1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/oom.h> 34 #include <linux/notifier.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/mempolicy.h> 43 #include <linux/stop_machine.h> 44 #include <linux/sort.h> 45 #include <linux/pfn.h> 46 #include <linux/backing-dev.h> 47 #include <linux/fault-inject.h> 48 #include <linux/page-isolation.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/debugobjects.h> 51 #include <linux/kmemleak.h> 52 #include <linux/memory.h> 53 #include <linux/compaction.h> 54 #include <trace/events/kmem.h> 55 #include <linux/ftrace_event.h> 56 57 #include <asm/tlbflush.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 62 DEFINE_PER_CPU(int, numa_node); 63 EXPORT_PER_CPU_SYMBOL(numa_node); 64 #endif 65 66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 67 /* 68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 71 * defined in <linux/topology.h>. 72 */ 73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 74 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 75 #endif 76 77 /* 78 * Array of node states. 79 */ 80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 81 [N_POSSIBLE] = NODE_MASK_ALL, 82 [N_ONLINE] = { { [0] = 1UL } }, 83 #ifndef CONFIG_NUMA 84 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 85 #ifdef CONFIG_HIGHMEM 86 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 87 #endif 88 [N_CPU] = { { [0] = 1UL } }, 89 #endif /* NUMA */ 90 }; 91 EXPORT_SYMBOL(node_states); 92 93 unsigned long totalram_pages __read_mostly; 94 unsigned long totalreserve_pages __read_mostly; 95 int percpu_pagelist_fraction; 96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 97 98 #ifdef CONFIG_PM_SLEEP 99 /* 100 * The following functions are used by the suspend/hibernate code to temporarily 101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 102 * while devices are suspended. To avoid races with the suspend/hibernate code, 103 * they should always be called with pm_mutex held (gfp_allowed_mask also should 104 * only be modified with pm_mutex held, unless the suspend/hibernate code is 105 * guaranteed not to run in parallel with that modification). 106 */ 107 108 static gfp_t saved_gfp_mask; 109 110 void pm_restore_gfp_mask(void) 111 { 112 WARN_ON(!mutex_is_locked(&pm_mutex)); 113 if (saved_gfp_mask) { 114 gfp_allowed_mask = saved_gfp_mask; 115 saved_gfp_mask = 0; 116 } 117 } 118 119 void pm_restrict_gfp_mask(void) 120 { 121 WARN_ON(!mutex_is_locked(&pm_mutex)); 122 WARN_ON(saved_gfp_mask); 123 saved_gfp_mask = gfp_allowed_mask; 124 gfp_allowed_mask &= ~GFP_IOFS; 125 } 126 #endif /* CONFIG_PM_SLEEP */ 127 128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 129 int pageblock_order __read_mostly; 130 #endif 131 132 static void __free_pages_ok(struct page *page, unsigned int order); 133 134 /* 135 * results with 256, 32 in the lowmem_reserve sysctl: 136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 137 * 1G machine -> (16M dma, 784M normal, 224M high) 138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 141 * 142 * TBD: should special case ZONE_DMA32 machines here - in those we normally 143 * don't need any ZONE_NORMAL reservation 144 */ 145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 146 #ifdef CONFIG_ZONE_DMA 147 256, 148 #endif 149 #ifdef CONFIG_ZONE_DMA32 150 256, 151 #endif 152 #ifdef CONFIG_HIGHMEM 153 32, 154 #endif 155 32, 156 }; 157 158 EXPORT_SYMBOL(totalram_pages); 159 160 static char * const zone_names[MAX_NR_ZONES] = { 161 #ifdef CONFIG_ZONE_DMA 162 "DMA", 163 #endif 164 #ifdef CONFIG_ZONE_DMA32 165 "DMA32", 166 #endif 167 "Normal", 168 #ifdef CONFIG_HIGHMEM 169 "HighMem", 170 #endif 171 "Movable", 172 }; 173 174 int min_free_kbytes = 1024; 175 176 static unsigned long __meminitdata nr_kernel_pages; 177 static unsigned long __meminitdata nr_all_pages; 178 static unsigned long __meminitdata dma_reserve; 179 180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 181 /* 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 183 * ranges of memory (RAM) that may be registered with add_active_range(). 184 * Ranges passed to add_active_range() will be merged if possible 185 * so the number of times add_active_range() can be called is 186 * related to the number of nodes and the number of holes 187 */ 188 #ifdef CONFIG_MAX_ACTIVE_REGIONS 189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 191 #else 192 #if MAX_NUMNODES >= 32 193 /* If there can be many nodes, allow up to 50 holes per node */ 194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 195 #else 196 /* By default, allow up to 256 distinct regions */ 197 #define MAX_ACTIVE_REGIONS 256 198 #endif 199 #endif 200 201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 202 static int __meminitdata nr_nodemap_entries; 203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __initdata required_kernelcore; 206 static unsigned long __initdata required_movablecore; 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 208 209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 210 int movable_zone; 211 EXPORT_SYMBOL(movable_zone); 212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 213 214 #if MAX_NUMNODES > 1 215 int nr_node_ids __read_mostly = MAX_NUMNODES; 216 int nr_online_nodes __read_mostly = 1; 217 EXPORT_SYMBOL(nr_node_ids); 218 EXPORT_SYMBOL(nr_online_nodes); 219 #endif 220 221 int page_group_by_mobility_disabled __read_mostly; 222 223 static void set_pageblock_migratetype(struct page *page, int migratetype) 224 { 225 226 if (unlikely(page_group_by_mobility_disabled)) 227 migratetype = MIGRATE_UNMOVABLE; 228 229 set_pageblock_flags_group(page, (unsigned long)migratetype, 230 PB_migrate, PB_migrate_end); 231 } 232 233 bool oom_killer_disabled __read_mostly; 234 235 #ifdef CONFIG_DEBUG_VM 236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 237 { 238 int ret = 0; 239 unsigned seq; 240 unsigned long pfn = page_to_pfn(page); 241 242 do { 243 seq = zone_span_seqbegin(zone); 244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 245 ret = 1; 246 else if (pfn < zone->zone_start_pfn) 247 ret = 1; 248 } while (zone_span_seqretry(zone, seq)); 249 250 return ret; 251 } 252 253 static int page_is_consistent(struct zone *zone, struct page *page) 254 { 255 if (!pfn_valid_within(page_to_pfn(page))) 256 return 0; 257 if (zone != page_zone(page)) 258 return 0; 259 260 return 1; 261 } 262 /* 263 * Temporary debugging check for pages not lying within a given zone. 264 */ 265 static int bad_range(struct zone *zone, struct page *page) 266 { 267 if (page_outside_zone_boundaries(zone, page)) 268 return 1; 269 if (!page_is_consistent(zone, page)) 270 return 1; 271 272 return 0; 273 } 274 #else 275 static inline int bad_range(struct zone *zone, struct page *page) 276 { 277 return 0; 278 } 279 #endif 280 281 static void bad_page(struct page *page) 282 { 283 static unsigned long resume; 284 static unsigned long nr_shown; 285 static unsigned long nr_unshown; 286 287 /* Don't complain about poisoned pages */ 288 if (PageHWPoison(page)) { 289 __ClearPageBuddy(page); 290 return; 291 } 292 293 /* 294 * Allow a burst of 60 reports, then keep quiet for that minute; 295 * or allow a steady drip of one report per second. 296 */ 297 if (nr_shown == 60) { 298 if (time_before(jiffies, resume)) { 299 nr_unshown++; 300 goto out; 301 } 302 if (nr_unshown) { 303 printk(KERN_ALERT 304 "BUG: Bad page state: %lu messages suppressed\n", 305 nr_unshown); 306 nr_unshown = 0; 307 } 308 nr_shown = 0; 309 } 310 if (nr_shown++ == 0) 311 resume = jiffies + 60 * HZ; 312 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 314 current->comm, page_to_pfn(page)); 315 dump_page(page); 316 317 dump_stack(); 318 out: 319 /* Leave bad fields for debug, except PageBuddy could make trouble */ 320 __ClearPageBuddy(page); 321 add_taint(TAINT_BAD_PAGE); 322 } 323 324 /* 325 * Higher-order pages are called "compound pages". They are structured thusly: 326 * 327 * The first PAGE_SIZE page is called the "head page". 328 * 329 * The remaining PAGE_SIZE pages are called "tail pages". 330 * 331 * All pages have PG_compound set. All pages have their ->private pointing at 332 * the head page (even the head page has this). 333 * 334 * The first tail page's ->lru.next holds the address of the compound page's 335 * put_page() function. Its ->lru.prev holds the order of allocation. 336 * This usage means that zero-order pages may not be compound. 337 */ 338 339 static void free_compound_page(struct page *page) 340 { 341 __free_pages_ok(page, compound_order(page)); 342 } 343 344 void prep_compound_page(struct page *page, unsigned long order) 345 { 346 int i; 347 int nr_pages = 1 << order; 348 349 set_compound_page_dtor(page, free_compound_page); 350 set_compound_order(page, order); 351 __SetPageHead(page); 352 for (i = 1; i < nr_pages; i++) { 353 struct page *p = page + i; 354 355 __SetPageTail(p); 356 p->first_page = page; 357 } 358 } 359 360 /* update __split_huge_page_refcount if you change this function */ 361 static int destroy_compound_page(struct page *page, unsigned long order) 362 { 363 int i; 364 int nr_pages = 1 << order; 365 int bad = 0; 366 367 if (unlikely(compound_order(page) != order) || 368 unlikely(!PageHead(page))) { 369 bad_page(page); 370 bad++; 371 } 372 373 __ClearPageHead(page); 374 375 for (i = 1; i < nr_pages; i++) { 376 struct page *p = page + i; 377 378 if (unlikely(!PageTail(p) || (p->first_page != page))) { 379 bad_page(page); 380 bad++; 381 } 382 __ClearPageTail(p); 383 } 384 385 return bad; 386 } 387 388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 389 { 390 int i; 391 392 /* 393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 394 * and __GFP_HIGHMEM from hard or soft interrupt context. 395 */ 396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 397 for (i = 0; i < (1 << order); i++) 398 clear_highpage(page + i); 399 } 400 401 static inline void set_page_order(struct page *page, int order) 402 { 403 set_page_private(page, order); 404 __SetPageBuddy(page); 405 } 406 407 static inline void rmv_page_order(struct page *page) 408 { 409 __ClearPageBuddy(page); 410 set_page_private(page, 0); 411 } 412 413 /* 414 * Locate the struct page for both the matching buddy in our 415 * pair (buddy1) and the combined O(n+1) page they form (page). 416 * 417 * 1) Any buddy B1 will have an order O twin B2 which satisfies 418 * the following equation: 419 * B2 = B1 ^ (1 << O) 420 * For example, if the starting buddy (buddy2) is #8 its order 421 * 1 buddy is #10: 422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 423 * 424 * 2) Any buddy B will have an order O+1 parent P which 425 * satisfies the following equation: 426 * P = B & ~(1 << O) 427 * 428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 429 */ 430 static inline unsigned long 431 __find_buddy_index(unsigned long page_idx, unsigned int order) 432 { 433 return page_idx ^ (1 << order); 434 } 435 436 /* 437 * This function checks whether a page is free && is the buddy 438 * we can do coalesce a page and its buddy if 439 * (a) the buddy is not in a hole && 440 * (b) the buddy is in the buddy system && 441 * (c) a page and its buddy have the same order && 442 * (d) a page and its buddy are in the same zone. 443 * 444 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 446 * 447 * For recording page's order, we use page_private(page). 448 */ 449 static inline int page_is_buddy(struct page *page, struct page *buddy, 450 int order) 451 { 452 if (!pfn_valid_within(page_to_pfn(buddy))) 453 return 0; 454 455 if (page_zone_id(page) != page_zone_id(buddy)) 456 return 0; 457 458 if (PageBuddy(buddy) && page_order(buddy) == order) { 459 VM_BUG_ON(page_count(buddy) != 0); 460 return 1; 461 } 462 return 0; 463 } 464 465 /* 466 * Freeing function for a buddy system allocator. 467 * 468 * The concept of a buddy system is to maintain direct-mapped table 469 * (containing bit values) for memory blocks of various "orders". 470 * The bottom level table contains the map for the smallest allocatable 471 * units of memory (here, pages), and each level above it describes 472 * pairs of units from the levels below, hence, "buddies". 473 * At a high level, all that happens here is marking the table entry 474 * at the bottom level available, and propagating the changes upward 475 * as necessary, plus some accounting needed to play nicely with other 476 * parts of the VM system. 477 * At each level, we keep a list of pages, which are heads of continuous 478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 479 * order is recorded in page_private(page) field. 480 * So when we are allocating or freeing one, we can derive the state of the 481 * other. That is, if we allocate a small block, and both were 482 * free, the remainder of the region must be split into blocks. 483 * If a block is freed, and its buddy is also free, then this 484 * triggers coalescing into a block of larger size. 485 * 486 * -- wli 487 */ 488 489 static inline void __free_one_page(struct page *page, 490 struct zone *zone, unsigned int order, 491 int migratetype) 492 { 493 unsigned long page_idx; 494 unsigned long combined_idx; 495 unsigned long uninitialized_var(buddy_idx); 496 struct page *buddy; 497 498 if (unlikely(PageCompound(page))) 499 if (unlikely(destroy_compound_page(page, order))) 500 return; 501 502 VM_BUG_ON(migratetype == -1); 503 504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 505 506 VM_BUG_ON(page_idx & ((1 << order) - 1)); 507 VM_BUG_ON(bad_range(zone, page)); 508 509 while (order < MAX_ORDER-1) { 510 buddy_idx = __find_buddy_index(page_idx, order); 511 buddy = page + (buddy_idx - page_idx); 512 if (!page_is_buddy(page, buddy, order)) 513 break; 514 515 /* Our buddy is free, merge with it and move up one order. */ 516 list_del(&buddy->lru); 517 zone->free_area[order].nr_free--; 518 rmv_page_order(buddy); 519 combined_idx = buddy_idx & page_idx; 520 page = page + (combined_idx - page_idx); 521 page_idx = combined_idx; 522 order++; 523 } 524 set_page_order(page, order); 525 526 /* 527 * If this is not the largest possible page, check if the buddy 528 * of the next-highest order is free. If it is, it's possible 529 * that pages are being freed that will coalesce soon. In case, 530 * that is happening, add the free page to the tail of the list 531 * so it's less likely to be used soon and more likely to be merged 532 * as a higher order page 533 */ 534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 535 struct page *higher_page, *higher_buddy; 536 combined_idx = buddy_idx & page_idx; 537 higher_page = page + (combined_idx - page_idx); 538 buddy_idx = __find_buddy_index(combined_idx, order + 1); 539 higher_buddy = page + (buddy_idx - combined_idx); 540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 541 list_add_tail(&page->lru, 542 &zone->free_area[order].free_list[migratetype]); 543 goto out; 544 } 545 } 546 547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 548 out: 549 zone->free_area[order].nr_free++; 550 } 551 552 /* 553 * free_page_mlock() -- clean up attempts to free and mlocked() page. 554 * Page should not be on lru, so no need to fix that up. 555 * free_pages_check() will verify... 556 */ 557 static inline void free_page_mlock(struct page *page) 558 { 559 __dec_zone_page_state(page, NR_MLOCK); 560 __count_vm_event(UNEVICTABLE_MLOCKFREED); 561 } 562 563 static inline int free_pages_check(struct page *page) 564 { 565 if (unlikely(page_mapcount(page) | 566 (page->mapping != NULL) | 567 (atomic_read(&page->_count) != 0) | 568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 569 bad_page(page); 570 return 1; 571 } 572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 574 return 0; 575 } 576 577 /* 578 * Frees a number of pages from the PCP lists 579 * Assumes all pages on list are in same zone, and of same order. 580 * count is the number of pages to free. 581 * 582 * If the zone was previously in an "all pages pinned" state then look to 583 * see if this freeing clears that state. 584 * 585 * And clear the zone's pages_scanned counter, to hold off the "all pages are 586 * pinned" detection logic. 587 */ 588 static void free_pcppages_bulk(struct zone *zone, int count, 589 struct per_cpu_pages *pcp) 590 { 591 int migratetype = 0; 592 int batch_free = 0; 593 int to_free = count; 594 595 spin_lock(&zone->lock); 596 zone->all_unreclaimable = 0; 597 zone->pages_scanned = 0; 598 599 while (to_free) { 600 struct page *page; 601 struct list_head *list; 602 603 /* 604 * Remove pages from lists in a round-robin fashion. A 605 * batch_free count is maintained that is incremented when an 606 * empty list is encountered. This is so more pages are freed 607 * off fuller lists instead of spinning excessively around empty 608 * lists 609 */ 610 do { 611 batch_free++; 612 if (++migratetype == MIGRATE_PCPTYPES) 613 migratetype = 0; 614 list = &pcp->lists[migratetype]; 615 } while (list_empty(list)); 616 617 do { 618 page = list_entry(list->prev, struct page, lru); 619 /* must delete as __free_one_page list manipulates */ 620 list_del(&page->lru); 621 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 622 __free_one_page(page, zone, 0, page_private(page)); 623 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 624 } while (--to_free && --batch_free && !list_empty(list)); 625 } 626 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 627 spin_unlock(&zone->lock); 628 } 629 630 static void free_one_page(struct zone *zone, struct page *page, int order, 631 int migratetype) 632 { 633 spin_lock(&zone->lock); 634 zone->all_unreclaimable = 0; 635 zone->pages_scanned = 0; 636 637 __free_one_page(page, zone, order, migratetype); 638 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 639 spin_unlock(&zone->lock); 640 } 641 642 static bool free_pages_prepare(struct page *page, unsigned int order) 643 { 644 int i; 645 int bad = 0; 646 647 trace_mm_page_free_direct(page, order); 648 kmemcheck_free_shadow(page, order); 649 650 if (PageAnon(page)) 651 page->mapping = NULL; 652 for (i = 0; i < (1 << order); i++) 653 bad += free_pages_check(page + i); 654 if (bad) 655 return false; 656 657 if (!PageHighMem(page)) { 658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 659 debug_check_no_obj_freed(page_address(page), 660 PAGE_SIZE << order); 661 } 662 arch_free_page(page, order); 663 kernel_map_pages(page, 1 << order, 0); 664 665 return true; 666 } 667 668 static void __free_pages_ok(struct page *page, unsigned int order) 669 { 670 unsigned long flags; 671 int wasMlocked = __TestClearPageMlocked(page); 672 673 if (!free_pages_prepare(page, order)) 674 return; 675 676 local_irq_save(flags); 677 if (unlikely(wasMlocked)) 678 free_page_mlock(page); 679 __count_vm_events(PGFREE, 1 << order); 680 free_one_page(page_zone(page), page, order, 681 get_pageblock_migratetype(page)); 682 local_irq_restore(flags); 683 } 684 685 /* 686 * permit the bootmem allocator to evade page validation on high-order frees 687 */ 688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 689 { 690 if (order == 0) { 691 __ClearPageReserved(page); 692 set_page_count(page, 0); 693 set_page_refcounted(page); 694 __free_page(page); 695 } else { 696 int loop; 697 698 prefetchw(page); 699 for (loop = 0; loop < BITS_PER_LONG; loop++) { 700 struct page *p = &page[loop]; 701 702 if (loop + 1 < BITS_PER_LONG) 703 prefetchw(p + 1); 704 __ClearPageReserved(p); 705 set_page_count(p, 0); 706 } 707 708 set_page_refcounted(page); 709 __free_pages(page, order); 710 } 711 } 712 713 714 /* 715 * The order of subdivision here is critical for the IO subsystem. 716 * Please do not alter this order without good reasons and regression 717 * testing. Specifically, as large blocks of memory are subdivided, 718 * the order in which smaller blocks are delivered depends on the order 719 * they're subdivided in this function. This is the primary factor 720 * influencing the order in which pages are delivered to the IO 721 * subsystem according to empirical testing, and this is also justified 722 * by considering the behavior of a buddy system containing a single 723 * large block of memory acted on by a series of small allocations. 724 * This behavior is a critical factor in sglist merging's success. 