specifically requested */
3793 	if (gfp_mask & __GFP_NORETRY)
3794 		goto nopage;
3795 
3796 	/*
3797 	 * Do not retry costly high order allocations unless they are
3798 	 * __GFP_REPEAT
3799 	 */
3800 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3801 		goto nopage;
3802 
3803 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3804 				 did_some_progress > 0, &no_progress_loops))
3805 		goto retry;
3806 
3807 	/*
3808 	 * It doesn't make any sense to retry for the compaction if the order-0
3809 	 * reclaim is not able to make any progress because the current
3810 	 * implementation of the compaction depends on the sufficient amount
3811 	 * of free memory (see __compaction_suitable)
3812 	 */
3813 	if (did_some_progress > 0 &&
3814 			should_compact_retry(ac, order, alloc_flags,
3815 				compact_result, &compact_priority,
3816 				&compaction_retries))
3817 		goto retry;
3818 
3819 	/*
3820 	 * It's possible we raced with cpuset update so the OOM would be
3821 	 * premature (see below the nopage: label for full explanation).
3822 	 */
3823 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3824 		goto retry_cpuset;
3825 
3826 	/* Reclaim has failed us, start killing things */
3827 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3828 	if (page)
3829 		goto got_pg;
3830 
3831 	/* Avoid allocations with no watermarks from looping endlessly */
3832 	if (test_thread_flag(TIF_MEMDIE))
3833 		goto nopage;
3834 
3835 	/* Retry as long as the OOM killer is making progress */
3836 	if (did_some_progress) {
3837 		no_progress_loops = 0;
3838 		goto retry;
3839 	}
3840 
3841 nopage:
3842 	/*
3843 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3844 	 * possible to race with parallel threads in such a way that our
3845 	 * allocation can fail while the mask is being updated. If we are about
3846 	 * to fail, check if the cpuset changed during allocation and if so,
3847 	 * retry.
3848 	 */
3849 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3850 		goto retry_cpuset;
3851 
3852 	/*
3853 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3854 	 * we always retry
3855 	 */
3856 	if (gfp_mask & __GFP_NOFAIL) {
3857 		/*
3858 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3859 		 * of any new users that actually require GFP_NOWAIT
3860 		 */
3861 		if (WARN_ON_ONCE(!can_direct_reclaim))
3862 			goto fail;
3863 
3864 		/*
3865 		 * PF_MEMALLOC request from this context is rather bizarre
3866 		 * because we cannot reclaim anything and only can loop waiting
3867 		 * for somebody to do a work for us
3868 		 */
3869 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3870 
3871 		/*
3872 		 * non failing costly orders are a hard requirement which we
3873 		 * are not prepared for much so let's warn about these users
3874 		 * so that we can identify them and convert them to something
3875 		 * else.
3876 		 */
3877 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3878 
3879 		/*
3880 		 * Help non-failing allocations by giving them access to memory
3881 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
3882 		 * could deplete whole memory reserves which would just make
3883 		 * the situation worse
3884 		 */
3885 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3886 		if (page)
3887 			goto got_pg;
3888 
3889 		cond_resched();
3890 		goto retry;
3891 	}
3892 fail:
3893 	warn_alloc(gfp_mask, ac->nodemask,
3894 			"page allocation failure: order:%u", order);
3895 got_pg:
3896 	return page;
3897 }
3898 
3899 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3900 		struct zonelist *zonelist, nodemask_t *nodemask,
3901 		struct alloc_context *ac, gfp_t *alloc_mask,
3902 		unsigned int *alloc_flags)
3903 {
3904 	ac->high_zoneidx = gfp_zone(gfp_mask);
3905 	ac->zonelist = zonelist;
3906 	ac->nodemask = nodemask;
3907 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3908 
3909 	if (cpusets_enabled()) {
3910 		*alloc_mask |= __GFP_HARDWALL;
3911 		if (!ac->nodemask)
3912 			ac->nodemask = &cpuset_current_mems_allowed;
3913 		else
3914 			*alloc_flags |= ALLOC_CPUSET;
3915 	}
3916 
3917 	lockdep_trace_alloc(gfp_mask);
3918 
3919 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3920 
3921 	if (should_fail_alloc_page(gfp_mask, order))
3922 		return false;
3923 
3924 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3925 		*alloc_flags |= ALLOC_CMA;
3926 
3927 	return true;
3928 }
3929 
3930 /* Determine whether to spread dirty pages and what the first usable zone */
3931 static inline void finalise_ac(gfp_t gfp_mask,
3932 		unsigned int order, struct alloc_context *ac)
3933 {
3934 	/* Dirty zone balancing only done in the fast path */
3935 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3936 
3937 	/*
3938 	 * The preferred zone is used for statistics but crucially it is
3939 	 * also used as the starting point for the zonelist iterator. It
3940 	 * may get reset for allocations that ignore memory policies.
3941 	 */
3942 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3943 					ac->high_zoneidx, ac->nodemask);
3944 }
3945 
3946 /*
3947  * This is the 'heart' of the zoned buddy allocator.
3948  */
3949 struct page *
3950 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3951 			struct zonelist *zonelist, nodemask_t *nodemask)
3952 {
3953 	struct page *page;
3954 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3955 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3956 	struct alloc_context ac = { };
3957 
3958 	gfp_mask &= gfp_allowed_mask;
3959 	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3960 		return NULL;
3961 
3962 	finalise_ac(gfp_mask, order, &ac);
3963 
3964 	/* First allocation attempt */
3965 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3966 	if (likely(page))
3967 		goto out;
3968 
3969 	/*
3970 	 * Runtime PM, block IO and its error handling path can deadlock
3971 	 * because I/O on the device might not complete.
3972 	 */
3973 	alloc_mask = memalloc_noio_flags(gfp_mask);
3974 	ac.spread_dirty_pages = false;
3975 
3976 	/*
3977 	 * Restore the original nodemask if it was potentially replaced with
3978 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3979 	 */
3980 	if (unlikely(ac.nodemask != nodemask))
3981 		ac.nodemask = nodemask;
3982 
3983 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3984 
3985 out:
3986 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3987 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3988 		__free_pages(page, order);
3989 		page = NULL;
3990 	}
3991 
3992 	if (kmemcheck_enabled && page)
3993 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3994 
3995 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3996 
3997 	return page;
3998 }
3999 EXPORT_SYMBOL(__alloc_pages_nodemask);
4000 
4001 /*
4002  * Common helper functions.
4003  */
4004 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4005 {
4006 	struct page *page;
4007 
4008 	/*
4009 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4010 	 * a highmem page
4011 	 */
4012 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4013 
4014 	page = alloc_pages(gfp_mask, order);
4015 	if (!page)
4016 		return 0;
4017 	return (unsigned long) page_address(page);
4018 }
4019 EXPORT_SYMBOL(__get_free_pages);
4020 
4021 unsigned long get_zeroed_page(gfp_t gfp_mask)
4022 {
4023 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4024 }
4025 EXPORT_SYMBOL(get_zeroed_page);
4026 
4027 void __free_pages(struct page *page, unsigned int order)
4028 {
4029 	if (put_page_testzero(page)) {
4030 		if (order == 0)
4031 			free_hot_cold_page(page, false);
4032 		else
4033 			__free_pages_ok(page, order);
4034 	}
4035 }
4036 
4037 EXPORT_SYMBOL(__free_pages);
4038 
4039 void free_pages(unsigned long addr, unsigned int order)
4040 {
4041 	if (addr != 0) {
4042 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4043 		__free_pages(virt_to_page((void *)addr), order);
4044 	}
4045 }
4046 
4047 EXPORT_SYMBOL(free_pages);
4048 
4049 /*
4050  * Page Fragment:
4051  *  An arbitrary-length arbitrary-offset area of memory which resides
4052  *  within a 0 or higher order page.  Multiple fragments within that page
4053  *  are individually refcounted, in the page's reference counter.
4054  *
4055  * The page_frag functions below provide a simple allocation framework for
4056  * page fragments.  This is used by the network stack and network device
4057  * drivers to provide a backing region of memory for use as either an
4058  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4059  */
4060 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4061 					     gfp_t gfp_mask)
4062 {
4063 	struct page *page = NULL;
4064 	gfp_t gfp = gfp_mask;
4065 
4066 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4067 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4068 		    __GFP_NOMEMALLOC;
4069 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4070 				PAGE_FRAG_CACHE_MAX_ORDER);
4071 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4072 #endif
4073 	if (unlikely(!page))
4074 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4075 
4076 	nc->va = page ? page_address(page) : NULL;
4077 
4078 	return page;
4079 }
4080 
4081 void __page_frag_cache_drain(struct page *page, unsigned int count)
4082 {
4083 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4084 
4085 	if (page_ref_sub_and_test(page, count)) {
4086 		unsigned int order = compound_order(page);
4087 
4088 		if (order == 0)
4089 			free_hot_cold_page(page, false);
4090 		else
4091 			__free_pages_ok(page, order);
4092 	}
4093 }
4094 EXPORT_SYMBOL(__page_frag_cache_drain);
4095 
4096 void *page_frag_alloc(struct page_frag_cache *nc,
4097 		      unsigned int fragsz, gfp_t gfp_mask)
4098 {
4099 	unsigned int size = PAGE_SIZE;
4100 	struct page *page;
4101 	int offset;
4102 
4103 	if (unlikely(!nc->va)) {
4104 refill:
4105 		page = __page_frag_cache_refill(nc, gfp_mask);
4106 		if (!page)
4107 			return NULL;
4108 
4109 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4110 		/* if size can vary use size else just use PAGE_SIZE */
4111 		size = nc->size;
4112 #endif
4113 		/* Even if we own the page, we do not use atomic_set().
4114 		 * This would break get_page_unless_zero() users.
4115 		 */
4116 		page_ref_add(page, size - 1);
4117 
4118 		/* reset page count bias and offset to start of new frag */
4119 		nc->pfmemalloc = page_is_pfmemalloc(page);
4120 		nc->pagecnt_bias = size;
4121 		nc->offset = size;
4122 	}
4123 
4124 	offset = nc->offset - fragsz;
4125 	if (unlikely(offset < 0)) {
4126 		page = virt_to_page(nc->va);
4127 
4128 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4129 			goto refill;
4130 
4131 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4132 		/* if size can vary use size else just use PAGE_SIZE */
4133 		size = nc->size;
4134 #endif
4135 		/* OK, page count is 0, we can safely set it */
4136 		set_page_count(page, size);
4137 
4138 		/* reset page count bias and offset to start of new frag */
4139 		nc->pagecnt_bias = size;
4140 		offset = size - fragsz;
4141 	}
4142 
4143 	nc->pagecnt_bias--;
4144 	nc->offset = offset;
4145 
4146 	return nc->va + offset;
4147 }
4148 EXPORT_SYMBOL(page_frag_alloc);
4149 
4150 /*
4151  * Frees a page fragment allocated out of either a compound or order 0 page.
4152  */
4153 void page_frag_free(void *addr)
4154 {
4155 	struct page *page = virt_to_head_page(addr);
4156 
4157 	if (unlikely(put_page_testzero(page)))
4158 		__free_pages_ok(page, compound_order(page));
4159 }
4160 EXPORT_SYMBOL(page_frag_free);
4161 
4162 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4163 		size_t size)
4164 {
4165 	if (addr) {
4166 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4167 		unsigned long used = addr + PAGE_ALIGN(size);
4168 
4169 		split_page(virt_to_page((void *)addr), order);
4170 		while (used < alloc_end) {
4171 			free_page(used);
4172 			used += PAGE_SIZE;
4173 		}
4174 	}
4175 	return (void *)addr;
4176 }
4177 
4178 /**
4179  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4180  * @size: the number of bytes to allocate
4181  * @gfp_mask: GFP flags for the allocation
4182  *
4183  * This function is similar to alloc_pages(), except that it allocates the
4184  * minimum number of pages to satisfy the request.  alloc_pages() can only
4185  * allocate memory in power-of-two pages.
4186  *
4187  * This function is also limited by MAX_ORDER.
4188  *
4189  * Memory allocated by this function must be released by free_pages_exact().
4190  */
4191 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4192 {
4193 	unsigned int order = get_order(size);
4194 	unsigned long addr;
4195 
4196 	addr = __get_free_pages(gfp_mask, order);
4197 	return make_alloc_exact(addr, order, size);
4198 }
4199 EXPORT_SYMBOL(alloc_pages_exact);
4200 
4201 /**
4202  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4203  *			   pages on a node.
4204  * @nid: the preferred node ID where memory should be allocated
4205  * @size: the number of bytes to allocate
4206  * @gfp_mask: GFP flags for the allocation
4207  *
4208  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4209  * back.
4210  */
4211 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4212 {
4213 	unsigned int order = get_order(size);
4214 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4215 	if (!p)
4216 		return NULL;
4217 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4218 }
4219 
4220 /**
4221  * free_pages_exact - release memory allocated via alloc_pages_exact()
4222  * @virt: the value returned by alloc_pages_exact.
4223  * @size: size of allocation, same value as passed to alloc_pages_exact().
4224  *
4225  * Release the memory allocated by a previous call to alloc_pages_exact.
4226  */
4227 void free_pages_exact(void *virt, size_t size)
4228 {
4229 	unsigned long addr = (unsigned long)virt;
4230 	unsigned long end = addr + PAGE_ALIGN(size);
4231 
4232 	while (addr < end) {
4233 		free_page(addr);
4234 		addr += PAGE_SIZE;
4235 	}
4236 }
4237 EXPORT_SYMBOL(free_pages_exact);
4238 
4239 /**
4240  * nr_free_zone_pages - count number of pages beyond high watermark
4241  * @offset: The zone index of the highest zone
4242  *
4243  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4244  * high watermark within all zones at or below a given zone index.  For each
4245  * zone, the number of pages is calculated as:
4246  *     managed_pages - high_pages
4247  */
4248 static unsigned long nr_free_zone_pages(int offset)
4249 {
4250 	struct zoneref *z;
4251 	struct zone *zone;
4252 
4253 	/* Just pick one node, since fallback list is circular */
4254 	unsigned long sum = 0;
4255 
4256 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4257 
4258 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4259 		unsigned long size = zone->managed_pages;
4260 		unsigned long high = high_wmark_pages(zone);
4261 		if (size > high)
4262 			sum += size - high;
4263 	}
4264 
4265 	return sum;
4266 }
4267 
4268 /**
4269  * nr_free_buffer_pages - count number of pages beyond high watermark
4270  *
4271  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4272  * watermark within ZONE_DMA and ZONE_NORMAL.
4273  */
4274 unsigned long nr_free_buffer_pages(void)
4275 {
4276 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4277 }
4278 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4279 
4280 /**
4281  * nr_free_pagecache_pages - count number of pages beyond high watermark
4282  *
4283  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4284  * high watermark within all zones.
4285  */
4286 unsigned long nr_free_pagecache_pages(void)
4287 {
4288 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4289 }
4290 
4291 static inline void show_node(struct zone *zone)
4292 {
4293 	if (IS_ENABLED(CONFIG_NUMA))
4294 		printk("Node %d ", zone_to_nid(zone));
4295 }
4296 
4297 long si_mem_available(void)
4298 {
4299 	long available;
4300 	unsigned long pagecache;
4301 	unsigned long wmark_low = 0;
4302 	unsigned long pages[NR_LRU_LISTS];
4303 	struct zone *zone;
4304 	int lru;
4305 
4306 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4307 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4308 
4309 	for_each_zone(zone)
4310 		wmark_low += zone->watermark[WMARK_LOW];
4311 
4312 	/*
4313 	 * Estimate the amount of memory available for userspace allocations,
4314 	 * without causing swapping.
