1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 #include <linux/padata.h> 72 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/div64.h> 76 #include "internal.h" 77 #include "shuffle.h" 78 #include "page_reporting.h" 79 80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 81 static DEFINE_MUTEX(pcp_batch_high_lock); 82 #define MIN_PERCPU_PAGELIST_FRACTION (8) 83 84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 85 DEFINE_PER_CPU(int, numa_node); 86 EXPORT_PER_CPU_SYMBOL(numa_node); 87 #endif 88 89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 90 91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 92 /* 93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 96 * defined in <linux/topology.h>. 97 */ 98 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 99 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 100 #endif 101 102 /* work_structs for global per-cpu drains */ 103 struct pcpu_drain { 104 struct zone *zone; 105 struct work_struct work; 106 }; 107 static DEFINE_MUTEX(pcpu_drain_mutex); 108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 109 110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 111 volatile unsigned long latent_entropy __latent_entropy; 112 EXPORT_SYMBOL(latent_entropy); 113 #endif 114 115 /* 116 * Array of node states. 117 */ 118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 119 [N_POSSIBLE] = NODE_MASK_ALL, 120 [N_ONLINE] = { { [0] = 1UL } }, 121 #ifndef CONFIG_NUMA 122 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 123 #ifdef CONFIG_HIGHMEM 124 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 125 #endif 126 [N_MEMORY] = { { [0] = 1UL } }, 127 [N_CPU] = { { [0] = 1UL } }, 128 #endif /* NUMA */ 129 }; 130 EXPORT_SYMBOL(node_states); 131 132 atomic_long_t _totalram_pages __read_mostly; 133 EXPORT_SYMBOL(_totalram_pages); 134 unsigned long totalreserve_pages __read_mostly; 135 unsigned long totalcma_pages __read_mostly; 136 137 int percpu_pagelist_fraction; 138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 140 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 141 #else 142 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 143 #endif 144 EXPORT_SYMBOL(init_on_alloc); 145 146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 147 DEFINE_STATIC_KEY_TRUE(init_on_free); 148 #else 149 DEFINE_STATIC_KEY_FALSE(init_on_free); 150 #endif 151 EXPORT_SYMBOL(init_on_free); 152 153 static int __init early_init_on_alloc(char *buf) 154 { 155 int ret; 156 bool bool_result; 157 158 if (!buf) 159 return -EINVAL; 160 ret = kstrtobool(buf, &bool_result); 161 if (bool_result && page_poisoning_enabled()) 162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 163 if (bool_result) 164 static_branch_enable(&init_on_alloc); 165 else 166 static_branch_disable(&init_on_alloc); 167 return ret; 168 } 169 early_param("init_on_alloc", early_init_on_alloc); 170 171 static int __init early_init_on_free(char *buf) 172 { 173 int ret; 174 bool bool_result; 175 176 if (!buf) 177 return -EINVAL; 178 ret = kstrtobool(buf, &bool_result); 179 if (bool_result && page_poisoning_enabled()) 180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 181 if (bool_result) 182 static_branch_enable(&init_on_free); 183 else 184 static_branch_disable(&init_on_free); 185 return ret; 186 } 187 early_param("init_on_free", early_init_on_free); 188 189 /* 190 * A cached value of the page's pageblock's migratetype, used when the page is 191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 192 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 193 * Also the migratetype set in the page does not necessarily match the pcplist 194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 195 * other index - this ensures that it will be put on the correct CMA freelist. 196 */ 197 static inline int get_pcppage_migratetype(struct page *page) 198 { 199 return page->index; 200 } 201 202 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 203 { 204 page->index = migratetype; 205 } 206 207 #ifdef CONFIG_PM_SLEEP 208 /* 209 * The following functions are used by the suspend/hibernate code to temporarily 210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 211 * while devices are suspended. To avoid races with the suspend/hibernate code, 212 * they should always be called with system_transition_mutex held 213 * (gfp_allowed_mask also should only be modified with system_transition_mutex 214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 215 * with that modification). 216 */ 217 218 static gfp_t saved_gfp_mask; 219 220 void pm_restore_gfp_mask(void) 221 { 222 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 223 if (saved_gfp_mask) { 224 gfp_allowed_mask = saved_gfp_mask; 225 saved_gfp_mask = 0; 226 } 227 } 228 229 void pm_restrict_gfp_mask(void) 230 { 231 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 232 WARN_ON(saved_gfp_mask); 233 saved_gfp_mask = gfp_allowed_mask; 234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 235 } 236 237 bool pm_suspended_storage(void) 238 { 239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 240 return false; 241 return true; 242 } 243 #endif /* CONFIG_PM_SLEEP */ 244 245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 246 unsigned int pageblock_order __read_mostly; 247 #endif 248 249 static void __free_pages_ok(struct page *page, unsigned int order); 250 251 /* 252 * results with 256, 32 in the lowmem_reserve sysctl: 253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 254 * 1G machine -> (16M dma, 784M normal, 224M high) 255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 258 * 259 * TBD: should special case ZONE_DMA32 machines here - in those we normally 260 * don't need any ZONE_NORMAL reservation 261 */ 262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 263 #ifdef CONFIG_ZONE_DMA 264 [ZONE_DMA] = 256, 265 #endif 266 #ifdef CONFIG_ZONE_DMA32 267 [ZONE_DMA32] = 256, 268 #endif 269 [ZONE_NORMAL] = 32, 270 #ifdef CONFIG_HIGHMEM 271 [ZONE_HIGHMEM] = 0, 272 #endif 273 [ZONE_MOVABLE] = 0, 274 }; 275 276 static char * const zone_names[MAX_NR_ZONES] = { 277 #ifdef CONFIG_ZONE_DMA 278 "DMA", 279 #endif 280 #ifdef CONFIG_ZONE_DMA32 281 "DMA32", 282 #endif 283 "Normal", 284 #ifdef CONFIG_HIGHMEM 285 "HighMem", 286 #endif 287 "Movable", 288 #ifdef CONFIG_ZONE_DEVICE 289 "Device", 290 #endif 291 }; 292 293 const char * const migratetype_names[MIGRATE_TYPES] = { 294 "Unmovable", 295 "Movable", 296 "Reclaimable", 297 "HighAtomic", 298 #ifdef CONFIG_CMA 299 "CMA", 300 #endif 301 #ifdef CONFIG_MEMORY_ISOLATION 302 "Isolate", 303 #endif 304 }; 305 306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 307 [NULL_COMPOUND_DTOR] = NULL, 308 [COMPOUND_PAGE_DTOR] = free_compound_page, 309 #ifdef CONFIG_HUGETLB_PAGE 310 [HUGETLB_PAGE_DTOR] = free_huge_page, 311 #endif 312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 314 #endif 315 }; 316 317 int min_free_kbytes = 1024; 318 int user_min_free_kbytes = -1; 319 #ifdef CONFIG_DISCONTIGMEM 320 /* 321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 322 * are not on separate NUMA nodes. Functionally this works but with 323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 324 * quite small. By default, do not boost watermarks on discontigmem as in 325 * many cases very high-order allocations like THP are likely to be 326 * unsupported and the premature reclaim offsets the advantage of long-term 327 * fragmentation avoidance. 328 */ 329 int watermark_boost_factor __read_mostly; 330 #else 331 int watermark_boost_factor __read_mostly = 15000; 332 #endif 333 int watermark_scale_factor = 10; 334 335 static unsigned long nr_kernel_pages __initdata; 336 static unsigned long nr_all_pages __initdata; 337 static unsigned long dma_reserve __initdata; 338 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 352 #if MAX_NUMNODES > 1 353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 354 unsigned int nr_online_nodes __read_mostly = 1; 355 EXPORT_SYMBOL(nr_node_ids); 356 EXPORT_SYMBOL(nr_online_nodes); 357 #endif 358 359 int page_group_by_mobility_disabled __read_mostly; 360 361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 362 /* 363 * During boot we initialize deferred pages on-demand, as needed, but once 364 * page_alloc_init_late() has finished, the deferred pages are all initialized, 365 * and we can permanently disable that path. 366 */ 367 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 368 369 /* 370 * Calling kasan_free_pages() only after deferred memory initialization 371 * has completed. Poisoning pages during deferred memory init will greatly 372 * lengthen the process and cause problem in large memory systems as the 373 * deferred pages initialization is done with interrupt disabled. 374 * 375 * Assuming that there will be no reference to those newly initialized 376 * pages before they are ever allocated, this should have no effect on 377 * KASAN memory tracking as the poison will be properly inserted at page 378 * allocation time. The only corner case is when pages are allocated by 379 * on-demand allocation and then freed again before the deferred pages 380 * initialization is done, but this is not likely to happen. 381 */ 382 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 383 { 384 if (!static_branch_unlikely(&deferred_pages)) 385 kasan_free_pages(page, order); 386 } 387 388 /* Returns true if the struct page for the pfn is uninitialised */ 389 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 390 { 391 int nid = early_pfn_to_nid(pfn); 392 393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 394 return true; 395 396 return false; 397 } 398 399 /* 400 * Returns true when the remaining initialisation should be deferred until 401 * later in the boot cycle when it can be parallelised. 402 */ 403 static bool __meminit 404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 405 { 406 static unsigned long prev_end_pfn, nr_initialised; 407 408 /* 409 * prev_end_pfn static that contains the end of previous zone 410 * No need to protect because called very early in boot before smp_init. 411 */ 412 if (prev_end_pfn != end_pfn) { 413 prev_end_pfn = end_pfn; 414 nr_initialised = 0; 415 } 416 417 /* Always populate low zones for address-constrained allocations */ 418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 419 return false; 420 421 /* 422 * We start only with one section of pages, more pages are added as 423 * needed until the rest of deferred pages are initialized. 424 */ 425 nr_initialised++; 426 if ((nr_initialised > PAGES_PER_SECTION) && 427 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 428 NODE_DATA(nid)->first_deferred_pfn = pfn; 429 return true; 430 } 431 return false; 432 } 433 #else 434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 435 436 static inline bool early_page_uninitialised(unsigned long pfn) 437 { 438 return false; 439 } 440 441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 442 { 443 return false; 444 } 445 #endif 446 447 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 448 static inline unsigned long *get_pageblock_bitmap(struct page *page, 449 unsigned long pfn) 450 { 451 #ifdef CONFIG_SPARSEMEM 452 return section_to_usemap(__pfn_to_section(pfn)); 453 #else 454 return page_zone(page)->pageblock_flags; 455 #endif /* CONFIG_SPARSEMEM */ 456 } 457 458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 459 { 460 #ifdef CONFIG_SPARSEMEM 461 pfn &= (PAGES_PER_SECTION-1); 462 #else 463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 464 #endif /* CONFIG_SPARSEMEM */ 465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 466 } 467 468 /** 469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 470 * @page: The page within the block of interest 471 * @pfn: The target page frame number 472 * @mask: mask of bits that the caller is interested in 473 * 474 * Return: pageblock_bits flags 475 */ 476 static __always_inline 477 unsigned long __get_pfnblock_flags_mask(struct page *page, 478 unsigned long pfn, 479 unsigned long mask) 480 { 481 unsigned long *bitmap; 482 unsigned long bitidx, word_bitidx; 483 unsigned long word; 484 485 bitmap = get_pageblock_bitmap(page, pfn); 486 bitidx = pfn_to_bitidx(page, pfn); 487 word_bitidx = bitidx / BITS_PER_LONG; 488 bitidx &= (BITS_PER_LONG-1); 489 490 word = bitmap[word_bitidx]; 491 return (word >> bitidx) & mask; 492 } 493 494 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 495 unsigned long mask) 496 { 497 return __get_pfnblock_flags_mask(page, pfn, mask); 498 } 499 500 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 503 } 504 505 /** 506 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 507 * @page: The page within the block of interest 508 * @flags: The flags to set 509 * @pfn: The target page frame number 510 * @mask: mask of bits that the caller is interested in 511 */ 512 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 513 unsigned long pfn, 514 unsigned long mask) 515 { 516 unsigned long *bitmap; 517 unsigned long bitidx, word_bitidx; 518 unsigned long old_word, word; 519 520 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 521 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 522 523 bitmap = get_pageblock_bitmap(page, pfn); 524 bitidx = pfn_to_bitidx(page, pfn); 525 word_bitidx = bitidx / BITS_PER_LONG; 526 bitidx &= (BITS_PER_LONG-1); 527 528 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 529 530 mask <<= bitidx; 531 flags <<= bitidx; 532 533 word = READ_ONCE(bitmap[word_bitidx]); 534 for (;;) { 535 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 536 if (word == old_word) 537 break; 538 word = old_word; 539 } 540 } 541 542 void set_pageblock_migratetype(struct page *page, int migratetype) 543 { 544 if (unlikely(page_group_by_mobility_disabled && 545 migratetype < MIGRATE_PCPTYPES)) 546 migratetype = MIGRATE_UNMOVABLE; 547 548 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 549 page_to_pfn(page), MIGRATETYPE_MASK); 550 } 551 552 #ifdef CONFIG_DEBUG_VM 553 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 554 { 555 int ret = 0; 556 unsigned seq; 557 unsigned long pfn = page_to_pfn(page); 558 unsigned long sp, start_pfn; 559 560 do { 561 seq = zone_span_seqbegin(zone); 562 start_pfn = zone->zone_start_pfn; 563 sp = zone->spanned_pages; 564 if (!zone_spans_pfn(zone, pfn)) 565 ret = 1; 566 } while (zone_span_seqretry(zone, seq)); 567 568 if (ret) 569 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 570 pfn, zone_to_nid(zone), zone->name, 571 start_pfn, start_pfn + sp); 572 573 return ret; 574 } 575 576 static int page_is_consistent(struct zone *zone, struct page *page) 577 { 578 if (!pfn_valid_within(page_to_pfn(page))) 579 return 0; 580 if (zone != page_zone(page)) 581 return 0; 582 583 return 1; 584 } 585 /* 586 * Temporary debugging check for pages not lying within a given zone. 587 */ 588 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 589 { 590 if (page_outside_zone_boundaries(zone, page)) 591 return 1; 592 if (!page_is_consistent(zone, page)) 593 return 1; 594 595 return 0; 596 } 597 #else 598 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 599 { 600 return 0; 601 } 602 #endif 603 604 static void bad_page(struct page *page, const char *reason) 605 { 606 static unsigned long resume; 607 static unsigned long nr_shown; 608 static unsigned long nr_unshown; 609 610 /* 611 * Allow a burst of 60 reports, then keep quiet for that minute; 612 * or allow a steady drip of one report per second. 613 */ 614 if (nr_shown == 60) { 615 if (time_before(jiffies, resume)) { 616 nr_unshown++; 617 goto out; 618 } 619 if (nr_unshown) { 620 pr_alert( 621 "BUG: Bad page state: %lu messages suppressed\n", 622 nr_unshown); 623 nr_unshown = 0; 624 } 625 nr_shown = 0; 626 } 627 if (nr_shown++ == 0) 628 resume = jiffies + 60 * HZ; 629 630 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 631 current->comm, page_to_pfn(page)); 632 __dump_page(page, reason); 633 dump_page_owner(page); 634 635 print_modules(); 636 dump_stack(); 637 out: 638 /* Leave bad fields for debug, except PageBuddy could make trouble */ 639 page_mapcount_reset(page); /* remove PageBuddy */ 640 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 641 } 642 643 /* 644 * Higher-order pages are called "compound pages". They are structured thusly: 645 * 646 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 647 * 648 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 649 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 650 * 651 * The first tail page's ->compound_dtor holds the offset in array of compound 652 * page destructors. See compound_page_dtors. 653 * 654 * The first tail page's ->compound_order holds the order of allocation. 655 * This usage means that zero-order pages may not be compound. 656 */ 657 658 void free_compound_page(struct page *page) 659 { 660 mem_cgroup_uncharge(page); 661 __free_pages_ok(page, compound_order(page)); 662 } 663 664 void prep_compound_page(struct page *page, unsigned int order) 665 { 666 int i; 667 int nr_pages = 1 << order; 668 669 __SetPageHead(page); 670 for (i = 1; i < nr_pages; i++) { 671 struct page *p = page + i; 672 set_page_count(p, 0); 673 p->mapping = TAIL_MAPPING; 674 set_compound_head(p, page); 675 } 676 677 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 678 set_compound_order(page, order); 679 atomic_set(compound_mapcount_ptr(page), -1); 680 if (hpage_pincount_available(page)) 681 atomic_set(compound_pincount_ptr(page), 0); 682 } 683 684 #ifdef CONFIG_DEBUG_PAGEALLOC 685 unsigned int _debug_guardpage_minorder; 686 687 bool _debug_pagealloc_enabled_early __read_mostly 688 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 689 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 690 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 691 EXPORT_SYMBOL(_debug_pagealloc_enabled); 692 693 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 694 695 static int __init early_debug_pagealloc(char *buf) 696 { 697 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 698 } 699 early_param("debug_pagealloc", early_debug_pagealloc); 700 701 void init_debug_pagealloc(void) 702 { 703 if (!debug_pagealloc_enabled()) 704 return; 705 706 static_branch_enable(&_debug_pagealloc_enabled); 707 708 if (!debug_guardpage_minorder()) 709 return; 710 711 static_branch_enable(&_debug_guardpage_enabled); 712 } 713 714 static int __init debug_guardpage_minorder_setup(char *buf) 715 { 716 unsigned long res; 717 718 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 719 pr_err("Bad debug_guardpage_minorder value\n"); 720 return 0; 721 } 722 _debug_guardpage_minorder = res; 723 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 724 return 0; 725 } 726 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 727 728 static inline bool set_page_guard(struct zone *zone, struct page *page, 729 unsigned int order, int migratetype) 730 { 731 if (!debug_guardpage_enabled()) 732 return false; 733 734 if (order >= debug_guardpage_minorder()) 735 return false; 736 737 __SetPageGuard(page); 738 INIT_LIST_HEAD(&page->lru); 739 set_page_private(page, order); 740 /* Guard pages are not available for any usage */ 741 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 742 743 return true; 744 } 745 746 static inline void clear_page_guard(struct zone *zone, struct page *page, 747 unsigned int order, int migratetype) 748 { 749 if (!debug_guardpage_enabled()) 750 return; 751 752 __ClearPageGuard(page); 753 754 set_page_private(page, 0); 755 if (!is_migrate_isolate(migratetype)) 756 __mod_zone_freepage_state(zone, (1 << order), migratetype); 757 } 758 #else 759 static inline bool set_page_guard(struct zone *zone, struct page *page, 760 unsigned int order, int migratetype) { return false; } 761 static inline void clear_page_guard(struct zone *zone, struct page *page, 762 unsigned int order, int migratetype) {} 763 #endif 764 765 static inline void set_page_order(struct page *page, unsigned int order) 766 { 767 set_page_private(page, order); 768 __SetPageBuddy(page); 769 } 770 771 /* 772 * This function checks whether a page is free && is the buddy 773 * we can coalesce a page and its buddy if 774 * (a) the buddy is not in a hole (check before calling!) && 775 * (b) the buddy is in the buddy system && 776 * (c) a page and its buddy have the same order && 777 * (d) a page and its buddy are in the same zone. 778 * 779 * For recording whether a page is in the buddy system, we set PageBuddy. 780 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 781 * 782 * For recording page's order, we use page_private(page). 783 */ 784 static inline bool page_is_buddy(struct page *page, struct page *buddy, 785 unsigned int order) 786 { 787 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 788 return false; 789 790 if (page_order(buddy) != order) 791 return false; 792 793 /* 794 * zone check is done late to avoid uselessly calculating 795 * zone/node ids for pages that could never merge. 796 */ 797 if (page_zone_id(page) != page_zone_id(buddy)) 798 return false; 799 800 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 801 802 return true; 803 } 804 805 #ifdef CONFIG_COMPACTION 806 static inline struct capture_control *task_capc(struct zone *zone) 807 { 808 struct capture_control *capc = current->capture_control; 809 810 return unlikely(capc) && 811 !(current->flags & PF_KTHREAD) && 812 !capc->page && 813 capc->cc->zone == zone ? capc : NULL; 814 } 815 816 static inline bool 817 compaction_capture(struct capture_control *capc, struct page *page, 818 int order, int migratetype) 819 { 820 if (!capc || order != capc->cc->order) 821 return false; 822 823 /* Do not accidentally pollute CMA or isolated regions*/ 824 if (is_migrate_cma(migratetype) || 825 is_migrate_isolate(migratetype)) 826 return false; 827 828 /* 829 * Do not let lower order allocations polluate a movable pageblock. 830 * This might let an unmovable request use a reclaimable pageblock 831 * and vice-versa but no more than normal fallback logic which can 832 * have trouble finding a high-order free page. 833 */ 834 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 835 return false; 836 837 capc->page = page; 838 return true; 839 } 840 841 #else 842 static inline struct capture_control *task_capc(struct zone *zone) 843 { 844 return NULL; 845 } 846 847 static inline bool 848 compaction_capture(struct capture_control *capc, struct page *page, 849 int order, int migratetype) 850 { 851 return false; 852 } 853 #endif /* CONFIG_COMPACTION */ 854 855 /* Used for pages not on another list */ 856 static inline void add_to_free_list(struct page *page, struct zone *zone, 857 unsigned int order, int migratetype) 858 { 859 struct free_area *area = &zone->free_area[order]; 860 861 list_add(&page->lru, &area->free_list[migratetype]); 862 area->nr_free++; 863 } 864 865 /* Used for pages not on another list */ 866 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 867 unsigned int order, int migratetype) 868 { 869 struct free_area *area = &zone->free_area[order]; 870 871 list_add_tail(&page->lru, &area->free_list[migratetype]); 872 area->nr_free++; 873 } 874 875 /* Used for pages which are on another list */ 876 static inline void move_to_free_list(struct page *page, struct zone *zone, 877 unsigned int order, int migratetype) 878 { 879 struct free_area *area = &zone->free_area[order]; 880 881 list_move(&page->lru, &area->free_list[migratetype]); 882 } 883 884 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 885 unsigned int order) 886 { 887 /* clear reported state and update reported page count */ 888 if (page_reported(page)) 889 __ClearPageReported(page); 890 891 list_del(&page->lru); 892 __ClearPageBuddy(page); 893 set_page_private(page, 0); 894 zone->free_area[order].nr_free--; 895 } 896 897 /* 898 * If this is not the largest possible page, check if the buddy 899 * of the next-highest order is free. If it is, it's possible 900 * that pages are being freed that will coalesce soon. In case, 901 * that is happening, add the free page to the tail of the list 902 * so it's less likely to be used soon and more likely to be merged 903 * as a higher order page 904 */ 905 static inline bool 906 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 907 struct page *page, unsigned int order) 908 { 909 struct page *higher_page, *higher_buddy; 910 unsigned long combined_pfn; 911 912 if (order >= MAX_ORDER - 2) 913 return false; 914 915 if (!pfn_valid_within(buddy_pfn)) 916 return false; 917 918 combined_pfn = buddy_pfn & pfn; 919 higher_page = page + (combined_pfn - pfn); 920 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 921 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 922 923 return pfn_valid_within(buddy_pfn) && 924 page_is_buddy(higher_page, higher_buddy, order + 1); 925 } 926 927 /* 928 * Freeing function for a buddy system allocator. 929 * 930 * The concept of a buddy system is to maintain direct-mapped table 931 * (containing bit values) for memory blocks of various "orders". 932 * The bottom level table contains the map for the smallest allocatable 933 * units of memory (here, pages), and each level above it describes 934 * pairs of units from the levels below, hence, "buddies". 935 * At a high level, all that happens here is marking the table entry 936 * at the bottom level available, and propagating the changes upward 937 * as necessary, plus some accounting needed to play nicely with other 938 * parts of the VM system. 939 * At each level, we keep a list of pages, which are heads of continuous 940 * free pages of length of (1 << order) and marked with PageBuddy. 941 * Page's order is recorded in page_private(page) field. 942 * So when we are allocating or freeing one, we can derive the state of the 943 * other. That is, if we allocate a small block, and both were 944 * free, the remainder of the region must be split into blocks. 945 * If a block is freed, and its buddy is also free, then this 946 * triggers coalescing into a block of larger size. 947 * 948 * -- nyc 949 */ 950 951 static inline void __free_one_page(struct page *page, 952 unsigned long pfn, 953 struct zone *zone, unsigned int order, 954 int migratetype, bool report) 955 { 956 struct capture_control *capc = task_capc(zone); 957 unsigned long buddy_pfn; 958 unsigned long combined_pfn; 959 unsigned int max_order; 960 struct page *buddy; 961 bool to_tail; 962 963 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 964 965 VM_BUG_ON(!zone_is_initialized(zone)); 966 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 967 968 VM_BUG_ON(migratetype == -1); 969 if (likely(!is_migrate_isolate(migratetype))) 970 __mod_zone_freepage_state(zone, 1 << order, migratetype); 971 972 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 973 VM_BUG_ON_PAGE(bad_range(zone, page), page); 974 975 continue_merging: 976 while (order < max_order - 1) { 977 if (compaction_capture(capc, page, order, migratetype)) { 978 __mod_zone_freepage_state(zone, -(1 << order), 979 migratetype); 980 return; 981 } 982 buddy_pfn = __find_buddy_pfn(pfn, order); 983 buddy = page + (buddy_pfn - pfn); 984 985 if (!pfn_valid_within(buddy_pfn)) 986 goto done_merging; 987 if (!page_is_buddy(page, buddy, order)) 988 goto done_merging; 989 /* 990 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 991 * merge with it and move up one order. 992 */ 993 if (page_is_guard(buddy)) 994 clear_page_guard(zone, buddy, order, migratetype); 995 else 996 del_page_from_free_list(buddy, zone, order); 997 combined_pfn = buddy_pfn & pfn; 998 page = page + (combined_pfn - pfn); 999 pfn = combined_pfn; 1000 order++; 1001 } 1002 if (max_order < MAX_ORDER) { 1003 /* If we are here, it means order is >= pageblock_order. 1004 * We want to prevent merge between freepages on isolate 1005 * pageblock and normal pageblock. Without this, pageblock 1006 * isolation could cause incorrect freepage or CMA accounting. 1007 * 1008 * We don't want to hit this code for the more frequent 1009 * low-order merging. 1010 */ 1011 if (unlikely(has_isolate_pageblock(zone))) { 1012 int buddy_mt; 1013 1014 buddy_pfn = __find_buddy_pfn(pfn, order); 1015 buddy = page + (buddy_pfn - pfn); 1016 buddy_mt = get_pageblock_migratetype(buddy); 1017 1018 if (migratetype != buddy_mt 1019 && (is_migrate_isolate(migratetype) || 1020 is_migrate_isolate(buddy_mt))) 1021 goto done_merging; 1022 } 1023 max_order++; 1024 goto continue_merging; 1025 } 1026 1027 done_merging: 1028 set_page_order(page, order); 1029 1030 if (is_shuffle_order(order)) 1031 to_tail = shuffle_pick_tail(); 1032 else 1033 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1034 1035 if (to_tail) 1036 add_to_free_list_tail(page, zone, order, migratetype); 1037 else 1038 add_to_free_list(page, zone, order, migratetype); 1039 1040 /* Notify page reporting subsystem of freed page */ 1041 if (report) 1042 page_reporting_notify_free(order); 1043 } 1044 1045 /* 1046 * A bad page could be due to a number of fields. Instead of multiple branches, 1047 * try and check multiple fields with one check. The caller must do a detailed 1048 * check if necessary. 1049 */ 1050 static inline bool page_expected_state(struct page *page, 1051 unsigned long check_flags) 1052 { 1053 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1054 return false; 1055 1056 if (unlikely((unsigned long)page->mapping | 1057 page_ref_count(page) | 1058 #ifdef CONFIG_MEMCG 1059 (unsigned long)page->mem_cgroup | 1060 #endif 1061 (page->flags & check_flags))) 1062 return false; 1063 1064 return true; 1065 } 1066 1067 static const char *page_bad_reason(struct page *page, unsigned long flags) 1068 { 1069 const char *bad_reason = NULL; 1070 1071 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1072 bad_reason = "nonzero mapcount"; 1073 if (unlikely(page->mapping != NULL)) 1074 bad_reason = "non-NULL mapping"; 1075 if (unlikely(page_ref_count(page) != 0)) 1076 bad_reason = "nonzero _refcount"; 1077 if (unlikely(page->flags & flags)) { 1078 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1079 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1080 else 1081 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1082 } 1083 #ifdef CONFIG_MEMCG 1084 if (unlikely(page->mem_cgroup)) 1085 bad_reason = "page still charged to cgroup"; 1086 #endif 1087 return bad_reason; 1088 } 1089 1090 static void check_free_page_bad(struct page *page) 1091 { 1092 bad_page(page, 1093 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1094 } 1095 1096 static inline int check_free_page(struct page *page) 1097 { 1098 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1099 return 0; 1100 1101 /* Something has gone sideways, find it */ 1102 check_free_page_bad(page); 1103 return 1; 1104 } 1105 1106 static int free_tail_pages_check(struct page *head_page, struct page *page) 1107 { 1108 int ret = 1; 1109 1110 /* 1111 * We rely page->lru.next never has bit 0 set, unless the page 1112 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1113 */ 1114 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1115 1116 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1117 ret = 0; 1118 goto out; 1119 } 1120 switch (page - head_page) { 1121 case 1: 1122 /* the first tail page: ->mapping may be compound_mapcount() */ 1123 if (unlikely(compound_mapcount(page))) { 1124 bad_page(page, "nonzero compound_mapcount"); 1125 goto out; 1126 } 1127 break; 1128 case 2: 1129 /* 1130 * the second tail page: ->mapping is 1131 * deferred_list.next -- ignore value. 1132 */ 1133 break; 1134 default: 1135 if (page->mapping != TAIL_MAPPING) { 1136 bad_page(page, "corrupted mapping in tail page"); 1137 goto out; 1138 } 1139 break; 1140 } 1141 if (unlikely(!PageTail(page))) { 1142 bad_page(page, "PageTail not set"); 1143 goto out; 1144 } 1145 if (unlikely(compound_head(page) != head_page)) { 1146 bad_page(page, "compound_head not consistent"); 1147 goto out; 1148 } 1149 ret = 0; 1150 out: 1151 page->mapping = NULL; 1152 clear_compound_head(page); 1153 return ret; 1154 } 1155 1156 static void kernel_init_free_pages(struct page *page, int numpages) 1157 { 1158 int i; 1159 1160 /* s390's use of memset() could override KASAN redzones. */ 1161 kasan_disable_current(); 1162 for (i = 0; i < numpages; i++) 1163 clear_highpage(page + i); 1164 kasan_enable_current(); 1165 } 1166 1167 static __always_inline bool free_pages_prepare(struct page *page, 1168 unsigned int order, bool check_free) 1169 { 1170 int bad = 0; 1171 1172 VM_BUG_ON_PAGE(PageTail(page), page); 1173 1174 trace_mm_page_free(page, order); 1175 1176 /* 1177 * Check tail pages before head page information is cleared to 1178 * avoid checking PageCompound for order-0 pages. 1179 */ 1180 if (unlikely(order)) { 1181 bool compound = PageCompound(page); 1182 int i; 1183 1184 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1185 1186 if (compound) 1187 ClearPageDoubleMap(page); 1188 for (i = 1; i < (1 << order); i++) { 1189 if (compound) 1190 bad += free_tail_pages_check(page, page + i); 1191 if (unlikely(check_free_page(page + i))) { 1192 bad++; 1193 continue; 1194 } 1195 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1196 } 1197 } 1198 if (PageMappingFlags(page)) 1199 page->mapping = NULL; 1200 if (memcg_kmem_enabled() && PageKmemcg(page)) 1201 __memcg_kmem_uncharge_page(page, order); 1202 if (check_free) 1203 bad += check_free_page(page); 1204 if (bad) 1205 return false; 1206 1207 page_cpupid_reset_last(page); 1208 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1209 reset_page_owner(page, order); 1210 1211 if (!PageHighMem(page)) { 1212 debug_check_no_locks_freed(page_address(page), 1213 PAGE_SIZE << order); 1214 debug_check_no_obj_freed(page_address(page), 1215 PAGE_SIZE << order); 1216 } 1217 if (want_init_on_free()) 1218 kernel_init_free_pages(page, 1 << order); 1219 1220 kernel_poison_pages(page, 1 << order, 0); 1221 /* 1222 * arch_free_page() can make the page's contents inaccessible. s390 1223 * does this. So nothing which can access the page's contents should 1224 * happen after this. 1225 */ 1226 arch_free_page(page, order); 1227 1228 if (debug_pagealloc_enabled_static()) 1229 kernel_map_pages(page, 1 << order, 0); 1230 1231 kasan_free_nondeferred_pages(page, order); 1232 1233 return true; 1234 } 1235 1236 #ifdef CONFIG_DEBUG_VM 1237 /* 1238 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1239 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1240 * moved from pcp lists to free lists. 