725 * 726 * -- wli 727 */ 728 static inline void expand(struct zone *zone, struct page *page, 729 int low, int high, struct free_area *area, 730 int migratetype) 731 { 732 unsigned long size = 1 << high; 733 734 while (high > low) { 735 area--; 736 high--; 737 size >>= 1; 738 VM_BUG_ON(bad_range(zone, &page[size])); 739 list_add(&page[size].lru, &area->free_list[migratetype]); 740 area->nr_free++; 741 set_page_order(&page[size], high); 742 } 743 } 744 745 /* 746 * This page is about to be returned from the page allocator 747 */ 748 static inline int check_new_page(struct page *page) 749 { 750 if (unlikely(page_mapcount(page) | 751 (page->mapping != NULL) | 752 (atomic_read(&page->_count) != 0) | 753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 754 bad_page(page); 755 return 1; 756 } 757 return 0; 758 } 759 760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 761 { 762 int i; 763 764 for (i = 0; i < (1 << order); i++) { 765 struct page *p = page + i; 766 if (unlikely(check_new_page(p))) 767 return 1; 768 } 769 770 set_page_private(page, 0); 771 set_page_refcounted(page); 772 773 arch_alloc_page(page, order); 774 kernel_map_pages(page, 1 << order, 1); 775 776 if (gfp_flags & __GFP_ZERO) 777 prep_zero_page(page, order, gfp_flags); 778 779 if (order && (gfp_flags & __GFP_COMP)) 780 prep_compound_page(page, order); 781 782 return 0; 783 } 784 785 /* 786 * Go through the free lists for the given migratetype and remove 787 * the smallest available page from the freelists 788 */ 789 static inline 790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 791 int migratetype) 792 { 793 unsigned int current_order; 794 struct free_area * area; 795 struct page *page; 796 797 /* Find a page of the appropriate size in the preferred list */ 798 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 799 area = &(zone->free_area[current_order]); 800 if (list_empty(&area->free_list[migratetype])) 801 continue; 802 803 page = list_entry(area->free_list[migratetype].next, 804 struct page, lru); 805 list_del(&page->lru); 806 rmv_page_order(page); 807 area->nr_free--; 808 expand(zone, page, order, current_order, area, migratetype); 809 return page; 810 } 811 812 return NULL; 813 } 814 815 816 /* 817 * This array describes the order lists are fallen back to when 818 * the free lists for the desirable migrate type are depleted 819 */ 820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 825 }; 826 827 /* 828 * Move the free pages in a range to the free lists of the requested type. 829 * Note that start_page and end_pages are not aligned on a pageblock 830 * boundary. If alignment is required, use move_freepages_block() 831 */ 832 static int move_freepages(struct zone *zone, 833 struct page *start_page, struct page *end_page, 834 int migratetype) 835 { 836 struct page *page; 837 unsigned long order; 838 int pages_moved = 0; 839 840 #ifndef CONFIG_HOLES_IN_ZONE 841 /* 842 * page_zone is not safe to call in this context when 843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 844 * anyway as we check zone boundaries in move_freepages_block(). 845 * Remove at a later date when no bug reports exist related to 846 * grouping pages by mobility 847 */ 848 BUG_ON(page_zone(start_page) != page_zone(end_page)); 849 #endif 850 851 for (page = start_page; page <= end_page;) { 852 /* Make sure we are not inadvertently changing nodes */ 853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 854 855 if (!pfn_valid_within(page_to_pfn(page))) { 856 page++; 857 continue; 858 } 859 860 if (!PageBuddy(page)) { 861 page++; 862 continue; 863 } 864 865 order = page_order(page); 866 list_del(&page->lru); 867 list_add(&page->lru, 868 &zone->free_area[order].free_list[migratetype]); 869 page += 1 << order; 870 pages_moved += 1 << order; 871 } 872 873 return pages_moved; 874 } 875 876 static int move_freepages_block(struct zone *zone, struct page *page, 877 int migratetype) 878 { 879 unsigned long start_pfn, end_pfn; 880 struct page *start_page, *end_page; 881 882 start_pfn = page_to_pfn(page); 883 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 884 start_page = pfn_to_page(start_pfn); 885 end_page = start_page + pageblock_nr_pages - 1; 886 end_pfn = start_pfn + pageblock_nr_pages - 1; 887 888 /* Do not cross zone boundaries */ 889 if (start_pfn < zone->zone_start_pfn) 890 start_page = page; 891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 892 return 0; 893 894 return move_freepages(zone, start_page, end_page, migratetype); 895 } 896 897 static void change_pageblock_range(struct page *pageblock_page, 898 int start_order, int migratetype) 899 { 900 int nr_pageblocks = 1 << (start_order - pageblock_order); 901 902 while (nr_pageblocks--) { 903 set_pageblock_migratetype(pageblock_page, migratetype); 904 pageblock_page += pageblock_nr_pages; 905 } 906 } 907 908 /* Remove an element from the buddy allocator from the fallback list */ 909 static inline struct page * 910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 911 { 912 struct free_area * area; 913 int current_order; 914 struct page *page; 915 int migratetype, i; 916 917 /* Find the largest possible block of pages in the other list */ 918 for (current_order = MAX_ORDER-1; current_order >= order; 919 --current_order) { 920 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 921 migratetype = fallbacks[start_migratetype][i]; 922 923 /* MIGRATE_RESERVE handled later if necessary */ 924 if (migratetype == MIGRATE_RESERVE) 925 continue; 926 927 area = &(zone->free_area[current_order]); 928 if (list_empty(&area->free_list[migratetype])) 929 continue; 930 931 page = list_entry(area->free_list[migratetype].next, 932 struct page, lru); 933 area->nr_free--; 934 935 /* 936 * If breaking a large block of pages, move all free 937 * pages to the preferred allocation list. If falling 938 * back for a reclaimable kernel allocation, be more 939 * agressive about taking ownership of free pages 940 */ 941 if (unlikely(current_order >= (pageblock_order >> 1)) || 942 start_migratetype == MIGRATE_RECLAIMABLE || 943 page_group_by_mobility_disabled) { 944 unsigned long pages; 945 pages = move_freepages_block(zone, page, 946 start_migratetype); 947 948 /* Claim the whole block if over half of it is free */ 949 if (pages >= (1 << (pageblock_order-1)) || 950 page_group_by_mobility_disabled) 951 set_pageblock_migratetype(page, 952 start_migratetype); 953 954 migratetype = start_migratetype; 955 } 956 957 /* Remove the page from the freelists */ 958 list_del(&page->lru); 959 rmv_page_order(page); 960 961 /* Take ownership for orders >= pageblock_order */ 962 if (current_order >= pageblock_order) 963 change_pageblock_range(page, current_order, 964 start_migratetype); 965 966 expand(zone, page, order, current_order, area, migratetype); 967 968 trace_mm_page_alloc_extfrag(page, order, current_order, 969 start_migratetype, migratetype); 970 971 return page; 972 } 973 } 974 975 return NULL; 976 } 977 978 /* 979 * Do the hard work of removing an element from the buddy allocator. 980 * Call me with the zone->lock already held. 981 */ 982 static struct page *__rmqueue(struct zone *zone, unsigned int order, 983 int migratetype) 984 { 985 struct page *page; 986 987 retry_reserve: 988 page = __rmqueue_smallest(zone, order, migratetype); 989 990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 991 page = __rmqueue_fallback(zone, order, migratetype); 992 993 /* 994 * Use MIGRATE_RESERVE rather than fail an allocation. goto 995 * is used because __rmqueue_smallest is an inline function 996 * and we want just one call site 997 */ 998 if (!page) { 999 migratetype = MIGRATE_RESERVE; 1000 goto retry_reserve; 1001 } 1002 } 1003 1004 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1005 return page; 1006 } 1007 1008 /* 1009 * Obtain a specified number of elements from the buddy allocator, all under 1010 * a single hold of the lock, for efficiency. Add them to the supplied list. 1011 * Returns the number of new pages which were placed at *list. 1012 */ 1013 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1014 unsigned long count, struct list_head *list, 1015 int migratetype, int cold) 1016 { 1017 int i; 1018 1019 spin_lock(&zone->lock); 1020 for (i = 0; i < count; ++i) { 1021 struct page *page = __rmqueue(zone, order, migratetype); 1022 if (unlikely(page == NULL)) 1023 break; 1024 1025 /* 1026 * Split buddy pages returned by expand() are received here 1027 * in physical page order. The page is added to the callers and 1028 * list and the list head then moves forward. From the callers 1029 * perspective, the linked list is ordered by page number in 1030 * some conditions. This is useful for IO devices that can 1031 * merge IO requests if the physical pages are ordered 1032 * properly. 1033 */ 1034 if (likely(cold == 0)) 1035 list_add(&page->lru, list); 1036 else 1037 list_add_tail(&page->lru, list); 1038 set_page_private(page, migratetype); 1039 list = &page->lru; 1040 } 1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1042 spin_unlock(&zone->lock); 1043 return i; 1044 } 1045 1046 #ifdef CONFIG_NUMA 1047 /* 1048 * Called from the vmstat counter updater to drain pagesets of this 1049 * currently executing processor on remote nodes after they have 1050 * expired. 1051 * 1052 * Note that this function must be called with the thread pinned to 1053 * a single processor. 1054 */ 1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1056 { 1057 unsigned long flags; 1058 int to_drain; 1059 1060 local_irq_save(flags); 1061 if (pcp->count >= pcp->batch) 1062 to_drain = pcp->batch; 1063 else 1064 to_drain = pcp->count; 1065 free_pcppages_bulk(zone, to_drain, pcp); 1066 pcp->count -= to_drain; 1067 local_irq_restore(flags); 1068 } 1069 #endif 1070 1071 /* 1072 * Drain pages of the indicated processor. 1073 * 1074 * The processor must either be the current processor and the 1075 * thread pinned to the current processor or a processor that 1076 * is not online. 1077 */ 1078 static void drain_pages(unsigned int cpu) 1079 { 1080 unsigned long flags; 1081 struct zone *zone; 1082 1083 for_each_populated_zone(zone) { 1084 struct per_cpu_pageset *pset; 1085 struct per_cpu_pages *pcp; 1086 1087 local_irq_save(flags); 1088 pset = per_cpu_ptr(zone->pageset, cpu); 1089 1090 pcp = &pset->pcp; 1091 if (pcp->count) { 1092 free_pcppages_bulk(zone, pcp->count, pcp); 1093 pcp->count = 0; 1094 } 1095 local_irq_restore(flags); 1096 } 1097 } 1098 1099 /* 1100 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1101 */ 1102 void drain_local_pages(void *arg) 1103 { 1104 drain_pages(smp_processor_id()); 1105 } 1106 1107 /* 1108 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1109 */ 1110 void drain_all_pages(void) 1111 { 1112 on_each_cpu(drain_local_pages, NULL, 1); 1113 } 1114 1115 #ifdef CONFIG_HIBERNATION 1116 1117 void mark_free_pages(struct zone *zone) 1118 { 1119 unsigned long pfn, max_zone_pfn; 1120 unsigned long flags; 1121 int order, t; 1122 struct list_head *curr; 1123 1124 if (!zone->spanned_pages) 1125 return; 1126 1127 spin_lock_irqsave(&zone->lock, flags); 1128 1129 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1130 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1131 if (pfn_valid(pfn)) { 1132 struct page *page = pfn_to_page(pfn); 1133 1134 if (!swsusp_page_is_forbidden(page)) 1135 swsusp_unset_page_free(page); 1136 } 1137 1138 for_each_migratetype_order(order, t) { 1139 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1140 unsigned long i; 1141 1142 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1143 for (i = 0; i < (1UL << order); i++) 1144 swsusp_set_page_free(pfn_to_page(pfn + i)); 1145 } 1146 } 1147 spin_unlock_irqrestore(&zone->lock, flags); 1148 } 1149 #endif /* CONFIG_PM */ 1150 1151 /* 1152 * Free a 0-order page 1153 * cold == 1 ? free a cold page : free a hot page 1154 */ 1155 void free_hot_cold_page(struct page *page, int cold) 1156 { 1157 struct zone *zone = page_zone(page); 1158 struct per_cpu_pages *pcp; 1159 unsigned long flags; 1160 int migratetype; 1161 int wasMlocked = __TestClearPageMlocked(page); 1162 1163 if (!free_pages_prepare(page, 0)) 1164 return; 1165 1166 migratetype = get_pageblock_migratetype(page); 1167 set_page_private(page, migratetype); 1168 local_irq_save(flags); 1169 if (unlikely(wasMlocked)) 1170 free_page_mlock(page); 1171 __count_vm_event(PGFREE); 1172 1173 /* 1174 * We only track unmovable, reclaimable and movable on pcp lists. 1175 * Free ISOLATE pages back to the allocator because they are being 1176 * offlined but treat RESERVE as movable pages so we can get those 1177 * areas back if necessary. Otherwise, we may have to free 1178 * excessively into the page allocator 1179 */ 1180 if (migratetype >= MIGRATE_PCPTYPES) { 1181 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1182 free_one_page(zone, page, 0, migratetype); 1183 goto out; 1184 } 1185 migratetype = MIGRATE_MOVABLE; 1186 } 1187 1188 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1189 if (cold) 1190 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1191 else 1192 list_add(&page->lru, &pcp->lists[migratetype]); 1193 pcp->count++; 1194 if (pcp->count >= pcp->high) { 1195 free_pcppages_bulk(zone, pcp->batch, pcp); 1196 pcp->count -= pcp->batch; 1197 } 1198 1199 out: 1200 local_irq_restore(flags); 1201 } 1202 1203 /* 1204 * split_page takes a non-compound higher-order page, and splits it into 1205 * n (1<<order) sub-pages: page[0..n] 1206 * Each sub-page must be freed individually. 1207 * 1208 * Note: this is probably too low level an operation for use in drivers. 1209 * Please consult with lkml before using this in your driver. 1210 */ 1211 void split_page(struct page *page, unsigned int order) 1212 { 1213 int i; 1214 1215 VM_BUG_ON(PageCompound(page)); 1216 VM_BUG_ON(!page_count(page)); 1217 1218 #ifdef CONFIG_KMEMCHECK 1219 /* 1220 * Split shadow pages too, because free(page[0]) would 1221 * otherwise free the whole shadow. 1222 */ 1223 if (kmemcheck_page_is_tracked(page)) 1224 split_page(virt_to_page(page[0].shadow), order); 1225 #endif 1226 1227 for (i = 1; i < (1 << order); i++) 1228 set_page_refcounted(page + i); 1229 } 1230 1231 /* 1232 * Similar to split_page except the page is already free. As this is only 1233 * being used for migration, the migratetype of the block also changes. 1234 * As this is called with interrupts disabled, the caller is responsible 1235 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1236 * are enabled. 1237 * 1238 * Note: this is probably too low level an operation for use in drivers. 1239 * Please consult with lkml before using this in your driver. 1240 */ 1241 int split_free_page(struct page *page) 1242 { 1243 unsigned int order; 1244 unsigned long watermark; 1245 struct zone *zone; 1246 1247 BUG_ON(!PageBuddy(page)); 1248 1249 zone = page_zone(page); 1250 order = page_order(page); 1251 1252 /* Obey watermarks as if the page was being allocated */ 1253 watermark = low_wmark_pages(zone) + (1 << order); 1254 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1255 return 0; 1256 1257 /* Remove page from free list */ 1258 list_del(&page->lru); 1259 zone->free_area[order].nr_free--; 1260 rmv_page_order(page); 1261 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1262 1263 /* Split into individual pages */ 1264 set_page_refcounted(page); 1265 split_page(page, order); 1266 1267 if (order >= pageblock_order - 1) { 1268 struct page *endpage = page + (1 << order) - 1; 1269 for (; page < endpage; page += pageblock_nr_pages) 1270 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1271 } 1272 1273 return 1 << order; 1274 } 1275 1276 /* 1277 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1278 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1279 * or two. 1280 */ 1281 static inline 1282 struct page *buffered_rmqueue(struct zone *preferred_zone, 1283 struct zone *zone, int order, gfp_t gfp_flags, 1284 int migratetype) 1285 { 1286 unsigned long flags; 1287 struct page *page; 1288 int cold = !!(gfp_flags & __GFP_COLD); 1289 1290 again: 1291 if (likely(order == 0)) { 1292 struct per_cpu_pages *pcp; 1293 struct list_head *list; 1294 1295 local_irq_save(flags); 1296 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1297 list = &pcp->lists[migratetype]; 1298 if (list_empty(list)) { 1299 pcp->count += rmqueue_bulk(zone, 0, 1300 pcp->batch, list, 1301 migratetype, cold); 1302 if (unlikely(list_empty(list))) 1303 goto failed; 1304 } 1305 1306 if (cold) 1307 page = list_entry(list->prev, struct page, lru); 1308 else 1309 page = list_entry(list->next, struct page, lru); 1310 1311 list_del(&page->lru); 1312 pcp->count--; 1313 } else { 1314 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1315 /* 1316 * __GFP_NOFAIL is not to be used in new code. 1317 * 1318 * All __GFP_NOFAIL callers should be fixed so that they 1319 * properly detect and handle allocation failures. 1320 * 1321 * We most definitely don't want callers attempting to 1322 * allocate greater than order-1 page units with 1323 * __GFP_NOFAIL. 1324 */ 1325 WARN_ON_ONCE(order > 1); 1326 } 1327 spin_lock_irqsave(&zone->lock, flags); 1328 page = __rmqueue(zone, order, migratetype); 1329 spin_unlock(&zone->lock); 1330 if (!page) 1331 goto failed; 1332 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1333 } 1334 1335 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1336 zone_statistics(preferred_zone, zone); 1337 local_irq_restore(flags); 1338 1339 VM_BUG_ON(bad_range(zone, page)); 1340 if (prep_new_page(page, order, gfp_flags)) 1341 goto again; 1342 return page; 1343 1344 failed: 1345 local_irq_restore(flags); 1346 return NULL; 1347 } 1348 1349 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1350 #define ALLOC_WMARK_MIN WMARK_MIN 1351 #define ALLOC_WMARK_LOW WMARK_LOW 1352 #define ALLOC_WMARK_HIGH WMARK_HIGH 1353 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1354 1355 /* Mask to get the watermark bits */ 1356 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1357 1358 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1359 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1360 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1361 1362 #ifdef CONFIG_FAIL_PAGE_ALLOC 1363 1364 static struct fail_page_alloc_attr { 1365 struct fault_attr attr; 1366 1367 u32 ignore_gfp_highmem; 1368 u32 ignore_gfp_wait; 1369 u32 min_order; 1370 1371 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1372 1373 struct dentry *ignore_gfp_highmem_file; 1374 struct dentry *ignore_gfp_wait_file; 1375 struct dentry *min_order_file; 1376 1377 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1378 1379 } fail_page_alloc = { 1380 .attr = FAULT_ATTR_INITIALIZER, 1381 .ignore_gfp_wait = 1, 1382 .ignore_gfp_highmem = 1, 1383 .min_order = 1, 1384 }; 1385 1386 static int __init setup_fail_page_alloc(char *str) 1387 { 1388 return setup_fault_attr(&fail_page_alloc.attr, str); 1389 } 1390 __setup("fail_page_alloc=", setup_fail_page_alloc); 1391 1392 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1393 { 1394 if (order < fail_page_alloc.min_order) 1395 return 0; 1396 if (gfp_mask & __GFP_NOFAIL) 1397 return 0; 1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1399 return 0; 1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1401 return 0; 1402 1403 return should_fail(&fail_page_alloc.attr, 1 << order); 1404 } 1405 1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1407 1408 static int __init fail_page_alloc_debugfs(void) 1409 { 1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1411 struct dentry *dir; 1412 int err; 1413 1414 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1415 "fail_page_alloc"); 1416 if (err) 1417 return err; 1418 dir = fail_page_alloc.attr.dentries.dir; 1419 1420 fail_page_alloc.ignore_gfp_wait_file = 1421 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1422 &fail_page_alloc.ignore_gfp_wait); 1423 1424 fail_page_alloc.ignore_gfp_highmem_file = 1425 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1426 &fail_page_alloc.ignore_gfp_highmem); 1427 fail_page_alloc.min_order_file = 1428 debugfs_create_u32("min-order", mode, dir, 1429 &fail_page_alloc.min_order); 1430 1431 if (!fail_page_alloc.ignore_gfp_wait_file || 1432 !fail_page_alloc.ignore_gfp_highmem_file || 1433 !fail_page_alloc.min_order_file) { 1434 err = -ENOMEM; 1435 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1436 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1437 debugfs_remove(fail_page_alloc.min_order_file); 1438 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1439 } 1440 1441 return err; 1442 } 1443 1444 late_initcall(fail_page_alloc_debugfs); 1445 1446 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1447 1448 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1449 1450 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1451 { 1452 return 0; 1453 } 1454 1455 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1456 1457 /* 1458 * Return true if free pages are above 'mark'. This takes into account the order 1459 * of the allocation. 1460 */ 1461 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1462 int classzone_idx, int alloc_flags, long free_pages) 1463 { 1464 /* free_pages my go negative - that's OK */ 1465 long min = mark; 1466 int o; 1467 1468 free_pages -= (1 << order) + 1; 1469 if (alloc_flags & ALLOC_HIGH) 1470 min -= min / 2; 1471 if (alloc_flags & ALLOC_HARDER) 1472 min -= min / 4; 1473 1474 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1475 return false; 1476 for (o = 0; o < order; o++) { 1477 /* At the next order, this order's pages become unavailable */ 1478 free_pages -= z->free_area[o].nr_free << o; 1479 1480 /* Require fewer higher order pages to be free */ 1481 min >>= 1; 1482 1483 if (free_pages <= min) 1484 return false; 1485 } 1486 return true; 1487 } 1488 1489 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1490 int classzone_idx, int alloc_flags) 1491 { 1492 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1493 zone_page_state(z, NR_FREE_PAGES)); 1494 } 1495 1496 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1497 int classzone_idx, int alloc_flags) 1498 { 1499 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1500 1501 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1502 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1503 1504 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1505 free_pages); 1506 } 1507 1508 #ifdef CONFIG_NUMA 1509 /* 1510 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1511 * skip over zones that are not allowed by the cpuset, or that have 1512 * been recently (in last second) found to be nearly full. See further 1513 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1514 * that have to skip over a lot of full or unallowed zones. 