4315 	 */
4316 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4317 
4318 	/*
4319 	 * Not all the page cache can be freed, otherwise the system will
4320 	 * start swapping. Assume at least half of the page cache, or the
4321 	 * low watermark worth of cache, needs to stay.
4322 	 */
4323 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4324 	pagecache -= min(pagecache / 2, wmark_low);
4325 	available += pagecache;
4326 
4327 	/*
4328 	 * Part of the reclaimable slab consists of items that are in use,
4329 	 * and cannot be freed. Cap this estimate at the low watermark.
4330 	 */
4331 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4332 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4333 
4334 	if (available < 0)
4335 		available = 0;
4336 	return available;
4337 }
4338 EXPORT_SYMBOL_GPL(si_mem_available);
4339 
4340 void si_meminfo(struct sysinfo *val)
4341 {
4342 	val->totalram = totalram_pages;
4343 	val->sharedram = global_node_page_state(NR_SHMEM);
4344 	val->freeram = global_page_state(NR_FREE_PAGES);
4345 	val->bufferram = nr_blockdev_pages();
4346 	val->totalhigh = totalhigh_pages;
4347 	val->freehigh = nr_free_highpages();
4348 	val->mem_unit = PAGE_SIZE;
4349 }
4350 
4351 EXPORT_SYMBOL(si_meminfo);
4352 
4353 #ifdef CONFIG_NUMA
4354 void si_meminfo_node(struct sysinfo *val, int nid)
4355 {
4356 	int zone_type;		/* needs to be signed */
4357 	unsigned long managed_pages = 0;
4358 	unsigned long managed_highpages = 0;
4359 	unsigned long free_highpages = 0;
4360 	pg_data_t *pgdat = NODE_DATA(nid);
4361 
4362 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4363 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4364 	val->totalram = managed_pages;
4365 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4366 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4367 #ifdef CONFIG_HIGHMEM
4368 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4369 		struct zone *zone = &pgdat->node_zones[zone_type];
4370 
4371 		if (is_highmem(zone)) {
4372 			managed_highpages += zone->managed_pages;
4373 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4374 		}
4375 	}
4376 	val->totalhigh = managed_highpages;
4377 	val->freehigh = free_highpages;
4378 #else
4379 	val->totalhigh = managed_highpages;
4380 	val->freehigh = free_highpages;
4381 #endif
4382 	val->mem_unit = PAGE_SIZE;
4383 }
4384 #endif
4385 
4386 /*
4387  * Determine whether the node should be displayed or not, depending on whether
4388  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4389  */
4390 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4391 {
4392 	if (!(flags & SHOW_MEM_FILTER_NODES))
4393 		return false;
4394 
4395 	/*
4396 	 * no node mask - aka implicit memory numa policy. Do not bother with
4397 	 * the synchronization - read_mems_allowed_begin - because we do not
4398 	 * have to be precise here.
4399 	 */
4400 	if (!nodemask)
4401 		nodemask = &cpuset_current_mems_allowed;
4402 
4403 	return !node_isset(nid, *nodemask);
4404 }
4405 
4406 #define K(x) ((x) << (PAGE_SHIFT-10))
4407 
4408 static void show_migration_types(unsigned char type)
4409 {
4410 	static const char types[MIGRATE_TYPES] = {
4411 		[MIGRATE_UNMOVABLE]	= 'U',
4412 		[MIGRATE_MOVABLE]	= 'M',
4413 		[MIGRATE_RECLAIMABLE]	= 'E',
4414 		[MIGRATE_HIGHATOMIC]	= 'H',
4415 #ifdef CONFIG_CMA
4416 		[MIGRATE_CMA]		= 'C',
4417 #endif
4418 #ifdef CONFIG_MEMORY_ISOLATION
4419 		[MIGRATE_ISOLATE]	= 'I',
4420 #endif
4421 	};
4422 	char tmp[MIGRATE_TYPES + 1];
4423 	char *p = tmp;
4424 	int i;
4425 
4426 	for (i = 0; i < MIGRATE_TYPES; i++) {
4427 		if (type & (1 << i))
4428 			*p++ = types[i];
4429 	}
4430 
4431 	*p = '\0';
4432 	printk(KERN_CONT "(%s) ", tmp);
4433 }
4434 
4435 /*
4436  * Show free area list (used inside shift_scroll-lock stuff)
4437  * We also calculate the percentage fragmentation. We do this by counting the
4438  * memory on each free list with the exception of the first item on the list.
4439  *
4440  * Bits in @filter:
4441  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4442  *   cpuset.
4443  */
4444 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4445 {
4446 	unsigned long free_pcp = 0;
4447 	int cpu;
4448 	struct zone *zone;
4449 	pg_data_t *pgdat;
4450 
4451 	for_each_populated_zone(zone) {
4452 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4453 			continue;
4454 
4455 		for_each_online_cpu(cpu)
4456 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4457 	}
4458 
4459 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4460 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4461 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4462 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4463 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4464 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4465 		global_node_page_state(NR_ACTIVE_ANON),
4466 		global_node_page_state(NR_INACTIVE_ANON),
4467 		global_node_page_state(NR_ISOLATED_ANON),
4468 		global_node_page_state(NR_ACTIVE_FILE),
4469 		global_node_page_state(NR_INACTIVE_FILE),
4470 		global_node_page_state(NR_ISOLATED_FILE),
4471 		global_node_page_state(NR_UNEVICTABLE),
4472 		global_node_page_state(NR_FILE_DIRTY),
4473 		global_node_page_state(NR_WRITEBACK),
4474 		global_node_page_state(NR_UNSTABLE_NFS),
4475 		global_page_state(NR_SLAB_RECLAIMABLE),
4476 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4477 		global_node_page_state(NR_FILE_MAPPED),
4478 		global_node_page_state(NR_SHMEM),
4479 		global_page_state(NR_PAGETABLE),
4480 		global_page_state(NR_BOUNCE),
4481 		global_page_state(NR_FREE_PAGES),
4482 		free_pcp,
4483 		global_page_state(NR_FREE_CMA_PAGES));
4484 
4485 	for_each_online_pgdat(pgdat) {
4486 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4487 			continue;
4488 
4489 		printk("Node %d"
4490 			" active_anon:%lukB"
4491 			" inactive_anon:%lukB"
4492 			" active_file:%lukB"
4493 			" inactive_file:%lukB"
4494 			" unevictable:%lukB"
4495 			" isolated(anon):%lukB"
4496 			" isolated(file):%lukB"
4497 			" mapped:%lukB"
4498 			" dirty:%lukB"
4499 			" writeback:%lukB"
4500 			" shmem:%lukB"
4501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4502 			" shmem_thp: %lukB"
4503 			" shmem_pmdmapped: %lukB"
4504 			" anon_thp: %lukB"
4505 #endif
4506 			" writeback_tmp:%lukB"
4507 			" unstable:%lukB"
4508 			" pages_scanned:%lu"
4509 			" all_unreclaimable? %s"
4510 			"\n",
4511 			pgdat->node_id,
4512 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4513 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4514 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4515 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4516 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4517 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4518 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4519 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4520 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4521 			K(node_page_state(pgdat, NR_WRITEBACK)),
4522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4523 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4524 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4525 					* HPAGE_PMD_NR),
4526 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4527 #endif
4528 			K(node_page_state(pgdat, NR_SHMEM)),
4529 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4530 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4531 			node_page_state(pgdat, NR_PAGES_SCANNED),
4532 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4533 	}
4534 
4535 	for_each_populated_zone(zone) {
4536 		int i;
4537 
4538 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4539 			continue;
4540 
4541 		free_pcp = 0;
4542 		for_each_online_cpu(cpu)
4543 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4544 
4545 		show_node(zone);
4546 		printk(KERN_CONT
4547 			"%s"
4548 			" free:%lukB"
4549 			" min:%lukB"
4550 			" low:%lukB"
4551 			" high:%lukB"
4552 			" active_anon:%lukB"
4553 			" inactive_anon:%lukB"
4554 			" active_file:%lukB"
4555 			" inactive_file:%lukB"
4556 			" unevictable:%lukB"
4557 			" writepending:%lukB"
4558 			" present:%lukB"
4559 			" managed:%lukB"
4560 			" mlocked:%lukB"
4561 			" slab_reclaimable:%lukB"
4562 			" slab_unreclaimable:%lukB"
4563 			" kernel_stack:%lukB"
4564 			" pagetables:%lukB"
4565 			" bounce:%lukB"
4566 			" free_pcp:%lukB"
4567 			" local_pcp:%ukB"
4568 			" free_cma:%lukB"
4569 			"\n",
4570 			zone->name,
4571 			K(zone_page_state(zone, NR_FREE_PAGES)),
4572 			K(min_wmark_pages(zone)),
4573 			K(low_wmark_pages(zone)),
4574 			K(high_wmark_pages(zone)),
4575 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4576 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4577 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4578 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4579 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4580 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4581 			K(zone->present_pages),
4582 			K(zone->managed_pages),
4583 			K(zone_page_state(zone, NR_MLOCK)),
4584 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4585 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4586 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4587 			K(zone_page_state(zone, NR_PAGETABLE)),
4588 			K(zone_page_state(zone, NR_BOUNCE)),
4589 			K(free_pcp),
4590 			K(this_cpu_read(zone->pageset->pcp.count)),
4591 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4592 		printk("lowmem_reserve[]:");
4593 		for (i = 0; i < MAX_NR_ZONES; i++)
4594 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4595 		printk(KERN_CONT "\n");
4596 	}
4597 
4598 	for_each_populated_zone(zone) {
4599 		unsigned int order;
4600 		unsigned long nr[MAX_ORDER], flags, total = 0;
4601 		unsigned char types[MAX_ORDER];
4602 
4603 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4604 			continue;
4605 		show_node(zone);
4606 		printk(KERN_CONT "%s: ", zone->name);
4607 
4608 		spin_lock_irqsave(&zone->lock, flags);
4609 		for (order = 0; order < MAX_ORDER; order++) {
4610 			struct free_area *area = &zone->free_area[order];
4611 			int type;
4612 
4613 			nr[order] = area->nr_free;
4614 			total += nr[order] << order;
4615 
4616 			types[order] = 0;
4617 			for (type = 0; type < MIGRATE_TYPES; type++) {
4618 				if (!list_empty(&area->free_list[type]))
4619 					types[order] |= 1 << type;
4620 			}
4621 		}
4622 		spin_unlock_irqrestore(&zone->lock, flags);
4623 		for (order = 0; order < MAX_ORDER; order++) {
4624 			printk(KERN_CONT "%lu*%lukB ",
4625 			       nr[order], K(1UL) << order);
4626 			if (nr[order])
4627 				show_migration_types(types[order]);
4628 		}
4629 		printk(KERN_CONT "= %lukB\n", K(total));
4630 	}
4631 
4632 	hugetlb_show_meminfo();
4633 
4634 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4635 
4636 	show_swap_cache_info();
4637 }
4638 
4639 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4640 {
4641 	zoneref->zone = zone;
4642 	zoneref->zone_idx = zone_idx(zone);
4643 }
4644 
4645 /*
4646  * Builds allocation fallback zone lists.
4647  *
4648  * Add all populated zones of a node to the zonelist.
4649  */
4650 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4651 				int nr_zones)
4652 {
4653 	struct zone *zone;
4654 	enum zone_type zone_type = MAX_NR_ZONES;
4655 
4656 	do {
4657 		zone_type--;
4658 		zone = pgdat->node_zones + zone_type;
4659 		if (managed_zone(zone)) {
4660 			zoneref_set_zone(zone,
4661 				&zonelist->_zonerefs[nr_zones++]);
4662 			check_highest_zone(zone_type);
4663 		}
4664 	} while (zone_type);
4665 
4666 	return nr_zones;
4667 }
4668 
4669 
4670 /*
4671  *  zonelist_order:
4672  *  0 = automatic detection of better ordering.
4673  *  1 = order by ([node] distance, -zonetype)
4674  *  2 = order by (-zonetype, [node] distance)
4675  *
4676  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4677  *  the same zonelist. So only NUMA can configure this param.
4678  */
4679 #define ZONELIST_ORDER_DEFAULT  0
4680 #define ZONELIST_ORDER_NODE     1
4681 #define ZONELIST_ORDER_ZONE     2
4682 
4683 /* zonelist order in the kernel.
4684  * set_zonelist_order() will set this to NODE or ZONE.
4685  */
4686 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4687 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4688 
4689 
4690 #ifdef CONFIG_NUMA
4691 /* The value user specified ....changed by config */
4692 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4693 /* string for sysctl */
4694 #define NUMA_ZONELIST_ORDER_LEN	16
4695 char numa_zonelist_order[16] = "default";
4696 
4697 /*
4698  * interface for configure zonelist ordering.
4699  * command line option "numa_zonelist_order"
4700  *	= "[dD]efault	- default, automatic configuration.
4701  *	= "[nN]ode 	- order by node locality, then by zone within node
4702  *	= "[zZ]one      - order by zone, then by locality within zone
4703  */
4704 
4705 static int __parse_numa_zonelist_order(char *s)
4706 {
4707 	if (*s == 'd' || *s == 'D') {
4708 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4709 	} else if (*s == 'n' || *s == 'N') {
4710 		user_zonelist_order = ZONELIST_ORDER_NODE;
4711 	} else if (*s == 'z' || *s == 'Z') {
4712 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4713 	} else {
4714 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4715 		return -EINVAL;
4716 	}
4717 	return 0;
4718 }
4719 
4720 static __init int setup_numa_zonelist_order(char *s)
4721 {
4722 	int ret;
4723 
4724 	if (!s)
4725 		return 0;
4726 
4727 	ret = __parse_numa_zonelist_order(s);
4728 	if (ret == 0)
4729 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4730 
4731 	return ret;
4732 }
4733 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4734 
4735 /*
4736  * sysctl handler for numa_zonelist_order
4737  */
4738 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4739 		void __user *buffer, size_t *length,
4740 		loff_t *ppos)
4741 {
4742 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4743 	int ret;
4744 	static DEFINE_MUTEX(zl_order_mutex);
4745 
4746 	mutex_lock(&zl_order_mutex);
4747 	if (write) {
4748 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4749 			ret = -EINVAL;
4750 			goto out;
4751 		}
4752 		strcpy(saved_string, (char *)table->data);
4753 	}
4754 	ret = proc_dostring(table, write, buffer, length, ppos);
4755 	if (ret)
4756 		goto out;
4757 	if (write) {
4758 		int oldval = user_zonelist_order;
4759 
4760 		ret = __parse_numa_zonelist_order((char *)table->data);
4761 		if (ret) {
4762 			/*
4763 			 * bogus value.  restore saved string
4764 			 */
4765 			strncpy((char *)table->data, saved_string,
4766 				NUMA_ZONELIST_ORDER_LEN);
4767 			user_zonelist_order = oldval;
4768 		} else if (oldval != user_zonelist_order) {
4769 			mutex_lock(&zonelists_mutex);
4770 			build_all_zonelists(NULL, NULL);
4771 			mutex_unlock(&zonelists_mutex);
4772 		}
4773 	}
4774 out:
4775 	mutex_unlock(&zl_order_mutex);
4776 	return ret;
4777 }
4778 
4779 
4780 #define MAX_NODE_LOAD (nr_online_nodes)
4781 static int node_load[MAX_NUMNODES];
4782 
4783 /**
4784  * find_next_best_node - find the next node that should appear in a given node's fallback list
4785  * @node: node whose fallback list we're appending
4786  * @used_node_mask: nodemask_t of already used nodes
4787  *
4788  * We use a number of factors to determine which is the next node that should
4789  * appear on a given node's fallback list.  The node should not have appeared
4790  * already in @node's fallback list, and it should be the next closest node
4791  * according to the distance array (which contains arbitrary distance values
4792  * from each node to each node in the system), and should also prefer nodes
4793  * with no CPUs, since presumably they'll have very little allocation pressure
4794  * on them otherwise.
