xref: /openbmc/linux/mm/page_alloc.c (revision 4800cd83)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
65 
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 /*
68  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71  * defined in <linux/topology.h>.
72  */
73 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
76 
77 /*
78  * Array of node states.
79  */
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 	[N_POSSIBLE] = NODE_MASK_ALL,
82 	[N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 	[N_CPU] = { { [0] = 1UL } },
89 #endif	/* NUMA */
90 };
91 EXPORT_SYMBOL(node_states);
92 
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 
98 #ifdef CONFIG_PM_SLEEP
99 /*
100  * The following functions are used by the suspend/hibernate code to temporarily
101  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102  * while devices are suspended.  To avoid races with the suspend/hibernate code,
103  * they should always be called with pm_mutex held (gfp_allowed_mask also should
104  * only be modified with pm_mutex held, unless the suspend/hibernate code is
105  * guaranteed not to run in parallel with that modification).
106  */
107 
108 static gfp_t saved_gfp_mask;
109 
110 void pm_restore_gfp_mask(void)
111 {
112 	WARN_ON(!mutex_is_locked(&pm_mutex));
113 	if (saved_gfp_mask) {
114 		gfp_allowed_mask = saved_gfp_mask;
115 		saved_gfp_mask = 0;
116 	}
117 }
118 
119 void pm_restrict_gfp_mask(void)
120 {
121 	WARN_ON(!mutex_is_locked(&pm_mutex));
122 	WARN_ON(saved_gfp_mask);
123 	saved_gfp_mask = gfp_allowed_mask;
124 	gfp_allowed_mask &= ~GFP_IOFS;
125 }
126 #endif /* CONFIG_PM_SLEEP */
127 
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
131 
132 static void __free_pages_ok(struct page *page, unsigned int order);
133 
134 /*
135  * results with 256, 32 in the lowmem_reserve sysctl:
136  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137  *	1G machine -> (16M dma, 784M normal, 224M high)
138  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141  *
142  * TBD: should special case ZONE_DMA32 machines here - in those we normally
143  * don't need any ZONE_NORMAL reservation
144  */
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 	 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 	 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
153 	 32,
154 #endif
155 	 32,
156 };
157 
158 EXPORT_SYMBOL(totalram_pages);
159 
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 	 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 	 "DMA32",
166 #endif
167 	 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 	 "HighMem",
170 #endif
171 	 "Movable",
172 };
173 
174 int min_free_kbytes = 1024;
175 
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
179 
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181   /*
182    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183    * ranges of memory (RAM) that may be registered with add_active_range().
184    * Ranges passed to add_active_range() will be merged if possible
185    * so the number of times add_active_range() can be called is
186    * related to the number of nodes and the number of holes
187    */
188   #ifdef CONFIG_MAX_ACTIVE_REGIONS
189     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191   #else
192     #if MAX_NUMNODES >= 32
193       /* If there can be many nodes, allow up to 50 holes per node */
194       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195     #else
196       /* By default, allow up to 256 distinct regions */
197       #define MAX_ACTIVE_REGIONS 256
198     #endif
199   #endif
200 
201   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202   static int __meminitdata nr_nodemap_entries;
203   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205   static unsigned long __initdata required_kernelcore;
206   static unsigned long __initdata required_movablecore;
207   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208 
209   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210   int movable_zone;
211   EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213 
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
220 
221 int page_group_by_mobility_disabled __read_mostly;
222 
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
224 {
225 
226 	if (unlikely(page_group_by_mobility_disabled))
227 		migratetype = MIGRATE_UNMOVABLE;
228 
229 	set_pageblock_flags_group(page, (unsigned long)migratetype,
230 					PB_migrate, PB_migrate_end);
231 }
232 
233 bool oom_killer_disabled __read_mostly;
234 
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 {
238 	int ret = 0;
239 	unsigned seq;
240 	unsigned long pfn = page_to_pfn(page);
241 
242 	do {
243 		seq = zone_span_seqbegin(zone);
244 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 			ret = 1;
246 		else if (pfn < zone->zone_start_pfn)
247 			ret = 1;
248 	} while (zone_span_seqretry(zone, seq));
249 
250 	return ret;
251 }
252 
253 static int page_is_consistent(struct zone *zone, struct page *page)
254 {
255 	if (!pfn_valid_within(page_to_pfn(page)))
256 		return 0;
257 	if (zone != page_zone(page))
258 		return 0;
259 
260 	return 1;
261 }
262 /*
263  * Temporary debugging check for pages not lying within a given zone.
264  */
265 static int bad_range(struct zone *zone, struct page *page)
266 {
267 	if (page_outside_zone_boundaries(zone, page))
268 		return 1;
269 	if (!page_is_consistent(zone, page))
270 		return 1;
271 
272 	return 0;
273 }
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
276 {
277 	return 0;
278 }
279 #endif
280 
281 static void bad_page(struct page *page)
282 {
283 	static unsigned long resume;
284 	static unsigned long nr_shown;
285 	static unsigned long nr_unshown;
286 
287 	/* Don't complain about poisoned pages */
288 	if (PageHWPoison(page)) {
289 		__ClearPageBuddy(page);
290 		return;
291 	}
292 
293 	/*
294 	 * Allow a burst of 60 reports, then keep quiet for that minute;
295 	 * or allow a steady drip of one report per second.
296 	 */
297 	if (nr_shown == 60) {
298 		if (time_before(jiffies, resume)) {
299 			nr_unshown++;
300 			goto out;
301 		}
302 		if (nr_unshown) {
303 			printk(KERN_ALERT
304 			      "BUG: Bad page state: %lu messages suppressed\n",
305 				nr_unshown);
306 			nr_unshown = 0;
307 		}
308 		nr_shown = 0;
309 	}
310 	if (nr_shown++ == 0)
311 		resume = jiffies + 60 * HZ;
312 
313 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
314 		current->comm, page_to_pfn(page));
315 	dump_page(page);
316 
317 	dump_stack();
318 out:
319 	/* Leave bad fields for debug, except PageBuddy could make trouble */
320 	__ClearPageBuddy(page);
321 	add_taint(TAINT_BAD_PAGE);
322 }
323 
324 /*
325  * Higher-order pages are called "compound pages".  They are structured thusly:
326  *
327  * The first PAGE_SIZE page is called the "head page".
328  *
329  * The remaining PAGE_SIZE pages are called "tail pages".
330  *
331  * All pages have PG_compound set.  All pages have their ->private pointing at
332  * the head page (even the head page has this).
333  *
334  * The first tail page's ->lru.next holds the address of the compound page's
335  * put_page() function.  Its ->lru.prev holds the order of allocation.
336  * This usage means that zero-order pages may not be compound.
337  */
338 
339 static void free_compound_page(struct page *page)
340 {
341 	__free_pages_ok(page, compound_order(page));
342 }
343 
344 void prep_compound_page(struct page *page, unsigned long order)
345 {
346 	int i;
347 	int nr_pages = 1 << order;
348 
349 	set_compound_page_dtor(page, free_compound_page);
350 	set_compound_order(page, order);
351 	__SetPageHead(page);
352 	for (i = 1; i < nr_pages; i++) {
353 		struct page *p = page + i;
354 
355 		__SetPageTail(p);
356 		p->first_page = page;
357 	}
358 }
359 
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
362 {
363 	int i;
364 	int nr_pages = 1 << order;
365 	int bad = 0;
366 
367 	if (unlikely(compound_order(page) != order) ||
368 	    unlikely(!PageHead(page))) {
369 		bad_page(page);
370 		bad++;
371 	}
372 
373 	__ClearPageHead(page);
374 
375 	for (i = 1; i < nr_pages; i++) {
376 		struct page *p = page + i;
377 
378 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 			bad_page(page);
380 			bad++;
381 		}
382 		__ClearPageTail(p);
383 	}
384 
385 	return bad;
386 }
387 
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 {
390 	int i;
391 
392 	/*
393 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 	 */
396 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 	for (i = 0; i < (1 << order); i++)
398 		clear_highpage(page + i);
399 }
400 
401 static inline void set_page_order(struct page *page, int order)
402 {
403 	set_page_private(page, order);
404 	__SetPageBuddy(page);
405 }
406 
407 static inline void rmv_page_order(struct page *page)
408 {
409 	__ClearPageBuddy(page);
410 	set_page_private(page, 0);
411 }
412 
413 /*
414  * Locate the struct page for both the matching buddy in our
415  * pair (buddy1) and the combined O(n+1) page they form (page).
416  *
417  * 1) Any buddy B1 will have an order O twin B2 which satisfies
418  * the following equation:
419  *     B2 = B1 ^ (1 << O)
420  * For example, if the starting buddy (buddy2) is #8 its order
421  * 1 buddy is #10:
422  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423  *
424  * 2) Any buddy B will have an order O+1 parent P which
425  * satisfies the following equation:
426  *     P = B & ~(1 << O)
427  *
428  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429  */
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx, unsigned int order)
432 {
433 	return page_idx ^ (1 << order);
434 }
435 
436 /*
437  * This function checks whether a page is free && is the buddy
438  * we can do coalesce a page and its buddy if
439  * (a) the buddy is not in a hole &&
440  * (b) the buddy is in the buddy system &&
441  * (c) a page and its buddy have the same order &&
442  * (d) a page and its buddy are in the same zone.
443  *
444  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
446  *
447  * For recording page's order, we use page_private(page).
448  */
449 static inline int page_is_buddy(struct page *page, struct page *buddy,
450 								int order)
451 {
452 	if (!pfn_valid_within(page_to_pfn(buddy)))
453 		return 0;
454 
455 	if (page_zone_id(page) != page_zone_id(buddy))
456 		return 0;
457 
458 	if (PageBuddy(buddy) && page_order(buddy) == order) {
459 		VM_BUG_ON(page_count(buddy) != 0);
460 		return 1;
461 	}
462 	return 0;
463 }
464 
465 /*
466  * Freeing function for a buddy system allocator.
467  *
468  * The concept of a buddy system is to maintain direct-mapped table
469  * (containing bit values) for memory blocks of various "orders".
470  * The bottom level table contains the map for the smallest allocatable
471  * units of memory (here, pages), and each level above it describes
472  * pairs of units from the levels below, hence, "buddies".
473  * At a high level, all that happens here is marking the table entry
474  * at the bottom level available, and propagating the changes upward
475  * as necessary, plus some accounting needed to play nicely with other
476  * parts of the VM system.
477  * At each level, we keep a list of pages, which are heads of continuous
478  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479  * order is recorded in page_private(page) field.
480  * So when we are allocating or freeing one, we can derive the state of the
481  * other.  That is, if we allocate a small block, and both were
482  * free, the remainder of the region must be split into blocks.
483  * If a block is freed, and its buddy is also free, then this
484  * triggers coalescing into a block of larger size.
485  *
486  * -- wli
487  */
488 
489 static inline void __free_one_page(struct page *page,
490 		struct zone *zone, unsigned int order,
491 		int migratetype)
492 {
493 	unsigned long page_idx;
494 	unsigned long combined_idx;
495 	unsigned long uninitialized_var(buddy_idx);
496 	struct page *buddy;
497 
498 	if (unlikely(PageCompound(page)))
499 		if (unlikely(destroy_compound_page(page, order)))
500 			return;
501 
502 	VM_BUG_ON(migratetype == -1);
503 
504 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505 
506 	VM_BUG_ON(page_idx & ((1 << order) - 1));
507 	VM_BUG_ON(bad_range(zone, page));
508 
509 	while (order < MAX_ORDER-1) {
510 		buddy_idx = __find_buddy_index(page_idx, order);
511 		buddy = page + (buddy_idx - page_idx);
512 		if (!page_is_buddy(page, buddy, order))
513 			break;
514 
515 		/* Our buddy is free, merge with it and move up one order. */
516 		list_del(&buddy->lru);
517 		zone->free_area[order].nr_free--;
518 		rmv_page_order(buddy);
519 		combined_idx = buddy_idx & page_idx;
520 		page = page + (combined_idx - page_idx);
521 		page_idx = combined_idx;
522 		order++;
523 	}
524 	set_page_order(page, order);
525 
526 	/*
527 	 * If this is not the largest possible page, check if the buddy
528 	 * of the next-highest order is free. If it is, it's possible
529 	 * that pages are being freed that will coalesce soon. In case,
530 	 * that is happening, add the free page to the tail of the list
531 	 * so it's less likely to be used soon and more likely to be merged
532 	 * as a higher order page
533 	 */
534 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
535 		struct page *higher_page, *higher_buddy;
536 		combined_idx = buddy_idx & page_idx;
537 		higher_page = page + (combined_idx - page_idx);
538 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 		higher_buddy = page + (buddy_idx - combined_idx);
540 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 			list_add_tail(&page->lru,
542 				&zone->free_area[order].free_list[migratetype]);
543 			goto out;
544 		}
545 	}
546 
547 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548 out:
549 	zone->free_area[order].nr_free++;
550 }
551 
552 /*
553  * free_page_mlock() -- clean up attempts to free and mlocked() page.
554  * Page should not be on lru, so no need to fix that up.
555  * free_pages_check() will verify...
556  */
557 static inline void free_page_mlock(struct page *page)
558 {
559 	__dec_zone_page_state(page, NR_MLOCK);
560 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
561 }
562 
563 static inline int free_pages_check(struct page *page)
564 {
565 	if (unlikely(page_mapcount(page) |
566 		(page->mapping != NULL)  |
567 		(atomic_read(&page->_count) != 0) |
568 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
569 		bad_page(page);
570 		return 1;
571 	}
572 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 	return 0;
575 }
576 
577 /*
578  * Frees a number of pages from the PCP lists
579  * Assumes all pages on list are in same zone, and of same order.
580  * count is the number of pages to free.
581  *
582  * If the zone was previously in an "all pages pinned" state then look to
583  * see if this freeing clears that state.
584  *
585  * And clear the zone's pages_scanned counter, to hold off the "all pages are
586  * pinned" detection logic.
587  */
588 static void free_pcppages_bulk(struct zone *zone, int count,
589 					struct per_cpu_pages *pcp)
590 {
591 	int migratetype = 0;
592 	int batch_free = 0;
593 	int to_free = count;
594 
595 	spin_lock(&zone->lock);
596 	zone->all_unreclaimable = 0;
597 	zone->pages_scanned = 0;
598 
599 	while (to_free) {
600 		struct page *page;
601 		struct list_head *list;
602 
603 		/*
604 		 * Remove pages from lists in a round-robin fashion. A
605 		 * batch_free count is maintained that is incremented when an
606 		 * empty list is encountered.  This is so more pages are freed
607 		 * off fuller lists instead of spinning excessively around empty
608 		 * lists
609 		 */
610 		do {
611 			batch_free++;
612 			if (++migratetype == MIGRATE_PCPTYPES)
613 				migratetype = 0;
614 			list = &pcp->lists[migratetype];
615 		} while (list_empty(list));
616 
617 		do {
618 			page = list_entry(list->prev, struct page, lru);
619 			/* must delete as __free_one_page list manipulates */
620 			list_del(&page->lru);
621 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 			__free_one_page(page, zone, 0, page_private(page));
623 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
624 		} while (--to_free && --batch_free && !list_empty(list));
625 	}
626 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
627 	spin_unlock(&zone->lock);
628 }
629 
630 static void free_one_page(struct zone *zone, struct page *page, int order,
631 				int migratetype)
632 {
633 	spin_lock(&zone->lock);
634 	zone->all_unreclaimable = 0;
635 	zone->pages_scanned = 0;
636 
637 	__free_one_page(page, zone, order, migratetype);
638 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
639 	spin_unlock(&zone->lock);
640 }
641 
642 static bool free_pages_prepare(struct page *page, unsigned int order)
643 {
644 	int i;
645 	int bad = 0;
646 
647 	trace_mm_page_free_direct(page, order);
648 	kmemcheck_free_shadow(page, order);
649 
650 	if (PageAnon(page))
651 		page->mapping = NULL;
652 	for (i = 0; i < (1 << order); i++)
653 		bad += free_pages_check(page + i);
654 	if (bad)
655 		return false;
656 
657 	if (!PageHighMem(page)) {
658 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 		debug_check_no_obj_freed(page_address(page),
660 					   PAGE_SIZE << order);
661 	}
662 	arch_free_page(page, order);
663 	kernel_map_pages(page, 1 << order, 0);
664 
665 	return true;
666 }
667 
668 static void __free_pages_ok(struct page *page, unsigned int order)
669 {
670 	unsigned long flags;
671 	int wasMlocked = __TestClearPageMlocked(page);
672 
673 	if (!free_pages_prepare(page, order))
674 		return;
675 
676 	local_irq_save(flags);
677 	if (unlikely(wasMlocked))
678 		free_page_mlock(page);
679 	__count_vm_events(PGFREE, 1 << order);
680 	free_one_page(page_zone(page), page, order,
681 					get_pageblock_migratetype(page));
682 	local_irq_restore(flags);
683 }
684 
685 /*
686  * permit the bootmem allocator to evade page validation on high-order frees
687  */
688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
689 {
690 	if (order == 0) {
691 		__ClearPageReserved(page);
692 		set_page_count(page, 0);
693 		set_page_refcounted(page);
694 		__free_page(page);
695 	} else {
696 		int loop;
697 
698 		prefetchw(page);
699 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 			struct page *p = &page[loop];
701 
702 			if (loop + 1 < BITS_PER_LONG)
703 				prefetchw(p + 1);
704 			__ClearPageReserved(p);
705 			set_page_count(p, 0);
706 		}
707 
708 		set_page_refcounted(page);
709 		__free_pages(page, order);
710 	}
711 }
712 
713 
714 /*
715  * The order of subdivision here is critical for the IO subsystem.
716  * Please do not alter this order without good reasons and regression
717  * testing. Specifically, as large blocks of memory are subdivided,
718  * the order in which smaller blocks are delivered depends on the order
719  * they're subdivided in this function. This is the primary factor
720  * influencing the order in which pages are delivered to the IO
721  * subsystem according to empirical testing, and this is also justified
722  * by considering the behavior of a buddy system containing a single
723  * large block of memory acted on by a series of small allocations.
724  * This behavior is a critical factor in sglist merging's success.
725  *
726  * -- wli
727  */
728 static inline void expand(struct zone *zone, struct page *page,
729 	int low, int high, struct free_area *area,
730 	int migratetype)
731 {
732 	unsigned long size = 1 << high;
733 
734 	while (high > low) {
735 		area--;
736 		high--;
737 		size >>= 1;
738 		VM_BUG_ON(bad_range(zone, &page[size]));
739 		list_add(&page[size].lru, &area->free_list[migratetype]);
740 		area->nr_free++;
741 		set_page_order(&page[size], high);
742 	}
743 }
744 
745 /*
746  * This page is about to be returned from the page allocator
747  */
748 static inline int check_new_page(struct page *page)
749 {
750 	if (unlikely(page_mapcount(page) |
751 		(page->mapping != NULL)  |
752 		(atomic_read(&page->_count) != 0)  |
753 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 		bad_page(page);
755 		return 1;
756 	}
757 	return 0;
758 }
759 
760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761 {
762 	int i;
763 
764 	for (i = 0; i < (1 << order); i++) {
765 		struct page *p = page + i;
766 		if (unlikely(check_new_page(p)))
767 			return 1;
768 	}
769 
770 	set_page_private(page, 0);
771 	set_page_refcounted(page);
772 
773 	arch_alloc_page(page, order);
774 	kernel_map_pages(page, 1 << order, 1);
775 
776 	if (gfp_flags & __GFP_ZERO)
777 		prep_zero_page(page, order, gfp_flags);
778 
779 	if (order && (gfp_flags & __GFP_COMP))
780 		prep_compound_page(page, order);
781 
782 	return 0;
783 }
784 
785 /*
786  * Go through the free lists for the given migratetype and remove
787  * the smallest available page from the freelists
788  */
789 static inline
790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 						int migratetype)
792 {
793 	unsigned int current_order;
794 	struct free_area * area;
795 	struct page *page;
796 
797 	/* Find a page of the appropriate size in the preferred list */
798 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 		area = &(zone->free_area[current_order]);
800 		if (list_empty(&area->free_list[migratetype]))
801 			continue;
802 
803 		page = list_entry(area->free_list[migratetype].next,
804 							struct page, lru);
805 		list_del(&page->lru);
806 		rmv_page_order(page);
807 		area->nr_free--;
808 		expand(zone, page, order, current_order, area, migratetype);
809 		return page;
810 	}
811 
812 	return NULL;
813 }
814 
815 
816 /*
817  * This array describes the order lists are fallen back to when
818  * the free lists for the desirable migrate type are depleted
819  */
820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
822 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
823 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
825 };
826 
827 /*
828  * Move the free pages in a range to the free lists of the requested type.
829  * Note that start_page and end_pages are not aligned on a pageblock
830  * boundary. If alignment is required, use move_freepages_block()
831  */
832 static int move_freepages(struct zone *zone,
833 			  struct page *start_page, struct page *end_page,
834 			  int migratetype)
835 {
836 	struct page *page;
837 	unsigned long order;
838 	int pages_moved = 0;
839 
840 #ifndef CONFIG_HOLES_IN_ZONE
841 	/*
842 	 * page_zone is not safe to call in this context when
843 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 	 * anyway as we check zone boundaries in move_freepages_block().
