xref: /openbmc/linux/mm/page_alloc.c (revision 45471cd98decae5fced8b38e46c223f54a924814)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
73 
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78 
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84  * defined in <linux/topology.h>.
85  */
86 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90 
91 /*
92  * Array of node states.
93  */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 	[N_POSSIBLE] = NODE_MASK_ALL,
96 	[N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 	[N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 	[N_CPU] = { { [0] = 1UL } },
106 #endif	/* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109 
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112 
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117  * When calculating the number of globally allowed dirty pages, there
118  * is a certain number of per-zone reserves that should not be
119  * considered dirtyable memory.  This is the sum of those reserves
120  * over all existing zones that contribute dirtyable memory.
121  */
122 unsigned long dirty_balance_reserve __read_mostly;
123 
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126 
127 #ifdef CONFIG_PM_SLEEP
128 /*
129  * The following functions are used by the suspend/hibernate code to temporarily
130  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131  * while devices are suspended.  To avoid races with the suspend/hibernate code,
132  * they should always be called with pm_mutex held (gfp_allowed_mask also should
133  * only be modified with pm_mutex held, unless the suspend/hibernate code is
134  * guaranteed not to run in parallel with that modification).
135  */
136 
137 static gfp_t saved_gfp_mask;
138 
139 void pm_restore_gfp_mask(void)
140 {
141 	WARN_ON(!mutex_is_locked(&pm_mutex));
142 	if (saved_gfp_mask) {
143 		gfp_allowed_mask = saved_gfp_mask;
144 		saved_gfp_mask = 0;
145 	}
146 }
147 
148 void pm_restrict_gfp_mask(void)
149 {
150 	WARN_ON(!mutex_is_locked(&pm_mutex));
151 	WARN_ON(saved_gfp_mask);
152 	saved_gfp_mask = gfp_allowed_mask;
153 	gfp_allowed_mask &= ~GFP_IOFS;
154 }
155 
156 bool pm_suspended_storage(void)
157 {
158 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 		return false;
160 	return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163 
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167 
168 static void __free_pages_ok(struct page *page, unsigned int order);
169 
170 /*
171  * results with 256, 32 in the lowmem_reserve sysctl:
172  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173  *	1G machine -> (16M dma, 784M normal, 224M high)
174  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177  *
178  * TBD: should special case ZONE_DMA32 machines here - in those we normally
179  * don't need any ZONE_NORMAL reservation
180  */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 	 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 	 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 	 32,
190 #endif
191 	 32,
192 };
193 
194 EXPORT_SYMBOL(totalram_pages);
195 
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 	 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 	 "DMA32",
202 #endif
203 	 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 	 "HighMem",
206 #endif
207 	 "Movable",
208 };
209 
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212 
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216 
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223 
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228 
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235 
236 int page_group_by_mobility_disabled __read_mostly;
237 
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 	if (unlikely(page_group_by_mobility_disabled &&
241 		     migratetype < MIGRATE_PCPTYPES))
242 		migratetype = MIGRATE_UNMOVABLE;
243 
244 	set_pageblock_flags_group(page, (unsigned long)migratetype,
245 					PB_migrate, PB_migrate_end);
246 }
247 
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 	int ret = 0;
252 	unsigned seq;
253 	unsigned long pfn = page_to_pfn(page);
254 	unsigned long sp, start_pfn;
255 
256 	do {
257 		seq = zone_span_seqbegin(zone);
258 		start_pfn = zone->zone_start_pfn;
259 		sp = zone->spanned_pages;
260 		if (!zone_spans_pfn(zone, pfn))
261 			ret = 1;
262 	} while (zone_span_seqretry(zone, seq));
263 
264 	if (ret)
265 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 			pfn, zone_to_nid(zone), zone->name,
267 			start_pfn, start_pfn + sp);
268 
269 	return ret;
270 }
271 
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 	if (!pfn_valid_within(page_to_pfn(page)))
275 		return 0;
276 	if (zone != page_zone(page))
277 		return 0;
278 
279 	return 1;
280 }
281 /*
282  * Temporary debugging check for pages not lying within a given zone.
283  */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 	if (page_outside_zone_boundaries(zone, page))
287 		return 1;
288 	if (!page_is_consistent(zone, page))
289 		return 1;
290 
291 	return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 	return 0;
297 }
298 #endif
299 
300 static void bad_page(struct page *page, const char *reason,
301 		unsigned long bad_flags)
302 {
303 	static unsigned long resume;
304 	static unsigned long nr_shown;
305 	static unsigned long nr_unshown;
306 
307 	/* Don't complain about poisoned pages */
308 	if (PageHWPoison(page)) {
309 		page_mapcount_reset(page); /* remove PageBuddy */
310 		return;
311 	}
312 
313 	/*
314 	 * Allow a burst of 60 reports, then keep quiet for that minute;
315 	 * or allow a steady drip of one report per second.
316 	 */
317 	if (nr_shown == 60) {
318 		if (time_before(jiffies, resume)) {
319 			nr_unshown++;
320 			goto out;
321 		}
322 		if (nr_unshown) {
323 			printk(KERN_ALERT
324 			      "BUG: Bad page state: %lu messages suppressed\n",
325 				nr_unshown);
326 			nr_unshown = 0;
327 		}
328 		nr_shown = 0;
329 	}
330 	if (nr_shown++ == 0)
331 		resume = jiffies + 60 * HZ;
332 
333 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
334 		current->comm, page_to_pfn(page));
335 	dump_page_badflags(page, reason, bad_flags);
336 
337 	print_modules();
338 	dump_stack();
339 out:
340 	/* Leave bad fields for debug, except PageBuddy could make trouble */
341 	page_mapcount_reset(page); /* remove PageBuddy */
342 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344 
345 /*
346  * Higher-order pages are called "compound pages".  They are structured thusly:
347  *
348  * The first PAGE_SIZE page is called the "head page".