4795  * It returns -1 if no node is found.
4796  */
4797 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4798 {
4799 	int n, val;
4800 	int min_val = INT_MAX;
4801 	int best_node = NUMA_NO_NODE;
4802 	const struct cpumask *tmp = cpumask_of_node(0);
4803 
4804 	/* Use the local node if we haven't already */
4805 	if (!node_isset(node, *used_node_mask)) {
4806 		node_set(node, *used_node_mask);
4807 		return node;
4808 	}
4809 
4810 	for_each_node_state(n, N_MEMORY) {
4811 
4812 		/* Don't want a node to appear more than once */
4813 		if (node_isset(n, *used_node_mask))
4814 			continue;
4815 
4816 		/* Use the distance array to find the distance */
4817 		val = node_distance(node, n);
4818 
4819 		/* Penalize nodes under us ("prefer the next node") */
4820 		val += (n < node);
4821 
4822 		/* Give preference to headless and unused nodes */
4823 		tmp = cpumask_of_node(n);
4824 		if (!cpumask_empty(tmp))
4825 			val += PENALTY_FOR_NODE_WITH_CPUS;
4826 
4827 		/* Slight preference for less loaded node */
4828 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4829 		val += node_load[n];
4830 
4831 		if (val < min_val) {
4832 			min_val = val;
4833 			best_node = n;
4834 		}
4835 	}
4836 
4837 	if (best_node >= 0)
4838 		node_set(best_node, *used_node_mask);
4839 
4840 	return best_node;
4841 }
4842 
4843 
4844 /*
4845  * Build zonelists ordered by node and zones within node.
4846  * This results in maximum locality--normal zone overflows into local
4847  * DMA zone, if any--but risks exhausting DMA zone.
4848  */
4849 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4850 {
4851 	int j;
4852 	struct zonelist *zonelist;
4853 
4854 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4855 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4856 		;
4857 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4858 	zonelist->_zonerefs[j].zone = NULL;
4859 	zonelist->_zonerefs[j].zone_idx = 0;
4860 }
4861 
4862 /*
4863  * Build gfp_thisnode zonelists
4864  */
4865 static void build_thisnode_zonelists(pg_data_t *pgdat)
4866 {
4867 	int j;
4868 	struct zonelist *zonelist;
4869 
4870 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4871 	j = build_zonelists_node(pgdat, zonelist, 0);
4872 	zonelist->_zonerefs[j].zone = NULL;
4873 	zonelist->_zonerefs[j].zone_idx = 0;
4874 }
4875 
4876 /*
4877  * Build zonelists ordered by zone and nodes within zones.
4878  * This results in conserving DMA zone[s] until all Normal memory is
4879  * exhausted, but results in overflowing to remote node while memory
4880  * may still exist in local DMA zone.
4881  */
4882 static int node_order[MAX_NUMNODES];
4883 
4884 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4885 {
4886 	int pos, j, node;
4887 	int zone_type;		/* needs to be signed */
4888 	struct zone *z;
4889 	struct zonelist *zonelist;
4890 
4891 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4892 	pos = 0;
4893 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4894 		for (j = 0; j < nr_nodes; j++) {
4895 			node = node_order[j];
4896 			z = &NODE_DATA(node)->node_zones[zone_type];
4897 			if (managed_zone(z)) {
4898 				zoneref_set_zone(z,
4899 					&zonelist->_zonerefs[pos++]);
4900 				check_highest_zone(zone_type);
4901 			}
4902 		}
4903 	}
4904 	zonelist->_zonerefs[pos].zone = NULL;
4905 	zonelist->_zonerefs[pos].zone_idx = 0;
4906 }
4907 
4908 #if defined(CONFIG_64BIT)
4909 /*
4910  * Devices that require DMA32/DMA are relatively rare and do not justify a
4911  * penalty to every machine in case the specialised case applies. Default
4912  * to Node-ordering on 64-bit NUMA machines
4913  */
4914 static int default_zonelist_order(void)
4915 {
4916 	return ZONELIST_ORDER_NODE;
4917 }
4918 #else
4919 /*
4920  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4921  * by the kernel. If processes running on node 0 deplete the low memory zone
4922  * then reclaim will occur more frequency increasing stalls and potentially
4923  * be easier to OOM if a large percentage of the zone is under writeback or
4924  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4925  * Hence, default to zone ordering on 32-bit.
4926  */
4927 static int default_zonelist_order(void)
4928 {
4929 	return ZONELIST_ORDER_ZONE;
4930 }
4931 #endif /* CONFIG_64BIT */
4932 
4933 static void set_zonelist_order(void)
4934 {
4935 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4936 		current_zonelist_order = default_zonelist_order();
4937 	else
4938 		current_zonelist_order = user_zonelist_order;
4939 }
4940 
4941 static void build_zonelists(pg_data_t *pgdat)
4942 {
4943 	int i, node, load;
4944 	nodemask_t used_mask;
4945 	int local_node, prev_node;
4946 	struct zonelist *zonelist;
4947 	unsigned int order = current_zonelist_order;
4948 
4949 	/* initialize zonelists */
4950 	for (i = 0; i < MAX_ZONELISTS; i++) {
4951 		zonelist = pgdat->node_zonelists + i;
4952 		zonelist->_zonerefs[0].zone = NULL;
4953 		zonelist->_zonerefs[0].zone_idx = 0;
4954 	}
4955 
4956 	/* NUMA-aware ordering of nodes */
4957 	local_node = pgdat->node_id;
4958 	load = nr_online_nodes;
4959 	prev_node = local_node;
4960 	nodes_clear(used_mask);
4961 
4962 	memset(node_order, 0, sizeof(node_order));
4963 	i = 0;
4964 
4965 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4966 		/*
4967 		 * We don't want to pressure a particular node.
4968 		 * So adding penalty to the first node in same
4969 		 * distance group to make it round-robin.
4970 		 */
4971 		if (node_distance(local_node, node) !=
4972 		    node_distance(local_node, prev_node))
4973 			node_load[node] = load;
4974 
4975 		prev_node = node;
4976 		load--;
4977 		if (order == ZONELIST_ORDER_NODE)
4978 			build_zonelists_in_node_order(pgdat, node);
4979 		else
4980 			node_order[i++] = node;	/* remember order */
4981 	}
4982 
4983 	if (order == ZONELIST_ORDER_ZONE) {
4984 		/* calculate node order -- i.e., DMA last! */
4985 		build_zonelists_in_zone_order(pgdat, i);
4986 	}
4987 
4988 	build_thisnode_zonelists(pgdat);
4989 }
4990 
4991 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4992 /*
4993  * Return node id of node used for "local" allocations.
4994  * I.e., first node id of first zone in arg node's generic zonelist.
4995  * Used for initializing percpu 'numa_mem', which is used primarily
4996  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4997  */
4998 int local_memory_node(int node)
4999 {
5000 	struct zoneref *z;
5001 
5002 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5003 				   gfp_zone(GFP_KERNEL),
5004 				   NULL);
5005 	return z->zone->node;
5006 }
5007 #endif
5008 
5009 static void setup_min_unmapped_ratio(void);
5010 static void setup_min_slab_ratio(void);
5011 #else	/* CONFIG_NUMA */
5012 
5013 static void set_zonelist_order(void)
5014 {
5015 	current_zonelist_order = ZONELIST_ORDER_ZONE;
5016 }
5017 
5018 static void build_zonelists(pg_data_t *pgdat)
5019 {
5020 	int node, local_node;
5021 	enum zone_type j;
5022 	struct zonelist *zonelist;
5023 
5024 	local_node = pgdat->node_id;
5025 
5026 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5027 	j = build_zonelists_node(pgdat, zonelist, 0);
5028 
5029 	/*
5030 	 * Now we build the zonelist so that it contains the zones
5031 	 * of all the other nodes.
5032 	 * We don't want to pressure a particular node, so when
5033 	 * building the zones for node N, we make sure that the
5034 	 * zones coming right after the local ones are those from
5035 	 * node N+1 (modulo N)
5036 	 */
5037 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5038 		if (!node_online(node))
5039 			continue;
5040 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5041 	}
5042 	for (node = 0; node < local_node; node++) {
5043 		if (!node_online(node))
5044 			continue;
5045 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5046 	}
5047 
5048 	zonelist->_zonerefs[j].zone = NULL;
5049 	zonelist->_zonerefs[j].zone_idx = 0;
5050 }
5051 
5052 #endif	/* CONFIG_NUMA */
5053 
5054 /*
5055  * Boot pageset table. One per cpu which is going to be used for all
5056  * zones and all nodes. The parameters will be set in such a way
5057  * that an item put on a list will immediately be handed over to
5058  * the buddy list. This is safe since pageset manipulation is done
5059  * with interrupts disabled.
5060  *
5061  * The boot_pagesets must be kept even after bootup is complete for
5062  * unused processors and/or zones. They do play a role for bootstrapping
5063  * hotplugged processors.
5064  *
5065  * zoneinfo_show() and maybe other functions do
5066  * not check if the processor is online before following the pageset pointer.
5067  * Other parts of the kernel may not check if the zone is available.
5068  */
5069 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5070 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5071 static void setup_zone_pageset(struct zone *zone);
5072 
5073 /*
5074  * Global mutex to protect against size modification of zonelists
5075  * as well as to serialize pageset setup for the new populated zone.
5076  */
5077 DEFINE_MUTEX(zonelists_mutex);
5078 
5079 /* return values int ....just for stop_machine() */
5080 static int __build_all_zonelists(void *data)
5081 {
5082 	int nid;
5083 	int cpu;
5084 	pg_data_t *self = data;
5085 
5086 #ifdef CONFIG_NUMA
5087 	memset(node_load, 0, sizeof(node_load));
5088 #endif
5089 
5090 	if (self && !node_online(self->node_id)) {
5091 		build_zonelists(self);
5092 	}
5093 
5094 	for_each_online_node(nid) {
5095 		pg_data_t *pgdat = NODE_DATA(nid);
5096 
5097 		build_zonelists(pgdat);
5098 	}
5099 
5100 	/*
5101 	 * Initialize the boot_pagesets that are going to be used
5102 	 * for bootstrapping processors. The real pagesets for
5103 	 * each zone will be allocated later when the per cpu
5104 	 * allocator is available.
5105 	 *
5106 	 * boot_pagesets are used also for bootstrapping offline
5107 	 * cpus if the system is already booted because the pagesets
5108 	 * are needed to initialize allocators on a specific cpu too.
5109 	 * F.e. the percpu allocator needs the page allocator which
5110 	 * needs the percpu allocator in order to allocate its pagesets
5111 	 * (a chicken-egg dilemma).
5112 	 */
5113 	for_each_possible_cpu(cpu) {
5114 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5115 
5116 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5117 		/*
5118 		 * We now know the "local memory node" for each node--
5119 		 * i.e., the node of the first zone in the generic zonelist.
5120 		 * Set up numa_mem percpu variable for on-line cpus.  During
5121 		 * boot, only the boot cpu should be on-line;  we'll init the
5122 		 * secondary cpus' numa_mem as they come on-line.  During
5123 		 * node/memory hotplug, we'll fixup all on-line cpus.
5124 		 */
5125 		if (cpu_online(cpu))
5126 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5127 #endif
5128 	}
5129 
5130 	return 0;
5131 }
5132 
5133 static noinline void __init
5134 build_all_zonelists_init(void)
5135 {
5136 	__build_all_zonelists(NULL);
5137 	mminit_verify_zonelist();
5138 	cpuset_init_current_mems_allowed();
5139 }
5140 
5141 /*
5142  * Called with zonelists_mutex held always
5143  * unless system_state == SYSTEM_BOOTING.
5144  *
5145  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5146  * [we're only called with non-NULL zone through __meminit paths] and
5147  * (2) call of __init annotated helper build_all_zonelists_init
5148  * [protected by SYSTEM_BOOTING].
5149  */
5150 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5151 {
5152 	set_zonelist_order();
5153 
5154 	if (system_state == SYSTEM_BOOTING) {
5155 		build_all_zonelists_init();
5156 	} else {
5157 #ifdef CONFIG_MEMORY_HOTPLUG
5158 		if (zone)
5159 			setup_zone_pageset(zone);
5160 #endif
5161 		/* we have to stop all cpus to guarantee there is no user
5162 		   of zonelist */
5163 		stop_machine(__build_all_zonelists, pgdat, NULL);
5164 		/* cpuset refresh routine should be here */
5165 	}
5166 	vm_total_pages = nr_free_pagecache_pages();
5167 	/*
5168 	 * Disable grouping by mobility if the number of pages in the
5169 	 * system is too low to allow the mechanism to work. It would be
5170 	 * more accurate, but expensive to check per-zone. This check is
5171 	 * made on memory-hotadd so a system can start with mobility
5172 	 * disabled and enable it later
5173 	 */
5174 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5175 		page_group_by_mobility_disabled = 1;
5176 	else
5177 		page_group_by_mobility_disabled = 0;
5178 
5179 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5180 		nr_online_nodes,
5181 		zonelist_order_name[current_zonelist_order],
5182 		page_group_by_mobility_disabled ? "off" : "on",
5183 		vm_total_pages);
5184 #ifdef CONFIG_NUMA
5185 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5186 #endif
5187 }
5188 
5189 /*
5190  * Initially all pages are reserved - free ones are freed
5191  * up by free_all_bootmem() once the early boot process is
5192  * done. Non-atomic initialization, single-pass.
5193  */
5194 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5195 		unsigned long start_pfn, enum memmap_context context)
5196 {
5197 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5198 	unsigned long end_pfn = start_pfn + size;
5199 	pg_data_t *pgdat = NODE_DATA(nid);
5200 	unsigned long pfn;
5201 	unsigned long nr_initialised = 0;
5202 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5203 	struct memblock_region *r = NULL, *tmp;
5204 #endif
5205 
5206 	if (highest_memmap_pfn < end_pfn - 1)
5207 		highest_memmap_pfn = end_pfn - 1;
5208 
5209 	/*
5210 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5211 	 * memory
5212 	 */
5213 	if (altmap && start_pfn == altmap->base_pfn)
5214 		start_pfn += altmap->reserve;
5215 
5216 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5217 		/*
5218 		 * There can be holes in boot-time mem_map[]s handed to this
5219 		 * function.  They do not exist on hotplugged memory.
5220 		 */
5221 		if (context != MEMMAP_EARLY)
5222 			goto not_early;
5223 
5224 		if (!early_pfn_valid(pfn)) {
5225 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5226 			/*
5227 			 * Skip to the pfn preceding the next valid one (or
5228 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5229 			 * on our next iteration of the loop.
5230 			 */
5231 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5232 #endif
5233 			continue;
5234 		}
5235 		if (!early_pfn_in_nid(pfn, nid))
5236 			continue;
5237 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5238 			break;
5239 
5240 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5241 		/*
5242 		 * Check given memblock attribute by firmware which can affect
5243 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5244 		 * mirrored, it's an overlapped memmap init. skip it.
5245 		 */
5246 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5247 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5248 				for_each_memblock(memory, tmp)
5249 					if (pfn < memblock_region_memory_end_pfn(tmp))
5250 						break;
5251 				r = tmp;
5252 			}
5253 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5254 			    memblock_is_mirror(r)) {
5255 				/* already initialized as NORMAL */
5256 				pfn = memblock_region_memory_end_pfn(r);
5257 				continue;
5258 			}
5259 		}
5260 #endif
5261 
5262 not_early:
5263 		/*
5264 		 * Mark the block movable so that blocks are reserved for
5265 		 * movable at startup. This will force kernel allocations
5266 		 * to reserve their blocks rather than leaking throughout
5267 		 * the address space during boot when many long-lived
5268 		 * kernel allocations are made.
