xref: /openbmc/linux/mm/page_alloc.c (revision 4949009e)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/page_owner.h>
63 
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68 
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 int _node_numa_mem_[MAX_NUMNODES];
88 #endif
89 
90 /*
91  * Array of node states.
92  */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 	[N_POSSIBLE] = NODE_MASK_ALL,
95 	[N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 	[N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 	[N_CPU] = { { [0] = 1UL } },
105 #endif	/* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108 
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111 
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 unsigned long totalcma_pages __read_mostly;
115 /*
116  * When calculating the number of globally allowed dirty pages, there
117  * is a certain number of per-zone reserves that should not be
118  * considered dirtyable memory.  This is the sum of those reserves
119  * over all existing zones that contribute dirtyable memory.
120  */
121 unsigned long dirty_balance_reserve __read_mostly;
122 
123 int percpu_pagelist_fraction;
124 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125 
126 #ifdef CONFIG_PM_SLEEP
127 /*
128  * The following functions are used by the suspend/hibernate code to temporarily
129  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130  * while devices are suspended.  To avoid races with the suspend/hibernate code,
131  * they should always be called with pm_mutex held (gfp_allowed_mask also should
132  * only be modified with pm_mutex held, unless the suspend/hibernate code is
133  * guaranteed not to run in parallel with that modification).
134  */
135 
136 static gfp_t saved_gfp_mask;
137 
138 void pm_restore_gfp_mask(void)
139 {
140 	WARN_ON(!mutex_is_locked(&pm_mutex));
141 	if (saved_gfp_mask) {
142 		gfp_allowed_mask = saved_gfp_mask;
143 		saved_gfp_mask = 0;
144 	}
145 }
146 
147 void pm_restrict_gfp_mask(void)
148 {
149 	WARN_ON(!mutex_is_locked(&pm_mutex));
150 	WARN_ON(saved_gfp_mask);
151 	saved_gfp_mask = gfp_allowed_mask;
152 	gfp_allowed_mask &= ~GFP_IOFS;
153 }
154 
155 bool pm_suspended_storage(void)
156 {
157 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 		return false;
159 	return true;
160 }
161 #endif /* CONFIG_PM_SLEEP */
162 
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly;
165 #endif
166 
167 static void __free_pages_ok(struct page *page, unsigned int order);
168 
169 /*
170  * results with 256, 32 in the lowmem_reserve sysctl:
171  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172  *	1G machine -> (16M dma, 784M normal, 224M high)
173  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176  *
177  * TBD: should special case ZONE_DMA32 machines here - in those we normally
178  * don't need any ZONE_NORMAL reservation
179  */
180 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
181 #ifdef CONFIG_ZONE_DMA
182 	 256,
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 	 256,
186 #endif
187 #ifdef CONFIG_HIGHMEM
188 	 32,
189 #endif
190 	 32,
191 };
192 
193 EXPORT_SYMBOL(totalram_pages);
194 
195 static char * const zone_names[MAX_NR_ZONES] = {
196 #ifdef CONFIG_ZONE_DMA
197 	 "DMA",
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 	 "DMA32",
201 #endif
202 	 "Normal",
203 #ifdef CONFIG_HIGHMEM
204 	 "HighMem",
205 #endif
206 	 "Movable",
207 };
208 
209 int min_free_kbytes = 1024;
210 int user_min_free_kbytes = -1;
211 
212 static unsigned long __meminitdata nr_kernel_pages;
213 static unsigned long __meminitdata nr_all_pages;
214 static unsigned long __meminitdata dma_reserve;
215 
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __initdata required_kernelcore;
220 static unsigned long __initdata required_movablecore;
221 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222 
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 int movable_zone;
225 EXPORT_SYMBOL(movable_zone);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227 
228 #if MAX_NUMNODES > 1
229 int nr_node_ids __read_mostly = MAX_NUMNODES;
230 int nr_online_nodes __read_mostly = 1;
231 EXPORT_SYMBOL(nr_node_ids);
232 EXPORT_SYMBOL(nr_online_nodes);
233 #endif
234 
235 int page_group_by_mobility_disabled __read_mostly;
236 
237 void set_pageblock_migratetype(struct page *page, int migratetype)
238 {
239 	if (unlikely(page_group_by_mobility_disabled &&
240 		     migratetype < MIGRATE_PCPTYPES))
241 		migratetype = MIGRATE_UNMOVABLE;
242 
243 	set_pageblock_flags_group(page, (unsigned long)migratetype,
244 					PB_migrate, PB_migrate_end);
245 }
246 
247 bool oom_killer_disabled __read_mostly;
248 
249 #ifdef CONFIG_DEBUG_VM
250 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 {
252 	int ret = 0;
253 	unsigned seq;
254 	unsigned long pfn = page_to_pfn(page);
255 	unsigned long sp, start_pfn;
256 
257 	do {
258 		seq = zone_span_seqbegin(zone);
259 		start_pfn = zone->zone_start_pfn;
260 		sp = zone->spanned_pages;
261 		if (!zone_spans_pfn(zone, pfn))
262 			ret = 1;
263 	} while (zone_span_seqretry(zone, seq));
264 
265 	if (ret)
266 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 			pfn, zone_to_nid(zone), zone->name,
268 			start_pfn, start_pfn + sp);
269 
270 	return ret;
271 }
272 
273 static int page_is_consistent(struct zone *zone, struct page *page)
274 {
275 	if (!pfn_valid_within(page_to_pfn(page)))
276 		return 0;
277 	if (zone != page_zone(page))
278 		return 0;
279 
280 	return 1;
281 }
282 /*
283  * Temporary debugging check for pages not lying within a given zone.
284  */
285 static int bad_range(struct zone *zone, struct page *page)
286 {
287 	if (page_outside_zone_boundaries(zone, page))
288 		return 1;
289 	if (!page_is_consistent(zone, page))
290 		return 1;
291 
292 	return 0;
293 }
294 #else
295 static inline int bad_range(struct zone *zone, struct page *page)
296 {
297 	return 0;
298 }
299 #endif
300 
301 static void bad_page(struct page *page, const char *reason,
302 		unsigned long bad_flags)
303 {
304 	static unsigned long resume;
305 	static unsigned long nr_shown;
306 	static unsigned long nr_unshown;
307 
308 	/* Don't complain about poisoned pages */
309 	if (PageHWPoison(page)) {
310 		page_mapcount_reset(page); /* remove PageBuddy */
311 		return;
312 	}
313 
314 	/*
315 	 * Allow a burst of 60 reports, then keep quiet for that minute;
316 	 * or allow a steady drip of one report per second.
317 	 */
318 	if (nr_shown == 60) {
319 		if (time_before(jiffies, resume)) {
320 			nr_unshown++;
321 			goto out;
322 		}
323 		if (nr_unshown) {
324 			printk(KERN_ALERT
325 			      "BUG: Bad page state: %lu messages suppressed\n",
326 				nr_unshown);
327 			nr_unshown = 0;
328 		}
329 		nr_shown = 0;
330 	}
331 	if (nr_shown++ == 0)
332 		resume = jiffies + 60 * HZ;
333 
334 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
335 		current->comm, page_to_pfn(page));
336 	dump_page_badflags(page, reason, bad_flags);
337 
338 	print_modules();
339 	dump_stack();
340 out:
341 	/* Leave bad fields for debug, except PageBuddy could make trouble */
342 	page_mapcount_reset(page); /* remove PageBuddy */
343 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
344 }
345 
346 /*
347  * Higher-order pages are called "compound pages".  They are structured thusly:
348  *
349  * The first PAGE_SIZE page is called the "head page".
350  *
351  * The remaining PAGE_SIZE pages are called "tail pages".
352  *
353  * All pages have PG_compound set.  All tail pages have their ->first_page
354  * pointing at the head page.
355  *
356  * The first tail page's ->lru.next holds the address of the compound page's
357  * put_page() function.  Its ->lru.prev holds the order of allocation.
358  * This usage means that zero-order pages may not be compound.
359  */
360 
361 static void free_compound_page(struct page *page)
362 {
363 	__free_pages_ok(page, compound_order(page));
364 }
365 
366 void prep_compound_page(struct page *page, unsigned long order)
367 {
368 	int i;
369 	int nr_pages = 1 << order;
370 
371 	set_compound_page_dtor(page, free_compound_page);
372 	set_compound_order(page, order);
373 	__SetPageHead(page);
374 	for (i = 1; i < nr_pages; i++) {
375 		struct page *p = page + i;
376 		set_page_count(p, 0);
377 		p->first_page = page;
378 		/* Make sure p->first_page is always valid for PageTail() */
379 		smp_wmb();
380 		__SetPageTail(p);
381 	}
382 }
383 
384 /* update __split_huge_page_refcount if you change this function */
385 static int destroy_compound_page(struct page *page, unsigned long order)
386 {
387 	int i;
388 	int nr_pages = 1 << order;
389 	int bad = 0;
390 
391 	if (unlikely(compound_order(page) != order)) {
392 		bad_page(page, "wrong compound order", 0);
393 		bad++;
394 	}
395 
396 	__ClearPageHead(page);
397 
398 	for (i = 1; i < nr_pages; i++) {
399 		struct page *p = page + i;
400 
401 		if (unlikely(!PageTail(p))) {
402 			bad_page(page, "PageTail not set", 0);
403 			bad++;
404 		} else if (unlikely(p->first_page != page)) {
405 			bad_page(page, "first_page not consistent", 0);
406 			bad++;
407 		}
408 		__ClearPageTail(p);
409 	}
410 
411 	return bad;
412 }
413 
414 static inline void prep_zero_page(struct page *page, unsigned int order,
415 							gfp_t gfp_flags)
416 {
417 	int i;
418 
419 	/*
420 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 	 */
423 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
424 	for (i = 0; i < (1 << order); i++)
425 		clear_highpage(page + i);
426 }
427 
428 #ifdef CONFIG_DEBUG_PAGEALLOC
429 unsigned int _debug_guardpage_minorder;
430 bool _debug_pagealloc_enabled __read_mostly;
431 bool _debug_guardpage_enabled __read_mostly;
432 
433 static int __init early_debug_pagealloc(char *buf)
434 {
435 	if (!buf)
436 		return -EINVAL;
437 
438 	if (strcmp(buf, "on") == 0)
439 		_debug_pagealloc_enabled = true;
440 
441 	return 0;
442 }
443 early_param("debug_pagealloc", early_debug_pagealloc);
444 
445 static bool need_debug_guardpage(void)
446 {
447 	/* If we don't use debug_pagealloc, we don't need guard page */
448 	if (!debug_pagealloc_enabled())
449 		return false;
450 
451 	return true;
452 }
453 
454 static void init_debug_guardpage(void)
455 {
456 	if (!debug_pagealloc_enabled())
457 		return;
458 
459 	_debug_guardpage_enabled = true;
460 }
461 
462 struct page_ext_operations debug_guardpage_ops = {
463 	.need = need_debug_guardpage,
464 	.init = init_debug_guardpage,
465 };
466 
467 static int __init debug_guardpage_minorder_setup(char *buf)
468 {
469 	unsigned long res;
470 
471 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
472 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
473 		return 0;
474 	}
475 	_debug_guardpage_minorder = res;
476 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
477 	return 0;
478 }
479 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
480 
481 static inline void set_page_guard(struct zone *zone, struct page *page,
482 				unsigned int order, int migratetype)
483 {
484 	struct page_ext *page_ext;
485 
486 	if (!debug_guardpage_enabled())
487 		return;
488 
489 	page_ext = lookup_page_ext(page);
490 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
491 
492 	INIT_LIST_HEAD(&page->lru);
493 	set_page_private(page, order);
494 	/* Guard pages are not available for any usage */
495 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
496 }
497 
498 static inline void clear_page_guard(struct zone *zone, struct page *page,
499 				unsigned int order, int migratetype)
500 {
501 	struct page_ext *page_ext;
502 
503 	if (!debug_guardpage_enabled())
504 		return;
505 
506 	page_ext = lookup_page_ext(page);
507 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
508 
509 	set_page_private(page, 0);
510 	if (!is_migrate_isolate(migratetype))
511 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
512 }
513 #else
514 struct page_ext_operations debug_guardpage_ops = { NULL, };
515 static inline void set_page_guard(struct zone *zone, struct page *page,
516 				unsigned int order, int migratetype) {}
517 static inline void clear_page_guard(struct zone *zone, struct page *page,
518 				unsigned int order, int migratetype) {}
519 #endif
520 
521 static inline void set_page_order(struct page *page, unsigned int order)
522 {
523 	set_page_private(page, order);
524 	__SetPageBuddy(page);
525 }
526 
527 static inline void rmv_page_order(struct page *page)
528 {
529 	__ClearPageBuddy(page);
530 	set_page_private(page, 0);
531 }
532 
533 /*
534  * This function checks whether a page is free && is the buddy
535  * we can do coalesce a page and its buddy if
536  * (a) the buddy is not in a hole &&
537  * (b) the buddy is in the buddy system &&
538  * (c) a page and its buddy have the same order &&
539  * (d) a page and its buddy are in the same zone.
540  *
541  * For recording whether a page is in the buddy system, we set ->_mapcount
542  * PAGE_BUDDY_MAPCOUNT_VALUE.
543  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
544  * serialized by zone->lock.
545  *
546  * For recording page's order, we use page_private(page).
547  */
548 static inline int page_is_buddy(struct page *page, struct page *buddy,
549 							unsigned int order)
550 {
551 	if (!pfn_valid_within(page_to_pfn(buddy)))
552 		return 0;
553 
554 	if (page_is_guard(buddy) && page_order(buddy) == order) {
555 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
556 
557 		if (page_zone_id(page) != page_zone_id(buddy))
558 			return 0;
559 
560 		return 1;
561 	}
562 
563 	if (PageBuddy(buddy) && page_order(buddy) == order) {
564 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
565 
566 		/*
567 		 * zone check is done late to avoid uselessly
568 		 * calculating zone/node ids for pages that could
569 		 * never merge.
570 		 */
571 		if (page_zone_id(page) != page_zone_id(buddy))
572 			return 0;
573 
574 		return 1;
575 	}
576 	return 0;
577 }
578 
579 /*
580  * Freeing function for a buddy system allocator.
581  *
582  * The concept of a buddy system is to maintain direct-mapped table
583  * (containing bit values) for memory blocks of various "orders".
584  * The bottom level table contains the map for the smallest allocatable
585  * units of memory (here, pages), and each level above it describes
586  * pairs of units from the levels below, hence, "buddies".
587  * At a high level, all that happens here is marking the table entry
588  * at the bottom level available, and propagating the changes upward
589  * as necessary, plus some accounting needed to play nicely with other
590  * parts of the VM system.
591  * At each level, we keep a list of pages, which are heads of continuous
592  * free pages of length of (1 << order) and marked with _mapcount
593  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
594  * field.
595  * So when we are allocating or freeing one, we can derive the state of the
596  * other.  That is, if we allocate a small block, and both were
597  * free, the remainder of the region must be split into blocks.
598  * If a block is freed, and its buddy is also free, then this
599  * triggers coalescing into a block of larger size.
600  *
601  * -- nyc
602  */
603 
604 static inline void __free_one_page(struct page *page,
605 		unsigned long pfn,
606 		struct zone *zone, unsigned int order,
607 		int migratetype)
608 {
609 	unsigned long page_idx;
610 	unsigned long combined_idx;
611 	unsigned long uninitialized_var(buddy_idx);
612 	struct page *buddy;
613 	int max_order = MAX_ORDER;
614 
615 	VM_BUG_ON(!zone_is_initialized(zone));
616 
617 	if (unlikely(PageCompound(page)))
618 		if (unlikely(destroy_compound_page(page, order)))
619 			return;
620 
621 	VM_BUG_ON(migratetype == -1);
622 	if (is_migrate_isolate(migratetype)) {
623 		/*
624 		 * We restrict max order of merging to prevent merge
625 		 * between freepages on isolate pageblock and normal
626 		 * pageblock. Without this, pageblock isolation
627 		 * could cause incorrect freepage accounting.
628 		 */
629 		max_order = min(MAX_ORDER, pageblock_order + 1);
630 	} else {
631 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
632 	}
633 
634 	page_idx = pfn & ((1 << max_order) - 1);
635 
636 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
637 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
638 
639 	while (order < max_order - 1) {
640 		buddy_idx = __find_buddy_index(page_idx, order);
641 		buddy = page + (buddy_idx - page_idx);
642 		if (!page_is_buddy(page, buddy, order))
643 			break;
644 		/*
645 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
646 		 * merge with it and move up one order.
647 		 */
648 		if (page_is_guard(buddy)) {
649 			clear_page_guard(zone, buddy, order, migratetype);
650 		} else {
651 			list_del(&buddy->lru);
652 			zone->free_area[order].nr_free--;
653 			rmv_page_order(buddy);
654 		}
655 		combined_idx = buddy_idx & page_idx;
656 		page = page + (combined_idx - page_idx);
657 		page_idx = combined_idx;
658 		order++;
659 	}
660 	set_page_order(page, order);
661 
662 	/*
663 	 * If this is not the largest possible page, check if the buddy
664 	 * of the next-highest order is free. If it is, it's possible
665 	 * that pages are being freed that will coalesce soon. In case,
666 	 * that is happening, add the free page to the tail of the list
667 	 * so it's less likely to be used soon and more likely to be merged
668 	 * as a higher order page
669 	 */
670 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
671 		struct page *higher_page, *higher_buddy;
672 		combined_idx = buddy_idx & page_idx;
673 		higher_page = page + (combined_idx - page_idx);
674 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
675 		higher_buddy = higher_page + (buddy_idx - combined_idx);
676 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
677 			list_add_tail(&page->lru,
678 				&zone->free_area[order].free_list[migratetype]);
679 			goto out;
680 		}
681 	}
682 
683 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
684 out:
685 	zone->free_area[order].nr_free++;
686 }
687 
688 static inline int free_pages_check(struct page *page)
689 {
690 	const char *bad_reason = NULL;
691 	unsigned long bad_flags = 0;
692 
693 	if (unlikely(page_mapcount(page)))
694 		bad_reason = "nonzero mapcount";
695 	if (unlikely(page->mapping != NULL))
696 		bad_reason = "non-NULL mapping";
697 	if (unlikely(atomic_read(&page->_count) != 0))
698 		bad_reason = "nonzero _count";
699 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
700 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
701 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
702 	}
703 #ifdef CONFIG_MEMCG
704 	if (unlikely(page->mem_cgroup))
705 		bad_reason = "page still charged to cgroup";
706 #endif
707 	if (unlikely(bad_reason)) {
708 		bad_page(page, bad_reason, bad_flags);
709 		return 1;
710 	}
711 	page_cpupid_reset_last(page);
712 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
713 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
714 	return 0;
715 }
716 
717 /*
718  * Frees a number of pages from the PCP lists
719  * Assumes all pages on list are in same zone, and of same order.
720  * count is the number of pages to free.
721  *
722  * If the zone was previously in an "all pages pinned" state then look to
723  * see if this freeing clears that state.
724  *
725  * And clear the zone's pages_scanned counter, to hold off the "all pages are
726  * pinned" detection logic.
727  */
728 static void free_pcppages_bulk(struct zone *zone, int count,
729 					struct per_cpu_pages *pcp)
730 {
731 	int migratetype = 0;
732 	int batch_free = 0;
733 	int to_free = count;
734 	unsigned long nr_scanned;
735 
736 	spin_lock(&zone->lock);
737 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
738 	if (nr_scanned)
739 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
740 
741 	while (to_free) {
742 		struct page *page;
743 		struct list_head *list;
744 
745 		/*
746 		 * Remove pages from lists in a round-robin fashion. A
747 		 * batch_free count is maintained that is incremented when an
748 		 * empty list is encountered.  This is so more pages are freed
749 		 * off fuller lists instead of spinning excessively around empty
750 		 * lists
751 		 */
752 		do {
753 			batch_free++;
754 			if (++migratetype == MIGRATE_PCPTYPES)
755 				migratetype = 0;
756 			list = &pcp->lists[migratetype];
757 		} while (list_empty(list));
758 
759 		/* This is the only non-empty list. Free them all. */
760 		if (batch_free == MIGRATE_PCPTYPES)
761 			batch_free = to_free;
762 
763 		do {
764 			int mt;	/* migratetype of the to-be-freed page */
765 
766 			page = list_entry(list->prev, struct page, lru);
767 			/* must delete as __free_one_page list manipulates */
768 			list_del(&page->lru);
769 			mt = get_freepage_migratetype(page);
770 			if (unlikely(has_isolate_pageblock(zone)))
771 				mt = get_pageblock_migratetype(page);
772 
773 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
774 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
775 			trace_mm_page_pcpu_drain(page, 0, mt);
776 		} while (--to_free && --batch_free && !list_empty(list));
777 	}
778 	spin_unlock(&zone->lock);
779 }
780 
781 static void free_one_page(struct zone *zone,
782 				struct page *page, unsigned long pfn,
783 				unsigned int order,
784 				int migratetype)
785 {
786 	unsigned long nr_scanned;
787 	spin_lock(&zone->lock);
788 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
789 	if (nr_scanned)
790 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
791 
792 	if (unlikely(has_isolate_pageblock(zone) ||
793 		is_migrate_isolate(migratetype))) {
794 		migratetype = get_pfnblock_migratetype(page, pfn);
795 	}
796 	__free_one_page(page, pfn, zone, order, migratetype);
797 	spin_unlock(&zone->lock);
798 }
799 
800 static bool free_pages_prepare(struct page *page, unsigned int order)
801 {
802 	int i;
803 	int bad = 0;
804 
805 	VM_BUG_ON_PAGE(PageTail(page), page);
806 	VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
807 
808 	trace_mm_page_free(page, order);
809 	kmemcheck_free_shadow(page, order);
810 
811 	if (PageAnon(page))
812 		page->mapping = NULL;
813 	for (i = 0; i < (1 << order); i++)
814 		bad += free_pages_check(page + i);
815 	if (bad)
816 		return false;
817 
818 	reset_page_owner(page, order);
819 
820 	if (!PageHighMem(page)) {
821 		debug_check_no_locks_freed(page_address(page),
822 					   PAGE_SIZE << order);
823 		debug_check_no_obj_freed(page_address(page),
824 					   PAGE_SIZE << order);
825 	}
826 	arch_free_page(page, order);
827 	kernel_map_pages(page, 1 << order, 0);
828 
829 	return true;
830 }
831 
832 static void __free_pages_ok(struct page *page, unsigned int order)
833 {
834 	unsigned long flags;
835 	int migratetype;
836 	unsigned long pfn = page_to_pfn(page);
837 
838 	if (!free_pages_prepare(page, order))
839 		return;
840 
841 	migratetype = get_pfnblock_migratetype(page, pfn);
842 	local_irq_save(flags);
843 	__count_vm_events(PGFREE, 1 << order);
844 	set_freepage_migratetype(page, migratetype);
845 	free_one_page(page_zone(page), page, pfn, order, migratetype);
846 	local_irq_restore(flags);
847 }
848 
849 void __init __free_pages_bootmem(struct page *page, unsigned int order)
850 {
851 	unsigned int nr_pages = 1 << order;
852 	struct page *p = page;
853 	unsigned int loop;
854 
855 	prefetchw(p);
856 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
857 		prefetchw(p + 1);
858 		__ClearPageReserved(p);
859 		set_page_count(p, 0);
860 	}
861 	__ClearPageReserved(p);
862 	set_page_count(p, 0);
863 
864 	page_zone(page)->managed_pages += nr_pages;
865 	set_page_refcounted(page);
866 	__free_pages(page, order);
867 }
868 
869 #ifdef CONFIG_CMA
870 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
871 void __init init_cma_reserved_pageblock(struct page *page)
872 {
873 	unsigned i = pageblock_nr_pages;
874 	struct page *p = page;
875 
876 	do {
877 		__ClearPageReserved(p);
878 		set_page_count(p, 0);
879 	} while (++p, --i);
880 
881 	set_pageblock_migratetype(page, MIGRATE_CMA);
882 
883 	if (pageblock_order >= MAX_ORDER) {
884 		i = pageblock_nr_pages;
885 		p = page;
886 		do {
887 			set_page_refcounted(p);
888 			__free_pages(p, MAX_ORDER - 1);
889 			p += MAX_ORDER_NR_PAGES;
890 		} while (i -= MAX_ORDER_NR_PAGES);
891 	} else {
892 		set_page_refcounted(page);
893 		__free_pages(page, pageblock_order);
894 	}
895 
896 	adjust_managed_page_count(page, pageblock_nr_pages);
897 }
898 #endif
899 
900 /*
901  * The order of subdivision here is critical for the IO subsystem.
902  * Please do not alter this order without good reasons and regression
903  * testing. Specifically, as large blocks of memory are subdivided,
904  * the order in which smaller blocks are delivered depends on the order
905  * they're subdivided in this function. This is the primary factor
906  * influencing the order in which pages are delivered to the IO
907  * subsystem according to empirical testing, and this is also justified
908  * by considering the behavior of a buddy system containing a single
909  * large block of memory acted on by a series of small allocations.
910  * This behavior is a critical factor in sglist merging's success.
911  *
912  * -- nyc
913  */
914 static inline void expand(struct zone *zone, struct page *page,
915 	int low, int high, struct free_area *area,
916 	int migratetype)
917 {
918 	unsigned long size = 1 << high;
919 
920 	while (high > low) {
921 		area--;
922 		high--;
923 		size >>= 1;
924 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
925 
926 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
927 			debug_guardpage_enabled() &&
928 			high < debug_guardpage_minorder()) {
929 			/*
930 			 * Mark as guard pages (or page), that will allow to
931 			 * merge back to allocator when buddy will be freed.