1241 */ 1242 static bool free_pcp_prepare(struct page *page) 1243 { 1244 return free_pages_prepare(page, 0, true); 1245 } 1246 1247 static bool bulkfree_pcp_prepare(struct page *page) 1248 { 1249 if (debug_pagealloc_enabled_static()) 1250 return check_free_page(page); 1251 else 1252 return false; 1253 } 1254 #else 1255 /* 1256 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1257 * moving from pcp lists to free list in order to reduce overhead. With 1258 * debug_pagealloc enabled, they are checked also immediately when being freed 1259 * to the pcp lists. 1260 */ 1261 static bool free_pcp_prepare(struct page *page) 1262 { 1263 if (debug_pagealloc_enabled_static()) 1264 return free_pages_prepare(page, 0, true); 1265 else 1266 return free_pages_prepare(page, 0, false); 1267 } 1268 1269 static bool bulkfree_pcp_prepare(struct page *page) 1270 { 1271 return check_free_page(page); 1272 } 1273 #endif /* CONFIG_DEBUG_VM */ 1274 1275 static inline void prefetch_buddy(struct page *page) 1276 { 1277 unsigned long pfn = page_to_pfn(page); 1278 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1279 struct page *buddy = page + (buddy_pfn - pfn); 1280 1281 prefetch(buddy); 1282 } 1283 1284 /* 1285 * Frees a number of pages from the PCP lists 1286 * Assumes all pages on list are in same zone, and of same order. 1287 * count is the number of pages to free. 1288 * 1289 * If the zone was previously in an "all pages pinned" state then look to 1290 * see if this freeing clears that state. 1291 * 1292 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1293 * pinned" detection logic. 1294 */ 1295 static void free_pcppages_bulk(struct zone *zone, int count, 1296 struct per_cpu_pages *pcp) 1297 { 1298 int migratetype = 0; 1299 int batch_free = 0; 1300 int prefetch_nr = 0; 1301 bool isolated_pageblocks; 1302 struct page *page, *tmp; 1303 LIST_HEAD(head); 1304 1305 while (count) { 1306 struct list_head *list; 1307 1308 /* 1309 * Remove pages from lists in a round-robin fashion. A 1310 * batch_free count is maintained that is incremented when an 1311 * empty list is encountered. This is so more pages are freed 1312 * off fuller lists instead of spinning excessively around empty 1313 * lists 1314 */ 1315 do { 1316 batch_free++; 1317 if (++migratetype == MIGRATE_PCPTYPES) 1318 migratetype = 0; 1319 list = &pcp->lists[migratetype]; 1320 } while (list_empty(list)); 1321 1322 /* This is the only non-empty list. Free them all. */ 1323 if (batch_free == MIGRATE_PCPTYPES) 1324 batch_free = count; 1325 1326 do { 1327 page = list_last_entry(list, struct page, lru); 1328 /* must delete to avoid corrupting pcp list */ 1329 list_del(&page->lru); 1330 pcp->count--; 1331 1332 if (bulkfree_pcp_prepare(page)) 1333 continue; 1334 1335 list_add_tail(&page->lru, &head); 1336 1337 /* 1338 * We are going to put the page back to the global 1339 * pool, prefetch its buddy to speed up later access 1340 * under zone->lock. It is believed the overhead of 1341 * an additional test and calculating buddy_pfn here 1342 * can be offset by reduced memory latency later. To 1343 * avoid excessive prefetching due to large count, only 1344 * prefetch buddy for the first pcp->batch nr of pages. 1345 */ 1346 if (prefetch_nr++ < pcp->batch) 1347 prefetch_buddy(page); 1348 } while (--count && --batch_free && !list_empty(list)); 1349 } 1350 1351 spin_lock(&zone->lock); 1352 isolated_pageblocks = has_isolate_pageblock(zone); 1353 1354 /* 1355 * Use safe version since after __free_one_page(), 1356 * page->lru.next will not point to original list. 1357 */ 1358 list_for_each_entry_safe(page, tmp, &head, lru) { 1359 int mt = get_pcppage_migratetype(page); 1360 /* MIGRATE_ISOLATE page should not go to pcplists */ 1361 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1362 /* Pageblock could have been isolated meanwhile */ 1363 if (unlikely(isolated_pageblocks)) 1364 mt = get_pageblock_migratetype(page); 1365 1366 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true); 1367 trace_mm_page_pcpu_drain(page, 0, mt); 1368 } 1369 spin_unlock(&zone->lock); 1370 } 1371 1372 static void free_one_page(struct zone *zone, 1373 struct page *page, unsigned long pfn, 1374 unsigned int order, 1375 int migratetype) 1376 { 1377 spin_lock(&zone->lock); 1378 if (unlikely(has_isolate_pageblock(zone) || 1379 is_migrate_isolate(migratetype))) { 1380 migratetype = get_pfnblock_migratetype(page, pfn); 1381 } 1382 __free_one_page(page, pfn, zone, order, migratetype, true); 1383 spin_unlock(&zone->lock); 1384 } 1385 1386 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1387 unsigned long zone, int nid) 1388 { 1389 mm_zero_struct_page(page); 1390 set_page_links(page, zone, nid, pfn); 1391 init_page_count(page); 1392 page_mapcount_reset(page); 1393 page_cpupid_reset_last(page); 1394 page_kasan_tag_reset(page); 1395 1396 INIT_LIST_HEAD(&page->lru); 1397 #ifdef WANT_PAGE_VIRTUAL 1398 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1399 if (!is_highmem_idx(zone)) 1400 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1401 #endif 1402 } 1403 1404 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1405 static void __meminit init_reserved_page(unsigned long pfn) 1406 { 1407 pg_data_t *pgdat; 1408 int nid, zid; 1409 1410 if (!early_page_uninitialised(pfn)) 1411 return; 1412 1413 nid = early_pfn_to_nid(pfn); 1414 pgdat = NODE_DATA(nid); 1415 1416 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1417 struct zone *zone = &pgdat->node_zones[zid]; 1418 1419 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1420 break; 1421 } 1422 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1423 } 1424 #else 1425 static inline void init_reserved_page(unsigned long pfn) 1426 { 1427 } 1428 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1429 1430 /* 1431 * Initialised pages do not have PageReserved set. This function is 1432 * called for each range allocated by the bootmem allocator and 1433 * marks the pages PageReserved. The remaining valid pages are later 1434 * sent to the buddy page allocator. 1435 */ 1436 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1437 { 1438 unsigned long start_pfn = PFN_DOWN(start); 1439 unsigned long end_pfn = PFN_UP(end); 1440 1441 for (; start_pfn < end_pfn; start_pfn++) { 1442 if (pfn_valid(start_pfn)) { 1443 struct page *page = pfn_to_page(start_pfn); 1444 1445 init_reserved_page(start_pfn); 1446 1447 /* Avoid false-positive PageTail() */ 1448 INIT_LIST_HEAD(&page->lru); 1449 1450 /* 1451 * no need for atomic set_bit because the struct 1452 * page is not visible yet so nobody should 1453 * access it yet. 1454 */ 1455 __SetPageReserved(page); 1456 } 1457 } 1458 } 1459 1460 static void __free_pages_ok(struct page *page, unsigned int order) 1461 { 1462 unsigned long flags; 1463 int migratetype; 1464 unsigned long pfn = page_to_pfn(page); 1465 1466 if (!free_pages_prepare(page, order, true)) 1467 return; 1468 1469 migratetype = get_pfnblock_migratetype(page, pfn); 1470 local_irq_save(flags); 1471 __count_vm_events(PGFREE, 1 << order); 1472 free_one_page(page_zone(page), page, pfn, order, migratetype); 1473 local_irq_restore(flags); 1474 } 1475 1476 void __free_pages_core(struct page *page, unsigned int order) 1477 { 1478 unsigned int nr_pages = 1 << order; 1479 struct page *p = page; 1480 unsigned int loop; 1481 1482 prefetchw(p); 1483 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1484 prefetchw(p + 1); 1485 __ClearPageReserved(p); 1486 set_page_count(p, 0); 1487 } 1488 __ClearPageReserved(p); 1489 set_page_count(p, 0); 1490 1491 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1492 set_page_refcounted(page); 1493 __free_pages(page, order); 1494 } 1495 1496 #ifdef CONFIG_NEED_MULTIPLE_NODES 1497 1498 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1499 1500 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1501 1502 /* 1503 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1504 */ 1505 int __meminit __early_pfn_to_nid(unsigned long pfn, 1506 struct mminit_pfnnid_cache *state) 1507 { 1508 unsigned long start_pfn, end_pfn; 1509 int nid; 1510 1511 if (state->last_start <= pfn && pfn < state->last_end) 1512 return state->last_nid; 1513 1514 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1515 if (nid != NUMA_NO_NODE) { 1516 state->last_start = start_pfn; 1517 state->last_end = end_pfn; 1518 state->last_nid = nid; 1519 } 1520 1521 return nid; 1522 } 1523 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1524 1525 int __meminit early_pfn_to_nid(unsigned long pfn) 1526 { 1527 static DEFINE_SPINLOCK(early_pfn_lock); 1528 int nid; 1529 1530 spin_lock(&early_pfn_lock); 1531 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1532 if (nid < 0) 1533 nid = first_online_node; 1534 spin_unlock(&early_pfn_lock); 1535 1536 return nid; 1537 } 1538 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1539 1540 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1541 unsigned int order) 1542 { 1543 if (early_page_uninitialised(pfn)) 1544 return; 1545 __free_pages_core(page, order); 1546 } 1547 1548 /* 1549 * Check that the whole (or subset of) a pageblock given by the interval of 1550 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1551 * with the migration of free compaction scanner. The scanners then need to 1552 * use only pfn_valid_within() check for arches that allow holes within 1553 * pageblocks. 1554 * 1555 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1556 * 1557 * It's possible on some configurations to have a setup like node0 node1 node0 1558 * i.e. it's possible that all pages within a zones range of pages do not 1559 * belong to a single zone. We assume that a border between node0 and node1 1560 * can occur within a single pageblock, but not a node0 node1 node0 1561 * interleaving within a single pageblock. It is therefore sufficient to check 1562 * the first and last page of a pageblock and avoid checking each individual 1563 * page in a pageblock. 1564 */ 1565 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1566 unsigned long end_pfn, struct zone *zone) 1567 { 1568 struct page *start_page; 1569 struct page *end_page; 1570 1571 /* end_pfn is one past the range we are checking */ 1572 end_pfn--; 1573 1574 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1575 return NULL; 1576 1577 start_page = pfn_to_online_page(start_pfn); 1578 if (!start_page) 1579 return NULL; 1580 1581 if (page_zone(start_page) != zone) 1582 return NULL; 1583 1584 end_page = pfn_to_page(end_pfn); 1585 1586 /* This gives a shorter code than deriving page_zone(end_page) */ 1587 if (page_zone_id(start_page) != page_zone_id(end_page)) 1588 return NULL; 1589 1590 return start_page; 1591 } 1592 1593 void set_zone_contiguous(struct zone *zone) 1594 { 1595 unsigned long block_start_pfn = zone->zone_start_pfn; 1596 unsigned long block_end_pfn; 1597 1598 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1599 for (; block_start_pfn < zone_end_pfn(zone); 1600 block_start_pfn = block_end_pfn, 1601 block_end_pfn += pageblock_nr_pages) { 1602 1603 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1604 1605 if (!__pageblock_pfn_to_page(block_start_pfn, 1606 block_end_pfn, zone)) 1607 return; 1608 cond_resched(); 1609 } 1610 1611 /* We confirm that there is no hole */ 1612 zone->contiguous = true; 1613 } 1614 1615 void clear_zone_contiguous(struct zone *zone) 1616 { 1617 zone->contiguous = false; 1618 } 1619 1620 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1621 static void __init deferred_free_range(unsigned long pfn, 1622 unsigned long nr_pages) 1623 { 1624 struct page *page; 1625 unsigned long i; 1626 1627 if (!nr_pages) 1628 return; 1629 1630 page = pfn_to_page(pfn); 1631 1632 /* Free a large naturally-aligned chunk if possible */ 1633 if (nr_pages == pageblock_nr_pages && 1634 (pfn & (pageblock_nr_pages - 1)) == 0) { 1635 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1636 __free_pages_core(page, pageblock_order); 1637 return; 1638 } 1639 1640 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1641 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1642 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1643 __free_pages_core(page, 0); 1644 } 1645 } 1646 1647 /* Completion tracking for deferred_init_memmap() threads */ 1648 static atomic_t pgdat_init_n_undone __initdata; 1649 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1650 1651 static inline void __init pgdat_init_report_one_done(void) 1652 { 1653 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1654 complete(&pgdat_init_all_done_comp); 1655 } 1656 1657 /* 1658 * Returns true if page needs to be initialized or freed to buddy allocator. 1659 * 1660 * First we check if pfn is valid on architectures where it is possible to have 1661 * holes within pageblock_nr_pages. On systems where it is not possible, this 1662 * function is optimized out. 1663 * 1664 * Then, we check if a current large page is valid by only checking the validity 1665 * of the head pfn. 1666 */ 1667 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1668 { 1669 if (!pfn_valid_within(pfn)) 1670 return false; 1671 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1672 return false; 1673 return true; 1674 } 1675 1676 /* 1677 * Free pages to buddy allocator. Try to free aligned pages in 1678 * pageblock_nr_pages sizes. 1679 */ 1680 static void __init deferred_free_pages(unsigned long pfn, 1681 unsigned long end_pfn) 1682 { 1683 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1684 unsigned long nr_free = 0; 1685 1686 for (; pfn < end_pfn; pfn++) { 1687 if (!deferred_pfn_valid(pfn)) { 1688 deferred_free_range(pfn - nr_free, nr_free); 1689 nr_free = 0; 1690 } else if (!(pfn & nr_pgmask)) { 1691 deferred_free_range(pfn - nr_free, nr_free); 1692 nr_free = 1; 1693 } else { 1694 nr_free++; 1695 } 1696 } 1697 /* Free the last block of pages to allocator */ 1698 deferred_free_range(pfn - nr_free, nr_free); 1699 } 1700 1701 /* 1702 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1703 * by performing it only once every pageblock_nr_pages. 1704 * Return number of pages initialized. 1705 */ 1706 static unsigned long __init deferred_init_pages(struct zone *zone, 1707 unsigned long pfn, 1708 unsigned long end_pfn) 1709 { 1710 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1711 int nid = zone_to_nid(zone); 1712 unsigned long nr_pages = 0; 1713 int zid = zone_idx(zone); 1714 struct page *page = NULL; 1715 1716 for (; pfn < end_pfn; pfn++) { 1717 if (!deferred_pfn_valid(pfn)) { 1718 page = NULL; 1719 continue; 1720 } else if (!page || !(pfn & nr_pgmask)) { 1721 page = pfn_to_page(pfn); 1722 } else { 1723 page++; 1724 } 1725 __init_single_page(page, pfn, zid, nid); 1726 nr_pages++; 1727 } 1728 return (nr_pages); 1729 } 1730 1731 /* 1732 * This function is meant to pre-load the iterator for the zone init. 1733 * Specifically it walks through the ranges until we are caught up to the 1734 * first_init_pfn value and exits there. If we never encounter the value we 1735 * return false indicating there are no valid ranges left. 1736 */ 1737 static bool __init 1738 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1739 unsigned long *spfn, unsigned long *epfn, 1740 unsigned long first_init_pfn) 1741 { 1742 u64 j; 1743 1744 /* 1745 * Start out by walking through the ranges in this zone that have 1746 * already been initialized. We don't need to do anything with them 1747 * so we just need to flush them out of the system. 1748 */ 1749 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1750 if (*epfn <= first_init_pfn) 1751 continue; 1752 if (*spfn < first_init_pfn) 1753 *spfn = first_init_pfn; 1754 *i = j; 1755 return true; 1756 } 1757 1758 return false; 1759 } 1760 1761 /* 1762 * Initialize and free pages. We do it in two loops: first we initialize 1763 * struct page, then free to buddy allocator, because while we are 1764 * freeing pages we can access pages that are ahead (computing buddy 1765 * page in __free_one_page()). 1766 * 1767 * In order to try and keep some memory in the cache we have the loop 1768 * broken along max page order boundaries. This way we will not cause 1769 * any issues with the buddy page computation. 1770 */ 1771 static unsigned long __init 1772 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1773 unsigned long *end_pfn) 1774 { 1775 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1776 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1777 unsigned long nr_pages = 0; 1778 u64 j = *i; 1779 1780 /* First we loop through and initialize the page values */ 1781 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1782 unsigned long t; 1783 1784 if (mo_pfn <= *start_pfn) 1785 break; 1786 1787 t = min(mo_pfn, *end_pfn); 1788 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1789 1790 if (mo_pfn < *end_pfn) { 1791 *start_pfn = mo_pfn; 1792 break; 1793 } 1794 } 1795 1796 /* Reset values and now loop through freeing pages as needed */ 1797 swap(j, *i); 1798 1799 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1800 unsigned long t; 1801 1802 if (mo_pfn <= spfn) 1803 break; 1804 1805 t = min(mo_pfn, epfn); 1806 deferred_free_pages(spfn, t); 1807 1808 if (mo_pfn <= epfn) 1809 break; 1810 } 1811 1812 return nr_pages; 1813 } 1814 1815 static void __init 1816 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1817 void *arg) 1818 { 1819 unsigned long spfn, epfn; 1820 struct zone *zone = arg; 1821 u64 i; 1822 1823 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1824 1825 /* 1826 * Initialize and free pages in MAX_ORDER sized increments so that we 1827 * can avoid introducing any issues with the buddy allocator. 1828 */ 1829 while (spfn < end_pfn) { 1830 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1831 cond_resched(); 1832 } 1833 } 1834 1835 /* An arch may override for more concurrency. */ 1836 __weak int __init 1837 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1838 { 1839 return 1; 1840 } 1841 1842 /* Initialise remaining memory on a node */ 1843 static int __init deferred_init_memmap(void *data) 1844 { 1845 pg_data_t *pgdat = data; 1846 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1847 unsigned long spfn = 0, epfn = 0; 1848 unsigned long first_init_pfn, flags; 1849 unsigned long start = jiffies; 1850 struct zone *zone; 1851 int zid, max_threads; 1852 u64 i; 1853 1854 /* Bind memory initialisation thread to a local node if possible */ 1855 if (!cpumask_empty(cpumask)) 1856 set_cpus_allowed_ptr(current, cpumask); 1857 1858 pgdat_resize_lock(pgdat, &flags); 1859 first_init_pfn = pgdat->first_deferred_pfn; 1860 if (first_init_pfn == ULONG_MAX) { 1861 pgdat_resize_unlock(pgdat, &flags); 1862 pgdat_init_report_one_done(); 1863 return 0; 1864 } 1865 1866 /* Sanity check boundaries */ 1867 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1868 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1869 pgdat->first_deferred_pfn = ULONG_MAX; 1870 1871 /* 1872 * Once we unlock here, the zone cannot be grown anymore, thus if an 1873 * interrupt thread must allocate this early in boot, zone must be 1874 * pre-grown prior to start of deferred page initialization. 1875 */ 1876 pgdat_resize_unlock(pgdat, &flags); 1877 1878 /* Only the highest zone is deferred so find it */ 1879 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1880 zone = pgdat->node_zones + zid; 1881 if (first_init_pfn < zone_end_pfn(zone)) 1882 break; 1883 } 1884 1885 /* If the zone is empty somebody else may have cleared out the zone */ 1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1887 first_init_pfn)) 1888 goto zone_empty; 1889 1890 max_threads = deferred_page_init_max_threads(cpumask); 1891 1892 while (spfn < epfn) { 1893 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1894 struct padata_mt_job job = { 1895 .thread_fn = deferred_init_memmap_chunk, 1896 .fn_arg = zone, 1897 .start = spfn, 1898 .size = epfn_align - spfn, 1899 .align = PAGES_PER_SECTION, 1900 .min_chunk = PAGES_PER_SECTION, 1901 .max_threads = max_threads, 1902 }; 1903 1904 padata_do_multithreaded(&job); 1905 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1906 epfn_align); 1907 } 1908 zone_empty: 1909 /* Sanity check that the next zone really is unpopulated */ 1910 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1911 1912 pr_info("node %d deferred pages initialised in %ums\n", 1913 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 1914 1915 pgdat_init_report_one_done(); 1916 return 0; 1917 } 1918 1919 /* 1920 * If this zone has deferred pages, try to grow it by initializing enough 1921 * deferred pages to satisfy the allocation specified by order, rounded up to 1922 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1923 * of SECTION_SIZE bytes by initializing struct pages in increments of 1924 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1925 * 1926 * Return true when zone was grown, otherwise return false. We return true even 1927 * when we grow less than requested, to let the caller decide if there are 1928 * enough pages to satisfy the allocation. 1929 * 1930 * Note: We use noinline because this function is needed only during boot, and 1931 * it is called from a __ref function _deferred_grow_zone. This way we are 1932 * making sure that it is not inlined into permanent text section. 1933 */ 1934 static noinline bool __init 1935 deferred_grow_zone(struct zone *zone, unsigned int order) 1936 { 1937 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1938 pg_data_t *pgdat = zone->zone_pgdat; 1939 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1940 unsigned long spfn, epfn, flags; 1941 unsigned long nr_pages = 0; 1942 u64 i; 1943 1944 /* Only the last zone may have deferred pages */ 1945 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1946 return false; 1947 1948 pgdat_resize_lock(pgdat, &flags); 1949 1950 /* 1951 * If someone grew this zone while we were waiting for spinlock, return 1952 * true, as there might be enough pages already. 1953 */ 1954 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1955 pgdat_resize_unlock(pgdat, &flags); 1956 return true; 1957 } 1958 1959 /* If the zone is empty somebody else may have cleared out the zone */ 1960 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1961 first_deferred_pfn)) { 1962 pgdat->first_deferred_pfn = ULONG_MAX; 1963 pgdat_resize_unlock(pgdat, &flags); 1964 /* Retry only once. */ 1965 return first_deferred_pfn != ULONG_MAX; 1966 } 1967 1968 /* 1969 * Initialize and free pages in MAX_ORDER sized increments so 1970 * that we can avoid introducing any issues with the buddy 1971 * allocator. 1972 */ 1973 while (spfn < epfn) { 1974 /* update our first deferred PFN for this section */ 1975 first_deferred_pfn = spfn; 1976 1977 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1978 touch_nmi_watchdog(); 1979 1980 /* We should only stop along section boundaries */ 1981 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1982 continue; 1983 1984 /* If our quota has been met we can stop here */ 1985 if (nr_pages >= nr_pages_needed) 1986 break; 1987 } 1988 1989 pgdat->first_deferred_pfn = spfn; 1990 pgdat_resize_unlock(pgdat, &flags); 1991 1992 return nr_pages > 0; 1993 } 1994 1995 /* 1996 * deferred_grow_zone() is __init, but it is called from 1997 * get_page_from_freelist() during early boot until deferred_pages permanently 1998 * disables this call. This is why we have refdata wrapper to avoid warning, 1999 * and to ensure that the function body gets unloaded. 2000 */ 2001 static bool __ref 2002 _deferred_grow_zone(struct zone *zone, unsigned int order) 2003 { 2004 return deferred_grow_zone(zone, order); 2005 } 2006 2007 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2008 2009 void __init page_alloc_init_late(void) 2010 { 2011 struct zone *zone; 2012 int nid; 2013 2014 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2015 2016 /* There will be num_node_state(N_MEMORY) threads */ 2017 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2018 for_each_node_state(nid, N_MEMORY) { 2019 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2020 } 2021 2022 /* Block until all are initialised */ 2023 wait_for_completion(&pgdat_init_all_done_comp); 2024 2025 /* 2026 * The number of managed pages has changed due to the initialisation 2027 * so the pcpu batch and high limits needs to be updated or the limits 2028 * will be artificially small. 2029 */ 2030 for_each_populated_zone(zone) 2031 zone_pcp_update(zone); 2032 2033 /* 2034 * We initialized the rest of the deferred pages. Permanently disable 2035 * on-demand struct page initialization. 2036 */ 2037 static_branch_disable(&deferred_pages); 2038 2039 /* Reinit limits that are based on free pages after the kernel is up */ 2040 files_maxfiles_init(); 2041 #endif 2042 2043 /* Discard memblock private memory */ 2044 memblock_discard(); 2045 2046 for_each_node_state(nid, N_MEMORY) 2047 shuffle_free_memory(NODE_DATA(nid)); 2048 2049 for_each_populated_zone(zone) 2050 set_zone_contiguous(zone); 2051 } 2052 2053 #ifdef CONFIG_CMA 2054 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2055 void __init init_cma_reserved_pageblock(struct page *page) 2056 { 2057 unsigned i = pageblock_nr_pages; 2058 struct page *p = page; 2059 2060 do { 2061 __ClearPageReserved(p); 2062 set_page_count(p, 0); 2063 } while (++p, --i); 2064 2065 set_pageblock_migratetype(page, MIGRATE_CMA); 2066 2067 if (pageblock_order >= MAX_ORDER) { 2068 i = pageblock_nr_pages; 2069 p = page; 2070 do { 2071 set_page_refcounted(p); 2072 __free_pages(p, MAX_ORDER - 1); 2073 p += MAX_ORDER_NR_PAGES; 2074 } while (i -= MAX_ORDER_NR_PAGES); 2075 } else { 2076 set_page_refcounted(page); 2077 __free_pages(page, pageblock_order); 2078 } 2079 2080 adjust_managed_page_count(page, pageblock_nr_pages); 2081 } 2082 #endif 2083 2084 /* 2085 * The order of subdivision here is critical for the IO subsystem. 2086 * Please do not alter this order without good reasons and regression 2087 * testing. Specifically, as large blocks of memory are subdivided, 2088 * the order in which smaller blocks are delivered depends on the order 2089 * they're subdivided in this function. This is the primary factor 2090 * influencing the order in which pages are delivered to the IO 2091 * subsystem according to empirical testing, and this is also justified 2092 * by considering the behavior of a buddy system containing a single 2093 * large block of memory acted on by a series of small allocations. 2094 * This behavior is a critical factor in sglist merging's success. 2095 * 2096 * -- nyc 2097 */ 2098 static inline void expand(struct zone *zone, struct page *page, 2099 int low, int high, int migratetype) 2100 { 2101 unsigned long size = 1 << high; 2102 2103 while (high > low) { 2104 high--; 2105 size >>= 1; 2106 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2107 2108 /* 2109 * Mark as guard pages (or page), that will allow to 2110 * merge back to allocator when buddy will be freed. 2111 * Corresponding page table entries will not be touched, 2112 * pages will stay not present in virtual address space 2113 */ 2114 if (set_page_guard(zone, &page[size], high, migratetype)) 2115 continue; 2116 2117 add_to_free_list(&page[size], zone, high, migratetype); 2118 set_page_order(&page[size], high); 2119 } 2120 } 2121 2122 static void check_new_page_bad(struct page *page) 2123 { 2124 if (unlikely(page->flags & __PG_HWPOISON)) { 2125 /* Don't complain about hwpoisoned pages */ 2126 page_mapcount_reset(page); /* remove PageBuddy */ 2127 return; 2128 } 2129 2130 bad_page(page, 2131 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2132 } 2133 2134 /* 2135 * This page is about to be returned from the page allocator 2136 */ 2137 static inline int check_new_page(struct page *page) 2138 { 2139 if (likely(page_expected_state(page, 2140 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2141 return 0; 2142 2143 check_new_page_bad(page); 2144 return 1; 2145 } 2146 2147 static inline bool free_pages_prezeroed(void) 2148 { 2149 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2150 page_poisoning_enabled()) || want_init_on_free(); 2151 } 2152 2153 #ifdef CONFIG_DEBUG_VM 2154 /* 2155 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2156 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2157 * also checked when pcp lists are refilled from the free lists. 2158 */ 2159 static inline bool check_pcp_refill(struct page *page) 2160 { 2161 if (debug_pagealloc_enabled_static()) 2162 return check_new_page(page); 2163 else 2164 return false; 2165 } 2166 2167 static inline bool check_new_pcp(struct page *page) 2168 { 2169 return check_new_page(page); 2170 } 2171 #else 2172 /* 2173 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2174 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2175 * enabled, they are also checked when being allocated from the pcp lists. 2176 */ 2177 static inline bool check_pcp_refill(struct page *page) 2178 { 2179 return check_new_page(page); 2180 } 2181 static inline bool check_new_pcp(struct page *page) 2182 { 2183 if (debug_pagealloc_enabled_static()) 2184 return check_new_page(page); 2185 else 2186 return false; 2187 } 2188 #endif /* CONFIG_DEBUG_VM */ 2189 2190 static bool check_new_pages(struct page *page, unsigned int order) 2191 { 2192 int i; 2193 for (i = 0; i < (1 << order); i++) { 2194 struct page *p = page + i; 2195 2196 if (unlikely(check_new_page(p))) 2197 return true; 2198 } 2199 2200 return false; 2201 } 2202 2203 inline void post_alloc_hook(struct page *page, unsigned int order, 2204 gfp_t gfp_flags) 2205 { 2206 set_page_private(page, 0); 2207 set_page_refcounted(page); 2208 2209 arch_alloc_page(page, order); 2210 if (debug_pagealloc_enabled_static()) 2211 kernel_map_pages(page, 1 << order, 1); 2212 kasan_alloc_pages(page, order); 2213 kernel_poison_pages(page, 1 << order, 1); 2214 set_page_owner(page, order, gfp_flags); 2215 } 2216 2217 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2218 unsigned int alloc_flags) 2219 { 2220 post_alloc_hook(page, order, gfp_flags); 2221 2222 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2223 kernel_init_free_pages(page, 1 << order); 2224 2225 if (order && (gfp_flags & __GFP_COMP)) 2226 prep_compound_page(page, order); 2227 2228 /* 2229 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2230 * allocate the page. The expectation is that the caller is taking 2231 * steps that will free more memory. The caller should avoid the page 2232 * being used for !PFMEMALLOC purposes. 2233 */ 2234 if (alloc_flags & ALLOC_NO_WATERMARKS) 2235 set_page_pfmemalloc(page); 2236 else 2237 clear_page_pfmemalloc(page); 2238 } 2239 2240 /* 2241 * Go through the free lists for the given migratetype and remove 2242 * the smallest available page from the freelists 2243 */ 2244 static __always_inline 2245 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2246 int migratetype) 2247 { 2248 unsigned int current_order; 2249 struct free_area *area; 2250 struct page *page; 2251 2252 /* Find a page of the appropriate size in the preferred list */ 2253 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2254 area = &(zone->free_area[current_order]); 2255 page = get_page_from_free_area(area, migratetype); 2256 if (!page) 2257 continue; 2258 del_page_from_free_list(page, zone, current_order); 2259 expand(zone, page, order, current_order, migratetype); 2260 set_pcppage_migratetype(page, migratetype); 2261 return page; 2262 } 2263 2264 return NULL; 2265 } 2266 2267 2268 /* 2269 * This array describes the order lists are fallen back to when 2270 * the free lists for the desirable migrate type are depleted 2271 */ 2272 static int fallbacks[MIGRATE_TYPES][3] = { 2273 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2274 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2275 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2276 #ifdef CONFIG_CMA 2277 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2278 #endif 2279 #ifdef CONFIG_MEMORY_ISOLATION 2280 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2281 #endif 2282 }; 2283 2284 #ifdef CONFIG_CMA 2285 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2286 unsigned int order) 2287 { 2288 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2289 } 2290 #else 2291 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2292 unsigned int order) { return NULL; } 2293 #endif 2294 2295 /* 2296 * Move the free pages in a range to the free lists of the requested type. 2297 * Note that start_page and end_pages are not aligned on a pageblock 2298 * boundary. If alignment is required, use move_freepages_block() 2299 */ 2300 static int move_freepages(struct zone *zone, 2301 struct page *start_page, struct page *end_page, 2302 int migratetype, int *num_movable) 2303 { 2304 struct page *page; 2305 unsigned int order; 2306 int pages_moved = 0; 2307 2308 for (page = start_page; page <= end_page;) { 2309 if (!pfn_valid_within(page_to_pfn(page))) { 2310 page++; 2311 continue; 2312 } 2313 2314 if (!PageBuddy(page)) { 2315 /* 2316 * We assume that pages that could be isolated for 2317 * migration are movable. But we don't actually try 2318 * isolating, as that would be expensive. 