1515 * 1516 * If the zonelist cache is present in the passed in zonelist, then 1517 * returns a pointer to the allowed node mask (either the current 1518 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1519 * 1520 * If the zonelist cache is not available for this zonelist, does 1521 * nothing and returns NULL. 1522 * 1523 * If the fullzones BITMAP in the zonelist cache is stale (more than 1524 * a second since last zap'd) then we zap it out (clear its bits.) 1525 * 1526 * We hold off even calling zlc_setup, until after we've checked the 1527 * first zone in the zonelist, on the theory that most allocations will 1528 * be satisfied from that first zone, so best to examine that zone as 1529 * quickly as we can. 1530 */ 1531 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1532 { 1533 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1534 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1535 1536 zlc = zonelist->zlcache_ptr; 1537 if (!zlc) 1538 return NULL; 1539 1540 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1541 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1542 zlc->last_full_zap = jiffies; 1543 } 1544 1545 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1546 &cpuset_current_mems_allowed : 1547 &node_states[N_HIGH_MEMORY]; 1548 return allowednodes; 1549 } 1550 1551 /* 1552 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1553 * if it is worth looking at further for free memory: 1554 * 1) Check that the zone isn't thought to be full (doesn't have its 1555 * bit set in the zonelist_cache fullzones BITMAP). 1556 * 2) Check that the zones node (obtained from the zonelist_cache 1557 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1558 * Return true (non-zero) if zone is worth looking at further, or 1559 * else return false (zero) if it is not. 1560 * 1561 * This check -ignores- the distinction between various watermarks, 1562 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1563 * found to be full for any variation of these watermarks, it will 1564 * be considered full for up to one second by all requests, unless 1565 * we are so low on memory on all allowed nodes that we are forced 1566 * into the second scan of the zonelist. 1567 * 1568 * In the second scan we ignore this zonelist cache and exactly 1569 * apply the watermarks to all zones, even it is slower to do so. 1570 * We are low on memory in the second scan, and should leave no stone 1571 * unturned looking for a free page. 1572 */ 1573 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1574 nodemask_t *allowednodes) 1575 { 1576 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1577 int i; /* index of *z in zonelist zones */ 1578 int n; /* node that zone *z is on */ 1579 1580 zlc = zonelist->zlcache_ptr; 1581 if (!zlc) 1582 return 1; 1583 1584 i = z - zonelist->_zonerefs; 1585 n = zlc->z_to_n[i]; 1586 1587 /* This zone is worth trying if it is allowed but not full */ 1588 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1589 } 1590 1591 /* 1592 * Given 'z' scanning a zonelist, set the corresponding bit in 1593 * zlc->fullzones, so that subsequent attempts to allocate a page 1594 * from that zone don't waste time re-examining it. 1595 */ 1596 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1597 { 1598 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1599 int i; /* index of *z in zonelist zones */ 1600 1601 zlc = zonelist->zlcache_ptr; 1602 if (!zlc) 1603 return; 1604 1605 i = z - zonelist->_zonerefs; 1606 1607 set_bit(i, zlc->fullzones); 1608 } 1609 1610 #else /* CONFIG_NUMA */ 1611 1612 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1613 { 1614 return NULL; 1615 } 1616 1617 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1618 nodemask_t *allowednodes) 1619 { 1620 return 1; 1621 } 1622 1623 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1624 { 1625 } 1626 #endif /* CONFIG_NUMA */ 1627 1628 /* 1629 * get_page_from_freelist goes through the zonelist trying to allocate 1630 * a page. 1631 */ 1632 static struct page * 1633 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1634 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1635 struct zone *preferred_zone, int migratetype) 1636 { 1637 struct zoneref *z; 1638 struct page *page = NULL; 1639 int classzone_idx; 1640 struct zone *zone; 1641 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1642 int zlc_active = 0; /* set if using zonelist_cache */ 1643 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1644 1645 classzone_idx = zone_idx(preferred_zone); 1646 zonelist_scan: 1647 /* 1648 * Scan zonelist, looking for a zone with enough free. 1649 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1650 */ 1651 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1652 high_zoneidx, nodemask) { 1653 if (NUMA_BUILD && zlc_active && 1654 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1655 continue; 1656 if ((alloc_flags & ALLOC_CPUSET) && 1657 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1658 goto try_next_zone; 1659 1660 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1661 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1662 unsigned long mark; 1663 int ret; 1664 1665 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1666 if (zone_watermark_ok(zone, order, mark, 1667 classzone_idx, alloc_flags)) 1668 goto try_this_zone; 1669 1670 if (zone_reclaim_mode == 0) 1671 goto this_zone_full; 1672 1673 ret = zone_reclaim(zone, gfp_mask, order); 1674 switch (ret) { 1675 case ZONE_RECLAIM_NOSCAN: 1676 /* did not scan */ 1677 goto try_next_zone; 1678 case ZONE_RECLAIM_FULL: 1679 /* scanned but unreclaimable */ 1680 goto this_zone_full; 1681 default: 1682 /* did we reclaim enough */ 1683 if (!zone_watermark_ok(zone, order, mark, 1684 classzone_idx, alloc_flags)) 1685 goto this_zone_full; 1686 } 1687 } 1688 1689 try_this_zone: 1690 page = buffered_rmqueue(preferred_zone, zone, order, 1691 gfp_mask, migratetype); 1692 if (page) 1693 break; 1694 this_zone_full: 1695 if (NUMA_BUILD) 1696 zlc_mark_zone_full(zonelist, z); 1697 try_next_zone: 1698 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1699 /* 1700 * we do zlc_setup after the first zone is tried but only 1701 * if there are multiple nodes make it worthwhile 1702 */ 1703 allowednodes = zlc_setup(zonelist, alloc_flags); 1704 zlc_active = 1; 1705 did_zlc_setup = 1; 1706 } 1707 } 1708 1709 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1710 /* Disable zlc cache for second zonelist scan */ 1711 zlc_active = 0; 1712 goto zonelist_scan; 1713 } 1714 return page; 1715 } 1716 1717 static inline int 1718 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1719 unsigned long pages_reclaimed) 1720 { 1721 /* Do not loop if specifically requested */ 1722 if (gfp_mask & __GFP_NORETRY) 1723 return 0; 1724 1725 /* 1726 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1727 * means __GFP_NOFAIL, but that may not be true in other 1728 * implementations. 1729 */ 1730 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1731 return 1; 1732 1733 /* 1734 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1735 * specified, then we retry until we no longer reclaim any pages 1736 * (above), or we've reclaimed an order of pages at least as 1737 * large as the allocation's order. In both cases, if the 1738 * allocation still fails, we stop retrying. 1739 */ 1740 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1741 return 1; 1742 1743 /* 1744 * Don't let big-order allocations loop unless the caller 1745 * explicitly requests that. 1746 */ 1747 if (gfp_mask & __GFP_NOFAIL) 1748 return 1; 1749 1750 return 0; 1751 } 1752 1753 static inline struct page * 1754 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1755 struct zonelist *zonelist, enum zone_type high_zoneidx, 1756 nodemask_t *nodemask, struct zone *preferred_zone, 1757 int migratetype) 1758 { 1759 struct page *page; 1760 1761 /* Acquire the OOM killer lock for the zones in zonelist */ 1762 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1763 schedule_timeout_uninterruptible(1); 1764 return NULL; 1765 } 1766 1767 /* 1768 * Go through the zonelist yet one more time, keep very high watermark 1769 * here, this is only to catch a parallel oom killing, we must fail if 1770 * we're still under heavy pressure. 1771 */ 1772 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1773 order, zonelist, high_zoneidx, 1774 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1775 preferred_zone, migratetype); 1776 if (page) 1777 goto out; 1778 1779 if (!(gfp_mask & __GFP_NOFAIL)) { 1780 /* The OOM killer will not help higher order allocs */ 1781 if (order > PAGE_ALLOC_COSTLY_ORDER) 1782 goto out; 1783 /* The OOM killer does not needlessly kill tasks for lowmem */ 1784 if (high_zoneidx < ZONE_NORMAL) 1785 goto out; 1786 /* 1787 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1788 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1789 * The caller should handle page allocation failure by itself if 1790 * it specifies __GFP_THISNODE. 1791 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1792 */ 1793 if (gfp_mask & __GFP_THISNODE) 1794 goto out; 1795 } 1796 /* Exhausted what can be done so it's blamo time */ 1797 out_of_memory(zonelist, gfp_mask, order, nodemask); 1798 1799 out: 1800 clear_zonelist_oom(zonelist, gfp_mask); 1801 return page; 1802 } 1803 1804 #ifdef CONFIG_COMPACTION 1805 /* Try memory compaction for high-order allocations before reclaim */ 1806 static struct page * 1807 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1808 struct zonelist *zonelist, enum zone_type high_zoneidx, 1809 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1810 int migratetype, unsigned long *did_some_progress, 1811 bool sync_migration) 1812 { 1813 struct page *page; 1814 1815 if (!order || compaction_deferred(preferred_zone)) 1816 return NULL; 1817 1818 current->flags |= PF_MEMALLOC; 1819 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1820 nodemask, sync_migration); 1821 current->flags &= ~PF_MEMALLOC; 1822 if (*did_some_progress != COMPACT_SKIPPED) { 1823 1824 /* Page migration frees to the PCP lists but we want merging */ 1825 drain_pages(get_cpu()); 1826 put_cpu(); 1827 1828 page = get_page_from_freelist(gfp_mask, nodemask, 1829 order, zonelist, high_zoneidx, 1830 alloc_flags, preferred_zone, 1831 migratetype); 1832 if (page) { 1833 preferred_zone->compact_considered = 0; 1834 preferred_zone->compact_defer_shift = 0; 1835 count_vm_event(COMPACTSUCCESS); 1836 return page; 1837 } 1838 1839 /* 1840 * It's bad if compaction run occurs and fails. 1841 * The most likely reason is that pages exist, 1842 * but not enough to satisfy watermarks. 1843 */ 1844 count_vm_event(COMPACTFAIL); 1845 defer_compaction(preferred_zone); 1846 1847 cond_resched(); 1848 } 1849 1850 return NULL; 1851 } 1852 #else 1853 static inline struct page * 1854 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1855 struct zonelist *zonelist, enum zone_type high_zoneidx, 1856 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1857 int migratetype, unsigned long *did_some_progress, 1858 bool sync_migration) 1859 { 1860 return NULL; 1861 } 1862 #endif /* CONFIG_COMPACTION */ 1863 1864 /* The really slow allocator path where we enter direct reclaim */ 1865 static inline struct page * 1866 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1867 struct zonelist *zonelist, enum zone_type high_zoneidx, 1868 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1869 int migratetype, unsigned long *did_some_progress) 1870 { 1871 struct page *page = NULL; 1872 struct reclaim_state reclaim_state; 1873 bool drained = false; 1874 1875 cond_resched(); 1876 1877 /* We now go into synchronous reclaim */ 1878 cpuset_memory_pressure_bump(); 1879 current->flags |= PF_MEMALLOC; 1880 lockdep_set_current_reclaim_state(gfp_mask); 1881 reclaim_state.reclaimed_slab = 0; 1882 current->reclaim_state = &reclaim_state; 1883 1884 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1885 1886 current->reclaim_state = NULL; 1887 lockdep_clear_current_reclaim_state(); 1888 current->flags &= ~PF_MEMALLOC; 1889 1890 cond_resched(); 1891 1892 if (unlikely(!(*did_some_progress))) 1893 return NULL; 1894 1895 retry: 1896 page = get_page_from_freelist(gfp_mask, nodemask, order, 1897 zonelist, high_zoneidx, 1898 alloc_flags, preferred_zone, 1899 migratetype); 1900 1901 /* 1902 * If an allocation failed after direct reclaim, it could be because 1903 * pages are pinned on the per-cpu lists. Drain them and try again 1904 */ 1905 if (!page && !drained) { 1906 drain_all_pages(); 1907 drained = true; 1908 goto retry; 1909 } 1910 1911 return page; 1912 } 1913 1914 /* 1915 * This is called in the allocator slow-path if the allocation request is of 1916 * sufficient urgency to ignore watermarks and take other desperate measures 1917 */ 1918 static inline struct page * 1919 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1920 struct zonelist *zonelist, enum zone_type high_zoneidx, 1921 nodemask_t *nodemask, struct zone *preferred_zone, 1922 int migratetype) 1923 { 1924 struct page *page; 1925 1926 do { 1927 page = get_page_from_freelist(gfp_mask, nodemask, order, 1928 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1929 preferred_zone, migratetype); 1930 1931 if (!page && gfp_mask & __GFP_NOFAIL) 1932 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 1933 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1934 1935 return page; 1936 } 1937 1938 static inline 1939 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1940 enum zone_type high_zoneidx, 1941 enum zone_type classzone_idx) 1942 { 1943 struct zoneref *z; 1944 struct zone *zone; 1945 1946 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1947 wakeup_kswapd(zone, order, classzone_idx); 1948 } 1949 1950 static inline int 1951 gfp_to_alloc_flags(gfp_t gfp_mask) 1952 { 1953 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1954 const gfp_t wait = gfp_mask & __GFP_WAIT; 1955 1956 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1957 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 1958 1959 /* 1960 * The caller may dip into page reserves a bit more if the caller 1961 * cannot run direct reclaim, or if the caller has realtime scheduling 1962 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1963 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1964 */ 1965 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 1966 1967 if (!wait) { 1968 /* 1969 * Not worth trying to allocate harder for 1970 * __GFP_NOMEMALLOC even if it can't schedule. 1971 */ 1972 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1973 alloc_flags |= ALLOC_HARDER; 1974 /* 1975 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1976 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1977 */ 1978 alloc_flags &= ~ALLOC_CPUSET; 1979 } else if (unlikely(rt_task(current)) && !in_interrupt()) 1980 alloc_flags |= ALLOC_HARDER; 1981 1982 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1983 if (!in_interrupt() && 1984 ((current->flags & PF_MEMALLOC) || 1985 unlikely(test_thread_flag(TIF_MEMDIE)))) 1986 alloc_flags |= ALLOC_NO_WATERMARKS; 1987 } 1988 1989 return alloc_flags; 1990 } 1991 1992 static inline struct page * 1993 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1994 struct zonelist *zonelist, enum zone_type high_zoneidx, 1995 nodemask_t *nodemask, struct zone *preferred_zone, 1996 int migratetype) 1997 { 1998 const gfp_t wait = gfp_mask & __GFP_WAIT; 1999 struct page *page = NULL; 2000 int alloc_flags; 2001 unsigned long pages_reclaimed = 0; 2002 unsigned long did_some_progress; 2003 bool sync_migration = false; 2004 2005 /* 2006 * In the slowpath, we sanity check order to avoid ever trying to 2007 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2008 * be using allocators in order of preference for an area that is 2009 * too large. 2010 */ 2011 if (order >= MAX_ORDER) { 2012 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2013 return NULL; 2014 } 2015 2016 /* 2017 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2018 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2019 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2020 * using a larger set of nodes after it has established that the 2021 * allowed per node queues are empty and that nodes are 2022 * over allocated. 2023 */ 2024 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2025 goto nopage; 2026 2027 restart: 2028 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2029 wake_all_kswapd(order, zonelist, high_zoneidx, 2030 zone_idx(preferred_zone)); 2031 2032 /* 2033 * OK, we're below the kswapd watermark and have kicked background 2034 * reclaim. Now things get more complex, so set up alloc_flags according 2035 * to how we want to proceed. 2036 */ 2037 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2038 2039 /* 2040 * Find the true preferred zone if the allocation is unconstrained by 2041 * cpusets. 2042 */ 2043 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2044 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2045 &preferred_zone); 2046 2047 /* This is the last chance, in general, before the goto nopage. */ 2048 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2049 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2050 preferred_zone, migratetype); 2051 if (page) 2052 goto got_pg; 2053 2054 rebalance: 2055 /* Allocate without watermarks if the context allows */ 2056 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2057 page = __alloc_pages_high_priority(gfp_mask, order, 2058 zonelist, high_zoneidx, nodemask, 2059 preferred_zone, migratetype); 2060 if (page) 2061 goto got_pg; 2062 } 2063 2064 /* Atomic allocations - we can't balance anything */ 2065 if (!wait) 2066 goto nopage; 2067 2068 /* Avoid recursion of direct reclaim */ 2069 if (current->flags & PF_MEMALLOC) 2070 goto nopage; 2071 2072 /* Avoid allocations with no watermarks from looping endlessly */ 2073 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2074 goto nopage; 2075 2076 /* 2077 * Try direct compaction. The first pass is asynchronous. Subsequent 2078 * attempts after direct reclaim are synchronous 2079 */ 2080 page = __alloc_pages_direct_compact(gfp_mask, order, 2081 zonelist, high_zoneidx, 2082 nodemask, 2083 alloc_flags, preferred_zone, 2084 migratetype, &did_some_progress, 2085 sync_migration); 2086 if (page) 2087 goto got_pg; 2088 sync_migration = true; 2089 2090 /* Try direct reclaim and then allocating */ 2091 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2092 zonelist, high_zoneidx, 2093 nodemask, 2094 alloc_flags, preferred_zone, 2095 migratetype, &did_some_progress); 2096 if (page) 2097 goto got_pg; 2098 2099 /* 2100 * If we failed to make any progress reclaiming, then we are 2101 * running out of options and have to consider going OOM 2102 */ 2103 if (!did_some_progress) { 2104 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2105 if (oom_killer_disabled) 2106 goto nopage; 2107 page = __alloc_pages_may_oom(gfp_mask, order, 2108 zonelist, high_zoneidx, 2109 nodemask, preferred_zone, 2110 migratetype); 2111 if (page) 2112 goto got_pg; 2113 2114 if (!(gfp_mask & __GFP_NOFAIL)) { 2115 /* 2116 * The oom killer is not called for high-order 2117 * allocations that may fail, so if no progress 2118 * is being made, there are no other options and 2119 * retrying is unlikely to help. 2120 */ 2121 if (order > PAGE_ALLOC_COSTLY_ORDER) 2122 goto nopage; 2123 /* 2124 * The oom killer is not called for lowmem 2125 * allocations to prevent needlessly killing 2126 * innocent tasks. 2127 */ 2128 if (high_zoneidx < ZONE_NORMAL) 2129 goto nopage; 2130 } 2131 2132 goto restart; 2133 } 2134 } 2135 2136 /* Check if we should retry the allocation */ 2137 pages_reclaimed += did_some_progress; 2138 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2139 /* Wait for some write requests to complete then retry */ 2140 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2141 goto rebalance; 2142 } else { 2143 /* 2144 * High-order allocations do not necessarily loop after 2145 * direct reclaim and reclaim/compaction depends on compaction 2146 * being called after reclaim so call directly if necessary 2147 */ 2148 page = __alloc_pages_direct_compact(gfp_mask, order, 2149 zonelist, high_zoneidx, 2150 nodemask, 2151 alloc_flags, preferred_zone, 2152 migratetype, &did_some_progress, 2153 sync_migration); 2154 if (page) 2155 goto got_pg; 2156 } 2157 2158 nopage: 2159 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2160 printk(KERN_WARNING "%s: page allocation failure." 2161 " order:%d, mode:0x%x\n", 2162 current->comm, order, gfp_mask); 2163 dump_stack(); 2164 show_mem(); 2165 } 2166 return page; 2167 got_pg: 2168 if (kmemcheck_enabled) 2169 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2170 return page; 2171 2172 } 2173 2174 /* 2175 * This is the 'heart' of the zoned buddy allocator. 