932 			 * Corresponding page table entries will not be touched,
933 			 * pages will stay not present in virtual address space
934 			 */
935 			set_page_guard(zone, &page[size], high, migratetype);
936 			continue;
937 		}
938 		list_add(&page[size].lru, &area->free_list[migratetype]);
939 		area->nr_free++;
940 		set_page_order(&page[size], high);
941 	}
942 }
943 
944 /*
945  * This page is about to be returned from the page allocator
946  */
947 static inline int check_new_page(struct page *page)
948 {
949 	const char *bad_reason = NULL;
950 	unsigned long bad_flags = 0;
951 
952 	if (unlikely(page_mapcount(page)))
953 		bad_reason = "nonzero mapcount";
954 	if (unlikely(page->mapping != NULL))
955 		bad_reason = "non-NULL mapping";
956 	if (unlikely(atomic_read(&page->_count) != 0))
957 		bad_reason = "nonzero _count";
958 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
959 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
960 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
961 	}
962 #ifdef CONFIG_MEMCG
963 	if (unlikely(page->mem_cgroup))
964 		bad_reason = "page still charged to cgroup";
965 #endif
966 	if (unlikely(bad_reason)) {
967 		bad_page(page, bad_reason, bad_flags);
968 		return 1;
969 	}
970 	return 0;
971 }
972 
973 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
974 {
975 	int i;
976 
977 	for (i = 0; i < (1 << order); i++) {
978 		struct page *p = page + i;
979 		if (unlikely(check_new_page(p)))
980 			return 1;
981 	}
982 
983 	set_page_private(page, 0);
984 	set_page_refcounted(page);
985 
986 	arch_alloc_page(page, order);
987 	kernel_map_pages(page, 1 << order, 1);
988 
989 	if (gfp_flags & __GFP_ZERO)
990 		prep_zero_page(page, order, gfp_flags);
991 
992 	if (order && (gfp_flags & __GFP_COMP))
993 		prep_compound_page(page, order);
994 
995 	set_page_owner(page, order, gfp_flags);
996 
997 	return 0;
998 }
999 
1000 /*
1001  * Go through the free lists for the given migratetype and remove
1002  * the smallest available page from the freelists
1003  */
1004 static inline
1005 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1006 						int migratetype)
1007 {
1008 	unsigned int current_order;
1009 	struct free_area *area;
1010 	struct page *page;
1011 
1012 	/* Find a page of the appropriate size in the preferred list */
1013 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1014 		area = &(zone->free_area[current_order]);
1015 		if (list_empty(&area->free_list[migratetype]))
1016 			continue;
1017 
1018 		page = list_entry(area->free_list[migratetype].next,
1019 							struct page, lru);
1020 		list_del(&page->lru);
1021 		rmv_page_order(page);
1022 		area->nr_free--;
1023 		expand(zone, page, order, current_order, area, migratetype);
1024 		set_freepage_migratetype(page, migratetype);
1025 		return page;
1026 	}
1027 
1028 	return NULL;
1029 }
1030 
1031 
1032 /*
1033  * This array describes the order lists are fallen back to when
1034  * the free lists for the desirable migrate type are depleted
1035  */
1036 static int fallbacks[MIGRATE_TYPES][4] = {
1037 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1038 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1039 #ifdef CONFIG_CMA
1040 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1041 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1042 #else
1043 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1044 #endif
1045 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1046 #ifdef CONFIG_MEMORY_ISOLATION
1047 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1048 #endif
1049 };
1050 
1051 /*
1052  * Move the free pages in a range to the free lists of the requested type.
1053  * Note that start_page and end_pages are not aligned on a pageblock
1054  * boundary. If alignment is required, use move_freepages_block()
1055  */
1056 int move_freepages(struct zone *zone,
1057 			  struct page *start_page, struct page *end_page,
1058 			  int migratetype)
1059 {
1060 	struct page *page;
1061 	unsigned long order;
1062 	int pages_moved = 0;
1063 
1064 #ifndef CONFIG_HOLES_IN_ZONE
1065 	/*
1066 	 * page_zone is not safe to call in this context when
1067 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1068 	 * anyway as we check zone boundaries in move_freepages_block().
1069 	 * Remove at a later date when no bug reports exist related to
1070 	 * grouping pages by mobility
1071 	 */
1072 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1073 #endif
1074 
1075 	for (page = start_page; page <= end_page;) {
1076 		/* Make sure we are not inadvertently changing nodes */
1077 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1078 
1079 		if (!pfn_valid_within(page_to_pfn(page))) {
1080 			page++;
1081 			continue;
1082 		}
1083 
1084 		if (!PageBuddy(page)) {
1085 			page++;
1086 			continue;
1087 		}
1088 
1089 		order = page_order(page);
1090 		list_move(&page->lru,
1091 			  &zone->free_area[order].free_list[migratetype]);
1092 		set_freepage_migratetype(page, migratetype);
1093 		page += 1 << order;
1094 		pages_moved += 1 << order;
1095 	}
1096 
1097 	return pages_moved;
1098 }
1099 
1100 int move_freepages_block(struct zone *zone, struct page *page,
1101 				int migratetype)
1102 {
1103 	unsigned long start_pfn, end_pfn;
1104 	struct page *start_page, *end_page;
1105 
1106 	start_pfn = page_to_pfn(page);
1107 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1108 	start_page = pfn_to_page(start_pfn);
1109 	end_page = start_page + pageblock_nr_pages - 1;
1110 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1111 
1112 	/* Do not cross zone boundaries */
1113 	if (!zone_spans_pfn(zone, start_pfn))
1114 		start_page = page;
1115 	if (!zone_spans_pfn(zone, end_pfn))
1116 		return 0;
1117 
1118 	return move_freepages(zone, start_page, end_page, migratetype);
1119 }
1120 
1121 static void change_pageblock_range(struct page *pageblock_page,
1122 					int start_order, int migratetype)
1123 {
1124 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1125 
1126 	while (nr_pageblocks--) {
1127 		set_pageblock_migratetype(pageblock_page, migratetype);
1128 		pageblock_page += pageblock_nr_pages;
1129 	}
1130 }
1131 
1132 /*
1133  * If breaking a large block of pages, move all free pages to the preferred
1134  * allocation list. If falling back for a reclaimable kernel allocation, be
1135  * more aggressive about taking ownership of free pages.
1136  *
1137  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1138  * nor move CMA pages to different free lists. We don't want unmovable pages
1139  * to be allocated from MIGRATE_CMA areas.
1140  *
1141  * Returns the new migratetype of the pageblock (or the same old migratetype
1142  * if it was unchanged).
1143  */
1144 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1145 				  int start_type, int fallback_type)
1146 {
1147 	int current_order = page_order(page);
1148 
1149 	/*
1150 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1151 	 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1152 	 * is set to CMA so it is returned to the correct freelist in case
1153 	 * the page ends up being not actually allocated from the pcp lists.
1154 	 */
1155 	if (is_migrate_cma(fallback_type))
1156 		return fallback_type;
1157 
1158 	/* Take ownership for orders >= pageblock_order */
1159 	if (current_order >= pageblock_order) {
1160 		change_pageblock_range(page, current_order, start_type);
1161 		return start_type;
1162 	}
1163 
1164 	if (current_order >= pageblock_order / 2 ||
1165 	    start_type == MIGRATE_RECLAIMABLE ||
1166 	    page_group_by_mobility_disabled) {
1167 		int pages;
1168 
1169 		pages = move_freepages_block(zone, page, start_type);
1170 
1171 		/* Claim the whole block if over half of it is free */
1172 		if (pages >= (1 << (pageblock_order-1)) ||
1173 				page_group_by_mobility_disabled) {
1174 
1175 			set_pageblock_migratetype(page, start_type);
1176 			return start_type;
1177 		}
1178 
1179 	}
1180 
1181 	return fallback_type;
1182 }
1183 
1184 /* Remove an element from the buddy allocator from the fallback list */
1185 static inline struct page *
1186 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1187 {
1188 	struct free_area *area;
1189 	unsigned int current_order;
1190 	struct page *page;
1191 	int migratetype, new_type, i;
1192 
1193 	/* Find the largest possible block of pages in the other list */
1194 	for (current_order = MAX_ORDER-1;
1195 				current_order >= order && current_order <= MAX_ORDER-1;
1196 				--current_order) {
1197 		for (i = 0;; i++) {
1198 			migratetype = fallbacks[start_migratetype][i];
1199 
1200 			/* MIGRATE_RESERVE handled later if necessary */
1201 			if (migratetype == MIGRATE_RESERVE)
1202 				break;
1203 
1204 			area = &(zone->free_area[current_order]);
1205 			if (list_empty(&area->free_list[migratetype]))
1206 				continue;
1207 
1208 			page = list_entry(area->free_list[migratetype].next,
1209 					struct page, lru);
1210 			area->nr_free--;
1211 
1212 			new_type = try_to_steal_freepages(zone, page,
1213 							  start_migratetype,
1214 							  migratetype);
1215 
1216 			/* Remove the page from the freelists */
1217 			list_del(&page->lru);
1218 			rmv_page_order(page);
1219 
1220 			expand(zone, page, order, current_order, area,
1221 			       new_type);
1222 			/* The freepage_migratetype may differ from pageblock's
1223 			 * migratetype depending on the decisions in
1224 			 * try_to_steal_freepages. This is OK as long as it does
1225 			 * not differ for MIGRATE_CMA type.
1226 			 */
1227 			set_freepage_migratetype(page, new_type);
1228 
1229 			trace_mm_page_alloc_extfrag(page, order, current_order,
1230 				start_migratetype, migratetype, new_type);
1231 
1232 			return page;
1233 		}
1234 	}
1235 
1236 	return NULL;
1237 }
1238 
1239 /*
1240  * Do the hard work of removing an element from the buddy allocator.
1241  * Call me with the zone->lock already held.
1242  */
1243 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1244 						int migratetype)
1245 {
1246 	struct page *page;
1247 
1248 retry_reserve:
1249 	page = __rmqueue_smallest(zone, order, migratetype);
1250 
1251 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1252 		page = __rmqueue_fallback(zone, order, migratetype);
1253 
1254 		/*
1255 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1256 		 * is used because __rmqueue_smallest is an inline function
1257 		 * and we want just one call site
1258 		 */
1259 		if (!page) {
1260 			migratetype = MIGRATE_RESERVE;
1261 			goto retry_reserve;
1262 		}
1263 	}
1264 
1265 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1266 	return page;
1267 }
1268 
1269 /*
1270  * Obtain a specified number of elements from the buddy allocator, all under
1271  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1272  * Returns the number of new pages which were placed at *list.
1273  */
1274 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1275 			unsigned long count, struct list_head *list,
1276 			int migratetype, bool cold)
1277 {
1278 	int i;
1279 
1280 	spin_lock(&zone->lock);
1281 	for (i = 0; i < count; ++i) {
1282 		struct page *page = __rmqueue(zone, order, migratetype);
1283 		if (unlikely(page == NULL))
1284 			break;
1285 
1286 		/*
1287 		 * Split buddy pages returned by expand() are received here
1288 		 * in physical page order. The page is added to the callers and
1289 		 * list and the list head then moves forward. From the callers
1290 		 * perspective, the linked list is ordered by page number in
1291 		 * some conditions. This is useful for IO devices that can
1292 		 * merge IO requests if the physical pages are ordered
1293 		 * properly.
1294 		 */
1295 		if (likely(!cold))
1296 			list_add(&page->lru, list);
1297 		else
1298 			list_add_tail(&page->lru, list);
1299 		list = &page->lru;
1300 		if (is_migrate_cma(get_freepage_migratetype(page)))
1301 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1302 					      -(1 << order));
1303 	}
1304 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1305 	spin_unlock(&zone->lock);
1306 	return i;
1307 }
1308 
1309 #ifdef CONFIG_NUMA
1310 /*
1311  * Called from the vmstat counter updater to drain pagesets of this
1312  * currently executing processor on remote nodes after they have
1313  * expired.
1314  *
1315  * Note that this function must be called with the thread pinned to
1316  * a single processor.
1317  */
1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1319 {
1320 	unsigned long flags;
1321 	int to_drain, batch;
1322 
1323 	local_irq_save(flags);
1324 	batch = ACCESS_ONCE(pcp->batch);
1325 	to_drain = min(pcp->count, batch);
1326 	if (to_drain > 0) {
1327 		free_pcppages_bulk(zone, to_drain, pcp);
1328 		pcp->count -= to_drain;
1329 	}
1330 	local_irq_restore(flags);
1331 }
1332 #endif
1333 
1334 /*
1335  * Drain pcplists of the indicated processor and zone.
1336  *
1337  * The processor must either be the current processor and the
1338  * thread pinned to the current processor or a processor that
1339  * is not online.
1340  */
1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1342 {
1343 	unsigned long flags;
1344 	struct per_cpu_pageset *pset;
1345 	struct per_cpu_pages *pcp;
1346 
1347 	local_irq_save(flags);
1348 	pset = per_cpu_ptr(zone->pageset, cpu);
1349 
1350 	pcp = &pset->pcp;
1351 	if (pcp->count) {
1352 		free_pcppages_bulk(zone, pcp->count, pcp);
1353 		pcp->count = 0;
1354 	}
1355 	local_irq_restore(flags);
1356 }
1357 
1358 /*
1359  * Drain pcplists of all zones on the indicated processor.
1360  *
1361  * The processor must either be the current processor and the
1362  * thread pinned to the current processor or a processor that
1363  * is not online.
1364  */
1365 static void drain_pages(unsigned int cpu)
1366 {
1367 	struct zone *zone;
1368 
1369 	for_each_populated_zone(zone) {
1370 		drain_pages_zone(cpu, zone);
1371 	}
1372 }
1373 
1374 /*
1375  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1376  *
1377  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1378  * the single zone's pages.
1379  */
1380 void drain_local_pages(struct zone *zone)
1381 {
1382 	int cpu = smp_processor_id();
1383 
1384 	if (zone)
1385 		drain_pages_zone(cpu, zone);
1386 	else
1387 		drain_pages(cpu);
1388 }
1389 
1390 /*
1391  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1392  *
1393  * When zone parameter is non-NULL, spill just the single zone's pages.
1394  *
1395  * Note that this code is protected against sending an IPI to an offline
1396  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1397  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1398  * nothing keeps CPUs from showing up after we populated the cpumask and
1399  * before the call to on_each_cpu_mask().
1400  */
1401 void drain_all_pages(struct zone *zone)
1402 {
1403 	int cpu;
1404 
1405 	/*
1406 	 * Allocate in the BSS so we wont require allocation in
1407 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1408 	 */
1409 	static cpumask_t cpus_with_pcps;
1410 
1411 	/*
1412 	 * We don't care about racing with CPU hotplug event
1413 	 * as offline notification will cause the notified
1414 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1415 	 * disables preemption as part of its processing
1416 	 */
1417 	for_each_online_cpu(cpu) {
1418 		struct per_cpu_pageset *pcp;
1419 		struct zone *z;
1420 		bool has_pcps = false;
1421 
1422 		if (zone) {
1423 			pcp = per_cpu_ptr(zone->pageset, cpu);
1424 			if (pcp->pcp.count)
1425 				has_pcps = true;
1426 		} else {
1427 			for_each_populated_zone(z) {
1428 				pcp = per_cpu_ptr(z->pageset, cpu);
1429 				if (pcp->pcp.count) {
1430 					has_pcps = true;
1431 					break;
1432 				}
1433 			}
1434 		}
1435 
1436 		if (has_pcps)
1437 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1438 		else
1439 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1440 	}
1441 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1442 								zone, 1);
1443 }
1444 
1445 #ifdef CONFIG_HIBERNATION
1446 
1447 void mark_free_pages(struct zone *zone)
1448 {
1449 	unsigned long pfn, max_zone_pfn;
1450 	unsigned long flags;
1451 	unsigned int order, t;
1452 	struct list_head *curr;
1453 
1454 	if (zone_is_empty(zone))
1455 		return;
1456 
1457 	spin_lock_irqsave(&zone->lock, flags);
1458 
1459 	max_zone_pfn = zone_end_pfn(zone);
1460 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1461 		if (pfn_valid(pfn)) {
1462 			struct page *page = pfn_to_page(pfn);
1463 
1464 			if (!swsusp_page_is_forbidden(page))
1465 				swsusp_unset_page_free(page);
1466 		}
1467 
1468 	for_each_migratetype_order(order, t) {
1469 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1470 			unsigned long i;
1471 
1472 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1473 			for (i = 0; i < (1UL << order); i++)
1474 				swsusp_set_page_free(pfn_to_page(pfn + i));
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&zone->lock, flags);
1478 }
1479 #endif /* CONFIG_PM */
1480 
1481 /*
1482  * Free a 0-order page
1483  * cold == true ? free a cold page : free a hot page
1484  */
1485 void free_hot_cold_page(struct page *page, bool cold)
1486 {
1487 	struct zone *zone = page_zone(page);
1488 	struct per_cpu_pages *pcp;
1489 	unsigned long flags;
1490 	unsigned long pfn = page_to_pfn(page);
1491 	int migratetype;
1492 
1493 	if (!free_pages_prepare(page, 0))
1494 		return;
1495 
1496 	migratetype = get_pfnblock_migratetype(page, pfn);
1497 	set_freepage_migratetype(page, migratetype);
1498 	local_irq_save(flags);
1499 	__count_vm_event(PGFREE);
1500 
1501 	/*
1502 	 * We only track unmovable, reclaimable and movable on pcp lists.
1503 	 * Free ISOLATE pages back to the allocator because they are being
1504 	 * offlined but treat RESERVE as movable pages so we can get those
1505 	 * areas back if necessary. Otherwise, we may have to free
1506 	 * excessively into the page allocator
1507 	 */
1508 	if (migratetype >= MIGRATE_PCPTYPES) {
1509 		if (unlikely(is_migrate_isolate(migratetype))) {
1510 			free_one_page(zone, page, pfn, 0, migratetype);
1511 			goto out;
1512 		}
1513 		migratetype = MIGRATE_MOVABLE;
1514 	}
1515 
1516 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 	if (!cold)
1518 		list_add(&page->lru, &pcp->lists[migratetype]);
1519 	else
1520 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1521 	pcp->count++;
1522 	if (pcp->count >= pcp->high) {
1523 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1524 		free_pcppages_bulk(zone, batch, pcp);
1525 		pcp->count -= batch;
1526 	}
1527 
1528 out:
1529 	local_irq_restore(flags);
1530 }
1531 
1532 /*
1533  * Free a list of 0-order pages
1534  */
1535 void free_hot_cold_page_list(struct list_head *list, bool cold)
1536 {
1537 	struct page *page, *next;
1538 
1539 	list_for_each_entry_safe(page, next, list, lru) {
1540 		trace_mm_page_free_batched(page, cold);
1541 		free_hot_cold_page(page, cold);
1542 	}
1543 }
1544 
1545 /*
1546  * split_page takes a non-compound higher-order page, and splits it into
1547  * n (1<<order) sub-pages: page[0..n]
1548  * Each sub-page must be freed individually.
1549  *
1550  * Note: this is probably too low level an operation for use in drivers.
1551  * Please consult with lkml before using this in your driver.
1552  */
1553 void split_page(struct page *page, unsigned int order)
1554 {
1555 	int i;
1556 
1557 	VM_BUG_ON_PAGE(PageCompound(page), page);
1558 	VM_BUG_ON_PAGE(!page_count(page), page);
1559 
1560 #ifdef CONFIG_KMEMCHECK
1561 	/*
1562 	 * Split shadow pages too, because free(page[0]) would
1563 	 * otherwise free the whole shadow.
1564 	 */
1565 	if (kmemcheck_page_is_tracked(page))
1566 		split_page(virt_to_page(page[0].shadow), order);
1567 #endif
1568 
1569 	set_page_owner(page, 0, 0);
1570 	for (i = 1; i < (1 << order); i++) {
1571 		set_page_refcounted(page + i);
1572 		set_page_owner(page + i, 0, 0);
1573 	}
1574 }
1575 EXPORT_SYMBOL_GPL(split_page);
1576 
1577 int __isolate_free_page(struct page *page, unsigned int order)
1578 {
1579 	unsigned long watermark;
1580 	struct zone *zone;
1581 	int mt;
1582 
1583 	BUG_ON(!PageBuddy(page));
1584 
1585 	zone = page_zone(page);
1586 	mt = get_pageblock_migratetype(page);
1587 
1588 	if (!is_migrate_isolate(mt)) {
1589 		/* Obey watermarks as if the page was being allocated */
1590 		watermark = low_wmark_pages(zone) + (1 << order);
1591 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1592 			return 0;
1593 
1594 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1595 	}
1596 
1597 	/* Remove page from free list */
1598 	list_del(&page->lru);
1599 	zone->free_area[order].nr_free--;
1600 	rmv_page_order(page);
1601 
1602 	/* Set the pageblock if the isolated page is at least a pageblock */
1603 	if (order >= pageblock_order - 1) {
1604 		struct page *endpage = page + (1 << order) - 1;
1605 		for (; page < endpage; page += pageblock_nr_pages) {
1606 			int mt = get_pageblock_migratetype(page);
1607 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1608 				set_pageblock_migratetype(page,
1609 							  MIGRATE_MOVABLE);
1610 		}
1611 	}
1612 
1613 	set_page_owner(page, order, 0);
1614 	return 1UL << order;
1615 }
1616 
1617 /*
1618  * Similar to split_page except the page is already free. As this is only
1619  * being used for migration, the migratetype of the block also changes.
1620  * As this is called with interrupts disabled, the caller is responsible
1621  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1622  * are enabled.
1623  *
1624  * Note: this is probably too low level an operation for use in drivers.
1625  * Please consult with lkml before using this in your driver.
1626  */
1627 int split_free_page(struct page *page)
1628 {
1629 	unsigned int order;
1630 	int nr_pages;
1631 
1632 	order = page_order(page);
1633 
1634 	nr_pages = __isolate_free_page(page, order);
1635 	if (!nr_pages)
1636 		return 0;
1637 
1638 	/* Split into individual pages */
1639 	set_page_refcounted(page);
1640 	split_page(page, order);
1641 	return nr_pages;
1642 }
1643 
1644 /*
1645  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1646  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1647  * or two.
1648  */
1649 static inline
1650 struct page *buffered_rmqueue(struct zone *preferred_zone,
1651 			struct zone *zone, unsigned int order,
1652 			gfp_t gfp_flags, int migratetype)
1653 {
1654 	unsigned long flags;
1655 	struct page *page;
1656 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1657 
1658 again:
1659 	if (likely(order == 0)) {
1660 		struct per_cpu_pages *pcp;
1661 		struct list_head *list;
1662 
1663 		local_irq_save(flags);
1664 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1665 		list = &pcp->lists[migratetype];
1666 		if (list_empty(list)) {
1667 			pcp->count += rmqueue_bulk(zone, 0,
1668 					pcp->batch, list,
1669 					migratetype, cold);
1670 			if (unlikely(list_empty(list)))
1671 				goto failed;
1672 		}
1673 
1674 		if (cold)
1675 			page = list_entry(list->prev, struct page, lru);
1676 		else
1677 			page = list_entry(list->next, struct page, lru);
1678 
1679 		list_del(&page->lru);
1680 		pcp->count--;
1681 	} else {
1682 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1683 			/*
1684 			 * __GFP_NOFAIL is not to be used in new code.
1685 			 *
1686 			 * All __GFP_NOFAIL callers should be fixed so that they
1687 			 * properly detect and handle allocation failures.
1688 			 *
1689 			 * We most definitely don't want callers attempting to
1690 			 * allocate greater than order-1 page units with
1691 			 * __GFP_NOFAIL.
1692 			 */
1693 			WARN_ON_ONCE(order > 1);
1694 		}
1695 		spin_lock_irqsave(&zone->lock, flags);
1696 		page = __rmqueue(zone, order, migratetype);
1697 		spin_unlock(&zone->lock);
1698 		if (!page)
1699 			goto failed;
1700 		__mod_zone_freepage_state(zone, -(1 << order),
1701 					  get_freepage_migratetype(page));
1702 	}
1703 
1704 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1705 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1706 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1707 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1708 
1709 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1710 	zone_statistics(preferred_zone, zone, gfp_flags);
1711 	local_irq_restore(flags);
1712 
1713 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1714 	if (prep_new_page(page, order, gfp_flags))
1715 		goto again;
1716 	return page;
1717 
1718 failed:
1719 	local_irq_restore(flags);
1720 	return NULL;
1721 }
1722 
1723 #ifdef CONFIG_FAIL_PAGE_ALLOC
1724 
1725 static struct {
1726 	struct fault_attr attr;
1727 
1728 	u32 ignore_gfp_highmem;
1729 	u32 ignore_gfp_wait;
1730 	u32 min_order;
1731 } fail_page_alloc = {
1732 	.attr = FAULT_ATTR_INITIALIZER,
1733 	.ignore_gfp_wait = 1,
1734 	.ignore_gfp_highmem = 1,
1735 	.min_order = 1,
1736 };
1737 
1738 static int __init setup_fail_page_alloc(char *str)
1739 {
1740 	return setup_fault_attr(&fail_page_alloc.attr, str);
1741 }
1742 __setup("fail_page_alloc=", setup_fail_page_alloc);
1743 
1744 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1745 {
1746 	if (order < fail_page_alloc.min_order)
1747 		return false;
1748 	if (gfp_mask & __GFP_NOFAIL)
1749 		return false;
1750 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1751 		return false;
1752 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1753 		return false;
1754 
1755 	return should_fail(&fail_page_alloc.attr, 1 << order);
1756 }
1757 
1758 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1759 
1760 static int __init fail_page_alloc_debugfs(void)
1761 {
1762 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1763 	struct dentry *dir;
1764 
1765 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1766 					&fail_page_alloc.attr);
1767 	if (IS_ERR(dir))
1768 		return PTR_ERR(dir);
1769 
1770 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1771 				&fail_page_alloc.ignore_gfp_wait))
1772 		goto fail;
1773 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1774 				&fail_page_alloc.ignore_gfp_highmem))
1775 		goto fail;
1776 	if (!debugfs_create_u32("min-order", mode, dir,
1777 				&fail_page_alloc.min_order))
1778 		goto fail;
1779 
1780 	return 0;
1781 fail:
1782 	debugfs_remove_recursive(dir);
1783 
1784 	return -ENOMEM;
1785 }
1786 
1787 late_initcall(fail_page_alloc_debugfs);
1788 
1789 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1790 
1791 #else /* CONFIG_FAIL_PAGE_ALLOC */
1792 
1793 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1794 {
1795 	return false;
1796 }
1797 
1798 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1799 
1800 /*
1801  * Return true if free pages are above 'mark'. This takes into account the order
1802  * of the allocation.
