xref: /openbmc/linux/mm/page_alloc.c (revision 46c039d0)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 struct pcpu_drain {
101 	struct zone *zone;
102 	struct work_struct work;
103 };
104 DEFINE_MUTEX(pcpu_drain_mutex);
105 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106 
107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108 volatile unsigned long latent_entropy __latent_entropy;
109 EXPORT_SYMBOL(latent_entropy);
110 #endif
111 
112 /*
113  * Array of node states.
114  */
115 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 	[N_POSSIBLE] = NODE_MASK_ALL,
117 	[N_ONLINE] = { { [0] = 1UL } },
118 #ifndef CONFIG_NUMA
119 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
120 #ifdef CONFIG_HIGHMEM
121 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 #endif
123 	[N_MEMORY] = { { [0] = 1UL } },
124 	[N_CPU] = { { [0] = 1UL } },
125 #endif	/* NUMA */
126 };
127 EXPORT_SYMBOL(node_states);
128 
129 atomic_long_t _totalram_pages __read_mostly;
130 EXPORT_SYMBOL(_totalram_pages);
131 unsigned long totalreserve_pages __read_mostly;
132 unsigned long totalcma_pages __read_mostly;
133 
134 int percpu_pagelist_fraction;
135 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136 
137 /*
138  * A cached value of the page's pageblock's migratetype, used when the page is
139  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141  * Also the migratetype set in the page does not necessarily match the pcplist
142  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143  * other index - this ensures that it will be put on the correct CMA freelist.
144  */
145 static inline int get_pcppage_migratetype(struct page *page)
146 {
147 	return page->index;
148 }
149 
150 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151 {
152 	page->index = migratetype;
153 }
154 
155 #ifdef CONFIG_PM_SLEEP
156 /*
157  * The following functions are used by the suspend/hibernate code to temporarily
158  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159  * while devices are suspended.  To avoid races with the suspend/hibernate code,
160  * they should always be called with system_transition_mutex held
161  * (gfp_allowed_mask also should only be modified with system_transition_mutex
162  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163  * with that modification).
164  */
165 
166 static gfp_t saved_gfp_mask;
167 
168 void pm_restore_gfp_mask(void)
169 {
170 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 	if (saved_gfp_mask) {
172 		gfp_allowed_mask = saved_gfp_mask;
173 		saved_gfp_mask = 0;
174 	}
175 }
176 
177 void pm_restrict_gfp_mask(void)
178 {
179 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 	WARN_ON(saved_gfp_mask);
181 	saved_gfp_mask = gfp_allowed_mask;
182 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183 }
184 
185 bool pm_suspended_storage(void)
186 {
187 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 		return false;
189 	return true;
190 }
191 #endif /* CONFIG_PM_SLEEP */
192 
193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194 unsigned int pageblock_order __read_mostly;
195 #endif
196 
197 static void __free_pages_ok(struct page *page, unsigned int order);
198 
199 /*
200  * results with 256, 32 in the lowmem_reserve sysctl:
201  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202  *	1G machine -> (16M dma, 784M normal, 224M high)
203  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
205  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
206  *
207  * TBD: should special case ZONE_DMA32 machines here - in those we normally
208  * don't need any ZONE_NORMAL reservation
209  */
210 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 	[ZONE_DMA] = 256,
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 	[ZONE_DMA32] = 256,
216 #endif
217 	[ZONE_NORMAL] = 32,
218 #ifdef CONFIG_HIGHMEM
219 	[ZONE_HIGHMEM] = 0,
220 #endif
221 	[ZONE_MOVABLE] = 0,
222 };
223 
224 EXPORT_SYMBOL(totalram_pages);
225 
226 static char * const zone_names[MAX_NR_ZONES] = {
227 #ifdef CONFIG_ZONE_DMA
228 	 "DMA",
229 #endif
230 #ifdef CONFIG_ZONE_DMA32
231 	 "DMA32",
232 #endif
233 	 "Normal",
234 #ifdef CONFIG_HIGHMEM
235 	 "HighMem",
236 #endif
237 	 "Movable",
238 #ifdef CONFIG_ZONE_DEVICE
239 	 "Device",
240 #endif
241 };
242 
243 const char * const migratetype_names[MIGRATE_TYPES] = {
244 	"Unmovable",
245 	"Movable",
246 	"Reclaimable",
247 	"HighAtomic",
248 #ifdef CONFIG_CMA
249 	"CMA",
250 #endif
251 #ifdef CONFIG_MEMORY_ISOLATION
252 	"Isolate",
253 #endif
254 };
255 
256 compound_page_dtor * const compound_page_dtors[] = {
257 	NULL,
258 	free_compound_page,
259 #ifdef CONFIG_HUGETLB_PAGE
260 	free_huge_page,
261 #endif
262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 	free_transhuge_page,
264 #endif
265 };
266 
267 int min_free_kbytes = 1024;
268 int user_min_free_kbytes = -1;
269 int watermark_boost_factor __read_mostly = 15000;
270 int watermark_scale_factor = 10;
271 
272 static unsigned long nr_kernel_pages __initdata;
273 static unsigned long nr_all_pages __initdata;
274 static unsigned long dma_reserve __initdata;
275 
276 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
277 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
278 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
279 static unsigned long required_kernelcore __initdata;
280 static unsigned long required_kernelcore_percent __initdata;
281 static unsigned long required_movablecore __initdata;
282 static unsigned long required_movablecore_percent __initdata;
283 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
284 static bool mirrored_kernelcore __meminitdata;
285 
286 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
287 int movable_zone;
288 EXPORT_SYMBOL(movable_zone);
289 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
290 
291 #if MAX_NUMNODES > 1
292 int nr_node_ids __read_mostly = MAX_NUMNODES;
293 int nr_online_nodes __read_mostly = 1;
294 EXPORT_SYMBOL(nr_node_ids);
295 EXPORT_SYMBOL(nr_online_nodes);
296 #endif
297 
298 int page_group_by_mobility_disabled __read_mostly;
299 
300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
301 /*
302  * During boot we initialize deferred pages on-demand, as needed, but once
303  * page_alloc_init_late() has finished, the deferred pages are all initialized,
304  * and we can permanently disable that path.
305  */
306 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
307 
308 /*
309  * Calling kasan_free_pages() only after deferred memory initialization
310  * has completed. Poisoning pages during deferred memory init will greatly
311  * lengthen the process and cause problem in large memory systems as the
312  * deferred pages initialization is done with interrupt disabled.
313  *
314  * Assuming that there will be no reference to those newly initialized
315  * pages before they are ever allocated, this should have no effect on
316  * KASAN memory tracking as the poison will be properly inserted at page
317  * allocation time. The only corner case is when pages are allocated by
318  * on-demand allocation and then freed again before the deferred pages
319  * initialization is done, but this is not likely to happen.
320  */
321 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
322 {
323 	if (!static_branch_unlikely(&deferred_pages))
324 		kasan_free_pages(page, order);
325 }
326 
327 /* Returns true if the struct page for the pfn is uninitialised */
328 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
329 {
330 	int nid = early_pfn_to_nid(pfn);
331 
332 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
333 		return true;
334 
335 	return false;
336 }
337 
338 /*
339  * Returns true when the remaining initialisation should be deferred until
340  * later in the boot cycle when it can be parallelised.
341  */
342 static bool __meminit
343 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344 {
345 	static unsigned long prev_end_pfn, nr_initialised;
346 
347 	/*
348 	 * prev_end_pfn static that contains the end of previous zone
349 	 * No need to protect because called very early in boot before smp_init.
350 	 */
351 	if (prev_end_pfn != end_pfn) {
352 		prev_end_pfn = end_pfn;
353 		nr_initialised = 0;
354 	}
355 
356 	/* Always populate low zones for address-constrained allocations */
357 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
358 		return false;
359 
360 	/*
361 	 * We start only with one section of pages, more pages are added as
362 	 * needed until the rest of deferred pages are initialized.
363 	 */
364 	nr_initialised++;
365 	if ((nr_initialised > PAGES_PER_SECTION) &&
366 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
367 		NODE_DATA(nid)->first_deferred_pfn = pfn;
368 		return true;
369 	}
370 	return false;
371 }
372 #else
373 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
374 
375 static inline bool early_page_uninitialised(unsigned long pfn)
376 {
377 	return false;
378 }
379 
380 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
381 {
382 	return false;
383 }
384 #endif
385 
386 /* Return a pointer to the bitmap storing bits affecting a block of pages */
387 static inline unsigned long *get_pageblock_bitmap(struct page *page,
388 							unsigned long pfn)
389 {
390 #ifdef CONFIG_SPARSEMEM
391 	return __pfn_to_section(pfn)->pageblock_flags;
392 #else
393 	return page_zone(page)->pageblock_flags;
394 #endif /* CONFIG_SPARSEMEM */
395 }
396 
397 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
398 {
399 #ifdef CONFIG_SPARSEMEM
400 	pfn &= (PAGES_PER_SECTION-1);
401 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
402 #else
403 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
404 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
405 #endif /* CONFIG_SPARSEMEM */
406 }
407 
408 /**
409  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
410  * @page: The page within the block of interest
411  * @pfn: The target page frame number
412  * @end_bitidx: The last bit of interest to retrieve
413  * @mask: mask of bits that the caller is interested in
414  *
415  * Return: pageblock_bits flags
416  */
417 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
418 					unsigned long pfn,
419 					unsigned long end_bitidx,
420 					unsigned long mask)
421 {
422 	unsigned long *bitmap;
423 	unsigned long bitidx, word_bitidx;
424 	unsigned long word;
425 
426 	bitmap = get_pageblock_bitmap(page, pfn);
427 	bitidx = pfn_to_bitidx(page, pfn);
428 	word_bitidx = bitidx / BITS_PER_LONG;
429 	bitidx &= (BITS_PER_LONG-1);
430 
431 	word = bitmap[word_bitidx];
432 	bitidx += end_bitidx;
433 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
434 }
435 
436 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
437 					unsigned long end_bitidx,
438 					unsigned long mask)
439 {
440 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
441 }
442 
443 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
444 {
445 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
446 }
447 
448 /**
449  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
450  * @page: The page within the block of interest
451  * @flags: The flags to set
452  * @pfn: The target page frame number
453  * @end_bitidx: The last bit of interest
454  * @mask: mask of bits that the caller is interested in
455  */
456 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
457 					unsigned long pfn,
458 					unsigned long end_bitidx,
459 					unsigned long mask)
460 {
461 	unsigned long *bitmap;
462 	unsigned long bitidx, word_bitidx;
463 	unsigned long old_word, word;
464 
465 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
466 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
467 
468 	bitmap = get_pageblock_bitmap(page, pfn);
469 	bitidx = pfn_to_bitidx(page, pfn);
470 	word_bitidx = bitidx / BITS_PER_LONG;
471 	bitidx &= (BITS_PER_LONG-1);
472 
473 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
474 
475 	bitidx += end_bitidx;
476 	mask <<= (BITS_PER_LONG - bitidx - 1);
477 	flags <<= (BITS_PER_LONG - bitidx - 1);
478 
479 	word = READ_ONCE(bitmap[word_bitidx]);
480 	for (;;) {
481 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
482 		if (word == old_word)
483 			break;
484 		word = old_word;
485 	}
486 }
487 
488 void set_pageblock_migratetype(struct page *page, int migratetype)
489 {
490 	if (unlikely(page_group_by_mobility_disabled &&
491 		     migratetype < MIGRATE_PCPTYPES))
492 		migratetype = MIGRATE_UNMOVABLE;
493 
494 	set_pageblock_flags_group(page, (unsigned long)migratetype,
495 					PB_migrate, PB_migrate_end);
496 }
497 
498 #ifdef CONFIG_DEBUG_VM
499 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
500 {
501 	int ret = 0;
502 	unsigned seq;
503 	unsigned long pfn = page_to_pfn(page);
504 	unsigned long sp, start_pfn;
505 
506 	do {
507 		seq = zone_span_seqbegin(zone);
508 		start_pfn = zone->zone_start_pfn;
509 		sp = zone->spanned_pages;
510 		if (!zone_spans_pfn(zone, pfn))
511 			ret = 1;
512 	} while (zone_span_seqretry(zone, seq));
513 
514 	if (ret)
515 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
516 			pfn, zone_to_nid(zone), zone->name,
517 			start_pfn, start_pfn + sp);
518 
519 	return ret;
520 }
521 
522 static int page_is_consistent(struct zone *zone, struct page *page)
523 {
524 	if (!pfn_valid_within(page_to_pfn(page)))
525 		return 0;
526 	if (zone != page_zone(page))
527 		return 0;
528 
529 	return 1;
530 }
531 /*
532  * Temporary debugging check for pages not lying within a given zone.
533  */
534 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 {
536 	if (page_outside_zone_boundaries(zone, page))
537 		return 1;
538 	if (!page_is_consistent(zone, page))
539 		return 1;
540 
541 	return 0;
542 }
543 #else
544 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
545 {
546 	return 0;
547 }
548 #endif
549 
550 static void bad_page(struct page *page, const char *reason,
551 		unsigned long bad_flags)
552 {
553 	static unsigned long resume;
554 	static unsigned long nr_shown;
555 	static unsigned long nr_unshown;
556 
557 	/*
558 	 * Allow a burst of 60 reports, then keep quiet for that minute;
559 	 * or allow a steady drip of one report per second.
560 	 */
561 	if (nr_shown == 60) {
562 		if (time_before(jiffies, resume)) {
563 			nr_unshown++;
564 			goto out;
565 		}
566 		if (nr_unshown) {
567 			pr_alert(
568 			      "BUG: Bad page state: %lu messages suppressed\n",
569 				nr_unshown);
570 			nr_unshown = 0;
571 		}
572 		nr_shown = 0;
573 	}
574 	if (nr_shown++ == 0)
575 		resume = jiffies + 60 * HZ;
576 
577 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
578 		current->comm, page_to_pfn(page));
579 	__dump_page(page, reason);
580 	bad_flags &= page->flags;
581 	if (bad_flags)
582 		pr_alert("bad because of flags: %#lx(%pGp)\n",
583 						bad_flags, &bad_flags);
584 	dump_page_owner(page);
585 
586 	print_modules();
587 	dump_stack();
588 out:
589 	/* Leave bad fields for debug, except PageBuddy could make trouble */
590 	page_mapcount_reset(page); /* remove PageBuddy */
591 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592 }
593 
594 /*
595  * Higher-order pages are called "compound pages".  They are structured thusly:
596  *
597  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
598  *
599  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
600  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
601  *
602  * The first tail page's ->compound_dtor holds the offset in array of compound
603  * page destructors. See compound_page_dtors.
604  *
605  * The first tail page's ->compound_order holds the order of allocation.
606  * This usage means that zero-order pages may not be compound.
607  */
608 
609 void free_compound_page(struct page *page)
610 {
611 	__free_pages_ok(page, compound_order(page));
612 }
613 
614 void prep_compound_page(struct page *page, unsigned int order)
615 {
616 	int i;
617 	int nr_pages = 1 << order;
618 
619 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
620 	set_compound_order(page, order);
621 	__SetPageHead(page);
622 	for (i = 1; i < nr_pages; i++) {
623 		struct page *p = page + i;
624 		set_page_count(p, 0);
625 		p->mapping = TAIL_MAPPING;
626 		set_compound_head(p, page);
627 	}
628 	atomic_set(compound_mapcount_ptr(page), -1);
629 }
630 
631 #ifdef CONFIG_DEBUG_PAGEALLOC
632 unsigned int _debug_guardpage_minorder;
633 bool _debug_pagealloc_enabled __read_mostly
634 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
635 EXPORT_SYMBOL(_debug_pagealloc_enabled);
636 bool _debug_guardpage_enabled __read_mostly;
637 
638 static int __init early_debug_pagealloc(char *buf)
639 {
640 	if (!buf)
641 		return -EINVAL;
642 	return kstrtobool(buf, &_debug_pagealloc_enabled);
643 }
644 early_param("debug_pagealloc", early_debug_pagealloc);
645 
646 static bool need_debug_guardpage(void)
647 {
648 	/* If we don't use debug_pagealloc, we don't need guard page */
649 	if (!debug_pagealloc_enabled())
650 		return false;
651 
652 	if (!debug_guardpage_minorder())
653 		return false;
654 
655 	return true;
656 }
657 
658 static void init_debug_guardpage(void)
659 {
660 	if (!debug_pagealloc_enabled())
661 		return;
662 
663 	if (!debug_guardpage_minorder())
664 		return;
665 
666 	_debug_guardpage_enabled = true;
667 }
668 
669 struct page_ext_operations debug_guardpage_ops = {
670 	.need = need_debug_guardpage,
671 	.init = init_debug_guardpage,
672 };
673 
674 static int __init debug_guardpage_minorder_setup(char *buf)
675 {
676 	unsigned long res;
677 
678 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
679 		pr_err("Bad debug_guardpage_minorder value\n");
680 		return 0;
681 	}
682 	_debug_guardpage_minorder = res;
683 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
684 	return 0;
685 }
686 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
687 
688 static inline bool set_page_guard(struct zone *zone, struct page *page,
689 				unsigned int order, int migratetype)
690 {
691 	struct page_ext *page_ext;
692 
693 	if (!debug_guardpage_enabled())
694 		return false;
695 
696 	if (order >= debug_guardpage_minorder())
697 		return false;
698 
699 	page_ext = lookup_page_ext(page);
700 	if (unlikely(!page_ext))
701 		return false;
702 
703 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704 
705 	INIT_LIST_HEAD(&page->lru);
706 	set_page_private(page, order);
707 	/* Guard pages are not available for any usage */
708 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
709 
710 	return true;
711 }
712 
713 static inline void clear_page_guard(struct zone *zone, struct page *page,
714 				unsigned int order, int migratetype)
715 {
716 	struct page_ext *page_ext;
717 
718 	if (!debug_guardpage_enabled())
719 		return;
720 
721 	page_ext = lookup_page_ext(page);
722 	if (unlikely(!page_ext))
723 		return;
724 
725 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
726 
727 	set_page_private(page, 0);
728 	if (!is_migrate_isolate(migratetype))
729 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
730 }
731 #else
732 struct page_ext_operations debug_guardpage_ops;
733 static inline bool set_page_guard(struct zone *zone, struct page *page,
734 			unsigned int order, int migratetype) { return false; }
735 static inline void clear_page_guard(struct zone *zone, struct page *page,
736 				unsigned int order, int migratetype) {}
737 #endif
738 
739 static inline void set_page_order(struct page *page, unsigned int order)
740 {
741 	set_page_private(page, order);
742 	__SetPageBuddy(page);
743 }
744 
745 static inline void rmv_page_order(struct page *page)
746 {
747 	__ClearPageBuddy(page);
748 	set_page_private(page, 0);
749 }
750 
751 /*
752  * This function checks whether a page is free && is the buddy
753  * we can coalesce a page and its buddy if
754  * (a) the buddy is not in a hole (check before calling!) &&
755  * (b) the buddy is in the buddy system &&
756  * (c) a page and its buddy have the same order &&
757  * (d) a page and its buddy are in the same zone.
758  *
759  * For recording whether a page is in the buddy system, we set PageBuddy.
760  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
761  *
762  * For recording page's order, we use page_private(page).
763  */
764 static inline int page_is_buddy(struct page *page, struct page *buddy,
765 							unsigned int order)
766 {
767 	if (page_is_guard(buddy) && page_order(buddy) == order) {
768 		if (page_zone_id(page) != page_zone_id(buddy))
769 			return 0;
770 
771 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
772 
773 		return 1;
774 	}
775 
776 	if (PageBuddy(buddy) && page_order(buddy) == order) {
777 		/*
778 		 * zone check is done late to avoid uselessly
779 		 * calculating zone/node ids for pages that could
780 		 * never merge.
781 		 */
782 		if (page_zone_id(page) != page_zone_id(buddy))
783 			return 0;
784 
785 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
786 
787 		return 1;
788 	}
789 	return 0;
790 }
791 
792 /*
793  * Freeing function for a buddy system allocator.
794  *
795  * The concept of a buddy system is to maintain direct-mapped table
796  * (containing bit values) for memory blocks of various "orders".
797  * The bottom level table contains the map for the smallest allocatable
798  * units of memory (here, pages), and each level above it describes
799  * pairs of units from the levels below, hence, "buddies".
800  * At a high level, all that happens here is marking the table entry
801  * at the bottom level available, and propagating the changes upward
802  * as necessary, plus some accounting needed to play nicely with other
803  * parts of the VM system.
804  * At each level, we keep a list of pages, which are heads of continuous
805  * free pages of length of (1 << order) and marked with PageBuddy.
806  * Page's order is recorded in page_private(page) field.
807  * So when we are allocating or freeing one, we can derive the state of the
808  * other.  That is, if we allocate a small block, and both were
809  * free, the remainder of the region must be split into blocks.
810  * If a block is freed, and its buddy is also free, then this
811  * triggers coalescing into a block of larger size.
812  *
813  * -- nyc
814  */
815 
816 static inline void __free_one_page(struct page *page,
817 		unsigned long pfn,
818 		struct zone *zone, unsigned int order,
819 		int migratetype)
820 {
821 	unsigned long combined_pfn;
822 	unsigned long uninitialized_var(buddy_pfn);
823 	struct page *buddy;
824 	unsigned int max_order;
825 
826 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
827 
828 	VM_BUG_ON(!zone_is_initialized(zone));
829 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
830 
831 	VM_BUG_ON(migratetype == -1);
832 	if (likely(!is_migrate_isolate(migratetype)))
833 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
834 
835 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
836 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
837 
838 continue_merging:
839 	while (order < max_order - 1) {
840 		buddy_pfn = __find_buddy_pfn(pfn, order);
841 		buddy = page + (buddy_pfn - pfn);
842 
843 		if (!pfn_valid_within(buddy_pfn))
844 			goto done_merging;
845 		if (!page_is_buddy(page, buddy, order))
846 			goto done_merging;
847 		/*
848 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
849 		 * merge with it and move up one order.
850 		 */
851 		if (page_is_guard(buddy)) {
852 			clear_page_guard(zone, buddy, order, migratetype);
853 		} else {
854 			list_del(&buddy->lru);
855 			zone->free_area[order].nr_free--;
856 			rmv_page_order(buddy);
857 		}
858 		combined_pfn = buddy_pfn & pfn;
859 		page = page + (combined_pfn - pfn);
860 		pfn = combined_pfn;
861 		order++;
862 	}
863 	if (max_order < MAX_ORDER) {
864 		/* If we are here, it means order is >= pageblock_order.
865 		 * We want to prevent merge between freepages on isolate
866 		 * pageblock and normal pageblock. Without this, pageblock
867 		 * isolation could cause incorrect freepage or CMA accounting.
868 		 *
869 		 * We don't want to hit this code for the more frequent
870 		 * low-order merging.
871 		 */
872 		if (unlikely(has_isolate_pageblock(zone))) {
873 			int buddy_mt;
874 
875 			buddy_pfn = __find_buddy_pfn(pfn, order);
876 			buddy = page + (buddy_pfn - pfn);
877 			buddy_mt = get_pageblock_migratetype(buddy);
878 
879 			if (migratetype != buddy_mt
880 					&& (is_migrate_isolate(migratetype) ||
881 						is_migrate_isolate(buddy_mt)))
882 				goto done_merging;
883 		}
884 		max_order++;
885 		goto continue_merging;
886 	}
887 
888 done_merging:
889 	set_page_order(page, order);
890 
891 	/*
892 	 * If this is not the largest possible page, check if the buddy
893 	 * of the next-highest order is free. If it is, it's possible
894 	 * that pages are being freed that will coalesce soon. In case,
895 	 * that is happening, add the free page to the tail of the list
896 	 * so it's less likely to be used soon and more likely to be merged
897 	 * as a higher order page
898 	 */
899 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
900 		struct page *higher_page, *higher_buddy;
901 		combined_pfn = buddy_pfn & pfn;
902 		higher_page = page + (combined_pfn - pfn);
903 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
904 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
905 		if (pfn_valid_within(buddy_pfn) &&
906 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
907 			list_add_tail(&page->lru,
908 				&zone->free_area[order].free_list[migratetype]);
909 			goto out;
910 		}
911 	}
912 
913 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
914 out:
915 	zone->free_area[order].nr_free++;
916 }
917 
918 /*
919  * A bad page could be due to a number of fields. Instead of multiple branches,
920  * try and check multiple fields with one check. The caller must do a detailed
921  * check if necessary.
922  */
923 static inline bool page_expected_state(struct page *page,
924 					unsigned long check_flags)
925 {
926 	if (unlikely(atomic_read(&page->_mapcount) != -1))
927 		return false;
928 
929 	if (unlikely((unsigned long)page->mapping |
930 			page_ref_count(page) |
931 #ifdef CONFIG_MEMCG
932 			(unsigned long)page->mem_cgroup |
933 #endif
934 			(page->flags & check_flags)))
935 		return false;
936 
937 	return true;
938 }
939 
940 static void free_pages_check_bad(struct page *page)
941 {
942 	const char *bad_reason;
943 	unsigned long bad_flags;
944 
945 	bad_reason = NULL;
946 	bad_flags = 0;
947 
948 	if (unlikely(atomic_read(&page->_mapcount) != -1))
949 		bad_reason = "nonzero mapcount";
950 	if (unlikely(page->mapping != NULL))
951 		bad_reason = "non-NULL mapping";
952 	if (unlikely(page_ref_count(page) != 0))
953 		bad_reason = "nonzero _refcount";
954 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
955 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
956 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
957 	}
958 #ifdef CONFIG_MEMCG
959 	if (unlikely(page->mem_cgroup))
960 		bad_reason = "page still charged to cgroup";
961 #endif
962 	bad_page(page, bad_reason, bad_flags);
963 }
964 
965 static inline int free_pages_check(struct page *page)
966 {
967 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
968 		return 0;
969 
970 	/* Something has gone sideways, find it */
971 	free_pages_check_bad(page);
972 	return 1;
973 }
974 
975 static int free_tail_pages_check(struct page *head_page, struct page *page)
976 {
977 	int ret = 1;
978 
979 	/*
980 	 * We rely page->lru.next never has bit 0 set, unless the page
981 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
982 	 */
983 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
984 
985 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
986 		ret = 0;
987 		goto out;
988 	}
989 	switch (page - head_page) {
990 	case 1:
991 		/* the first tail page: ->mapping may be compound_mapcount() */
992 		if (unlikely(compound_mapcount(page))) {
993 			bad_page(page, "nonzero compound_mapcount", 0);
994 			goto out;
995 		}
996 		break;
997 	case 2:
998 		/*
999 		 * the second tail page: ->mapping is
1000 		 * deferred_list.next -- ignore value.
1001 		 */
1002 		break;
1003 	default:
1004 		if (page->mapping != TAIL_MAPPING) {
1005 			bad_page(page, "corrupted mapping in tail page", 0);
1006 			goto out;
1007 		}
1008 		break;
1009 	}
1010 	if (unlikely(!PageTail(page))) {
1011 		bad_page(page, "PageTail not set", 0);
1012 		goto out;
1013 	}
1014 	if (unlikely(compound_head(page) != head_page)) {
1015 		bad_page(page, "compound_head not consistent", 0);
1016 		goto out;
1017 	}
1018 	ret = 0;
1019 out:
1020 	page->mapping = NULL;
1021 	clear_compound_head(page);
1022 	return ret;
1023 }
1024 
1025 static __always_inline bool free_pages_prepare(struct page *page,
1026 					unsigned int order, bool check_free)
1027 {
1028 	int bad = 0;
1029 
1030 	VM_BUG_ON_PAGE(PageTail(page), page);
1031 
1032 	trace_mm_page_free(page, order);
1033 
1034 	/*
1035 	 * Check tail pages before head page information is cleared to
1036 	 * avoid checking PageCompound for order-0 pages.
1037 	 */
1038 	if (unlikely(order)) {
1039 		bool compound = PageCompound(page);
1040 		int i;
1041 
1042 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1043 
1044 		if (compound)
1045 			ClearPageDoubleMap(page);
1046 		for (i = 1; i < (1 << order); i++) {
1047 			if (compound)
1048 				bad += free_tail_pages_check(page, page + i);
1049 			if (unlikely(free_pages_check(page + i))) {
1050 				bad++;
1051 				continue;
1052 			}
1053 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1054 		}
1055 	}
1056 	if (PageMappingFlags(page))
1057 		page->mapping = NULL;
1058 	if (memcg_kmem_enabled() && PageKmemcg(page))
1059 		memcg_kmem_uncharge(page, order);
1060 	if (check_free)
1061 		bad += free_pages_check(page);
1062 	if (bad)
1063 		return false;
1064 
1065 	page_cpupid_reset_last(page);
1066 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1067 	reset_page_owner(page, order);
1068 
1069 	if (!PageHighMem(page)) {
1070 		debug_check_no_locks_freed(page_address(page),
1071 					   PAGE_SIZE << order);
1072 		debug_check_no_obj_freed(page_address(page),
1073 					   PAGE_SIZE << order);
1074 	}
1075 	arch_free_page(page, order);
1076 	kernel_poison_pages(page, 1 << order, 0);
1077 	kernel_map_pages(page, 1 << order, 0);
1078 	kasan_free_nondeferred_pages(page, order);
1079 
1080 	return true;
1081 }
1082 
1083 #ifdef CONFIG_DEBUG_VM
1084 static inline bool free_pcp_prepare(struct page *page)
1085 {
1086 	return free_pages_prepare(page, 0, true);
1087 }
1088 
1089 static inline bool bulkfree_pcp_prepare(struct page *page)
1090 {
1091 	return false;
1092 }
1093 #else
1094 static bool free_pcp_prepare(struct page *page)
1095 {
1096 	return free_pages_prepare(page, 0, false);
1097 }
1098 
1099 static bool bulkfree_pcp_prepare(struct page *page)
1100 {
1101 	return free_pages_check(page);
1102 }
1103 #endif /* CONFIG_DEBUG_VM */
1104 
1105 static inline void prefetch_buddy(struct page *page)
1106 {
1107 	unsigned long pfn = page_to_pfn(page);
1108 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1109 	struct page *buddy = page + (buddy_pfn - pfn);
1110 
1111 	prefetch(buddy);
1112 }
1113 
1114 /*
1115  * Frees a number of pages from the PCP lists
1116  * Assumes all pages on list are in same zone, and of same order.
1117  * count is the number of pages to free.
1118  *
1119  * If the zone was previously in an "all pages pinned" state then look to
1120  * see if this freeing clears that state.
1121  *
1122  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1123  * pinned" detection logic.
1124  */
1125 static void free_pcppages_bulk(struct zone *zone, int count,
1126 					struct per_cpu_pages *pcp)
1127 {
1128 	int migratetype = 0;
1129 	int batch_free = 0;
1130 	int prefetch_nr = 0;
1131 	bool isolated_pageblocks;
1132 	struct page *page, *tmp;
1133 	LIST_HEAD(head);
1134 
1135 	while (count) {
1136 		struct list_head *list;
1137 
1138 		/*
1139 		 * Remove pages from lists in a round-robin fashion. A
1140 		 * batch_free count is maintained that is incremented when an
1141 		 * empty list is encountered.  This is so more pages are freed
1142 		 * off fuller lists instead of spinning excessively around empty
1143 		 * lists
1144 		 */
1145 		do {
1146 			batch_free++;
1147 			if (++migratetype == MIGRATE_PCPTYPES)
1148 				migratetype = 0;
1149 			list = &pcp->lists[migratetype];
1150 		} while (list_empty(list));
1151 
1152 		/* This is the only non-empty list. Free them all. */
1153 		if (batch_free == MIGRATE_PCPTYPES)
1154 			batch_free = count;
1155 
1156 		do {
1157 			page = list_last_entry(list, struct page, lru);
1158 			/* must delete to avoid corrupting pcp list */
1159 			list_del(&page->lru);
1160 			pcp->count--;
1161 
1162 			if (bulkfree_pcp_prepare(page))
1163 				continue;
1164 
1165 			list_add_tail(&page->lru, &head);
1166 
1167 			/*
1168 			 * We are going to put the page back to the global
1169 			 * pool, prefetch its buddy to speed up later access
1170 			 * under zone->lock. It is believed the overhead of
1171 			 * an additional test and calculating buddy_pfn here
1172 			 * can be offset by reduced memory latency later. To
1173 			 * avoid excessive prefetching due to large count, only
1174 			 * prefetch buddy for the first pcp->batch nr of pages.