845 	 * Remove at a later date when no bug reports exist related to
846 	 * grouping pages by mobility
847 	 */
848 	BUG_ON(page_zone(start_page) != page_zone(end_page));
849 #endif
850 
851 	for (page = start_page; page <= end_page;) {
852 		/* Make sure we are not inadvertently changing nodes */
853 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854 
855 		if (!pfn_valid_within(page_to_pfn(page))) {
856 			page++;
857 			continue;
858 		}
859 
860 		if (!PageBuddy(page)) {
861 			page++;
862 			continue;
863 		}
864 
865 		order = page_order(page);
866 		list_del(&page->lru);
867 		list_add(&page->lru,
868 			&zone->free_area[order].free_list[migratetype]);
869 		page += 1 << order;
870 		pages_moved += 1 << order;
871 	}
872 
873 	return pages_moved;
874 }
875 
876 static int move_freepages_block(struct zone *zone, struct page *page,
877 				int migratetype)
878 {
879 	unsigned long start_pfn, end_pfn;
880 	struct page *start_page, *end_page;
881 
882 	start_pfn = page_to_pfn(page);
883 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 	start_page = pfn_to_page(start_pfn);
885 	end_page = start_page + pageblock_nr_pages - 1;
886 	end_pfn = start_pfn + pageblock_nr_pages - 1;
887 
888 	/* Do not cross zone boundaries */
889 	if (start_pfn < zone->zone_start_pfn)
890 		start_page = page;
891 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 		return 0;
893 
894 	return move_freepages(zone, start_page, end_page, migratetype);
895 }
896 
897 static void change_pageblock_range(struct page *pageblock_page,
898 					int start_order, int migratetype)
899 {
900 	int nr_pageblocks = 1 << (start_order - pageblock_order);
901 
902 	while (nr_pageblocks--) {
903 		set_pageblock_migratetype(pageblock_page, migratetype);
904 		pageblock_page += pageblock_nr_pages;
905 	}
906 }
907 
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page *
910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
911 {
912 	struct free_area * area;
913 	int current_order;
914 	struct page *page;
915 	int migratetype, i;
916 
917 	/* Find the largest possible block of pages in the other list */
918 	for (current_order = MAX_ORDER-1; current_order >= order;
919 						--current_order) {
920 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 			migratetype = fallbacks[start_migratetype][i];
922 
923 			/* MIGRATE_RESERVE handled later if necessary */
924 			if (migratetype == MIGRATE_RESERVE)
925 				continue;
926 
927 			area = &(zone->free_area[current_order]);
928 			if (list_empty(&area->free_list[migratetype]))
929 				continue;
930 
931 			page = list_entry(area->free_list[migratetype].next,
932 					struct page, lru);
933 			area->nr_free--;
934 
935 			/*
936 			 * If breaking a large block of pages, move all free
937 			 * pages to the preferred allocation list. If falling
938 			 * back for a reclaimable kernel allocation, be more
939 			 * agressive about taking ownership of free pages
940 			 */
941 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 					start_migratetype == MIGRATE_RECLAIMABLE ||
943 					page_group_by_mobility_disabled) {
944 				unsigned long pages;
945 				pages = move_freepages_block(zone, page,
946 								start_migratetype);
947 
948 				/* Claim the whole block if over half of it is free */
949 				if (pages >= (1 << (pageblock_order-1)) ||
950 						page_group_by_mobility_disabled)
951 					set_pageblock_migratetype(page,
952 								start_migratetype);
953 
954 				migratetype = start_migratetype;
955 			}
956 
957 			/* Remove the page from the freelists */
958 			list_del(&page->lru);
959 			rmv_page_order(page);
960 
961 			/* Take ownership for orders >= pageblock_order */
962 			if (current_order >= pageblock_order)
963 				change_pageblock_range(page, current_order,
964 							start_migratetype);
965 
966 			expand(zone, page, order, current_order, area, migratetype);
967 
968 			trace_mm_page_alloc_extfrag(page, order, current_order,
969 				start_migratetype, migratetype);
970 
971 			return page;
972 		}
973 	}
974 
975 	return NULL;
976 }
977 
978 /*
979  * Do the hard work of removing an element from the buddy allocator.
980  * Call me with the zone->lock already held.
981  */
982 static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 						int migratetype)
984 {
985 	struct page *page;
986 
987 retry_reserve:
988 	page = __rmqueue_smallest(zone, order, migratetype);
989 
990 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 		page = __rmqueue_fallback(zone, order, migratetype);
992 
993 		/*
994 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 		 * is used because __rmqueue_smallest is an inline function
996 		 * and we want just one call site
997 		 */
998 		if (!page) {
999 			migratetype = MIGRATE_RESERVE;
1000 			goto retry_reserve;
1001 		}
1002 	}
1003 
1004 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 	return page;
1006 }
1007 
1008 /*
1009  * Obtain a specified number of elements from the buddy allocator, all under
1010  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1011  * Returns the number of new pages which were placed at *list.
1012  */
1013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 			unsigned long count, struct list_head *list,
1015 			int migratetype, int cold)
1016 {
1017 	int i;
1018 
1019 	spin_lock(&zone->lock);
1020 	for (i = 0; i < count; ++i) {
1021 		struct page *page = __rmqueue(zone, order, migratetype);
1022 		if (unlikely(page == NULL))
1023 			break;
1024 
1025 		/*
1026 		 * Split buddy pages returned by expand() are received here
1027 		 * in physical page order. The page is added to the callers and
1028 		 * list and the list head then moves forward. From the callers
1029 		 * perspective, the linked list is ordered by page number in
1030 		 * some conditions. This is useful for IO devices that can
1031 		 * merge IO requests if the physical pages are ordered
1032 		 * properly.
1033 		 */
1034 		if (likely(cold == 0))
1035 			list_add(&page->lru, list);
1036 		else
1037 			list_add_tail(&page->lru, list);
1038 		set_page_private(page, migratetype);
1039 		list = &page->lru;
1040 	}
1041 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 	spin_unlock(&zone->lock);
1043 	return i;
1044 }
1045 
1046 #ifdef CONFIG_NUMA
1047 /*
1048  * Called from the vmstat counter updater to drain pagesets of this
1049  * currently executing processor on remote nodes after they have
1050  * expired.
1051  *
1052  * Note that this function must be called with the thread pinned to
1053  * a single processor.
1054  */
1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1056 {
1057 	unsigned long flags;
1058 	int to_drain;
1059 
1060 	local_irq_save(flags);
1061 	if (pcp->count >= pcp->batch)
1062 		to_drain = pcp->batch;
1063 	else
1064 		to_drain = pcp->count;
1065 	free_pcppages_bulk(zone, to_drain, pcp);
1066 	pcp->count -= to_drain;
1067 	local_irq_restore(flags);
1068 }
1069 #endif
1070 
1071 /*
1072  * Drain pages of the indicated processor.
1073  *
1074  * The processor must either be the current processor and the
1075  * thread pinned to the current processor or a processor that
1076  * is not online.
1077  */
1078 static void drain_pages(unsigned int cpu)
1079 {
1080 	unsigned long flags;
1081 	struct zone *zone;
1082 
1083 	for_each_populated_zone(zone) {
1084 		struct per_cpu_pageset *pset;
1085 		struct per_cpu_pages *pcp;
1086 
1087 		local_irq_save(flags);
1088 		pset = per_cpu_ptr(zone->pageset, cpu);
1089 
1090 		pcp = &pset->pcp;
1091 		if (pcp->count) {
1092 			free_pcppages_bulk(zone, pcp->count, pcp);
1093 			pcp->count = 0;
1094 		}
1095 		local_irq_restore(flags);
1096 	}
1097 }
1098 
1099 /*
1100  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1101  */
1102 void drain_local_pages(void *arg)
1103 {
1104 	drain_pages(smp_processor_id());
1105 }
1106 
1107 /*
1108  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1109  */
1110 void drain_all_pages(void)
1111 {
1112 	on_each_cpu(drain_local_pages, NULL, 1);
1113 }
1114 
1115 #ifdef CONFIG_HIBERNATION
1116 
1117 void mark_free_pages(struct zone *zone)
1118 {
1119 	unsigned long pfn, max_zone_pfn;
1120 	unsigned long flags;
1121 	int order, t;
1122 	struct list_head *curr;
1123 
1124 	if (!zone->spanned_pages)
1125 		return;
1126 
1127 	spin_lock_irqsave(&zone->lock, flags);
1128 
1129 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1130 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1131 		if (pfn_valid(pfn)) {
1132 			struct page *page = pfn_to_page(pfn);
1133 
1134 			if (!swsusp_page_is_forbidden(page))
1135 				swsusp_unset_page_free(page);
1136 		}
1137 
1138 	for_each_migratetype_order(order, t) {
1139 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1140 			unsigned long i;
1141 
1142 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1143 			for (i = 0; i < (1UL << order); i++)
1144 				swsusp_set_page_free(pfn_to_page(pfn + i));
1145 		}
1146 	}
1147 	spin_unlock_irqrestore(&zone->lock, flags);
1148 }
1149 #endif /* CONFIG_PM */
1150 
1151 /*
1152  * Free a 0-order page
1153  * cold == 1 ? free a cold page : free a hot page
1154  */
1155 void free_hot_cold_page(struct page *page, int cold)
1156 {
1157 	struct zone *zone = page_zone(page);
1158 	struct per_cpu_pages *pcp;
1159 	unsigned long flags;
1160 	int migratetype;
1161 	int wasMlocked = __TestClearPageMlocked(page);
1162 
1163 	if (!free_pages_prepare(page, 0))
1164 		return;
1165 
1166 	migratetype = get_pageblock_migratetype(page);
1167 	set_page_private(page, migratetype);
1168 	local_irq_save(flags);
1169 	if (unlikely(wasMlocked))
1170 		free_page_mlock(page);
1171 	__count_vm_event(PGFREE);
1172 
1173 	/*
1174 	 * We only track unmovable, reclaimable and movable on pcp lists.
1175 	 * Free ISOLATE pages back to the allocator because they are being
1176 	 * offlined but treat RESERVE as movable pages so we can get those
1177 	 * areas back if necessary. Otherwise, we may have to free
1178 	 * excessively into the page allocator
1179 	 */
1180 	if (migratetype >= MIGRATE_PCPTYPES) {
1181 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1182 			free_one_page(zone, page, 0, migratetype);
1183 			goto out;
1184 		}
1185 		migratetype = MIGRATE_MOVABLE;
1186 	}
1187 
1188 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1189 	if (cold)
1190 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1191 	else
1192 		list_add(&page->lru, &pcp->lists[migratetype]);
1193 	pcp->count++;
1194 	if (pcp->count >= pcp->high) {
1195 		free_pcppages_bulk(zone, pcp->batch, pcp);
1196 		pcp->count -= pcp->batch;
1197 	}
1198 
1199 out:
1200 	local_irq_restore(flags);
1201 }
1202 
1203 /*
1204  * split_page takes a non-compound higher-order page, and splits it into
1205  * n (1<<order) sub-pages: page[0..n]
1206  * Each sub-page must be freed individually.
1207  *
1208  * Note: this is probably too low level an operation for use in drivers.
1209  * Please consult with lkml before using this in your driver.
1210  */
1211 void split_page(struct page *page, unsigned int order)
1212 {
1213 	int i;
1214 
1215 	VM_BUG_ON(PageCompound(page));
1216 	VM_BUG_ON(!page_count(page));
1217 
1218 #ifdef CONFIG_KMEMCHECK
1219 	/*
1220 	 * Split shadow pages too, because free(page[0]) would
1221 	 * otherwise free the whole shadow.
1222 	 */
1223 	if (kmemcheck_page_is_tracked(page))
1224 		split_page(virt_to_page(page[0].shadow), order);
1225 #endif
1226 
1227 	for (i = 1; i < (1 << order); i++)
1228 		set_page_refcounted(page + i);
1229 }
1230 
1231 /*
1232  * Similar to split_page except the page is already free. As this is only
1233  * being used for migration, the migratetype of the block also changes.
1234  * As this is called with interrupts disabled, the caller is responsible
1235  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1236  * are enabled.
1237  *
1238  * Note: this is probably too low level an operation for use in drivers.
1239  * Please consult with lkml before using this in your driver.
1240  */
1241 int split_free_page(struct page *page)
1242 {
1243 	unsigned int order;
1244 	unsigned long watermark;
1245 	struct zone *zone;
1246 
1247 	BUG_ON(!PageBuddy(page));
1248 
1249 	zone = page_zone(page);
1250 	order = page_order(page);
1251 
1252 	/* Obey watermarks as if the page was being allocated */
1253 	watermark = low_wmark_pages(zone) + (1 << order);
1254 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1255 		return 0;
1256 
1257 	/* Remove page from free list */
1258 	list_del(&page->lru);
1259 	zone->free_area[order].nr_free--;
1260 	rmv_page_order(page);
1261 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1262 
1263 	/* Split into individual pages */
1264 	set_page_refcounted(page);
1265 	split_page(page, order);
1266 
1267 	if (order >= pageblock_order - 1) {
1268 		struct page *endpage = page + (1 << order) - 1;
1269 		for (; page < endpage; page += pageblock_nr_pages)
1270 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1271 	}
1272 
1273 	return 1 << order;
1274 }
1275 
1276 /*
1277  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1278  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1279  * or two.
1280  */
1281 static inline
1282 struct page *buffered_rmqueue(struct zone *preferred_zone,
1283 			struct zone *zone, int order, gfp_t gfp_flags,
1284 			int migratetype)
1285 {
1286 	unsigned long flags;
1287 	struct page *page;
1288 	int cold = !!(gfp_flags & __GFP_COLD);
1289 
1290 again:
1291 	if (likely(order == 0)) {
1292 		struct per_cpu_pages *pcp;
1293 		struct list_head *list;
1294 
1295 		local_irq_save(flags);
1296 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1297 		list = &pcp->lists[migratetype];
1298 		if (list_empty(list)) {
1299 			pcp->count += rmqueue_bulk(zone, 0,
1300 					pcp->batch, list,
1301 					migratetype, cold);
1302 			if (unlikely(list_empty(list)))
1303 				goto failed;
1304 		}
1305 
1306 		if (cold)
1307 			page = list_entry(list->prev, struct page, lru);
1308 		else
1309 			page = list_entry(list->next, struct page, lru);
1310 
1311 		list_del(&page->lru);
1312 		pcp->count--;
1313 	} else {
1314 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1315 			/*
1316 			 * __GFP_NOFAIL is not to be used in new code.
1317 			 *
1318 			 * All __GFP_NOFAIL callers should be fixed so that they
1319 			 * properly detect and handle allocation failures.
1320 			 *
1321 			 * We most definitely don't want callers attempting to
1322 			 * allocate greater than order-1 page units with
1323 			 * __GFP_NOFAIL.
1324 			 */
1325 			WARN_ON_ONCE(order > 1);
1326 		}
1327 		spin_lock_irqsave(&zone->lock, flags);
1328 		page = __rmqueue(zone, order, migratetype);
1329 		spin_unlock(&zone->lock);
1330 		if (!page)
1331 			goto failed;
1332 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1333 	}
1334 
1335 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1336 	zone_statistics(preferred_zone, zone);
1337 	local_irq_restore(flags);
1338 
1339 	VM_BUG_ON(bad_range(zone, page));
1340 	if (prep_new_page(page, order, gfp_flags))
1341 		goto again;
1342 	return page;
1343 
1344 failed:
1345 	local_irq_restore(flags);
1346 	return NULL;
1347 }
1348 
1349 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1350 #define ALLOC_WMARK_MIN		WMARK_MIN
1351 #define ALLOC_WMARK_LOW		WMARK_LOW
1352 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1353 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1354 
1355 /* Mask to get the watermark bits */
1356 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1357 
1358 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1359 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1360 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1361 
1362 #ifdef CONFIG_FAIL_PAGE_ALLOC
1363 
1364 static struct fail_page_alloc_attr {
1365 	struct fault_attr attr;
1366 
1367 	u32 ignore_gfp_highmem;
1368 	u32 ignore_gfp_wait;
1369 	u32 min_order;
1370 
1371 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1372 
1373 	struct dentry *ignore_gfp_highmem_file;
1374 	struct dentry *ignore_gfp_wait_file;
1375 	struct dentry *min_order_file;
1376 
1377 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1378 
1379 } fail_page_alloc = {
1380 	.attr = FAULT_ATTR_INITIALIZER,
1381 	.ignore_gfp_wait = 1,
1382 	.ignore_gfp_highmem = 1,
1383 	.min_order = 1,
1384 };
1385 
1386 static int __init setup_fail_page_alloc(char *str)
1387 {
1388 	return setup_fault_attr(&fail_page_alloc.attr, str);
1389 }
1390 __setup("fail_page_alloc=", setup_fail_page_alloc);
1391 
1392 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393 {
1394 	if (order < fail_page_alloc.min_order)
1395 		return 0;
1396 	if (gfp_mask & __GFP_NOFAIL)
1397 		return 0;
1398 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399 		return 0;
1400 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401 		return 0;
1402 
1403 	return should_fail(&fail_page_alloc.attr, 1 << order);
1404 }
1405 
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407 
1408 static int __init fail_page_alloc_debugfs(void)
1409 {
1410 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411 	struct dentry *dir;
1412 	int err;
1413 
1414 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1415 				       "fail_page_alloc");
1416 	if (err)
1417 		return err;
1418 	dir = fail_page_alloc.attr.dentries.dir;
1419 
1420 	fail_page_alloc.ignore_gfp_wait_file =
1421 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1422 				      &fail_page_alloc.ignore_gfp_wait);
1423 
1424 	fail_page_alloc.ignore_gfp_highmem_file =
1425 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1426 				      &fail_page_alloc.ignore_gfp_highmem);
1427 	fail_page_alloc.min_order_file =
1428 		debugfs_create_u32("min-order", mode, dir,
1429 				   &fail_page_alloc.min_order);
1430 
1431 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1432             !fail_page_alloc.ignore_gfp_highmem_file ||
1433             !fail_page_alloc.min_order_file) {
1434 		err = -ENOMEM;
1435 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1436 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1437 		debugfs_remove(fail_page_alloc.min_order_file);
1438 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1439 	}
1440 
1441 	return err;
1442 }
1443 
1444 late_initcall(fail_page_alloc_debugfs);
1445 
1446 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1447 
1448 #else /* CONFIG_FAIL_PAGE_ALLOC */
1449 
1450 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1451 {
1452 	return 0;
1453 }
1454 
1455 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1456 
1457 /*
1458  * Return true if free pages are above 'mark'. This takes into account the order
1459  * of the allocation.
1460  */
1461 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1462 		      int classzone_idx, int alloc_flags, long free_pages)
1463 {
1464 	/* free_pages my go negative - that's OK */
1465 	long min = mark;
1466 	int o;
1467 
1468 	free_pages -= (1 << order) + 1;
1469 	if (alloc_flags & ALLOC_HIGH)
1470 		min -= min / 2;
1471 	if (alloc_flags & ALLOC_HARDER)
1472 		min -= min / 4;
1473 
1474 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1475 		return false;
1476 	for (o = 0; o < order; o++) {
1477 		/* At the next order, this order's pages become unavailable */
1478 		free_pages -= z->free_area[o].nr_free << o;
1479 
1480 		/* Require fewer higher order pages to be free */
1481 		min >>= 1;
1482 
1483 		if (free_pages <= min)
1484 			return false;
1485 	}
1486 	return true;
1487 }
1488 
1489 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1490 		      int classzone_idx, int alloc_flags)
1491 {
1492 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1493 					zone_page_state(z, NR_FREE_PAGES));
1494 }
1495 
1496 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1497 		      int classzone_idx, int alloc_flags)
1498 {
1499 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1500 
1501 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1502 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1503 
1504 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1505 								free_pages);
1506 }
1507 
1508 #ifdef CONFIG_NUMA
1509 /*
1510  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1511  * skip over zones that are not allowed by the cpuset, or that have
1512  * been recently (in last second) found to be nearly full.  See further
1513  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1514  * that have to skip over a lot of full or unallowed zones.
1515  *
1516  * If the zonelist cache is present in the passed in zonelist, then
1517  * returns a pointer to the allowed node mask (either the current
1518  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1519  *
1520  * If the zonelist cache is not available for this zonelist, does
1521  * nothing and returns NULL.
1522  *
1523  * If the fullzones BITMAP in the zonelist cache is stale (more than
1524  * a second since last zap'd) then we zap it out (clear its bits.)
1525  *
1526  * We hold off even calling zlc_setup, until after we've checked the
1527  * first zone in the zonelist, on the theory that most allocations will
1528  * be satisfied from that first zone, so best to examine that zone as
1529  * quickly as we can.
1530  */
1531 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1532 {
1533 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1534 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1535 
1536 	zlc = zonelist->zlcache_ptr;
1537 	if (!zlc)
1538 		return NULL;
1539 
1540 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1541 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1542 		zlc->last_full_zap = jiffies;
1543 	}
1544 
1545 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1546 					&cpuset_current_mems_allowed :
1547 					&node_states[N_HIGH_MEMORY];
1548 	return allowednodes;
1549 }
1550 
1551 /*
1552  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1553  * if it is worth looking at further for free memory:
1554  *  1) Check that the zone isn't thought to be full (doesn't have its
1555  *     bit set in the zonelist_cache fullzones BITMAP).
1556  *  2) Check that the zones node (obtained from the zonelist_cache
1557  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1558  * Return true (non-zero) if zone is worth looking at further, or
1559  * else return false (zero) if it is not.
1560  *
1561  * This check -ignores- the distinction between various watermarks,
1562  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1563  * found to be full for any variation of these watermarks, it will
1564  * be considered full for up to one second by all requests, unless
1565  * we are so low on memory on all allowed nodes that we are forced
1566  * into the second scan of the zonelist.
1567  *
1568  * In the second scan we ignore this zonelist cache and exactly
1569  * apply the watermarks to all zones, even it is slower to do so.
1570  * We are low on memory in the second scan, and should leave no stone
1571  * unturned looking for a free page.
1572  */
1573 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1574 						nodemask_t *allowednodes)
1575 {
1576 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1577 	int i;				/* index of *z in zonelist zones */
1578 	int n;				/* node that zone *z is on */
1579 
1580 	zlc = zonelist->zlcache_ptr;
1581 	if (!zlc)
1582 		return 1;
1583 
1584 	i = z - zonelist->_zonerefs;
1585 	n = zlc->z_to_n[i];
1586 
1587 	/* This zone is worth trying if it is allowed but not full */
1588 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1589 }
1590 
1591 /*
1592  * Given 'z' scanning a zonelist, set the corresponding bit in
1593  * zlc->fullzones, so that subsequent attempts to allocate a page
1594  * from that zone don't waste time re-examining it.