5269 		 *
5270 		 * bitmap is created for zone's valid pfn range. but memmap
5271 		 * can be created for invalid pages (for alignment)
5272 		 * check here not to call set_pageblock_migratetype() against
5273 		 * pfn out of zone.
5274 		 */
5275 		if (!(pfn & (pageblock_nr_pages - 1))) {
5276 			struct page *page = pfn_to_page(pfn);
5277 
5278 			__init_single_page(page, pfn, zone, nid);
5279 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5280 		} else {
5281 			__init_single_pfn(pfn, zone, nid);
5282 		}
5283 	}
5284 }
5285 
5286 static void __meminit zone_init_free_lists(struct zone *zone)
5287 {
5288 	unsigned int order, t;
5289 	for_each_migratetype_order(order, t) {
5290 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5291 		zone->free_area[order].nr_free = 0;
5292 	}
5293 }
5294 
5295 #ifndef __HAVE_ARCH_MEMMAP_INIT
5296 #define memmap_init(size, nid, zone, start_pfn) \
5297 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5298 #endif
5299 
5300 static int zone_batchsize(struct zone *zone)
5301 {
5302 #ifdef CONFIG_MMU
5303 	int batch;
5304 
5305 	/*
5306 	 * The per-cpu-pages pools are set to around 1000th of the
5307 	 * size of the zone.  But no more than 1/2 of a meg.
5308 	 *
5309 	 * OK, so we don't know how big the cache is.  So guess.
5310 	 */
5311 	batch = zone->managed_pages / 1024;
5312 	if (batch * PAGE_SIZE > 512 * 1024)
5313 		batch = (512 * 1024) / PAGE_SIZE;
5314 	batch /= 4;		/* We effectively *= 4 below */
5315 	if (batch < 1)
5316 		batch = 1;
5317 
5318 	/*
5319 	 * Clamp the batch to a 2^n - 1 value. Having a power
5320 	 * of 2 value was found to be more likely to have
5321 	 * suboptimal cache aliasing properties in some cases.
5322 	 *
5323 	 * For example if 2 tasks are alternately allocating
5324 	 * batches of pages, one task can end up with a lot
5325 	 * of pages of one half of the possible page colors
5326 	 * and the other with pages of the other colors.
5327 	 */
5328 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5329 
5330 	return batch;
5331 
5332 #else
5333 	/* The deferral and batching of frees should be suppressed under NOMMU
5334 	 * conditions.
5335 	 *
5336 	 * The problem is that NOMMU needs to be able to allocate large chunks
5337 	 * of contiguous memory as there's no hardware page translation to
5338 	 * assemble apparent contiguous memory from discontiguous pages.
5339 	 *
5340 	 * Queueing large contiguous runs of pages for batching, however,
5341 	 * causes the pages to actually be freed in smaller chunks.  As there
5342 	 * can be a significant delay between the individual batches being
5343 	 * recycled, this leads to the once large chunks of space being
5344 	 * fragmented and becoming unavailable for high-order allocations.
5345 	 */
5346 	return 0;
5347 #endif
5348 }
5349 
5350 /*
5351  * pcp->high and pcp->batch values are related and dependent on one another:
5352  * ->batch must never be higher then ->high.
5353  * The following function updates them in a safe manner without read side
5354  * locking.
5355  *
5356  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5357  * those fields changing asynchronously (acording the the above rule).
5358  *
5359  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5360  * outside of boot time (or some other assurance that no concurrent updaters
5361  * exist).
5362  */
5363 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5364 		unsigned long batch)
5365 {
5366        /* start with a fail safe value for batch */
5367 	pcp->batch = 1;
5368 	smp_wmb();
5369 
5370        /* Update high, then batch, in order */
5371 	pcp->high = high;
5372 	smp_wmb();
5373 
5374 	pcp->batch = batch;
5375 }
5376 
5377 /* a companion to pageset_set_high() */
5378 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5379 {
5380 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5381 }
5382 
5383 static void pageset_init(struct per_cpu_pageset *p)
5384 {
5385 	struct per_cpu_pages *pcp;
5386 	int migratetype;
5387 
5388 	memset(p, 0, sizeof(*p));
5389 
5390 	pcp = &p->pcp;
5391 	pcp->count = 0;
5392 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5393 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5394 }
5395 
5396 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5397 {
5398 	pageset_init(p);
5399 	pageset_set_batch(p, batch);
5400 }
5401 
5402 /*
5403  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5404  * to the value high for the pageset p.
5405  */
5406 static void pageset_set_high(struct per_cpu_pageset *p,
5407 				unsigned long high)
5408 {
5409 	unsigned long batch = max(1UL, high / 4);
5410 	if ((high / 4) > (PAGE_SHIFT * 8))
5411 		batch = PAGE_SHIFT * 8;
5412 
5413 	pageset_update(&p->pcp, high, batch);
5414 }
5415 
5416 static void pageset_set_high_and_batch(struct zone *zone,
5417 				       struct per_cpu_pageset *pcp)
5418 {
5419 	if (percpu_pagelist_fraction)
5420 		pageset_set_high(pcp,
5421 			(zone->managed_pages /
5422 				percpu_pagelist_fraction));
5423 	else
5424 		pageset_set_batch(pcp, zone_batchsize(zone));
5425 }
5426 
5427 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5428 {
5429 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5430 
5431 	pageset_init(pcp);
5432 	pageset_set_high_and_batch(zone, pcp);
5433 }
5434 
5435 static void __meminit setup_zone_pageset(struct zone *zone)
5436 {
5437 	int cpu;
5438 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5439 	for_each_possible_cpu(cpu)
5440 		zone_pageset_init(zone, cpu);
5441 }
5442 
5443 /*
5444  * Allocate per cpu pagesets and initialize them.
5445  * Before this call only boot pagesets were available.
5446  */
5447 void __init setup_per_cpu_pageset(void)
5448 {
5449 	struct pglist_data *pgdat;
5450 	struct zone *zone;
5451 
5452 	for_each_populated_zone(zone)
5453 		setup_zone_pageset(zone);
5454 
5455 	for_each_online_pgdat(pgdat)
5456 		pgdat->per_cpu_nodestats =
5457 			alloc_percpu(struct per_cpu_nodestat);
5458 }
5459 
5460 static __meminit void zone_pcp_init(struct zone *zone)
5461 {
5462 	/*
5463 	 * per cpu subsystem is not up at this point. The following code
5464 	 * relies on the ability of the linker to provide the
5465 	 * offset of a (static) per cpu variable into the per cpu area.
5466 	 */
5467 	zone->pageset = &boot_pageset;
5468 
5469 	if (populated_zone(zone))
5470 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5471 			zone->name, zone->present_pages,
5472 					 zone_batchsize(zone));
5473 }
5474 
5475 int __meminit init_currently_empty_zone(struct zone *zone,
5476 					unsigned long zone_start_pfn,
5477 					unsigned long size)
5478 {
5479 	struct pglist_data *pgdat = zone->zone_pgdat;
5480 
5481 	pgdat->nr_zones = zone_idx(zone) + 1;
5482 
5483 	zone->zone_start_pfn = zone_start_pfn;
5484 
5485 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5486 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5487 			pgdat->node_id,
5488 			(unsigned long)zone_idx(zone),
5489 			zone_start_pfn, (zone_start_pfn + size));
5490 
5491 	zone_init_free_lists(zone);
5492 	zone->initialized = 1;
5493 
5494 	return 0;
5495 }
5496 
5497 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5498 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5499 
5500 /*
5501  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5502  */
5503 int __meminit __early_pfn_to_nid(unsigned long pfn,
5504 					struct mminit_pfnnid_cache *state)
5505 {
5506 	unsigned long start_pfn, end_pfn;
5507 	int nid;
5508 
5509 	if (state->last_start <= pfn && pfn < state->last_end)
5510 		return state->last_nid;
5511 
5512 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5513 	if (nid != -1) {
5514 		state->last_start = start_pfn;
5515 		state->last_end = end_pfn;
5516 		state->last_nid = nid;
5517 	}
5518 
5519 	return nid;
5520 }
5521 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5522 
5523 /**
5524  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5525  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5526  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5527  *
5528  * If an architecture guarantees that all ranges registered contain no holes
5529  * and may be freed, this this function may be used instead of calling
5530  * memblock_free_early_nid() manually.
5531  */
5532 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5533 {
5534 	unsigned long start_pfn, end_pfn;
5535 	int i, this_nid;
5536 
5537 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5538 		start_pfn = min(start_pfn, max_low_pfn);
5539 		end_pfn = min(end_pfn, max_low_pfn);
5540 
5541 		if (start_pfn < end_pfn)
5542 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5543 					(end_pfn - start_pfn) << PAGE_SHIFT,
5544 					this_nid);
5545 	}
5546 }
5547 
5548 /**
5549  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5550  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5551  *
5552  * If an architecture guarantees that all ranges registered contain no holes and may
5553  * be freed, this function may be used instead of calling memory_present() manually.
5554  */
5555 void __init sparse_memory_present_with_active_regions(int nid)
5556 {
5557 	unsigned long start_pfn, end_pfn;
5558 	int i, this_nid;
5559 
5560 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5561 		memory_present(this_nid, start_pfn, end_pfn);
5562 }
5563 
5564 /**
5565  * get_pfn_range_for_nid - Return the start and end page frames for a node
5566  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5567  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5568  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5569  *
5570  * It returns the start and end page frame of a node based on information
5571  * provided by memblock_set_node(). If called for a node
5572  * with no available memory, a warning is printed and the start and end
5573  * PFNs will be 0.
5574  */
5575 void __meminit get_pfn_range_for_nid(unsigned int nid,
5576 			unsigned long *start_pfn, unsigned long *end_pfn)
5577 {
5578 	unsigned long this_start_pfn, this_end_pfn;
5579 	int i;
5580 
5581 	*start_pfn = -1UL;
5582 	*end_pfn = 0;
5583 
5584 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5585 		*start_pfn = min(*start_pfn, this_start_pfn);
5586 		*end_pfn = max(*end_pfn, this_end_pfn);
5587 	}
5588 
5589 	if (*start_pfn == -1UL)
5590 		*start_pfn = 0;
5591 }
5592 
5593 /*
5594  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5595  * assumption is made that zones within a node are ordered in monotonic
5596  * increasing memory addresses so that the "highest" populated zone is used
5597  */
5598 static void __init find_usable_zone_for_movable(void)
5599 {
5600 	int zone_index;
5601 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5602 		if (zone_index == ZONE_MOVABLE)
5603 			continue;
5604 
5605 		if (arch_zone_highest_possible_pfn[zone_index] >
5606 				arch_zone_lowest_possible_pfn[zone_index])
5607 			break;
5608 	}
5609 
5610 	VM_BUG_ON(zone_index == -1);
5611 	movable_zone = zone_index;
5612 }
5613 
5614 /*
5615  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5616  * because it is sized independent of architecture. Unlike the other zones,
5617  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5618  * in each node depending on the size of each node and how evenly kernelcore
5619  * is distributed. This helper function adjusts the zone ranges
5620  * provided by the architecture for a given node by using the end of the
5621  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5622  * zones within a node are in order of monotonic increases memory addresses
5623  */
5624 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5625 					unsigned long zone_type,
5626 					unsigned long node_start_pfn,
5627 					unsigned long node_end_pfn,
5628 					unsigned long *zone_start_pfn,
5629 					unsigned long *zone_end_pfn)
5630 {
5631 	/* Only adjust if ZONE_MOVABLE is on this node */
5632 	if (zone_movable_pfn[nid]) {
5633 		/* Size ZONE_MOVABLE */
5634 		if (zone_type == ZONE_MOVABLE) {
5635 			*zone_start_pfn = zone_movable_pfn[nid];
5636 			*zone_end_pfn = min(node_end_pfn,
5637 				arch_zone_highest_possible_pfn[movable_zone]);
5638 
5639 		/* Adjust for ZONE_MOVABLE starting within this range */
5640 		} else if (!mirrored_kernelcore &&
5641 			*zone_start_pfn < zone_movable_pfn[nid] &&
5642 			*zone_end_pfn > zone_movable_pfn[nid]) {
5643 			*zone_end_pfn = zone_movable_pfn[nid];
5644 
5645 		/* Check if this whole range is within ZONE_MOVABLE */
5646 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5647 			*zone_start_pfn = *zone_end_pfn;
5648 	}
5649 }
5650 
5651 /*
5652  * Return the number of pages a zone spans in a node, including holes
5653  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5654  */
5655 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5656 					unsigned long zone_type,
5657 					unsigned long node_start_pfn,
5658 					unsigned long node_end_pfn,
5659 					unsigned long *zone_start_pfn,
5660 					unsigned long *zone_end_pfn,
5661 					unsigned long *ignored)
5662 {
5663 	/* When hotadd a new node from cpu_up(), the node should be empty */
5664 	if (!node_start_pfn && !node_end_pfn)
5665 		return 0;
5666 
5667 	/* Get the start and end of the zone */
5668 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5669 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5670 	adjust_zone_range_for_zone_movable(nid, zone_type,
5671 				node_start_pfn, node_end_pfn,
5672 				zone_start_pfn, zone_end_pfn);
5673 
5674 	/* Check that this node has pages within the zone's required range */
5675 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5676 		return 0;
5677 
5678 	/* Move the zone boundaries inside the node if necessary */
5679 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5680 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5681 
5682 	/* Return the spanned pages */
5683 	return *zone_end_pfn - *zone_start_pfn;
5684 }
5685 
5686 /*
5687  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5688  * then all holes in the requested range will be accounted for.
5689  */
5690 unsigned long __meminit __absent_pages_in_range(int nid,
5691 				unsigned long range_start_pfn,
5692 				unsigned long range_end_pfn)
5693 {
5694 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5695 	unsigned long start_pfn, end_pfn;
5696 	int i;
5697 
5698 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5699 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5700 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5701 		nr_absent -= end_pfn - start_pfn;
5702 	}
5703 	return nr_absent;
5704 }
5705 
5706 /**
5707  * absent_pages_in_range - Return number of page frames in holes within a range
5708  * @start_pfn: The start PFN to start searching for holes
5709  * @end_pfn: The end PFN to stop searching for holes
5710  *
5711  * It returns the number of pages frames in memory holes within a range.
5712  */
5713 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5714 							unsigned long end_pfn)
5715 {
5716 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5717 }
5718 
5719 /* Return the number of page frames in holes in a zone on a node */
5720 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5721 					unsigned long zone_type,
5722 					unsigned long node_start_pfn,
5723 					unsigned long node_end_pfn,
5724 					unsigned long *ignored)
5725 {
5726 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5727 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5728 	unsigned long zone_start_pfn, zone_end_pfn;
5729 	unsigned long nr_absent;
5730 
5731 	/* When hotadd a new node from cpu_up(), the node should be empty */
5732 	if (!node_start_pfn && !node_end_pfn)
5733 		return 0;
5734 
5735 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5736 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5737 
5738 	adjust_zone_range_for_zone_movable(nid, zone_type,
5739 			node_start_pfn, node_end_pfn,
5740 			&zone_start_pfn, &zone_end_pfn);
5741 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5742 
5743 	/*
5744 	 * ZONE_MOVABLE handling.
5745 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5746 	 * and vice versa.
