1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 DEFINE_MUTEX(pcpu_drain_mutex); 101 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 102 103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 104 volatile unsigned long latent_entropy __latent_entropy; 105 EXPORT_SYMBOL(latent_entropy); 106 #endif 107 108 /* 109 * Array of node states. 110 */ 111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 112 [N_POSSIBLE] = NODE_MASK_ALL, 113 [N_ONLINE] = { { [0] = 1UL } }, 114 #ifndef CONFIG_NUMA 115 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 116 #ifdef CONFIG_HIGHMEM 117 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 118 #endif 119 [N_MEMORY] = { { [0] = 1UL } }, 120 [N_CPU] = { { [0] = 1UL } }, 121 #endif /* NUMA */ 122 }; 123 EXPORT_SYMBOL(node_states); 124 125 /* Protect totalram_pages and zone->managed_pages */ 126 static DEFINE_SPINLOCK(managed_page_count_lock); 127 128 unsigned long totalram_pages __read_mostly; 129 unsigned long totalreserve_pages __read_mostly; 130 unsigned long totalcma_pages __read_mostly; 131 132 int percpu_pagelist_fraction; 133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 134 135 /* 136 * A cached value of the page's pageblock's migratetype, used when the page is 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 139 * Also the migratetype set in the page does not necessarily match the pcplist 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 141 * other index - this ensures that it will be put on the correct CMA freelist. 142 */ 143 static inline int get_pcppage_migratetype(struct page *page) 144 { 145 return page->index; 146 } 147 148 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 149 { 150 page->index = migratetype; 151 } 152 153 #ifdef CONFIG_PM_SLEEP 154 /* 155 * The following functions are used by the suspend/hibernate code to temporarily 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 157 * while devices are suspended. To avoid races with the suspend/hibernate code, 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is 160 * guaranteed not to run in parallel with that modification). 161 */ 162 163 static gfp_t saved_gfp_mask; 164 165 void pm_restore_gfp_mask(void) 166 { 167 WARN_ON(!mutex_is_locked(&pm_mutex)); 168 if (saved_gfp_mask) { 169 gfp_allowed_mask = saved_gfp_mask; 170 saved_gfp_mask = 0; 171 } 172 } 173 174 void pm_restrict_gfp_mask(void) 175 { 176 WARN_ON(!mutex_is_locked(&pm_mutex)); 177 WARN_ON(saved_gfp_mask); 178 saved_gfp_mask = gfp_allowed_mask; 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 180 } 181 182 bool pm_suspended_storage(void) 183 { 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 185 return false; 186 return true; 187 } 188 #endif /* CONFIG_PM_SLEEP */ 189 190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 191 unsigned int pageblock_order __read_mostly; 192 #endif 193 194 static void __free_pages_ok(struct page *page, unsigned int order); 195 196 /* 197 * results with 256, 32 in the lowmem_reserve sysctl: 198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 199 * 1G machine -> (16M dma, 784M normal, 224M high) 200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 203 * 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally 205 * don't need any ZONE_NORMAL reservation 206 */ 207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 208 #ifdef CONFIG_ZONE_DMA 209 [ZONE_DMA] = 256, 210 #endif 211 #ifdef CONFIG_ZONE_DMA32 212 [ZONE_DMA32] = 256, 213 #endif 214 [ZONE_NORMAL] = 32, 215 #ifdef CONFIG_HIGHMEM 216 [ZONE_HIGHMEM] = 0, 217 #endif 218 [ZONE_MOVABLE] = 0, 219 }; 220 221 EXPORT_SYMBOL(totalram_pages); 222 223 static char * const zone_names[MAX_NR_ZONES] = { 224 #ifdef CONFIG_ZONE_DMA 225 "DMA", 226 #endif 227 #ifdef CONFIG_ZONE_DMA32 228 "DMA32", 229 #endif 230 "Normal", 231 #ifdef CONFIG_HIGHMEM 232 "HighMem", 233 #endif 234 "Movable", 235 #ifdef CONFIG_ZONE_DEVICE 236 "Device", 237 #endif 238 }; 239 240 char * const migratetype_names[MIGRATE_TYPES] = { 241 "Unmovable", 242 "Movable", 243 "Reclaimable", 244 "HighAtomic", 245 #ifdef CONFIG_CMA 246 "CMA", 247 #endif 248 #ifdef CONFIG_MEMORY_ISOLATION 249 "Isolate", 250 #endif 251 }; 252 253 compound_page_dtor * const compound_page_dtors[] = { 254 NULL, 255 free_compound_page, 256 #ifdef CONFIG_HUGETLB_PAGE 257 free_huge_page, 258 #endif 259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 free_transhuge_page, 261 #endif 262 }; 263 264 int min_free_kbytes = 1024; 265 int user_min_free_kbytes = -1; 266 int watermark_scale_factor = 10; 267 268 static unsigned long nr_kernel_pages __meminitdata; 269 static unsigned long nr_all_pages __meminitdata; 270 static unsigned long dma_reserve __meminitdata; 271 272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata; 274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata; 275 static unsigned long required_kernelcore __initdata; 276 static unsigned long required_kernelcore_percent __initdata; 277 static unsigned long required_movablecore __initdata; 278 static unsigned long required_movablecore_percent __initdata; 279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata; 280 static bool mirrored_kernelcore __meminitdata; 281 282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 283 int movable_zone; 284 EXPORT_SYMBOL(movable_zone); 285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 286 287 #if MAX_NUMNODES > 1 288 int nr_node_ids __read_mostly = MAX_NUMNODES; 289 int nr_online_nodes __read_mostly = 1; 290 EXPORT_SYMBOL(nr_node_ids); 291 EXPORT_SYMBOL(nr_online_nodes); 292 #endif 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* Returns true if the struct page for the pfn is uninitialised */ 298 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 299 { 300 int nid = early_pfn_to_nid(pfn); 301 302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 303 return true; 304 305 return false; 306 } 307 308 /* 309 * Returns false when the remaining initialisation should be deferred until 310 * later in the boot cycle when it can be parallelised. 311 */ 312 static inline bool update_defer_init(pg_data_t *pgdat, 313 unsigned long pfn, unsigned long zone_end, 314 unsigned long *nr_initialised) 315 { 316 /* Always populate low zones for address-constrained allocations */ 317 if (zone_end < pgdat_end_pfn(pgdat)) 318 return true; 319 (*nr_initialised)++; 320 if ((*nr_initialised > pgdat->static_init_pgcnt) && 321 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 322 pgdat->first_deferred_pfn = pfn; 323 return false; 324 } 325 326 return true; 327 } 328 #else 329 static inline bool early_page_uninitialised(unsigned long pfn) 330 { 331 return false; 332 } 333 334 static inline bool update_defer_init(pg_data_t *pgdat, 335 unsigned long pfn, unsigned long zone_end, 336 unsigned long *nr_initialised) 337 { 338 return true; 339 } 340 #endif 341 342 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 343 static inline unsigned long *get_pageblock_bitmap(struct page *page, 344 unsigned long pfn) 345 { 346 #ifdef CONFIG_SPARSEMEM 347 return __pfn_to_section(pfn)->pageblock_flags; 348 #else 349 return page_zone(page)->pageblock_flags; 350 #endif /* CONFIG_SPARSEMEM */ 351 } 352 353 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 354 { 355 #ifdef CONFIG_SPARSEMEM 356 pfn &= (PAGES_PER_SECTION-1); 357 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 358 #else 359 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 361 #endif /* CONFIG_SPARSEMEM */ 362 } 363 364 /** 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 366 * @page: The page within the block of interest 367 * @pfn: The target page frame number 368 * @end_bitidx: The last bit of interest to retrieve 369 * @mask: mask of bits that the caller is interested in 370 * 371 * Return: pageblock_bits flags 372 */ 373 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 374 unsigned long pfn, 375 unsigned long end_bitidx, 376 unsigned long mask) 377 { 378 unsigned long *bitmap; 379 unsigned long bitidx, word_bitidx; 380 unsigned long word; 381 382 bitmap = get_pageblock_bitmap(page, pfn); 383 bitidx = pfn_to_bitidx(page, pfn); 384 word_bitidx = bitidx / BITS_PER_LONG; 385 bitidx &= (BITS_PER_LONG-1); 386 387 word = bitmap[word_bitidx]; 388 bitidx += end_bitidx; 389 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 390 } 391 392 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 393 unsigned long end_bitidx, 394 unsigned long mask) 395 { 396 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 397 } 398 399 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 400 { 401 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 402 } 403 404 /** 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 406 * @page: The page within the block of interest 407 * @flags: The flags to set 408 * @pfn: The target page frame number 409 * @end_bitidx: The last bit of interest 410 * @mask: mask of bits that the caller is interested in 411 */ 412 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 413 unsigned long pfn, 414 unsigned long end_bitidx, 415 unsigned long mask) 416 { 417 unsigned long *bitmap; 418 unsigned long bitidx, word_bitidx; 419 unsigned long old_word, word; 420 421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 422 423 bitmap = get_pageblock_bitmap(page, pfn); 424 bitidx = pfn_to_bitidx(page, pfn); 425 word_bitidx = bitidx / BITS_PER_LONG; 426 bitidx &= (BITS_PER_LONG-1); 427 428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 429 430 bitidx += end_bitidx; 431 mask <<= (BITS_PER_LONG - bitidx - 1); 432 flags <<= (BITS_PER_LONG - bitidx - 1); 433 434 word = READ_ONCE(bitmap[word_bitidx]); 435 for (;;) { 436 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 437 if (word == old_word) 438 break; 439 word = old_word; 440 } 441 } 442 443 void set_pageblock_migratetype(struct page *page, int migratetype) 444 { 445 if (unlikely(page_group_by_mobility_disabled && 446 migratetype < MIGRATE_PCPTYPES)) 447 migratetype = MIGRATE_UNMOVABLE; 448 449 set_pageblock_flags_group(page, (unsigned long)migratetype, 450 PB_migrate, PB_migrate_end); 451 } 452 453 #ifdef CONFIG_DEBUG_VM 454 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 455 { 456 int ret = 0; 457 unsigned seq; 458 unsigned long pfn = page_to_pfn(page); 459 unsigned long sp, start_pfn; 460 461 do { 462 seq = zone_span_seqbegin(zone); 463 start_pfn = zone->zone_start_pfn; 464 sp = zone->spanned_pages; 465 if (!zone_spans_pfn(zone, pfn)) 466 ret = 1; 467 } while (zone_span_seqretry(zone, seq)); 468 469 if (ret) 470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 471 pfn, zone_to_nid(zone), zone->name, 472 start_pfn, start_pfn + sp); 473 474 return ret; 475 } 476 477 static int page_is_consistent(struct zone *zone, struct page *page) 478 { 479 if (!pfn_valid_within(page_to_pfn(page))) 480 return 0; 481 if (zone != page_zone(page)) 482 return 0; 483 484 return 1; 485 } 486 /* 487 * Temporary debugging check for pages not lying within a given zone. 488 */ 489 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 490 { 491 if (page_outside_zone_boundaries(zone, page)) 492 return 1; 493 if (!page_is_consistent(zone, page)) 494 return 1; 495 496 return 0; 497 } 498 #else 499 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 500 { 501 return 0; 502 } 503 #endif 504 505 static void bad_page(struct page *page, const char *reason, 506 unsigned long bad_flags) 507 { 508 static unsigned long resume; 509 static unsigned long nr_shown; 510 static unsigned long nr_unshown; 511 512 /* 513 * Allow a burst of 60 reports, then keep quiet for that minute; 514 * or allow a steady drip of one report per second. 515 */ 516 if (nr_shown == 60) { 517 if (time_before(jiffies, resume)) { 518 nr_unshown++; 519 goto out; 520 } 521 if (nr_unshown) { 522 pr_alert( 523 "BUG: Bad page state: %lu messages suppressed\n", 524 nr_unshown); 525 nr_unshown = 0; 526 } 527 nr_shown = 0; 528 } 529 if (nr_shown++ == 0) 530 resume = jiffies + 60 * HZ; 531 532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 533 current->comm, page_to_pfn(page)); 534 __dump_page(page, reason); 535 bad_flags &= page->flags; 536 if (bad_flags) 537 pr_alert("bad because of flags: %#lx(%pGp)\n", 538 bad_flags, &bad_flags); 539 dump_page_owner(page); 540 541 print_modules(); 542 dump_stack(); 543 out: 544 /* Leave bad fields for debug, except PageBuddy could make trouble */ 545 page_mapcount_reset(page); /* remove PageBuddy */ 546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 547 } 548 549 /* 550 * Higher-order pages are called "compound pages". They are structured thusly: 551 * 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 553 * 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 556 * 557 * The first tail page's ->compound_dtor holds the offset in array of compound 558 * page destructors. See compound_page_dtors. 559 * 560 * The first tail page's ->compound_order holds the order of allocation. 561 * This usage means that zero-order pages may not be compound. 562 */ 563 564 void free_compound_page(struct page *page) 565 { 566 __free_pages_ok(page, compound_order(page)); 567 } 568 569 void prep_compound_page(struct page *page, unsigned int order) 570 { 571 int i; 572 int nr_pages = 1 << order; 573 574 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 575 set_compound_order(page, order); 576 __SetPageHead(page); 577 for (i = 1; i < nr_pages; i++) { 578 struct page *p = page + i; 579 set_page_count(p, 0); 580 p->mapping = TAIL_MAPPING; 581 set_compound_head(p, page); 582 } 583 atomic_set(compound_mapcount_ptr(page), -1); 584 } 585 586 #ifdef CONFIG_DEBUG_PAGEALLOC 587 unsigned int _debug_guardpage_minorder; 588 bool _debug_pagealloc_enabled __read_mostly 589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 590 EXPORT_SYMBOL(_debug_pagealloc_enabled); 591 bool _debug_guardpage_enabled __read_mostly; 592 593 static int __init early_debug_pagealloc(char *buf) 594 { 595 if (!buf) 596 return -EINVAL; 597 return kstrtobool(buf, &_debug_pagealloc_enabled); 598 } 599 early_param("debug_pagealloc", early_debug_pagealloc); 600 601 static bool need_debug_guardpage(void) 602 { 603 /* If we don't use debug_pagealloc, we don't need guard page */ 604 if (!debug_pagealloc_enabled()) 605 return false; 606 607 if (!debug_guardpage_minorder()) 608 return false; 609 610 return true; 611 } 612 613 static void init_debug_guardpage(void) 614 { 615 if (!debug_pagealloc_enabled()) 616 return; 617 618 if (!debug_guardpage_minorder()) 619 return; 620 621 _debug_guardpage_enabled = true; 622 } 623 624 struct page_ext_operations debug_guardpage_ops = { 625 .need = need_debug_guardpage, 626 .init = init_debug_guardpage, 627 }; 628 629 static int __init debug_guardpage_minorder_setup(char *buf) 630 { 631 unsigned long res; 632 633 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 634 pr_err("Bad debug_guardpage_minorder value\n"); 635 return 0; 636 } 637 _debug_guardpage_minorder = res; 638 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 639 return 0; 640 } 641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 642 643 static inline bool set_page_guard(struct zone *zone, struct page *page, 644 unsigned int order, int migratetype) 645 { 646 struct page_ext *page_ext; 647 648 if (!debug_guardpage_enabled()) 649 return false; 650 651 if (order >= debug_guardpage_minorder()) 652 return false; 653 654 page_ext = lookup_page_ext(page); 655 if (unlikely(!page_ext)) 656 return false; 657 658 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 659 660 INIT_LIST_HEAD(&page->lru); 661 set_page_private(page, order); 662 /* Guard pages are not available for any usage */ 663 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 664 665 return true; 666 } 667 668 static inline void clear_page_guard(struct zone *zone, struct page *page, 669 unsigned int order, int migratetype) 670 { 671 struct page_ext *page_ext; 672 673 if (!debug_guardpage_enabled()) 674 return; 675 676 page_ext = lookup_page_ext(page); 677 if (unlikely(!page_ext)) 678 return; 679 680 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 681 682 set_page_private(page, 0); 683 if (!is_migrate_isolate(migratetype)) 684 __mod_zone_freepage_state(zone, (1 << order), migratetype); 685 } 686 #else 687 struct page_ext_operations debug_guardpage_ops; 688 static inline bool set_page_guard(struct zone *zone, struct page *page, 689 unsigned int order, int migratetype) { return false; } 690 static inline void clear_page_guard(struct zone *zone, struct page *page, 691 unsigned int order, int migratetype) {} 692 #endif 693 694 static inline void set_page_order(struct page *page, unsigned int order) 695 { 696 set_page_private(page, order); 697 __SetPageBuddy(page); 698 } 699 700 static inline void rmv_page_order(struct page *page) 701 { 702 __ClearPageBuddy(page); 703 set_page_private(page, 0); 704 } 705 706 /* 707 * This function checks whether a page is free && is the buddy 708 * we can do coalesce a page and its buddy if 709 * (a) the buddy is not in a hole (check before calling!) && 710 * (b) the buddy is in the buddy system && 711 * (c) a page and its buddy have the same order && 712 * (d) a page and its buddy are in the same zone. 713 * 714 * For recording whether a page is in the buddy system, we set ->_mapcount 715 * PAGE_BUDDY_MAPCOUNT_VALUE. 716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 717 * serialized by zone->lock. 718 * 719 * For recording page's order, we use page_private(page). 720 */ 721 static inline int page_is_buddy(struct page *page, struct page *buddy, 722 unsigned int order) 723 { 724 if (page_is_guard(buddy) && page_order(buddy) == order) { 725 if (page_zone_id(page) != page_zone_id(buddy)) 726 return 0; 727 728 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 729 730 return 1; 731 } 732 733 if (PageBuddy(buddy) && page_order(buddy) == order) { 734 /* 735 * zone check is done late to avoid uselessly 736 * calculating zone/node ids for pages that could 737 * never merge. 738 */ 739 if (page_zone_id(page) != page_zone_id(buddy)) 740 return 0; 741 742 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 743 744 return 1; 745 } 746 return 0; 747 } 748 749 /* 750 * Freeing function for a buddy system allocator. 751 * 752 * The concept of a buddy system is to maintain direct-mapped table 753 * (containing bit values) for memory blocks of various "orders". 754 * The bottom level table contains the map for the smallest allocatable 755 * units of memory (here, pages), and each level above it describes 756 * pairs of units from the levels below, hence, "buddies". 757 * At a high level, all that happens here is marking the table entry 758 * at the bottom level available, and propagating the changes upward 759 * as necessary, plus some accounting needed to play nicely with other 760 * parts of the VM system. 761 * At each level, we keep a list of pages, which are heads of continuous 762 * free pages of length of (1 << order) and marked with _mapcount 763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 764 * field. 765 * So when we are allocating or freeing one, we can derive the state of the 766 * other. That is, if we allocate a small block, and both were 767 * free, the remainder of the region must be split into blocks. 768 * If a block is freed, and its buddy is also free, then this 769 * triggers coalescing into a block of larger size. 770 * 771 * -- nyc 772 */ 773 774 static inline void __free_one_page(struct page *page, 775 unsigned long pfn, 776 struct zone *zone, unsigned int order, 777 int migratetype) 778 { 779 unsigned long combined_pfn; 780 unsigned long uninitialized_var(buddy_pfn); 781 struct page *buddy; 782 unsigned int max_order; 783 784 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 785 786 VM_BUG_ON(!zone_is_initialized(zone)); 787 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 788 789 VM_BUG_ON(migratetype == -1); 790 if (likely(!is_migrate_isolate(migratetype))) 791 __mod_zone_freepage_state(zone, 1 << order, migratetype); 792 793 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 794 VM_BUG_ON_PAGE(bad_range(zone, page), page); 795 796 continue_merging: 797 while (order < max_order - 1) { 798 buddy_pfn = __find_buddy_pfn(pfn, order); 799 buddy = page + (buddy_pfn - pfn); 800 801 if (!pfn_valid_within(buddy_pfn)) 802 goto done_merging; 803 if (!page_is_buddy(page, buddy, order)) 804 goto done_merging; 805 /* 806 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 807 * merge with it and move up one order. 808 */ 809 if (page_is_guard(buddy)) { 810 clear_page_guard(zone, buddy, order, migratetype); 811 } else { 812 list_del(&buddy->lru); 813 zone->free_area[order].nr_free--; 814 rmv_page_order(buddy); 815 } 816 combined_pfn = buddy_pfn & pfn; 817 page = page + (combined_pfn - pfn); 818 pfn = combined_pfn; 819 order++; 820 } 821 if (max_order < MAX_ORDER) { 822 /* If we are here, it means order is >= pageblock_order. 823 * We want to prevent merge between freepages on isolate 824 * pageblock and normal pageblock. Without this, pageblock 825 * isolation could cause incorrect freepage or CMA accounting. 826 * 827 * We don't want to hit this code for the more frequent 828 * low-order merging. 829 */ 830 if (unlikely(has_isolate_pageblock(zone))) { 831 int buddy_mt; 832 833 buddy_pfn = __find_buddy_pfn(pfn, order); 834 buddy = page + (buddy_pfn - pfn); 835 buddy_mt = get_pageblock_migratetype(buddy); 836 837 if (migratetype != buddy_mt 838 && (is_migrate_isolate(migratetype) || 839 is_migrate_isolate(buddy_mt))) 840 goto done_merging; 841 } 842 max_order++; 843 goto continue_merging; 844 } 845 846 done_merging: 847 set_page_order(page, order); 848 849 /* 850 * If this is not the largest possible page, check if the buddy 851 * of the next-highest order is free. If it is, it's possible 852 * that pages are being freed that will coalesce soon. In case, 853 * that is happening, add the free page to the tail of the list 854 * so it's less likely to be used soon and more likely to be merged 855 * as a higher order page 856 */ 857 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 858 struct page *higher_page, *higher_buddy; 859 combined_pfn = buddy_pfn & pfn; 860 higher_page = page + (combined_pfn - pfn); 861 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 862 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 863 if (pfn_valid_within(buddy_pfn) && 864 page_is_buddy(higher_page, higher_buddy, order + 1)) { 865 list_add_tail(&page->lru, 866 &zone->free_area[order].free_list[migratetype]); 867 goto out; 868 } 869 } 870 871 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 872 out: 873 zone->free_area[order].nr_free++; 874 } 875 876 /* 877 * A bad page could be due to a number of fields. Instead of multiple branches, 878 * try and check multiple fields with one check. The caller must do a detailed 879 * check if necessary. 880 */ 881 static inline bool page_expected_state(struct page *page, 882 unsigned long check_flags) 883 { 884 if (unlikely(atomic_read(&page->_mapcount) != -1)) 885 return false; 886 887 if (unlikely((unsigned long)page->mapping | 888 page_ref_count(page) | 889 #ifdef CONFIG_MEMCG 890 (unsigned long)page->mem_cgroup | 891 #endif 892 (page->flags & check_flags))) 893 return false; 894 895 return true; 896 } 897 898 static void free_pages_check_bad(struct page *page) 899 { 900 const char *bad_reason; 901 unsigned long bad_flags; 902 903 bad_reason = NULL; 904 bad_flags = 0; 905 906 if (unlikely(atomic_read(&page->_mapcount) != -1)) 907 bad_reason = "nonzero mapcount"; 908 if (unlikely(page->mapping != NULL)) 909 bad_reason = "non-NULL mapping"; 910 if (unlikely(page_ref_count(page) != 0)) 911 bad_reason = "nonzero _refcount"; 912 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 913 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 914 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 915 } 916 #ifdef CONFIG_MEMCG 917 if (unlikely(page->mem_cgroup)) 918 bad_reason = "page still charged to cgroup"; 919 #endif 920 bad_page(page, bad_reason, bad_flags); 921 } 922 923 static inline int free_pages_check(struct page *page) 924 { 925 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 926 return 0; 927 928 /* Something has gone sideways, find it */ 929 free_pages_check_bad(page); 930 return 1; 931 } 932 933 static int free_tail_pages_check(struct page *head_page, struct page *page) 934 { 935 int ret = 1; 936 937 /* 938 * We rely page->lru.next never has bit 0 set, unless the page 939 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 940 */ 941 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 942 943 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 944 ret = 0; 945 goto out; 946 } 947 switch (page - head_page) { 948 case 1: 949 /* the first tail page: ->mapping is compound_mapcount() */ 950 if (unlikely(compound_mapcount(page))) { 951 bad_page(page, "nonzero compound_mapcount", 0); 952 goto out; 953 } 954 break; 955 case 2: 956 /* 957 * the second tail page: ->mapping is 958 * page_deferred_list().next -- ignore value. 959 */ 960 break; 961 default: 962 if (page->mapping != TAIL_MAPPING) { 963 bad_page(page, "corrupted mapping in tail page", 0); 964 goto out; 965 } 966 break; 967 } 968 if (unlikely(!PageTail(page))) { 969 bad_page(page, "PageTail not set", 0); 970 goto out; 971 } 972 if (unlikely(compound_head(page) != head_page)) { 973 bad_page(page, "compound_head not consistent", 0); 974 goto out; 975 } 976 ret = 0; 977 out: 978 page->mapping = NULL; 979 clear_compound_head(page); 980 return ret; 981 } 982 983 static __always_inline bool free_pages_prepare(struct page *page, 984 unsigned int order, bool check_free) 985 { 986 int bad = 0; 987 988 VM_BUG_ON_PAGE(PageTail(page), page); 989 990 trace_mm_page_free(page, order); 991 992 /* 993 * Check tail pages before head page information is cleared to 994 * avoid checking PageCompound for order-0 pages. 995 */ 996 if (unlikely(order)) { 997 bool compound = PageCompound(page); 998 int i; 999 1000 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1001 1002 if (compound) 1003 ClearPageDoubleMap(page); 1004 for (i = 1; i < (1 << order); i++) { 1005 if (compound) 1006 bad += free_tail_pages_check(page, page + i); 1007 if (unlikely(free_pages_check(page + i))) { 1008 bad++; 1009 continue; 1010 } 1011 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1012 } 1013 } 1014 if (PageMappingFlags(page)) 1015 page->mapping = NULL; 1016 if (memcg_kmem_enabled() && PageKmemcg(page)) 1017 memcg_kmem_uncharge(page, order); 1018 if (check_free) 1019 bad += free_pages_check(page); 1020 if (bad) 1021 return false; 1022 1023 page_cpupid_reset_last(page); 1024 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1025 reset_page_owner(page, order); 1026 1027 if (!PageHighMem(page)) { 1028 debug_check_no_locks_freed(page_address(page), 1029 PAGE_SIZE << order); 1030 debug_check_no_obj_freed(page_address(page), 1031 PAGE_SIZE << order); 1032 } 1033 arch_free_page(page, order); 1034 kernel_poison_pages(page, 1 << order, 0); 1035 kernel_map_pages(page, 1 << order, 0); 1036 kasan_free_pages(page, order); 1037 1038 return true; 1039 } 1040 1041 #ifdef CONFIG_DEBUG_VM 1042 static inline bool free_pcp_prepare(struct page *page) 1043 { 1044 return free_pages_prepare(page, 0, true); 1045 } 1046 1047 static inline bool bulkfree_pcp_prepare(struct page *page) 1048 { 1049 return false; 1050 } 1051 #else 1052 static bool free_pcp_prepare(struct page *page) 1053 { 1054 return free_pages_prepare(page, 0, false); 1055 } 1056 1057 static bool bulkfree_pcp_prepare(struct page *page) 1058 { 1059 return free_pages_check(page); 1060 } 1061 #endif /* CONFIG_DEBUG_VM */ 1062 1063 static inline void prefetch_buddy(struct page *page) 1064 { 1065 unsigned long pfn = page_to_pfn(page); 1066 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1067 struct page *buddy = page + (buddy_pfn - pfn); 1068 1069 prefetch(buddy); 1070 } 1071 1072 /* 1073 * Frees a number of pages from the PCP lists 1074 * Assumes all pages on list are in same zone, and of same order. 1075 * count is the number of pages to free. 1076 * 1077 * If the zone was previously in an "all pages pinned" state then look to 1078 * see if this freeing clears that state. 1079 * 1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1081 * pinned" detection logic. 1082 */ 1083 static void free_pcppages_bulk(struct zone *zone, int count, 1084 struct per_cpu_pages *pcp) 1085 { 1086 int migratetype = 0; 1087 int batch_free = 0; 1088 int prefetch_nr = 0; 1089 bool isolated_pageblocks; 1090 struct page *page, *tmp; 1091 LIST_HEAD(head); 1092 1093 while (count) { 1094 struct list_head *list; 1095 1096 /* 1097 * Remove pages from lists in a round-robin fashion. A 1098 * batch_free count is maintained that is incremented when an 1099 * empty list is encountered. This is so more pages are freed 1100 * off fuller lists instead of spinning excessively around empty 1101 * lists 1102 */ 1103 do { 1104 batch_free++; 1105 if (++migratetype == MIGRATE_PCPTYPES) 1106 migratetype = 0; 1107 list = &pcp->lists[migratetype]; 1108 } while (list_empty(list)); 1109 1110 /* This is the only non-empty list. Free them all. */ 1111 if (batch_free == MIGRATE_PCPTYPES) 1112 batch_free = count; 1113 1114 do { 1115 page = list_last_entry(list, struct page, lru); 1116 /* must delete to avoid corrupting pcp list */ 1117 list_del(&page->lru); 1118 pcp->count--; 1119 1120 if (bulkfree_pcp_prepare(page)) 1121 continue; 1122 1123 list_add_tail(&page->lru, &head); 1124 1125 /* 1126 * We are going to put the page back to the global 1127 * pool, prefetch its buddy to speed up later access 1128 * under zone->lock. It is believed the overhead of 1129 * an additional test and calculating buddy_pfn here 1130 * can be offset by reduced memory latency later. To 1131 * avoid excessive prefetching due to large count, only 1132 * prefetch buddy for the first pcp->batch nr of pages. 