2176 */ 2177 struct page * 2178 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2179 struct zonelist *zonelist, nodemask_t *nodemask) 2180 { 2181 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2182 struct zone *preferred_zone; 2183 struct page *page; 2184 int migratetype = allocflags_to_migratetype(gfp_mask); 2185 2186 gfp_mask &= gfp_allowed_mask; 2187 2188 lockdep_trace_alloc(gfp_mask); 2189 2190 might_sleep_if(gfp_mask & __GFP_WAIT); 2191 2192 if (should_fail_alloc_page(gfp_mask, order)) 2193 return NULL; 2194 2195 /* 2196 * Check the zones suitable for the gfp_mask contain at least one 2197 * valid zone. It's possible to have an empty zonelist as a result 2198 * of GFP_THISNODE and a memoryless node 2199 */ 2200 if (unlikely(!zonelist->_zonerefs->zone)) 2201 return NULL; 2202 2203 get_mems_allowed(); 2204 /* The preferred zone is used for statistics later */ 2205 first_zones_zonelist(zonelist, high_zoneidx, 2206 nodemask ? : &cpuset_current_mems_allowed, 2207 &preferred_zone); 2208 if (!preferred_zone) { 2209 put_mems_allowed(); 2210 return NULL; 2211 } 2212 2213 /* First allocation attempt */ 2214 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2215 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2216 preferred_zone, migratetype); 2217 if (unlikely(!page)) 2218 page = __alloc_pages_slowpath(gfp_mask, order, 2219 zonelist, high_zoneidx, nodemask, 2220 preferred_zone, migratetype); 2221 put_mems_allowed(); 2222 2223 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2224 return page; 2225 } 2226 EXPORT_SYMBOL(__alloc_pages_nodemask); 2227 2228 /* 2229 * Common helper functions. 2230 */ 2231 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2232 { 2233 struct page *page; 2234 2235 /* 2236 * __get_free_pages() returns a 32-bit address, which cannot represent 2237 * a highmem page 2238 */ 2239 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2240 2241 page = alloc_pages(gfp_mask, order); 2242 if (!page) 2243 return 0; 2244 return (unsigned long) page_address(page); 2245 } 2246 EXPORT_SYMBOL(__get_free_pages); 2247 2248 unsigned long get_zeroed_page(gfp_t gfp_mask) 2249 { 2250 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2251 } 2252 EXPORT_SYMBOL(get_zeroed_page); 2253 2254 void __pagevec_free(struct pagevec *pvec) 2255 { 2256 int i = pagevec_count(pvec); 2257 2258 while (--i >= 0) { 2259 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2260 free_hot_cold_page(pvec->pages[i], pvec->cold); 2261 } 2262 } 2263 2264 void __free_pages(struct page *page, unsigned int order) 2265 { 2266 if (put_page_testzero(page)) { 2267 if (order == 0) 2268 free_hot_cold_page(page, 0); 2269 else 2270 __free_pages_ok(page, order); 2271 } 2272 } 2273 2274 EXPORT_SYMBOL(__free_pages); 2275 2276 void free_pages(unsigned long addr, unsigned int order) 2277 { 2278 if (addr != 0) { 2279 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2280 __free_pages(virt_to_page((void *)addr), order); 2281 } 2282 } 2283 2284 EXPORT_SYMBOL(free_pages); 2285 2286 /** 2287 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2288 * @size: the number of bytes to allocate 2289 * @gfp_mask: GFP flags for the allocation 2290 * 2291 * This function is similar to alloc_pages(), except that it allocates the 2292 * minimum number of pages to satisfy the request. alloc_pages() can only 2293 * allocate memory in power-of-two pages. 2294 * 2295 * This function is also limited by MAX_ORDER. 2296 * 2297 * Memory allocated by this function must be released by free_pages_exact(). 2298 */ 2299 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2300 { 2301 unsigned int order = get_order(size); 2302 unsigned long addr; 2303 2304 addr = __get_free_pages(gfp_mask, order); 2305 if (addr) { 2306 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2307 unsigned long used = addr + PAGE_ALIGN(size); 2308 2309 split_page(virt_to_page((void *)addr), order); 2310 while (used < alloc_end) { 2311 free_page(used); 2312 used += PAGE_SIZE; 2313 } 2314 } 2315 2316 return (void *)addr; 2317 } 2318 EXPORT_SYMBOL(alloc_pages_exact); 2319 2320 /** 2321 * free_pages_exact - release memory allocated via alloc_pages_exact() 2322 * @virt: the value returned by alloc_pages_exact. 2323 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2324 * 2325 * Release the memory allocated by a previous call to alloc_pages_exact. 2326 */ 2327 void free_pages_exact(void *virt, size_t size) 2328 { 2329 unsigned long addr = (unsigned long)virt; 2330 unsigned long end = addr + PAGE_ALIGN(size); 2331 2332 while (addr < end) { 2333 free_page(addr); 2334 addr += PAGE_SIZE; 2335 } 2336 } 2337 EXPORT_SYMBOL(free_pages_exact); 2338 2339 static unsigned int nr_free_zone_pages(int offset) 2340 { 2341 struct zoneref *z; 2342 struct zone *zone; 2343 2344 /* Just pick one node, since fallback list is circular */ 2345 unsigned int sum = 0; 2346 2347 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2348 2349 for_each_zone_zonelist(zone, z, zonelist, offset) { 2350 unsigned long size = zone->present_pages; 2351 unsigned long high = high_wmark_pages(zone); 2352 if (size > high) 2353 sum += size - high; 2354 } 2355 2356 return sum; 2357 } 2358 2359 /* 2360 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2361 */ 2362 unsigned int nr_free_buffer_pages(void) 2363 { 2364 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2365 } 2366 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2367 2368 /* 2369 * Amount of free RAM allocatable within all zones 2370 */ 2371 unsigned int nr_free_pagecache_pages(void) 2372 { 2373 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2374 } 2375 2376 static inline void show_node(struct zone *zone) 2377 { 2378 if (NUMA_BUILD) 2379 printk("Node %d ", zone_to_nid(zone)); 2380 } 2381 2382 void si_meminfo(struct sysinfo *val) 2383 { 2384 val->totalram = totalram_pages; 2385 val->sharedram = 0; 2386 val->freeram = global_page_state(NR_FREE_PAGES); 2387 val->bufferram = nr_blockdev_pages(); 2388 val->totalhigh = totalhigh_pages; 2389 val->freehigh = nr_free_highpages(); 2390 val->mem_unit = PAGE_SIZE; 2391 } 2392 2393 EXPORT_SYMBOL(si_meminfo); 2394 2395 #ifdef CONFIG_NUMA 2396 void si_meminfo_node(struct sysinfo *val, int nid) 2397 { 2398 pg_data_t *pgdat = NODE_DATA(nid); 2399 2400 val->totalram = pgdat->node_present_pages; 2401 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2402 #ifdef CONFIG_HIGHMEM 2403 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2404 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2405 NR_FREE_PAGES); 2406 #else 2407 val->totalhigh = 0; 2408 val->freehigh = 0; 2409 #endif 2410 val->mem_unit = PAGE_SIZE; 2411 } 2412 #endif 2413 2414 #define K(x) ((x) << (PAGE_SHIFT-10)) 2415 2416 /* 2417 * Show free area list (used inside shift_scroll-lock stuff) 2418 * We also calculate the percentage fragmentation. We do this by counting the 2419 * memory on each free list with the exception of the first item on the list. 2420 */ 2421 void show_free_areas(void) 2422 { 2423 int cpu; 2424 struct zone *zone; 2425 2426 for_each_populated_zone(zone) { 2427 show_node(zone); 2428 printk("%s per-cpu:\n", zone->name); 2429 2430 for_each_online_cpu(cpu) { 2431 struct per_cpu_pageset *pageset; 2432 2433 pageset = per_cpu_ptr(zone->pageset, cpu); 2434 2435 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2436 cpu, pageset->pcp.high, 2437 pageset->pcp.batch, pageset->pcp.count); 2438 } 2439 } 2440 2441 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2442 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2443 " unevictable:%lu" 2444 " dirty:%lu writeback:%lu unstable:%lu\n" 2445 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2446 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2447 global_page_state(NR_ACTIVE_ANON), 2448 global_page_state(NR_INACTIVE_ANON), 2449 global_page_state(NR_ISOLATED_ANON), 2450 global_page_state(NR_ACTIVE_FILE), 2451 global_page_state(NR_INACTIVE_FILE), 2452 global_page_state(NR_ISOLATED_FILE), 2453 global_page_state(NR_UNEVICTABLE), 2454 global_page_state(NR_FILE_DIRTY), 2455 global_page_state(NR_WRITEBACK), 2456 global_page_state(NR_UNSTABLE_NFS), 2457 global_page_state(NR_FREE_PAGES), 2458 global_page_state(NR_SLAB_RECLAIMABLE), 2459 global_page_state(NR_SLAB_UNRECLAIMABLE), 2460 global_page_state(NR_FILE_MAPPED), 2461 global_page_state(NR_SHMEM), 2462 global_page_state(NR_PAGETABLE), 2463 global_page_state(NR_BOUNCE)); 2464 2465 for_each_populated_zone(zone) { 2466 int i; 2467 2468 show_node(zone); 2469 printk("%s" 2470 " free:%lukB" 2471 " min:%lukB" 2472 " low:%lukB" 2473 " high:%lukB" 2474 " active_anon:%lukB" 2475 " inactive_anon:%lukB" 2476 " active_file:%lukB" 2477 " inactive_file:%lukB" 2478 " unevictable:%lukB" 2479 " isolated(anon):%lukB" 2480 " isolated(file):%lukB" 2481 " present:%lukB" 2482 " mlocked:%lukB" 2483 " dirty:%lukB" 2484 " writeback:%lukB" 2485 " mapped:%lukB" 2486 " shmem:%lukB" 2487 " slab_reclaimable:%lukB" 2488 " slab_unreclaimable:%lukB" 2489 " kernel_stack:%lukB" 2490 " pagetables:%lukB" 2491 " unstable:%lukB" 2492 " bounce:%lukB" 2493 " writeback_tmp:%lukB" 2494 " pages_scanned:%lu" 2495 " all_unreclaimable? %s" 2496 "\n", 2497 zone->name, 2498 K(zone_page_state(zone, NR_FREE_PAGES)), 2499 K(min_wmark_pages(zone)), 2500 K(low_wmark_pages(zone)), 2501 K(high_wmark_pages(zone)), 2502 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2503 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2504 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2505 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2506 K(zone_page_state(zone, NR_UNEVICTABLE)), 2507 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2508 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2509 K(zone->present_pages), 2510 K(zone_page_state(zone, NR_MLOCK)), 2511 K(zone_page_state(zone, NR_FILE_DIRTY)), 2512 K(zone_page_state(zone, NR_WRITEBACK)), 2513 K(zone_page_state(zone, NR_FILE_MAPPED)), 2514 K(zone_page_state(zone, NR_SHMEM)), 2515 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2516 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2517 zone_page_state(zone, NR_KERNEL_STACK) * 2518 THREAD_SIZE / 1024, 2519 K(zone_page_state(zone, NR_PAGETABLE)), 2520 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2521 K(zone_page_state(zone, NR_BOUNCE)), 2522 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2523 zone->pages_scanned, 2524 (zone->all_unreclaimable ? "yes" : "no") 2525 ); 2526 printk("lowmem_reserve[]:"); 2527 for (i = 0; i < MAX_NR_ZONES; i++) 2528 printk(" %lu", zone->lowmem_reserve[i]); 2529 printk("\n"); 2530 } 2531 2532 for_each_populated_zone(zone) { 2533 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2534 2535 show_node(zone); 2536 printk("%s: ", zone->name); 2537 2538 spin_lock_irqsave(&zone->lock, flags); 2539 for (order = 0; order < MAX_ORDER; order++) { 2540 nr[order] = zone->free_area[order].nr_free; 2541 total += nr[order] << order; 2542 } 2543 spin_unlock_irqrestore(&zone->lock, flags); 2544 for (order = 0; order < MAX_ORDER; order++) 2545 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2546 printk("= %lukB\n", K(total)); 2547 } 2548 2549 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2550 2551 show_swap_cache_info(); 2552 } 2553 2554 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2555 { 2556 zoneref->zone = zone; 2557 zoneref->zone_idx = zone_idx(zone); 2558 } 2559 2560 /* 2561 * Builds allocation fallback zone lists. 2562 * 2563 * Add all populated zones of a node to the zonelist. 2564 */ 2565 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2566 int nr_zones, enum zone_type zone_type) 2567 { 2568 struct zone *zone; 2569 2570 BUG_ON(zone_type >= MAX_NR_ZONES); 2571 zone_type++; 2572 2573 do { 2574 zone_type--; 2575 zone = pgdat->node_zones + zone_type; 2576 if (populated_zone(zone)) { 2577 zoneref_set_zone(zone, 2578 &zonelist->_zonerefs[nr_zones++]); 2579 check_highest_zone(zone_type); 2580 } 2581 2582 } while (zone_type); 2583 return nr_zones; 2584 } 2585 2586 2587 /* 2588 * zonelist_order: 2589 * 0 = automatic detection of better ordering. 2590 * 1 = order by ([node] distance, -zonetype) 2591 * 2 = order by (-zonetype, [node] distance) 2592 * 2593 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2594 * the same zonelist. So only NUMA can configure this param. 2595 */ 2596 #define ZONELIST_ORDER_DEFAULT 0 2597 #define ZONELIST_ORDER_NODE 1 2598 #define ZONELIST_ORDER_ZONE 2 2599 2600 /* zonelist order in the kernel. 2601 * set_zonelist_order() will set this to NODE or ZONE. 2602 */ 2603 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2604 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2605 2606 2607 #ifdef CONFIG_NUMA 2608 /* The value user specified ....changed by config */ 2609 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2610 /* string for sysctl */ 2611 #define NUMA_ZONELIST_ORDER_LEN 16 2612 char numa_zonelist_order[16] = "default"; 2613 2614 /* 2615 * interface for configure zonelist ordering. 2616 * command line option "numa_zonelist_order" 2617 * = "[dD]efault - default, automatic configuration. 2618 * = "[nN]ode - order by node locality, then by zone within node 2619 * = "[zZ]one - order by zone, then by locality within zone 2620 */ 2621 2622 static int __parse_numa_zonelist_order(char *s) 2623 { 2624 if (*s == 'd' || *s == 'D') { 2625 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2626 } else if (*s == 'n' || *s == 'N') { 2627 user_zonelist_order = ZONELIST_ORDER_NODE; 2628 } else if (*s == 'z' || *s == 'Z') { 2629 user_zonelist_order = ZONELIST_ORDER_ZONE; 2630 } else { 2631 printk(KERN_WARNING 2632 "Ignoring invalid numa_zonelist_order value: " 2633 "%s\n", s); 2634 return -EINVAL; 2635 } 2636 return 0; 2637 } 2638 2639 static __init int setup_numa_zonelist_order(char *s) 2640 { 2641 int ret; 2642 2643 if (!s) 2644 return 0; 2645 2646 ret = __parse_numa_zonelist_order(s); 2647 if (ret == 0) 2648 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2649 2650 return ret; 2651 } 2652 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2653 2654 /* 2655 * sysctl handler for numa_zonelist_order 2656 */ 2657 int numa_zonelist_order_handler(ctl_table *table, int write, 2658 void __user *buffer, size_t *length, 2659 loff_t *ppos) 2660 { 2661 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2662 int ret; 2663 static DEFINE_MUTEX(zl_order_mutex); 2664 2665 mutex_lock(&zl_order_mutex); 2666 if (write) 2667 strcpy(saved_string, (char*)table->data); 2668 ret = proc_dostring(table, write, buffer, length, ppos); 2669 if (ret) 2670 goto out; 2671 if (write) { 2672 int oldval = user_zonelist_order; 2673 if (__parse_numa_zonelist_order((char*)table->data)) { 2674 /* 2675 * bogus value. restore saved string 2676 */ 2677 strncpy((char*)table->data, saved_string, 2678 NUMA_ZONELIST_ORDER_LEN); 2679 user_zonelist_order = oldval; 2680 } else if (oldval != user_zonelist_order) { 2681 mutex_lock(&zonelists_mutex); 2682 build_all_zonelists(NULL); 2683 mutex_unlock(&zonelists_mutex); 2684 } 2685 } 2686 out: 2687 mutex_unlock(&zl_order_mutex); 2688 return ret; 2689 } 2690 2691 2692 #define MAX_NODE_LOAD (nr_online_nodes) 2693 static int node_load[MAX_NUMNODES]; 2694 2695 /** 2696 * find_next_best_node - find the next node that should appear in a given node's fallback list 2697 * @node: node whose fallback list we're appending 2698 * @used_node_mask: nodemask_t of already used nodes 2699 * 2700 * We use a number of factors to determine which is the next node that should 2701 * appear on a given node's fallback list. The node should not have appeared 2702 * already in @node's fallback list, and it should be the next closest node 2703 * according to the distance array (which contains arbitrary distance values 2704 * from each node to each node in the system), and should also prefer nodes 2705 * with no CPUs, since presumably they'll have very little allocation pressure 2706 * on them otherwise. 2707 * It returns -1 if no node is found. 2708 */ 2709 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2710 { 2711 int n, val; 2712 int min_val = INT_MAX; 2713 int best_node = -1; 2714 const struct cpumask *tmp = cpumask_of_node(0); 2715 2716 /* Use the local node if we haven't already */ 2717 if (!node_isset(node, *used_node_mask)) { 2718 node_set(node, *used_node_mask); 2719 return node; 2720 } 2721 2722 for_each_node_state(n, N_HIGH_MEMORY) { 2723 2724 /* Don't want a node to appear more than once */ 2725 if (node_isset(n, *used_node_mask)) 2726 continue; 2727 2728 /* Use the distance array to find the distance */ 2729 val = node_distance(node, n); 2730 2731 /* Penalize nodes under us ("prefer the next node") */ 2732 val += (n < node); 2733 2734 /* Give preference to headless and unused nodes */ 2735 tmp = cpumask_of_node(n); 2736 if (!cpumask_empty(tmp)) 2737 val += PENALTY_FOR_NODE_WITH_CPUS; 2738 2739 /* Slight preference for less loaded node */ 2740 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2741 val += node_load[n]; 2742 2743 if (val < min_val) { 2744 min_val = val; 2745 best_node = n; 2746 } 2747 } 2748 2749 if (best_node >= 0) 2750 node_set(best_node, *used_node_mask); 2751 2752 return best_node; 2753 } 2754 2755 2756 /* 2757 * Build zonelists ordered by node and zones within node. 2758 * This results in maximum locality--normal zone overflows into local 2759 * DMA zone, if any--but risks exhausting DMA zone. 2760 */ 2761 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2762 { 2763 int j; 2764 struct zonelist *zonelist; 2765 2766 zonelist = &pgdat->node_zonelists[0]; 2767 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2768 ; 2769 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2770 MAX_NR_ZONES - 1); 2771 zonelist->_zonerefs[j].zone = NULL; 2772 zonelist->_zonerefs[j].zone_idx = 0; 2773 } 2774 2775 /* 2776 * Build gfp_thisnode zonelists 2777 */ 2778 static void build_thisnode_zonelists(pg_data_t *pgdat) 2779 { 2780 int j; 2781 struct zonelist *zonelist; 2782 2783 zonelist = &pgdat->node_zonelists[1]; 2784 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2785 zonelist->_zonerefs[j].zone = NULL; 2786 zonelist->_zonerefs[j].zone_idx = 0; 2787 } 2788 2789 /* 2790 * Build zonelists ordered by zone and nodes within zones. 2791 * This results in conserving DMA zone[s] until all Normal memory is 2792 * exhausted, but results in overflowing to remote node while memory 2793 * may still exist in local DMA zone. 2794 */ 2795 static int node_order[MAX_NUMNODES]; 2796 2797 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2798 { 2799 int pos, j, node; 2800 int zone_type; /* needs to be signed */ 2801 struct zone *z; 2802 struct zonelist *zonelist; 2803 2804 zonelist = &pgdat->node_zonelists[0]; 2805 pos = 0; 2806 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2807 for (j = 0; j < nr_nodes; j++) { 2808 node = node_order[j]; 2809 z = &NODE_DATA(node)->node_zones[zone_type]; 2810 if (populated_zone(z)) { 2811 zoneref_set_zone(z, 2812 &zonelist->_zonerefs[pos++]); 2813 check_highest_zone(zone_type); 2814 } 2815 } 2816 } 2817 zonelist->_zonerefs[pos].zone = NULL; 2818 zonelist->_zonerefs[pos].zone_idx = 0; 2819 } 2820 2821 static int default_zonelist_order(void) 2822 { 2823 int nid, zone_type; 2824 unsigned long low_kmem_size,total_size; 2825 struct zone *z; 2826 int average_size; 2827 /* 2828 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2829 * If they are really small and used heavily, the system can fall 2830 * into OOM very easily. 2831 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2832 */ 2833 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2834 low_kmem_size = 0; 2835 total_size = 0; 2836 for_each_online_node(nid) { 2837 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2838 z = &NODE_DATA(nid)->node_zones[zone_type]; 2839 if (populated_zone(z)) { 2840 if (zone_type < ZONE_NORMAL) 2841 low_kmem_size += z->present_pages; 2842 total_size += z->present_pages; 2843 } else if (zone_type == ZONE_NORMAL) { 2844 /* 2845 * If any node has only lowmem, then node order 2846 * is preferred to allow kernel allocations 2847 * locally; otherwise, they can easily infringe 2848 * on other nodes when there is an abundance of 2849 * lowmem available to allocate from. 2850 */ 2851 return ZONELIST_ORDER_NODE; 2852 } 2853 } 2854 } 2855 if (!low_kmem_size || /* there are no DMA area. */ 2856 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2857 return ZONELIST_ORDER_NODE; 2858 /* 2859 * look into each node's config. 2860 * If there is a node whose DMA/DMA32 memory is very big area on 2861 * local memory, NODE_ORDER may be suitable. 