5747 	 */
5748 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5749 		unsigned long start_pfn, end_pfn;
5750 		struct memblock_region *r;
5751 
5752 		for_each_memblock(memory, r) {
5753 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5754 					  zone_start_pfn, zone_end_pfn);
5755 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5756 					zone_start_pfn, zone_end_pfn);
5757 
5758 			if (zone_type == ZONE_MOVABLE &&
5759 			    memblock_is_mirror(r))
5760 				nr_absent += end_pfn - start_pfn;
5761 
5762 			if (zone_type == ZONE_NORMAL &&
5763 			    !memblock_is_mirror(r))
5764 				nr_absent += end_pfn - start_pfn;
5765 		}
5766 	}
5767 
5768 	return nr_absent;
5769 }
5770 
5771 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5772 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5773 					unsigned long zone_type,
5774 					unsigned long node_start_pfn,
5775 					unsigned long node_end_pfn,
5776 					unsigned long *zone_start_pfn,
5777 					unsigned long *zone_end_pfn,
5778 					unsigned long *zones_size)
5779 {
5780 	unsigned int zone;
5781 
5782 	*zone_start_pfn = node_start_pfn;
5783 	for (zone = 0; zone < zone_type; zone++)
5784 		*zone_start_pfn += zones_size[zone];
5785 
5786 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5787 
5788 	return zones_size[zone_type];
5789 }
5790 
5791 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5792 						unsigned long zone_type,
5793 						unsigned long node_start_pfn,
5794 						unsigned long node_end_pfn,
5795 						unsigned long *zholes_size)
5796 {
5797 	if (!zholes_size)
5798 		return 0;
5799 
5800 	return zholes_size[zone_type];
5801 }
5802 
5803 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5804 
5805 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5806 						unsigned long node_start_pfn,
5807 						unsigned long node_end_pfn,
5808 						unsigned long *zones_size,
5809 						unsigned long *zholes_size)
5810 {
5811 	unsigned long realtotalpages = 0, totalpages = 0;
5812 	enum zone_type i;
5813 
5814 	for (i = 0; i < MAX_NR_ZONES; i++) {
5815 		struct zone *zone = pgdat->node_zones + i;
5816 		unsigned long zone_start_pfn, zone_end_pfn;
5817 		unsigned long size, real_size;
5818 
5819 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5820 						  node_start_pfn,
5821 						  node_end_pfn,
5822 						  &zone_start_pfn,
5823 						  &zone_end_pfn,
5824 						  zones_size);
5825 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5826 						  node_start_pfn, node_end_pfn,
5827 						  zholes_size);
5828 		if (size)
5829 			zone->zone_start_pfn = zone_start_pfn;
5830 		else
5831 			zone->zone_start_pfn = 0;
5832 		zone->spanned_pages = size;
5833 		zone->present_pages = real_size;
5834 
5835 		totalpages += size;
5836 		realtotalpages += real_size;
5837 	}
5838 
5839 	pgdat->node_spanned_pages = totalpages;
5840 	pgdat->node_present_pages = realtotalpages;
5841 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5842 							realtotalpages);
5843 }
5844 
5845 #ifndef CONFIG_SPARSEMEM
5846 /*
5847  * Calculate the size of the zone->blockflags rounded to an unsigned long
5848  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5849  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5850  * round what is now in bits to nearest long in bits, then return it in
5851  * bytes.
5852  */
5853 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5854 {
5855 	unsigned long usemapsize;
5856 
5857 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5858 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5859 	usemapsize = usemapsize >> pageblock_order;
5860 	usemapsize *= NR_PAGEBLOCK_BITS;
5861 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5862 
5863 	return usemapsize / 8;
5864 }
5865 
5866 static void __init setup_usemap(struct pglist_data *pgdat,
5867 				struct zone *zone,
5868 				unsigned long zone_start_pfn,
5869 				unsigned long zonesize)
5870 {
5871 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5872 	zone->pageblock_flags = NULL;
5873 	if (usemapsize)
5874 		zone->pageblock_flags =
5875 			memblock_virt_alloc_node_nopanic(usemapsize,
5876 							 pgdat->node_id);
5877 }
5878 #else
5879 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5880 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5881 #endif /* CONFIG_SPARSEMEM */
5882 
5883 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5884 
5885 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5886 void __paginginit set_pageblock_order(void)
5887 {
5888 	unsigned int order;
5889 
5890 	/* Check that pageblock_nr_pages has not already been setup */
5891 	if (pageblock_order)
5892 		return;
5893 
5894 	if (HPAGE_SHIFT > PAGE_SHIFT)
5895 		order = HUGETLB_PAGE_ORDER;
5896 	else
5897 		order = MAX_ORDER - 1;
5898 
5899 	/*
5900 	 * Assume the largest contiguous order of interest is a huge page.
5901 	 * This value may be variable depending on boot parameters on IA64 and
5902 	 * powerpc.
5903 	 */
5904 	pageblock_order = order;
5905 }
5906 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5907 
5908 /*
5909  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5910  * is unused as pageblock_order is set at compile-time. See
5911  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5912  * the kernel config
5913  */
5914 void __paginginit set_pageblock_order(void)
5915 {
5916 }
5917 
5918 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5919 
5920 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5921 						   unsigned long present_pages)
5922 {
5923 	unsigned long pages = spanned_pages;
5924 
5925 	/*
5926 	 * Provide a more accurate estimation if there are holes within
5927 	 * the zone and SPARSEMEM is in use. If there are holes within the
5928 	 * zone, each populated memory region may cost us one or two extra
5929 	 * memmap pages due to alignment because memmap pages for each
5930 	 * populated regions may not be naturally aligned on page boundary.
5931 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5932 	 */
5933 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5934 	    IS_ENABLED(CONFIG_SPARSEMEM))
5935 		pages = present_pages;
5936 
5937 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5938 }
5939 
5940 /*
5941  * Set up the zone data structures:
5942  *   - mark all pages reserved
5943  *   - mark all memory queues empty
5944  *   - clear the memory bitmaps
5945  *
5946  * NOTE: pgdat should get zeroed by caller.
5947  */
5948 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5949 {
5950 	enum zone_type j;
5951 	int nid = pgdat->node_id;
5952 	int ret;
5953 
5954 	pgdat_resize_init(pgdat);
5955 #ifdef CONFIG_NUMA_BALANCING
5956 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5957 	pgdat->numabalancing_migrate_nr_pages = 0;
5958 	pgdat->numabalancing_migrate_next_window = jiffies;
5959 #endif
5960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5961 	spin_lock_init(&pgdat->split_queue_lock);
5962 	INIT_LIST_HEAD(&pgdat->split_queue);
5963 	pgdat->split_queue_len = 0;
5964 #endif
5965 	init_waitqueue_head(&pgdat->kswapd_wait);
5966 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5967 #ifdef CONFIG_COMPACTION
5968 	init_waitqueue_head(&pgdat->kcompactd_wait);
5969 #endif
5970 	pgdat_page_ext_init(pgdat);
5971 	spin_lock_init(&pgdat->lru_lock);
5972 	lruvec_init(node_lruvec(pgdat));
5973 
5974 	for (j = 0; j < MAX_NR_ZONES; j++) {
5975 		struct zone *zone = pgdat->node_zones + j;
5976 		unsigned long size, realsize, freesize, memmap_pages;
5977 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5978 
5979 		size = zone->spanned_pages;
5980 		realsize = freesize = zone->present_pages;
5981 
5982 		/*
5983 		 * Adjust freesize so that it accounts for how much memory
5984 		 * is used by this zone for memmap. This affects the watermark
5985 		 * and per-cpu initialisations
5986 		 */
5987 		memmap_pages = calc_memmap_size(size, realsize);
5988 		if (!is_highmem_idx(j)) {
5989 			if (freesize >= memmap_pages) {
5990 				freesize -= memmap_pages;
5991 				if (memmap_pages)
5992 					printk(KERN_DEBUG
5993 					       "  %s zone: %lu pages used for memmap\n",
5994 					       zone_names[j], memmap_pages);
5995 			} else
5996 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5997 					zone_names[j], memmap_pages, freesize);
5998 		}
5999 
6000 		/* Account for reserved pages */
6001 		if (j == 0 && freesize > dma_reserve) {
6002 			freesize -= dma_reserve;
6003 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6004 					zone_names[0], dma_reserve);
6005 		}
6006 
6007 		if (!is_highmem_idx(j))
6008 			nr_kernel_pages += freesize;
6009 		/* Charge for highmem memmap if there are enough kernel pages */
6010 		else if (nr_kernel_pages > memmap_pages * 2)
6011 			nr_kernel_pages -= memmap_pages;
6012 		nr_all_pages += freesize;
6013 
6014 		/*
6015 		 * Set an approximate value for lowmem here, it will be adjusted
6016 		 * when the bootmem allocator frees pages into the buddy system.
6017 		 * And all highmem pages will be managed by the buddy system.
6018 		 */
6019 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6020 #ifdef CONFIG_NUMA
6021 		zone->node = nid;
6022 #endif
6023 		zone->name = zone_names[j];
6024 		zone->zone_pgdat = pgdat;
6025 		spin_lock_init(&zone->lock);
6026 		zone_seqlock_init(zone);
6027 		zone_pcp_init(zone);
6028 
6029 		if (!size)
6030 			continue;
6031 
6032 		set_pageblock_order();
6033 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6034 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6035 		BUG_ON(ret);
6036 		memmap_init(size, nid, j, zone_start_pfn);
6037 	}
6038 }
6039 
6040 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6041 {
6042 	unsigned long __maybe_unused start = 0;
6043 	unsigned long __maybe_unused offset = 0;
6044 
6045 	/* Skip empty nodes */
6046 	if (!pgdat->node_spanned_pages)
6047 		return;
6048 
6049 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6050 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6051 	offset = pgdat->node_start_pfn - start;
6052 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6053 	if (!pgdat->node_mem_map) {
6054 		unsigned long size, end;
6055 		struct page *map;
6056 
6057 		/*
6058 		 * The zone's endpoints aren't required to be MAX_ORDER
6059 		 * aligned but the node_mem_map endpoints must be in order
6060 		 * for the buddy allocator to function correctly.
6061 		 */
6062 		end = pgdat_end_pfn(pgdat);
6063 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6064 		size =  (end - start) * sizeof(struct page);
6065 		map = alloc_remap(pgdat->node_id, size);
6066 		if (!map)
6067 			map = memblock_virt_alloc_node_nopanic(size,
6068 							       pgdat->node_id);
6069 		pgdat->node_mem_map = map + offset;
6070 	}
6071 #ifndef CONFIG_NEED_MULTIPLE_NODES
6072 	/*
6073 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6074 	 */
6075 	if (pgdat == NODE_DATA(0)) {
6076 		mem_map = NODE_DATA(0)->node_mem_map;
6077 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6078 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6079 			mem_map -= offset;
6080 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6081 	}
6082 #endif
6083 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6084 }
6085 
6086 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6087 		unsigned long node_start_pfn, unsigned long *zholes_size)
6088 {
6089 	pg_data_t *pgdat = NODE_DATA(nid);
6090 	unsigned long start_pfn = 0;
6091 	unsigned long end_pfn = 0;
6092 
6093 	/* pg_data_t should be reset to zero when it's allocated */
6094 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6095 
6096 	reset_deferred_meminit(pgdat);
6097 	pgdat->node_id = nid;
6098 	pgdat->node_start_pfn = node_start_pfn;
6099 	pgdat->per_cpu_nodestats = NULL;
6100 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6101 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6102 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6103 		(u64)start_pfn << PAGE_SHIFT,
6104 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6105 #else
6106 	start_pfn = node_start_pfn;
6107 #endif
6108 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6109 				  zones_size, zholes_size);
6110 
6111 	alloc_node_mem_map(pgdat);
6112 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6113 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6114 		nid, (unsigned long)pgdat,
6115 		(unsigned long)pgdat->node_mem_map);
6116 #endif
6117 
6118 	free_area_init_core(pgdat);
6119 }
6120 
6121 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6122 
6123 #if MAX_NUMNODES > 1
6124 /*
6125  * Figure out the number of possible node ids.
6126  */
6127 void __init setup_nr_node_ids(void)
6128 {
6129 	unsigned int highest;
6130 
6131 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6132 	nr_node_ids = highest + 1;
6133 }
6134 #endif
6135 
6136 /**
6137  * node_map_pfn_alignment - determine the maximum internode alignment
6138  *
6139  * This function should be called after node map is populated and sorted.
6140  * It calculates the maximum power of two alignment which can distinguish
6141  * all the nodes.
6142  *
6143  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6144  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6145  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6146  * shifted, 1GiB is enough and this function will indicate so.
6147  *
6148  * This is used to test whether pfn -> nid mapping of the chosen memory
6149  * model has fine enough granularity to avoid incorrect mapping for the
6150  * populated node map.
6151  *
6152  * Returns the determined alignment in pfn's.  0 if there is no alignment
6153  * requirement (single node).
6154  */
6155 unsigned long __init node_map_pfn_alignment(void)
6156 {
6157 	unsigned long accl_mask = 0, last_end = 0;
6158 	unsigned long start, end, mask;
6159 	int last_nid = -1;
6160 	int i, nid;
6161 
6162 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6163 		if (!start || last_nid < 0 || last_nid == nid) {
6164 			last_nid = nid;
6165 			last_end = end;
6166 			continue;
6167 		}
6168 
6169 		/*
6170 		 * Start with a mask granular enough to pin-point to the
6171 		 * start pfn and tick off bits one-by-one until it becomes
6172 		 * too coarse to separate the current node from the last.
6173 		 */
6174 		mask = ~((1 << __ffs(start)) - 1);
6175 		while (mask && last_end <= (start & (mask << 1)))
6176 			mask <<= 1;
6177 
6178 		/* accumulate all internode masks */
6179 		accl_mask |= mask;
6180 	}
6181 
6182 	/* convert mask to number of pages */
6183 	return ~accl_mask + 1;
6184 }
6185 
6186 /* Find the lowest pfn for a node */
6187 static unsigned long __init find_min_pfn_for_node(int nid)
6188 {
6189 	unsigned long min_pfn = ULONG_MAX;
6190 	unsigned long start_pfn;
6191 	int i;
6192 
6193 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6194 		min_pfn = min(min_pfn, start_pfn);
6195 
6196 	if (min_pfn == ULONG_MAX) {
6197 		pr_warn("Could not find start_pfn for node %d\n", nid);
6198 		return 0;
6199 	}
6200 
6201 	return min_pfn;
6202 }
6203 
6204 /**
6205  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6206  *
6207  * It returns the minimum PFN based on information provided via
6208  * memblock_set_node().
6209  */
6210 unsigned long __init find_min_pfn_with_active_regions(void)
6211 {
6212 	return find_min_pfn_for_node(MAX_NUMNODES);
6213 }
6214 
6215 /*
6216  * early_calculate_totalpages()
6217  * Sum pages in active regions for movable zone.
6218  * Populate N_MEMORY for calculating usable_nodes.
6219  */
6220 static unsigned long __init early_calculate_totalpages(void)
6221 {
6222 	unsigned long totalpages = 0;
6223 	unsigned long start_pfn, end_pfn;
6224 	int i, nid;
6225 
6226 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6227 		unsigned long pages = end_pfn - start_pfn;
6228 
6229 		totalpages += pages;
6230 		if (pages)
6231 			node_set_state(nid, N_MEMORY);
6232 	}
6233 	return totalpages;
6234 }
6235 
6236 /*
6237  * Find the PFN the Movable zone begins in each node. Kernel memory
6238  * is spread evenly between nodes as long as the nodes have enough
6239  * memory. When they don't, some nodes will have more kernelcore than
6240  * others
6241  */
6242 static void __init find_zone_movable_pfns_for_nodes(void)
6243 {
6244 	int i, nid;
6245 	unsigned long usable_startpfn;
6246 	unsigned long kernelcore_node, kernelcore_remaining;
6247 	/* save the state before borrow the nodemask */
6248 	nodemask_t saved_node_state = node_states[N_MEMORY];
6249 	unsigned long totalpages = early_calculate_totalpages();
6250 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6251 	struct memblock_region *r;
6252 
6253 	/* Need to find movable_zone earlier when movable_node is specified. */
6254 	find_usable_zone_for_movable();
6255 
6256 	/*
6257 	 * If movable_node is specified, ignore kernelcore and movablecore
6258 	 * options.