1133 */ 1134 if (prefetch_nr++ < pcp->batch) 1135 prefetch_buddy(page); 1136 } while (--count && --batch_free && !list_empty(list)); 1137 } 1138 1139 spin_lock(&zone->lock); 1140 isolated_pageblocks = has_isolate_pageblock(zone); 1141 1142 /* 1143 * Use safe version since after __free_one_page(), 1144 * page->lru.next will not point to original list. 1145 */ 1146 list_for_each_entry_safe(page, tmp, &head, lru) { 1147 int mt = get_pcppage_migratetype(page); 1148 /* MIGRATE_ISOLATE page should not go to pcplists */ 1149 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1150 /* Pageblock could have been isolated meanwhile */ 1151 if (unlikely(isolated_pageblocks)) 1152 mt = get_pageblock_migratetype(page); 1153 1154 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1155 trace_mm_page_pcpu_drain(page, 0, mt); 1156 } 1157 spin_unlock(&zone->lock); 1158 } 1159 1160 static void free_one_page(struct zone *zone, 1161 struct page *page, unsigned long pfn, 1162 unsigned int order, 1163 int migratetype) 1164 { 1165 spin_lock(&zone->lock); 1166 if (unlikely(has_isolate_pageblock(zone) || 1167 is_migrate_isolate(migratetype))) { 1168 migratetype = get_pfnblock_migratetype(page, pfn); 1169 } 1170 __free_one_page(page, pfn, zone, order, migratetype); 1171 spin_unlock(&zone->lock); 1172 } 1173 1174 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1175 unsigned long zone, int nid) 1176 { 1177 mm_zero_struct_page(page); 1178 set_page_links(page, zone, nid, pfn); 1179 init_page_count(page); 1180 page_mapcount_reset(page); 1181 page_cpupid_reset_last(page); 1182 1183 INIT_LIST_HEAD(&page->lru); 1184 #ifdef WANT_PAGE_VIRTUAL 1185 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1186 if (!is_highmem_idx(zone)) 1187 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1188 #endif 1189 } 1190 1191 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1192 static void __meminit init_reserved_page(unsigned long pfn) 1193 { 1194 pg_data_t *pgdat; 1195 int nid, zid; 1196 1197 if (!early_page_uninitialised(pfn)) 1198 return; 1199 1200 nid = early_pfn_to_nid(pfn); 1201 pgdat = NODE_DATA(nid); 1202 1203 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1204 struct zone *zone = &pgdat->node_zones[zid]; 1205 1206 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1207 break; 1208 } 1209 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1210 } 1211 #else 1212 static inline void init_reserved_page(unsigned long pfn) 1213 { 1214 } 1215 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1216 1217 /* 1218 * Initialised pages do not have PageReserved set. This function is 1219 * called for each range allocated by the bootmem allocator and 1220 * marks the pages PageReserved. The remaining valid pages are later 1221 * sent to the buddy page allocator. 1222 */ 1223 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1224 { 1225 unsigned long start_pfn = PFN_DOWN(start); 1226 unsigned long end_pfn = PFN_UP(end); 1227 1228 for (; start_pfn < end_pfn; start_pfn++) { 1229 if (pfn_valid(start_pfn)) { 1230 struct page *page = pfn_to_page(start_pfn); 1231 1232 init_reserved_page(start_pfn); 1233 1234 /* Avoid false-positive PageTail() */ 1235 INIT_LIST_HEAD(&page->lru); 1236 1237 SetPageReserved(page); 1238 } 1239 } 1240 } 1241 1242 static void __free_pages_ok(struct page *page, unsigned int order) 1243 { 1244 unsigned long flags; 1245 int migratetype; 1246 unsigned long pfn = page_to_pfn(page); 1247 1248 if (!free_pages_prepare(page, order, true)) 1249 return; 1250 1251 migratetype = get_pfnblock_migratetype(page, pfn); 1252 local_irq_save(flags); 1253 __count_vm_events(PGFREE, 1 << order); 1254 free_one_page(page_zone(page), page, pfn, order, migratetype); 1255 local_irq_restore(flags); 1256 } 1257 1258 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1259 { 1260 unsigned int nr_pages = 1 << order; 1261 struct page *p = page; 1262 unsigned int loop; 1263 1264 prefetchw(p); 1265 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1266 prefetchw(p + 1); 1267 __ClearPageReserved(p); 1268 set_page_count(p, 0); 1269 } 1270 __ClearPageReserved(p); 1271 set_page_count(p, 0); 1272 1273 page_zone(page)->managed_pages += nr_pages; 1274 set_page_refcounted(page); 1275 __free_pages(page, order); 1276 } 1277 1278 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1279 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1280 1281 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1282 1283 int __meminit early_pfn_to_nid(unsigned long pfn) 1284 { 1285 static DEFINE_SPINLOCK(early_pfn_lock); 1286 int nid; 1287 1288 spin_lock(&early_pfn_lock); 1289 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1290 if (nid < 0) 1291 nid = first_online_node; 1292 spin_unlock(&early_pfn_lock); 1293 1294 return nid; 1295 } 1296 #endif 1297 1298 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1299 static inline bool __meminit __maybe_unused 1300 meminit_pfn_in_nid(unsigned long pfn, int node, 1301 struct mminit_pfnnid_cache *state) 1302 { 1303 int nid; 1304 1305 nid = __early_pfn_to_nid(pfn, state); 1306 if (nid >= 0 && nid != node) 1307 return false; 1308 return true; 1309 } 1310 1311 /* Only safe to use early in boot when initialisation is single-threaded */ 1312 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1313 { 1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1315 } 1316 1317 #else 1318 1319 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1320 { 1321 return true; 1322 } 1323 static inline bool __meminit __maybe_unused 1324 meminit_pfn_in_nid(unsigned long pfn, int node, 1325 struct mminit_pfnnid_cache *state) 1326 { 1327 return true; 1328 } 1329 #endif 1330 1331 1332 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1333 unsigned int order) 1334 { 1335 if (early_page_uninitialised(pfn)) 1336 return; 1337 return __free_pages_boot_core(page, order); 1338 } 1339 1340 /* 1341 * Check that the whole (or subset of) a pageblock given by the interval of 1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1343 * with the migration of free compaction scanner. The scanners then need to 1344 * use only pfn_valid_within() check for arches that allow holes within 1345 * pageblocks. 1346 * 1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1348 * 1349 * It's possible on some configurations to have a setup like node0 node1 node0 1350 * i.e. it's possible that all pages within a zones range of pages do not 1351 * belong to a single zone. We assume that a border between node0 and node1 1352 * can occur within a single pageblock, but not a node0 node1 node0 1353 * interleaving within a single pageblock. It is therefore sufficient to check 1354 * the first and last page of a pageblock and avoid checking each individual 1355 * page in a pageblock. 1356 */ 1357 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1358 unsigned long end_pfn, struct zone *zone) 1359 { 1360 struct page *start_page; 1361 struct page *end_page; 1362 1363 /* end_pfn is one past the range we are checking */ 1364 end_pfn--; 1365 1366 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1367 return NULL; 1368 1369 start_page = pfn_to_online_page(start_pfn); 1370 if (!start_page) 1371 return NULL; 1372 1373 if (page_zone(start_page) != zone) 1374 return NULL; 1375 1376 end_page = pfn_to_page(end_pfn); 1377 1378 /* This gives a shorter code than deriving page_zone(end_page) */ 1379 if (page_zone_id(start_page) != page_zone_id(end_page)) 1380 return NULL; 1381 1382 return start_page; 1383 } 1384 1385 void set_zone_contiguous(struct zone *zone) 1386 { 1387 unsigned long block_start_pfn = zone->zone_start_pfn; 1388 unsigned long block_end_pfn; 1389 1390 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1391 for (; block_start_pfn < zone_end_pfn(zone); 1392 block_start_pfn = block_end_pfn, 1393 block_end_pfn += pageblock_nr_pages) { 1394 1395 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1396 1397 if (!__pageblock_pfn_to_page(block_start_pfn, 1398 block_end_pfn, zone)) 1399 return; 1400 } 1401 1402 /* We confirm that there is no hole */ 1403 zone->contiguous = true; 1404 } 1405 1406 void clear_zone_contiguous(struct zone *zone) 1407 { 1408 zone->contiguous = false; 1409 } 1410 1411 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1412 static void __init deferred_free_range(unsigned long pfn, 1413 unsigned long nr_pages) 1414 { 1415 struct page *page; 1416 unsigned long i; 1417 1418 if (!nr_pages) 1419 return; 1420 1421 page = pfn_to_page(pfn); 1422 1423 /* Free a large naturally-aligned chunk if possible */ 1424 if (nr_pages == pageblock_nr_pages && 1425 (pfn & (pageblock_nr_pages - 1)) == 0) { 1426 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1427 __free_pages_boot_core(page, pageblock_order); 1428 return; 1429 } 1430 1431 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1432 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1433 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1434 __free_pages_boot_core(page, 0); 1435 } 1436 } 1437 1438 /* Completion tracking for deferred_init_memmap() threads */ 1439 static atomic_t pgdat_init_n_undone __initdata; 1440 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1441 1442 static inline void __init pgdat_init_report_one_done(void) 1443 { 1444 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1445 complete(&pgdat_init_all_done_comp); 1446 } 1447 1448 /* 1449 * Returns true if page needs to be initialized or freed to buddy allocator. 1450 * 1451 * First we check if pfn is valid on architectures where it is possible to have 1452 * holes within pageblock_nr_pages. On systems where it is not possible, this 1453 * function is optimized out. 1454 * 1455 * Then, we check if a current large page is valid by only checking the validity 1456 * of the head pfn. 1457 * 1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1459 * within a node: a pfn is between start and end of a node, but does not belong 1460 * to this memory node. 1461 */ 1462 static inline bool __init 1463 deferred_pfn_valid(int nid, unsigned long pfn, 1464 struct mminit_pfnnid_cache *nid_init_state) 1465 { 1466 if (!pfn_valid_within(pfn)) 1467 return false; 1468 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1469 return false; 1470 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1471 return false; 1472 return true; 1473 } 1474 1475 /* 1476 * Free pages to buddy allocator. Try to free aligned pages in 1477 * pageblock_nr_pages sizes. 1478 */ 1479 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1480 unsigned long end_pfn) 1481 { 1482 struct mminit_pfnnid_cache nid_init_state = { }; 1483 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1484 unsigned long nr_free = 0; 1485 1486 for (; pfn < end_pfn; pfn++) { 1487 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1488 deferred_free_range(pfn - nr_free, nr_free); 1489 nr_free = 0; 1490 } else if (!(pfn & nr_pgmask)) { 1491 deferred_free_range(pfn - nr_free, nr_free); 1492 nr_free = 1; 1493 touch_nmi_watchdog(); 1494 } else { 1495 nr_free++; 1496 } 1497 } 1498 /* Free the last block of pages to allocator */ 1499 deferred_free_range(pfn - nr_free, nr_free); 1500 } 1501 1502 /* 1503 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1504 * by performing it only once every pageblock_nr_pages. 1505 * Return number of pages initialized. 1506 */ 1507 static unsigned long __init deferred_init_pages(int nid, int zid, 1508 unsigned long pfn, 1509 unsigned long end_pfn) 1510 { 1511 struct mminit_pfnnid_cache nid_init_state = { }; 1512 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1513 unsigned long nr_pages = 0; 1514 struct page *page = NULL; 1515 1516 for (; pfn < end_pfn; pfn++) { 1517 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1518 page = NULL; 1519 continue; 1520 } else if (!page || !(pfn & nr_pgmask)) { 1521 page = pfn_to_page(pfn); 1522 touch_nmi_watchdog(); 1523 } else { 1524 page++; 1525 } 1526 __init_single_page(page, pfn, zid, nid); 1527 nr_pages++; 1528 } 1529 return (nr_pages); 1530 } 1531 1532 /* Initialise remaining memory on a node */ 1533 static int __init deferred_init_memmap(void *data) 1534 { 1535 pg_data_t *pgdat = data; 1536 int nid = pgdat->node_id; 1537 unsigned long start = jiffies; 1538 unsigned long nr_pages = 0; 1539 unsigned long spfn, epfn, first_init_pfn, flags; 1540 phys_addr_t spa, epa; 1541 int zid; 1542 struct zone *zone; 1543 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1544 u64 i; 1545 1546 /* Bind memory initialisation thread to a local node if possible */ 1547 if (!cpumask_empty(cpumask)) 1548 set_cpus_allowed_ptr(current, cpumask); 1549 1550 pgdat_resize_lock(pgdat, &flags); 1551 first_init_pfn = pgdat->first_deferred_pfn; 1552 if (first_init_pfn == ULONG_MAX) { 1553 pgdat_resize_unlock(pgdat, &flags); 1554 pgdat_init_report_one_done(); 1555 return 0; 1556 } 1557 1558 /* Sanity check boundaries */ 1559 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1560 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1561 pgdat->first_deferred_pfn = ULONG_MAX; 1562 1563 /* Only the highest zone is deferred so find it */ 1564 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1565 zone = pgdat->node_zones + zid; 1566 if (first_init_pfn < zone_end_pfn(zone)) 1567 break; 1568 } 1569 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1570 1571 /* 1572 * Initialize and free pages. We do it in two loops: first we initialize 1573 * struct page, than free to buddy allocator, because while we are 1574 * freeing pages we can access pages that are ahead (computing buddy 1575 * page in __free_one_page()). 1576 */ 1577 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1578 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1579 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1580 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1581 } 1582 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1583 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1584 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1585 deferred_free_pages(nid, zid, spfn, epfn); 1586 } 1587 pgdat_resize_unlock(pgdat, &flags); 1588 1589 /* Sanity check that the next zone really is unpopulated */ 1590 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1591 1592 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1593 jiffies_to_msecs(jiffies - start)); 1594 1595 pgdat_init_report_one_done(); 1596 return 0; 1597 } 1598 1599 /* 1600 * During boot we initialize deferred pages on-demand, as needed, but once 1601 * page_alloc_init_late() has finished, the deferred pages are all initialized, 1602 * and we can permanently disable that path. 1603 */ 1604 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 1605 1606 /* 1607 * If this zone has deferred pages, try to grow it by initializing enough 1608 * deferred pages to satisfy the allocation specified by order, rounded up to 1609 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1610 * of SECTION_SIZE bytes by initializing struct pages in increments of 1611 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1612 * 1613 * Return true when zone was grown, otherwise return false. We return true even 1614 * when we grow less than requested, to let the caller decide if there are 1615 * enough pages to satisfy the allocation. 1616 * 1617 * Note: We use noinline because this function is needed only during boot, and 1618 * it is called from a __ref function _deferred_grow_zone. This way we are 1619 * making sure that it is not inlined into permanent text section. 1620 */ 1621 static noinline bool __init 1622 deferred_grow_zone(struct zone *zone, unsigned int order) 1623 { 1624 int zid = zone_idx(zone); 1625 int nid = zone_to_nid(zone); 1626 pg_data_t *pgdat = NODE_DATA(nid); 1627 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1628 unsigned long nr_pages = 0; 1629 unsigned long first_init_pfn, spfn, epfn, t, flags; 1630 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1631 phys_addr_t spa, epa; 1632 u64 i; 1633 1634 /* Only the last zone may have deferred pages */ 1635 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1636 return false; 1637 1638 pgdat_resize_lock(pgdat, &flags); 1639 1640 /* 1641 * If deferred pages have been initialized while we were waiting for 1642 * the lock, return true, as the zone was grown. The caller will retry 1643 * this zone. We won't return to this function since the caller also 1644 * has this static branch. 1645 */ 1646 if (!static_branch_unlikely(&deferred_pages)) { 1647 pgdat_resize_unlock(pgdat, &flags); 1648 return true; 1649 } 1650 1651 /* 1652 * If someone grew this zone while we were waiting for spinlock, return 1653 * true, as there might be enough pages already. 1654 */ 1655 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1656 pgdat_resize_unlock(pgdat, &flags); 1657 return true; 1658 } 1659 1660 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1661 1662 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1663 pgdat_resize_unlock(pgdat, &flags); 1664 return false; 1665 } 1666 1667 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1668 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1669 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1670 1671 while (spfn < epfn && nr_pages < nr_pages_needed) { 1672 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1673 first_deferred_pfn = min(t, epfn); 1674 nr_pages += deferred_init_pages(nid, zid, spfn, 1675 first_deferred_pfn); 1676 spfn = first_deferred_pfn; 1677 } 1678 1679 if (nr_pages >= nr_pages_needed) 1680 break; 1681 } 1682 1683 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1684 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1685 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1686 deferred_free_pages(nid, zid, spfn, epfn); 1687 1688 if (first_deferred_pfn == epfn) 1689 break; 1690 } 1691 pgdat->first_deferred_pfn = first_deferred_pfn; 1692 pgdat_resize_unlock(pgdat, &flags); 1693 1694 return nr_pages > 0; 1695 } 1696 1697 /* 1698 * deferred_grow_zone() is __init, but it is called from 1699 * get_page_from_freelist() during early boot until deferred_pages permanently 1700 * disables this call. This is why we have refdata wrapper to avoid warning, 1701 * and to ensure that the function body gets unloaded. 1702 */ 1703 static bool __ref 1704 _deferred_grow_zone(struct zone *zone, unsigned int order) 1705 { 1706 return deferred_grow_zone(zone, order); 1707 } 1708 1709 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1710 1711 void __init page_alloc_init_late(void) 1712 { 1713 struct zone *zone; 1714 1715 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1716 int nid; 1717 1718 /* There will be num_node_state(N_MEMORY) threads */ 1719 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1720 for_each_node_state(nid, N_MEMORY) { 1721 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1722 } 1723 1724 /* Block until all are initialised */ 1725 wait_for_completion(&pgdat_init_all_done_comp); 1726 1727 /* 1728 * We initialized the rest of the deferred pages. Permanently disable 1729 * on-demand struct page initialization. 1730 */ 1731 static_branch_disable(&deferred_pages); 1732 1733 /* Reinit limits that are based on free pages after the kernel is up */ 1734 files_maxfiles_init(); 1735 #endif 1736 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1737 /* Discard memblock private memory */ 1738 memblock_discard(); 1739 #endif 1740 1741 for_each_populated_zone(zone) 1742 set_zone_contiguous(zone); 1743 } 1744 1745 #ifdef CONFIG_CMA 1746 static void __init adjust_present_page_count(struct page *page, long count) 1747 { 1748 struct zone *zone = page_zone(page); 1749 1750 /* We don't need to hold a lock since it is boot-up process */ 1751 zone->present_pages += count; 1752 } 1753 1754 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1755 void __init init_cma_reserved_pageblock(struct page *page) 1756 { 1757 unsigned i = pageblock_nr_pages; 1758 unsigned long pfn = page_to_pfn(page); 1759 struct page *p = page; 1760 int nid = page_to_nid(page); 1761 1762 /* 1763 * ZONE_MOVABLE will steal present pages from other zones by 1764 * changing page links so page_zone() is changed. Before that, 1765 * we need to adjust previous zone's page count first. 1766 */ 1767 adjust_present_page_count(page, -pageblock_nr_pages); 1768 1769 do { 1770 __ClearPageReserved(p); 1771 set_page_count(p, 0); 1772 1773 /* Steal pages from other zones */ 1774 set_page_links(p, ZONE_MOVABLE, nid, pfn); 1775 } while (++p, ++pfn, --i); 1776 1777 adjust_present_page_count(page, pageblock_nr_pages); 1778 1779 set_pageblock_migratetype(page, MIGRATE_CMA); 1780 1781 if (pageblock_order >= MAX_ORDER) { 1782 i = pageblock_nr_pages; 1783 p = page; 1784 do { 1785 set_page_refcounted(p); 1786 __free_pages(p, MAX_ORDER - 1); 1787 p += MAX_ORDER_NR_PAGES; 1788 } while (i -= MAX_ORDER_NR_PAGES); 1789 } else { 1790 set_page_refcounted(page); 1791 __free_pages(page, pageblock_order); 1792 } 1793 1794 adjust_managed_page_count(page, pageblock_nr_pages); 1795 } 1796 #endif 1797 1798 /* 1799 * The order of subdivision here is critical for the IO subsystem. 1800 * Please do not alter this order without good reasons and regression 1801 * testing. Specifically, as large blocks of memory are subdivided, 1802 * the order in which smaller blocks are delivered depends on the order 1803 * they're subdivided in this function. This is the primary factor 1804 * influencing the order in which pages are delivered to the IO 1805 * subsystem according to empirical testing, and this is also justified 1806 * by considering the behavior of a buddy system containing a single 1807 * large block of memory acted on by a series of small allocations. 1808 * This behavior is a critical factor in sglist merging's success. 1809 * 1810 * -- nyc 1811 */ 1812 static inline void expand(struct zone *zone, struct page *page, 1813 int low, int high, struct free_area *area, 1814 int migratetype) 1815 { 1816 unsigned long size = 1 << high; 1817 1818 while (high > low) { 1819 area--; 1820 high--; 1821 size >>= 1; 1822 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1823 1824 /* 1825 * Mark as guard pages (or page), that will allow to 1826 * merge back to allocator when buddy will be freed. 1827 * Corresponding page table entries will not be touched, 1828 * pages will stay not present in virtual address space 1829 */ 1830 if (set_page_guard(zone, &page[size], high, migratetype)) 1831 continue; 1832 1833 list_add(&page[size].lru, &area->free_list[migratetype]); 1834 area->nr_free++; 1835 set_page_order(&page[size], high); 1836 } 1837 } 1838 1839 static void check_new_page_bad(struct page *page) 1840 { 1841 const char *bad_reason = NULL; 1842 unsigned long bad_flags = 0; 1843 1844 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1845 bad_reason = "nonzero mapcount"; 1846 if (unlikely(page->mapping != NULL)) 1847 bad_reason = "non-NULL mapping"; 1848 if (unlikely(page_ref_count(page) != 0)) 1849 bad_reason = "nonzero _count"; 1850 if (unlikely(page->flags & __PG_HWPOISON)) { 1851 bad_reason = "HWPoisoned (hardware-corrupted)"; 1852 bad_flags = __PG_HWPOISON; 1853 /* Don't complain about hwpoisoned pages */ 1854 page_mapcount_reset(page); /* remove PageBuddy */ 1855 return; 1856 } 1857 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1858 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1859 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1860 } 1861 #ifdef CONFIG_MEMCG 1862 if (unlikely(page->mem_cgroup)) 1863 bad_reason = "page still charged to cgroup"; 1864 #endif 1865 bad_page(page, bad_reason, bad_flags); 1866 } 1867 1868 /* 1869 * This page is about to be returned from the page allocator 1870 */ 1871 static inline int check_new_page(struct page *page) 1872 { 1873 if (likely(page_expected_state(page, 1874 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1875 return 0; 1876 1877 check_new_page_bad(page); 1878 return 1; 1879 } 1880 1881 static inline bool free_pages_prezeroed(void) 1882 { 1883 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1884 page_poisoning_enabled(); 1885 } 1886 1887 #ifdef CONFIG_DEBUG_VM 1888 static bool check_pcp_refill(struct page *page) 1889 { 1890 return false; 1891 } 1892 1893 static bool check_new_pcp(struct page *page) 1894 { 1895 return check_new_page(page); 1896 } 1897 #else 1898 static bool check_pcp_refill(struct page *page) 1899 { 1900 return check_new_page(page); 1901 } 1902 static bool check_new_pcp(struct page *page) 1903 { 1904 return false; 1905 } 1906 #endif /* CONFIG_DEBUG_VM */ 1907 1908 static bool check_new_pages(struct page *page, unsigned int order) 1909 { 1910 int i; 1911 for (i = 0; i < (1 << order); i++) { 1912 struct page *p = page + i; 1913 1914 if (unlikely(check_new_page(p))) 1915 return true; 1916 } 1917 1918 return false; 1919 } 1920 1921 inline void post_alloc_hook(struct page *page, unsigned int order, 1922 gfp_t gfp_flags) 1923 { 1924 set_page_private(page, 0); 1925 set_page_refcounted(page); 1926 1927 arch_alloc_page(page, order); 1928 kernel_map_pages(page, 1 << order, 1); 1929 kernel_poison_pages(page, 1 << order, 1); 1930 kasan_alloc_pages(page, order); 1931 set_page_owner(page, order, gfp_flags); 1932 } 1933 1934 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1935 unsigned int alloc_flags) 1936 { 1937 int i; 1938 1939 post_alloc_hook(page, order, gfp_flags); 1940 1941 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1942 for (i = 0; i < (1 << order); i++) 1943 clear_highpage(page + i); 1944 1945 if (order && (gfp_flags & __GFP_COMP)) 1946 prep_compound_page(page, order); 1947 1948 /* 1949 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1950 * allocate the page. The expectation is that the caller is taking 1951 * steps that will free more memory. The caller should avoid the page 1952 * being used for !PFMEMALLOC purposes. 1953 */ 1954 if (alloc_flags & ALLOC_NO_WATERMARKS) 1955 set_page_pfmemalloc(page); 1956 else 1957 clear_page_pfmemalloc(page); 1958 } 1959 1960 /* 1961 * Go through the free lists for the given migratetype and remove 1962 * the smallest available page from the freelists 1963 */ 1964 static __always_inline 1965 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1966 int migratetype) 1967 { 1968 unsigned int current_order; 1969 struct free_area *area; 1970 struct page *page; 1971 1972 /* Find a page of the appropriate size in the preferred list */ 1973 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1974 area = &(zone->free_area[current_order]); 1975 page = list_first_entry_or_null(&area->free_list[migratetype], 1976 struct page, lru); 1977 if (!page) 1978 continue; 1979 list_del(&page->lru); 1980 rmv_page_order(page); 1981 area->nr_free--; 1982 expand(zone, page, order, current_order, area, migratetype); 1983 set_pcppage_migratetype(page, migratetype); 1984 return page; 1985 } 1986 1987 return NULL; 1988 } 1989 1990 1991 /* 1992 * This array describes the order lists are fallen back to when 1993 * the free lists for the desirable migrate type are depleted 1994 */ 1995 static int fallbacks[MIGRATE_TYPES][4] = { 1996 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1997 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1998 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1999 #ifdef CONFIG_CMA 2000 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2001 #endif 2002 #ifdef CONFIG_MEMORY_ISOLATION 2003 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2004 #endif 2005 }; 2006 2007 #ifdef CONFIG_CMA 2008 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2009 unsigned int order) 2010 { 2011 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2012 } 2013 #else 2014 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2015 unsigned int order) { return NULL; } 2016 #endif 2017 2018 /* 2019 * Move the free pages in a range to the free lists of the requested type. 2020 * Note that start_page and end_pages are not aligned on a pageblock 2021 * boundary. If alignment is required, use move_freepages_block() 2022 */ 2023 static int move_freepages(struct zone *zone, 2024 struct page *start_page, struct page *end_page, 2025 int migratetype, int *num_movable) 2026 { 2027 struct page *page; 2028 unsigned int order; 2029 int pages_moved = 0; 2030 2031 #ifndef CONFIG_HOLES_IN_ZONE 2032 /* 2033 * page_zone is not safe to call in this context when 2034 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2035 * anyway as we check zone boundaries in move_freepages_block(). 2036 * Remove at a later date when no bug reports exist related to 2037 * grouping pages by mobility 2038 */ 2039 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2040 pfn_valid(page_to_pfn(end_page)) && 2041 page_zone(start_page) != page_zone(end_page)); 2042 #endif 2043 2044 if (num_movable) 2045 *num_movable = 0; 2046 2047 for (page = start_page; page <= end_page;) { 2048 if (!pfn_valid_within(page_to_pfn(page))) { 2049 page++; 2050 continue; 2051 } 2052 2053 /* Make sure we are not inadvertently changing nodes */ 2054 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2055 2056 if (!PageBuddy(page)) { 2057 /* 2058 * We assume that pages that could be isolated for 2059 * migration are movable. But we don't actually try 2060 * isolating, as that would be expensive. 2061 */ 2062 if (num_movable && 2063 (PageLRU(page) || __PageMovable(page))) 2064 (*num_movable)++; 2065 2066 page++; 2067 continue; 2068 } 2069 2070 order = page_order(page); 2071 list_move(&page->lru, 2072 &zone->free_area[order].free_list[migratetype]); 2073 page += 1 << order; 2074 pages_moved += 1 << order; 2075 } 2076 2077 return pages_moved; 2078 } 2079 2080 int move_freepages_block(struct zone *zone, struct page *page, 2081 int migratetype, int *num_movable) 2082 { 2083 unsigned long start_pfn, end_pfn; 2084 struct page *start_page, *end_page; 2085 2086 start_pfn = page_to_pfn(page); 2087 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2088 start_page = pfn_to_page(start_pfn); 2089 end_page = start_page + pageblock_nr_pages - 1; 2090 end_pfn = start_pfn + pageblock_nr_pages - 1; 2091 2092 /* Do not cross zone boundaries */ 2093 if (!zone_spans_pfn(zone, start_pfn)) 2094 start_page = page; 2095 if (!zone_spans_pfn(zone, end_pfn)) 2096 return 0; 2097 2098 return move_freepages(zone, start_page, end_page, migratetype, 2099 num_movable); 2100 } 2101 2102 static void change_pageblock_range(struct page *pageblock_page, 2103 int start_order, int migratetype) 2104 { 2105 int nr_pageblocks = 1 << (start_order - pageblock_order); 2106 2107 while (nr_pageblocks--) { 2108 set_pageblock_migratetype(pageblock_page, migratetype); 2109 pageblock_page += pageblock_nr_pages; 2110 } 2111 } 2112 2113 /* 2114 * When we are falling back to another migratetype during allocation, try to 2115 * steal extra free pages from the same pageblocks to satisfy further 2116 * allocations, instead of polluting multiple pageblocks. 