1595  */
1596 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1597 {
1598 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1599 	int i;				/* index of *z in zonelist zones */
1600 
1601 	zlc = zonelist->zlcache_ptr;
1602 	if (!zlc)
1603 		return;
1604 
1605 	i = z - zonelist->_zonerefs;
1606 
1607 	set_bit(i, zlc->fullzones);
1608 }
1609 
1610 #else	/* CONFIG_NUMA */
1611 
1612 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1613 {
1614 	return NULL;
1615 }
1616 
1617 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1618 				nodemask_t *allowednodes)
1619 {
1620 	return 1;
1621 }
1622 
1623 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1624 {
1625 }
1626 #endif	/* CONFIG_NUMA */
1627 
1628 /*
1629  * get_page_from_freelist goes through the zonelist trying to allocate
1630  * a page.
1631  */
1632 static struct page *
1633 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1634 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1635 		struct zone *preferred_zone, int migratetype)
1636 {
1637 	struct zoneref *z;
1638 	struct page *page = NULL;
1639 	int classzone_idx;
1640 	struct zone *zone;
1641 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1642 	int zlc_active = 0;		/* set if using zonelist_cache */
1643 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1644 
1645 	classzone_idx = zone_idx(preferred_zone);
1646 zonelist_scan:
1647 	/*
1648 	 * Scan zonelist, looking for a zone with enough free.
1649 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1650 	 */
1651 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1652 						high_zoneidx, nodemask) {
1653 		if (NUMA_BUILD && zlc_active &&
1654 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1655 				continue;
1656 		if ((alloc_flags & ALLOC_CPUSET) &&
1657 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1658 				goto try_next_zone;
1659 
1660 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1661 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1662 			unsigned long mark;
1663 			int ret;
1664 
1665 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1666 			if (zone_watermark_ok(zone, order, mark,
1667 				    classzone_idx, alloc_flags))
1668 				goto try_this_zone;
1669 
1670 			if (zone_reclaim_mode == 0)
1671 				goto this_zone_full;
1672 
1673 			ret = zone_reclaim(zone, gfp_mask, order);
1674 			switch (ret) {
1675 			case ZONE_RECLAIM_NOSCAN:
1676 				/* did not scan */
1677 				goto try_next_zone;
1678 			case ZONE_RECLAIM_FULL:
1679 				/* scanned but unreclaimable */
1680 				goto this_zone_full;
1681 			default:
1682 				/* did we reclaim enough */
1683 				if (!zone_watermark_ok(zone, order, mark,
1684 						classzone_idx, alloc_flags))
1685 					goto this_zone_full;
1686 			}
1687 		}
1688 
1689 try_this_zone:
1690 		page = buffered_rmqueue(preferred_zone, zone, order,
1691 						gfp_mask, migratetype);
1692 		if (page)
1693 			break;
1694 this_zone_full:
1695 		if (NUMA_BUILD)
1696 			zlc_mark_zone_full(zonelist, z);
1697 try_next_zone:
1698 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1699 			/*
1700 			 * we do zlc_setup after the first zone is tried but only
1701 			 * if there are multiple nodes make it worthwhile
1702 			 */
1703 			allowednodes = zlc_setup(zonelist, alloc_flags);
1704 			zlc_active = 1;
1705 			did_zlc_setup = 1;
1706 		}
1707 	}
1708 
1709 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1710 		/* Disable zlc cache for second zonelist scan */
1711 		zlc_active = 0;
1712 		goto zonelist_scan;
1713 	}
1714 	return page;
1715 }
1716 
1717 static inline int
1718 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1719 				unsigned long pages_reclaimed)
1720 {
1721 	/* Do not loop if specifically requested */
1722 	if (gfp_mask & __GFP_NORETRY)
1723 		return 0;
1724 
1725 	/*
1726 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1727 	 * means __GFP_NOFAIL, but that may not be true in other
1728 	 * implementations.
1729 	 */
1730 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1731 		return 1;
1732 
1733 	/*
1734 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1735 	 * specified, then we retry until we no longer reclaim any pages
1736 	 * (above), or we've reclaimed an order of pages at least as
1737 	 * large as the allocation's order. In both cases, if the
1738 	 * allocation still fails, we stop retrying.
1739 	 */
1740 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1741 		return 1;
1742 
1743 	/*
1744 	 * Don't let big-order allocations loop unless the caller
1745 	 * explicitly requests that.
1746 	 */
1747 	if (gfp_mask & __GFP_NOFAIL)
1748 		return 1;
1749 
1750 	return 0;
1751 }
1752 
1753 static inline struct page *
1754 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1755 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1756 	nodemask_t *nodemask, struct zone *preferred_zone,
1757 	int migratetype)
1758 {
1759 	struct page *page;
1760 
1761 	/* Acquire the OOM killer lock for the zones in zonelist */
1762 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1763 		schedule_timeout_uninterruptible(1);
1764 		return NULL;
1765 	}
1766 
1767 	/*
1768 	 * Go through the zonelist yet one more time, keep very high watermark
1769 	 * here, this is only to catch a parallel oom killing, we must fail if
1770 	 * we're still under heavy pressure.
1771 	 */
1772 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1773 		order, zonelist, high_zoneidx,
1774 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1775 		preferred_zone, migratetype);
1776 	if (page)
1777 		goto out;
1778 
1779 	if (!(gfp_mask & __GFP_NOFAIL)) {
1780 		/* The OOM killer will not help higher order allocs */
1781 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1782 			goto out;
1783 		/* The OOM killer does not needlessly kill tasks for lowmem */
1784 		if (high_zoneidx < ZONE_NORMAL)
1785 			goto out;
1786 		/*
1787 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1788 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1789 		 * The caller should handle page allocation failure by itself if
1790 		 * it specifies __GFP_THISNODE.
1791 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1792 		 */
1793 		if (gfp_mask & __GFP_THISNODE)
1794 			goto out;
1795 	}
1796 	/* Exhausted what can be done so it's blamo time */
1797 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1798 
1799 out:
1800 	clear_zonelist_oom(zonelist, gfp_mask);
1801 	return page;
1802 }
1803 
1804 #ifdef CONFIG_COMPACTION
1805 /* Try memory compaction for high-order allocations before reclaim */
1806 static struct page *
1807 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1808 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1809 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1810 	int migratetype, unsigned long *did_some_progress,
1811 	bool sync_migration)
1812 {
1813 	struct page *page;
1814 
1815 	if (!order || compaction_deferred(preferred_zone))
1816 		return NULL;
1817 
1818 	current->flags |= PF_MEMALLOC;
1819 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1820 						nodemask, sync_migration);
1821 	current->flags &= ~PF_MEMALLOC;
1822 	if (*did_some_progress != COMPACT_SKIPPED) {
1823 
1824 		/* Page migration frees to the PCP lists but we want merging */
1825 		drain_pages(get_cpu());
1826 		put_cpu();
1827 
1828 		page = get_page_from_freelist(gfp_mask, nodemask,
1829 				order, zonelist, high_zoneidx,
1830 				alloc_flags, preferred_zone,
1831 				migratetype);
1832 		if (page) {
1833 			preferred_zone->compact_considered = 0;
1834 			preferred_zone->compact_defer_shift = 0;
1835 			count_vm_event(COMPACTSUCCESS);
1836 			return page;
1837 		}
1838 
1839 		/*
1840 		 * It's bad if compaction run occurs and fails.
1841 		 * The most likely reason is that pages exist,
1842 		 * but not enough to satisfy watermarks.
1843 		 */
1844 		count_vm_event(COMPACTFAIL);
1845 		defer_compaction(preferred_zone);
1846 
1847 		cond_resched();
1848 	}
1849 
1850 	return NULL;
1851 }
1852 #else
1853 static inline struct page *
1854 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1855 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1856 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1857 	int migratetype, unsigned long *did_some_progress,
1858 	bool sync_migration)
1859 {
1860 	return NULL;
1861 }
1862 #endif /* CONFIG_COMPACTION */
1863 
1864 /* The really slow allocator path where we enter direct reclaim */
1865 static inline struct page *
1866 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1867 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1868 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1869 	int migratetype, unsigned long *did_some_progress)
1870 {
1871 	struct page *page = NULL;
1872 	struct reclaim_state reclaim_state;
1873 	bool drained = false;
1874 
1875 	cond_resched();
1876 
1877 	/* We now go into synchronous reclaim */
1878 	cpuset_memory_pressure_bump();
1879 	current->flags |= PF_MEMALLOC;
1880 	lockdep_set_current_reclaim_state(gfp_mask);
1881 	reclaim_state.reclaimed_slab = 0;
1882 	current->reclaim_state = &reclaim_state;
1883 
1884 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1885 
1886 	current->reclaim_state = NULL;
1887 	lockdep_clear_current_reclaim_state();
1888 	current->flags &= ~PF_MEMALLOC;
1889 
1890 	cond_resched();
1891 
1892 	if (unlikely(!(*did_some_progress)))
1893 		return NULL;
1894 
1895 retry:
1896 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1897 					zonelist, high_zoneidx,
1898 					alloc_flags, preferred_zone,
1899 					migratetype);
1900 
1901 	/*
1902 	 * If an allocation failed after direct reclaim, it could be because
1903 	 * pages are pinned on the per-cpu lists. Drain them and try again
1904 	 */
1905 	if (!page && !drained) {
1906 		drain_all_pages();
1907 		drained = true;
1908 		goto retry;
1909 	}
1910 
1911 	return page;
1912 }
1913 
1914 /*
1915  * This is called in the allocator slow-path if the allocation request is of
1916  * sufficient urgency to ignore watermarks and take other desperate measures
1917  */
1918 static inline struct page *
1919 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1920 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1921 	nodemask_t *nodemask, struct zone *preferred_zone,
1922 	int migratetype)
1923 {
1924 	struct page *page;
1925 
1926 	do {
1927 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1928 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1929 			preferred_zone, migratetype);
1930 
1931 		if (!page && gfp_mask & __GFP_NOFAIL)
1932 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1933 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1934 
1935 	return page;
1936 }
1937 
1938 static inline
1939 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1940 						enum zone_type high_zoneidx,
1941 						enum zone_type classzone_idx)
1942 {
1943 	struct zoneref *z;
1944 	struct zone *zone;
1945 
1946 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1947 		wakeup_kswapd(zone, order, classzone_idx);
1948 }
1949 
1950 static inline int
1951 gfp_to_alloc_flags(gfp_t gfp_mask)
1952 {
1953 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1954 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1955 
1956 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1957 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1958 
1959 	/*
1960 	 * The caller may dip into page reserves a bit more if the caller
1961 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1962 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1963 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1964 	 */
1965 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1966 
1967 	if (!wait) {
1968 		/*
1969 		 * Not worth trying to allocate harder for
1970 		 * __GFP_NOMEMALLOC even if it can't schedule.
1971 		 */
1972 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
1973 			alloc_flags |= ALLOC_HARDER;
1974 		/*
1975 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1976 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1977 		 */
1978 		alloc_flags &= ~ALLOC_CPUSET;
1979 	} else if (unlikely(rt_task(current)) && !in_interrupt())
1980 		alloc_flags |= ALLOC_HARDER;
1981 
1982 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1983 		if (!in_interrupt() &&
1984 		    ((current->flags & PF_MEMALLOC) ||
1985 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1986 			alloc_flags |= ALLOC_NO_WATERMARKS;
1987 	}
1988 
1989 	return alloc_flags;
1990 }
1991 
1992 static inline struct page *
1993 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1994 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1995 	nodemask_t *nodemask, struct zone *preferred_zone,
1996 	int migratetype)
1997 {
1998 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1999 	struct page *page = NULL;
2000 	int alloc_flags;
2001 	unsigned long pages_reclaimed = 0;
2002 	unsigned long did_some_progress;
2003 	bool sync_migration = false;
2004 
2005 	/*
2006 	 * In the slowpath, we sanity check order to avoid ever trying to
2007 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2008 	 * be using allocators in order of preference for an area that is
2009 	 * too large.
2010 	 */
2011 	if (order >= MAX_ORDER) {
2012 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2013 		return NULL;
2014 	}
2015 
2016 	/*
2017 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2018 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2019 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2020 	 * using a larger set of nodes after it has established that the
2021 	 * allowed per node queues are empty and that nodes are
2022 	 * over allocated.
2023 	 */
2024 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2025 		goto nopage;
2026 
2027 restart:
2028 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2029 		wake_all_kswapd(order, zonelist, high_zoneidx,
2030 						zone_idx(preferred_zone));
2031 
2032 	/*
2033 	 * OK, we're below the kswapd watermark and have kicked background
2034 	 * reclaim. Now things get more complex, so set up alloc_flags according
2035 	 * to how we want to proceed.
2036 	 */
2037 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2038 
2039 	/*
2040 	 * Find the true preferred zone if the allocation is unconstrained by
2041 	 * cpusets.
2042 	 */
2043 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2044 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2045 					&preferred_zone);
2046 
2047 	/* This is the last chance, in general, before the goto nopage. */
2048 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2049 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2050 			preferred_zone, migratetype);
2051 	if (page)
2052 		goto got_pg;
2053 
2054 rebalance:
2055 	/* Allocate without watermarks if the context allows */
2056 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2057 		page = __alloc_pages_high_priority(gfp_mask, order,
2058 				zonelist, high_zoneidx, nodemask,
2059 				preferred_zone, migratetype);
2060 		if (page)
2061 			goto got_pg;
2062 	}
2063 
2064 	/* Atomic allocations - we can't balance anything */
2065 	if (!wait)
2066 		goto nopage;
2067 
2068 	/* Avoid recursion of direct reclaim */
2069 	if (current->flags & PF_MEMALLOC)
2070 		goto nopage;
2071 
2072 	/* Avoid allocations with no watermarks from looping endlessly */
2073 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2074 		goto nopage;
2075 
2076 	/*
2077 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2078 	 * attempts after direct reclaim are synchronous
2079 	 */
2080 	page = __alloc_pages_direct_compact(gfp_mask, order,
2081 					zonelist, high_zoneidx,
2082 					nodemask,
2083 					alloc_flags, preferred_zone,
2084 					migratetype, &did_some_progress,
2085 					sync_migration);
2086 	if (page)
2087 		goto got_pg;
2088 	sync_migration = true;
2089 
2090 	/* Try direct reclaim and then allocating */
2091 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2092 					zonelist, high_zoneidx,
2093 					nodemask,
2094 					alloc_flags, preferred_zone,
2095 					migratetype, &did_some_progress);
2096 	if (page)
2097 		goto got_pg;
2098 
2099 	/*
2100 	 * If we failed to make any progress reclaiming, then we are
2101 	 * running out of options and have to consider going OOM
2102 	 */
2103 	if (!did_some_progress) {
2104 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2105 			if (oom_killer_disabled)
2106 				goto nopage;
2107 			page = __alloc_pages_may_oom(gfp_mask, order,
2108 					zonelist, high_zoneidx,
2109 					nodemask, preferred_zone,
2110 					migratetype);
2111 			if (page)
2112 				goto got_pg;
2113 
2114 			if (!(gfp_mask & __GFP_NOFAIL)) {
2115 				/*
2116 				 * The oom killer is not called for high-order
2117 				 * allocations that may fail, so if no progress
2118 				 * is being made, there are no other options and
2119 				 * retrying is unlikely to help.
2120 				 */
2121 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2122 					goto nopage;
2123 				/*
2124 				 * The oom killer is not called for lowmem
2125 				 * allocations to prevent needlessly killing
2126 				 * innocent tasks.
2127 				 */
2128 				if (high_zoneidx < ZONE_NORMAL)
2129 					goto nopage;
2130 			}
2131 
2132 			goto restart;
2133 		}
2134 	}
2135 
2136 	/* Check if we should retry the allocation */
2137 	pages_reclaimed += did_some_progress;
2138 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2139 		/* Wait for some write requests to complete then retry */
2140 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2141 		goto rebalance;
2142 	} else {
2143 		/*
2144 		 * High-order allocations do not necessarily loop after
2145 		 * direct reclaim and reclaim/compaction depends on compaction
2146 		 * being called after reclaim so call directly if necessary
2147 		 */
2148 		page = __alloc_pages_direct_compact(gfp_mask, order,
2149 					zonelist, high_zoneidx,
2150 					nodemask,
2151 					alloc_flags, preferred_zone,
2152 					migratetype, &did_some_progress,
2153 					sync_migration);
2154 		if (page)
2155 			goto got_pg;
2156 	}
2157 
2158 nopage:
2159 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2160 		printk(KERN_WARNING "%s: page allocation failure."
2161 			" order:%d, mode:0x%x\n",
2162 			current->comm, order, gfp_mask);
2163 		dump_stack();
2164 		show_mem();
2165 	}
2166 	return page;
2167 got_pg:
2168 	if (kmemcheck_enabled)
2169 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2170 	return page;
2171 
2172 }
2173 
2174 /*
2175  * This is the 'heart' of the zoned buddy allocator.
2176  */
2177 struct page *
2178 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2179 			struct zonelist *zonelist, nodemask_t *nodemask)
2180 {
2181 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2182 	struct zone *preferred_zone;
2183 	struct page *page;
2184 	int migratetype = allocflags_to_migratetype(gfp_mask);
2185 
2186 	gfp_mask &= gfp_allowed_mask;
2187 
2188 	lockdep_trace_alloc(gfp_mask);
2189 
2190 	might_sleep_if(gfp_mask & __GFP_WAIT);
2191 
2192 	if (should_fail_alloc_page(gfp_mask, order))
2193 		return NULL;
2194 
2195 	/*
2196 	 * Check the zones suitable for the gfp_mask contain at least one
2197 	 * valid zone. It's possible to have an empty zonelist as a result
2198 	 * of GFP_THISNODE and a memoryless node
2199 	 */
2200 	if (unlikely(!zonelist->_zonerefs->zone))
2201 		return NULL;
2202 
2203 	get_mems_allowed();
2204 	/* The preferred zone is used for statistics later */
2205 	first_zones_zonelist(zonelist, high_zoneidx,
2206 				nodemask ? : &cpuset_current_mems_allowed,
2207 				&preferred_zone);
2208 	if (!preferred_zone) {
2209 		put_mems_allowed();
2210 		return NULL;
2211 	}
2212 
2213 	/* First allocation attempt */
2214 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2215 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2216 			preferred_zone, migratetype);
2217 	if (unlikely(!page))
2218 		page = __alloc_pages_slowpath(gfp_mask, order,
2219 				zonelist, high_zoneidx, nodemask,
2220 				preferred_zone, migratetype);
2221 	put_mems_allowed();
2222 
2223 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2224 	return page;
2225 }
2226 EXPORT_SYMBOL(__alloc_pages_nodemask);
2227 
2228 /*
2229  * Common helper functions.
2230  */
2231 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2232 {
2233 	struct page *page;
2234 
2235 	/*
2236 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2237 	 * a highmem page
2238 	 */
2239 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2240 
2241 	page = alloc_pages(gfp_mask, order);
2242 	if (!page)
2243 		return 0;
2244 	return (unsigned long) page_address(page);
2245 }
2246 EXPORT_SYMBOL(__get_free_pages);
2247 
2248 unsigned long get_zeroed_page(gfp_t gfp_mask)
2249 {
2250 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2251 }
2252 EXPORT_SYMBOL(get_zeroed_page);
2253 
2254 void __pagevec_free(struct pagevec *pvec)
2255 {
2256 	int i = pagevec_count(pvec);
2257 
2258 	while (--i >= 0) {
2259 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2260 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2261 	}
2262 }
2263 
2264 void __free_pages(struct page *page, unsigned int order)
2265 {
2266 	if (put_page_testzero(page)) {
2267 		if (order == 0)
2268 			free_hot_cold_page(page, 0);
2269 		else
2270 			__free_pages_ok(page, order);
2271 	}
2272 }
2273 
2274 EXPORT_SYMBOL(__free_pages);
2275 
2276 void free_pages(unsigned long addr, unsigned int order)
2277 {
2278 	if (addr != 0) {
2279 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2280 		__free_pages(virt_to_page((void *)addr), order);
2281 	}
2282 }
2283 
2284 EXPORT_SYMBOL(free_pages);
2285 
2286 /**
2287  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2288  * @size: the number of bytes to allocate
2289  * @gfp_mask: GFP flags for the allocation
2290  *
2291  * This function is similar to alloc_pages(), except that it allocates the
2292  * minimum number of pages to satisfy the request.  alloc_pages() can only
2293  * allocate memory in power-of-two pages.
2294  *
2295  * This function is also limited by MAX_ORDER.
2296  *
2297  * Memory allocated by this function must be released by free_pages_exact().
2298  */
2299 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2300 {
2301 	unsigned int order = get_order(size);
2302 	unsigned long addr;
2303 
2304 	addr = __get_free_pages(gfp_mask, order);
2305 	if (addr) {
2306 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2307 		unsigned long used = addr + PAGE_ALIGN(size);
2308 
2309 		split_page(virt_to_page((void *)addr), order);
2310 		while (used < alloc_end) {
2311 			free_page(used);
2312 			used += PAGE_SIZE;
2313 		}
2314 	}
2315 
2316 	return (void *)addr;
2317 }
2318 EXPORT_SYMBOL(alloc_pages_exact);
2319 
2320 /**
2321  * free_pages_exact - release memory allocated via alloc_pages_exact()
2322  * @virt: the value returned by alloc_pages_exact.
2323  * @size: size of allocation, same value as passed to alloc_pages_exact().
2324  *
2325  * Release the memory allocated by a previous call to alloc_pages_exact.