6259 	 */
6260 	if (movable_node_is_enabled()) {
6261 		for_each_memblock(memory, r) {
6262 			if (!memblock_is_hotpluggable(r))
6263 				continue;
6264 
6265 			nid = r->nid;
6266 
6267 			usable_startpfn = PFN_DOWN(r->base);
6268 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6269 				min(usable_startpfn, zone_movable_pfn[nid]) :
6270 				usable_startpfn;
6271 		}
6272 
6273 		goto out2;
6274 	}
6275 
6276 	/*
6277 	 * If kernelcore=mirror is specified, ignore movablecore option
6278 	 */
6279 	if (mirrored_kernelcore) {
6280 		bool mem_below_4gb_not_mirrored = false;
6281 
6282 		for_each_memblock(memory, r) {
6283 			if (memblock_is_mirror(r))
6284 				continue;
6285 
6286 			nid = r->nid;
6287 
6288 			usable_startpfn = memblock_region_memory_base_pfn(r);
6289 
6290 			if (usable_startpfn < 0x100000) {
6291 				mem_below_4gb_not_mirrored = true;
6292 				continue;
6293 			}
6294 
6295 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6296 				min(usable_startpfn, zone_movable_pfn[nid]) :
6297 				usable_startpfn;
6298 		}
6299 
6300 		if (mem_below_4gb_not_mirrored)
6301 			pr_warn("This configuration results in unmirrored kernel memory.");
6302 
6303 		goto out2;
6304 	}
6305 
6306 	/*
6307 	 * If movablecore=nn[KMG] was specified, calculate what size of
6308 	 * kernelcore that corresponds so that memory usable for
6309 	 * any allocation type is evenly spread. If both kernelcore
6310 	 * and movablecore are specified, then the value of kernelcore
6311 	 * will be used for required_kernelcore if it's greater than
6312 	 * what movablecore would have allowed.
6313 	 */
6314 	if (required_movablecore) {
6315 		unsigned long corepages;
6316 
6317 		/*
6318 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6319 		 * was requested by the user
6320 		 */
6321 		required_movablecore =
6322 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6323 		required_movablecore = min(totalpages, required_movablecore);
6324 		corepages = totalpages - required_movablecore;
6325 
6326 		required_kernelcore = max(required_kernelcore, corepages);
6327 	}
6328 
6329 	/*
6330 	 * If kernelcore was not specified or kernelcore size is larger
6331 	 * than totalpages, there is no ZONE_MOVABLE.
6332 	 */
6333 	if (!required_kernelcore || required_kernelcore >= totalpages)
6334 		goto out;
6335 
6336 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6337 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6338 
6339 restart:
6340 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6341 	kernelcore_node = required_kernelcore / usable_nodes;
6342 	for_each_node_state(nid, N_MEMORY) {
6343 		unsigned long start_pfn, end_pfn;
6344 
6345 		/*
6346 		 * Recalculate kernelcore_node if the division per node
6347 		 * now exceeds what is necessary to satisfy the requested
6348 		 * amount of memory for the kernel
6349 		 */
6350 		if (required_kernelcore < kernelcore_node)
6351 			kernelcore_node = required_kernelcore / usable_nodes;
6352 
6353 		/*
6354 		 * As the map is walked, we track how much memory is usable
6355 		 * by the kernel using kernelcore_remaining. When it is
6356 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6357 		 */
6358 		kernelcore_remaining = kernelcore_node;
6359 
6360 		/* Go through each range of PFNs within this node */
6361 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6362 			unsigned long size_pages;
6363 
6364 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6365 			if (start_pfn >= end_pfn)
6366 				continue;
6367 
6368 			/* Account for what is only usable for kernelcore */
6369 			if (start_pfn < usable_startpfn) {
6370 				unsigned long kernel_pages;
6371 				kernel_pages = min(end_pfn, usable_startpfn)
6372 								- start_pfn;
6373 
6374 				kernelcore_remaining -= min(kernel_pages,
6375 							kernelcore_remaining);
6376 				required_kernelcore -= min(kernel_pages,
6377 							required_kernelcore);
6378 
6379 				/* Continue if range is now fully accounted */
6380 				if (end_pfn <= usable_startpfn) {
6381 
6382 					/*
6383 					 * Push zone_movable_pfn to the end so
6384 					 * that if we have to rebalance
6385 					 * kernelcore across nodes, we will
6386 					 * not double account here
6387 					 */
6388 					zone_movable_pfn[nid] = end_pfn;
6389 					continue;
6390 				}
6391 				start_pfn = usable_startpfn;
6392 			}
6393 
6394 			/*
6395 			 * The usable PFN range for ZONE_MOVABLE is from
6396 			 * start_pfn->end_pfn. Calculate size_pages as the
6397 			 * number of pages used as kernelcore
6398 			 */
6399 			size_pages = end_pfn - start_pfn;
6400 			if (size_pages > kernelcore_remaining)
6401 				size_pages = kernelcore_remaining;
6402 			zone_movable_pfn[nid] = start_pfn + size_pages;
6403 
6404 			/*
6405 			 * Some kernelcore has been met, update counts and
6406 			 * break if the kernelcore for this node has been
6407 			 * satisfied
6408 			 */
6409 			required_kernelcore -= min(required_kernelcore,
6410 								size_pages);
6411 			kernelcore_remaining -= size_pages;
6412 			if (!kernelcore_remaining)
6413 				break;
6414 		}
6415 	}
6416 
6417 	/*
6418 	 * If there is still required_kernelcore, we do another pass with one
6419 	 * less node in the count. This will push zone_movable_pfn[nid] further
6420 	 * along on the nodes that still have memory until kernelcore is
6421 	 * satisfied
6422 	 */
6423 	usable_nodes--;
6424 	if (usable_nodes && required_kernelcore > usable_nodes)
6425 		goto restart;
6426 
6427 out2:
6428 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6429 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6430 		zone_movable_pfn[nid] =
6431 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6432 
6433 out:
6434 	/* restore the node_state */
6435 	node_states[N_MEMORY] = saved_node_state;
6436 }
6437 
6438 /* Any regular or high memory on that node ? */
6439 static void check_for_memory(pg_data_t *pgdat, int nid)
6440 {
6441 	enum zone_type zone_type;
6442 
6443 	if (N_MEMORY == N_NORMAL_MEMORY)
6444 		return;
6445 
6446 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6447 		struct zone *zone = &pgdat->node_zones[zone_type];
6448 		if (populated_zone(zone)) {
6449 			node_set_state(nid, N_HIGH_MEMORY);
6450 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6451 			    zone_type <= ZONE_NORMAL)
6452 				node_set_state(nid, N_NORMAL_MEMORY);
6453 			break;
6454 		}
6455 	}
6456 }
6457 
6458 /**
6459  * free_area_init_nodes - Initialise all pg_data_t and zone data
6460  * @max_zone_pfn: an array of max PFNs for each zone
6461  *
6462  * This will call free_area_init_node() for each active node in the system.
6463  * Using the page ranges provided by memblock_set_node(), the size of each
6464  * zone in each node and their holes is calculated. If the maximum PFN
6465  * between two adjacent zones match, it is assumed that the zone is empty.
6466  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6467  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6468  * starts where the previous one ended. For example, ZONE_DMA32 starts
6469  * at arch_max_dma_pfn.
6470  */
6471 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6472 {
6473 	unsigned long start_pfn, end_pfn;
6474 	int i, nid;
6475 
6476 	/* Record where the zone boundaries are */
6477 	memset(arch_zone_lowest_possible_pfn, 0,
6478 				sizeof(arch_zone_lowest_possible_pfn));
6479 	memset(arch_zone_highest_possible_pfn, 0,
6480 				sizeof(arch_zone_highest_possible_pfn));
6481 
6482 	start_pfn = find_min_pfn_with_active_regions();
6483 
6484 	for (i = 0; i < MAX_NR_ZONES; i++) {
6485 		if (i == ZONE_MOVABLE)
6486 			continue;
6487 
6488 		end_pfn = max(max_zone_pfn[i], start_pfn);
6489 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6490 		arch_zone_highest_possible_pfn[i] = end_pfn;
6491 
6492 		start_pfn = end_pfn;
6493 	}
6494 
6495 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6496 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6497 	find_zone_movable_pfns_for_nodes();
6498 
6499 	/* Print out the zone ranges */
6500 	pr_info("Zone ranges:\n");
6501 	for (i = 0; i < MAX_NR_ZONES; i++) {
6502 		if (i == ZONE_MOVABLE)
6503 			continue;
6504 		pr_info("  %-8s ", zone_names[i]);
6505 		if (arch_zone_lowest_possible_pfn[i] ==
6506 				arch_zone_highest_possible_pfn[i])
6507 			pr_cont("empty\n");
6508 		else
6509 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6510 				(u64)arch_zone_lowest_possible_pfn[i]
6511 					<< PAGE_SHIFT,
6512 				((u64)arch_zone_highest_possible_pfn[i]
6513 					<< PAGE_SHIFT) - 1);
6514 	}
6515 
6516 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6517 	pr_info("Movable zone start for each node\n");
6518 	for (i = 0; i < MAX_NUMNODES; i++) {
6519 		if (zone_movable_pfn[i])
6520 			pr_info("  Node %d: %#018Lx\n", i,
6521 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6522 	}
6523 
6524 	/* Print out the early node map */
6525 	pr_info("Early memory node ranges\n");
6526 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6527 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6528 			(u64)start_pfn << PAGE_SHIFT,
6529 			((u64)end_pfn << PAGE_SHIFT) - 1);
6530 
6531 	/* Initialise every node */
6532 	mminit_verify_pageflags_layout();
6533 	setup_nr_node_ids();
6534 	for_each_online_node(nid) {
6535 		pg_data_t *pgdat = NODE_DATA(nid);
6536 		free_area_init_node(nid, NULL,
6537 				find_min_pfn_for_node(nid), NULL);
6538 
6539 		/* Any memory on that node */
6540 		if (pgdat->node_present_pages)
6541 			node_set_state(nid, N_MEMORY);
6542 		check_for_memory(pgdat, nid);
6543 	}
6544 }
6545 
6546 static int __init cmdline_parse_core(char *p, unsigned long *core)
6547 {
6548 	unsigned long long coremem;
6549 	if (!p)
6550 		return -EINVAL;
6551 
6552 	coremem = memparse(p, &p);
6553 	*core = coremem >> PAGE_SHIFT;
6554 
6555 	/* Paranoid check that UL is enough for the coremem value */
6556 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6557 
6558 	return 0;
6559 }
6560 
6561 /*
6562  * kernelcore=size sets the amount of memory for use for allocations that
6563  * cannot be reclaimed or migrated.
6564  */
6565 static int __init cmdline_parse_kernelcore(char *p)
6566 {
6567 	/* parse kernelcore=mirror */
6568 	if (parse_option_str(p, "mirror")) {
6569 		mirrored_kernelcore = true;
6570 		return 0;
6571 	}
6572 
6573 	return cmdline_parse_core(p, &required_kernelcore);
6574 }
6575 
6576 /*
6577  * movablecore=size sets the amount of memory for use for allocations that
6578  * can be reclaimed or migrated.
6579  */
6580 static int __init cmdline_parse_movablecore(char *p)
6581 {
6582 	return cmdline_parse_core(p, &required_movablecore);
6583 }
6584 
6585 early_param("kernelcore", cmdline_parse_kernelcore);
6586 early_param("movablecore", cmdline_parse_movablecore);
6587 
6588 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6589 
6590 void adjust_managed_page_count(struct page *page, long count)
6591 {
6592 	spin_lock(&managed_page_count_lock);
6593 	page_zone(page)->managed_pages += count;
6594 	totalram_pages += count;
6595 #ifdef CONFIG_HIGHMEM
6596 	if (PageHighMem(page))
6597 		totalhigh_pages += count;
6598 #endif
6599 	spin_unlock(&managed_page_count_lock);
6600 }
6601 EXPORT_SYMBOL(adjust_managed_page_count);
6602 
6603 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6604 {
6605 	void *pos;
6606 	unsigned long pages = 0;
6607 
6608 	start = (void *)PAGE_ALIGN((unsigned long)start);
6609 	end = (void *)((unsigned long)end & PAGE_MASK);
6610 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6611 		if ((unsigned int)poison <= 0xFF)
6612 			memset(pos, poison, PAGE_SIZE);
6613 		free_reserved_page(virt_to_page(pos));
6614 	}
6615 
6616 	if (pages && s)
6617 		pr_info("Freeing %s memory: %ldK\n",
6618 			s, pages << (PAGE_SHIFT - 10));
6619 
6620 	return pages;
6621 }
6622 EXPORT_SYMBOL(free_reserved_area);
6623 
6624 #ifdef	CONFIG_HIGHMEM
6625 void free_highmem_page(struct page *page)
6626 {
6627 	__free_reserved_page(page);
6628 	totalram_pages++;
6629 	page_zone(page)->managed_pages++;
6630 	totalhigh_pages++;
6631 }
6632 #endif
6633 
6634 
6635 void __init mem_init_print_info(const char *str)
6636 {
6637 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6638 	unsigned long init_code_size, init_data_size;
6639 
6640 	physpages = get_num_physpages();
6641 	codesize = _etext - _stext;
6642 	datasize = _edata - _sdata;
6643 	rosize = __end_rodata - __start_rodata;
6644 	bss_size = __bss_stop - __bss_start;
6645 	init_data_size = __init_end - __init_begin;
6646 	init_code_size = _einittext - _sinittext;
6647 
6648 	/*
6649 	 * Detect special cases and adjust section sizes accordingly:
6650 	 * 1) .init.* may be embedded into .data sections
6651 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6652 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6653 	 * 3) .rodata.* may be embedded into .text or .data sections.
6654 	 */
6655 #define adj_init_size(start, end, size, pos, adj) \
6656 	do { \
6657 		if (start <= pos && pos < end && size > adj) \
6658 			size -= adj; \
6659 	} while (0)
6660 
6661 	adj_init_size(__init_begin, __init_end, init_data_size,
6662 		     _sinittext, init_code_size);
6663 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6664 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6665 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6666 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6667 
6668 #undef	adj_init_size
6669 
6670 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6671 #ifdef	CONFIG_HIGHMEM
6672 		", %luK highmem"
6673 #endif
6674 		"%s%s)\n",
6675 		nr_free_pages() << (PAGE_SHIFT - 10),
6676 		physpages << (PAGE_SHIFT - 10),
6677 		codesize >> 10, datasize >> 10, rosize >> 10,
6678 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6679 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6680 		totalcma_pages << (PAGE_SHIFT - 10),
6681 #ifdef	CONFIG_HIGHMEM
6682 		totalhigh_pages << (PAGE_SHIFT - 10),
6683 #endif
6684 		str ? ", " : "", str ? str : "");
6685 }
6686 
6687 /**
6688  * set_dma_reserve - set the specified number of pages reserved in the first zone
6689  * @new_dma_reserve: The number of pages to mark reserved
6690  *
6691  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6692  * In the DMA zone, a significant percentage may be consumed by kernel image
6693  * and other unfreeable allocations which can skew the watermarks badly. This
6694  * function may optionally be used to account for unfreeable pages in the
6695  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6696  * smaller per-cpu batchsize.