2319 */ 2320 if (num_movable && 2321 (PageLRU(page) || __PageMovable(page))) 2322 (*num_movable)++; 2323 2324 page++; 2325 continue; 2326 } 2327 2328 /* Make sure we are not inadvertently changing nodes */ 2329 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2330 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2331 2332 order = page_order(page); 2333 move_to_free_list(page, zone, order, migratetype); 2334 page += 1 << order; 2335 pages_moved += 1 << order; 2336 } 2337 2338 return pages_moved; 2339 } 2340 2341 int move_freepages_block(struct zone *zone, struct page *page, 2342 int migratetype, int *num_movable) 2343 { 2344 unsigned long start_pfn, end_pfn; 2345 struct page *start_page, *end_page; 2346 2347 if (num_movable) 2348 *num_movable = 0; 2349 2350 start_pfn = page_to_pfn(page); 2351 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2352 start_page = pfn_to_page(start_pfn); 2353 end_page = start_page + pageblock_nr_pages - 1; 2354 end_pfn = start_pfn + pageblock_nr_pages - 1; 2355 2356 /* Do not cross zone boundaries */ 2357 if (!zone_spans_pfn(zone, start_pfn)) 2358 start_page = page; 2359 if (!zone_spans_pfn(zone, end_pfn)) 2360 return 0; 2361 2362 return move_freepages(zone, start_page, end_page, migratetype, 2363 num_movable); 2364 } 2365 2366 static void change_pageblock_range(struct page *pageblock_page, 2367 int start_order, int migratetype) 2368 { 2369 int nr_pageblocks = 1 << (start_order - pageblock_order); 2370 2371 while (nr_pageblocks--) { 2372 set_pageblock_migratetype(pageblock_page, migratetype); 2373 pageblock_page += pageblock_nr_pages; 2374 } 2375 } 2376 2377 /* 2378 * When we are falling back to another migratetype during allocation, try to 2379 * steal extra free pages from the same pageblocks to satisfy further 2380 * allocations, instead of polluting multiple pageblocks. 2381 * 2382 * If we are stealing a relatively large buddy page, it is likely there will 2383 * be more free pages in the pageblock, so try to steal them all. For 2384 * reclaimable and unmovable allocations, we steal regardless of page size, 2385 * as fragmentation caused by those allocations polluting movable pageblocks 2386 * is worse than movable allocations stealing from unmovable and reclaimable 2387 * pageblocks. 2388 */ 2389 static bool can_steal_fallback(unsigned int order, int start_mt) 2390 { 2391 /* 2392 * Leaving this order check is intended, although there is 2393 * relaxed order check in next check. The reason is that 2394 * we can actually steal whole pageblock if this condition met, 2395 * but, below check doesn't guarantee it and that is just heuristic 2396 * so could be changed anytime. 2397 */ 2398 if (order >= pageblock_order) 2399 return true; 2400 2401 if (order >= pageblock_order / 2 || 2402 start_mt == MIGRATE_RECLAIMABLE || 2403 start_mt == MIGRATE_UNMOVABLE || 2404 page_group_by_mobility_disabled) 2405 return true; 2406 2407 return false; 2408 } 2409 2410 static inline void boost_watermark(struct zone *zone) 2411 { 2412 unsigned long max_boost; 2413 2414 if (!watermark_boost_factor) 2415 return; 2416 /* 2417 * Don't bother in zones that are unlikely to produce results. 2418 * On small machines, including kdump capture kernels running 2419 * in a small area, boosting the watermark can cause an out of 2420 * memory situation immediately. 2421 */ 2422 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2423 return; 2424 2425 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2426 watermark_boost_factor, 10000); 2427 2428 /* 2429 * high watermark may be uninitialised if fragmentation occurs 2430 * very early in boot so do not boost. We do not fall 2431 * through and boost by pageblock_nr_pages as failing 2432 * allocations that early means that reclaim is not going 2433 * to help and it may even be impossible to reclaim the 2434 * boosted watermark resulting in a hang. 2435 */ 2436 if (!max_boost) 2437 return; 2438 2439 max_boost = max(pageblock_nr_pages, max_boost); 2440 2441 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2442 max_boost); 2443 } 2444 2445 /* 2446 * This function implements actual steal behaviour. If order is large enough, 2447 * we can steal whole pageblock. If not, we first move freepages in this 2448 * pageblock to our migratetype and determine how many already-allocated pages 2449 * are there in the pageblock with a compatible migratetype. If at least half 2450 * of pages are free or compatible, we can change migratetype of the pageblock 2451 * itself, so pages freed in the future will be put on the correct free list. 2452 */ 2453 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2454 unsigned int alloc_flags, int start_type, bool whole_block) 2455 { 2456 unsigned int current_order = page_order(page); 2457 int free_pages, movable_pages, alike_pages; 2458 int old_block_type; 2459 2460 old_block_type = get_pageblock_migratetype(page); 2461 2462 /* 2463 * This can happen due to races and we want to prevent broken 2464 * highatomic accounting. 2465 */ 2466 if (is_migrate_highatomic(old_block_type)) 2467 goto single_page; 2468 2469 /* Take ownership for orders >= pageblock_order */ 2470 if (current_order >= pageblock_order) { 2471 change_pageblock_range(page, current_order, start_type); 2472 goto single_page; 2473 } 2474 2475 /* 2476 * Boost watermarks to increase reclaim pressure to reduce the 2477 * likelihood of future fallbacks. Wake kswapd now as the node 2478 * may be balanced overall and kswapd will not wake naturally. 2479 */ 2480 boost_watermark(zone); 2481 if (alloc_flags & ALLOC_KSWAPD) 2482 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2483 2484 /* We are not allowed to try stealing from the whole block */ 2485 if (!whole_block) 2486 goto single_page; 2487 2488 free_pages = move_freepages_block(zone, page, start_type, 2489 &movable_pages); 2490 /* 2491 * Determine how many pages are compatible with our allocation. 2492 * For movable allocation, it's the number of movable pages which 2493 * we just obtained. For other types it's a bit more tricky. 2494 */ 2495 if (start_type == MIGRATE_MOVABLE) { 2496 alike_pages = movable_pages; 2497 } else { 2498 /* 2499 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2500 * to MOVABLE pageblock, consider all non-movable pages as 2501 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2502 * vice versa, be conservative since we can't distinguish the 2503 * exact migratetype of non-movable pages. 2504 */ 2505 if (old_block_type == MIGRATE_MOVABLE) 2506 alike_pages = pageblock_nr_pages 2507 - (free_pages + movable_pages); 2508 else 2509 alike_pages = 0; 2510 } 2511 2512 /* moving whole block can fail due to zone boundary conditions */ 2513 if (!free_pages) 2514 goto single_page; 2515 2516 /* 2517 * If a sufficient number of pages in the block are either free or of 2518 * comparable migratability as our allocation, claim the whole block. 2519 */ 2520 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2521 page_group_by_mobility_disabled) 2522 set_pageblock_migratetype(page, start_type); 2523 2524 return; 2525 2526 single_page: 2527 move_to_free_list(page, zone, current_order, start_type); 2528 } 2529 2530 /* 2531 * Check whether there is a suitable fallback freepage with requested order. 2532 * If only_stealable is true, this function returns fallback_mt only if 2533 * we can steal other freepages all together. This would help to reduce 2534 * fragmentation due to mixed migratetype pages in one pageblock. 2535 */ 2536 int find_suitable_fallback(struct free_area *area, unsigned int order, 2537 int migratetype, bool only_stealable, bool *can_steal) 2538 { 2539 int i; 2540 int fallback_mt; 2541 2542 if (area->nr_free == 0) 2543 return -1; 2544 2545 *can_steal = false; 2546 for (i = 0;; i++) { 2547 fallback_mt = fallbacks[migratetype][i]; 2548 if (fallback_mt == MIGRATE_TYPES) 2549 break; 2550 2551 if (free_area_empty(area, fallback_mt)) 2552 continue; 2553 2554 if (can_steal_fallback(order, migratetype)) 2555 *can_steal = true; 2556 2557 if (!only_stealable) 2558 return fallback_mt; 2559 2560 if (*can_steal) 2561 return fallback_mt; 2562 } 2563 2564 return -1; 2565 } 2566 2567 /* 2568 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2569 * there are no empty page blocks that contain a page with a suitable order 2570 */ 2571 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2572 unsigned int alloc_order) 2573 { 2574 int mt; 2575 unsigned long max_managed, flags; 2576 2577 /* 2578 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2579 * Check is race-prone but harmless. 2580 */ 2581 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2582 if (zone->nr_reserved_highatomic >= max_managed) 2583 return; 2584 2585 spin_lock_irqsave(&zone->lock, flags); 2586 2587 /* Recheck the nr_reserved_highatomic limit under the lock */ 2588 if (zone->nr_reserved_highatomic >= max_managed) 2589 goto out_unlock; 2590 2591 /* Yoink! */ 2592 mt = get_pageblock_migratetype(page); 2593 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2594 && !is_migrate_cma(mt)) { 2595 zone->nr_reserved_highatomic += pageblock_nr_pages; 2596 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2597 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2598 } 2599 2600 out_unlock: 2601 spin_unlock_irqrestore(&zone->lock, flags); 2602 } 2603 2604 /* 2605 * Used when an allocation is about to fail under memory pressure. This 2606 * potentially hurts the reliability of high-order allocations when under 2607 * intense memory pressure but failed atomic allocations should be easier 2608 * to recover from than an OOM. 2609 * 2610 * If @force is true, try to unreserve a pageblock even though highatomic 2611 * pageblock is exhausted. 2612 */ 2613 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2614 bool force) 2615 { 2616 struct zonelist *zonelist = ac->zonelist; 2617 unsigned long flags; 2618 struct zoneref *z; 2619 struct zone *zone; 2620 struct page *page; 2621 int order; 2622 bool ret; 2623 2624 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2625 ac->nodemask) { 2626 /* 2627 * Preserve at least one pageblock unless memory pressure 2628 * is really high. 2629 */ 2630 if (!force && zone->nr_reserved_highatomic <= 2631 pageblock_nr_pages) 2632 continue; 2633 2634 spin_lock_irqsave(&zone->lock, flags); 2635 for (order = 0; order < MAX_ORDER; order++) { 2636 struct free_area *area = &(zone->free_area[order]); 2637 2638 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2639 if (!page) 2640 continue; 2641 2642 /* 2643 * In page freeing path, migratetype change is racy so 2644 * we can counter several free pages in a pageblock 2645 * in this loop althoug we changed the pageblock type 2646 * from highatomic to ac->migratetype. So we should 2647 * adjust the count once. 2648 */ 2649 if (is_migrate_highatomic_page(page)) { 2650 /* 2651 * It should never happen but changes to 2652 * locking could inadvertently allow a per-cpu 2653 * drain to add pages to MIGRATE_HIGHATOMIC 2654 * while unreserving so be safe and watch for 2655 * underflows. 2656 */ 2657 zone->nr_reserved_highatomic -= min( 2658 pageblock_nr_pages, 2659 zone->nr_reserved_highatomic); 2660 } 2661 2662 /* 2663 * Convert to ac->migratetype and avoid the normal 2664 * pageblock stealing heuristics. Minimally, the caller 2665 * is doing the work and needs the pages. More 2666 * importantly, if the block was always converted to 2667 * MIGRATE_UNMOVABLE or another type then the number 2668 * of pageblocks that cannot be completely freed 2669 * may increase. 2670 */ 2671 set_pageblock_migratetype(page, ac->migratetype); 2672 ret = move_freepages_block(zone, page, ac->migratetype, 2673 NULL); 2674 if (ret) { 2675 spin_unlock_irqrestore(&zone->lock, flags); 2676 return ret; 2677 } 2678 } 2679 spin_unlock_irqrestore(&zone->lock, flags); 2680 } 2681 2682 return false; 2683 } 2684 2685 /* 2686 * Try finding a free buddy page on the fallback list and put it on the free 2687 * list of requested migratetype, possibly along with other pages from the same 2688 * block, depending on fragmentation avoidance heuristics. Returns true if 2689 * fallback was found so that __rmqueue_smallest() can grab it. 2690 * 2691 * The use of signed ints for order and current_order is a deliberate 2692 * deviation from the rest of this file, to make the for loop 2693 * condition simpler. 2694 */ 2695 static __always_inline bool 2696 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2697 unsigned int alloc_flags) 2698 { 2699 struct free_area *area; 2700 int current_order; 2701 int min_order = order; 2702 struct page *page; 2703 int fallback_mt; 2704 bool can_steal; 2705 2706 /* 2707 * Do not steal pages from freelists belonging to other pageblocks 2708 * i.e. orders < pageblock_order. If there are no local zones free, 2709 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2710 */ 2711 if (alloc_flags & ALLOC_NOFRAGMENT) 2712 min_order = pageblock_order; 2713 2714 /* 2715 * Find the largest available free page in the other list. This roughly 2716 * approximates finding the pageblock with the most free pages, which 2717 * would be too costly to do exactly. 2718 */ 2719 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2720 --current_order) { 2721 area = &(zone->free_area[current_order]); 2722 fallback_mt = find_suitable_fallback(area, current_order, 2723 start_migratetype, false, &can_steal); 2724 if (fallback_mt == -1) 2725 continue; 2726 2727 /* 2728 * We cannot steal all free pages from the pageblock and the 2729 * requested migratetype is movable. In that case it's better to 2730 * steal and split the smallest available page instead of the 2731 * largest available page, because even if the next movable 2732 * allocation falls back into a different pageblock than this 2733 * one, it won't cause permanent fragmentation. 2734 */ 2735 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2736 && current_order > order) 2737 goto find_smallest; 2738 2739 goto do_steal; 2740 } 2741 2742 return false; 2743 2744 find_smallest: 2745 for (current_order = order; current_order < MAX_ORDER; 2746 current_order++) { 2747 area = &(zone->free_area[current_order]); 2748 fallback_mt = find_suitable_fallback(area, current_order, 2749 start_migratetype, false, &can_steal); 2750 if (fallback_mt != -1) 2751 break; 2752 } 2753 2754 /* 2755 * This should not happen - we already found a suitable fallback 2756 * when looking for the largest page. 2757 */ 2758 VM_BUG_ON(current_order == MAX_ORDER); 2759 2760 do_steal: 2761 page = get_page_from_free_area(area, fallback_mt); 2762 2763 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2764 can_steal); 2765 2766 trace_mm_page_alloc_extfrag(page, order, current_order, 2767 start_migratetype, fallback_mt); 2768 2769 return true; 2770 2771 } 2772 2773 /* 2774 * Do the hard work of removing an element from the buddy allocator. 2775 * Call me with the zone->lock already held. 2776 */ 2777 static __always_inline struct page * 2778 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2779 unsigned int alloc_flags) 2780 { 2781 struct page *page; 2782 2783 #ifdef CONFIG_CMA 2784 /* 2785 * Balance movable allocations between regular and CMA areas by 2786 * allocating from CMA when over half of the zone's free memory 2787 * is in the CMA area. 2788 */ 2789 if (alloc_flags & ALLOC_CMA && 2790 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2791 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2792 page = __rmqueue_cma_fallback(zone, order); 2793 if (page) 2794 return page; 2795 } 2796 #endif 2797 retry: 2798 page = __rmqueue_smallest(zone, order, migratetype); 2799 if (unlikely(!page)) { 2800 if (alloc_flags & ALLOC_CMA) 2801 page = __rmqueue_cma_fallback(zone, order); 2802 2803 if (!page && __rmqueue_fallback(zone, order, migratetype, 2804 alloc_flags)) 2805 goto retry; 2806 } 2807 2808 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2809 return page; 2810 } 2811 2812 /* 2813 * Obtain a specified number of elements from the buddy allocator, all under 2814 * a single hold of the lock, for efficiency. Add them to the supplied list. 2815 * Returns the number of new pages which were placed at *list. 2816 */ 2817 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2818 unsigned long count, struct list_head *list, 2819 int migratetype, unsigned int alloc_flags) 2820 { 2821 int i, alloced = 0; 2822 2823 spin_lock(&zone->lock); 2824 for (i = 0; i < count; ++i) { 2825 struct page *page = __rmqueue(zone, order, migratetype, 2826 alloc_flags); 2827 if (unlikely(page == NULL)) 2828 break; 2829 2830 if (unlikely(check_pcp_refill(page))) 2831 continue; 2832 2833 /* 2834 * Split buddy pages returned by expand() are received here in 2835 * physical page order. The page is added to the tail of 2836 * caller's list. From the callers perspective, the linked list 2837 * is ordered by page number under some conditions. This is 2838 * useful for IO devices that can forward direction from the 2839 * head, thus also in the physical page order. This is useful 2840 * for IO devices that can merge IO requests if the physical 2841 * pages are ordered properly. 2842 */ 2843 list_add_tail(&page->lru, list); 2844 alloced++; 2845 if (is_migrate_cma(get_pcppage_migratetype(page))) 2846 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2847 -(1 << order)); 2848 } 2849 2850 /* 2851 * i pages were removed from the buddy list even if some leak due 2852 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2853 * on i. Do not confuse with 'alloced' which is the number of 2854 * pages added to the pcp list. 2855 */ 2856 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2857 spin_unlock(&zone->lock); 2858 return alloced; 2859 } 2860 2861 #ifdef CONFIG_NUMA 2862 /* 2863 * Called from the vmstat counter updater to drain pagesets of this 2864 * currently executing processor on remote nodes after they have 2865 * expired. 2866 * 2867 * Note that this function must be called with the thread pinned to 2868 * a single processor. 2869 */ 2870 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2871 { 2872 unsigned long flags; 2873 int to_drain, batch; 2874 2875 local_irq_save(flags); 2876 batch = READ_ONCE(pcp->batch); 2877 to_drain = min(pcp->count, batch); 2878 if (to_drain > 0) 2879 free_pcppages_bulk(zone, to_drain, pcp); 2880 local_irq_restore(flags); 2881 } 2882 #endif 2883 2884 /* 2885 * Drain pcplists of the indicated processor and zone. 2886 * 2887 * The processor must either be the current processor and the 2888 * thread pinned to the current processor or a processor that 2889 * is not online. 2890 */ 2891 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2892 { 2893 unsigned long flags; 2894 struct per_cpu_pageset *pset; 2895 struct per_cpu_pages *pcp; 2896 2897 local_irq_save(flags); 2898 pset = per_cpu_ptr(zone->pageset, cpu); 2899 2900 pcp = &pset->pcp; 2901 if (pcp->count) 2902 free_pcppages_bulk(zone, pcp->count, pcp); 2903 local_irq_restore(flags); 2904 } 2905 2906 /* 2907 * Drain pcplists of all zones on the indicated processor. 2908 * 2909 * The processor must either be the current processor and the 2910 * thread pinned to the current processor or a processor that 2911 * is not online. 2912 */ 2913 static void drain_pages(unsigned int cpu) 2914 { 2915 struct zone *zone; 2916 2917 for_each_populated_zone(zone) { 2918 drain_pages_zone(cpu, zone); 2919 } 2920 } 2921 2922 /* 2923 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2924 * 2925 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2926 * the single zone's pages. 2927 */ 2928 void drain_local_pages(struct zone *zone) 2929 { 2930 int cpu = smp_processor_id(); 2931 2932 if (zone) 2933 drain_pages_zone(cpu, zone); 2934 else 2935 drain_pages(cpu); 2936 } 2937 2938 static void drain_local_pages_wq(struct work_struct *work) 2939 { 2940 struct pcpu_drain *drain; 2941 2942 drain = container_of(work, struct pcpu_drain, work); 2943 2944 /* 2945 * drain_all_pages doesn't use proper cpu hotplug protection so 2946 * we can race with cpu offline when the WQ can move this from 2947 * a cpu pinned worker to an unbound one. We can operate on a different 2948 * cpu which is allright but we also have to make sure to not move to 2949 * a different one. 2950 */ 2951 preempt_disable(); 2952 drain_local_pages(drain->zone); 2953 preempt_enable(); 2954 } 2955 2956 /* 2957 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2958 * 2959 * When zone parameter is non-NULL, spill just the single zone's pages. 2960 * 2961 * Note that this can be extremely slow as the draining happens in a workqueue. 2962 */ 2963 void drain_all_pages(struct zone *zone) 2964 { 2965 int cpu; 2966 2967 /* 2968 * Allocate in the BSS so we wont require allocation in 2969 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2970 */ 2971 static cpumask_t cpus_with_pcps; 2972 2973 /* 2974 * Make sure nobody triggers this path before mm_percpu_wq is fully 2975 * initialized. 2976 */ 2977 if (WARN_ON_ONCE(!mm_percpu_wq)) 2978 return; 2979 2980 /* 2981 * Do not drain if one is already in progress unless it's specific to 2982 * a zone. Such callers are primarily CMA and memory hotplug and need 2983 * the drain to be complete when the call returns. 2984 */ 2985 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2986 if (!zone) 2987 return; 2988 mutex_lock(&pcpu_drain_mutex); 2989 } 2990 2991 /* 2992 * We don't care about racing with CPU hotplug event 2993 * as offline notification will cause the notified 2994 * cpu to drain that CPU pcps and on_each_cpu_mask 2995 * disables preemption as part of its processing 2996 */ 2997 for_each_online_cpu(cpu) { 2998 struct per_cpu_pageset *pcp; 2999 struct zone *z; 3000 bool has_pcps = false; 3001 3002 if (zone) { 3003 pcp = per_cpu_ptr(zone->pageset, cpu); 3004 if (pcp->pcp.count) 3005 has_pcps = true; 3006 } else { 3007 for_each_populated_zone(z) { 3008 pcp = per_cpu_ptr(z->pageset, cpu); 3009 if (pcp->pcp.count) { 3010 has_pcps = true; 3011 break; 3012 } 3013 } 3014 } 3015 3016 if (has_pcps) 3017 cpumask_set_cpu(cpu, &cpus_with_pcps); 3018 else 3019 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3020 } 3021 3022 for_each_cpu(cpu, &cpus_with_pcps) { 3023 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3024 3025 drain->zone = zone; 3026 INIT_WORK(&drain->work, drain_local_pages_wq); 3027 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3028 } 3029 for_each_cpu(cpu, &cpus_with_pcps) 3030 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3031 3032 mutex_unlock(&pcpu_drain_mutex); 3033 } 3034 3035 #ifdef CONFIG_HIBERNATION 3036 3037 /* 3038 * Touch the watchdog for every WD_PAGE_COUNT pages. 3039 */ 3040 #define WD_PAGE_COUNT (128*1024) 3041 3042 void mark_free_pages(struct zone *zone) 3043 { 3044 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3045 unsigned long flags; 3046 unsigned int order, t; 3047 struct page *page; 3048 3049 if (zone_is_empty(zone)) 3050 return; 3051 3052 spin_lock_irqsave(&zone->lock, flags); 3053 3054 max_zone_pfn = zone_end_pfn(zone); 3055 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3056 if (pfn_valid(pfn)) { 3057 page = pfn_to_page(pfn); 3058 3059 if (!--page_count) { 3060 touch_nmi_watchdog(); 3061 page_count = WD_PAGE_COUNT; 3062 } 3063 3064 if (page_zone(page) != zone) 3065 continue; 3066 3067 if (!swsusp_page_is_forbidden(page)) 3068 swsusp_unset_page_free(page); 3069 } 3070 3071 for_each_migratetype_order(order, t) { 3072 list_for_each_entry(page, 3073 &zone->free_area[order].free_list[t], lru) { 3074 unsigned long i; 3075 3076 pfn = page_to_pfn(page); 3077 for (i = 0; i < (1UL << order); i++) { 3078 if (!--page_count) { 3079 touch_nmi_watchdog(); 3080 page_count = WD_PAGE_COUNT; 3081 } 3082 swsusp_set_page_free(pfn_to_page(pfn + i)); 3083 } 3084 } 3085 } 3086 spin_unlock_irqrestore(&zone->lock, flags); 3087 } 3088 #endif /* CONFIG_PM */ 3089 3090 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3091 { 3092 int migratetype; 3093 3094 if (!free_pcp_prepare(page)) 3095 return false; 3096 3097 migratetype = get_pfnblock_migratetype(page, pfn); 3098 set_pcppage_migratetype(page, migratetype); 3099 return true; 3100 } 3101 3102 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3103 { 3104 struct zone *zone = page_zone(page); 3105 struct per_cpu_pages *pcp; 3106 int migratetype; 3107 3108 migratetype = get_pcppage_migratetype(page); 3109 __count_vm_event(PGFREE); 3110 3111 /* 3112 * We only track unmovable, reclaimable and movable on pcp lists. 3113 * Free ISOLATE pages back to the allocator because they are being 3114 * offlined but treat HIGHATOMIC as movable pages so we can get those 3115 * areas back if necessary. Otherwise, we may have to free 3116 * excessively into the page allocator 3117 */ 3118 if (migratetype >= MIGRATE_PCPTYPES) { 3119 if (unlikely(is_migrate_isolate(migratetype))) { 3120 free_one_page(zone, page, pfn, 0, migratetype); 3121 return; 3122 } 3123 migratetype = MIGRATE_MOVABLE; 3124 } 3125 3126 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3127 list_add(&page->lru, &pcp->lists[migratetype]); 3128 pcp->count++; 3129 if (pcp->count >= pcp->high) { 3130 unsigned long batch = READ_ONCE(pcp->batch); 3131 free_pcppages_bulk(zone, batch, pcp); 3132 } 3133 } 3134 3135 /* 3136 * Free a 0-order page 3137 */ 3138 void free_unref_page(struct page *page) 3139 { 3140 unsigned long flags; 3141 unsigned long pfn = page_to_pfn(page); 3142 3143 if (!free_unref_page_prepare(page, pfn)) 3144 return; 3145 3146 local_irq_save(flags); 3147 free_unref_page_commit(page, pfn); 3148 local_irq_restore(flags); 3149 } 3150 3151 /* 3152 * Free a list of 0-order pages 3153 */ 3154 void free_unref_page_list(struct list_head *list) 3155 { 3156 struct page *page, *next; 3157 unsigned long flags, pfn; 3158 int batch_count = 0; 3159 3160 /* Prepare pages for freeing */ 3161 list_for_each_entry_safe(page, next, list, lru) { 3162 pfn = page_to_pfn(page); 3163 if (!free_unref_page_prepare(page, pfn)) 3164 list_del(&page->lru); 3165 set_page_private(page, pfn); 3166 } 3167 3168 local_irq_save(flags); 3169 list_for_each_entry_safe(page, next, list, lru) { 3170 unsigned long pfn = page_private(page); 3171 3172 set_page_private(page, 0); 3173 trace_mm_page_free_batched(page); 3174 free_unref_page_commit(page, pfn); 3175 3176 /* 3177 * Guard against excessive IRQ disabled times when we get 3178 * a large list of pages to free. 3179 */ 3180 if (++batch_count == SWAP_CLUSTER_MAX) { 3181 local_irq_restore(flags); 3182 batch_count = 0; 3183 local_irq_save(flags); 3184 } 3185 } 3186 local_irq_restore(flags); 3187 } 3188 3189 /* 3190 * split_page takes a non-compound higher-order page, and splits it into 3191 * n (1<<order) sub-pages: page[0..n] 3192 * Each sub-page must be freed individually. 3193 * 3194 * Note: this is probably too low level an operation for use in drivers. 3195 * Please consult with lkml before using this in your driver. 3196 */ 3197 void split_page(struct page *page, unsigned int order) 3198 { 3199 int i; 3200 3201 VM_BUG_ON_PAGE(PageCompound(page), page); 3202 VM_BUG_ON_PAGE(!page_count(page), page); 3203 3204 for (i = 1; i < (1 << order); i++) 3205 set_page_refcounted(page + i); 3206 split_page_owner(page, order); 3207 } 3208 EXPORT_SYMBOL_GPL(split_page); 3209 3210 int __isolate_free_page(struct page *page, unsigned int order) 3211 { 3212 unsigned long watermark; 3213 struct zone *zone; 3214 int mt; 3215 3216 BUG_ON(!PageBuddy(page)); 3217 3218 zone = page_zone(page); 3219 mt = get_pageblock_migratetype(page); 3220 3221 if (!is_migrate_isolate(mt)) { 3222 /* 3223 * Obey watermarks as if the page was being allocated. We can 3224 * emulate a high-order watermark check with a raised order-0 3225 * watermark, because we already know our high-order page 3226 * exists. 3227 */ 3228 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3229 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3230 return 0; 3231 3232 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3233 } 3234 3235 /* Remove page from free list */ 3236 3237 del_page_from_free_list(page, zone, order); 3238 3239 /* 3240 * Set the pageblock if the isolated page is at least half of a 3241 * pageblock 3242 */ 3243 if (order >= pageblock_order - 1) { 3244 struct page *endpage = page + (1 << order) - 1; 3245 for (; page < endpage; page += pageblock_nr_pages) { 3246 int mt = get_pageblock_migratetype(page); 3247 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3248 && !is_migrate_highatomic(mt)) 3249 set_pageblock_migratetype(page, 3250 MIGRATE_MOVABLE); 3251 } 3252 } 3253 3254 3255 return 1UL << order; 3256 } 3257 3258 /** 3259 * __putback_isolated_page - Return a now-isolated page back where we got it 3260 * @page: Page that was isolated 3261 * @order: Order of the isolated page 3262 * @mt: The page's pageblock's migratetype 3263 * 3264 * This function is meant to return a page pulled from the free lists via 3265 * __isolate_free_page back to the free lists they were pulled from. 3266 */ 3267 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3268 { 3269 struct zone *zone = page_zone(page); 3270 3271 /* zone lock should be held when this function is called */ 3272 lockdep_assert_held(&zone->lock); 3273 3274 /* Return isolated page to tail of freelist. */ 3275 __free_one_page(page, page_to_pfn(page), zone, order, mt, false); 3276 } 3277 3278 /* 3279 * Update NUMA hit/miss statistics 3280 * 3281 * Must be called with interrupts disabled. 3282 */ 3283 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3284 { 3285 #ifdef CONFIG_NUMA 3286 enum numa_stat_item local_stat = NUMA_LOCAL; 3287 3288 /* skip numa counters update if numa stats is disabled */ 3289 if (!static_branch_likely(&vm_numa_stat_key)) 3290 return; 3291 3292 if (zone_to_nid(z) != numa_node_id()) 3293 local_stat = NUMA_OTHER; 3294 3295 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3296 __inc_numa_state(z, NUMA_HIT); 3297 else { 3298 __inc_numa_state(z, NUMA_MISS); 3299 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3300 } 3301 __inc_numa_state(z, local_stat); 3302 #endif 3303 } 3304 3305 /* Remove page from the per-cpu list, caller must protect the list */ 3306 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3307 unsigned int alloc_flags, 3308 struct per_cpu_pages *pcp, 3309 struct list_head *list) 3310 { 3311 struct page *page; 3312 3313 do { 3314 if (list_empty(list)) { 3315 pcp->count += rmqueue_bulk(zone, 0, 3316 pcp->batch, list, 3317 migratetype, alloc_flags); 3318 if (unlikely(list_empty(list))) 3319 return NULL; 3320 } 3321 3322 page = list_first_entry(list, struct page, lru); 3323 list_del(&page->lru); 3324 pcp->count--; 3325 } while (check_new_pcp(page)); 3326 3327 return page; 3328 } 3329 3330 /* Lock and remove page from the per-cpu list */ 3331 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3332 struct zone *zone, gfp_t gfp_flags, 3333 int migratetype, unsigned int alloc_flags) 3334 { 3335 struct per_cpu_pages *pcp; 3336 struct list_head *list; 3337 struct page *page; 3338 unsigned long flags; 3339 3340 local_irq_save(flags); 3341 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3342 list = &pcp->lists[migratetype]; 3343 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3344 if (page) { 3345 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3346 zone_statistics(preferred_zone, zone); 3347 } 3348 local_irq_restore(flags); 3349 return page; 3350 } 3351 3352 /* 3353 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3354 */ 3355 static inline 3356 struct page *rmqueue(struct zone *preferred_zone, 3357 struct zone *zone, unsigned int order, 3358 gfp_t gfp_flags, unsigned int alloc_flags, 3359 int migratetype) 3360 { 3361 unsigned long flags; 3362 struct page *page; 3363 3364 if (likely(order == 0)) { 3365 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3366 migratetype, alloc_flags); 3367 goto out; 3368 } 3369 3370 /* 3371 * We most definitely don't want callers attempting to 3372 * allocate greater than order-1 page units with __GFP_NOFAIL. 