1175 			 */
1176 			if (prefetch_nr++ < pcp->batch)
1177 				prefetch_buddy(page);
1178 		} while (--count && --batch_free && !list_empty(list));
1179 	}
1180 
1181 	spin_lock(&zone->lock);
1182 	isolated_pageblocks = has_isolate_pageblock(zone);
1183 
1184 	/*
1185 	 * Use safe version since after __free_one_page(),
1186 	 * page->lru.next will not point to original list.
1187 	 */
1188 	list_for_each_entry_safe(page, tmp, &head, lru) {
1189 		int mt = get_pcppage_migratetype(page);
1190 		/* MIGRATE_ISOLATE page should not go to pcplists */
1191 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1192 		/* Pageblock could have been isolated meanwhile */
1193 		if (unlikely(isolated_pageblocks))
1194 			mt = get_pageblock_migratetype(page);
1195 
1196 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1197 		trace_mm_page_pcpu_drain(page, 0, mt);
1198 	}
1199 	spin_unlock(&zone->lock);
1200 }
1201 
1202 static void free_one_page(struct zone *zone,
1203 				struct page *page, unsigned long pfn,
1204 				unsigned int order,
1205 				int migratetype)
1206 {
1207 	spin_lock(&zone->lock);
1208 	if (unlikely(has_isolate_pageblock(zone) ||
1209 		is_migrate_isolate(migratetype))) {
1210 		migratetype = get_pfnblock_migratetype(page, pfn);
1211 	}
1212 	__free_one_page(page, pfn, zone, order, migratetype);
1213 	spin_unlock(&zone->lock);
1214 }
1215 
1216 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1217 				unsigned long zone, int nid)
1218 {
1219 	mm_zero_struct_page(page);
1220 	set_page_links(page, zone, nid, pfn);
1221 	init_page_count(page);
1222 	page_mapcount_reset(page);
1223 	page_cpupid_reset_last(page);
1224 	page_kasan_tag_reset(page);
1225 
1226 	INIT_LIST_HEAD(&page->lru);
1227 #ifdef WANT_PAGE_VIRTUAL
1228 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1229 	if (!is_highmem_idx(zone))
1230 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1231 #endif
1232 }
1233 
1234 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1235 static void __meminit init_reserved_page(unsigned long pfn)
1236 {
1237 	pg_data_t *pgdat;
1238 	int nid, zid;
1239 
1240 	if (!early_page_uninitialised(pfn))
1241 		return;
1242 
1243 	nid = early_pfn_to_nid(pfn);
1244 	pgdat = NODE_DATA(nid);
1245 
1246 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1247 		struct zone *zone = &pgdat->node_zones[zid];
1248 
1249 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1250 			break;
1251 	}
1252 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1253 }
1254 #else
1255 static inline void init_reserved_page(unsigned long pfn)
1256 {
1257 }
1258 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1259 
1260 /*
1261  * Initialised pages do not have PageReserved set. This function is
1262  * called for each range allocated by the bootmem allocator and
1263  * marks the pages PageReserved. The remaining valid pages are later
1264  * sent to the buddy page allocator.
1265  */
1266 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1267 {
1268 	unsigned long start_pfn = PFN_DOWN(start);
1269 	unsigned long end_pfn = PFN_UP(end);
1270 
1271 	for (; start_pfn < end_pfn; start_pfn++) {
1272 		if (pfn_valid(start_pfn)) {
1273 			struct page *page = pfn_to_page(start_pfn);
1274 
1275 			init_reserved_page(start_pfn);
1276 
1277 			/* Avoid false-positive PageTail() */
1278 			INIT_LIST_HEAD(&page->lru);
1279 
1280 			/*
1281 			 * no need for atomic set_bit because the struct
1282 			 * page is not visible yet so nobody should
1283 			 * access it yet.
1284 			 */
1285 			__SetPageReserved(page);
1286 		}
1287 	}
1288 }
1289 
1290 static void __free_pages_ok(struct page *page, unsigned int order)
1291 {
1292 	unsigned long flags;
1293 	int migratetype;
1294 	unsigned long pfn = page_to_pfn(page);
1295 
1296 	if (!free_pages_prepare(page, order, true))
1297 		return;
1298 
1299 	migratetype = get_pfnblock_migratetype(page, pfn);
1300 	local_irq_save(flags);
1301 	__count_vm_events(PGFREE, 1 << order);
1302 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1303 	local_irq_restore(flags);
1304 }
1305 
1306 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1307 {
1308 	unsigned int nr_pages = 1 << order;
1309 	struct page *p = page;
1310 	unsigned int loop;
1311 
1312 	prefetchw(p);
1313 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1314 		prefetchw(p + 1);
1315 		__ClearPageReserved(p);
1316 		set_page_count(p, 0);
1317 	}
1318 	__ClearPageReserved(p);
1319 	set_page_count(p, 0);
1320 
1321 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1322 	set_page_refcounted(page);
1323 	__free_pages(page, order);
1324 }
1325 
1326 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1327 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1328 
1329 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1330 
1331 int __meminit early_pfn_to_nid(unsigned long pfn)
1332 {
1333 	static DEFINE_SPINLOCK(early_pfn_lock);
1334 	int nid;
1335 
1336 	spin_lock(&early_pfn_lock);
1337 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1338 	if (nid < 0)
1339 		nid = first_online_node;
1340 	spin_unlock(&early_pfn_lock);
1341 
1342 	return nid;
1343 }
1344 #endif
1345 
1346 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1347 static inline bool __meminit __maybe_unused
1348 meminit_pfn_in_nid(unsigned long pfn, int node,
1349 		   struct mminit_pfnnid_cache *state)
1350 {
1351 	int nid;
1352 
1353 	nid = __early_pfn_to_nid(pfn, state);
1354 	if (nid >= 0 && nid != node)
1355 		return false;
1356 	return true;
1357 }
1358 
1359 /* Only safe to use early in boot when initialisation is single-threaded */
1360 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1361 {
1362 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1363 }
1364 
1365 #else
1366 
1367 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1368 {
1369 	return true;
1370 }
1371 static inline bool __meminit  __maybe_unused
1372 meminit_pfn_in_nid(unsigned long pfn, int node,
1373 		   struct mminit_pfnnid_cache *state)
1374 {
1375 	return true;
1376 }
1377 #endif
1378 
1379 
1380 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1381 							unsigned int order)
1382 {
1383 	if (early_page_uninitialised(pfn))
1384 		return;
1385 	return __free_pages_boot_core(page, order);
1386 }
1387 
1388 /*
1389  * Check that the whole (or subset of) a pageblock given by the interval of
1390  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1391  * with the migration of free compaction scanner. The scanners then need to
1392  * use only pfn_valid_within() check for arches that allow holes within
1393  * pageblocks.
1394  *
1395  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1396  *
1397  * It's possible on some configurations to have a setup like node0 node1 node0
1398  * i.e. it's possible that all pages within a zones range of pages do not
1399  * belong to a single zone. We assume that a border between node0 and node1
1400  * can occur within a single pageblock, but not a node0 node1 node0
1401  * interleaving within a single pageblock. It is therefore sufficient to check
1402  * the first and last page of a pageblock and avoid checking each individual
1403  * page in a pageblock.
1404  */
1405 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1406 				     unsigned long end_pfn, struct zone *zone)
1407 {
1408 	struct page *start_page;
1409 	struct page *end_page;
1410 
1411 	/* end_pfn is one past the range we are checking */
1412 	end_pfn--;
1413 
1414 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1415 		return NULL;
1416 
1417 	start_page = pfn_to_online_page(start_pfn);
1418 	if (!start_page)
1419 		return NULL;
1420 
1421 	if (page_zone(start_page) != zone)
1422 		return NULL;
1423 
1424 	end_page = pfn_to_page(end_pfn);
1425 
1426 	/* This gives a shorter code than deriving page_zone(end_page) */
1427 	if (page_zone_id(start_page) != page_zone_id(end_page))
1428 		return NULL;
1429 
1430 	return start_page;
1431 }
1432 
1433 void set_zone_contiguous(struct zone *zone)
1434 {
1435 	unsigned long block_start_pfn = zone->zone_start_pfn;
1436 	unsigned long block_end_pfn;
1437 
1438 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1439 	for (; block_start_pfn < zone_end_pfn(zone);
1440 			block_start_pfn = block_end_pfn,
1441 			 block_end_pfn += pageblock_nr_pages) {
1442 
1443 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1444 
1445 		if (!__pageblock_pfn_to_page(block_start_pfn,
1446 					     block_end_pfn, zone))
1447 			return;
1448 	}
1449 
1450 	/* We confirm that there is no hole */
1451 	zone->contiguous = true;
1452 }
1453 
1454 void clear_zone_contiguous(struct zone *zone)
1455 {
1456 	zone->contiguous = false;
1457 }
1458 
1459 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1460 static void __init deferred_free_range(unsigned long pfn,
1461 				       unsigned long nr_pages)
1462 {
1463 	struct page *page;
1464 	unsigned long i;
1465 
1466 	if (!nr_pages)
1467 		return;
1468 
1469 	page = pfn_to_page(pfn);
1470 
1471 	/* Free a large naturally-aligned chunk if possible */
1472 	if (nr_pages == pageblock_nr_pages &&
1473 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1474 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1475 		__free_pages_boot_core(page, pageblock_order);
1476 		return;
1477 	}
1478 
1479 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1480 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1481 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1482 		__free_pages_boot_core(page, 0);
1483 	}
1484 }
1485 
1486 /* Completion tracking for deferred_init_memmap() threads */
1487 static atomic_t pgdat_init_n_undone __initdata;
1488 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1489 
1490 static inline void __init pgdat_init_report_one_done(void)
1491 {
1492 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1493 		complete(&pgdat_init_all_done_comp);
1494 }
1495 
1496 /*
1497  * Returns true if page needs to be initialized or freed to buddy allocator.
1498  *
1499  * First we check if pfn is valid on architectures where it is possible to have
1500  * holes within pageblock_nr_pages. On systems where it is not possible, this
1501  * function is optimized out.
1502  *
1503  * Then, we check if a current large page is valid by only checking the validity
1504  * of the head pfn.
1505  *
1506  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1507  * within a node: a pfn is between start and end of a node, but does not belong
1508  * to this memory node.
1509  */
1510 static inline bool __init
1511 deferred_pfn_valid(int nid, unsigned long pfn,
1512 		   struct mminit_pfnnid_cache *nid_init_state)
1513 {
1514 	if (!pfn_valid_within(pfn))
1515 		return false;
1516 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1517 		return false;
1518 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1519 		return false;
1520 	return true;
1521 }
1522 
1523 /*
1524  * Free pages to buddy allocator. Try to free aligned pages in
1525  * pageblock_nr_pages sizes.
1526  */
1527 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1528 				       unsigned long end_pfn)
1529 {
1530 	struct mminit_pfnnid_cache nid_init_state = { };
1531 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1532 	unsigned long nr_free = 0;
1533 
1534 	for (; pfn < end_pfn; pfn++) {
1535 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1536 			deferred_free_range(pfn - nr_free, nr_free);
1537 			nr_free = 0;
1538 		} else if (!(pfn & nr_pgmask)) {
1539 			deferred_free_range(pfn - nr_free, nr_free);
1540 			nr_free = 1;
1541 			touch_nmi_watchdog();
1542 		} else {
1543 			nr_free++;
1544 		}
1545 	}
1546 	/* Free the last block of pages to allocator */
1547 	deferred_free_range(pfn - nr_free, nr_free);
1548 }
1549 
1550 /*
1551  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1552  * by performing it only once every pageblock_nr_pages.
1553  * Return number of pages initialized.
1554  */
1555 static unsigned long  __init deferred_init_pages(int nid, int zid,
1556 						 unsigned long pfn,
1557 						 unsigned long end_pfn)
1558 {
1559 	struct mminit_pfnnid_cache nid_init_state = { };
1560 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1561 	unsigned long nr_pages = 0;
1562 	struct page *page = NULL;
1563 
1564 	for (; pfn < end_pfn; pfn++) {
1565 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1566 			page = NULL;
1567 			continue;
1568 		} else if (!page || !(pfn & nr_pgmask)) {
1569 			page = pfn_to_page(pfn);
1570 			touch_nmi_watchdog();
1571 		} else {
1572 			page++;
1573 		}
1574 		__init_single_page(page, pfn, zid, nid);
1575 		nr_pages++;
1576 	}
1577 	return (nr_pages);
1578 }
1579 
1580 /* Initialise remaining memory on a node */
1581 static int __init deferred_init_memmap(void *data)
1582 {
1583 	pg_data_t *pgdat = data;
1584 	int nid = pgdat->node_id;
1585 	unsigned long start = jiffies;
1586 	unsigned long nr_pages = 0;
1587 	unsigned long spfn, epfn, first_init_pfn, flags;
1588 	phys_addr_t spa, epa;
1589 	int zid;
1590 	struct zone *zone;
1591 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1592 	u64 i;
1593 
1594 	/* Bind memory initialisation thread to a local node if possible */
1595 	if (!cpumask_empty(cpumask))
1596 		set_cpus_allowed_ptr(current, cpumask);
1597 
1598 	pgdat_resize_lock(pgdat, &flags);
1599 	first_init_pfn = pgdat->first_deferred_pfn;
1600 	if (first_init_pfn == ULONG_MAX) {
1601 		pgdat_resize_unlock(pgdat, &flags);
1602 		pgdat_init_report_one_done();
1603 		return 0;
1604 	}
1605 
1606 	/* Sanity check boundaries */
1607 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1608 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1609 	pgdat->first_deferred_pfn = ULONG_MAX;
1610 
1611 	/* Only the highest zone is deferred so find it */
1612 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1613 		zone = pgdat->node_zones + zid;
1614 		if (first_init_pfn < zone_end_pfn(zone))
1615 			break;
1616 	}
1617 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1618 
1619 	/*
1620 	 * Initialize and free pages. We do it in two loops: first we initialize
1621 	 * struct page, than free to buddy allocator, because while we are
1622 	 * freeing pages we can access pages that are ahead (computing buddy
1623 	 * page in __free_one_page()).
1624 	 */
1625 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1626 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1627 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1628 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1629 	}
1630 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1631 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1632 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1633 		deferred_free_pages(nid, zid, spfn, epfn);
1634 	}
1635 	pgdat_resize_unlock(pgdat, &flags);
1636 
1637 	/* Sanity check that the next zone really is unpopulated */
1638 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1639 
1640 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1641 					jiffies_to_msecs(jiffies - start));
1642 
1643 	pgdat_init_report_one_done();
1644 	return 0;
1645 }
1646 
1647 /*
1648  * If this zone has deferred pages, try to grow it by initializing enough
1649  * deferred pages to satisfy the allocation specified by order, rounded up to
1650  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1651  * of SECTION_SIZE bytes by initializing struct pages in increments of
1652  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1653  *
1654  * Return true when zone was grown, otherwise return false. We return true even
1655  * when we grow less than requested, to let the caller decide if there are
1656  * enough pages to satisfy the allocation.
1657  *
1658  * Note: We use noinline because this function is needed only during boot, and
1659  * it is called from a __ref function _deferred_grow_zone. This way we are
1660  * making sure that it is not inlined into permanent text section.
1661  */
1662 static noinline bool __init
1663 deferred_grow_zone(struct zone *zone, unsigned int order)
1664 {
1665 	int zid = zone_idx(zone);
1666 	int nid = zone_to_nid(zone);
1667 	pg_data_t *pgdat = NODE_DATA(nid);
1668 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1669 	unsigned long nr_pages = 0;
1670 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1671 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1672 	phys_addr_t spa, epa;
1673 	u64 i;
1674 
1675 	/* Only the last zone may have deferred pages */
1676 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1677 		return false;
1678 
1679 	pgdat_resize_lock(pgdat, &flags);
1680 
1681 	/*
1682 	 * If deferred pages have been initialized while we were waiting for
1683 	 * the lock, return true, as the zone was grown.  The caller will retry
1684 	 * this zone.  We won't return to this function since the caller also
1685 	 * has this static branch.
1686 	 */
1687 	if (!static_branch_unlikely(&deferred_pages)) {
1688 		pgdat_resize_unlock(pgdat, &flags);
1689 		return true;
1690 	}
1691 
1692 	/*
1693 	 * If someone grew this zone while we were waiting for spinlock, return
1694 	 * true, as there might be enough pages already.
1695 	 */
1696 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1697 		pgdat_resize_unlock(pgdat, &flags);
1698 		return true;
1699 	}
1700 
1701 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1702 
1703 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1704 		pgdat_resize_unlock(pgdat, &flags);
1705 		return false;
1706 	}
1707 
1708 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1709 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1710 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1711 
1712 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1713 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1714 			first_deferred_pfn = min(t, epfn);
1715 			nr_pages += deferred_init_pages(nid, zid, spfn,
1716 							first_deferred_pfn);
1717 			spfn = first_deferred_pfn;
1718 		}
1719 
1720 		if (nr_pages >= nr_pages_needed)
1721 			break;
1722 	}
1723 
1724 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1725 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1726 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1727 		deferred_free_pages(nid, zid, spfn, epfn);
1728 
1729 		if (first_deferred_pfn == epfn)
1730 			break;
1731 	}
1732 	pgdat->first_deferred_pfn = first_deferred_pfn;
1733 	pgdat_resize_unlock(pgdat, &flags);
1734 
1735 	return nr_pages > 0;
1736 }
1737 
1738 /*
1739  * deferred_grow_zone() is __init, but it is called from
1740  * get_page_from_freelist() during early boot until deferred_pages permanently
1741  * disables this call. This is why we have refdata wrapper to avoid warning,
1742  * and to ensure that the function body gets unloaded.
1743  */
1744 static bool __ref
1745 _deferred_grow_zone(struct zone *zone, unsigned int order)
1746 {
1747 	return deferred_grow_zone(zone, order);
1748 }
1749 
1750 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1751 
1752 void __init page_alloc_init_late(void)
1753 {
1754 	struct zone *zone;
1755 
1756 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1757 	int nid;
1758 
1759 	/* There will be num_node_state(N_MEMORY) threads */
1760 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1761 	for_each_node_state(nid, N_MEMORY) {
1762 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1763 	}
1764 
1765 	/* Block until all are initialised */
1766 	wait_for_completion(&pgdat_init_all_done_comp);
1767 
1768 	/*
1769 	 * We initialized the rest of the deferred pages.  Permanently disable
1770 	 * on-demand struct page initialization.
1771 	 */
1772 	static_branch_disable(&deferred_pages);
1773 
1774 	/* Reinit limits that are based on free pages after the kernel is up */
1775 	files_maxfiles_init();
1776 #endif
1777 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1778 	/* Discard memblock private memory */
1779 	memblock_discard();
1780 #endif
1781 
1782 	for_each_populated_zone(zone)
1783 		set_zone_contiguous(zone);
1784 }
1785 
1786 #ifdef CONFIG_CMA
1787 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1788 void __init init_cma_reserved_pageblock(struct page *page)
1789 {
1790 	unsigned i = pageblock_nr_pages;
1791 	struct page *p = page;
1792 
1793 	do {
1794 		__ClearPageReserved(p);
1795 		set_page_count(p, 0);
1796 	} while (++p, --i);
1797 
1798 	set_pageblock_migratetype(page, MIGRATE_CMA);
1799 
1800 	if (pageblock_order >= MAX_ORDER) {
1801 		i = pageblock_nr_pages;
1802 		p = page;
1803 		do {
1804 			set_page_refcounted(p);
1805 			__free_pages(p, MAX_ORDER - 1);
1806 			p += MAX_ORDER_NR_PAGES;
1807 		} while (i -= MAX_ORDER_NR_PAGES);
1808 	} else {
1809 		set_page_refcounted(page);
1810 		__free_pages(page, pageblock_order);
1811 	}
1812 
1813 	adjust_managed_page_count(page, pageblock_nr_pages);
1814 }
1815 #endif
1816 
1817 /*
1818  * The order of subdivision here is critical for the IO subsystem.
1819  * Please do not alter this order without good reasons and regression
1820  * testing. Specifically, as large blocks of memory are subdivided,
1821  * the order in which smaller blocks are delivered depends on the order
1822  * they're subdivided in this function. This is the primary factor
1823  * influencing the order in which pages are delivered to the IO
1824  * subsystem according to empirical testing, and this is also justified
1825  * by considering the behavior of a buddy system containing a single
1826  * large block of memory acted on by a series of small allocations.
1827  * This behavior is a critical factor in sglist merging's success.
1828  *
1829  * -- nyc
1830  */
1831 static inline void expand(struct zone *zone, struct page *page,
1832 	int low, int high, struct free_area *area,
1833 	int migratetype)
1834 {
1835 	unsigned long size = 1 << high;
1836 
1837 	while (high > low) {
1838 		area--;
1839 		high--;
1840 		size >>= 1;
1841 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1842 
1843 		/*
1844 		 * Mark as guard pages (or page), that will allow to
1845 		 * merge back to allocator when buddy will be freed.
1846 		 * Corresponding page table entries will not be touched,
1847 		 * pages will stay not present in virtual address space
1848 		 */
1849 		if (set_page_guard(zone, &page[size], high, migratetype))
1850 			continue;
1851 
1852 		list_add(&page[size].lru, &area->free_list[migratetype]);
1853 		area->nr_free++;
1854 		set_page_order(&page[size], high);
1855 	}
1856 }
1857 
1858 static void check_new_page_bad(struct page *page)
1859 {
1860 	const char *bad_reason = NULL;
1861 	unsigned long bad_flags = 0;
1862 
1863 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1864 		bad_reason = "nonzero mapcount";
1865 	if (unlikely(page->mapping != NULL))
1866 		bad_reason = "non-NULL mapping";
1867 	if (unlikely(page_ref_count(page) != 0))
1868 		bad_reason = "nonzero _count";
1869 	if (unlikely(page->flags & __PG_HWPOISON)) {
1870 		bad_reason = "HWPoisoned (hardware-corrupted)";
1871 		bad_flags = __PG_HWPOISON;
1872 		/* Don't complain about hwpoisoned pages */
1873 		page_mapcount_reset(page); /* remove PageBuddy */
1874 		return;
1875 	}
1876 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1877 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1878 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1879 	}
1880 #ifdef CONFIG_MEMCG
1881 	if (unlikely(page->mem_cgroup))
1882 		bad_reason = "page still charged to cgroup";
1883 #endif
1884 	bad_page(page, bad_reason, bad_flags);
1885 }
1886 
1887 /*
1888  * This page is about to be returned from the page allocator
1889  */
1890 static inline int check_new_page(struct page *page)
1891 {
1892 	if (likely(page_expected_state(page,
1893 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1894 		return 0;
1895 
1896 	check_new_page_bad(page);
1897 	return 1;
1898 }
1899 
1900 static inline bool free_pages_prezeroed(void)
1901 {
1902 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1903 		page_poisoning_enabled();
1904 }
1905 
1906 #ifdef CONFIG_DEBUG_VM
1907 static bool check_pcp_refill(struct page *page)
1908 {
1909 	return false;
1910 }
1911 
1912 static bool check_new_pcp(struct page *page)
1913 {
1914 	return check_new_page(page);
1915 }
1916 #else
1917 static bool check_pcp_refill(struct page *page)
1918 {
1919 	return check_new_page(page);
1920 }
1921 static bool check_new_pcp(struct page *page)
1922 {
1923 	return false;
1924 }
1925 #endif /* CONFIG_DEBUG_VM */
1926 
1927 static bool check_new_pages(struct page *page, unsigned int order)
1928 {
1929 	int i;
1930 	for (i = 0; i < (1 << order); i++) {
1931 		struct page *p = page + i;
1932 
1933 		if (unlikely(check_new_page(p)))
1934 			return true;
1935 	}
1936 
1937 	return false;
1938 }
1939 
1940 inline void post_alloc_hook(struct page *page, unsigned int order,
1941 				gfp_t gfp_flags)
1942 {
1943 	set_page_private(page, 0);
1944 	set_page_refcounted(page);
1945 
1946 	arch_alloc_page(page, order);
1947 	kernel_map_pages(page, 1 << order, 1);
1948 	kernel_poison_pages(page, 1 << order, 1);
1949 	kasan_alloc_pages(page, order);
1950 	set_page_owner(page, order, gfp_flags);
1951 }
1952 
1953 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1954 							unsigned int alloc_flags)
1955 {
1956 	int i;
1957 
1958 	post_alloc_hook(page, order, gfp_flags);
1959 
1960 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1961 		for (i = 0; i < (1 << order); i++)
1962 			clear_highpage(page + i);
1963 
1964 	if (order && (gfp_flags & __GFP_COMP))
1965 		prep_compound_page(page, order);
1966 
1967 	/*
1968 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1969 	 * allocate the page. The expectation is that the caller is taking
1970 	 * steps that will free more memory. The caller should avoid the page
1971 	 * being used for !PFMEMALLOC purposes.
1972 	 */
1973 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1974 		set_page_pfmemalloc(page);
1975 	else
1976 		clear_page_pfmemalloc(page);
1977 }
1978 
1979 /*
1980  * Go through the free lists for the given migratetype and remove
1981  * the smallest available page from the freelists
1982  */
1983 static __always_inline
1984 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1985 						int migratetype)
1986 {
1987 	unsigned int current_order;
1988 	struct free_area *area;
1989 	struct page *page;
1990 
1991 	/* Find a page of the appropriate size in the preferred list */
1992 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1993 		area = &(zone->free_area[current_order]);
1994 		page = list_first_entry_or_null(&area->free_list[migratetype],
1995 							struct page, lru);
1996 		if (!page)
1997 			continue;
1998 		list_del(&page->lru);
1999 		rmv_page_order(page);
2000 		area->nr_free--;
2001 		expand(zone, page, order, current_order, area, migratetype);
2002 		set_pcppage_migratetype(page, migratetype);
2003 		return page;
2004 	}
2005 
2006 	return NULL;
2007 }
2008 
2009 
2010 /*
2011  * This array describes the order lists are fallen back to when
2012  * the free lists for the desirable migrate type are depleted
2013  */
2014 static int fallbacks[MIGRATE_TYPES][4] = {
2015 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2016 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2017 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2018 #ifdef CONFIG_CMA
2019 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2020 #endif
2021 #ifdef CONFIG_MEMORY_ISOLATION
2022 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2023 #endif
2024 };
2025 
2026 #ifdef CONFIG_CMA
2027 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2028 					unsigned int order)
2029 {
2030 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2031 }
2032 #else
2033 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2034 					unsigned int order) { return NULL; }
2035 #endif
2036 
2037 /*
2038  * Move the free pages in a range to the free lists of the requested type.
2039  * Note that start_page and end_pages are not aligned on a pageblock
2040  * boundary. If alignment is required, use move_freepages_block()
2041  */
2042 static int move_freepages(struct zone *zone,
2043 			  struct page *start_page, struct page *end_page,
2044 			  int migratetype, int *num_movable)
2045 {
2046 	struct page *page;
2047 	unsigned int order;
2048 	int pages_moved = 0;
2049 
2050 #ifndef CONFIG_HOLES_IN_ZONE
2051 	/*
2052 	 * page_zone is not safe to call in this context when
2053 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2054 	 * anyway as we check zone boundaries in move_freepages_block().
2055 	 * Remove at a later date when no bug reports exist related to
2056 	 * grouping pages by mobility
2057 	 */
2058 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2059 	          pfn_valid(page_to_pfn(end_page)) &&
2060 	          page_zone(start_page) != page_zone(end_page));
2061 #endif
2062 	for (page = start_page; page <= end_page;) {
2063 		if (!pfn_valid_within(page_to_pfn(page))) {
2064 			page++;
2065 			continue;
2066 		}
2067 
2068 		/* Make sure we are not inadvertently changing nodes */
2069 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2070 
2071 		if (!PageBuddy(page)) {
2072 			/*
2073 			 * We assume that pages that could be isolated for
2074 			 * migration are movable. But we don't actually try
2075 			 * isolating, as that would be expensive.
2076 			 */
2077 			if (num_movable &&
2078 					(PageLRU(page) || __PageMovable(page)))
2079 				(*num_movable)++;
2080 
2081 			page++;
2082 			continue;
2083 		}
2084 
2085 		order = page_order(page);
2086 		list_move(&page->lru,
2087 			  &zone->free_area[order].free_list[migratetype]);
2088 		page += 1 << order;
2089 		pages_moved += 1 << order;
2090 	}
2091 
2092 	return pages_moved;
2093 }
2094 
2095 int move_freepages_block(struct zone *zone, struct page *page,
2096 				int migratetype, int *num_movable)
2097 {
2098 	unsigned long start_pfn, end_pfn;
2099 	struct page *start_page, *end_page;
2100 
2101 	if (num_movable)
2102 		*num_movable = 0;
2103 
2104 	start_pfn = page_to_pfn(page);
2105 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2106 	start_page = pfn_to_page(start_pfn);
2107 	end_page = start_page + pageblock_nr_pages - 1;
2108 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2109 
2110 	/* Do not cross zone boundaries */
2111 	if (!zone_spans_pfn(zone, start_pfn))
2112 		start_page = page;
2113 	if (!zone_spans_pfn(zone, end_pfn))
2114 		return 0;
2115 
2116 	return move_freepages(zone, start_page, end_page, migratetype,
2117 								num_movable);
2118 }
2119 
2120 static void change_pageblock_range(struct page *pageblock_page,
2121 					int start_order, int migratetype)
2122 {
2123 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2124 
2125 	while (nr_pageblocks--) {
2126 		set_pageblock_migratetype(pageblock_page, migratetype);
2127 		pageblock_page += pageblock_nr_pages;
2128 	}
2129 }
2130 
2131 /*
2132  * When we are falling back to another migratetype during allocation, try to
2133  * steal extra free pages from the same pageblocks to satisfy further
2134  * allocations, instead of polluting multiple pageblocks.
2135  *
2136  * If we are stealing a relatively large buddy page, it is likely there will
2137  * be more free pages in the pageblock, so try to steal them all. For
2138  * reclaimable and unmovable allocations, we steal regardless of page size,
2139  * as fragmentation caused by those allocations polluting movable pageblocks
2140  * is worse than movable allocations stealing from unmovable and reclaimable
2141  * pageblocks.
2142  */
2143 static bool can_steal_fallback(unsigned int order, int start_mt)
2144 {
2145 	/*
2146 	 * Leaving this order check is intended, although there is
2147 	 * relaxed order check in next check. The reason is that
2148 	 * we can actually steal whole pageblock if this condition met,
2149 	 * but, below check doesn't guarantee it and that is just heuristic
2150 	 * so could be changed anytime.
2151 	 */
2152 	if (order >= pageblock_order)
2153 		return true;
2154 
2155 	if (order >= pageblock_order / 2 ||
2156 		start_mt == MIGRATE_RECLAIMABLE ||
2157 		start_mt == MIGRATE_UNMOVABLE ||
2158 		page_group_by_mobility_disabled)
2159 		return true;
2160 
2161 	return false;
2162 }
2163 
2164 static inline void boost_watermark(struct zone *zone)
2165 {
2166 	unsigned long max_boost;
2167 
2168 	if (!watermark_boost_factor)
2169 		return;
2170 
2171 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2172 			watermark_boost_factor, 10000);
2173 	max_boost = max(pageblock_nr_pages, max_boost);
2174 
2175 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2176 		max_boost);
2177 }
2178 
2179 /*
2180  * This function implements actual steal behaviour. If order is large enough,
2181  * we can steal whole pageblock. If not, we first move freepages in this
2182  * pageblock to our migratetype and determine how many already-allocated pages
2183  * are there in the pageblock with a compatible migratetype. If at least half
2184  * of pages are free or compatible, we can change migratetype of the pageblock
2185  * itself, so pages freed in the future will be put on the correct free list.
2186  */
2187 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2188 		unsigned int alloc_flags, int start_type, bool whole_block)
2189 {
2190 	unsigned int current_order = page_order(page);
2191 	struct free_area *area;
2192 	int free_pages, movable_pages, alike_pages;
2193 	int old_block_type;
2194 
2195 	old_block_type = get_pageblock_migratetype(page);
2196 
2197 	/*
2198 	 * This can happen due to races and we want to prevent broken
2199 	 * highatomic accounting.
2200 	 */
2201 	if (is_migrate_highatomic(old_block_type))
2202 		goto single_page;
2203 
2204 	/* Take ownership for orders >= pageblock_order */
2205 	if (current_order >= pageblock_order) {
2206 		change_pageblock_range(page, current_order, start_type);
2207 		goto single_page;
2208 	}
2209 
2210 	/*
2211 	 * Boost watermarks to increase reclaim pressure to reduce the
2212 	 * likelihood of future fallbacks. Wake kswapd now as the node
2213 	 * may be balanced overall and kswapd will not wake naturally.