2117 * 2118 * If we are stealing a relatively large buddy page, it is likely there will 2119 * be more free pages in the pageblock, so try to steal them all. For 2120 * reclaimable and unmovable allocations, we steal regardless of page size, 2121 * as fragmentation caused by those allocations polluting movable pageblocks 2122 * is worse than movable allocations stealing from unmovable and reclaimable 2123 * pageblocks. 2124 */ 2125 static bool can_steal_fallback(unsigned int order, int start_mt) 2126 { 2127 /* 2128 * Leaving this order check is intended, although there is 2129 * relaxed order check in next check. The reason is that 2130 * we can actually steal whole pageblock if this condition met, 2131 * but, below check doesn't guarantee it and that is just heuristic 2132 * so could be changed anytime. 2133 */ 2134 if (order >= pageblock_order) 2135 return true; 2136 2137 if (order >= pageblock_order / 2 || 2138 start_mt == MIGRATE_RECLAIMABLE || 2139 start_mt == MIGRATE_UNMOVABLE || 2140 page_group_by_mobility_disabled) 2141 return true; 2142 2143 return false; 2144 } 2145 2146 /* 2147 * This function implements actual steal behaviour. If order is large enough, 2148 * we can steal whole pageblock. If not, we first move freepages in this 2149 * pageblock to our migratetype and determine how many already-allocated pages 2150 * are there in the pageblock with a compatible migratetype. If at least half 2151 * of pages are free or compatible, we can change migratetype of the pageblock 2152 * itself, so pages freed in the future will be put on the correct free list. 2153 */ 2154 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2155 int start_type, bool whole_block) 2156 { 2157 unsigned int current_order = page_order(page); 2158 struct free_area *area; 2159 int free_pages, movable_pages, alike_pages; 2160 int old_block_type; 2161 2162 old_block_type = get_pageblock_migratetype(page); 2163 2164 /* 2165 * This can happen due to races and we want to prevent broken 2166 * highatomic accounting. 2167 */ 2168 if (is_migrate_highatomic(old_block_type)) 2169 goto single_page; 2170 2171 /* Take ownership for orders >= pageblock_order */ 2172 if (current_order >= pageblock_order) { 2173 change_pageblock_range(page, current_order, start_type); 2174 goto single_page; 2175 } 2176 2177 /* We are not allowed to try stealing from the whole block */ 2178 if (!whole_block) 2179 goto single_page; 2180 2181 free_pages = move_freepages_block(zone, page, start_type, 2182 &movable_pages); 2183 /* 2184 * Determine how many pages are compatible with our allocation. 2185 * For movable allocation, it's the number of movable pages which 2186 * we just obtained. For other types it's a bit more tricky. 2187 */ 2188 if (start_type == MIGRATE_MOVABLE) { 2189 alike_pages = movable_pages; 2190 } else { 2191 /* 2192 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2193 * to MOVABLE pageblock, consider all non-movable pages as 2194 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2195 * vice versa, be conservative since we can't distinguish the 2196 * exact migratetype of non-movable pages. 2197 */ 2198 if (old_block_type == MIGRATE_MOVABLE) 2199 alike_pages = pageblock_nr_pages 2200 - (free_pages + movable_pages); 2201 else 2202 alike_pages = 0; 2203 } 2204 2205 /* moving whole block can fail due to zone boundary conditions */ 2206 if (!free_pages) 2207 goto single_page; 2208 2209 /* 2210 * If a sufficient number of pages in the block are either free or of 2211 * comparable migratability as our allocation, claim the whole block. 2212 */ 2213 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2214 page_group_by_mobility_disabled) 2215 set_pageblock_migratetype(page, start_type); 2216 2217 return; 2218 2219 single_page: 2220 area = &zone->free_area[current_order]; 2221 list_move(&page->lru, &area->free_list[start_type]); 2222 } 2223 2224 /* 2225 * Check whether there is a suitable fallback freepage with requested order. 2226 * If only_stealable is true, this function returns fallback_mt only if 2227 * we can steal other freepages all together. This would help to reduce 2228 * fragmentation due to mixed migratetype pages in one pageblock. 2229 */ 2230 int find_suitable_fallback(struct free_area *area, unsigned int order, 2231 int migratetype, bool only_stealable, bool *can_steal) 2232 { 2233 int i; 2234 int fallback_mt; 2235 2236 if (area->nr_free == 0) 2237 return -1; 2238 2239 *can_steal = false; 2240 for (i = 0;; i++) { 2241 fallback_mt = fallbacks[migratetype][i]; 2242 if (fallback_mt == MIGRATE_TYPES) 2243 break; 2244 2245 if (list_empty(&area->free_list[fallback_mt])) 2246 continue; 2247 2248 if (can_steal_fallback(order, migratetype)) 2249 *can_steal = true; 2250 2251 if (!only_stealable) 2252 return fallback_mt; 2253 2254 if (*can_steal) 2255 return fallback_mt; 2256 } 2257 2258 return -1; 2259 } 2260 2261 /* 2262 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2263 * there are no empty page blocks that contain a page with a suitable order 2264 */ 2265 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2266 unsigned int alloc_order) 2267 { 2268 int mt; 2269 unsigned long max_managed, flags; 2270 2271 /* 2272 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2273 * Check is race-prone but harmless. 2274 */ 2275 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2276 if (zone->nr_reserved_highatomic >= max_managed) 2277 return; 2278 2279 spin_lock_irqsave(&zone->lock, flags); 2280 2281 /* Recheck the nr_reserved_highatomic limit under the lock */ 2282 if (zone->nr_reserved_highatomic >= max_managed) 2283 goto out_unlock; 2284 2285 /* Yoink! */ 2286 mt = get_pageblock_migratetype(page); 2287 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2288 && !is_migrate_cma(mt)) { 2289 zone->nr_reserved_highatomic += pageblock_nr_pages; 2290 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2291 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2292 } 2293 2294 out_unlock: 2295 spin_unlock_irqrestore(&zone->lock, flags); 2296 } 2297 2298 /* 2299 * Used when an allocation is about to fail under memory pressure. This 2300 * potentially hurts the reliability of high-order allocations when under 2301 * intense memory pressure but failed atomic allocations should be easier 2302 * to recover from than an OOM. 2303 * 2304 * If @force is true, try to unreserve a pageblock even though highatomic 2305 * pageblock is exhausted. 2306 */ 2307 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2308 bool force) 2309 { 2310 struct zonelist *zonelist = ac->zonelist; 2311 unsigned long flags; 2312 struct zoneref *z; 2313 struct zone *zone; 2314 struct page *page; 2315 int order; 2316 bool ret; 2317 2318 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2319 ac->nodemask) { 2320 /* 2321 * Preserve at least one pageblock unless memory pressure 2322 * is really high. 2323 */ 2324 if (!force && zone->nr_reserved_highatomic <= 2325 pageblock_nr_pages) 2326 continue; 2327 2328 spin_lock_irqsave(&zone->lock, flags); 2329 for (order = 0; order < MAX_ORDER; order++) { 2330 struct free_area *area = &(zone->free_area[order]); 2331 2332 page = list_first_entry_or_null( 2333 &area->free_list[MIGRATE_HIGHATOMIC], 2334 struct page, lru); 2335 if (!page) 2336 continue; 2337 2338 /* 2339 * In page freeing path, migratetype change is racy so 2340 * we can counter several free pages in a pageblock 2341 * in this loop althoug we changed the pageblock type 2342 * from highatomic to ac->migratetype. So we should 2343 * adjust the count once. 2344 */ 2345 if (is_migrate_highatomic_page(page)) { 2346 /* 2347 * It should never happen but changes to 2348 * locking could inadvertently allow a per-cpu 2349 * drain to add pages to MIGRATE_HIGHATOMIC 2350 * while unreserving so be safe and watch for 2351 * underflows. 2352 */ 2353 zone->nr_reserved_highatomic -= min( 2354 pageblock_nr_pages, 2355 zone->nr_reserved_highatomic); 2356 } 2357 2358 /* 2359 * Convert to ac->migratetype and avoid the normal 2360 * pageblock stealing heuristics. Minimally, the caller 2361 * is doing the work and needs the pages. More 2362 * importantly, if the block was always converted to 2363 * MIGRATE_UNMOVABLE or another type then the number 2364 * of pageblocks that cannot be completely freed 2365 * may increase. 2366 */ 2367 set_pageblock_migratetype(page, ac->migratetype); 2368 ret = move_freepages_block(zone, page, ac->migratetype, 2369 NULL); 2370 if (ret) { 2371 spin_unlock_irqrestore(&zone->lock, flags); 2372 return ret; 2373 } 2374 } 2375 spin_unlock_irqrestore(&zone->lock, flags); 2376 } 2377 2378 return false; 2379 } 2380 2381 /* 2382 * Try finding a free buddy page on the fallback list and put it on the free 2383 * list of requested migratetype, possibly along with other pages from the same 2384 * block, depending on fragmentation avoidance heuristics. Returns true if 2385 * fallback was found so that __rmqueue_smallest() can grab it. 2386 * 2387 * The use of signed ints for order and current_order is a deliberate 2388 * deviation from the rest of this file, to make the for loop 2389 * condition simpler. 2390 */ 2391 static __always_inline bool 2392 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2393 { 2394 struct free_area *area; 2395 int current_order; 2396 struct page *page; 2397 int fallback_mt; 2398 bool can_steal; 2399 2400 /* 2401 * Find the largest available free page in the other list. This roughly 2402 * approximates finding the pageblock with the most free pages, which 2403 * would be too costly to do exactly. 2404 */ 2405 for (current_order = MAX_ORDER - 1; current_order >= order; 2406 --current_order) { 2407 area = &(zone->free_area[current_order]); 2408 fallback_mt = find_suitable_fallback(area, current_order, 2409 start_migratetype, false, &can_steal); 2410 if (fallback_mt == -1) 2411 continue; 2412 2413 /* 2414 * We cannot steal all free pages from the pageblock and the 2415 * requested migratetype is movable. In that case it's better to 2416 * steal and split the smallest available page instead of the 2417 * largest available page, because even if the next movable 2418 * allocation falls back into a different pageblock than this 2419 * one, it won't cause permanent fragmentation. 2420 */ 2421 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2422 && current_order > order) 2423 goto find_smallest; 2424 2425 goto do_steal; 2426 } 2427 2428 return false; 2429 2430 find_smallest: 2431 for (current_order = order; current_order < MAX_ORDER; 2432 current_order++) { 2433 area = &(zone->free_area[current_order]); 2434 fallback_mt = find_suitable_fallback(area, current_order, 2435 start_migratetype, false, &can_steal); 2436 if (fallback_mt != -1) 2437 break; 2438 } 2439 2440 /* 2441 * This should not happen - we already found a suitable fallback 2442 * when looking for the largest page. 2443 */ 2444 VM_BUG_ON(current_order == MAX_ORDER); 2445 2446 do_steal: 2447 page = list_first_entry(&area->free_list[fallback_mt], 2448 struct page, lru); 2449 2450 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2451 2452 trace_mm_page_alloc_extfrag(page, order, current_order, 2453 start_migratetype, fallback_mt); 2454 2455 return true; 2456 2457 } 2458 2459 /* 2460 * Do the hard work of removing an element from the buddy allocator. 2461 * Call me with the zone->lock already held. 2462 */ 2463 static __always_inline struct page * 2464 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2465 { 2466 struct page *page; 2467 2468 retry: 2469 page = __rmqueue_smallest(zone, order, migratetype); 2470 if (unlikely(!page)) { 2471 if (migratetype == MIGRATE_MOVABLE) 2472 page = __rmqueue_cma_fallback(zone, order); 2473 2474 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2475 goto retry; 2476 } 2477 2478 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2479 return page; 2480 } 2481 2482 /* 2483 * Obtain a specified number of elements from the buddy allocator, all under 2484 * a single hold of the lock, for efficiency. Add them to the supplied list. 2485 * Returns the number of new pages which were placed at *list. 2486 */ 2487 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2488 unsigned long count, struct list_head *list, 2489 int migratetype) 2490 { 2491 int i, alloced = 0; 2492 2493 spin_lock(&zone->lock); 2494 for (i = 0; i < count; ++i) { 2495 struct page *page = __rmqueue(zone, order, migratetype); 2496 if (unlikely(page == NULL)) 2497 break; 2498 2499 if (unlikely(check_pcp_refill(page))) 2500 continue; 2501 2502 /* 2503 * Split buddy pages returned by expand() are received here in 2504 * physical page order. The page is added to the tail of 2505 * caller's list. From the callers perspective, the linked list 2506 * is ordered by page number under some conditions. This is 2507 * useful for IO devices that can forward direction from the 2508 * head, thus also in the physical page order. This is useful 2509 * for IO devices that can merge IO requests if the physical 2510 * pages are ordered properly. 2511 */ 2512 list_add_tail(&page->lru, list); 2513 alloced++; 2514 if (is_migrate_cma(get_pcppage_migratetype(page))) 2515 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2516 -(1 << order)); 2517 } 2518 2519 /* 2520 * i pages were removed from the buddy list even if some leak due 2521 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2522 * on i. Do not confuse with 'alloced' which is the number of 2523 * pages added to the pcp list. 2524 */ 2525 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2526 spin_unlock(&zone->lock); 2527 return alloced; 2528 } 2529 2530 #ifdef CONFIG_NUMA 2531 /* 2532 * Called from the vmstat counter updater to drain pagesets of this 2533 * currently executing processor on remote nodes after they have 2534 * expired. 2535 * 2536 * Note that this function must be called with the thread pinned to 2537 * a single processor. 2538 */ 2539 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2540 { 2541 unsigned long flags; 2542 int to_drain, batch; 2543 2544 local_irq_save(flags); 2545 batch = READ_ONCE(pcp->batch); 2546 to_drain = min(pcp->count, batch); 2547 if (to_drain > 0) 2548 free_pcppages_bulk(zone, to_drain, pcp); 2549 local_irq_restore(flags); 2550 } 2551 #endif 2552 2553 /* 2554 * Drain pcplists of the indicated processor and zone. 2555 * 2556 * The processor must either be the current processor and the 2557 * thread pinned to the current processor or a processor that 2558 * is not online. 2559 */ 2560 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2561 { 2562 unsigned long flags; 2563 struct per_cpu_pageset *pset; 2564 struct per_cpu_pages *pcp; 2565 2566 local_irq_save(flags); 2567 pset = per_cpu_ptr(zone->pageset, cpu); 2568 2569 pcp = &pset->pcp; 2570 if (pcp->count) 2571 free_pcppages_bulk(zone, pcp->count, pcp); 2572 local_irq_restore(flags); 2573 } 2574 2575 /* 2576 * Drain pcplists of all zones on the indicated processor. 2577 * 2578 * The processor must either be the current processor and the 2579 * thread pinned to the current processor or a processor that 2580 * is not online. 2581 */ 2582 static void drain_pages(unsigned int cpu) 2583 { 2584 struct zone *zone; 2585 2586 for_each_populated_zone(zone) { 2587 drain_pages_zone(cpu, zone); 2588 } 2589 } 2590 2591 /* 2592 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2593 * 2594 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2595 * the single zone's pages. 2596 */ 2597 void drain_local_pages(struct zone *zone) 2598 { 2599 int cpu = smp_processor_id(); 2600 2601 if (zone) 2602 drain_pages_zone(cpu, zone); 2603 else 2604 drain_pages(cpu); 2605 } 2606 2607 static void drain_local_pages_wq(struct work_struct *work) 2608 { 2609 /* 2610 * drain_all_pages doesn't use proper cpu hotplug protection so 2611 * we can race with cpu offline when the WQ can move this from 2612 * a cpu pinned worker to an unbound one. We can operate on a different 2613 * cpu which is allright but we also have to make sure to not move to 2614 * a different one. 2615 */ 2616 preempt_disable(); 2617 drain_local_pages(NULL); 2618 preempt_enable(); 2619 } 2620 2621 /* 2622 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2623 * 2624 * When zone parameter is non-NULL, spill just the single zone's pages. 2625 * 2626 * Note that this can be extremely slow as the draining happens in a workqueue. 2627 */ 2628 void drain_all_pages(struct zone *zone) 2629 { 2630 int cpu; 2631 2632 /* 2633 * Allocate in the BSS so we wont require allocation in 2634 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2635 */ 2636 static cpumask_t cpus_with_pcps; 2637 2638 /* 2639 * Make sure nobody triggers this path before mm_percpu_wq is fully 2640 * initialized. 2641 */ 2642 if (WARN_ON_ONCE(!mm_percpu_wq)) 2643 return; 2644 2645 /* 2646 * Do not drain if one is already in progress unless it's specific to 2647 * a zone. Such callers are primarily CMA and memory hotplug and need 2648 * the drain to be complete when the call returns. 2649 */ 2650 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2651 if (!zone) 2652 return; 2653 mutex_lock(&pcpu_drain_mutex); 2654 } 2655 2656 /* 2657 * We don't care about racing with CPU hotplug event 2658 * as offline notification will cause the notified 2659 * cpu to drain that CPU pcps and on_each_cpu_mask 2660 * disables preemption as part of its processing 2661 */ 2662 for_each_online_cpu(cpu) { 2663 struct per_cpu_pageset *pcp; 2664 struct zone *z; 2665 bool has_pcps = false; 2666 2667 if (zone) { 2668 pcp = per_cpu_ptr(zone->pageset, cpu); 2669 if (pcp->pcp.count) 2670 has_pcps = true; 2671 } else { 2672 for_each_populated_zone(z) { 2673 pcp = per_cpu_ptr(z->pageset, cpu); 2674 if (pcp->pcp.count) { 2675 has_pcps = true; 2676 break; 2677 } 2678 } 2679 } 2680 2681 if (has_pcps) 2682 cpumask_set_cpu(cpu, &cpus_with_pcps); 2683 else 2684 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2685 } 2686 2687 for_each_cpu(cpu, &cpus_with_pcps) { 2688 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2689 INIT_WORK(work, drain_local_pages_wq); 2690 queue_work_on(cpu, mm_percpu_wq, work); 2691 } 2692 for_each_cpu(cpu, &cpus_with_pcps) 2693 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2694 2695 mutex_unlock(&pcpu_drain_mutex); 2696 } 2697 2698 #ifdef CONFIG_HIBERNATION 2699 2700 /* 2701 * Touch the watchdog for every WD_PAGE_COUNT pages. 2702 */ 2703 #define WD_PAGE_COUNT (128*1024) 2704 2705 void mark_free_pages(struct zone *zone) 2706 { 2707 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2708 unsigned long flags; 2709 unsigned int order, t; 2710 struct page *page; 2711 2712 if (zone_is_empty(zone)) 2713 return; 2714 2715 spin_lock_irqsave(&zone->lock, flags); 2716 2717 max_zone_pfn = zone_end_pfn(zone); 2718 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2719 if (pfn_valid(pfn)) { 2720 page = pfn_to_page(pfn); 2721 2722 if (!--page_count) { 2723 touch_nmi_watchdog(); 2724 page_count = WD_PAGE_COUNT; 2725 } 2726 2727 if (page_zone(page) != zone) 2728 continue; 2729 2730 if (!swsusp_page_is_forbidden(page)) 2731 swsusp_unset_page_free(page); 2732 } 2733 2734 for_each_migratetype_order(order, t) { 2735 list_for_each_entry(page, 2736 &zone->free_area[order].free_list[t], lru) { 2737 unsigned long i; 2738 2739 pfn = page_to_pfn(page); 2740 for (i = 0; i < (1UL << order); i++) { 2741 if (!--page_count) { 2742 touch_nmi_watchdog(); 2743 page_count = WD_PAGE_COUNT; 2744 } 2745 swsusp_set_page_free(pfn_to_page(pfn + i)); 2746 } 2747 } 2748 } 2749 spin_unlock_irqrestore(&zone->lock, flags); 2750 } 2751 #endif /* CONFIG_PM */ 2752 2753 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2754 { 2755 int migratetype; 2756 2757 if (!free_pcp_prepare(page)) 2758 return false; 2759 2760 migratetype = get_pfnblock_migratetype(page, pfn); 2761 set_pcppage_migratetype(page, migratetype); 2762 return true; 2763 } 2764 2765 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2766 { 2767 struct zone *zone = page_zone(page); 2768 struct per_cpu_pages *pcp; 2769 int migratetype; 2770 2771 migratetype = get_pcppage_migratetype(page); 2772 __count_vm_event(PGFREE); 2773 2774 /* 2775 * We only track unmovable, reclaimable and movable on pcp lists. 2776 * Free ISOLATE pages back to the allocator because they are being 2777 * offlined but treat HIGHATOMIC as movable pages so we can get those 2778 * areas back if necessary. Otherwise, we may have to free 2779 * excessively into the page allocator 2780 */ 2781 if (migratetype >= MIGRATE_PCPTYPES) { 2782 if (unlikely(is_migrate_isolate(migratetype))) { 2783 free_one_page(zone, page, pfn, 0, migratetype); 2784 return; 2785 } 2786 migratetype = MIGRATE_MOVABLE; 2787 } 2788 2789 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2790 list_add(&page->lru, &pcp->lists[migratetype]); 2791 pcp->count++; 2792 if (pcp->count >= pcp->high) { 2793 unsigned long batch = READ_ONCE(pcp->batch); 2794 free_pcppages_bulk(zone, batch, pcp); 2795 } 2796 } 2797 2798 /* 2799 * Free a 0-order page 2800 */ 2801 void free_unref_page(struct page *page) 2802 { 2803 unsigned long flags; 2804 unsigned long pfn = page_to_pfn(page); 2805 2806 if (!free_unref_page_prepare(page, pfn)) 2807 return; 2808 2809 local_irq_save(flags); 2810 free_unref_page_commit(page, pfn); 2811 local_irq_restore(flags); 2812 } 2813 2814 /* 2815 * Free a list of 0-order pages 2816 */ 2817 void free_unref_page_list(struct list_head *list) 2818 { 2819 struct page *page, *next; 2820 unsigned long flags, pfn; 2821 int batch_count = 0; 2822 2823 /* Prepare pages for freeing */ 2824 list_for_each_entry_safe(page, next, list, lru) { 2825 pfn = page_to_pfn(page); 2826 if (!free_unref_page_prepare(page, pfn)) 2827 list_del(&page->lru); 2828 set_page_private(page, pfn); 2829 } 2830 2831 local_irq_save(flags); 2832 list_for_each_entry_safe(page, next, list, lru) { 2833 unsigned long pfn = page_private(page); 2834 2835 set_page_private(page, 0); 2836 trace_mm_page_free_batched(page); 2837 free_unref_page_commit(page, pfn); 2838 2839 /* 2840 * Guard against excessive IRQ disabled times when we get 2841 * a large list of pages to free. 2842 */ 2843 if (++batch_count == SWAP_CLUSTER_MAX) { 2844 local_irq_restore(flags); 2845 batch_count = 0; 2846 local_irq_save(flags); 2847 } 2848 } 2849 local_irq_restore(flags); 2850 } 2851 2852 /* 2853 * split_page takes a non-compound higher-order page, and splits it into 2854 * n (1<<order) sub-pages: page[0..n] 2855 * Each sub-page must be freed individually. 2856 * 2857 * Note: this is probably too low level an operation for use in drivers. 2858 * Please consult with lkml before using this in your driver. 2859 */ 2860 void split_page(struct page *page, unsigned int order) 2861 { 2862 int i; 2863 2864 VM_BUG_ON_PAGE(PageCompound(page), page); 2865 VM_BUG_ON_PAGE(!page_count(page), page); 2866 2867 for (i = 1; i < (1 << order); i++) 2868 set_page_refcounted(page + i); 2869 split_page_owner(page, order); 2870 } 2871 EXPORT_SYMBOL_GPL(split_page); 2872 2873 int __isolate_free_page(struct page *page, unsigned int order) 2874 { 2875 unsigned long watermark; 2876 struct zone *zone; 2877 int mt; 2878 2879 BUG_ON(!PageBuddy(page)); 2880 2881 zone = page_zone(page); 2882 mt = get_pageblock_migratetype(page); 2883 2884 if (!is_migrate_isolate(mt)) { 2885 /* 2886 * Obey watermarks as if the page was being allocated. We can 2887 * emulate a high-order watermark check with a raised order-0 2888 * watermark, because we already know our high-order page 2889 * exists. 2890 */ 2891 watermark = min_wmark_pages(zone) + (1UL << order); 2892 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 2893 return 0; 2894 2895 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2896 } 2897 2898 /* Remove page from free list */ 2899 list_del(&page->lru); 2900 zone->free_area[order].nr_free--; 2901 rmv_page_order(page); 2902 2903 /* 2904 * Set the pageblock if the isolated page is at least half of a 2905 * pageblock 2906 */ 2907 if (order >= pageblock_order - 1) { 2908 struct page *endpage = page + (1 << order) - 1; 2909 for (; page < endpage; page += pageblock_nr_pages) { 2910 int mt = get_pageblock_migratetype(page); 2911 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2912 && !is_migrate_highatomic(mt)) 2913 set_pageblock_migratetype(page, 2914 MIGRATE_MOVABLE); 2915 } 2916 } 2917 2918 2919 return 1UL << order; 2920 } 2921 2922 /* 2923 * Update NUMA hit/miss statistics 2924 * 2925 * Must be called with interrupts disabled. 2926 */ 2927 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2928 { 2929 #ifdef CONFIG_NUMA 2930 enum numa_stat_item local_stat = NUMA_LOCAL; 2931 2932 /* skip numa counters update if numa stats is disabled */ 2933 if (!static_branch_likely(&vm_numa_stat_key)) 2934 return; 2935 2936 if (z->node != numa_node_id()) 2937 local_stat = NUMA_OTHER; 2938 2939 if (z->node == preferred_zone->node) 2940 __inc_numa_state(z, NUMA_HIT); 2941 else { 2942 __inc_numa_state(z, NUMA_MISS); 2943 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2944 } 2945 __inc_numa_state(z, local_stat); 2946 #endif 2947 } 2948 2949 /* Remove page from the per-cpu list, caller must protect the list */ 2950 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2951 struct per_cpu_pages *pcp, 2952 struct list_head *list) 2953 { 2954 struct page *page; 2955 2956 do { 2957 if (list_empty(list)) { 2958 pcp->count += rmqueue_bulk(zone, 0, 2959 pcp->batch, list, 2960 migratetype); 2961 if (unlikely(list_empty(list))) 2962 return NULL; 2963 } 2964 2965 page = list_first_entry(list, struct page, lru); 2966 list_del(&page->lru); 2967 pcp->count--; 2968 } while (check_new_pcp(page)); 2969 2970 return page; 2971 } 2972 2973 /* Lock and remove page from the per-cpu list */ 2974 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2975 struct zone *zone, unsigned int order, 2976 gfp_t gfp_flags, int migratetype) 2977 { 2978 struct per_cpu_pages *pcp; 2979 struct list_head *list; 2980 struct page *page; 2981 unsigned long flags; 2982 2983 local_irq_save(flags); 2984 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2985 list = &pcp->lists[migratetype]; 2986 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2987 if (page) { 2988 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2989 zone_statistics(preferred_zone, zone); 2990 } 2991 local_irq_restore(flags); 2992 return page; 2993 } 2994 2995 /* 2996 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2997 */ 2998 static inline 2999 struct page *rmqueue(struct zone *preferred_zone, 3000 struct zone *zone, unsigned int order, 3001 gfp_t gfp_flags, unsigned int alloc_flags, 3002 int migratetype) 3003 { 3004 unsigned long flags; 3005 struct page *page; 3006 3007 if (likely(order == 0)) { 3008 page = rmqueue_pcplist(preferred_zone, zone, order, 3009 gfp_flags, migratetype); 3010 goto out; 3011 } 3012 3013 /* 3014 * We most definitely don't want callers attempting to 3015 * allocate greater than order-1 page units with __GFP_NOFAIL. 3016 */ 3017 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3018 spin_lock_irqsave(&zone->lock, flags); 3019 3020 do { 3021 page = NULL; 3022 if (alloc_flags & ALLOC_HARDER) { 3023 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3024 if (page) 3025 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3026 } 3027 if (!page) 3028 page = __rmqueue(zone, order, migratetype); 3029 } while (page && check_new_pages(page, order)); 3030 spin_unlock(&zone->lock); 3031 if (!page) 3032 goto failed; 3033 __mod_zone_freepage_state(zone, -(1 << order), 3034 get_pcppage_migratetype(page)); 3035 3036 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3037 zone_statistics(preferred_zone, zone); 3038 local_irq_restore(flags); 3039 3040 out: 3041 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3042 return page; 3043 3044 failed: 3045 local_irq_restore(flags); 3046 return NULL; 3047 } 3048 3049 #ifdef CONFIG_FAIL_PAGE_ALLOC 3050 3051 static struct { 3052 struct fault_attr attr; 3053 3054 bool ignore_gfp_highmem; 3055 bool ignore_gfp_reclaim; 3056 u32 min_order; 3057 } fail_page_alloc = { 3058 .attr = FAULT_ATTR_INITIALIZER, 3059 .ignore_gfp_reclaim = true, 3060 .ignore_gfp_highmem = true, 3061 .min_order = 1, 3062 }; 3063 3064 static int __init setup_fail_page_alloc(char *str) 3065 { 3066 return setup_fault_attr(&fail_page_alloc.attr, str); 3067 } 3068 __setup("fail_page_alloc=", setup_fail_page_alloc); 3069 3070 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3071 { 3072 if (order < fail_page_alloc.min_order) 3073 return false; 3074 if (gfp_mask & __GFP_NOFAIL) 3075 return false; 3076 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3077 return false; 3078 if (fail_page_alloc.ignore_gfp_reclaim && 3079 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3080 return false; 3081 3082 return should_fail(&fail_page_alloc.attr, 1 << order); 3083 } 3084 3085 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3086 3087 static int __init fail_page_alloc_debugfs(void) 3088 { 3089 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 3090 struct dentry *dir; 3091 3092 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3093 &fail_page_alloc.attr); 3094 if (IS_ERR(dir)) 3095 return PTR_ERR(dir); 3096 3097 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 3098 &fail_page_alloc.ignore_gfp_reclaim)) 3099 goto fail; 3100 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3101 &fail_page_alloc.ignore_gfp_highmem)) 3102 goto fail; 3103 if (!debugfs_create_u32("min-order", mode, dir, 3104 &fail_page_alloc.min_order)) 3105 goto fail; 3106 3107 return 0; 3108 fail: 3109 debugfs_remove_recursive(dir); 3110 3111 return -ENOMEM; 3112 } 3113 3114 late_initcall(fail_page_alloc_debugfs); 3115 3116 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3117 3118 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3119 3120 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3121 { 3122 return false; 3123 } 3124 3125 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3126 3127 /* 3128 * Return true if free base pages are above 'mark'. For high-order checks it 3129 * will return true of the order-0 watermark is reached and there is at least 3130 * one free page of a suitable size. Checking now avoids taking the zone lock 3131 * to check in the allocation paths if no pages are free. 3132 */ 3133 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3134 int classzone_idx, unsigned int alloc_flags, 3135 long free_pages) 3136 { 3137 long min = mark; 3138 int o; 3139 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3140 3141 /* free_pages may go negative - that's OK */ 3142 free_pages -= (1 << order) - 1; 3143 3144 if (alloc_flags & ALLOC_HIGH) 3145 min -= min / 2; 3146 3147 /* 3148 * If the caller does not have rights to ALLOC_HARDER then subtract 3149 * the high-atomic reserves. This will over-estimate the size of the 3150 * atomic reserve but it avoids a search. 