349  *
350  * The remaining PAGE_SIZE pages are called "tail pages".
351  *
352  * All pages have PG_compound set.  All tail pages have their ->first_page
353  * pointing at the head page.
354  *
355  * The first tail page's ->lru.next holds the address of the compound page's
356  * put_page() function.  Its ->lru.prev holds the order of allocation.
357  * This usage means that zero-order pages may not be compound.
358  */
359 
360 static void free_compound_page(struct page *page)
361 {
362 	__free_pages_ok(page, compound_order(page));
363 }
364 
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 
370 	set_compound_page_dtor(page, free_compound_page);
371 	set_compound_order(page, order);
372 	__SetPageHead(page);
373 	for (i = 1; i < nr_pages; i++) {
374 		struct page *p = page + i;
375 		set_page_count(p, 0);
376 		p->first_page = page;
377 		/* Make sure p->first_page is always valid for PageTail() */
378 		smp_wmb();
379 		__SetPageTail(p);
380 	}
381 }
382 
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 							gfp_t gfp_flags)
385 {
386 	int i;
387 
388 	/*
389 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 	 */
392 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 	for (i = 0; i < (1 << order); i++)
394 		clear_highpage(page + i);
395 }
396 
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401 
402 static int __init early_debug_pagealloc(char *buf)
403 {
404 	if (!buf)
405 		return -EINVAL;
406 
407 	if (strcmp(buf, "on") == 0)
408 		_debug_pagealloc_enabled = true;
409 
410 	return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413 
414 static bool need_debug_guardpage(void)
415 {
416 	/* If we don't use debug_pagealloc, we don't need guard page */
417 	if (!debug_pagealloc_enabled())
418 		return false;
419 
420 	return true;
421 }
422 
423 static void init_debug_guardpage(void)
424 {
425 	if (!debug_pagealloc_enabled())
426 		return;
427 
428 	_debug_guardpage_enabled = true;
429 }
430 
431 struct page_ext_operations debug_guardpage_ops = {
432 	.need = need_debug_guardpage,
433 	.init = init_debug_guardpage,
434 };
435 
436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 	unsigned long res;
439 
440 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
441 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 		return 0;
443 	}
444 	_debug_guardpage_minorder = res;
445 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 	return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449 
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 				unsigned int order, int migratetype)
452 {
453 	struct page_ext *page_ext;
454 
455 	if (!debug_guardpage_enabled())
456 		return;
457 
458 	page_ext = lookup_page_ext(page);
459 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460 
461 	INIT_LIST_HEAD(&page->lru);
462 	set_page_private(page, order);
463 	/* Guard pages are not available for any usage */
464 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466 
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 				unsigned int order, int migratetype)
469 {
470 	struct page_ext *page_ext;
471 
472 	if (!debug_guardpage_enabled())
473 		return;
474 
475 	page_ext = lookup_page_ext(page);
476 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477 
478 	set_page_private(page, 0);
479 	if (!is_migrate_isolate(migratetype))
480 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 				unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 				unsigned int order, int migratetype) {}
488 #endif
489 
490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 	set_page_private(page, order);
493 	__SetPageBuddy(page);
494 }
495 
496 static inline void rmv_page_order(struct page *page)
497 {
498 	__ClearPageBuddy(page);
499 	set_page_private(page, 0);
500 }
501 
502 /*
503  * This function checks whether a page is free && is the buddy
504  * we can do coalesce a page and its buddy if
505  * (a) the buddy is not in a hole &&
506  * (b) the buddy is in the buddy system &&
507  * (c) a page and its buddy have the same order &&
508  * (d) a page and its buddy are in the same zone.
509  *
510  * For recording whether a page is in the buddy system, we set ->_mapcount
511  * PAGE_BUDDY_MAPCOUNT_VALUE.
512  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513  * serialized by zone->lock.
514  *
515  * For recording page's order, we use page_private(page).
516  */
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 							unsigned int order)
519 {
520 	if (!pfn_valid_within(page_to_pfn(buddy)))
521 		return 0;
522 
523 	if (page_is_guard(buddy) && page_order(buddy) == order) {
524 		if (page_zone_id(page) != page_zone_id(buddy))
525 			return 0;
526 
527 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528 
529 		return 1;
530 	}
531 
532 	if (PageBuddy(buddy) && page_order(buddy) == order) {
533 		/*
534 		 * zone check is done late to avoid uselessly
535 		 * calculating zone/node ids for pages that could
536 		 * never merge.
537 		 */
538 		if (page_zone_id(page) != page_zone_id(buddy))
539 			return 0;
540 
541 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542 
543 		return 1;
544 	}
545 	return 0;
546 }
547 
548 /*
549  * Freeing function for a buddy system allocator.
550  *
551  * The concept of a buddy system is to maintain direct-mapped table
552  * (containing bit values) for memory blocks of various "orders".
553  * The bottom level table contains the map for the smallest allocatable
554  * units of memory (here, pages), and each level above it describes
555  * pairs of units from the levels below, hence, "buddies".
556  * At a high level, all that happens here is marking the table entry
557  * at the bottom level available, and propagating the changes upward
558  * as necessary, plus some accounting needed to play nicely with other
559  * parts of the VM system.
560  * At each level, we keep a list of pages, which are heads of continuous
561  * free pages of length of (1 << order) and marked with _mapcount
562  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563  * field.
564  * So when we are allocating or freeing one, we can derive the state of the
565  * other.  That is, if we allocate a small block, and both were
566  * free, the remainder of the region must be split into blocks.