2214 	 */
2215 	boost_watermark(zone);
2216 	if (alloc_flags & ALLOC_KSWAPD)
2217 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2218 
2219 	/* We are not allowed to try stealing from the whole block */
2220 	if (!whole_block)
2221 		goto single_page;
2222 
2223 	free_pages = move_freepages_block(zone, page, start_type,
2224 						&movable_pages);
2225 	/*
2226 	 * Determine how many pages are compatible with our allocation.
2227 	 * For movable allocation, it's the number of movable pages which
2228 	 * we just obtained. For other types it's a bit more tricky.
2229 	 */
2230 	if (start_type == MIGRATE_MOVABLE) {
2231 		alike_pages = movable_pages;
2232 	} else {
2233 		/*
2234 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2235 		 * to MOVABLE pageblock, consider all non-movable pages as
2236 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2237 		 * vice versa, be conservative since we can't distinguish the
2238 		 * exact migratetype of non-movable pages.
2239 		 */
2240 		if (old_block_type == MIGRATE_MOVABLE)
2241 			alike_pages = pageblock_nr_pages
2242 						- (free_pages + movable_pages);
2243 		else
2244 			alike_pages = 0;
2245 	}
2246 
2247 	/* moving whole block can fail due to zone boundary conditions */
2248 	if (!free_pages)
2249 		goto single_page;
2250 
2251 	/*
2252 	 * If a sufficient number of pages in the block are either free or of
2253 	 * comparable migratability as our allocation, claim the whole block.
2254 	 */
2255 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2256 			page_group_by_mobility_disabled)
2257 		set_pageblock_migratetype(page, start_type);
2258 
2259 	return;
2260 
2261 single_page:
2262 	area = &zone->free_area[current_order];
2263 	list_move(&page->lru, &area->free_list[start_type]);
2264 }
2265 
2266 /*
2267  * Check whether there is a suitable fallback freepage with requested order.
2268  * If only_stealable is true, this function returns fallback_mt only if
2269  * we can steal other freepages all together. This would help to reduce
2270  * fragmentation due to mixed migratetype pages in one pageblock.
2271  */
2272 int find_suitable_fallback(struct free_area *area, unsigned int order,
2273 			int migratetype, bool only_stealable, bool *can_steal)
2274 {
2275 	int i;
2276 	int fallback_mt;
2277 
2278 	if (area->nr_free == 0)
2279 		return -1;
2280 
2281 	*can_steal = false;
2282 	for (i = 0;; i++) {
2283 		fallback_mt = fallbacks[migratetype][i];
2284 		if (fallback_mt == MIGRATE_TYPES)
2285 			break;
2286 
2287 		if (list_empty(&area->free_list[fallback_mt]))
2288 			continue;
2289 
2290 		if (can_steal_fallback(order, migratetype))
2291 			*can_steal = true;
2292 
2293 		if (!only_stealable)
2294 			return fallback_mt;
2295 
2296 		if (*can_steal)
2297 			return fallback_mt;
2298 	}
2299 
2300 	return -1;
2301 }
2302 
2303 /*
2304  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2305  * there are no empty page blocks that contain a page with a suitable order
2306  */
2307 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2308 				unsigned int alloc_order)
2309 {
2310 	int mt;
2311 	unsigned long max_managed, flags;
2312 
2313 	/*
2314 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2315 	 * Check is race-prone but harmless.
2316 	 */
2317 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2318 	if (zone->nr_reserved_highatomic >= max_managed)
2319 		return;
2320 
2321 	spin_lock_irqsave(&zone->lock, flags);
2322 
2323 	/* Recheck the nr_reserved_highatomic limit under the lock */
2324 	if (zone->nr_reserved_highatomic >= max_managed)
2325 		goto out_unlock;
2326 
2327 	/* Yoink! */
2328 	mt = get_pageblock_migratetype(page);
2329 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2330 	    && !is_migrate_cma(mt)) {
2331 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2332 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2333 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2334 	}
2335 
2336 out_unlock:
2337 	spin_unlock_irqrestore(&zone->lock, flags);
2338 }
2339 
2340 /*
2341  * Used when an allocation is about to fail under memory pressure. This
2342  * potentially hurts the reliability of high-order allocations when under
2343  * intense memory pressure but failed atomic allocations should be easier
2344  * to recover from than an OOM.
2345  *
2346  * If @force is true, try to unreserve a pageblock even though highatomic
2347  * pageblock is exhausted.
2348  */
2349 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2350 						bool force)
2351 {
2352 	struct zonelist *zonelist = ac->zonelist;
2353 	unsigned long flags;
2354 	struct zoneref *z;
2355 	struct zone *zone;
2356 	struct page *page;
2357 	int order;
2358 	bool ret;
2359 
2360 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2361 								ac->nodemask) {
2362 		/*
2363 		 * Preserve at least one pageblock unless memory pressure
2364 		 * is really high.
2365 		 */
2366 		if (!force && zone->nr_reserved_highatomic <=
2367 					pageblock_nr_pages)
2368 			continue;
2369 
2370 		spin_lock_irqsave(&zone->lock, flags);
2371 		for (order = 0; order < MAX_ORDER; order++) {
2372 			struct free_area *area = &(zone->free_area[order]);
2373 
2374 			page = list_first_entry_or_null(
2375 					&area->free_list[MIGRATE_HIGHATOMIC],
2376 					struct page, lru);
2377 			if (!page)
2378 				continue;
2379 
2380 			/*
2381 			 * In page freeing path, migratetype change is racy so
2382 			 * we can counter several free pages in a pageblock
2383 			 * in this loop althoug we changed the pageblock type
2384 			 * from highatomic to ac->migratetype. So we should
2385 			 * adjust the count once.
2386 			 */
2387 			if (is_migrate_highatomic_page(page)) {
2388 				/*
2389 				 * It should never happen but changes to
2390 				 * locking could inadvertently allow a per-cpu
2391 				 * drain to add pages to MIGRATE_HIGHATOMIC
2392 				 * while unreserving so be safe and watch for
2393 				 * underflows.
2394 				 */
2395 				zone->nr_reserved_highatomic -= min(
2396 						pageblock_nr_pages,
2397 						zone->nr_reserved_highatomic);
2398 			}
2399 
2400 			/*
2401 			 * Convert to ac->migratetype and avoid the normal
2402 			 * pageblock stealing heuristics. Minimally, the caller
2403 			 * is doing the work and needs the pages. More
2404 			 * importantly, if the block was always converted to
2405 			 * MIGRATE_UNMOVABLE or another type then the number
2406 			 * of pageblocks that cannot be completely freed
2407 			 * may increase.
2408 			 */
2409 			set_pageblock_migratetype(page, ac->migratetype);
2410 			ret = move_freepages_block(zone, page, ac->migratetype,
2411 									NULL);
2412 			if (ret) {
2413 				spin_unlock_irqrestore(&zone->lock, flags);
2414 				return ret;
2415 			}
2416 		}
2417 		spin_unlock_irqrestore(&zone->lock, flags);
2418 	}
2419 
2420 	return false;
2421 }
2422 
2423 /*
2424  * Try finding a free buddy page on the fallback list and put it on the free
2425  * list of requested migratetype, possibly along with other pages from the same
2426  * block, depending on fragmentation avoidance heuristics. Returns true if
2427  * fallback was found so that __rmqueue_smallest() can grab it.
2428  *
2429  * The use of signed ints for order and current_order is a deliberate
2430  * deviation from the rest of this file, to make the for loop
2431  * condition simpler.
2432  */
2433 static __always_inline bool
2434 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2435 						unsigned int alloc_flags)
2436 {
2437 	struct free_area *area;
2438 	int current_order;
2439 	int min_order = order;
2440 	struct page *page;
2441 	int fallback_mt;
2442 	bool can_steal;
2443 
2444 	/*
2445 	 * Do not steal pages from freelists belonging to other pageblocks
2446 	 * i.e. orders < pageblock_order. If there are no local zones free,
2447 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2448 	 */
2449 	if (alloc_flags & ALLOC_NOFRAGMENT)
2450 		min_order = pageblock_order;
2451 
2452 	/*
2453 	 * Find the largest available free page in the other list. This roughly
2454 	 * approximates finding the pageblock with the most free pages, which
2455 	 * would be too costly to do exactly.
2456 	 */
2457 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2458 				--current_order) {
2459 		area = &(zone->free_area[current_order]);
2460 		fallback_mt = find_suitable_fallback(area, current_order,
2461 				start_migratetype, false, &can_steal);
2462 		if (fallback_mt == -1)
2463 			continue;
2464 
2465 		/*
2466 		 * We cannot steal all free pages from the pageblock and the
2467 		 * requested migratetype is movable. In that case it's better to
2468 		 * steal and split the smallest available page instead of the
2469 		 * largest available page, because even if the next movable
2470 		 * allocation falls back into a different pageblock than this
2471 		 * one, it won't cause permanent fragmentation.
2472 		 */
2473 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2474 					&& current_order > order)
2475 			goto find_smallest;
2476 
2477 		goto do_steal;
2478 	}
2479 
2480 	return false;
2481 
2482 find_smallest:
2483 	for (current_order = order; current_order < MAX_ORDER;
2484 							current_order++) {
2485 		area = &(zone->free_area[current_order]);
2486 		fallback_mt = find_suitable_fallback(area, current_order,
2487 				start_migratetype, false, &can_steal);
2488 		if (fallback_mt != -1)
2489 			break;
2490 	}
2491 
2492 	/*
2493 	 * This should not happen - we already found a suitable fallback
2494 	 * when looking for the largest page.
2495 	 */
2496 	VM_BUG_ON(current_order == MAX_ORDER);
2497 
2498 do_steal:
2499 	page = list_first_entry(&area->free_list[fallback_mt],
2500 							struct page, lru);
2501 
2502 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2503 								can_steal);
2504 
2505 	trace_mm_page_alloc_extfrag(page, order, current_order,
2506 		start_migratetype, fallback_mt);
2507 
2508 	return true;
2509 
2510 }
2511 
2512 /*
2513  * Do the hard work of removing an element from the buddy allocator.
2514  * Call me with the zone->lock already held.
2515  */
2516 static __always_inline struct page *
2517 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2518 						unsigned int alloc_flags)
2519 {
2520 	struct page *page;
2521 
2522 retry:
2523 	page = __rmqueue_smallest(zone, order, migratetype);
2524 	if (unlikely(!page)) {
2525 		if (migratetype == MIGRATE_MOVABLE)
2526 			page = __rmqueue_cma_fallback(zone, order);
2527 
2528 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2529 								alloc_flags))
2530 			goto retry;
2531 	}
2532 
2533 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2534 	return page;
2535 }
2536 
2537 /*
2538  * Obtain a specified number of elements from the buddy allocator, all under
2539  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2540  * Returns the number of new pages which were placed at *list.
2541  */
2542 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2543 			unsigned long count, struct list_head *list,
2544 			int migratetype, unsigned int alloc_flags)
2545 {
2546 	int i, alloced = 0;
2547 
2548 	spin_lock(&zone->lock);
2549 	for (i = 0; i < count; ++i) {
2550 		struct page *page = __rmqueue(zone, order, migratetype,
2551 								alloc_flags);
2552 		if (unlikely(page == NULL))
2553 			break;
2554 
2555 		if (unlikely(check_pcp_refill(page)))
2556 			continue;
2557 
2558 		/*
2559 		 * Split buddy pages returned by expand() are received here in
2560 		 * physical page order. The page is added to the tail of
2561 		 * caller's list. From the callers perspective, the linked list
2562 		 * is ordered by page number under some conditions. This is
2563 		 * useful for IO devices that can forward direction from the
2564 		 * head, thus also in the physical page order. This is useful
2565 		 * for IO devices that can merge IO requests if the physical
2566 		 * pages are ordered properly.
2567 		 */
2568 		list_add_tail(&page->lru, list);
2569 		alloced++;
2570 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2571 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2572 					      -(1 << order));
2573 	}
2574 
2575 	/*
2576 	 * i pages were removed from the buddy list even if some leak due
2577 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2578 	 * on i. Do not confuse with 'alloced' which is the number of
2579 	 * pages added to the pcp list.
2580 	 */
2581 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2582 	spin_unlock(&zone->lock);
2583 	return alloced;
2584 }
2585 
2586 #ifdef CONFIG_NUMA
2587 /*
2588  * Called from the vmstat counter updater to drain pagesets of this
2589  * currently executing processor on remote nodes after they have
2590  * expired.
2591  *
2592  * Note that this function must be called with the thread pinned to
2593  * a single processor.
2594  */
2595 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2596 {
2597 	unsigned long flags;
2598 	int to_drain, batch;
2599 
2600 	local_irq_save(flags);
2601 	batch = READ_ONCE(pcp->batch);
2602 	to_drain = min(pcp->count, batch);
2603 	if (to_drain > 0)
2604 		free_pcppages_bulk(zone, to_drain, pcp);
2605 	local_irq_restore(flags);
2606 }
2607 #endif
2608 
2609 /*
2610  * Drain pcplists of the indicated processor and zone.
2611  *
2612  * The processor must either be the current processor and the
2613  * thread pinned to the current processor or a processor that
2614  * is not online.
2615  */
2616 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2617 {
2618 	unsigned long flags;
2619 	struct per_cpu_pageset *pset;
2620 	struct per_cpu_pages *pcp;
2621 
2622 	local_irq_save(flags);
2623 	pset = per_cpu_ptr(zone->pageset, cpu);
2624 
2625 	pcp = &pset->pcp;
2626 	if (pcp->count)
2627 		free_pcppages_bulk(zone, pcp->count, pcp);
2628 	local_irq_restore(flags);
2629 }
2630 
2631 /*
2632  * Drain pcplists of all zones on the indicated processor.
2633  *
2634  * The processor must either be the current processor and the
2635  * thread pinned to the current processor or a processor that
2636  * is not online.
2637  */
2638 static void drain_pages(unsigned int cpu)
2639 {
2640 	struct zone *zone;
2641 
2642 	for_each_populated_zone(zone) {
2643 		drain_pages_zone(cpu, zone);
2644 	}
2645 }
2646 
2647 /*
2648  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2649  *
2650  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2651  * the single zone's pages.
2652  */
2653 void drain_local_pages(struct zone *zone)
2654 {
2655 	int cpu = smp_processor_id();
2656 
2657 	if (zone)
2658 		drain_pages_zone(cpu, zone);
2659 	else
2660 		drain_pages(cpu);
2661 }
2662 
2663 static void drain_local_pages_wq(struct work_struct *work)
2664 {
2665 	struct pcpu_drain *drain;
2666 
2667 	drain = container_of(work, struct pcpu_drain, work);
2668 
2669 	/*
2670 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2671 	 * we can race with cpu offline when the WQ can move this from
2672 	 * a cpu pinned worker to an unbound one. We can operate on a different
2673 	 * cpu which is allright but we also have to make sure to not move to
2674 	 * a different one.
2675 	 */
2676 	preempt_disable();
2677 	drain_local_pages(drain->zone);
2678 	preempt_enable();
2679 }
2680 
2681 /*
2682  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2683  *
2684  * When zone parameter is non-NULL, spill just the single zone's pages.
2685  *
2686  * Note that this can be extremely slow as the draining happens in a workqueue.
2687  */
2688 void drain_all_pages(struct zone *zone)
2689 {
2690 	int cpu;
2691 
2692 	/*
2693 	 * Allocate in the BSS so we wont require allocation in
2694 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2695 	 */
2696 	static cpumask_t cpus_with_pcps;
2697 
2698 	/*
2699 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2700 	 * initialized.
2701 	 */
2702 	if (WARN_ON_ONCE(!mm_percpu_wq))
2703 		return;
2704 
2705 	/*
2706 	 * Do not drain if one is already in progress unless it's specific to
2707 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2708 	 * the drain to be complete when the call returns.
2709 	 */
2710 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2711 		if (!zone)
2712 			return;
2713 		mutex_lock(&pcpu_drain_mutex);
2714 	}
2715 
2716 	/*
2717 	 * We don't care about racing with CPU hotplug event
2718 	 * as offline notification will cause the notified
2719 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2720 	 * disables preemption as part of its processing
2721 	 */
2722 	for_each_online_cpu(cpu) {
2723 		struct per_cpu_pageset *pcp;
2724 		struct zone *z;
2725 		bool has_pcps = false;
2726 
2727 		if (zone) {
2728 			pcp = per_cpu_ptr(zone->pageset, cpu);
2729 			if (pcp->pcp.count)
2730 				has_pcps = true;
2731 		} else {
2732 			for_each_populated_zone(z) {
2733 				pcp = per_cpu_ptr(z->pageset, cpu);
2734 				if (pcp->pcp.count) {
2735 					has_pcps = true;
2736 					break;
2737 				}
2738 			}
2739 		}
2740 
2741 		if (has_pcps)
2742 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2743 		else
2744 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2745 	}
2746 
2747 	for_each_cpu(cpu, &cpus_with_pcps) {
2748 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2749 
2750 		drain->zone = zone;
2751 		INIT_WORK(&drain->work, drain_local_pages_wq);
2752 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2753 	}
2754 	for_each_cpu(cpu, &cpus_with_pcps)
2755 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2756 
2757 	mutex_unlock(&pcpu_drain_mutex);
2758 }
2759 
2760 #ifdef CONFIG_HIBERNATION
2761 
2762 /*
2763  * Touch the watchdog for every WD_PAGE_COUNT pages.
2764  */
2765 #define WD_PAGE_COUNT	(128*1024)
2766 
2767 void mark_free_pages(struct zone *zone)
2768 {
2769 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2770 	unsigned long flags;
2771 	unsigned int order, t;
2772 	struct page *page;
2773 
2774 	if (zone_is_empty(zone))
2775 		return;
2776 
2777 	spin_lock_irqsave(&zone->lock, flags);
2778 
2779 	max_zone_pfn = zone_end_pfn(zone);
2780 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2781 		if (pfn_valid(pfn)) {
2782 			page = pfn_to_page(pfn);
2783 
2784 			if (!--page_count) {
2785 				touch_nmi_watchdog();
2786 				page_count = WD_PAGE_COUNT;
2787 			}
2788 
2789 			if (page_zone(page) != zone)
2790 				continue;
2791 
2792 			if (!swsusp_page_is_forbidden(page))
2793 				swsusp_unset_page_free(page);
2794 		}
2795 
2796 	for_each_migratetype_order(order, t) {
2797 		list_for_each_entry(page,
2798 				&zone->free_area[order].free_list[t], lru) {
2799 			unsigned long i;
2800 
2801 			pfn = page_to_pfn(page);
2802 			for (i = 0; i < (1UL << order); i++) {
2803 				if (!--page_count) {
2804 					touch_nmi_watchdog();
2805 					page_count = WD_PAGE_COUNT;
2806 				}
2807 				swsusp_set_page_free(pfn_to_page(pfn + i));
2808 			}
2809 		}
2810 	}
2811 	spin_unlock_irqrestore(&zone->lock, flags);
2812 }
2813 #endif /* CONFIG_PM */
2814 
2815 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2816 {
2817 	int migratetype;
2818 
2819 	if (!free_pcp_prepare(page))
2820 		return false;
2821 
2822 	migratetype = get_pfnblock_migratetype(page, pfn);
2823 	set_pcppage_migratetype(page, migratetype);
2824 	return true;
2825 }
2826 
2827 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2828 {
2829 	struct zone *zone = page_zone(page);
2830 	struct per_cpu_pages *pcp;
2831 	int migratetype;
2832 
2833 	migratetype = get_pcppage_migratetype(page);
2834 	__count_vm_event(PGFREE);
2835 
2836 	/*
2837 	 * We only track unmovable, reclaimable and movable on pcp lists.
2838 	 * Free ISOLATE pages back to the allocator because they are being
2839 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2840 	 * areas back if necessary. Otherwise, we may have to free
2841 	 * excessively into the page allocator
2842 	 */
2843 	if (migratetype >= MIGRATE_PCPTYPES) {
2844 		if (unlikely(is_migrate_isolate(migratetype))) {
2845 			free_one_page(zone, page, pfn, 0, migratetype);
2846 			return;
2847 		}
2848 		migratetype = MIGRATE_MOVABLE;
2849 	}
2850 
2851 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2852 	list_add(&page->lru, &pcp->lists[migratetype]);
2853 	pcp->count++;
2854 	if (pcp->count >= pcp->high) {
2855 		unsigned long batch = READ_ONCE(pcp->batch);
2856 		free_pcppages_bulk(zone, batch, pcp);
2857 	}
2858 }
2859 
2860 /*
2861  * Free a 0-order page
2862  */
2863 void free_unref_page(struct page *page)
2864 {
2865 	unsigned long flags;
2866 	unsigned long pfn = page_to_pfn(page);
2867 
2868 	if (!free_unref_page_prepare(page, pfn))
2869 		return;
2870 
2871 	local_irq_save(flags);
2872 	free_unref_page_commit(page, pfn);
2873 	local_irq_restore(flags);
2874 }
2875 
2876 /*
2877  * Free a list of 0-order pages
2878  */
2879 void free_unref_page_list(struct list_head *list)
2880 {
2881 	struct page *page, *next;
2882 	unsigned long flags, pfn;
2883 	int batch_count = 0;
2884 
2885 	/* Prepare pages for freeing */
2886 	list_for_each_entry_safe(page, next, list, lru) {
2887 		pfn = page_to_pfn(page);
2888 		if (!free_unref_page_prepare(page, pfn))
2889 			list_del(&page->lru);
2890 		set_page_private(page, pfn);
2891 	}
2892 
2893 	local_irq_save(flags);
2894 	list_for_each_entry_safe(page, next, list, lru) {
2895 		unsigned long pfn = page_private(page);
2896 
2897 		set_page_private(page, 0);
2898 		trace_mm_page_free_batched(page);
2899 		free_unref_page_commit(page, pfn);
2900 
2901 		/*
2902 		 * Guard against excessive IRQ disabled times when we get
2903 		 * a large list of pages to free.
2904 		 */
2905 		if (++batch_count == SWAP_CLUSTER_MAX) {
2906 			local_irq_restore(flags);
2907 			batch_count = 0;
2908 			local_irq_save(flags);
2909 		}
2910 	}
2911 	local_irq_restore(flags);
2912 }
2913 
2914 /*
2915  * split_page takes a non-compound higher-order page, and splits it into
2916  * n (1<<order) sub-pages: page[0..n]
2917  * Each sub-page must be freed individually.
2918  *
2919  * Note: this is probably too low level an operation for use in drivers.
2920  * Please consult with lkml before using this in your driver.
2921  */
2922 void split_page(struct page *page, unsigned int order)
2923 {
2924 	int i;
2925 
2926 	VM_BUG_ON_PAGE(PageCompound(page), page);
2927 	VM_BUG_ON_PAGE(!page_count(page), page);
2928 
2929 	for (i = 1; i < (1 << order); i++)
2930 		set_page_refcounted(page + i);
2931 	split_page_owner(page, order);
2932 }
2933 EXPORT_SYMBOL_GPL(split_page);
2934 
2935 int __isolate_free_page(struct page *page, unsigned int order)
2936 {
2937 	unsigned long watermark;
2938 	struct zone *zone;
2939 	int mt;
2940 
2941 	BUG_ON(!PageBuddy(page));
2942 
2943 	zone = page_zone(page);
2944 	mt = get_pageblock_migratetype(page);
2945 
2946 	if (!is_migrate_isolate(mt)) {
2947 		/*
2948 		 * Obey watermarks as if the page was being allocated. We can
2949 		 * emulate a high-order watermark check with a raised order-0
2950 		 * watermark, because we already know our high-order page
2951 		 * exists.
2952 		 */
2953 		watermark = min_wmark_pages(zone) + (1UL << order);
2954 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2955 			return 0;
2956 
2957 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2958 	}
2959 
2960 	/* Remove page from free list */
2961 	list_del(&page->lru);
2962 	zone->free_area[order].nr_free--;
2963 	rmv_page_order(page);
2964 
2965 	/*
2966 	 * Set the pageblock if the isolated page is at least half of a
2967 	 * pageblock
2968 	 */
2969 	if (order >= pageblock_order - 1) {
2970 		struct page *endpage = page + (1 << order) - 1;
2971 		for (; page < endpage; page += pageblock_nr_pages) {
2972 			int mt = get_pageblock_migratetype(page);
2973 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2974 			    && !is_migrate_highatomic(mt))
2975 				set_pageblock_migratetype(page,
2976 							  MIGRATE_MOVABLE);
2977 		}
2978 	}
2979 
2980 
2981 	return 1UL << order;
2982 }
2983 
2984 /*
2985  * Update NUMA hit/miss statistics
2986  *
2987  * Must be called with interrupts disabled.
2988  */
2989 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2990 {
2991 #ifdef CONFIG_NUMA
2992 	enum numa_stat_item local_stat = NUMA_LOCAL;
2993 
2994 	/* skip numa counters update if numa stats is disabled */
2995 	if (!static_branch_likely(&vm_numa_stat_key))
2996 		return;
2997 
2998 	if (zone_to_nid(z) != numa_node_id())
2999 		local_stat = NUMA_OTHER;
3000 
3001 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3002 		__inc_numa_state(z, NUMA_HIT);
3003 	else {
3004 		__inc_numa_state(z, NUMA_MISS);
3005 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3006 	}
3007 	__inc_numa_state(z, local_stat);
3008 #endif
3009 }
3010 
3011 /* Remove page from the per-cpu list, caller must protect the list */
3012 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3013 			unsigned int alloc_flags,
3014 			struct per_cpu_pages *pcp,
3015 			struct list_head *list)
3016 {
3017 	struct page *page;
3018 
3019 	do {
3020 		if (list_empty(list)) {
3021 			pcp->count += rmqueue_bulk(zone, 0,
3022 					pcp->batch, list,
3023 					migratetype, alloc_flags);
3024 			if (unlikely(list_empty(list)))
3025 				return NULL;
3026 		}
3027 
3028 		page = list_first_entry(list, struct page, lru);
3029 		list_del(&page->lru);
3030 		pcp->count--;
3031 	} while (check_new_pcp(page));
3032 
3033 	return page;
3034 }
3035 
3036 /* Lock and remove page from the per-cpu list */
3037 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3038 			struct zone *zone, unsigned int order,
3039 			gfp_t gfp_flags, int migratetype,
3040 			unsigned int alloc_flags)
3041 {
3042 	struct per_cpu_pages *pcp;
3043 	struct list_head *list;
3044 	struct page *page;
3045 	unsigned long flags;
3046 
3047 	local_irq_save(flags);
3048 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3049 	list = &pcp->lists[migratetype];
3050 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3051 	if (page) {
3052 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3053 		zone_statistics(preferred_zone, zone);
3054 	}
3055 	local_irq_restore(flags);
3056 	return page;
3057 }
3058 
3059 /*
3060  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3061  */
3062 static inline
3063 struct page *rmqueue(struct zone *preferred_zone,
3064 			struct zone *zone, unsigned int order,
3065 			gfp_t gfp_flags, unsigned int alloc_flags,
3066 			int migratetype)
3067 {
3068 	unsigned long flags;
3069 	struct page *page;
3070 
3071 	if (likely(order == 0)) {
3072 		page = rmqueue_pcplist(preferred_zone, zone, order,
3073 				gfp_flags, migratetype, alloc_flags);
3074 		goto out;
3075 	}
3076 
3077 	/*
3078 	 * We most definitely don't want callers attempting to
3079 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3080 	 */
3081 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3082 	spin_lock_irqsave(&zone->lock, flags);
3083 
3084 	do {
3085 		page = NULL;
3086 		if (alloc_flags & ALLOC_HARDER) {
3087 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3088 			if (page)
3089 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3090 		}
3091 		if (!page)
3092 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3093 	} while (page && check_new_pages(page, order));
3094 	spin_unlock(&zone->lock);
3095 	if (!page)
3096 		goto failed;
3097 	__mod_zone_freepage_state(zone, -(1 << order),
3098 				  get_pcppage_migratetype(page));
3099 
3100 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3101 	zone_statistics(preferred_zone, zone);
3102 	local_irq_restore(flags);
3103 
3104 out:
3105 	/* Separate test+clear to avoid unnecessary atomics */
3106 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3107 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3108 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3109 	}
3110 
3111 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3112 	return page;
3113 
3114 failed:
3115 	local_irq_restore(flags);
3116 	return NULL;
3117 }
3118 
3119 #ifdef CONFIG_FAIL_PAGE_ALLOC
3120 
3121 static struct {
3122 	struct fault_attr attr;
3123 
3124 	bool ignore_gfp_highmem;
3125 	bool ignore_gfp_reclaim;
3126 	u32 min_order;
3127 } fail_page_alloc = {
3128 	.attr = FAULT_ATTR_INITIALIZER,
3129 	.ignore_gfp_reclaim = true,
3130 	.ignore_gfp_highmem = true,
3131 	.min_order = 1,
3132 };
3133 
3134 static int __init setup_fail_page_alloc(char *str)
3135 {
3136 	return setup_fault_attr(&fail_page_alloc.attr, str);
3137 }
3138 __setup("fail_page_alloc=", setup_fail_page_alloc);
3139 
3140 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3141 {
3142 	if (order < fail_page_alloc.min_order)
3143 		return false;
3144 	if (gfp_mask & __GFP_NOFAIL)
3145 		return false;
3146 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3147 		return false;
3148 	if (fail_page_alloc.ignore_gfp_reclaim &&
3149 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3150 		return false;
3151 
3152 	return should_fail(&fail_page_alloc.attr, 1 << order);
3153 }
3154 
3155 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3156 
3157 static int __init fail_page_alloc_debugfs(void)
3158 {
3159 	umode_t mode = S_IFREG | 0600;
3160 	struct dentry *dir;
3161 
3162 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3163 					&fail_page_alloc.attr);
3164 	if (IS_ERR(dir))
3165 		return PTR_ERR(dir);
3166 
3167 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3168 				&fail_page_alloc.ignore_gfp_reclaim))
3169 		goto fail;
3170 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3171 				&fail_page_alloc.ignore_gfp_highmem))
3172 		goto fail;
3173 	if (!debugfs_create_u32("min-order", mode, dir,
3174 				&fail_page_alloc.min_order))
3175 		goto fail;
3176 
3177 	return 0;
3178 fail:
3179 	debugfs_remove_recursive(dir);
3180 
3181 	return -ENOMEM;
3182 }
3183 
3184 late_initcall(fail_page_alloc_debugfs);
3185 
3186 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3187 
3188 #else /* CONFIG_FAIL_PAGE_ALLOC */
3189 
3190 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3191 {
3192 	return false;
3193 }
3194 
3195 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3196 
3197 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3198 {
3199 	return __should_fail_alloc_page(gfp_mask, order);
3200 }
3201 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3202 
3203 /*
3204  * Return true if free base pages are above 'mark'. For high-order checks it
3205  * will return true of the order-0 watermark is reached and there is at least
3206  * one free page of a suitable size. Checking now avoids taking the zone lock
3207  * to check in the allocation paths if no pages are free.
3208  */
3209 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3210 			 int classzone_idx, unsigned int alloc_flags,
3211 			 long free_pages)
3212 {
3213 	long min = mark;
3214 	int o;
3215 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3216 
3217 	/* free_pages may go negative - that's OK */
3218 	free_pages -= (1 << order) - 1;
3219 
3220 	if (alloc_flags & ALLOC_HIGH)
3221 		min -= min / 2;
3222 
3223 	/*
3224 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3225 	 * the high-atomic reserves. This will over-estimate the size of the
3226 	 * atomic reserve but it avoids a search.
3227 	 */
3228 	if (likely(!alloc_harder)) {
3229 		free_pages -= z->nr_reserved_highatomic;
3230 	} else {
3231 		/*
3232 		 * OOM victims can try even harder than normal ALLOC_HARDER
3233 		 * users on the grounds that it's definitely going to be in
3234 		 * the exit path shortly and free memory. Any allocation it
3235 		 * makes during the free path will be small and short-lived.
3236 		 */
3237 		if (alloc_flags & ALLOC_OOM)
3238 			min -= min / 2;
3239 		else
3240 			min -= min / 4;
3241 	}
3242 
3243 
3244 #ifdef CONFIG_CMA
3245 	/* If allocation can't use CMA areas don't use free CMA pages */
3246 	if (!(alloc_flags & ALLOC_CMA))
3247 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3248 #endif
3249 
3250 	/*
3251 	 * Check watermarks for an order-0 allocation request. If these
3252 	 * are not met, then a high-order request also cannot go ahead
3253 	 * even if a suitable page happened to be free.