1803  */
1804 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1805 			unsigned long mark, int classzone_idx, int alloc_flags,
1806 			long free_pages)
1807 {
1808 	/* free_pages may go negative - that's OK */
1809 	long min = mark;
1810 	int o;
1811 	long free_cma = 0;
1812 
1813 	free_pages -= (1 << order) - 1;
1814 	if (alloc_flags & ALLOC_HIGH)
1815 		min -= min / 2;
1816 	if (alloc_flags & ALLOC_HARDER)
1817 		min -= min / 4;
1818 #ifdef CONFIG_CMA
1819 	/* If allocation can't use CMA areas don't use free CMA pages */
1820 	if (!(alloc_flags & ALLOC_CMA))
1821 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1822 #endif
1823 
1824 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1825 		return false;
1826 	for (o = 0; o < order; o++) {
1827 		/* At the next order, this order's pages become unavailable */
1828 		free_pages -= z->free_area[o].nr_free << o;
1829 
1830 		/* Require fewer higher order pages to be free */
1831 		min >>= 1;
1832 
1833 		if (free_pages <= min)
1834 			return false;
1835 	}
1836 	return true;
1837 }
1838 
1839 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1840 		      int classzone_idx, int alloc_flags)
1841 {
1842 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1843 					zone_page_state(z, NR_FREE_PAGES));
1844 }
1845 
1846 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1847 			unsigned long mark, int classzone_idx, int alloc_flags)
1848 {
1849 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1850 
1851 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1852 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1853 
1854 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1855 								free_pages);
1856 }
1857 
1858 #ifdef CONFIG_NUMA
1859 /*
1860  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1861  * skip over zones that are not allowed by the cpuset, or that have
1862  * been recently (in last second) found to be nearly full.  See further
1863  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1864  * that have to skip over a lot of full or unallowed zones.
1865  *
1866  * If the zonelist cache is present in the passed zonelist, then
1867  * returns a pointer to the allowed node mask (either the current
1868  * tasks mems_allowed, or node_states[N_MEMORY].)
1869  *
1870  * If the zonelist cache is not available for this zonelist, does
1871  * nothing and returns NULL.
1872  *
1873  * If the fullzones BITMAP in the zonelist cache is stale (more than
1874  * a second since last zap'd) then we zap it out (clear its bits.)
1875  *
1876  * We hold off even calling zlc_setup, until after we've checked the
1877  * first zone in the zonelist, on the theory that most allocations will
1878  * be satisfied from that first zone, so best to examine that zone as
1879  * quickly as we can.
1880  */
1881 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1882 {
1883 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1884 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1885 
1886 	zlc = zonelist->zlcache_ptr;
1887 	if (!zlc)
1888 		return NULL;
1889 
1890 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1891 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1892 		zlc->last_full_zap = jiffies;
1893 	}
1894 
1895 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1896 					&cpuset_current_mems_allowed :
1897 					&node_states[N_MEMORY];
1898 	return allowednodes;
1899 }
1900 
1901 /*
1902  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1903  * if it is worth looking at further for free memory:
1904  *  1) Check that the zone isn't thought to be full (doesn't have its
1905  *     bit set in the zonelist_cache fullzones BITMAP).
1906  *  2) Check that the zones node (obtained from the zonelist_cache
1907  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1908  * Return true (non-zero) if zone is worth looking at further, or
1909  * else return false (zero) if it is not.
1910  *
1911  * This check -ignores- the distinction between various watermarks,
1912  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1913  * found to be full for any variation of these watermarks, it will
1914  * be considered full for up to one second by all requests, unless
1915  * we are so low on memory on all allowed nodes that we are forced
1916  * into the second scan of the zonelist.
1917  *
1918  * In the second scan we ignore this zonelist cache and exactly
1919  * apply the watermarks to all zones, even it is slower to do so.
1920  * We are low on memory in the second scan, and should leave no stone
1921  * unturned looking for a free page.
1922  */
1923 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1924 						nodemask_t *allowednodes)
1925 {
1926 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1927 	int i;				/* index of *z in zonelist zones */
1928 	int n;				/* node that zone *z is on */
1929 
1930 	zlc = zonelist->zlcache_ptr;
1931 	if (!zlc)
1932 		return 1;
1933 
1934 	i = z - zonelist->_zonerefs;
1935 	n = zlc->z_to_n[i];
1936 
1937 	/* This zone is worth trying if it is allowed but not full */
1938 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1939 }
1940 
1941 /*
1942  * Given 'z' scanning a zonelist, set the corresponding bit in
1943  * zlc->fullzones, so that subsequent attempts to allocate a page
1944  * from that zone don't waste time re-examining it.
1945  */
1946 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1947 {
1948 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1949 	int i;				/* index of *z in zonelist zones */
1950 
1951 	zlc = zonelist->zlcache_ptr;
1952 	if (!zlc)
1953 		return;
1954 
1955 	i = z - zonelist->_zonerefs;
1956 
1957 	set_bit(i, zlc->fullzones);
1958 }
1959 
1960 /*
1961  * clear all zones full, called after direct reclaim makes progress so that
1962  * a zone that was recently full is not skipped over for up to a second
1963  */
1964 static void zlc_clear_zones_full(struct zonelist *zonelist)
1965 {
1966 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1967 
1968 	zlc = zonelist->zlcache_ptr;
1969 	if (!zlc)
1970 		return;
1971 
1972 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1973 }
1974 
1975 static bool zone_local(struct zone *local_zone, struct zone *zone)
1976 {
1977 	return local_zone->node == zone->node;
1978 }
1979 
1980 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1981 {
1982 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1983 				RECLAIM_DISTANCE;
1984 }
1985 
1986 #else	/* CONFIG_NUMA */
1987 
1988 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1989 {
1990 	return NULL;
1991 }
1992 
1993 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1994 				nodemask_t *allowednodes)
1995 {
1996 	return 1;
1997 }
1998 
1999 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2000 {
2001 }
2002 
2003 static void zlc_clear_zones_full(struct zonelist *zonelist)
2004 {
2005 }
2006 
2007 static bool zone_local(struct zone *local_zone, struct zone *zone)
2008 {
2009 	return true;
2010 }
2011 
2012 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2013 {
2014 	return true;
2015 }
2016 
2017 #endif	/* CONFIG_NUMA */
2018 
2019 static void reset_alloc_batches(struct zone *preferred_zone)
2020 {
2021 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2022 
2023 	do {
2024 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2025 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2026 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2027 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2028 	} while (zone++ != preferred_zone);
2029 }
2030 
2031 /*
2032  * get_page_from_freelist goes through the zonelist trying to allocate
2033  * a page.
2034  */
2035 static struct page *
2036 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
2037 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
2038 		struct zone *preferred_zone, int classzone_idx, int migratetype)
2039 {
2040 	struct zoneref *z;
2041 	struct page *page = NULL;
2042 	struct zone *zone;
2043 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2044 	int zlc_active = 0;		/* set if using zonelist_cache */
2045 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2046 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2047 				(gfp_mask & __GFP_WRITE);
2048 	int nr_fair_skipped = 0;
2049 	bool zonelist_rescan;
2050 
2051 zonelist_scan:
2052 	zonelist_rescan = false;
2053 
2054 	/*
2055 	 * Scan zonelist, looking for a zone with enough free.
2056 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2057 	 */
2058 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2059 						high_zoneidx, nodemask) {
2060 		unsigned long mark;
2061 
2062 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2063 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2064 				continue;
2065 		if (cpusets_enabled() &&
2066 			(alloc_flags & ALLOC_CPUSET) &&
2067 			!cpuset_zone_allowed(zone, gfp_mask))
2068 				continue;
2069 		/*
2070 		 * Distribute pages in proportion to the individual
2071 		 * zone size to ensure fair page aging.  The zone a
2072 		 * page was allocated in should have no effect on the
2073 		 * time the page has in memory before being reclaimed.
2074 		 */
2075 		if (alloc_flags & ALLOC_FAIR) {
2076 			if (!zone_local(preferred_zone, zone))
2077 				break;
2078 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2079 				nr_fair_skipped++;
2080 				continue;
2081 			}
2082 		}
2083 		/*
2084 		 * When allocating a page cache page for writing, we
2085 		 * want to get it from a zone that is within its dirty
2086 		 * limit, such that no single zone holds more than its
2087 		 * proportional share of globally allowed dirty pages.
2088 		 * The dirty limits take into account the zone's
2089 		 * lowmem reserves and high watermark so that kswapd
2090 		 * should be able to balance it without having to
2091 		 * write pages from its LRU list.
2092 		 *
2093 		 * This may look like it could increase pressure on
2094 		 * lower zones by failing allocations in higher zones
2095 		 * before they are full.  But the pages that do spill
2096 		 * over are limited as the lower zones are protected
2097 		 * by this very same mechanism.  It should not become
2098 		 * a practical burden to them.
2099 		 *
2100 		 * XXX: For now, allow allocations to potentially
2101 		 * exceed the per-zone dirty limit in the slowpath
2102 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2103 		 * which is important when on a NUMA setup the allowed
2104 		 * zones are together not big enough to reach the
2105 		 * global limit.  The proper fix for these situations
2106 		 * will require awareness of zones in the
2107 		 * dirty-throttling and the flusher threads.
2108 		 */
2109 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2110 			continue;
2111 
2112 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2113 		if (!zone_watermark_ok(zone, order, mark,
2114 				       classzone_idx, alloc_flags)) {
2115 			int ret;
2116 
2117 			/* Checked here to keep the fast path fast */
2118 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2119 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2120 				goto try_this_zone;
2121 
2122 			if (IS_ENABLED(CONFIG_NUMA) &&
2123 					!did_zlc_setup && nr_online_nodes > 1) {
2124 				/*
2125 				 * we do zlc_setup if there are multiple nodes
2126 				 * and before considering the first zone allowed
2127 				 * by the cpuset.
2128 				 */
2129 				allowednodes = zlc_setup(zonelist, alloc_flags);
2130 				zlc_active = 1;
2131 				did_zlc_setup = 1;
2132 			}
2133 
2134 			if (zone_reclaim_mode == 0 ||
2135 			    !zone_allows_reclaim(preferred_zone, zone))
2136 				goto this_zone_full;
2137 
2138 			/*
2139 			 * As we may have just activated ZLC, check if the first
2140 			 * eligible zone has failed zone_reclaim recently.
2141 			 */
2142 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2143 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2144 				continue;
2145 
2146 			ret = zone_reclaim(zone, gfp_mask, order);
2147 			switch (ret) {
2148 			case ZONE_RECLAIM_NOSCAN:
2149 				/* did not scan */
2150 				continue;
2151 			case ZONE_RECLAIM_FULL:
2152 				/* scanned but unreclaimable */
2153 				continue;
2154 			default:
2155 				/* did we reclaim enough */
2156 				if (zone_watermark_ok(zone, order, mark,
2157 						classzone_idx, alloc_flags))
2158 					goto try_this_zone;
2159 
2160 				/*
2161 				 * Failed to reclaim enough to meet watermark.
2162 				 * Only mark the zone full if checking the min
2163 				 * watermark or if we failed to reclaim just
2164 				 * 1<<order pages or else the page allocator
2165 				 * fastpath will prematurely mark zones full
2166 				 * when the watermark is between the low and
2167 				 * min watermarks.
2168 				 */
2169 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2170 				    ret == ZONE_RECLAIM_SOME)
2171 					goto this_zone_full;
2172 
2173 				continue;
2174 			}
2175 		}
2176 
2177 try_this_zone:
2178 		page = buffered_rmqueue(preferred_zone, zone, order,
2179 						gfp_mask, migratetype);
2180 		if (page)
2181 			break;
2182 this_zone_full:
2183 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2184 			zlc_mark_zone_full(zonelist, z);
2185 	}
2186 
2187 	if (page) {
2188 		/*
2189 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2190 		 * necessary to allocate the page. The expectation is
2191 		 * that the caller is taking steps that will free more
2192 		 * memory. The caller should avoid the page being used
2193 		 * for !PFMEMALLOC purposes.
2194 		 */
2195 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2196 		return page;
2197 	}
2198 
2199 	/*
2200 	 * The first pass makes sure allocations are spread fairly within the
2201 	 * local node.  However, the local node might have free pages left
2202 	 * after the fairness batches are exhausted, and remote zones haven't
2203 	 * even been considered yet.  Try once more without fairness, and
2204 	 * include remote zones now, before entering the slowpath and waking
2205 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2206 	 */
2207 	if (alloc_flags & ALLOC_FAIR) {
2208 		alloc_flags &= ~ALLOC_FAIR;
2209 		if (nr_fair_skipped) {
2210 			zonelist_rescan = true;
2211 			reset_alloc_batches(preferred_zone);
2212 		}
2213 		if (nr_online_nodes > 1)
2214 			zonelist_rescan = true;
2215 	}
2216 
2217 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2218 		/* Disable zlc cache for second zonelist scan */
2219 		zlc_active = 0;
2220 		zonelist_rescan = true;
2221 	}
2222 
2223 	if (zonelist_rescan)
2224 		goto zonelist_scan;
2225 
2226 	return NULL;
2227 }
2228 
2229 /*
2230  * Large machines with many possible nodes should not always dump per-node
2231  * meminfo in irq context.
2232  */
2233 static inline bool should_suppress_show_mem(void)
2234 {
2235 	bool ret = false;
2236 
2237 #if NODES_SHIFT > 8
2238 	ret = in_interrupt();
2239 #endif
2240 	return ret;
2241 }
2242 
2243 static DEFINE_RATELIMIT_STATE(nopage_rs,
2244 		DEFAULT_RATELIMIT_INTERVAL,
2245 		DEFAULT_RATELIMIT_BURST);
2246 
2247 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2248 {
2249 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2250 
2251 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2252 	    debug_guardpage_minorder() > 0)
2253 		return;
2254 
2255 	/*
2256 	 * This documents exceptions given to allocations in certain
2257 	 * contexts that are allowed to allocate outside current's set
2258 	 * of allowed nodes.
2259 	 */
2260 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2261 		if (test_thread_flag(TIF_MEMDIE) ||
2262 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2263 			filter &= ~SHOW_MEM_FILTER_NODES;
2264 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2265 		filter &= ~SHOW_MEM_FILTER_NODES;
2266 
2267 	if (fmt) {
2268 		struct va_format vaf;
2269 		va_list args;
2270 
2271 		va_start(args, fmt);
2272 
2273 		vaf.fmt = fmt;
2274 		vaf.va = &args;
2275 
2276 		pr_warn("%pV", &vaf);
2277 
2278 		va_end(args);
2279 	}
2280 
2281 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2282 		current->comm, order, gfp_mask);
2283 
2284 	dump_stack();
2285 	if (!should_suppress_show_mem())
2286 		show_mem(filter);
2287 }
2288 
2289 static inline int
2290 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2291 				unsigned long did_some_progress,
2292 				unsigned long pages_reclaimed)
2293 {
2294 	/* Do not loop if specifically requested */
2295 	if (gfp_mask & __GFP_NORETRY)
2296 		return 0;
2297 
2298 	/* Always retry if specifically requested */
2299 	if (gfp_mask & __GFP_NOFAIL)
2300 		return 1;
2301 
2302 	/*
2303 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2304 	 * making forward progress without invoking OOM. Suspend also disables
2305 	 * storage devices so kswapd will not help. Bail if we are suspending.
2306 	 */
2307 	if (!did_some_progress && pm_suspended_storage())
2308 		return 0;
2309 
2310 	/*
2311 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2312 	 * means __GFP_NOFAIL, but that may not be true in other
2313 	 * implementations.
2314 	 */
2315 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2316 		return 1;
2317 
2318 	/*
2319 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2320 	 * specified, then we retry until we no longer reclaim any pages
2321 	 * (above), or we've reclaimed an order of pages at least as
2322 	 * large as the allocation's order. In both cases, if the
2323 	 * allocation still fails, we stop retrying.
2324 	 */
2325 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2326 		return 1;
2327 
2328 	return 0;
2329 }
2330 
2331 static inline struct page *
2332 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2333 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2334 	nodemask_t *nodemask, struct zone *preferred_zone,
2335 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2336 {
2337 	struct page *page;
2338 
2339 	*did_some_progress = 0;
2340 
2341 	if (oom_killer_disabled)
2342 		return NULL;
2343 
2344 	/*
2345 	 * Acquire the per-zone oom lock for each zone.  If that
2346 	 * fails, somebody else is making progress for us.
2347 	 */
2348 	if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2349 		*did_some_progress = 1;
2350 		schedule_timeout_uninterruptible(1);
2351 		return NULL;
2352 	}
2353 
2354 	/*
2355 	 * PM-freezer should be notified that there might be an OOM killer on
2356 	 * its way to kill and wake somebody up. This is too early and we might
2357 	 * end up not killing anything but false positives are acceptable.
2358 	 * See freeze_processes.
2359 	 */
2360 	note_oom_kill();
2361 
2362 	/*
2363 	 * Go through the zonelist yet one more time, keep very high watermark
2364 	 * here, this is only to catch a parallel oom killing, we must fail if
2365 	 * we're still under heavy pressure.
2366 	 */
2367 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2368 		order, zonelist, high_zoneidx,
2369 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2370 		preferred_zone, classzone_idx, migratetype);
2371 	if (page)
2372 		goto out;
2373 
2374 	if (!(gfp_mask & __GFP_NOFAIL)) {
2375 		/* Coredumps can quickly deplete all memory reserves */
2376 		if (current->flags & PF_DUMPCORE)
2377 			goto out;
2378 		/* The OOM killer will not help higher order allocs */
2379 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2380 			goto out;
2381 		/* The OOM killer does not needlessly kill tasks for lowmem */
2382 		if (high_zoneidx < ZONE_NORMAL)
2383 			goto out;
2384 		/* The OOM killer does not compensate for light reclaim */
2385 		if (!(gfp_mask & __GFP_FS))
2386 			goto out;
2387 		/*
2388 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2389 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2390 		 * The caller should handle page allocation failure by itself if
2391 		 * it specifies __GFP_THISNODE.
2392 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2393 		 */
2394 		if (gfp_mask & __GFP_THISNODE)
2395 			goto out;
2396 	}
2397 	/* Exhausted what can be done so it's blamo time */
2398 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2399 	*did_some_progress = 1;
2400 out:
2401 	oom_zonelist_unlock(zonelist, gfp_mask);
2402 	return page;
2403 }
2404 
2405 #ifdef CONFIG_COMPACTION
2406 /* Try memory compaction for high-order allocations before reclaim */
2407 static struct page *
2408 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2409 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2410 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2411 	int classzone_idx, int migratetype, enum migrate_mode mode,
2412 	int *contended_compaction, bool *deferred_compaction)
2413 {
2414 	unsigned long compact_result;
2415 	struct page *page;
2416 
2417 	if (!order)
2418 		return NULL;
2419 
2420 	current->flags |= PF_MEMALLOC;
2421 	compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2422 						nodemask, mode,
2423 						contended_compaction,
2424 						alloc_flags, classzone_idx);
2425 	current->flags &= ~PF_MEMALLOC;
2426 
2427 	switch (compact_result) {
2428 	case COMPACT_DEFERRED:
2429 		*deferred_compaction = true;
2430 		/* fall-through */
2431 	case COMPACT_SKIPPED:
2432 		return NULL;
2433 	default:
2434 		break;
2435 	}
2436 
2437 	/*
2438 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2439 	 * count a compaction stall
2440 	 */
2441 	count_vm_event(COMPACTSTALL);
2442 
2443 	page = get_page_from_freelist(gfp_mask, nodemask,
2444 			order, zonelist, high_zoneidx,
2445 			alloc_flags & ~ALLOC_NO_WATERMARKS,
2446 			preferred_zone, classzone_idx, migratetype);
2447 
2448 	if (page) {
2449 		struct zone *zone = page_zone(page);
2450 
2451 		zone->compact_blockskip_flush = false;
2452 		compaction_defer_reset(zone, order, true);
2453 		count_vm_event(COMPACTSUCCESS);
2454 		return page;
2455 	}
2456 
2457 	/*
2458 	 * It's bad if compaction run occurs and fails. The most likely reason
2459 	 * is that pages exist, but not enough to satisfy watermarks.
2460 	 */
2461 	count_vm_event(COMPACTFAIL);
2462 
2463 	cond_resched();
2464 
2465 	return NULL;
2466 }
2467 #else
2468 static inline struct page *
2469 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2470 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2471 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2472 	int classzone_idx, int migratetype, enum migrate_mode mode,
2473 	int *contended_compaction, bool *deferred_compaction)
2474 {
2475 	return NULL;
2476 }
2477 #endif /* CONFIG_COMPACTION */
2478 
2479 /* Perform direct synchronous page reclaim */
2480 static int
2481 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2482 		  nodemask_t *nodemask)
2483 {
2484 	struct reclaim_state reclaim_state;
2485 	int progress;
2486 
2487 	cond_resched();
2488 
2489 	/* We now go into synchronous reclaim */
2490 	cpuset_memory_pressure_bump();
2491 	current->flags |= PF_MEMALLOC;
2492 	lockdep_set_current_reclaim_state(gfp_mask);
2493 	reclaim_state.reclaimed_slab = 0;
2494 	current->reclaim_state = &reclaim_state;
2495 
2496 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2497 
2498 	current->reclaim_state = NULL;
2499 	lockdep_clear_current_reclaim_state();
2500 	current->flags &= ~PF_MEMALLOC;
2501 
2502 	cond_resched();
2503 
2504 	return progress;
2505 }
2506 
2507 /* The really slow allocator path where we enter direct reclaim */
2508 static inline struct page *
2509 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2510 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2511 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2512 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2513 {
2514 	struct page *page = NULL;
2515 	bool drained = false;
2516 
2517 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2518 					       nodemask);
2519 	if (unlikely(!(*did_some_progress)))
2520 		return NULL;
2521 
2522 	/* After successful reclaim, reconsider all zones for allocation */
2523 	if (IS_ENABLED(CONFIG_NUMA))
2524 		zlc_clear_zones_full(zonelist);
2525 
2526 retry:
2527 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2528 					zonelist, high_zoneidx,
2529 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2530 					preferred_zone, classzone_idx,
2531 					migratetype);
2532 
2533 	/*
2534 	 * If an allocation failed after direct reclaim, it could be because
2535 	 * pages are pinned on the per-cpu lists. Drain them and try again
2536 	 */
2537 	if (!page && !drained) {
2538 		drain_all_pages(NULL);
2539 		drained = true;
2540 		goto retry;
2541 	}
2542 
2543 	return page;
2544 }
2545 
2546 /*
2547  * This is called in the allocator slow-path if the allocation request is of
2548  * sufficient urgency to ignore watermarks and take other desperate measures
2549  */
2550 static inline struct page *
2551 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2552 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2553 	nodemask_t *nodemask, struct zone *preferred_zone,
2554 	int classzone_idx, int migratetype)
2555 {
2556 	struct page *page;
2557 
2558 	do {
2559 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2560 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2561 			preferred_zone, classzone_idx, migratetype);
2562 
2563 		if (!page && gfp_mask & __GFP_NOFAIL)
2564 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2565 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2566 
2567 	return page;
2568 }
2569 
2570 static void wake_all_kswapds(unsigned int order,
2571 			     struct zonelist *zonelist,
2572 			     enum zone_type high_zoneidx,
2573 			     struct zone *preferred_zone,
2574 			     nodemask_t *nodemask)
2575 {
2576 	struct zoneref *z;
2577 	struct zone *zone;
2578 
2579 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2580 						high_zoneidx, nodemask)
2581 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2582 }
2583 
2584 static inline int
2585 gfp_to_alloc_flags(gfp_t gfp_mask)
2586 {
2587 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2588 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2589 
2590 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2591 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2592 
2593 	/*
2594 	 * The caller may dip into page reserves a bit more if the caller
2595 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2596 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2597 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2598 	 */
2599 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2600 
2601 	if (atomic) {
2602 		/*
2603 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2604 		 * if it can't schedule.
2605 		 */
2606 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2607 			alloc_flags |= ALLOC_HARDER;
2608 		/*
2609 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2610 		 * comment for __cpuset_node_allowed().