2862 */ 2863 average_size = total_size / 2864 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2865 for_each_online_node(nid) { 2866 low_kmem_size = 0; 2867 total_size = 0; 2868 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2869 z = &NODE_DATA(nid)->node_zones[zone_type]; 2870 if (populated_zone(z)) { 2871 if (zone_type < ZONE_NORMAL) 2872 low_kmem_size += z->present_pages; 2873 total_size += z->present_pages; 2874 } 2875 } 2876 if (low_kmem_size && 2877 total_size > average_size && /* ignore small node */ 2878 low_kmem_size > total_size * 70/100) 2879 return ZONELIST_ORDER_NODE; 2880 } 2881 return ZONELIST_ORDER_ZONE; 2882 } 2883 2884 static void set_zonelist_order(void) 2885 { 2886 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2887 current_zonelist_order = default_zonelist_order(); 2888 else 2889 current_zonelist_order = user_zonelist_order; 2890 } 2891 2892 static void build_zonelists(pg_data_t *pgdat) 2893 { 2894 int j, node, load; 2895 enum zone_type i; 2896 nodemask_t used_mask; 2897 int local_node, prev_node; 2898 struct zonelist *zonelist; 2899 int order = current_zonelist_order; 2900 2901 /* initialize zonelists */ 2902 for (i = 0; i < MAX_ZONELISTS; i++) { 2903 zonelist = pgdat->node_zonelists + i; 2904 zonelist->_zonerefs[0].zone = NULL; 2905 zonelist->_zonerefs[0].zone_idx = 0; 2906 } 2907 2908 /* NUMA-aware ordering of nodes */ 2909 local_node = pgdat->node_id; 2910 load = nr_online_nodes; 2911 prev_node = local_node; 2912 nodes_clear(used_mask); 2913 2914 memset(node_order, 0, sizeof(node_order)); 2915 j = 0; 2916 2917 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2918 int distance = node_distance(local_node, node); 2919 2920 /* 2921 * If another node is sufficiently far away then it is better 2922 * to reclaim pages in a zone before going off node. 2923 */ 2924 if (distance > RECLAIM_DISTANCE) 2925 zone_reclaim_mode = 1; 2926 2927 /* 2928 * We don't want to pressure a particular node. 2929 * So adding penalty to the first node in same 2930 * distance group to make it round-robin. 2931 */ 2932 if (distance != node_distance(local_node, prev_node)) 2933 node_load[node] = load; 2934 2935 prev_node = node; 2936 load--; 2937 if (order == ZONELIST_ORDER_NODE) 2938 build_zonelists_in_node_order(pgdat, node); 2939 else 2940 node_order[j++] = node; /* remember order */ 2941 } 2942 2943 if (order == ZONELIST_ORDER_ZONE) { 2944 /* calculate node order -- i.e., DMA last! */ 2945 build_zonelists_in_zone_order(pgdat, j); 2946 } 2947 2948 build_thisnode_zonelists(pgdat); 2949 } 2950 2951 /* Construct the zonelist performance cache - see further mmzone.h */ 2952 static void build_zonelist_cache(pg_data_t *pgdat) 2953 { 2954 struct zonelist *zonelist; 2955 struct zonelist_cache *zlc; 2956 struct zoneref *z; 2957 2958 zonelist = &pgdat->node_zonelists[0]; 2959 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2960 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2961 for (z = zonelist->_zonerefs; z->zone; z++) 2962 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2963 } 2964 2965 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 2966 /* 2967 * Return node id of node used for "local" allocations. 2968 * I.e., first node id of first zone in arg node's generic zonelist. 2969 * Used for initializing percpu 'numa_mem', which is used primarily 2970 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 2971 */ 2972 int local_memory_node(int node) 2973 { 2974 struct zone *zone; 2975 2976 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 2977 gfp_zone(GFP_KERNEL), 2978 NULL, 2979 &zone); 2980 return zone->node; 2981 } 2982 #endif 2983 2984 #else /* CONFIG_NUMA */ 2985 2986 static void set_zonelist_order(void) 2987 { 2988 current_zonelist_order = ZONELIST_ORDER_ZONE; 2989 } 2990 2991 static void build_zonelists(pg_data_t *pgdat) 2992 { 2993 int node, local_node; 2994 enum zone_type j; 2995 struct zonelist *zonelist; 2996 2997 local_node = pgdat->node_id; 2998 2999 zonelist = &pgdat->node_zonelists[0]; 3000 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3001 3002 /* 3003 * Now we build the zonelist so that it contains the zones 3004 * of all the other nodes. 3005 * We don't want to pressure a particular node, so when 3006 * building the zones for node N, we make sure that the 3007 * zones coming right after the local ones are those from 3008 * node N+1 (modulo N) 3009 */ 3010 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3011 if (!node_online(node)) 3012 continue; 3013 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3014 MAX_NR_ZONES - 1); 3015 } 3016 for (node = 0; node < local_node; node++) { 3017 if (!node_online(node)) 3018 continue; 3019 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3020 MAX_NR_ZONES - 1); 3021 } 3022 3023 zonelist->_zonerefs[j].zone = NULL; 3024 zonelist->_zonerefs[j].zone_idx = 0; 3025 } 3026 3027 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3028 static void build_zonelist_cache(pg_data_t *pgdat) 3029 { 3030 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3031 } 3032 3033 #endif /* CONFIG_NUMA */ 3034 3035 /* 3036 * Boot pageset table. One per cpu which is going to be used for all 3037 * zones and all nodes. The parameters will be set in such a way 3038 * that an item put on a list will immediately be handed over to 3039 * the buddy list. This is safe since pageset manipulation is done 3040 * with interrupts disabled. 3041 * 3042 * The boot_pagesets must be kept even after bootup is complete for 3043 * unused processors and/or zones. They do play a role for bootstrapping 3044 * hotplugged processors. 3045 * 3046 * zoneinfo_show() and maybe other functions do 3047 * not check if the processor is online before following the pageset pointer. 3048 * Other parts of the kernel may not check if the zone is available. 3049 */ 3050 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3051 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3052 static void setup_zone_pageset(struct zone *zone); 3053 3054 /* 3055 * Global mutex to protect against size modification of zonelists 3056 * as well as to serialize pageset setup for the new populated zone. 3057 */ 3058 DEFINE_MUTEX(zonelists_mutex); 3059 3060 /* return values int ....just for stop_machine() */ 3061 static __init_refok int __build_all_zonelists(void *data) 3062 { 3063 int nid; 3064 int cpu; 3065 3066 #ifdef CONFIG_NUMA 3067 memset(node_load, 0, sizeof(node_load)); 3068 #endif 3069 for_each_online_node(nid) { 3070 pg_data_t *pgdat = NODE_DATA(nid); 3071 3072 build_zonelists(pgdat); 3073 build_zonelist_cache(pgdat); 3074 } 3075 3076 /* 3077 * Initialize the boot_pagesets that are going to be used 3078 * for bootstrapping processors. The real pagesets for 3079 * each zone will be allocated later when the per cpu 3080 * allocator is available. 3081 * 3082 * boot_pagesets are used also for bootstrapping offline 3083 * cpus if the system is already booted because the pagesets 3084 * are needed to initialize allocators on a specific cpu too. 3085 * F.e. the percpu allocator needs the page allocator which 3086 * needs the percpu allocator in order to allocate its pagesets 3087 * (a chicken-egg dilemma). 3088 */ 3089 for_each_possible_cpu(cpu) { 3090 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3091 3092 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3093 /* 3094 * We now know the "local memory node" for each node-- 3095 * i.e., the node of the first zone in the generic zonelist. 3096 * Set up numa_mem percpu variable for on-line cpus. During 3097 * boot, only the boot cpu should be on-line; we'll init the 3098 * secondary cpus' numa_mem as they come on-line. During 3099 * node/memory hotplug, we'll fixup all on-line cpus. 3100 */ 3101 if (cpu_online(cpu)) 3102 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3103 #endif 3104 } 3105 3106 return 0; 3107 } 3108 3109 /* 3110 * Called with zonelists_mutex held always 3111 * unless system_state == SYSTEM_BOOTING. 3112 */ 3113 void build_all_zonelists(void *data) 3114 { 3115 set_zonelist_order(); 3116 3117 if (system_state == SYSTEM_BOOTING) { 3118 __build_all_zonelists(NULL); 3119 mminit_verify_zonelist(); 3120 cpuset_init_current_mems_allowed(); 3121 } else { 3122 /* we have to stop all cpus to guarantee there is no user 3123 of zonelist */ 3124 #ifdef CONFIG_MEMORY_HOTPLUG 3125 if (data) 3126 setup_zone_pageset((struct zone *)data); 3127 #endif 3128 stop_machine(__build_all_zonelists, NULL, NULL); 3129 /* cpuset refresh routine should be here */ 3130 } 3131 vm_total_pages = nr_free_pagecache_pages(); 3132 /* 3133 * Disable grouping by mobility if the number of pages in the 3134 * system is too low to allow the mechanism to work. It would be 3135 * more accurate, but expensive to check per-zone. This check is 3136 * made on memory-hotadd so a system can start with mobility 3137 * disabled and enable it later 3138 */ 3139 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3140 page_group_by_mobility_disabled = 1; 3141 else 3142 page_group_by_mobility_disabled = 0; 3143 3144 printk("Built %i zonelists in %s order, mobility grouping %s. " 3145 "Total pages: %ld\n", 3146 nr_online_nodes, 3147 zonelist_order_name[current_zonelist_order], 3148 page_group_by_mobility_disabled ? "off" : "on", 3149 vm_total_pages); 3150 #ifdef CONFIG_NUMA 3151 printk("Policy zone: %s\n", zone_names[policy_zone]); 3152 #endif 3153 } 3154 3155 /* 3156 * Helper functions to size the waitqueue hash table. 3157 * Essentially these want to choose hash table sizes sufficiently 3158 * large so that collisions trying to wait on pages are rare. 3159 * But in fact, the number of active page waitqueues on typical 3160 * systems is ridiculously low, less than 200. So this is even 3161 * conservative, even though it seems large. 3162 * 3163 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3164 * waitqueues, i.e. the size of the waitq table given the number of pages. 3165 */ 3166 #define PAGES_PER_WAITQUEUE 256 3167 3168 #ifndef CONFIG_MEMORY_HOTPLUG 3169 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3170 { 3171 unsigned long size = 1; 3172 3173 pages /= PAGES_PER_WAITQUEUE; 3174 3175 while (size < pages) 3176 size <<= 1; 3177 3178 /* 3179 * Once we have dozens or even hundreds of threads sleeping 3180 * on IO we've got bigger problems than wait queue collision. 3181 * Limit the size of the wait table to a reasonable size. 3182 */ 3183 size = min(size, 4096UL); 3184 3185 return max(size, 4UL); 3186 } 3187 #else 3188 /* 3189 * A zone's size might be changed by hot-add, so it is not possible to determine 3190 * a suitable size for its wait_table. So we use the maximum size now. 3191 * 3192 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3193 * 3194 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3195 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3196 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3197 * 3198 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3199 * or more by the traditional way. (See above). It equals: 3200 * 3201 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3202 * ia64(16K page size) : = ( 8G + 4M)byte. 3203 * powerpc (64K page size) : = (32G +16M)byte. 3204 */ 3205 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3206 { 3207 return 4096UL; 3208 } 3209 #endif 3210 3211 /* 3212 * This is an integer logarithm so that shifts can be used later 3213 * to extract the more random high bits from the multiplicative 3214 * hash function before the remainder is taken. 3215 */ 3216 static inline unsigned long wait_table_bits(unsigned long size) 3217 { 3218 return ffz(~size); 3219 } 3220 3221 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3222 3223 /* 3224 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3225 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3226 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3227 * higher will lead to a bigger reserve which will get freed as contiguous 3228 * blocks as reclaim kicks in 3229 */ 3230 static void setup_zone_migrate_reserve(struct zone *zone) 3231 { 3232 unsigned long start_pfn, pfn, end_pfn; 3233 struct page *page; 3234 unsigned long block_migratetype; 3235 int reserve; 3236 3237 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3238 start_pfn = zone->zone_start_pfn; 3239 end_pfn = start_pfn + zone->spanned_pages; 3240 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3241 pageblock_order; 3242 3243 /* 3244 * Reserve blocks are generally in place to help high-order atomic 3245 * allocations that are short-lived. A min_free_kbytes value that 3246 * would result in more than 2 reserve blocks for atomic allocations 3247 * is assumed to be in place to help anti-fragmentation for the 3248 * future allocation of hugepages at runtime. 3249 */ 3250 reserve = min(2, reserve); 3251 3252 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3253 if (!pfn_valid(pfn)) 3254 continue; 3255 page = pfn_to_page(pfn); 3256 3257 /* Watch out for overlapping nodes */ 3258 if (page_to_nid(page) != zone_to_nid(zone)) 3259 continue; 3260 3261 /* Blocks with reserved pages will never free, skip them. */ 3262 if (PageReserved(page)) 3263 continue; 3264 3265 block_migratetype = get_pageblock_migratetype(page); 3266 3267 /* If this block is reserved, account for it */ 3268 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3269 reserve--; 3270 continue; 3271 } 3272 3273 /* Suitable for reserving if this block is movable */ 3274 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3275 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3276 move_freepages_block(zone, page, MIGRATE_RESERVE); 3277 reserve--; 3278 continue; 3279 } 3280 3281 /* 3282 * If the reserve is met and this is a previous reserved block, 3283 * take it back 3284 */ 3285 if (block_migratetype == MIGRATE_RESERVE) { 3286 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3287 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3288 } 3289 } 3290 } 3291 3292 /* 3293 * Initially all pages are reserved - free ones are freed 3294 * up by free_all_bootmem() once the early boot process is 3295 * done. Non-atomic initialization, single-pass. 3296 */ 3297 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3298 unsigned long start_pfn, enum memmap_context context) 3299 { 3300 struct page *page; 3301 unsigned long end_pfn = start_pfn + size; 3302 unsigned long pfn; 3303 struct zone *z; 3304 3305 if (highest_memmap_pfn < end_pfn - 1) 3306 highest_memmap_pfn = end_pfn - 1; 3307 3308 z = &NODE_DATA(nid)->node_zones[zone]; 3309 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3310 /* 3311 * There can be holes in boot-time mem_map[]s 3312 * handed to this function. They do not 3313 * exist on hotplugged memory. 3314 */ 3315 if (context == MEMMAP_EARLY) { 3316 if (!early_pfn_valid(pfn)) 3317 continue; 3318 if (!early_pfn_in_nid(pfn, nid)) 3319 continue; 3320 } 3321 page = pfn_to_page(pfn); 3322 set_page_links(page, zone, nid, pfn); 3323 mminit_verify_page_links(page, zone, nid, pfn); 3324 init_page_count(page); 3325 reset_page_mapcount(page); 3326 SetPageReserved(page); 3327 /* 3328 * Mark the block movable so that blocks are reserved for 3329 * movable at startup. This will force kernel allocations 3330 * to reserve their blocks rather than leaking throughout 3331 * the address space during boot when many long-lived 3332 * kernel allocations are made. Later some blocks near 3333 * the start are marked MIGRATE_RESERVE by 3334 * setup_zone_migrate_reserve() 3335 * 3336 * bitmap is created for zone's valid pfn range. but memmap 3337 * can be created for invalid pages (for alignment) 3338 * check here not to call set_pageblock_migratetype() against 3339 * pfn out of zone. 3340 */ 3341 if ((z->zone_start_pfn <= pfn) 3342 && (pfn < z->zone_start_pfn + z->spanned_pages) 3343 && !(pfn & (pageblock_nr_pages - 1))) 3344 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3345 3346 INIT_LIST_HEAD(&page->lru); 3347 #ifdef WANT_PAGE_VIRTUAL 3348 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3349 if (!is_highmem_idx(zone)) 3350 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3351 #endif 3352 } 3353 } 3354 3355 static void __meminit zone_init_free_lists(struct zone *zone) 3356 { 3357 int order, t; 3358 for_each_migratetype_order(order, t) { 3359 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3360 zone->free_area[order].nr_free = 0; 3361 } 3362 } 3363 3364 #ifndef __HAVE_ARCH_MEMMAP_INIT 3365 #define memmap_init(size, nid, zone, start_pfn) \ 3366 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3367 #endif 3368 3369 static int zone_batchsize(struct zone *zone) 3370 { 3371 #ifdef CONFIG_MMU 3372 int batch; 3373 3374 /* 3375 * The per-cpu-pages pools are set to around 1000th of the 3376 * size of the zone. But no more than 1/2 of a meg. 3377 * 3378 * OK, so we don't know how big the cache is. So guess. 3379 */ 3380 batch = zone->present_pages / 1024; 3381 if (batch * PAGE_SIZE > 512 * 1024) 3382 batch = (512 * 1024) / PAGE_SIZE; 3383 batch /= 4; /* We effectively *= 4 below */ 3384 if (batch < 1) 3385 batch = 1; 3386 3387 /* 3388 * Clamp the batch to a 2^n - 1 value. Having a power 3389 * of 2 value was found to be more likely to have 3390 * suboptimal cache aliasing properties in some cases. 3391 * 3392 * For example if 2 tasks are alternately allocating 3393 * batches of pages, one task can end up with a lot 3394 * of pages of one half of the possible page colors 3395 * and the other with pages of the other colors. 3396 */ 3397 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3398 3399 return batch; 3400 3401 #else 3402 /* The deferral and batching of frees should be suppressed under NOMMU 3403 * conditions. 3404 * 3405 * The problem is that NOMMU needs to be able to allocate large chunks 3406 * of contiguous memory as there's no hardware page translation to 3407 * assemble apparent contiguous memory from discontiguous pages. 3408 * 3409 * Queueing large contiguous runs of pages for batching, however, 3410 * causes the pages to actually be freed in smaller chunks. As there 3411 * can be a significant delay between the individual batches being 3412 * recycled, this leads to the once large chunks of space being 3413 * fragmented and becoming unavailable for high-order allocations. 3414 */ 3415 return 0; 3416 #endif 3417 } 3418 3419 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3420 { 3421 struct per_cpu_pages *pcp; 3422 int migratetype; 3423 3424 memset(p, 0, sizeof(*p)); 3425 3426 pcp = &p->pcp; 3427 pcp->count = 0; 3428 pcp->high = 6 * batch; 3429 pcp->batch = max(1UL, 1 * batch); 3430 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3431 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3432 } 3433 3434 /* 3435 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3436 * to the value high for the pageset p. 3437 */ 3438 3439 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3440 unsigned long high) 3441 { 3442 struct per_cpu_pages *pcp; 3443 3444 pcp = &p->pcp; 3445 pcp->high = high; 3446 pcp->batch = max(1UL, high/4); 3447 if ((high/4) > (PAGE_SHIFT * 8)) 3448 pcp->batch = PAGE_SHIFT * 8; 3449 } 3450 3451 static __meminit void setup_zone_pageset(struct zone *zone) 3452 { 3453 int cpu; 3454 3455 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3456 3457 for_each_possible_cpu(cpu) { 3458 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3459 3460 setup_pageset(pcp, zone_batchsize(zone)); 3461 3462 if (percpu_pagelist_fraction) 3463 setup_pagelist_highmark(pcp, 3464 (zone->present_pages / 3465 percpu_pagelist_fraction)); 3466 } 3467 } 3468 3469 /* 3470 * Allocate per cpu pagesets and initialize them. 3471 * Before this call only boot pagesets were available. 3472 */ 3473 void __init setup_per_cpu_pageset(void) 3474 { 3475 struct zone *zone; 3476 3477 for_each_populated_zone(zone) 3478 setup_zone_pageset(zone); 3479 } 3480 3481 static noinline __init_refok 3482 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3483 { 3484 int i; 3485 struct pglist_data *pgdat = zone->zone_pgdat; 3486 size_t alloc_size; 3487 3488 /* 3489 * The per-page waitqueue mechanism uses hashed waitqueues 3490 * per zone. 3491 */ 3492 zone->wait_table_hash_nr_entries = 3493 wait_table_hash_nr_entries(zone_size_pages); 3494 zone->wait_table_bits = 3495 wait_table_bits(zone->wait_table_hash_nr_entries); 3496 alloc_size = zone->wait_table_hash_nr_entries 3497 * sizeof(wait_queue_head_t); 3498 3499 if (!slab_is_available()) { 3500 zone->wait_table = (wait_queue_head_t *) 3501 alloc_bootmem_node(pgdat, alloc_size); 3502 } else { 3503 /* 3504 * This case means that a zone whose size was 0 gets new memory 3505 * via memory hot-add. 3506 * But it may be the case that a new node was hot-added. In 3507 * this case vmalloc() will not be able to use this new node's 3508 * memory - this wait_table must be initialized to use this new 3509 * node itself as well. 3510 * To use this new node's memory, further consideration will be 3511 * necessary. 