6697  */
6698 void __init set_dma_reserve(unsigned long new_dma_reserve)
6699 {
6700 	dma_reserve = new_dma_reserve;
6701 }
6702 
6703 void __init free_area_init(unsigned long *zones_size)
6704 {
6705 	free_area_init_node(0, zones_size,
6706 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6707 }
6708 
6709 static int page_alloc_cpu_dead(unsigned int cpu)
6710 {
6711 
6712 	lru_add_drain_cpu(cpu);
6713 	drain_pages(cpu);
6714 
6715 	/*
6716 	 * Spill the event counters of the dead processor
6717 	 * into the current processors event counters.
6718 	 * This artificially elevates the count of the current
6719 	 * processor.
6720 	 */
6721 	vm_events_fold_cpu(cpu);
6722 
6723 	/*
6724 	 * Zero the differential counters of the dead processor
6725 	 * so that the vm statistics are consistent.
6726 	 *
6727 	 * This is only okay since the processor is dead and cannot
6728 	 * race with what we are doing.
6729 	 */
6730 	cpu_vm_stats_fold(cpu);
6731 	return 0;
6732 }
6733 
6734 void __init page_alloc_init(void)
6735 {
6736 	int ret;
6737 
6738 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6739 					"mm/page_alloc:dead", NULL,
6740 					page_alloc_cpu_dead);
6741 	WARN_ON(ret < 0);
6742 }
6743 
6744 /*
6745  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6746  *	or min_free_kbytes changes.
6747  */
6748 static void calculate_totalreserve_pages(void)
6749 {
6750 	struct pglist_data *pgdat;
6751 	unsigned long reserve_pages = 0;
6752 	enum zone_type i, j;
6753 
6754 	for_each_online_pgdat(pgdat) {
6755 
6756 		pgdat->totalreserve_pages = 0;
6757 
6758 		for (i = 0; i < MAX_NR_ZONES; i++) {
6759 			struct zone *zone = pgdat->node_zones + i;
6760 			long max = 0;
6761 
6762 			/* Find valid and maximum lowmem_reserve in the zone */
6763 			for (j = i; j < MAX_NR_ZONES; j++) {
6764 				if (zone->lowmem_reserve[j] > max)
6765 					max = zone->lowmem_reserve[j];
6766 			}
6767 
6768 			/* we treat the high watermark as reserved pages. */
6769 			max += high_wmark_pages(zone);
6770 
6771 			if (max > zone->managed_pages)
6772 				max = zone->managed_pages;
6773 
6774 			pgdat->totalreserve_pages += max;
6775 
6776 			reserve_pages += max;
6777 		}
6778 	}
6779 	totalreserve_pages = reserve_pages;
6780 }
6781 
6782 /*
6783  * setup_per_zone_lowmem_reserve - called whenever
6784  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6785  *	has a correct pages reserved value, so an adequate number of
6786  *	pages are left in the zone after a successful __alloc_pages().
6787  */
6788 static void setup_per_zone_lowmem_reserve(void)
6789 {
6790 	struct pglist_data *pgdat;
6791 	enum zone_type j, idx;
6792 
6793 	for_each_online_pgdat(pgdat) {
6794 		for (j = 0; j < MAX_NR_ZONES; j++) {
6795 			struct zone *zone = pgdat->node_zones + j;
6796 			unsigned long managed_pages = zone->managed_pages;
6797 
6798 			zone->lowmem_reserve[j] = 0;
6799 
6800 			idx = j;
6801 			while (idx) {
6802 				struct zone *lower_zone;
6803 
6804 				idx--;
6805 
6806 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6807 					sysctl_lowmem_reserve_ratio[idx] = 1;
6808 
6809 				lower_zone = pgdat->node_zones + idx;
6810 				lower_zone->lowmem_reserve[j] = managed_pages /
6811 					sysctl_lowmem_reserve_ratio[idx];
6812 				managed_pages += lower_zone->managed_pages;
6813 			}
6814 		}
6815 	}
6816 
6817 	/* update totalreserve_pages */
6818 	calculate_totalreserve_pages();
6819 }
6820 
6821 static void __setup_per_zone_wmarks(void)
6822 {
6823 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6824 	unsigned long lowmem_pages = 0;
6825 	struct zone *zone;
6826 	unsigned long flags;
6827 
6828 	/* Calculate total number of !ZONE_HIGHMEM pages */
6829 	for_each_zone(zone) {
6830 		if (!is_highmem(zone))
6831 			lowmem_pages += zone->managed_pages;
6832 	}
6833 
6834 	for_each_zone(zone) {
6835 		u64 tmp;
6836 
6837 		spin_lock_irqsave(&zone->lock, flags);
6838 		tmp = (u64)pages_min * zone->managed_pages;
6839 		do_div(tmp, lowmem_pages);
6840 		if (is_highmem(zone)) {
6841 			/*
6842 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6843 			 * need highmem pages, so cap pages_min to a small
6844 			 * value here.
6845 			 *
6846 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6847 			 * deltas control asynch page reclaim, and so should
6848 			 * not be capped for highmem.
6849 			 */
6850 			unsigned long min_pages;
6851 
6852 			min_pages = zone->managed_pages / 1024;
6853 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6854 			zone->watermark[WMARK_MIN] = min_pages;
6855 		} else {
6856 			/*
6857 			 * If it's a lowmem zone, reserve a number of pages
6858 			 * proportionate to the zone's size.
6859 			 */
6860 			zone->watermark[WMARK_MIN] = tmp;
6861 		}
6862 
6863 		/*
6864 		 * Set the kswapd watermarks distance according to the
6865 		 * scale factor in proportion to available memory, but
6866 		 * ensure a minimum size on small systems.
6867 		 */
6868 		tmp = max_t(u64, tmp >> 2,
6869 			    mult_frac(zone->managed_pages,
6870 				      watermark_scale_factor, 10000));
6871 
6872 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6873 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6874 
6875 		spin_unlock_irqrestore(&zone->lock, flags);
6876 	}
6877 
6878 	/* update totalreserve_pages */
6879 	calculate_totalreserve_pages();
6880 }
6881 
6882 /**
6883  * setup_per_zone_wmarks - called when min_free_kbytes changes
6884  * or when memory is hot-{added|removed}
6885  *
6886  * Ensures that the watermark[min,low,high] values for each zone are set
6887  * correctly with respect to min_free_kbytes.
6888  */
6889 void setup_per_zone_wmarks(void)
6890 {
6891 	mutex_lock(&zonelists_mutex);
6892 	__setup_per_zone_wmarks();
6893 	mutex_unlock(&zonelists_mutex);
6894 }
6895 
6896 /*
6897  * Initialise min_free_kbytes.
6898  *
6899  * For small machines we want it small (128k min).  For large machines
6900  * we want it large (64MB max).  But it is not linear, because network
6901  * bandwidth does not increase linearly with machine size.  We use
6902  *
6903  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6904  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6905  *
6906  * which yields
6907  *
6908  * 16MB:	512k
6909  * 32MB:	724k
6910  * 64MB:	1024k
6911  * 128MB:	1448k
6912  * 256MB:	2048k
6913  * 512MB:	2896k
6914  * 1024MB:	4096k
6915  * 2048MB:	5792k
6916  * 4096MB:	8192k
6917  * 8192MB:	11584k
6918  * 16384MB:	16384k
6919  */
6920 int __meminit init_per_zone_wmark_min(void)
6921 {
6922 	unsigned long lowmem_kbytes;
6923 	int new_min_free_kbytes;
6924 
6925 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6926 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6927 
6928 	if (new_min_free_kbytes > user_min_free_kbytes) {
6929 		min_free_kbytes = new_min_free_kbytes;
6930 		if (min_free_kbytes < 128)
6931 			min_free_kbytes = 128;
6932 		if (min_free_kbytes > 65536)
6933 			min_free_kbytes = 65536;
6934 	} else {
6935 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6936 				new_min_free_kbytes, user_min_free_kbytes);
6937 	}
6938 	setup_per_zone_wmarks();
6939 	refresh_zone_stat_thresholds();
6940 	setup_per_zone_lowmem_reserve();
6941 
6942 #ifdef CONFIG_NUMA
6943 	setup_min_unmapped_ratio();
6944 	setup_min_slab_ratio();
6945 #endif
6946 
6947 	return 0;
6948 }
6949 core_initcall(init_per_zone_wmark_min)
6950 
6951 /*
6952  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6953  *	that we can call two helper functions whenever min_free_kbytes
6954  *	changes.
6955  */
6956 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6957 	void __user *buffer, size_t *length, loff_t *ppos)
6958 {
6959 	int rc;
6960 
6961 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6962 	if (rc)
6963 		return rc;
6964 
6965 	if (write) {
6966 		user_min_free_kbytes = min_free_kbytes;
6967 		setup_per_zone_wmarks();
6968 	}
6969 	return 0;
6970 }
6971 
6972 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6973 	void __user *buffer, size_t *length, loff_t *ppos)
6974 {
6975 	int rc;
6976 
6977 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6978 	if (rc)
6979 		return rc;
6980 
6981 	if (write)
6982 		setup_per_zone_wmarks();
6983 
6984 	return 0;
6985 }
6986 
6987 #ifdef CONFIG_NUMA
6988 static void setup_min_unmapped_ratio(void)
6989 {
6990 	pg_data_t *pgdat;
6991 	struct zone *zone;
6992 
6993 	for_each_online_pgdat(pgdat)
6994 		pgdat->min_unmapped_pages = 0;
6995 
6996 	for_each_zone(zone)
6997 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6998 				sysctl_min_unmapped_ratio) / 100;
6999 }
7000 
7001 
7002 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7003 	void __user *buffer, size_t *length, loff_t *ppos)
7004 {
7005 	int rc;
7006 
7007 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7008 	if (rc)
7009 		return rc;
7010 
7011 	setup_min_unmapped_ratio();
7012 
7013 	return 0;
7014 }
7015 
7016 static void setup_min_slab_ratio(void)
7017 {
7018 	pg_data_t *pgdat;
7019 	struct zone *zone;
7020 
7021 	for_each_online_pgdat(pgdat)
7022 		pgdat->min_slab_pages = 0;
7023 
7024 	for_each_zone(zone)
7025 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7026 				sysctl_min_slab_ratio) / 100;
7027 }
7028 
7029 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7030 	void __user *buffer, size_t *length, loff_t *ppos)
7031 {
7032 	int rc;
7033 
7034 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7035 	if (rc)
7036 		return rc;
7037 
7038 	setup_min_slab_ratio();
7039 
7040 	return 0;
7041 }
7042 #endif
7043 
7044 /*
7045  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7046  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7047  *	whenever sysctl_lowmem_reserve_ratio changes.
7048  *
7049  * The reserve ratio obviously has absolutely no relation with the
7050  * minimum watermarks. The lowmem reserve ratio can only make sense
7051  * if in function of the boot time zone sizes.
7052  */
7053 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7054 	void __user *buffer, size_t *length, loff_t *ppos)
7055 {
7056 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7057 	setup_per_zone_lowmem_reserve();
7058 	return 0;
7059 }
7060 
7061 /*
7062  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7063  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7064  * pagelist can have before it gets flushed back to buddy allocator.
7065  */
7066 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7067 	void __user *buffer, size_t *length, loff_t *ppos)
7068 {
7069 	struct zone *zone;
7070 	int old_percpu_pagelist_fraction;
7071 	int ret;
7072 
7073 	mutex_lock(&pcp_batch_high_lock);
7074 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7075 
7076 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7077 	if (!write || ret < 0)
7078 		goto out;
7079 
7080 	/* Sanity checking to avoid pcp imbalance */
7081 	if (percpu_pagelist_fraction &&
7082 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7083 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7084 		ret = -EINVAL;
7085 		goto out;
7086 	}
7087 
7088 	/* No change? */
7089 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7090 		goto out;
7091 
7092 	for_each_populated_zone(zone) {
7093 		unsigned int cpu;
7094 
7095 		for_each_possible_cpu(cpu)
7096 			pageset_set_high_and_batch(zone,
7097 					per_cpu_ptr(zone->pageset, cpu));
7098 	}
7099 out:
7100 	mutex_unlock(&pcp_batch_high_lock);
7101 	return ret;
7102 }
7103 
7104 #ifdef CONFIG_NUMA
7105 int hashdist = HASHDIST_DEFAULT;
7106 
7107 static int __init set_hashdist(char *str)
7108 {
7109 	if (!str)
7110 		return 0;
7111 	hashdist = simple_strtoul(str, &str, 0);
7112 	return 1;
7113 }
7114 __setup("hashdist=", set_hashdist);
7115 #endif
7116 
7117 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7118 /*
7119  * Returns the number of pages that arch has reserved but
7120  * is not known to alloc_large_system_hash().
7121  */
7122 static unsigned long __init arch_reserved_kernel_pages(void)
7123 {
7124 	return 0;
7125 }
7126 #endif
7127 
7128 /*
7129  * allocate a large system hash table from bootmem
7130  * - it is assumed that the hash table must contain an exact power-of-2
7131  *   quantity of entries
7132  * - limit is the number of hash buckets, not the total allocation size
7133  */
7134 void *__init alloc_large_system_hash(const char *tablename,
7135 				     unsigned long bucketsize,
7136 				     unsigned long numentries,
7137 				     int scale,
7138 				     int flags,
7139 				     unsigned int *_hash_shift,
7140 				     unsigned int *_hash_mask,
7141 				     unsigned long low_limit,
7142 				     unsigned long high_limit)
7143 {
7144 	unsigned long long max = high_limit;
7145 	unsigned long log2qty, size;
7146 	void *table = NULL;
7147 
7148 	/* allow the kernel cmdline to have a say */
7149 	if (!numentries) {
7150 		/* round applicable memory size up to nearest megabyte */
7151 		numentries = nr_kernel_pages;
7152 		numentries -= arch_reserved_kernel_pages();
7153 
7154 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7155 		if (PAGE_SHIFT < 20)
7156 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7157 
7158 		/* limit to 1 bucket per 2^scale bytes of low memory */
7159 		if (scale > PAGE_SHIFT)
7160 			numentries >>= (scale - PAGE_SHIFT);
7161 		else
7162 			numentries <<= (PAGE_SHIFT - scale);
7163 
7164 		/* Make sure we've got at least a 0-order allocation.. */
7165 		if (unlikely(flags & HASH_SMALL)) {
7166 			/* Makes no sense without HASH_EARLY */
7167 			WARN_ON(!(flags & HASH_EARLY));
7168 			if (!(numentries >> *_hash_shift)) {
7169 				numentries = 1UL << *_hash_shift;
7170 				BUG_ON(!numentries);
7171 			}
7172 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7173 			numentries = PAGE_SIZE / bucketsize;
7174 	}
7175 	numentries = roundup_pow_of_two(numentries);
7176 
7177 	/* limit allocation size to 1/16 total memory by default */
7178 	if (max == 0) {
7179 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7180 		do_div(max, bucketsize);
7181 	}
7182 	max = min(max, 0x80000000ULL);
7183 
7184 	if (numentries < low_limit)
7185 		numentries = low_limit;
7186 	if (numentries > max)
7187 		numentries = max;
7188 
7189 	log2qty = ilog2(numentries);
7190 
7191 	do {
7192 		size = bucketsize << log2qty;
7193 		if (flags & HASH_EARLY)
7194 			table = memblock_virt_alloc_nopanic(size, 0);
7195 		else if (hashdist)
7196 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7197 		else {
7198 			/*
7199 			 * If bucketsize is not a power-of-two, we may free
7200 			 * some pages at the end of hash table which
7201 			 * alloc_pages_exact() automatically does
7202 			 */
7203 			if (get_order(size) < MAX_ORDER) {
7204 				table = alloc_pages_exact(size, GFP_ATOMIC);
7205 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7206 			}
7207 		}
7208 	} while (!table && size > PAGE_SIZE && --log2qty);
7209 
7210 	if (!table)
7211 		panic("Failed to allocate %s hash table\n", tablename);
7212 
7213 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7214 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7215 
7216 	if (_hash_shift)
7217 		*_hash_shift = log2qty;
7218 	if (_hash_mask)
7219 		*_hash_mask = (1 << log2qty) - 1;
7220 
7221 	return table;
7222 }
7223 
7224 /*
7225  * This function checks whether pageblock includes unmovable pages or not.