3151 */ 3152 if (likely(!alloc_harder)) { 3153 free_pages -= z->nr_reserved_highatomic; 3154 } else { 3155 /* 3156 * OOM victims can try even harder than normal ALLOC_HARDER 3157 * users on the grounds that it's definitely going to be in 3158 * the exit path shortly and free memory. Any allocation it 3159 * makes during the free path will be small and short-lived. 3160 */ 3161 if (alloc_flags & ALLOC_OOM) 3162 min -= min / 2; 3163 else 3164 min -= min / 4; 3165 } 3166 3167 3168 /* 3169 * Check watermarks for an order-0 allocation request. If these 3170 * are not met, then a high-order request also cannot go ahead 3171 * even if a suitable page happened to be free. 3172 */ 3173 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3174 return false; 3175 3176 /* If this is an order-0 request then the watermark is fine */ 3177 if (!order) 3178 return true; 3179 3180 /* For a high-order request, check at least one suitable page is free */ 3181 for (o = order; o < MAX_ORDER; o++) { 3182 struct free_area *area = &z->free_area[o]; 3183 int mt; 3184 3185 if (!area->nr_free) 3186 continue; 3187 3188 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3189 if (!list_empty(&area->free_list[mt])) 3190 return true; 3191 } 3192 3193 #ifdef CONFIG_CMA 3194 if (!list_empty(&area->free_list[MIGRATE_CMA])) 3195 return true; 3196 #endif 3197 if (alloc_harder && 3198 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3199 return true; 3200 } 3201 return false; 3202 } 3203 3204 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3205 int classzone_idx, unsigned int alloc_flags) 3206 { 3207 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3208 zone_page_state(z, NR_FREE_PAGES)); 3209 } 3210 3211 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3212 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3213 { 3214 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3215 3216 /* 3217 * Fast check for order-0 only. If this fails then the reserves 3218 * need to be calculated. There is a corner case where the check 3219 * passes but only the high-order atomic reserve are free. If 3220 * the caller is !atomic then it'll uselessly search the free 3221 * list. That corner case is then slower but it is harmless. 3222 */ 3223 if (!order && free_pages > mark + z->lowmem_reserve[classzone_idx]) 3224 return true; 3225 3226 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3227 free_pages); 3228 } 3229 3230 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3231 unsigned long mark, int classzone_idx) 3232 { 3233 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3234 3235 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3236 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3237 3238 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3239 free_pages); 3240 } 3241 3242 #ifdef CONFIG_NUMA 3243 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3244 { 3245 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3246 RECLAIM_DISTANCE; 3247 } 3248 #else /* CONFIG_NUMA */ 3249 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3250 { 3251 return true; 3252 } 3253 #endif /* CONFIG_NUMA */ 3254 3255 /* 3256 * get_page_from_freelist goes through the zonelist trying to allocate 3257 * a page. 3258 */ 3259 static struct page * 3260 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3261 const struct alloc_context *ac) 3262 { 3263 struct zoneref *z = ac->preferred_zoneref; 3264 struct zone *zone; 3265 struct pglist_data *last_pgdat_dirty_limit = NULL; 3266 3267 /* 3268 * Scan zonelist, looking for a zone with enough free. 3269 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3270 */ 3271 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3272 ac->nodemask) { 3273 struct page *page; 3274 unsigned long mark; 3275 3276 if (cpusets_enabled() && 3277 (alloc_flags & ALLOC_CPUSET) && 3278 !__cpuset_zone_allowed(zone, gfp_mask)) 3279 continue; 3280 /* 3281 * When allocating a page cache page for writing, we 3282 * want to get it from a node that is within its dirty 3283 * limit, such that no single node holds more than its 3284 * proportional share of globally allowed dirty pages. 3285 * The dirty limits take into account the node's 3286 * lowmem reserves and high watermark so that kswapd 3287 * should be able to balance it without having to 3288 * write pages from its LRU list. 3289 * 3290 * XXX: For now, allow allocations to potentially 3291 * exceed the per-node dirty limit in the slowpath 3292 * (spread_dirty_pages unset) before going into reclaim, 3293 * which is important when on a NUMA setup the allowed 3294 * nodes are together not big enough to reach the 3295 * global limit. The proper fix for these situations 3296 * will require awareness of nodes in the 3297 * dirty-throttling and the flusher threads. 3298 */ 3299 if (ac->spread_dirty_pages) { 3300 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3301 continue; 3302 3303 if (!node_dirty_ok(zone->zone_pgdat)) { 3304 last_pgdat_dirty_limit = zone->zone_pgdat; 3305 continue; 3306 } 3307 } 3308 3309 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3310 if (!zone_watermark_fast(zone, order, mark, 3311 ac_classzone_idx(ac), alloc_flags)) { 3312 int ret; 3313 3314 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3315 /* 3316 * Watermark failed for this zone, but see if we can 3317 * grow this zone if it contains deferred pages. 3318 */ 3319 if (static_branch_unlikely(&deferred_pages)) { 3320 if (_deferred_grow_zone(zone, order)) 3321 goto try_this_zone; 3322 } 3323 #endif 3324 /* Checked here to keep the fast path fast */ 3325 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3326 if (alloc_flags & ALLOC_NO_WATERMARKS) 3327 goto try_this_zone; 3328 3329 if (node_reclaim_mode == 0 || 3330 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3331 continue; 3332 3333 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3334 switch (ret) { 3335 case NODE_RECLAIM_NOSCAN: 3336 /* did not scan */ 3337 continue; 3338 case NODE_RECLAIM_FULL: 3339 /* scanned but unreclaimable */ 3340 continue; 3341 default: 3342 /* did we reclaim enough */ 3343 if (zone_watermark_ok(zone, order, mark, 3344 ac_classzone_idx(ac), alloc_flags)) 3345 goto try_this_zone; 3346 3347 continue; 3348 } 3349 } 3350 3351 try_this_zone: 3352 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3353 gfp_mask, alloc_flags, ac->migratetype); 3354 if (page) { 3355 prep_new_page(page, order, gfp_mask, alloc_flags); 3356 3357 /* 3358 * If this is a high-order atomic allocation then check 3359 * if the pageblock should be reserved for the future 3360 */ 3361 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3362 reserve_highatomic_pageblock(page, zone, order); 3363 3364 return page; 3365 } else { 3366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3367 /* Try again if zone has deferred pages */ 3368 if (static_branch_unlikely(&deferred_pages)) { 3369 if (_deferred_grow_zone(zone, order)) 3370 goto try_this_zone; 3371 } 3372 #endif 3373 } 3374 } 3375 3376 return NULL; 3377 } 3378 3379 /* 3380 * Large machines with many possible nodes should not always dump per-node 3381 * meminfo in irq context. 3382 */ 3383 static inline bool should_suppress_show_mem(void) 3384 { 3385 bool ret = false; 3386 3387 #if NODES_SHIFT > 8 3388 ret = in_interrupt(); 3389 #endif 3390 return ret; 3391 } 3392 3393 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3394 { 3395 unsigned int filter = SHOW_MEM_FILTER_NODES; 3396 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3397 3398 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3399 return; 3400 3401 /* 3402 * This documents exceptions given to allocations in certain 3403 * contexts that are allowed to allocate outside current's set 3404 * of allowed nodes. 3405 */ 3406 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3407 if (tsk_is_oom_victim(current) || 3408 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3409 filter &= ~SHOW_MEM_FILTER_NODES; 3410 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3411 filter &= ~SHOW_MEM_FILTER_NODES; 3412 3413 show_mem(filter, nodemask); 3414 } 3415 3416 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3417 { 3418 struct va_format vaf; 3419 va_list args; 3420 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3421 DEFAULT_RATELIMIT_BURST); 3422 3423 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3424 return; 3425 3426 va_start(args, fmt); 3427 vaf.fmt = fmt; 3428 vaf.va = &args; 3429 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3430 current->comm, &vaf, gfp_mask, &gfp_mask, 3431 nodemask_pr_args(nodemask)); 3432 va_end(args); 3433 3434 cpuset_print_current_mems_allowed(); 3435 3436 dump_stack(); 3437 warn_alloc_show_mem(gfp_mask, nodemask); 3438 } 3439 3440 static inline struct page * 3441 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3442 unsigned int alloc_flags, 3443 const struct alloc_context *ac) 3444 { 3445 struct page *page; 3446 3447 page = get_page_from_freelist(gfp_mask, order, 3448 alloc_flags|ALLOC_CPUSET, ac); 3449 /* 3450 * fallback to ignore cpuset restriction if our nodes 3451 * are depleted 3452 */ 3453 if (!page) 3454 page = get_page_from_freelist(gfp_mask, order, 3455 alloc_flags, ac); 3456 3457 return page; 3458 } 3459 3460 static inline struct page * 3461 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3462 const struct alloc_context *ac, unsigned long *did_some_progress) 3463 { 3464 struct oom_control oc = { 3465 .zonelist = ac->zonelist, 3466 .nodemask = ac->nodemask, 3467 .memcg = NULL, 3468 .gfp_mask = gfp_mask, 3469 .order = order, 3470 }; 3471 struct page *page; 3472 3473 *did_some_progress = 0; 3474 3475 /* 3476 * Acquire the oom lock. If that fails, somebody else is 3477 * making progress for us. 3478 */ 3479 if (!mutex_trylock(&oom_lock)) { 3480 *did_some_progress = 1; 3481 schedule_timeout_uninterruptible(1); 3482 return NULL; 3483 } 3484 3485 /* 3486 * Go through the zonelist yet one more time, keep very high watermark 3487 * here, this is only to catch a parallel oom killing, we must fail if 3488 * we're still under heavy pressure. But make sure that this reclaim 3489 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3490 * allocation which will never fail due to oom_lock already held. 3491 */ 3492 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3493 ~__GFP_DIRECT_RECLAIM, order, 3494 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3495 if (page) 3496 goto out; 3497 3498 /* Coredumps can quickly deplete all memory reserves */ 3499 if (current->flags & PF_DUMPCORE) 3500 goto out; 3501 /* The OOM killer will not help higher order allocs */ 3502 if (order > PAGE_ALLOC_COSTLY_ORDER) 3503 goto out; 3504 /* 3505 * We have already exhausted all our reclaim opportunities without any 3506 * success so it is time to admit defeat. We will skip the OOM killer 3507 * because it is very likely that the caller has a more reasonable 3508 * fallback than shooting a random task. 3509 */ 3510 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3511 goto out; 3512 /* The OOM killer does not needlessly kill tasks for lowmem */ 3513 if (ac->high_zoneidx < ZONE_NORMAL) 3514 goto out; 3515 if (pm_suspended_storage()) 3516 goto out; 3517 /* 3518 * XXX: GFP_NOFS allocations should rather fail than rely on 3519 * other request to make a forward progress. 3520 * We are in an unfortunate situation where out_of_memory cannot 3521 * do much for this context but let's try it to at least get 3522 * access to memory reserved if the current task is killed (see 3523 * out_of_memory). Once filesystems are ready to handle allocation 3524 * failures more gracefully we should just bail out here. 3525 */ 3526 3527 /* The OOM killer may not free memory on a specific node */ 3528 if (gfp_mask & __GFP_THISNODE) 3529 goto out; 3530 3531 /* Exhausted what can be done so it's blame time */ 3532 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3533 *did_some_progress = 1; 3534 3535 /* 3536 * Help non-failing allocations by giving them access to memory 3537 * reserves 3538 */ 3539 if (gfp_mask & __GFP_NOFAIL) 3540 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3541 ALLOC_NO_WATERMARKS, ac); 3542 } 3543 out: 3544 mutex_unlock(&oom_lock); 3545 return page; 3546 } 3547 3548 /* 3549 * Maximum number of compaction retries wit a progress before OOM 3550 * killer is consider as the only way to move forward. 3551 */ 3552 #define MAX_COMPACT_RETRIES 16 3553 3554 #ifdef CONFIG_COMPACTION 3555 /* Try memory compaction for high-order allocations before reclaim */ 3556 static struct page * 3557 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3558 unsigned int alloc_flags, const struct alloc_context *ac, 3559 enum compact_priority prio, enum compact_result *compact_result) 3560 { 3561 struct page *page; 3562 unsigned int noreclaim_flag; 3563 3564 if (!order) 3565 return NULL; 3566 3567 noreclaim_flag = memalloc_noreclaim_save(); 3568 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3569 prio); 3570 memalloc_noreclaim_restore(noreclaim_flag); 3571 3572 if (*compact_result <= COMPACT_INACTIVE) 3573 return NULL; 3574 3575 /* 3576 * At least in one zone compaction wasn't deferred or skipped, so let's 3577 * count a compaction stall 3578 */ 3579 count_vm_event(COMPACTSTALL); 3580 3581 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3582 3583 if (page) { 3584 struct zone *zone = page_zone(page); 3585 3586 zone->compact_blockskip_flush = false; 3587 compaction_defer_reset(zone, order, true); 3588 count_vm_event(COMPACTSUCCESS); 3589 return page; 3590 } 3591 3592 /* 3593 * It's bad if compaction run occurs and fails. The most likely reason 3594 * is that pages exist, but not enough to satisfy watermarks. 3595 */ 3596 count_vm_event(COMPACTFAIL); 3597 3598 cond_resched(); 3599 3600 return NULL; 3601 } 3602 3603 static inline bool 3604 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3605 enum compact_result compact_result, 3606 enum compact_priority *compact_priority, 3607 int *compaction_retries) 3608 { 3609 int max_retries = MAX_COMPACT_RETRIES; 3610 int min_priority; 3611 bool ret = false; 3612 int retries = *compaction_retries; 3613 enum compact_priority priority = *compact_priority; 3614 3615 if (!order) 3616 return false; 3617 3618 if (compaction_made_progress(compact_result)) 3619 (*compaction_retries)++; 3620 3621 /* 3622 * compaction considers all the zone as desperately out of memory 3623 * so it doesn't really make much sense to retry except when the 3624 * failure could be caused by insufficient priority 3625 */ 3626 if (compaction_failed(compact_result)) 3627 goto check_priority; 3628 3629 /* 3630 * make sure the compaction wasn't deferred or didn't bail out early 3631 * due to locks contention before we declare that we should give up. 3632 * But do not retry if the given zonelist is not suitable for 3633 * compaction. 3634 */ 3635 if (compaction_withdrawn(compact_result)) { 3636 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3637 goto out; 3638 } 3639 3640 /* 3641 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3642 * costly ones because they are de facto nofail and invoke OOM 3643 * killer to move on while costly can fail and users are ready 3644 * to cope with that. 1/4 retries is rather arbitrary but we 3645 * would need much more detailed feedback from compaction to 3646 * make a better decision. 3647 */ 3648 if (order > PAGE_ALLOC_COSTLY_ORDER) 3649 max_retries /= 4; 3650 if (*compaction_retries <= max_retries) { 3651 ret = true; 3652 goto out; 3653 } 3654 3655 /* 3656 * Make sure there are attempts at the highest priority if we exhausted 3657 * all retries or failed at the lower priorities. 3658 */ 3659 check_priority: 3660 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3661 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3662 3663 if (*compact_priority > min_priority) { 3664 (*compact_priority)--; 3665 *compaction_retries = 0; 3666 ret = true; 3667 } 3668 out: 3669 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3670 return ret; 3671 } 3672 #else 3673 static inline struct page * 3674 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3675 unsigned int alloc_flags, const struct alloc_context *ac, 3676 enum compact_priority prio, enum compact_result *compact_result) 3677 { 3678 *compact_result = COMPACT_SKIPPED; 3679 return NULL; 3680 } 3681 3682 static inline bool 3683 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3684 enum compact_result compact_result, 3685 enum compact_priority *compact_priority, 3686 int *compaction_retries) 3687 { 3688 struct zone *zone; 3689 struct zoneref *z; 3690 3691 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3692 return false; 3693 3694 /* 3695 * There are setups with compaction disabled which would prefer to loop 3696 * inside the allocator rather than hit the oom killer prematurely. 3697 * Let's give them a good hope and keep retrying while the order-0 3698 * watermarks are OK. 3699 */ 3700 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3701 ac->nodemask) { 3702 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3703 ac_classzone_idx(ac), alloc_flags)) 3704 return true; 3705 } 3706 return false; 3707 } 3708 #endif /* CONFIG_COMPACTION */ 3709 3710 #ifdef CONFIG_LOCKDEP 3711 struct lockdep_map __fs_reclaim_map = 3712 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3713 3714 static bool __need_fs_reclaim(gfp_t gfp_mask) 3715 { 3716 gfp_mask = current_gfp_context(gfp_mask); 3717 3718 /* no reclaim without waiting on it */ 3719 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3720 return false; 3721 3722 /* this guy won't enter reclaim */ 3723 if (current->flags & PF_MEMALLOC) 3724 return false; 3725 3726 /* We're only interested __GFP_FS allocations for now */ 3727 if (!(gfp_mask & __GFP_FS)) 3728 return false; 3729 3730 if (gfp_mask & __GFP_NOLOCKDEP) 3731 return false; 3732 3733 return true; 3734 } 3735 3736 void fs_reclaim_acquire(gfp_t gfp_mask) 3737 { 3738 if (__need_fs_reclaim(gfp_mask)) 3739 lock_map_acquire(&__fs_reclaim_map); 3740 } 3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3742 3743 void fs_reclaim_release(gfp_t gfp_mask) 3744 { 3745 if (__need_fs_reclaim(gfp_mask)) 3746 lock_map_release(&__fs_reclaim_map); 3747 } 3748 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3749 #endif 3750 3751 /* Perform direct synchronous page reclaim */ 3752 static int 3753 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3754 const struct alloc_context *ac) 3755 { 3756 struct reclaim_state reclaim_state; 3757 int progress; 3758 unsigned int noreclaim_flag; 3759 3760 cond_resched(); 3761 3762 /* We now go into synchronous reclaim */ 3763 cpuset_memory_pressure_bump(); 3764 noreclaim_flag = memalloc_noreclaim_save(); 3765 fs_reclaim_acquire(gfp_mask); 3766 reclaim_state.reclaimed_slab = 0; 3767 current->reclaim_state = &reclaim_state; 3768 3769 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3770 ac->nodemask); 3771 3772 current->reclaim_state = NULL; 3773 fs_reclaim_release(gfp_mask); 3774 memalloc_noreclaim_restore(noreclaim_flag); 3775 3776 cond_resched(); 3777 3778 return progress; 3779 } 3780 3781 /* The really slow allocator path where we enter direct reclaim */ 3782 static inline struct page * 3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3784 unsigned int alloc_flags, const struct alloc_context *ac, 3785 unsigned long *did_some_progress) 3786 { 3787 struct page *page = NULL; 3788 bool drained = false; 3789 3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3791 if (unlikely(!(*did_some_progress))) 3792 return NULL; 3793 3794 retry: 3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3796 3797 /* 3798 * If an allocation failed after direct reclaim, it could be because 3799 * pages are pinned on the per-cpu lists or in high alloc reserves. 3800 * Shrink them them and try again 3801 */ 3802 if (!page && !drained) { 3803 unreserve_highatomic_pageblock(ac, false); 3804 drain_all_pages(NULL); 3805 drained = true; 3806 goto retry; 3807 } 3808 3809 return page; 3810 } 3811 3812 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3813 const struct alloc_context *ac) 3814 { 3815 struct zoneref *z; 3816 struct zone *zone; 3817 pg_data_t *last_pgdat = NULL; 3818 enum zone_type high_zoneidx = ac->high_zoneidx; 3819 3820 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 3821 ac->nodemask) { 3822 if (last_pgdat != zone->zone_pgdat) 3823 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 3824 last_pgdat = zone->zone_pgdat; 3825 } 3826 } 3827 3828 static inline unsigned int 3829 gfp_to_alloc_flags(gfp_t gfp_mask) 3830 { 3831 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3832 3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3834 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3835 3836 /* 3837 * The caller may dip into page reserves a bit more if the caller 3838 * cannot run direct reclaim, or if the caller has realtime scheduling 3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3841 */ 3842 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3843 3844 if (gfp_mask & __GFP_ATOMIC) { 3845 /* 3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3847 * if it can't schedule. 3848 */ 3849 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3850 alloc_flags |= ALLOC_HARDER; 3851 /* 3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3853 * comment for __cpuset_node_allowed(). 3854 */ 3855 alloc_flags &= ~ALLOC_CPUSET; 3856 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3857 alloc_flags |= ALLOC_HARDER; 3858 3859 return alloc_flags; 3860 } 3861 3862 static bool oom_reserves_allowed(struct task_struct *tsk) 3863 { 3864 if (!tsk_is_oom_victim(tsk)) 3865 return false; 3866 3867 /* 3868 * !MMU doesn't have oom reaper so give access to memory reserves 3869 * only to the thread with TIF_MEMDIE set 3870 */ 3871 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3872 return false; 3873 3874 return true; 3875 } 3876 3877 /* 3878 * Distinguish requests which really need access to full memory 3879 * reserves from oom victims which can live with a portion of it 3880 */ 3881 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3882 { 3883 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3884 return 0; 3885 if (gfp_mask & __GFP_MEMALLOC) 3886 return ALLOC_NO_WATERMARKS; 3887 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3888 return ALLOC_NO_WATERMARKS; 3889 if (!in_interrupt()) { 3890 if (current->flags & PF_MEMALLOC) 3891 return ALLOC_NO_WATERMARKS; 3892 else if (oom_reserves_allowed(current)) 3893 return ALLOC_OOM; 3894 } 3895 3896 return 0; 3897 } 3898 3899 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3900 { 3901 return !!__gfp_pfmemalloc_flags(gfp_mask); 3902 } 3903 3904 /* 3905 * Checks whether it makes sense to retry the reclaim to make a forward progress 3906 * for the given allocation request. 3907 * 3908 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3909 * without success, or when we couldn't even meet the watermark if we 3910 * reclaimed all remaining pages on the LRU lists. 3911 * 3912 * Returns true if a retry is viable or false to enter the oom path. 3913 */ 3914 static inline bool 3915 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3916 struct alloc_context *ac, int alloc_flags, 3917 bool did_some_progress, int *no_progress_loops) 3918 { 3919 struct zone *zone; 3920 struct zoneref *z; 3921 3922 /* 3923 * Costly allocations might have made a progress but this doesn't mean 3924 * their order will become available due to high fragmentation so 3925 * always increment the no progress counter for them 3926 */ 3927 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3928 *no_progress_loops = 0; 3929 else 3930 (*no_progress_loops)++; 3931 3932 /* 3933 * Make sure we converge to OOM if we cannot make any progress 3934 * several times in the row. 3935 */ 3936 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3937 /* Before OOM, exhaust highatomic_reserve */ 3938 return unreserve_highatomic_pageblock(ac, true); 3939 } 3940 3941 /* 3942 * Keep reclaiming pages while there is a chance this will lead 3943 * somewhere. If none of the target zones can satisfy our allocation 3944 * request even if all reclaimable pages are considered then we are 3945 * screwed and have to go OOM. 3946 */ 3947 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3948 ac->nodemask) { 3949 unsigned long available; 3950 unsigned long reclaimable; 3951 unsigned long min_wmark = min_wmark_pages(zone); 3952 bool wmark; 3953 3954 available = reclaimable = zone_reclaimable_pages(zone); 3955 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3956 3957 /* 3958 * Would the allocation succeed if we reclaimed all 3959 * reclaimable pages? 3960 */ 3961 wmark = __zone_watermark_ok(zone, order, min_wmark, 3962 ac_classzone_idx(ac), alloc_flags, available); 3963 trace_reclaim_retry_zone(z, order, reclaimable, 3964 available, min_wmark, *no_progress_loops, wmark); 3965 if (wmark) { 3966 /* 3967 * If we didn't make any progress and have a lot of 3968 * dirty + writeback pages then we should wait for 3969 * an IO to complete to slow down the reclaim and 3970 * prevent from pre mature OOM 3971 */ 3972 if (!did_some_progress) { 3973 unsigned long write_pending; 3974 3975 write_pending = zone_page_state_snapshot(zone, 3976 NR_ZONE_WRITE_PENDING); 3977 3978 if (2 * write_pending > reclaimable) { 3979 congestion_wait(BLK_RW_ASYNC, HZ/10); 3980 return true; 3981 } 3982 } 3983 3984 /* 3985 * Memory allocation/reclaim might be called from a WQ 3986 * context and the current implementation of the WQ 3987 * concurrency control doesn't recognize that 3988 * a particular WQ is congested if the worker thread is 3989 * looping without ever sleeping. Therefore we have to 3990 * do a short sleep here rather than calling 3991 * cond_resched(). 3992 */ 3993 if (current->flags & PF_WQ_WORKER) 3994 schedule_timeout_uninterruptible(1); 3995 else 3996 cond_resched(); 3997 3998 return true; 3999 } 4000 } 4001 4002 return false; 4003 } 4004 4005 static inline bool 4006 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4007 { 4008 /* 4009 * It's possible that cpuset's mems_allowed and the nodemask from 4010 * mempolicy don't intersect. This should be normally dealt with by 4011 * policy_nodemask(), but it's possible to race with cpuset update in 4012 * such a way the check therein was true, and then it became false 4013 * before we got our cpuset_mems_cookie here. 4014 * This assumes that for all allocations, ac->nodemask can come only 4015 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4016 * when it does not intersect with the cpuset restrictions) or the 4017 * caller can deal with a violated nodemask. 4018 */ 4019 if (cpusets_enabled() && ac->nodemask && 4020 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4021 ac->nodemask = NULL; 4022 return true; 4023 } 4024 4025 /* 4026 * When updating a task's mems_allowed or mempolicy nodemask, it is 4027 * possible to race with parallel threads in such a way that our 4028 * allocation can fail while the mask is being updated. If we are about 4029 * to fail, check if the cpuset changed during allocation and if so, 4030 * retry. 4031 */ 4032 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4033 return true; 4034 4035 return false; 4036 } 4037 4038 static inline struct page * 4039 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4040 struct alloc_context *ac) 4041 { 4042 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4043 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4044 struct page *page = NULL; 4045 unsigned int alloc_flags; 4046 unsigned long did_some_progress; 4047 enum compact_priority compact_priority; 4048 enum compact_result compact_result; 4049 int compaction_retries; 4050 int no_progress_loops; 4051 unsigned int cpuset_mems_cookie; 4052 int reserve_flags; 4053 4054 /* 4055 * In the slowpath, we sanity check order to avoid ever trying to 4056 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 4057 * be using allocators in order of preference for an area that is 4058 * too large. 4059 */ 4060 if (order >= MAX_ORDER) { 4061 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4062 return NULL; 4063 } 4064 4065 /* 4066 * We also sanity check to catch abuse of atomic reserves being used by 4067 * callers that are not in atomic context. 4068 */ 4069 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4070 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4071 gfp_mask &= ~__GFP_ATOMIC; 4072 4073 retry_cpuset: 4074 compaction_retries = 0; 4075 no_progress_loops = 0; 4076 compact_priority = DEF_COMPACT_PRIORITY; 4077 cpuset_mems_cookie = read_mems_allowed_begin(); 4078 4079 /* 4080 * The fast path uses conservative alloc_flags to succeed only until 4081 * kswapd needs to be woken up, and to avoid the cost of setting up 4082 * alloc_flags precisely. So we do that now. 4083 */ 4084 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4085 4086 /* 4087 * We need to recalculate the starting point for the zonelist iterator 4088 * because we might have used different nodemask in the fast path, or 4089 * there was a cpuset modification and we are retrying - otherwise we 4090 * could end up iterating over non-eligible zones endlessly. 4091 */ 4092 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4093 ac->high_zoneidx, ac->nodemask); 4094 if (!ac->preferred_zoneref->zone) 4095 goto nopage; 4096 4097 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4098 wake_all_kswapds(order, gfp_mask, ac); 4099 4100 /* 4101 * The adjusted alloc_flags might result in immediate success, so try 4102 * that first 4103 */ 4104 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4105 if (page) 4106 goto got_pg; 4107 4108 /* 4109 * For costly allocations, try direct compaction first, as it's likely 4110 * that we have enough base pages and don't need to reclaim. For non- 4111 * movable high-order allocations, do that as well, as compaction will 4112 * try prevent permanent fragmentation by migrating from blocks of the 4113 * same migratetype. 