3254 	 */
3255 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3256 		return false;
3257 
3258 	/* If this is an order-0 request then the watermark is fine */
3259 	if (!order)
3260 		return true;
3261 
3262 	/* For a high-order request, check at least one suitable page is free */
3263 	for (o = order; o < MAX_ORDER; o++) {
3264 		struct free_area *area = &z->free_area[o];
3265 		int mt;
3266 
3267 		if (!area->nr_free)
3268 			continue;
3269 
3270 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3271 			if (!list_empty(&area->free_list[mt]))
3272 				return true;
3273 		}
3274 
3275 #ifdef CONFIG_CMA
3276 		if ((alloc_flags & ALLOC_CMA) &&
3277 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3278 			return true;
3279 		}
3280 #endif
3281 		if (alloc_harder &&
3282 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3283 			return true;
3284 	}
3285 	return false;
3286 }
3287 
3288 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3289 		      int classzone_idx, unsigned int alloc_flags)
3290 {
3291 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3292 					zone_page_state(z, NR_FREE_PAGES));
3293 }
3294 
3295 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3296 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3297 {
3298 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3299 	long cma_pages = 0;
3300 
3301 #ifdef CONFIG_CMA
3302 	/* If allocation can't use CMA areas don't use free CMA pages */
3303 	if (!(alloc_flags & ALLOC_CMA))
3304 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3305 #endif
3306 
3307 	/*
3308 	 * Fast check for order-0 only. If this fails then the reserves
3309 	 * need to be calculated. There is a corner case where the check
3310 	 * passes but only the high-order atomic reserve are free. If
3311 	 * the caller is !atomic then it'll uselessly search the free
3312 	 * list. That corner case is then slower but it is harmless.
3313 	 */
3314 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3315 		return true;
3316 
3317 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3318 					free_pages);
3319 }
3320 
3321 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3322 			unsigned long mark, int classzone_idx)
3323 {
3324 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3325 
3326 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3327 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3328 
3329 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3330 								free_pages);
3331 }
3332 
3333 #ifdef CONFIG_NUMA
3334 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3335 {
3336 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3337 				RECLAIM_DISTANCE;
3338 }
3339 #else	/* CONFIG_NUMA */
3340 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3341 {
3342 	return true;
3343 }
3344 #endif	/* CONFIG_NUMA */
3345 
3346 /*
3347  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3348  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3349  * premature use of a lower zone may cause lowmem pressure problems that
3350  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3351  * probably too small. It only makes sense to spread allocations to avoid
3352  * fragmentation between the Normal and DMA32 zones.
3353  */
3354 static inline unsigned int
3355 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3356 {
3357 	unsigned int alloc_flags = 0;
3358 
3359 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3360 		alloc_flags |= ALLOC_KSWAPD;
3361 
3362 #ifdef CONFIG_ZONE_DMA32
3363 	if (zone_idx(zone) != ZONE_NORMAL)
3364 		goto out;
3365 
3366 	/*
3367 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3368 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3369 	 * on UMA that if Normal is populated then so is DMA32.
3370 	 */
3371 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3372 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3373 		goto out;
3374 
3375 out:
3376 #endif /* CONFIG_ZONE_DMA32 */
3377 	return alloc_flags;
3378 }
3379 
3380 /*
3381  * get_page_from_freelist goes through the zonelist trying to allocate
3382  * a page.
3383  */
3384 static struct page *
3385 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3386 						const struct alloc_context *ac)
3387 {
3388 	struct zoneref *z;
3389 	struct zone *zone;
3390 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3391 	bool no_fallback;
3392 
3393 retry:
3394 	/*
3395 	 * Scan zonelist, looking for a zone with enough free.
3396 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3397 	 */
3398 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3399 	z = ac->preferred_zoneref;
3400 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3401 								ac->nodemask) {
3402 		struct page *page;
3403 		unsigned long mark;
3404 
3405 		if (cpusets_enabled() &&
3406 			(alloc_flags & ALLOC_CPUSET) &&
3407 			!__cpuset_zone_allowed(zone, gfp_mask))
3408 				continue;
3409 		/*
3410 		 * When allocating a page cache page for writing, we
3411 		 * want to get it from a node that is within its dirty
3412 		 * limit, such that no single node holds more than its
3413 		 * proportional share of globally allowed dirty pages.
3414 		 * The dirty limits take into account the node's
3415 		 * lowmem reserves and high watermark so that kswapd
3416 		 * should be able to balance it without having to
3417 		 * write pages from its LRU list.
3418 		 *
3419 		 * XXX: For now, allow allocations to potentially
3420 		 * exceed the per-node dirty limit in the slowpath
3421 		 * (spread_dirty_pages unset) before going into reclaim,
3422 		 * which is important when on a NUMA setup the allowed
3423 		 * nodes are together not big enough to reach the
3424 		 * global limit.  The proper fix for these situations
3425 		 * will require awareness of nodes in the
3426 		 * dirty-throttling and the flusher threads.
3427 		 */
3428 		if (ac->spread_dirty_pages) {
3429 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3430 				continue;
3431 
3432 			if (!node_dirty_ok(zone->zone_pgdat)) {
3433 				last_pgdat_dirty_limit = zone->zone_pgdat;
3434 				continue;
3435 			}
3436 		}
3437 
3438 		if (no_fallback && nr_online_nodes > 1 &&
3439 		    zone != ac->preferred_zoneref->zone) {
3440 			int local_nid;
3441 
3442 			/*
3443 			 * If moving to a remote node, retry but allow
3444 			 * fragmenting fallbacks. Locality is more important
3445 			 * than fragmentation avoidance.
3446 			 */
3447 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3448 			if (zone_to_nid(zone) != local_nid) {
3449 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3450 				goto retry;
3451 			}
3452 		}
3453 
3454 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3455 		if (!zone_watermark_fast(zone, order, mark,
3456 				       ac_classzone_idx(ac), alloc_flags)) {
3457 			int ret;
3458 
3459 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3460 			/*
3461 			 * Watermark failed for this zone, but see if we can
3462 			 * grow this zone if it contains deferred pages.
3463 			 */
3464 			if (static_branch_unlikely(&deferred_pages)) {
3465 				if (_deferred_grow_zone(zone, order))
3466 					goto try_this_zone;
3467 			}
3468 #endif
3469 			/* Checked here to keep the fast path fast */
3470 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3471 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3472 				goto try_this_zone;
3473 
3474 			if (node_reclaim_mode == 0 ||
3475 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3476 				continue;
3477 
3478 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3479 			switch (ret) {
3480 			case NODE_RECLAIM_NOSCAN:
3481 				/* did not scan */
3482 				continue;
3483 			case NODE_RECLAIM_FULL:
3484 				/* scanned but unreclaimable */
3485 				continue;
3486 			default:
3487 				/* did we reclaim enough */
3488 				if (zone_watermark_ok(zone, order, mark,
3489 						ac_classzone_idx(ac), alloc_flags))
3490 					goto try_this_zone;
3491 
3492 				continue;
3493 			}
3494 		}
3495 
3496 try_this_zone:
3497 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3498 				gfp_mask, alloc_flags, ac->migratetype);
3499 		if (page) {
3500 			prep_new_page(page, order, gfp_mask, alloc_flags);
3501 
3502 			/*
3503 			 * If this is a high-order atomic allocation then check
3504 			 * if the pageblock should be reserved for the future
3505 			 */
3506 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3507 				reserve_highatomic_pageblock(page, zone, order);
3508 
3509 			return page;
3510 		} else {
3511 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3512 			/* Try again if zone has deferred pages */
3513 			if (static_branch_unlikely(&deferred_pages)) {
3514 				if (_deferred_grow_zone(zone, order))
3515 					goto try_this_zone;
3516 			}
3517 #endif
3518 		}
3519 	}
3520 
3521 	/*
3522 	 * It's possible on a UMA machine to get through all zones that are
3523 	 * fragmented. If avoiding fragmentation, reset and try again.
3524 	 */
3525 	if (no_fallback) {
3526 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3527 		goto retry;
3528 	}
3529 
3530 	return NULL;
3531 }
3532 
3533 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3534 {
3535 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3536 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3537 
3538 	if (!__ratelimit(&show_mem_rs))
3539 		return;
3540 
3541 	/*
3542 	 * This documents exceptions given to allocations in certain
3543 	 * contexts that are allowed to allocate outside current's set
3544 	 * of allowed nodes.
3545 	 */
3546 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3547 		if (tsk_is_oom_victim(current) ||
3548 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3549 			filter &= ~SHOW_MEM_FILTER_NODES;
3550 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3551 		filter &= ~SHOW_MEM_FILTER_NODES;
3552 
3553 	show_mem(filter, nodemask);
3554 }
3555 
3556 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3557 {
3558 	struct va_format vaf;
3559 	va_list args;
3560 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3561 				      DEFAULT_RATELIMIT_BURST);
3562 
3563 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3564 		return;
3565 
3566 	va_start(args, fmt);
3567 	vaf.fmt = fmt;
3568 	vaf.va = &args;
3569 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3570 			current->comm, &vaf, gfp_mask, &gfp_mask,
3571 			nodemask_pr_args(nodemask));
3572 	va_end(args);
3573 
3574 	cpuset_print_current_mems_allowed();
3575 	pr_cont("\n");
3576 	dump_stack();
3577 	warn_alloc_show_mem(gfp_mask, nodemask);
3578 }
3579 
3580 static inline struct page *
3581 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3582 			      unsigned int alloc_flags,
3583 			      const struct alloc_context *ac)
3584 {
3585 	struct page *page;
3586 
3587 	page = get_page_from_freelist(gfp_mask, order,
3588 			alloc_flags|ALLOC_CPUSET, ac);
3589 	/*
3590 	 * fallback to ignore cpuset restriction if our nodes
3591 	 * are depleted
3592 	 */
3593 	if (!page)
3594 		page = get_page_from_freelist(gfp_mask, order,
3595 				alloc_flags, ac);
3596 
3597 	return page;
3598 }
3599 
3600 static inline struct page *
3601 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3602 	const struct alloc_context *ac, unsigned long *did_some_progress)
3603 {
3604 	struct oom_control oc = {
3605 		.zonelist = ac->zonelist,
3606 		.nodemask = ac->nodemask,
3607 		.memcg = NULL,
3608 		.gfp_mask = gfp_mask,
3609 		.order = order,
3610 	};
3611 	struct page *page;
3612 
3613 	*did_some_progress = 0;
3614 
3615 	/*
3616 	 * Acquire the oom lock.  If that fails, somebody else is
3617 	 * making progress for us.
3618 	 */
3619 	if (!mutex_trylock(&oom_lock)) {
3620 		*did_some_progress = 1;
3621 		schedule_timeout_uninterruptible(1);
3622 		return NULL;
3623 	}
3624 
3625 	/*
3626 	 * Go through the zonelist yet one more time, keep very high watermark
3627 	 * here, this is only to catch a parallel oom killing, we must fail if
3628 	 * we're still under heavy pressure. But make sure that this reclaim
3629 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3630 	 * allocation which will never fail due to oom_lock already held.
3631 	 */
3632 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3633 				      ~__GFP_DIRECT_RECLAIM, order,
3634 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3635 	if (page)
3636 		goto out;
3637 
3638 	/* Coredumps can quickly deplete all memory reserves */
3639 	if (current->flags & PF_DUMPCORE)
3640 		goto out;
3641 	/* The OOM killer will not help higher order allocs */
3642 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3643 		goto out;
3644 	/*
3645 	 * We have already exhausted all our reclaim opportunities without any
3646 	 * success so it is time to admit defeat. We will skip the OOM killer
3647 	 * because it is very likely that the caller has a more reasonable
3648 	 * fallback than shooting a random task.
3649 	 */
3650 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3651 		goto out;
3652 	/* The OOM killer does not needlessly kill tasks for lowmem */
3653 	if (ac->high_zoneidx < ZONE_NORMAL)
3654 		goto out;
3655 	if (pm_suspended_storage())
3656 		goto out;
3657 	/*
3658 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3659 	 * other request to make a forward progress.
3660 	 * We are in an unfortunate situation where out_of_memory cannot
3661 	 * do much for this context but let's try it to at least get
3662 	 * access to memory reserved if the current task is killed (see
3663 	 * out_of_memory). Once filesystems are ready to handle allocation
3664 	 * failures more gracefully we should just bail out here.
3665 	 */
3666 
3667 	/* The OOM killer may not free memory on a specific node */
3668 	if (gfp_mask & __GFP_THISNODE)
3669 		goto out;
3670 
3671 	/* Exhausted what can be done so it's blame time */
3672 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3673 		*did_some_progress = 1;
3674 
3675 		/*
3676 		 * Help non-failing allocations by giving them access to memory
3677 		 * reserves
3678 		 */
3679 		if (gfp_mask & __GFP_NOFAIL)
3680 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3681 					ALLOC_NO_WATERMARKS, ac);
3682 	}
3683 out:
3684 	mutex_unlock(&oom_lock);
3685 	return page;
3686 }
3687 
3688 /*
3689  * Maximum number of compaction retries wit a progress before OOM
3690  * killer is consider as the only way to move forward.
3691  */
3692 #define MAX_COMPACT_RETRIES 16
3693 
3694 #ifdef CONFIG_COMPACTION
3695 /* Try memory compaction for high-order allocations before reclaim */
3696 static struct page *
3697 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3698 		unsigned int alloc_flags, const struct alloc_context *ac,
3699 		enum compact_priority prio, enum compact_result *compact_result)
3700 {
3701 	struct page *page;
3702 	unsigned long pflags;
3703 	unsigned int noreclaim_flag;
3704 
3705 	if (!order)
3706 		return NULL;
3707 
3708 	psi_memstall_enter(&pflags);
3709 	noreclaim_flag = memalloc_noreclaim_save();
3710 
3711 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3712 									prio);
3713 
3714 	memalloc_noreclaim_restore(noreclaim_flag);
3715 	psi_memstall_leave(&pflags);
3716 
3717 	if (*compact_result <= COMPACT_INACTIVE)
3718 		return NULL;
3719 
3720 	/*
3721 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3722 	 * count a compaction stall
3723 	 */
3724 	count_vm_event(COMPACTSTALL);
3725 
3726 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3727 
3728 	if (page) {
3729 		struct zone *zone = page_zone(page);
3730 
3731 		zone->compact_blockskip_flush = false;
3732 		compaction_defer_reset(zone, order, true);
3733 		count_vm_event(COMPACTSUCCESS);
3734 		return page;
3735 	}
3736 
3737 	/*
3738 	 * It's bad if compaction run occurs and fails. The most likely reason
3739 	 * is that pages exist, but not enough to satisfy watermarks.
3740 	 */
3741 	count_vm_event(COMPACTFAIL);
3742 
3743 	cond_resched();
3744 
3745 	return NULL;
3746 }
3747 
3748 static inline bool
3749 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3750 		     enum compact_result compact_result,
3751 		     enum compact_priority *compact_priority,
3752 		     int *compaction_retries)
3753 {
3754 	int max_retries = MAX_COMPACT_RETRIES;
3755 	int min_priority;
3756 	bool ret = false;
3757 	int retries = *compaction_retries;
3758 	enum compact_priority priority = *compact_priority;
3759 
3760 	if (!order)
3761 		return false;
3762 
3763 	if (compaction_made_progress(compact_result))
3764 		(*compaction_retries)++;
3765 
3766 	/*
3767 	 * compaction considers all the zone as desperately out of memory
3768 	 * so it doesn't really make much sense to retry except when the
3769 	 * failure could be caused by insufficient priority
3770 	 */
3771 	if (compaction_failed(compact_result))
3772 		goto check_priority;
3773 
3774 	/*
3775 	 * make sure the compaction wasn't deferred or didn't bail out early
3776 	 * due to locks contention before we declare that we should give up.
3777 	 * But do not retry if the given zonelist is not suitable for
3778 	 * compaction.
3779 	 */
3780 	if (compaction_withdrawn(compact_result)) {
3781 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3782 		goto out;
3783 	}
3784 
3785 	/*
3786 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3787 	 * costly ones because they are de facto nofail and invoke OOM
3788 	 * killer to move on while costly can fail and users are ready
3789 	 * to cope with that. 1/4 retries is rather arbitrary but we
3790 	 * would need much more detailed feedback from compaction to
3791 	 * make a better decision.
3792 	 */
3793 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3794 		max_retries /= 4;
3795 	if (*compaction_retries <= max_retries) {
3796 		ret = true;
3797 		goto out;
3798 	}
3799 
3800 	/*
3801 	 * Make sure there are attempts at the highest priority if we exhausted
3802 	 * all retries or failed at the lower priorities.
3803 	 */
3804 check_priority:
3805 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3806 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3807 
3808 	if (*compact_priority > min_priority) {
3809 		(*compact_priority)--;
3810 		*compaction_retries = 0;
3811 		ret = true;
3812 	}
3813 out:
3814 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3815 	return ret;
3816 }
3817 #else
3818 static inline struct page *
3819 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3820 		unsigned int alloc_flags, const struct alloc_context *ac,
3821 		enum compact_priority prio, enum compact_result *compact_result)
3822 {
3823 	*compact_result = COMPACT_SKIPPED;
3824 	return NULL;
3825 }
3826 
3827 static inline bool
3828 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3829 		     enum compact_result compact_result,
3830 		     enum compact_priority *compact_priority,
3831 		     int *compaction_retries)
3832 {
3833 	struct zone *zone;
3834 	struct zoneref *z;
3835 
3836 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3837 		return false;
3838 
3839 	/*
3840 	 * There are setups with compaction disabled which would prefer to loop
3841 	 * inside the allocator rather than hit the oom killer prematurely.
3842 	 * Let's give them a good hope and keep retrying while the order-0
3843 	 * watermarks are OK.
3844 	 */
3845 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3846 					ac->nodemask) {
3847 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3848 					ac_classzone_idx(ac), alloc_flags))
3849 			return true;
3850 	}
3851 	return false;
3852 }
3853 #endif /* CONFIG_COMPACTION */
3854 
3855 #ifdef CONFIG_LOCKDEP
3856 static struct lockdep_map __fs_reclaim_map =
3857 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3858 
3859 static bool __need_fs_reclaim(gfp_t gfp_mask)
3860 {
3861 	gfp_mask = current_gfp_context(gfp_mask);
3862 
3863 	/* no reclaim without waiting on it */
3864 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3865 		return false;
3866 
3867 	/* this guy won't enter reclaim */
3868 	if (current->flags & PF_MEMALLOC)
3869 		return false;
3870 
3871 	/* We're only interested __GFP_FS allocations for now */
3872 	if (!(gfp_mask & __GFP_FS))
3873 		return false;
3874 
3875 	if (gfp_mask & __GFP_NOLOCKDEP)
3876 		return false;
3877 
3878 	return true;
3879 }
3880 
3881 void __fs_reclaim_acquire(void)
3882 {
3883 	lock_map_acquire(&__fs_reclaim_map);
3884 }
3885 
3886 void __fs_reclaim_release(void)
3887 {
3888 	lock_map_release(&__fs_reclaim_map);
3889 }
3890 
3891 void fs_reclaim_acquire(gfp_t gfp_mask)
3892 {
3893 	if (__need_fs_reclaim(gfp_mask))
3894 		__fs_reclaim_acquire();
3895 }
3896 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3897 
3898 void fs_reclaim_release(gfp_t gfp_mask)
3899 {
3900 	if (__need_fs_reclaim(gfp_mask))
3901 		__fs_reclaim_release();
3902 }
3903 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3904 #endif
3905 
3906 /* Perform direct synchronous page reclaim */
3907 static int
3908 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3909 					const struct alloc_context *ac)
3910 {
3911 	struct reclaim_state reclaim_state;
3912 	int progress;
3913 	unsigned int noreclaim_flag;
3914 	unsigned long pflags;
3915 
3916 	cond_resched();
3917 
3918 	/* We now go into synchronous reclaim */
3919 	cpuset_memory_pressure_bump();
3920 	psi_memstall_enter(&pflags);
3921 	fs_reclaim_acquire(gfp_mask);
3922 	noreclaim_flag = memalloc_noreclaim_save();
3923 	reclaim_state.reclaimed_slab = 0;
3924 	current->reclaim_state = &reclaim_state;
3925 
3926 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3927 								ac->nodemask);
3928 
3929 	current->reclaim_state = NULL;
3930 	memalloc_noreclaim_restore(noreclaim_flag);
3931 	fs_reclaim_release(gfp_mask);
3932 	psi_memstall_leave(&pflags);
3933 
3934 	cond_resched();
3935 
3936 	return progress;
3937 }
3938 
3939 /* The really slow allocator path where we enter direct reclaim */
3940 static inline struct page *
3941 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3942 		unsigned int alloc_flags, const struct alloc_context *ac,
3943 		unsigned long *did_some_progress)
3944 {
3945 	struct page *page = NULL;
3946 	bool drained = false;
3947 
3948 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3949 	if (unlikely(!(*did_some_progress)))
3950 		return NULL;
3951 
3952 retry:
3953 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3954 
3955 	/*
3956 	 * If an allocation failed after direct reclaim, it could be because
3957 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3958 	 * Shrink them them and try again
3959 	 */
3960 	if (!page && !drained) {
3961 		unreserve_highatomic_pageblock(ac, false);
3962 		drain_all_pages(NULL);
3963 		drained = true;
3964 		goto retry;
3965 	}
3966 
3967 	return page;
3968 }
3969 
3970 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3971 			     const struct alloc_context *ac)
3972 {
3973 	struct zoneref *z;
3974 	struct zone *zone;
3975 	pg_data_t *last_pgdat = NULL;
3976 	enum zone_type high_zoneidx = ac->high_zoneidx;
3977 
3978 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3979 					ac->nodemask) {
3980 		if (last_pgdat != zone->zone_pgdat)
3981 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3982 		last_pgdat = zone->zone_pgdat;
3983 	}
3984 }
3985 
3986 static inline unsigned int
3987 gfp_to_alloc_flags(gfp_t gfp_mask)
3988 {
3989 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3990 
3991 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3992 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3993 
3994 	/*
3995 	 * The caller may dip into page reserves a bit more if the caller
3996 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3997 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3998 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3999 	 */
4000 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4001 
4002 	if (gfp_mask & __GFP_ATOMIC) {
4003 		/*
4004 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4005 		 * if it can't schedule.
4006 		 */
4007 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4008 			alloc_flags |= ALLOC_HARDER;
4009 		/*
4010 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4011 		 * comment for __cpuset_node_allowed().
4012 		 */
4013 		alloc_flags &= ~ALLOC_CPUSET;
4014 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4015 		alloc_flags |= ALLOC_HARDER;
4016 
4017 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4018 		alloc_flags |= ALLOC_KSWAPD;
4019 
4020 #ifdef CONFIG_CMA
4021 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4022 		alloc_flags |= ALLOC_CMA;
4023 #endif
4024 	return alloc_flags;
4025 }
4026 
4027 static bool oom_reserves_allowed(struct task_struct *tsk)
4028 {
4029 	if (!tsk_is_oom_victim(tsk))
4030 		return false;
4031 
4032 	/*
4033 	 * !MMU doesn't have oom reaper so give access to memory reserves
4034 	 * only to the thread with TIF_MEMDIE set
4035 	 */
4036 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4037 		return false;
4038 
4039 	return true;
4040 }
4041 
4042 /*
4043  * Distinguish requests which really need access to full memory
4044  * reserves from oom victims which can live with a portion of it
4045  */
4046 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4047 {
4048 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4049 		return 0;
4050 	if (gfp_mask & __GFP_MEMALLOC)
4051 		return ALLOC_NO_WATERMARKS;
4052 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4053 		return ALLOC_NO_WATERMARKS;
4054 	if (!in_interrupt()) {
4055 		if (current->flags & PF_MEMALLOC)
4056 			return ALLOC_NO_WATERMARKS;
4057 		else if (oom_reserves_allowed(current))
4058 			return ALLOC_OOM;
4059 	}
4060 
4061 	return 0;
4062 }
4063 
4064 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4065 {
4066 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4067 }
4068 
4069 /*
4070  * Checks whether it makes sense to retry the reclaim to make a forward progress
4071  * for the given allocation request.
4072  *
4073  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4074  * without success, or when we couldn't even meet the watermark if we
4075  * reclaimed all remaining pages on the LRU lists.
4076  *
4077  * Returns true if a retry is viable or false to enter the oom path.
4078  */
4079 static inline bool
4080 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4081 		     struct alloc_context *ac, int alloc_flags,
4082 		     bool did_some_progress, int *no_progress_loops)
4083 {
4084 	struct zone *zone;
4085 	struct zoneref *z;
4086 	bool ret = false;
4087 
4088 	/*
4089 	 * Costly allocations might have made a progress but this doesn't mean
4090 	 * their order will become available due to high fragmentation so
4091 	 * always increment the no progress counter for them
4092 	 */
4093 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4094 		*no_progress_loops = 0;
4095 	else
4096 		(*no_progress_loops)++;
4097 
4098 	/*
4099 	 * Make sure we converge to OOM if we cannot make any progress
4100 	 * several times in the row.
4101 	 */
4102 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4103 		/* Before OOM, exhaust highatomic_reserve */
4104 		return unreserve_highatomic_pageblock(ac, true);
4105 	}
4106 
4107 	/*
4108 	 * Keep reclaiming pages while there is a chance this will lead
4109 	 * somewhere.  If none of the target zones can satisfy our allocation
4110 	 * request even if all reclaimable pages are considered then we are
4111 	 * screwed and have to go OOM.
4112 	 */
4113 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4114 					ac->nodemask) {
4115 		unsigned long available;
4116 		unsigned long reclaimable;
4117 		unsigned long min_wmark = min_wmark_pages(zone);
4118 		bool wmark;
4119 
4120 		available = reclaimable = zone_reclaimable_pages(zone);
4121 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4122 
4123 		/*
4124 		 * Would the allocation succeed if we reclaimed all
4125 		 * reclaimable pages?
4126 		 */
4127 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4128 				ac_classzone_idx(ac), alloc_flags, available);
4129 		trace_reclaim_retry_zone(z, order, reclaimable,
4130 				available, min_wmark, *no_progress_loops, wmark);
4131 		if (wmark) {
4132 			/*
4133 			 * If we didn't make any progress and have a lot of
4134 			 * dirty + writeback pages then we should wait for
4135 			 * an IO to complete to slow down the reclaim and
4136 			 * prevent from pre mature OOM
4137 			 */
4138 			if (!did_some_progress) {
4139 				unsigned long write_pending;
4140 
4141 				write_pending = zone_page_state_snapshot(zone,
4142 							NR_ZONE_WRITE_PENDING);
4143 
4144 				if (2 * write_pending > reclaimable) {
4145 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4146 					return true;
4147 				}
4148 			}
4149 
4150 			ret = true;
4151 			goto out;
4152 		}
4153 	}
4154 
4155 out:
4156 	/*
4157 	 * Memory allocation/reclaim might be called from a WQ context and the
4158 	 * current implementation of the WQ concurrency control doesn't
4159 	 * recognize that a particular WQ is congested if the worker thread is
4160 	 * looping without ever sleeping. Therefore we have to do a short sleep
4161 	 * here rather than calling cond_resched().
4162 	 */
4163 	if (current->flags & PF_WQ_WORKER)
4164 		schedule_timeout_uninterruptible(1);
4165 	else
4166 		cond_resched();
4167 	return ret;
4168 }
4169 
4170 static inline bool
4171 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4172 {
4173 	/*
4174 	 * It's possible that cpuset's mems_allowed and the nodemask from
4175 	 * mempolicy don't intersect. This should be normally dealt with by
4176 	 * policy_nodemask(), but it's possible to race with cpuset update in
4177 	 * such a way the check therein was true, and then it became false
4178 	 * before we got our cpuset_mems_cookie here.
4179 	 * This assumes that for all allocations, ac->nodemask can come only
4180 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4181 	 * when it does not intersect with the cpuset restrictions) or the
4182 	 * caller can deal with a violated nodemask.
4183 	 */
4184 	if (cpusets_enabled() && ac->nodemask &&
4185 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4186 		ac->nodemask = NULL;
4187 		return true;
4188 	}
4189 
4190 	/*
4191 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4192 	 * possible to race with parallel threads in such a way that our
4193 	 * allocation can fail while the mask is being updated. If we are about
4194 	 * to fail, check if the cpuset changed during allocation and if so,
4195 	 * retry.
4196 	 */
4197 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4198 		return true;
4199 
4200 	return false;
4201 }
4202 
4203 static inline struct page *
4204 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4205 						struct alloc_context *ac)
4206 {
4207 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4208 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4209 	struct page *page = NULL;
4210 	unsigned int alloc_flags;
4211 	unsigned long did_some_progress;
4212 	enum compact_priority compact_priority;
4213 	enum compact_result compact_result;
4214 	int compaction_retries;
4215 	int no_progress_loops;
4216 	unsigned int cpuset_mems_cookie;
4217 	int reserve_flags;
4218 
4219 	/*
4220 	 * We also sanity check to catch abuse of atomic reserves being used by
4221 	 * callers that are not in atomic context.
4222 	 */
4223 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4224 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4225 		gfp_mask &= ~__GFP_ATOMIC;
4226 
4227 retry_cpuset:
4228 	compaction_retries = 0;
4229 	no_progress_loops = 0;
4230 	compact_priority = DEF_COMPACT_PRIORITY;
4231 	cpuset_mems_cookie = read_mems_allowed_begin();
4232 
4233 	/*
4234 	 * The fast path uses conservative alloc_flags to succeed only until
4235 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4236 	 * alloc_flags precisely. So we do that now.
4237 	 */
4238 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4239 
4240 	/*
4241 	 * We need to recalculate the starting point for the zonelist iterator
4242 	 * because we might have used different nodemask in the fast path, or
4243 	 * there was a cpuset modification and we are retrying - otherwise we
4244 	 * could end up iterating over non-eligible zones endlessly.
4245 	 */
4246 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4247 					ac->high_zoneidx, ac->nodemask);
4248 	if (!ac->preferred_zoneref->zone)
4249 		goto nopage;
4250 
4251 	if (alloc_flags & ALLOC_KSWAPD)
4252 		wake_all_kswapds(order, gfp_mask, ac);
4253 
4254 	/*
4255 	 * The adjusted alloc_flags might result in immediate success, so try
4256 	 * that first
4257 	 */
4258 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4259 	if (page)
4260 		goto got_pg;
4261 
4262 	/*
4263 	 * For costly allocations, try direct compaction first, as it's likely
4264 	 * that we have enough base pages and don't need to reclaim. For non-
4265 	 * movable high-order allocations, do that as well, as compaction will
4266 	 * try prevent permanent fragmentation by migrating from blocks of the
4267 	 * same migratetype.
4268 	 * Don't try this for allocations that are allowed to ignore
4269 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4270 	 */
4271 	if (can_direct_reclaim &&
4272 			(costly_order ||
4273 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4274 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4275 		page = __alloc_pages_direct_compact(gfp_mask, order,
4276 						alloc_flags, ac,
4277 						INIT_COMPACT_PRIORITY,
4278 						&compact_result);
4279 		if (page)
4280 			goto got_pg;
4281 
4282 		/*
4283 		 * Checks for costly allocations with __GFP_NORETRY, which
4284 		 * includes THP page fault allocations
4285 		 */
4286 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4287 			/*
4288 			 * If compaction is deferred for high-order allocations,
4289 			 * it is because sync compaction recently failed. If
4290 			 * this is the case and the caller requested a THP
4291 			 * allocation, we do not want to heavily disrupt the
4292 			 * system, so we fail the allocation instead of entering
4293 			 * direct reclaim.
4294 			 */
4295 			if (compact_result == COMPACT_DEFERRED)
4296 				goto nopage;
4297 
4298 			/*
4299 			 * Looks like reclaim/compaction is worth trying, but
4300 			 * sync compaction could be very expensive, so keep
4301 			 * using async compaction.
4302 			 */
4303 			compact_priority = INIT_COMPACT_PRIORITY;
4304 		}
4305 	}
4306 
4307 retry:
4308 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4309 	if (alloc_flags & ALLOC_KSWAPD)
4310 		wake_all_kswapds(order, gfp_mask, ac);
4311 
4312 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4313 	if (reserve_flags)
4314 		alloc_flags = reserve_flags;
4315 
4316 	/*
4317 	 * Reset the nodemask and zonelist iterators if memory policies can be
4318 	 * ignored. These allocations are high priority and system rather than
4319 	 * user oriented.