2326  */
2327 void free_pages_exact(void *virt, size_t size)
2328 {
2329 	unsigned long addr = (unsigned long)virt;
2330 	unsigned long end = addr + PAGE_ALIGN(size);
2331 
2332 	while (addr < end) {
2333 		free_page(addr);
2334 		addr += PAGE_SIZE;
2335 	}
2336 }
2337 EXPORT_SYMBOL(free_pages_exact);
2338 
2339 static unsigned int nr_free_zone_pages(int offset)
2340 {
2341 	struct zoneref *z;
2342 	struct zone *zone;
2343 
2344 	/* Just pick one node, since fallback list is circular */
2345 	unsigned int sum = 0;
2346 
2347 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2348 
2349 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2350 		unsigned long size = zone->present_pages;
2351 		unsigned long high = high_wmark_pages(zone);
2352 		if (size > high)
2353 			sum += size - high;
2354 	}
2355 
2356 	return sum;
2357 }
2358 
2359 /*
2360  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2361  */
2362 unsigned int nr_free_buffer_pages(void)
2363 {
2364 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2365 }
2366 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2367 
2368 /*
2369  * Amount of free RAM allocatable within all zones
2370  */
2371 unsigned int nr_free_pagecache_pages(void)
2372 {
2373 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2374 }
2375 
2376 static inline void show_node(struct zone *zone)
2377 {
2378 	if (NUMA_BUILD)
2379 		printk("Node %d ", zone_to_nid(zone));
2380 }
2381 
2382 void si_meminfo(struct sysinfo *val)
2383 {
2384 	val->totalram = totalram_pages;
2385 	val->sharedram = 0;
2386 	val->freeram = global_page_state(NR_FREE_PAGES);
2387 	val->bufferram = nr_blockdev_pages();
2388 	val->totalhigh = totalhigh_pages;
2389 	val->freehigh = nr_free_highpages();
2390 	val->mem_unit = PAGE_SIZE;
2391 }
2392 
2393 EXPORT_SYMBOL(si_meminfo);
2394 
2395 #ifdef CONFIG_NUMA
2396 void si_meminfo_node(struct sysinfo *val, int nid)
2397 {
2398 	pg_data_t *pgdat = NODE_DATA(nid);
2399 
2400 	val->totalram = pgdat->node_present_pages;
2401 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2402 #ifdef CONFIG_HIGHMEM
2403 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2404 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2405 			NR_FREE_PAGES);
2406 #else
2407 	val->totalhigh = 0;
2408 	val->freehigh = 0;
2409 #endif
2410 	val->mem_unit = PAGE_SIZE;
2411 }
2412 #endif
2413 
2414 #define K(x) ((x) << (PAGE_SHIFT-10))
2415 
2416 /*
2417  * Show free area list (used inside shift_scroll-lock stuff)
2418  * We also calculate the percentage fragmentation. We do this by counting the
2419  * memory on each free list with the exception of the first item on the list.
2420  */
2421 void show_free_areas(void)
2422 {
2423 	int cpu;
2424 	struct zone *zone;
2425 
2426 	for_each_populated_zone(zone) {
2427 		show_node(zone);
2428 		printk("%s per-cpu:\n", zone->name);
2429 
2430 		for_each_online_cpu(cpu) {
2431 			struct per_cpu_pageset *pageset;
2432 
2433 			pageset = per_cpu_ptr(zone->pageset, cpu);
2434 
2435 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2436 			       cpu, pageset->pcp.high,
2437 			       pageset->pcp.batch, pageset->pcp.count);
2438 		}
2439 	}
2440 
2441 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2442 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2443 		" unevictable:%lu"
2444 		" dirty:%lu writeback:%lu unstable:%lu\n"
2445 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2446 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2447 		global_page_state(NR_ACTIVE_ANON),
2448 		global_page_state(NR_INACTIVE_ANON),
2449 		global_page_state(NR_ISOLATED_ANON),
2450 		global_page_state(NR_ACTIVE_FILE),
2451 		global_page_state(NR_INACTIVE_FILE),
2452 		global_page_state(NR_ISOLATED_FILE),
2453 		global_page_state(NR_UNEVICTABLE),
2454 		global_page_state(NR_FILE_DIRTY),
2455 		global_page_state(NR_WRITEBACK),
2456 		global_page_state(NR_UNSTABLE_NFS),
2457 		global_page_state(NR_FREE_PAGES),
2458 		global_page_state(NR_SLAB_RECLAIMABLE),
2459 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2460 		global_page_state(NR_FILE_MAPPED),
2461 		global_page_state(NR_SHMEM),
2462 		global_page_state(NR_PAGETABLE),
2463 		global_page_state(NR_BOUNCE));
2464 
2465 	for_each_populated_zone(zone) {
2466 		int i;
2467 
2468 		show_node(zone);
2469 		printk("%s"
2470 			" free:%lukB"
2471 			" min:%lukB"
2472 			" low:%lukB"
2473 			" high:%lukB"
2474 			" active_anon:%lukB"
2475 			" inactive_anon:%lukB"
2476 			" active_file:%lukB"
2477 			" inactive_file:%lukB"
2478 			" unevictable:%lukB"
2479 			" isolated(anon):%lukB"
2480 			" isolated(file):%lukB"
2481 			" present:%lukB"
2482 			" mlocked:%lukB"
2483 			" dirty:%lukB"
2484 			" writeback:%lukB"
2485 			" mapped:%lukB"
2486 			" shmem:%lukB"
2487 			" slab_reclaimable:%lukB"
2488 			" slab_unreclaimable:%lukB"
2489 			" kernel_stack:%lukB"
2490 			" pagetables:%lukB"
2491 			" unstable:%lukB"
2492 			" bounce:%lukB"
2493 			" writeback_tmp:%lukB"
2494 			" pages_scanned:%lu"
2495 			" all_unreclaimable? %s"
2496 			"\n",
2497 			zone->name,
2498 			K(zone_page_state(zone, NR_FREE_PAGES)),
2499 			K(min_wmark_pages(zone)),
2500 			K(low_wmark_pages(zone)),
2501 			K(high_wmark_pages(zone)),
2502 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2503 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2504 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2505 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2506 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2507 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2508 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2509 			K(zone->present_pages),
2510 			K(zone_page_state(zone, NR_MLOCK)),
2511 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2512 			K(zone_page_state(zone, NR_WRITEBACK)),
2513 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2514 			K(zone_page_state(zone, NR_SHMEM)),
2515 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2516 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2517 			zone_page_state(zone, NR_KERNEL_STACK) *
2518 				THREAD_SIZE / 1024,
2519 			K(zone_page_state(zone, NR_PAGETABLE)),
2520 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2521 			K(zone_page_state(zone, NR_BOUNCE)),
2522 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2523 			zone->pages_scanned,
2524 			(zone->all_unreclaimable ? "yes" : "no")
2525 			);
2526 		printk("lowmem_reserve[]:");
2527 		for (i = 0; i < MAX_NR_ZONES; i++)
2528 			printk(" %lu", zone->lowmem_reserve[i]);
2529 		printk("\n");
2530 	}
2531 
2532 	for_each_populated_zone(zone) {
2533  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2534 
2535 		show_node(zone);
2536 		printk("%s: ", zone->name);
2537 
2538 		spin_lock_irqsave(&zone->lock, flags);
2539 		for (order = 0; order < MAX_ORDER; order++) {
2540 			nr[order] = zone->free_area[order].nr_free;
2541 			total += nr[order] << order;
2542 		}
2543 		spin_unlock_irqrestore(&zone->lock, flags);
2544 		for (order = 0; order < MAX_ORDER; order++)
2545 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2546 		printk("= %lukB\n", K(total));
2547 	}
2548 
2549 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2550 
2551 	show_swap_cache_info();
2552 }
2553 
2554 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2555 {
2556 	zoneref->zone = zone;
2557 	zoneref->zone_idx = zone_idx(zone);
2558 }
2559 
2560 /*
2561  * Builds allocation fallback zone lists.
2562  *
2563  * Add all populated zones of a node to the zonelist.
2564  */
2565 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2566 				int nr_zones, enum zone_type zone_type)
2567 {
2568 	struct zone *zone;
2569 
2570 	BUG_ON(zone_type >= MAX_NR_ZONES);
2571 	zone_type++;
2572 
2573 	do {
2574 		zone_type--;
2575 		zone = pgdat->node_zones + zone_type;
2576 		if (populated_zone(zone)) {
2577 			zoneref_set_zone(zone,
2578 				&zonelist->_zonerefs[nr_zones++]);
2579 			check_highest_zone(zone_type);
2580 		}
2581 
2582 	} while (zone_type);
2583 	return nr_zones;
2584 }
2585 
2586 
2587 /*
2588  *  zonelist_order:
2589  *  0 = automatic detection of better ordering.
2590  *  1 = order by ([node] distance, -zonetype)
2591  *  2 = order by (-zonetype, [node] distance)
2592  *
2593  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2594  *  the same zonelist. So only NUMA can configure this param.
2595  */
2596 #define ZONELIST_ORDER_DEFAULT  0
2597 #define ZONELIST_ORDER_NODE     1
2598 #define ZONELIST_ORDER_ZONE     2
2599 
2600 /* zonelist order in the kernel.
2601  * set_zonelist_order() will set this to NODE or ZONE.
2602  */
2603 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2604 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2605 
2606 
2607 #ifdef CONFIG_NUMA
2608 /* The value user specified ....changed by config */
2609 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2610 /* string for sysctl */
2611 #define NUMA_ZONELIST_ORDER_LEN	16
2612 char numa_zonelist_order[16] = "default";
2613 
2614 /*
2615  * interface for configure zonelist ordering.
2616  * command line option "numa_zonelist_order"
2617  *	= "[dD]efault	- default, automatic configuration.
2618  *	= "[nN]ode 	- order by node locality, then by zone within node
2619  *	= "[zZ]one      - order by zone, then by locality within zone
2620  */
2621 
2622 static int __parse_numa_zonelist_order(char *s)
2623 {
2624 	if (*s == 'd' || *s == 'D') {
2625 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2626 	} else if (*s == 'n' || *s == 'N') {
2627 		user_zonelist_order = ZONELIST_ORDER_NODE;
2628 	} else if (*s == 'z' || *s == 'Z') {
2629 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2630 	} else {
2631 		printk(KERN_WARNING
2632 			"Ignoring invalid numa_zonelist_order value:  "
2633 			"%s\n", s);
2634 		return -EINVAL;
2635 	}
2636 	return 0;
2637 }
2638 
2639 static __init int setup_numa_zonelist_order(char *s)
2640 {
2641 	int ret;
2642 
2643 	if (!s)
2644 		return 0;
2645 
2646 	ret = __parse_numa_zonelist_order(s);
2647 	if (ret == 0)
2648 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2649 
2650 	return ret;
2651 }
2652 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2653 
2654 /*
2655  * sysctl handler for numa_zonelist_order
2656  */
2657 int numa_zonelist_order_handler(ctl_table *table, int write,
2658 		void __user *buffer, size_t *length,
2659 		loff_t *ppos)
2660 {
2661 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2662 	int ret;
2663 	static DEFINE_MUTEX(zl_order_mutex);
2664 
2665 	mutex_lock(&zl_order_mutex);
2666 	if (write)
2667 		strcpy(saved_string, (char*)table->data);
2668 	ret = proc_dostring(table, write, buffer, length, ppos);
2669 	if (ret)
2670 		goto out;
2671 	if (write) {
2672 		int oldval = user_zonelist_order;
2673 		if (__parse_numa_zonelist_order((char*)table->data)) {
2674 			/*
2675 			 * bogus value.  restore saved string
2676 			 */
2677 			strncpy((char*)table->data, saved_string,
2678 				NUMA_ZONELIST_ORDER_LEN);
2679 			user_zonelist_order = oldval;
2680 		} else if (oldval != user_zonelist_order) {
2681 			mutex_lock(&zonelists_mutex);
2682 			build_all_zonelists(NULL);
2683 			mutex_unlock(&zonelists_mutex);
2684 		}
2685 	}
2686 out:
2687 	mutex_unlock(&zl_order_mutex);
2688 	return ret;
2689 }
2690 
2691 
2692 #define MAX_NODE_LOAD (nr_online_nodes)
2693 static int node_load[MAX_NUMNODES];
2694 
2695 /**
2696  * find_next_best_node - find the next node that should appear in a given node's fallback list
2697  * @node: node whose fallback list we're appending
2698  * @used_node_mask: nodemask_t of already used nodes
2699  *
2700  * We use a number of factors to determine which is the next node that should
2701  * appear on a given node's fallback list.  The node should not have appeared
2702  * already in @node's fallback list, and it should be the next closest node
2703  * according to the distance array (which contains arbitrary distance values
2704  * from each node to each node in the system), and should also prefer nodes
2705  * with no CPUs, since presumably they'll have very little allocation pressure
2706  * on them otherwise.
2707  * It returns -1 if no node is found.
2708  */
2709 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2710 {
2711 	int n, val;
2712 	int min_val = INT_MAX;
2713 	int best_node = -1;
2714 	const struct cpumask *tmp = cpumask_of_node(0);
2715 
2716 	/* Use the local node if we haven't already */
2717 	if (!node_isset(node, *used_node_mask)) {
2718 		node_set(node, *used_node_mask);
2719 		return node;
2720 	}
2721 
2722 	for_each_node_state(n, N_HIGH_MEMORY) {
2723 
2724 		/* Don't want a node to appear more than once */
2725 		if (node_isset(n, *used_node_mask))
2726 			continue;
2727 
2728 		/* Use the distance array to find the distance */
2729 		val = node_distance(node, n);
2730 
2731 		/* Penalize nodes under us ("prefer the next node") */
2732 		val += (n < node);
2733 
2734 		/* Give preference to headless and unused nodes */
2735 		tmp = cpumask_of_node(n);
2736 		if (!cpumask_empty(tmp))
2737 			val += PENALTY_FOR_NODE_WITH_CPUS;
2738 
2739 		/* Slight preference for less loaded node */
2740 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2741 		val += node_load[n];
2742 
2743 		if (val < min_val) {
2744 			min_val = val;
2745 			best_node = n;
2746 		}
2747 	}
2748 
2749 	if (best_node >= 0)
2750 		node_set(best_node, *used_node_mask);
2751 
2752 	return best_node;
2753 }
2754 
2755 
2756 /*
2757  * Build zonelists ordered by node and zones within node.
2758  * This results in maximum locality--normal zone overflows into local
2759  * DMA zone, if any--but risks exhausting DMA zone.
2760  */
2761 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2762 {
2763 	int j;
2764 	struct zonelist *zonelist;
2765 
2766 	zonelist = &pgdat->node_zonelists[0];
2767 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2768 		;
2769 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2770 							MAX_NR_ZONES - 1);
2771 	zonelist->_zonerefs[j].zone = NULL;
2772 	zonelist->_zonerefs[j].zone_idx = 0;
2773 }
2774 
2775 /*
2776  * Build gfp_thisnode zonelists
2777  */
2778 static void build_thisnode_zonelists(pg_data_t *pgdat)
2779 {
2780 	int j;
2781 	struct zonelist *zonelist;
2782 
2783 	zonelist = &pgdat->node_zonelists[1];
2784 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2785 	zonelist->_zonerefs[j].zone = NULL;
2786 	zonelist->_zonerefs[j].zone_idx = 0;
2787 }
2788 
2789 /*
2790  * Build zonelists ordered by zone and nodes within zones.
2791  * This results in conserving DMA zone[s] until all Normal memory is
2792  * exhausted, but results in overflowing to remote node while memory
2793  * may still exist in local DMA zone.
2794  */
2795 static int node_order[MAX_NUMNODES];
2796 
2797 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2798 {
2799 	int pos, j, node;
2800 	int zone_type;		/* needs to be signed */
2801 	struct zone *z;
2802 	struct zonelist *zonelist;
2803 
2804 	zonelist = &pgdat->node_zonelists[0];
2805 	pos = 0;
2806 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2807 		for (j = 0; j < nr_nodes; j++) {
2808 			node = node_order[j];
2809 			z = &NODE_DATA(node)->node_zones[zone_type];
2810 			if (populated_zone(z)) {
2811 				zoneref_set_zone(z,
2812 					&zonelist->_zonerefs[pos++]);
2813 				check_highest_zone(zone_type);
2814 			}
2815 		}
2816 	}
2817 	zonelist->_zonerefs[pos].zone = NULL;
2818 	zonelist->_zonerefs[pos].zone_idx = 0;
2819 }
2820 
2821 static int default_zonelist_order(void)
2822 {
2823 	int nid, zone_type;
2824 	unsigned long low_kmem_size,total_size;
2825 	struct zone *z;
2826 	int average_size;
2827 	/*
2828          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2829 	 * If they are really small and used heavily, the system can fall
2830 	 * into OOM very easily.
2831 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2832 	 */
2833 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2834 	low_kmem_size = 0;
2835 	total_size = 0;
2836 	for_each_online_node(nid) {
2837 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2838 			z = &NODE_DATA(nid)->node_zones[zone_type];
2839 			if (populated_zone(z)) {
2840 				if (zone_type < ZONE_NORMAL)
2841 					low_kmem_size += z->present_pages;
2842 				total_size += z->present_pages;
2843 			} else if (zone_type == ZONE_NORMAL) {
2844 				/*
2845 				 * If any node has only lowmem, then node order
2846 				 * is preferred to allow kernel allocations
2847 				 * locally; otherwise, they can easily infringe
2848 				 * on other nodes when there is an abundance of
2849 				 * lowmem available to allocate from.
2850 				 */
2851 				return ZONELIST_ORDER_NODE;
2852 			}
2853 		}
2854 	}
2855 	if (!low_kmem_size ||  /* there are no DMA area. */
2856 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2857 		return ZONELIST_ORDER_NODE;
2858 	/*
2859 	 * look into each node's config.
2860   	 * If there is a node whose DMA/DMA32 memory is very big area on
2861  	 * local memory, NODE_ORDER may be suitable.
2862          */
2863 	average_size = total_size /
2864 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2865 	for_each_online_node(nid) {
2866 		low_kmem_size = 0;
2867 		total_size = 0;
2868 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2869 			z = &NODE_DATA(nid)->node_zones[zone_type];
2870 			if (populated_zone(z)) {
2871 				if (zone_type < ZONE_NORMAL)
2872 					low_kmem_size += z->present_pages;
2873 				total_size += z->present_pages;
2874 			}
2875 		}
2876 		if (low_kmem_size &&
2877 		    total_size > average_size && /* ignore small node */
2878 		    low_kmem_size > total_size * 70/100)
2879 			return ZONELIST_ORDER_NODE;
2880 	}
2881 	return ZONELIST_ORDER_ZONE;
2882 }
2883 
2884 static void set_zonelist_order(void)
2885 {
2886 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2887 		current_zonelist_order = default_zonelist_order();
2888 	else
2889 		current_zonelist_order = user_zonelist_order;
2890 }
2891 
2892 static void build_zonelists(pg_data_t *pgdat)
2893 {
2894 	int j, node, load;
2895 	enum zone_type i;
2896 	nodemask_t used_mask;
2897 	int local_node, prev_node;
2898 	struct zonelist *zonelist;
2899 	int order = current_zonelist_order;
2900 
2901 	/* initialize zonelists */
2902 	for (i = 0; i < MAX_ZONELISTS; i++) {
2903 		zonelist = pgdat->node_zonelists + i;
2904 		zonelist->_zonerefs[0].zone = NULL;
2905 		zonelist->_zonerefs[0].zone_idx = 0;
2906 	}
2907 
2908 	/* NUMA-aware ordering of nodes */
2909 	local_node = pgdat->node_id;
2910 	load = nr_online_nodes;
2911 	prev_node = local_node;
2912 	nodes_clear(used_mask);
2913 
2914 	memset(node_order, 0, sizeof(node_order));
2915 	j = 0;
2916 
2917 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2918 		int distance = node_distance(local_node, node);
2919 
2920 		/*
2921 		 * If another node is sufficiently far away then it is better
2922 		 * to reclaim pages in a zone before going off node.
2923 		 */
2924 		if (distance > RECLAIM_DISTANCE)
2925 			zone_reclaim_mode = 1;
2926 
2927 		/*
2928 		 * We don't want to pressure a particular node.
2929 		 * So adding penalty to the first node in same
2930 		 * distance group to make it round-robin.
2931 		 */
2932 		if (distance != node_distance(local_node, prev_node))
2933 			node_load[node] = load;
2934 
2935 		prev_node = node;
2936 		load--;
2937 		if (order == ZONELIST_ORDER_NODE)
2938 			build_zonelists_in_node_order(pgdat, node);
2939 		else
2940 			node_order[j++] = node;	/* remember order */
2941 	}
2942 
2943 	if (order == ZONELIST_ORDER_ZONE) {
2944 		/* calculate node order -- i.e., DMA last! */
2945 		build_zonelists_in_zone_order(pgdat, j);
2946 	}
2947 
2948 	build_thisnode_zonelists(pgdat);
2949 }
2950 
2951 /* Construct the zonelist performance cache - see further mmzone.h */
2952 static void build_zonelist_cache(pg_data_t *pgdat)
2953 {
2954 	struct zonelist *zonelist;
2955 	struct zonelist_cache *zlc;
2956 	struct zoneref *z;
2957 
2958 	zonelist = &pgdat->node_zonelists[0];
2959 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2960 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2961 	for (z = zonelist->_zonerefs; z->zone; z++)
2962 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2963 }
2964 
2965 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2966 /*
2967  * Return node id of node used for "local" allocations.
2968  * I.e., first node id of first zone in arg node's generic zonelist.