2611 		 */
2612 		alloc_flags &= ~ALLOC_CPUSET;
2613 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2614 		alloc_flags |= ALLOC_HARDER;
2615 
2616 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2617 		if (gfp_mask & __GFP_MEMALLOC)
2618 			alloc_flags |= ALLOC_NO_WATERMARKS;
2619 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2620 			alloc_flags |= ALLOC_NO_WATERMARKS;
2621 		else if (!in_interrupt() &&
2622 				((current->flags & PF_MEMALLOC) ||
2623 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2624 			alloc_flags |= ALLOC_NO_WATERMARKS;
2625 	}
2626 #ifdef CONFIG_CMA
2627 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2628 		alloc_flags |= ALLOC_CMA;
2629 #endif
2630 	return alloc_flags;
2631 }
2632 
2633 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2634 {
2635 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2636 }
2637 
2638 static inline struct page *
2639 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2640 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2641 	nodemask_t *nodemask, struct zone *preferred_zone,
2642 	int classzone_idx, int migratetype)
2643 {
2644 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2645 	struct page *page = NULL;
2646 	int alloc_flags;
2647 	unsigned long pages_reclaimed = 0;
2648 	unsigned long did_some_progress;
2649 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2650 	bool deferred_compaction = false;
2651 	int contended_compaction = COMPACT_CONTENDED_NONE;
2652 
2653 	/*
2654 	 * In the slowpath, we sanity check order to avoid ever trying to
2655 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2656 	 * be using allocators in order of preference for an area that is
2657 	 * too large.
2658 	 */
2659 	if (order >= MAX_ORDER) {
2660 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2661 		return NULL;
2662 	}
2663 
2664 	/*
2665 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2666 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2667 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2668 	 * using a larger set of nodes after it has established that the
2669 	 * allowed per node queues are empty and that nodes are
2670 	 * over allocated.
2671 	 */
2672 	if (IS_ENABLED(CONFIG_NUMA) &&
2673 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2674 		goto nopage;
2675 
2676 retry:
2677 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2678 		wake_all_kswapds(order, zonelist, high_zoneidx,
2679 				preferred_zone, nodemask);
2680 
2681 	/*
2682 	 * OK, we're below the kswapd watermark and have kicked background
2683 	 * reclaim. Now things get more complex, so set up alloc_flags according
2684 	 * to how we want to proceed.
2685 	 */
2686 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2687 
2688 	/*
2689 	 * Find the true preferred zone if the allocation is unconstrained by
2690 	 * cpusets.
2691 	 */
2692 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2693 		struct zoneref *preferred_zoneref;
2694 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2695 				NULL, &preferred_zone);
2696 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2697 	}
2698 
2699 	/* This is the last chance, in general, before the goto nopage. */
2700 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2701 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2702 			preferred_zone, classzone_idx, migratetype);
2703 	if (page)
2704 		goto got_pg;
2705 
2706 	/* Allocate without watermarks if the context allows */
2707 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2708 		/*
2709 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2710 		 * the allocation is high priority and these type of
2711 		 * allocations are system rather than user orientated
2712 		 */
2713 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2714 
2715 		page = __alloc_pages_high_priority(gfp_mask, order,
2716 				zonelist, high_zoneidx, nodemask,
2717 				preferred_zone, classzone_idx, migratetype);
2718 		if (page) {
2719 			goto got_pg;
2720 		}
2721 	}
2722 
2723 	/* Atomic allocations - we can't balance anything */
2724 	if (!wait) {
2725 		/*
2726 		 * All existing users of the deprecated __GFP_NOFAIL are
2727 		 * blockable, so warn of any new users that actually allow this
2728 		 * type of allocation to fail.
2729 		 */
2730 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2731 		goto nopage;
2732 	}
2733 
2734 	/* Avoid recursion of direct reclaim */
2735 	if (current->flags & PF_MEMALLOC)
2736 		goto nopage;
2737 
2738 	/* Avoid allocations with no watermarks from looping endlessly */
2739 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2740 		goto nopage;
2741 
2742 	/*
2743 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2744 	 * attempts after direct reclaim are synchronous
2745 	 */
2746 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2747 					high_zoneidx, nodemask, alloc_flags,
2748 					preferred_zone,
2749 					classzone_idx, migratetype,
2750 					migration_mode, &contended_compaction,
2751 					&deferred_compaction);
2752 	if (page)
2753 		goto got_pg;
2754 
2755 	/* Checks for THP-specific high-order allocations */
2756 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2757 		/*
2758 		 * If compaction is deferred for high-order allocations, it is
2759 		 * because sync compaction recently failed. If this is the case
2760 		 * and the caller requested a THP allocation, we do not want
2761 		 * to heavily disrupt the system, so we fail the allocation
2762 		 * instead of entering direct reclaim.
2763 		 */
2764 		if (deferred_compaction)
2765 			goto nopage;
2766 
2767 		/*
2768 		 * In all zones where compaction was attempted (and not
2769 		 * deferred or skipped), lock contention has been detected.
2770 		 * For THP allocation we do not want to disrupt the others
2771 		 * so we fallback to base pages instead.
2772 		 */
2773 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2774 			goto nopage;
2775 
2776 		/*
2777 		 * If compaction was aborted due to need_resched(), we do not
2778 		 * want to further increase allocation latency, unless it is
2779 		 * khugepaged trying to collapse.
2780 		 */
2781 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2782 			&& !(current->flags & PF_KTHREAD))
2783 			goto nopage;
2784 	}
2785 
2786 	/*
2787 	 * It can become very expensive to allocate transparent hugepages at
2788 	 * fault, so use asynchronous memory compaction for THP unless it is
2789 	 * khugepaged trying to collapse.
2790 	 */
2791 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2792 						(current->flags & PF_KTHREAD))
2793 		migration_mode = MIGRATE_SYNC_LIGHT;
2794 
2795 	/* Try direct reclaim and then allocating */
2796 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2797 					zonelist, high_zoneidx,
2798 					nodemask,
2799 					alloc_flags, preferred_zone,
2800 					classzone_idx, migratetype,
2801 					&did_some_progress);
2802 	if (page)
2803 		goto got_pg;
2804 
2805 	/* Check if we should retry the allocation */
2806 	pages_reclaimed += did_some_progress;
2807 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2808 						pages_reclaimed)) {
2809 		/*
2810 		 * If we fail to make progress by freeing individual
2811 		 * pages, but the allocation wants us to keep going,
2812 		 * start OOM killing tasks.
2813 		 */
2814 		if (!did_some_progress) {
2815 			page = __alloc_pages_may_oom(gfp_mask, order, zonelist,
2816 						high_zoneidx, nodemask,
2817 						preferred_zone, classzone_idx,
2818 						migratetype,&did_some_progress);
2819 			if (page)
2820 				goto got_pg;
2821 			if (!did_some_progress)
2822 				goto nopage;
2823 		}
2824 		/* Wait for some write requests to complete then retry */
2825 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2826 		goto retry;
2827 	} else {
2828 		/*
2829 		 * High-order allocations do not necessarily loop after
2830 		 * direct reclaim and reclaim/compaction depends on compaction
2831 		 * being called after reclaim so call directly if necessary
2832 		 */
2833 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2834 					high_zoneidx, nodemask, alloc_flags,
2835 					preferred_zone,
2836 					classzone_idx, migratetype,
2837 					migration_mode, &contended_compaction,
2838 					&deferred_compaction);
2839 		if (page)
2840 			goto got_pg;
2841 	}
2842 
2843 nopage:
2844 	warn_alloc_failed(gfp_mask, order, NULL);
2845 	return page;
2846 got_pg:
2847 	if (kmemcheck_enabled)
2848 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2849 
2850 	return page;
2851 }
2852 
2853 /*
2854  * This is the 'heart' of the zoned buddy allocator.
2855  */
2856 struct page *
2857 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2858 			struct zonelist *zonelist, nodemask_t *nodemask)
2859 {
2860 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2861 	struct zone *preferred_zone;
2862 	struct zoneref *preferred_zoneref;
2863 	struct page *page = NULL;
2864 	int migratetype = gfpflags_to_migratetype(gfp_mask);
2865 	unsigned int cpuset_mems_cookie;
2866 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2867 	int classzone_idx;
2868 
2869 	gfp_mask &= gfp_allowed_mask;
2870 
2871 	lockdep_trace_alloc(gfp_mask);
2872 
2873 	might_sleep_if(gfp_mask & __GFP_WAIT);
2874 
2875 	if (should_fail_alloc_page(gfp_mask, order))
2876 		return NULL;
2877 
2878 	/*
2879 	 * Check the zones suitable for the gfp_mask contain at least one
2880 	 * valid zone. It's possible to have an empty zonelist as a result
2881 	 * of GFP_THISNODE and a memoryless node
2882 	 */
2883 	if (unlikely(!zonelist->_zonerefs->zone))
2884 		return NULL;
2885 
2886 	if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2887 		alloc_flags |= ALLOC_CMA;
2888 
2889 retry_cpuset:
2890 	cpuset_mems_cookie = read_mems_allowed_begin();
2891 
2892 	/* The preferred zone is used for statistics later */
2893 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2894 				nodemask ? : &cpuset_current_mems_allowed,
2895 				&preferred_zone);
2896 	if (!preferred_zone)
2897 		goto out;
2898 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2899 
2900 	/* First allocation attempt */
2901 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2902 			zonelist, high_zoneidx, alloc_flags,
2903 			preferred_zone, classzone_idx, migratetype);
2904 	if (unlikely(!page)) {
2905 		/*
2906 		 * Runtime PM, block IO and its error handling path
2907 		 * can deadlock because I/O on the device might not
2908 		 * complete.
2909 		 */
2910 		gfp_mask = memalloc_noio_flags(gfp_mask);
2911 		page = __alloc_pages_slowpath(gfp_mask, order,
2912 				zonelist, high_zoneidx, nodemask,
2913 				preferred_zone, classzone_idx, migratetype);
2914 	}
2915 
2916 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2917 
2918 out:
2919 	/*
2920 	 * When updating a task's mems_allowed, it is possible to race with
2921 	 * parallel threads in such a way that an allocation can fail while
2922 	 * the mask is being updated. If a page allocation is about to fail,
2923 	 * check if the cpuset changed during allocation and if so, retry.
2924 	 */
2925 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2926 		goto retry_cpuset;
2927 
2928 	return page;
2929 }
2930 EXPORT_SYMBOL(__alloc_pages_nodemask);
2931 
2932 /*
2933  * Common helper functions.
2934  */
2935 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2936 {
2937 	struct page *page;
2938 
2939 	/*
2940 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2941 	 * a highmem page
2942 	 */
2943 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2944 
2945 	page = alloc_pages(gfp_mask, order);
2946 	if (!page)
2947 		return 0;
2948 	return (unsigned long) page_address(page);
2949 }
2950 EXPORT_SYMBOL(__get_free_pages);
2951 
2952 unsigned long get_zeroed_page(gfp_t gfp_mask)
2953 {
2954 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2955 }
2956 EXPORT_SYMBOL(get_zeroed_page);
2957 
2958 void __free_pages(struct page *page, unsigned int order)
2959 {
2960 	if (put_page_testzero(page)) {
2961 		if (order == 0)
2962 			free_hot_cold_page(page, false);
2963 		else
2964 			__free_pages_ok(page, order);
2965 	}
2966 }
2967 
2968 EXPORT_SYMBOL(__free_pages);
2969 
2970 void free_pages(unsigned long addr, unsigned int order)
2971 {
2972 	if (addr != 0) {
2973 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2974 		__free_pages(virt_to_page((void *)addr), order);
2975 	}
2976 }
2977 
2978 EXPORT_SYMBOL(free_pages);
2979 
2980 /*
2981  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2982  * of the current memory cgroup.
2983  *
2984  * It should be used when the caller would like to use kmalloc, but since the
2985  * allocation is large, it has to fall back to the page allocator.
2986  */
2987 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2988 {
2989 	struct page *page;
2990 	struct mem_cgroup *memcg = NULL;
2991 
2992 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2993 		return NULL;
2994 	page = alloc_pages(gfp_mask, order);
2995 	memcg_kmem_commit_charge(page, memcg, order);
2996 	return page;
2997 }
2998 
2999 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3000 {
3001 	struct page *page;
3002 	struct mem_cgroup *memcg = NULL;
3003 
3004 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3005 		return NULL;
3006 	page = alloc_pages_node(nid, gfp_mask, order);
3007 	memcg_kmem_commit_charge(page, memcg, order);
3008 	return page;
3009 }
3010 
3011 /*
3012  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3013  * alloc_kmem_pages.
3014  */
3015 void __free_kmem_pages(struct page *page, unsigned int order)
3016 {
3017 	memcg_kmem_uncharge_pages(page, order);
3018 	__free_pages(page, order);
3019 }
3020 
3021 void free_kmem_pages(unsigned long addr, unsigned int order)
3022 {
3023 	if (addr != 0) {
3024 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3025 		__free_kmem_pages(virt_to_page((void *)addr), order);
3026 	}
3027 }
3028 
3029 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3030 {
3031 	if (addr) {
3032 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3033 		unsigned long used = addr + PAGE_ALIGN(size);
3034 
3035 		split_page(virt_to_page((void *)addr), order);
3036 		while (used < alloc_end) {
3037 			free_page(used);
3038 			used += PAGE_SIZE;
3039 		}
3040 	}
3041 	return (void *)addr;
3042 }
3043 
3044 /**
3045  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3046  * @size: the number of bytes to allocate
3047  * @gfp_mask: GFP flags for the allocation
3048  *
3049  * This function is similar to alloc_pages(), except that it allocates the
3050  * minimum number of pages to satisfy the request.  alloc_pages() can only
3051  * allocate memory in power-of-two pages.
3052  *
3053  * This function is also limited by MAX_ORDER.
3054  *
3055  * Memory allocated by this function must be released by free_pages_exact().
3056  */
3057 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3058 {
3059 	unsigned int order = get_order(size);
3060 	unsigned long addr;
3061 
3062 	addr = __get_free_pages(gfp_mask, order);
3063 	return make_alloc_exact(addr, order, size);
3064 }
3065 EXPORT_SYMBOL(alloc_pages_exact);
3066 
3067 /**
3068  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3069  *			   pages on a node.
3070  * @nid: the preferred node ID where memory should be allocated
3071  * @size: the number of bytes to allocate
3072  * @gfp_mask: GFP flags for the allocation
3073  *
3074  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3075  * back.
3076  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3077  * but is not exact.
3078  */
3079 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3080 {
3081 	unsigned order = get_order(size);
3082 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3083 	if (!p)
3084 		return NULL;
3085 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3086 }
3087 
3088 /**
3089  * free_pages_exact - release memory allocated via alloc_pages_exact()
3090  * @virt: the value returned by alloc_pages_exact.
3091  * @size: size of allocation, same value as passed to alloc_pages_exact().
3092  *
3093  * Release the memory allocated by a previous call to alloc_pages_exact.
3094  */
3095 void free_pages_exact(void *virt, size_t size)
3096 {
3097 	unsigned long addr = (unsigned long)virt;
3098 	unsigned long end = addr + PAGE_ALIGN(size);
3099 
3100 	while (addr < end) {
3101 		free_page(addr);
3102 		addr += PAGE_SIZE;
3103 	}
3104 }
3105 EXPORT_SYMBOL(free_pages_exact);
3106 
3107 /**
3108  * nr_free_zone_pages - count number of pages beyond high watermark
3109  * @offset: The zone index of the highest zone
3110  *
3111  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3112  * high watermark within all zones at or below a given zone index.  For each
3113  * zone, the number of pages is calculated as:
3114  *     managed_pages - high_pages
3115  */
3116 static unsigned long nr_free_zone_pages(int offset)
3117 {
3118 	struct zoneref *z;
3119 	struct zone *zone;
3120 
3121 	/* Just pick one node, since fallback list is circular */
3122 	unsigned long sum = 0;
3123 
3124 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3125 
3126 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3127 		unsigned long size = zone->managed_pages;
3128 		unsigned long high = high_wmark_pages(zone);
3129 		if (size > high)
3130 			sum += size - high;
3131 	}
3132 
3133 	return sum;
3134 }
3135 
3136 /**
3137  * nr_free_buffer_pages - count number of pages beyond high watermark
3138  *
3139  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3140  * watermark within ZONE_DMA and ZONE_NORMAL.
3141  */
3142 unsigned long nr_free_buffer_pages(void)
3143 {
3144 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3145 }
3146 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3147 
3148 /**
3149  * nr_free_pagecache_pages - count number of pages beyond high watermark
3150  *
3151  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3152  * high watermark within all zones.
3153  */
3154 unsigned long nr_free_pagecache_pages(void)
3155 {
3156 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3157 }
3158 
3159 static inline void show_node(struct zone *zone)
3160 {
3161 	if (IS_ENABLED(CONFIG_NUMA))
3162 		printk("Node %d ", zone_to_nid(zone));
3163 }
3164 
3165 void si_meminfo(struct sysinfo *val)
3166 {
3167 	val->totalram = totalram_pages;
3168 	val->sharedram = global_page_state(NR_SHMEM);
3169 	val->freeram = global_page_state(NR_FREE_PAGES);
3170 	val->bufferram = nr_blockdev_pages();
3171 	val->totalhigh = totalhigh_pages;
3172 	val->freehigh = nr_free_highpages();
3173 	val->mem_unit = PAGE_SIZE;
3174 }
3175 
3176 EXPORT_SYMBOL(si_meminfo);
3177 
3178 #ifdef CONFIG_NUMA
3179 void si_meminfo_node(struct sysinfo *val, int nid)
3180 {
3181 	int zone_type;		/* needs to be signed */
3182 	unsigned long managed_pages = 0;
3183 	pg_data_t *pgdat = NODE_DATA(nid);
3184 
3185 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3186 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3187 	val->totalram = managed_pages;
3188 	val->sharedram = node_page_state(nid, NR_SHMEM);
3189 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3190 #ifdef CONFIG_HIGHMEM
3191 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3192 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3193 			NR_FREE_PAGES);
3194 #else
3195 	val->totalhigh = 0;
3196 	val->freehigh = 0;
3197 #endif
3198 	val->mem_unit = PAGE_SIZE;
3199 }
3200 #endif
3201 
3202 /*
3203  * Determine whether the node should be displayed or not, depending on whether
3204  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3205  */
3206 bool skip_free_areas_node(unsigned int flags, int nid)
3207 {
3208 	bool ret = false;
3209 	unsigned int cpuset_mems_cookie;
3210 
3211 	if (!(flags & SHOW_MEM_FILTER_NODES))
3212 		goto out;
3213 
3214 	do {
3215 		cpuset_mems_cookie = read_mems_allowed_begin();
3216 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3217 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3218 out:
3219 	return ret;
3220 }
3221 
3222 #define K(x) ((x) << (PAGE_SHIFT-10))
3223 
3224 static void show_migration_types(unsigned char type)
3225 {
3226 	static const char types[MIGRATE_TYPES] = {
3227 		[MIGRATE_UNMOVABLE]	= 'U',
3228 		[MIGRATE_RECLAIMABLE]	= 'E',
3229 		[MIGRATE_MOVABLE]	= 'M',
3230 		[MIGRATE_RESERVE]	= 'R',
3231 #ifdef CONFIG_CMA
3232 		[MIGRATE_CMA]		= 'C',
3233 #endif
3234 #ifdef CONFIG_MEMORY_ISOLATION
3235 		[MIGRATE_ISOLATE]	= 'I',
3236 #endif
3237 	};
3238 	char tmp[MIGRATE_TYPES + 1];
3239 	char *p = tmp;
3240 	int i;
3241 
3242 	for (i = 0; i < MIGRATE_TYPES; i++) {
3243 		if (type & (1 << i))
3244 			*p++ = types[i];
3245 	}
3246 
3247 	*p = '\0';
3248 	printk("(%s) ", tmp);
3249 }
3250 
3251 /*
3252  * Show free area list (used inside shift_scroll-lock stuff)
3253  * We also calculate the percentage fragmentation. We do this by counting the
3254  * memory on each free list with the exception of the first item on the list.
3255  * Suppresses nodes that are not allowed by current's cpuset if
3256  * SHOW_MEM_FILTER_NODES is passed.
3257  */
3258 void show_free_areas(unsigned int filter)
3259 {
3260 	int cpu;
3261 	struct zone *zone;
3262 
3263 	for_each_populated_zone(zone) {
3264 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3265 			continue;
3266 		show_node(zone);
3267 		printk("%s per-cpu:\n", zone->name);
3268 
3269 		for_each_online_cpu(cpu) {
3270 			struct per_cpu_pageset *pageset;
3271 
3272 			pageset = per_cpu_ptr(zone->pageset, cpu);
3273 
3274 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3275 			       cpu, pageset->pcp.high,
3276 			       pageset->pcp.batch, pageset->pcp.count);
3277 		}
3278 	}
3279 
3280 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3281 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3282 		" unevictable:%lu"
3283 		" dirty:%lu writeback:%lu unstable:%lu\n"
3284 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3285 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3286 		" free_cma:%lu\n",
3287 		global_page_state(NR_ACTIVE_ANON),
3288 		global_page_state(NR_INACTIVE_ANON),
3289 		global_page_state(NR_ISOLATED_ANON),
3290 		global_page_state(NR_ACTIVE_FILE),
3291 		global_page_state(NR_INACTIVE_FILE),
3292 		global_page_state(NR_ISOLATED_FILE),
3293 		global_page_state(NR_UNEVICTABLE),
3294 		global_page_state(NR_FILE_DIRTY),
3295 		global_page_state(NR_WRITEBACK),
3296 		global_page_state(NR_UNSTABLE_NFS),
3297 		global_page_state(NR_FREE_PAGES),
3298 		global_page_state(NR_SLAB_RECLAIMABLE),
3299 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3300 		global_page_state(NR_FILE_MAPPED),
3301 		global_page_state(NR_SHMEM),
3302 		global_page_state(NR_PAGETABLE),
3303 		global_page_state(NR_BOUNCE),
3304 		global_page_state(NR_FREE_CMA_PAGES));
3305 
3306 	for_each_populated_zone(zone) {
3307 		int i;
3308 
3309 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3310 			continue;
3311 		show_node(zone);
3312 		printk("%s"
3313 			" free:%lukB"
3314 			" min:%lukB"
3315 			" low:%lukB"
3316 			" high:%lukB"
3317 			" active_anon:%lukB"
3318 			" inactive_anon:%lukB"
3319 			" active_file:%lukB"
3320 			" inactive_file:%lukB"
3321 			" unevictable:%lukB"
3322 			" isolated(anon):%lukB"
3323 			" isolated(file):%lukB"
3324 			" present:%lukB"
3325 			" managed:%lukB"
3326 			" mlocked:%lukB"
3327 			" dirty:%lukB"
3328 			" writeback:%lukB"
3329 			" mapped:%lukB"
3330 			" shmem:%lukB"
3331 			" slab_reclaimable:%lukB"
3332 			" slab_unreclaimable:%lukB"
3333 			" kernel_stack:%lukB"
3334 			" pagetables:%lukB"
3335 			" unstable:%lukB"
3336 			" bounce:%lukB"
3337 			" free_cma:%lukB"
3338 			" writeback_tmp:%lukB"
3339 			" pages_scanned:%lu"
3340 			" all_unreclaimable? %s"
3341 			"\n",
3342 			zone->name,
3343 			K(zone_page_state(zone, NR_FREE_PAGES)),
3344 			K(min_wmark_pages(zone)),
3345 			K(low_wmark_pages(zone)),
3346 			K(high_wmark_pages(zone)),
3347 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3348 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3349 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3350 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3351 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3352 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3353 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3354 			K(zone->present_pages),
3355 			K(zone->managed_pages),
3356 			K(zone_page_state(zone, NR_MLOCK)),
3357 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3358 			K(zone_page_state(zone, NR_WRITEBACK)),
3359 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3360 			K(zone_page_state(zone, NR_SHMEM)),
3361 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3362 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3363 			zone_page_state(zone, NR_KERNEL_STACK) *
3364 				THREAD_SIZE / 1024,
3365 			K(zone_page_state(zone, NR_PAGETABLE)),
3366 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3367 			K(zone_page_state(zone, NR_BOUNCE)),
3368 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3369 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3370 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3371 			(!zone_reclaimable(zone) ? "yes" : "no")
3372 			);
3373 		printk("lowmem_reserve[]:");
3374 		for (i = 0; i < MAX_NR_ZONES; i++)
3375 			printk(" %ld", zone->lowmem_reserve[i]);
3376 		printk("\n");
3377 	}
3378 
3379 	for_each_populated_zone(zone) {
3380 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3381 		unsigned char types[MAX_ORDER];
3382 
3383 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3384 			continue;
3385 		show_node(zone);
3386 		printk("%s: ", zone->name);
3387 
3388 		spin_lock_irqsave(&zone->lock, flags);
3389 		for (order = 0; order < MAX_ORDER; order++) {
3390 			struct free_area *area = &zone->free_area[order];
3391 			int type;
3392 
3393 			nr[order] = area->nr_free;
3394 			total += nr[order] << order;
3395 
3396 			types[order] = 0;
3397 			for (type = 0; type < MIGRATE_TYPES; type++) {
3398 				if (!list_empty(&area->free_list[type]))
3399 					types[order] |= 1 << type;
3400 			}
3401 		}
3402 		spin_unlock_irqrestore(&zone->lock, flags);
3403 		for (order = 0; order < MAX_ORDER; order++) {
3404 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3405 			if (nr[order])
3406 				show_migration_types(types[order]);
3407 		}
3408 		printk("= %lukB\n", K(total));
3409 	}
3410 
3411 	hugetlb_show_meminfo();
3412 
3413 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3414 
3415 	show_swap_cache_info();
3416 }
3417 
3418 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3419 {
3420 	zoneref->zone = zone;
3421 	zoneref->zone_idx = zone_idx(zone);
3422 }
3423 
3424 /*
3425  * Builds allocation fallback zone lists.
3426  *
3427  * Add all populated zones of a node to the zonelist.
3428  */
3429 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3430 				int nr_zones)
3431 {
3432 	struct zone *zone;
3433 	enum zone_type zone_type = MAX_NR_ZONES;
3434 
3435 	do {
3436 		zone_type--;
3437 		zone = pgdat->node_zones + zone_type;
3438 		if (populated_zone(zone)) {
3439 			zoneref_set_zone(zone,
3440 				&zonelist->_zonerefs[nr_zones++]);
3441 			check_highest_zone(zone_type);
3442 		}
3443 	} while (zone_type);
3444 
3445 	return nr_zones;
3446 }
3447 
3448 
3449 /*
3450  *  zonelist_order:
3451  *  0 = automatic detection of better ordering.