567  * If a block is freed, and its buddy is also free, then this
568  * triggers coalescing into a block of larger size.
569  *
570  * -- nyc
571  */
572 
573 static inline void __free_one_page(struct page *page,
574 		unsigned long pfn,
575 		struct zone *zone, unsigned int order,
576 		int migratetype)
577 {
578 	unsigned long page_idx;
579 	unsigned long combined_idx;
580 	unsigned long uninitialized_var(buddy_idx);
581 	struct page *buddy;
582 	int max_order = MAX_ORDER;
583 
584 	VM_BUG_ON(!zone_is_initialized(zone));
585 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
586 
587 	VM_BUG_ON(migratetype == -1);
588 	if (is_migrate_isolate(migratetype)) {
589 		/*
590 		 * We restrict max order of merging to prevent merge
591 		 * between freepages on isolate pageblock and normal
592 		 * pageblock. Without this, pageblock isolation
593 		 * could cause incorrect freepage accounting.
594 		 */
595 		max_order = min(MAX_ORDER, pageblock_order + 1);
596 	} else {
597 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
598 	}
599 
600 	page_idx = pfn & ((1 << max_order) - 1);
601 
602 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
604 
605 	while (order < max_order - 1) {
606 		buddy_idx = __find_buddy_index(page_idx, order);
607 		buddy = page + (buddy_idx - page_idx);
608 		if (!page_is_buddy(page, buddy, order))
609 			break;
610 		/*
611 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 		 * merge with it and move up one order.
613 		 */
614 		if (page_is_guard(buddy)) {
615 			clear_page_guard(zone, buddy, order, migratetype);
616 		} else {
617 			list_del(&buddy->lru);
618 			zone->free_area[order].nr_free--;
619 			rmv_page_order(buddy);
620 		}
621 		combined_idx = buddy_idx & page_idx;
622 		page = page + (combined_idx - page_idx);
623 		page_idx = combined_idx;
624 		order++;
625 	}
626 	set_page_order(page, order);
627 
628 	/*
629 	 * If this is not the largest possible page, check if the buddy
630 	 * of the next-highest order is free. If it is, it's possible
631 	 * that pages are being freed that will coalesce soon. In case,
632 	 * that is happening, add the free page to the tail of the list
633 	 * so it's less likely to be used soon and more likely to be merged
634 	 * as a higher order page
635 	 */
636 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 		struct page *higher_page, *higher_buddy;
638 		combined_idx = buddy_idx & page_idx;
639 		higher_page = page + (combined_idx - page_idx);
640 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 		higher_buddy = higher_page + (buddy_idx - combined_idx);
642 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 			list_add_tail(&page->lru,
644 				&zone->free_area[order].free_list[migratetype]);
645 			goto out;
646 		}
647 	}
648 
649 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 	zone->free_area[order].nr_free++;
652 }
653 
654 static inline int free_pages_check(struct page *page)
655 {
656 	const char *bad_reason = NULL;
657 	unsigned long bad_flags = 0;
658 
659 	if (unlikely(page_mapcount(page)))
660 		bad_reason = "nonzero mapcount";
661 	if (unlikely(page->mapping != NULL))
662 		bad_reason = "non-NULL mapping";
663 	if (unlikely(atomic_read(&page->_count) != 0))
664 		bad_reason = "nonzero _count";
665 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 	}
669 #ifdef CONFIG_MEMCG
670 	if (unlikely(page->mem_cgroup))
671 		bad_reason = "page still charged to cgroup";
672 #endif
673 	if (unlikely(bad_reason)) {
674 		bad_page(page, bad_reason, bad_flags);
675 		return 1;
676 	}
677 	page_cpupid_reset_last(page);
678 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 	return 0;
681 }
682 
683 /*
684  * Frees a number of pages from the PCP lists
685  * Assumes all pages on list are in same zone, and of same order.
686  * count is the number of pages to free.
687  *
688  * If the zone was previously in an "all pages pinned" state then look to
689  * see if this freeing clears that state.
690  *
691  * And clear the zone's pages_scanned counter, to hold off the "all pages are
692  * pinned" detection logic.