4320 	 */
4321 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4322 		ac->nodemask = NULL;
4323 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4324 					ac->high_zoneidx, ac->nodemask);
4325 	}
4326 
4327 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4328 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4329 	if (page)
4330 		goto got_pg;
4331 
4332 	/* Caller is not willing to reclaim, we can't balance anything */
4333 	if (!can_direct_reclaim)
4334 		goto nopage;
4335 
4336 	/* Avoid recursion of direct reclaim */
4337 	if (current->flags & PF_MEMALLOC)
4338 		goto nopage;
4339 
4340 	/* Try direct reclaim and then allocating */
4341 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4342 							&did_some_progress);
4343 	if (page)
4344 		goto got_pg;
4345 
4346 	/* Try direct compaction and then allocating */
4347 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4348 					compact_priority, &compact_result);
4349 	if (page)
4350 		goto got_pg;
4351 
4352 	/* Do not loop if specifically requested */
4353 	if (gfp_mask & __GFP_NORETRY)
4354 		goto nopage;
4355 
4356 	/*
4357 	 * Do not retry costly high order allocations unless they are
4358 	 * __GFP_RETRY_MAYFAIL
4359 	 */
4360 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4361 		goto nopage;
4362 
4363 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4364 				 did_some_progress > 0, &no_progress_loops))
4365 		goto retry;
4366 
4367 	/*
4368 	 * It doesn't make any sense to retry for the compaction if the order-0
4369 	 * reclaim is not able to make any progress because the current
4370 	 * implementation of the compaction depends on the sufficient amount
4371 	 * of free memory (see __compaction_suitable)
4372 	 */
4373 	if (did_some_progress > 0 &&
4374 			should_compact_retry(ac, order, alloc_flags,
4375 				compact_result, &compact_priority,
4376 				&compaction_retries))
4377 		goto retry;
4378 
4379 
4380 	/* Deal with possible cpuset update races before we start OOM killing */
4381 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4382 		goto retry_cpuset;
4383 
4384 	/* Reclaim has failed us, start killing things */
4385 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4386 	if (page)
4387 		goto got_pg;
4388 
4389 	/* Avoid allocations with no watermarks from looping endlessly */
4390 	if (tsk_is_oom_victim(current) &&
4391 	    (alloc_flags == ALLOC_OOM ||
4392 	     (gfp_mask & __GFP_NOMEMALLOC)))
4393 		goto nopage;
4394 
4395 	/* Retry as long as the OOM killer is making progress */
4396 	if (did_some_progress) {
4397 		no_progress_loops = 0;
4398 		goto retry;
4399 	}
4400 
4401 nopage:
4402 	/* Deal with possible cpuset update races before we fail */
4403 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4404 		goto retry_cpuset;
4405 
4406 	/*
4407 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4408 	 * we always retry
4409 	 */
4410 	if (gfp_mask & __GFP_NOFAIL) {
4411 		/*
4412 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4413 		 * of any new users that actually require GFP_NOWAIT
4414 		 */
4415 		if (WARN_ON_ONCE(!can_direct_reclaim))
4416 			goto fail;
4417 
4418 		/*
4419 		 * PF_MEMALLOC request from this context is rather bizarre
4420 		 * because we cannot reclaim anything and only can loop waiting
4421 		 * for somebody to do a work for us
4422 		 */
4423 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4424 
4425 		/*
4426 		 * non failing costly orders are a hard requirement which we
4427 		 * are not prepared for much so let's warn about these users
4428 		 * so that we can identify them and convert them to something
4429 		 * else.
4430 		 */
4431 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4432 
4433 		/*
4434 		 * Help non-failing allocations by giving them access to memory
4435 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4436 		 * could deplete whole memory reserves which would just make
4437 		 * the situation worse
4438 		 */
4439 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4440 		if (page)
4441 			goto got_pg;
4442 
4443 		cond_resched();
4444 		goto retry;
4445 	}
4446 fail:
4447 	warn_alloc(gfp_mask, ac->nodemask,
4448 			"page allocation failure: order:%u", order);
4449 got_pg:
4450 	return page;
4451 }
4452 
4453 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4454 		int preferred_nid, nodemask_t *nodemask,
4455 		struct alloc_context *ac, gfp_t *alloc_mask,
4456 		unsigned int *alloc_flags)
4457 {
4458 	ac->high_zoneidx = gfp_zone(gfp_mask);
4459 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4460 	ac->nodemask = nodemask;
4461 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4462 
4463 	if (cpusets_enabled()) {
4464 		*alloc_mask |= __GFP_HARDWALL;
4465 		if (!ac->nodemask)
4466 			ac->nodemask = &cpuset_current_mems_allowed;
4467 		else
4468 			*alloc_flags |= ALLOC_CPUSET;
4469 	}
4470 
4471 	fs_reclaim_acquire(gfp_mask);
4472 	fs_reclaim_release(gfp_mask);
4473 
4474 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4475 
4476 	if (should_fail_alloc_page(gfp_mask, order))
4477 		return false;
4478 
4479 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4480 		*alloc_flags |= ALLOC_CMA;
4481 
4482 	return true;
4483 }
4484 
4485 /* Determine whether to spread dirty pages and what the first usable zone */
4486 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4487 {
4488 	/* Dirty zone balancing only done in the fast path */
4489 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4490 
4491 	/*
4492 	 * The preferred zone is used for statistics but crucially it is
4493 	 * also used as the starting point for the zonelist iterator. It
4494 	 * may get reset for allocations that ignore memory policies.
4495 	 */
4496 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4497 					ac->high_zoneidx, ac->nodemask);
4498 }
4499 
4500 /*
4501  * This is the 'heart' of the zoned buddy allocator.
4502  */
4503 struct page *
4504 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4505 							nodemask_t *nodemask)
4506 {
4507 	struct page *page;
4508 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4509 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4510 	struct alloc_context ac = { };
4511 
4512 	/*
4513 	 * There are several places where we assume that the order value is sane
4514 	 * so bail out early if the request is out of bound.
4515 	 */
4516 	if (unlikely(order >= MAX_ORDER)) {
4517 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4518 		return NULL;
4519 	}
4520 
4521 	gfp_mask &= gfp_allowed_mask;
4522 	alloc_mask = gfp_mask;
4523 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4524 		return NULL;
4525 
4526 	finalise_ac(gfp_mask, &ac);
4527 
4528 	/*
4529 	 * Forbid the first pass from falling back to types that fragment
4530 	 * memory until all local zones are considered.
4531 	 */
4532 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4533 
4534 	/* First allocation attempt */
4535 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4536 	if (likely(page))
4537 		goto out;
4538 
4539 	/*
4540 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4541 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4542 	 * from a particular context which has been marked by
4543 	 * memalloc_no{fs,io}_{save,restore}.
4544 	 */
4545 	alloc_mask = current_gfp_context(gfp_mask);
4546 	ac.spread_dirty_pages = false;
4547 
4548 	/*
4549 	 * Restore the original nodemask if it was potentially replaced with
4550 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4551 	 */
4552 	if (unlikely(ac.nodemask != nodemask))
4553 		ac.nodemask = nodemask;
4554 
4555 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4556 
4557 out:
4558 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4559 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4560 		__free_pages(page, order);
4561 		page = NULL;
4562 	}
4563 
4564 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4565 
4566 	return page;
4567 }
4568 EXPORT_SYMBOL(__alloc_pages_nodemask);
4569 
4570 /*
4571  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4572  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4573  * you need to access high mem.
4574  */
4575 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4576 {
4577 	struct page *page;
4578 
4579 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4580 	if (!page)
4581 		return 0;
4582 	return (unsigned long) page_address(page);
4583 }
4584 EXPORT_SYMBOL(__get_free_pages);
4585 
4586 unsigned long get_zeroed_page(gfp_t gfp_mask)
4587 {
4588 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4589 }
4590 EXPORT_SYMBOL(get_zeroed_page);
4591 
4592 static inline void free_the_page(struct page *page, unsigned int order)
4593 {
4594 	if (order == 0)		/* Via pcp? */
4595 		free_unref_page(page);
4596 	else
4597 		__free_pages_ok(page, order);
4598 }
4599 
4600 void __free_pages(struct page *page, unsigned int order)
4601 {
4602 	if (put_page_testzero(page))
4603 		free_the_page(page, order);
4604 }
4605 EXPORT_SYMBOL(__free_pages);
4606 
4607 void free_pages(unsigned long addr, unsigned int order)
4608 {
4609 	if (addr != 0) {
4610 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4611 		__free_pages(virt_to_page((void *)addr), order);
4612 	}
4613 }
4614 
4615 EXPORT_SYMBOL(free_pages);
4616 
4617 /*
4618  * Page Fragment:
4619  *  An arbitrary-length arbitrary-offset area of memory which resides
4620  *  within a 0 or higher order page.  Multiple fragments within that page
4621  *  are individually refcounted, in the page's reference counter.
4622  *
4623  * The page_frag functions below provide a simple allocation framework for
4624  * page fragments.  This is used by the network stack and network device
4625  * drivers to provide a backing region of memory for use as either an
4626  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4627  */
4628 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4629 					     gfp_t gfp_mask)
4630 {
4631 	struct page *page = NULL;
4632 	gfp_t gfp = gfp_mask;
4633 
4634 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4635 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4636 		    __GFP_NOMEMALLOC;
4637 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4638 				PAGE_FRAG_CACHE_MAX_ORDER);
4639 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4640 #endif
4641 	if (unlikely(!page))
4642 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4643 
4644 	nc->va = page ? page_address(page) : NULL;
4645 
4646 	return page;
4647 }
4648 
4649 void __page_frag_cache_drain(struct page *page, unsigned int count)
4650 {
4651 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4652 
4653 	if (page_ref_sub_and_test(page, count))
4654 		free_the_page(page, compound_order(page));
4655 }
4656 EXPORT_SYMBOL(__page_frag_cache_drain);
4657 
4658 void *page_frag_alloc(struct page_frag_cache *nc,
4659 		      unsigned int fragsz, gfp_t gfp_mask)
4660 {
4661 	unsigned int size = PAGE_SIZE;
4662 	struct page *page;
4663 	int offset;
4664 
4665 	if (unlikely(!nc->va)) {
4666 refill:
4667 		page = __page_frag_cache_refill(nc, gfp_mask);
4668 		if (!page)
4669 			return NULL;
4670 
4671 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4672 		/* if size can vary use size else just use PAGE_SIZE */
4673 		size = nc->size;
4674 #endif
4675 		/* Even if we own the page, we do not use atomic_set().
4676 		 * This would break get_page_unless_zero() users.
4677 		 */
4678 		page_ref_add(page, size);
4679 
4680 		/* reset page count bias and offset to start of new frag */
4681 		nc->pfmemalloc = page_is_pfmemalloc(page);
4682 		nc->pagecnt_bias = size + 1;
4683 		nc->offset = size;
4684 	}
4685 
4686 	offset = nc->offset - fragsz;
4687 	if (unlikely(offset < 0)) {
4688 		page = virt_to_page(nc->va);
4689 
4690 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4691 			goto refill;
4692 
4693 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4694 		/* if size can vary use size else just use PAGE_SIZE */
4695 		size = nc->size;
4696 #endif
4697 		/* OK, page count is 0, we can safely set it */
4698 		set_page_count(page, size + 1);
4699 
4700 		/* reset page count bias and offset to start of new frag */
4701 		nc->pagecnt_bias = size + 1;
4702 		offset = size - fragsz;
4703 	}
4704 
4705 	nc->pagecnt_bias--;
4706 	nc->offset = offset;
4707 
4708 	return nc->va + offset;
4709 }
4710 EXPORT_SYMBOL(page_frag_alloc);
4711 
4712 /*
4713  * Frees a page fragment allocated out of either a compound or order 0 page.
4714  */
4715 void page_frag_free(void *addr)
4716 {
4717 	struct page *page = virt_to_head_page(addr);
4718 
4719 	if (unlikely(put_page_testzero(page)))
4720 		free_the_page(page, compound_order(page));
4721 }
4722 EXPORT_SYMBOL(page_frag_free);
4723 
4724 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4725 		size_t size)
4726 {
4727 	if (addr) {
4728 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4729 		unsigned long used = addr + PAGE_ALIGN(size);
4730 
4731 		split_page(virt_to_page((void *)addr), order);
4732 		while (used < alloc_end) {
4733 			free_page(used);
4734 			used += PAGE_SIZE;
4735 		}
4736 	}
4737 	return (void *)addr;
4738 }
4739 
4740 /**
4741  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4742  * @size: the number of bytes to allocate
4743  * @gfp_mask: GFP flags for the allocation
4744  *
4745  * This function is similar to alloc_pages(), except that it allocates the
4746  * minimum number of pages to satisfy the request.  alloc_pages() can only
4747  * allocate memory in power-of-two pages.
4748  *
4749  * This function is also limited by MAX_ORDER.
4750  *
4751  * Memory allocated by this function must be released by free_pages_exact().
4752  */
4753 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4754 {
4755 	unsigned int order = get_order(size);
4756 	unsigned long addr;
4757 
4758 	addr = __get_free_pages(gfp_mask, order);
4759 	return make_alloc_exact(addr, order, size);
4760 }
4761 EXPORT_SYMBOL(alloc_pages_exact);
4762 
4763 /**
4764  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4765  *			   pages on a node.
4766  * @nid: the preferred node ID where memory should be allocated
4767  * @size: the number of bytes to allocate
4768  * @gfp_mask: GFP flags for the allocation
4769  *
4770  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4771  * back.
4772  */
4773 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4774 {
4775 	unsigned int order = get_order(size);
4776 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4777 	if (!p)
4778 		return NULL;
4779 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4780 }
4781 
4782 /**
4783  * free_pages_exact - release memory allocated via alloc_pages_exact()
4784  * @virt: the value returned by alloc_pages_exact.
4785  * @size: size of allocation, same value as passed to alloc_pages_exact().
4786  *
4787  * Release the memory allocated by a previous call to alloc_pages_exact.
4788  */
4789 void free_pages_exact(void *virt, size_t size)
4790 {
4791 	unsigned long addr = (unsigned long)virt;
4792 	unsigned long end = addr + PAGE_ALIGN(size);
4793 
4794 	while (addr < end) {
4795 		free_page(addr);
4796 		addr += PAGE_SIZE;
4797 	}
4798 }
4799 EXPORT_SYMBOL(free_pages_exact);
4800 
4801 /**
4802  * nr_free_zone_pages - count number of pages beyond high watermark
4803  * @offset: The zone index of the highest zone
4804  *
4805  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4806  * high watermark within all zones at or below a given zone index.  For each
4807  * zone, the number of pages is calculated as:
4808  *
4809  *     nr_free_zone_pages = managed_pages - high_pages
4810  */
4811 static unsigned long nr_free_zone_pages(int offset)
4812 {
4813 	struct zoneref *z;
4814 	struct zone *zone;
4815 
4816 	/* Just pick one node, since fallback list is circular */
4817 	unsigned long sum = 0;
4818 
4819 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4820 
4821 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4822 		unsigned long size = zone_managed_pages(zone);
4823 		unsigned long high = high_wmark_pages(zone);
4824 		if (size > high)
4825 			sum += size - high;
4826 	}
4827 
4828 	return sum;
4829 }
4830 
4831 /**
4832  * nr_free_buffer_pages - count number of pages beyond high watermark
4833  *
4834  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4835  * watermark within ZONE_DMA and ZONE_NORMAL.
4836  */
4837 unsigned long nr_free_buffer_pages(void)
4838 {
4839 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4840 }
4841 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4842 
4843 /**
4844  * nr_free_pagecache_pages - count number of pages beyond high watermark
4845  *
4846  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4847  * high watermark within all zones.
4848  */
4849 unsigned long nr_free_pagecache_pages(void)
4850 {
4851 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4852 }
4853 
4854 static inline void show_node(struct zone *zone)
4855 {
4856 	if (IS_ENABLED(CONFIG_NUMA))
4857 		printk("Node %d ", zone_to_nid(zone));
4858 }
4859 
4860 long si_mem_available(void)
4861 {
4862 	long available;
4863 	unsigned long pagecache;
4864 	unsigned long wmark_low = 0;
4865 	unsigned long pages[NR_LRU_LISTS];
4866 	unsigned long reclaimable;
4867 	struct zone *zone;
4868 	int lru;
4869 
4870 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4871 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4872 
4873 	for_each_zone(zone)
4874 		wmark_low += low_wmark_pages(zone);
4875 
4876 	/*
4877 	 * Estimate the amount of memory available for userspace allocations,
4878 	 * without causing swapping.
4879 	 */
4880 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4881 
4882 	/*
4883 	 * Not all the page cache can be freed, otherwise the system will
4884 	 * start swapping. Assume at least half of the page cache, or the
4885 	 * low watermark worth of cache, needs to stay.
4886 	 */
4887 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4888 	pagecache -= min(pagecache / 2, wmark_low);
4889 	available += pagecache;
4890 
4891 	/*
4892 	 * Part of the reclaimable slab and other kernel memory consists of
4893 	 * items that are in use, and cannot be freed. Cap this estimate at the
4894 	 * low watermark.
4895 	 */
4896 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4897 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4898 	available += reclaimable - min(reclaimable / 2, wmark_low);
4899 
4900 	if (available < 0)
4901 		available = 0;
4902 	return available;
4903 }
4904 EXPORT_SYMBOL_GPL(si_mem_available);
4905 
4906 void si_meminfo(struct sysinfo *val)
4907 {
4908 	val->totalram = totalram_pages();
4909 	val->sharedram = global_node_page_state(NR_SHMEM);
4910 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4911 	val->bufferram = nr_blockdev_pages();
4912 	val->totalhigh = totalhigh_pages();
4913 	val->freehigh = nr_free_highpages();
4914 	val->mem_unit = PAGE_SIZE;
4915 }
4916 
4917 EXPORT_SYMBOL(si_meminfo);
4918 
4919 #ifdef CONFIG_NUMA
4920 void si_meminfo_node(struct sysinfo *val, int nid)
4921 {
4922 	int zone_type;		/* needs to be signed */
4923 	unsigned long managed_pages = 0;
4924 	unsigned long managed_highpages = 0;
4925 	unsigned long free_highpages = 0;
4926 	pg_data_t *pgdat = NODE_DATA(nid);
4927 
4928 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4929 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
4930 	val->totalram = managed_pages;
4931 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4932 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4933 #ifdef CONFIG_HIGHMEM
4934 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4935 		struct zone *zone = &pgdat->node_zones[zone_type];
4936 
4937 		if (is_highmem(zone)) {
4938 			managed_highpages += zone_managed_pages(zone);
4939 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4940 		}
4941 	}
4942 	val->totalhigh = managed_highpages;
4943 	val->freehigh = free_highpages;
4944 #else
4945 	val->totalhigh = managed_highpages;
4946 	val->freehigh = free_highpages;
4947 #endif
4948 	val->mem_unit = PAGE_SIZE;
4949 }
4950 #endif
4951 
4952 /*
4953  * Determine whether the node should be displayed or not, depending on whether
4954  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4955  */
4956 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4957 {
4958 	if (!(flags & SHOW_MEM_FILTER_NODES))
4959 		return false;
4960 
4961 	/*
4962 	 * no node mask - aka implicit memory numa policy. Do not bother with
4963 	 * the synchronization - read_mems_allowed_begin - because we do not
4964 	 * have to be precise here.
4965 	 */
4966 	if (!nodemask)
4967 		nodemask = &cpuset_current_mems_allowed;
4968 
4969 	return !node_isset(nid, *nodemask);
4970 }
4971 
4972 #define K(x) ((x) << (PAGE_SHIFT-10))
4973 
4974 static void show_migration_types(unsigned char type)
4975 {
4976 	static const char types[MIGRATE_TYPES] = {
4977 		[MIGRATE_UNMOVABLE]	= 'U',
4978 		[MIGRATE_MOVABLE]	= 'M',
4979 		[MIGRATE_RECLAIMABLE]	= 'E',
4980 		[MIGRATE_HIGHATOMIC]	= 'H',
4981 #ifdef CONFIG_CMA
4982 		[MIGRATE_CMA]		= 'C',
4983 #endif
4984 #ifdef CONFIG_MEMORY_ISOLATION
4985 		[MIGRATE_ISOLATE]	= 'I',
4986 #endif
4987 	};
4988 	char tmp[MIGRATE_TYPES + 1];
4989 	char *p = tmp;
4990 	int i;
4991 
4992 	for (i = 0; i < MIGRATE_TYPES; i++) {
4993 		if (type & (1 << i))
4994 			*p++ = types[i];
4995 	}
4996 
4997 	*p = '\0';
4998 	printk(KERN_CONT "(%s) ", tmp);
4999 }
5000 
5001 /*
5002  * Show free area list (used inside shift_scroll-lock stuff)
5003  * We also calculate the percentage fragmentation. We do this by counting the
5004  * memory on each free list with the exception of the first item on the list.
5005  *
5006  * Bits in @filter:
5007  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5008  *   cpuset.
5009  */
5010 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5011 {
5012 	unsigned long free_pcp = 0;
5013 	int cpu;
5014 	struct zone *zone;
5015 	pg_data_t *pgdat;
5016 
5017 	for_each_populated_zone(zone) {
5018 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5019 			continue;
5020 
5021 		for_each_online_cpu(cpu)
5022 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5023 	}
5024 
5025 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5026 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5027 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5028 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5029 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5030 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5031 		global_node_page_state(NR_ACTIVE_ANON),
5032 		global_node_page_state(NR_INACTIVE_ANON),
5033 		global_node_page_state(NR_ISOLATED_ANON),
5034 		global_node_page_state(NR_ACTIVE_FILE),
5035 		global_node_page_state(NR_INACTIVE_FILE),
5036 		global_node_page_state(NR_ISOLATED_FILE),
5037 		global_node_page_state(NR_UNEVICTABLE),
5038 		global_node_page_state(NR_FILE_DIRTY),
5039 		global_node_page_state(NR_WRITEBACK),
5040 		global_node_page_state(NR_UNSTABLE_NFS),
5041 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5042 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5043 		global_node_page_state(NR_FILE_MAPPED),
5044 		global_node_page_state(NR_SHMEM),
5045 		global_zone_page_state(NR_PAGETABLE),
5046 		global_zone_page_state(NR_BOUNCE),
5047 		global_zone_page_state(NR_FREE_PAGES),
5048 		free_pcp,
5049 		global_zone_page_state(NR_FREE_CMA_PAGES));
5050 
5051 	for_each_online_pgdat(pgdat) {
5052 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5053 			continue;
5054 
5055 		printk("Node %d"
5056 			" active_anon:%lukB"
5057 			" inactive_anon:%lukB"
5058 			" active_file:%lukB"
5059 			" inactive_file:%lukB"
5060 			" unevictable:%lukB"
5061 			" isolated(anon):%lukB"
5062 			" isolated(file):%lukB"
5063 			" mapped:%lukB"
5064 			" dirty:%lukB"
5065 			" writeback:%lukB"
5066 			" shmem:%lukB"
5067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5068 			" shmem_thp: %lukB"
5069 			" shmem_pmdmapped: %lukB"
5070 			" anon_thp: %lukB"
5071 #endif
5072 			" writeback_tmp:%lukB"
5073 			" unstable:%lukB"
5074 			" all_unreclaimable? %s"
5075 			"\n",
5076 			pgdat->node_id,
5077 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5078 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5079 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5080 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5081 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5082 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5083 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5084 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5085 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5086 			K(node_page_state(pgdat, NR_WRITEBACK)),
5087 			K(node_page_state(pgdat, NR_SHMEM)),
5088 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5089 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5090 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5091 					* HPAGE_PMD_NR),
5092 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5093 #endif
5094 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5095 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5096 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5097 				"yes" : "no");
5098 	}
5099 
5100 	for_each_populated_zone(zone) {
5101 		int i;
5102 
5103 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5104 			continue;
5105 
5106 		free_pcp = 0;
5107 		for_each_online_cpu(cpu)
5108 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5109 
5110 		show_node(zone);
5111 		printk(KERN_CONT
5112 			"%s"
5113 			" free:%lukB"
5114 			" min:%lukB"
5115 			" low:%lukB"
5116 			" high:%lukB"
5117 			" active_anon:%lukB"
5118 			" inactive_anon:%lukB"
5119 			" active_file:%lukB"
5120 			" inactive_file:%lukB"
5121 			" unevictable:%lukB"
5122 			" writepending:%lukB"
5123 			" present:%lukB"
5124 			" managed:%lukB"
5125 			" mlocked:%lukB"
5126 			" kernel_stack:%lukB"
5127 			" pagetables:%lukB"
5128 			" bounce:%lukB"
5129 			" free_pcp:%lukB"
5130 			" local_pcp:%ukB"
5131 			" free_cma:%lukB"
5132 			"\n",
5133 			zone->name,
5134 			K(zone_page_state(zone, NR_FREE_PAGES)),
5135 			K(min_wmark_pages(zone)),
5136 			K(low_wmark_pages(zone)),
5137 			K(high_wmark_pages(zone)),
5138 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5139 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5140 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5141 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5142 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5143 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5144 			K(zone->present_pages),
5145 			K(zone_managed_pages(zone)),
5146 			K(zone_page_state(zone, NR_MLOCK)),
5147 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5148 			K(zone_page_state(zone, NR_PAGETABLE)),
5149 			K(zone_page_state(zone, NR_BOUNCE)),
5150 			K(free_pcp),
5151 			K(this_cpu_read(zone->pageset->pcp.count)),
5152 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5153 		printk("lowmem_reserve[]:");
5154 		for (i = 0; i < MAX_NR_ZONES; i++)
5155 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5156 		printk(KERN_CONT "\n");
5157 	}
5158 
5159 	for_each_populated_zone(zone) {
5160 		unsigned int order;
5161 		unsigned long nr[MAX_ORDER], flags, total = 0;
5162 		unsigned char types[MAX_ORDER];
5163 
5164 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5165 			continue;
5166 		show_node(zone);
5167 		printk(KERN_CONT "%s: ", zone->name);
5168 
5169 		spin_lock_irqsave(&zone->lock, flags);
5170 		for (order = 0; order < MAX_ORDER; order++) {
5171 			struct free_area *area = &zone->free_area[order];
5172 			int type;
5173 
5174 			nr[order] = area->nr_free;
5175 			total += nr[order] << order;
5176 
5177 			types[order] = 0;
5178 			for (type = 0; type < MIGRATE_TYPES; type++) {
5179 				if (!list_empty(&area->free_list[type]))
5180 					types[order] |= 1 << type;
5181 			}
5182 		}
5183 		spin_unlock_irqrestore(&zone->lock, flags);
5184 		for (order = 0; order < MAX_ORDER; order++) {
5185 			printk(KERN_CONT "%lu*%lukB ",
5186 			       nr[order], K(1UL) << order);
5187 			if (nr[order])
5188 				show_migration_types(types[order]);
5189 		}
5190 		printk(KERN_CONT "= %lukB\n", K(total));
5191 	}
5192 
5193 	hugetlb_show_meminfo();
5194 
5195 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5196 
5197 	show_swap_cache_info();
5198 }
5199 
5200 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5201 {
5202 	zoneref->zone = zone;
5203 	zoneref->zone_idx = zone_idx(zone);
5204 }
5205 
5206 /*
5207  * Builds allocation fallback zone lists.
5208  *
5209  * Add all populated zones of a node to the zonelist.
5210  */
5211 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5212 {
5213 	struct zone *zone;
5214 	enum zone_type zone_type = MAX_NR_ZONES;
5215 	int nr_zones = 0;
5216 
5217 	do {
5218 		zone_type--;
5219 		zone = pgdat->node_zones + zone_type;
5220 		if (managed_zone(zone)) {
5221 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5222 			check_highest_zone(zone_type);
5223 		}
5224 	} while (zone_type);
5225 
5226 	return nr_zones;
5227 }
5228 
5229 #ifdef CONFIG_NUMA
5230 
5231 static int __parse_numa_zonelist_order(char *s)
5232 {
5233 	/*
5234 	 * We used to support different zonlists modes but they turned
5235 	 * out to be just not useful. Let's keep the warning in place
5236 	 * if somebody still use the cmd line parameter so that we do
5237 	 * not fail it silently
5238 	 */
5239 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5240 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5241 		return -EINVAL;
5242 	}
5243 	return 0;
5244 }
5245 
5246 static __init int setup_numa_zonelist_order(char *s)
5247 {
5248 	if (!s)
5249 		return 0;
5250 
5251 	return __parse_numa_zonelist_order(s);
5252 }
5253 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5254 
5255 char numa_zonelist_order[] = "Node";
5256 
5257 /*
5258  * sysctl handler for numa_zonelist_order
5259  */
5260 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5261 		void __user *buffer, size_t *length,
5262 		loff_t *ppos)
5263 {
5264 	char *str;
5265 	int ret;
5266 
5267 	if (!write)
5268 		return proc_dostring(table, write, buffer, length, ppos);
5269 	str = memdup_user_nul(buffer, 16);
5270 	if (IS_ERR(str))
5271 		return PTR_ERR(str);
5272 
5273 	ret = __parse_numa_zonelist_order(str);
5274 	kfree(str);
5275 	return ret;
5276 }
5277 
5278 
5279 #define MAX_NODE_LOAD (nr_online_nodes)
5280 static int node_load[MAX_NUMNODES];
5281 
5282 /**
5283  * find_next_best_node - find the next node that should appear in a given node's fallback list
5284  * @node: node whose fallback list we're appending
5285  * @used_node_mask: nodemask_t of already used nodes
5286  *
5287  * We use a number of factors to determine which is the next node that should
5288  * appear on a given node's fallback list.  The node should not have appeared
5289  * already in @node's fallback list, and it should be the next closest node
5290  * according to the distance array (which contains arbitrary distance values
5291  * from each node to each node in the system), and should also prefer nodes
5292  * with no CPUs, since presumably they'll have very little allocation pressure
5293  * on them otherwise.
5294  * It returns -1 if no node is found.
5295  */
5296 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5297 {
5298 	int n, val;
5299 	int min_val = INT_MAX;
5300 	int best_node = NUMA_NO_NODE;
5301 	const struct cpumask *tmp = cpumask_of_node(0);
5302 
5303 	/* Use the local node if we haven't already */
5304 	if (!node_isset(node, *used_node_mask)) {
5305 		node_set(node, *used_node_mask);
5306 		return node;
5307 	}
5308 
5309 	for_each_node_state(n, N_MEMORY) {
5310 
5311 		/* Don't want a node to appear more than once */
5312 		if (node_isset(n, *used_node_mask))
5313 			continue;
5314 
5315 		/* Use the distance array to find the distance */
5316 		val = node_distance(node, n);
5317 
5318 		/* Penalize nodes under us ("prefer the next node") */
5319 		val += (n < node);
5320 
5321 		/* Give preference to headless and unused nodes */
5322 		tmp = cpumask_of_node(n);
5323 		if (!cpumask_empty(tmp))
5324 			val += PENALTY_FOR_NODE_WITH_CPUS;
5325 
5326 		/* Slight preference for less loaded node */
5327 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5328 		val += node_load[n];
5329 
5330 		if (val < min_val) {
5331 			min_val = val;
5332 			best_node = n;
5333 		}
5334 	}
5335 
5336 	if (best_node >= 0)
5337 		node_set(best_node, *used_node_mask);
5338 
5339 	return best_node;
5340 }
5341 
5342 
5343 /*
5344  * Build zonelists ordered by node and zones within node.
5345  * This results in maximum locality--normal zone overflows into local
5346  * DMA zone, if any--but risks exhausting DMA zone.
5347  */
5348 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5349 		unsigned nr_nodes)
5350 {
5351 	struct zoneref *zonerefs;
5352 	int i;
5353 
5354 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5355 
5356 	for (i = 0; i < nr_nodes; i++) {
5357 		int nr_zones;
5358 
5359 		pg_data_t *node = NODE_DATA(node_order[i]);
5360 
5361 		nr_zones = build_zonerefs_node(node, zonerefs);
5362 		zonerefs += nr_zones;
5363 	}
5364 	zonerefs->zone = NULL;
5365 	zonerefs->zone_idx = 0;
5366 }
5367 
5368 /*
5369  * Build gfp_thisnode zonelists
5370  */
5371 static void build_thisnode_zonelists(pg_data_t *pgdat)
5372 {
5373 	struct zoneref *zonerefs;
5374 	int nr_zones;
5375 
5376 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5377 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5378 	zonerefs += nr_zones;
5379 	zonerefs->zone = NULL;
5380 	zonerefs->zone_idx = 0;
5381 }
5382 
5383 /*
5384  * Build zonelists ordered by zone and nodes within zones.