7226  * If @count is not zero, it is okay to include less @count unmovable pages
7227  *
7228  * PageLRU check without isolation or lru_lock could race so that
7229  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7230  * check without lock_page also may miss some movable non-lru pages at
7231  * race condition. So you can't expect this function should be exact.
7232  */
7233 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7234 			 bool skip_hwpoisoned_pages)
7235 {
7236 	unsigned long pfn, iter, found;
7237 	int mt;
7238 
7239 	/*
7240 	 * For avoiding noise data, lru_add_drain_all() should be called
7241 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7242 	 */
7243 	if (zone_idx(zone) == ZONE_MOVABLE)
7244 		return false;
7245 	mt = get_pageblock_migratetype(page);
7246 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7247 		return false;
7248 
7249 	pfn = page_to_pfn(page);
7250 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7251 		unsigned long check = pfn + iter;
7252 
7253 		if (!pfn_valid_within(check))
7254 			continue;
7255 
7256 		page = pfn_to_page(check);
7257 
7258 		/*
7259 		 * Hugepages are not in LRU lists, but they're movable.
7260 		 * We need not scan over tail pages bacause we don't
7261 		 * handle each tail page individually in migration.
7262 		 */
7263 		if (PageHuge(page)) {
7264 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7265 			continue;
7266 		}
7267 
7268 		/*
7269 		 * We can't use page_count without pin a page
7270 		 * because another CPU can free compound page.
7271 		 * This check already skips compound tails of THP
7272 		 * because their page->_refcount is zero at all time.
7273 		 */
7274 		if (!page_ref_count(page)) {
7275 			if (PageBuddy(page))
7276 				iter += (1 << page_order(page)) - 1;
7277 			continue;
7278 		}
7279 
7280 		/*
7281 		 * The HWPoisoned page may be not in buddy system, and
7282 		 * page_count() is not 0.
7283 		 */
7284 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7285 			continue;
7286 
7287 		if (__PageMovable(page))
7288 			continue;
7289 
7290 		if (!PageLRU(page))
7291 			found++;
7292 		/*
7293 		 * If there are RECLAIMABLE pages, we need to check
7294 		 * it.  But now, memory offline itself doesn't call
7295 		 * shrink_node_slabs() and it still to be fixed.
7296 		 */
7297 		/*
7298 		 * If the page is not RAM, page_count()should be 0.
7299 		 * we don't need more check. This is an _used_ not-movable page.
7300 		 *
7301 		 * The problematic thing here is PG_reserved pages. PG_reserved
7302 		 * is set to both of a memory hole page and a _used_ kernel
7303 		 * page at boot.
7304 		 */
7305 		if (found > count)
7306 			return true;
7307 	}
7308 	return false;
7309 }
7310 
7311 bool is_pageblock_removable_nolock(struct page *page)
7312 {
7313 	struct zone *zone;
7314 	unsigned long pfn;
7315 
7316 	/*
7317 	 * We have to be careful here because we are iterating over memory
7318 	 * sections which are not zone aware so we might end up outside of
7319 	 * the zone but still within the section.
7320 	 * We have to take care about the node as well. If the node is offline
7321 	 * its NODE_DATA will be NULL - see page_zone.
7322 	 */
7323 	if (!node_online(page_to_nid(page)))
7324 		return false;
7325 
7326 	zone = page_zone(page);
7327 	pfn = page_to_pfn(page);
7328 	if (!zone_spans_pfn(zone, pfn))
7329 		return false;
7330 
7331 	return !has_unmovable_pages(zone, page, 0, true);
7332 }
7333 
7334 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7335 
7336 static unsigned long pfn_max_align_down(unsigned long pfn)
7337 {
7338 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7339 			     pageblock_nr_pages) - 1);
7340 }
7341 
7342 static unsigned long pfn_max_align_up(unsigned long pfn)
7343 {
7344 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7345 				pageblock_nr_pages));
7346 }
7347 
7348 /* [start, end) must belong to a single zone. */
7349 static int __alloc_contig_migrate_range(struct compact_control *cc,
7350 					unsigned long start, unsigned long end)
7351 {
7352 	/* This function is based on compact_zone() from compaction.c. */
7353 	unsigned long nr_reclaimed;
7354 	unsigned long pfn = start;
7355 	unsigned int tries = 0;
7356 	int ret = 0;
7357 
7358 	migrate_prep();
7359 
7360 	while (pfn < end || !list_empty(&cc->migratepages)) {
7361 		if (fatal_signal_pending(current)) {
7362 			ret = -EINTR;
7363 			break;
7364 		}
7365 
7366 		if (list_empty(&cc->migratepages)) {
7367 			cc->nr_migratepages = 0;
7368 			pfn = isolate_migratepages_range(cc, pfn, end);
7369 			if (!pfn) {
7370 				ret = -EINTR;
7371 				break;
7372 			}
7373 			tries = 0;
7374 		} else if (++tries == 5) {
7375 			ret = ret < 0 ? ret : -EBUSY;
7376 			break;
7377 		}
7378 
7379 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7380 							&cc->migratepages);
7381 		cc->nr_migratepages -= nr_reclaimed;
7382 
7383 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7384 				    NULL, 0, cc->mode, MR_CMA);
7385 	}
7386 	if (ret < 0) {
7387 		putback_movable_pages(&cc->migratepages);
7388 		return ret;
7389 	}
7390 	return 0;
7391 }
7392 
7393 /**
7394  * alloc_contig_range() -- tries to allocate given range of pages
7395  * @start:	start PFN to allocate
7396  * @end:	one-past-the-last PFN to allocate
7397  * @migratetype:	migratetype of the underlaying pageblocks (either
7398  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7399  *			in range must have the same migratetype and it must
7400  *			be either of the two.
7401  * @gfp_mask:	GFP mask to use during compaction
7402  *
7403  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7404  * aligned, however it's the caller's responsibility to guarantee that
7405  * we are the only thread that changes migrate type of pageblocks the
7406  * pages fall in.
7407  *
7408  * The PFN range must belong to a single zone.
7409  *
7410  * Returns zero on success or negative error code.  On success all
7411  * pages which PFN is in [start, end) are allocated for the caller and
7412  * need to be freed with free_contig_range().
7413  */
7414 int alloc_contig_range(unsigned long start, unsigned long end,
7415 		       unsigned migratetype, gfp_t gfp_mask)
7416 {
7417 	unsigned long outer_start, outer_end;
7418 	unsigned int order;
7419 	int ret = 0;
7420 
7421 	struct compact_control cc = {
7422 		.nr_migratepages = 0,
7423 		.order = -1,
7424 		.zone = page_zone(pfn_to_page(start)),
7425 		.mode = MIGRATE_SYNC,
7426 		.ignore_skip_hint = true,
7427 		.gfp_mask = memalloc_noio_flags(gfp_mask),
7428 	};
7429 	INIT_LIST_HEAD(&cc.migratepages);
7430 
7431 	/*
7432 	 * What we do here is we mark all pageblocks in range as
7433 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7434 	 * have different sizes, and due to the way page allocator
7435 	 * work, we align the range to biggest of the two pages so
7436 	 * that page allocator won't try to merge buddies from
7437 	 * different pageblocks and change MIGRATE_ISOLATE to some
7438 	 * other migration type.
7439 	 *
7440 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7441 	 * migrate the pages from an unaligned range (ie. pages that
7442 	 * we are interested in).  This will put all the pages in
7443 	 * range back to page allocator as MIGRATE_ISOLATE.
7444 	 *
7445 	 * When this is done, we take the pages in range from page
7446 	 * allocator removing them from the buddy system.  This way
7447 	 * page allocator will never consider using them.
7448 	 *
7449 	 * This lets us mark the pageblocks back as
7450 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7451 	 * aligned range but not in the unaligned, original range are
7452 	 * put back to page allocator so that buddy can use them.
7453 	 */
7454 
7455 	ret = start_isolate_page_range(pfn_max_align_down(start),
7456 				       pfn_max_align_up(end), migratetype,
7457 				       false);
7458 	if (ret)
7459 		return ret;
7460 
7461 	/*
7462 	 * In case of -EBUSY, we'd like to know which page causes problem.
7463 	 * So, just fall through. We will check it in test_pages_isolated().
7464 	 */
7465 	ret = __alloc_contig_migrate_range(&cc, start, end);
7466 	if (ret && ret != -EBUSY)
7467 		goto done;
7468 
7469 	/*
7470 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7471 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7472 	 * more, all pages in [start, end) are free in page allocator.
7473 	 * What we are going to do is to allocate all pages from
7474 	 * [start, end) (that is remove them from page allocator).
7475 	 *
7476 	 * The only problem is that pages at the beginning and at the
7477 	 * end of interesting range may be not aligned with pages that
7478 	 * page allocator holds, ie. they can be part of higher order
7479 	 * pages.  Because of this, we reserve the bigger range and
7480 	 * once this is done free the pages we are not interested in.
7481 	 *
7482 	 * We don't have to hold zone->lock here because the pages are
7483 	 * isolated thus they won't get removed from buddy.
7484 	 */
7485 
7486 	lru_add_drain_all();
7487 	drain_all_pages(cc.zone);
7488 
7489 	order = 0;
7490 	outer_start = start;
7491 	while (!PageBuddy(pfn_to_page(outer_start))) {
7492 		if (++order >= MAX_ORDER) {
7493 			outer_start = start;
7494 			break;
7495 		}
7496 		outer_start &= ~0UL << order;
7497 	}
7498 
7499 	if (outer_start != start) {
7500 		order = page_order(pfn_to_page(outer_start));
7501 
7502 		/*
7503 		 * outer_start page could be small order buddy page and
7504 		 * it doesn't include start page. Adjust outer_start
7505 		 * in this case to report failed page properly
7506 		 * on tracepoint in test_pages_isolated()
7507 		 */
7508 		if (outer_start + (1UL << order) <= start)
7509 			outer_start = start;
7510 	}
7511 
7512 	/* Make sure the range is really isolated. */
7513 	if (test_pages_isolated(outer_start, end, false)) {
7514 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7515 			__func__, outer_start, end);
7516 		ret = -EBUSY;
7517 		goto done;
7518 	}
7519 
7520 	/* Grab isolated pages from freelists. */
7521 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7522 	if (!outer_end) {
7523 		ret = -EBUSY;
7524 		goto done;
7525 	}
7526 
7527 	/* Free head and tail (if any) */
7528 	if (start != outer_start)
7529 		free_contig_range(outer_start, start - outer_start);
7530 	if (end != outer_end)
7531 		free_contig_range(end, outer_end - end);
7532 
7533 done:
7534 	undo_isolate_page_range(pfn_max_align_down(start),
7535 				pfn_max_align_up(end), migratetype);
7536 	return ret;
7537 }
7538 
7539 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7540 {
7541 	unsigned int count = 0;
7542 
7543 	for (; nr_pages--; pfn++) {
7544 		struct page *page = pfn_to_page(pfn);
7545 
7546 		count += page_count(page) != 1;
7547 		__free_page(page);
7548 	}
7549 	WARN(count != 0, "%d pages are still in use!\n", count);
7550 }
7551 #endif
7552 
7553 #ifdef CONFIG_MEMORY_HOTPLUG
7554 /*
7555  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7556  * page high values need to be recalulated.
7557  */
7558 void __meminit zone_pcp_update(struct zone *zone)
7559 {
7560 	unsigned cpu;
7561 	mutex_lock(&pcp_batch_high_lock);
7562 	for_each_possible_cpu(cpu)
7563 		pageset_set_high_and_batch(zone,
7564 				per_cpu_ptr(zone->pageset, cpu));
7565 	mutex_unlock(&pcp_batch_high_lock);
7566 }
7567 #endif
7568 
7569 void zone_pcp_reset(struct zone *zone)
7570 {
7571 	unsigned long flags;
7572 	int cpu;
7573 	struct per_cpu_pageset *pset;
7574 
7575 	/* avoid races with drain_pages()  */
7576 	local_irq_save(flags);
7577 	if (zone->pageset != &boot_pageset) {
7578 		for_each_online_cpu(cpu) {
7579 			pset = per_cpu_ptr(zone->pageset, cpu);
7580 			drain_zonestat(zone, pset);
7581 		}
7582 		free_percpu(zone->pageset);
7583 		zone->pageset = &boot_pageset;
7584 	}
7585 	local_irq_restore(flags);
7586 }
7587 
7588 #ifdef CONFIG_MEMORY_HOTREMOVE
7589 /*
7590  * All pages in the range must be in a single zone and isolated
7591  * before calling this.
7592  */
7593 void
7594 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7595 {
7596 	struct page *page;
7597 	struct zone *zone;
7598 	unsigned int order, i;
7599 	unsigned long pfn;
7600 	unsigned long flags;
7601 	/* find the first valid pfn */
7602 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7603 		if (pfn_valid(pfn))
7604 			break;
7605 	if (pfn == end_pfn)
7606 		return;
7607 	zone = page_zone(pfn_to_page(pfn));
7608 	spin_lock_irqsave(&zone->lock, flags);
7609 	pfn = start_pfn;
7610 	while (pfn < end_pfn) {
7611 		if (!pfn_valid(pfn)) {
7612 			pfn++;
7613 			continue;
7614 		}
7615 		page = pfn_to_page(pfn);
7616 		/*
7617 		 * The HWPoisoned page may be not in buddy system, and
7618 		 * page_count() is not 0.
7619 		 */
7620 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7621 			pfn++;
7622 			SetPageReserved(page);
7623 			continue;
7624 		}
7625 
7626 		BUG_ON(page_count(page));
7627 		BUG_ON(!PageBuddy(page));
7628 		order = page_order(page);
7629 #ifdef CONFIG_DEBUG_VM
7630 		pr_info("remove from free list %lx %d %lx\n",
7631 			pfn, 1 << order, end_pfn);
7632 #endif
7633 		list_del(&page->lru);
7634 		rmv_page_order(page);
7635 		zone->free_area[order].nr_free--;
7636 		for (i = 0; i < (1 << order); i++)
7637 			SetPageReserved((page+i));
7638 		pfn += (1 << order);
7639 	}
7640 	spin_unlock_irqrestore(&zone->lock, flags);
7641 }
7642 #endif
7643 
7644 bool is_free_buddy_page(struct page *page)
7645 {
7646 	struct zone *zone = page_zone(page);
7647 	unsigned long pfn = page_to_pfn(page);
7648 	unsigned long flags;
7649 	unsigned int order;
7650 
7651 	spin_lock_irqsave(&zone->lock, flags);
7652 	for (order = 0; order < MAX_ORDER; order++) {
7653 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7654 
7655 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7656 			break;
7657 	}
7658 	spin_unlock_irqrestore(&zone->lock, flags);
7659 
7660 	return order < MAX_ORDER;
7661 }
7662