693  */
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 					struct per_cpu_pages *pcp)
696 {
697 	int migratetype = 0;
698 	int batch_free = 0;
699 	int to_free = count;
700 	unsigned long nr_scanned;
701 
702 	spin_lock(&zone->lock);
703 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 	if (nr_scanned)
705 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
706 
707 	while (to_free) {
708 		struct page *page;
709 		struct list_head *list;
710 
711 		/*
712 		 * Remove pages from lists in a round-robin fashion. A
713 		 * batch_free count is maintained that is incremented when an
714 		 * empty list is encountered.  This is so more pages are freed
715 		 * off fuller lists instead of spinning excessively around empty
716 		 * lists
717 		 */
718 		do {
719 			batch_free++;
720 			if (++migratetype == MIGRATE_PCPTYPES)
721 				migratetype = 0;
722 			list = &pcp->lists[migratetype];
723 		} while (list_empty(list));
724 
725 		/* This is the only non-empty list. Free them all. */
726 		if (batch_free == MIGRATE_PCPTYPES)
727 			batch_free = to_free;
728 
729 		do {
730 			int mt;	/* migratetype of the to-be-freed page */
731 
732 			page = list_entry(list->prev, struct page, lru);
733 			/* must delete as __free_one_page list manipulates */
734 			list_del(&page->lru);
735 			mt = get_freepage_migratetype(page);
736 			if (unlikely(has_isolate_pageblock(zone)))
737 				mt = get_pageblock_migratetype(page);
738 
739 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 			trace_mm_page_pcpu_drain(page, 0, mt);
742 		} while (--to_free && --batch_free && !list_empty(list));
743 	}
744 	spin_unlock(&zone->lock);
745 }
746 
747 static void free_one_page(struct zone *zone,
748 				struct page *page, unsigned long pfn,
749 				unsigned int order,
750 				int migratetype)
751 {
752 	unsigned long nr_scanned;
753 	spin_lock(&zone->lock);
754 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 	if (nr_scanned)
756 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
757 
758 	if (unlikely(has_isolate_pageblock(zone) ||
759 		is_migrate_isolate(migratetype))) {
760 		migratetype = get_pfnblock_migratetype(page, pfn);
761 	}
762 	__free_one_page(page, pfn, zone, order, migratetype);
763 	spin_unlock(&zone->lock);
764 }
765 
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
767 {
768 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 		return 0;
770 	if (unlikely(!PageTail(page))) {
771 		bad_page(page, "PageTail not set", 0);
772 		return 1;
773 	}
774 	if (unlikely(page->first_page != head_page)) {
775 		bad_page(page, "first_page not consistent", 0);
776 		return 1;
777 	}
778 	return 0;
779 }
780 
781 static bool free_pages_prepare(struct page *page, unsigned int order)
782 {
783 	bool compound = PageCompound(page);
784 	int i, bad = 0;
785 
786 	VM_BUG_ON_PAGE(PageTail(page), page);
787 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
788 
789 	trace_mm_page_free(page, order);
790 	kmemcheck_free_shadow(page, order);
791 	kasan_free_pages(page, order);
792 
793 	if (PageAnon(page))
794 		page->mapping = NULL;
795 	bad += free_pages_check(page);
796 	for (i = 1; i < (1 << order); i++) {
797 		if (compound)
798 			bad += free_tail_pages_check(page, page + i);
799 		bad += free_pages_check(page + i);
800 	}
801 	if (bad)
802 		return false;
803 
804 	reset_page_owner(page, order);
805 
806 	if (!PageHighMem(page)) {
807 		debug_check_no_locks_freed(page_address(page),
808 					   PAGE_SIZE << order);
809 		debug_check_no_obj_freed(page_address(page),
810 					   PAGE_SIZE << order);
811 	}
812 	arch_free_page(page, order);
813 	kernel_map_pages(page, 1 << order, 0);
814 
815 	return true;
816 }
817 
818 static void __free_pages_ok(struct page *page, unsigned int order)
819 {
820 	unsigned long flags;
821 	int migratetype;
822 	unsigned long pfn = page_to_pfn(page);
823 
824 	if (!free_pages_prepare(page, order))
825 		return;
826 
827 	migratetype = get_pfnblock_migratetype(page, pfn);
828 	local_irq_save(flags);
829 	__count_vm_events(PGFREE, 1 << order);
830 	set_freepage_migratetype(page, migratetype);
831 	free_one_page(page_zone(page), page, pfn, order, migratetype);
832 	local_irq_restore(flags);
833 }
834 
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
836 {
837 	unsigned int nr_pages = 1 << order;
838 	struct page *p = page;
839 	unsigned int loop;
840 
841 	prefetchw(p);
842 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 		prefetchw(p + 1);
844 		__ClearPageReserved(p);
845 		set_page_count(p, 0);
846 	}
847 	__ClearPageReserved(p);
848 	set_page_count(p, 0);
849 
850 	page_zone(page)->managed_pages += nr_pages;
851 	set_page_refcounted(page);
852 	__free_pages(page, order);
853 }
854 
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
858 {
859 	unsigned i = pageblock_nr_pages;
860 	struct page *p = page;
861 
862 	do {
863 		__ClearPageReserved(p);
864 		set_page_count(p, 0);
865 	} while (++p, --i);
866 
867 	set_pageblock_migratetype(page, MIGRATE_CMA);
868 
869 	if (pageblock_order >= MAX_ORDER) {
870 		i = pageblock_nr_pages;
871 		p = page;
872 		do {
873 			set_page_refcounted(p);
874 			__free_pages(p, MAX_ORDER - 1);
875 			p += MAX_ORDER_NR_PAGES;
876 		} while (i -= MAX_ORDER_NR_PAGES);
877 	} else {
878 		set_page_refcounted(page);
879 		__free_pages(page, pageblock_order);
880 	}
881 
882 	adjust_managed_page_count(page, pageblock_nr_pages);
883 }
884 #endif
885 
886 /*
887  * The order of subdivision here is critical for the IO subsystem.
888  * Please do not alter this order without good reasons and regression
889  * testing. Specifically, as large blocks of memory are subdivided,
890  * the order in which smaller blocks are delivered depends on the order
891  * they're subdivided in this function. This is the primary factor
892  * influencing the order in which pages are delivered to the IO
893  * subsystem according to empirical testing, and this is also justified
894  * by considering the behavior of a buddy system containing a single
895  * large block of memory acted on by a series of small allocations.
896  * This behavior is a critical factor in sglist merging's success.
897  *
898  * -- nyc
899  */
900 static inline void expand(struct zone *zone, struct page *page,
901 	int low, int high, struct free_area *area,
902 	int migratetype)
903 {
904 	unsigned long size = 1 << high;
905 
906 	while (high > low) {
907 		area--;
908 		high--;
909 		size >>= 1;
910 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
911 
912 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 			debug_guardpage_enabled() &&
914 			high < debug_guardpage_minorder()) {
915 			/*
916 			 * Mark as guard pages (or page), that will allow to
917 			 * merge back to allocator when buddy will be freed.