3452  *  1 = order by ([node] distance, -zonetype)
3453  *  2 = order by (-zonetype, [node] distance)
3454  *
3455  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3456  *  the same zonelist. So only NUMA can configure this param.
3457  */
3458 #define ZONELIST_ORDER_DEFAULT  0
3459 #define ZONELIST_ORDER_NODE     1
3460 #define ZONELIST_ORDER_ZONE     2
3461 
3462 /* zonelist order in the kernel.
3463  * set_zonelist_order() will set this to NODE or ZONE.
3464  */
3465 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3466 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3467 
3468 
3469 #ifdef CONFIG_NUMA
3470 /* The value user specified ....changed by config */
3471 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3472 /* string for sysctl */
3473 #define NUMA_ZONELIST_ORDER_LEN	16
3474 char numa_zonelist_order[16] = "default";
3475 
3476 /*
3477  * interface for configure zonelist ordering.
3478  * command line option "numa_zonelist_order"
3479  *	= "[dD]efault	- default, automatic configuration.
3480  *	= "[nN]ode 	- order by node locality, then by zone within node
3481  *	= "[zZ]one      - order by zone, then by locality within zone
3482  */
3483 
3484 static int __parse_numa_zonelist_order(char *s)
3485 {
3486 	if (*s == 'd' || *s == 'D') {
3487 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3488 	} else if (*s == 'n' || *s == 'N') {
3489 		user_zonelist_order = ZONELIST_ORDER_NODE;
3490 	} else if (*s == 'z' || *s == 'Z') {
3491 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3492 	} else {
3493 		printk(KERN_WARNING
3494 			"Ignoring invalid numa_zonelist_order value:  "
3495 			"%s\n", s);
3496 		return -EINVAL;
3497 	}
3498 	return 0;
3499 }
3500 
3501 static __init int setup_numa_zonelist_order(char *s)
3502 {
3503 	int ret;
3504 
3505 	if (!s)
3506 		return 0;
3507 
3508 	ret = __parse_numa_zonelist_order(s);
3509 	if (ret == 0)
3510 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3511 
3512 	return ret;
3513 }
3514 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3515 
3516 /*
3517  * sysctl handler for numa_zonelist_order
3518  */
3519 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3520 		void __user *buffer, size_t *length,
3521 		loff_t *ppos)
3522 {
3523 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3524 	int ret;
3525 	static DEFINE_MUTEX(zl_order_mutex);
3526 
3527 	mutex_lock(&zl_order_mutex);
3528 	if (write) {
3529 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3530 			ret = -EINVAL;
3531 			goto out;
3532 		}
3533 		strcpy(saved_string, (char *)table->data);
3534 	}
3535 	ret = proc_dostring(table, write, buffer, length, ppos);
3536 	if (ret)
3537 		goto out;
3538 	if (write) {
3539 		int oldval = user_zonelist_order;
3540 
3541 		ret = __parse_numa_zonelist_order((char *)table->data);
3542 		if (ret) {
3543 			/*
3544 			 * bogus value.  restore saved string
3545 			 */
3546 			strncpy((char *)table->data, saved_string,
3547 				NUMA_ZONELIST_ORDER_LEN);
3548 			user_zonelist_order = oldval;
3549 		} else if (oldval != user_zonelist_order) {
3550 			mutex_lock(&zonelists_mutex);
3551 			build_all_zonelists(NULL, NULL);
3552 			mutex_unlock(&zonelists_mutex);
3553 		}
3554 	}
3555 out:
3556 	mutex_unlock(&zl_order_mutex);
3557 	return ret;
3558 }
3559 
3560 
3561 #define MAX_NODE_LOAD (nr_online_nodes)
3562 static int node_load[MAX_NUMNODES];
3563 
3564 /**
3565  * find_next_best_node - find the next node that should appear in a given node's fallback list
3566  * @node: node whose fallback list we're appending
3567  * @used_node_mask: nodemask_t of already used nodes
3568  *
3569  * We use a number of factors to determine which is the next node that should
3570  * appear on a given node's fallback list.  The node should not have appeared
3571  * already in @node's fallback list, and it should be the next closest node
3572  * according to the distance array (which contains arbitrary distance values
3573  * from each node to each node in the system), and should also prefer nodes
3574  * with no CPUs, since presumably they'll have very little allocation pressure
3575  * on them otherwise.
3576  * It returns -1 if no node is found.
3577  */
3578 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3579 {
3580 	int n, val;
3581 	int min_val = INT_MAX;
3582 	int best_node = NUMA_NO_NODE;
3583 	const struct cpumask *tmp = cpumask_of_node(0);
3584 
3585 	/* Use the local node if we haven't already */
3586 	if (!node_isset(node, *used_node_mask)) {
3587 		node_set(node, *used_node_mask);
3588 		return node;
3589 	}
3590 
3591 	for_each_node_state(n, N_MEMORY) {
3592 
3593 		/* Don't want a node to appear more than once */
3594 		if (node_isset(n, *used_node_mask))
3595 			continue;
3596 
3597 		/* Use the distance array to find the distance */
3598 		val = node_distance(node, n);
3599 
3600 		/* Penalize nodes under us ("prefer the next node") */
3601 		val += (n < node);
3602 
3603 		/* Give preference to headless and unused nodes */
3604 		tmp = cpumask_of_node(n);
3605 		if (!cpumask_empty(tmp))
3606 			val += PENALTY_FOR_NODE_WITH_CPUS;
3607 
3608 		/* Slight preference for less loaded node */
3609 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3610 		val += node_load[n];
3611 
3612 		if (val < min_val) {
3613 			min_val = val;
3614 			best_node = n;
3615 		}
3616 	}
3617 
3618 	if (best_node >= 0)
3619 		node_set(best_node, *used_node_mask);
3620 
3621 	return best_node;
3622 }
3623 
3624 
3625 /*
3626  * Build zonelists ordered by node and zones within node.
3627  * This results in maximum locality--normal zone overflows into local
3628  * DMA zone, if any--but risks exhausting DMA zone.
3629  */
3630 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3631 {
3632 	int j;
3633 	struct zonelist *zonelist;
3634 
3635 	zonelist = &pgdat->node_zonelists[0];
3636 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3637 		;
3638 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3639 	zonelist->_zonerefs[j].zone = NULL;
3640 	zonelist->_zonerefs[j].zone_idx = 0;
3641 }
3642 
3643 /*
3644  * Build gfp_thisnode zonelists
3645  */
3646 static void build_thisnode_zonelists(pg_data_t *pgdat)
3647 {
3648 	int j;
3649 	struct zonelist *zonelist;
3650 
3651 	zonelist = &pgdat->node_zonelists[1];
3652 	j = build_zonelists_node(pgdat, zonelist, 0);
3653 	zonelist->_zonerefs[j].zone = NULL;
3654 	zonelist->_zonerefs[j].zone_idx = 0;
3655 }
3656 
3657 /*
3658  * Build zonelists ordered by zone and nodes within zones.
3659  * This results in conserving DMA zone[s] until all Normal memory is
3660  * exhausted, but results in overflowing to remote node while memory
3661  * may still exist in local DMA zone.
3662  */
3663 static int node_order[MAX_NUMNODES];
3664 
3665 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3666 {
3667 	int pos, j, node;
3668 	int zone_type;		/* needs to be signed */
3669 	struct zone *z;
3670 	struct zonelist *zonelist;
3671 
3672 	zonelist = &pgdat->node_zonelists[0];
3673 	pos = 0;
3674 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3675 		for (j = 0; j < nr_nodes; j++) {
3676 			node = node_order[j];
3677 			z = &NODE_DATA(node)->node_zones[zone_type];
3678 			if (populated_zone(z)) {
3679 				zoneref_set_zone(z,
3680 					&zonelist->_zonerefs[pos++]);
3681 				check_highest_zone(zone_type);
3682 			}
3683 		}
3684 	}
3685 	zonelist->_zonerefs[pos].zone = NULL;
3686 	zonelist->_zonerefs[pos].zone_idx = 0;
3687 }
3688 
3689 #if defined(CONFIG_64BIT)
3690 /*
3691  * Devices that require DMA32/DMA are relatively rare and do not justify a
3692  * penalty to every machine in case the specialised case applies. Default
3693  * to Node-ordering on 64-bit NUMA machines
3694  */
3695 static int default_zonelist_order(void)
3696 {
3697 	return ZONELIST_ORDER_NODE;
3698 }
3699 #else
3700 /*
3701  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3702  * by the kernel. If processes running on node 0 deplete the low memory zone
3703  * then reclaim will occur more frequency increasing stalls and potentially
3704  * be easier to OOM if a large percentage of the zone is under writeback or
3705  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3706  * Hence, default to zone ordering on 32-bit.
3707  */
3708 static int default_zonelist_order(void)
3709 {
3710 	return ZONELIST_ORDER_ZONE;
3711 }
3712 #endif /* CONFIG_64BIT */
3713 
3714 static void set_zonelist_order(void)
3715 {
3716 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3717 		current_zonelist_order = default_zonelist_order();
3718 	else
3719 		current_zonelist_order = user_zonelist_order;
3720 }
3721 
3722 static void build_zonelists(pg_data_t *pgdat)
3723 {
3724 	int j, node, load;
3725 	enum zone_type i;
3726 	nodemask_t used_mask;
3727 	int local_node, prev_node;
3728 	struct zonelist *zonelist;
3729 	int order = current_zonelist_order;
3730 
3731 	/* initialize zonelists */
3732 	for (i = 0; i < MAX_ZONELISTS; i++) {
3733 		zonelist = pgdat->node_zonelists + i;
3734 		zonelist->_zonerefs[0].zone = NULL;
3735 		zonelist->_zonerefs[0].zone_idx = 0;
3736 	}
3737 
3738 	/* NUMA-aware ordering of nodes */
3739 	local_node = pgdat->node_id;
3740 	load = nr_online_nodes;
3741 	prev_node = local_node;
3742 	nodes_clear(used_mask);
3743 
3744 	memset(node_order, 0, sizeof(node_order));
3745 	j = 0;
3746 
3747 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3748 		/*
3749 		 * We don't want to pressure a particular node.
3750 		 * So adding penalty to the first node in same
3751 		 * distance group to make it round-robin.
3752 		 */
3753 		if (node_distance(local_node, node) !=
3754 		    node_distance(local_node, prev_node))
3755 			node_load[node] = load;
3756 
3757 		prev_node = node;
3758 		load--;
3759 		if (order == ZONELIST_ORDER_NODE)
3760 			build_zonelists_in_node_order(pgdat, node);
3761 		else
3762 			node_order[j++] = node;	/* remember order */
3763 	}
3764 
3765 	if (order == ZONELIST_ORDER_ZONE) {
3766 		/* calculate node order -- i.e., DMA last! */
3767 		build_zonelists_in_zone_order(pgdat, j);
3768 	}
3769 
3770 	build_thisnode_zonelists(pgdat);
3771 }
3772 
3773 /* Construct the zonelist performance cache - see further mmzone.h */
3774 static void build_zonelist_cache(pg_data_t *pgdat)
3775 {
3776 	struct zonelist *zonelist;
3777 	struct zonelist_cache *zlc;
3778 	struct zoneref *z;
3779 
3780 	zonelist = &pgdat->node_zonelists[0];
3781 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3782 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3783 	for (z = zonelist->_zonerefs; z->zone; z++)
3784 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3785 }
3786 
3787 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3788 /*
3789  * Return node id of node used for "local" allocations.
3790  * I.e., first node id of first zone in arg node's generic zonelist.
3791  * Used for initializing percpu 'numa_mem', which is used primarily
3792  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3793  */
3794 int local_memory_node(int node)
3795 {
3796 	struct zone *zone;
3797 
3798 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3799 				   gfp_zone(GFP_KERNEL),
3800 				   NULL,
3801 				   &zone);
3802 	return zone->node;
3803 }
3804 #endif
3805 
3806 #else	/* CONFIG_NUMA */
3807 
3808 static void set_zonelist_order(void)
3809 {
3810 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3811 }
3812 
3813 static void build_zonelists(pg_data_t *pgdat)
3814 {
3815 	int node, local_node;
3816 	enum zone_type j;
3817 	struct zonelist *zonelist;
3818 
3819 	local_node = pgdat->node_id;
3820 
3821 	zonelist = &pgdat->node_zonelists[0];
3822 	j = build_zonelists_node(pgdat, zonelist, 0);
3823 
3824 	/*
3825 	 * Now we build the zonelist so that it contains the zones
3826 	 * of all the other nodes.
3827 	 * We don't want to pressure a particular node, so when
3828 	 * building the zones for node N, we make sure that the
3829 	 * zones coming right after the local ones are those from
3830 	 * node N+1 (modulo N)
3831 	 */
3832 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3833 		if (!node_online(node))
3834 			continue;
3835 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3836 	}
3837 	for (node = 0; node < local_node; node++) {
3838 		if (!node_online(node))
3839 			continue;
3840 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3841 	}
3842 
3843 	zonelist->_zonerefs[j].zone = NULL;
3844 	zonelist->_zonerefs[j].zone_idx = 0;
3845 }
3846 
3847 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3848 static void build_zonelist_cache(pg_data_t *pgdat)
3849 {
3850 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3851 }
3852 
3853 #endif	/* CONFIG_NUMA */
3854 
3855 /*
3856  * Boot pageset table. One per cpu which is going to be used for all
3857  * zones and all nodes. The parameters will be set in such a way
3858  * that an item put on a list will immediately be handed over to
3859  * the buddy list. This is safe since pageset manipulation is done
3860  * with interrupts disabled.
3861  *
3862  * The boot_pagesets must be kept even after bootup is complete for
3863  * unused processors and/or zones. They do play a role for bootstrapping
3864  * hotplugged processors.
3865  *
3866  * zoneinfo_show() and maybe other functions do
3867  * not check if the processor is online before following the pageset pointer.
3868  * Other parts of the kernel may not check if the zone is available.
3869  */
3870 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3871 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3872 static void setup_zone_pageset(struct zone *zone);
3873 
3874 /*
3875  * Global mutex to protect against size modification of zonelists
3876  * as well as to serialize pageset setup for the new populated zone.
3877  */
3878 DEFINE_MUTEX(zonelists_mutex);
3879 
3880 /* return values int ....just for stop_machine() */
3881 static int __build_all_zonelists(void *data)
3882 {
3883 	int nid;
3884 	int cpu;
3885 	pg_data_t *self = data;
3886 
3887 #ifdef CONFIG_NUMA
3888 	memset(node_load, 0, sizeof(node_load));
3889 #endif
3890 
3891 	if (self && !node_online(self->node_id)) {
3892 		build_zonelists(self);
3893 		build_zonelist_cache(self);
3894 	}
3895 
3896 	for_each_online_node(nid) {
3897 		pg_data_t *pgdat = NODE_DATA(nid);
3898 
3899 		build_zonelists(pgdat);
3900 		build_zonelist_cache(pgdat);
3901 	}
3902 
3903 	/*
3904 	 * Initialize the boot_pagesets that are going to be used
3905 	 * for bootstrapping processors. The real pagesets for
3906 	 * each zone will be allocated later when the per cpu
3907 	 * allocator is available.
3908 	 *
3909 	 * boot_pagesets are used also for bootstrapping offline
3910 	 * cpus if the system is already booted because the pagesets
3911 	 * are needed to initialize allocators on a specific cpu too.
3912 	 * F.e. the percpu allocator needs the page allocator which
3913 	 * needs the percpu allocator in order to allocate its pagesets
3914 	 * (a chicken-egg dilemma).
3915 	 */
3916 	for_each_possible_cpu(cpu) {
3917 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3918 
3919 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3920 		/*
3921 		 * We now know the "local memory node" for each node--
3922 		 * i.e., the node of the first zone in the generic zonelist.
3923 		 * Set up numa_mem percpu variable for on-line cpus.  During
3924 		 * boot, only the boot cpu should be on-line;  we'll init the
3925 		 * secondary cpus' numa_mem as they come on-line.  During
3926 		 * node/memory hotplug, we'll fixup all on-line cpus.
3927 		 */
3928 		if (cpu_online(cpu))
3929 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3930 #endif
3931 	}
3932 
3933 	return 0;
3934 }
3935 
3936 /*
3937  * Called with zonelists_mutex held always
3938  * unless system_state == SYSTEM_BOOTING.
3939  */
3940 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3941 {
3942 	set_zonelist_order();
3943 
3944 	if (system_state == SYSTEM_BOOTING) {
3945 		__build_all_zonelists(NULL);
3946 		mminit_verify_zonelist();
3947 		cpuset_init_current_mems_allowed();
3948 	} else {
3949 #ifdef CONFIG_MEMORY_HOTPLUG
3950 		if (zone)
3951 			setup_zone_pageset(zone);
3952 #endif
3953 		/* we have to stop all cpus to guarantee there is no user
3954 		   of zonelist */
3955 		stop_machine(__build_all_zonelists, pgdat, NULL);
3956 		/* cpuset refresh routine should be here */
3957 	}
3958 	vm_total_pages = nr_free_pagecache_pages();
3959 	/*
3960 	 * Disable grouping by mobility if the number of pages in the
3961 	 * system is too low to allow the mechanism to work. It would be
3962 	 * more accurate, but expensive to check per-zone. This check is
3963 	 * made on memory-hotadd so a system can start with mobility
3964 	 * disabled and enable it later
3965 	 */
3966 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3967 		page_group_by_mobility_disabled = 1;
3968 	else
3969 		page_group_by_mobility_disabled = 0;
3970 
3971 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
3972 		"Total pages: %ld\n",
3973 			nr_online_nodes,
3974 			zonelist_order_name[current_zonelist_order],
3975 			page_group_by_mobility_disabled ? "off" : "on",
3976 			vm_total_pages);
3977 #ifdef CONFIG_NUMA
3978 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3979 #endif
3980 }
3981 
3982 /*
3983  * Helper functions to size the waitqueue hash table.
3984  * Essentially these want to choose hash table sizes sufficiently
3985  * large so that collisions trying to wait on pages are rare.
3986  * But in fact, the number of active page waitqueues on typical
3987  * systems is ridiculously low, less than 200. So this is even
3988  * conservative, even though it seems large.
3989  *
3990  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3991  * waitqueues, i.e. the size of the waitq table given the number of pages.
3992  */
3993 #define PAGES_PER_WAITQUEUE	256
3994 
3995 #ifndef CONFIG_MEMORY_HOTPLUG
3996 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3997 {
3998 	unsigned long size = 1;
3999 
4000 	pages /= PAGES_PER_WAITQUEUE;
4001 
4002 	while (size < pages)
4003 		size <<= 1;
4004 
4005 	/*
4006 	 * Once we have dozens or even hundreds of threads sleeping
4007 	 * on IO we've got bigger problems than wait queue collision.
4008 	 * Limit the size of the wait table to a reasonable size.
4009 	 */
4010 	size = min(size, 4096UL);
4011 
4012 	return max(size, 4UL);
4013 }
4014 #else
4015 /*
4016  * A zone's size might be changed by hot-add, so it is not possible to determine
4017  * a suitable size for its wait_table.  So we use the maximum size now.
4018  *
4019  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4020  *
4021  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4022  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4023  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4024  *
4025  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4026  * or more by the traditional way. (See above).  It equals:
4027  *
4028  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4029  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4030  *    powerpc (64K page size)             : =  (32G +16M)byte.
4031  */
4032 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4033 {
4034 	return 4096UL;
4035 }
4036 #endif
4037 
4038 /*
4039  * This is an integer logarithm so that shifts can be used later
4040  * to extract the more random high bits from the multiplicative
4041  * hash function before the remainder is taken.
4042  */
4043 static inline unsigned long wait_table_bits(unsigned long size)
4044 {
4045 	return ffz(~size);
4046 }
4047 
4048 /*
4049  * Check if a pageblock contains reserved pages
4050  */
4051 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4052 {
4053 	unsigned long pfn;
4054 
4055 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4056 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4057 			return 1;
4058 	}
4059 	return 0;
4060 }
4061 
4062 /*
4063  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4064  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4065  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4066  * higher will lead to a bigger reserve which will get freed as contiguous
4067  * blocks as reclaim kicks in
4068  */
4069 static void setup_zone_migrate_reserve(struct zone *zone)
4070 {
4071 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4072 	struct page *page;
4073 	unsigned long block_migratetype;
4074 	int reserve;
4075 	int old_reserve;
4076 
4077 	/*
4078 	 * Get the start pfn, end pfn and the number of blocks to reserve
4079 	 * We have to be careful to be aligned to pageblock_nr_pages to
4080 	 * make sure that we always check pfn_valid for the first page in
4081 	 * the block.
4082 	 */
4083 	start_pfn = zone->zone_start_pfn;
4084 	end_pfn = zone_end_pfn(zone);
4085 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4086 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4087 							pageblock_order;
4088 
4089 	/*
4090 	 * Reserve blocks are generally in place to help high-order atomic
4091 	 * allocations that are short-lived. A min_free_kbytes value that
4092 	 * would result in more than 2 reserve blocks for atomic allocations
4093 	 * is assumed to be in place to help anti-fragmentation for the
4094 	 * future allocation of hugepages at runtime.
4095 	 */
4096 	reserve = min(2, reserve);
4097 	old_reserve = zone->nr_migrate_reserve_block;
4098 
4099 	/* When memory hot-add, we almost always need to do nothing */
4100 	if (reserve == old_reserve)
4101 		return;
4102 	zone->nr_migrate_reserve_block = reserve;
4103 
4104 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4105 		if (!pfn_valid(pfn))
4106 			continue;
4107 		page = pfn_to_page(pfn);
4108 
4109 		/* Watch out for overlapping nodes */
4110 		if (page_to_nid(page) != zone_to_nid(zone))
4111 			continue;
4112 
4113 		block_migratetype = get_pageblock_migratetype(page);
4114 
4115 		/* Only test what is necessary when the reserves are not met */
4116 		if (reserve > 0) {
4117 			/*
4118 			 * Blocks with reserved pages will never free, skip
4119 			 * them.
4120 			 */
4121 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4122 			if (pageblock_is_reserved(pfn, block_end_pfn))
4123 				continue;
4124 
4125 			/* If this block is reserved, account for it */
4126 			if (block_migratetype == MIGRATE_RESERVE) {
4127 				reserve--;
4128 				continue;
4129 			}
4130 
4131 			/* Suitable for reserving if this block is movable */
4132 			if (block_migratetype == MIGRATE_MOVABLE) {
4133 				set_pageblock_migratetype(page,
4134 							MIGRATE_RESERVE);
4135 				move_freepages_block(zone, page,
4136 							MIGRATE_RESERVE);
4137 				reserve--;
4138 				continue;
4139 			}
4140 		} else if (!old_reserve) {
4141 			/*
4142 			 * At boot time we don't need to scan the whole zone
4143 			 * for turning off MIGRATE_RESERVE.
4144 			 */
4145 			break;
4146 		}
4147 
4148 		/*
4149 		 * If the reserve is met and this is a previous reserved block,
4150 		 * take it back
4151 		 */
4152 		if (block_migratetype == MIGRATE_RESERVE) {
4153 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4154 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4155 		}
4156 	}
4157 }
4158 
4159 /*
4160  * Initially all pages are reserved - free ones are freed
4161  * up by free_all_bootmem() once the early boot process is
4162  * done. Non-atomic initialization, single-pass.
4163  */
4164 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4165 		unsigned long start_pfn, enum memmap_context context)
4166 {
4167 	struct page *page;
4168 	unsigned long end_pfn = start_pfn + size;
4169 	unsigned long pfn;
4170 	struct zone *z;
4171 
4172 	if (highest_memmap_pfn < end_pfn - 1)
4173 		highest_memmap_pfn = end_pfn - 1;
4174 
4175 	z = &NODE_DATA(nid)->node_zones[zone];
4176 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4177 		/*
4178 		 * There can be holes in boot-time mem_map[]s
4179 		 * handed to this function.  They do not
4180 		 * exist on hotplugged memory.
4181 		 */
4182 		if (context == MEMMAP_EARLY) {
4183 			if (!early_pfn_valid(pfn))
4184 				continue;
4185 			if (!early_pfn_in_nid(pfn, nid))
4186 				continue;
4187 		}
4188 		page = pfn_to_page(pfn);
4189 		set_page_links(page, zone, nid, pfn);
4190 		mminit_verify_page_links(page, zone, nid, pfn);
4191 		init_page_count(page);
4192 		page_mapcount_reset(page);
4193 		page_cpupid_reset_last(page);
4194 		SetPageReserved(page);
4195 		/*
4196 		 * Mark the block movable so that blocks are reserved for
4197 		 * movable at startup. This will force kernel allocations
4198 		 * to reserve their blocks rather than leaking throughout
4199 		 * the address space during boot when many long-lived
4200 		 * kernel allocations are made. Later some blocks near
4201 		 * the start are marked MIGRATE_RESERVE by
4202 		 * setup_zone_migrate_reserve()
4203 		 *
4204 		 * bitmap is created for zone's valid pfn range. but memmap
4205 		 * can be created for invalid pages (for alignment)
4206 		 * check here not to call set_pageblock_migratetype() against
4207 		 * pfn out of zone.