3373 */ 3374 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3375 spin_lock_irqsave(&zone->lock, flags); 3376 3377 do { 3378 page = NULL; 3379 if (alloc_flags & ALLOC_HARDER) { 3380 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3381 if (page) 3382 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3383 } 3384 if (!page) 3385 page = __rmqueue(zone, order, migratetype, alloc_flags); 3386 } while (page && check_new_pages(page, order)); 3387 spin_unlock(&zone->lock); 3388 if (!page) 3389 goto failed; 3390 __mod_zone_freepage_state(zone, -(1 << order), 3391 get_pcppage_migratetype(page)); 3392 3393 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3394 zone_statistics(preferred_zone, zone); 3395 local_irq_restore(flags); 3396 3397 out: 3398 /* Separate test+clear to avoid unnecessary atomics */ 3399 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3400 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3401 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3402 } 3403 3404 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3405 return page; 3406 3407 failed: 3408 local_irq_restore(flags); 3409 return NULL; 3410 } 3411 3412 #ifdef CONFIG_FAIL_PAGE_ALLOC 3413 3414 static struct { 3415 struct fault_attr attr; 3416 3417 bool ignore_gfp_highmem; 3418 bool ignore_gfp_reclaim; 3419 u32 min_order; 3420 } fail_page_alloc = { 3421 .attr = FAULT_ATTR_INITIALIZER, 3422 .ignore_gfp_reclaim = true, 3423 .ignore_gfp_highmem = true, 3424 .min_order = 1, 3425 }; 3426 3427 static int __init setup_fail_page_alloc(char *str) 3428 { 3429 return setup_fault_attr(&fail_page_alloc.attr, str); 3430 } 3431 __setup("fail_page_alloc=", setup_fail_page_alloc); 3432 3433 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3434 { 3435 if (order < fail_page_alloc.min_order) 3436 return false; 3437 if (gfp_mask & __GFP_NOFAIL) 3438 return false; 3439 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3440 return false; 3441 if (fail_page_alloc.ignore_gfp_reclaim && 3442 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3443 return false; 3444 3445 return should_fail(&fail_page_alloc.attr, 1 << order); 3446 } 3447 3448 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3449 3450 static int __init fail_page_alloc_debugfs(void) 3451 { 3452 umode_t mode = S_IFREG | 0600; 3453 struct dentry *dir; 3454 3455 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3456 &fail_page_alloc.attr); 3457 3458 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3459 &fail_page_alloc.ignore_gfp_reclaim); 3460 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3461 &fail_page_alloc.ignore_gfp_highmem); 3462 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3463 3464 return 0; 3465 } 3466 3467 late_initcall(fail_page_alloc_debugfs); 3468 3469 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3470 3471 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3472 3473 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3474 { 3475 return false; 3476 } 3477 3478 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3479 3480 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3481 { 3482 return __should_fail_alloc_page(gfp_mask, order); 3483 } 3484 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3485 3486 static inline long __zone_watermark_unusable_free(struct zone *z, 3487 unsigned int order, unsigned int alloc_flags) 3488 { 3489 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3490 long unusable_free = (1 << order) - 1; 3491 3492 /* 3493 * If the caller does not have rights to ALLOC_HARDER then subtract 3494 * the high-atomic reserves. This will over-estimate the size of the 3495 * atomic reserve but it avoids a search. 3496 */ 3497 if (likely(!alloc_harder)) 3498 unusable_free += z->nr_reserved_highatomic; 3499 3500 #ifdef CONFIG_CMA 3501 /* If allocation can't use CMA areas don't use free CMA pages */ 3502 if (!(alloc_flags & ALLOC_CMA)) 3503 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3504 #endif 3505 3506 return unusable_free; 3507 } 3508 3509 /* 3510 * Return true if free base pages are above 'mark'. For high-order checks it 3511 * will return true of the order-0 watermark is reached and there is at least 3512 * one free page of a suitable size. Checking now avoids taking the zone lock 3513 * to check in the allocation paths if no pages are free. 3514 */ 3515 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3516 int highest_zoneidx, unsigned int alloc_flags, 3517 long free_pages) 3518 { 3519 long min = mark; 3520 int o; 3521 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3522 3523 /* free_pages may go negative - that's OK */ 3524 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3525 3526 if (alloc_flags & ALLOC_HIGH) 3527 min -= min / 2; 3528 3529 if (unlikely(alloc_harder)) { 3530 /* 3531 * OOM victims can try even harder than normal ALLOC_HARDER 3532 * users on the grounds that it's definitely going to be in 3533 * the exit path shortly and free memory. Any allocation it 3534 * makes during the free path will be small and short-lived. 3535 */ 3536 if (alloc_flags & ALLOC_OOM) 3537 min -= min / 2; 3538 else 3539 min -= min / 4; 3540 } 3541 3542 /* 3543 * Check watermarks for an order-0 allocation request. If these 3544 * are not met, then a high-order request also cannot go ahead 3545 * even if a suitable page happened to be free. 3546 */ 3547 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3548 return false; 3549 3550 /* If this is an order-0 request then the watermark is fine */ 3551 if (!order) 3552 return true; 3553 3554 /* For a high-order request, check at least one suitable page is free */ 3555 for (o = order; o < MAX_ORDER; o++) { 3556 struct free_area *area = &z->free_area[o]; 3557 int mt; 3558 3559 if (!area->nr_free) 3560 continue; 3561 3562 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3563 if (!free_area_empty(area, mt)) 3564 return true; 3565 } 3566 3567 #ifdef CONFIG_CMA 3568 if ((alloc_flags & ALLOC_CMA) && 3569 !free_area_empty(area, MIGRATE_CMA)) { 3570 return true; 3571 } 3572 #endif 3573 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3574 return true; 3575 } 3576 return false; 3577 } 3578 3579 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3580 int highest_zoneidx, unsigned int alloc_flags) 3581 { 3582 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3583 zone_page_state(z, NR_FREE_PAGES)); 3584 } 3585 3586 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3587 unsigned long mark, int highest_zoneidx, 3588 unsigned int alloc_flags, gfp_t gfp_mask) 3589 { 3590 long free_pages; 3591 3592 free_pages = zone_page_state(z, NR_FREE_PAGES); 3593 3594 /* 3595 * Fast check for order-0 only. If this fails then the reserves 3596 * need to be calculated. 3597 */ 3598 if (!order) { 3599 long fast_free; 3600 3601 fast_free = free_pages; 3602 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3603 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3604 return true; 3605 } 3606 3607 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3608 free_pages)) 3609 return true; 3610 /* 3611 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3612 * when checking the min watermark. The min watermark is the 3613 * point where boosting is ignored so that kswapd is woken up 3614 * when below the low watermark. 3615 */ 3616 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3617 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3618 mark = z->_watermark[WMARK_MIN]; 3619 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3620 alloc_flags, free_pages); 3621 } 3622 3623 return false; 3624 } 3625 3626 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3627 unsigned long mark, int highest_zoneidx) 3628 { 3629 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3630 3631 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3632 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3633 3634 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3635 free_pages); 3636 } 3637 3638 #ifdef CONFIG_NUMA 3639 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3640 { 3641 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3642 node_reclaim_distance; 3643 } 3644 #else /* CONFIG_NUMA */ 3645 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3646 { 3647 return true; 3648 } 3649 #endif /* CONFIG_NUMA */ 3650 3651 /* 3652 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3653 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3654 * premature use of a lower zone may cause lowmem pressure problems that 3655 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3656 * probably too small. It only makes sense to spread allocations to avoid 3657 * fragmentation between the Normal and DMA32 zones. 3658 */ 3659 static inline unsigned int 3660 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3661 { 3662 unsigned int alloc_flags; 3663 3664 /* 3665 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3666 * to save a branch. 3667 */ 3668 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3669 3670 #ifdef CONFIG_ZONE_DMA32 3671 if (!zone) 3672 return alloc_flags; 3673 3674 if (zone_idx(zone) != ZONE_NORMAL) 3675 return alloc_flags; 3676 3677 /* 3678 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3679 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3680 * on UMA that if Normal is populated then so is DMA32. 3681 */ 3682 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3683 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3684 return alloc_flags; 3685 3686 alloc_flags |= ALLOC_NOFRAGMENT; 3687 #endif /* CONFIG_ZONE_DMA32 */ 3688 return alloc_flags; 3689 } 3690 3691 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3692 unsigned int alloc_flags) 3693 { 3694 #ifdef CONFIG_CMA 3695 unsigned int pflags = current->flags; 3696 3697 if (!(pflags & PF_MEMALLOC_NOCMA) && 3698 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3699 alloc_flags |= ALLOC_CMA; 3700 3701 #endif 3702 return alloc_flags; 3703 } 3704 3705 /* 3706 * get_page_from_freelist goes through the zonelist trying to allocate 3707 * a page. 3708 */ 3709 static struct page * 3710 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3711 const struct alloc_context *ac) 3712 { 3713 struct zoneref *z; 3714 struct zone *zone; 3715 struct pglist_data *last_pgdat_dirty_limit = NULL; 3716 bool no_fallback; 3717 3718 retry: 3719 /* 3720 * Scan zonelist, looking for a zone with enough free. 3721 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3722 */ 3723 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3724 z = ac->preferred_zoneref; 3725 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, 3726 ac->highest_zoneidx, ac->nodemask) { 3727 struct page *page; 3728 unsigned long mark; 3729 3730 if (cpusets_enabled() && 3731 (alloc_flags & ALLOC_CPUSET) && 3732 !__cpuset_zone_allowed(zone, gfp_mask)) 3733 continue; 3734 /* 3735 * When allocating a page cache page for writing, we 3736 * want to get it from a node that is within its dirty 3737 * limit, such that no single node holds more than its 3738 * proportional share of globally allowed dirty pages. 3739 * The dirty limits take into account the node's 3740 * lowmem reserves and high watermark so that kswapd 3741 * should be able to balance it without having to 3742 * write pages from its LRU list. 3743 * 3744 * XXX: For now, allow allocations to potentially 3745 * exceed the per-node dirty limit in the slowpath 3746 * (spread_dirty_pages unset) before going into reclaim, 3747 * which is important when on a NUMA setup the allowed 3748 * nodes are together not big enough to reach the 3749 * global limit. The proper fix for these situations 3750 * will require awareness of nodes in the 3751 * dirty-throttling and the flusher threads. 3752 */ 3753 if (ac->spread_dirty_pages) { 3754 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3755 continue; 3756 3757 if (!node_dirty_ok(zone->zone_pgdat)) { 3758 last_pgdat_dirty_limit = zone->zone_pgdat; 3759 continue; 3760 } 3761 } 3762 3763 if (no_fallback && nr_online_nodes > 1 && 3764 zone != ac->preferred_zoneref->zone) { 3765 int local_nid; 3766 3767 /* 3768 * If moving to a remote node, retry but allow 3769 * fragmenting fallbacks. Locality is more important 3770 * than fragmentation avoidance. 3771 */ 3772 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3773 if (zone_to_nid(zone) != local_nid) { 3774 alloc_flags &= ~ALLOC_NOFRAGMENT; 3775 goto retry; 3776 } 3777 } 3778 3779 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3780 if (!zone_watermark_fast(zone, order, mark, 3781 ac->highest_zoneidx, alloc_flags, 3782 gfp_mask)) { 3783 int ret; 3784 3785 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3786 /* 3787 * Watermark failed for this zone, but see if we can 3788 * grow this zone if it contains deferred pages. 3789 */ 3790 if (static_branch_unlikely(&deferred_pages)) { 3791 if (_deferred_grow_zone(zone, order)) 3792 goto try_this_zone; 3793 } 3794 #endif 3795 /* Checked here to keep the fast path fast */ 3796 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3797 if (alloc_flags & ALLOC_NO_WATERMARKS) 3798 goto try_this_zone; 3799 3800 if (node_reclaim_mode == 0 || 3801 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3802 continue; 3803 3804 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3805 switch (ret) { 3806 case NODE_RECLAIM_NOSCAN: 3807 /* did not scan */ 3808 continue; 3809 case NODE_RECLAIM_FULL: 3810 /* scanned but unreclaimable */ 3811 continue; 3812 default: 3813 /* did we reclaim enough */ 3814 if (zone_watermark_ok(zone, order, mark, 3815 ac->highest_zoneidx, alloc_flags)) 3816 goto try_this_zone; 3817 3818 continue; 3819 } 3820 } 3821 3822 try_this_zone: 3823 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3824 gfp_mask, alloc_flags, ac->migratetype); 3825 if (page) { 3826 prep_new_page(page, order, gfp_mask, alloc_flags); 3827 3828 /* 3829 * If this is a high-order atomic allocation then check 3830 * if the pageblock should be reserved for the future 3831 */ 3832 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3833 reserve_highatomic_pageblock(page, zone, order); 3834 3835 return page; 3836 } else { 3837 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3838 /* Try again if zone has deferred pages */ 3839 if (static_branch_unlikely(&deferred_pages)) { 3840 if (_deferred_grow_zone(zone, order)) 3841 goto try_this_zone; 3842 } 3843 #endif 3844 } 3845 } 3846 3847 /* 3848 * It's possible on a UMA machine to get through all zones that are 3849 * fragmented. If avoiding fragmentation, reset and try again. 3850 */ 3851 if (no_fallback) { 3852 alloc_flags &= ~ALLOC_NOFRAGMENT; 3853 goto retry; 3854 } 3855 3856 return NULL; 3857 } 3858 3859 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3860 { 3861 unsigned int filter = SHOW_MEM_FILTER_NODES; 3862 3863 /* 3864 * This documents exceptions given to allocations in certain 3865 * contexts that are allowed to allocate outside current's set 3866 * of allowed nodes. 3867 */ 3868 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3869 if (tsk_is_oom_victim(current) || 3870 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3871 filter &= ~SHOW_MEM_FILTER_NODES; 3872 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3873 filter &= ~SHOW_MEM_FILTER_NODES; 3874 3875 show_mem(filter, nodemask); 3876 } 3877 3878 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3879 { 3880 struct va_format vaf; 3881 va_list args; 3882 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3883 3884 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3885 return; 3886 3887 va_start(args, fmt); 3888 vaf.fmt = fmt; 3889 vaf.va = &args; 3890 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3891 current->comm, &vaf, gfp_mask, &gfp_mask, 3892 nodemask_pr_args(nodemask)); 3893 va_end(args); 3894 3895 cpuset_print_current_mems_allowed(); 3896 pr_cont("\n"); 3897 dump_stack(); 3898 warn_alloc_show_mem(gfp_mask, nodemask); 3899 } 3900 3901 static inline struct page * 3902 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3903 unsigned int alloc_flags, 3904 const struct alloc_context *ac) 3905 { 3906 struct page *page; 3907 3908 page = get_page_from_freelist(gfp_mask, order, 3909 alloc_flags|ALLOC_CPUSET, ac); 3910 /* 3911 * fallback to ignore cpuset restriction if our nodes 3912 * are depleted 3913 */ 3914 if (!page) 3915 page = get_page_from_freelist(gfp_mask, order, 3916 alloc_flags, ac); 3917 3918 return page; 3919 } 3920 3921 static inline struct page * 3922 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3923 const struct alloc_context *ac, unsigned long *did_some_progress) 3924 { 3925 struct oom_control oc = { 3926 .zonelist = ac->zonelist, 3927 .nodemask = ac->nodemask, 3928 .memcg = NULL, 3929 .gfp_mask = gfp_mask, 3930 .order = order, 3931 }; 3932 struct page *page; 3933 3934 *did_some_progress = 0; 3935 3936 /* 3937 * Acquire the oom lock. If that fails, somebody else is 3938 * making progress for us. 3939 */ 3940 if (!mutex_trylock(&oom_lock)) { 3941 *did_some_progress = 1; 3942 schedule_timeout_uninterruptible(1); 3943 return NULL; 3944 } 3945 3946 /* 3947 * Go through the zonelist yet one more time, keep very high watermark 3948 * here, this is only to catch a parallel oom killing, we must fail if 3949 * we're still under heavy pressure. But make sure that this reclaim 3950 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3951 * allocation which will never fail due to oom_lock already held. 3952 */ 3953 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3954 ~__GFP_DIRECT_RECLAIM, order, 3955 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3956 if (page) 3957 goto out; 3958 3959 /* Coredumps can quickly deplete all memory reserves */ 3960 if (current->flags & PF_DUMPCORE) 3961 goto out; 3962 /* The OOM killer will not help higher order allocs */ 3963 if (order > PAGE_ALLOC_COSTLY_ORDER) 3964 goto out; 3965 /* 3966 * We have already exhausted all our reclaim opportunities without any 3967 * success so it is time to admit defeat. We will skip the OOM killer 3968 * because it is very likely that the caller has a more reasonable 3969 * fallback than shooting a random task. 3970 */ 3971 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3972 goto out; 3973 /* The OOM killer does not needlessly kill tasks for lowmem */ 3974 if (ac->highest_zoneidx < ZONE_NORMAL) 3975 goto out; 3976 if (pm_suspended_storage()) 3977 goto out; 3978 /* 3979 * XXX: GFP_NOFS allocations should rather fail than rely on 3980 * other request to make a forward progress. 3981 * We are in an unfortunate situation where out_of_memory cannot 3982 * do much for this context but let's try it to at least get 3983 * access to memory reserved if the current task is killed (see 3984 * out_of_memory). Once filesystems are ready to handle allocation 3985 * failures more gracefully we should just bail out here. 3986 */ 3987 3988 /* The OOM killer may not free memory on a specific node */ 3989 if (gfp_mask & __GFP_THISNODE) 3990 goto out; 3991 3992 /* Exhausted what can be done so it's blame time */ 3993 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3994 *did_some_progress = 1; 3995 3996 /* 3997 * Help non-failing allocations by giving them access to memory 3998 * reserves 3999 */ 4000 if (gfp_mask & __GFP_NOFAIL) 4001 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4002 ALLOC_NO_WATERMARKS, ac); 4003 } 4004 out: 4005 mutex_unlock(&oom_lock); 4006 return page; 4007 } 4008 4009 /* 4010 * Maximum number of compaction retries wit a progress before OOM 4011 * killer is consider as the only way to move forward. 4012 */ 4013 #define MAX_COMPACT_RETRIES 16 4014 4015 #ifdef CONFIG_COMPACTION 4016 /* Try memory compaction for high-order allocations before reclaim */ 4017 static struct page * 4018 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4019 unsigned int alloc_flags, const struct alloc_context *ac, 4020 enum compact_priority prio, enum compact_result *compact_result) 4021 { 4022 struct page *page = NULL; 4023 unsigned long pflags; 4024 unsigned int noreclaim_flag; 4025 4026 if (!order) 4027 return NULL; 4028 4029 psi_memstall_enter(&pflags); 4030 noreclaim_flag = memalloc_noreclaim_save(); 4031 4032 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4033 prio, &page); 4034 4035 memalloc_noreclaim_restore(noreclaim_flag); 4036 psi_memstall_leave(&pflags); 4037 4038 /* 4039 * At least in one zone compaction wasn't deferred or skipped, so let's 4040 * count a compaction stall 4041 */ 4042 count_vm_event(COMPACTSTALL); 4043 4044 /* Prep a captured page if available */ 4045 if (page) 4046 prep_new_page(page, order, gfp_mask, alloc_flags); 4047 4048 /* Try get a page from the freelist if available */ 4049 if (!page) 4050 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4051 4052 if (page) { 4053 struct zone *zone = page_zone(page); 4054 4055 zone->compact_blockskip_flush = false; 4056 compaction_defer_reset(zone, order, true); 4057 count_vm_event(COMPACTSUCCESS); 4058 return page; 4059 } 4060 4061 /* 4062 * It's bad if compaction run occurs and fails. The most likely reason 4063 * is that pages exist, but not enough to satisfy watermarks. 4064 */ 4065 count_vm_event(COMPACTFAIL); 4066 4067 cond_resched(); 4068 4069 return NULL; 4070 } 4071 4072 static inline bool 4073 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4074 enum compact_result compact_result, 4075 enum compact_priority *compact_priority, 4076 int *compaction_retries) 4077 { 4078 int max_retries = MAX_COMPACT_RETRIES; 4079 int min_priority; 4080 bool ret = false; 4081 int retries = *compaction_retries; 4082 enum compact_priority priority = *compact_priority; 4083 4084 if (!order) 4085 return false; 4086 4087 if (compaction_made_progress(compact_result)) 4088 (*compaction_retries)++; 4089 4090 /* 4091 * compaction considers all the zone as desperately out of memory 4092 * so it doesn't really make much sense to retry except when the 4093 * failure could be caused by insufficient priority 4094 */ 4095 if (compaction_failed(compact_result)) 4096 goto check_priority; 4097 4098 /* 4099 * compaction was skipped because there are not enough order-0 pages 4100 * to work with, so we retry only if it looks like reclaim can help. 4101 */ 4102 if (compaction_needs_reclaim(compact_result)) { 4103 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4104 goto out; 4105 } 4106 4107 /* 4108 * make sure the compaction wasn't deferred or didn't bail out early 4109 * due to locks contention before we declare that we should give up. 4110 * But the next retry should use a higher priority if allowed, so 4111 * we don't just keep bailing out endlessly. 4112 */ 4113 if (compaction_withdrawn(compact_result)) { 4114 goto check_priority; 4115 } 4116 4117 /* 4118 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4119 * costly ones because they are de facto nofail and invoke OOM 4120 * killer to move on while costly can fail and users are ready 4121 * to cope with that. 1/4 retries is rather arbitrary but we 4122 * would need much more detailed feedback from compaction to 4123 * make a better decision. 4124 */ 4125 if (order > PAGE_ALLOC_COSTLY_ORDER) 4126 max_retries /= 4; 4127 if (*compaction_retries <= max_retries) { 4128 ret = true; 4129 goto out; 4130 } 4131 4132 /* 4133 * Make sure there are attempts at the highest priority if we exhausted 4134 * all retries or failed at the lower priorities. 4135 */ 4136 check_priority: 4137 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4138 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4139 4140 if (*compact_priority > min_priority) { 4141 (*compact_priority)--; 4142 *compaction_retries = 0; 4143 ret = true; 4144 } 4145 out: 4146 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4147 return ret; 4148 } 4149 #else 4150 static inline struct page * 4151 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4152 unsigned int alloc_flags, const struct alloc_context *ac, 4153 enum compact_priority prio, enum compact_result *compact_result) 4154 { 4155 *compact_result = COMPACT_SKIPPED; 4156 return NULL; 4157 } 4158 4159 static inline bool 4160 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4161 enum compact_result compact_result, 4162 enum compact_priority *compact_priority, 4163 int *compaction_retries) 4164 { 4165 struct zone *zone; 4166 struct zoneref *z; 4167 4168 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4169 return false; 4170 4171 /* 4172 * There are setups with compaction disabled which would prefer to loop 4173 * inside the allocator rather than hit the oom killer prematurely. 4174 * Let's give them a good hope and keep retrying while the order-0 4175 * watermarks are OK. 4176 */ 4177 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4178 ac->highest_zoneidx, ac->nodemask) { 4179 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4180 ac->highest_zoneidx, alloc_flags)) 4181 return true; 4182 } 4183 return false; 4184 } 4185 #endif /* CONFIG_COMPACTION */ 4186 4187 #ifdef CONFIG_LOCKDEP 4188 static struct lockdep_map __fs_reclaim_map = 4189 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4190 4191 static bool __need_fs_reclaim(gfp_t gfp_mask) 4192 { 4193 gfp_mask = current_gfp_context(gfp_mask); 4194 4195 /* no reclaim without waiting on it */ 4196 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4197 return false; 4198 4199 /* this guy won't enter reclaim */ 4200 if (current->flags & PF_MEMALLOC) 4201 return false; 4202 4203 /* We're only interested __GFP_FS allocations for now */ 4204 if (!(gfp_mask & __GFP_FS)) 4205 return false; 4206 4207 if (gfp_mask & __GFP_NOLOCKDEP) 4208 return false; 4209 4210 return true; 4211 } 4212 4213 void __fs_reclaim_acquire(void) 4214 { 4215 lock_map_acquire(&__fs_reclaim_map); 4216 } 4217 4218 void __fs_reclaim_release(void) 4219 { 4220 lock_map_release(&__fs_reclaim_map); 4221 } 4222 4223 void fs_reclaim_acquire(gfp_t gfp_mask) 4224 { 4225 if (__need_fs_reclaim(gfp_mask)) 4226 __fs_reclaim_acquire(); 4227 } 4228 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4229 4230 void fs_reclaim_release(gfp_t gfp_mask) 4231 { 4232 if (__need_fs_reclaim(gfp_mask)) 4233 __fs_reclaim_release(); 4234 } 4235 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4236 #endif 4237 4238 /* Perform direct synchronous page reclaim */ 4239 static int 4240 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4241 const struct alloc_context *ac) 4242 { 4243 int progress; 4244 unsigned int noreclaim_flag; 4245 unsigned long pflags; 4246 4247 cond_resched(); 4248 4249 /* We now go into synchronous reclaim */ 4250 cpuset_memory_pressure_bump(); 4251 psi_memstall_enter(&pflags); 4252 fs_reclaim_acquire(gfp_mask); 4253 noreclaim_flag = memalloc_noreclaim_save(); 4254 4255 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4256 ac->nodemask); 4257 4258 memalloc_noreclaim_restore(noreclaim_flag); 4259 fs_reclaim_release(gfp_mask); 4260 psi_memstall_leave(&pflags); 4261 4262 cond_resched(); 4263 4264 return progress; 4265 } 4266 4267 /* The really slow allocator path where we enter direct reclaim */ 4268 static inline struct page * 4269 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4270 unsigned int alloc_flags, const struct alloc_context *ac, 4271 unsigned long *did_some_progress) 4272 { 4273 struct page *page = NULL; 4274 bool drained = false; 4275 4276 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4277 if (unlikely(!(*did_some_progress))) 4278 return NULL; 4279 4280 retry: 4281 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4282 4283 /* 4284 * If an allocation failed after direct reclaim, it could be because 4285 * pages are pinned on the per-cpu lists or in high alloc reserves. 4286 * Shrink them and try again 4287 */ 4288 if (!page && !drained) { 4289 unreserve_highatomic_pageblock(ac, false); 4290 drain_all_pages(NULL); 4291 drained = true; 4292 goto retry; 4293 } 4294 4295 return page; 4296 } 4297 4298 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4299 const struct alloc_context *ac) 4300 { 4301 struct zoneref *z; 4302 struct zone *zone; 4303 pg_data_t *last_pgdat = NULL; 4304 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4305 4306 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4307 ac->nodemask) { 4308 if (last_pgdat != zone->zone_pgdat) 4309 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4310 last_pgdat = zone->zone_pgdat; 4311 } 4312 } 4313 4314 static inline unsigned int 4315 gfp_to_alloc_flags(gfp_t gfp_mask) 4316 { 4317 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4318 4319 /* 4320 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4321 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4322 * to save two branches. 4323 */ 4324 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4325 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4326 4327 /* 4328 * The caller may dip into page reserves a bit more if the caller 4329 * cannot run direct reclaim, or if the caller has realtime scheduling 4330 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4331 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4332 */ 4333 alloc_flags |= (__force int) 4334 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4335 4336 if (gfp_mask & __GFP_ATOMIC) { 4337 /* 4338 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4339 * if it can't schedule. 4340 */ 4341 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4342 alloc_flags |= ALLOC_HARDER; 4343 /* 4344 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4345 * comment for __cpuset_node_allowed(). 4346 */ 4347 alloc_flags &= ~ALLOC_CPUSET; 4348 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4349 alloc_flags |= ALLOC_HARDER; 4350 4351 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4352 4353 return alloc_flags; 4354 } 4355 4356 static bool oom_reserves_allowed(struct task_struct *tsk) 4357 { 4358 if (!tsk_is_oom_victim(tsk)) 4359 return false; 4360 4361 /* 4362 * !MMU doesn't have oom reaper so give access to memory reserves 4363 * only to the thread with TIF_MEMDIE set 4364 */ 4365 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4366 return false; 4367 4368 return true; 4369 } 4370 4371 /* 4372 * Distinguish requests which really need access to full memory 4373 * reserves from oom victims which can live with a portion of it 4374 */ 4375 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4376 { 4377 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4378 return 0; 4379 if (gfp_mask & __GFP_MEMALLOC) 4380 return ALLOC_NO_WATERMARKS; 4381 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4382 return ALLOC_NO_WATERMARKS; 4383 if (!in_interrupt()) { 4384 if (current->flags & PF_MEMALLOC) 4385 return ALLOC_NO_WATERMARKS; 4386 else if (oom_reserves_allowed(current)) 4387 return ALLOC_OOM; 4388 } 4389 4390 return 0; 4391 } 4392 4393 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4394 { 4395 return !!__gfp_pfmemalloc_flags(gfp_mask); 4396 } 4397 4398 /* 4399 * Checks whether it makes sense to retry the reclaim to make a forward progress 4400 * for the given allocation request. 4401 * 4402 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4403 * without success, or when we couldn't even meet the watermark if we 4404 * reclaimed all remaining pages on the LRU lists. 4405 * 4406 * Returns true if a retry is viable or false to enter the oom path. 4407 */ 4408 static inline bool 4409 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4410 struct alloc_context *ac, int alloc_flags, 4411 bool did_some_progress, int *no_progress_loops) 4412 { 4413 struct zone *zone; 4414 struct zoneref *z; 4415 bool ret = false; 4416 4417 /* 4418 * Costly allocations might have made a progress but this doesn't mean 4419 * their order will become available due to high fragmentation so 4420 * always increment the no progress counter for them 4421 */ 4422 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4423 *no_progress_loops = 0; 4424 else 4425 (*no_progress_loops)++; 4426 4427 /* 4428 * Make sure we converge to OOM if we cannot make any progress 4429 * several times in the row. 4430 */ 4431 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4432 /* Before OOM, exhaust highatomic_reserve */ 4433 return unreserve_highatomic_pageblock(ac, true); 4434 } 4435 4436 /* 4437 * Keep reclaiming pages while there is a chance this will lead 4438 * somewhere. If none of the target zones can satisfy our allocation 4439 * request even if all reclaimable pages are considered then we are 4440 * screwed and have to go OOM. 4441 */ 4442 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4443 ac->highest_zoneidx, ac->nodemask) { 4444 unsigned long available; 4445 unsigned long reclaimable; 4446 unsigned long min_wmark = min_wmark_pages(zone); 4447 bool wmark; 4448 4449 available = reclaimable = zone_reclaimable_pages(zone); 4450 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4451 4452 /* 4453 * Would the allocation succeed if we reclaimed all 4454 * reclaimable pages? 4455 */ 4456 wmark = __zone_watermark_ok(zone, order, min_wmark, 4457 ac->highest_zoneidx, alloc_flags, available); 4458 trace_reclaim_retry_zone(z, order, reclaimable, 4459 available, min_wmark, *no_progress_loops, wmark); 4460 if (wmark) { 4461 /* 4462 * If we didn't make any progress and have a lot of 4463 * dirty + writeback pages then we should wait for 4464 * an IO to complete to slow down the reclaim and 4465 * prevent from pre mature OOM 4466 */ 4467 if (!did_some_progress) { 4468 unsigned long write_pending; 4469 4470 write_pending = zone_page_state_snapshot(zone, 4471 NR_ZONE_WRITE_PENDING); 4472 4473 if (2 * write_pending > reclaimable) { 4474 congestion_wait(BLK_RW_ASYNC, HZ/10); 4475 return true; 4476 } 4477 } 4478 4479 ret = true; 4480 goto out; 4481 } 4482 } 4483 4484 out: 4485 /* 4486 * Memory allocation/reclaim might be called from a WQ context and the 4487 * current implementation of the WQ concurrency control doesn't 4488 * recognize that a particular WQ is congested if the worker thread is 4489 * looping without ever sleeping. Therefore we have to do a short sleep 4490 * here rather than calling cond_resched(). 4491 */ 4492 if (current->flags & PF_WQ_WORKER) 4493 schedule_timeout_uninterruptible(1); 4494 else 4495 cond_resched(); 4496 return ret; 4497 } 4498 4499 static inline bool 4500 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4501 { 4502 /* 4503 * It's possible that cpuset's mems_allowed and the nodemask from 4504 * mempolicy don't intersect. This should be normally dealt with by 4505 * policy_nodemask(), but it's possible to race with cpuset update in 4506 * such a way the check therein was true, and then it became false 4507 * before we got our cpuset_mems_cookie here. 4508 * This assumes that for all allocations, ac->nodemask can come only 4509 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4510 * when it does not intersect with the cpuset restrictions) or the 4511 * caller can deal with a violated nodemask. 