918 			 * Corresponding page table entries will not be touched,
919 			 * pages will stay not present in virtual address space
920 			 */
921 			set_page_guard(zone, &page[size], high, migratetype);
922 			continue;
923 		}
924 		list_add(&page[size].lru, &area->free_list[migratetype]);
925 		area->nr_free++;
926 		set_page_order(&page[size], high);
927 	}
928 }
929 
930 /*
931  * This page is about to be returned from the page allocator
932  */
933 static inline int check_new_page(struct page *page)
934 {
935 	const char *bad_reason = NULL;
936 	unsigned long bad_flags = 0;
937 
938 	if (unlikely(page_mapcount(page)))
939 		bad_reason = "nonzero mapcount";
940 	if (unlikely(page->mapping != NULL))
941 		bad_reason = "non-NULL mapping";
942 	if (unlikely(atomic_read(&page->_count) != 0))
943 		bad_reason = "nonzero _count";
944 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 	}
948 #ifdef CONFIG_MEMCG
949 	if (unlikely(page->mem_cgroup))
950 		bad_reason = "page still charged to cgroup";
951 #endif
952 	if (unlikely(bad_reason)) {
953 		bad_page(page, bad_reason, bad_flags);
954 		return 1;
955 	}
956 	return 0;
957 }
958 
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 								int alloc_flags)
961 {
962 	int i;
963 
964 	for (i = 0; i < (1 << order); i++) {
965 		struct page *p = page + i;
966 		if (unlikely(check_new_page(p)))
967 			return 1;
968 	}
969 
970 	set_page_private(page, 0);
971 	set_page_refcounted(page);
972 
973 	arch_alloc_page(page, order);
974 	kernel_map_pages(page, 1 << order, 1);
975 	kasan_alloc_pages(page, order);
976 
977 	if (gfp_flags & __GFP_ZERO)
978 		prep_zero_page(page, order, gfp_flags);
979 
980 	if (order && (gfp_flags & __GFP_COMP))
981 		prep_compound_page(page, order);
982 
983 	set_page_owner(page, order, gfp_flags);
984 
985 	/*
986 	 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 	 * allocate the page. The expectation is that the caller is taking
988 	 * steps that will free more memory. The caller should avoid the page
989 	 * being used for !PFMEMALLOC purposes.
990 	 */
991 	page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992 
993 	return 0;
994 }
995 
996 /*
997  * Go through the free lists for the given migratetype and remove
998  * the smallest available page from the freelists
999  */
1000 static inline
1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1002 						int migratetype)
1003 {
1004 	unsigned int current_order;
1005 	struct free_area *area;
1006 	struct page *page;
1007 
1008 	/* Find a page of the appropriate size in the preferred list */
1009 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 		area = &(zone->free_area[current_order]);
1011 		if (list_empty(&area->free_list[migratetype]))
1012 			continue;
1013 
1014 		page = list_entry(area->free_list[migratetype].next,
1015 							struct page, lru);
1016 		list_del(&page->lru);
1017 		rmv_page_order(page);
1018 		area->nr_free--;
1019 		expand(zone, page, order, current_order, area, migratetype);
1020 		set_freepage_migratetype(page, migratetype);
1021 		return page;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
1027 
1028 /*
1029  * This array describes the order lists are fallen back to when
1030  * the free lists for the desirable migrate type are depleted
1031  */
1032 static int fallbacks[MIGRATE_TYPES][4] = {
1033 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1034 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1035 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1036 #ifdef CONFIG_CMA
1037 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1038 #endif
1039 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1040 #ifdef CONFIG_MEMORY_ISOLATION
1041 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1042 #endif
1043 };
1044 
1045 #ifdef CONFIG_CMA
1046 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1047 					unsigned int order)
1048 {
1049 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1050 }
1051 #else
1052 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1053 					unsigned int order) { return NULL; }
1054 #endif
1055 
1056 /*
1057  * Move the free pages in a range to the free lists of the requested type.
1058  * Note that start_page and end_pages are not aligned on a pageblock
1059  * boundary. If alignment is required, use move_freepages_block()
1060  */
1061 int move_freepages(struct zone *zone,
1062 			  struct page *start_page, struct page *end_page,
1063 			  int migratetype)
1064 {
1065 	struct page *page;
1066 	unsigned long order;
1067 	int pages_moved = 0;
1068 
1069 #ifndef CONFIG_HOLES_IN_ZONE
1070 	/*
1071 	 * page_zone is not safe to call in this context when
1072 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1073 	 * anyway as we check zone boundaries in move_freepages_block().
1074 	 * Remove at a later date when no bug reports exist related to
1075 	 * grouping pages by mobility
1076 	 */
1077 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1078 #endif
1079 
1080 	for (page = start_page; page <= end_page;) {
1081 		/* Make sure we are not inadvertently changing nodes */
1082 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1083 
1084 		if (!pfn_valid_within(page_to_pfn(page))) {
1085 			page++;
1086 			continue;
1087 		}
1088 
1089 		if (!PageBuddy(page)) {
1090 			page++;
1091 			continue;
1092 		}
1093 
1094 		order = page_order(page);
1095 		list_move(&page->lru,
1096 			  &zone->free_area[order].free_list[migratetype]);
1097 		set_freepage_migratetype(page, migratetype);
1098 		page += 1 << order;
1099 		pages_moved += 1 << order;
1100 	}
1101 
1102 	return pages_moved;
1103 }
1104 
1105 int move_freepages_block(struct zone *zone, struct page *page,
1106 				int migratetype)
1107 {
1108 	unsigned long start_pfn, end_pfn;
1109 	struct page *start_page, *end_page;
1110 
1111 	start_pfn = page_to_pfn(page);
1112 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1113 	start_page = pfn_to_page(start_pfn);
1114 	end_page = start_page + pageblock_nr_pages - 1;
1115 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1116 
1117 	/* Do not cross zone boundaries */
1118 	if (!zone_spans_pfn(zone, start_pfn))
1119 		start_page = page;
1120 	if (!zone_spans_pfn(zone, end_pfn))
1121 		return 0;
1122 
1123 	return move_freepages(zone, start_page, end_page, migratetype);
1124 }
1125 
1126 static void change_pageblock_range(struct page *pageblock_page,
1127 					int start_order, int migratetype)
1128 {
1129 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1130 
1131 	while (nr_pageblocks--) {
1132 		set_pageblock_migratetype(pageblock_page, migratetype);
1133 		pageblock_page += pageblock_nr_pages;
1134 	}
1135 }
1136 
1137 /*
1138  * When we are falling back to another migratetype during allocation, try to
1139  * steal extra free pages from the same pageblocks to satisfy further
1140  * allocations, instead of polluting multiple pageblocks.