4208 		 */
4209 		if ((z->zone_start_pfn <= pfn)
4210 		    && (pfn < zone_end_pfn(z))
4211 		    && !(pfn & (pageblock_nr_pages - 1)))
4212 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4213 
4214 		INIT_LIST_HEAD(&page->lru);
4215 #ifdef WANT_PAGE_VIRTUAL
4216 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4217 		if (!is_highmem_idx(zone))
4218 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4219 #endif
4220 	}
4221 }
4222 
4223 static void __meminit zone_init_free_lists(struct zone *zone)
4224 {
4225 	unsigned int order, t;
4226 	for_each_migratetype_order(order, t) {
4227 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4228 		zone->free_area[order].nr_free = 0;
4229 	}
4230 }
4231 
4232 #ifndef __HAVE_ARCH_MEMMAP_INIT
4233 #define memmap_init(size, nid, zone, start_pfn) \
4234 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4235 #endif
4236 
4237 static int zone_batchsize(struct zone *zone)
4238 {
4239 #ifdef CONFIG_MMU
4240 	int batch;
4241 
4242 	/*
4243 	 * The per-cpu-pages pools are set to around 1000th of the
4244 	 * size of the zone.  But no more than 1/2 of a meg.
4245 	 *
4246 	 * OK, so we don't know how big the cache is.  So guess.
4247 	 */
4248 	batch = zone->managed_pages / 1024;
4249 	if (batch * PAGE_SIZE > 512 * 1024)
4250 		batch = (512 * 1024) / PAGE_SIZE;
4251 	batch /= 4;		/* We effectively *= 4 below */
4252 	if (batch < 1)
4253 		batch = 1;
4254 
4255 	/*
4256 	 * Clamp the batch to a 2^n - 1 value. Having a power
4257 	 * of 2 value was found to be more likely to have
4258 	 * suboptimal cache aliasing properties in some cases.
4259 	 *
4260 	 * For example if 2 tasks are alternately allocating
4261 	 * batches of pages, one task can end up with a lot
4262 	 * of pages of one half of the possible page colors
4263 	 * and the other with pages of the other colors.
4264 	 */
4265 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4266 
4267 	return batch;
4268 
4269 #else
4270 	/* The deferral and batching of frees should be suppressed under NOMMU
4271 	 * conditions.
4272 	 *
4273 	 * The problem is that NOMMU needs to be able to allocate large chunks
4274 	 * of contiguous memory as there's no hardware page translation to
4275 	 * assemble apparent contiguous memory from discontiguous pages.
4276 	 *
4277 	 * Queueing large contiguous runs of pages for batching, however,
4278 	 * causes the pages to actually be freed in smaller chunks.  As there
4279 	 * can be a significant delay between the individual batches being
4280 	 * recycled, this leads to the once large chunks of space being
4281 	 * fragmented and becoming unavailable for high-order allocations.
4282 	 */
4283 	return 0;
4284 #endif
4285 }
4286 
4287 /*
4288  * pcp->high and pcp->batch values are related and dependent on one another:
4289  * ->batch must never be higher then ->high.
4290  * The following function updates them in a safe manner without read side
4291  * locking.
4292  *
4293  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4294  * those fields changing asynchronously (acording the the above rule).
4295  *
4296  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4297  * outside of boot time (or some other assurance that no concurrent updaters
4298  * exist).
4299  */
4300 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4301 		unsigned long batch)
4302 {
4303        /* start with a fail safe value for batch */
4304 	pcp->batch = 1;
4305 	smp_wmb();
4306 
4307        /* Update high, then batch, in order */
4308 	pcp->high = high;
4309 	smp_wmb();
4310 
4311 	pcp->batch = batch;
4312 }
4313 
4314 /* a companion to pageset_set_high() */
4315 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4316 {
4317 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4318 }
4319 
4320 static void pageset_init(struct per_cpu_pageset *p)
4321 {
4322 	struct per_cpu_pages *pcp;
4323 	int migratetype;
4324 
4325 	memset(p, 0, sizeof(*p));
4326 
4327 	pcp = &p->pcp;
4328 	pcp->count = 0;
4329 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4330 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4331 }
4332 
4333 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4334 {
4335 	pageset_init(p);
4336 	pageset_set_batch(p, batch);
4337 }
4338 
4339 /*
4340  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4341  * to the value high for the pageset p.
4342  */
4343 static void pageset_set_high(struct per_cpu_pageset *p,
4344 				unsigned long high)
4345 {
4346 	unsigned long batch = max(1UL, high / 4);
4347 	if ((high / 4) > (PAGE_SHIFT * 8))
4348 		batch = PAGE_SHIFT * 8;
4349 
4350 	pageset_update(&p->pcp, high, batch);
4351 }
4352 
4353 static void pageset_set_high_and_batch(struct zone *zone,
4354 				       struct per_cpu_pageset *pcp)
4355 {
4356 	if (percpu_pagelist_fraction)
4357 		pageset_set_high(pcp,
4358 			(zone->managed_pages /
4359 				percpu_pagelist_fraction));
4360 	else
4361 		pageset_set_batch(pcp, zone_batchsize(zone));
4362 }
4363 
4364 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4365 {
4366 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4367 
4368 	pageset_init(pcp);
4369 	pageset_set_high_and_batch(zone, pcp);
4370 }
4371 
4372 static void __meminit setup_zone_pageset(struct zone *zone)
4373 {
4374 	int cpu;
4375 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4376 	for_each_possible_cpu(cpu)
4377 		zone_pageset_init(zone, cpu);
4378 }
4379 
4380 /*
4381  * Allocate per cpu pagesets and initialize them.
4382  * Before this call only boot pagesets were available.
4383  */
4384 void __init setup_per_cpu_pageset(void)
4385 {
4386 	struct zone *zone;
4387 
4388 	for_each_populated_zone(zone)
4389 		setup_zone_pageset(zone);
4390 }
4391 
4392 static noinline __init_refok
4393 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4394 {
4395 	int i;
4396 	size_t alloc_size;
4397 
4398 	/*
4399 	 * The per-page waitqueue mechanism uses hashed waitqueues
4400 	 * per zone.
4401 	 */
4402 	zone->wait_table_hash_nr_entries =
4403 		 wait_table_hash_nr_entries(zone_size_pages);
4404 	zone->wait_table_bits =
4405 		wait_table_bits(zone->wait_table_hash_nr_entries);
4406 	alloc_size = zone->wait_table_hash_nr_entries
4407 					* sizeof(wait_queue_head_t);
4408 
4409 	if (!slab_is_available()) {
4410 		zone->wait_table = (wait_queue_head_t *)
4411 			memblock_virt_alloc_node_nopanic(
4412 				alloc_size, zone->zone_pgdat->node_id);
4413 	} else {
4414 		/*
4415 		 * This case means that a zone whose size was 0 gets new memory
4416 		 * via memory hot-add.
4417 		 * But it may be the case that a new node was hot-added.  In
4418 		 * this case vmalloc() will not be able to use this new node's
4419 		 * memory - this wait_table must be initialized to use this new
4420 		 * node itself as well.
4421 		 * To use this new node's memory, further consideration will be
4422 		 * necessary.
4423 		 */
4424 		zone->wait_table = vmalloc(alloc_size);
4425 	}
4426 	if (!zone->wait_table)
4427 		return -ENOMEM;
4428 
4429 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4430 		init_waitqueue_head(zone->wait_table + i);
4431 
4432 	return 0;
4433 }
4434 
4435 static __meminit void zone_pcp_init(struct zone *zone)
4436 {
4437 	/*
4438 	 * per cpu subsystem is not up at this point. The following code
4439 	 * relies on the ability of the linker to provide the
4440 	 * offset of a (static) per cpu variable into the per cpu area.
4441 	 */
4442 	zone->pageset = &boot_pageset;
4443 
4444 	if (populated_zone(zone))
4445 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4446 			zone->name, zone->present_pages,
4447 					 zone_batchsize(zone));
4448 }
4449 
4450 int __meminit init_currently_empty_zone(struct zone *zone,
4451 					unsigned long zone_start_pfn,
4452 					unsigned long size,
4453 					enum memmap_context context)
4454 {
4455 	struct pglist_data *pgdat = zone->zone_pgdat;
4456 	int ret;
4457 	ret = zone_wait_table_init(zone, size);
4458 	if (ret)
4459 		return ret;
4460 	pgdat->nr_zones = zone_idx(zone) + 1;
4461 
4462 	zone->zone_start_pfn = zone_start_pfn;
4463 
4464 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4465 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4466 			pgdat->node_id,
4467 			(unsigned long)zone_idx(zone),
4468 			zone_start_pfn, (zone_start_pfn + size));
4469 
4470 	zone_init_free_lists(zone);
4471 
4472 	return 0;
4473 }
4474 
4475 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4476 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4477 /*
4478  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4479  */
4480 int __meminit __early_pfn_to_nid(unsigned long pfn)
4481 {
4482 	unsigned long start_pfn, end_pfn;
4483 	int nid;
4484 	/*
4485 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4486 	 * when the kernel is running single-threaded.
4487 	 */
4488 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4489 	static int __meminitdata last_nid;
4490 
4491 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4492 		return last_nid;
4493 
4494 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4495 	if (nid != -1) {
4496 		last_start_pfn = start_pfn;
4497 		last_end_pfn = end_pfn;
4498 		last_nid = nid;
4499 	}
4500 
4501 	return nid;
4502 }
4503 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4504 
4505 int __meminit early_pfn_to_nid(unsigned long pfn)
4506 {
4507 	int nid;
4508 
4509 	nid = __early_pfn_to_nid(pfn);
4510 	if (nid >= 0)
4511 		return nid;
4512 	/* just returns 0 */
4513 	return 0;
4514 }
4515 
4516 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4517 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4518 {
4519 	int nid;
4520 
4521 	nid = __early_pfn_to_nid(pfn);
4522 	if (nid >= 0 && nid != node)
4523 		return false;
4524 	return true;
4525 }
4526 #endif
4527 
4528 /**
4529  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4530  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4531  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4532  *
4533  * If an architecture guarantees that all ranges registered contain no holes
4534  * and may be freed, this this function may be used instead of calling
4535  * memblock_free_early_nid() manually.
4536  */
4537 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4538 {
4539 	unsigned long start_pfn, end_pfn;
4540 	int i, this_nid;
4541 
4542 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4543 		start_pfn = min(start_pfn, max_low_pfn);
4544 		end_pfn = min(end_pfn, max_low_pfn);
4545 
4546 		if (start_pfn < end_pfn)
4547 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4548 					(end_pfn - start_pfn) << PAGE_SHIFT,
4549 					this_nid);
4550 	}
4551 }
4552 
4553 /**
4554  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4555  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4556  *
4557  * If an architecture guarantees that all ranges registered contain no holes and may
4558  * be freed, this function may be used instead of calling memory_present() manually.
4559  */
4560 void __init sparse_memory_present_with_active_regions(int nid)
4561 {
4562 	unsigned long start_pfn, end_pfn;
4563 	int i, this_nid;
4564 
4565 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4566 		memory_present(this_nid, start_pfn, end_pfn);
4567 }
4568 
4569 /**
4570  * get_pfn_range_for_nid - Return the start and end page frames for a node
4571  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4572  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4573  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4574  *
4575  * It returns the start and end page frame of a node based on information
4576  * provided by memblock_set_node(). If called for a node
4577  * with no available memory, a warning is printed and the start and end
4578  * PFNs will be 0.
4579  */
4580 void __meminit get_pfn_range_for_nid(unsigned int nid,
4581 			unsigned long *start_pfn, unsigned long *end_pfn)
4582 {
4583 	unsigned long this_start_pfn, this_end_pfn;
4584 	int i;
4585 
4586 	*start_pfn = -1UL;
4587 	*end_pfn = 0;
4588 
4589 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4590 		*start_pfn = min(*start_pfn, this_start_pfn);
4591 		*end_pfn = max(*end_pfn, this_end_pfn);
4592 	}
4593 
4594 	if (*start_pfn == -1UL)
4595 		*start_pfn = 0;
4596 }
4597 
4598 /*
4599  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4600  * assumption is made that zones within a node are ordered in monotonic
4601  * increasing memory addresses so that the "highest" populated zone is used
4602  */
4603 static void __init find_usable_zone_for_movable(void)
4604 {
4605 	int zone_index;
4606 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4607 		if (zone_index == ZONE_MOVABLE)
4608 			continue;
4609 
4610 		if (arch_zone_highest_possible_pfn[zone_index] >
4611 				arch_zone_lowest_possible_pfn[zone_index])
4612 			break;
4613 	}
4614 
4615 	VM_BUG_ON(zone_index == -1);
4616 	movable_zone = zone_index;
4617 }
4618 
4619 /*
4620  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4621  * because it is sized independent of architecture. Unlike the other zones,
4622  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4623  * in each node depending on the size of each node and how evenly kernelcore
4624  * is distributed. This helper function adjusts the zone ranges
4625  * provided by the architecture for a given node by using the end of the
4626  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4627  * zones within a node are in order of monotonic increases memory addresses
4628  */
4629 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4630 					unsigned long zone_type,
4631 					unsigned long node_start_pfn,
4632 					unsigned long node_end_pfn,
4633 					unsigned long *zone_start_pfn,
4634 					unsigned long *zone_end_pfn)
4635 {
4636 	/* Only adjust if ZONE_MOVABLE is on this node */
4637 	if (zone_movable_pfn[nid]) {
4638 		/* Size ZONE_MOVABLE */
4639 		if (zone_type == ZONE_MOVABLE) {
4640 			*zone_start_pfn = zone_movable_pfn[nid];
4641 			*zone_end_pfn = min(node_end_pfn,
4642 				arch_zone_highest_possible_pfn[movable_zone]);
4643 
4644 		/* Adjust for ZONE_MOVABLE starting within this range */
4645 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4646 				*zone_end_pfn > zone_movable_pfn[nid]) {
4647 			*zone_end_pfn = zone_movable_pfn[nid];
4648 
4649 		/* Check if this whole range is within ZONE_MOVABLE */
4650 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4651 			*zone_start_pfn = *zone_end_pfn;
4652 	}
4653 }
4654 
4655 /*
4656  * Return the number of pages a zone spans in a node, including holes
4657  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4658  */
4659 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4660 					unsigned long zone_type,
4661 					unsigned long node_start_pfn,
4662 					unsigned long node_end_pfn,
4663 					unsigned long *ignored)
4664 {
4665 	unsigned long zone_start_pfn, zone_end_pfn;
4666 
4667 	/* Get the start and end of the zone */
4668 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4669 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4670 	adjust_zone_range_for_zone_movable(nid, zone_type,
4671 				node_start_pfn, node_end_pfn,
4672 				&zone_start_pfn, &zone_end_pfn);
4673 
4674 	/* Check that this node has pages within the zone's required range */
4675 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4676 		return 0;
4677 
4678 	/* Move the zone boundaries inside the node if necessary */
4679 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4680 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4681 
4682 	/* Return the spanned pages */
4683 	return zone_end_pfn - zone_start_pfn;
4684 }
4685 
4686 /*
4687  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4688  * then all holes in the requested range will be accounted for.
4689  */
4690 unsigned long __meminit __absent_pages_in_range(int nid,
4691 				unsigned long range_start_pfn,
4692 				unsigned long range_end_pfn)
4693 {
4694 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4695 	unsigned long start_pfn, end_pfn;
4696 	int i;
4697 
4698 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4699 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4700 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4701 		nr_absent -= end_pfn - start_pfn;
4702 	}
4703 	return nr_absent;
4704 }
4705 
4706 /**
4707  * absent_pages_in_range - Return number of page frames in holes within a range
4708  * @start_pfn: The start PFN to start searching for holes
4709  * @end_pfn: The end PFN to stop searching for holes
4710  *
4711  * It returns the number of pages frames in memory holes within a range.
4712  */
4713 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4714 							unsigned long end_pfn)
4715 {
4716 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4717 }
4718 
4719 /* Return the number of page frames in holes in a zone on a node */
4720 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4721 					unsigned long zone_type,
4722 					unsigned long node_start_pfn,
4723 					unsigned long node_end_pfn,
4724 					unsigned long *ignored)
4725 {
4726 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4727 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4728 	unsigned long zone_start_pfn, zone_end_pfn;
4729 
4730 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4731 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4732 
4733 	adjust_zone_range_for_zone_movable(nid, zone_type,
4734 			node_start_pfn, node_end_pfn,
4735 			&zone_start_pfn, &zone_end_pfn);
4736 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4737 }
4738 
4739 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4740 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4741 					unsigned long zone_type,
4742 					unsigned long node_start_pfn,
4743 					unsigned long node_end_pfn,
4744 					unsigned long *zones_size)
4745 {
4746 	return zones_size[zone_type];
4747 }
4748 
4749 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4750 						unsigned long zone_type,
4751 						unsigned long node_start_pfn,
4752 						unsigned long node_end_pfn,
4753 						unsigned long *zholes_size)
4754 {
4755 	if (!zholes_size)
4756 		return 0;
4757 
4758 	return zholes_size[zone_type];
4759 }
4760 
4761 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4762 
4763 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4764 						unsigned long node_start_pfn,
4765 						unsigned long node_end_pfn,
4766 						unsigned long *zones_size,
4767 						unsigned long *zholes_size)
4768 {
4769 	unsigned long realtotalpages, totalpages = 0;
4770 	enum zone_type i;
4771 
4772 	for (i = 0; i < MAX_NR_ZONES; i++)
4773 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4774 							 node_start_pfn,
4775 							 node_end_pfn,
4776 							 zones_size);
4777 	pgdat->node_spanned_pages = totalpages;
4778 
4779 	realtotalpages = totalpages;
4780 	for (i = 0; i < MAX_NR_ZONES; i++)
4781 		realtotalpages -=
4782 			zone_absent_pages_in_node(pgdat->node_id, i,
4783 						  node_start_pfn, node_end_pfn,
4784 						  zholes_size);
4785 	pgdat->node_present_pages = realtotalpages;
4786 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4787 							realtotalpages);
4788 }
4789 
4790 #ifndef CONFIG_SPARSEMEM
4791 /*
4792  * Calculate the size of the zone->blockflags rounded to an unsigned long
4793  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4794  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4795  * round what is now in bits to nearest long in bits, then return it in
4796  * bytes.
4797  */
4798 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4799 {
4800 	unsigned long usemapsize;
4801 
4802 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4803 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4804 	usemapsize = usemapsize >> pageblock_order;
4805 	usemapsize *= NR_PAGEBLOCK_BITS;
4806 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4807 
4808 	return usemapsize / 8;
4809 }
4810 
4811 static void __init setup_usemap(struct pglist_data *pgdat,
4812 				struct zone *zone,
4813 				unsigned long zone_start_pfn,
4814 				unsigned long zonesize)
4815 {
4816 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4817 	zone->pageblock_flags = NULL;
4818 	if (usemapsize)
4819 		zone->pageblock_flags =
4820 			memblock_virt_alloc_node_nopanic(usemapsize,
4821 							 pgdat->node_id);
4822 }
4823 #else
4824 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4825 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4826 #endif /* CONFIG_SPARSEMEM */
4827 
4828 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4829 
4830 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4831 void __paginginit set_pageblock_order(void)
4832 {
4833 	unsigned int order;
4834 
4835 	/* Check that pageblock_nr_pages has not already been setup */
4836 	if (pageblock_order)
4837 		return;
4838 
4839 	if (HPAGE_SHIFT > PAGE_SHIFT)
4840 		order = HUGETLB_PAGE_ORDER;
4841 	else
4842 		order = MAX_ORDER - 1;
4843 
4844 	/*
4845 	 * Assume the largest contiguous order of interest is a huge page.
4846 	 * This value may be variable depending on boot parameters on IA64 and
4847 	 * powerpc.
4848 	 */
4849 	pageblock_order = order;
4850 }
4851 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4852 
4853 /*
4854  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4855  * is unused as pageblock_order is set at compile-time. See
4856  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4857  * the kernel config
4858  */
4859 void __paginginit set_pageblock_order(void)
4860 {
4861 }
4862 
4863 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4864 
4865 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4866 						   unsigned long present_pages)
4867 {
4868 	unsigned long pages = spanned_pages;
4869 
4870 	/*
4871 	 * Provide a more accurate estimation if there are holes within
4872 	 * the zone and SPARSEMEM is in use. If there are holes within the
4873 	 * zone, each populated memory region may cost us one or two extra
4874 	 * memmap pages due to alignment because memmap pages for each
4875 	 * populated regions may not naturally algined on page boundary.
4876 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4877 	 */
4878 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4879 	    IS_ENABLED(CONFIG_SPARSEMEM))
4880 		pages = present_pages;
4881 
4882 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4883 }
4884 
4885 /*
4886  * Set up the zone data structures:
4887  *   - mark all pages reserved
4888  *   - mark all memory queues empty
4889  *   - clear the memory bitmaps
4890  *
4891  * NOTE: pgdat should get zeroed by caller.
4892  */
4893 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4894 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4895 		unsigned long *zones_size, unsigned long *zholes_size)
4896 {
4897 	enum zone_type j;
4898 	int nid = pgdat->node_id;
4899 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4900 	int ret;
4901 
4902 	pgdat_resize_init(pgdat);
4903 #ifdef CONFIG_NUMA_BALANCING
4904 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4905 	pgdat->numabalancing_migrate_nr_pages = 0;
4906 	pgdat->numabalancing_migrate_next_window = jiffies;
4907 #endif
4908 	init_waitqueue_head(&pgdat->kswapd_wait);
4909 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4910 	pgdat_page_ext_init(pgdat);
4911 
4912 	for (j = 0; j < MAX_NR_ZONES; j++) {
4913 		struct zone *zone = pgdat->node_zones + j;
4914 		unsigned long size, realsize, freesize, memmap_pages;
4915 
4916 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4917 						  node_end_pfn, zones_size);
4918 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4919 								node_start_pfn,
4920 								node_end_pfn,
4921 								zholes_size);
4922 
4923 		/*
4924 		 * Adjust freesize so that it accounts for how much memory
4925 		 * is used by this zone for memmap. This affects the watermark
4926 		 * and per-cpu initialisations
4927 		 */
4928 		memmap_pages = calc_memmap_size(size, realsize);
4929 		if (!is_highmem_idx(j)) {
4930 			if (freesize >= memmap_pages) {
4931 				freesize -= memmap_pages;
4932 				if (memmap_pages)
4933 					printk(KERN_DEBUG
4934 					       "  %s zone: %lu pages used for memmap\n",
4935 					       zone_names[j], memmap_pages);
4936 			} else
4937 				printk(KERN_WARNING
4938 					"  %s zone: %lu pages exceeds freesize %lu\n",
4939 					zone_names[j], memmap_pages, freesize);
4940 		}
4941 
4942 		/* Account for reserved pages */
4943 		if (j == 0 && freesize > dma_reserve) {
4944 			freesize -= dma_reserve;
4945 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4946 					zone_names[0], dma_reserve);
4947 		}
4948 
4949 		if (!is_highmem_idx(j))
4950 			nr_kernel_pages += freesize;
4951 		/* Charge for highmem memmap if there are enough kernel pages */
4952 		else if (nr_kernel_pages > memmap_pages * 2)
4953 			nr_kernel_pages -= memmap_pages;
4954 		nr_all_pages += freesize;
4955 
4956 		zone->spanned_pages = size;
4957 		zone->present_pages = realsize;
4958 		/*
4959 		 * Set an approximate value for lowmem here, it will be adjusted
4960 		 * when the bootmem allocator frees pages into the buddy system.
4961 		 * And all highmem pages will be managed by the buddy system.
4962 		 */
4963 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4964 #ifdef CONFIG_NUMA
4965 		zone->node = nid;
4966 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4967 						/ 100;
4968 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4969 #endif
4970 		zone->name = zone_names[j];
4971 		spin_lock_init(&zone->lock);
4972 		spin_lock_init(&zone->lru_lock);
4973 		zone_seqlock_init(zone);
4974 		zone->zone_pgdat = pgdat;
4975 		zone_pcp_init(zone);
4976 
4977 		/* For bootup, initialized properly in watermark setup */
4978 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4979 
4980 		lruvec_init(&zone->lruvec);
4981 		if (!size)
4982 			continue;
4983 
4984 		set_pageblock_order();
4985 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4986 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4987 						size, MEMMAP_EARLY);
4988 		BUG_ON(ret);
4989 		memmap_init(size, nid, j, zone_start_pfn);
4990 		zone_start_pfn += size;
4991 	}
4992 }
4993 
4994 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4995 {
4996 	/* Skip empty nodes */
4997 	if (!pgdat->node_spanned_pages)
4998 		return;
4999 
5000 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5001 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5002 	if (!pgdat->node_mem_map) {
5003 		unsigned long size, start, end;
5004 		struct page *map;
5005 
5006 		/*
5007 		 * The zone's endpoints aren't required to be MAX_ORDER
5008 		 * aligned but the node_mem_map endpoints must be in order
5009 		 * for the buddy allocator to function correctly.
5010 		 */
5011 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5012 		end = pgdat_end_pfn(pgdat);
5013 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5014 		size =  (end - start) * sizeof(struct page);
5015 		map = alloc_remap(pgdat->node_id, size);
5016 		if (!map)
5017 			map = memblock_virt_alloc_node_nopanic(size,
5018 							       pgdat->node_id);
5019 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5020 	}
5021 #ifndef CONFIG_NEED_MULTIPLE_NODES
5022 	/*
5023 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5024 	 */
5025 	if (pgdat == NODE_DATA(0)) {
5026 		mem_map = NODE_DATA(0)->node_mem_map;
5027 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5028 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5029 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5030 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5031 	}
5032 #endif
5033 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5034 }
5035 
5036 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5037 		unsigned long node_start_pfn, unsigned long *zholes_size)
5038 {
5039 	pg_data_t *pgdat = NODE_DATA(nid);
5040 	unsigned long start_pfn = 0;
5041 	unsigned long end_pfn = 0;
5042 
5043 	/* pg_data_t should be reset to zero when it's allocated */
5044 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5045 
5046 	pgdat->node_id = nid;
5047 	pgdat->node_start_pfn = node_start_pfn;
5048 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5049 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5050 	printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5051 			(u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
5052 #endif
5053 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5054 				  zones_size, zholes_size);
5055 
5056 	alloc_node_mem_map(pgdat);
5057 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5058 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5059 		nid, (unsigned long)pgdat,
5060 		(unsigned long)pgdat->node_mem_map);
5061 #endif
5062 
5063 	free_area_init_core(pgdat, start_pfn, end_pfn,
5064 			    zones_size, zholes_size);
5065 }
5066 
5067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5068 
5069 #if MAX_NUMNODES > 1
5070 /*
5071  * Figure out the number of possible node ids.