2969  * Used for initializing percpu 'numa_mem', which is used primarily
2970  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2971  */
2972 int local_memory_node(int node)
2973 {
2974 	struct zone *zone;
2975 
2976 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2977 				   gfp_zone(GFP_KERNEL),
2978 				   NULL,
2979 				   &zone);
2980 	return zone->node;
2981 }
2982 #endif
2983 
2984 #else	/* CONFIG_NUMA */
2985 
2986 static void set_zonelist_order(void)
2987 {
2988 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2989 }
2990 
2991 static void build_zonelists(pg_data_t *pgdat)
2992 {
2993 	int node, local_node;
2994 	enum zone_type j;
2995 	struct zonelist *zonelist;
2996 
2997 	local_node = pgdat->node_id;
2998 
2999 	zonelist = &pgdat->node_zonelists[0];
3000 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3001 
3002 	/*
3003 	 * Now we build the zonelist so that it contains the zones
3004 	 * of all the other nodes.
3005 	 * We don't want to pressure a particular node, so when
3006 	 * building the zones for node N, we make sure that the
3007 	 * zones coming right after the local ones are those from
3008 	 * node N+1 (modulo N)
3009 	 */
3010 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3011 		if (!node_online(node))
3012 			continue;
3013 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3014 							MAX_NR_ZONES - 1);
3015 	}
3016 	for (node = 0; node < local_node; node++) {
3017 		if (!node_online(node))
3018 			continue;
3019 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3020 							MAX_NR_ZONES - 1);
3021 	}
3022 
3023 	zonelist->_zonerefs[j].zone = NULL;
3024 	zonelist->_zonerefs[j].zone_idx = 0;
3025 }
3026 
3027 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3028 static void build_zonelist_cache(pg_data_t *pgdat)
3029 {
3030 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3031 }
3032 
3033 #endif	/* CONFIG_NUMA */
3034 
3035 /*
3036  * Boot pageset table. One per cpu which is going to be used for all
3037  * zones and all nodes. The parameters will be set in such a way
3038  * that an item put on a list will immediately be handed over to
3039  * the buddy list. This is safe since pageset manipulation is done
3040  * with interrupts disabled.
3041  *
3042  * The boot_pagesets must be kept even after bootup is complete for
3043  * unused processors and/or zones. They do play a role for bootstrapping
3044  * hotplugged processors.
3045  *
3046  * zoneinfo_show() and maybe other functions do
3047  * not check if the processor is online before following the pageset pointer.
3048  * Other parts of the kernel may not check if the zone is available.
3049  */
3050 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3051 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3052 static void setup_zone_pageset(struct zone *zone);
3053 
3054 /*
3055  * Global mutex to protect against size modification of zonelists
3056  * as well as to serialize pageset setup for the new populated zone.
3057  */
3058 DEFINE_MUTEX(zonelists_mutex);
3059 
3060 /* return values int ....just for stop_machine() */
3061 static __init_refok int __build_all_zonelists(void *data)
3062 {
3063 	int nid;
3064 	int cpu;
3065 
3066 #ifdef CONFIG_NUMA
3067 	memset(node_load, 0, sizeof(node_load));
3068 #endif
3069 	for_each_online_node(nid) {
3070 		pg_data_t *pgdat = NODE_DATA(nid);
3071 
3072 		build_zonelists(pgdat);
3073 		build_zonelist_cache(pgdat);
3074 	}
3075 
3076 	/*
3077 	 * Initialize the boot_pagesets that are going to be used
3078 	 * for bootstrapping processors. The real pagesets for
3079 	 * each zone will be allocated later when the per cpu
3080 	 * allocator is available.
3081 	 *
3082 	 * boot_pagesets are used also for bootstrapping offline
3083 	 * cpus if the system is already booted because the pagesets
3084 	 * are needed to initialize allocators on a specific cpu too.
3085 	 * F.e. the percpu allocator needs the page allocator which
3086 	 * needs the percpu allocator in order to allocate its pagesets
3087 	 * (a chicken-egg dilemma).
3088 	 */
3089 	for_each_possible_cpu(cpu) {
3090 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3091 
3092 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3093 		/*
3094 		 * We now know the "local memory node" for each node--
3095 		 * i.e., the node of the first zone in the generic zonelist.
3096 		 * Set up numa_mem percpu variable for on-line cpus.  During
3097 		 * boot, only the boot cpu should be on-line;  we'll init the
3098 		 * secondary cpus' numa_mem as they come on-line.  During
3099 		 * node/memory hotplug, we'll fixup all on-line cpus.
3100 		 */
3101 		if (cpu_online(cpu))
3102 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3103 #endif
3104 	}
3105 
3106 	return 0;
3107 }
3108 
3109 /*
3110  * Called with zonelists_mutex held always
3111  * unless system_state == SYSTEM_BOOTING.
3112  */
3113 void build_all_zonelists(void *data)
3114 {
3115 	set_zonelist_order();
3116 
3117 	if (system_state == SYSTEM_BOOTING) {
3118 		__build_all_zonelists(NULL);
3119 		mminit_verify_zonelist();
3120 		cpuset_init_current_mems_allowed();
3121 	} else {
3122 		/* we have to stop all cpus to guarantee there is no user
3123 		   of zonelist */
3124 #ifdef CONFIG_MEMORY_HOTPLUG
3125 		if (data)
3126 			setup_zone_pageset((struct zone *)data);
3127 #endif
3128 		stop_machine(__build_all_zonelists, NULL, NULL);
3129 		/* cpuset refresh routine should be here */
3130 	}
3131 	vm_total_pages = nr_free_pagecache_pages();
3132 	/*
3133 	 * Disable grouping by mobility if the number of pages in the
3134 	 * system is too low to allow the mechanism to work. It would be
3135 	 * more accurate, but expensive to check per-zone. This check is
3136 	 * made on memory-hotadd so a system can start with mobility
3137 	 * disabled and enable it later
3138 	 */
3139 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3140 		page_group_by_mobility_disabled = 1;
3141 	else
3142 		page_group_by_mobility_disabled = 0;
3143 
3144 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3145 		"Total pages: %ld\n",
3146 			nr_online_nodes,
3147 			zonelist_order_name[current_zonelist_order],
3148 			page_group_by_mobility_disabled ? "off" : "on",
3149 			vm_total_pages);
3150 #ifdef CONFIG_NUMA
3151 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3152 #endif
3153 }
3154 
3155 /*
3156  * Helper functions to size the waitqueue hash table.
3157  * Essentially these want to choose hash table sizes sufficiently
3158  * large so that collisions trying to wait on pages are rare.
3159  * But in fact, the number of active page waitqueues on typical
3160  * systems is ridiculously low, less than 200. So this is even
3161  * conservative, even though it seems large.
3162  *
3163  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3164  * waitqueues, i.e. the size of the waitq table given the number of pages.
3165  */
3166 #define PAGES_PER_WAITQUEUE	256
3167 
3168 #ifndef CONFIG_MEMORY_HOTPLUG
3169 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3170 {
3171 	unsigned long size = 1;
3172 
3173 	pages /= PAGES_PER_WAITQUEUE;
3174 
3175 	while (size < pages)
3176 		size <<= 1;
3177 
3178 	/*
3179 	 * Once we have dozens or even hundreds of threads sleeping
3180 	 * on IO we've got bigger problems than wait queue collision.
3181 	 * Limit the size of the wait table to a reasonable size.
3182 	 */
3183 	size = min(size, 4096UL);
3184 
3185 	return max(size, 4UL);
3186 }
3187 #else
3188 /*
3189  * A zone's size might be changed by hot-add, so it is not possible to determine
3190  * a suitable size for its wait_table.  So we use the maximum size now.
3191  *
3192  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3193  *
3194  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3195  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3196  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3197  *
3198  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3199  * or more by the traditional way. (See above).  It equals:
3200  *
3201  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3202  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3203  *    powerpc (64K page size)             : =  (32G +16M)byte.
3204  */
3205 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3206 {
3207 	return 4096UL;
3208 }
3209 #endif
3210 
3211 /*
3212  * This is an integer logarithm so that shifts can be used later
3213  * to extract the more random high bits from the multiplicative
3214  * hash function before the remainder is taken.
3215  */
3216 static inline unsigned long wait_table_bits(unsigned long size)
3217 {
3218 	return ffz(~size);
3219 }
3220 
3221 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3222 
3223 /*
3224  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3225  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3226  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3227  * higher will lead to a bigger reserve which will get freed as contiguous
3228  * blocks as reclaim kicks in
3229  */
3230 static void setup_zone_migrate_reserve(struct zone *zone)
3231 {
3232 	unsigned long start_pfn, pfn, end_pfn;
3233 	struct page *page;
3234 	unsigned long block_migratetype;
3235 	int reserve;
3236 
3237 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3238 	start_pfn = zone->zone_start_pfn;
3239 	end_pfn = start_pfn + zone->spanned_pages;
3240 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3241 							pageblock_order;
3242 
3243 	/*
3244 	 * Reserve blocks are generally in place to help high-order atomic
3245 	 * allocations that are short-lived. A min_free_kbytes value that
3246 	 * would result in more than 2 reserve blocks for atomic allocations
3247 	 * is assumed to be in place to help anti-fragmentation for the
3248 	 * future allocation of hugepages at runtime.
3249 	 */
3250 	reserve = min(2, reserve);
3251 
3252 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3253 		if (!pfn_valid(pfn))
3254 			continue;
3255 		page = pfn_to_page(pfn);
3256 
3257 		/* Watch out for overlapping nodes */
3258 		if (page_to_nid(page) != zone_to_nid(zone))
3259 			continue;
3260 
3261 		/* Blocks with reserved pages will never free, skip them. */
3262 		if (PageReserved(page))
3263 			continue;
3264 
3265 		block_migratetype = get_pageblock_migratetype(page);
3266 
3267 		/* If this block is reserved, account for it */
3268 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3269 			reserve--;
3270 			continue;
3271 		}
3272 
3273 		/* Suitable for reserving if this block is movable */
3274 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3275 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3276 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3277 			reserve--;
3278 			continue;
3279 		}
3280 
3281 		/*
3282 		 * If the reserve is met and this is a previous reserved block,
3283 		 * take it back
3284 		 */
3285 		if (block_migratetype == MIGRATE_RESERVE) {
3286 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3287 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3288 		}
3289 	}
3290 }
3291 
3292 /*
3293  * Initially all pages are reserved - free ones are freed
3294  * up by free_all_bootmem() once the early boot process is
3295  * done. Non-atomic initialization, single-pass.
3296  */
3297 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3298 		unsigned long start_pfn, enum memmap_context context)
3299 {
3300 	struct page *page;
3301 	unsigned long end_pfn = start_pfn + size;
3302 	unsigned long pfn;
3303 	struct zone *z;
3304 
3305 	if (highest_memmap_pfn < end_pfn - 1)
3306 		highest_memmap_pfn = end_pfn - 1;
3307 
3308 	z = &NODE_DATA(nid)->node_zones[zone];
3309 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3310 		/*
3311 		 * There can be holes in boot-time mem_map[]s
3312 		 * handed to this function.  They do not
3313 		 * exist on hotplugged memory.
3314 		 */
3315 		if (context == MEMMAP_EARLY) {
3316 			if (!early_pfn_valid(pfn))
3317 				continue;
3318 			if (!early_pfn_in_nid(pfn, nid))
3319 				continue;
3320 		}
3321 		page = pfn_to_page(pfn);
3322 		set_page_links(page, zone, nid, pfn);
3323 		mminit_verify_page_links(page, zone, nid, pfn);
3324 		init_page_count(page);
3325 		reset_page_mapcount(page);
3326 		SetPageReserved(page);
3327 		/*
3328 		 * Mark the block movable so that blocks are reserved for
3329 		 * movable at startup. This will force kernel allocations
3330 		 * to reserve their blocks rather than leaking throughout
3331 		 * the address space during boot when many long-lived
3332 		 * kernel allocations are made. Later some blocks near
3333 		 * the start are marked MIGRATE_RESERVE by
3334 		 * setup_zone_migrate_reserve()
3335 		 *
3336 		 * bitmap is created for zone's valid pfn range. but memmap
3337 		 * can be created for invalid pages (for alignment)
3338 		 * check here not to call set_pageblock_migratetype() against
3339 		 * pfn out of zone.
3340 		 */
3341 		if ((z->zone_start_pfn <= pfn)
3342 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3343 		    && !(pfn & (pageblock_nr_pages - 1)))
3344 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3345 
3346 		INIT_LIST_HEAD(&page->lru);
3347 #ifdef WANT_PAGE_VIRTUAL
3348 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3349 		if (!is_highmem_idx(zone))
3350 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3351 #endif
3352 	}
3353 }
3354 
3355 static void __meminit zone_init_free_lists(struct zone *zone)
3356 {
3357 	int order, t;
3358 	for_each_migratetype_order(order, t) {
3359 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3360 		zone->free_area[order].nr_free = 0;
3361 	}
3362 }
3363 
3364 #ifndef __HAVE_ARCH_MEMMAP_INIT
3365 #define memmap_init(size, nid, zone, start_pfn) \
3366 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3367 #endif
3368 
3369 static int zone_batchsize(struct zone *zone)
3370 {
3371 #ifdef CONFIG_MMU
3372 	int batch;
3373 
3374 	/*
3375 	 * The per-cpu-pages pools are set to around 1000th of the
3376 	 * size of the zone.  But no more than 1/2 of a meg.
3377 	 *
3378 	 * OK, so we don't know how big the cache is.  So guess.
3379 	 */
3380 	batch = zone->present_pages / 1024;
3381 	if (batch * PAGE_SIZE > 512 * 1024)
3382 		batch = (512 * 1024) / PAGE_SIZE;
3383 	batch /= 4;		/* We effectively *= 4 below */
3384 	if (batch < 1)
3385 		batch = 1;
3386 
3387 	/*
3388 	 * Clamp the batch to a 2^n - 1 value. Having a power
3389 	 * of 2 value was found to be more likely to have
3390 	 * suboptimal cache aliasing properties in some cases.
3391 	 *
3392 	 * For example if 2 tasks are alternately allocating
3393 	 * batches of pages, one task can end up with a lot
3394 	 * of pages of one half of the possible page colors
3395 	 * and the other with pages of the other colors.
3396 	 */
3397 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3398 
3399 	return batch;
3400 
3401 #else
3402 	/* The deferral and batching of frees should be suppressed under NOMMU
3403 	 * conditions.
3404 	 *
3405 	 * The problem is that NOMMU needs to be able to allocate large chunks
3406 	 * of contiguous memory as there's no hardware page translation to
3407 	 * assemble apparent contiguous memory from discontiguous pages.
3408 	 *
3409 	 * Queueing large contiguous runs of pages for batching, however,
3410 	 * causes the pages to actually be freed in smaller chunks.  As there
3411 	 * can be a significant delay between the individual batches being
3412 	 * recycled, this leads to the once large chunks of space being
3413 	 * fragmented and becoming unavailable for high-order allocations.
3414 	 */
3415 	return 0;
3416 #endif
3417 }
3418 
3419 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3420 {
3421 	struct per_cpu_pages *pcp;
3422 	int migratetype;
3423 
3424 	memset(p, 0, sizeof(*p));
3425 
3426 	pcp = &p->pcp;
3427 	pcp->count = 0;
3428 	pcp->high = 6 * batch;
3429 	pcp->batch = max(1UL, 1 * batch);
3430 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3431 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3432 }
3433 
3434 /*
3435  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3436  * to the value high for the pageset p.
3437  */
3438 
3439 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3440 				unsigned long high)
3441 {
3442 	struct per_cpu_pages *pcp;
3443 
3444 	pcp = &p->pcp;
3445 	pcp->high = high;
3446 	pcp->batch = max(1UL, high/4);
3447 	if ((high/4) > (PAGE_SHIFT * 8))
3448 		pcp->batch = PAGE_SHIFT * 8;
3449 }
3450 
3451 static __meminit void setup_zone_pageset(struct zone *zone)
3452 {
3453 	int cpu;
3454 
3455 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3456 
3457 	for_each_possible_cpu(cpu) {
3458 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3459 
3460 		setup_pageset(pcp, zone_batchsize(zone));
3461 
3462 		if (percpu_pagelist_fraction)
3463 			setup_pagelist_highmark(pcp,
3464 				(zone->present_pages /
3465 					percpu_pagelist_fraction));
3466 	}
3467 }
3468 
3469 /*
3470  * Allocate per cpu pagesets and initialize them.
3471  * Before this call only boot pagesets were available.
3472  */
3473 void __init setup_per_cpu_pageset(void)
3474 {
3475 	struct zone *zone;
3476 
3477 	for_each_populated_zone(zone)
3478 		setup_zone_pageset(zone);
3479 }
3480 
3481 static noinline __init_refok
3482 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3483 {
3484 	int i;
3485 	struct pglist_data *pgdat = zone->zone_pgdat;
3486 	size_t alloc_size;
3487 
3488 	/*
3489 	 * The per-page waitqueue mechanism uses hashed waitqueues
3490 	 * per zone.
3491 	 */
3492 	zone->wait_table_hash_nr_entries =
3493 		 wait_table_hash_nr_entries(zone_size_pages);
3494 	zone->wait_table_bits =
3495 		wait_table_bits(zone->wait_table_hash_nr_entries);
3496 	alloc_size = zone->wait_table_hash_nr_entries
3497 					* sizeof(wait_queue_head_t);
3498 
3499 	if (!slab_is_available()) {
3500 		zone->wait_table = (wait_queue_head_t *)
3501 			alloc_bootmem_node(pgdat, alloc_size);
3502 	} else {
3503 		/*
3504 		 * This case means that a zone whose size was 0 gets new memory
3505 		 * via memory hot-add.
3506 		 * But it may be the case that a new node was hot-added.  In
3507 		 * this case vmalloc() will not be able to use this new node's
3508 		 * memory - this wait_table must be initialized to use this new
3509 		 * node itself as well.
3510 		 * To use this new node's memory, further consideration will be
3511 		 * necessary.
3512 		 */
3513 		zone->wait_table = vmalloc(alloc_size);
3514 	}
3515 	if (!zone->wait_table)
3516 		return -ENOMEM;
3517 
3518 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3519 		init_waitqueue_head(zone->wait_table + i);
3520 
3521 	return 0;
3522 }
3523 
3524 static int __zone_pcp_update(void *data)
3525 {
3526 	struct zone *zone = data;
3527 	int cpu;
3528 	unsigned long batch = zone_batchsize(zone), flags;
3529 
3530 	for_each_possible_cpu(cpu) {
3531 		struct per_cpu_pageset *pset;
3532 		struct per_cpu_pages *pcp;
3533 
3534 		pset = per_cpu_ptr(zone->pageset, cpu);
3535 		pcp = &pset->pcp;
3536 
3537 		local_irq_save(flags);
3538 		free_pcppages_bulk(zone, pcp->count, pcp);
3539 		setup_pageset(pset, batch);
3540 		local_irq_restore(flags);
3541 	}
3542 	return 0;
3543 }
3544 
3545 void zone_pcp_update(struct zone *zone)
3546 {
3547 	stop_machine(__zone_pcp_update, zone, NULL);
3548 }
3549 
3550 static __meminit void zone_pcp_init(struct zone *zone)
3551 {
3552 	/*
3553 	 * per cpu subsystem is not up at this point. The following code
3554 	 * relies on the ability of the linker to provide the
3555 	 * offset of a (static) per cpu variable into the per cpu area.
3556 	 */
3557 	zone->pageset = &boot_pageset;
3558 
3559 	if (zone->present_pages)
3560 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3561 			zone->name, zone->present_pages,
3562 					 zone_batchsize(zone));
3563 }
3564 
3565 __meminit int init_currently_empty_zone(struct zone *zone,
3566 					unsigned long zone_start_pfn,
3567 					unsigned long size,
3568 					enum memmap_context context)
3569 {
3570 	struct pglist_data *pgdat = zone->zone_pgdat;
3571 	int ret;
3572 	ret = zone_wait_table_init(zone, size);
3573 	if (ret)
3574 		return ret;
3575 	pgdat->nr_zones = zone_idx(zone) + 1;
3576 
3577 	zone->zone_start_pfn = zone_start_pfn;
3578 
3579 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3580 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3581 			pgdat->node_id,
3582 			(unsigned long)zone_idx(zone),
3583 			zone_start_pfn, (zone_start_pfn + size));
3584 
3585 	zone_init_free_lists(zone);
3586 
3587 	return 0;
3588 }
3589 
3590 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3591 /*
3592  * Basic iterator support. Return the first range of PFNs for a node
3593  * Note: nid == MAX_NUMNODES returns first region regardless of node
3594  */
3595 static int __meminit first_active_region_index_in_nid(int nid)
3596 {
3597 	int i;
3598 
3599 	for (i = 0; i < nr_nodemap_entries; i++)
3600 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3601 			return i;
3602 
3603 	return -1;
3604 }
3605 
3606 /*
3607  * Basic iterator support. Return the next active range of PFNs for a node
3608  * Note: nid == MAX_NUMNODES returns next region regardless of node
3609  */
3610 static int __meminit next_active_region_index_in_nid(int index, int nid)
3611 {
3612 	for (index = index + 1; index < nr_nodemap_entries; index++)
3613 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3614 			return index;
3615 
3616 	return -1;
3617 }
3618 
3619 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3620 /*
3621  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3622  * Architectures may implement their own version but if add_active_range()
3623  * was used and there are no special requirements, this is a convenient
3624  * alternative
3625  */
3626 int __meminit __early_pfn_to_nid(unsigned long pfn)
3627 {
3628 	int i;
3629 
3630 	for (i = 0; i < nr_nodemap_entries; i++) {
3631 		unsigned long start_pfn = early_node_map[i].start_pfn;
3632 		unsigned long end_pfn = early_node_map[i].end_pfn;
3633 
3634 		if (start_pfn <= pfn && pfn < end_pfn)
3635 			return early_node_map[i].nid;
3636 	}
3637 	/* This is a memory hole */
3638 	return -1;
3639 }
3640 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3641 
3642 int __meminit early_pfn_to_nid(unsigned long pfn)
3643 {
3644 	int nid;
3645 
3646 	nid = __early_pfn_to_nid(pfn);
3647 	if (nid >= 0)
3648 		return nid;
3649 	/* just returns 0 */
3650 	return 0;
3651 }
3652 
3653 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3654 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3655 {
3656 	int nid;
3657 
3658 	nid = __early_pfn_to_nid(pfn);
3659 	if (nid >= 0 && nid != node)
3660 		return false;
3661 	return true;
3662 }
3663 #endif
3664 
3665 /* Basic iterator support to walk early_node_map[] */
3666 #define for_each_active_range_index_in_nid(i, nid) \
3667 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3668 				i = next_active_region_index_in_nid(i, nid))
3669 
3670 /**
3671  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3672  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3673  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3674  *
3675  * If an architecture guarantees that all ranges registered with
3676  * add_active_ranges() contain no holes and may be freed, this
3677  * this function may be used instead of calling free_bootmem() manually.