5385  * This results in conserving DMA zone[s] until all Normal memory is
5386  * exhausted, but results in overflowing to remote node while memory
5387  * may still exist in local DMA zone.
5388  */
5389 
5390 static void build_zonelists(pg_data_t *pgdat)
5391 {
5392 	static int node_order[MAX_NUMNODES];
5393 	int node, load, nr_nodes = 0;
5394 	nodemask_t used_mask;
5395 	int local_node, prev_node;
5396 
5397 	/* NUMA-aware ordering of nodes */
5398 	local_node = pgdat->node_id;
5399 	load = nr_online_nodes;
5400 	prev_node = local_node;
5401 	nodes_clear(used_mask);
5402 
5403 	memset(node_order, 0, sizeof(node_order));
5404 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5405 		/*
5406 		 * We don't want to pressure a particular node.
5407 		 * So adding penalty to the first node in same
5408 		 * distance group to make it round-robin.
5409 		 */
5410 		if (node_distance(local_node, node) !=
5411 		    node_distance(local_node, prev_node))
5412 			node_load[node] = load;
5413 
5414 		node_order[nr_nodes++] = node;
5415 		prev_node = node;
5416 		load--;
5417 	}
5418 
5419 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5420 	build_thisnode_zonelists(pgdat);
5421 }
5422 
5423 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5424 /*
5425  * Return node id of node used for "local" allocations.
5426  * I.e., first node id of first zone in arg node's generic zonelist.
5427  * Used for initializing percpu 'numa_mem', which is used primarily
5428  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5429  */
5430 int local_memory_node(int node)
5431 {
5432 	struct zoneref *z;
5433 
5434 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5435 				   gfp_zone(GFP_KERNEL),
5436 				   NULL);
5437 	return zone_to_nid(z->zone);
5438 }
5439 #endif
5440 
5441 static void setup_min_unmapped_ratio(void);
5442 static void setup_min_slab_ratio(void);
5443 #else	/* CONFIG_NUMA */
5444 
5445 static void build_zonelists(pg_data_t *pgdat)
5446 {
5447 	int node, local_node;
5448 	struct zoneref *zonerefs;
5449 	int nr_zones;
5450 
5451 	local_node = pgdat->node_id;
5452 
5453 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5454 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5455 	zonerefs += nr_zones;
5456 
5457 	/*
5458 	 * Now we build the zonelist so that it contains the zones
5459 	 * of all the other nodes.
5460 	 * We don't want to pressure a particular node, so when
5461 	 * building the zones for node N, we make sure that the
5462 	 * zones coming right after the local ones are those from
5463 	 * node N+1 (modulo N)
5464 	 */
5465 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5466 		if (!node_online(node))
5467 			continue;
5468 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5469 		zonerefs += nr_zones;
5470 	}
5471 	for (node = 0; node < local_node; node++) {
5472 		if (!node_online(node))
5473 			continue;
5474 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5475 		zonerefs += nr_zones;
5476 	}
5477 
5478 	zonerefs->zone = NULL;
5479 	zonerefs->zone_idx = 0;
5480 }
5481 
5482 #endif	/* CONFIG_NUMA */
5483 
5484 /*
5485  * Boot pageset table. One per cpu which is going to be used for all
5486  * zones and all nodes. The parameters will be set in such a way
5487  * that an item put on a list will immediately be handed over to
5488  * the buddy list. This is safe since pageset manipulation is done
5489  * with interrupts disabled.
5490  *
5491  * The boot_pagesets must be kept even after bootup is complete for
5492  * unused processors and/or zones. They do play a role for bootstrapping
5493  * hotplugged processors.
5494  *
5495  * zoneinfo_show() and maybe other functions do
5496  * not check if the processor is online before following the pageset pointer.
5497  * Other parts of the kernel may not check if the zone is available.
5498  */
5499 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5500 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5501 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5502 
5503 static void __build_all_zonelists(void *data)
5504 {
5505 	int nid;
5506 	int __maybe_unused cpu;
5507 	pg_data_t *self = data;
5508 	static DEFINE_SPINLOCK(lock);
5509 
5510 	spin_lock(&lock);
5511 
5512 #ifdef CONFIG_NUMA
5513 	memset(node_load, 0, sizeof(node_load));
5514 #endif
5515 
5516 	/*
5517 	 * This node is hotadded and no memory is yet present.   So just
5518 	 * building zonelists is fine - no need to touch other nodes.
5519 	 */
5520 	if (self && !node_online(self->node_id)) {
5521 		build_zonelists(self);
5522 	} else {
5523 		for_each_online_node(nid) {
5524 			pg_data_t *pgdat = NODE_DATA(nid);
5525 
5526 			build_zonelists(pgdat);
5527 		}
5528 
5529 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5530 		/*
5531 		 * We now know the "local memory node" for each node--
5532 		 * i.e., the node of the first zone in the generic zonelist.
5533 		 * Set up numa_mem percpu variable for on-line cpus.  During
5534 		 * boot, only the boot cpu should be on-line;  we'll init the
5535 		 * secondary cpus' numa_mem as they come on-line.  During
5536 		 * node/memory hotplug, we'll fixup all on-line cpus.
5537 		 */
5538 		for_each_online_cpu(cpu)
5539 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5540 #endif
5541 	}
5542 
5543 	spin_unlock(&lock);
5544 }
5545 
5546 static noinline void __init
5547 build_all_zonelists_init(void)
5548 {
5549 	int cpu;
5550 
5551 	__build_all_zonelists(NULL);
5552 
5553 	/*
5554 	 * Initialize the boot_pagesets that are going to be used
5555 	 * for bootstrapping processors. The real pagesets for
5556 	 * each zone will be allocated later when the per cpu
5557 	 * allocator is available.
5558 	 *
5559 	 * boot_pagesets are used also for bootstrapping offline
5560 	 * cpus if the system is already booted because the pagesets
5561 	 * are needed to initialize allocators on a specific cpu too.
5562 	 * F.e. the percpu allocator needs the page allocator which
5563 	 * needs the percpu allocator in order to allocate its pagesets
5564 	 * (a chicken-egg dilemma).
5565 	 */
5566 	for_each_possible_cpu(cpu)
5567 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5568 
5569 	mminit_verify_zonelist();
5570 	cpuset_init_current_mems_allowed();
5571 }
5572 
5573 /*
5574  * unless system_state == SYSTEM_BOOTING.
5575  *
5576  * __ref due to call of __init annotated helper build_all_zonelists_init
5577  * [protected by SYSTEM_BOOTING].
5578  */
5579 void __ref build_all_zonelists(pg_data_t *pgdat)
5580 {
5581 	if (system_state == SYSTEM_BOOTING) {
5582 		build_all_zonelists_init();
5583 	} else {
5584 		__build_all_zonelists(pgdat);
5585 		/* cpuset refresh routine should be here */
5586 	}
5587 	vm_total_pages = nr_free_pagecache_pages();
5588 	/*
5589 	 * Disable grouping by mobility if the number of pages in the
5590 	 * system is too low to allow the mechanism to work. It would be
5591 	 * more accurate, but expensive to check per-zone. This check is
5592 	 * made on memory-hotadd so a system can start with mobility
5593 	 * disabled and enable it later
5594 	 */
5595 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5596 		page_group_by_mobility_disabled = 1;
5597 	else
5598 		page_group_by_mobility_disabled = 0;
5599 
5600 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5601 		nr_online_nodes,
5602 		page_group_by_mobility_disabled ? "off" : "on",
5603 		vm_total_pages);
5604 #ifdef CONFIG_NUMA
5605 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5606 #endif
5607 }
5608 
5609 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5610 static bool __meminit
5611 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5612 {
5613 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5614 	static struct memblock_region *r;
5615 
5616 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5617 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5618 			for_each_memblock(memory, r) {
5619 				if (*pfn < memblock_region_memory_end_pfn(r))
5620 					break;
5621 			}
5622 		}
5623 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5624 		    memblock_is_mirror(r)) {
5625 			*pfn = memblock_region_memory_end_pfn(r);
5626 			return true;
5627 		}
5628 	}
5629 #endif
5630 	return false;
5631 }
5632 
5633 /*
5634  * Initially all pages are reserved - free ones are freed
5635  * up by memblock_free_all() once the early boot process is
5636  * done. Non-atomic initialization, single-pass.
5637  */
5638 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5639 		unsigned long start_pfn, enum memmap_context context,
5640 		struct vmem_altmap *altmap)
5641 {
5642 	unsigned long pfn, end_pfn = start_pfn + size;
5643 	struct page *page;
5644 
5645 	if (highest_memmap_pfn < end_pfn - 1)
5646 		highest_memmap_pfn = end_pfn - 1;
5647 
5648 #ifdef CONFIG_ZONE_DEVICE
5649 	/*
5650 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5651 	 * memory. We limit the total number of pages to initialize to just
5652 	 * those that might contain the memory mapping. We will defer the
5653 	 * ZONE_DEVICE page initialization until after we have released
5654 	 * the hotplug lock.
5655 	 */
5656 	if (zone == ZONE_DEVICE) {
5657 		if (!altmap)
5658 			return;
5659 
5660 		if (start_pfn == altmap->base_pfn)
5661 			start_pfn += altmap->reserve;
5662 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5663 	}
5664 #endif
5665 
5666 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5667 		/*
5668 		 * There can be holes in boot-time mem_map[]s handed to this
5669 		 * function.  They do not exist on hotplugged memory.
5670 		 */
5671 		if (context == MEMMAP_EARLY) {
5672 			if (!early_pfn_valid(pfn))
5673 				continue;
5674 			if (!early_pfn_in_nid(pfn, nid))
5675 				continue;
5676 			if (overlap_memmap_init(zone, &pfn))
5677 				continue;
5678 			if (defer_init(nid, pfn, end_pfn))
5679 				break;
5680 		}
5681 
5682 		page = pfn_to_page(pfn);
5683 		__init_single_page(page, pfn, zone, nid);
5684 		if (context == MEMMAP_HOTPLUG)
5685 			__SetPageReserved(page);
5686 
5687 		/*
5688 		 * Mark the block movable so that blocks are reserved for
5689 		 * movable at startup. This will force kernel allocations
5690 		 * to reserve their blocks rather than leaking throughout
5691 		 * the address space during boot when many long-lived
5692 		 * kernel allocations are made.
5693 		 *
5694 		 * bitmap is created for zone's valid pfn range. but memmap
5695 		 * can be created for invalid pages (for alignment)
5696 		 * check here not to call set_pageblock_migratetype() against
5697 		 * pfn out of zone.
5698 		 */
5699 		if (!(pfn & (pageblock_nr_pages - 1))) {
5700 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5701 			cond_resched();
5702 		}
5703 	}
5704 }
5705 
5706 #ifdef CONFIG_ZONE_DEVICE
5707 void __ref memmap_init_zone_device(struct zone *zone,
5708 				   unsigned long start_pfn,
5709 				   unsigned long size,
5710 				   struct dev_pagemap *pgmap)
5711 {
5712 	unsigned long pfn, end_pfn = start_pfn + size;
5713 	struct pglist_data *pgdat = zone->zone_pgdat;
5714 	unsigned long zone_idx = zone_idx(zone);
5715 	unsigned long start = jiffies;
5716 	int nid = pgdat->node_id;
5717 
5718 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5719 		return;
5720 
5721 	/*
5722 	 * The call to memmap_init_zone should have already taken care
5723 	 * of the pages reserved for the memmap, so we can just jump to
5724 	 * the end of that region and start processing the device pages.
5725 	 */
5726 	if (pgmap->altmap_valid) {
5727 		struct vmem_altmap *altmap = &pgmap->altmap;
5728 
5729 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5730 		size = end_pfn - start_pfn;
5731 	}
5732 
5733 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5734 		struct page *page = pfn_to_page(pfn);
5735 
5736 		__init_single_page(page, pfn, zone_idx, nid);
5737 
5738 		/*
5739 		 * Mark page reserved as it will need to wait for onlining
5740 		 * phase for it to be fully associated with a zone.
5741 		 *
5742 		 * We can use the non-atomic __set_bit operation for setting
5743 		 * the flag as we are still initializing the pages.
5744 		 */
5745 		__SetPageReserved(page);
5746 
5747 		/*
5748 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5749 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5750 		 * page is ever freed or placed on a driver-private list.
5751 		 */
5752 		page->pgmap = pgmap;
5753 		page->hmm_data = 0;
5754 
5755 		/*
5756 		 * Mark the block movable so that blocks are reserved for
5757 		 * movable at startup. This will force kernel allocations
5758 		 * to reserve their blocks rather than leaking throughout
5759 		 * the address space during boot when many long-lived
5760 		 * kernel allocations are made.
5761 		 *
5762 		 * bitmap is created for zone's valid pfn range. but memmap
5763 		 * can be created for invalid pages (for alignment)
5764 		 * check here not to call set_pageblock_migratetype() against
5765 		 * pfn out of zone.
5766 		 *
5767 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5768 		 * because this is done early in sparse_add_one_section
5769 		 */
5770 		if (!(pfn & (pageblock_nr_pages - 1))) {
5771 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5772 			cond_resched();
5773 		}
5774 	}
5775 
5776 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5777 		size, jiffies_to_msecs(jiffies - start));
5778 }
5779 
5780 #endif
5781 static void __meminit zone_init_free_lists(struct zone *zone)
5782 {
5783 	unsigned int order, t;
5784 	for_each_migratetype_order(order, t) {
5785 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5786 		zone->free_area[order].nr_free = 0;
5787 	}
5788 }
5789 
5790 void __meminit __weak memmap_init(unsigned long size, int nid,
5791 				  unsigned long zone, unsigned long start_pfn)
5792 {
5793 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5794 }
5795 
5796 static int zone_batchsize(struct zone *zone)
5797 {
5798 #ifdef CONFIG_MMU
5799 	int batch;
5800 
5801 	/*
5802 	 * The per-cpu-pages pools are set to around 1000th of the
5803 	 * size of the zone.
5804 	 */
5805 	batch = zone_managed_pages(zone) / 1024;
5806 	/* But no more than a meg. */
5807 	if (batch * PAGE_SIZE > 1024 * 1024)
5808 		batch = (1024 * 1024) / PAGE_SIZE;
5809 	batch /= 4;		/* We effectively *= 4 below */
5810 	if (batch < 1)
5811 		batch = 1;
5812 
5813 	/*
5814 	 * Clamp the batch to a 2^n - 1 value. Having a power
5815 	 * of 2 value was found to be more likely to have
5816 	 * suboptimal cache aliasing properties in some cases.
5817 	 *
5818 	 * For example if 2 tasks are alternately allocating
5819 	 * batches of pages, one task can end up with a lot
5820 	 * of pages of one half of the possible page colors
5821 	 * and the other with pages of the other colors.
5822 	 */
5823 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5824 
5825 	return batch;
5826 
5827 #else
5828 	/* The deferral and batching of frees should be suppressed under NOMMU
5829 	 * conditions.
5830 	 *
5831 	 * The problem is that NOMMU needs to be able to allocate large chunks
5832 	 * of contiguous memory as there's no hardware page translation to
5833 	 * assemble apparent contiguous memory from discontiguous pages.
5834 	 *
5835 	 * Queueing large contiguous runs of pages for batching, however,
5836 	 * causes the pages to actually be freed in smaller chunks.  As there
5837 	 * can be a significant delay between the individual batches being
5838 	 * recycled, this leads to the once large chunks of space being
5839 	 * fragmented and becoming unavailable for high-order allocations.
5840 	 */
5841 	return 0;
5842 #endif
5843 }
5844 
5845 /*
5846  * pcp->high and pcp->batch values are related and dependent on one another:
5847  * ->batch must never be higher then ->high.
5848  * The following function updates them in a safe manner without read side
5849  * locking.
5850  *
5851  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5852  * those fields changing asynchronously (acording the the above rule).
5853  *
5854  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5855  * outside of boot time (or some other assurance that no concurrent updaters
5856  * exist).
5857  */
5858 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5859 		unsigned long batch)
5860 {
5861        /* start with a fail safe value for batch */
5862 	pcp->batch = 1;
5863 	smp_wmb();
5864 
5865        /* Update high, then batch, in order */
5866 	pcp->high = high;
5867 	smp_wmb();
5868 
5869 	pcp->batch = batch;
5870 }
5871 
5872 /* a companion to pageset_set_high() */
5873 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5874 {
5875 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5876 }
5877 
5878 static void pageset_init(struct per_cpu_pageset *p)
5879 {
5880 	struct per_cpu_pages *pcp;
5881 	int migratetype;
5882 
5883 	memset(p, 0, sizeof(*p));
5884 
5885 	pcp = &p->pcp;
5886 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5887 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5888 }
5889 
5890 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5891 {
5892 	pageset_init(p);
5893 	pageset_set_batch(p, batch);
5894 }
5895 
5896 /*
5897  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5898  * to the value high for the pageset p.
5899  */
5900 static void pageset_set_high(struct per_cpu_pageset *p,
5901 				unsigned long high)
5902 {
5903 	unsigned long batch = max(1UL, high / 4);
5904 	if ((high / 4) > (PAGE_SHIFT * 8))
5905 		batch = PAGE_SHIFT * 8;
5906 
5907 	pageset_update(&p->pcp, high, batch);
5908 }
5909 
5910 static void pageset_set_high_and_batch(struct zone *zone,
5911 				       struct per_cpu_pageset *pcp)
5912 {
5913 	if (percpu_pagelist_fraction)
5914 		pageset_set_high(pcp,
5915 			(zone_managed_pages(zone) /
5916 				percpu_pagelist_fraction));
5917 	else
5918 		pageset_set_batch(pcp, zone_batchsize(zone));
5919 }
5920 
5921 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5922 {
5923 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5924 
5925 	pageset_init(pcp);
5926 	pageset_set_high_and_batch(zone, pcp);
5927 }
5928 
5929 void __meminit setup_zone_pageset(struct zone *zone)
5930 {
5931 	int cpu;
5932 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5933 	for_each_possible_cpu(cpu)
5934 		zone_pageset_init(zone, cpu);
5935 }
5936 
5937 /*
5938  * Allocate per cpu pagesets and initialize them.
5939  * Before this call only boot pagesets were available.
5940  */
5941 void __init setup_per_cpu_pageset(void)
5942 {
5943 	struct pglist_data *pgdat;
5944 	struct zone *zone;
5945 
5946 	for_each_populated_zone(zone)
5947 		setup_zone_pageset(zone);
5948 
5949 	for_each_online_pgdat(pgdat)
5950 		pgdat->per_cpu_nodestats =
5951 			alloc_percpu(struct per_cpu_nodestat);
5952 }
5953 
5954 static __meminit void zone_pcp_init(struct zone *zone)
5955 {
5956 	/*
5957 	 * per cpu subsystem is not up at this point. The following code
5958 	 * relies on the ability of the linker to provide the
5959 	 * offset of a (static) per cpu variable into the per cpu area.
5960 	 */
5961 	zone->pageset = &boot_pageset;
5962 
5963 	if (populated_zone(zone))
5964 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5965 			zone->name, zone->present_pages,
5966 					 zone_batchsize(zone));
5967 }
5968 
5969 void __meminit init_currently_empty_zone(struct zone *zone,
5970 					unsigned long zone_start_pfn,
5971 					unsigned long size)
5972 {
5973 	struct pglist_data *pgdat = zone->zone_pgdat;
5974 	int zone_idx = zone_idx(zone) + 1;
5975 
5976 	if (zone_idx > pgdat->nr_zones)
5977 		pgdat->nr_zones = zone_idx;
5978 
5979 	zone->zone_start_pfn = zone_start_pfn;
5980 
5981 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5982 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5983 			pgdat->node_id,
5984 			(unsigned long)zone_idx(zone),
5985 			zone_start_pfn, (zone_start_pfn + size));
5986 
5987 	zone_init_free_lists(zone);
5988 	zone->initialized = 1;
5989 }
5990 
5991 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5992 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5993 
5994 /*
5995  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5996  */
5997 int __meminit __early_pfn_to_nid(unsigned long pfn,
5998 					struct mminit_pfnnid_cache *state)
5999 {
6000 	unsigned long start_pfn, end_pfn;
6001 	int nid;
6002 
6003 	if (state->last_start <= pfn && pfn < state->last_end)
6004 		return state->last_nid;
6005 
6006 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6007 	if (nid != -1) {
6008 		state->last_start = start_pfn;
6009 		state->last_end = end_pfn;
6010 		state->last_nid = nid;
6011 	}
6012 
6013 	return nid;
6014 }
6015 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6016 
6017 /**
6018  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6019  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6020  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6021  *
6022  * If an architecture guarantees that all ranges registered contain no holes
6023  * and may be freed, this this function may be used instead of calling
6024  * memblock_free_early_nid() manually.
6025  */
6026 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6027 {
6028 	unsigned long start_pfn, end_pfn;
6029 	int i, this_nid;
6030 
6031 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6032 		start_pfn = min(start_pfn, max_low_pfn);
6033 		end_pfn = min(end_pfn, max_low_pfn);
6034 
6035 		if (start_pfn < end_pfn)
6036 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6037 					(end_pfn - start_pfn) << PAGE_SHIFT,
6038 					this_nid);
6039 	}
6040 }
6041 
6042 /**
6043  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6044  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6045  *
6046  * If an architecture guarantees that all ranges registered contain no holes and may
6047  * be freed, this function may be used instead of calling memory_present() manually.
6048  */
6049 void __init sparse_memory_present_with_active_regions(int nid)
6050 {
6051 	unsigned long start_pfn, end_pfn;
6052 	int i, this_nid;
6053 
6054 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6055 		memory_present(this_nid, start_pfn, end_pfn);
6056 }
6057 
6058 /**
6059  * get_pfn_range_for_nid - Return the start and end page frames for a node
6060  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6061  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6062  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6063  *
6064  * It returns the start and end page frame of a node based on information
6065  * provided by memblock_set_node(). If called for a node
6066  * with no available memory, a warning is printed and the start and end
6067  * PFNs will be 0.
6068  */
6069 void __init get_pfn_range_for_nid(unsigned int nid,
6070 			unsigned long *start_pfn, unsigned long *end_pfn)
6071 {
6072 	unsigned long this_start_pfn, this_end_pfn;
6073 	int i;
6074 
6075 	*start_pfn = -1UL;
6076 	*end_pfn = 0;
6077 
6078 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6079 		*start_pfn = min(*start_pfn, this_start_pfn);
6080 		*end_pfn = max(*end_pfn, this_end_pfn);
6081 	}
6082 
6083 	if (*start_pfn == -1UL)
6084 		*start_pfn = 0;
6085 }
6086 
6087 /*
6088  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6089  * assumption is made that zones within a node are ordered in monotonic
6090  * increasing memory addresses so that the "highest" populated zone is used
6091  */
6092 static void __init find_usable_zone_for_movable(void)
6093 {
6094 	int zone_index;
6095 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6096 		if (zone_index == ZONE_MOVABLE)
6097 			continue;
6098 
6099 		if (arch_zone_highest_possible_pfn[zone_index] >
6100 				arch_zone_lowest_possible_pfn[zone_index])
6101 			break;
6102 	}
6103 
6104 	VM_BUG_ON(zone_index == -1);
6105 	movable_zone = zone_index;
6106 }
6107 
6108 /*
6109  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6110  * because it is sized independent of architecture. Unlike the other zones,
6111  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6112  * in each node depending on the size of each node and how evenly kernelcore
6113  * is distributed. This helper function adjusts the zone ranges
6114  * provided by the architecture for a given node by using the end of the
6115  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6116  * zones within a node are in order of monotonic increases memory addresses
6117  */
6118 static void __init adjust_zone_range_for_zone_movable(int nid,
6119 					unsigned long zone_type,
6120 					unsigned long node_start_pfn,
6121 					unsigned long node_end_pfn,
6122 					unsigned long *zone_start_pfn,
6123 					unsigned long *zone_end_pfn)
6124 {
6125 	/* Only adjust if ZONE_MOVABLE is on this node */
6126 	if (zone_movable_pfn[nid]) {
6127 		/* Size ZONE_MOVABLE */
6128 		if (zone_type == ZONE_MOVABLE) {
6129 			*zone_start_pfn = zone_movable_pfn[nid];
6130 			*zone_end_pfn = min(node_end_pfn,
6131 				arch_zone_highest_possible_pfn[movable_zone]);
6132 
6133 		/* Adjust for ZONE_MOVABLE starting within this range */
6134 		} else if (!mirrored_kernelcore &&
6135 			*zone_start_pfn < zone_movable_pfn[nid] &&
6136 			*zone_end_pfn > zone_movable_pfn[nid]) {
6137 			*zone_end_pfn = zone_movable_pfn[nid];
6138 
6139 		/* Check if this whole range is within ZONE_MOVABLE */
6140 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6141 			*zone_start_pfn = *zone_end_pfn;
6142 	}
6143 }
6144 
6145 /*
6146  * Return the number of pages a zone spans in a node, including holes
6147  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6148  */
6149 static unsigned long __init zone_spanned_pages_in_node(int nid,
6150 					unsigned long zone_type,
6151 					unsigned long node_start_pfn,
6152 					unsigned long node_end_pfn,
6153 					unsigned long *zone_start_pfn,
6154 					unsigned long *zone_end_pfn,
6155 					unsigned long *ignored)
6156 {
6157 	/* When hotadd a new node from cpu_up(), the node should be empty */
6158 	if (!node_start_pfn && !node_end_pfn)
6159 		return 0;
6160 
6161 	/* Get the start and end of the zone */
6162 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6163 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6164 	adjust_zone_range_for_zone_movable(nid, zone_type,
6165 				node_start_pfn, node_end_pfn,
6166 				zone_start_pfn, zone_end_pfn);
6167 
6168 	/* Check that this node has pages within the zone's required range */
6169 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6170 		return 0;
6171 
6172 	/* Move the zone boundaries inside the node if necessary */
6173 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6174 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6175 
6176 	/* Return the spanned pages */
6177 	return *zone_end_pfn - *zone_start_pfn;
6178 }
6179 
6180 /*
6181  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6182  * then all holes in the requested range will be accounted for.
6183  */
6184 unsigned long __init __absent_pages_in_range(int nid,
6185 				unsigned long range_start_pfn,
6186 				unsigned long range_end_pfn)
6187 {
6188 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6189 	unsigned long start_pfn, end_pfn;
6190 	int i;
6191 
6192 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6193 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6194 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6195 		nr_absent -= end_pfn - start_pfn;
6196 	}
6197 	return nr_absent;
6198 }
6199 
6200 /**
6201  * absent_pages_in_range - Return number of page frames in holes within a range
6202  * @start_pfn: The start PFN to start searching for holes
6203  * @end_pfn: The end PFN to stop searching for holes
6204  *
6205  * It returns the number of pages frames in memory holes within a range.
6206  */
6207 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6208 							unsigned long end_pfn)
6209 {
6210 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6211 }
6212 
6213 /* Return the number of page frames in holes in a zone on a node */
6214 static unsigned long __init zone_absent_pages_in_node(int nid,
6215 					unsigned long zone_type,
6216 					unsigned long node_start_pfn,
6217 					unsigned long node_end_pfn,
6218 					unsigned long *ignored)
6219 {
6220 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6221 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6222 	unsigned long zone_start_pfn, zone_end_pfn;
6223 	unsigned long nr_absent;
6224 
6225 	/* When hotadd a new node from cpu_up(), the node should be empty */
6226 	if (!node_start_pfn && !node_end_pfn)
6227 		return 0;
6228 
6229 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6230 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6231 
6232 	adjust_zone_range_for_zone_movable(nid, zone_type,
6233 			node_start_pfn, node_end_pfn,
6234 			&zone_start_pfn, &zone_end_pfn);
6235 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6236 
6237 	/*
6238 	 * ZONE_MOVABLE handling.
6239 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6240 	 * and vice versa.
6241 	 */
6242 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6243 		unsigned long start_pfn, end_pfn;
6244 		struct memblock_region *r;
6245 
6246 		for_each_memblock(memory, r) {
6247 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6248 					  zone_start_pfn, zone_end_pfn);
6249 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6250 					zone_start_pfn, zone_end_pfn);
6251 
6252 			if (zone_type == ZONE_MOVABLE &&
6253 			    memblock_is_mirror(r))
6254 				nr_absent += end_pfn - start_pfn;
6255 
6256 			if (zone_type == ZONE_NORMAL &&
6257 			    !memblock_is_mirror(r))
6258 				nr_absent += end_pfn - start_pfn;
6259 		}
6260 	}
6261 
6262 	return nr_absent;
6263 }
6264 
6265 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6266 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6267 					unsigned long zone_type,
6268 					unsigned long node_start_pfn,
6269 					unsigned long node_end_pfn,
6270 					unsigned long *zone_start_pfn,
6271 					unsigned long *zone_end_pfn,
6272 					unsigned long *zones_size)
6273 {
6274 	unsigned int zone;
6275 
6276 	*zone_start_pfn = node_start_pfn;
6277 	for (zone = 0; zone < zone_type; zone++)
6278 		*zone_start_pfn += zones_size[zone];
6279 
6280 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6281 
6282 	return zones_size[zone_type];
6283 }
6284 
6285 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6286 						unsigned long zone_type,
6287 						unsigned long node_start_pfn,
6288 						unsigned long node_end_pfn,
6289 						unsigned long *zholes_size)
6290 {
6291 	if (!zholes_size)
6292 		return 0;
6293 
6294 	return zholes_size[zone_type];
6295 }
6296 
6297 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6298 
6299 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6300 						unsigned long node_start_pfn,
6301 						unsigned long node_end_pfn,
6302 						unsigned long *zones_size,
6303 						unsigned long *zholes_size)
6304 {
6305 	unsigned long realtotalpages = 0, totalpages = 0;
6306 	enum zone_type i;
6307 
6308 	for (i = 0; i < MAX_NR_ZONES; i++) {
6309 		struct zone *zone = pgdat->node_zones + i;
6310 		unsigned long zone_start_pfn, zone_end_pfn;
6311 		unsigned long size, real_size;
6312 
6313 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6314 						  node_start_pfn,
6315 						  node_end_pfn,
6316 						  &zone_start_pfn,
6317 						  &zone_end_pfn,
6318 						  zones_size);
6319 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6320 						  node_start_pfn, node_end_pfn,
6321 						  zholes_size);
6322 		if (size)
6323 			zone->zone_start_pfn = zone_start_pfn;
6324 		else
6325 			zone->zone_start_pfn = 0;
6326 		zone->spanned_pages = size;
6327 		zone->present_pages = real_size;
6328 
6329 		totalpages += size;
6330 		realtotalpages += real_size;
6331 	}
6332 
6333 	pgdat->node_spanned_pages = totalpages;
6334 	pgdat->node_present_pages = realtotalpages;
6335 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6336 							realtotalpages);
6337 }
6338 
6339 #ifndef CONFIG_SPARSEMEM
6340 /*
6341  * Calculate the size of the zone->blockflags rounded to an unsigned long
6342  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6343  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6344  * round what is now in bits to nearest long in bits, then return it in
6345  * bytes.
6346  */
6347 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6348 {
6349 	unsigned long usemapsize;
6350 
6351 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6352 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6353 	usemapsize = usemapsize >> pageblock_order;
6354 	usemapsize *= NR_PAGEBLOCK_BITS;
6355 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6356 
6357 	return usemapsize / 8;
6358 }
6359 
6360 static void __ref setup_usemap(struct pglist_data *pgdat,
6361 				struct zone *zone,
6362 				unsigned long zone_start_pfn,
6363 				unsigned long zonesize)
6364 {
6365 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6366 	zone->pageblock_flags = NULL;
6367 	if (usemapsize)
6368 		zone->pageblock_flags =
6369 			memblock_alloc_node_nopanic(usemapsize,
6370 							 pgdat->node_id);
6371 }
6372 #else
6373 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6374 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6375 #endif /* CONFIG_SPARSEMEM */
6376 
6377 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6378 
6379 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6380 void __init set_pageblock_order(void)
6381 {
6382 	unsigned int order;
6383 
6384 	/* Check that pageblock_nr_pages has not already been setup */
6385 	if (pageblock_order)
6386 		return;
6387 
6388 	if (HPAGE_SHIFT > PAGE_SHIFT)
6389 		order = HUGETLB_PAGE_ORDER;
6390 	else
6391 		order = MAX_ORDER - 1;
6392 
6393 	/*
6394 	 * Assume the largest contiguous order of interest is a huge page.