5072  */
5073 void __init setup_nr_node_ids(void)
5074 {
5075 	unsigned int node;
5076 	unsigned int highest = 0;
5077 
5078 	for_each_node_mask(node, node_possible_map)
5079 		highest = node;
5080 	nr_node_ids = highest + 1;
5081 }
5082 #endif
5083 
5084 /**
5085  * node_map_pfn_alignment - determine the maximum internode alignment
5086  *
5087  * This function should be called after node map is populated and sorted.
5088  * It calculates the maximum power of two alignment which can distinguish
5089  * all the nodes.
5090  *
5091  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5092  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5093  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5094  * shifted, 1GiB is enough and this function will indicate so.
5095  *
5096  * This is used to test whether pfn -> nid mapping of the chosen memory
5097  * model has fine enough granularity to avoid incorrect mapping for the
5098  * populated node map.
5099  *
5100  * Returns the determined alignment in pfn's.  0 if there is no alignment
5101  * requirement (single node).
5102  */
5103 unsigned long __init node_map_pfn_alignment(void)
5104 {
5105 	unsigned long accl_mask = 0, last_end = 0;
5106 	unsigned long start, end, mask;
5107 	int last_nid = -1;
5108 	int i, nid;
5109 
5110 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5111 		if (!start || last_nid < 0 || last_nid == nid) {
5112 			last_nid = nid;
5113 			last_end = end;
5114 			continue;
5115 		}
5116 
5117 		/*
5118 		 * Start with a mask granular enough to pin-point to the
5119 		 * start pfn and tick off bits one-by-one until it becomes
5120 		 * too coarse to separate the current node from the last.
5121 		 */
5122 		mask = ~((1 << __ffs(start)) - 1);
5123 		while (mask && last_end <= (start & (mask << 1)))
5124 			mask <<= 1;
5125 
5126 		/* accumulate all internode masks */
5127 		accl_mask |= mask;
5128 	}
5129 
5130 	/* convert mask to number of pages */
5131 	return ~accl_mask + 1;
5132 }
5133 
5134 /* Find the lowest pfn for a node */
5135 static unsigned long __init find_min_pfn_for_node(int nid)
5136 {
5137 	unsigned long min_pfn = ULONG_MAX;
5138 	unsigned long start_pfn;
5139 	int i;
5140 
5141 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5142 		min_pfn = min(min_pfn, start_pfn);
5143 
5144 	if (min_pfn == ULONG_MAX) {
5145 		printk(KERN_WARNING
5146 			"Could not find start_pfn for node %d\n", nid);
5147 		return 0;
5148 	}
5149 
5150 	return min_pfn;
5151 }
5152 
5153 /**
5154  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5155  *
5156  * It returns the minimum PFN based on information provided via
5157  * memblock_set_node().
5158  */
5159 unsigned long __init find_min_pfn_with_active_regions(void)
5160 {
5161 	return find_min_pfn_for_node(MAX_NUMNODES);
5162 }
5163 
5164 /*
5165  * early_calculate_totalpages()
5166  * Sum pages in active regions for movable zone.
5167  * Populate N_MEMORY for calculating usable_nodes.
5168  */
5169 static unsigned long __init early_calculate_totalpages(void)
5170 {
5171 	unsigned long totalpages = 0;
5172 	unsigned long start_pfn, end_pfn;
5173 	int i, nid;
5174 
5175 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5176 		unsigned long pages = end_pfn - start_pfn;
5177 
5178 		totalpages += pages;
5179 		if (pages)
5180 			node_set_state(nid, N_MEMORY);
5181 	}
5182 	return totalpages;
5183 }
5184 
5185 /*
5186  * Find the PFN the Movable zone begins in each node. Kernel memory
5187  * is spread evenly between nodes as long as the nodes have enough
5188  * memory. When they don't, some nodes will have more kernelcore than
5189  * others
5190  */
5191 static void __init find_zone_movable_pfns_for_nodes(void)
5192 {
5193 	int i, nid;
5194 	unsigned long usable_startpfn;
5195 	unsigned long kernelcore_node, kernelcore_remaining;
5196 	/* save the state before borrow the nodemask */
5197 	nodemask_t saved_node_state = node_states[N_MEMORY];
5198 	unsigned long totalpages = early_calculate_totalpages();
5199 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5200 	struct memblock_region *r;
5201 
5202 	/* Need to find movable_zone earlier when movable_node is specified. */
5203 	find_usable_zone_for_movable();
5204 
5205 	/*
5206 	 * If movable_node is specified, ignore kernelcore and movablecore
5207 	 * options.
5208 	 */
5209 	if (movable_node_is_enabled()) {
5210 		for_each_memblock(memory, r) {
5211 			if (!memblock_is_hotpluggable(r))
5212 				continue;
5213 
5214 			nid = r->nid;
5215 
5216 			usable_startpfn = PFN_DOWN(r->base);
5217 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5218 				min(usable_startpfn, zone_movable_pfn[nid]) :
5219 				usable_startpfn;
5220 		}
5221 
5222 		goto out2;
5223 	}
5224 
5225 	/*
5226 	 * If movablecore=nn[KMG] was specified, calculate what size of
5227 	 * kernelcore that corresponds so that memory usable for
5228 	 * any allocation type is evenly spread. If both kernelcore
5229 	 * and movablecore are specified, then the value of kernelcore
5230 	 * will be used for required_kernelcore if it's greater than
5231 	 * what movablecore would have allowed.
5232 	 */
5233 	if (required_movablecore) {
5234 		unsigned long corepages;
5235 
5236 		/*
5237 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5238 		 * was requested by the user
5239 		 */
5240 		required_movablecore =
5241 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5242 		corepages = totalpages - required_movablecore;
5243 
5244 		required_kernelcore = max(required_kernelcore, corepages);
5245 	}
5246 
5247 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5248 	if (!required_kernelcore)
5249 		goto out;
5250 
5251 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5252 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5253 
5254 restart:
5255 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5256 	kernelcore_node = required_kernelcore / usable_nodes;
5257 	for_each_node_state(nid, N_MEMORY) {
5258 		unsigned long start_pfn, end_pfn;
5259 
5260 		/*
5261 		 * Recalculate kernelcore_node if the division per node
5262 		 * now exceeds what is necessary to satisfy the requested
5263 		 * amount of memory for the kernel
5264 		 */
5265 		if (required_kernelcore < kernelcore_node)
5266 			kernelcore_node = required_kernelcore / usable_nodes;
5267 
5268 		/*
5269 		 * As the map is walked, we track how much memory is usable
5270 		 * by the kernel using kernelcore_remaining. When it is
5271 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5272 		 */
5273 		kernelcore_remaining = kernelcore_node;
5274 
5275 		/* Go through each range of PFNs within this node */
5276 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5277 			unsigned long size_pages;
5278 
5279 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5280 			if (start_pfn >= end_pfn)
5281 				continue;
5282 
5283 			/* Account for what is only usable for kernelcore */
5284 			if (start_pfn < usable_startpfn) {
5285 				unsigned long kernel_pages;
5286 				kernel_pages = min(end_pfn, usable_startpfn)
5287 								- start_pfn;
5288 
5289 				kernelcore_remaining -= min(kernel_pages,
5290 							kernelcore_remaining);
5291 				required_kernelcore -= min(kernel_pages,
5292 							required_kernelcore);
5293 
5294 				/* Continue if range is now fully accounted */
5295 				if (end_pfn <= usable_startpfn) {
5296 
5297 					/*
5298 					 * Push zone_movable_pfn to the end so
5299 					 * that if we have to rebalance
5300 					 * kernelcore across nodes, we will
5301 					 * not double account here
5302 					 */
5303 					zone_movable_pfn[nid] = end_pfn;
5304 					continue;
5305 				}
5306 				start_pfn = usable_startpfn;
5307 			}
5308 
5309 			/*
5310 			 * The usable PFN range for ZONE_MOVABLE is from
5311 			 * start_pfn->end_pfn. Calculate size_pages as the
5312 			 * number of pages used as kernelcore
5313 			 */
5314 			size_pages = end_pfn - start_pfn;
5315 			if (size_pages > kernelcore_remaining)
5316 				size_pages = kernelcore_remaining;
5317 			zone_movable_pfn[nid] = start_pfn + size_pages;
5318 
5319 			/*
5320 			 * Some kernelcore has been met, update counts and
5321 			 * break if the kernelcore for this node has been
5322 			 * satisfied
5323 			 */
5324 			required_kernelcore -= min(required_kernelcore,
5325 								size_pages);
5326 			kernelcore_remaining -= size_pages;
5327 			if (!kernelcore_remaining)
5328 				break;
5329 		}
5330 	}
5331 
5332 	/*
5333 	 * If there is still required_kernelcore, we do another pass with one
5334 	 * less node in the count. This will push zone_movable_pfn[nid] further
5335 	 * along on the nodes that still have memory until kernelcore is
5336 	 * satisfied
5337 	 */
5338 	usable_nodes--;
5339 	if (usable_nodes && required_kernelcore > usable_nodes)
5340 		goto restart;
5341 
5342 out2:
5343 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5344 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5345 		zone_movable_pfn[nid] =
5346 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5347 
5348 out:
5349 	/* restore the node_state */
5350 	node_states[N_MEMORY] = saved_node_state;
5351 }
5352 
5353 /* Any regular or high memory on that node ? */
5354 static void check_for_memory(pg_data_t *pgdat, int nid)
5355 {
5356 	enum zone_type zone_type;
5357 
5358 	if (N_MEMORY == N_NORMAL_MEMORY)
5359 		return;
5360 
5361 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5362 		struct zone *zone = &pgdat->node_zones[zone_type];
5363 		if (populated_zone(zone)) {
5364 			node_set_state(nid, N_HIGH_MEMORY);
5365 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5366 			    zone_type <= ZONE_NORMAL)
5367 				node_set_state(nid, N_NORMAL_MEMORY);
5368 			break;
5369 		}
5370 	}
5371 }
5372 
5373 /**
5374  * free_area_init_nodes - Initialise all pg_data_t and zone data
5375  * @max_zone_pfn: an array of max PFNs for each zone
5376  *
5377  * This will call free_area_init_node() for each active node in the system.
5378  * Using the page ranges provided by memblock_set_node(), the size of each
5379  * zone in each node and their holes is calculated. If the maximum PFN
5380  * between two adjacent zones match, it is assumed that the zone is empty.
5381  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5382  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5383  * starts where the previous one ended. For example, ZONE_DMA32 starts
5384  * at arch_max_dma_pfn.
5385  */
5386 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5387 {
5388 	unsigned long start_pfn, end_pfn;
5389 	int i, nid;
5390 
5391 	/* Record where the zone boundaries are */
5392 	memset(arch_zone_lowest_possible_pfn, 0,
5393 				sizeof(arch_zone_lowest_possible_pfn));
5394 	memset(arch_zone_highest_possible_pfn, 0,
5395 				sizeof(arch_zone_highest_possible_pfn));
5396 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5397 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5398 	for (i = 1; i < MAX_NR_ZONES; i++) {
5399 		if (i == ZONE_MOVABLE)
5400 			continue;
5401 		arch_zone_lowest_possible_pfn[i] =
5402 			arch_zone_highest_possible_pfn[i-1];
5403 		arch_zone_highest_possible_pfn[i] =
5404 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5405 	}
5406 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5407 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5408 
5409 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5410 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5411 	find_zone_movable_pfns_for_nodes();
5412 
5413 	/* Print out the zone ranges */
5414 	pr_info("Zone ranges:\n");
5415 	for (i = 0; i < MAX_NR_ZONES; i++) {
5416 		if (i == ZONE_MOVABLE)
5417 			continue;
5418 		pr_info("  %-8s ", zone_names[i]);
5419 		if (arch_zone_lowest_possible_pfn[i] ==
5420 				arch_zone_highest_possible_pfn[i])
5421 			pr_cont("empty\n");
5422 		else
5423 			pr_cont("[mem %0#10lx-%0#10lx]\n",
5424 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5425 				(arch_zone_highest_possible_pfn[i]
5426 					<< PAGE_SHIFT) - 1);
5427 	}
5428 
5429 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5430 	pr_info("Movable zone start for each node\n");
5431 	for (i = 0; i < MAX_NUMNODES; i++) {
5432 		if (zone_movable_pfn[i])
5433 			pr_info("  Node %d: %#010lx\n", i,
5434 			       zone_movable_pfn[i] << PAGE_SHIFT);
5435 	}
5436 
5437 	/* Print out the early node map */
5438 	pr_info("Early memory node ranges\n");
5439 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5440 		pr_info("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5441 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5442 
5443 	/* Initialise every node */
5444 	mminit_verify_pageflags_layout();
5445 	setup_nr_node_ids();
5446 	for_each_online_node(nid) {
5447 		pg_data_t *pgdat = NODE_DATA(nid);
5448 		free_area_init_node(nid, NULL,
5449 				find_min_pfn_for_node(nid), NULL);
5450 
5451 		/* Any memory on that node */
5452 		if (pgdat->node_present_pages)
5453 			node_set_state(nid, N_MEMORY);
5454 		check_for_memory(pgdat, nid);
5455 	}
5456 }
5457 
5458 static int __init cmdline_parse_core(char *p, unsigned long *core)
5459 {
5460 	unsigned long long coremem;
5461 	if (!p)
5462 		return -EINVAL;
5463 
5464 	coremem = memparse(p, &p);
5465 	*core = coremem >> PAGE_SHIFT;
5466 
5467 	/* Paranoid check that UL is enough for the coremem value */
5468 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5469 
5470 	return 0;
5471 }
5472 
5473 /*
5474  * kernelcore=size sets the amount of memory for use for allocations that
5475  * cannot be reclaimed or migrated.
5476  */
5477 static int __init cmdline_parse_kernelcore(char *p)
5478 {
5479 	return cmdline_parse_core(p, &required_kernelcore);
5480 }
5481 
5482 /*
5483  * movablecore=size sets the amount of memory for use for allocations that
5484  * can be reclaimed or migrated.
5485  */
5486 static int __init cmdline_parse_movablecore(char *p)
5487 {
5488 	return cmdline_parse_core(p, &required_movablecore);
5489 }
5490 
5491 early_param("kernelcore", cmdline_parse_kernelcore);
5492 early_param("movablecore", cmdline_parse_movablecore);
5493 
5494 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5495 
5496 void adjust_managed_page_count(struct page *page, long count)
5497 {
5498 	spin_lock(&managed_page_count_lock);
5499 	page_zone(page)->managed_pages += count;
5500 	totalram_pages += count;
5501 #ifdef CONFIG_HIGHMEM
5502 	if (PageHighMem(page))
5503 		totalhigh_pages += count;
5504 #endif
5505 	spin_unlock(&managed_page_count_lock);
5506 }
5507 EXPORT_SYMBOL(adjust_managed_page_count);
5508 
5509 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5510 {
5511 	void *pos;
5512 	unsigned long pages = 0;
5513 
5514 	start = (void *)PAGE_ALIGN((unsigned long)start);
5515 	end = (void *)((unsigned long)end & PAGE_MASK);
5516 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5517 		if ((unsigned int)poison <= 0xFF)
5518 			memset(pos, poison, PAGE_SIZE);
5519 		free_reserved_page(virt_to_page(pos));
5520 	}
5521 
5522 	if (pages && s)
5523 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5524 			s, pages << (PAGE_SHIFT - 10), start, end);
5525 
5526 	return pages;
5527 }
5528 EXPORT_SYMBOL(free_reserved_area);
5529 
5530 #ifdef	CONFIG_HIGHMEM
5531 void free_highmem_page(struct page *page)
5532 {
5533 	__free_reserved_page(page);
5534 	totalram_pages++;
5535 	page_zone(page)->managed_pages++;
5536 	totalhigh_pages++;
5537 }
5538 #endif
5539 
5540 
5541 void __init mem_init_print_info(const char *str)
5542 {
5543 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5544 	unsigned long init_code_size, init_data_size;
5545 
5546 	physpages = get_num_physpages();
5547 	codesize = _etext - _stext;
5548 	datasize = _edata - _sdata;
5549 	rosize = __end_rodata - __start_rodata;
5550 	bss_size = __bss_stop - __bss_start;
5551 	init_data_size = __init_end - __init_begin;
5552 	init_code_size = _einittext - _sinittext;
5553 
5554 	/*
5555 	 * Detect special cases and adjust section sizes accordingly:
5556 	 * 1) .init.* may be embedded into .data sections
5557 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5558 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5559 	 * 3) .rodata.* may be embedded into .text or .data sections.
5560 	 */
5561 #define adj_init_size(start, end, size, pos, adj) \
5562 	do { \
5563 		if (start <= pos && pos < end && size > adj) \
5564 			size -= adj; \
5565 	} while (0)
5566 
5567 	adj_init_size(__init_begin, __init_end, init_data_size,
5568 		     _sinittext, init_code_size);
5569 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5570 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5571 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5572 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5573 
5574 #undef	adj_init_size
5575 
5576 	pr_info("Memory: %luK/%luK available "
5577 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5578 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5579 #ifdef	CONFIG_HIGHMEM
5580 	       ", %luK highmem"
5581 #endif
5582 	       "%s%s)\n",
5583 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5584 	       codesize >> 10, datasize >> 10, rosize >> 10,
5585 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5586 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5587 	       totalcma_pages << (PAGE_SHIFT-10),
5588 #ifdef	CONFIG_HIGHMEM
5589 	       totalhigh_pages << (PAGE_SHIFT-10),
5590 #endif
5591 	       str ? ", " : "", str ? str : "");
5592 }
5593 
5594 /**
5595  * set_dma_reserve - set the specified number of pages reserved in the first zone
5596  * @new_dma_reserve: The number of pages to mark reserved
5597  *
5598  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5599  * In the DMA zone, a significant percentage may be consumed by kernel image
5600  * and other unfreeable allocations which can skew the watermarks badly. This
5601  * function may optionally be used to account for unfreeable pages in the
5602  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5603  * smaller per-cpu batchsize.
5604  */
5605 void __init set_dma_reserve(unsigned long new_dma_reserve)
5606 {
5607 	dma_reserve = new_dma_reserve;
5608 }
5609 
5610 void __init free_area_init(unsigned long *zones_size)
5611 {
5612 	free_area_init_node(0, zones_size,
5613 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5614 }
5615 
5616 static int page_alloc_cpu_notify(struct notifier_block *self,
5617 				 unsigned long action, void *hcpu)
5618 {
5619 	int cpu = (unsigned long)hcpu;
5620 
5621 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5622 		lru_add_drain_cpu(cpu);
5623 		drain_pages(cpu);
5624 
5625 		/*
5626 		 * Spill the event counters of the dead processor
5627 		 * into the current processors event counters.
5628 		 * This artificially elevates the count of the current
5629 		 * processor.
5630 		 */
5631 		vm_events_fold_cpu(cpu);
5632 
5633 		/*
5634 		 * Zero the differential counters of the dead processor
5635 		 * so that the vm statistics are consistent.
5636 		 *
5637 		 * This is only okay since the processor is dead and cannot
5638 		 * race with what we are doing.
5639 		 */
5640 		cpu_vm_stats_fold(cpu);
5641 	}
5642 	return NOTIFY_OK;
5643 }
5644 
5645 void __init page_alloc_init(void)
5646 {
5647 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5648 }
5649 
5650 /*
5651  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5652  *	or min_free_kbytes changes.
5653  */
5654 static void calculate_totalreserve_pages(void)
5655 {
5656 	struct pglist_data *pgdat;
5657 	unsigned long reserve_pages = 0;
5658 	enum zone_type i, j;
5659 
5660 	for_each_online_pgdat(pgdat) {
5661 		for (i = 0; i < MAX_NR_ZONES; i++) {
5662 			struct zone *zone = pgdat->node_zones + i;
5663 			long max = 0;
5664 
5665 			/* Find valid and maximum lowmem_reserve in the zone */
5666 			for (j = i; j < MAX_NR_ZONES; j++) {
5667 				if (zone->lowmem_reserve[j] > max)
5668 					max = zone->lowmem_reserve[j];
5669 			}
5670 
5671 			/* we treat the high watermark as reserved pages. */
5672 			max += high_wmark_pages(zone);
5673 
5674 			if (max > zone->managed_pages)
5675 				max = zone->managed_pages;
5676 			reserve_pages += max;
5677 			/*
5678 			 * Lowmem reserves are not available to
5679 			 * GFP_HIGHUSER page cache allocations and
5680 			 * kswapd tries to balance zones to their high
5681 			 * watermark.  As a result, neither should be
5682 			 * regarded as dirtyable memory, to prevent a
5683 			 * situation where reclaim has to clean pages
5684 			 * in order to balance the zones.
5685 			 */
5686 			zone->dirty_balance_reserve = max;
5687 		}
5688 	}
5689 	dirty_balance_reserve = reserve_pages;
5690 	totalreserve_pages = reserve_pages;
5691 }
5692 
5693 /*
5694  * setup_per_zone_lowmem_reserve - called whenever
5695  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5696  *	has a correct pages reserved value, so an adequate number of
5697  *	pages are left in the zone after a successful __alloc_pages().
5698  */
5699 static void setup_per_zone_lowmem_reserve(void)
5700 {
5701 	struct pglist_data *pgdat;
5702 	enum zone_type j, idx;
5703 
5704 	for_each_online_pgdat(pgdat) {
5705 		for (j = 0; j < MAX_NR_ZONES; j++) {
5706 			struct zone *zone = pgdat->node_zones + j;
5707 			unsigned long managed_pages = zone->managed_pages;
5708 
5709 			zone->lowmem_reserve[j] = 0;
5710 
5711 			idx = j;
5712 			while (idx) {
5713 				struct zone *lower_zone;
5714 
5715 				idx--;
5716 
5717 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5718 					sysctl_lowmem_reserve_ratio[idx] = 1;
5719 
5720 				lower_zone = pgdat->node_zones + idx;
5721 				lower_zone->lowmem_reserve[j] = managed_pages /
5722 					sysctl_lowmem_reserve_ratio[idx];
5723 				managed_pages += lower_zone->managed_pages;
5724 			}
5725 		}
5726 	}
5727 
5728 	/* update totalreserve_pages */
5729 	calculate_totalreserve_pages();
5730 }
5731 
5732 static void __setup_per_zone_wmarks(void)
5733 {
5734 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5735 	unsigned long lowmem_pages = 0;
5736 	struct zone *zone;
5737 	unsigned long flags;
5738 
5739 	/* Calculate total number of !ZONE_HIGHMEM pages */
5740 	for_each_zone(zone) {
5741 		if (!is_highmem(zone))
5742 			lowmem_pages += zone->managed_pages;
5743 	}
5744 
5745 	for_each_zone(zone) {
5746 		u64 tmp;
5747 
5748 		spin_lock_irqsave(&zone->lock, flags);
5749 		tmp = (u64)pages_min * zone->managed_pages;
5750 		do_div(tmp, lowmem_pages);
5751 		if (is_highmem(zone)) {
5752 			/*
5753 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5754 			 * need highmem pages, so cap pages_min to a small
5755 			 * value here.
5756 			 *
5757 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5758 			 * deltas controls asynch page reclaim, and so should
5759 			 * not be capped for highmem.
5760 			 */
5761 			unsigned long min_pages;
5762 
5763 			min_pages = zone->managed_pages / 1024;
5764 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5765 			zone->watermark[WMARK_MIN] = min_pages;
5766 		} else {
5767 			/*
5768 			 * If it's a lowmem zone, reserve a number of pages
5769 			 * proportionate to the zone's size.
5770 			 */
5771 			zone->watermark[WMARK_MIN] = tmp;
5772 		}
5773 
5774 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5775 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5776 
5777 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5778 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5779 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5780 
5781 		setup_zone_migrate_reserve(zone);
5782 		spin_unlock_irqrestore(&zone->lock, flags);
5783 	}
5784 
5785 	/* update totalreserve_pages */
5786 	calculate_totalreserve_pages();
5787 }
5788 
5789 /**
5790  * setup_per_zone_wmarks - called when min_free_kbytes changes
5791  * or when memory is hot-{added|removed}
5792  *
5793  * Ensures that the watermark[min,low,high] values for each zone are set
5794  * correctly with respect to min_free_kbytes.
5795  */
5796 void setup_per_zone_wmarks(void)
5797 {
5798 	mutex_lock(&zonelists_mutex);
5799 	__setup_per_zone_wmarks();
5800 	mutex_unlock(&zonelists_mutex);
5801 }
5802 
5803 /*
5804  * The inactive anon list should be small enough that the VM never has to
5805  * do too much work, but large enough that each inactive page has a chance
5806  * to be referenced again before it is swapped out.
5807  *
5808  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5809  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5810  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5811  * the anonymous pages are kept on the inactive list.