3678  */
3679 void __init free_bootmem_with_active_regions(int nid,
3680 						unsigned long max_low_pfn)
3681 {
3682 	int i;
3683 
3684 	for_each_active_range_index_in_nid(i, nid) {
3685 		unsigned long size_pages = 0;
3686 		unsigned long end_pfn = early_node_map[i].end_pfn;
3687 
3688 		if (early_node_map[i].start_pfn >= max_low_pfn)
3689 			continue;
3690 
3691 		if (end_pfn > max_low_pfn)
3692 			end_pfn = max_low_pfn;
3693 
3694 		size_pages = end_pfn - early_node_map[i].start_pfn;
3695 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3696 				PFN_PHYS(early_node_map[i].start_pfn),
3697 				size_pages << PAGE_SHIFT);
3698 	}
3699 }
3700 
3701 #ifdef CONFIG_HAVE_MEMBLOCK
3702 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3703 					u64 goal, u64 limit)
3704 {
3705 	int i;
3706 
3707 	/* Need to go over early_node_map to find out good range for node */
3708 	for_each_active_range_index_in_nid(i, nid) {
3709 		u64 addr;
3710 		u64 ei_start, ei_last;
3711 		u64 final_start, final_end;
3712 
3713 		ei_last = early_node_map[i].end_pfn;
3714 		ei_last <<= PAGE_SHIFT;
3715 		ei_start = early_node_map[i].start_pfn;
3716 		ei_start <<= PAGE_SHIFT;
3717 
3718 		final_start = max(ei_start, goal);
3719 		final_end = min(ei_last, limit);
3720 
3721 		if (final_start >= final_end)
3722 			continue;
3723 
3724 		addr = memblock_find_in_range(final_start, final_end, size, align);
3725 
3726 		if (addr == MEMBLOCK_ERROR)
3727 			continue;
3728 
3729 		return addr;
3730 	}
3731 
3732 	return MEMBLOCK_ERROR;
3733 }
3734 #endif
3735 
3736 int __init add_from_early_node_map(struct range *range, int az,
3737 				   int nr_range, int nid)
3738 {
3739 	int i;
3740 	u64 start, end;
3741 
3742 	/* need to go over early_node_map to find out good range for node */
3743 	for_each_active_range_index_in_nid(i, nid) {
3744 		start = early_node_map[i].start_pfn;
3745 		end = early_node_map[i].end_pfn;
3746 		nr_range = add_range(range, az, nr_range, start, end);
3747 	}
3748 	return nr_range;
3749 }
3750 
3751 #ifdef CONFIG_NO_BOOTMEM
3752 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3753 					u64 goal, u64 limit)
3754 {
3755 	void *ptr;
3756 	u64 addr;
3757 
3758 	if (limit > memblock.current_limit)
3759 		limit = memblock.current_limit;
3760 
3761 	addr = find_memory_core_early(nid, size, align, goal, limit);
3762 
3763 	if (addr == MEMBLOCK_ERROR)
3764 		return NULL;
3765 
3766 	ptr = phys_to_virt(addr);
3767 	memset(ptr, 0, size);
3768 	memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3769 	/*
3770 	 * The min_count is set to 0 so that bootmem allocated blocks
3771 	 * are never reported as leaks.
3772 	 */
3773 	kmemleak_alloc(ptr, size, 0, 0);
3774 	return ptr;
3775 }
3776 #endif
3777 
3778 
3779 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3780 {
3781 	int i;
3782 	int ret;
3783 
3784 	for_each_active_range_index_in_nid(i, nid) {
3785 		ret = work_fn(early_node_map[i].start_pfn,
3786 			      early_node_map[i].end_pfn, data);
3787 		if (ret)
3788 			break;
3789 	}
3790 }
3791 /**
3792  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3793  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3794  *
3795  * If an architecture guarantees that all ranges registered with
3796  * add_active_ranges() contain no holes and may be freed, this
3797  * function may be used instead of calling memory_present() manually.
3798  */
3799 void __init sparse_memory_present_with_active_regions(int nid)
3800 {
3801 	int i;
3802 
3803 	for_each_active_range_index_in_nid(i, nid)
3804 		memory_present(early_node_map[i].nid,
3805 				early_node_map[i].start_pfn,
3806 				early_node_map[i].end_pfn);
3807 }
3808 
3809 /**
3810  * get_pfn_range_for_nid - Return the start and end page frames for a node
3811  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3812  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3813  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3814  *
3815  * It returns the start and end page frame of a node based on information
3816  * provided by an arch calling add_active_range(). If called for a node
3817  * with no available memory, a warning is printed and the start and end
3818  * PFNs will be 0.
3819  */
3820 void __meminit get_pfn_range_for_nid(unsigned int nid,
3821 			unsigned long *start_pfn, unsigned long *end_pfn)
3822 {
3823 	int i;
3824 	*start_pfn = -1UL;
3825 	*end_pfn = 0;
3826 
3827 	for_each_active_range_index_in_nid(i, nid) {
3828 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3829 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3830 	}
3831 
3832 	if (*start_pfn == -1UL)
3833 		*start_pfn = 0;
3834 }
3835 
3836 /*
3837  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3838  * assumption is made that zones within a node are ordered in monotonic
3839  * increasing memory addresses so that the "highest" populated zone is used
3840  */
3841 static void __init find_usable_zone_for_movable(void)
3842 {
3843 	int zone_index;
3844 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3845 		if (zone_index == ZONE_MOVABLE)
3846 			continue;
3847 
3848 		if (arch_zone_highest_possible_pfn[zone_index] >
3849 				arch_zone_lowest_possible_pfn[zone_index])
3850 			break;
3851 	}
3852 
3853 	VM_BUG_ON(zone_index == -1);
3854 	movable_zone = zone_index;
3855 }
3856 
3857 /*
3858  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3859  * because it is sized independant of architecture. Unlike the other zones,
3860  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3861  * in each node depending on the size of each node and how evenly kernelcore
3862  * is distributed. This helper function adjusts the zone ranges
3863  * provided by the architecture for a given node by using the end of the
3864  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3865  * zones within a node are in order of monotonic increases memory addresses
3866  */
3867 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3868 					unsigned long zone_type,
3869 					unsigned long node_start_pfn,
3870 					unsigned long node_end_pfn,
3871 					unsigned long *zone_start_pfn,
3872 					unsigned long *zone_end_pfn)
3873 {
3874 	/* Only adjust if ZONE_MOVABLE is on this node */
3875 	if (zone_movable_pfn[nid]) {
3876 		/* Size ZONE_MOVABLE */
3877 		if (zone_type == ZONE_MOVABLE) {
3878 			*zone_start_pfn = zone_movable_pfn[nid];
3879 			*zone_end_pfn = min(node_end_pfn,
3880 				arch_zone_highest_possible_pfn[movable_zone]);
3881 
3882 		/* Adjust for ZONE_MOVABLE starting within this range */
3883 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3884 				*zone_end_pfn > zone_movable_pfn[nid]) {
3885 			*zone_end_pfn = zone_movable_pfn[nid];
3886 
3887 		/* Check if this whole range is within ZONE_MOVABLE */
3888 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3889 			*zone_start_pfn = *zone_end_pfn;
3890 	}
3891 }
3892 
3893 /*
3894  * Return the number of pages a zone spans in a node, including holes
3895  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3896  */
3897 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3898 					unsigned long zone_type,
3899 					unsigned long *ignored)
3900 {
3901 	unsigned long node_start_pfn, node_end_pfn;
3902 	unsigned long zone_start_pfn, zone_end_pfn;
3903 
3904 	/* Get the start and end of the node and zone */
3905 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3906 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3907 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3908 	adjust_zone_range_for_zone_movable(nid, zone_type,
3909 				node_start_pfn, node_end_pfn,
3910 				&zone_start_pfn, &zone_end_pfn);
3911 
3912 	/* Check that this node has pages within the zone's required range */
3913 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3914 		return 0;
3915 
3916 	/* Move the zone boundaries inside the node if necessary */
3917 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3918 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3919 
3920 	/* Return the spanned pages */
3921 	return zone_end_pfn - zone_start_pfn;
3922 }
3923 
3924 /*
3925  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3926  * then all holes in the requested range will be accounted for.
3927  */
3928 unsigned long __meminit __absent_pages_in_range(int nid,
3929 				unsigned long range_start_pfn,
3930 				unsigned long range_end_pfn)
3931 {
3932 	int i = 0;
3933 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3934 	unsigned long start_pfn;
3935 
3936 	/* Find the end_pfn of the first active range of pfns in the node */
3937 	i = first_active_region_index_in_nid(nid);
3938 	if (i == -1)
3939 		return 0;
3940 
3941 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3942 
3943 	/* Account for ranges before physical memory on this node */
3944 	if (early_node_map[i].start_pfn > range_start_pfn)
3945 		hole_pages = prev_end_pfn - range_start_pfn;
3946 
3947 	/* Find all holes for the zone within the node */
3948 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3949 
3950 		/* No need to continue if prev_end_pfn is outside the zone */
3951 		if (prev_end_pfn >= range_end_pfn)
3952 			break;
3953 
3954 		/* Make sure the end of the zone is not within the hole */
3955 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3956 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3957 
3958 		/* Update the hole size cound and move on */
3959 		if (start_pfn > range_start_pfn) {
3960 			BUG_ON(prev_end_pfn > start_pfn);
3961 			hole_pages += start_pfn - prev_end_pfn;
3962 		}
3963 		prev_end_pfn = early_node_map[i].end_pfn;
3964 	}
3965 
3966 	/* Account for ranges past physical memory on this node */
3967 	if (range_end_pfn > prev_end_pfn)
3968 		hole_pages += range_end_pfn -
3969 				max(range_start_pfn, prev_end_pfn);
3970 
3971 	return hole_pages;
3972 }
3973 
3974 /**
3975  * absent_pages_in_range - Return number of page frames in holes within a range
3976  * @start_pfn: The start PFN to start searching for holes
3977  * @end_pfn: The end PFN to stop searching for holes
3978  *
3979  * It returns the number of pages frames in memory holes within a range.
3980  */
3981 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3982 							unsigned long end_pfn)
3983 {
3984 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3985 }
3986 
3987 /* Return the number of page frames in holes in a zone on a node */
3988 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3989 					unsigned long zone_type,
3990 					unsigned long *ignored)
3991 {
3992 	unsigned long node_start_pfn, node_end_pfn;
3993 	unsigned long zone_start_pfn, zone_end_pfn;
3994 
3995 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3996 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3997 							node_start_pfn);
3998 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3999 							node_end_pfn);
4000 
4001 	adjust_zone_range_for_zone_movable(nid, zone_type,
4002 			node_start_pfn, node_end_pfn,
4003 			&zone_start_pfn, &zone_end_pfn);
4004 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4005 }
4006 
4007 #else
4008 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4009 					unsigned long zone_type,
4010 					unsigned long *zones_size)
4011 {
4012 	return zones_size[zone_type];
4013 }
4014 
4015 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4016 						unsigned long zone_type,
4017 						unsigned long *zholes_size)
4018 {
4019 	if (!zholes_size)
4020 		return 0;
4021 
4022 	return zholes_size[zone_type];
4023 }
4024 
4025 #endif
4026 
4027 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4028 		unsigned long *zones_size, unsigned long *zholes_size)
4029 {
4030 	unsigned long realtotalpages, totalpages = 0;
4031 	enum zone_type i;
4032 
4033 	for (i = 0; i < MAX_NR_ZONES; i++)
4034 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4035 								zones_size);
4036 	pgdat->node_spanned_pages = totalpages;
4037 
4038 	realtotalpages = totalpages;
4039 	for (i = 0; i < MAX_NR_ZONES; i++)
4040 		realtotalpages -=
4041 			zone_absent_pages_in_node(pgdat->node_id, i,
4042 								zholes_size);
4043 	pgdat->node_present_pages = realtotalpages;
4044 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4045 							realtotalpages);
4046 }
4047 
4048 #ifndef CONFIG_SPARSEMEM
4049 /*
4050  * Calculate the size of the zone->blockflags rounded to an unsigned long
4051  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4052  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4053  * round what is now in bits to nearest long in bits, then return it in
4054  * bytes.
4055  */
4056 static unsigned long __init usemap_size(unsigned long zonesize)
4057 {
4058 	unsigned long usemapsize;
4059 
4060 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4061 	usemapsize = usemapsize >> pageblock_order;
4062 	usemapsize *= NR_PAGEBLOCK_BITS;
4063 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4064 
4065 	return usemapsize / 8;
4066 }
4067 
4068 static void __init setup_usemap(struct pglist_data *pgdat,
4069 				struct zone *zone, unsigned long zonesize)
4070 {
4071 	unsigned long usemapsize = usemap_size(zonesize);
4072 	zone->pageblock_flags = NULL;
4073 	if (usemapsize)
4074 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4075 }
4076 #else
4077 static inline void setup_usemap(struct pglist_data *pgdat,
4078 				struct zone *zone, unsigned long zonesize) {}
4079 #endif /* CONFIG_SPARSEMEM */
4080 
4081 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4082 
4083 /* Return a sensible default order for the pageblock size. */
4084 static inline int pageblock_default_order(void)
4085 {
4086 	if (HPAGE_SHIFT > PAGE_SHIFT)
4087 		return HUGETLB_PAGE_ORDER;
4088 
4089 	return MAX_ORDER-1;
4090 }
4091 
4092 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4093 static inline void __init set_pageblock_order(unsigned int order)
4094 {
4095 	/* Check that pageblock_nr_pages has not already been setup */
4096 	if (pageblock_order)
4097 		return;
4098 
4099 	/*
4100 	 * Assume the largest contiguous order of interest is a huge page.
4101 	 * This value may be variable depending on boot parameters on IA64
4102 	 */
4103 	pageblock_order = order;
4104 }
4105 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4106 
4107 /*
4108  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4109  * and pageblock_default_order() are unused as pageblock_order is set
4110  * at compile-time. See include/linux/pageblock-flags.h for the values of
4111  * pageblock_order based on the kernel config
4112  */
4113 static inline int pageblock_default_order(unsigned int order)
4114 {
4115 	return MAX_ORDER-1;
4116 }
4117 #define set_pageblock_order(x)	do {} while (0)
4118 
4119 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4120 
4121 /*
4122  * Set up the zone data structures:
4123  *   - mark all pages reserved
4124  *   - mark all memory queues empty
4125  *   - clear the memory bitmaps
4126  */
4127 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4128 		unsigned long *zones_size, unsigned long *zholes_size)
4129 {
4130 	enum zone_type j;
4131 	int nid = pgdat->node_id;
4132 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4133 	int ret;
4134 
4135 	pgdat_resize_init(pgdat);
4136 	pgdat->nr_zones = 0;
4137 	init_waitqueue_head(&pgdat->kswapd_wait);
4138 	pgdat->kswapd_max_order = 0;
4139 	pgdat_page_cgroup_init(pgdat);
4140 
4141 	for (j = 0; j < MAX_NR_ZONES; j++) {
4142 		struct zone *zone = pgdat->node_zones + j;
4143 		unsigned long size, realsize, memmap_pages;
4144 		enum lru_list l;
4145 
4146 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4147 		realsize = size - zone_absent_pages_in_node(nid, j,
4148 								zholes_size);
4149 
4150 		/*
4151 		 * Adjust realsize so that it accounts for how much memory
4152 		 * is used by this zone for memmap. This affects the watermark
4153 		 * and per-cpu initialisations
4154 		 */
4155 		memmap_pages =
4156 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4157 		if (realsize >= memmap_pages) {
4158 			realsize -= memmap_pages;
4159 			if (memmap_pages)
4160 				printk(KERN_DEBUG
4161 				       "  %s zone: %lu pages used for memmap\n",
4162 				       zone_names[j], memmap_pages);
4163 		} else
4164 			printk(KERN_WARNING
4165 				"  %s zone: %lu pages exceeds realsize %lu\n",
4166 				zone_names[j], memmap_pages, realsize);
4167 
4168 		/* Account for reserved pages */
4169 		if (j == 0 && realsize > dma_reserve) {
4170 			realsize -= dma_reserve;
4171 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4172 					zone_names[0], dma_reserve);
4173 		}
4174 
4175 		if (!is_highmem_idx(j))
4176 			nr_kernel_pages += realsize;
4177 		nr_all_pages += realsize;
4178 
4179 		zone->spanned_pages = size;
4180 		zone->present_pages = realsize;
4181 #ifdef CONFIG_NUMA
4182 		zone->node = nid;
4183 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4184 						/ 100;
4185 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4186 #endif
4187 		zone->name = zone_names[j];
4188 		spin_lock_init(&zone->lock);
4189 		spin_lock_init(&zone->lru_lock);
4190 		zone_seqlock_init(zone);
4191 		zone->zone_pgdat = pgdat;
4192 
4193 		zone_pcp_init(zone);
4194 		for_each_lru(l) {
4195 			INIT_LIST_HEAD(&zone->lru[l].list);
4196 			zone->reclaim_stat.nr_saved_scan[l] = 0;
4197 		}
4198 		zone->reclaim_stat.recent_rotated[0] = 0;
4199 		zone->reclaim_stat.recent_rotated[1] = 0;
4200 		zone->reclaim_stat.recent_scanned[0] = 0;
4201 		zone->reclaim_stat.recent_scanned[1] = 0;
4202 		zap_zone_vm_stats(zone);
4203 		zone->flags = 0;
4204 		if (!size)
4205 			continue;
4206 
4207 		set_pageblock_order(pageblock_default_order());
4208 		setup_usemap(pgdat, zone, size);
4209 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4210 						size, MEMMAP_EARLY);
4211 		BUG_ON(ret);
4212 		memmap_init(size, nid, j, zone_start_pfn);
4213 		zone_start_pfn += size;
4214 	}
4215 }
4216 
4217 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4218 {
4219 	/* Skip empty nodes */
4220 	if (!pgdat->node_spanned_pages)
4221 		return;
4222 
4223 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4224 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4225 	if (!pgdat->node_mem_map) {
4226 		unsigned long size, start, end;
4227 		struct page *map;
4228 
4229 		/*
4230 		 * The zone's endpoints aren't required to be MAX_ORDER
4231 		 * aligned but the node_mem_map endpoints must be in order
4232 		 * for the buddy allocator to function correctly.
4233 		 */
4234 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4235 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4236 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4237 		size =  (end - start) * sizeof(struct page);
4238 		map = alloc_remap(pgdat->node_id, size);
4239 		if (!map)
4240 			map = alloc_bootmem_node(pgdat, size);
4241 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4242 	}
4243 #ifndef CONFIG_NEED_MULTIPLE_NODES
4244 	/*
4245 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4246 	 */
4247 	if (pgdat == NODE_DATA(0)) {
4248 		mem_map = NODE_DATA(0)->node_mem_map;
4249 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4250 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4251 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4252 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4253 	}
4254 #endif
4255 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4256 }
4257 
4258 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4259 		unsigned long node_start_pfn, unsigned long *zholes_size)
4260 {
4261 	pg_data_t *pgdat = NODE_DATA(nid);
4262 
4263 	pgdat->node_id = nid;
4264 	pgdat->node_start_pfn = node_start_pfn;
4265 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4266 
4267 	alloc_node_mem_map(pgdat);
4268 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4269 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4270 		nid, (unsigned long)pgdat,
4271 		(unsigned long)pgdat->node_mem_map);
4272 #endif
4273 
4274 	free_area_init_core(pgdat, zones_size, zholes_size);
4275 }
4276 
4277 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4278 
4279 #if MAX_NUMNODES > 1
4280 /*
4281  * Figure out the number of possible node ids.
4282  */
4283 static void __init setup_nr_node_ids(void)
4284 {
4285 	unsigned int node;
4286 	unsigned int highest = 0;
4287 
4288 	for_each_node_mask(node, node_possible_map)
4289 		highest = node;
4290 	nr_node_ids = highest + 1;
4291 }
4292 #else
4293 static inline void setup_nr_node_ids(void)
4294 {
4295 }
4296 #endif
4297 
4298 /**
4299  * add_active_range - Register a range of PFNs backed by physical memory
4300  * @nid: The node ID the range resides on
4301  * @start_pfn: The start PFN of the available physical memory
4302  * @end_pfn: The end PFN of the available physical memory
4303  *
4304  * These ranges are stored in an early_node_map[] and later used by
4305  * free_area_init_nodes() to calculate zone sizes and holes. If the
4306  * range spans a memory hole, it is up to the architecture to ensure
4307  * the memory is not freed by the bootmem allocator. If possible
4308  * the range being registered will be merged with existing ranges.