4512 */ 4513 if (cpusets_enabled() && ac->nodemask && 4514 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4515 ac->nodemask = NULL; 4516 return true; 4517 } 4518 4519 /* 4520 * When updating a task's mems_allowed or mempolicy nodemask, it is 4521 * possible to race with parallel threads in such a way that our 4522 * allocation can fail while the mask is being updated. If we are about 4523 * to fail, check if the cpuset changed during allocation and if so, 4524 * retry. 4525 */ 4526 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4527 return true; 4528 4529 return false; 4530 } 4531 4532 static inline struct page * 4533 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4534 struct alloc_context *ac) 4535 { 4536 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4537 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4538 struct page *page = NULL; 4539 unsigned int alloc_flags; 4540 unsigned long did_some_progress; 4541 enum compact_priority compact_priority; 4542 enum compact_result compact_result; 4543 int compaction_retries; 4544 int no_progress_loops; 4545 unsigned int cpuset_mems_cookie; 4546 int reserve_flags; 4547 4548 /* 4549 * We also sanity check to catch abuse of atomic reserves being used by 4550 * callers that are not in atomic context. 4551 */ 4552 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4553 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4554 gfp_mask &= ~__GFP_ATOMIC; 4555 4556 retry_cpuset: 4557 compaction_retries = 0; 4558 no_progress_loops = 0; 4559 compact_priority = DEF_COMPACT_PRIORITY; 4560 cpuset_mems_cookie = read_mems_allowed_begin(); 4561 4562 /* 4563 * The fast path uses conservative alloc_flags to succeed only until 4564 * kswapd needs to be woken up, and to avoid the cost of setting up 4565 * alloc_flags precisely. So we do that now. 4566 */ 4567 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4568 4569 /* 4570 * We need to recalculate the starting point for the zonelist iterator 4571 * because we might have used different nodemask in the fast path, or 4572 * there was a cpuset modification and we are retrying - otherwise we 4573 * could end up iterating over non-eligible zones endlessly. 4574 */ 4575 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4576 ac->highest_zoneidx, ac->nodemask); 4577 if (!ac->preferred_zoneref->zone) 4578 goto nopage; 4579 4580 if (alloc_flags & ALLOC_KSWAPD) 4581 wake_all_kswapds(order, gfp_mask, ac); 4582 4583 /* 4584 * The adjusted alloc_flags might result in immediate success, so try 4585 * that first 4586 */ 4587 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4588 if (page) 4589 goto got_pg; 4590 4591 /* 4592 * For costly allocations, try direct compaction first, as it's likely 4593 * that we have enough base pages and don't need to reclaim. For non- 4594 * movable high-order allocations, do that as well, as compaction will 4595 * try prevent permanent fragmentation by migrating from blocks of the 4596 * same migratetype. 4597 * Don't try this for allocations that are allowed to ignore 4598 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4599 */ 4600 if (can_direct_reclaim && 4601 (costly_order || 4602 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4603 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4604 page = __alloc_pages_direct_compact(gfp_mask, order, 4605 alloc_flags, ac, 4606 INIT_COMPACT_PRIORITY, 4607 &compact_result); 4608 if (page) 4609 goto got_pg; 4610 4611 /* 4612 * Checks for costly allocations with __GFP_NORETRY, which 4613 * includes some THP page fault allocations 4614 */ 4615 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4616 /* 4617 * If allocating entire pageblock(s) and compaction 4618 * failed because all zones are below low watermarks 4619 * or is prohibited because it recently failed at this 4620 * order, fail immediately unless the allocator has 4621 * requested compaction and reclaim retry. 4622 * 4623 * Reclaim is 4624 * - potentially very expensive because zones are far 4625 * below their low watermarks or this is part of very 4626 * bursty high order allocations, 4627 * - not guaranteed to help because isolate_freepages() 4628 * may not iterate over freed pages as part of its 4629 * linear scan, and 4630 * - unlikely to make entire pageblocks free on its 4631 * own. 4632 */ 4633 if (compact_result == COMPACT_SKIPPED || 4634 compact_result == COMPACT_DEFERRED) 4635 goto nopage; 4636 4637 /* 4638 * Looks like reclaim/compaction is worth trying, but 4639 * sync compaction could be very expensive, so keep 4640 * using async compaction. 4641 */ 4642 compact_priority = INIT_COMPACT_PRIORITY; 4643 } 4644 } 4645 4646 retry: 4647 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4648 if (alloc_flags & ALLOC_KSWAPD) 4649 wake_all_kswapds(order, gfp_mask, ac); 4650 4651 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4652 if (reserve_flags) 4653 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4654 4655 /* 4656 * Reset the nodemask and zonelist iterators if memory policies can be 4657 * ignored. These allocations are high priority and system rather than 4658 * user oriented. 4659 */ 4660 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4661 ac->nodemask = NULL; 4662 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4663 ac->highest_zoneidx, ac->nodemask); 4664 } 4665 4666 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4667 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4668 if (page) 4669 goto got_pg; 4670 4671 /* Caller is not willing to reclaim, we can't balance anything */ 4672 if (!can_direct_reclaim) 4673 goto nopage; 4674 4675 /* Avoid recursion of direct reclaim */ 4676 if (current->flags & PF_MEMALLOC) 4677 goto nopage; 4678 4679 /* Try direct reclaim and then allocating */ 4680 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4681 &did_some_progress); 4682 if (page) 4683 goto got_pg; 4684 4685 /* Try direct compaction and then allocating */ 4686 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4687 compact_priority, &compact_result); 4688 if (page) 4689 goto got_pg; 4690 4691 /* Do not loop if specifically requested */ 4692 if (gfp_mask & __GFP_NORETRY) 4693 goto nopage; 4694 4695 /* 4696 * Do not retry costly high order allocations unless they are 4697 * __GFP_RETRY_MAYFAIL 4698 */ 4699 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4700 goto nopage; 4701 4702 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4703 did_some_progress > 0, &no_progress_loops)) 4704 goto retry; 4705 4706 /* 4707 * It doesn't make any sense to retry for the compaction if the order-0 4708 * reclaim is not able to make any progress because the current 4709 * implementation of the compaction depends on the sufficient amount 4710 * of free memory (see __compaction_suitable) 4711 */ 4712 if (did_some_progress > 0 && 4713 should_compact_retry(ac, order, alloc_flags, 4714 compact_result, &compact_priority, 4715 &compaction_retries)) 4716 goto retry; 4717 4718 4719 /* Deal with possible cpuset update races before we start OOM killing */ 4720 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4721 goto retry_cpuset; 4722 4723 /* Reclaim has failed us, start killing things */ 4724 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4725 if (page) 4726 goto got_pg; 4727 4728 /* Avoid allocations with no watermarks from looping endlessly */ 4729 if (tsk_is_oom_victim(current) && 4730 (alloc_flags & ALLOC_OOM || 4731 (gfp_mask & __GFP_NOMEMALLOC))) 4732 goto nopage; 4733 4734 /* Retry as long as the OOM killer is making progress */ 4735 if (did_some_progress) { 4736 no_progress_loops = 0; 4737 goto retry; 4738 } 4739 4740 nopage: 4741 /* Deal with possible cpuset update races before we fail */ 4742 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4743 goto retry_cpuset; 4744 4745 /* 4746 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4747 * we always retry 4748 */ 4749 if (gfp_mask & __GFP_NOFAIL) { 4750 /* 4751 * All existing users of the __GFP_NOFAIL are blockable, so warn 4752 * of any new users that actually require GFP_NOWAIT 4753 */ 4754 if (WARN_ON_ONCE(!can_direct_reclaim)) 4755 goto fail; 4756 4757 /* 4758 * PF_MEMALLOC request from this context is rather bizarre 4759 * because we cannot reclaim anything and only can loop waiting 4760 * for somebody to do a work for us 4761 */ 4762 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4763 4764 /* 4765 * non failing costly orders are a hard requirement which we 4766 * are not prepared for much so let's warn about these users 4767 * so that we can identify them and convert them to something 4768 * else. 4769 */ 4770 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4771 4772 /* 4773 * Help non-failing allocations by giving them access to memory 4774 * reserves but do not use ALLOC_NO_WATERMARKS because this 4775 * could deplete whole memory reserves which would just make 4776 * the situation worse 4777 */ 4778 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4779 if (page) 4780 goto got_pg; 4781 4782 cond_resched(); 4783 goto retry; 4784 } 4785 fail: 4786 warn_alloc(gfp_mask, ac->nodemask, 4787 "page allocation failure: order:%u", order); 4788 got_pg: 4789 return page; 4790 } 4791 4792 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4793 int preferred_nid, nodemask_t *nodemask, 4794 struct alloc_context *ac, gfp_t *alloc_mask, 4795 unsigned int *alloc_flags) 4796 { 4797 ac->highest_zoneidx = gfp_zone(gfp_mask); 4798 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4799 ac->nodemask = nodemask; 4800 ac->migratetype = gfp_migratetype(gfp_mask); 4801 4802 if (cpusets_enabled()) { 4803 *alloc_mask |= __GFP_HARDWALL; 4804 /* 4805 * When we are in the interrupt context, it is irrelevant 4806 * to the current task context. It means that any node ok. 4807 */ 4808 if (!in_interrupt() && !ac->nodemask) 4809 ac->nodemask = &cpuset_current_mems_allowed; 4810 else 4811 *alloc_flags |= ALLOC_CPUSET; 4812 } 4813 4814 fs_reclaim_acquire(gfp_mask); 4815 fs_reclaim_release(gfp_mask); 4816 4817 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4818 4819 if (should_fail_alloc_page(gfp_mask, order)) 4820 return false; 4821 4822 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4823 4824 return true; 4825 } 4826 4827 /* Determine whether to spread dirty pages and what the first usable zone */ 4828 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4829 { 4830 /* Dirty zone balancing only done in the fast path */ 4831 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4832 4833 /* 4834 * The preferred zone is used for statistics but crucially it is 4835 * also used as the starting point for the zonelist iterator. It 4836 * may get reset for allocations that ignore memory policies. 4837 */ 4838 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4839 ac->highest_zoneidx, ac->nodemask); 4840 } 4841 4842 /* 4843 * This is the 'heart' of the zoned buddy allocator. 4844 */ 4845 struct page * 4846 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4847 nodemask_t *nodemask) 4848 { 4849 struct page *page; 4850 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4851 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4852 struct alloc_context ac = { }; 4853 4854 /* 4855 * There are several places where we assume that the order value is sane 4856 * so bail out early if the request is out of bound. 4857 */ 4858 if (unlikely(order >= MAX_ORDER)) { 4859 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4860 return NULL; 4861 } 4862 4863 gfp_mask &= gfp_allowed_mask; 4864 alloc_mask = gfp_mask; 4865 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4866 return NULL; 4867 4868 finalise_ac(gfp_mask, &ac); 4869 4870 /* 4871 * Forbid the first pass from falling back to types that fragment 4872 * memory until all local zones are considered. 4873 */ 4874 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4875 4876 /* First allocation attempt */ 4877 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4878 if (likely(page)) 4879 goto out; 4880 4881 /* 4882 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4883 * resp. GFP_NOIO which has to be inherited for all allocation requests 4884 * from a particular context which has been marked by 4885 * memalloc_no{fs,io}_{save,restore}. 4886 */ 4887 alloc_mask = current_gfp_context(gfp_mask); 4888 ac.spread_dirty_pages = false; 4889 4890 /* 4891 * Restore the original nodemask if it was potentially replaced with 4892 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4893 */ 4894 ac.nodemask = nodemask; 4895 4896 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4897 4898 out: 4899 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4900 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 4901 __free_pages(page, order); 4902 page = NULL; 4903 } 4904 4905 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4906 4907 return page; 4908 } 4909 EXPORT_SYMBOL(__alloc_pages_nodemask); 4910 4911 /* 4912 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4913 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4914 * you need to access high mem. 4915 */ 4916 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4917 { 4918 struct page *page; 4919 4920 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4921 if (!page) 4922 return 0; 4923 return (unsigned long) page_address(page); 4924 } 4925 EXPORT_SYMBOL(__get_free_pages); 4926 4927 unsigned long get_zeroed_page(gfp_t gfp_mask) 4928 { 4929 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4930 } 4931 EXPORT_SYMBOL(get_zeroed_page); 4932 4933 static inline void free_the_page(struct page *page, unsigned int order) 4934 { 4935 if (order == 0) /* Via pcp? */ 4936 free_unref_page(page); 4937 else 4938 __free_pages_ok(page, order); 4939 } 4940 4941 void __free_pages(struct page *page, unsigned int order) 4942 { 4943 if (put_page_testzero(page)) 4944 free_the_page(page, order); 4945 } 4946 EXPORT_SYMBOL(__free_pages); 4947 4948 void free_pages(unsigned long addr, unsigned int order) 4949 { 4950 if (addr != 0) { 4951 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4952 __free_pages(virt_to_page((void *)addr), order); 4953 } 4954 } 4955 4956 EXPORT_SYMBOL(free_pages); 4957 4958 /* 4959 * Page Fragment: 4960 * An arbitrary-length arbitrary-offset area of memory which resides 4961 * within a 0 or higher order page. Multiple fragments within that page 4962 * are individually refcounted, in the page's reference counter. 4963 * 4964 * The page_frag functions below provide a simple allocation framework for 4965 * page fragments. This is used by the network stack and network device 4966 * drivers to provide a backing region of memory for use as either an 4967 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4968 */ 4969 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4970 gfp_t gfp_mask) 4971 { 4972 struct page *page = NULL; 4973 gfp_t gfp = gfp_mask; 4974 4975 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4976 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4977 __GFP_NOMEMALLOC; 4978 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4979 PAGE_FRAG_CACHE_MAX_ORDER); 4980 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4981 #endif 4982 if (unlikely(!page)) 4983 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4984 4985 nc->va = page ? page_address(page) : NULL; 4986 4987 return page; 4988 } 4989 4990 void __page_frag_cache_drain(struct page *page, unsigned int count) 4991 { 4992 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4993 4994 if (page_ref_sub_and_test(page, count)) 4995 free_the_page(page, compound_order(page)); 4996 } 4997 EXPORT_SYMBOL(__page_frag_cache_drain); 4998 4999 void *page_frag_alloc(struct page_frag_cache *nc, 5000 unsigned int fragsz, gfp_t gfp_mask) 5001 { 5002 unsigned int size = PAGE_SIZE; 5003 struct page *page; 5004 int offset; 5005 5006 if (unlikely(!nc->va)) { 5007 refill: 5008 page = __page_frag_cache_refill(nc, gfp_mask); 5009 if (!page) 5010 return NULL; 5011 5012 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5013 /* if size can vary use size else just use PAGE_SIZE */ 5014 size = nc->size; 5015 #endif 5016 /* Even if we own the page, we do not use atomic_set(). 5017 * This would break get_page_unless_zero() users. 5018 */ 5019 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5020 5021 /* reset page count bias and offset to start of new frag */ 5022 nc->pfmemalloc = page_is_pfmemalloc(page); 5023 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5024 nc->offset = size; 5025 } 5026 5027 offset = nc->offset - fragsz; 5028 if (unlikely(offset < 0)) { 5029 page = virt_to_page(nc->va); 5030 5031 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5032 goto refill; 5033 5034 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5035 /* if size can vary use size else just use PAGE_SIZE */ 5036 size = nc->size; 5037 #endif 5038 /* OK, page count is 0, we can safely set it */ 5039 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5040 5041 /* reset page count bias and offset to start of new frag */ 5042 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5043 offset = size - fragsz; 5044 } 5045 5046 nc->pagecnt_bias--; 5047 nc->offset = offset; 5048 5049 return nc->va + offset; 5050 } 5051 EXPORT_SYMBOL(page_frag_alloc); 5052 5053 /* 5054 * Frees a page fragment allocated out of either a compound or order 0 page. 5055 */ 5056 void page_frag_free(void *addr) 5057 { 5058 struct page *page = virt_to_head_page(addr); 5059 5060 if (unlikely(put_page_testzero(page))) 5061 free_the_page(page, compound_order(page)); 5062 } 5063 EXPORT_SYMBOL(page_frag_free); 5064 5065 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5066 size_t size) 5067 { 5068 if (addr) { 5069 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5070 unsigned long used = addr + PAGE_ALIGN(size); 5071 5072 split_page(virt_to_page((void *)addr), order); 5073 while (used < alloc_end) { 5074 free_page(used); 5075 used += PAGE_SIZE; 5076 } 5077 } 5078 return (void *)addr; 5079 } 5080 5081 /** 5082 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5083 * @size: the number of bytes to allocate 5084 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5085 * 5086 * This function is similar to alloc_pages(), except that it allocates the 5087 * minimum number of pages to satisfy the request. alloc_pages() can only 5088 * allocate memory in power-of-two pages. 5089 * 5090 * This function is also limited by MAX_ORDER. 5091 * 5092 * Memory allocated by this function must be released by free_pages_exact(). 5093 * 5094 * Return: pointer to the allocated area or %NULL in case of error. 5095 */ 5096 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5097 { 5098 unsigned int order = get_order(size); 5099 unsigned long addr; 5100 5101 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5102 gfp_mask &= ~__GFP_COMP; 5103 5104 addr = __get_free_pages(gfp_mask, order); 5105 return make_alloc_exact(addr, order, size); 5106 } 5107 EXPORT_SYMBOL(alloc_pages_exact); 5108 5109 /** 5110 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5111 * pages on a node. 5112 * @nid: the preferred node ID where memory should be allocated 5113 * @size: the number of bytes to allocate 5114 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5115 * 5116 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5117 * back. 5118 * 5119 * Return: pointer to the allocated area or %NULL in case of error. 5120 */ 5121 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5122 { 5123 unsigned int order = get_order(size); 5124 struct page *p; 5125 5126 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5127 gfp_mask &= ~__GFP_COMP; 5128 5129 p = alloc_pages_node(nid, gfp_mask, order); 5130 if (!p) 5131 return NULL; 5132 return make_alloc_exact((unsigned long)page_address(p), order, size); 5133 } 5134 5135 /** 5136 * free_pages_exact - release memory allocated via alloc_pages_exact() 5137 * @virt: the value returned by alloc_pages_exact. 5138 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5139 * 5140 * Release the memory allocated by a previous call to alloc_pages_exact. 5141 */ 5142 void free_pages_exact(void *virt, size_t size) 5143 { 5144 unsigned long addr = (unsigned long)virt; 5145 unsigned long end = addr + PAGE_ALIGN(size); 5146 5147 while (addr < end) { 5148 free_page(addr); 5149 addr += PAGE_SIZE; 5150 } 5151 } 5152 EXPORT_SYMBOL(free_pages_exact); 5153 5154 /** 5155 * nr_free_zone_pages - count number of pages beyond high watermark 5156 * @offset: The zone index of the highest zone 5157 * 5158 * nr_free_zone_pages() counts the number of pages which are beyond the 5159 * high watermark within all zones at or below a given zone index. For each 5160 * zone, the number of pages is calculated as: 5161 * 5162 * nr_free_zone_pages = managed_pages - high_pages 5163 * 5164 * Return: number of pages beyond high watermark. 5165 */ 5166 static unsigned long nr_free_zone_pages(int offset) 5167 { 5168 struct zoneref *z; 5169 struct zone *zone; 5170 5171 /* Just pick one node, since fallback list is circular */ 5172 unsigned long sum = 0; 5173 5174 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5175 5176 for_each_zone_zonelist(zone, z, zonelist, offset) { 5177 unsigned long size = zone_managed_pages(zone); 5178 unsigned long high = high_wmark_pages(zone); 5179 if (size > high) 5180 sum += size - high; 5181 } 5182 5183 return sum; 5184 } 5185 5186 /** 5187 * nr_free_buffer_pages - count number of pages beyond high watermark 5188 * 5189 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5190 * watermark within ZONE_DMA and ZONE_NORMAL. 5191 * 5192 * Return: number of pages beyond high watermark within ZONE_DMA and 5193 * ZONE_NORMAL. 5194 */ 5195 unsigned long nr_free_buffer_pages(void) 5196 { 5197 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5198 } 5199 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5200 5201 static inline void show_node(struct zone *zone) 5202 { 5203 if (IS_ENABLED(CONFIG_NUMA)) 5204 printk("Node %d ", zone_to_nid(zone)); 5205 } 5206 5207 long si_mem_available(void) 5208 { 5209 long available; 5210 unsigned long pagecache; 5211 unsigned long wmark_low = 0; 5212 unsigned long pages[NR_LRU_LISTS]; 5213 unsigned long reclaimable; 5214 struct zone *zone; 5215 int lru; 5216 5217 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5218 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5219 5220 for_each_zone(zone) 5221 wmark_low += low_wmark_pages(zone); 5222 5223 /* 5224 * Estimate the amount of memory available for userspace allocations, 5225 * without causing swapping. 5226 */ 5227 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5228 5229 /* 5230 * Not all the page cache can be freed, otherwise the system will 5231 * start swapping. Assume at least half of the page cache, or the 5232 * low watermark worth of cache, needs to stay. 5233 */ 5234 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5235 pagecache -= min(pagecache / 2, wmark_low); 5236 available += pagecache; 5237 5238 /* 5239 * Part of the reclaimable slab and other kernel memory consists of 5240 * items that are in use, and cannot be freed. Cap this estimate at the 5241 * low watermark. 5242 */ 5243 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5244 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5245 available += reclaimable - min(reclaimable / 2, wmark_low); 5246 5247 if (available < 0) 5248 available = 0; 5249 return available; 5250 } 5251 EXPORT_SYMBOL_GPL(si_mem_available); 5252 5253 void si_meminfo(struct sysinfo *val) 5254 { 5255 val->totalram = totalram_pages(); 5256 val->sharedram = global_node_page_state(NR_SHMEM); 5257 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5258 val->bufferram = nr_blockdev_pages(); 5259 val->totalhigh = totalhigh_pages(); 5260 val->freehigh = nr_free_highpages(); 5261 val->mem_unit = PAGE_SIZE; 5262 } 5263 5264 EXPORT_SYMBOL(si_meminfo); 5265 5266 #ifdef CONFIG_NUMA 5267 void si_meminfo_node(struct sysinfo *val, int nid) 5268 { 5269 int zone_type; /* needs to be signed */ 5270 unsigned long managed_pages = 0; 5271 unsigned long managed_highpages = 0; 5272 unsigned long free_highpages = 0; 5273 pg_data_t *pgdat = NODE_DATA(nid); 5274 5275 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5276 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5277 val->totalram = managed_pages; 5278 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5279 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5280 #ifdef CONFIG_HIGHMEM 5281 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5282 struct zone *zone = &pgdat->node_zones[zone_type]; 5283 5284 if (is_highmem(zone)) { 5285 managed_highpages += zone_managed_pages(zone); 5286 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5287 } 5288 } 5289 val->totalhigh = managed_highpages; 5290 val->freehigh = free_highpages; 5291 #else 5292 val->totalhigh = managed_highpages; 5293 val->freehigh = free_highpages; 5294 #endif 5295 val->mem_unit = PAGE_SIZE; 5296 } 5297 #endif 5298 5299 /* 5300 * Determine whether the node should be displayed or not, depending on whether 5301 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5302 */ 5303 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5304 { 5305 if (!(flags & SHOW_MEM_FILTER_NODES)) 5306 return false; 5307 5308 /* 5309 * no node mask - aka implicit memory numa policy. Do not bother with 5310 * the synchronization - read_mems_allowed_begin - because we do not 5311 * have to be precise here. 5312 */ 5313 if (!nodemask) 5314 nodemask = &cpuset_current_mems_allowed; 5315 5316 return !node_isset(nid, *nodemask); 5317 } 5318 5319 #define K(x) ((x) << (PAGE_SHIFT-10)) 5320 5321 static void show_migration_types(unsigned char type) 5322 { 5323 static const char types[MIGRATE_TYPES] = { 5324 [MIGRATE_UNMOVABLE] = 'U', 5325 [MIGRATE_MOVABLE] = 'M', 5326 [MIGRATE_RECLAIMABLE] = 'E', 5327 [MIGRATE_HIGHATOMIC] = 'H', 5328 #ifdef CONFIG_CMA 5329 [MIGRATE_CMA] = 'C', 5330 #endif 5331 #ifdef CONFIG_MEMORY_ISOLATION 5332 [MIGRATE_ISOLATE] = 'I', 5333 #endif 5334 }; 5335 char tmp[MIGRATE_TYPES + 1]; 5336 char *p = tmp; 5337 int i; 5338 5339 for (i = 0; i < MIGRATE_TYPES; i++) { 5340 if (type & (1 << i)) 5341 *p++ = types[i]; 5342 } 5343 5344 *p = '\0'; 5345 printk(KERN_CONT "(%s) ", tmp); 5346 } 5347 5348 /* 5349 * Show free area list (used inside shift_scroll-lock stuff) 5350 * We also calculate the percentage fragmentation. We do this by counting the 5351 * memory on each free list with the exception of the first item on the list. 5352 * 5353 * Bits in @filter: 5354 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5355 * cpuset. 5356 */ 5357 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5358 { 5359 unsigned long free_pcp = 0; 5360 int cpu; 5361 struct zone *zone; 5362 pg_data_t *pgdat; 5363 5364 for_each_populated_zone(zone) { 5365 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5366 continue; 5367 5368 for_each_online_cpu(cpu) 5369 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5370 } 5371 5372 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5373 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5374 " unevictable:%lu dirty:%lu writeback:%lu\n" 5375 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5376 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5377 " free:%lu free_pcp:%lu free_cma:%lu\n", 5378 global_node_page_state(NR_ACTIVE_ANON), 5379 global_node_page_state(NR_INACTIVE_ANON), 5380 global_node_page_state(NR_ISOLATED_ANON), 5381 global_node_page_state(NR_ACTIVE_FILE), 5382 global_node_page_state(NR_INACTIVE_FILE), 5383 global_node_page_state(NR_ISOLATED_FILE), 5384 global_node_page_state(NR_UNEVICTABLE), 5385 global_node_page_state(NR_FILE_DIRTY), 5386 global_node_page_state(NR_WRITEBACK), 5387 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5388 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5389 global_node_page_state(NR_FILE_MAPPED), 5390 global_node_page_state(NR_SHMEM), 5391 global_zone_page_state(NR_PAGETABLE), 5392 global_zone_page_state(NR_BOUNCE), 5393 global_zone_page_state(NR_FREE_PAGES), 5394 free_pcp, 5395 global_zone_page_state(NR_FREE_CMA_PAGES)); 5396 5397 for_each_online_pgdat(pgdat) { 5398 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5399 continue; 5400 5401 printk("Node %d" 5402 " active_anon:%lukB" 5403 " inactive_anon:%lukB" 5404 " active_file:%lukB" 5405 " inactive_file:%lukB" 5406 " unevictable:%lukB" 5407 " isolated(anon):%lukB" 5408 " isolated(file):%lukB" 5409 " mapped:%lukB" 5410 " dirty:%lukB" 5411 " writeback:%lukB" 5412 " shmem:%lukB" 5413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5414 " shmem_thp: %lukB" 5415 " shmem_pmdmapped: %lukB" 5416 " anon_thp: %lukB" 5417 #endif 5418 " writeback_tmp:%lukB" 5419 " kernel_stack:%lukB" 5420 #ifdef CONFIG_SHADOW_CALL_STACK 5421 " shadow_call_stack:%lukB" 5422 #endif 5423 " all_unreclaimable? %s" 5424 "\n", 5425 pgdat->node_id, 5426 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5427 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5428 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5429 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5430 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5431 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5432 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5433 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5434 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5435 K(node_page_state(pgdat, NR_WRITEBACK)), 5436 K(node_page_state(pgdat, NR_SHMEM)), 5437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5438 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5439 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5440 * HPAGE_PMD_NR), 5441 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5442 #endif 5443 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5444 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5445 #ifdef CONFIG_SHADOW_CALL_STACK 5446 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5447 #endif 5448 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5449 "yes" : "no"); 5450 } 5451 5452 for_each_populated_zone(zone) { 5453 int i; 5454 5455 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5456 continue; 5457 5458 free_pcp = 0; 5459 for_each_online_cpu(cpu) 5460 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5461 5462 show_node(zone); 5463 printk(KERN_CONT 5464 "%s" 5465 " free:%lukB" 5466 " min:%lukB" 5467 " low:%lukB" 5468 " high:%lukB" 5469 " reserved_highatomic:%luKB" 5470 " active_anon:%lukB" 5471 " inactive_anon:%lukB" 5472 " active_file:%lukB" 5473 " inactive_file:%lukB" 5474 " unevictable:%lukB" 5475 " writepending:%lukB" 5476 " present:%lukB" 5477 " managed:%lukB" 5478 " mlocked:%lukB" 5479 " pagetables:%lukB" 5480 " bounce:%lukB" 5481 " free_pcp:%lukB" 5482 " local_pcp:%ukB" 5483 " free_cma:%lukB" 5484 "\n", 5485 zone->name, 5486 K(zone_page_state(zone, NR_FREE_PAGES)), 5487 K(min_wmark_pages(zone)), 5488 K(low_wmark_pages(zone)), 5489 K(high_wmark_pages(zone)), 5490 K(zone->nr_reserved_highatomic), 5491 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5492 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5493 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5494 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5495 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5496 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5497 K(zone->present_pages), 5498 K(zone_managed_pages(zone)), 5499 K(zone_page_state(zone, NR_MLOCK)), 5500 K(zone_page_state(zone, NR_PAGETABLE)), 5501 K(zone_page_state(zone, NR_BOUNCE)), 5502 K(free_pcp), 5503 K(this_cpu_read(zone->pageset->pcp.count)), 5504 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5505 printk("lowmem_reserve[]:"); 5506 for (i = 0; i < MAX_NR_ZONES; i++) 5507 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5508 printk(KERN_CONT "\n"); 5509 } 5510 5511 for_each_populated_zone(zone) { 5512 unsigned int order; 5513 unsigned long nr[MAX_ORDER], flags, total = 0; 5514 unsigned char types[MAX_ORDER]; 5515 5516 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5517 continue; 5518 show_node(zone); 5519 printk(KERN_CONT "%s: ", zone->name); 5520 5521 spin_lock_irqsave(&zone->lock, flags); 5522 for (order = 0; order < MAX_ORDER; order++) { 5523 struct free_area *area = &zone->free_area[order]; 5524 int type; 5525 5526 nr[order] = area->nr_free; 5527 total += nr[order] << order; 5528 5529 types[order] = 0; 5530 for (type = 0; type < MIGRATE_TYPES; type++) { 5531 if (!free_area_empty(area, type)) 5532 types[order] |= 1 << type; 5533 } 5534 } 5535 spin_unlock_irqrestore(&zone->lock, flags); 5536 for (order = 0; order < MAX_ORDER; order++) { 5537 printk(KERN_CONT "%lu*%lukB ", 5538 nr[order], K(1UL) << order); 5539 if (nr[order]) 5540 show_migration_types(types[order]); 5541 } 5542 printk(KERN_CONT "= %lukB\n", K(total)); 5543 } 5544 5545 hugetlb_show_meminfo(); 5546 5547 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5548 5549 show_swap_cache_info(); 5550 } 5551 5552 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5553 { 5554 zoneref->zone = zone; 5555 zoneref->zone_idx = zone_idx(zone); 5556 } 5557 5558 /* 5559 * Builds allocation fallback zone lists. 5560 * 5561 * Add all populated zones of a node to the zonelist. 