1141  *
1142  * If we are stealing a relatively large buddy page, it is likely there will
1143  * be more free pages in the pageblock, so try to steal them all. For
1144  * reclaimable and unmovable allocations, we steal regardless of page size,
1145  * as fragmentation caused by those allocations polluting movable pageblocks
1146  * is worse than movable allocations stealing from unmovable and reclaimable
1147  * pageblocks.
1148  */
1149 static bool can_steal_fallback(unsigned int order, int start_mt)
1150 {
1151 	/*
1152 	 * Leaving this order check is intended, although there is
1153 	 * relaxed order check in next check. The reason is that
1154 	 * we can actually steal whole pageblock if this condition met,
1155 	 * but, below check doesn't guarantee it and that is just heuristic
1156 	 * so could be changed anytime.
1157 	 */
1158 	if (order >= pageblock_order)
1159 		return true;
1160 
1161 	if (order >= pageblock_order / 2 ||
1162 		start_mt == MIGRATE_RECLAIMABLE ||
1163 		start_mt == MIGRATE_UNMOVABLE ||
1164 		page_group_by_mobility_disabled)
1165 		return true;
1166 
1167 	return false;
1168 }
1169 
1170 /*
1171  * This function implements actual steal behaviour. If order is large enough,
1172  * we can steal whole pageblock. If not, we first move freepages in this
1173  * pageblock and check whether half of pages are moved or not. If half of
1174  * pages are moved, we can change migratetype of pageblock and permanently
1175  * use it's pages as requested migratetype in the future.
1176  */
1177 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1178 							  int start_type)
1179 {
1180 	int current_order = page_order(page);
1181 	int pages;
1182 
1183 	/* Take ownership for orders >= pageblock_order */
1184 	if (current_order >= pageblock_order) {
1185 		change_pageblock_range(page, current_order, start_type);
1186 		return;
1187 	}
1188 
1189 	pages = move_freepages_block(zone, page, start_type);
1190 
1191 	/* Claim the whole block if over half of it is free */
1192 	if (pages >= (1 << (pageblock_order-1)) ||
1193 			page_group_by_mobility_disabled)
1194 		set_pageblock_migratetype(page, start_type);
1195 }
1196 
1197 /*
1198  * Check whether there is a suitable fallback freepage with requested order.
1199  * If only_stealable is true, this function returns fallback_mt only if
1200  * we can steal other freepages all together. This would help to reduce
1201  * fragmentation due to mixed migratetype pages in one pageblock.
1202  */
1203 int find_suitable_fallback(struct free_area *area, unsigned int order,
1204 			int migratetype, bool only_stealable, bool *can_steal)
1205 {
1206 	int i;
1207 	int fallback_mt;
1208 
1209 	if (area->nr_free == 0)
1210 		return -1;
1211 
1212 	*can_steal = false;
1213 	for (i = 0;; i++) {
1214 		fallback_mt = fallbacks[migratetype][i];
1215 		if (fallback_mt == MIGRATE_RESERVE)
1216 			break;
1217 
1218 		if (list_empty(&area->free_list[fallback_mt]))
1219 			continue;
1220 
1221 		if (can_steal_fallback(order, migratetype))
1222 			*can_steal = true;
1223 
1224 		if (!only_stealable)
1225 			return fallback_mt;
1226 
1227 		if (*can_steal)
1228 			return fallback_mt;
1229 	}
1230 
1231 	return -1;
1232 }
1233 
1234 /* Remove an element from the buddy allocator from the fallback list */
1235 static inline struct page *
1236 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1237 {
1238 	struct free_area *area;
1239 	unsigned int current_order;
1240 	struct page *page;
1241 	int fallback_mt;
1242 	bool can_steal;
1243 
1244 	/* Find the largest possible block of pages in the other list */
1245 	for (current_order = MAX_ORDER-1;
1246 				current_order >= order && current_order <= MAX_ORDER-1;
1247 				--current_order) {
1248 		area = &(zone->free_area[current_order]);
1249 		fallback_mt = find_suitable_fallback(area, current_order,
1250 				start_migratetype, false, &can_steal);
1251 		if (fallback_mt == -1)
1252 			continue;
1253 
1254 		page = list_entry(area->free_list[fallback_mt].next,
1255 						struct page, lru);
1256 		if (can_steal)
1257 			steal_suitable_fallback(zone, page, start_migratetype);
1258 
1259 		/* Remove the page from the freelists */
1260 		area->nr_free--;
1261 		list_del(&page->lru);
1262 		rmv_page_order(page);
1263 
1264 		expand(zone, page, order, current_order, area,
1265 					start_migratetype);
1266 		/*
1267 		 * The freepage_migratetype may differ from pageblock's
1268 		 * migratetype depending on the decisions in
1269 		 * try_to_steal_freepages(). This is OK as long as it
1270 		 * does not differ for MIGRATE_CMA pageblocks. For CMA
1271 		 * we need to make sure unallocated pages flushed from
1272 		 * pcp lists are returned to the correct freelist.