4114 * Don't try this for allocations that are allowed to ignore 4115 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4116 */ 4117 if (can_direct_reclaim && 4118 (costly_order || 4119 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4120 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4121 page = __alloc_pages_direct_compact(gfp_mask, order, 4122 alloc_flags, ac, 4123 INIT_COMPACT_PRIORITY, 4124 &compact_result); 4125 if (page) 4126 goto got_pg; 4127 4128 /* 4129 * Checks for costly allocations with __GFP_NORETRY, which 4130 * includes THP page fault allocations 4131 */ 4132 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4133 /* 4134 * If compaction is deferred for high-order allocations, 4135 * it is because sync compaction recently failed. If 4136 * this is the case and the caller requested a THP 4137 * allocation, we do not want to heavily disrupt the 4138 * system, so we fail the allocation instead of entering 4139 * direct reclaim. 4140 */ 4141 if (compact_result == COMPACT_DEFERRED) 4142 goto nopage; 4143 4144 /* 4145 * Looks like reclaim/compaction is worth trying, but 4146 * sync compaction could be very expensive, so keep 4147 * using async compaction. 4148 */ 4149 compact_priority = INIT_COMPACT_PRIORITY; 4150 } 4151 } 4152 4153 retry: 4154 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4155 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4156 wake_all_kswapds(order, gfp_mask, ac); 4157 4158 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4159 if (reserve_flags) 4160 alloc_flags = reserve_flags; 4161 4162 /* 4163 * Reset the zonelist iterators if memory policies can be ignored. 4164 * These allocations are high priority and system rather than user 4165 * orientated. 4166 */ 4167 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4168 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 4169 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4170 ac->high_zoneidx, ac->nodemask); 4171 } 4172 4173 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4174 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4175 if (page) 4176 goto got_pg; 4177 4178 /* Caller is not willing to reclaim, we can't balance anything */ 4179 if (!can_direct_reclaim) 4180 goto nopage; 4181 4182 /* Avoid recursion of direct reclaim */ 4183 if (current->flags & PF_MEMALLOC) 4184 goto nopage; 4185 4186 /* Try direct reclaim and then allocating */ 4187 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4188 &did_some_progress); 4189 if (page) 4190 goto got_pg; 4191 4192 /* Try direct compaction and then allocating */ 4193 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4194 compact_priority, &compact_result); 4195 if (page) 4196 goto got_pg; 4197 4198 /* Do not loop if specifically requested */ 4199 if (gfp_mask & __GFP_NORETRY) 4200 goto nopage; 4201 4202 /* 4203 * Do not retry costly high order allocations unless they are 4204 * __GFP_RETRY_MAYFAIL 4205 */ 4206 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4207 goto nopage; 4208 4209 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4210 did_some_progress > 0, &no_progress_loops)) 4211 goto retry; 4212 4213 /* 4214 * It doesn't make any sense to retry for the compaction if the order-0 4215 * reclaim is not able to make any progress because the current 4216 * implementation of the compaction depends on the sufficient amount 4217 * of free memory (see __compaction_suitable) 4218 */ 4219 if (did_some_progress > 0 && 4220 should_compact_retry(ac, order, alloc_flags, 4221 compact_result, &compact_priority, 4222 &compaction_retries)) 4223 goto retry; 4224 4225 4226 /* Deal with possible cpuset update races before we start OOM killing */ 4227 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4228 goto retry_cpuset; 4229 4230 /* Reclaim has failed us, start killing things */ 4231 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4232 if (page) 4233 goto got_pg; 4234 4235 /* Avoid allocations with no watermarks from looping endlessly */ 4236 if (tsk_is_oom_victim(current) && 4237 (alloc_flags == ALLOC_OOM || 4238 (gfp_mask & __GFP_NOMEMALLOC))) 4239 goto nopage; 4240 4241 /* Retry as long as the OOM killer is making progress */ 4242 if (did_some_progress) { 4243 no_progress_loops = 0; 4244 goto retry; 4245 } 4246 4247 nopage: 4248 /* Deal with possible cpuset update races before we fail */ 4249 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4250 goto retry_cpuset; 4251 4252 /* 4253 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4254 * we always retry 4255 */ 4256 if (gfp_mask & __GFP_NOFAIL) { 4257 /* 4258 * All existing users of the __GFP_NOFAIL are blockable, so warn 4259 * of any new users that actually require GFP_NOWAIT 4260 */ 4261 if (WARN_ON_ONCE(!can_direct_reclaim)) 4262 goto fail; 4263 4264 /* 4265 * PF_MEMALLOC request from this context is rather bizarre 4266 * because we cannot reclaim anything and only can loop waiting 4267 * for somebody to do a work for us 4268 */ 4269 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4270 4271 /* 4272 * non failing costly orders are a hard requirement which we 4273 * are not prepared for much so let's warn about these users 4274 * so that we can identify them and convert them to something 4275 * else. 4276 */ 4277 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4278 4279 /* 4280 * Help non-failing allocations by giving them access to memory 4281 * reserves but do not use ALLOC_NO_WATERMARKS because this 4282 * could deplete whole memory reserves which would just make 4283 * the situation worse 4284 */ 4285 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4286 if (page) 4287 goto got_pg; 4288 4289 cond_resched(); 4290 goto retry; 4291 } 4292 fail: 4293 warn_alloc(gfp_mask, ac->nodemask, 4294 "page allocation failure: order:%u", order); 4295 got_pg: 4296 return page; 4297 } 4298 4299 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4300 int preferred_nid, nodemask_t *nodemask, 4301 struct alloc_context *ac, gfp_t *alloc_mask, 4302 unsigned int *alloc_flags) 4303 { 4304 ac->high_zoneidx = gfp_zone(gfp_mask); 4305 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4306 ac->nodemask = nodemask; 4307 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4308 4309 if (cpusets_enabled()) { 4310 *alloc_mask |= __GFP_HARDWALL; 4311 if (!ac->nodemask) 4312 ac->nodemask = &cpuset_current_mems_allowed; 4313 else 4314 *alloc_flags |= ALLOC_CPUSET; 4315 } 4316 4317 fs_reclaim_acquire(gfp_mask); 4318 fs_reclaim_release(gfp_mask); 4319 4320 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4321 4322 if (should_fail_alloc_page(gfp_mask, order)) 4323 return false; 4324 4325 return true; 4326 } 4327 4328 /* Determine whether to spread dirty pages and what the first usable zone */ 4329 static inline void finalise_ac(gfp_t gfp_mask, 4330 unsigned int order, struct alloc_context *ac) 4331 { 4332 /* Dirty zone balancing only done in the fast path */ 4333 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4334 4335 /* 4336 * The preferred zone is used for statistics but crucially it is 4337 * also used as the starting point for the zonelist iterator. It 4338 * may get reset for allocations that ignore memory policies. 4339 */ 4340 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4341 ac->high_zoneidx, ac->nodemask); 4342 } 4343 4344 /* 4345 * This is the 'heart' of the zoned buddy allocator. 4346 */ 4347 struct page * 4348 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4349 nodemask_t *nodemask) 4350 { 4351 struct page *page; 4352 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4353 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4354 struct alloc_context ac = { }; 4355 4356 gfp_mask &= gfp_allowed_mask; 4357 alloc_mask = gfp_mask; 4358 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4359 return NULL; 4360 4361 finalise_ac(gfp_mask, order, &ac); 4362 4363 /* First allocation attempt */ 4364 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4365 if (likely(page)) 4366 goto out; 4367 4368 /* 4369 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4370 * resp. GFP_NOIO which has to be inherited for all allocation requests 4371 * from a particular context which has been marked by 4372 * memalloc_no{fs,io}_{save,restore}. 4373 */ 4374 alloc_mask = current_gfp_context(gfp_mask); 4375 ac.spread_dirty_pages = false; 4376 4377 /* 4378 * Restore the original nodemask if it was potentially replaced with 4379 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4380 */ 4381 if (unlikely(ac.nodemask != nodemask)) 4382 ac.nodemask = nodemask; 4383 4384 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4385 4386 out: 4387 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4388 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4389 __free_pages(page, order); 4390 page = NULL; 4391 } 4392 4393 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4394 4395 return page; 4396 } 4397 EXPORT_SYMBOL(__alloc_pages_nodemask); 4398 4399 /* 4400 * Common helper functions. 4401 */ 4402 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4403 { 4404 struct page *page; 4405 4406 /* 4407 * __get_free_pages() returns a virtual address, which cannot represent 4408 * a highmem page 4409 */ 4410 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4411 4412 page = alloc_pages(gfp_mask, order); 4413 if (!page) 4414 return 0; 4415 return (unsigned long) page_address(page); 4416 } 4417 EXPORT_SYMBOL(__get_free_pages); 4418 4419 unsigned long get_zeroed_page(gfp_t gfp_mask) 4420 { 4421 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4422 } 4423 EXPORT_SYMBOL(get_zeroed_page); 4424 4425 void __free_pages(struct page *page, unsigned int order) 4426 { 4427 if (put_page_testzero(page)) { 4428 if (order == 0) 4429 free_unref_page(page); 4430 else 4431 __free_pages_ok(page, order); 4432 } 4433 } 4434 4435 EXPORT_SYMBOL(__free_pages); 4436 4437 void free_pages(unsigned long addr, unsigned int order) 4438 { 4439 if (addr != 0) { 4440 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4441 __free_pages(virt_to_page((void *)addr), order); 4442 } 4443 } 4444 4445 EXPORT_SYMBOL(free_pages); 4446 4447 /* 4448 * Page Fragment: 4449 * An arbitrary-length arbitrary-offset area of memory which resides 4450 * within a 0 or higher order page. Multiple fragments within that page 4451 * are individually refcounted, in the page's reference counter. 4452 * 4453 * The page_frag functions below provide a simple allocation framework for 4454 * page fragments. This is used by the network stack and network device 4455 * drivers to provide a backing region of memory for use as either an 4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4457 */ 4458 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4459 gfp_t gfp_mask) 4460 { 4461 struct page *page = NULL; 4462 gfp_t gfp = gfp_mask; 4463 4464 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4465 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4466 __GFP_NOMEMALLOC; 4467 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4468 PAGE_FRAG_CACHE_MAX_ORDER); 4469 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4470 #endif 4471 if (unlikely(!page)) 4472 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4473 4474 nc->va = page ? page_address(page) : NULL; 4475 4476 return page; 4477 } 4478 4479 void __page_frag_cache_drain(struct page *page, unsigned int count) 4480 { 4481 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4482 4483 if (page_ref_sub_and_test(page, count)) { 4484 unsigned int order = compound_order(page); 4485 4486 if (order == 0) 4487 free_unref_page(page); 4488 else 4489 __free_pages_ok(page, order); 4490 } 4491 } 4492 EXPORT_SYMBOL(__page_frag_cache_drain); 4493 4494 void *page_frag_alloc(struct page_frag_cache *nc, 4495 unsigned int fragsz, gfp_t gfp_mask) 4496 { 4497 unsigned int size = PAGE_SIZE; 4498 struct page *page; 4499 int offset; 4500 4501 if (unlikely(!nc->va)) { 4502 refill: 4503 page = __page_frag_cache_refill(nc, gfp_mask); 4504 if (!page) 4505 return NULL; 4506 4507 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4508 /* if size can vary use size else just use PAGE_SIZE */ 4509 size = nc->size; 4510 #endif 4511 /* Even if we own the page, we do not use atomic_set(). 4512 * This would break get_page_unless_zero() users. 4513 */ 4514 page_ref_add(page, size - 1); 4515 4516 /* reset page count bias and offset to start of new frag */ 4517 nc->pfmemalloc = page_is_pfmemalloc(page); 4518 nc->pagecnt_bias = size; 4519 nc->offset = size; 4520 } 4521 4522 offset = nc->offset - fragsz; 4523 if (unlikely(offset < 0)) { 4524 page = virt_to_page(nc->va); 4525 4526 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4527 goto refill; 4528 4529 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4530 /* if size can vary use size else just use PAGE_SIZE */ 4531 size = nc->size; 4532 #endif 4533 /* OK, page count is 0, we can safely set it */ 4534 set_page_count(page, size); 4535 4536 /* reset page count bias and offset to start of new frag */ 4537 nc->pagecnt_bias = size; 4538 offset = size - fragsz; 4539 } 4540 4541 nc->pagecnt_bias--; 4542 nc->offset = offset; 4543 4544 return nc->va + offset; 4545 } 4546 EXPORT_SYMBOL(page_frag_alloc); 4547 4548 /* 4549 * Frees a page fragment allocated out of either a compound or order 0 page. 4550 */ 4551 void page_frag_free(void *addr) 4552 { 4553 struct page *page = virt_to_head_page(addr); 4554 4555 if (unlikely(put_page_testzero(page))) 4556 __free_pages_ok(page, compound_order(page)); 4557 } 4558 EXPORT_SYMBOL(page_frag_free); 4559 4560 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4561 size_t size) 4562 { 4563 if (addr) { 4564 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4565 unsigned long used = addr + PAGE_ALIGN(size); 4566 4567 split_page(virt_to_page((void *)addr), order); 4568 while (used < alloc_end) { 4569 free_page(used); 4570 used += PAGE_SIZE; 4571 } 4572 } 4573 return (void *)addr; 4574 } 4575 4576 /** 4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4578 * @size: the number of bytes to allocate 4579 * @gfp_mask: GFP flags for the allocation 4580 * 4581 * This function is similar to alloc_pages(), except that it allocates the 4582 * minimum number of pages to satisfy the request. alloc_pages() can only 4583 * allocate memory in power-of-two pages. 4584 * 4585 * This function is also limited by MAX_ORDER. 4586 * 4587 * Memory allocated by this function must be released by free_pages_exact(). 4588 */ 4589 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4590 { 4591 unsigned int order = get_order(size); 4592 unsigned long addr; 4593 4594 addr = __get_free_pages(gfp_mask, order); 4595 return make_alloc_exact(addr, order, size); 4596 } 4597 EXPORT_SYMBOL(alloc_pages_exact); 4598 4599 /** 4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4601 * pages on a node. 4602 * @nid: the preferred node ID where memory should be allocated 4603 * @size: the number of bytes to allocate 4604 * @gfp_mask: GFP flags for the allocation 4605 * 4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4607 * back. 4608 */ 4609 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4610 { 4611 unsigned int order = get_order(size); 4612 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4613 if (!p) 4614 return NULL; 4615 return make_alloc_exact((unsigned long)page_address(p), order, size); 4616 } 4617 4618 /** 4619 * free_pages_exact - release memory allocated via alloc_pages_exact() 4620 * @virt: the value returned by alloc_pages_exact. 4621 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4622 * 4623 * Release the memory allocated by a previous call to alloc_pages_exact. 4624 */ 4625 void free_pages_exact(void *virt, size_t size) 4626 { 4627 unsigned long addr = (unsigned long)virt; 4628 unsigned long end = addr + PAGE_ALIGN(size); 4629 4630 while (addr < end) { 4631 free_page(addr); 4632 addr += PAGE_SIZE; 4633 } 4634 } 4635 EXPORT_SYMBOL(free_pages_exact); 4636 4637 /** 4638 * nr_free_zone_pages - count number of pages beyond high watermark 4639 * @offset: The zone index of the highest zone 4640 * 4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4642 * high watermark within all zones at or below a given zone index. For each 4643 * zone, the number of pages is calculated as: 4644 * 4645 * nr_free_zone_pages = managed_pages - high_pages 4646 */ 4647 static unsigned long nr_free_zone_pages(int offset) 4648 { 4649 struct zoneref *z; 4650 struct zone *zone; 4651 4652 /* Just pick one node, since fallback list is circular */ 4653 unsigned long sum = 0; 4654 4655 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4656 4657 for_each_zone_zonelist(zone, z, zonelist, offset) { 4658 unsigned long size = zone->managed_pages; 4659 unsigned long high = high_wmark_pages(zone); 4660 if (size > high) 4661 sum += size - high; 4662 } 4663 4664 return sum; 4665 } 4666 4667 /** 4668 * nr_free_buffer_pages - count number of pages beyond high watermark 4669 * 4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4671 * watermark within ZONE_DMA and ZONE_NORMAL. 4672 */ 4673 unsigned long nr_free_buffer_pages(void) 4674 { 4675 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4676 } 4677 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4678 4679 /** 4680 * nr_free_pagecache_pages - count number of pages beyond high watermark 4681 * 4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4683 * high watermark within all zones. 4684 */ 4685 unsigned long nr_free_pagecache_pages(void) 4686 { 4687 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4688 } 4689 4690 static inline void show_node(struct zone *zone) 4691 { 4692 if (IS_ENABLED(CONFIG_NUMA)) 4693 printk("Node %d ", zone_to_nid(zone)); 4694 } 4695 4696 long si_mem_available(void) 4697 { 4698 long available; 4699 unsigned long pagecache; 4700 unsigned long wmark_low = 0; 4701 unsigned long pages[NR_LRU_LISTS]; 4702 struct zone *zone; 4703 int lru; 4704 4705 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4706 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4707 4708 for_each_zone(zone) 4709 wmark_low += zone->watermark[WMARK_LOW]; 4710 4711 /* 4712 * Estimate the amount of memory available for userspace allocations, 4713 * without causing swapping. 4714 */ 4715 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4716 4717 /* 4718 * Not all the page cache can be freed, otherwise the system will 4719 * start swapping. Assume at least half of the page cache, or the 4720 * low watermark worth of cache, needs to stay. 4721 */ 4722 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4723 pagecache -= min(pagecache / 2, wmark_low); 4724 available += pagecache; 4725 4726 /* 4727 * Part of the reclaimable slab consists of items that are in use, 4728 * and cannot be freed. Cap this estimate at the low watermark. 4729 */ 4730 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4731 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4732 wmark_low); 4733 4734 /* 4735 * Part of the kernel memory, which can be released under memory 4736 * pressure. 4737 */ 4738 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >> 4739 PAGE_SHIFT; 4740 4741 if (available < 0) 4742 available = 0; 4743 return available; 4744 } 4745 EXPORT_SYMBOL_GPL(si_mem_available); 4746 4747 void si_meminfo(struct sysinfo *val) 4748 { 4749 val->totalram = totalram_pages; 4750 val->sharedram = global_node_page_state(NR_SHMEM); 4751 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4752 val->bufferram = nr_blockdev_pages(); 4753 val->totalhigh = totalhigh_pages; 4754 val->freehigh = nr_free_highpages(); 4755 val->mem_unit = PAGE_SIZE; 4756 } 4757 4758 EXPORT_SYMBOL(si_meminfo); 4759 4760 #ifdef CONFIG_NUMA 4761 void si_meminfo_node(struct sysinfo *val, int nid) 4762 { 4763 int zone_type; /* needs to be signed */ 4764 unsigned long managed_pages = 0; 4765 unsigned long managed_highpages = 0; 4766 unsigned long free_highpages = 0; 4767 pg_data_t *pgdat = NODE_DATA(nid); 4768 4769 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4770 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4771 val->totalram = managed_pages; 4772 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4773 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4774 #ifdef CONFIG_HIGHMEM 4775 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4776 struct zone *zone = &pgdat->node_zones[zone_type]; 4777 4778 if (is_highmem(zone)) { 4779 managed_highpages += zone->managed_pages; 4780 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4781 } 4782 } 4783 val->totalhigh = managed_highpages; 4784 val->freehigh = free_highpages; 4785 #else 4786 val->totalhigh = managed_highpages; 4787 val->freehigh = free_highpages; 4788 #endif 4789 val->mem_unit = PAGE_SIZE; 4790 } 4791 #endif 4792 4793 /* 4794 * Determine whether the node should be displayed or not, depending on whether 4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4796 */ 4797 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4798 { 4799 if (!(flags & SHOW_MEM_FILTER_NODES)) 4800 return false; 4801 4802 /* 4803 * no node mask - aka implicit memory numa policy. Do not bother with 4804 * the synchronization - read_mems_allowed_begin - because we do not 4805 * have to be precise here. 4806 */ 4807 if (!nodemask) 4808 nodemask = &cpuset_current_mems_allowed; 4809 4810 return !node_isset(nid, *nodemask); 4811 } 4812 4813 #define K(x) ((x) << (PAGE_SHIFT-10)) 4814 4815 static void show_migration_types(unsigned char type) 4816 { 4817 static const char types[MIGRATE_TYPES] = { 4818 [MIGRATE_UNMOVABLE] = 'U', 4819 [MIGRATE_MOVABLE] = 'M', 4820 [MIGRATE_RECLAIMABLE] = 'E', 4821 [MIGRATE_HIGHATOMIC] = 'H', 4822 #ifdef CONFIG_CMA 4823 [MIGRATE_CMA] = 'C', 4824 #endif 4825 #ifdef CONFIG_MEMORY_ISOLATION 4826 [MIGRATE_ISOLATE] = 'I', 4827 #endif 4828 }; 4829 char tmp[MIGRATE_TYPES + 1]; 4830 char *p = tmp; 4831 int i; 4832 4833 for (i = 0; i < MIGRATE_TYPES; i++) { 4834 if (type & (1 << i)) 4835 *p++ = types[i]; 4836 } 4837 4838 *p = '\0'; 4839 printk(KERN_CONT "(%s) ", tmp); 4840 } 4841 4842 /* 4843 * Show free area list (used inside shift_scroll-lock stuff) 4844 * We also calculate the percentage fragmentation. We do this by counting the 4845 * memory on each free list with the exception of the first item on the list. 4846 * 4847 * Bits in @filter: 4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4849 * cpuset. 4850 */ 4851 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4852 { 4853 unsigned long free_pcp = 0; 4854 int cpu; 4855 struct zone *zone; 4856 pg_data_t *pgdat; 4857 4858 for_each_populated_zone(zone) { 4859 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4860 continue; 4861 4862 for_each_online_cpu(cpu) 4863 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4864 } 4865 4866 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4867 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4868 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4869 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4870 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4871 " free:%lu free_pcp:%lu free_cma:%lu\n", 4872 global_node_page_state(NR_ACTIVE_ANON), 4873 global_node_page_state(NR_INACTIVE_ANON), 4874 global_node_page_state(NR_ISOLATED_ANON), 4875 global_node_page_state(NR_ACTIVE_FILE), 4876 global_node_page_state(NR_INACTIVE_FILE), 4877 global_node_page_state(NR_ISOLATED_FILE), 4878 global_node_page_state(NR_UNEVICTABLE), 4879 global_node_page_state(NR_FILE_DIRTY), 4880 global_node_page_state(NR_WRITEBACK), 4881 global_node_page_state(NR_UNSTABLE_NFS), 4882 global_node_page_state(NR_SLAB_RECLAIMABLE), 4883 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4884 global_node_page_state(NR_FILE_MAPPED), 4885 global_node_page_state(NR_SHMEM), 4886 global_zone_page_state(NR_PAGETABLE), 4887 global_zone_page_state(NR_BOUNCE), 4888 global_zone_page_state(NR_FREE_PAGES), 4889 free_pcp, 4890 global_zone_page_state(NR_FREE_CMA_PAGES)); 4891 4892 for_each_online_pgdat(pgdat) { 4893 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4894 continue; 4895 4896 printk("Node %d" 4897 " active_anon:%lukB" 4898 " inactive_anon:%lukB" 4899 " active_file:%lukB" 4900 " inactive_file:%lukB" 4901 " unevictable:%lukB" 4902 " isolated(anon):%lukB" 4903 " isolated(file):%lukB" 4904 " mapped:%lukB" 4905 " dirty:%lukB" 4906 " writeback:%lukB" 4907 " shmem:%lukB" 4908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4909 " shmem_thp: %lukB" 4910 " shmem_pmdmapped: %lukB" 4911 " anon_thp: %lukB" 4912 #endif 4913 " writeback_tmp:%lukB" 4914 " unstable:%lukB" 4915 " all_unreclaimable? %s" 4916 "\n", 4917 pgdat->node_id, 4918 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4919 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4920 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4921 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4922 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4923 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4924 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4925 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4926 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4927 K(node_page_state(pgdat, NR_WRITEBACK)), 4928 K(node_page_state(pgdat, NR_SHMEM)), 4929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4930 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4931 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4932 * HPAGE_PMD_NR), 4933 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4934 #endif 4935 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4936 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4937 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4938 "yes" : "no"); 4939 } 4940 4941 for_each_populated_zone(zone) { 4942 int i; 4943 4944 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4945 continue; 4946 4947 free_pcp = 0; 4948 for_each_online_cpu(cpu) 4949 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4950 4951 show_node(zone); 4952 printk(KERN_CONT 4953 "%s" 4954 " free:%lukB" 4955 " min:%lukB" 4956 " low:%lukB" 4957 " high:%lukB" 4958 " active_anon:%lukB" 4959 " inactive_anon:%lukB" 4960 " active_file:%lukB" 4961 " inactive_file:%lukB" 4962 " unevictable:%lukB" 4963 " writepending:%lukB" 4964 " present:%lukB" 4965 " managed:%lukB" 4966 " mlocked:%lukB" 4967 " kernel_stack:%lukB" 4968 " pagetables:%lukB" 4969 " bounce:%lukB" 4970 " free_pcp:%lukB" 4971 " local_pcp:%ukB" 4972 " free_cma:%lukB" 4973 "\n", 4974 zone->name, 4975 K(zone_page_state(zone, NR_FREE_PAGES)), 4976 K(min_wmark_pages(zone)), 4977 K(low_wmark_pages(zone)), 4978 K(high_wmark_pages(zone)), 4979 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4980 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4981 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4982 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4983 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4984 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4985 K(zone->present_pages), 4986 K(zone->managed_pages), 4987 K(zone_page_state(zone, NR_MLOCK)), 4988 zone_page_state(zone, NR_KERNEL_STACK_KB), 4989 K(zone_page_state(zone, NR_PAGETABLE)), 4990 K(zone_page_state(zone, NR_BOUNCE)), 4991 K(free_pcp), 4992 K(this_cpu_read(zone->pageset->pcp.count)), 4993 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4994 printk("lowmem_reserve[]:"); 4995 for (i = 0; i < MAX_NR_ZONES; i++) 4996 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4997 printk(KERN_CONT "\n"); 4998 } 4999 5000 for_each_populated_zone(zone) { 5001 unsigned int order; 5002 unsigned long nr[MAX_ORDER], flags, total = 0; 5003 unsigned char types[MAX_ORDER]; 5004 5005 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5006 continue; 5007 show_node(zone); 5008 printk(KERN_CONT "%s: ", zone->name); 5009 5010 spin_lock_irqsave(&zone->lock, flags); 5011 for (order = 0; order < MAX_ORDER; order++) { 5012 struct free_area *area = &zone->free_area[order]; 5013 int type; 5014 5015 nr[order] = area->nr_free; 5016 total += nr[order] << order; 5017 5018 types[order] = 0; 5019 for (type = 0; type < MIGRATE_TYPES; type++) { 5020 if (!list_empty(&area->free_list[type])) 5021 types[order] |= 1 << type; 5022 } 5023 } 5024 spin_unlock_irqrestore(&zone->lock, flags); 5025 for (order = 0; order < MAX_ORDER; order++) { 5026 printk(KERN_CONT "%lu*%lukB ", 5027 nr[order], K(1UL) << order); 5028 if (nr[order]) 5029 show_migration_types(types[order]); 5030 } 5031 printk(KERN_CONT "= %lukB\n", K(total)); 5032 } 5033 5034 hugetlb_show_meminfo(); 5035 5036 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5037 5038 show_swap_cache_info(); 5039 } 5040 5041 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5042 { 5043 zoneref->zone = zone; 5044 zoneref->zone_idx = zone_idx(zone); 5045 } 5046 5047 /* 5048 * Builds allocation fallback zone lists. 5049 * 5050 * Add all populated zones of a node to the zonelist. 5051 */ 5052 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5053 { 5054 struct zone *zone; 5055 enum zone_type zone_type = MAX_NR_ZONES; 5056 int nr_zones = 0; 5057 5058 do { 5059 zone_type--; 5060 zone = pgdat->node_zones + zone_type; 5061 if (managed_zone(zone)) { 5062 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5063 check_highest_zone(zone_type); 5064 } 5065 } while (zone_type); 5066 5067 return nr_zones; 5068 } 5069 5070 #ifdef CONFIG_NUMA 5071 5072 static int __parse_numa_zonelist_order(char *s) 5073 { 5074 /* 5075 * We used to support different zonlists modes but they turned 5076 * out to be just not useful. Let's keep the warning in place 5077 * if somebody still use the cmd line parameter so that we do 5078 * not fail it silently 5079 */ 5080 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5081 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5082 return -EINVAL; 5083 } 5084 return 0; 5085 } 5086 5087 static __init int setup_numa_zonelist_order(char *s) 5088 { 5089 if (!s) 5090 return 0; 5091 5092 return __parse_numa_zonelist_order(s); 5093 } 5094 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5095 5096 char numa_zonelist_order[] = "Node"; 5097 5098 /* 5099 * sysctl handler for numa_zonelist_order 5100 */ 5101 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5102 void __user *buffer, size_t *length, 5103 loff_t *ppos) 5104 { 5105 char *str; 5106 int ret; 5107 5108 if (!write) 5109 return proc_dostring(table, write, buffer, length, ppos); 5110 str = memdup_user_nul(buffer, 16); 5111 if (IS_ERR(str)) 5112 return PTR_ERR(str); 5113 5114 ret = __parse_numa_zonelist_order(str); 5115 kfree(str); 5116 return ret; 5117 } 5118 5119 5120 #define MAX_NODE_LOAD (nr_online_nodes) 5121 static int node_load[MAX_NUMNODES]; 5122 5123 /** 5124 * find_next_best_node - find the next node that should appear in a given node's fallback list 5125 * @node: node whose fallback list we're appending 5126 * @used_node_mask: nodemask_t of already used nodes 5127 * 5128 * We use a number of factors to determine which is the next node that should 5129 * appear on a given node's fallback list. The node should not have appeared 5130 * already in @node's fallback list, and it should be the next closest node 5131 * according to the distance array (which contains arbitrary distance values 5132 * from each node to each node in the system), and should also prefer nodes 5133 * with no CPUs, since presumably they'll have very little allocation pressure 5134 * on them otherwise. 