5562 */ 5563 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5564 { 5565 struct zone *zone; 5566 enum zone_type zone_type = MAX_NR_ZONES; 5567 int nr_zones = 0; 5568 5569 do { 5570 zone_type--; 5571 zone = pgdat->node_zones + zone_type; 5572 if (managed_zone(zone)) { 5573 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5574 check_highest_zone(zone_type); 5575 } 5576 } while (zone_type); 5577 5578 return nr_zones; 5579 } 5580 5581 #ifdef CONFIG_NUMA 5582 5583 static int __parse_numa_zonelist_order(char *s) 5584 { 5585 /* 5586 * We used to support different zonlists modes but they turned 5587 * out to be just not useful. Let's keep the warning in place 5588 * if somebody still use the cmd line parameter so that we do 5589 * not fail it silently 5590 */ 5591 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5592 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5593 return -EINVAL; 5594 } 5595 return 0; 5596 } 5597 5598 char numa_zonelist_order[] = "Node"; 5599 5600 /* 5601 * sysctl handler for numa_zonelist_order 5602 */ 5603 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5604 void *buffer, size_t *length, loff_t *ppos) 5605 { 5606 if (write) 5607 return __parse_numa_zonelist_order(buffer); 5608 return proc_dostring(table, write, buffer, length, ppos); 5609 } 5610 5611 5612 #define MAX_NODE_LOAD (nr_online_nodes) 5613 static int node_load[MAX_NUMNODES]; 5614 5615 /** 5616 * find_next_best_node - find the next node that should appear in a given node's fallback list 5617 * @node: node whose fallback list we're appending 5618 * @used_node_mask: nodemask_t of already used nodes 5619 * 5620 * We use a number of factors to determine which is the next node that should 5621 * appear on a given node's fallback list. The node should not have appeared 5622 * already in @node's fallback list, and it should be the next closest node 5623 * according to the distance array (which contains arbitrary distance values 5624 * from each node to each node in the system), and should also prefer nodes 5625 * with no CPUs, since presumably they'll have very little allocation pressure 5626 * on them otherwise. 5627 * 5628 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5629 */ 5630 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5631 { 5632 int n, val; 5633 int min_val = INT_MAX; 5634 int best_node = NUMA_NO_NODE; 5635 const struct cpumask *tmp = cpumask_of_node(0); 5636 5637 /* Use the local node if we haven't already */ 5638 if (!node_isset(node, *used_node_mask)) { 5639 node_set(node, *used_node_mask); 5640 return node; 5641 } 5642 5643 for_each_node_state(n, N_MEMORY) { 5644 5645 /* Don't want a node to appear more than once */ 5646 if (node_isset(n, *used_node_mask)) 5647 continue; 5648 5649 /* Use the distance array to find the distance */ 5650 val = node_distance(node, n); 5651 5652 /* Penalize nodes under us ("prefer the next node") */ 5653 val += (n < node); 5654 5655 /* Give preference to headless and unused nodes */ 5656 tmp = cpumask_of_node(n); 5657 if (!cpumask_empty(tmp)) 5658 val += PENALTY_FOR_NODE_WITH_CPUS; 5659 5660 /* Slight preference for less loaded node */ 5661 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5662 val += node_load[n]; 5663 5664 if (val < min_val) { 5665 min_val = val; 5666 best_node = n; 5667 } 5668 } 5669 5670 if (best_node >= 0) 5671 node_set(best_node, *used_node_mask); 5672 5673 return best_node; 5674 } 5675 5676 5677 /* 5678 * Build zonelists ordered by node and zones within node. 5679 * This results in maximum locality--normal zone overflows into local 5680 * DMA zone, if any--but risks exhausting DMA zone. 5681 */ 5682 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5683 unsigned nr_nodes) 5684 { 5685 struct zoneref *zonerefs; 5686 int i; 5687 5688 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5689 5690 for (i = 0; i < nr_nodes; i++) { 5691 int nr_zones; 5692 5693 pg_data_t *node = NODE_DATA(node_order[i]); 5694 5695 nr_zones = build_zonerefs_node(node, zonerefs); 5696 zonerefs += nr_zones; 5697 } 5698 zonerefs->zone = NULL; 5699 zonerefs->zone_idx = 0; 5700 } 5701 5702 /* 5703 * Build gfp_thisnode zonelists 5704 */ 5705 static void build_thisnode_zonelists(pg_data_t *pgdat) 5706 { 5707 struct zoneref *zonerefs; 5708 int nr_zones; 5709 5710 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5711 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5712 zonerefs += nr_zones; 5713 zonerefs->zone = NULL; 5714 zonerefs->zone_idx = 0; 5715 } 5716 5717 /* 5718 * Build zonelists ordered by zone and nodes within zones. 5719 * This results in conserving DMA zone[s] until all Normal memory is 5720 * exhausted, but results in overflowing to remote node while memory 5721 * may still exist in local DMA zone. 5722 */ 5723 5724 static void build_zonelists(pg_data_t *pgdat) 5725 { 5726 static int node_order[MAX_NUMNODES]; 5727 int node, load, nr_nodes = 0; 5728 nodemask_t used_mask = NODE_MASK_NONE; 5729 int local_node, prev_node; 5730 5731 /* NUMA-aware ordering of nodes */ 5732 local_node = pgdat->node_id; 5733 load = nr_online_nodes; 5734 prev_node = local_node; 5735 5736 memset(node_order, 0, sizeof(node_order)); 5737 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5738 /* 5739 * We don't want to pressure a particular node. 5740 * So adding penalty to the first node in same 5741 * distance group to make it round-robin. 5742 */ 5743 if (node_distance(local_node, node) != 5744 node_distance(local_node, prev_node)) 5745 node_load[node] = load; 5746 5747 node_order[nr_nodes++] = node; 5748 prev_node = node; 5749 load--; 5750 } 5751 5752 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5753 build_thisnode_zonelists(pgdat); 5754 } 5755 5756 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5757 /* 5758 * Return node id of node used for "local" allocations. 5759 * I.e., first node id of first zone in arg node's generic zonelist. 5760 * Used for initializing percpu 'numa_mem', which is used primarily 5761 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5762 */ 5763 int local_memory_node(int node) 5764 { 5765 struct zoneref *z; 5766 5767 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5768 gfp_zone(GFP_KERNEL), 5769 NULL); 5770 return zone_to_nid(z->zone); 5771 } 5772 #endif 5773 5774 static void setup_min_unmapped_ratio(void); 5775 static void setup_min_slab_ratio(void); 5776 #else /* CONFIG_NUMA */ 5777 5778 static void build_zonelists(pg_data_t *pgdat) 5779 { 5780 int node, local_node; 5781 struct zoneref *zonerefs; 5782 int nr_zones; 5783 5784 local_node = pgdat->node_id; 5785 5786 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5787 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5788 zonerefs += nr_zones; 5789 5790 /* 5791 * Now we build the zonelist so that it contains the zones 5792 * of all the other nodes. 5793 * We don't want to pressure a particular node, so when 5794 * building the zones for node N, we make sure that the 5795 * zones coming right after the local ones are those from 5796 * node N+1 (modulo N) 5797 */ 5798 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5799 if (!node_online(node)) 5800 continue; 5801 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5802 zonerefs += nr_zones; 5803 } 5804 for (node = 0; node < local_node; node++) { 5805 if (!node_online(node)) 5806 continue; 5807 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5808 zonerefs += nr_zones; 5809 } 5810 5811 zonerefs->zone = NULL; 5812 zonerefs->zone_idx = 0; 5813 } 5814 5815 #endif /* CONFIG_NUMA */ 5816 5817 /* 5818 * Boot pageset table. One per cpu which is going to be used for all 5819 * zones and all nodes. The parameters will be set in such a way 5820 * that an item put on a list will immediately be handed over to 5821 * the buddy list. This is safe since pageset manipulation is done 5822 * with interrupts disabled. 5823 * 5824 * The boot_pagesets must be kept even after bootup is complete for 5825 * unused processors and/or zones. They do play a role for bootstrapping 5826 * hotplugged processors. 5827 * 5828 * zoneinfo_show() and maybe other functions do 5829 * not check if the processor is online before following the pageset pointer. 5830 * Other parts of the kernel may not check if the zone is available. 5831 */ 5832 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5833 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5834 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5835 5836 static void __build_all_zonelists(void *data) 5837 { 5838 int nid; 5839 int __maybe_unused cpu; 5840 pg_data_t *self = data; 5841 static DEFINE_SPINLOCK(lock); 5842 5843 spin_lock(&lock); 5844 5845 #ifdef CONFIG_NUMA 5846 memset(node_load, 0, sizeof(node_load)); 5847 #endif 5848 5849 /* 5850 * This node is hotadded and no memory is yet present. So just 5851 * building zonelists is fine - no need to touch other nodes. 5852 */ 5853 if (self && !node_online(self->node_id)) { 5854 build_zonelists(self); 5855 } else { 5856 for_each_online_node(nid) { 5857 pg_data_t *pgdat = NODE_DATA(nid); 5858 5859 build_zonelists(pgdat); 5860 } 5861 5862 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5863 /* 5864 * We now know the "local memory node" for each node-- 5865 * i.e., the node of the first zone in the generic zonelist. 5866 * Set up numa_mem percpu variable for on-line cpus. During 5867 * boot, only the boot cpu should be on-line; we'll init the 5868 * secondary cpus' numa_mem as they come on-line. During 5869 * node/memory hotplug, we'll fixup all on-line cpus. 5870 */ 5871 for_each_online_cpu(cpu) 5872 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5873 #endif 5874 } 5875 5876 spin_unlock(&lock); 5877 } 5878 5879 static noinline void __init 5880 build_all_zonelists_init(void) 5881 { 5882 int cpu; 5883 5884 __build_all_zonelists(NULL); 5885 5886 /* 5887 * Initialize the boot_pagesets that are going to be used 5888 * for bootstrapping processors. The real pagesets for 5889 * each zone will be allocated later when the per cpu 5890 * allocator is available. 5891 * 5892 * boot_pagesets are used also for bootstrapping offline 5893 * cpus if the system is already booted because the pagesets 5894 * are needed to initialize allocators on a specific cpu too. 5895 * F.e. the percpu allocator needs the page allocator which 5896 * needs the percpu allocator in order to allocate its pagesets 5897 * (a chicken-egg dilemma). 5898 */ 5899 for_each_possible_cpu(cpu) 5900 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5901 5902 mminit_verify_zonelist(); 5903 cpuset_init_current_mems_allowed(); 5904 } 5905 5906 /* 5907 * unless system_state == SYSTEM_BOOTING. 5908 * 5909 * __ref due to call of __init annotated helper build_all_zonelists_init 5910 * [protected by SYSTEM_BOOTING]. 5911 */ 5912 void __ref build_all_zonelists(pg_data_t *pgdat) 5913 { 5914 unsigned long vm_total_pages; 5915 5916 if (system_state == SYSTEM_BOOTING) { 5917 build_all_zonelists_init(); 5918 } else { 5919 __build_all_zonelists(pgdat); 5920 /* cpuset refresh routine should be here */ 5921 } 5922 /* Get the number of free pages beyond high watermark in all zones. */ 5923 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5924 /* 5925 * Disable grouping by mobility if the number of pages in the 5926 * system is too low to allow the mechanism to work. It would be 5927 * more accurate, but expensive to check per-zone. This check is 5928 * made on memory-hotadd so a system can start with mobility 5929 * disabled and enable it later 5930 */ 5931 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5932 page_group_by_mobility_disabled = 1; 5933 else 5934 page_group_by_mobility_disabled = 0; 5935 5936 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5937 nr_online_nodes, 5938 page_group_by_mobility_disabled ? "off" : "on", 5939 vm_total_pages); 5940 #ifdef CONFIG_NUMA 5941 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5942 #endif 5943 } 5944 5945 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5946 static bool __meminit 5947 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5948 { 5949 static struct memblock_region *r; 5950 5951 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5952 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5953 for_each_memblock(memory, r) { 5954 if (*pfn < memblock_region_memory_end_pfn(r)) 5955 break; 5956 } 5957 } 5958 if (*pfn >= memblock_region_memory_base_pfn(r) && 5959 memblock_is_mirror(r)) { 5960 *pfn = memblock_region_memory_end_pfn(r); 5961 return true; 5962 } 5963 } 5964 return false; 5965 } 5966 5967 /* 5968 * Initially all pages are reserved - free ones are freed 5969 * up by memblock_free_all() once the early boot process is 5970 * done. Non-atomic initialization, single-pass. 5971 */ 5972 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5973 unsigned long start_pfn, enum memmap_context context, 5974 struct vmem_altmap *altmap) 5975 { 5976 unsigned long pfn, end_pfn = start_pfn + size; 5977 struct page *page; 5978 5979 if (highest_memmap_pfn < end_pfn - 1) 5980 highest_memmap_pfn = end_pfn - 1; 5981 5982 #ifdef CONFIG_ZONE_DEVICE 5983 /* 5984 * Honor reservation requested by the driver for this ZONE_DEVICE 5985 * memory. We limit the total number of pages to initialize to just 5986 * those that might contain the memory mapping. We will defer the 5987 * ZONE_DEVICE page initialization until after we have released 5988 * the hotplug lock. 5989 */ 5990 if (zone == ZONE_DEVICE) { 5991 if (!altmap) 5992 return; 5993 5994 if (start_pfn == altmap->base_pfn) 5995 start_pfn += altmap->reserve; 5996 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5997 } 5998 #endif 5999 6000 for (pfn = start_pfn; pfn < end_pfn; ) { 6001 /* 6002 * There can be holes in boot-time mem_map[]s handed to this 6003 * function. They do not exist on hotplugged memory. 6004 */ 6005 if (context == MEMMAP_EARLY) { 6006 if (overlap_memmap_init(zone, &pfn)) 6007 continue; 6008 if (defer_init(nid, pfn, end_pfn)) 6009 break; 6010 } 6011 6012 page = pfn_to_page(pfn); 6013 __init_single_page(page, pfn, zone, nid); 6014 if (context == MEMMAP_HOTPLUG) 6015 __SetPageReserved(page); 6016 6017 /* 6018 * Mark the block movable so that blocks are reserved for 6019 * movable at startup. This will force kernel allocations 6020 * to reserve their blocks rather than leaking throughout 6021 * the address space during boot when many long-lived 6022 * kernel allocations are made. 6023 * 6024 * bitmap is created for zone's valid pfn range. but memmap 6025 * can be created for invalid pages (for alignment) 6026 * check here not to call set_pageblock_migratetype() against 6027 * pfn out of zone. 6028 */ 6029 if (!(pfn & (pageblock_nr_pages - 1))) { 6030 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6031 cond_resched(); 6032 } 6033 pfn++; 6034 } 6035 } 6036 6037 #ifdef CONFIG_ZONE_DEVICE 6038 void __ref memmap_init_zone_device(struct zone *zone, 6039 unsigned long start_pfn, 6040 unsigned long nr_pages, 6041 struct dev_pagemap *pgmap) 6042 { 6043 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6044 struct pglist_data *pgdat = zone->zone_pgdat; 6045 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6046 unsigned long zone_idx = zone_idx(zone); 6047 unsigned long start = jiffies; 6048 int nid = pgdat->node_id; 6049 6050 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6051 return; 6052 6053 /* 6054 * The call to memmap_init_zone should have already taken care 6055 * of the pages reserved for the memmap, so we can just jump to 6056 * the end of that region and start processing the device pages. 6057 */ 6058 if (altmap) { 6059 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6060 nr_pages = end_pfn - start_pfn; 6061 } 6062 6063 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6064 struct page *page = pfn_to_page(pfn); 6065 6066 __init_single_page(page, pfn, zone_idx, nid); 6067 6068 /* 6069 * Mark page reserved as it will need to wait for onlining 6070 * phase for it to be fully associated with a zone. 6071 * 6072 * We can use the non-atomic __set_bit operation for setting 6073 * the flag as we are still initializing the pages. 6074 */ 6075 __SetPageReserved(page); 6076 6077 /* 6078 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6079 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6080 * ever freed or placed on a driver-private list. 6081 */ 6082 page->pgmap = pgmap; 6083 page->zone_device_data = NULL; 6084 6085 /* 6086 * Mark the block movable so that blocks are reserved for 6087 * movable at startup. This will force kernel allocations 6088 * to reserve their blocks rather than leaking throughout 6089 * the address space during boot when many long-lived 6090 * kernel allocations are made. 6091 * 6092 * bitmap is created for zone's valid pfn range. but memmap 6093 * can be created for invalid pages (for alignment) 6094 * check here not to call set_pageblock_migratetype() against 6095 * pfn out of zone. 6096 * 6097 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6098 * because this is done early in section_activate() 6099 */ 6100 if (!(pfn & (pageblock_nr_pages - 1))) { 6101 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6102 cond_resched(); 6103 } 6104 } 6105 6106 pr_info("%s initialised %lu pages in %ums\n", __func__, 6107 nr_pages, jiffies_to_msecs(jiffies - start)); 6108 } 6109 6110 #endif 6111 static void __meminit zone_init_free_lists(struct zone *zone) 6112 { 6113 unsigned int order, t; 6114 for_each_migratetype_order(order, t) { 6115 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6116 zone->free_area[order].nr_free = 0; 6117 } 6118 } 6119 6120 void __meminit __weak memmap_init(unsigned long size, int nid, 6121 unsigned long zone, 6122 unsigned long range_start_pfn) 6123 { 6124 unsigned long start_pfn, end_pfn; 6125 unsigned long range_end_pfn = range_start_pfn + size; 6126 int i; 6127 6128 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6129 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6130 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6131 6132 if (end_pfn > start_pfn) { 6133 size = end_pfn - start_pfn; 6134 memmap_init_zone(size, nid, zone, start_pfn, 6135 MEMMAP_EARLY, NULL); 6136 } 6137 } 6138 } 6139 6140 static int zone_batchsize(struct zone *zone) 6141 { 6142 #ifdef CONFIG_MMU 6143 int batch; 6144 6145 /* 6146 * The per-cpu-pages pools are set to around 1000th of the 6147 * size of the zone. 6148 */ 6149 batch = zone_managed_pages(zone) / 1024; 6150 /* But no more than a meg. */ 6151 if (batch * PAGE_SIZE > 1024 * 1024) 6152 batch = (1024 * 1024) / PAGE_SIZE; 6153 batch /= 4; /* We effectively *= 4 below */ 6154 if (batch < 1) 6155 batch = 1; 6156 6157 /* 6158 * Clamp the batch to a 2^n - 1 value. Having a power 6159 * of 2 value was found to be more likely to have 6160 * suboptimal cache aliasing properties in some cases. 6161 * 6162 * For example if 2 tasks are alternately allocating 6163 * batches of pages, one task can end up with a lot 6164 * of pages of one half of the possible page colors 6165 * and the other with pages of the other colors. 6166 */ 6167 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6168 6169 return batch; 6170 6171 #else 6172 /* The deferral and batching of frees should be suppressed under NOMMU 6173 * conditions. 6174 * 6175 * The problem is that NOMMU needs to be able to allocate large chunks 6176 * of contiguous memory as there's no hardware page translation to 6177 * assemble apparent contiguous memory from discontiguous pages. 6178 * 6179 * Queueing large contiguous runs of pages for batching, however, 6180 * causes the pages to actually be freed in smaller chunks. As there 6181 * can be a significant delay between the individual batches being 6182 * recycled, this leads to the once large chunks of space being 6183 * fragmented and becoming unavailable for high-order allocations. 6184 */ 6185 return 0; 6186 #endif 6187 } 6188 6189 /* 6190 * pcp->high and pcp->batch values are related and dependent on one another: 6191 * ->batch must never be higher then ->high. 6192 * The following function updates them in a safe manner without read side 6193 * locking. 6194 * 6195 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6196 * those fields changing asynchronously (acording to the above rule). 6197 * 6198 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6199 * outside of boot time (or some other assurance that no concurrent updaters 6200 * exist). 6201 */ 6202 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6203 unsigned long batch) 6204 { 6205 /* start with a fail safe value for batch */ 6206 pcp->batch = 1; 6207 smp_wmb(); 6208 6209 /* Update high, then batch, in order */ 6210 pcp->high = high; 6211 smp_wmb(); 6212 6213 pcp->batch = batch; 6214 } 6215 6216 /* a companion to pageset_set_high() */ 6217 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6218 { 6219 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6220 } 6221 6222 static void pageset_init(struct per_cpu_pageset *p) 6223 { 6224 struct per_cpu_pages *pcp; 6225 int migratetype; 6226 6227 memset(p, 0, sizeof(*p)); 6228 6229 pcp = &p->pcp; 6230 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6231 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6232 } 6233 6234 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6235 { 6236 pageset_init(p); 6237 pageset_set_batch(p, batch); 6238 } 6239 6240 /* 6241 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6242 * to the value high for the pageset p. 6243 */ 6244 static void pageset_set_high(struct per_cpu_pageset *p, 6245 unsigned long high) 6246 { 6247 unsigned long batch = max(1UL, high / 4); 6248 if ((high / 4) > (PAGE_SHIFT * 8)) 6249 batch = PAGE_SHIFT * 8; 6250 6251 pageset_update(&p->pcp, high, batch); 6252 } 6253 6254 static void pageset_set_high_and_batch(struct zone *zone, 6255 struct per_cpu_pageset *pcp) 6256 { 6257 if (percpu_pagelist_fraction) 6258 pageset_set_high(pcp, 6259 (zone_managed_pages(zone) / 6260 percpu_pagelist_fraction)); 6261 else 6262 pageset_set_batch(pcp, zone_batchsize(zone)); 6263 } 6264 6265 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6266 { 6267 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6268 6269 pageset_init(pcp); 6270 pageset_set_high_and_batch(zone, pcp); 6271 } 6272 6273 void __meminit setup_zone_pageset(struct zone *zone) 6274 { 6275 int cpu; 6276 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6277 for_each_possible_cpu(cpu) 6278 zone_pageset_init(zone, cpu); 6279 } 6280 6281 /* 6282 * Allocate per cpu pagesets and initialize them. 6283 * Before this call only boot pagesets were available. 6284 */ 6285 void __init setup_per_cpu_pageset(void) 6286 { 6287 struct pglist_data *pgdat; 6288 struct zone *zone; 6289 int __maybe_unused cpu; 6290 6291 for_each_populated_zone(zone) 6292 setup_zone_pageset(zone); 6293 6294 #ifdef CONFIG_NUMA 6295 /* 6296 * Unpopulated zones continue using the boot pagesets. 6297 * The numa stats for these pagesets need to be reset. 6298 * Otherwise, they will end up skewing the stats of 6299 * the nodes these zones are associated with. 6300 */ 6301 for_each_possible_cpu(cpu) { 6302 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6303 memset(pcp->vm_numa_stat_diff, 0, 6304 sizeof(pcp->vm_numa_stat_diff)); 6305 } 6306 #endif 6307 6308 for_each_online_pgdat(pgdat) 6309 pgdat->per_cpu_nodestats = 6310 alloc_percpu(struct per_cpu_nodestat); 6311 } 6312 6313 static __meminit void zone_pcp_init(struct zone *zone) 6314 { 6315 /* 6316 * per cpu subsystem is not up at this point. The following code 6317 * relies on the ability of the linker to provide the 6318 * offset of a (static) per cpu variable into the per cpu area. 6319 */ 6320 zone->pageset = &boot_pageset; 6321 6322 if (populated_zone(zone)) 6323 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6324 zone->name, zone->present_pages, 6325 zone_batchsize(zone)); 6326 } 6327 6328 void __meminit init_currently_empty_zone(struct zone *zone, 6329 unsigned long zone_start_pfn, 6330 unsigned long size) 6331 { 6332 struct pglist_data *pgdat = zone->zone_pgdat; 6333 int zone_idx = zone_idx(zone) + 1; 6334 6335 if (zone_idx > pgdat->nr_zones) 6336 pgdat->nr_zones = zone_idx; 6337 6338 zone->zone_start_pfn = zone_start_pfn; 6339 6340 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6341 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6342 pgdat->node_id, 6343 (unsigned long)zone_idx(zone), 6344 zone_start_pfn, (zone_start_pfn + size)); 6345 6346 zone_init_free_lists(zone); 6347 zone->initialized = 1; 6348 } 6349 6350 /** 6351 * get_pfn_range_for_nid - Return the start and end page frames for a node 6352 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6353 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6354 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6355 * 6356 * It returns the start and end page frame of a node based on information 6357 * provided by memblock_set_node(). If called for a node 6358 * with no available memory, a warning is printed and the start and end 6359 * PFNs will be 0. 6360 */ 6361 void __init get_pfn_range_for_nid(unsigned int nid, 6362 unsigned long *start_pfn, unsigned long *end_pfn) 6363 { 6364 unsigned long this_start_pfn, this_end_pfn; 6365 int i; 6366 6367 *start_pfn = -1UL; 6368 *end_pfn = 0; 6369 6370 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6371 *start_pfn = min(*start_pfn, this_start_pfn); 6372 *end_pfn = max(*end_pfn, this_end_pfn); 6373 } 6374 6375 if (*start_pfn == -1UL) 6376 *start_pfn = 0; 6377 } 6378 6379 /* 6380 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6381 * assumption is made that zones within a node are ordered in monotonic 6382 * increasing memory addresses so that the "highest" populated zone is used 6383 */ 6384 static void __init find_usable_zone_for_movable(void) 6385 { 6386 int zone_index; 6387 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6388 if (zone_index == ZONE_MOVABLE) 6389 continue; 6390 6391 if (arch_zone_highest_possible_pfn[zone_index] > 6392 arch_zone_lowest_possible_pfn[zone_index]) 6393 break; 6394 } 6395 6396 VM_BUG_ON(zone_index == -1); 6397 movable_zone = zone_index; 6398 } 6399 6400 /* 6401 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6402 * because it is sized independent of architecture. Unlike the other zones, 6403 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6404 * in each node depending on the size of each node and how evenly kernelcore 6405 * is distributed. This helper function adjusts the zone ranges 6406 * provided by the architecture for a given node by using the end of the 6407 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6408 * zones within a node are in order of monotonic increases memory addresses 6409 */ 6410 static void __init adjust_zone_range_for_zone_movable(int nid, 6411 unsigned long zone_type, 6412 unsigned long node_start_pfn, 6413 unsigned long node_end_pfn, 6414 unsigned long *zone_start_pfn, 6415 unsigned long *zone_end_pfn) 6416 { 6417 /* Only adjust if ZONE_MOVABLE is on this node */ 6418 if (zone_movable_pfn[nid]) { 6419 /* Size ZONE_MOVABLE */ 6420 if (zone_type == ZONE_MOVABLE) { 6421 *zone_start_pfn = zone_movable_pfn[nid]; 6422 *zone_end_pfn = min(node_end_pfn, 6423 arch_zone_highest_possible_pfn[movable_zone]); 6424 6425 /* Adjust for ZONE_MOVABLE starting within this range */ 6426 } else if (!mirrored_kernelcore && 6427 *zone_start_pfn < zone_movable_pfn[nid] && 6428 *zone_end_pfn > zone_movable_pfn[nid]) { 6429 *zone_end_pfn = zone_movable_pfn[nid]; 6430 6431 /* Check if this whole range is within ZONE_MOVABLE */ 6432 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6433 *zone_start_pfn = *zone_end_pfn; 6434 } 6435 } 6436 6437 /* 6438 * Return the number of pages a zone spans in a node, including holes 6439 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6440 */ 6441 static unsigned long __init zone_spanned_pages_in_node(int nid, 6442 unsigned long zone_type, 6443 unsigned long node_start_pfn, 6444 unsigned long node_end_pfn, 6445 unsigned long *zone_start_pfn, 6446 unsigned long *zone_end_pfn) 6447 { 6448 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6449 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6450 /* When hotadd a new node from cpu_up(), the node should be empty */ 6451 if (!node_start_pfn && !node_end_pfn) 6452 return 0; 6453 6454 /* Get the start and end of the zone */ 6455 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6456 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6457 adjust_zone_range_for_zone_movable(nid, zone_type, 6458 node_start_pfn, node_end_pfn, 6459 zone_start_pfn, zone_end_pfn); 6460 6461 /* Check that this node has pages within the zone's required range */ 6462 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6463 return 0; 6464 6465 /* Move the zone boundaries inside the node if necessary */ 6466 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6467 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6468 6469 /* Return the spanned pages */ 6470 return *zone_end_pfn - *zone_start_pfn; 6471 } 6472 6473 /* 6474 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6475 * then all holes in the requested range will be accounted for. 6476 */ 6477 unsigned long __init __absent_pages_in_range(int nid, 6478 unsigned long range_start_pfn, 6479 unsigned long range_end_pfn) 6480 { 6481 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6482 unsigned long start_pfn, end_pfn; 6483 int i; 6484 6485 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6486 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6487 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6488 nr_absent -= end_pfn - start_pfn; 6489 } 6490 return nr_absent; 6491 } 6492 6493 /** 6494 * absent_pages_in_range - Return number of page frames in holes within a range 6495 * @start_pfn: The start PFN to start searching for holes 6496 * @end_pfn: The end PFN to stop searching for holes 6497 * 6498 * Return: the number of pages frames in memory holes within a range. 6499 */ 6500 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6501 unsigned long end_pfn) 6502 { 6503 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6504 } 6505 6506 /* Return the number of page frames in holes in a zone on a node */ 6507 static unsigned long __init zone_absent_pages_in_node(int nid, 6508 unsigned long zone_type, 6509 unsigned long node_start_pfn, 6510 unsigned long node_end_pfn) 6511 { 6512 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6513 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6514 unsigned long zone_start_pfn, zone_end_pfn; 6515 unsigned long nr_absent; 6516 6517 /* When hotadd a new node from cpu_up(), the node should be empty */ 6518 if (!node_start_pfn && !node_end_pfn) 6519 return 0; 6520 6521 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6522 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6523 6524 adjust_zone_range_for_zone_movable(nid, zone_type, 6525 node_start_pfn, node_end_pfn, 6526 &zone_start_pfn, &zone_end_pfn); 6527 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6528 6529 /* 6530 * ZONE_MOVABLE handling. 6531 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6532 * and vice versa. 6533 */ 6534 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6535 unsigned long start_pfn, end_pfn; 6536 struct memblock_region *r; 6537 6538 for_each_memblock(memory, r) { 6539 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6540 zone_start_pfn, zone_end_pfn); 6541 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6542 zone_start_pfn, zone_end_pfn); 6543 6544 if (zone_type == ZONE_MOVABLE && 6545 memblock_is_mirror(r)) 6546 nr_absent += end_pfn - start_pfn; 6547 6548 if (zone_type == ZONE_NORMAL && 6549 !memblock_is_mirror(r)) 6550 nr_absent += end_pfn - start_pfn; 6551 } 6552 } 6553 6554 return nr_absent; 6555 } 6556 6557 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6558 unsigned long node_start_pfn, 6559 unsigned long node_end_pfn) 6560 { 6561 unsigned long realtotalpages = 0, totalpages = 0; 6562 enum zone_type i; 6563 6564 for (i = 0; i < MAX_NR_ZONES; i++) { 6565 struct zone *zone = pgdat->node_zones + i; 6566 unsigned long zone_start_pfn, zone_end_pfn; 6567 unsigned long spanned, absent; 6568 unsigned long size, real_size; 6569 6570 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6571 node_start_pfn, 6572 node_end_pfn, 6573 &zone_start_pfn, 6574 &zone_end_pfn); 6575 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6576 node_start_pfn, 6577 node_end_pfn); 6578 6579 size = spanned; 6580 real_size = size - absent; 6581 6582 if (size) 6583 zone->zone_start_pfn = zone_start_pfn; 6584 else 6585 zone->zone_start_pfn = 0; 6586 zone->spanned_pages = size; 6587 zone->present_pages = real_size; 6588 6589 totalpages += size; 6590 realtotalpages += real_size; 6591 } 6592 6593 pgdat->node_spanned_pages = totalpages; 6594 pgdat->node_present_pages = realtotalpages; 6595 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6596 realtotalpages); 6597 } 6598 6599 #ifndef CONFIG_SPARSEMEM 6600 /* 6601 * Calculate the size of the zone->blockflags rounded to an unsigned long 6602 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6603 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6604 * round what is now in bits to nearest long in bits, then return it in 6605 * bytes. 