3512 */ 3513 zone->wait_table = vmalloc(alloc_size); 3514 } 3515 if (!zone->wait_table) 3516 return -ENOMEM; 3517 3518 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3519 init_waitqueue_head(zone->wait_table + i); 3520 3521 return 0; 3522 } 3523 3524 static int __zone_pcp_update(void *data) 3525 { 3526 struct zone *zone = data; 3527 int cpu; 3528 unsigned long batch = zone_batchsize(zone), flags; 3529 3530 for_each_possible_cpu(cpu) { 3531 struct per_cpu_pageset *pset; 3532 struct per_cpu_pages *pcp; 3533 3534 pset = per_cpu_ptr(zone->pageset, cpu); 3535 pcp = &pset->pcp; 3536 3537 local_irq_save(flags); 3538 free_pcppages_bulk(zone, pcp->count, pcp); 3539 setup_pageset(pset, batch); 3540 local_irq_restore(flags); 3541 } 3542 return 0; 3543 } 3544 3545 void zone_pcp_update(struct zone *zone) 3546 { 3547 stop_machine(__zone_pcp_update, zone, NULL); 3548 } 3549 3550 static __meminit void zone_pcp_init(struct zone *zone) 3551 { 3552 /* 3553 * per cpu subsystem is not up at this point. The following code 3554 * relies on the ability of the linker to provide the 3555 * offset of a (static) per cpu variable into the per cpu area. 3556 */ 3557 zone->pageset = &boot_pageset; 3558 3559 if (zone->present_pages) 3560 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3561 zone->name, zone->present_pages, 3562 zone_batchsize(zone)); 3563 } 3564 3565 __meminit int init_currently_empty_zone(struct zone *zone, 3566 unsigned long zone_start_pfn, 3567 unsigned long size, 3568 enum memmap_context context) 3569 { 3570 struct pglist_data *pgdat = zone->zone_pgdat; 3571 int ret; 3572 ret = zone_wait_table_init(zone, size); 3573 if (ret) 3574 return ret; 3575 pgdat->nr_zones = zone_idx(zone) + 1; 3576 3577 zone->zone_start_pfn = zone_start_pfn; 3578 3579 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3580 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3581 pgdat->node_id, 3582 (unsigned long)zone_idx(zone), 3583 zone_start_pfn, (zone_start_pfn + size)); 3584 3585 zone_init_free_lists(zone); 3586 3587 return 0; 3588 } 3589 3590 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3591 /* 3592 * Basic iterator support. Return the first range of PFNs for a node 3593 * Note: nid == MAX_NUMNODES returns first region regardless of node 3594 */ 3595 static int __meminit first_active_region_index_in_nid(int nid) 3596 { 3597 int i; 3598 3599 for (i = 0; i < nr_nodemap_entries; i++) 3600 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3601 return i; 3602 3603 return -1; 3604 } 3605 3606 /* 3607 * Basic iterator support. Return the next active range of PFNs for a node 3608 * Note: nid == MAX_NUMNODES returns next region regardless of node 3609 */ 3610 static int __meminit next_active_region_index_in_nid(int index, int nid) 3611 { 3612 for (index = index + 1; index < nr_nodemap_entries; index++) 3613 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3614 return index; 3615 3616 return -1; 3617 } 3618 3619 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3620 /* 3621 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3622 * Architectures may implement their own version but if add_active_range() 3623 * was used and there are no special requirements, this is a convenient 3624 * alternative 3625 */ 3626 int __meminit __early_pfn_to_nid(unsigned long pfn) 3627 { 3628 int i; 3629 3630 for (i = 0; i < nr_nodemap_entries; i++) { 3631 unsigned long start_pfn = early_node_map[i].start_pfn; 3632 unsigned long end_pfn = early_node_map[i].end_pfn; 3633 3634 if (start_pfn <= pfn && pfn < end_pfn) 3635 return early_node_map[i].nid; 3636 } 3637 /* This is a memory hole */ 3638 return -1; 3639 } 3640 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3641 3642 int __meminit early_pfn_to_nid(unsigned long pfn) 3643 { 3644 int nid; 3645 3646 nid = __early_pfn_to_nid(pfn); 3647 if (nid >= 0) 3648 return nid; 3649 /* just returns 0 */ 3650 return 0; 3651 } 3652 3653 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3654 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3655 { 3656 int nid; 3657 3658 nid = __early_pfn_to_nid(pfn); 3659 if (nid >= 0 && nid != node) 3660 return false; 3661 return true; 3662 } 3663 #endif 3664 3665 /* Basic iterator support to walk early_node_map[] */ 3666 #define for_each_active_range_index_in_nid(i, nid) \ 3667 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3668 i = next_active_region_index_in_nid(i, nid)) 3669 3670 /** 3671 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3672 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3673 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3674 * 3675 * If an architecture guarantees that all ranges registered with 3676 * add_active_ranges() contain no holes and may be freed, this 3677 * this function may be used instead of calling free_bootmem() manually. 3678 */ 3679 void __init free_bootmem_with_active_regions(int nid, 3680 unsigned long max_low_pfn) 3681 { 3682 int i; 3683 3684 for_each_active_range_index_in_nid(i, nid) { 3685 unsigned long size_pages = 0; 3686 unsigned long end_pfn = early_node_map[i].end_pfn; 3687 3688 if (early_node_map[i].start_pfn >= max_low_pfn) 3689 continue; 3690 3691 if (end_pfn > max_low_pfn) 3692 end_pfn = max_low_pfn; 3693 3694 size_pages = end_pfn - early_node_map[i].start_pfn; 3695 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3696 PFN_PHYS(early_node_map[i].start_pfn), 3697 size_pages << PAGE_SHIFT); 3698 } 3699 } 3700 3701 #ifdef CONFIG_HAVE_MEMBLOCK 3702 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3703 u64 goal, u64 limit) 3704 { 3705 int i; 3706 3707 /* Need to go over early_node_map to find out good range for node */ 3708 for_each_active_range_index_in_nid(i, nid) { 3709 u64 addr; 3710 u64 ei_start, ei_last; 3711 u64 final_start, final_end; 3712 3713 ei_last = early_node_map[i].end_pfn; 3714 ei_last <<= PAGE_SHIFT; 3715 ei_start = early_node_map[i].start_pfn; 3716 ei_start <<= PAGE_SHIFT; 3717 3718 final_start = max(ei_start, goal); 3719 final_end = min(ei_last, limit); 3720 3721 if (final_start >= final_end) 3722 continue; 3723 3724 addr = memblock_find_in_range(final_start, final_end, size, align); 3725 3726 if (addr == MEMBLOCK_ERROR) 3727 continue; 3728 3729 return addr; 3730 } 3731 3732 return MEMBLOCK_ERROR; 3733 } 3734 #endif 3735 3736 int __init add_from_early_node_map(struct range *range, int az, 3737 int nr_range, int nid) 3738 { 3739 int i; 3740 u64 start, end; 3741 3742 /* need to go over early_node_map to find out good range for node */ 3743 for_each_active_range_index_in_nid(i, nid) { 3744 start = early_node_map[i].start_pfn; 3745 end = early_node_map[i].end_pfn; 3746 nr_range = add_range(range, az, nr_range, start, end); 3747 } 3748 return nr_range; 3749 } 3750 3751 #ifdef CONFIG_NO_BOOTMEM 3752 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3753 u64 goal, u64 limit) 3754 { 3755 void *ptr; 3756 u64 addr; 3757 3758 if (limit > memblock.current_limit) 3759 limit = memblock.current_limit; 3760 3761 addr = find_memory_core_early(nid, size, align, goal, limit); 3762 3763 if (addr == MEMBLOCK_ERROR) 3764 return NULL; 3765 3766 ptr = phys_to_virt(addr); 3767 memset(ptr, 0, size); 3768 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM"); 3769 /* 3770 * The min_count is set to 0 so that bootmem allocated blocks 3771 * are never reported as leaks. 3772 */ 3773 kmemleak_alloc(ptr, size, 0, 0); 3774 return ptr; 3775 } 3776 #endif 3777 3778 3779 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3780 { 3781 int i; 3782 int ret; 3783 3784 for_each_active_range_index_in_nid(i, nid) { 3785 ret = work_fn(early_node_map[i].start_pfn, 3786 early_node_map[i].end_pfn, data); 3787 if (ret) 3788 break; 3789 } 3790 } 3791 /** 3792 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3793 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3794 * 3795 * If an architecture guarantees that all ranges registered with 3796 * add_active_ranges() contain no holes and may be freed, this 3797 * function may be used instead of calling memory_present() manually. 3798 */ 3799 void __init sparse_memory_present_with_active_regions(int nid) 3800 { 3801 int i; 3802 3803 for_each_active_range_index_in_nid(i, nid) 3804 memory_present(early_node_map[i].nid, 3805 early_node_map[i].start_pfn, 3806 early_node_map[i].end_pfn); 3807 } 3808 3809 /** 3810 * get_pfn_range_for_nid - Return the start and end page frames for a node 3811 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3812 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3813 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3814 * 3815 * It returns the start and end page frame of a node based on information 3816 * provided by an arch calling add_active_range(). If called for a node 3817 * with no available memory, a warning is printed and the start and end 3818 * PFNs will be 0. 3819 */ 3820 void __meminit get_pfn_range_for_nid(unsigned int nid, 3821 unsigned long *start_pfn, unsigned long *end_pfn) 3822 { 3823 int i; 3824 *start_pfn = -1UL; 3825 *end_pfn = 0; 3826 3827 for_each_active_range_index_in_nid(i, nid) { 3828 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3829 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3830 } 3831 3832 if (*start_pfn == -1UL) 3833 *start_pfn = 0; 3834 } 3835 3836 /* 3837 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3838 * assumption is made that zones within a node are ordered in monotonic 3839 * increasing memory addresses so that the "highest" populated zone is used 3840 */ 3841 static void __init find_usable_zone_for_movable(void) 3842 { 3843 int zone_index; 3844 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3845 if (zone_index == ZONE_MOVABLE) 3846 continue; 3847 3848 if (arch_zone_highest_possible_pfn[zone_index] > 3849 arch_zone_lowest_possible_pfn[zone_index]) 3850 break; 3851 } 3852 3853 VM_BUG_ON(zone_index == -1); 3854 movable_zone = zone_index; 3855 } 3856 3857 /* 3858 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3859 * because it is sized independant of architecture. Unlike the other zones, 3860 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3861 * in each node depending on the size of each node and how evenly kernelcore 3862 * is distributed. This helper function adjusts the zone ranges 3863 * provided by the architecture for a given node by using the end of the 3864 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3865 * zones within a node are in order of monotonic increases memory addresses 3866 */ 3867 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3868 unsigned long zone_type, 3869 unsigned long node_start_pfn, 3870 unsigned long node_end_pfn, 3871 unsigned long *zone_start_pfn, 3872 unsigned long *zone_end_pfn) 3873 { 3874 /* Only adjust if ZONE_MOVABLE is on this node */ 3875 if (zone_movable_pfn[nid]) { 3876 /* Size ZONE_MOVABLE */ 3877 if (zone_type == ZONE_MOVABLE) { 3878 *zone_start_pfn = zone_movable_pfn[nid]; 3879 *zone_end_pfn = min(node_end_pfn, 3880 arch_zone_highest_possible_pfn[movable_zone]); 3881 3882 /* Adjust for ZONE_MOVABLE starting within this range */ 3883 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3884 *zone_end_pfn > zone_movable_pfn[nid]) { 3885 *zone_end_pfn = zone_movable_pfn[nid]; 3886 3887 /* Check if this whole range is within ZONE_MOVABLE */ 3888 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3889 *zone_start_pfn = *zone_end_pfn; 3890 } 3891 } 3892 3893 /* 3894 * Return the number of pages a zone spans in a node, including holes 3895 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3896 */ 3897 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3898 unsigned long zone_type, 3899 unsigned long *ignored) 3900 { 3901 unsigned long node_start_pfn, node_end_pfn; 3902 unsigned long zone_start_pfn, zone_end_pfn; 3903 3904 /* Get the start and end of the node and zone */ 3905 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3906 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3907 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3908 adjust_zone_range_for_zone_movable(nid, zone_type, 3909 node_start_pfn, node_end_pfn, 3910 &zone_start_pfn, &zone_end_pfn); 3911 3912 /* Check that this node has pages within the zone's required range */ 3913 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3914 return 0; 3915 3916 /* Move the zone boundaries inside the node if necessary */ 3917 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3918 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3919 3920 /* Return the spanned pages */ 3921 return zone_end_pfn - zone_start_pfn; 3922 } 3923 3924 /* 3925 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3926 * then all holes in the requested range will be accounted for. 3927 */ 3928 unsigned long __meminit __absent_pages_in_range(int nid, 3929 unsigned long range_start_pfn, 3930 unsigned long range_end_pfn) 3931 { 3932 int i = 0; 3933 unsigned long prev_end_pfn = 0, hole_pages = 0; 3934 unsigned long start_pfn; 3935 3936 /* Find the end_pfn of the first active range of pfns in the node */ 3937 i = first_active_region_index_in_nid(nid); 3938 if (i == -1) 3939 return 0; 3940 3941 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3942 3943 /* Account for ranges before physical memory on this node */ 3944 if (early_node_map[i].start_pfn > range_start_pfn) 3945 hole_pages = prev_end_pfn - range_start_pfn; 3946 3947 /* Find all holes for the zone within the node */ 3948 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3949 3950 /* No need to continue if prev_end_pfn is outside the zone */ 3951 if (prev_end_pfn >= range_end_pfn) 3952 break; 3953 3954 /* Make sure the end of the zone is not within the hole */ 3955 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3956 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3957 3958 /* Update the hole size cound and move on */ 3959 if (start_pfn > range_start_pfn) { 3960 BUG_ON(prev_end_pfn > start_pfn); 3961 hole_pages += start_pfn - prev_end_pfn; 3962 } 3963 prev_end_pfn = early_node_map[i].end_pfn; 3964 } 3965 3966 /* Account for ranges past physical memory on this node */ 3967 if (range_end_pfn > prev_end_pfn) 3968 hole_pages += range_end_pfn - 3969 max(range_start_pfn, prev_end_pfn); 3970 3971 return hole_pages; 3972 } 3973 3974 /** 3975 * absent_pages_in_range - Return number of page frames in holes within a range 3976 * @start_pfn: The start PFN to start searching for holes 3977 * @end_pfn: The end PFN to stop searching for holes 3978 * 3979 * It returns the number of pages frames in memory holes within a range. 3980 */ 3981 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3982 unsigned long end_pfn) 3983 { 3984 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3985 } 3986 3987 /* Return the number of page frames in holes in a zone on a node */ 3988 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3989 unsigned long zone_type, 3990 unsigned long *ignored) 3991 { 3992 unsigned long node_start_pfn, node_end_pfn; 3993 unsigned long zone_start_pfn, zone_end_pfn; 3994 3995 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3996 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3997 node_start_pfn); 3998 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3999 node_end_pfn); 4000 4001 adjust_zone_range_for_zone_movable(nid, zone_type, 4002 node_start_pfn, node_end_pfn, 4003 &zone_start_pfn, &zone_end_pfn); 4004 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4005 } 4006 4007 #else 4008 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4009 unsigned long zone_type, 4010 unsigned long *zones_size) 4011 { 4012 return zones_size[zone_type]; 4013 } 4014 4015 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4016 unsigned long zone_type, 4017 unsigned long *zholes_size) 4018 { 4019 if (!zholes_size) 4020 return 0; 4021 4022 return zholes_size[zone_type]; 4023 } 4024 4025 #endif 4026 4027 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4028 unsigned long *zones_size, unsigned long *zholes_size) 4029 { 4030 unsigned long realtotalpages, totalpages = 0; 4031 enum zone_type i; 4032 4033 for (i = 0; i < MAX_NR_ZONES; i++) 4034 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4035 zones_size); 4036 pgdat->node_spanned_pages = totalpages; 4037 4038 realtotalpages = totalpages; 4039 for (i = 0; i < MAX_NR_ZONES; i++) 4040 realtotalpages -= 4041 zone_absent_pages_in_node(pgdat->node_id, i, 4042 zholes_size); 4043 pgdat->node_present_pages = realtotalpages; 4044 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4045 realtotalpages); 4046 } 4047 4048 #ifndef CONFIG_SPARSEMEM 4049 /* 4050 * Calculate the size of the zone->blockflags rounded to an unsigned long 4051 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4052 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4053 * round what is now in bits to nearest long in bits, then return it in 4054 * bytes. 4055 */ 4056 static unsigned long __init usemap_size(unsigned long zonesize) 4057 { 4058 unsigned long usemapsize; 4059 4060 usemapsize = roundup(zonesize, pageblock_nr_pages); 4061 usemapsize = usemapsize >> pageblock_order; 4062 usemapsize *= NR_PAGEBLOCK_BITS; 4063 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4064 4065 return usemapsize / 8; 4066 } 4067 4068 static void __init setup_usemap(struct pglist_data *pgdat, 4069 struct zone *zone, unsigned long zonesize) 4070 { 4071 unsigned long usemapsize = usemap_size(zonesize); 4072 zone->pageblock_flags = NULL; 4073 if (usemapsize) 4074 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 4075 } 4076 #else 4077 static inline void setup_usemap(struct pglist_data *pgdat, 4078 struct zone *zone, unsigned long zonesize) {} 4079 #endif /* CONFIG_SPARSEMEM */ 4080 4081 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4082 4083 /* Return a sensible default order for the pageblock size. */ 4084 static inline int pageblock_default_order(void) 4085 { 4086 if (HPAGE_SHIFT > PAGE_SHIFT) 4087 return HUGETLB_PAGE_ORDER; 4088 4089 return MAX_ORDER-1; 4090 } 4091 4092 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4093 static inline void __init set_pageblock_order(unsigned int order) 4094 { 4095 /* Check that pageblock_nr_pages has not already been setup */ 4096 if (pageblock_order) 4097 return; 4098 4099 /* 4100 * Assume the largest contiguous order of interest is a huge page. 4101 * This value may be variable depending on boot parameters on IA64 4102 */ 4103 pageblock_order = order; 4104 } 4105 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4106 4107 /* 4108 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4109 * and pageblock_default_order() are unused as pageblock_order is set 4110 * at compile-time. See include/linux/pageblock-flags.h for the values of 4111 * pageblock_order based on the kernel config 4112 */ 4113 static inline int pageblock_default_order(unsigned int order) 4114 { 4115 return MAX_ORDER-1; 4116 } 4117 #define set_pageblock_order(x) do {} while (0) 4118 4119 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4120 4121 /* 4122 * Set up the zone data structures: 4123 * - mark all pages reserved 4124 * - mark all memory queues empty 4125 * - clear the memory bitmaps 4126 */ 4127 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4128 unsigned long *zones_size, unsigned long *zholes_size) 4129 { 4130 enum zone_type j; 4131 int nid = pgdat->node_id; 4132 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4133 int ret; 4134 4135 pgdat_resize_init(pgdat); 4136 pgdat->nr_zones = 0; 4137 init_waitqueue_head(&pgdat->kswapd_wait); 4138 pgdat->kswapd_max_order = 0; 4139 pgdat_page_cgroup_init(pgdat); 4140 4141 for (j = 0; j < MAX_NR_ZONES; j++) { 4142 struct zone *zone = pgdat->node_zones + j; 4143 unsigned long size, realsize, memmap_pages; 4144 enum lru_list l; 4145 4146 size = zone_spanned_pages_in_node(nid, j, zones_size); 4147 realsize = size - zone_absent_pages_in_node(nid, j, 4148 zholes_size); 4149 4150 /* 4151 * Adjust realsize so that it accounts for how much memory 4152 * is used by this zone for memmap. This affects the watermark 4153 * and per-cpu initialisations 4154 */ 4155 memmap_pages = 4156 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4157 if (realsize >= memmap_pages) { 4158 realsize -= memmap_pages; 4159 if (memmap_pages) 4160 printk(KERN_DEBUG 4161 " %s zone: %lu pages used for memmap\n", 4162 zone_names[j], memmap_pages); 4163 } else 4164 printk(KERN_WARNING 4165 " %s zone: %lu pages exceeds realsize %lu\n", 4166 zone_names[j], memmap_pages, realsize); 4167 4168 /* Account for reserved pages */ 4169 if (j == 0 && realsize > dma_reserve) { 4170 realsize -= dma_reserve; 4171 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4172 zone_names[0], dma_reserve); 4173 } 4174 4175 if (!is_highmem_idx(j)) 4176 nr_kernel_pages += realsize; 4177 nr_all_pages += realsize; 4178 4179 zone->spanned_pages = size; 4180 zone->present_pages = realsize; 4181 #ifdef CONFIG_NUMA 4182 zone->node = nid; 4183 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4184 / 100; 4185 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4186 #endif 4187 zone->name = zone_names[j]; 4188 spin_lock_init(&zone->lock); 4189 spin_lock_init(&zone->lru_lock); 4190 zone_seqlock_init(zone); 4191 zone->zone_pgdat = pgdat; 4192 4193 zone_pcp_init(zone); 4194 for_each_lru(l) { 4195 INIT_LIST_HEAD(&zone->lru[l].list); 4196 zone->reclaim_stat.nr_saved_scan[l] = 0; 4197 } 4198 zone->reclaim_stat.recent_rotated[0] = 0; 4199 zone->reclaim_stat.recent_rotated[1] = 0; 4200 zone->reclaim_stat.recent_scanned[0] = 0; 4201 zone->reclaim_stat.recent_scanned[1] = 0; 4202 zap_zone_vm_stats(zone); 4203 zone->flags = 0; 4204 if (!size) 4205 continue; 4206 4207 set_pageblock_order(pageblock_default_order()); 4208 setup_usemap(pgdat, zone, size); 4209 ret = init_currently_empty_zone(zone, zone_start_pfn, 4210 size, MEMMAP_EARLY); 4211 BUG_ON(ret); 4212 memmap_init(size, nid, j, zone_start_pfn); 4213 zone_start_pfn += size; 4214 } 4215 } 4216 4217 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4218 { 4219 /* Skip empty nodes */ 4220 if (!pgdat->node_spanned_pages) 4221 return; 4222 4223 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4224 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4225 if (!pgdat->node_mem_map) { 4226 unsigned long size, start, end; 4227 struct page *map; 4228 4229 /* 4230 * The zone's endpoints aren't required to be MAX_ORDER 4231 * aligned but the node_mem_map endpoints must be in order 4232 * for the buddy allocator to function correctly. 