5135 * It returns -1 if no node is found. 5136 */ 5137 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5138 { 5139 int n, val; 5140 int min_val = INT_MAX; 5141 int best_node = NUMA_NO_NODE; 5142 const struct cpumask *tmp = cpumask_of_node(0); 5143 5144 /* Use the local node if we haven't already */ 5145 if (!node_isset(node, *used_node_mask)) { 5146 node_set(node, *used_node_mask); 5147 return node; 5148 } 5149 5150 for_each_node_state(n, N_MEMORY) { 5151 5152 /* Don't want a node to appear more than once */ 5153 if (node_isset(n, *used_node_mask)) 5154 continue; 5155 5156 /* Use the distance array to find the distance */ 5157 val = node_distance(node, n); 5158 5159 /* Penalize nodes under us ("prefer the next node") */ 5160 val += (n < node); 5161 5162 /* Give preference to headless and unused nodes */ 5163 tmp = cpumask_of_node(n); 5164 if (!cpumask_empty(tmp)) 5165 val += PENALTY_FOR_NODE_WITH_CPUS; 5166 5167 /* Slight preference for less loaded node */ 5168 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5169 val += node_load[n]; 5170 5171 if (val < min_val) { 5172 min_val = val; 5173 best_node = n; 5174 } 5175 } 5176 5177 if (best_node >= 0) 5178 node_set(best_node, *used_node_mask); 5179 5180 return best_node; 5181 } 5182 5183 5184 /* 5185 * Build zonelists ordered by node and zones within node. 5186 * This results in maximum locality--normal zone overflows into local 5187 * DMA zone, if any--but risks exhausting DMA zone. 5188 */ 5189 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5190 unsigned nr_nodes) 5191 { 5192 struct zoneref *zonerefs; 5193 int i; 5194 5195 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5196 5197 for (i = 0; i < nr_nodes; i++) { 5198 int nr_zones; 5199 5200 pg_data_t *node = NODE_DATA(node_order[i]); 5201 5202 nr_zones = build_zonerefs_node(node, zonerefs); 5203 zonerefs += nr_zones; 5204 } 5205 zonerefs->zone = NULL; 5206 zonerefs->zone_idx = 0; 5207 } 5208 5209 /* 5210 * Build gfp_thisnode zonelists 5211 */ 5212 static void build_thisnode_zonelists(pg_data_t *pgdat) 5213 { 5214 struct zoneref *zonerefs; 5215 int nr_zones; 5216 5217 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5218 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5219 zonerefs += nr_zones; 5220 zonerefs->zone = NULL; 5221 zonerefs->zone_idx = 0; 5222 } 5223 5224 /* 5225 * Build zonelists ordered by zone and nodes within zones. 5226 * This results in conserving DMA zone[s] until all Normal memory is 5227 * exhausted, but results in overflowing to remote node while memory 5228 * may still exist in local DMA zone. 5229 */ 5230 5231 static void build_zonelists(pg_data_t *pgdat) 5232 { 5233 static int node_order[MAX_NUMNODES]; 5234 int node, load, nr_nodes = 0; 5235 nodemask_t used_mask; 5236 int local_node, prev_node; 5237 5238 /* NUMA-aware ordering of nodes */ 5239 local_node = pgdat->node_id; 5240 load = nr_online_nodes; 5241 prev_node = local_node; 5242 nodes_clear(used_mask); 5243 5244 memset(node_order, 0, sizeof(node_order)); 5245 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5246 /* 5247 * We don't want to pressure a particular node. 5248 * So adding penalty to the first node in same 5249 * distance group to make it round-robin. 5250 */ 5251 if (node_distance(local_node, node) != 5252 node_distance(local_node, prev_node)) 5253 node_load[node] = load; 5254 5255 node_order[nr_nodes++] = node; 5256 prev_node = node; 5257 load--; 5258 } 5259 5260 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5261 build_thisnode_zonelists(pgdat); 5262 } 5263 5264 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5265 /* 5266 * Return node id of node used for "local" allocations. 5267 * I.e., first node id of first zone in arg node's generic zonelist. 5268 * Used for initializing percpu 'numa_mem', which is used primarily 5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5270 */ 5271 int local_memory_node(int node) 5272 { 5273 struct zoneref *z; 5274 5275 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5276 gfp_zone(GFP_KERNEL), 5277 NULL); 5278 return z->zone->node; 5279 } 5280 #endif 5281 5282 static void setup_min_unmapped_ratio(void); 5283 static void setup_min_slab_ratio(void); 5284 #else /* CONFIG_NUMA */ 5285 5286 static void build_zonelists(pg_data_t *pgdat) 5287 { 5288 int node, local_node; 5289 struct zoneref *zonerefs; 5290 int nr_zones; 5291 5292 local_node = pgdat->node_id; 5293 5294 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5295 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5296 zonerefs += nr_zones; 5297 5298 /* 5299 * Now we build the zonelist so that it contains the zones 5300 * of all the other nodes. 5301 * We don't want to pressure a particular node, so when 5302 * building the zones for node N, we make sure that the 5303 * zones coming right after the local ones are those from 5304 * node N+1 (modulo N) 5305 */ 5306 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5307 if (!node_online(node)) 5308 continue; 5309 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5310 zonerefs += nr_zones; 5311 } 5312 for (node = 0; node < local_node; node++) { 5313 if (!node_online(node)) 5314 continue; 5315 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5316 zonerefs += nr_zones; 5317 } 5318 5319 zonerefs->zone = NULL; 5320 zonerefs->zone_idx = 0; 5321 } 5322 5323 #endif /* CONFIG_NUMA */ 5324 5325 /* 5326 * Boot pageset table. One per cpu which is going to be used for all 5327 * zones and all nodes. The parameters will be set in such a way 5328 * that an item put on a list will immediately be handed over to 5329 * the buddy list. This is safe since pageset manipulation is done 5330 * with interrupts disabled. 5331 * 5332 * The boot_pagesets must be kept even after bootup is complete for 5333 * unused processors and/or zones. They do play a role for bootstrapping 5334 * hotplugged processors. 5335 * 5336 * zoneinfo_show() and maybe other functions do 5337 * not check if the processor is online before following the pageset pointer. 5338 * Other parts of the kernel may not check if the zone is available. 5339 */ 5340 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5341 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5342 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5343 5344 static void __build_all_zonelists(void *data) 5345 { 5346 int nid; 5347 int __maybe_unused cpu; 5348 pg_data_t *self = data; 5349 static DEFINE_SPINLOCK(lock); 5350 5351 spin_lock(&lock); 5352 5353 #ifdef CONFIG_NUMA 5354 memset(node_load, 0, sizeof(node_load)); 5355 #endif 5356 5357 /* 5358 * This node is hotadded and no memory is yet present. So just 5359 * building zonelists is fine - no need to touch other nodes. 5360 */ 5361 if (self && !node_online(self->node_id)) { 5362 build_zonelists(self); 5363 } else { 5364 for_each_online_node(nid) { 5365 pg_data_t *pgdat = NODE_DATA(nid); 5366 5367 build_zonelists(pgdat); 5368 } 5369 5370 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5371 /* 5372 * We now know the "local memory node" for each node-- 5373 * i.e., the node of the first zone in the generic zonelist. 5374 * Set up numa_mem percpu variable for on-line cpus. During 5375 * boot, only the boot cpu should be on-line; we'll init the 5376 * secondary cpus' numa_mem as they come on-line. During 5377 * node/memory hotplug, we'll fixup all on-line cpus. 5378 */ 5379 for_each_online_cpu(cpu) 5380 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5381 #endif 5382 } 5383 5384 spin_unlock(&lock); 5385 } 5386 5387 static noinline void __init 5388 build_all_zonelists_init(void) 5389 { 5390 int cpu; 5391 5392 __build_all_zonelists(NULL); 5393 5394 /* 5395 * Initialize the boot_pagesets that are going to be used 5396 * for bootstrapping processors. The real pagesets for 5397 * each zone will be allocated later when the per cpu 5398 * allocator is available. 5399 * 5400 * boot_pagesets are used also for bootstrapping offline 5401 * cpus if the system is already booted because the pagesets 5402 * are needed to initialize allocators on a specific cpu too. 5403 * F.e. the percpu allocator needs the page allocator which 5404 * needs the percpu allocator in order to allocate its pagesets 5405 * (a chicken-egg dilemma). 5406 */ 5407 for_each_possible_cpu(cpu) 5408 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5409 5410 mminit_verify_zonelist(); 5411 cpuset_init_current_mems_allowed(); 5412 } 5413 5414 /* 5415 * unless system_state == SYSTEM_BOOTING. 5416 * 5417 * __ref due to call of __init annotated helper build_all_zonelists_init 5418 * [protected by SYSTEM_BOOTING]. 5419 */ 5420 void __ref build_all_zonelists(pg_data_t *pgdat) 5421 { 5422 if (system_state == SYSTEM_BOOTING) { 5423 build_all_zonelists_init(); 5424 } else { 5425 __build_all_zonelists(pgdat); 5426 /* cpuset refresh routine should be here */ 5427 } 5428 vm_total_pages = nr_free_pagecache_pages(); 5429 /* 5430 * Disable grouping by mobility if the number of pages in the 5431 * system is too low to allow the mechanism to work. It would be 5432 * more accurate, but expensive to check per-zone. This check is 5433 * made on memory-hotadd so a system can start with mobility 5434 * disabled and enable it later 5435 */ 5436 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5437 page_group_by_mobility_disabled = 1; 5438 else 5439 page_group_by_mobility_disabled = 0; 5440 5441 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5442 nr_online_nodes, 5443 page_group_by_mobility_disabled ? "off" : "on", 5444 vm_total_pages); 5445 #ifdef CONFIG_NUMA 5446 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5447 #endif 5448 } 5449 5450 /* 5451 * Initially all pages are reserved - free ones are freed 5452 * up by free_all_bootmem() once the early boot process is 5453 * done. Non-atomic initialization, single-pass. 5454 */ 5455 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5456 unsigned long start_pfn, enum memmap_context context, 5457 struct vmem_altmap *altmap) 5458 { 5459 unsigned long end_pfn = start_pfn + size; 5460 pg_data_t *pgdat = NODE_DATA(nid); 5461 unsigned long pfn; 5462 unsigned long nr_initialised = 0; 5463 struct page *page; 5464 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5465 struct memblock_region *r = NULL, *tmp; 5466 #endif 5467 5468 if (highest_memmap_pfn < end_pfn - 1) 5469 highest_memmap_pfn = end_pfn - 1; 5470 5471 /* 5472 * Honor reservation requested by the driver for this ZONE_DEVICE 5473 * memory 5474 */ 5475 if (altmap && start_pfn == altmap->base_pfn) 5476 start_pfn += altmap->reserve; 5477 5478 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5479 /* 5480 * There can be holes in boot-time mem_map[]s handed to this 5481 * function. They do not exist on hotplugged memory. 5482 */ 5483 if (context != MEMMAP_EARLY) 5484 goto not_early; 5485 5486 if (!early_pfn_valid(pfn)) 5487 continue; 5488 if (!early_pfn_in_nid(pfn, nid)) 5489 continue; 5490 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5491 break; 5492 5493 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5494 /* 5495 * Check given memblock attribute by firmware which can affect 5496 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5497 * mirrored, it's an overlapped memmap init. skip it. 5498 */ 5499 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5500 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5501 for_each_memblock(memory, tmp) 5502 if (pfn < memblock_region_memory_end_pfn(tmp)) 5503 break; 5504 r = tmp; 5505 } 5506 if (pfn >= memblock_region_memory_base_pfn(r) && 5507 memblock_is_mirror(r)) { 5508 /* already initialized as NORMAL */ 5509 pfn = memblock_region_memory_end_pfn(r); 5510 continue; 5511 } 5512 } 5513 #endif 5514 5515 not_early: 5516 page = pfn_to_page(pfn); 5517 __init_single_page(page, pfn, zone, nid); 5518 if (context == MEMMAP_HOTPLUG) 5519 SetPageReserved(page); 5520 5521 /* 5522 * Mark the block movable so that blocks are reserved for 5523 * movable at startup. This will force kernel allocations 5524 * to reserve their blocks rather than leaking throughout 5525 * the address space during boot when many long-lived 5526 * kernel allocations are made. 5527 * 5528 * bitmap is created for zone's valid pfn range. but memmap 5529 * can be created for invalid pages (for alignment) 5530 * check here not to call set_pageblock_migratetype() against 5531 * pfn out of zone. 5532 * 5533 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5534 * because this is done early in sparse_add_one_section 5535 */ 5536 if (!(pfn & (pageblock_nr_pages - 1))) { 5537 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5538 cond_resched(); 5539 } 5540 } 5541 } 5542 5543 static void __meminit zone_init_free_lists(struct zone *zone) 5544 { 5545 unsigned int order, t; 5546 for_each_migratetype_order(order, t) { 5547 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5548 zone->free_area[order].nr_free = 0; 5549 } 5550 } 5551 5552 #ifndef __HAVE_ARCH_MEMMAP_INIT 5553 #define memmap_init(size, nid, zone, start_pfn) \ 5554 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) 5555 #endif 5556 5557 static int zone_batchsize(struct zone *zone) 5558 { 5559 #ifdef CONFIG_MMU 5560 int batch; 5561 5562 /* 5563 * The per-cpu-pages pools are set to around 1000th of the 5564 * size of the zone. But no more than 1/2 of a meg. 5565 * 5566 * OK, so we don't know how big the cache is. So guess. 5567 */ 5568 batch = zone->managed_pages / 1024; 5569 if (batch * PAGE_SIZE > 512 * 1024) 5570 batch = (512 * 1024) / PAGE_SIZE; 5571 batch /= 4; /* We effectively *= 4 below */ 5572 if (batch < 1) 5573 batch = 1; 5574 5575 /* 5576 * Clamp the batch to a 2^n - 1 value. Having a power 5577 * of 2 value was found to be more likely to have 5578 * suboptimal cache aliasing properties in some cases. 5579 * 5580 * For example if 2 tasks are alternately allocating 5581 * batches of pages, one task can end up with a lot 5582 * of pages of one half of the possible page colors 5583 * and the other with pages of the other colors. 5584 */ 5585 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5586 5587 return batch; 5588 5589 #else 5590 /* The deferral and batching of frees should be suppressed under NOMMU 5591 * conditions. 5592 * 5593 * The problem is that NOMMU needs to be able to allocate large chunks 5594 * of contiguous memory as there's no hardware page translation to 5595 * assemble apparent contiguous memory from discontiguous pages. 5596 * 5597 * Queueing large contiguous runs of pages for batching, however, 5598 * causes the pages to actually be freed in smaller chunks. As there 5599 * can be a significant delay between the individual batches being 5600 * recycled, this leads to the once large chunks of space being 5601 * fragmented and becoming unavailable for high-order allocations. 5602 */ 5603 return 0; 5604 #endif 5605 } 5606 5607 /* 5608 * pcp->high and pcp->batch values are related and dependent on one another: 5609 * ->batch must never be higher then ->high. 5610 * The following function updates them in a safe manner without read side 5611 * locking. 5612 * 5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5614 * those fields changing asynchronously (acording the the above rule). 5615 * 5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5617 * outside of boot time (or some other assurance that no concurrent updaters 5618 * exist). 5619 */ 5620 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5621 unsigned long batch) 5622 { 5623 /* start with a fail safe value for batch */ 5624 pcp->batch = 1; 5625 smp_wmb(); 5626 5627 /* Update high, then batch, in order */ 5628 pcp->high = high; 5629 smp_wmb(); 5630 5631 pcp->batch = batch; 5632 } 5633 5634 /* a companion to pageset_set_high() */ 5635 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5636 { 5637 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5638 } 5639 5640 static void pageset_init(struct per_cpu_pageset *p) 5641 { 5642 struct per_cpu_pages *pcp; 5643 int migratetype; 5644 5645 memset(p, 0, sizeof(*p)); 5646 5647 pcp = &p->pcp; 5648 pcp->count = 0; 5649 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5650 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5651 } 5652 5653 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5654 { 5655 pageset_init(p); 5656 pageset_set_batch(p, batch); 5657 } 5658 5659 /* 5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5661 * to the value high for the pageset p. 5662 */ 5663 static void pageset_set_high(struct per_cpu_pageset *p, 5664 unsigned long high) 5665 { 5666 unsigned long batch = max(1UL, high / 4); 5667 if ((high / 4) > (PAGE_SHIFT * 8)) 5668 batch = PAGE_SHIFT * 8; 5669 5670 pageset_update(&p->pcp, high, batch); 5671 } 5672 5673 static void pageset_set_high_and_batch(struct zone *zone, 5674 struct per_cpu_pageset *pcp) 5675 { 5676 if (percpu_pagelist_fraction) 5677 pageset_set_high(pcp, 5678 (zone->managed_pages / 5679 percpu_pagelist_fraction)); 5680 else 5681 pageset_set_batch(pcp, zone_batchsize(zone)); 5682 } 5683 5684 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5685 { 5686 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5687 5688 pageset_init(pcp); 5689 pageset_set_high_and_batch(zone, pcp); 5690 } 5691 5692 void __meminit setup_zone_pageset(struct zone *zone) 5693 { 5694 int cpu; 5695 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5696 for_each_possible_cpu(cpu) 5697 zone_pageset_init(zone, cpu); 5698 } 5699 5700 /* 5701 * Allocate per cpu pagesets and initialize them. 5702 * Before this call only boot pagesets were available. 5703 */ 5704 void __init setup_per_cpu_pageset(void) 5705 { 5706 struct pglist_data *pgdat; 5707 struct zone *zone; 5708 5709 for_each_populated_zone(zone) 5710 setup_zone_pageset(zone); 5711 5712 for_each_online_pgdat(pgdat) 5713 pgdat->per_cpu_nodestats = 5714 alloc_percpu(struct per_cpu_nodestat); 5715 } 5716 5717 static __meminit void zone_pcp_init(struct zone *zone) 5718 { 5719 /* 5720 * per cpu subsystem is not up at this point. The following code 5721 * relies on the ability of the linker to provide the 5722 * offset of a (static) per cpu variable into the per cpu area. 5723 */ 5724 zone->pageset = &boot_pageset; 5725 5726 if (populated_zone(zone)) 5727 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5728 zone->name, zone->present_pages, 5729 zone_batchsize(zone)); 5730 } 5731 5732 void __meminit init_currently_empty_zone(struct zone *zone, 5733 unsigned long zone_start_pfn, 5734 unsigned long size) 5735 { 5736 struct pglist_data *pgdat = zone->zone_pgdat; 5737 5738 pgdat->nr_zones = zone_idx(zone) + 1; 5739 5740 zone->zone_start_pfn = zone_start_pfn; 5741 5742 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5743 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5744 pgdat->node_id, 5745 (unsigned long)zone_idx(zone), 5746 zone_start_pfn, (zone_start_pfn + size)); 5747 5748 zone_init_free_lists(zone); 5749 zone->initialized = 1; 5750 } 5751 5752 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5753 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5754 5755 /* 5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5757 */ 5758 int __meminit __early_pfn_to_nid(unsigned long pfn, 5759 struct mminit_pfnnid_cache *state) 5760 { 5761 unsigned long start_pfn, end_pfn; 5762 int nid; 5763 5764 if (state->last_start <= pfn && pfn < state->last_end) 5765 return state->last_nid; 5766 5767 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5768 if (nid != -1) { 5769 state->last_start = start_pfn; 5770 state->last_end = end_pfn; 5771 state->last_nid = nid; 5772 } 5773 5774 return nid; 5775 } 5776 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5777 5778 /** 5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5782 * 5783 * If an architecture guarantees that all ranges registered contain no holes 5784 * and may be freed, this this function may be used instead of calling 5785 * memblock_free_early_nid() manually. 5786 */ 5787 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5788 { 5789 unsigned long start_pfn, end_pfn; 5790 int i, this_nid; 5791 5792 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5793 start_pfn = min(start_pfn, max_low_pfn); 5794 end_pfn = min(end_pfn, max_low_pfn); 5795 5796 if (start_pfn < end_pfn) 5797 memblock_free_early_nid(PFN_PHYS(start_pfn), 5798 (end_pfn - start_pfn) << PAGE_SHIFT, 5799 this_nid); 5800 } 5801 } 5802 5803 /** 5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5806 * 5807 * If an architecture guarantees that all ranges registered contain no holes and may 5808 * be freed, this function may be used instead of calling memory_present() manually. 5809 */ 5810 void __init sparse_memory_present_with_active_regions(int nid) 5811 { 5812 unsigned long start_pfn, end_pfn; 5813 int i, this_nid; 5814 5815 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5816 memory_present(this_nid, start_pfn, end_pfn); 5817 } 5818 5819 /** 5820 * get_pfn_range_for_nid - Return the start and end page frames for a node 5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5824 * 5825 * It returns the start and end page frame of a node based on information 5826 * provided by memblock_set_node(). If called for a node 5827 * with no available memory, a warning is printed and the start and end 5828 * PFNs will be 0. 5829 */ 5830 void __meminit get_pfn_range_for_nid(unsigned int nid, 5831 unsigned long *start_pfn, unsigned long *end_pfn) 5832 { 5833 unsigned long this_start_pfn, this_end_pfn; 5834 int i; 5835 5836 *start_pfn = -1UL; 5837 *end_pfn = 0; 5838 5839 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5840 *start_pfn = min(*start_pfn, this_start_pfn); 5841 *end_pfn = max(*end_pfn, this_end_pfn); 5842 } 5843 5844 if (*start_pfn == -1UL) 5845 *start_pfn = 0; 5846 } 5847 5848 /* 5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5850 * assumption is made that zones within a node are ordered in monotonic 5851 * increasing memory addresses so that the "highest" populated zone is used 5852 */ 5853 static void __init find_usable_zone_for_movable(void) 5854 { 5855 int zone_index; 5856 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5857 if (zone_index == ZONE_MOVABLE) 5858 continue; 5859 5860 if (arch_zone_highest_possible_pfn[zone_index] > 5861 arch_zone_lowest_possible_pfn[zone_index]) 5862 break; 5863 } 5864 5865 VM_BUG_ON(zone_index == -1); 5866 movable_zone = zone_index; 5867 } 5868 5869 /* 5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5871 * because it is sized independent of architecture. Unlike the other zones, 5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5873 * in each node depending on the size of each node and how evenly kernelcore 5874 * is distributed. This helper function adjusts the zone ranges 5875 * provided by the architecture for a given node by using the end of the 5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5877 * zones within a node are in order of monotonic increases memory addresses 5878 */ 5879 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5880 unsigned long zone_type, 5881 unsigned long node_start_pfn, 5882 unsigned long node_end_pfn, 5883 unsigned long *zone_start_pfn, 5884 unsigned long *zone_end_pfn) 5885 { 5886 /* Only adjust if ZONE_MOVABLE is on this node */ 5887 if (zone_movable_pfn[nid]) { 5888 /* Size ZONE_MOVABLE */ 5889 if (zone_type == ZONE_MOVABLE) { 5890 *zone_start_pfn = zone_movable_pfn[nid]; 5891 *zone_end_pfn = min(node_end_pfn, 5892 arch_zone_highest_possible_pfn[movable_zone]); 5893 5894 /* Adjust for ZONE_MOVABLE starting within this range */ 5895 } else if (!mirrored_kernelcore && 5896 *zone_start_pfn < zone_movable_pfn[nid] && 5897 *zone_end_pfn > zone_movable_pfn[nid]) { 5898 *zone_end_pfn = zone_movable_pfn[nid]; 5899 5900 /* Check if this whole range is within ZONE_MOVABLE */ 5901 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5902 *zone_start_pfn = *zone_end_pfn; 5903 } 5904 } 5905 5906 /* 5907 * Return the number of pages a zone spans in a node, including holes 5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5909 */ 5910 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5911 unsigned long zone_type, 5912 unsigned long node_start_pfn, 5913 unsigned long node_end_pfn, 5914 unsigned long *zone_start_pfn, 5915 unsigned long *zone_end_pfn, 5916 unsigned long *ignored) 5917 { 5918 /* When hotadd a new node from cpu_up(), the node should be empty */ 5919 if (!node_start_pfn && !node_end_pfn) 5920 return 0; 5921 5922 /* Get the start and end of the zone */ 5923 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5924 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5925 adjust_zone_range_for_zone_movable(nid, zone_type, 5926 node_start_pfn, node_end_pfn, 5927 zone_start_pfn, zone_end_pfn); 5928 5929 /* Check that this node has pages within the zone's required range */ 5930 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5931 return 0; 5932 5933 /* Move the zone boundaries inside the node if necessary */ 5934 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5935 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5936 5937 /* Return the spanned pages */ 5938 return *zone_end_pfn - *zone_start_pfn; 5939 } 5940 5941 /* 5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5943 * then all holes in the requested range will be accounted for. 5944 */ 5945 unsigned long __meminit __absent_pages_in_range(int nid, 5946 unsigned long range_start_pfn, 5947 unsigned long range_end_pfn) 5948 { 5949 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5950 unsigned long start_pfn, end_pfn; 5951 int i; 5952 5953 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5954 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5955 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5956 nr_absent -= end_pfn - start_pfn; 5957 } 5958 return nr_absent; 5959 } 5960 5961 /** 5962 * absent_pages_in_range - Return number of page frames in holes within a range 5963 * @start_pfn: The start PFN to start searching for holes 5964 * @end_pfn: The end PFN to stop searching for holes 5965 * 5966 * It returns the number of pages frames in memory holes within a range. 5967 */ 5968 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5969 unsigned long end_pfn) 5970 { 5971 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5972 } 5973 5974 /* Return the number of page frames in holes in a zone on a node */ 5975 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5976 unsigned long zone_type, 5977 unsigned long node_start_pfn, 5978 unsigned long node_end_pfn, 5979 unsigned long *ignored) 5980 { 5981 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5982 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5983 unsigned long zone_start_pfn, zone_end_pfn; 5984 unsigned long nr_absent; 5985 5986 /* When hotadd a new node from cpu_up(), the node should be empty */ 5987 if (!node_start_pfn && !node_end_pfn) 5988 return 0; 5989 5990 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5991 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5992 5993 adjust_zone_range_for_zone_movable(nid, zone_type, 5994 node_start_pfn, node_end_pfn, 5995 &zone_start_pfn, &zone_end_pfn); 5996 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5997 5998 /* 5999 * ZONE_MOVABLE handling. 6000 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6001 * and vice versa. 6002 */ 6003 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6004 unsigned long start_pfn, end_pfn; 6005 struct memblock_region *r; 6006 6007 for_each_memblock(memory, r) { 6008 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6009 zone_start_pfn, zone_end_pfn); 6010 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6011 zone_start_pfn, zone_end_pfn); 6012 6013 if (zone_type == ZONE_MOVABLE && 6014 memblock_is_mirror(r)) 6015 nr_absent += end_pfn - start_pfn; 6016 6017 if (zone_type == ZONE_NORMAL && 6018 !memblock_is_mirror(r)) 6019 nr_absent += end_pfn - start_pfn; 6020 } 6021 } 6022 6023 return nr_absent; 6024 } 6025 6026 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6027 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 6028 unsigned long zone_type, 6029 unsigned long node_start_pfn, 6030 unsigned long node_end_pfn, 6031 unsigned long *zone_start_pfn, 6032 unsigned long *zone_end_pfn, 6033 unsigned long *zones_size) 6034 { 6035 unsigned int zone; 6036 6037 *zone_start_pfn = node_start_pfn; 6038 for (zone = 0; zone < zone_type; zone++) 6039 *zone_start_pfn += zones_size[zone]; 6040 6041 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6042 6043 return zones_size[zone_type]; 6044 } 6045 6046 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 6047 unsigned long zone_type, 6048 unsigned long node_start_pfn, 6049 unsigned long node_end_pfn, 6050 unsigned long *zholes_size) 6051 { 6052 if (!zholes_size) 6053 return 0; 6054 6055 return zholes_size[zone_type]; 6056 } 6057 6058 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6059 6060 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 6061 unsigned long node_start_pfn, 6062 unsigned long node_end_pfn, 6063 unsigned long *zones_size, 6064 unsigned long *zholes_size) 6065 { 6066 unsigned long realtotalpages = 0, totalpages = 0; 6067 enum zone_type i; 6068 6069 for (i = 0; i < MAX_NR_ZONES; i++) { 6070 struct zone *zone = pgdat->node_zones + i; 6071 unsigned long zone_start_pfn, zone_end_pfn; 6072 unsigned long size, real_size; 6073 6074 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6075 node_start_pfn, 6076 node_end_pfn, 6077 &zone_start_pfn, 6078 &zone_end_pfn, 6079 zones_size); 6080 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6081 node_start_pfn, node_end_pfn, 6082 zholes_size); 6083 if (size) 6084 zone->zone_start_pfn = zone_start_pfn; 6085 else 6086 zone->zone_start_pfn = 0; 6087 zone->spanned_pages = size; 6088 zone->present_pages = real_size; 6089 6090 totalpages += size; 6091 realtotalpages += real_size; 6092 } 6093 6094 pgdat->node_spanned_pages = totalpages; 6095 pgdat->node_present_pages = realtotalpages; 6096 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6097 realtotalpages); 6098 } 6099 6100 #ifndef CONFIG_SPARSEMEM 6101 /* 6102 * Calculate the size of the zone->blockflags rounded to an unsigned long 6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6105 * round what is now in bits to nearest long in bits, then return it in 6106 * bytes. 