6606 */ 6607 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6608 { 6609 unsigned long usemapsize; 6610 6611 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6612 usemapsize = roundup(zonesize, pageblock_nr_pages); 6613 usemapsize = usemapsize >> pageblock_order; 6614 usemapsize *= NR_PAGEBLOCK_BITS; 6615 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6616 6617 return usemapsize / 8; 6618 } 6619 6620 static void __ref setup_usemap(struct pglist_data *pgdat, 6621 struct zone *zone, 6622 unsigned long zone_start_pfn, 6623 unsigned long zonesize) 6624 { 6625 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6626 zone->pageblock_flags = NULL; 6627 if (usemapsize) { 6628 zone->pageblock_flags = 6629 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6630 pgdat->node_id); 6631 if (!zone->pageblock_flags) 6632 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6633 usemapsize, zone->name, pgdat->node_id); 6634 } 6635 } 6636 #else 6637 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6638 unsigned long zone_start_pfn, unsigned long zonesize) {} 6639 #endif /* CONFIG_SPARSEMEM */ 6640 6641 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6642 6643 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6644 void __init set_pageblock_order(void) 6645 { 6646 unsigned int order; 6647 6648 /* Check that pageblock_nr_pages has not already been setup */ 6649 if (pageblock_order) 6650 return; 6651 6652 if (HPAGE_SHIFT > PAGE_SHIFT) 6653 order = HUGETLB_PAGE_ORDER; 6654 else 6655 order = MAX_ORDER - 1; 6656 6657 /* 6658 * Assume the largest contiguous order of interest is a huge page. 6659 * This value may be variable depending on boot parameters on IA64 and 6660 * powerpc. 6661 */ 6662 pageblock_order = order; 6663 } 6664 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6665 6666 /* 6667 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6668 * is unused as pageblock_order is set at compile-time. See 6669 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6670 * the kernel config 6671 */ 6672 void __init set_pageblock_order(void) 6673 { 6674 } 6675 6676 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6677 6678 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6679 unsigned long present_pages) 6680 { 6681 unsigned long pages = spanned_pages; 6682 6683 /* 6684 * Provide a more accurate estimation if there are holes within 6685 * the zone and SPARSEMEM is in use. If there are holes within the 6686 * zone, each populated memory region may cost us one or two extra 6687 * memmap pages due to alignment because memmap pages for each 6688 * populated regions may not be naturally aligned on page boundary. 6689 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6690 */ 6691 if (spanned_pages > present_pages + (present_pages >> 4) && 6692 IS_ENABLED(CONFIG_SPARSEMEM)) 6693 pages = present_pages; 6694 6695 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6696 } 6697 6698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6699 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6700 { 6701 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6702 6703 spin_lock_init(&ds_queue->split_queue_lock); 6704 INIT_LIST_HEAD(&ds_queue->split_queue); 6705 ds_queue->split_queue_len = 0; 6706 } 6707 #else 6708 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6709 #endif 6710 6711 #ifdef CONFIG_COMPACTION 6712 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6713 { 6714 init_waitqueue_head(&pgdat->kcompactd_wait); 6715 } 6716 #else 6717 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6718 #endif 6719 6720 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6721 { 6722 pgdat_resize_init(pgdat); 6723 6724 pgdat_init_split_queue(pgdat); 6725 pgdat_init_kcompactd(pgdat); 6726 6727 init_waitqueue_head(&pgdat->kswapd_wait); 6728 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6729 6730 pgdat_page_ext_init(pgdat); 6731 spin_lock_init(&pgdat->lru_lock); 6732 lruvec_init(&pgdat->__lruvec); 6733 } 6734 6735 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6736 unsigned long remaining_pages) 6737 { 6738 atomic_long_set(&zone->managed_pages, remaining_pages); 6739 zone_set_nid(zone, nid); 6740 zone->name = zone_names[idx]; 6741 zone->zone_pgdat = NODE_DATA(nid); 6742 spin_lock_init(&zone->lock); 6743 zone_seqlock_init(zone); 6744 zone_pcp_init(zone); 6745 } 6746 6747 /* 6748 * Set up the zone data structures 6749 * - init pgdat internals 6750 * - init all zones belonging to this node 6751 * 6752 * NOTE: this function is only called during memory hotplug 6753 */ 6754 #ifdef CONFIG_MEMORY_HOTPLUG 6755 void __ref free_area_init_core_hotplug(int nid) 6756 { 6757 enum zone_type z; 6758 pg_data_t *pgdat = NODE_DATA(nid); 6759 6760 pgdat_init_internals(pgdat); 6761 for (z = 0; z < MAX_NR_ZONES; z++) 6762 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6763 } 6764 #endif 6765 6766 /* 6767 * Set up the zone data structures: 6768 * - mark all pages reserved 6769 * - mark all memory queues empty 6770 * - clear the memory bitmaps 6771 * 6772 * NOTE: pgdat should get zeroed by caller. 6773 * NOTE: this function is only called during early init. 6774 */ 6775 static void __init free_area_init_core(struct pglist_data *pgdat) 6776 { 6777 enum zone_type j; 6778 int nid = pgdat->node_id; 6779 6780 pgdat_init_internals(pgdat); 6781 pgdat->per_cpu_nodestats = &boot_nodestats; 6782 6783 for (j = 0; j < MAX_NR_ZONES; j++) { 6784 struct zone *zone = pgdat->node_zones + j; 6785 unsigned long size, freesize, memmap_pages; 6786 unsigned long zone_start_pfn = zone->zone_start_pfn; 6787 6788 size = zone->spanned_pages; 6789 freesize = zone->present_pages; 6790 6791 /* 6792 * Adjust freesize so that it accounts for how much memory 6793 * is used by this zone for memmap. This affects the watermark 6794 * and per-cpu initialisations 6795 */ 6796 memmap_pages = calc_memmap_size(size, freesize); 6797 if (!is_highmem_idx(j)) { 6798 if (freesize >= memmap_pages) { 6799 freesize -= memmap_pages; 6800 if (memmap_pages) 6801 printk(KERN_DEBUG 6802 " %s zone: %lu pages used for memmap\n", 6803 zone_names[j], memmap_pages); 6804 } else 6805 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6806 zone_names[j], memmap_pages, freesize); 6807 } 6808 6809 /* Account for reserved pages */ 6810 if (j == 0 && freesize > dma_reserve) { 6811 freesize -= dma_reserve; 6812 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6813 zone_names[0], dma_reserve); 6814 } 6815 6816 if (!is_highmem_idx(j)) 6817 nr_kernel_pages += freesize; 6818 /* Charge for highmem memmap if there are enough kernel pages */ 6819 else if (nr_kernel_pages > memmap_pages * 2) 6820 nr_kernel_pages -= memmap_pages; 6821 nr_all_pages += freesize; 6822 6823 /* 6824 * Set an approximate value for lowmem here, it will be adjusted 6825 * when the bootmem allocator frees pages into the buddy system. 6826 * And all highmem pages will be managed by the buddy system. 6827 */ 6828 zone_init_internals(zone, j, nid, freesize); 6829 6830 if (!size) 6831 continue; 6832 6833 set_pageblock_order(); 6834 setup_usemap(pgdat, zone, zone_start_pfn, size); 6835 init_currently_empty_zone(zone, zone_start_pfn, size); 6836 memmap_init(size, nid, j, zone_start_pfn); 6837 } 6838 } 6839 6840 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6841 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6842 { 6843 unsigned long __maybe_unused start = 0; 6844 unsigned long __maybe_unused offset = 0; 6845 6846 /* Skip empty nodes */ 6847 if (!pgdat->node_spanned_pages) 6848 return; 6849 6850 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6851 offset = pgdat->node_start_pfn - start; 6852 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6853 if (!pgdat->node_mem_map) { 6854 unsigned long size, end; 6855 struct page *map; 6856 6857 /* 6858 * The zone's endpoints aren't required to be MAX_ORDER 6859 * aligned but the node_mem_map endpoints must be in order 6860 * for the buddy allocator to function correctly. 6861 */ 6862 end = pgdat_end_pfn(pgdat); 6863 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6864 size = (end - start) * sizeof(struct page); 6865 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6866 pgdat->node_id); 6867 if (!map) 6868 panic("Failed to allocate %ld bytes for node %d memory map\n", 6869 size, pgdat->node_id); 6870 pgdat->node_mem_map = map + offset; 6871 } 6872 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6873 __func__, pgdat->node_id, (unsigned long)pgdat, 6874 (unsigned long)pgdat->node_mem_map); 6875 #ifndef CONFIG_NEED_MULTIPLE_NODES 6876 /* 6877 * With no DISCONTIG, the global mem_map is just set as node 0's 6878 */ 6879 if (pgdat == NODE_DATA(0)) { 6880 mem_map = NODE_DATA(0)->node_mem_map; 6881 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6882 mem_map -= offset; 6883 } 6884 #endif 6885 } 6886 #else 6887 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6888 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6889 6890 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6891 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6892 { 6893 pgdat->first_deferred_pfn = ULONG_MAX; 6894 } 6895 #else 6896 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6897 #endif 6898 6899 static void __init free_area_init_node(int nid) 6900 { 6901 pg_data_t *pgdat = NODE_DATA(nid); 6902 unsigned long start_pfn = 0; 6903 unsigned long end_pfn = 0; 6904 6905 /* pg_data_t should be reset to zero when it's allocated */ 6906 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 6907 6908 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6909 6910 pgdat->node_id = nid; 6911 pgdat->node_start_pfn = start_pfn; 6912 pgdat->per_cpu_nodestats = NULL; 6913 6914 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6915 (u64)start_pfn << PAGE_SHIFT, 6916 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6917 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 6918 6919 alloc_node_mem_map(pgdat); 6920 pgdat_set_deferred_range(pgdat); 6921 6922 free_area_init_core(pgdat); 6923 } 6924 6925 void __init free_area_init_memoryless_node(int nid) 6926 { 6927 free_area_init_node(nid); 6928 } 6929 6930 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6931 /* 6932 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 6933 * PageReserved(). Return the number of struct pages that were initialized. 6934 */ 6935 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 6936 { 6937 unsigned long pfn; 6938 u64 pgcnt = 0; 6939 6940 for (pfn = spfn; pfn < epfn; pfn++) { 6941 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6942 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6943 + pageblock_nr_pages - 1; 6944 continue; 6945 } 6946 /* 6947 * Use a fake node/zone (0) for now. Some of these pages 6948 * (in memblock.reserved but not in memblock.memory) will 6949 * get re-initialized via reserve_bootmem_region() later. 6950 */ 6951 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 6952 __SetPageReserved(pfn_to_page(pfn)); 6953 pgcnt++; 6954 } 6955 6956 return pgcnt; 6957 } 6958 6959 /* 6960 * Only struct pages that are backed by physical memory are zeroed and 6961 * initialized by going through __init_single_page(). But, there are some 6962 * struct pages which are reserved in memblock allocator and their fields 6963 * may be accessed (for example page_to_pfn() on some configuration accesses 6964 * flags). We must explicitly initialize those struct pages. 6965 * 6966 * This function also addresses a similar issue where struct pages are left 6967 * uninitialized because the physical address range is not covered by 6968 * memblock.memory or memblock.reserved. That could happen when memblock 6969 * layout is manually configured via memmap=, or when the highest physical 6970 * address (max_pfn) does not end on a section boundary. 6971 */ 6972 static void __init init_unavailable_mem(void) 6973 { 6974 phys_addr_t start, end; 6975 u64 i, pgcnt; 6976 phys_addr_t next = 0; 6977 6978 /* 6979 * Loop through unavailable ranges not covered by memblock.memory. 6980 */ 6981 pgcnt = 0; 6982 for_each_mem_range(i, &memblock.memory, NULL, 6983 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6984 if (next < start) 6985 pgcnt += init_unavailable_range(PFN_DOWN(next), 6986 PFN_UP(start)); 6987 next = end; 6988 } 6989 6990 /* 6991 * Early sections always have a fully populated memmap for the whole 6992 * section - see pfn_valid(). If the last section has holes at the 6993 * end and that section is marked "online", the memmap will be 6994 * considered initialized. Make sure that memmap has a well defined 6995 * state. 6996 */ 6997 pgcnt += init_unavailable_range(PFN_DOWN(next), 6998 round_up(max_pfn, PAGES_PER_SECTION)); 6999 7000 /* 7001 * Struct pages that do not have backing memory. This could be because 7002 * firmware is using some of this memory, or for some other reasons. 7003 */ 7004 if (pgcnt) 7005 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7006 } 7007 #else 7008 static inline void __init init_unavailable_mem(void) 7009 { 7010 } 7011 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7012 7013 #if MAX_NUMNODES > 1 7014 /* 7015 * Figure out the number of possible node ids. 7016 */ 7017 void __init setup_nr_node_ids(void) 7018 { 7019 unsigned int highest; 7020 7021 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7022 nr_node_ids = highest + 1; 7023 } 7024 #endif 7025 7026 /** 7027 * node_map_pfn_alignment - determine the maximum internode alignment 7028 * 7029 * This function should be called after node map is populated and sorted. 7030 * It calculates the maximum power of two alignment which can distinguish 7031 * all the nodes. 7032 * 7033 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7034 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7035 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7036 * shifted, 1GiB is enough and this function will indicate so. 7037 * 7038 * This is used to test whether pfn -> nid mapping of the chosen memory 7039 * model has fine enough granularity to avoid incorrect mapping for the 7040 * populated node map. 7041 * 7042 * Return: the determined alignment in pfn's. 0 if there is no alignment 7043 * requirement (single node). 7044 */ 7045 unsigned long __init node_map_pfn_alignment(void) 7046 { 7047 unsigned long accl_mask = 0, last_end = 0; 7048 unsigned long start, end, mask; 7049 int last_nid = NUMA_NO_NODE; 7050 int i, nid; 7051 7052 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7053 if (!start || last_nid < 0 || last_nid == nid) { 7054 last_nid = nid; 7055 last_end = end; 7056 continue; 7057 } 7058 7059 /* 7060 * Start with a mask granular enough to pin-point to the 7061 * start pfn and tick off bits one-by-one until it becomes 7062 * too coarse to separate the current node from the last. 7063 */ 7064 mask = ~((1 << __ffs(start)) - 1); 7065 while (mask && last_end <= (start & (mask << 1))) 7066 mask <<= 1; 7067 7068 /* accumulate all internode masks */ 7069 accl_mask |= mask; 7070 } 7071 7072 /* convert mask to number of pages */ 7073 return ~accl_mask + 1; 7074 } 7075 7076 /** 7077 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7078 * 7079 * Return: the minimum PFN based on information provided via 7080 * memblock_set_node(). 7081 */ 7082 unsigned long __init find_min_pfn_with_active_regions(void) 7083 { 7084 return PHYS_PFN(memblock_start_of_DRAM()); 7085 } 7086 7087 /* 7088 * early_calculate_totalpages() 7089 * Sum pages in active regions for movable zone. 7090 * Populate N_MEMORY for calculating usable_nodes. 7091 */ 7092 static unsigned long __init early_calculate_totalpages(void) 7093 { 7094 unsigned long totalpages = 0; 7095 unsigned long start_pfn, end_pfn; 7096 int i, nid; 7097 7098 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7099 unsigned long pages = end_pfn - start_pfn; 7100 7101 totalpages += pages; 7102 if (pages) 7103 node_set_state(nid, N_MEMORY); 7104 } 7105 return totalpages; 7106 } 7107 7108 /* 7109 * Find the PFN the Movable zone begins in each node. Kernel memory 7110 * is spread evenly between nodes as long as the nodes have enough 7111 * memory. When they don't, some nodes will have more kernelcore than 7112 * others 7113 */ 7114 static void __init find_zone_movable_pfns_for_nodes(void) 7115 { 7116 int i, nid; 7117 unsigned long usable_startpfn; 7118 unsigned long kernelcore_node, kernelcore_remaining; 7119 /* save the state before borrow the nodemask */ 7120 nodemask_t saved_node_state = node_states[N_MEMORY]; 7121 unsigned long totalpages = early_calculate_totalpages(); 7122 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7123 struct memblock_region *r; 7124 7125 /* Need to find movable_zone earlier when movable_node is specified. */ 7126 find_usable_zone_for_movable(); 7127 7128 /* 7129 * If movable_node is specified, ignore kernelcore and movablecore 7130 * options. 7131 */ 7132 if (movable_node_is_enabled()) { 7133 for_each_memblock(memory, r) { 7134 if (!memblock_is_hotpluggable(r)) 7135 continue; 7136 7137 nid = memblock_get_region_node(r); 7138 7139 usable_startpfn = PFN_DOWN(r->base); 7140 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7141 min(usable_startpfn, zone_movable_pfn[nid]) : 7142 usable_startpfn; 7143 } 7144 7145 goto out2; 7146 } 7147 7148 /* 7149 * If kernelcore=mirror is specified, ignore movablecore option 7150 */ 7151 if (mirrored_kernelcore) { 7152 bool mem_below_4gb_not_mirrored = false; 7153 7154 for_each_memblock(memory, r) { 7155 if (memblock_is_mirror(r)) 7156 continue; 7157 7158 nid = memblock_get_region_node(r); 7159 7160 usable_startpfn = memblock_region_memory_base_pfn(r); 7161 7162 if (usable_startpfn < 0x100000) { 7163 mem_below_4gb_not_mirrored = true; 7164 continue; 7165 } 7166 7167 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7168 min(usable_startpfn, zone_movable_pfn[nid]) : 7169 usable_startpfn; 7170 } 7171 7172 if (mem_below_4gb_not_mirrored) 7173 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7174 7175 goto out2; 7176 } 7177 7178 /* 7179 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7180 * amount of necessary memory. 7181 */ 7182 if (required_kernelcore_percent) 7183 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7184 10000UL; 7185 if (required_movablecore_percent) 7186 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7187 10000UL; 7188 7189 /* 7190 * If movablecore= was specified, calculate what size of 7191 * kernelcore that corresponds so that memory usable for 7192 * any allocation type is evenly spread. If both kernelcore 7193 * and movablecore are specified, then the value of kernelcore 7194 * will be used for required_kernelcore if it's greater than 7195 * what movablecore would have allowed. 7196 */ 7197 if (required_movablecore) { 7198 unsigned long corepages; 7199 7200 /* 7201 * Round-up so that ZONE_MOVABLE is at least as large as what 7202 * was requested by the user 7203 */ 7204 required_movablecore = 7205 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7206 required_movablecore = min(totalpages, required_movablecore); 7207 corepages = totalpages - required_movablecore; 7208 7209 required_kernelcore = max(required_kernelcore, corepages); 7210 } 7211 7212 /* 7213 * If kernelcore was not specified or kernelcore size is larger 7214 * than totalpages, there is no ZONE_MOVABLE. 7215 */ 7216 if (!required_kernelcore || required_kernelcore >= totalpages) 7217 goto out; 7218 7219 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7220 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7221 7222 restart: 7223 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7224 kernelcore_node = required_kernelcore / usable_nodes; 7225 for_each_node_state(nid, N_MEMORY) { 7226 unsigned long start_pfn, end_pfn; 7227 7228 /* 7229 * Recalculate kernelcore_node if the division per node 7230 * now exceeds what is necessary to satisfy the requested 7231 * amount of memory for the kernel 7232 */ 7233 if (required_kernelcore < kernelcore_node) 7234 kernelcore_node = required_kernelcore / usable_nodes; 7235 7236 /* 7237 * As the map is walked, we track how much memory is usable 7238 * by the kernel using kernelcore_remaining. When it is 7239 * 0, the rest of the node is usable by ZONE_MOVABLE 7240 */ 7241 kernelcore_remaining = kernelcore_node; 7242 7243 /* Go through each range of PFNs within this node */ 7244 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7245 unsigned long size_pages; 7246 7247 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7248 if (start_pfn >= end_pfn) 7249 continue; 7250 7251 /* Account for what is only usable for kernelcore */ 7252 if (start_pfn < usable_startpfn) { 7253 unsigned long kernel_pages; 7254 kernel_pages = min(end_pfn, usable_startpfn) 7255 - start_pfn; 7256 7257 kernelcore_remaining -= min(kernel_pages, 7258 kernelcore_remaining); 7259 required_kernelcore -= min(kernel_pages, 7260 required_kernelcore); 7261 7262 /* Continue if range is now fully accounted */ 7263 if (end_pfn <= usable_startpfn) { 7264 7265 /* 7266 * Push zone_movable_pfn to the end so 7267 * that if we have to rebalance 7268 * kernelcore across nodes, we will 7269 * not double account here 7270 */ 7271 zone_movable_pfn[nid] = end_pfn; 7272 continue; 7273 } 7274 start_pfn = usable_startpfn; 7275 } 7276 7277 /* 7278 * The usable PFN range for ZONE_MOVABLE is from 7279 * start_pfn->end_pfn. Calculate size_pages as the 7280 * number of pages used as kernelcore 7281 */ 7282 size_pages = end_pfn - start_pfn; 7283 if (size_pages > kernelcore_remaining) 7284 size_pages = kernelcore_remaining; 7285 zone_movable_pfn[nid] = start_pfn + size_pages; 7286 7287 /* 7288 * Some kernelcore has been met, update counts and 7289 * break if the kernelcore for this node has been 7290 * satisfied 7291 */ 7292 required_kernelcore -= min(required_kernelcore, 7293 size_pages); 7294 kernelcore_remaining -= size_pages; 7295 if (!kernelcore_remaining) 7296 break; 7297 } 7298 } 7299 7300 /* 7301 * If there is still required_kernelcore, we do another pass with one 7302 * less node in the count. This will push zone_movable_pfn[nid] further 7303 * along on the nodes that still have memory until kernelcore is 7304 * satisfied 7305 */ 7306 usable_nodes--; 7307 if (usable_nodes && required_kernelcore > usable_nodes) 7308 goto restart; 7309 7310 out2: 7311 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7312 for (nid = 0; nid < MAX_NUMNODES; nid++) 7313 zone_movable_pfn[nid] = 7314 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7315 7316 out: 7317 /* restore the node_state */ 7318 node_states[N_MEMORY] = saved_node_state; 7319 } 7320 7321 /* Any regular or high memory on that node ? */ 7322 static void check_for_memory(pg_data_t *pgdat, int nid) 7323 { 7324 enum zone_type zone_type; 7325 7326 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7327 struct zone *zone = &pgdat->node_zones[zone_type]; 7328 if (populated_zone(zone)) { 7329 if (IS_ENABLED(CONFIG_HIGHMEM)) 7330 node_set_state(nid, N_HIGH_MEMORY); 7331 if (zone_type <= ZONE_NORMAL) 7332 node_set_state(nid, N_NORMAL_MEMORY); 7333 break; 7334 } 7335 } 7336 } 7337 7338 /* 7339 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7340 * such cases we allow max_zone_pfn sorted in the descending order 7341 */ 7342 bool __weak arch_has_descending_max_zone_pfns(void) 7343 { 7344 return false; 7345 } 7346 7347 /** 7348 * free_area_init - Initialise all pg_data_t and zone data 7349 * @max_zone_pfn: an array of max PFNs for each zone 7350 * 7351 * This will call free_area_init_node() for each active node in the system. 7352 * Using the page ranges provided by memblock_set_node(), the size of each 7353 * zone in each node and their holes is calculated. If the maximum PFN 7354 * between two adjacent zones match, it is assumed that the zone is empty. 7355 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7356 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7357 * starts where the previous one ended. For example, ZONE_DMA32 starts 7358 * at arch_max_dma_pfn. 7359 */ 7360 void __init free_area_init(unsigned long *max_zone_pfn) 7361 { 7362 unsigned long start_pfn, end_pfn; 7363 int i, nid, zone; 7364 bool descending; 7365 7366 /* Record where the zone boundaries are */ 7367 memset(arch_zone_lowest_possible_pfn, 0, 7368 sizeof(arch_zone_lowest_possible_pfn)); 7369 memset(arch_zone_highest_possible_pfn, 0, 7370 sizeof(arch_zone_highest_possible_pfn)); 7371 7372 start_pfn = find_min_pfn_with_active_regions(); 7373 descending = arch_has_descending_max_zone_pfns(); 7374 7375 for (i = 0; i < MAX_NR_ZONES; i++) { 7376 if (descending) 7377 zone = MAX_NR_ZONES - i - 1; 7378 else 7379 zone = i; 7380 7381 if (zone == ZONE_MOVABLE) 7382 continue; 7383 7384 end_pfn = max(max_zone_pfn[zone], start_pfn); 7385 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7386 arch_zone_highest_possible_pfn[zone] = end_pfn; 7387 7388 start_pfn = end_pfn; 7389 } 7390 7391 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7392 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7393 find_zone_movable_pfns_for_nodes(); 7394 7395 /* Print out the zone ranges */ 7396 pr_info("Zone ranges:\n"); 7397 for (i = 0; i < MAX_NR_ZONES; i++) { 7398 if (i == ZONE_MOVABLE) 7399 continue; 7400 pr_info(" %-8s ", zone_names[i]); 7401 if (arch_zone_lowest_possible_pfn[i] == 7402 arch_zone_highest_possible_pfn[i]) 7403 pr_cont("empty\n"); 7404 else 7405 pr_cont("[mem %#018Lx-%#018Lx]\n", 7406 (u64)arch_zone_lowest_possible_pfn[i] 7407 << PAGE_SHIFT, 7408 ((u64)arch_zone_highest_possible_pfn[i] 7409 << PAGE_SHIFT) - 1); 7410 } 7411 7412 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7413 pr_info("Movable zone start for each node\n"); 7414 for (i = 0; i < MAX_NUMNODES; i++) { 7415 if (zone_movable_pfn[i]) 7416 pr_info(" Node %d: %#018Lx\n", i, 7417 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7418 } 7419 7420 /* 7421 * Print out the early node map, and initialize the 7422 * subsection-map relative to active online memory ranges to 7423 * enable future "sub-section" extensions of the memory map. 7424 */ 7425 pr_info("Early memory node ranges\n"); 7426 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7427 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7428 (u64)start_pfn << PAGE_SHIFT, 7429 ((u64)end_pfn << PAGE_SHIFT) - 1); 7430 subsection_map_init(start_pfn, end_pfn - start_pfn); 7431 } 7432 7433 /* Initialise every node */ 7434 mminit_verify_pageflags_layout(); 7435 setup_nr_node_ids(); 7436 init_unavailable_mem(); 7437 for_each_online_node(nid) { 7438 pg_data_t *pgdat = NODE_DATA(nid); 7439 free_area_init_node(nid); 7440 7441 /* Any memory on that node */ 7442 if (pgdat->node_present_pages) 7443 node_set_state(nid, N_MEMORY); 7444 check_for_memory(pgdat, nid); 7445 } 7446 } 7447 7448 static int __init cmdline_parse_core(char *p, unsigned long *core, 7449 unsigned long *percent) 7450 { 7451 unsigned long long coremem; 7452 char *endptr; 7453 7454 if (!p) 7455 return -EINVAL; 7456 7457 /* Value may be a percentage of total memory, otherwise bytes */ 7458 coremem = simple_strtoull(p, &endptr, 0); 7459 if (*endptr == '%') { 7460 /* Paranoid check for percent values greater than 100 */ 7461 WARN_ON(coremem > 100); 7462 7463 *percent = coremem; 7464 } else { 7465 coremem = memparse(p, &p); 7466 /* Paranoid check that UL is enough for the coremem value */ 7467 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7468 7469 *core = coremem >> PAGE_SHIFT; 7470 *percent = 0UL; 7471 } 7472 return 0; 7473 } 7474 7475 /* 7476 * kernelcore=size sets the amount of memory for use for allocations that 7477 * cannot be reclaimed or migrated. 7478 */ 7479 static int __init cmdline_parse_kernelcore(char *p) 7480 { 7481 /* parse kernelcore=mirror */ 7482 if (parse_option_str(p, "mirror")) { 7483 mirrored_kernelcore = true; 7484 return 0; 7485 } 7486 7487 return cmdline_parse_core(p, &required_kernelcore, 7488 &required_kernelcore_percent); 7489 } 7490 7491 /* 7492 * movablecore=size sets the amount of memory for use for allocations that 7493 * can be reclaimed or migrated. 7494 */ 7495 static int __init cmdline_parse_movablecore(char *p) 7496 { 7497 return cmdline_parse_core(p, &required_movablecore, 7498 &required_movablecore_percent); 7499 } 7500 7501 early_param("kernelcore", cmdline_parse_kernelcore); 7502 early_param("movablecore", cmdline_parse_movablecore); 7503 7504 void adjust_managed_page_count(struct page *page, long count) 7505 { 7506 atomic_long_add(count, &page_zone(page)->managed_pages); 7507 totalram_pages_add(count); 7508 #ifdef CONFIG_HIGHMEM 7509 if (PageHighMem(page)) 7510 totalhigh_pages_add(count); 7511 #endif 7512 } 7513 EXPORT_SYMBOL(adjust_managed_page_count); 7514 7515 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7516 { 7517 void *pos; 7518 unsigned long pages = 0; 7519 7520 start = (void *)PAGE_ALIGN((unsigned long)start); 7521 end = (void *)((unsigned long)end & PAGE_MASK); 7522 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7523 struct page *page = virt_to_page(pos); 7524 void *direct_map_addr; 7525 7526 /* 7527 * 'direct_map_addr' might be different from 'pos' 7528 * because some architectures' virt_to_page() 7529 * work with aliases. Getting the direct map 7530 * address ensures that we get a _writeable_ 7531 * alias for the memset(). 7532 */ 7533 direct_map_addr = page_address(page); 7534 if ((unsigned int)poison <= 0xFF) 7535 memset(direct_map_addr, poison, PAGE_SIZE); 7536 7537 free_reserved_page(page); 7538 } 7539 7540 if (pages && s) 7541 pr_info("Freeing %s memory: %ldK\n", 7542 s, pages << (PAGE_SHIFT - 10)); 7543 7544 return pages; 7545 } 7546 7547 #ifdef CONFIG_HIGHMEM 7548 void free_highmem_page(struct page *page) 7549 { 7550 __free_reserved_page(page); 7551 totalram_pages_inc(); 7552 atomic_long_inc(&page_zone(page)->managed_pages); 7553 totalhigh_pages_inc(); 7554 } 7555 #endif 7556 7557 7558 void __init mem_init_print_info(const char *str) 7559 { 7560 unsigned long physpages, codesize, datasize, rosize, bss_size; 7561 unsigned long init_code_size, init_data_size; 7562 7563 physpages = get_num_physpages(); 7564 codesize = _etext - _stext; 7565 datasize = _edata - _sdata; 7566 rosize = __end_rodata - __start_rodata; 7567 bss_size = __bss_stop - __bss_start; 7568 init_data_size = __init_end - __init_begin; 7569 init_code_size = _einittext - _sinittext; 7570 7571 /* 7572 * Detect special cases and adjust section sizes accordingly: 7573 * 1) .init.* may be embedded into .data sections 7574 * 2) .init.text.* may be out of [__init_begin, __init_end], 7575 * please refer to arch/tile/kernel/vmlinux.lds.S. 7576 * 3) .rodata.* may be embedded into .text or .data sections. 7577 */ 7578 #define adj_init_size(start, end, size, pos, adj) \ 7579 do { \ 7580 if (start <= pos && pos < end && size > adj) \ 7581 size -= adj; \ 7582 } while (0) 7583 7584 adj_init_size(__init_begin, __init_end, init_data_size, 7585 _sinittext, init_code_size); 7586 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7587 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7588 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7589 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7590 7591 #undef adj_init_size 7592 7593 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7594 #ifdef CONFIG_HIGHMEM 7595 ", %luK highmem" 7596 #endif 7597 "%s%s)\n", 7598 nr_free_pages() << (PAGE_SHIFT - 10), 7599 physpages << (PAGE_SHIFT - 10), 7600 codesize >> 10, datasize >> 10, rosize >> 10, 7601 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7602 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7603 totalcma_pages << (PAGE_SHIFT - 10), 7604 #ifdef CONFIG_HIGHMEM 7605 totalhigh_pages() << (PAGE_SHIFT - 10), 7606 #endif 7607 str ? ", " : "", str ? str : ""); 7608 } 7609 7610 /** 7611 * set_dma_reserve - set the specified number of pages reserved in the first zone 7612 * @new_dma_reserve: The number of pages to mark reserved 7613 * 7614 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7615 * In the DMA zone, a significant percentage may be consumed by kernel image 7616 * and other unfreeable allocations which can skew the watermarks badly. This 7617 * function may optionally be used to account for unfreeable pages in the 7618 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7619 * smaller per-cpu batchsize. 7620 */ 7621 void __init set_dma_reserve(unsigned long new_dma_reserve) 7622 { 7623 dma_reserve = new_dma_reserve; 7624 } 7625 7626 static int page_alloc_cpu_dead(unsigned int cpu) 7627 { 7628 7629 lru_add_drain_cpu(cpu); 7630 drain_pages(cpu); 7631 7632 /* 7633 * Spill the event counters of the dead processor 7634 * into the current processors event counters. 7635 * This artificially elevates the count of the current 7636 * processor. 7637 */ 7638 vm_events_fold_cpu(cpu); 7639 7640 /* 7641 * Zero the differential counters of the dead processor 7642 * so that the vm statistics are consistent. 7643 * 7644 * This is only okay since the processor is dead and cannot 7645 * race with what we are doing. 7646 */ 7647 cpu_vm_stats_fold(cpu); 7648 return 0; 7649 } 7650 7651 #ifdef CONFIG_NUMA 7652 int hashdist = HASHDIST_DEFAULT; 7653 7654 static int __init set_hashdist(char *str) 7655 { 7656 if (!str) 7657 return 0; 7658 hashdist = simple_strtoul(str, &str, 0); 7659 return 1; 7660 } 7661 __setup("hashdist=", set_hashdist); 7662 #endif 7663 7664 void __init page_alloc_init(void) 7665 { 7666 int ret; 7667 7668 #ifdef CONFIG_NUMA 7669 if (num_node_state(N_MEMORY) == 1) 7670 hashdist = 0; 7671 #endif 7672 7673 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7674 "mm/page_alloc:dead", NULL, 7675 page_alloc_cpu_dead); 7676 WARN_ON(ret < 0); 7677 } 7678 7679 /* 7680 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7681 * or min_free_kbytes changes. 