4309  */
4310 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4311 						unsigned long end_pfn)
4312 {
4313 	int i;
4314 
4315 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4316 			"Entering add_active_range(%d, %#lx, %#lx) "
4317 			"%d entries of %d used\n",
4318 			nid, start_pfn, end_pfn,
4319 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4320 
4321 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4322 
4323 	/* Merge with existing active regions if possible */
4324 	for (i = 0; i < nr_nodemap_entries; i++) {
4325 		if (early_node_map[i].nid != nid)
4326 			continue;
4327 
4328 		/* Skip if an existing region covers this new one */
4329 		if (start_pfn >= early_node_map[i].start_pfn &&
4330 				end_pfn <= early_node_map[i].end_pfn)
4331 			return;
4332 
4333 		/* Merge forward if suitable */
4334 		if (start_pfn <= early_node_map[i].end_pfn &&
4335 				end_pfn > early_node_map[i].end_pfn) {
4336 			early_node_map[i].end_pfn = end_pfn;
4337 			return;
4338 		}
4339 
4340 		/* Merge backward if suitable */
4341 		if (start_pfn < early_node_map[i].start_pfn &&
4342 				end_pfn >= early_node_map[i].start_pfn) {
4343 			early_node_map[i].start_pfn = start_pfn;
4344 			return;
4345 		}
4346 	}
4347 
4348 	/* Check that early_node_map is large enough */
4349 	if (i >= MAX_ACTIVE_REGIONS) {
4350 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4351 							MAX_ACTIVE_REGIONS);
4352 		return;
4353 	}
4354 
4355 	early_node_map[i].nid = nid;
4356 	early_node_map[i].start_pfn = start_pfn;
4357 	early_node_map[i].end_pfn = end_pfn;
4358 	nr_nodemap_entries = i + 1;
4359 }
4360 
4361 /**
4362  * remove_active_range - Shrink an existing registered range of PFNs
4363  * @nid: The node id the range is on that should be shrunk
4364  * @start_pfn: The new PFN of the range
4365  * @end_pfn: The new PFN of the range
4366  *
4367  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4368  * The map is kept near the end physical page range that has already been
4369  * registered. This function allows an arch to shrink an existing registered
4370  * range.
4371  */
4372 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4373 				unsigned long end_pfn)
4374 {
4375 	int i, j;
4376 	int removed = 0;
4377 
4378 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4379 			  nid, start_pfn, end_pfn);
4380 
4381 	/* Find the old active region end and shrink */
4382 	for_each_active_range_index_in_nid(i, nid) {
4383 		if (early_node_map[i].start_pfn >= start_pfn &&
4384 		    early_node_map[i].end_pfn <= end_pfn) {
4385 			/* clear it */
4386 			early_node_map[i].start_pfn = 0;
4387 			early_node_map[i].end_pfn = 0;
4388 			removed = 1;
4389 			continue;
4390 		}
4391 		if (early_node_map[i].start_pfn < start_pfn &&
4392 		    early_node_map[i].end_pfn > start_pfn) {
4393 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4394 			early_node_map[i].end_pfn = start_pfn;
4395 			if (temp_end_pfn > end_pfn)
4396 				add_active_range(nid, end_pfn, temp_end_pfn);
4397 			continue;
4398 		}
4399 		if (early_node_map[i].start_pfn >= start_pfn &&
4400 		    early_node_map[i].end_pfn > end_pfn &&
4401 		    early_node_map[i].start_pfn < end_pfn) {
4402 			early_node_map[i].start_pfn = end_pfn;
4403 			continue;
4404 		}
4405 	}
4406 
4407 	if (!removed)
4408 		return;
4409 
4410 	/* remove the blank ones */
4411 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4412 		if (early_node_map[i].nid != nid)
4413 			continue;
4414 		if (early_node_map[i].end_pfn)
4415 			continue;
4416 		/* we found it, get rid of it */
4417 		for (j = i; j < nr_nodemap_entries - 1; j++)
4418 			memcpy(&early_node_map[j], &early_node_map[j+1],
4419 				sizeof(early_node_map[j]));
4420 		j = nr_nodemap_entries - 1;
4421 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4422 		nr_nodemap_entries--;
4423 	}
4424 }
4425 
4426 /**
4427  * remove_all_active_ranges - Remove all currently registered regions
4428  *
4429  * During discovery, it may be found that a table like SRAT is invalid
4430  * and an alternative discovery method must be used. This function removes
4431  * all currently registered regions.
4432  */
4433 void __init remove_all_active_ranges(void)
4434 {
4435 	memset(early_node_map, 0, sizeof(early_node_map));
4436 	nr_nodemap_entries = 0;
4437 }
4438 
4439 /* Compare two active node_active_regions */
4440 static int __init cmp_node_active_region(const void *a, const void *b)
4441 {
4442 	struct node_active_region *arange = (struct node_active_region *)a;
4443 	struct node_active_region *brange = (struct node_active_region *)b;
4444 
4445 	/* Done this way to avoid overflows */
4446 	if (arange->start_pfn > brange->start_pfn)
4447 		return 1;
4448 	if (arange->start_pfn < brange->start_pfn)
4449 		return -1;
4450 
4451 	return 0;
4452 }
4453 
4454 /* sort the node_map by start_pfn */
4455 void __init sort_node_map(void)
4456 {
4457 	sort(early_node_map, (size_t)nr_nodemap_entries,
4458 			sizeof(struct node_active_region),
4459 			cmp_node_active_region, NULL);
4460 }
4461 
4462 /* Find the lowest pfn for a node */
4463 static unsigned long __init find_min_pfn_for_node(int nid)
4464 {
4465 	int i;
4466 	unsigned long min_pfn = ULONG_MAX;
4467 
4468 	/* Assuming a sorted map, the first range found has the starting pfn */
4469 	for_each_active_range_index_in_nid(i, nid)
4470 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4471 
4472 	if (min_pfn == ULONG_MAX) {
4473 		printk(KERN_WARNING
4474 			"Could not find start_pfn for node %d\n", nid);
4475 		return 0;
4476 	}
4477 
4478 	return min_pfn;
4479 }
4480 
4481 /**
4482  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4483  *
4484  * It returns the minimum PFN based on information provided via
4485  * add_active_range().
4486  */
4487 unsigned long __init find_min_pfn_with_active_regions(void)
4488 {
4489 	return find_min_pfn_for_node(MAX_NUMNODES);
4490 }
4491 
4492 /*
4493  * early_calculate_totalpages()
4494  * Sum pages in active regions for movable zone.
4495  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4496  */
4497 static unsigned long __init early_calculate_totalpages(void)
4498 {
4499 	int i;
4500 	unsigned long totalpages = 0;
4501 
4502 	for (i = 0; i < nr_nodemap_entries; i++) {
4503 		unsigned long pages = early_node_map[i].end_pfn -
4504 						early_node_map[i].start_pfn;
4505 		totalpages += pages;
4506 		if (pages)
4507 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4508 	}
4509   	return totalpages;
4510 }
4511 
4512 /*
4513  * Find the PFN the Movable zone begins in each node. Kernel memory
4514  * is spread evenly between nodes as long as the nodes have enough
4515  * memory. When they don't, some nodes will have more kernelcore than
4516  * others
4517  */
4518 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4519 {
4520 	int i, nid;
4521 	unsigned long usable_startpfn;
4522 	unsigned long kernelcore_node, kernelcore_remaining;
4523 	/* save the state before borrow the nodemask */
4524 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4525 	unsigned long totalpages = early_calculate_totalpages();
4526 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4527 
4528 	/*
4529 	 * If movablecore was specified, calculate what size of
4530 	 * kernelcore that corresponds so that memory usable for
4531 	 * any allocation type is evenly spread. If both kernelcore
4532 	 * and movablecore are specified, then the value of kernelcore
4533 	 * will be used for required_kernelcore if it's greater than
4534 	 * what movablecore would have allowed.
4535 	 */
4536 	if (required_movablecore) {
4537 		unsigned long corepages;
4538 
4539 		/*
4540 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4541 		 * was requested by the user
4542 		 */
4543 		required_movablecore =
4544 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4545 		corepages = totalpages - required_movablecore;
4546 
4547 		required_kernelcore = max(required_kernelcore, corepages);
4548 	}
4549 
4550 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4551 	if (!required_kernelcore)
4552 		goto out;
4553 
4554 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4555 	find_usable_zone_for_movable();
4556 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4557 
4558 restart:
4559 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4560 	kernelcore_node = required_kernelcore / usable_nodes;
4561 	for_each_node_state(nid, N_HIGH_MEMORY) {
4562 		/*
4563 		 * Recalculate kernelcore_node if the division per node
4564 		 * now exceeds what is necessary to satisfy the requested
4565 		 * amount of memory for the kernel
4566 		 */
4567 		if (required_kernelcore < kernelcore_node)
4568 			kernelcore_node = required_kernelcore / usable_nodes;
4569 
4570 		/*
4571 		 * As the map is walked, we track how much memory is usable
4572 		 * by the kernel using kernelcore_remaining. When it is
4573 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4574 		 */
4575 		kernelcore_remaining = kernelcore_node;
4576 
4577 		/* Go through each range of PFNs within this node */
4578 		for_each_active_range_index_in_nid(i, nid) {
4579 			unsigned long start_pfn, end_pfn;
4580 			unsigned long size_pages;
4581 
4582 			start_pfn = max(early_node_map[i].start_pfn,
4583 						zone_movable_pfn[nid]);
4584 			end_pfn = early_node_map[i].end_pfn;
4585 			if (start_pfn >= end_pfn)
4586 				continue;
4587 
4588 			/* Account for what is only usable for kernelcore */
4589 			if (start_pfn < usable_startpfn) {
4590 				unsigned long kernel_pages;
4591 				kernel_pages = min(end_pfn, usable_startpfn)
4592 								- start_pfn;
4593 
4594 				kernelcore_remaining -= min(kernel_pages,
4595 							kernelcore_remaining);
4596 				required_kernelcore -= min(kernel_pages,
4597 							required_kernelcore);
4598 
4599 				/* Continue if range is now fully accounted */
4600 				if (end_pfn <= usable_startpfn) {
4601 
4602 					/*
4603 					 * Push zone_movable_pfn to the end so
4604 					 * that if we have to rebalance
4605 					 * kernelcore across nodes, we will
4606 					 * not double account here
4607 					 */
4608 					zone_movable_pfn[nid] = end_pfn;
4609 					continue;
4610 				}
4611 				start_pfn = usable_startpfn;
4612 			}
4613 
4614 			/*
4615 			 * The usable PFN range for ZONE_MOVABLE is from
4616 			 * start_pfn->end_pfn. Calculate size_pages as the
4617 			 * number of pages used as kernelcore
4618 			 */
4619 			size_pages = end_pfn - start_pfn;
4620 			if (size_pages > kernelcore_remaining)
4621 				size_pages = kernelcore_remaining;
4622 			zone_movable_pfn[nid] = start_pfn + size_pages;
4623 
4624 			/*
4625 			 * Some kernelcore has been met, update counts and
4626 			 * break if the kernelcore for this node has been
4627 			 * satisified
4628 			 */
4629 			required_kernelcore -= min(required_kernelcore,
4630 								size_pages);
4631 			kernelcore_remaining -= size_pages;
4632 			if (!kernelcore_remaining)
4633 				break;
4634 		}
4635 	}
4636 
4637 	/*
4638 	 * If there is still required_kernelcore, we do another pass with one
4639 	 * less node in the count. This will push zone_movable_pfn[nid] further
4640 	 * along on the nodes that still have memory until kernelcore is
4641 	 * satisified
4642 	 */
4643 	usable_nodes--;
4644 	if (usable_nodes && required_kernelcore > usable_nodes)
4645 		goto restart;
4646 
4647 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4648 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4649 		zone_movable_pfn[nid] =
4650 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4651 
4652 out:
4653 	/* restore the node_state */
4654 	node_states[N_HIGH_MEMORY] = saved_node_state;
4655 }
4656 
4657 /* Any regular memory on that node ? */
4658 static void check_for_regular_memory(pg_data_t *pgdat)
4659 {
4660 #ifdef CONFIG_HIGHMEM
4661 	enum zone_type zone_type;
4662 
4663 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4664 		struct zone *zone = &pgdat->node_zones[zone_type];
4665 		if (zone->present_pages)
4666 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4667 	}
4668 #endif
4669 }
4670 
4671 /**
4672  * free_area_init_nodes - Initialise all pg_data_t and zone data
4673  * @max_zone_pfn: an array of max PFNs for each zone
4674  *
4675  * This will call free_area_init_node() for each active node in the system.
4676  * Using the page ranges provided by add_active_range(), the size of each
4677  * zone in each node and their holes is calculated. If the maximum PFN
4678  * between two adjacent zones match, it is assumed that the zone is empty.
4679  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4680  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4681  * starts where the previous one ended. For example, ZONE_DMA32 starts
4682  * at arch_max_dma_pfn.
4683  */
4684 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4685 {
4686 	unsigned long nid;
4687 	int i;
4688 
4689 	/* Sort early_node_map as initialisation assumes it is sorted */
4690 	sort_node_map();
4691 
4692 	/* Record where the zone boundaries are */
4693 	memset(arch_zone_lowest_possible_pfn, 0,
4694 				sizeof(arch_zone_lowest_possible_pfn));
4695 	memset(arch_zone_highest_possible_pfn, 0,
4696 				sizeof(arch_zone_highest_possible_pfn));
4697 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4698 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4699 	for (i = 1; i < MAX_NR_ZONES; i++) {
4700 		if (i == ZONE_MOVABLE)
4701 			continue;
4702 		arch_zone_lowest_possible_pfn[i] =
4703 			arch_zone_highest_possible_pfn[i-1];
4704 		arch_zone_highest_possible_pfn[i] =
4705 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4706 	}
4707 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4708 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4709 
4710 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4711 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4712 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4713 
4714 	/* Print out the zone ranges */
4715 	printk("Zone PFN ranges:\n");
4716 	for (i = 0; i < MAX_NR_ZONES; i++) {
4717 		if (i == ZONE_MOVABLE)
4718 			continue;
4719 		printk("  %-8s ", zone_names[i]);
4720 		if (arch_zone_lowest_possible_pfn[i] ==
4721 				arch_zone_highest_possible_pfn[i])
4722 			printk("empty\n");
4723 		else
4724 			printk("%0#10lx -> %0#10lx\n",
4725 				arch_zone_lowest_possible_pfn[i],
4726 				arch_zone_highest_possible_pfn[i]);
4727 	}
4728 
4729 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4730 	printk("Movable zone start PFN for each node\n");
4731 	for (i = 0; i < MAX_NUMNODES; i++) {
4732 		if (zone_movable_pfn[i])
4733 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4734 	}
4735 
4736 	/* Print out the early_node_map[] */
4737 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4738 	for (i = 0; i < nr_nodemap_entries; i++)
4739 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4740 						early_node_map[i].start_pfn,
4741 						early_node_map[i].end_pfn);
4742 
4743 	/* Initialise every node */
4744 	mminit_verify_pageflags_layout();
4745 	setup_nr_node_ids();
4746 	for_each_online_node(nid) {
4747 		pg_data_t *pgdat = NODE_DATA(nid);
4748 		free_area_init_node(nid, NULL,
4749 				find_min_pfn_for_node(nid), NULL);
4750 
4751 		/* Any memory on that node */
4752 		if (pgdat->node_present_pages)
4753 			node_set_state(nid, N_HIGH_MEMORY);
4754 		check_for_regular_memory(pgdat);
4755 	}
4756 }
4757 
4758 static int __init cmdline_parse_core(char *p, unsigned long *core)
4759 {
4760 	unsigned long long coremem;
4761 	if (!p)
4762 		return -EINVAL;
4763 
4764 	coremem = memparse(p, &p);
4765 	*core = coremem >> PAGE_SHIFT;
4766 
4767 	/* Paranoid check that UL is enough for the coremem value */
4768 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4769 
4770 	return 0;
4771 }
4772 
4773 /*
4774  * kernelcore=size sets the amount of memory for use for allocations that
4775  * cannot be reclaimed or migrated.
4776  */
4777 static int __init cmdline_parse_kernelcore(char *p)
4778 {
4779 	return cmdline_parse_core(p, &required_kernelcore);
4780 }
4781 
4782 /*
4783  * movablecore=size sets the amount of memory for use for allocations that
4784  * can be reclaimed or migrated.
4785  */
4786 static int __init cmdline_parse_movablecore(char *p)
4787 {
4788 	return cmdline_parse_core(p, &required_movablecore);
4789 }
4790 
4791 early_param("kernelcore", cmdline_parse_kernelcore);
4792 early_param("movablecore", cmdline_parse_movablecore);
4793 
4794 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4795 
4796 /**
4797  * set_dma_reserve - set the specified number of pages reserved in the first zone
4798  * @new_dma_reserve: The number of pages to mark reserved
4799  *
4800  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4801  * In the DMA zone, a significant percentage may be consumed by kernel image
4802  * and other unfreeable allocations which can skew the watermarks badly. This
4803  * function may optionally be used to account for unfreeable pages in the
4804  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4805  * smaller per-cpu batchsize.
4806  */
4807 void __init set_dma_reserve(unsigned long new_dma_reserve)
4808 {
4809 	dma_reserve = new_dma_reserve;
4810 }
4811 
4812 #ifndef CONFIG_NEED_MULTIPLE_NODES
4813 struct pglist_data __refdata contig_page_data = {
4814 #ifndef CONFIG_NO_BOOTMEM
4815  .bdata = &bootmem_node_data[0]
4816 #endif
4817  };
4818 EXPORT_SYMBOL(contig_page_data);
4819 #endif
4820 
4821 void __init free_area_init(unsigned long *zones_size)
4822 {
4823 	free_area_init_node(0, zones_size,
4824 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4825 }
4826 
4827 static int page_alloc_cpu_notify(struct notifier_block *self,
4828 				 unsigned long action, void *hcpu)
4829 {
4830 	int cpu = (unsigned long)hcpu;
4831 
4832 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4833 		drain_pages(cpu);
4834 
4835 		/*
4836 		 * Spill the event counters of the dead processor
4837 		 * into the current processors event counters.
4838 		 * This artificially elevates the count of the current
4839 		 * processor.
4840 		 */
4841 		vm_events_fold_cpu(cpu);
4842 
4843 		/*
4844 		 * Zero the differential counters of the dead processor
4845 		 * so that the vm statistics are consistent.
4846 		 *
4847 		 * This is only okay since the processor is dead and cannot
4848 		 * race with what we are doing.
4849 		 */
4850 		refresh_cpu_vm_stats(cpu);
4851 	}
4852 	return NOTIFY_OK;
4853 }
4854 
4855 void __init page_alloc_init(void)
4856 {
4857 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4858 }
4859 
4860 /*
4861  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4862  *	or min_free_kbytes changes.
4863  */
4864 static void calculate_totalreserve_pages(void)
4865 {
4866 	struct pglist_data *pgdat;
4867 	unsigned long reserve_pages = 0;
4868 	enum zone_type i, j;
4869 
4870 	for_each_online_pgdat(pgdat) {
4871 		for (i = 0; i < MAX_NR_ZONES; i++) {
4872 			struct zone *zone = pgdat->node_zones + i;
4873 			unsigned long max = 0;
4874 
4875 			/* Find valid and maximum lowmem_reserve in the zone */
4876 			for (j = i; j < MAX_NR_ZONES; j++) {
4877 				if (zone->lowmem_reserve[j] > max)
4878 					max = zone->lowmem_reserve[j];
4879 			}
4880 
4881 			/* we treat the high watermark as reserved pages. */
4882 			max += high_wmark_pages(zone);
4883 
4884 			if (max > zone->present_pages)
4885 				max = zone->present_pages;
4886 			reserve_pages += max;
4887 		}
4888 	}
4889 	totalreserve_pages = reserve_pages;
4890 }
4891 
4892 /*
4893  * setup_per_zone_lowmem_reserve - called whenever
4894  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4895  *	has a correct pages reserved value, so an adequate number of
4896  *	pages are left in the zone after a successful __alloc_pages().
4897  */
4898 static void setup_per_zone_lowmem_reserve(void)
4899 {
4900 	struct pglist_data *pgdat;
4901 	enum zone_type j, idx;
4902 
4903 	for_each_online_pgdat(pgdat) {
4904 		for (j = 0; j < MAX_NR_ZONES; j++) {
4905 			struct zone *zone = pgdat->node_zones + j;
4906 			unsigned long present_pages = zone->present_pages;
4907 
4908 			zone->lowmem_reserve[j] = 0;
4909 
4910 			idx = j;
4911 			while (idx) {
4912 				struct zone *lower_zone;
4913 
4914 				idx--;
4915 
4916 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4917 					sysctl_lowmem_reserve_ratio[idx] = 1;
4918 
4919 				lower_zone = pgdat->node_zones + idx;
4920 				lower_zone->lowmem_reserve[j] = present_pages /
4921 					sysctl_lowmem_reserve_ratio[idx];
4922 				present_pages += lower_zone->present_pages;
4923 			}
4924 		}
4925 	}
4926 
4927 	/* update totalreserve_pages */
4928 	calculate_totalreserve_pages();
4929 }
4930 
4931 /**
4932  * setup_per_zone_wmarks - called when min_free_kbytes changes
4933  * or when memory is hot-{added|removed}
4934  *
4935  * Ensures that the watermark[min,low,high] values for each zone are set
4936  * correctly with respect to min_free_kbytes.
4937  */
4938 void setup_per_zone_wmarks(void)
4939 {
4940 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4941 	unsigned long lowmem_pages = 0;
4942 	struct zone *zone;
4943 	unsigned long flags;
4944 
4945 	/* Calculate total number of !ZONE_HIGHMEM pages */
4946 	for_each_zone(zone) {
4947 		if (!is_highmem(zone))
4948 			lowmem_pages += zone->present_pages;
4949 	}
4950 
4951 	for_each_zone(zone) {
4952 		u64 tmp;
4953 
4954 		spin_lock_irqsave(&zone->lock, flags);
4955 		tmp = (u64)pages_min * zone->present_pages;
4956 		do_div(tmp, lowmem_pages);
4957 		if (is_highmem(zone)) {
4958 			/*
4959 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4960 			 * need highmem pages, so cap pages_min to a small
4961 			 * value here.