6107 */ 6108 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6109 { 6110 unsigned long usemapsize; 6111 6112 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6113 usemapsize = roundup(zonesize, pageblock_nr_pages); 6114 usemapsize = usemapsize >> pageblock_order; 6115 usemapsize *= NR_PAGEBLOCK_BITS; 6116 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6117 6118 return usemapsize / 8; 6119 } 6120 6121 static void __init setup_usemap(struct pglist_data *pgdat, 6122 struct zone *zone, 6123 unsigned long zone_start_pfn, 6124 unsigned long zonesize) 6125 { 6126 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6127 zone->pageblock_flags = NULL; 6128 if (usemapsize) 6129 zone->pageblock_flags = 6130 memblock_virt_alloc_node_nopanic(usemapsize, 6131 pgdat->node_id); 6132 } 6133 #else 6134 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6135 unsigned long zone_start_pfn, unsigned long zonesize) {} 6136 #endif /* CONFIG_SPARSEMEM */ 6137 6138 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6139 6140 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6141 void __paginginit set_pageblock_order(void) 6142 { 6143 unsigned int order; 6144 6145 /* Check that pageblock_nr_pages has not already been setup */ 6146 if (pageblock_order) 6147 return; 6148 6149 if (HPAGE_SHIFT > PAGE_SHIFT) 6150 order = HUGETLB_PAGE_ORDER; 6151 else 6152 order = MAX_ORDER - 1; 6153 6154 /* 6155 * Assume the largest contiguous order of interest is a huge page. 6156 * This value may be variable depending on boot parameters on IA64 and 6157 * powerpc. 6158 */ 6159 pageblock_order = order; 6160 } 6161 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6162 6163 /* 6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6165 * is unused as pageblock_order is set at compile-time. See 6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6167 * the kernel config 6168 */ 6169 void __paginginit set_pageblock_order(void) 6170 { 6171 } 6172 6173 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6174 6175 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6176 unsigned long present_pages) 6177 { 6178 unsigned long pages = spanned_pages; 6179 6180 /* 6181 * Provide a more accurate estimation if there are holes within 6182 * the zone and SPARSEMEM is in use. If there are holes within the 6183 * zone, each populated memory region may cost us one or two extra 6184 * memmap pages due to alignment because memmap pages for each 6185 * populated regions may not be naturally aligned on page boundary. 6186 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6187 */ 6188 if (spanned_pages > present_pages + (present_pages >> 4) && 6189 IS_ENABLED(CONFIG_SPARSEMEM)) 6190 pages = present_pages; 6191 6192 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6193 } 6194 6195 /* 6196 * Set up the zone data structures: 6197 * - mark all pages reserved 6198 * - mark all memory queues empty 6199 * - clear the memory bitmaps 6200 * 6201 * NOTE: pgdat should get zeroed by caller. 6202 */ 6203 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6204 { 6205 enum zone_type j; 6206 int nid = pgdat->node_id; 6207 unsigned long node_end_pfn = 0; 6208 6209 pgdat_resize_init(pgdat); 6210 #ifdef CONFIG_NUMA_BALANCING 6211 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6212 pgdat->numabalancing_migrate_nr_pages = 0; 6213 pgdat->numabalancing_migrate_next_window = jiffies; 6214 #endif 6215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6216 spin_lock_init(&pgdat->split_queue_lock); 6217 INIT_LIST_HEAD(&pgdat->split_queue); 6218 pgdat->split_queue_len = 0; 6219 #endif 6220 init_waitqueue_head(&pgdat->kswapd_wait); 6221 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6222 #ifdef CONFIG_COMPACTION 6223 init_waitqueue_head(&pgdat->kcompactd_wait); 6224 #endif 6225 pgdat_page_ext_init(pgdat); 6226 spin_lock_init(&pgdat->lru_lock); 6227 lruvec_init(node_lruvec(pgdat)); 6228 6229 pgdat->per_cpu_nodestats = &boot_nodestats; 6230 6231 for (j = 0; j < MAX_NR_ZONES; j++) { 6232 struct zone *zone = pgdat->node_zones + j; 6233 unsigned long size, realsize, freesize, memmap_pages; 6234 unsigned long zone_start_pfn = zone->zone_start_pfn; 6235 unsigned long movable_size = 0; 6236 6237 size = zone->spanned_pages; 6238 realsize = freesize = zone->present_pages; 6239 if (zone_end_pfn(zone) > node_end_pfn) 6240 node_end_pfn = zone_end_pfn(zone); 6241 6242 6243 /* 6244 * Adjust freesize so that it accounts for how much memory 6245 * is used by this zone for memmap. This affects the watermark 6246 * and per-cpu initialisations 6247 */ 6248 memmap_pages = calc_memmap_size(size, realsize); 6249 if (!is_highmem_idx(j)) { 6250 if (freesize >= memmap_pages) { 6251 freesize -= memmap_pages; 6252 if (memmap_pages) 6253 printk(KERN_DEBUG 6254 " %s zone: %lu pages used for memmap\n", 6255 zone_names[j], memmap_pages); 6256 } else 6257 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6258 zone_names[j], memmap_pages, freesize); 6259 } 6260 6261 /* Account for reserved pages */ 6262 if (j == 0 && freesize > dma_reserve) { 6263 freesize -= dma_reserve; 6264 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6265 zone_names[0], dma_reserve); 6266 } 6267 6268 if (!is_highmem_idx(j)) 6269 nr_kernel_pages += freesize; 6270 /* Charge for highmem memmap if there are enough kernel pages */ 6271 else if (nr_kernel_pages > memmap_pages * 2) 6272 nr_kernel_pages -= memmap_pages; 6273 nr_all_pages += freesize; 6274 6275 /* 6276 * Set an approximate value for lowmem here, it will be adjusted 6277 * when the bootmem allocator frees pages into the buddy system. 6278 * And all highmem pages will be managed by the buddy system. 6279 */ 6280 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6281 #ifdef CONFIG_NUMA 6282 zone->node = nid; 6283 #endif 6284 zone->name = zone_names[j]; 6285 zone->zone_pgdat = pgdat; 6286 spin_lock_init(&zone->lock); 6287 zone_seqlock_init(zone); 6288 zone_pcp_init(zone); 6289 6290 /* 6291 * The size of the CMA area is unknown now so we need to 6292 * prepare the memory for the usemap at maximum. 6293 */ 6294 if (IS_ENABLED(CONFIG_CMA) && j == ZONE_MOVABLE && 6295 pgdat->node_spanned_pages) { 6296 movable_size = node_end_pfn - pgdat->node_start_pfn; 6297 } 6298 6299 if (!size && !movable_size) 6300 continue; 6301 6302 set_pageblock_order(); 6303 if (movable_size) { 6304 zone->zone_start_pfn = pgdat->node_start_pfn; 6305 zone->spanned_pages = movable_size; 6306 setup_usemap(pgdat, zone, 6307 pgdat->node_start_pfn, movable_size); 6308 init_currently_empty_zone(zone, 6309 pgdat->node_start_pfn, movable_size); 6310 } else { 6311 setup_usemap(pgdat, zone, zone_start_pfn, size); 6312 init_currently_empty_zone(zone, zone_start_pfn, size); 6313 } 6314 memmap_init(size, nid, j, zone_start_pfn); 6315 } 6316 } 6317 6318 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6319 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6320 { 6321 unsigned long __maybe_unused start = 0; 6322 unsigned long __maybe_unused offset = 0; 6323 6324 /* Skip empty nodes */ 6325 if (!pgdat->node_spanned_pages) 6326 return; 6327 6328 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6329 offset = pgdat->node_start_pfn - start; 6330 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6331 if (!pgdat->node_mem_map) { 6332 unsigned long size, end; 6333 struct page *map; 6334 6335 /* 6336 * The zone's endpoints aren't required to be MAX_ORDER 6337 * aligned but the node_mem_map endpoints must be in order 6338 * for the buddy allocator to function correctly. 6339 */ 6340 end = pgdat_end_pfn(pgdat); 6341 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6342 size = (end - start) * sizeof(struct page); 6343 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 6344 pgdat->node_mem_map = map + offset; 6345 } 6346 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6347 __func__, pgdat->node_id, (unsigned long)pgdat, 6348 (unsigned long)pgdat->node_mem_map); 6349 #ifndef CONFIG_NEED_MULTIPLE_NODES 6350 /* 6351 * With no DISCONTIG, the global mem_map is just set as node 0's 6352 */ 6353 if (pgdat == NODE_DATA(0)) { 6354 mem_map = NODE_DATA(0)->node_mem_map; 6355 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6356 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6357 mem_map -= offset; 6358 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6359 } 6360 #endif 6361 } 6362 #else 6363 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6364 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6365 6366 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6367 unsigned long node_start_pfn, unsigned long *zholes_size) 6368 { 6369 pg_data_t *pgdat = NODE_DATA(nid); 6370 unsigned long start_pfn = 0; 6371 unsigned long end_pfn = 0; 6372 6373 /* pg_data_t should be reset to zero when it's allocated */ 6374 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6375 6376 pgdat->node_id = nid; 6377 pgdat->node_start_pfn = node_start_pfn; 6378 pgdat->per_cpu_nodestats = NULL; 6379 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6380 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6381 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6382 (u64)start_pfn << PAGE_SHIFT, 6383 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6384 #else 6385 start_pfn = node_start_pfn; 6386 #endif 6387 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6388 zones_size, zholes_size); 6389 6390 alloc_node_mem_map(pgdat); 6391 6392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6393 /* 6394 * We start only with one section of pages, more pages are added as 6395 * needed until the rest of deferred pages are initialized. 6396 */ 6397 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION, 6398 pgdat->node_spanned_pages); 6399 pgdat->first_deferred_pfn = ULONG_MAX; 6400 #endif 6401 free_area_init_core(pgdat); 6402 } 6403 6404 #ifdef CONFIG_HAVE_MEMBLOCK 6405 /* 6406 * Only struct pages that are backed by physical memory are zeroed and 6407 * initialized by going through __init_single_page(). But, there are some 6408 * struct pages which are reserved in memblock allocator and their fields 6409 * may be accessed (for example page_to_pfn() on some configuration accesses 6410 * flags). We must explicitly zero those struct pages. 6411 */ 6412 void __paginginit zero_resv_unavail(void) 6413 { 6414 phys_addr_t start, end; 6415 unsigned long pfn; 6416 u64 i, pgcnt; 6417 6418 /* 6419 * Loop through ranges that are reserved, but do not have reported 6420 * physical memory backing. 6421 */ 6422 pgcnt = 0; 6423 for_each_resv_unavail_range(i, &start, &end) { 6424 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6425 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) 6426 continue; 6427 mm_zero_struct_page(pfn_to_page(pfn)); 6428 pgcnt++; 6429 } 6430 } 6431 6432 /* 6433 * Struct pages that do not have backing memory. This could be because 6434 * firmware is using some of this memory, or for some other reasons. 6435 * Once memblock is changed so such behaviour is not allowed: i.e. 6436 * list of "reserved" memory must be a subset of list of "memory", then 6437 * this code can be removed. 6438 */ 6439 if (pgcnt) 6440 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6441 } 6442 #endif /* CONFIG_HAVE_MEMBLOCK */ 6443 6444 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6445 6446 #if MAX_NUMNODES > 1 6447 /* 6448 * Figure out the number of possible node ids. 6449 */ 6450 void __init setup_nr_node_ids(void) 6451 { 6452 unsigned int highest; 6453 6454 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6455 nr_node_ids = highest + 1; 6456 } 6457 #endif 6458 6459 /** 6460 * node_map_pfn_alignment - determine the maximum internode alignment 6461 * 6462 * This function should be called after node map is populated and sorted. 6463 * It calculates the maximum power of two alignment which can distinguish 6464 * all the nodes. 6465 * 6466 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6467 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6468 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6469 * shifted, 1GiB is enough and this function will indicate so. 6470 * 6471 * This is used to test whether pfn -> nid mapping of the chosen memory 6472 * model has fine enough granularity to avoid incorrect mapping for the 6473 * populated node map. 6474 * 6475 * Returns the determined alignment in pfn's. 0 if there is no alignment 6476 * requirement (single node). 6477 */ 6478 unsigned long __init node_map_pfn_alignment(void) 6479 { 6480 unsigned long accl_mask = 0, last_end = 0; 6481 unsigned long start, end, mask; 6482 int last_nid = -1; 6483 int i, nid; 6484 6485 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6486 if (!start || last_nid < 0 || last_nid == nid) { 6487 last_nid = nid; 6488 last_end = end; 6489 continue; 6490 } 6491 6492 /* 6493 * Start with a mask granular enough to pin-point to the 6494 * start pfn and tick off bits one-by-one until it becomes 6495 * too coarse to separate the current node from the last. 6496 */ 6497 mask = ~((1 << __ffs(start)) - 1); 6498 while (mask && last_end <= (start & (mask << 1))) 6499 mask <<= 1; 6500 6501 /* accumulate all internode masks */ 6502 accl_mask |= mask; 6503 } 6504 6505 /* convert mask to number of pages */ 6506 return ~accl_mask + 1; 6507 } 6508 6509 /* Find the lowest pfn for a node */ 6510 static unsigned long __init find_min_pfn_for_node(int nid) 6511 { 6512 unsigned long min_pfn = ULONG_MAX; 6513 unsigned long start_pfn; 6514 int i; 6515 6516 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6517 min_pfn = min(min_pfn, start_pfn); 6518 6519 if (min_pfn == ULONG_MAX) { 6520 pr_warn("Could not find start_pfn for node %d\n", nid); 6521 return 0; 6522 } 6523 6524 return min_pfn; 6525 } 6526 6527 /** 6528 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6529 * 6530 * It returns the minimum PFN based on information provided via 6531 * memblock_set_node(). 6532 */ 6533 unsigned long __init find_min_pfn_with_active_regions(void) 6534 { 6535 return find_min_pfn_for_node(MAX_NUMNODES); 6536 } 6537 6538 /* 6539 * early_calculate_totalpages() 6540 * Sum pages in active regions for movable zone. 6541 * Populate N_MEMORY for calculating usable_nodes. 6542 */ 6543 static unsigned long __init early_calculate_totalpages(void) 6544 { 6545 unsigned long totalpages = 0; 6546 unsigned long start_pfn, end_pfn; 6547 int i, nid; 6548 6549 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6550 unsigned long pages = end_pfn - start_pfn; 6551 6552 totalpages += pages; 6553 if (pages) 6554 node_set_state(nid, N_MEMORY); 6555 } 6556 return totalpages; 6557 } 6558 6559 /* 6560 * Find the PFN the Movable zone begins in each node. Kernel memory 6561 * is spread evenly between nodes as long as the nodes have enough 6562 * memory. When they don't, some nodes will have more kernelcore than 6563 * others 6564 */ 6565 static void __init find_zone_movable_pfns_for_nodes(void) 6566 { 6567 int i, nid; 6568 unsigned long usable_startpfn; 6569 unsigned long kernelcore_node, kernelcore_remaining; 6570 /* save the state before borrow the nodemask */ 6571 nodemask_t saved_node_state = node_states[N_MEMORY]; 6572 unsigned long totalpages = early_calculate_totalpages(); 6573 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6574 struct memblock_region *r; 6575 6576 /* Need to find movable_zone earlier when movable_node is specified. */ 6577 find_usable_zone_for_movable(); 6578 6579 /* 6580 * If movable_node is specified, ignore kernelcore and movablecore 6581 * options. 6582 */ 6583 if (movable_node_is_enabled()) { 6584 for_each_memblock(memory, r) { 6585 if (!memblock_is_hotpluggable(r)) 6586 continue; 6587 6588 nid = r->nid; 6589 6590 usable_startpfn = PFN_DOWN(r->base); 6591 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6592 min(usable_startpfn, zone_movable_pfn[nid]) : 6593 usable_startpfn; 6594 } 6595 6596 goto out2; 6597 } 6598 6599 /* 6600 * If kernelcore=mirror is specified, ignore movablecore option 6601 */ 6602 if (mirrored_kernelcore) { 6603 bool mem_below_4gb_not_mirrored = false; 6604 6605 for_each_memblock(memory, r) { 6606 if (memblock_is_mirror(r)) 6607 continue; 6608 6609 nid = r->nid; 6610 6611 usable_startpfn = memblock_region_memory_base_pfn(r); 6612 6613 if (usable_startpfn < 0x100000) { 6614 mem_below_4gb_not_mirrored = true; 6615 continue; 6616 } 6617 6618 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6619 min(usable_startpfn, zone_movable_pfn[nid]) : 6620 usable_startpfn; 6621 } 6622 6623 if (mem_below_4gb_not_mirrored) 6624 pr_warn("This configuration results in unmirrored kernel memory."); 6625 6626 goto out2; 6627 } 6628 6629 /* 6630 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6631 * amount of necessary memory. 6632 */ 6633 if (required_kernelcore_percent) 6634 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6635 10000UL; 6636 if (required_movablecore_percent) 6637 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6638 10000UL; 6639 6640 /* 6641 * If movablecore= was specified, calculate what size of 6642 * kernelcore that corresponds so that memory usable for 6643 * any allocation type is evenly spread. If both kernelcore 6644 * and movablecore are specified, then the value of kernelcore 6645 * will be used for required_kernelcore if it's greater than 6646 * what movablecore would have allowed. 6647 */ 6648 if (required_movablecore) { 6649 unsigned long corepages; 6650 6651 /* 6652 * Round-up so that ZONE_MOVABLE is at least as large as what 6653 * was requested by the user 6654 */ 6655 required_movablecore = 6656 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6657 required_movablecore = min(totalpages, required_movablecore); 6658 corepages = totalpages - required_movablecore; 6659 6660 required_kernelcore = max(required_kernelcore, corepages); 6661 } 6662 6663 /* 6664 * If kernelcore was not specified or kernelcore size is larger 6665 * than totalpages, there is no ZONE_MOVABLE. 6666 */ 6667 if (!required_kernelcore || required_kernelcore >= totalpages) 6668 goto out; 6669 6670 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6671 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6672 6673 restart: 6674 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6675 kernelcore_node = required_kernelcore / usable_nodes; 6676 for_each_node_state(nid, N_MEMORY) { 6677 unsigned long start_pfn, end_pfn; 6678 6679 /* 6680 * Recalculate kernelcore_node if the division per node 6681 * now exceeds what is necessary to satisfy the requested 6682 * amount of memory for the kernel 6683 */ 6684 if (required_kernelcore < kernelcore_node) 6685 kernelcore_node = required_kernelcore / usable_nodes; 6686 6687 /* 6688 * As the map is walked, we track how much memory is usable 6689 * by the kernel using kernelcore_remaining. When it is 6690 * 0, the rest of the node is usable by ZONE_MOVABLE 6691 */ 6692 kernelcore_remaining = kernelcore_node; 6693 6694 /* Go through each range of PFNs within this node */ 6695 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6696 unsigned long size_pages; 6697 6698 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6699 if (start_pfn >= end_pfn) 6700 continue; 6701 6702 /* Account for what is only usable for kernelcore */ 6703 if (start_pfn < usable_startpfn) { 6704 unsigned long kernel_pages; 6705 kernel_pages = min(end_pfn, usable_startpfn) 6706 - start_pfn; 6707 6708 kernelcore_remaining -= min(kernel_pages, 6709 kernelcore_remaining); 6710 required_kernelcore -= min(kernel_pages, 6711 required_kernelcore); 6712 6713 /* Continue if range is now fully accounted */ 6714 if (end_pfn <= usable_startpfn) { 6715 6716 /* 6717 * Push zone_movable_pfn to the end so 6718 * that if we have to rebalance 6719 * kernelcore across nodes, we will 6720 * not double account here 6721 */ 6722 zone_movable_pfn[nid] = end_pfn; 6723 continue; 6724 } 6725 start_pfn = usable_startpfn; 6726 } 6727 6728 /* 6729 * The usable PFN range for ZONE_MOVABLE is from 6730 * start_pfn->end_pfn. Calculate size_pages as the 6731 * number of pages used as kernelcore 6732 */ 6733 size_pages = end_pfn - start_pfn; 6734 if (size_pages > kernelcore_remaining) 6735 size_pages = kernelcore_remaining; 6736 zone_movable_pfn[nid] = start_pfn + size_pages; 6737 6738 /* 6739 * Some kernelcore has been met, update counts and 6740 * break if the kernelcore for this node has been 6741 * satisfied 6742 */ 6743 required_kernelcore -= min(required_kernelcore, 6744 size_pages); 6745 kernelcore_remaining -= size_pages; 6746 if (!kernelcore_remaining) 6747 break; 6748 } 6749 } 6750 6751 /* 6752 * If there is still required_kernelcore, we do another pass with one 6753 * less node in the count. This will push zone_movable_pfn[nid] further 6754 * along on the nodes that still have memory until kernelcore is 6755 * satisfied 6756 */ 6757 usable_nodes--; 6758 if (usable_nodes && required_kernelcore > usable_nodes) 6759 goto restart; 6760 6761 out2: 6762 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6763 for (nid = 0; nid < MAX_NUMNODES; nid++) 6764 zone_movable_pfn[nid] = 6765 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6766 6767 out: 6768 /* restore the node_state */ 6769 node_states[N_MEMORY] = saved_node_state; 6770 } 6771 6772 /* Any regular or high memory on that node ? */ 6773 static void check_for_memory(pg_data_t *pgdat, int nid) 6774 { 6775 enum zone_type zone_type; 6776 6777 if (N_MEMORY == N_NORMAL_MEMORY) 6778 return; 6779 6780 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6781 struct zone *zone = &pgdat->node_zones[zone_type]; 6782 if (populated_zone(zone)) { 6783 node_set_state(nid, N_HIGH_MEMORY); 6784 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6785 zone_type <= ZONE_NORMAL) 6786 node_set_state(nid, N_NORMAL_MEMORY); 6787 break; 6788 } 6789 } 6790 } 6791 6792 /** 6793 * free_area_init_nodes - Initialise all pg_data_t and zone data 6794 * @max_zone_pfn: an array of max PFNs for each zone 6795 * 6796 * This will call free_area_init_node() for each active node in the system. 6797 * Using the page ranges provided by memblock_set_node(), the size of each 6798 * zone in each node and their holes is calculated. If the maximum PFN 6799 * between two adjacent zones match, it is assumed that the zone is empty. 6800 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6801 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6802 * starts where the previous one ended. For example, ZONE_DMA32 starts 6803 * at arch_max_dma_pfn. 6804 */ 6805 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6806 { 6807 unsigned long start_pfn, end_pfn; 6808 int i, nid; 6809 6810 /* Record where the zone boundaries are */ 6811 memset(arch_zone_lowest_possible_pfn, 0, 6812 sizeof(arch_zone_lowest_possible_pfn)); 6813 memset(arch_zone_highest_possible_pfn, 0, 6814 sizeof(arch_zone_highest_possible_pfn)); 6815 6816 start_pfn = find_min_pfn_with_active_regions(); 6817 6818 for (i = 0; i < MAX_NR_ZONES; i++) { 6819 if (i == ZONE_MOVABLE) 6820 continue; 6821 6822 end_pfn = max(max_zone_pfn[i], start_pfn); 6823 arch_zone_lowest_possible_pfn[i] = start_pfn; 6824 arch_zone_highest_possible_pfn[i] = end_pfn; 6825 6826 start_pfn = end_pfn; 6827 } 6828 6829 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6830 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6831 find_zone_movable_pfns_for_nodes(); 6832 6833 /* Print out the zone ranges */ 6834 pr_info("Zone ranges:\n"); 6835 for (i = 0; i < MAX_NR_ZONES; i++) { 6836 if (i == ZONE_MOVABLE) 6837 continue; 6838 pr_info(" %-8s ", zone_names[i]); 6839 if (arch_zone_lowest_possible_pfn[i] == 6840 arch_zone_highest_possible_pfn[i]) 6841 pr_cont("empty\n"); 6842 else 6843 pr_cont("[mem %#018Lx-%#018Lx]\n", 6844 (u64)arch_zone_lowest_possible_pfn[i] 6845 << PAGE_SHIFT, 6846 ((u64)arch_zone_highest_possible_pfn[i] 6847 << PAGE_SHIFT) - 1); 6848 } 6849 6850 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6851 pr_info("Movable zone start for each node\n"); 6852 for (i = 0; i < MAX_NUMNODES; i++) { 6853 if (zone_movable_pfn[i]) 6854 pr_info(" Node %d: %#018Lx\n", i, 6855 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6856 } 6857 6858 /* Print out the early node map */ 6859 pr_info("Early memory node ranges\n"); 6860 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6861 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6862 (u64)start_pfn << PAGE_SHIFT, 6863 ((u64)end_pfn << PAGE_SHIFT) - 1); 6864 6865 /* Initialise every node */ 6866 mminit_verify_pageflags_layout(); 6867 setup_nr_node_ids(); 6868 for_each_online_node(nid) { 6869 pg_data_t *pgdat = NODE_DATA(nid); 6870 free_area_init_node(nid, NULL, 6871 find_min_pfn_for_node(nid), NULL); 6872 6873 /* Any memory on that node */ 6874 if (pgdat->node_present_pages) 6875 node_set_state(nid, N_MEMORY); 6876 check_for_memory(pgdat, nid); 6877 } 6878 zero_resv_unavail(); 6879 } 6880 6881 static int __init cmdline_parse_core(char *p, unsigned long *core, 6882 unsigned long *percent) 6883 { 6884 unsigned long long coremem; 6885 char *endptr; 6886 6887 if (!p) 6888 return -EINVAL; 6889 6890 /* Value may be a percentage of total memory, otherwise bytes */ 6891 coremem = simple_strtoull(p, &endptr, 0); 6892 if (*endptr == '%') { 6893 /* Paranoid check for percent values greater than 100 */ 6894 WARN_ON(coremem > 100); 6895 6896 *percent = coremem; 6897 } else { 6898 coremem = memparse(p, &p); 6899 /* Paranoid check that UL is enough for the coremem value */ 6900 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6901 6902 *core = coremem >> PAGE_SHIFT; 6903 *percent = 0UL; 6904 } 6905 return 0; 6906 } 6907 6908 /* 6909 * kernelcore=size sets the amount of memory for use for allocations that 6910 * cannot be reclaimed or migrated. 6911 */ 6912 static int __init cmdline_parse_kernelcore(char *p) 6913 { 6914 /* parse kernelcore=mirror */ 6915 if (parse_option_str(p, "mirror")) { 6916 mirrored_kernelcore = true; 6917 return 0; 6918 } 6919 6920 return cmdline_parse_core(p, &required_kernelcore, 6921 &required_kernelcore_percent); 6922 } 6923 6924 /* 6925 * movablecore=size sets the amount of memory for use for allocations that 6926 * can be reclaimed or migrated. 6927 */ 6928 static int __init cmdline_parse_movablecore(char *p) 6929 { 6930 return cmdline_parse_core(p, &required_movablecore, 6931 &required_movablecore_percent); 6932 } 6933 6934 early_param("kernelcore", cmdline_parse_kernelcore); 6935 early_param("movablecore", cmdline_parse_movablecore); 6936 6937 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6938 6939 void adjust_managed_page_count(struct page *page, long count) 6940 { 6941 spin_lock(&managed_page_count_lock); 6942 page_zone(page)->managed_pages += count; 6943 totalram_pages += count; 6944 #ifdef CONFIG_HIGHMEM 6945 if (PageHighMem(page)) 6946 totalhigh_pages += count; 6947 #endif 6948 spin_unlock(&managed_page_count_lock); 6949 } 6950 EXPORT_SYMBOL(adjust_managed_page_count); 6951 6952 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6953 { 6954 void *pos; 6955 unsigned long pages = 0; 6956 6957 start = (void *)PAGE_ALIGN((unsigned long)start); 6958 end = (void *)((unsigned long)end & PAGE_MASK); 6959 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6960 if ((unsigned int)poison <= 0xFF) 6961 memset(pos, poison, PAGE_SIZE); 6962 free_reserved_page(virt_to_page(pos)); 6963 } 6964 6965 if (pages && s) 6966 pr_info("Freeing %s memory: %ldK\n", 6967 s, pages << (PAGE_SHIFT - 10)); 6968 6969 return pages; 6970 } 6971 EXPORT_SYMBOL(free_reserved_area); 6972 6973 #ifdef CONFIG_HIGHMEM 6974 void free_highmem_page(struct page *page) 6975 { 6976 __free_reserved_page(page); 6977 totalram_pages++; 6978 page_zone(page)->managed_pages++; 6979 totalhigh_pages++; 6980 } 6981 #endif 6982 6983 6984 void __init mem_init_print_info(const char *str) 6985 { 6986 unsigned long physpages, codesize, datasize, rosize, bss_size; 6987 unsigned long init_code_size, init_data_size; 6988 6989 physpages = get_num_physpages(); 6990 codesize = _etext - _stext; 6991 datasize = _edata - _sdata; 6992 rosize = __end_rodata - __start_rodata; 6993 bss_size = __bss_stop - __bss_start; 6994 init_data_size = __init_end - __init_begin; 6995 init_code_size = _einittext - _sinittext; 6996 6997 /* 6998 * Detect special cases and adjust section sizes accordingly: 6999 * 1) .init.* may be embedded into .data sections 7000 * 2) .init.text.* may be out of [__init_begin, __init_end], 7001 * please refer to arch/tile/kernel/vmlinux.lds.S. 7002 * 3) .rodata.* may be embedded into .text or .data sections. 7003 */ 7004 #define adj_init_size(start, end, size, pos, adj) \ 7005 do { \ 7006 if (start <= pos && pos < end && size > adj) \ 7007 size -= adj; \ 7008 } while (0) 7009 7010 adj_init_size(__init_begin, __init_end, init_data_size, 7011 _sinittext, init_code_size); 7012 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7013 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7014 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7015 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7016 7017 #undef adj_init_size 7018 7019 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7020 #ifdef CONFIG_HIGHMEM 7021 ", %luK highmem" 7022 #endif 7023 "%s%s)\n", 7024 nr_free_pages() << (PAGE_SHIFT - 10), 7025 physpages << (PAGE_SHIFT - 10), 7026 codesize >> 10, datasize >> 10, rosize >> 10, 7027 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7028 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 7029 totalcma_pages << (PAGE_SHIFT - 10), 7030 #ifdef CONFIG_HIGHMEM 7031 totalhigh_pages << (PAGE_SHIFT - 10), 7032 #endif 7033 str ? ", " : "", str ? str : ""); 7034 } 7035 7036 /** 7037 * set_dma_reserve - set the specified number of pages reserved in the first zone 7038 * @new_dma_reserve: The number of pages to mark reserved 7039 * 7040 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7041 * In the DMA zone, a significant percentage may be consumed by kernel image 7042 * and other unfreeable allocations which can skew the watermarks badly. This 7043 * function may optionally be used to account for unfreeable pages in the 7044 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7045 * smaller per-cpu batchsize. 