1273 		 */
1274 		set_freepage_migratetype(page, start_migratetype);
1275 
1276 		trace_mm_page_alloc_extfrag(page, order, current_order,
1277 			start_migratetype, fallback_mt);
1278 
1279 		return page;
1280 	}
1281 
1282 	return NULL;
1283 }
1284 
1285 /*
1286  * Do the hard work of removing an element from the buddy allocator.
1287  * Call me with the zone->lock already held.
1288  */
1289 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1290 						int migratetype)
1291 {
1292 	struct page *page;
1293 
1294 retry_reserve:
1295 	page = __rmqueue_smallest(zone, order, migratetype);
1296 
1297 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1298 		if (migratetype == MIGRATE_MOVABLE)
1299 			page = __rmqueue_cma_fallback(zone, order);
1300 
1301 		if (!page)
1302 			page = __rmqueue_fallback(zone, order, migratetype);
1303 
1304 		/*
1305 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1306 		 * is used because __rmqueue_smallest is an inline function
1307 		 * and we want just one call site
1308 		 */
1309 		if (!page) {
1310 			migratetype = MIGRATE_RESERVE;
1311 			goto retry_reserve;
1312 		}
1313 	}
1314 
1315 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1316 	return page;
1317 }
1318 
1319 /*
1320  * Obtain a specified number of elements from the buddy allocator, all under
1321  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1322  * Returns the number of new pages which were placed at *list.
1323  */
1324 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1325 			unsigned long count, struct list_head *list,
1326 			int migratetype, bool cold)
1327 {
1328 	int i;
1329 
1330 	spin_lock(&zone->lock);
1331 	for (i = 0; i < count; ++i) {
1332 		struct page *page = __rmqueue(zone, order, migratetype);
1333 		if (unlikely(page == NULL))
1334 			break;
1335 
1336 		/*
1337 		 * Split buddy pages returned by expand() are received here
1338 		 * in physical page order. The page is added to the callers and
1339 		 * list and the list head then moves forward. From the callers
1340 		 * perspective, the linked list is ordered by page number in
1341 		 * some conditions. This is useful for IO devices that can
1342 		 * merge IO requests if the physical pages are ordered
1343 		 * properly.
1344 		 */
1345 		if (likely(!cold))
1346 			list_add(&page->lru, list);
1347 		else
1348 			list_add_tail(&page->lru, list);
1349 		list = &page->lru;
1350 		if (is_migrate_cma(get_freepage_migratetype(page)))
1351 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1352 					      -(1 << order));
1353 	}
1354 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1355 	spin_unlock(&zone->lock);
1356 	return i;
1357 }
1358 
1359 #ifdef CONFIG_NUMA
1360 /*
1361  * Called from the vmstat counter updater to drain pagesets of this
1362  * currently executing processor on remote nodes after they have
1363  * expired.
1364  *
1365  * Note that this function must be called with the thread pinned to
1366  * a single processor.
1367  */
1368 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1369 {
1370 	unsigned long flags;
1371 	int to_drain, batch;
1372 
1373 	local_irq_save(flags);
1374 	batch = READ_ONCE(pcp->batch);
1375 	to_drain = min(pcp->count, batch);
1376 	if (to_drain > 0) {
1377 		free_pcppages_bulk(zone, to_drain, pcp);
1378 		pcp->count -= to_drain;
1379 	}
1380 	local_irq_restore(flags);
1381 }
1382 #endif
1383 
1384 /*
1385  * Drain pcplists of the indicated processor and zone.
1386  *
1387  * The processor must either be the current processor and the
1388  * thread pinned to the current processor or a processor that
1389  * is not online.
1390  */
1391 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1392 {
1393 	unsigned long flags;
1394 	struct per_cpu_pageset *pset;
1395 	struct per_cpu_pages *pcp;
1396 
1397 	local_irq_save(flags);
1398 	pset = per_cpu_ptr(zone->pageset, cpu);
1399 
1400 	pcp = &pset->pcp;
1401 	if (pcp->count) {
1402 		free_pcppages_bulk(zone, pcp->count, pcp);
1403 		pcp->count = 0;
1404 	}
1405 	local_irq_restore(flags);
1406 }
1407 
1408 /*
1409  * Drain pcplists of all zones on the indicated processor.
1410  *
1411  * The processor must either be the current processor and the
1412  * thread pinned to the current processor or a processor that
1413  * is not online.
1414  */
1415 static void drain_pages(unsigned int cpu)
1416 {
1417 	struct zone *zone;
1418 
1419 	for_each_populated_zone(zone) {
1420 		drain_pages_zone(cpu, zone);
1421 	}
1422 }
1423 
1424 /*
1425  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1426  *
1427  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1428  * the single zone's pages.
1429  */
1430 void drain_local_pages(struct zone *zone)
1431 {
1432 	int cpu = smp_processor_id();
1433 
1434 	if (zone)
1435 		drain_pages_zone(cpu, zone);
1436 	else
1437 		drain_pages(cpu);
1438 }
1439 
1440 /*
1441  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1442  *
1443  * When zone parameter is non-NULL, spill just the single zone's pages.
1444  *
1445  * Note that this code is protected against sending an IPI to an offline
1446  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1447  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1448  * nothing keeps CPUs from showing up after we populated the cpumask and
1449  * before the call to on_each_cpu_mask().