7682 */ 7683 static void calculate_totalreserve_pages(void) 7684 { 7685 struct pglist_data *pgdat; 7686 unsigned long reserve_pages = 0; 7687 enum zone_type i, j; 7688 7689 for_each_online_pgdat(pgdat) { 7690 7691 pgdat->totalreserve_pages = 0; 7692 7693 for (i = 0; i < MAX_NR_ZONES; i++) { 7694 struct zone *zone = pgdat->node_zones + i; 7695 long max = 0; 7696 unsigned long managed_pages = zone_managed_pages(zone); 7697 7698 /* Find valid and maximum lowmem_reserve in the zone */ 7699 for (j = i; j < MAX_NR_ZONES; j++) { 7700 if (zone->lowmem_reserve[j] > max) 7701 max = zone->lowmem_reserve[j]; 7702 } 7703 7704 /* we treat the high watermark as reserved pages. */ 7705 max += high_wmark_pages(zone); 7706 7707 if (max > managed_pages) 7708 max = managed_pages; 7709 7710 pgdat->totalreserve_pages += max; 7711 7712 reserve_pages += max; 7713 } 7714 } 7715 totalreserve_pages = reserve_pages; 7716 } 7717 7718 /* 7719 * setup_per_zone_lowmem_reserve - called whenever 7720 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7721 * has a correct pages reserved value, so an adequate number of 7722 * pages are left in the zone after a successful __alloc_pages(). 7723 */ 7724 static void setup_per_zone_lowmem_reserve(void) 7725 { 7726 struct pglist_data *pgdat; 7727 enum zone_type j, idx; 7728 7729 for_each_online_pgdat(pgdat) { 7730 for (j = 0; j < MAX_NR_ZONES; j++) { 7731 struct zone *zone = pgdat->node_zones + j; 7732 unsigned long managed_pages = zone_managed_pages(zone); 7733 7734 zone->lowmem_reserve[j] = 0; 7735 7736 idx = j; 7737 while (idx) { 7738 struct zone *lower_zone; 7739 7740 idx--; 7741 lower_zone = pgdat->node_zones + idx; 7742 7743 if (!sysctl_lowmem_reserve_ratio[idx] || 7744 !zone_managed_pages(lower_zone)) { 7745 lower_zone->lowmem_reserve[j] = 0; 7746 continue; 7747 } else { 7748 lower_zone->lowmem_reserve[j] = 7749 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7750 } 7751 managed_pages += zone_managed_pages(lower_zone); 7752 } 7753 } 7754 } 7755 7756 /* update totalreserve_pages */ 7757 calculate_totalreserve_pages(); 7758 } 7759 7760 static void __setup_per_zone_wmarks(void) 7761 { 7762 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7763 unsigned long lowmem_pages = 0; 7764 struct zone *zone; 7765 unsigned long flags; 7766 7767 /* Calculate total number of !ZONE_HIGHMEM pages */ 7768 for_each_zone(zone) { 7769 if (!is_highmem(zone)) 7770 lowmem_pages += zone_managed_pages(zone); 7771 } 7772 7773 for_each_zone(zone) { 7774 u64 tmp; 7775 7776 spin_lock_irqsave(&zone->lock, flags); 7777 tmp = (u64)pages_min * zone_managed_pages(zone); 7778 do_div(tmp, lowmem_pages); 7779 if (is_highmem(zone)) { 7780 /* 7781 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7782 * need highmem pages, so cap pages_min to a small 7783 * value here. 7784 * 7785 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7786 * deltas control async page reclaim, and so should 7787 * not be capped for highmem. 7788 */ 7789 unsigned long min_pages; 7790 7791 min_pages = zone_managed_pages(zone) / 1024; 7792 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7793 zone->_watermark[WMARK_MIN] = min_pages; 7794 } else { 7795 /* 7796 * If it's a lowmem zone, reserve a number of pages 7797 * proportionate to the zone's size. 7798 */ 7799 zone->_watermark[WMARK_MIN] = tmp; 7800 } 7801 7802 /* 7803 * Set the kswapd watermarks distance according to the 7804 * scale factor in proportion to available memory, but 7805 * ensure a minimum size on small systems. 7806 */ 7807 tmp = max_t(u64, tmp >> 2, 7808 mult_frac(zone_managed_pages(zone), 7809 watermark_scale_factor, 10000)); 7810 7811 zone->watermark_boost = 0; 7812 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7813 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7814 7815 spin_unlock_irqrestore(&zone->lock, flags); 7816 } 7817 7818 /* update totalreserve_pages */ 7819 calculate_totalreserve_pages(); 7820 } 7821 7822 /** 7823 * setup_per_zone_wmarks - called when min_free_kbytes changes 7824 * or when memory is hot-{added|removed} 7825 * 7826 * Ensures that the watermark[min,low,high] values for each zone are set 7827 * correctly with respect to min_free_kbytes. 7828 */ 7829 void setup_per_zone_wmarks(void) 7830 { 7831 static DEFINE_SPINLOCK(lock); 7832 7833 spin_lock(&lock); 7834 __setup_per_zone_wmarks(); 7835 spin_unlock(&lock); 7836 } 7837 7838 /* 7839 * Initialise min_free_kbytes. 7840 * 7841 * For small machines we want it small (128k min). For large machines 7842 * we want it large (256MB max). But it is not linear, because network 7843 * bandwidth does not increase linearly with machine size. We use 7844 * 7845 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7846 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7847 * 7848 * which yields 7849 * 7850 * 16MB: 512k 7851 * 32MB: 724k 7852 * 64MB: 1024k 7853 * 128MB: 1448k 7854 * 256MB: 2048k 7855 * 512MB: 2896k 7856 * 1024MB: 4096k 7857 * 2048MB: 5792k 7858 * 4096MB: 8192k 7859 * 8192MB: 11584k 7860 * 16384MB: 16384k 7861 */ 7862 int __meminit init_per_zone_wmark_min(void) 7863 { 7864 unsigned long lowmem_kbytes; 7865 int new_min_free_kbytes; 7866 7867 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7868 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7869 7870 if (new_min_free_kbytes > user_min_free_kbytes) { 7871 min_free_kbytes = new_min_free_kbytes; 7872 if (min_free_kbytes < 128) 7873 min_free_kbytes = 128; 7874 if (min_free_kbytes > 262144) 7875 min_free_kbytes = 262144; 7876 } else { 7877 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7878 new_min_free_kbytes, user_min_free_kbytes); 7879 } 7880 setup_per_zone_wmarks(); 7881 refresh_zone_stat_thresholds(); 7882 setup_per_zone_lowmem_reserve(); 7883 7884 #ifdef CONFIG_NUMA 7885 setup_min_unmapped_ratio(); 7886 setup_min_slab_ratio(); 7887 #endif 7888 7889 return 0; 7890 } 7891 core_initcall(init_per_zone_wmark_min) 7892 7893 /* 7894 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7895 * that we can call two helper functions whenever min_free_kbytes 7896 * changes. 7897 */ 7898 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7899 void *buffer, size_t *length, loff_t *ppos) 7900 { 7901 int rc; 7902 7903 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7904 if (rc) 7905 return rc; 7906 7907 if (write) { 7908 user_min_free_kbytes = min_free_kbytes; 7909 setup_per_zone_wmarks(); 7910 } 7911 return 0; 7912 } 7913 7914 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7915 void *buffer, size_t *length, loff_t *ppos) 7916 { 7917 int rc; 7918 7919 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7920 if (rc) 7921 return rc; 7922 7923 if (write) 7924 setup_per_zone_wmarks(); 7925 7926 return 0; 7927 } 7928 7929 #ifdef CONFIG_NUMA 7930 static void setup_min_unmapped_ratio(void) 7931 { 7932 pg_data_t *pgdat; 7933 struct zone *zone; 7934 7935 for_each_online_pgdat(pgdat) 7936 pgdat->min_unmapped_pages = 0; 7937 7938 for_each_zone(zone) 7939 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7940 sysctl_min_unmapped_ratio) / 100; 7941 } 7942 7943 7944 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7945 void *buffer, size_t *length, loff_t *ppos) 7946 { 7947 int rc; 7948 7949 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7950 if (rc) 7951 return rc; 7952 7953 setup_min_unmapped_ratio(); 7954 7955 return 0; 7956 } 7957 7958 static void setup_min_slab_ratio(void) 7959 { 7960 pg_data_t *pgdat; 7961 struct zone *zone; 7962 7963 for_each_online_pgdat(pgdat) 7964 pgdat->min_slab_pages = 0; 7965 7966 for_each_zone(zone) 7967 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7968 sysctl_min_slab_ratio) / 100; 7969 } 7970 7971 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7972 void *buffer, size_t *length, loff_t *ppos) 7973 { 7974 int rc; 7975 7976 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7977 if (rc) 7978 return rc; 7979 7980 setup_min_slab_ratio(); 7981 7982 return 0; 7983 } 7984 #endif 7985 7986 /* 7987 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7988 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7989 * whenever sysctl_lowmem_reserve_ratio changes. 7990 * 7991 * The reserve ratio obviously has absolutely no relation with the 7992 * minimum watermarks. The lowmem reserve ratio can only make sense 7993 * if in function of the boot time zone sizes. 7994 */ 7995 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7996 void *buffer, size_t *length, loff_t *ppos) 7997 { 7998 int i; 7999 8000 proc_dointvec_minmax(table, write, buffer, length, ppos); 8001 8002 for (i = 0; i < MAX_NR_ZONES; i++) { 8003 if (sysctl_lowmem_reserve_ratio[i] < 1) 8004 sysctl_lowmem_reserve_ratio[i] = 0; 8005 } 8006 8007 setup_per_zone_lowmem_reserve(); 8008 return 0; 8009 } 8010 8011 static void __zone_pcp_update(struct zone *zone) 8012 { 8013 unsigned int cpu; 8014 8015 for_each_possible_cpu(cpu) 8016 pageset_set_high_and_batch(zone, 8017 per_cpu_ptr(zone->pageset, cpu)); 8018 } 8019 8020 /* 8021 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8022 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8023 * pagelist can have before it gets flushed back to buddy allocator. 8024 */ 8025 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8026 void *buffer, size_t *length, loff_t *ppos) 8027 { 8028 struct zone *zone; 8029 int old_percpu_pagelist_fraction; 8030 int ret; 8031 8032 mutex_lock(&pcp_batch_high_lock); 8033 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8034 8035 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8036 if (!write || ret < 0) 8037 goto out; 8038 8039 /* Sanity checking to avoid pcp imbalance */ 8040 if (percpu_pagelist_fraction && 8041 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8042 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8043 ret = -EINVAL; 8044 goto out; 8045 } 8046 8047 /* No change? */ 8048 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8049 goto out; 8050 8051 for_each_populated_zone(zone) 8052 __zone_pcp_update(zone); 8053 out: 8054 mutex_unlock(&pcp_batch_high_lock); 8055 return ret; 8056 } 8057 8058 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8059 /* 8060 * Returns the number of pages that arch has reserved but 8061 * is not known to alloc_large_system_hash(). 8062 */ 8063 static unsigned long __init arch_reserved_kernel_pages(void) 8064 { 8065 return 0; 8066 } 8067 #endif 8068 8069 /* 8070 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8071 * machines. As memory size is increased the scale is also increased but at 8072 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8073 * quadruples the scale is increased by one, which means the size of hash table 8074 * only doubles, instead of quadrupling as well. 8075 * Because 32-bit systems cannot have large physical memory, where this scaling 8076 * makes sense, it is disabled on such platforms. 8077 */ 8078 #if __BITS_PER_LONG > 32 8079 #define ADAPT_SCALE_BASE (64ul << 30) 8080 #define ADAPT_SCALE_SHIFT 2 8081 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8082 #endif 8083 8084 /* 8085 * allocate a large system hash table from bootmem 8086 * - it is assumed that the hash table must contain an exact power-of-2 8087 * quantity of entries 8088 * - limit is the number of hash buckets, not the total allocation size 8089 */ 8090 void *__init alloc_large_system_hash(const char *tablename, 8091 unsigned long bucketsize, 8092 unsigned long numentries, 8093 int scale, 8094 int flags, 8095 unsigned int *_hash_shift, 8096 unsigned int *_hash_mask, 8097 unsigned long low_limit, 8098 unsigned long high_limit) 8099 { 8100 unsigned long long max = high_limit; 8101 unsigned long log2qty, size; 8102 void *table = NULL; 8103 gfp_t gfp_flags; 8104 bool virt; 8105 8106 /* allow the kernel cmdline to have a say */ 8107 if (!numentries) { 8108 /* round applicable memory size up to nearest megabyte */ 8109 numentries = nr_kernel_pages; 8110 numentries -= arch_reserved_kernel_pages(); 8111 8112 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8113 if (PAGE_SHIFT < 20) 8114 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8115 8116 #if __BITS_PER_LONG > 32 8117 if (!high_limit) { 8118 unsigned long adapt; 8119 8120 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8121 adapt <<= ADAPT_SCALE_SHIFT) 8122 scale++; 8123 } 8124 #endif 8125 8126 /* limit to 1 bucket per 2^scale bytes of low memory */ 8127 if (scale > PAGE_SHIFT) 8128 numentries >>= (scale - PAGE_SHIFT); 8129 else 8130 numentries <<= (PAGE_SHIFT - scale); 8131 8132 /* Make sure we've got at least a 0-order allocation.. */ 8133 if (unlikely(flags & HASH_SMALL)) { 8134 /* Makes no sense without HASH_EARLY */ 8135 WARN_ON(!(flags & HASH_EARLY)); 8136 if (!(numentries >> *_hash_shift)) { 8137 numentries = 1UL << *_hash_shift; 8138 BUG_ON(!numentries); 8139 } 8140 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8141 numentries = PAGE_SIZE / bucketsize; 8142 } 8143 numentries = roundup_pow_of_two(numentries); 8144 8145 /* limit allocation size to 1/16 total memory by default */ 8146 if (max == 0) { 8147 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8148 do_div(max, bucketsize); 8149 } 8150 max = min(max, 0x80000000ULL); 8151 8152 if (numentries < low_limit) 8153 numentries = low_limit; 8154 if (numentries > max) 8155 numentries = max; 8156 8157 log2qty = ilog2(numentries); 8158 8159 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8160 do { 8161 virt = false; 8162 size = bucketsize << log2qty; 8163 if (flags & HASH_EARLY) { 8164 if (flags & HASH_ZERO) 8165 table = memblock_alloc(size, SMP_CACHE_BYTES); 8166 else 8167 table = memblock_alloc_raw(size, 8168 SMP_CACHE_BYTES); 8169 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8170 table = __vmalloc(size, gfp_flags); 8171 virt = true; 8172 } else { 8173 /* 8174 * If bucketsize is not a power-of-two, we may free 8175 * some pages at the end of hash table which 8176 * alloc_pages_exact() automatically does 8177 */ 8178 table = alloc_pages_exact(size, gfp_flags); 8179 kmemleak_alloc(table, size, 1, gfp_flags); 8180 } 8181 } while (!table && size > PAGE_SIZE && --log2qty); 8182 8183 if (!table) 8184 panic("Failed to allocate %s hash table\n", tablename); 8185 8186 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8187 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8188 virt ? "vmalloc" : "linear"); 8189 8190 if (_hash_shift) 8191 *_hash_shift = log2qty; 8192 if (_hash_mask) 8193 *_hash_mask = (1 << log2qty) - 1; 8194 8195 return table; 8196 } 8197 8198 /* 8199 * This function checks whether pageblock includes unmovable pages or not. 8200 * 8201 * PageLRU check without isolation or lru_lock could race so that 8202 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8203 * check without lock_page also may miss some movable non-lru pages at 8204 * race condition. So you can't expect this function should be exact. 8205 * 8206 * Returns a page without holding a reference. If the caller wants to 8207 * dereference that page (e.g., dumping), it has to make sure that it 8208 * cannot get removed (e.g., via memory unplug) concurrently. 8209 * 8210 */ 8211 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8212 int migratetype, int flags) 8213 { 8214 unsigned long iter = 0; 8215 unsigned long pfn = page_to_pfn(page); 8216 8217 /* 8218 * TODO we could make this much more efficient by not checking every 8219 * page in the range if we know all of them are in MOVABLE_ZONE and 8220 * that the movable zone guarantees that pages are migratable but 8221 * the later is not the case right now unfortunatelly. E.g. movablecore 8222 * can still lead to having bootmem allocations in zone_movable. 8223 */ 8224 8225 if (is_migrate_cma_page(page)) { 8226 /* 8227 * CMA allocations (alloc_contig_range) really need to mark 8228 * isolate CMA pageblocks even when they are not movable in fact 8229 * so consider them movable here. 8230 */ 8231 if (is_migrate_cma(migratetype)) 8232 return NULL; 8233 8234 return page; 8235 } 8236 8237 for (; iter < pageblock_nr_pages; iter++) { 8238 if (!pfn_valid_within(pfn + iter)) 8239 continue; 8240 8241 page = pfn_to_page(pfn + iter); 8242 8243 if (PageReserved(page)) 8244 return page; 8245 8246 /* 8247 * If the zone is movable and we have ruled out all reserved 8248 * pages then it should be reasonably safe to assume the rest 8249 * is movable. 8250 */ 8251 if (zone_idx(zone) == ZONE_MOVABLE) 8252 continue; 8253 8254 /* 8255 * Hugepages are not in LRU lists, but they're movable. 8256 * THPs are on the LRU, but need to be counted as #small pages. 8257 * We need not scan over tail pages because we don't 8258 * handle each tail page individually in migration. 8259 */ 8260 if (PageHuge(page) || PageTransCompound(page)) { 8261 struct page *head = compound_head(page); 8262 unsigned int skip_pages; 8263 8264 if (PageHuge(page)) { 8265 if (!hugepage_migration_supported(page_hstate(head))) 8266 return page; 8267 } else if (!PageLRU(head) && !__PageMovable(head)) { 8268 return page; 8269 } 8270 8271 skip_pages = compound_nr(head) - (page - head); 8272 iter += skip_pages - 1; 8273 continue; 8274 } 8275 8276 /* 8277 * We can't use page_count without pin a page 8278 * because another CPU can free compound page. 8279 * This check already skips compound tails of THP 8280 * because their page->_refcount is zero at all time. 8281 */ 8282 if (!page_ref_count(page)) { 8283 if (PageBuddy(page)) 8284 iter += (1 << page_order(page)) - 1; 8285 continue; 8286 } 8287 8288 /* 8289 * The HWPoisoned page may be not in buddy system, and 8290 * page_count() is not 0. 8291 */ 8292 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8293 continue; 8294 8295 /* 8296 * We treat all PageOffline() pages as movable when offlining 8297 * to give drivers a chance to decrement their reference count 8298 * in MEM_GOING_OFFLINE in order to indicate that these pages 8299 * can be offlined as there are no direct references anymore. 8300 * For actually unmovable PageOffline() where the driver does 8301 * not support this, we will fail later when trying to actually 8302 * move these pages that still have a reference count > 0. 8303 * (false negatives in this function only) 8304 */ 8305 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8306 continue; 8307 8308 if (__PageMovable(page) || PageLRU(page)) 8309 continue; 8310 8311 /* 8312 * If there are RECLAIMABLE pages, we need to check 8313 * it. But now, memory offline itself doesn't call 8314 * shrink_node_slabs() and it still to be fixed. 8315 */ 8316 /* 8317 * If the page is not RAM, page_count()should be 0. 8318 * we don't need more check. This is an _used_ not-movable page. 8319 * 8320 * The problematic thing here is PG_reserved pages. PG_reserved 8321 * is set to both of a memory hole page and a _used_ kernel 8322 * page at boot. 8323 */ 8324 return page; 8325 } 8326 return NULL; 8327 } 8328 8329 #ifdef CONFIG_CONTIG_ALLOC 8330 static unsigned long pfn_max_align_down(unsigned long pfn) 8331 { 8332 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8333 pageblock_nr_pages) - 1); 8334 } 8335 8336 static unsigned long pfn_max_align_up(unsigned long pfn) 8337 { 8338 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8339 pageblock_nr_pages)); 8340 } 8341 8342 /* [start, end) must belong to a single zone. */ 8343 static int __alloc_contig_migrate_range(struct compact_control *cc, 8344 unsigned long start, unsigned long end) 8345 { 8346 /* This function is based on compact_zone() from compaction.c. */ 8347 unsigned int nr_reclaimed; 8348 unsigned long pfn = start; 8349 unsigned int tries = 0; 8350 int ret = 0; 8351 struct migration_target_control mtc = { 8352 .nid = zone_to_nid(cc->zone), 8353 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8354 }; 8355 8356 migrate_prep(); 8357 8358 while (pfn < end || !list_empty(&cc->migratepages)) { 8359 if (fatal_signal_pending(current)) { 8360 ret = -EINTR; 8361 break; 8362 } 8363 8364 if (list_empty(&cc->migratepages)) { 8365 cc->nr_migratepages = 0; 8366 pfn = isolate_migratepages_range(cc, pfn, end); 8367 if (!pfn) { 8368 ret = -EINTR; 8369 break; 8370 } 8371 tries = 0; 8372 } else if (++tries == 5) { 8373 ret = ret < 0 ? ret : -EBUSY; 8374 break; 8375 } 8376 8377 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8378 &cc->migratepages); 8379 cc->nr_migratepages -= nr_reclaimed; 8380 8381 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8382 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8383 } 8384 if (ret < 0) { 8385 putback_movable_pages(&cc->migratepages); 8386 return ret; 8387 } 8388 return 0; 8389 } 8390 8391 /** 8392 * alloc_contig_range() -- tries to allocate given range of pages 8393 * @start: start PFN to allocate 8394 * @end: one-past-the-last PFN to allocate 8395 * @migratetype: migratetype of the underlaying pageblocks (either 8396 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8397 * in range must have the same migratetype and it must 8398 * be either of the two. 8399 * @gfp_mask: GFP mask to use during compaction 8400 * 8401 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8402 * aligned. The PFN range must belong to a single zone. 8403 * 8404 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8405 * pageblocks in the range. Once isolated, the pageblocks should not 8406 * be modified by others. 8407 * 8408 * Return: zero on success or negative error code. On success all 8409 * pages which PFN is in [start, end) are allocated for the caller and 8410 * need to be freed with free_contig_range(). 8411 */ 8412 int alloc_contig_range(unsigned long start, unsigned long end, 8413 unsigned migratetype, gfp_t gfp_mask) 8414 { 8415 unsigned long outer_start, outer_end; 8416 unsigned int order; 8417 int ret = 0; 8418 8419 struct compact_control cc = { 8420 .nr_migratepages = 0, 8421 .order = -1, 8422 .zone = page_zone(pfn_to_page(start)), 8423 .mode = MIGRATE_SYNC, 8424 .ignore_skip_hint = true, 8425 .no_set_skip_hint = true, 8426 .gfp_mask = current_gfp_context(gfp_mask), 8427 .alloc_contig = true, 8428 }; 8429 INIT_LIST_HEAD(&cc.migratepages); 8430 8431 /* 8432 * What we do here is we mark all pageblocks in range as 8433 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8434 * have different sizes, and due to the way page allocator 8435 * work, we align the range to biggest of the two pages so 8436 * that page allocator won't try to merge buddies from 8437 * different pageblocks and change MIGRATE_ISOLATE to some 8438 * other migration type. 8439 * 8440 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8441 * migrate the pages from an unaligned range (ie. pages that 8442 * we are interested in). This will put all the pages in 8443 * range back to page allocator as MIGRATE_ISOLATE. 8444 * 8445 * When this is done, we take the pages in range from page 8446 * allocator removing them from the buddy system. This way 8447 * page allocator will never consider using them. 8448 * 8449 * This lets us mark the pageblocks back as 8450 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8451 * aligned range but not in the unaligned, original range are 8452 * put back to page allocator so that buddy can use them. 8453 */ 8454 8455 ret = start_isolate_page_range(pfn_max_align_down(start), 8456 pfn_max_align_up(end), migratetype, 0); 8457 if (ret < 0) 8458 return ret; 8459 8460 /* 8461 * In case of -EBUSY, we'd like to know which page causes problem. 8462 * So, just fall through. test_pages_isolated() has a tracepoint 8463 * which will report the busy page. 8464 * 8465 * It is possible that busy pages could become available before 8466 * the call to test_pages_isolated, and the range will actually be 8467 * allocated. So, if we fall through be sure to clear ret so that 8468 * -EBUSY is not accidentally used or returned to caller. 8469 */ 8470 ret = __alloc_contig_migrate_range(&cc, start, end); 8471 if (ret && ret != -EBUSY) 8472 goto done; 8473 ret =0; 8474 8475 /* 8476 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8477 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8478 * more, all pages in [start, end) are free in page allocator. 8479 * What we are going to do is to allocate all pages from 8480 * [start, end) (that is remove them from page allocator). 8481 * 8482 * The only problem is that pages at the beginning and at the 8483 * end of interesting range may be not aligned with pages that 8484 * page allocator holds, ie. they can be part of higher order 8485 * pages. Because of this, we reserve the bigger range and 8486 * once this is done free the pages we are not interested in. 8487 * 8488 * We don't have to hold zone->lock here because the pages are 8489 * isolated thus they won't get removed from buddy. 8490 */ 8491 8492 lru_add_drain_all(); 8493 8494 order = 0; 8495 outer_start = start; 8496 while (!PageBuddy(pfn_to_page(outer_start))) { 8497 if (++order >= MAX_ORDER) { 8498 outer_start = start; 8499 break; 8500 } 8501 outer_start &= ~0UL << order; 8502 } 8503 8504 if (outer_start != start) { 8505 order = page_order(pfn_to_page(outer_start)); 8506 8507 /* 8508 * outer_start page could be small order buddy page and 8509 * it doesn't include start page. Adjust outer_start 8510 * in this case to report failed page properly 8511 * on tracepoint in test_pages_isolated() 8512 */ 8513 if (outer_start + (1UL << order) <= start) 8514 outer_start = start; 8515 } 8516 8517 /* Make sure the range is really isolated. */ 8518 if (test_pages_isolated(outer_start, end, 0)) { 8519 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8520 __func__, outer_start, end); 8521 ret = -EBUSY; 8522 goto done; 8523 } 8524 8525 /* Grab isolated pages from freelists. */ 8526 outer_end = isolate_freepages_range(&cc, outer_start, end); 8527 if (!outer_end) { 8528 ret = -EBUSY; 8529 goto done; 8530 } 8531 8532 /* Free head and tail (if any) */ 8533 if (start != outer_start) 8534 free_contig_range(outer_start, start - outer_start); 8535 if (end != outer_end) 8536 free_contig_range(end, outer_end - end); 8537 8538 done: 8539 undo_isolate_page_range(pfn_max_align_down(start), 8540 pfn_max_align_up(end), migratetype); 8541 return ret; 8542 } 8543 EXPORT_SYMBOL(alloc_contig_range); 8544 8545 static int __alloc_contig_pages(unsigned long start_pfn, 8546 unsigned long nr_pages, gfp_t gfp_mask) 8547 { 8548 unsigned long end_pfn = start_pfn + nr_pages; 8549 8550 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8551 gfp_mask); 8552 } 8553 8554 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8555 unsigned long nr_pages) 8556 { 8557 unsigned long i, end_pfn = start_pfn + nr_pages; 8558 struct page *page; 8559 8560 for (i = start_pfn; i < end_pfn; i++) { 8561 page = pfn_to_online_page(i); 8562 if (!page) 8563 return false; 8564 8565 if (page_zone(page) != z) 8566 return false; 8567 8568 if (PageReserved(page)) 8569 return false; 8570 8571 if (page_count(page) > 0) 8572 return false; 8573 8574 if (PageHuge(page)) 8575 return false; 8576 } 8577 return true; 8578 } 8579 8580 static bool zone_spans_last_pfn(const struct zone *zone, 8581 unsigned long start_pfn, unsigned long nr_pages) 8582 { 8583 unsigned long last_pfn = start_pfn + nr_pages - 1; 8584 8585 return zone_spans_pfn(zone, last_pfn); 8586 } 8587 8588 /** 8589 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8590 * @nr_pages: Number of contiguous pages to allocate 8591 * @gfp_mask: GFP mask to limit search and used during compaction 8592 * @nid: Target node 8593 * @nodemask: Mask for other possible nodes 8594 * 8595 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8596 * on an applicable zonelist to find a contiguous pfn range which can then be 8597 * tried for allocation with alloc_contig_range(). This routine is intended 8598 * for allocation requests which can not be fulfilled with the buddy allocator. 8599 * 8600 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8601 * power of two then the alignment is guaranteed to be to the given nr_pages 8602 * (e.g. 1GB request would be aligned to 1GB). 8603 * 8604 * Allocated pages can be freed with free_contig_range() or by manually calling 8605 * __free_page() on each allocated page. 8606 * 8607 * Return: pointer to contiguous pages on success, or NULL if not successful. 8608 */ 8609 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8610 int nid, nodemask_t *nodemask) 8611 { 8612 unsigned long ret, pfn, flags; 8613 struct zonelist *zonelist; 8614 struct zone *zone; 8615 struct zoneref *z; 8616 8617 zonelist = node_zonelist(nid, gfp_mask); 8618 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8619 gfp_zone(gfp_mask), nodemask) { 8620 spin_lock_irqsave(&zone->lock, flags); 8621 8622 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8623 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8624 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8625 /* 8626 * We release the zone lock here because 8627 * alloc_contig_range() will also lock the zone 8628 * at some point. If there's an allocation 8629 * spinning on this lock, it may win the race 8630 * and cause alloc_contig_range() to fail... 8631 */ 8632 spin_unlock_irqrestore(&zone->lock, flags); 8633 ret = __alloc_contig_pages(pfn, nr_pages, 8634 gfp_mask); 8635 if (!ret) 8636 return pfn_to_page(pfn); 8637 spin_lock_irqsave(&zone->lock, flags); 8638 } 8639 pfn += nr_pages; 8640 } 8641 spin_unlock_irqrestore(&zone->lock, flags); 8642 } 8643 return NULL; 8644 } 8645 #endif /* CONFIG_CONTIG_ALLOC */ 8646 8647 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8648 { 8649 unsigned int count = 0; 8650 8651 for (; nr_pages--; pfn++) { 8652 struct page *page = pfn_to_page(pfn); 8653 8654 count += page_count(page) != 1; 8655 __free_page(page); 8656 } 8657 WARN(count != 0, "%d pages are still in use!\n", count); 8658 } 8659 EXPORT_SYMBOL(free_contig_range); 8660 8661 /* 8662 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8663 * page high values need to be recalulated. 8664 */ 8665 void __meminit zone_pcp_update(struct zone *zone) 8666 { 8667 mutex_lock(&pcp_batch_high_lock); 8668 __zone_pcp_update(zone); 8669 mutex_unlock(&pcp_batch_high_lock); 8670 } 8671 8672 void zone_pcp_reset(struct zone *zone) 8673 { 8674 unsigned long flags; 8675 int cpu; 8676 struct per_cpu_pageset *pset; 8677 8678 /* avoid races with drain_pages() */ 8679 local_irq_save(flags); 8680 if (zone->pageset != &boot_pageset) { 8681 for_each_online_cpu(cpu) { 8682 pset = per_cpu_ptr(zone->pageset, cpu); 8683 drain_zonestat(zone, pset); 8684 } 8685 free_percpu(zone->pageset); 8686 zone->pageset = &boot_pageset; 8687 } 8688 local_irq_restore(flags); 8689 } 8690 8691 #ifdef CONFIG_MEMORY_HOTREMOVE 8692 /* 8693 * All pages in the range must be in a single zone and isolated 8694 * before calling this. 8695 */ 8696 unsigned long 8697 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8698 { 8699 struct page *page; 8700 struct zone *zone; 8701 unsigned int order; 8702 unsigned long pfn; 8703 unsigned long flags; 8704 unsigned long offlined_pages = 0; 8705 8706 /* find the first valid pfn */ 8707 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8708 if (pfn_valid(pfn)) 8709 break; 8710 if (pfn == end_pfn) 8711 return offlined_pages; 8712 8713 offline_mem_sections(pfn, end_pfn); 8714 zone = page_zone(pfn_to_page(pfn)); 8715 spin_lock_irqsave(&zone->lock, flags); 8716 pfn = start_pfn; 8717 while (pfn < end_pfn) { 8718 if (!pfn_valid(pfn)) { 8719 pfn++; 8720 continue; 8721 } 8722 page = pfn_to_page(pfn); 8723 /* 8724 * The HWPoisoned page may be not in buddy system, and 8725 * page_count() is not 0. 8726 */ 8727 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8728 pfn++; 8729 offlined_pages++; 8730 continue; 8731 } 8732 /* 8733 * At this point all remaining PageOffline() pages have a 8734 * reference count of 0 and can simply be skipped. 8735 */ 8736 if (PageOffline(page)) { 8737 BUG_ON(page_count(page)); 8738 BUG_ON(PageBuddy(page)); 8739 pfn++; 8740 offlined_pages++; 8741 continue; 8742 } 8743 8744 BUG_ON(page_count(page)); 8745 BUG_ON(!PageBuddy(page)); 8746 order = page_order(page); 8747 offlined_pages += 1 << order; 8748 del_page_from_free_list(page, zone, order); 8749 pfn += (1 << order); 8750 } 8751 spin_unlock_irqrestore(&zone->lock, flags); 8752 8753 return offlined_pages; 8754 } 8755 #endif 8756 8757 bool is_free_buddy_page(struct page *page) 8758 { 8759 struct zone *zone = page_zone(page); 8760 unsigned long pfn = page_to_pfn(page); 8761 unsigned long flags; 8762 unsigned int order; 8763 8764 spin_lock_irqsave(&zone->lock, flags); 8765 for (order = 0; order < MAX_ORDER; order++) { 8766 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8767 8768 if (PageBuddy(page_head) && page_order(page_head) >= order) 8769 break; 8770 } 8771 spin_unlock_irqrestore(&zone->lock, flags); 8772 8773 return order < MAX_ORDER; 8774 } 8775 8776 #ifdef CONFIG_MEMORY_FAILURE 8777 /* 8778 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8779 * test is performed under the zone lock to prevent a race against page 8780 * allocation. 8781 */ 8782 bool set_hwpoison_free_buddy_page(struct page *page) 8783 { 8784 struct zone *zone = page_zone(page); 8785 unsigned long pfn = page_to_pfn(page); 8786 unsigned long flags; 8787 unsigned int order; 8788 bool hwpoisoned = false; 8789 8790 spin_lock_irqsave(&zone->lock, flags); 8791 for (order = 0; order < MAX_ORDER; order++) { 8792 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8793 8794 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8795 if (!TestSetPageHWPoison(page)) 8796 hwpoisoned = true; 8797 break; 8798 } 8799 } 8800 spin_unlock_irqrestore(&zone->lock, flags); 8801 8802 return hwpoisoned; 8803 } 8804 #endif 8805