5812  *
5813  * total     target    max
5814  * memory    ratio     inactive anon
5815  * -------------------------------------
5816  *   10MB       1         5MB
5817  *  100MB       1        50MB
5818  *    1GB       3       250MB
5819  *   10GB      10       0.9GB
5820  *  100GB      31         3GB
5821  *    1TB     101        10GB
5822  *   10TB     320        32GB
5823  */
5824 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5825 {
5826 	unsigned int gb, ratio;
5827 
5828 	/* Zone size in gigabytes */
5829 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5830 	if (gb)
5831 		ratio = int_sqrt(10 * gb);
5832 	else
5833 		ratio = 1;
5834 
5835 	zone->inactive_ratio = ratio;
5836 }
5837 
5838 static void __meminit setup_per_zone_inactive_ratio(void)
5839 {
5840 	struct zone *zone;
5841 
5842 	for_each_zone(zone)
5843 		calculate_zone_inactive_ratio(zone);
5844 }
5845 
5846 /*
5847  * Initialise min_free_kbytes.
5848  *
5849  * For small machines we want it small (128k min).  For large machines
5850  * we want it large (64MB max).  But it is not linear, because network
5851  * bandwidth does not increase linearly with machine size.  We use
5852  *
5853  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5854  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5855  *
5856  * which yields
5857  *
5858  * 16MB:	512k
5859  * 32MB:	724k
5860  * 64MB:	1024k
5861  * 128MB:	1448k
5862  * 256MB:	2048k
5863  * 512MB:	2896k
5864  * 1024MB:	4096k
5865  * 2048MB:	5792k
5866  * 4096MB:	8192k
5867  * 8192MB:	11584k
5868  * 16384MB:	16384k
5869  */
5870 int __meminit init_per_zone_wmark_min(void)
5871 {
5872 	unsigned long lowmem_kbytes;
5873 	int new_min_free_kbytes;
5874 
5875 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5876 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5877 
5878 	if (new_min_free_kbytes > user_min_free_kbytes) {
5879 		min_free_kbytes = new_min_free_kbytes;
5880 		if (min_free_kbytes < 128)
5881 			min_free_kbytes = 128;
5882 		if (min_free_kbytes > 65536)
5883 			min_free_kbytes = 65536;
5884 	} else {
5885 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5886 				new_min_free_kbytes, user_min_free_kbytes);
5887 	}
5888 	setup_per_zone_wmarks();
5889 	refresh_zone_stat_thresholds();
5890 	setup_per_zone_lowmem_reserve();
5891 	setup_per_zone_inactive_ratio();
5892 	return 0;
5893 }
5894 module_init(init_per_zone_wmark_min)
5895 
5896 /*
5897  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5898  *	that we can call two helper functions whenever min_free_kbytes
5899  *	changes.
5900  */
5901 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5902 	void __user *buffer, size_t *length, loff_t *ppos)
5903 {
5904 	int rc;
5905 
5906 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5907 	if (rc)
5908 		return rc;
5909 
5910 	if (write) {
5911 		user_min_free_kbytes = min_free_kbytes;
5912 		setup_per_zone_wmarks();
5913 	}
5914 	return 0;
5915 }
5916 
5917 #ifdef CONFIG_NUMA
5918 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5919 	void __user *buffer, size_t *length, loff_t *ppos)
5920 {
5921 	struct zone *zone;
5922 	int rc;
5923 
5924 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5925 	if (rc)
5926 		return rc;
5927 
5928 	for_each_zone(zone)
5929 		zone->min_unmapped_pages = (zone->managed_pages *
5930 				sysctl_min_unmapped_ratio) / 100;
5931 	return 0;
5932 }
5933 
5934 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5935 	void __user *buffer, size_t *length, loff_t *ppos)
5936 {
5937 	struct zone *zone;
5938 	int rc;
5939 
5940 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5941 	if (rc)
5942 		return rc;
5943 
5944 	for_each_zone(zone)
5945 		zone->min_slab_pages = (zone->managed_pages *
5946 				sysctl_min_slab_ratio) / 100;
5947 	return 0;
5948 }
5949 #endif
5950 
5951 /*
5952  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5953  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5954  *	whenever sysctl_lowmem_reserve_ratio changes.
5955  *
5956  * The reserve ratio obviously has absolutely no relation with the
5957  * minimum watermarks. The lowmem reserve ratio can only make sense
5958  * if in function of the boot time zone sizes.
5959  */
5960 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5961 	void __user *buffer, size_t *length, loff_t *ppos)
5962 {
5963 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5964 	setup_per_zone_lowmem_reserve();
5965 	return 0;
5966 }
5967 
5968 /*
5969  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5970  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5971  * pagelist can have before it gets flushed back to buddy allocator.
5972  */
5973 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5974 	void __user *buffer, size_t *length, loff_t *ppos)
5975 {
5976 	struct zone *zone;
5977 	int old_percpu_pagelist_fraction;
5978 	int ret;
5979 
5980 	mutex_lock(&pcp_batch_high_lock);
5981 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5982 
5983 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5984 	if (!write || ret < 0)
5985 		goto out;
5986 
5987 	/* Sanity checking to avoid pcp imbalance */
5988 	if (percpu_pagelist_fraction &&
5989 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5990 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5991 		ret = -EINVAL;
5992 		goto out;
5993 	}
5994 
5995 	/* No change? */
5996 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5997 		goto out;
5998 
5999 	for_each_populated_zone(zone) {
6000 		unsigned int cpu;
6001 
6002 		for_each_possible_cpu(cpu)
6003 			pageset_set_high_and_batch(zone,
6004 					per_cpu_ptr(zone->pageset, cpu));
6005 	}
6006 out:
6007 	mutex_unlock(&pcp_batch_high_lock);
6008 	return ret;
6009 }
6010 
6011 int hashdist = HASHDIST_DEFAULT;
6012 
6013 #ifdef CONFIG_NUMA
6014 static int __init set_hashdist(char *str)
6015 {
6016 	if (!str)
6017 		return 0;
6018 	hashdist = simple_strtoul(str, &str, 0);
6019 	return 1;
6020 }
6021 __setup("hashdist=", set_hashdist);
6022 #endif
6023 
6024 /*
6025  * allocate a large system hash table from bootmem
6026  * - it is assumed that the hash table must contain an exact power-of-2
6027  *   quantity of entries
6028  * - limit is the number of hash buckets, not the total allocation size
6029  */
6030 void *__init alloc_large_system_hash(const char *tablename,
6031 				     unsigned long bucketsize,
6032 				     unsigned long numentries,
6033 				     int scale,
6034 				     int flags,
6035 				     unsigned int *_hash_shift,
6036 				     unsigned int *_hash_mask,
6037 				     unsigned long low_limit,
6038 				     unsigned long high_limit)
6039 {
6040 	unsigned long long max = high_limit;
6041 	unsigned long log2qty, size;
6042 	void *table = NULL;
6043 
6044 	/* allow the kernel cmdline to have a say */
6045 	if (!numentries) {
6046 		/* round applicable memory size up to nearest megabyte */
6047 		numentries = nr_kernel_pages;
6048 
6049 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6050 		if (PAGE_SHIFT < 20)
6051 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6052 
6053 		/* limit to 1 bucket per 2^scale bytes of low memory */
6054 		if (scale > PAGE_SHIFT)
6055 			numentries >>= (scale - PAGE_SHIFT);
6056 		else
6057 			numentries <<= (PAGE_SHIFT - scale);
6058 
6059 		/* Make sure we've got at least a 0-order allocation.. */
6060 		if (unlikely(flags & HASH_SMALL)) {
6061 			/* Makes no sense without HASH_EARLY */
6062 			WARN_ON(!(flags & HASH_EARLY));
6063 			if (!(numentries >> *_hash_shift)) {
6064 				numentries = 1UL << *_hash_shift;
6065 				BUG_ON(!numentries);
6066 			}
6067 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6068 			numentries = PAGE_SIZE / bucketsize;
6069 	}
6070 	numentries = roundup_pow_of_two(numentries);
6071 
6072 	/* limit allocation size to 1/16 total memory by default */
6073 	if (max == 0) {
6074 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6075 		do_div(max, bucketsize);
6076 	}
6077 	max = min(max, 0x80000000ULL);
6078 
6079 	if (numentries < low_limit)
6080 		numentries = low_limit;
6081 	if (numentries > max)
6082 		numentries = max;
6083 
6084 	log2qty = ilog2(numentries);
6085 
6086 	do {
6087 		size = bucketsize << log2qty;
6088 		if (flags & HASH_EARLY)
6089 			table = memblock_virt_alloc_nopanic(size, 0);
6090 		else if (hashdist)
6091 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6092 		else {
6093 			/*
6094 			 * If bucketsize is not a power-of-two, we may free
6095 			 * some pages at the end of hash table which
6096 			 * alloc_pages_exact() automatically does
6097 			 */
6098 			if (get_order(size) < MAX_ORDER) {
6099 				table = alloc_pages_exact(size, GFP_ATOMIC);
6100 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6101 			}
6102 		}
6103 	} while (!table && size > PAGE_SIZE && --log2qty);
6104 
6105 	if (!table)
6106 		panic("Failed to allocate %s hash table\n", tablename);
6107 
6108 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6109 	       tablename,
6110 	       (1UL << log2qty),
6111 	       ilog2(size) - PAGE_SHIFT,
6112 	       size);
6113 
6114 	if (_hash_shift)
6115 		*_hash_shift = log2qty;
6116 	if (_hash_mask)
6117 		*_hash_mask = (1 << log2qty) - 1;
6118 
6119 	return table;
6120 }
6121 
6122 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6123 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6124 							unsigned long pfn)
6125 {
6126 #ifdef CONFIG_SPARSEMEM
6127 	return __pfn_to_section(pfn)->pageblock_flags;
6128 #else
6129 	return zone->pageblock_flags;
6130 #endif /* CONFIG_SPARSEMEM */
6131 }
6132 
6133 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6134 {
6135 #ifdef CONFIG_SPARSEMEM
6136 	pfn &= (PAGES_PER_SECTION-1);
6137 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6138 #else
6139 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6140 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6141 #endif /* CONFIG_SPARSEMEM */
6142 }
6143 
6144 /**
6145  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6146  * @page: The page within the block of interest
6147  * @pfn: The target page frame number
6148  * @end_bitidx: The last bit of interest to retrieve
6149  * @mask: mask of bits that the caller is interested in
6150  *
6151  * Return: pageblock_bits flags
6152  */
6153 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6154 					unsigned long end_bitidx,
6155 					unsigned long mask)
6156 {
6157 	struct zone *zone;
6158 	unsigned long *bitmap;
6159 	unsigned long bitidx, word_bitidx;
6160 	unsigned long word;
6161 
6162 	zone = page_zone(page);
6163 	bitmap = get_pageblock_bitmap(zone, pfn);
6164 	bitidx = pfn_to_bitidx(zone, pfn);
6165 	word_bitidx = bitidx / BITS_PER_LONG;
6166 	bitidx &= (BITS_PER_LONG-1);
6167 
6168 	word = bitmap[word_bitidx];
6169 	bitidx += end_bitidx;
6170 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6171 }
6172 
6173 /**
6174  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6175  * @page: The page within the block of interest
6176  * @flags: The flags to set
6177  * @pfn: The target page frame number
6178  * @end_bitidx: The last bit of interest
6179  * @mask: mask of bits that the caller is interested in
6180  */
6181 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6182 					unsigned long pfn,
6183 					unsigned long end_bitidx,
6184 					unsigned long mask)
6185 {
6186 	struct zone *zone;
6187 	unsigned long *bitmap;
6188 	unsigned long bitidx, word_bitidx;
6189 	unsigned long old_word, word;
6190 
6191 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6192 
6193 	zone = page_zone(page);
6194 	bitmap = get_pageblock_bitmap(zone, pfn);
6195 	bitidx = pfn_to_bitidx(zone, pfn);
6196 	word_bitidx = bitidx / BITS_PER_LONG;
6197 	bitidx &= (BITS_PER_LONG-1);
6198 
6199 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6200 
6201 	bitidx += end_bitidx;
6202 	mask <<= (BITS_PER_LONG - bitidx - 1);
6203 	flags <<= (BITS_PER_LONG - bitidx - 1);
6204 
6205 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6206 	for (;;) {
6207 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6208 		if (word == old_word)
6209 			break;
6210 		word = old_word;
6211 	}
6212 }
6213 
6214 /*
6215  * This function checks whether pageblock includes unmovable pages or not.
6216  * If @count is not zero, it is okay to include less @count unmovable pages
6217  *
6218  * PageLRU check without isolation or lru_lock could race so that
6219  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6220  * expect this function should be exact.
6221  */
6222 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6223 			 bool skip_hwpoisoned_pages)
6224 {
6225 	unsigned long pfn, iter, found;
6226 	int mt;
6227 
6228 	/*
6229 	 * For avoiding noise data, lru_add_drain_all() should be called
6230 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6231 	 */
6232 	if (zone_idx(zone) == ZONE_MOVABLE)
6233 		return false;
6234 	mt = get_pageblock_migratetype(page);
6235 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6236 		return false;
6237 
6238 	pfn = page_to_pfn(page);
6239 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6240 		unsigned long check = pfn + iter;
6241 
6242 		if (!pfn_valid_within(check))
6243 			continue;
6244 
6245 		page = pfn_to_page(check);
6246 
6247 		/*
6248 		 * Hugepages are not in LRU lists, but they're movable.
6249 		 * We need not scan over tail pages bacause we don't
6250 		 * handle each tail page individually in migration.
6251 		 */
6252 		if (PageHuge(page)) {
6253 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6254 			continue;
6255 		}
6256 
6257 		/*
6258 		 * We can't use page_count without pin a page
6259 		 * because another CPU can free compound page.
6260 		 * This check already skips compound tails of THP
6261 		 * because their page->_count is zero at all time.
6262 		 */
6263 		if (!atomic_read(&page->_count)) {
6264 			if (PageBuddy(page))
6265 				iter += (1 << page_order(page)) - 1;
6266 			continue;
6267 		}
6268 
6269 		/*
6270 		 * The HWPoisoned page may be not in buddy system, and
6271 		 * page_count() is not 0.
6272 		 */
6273 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6274 			continue;
6275 
6276 		if (!PageLRU(page))
6277 			found++;
6278 		/*
6279 		 * If there are RECLAIMABLE pages, we need to check
6280 		 * it.  But now, memory offline itself doesn't call
6281 		 * shrink_node_slabs() and it still to be fixed.
6282 		 */
6283 		/*
6284 		 * If the page is not RAM, page_count()should be 0.
6285 		 * we don't need more check. This is an _used_ not-movable page.
6286 		 *
6287 		 * The problematic thing here is PG_reserved pages. PG_reserved
6288 		 * is set to both of a memory hole page and a _used_ kernel
6289 		 * page at boot.
6290 		 */
6291 		if (found > count)
6292 			return true;
6293 	}
6294 	return false;
6295 }
6296 
6297 bool is_pageblock_removable_nolock(struct page *page)
6298 {
6299 	struct zone *zone;
6300 	unsigned long pfn;
6301 
6302 	/*
6303 	 * We have to be careful here because we are iterating over memory
6304 	 * sections which are not zone aware so we might end up outside of
6305 	 * the zone but still within the section.
6306 	 * We have to take care about the node as well. If the node is offline
6307 	 * its NODE_DATA will be NULL - see page_zone.
6308 	 */
6309 	if (!node_online(page_to_nid(page)))
6310 		return false;
6311 
6312 	zone = page_zone(page);
6313 	pfn = page_to_pfn(page);
6314 	if (!zone_spans_pfn(zone, pfn))
6315 		return false;
6316 
6317 	return !has_unmovable_pages(zone, page, 0, true);
6318 }
6319 
6320 #ifdef CONFIG_CMA
6321 
6322 static unsigned long pfn_max_align_down(unsigned long pfn)
6323 {
6324 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6325 			     pageblock_nr_pages) - 1);
6326 }
6327 
6328 static unsigned long pfn_max_align_up(unsigned long pfn)
6329 {
6330 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6331 				pageblock_nr_pages));
6332 }
6333 
6334 /* [start, end) must belong to a single zone. */
6335 static int __alloc_contig_migrate_range(struct compact_control *cc,
6336 					unsigned long start, unsigned long end)
6337 {
6338 	/* This function is based on compact_zone() from compaction.c. */
6339 	unsigned long nr_reclaimed;
6340 	unsigned long pfn = start;
6341 	unsigned int tries = 0;
6342 	int ret = 0;
6343 
6344 	migrate_prep();
6345 
6346 	while (pfn < end || !list_empty(&cc->migratepages)) {
6347 		if (fatal_signal_pending(current)) {
6348 			ret = -EINTR;
6349 			break;
6350 		}
6351 
6352 		if (list_empty(&cc->migratepages)) {
6353 			cc->nr_migratepages = 0;
6354 			pfn = isolate_migratepages_range(cc, pfn, end);
6355 			if (!pfn) {
6356 				ret = -EINTR;
6357 				break;
6358 			}
6359 			tries = 0;
6360 		} else if (++tries == 5) {
6361 			ret = ret < 0 ? ret : -EBUSY;
6362 			break;
6363 		}
6364 
6365 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6366 							&cc->migratepages);
6367 		cc->nr_migratepages -= nr_reclaimed;
6368 
6369 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6370 				    NULL, 0, cc->mode, MR_CMA);
6371 	}
6372 	if (ret < 0) {
6373 		putback_movable_pages(&cc->migratepages);
6374 		return ret;
6375 	}
6376 	return 0;
6377 }
6378 
6379 /**
6380  * alloc_contig_range() -- tries to allocate given range of pages
6381  * @start:	start PFN to allocate
6382  * @end:	one-past-the-last PFN to allocate
6383  * @migratetype:	migratetype of the underlaying pageblocks (either
6384  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6385  *			in range must have the same migratetype and it must
6386  *			be either of the two.
6387  *
6388  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6389  * aligned, however it's the caller's responsibility to guarantee that
6390  * we are the only thread that changes migrate type of pageblocks the
6391  * pages fall in.
6392  *
6393  * The PFN range must belong to a single zone.
6394  *
6395  * Returns zero on success or negative error code.  On success all
6396  * pages which PFN is in [start, end) are allocated for the caller and
6397  * need to be freed with free_contig_range().
6398  */
6399 int alloc_contig_range(unsigned long start, unsigned long end,
6400 		       unsigned migratetype)
6401 {
6402 	unsigned long outer_start, outer_end;
6403 	int ret = 0, order;
6404 
6405 	struct compact_control cc = {
6406 		.nr_migratepages = 0,
6407 		.order = -1,
6408 		.zone = page_zone(pfn_to_page(start)),
6409 		.mode = MIGRATE_SYNC,
6410 		.ignore_skip_hint = true,
6411 	};
6412 	INIT_LIST_HEAD(&cc.migratepages);
6413 
6414 	/*
6415 	 * What we do here is we mark all pageblocks in range as
6416 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6417 	 * have different sizes, and due to the way page allocator
6418 	 * work, we align the range to biggest of the two pages so
6419 	 * that page allocator won't try to merge buddies from
6420 	 * different pageblocks and change MIGRATE_ISOLATE to some
6421 	 * other migration type.
6422 	 *
6423 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6424 	 * migrate the pages from an unaligned range (ie. pages that
6425 	 * we are interested in).  This will put all the pages in
6426 	 * range back to page allocator as MIGRATE_ISOLATE.
6427 	 *
6428 	 * When this is done, we take the pages in range from page
6429 	 * allocator removing them from the buddy system.  This way
6430 	 * page allocator will never consider using them.
6431 	 *
6432 	 * This lets us mark the pageblocks back as
6433 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6434 	 * aligned range but not in the unaligned, original range are
6435 	 * put back to page allocator so that buddy can use them.
6436 	 */
6437 
6438 	ret = start_isolate_page_range(pfn_max_align_down(start),
6439 				       pfn_max_align_up(end), migratetype,
6440 				       false);
6441 	if (ret)
6442 		return ret;
6443 
6444 	ret = __alloc_contig_migrate_range(&cc, start, end);
6445 	if (ret)
6446 		goto done;
6447 
6448 	/*
6449 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6450 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6451 	 * more, all pages in [start, end) are free in page allocator.
6452 	 * What we are going to do is to allocate all pages from
6453 	 * [start, end) (that is remove them from page allocator).
6454 	 *
6455 	 * The only problem is that pages at the beginning and at the
6456 	 * end of interesting range may be not aligned with pages that
6457 	 * page allocator holds, ie. they can be part of higher order
6458 	 * pages.  Because of this, we reserve the bigger range and
6459 	 * once this is done free the pages we are not interested in.
6460 	 *
6461 	 * We don't have to hold zone->lock here because the pages are
6462 	 * isolated thus they won't get removed from buddy.
6463 	 */
6464 
6465 	lru_add_drain_all();
6466 	drain_all_pages(cc.zone);
6467 
6468 	order = 0;
6469 	outer_start = start;
6470 	while (!PageBuddy(pfn_to_page(outer_start))) {
6471 		if (++order >= MAX_ORDER) {
6472 			ret = -EBUSY;
6473 			goto done;
6474 		}
6475 		outer_start &= ~0UL << order;
6476 	}
6477 
6478 	/* Make sure the range is really isolated. */
6479 	if (test_pages_isolated(outer_start, end, false)) {
6480 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6481 			__func__, outer_start, end);
6482 		ret = -EBUSY;
6483 		goto done;
6484 	}
6485 
6486 	/* Grab isolated pages from freelists. */
6487 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6488 	if (!outer_end) {
6489 		ret = -EBUSY;
6490 		goto done;
6491 	}
6492 
6493 	/* Free head and tail (if any) */
6494 	if (start != outer_start)
6495 		free_contig_range(outer_start, start - outer_start);
6496 	if (end != outer_end)
6497 		free_contig_range(end, outer_end - end);
6498 
6499 done:
6500 	undo_isolate_page_range(pfn_max_align_down(start),
6501 				pfn_max_align_up(end), migratetype);
6502 	return ret;
6503 }
6504 
6505 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6506 {
6507 	unsigned int count = 0;
6508 
6509 	for (; nr_pages--; pfn++) {
6510 		struct page *page = pfn_to_page(pfn);
6511 
6512 		count += page_count(page) != 1;
6513 		__free_page(page);
6514 	}
6515 	WARN(count != 0, "%d pages are still in use!\n", count);
6516 }
6517 #endif
6518 
6519 #ifdef CONFIG_MEMORY_HOTPLUG
6520 /*
6521  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6522  * page high values need to be recalulated.
6523  */
6524 void __meminit zone_pcp_update(struct zone *zone)
6525 {
6526 	unsigned cpu;
6527 	mutex_lock(&pcp_batch_high_lock);
6528 	for_each_possible_cpu(cpu)
6529 		pageset_set_high_and_batch(zone,
6530 				per_cpu_ptr(zone->pageset, cpu));
6531 	mutex_unlock(&pcp_batch_high_lock);
6532 }
6533 #endif
6534 
6535 void zone_pcp_reset(struct zone *zone)
6536 {
6537 	unsigned long flags;
6538 	int cpu;
6539 	struct per_cpu_pageset *pset;
6540 
6541 	/* avoid races with drain_pages()  */
6542 	local_irq_save(flags);
6543 	if (zone->pageset != &boot_pageset) {
6544 		for_each_online_cpu(cpu) {
6545 			pset = per_cpu_ptr(zone->pageset, cpu);
6546 			drain_zonestat(zone, pset);
6547 		}
6548 		free_percpu(zone->pageset);
6549 		zone->pageset = &boot_pageset;
6550 	}
6551 	local_irq_restore(flags);
6552 }
6553 
6554 #ifdef CONFIG_MEMORY_HOTREMOVE
6555 /*
6556  * All pages in the range must be isolated before calling this.
6557  */
6558 void
6559 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6560 {
6561 	struct page *page;
6562 	struct zone *zone;
6563 	unsigned int order, i;
6564 	unsigned long pfn;
6565 	unsigned long flags;
6566 	/* find the first valid pfn */
6567 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6568 		if (pfn_valid(pfn))
6569 			break;
6570 	if (pfn == end_pfn)
6571 		return;
6572 	zone = page_zone(pfn_to_page(pfn));
6573 	spin_lock_irqsave(&zone->lock, flags);
6574 	pfn = start_pfn;
6575 	while (pfn < end_pfn) {
6576 		if (!pfn_valid(pfn)) {
6577 			pfn++;
6578 			continue;
6579 		}
6580 		page = pfn_to_page(pfn);
6581 		/*
6582 		 * The HWPoisoned page may be not in buddy system, and
6583 		 * page_count() is not 0.
6584 		 */
6585 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6586 			pfn++;
6587 			SetPageReserved(page);
6588 			continue;
6589 		}
6590 
6591 		BUG_ON(page_count(page));
6592 		BUG_ON(!PageBuddy(page));
6593 		order = page_order(page);
6594 #ifdef CONFIG_DEBUG_VM
6595 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6596 		       pfn, 1 << order, end_pfn);
6597 #endif
6598 		list_del(&page->lru);
6599 		rmv_page_order(page);
6600 		zone->free_area[order].nr_free--;
6601 		for (i = 0; i < (1 << order); i++)
6602 			SetPageReserved((page+i));
6603 		pfn += (1 << order);
6604 	}
6605 	spin_unlock_irqrestore(&zone->lock, flags);
6606 }
6607 #endif
6608 
6609 #ifdef CONFIG_MEMORY_FAILURE
6610 bool is_free_buddy_page(struct page *page)
6611 {
6612 	struct zone *zone = page_zone(page);
6613 	unsigned long pfn = page_to_pfn(page);
6614 	unsigned long flags;
6615 	unsigned int order;
6616 
6617 	spin_lock_irqsave(&zone->lock, flags);
6618 	for (order = 0; order < MAX_ORDER; order++) {
6619 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6620 
6621 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6622 			break;
6623 	}
6624 	spin_unlock_irqrestore(&zone->lock, flags);
6625 
6626 	return order < MAX_ORDER;
6627 }
6628 #endif
6629