4233 */ 4234 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4235 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4236 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4237 size = (end - start) * sizeof(struct page); 4238 map = alloc_remap(pgdat->node_id, size); 4239 if (!map) 4240 map = alloc_bootmem_node(pgdat, size); 4241 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4242 } 4243 #ifndef CONFIG_NEED_MULTIPLE_NODES 4244 /* 4245 * With no DISCONTIG, the global mem_map is just set as node 0's 4246 */ 4247 if (pgdat == NODE_DATA(0)) { 4248 mem_map = NODE_DATA(0)->node_mem_map; 4249 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4250 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4251 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4252 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4253 } 4254 #endif 4255 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4256 } 4257 4258 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4259 unsigned long node_start_pfn, unsigned long *zholes_size) 4260 { 4261 pg_data_t *pgdat = NODE_DATA(nid); 4262 4263 pgdat->node_id = nid; 4264 pgdat->node_start_pfn = node_start_pfn; 4265 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4266 4267 alloc_node_mem_map(pgdat); 4268 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4269 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4270 nid, (unsigned long)pgdat, 4271 (unsigned long)pgdat->node_mem_map); 4272 #endif 4273 4274 free_area_init_core(pgdat, zones_size, zholes_size); 4275 } 4276 4277 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4278 4279 #if MAX_NUMNODES > 1 4280 /* 4281 * Figure out the number of possible node ids. 4282 */ 4283 static void __init setup_nr_node_ids(void) 4284 { 4285 unsigned int node; 4286 unsigned int highest = 0; 4287 4288 for_each_node_mask(node, node_possible_map) 4289 highest = node; 4290 nr_node_ids = highest + 1; 4291 } 4292 #else 4293 static inline void setup_nr_node_ids(void) 4294 { 4295 } 4296 #endif 4297 4298 /** 4299 * add_active_range - Register a range of PFNs backed by physical memory 4300 * @nid: The node ID the range resides on 4301 * @start_pfn: The start PFN of the available physical memory 4302 * @end_pfn: The end PFN of the available physical memory 4303 * 4304 * These ranges are stored in an early_node_map[] and later used by 4305 * free_area_init_nodes() to calculate zone sizes and holes. If the 4306 * range spans a memory hole, it is up to the architecture to ensure 4307 * the memory is not freed by the bootmem allocator. If possible 4308 * the range being registered will be merged with existing ranges. 4309 */ 4310 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4311 unsigned long end_pfn) 4312 { 4313 int i; 4314 4315 mminit_dprintk(MMINIT_TRACE, "memory_register", 4316 "Entering add_active_range(%d, %#lx, %#lx) " 4317 "%d entries of %d used\n", 4318 nid, start_pfn, end_pfn, 4319 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4320 4321 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4322 4323 /* Merge with existing active regions if possible */ 4324 for (i = 0; i < nr_nodemap_entries; i++) { 4325 if (early_node_map[i].nid != nid) 4326 continue; 4327 4328 /* Skip if an existing region covers this new one */ 4329 if (start_pfn >= early_node_map[i].start_pfn && 4330 end_pfn <= early_node_map[i].end_pfn) 4331 return; 4332 4333 /* Merge forward if suitable */ 4334 if (start_pfn <= early_node_map[i].end_pfn && 4335 end_pfn > early_node_map[i].end_pfn) { 4336 early_node_map[i].end_pfn = end_pfn; 4337 return; 4338 } 4339 4340 /* Merge backward if suitable */ 4341 if (start_pfn < early_node_map[i].start_pfn && 4342 end_pfn >= early_node_map[i].start_pfn) { 4343 early_node_map[i].start_pfn = start_pfn; 4344 return; 4345 } 4346 } 4347 4348 /* Check that early_node_map is large enough */ 4349 if (i >= MAX_ACTIVE_REGIONS) { 4350 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4351 MAX_ACTIVE_REGIONS); 4352 return; 4353 } 4354 4355 early_node_map[i].nid = nid; 4356 early_node_map[i].start_pfn = start_pfn; 4357 early_node_map[i].end_pfn = end_pfn; 4358 nr_nodemap_entries = i + 1; 4359 } 4360 4361 /** 4362 * remove_active_range - Shrink an existing registered range of PFNs 4363 * @nid: The node id the range is on that should be shrunk 4364 * @start_pfn: The new PFN of the range 4365 * @end_pfn: The new PFN of the range 4366 * 4367 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4368 * The map is kept near the end physical page range that has already been 4369 * registered. This function allows an arch to shrink an existing registered 4370 * range. 4371 */ 4372 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4373 unsigned long end_pfn) 4374 { 4375 int i, j; 4376 int removed = 0; 4377 4378 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4379 nid, start_pfn, end_pfn); 4380 4381 /* Find the old active region end and shrink */ 4382 for_each_active_range_index_in_nid(i, nid) { 4383 if (early_node_map[i].start_pfn >= start_pfn && 4384 early_node_map[i].end_pfn <= end_pfn) { 4385 /* clear it */ 4386 early_node_map[i].start_pfn = 0; 4387 early_node_map[i].end_pfn = 0; 4388 removed = 1; 4389 continue; 4390 } 4391 if (early_node_map[i].start_pfn < start_pfn && 4392 early_node_map[i].end_pfn > start_pfn) { 4393 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4394 early_node_map[i].end_pfn = start_pfn; 4395 if (temp_end_pfn > end_pfn) 4396 add_active_range(nid, end_pfn, temp_end_pfn); 4397 continue; 4398 } 4399 if (early_node_map[i].start_pfn >= start_pfn && 4400 early_node_map[i].end_pfn > end_pfn && 4401 early_node_map[i].start_pfn < end_pfn) { 4402 early_node_map[i].start_pfn = end_pfn; 4403 continue; 4404 } 4405 } 4406 4407 if (!removed) 4408 return; 4409 4410 /* remove the blank ones */ 4411 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4412 if (early_node_map[i].nid != nid) 4413 continue; 4414 if (early_node_map[i].end_pfn) 4415 continue; 4416 /* we found it, get rid of it */ 4417 for (j = i; j < nr_nodemap_entries - 1; j++) 4418 memcpy(&early_node_map[j], &early_node_map[j+1], 4419 sizeof(early_node_map[j])); 4420 j = nr_nodemap_entries - 1; 4421 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4422 nr_nodemap_entries--; 4423 } 4424 } 4425 4426 /** 4427 * remove_all_active_ranges - Remove all currently registered regions 4428 * 4429 * During discovery, it may be found that a table like SRAT is invalid 4430 * and an alternative discovery method must be used. This function removes 4431 * all currently registered regions. 4432 */ 4433 void __init remove_all_active_ranges(void) 4434 { 4435 memset(early_node_map, 0, sizeof(early_node_map)); 4436 nr_nodemap_entries = 0; 4437 } 4438 4439 /* Compare two active node_active_regions */ 4440 static int __init cmp_node_active_region(const void *a, const void *b) 4441 { 4442 struct node_active_region *arange = (struct node_active_region *)a; 4443 struct node_active_region *brange = (struct node_active_region *)b; 4444 4445 /* Done this way to avoid overflows */ 4446 if (arange->start_pfn > brange->start_pfn) 4447 return 1; 4448 if (arange->start_pfn < brange->start_pfn) 4449 return -1; 4450 4451 return 0; 4452 } 4453 4454 /* sort the node_map by start_pfn */ 4455 void __init sort_node_map(void) 4456 { 4457 sort(early_node_map, (size_t)nr_nodemap_entries, 4458 sizeof(struct node_active_region), 4459 cmp_node_active_region, NULL); 4460 } 4461 4462 /* Find the lowest pfn for a node */ 4463 static unsigned long __init find_min_pfn_for_node(int nid) 4464 { 4465 int i; 4466 unsigned long min_pfn = ULONG_MAX; 4467 4468 /* Assuming a sorted map, the first range found has the starting pfn */ 4469 for_each_active_range_index_in_nid(i, nid) 4470 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4471 4472 if (min_pfn == ULONG_MAX) { 4473 printk(KERN_WARNING 4474 "Could not find start_pfn for node %d\n", nid); 4475 return 0; 4476 } 4477 4478 return min_pfn; 4479 } 4480 4481 /** 4482 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4483 * 4484 * It returns the minimum PFN based on information provided via 4485 * add_active_range(). 4486 */ 4487 unsigned long __init find_min_pfn_with_active_regions(void) 4488 { 4489 return find_min_pfn_for_node(MAX_NUMNODES); 4490 } 4491 4492 /* 4493 * early_calculate_totalpages() 4494 * Sum pages in active regions for movable zone. 4495 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4496 */ 4497 static unsigned long __init early_calculate_totalpages(void) 4498 { 4499 int i; 4500 unsigned long totalpages = 0; 4501 4502 for (i = 0; i < nr_nodemap_entries; i++) { 4503 unsigned long pages = early_node_map[i].end_pfn - 4504 early_node_map[i].start_pfn; 4505 totalpages += pages; 4506 if (pages) 4507 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4508 } 4509 return totalpages; 4510 } 4511 4512 /* 4513 * Find the PFN the Movable zone begins in each node. Kernel memory 4514 * is spread evenly between nodes as long as the nodes have enough 4515 * memory. When they don't, some nodes will have more kernelcore than 4516 * others 4517 */ 4518 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4519 { 4520 int i, nid; 4521 unsigned long usable_startpfn; 4522 unsigned long kernelcore_node, kernelcore_remaining; 4523 /* save the state before borrow the nodemask */ 4524 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4525 unsigned long totalpages = early_calculate_totalpages(); 4526 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4527 4528 /* 4529 * If movablecore was specified, calculate what size of 4530 * kernelcore that corresponds so that memory usable for 4531 * any allocation type is evenly spread. If both kernelcore 4532 * and movablecore are specified, then the value of kernelcore 4533 * will be used for required_kernelcore if it's greater than 4534 * what movablecore would have allowed. 4535 */ 4536 if (required_movablecore) { 4537 unsigned long corepages; 4538 4539 /* 4540 * Round-up so that ZONE_MOVABLE is at least as large as what 4541 * was requested by the user 4542 */ 4543 required_movablecore = 4544 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4545 corepages = totalpages - required_movablecore; 4546 4547 required_kernelcore = max(required_kernelcore, corepages); 4548 } 4549 4550 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4551 if (!required_kernelcore) 4552 goto out; 4553 4554 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4555 find_usable_zone_for_movable(); 4556 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4557 4558 restart: 4559 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4560 kernelcore_node = required_kernelcore / usable_nodes; 4561 for_each_node_state(nid, N_HIGH_MEMORY) { 4562 /* 4563 * Recalculate kernelcore_node if the division per node 4564 * now exceeds what is necessary to satisfy the requested 4565 * amount of memory for the kernel 4566 */ 4567 if (required_kernelcore < kernelcore_node) 4568 kernelcore_node = required_kernelcore / usable_nodes; 4569 4570 /* 4571 * As the map is walked, we track how much memory is usable 4572 * by the kernel using kernelcore_remaining. When it is 4573 * 0, the rest of the node is usable by ZONE_MOVABLE 4574 */ 4575 kernelcore_remaining = kernelcore_node; 4576 4577 /* Go through each range of PFNs within this node */ 4578 for_each_active_range_index_in_nid(i, nid) { 4579 unsigned long start_pfn, end_pfn; 4580 unsigned long size_pages; 4581 4582 start_pfn = max(early_node_map[i].start_pfn, 4583 zone_movable_pfn[nid]); 4584 end_pfn = early_node_map[i].end_pfn; 4585 if (start_pfn >= end_pfn) 4586 continue; 4587 4588 /* Account for what is only usable for kernelcore */ 4589 if (start_pfn < usable_startpfn) { 4590 unsigned long kernel_pages; 4591 kernel_pages = min(end_pfn, usable_startpfn) 4592 - start_pfn; 4593 4594 kernelcore_remaining -= min(kernel_pages, 4595 kernelcore_remaining); 4596 required_kernelcore -= min(kernel_pages, 4597 required_kernelcore); 4598 4599 /* Continue if range is now fully accounted */ 4600 if (end_pfn <= usable_startpfn) { 4601 4602 /* 4603 * Push zone_movable_pfn to the end so 4604 * that if we have to rebalance 4605 * kernelcore across nodes, we will 4606 * not double account here 4607 */ 4608 zone_movable_pfn[nid] = end_pfn; 4609 continue; 4610 } 4611 start_pfn = usable_startpfn; 4612 } 4613 4614 /* 4615 * The usable PFN range for ZONE_MOVABLE is from 4616 * start_pfn->end_pfn. Calculate size_pages as the 4617 * number of pages used as kernelcore 4618 */ 4619 size_pages = end_pfn - start_pfn; 4620 if (size_pages > kernelcore_remaining) 4621 size_pages = kernelcore_remaining; 4622 zone_movable_pfn[nid] = start_pfn + size_pages; 4623 4624 /* 4625 * Some kernelcore has been met, update counts and 4626 * break if the kernelcore for this node has been 4627 * satisified 4628 */ 4629 required_kernelcore -= min(required_kernelcore, 4630 size_pages); 4631 kernelcore_remaining -= size_pages; 4632 if (!kernelcore_remaining) 4633 break; 4634 } 4635 } 4636 4637 /* 4638 * If there is still required_kernelcore, we do another pass with one 4639 * less node in the count. This will push zone_movable_pfn[nid] further 4640 * along on the nodes that still have memory until kernelcore is 4641 * satisified 4642 */ 4643 usable_nodes--; 4644 if (usable_nodes && required_kernelcore > usable_nodes) 4645 goto restart; 4646 4647 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4648 for (nid = 0; nid < MAX_NUMNODES; nid++) 4649 zone_movable_pfn[nid] = 4650 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4651 4652 out: 4653 /* restore the node_state */ 4654 node_states[N_HIGH_MEMORY] = saved_node_state; 4655 } 4656 4657 /* Any regular memory on that node ? */ 4658 static void check_for_regular_memory(pg_data_t *pgdat) 4659 { 4660 #ifdef CONFIG_HIGHMEM 4661 enum zone_type zone_type; 4662 4663 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4664 struct zone *zone = &pgdat->node_zones[zone_type]; 4665 if (zone->present_pages) 4666 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4667 } 4668 #endif 4669 } 4670 4671 /** 4672 * free_area_init_nodes - Initialise all pg_data_t and zone data 4673 * @max_zone_pfn: an array of max PFNs for each zone 4674 * 4675 * This will call free_area_init_node() for each active node in the system. 4676 * Using the page ranges provided by add_active_range(), the size of each 4677 * zone in each node and their holes is calculated. If the maximum PFN 4678 * between two adjacent zones match, it is assumed that the zone is empty. 4679 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4680 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4681 * starts where the previous one ended. For example, ZONE_DMA32 starts 4682 * at arch_max_dma_pfn. 4683 */ 4684 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4685 { 4686 unsigned long nid; 4687 int i; 4688 4689 /* Sort early_node_map as initialisation assumes it is sorted */ 4690 sort_node_map(); 4691 4692 /* Record where the zone boundaries are */ 4693 memset(arch_zone_lowest_possible_pfn, 0, 4694 sizeof(arch_zone_lowest_possible_pfn)); 4695 memset(arch_zone_highest_possible_pfn, 0, 4696 sizeof(arch_zone_highest_possible_pfn)); 4697 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4698 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4699 for (i = 1; i < MAX_NR_ZONES; i++) { 4700 if (i == ZONE_MOVABLE) 4701 continue; 4702 arch_zone_lowest_possible_pfn[i] = 4703 arch_zone_highest_possible_pfn[i-1]; 4704 arch_zone_highest_possible_pfn[i] = 4705 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4706 } 4707 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4708 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4709 4710 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4711 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4712 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4713 4714 /* Print out the zone ranges */ 4715 printk("Zone PFN ranges:\n"); 4716 for (i = 0; i < MAX_NR_ZONES; i++) { 4717 if (i == ZONE_MOVABLE) 4718 continue; 4719 printk(" %-8s ", zone_names[i]); 4720 if (arch_zone_lowest_possible_pfn[i] == 4721 arch_zone_highest_possible_pfn[i]) 4722 printk("empty\n"); 4723 else 4724 printk("%0#10lx -> %0#10lx\n", 4725 arch_zone_lowest_possible_pfn[i], 4726 arch_zone_highest_possible_pfn[i]); 4727 } 4728 4729 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4730 printk("Movable zone start PFN for each node\n"); 4731 for (i = 0; i < MAX_NUMNODES; i++) { 4732 if (zone_movable_pfn[i]) 4733 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4734 } 4735 4736 /* Print out the early_node_map[] */ 4737 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4738 for (i = 0; i < nr_nodemap_entries; i++) 4739 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4740 early_node_map[i].start_pfn, 4741 early_node_map[i].end_pfn); 4742 4743 /* Initialise every node */ 4744 mminit_verify_pageflags_layout(); 4745 setup_nr_node_ids(); 4746 for_each_online_node(nid) { 4747 pg_data_t *pgdat = NODE_DATA(nid); 4748 free_area_init_node(nid, NULL, 4749 find_min_pfn_for_node(nid), NULL); 4750 4751 /* Any memory on that node */ 4752 if (pgdat->node_present_pages) 4753 node_set_state(nid, N_HIGH_MEMORY); 4754 check_for_regular_memory(pgdat); 4755 } 4756 } 4757 4758 static int __init cmdline_parse_core(char *p, unsigned long *core) 4759 { 4760 unsigned long long coremem; 4761 if (!p) 4762 return -EINVAL; 4763 4764 coremem = memparse(p, &p); 4765 *core = coremem >> PAGE_SHIFT; 4766 4767 /* Paranoid check that UL is enough for the coremem value */ 4768 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4769 4770 return 0; 4771 } 4772 4773 /* 4774 * kernelcore=size sets the amount of memory for use for allocations that 4775 * cannot be reclaimed or migrated. 4776 */ 4777 static int __init cmdline_parse_kernelcore(char *p) 4778 { 4779 return cmdline_parse_core(p, &required_kernelcore); 4780 } 4781 4782 /* 4783 * movablecore=size sets the amount of memory for use for allocations that 4784 * can be reclaimed or migrated. 4785 */ 4786 static int __init cmdline_parse_movablecore(char *p) 4787 { 4788 return cmdline_parse_core(p, &required_movablecore); 4789 } 4790 4791 early_param("kernelcore", cmdline_parse_kernelcore); 4792 early_param("movablecore", cmdline_parse_movablecore); 4793 4794 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4795 4796 /** 4797 * set_dma_reserve - set the specified number of pages reserved in the first zone 4798 * @new_dma_reserve: The number of pages to mark reserved 4799 * 4800 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4801 * In the DMA zone, a significant percentage may be consumed by kernel image 4802 * and other unfreeable allocations which can skew the watermarks badly. This 4803 * function may optionally be used to account for unfreeable pages in the 4804 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4805 * smaller per-cpu batchsize. 4806 */ 4807 void __init set_dma_reserve(unsigned long new_dma_reserve) 4808 { 4809 dma_reserve = new_dma_reserve; 4810 } 4811 4812 #ifndef CONFIG_NEED_MULTIPLE_NODES 4813 struct pglist_data __refdata contig_page_data = { 4814 #ifndef CONFIG_NO_BOOTMEM 4815 .bdata = &bootmem_node_data[0] 4816 #endif 4817 }; 4818 EXPORT_SYMBOL(contig_page_data); 4819 #endif 4820 4821 void __init free_area_init(unsigned long *zones_size) 4822 { 4823 free_area_init_node(0, zones_size, 4824 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4825 } 4826 4827 static int page_alloc_cpu_notify(struct notifier_block *self, 4828 unsigned long action, void *hcpu) 4829 { 4830 int cpu = (unsigned long)hcpu; 4831 4832 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4833 drain_pages(cpu); 4834 4835 /* 4836 * Spill the event counters of the dead processor 4837 * into the current processors event counters. 4838 * This artificially elevates the count of the current 4839 * processor. 4840 */ 4841 vm_events_fold_cpu(cpu); 4842 4843 /* 4844 * Zero the differential counters of the dead processor 4845 * so that the vm statistics are consistent. 4846 * 4847 * This is only okay since the processor is dead and cannot 4848 * race with what we are doing. 4849 */ 4850 refresh_cpu_vm_stats(cpu); 4851 } 4852 return NOTIFY_OK; 4853 } 4854 4855 void __init page_alloc_init(void) 4856 { 4857 hotcpu_notifier(page_alloc_cpu_notify, 0); 4858 } 4859 4860 /* 4861 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4862 * or min_free_kbytes changes. 4863 */ 4864 static void calculate_totalreserve_pages(void) 4865 { 4866 struct pglist_data *pgdat; 4867 unsigned long reserve_pages = 0; 4868 enum zone_type i, j; 4869 4870 for_each_online_pgdat(pgdat) { 4871 for (i = 0; i < MAX_NR_ZONES; i++) { 4872 struct zone *zone = pgdat->node_zones + i; 4873 unsigned long max = 0; 4874 4875 /* Find valid and maximum lowmem_reserve in the zone */ 4876 for (j = i; j < MAX_NR_ZONES; j++) { 4877 if (zone->lowmem_reserve[j] > max) 4878 max = zone->lowmem_reserve[j]; 4879 } 4880 4881 /* we treat the high watermark as reserved pages. */ 4882 max += high_wmark_pages(zone); 4883 4884 if (max > zone->present_pages) 4885 max = zone->present_pages; 4886 reserve_pages += max; 4887 } 4888 } 4889 totalreserve_pages = reserve_pages; 4890 } 4891 4892 /* 4893 * setup_per_zone_lowmem_reserve - called whenever 4894 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4895 * has a correct pages reserved value, so an adequate number of 4896 * pages are left in the zone after a successful __alloc_pages(). 