4962 			 *
4963 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4964 			 * deltas controls asynch page reclaim, and so should
4965 			 * not be capped for highmem.
4966 			 */
4967 			int min_pages;
4968 
4969 			min_pages = zone->present_pages / 1024;
4970 			if (min_pages < SWAP_CLUSTER_MAX)
4971 				min_pages = SWAP_CLUSTER_MAX;
4972 			if (min_pages > 128)
4973 				min_pages = 128;
4974 			zone->watermark[WMARK_MIN] = min_pages;
4975 		} else {
4976 			/*
4977 			 * If it's a lowmem zone, reserve a number of pages
4978 			 * proportionate to the zone's size.
4979 			 */
4980 			zone->watermark[WMARK_MIN] = tmp;
4981 		}
4982 
4983 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4984 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4985 		setup_zone_migrate_reserve(zone);
4986 		spin_unlock_irqrestore(&zone->lock, flags);
4987 	}
4988 
4989 	/* update totalreserve_pages */
4990 	calculate_totalreserve_pages();
4991 }
4992 
4993 /*
4994  * The inactive anon list should be small enough that the VM never has to
4995  * do too much work, but large enough that each inactive page has a chance
4996  * to be referenced again before it is swapped out.
4997  *
4998  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4999  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5000  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5001  * the anonymous pages are kept on the inactive list.
5002  *
5003  * total     target    max
5004  * memory    ratio     inactive anon
5005  * -------------------------------------
5006  *   10MB       1         5MB
5007  *  100MB       1        50MB
5008  *    1GB       3       250MB
5009  *   10GB      10       0.9GB
5010  *  100GB      31         3GB
5011  *    1TB     101        10GB
5012  *   10TB     320        32GB
5013  */
5014 void calculate_zone_inactive_ratio(struct zone *zone)
5015 {
5016 	unsigned int gb, ratio;
5017 
5018 	/* Zone size in gigabytes */
5019 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5020 	if (gb)
5021 		ratio = int_sqrt(10 * gb);
5022 	else
5023 		ratio = 1;
5024 
5025 	zone->inactive_ratio = ratio;
5026 }
5027 
5028 static void __init setup_per_zone_inactive_ratio(void)
5029 {
5030 	struct zone *zone;
5031 
5032 	for_each_zone(zone)
5033 		calculate_zone_inactive_ratio(zone);
5034 }
5035 
5036 /*
5037  * Initialise min_free_kbytes.
5038  *
5039  * For small machines we want it small (128k min).  For large machines
5040  * we want it large (64MB max).  But it is not linear, because network
5041  * bandwidth does not increase linearly with machine size.  We use
5042  *
5043  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5044  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5045  *
5046  * which yields
5047  *
5048  * 16MB:	512k
5049  * 32MB:	724k
5050  * 64MB:	1024k
5051  * 128MB:	1448k
5052  * 256MB:	2048k
5053  * 512MB:	2896k
5054  * 1024MB:	4096k
5055  * 2048MB:	5792k
5056  * 4096MB:	8192k
5057  * 8192MB:	11584k
5058  * 16384MB:	16384k
5059  */
5060 static int __init init_per_zone_wmark_min(void)
5061 {
5062 	unsigned long lowmem_kbytes;
5063 
5064 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5065 
5066 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5067 	if (min_free_kbytes < 128)
5068 		min_free_kbytes = 128;
5069 	if (min_free_kbytes > 65536)
5070 		min_free_kbytes = 65536;
5071 	setup_per_zone_wmarks();
5072 	setup_per_zone_lowmem_reserve();
5073 	setup_per_zone_inactive_ratio();
5074 	return 0;
5075 }
5076 module_init(init_per_zone_wmark_min)
5077 
5078 /*
5079  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5080  *	that we can call two helper functions whenever min_free_kbytes
5081  *	changes.
5082  */
5083 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5084 	void __user *buffer, size_t *length, loff_t *ppos)
5085 {
5086 	proc_dointvec(table, write, buffer, length, ppos);
5087 	if (write)
5088 		setup_per_zone_wmarks();
5089 	return 0;
5090 }
5091 
5092 #ifdef CONFIG_NUMA
5093 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5094 	void __user *buffer, size_t *length, loff_t *ppos)
5095 {
5096 	struct zone *zone;
5097 	int rc;
5098 
5099 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5100 	if (rc)
5101 		return rc;
5102 
5103 	for_each_zone(zone)
5104 		zone->min_unmapped_pages = (zone->present_pages *
5105 				sysctl_min_unmapped_ratio) / 100;
5106 	return 0;
5107 }
5108 
5109 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5110 	void __user *buffer, size_t *length, loff_t *ppos)
5111 {
5112 	struct zone *zone;
5113 	int rc;
5114 
5115 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5116 	if (rc)
5117 		return rc;
5118 
5119 	for_each_zone(zone)
5120 		zone->min_slab_pages = (zone->present_pages *
5121 				sysctl_min_slab_ratio) / 100;
5122 	return 0;
5123 }
5124 #endif
5125 
5126 /*
5127  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5128  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5129  *	whenever sysctl_lowmem_reserve_ratio changes.
5130  *
5131  * The reserve ratio obviously has absolutely no relation with the
5132  * minimum watermarks. The lowmem reserve ratio can only make sense
5133  * if in function of the boot time zone sizes.
5134  */
5135 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5136 	void __user *buffer, size_t *length, loff_t *ppos)
5137 {
5138 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5139 	setup_per_zone_lowmem_reserve();
5140 	return 0;
5141 }
5142 
5143 /*
5144  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5145  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5146  * can have before it gets flushed back to buddy allocator.
5147  */
5148 
5149 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5150 	void __user *buffer, size_t *length, loff_t *ppos)
5151 {
5152 	struct zone *zone;
5153 	unsigned int cpu;
5154 	int ret;
5155 
5156 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5157 	if (!write || (ret == -EINVAL))
5158 		return ret;
5159 	for_each_populated_zone(zone) {
5160 		for_each_possible_cpu(cpu) {
5161 			unsigned long  high;
5162 			high = zone->present_pages / percpu_pagelist_fraction;
5163 			setup_pagelist_highmark(
5164 				per_cpu_ptr(zone->pageset, cpu), high);
5165 		}
5166 	}
5167 	return 0;
5168 }
5169 
5170 int hashdist = HASHDIST_DEFAULT;
5171 
5172 #ifdef CONFIG_NUMA
5173 static int __init set_hashdist(char *str)
5174 {
5175 	if (!str)
5176 		return 0;
5177 	hashdist = simple_strtoul(str, &str, 0);
5178 	return 1;
5179 }
5180 __setup("hashdist=", set_hashdist);
5181 #endif
5182 
5183 /*
5184  * allocate a large system hash table from bootmem
5185  * - it is assumed that the hash table must contain an exact power-of-2
5186  *   quantity of entries
5187  * - limit is the number of hash buckets, not the total allocation size
5188  */
5189 void *__init alloc_large_system_hash(const char *tablename,
5190 				     unsigned long bucketsize,
5191 				     unsigned long numentries,
5192 				     int scale,
5193 				     int flags,
5194 				     unsigned int *_hash_shift,
5195 				     unsigned int *_hash_mask,
5196 				     unsigned long limit)
5197 {
5198 	unsigned long long max = limit;
5199 	unsigned long log2qty, size;
5200 	void *table = NULL;
5201 
5202 	/* allow the kernel cmdline to have a say */
5203 	if (!numentries) {
5204 		/* round applicable memory size up to nearest megabyte */
5205 		numentries = nr_kernel_pages;
5206 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5207 		numentries >>= 20 - PAGE_SHIFT;
5208 		numentries <<= 20 - PAGE_SHIFT;
5209 
5210 		/* limit to 1 bucket per 2^scale bytes of low memory */
5211 		if (scale > PAGE_SHIFT)
5212 			numentries >>= (scale - PAGE_SHIFT);
5213 		else
5214 			numentries <<= (PAGE_SHIFT - scale);
5215 
5216 		/* Make sure we've got at least a 0-order allocation.. */
5217 		if (unlikely(flags & HASH_SMALL)) {
5218 			/* Makes no sense without HASH_EARLY */
5219 			WARN_ON(!(flags & HASH_EARLY));
5220 			if (!(numentries >> *_hash_shift)) {
5221 				numentries = 1UL << *_hash_shift;
5222 				BUG_ON(!numentries);
5223 			}
5224 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5225 			numentries = PAGE_SIZE / bucketsize;
5226 	}
5227 	numentries = roundup_pow_of_two(numentries);
5228 
5229 	/* limit allocation size to 1/16 total memory by default */
5230 	if (max == 0) {
5231 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5232 		do_div(max, bucketsize);
5233 	}
5234 
5235 	if (numentries > max)
5236 		numentries = max;
5237 
5238 	log2qty = ilog2(numentries);
5239 
5240 	do {
5241 		size = bucketsize << log2qty;
5242 		if (flags & HASH_EARLY)
5243 			table = alloc_bootmem_nopanic(size);
5244 		else if (hashdist)
5245 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5246 		else {
5247 			/*
5248 			 * If bucketsize is not a power-of-two, we may free
5249 			 * some pages at the end of hash table which
5250 			 * alloc_pages_exact() automatically does
5251 			 */
5252 			if (get_order(size) < MAX_ORDER) {
5253 				table = alloc_pages_exact(size, GFP_ATOMIC);
5254 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5255 			}
5256 		}
5257 	} while (!table && size > PAGE_SIZE && --log2qty);
5258 
5259 	if (!table)
5260 		panic("Failed to allocate %s hash table\n", tablename);
5261 
5262 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5263 	       tablename,
5264 	       (1UL << log2qty),
5265 	       ilog2(size) - PAGE_SHIFT,
5266 	       size);
5267 
5268 	if (_hash_shift)
5269 		*_hash_shift = log2qty;
5270 	if (_hash_mask)
5271 		*_hash_mask = (1 << log2qty) - 1;
5272 
5273 	return table;
5274 }
5275 
5276 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5277 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5278 							unsigned long pfn)
5279 {
5280 #ifdef CONFIG_SPARSEMEM
5281 	return __pfn_to_section(pfn)->pageblock_flags;
5282 #else
5283 	return zone->pageblock_flags;
5284 #endif /* CONFIG_SPARSEMEM */
5285 }
5286 
5287 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5288 {
5289 #ifdef CONFIG_SPARSEMEM
5290 	pfn &= (PAGES_PER_SECTION-1);
5291 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5292 #else
5293 	pfn = pfn - zone->zone_start_pfn;
5294 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5295 #endif /* CONFIG_SPARSEMEM */
5296 }
5297 
5298 /**
5299  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5300  * @page: The page within the block of interest
5301  * @start_bitidx: The first bit of interest to retrieve
5302  * @end_bitidx: The last bit of interest
5303  * returns pageblock_bits flags
5304  */
5305 unsigned long get_pageblock_flags_group(struct page *page,
5306 					int start_bitidx, int end_bitidx)
5307 {
5308 	struct zone *zone;
5309 	unsigned long *bitmap;
5310 	unsigned long pfn, bitidx;
5311 	unsigned long flags = 0;
5312 	unsigned long value = 1;
5313 
5314 	zone = page_zone(page);
5315 	pfn = page_to_pfn(page);
5316 	bitmap = get_pageblock_bitmap(zone, pfn);
5317 	bitidx = pfn_to_bitidx(zone, pfn);
5318 
5319 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5320 		if (test_bit(bitidx + start_bitidx, bitmap))
5321 			flags |= value;
5322 
5323 	return flags;
5324 }
5325 
5326 /**
5327  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5328  * @page: The page within the block of interest
5329  * @start_bitidx: The first bit of interest
5330  * @end_bitidx: The last bit of interest
5331  * @flags: The flags to set
5332  */
5333 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5334 					int start_bitidx, int end_bitidx)
5335 {
5336 	struct zone *zone;
5337 	unsigned long *bitmap;
5338 	unsigned long pfn, bitidx;
5339 	unsigned long value = 1;
5340 
5341 	zone = page_zone(page);
5342 	pfn = page_to_pfn(page);
5343 	bitmap = get_pageblock_bitmap(zone, pfn);
5344 	bitidx = pfn_to_bitidx(zone, pfn);
5345 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5346 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5347 
5348 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5349 		if (flags & value)
5350 			__set_bit(bitidx + start_bitidx, bitmap);
5351 		else
5352 			__clear_bit(bitidx + start_bitidx, bitmap);
5353 }
5354 
5355 /*
5356  * This is designed as sub function...plz see page_isolation.c also.
5357  * set/clear page block's type to be ISOLATE.
5358  * page allocater never alloc memory from ISOLATE block.
5359  */
5360 
5361 static int
5362 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5363 {
5364 	unsigned long pfn, iter, found;
5365 	/*
5366 	 * For avoiding noise data, lru_add_drain_all() should be called
5367 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5368 	 */
5369 	if (zone_idx(zone) == ZONE_MOVABLE)
5370 		return true;
5371 
5372 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5373 		return true;
5374 
5375 	pfn = page_to_pfn(page);
5376 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5377 		unsigned long check = pfn + iter;
5378 
5379 		if (!pfn_valid_within(check))
5380 			continue;
5381 
5382 		page = pfn_to_page(check);
5383 		if (!page_count(page)) {
5384 			if (PageBuddy(page))
5385 				iter += (1 << page_order(page)) - 1;
5386 			continue;
5387 		}
5388 		if (!PageLRU(page))
5389 			found++;
5390 		/*
5391 		 * If there are RECLAIMABLE pages, we need to check it.
5392 		 * But now, memory offline itself doesn't call shrink_slab()
5393 		 * and it still to be fixed.
5394 		 */
5395 		/*
5396 		 * If the page is not RAM, page_count()should be 0.
5397 		 * we don't need more check. This is an _used_ not-movable page.
5398 		 *
5399 		 * The problematic thing here is PG_reserved pages. PG_reserved
5400 		 * is set to both of a memory hole page and a _used_ kernel
5401 		 * page at boot.
5402 		 */
5403 		if (found > count)
5404 			return false;
5405 	}
5406 	return true;
5407 }
5408 
5409 bool is_pageblock_removable_nolock(struct page *page)
5410 {
5411 	struct zone *zone = page_zone(page);
5412 	return __count_immobile_pages(zone, page, 0);
5413 }
5414 
5415 int set_migratetype_isolate(struct page *page)
5416 {
5417 	struct zone *zone;
5418 	unsigned long flags, pfn;
5419 	struct memory_isolate_notify arg;
5420 	int notifier_ret;
5421 	int ret = -EBUSY;
5422 	int zone_idx;
5423 
5424 	zone = page_zone(page);
5425 	zone_idx = zone_idx(zone);
5426 
5427 	spin_lock_irqsave(&zone->lock, flags);
5428 
5429 	pfn = page_to_pfn(page);
5430 	arg.start_pfn = pfn;
5431 	arg.nr_pages = pageblock_nr_pages;
5432 	arg.pages_found = 0;
5433 
5434 	/*
5435 	 * It may be possible to isolate a pageblock even if the
5436 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5437 	 * notifier chain is used by balloon drivers to return the
5438 	 * number of pages in a range that are held by the balloon
5439 	 * driver to shrink memory. If all the pages are accounted for
5440 	 * by balloons, are free, or on the LRU, isolation can continue.
5441 	 * Later, for example, when memory hotplug notifier runs, these
5442 	 * pages reported as "can be isolated" should be isolated(freed)
5443 	 * by the balloon driver through the memory notifier chain.
5444 	 */
5445 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5446 	notifier_ret = notifier_to_errno(notifier_ret);
5447 	if (notifier_ret)
5448 		goto out;
5449 	/*
5450 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5451 	 * We just check MOVABLE pages.
5452 	 */
5453 	if (__count_immobile_pages(zone, page, arg.pages_found))
5454 		ret = 0;
5455 
5456 	/*
5457 	 * immobile means "not-on-lru" paes. If immobile is larger than
5458 	 * removable-by-driver pages reported by notifier, we'll fail.
5459 	 */
5460 
5461 out:
5462 	if (!ret) {
5463 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5464 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5465 	}
5466 
5467 	spin_unlock_irqrestore(&zone->lock, flags);
5468 	if (!ret)
5469 		drain_all_pages();
5470 	return ret;
5471 }
5472 
5473 void unset_migratetype_isolate(struct page *page)
5474 {
5475 	struct zone *zone;
5476 	unsigned long flags;
5477 	zone = page_zone(page);
5478 	spin_lock_irqsave(&zone->lock, flags);
5479 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5480 		goto out;
5481 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5482 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5483 out:
5484 	spin_unlock_irqrestore(&zone->lock, flags);
5485 }
5486 
5487 #ifdef CONFIG_MEMORY_HOTREMOVE
5488 /*
5489  * All pages in the range must be isolated before calling this.
5490  */
5491 void
5492 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5493 {
5494 	struct page *page;
5495 	struct zone *zone;
5496 	int order, i;
5497 	unsigned long pfn;
5498 	unsigned long flags;
5499 	/* find the first valid pfn */
5500 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5501 		if (pfn_valid(pfn))
5502 			break;
5503 	if (pfn == end_pfn)
5504 		return;
5505 	zone = page_zone(pfn_to_page(pfn));
5506 	spin_lock_irqsave(&zone->lock, flags);
5507 	pfn = start_pfn;
5508 	while (pfn < end_pfn) {
5509 		if (!pfn_valid(pfn)) {
5510 			pfn++;
5511 			continue;
5512 		}
5513 		page = pfn_to_page(pfn);
5514 		BUG_ON(page_count(page));
5515 		BUG_ON(!PageBuddy(page));
5516 		order = page_order(page);
5517 #ifdef CONFIG_DEBUG_VM
5518 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5519 		       pfn, 1 << order, end_pfn);
5520 #endif
5521 		list_del(&page->lru);
5522 		rmv_page_order(page);
5523 		zone->free_area[order].nr_free--;
5524 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5525 				      - (1UL << order));
5526 		for (i = 0; i < (1 << order); i++)
5527 			SetPageReserved((page+i));
5528 		pfn += (1 << order);
5529 	}
5530 	spin_unlock_irqrestore(&zone->lock, flags);
5531 }
5532 #endif
5533 
5534 #ifdef CONFIG_MEMORY_FAILURE
5535 bool is_free_buddy_page(struct page *page)
5536 {
5537 	struct zone *zone = page_zone(page);
5538 	unsigned long pfn = page_to_pfn(page);
5539 	unsigned long flags;
5540 	int order;
5541 
5542 	spin_lock_irqsave(&zone->lock, flags);
5543 	for (order = 0; order < MAX_ORDER; order++) {
5544 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5545 
5546 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5547 			break;
5548 	}
5549 	spin_unlock_irqrestore(&zone->lock, flags);
5550 
5551 	return order < MAX_ORDER;
5552 }
5553 #endif
5554 
5555 static struct trace_print_flags pageflag_names[] = {
5556 	{1UL << PG_locked,		"locked"	},
5557 	{1UL << PG_error,		"error"		},
5558 	{1UL << PG_referenced,		"referenced"	},
5559 	{1UL << PG_uptodate,		"uptodate"	},
5560 	{1UL << PG_dirty,		"dirty"		},
5561 	{1UL << PG_lru,			"lru"		},
5562 	{1UL << PG_active,		"active"	},
5563 	{1UL << PG_slab,		"slab"		},
5564 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5565 	{1UL << PG_arch_1,		"arch_1"	},
5566 	{1UL << PG_reserved,		"reserved"	},
5567 	{1UL << PG_private,		"private"	},
5568 	{1UL << PG_private_2,		"private_2"	},
5569 	{1UL << PG_writeback,		"writeback"	},
5570 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5571 	{1UL << PG_head,		"head"		},
5572 	{1UL << PG_tail,		"tail"		},
5573 #else
5574 	{1UL << PG_compound,		"compound"	},
5575 #endif
5576 	{1UL << PG_swapcache,		"swapcache"	},
5577 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5578 	{1UL << PG_reclaim,		"reclaim"	},
5579 	{1UL << PG_swapbacked,		"swapbacked"	},
5580 	{1UL << PG_unevictable,		"unevictable"	},
5581 #ifdef CONFIG_MMU
5582 	{1UL << PG_mlocked,		"mlocked"	},
5583 #endif
5584 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5585 	{1UL << PG_uncached,		"uncached"	},
5586 #endif
5587 #ifdef CONFIG_MEMORY_FAILURE
5588 	{1UL << PG_hwpoison,		"hwpoison"	},
5589 #endif
5590 	{-1UL,				NULL		},
5591 };
5592 
5593 static void dump_page_flags(unsigned long flags)
5594 {
5595 	const char *delim = "";
5596 	unsigned long mask;
5597 	int i;
5598 
5599 	printk(KERN_ALERT "page flags: %#lx(", flags);
5600 
5601 	/* remove zone id */
5602 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5603 
5604 	for (i = 0; pageflag_names[i].name && flags; i++) {
5605 
5606 		mask = pageflag_names[i].mask;
5607 		if ((flags & mask) != mask)
5608 			continue;
5609 
5610 		flags &= ~mask;
5611 		printk("%s%s", delim, pageflag_names[i].name);
5612 		delim = "|";
5613 	}
5614 
5615 	/* check for left over flags */
5616 	if (flags)
5617 		printk("%s%#lx", delim, flags);
5618 
5619 	printk(")\n");
5620 }
5621 
5622 void dump_page(struct page *page)
5623 {
5624 	printk(KERN_ALERT
5625 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5626 		page, atomic_read(&page->_count), page_mapcount(page),
5627 		page->mapping, page->index);
5628 	dump_page_flags(page->flags);
5629 }
5630