6395 	 * This value may be variable depending on boot parameters on IA64 and
6396 	 * powerpc.
6397 	 */
6398 	pageblock_order = order;
6399 }
6400 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6401 
6402 /*
6403  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6404  * is unused as pageblock_order is set at compile-time. See
6405  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6406  * the kernel config
6407  */
6408 void __init set_pageblock_order(void)
6409 {
6410 }
6411 
6412 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6413 
6414 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6415 						unsigned long present_pages)
6416 {
6417 	unsigned long pages = spanned_pages;
6418 
6419 	/*
6420 	 * Provide a more accurate estimation if there are holes within
6421 	 * the zone and SPARSEMEM is in use. If there are holes within the
6422 	 * zone, each populated memory region may cost us one or two extra
6423 	 * memmap pages due to alignment because memmap pages for each
6424 	 * populated regions may not be naturally aligned on page boundary.
6425 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6426 	 */
6427 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6428 	    IS_ENABLED(CONFIG_SPARSEMEM))
6429 		pages = present_pages;
6430 
6431 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6432 }
6433 
6434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6435 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6436 {
6437 	spin_lock_init(&pgdat->split_queue_lock);
6438 	INIT_LIST_HEAD(&pgdat->split_queue);
6439 	pgdat->split_queue_len = 0;
6440 }
6441 #else
6442 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6443 #endif
6444 
6445 #ifdef CONFIG_COMPACTION
6446 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6447 {
6448 	init_waitqueue_head(&pgdat->kcompactd_wait);
6449 }
6450 #else
6451 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6452 #endif
6453 
6454 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6455 {
6456 	pgdat_resize_init(pgdat);
6457 
6458 	pgdat_init_split_queue(pgdat);
6459 	pgdat_init_kcompactd(pgdat);
6460 
6461 	init_waitqueue_head(&pgdat->kswapd_wait);
6462 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6463 
6464 	pgdat_page_ext_init(pgdat);
6465 	spin_lock_init(&pgdat->lru_lock);
6466 	lruvec_init(node_lruvec(pgdat));
6467 }
6468 
6469 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6470 							unsigned long remaining_pages)
6471 {
6472 	atomic_long_set(&zone->managed_pages, remaining_pages);
6473 	zone_set_nid(zone, nid);
6474 	zone->name = zone_names[idx];
6475 	zone->zone_pgdat = NODE_DATA(nid);
6476 	spin_lock_init(&zone->lock);
6477 	zone_seqlock_init(zone);
6478 	zone_pcp_init(zone);
6479 }
6480 
6481 /*
6482  * Set up the zone data structures
6483  * - init pgdat internals
6484  * - init all zones belonging to this node
6485  *
6486  * NOTE: this function is only called during memory hotplug
6487  */
6488 #ifdef CONFIG_MEMORY_HOTPLUG
6489 void __ref free_area_init_core_hotplug(int nid)
6490 {
6491 	enum zone_type z;
6492 	pg_data_t *pgdat = NODE_DATA(nid);
6493 
6494 	pgdat_init_internals(pgdat);
6495 	for (z = 0; z < MAX_NR_ZONES; z++)
6496 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6497 }
6498 #endif
6499 
6500 /*
6501  * Set up the zone data structures:
6502  *   - mark all pages reserved
6503  *   - mark all memory queues empty
6504  *   - clear the memory bitmaps
6505  *
6506  * NOTE: pgdat should get zeroed by caller.
6507  * NOTE: this function is only called during early init.
6508  */
6509 static void __init free_area_init_core(struct pglist_data *pgdat)
6510 {
6511 	enum zone_type j;
6512 	int nid = pgdat->node_id;
6513 
6514 	pgdat_init_internals(pgdat);
6515 	pgdat->per_cpu_nodestats = &boot_nodestats;
6516 
6517 	for (j = 0; j < MAX_NR_ZONES; j++) {
6518 		struct zone *zone = pgdat->node_zones + j;
6519 		unsigned long size, freesize, memmap_pages;
6520 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6521 
6522 		size = zone->spanned_pages;
6523 		freesize = zone->present_pages;
6524 
6525 		/*
6526 		 * Adjust freesize so that it accounts for how much memory
6527 		 * is used by this zone for memmap. This affects the watermark
6528 		 * and per-cpu initialisations
6529 		 */
6530 		memmap_pages = calc_memmap_size(size, freesize);
6531 		if (!is_highmem_idx(j)) {
6532 			if (freesize >= memmap_pages) {
6533 				freesize -= memmap_pages;
6534 				if (memmap_pages)
6535 					printk(KERN_DEBUG
6536 					       "  %s zone: %lu pages used for memmap\n",
6537 					       zone_names[j], memmap_pages);
6538 			} else
6539 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6540 					zone_names[j], memmap_pages, freesize);
6541 		}
6542 
6543 		/* Account for reserved pages */
6544 		if (j == 0 && freesize > dma_reserve) {
6545 			freesize -= dma_reserve;
6546 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6547 					zone_names[0], dma_reserve);
6548 		}
6549 
6550 		if (!is_highmem_idx(j))
6551 			nr_kernel_pages += freesize;
6552 		/* Charge for highmem memmap if there are enough kernel pages */
6553 		else if (nr_kernel_pages > memmap_pages * 2)
6554 			nr_kernel_pages -= memmap_pages;
6555 		nr_all_pages += freesize;
6556 
6557 		/*
6558 		 * Set an approximate value for lowmem here, it will be adjusted
6559 		 * when the bootmem allocator frees pages into the buddy system.
6560 		 * And all highmem pages will be managed by the buddy system.
6561 		 */
6562 		zone_init_internals(zone, j, nid, freesize);
6563 
6564 		if (!size)
6565 			continue;
6566 
6567 		set_pageblock_order();
6568 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6569 		init_currently_empty_zone(zone, zone_start_pfn, size);
6570 		memmap_init(size, nid, j, zone_start_pfn);
6571 	}
6572 }
6573 
6574 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6575 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6576 {
6577 	unsigned long __maybe_unused start = 0;
6578 	unsigned long __maybe_unused offset = 0;
6579 
6580 	/* Skip empty nodes */
6581 	if (!pgdat->node_spanned_pages)
6582 		return;
6583 
6584 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6585 	offset = pgdat->node_start_pfn - start;
6586 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6587 	if (!pgdat->node_mem_map) {
6588 		unsigned long size, end;
6589 		struct page *map;
6590 
6591 		/*
6592 		 * The zone's endpoints aren't required to be MAX_ORDER
6593 		 * aligned but the node_mem_map endpoints must be in order
6594 		 * for the buddy allocator to function correctly.
6595 		 */
6596 		end = pgdat_end_pfn(pgdat);
6597 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6598 		size =  (end - start) * sizeof(struct page);
6599 		map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6600 		pgdat->node_mem_map = map + offset;
6601 	}
6602 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6603 				__func__, pgdat->node_id, (unsigned long)pgdat,
6604 				(unsigned long)pgdat->node_mem_map);
6605 #ifndef CONFIG_NEED_MULTIPLE_NODES
6606 	/*
6607 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6608 	 */
6609 	if (pgdat == NODE_DATA(0)) {
6610 		mem_map = NODE_DATA(0)->node_mem_map;
6611 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6612 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6613 			mem_map -= offset;
6614 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6615 	}
6616 #endif
6617 }
6618 #else
6619 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6620 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6621 
6622 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6623 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6624 {
6625 	pgdat->first_deferred_pfn = ULONG_MAX;
6626 }
6627 #else
6628 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6629 #endif
6630 
6631 void __init free_area_init_node(int nid, unsigned long *zones_size,
6632 				   unsigned long node_start_pfn,
6633 				   unsigned long *zholes_size)
6634 {
6635 	pg_data_t *pgdat = NODE_DATA(nid);
6636 	unsigned long start_pfn = 0;
6637 	unsigned long end_pfn = 0;
6638 
6639 	/* pg_data_t should be reset to zero when it's allocated */
6640 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6641 
6642 	pgdat->node_id = nid;
6643 	pgdat->node_start_pfn = node_start_pfn;
6644 	pgdat->per_cpu_nodestats = NULL;
6645 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6646 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6647 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6648 		(u64)start_pfn << PAGE_SHIFT,
6649 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6650 #else
6651 	start_pfn = node_start_pfn;
6652 #endif
6653 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6654 				  zones_size, zholes_size);
6655 
6656 	alloc_node_mem_map(pgdat);
6657 	pgdat_set_deferred_range(pgdat);
6658 
6659 	free_area_init_core(pgdat);
6660 }
6661 
6662 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6663 /*
6664  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6665  * pages zeroed
6666  */
6667 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6668 {
6669 	unsigned long pfn;
6670 	u64 pgcnt = 0;
6671 
6672 	for (pfn = spfn; pfn < epfn; pfn++) {
6673 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6674 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6675 				+ pageblock_nr_pages - 1;
6676 			continue;
6677 		}
6678 		mm_zero_struct_page(pfn_to_page(pfn));
6679 		pgcnt++;
6680 	}
6681 
6682 	return pgcnt;
6683 }
6684 
6685 /*
6686  * Only struct pages that are backed by physical memory are zeroed and
6687  * initialized by going through __init_single_page(). But, there are some
6688  * struct pages which are reserved in memblock allocator and their fields
6689  * may be accessed (for example page_to_pfn() on some configuration accesses
6690  * flags). We must explicitly zero those struct pages.
6691  *
6692  * This function also addresses a similar issue where struct pages are left
6693  * uninitialized because the physical address range is not covered by
6694  * memblock.memory or memblock.reserved. That could happen when memblock
6695  * layout is manually configured via memmap=.
6696  */
6697 void __init zero_resv_unavail(void)
6698 {
6699 	phys_addr_t start, end;
6700 	u64 i, pgcnt;
6701 	phys_addr_t next = 0;
6702 
6703 	/*
6704 	 * Loop through unavailable ranges not covered by memblock.memory.
6705 	 */
6706 	pgcnt = 0;
6707 	for_each_mem_range(i, &memblock.memory, NULL,
6708 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6709 		if (next < start)
6710 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6711 		next = end;
6712 	}
6713 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6714 
6715 	/*
6716 	 * Struct pages that do not have backing memory. This could be because
6717 	 * firmware is using some of this memory, or for some other reasons.
6718 	 */
6719 	if (pgcnt)
6720 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6721 }
6722 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6723 
6724 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6725 
6726 #if MAX_NUMNODES > 1
6727 /*
6728  * Figure out the number of possible node ids.
6729  */
6730 void __init setup_nr_node_ids(void)
6731 {
6732 	unsigned int highest;
6733 
6734 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6735 	nr_node_ids = highest + 1;
6736 }
6737 #endif
6738 
6739 /**
6740  * node_map_pfn_alignment - determine the maximum internode alignment
6741  *
6742  * This function should be called after node map is populated and sorted.
6743  * It calculates the maximum power of two alignment which can distinguish
6744  * all the nodes.
6745  *
6746  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6747  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6748  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6749  * shifted, 1GiB is enough and this function will indicate so.
6750  *
6751  * This is used to test whether pfn -> nid mapping of the chosen memory
6752  * model has fine enough granularity to avoid incorrect mapping for the
6753  * populated node map.
6754  *
6755  * Returns the determined alignment in pfn's.  0 if there is no alignment
6756  * requirement (single node).
6757  */
6758 unsigned long __init node_map_pfn_alignment(void)
6759 {
6760 	unsigned long accl_mask = 0, last_end = 0;
6761 	unsigned long start, end, mask;
6762 	int last_nid = -1;
6763 	int i, nid;
6764 
6765 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6766 		if (!start || last_nid < 0 || last_nid == nid) {
6767 			last_nid = nid;
6768 			last_end = end;
6769 			continue;
6770 		}
6771 
6772 		/*
6773 		 * Start with a mask granular enough to pin-point to the
6774 		 * start pfn and tick off bits one-by-one until it becomes
6775 		 * too coarse to separate the current node from the last.
6776 		 */
6777 		mask = ~((1 << __ffs(start)) - 1);
6778 		while (mask && last_end <= (start & (mask << 1)))
6779 			mask <<= 1;
6780 
6781 		/* accumulate all internode masks */
6782 		accl_mask |= mask;
6783 	}
6784 
6785 	/* convert mask to number of pages */
6786 	return ~accl_mask + 1;
6787 }
6788 
6789 /* Find the lowest pfn for a node */
6790 static unsigned long __init find_min_pfn_for_node(int nid)
6791 {
6792 	unsigned long min_pfn = ULONG_MAX;
6793 	unsigned long start_pfn;
6794 	int i;
6795 
6796 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6797 		min_pfn = min(min_pfn, start_pfn);
6798 
6799 	if (min_pfn == ULONG_MAX) {
6800 		pr_warn("Could not find start_pfn for node %d\n", nid);
6801 		return 0;
6802 	}
6803 
6804 	return min_pfn;
6805 }
6806 
6807 /**
6808  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6809  *
6810  * It returns the minimum PFN based on information provided via
6811  * memblock_set_node().
6812  */
6813 unsigned long __init find_min_pfn_with_active_regions(void)
6814 {
6815 	return find_min_pfn_for_node(MAX_NUMNODES);
6816 }
6817 
6818 /*
6819  * early_calculate_totalpages()
6820  * Sum pages in active regions for movable zone.
6821  * Populate N_MEMORY for calculating usable_nodes.
6822  */
6823 static unsigned long __init early_calculate_totalpages(void)
6824 {
6825 	unsigned long totalpages = 0;
6826 	unsigned long start_pfn, end_pfn;
6827 	int i, nid;
6828 
6829 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6830 		unsigned long pages = end_pfn - start_pfn;
6831 
6832 		totalpages += pages;
6833 		if (pages)
6834 			node_set_state(nid, N_MEMORY);
6835 	}
6836 	return totalpages;
6837 }
6838 
6839 /*
6840  * Find the PFN the Movable zone begins in each node. Kernel memory
6841  * is spread evenly between nodes as long as the nodes have enough
6842  * memory. When they don't, some nodes will have more kernelcore than
6843  * others
6844  */
6845 static void __init find_zone_movable_pfns_for_nodes(void)
6846 {
6847 	int i, nid;
6848 	unsigned long usable_startpfn;
6849 	unsigned long kernelcore_node, kernelcore_remaining;
6850 	/* save the state before borrow the nodemask */
6851 	nodemask_t saved_node_state = node_states[N_MEMORY];
6852 	unsigned long totalpages = early_calculate_totalpages();
6853 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6854 	struct memblock_region *r;
6855 
6856 	/* Need to find movable_zone earlier when movable_node is specified. */
6857 	find_usable_zone_for_movable();
6858 
6859 	/*
6860 	 * If movable_node is specified, ignore kernelcore and movablecore
6861 	 * options.
6862 	 */
6863 	if (movable_node_is_enabled()) {
6864 		for_each_memblock(memory, r) {
6865 			if (!memblock_is_hotpluggable(r))
6866 				continue;
6867 
6868 			nid = r->nid;
6869 
6870 			usable_startpfn = PFN_DOWN(r->base);
6871 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6872 				min(usable_startpfn, zone_movable_pfn[nid]) :
6873 				usable_startpfn;
6874 		}
6875 
6876 		goto out2;
6877 	}
6878 
6879 	/*
6880 	 * If kernelcore=mirror is specified, ignore movablecore option
6881 	 */
6882 	if (mirrored_kernelcore) {
6883 		bool mem_below_4gb_not_mirrored = false;
6884 
6885 		for_each_memblock(memory, r) {
6886 			if (memblock_is_mirror(r))
6887 				continue;
6888 
6889 			nid = r->nid;
6890 
6891 			usable_startpfn = memblock_region_memory_base_pfn(r);
6892 
6893 			if (usable_startpfn < 0x100000) {
6894 				mem_below_4gb_not_mirrored = true;
6895 				continue;
6896 			}
6897 
6898 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6899 				min(usable_startpfn, zone_movable_pfn[nid]) :
6900 				usable_startpfn;
6901 		}
6902 
6903 		if (mem_below_4gb_not_mirrored)
6904 			pr_warn("This configuration results in unmirrored kernel memory.");
6905 
6906 		goto out2;
6907 	}
6908 
6909 	/*
6910 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6911 	 * amount of necessary memory.
6912 	 */
6913 	if (required_kernelcore_percent)
6914 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6915 				       10000UL;
6916 	if (required_movablecore_percent)
6917 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6918 					10000UL;
6919 
6920 	/*
6921 	 * If movablecore= was specified, calculate what size of
6922 	 * kernelcore that corresponds so that memory usable for
6923 	 * any allocation type is evenly spread. If both kernelcore
6924 	 * and movablecore are specified, then the value of kernelcore
6925 	 * will be used for required_kernelcore if it's greater than
6926 	 * what movablecore would have allowed.
6927 	 */
6928 	if (required_movablecore) {
6929 		unsigned long corepages;
6930 
6931 		/*
6932 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6933 		 * was requested by the user
6934 		 */
6935 		required_movablecore =
6936 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6937 		required_movablecore = min(totalpages, required_movablecore);
6938 		corepages = totalpages - required_movablecore;
6939 
6940 		required_kernelcore = max(required_kernelcore, corepages);
6941 	}
6942 
6943 	/*
6944 	 * If kernelcore was not specified or kernelcore size is larger
6945 	 * than totalpages, there is no ZONE_MOVABLE.
6946 	 */
6947 	if (!required_kernelcore || required_kernelcore >= totalpages)
6948 		goto out;
6949 
6950 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6951 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6952 
6953 restart:
6954 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6955 	kernelcore_node = required_kernelcore / usable_nodes;
6956 	for_each_node_state(nid, N_MEMORY) {
6957 		unsigned long start_pfn, end_pfn;
6958 
6959 		/*
6960 		 * Recalculate kernelcore_node if the division per node
6961 		 * now exceeds what is necessary to satisfy the requested
6962 		 * amount of memory for the kernel
6963 		 */
6964 		if (required_kernelcore < kernelcore_node)
6965 			kernelcore_node = required_kernelcore / usable_nodes;
6966 
6967 		/*
6968 		 * As the map is walked, we track how much memory is usable
6969 		 * by the kernel using kernelcore_remaining. When it is
6970 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6971 		 */
6972 		kernelcore_remaining = kernelcore_node;
6973 
6974 		/* Go through each range of PFNs within this node */
6975 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6976 			unsigned long size_pages;
6977 
6978 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6979 			if (start_pfn >= end_pfn)
6980 				continue;
6981 
6982 			/* Account for what is only usable for kernelcore */
6983 			if (start_pfn < usable_startpfn) {
6984 				unsigned long kernel_pages;
6985 				kernel_pages = min(end_pfn, usable_startpfn)
6986 								- start_pfn;
6987 
6988 				kernelcore_remaining -= min(kernel_pages,
6989 							kernelcore_remaining);
6990 				required_kernelcore -= min(kernel_pages,
6991 							required_kernelcore);
6992 
6993 				/* Continue if range is now fully accounted */
6994 				if (end_pfn <= usable_startpfn) {
6995 
6996 					/*
6997 					 * Push zone_movable_pfn to the end so
6998 					 * that if we have to rebalance
6999 					 * kernelcore across nodes, we will
7000 					 * not double account here
7001 					 */
7002 					zone_movable_pfn[nid] = end_pfn;
7003 					continue;
7004 				}
7005 				start_pfn = usable_startpfn;
7006 			}
7007 
7008 			/*
7009 			 * The usable PFN range for ZONE_MOVABLE is from
7010 			 * start_pfn->end_pfn. Calculate size_pages as the
7011 			 * number of pages used as kernelcore
7012 			 */
7013 			size_pages = end_pfn - start_pfn;
7014 			if (size_pages > kernelcore_remaining)
7015 				size_pages = kernelcore_remaining;
7016 			zone_movable_pfn[nid] = start_pfn + size_pages;
7017 
7018 			/*
7019 			 * Some kernelcore has been met, update counts and
7020 			 * break if the kernelcore for this node has been
7021 			 * satisfied
7022 			 */
7023 			required_kernelcore -= min(required_kernelcore,
7024 								size_pages);
7025 			kernelcore_remaining -= size_pages;
7026 			if (!kernelcore_remaining)
7027 				break;
7028 		}
7029 	}
7030 
7031 	/*
7032 	 * If there is still required_kernelcore, we do another pass with one
7033 	 * less node in the count. This will push zone_movable_pfn[nid] further
7034 	 * along on the nodes that still have memory until kernelcore is
7035 	 * satisfied
7036 	 */
7037 	usable_nodes--;
7038 	if (usable_nodes && required_kernelcore > usable_nodes)
7039 		goto restart;
7040 
7041 out2:
7042 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7043 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7044 		zone_movable_pfn[nid] =
7045 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7046 
7047 out:
7048 	/* restore the node_state */
7049 	node_states[N_MEMORY] = saved_node_state;
7050 }
7051 
7052 /* Any regular or high memory on that node ? */
7053 static void check_for_memory(pg_data_t *pgdat, int nid)
7054 {
7055 	enum zone_type zone_type;
7056 
7057 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7058 		struct zone *zone = &pgdat->node_zones[zone_type];
7059 		if (populated_zone(zone)) {
7060 			if (IS_ENABLED(CONFIG_HIGHMEM))
7061 				node_set_state(nid, N_HIGH_MEMORY);
7062 			if (zone_type <= ZONE_NORMAL)
7063 				node_set_state(nid, N_NORMAL_MEMORY);
7064 			break;
7065 		}
7066 	}
7067 }
7068 
7069 /**
7070  * free_area_init_nodes - Initialise all pg_data_t and zone data
7071  * @max_zone_pfn: an array of max PFNs for each zone
7072  *
7073  * This will call free_area_init_node() for each active node in the system.
7074  * Using the page ranges provided by memblock_set_node(), the size of each
7075  * zone in each node and their holes is calculated. If the maximum PFN
7076  * between two adjacent zones match, it is assumed that the zone is empty.
7077  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7078  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7079  * starts where the previous one ended. For example, ZONE_DMA32 starts
7080  * at arch_max_dma_pfn.
7081  */
7082 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7083 {
7084 	unsigned long start_pfn, end_pfn;
7085 	int i, nid;
7086 
7087 	/* Record where the zone boundaries are */
7088 	memset(arch_zone_lowest_possible_pfn, 0,
7089 				sizeof(arch_zone_lowest_possible_pfn));
7090 	memset(arch_zone_highest_possible_pfn, 0,
7091 				sizeof(arch_zone_highest_possible_pfn));
7092 
7093 	start_pfn = find_min_pfn_with_active_regions();
7094 
7095 	for (i = 0; i < MAX_NR_ZONES; i++) {
7096 		if (i == ZONE_MOVABLE)
7097 			continue;
7098 
7099 		end_pfn = max(max_zone_pfn[i], start_pfn);
7100 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7101 		arch_zone_highest_possible_pfn[i] = end_pfn;
7102 
7103 		start_pfn = end_pfn;
7104 	}
7105 
7106 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7107 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7108 	find_zone_movable_pfns_for_nodes();
7109 
7110 	/* Print out the zone ranges */
7111 	pr_info("Zone ranges:\n");
7112 	for (i = 0; i < MAX_NR_ZONES; i++) {
7113 		if (i == ZONE_MOVABLE)
7114 			continue;
7115 		pr_info("  %-8s ", zone_names[i]);
7116 		if (arch_zone_lowest_possible_pfn[i] ==
7117 				arch_zone_highest_possible_pfn[i])
7118 			pr_cont("empty\n");
7119 		else
7120 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7121 				(u64)arch_zone_lowest_possible_pfn[i]
7122 					<< PAGE_SHIFT,
7123 				((u64)arch_zone_highest_possible_pfn[i]
7124 					<< PAGE_SHIFT) - 1);
7125 	}
7126 
7127 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7128 	pr_info("Movable zone start for each node\n");
7129 	for (i = 0; i < MAX_NUMNODES; i++) {
7130 		if (zone_movable_pfn[i])
7131 			pr_info("  Node %d: %#018Lx\n", i,
7132 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7133 	}
7134 
7135 	/* Print out the early node map */
7136 	pr_info("Early memory node ranges\n");
7137 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7138 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7139 			(u64)start_pfn << PAGE_SHIFT,
7140 			((u64)end_pfn << PAGE_SHIFT) - 1);
7141 
7142 	/* Initialise every node */
7143 	mminit_verify_pageflags_layout();
7144 	setup_nr_node_ids();
7145 	zero_resv_unavail();
7146 	for_each_online_node(nid) {
7147 		pg_data_t *pgdat = NODE_DATA(nid);
7148 		free_area_init_node(nid, NULL,
7149 				find_min_pfn_for_node(nid), NULL);
7150 
7151 		/* Any memory on that node */
7152 		if (pgdat->node_present_pages)
7153 			node_set_state(nid, N_MEMORY);
7154 		check_for_memory(pgdat, nid);
7155 	}
7156 }
7157 
7158 static int __init cmdline_parse_core(char *p, unsigned long *core,
7159 				     unsigned long *percent)
7160 {
7161 	unsigned long long coremem;
7162 	char *endptr;
7163 
7164 	if (!p)
7165 		return -EINVAL;
7166 
7167 	/* Value may be a percentage of total memory, otherwise bytes */
7168 	coremem = simple_strtoull(p, &endptr, 0);
7169 	if (*endptr == '%') {
7170 		/* Paranoid check for percent values greater than 100 */
7171 		WARN_ON(coremem > 100);
7172 
7173 		*percent = coremem;
7174 	} else {
7175 		coremem = memparse(p, &p);
7176 		/* Paranoid check that UL is enough for the coremem value */
7177 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7178 
7179 		*core = coremem >> PAGE_SHIFT;
7180 		*percent = 0UL;
7181 	}
7182 	return 0;
7183 }
7184 
7185 /*
7186  * kernelcore=size sets the amount of memory for use for allocations that
7187  * cannot be reclaimed or migrated.
7188  */
7189 static int __init cmdline_parse_kernelcore(char *p)
7190 {
7191 	/* parse kernelcore=mirror */
7192 	if (parse_option_str(p, "mirror")) {
7193 		mirrored_kernelcore = true;
7194 		return 0;
7195 	}
7196 
7197 	return cmdline_parse_core(p, &required_kernelcore,
7198 				  &required_kernelcore_percent);
7199 }
7200 
7201 /*
7202  * movablecore=size sets the amount of memory for use for allocations that
7203  * can be reclaimed or migrated.
7204  */
7205 static int __init cmdline_parse_movablecore(char *p)
7206 {
7207 	return cmdline_parse_core(p, &required_movablecore,
7208 				  &required_movablecore_percent);
7209 }
7210 
7211 early_param("kernelcore", cmdline_parse_kernelcore);
7212 early_param("movablecore", cmdline_parse_movablecore);
7213 
7214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7215 
7216 void adjust_managed_page_count(struct page *page, long count)
7217 {
7218 	atomic_long_add(count, &page_zone(page)->managed_pages);
7219 	totalram_pages_add(count);
7220 #ifdef CONFIG_HIGHMEM
7221 	if (PageHighMem(page))
7222 		totalhigh_pages_add(count);
7223 #endif
7224 }
7225 EXPORT_SYMBOL(adjust_managed_page_count);
7226 
7227 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7228 {
7229 	void *pos;
7230 	unsigned long pages = 0;
7231 
7232 	start = (void *)PAGE_ALIGN((unsigned long)start);
7233 	end = (void *)((unsigned long)end & PAGE_MASK);
7234 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7235 		struct page *page = virt_to_page(pos);
7236 		void *direct_map_addr;
7237 
7238 		/*
7239 		 * 'direct_map_addr' might be different from 'pos'
7240 		 * because some architectures' virt_to_page()
7241 		 * work with aliases.  Getting the direct map
7242 		 * address ensures that we get a _writeable_
7243 		 * alias for the memset().
7244 		 */
7245 		direct_map_addr = page_address(page);
7246 		if ((unsigned int)poison <= 0xFF)
7247 			memset(direct_map_addr, poison, PAGE_SIZE);
7248 
7249 		free_reserved_page(page);
7250 	}
7251 
7252 	if (pages && s)
7253 		pr_info("Freeing %s memory: %ldK\n",
7254 			s, pages << (PAGE_SHIFT - 10));
7255 
7256 	return pages;
7257 }
7258 EXPORT_SYMBOL(free_reserved_area);
7259 
7260 #ifdef	CONFIG_HIGHMEM
7261 void free_highmem_page(struct page *page)
7262 {
7263 	__free_reserved_page(page);
7264 	totalram_pages_inc();
7265 	atomic_long_inc(&page_zone(page)->managed_pages);
7266 	totalhigh_pages_inc();
7267 }
7268 #endif
7269 
7270 
7271 void __init mem_init_print_info(const char *str)
7272 {
7273 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7274 	unsigned long init_code_size, init_data_size;
7275 
7276 	physpages = get_num_physpages();
7277 	codesize = _etext - _stext;
7278 	datasize = _edata - _sdata;
7279 	rosize = __end_rodata - __start_rodata;
7280 	bss_size = __bss_stop - __bss_start;
7281 	init_data_size = __init_end - __init_begin;
7282 	init_code_size = _einittext - _sinittext;
7283 
7284 	/*
7285 	 * Detect special cases and adjust section sizes accordingly:
7286 	 * 1) .init.* may be embedded into .data sections
7287 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7288 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7289 	 * 3) .rodata.* may be embedded into .text or .data sections.
7290 	 */
7291 #define adj_init_size(start, end, size, pos, adj) \
7292 	do { \
7293 		if (start <= pos && pos < end && size > adj) \
7294 			size -= adj; \
7295 	} while (0)
7296 
7297 	adj_init_size(__init_begin, __init_end, init_data_size,
7298 		     _sinittext, init_code_size);
7299 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7300 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7301 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7302 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7303 
7304 #undef	adj_init_size
7305 
7306 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7307 #ifdef	CONFIG_HIGHMEM
7308 		", %luK highmem"
7309 #endif
7310 		"%s%s)\n",
7311 		nr_free_pages() << (PAGE_SHIFT - 10),
7312 		physpages << (PAGE_SHIFT - 10),
7313 		codesize >> 10, datasize >> 10, rosize >> 10,
7314 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7315 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7316 		totalcma_pages << (PAGE_SHIFT - 10),
7317 #ifdef	CONFIG_HIGHMEM
7318 		totalhigh_pages() << (PAGE_SHIFT - 10),
7319 #endif
7320 		str ? ", " : "", str ? str : "");
7321 }
7322 
7323 /**
7324  * set_dma_reserve - set the specified number of pages reserved in the first zone
7325  * @new_dma_reserve: The number of pages to mark reserved
7326  *
7327  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7328  * In the DMA zone, a significant percentage may be consumed by kernel image
7329  * and other unfreeable allocations which can skew the watermarks badly. This
7330  * function may optionally be used to account for unfreeable pages in the
7331  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7332  * smaller per-cpu batchsize.
7333  */
7334 void __init set_dma_reserve(unsigned long new_dma_reserve)
7335 {
7336 	dma_reserve = new_dma_reserve;
7337 }
7338 
7339 void __init free_area_init(unsigned long *zones_size)
7340 {
7341 	zero_resv_unavail();
7342 	free_area_init_node(0, zones_size,
7343 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7344 }
7345 
7346 static int page_alloc_cpu_dead(unsigned int cpu)
7347 {
7348 
7349 	lru_add_drain_cpu(cpu);
7350 	drain_pages(cpu);
7351 
7352 	/*
7353 	 * Spill the event counters of the dead processor
7354 	 * into the current processors event counters.
7355 	 * This artificially elevates the count of the current
7356 	 * processor.
7357 	 */
7358 	vm_events_fold_cpu(cpu);
7359 
7360 	/*
7361 	 * Zero the differential counters of the dead processor
7362 	 * so that the vm statistics are consistent.
7363 	 *
7364 	 * This is only okay since the processor is dead and cannot
7365 	 * race with what we are doing.
7366 	 */
7367 	cpu_vm_stats_fold(cpu);
7368 	return 0;
7369 }
7370 
7371 void __init page_alloc_init(void)
7372 {
7373 	int ret;
7374 
7375 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7376 					"mm/page_alloc:dead", NULL,
7377 					page_alloc_cpu_dead);
7378 	WARN_ON(ret < 0);
7379 }
7380 
7381 /*
7382  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7383  *	or min_free_kbytes changes.