7046 */ 7047 void __init set_dma_reserve(unsigned long new_dma_reserve) 7048 { 7049 dma_reserve = new_dma_reserve; 7050 } 7051 7052 void __init free_area_init(unsigned long *zones_size) 7053 { 7054 free_area_init_node(0, zones_size, 7055 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7056 zero_resv_unavail(); 7057 } 7058 7059 static int page_alloc_cpu_dead(unsigned int cpu) 7060 { 7061 7062 lru_add_drain_cpu(cpu); 7063 drain_pages(cpu); 7064 7065 /* 7066 * Spill the event counters of the dead processor 7067 * into the current processors event counters. 7068 * This artificially elevates the count of the current 7069 * processor. 7070 */ 7071 vm_events_fold_cpu(cpu); 7072 7073 /* 7074 * Zero the differential counters of the dead processor 7075 * so that the vm statistics are consistent. 7076 * 7077 * This is only okay since the processor is dead and cannot 7078 * race with what we are doing. 7079 */ 7080 cpu_vm_stats_fold(cpu); 7081 return 0; 7082 } 7083 7084 void __init page_alloc_init(void) 7085 { 7086 int ret; 7087 7088 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7089 "mm/page_alloc:dead", NULL, 7090 page_alloc_cpu_dead); 7091 WARN_ON(ret < 0); 7092 } 7093 7094 /* 7095 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7096 * or min_free_kbytes changes. 7097 */ 7098 static void calculate_totalreserve_pages(void) 7099 { 7100 struct pglist_data *pgdat; 7101 unsigned long reserve_pages = 0; 7102 enum zone_type i, j; 7103 7104 for_each_online_pgdat(pgdat) { 7105 7106 pgdat->totalreserve_pages = 0; 7107 7108 for (i = 0; i < MAX_NR_ZONES; i++) { 7109 struct zone *zone = pgdat->node_zones + i; 7110 long max = 0; 7111 7112 /* Find valid and maximum lowmem_reserve in the zone */ 7113 for (j = i; j < MAX_NR_ZONES; j++) { 7114 if (zone->lowmem_reserve[j] > max) 7115 max = zone->lowmem_reserve[j]; 7116 } 7117 7118 /* we treat the high watermark as reserved pages. */ 7119 max += high_wmark_pages(zone); 7120 7121 if (max > zone->managed_pages) 7122 max = zone->managed_pages; 7123 7124 pgdat->totalreserve_pages += max; 7125 7126 reserve_pages += max; 7127 } 7128 } 7129 totalreserve_pages = reserve_pages; 7130 } 7131 7132 /* 7133 * setup_per_zone_lowmem_reserve - called whenever 7134 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7135 * has a correct pages reserved value, so an adequate number of 7136 * pages are left in the zone after a successful __alloc_pages(). 7137 */ 7138 static void setup_per_zone_lowmem_reserve(void) 7139 { 7140 struct pglist_data *pgdat; 7141 enum zone_type j, idx; 7142 7143 for_each_online_pgdat(pgdat) { 7144 for (j = 0; j < MAX_NR_ZONES; j++) { 7145 struct zone *zone = pgdat->node_zones + j; 7146 unsigned long managed_pages = zone->managed_pages; 7147 7148 zone->lowmem_reserve[j] = 0; 7149 7150 idx = j; 7151 while (idx) { 7152 struct zone *lower_zone; 7153 7154 idx--; 7155 lower_zone = pgdat->node_zones + idx; 7156 7157 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7158 sysctl_lowmem_reserve_ratio[idx] = 0; 7159 lower_zone->lowmem_reserve[j] = 0; 7160 } else { 7161 lower_zone->lowmem_reserve[j] = 7162 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7163 } 7164 managed_pages += lower_zone->managed_pages; 7165 } 7166 } 7167 } 7168 7169 /* update totalreserve_pages */ 7170 calculate_totalreserve_pages(); 7171 } 7172 7173 static void __setup_per_zone_wmarks(void) 7174 { 7175 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7176 unsigned long lowmem_pages = 0; 7177 struct zone *zone; 7178 unsigned long flags; 7179 7180 /* Calculate total number of !ZONE_HIGHMEM pages */ 7181 for_each_zone(zone) { 7182 if (!is_highmem(zone)) 7183 lowmem_pages += zone->managed_pages; 7184 } 7185 7186 for_each_zone(zone) { 7187 u64 tmp; 7188 7189 spin_lock_irqsave(&zone->lock, flags); 7190 tmp = (u64)pages_min * zone->managed_pages; 7191 do_div(tmp, lowmem_pages); 7192 if (is_highmem(zone)) { 7193 /* 7194 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7195 * need highmem pages, so cap pages_min to a small 7196 * value here. 7197 * 7198 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7199 * deltas control asynch page reclaim, and so should 7200 * not be capped for highmem. 7201 */ 7202 unsigned long min_pages; 7203 7204 min_pages = zone->managed_pages / 1024; 7205 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7206 zone->watermark[WMARK_MIN] = min_pages; 7207 } else { 7208 /* 7209 * If it's a lowmem zone, reserve a number of pages 7210 * proportionate to the zone's size. 7211 */ 7212 zone->watermark[WMARK_MIN] = tmp; 7213 } 7214 7215 /* 7216 * Set the kswapd watermarks distance according to the 7217 * scale factor in proportion to available memory, but 7218 * ensure a minimum size on small systems. 7219 */ 7220 tmp = max_t(u64, tmp >> 2, 7221 mult_frac(zone->managed_pages, 7222 watermark_scale_factor, 10000)); 7223 7224 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7225 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7226 7227 spin_unlock_irqrestore(&zone->lock, flags); 7228 } 7229 7230 /* update totalreserve_pages */ 7231 calculate_totalreserve_pages(); 7232 } 7233 7234 /** 7235 * setup_per_zone_wmarks - called when min_free_kbytes changes 7236 * or when memory is hot-{added|removed} 7237 * 7238 * Ensures that the watermark[min,low,high] values for each zone are set 7239 * correctly with respect to min_free_kbytes. 7240 */ 7241 void setup_per_zone_wmarks(void) 7242 { 7243 static DEFINE_SPINLOCK(lock); 7244 7245 spin_lock(&lock); 7246 __setup_per_zone_wmarks(); 7247 spin_unlock(&lock); 7248 } 7249 7250 /* 7251 * Initialise min_free_kbytes. 7252 * 7253 * For small machines we want it small (128k min). For large machines 7254 * we want it large (64MB max). But it is not linear, because network 7255 * bandwidth does not increase linearly with machine size. We use 7256 * 7257 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7258 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7259 * 7260 * which yields 7261 * 7262 * 16MB: 512k 7263 * 32MB: 724k 7264 * 64MB: 1024k 7265 * 128MB: 1448k 7266 * 256MB: 2048k 7267 * 512MB: 2896k 7268 * 1024MB: 4096k 7269 * 2048MB: 5792k 7270 * 4096MB: 8192k 7271 * 8192MB: 11584k 7272 * 16384MB: 16384k 7273 */ 7274 int __meminit init_per_zone_wmark_min(void) 7275 { 7276 unsigned long lowmem_kbytes; 7277 int new_min_free_kbytes; 7278 7279 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7280 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7281 7282 if (new_min_free_kbytes > user_min_free_kbytes) { 7283 min_free_kbytes = new_min_free_kbytes; 7284 if (min_free_kbytes < 128) 7285 min_free_kbytes = 128; 7286 if (min_free_kbytes > 65536) 7287 min_free_kbytes = 65536; 7288 } else { 7289 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7290 new_min_free_kbytes, user_min_free_kbytes); 7291 } 7292 setup_per_zone_wmarks(); 7293 refresh_zone_stat_thresholds(); 7294 setup_per_zone_lowmem_reserve(); 7295 7296 #ifdef CONFIG_NUMA 7297 setup_min_unmapped_ratio(); 7298 setup_min_slab_ratio(); 7299 #endif 7300 7301 return 0; 7302 } 7303 core_initcall(init_per_zone_wmark_min) 7304 7305 /* 7306 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7307 * that we can call two helper functions whenever min_free_kbytes 7308 * changes. 7309 */ 7310 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7311 void __user *buffer, size_t *length, loff_t *ppos) 7312 { 7313 int rc; 7314 7315 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7316 if (rc) 7317 return rc; 7318 7319 if (write) { 7320 user_min_free_kbytes = min_free_kbytes; 7321 setup_per_zone_wmarks(); 7322 } 7323 return 0; 7324 } 7325 7326 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7327 void __user *buffer, size_t *length, loff_t *ppos) 7328 { 7329 int rc; 7330 7331 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7332 if (rc) 7333 return rc; 7334 7335 if (write) 7336 setup_per_zone_wmarks(); 7337 7338 return 0; 7339 } 7340 7341 #ifdef CONFIG_NUMA 7342 static void setup_min_unmapped_ratio(void) 7343 { 7344 pg_data_t *pgdat; 7345 struct zone *zone; 7346 7347 for_each_online_pgdat(pgdat) 7348 pgdat->min_unmapped_pages = 0; 7349 7350 for_each_zone(zone) 7351 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7352 sysctl_min_unmapped_ratio) / 100; 7353 } 7354 7355 7356 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7357 void __user *buffer, size_t *length, loff_t *ppos) 7358 { 7359 int rc; 7360 7361 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7362 if (rc) 7363 return rc; 7364 7365 setup_min_unmapped_ratio(); 7366 7367 return 0; 7368 } 7369 7370 static void setup_min_slab_ratio(void) 7371 { 7372 pg_data_t *pgdat; 7373 struct zone *zone; 7374 7375 for_each_online_pgdat(pgdat) 7376 pgdat->min_slab_pages = 0; 7377 7378 for_each_zone(zone) 7379 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7380 sysctl_min_slab_ratio) / 100; 7381 } 7382 7383 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7384 void __user *buffer, size_t *length, loff_t *ppos) 7385 { 7386 int rc; 7387 7388 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7389 if (rc) 7390 return rc; 7391 7392 setup_min_slab_ratio(); 7393 7394 return 0; 7395 } 7396 #endif 7397 7398 /* 7399 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7400 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7401 * whenever sysctl_lowmem_reserve_ratio changes. 7402 * 7403 * The reserve ratio obviously has absolutely no relation with the 7404 * minimum watermarks. The lowmem reserve ratio can only make sense 7405 * if in function of the boot time zone sizes. 7406 */ 7407 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7408 void __user *buffer, size_t *length, loff_t *ppos) 7409 { 7410 proc_dointvec_minmax(table, write, buffer, length, ppos); 7411 setup_per_zone_lowmem_reserve(); 7412 return 0; 7413 } 7414 7415 /* 7416 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7417 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7418 * pagelist can have before it gets flushed back to buddy allocator. 7419 */ 7420 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7421 void __user *buffer, size_t *length, loff_t *ppos) 7422 { 7423 struct zone *zone; 7424 int old_percpu_pagelist_fraction; 7425 int ret; 7426 7427 mutex_lock(&pcp_batch_high_lock); 7428 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7429 7430 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7431 if (!write || ret < 0) 7432 goto out; 7433 7434 /* Sanity checking to avoid pcp imbalance */ 7435 if (percpu_pagelist_fraction && 7436 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7437 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7438 ret = -EINVAL; 7439 goto out; 7440 } 7441 7442 /* No change? */ 7443 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7444 goto out; 7445 7446 for_each_populated_zone(zone) { 7447 unsigned int cpu; 7448 7449 for_each_possible_cpu(cpu) 7450 pageset_set_high_and_batch(zone, 7451 per_cpu_ptr(zone->pageset, cpu)); 7452 } 7453 out: 7454 mutex_unlock(&pcp_batch_high_lock); 7455 return ret; 7456 } 7457 7458 #ifdef CONFIG_NUMA 7459 int hashdist = HASHDIST_DEFAULT; 7460 7461 static int __init set_hashdist(char *str) 7462 { 7463 if (!str) 7464 return 0; 7465 hashdist = simple_strtoul(str, &str, 0); 7466 return 1; 7467 } 7468 __setup("hashdist=", set_hashdist); 7469 #endif 7470 7471 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7472 /* 7473 * Returns the number of pages that arch has reserved but 7474 * is not known to alloc_large_system_hash(). 7475 */ 7476 static unsigned long __init arch_reserved_kernel_pages(void) 7477 { 7478 return 0; 7479 } 7480 #endif 7481 7482 /* 7483 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7484 * machines. As memory size is increased the scale is also increased but at 7485 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7486 * quadruples the scale is increased by one, which means the size of hash table 7487 * only doubles, instead of quadrupling as well. 7488 * Because 32-bit systems cannot have large physical memory, where this scaling 7489 * makes sense, it is disabled on such platforms. 7490 */ 7491 #if __BITS_PER_LONG > 32 7492 #define ADAPT_SCALE_BASE (64ul << 30) 7493 #define ADAPT_SCALE_SHIFT 2 7494 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7495 #endif 7496 7497 /* 7498 * allocate a large system hash table from bootmem 7499 * - it is assumed that the hash table must contain an exact power-of-2 7500 * quantity of entries 7501 * - limit is the number of hash buckets, not the total allocation size 7502 */ 7503 void *__init alloc_large_system_hash(const char *tablename, 7504 unsigned long bucketsize, 7505 unsigned long numentries, 7506 int scale, 7507 int flags, 7508 unsigned int *_hash_shift, 7509 unsigned int *_hash_mask, 7510 unsigned long low_limit, 7511 unsigned long high_limit) 7512 { 7513 unsigned long long max = high_limit; 7514 unsigned long log2qty, size; 7515 void *table = NULL; 7516 gfp_t gfp_flags; 7517 7518 /* allow the kernel cmdline to have a say */ 7519 if (!numentries) { 7520 /* round applicable memory size up to nearest megabyte */ 7521 numentries = nr_kernel_pages; 7522 numentries -= arch_reserved_kernel_pages(); 7523 7524 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7525 if (PAGE_SHIFT < 20) 7526 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7527 7528 #if __BITS_PER_LONG > 32 7529 if (!high_limit) { 7530 unsigned long adapt; 7531 7532 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7533 adapt <<= ADAPT_SCALE_SHIFT) 7534 scale++; 7535 } 7536 #endif 7537 7538 /* limit to 1 bucket per 2^scale bytes of low memory */ 7539 if (scale > PAGE_SHIFT) 7540 numentries >>= (scale - PAGE_SHIFT); 7541 else 7542 numentries <<= (PAGE_SHIFT - scale); 7543 7544 /* Make sure we've got at least a 0-order allocation.. */ 7545 if (unlikely(flags & HASH_SMALL)) { 7546 /* Makes no sense without HASH_EARLY */ 7547 WARN_ON(!(flags & HASH_EARLY)); 7548 if (!(numentries >> *_hash_shift)) { 7549 numentries = 1UL << *_hash_shift; 7550 BUG_ON(!numentries); 7551 } 7552 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7553 numentries = PAGE_SIZE / bucketsize; 7554 } 7555 numentries = roundup_pow_of_two(numentries); 7556 7557 /* limit allocation size to 1/16 total memory by default */ 7558 if (max == 0) { 7559 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7560 do_div(max, bucketsize); 7561 } 7562 max = min(max, 0x80000000ULL); 7563 7564 if (numentries < low_limit) 7565 numentries = low_limit; 7566 if (numentries > max) 7567 numentries = max; 7568 7569 log2qty = ilog2(numentries); 7570 7571 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7572 do { 7573 size = bucketsize << log2qty; 7574 if (flags & HASH_EARLY) { 7575 if (flags & HASH_ZERO) 7576 table = memblock_virt_alloc_nopanic(size, 0); 7577 else 7578 table = memblock_virt_alloc_raw(size, 0); 7579 } else if (hashdist) { 7580 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7581 } else { 7582 /* 7583 * If bucketsize is not a power-of-two, we may free 7584 * some pages at the end of hash table which 7585 * alloc_pages_exact() automatically does 7586 */ 7587 if (get_order(size) < MAX_ORDER) { 7588 table = alloc_pages_exact(size, gfp_flags); 7589 kmemleak_alloc(table, size, 1, gfp_flags); 7590 } 7591 } 7592 } while (!table && size > PAGE_SIZE && --log2qty); 7593 7594 if (!table) 7595 panic("Failed to allocate %s hash table\n", tablename); 7596 7597 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7598 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7599 7600 if (_hash_shift) 7601 *_hash_shift = log2qty; 7602 if (_hash_mask) 7603 *_hash_mask = (1 << log2qty) - 1; 7604 7605 return table; 7606 } 7607 7608 /* 7609 * This function checks whether pageblock includes unmovable pages or not. 7610 * If @count is not zero, it is okay to include less @count unmovable pages 7611 * 7612 * PageLRU check without isolation or lru_lock could race so that 7613 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7614 * check without lock_page also may miss some movable non-lru pages at 7615 * race condition. So you can't expect this function should be exact. 7616 */ 7617 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7618 int migratetype, 7619 bool skip_hwpoisoned_pages) 7620 { 7621 unsigned long pfn, iter, found; 7622 7623 /* 7624 * For avoiding noise data, lru_add_drain_all() should be called 7625 * If ZONE_MOVABLE, the zone never contains unmovable pages 7626 */ 7627 if (zone_idx(zone) == ZONE_MOVABLE) 7628 return false; 7629 7630 /* 7631 * CMA allocations (alloc_contig_range) really need to mark isolate 7632 * CMA pageblocks even when they are not movable in fact so consider 7633 * them movable here. 7634 */ 7635 if (is_migrate_cma(migratetype) && 7636 is_migrate_cma(get_pageblock_migratetype(page))) 7637 return false; 7638 7639 pfn = page_to_pfn(page); 7640 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7641 unsigned long check = pfn + iter; 7642 7643 if (!pfn_valid_within(check)) 7644 continue; 7645 7646 page = pfn_to_page(check); 7647 7648 if (PageReserved(page)) 7649 return true; 7650 7651 /* 7652 * Hugepages are not in LRU lists, but they're movable. 7653 * We need not scan over tail pages bacause we don't 7654 * handle each tail page individually in migration. 7655 */ 7656 if (PageHuge(page)) { 7657 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7658 continue; 7659 } 7660 7661 /* 7662 * We can't use page_count without pin a page 7663 * because another CPU can free compound page. 7664 * This check already skips compound tails of THP 7665 * because their page->_refcount is zero at all time. 7666 */ 7667 if (!page_ref_count(page)) { 7668 if (PageBuddy(page)) 7669 iter += (1 << page_order(page)) - 1; 7670 continue; 7671 } 7672 7673 /* 7674 * The HWPoisoned page may be not in buddy system, and 7675 * page_count() is not 0. 7676 */ 7677 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7678 continue; 7679 7680 if (__PageMovable(page)) 7681 continue; 7682 7683 if (!PageLRU(page)) 7684 found++; 7685 /* 7686 * If there are RECLAIMABLE pages, we need to check 7687 * it. But now, memory offline itself doesn't call 7688 * shrink_node_slabs() and it still to be fixed. 7689 */ 7690 /* 7691 * If the page is not RAM, page_count()should be 0. 7692 * we don't need more check. This is an _used_ not-movable page. 7693 * 7694 * The problematic thing here is PG_reserved pages. PG_reserved 7695 * is set to both of a memory hole page and a _used_ kernel 7696 * page at boot. 7697 */ 7698 if (found > count) 7699 return true; 7700 } 7701 return false; 7702 } 7703 7704 bool is_pageblock_removable_nolock(struct page *page) 7705 { 7706 struct zone *zone; 7707 unsigned long pfn; 7708 7709 /* 7710 * We have to be careful here because we are iterating over memory 7711 * sections which are not zone aware so we might end up outside of 7712 * the zone but still within the section. 7713 * We have to take care about the node as well. If the node is offline 7714 * its NODE_DATA will be NULL - see page_zone. 7715 */ 7716 if (!node_online(page_to_nid(page))) 7717 return false; 7718 7719 zone = page_zone(page); 7720 pfn = page_to_pfn(page); 7721 if (!zone_spans_pfn(zone, pfn)) 7722 return false; 7723 7724 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 7725 } 7726 7727 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7728 7729 static unsigned long pfn_max_align_down(unsigned long pfn) 7730 { 7731 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7732 pageblock_nr_pages) - 1); 7733 } 7734 7735 static unsigned long pfn_max_align_up(unsigned long pfn) 7736 { 7737 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7738 pageblock_nr_pages)); 7739 } 7740 7741 /* [start, end) must belong to a single zone. */ 7742 static int __alloc_contig_migrate_range(struct compact_control *cc, 7743 unsigned long start, unsigned long end) 7744 { 7745 /* This function is based on compact_zone() from compaction.c. */ 7746 unsigned long nr_reclaimed; 7747 unsigned long pfn = start; 7748 unsigned int tries = 0; 7749 int ret = 0; 7750 7751 migrate_prep(); 7752 7753 while (pfn < end || !list_empty(&cc->migratepages)) { 7754 if (fatal_signal_pending(current)) { 7755 ret = -EINTR; 7756 break; 7757 } 7758 7759 if (list_empty(&cc->migratepages)) { 7760 cc->nr_migratepages = 0; 7761 pfn = isolate_migratepages_range(cc, pfn, end); 7762 if (!pfn) { 7763 ret = -EINTR; 7764 break; 7765 } 7766 tries = 0; 7767 } else if (++tries == 5) { 7768 ret = ret < 0 ? ret : -EBUSY; 7769 break; 7770 } 7771 7772 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7773 &cc->migratepages); 7774 cc->nr_migratepages -= nr_reclaimed; 7775 7776 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7777 NULL, 0, cc->mode, MR_CONTIG_RANGE); 7778 } 7779 if (ret < 0) { 7780 putback_movable_pages(&cc->migratepages); 7781 return ret; 7782 } 7783 return 0; 7784 } 7785 7786 /** 7787 * alloc_contig_range() -- tries to allocate given range of pages 7788 * @start: start PFN to allocate 7789 * @end: one-past-the-last PFN to allocate 7790 * @migratetype: migratetype of the underlaying pageblocks (either 7791 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7792 * in range must have the same migratetype and it must 7793 * be either of the two. 7794 * @gfp_mask: GFP mask to use during compaction 7795 * 7796 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7797 * aligned. The PFN range must belong to a single zone. 7798 * 7799 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 7800 * pageblocks in the range. Once isolated, the pageblocks should not 7801 * be modified by others. 7802 * 7803 * Returns zero on success or negative error code. On success all 7804 * pages which PFN is in [start, end) are allocated for the caller and 7805 * need to be freed with free_contig_range(). 7806 */ 7807 int alloc_contig_range(unsigned long start, unsigned long end, 7808 unsigned migratetype, gfp_t gfp_mask) 7809 { 7810 unsigned long outer_start, outer_end; 7811 unsigned int order; 7812 int ret = 0; 7813 7814 struct compact_control cc = { 7815 .nr_migratepages = 0, 7816 .order = -1, 7817 .zone = page_zone(pfn_to_page(start)), 7818 .mode = MIGRATE_SYNC, 7819 .ignore_skip_hint = true, 7820 .no_set_skip_hint = true, 7821 .gfp_mask = current_gfp_context(gfp_mask), 7822 }; 7823 INIT_LIST_HEAD(&cc.migratepages); 7824 7825 /* 7826 * What we do here is we mark all pageblocks in range as 7827 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7828 * have different sizes, and due to the way page allocator 7829 * work, we align the range to biggest of the two pages so 7830 * that page allocator won't try to merge buddies from 7831 * different pageblocks and change MIGRATE_ISOLATE to some 7832 * other migration type. 7833 * 7834 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7835 * migrate the pages from an unaligned range (ie. pages that 7836 * we are interested in). This will put all the pages in 7837 * range back to page allocator as MIGRATE_ISOLATE. 7838 * 7839 * When this is done, we take the pages in range from page 7840 * allocator removing them from the buddy system. This way 7841 * page allocator will never consider using them. 7842 * 7843 * This lets us mark the pageblocks back as 7844 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7845 * aligned range but not in the unaligned, original range are 7846 * put back to page allocator so that buddy can use them. 7847 */ 7848 7849 ret = start_isolate_page_range(pfn_max_align_down(start), 7850 pfn_max_align_up(end), migratetype, 7851 false); 7852 if (ret) 7853 return ret; 7854 7855 /* 7856 * In case of -EBUSY, we'd like to know which page causes problem. 7857 * So, just fall through. test_pages_isolated() has a tracepoint 7858 * which will report the busy page. 7859 * 7860 * It is possible that busy pages could become available before 7861 * the call to test_pages_isolated, and the range will actually be 7862 * allocated. So, if we fall through be sure to clear ret so that 7863 * -EBUSY is not accidentally used or returned to caller. 7864 */ 7865 ret = __alloc_contig_migrate_range(&cc, start, end); 7866 if (ret && ret != -EBUSY) 7867 goto done; 7868 ret =0; 7869 7870 /* 7871 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7872 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7873 * more, all pages in [start, end) are free in page allocator. 7874 * What we are going to do is to allocate all pages from 7875 * [start, end) (that is remove them from page allocator). 7876 * 7877 * The only problem is that pages at the beginning and at the 7878 * end of interesting range may be not aligned with pages that 7879 * page allocator holds, ie. they can be part of higher order 7880 * pages. Because of this, we reserve the bigger range and 7881 * once this is done free the pages we are not interested in. 7882 * 7883 * We don't have to hold zone->lock here because the pages are 7884 * isolated thus they won't get removed from buddy. 7885 */ 7886 7887 lru_add_drain_all(); 7888 drain_all_pages(cc.zone); 7889 7890 order = 0; 7891 outer_start = start; 7892 while (!PageBuddy(pfn_to_page(outer_start))) { 7893 if (++order >= MAX_ORDER) { 7894 outer_start = start; 7895 break; 7896 } 7897 outer_start &= ~0UL << order; 7898 } 7899 7900 if (outer_start != start) { 7901 order = page_order(pfn_to_page(outer_start)); 7902 7903 /* 7904 * outer_start page could be small order buddy page and 7905 * it doesn't include start page. Adjust outer_start 7906 * in this case to report failed page properly 7907 * on tracepoint in test_pages_isolated() 7908 */ 7909 if (outer_start + (1UL << order) <= start) 7910 outer_start = start; 7911 } 7912 7913 /* Make sure the range is really isolated. */ 7914 if (test_pages_isolated(outer_start, end, false)) { 7915 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7916 __func__, outer_start, end); 7917 ret = -EBUSY; 7918 goto done; 7919 } 7920 7921 /* Grab isolated pages from freelists. */ 7922 outer_end = isolate_freepages_range(&cc, outer_start, end); 7923 if (!outer_end) { 7924 ret = -EBUSY; 7925 goto done; 7926 } 7927 7928 /* Free head and tail (if any) */ 7929 if (start != outer_start) 7930 free_contig_range(outer_start, start - outer_start); 7931 if (end != outer_end) 7932 free_contig_range(end, outer_end - end); 7933 7934 done: 7935 undo_isolate_page_range(pfn_max_align_down(start), 7936 pfn_max_align_up(end), migratetype); 7937 return ret; 7938 } 7939 7940 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7941 { 7942 unsigned int count = 0; 7943 7944 for (; nr_pages--; pfn++) { 7945 struct page *page = pfn_to_page(pfn); 7946 7947 count += page_count(page) != 1; 7948 __free_page(page); 7949 } 7950 WARN(count != 0, "%d pages are still in use!\n", count); 7951 } 7952 #endif 7953 7954 #if defined CONFIG_MEMORY_HOTPLUG || defined CONFIG_CMA 7955 /* 7956 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7957 * page high values need to be recalulated. 7958 */ 7959 void __meminit zone_pcp_update(struct zone *zone) 7960 { 7961 unsigned cpu; 7962 mutex_lock(&pcp_batch_high_lock); 7963 for_each_possible_cpu(cpu) 7964 pageset_set_high_and_batch(zone, 7965 per_cpu_ptr(zone->pageset, cpu)); 7966 mutex_unlock(&pcp_batch_high_lock); 7967 } 7968 #endif 7969 7970 void zone_pcp_reset(struct zone *zone) 7971 { 7972 unsigned long flags; 7973 int cpu; 7974 struct per_cpu_pageset *pset; 7975 7976 /* avoid races with drain_pages() */ 7977 local_irq_save(flags); 7978 if (zone->pageset != &boot_pageset) { 7979 for_each_online_cpu(cpu) { 7980 pset = per_cpu_ptr(zone->pageset, cpu); 7981 drain_zonestat(zone, pset); 7982 } 7983 free_percpu(zone->pageset); 7984 zone->pageset = &boot_pageset; 7985 } 7986 local_irq_restore(flags); 7987 } 7988 7989 #ifdef CONFIG_MEMORY_HOTREMOVE 7990 /* 7991 * All pages in the range must be in a single zone and isolated 7992 * before calling this. 7993 */ 7994 void 7995 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7996 { 7997 struct page *page; 7998 struct zone *zone; 7999 unsigned int order, i; 8000 unsigned long pfn; 8001 unsigned long flags; 8002 /* find the first valid pfn */ 8003 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8004 if (pfn_valid(pfn)) 8005 break; 8006 if (pfn == end_pfn) 8007 return; 8008 offline_mem_sections(pfn, end_pfn); 8009 zone = page_zone(pfn_to_page(pfn)); 8010 spin_lock_irqsave(&zone->lock, flags); 8011 pfn = start_pfn; 8012 while (pfn < end_pfn) { 8013 if (!pfn_valid(pfn)) { 8014 pfn++; 8015 continue; 8016 } 8017 page = pfn_to_page(pfn); 8018 /* 8019 * The HWPoisoned page may be not in buddy system, and 8020 * page_count() is not 0. 8021 */ 8022 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8023 pfn++; 8024 SetPageReserved(page); 8025 continue; 8026 } 8027 8028 BUG_ON(page_count(page)); 8029 BUG_ON(!PageBuddy(page)); 8030 order = page_order(page); 8031 #ifdef CONFIG_DEBUG_VM 8032 pr_info("remove from free list %lx %d %lx\n", 8033 pfn, 1 << order, end_pfn); 8034 #endif 8035 list_del(&page->lru); 8036 rmv_page_order(page); 8037 zone->free_area[order].nr_free--; 8038 for (i = 0; i < (1 << order); i++) 8039 SetPageReserved((page+i)); 8040 pfn += (1 << order); 8041 } 8042 spin_unlock_irqrestore(&zone->lock, flags); 8043 } 8044 #endif 8045 8046 bool is_free_buddy_page(struct page *page) 8047 { 8048 struct zone *zone = page_zone(page); 8049 unsigned long pfn = page_to_pfn(page); 8050 unsigned long flags; 8051 unsigned int order; 8052 8053 spin_lock_irqsave(&zone->lock, flags); 8054 for (order = 0; order < MAX_ORDER; order++) { 8055 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8056 8057 if (PageBuddy(page_head) && page_order(page_head) >= order) 8058 break; 8059 } 8060 spin_unlock_irqrestore(&zone->lock, flags); 8061 8062 return order < MAX_ORDER; 8063 } 8064