4897 */ 4898 static void setup_per_zone_lowmem_reserve(void) 4899 { 4900 struct pglist_data *pgdat; 4901 enum zone_type j, idx; 4902 4903 for_each_online_pgdat(pgdat) { 4904 for (j = 0; j < MAX_NR_ZONES; j++) { 4905 struct zone *zone = pgdat->node_zones + j; 4906 unsigned long present_pages = zone->present_pages; 4907 4908 zone->lowmem_reserve[j] = 0; 4909 4910 idx = j; 4911 while (idx) { 4912 struct zone *lower_zone; 4913 4914 idx--; 4915 4916 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4917 sysctl_lowmem_reserve_ratio[idx] = 1; 4918 4919 lower_zone = pgdat->node_zones + idx; 4920 lower_zone->lowmem_reserve[j] = present_pages / 4921 sysctl_lowmem_reserve_ratio[idx]; 4922 present_pages += lower_zone->present_pages; 4923 } 4924 } 4925 } 4926 4927 /* update totalreserve_pages */ 4928 calculate_totalreserve_pages(); 4929 } 4930 4931 /** 4932 * setup_per_zone_wmarks - called when min_free_kbytes changes 4933 * or when memory is hot-{added|removed} 4934 * 4935 * Ensures that the watermark[min,low,high] values for each zone are set 4936 * correctly with respect to min_free_kbytes. 4937 */ 4938 void setup_per_zone_wmarks(void) 4939 { 4940 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4941 unsigned long lowmem_pages = 0; 4942 struct zone *zone; 4943 unsigned long flags; 4944 4945 /* Calculate total number of !ZONE_HIGHMEM pages */ 4946 for_each_zone(zone) { 4947 if (!is_highmem(zone)) 4948 lowmem_pages += zone->present_pages; 4949 } 4950 4951 for_each_zone(zone) { 4952 u64 tmp; 4953 4954 spin_lock_irqsave(&zone->lock, flags); 4955 tmp = (u64)pages_min * zone->present_pages; 4956 do_div(tmp, lowmem_pages); 4957 if (is_highmem(zone)) { 4958 /* 4959 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4960 * need highmem pages, so cap pages_min to a small 4961 * value here. 4962 * 4963 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4964 * deltas controls asynch page reclaim, and so should 4965 * not be capped for highmem. 4966 */ 4967 int min_pages; 4968 4969 min_pages = zone->present_pages / 1024; 4970 if (min_pages < SWAP_CLUSTER_MAX) 4971 min_pages = SWAP_CLUSTER_MAX; 4972 if (min_pages > 128) 4973 min_pages = 128; 4974 zone->watermark[WMARK_MIN] = min_pages; 4975 } else { 4976 /* 4977 * If it's a lowmem zone, reserve a number of pages 4978 * proportionate to the zone's size. 4979 */ 4980 zone->watermark[WMARK_MIN] = tmp; 4981 } 4982 4983 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4984 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4985 setup_zone_migrate_reserve(zone); 4986 spin_unlock_irqrestore(&zone->lock, flags); 4987 } 4988 4989 /* update totalreserve_pages */ 4990 calculate_totalreserve_pages(); 4991 } 4992 4993 /* 4994 * The inactive anon list should be small enough that the VM never has to 4995 * do too much work, but large enough that each inactive page has a chance 4996 * to be referenced again before it is swapped out. 4997 * 4998 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4999 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5000 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5001 * the anonymous pages are kept on the inactive list. 5002 * 5003 * total target max 5004 * memory ratio inactive anon 5005 * ------------------------------------- 5006 * 10MB 1 5MB 5007 * 100MB 1 50MB 5008 * 1GB 3 250MB 5009 * 10GB 10 0.9GB 5010 * 100GB 31 3GB 5011 * 1TB 101 10GB 5012 * 10TB 320 32GB 5013 */ 5014 void calculate_zone_inactive_ratio(struct zone *zone) 5015 { 5016 unsigned int gb, ratio; 5017 5018 /* Zone size in gigabytes */ 5019 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5020 if (gb) 5021 ratio = int_sqrt(10 * gb); 5022 else 5023 ratio = 1; 5024 5025 zone->inactive_ratio = ratio; 5026 } 5027 5028 static void __init setup_per_zone_inactive_ratio(void) 5029 { 5030 struct zone *zone; 5031 5032 for_each_zone(zone) 5033 calculate_zone_inactive_ratio(zone); 5034 } 5035 5036 /* 5037 * Initialise min_free_kbytes. 5038 * 5039 * For small machines we want it small (128k min). For large machines 5040 * we want it large (64MB max). But it is not linear, because network 5041 * bandwidth does not increase linearly with machine size. We use 5042 * 5043 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5044 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5045 * 5046 * which yields 5047 * 5048 * 16MB: 512k 5049 * 32MB: 724k 5050 * 64MB: 1024k 5051 * 128MB: 1448k 5052 * 256MB: 2048k 5053 * 512MB: 2896k 5054 * 1024MB: 4096k 5055 * 2048MB: 5792k 5056 * 4096MB: 8192k 5057 * 8192MB: 11584k 5058 * 16384MB: 16384k 5059 */ 5060 static int __init init_per_zone_wmark_min(void) 5061 { 5062 unsigned long lowmem_kbytes; 5063 5064 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5065 5066 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5067 if (min_free_kbytes < 128) 5068 min_free_kbytes = 128; 5069 if (min_free_kbytes > 65536) 5070 min_free_kbytes = 65536; 5071 setup_per_zone_wmarks(); 5072 setup_per_zone_lowmem_reserve(); 5073 setup_per_zone_inactive_ratio(); 5074 return 0; 5075 } 5076 module_init(init_per_zone_wmark_min) 5077 5078 /* 5079 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5080 * that we can call two helper functions whenever min_free_kbytes 5081 * changes. 5082 */ 5083 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5084 void __user *buffer, size_t *length, loff_t *ppos) 5085 { 5086 proc_dointvec(table, write, buffer, length, ppos); 5087 if (write) 5088 setup_per_zone_wmarks(); 5089 return 0; 5090 } 5091 5092 #ifdef CONFIG_NUMA 5093 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5094 void __user *buffer, size_t *length, loff_t *ppos) 5095 { 5096 struct zone *zone; 5097 int rc; 5098 5099 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5100 if (rc) 5101 return rc; 5102 5103 for_each_zone(zone) 5104 zone->min_unmapped_pages = (zone->present_pages * 5105 sysctl_min_unmapped_ratio) / 100; 5106 return 0; 5107 } 5108 5109 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5110 void __user *buffer, size_t *length, loff_t *ppos) 5111 { 5112 struct zone *zone; 5113 int rc; 5114 5115 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5116 if (rc) 5117 return rc; 5118 5119 for_each_zone(zone) 5120 zone->min_slab_pages = (zone->present_pages * 5121 sysctl_min_slab_ratio) / 100; 5122 return 0; 5123 } 5124 #endif 5125 5126 /* 5127 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5128 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5129 * whenever sysctl_lowmem_reserve_ratio changes. 5130 * 5131 * The reserve ratio obviously has absolutely no relation with the 5132 * minimum watermarks. The lowmem reserve ratio can only make sense 5133 * if in function of the boot time zone sizes. 5134 */ 5135 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5136 void __user *buffer, size_t *length, loff_t *ppos) 5137 { 5138 proc_dointvec_minmax(table, write, buffer, length, ppos); 5139 setup_per_zone_lowmem_reserve(); 5140 return 0; 5141 } 5142 5143 /* 5144 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5145 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5146 * can have before it gets flushed back to buddy allocator. 5147 */ 5148 5149 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5150 void __user *buffer, size_t *length, loff_t *ppos) 5151 { 5152 struct zone *zone; 5153 unsigned int cpu; 5154 int ret; 5155 5156 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5157 if (!write || (ret == -EINVAL)) 5158 return ret; 5159 for_each_populated_zone(zone) { 5160 for_each_possible_cpu(cpu) { 5161 unsigned long high; 5162 high = zone->present_pages / percpu_pagelist_fraction; 5163 setup_pagelist_highmark( 5164 per_cpu_ptr(zone->pageset, cpu), high); 5165 } 5166 } 5167 return 0; 5168 } 5169 5170 int hashdist = HASHDIST_DEFAULT; 5171 5172 #ifdef CONFIG_NUMA 5173 static int __init set_hashdist(char *str) 5174 { 5175 if (!str) 5176 return 0; 5177 hashdist = simple_strtoul(str, &str, 0); 5178 return 1; 5179 } 5180 __setup("hashdist=", set_hashdist); 5181 #endif 5182 5183 /* 5184 * allocate a large system hash table from bootmem 5185 * - it is assumed that the hash table must contain an exact power-of-2 5186 * quantity of entries 5187 * - limit is the number of hash buckets, not the total allocation size 5188 */ 5189 void *__init alloc_large_system_hash(const char *tablename, 5190 unsigned long bucketsize, 5191 unsigned long numentries, 5192 int scale, 5193 int flags, 5194 unsigned int *_hash_shift, 5195 unsigned int *_hash_mask, 5196 unsigned long limit) 5197 { 5198 unsigned long long max = limit; 5199 unsigned long log2qty, size; 5200 void *table = NULL; 5201 5202 /* allow the kernel cmdline to have a say */ 5203 if (!numentries) { 5204 /* round applicable memory size up to nearest megabyte */ 5205 numentries = nr_kernel_pages; 5206 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5207 numentries >>= 20 - PAGE_SHIFT; 5208 numentries <<= 20 - PAGE_SHIFT; 5209 5210 /* limit to 1 bucket per 2^scale bytes of low memory */ 5211 if (scale > PAGE_SHIFT) 5212 numentries >>= (scale - PAGE_SHIFT); 5213 else 5214 numentries <<= (PAGE_SHIFT - scale); 5215 5216 /* Make sure we've got at least a 0-order allocation.. */ 5217 if (unlikely(flags & HASH_SMALL)) { 5218 /* Makes no sense without HASH_EARLY */ 5219 WARN_ON(!(flags & HASH_EARLY)); 5220 if (!(numentries >> *_hash_shift)) { 5221 numentries = 1UL << *_hash_shift; 5222 BUG_ON(!numentries); 5223 } 5224 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5225 numentries = PAGE_SIZE / bucketsize; 5226 } 5227 numentries = roundup_pow_of_two(numentries); 5228 5229 /* limit allocation size to 1/16 total memory by default */ 5230 if (max == 0) { 5231 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5232 do_div(max, bucketsize); 5233 } 5234 5235 if (numentries > max) 5236 numentries = max; 5237 5238 log2qty = ilog2(numentries); 5239 5240 do { 5241 size = bucketsize << log2qty; 5242 if (flags & HASH_EARLY) 5243 table = alloc_bootmem_nopanic(size); 5244 else if (hashdist) 5245 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5246 else { 5247 /* 5248 * If bucketsize is not a power-of-two, we may free 5249 * some pages at the end of hash table which 5250 * alloc_pages_exact() automatically does 5251 */ 5252 if (get_order(size) < MAX_ORDER) { 5253 table = alloc_pages_exact(size, GFP_ATOMIC); 5254 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5255 } 5256 } 5257 } while (!table && size > PAGE_SIZE && --log2qty); 5258 5259 if (!table) 5260 panic("Failed to allocate %s hash table\n", tablename); 5261 5262 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5263 tablename, 5264 (1UL << log2qty), 5265 ilog2(size) - PAGE_SHIFT, 5266 size); 5267 5268 if (_hash_shift) 5269 *_hash_shift = log2qty; 5270 if (_hash_mask) 5271 *_hash_mask = (1 << log2qty) - 1; 5272 5273 return table; 5274 } 5275 5276 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5277 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5278 unsigned long pfn) 5279 { 5280 #ifdef CONFIG_SPARSEMEM 5281 return __pfn_to_section(pfn)->pageblock_flags; 5282 #else 5283 return zone->pageblock_flags; 5284 #endif /* CONFIG_SPARSEMEM */ 5285 } 5286 5287 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5288 { 5289 #ifdef CONFIG_SPARSEMEM 5290 pfn &= (PAGES_PER_SECTION-1); 5291 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5292 #else 5293 pfn = pfn - zone->zone_start_pfn; 5294 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5295 #endif /* CONFIG_SPARSEMEM */ 5296 } 5297 5298 /** 5299 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5300 * @page: The page within the block of interest 5301 * @start_bitidx: The first bit of interest to retrieve 5302 * @end_bitidx: The last bit of interest 5303 * returns pageblock_bits flags 5304 */ 5305 unsigned long get_pageblock_flags_group(struct page *page, 5306 int start_bitidx, int end_bitidx) 5307 { 5308 struct zone *zone; 5309 unsigned long *bitmap; 5310 unsigned long pfn, bitidx; 5311 unsigned long flags = 0; 5312 unsigned long value = 1; 5313 5314 zone = page_zone(page); 5315 pfn = page_to_pfn(page); 5316 bitmap = get_pageblock_bitmap(zone, pfn); 5317 bitidx = pfn_to_bitidx(zone, pfn); 5318 5319 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5320 if (test_bit(bitidx + start_bitidx, bitmap)) 5321 flags |= value; 5322 5323 return flags; 5324 } 5325 5326 /** 5327 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5328 * @page: The page within the block of interest 5329 * @start_bitidx: The first bit of interest 5330 * @end_bitidx: The last bit of interest 5331 * @flags: The flags to set 5332 */ 5333 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5334 int start_bitidx, int end_bitidx) 5335 { 5336 struct zone *zone; 5337 unsigned long *bitmap; 5338 unsigned long pfn, bitidx; 5339 unsigned long value = 1; 5340 5341 zone = page_zone(page); 5342 pfn = page_to_pfn(page); 5343 bitmap = get_pageblock_bitmap(zone, pfn); 5344 bitidx = pfn_to_bitidx(zone, pfn); 5345 VM_BUG_ON(pfn < zone->zone_start_pfn); 5346 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5347 5348 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5349 if (flags & value) 5350 __set_bit(bitidx + start_bitidx, bitmap); 5351 else 5352 __clear_bit(bitidx + start_bitidx, bitmap); 5353 } 5354 5355 /* 5356 * This is designed as sub function...plz see page_isolation.c also. 5357 * set/clear page block's type to be ISOLATE. 5358 * page allocater never alloc memory from ISOLATE block. 5359 */ 5360 5361 static int 5362 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5363 { 5364 unsigned long pfn, iter, found; 5365 /* 5366 * For avoiding noise data, lru_add_drain_all() should be called 5367 * If ZONE_MOVABLE, the zone never contains immobile pages 5368 */ 5369 if (zone_idx(zone) == ZONE_MOVABLE) 5370 return true; 5371 5372 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5373 return true; 5374 5375 pfn = page_to_pfn(page); 5376 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5377 unsigned long check = pfn + iter; 5378 5379 if (!pfn_valid_within(check)) 5380 continue; 5381 5382 page = pfn_to_page(check); 5383 if (!page_count(page)) { 5384 if (PageBuddy(page)) 5385 iter += (1 << page_order(page)) - 1; 5386 continue; 5387 } 5388 if (!PageLRU(page)) 5389 found++; 5390 /* 5391 * If there are RECLAIMABLE pages, we need to check it. 5392 * But now, memory offline itself doesn't call shrink_slab() 5393 * and it still to be fixed. 5394 */ 5395 /* 5396 * If the page is not RAM, page_count()should be 0. 5397 * we don't need more check. This is an _used_ not-movable page. 5398 * 5399 * The problematic thing here is PG_reserved pages. PG_reserved 5400 * is set to both of a memory hole page and a _used_ kernel 5401 * page at boot. 5402 */ 5403 if (found > count) 5404 return false; 5405 } 5406 return true; 5407 } 5408 5409 bool is_pageblock_removable_nolock(struct page *page) 5410 { 5411 struct zone *zone = page_zone(page); 5412 return __count_immobile_pages(zone, page, 0); 5413 } 5414 5415 int set_migratetype_isolate(struct page *page) 5416 { 5417 struct zone *zone; 5418 unsigned long flags, pfn; 5419 struct memory_isolate_notify arg; 5420 int notifier_ret; 5421 int ret = -EBUSY; 5422 int zone_idx; 5423 5424 zone = page_zone(page); 5425 zone_idx = zone_idx(zone); 5426 5427 spin_lock_irqsave(&zone->lock, flags); 5428 5429 pfn = page_to_pfn(page); 5430 arg.start_pfn = pfn; 5431 arg.nr_pages = pageblock_nr_pages; 5432 arg.pages_found = 0; 5433 5434 /* 5435 * It may be possible to isolate a pageblock even if the 5436 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5437 * notifier chain is used by balloon drivers to return the 5438 * number of pages in a range that are held by the balloon 5439 * driver to shrink memory. If all the pages are accounted for 5440 * by balloons, are free, or on the LRU, isolation can continue. 5441 * Later, for example, when memory hotplug notifier runs, these 5442 * pages reported as "can be isolated" should be isolated(freed) 5443 * by the balloon driver through the memory notifier chain. 5444 */ 5445 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5446 notifier_ret = notifier_to_errno(notifier_ret); 5447 if (notifier_ret) 5448 goto out; 5449 /* 5450 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5451 * We just check MOVABLE pages. 5452 */ 5453 if (__count_immobile_pages(zone, page, arg.pages_found)) 5454 ret = 0; 5455 5456 /* 5457 * immobile means "not-on-lru" paes. If immobile is larger than 5458 * removable-by-driver pages reported by notifier, we'll fail. 5459 */ 5460 5461 out: 5462 if (!ret) { 5463 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5464 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5465 } 5466 5467 spin_unlock_irqrestore(&zone->lock, flags); 5468 if (!ret) 5469 drain_all_pages(); 5470 return ret; 5471 } 5472 5473 void unset_migratetype_isolate(struct page *page) 5474 { 5475 struct zone *zone; 5476 unsigned long flags; 5477 zone = page_zone(page); 5478 spin_lock_irqsave(&zone->lock, flags); 5479 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5480 goto out; 5481 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5482 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5483 out: 5484 spin_unlock_irqrestore(&zone->lock, flags); 5485 } 5486 5487 #ifdef CONFIG_MEMORY_HOTREMOVE 5488 /* 5489 * All pages in the range must be isolated before calling this. 5490 */ 5491 void 5492 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5493 { 5494 struct page *page; 5495 struct zone *zone; 5496 int order, i; 5497 unsigned long pfn; 5498 unsigned long flags; 5499 /* find the first valid pfn */ 5500 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5501 if (pfn_valid(pfn)) 5502 break; 5503 if (pfn == end_pfn) 5504 return; 5505 zone = page_zone(pfn_to_page(pfn)); 5506 spin_lock_irqsave(&zone->lock, flags); 5507 pfn = start_pfn; 5508 while (pfn < end_pfn) { 5509 if (!pfn_valid(pfn)) { 5510 pfn++; 5511 continue; 5512 } 5513 page = pfn_to_page(pfn); 5514 BUG_ON(page_count(page)); 5515 BUG_ON(!PageBuddy(page)); 5516 order = page_order(page); 5517 #ifdef CONFIG_DEBUG_VM 5518 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5519 pfn, 1 << order, end_pfn); 5520 #endif 5521 list_del(&page->lru); 5522 rmv_page_order(page); 5523 zone->free_area[order].nr_free--; 5524 __mod_zone_page_state(zone, NR_FREE_PAGES, 5525 - (1UL << order)); 5526 for (i = 0; i < (1 << order); i++) 5527 SetPageReserved((page+i)); 5528 pfn += (1 << order); 5529 } 5530 spin_unlock_irqrestore(&zone->lock, flags); 5531 } 5532 #endif 5533 5534 #ifdef CONFIG_MEMORY_FAILURE 5535 bool is_free_buddy_page(struct page *page) 5536 { 5537 struct zone *zone = page_zone(page); 5538 unsigned long pfn = page_to_pfn(page); 5539 unsigned long flags; 5540 int order; 5541 5542 spin_lock_irqsave(&zone->lock, flags); 5543 for (order = 0; order < MAX_ORDER; order++) { 5544 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5545 5546 if (PageBuddy(page_head) && page_order(page_head) >= order) 5547 break; 5548 } 5549 spin_unlock_irqrestore(&zone->lock, flags); 5550 5551 return order < MAX_ORDER; 5552 } 5553 #endif 5554 5555 static struct trace_print_flags pageflag_names[] = { 5556 {1UL << PG_locked, "locked" }, 5557 {1UL << PG_error, "error" }, 5558 {1UL << PG_referenced, "referenced" }, 5559 {1UL << PG_uptodate, "uptodate" }, 5560 {1UL << PG_dirty, "dirty" }, 5561 {1UL << PG_lru, "lru" }, 5562 {1UL << PG_active, "active" }, 5563 {1UL << PG_slab, "slab" }, 5564 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5565 {1UL << PG_arch_1, "arch_1" }, 5566 {1UL << PG_reserved, "reserved" }, 5567 {1UL << PG_private, "private" }, 5568 {1UL << PG_private_2, "private_2" }, 5569 {1UL << PG_writeback, "writeback" }, 5570 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5571 {1UL << PG_head, "head" }, 5572 {1UL << PG_tail, "tail" }, 5573 #else 5574 {1UL << PG_compound, "compound" }, 5575 #endif 5576 {1UL << PG_swapcache, "swapcache" }, 5577 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5578 {1UL << PG_reclaim, "reclaim" }, 5579 {1UL << PG_swapbacked, "swapbacked" }, 5580 {1UL << PG_unevictable, "unevictable" }, 5581 #ifdef CONFIG_MMU 5582 {1UL << PG_mlocked, "mlocked" }, 5583 #endif 5584 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5585 {1UL << PG_uncached, "uncached" }, 5586 #endif 5587 #ifdef CONFIG_MEMORY_FAILURE 5588 {1UL << PG_hwpoison, "hwpoison" }, 5589 #endif 5590 {-1UL, NULL }, 5591 }; 5592 5593 static void dump_page_flags(unsigned long flags) 5594 { 5595 const char *delim = ""; 5596 unsigned long mask; 5597 int i; 5598 5599 printk(KERN_ALERT "page flags: %#lx(", flags); 5600 5601 /* remove zone id */ 5602 flags &= (1UL << NR_PAGEFLAGS) - 1; 5603 5604 for (i = 0; pageflag_names[i].name && flags; i++) { 5605 5606 mask = pageflag_names[i].mask; 5607 if ((flags & mask) != mask) 5608 continue; 5609 5610 flags &= ~mask; 5611 printk("%s%s", delim, pageflag_names[i].name); 5612 delim = "|"; 5613 } 5614 5615 /* check for left over flags */ 5616 if (flags) 5617 printk("%s%#lx", delim, flags); 5618 5619 printk(")\n"); 5620 } 5621 5622 void dump_page(struct page *page) 5623 { 5624 printk(KERN_ALERT 5625 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5626 page, atomic_read(&page->_count), page_mapcount(page), 5627 page->mapping, page->index); 5628 dump_page_flags(page->flags); 5629 } 5630