7384  */
7385 static void calculate_totalreserve_pages(void)
7386 {
7387 	struct pglist_data *pgdat;
7388 	unsigned long reserve_pages = 0;
7389 	enum zone_type i, j;
7390 
7391 	for_each_online_pgdat(pgdat) {
7392 
7393 		pgdat->totalreserve_pages = 0;
7394 
7395 		for (i = 0; i < MAX_NR_ZONES; i++) {
7396 			struct zone *zone = pgdat->node_zones + i;
7397 			long max = 0;
7398 			unsigned long managed_pages = zone_managed_pages(zone);
7399 
7400 			/* Find valid and maximum lowmem_reserve in the zone */
7401 			for (j = i; j < MAX_NR_ZONES; j++) {
7402 				if (zone->lowmem_reserve[j] > max)
7403 					max = zone->lowmem_reserve[j];
7404 			}
7405 
7406 			/* we treat the high watermark as reserved pages. */
7407 			max += high_wmark_pages(zone);
7408 
7409 			if (max > managed_pages)
7410 				max = managed_pages;
7411 
7412 			pgdat->totalreserve_pages += max;
7413 
7414 			reserve_pages += max;
7415 		}
7416 	}
7417 	totalreserve_pages = reserve_pages;
7418 }
7419 
7420 /*
7421  * setup_per_zone_lowmem_reserve - called whenever
7422  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7423  *	has a correct pages reserved value, so an adequate number of
7424  *	pages are left in the zone after a successful __alloc_pages().
7425  */
7426 static void setup_per_zone_lowmem_reserve(void)
7427 {
7428 	struct pglist_data *pgdat;
7429 	enum zone_type j, idx;
7430 
7431 	for_each_online_pgdat(pgdat) {
7432 		for (j = 0; j < MAX_NR_ZONES; j++) {
7433 			struct zone *zone = pgdat->node_zones + j;
7434 			unsigned long managed_pages = zone_managed_pages(zone);
7435 
7436 			zone->lowmem_reserve[j] = 0;
7437 
7438 			idx = j;
7439 			while (idx) {
7440 				struct zone *lower_zone;
7441 
7442 				idx--;
7443 				lower_zone = pgdat->node_zones + idx;
7444 
7445 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7446 					sysctl_lowmem_reserve_ratio[idx] = 0;
7447 					lower_zone->lowmem_reserve[j] = 0;
7448 				} else {
7449 					lower_zone->lowmem_reserve[j] =
7450 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7451 				}
7452 				managed_pages += zone_managed_pages(lower_zone);
7453 			}
7454 		}
7455 	}
7456 
7457 	/* update totalreserve_pages */
7458 	calculate_totalreserve_pages();
7459 }
7460 
7461 static void __setup_per_zone_wmarks(void)
7462 {
7463 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7464 	unsigned long lowmem_pages = 0;
7465 	struct zone *zone;
7466 	unsigned long flags;
7467 
7468 	/* Calculate total number of !ZONE_HIGHMEM pages */
7469 	for_each_zone(zone) {
7470 		if (!is_highmem(zone))
7471 			lowmem_pages += zone_managed_pages(zone);
7472 	}
7473 
7474 	for_each_zone(zone) {
7475 		u64 tmp;
7476 
7477 		spin_lock_irqsave(&zone->lock, flags);
7478 		tmp = (u64)pages_min * zone_managed_pages(zone);
7479 		do_div(tmp, lowmem_pages);
7480 		if (is_highmem(zone)) {
7481 			/*
7482 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7483 			 * need highmem pages, so cap pages_min to a small
7484 			 * value here.
7485 			 *
7486 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7487 			 * deltas control asynch page reclaim, and so should
7488 			 * not be capped for highmem.
7489 			 */
7490 			unsigned long min_pages;
7491 
7492 			min_pages = zone_managed_pages(zone) / 1024;
7493 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7494 			zone->_watermark[WMARK_MIN] = min_pages;
7495 		} else {
7496 			/*
7497 			 * If it's a lowmem zone, reserve a number of pages
7498 			 * proportionate to the zone's size.
7499 			 */
7500 			zone->_watermark[WMARK_MIN] = tmp;
7501 		}
7502 
7503 		/*
7504 		 * Set the kswapd watermarks distance according to the
7505 		 * scale factor in proportion to available memory, but
7506 		 * ensure a minimum size on small systems.
7507 		 */
7508 		tmp = max_t(u64, tmp >> 2,
7509 			    mult_frac(zone_managed_pages(zone),
7510 				      watermark_scale_factor, 10000));
7511 
7512 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7513 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7514 		zone->watermark_boost = 0;
7515 
7516 		spin_unlock_irqrestore(&zone->lock, flags);
7517 	}
7518 
7519 	/* update totalreserve_pages */
7520 	calculate_totalreserve_pages();
7521 }
7522 
7523 /**
7524  * setup_per_zone_wmarks - called when min_free_kbytes changes
7525  * or when memory is hot-{added|removed}
7526  *
7527  * Ensures that the watermark[min,low,high] values for each zone are set
7528  * correctly with respect to min_free_kbytes.
7529  */
7530 void setup_per_zone_wmarks(void)
7531 {
7532 	static DEFINE_SPINLOCK(lock);
7533 
7534 	spin_lock(&lock);
7535 	__setup_per_zone_wmarks();
7536 	spin_unlock(&lock);
7537 }
7538 
7539 /*
7540  * Initialise min_free_kbytes.
7541  *
7542  * For small machines we want it small (128k min).  For large machines
7543  * we want it large (64MB max).  But it is not linear, because network
7544  * bandwidth does not increase linearly with machine size.  We use
7545  *
7546  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7547  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7548  *
7549  * which yields
7550  *
7551  * 16MB:	512k
7552  * 32MB:	724k
7553  * 64MB:	1024k
7554  * 128MB:	1448k
7555  * 256MB:	2048k
7556  * 512MB:	2896k
7557  * 1024MB:	4096k
7558  * 2048MB:	5792k
7559  * 4096MB:	8192k
7560  * 8192MB:	11584k
7561  * 16384MB:	16384k
7562  */
7563 int __meminit init_per_zone_wmark_min(void)
7564 {
7565 	unsigned long lowmem_kbytes;
7566 	int new_min_free_kbytes;
7567 
7568 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7569 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7570 
7571 	if (new_min_free_kbytes > user_min_free_kbytes) {
7572 		min_free_kbytes = new_min_free_kbytes;
7573 		if (min_free_kbytes < 128)
7574 			min_free_kbytes = 128;
7575 		if (min_free_kbytes > 65536)
7576 			min_free_kbytes = 65536;
7577 	} else {
7578 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7579 				new_min_free_kbytes, user_min_free_kbytes);
7580 	}
7581 	setup_per_zone_wmarks();
7582 	refresh_zone_stat_thresholds();
7583 	setup_per_zone_lowmem_reserve();
7584 
7585 #ifdef CONFIG_NUMA
7586 	setup_min_unmapped_ratio();
7587 	setup_min_slab_ratio();
7588 #endif
7589 
7590 	return 0;
7591 }
7592 core_initcall(init_per_zone_wmark_min)
7593 
7594 /*
7595  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7596  *	that we can call two helper functions whenever min_free_kbytes
7597  *	changes.
7598  */
7599 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7600 	void __user *buffer, size_t *length, loff_t *ppos)
7601 {
7602 	int rc;
7603 
7604 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7605 	if (rc)
7606 		return rc;
7607 
7608 	if (write) {
7609 		user_min_free_kbytes = min_free_kbytes;
7610 		setup_per_zone_wmarks();
7611 	}
7612 	return 0;
7613 }
7614 
7615 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7616 	void __user *buffer, size_t *length, loff_t *ppos)
7617 {
7618 	int rc;
7619 
7620 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7621 	if (rc)
7622 		return rc;
7623 
7624 	return 0;
7625 }
7626 
7627 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7628 	void __user *buffer, size_t *length, loff_t *ppos)
7629 {
7630 	int rc;
7631 
7632 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7633 	if (rc)
7634 		return rc;
7635 
7636 	if (write)
7637 		setup_per_zone_wmarks();
7638 
7639 	return 0;
7640 }
7641 
7642 #ifdef CONFIG_NUMA
7643 static void setup_min_unmapped_ratio(void)
7644 {
7645 	pg_data_t *pgdat;
7646 	struct zone *zone;
7647 
7648 	for_each_online_pgdat(pgdat)
7649 		pgdat->min_unmapped_pages = 0;
7650 
7651 	for_each_zone(zone)
7652 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7653 						         sysctl_min_unmapped_ratio) / 100;
7654 }
7655 
7656 
7657 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7658 	void __user *buffer, size_t *length, loff_t *ppos)
7659 {
7660 	int rc;
7661 
7662 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7663 	if (rc)
7664 		return rc;
7665 
7666 	setup_min_unmapped_ratio();
7667 
7668 	return 0;
7669 }
7670 
7671 static void setup_min_slab_ratio(void)
7672 {
7673 	pg_data_t *pgdat;
7674 	struct zone *zone;
7675 
7676 	for_each_online_pgdat(pgdat)
7677 		pgdat->min_slab_pages = 0;
7678 
7679 	for_each_zone(zone)
7680 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7681 						     sysctl_min_slab_ratio) / 100;
7682 }
7683 
7684 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7685 	void __user *buffer, size_t *length, loff_t *ppos)
7686 {
7687 	int rc;
7688 
7689 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7690 	if (rc)
7691 		return rc;
7692 
7693 	setup_min_slab_ratio();
7694 
7695 	return 0;
7696 }
7697 #endif
7698 
7699 /*
7700  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7701  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7702  *	whenever sysctl_lowmem_reserve_ratio changes.
7703  *
7704  * The reserve ratio obviously has absolutely no relation with the
7705  * minimum watermarks. The lowmem reserve ratio can only make sense
7706  * if in function of the boot time zone sizes.
7707  */
7708 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7709 	void __user *buffer, size_t *length, loff_t *ppos)
7710 {
7711 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7712 	setup_per_zone_lowmem_reserve();
7713 	return 0;
7714 }
7715 
7716 /*
7717  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7718  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7719  * pagelist can have before it gets flushed back to buddy allocator.
7720  */
7721 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7722 	void __user *buffer, size_t *length, loff_t *ppos)
7723 {
7724 	struct zone *zone;
7725 	int old_percpu_pagelist_fraction;
7726 	int ret;
7727 
7728 	mutex_lock(&pcp_batch_high_lock);
7729 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7730 
7731 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7732 	if (!write || ret < 0)
7733 		goto out;
7734 
7735 	/* Sanity checking to avoid pcp imbalance */
7736 	if (percpu_pagelist_fraction &&
7737 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7738 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7739 		ret = -EINVAL;
7740 		goto out;
7741 	}
7742 
7743 	/* No change? */
7744 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7745 		goto out;
7746 
7747 	for_each_populated_zone(zone) {
7748 		unsigned int cpu;
7749 
7750 		for_each_possible_cpu(cpu)
7751 			pageset_set_high_and_batch(zone,
7752 					per_cpu_ptr(zone->pageset, cpu));
7753 	}
7754 out:
7755 	mutex_unlock(&pcp_batch_high_lock);
7756 	return ret;
7757 }
7758 
7759 #ifdef CONFIG_NUMA
7760 int hashdist = HASHDIST_DEFAULT;
7761 
7762 static int __init set_hashdist(char *str)
7763 {
7764 	if (!str)
7765 		return 0;
7766 	hashdist = simple_strtoul(str, &str, 0);
7767 	return 1;
7768 }
7769 __setup("hashdist=", set_hashdist);
7770 #endif
7771 
7772 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7773 /*
7774  * Returns the number of pages that arch has reserved but
7775  * is not known to alloc_large_system_hash().
7776  */
7777 static unsigned long __init arch_reserved_kernel_pages(void)
7778 {
7779 	return 0;
7780 }
7781 #endif
7782 
7783 /*
7784  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7785  * machines. As memory size is increased the scale is also increased but at
7786  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7787  * quadruples the scale is increased by one, which means the size of hash table
7788  * only doubles, instead of quadrupling as well.
7789  * Because 32-bit systems cannot have large physical memory, where this scaling
7790  * makes sense, it is disabled on such platforms.
7791  */
7792 #if __BITS_PER_LONG > 32
7793 #define ADAPT_SCALE_BASE	(64ul << 30)
7794 #define ADAPT_SCALE_SHIFT	2
7795 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7796 #endif
7797 
7798 /*
7799  * allocate a large system hash table from bootmem
7800  * - it is assumed that the hash table must contain an exact power-of-2
7801  *   quantity of entries
7802  * - limit is the number of hash buckets, not the total allocation size
7803  */
7804 void *__init alloc_large_system_hash(const char *tablename,
7805 				     unsigned long bucketsize,
7806 				     unsigned long numentries,
7807 				     int scale,
7808 				     int flags,
7809 				     unsigned int *_hash_shift,
7810 				     unsigned int *_hash_mask,
7811 				     unsigned long low_limit,
7812 				     unsigned long high_limit)
7813 {
7814 	unsigned long long max = high_limit;
7815 	unsigned long log2qty, size;
7816 	void *table = NULL;
7817 	gfp_t gfp_flags;
7818 
7819 	/* allow the kernel cmdline to have a say */
7820 	if (!numentries) {
7821 		/* round applicable memory size up to nearest megabyte */
7822 		numentries = nr_kernel_pages;
7823 		numentries -= arch_reserved_kernel_pages();
7824 
7825 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7826 		if (PAGE_SHIFT < 20)
7827 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7828 
7829 #if __BITS_PER_LONG > 32
7830 		if (!high_limit) {
7831 			unsigned long adapt;
7832 
7833 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7834 			     adapt <<= ADAPT_SCALE_SHIFT)
7835 				scale++;
7836 		}
7837 #endif
7838 
7839 		/* limit to 1 bucket per 2^scale bytes of low memory */
7840 		if (scale > PAGE_SHIFT)
7841 			numentries >>= (scale - PAGE_SHIFT);
7842 		else
7843 			numentries <<= (PAGE_SHIFT - scale);
7844 
7845 		/* Make sure we've got at least a 0-order allocation.. */
7846 		if (unlikely(flags & HASH_SMALL)) {
7847 			/* Makes no sense without HASH_EARLY */
7848 			WARN_ON(!(flags & HASH_EARLY));
7849 			if (!(numentries >> *_hash_shift)) {
7850 				numentries = 1UL << *_hash_shift;
7851 				BUG_ON(!numentries);
7852 			}
7853 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7854 			numentries = PAGE_SIZE / bucketsize;
7855 	}
7856 	numentries = roundup_pow_of_two(numentries);
7857 
7858 	/* limit allocation size to 1/16 total memory by default */
7859 	if (max == 0) {
7860 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7861 		do_div(max, bucketsize);
7862 	}
7863 	max = min(max, 0x80000000ULL);
7864 
7865 	if (numentries < low_limit)
7866 		numentries = low_limit;
7867 	if (numentries > max)
7868 		numentries = max;
7869 
7870 	log2qty = ilog2(numentries);
7871 
7872 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7873 	do {
7874 		size = bucketsize << log2qty;
7875 		if (flags & HASH_EARLY) {
7876 			if (flags & HASH_ZERO)
7877 				table = memblock_alloc_nopanic(size,
7878 							       SMP_CACHE_BYTES);
7879 			else
7880 				table = memblock_alloc_raw(size,
7881 							   SMP_CACHE_BYTES);
7882 		} else if (hashdist) {
7883 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7884 		} else {
7885 			/*
7886 			 * If bucketsize is not a power-of-two, we may free
7887 			 * some pages at the end of hash table which
7888 			 * alloc_pages_exact() automatically does
7889 			 */
7890 			if (get_order(size) < MAX_ORDER) {
7891 				table = alloc_pages_exact(size, gfp_flags);
7892 				kmemleak_alloc(table, size, 1, gfp_flags);
7893 			}
7894 		}
7895 	} while (!table && size > PAGE_SIZE && --log2qty);
7896 
7897 	if (!table)
7898 		panic("Failed to allocate %s hash table\n", tablename);
7899 
7900 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7901 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7902 
7903 	if (_hash_shift)
7904 		*_hash_shift = log2qty;
7905 	if (_hash_mask)
7906 		*_hash_mask = (1 << log2qty) - 1;
7907 
7908 	return table;
7909 }
7910 
7911 /*
7912  * This function checks whether pageblock includes unmovable pages or not.
7913  * If @count is not zero, it is okay to include less @count unmovable pages
7914  *
7915  * PageLRU check without isolation or lru_lock could race so that
7916  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7917  * check without lock_page also may miss some movable non-lru pages at
7918  * race condition. So you can't expect this function should be exact.
7919  */
7920 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7921 			 int migratetype, int flags)
7922 {
7923 	unsigned long pfn, iter, found;
7924 
7925 	/*
7926 	 * TODO we could make this much more efficient by not checking every
7927 	 * page in the range if we know all of them are in MOVABLE_ZONE and
7928 	 * that the movable zone guarantees that pages are migratable but
7929 	 * the later is not the case right now unfortunatelly. E.g. movablecore
7930 	 * can still lead to having bootmem allocations in zone_movable.
7931 	 */
7932 
7933 	/*
7934 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7935 	 * CMA pageblocks even when they are not movable in fact so consider
7936 	 * them movable here.
7937 	 */
7938 	if (is_migrate_cma(migratetype) &&
7939 			is_migrate_cma(get_pageblock_migratetype(page)))
7940 		return false;
7941 
7942 	pfn = page_to_pfn(page);
7943 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7944 		unsigned long check = pfn + iter;
7945 
7946 		if (!pfn_valid_within(check))
7947 			continue;
7948 
7949 		page = pfn_to_page(check);
7950 
7951 		if (PageReserved(page))
7952 			goto unmovable;
7953 
7954 		/*
7955 		 * If the zone is movable and we have ruled out all reserved
7956 		 * pages then it should be reasonably safe to assume the rest
7957 		 * is movable.
7958 		 */
7959 		if (zone_idx(zone) == ZONE_MOVABLE)
7960 			continue;
7961 
7962 		/*
7963 		 * Hugepages are not in LRU lists, but they're movable.
7964 		 * We need not scan over tail pages bacause we don't
7965 		 * handle each tail page individually in migration.
7966 		 */
7967 		if (PageHuge(page)) {
7968 			struct page *head = compound_head(page);
7969 			unsigned int skip_pages;
7970 
7971 			if (!hugepage_migration_supported(page_hstate(head)))
7972 				goto unmovable;
7973 
7974 			skip_pages = (1 << compound_order(head)) - (page - head);
7975 			iter += skip_pages - 1;
7976 			continue;
7977 		}
7978 
7979 		/*
7980 		 * We can't use page_count without pin a page
7981 		 * because another CPU can free compound page.
7982 		 * This check already skips compound tails of THP
7983 		 * because their page->_refcount is zero at all time.
7984 		 */
7985 		if (!page_ref_count(page)) {
7986 			if (PageBuddy(page))
7987 				iter += (1 << page_order(page)) - 1;
7988 			continue;
7989 		}
7990 
7991 		/*
7992 		 * The HWPoisoned page may be not in buddy system, and
7993 		 * page_count() is not 0.
7994 		 */
7995 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
7996 			continue;
7997 
7998 		if (__PageMovable(page))
7999 			continue;
8000 
8001 		if (!PageLRU(page))
8002 			found++;
8003 		/*
8004 		 * If there are RECLAIMABLE pages, we need to check
8005 		 * it.  But now, memory offline itself doesn't call
8006 		 * shrink_node_slabs() and it still to be fixed.
8007 		 */
8008 		/*
8009 		 * If the page is not RAM, page_count()should be 0.
8010 		 * we don't need more check. This is an _used_ not-movable page.
8011 		 *
8012 		 * The problematic thing here is PG_reserved pages. PG_reserved
8013 		 * is set to both of a memory hole page and a _used_ kernel
8014 		 * page at boot.
8015 		 */
8016 		if (found > count)
8017 			goto unmovable;
8018 	}
8019 	return false;
8020 unmovable:
8021 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8022 	if (flags & REPORT_FAILURE)
8023 		dump_page(pfn_to_page(pfn+iter), "unmovable page");
8024 	return true;
8025 }
8026 
8027 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8028 
8029 static unsigned long pfn_max_align_down(unsigned long pfn)
8030 {
8031 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8032 			     pageblock_nr_pages) - 1);
8033 }
8034 
8035 static unsigned long pfn_max_align_up(unsigned long pfn)
8036 {
8037 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8038 				pageblock_nr_pages));
8039 }
8040 
8041 /* [start, end) must belong to a single zone. */
8042 static int __alloc_contig_migrate_range(struct compact_control *cc,
8043 					unsigned long start, unsigned long end)
8044 {
8045 	/* This function is based on compact_zone() from compaction.c. */
8046 	unsigned long nr_reclaimed;
8047 	unsigned long pfn = start;
8048 	unsigned int tries = 0;
8049 	int ret = 0;
8050 
8051 	migrate_prep();
8052 
8053 	while (pfn < end || !list_empty(&cc->migratepages)) {
8054 		if (fatal_signal_pending(current)) {
8055 			ret = -EINTR;
8056 			break;
8057 		}
8058 
8059 		if (list_empty(&cc->migratepages)) {
8060 			cc->nr_migratepages = 0;
8061 			pfn = isolate_migratepages_range(cc, pfn, end);
8062 			if (!pfn) {
8063 				ret = -EINTR;
8064 				break;
8065 			}
8066 			tries = 0;
8067 		} else if (++tries == 5) {
8068 			ret = ret < 0 ? ret : -EBUSY;
8069 			break;
8070 		}
8071 
8072 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8073 							&cc->migratepages);
8074 		cc->nr_migratepages -= nr_reclaimed;
8075 
8076 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8077 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8078 	}
8079 	if (ret < 0) {
8080 		putback_movable_pages(&cc->migratepages);
8081 		return ret;
8082 	}
8083 	return 0;
8084 }
8085 
8086 /**
8087  * alloc_contig_range() -- tries to allocate given range of pages
8088  * @start:	start PFN to allocate
8089  * @end:	one-past-the-last PFN to allocate
8090  * @migratetype:	migratetype of the underlaying pageblocks (either
8091  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8092  *			in range must have the same migratetype and it must
8093  *			be either of the two.
8094  * @gfp_mask:	GFP mask to use during compaction
8095  *
8096  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8097  * aligned.  The PFN range must belong to a single zone.
8098  *
8099  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8100  * pageblocks in the range.  Once isolated, the pageblocks should not
8101  * be modified by others.
8102  *
8103  * Returns zero on success or negative error code.  On success all
8104  * pages which PFN is in [start, end) are allocated for the caller and
8105  * need to be freed with free_contig_range().
8106  */
8107 int alloc_contig_range(unsigned long start, unsigned long end,
8108 		       unsigned migratetype, gfp_t gfp_mask)
8109 {
8110 	unsigned long outer_start, outer_end;
8111 	unsigned int order;
8112 	int ret = 0;
8113 
8114 	struct compact_control cc = {
8115 		.nr_migratepages = 0,
8116 		.order = -1,
8117 		.zone = page_zone(pfn_to_page(start)),
8118 		.mode = MIGRATE_SYNC,
8119 		.ignore_skip_hint = true,
8120 		.no_set_skip_hint = true,
8121 		.gfp_mask = current_gfp_context(gfp_mask),
8122 	};
8123 	INIT_LIST_HEAD(&cc.migratepages);
8124 
8125 	/*
8126 	 * What we do here is we mark all pageblocks in range as
8127 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8128 	 * have different sizes, and due to the way page allocator
8129 	 * work, we align the range to biggest of the two pages so
8130 	 * that page allocator won't try to merge buddies from
8131 	 * different pageblocks and change MIGRATE_ISOLATE to some
8132 	 * other migration type.
8133 	 *
8134 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8135 	 * migrate the pages from an unaligned range (ie. pages that
8136 	 * we are interested in).  This will put all the pages in
8137 	 * range back to page allocator as MIGRATE_ISOLATE.
8138 	 *
8139 	 * When this is done, we take the pages in range from page
8140 	 * allocator removing them from the buddy system.  This way
8141 	 * page allocator will never consider using them.
8142 	 *
8143 	 * This lets us mark the pageblocks back as
8144 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8145 	 * aligned range but not in the unaligned, original range are
8146 	 * put back to page allocator so that buddy can use them.
8147 	 */
8148 
8149 	ret = start_isolate_page_range(pfn_max_align_down(start),
8150 				       pfn_max_align_up(end), migratetype, 0);
8151 	if (ret)
8152 		return ret;
8153 
8154 	/*
8155 	 * In case of -EBUSY, we'd like to know which page causes problem.
8156 	 * So, just fall through. test_pages_isolated() has a tracepoint
8157 	 * which will report the busy page.
8158 	 *
8159 	 * It is possible that busy pages could become available before
8160 	 * the call to test_pages_isolated, and the range will actually be
8161 	 * allocated.  So, if we fall through be sure to clear ret so that
8162 	 * -EBUSY is not accidentally used or returned to caller.
8163 	 */
8164 	ret = __alloc_contig_migrate_range(&cc, start, end);
8165 	if (ret && ret != -EBUSY)
8166 		goto done;
8167 	ret =0;
8168 
8169 	/*
8170 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8171 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8172 	 * more, all pages in [start, end) are free in page allocator.
8173 	 * What we are going to do is to allocate all pages from
8174 	 * [start, end) (that is remove them from page allocator).
8175 	 *
8176 	 * The only problem is that pages at the beginning and at the
8177 	 * end of interesting range may be not aligned with pages that
8178 	 * page allocator holds, ie. they can be part of higher order
8179 	 * pages.  Because of this, we reserve the bigger range and
8180 	 * once this is done free the pages we are not interested in.
8181 	 *
8182 	 * We don't have to hold zone->lock here because the pages are
8183 	 * isolated thus they won't get removed from buddy.
8184 	 */
8185 
8186 	lru_add_drain_all();
8187 	drain_all_pages(cc.zone);
8188 
8189 	order = 0;
8190 	outer_start = start;
8191 	while (!PageBuddy(pfn_to_page(outer_start))) {
8192 		if (++order >= MAX_ORDER) {
8193 			outer_start = start;
8194 			break;
8195 		}
8196 		outer_start &= ~0UL << order;
8197 	}
8198 
8199 	if (outer_start != start) {
8200 		order = page_order(pfn_to_page(outer_start));
8201 
8202 		/*
8203 		 * outer_start page could be small order buddy page and
8204 		 * it doesn't include start page. Adjust outer_start
8205 		 * in this case to report failed page properly
8206 		 * on tracepoint in test_pages_isolated()
8207 		 */
8208 		if (outer_start + (1UL << order) <= start)
8209 			outer_start = start;
8210 	}
8211 
8212 	/* Make sure the range is really isolated. */
8213 	if (test_pages_isolated(outer_start, end, false)) {
8214 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8215 			__func__, outer_start, end);
8216 		ret = -EBUSY;
8217 		goto done;
8218 	}
8219 
8220 	/* Grab isolated pages from freelists. */
8221 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8222 	if (!outer_end) {
8223 		ret = -EBUSY;
8224 		goto done;
8225 	}
8226 
8227 	/* Free head and tail (if any) */
8228 	if (start != outer_start)
8229 		free_contig_range(outer_start, start - outer_start);
8230 	if (end != outer_end)
8231 		free_contig_range(end, outer_end - end);
8232 
8233 done:
8234 	undo_isolate_page_range(pfn_max_align_down(start),
8235 				pfn_max_align_up(end), migratetype);
8236 	return ret;
8237 }
8238 
8239 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8240 {
8241 	unsigned int count = 0;
8242 
8243 	for (; nr_pages--; pfn++) {
8244 		struct page *page = pfn_to_page(pfn);
8245 
8246 		count += page_count(page) != 1;
8247 		__free_page(page);
8248 	}
8249 	WARN(count != 0, "%d pages are still in use!\n", count);
8250 }
8251 #endif
8252 
8253 #ifdef CONFIG_MEMORY_HOTPLUG
8254 /*
8255  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8256  * page high values need to be recalulated.
8257  */
8258 void __meminit zone_pcp_update(struct zone *zone)
8259 {
8260 	unsigned cpu;
8261 	mutex_lock(&pcp_batch_high_lock);
8262 	for_each_possible_cpu(cpu)
8263 		pageset_set_high_and_batch(zone,
8264 				per_cpu_ptr(zone->pageset, cpu));
8265 	mutex_unlock(&pcp_batch_high_lock);
8266 }
8267 #endif
8268 
8269 void zone_pcp_reset(struct zone *zone)
8270 {
8271 	unsigned long flags;
8272 	int cpu;
8273 	struct per_cpu_pageset *pset;
8274 
8275 	/* avoid races with drain_pages()  */
8276 	local_irq_save(flags);
8277 	if (zone->pageset != &boot_pageset) {
8278 		for_each_online_cpu(cpu) {
8279 			pset = per_cpu_ptr(zone->pageset, cpu);
8280 			drain_zonestat(zone, pset);
8281 		}
8282 		free_percpu(zone->pageset);
8283 		zone->pageset = &boot_pageset;
8284 	}
8285 	local_irq_restore(flags);
8286 }
8287 
8288 #ifdef CONFIG_MEMORY_HOTREMOVE
8289 /*
8290  * All pages in the range must be in a single zone and isolated
8291  * before calling this.
8292  */
8293 void
8294 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8295 {
8296 	struct page *page;
8297 	struct zone *zone;
8298 	unsigned int order, i;
8299 	unsigned long pfn;
8300 	unsigned long flags;
8301 	/* find the first valid pfn */
8302 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8303 		if (pfn_valid(pfn))
8304 			break;
8305 	if (pfn == end_pfn)
8306 		return;
8307 	offline_mem_sections(pfn, end_pfn);
8308 	zone = page_zone(pfn_to_page(pfn));
8309 	spin_lock_irqsave(&zone->lock, flags);
8310 	pfn = start_pfn;
8311 	while (pfn < end_pfn) {
8312 		if (!pfn_valid(pfn)) {
8313 			pfn++;
8314 			continue;
8315 		}
8316 		page = pfn_to_page(pfn);
8317 		/*
8318 		 * The HWPoisoned page may be not in buddy system, and
8319 		 * page_count() is not 0.
8320 		 */
8321 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8322 			pfn++;
8323 			SetPageReserved(page);
8324 			continue;
8325 		}
8326 
8327 		BUG_ON(page_count(page));
8328 		BUG_ON(!PageBuddy(page));
8329 		order = page_order(page);
8330 #ifdef CONFIG_DEBUG_VM
8331 		pr_info("remove from free list %lx %d %lx\n",
8332 			pfn, 1 << order, end_pfn);
8333 #endif
8334 		list_del(&page->lru);
8335 		rmv_page_order(page);
8336 		zone->free_area[order].nr_free--;
8337 		for (i = 0; i < (1 << order); i++)
8338 			SetPageReserved((page+i));
8339 		pfn += (1 << order);
8340 	}
8341 	spin_unlock_irqrestore(&zone->lock, flags);
8342 }
8343 #endif
8344 
8345 bool is_free_buddy_page(struct page *page)
8346 {
8347 	struct zone *zone = page_zone(page);
8348 	unsigned long pfn = page_to_pfn(page);
8349 	unsigned long flags;
8350 	unsigned int order;
8351 
8352 	spin_lock_irqsave(&zone->lock, flags);
8353 	for (order = 0; order < MAX_ORDER; order++) {
8354 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8355 
8356 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8357 			break;
8358 	}
8359 	spin_unlock_irqrestore(&zone->lock, flags);
8360 
8361 	return order < MAX_ORDER;
8362 }
8363 
8364 #ifdef CONFIG_MEMORY_FAILURE
8365 /*
8366  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8367  * test is performed under the zone lock to prevent a race against page
8368  * allocation.
8369  */
8370 bool set_hwpoison_free_buddy_page(struct page *page)
8371 {
8372 	struct zone *zone = page_zone(page);
8373 	unsigned long pfn = page_to_pfn(page);
8374 	unsigned long flags;
8375 	unsigned int order;
8376 	bool hwpoisoned = false;
8377 
8378 	spin_lock_irqsave(&zone->lock, flags);
8379 	for (order = 0; order < MAX_ORDER; order++) {
8380 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8381 
8382 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8383 			if (!TestSetPageHWPoison(page))
8384 				hwpoisoned = true;
8385 			break;
8386 		}
8387 	}
8388 	spin_unlock_irqrestore(&zone->lock, flags);
8389 
8390 	return hwpoisoned;
8391 }
8392 #endif
8393