1450  */
1451 void drain_all_pages(struct zone *zone)
1452 {
1453 	int cpu;
1454 
1455 	/*
1456 	 * Allocate in the BSS so we wont require allocation in
1457 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1458 	 */
1459 	static cpumask_t cpus_with_pcps;
1460 
1461 	/*
1462 	 * We don't care about racing with CPU hotplug event
1463 	 * as offline notification will cause the notified
1464 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1465 	 * disables preemption as part of its processing
1466 	 */
1467 	for_each_online_cpu(cpu) {
1468 		struct per_cpu_pageset *pcp;
1469 		struct zone *z;
1470 		bool has_pcps = false;
1471 
1472 		if (zone) {
1473 			pcp = per_cpu_ptr(zone->pageset, cpu);
1474 			if (pcp->pcp.count)
1475 				has_pcps = true;
1476 		} else {
1477 			for_each_populated_zone(z) {
1478 				pcp = per_cpu_ptr(z->pageset, cpu);
1479 				if (pcp->pcp.count) {
1480 					has_pcps = true;
1481 					break;
1482 				}
1483 			}
1484 		}
1485 
1486 		if (has_pcps)
1487 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1488 		else
1489 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1490 	}
1491 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1492 								zone, 1);
1493 }
1494 
1495 #ifdef CONFIG_HIBERNATION
1496 
1497 void mark_free_pages(struct zone *zone)
1498 {
1499 	unsigned long pfn, max_zone_pfn;
1500 	unsigned long flags;
1501 	unsigned int order, t;
1502 	struct list_head *curr;
1503 
1504 	if (zone_is_empty(zone))
1505 		return;
1506 
1507 	spin_lock_irqsave(&zone->lock, flags);
1508 
1509 	max_zone_pfn = zone_end_pfn(zone);
1510 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1511 		if (pfn_valid(pfn)) {
1512 			struct page *page = pfn_to_page(pfn);
1513 
1514 			if (!swsusp_page_is_forbidden(page))
1515 				swsusp_unset_page_free(page);
1516 		}
1517 
1518 	for_each_migratetype_order(order, t) {
1519 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1520 			unsigned long i;
1521 
1522 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1523 			for (i = 0; i < (1UL << order); i++)
1524 				swsusp_set_page_free(pfn_to_page(pfn + i));
1525 		}
1526 	}
1527 	spin_unlock_irqrestore(&zone->lock, flags);
1528 }
1529 #endif /* CONFIG_PM */
1530 
1531 /*
1532  * Free a 0-order page
1533  * cold == true ? free a cold page : free a hot page
1534  */
1535 void free_hot_cold_page(struct page *page, bool cold)
1536 {
1537 	struct zone *zone = page_zone(page);
1538 	struct per_cpu_pages *pcp;
1539 	unsigned long flags;
1540 	unsigned long pfn = page_to_pfn(page);
1541 	int migratetype;
1542 
1543 	if (!free_pages_prepare(page, 0))
1544 		return;
1545 
1546 	migratetype = get_pfnblock_migratetype(page, pfn);
1547 	set_freepage_migratetype(page, migratetype);
1548 	local_irq_save(flags);
1549 	__count_vm_event(PGFREE);
1550 
1551 	/*
1552 	 * We only track unmovable, reclaimable and movable on pcp lists.
1553 	 * Free ISOLATE pages back to the allocator because they are being
1554 	 * offlined but treat RESERVE as movable pages so we can get those
1555 	 * areas back if necessary. Otherwise, we may have to free
1556 	 * excessively into the page allocator
1557 	 */
1558 	if (migratetype >= MIGRATE_PCPTYPES) {
1559 		if (unlikely(is_migrate_isolate(migratetype))) {
1560 			free_one_page(zone, page, pfn, 0, migratetype);
1561 			goto out;
1562 		}
1563 		migratetype = MIGRATE_MOVABLE;
1564 	}
1565 
1566 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1567 	if (!cold)
1568 		list_add(&page->lru, &pcp->lists[migratetype]);
1569 	else
1570 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1571 	pcp->count++;
1572 	if (pcp->count >= pcp->high) {
1573 		unsigned long batch = READ_ONCE(pcp->batch);
1574 		free_pcppages_bulk(zone, batch, pcp);
1575 		pcp->count -= batch;
1576 	}
1577 
1578 out:
1579 	local_irq_restore(flags);
1580 }
1581 
1582 /*
1583  * Free a list of 0-order pages
1584  */
1585 void free_hot_cold_page_list(struct list_head *list, bool cold)
1586 {
1587 	struct page *page, *next;
1588 
1589 	list_for_each_entry_safe(page, next, list, lru) {
1590 		trace_mm_page_free_batched(page, cold);
1591 		free_hot_cold_page(page, cold);
1592 	}
1593 }
1594 
1595 /*
1596  * split_page takes a non-compound higher-order page, and splits it into
1597  * n (1<<order) sub-pages: page[0..n]
1598  * Each sub-page must be freed individually.
1599  *
1600  * Note: this is probably too low level an operation for use in drivers.
1601  * Please consult with lkml before using this in your driver.
1602  */
1603 void split_page(struct page *page, unsigned int order)
1604 {
1605 	int i;
1606 
1607 	VM_BUG_ON_PAGE(PageCompound(page), page);
1608 	VM_BUG_ON_PAGE(!page_count(page), page);
1609 
1610 #ifdef CONFIG_KMEMCHECK
1611 	/*
1612 	 * Split shadow pages too, because free(page[0]) would
1613 	 * otherwise free the whole shadow.
1614 	 */
1615 	if (kmemcheck_page_is_tracked(page))
1616 		split_page(virt_to_page(page[0].shadow), order);
1617 #endif
1618 
1619 	set_page_owner(page, 0, 0);
1620 	for (i = 1; i < (1 << order); i++) {
1621 		set_page_refcounted(page + i);
1622 		set_page_owner(page + i, 0, 0);
1623 	}
1624 }
1625 EXPORT_SYMBOL_GPL(split_page);
1626 
1627 int __isolate_free_page(struct page *page, unsigned int order)
1628 {
1629 	unsigned long watermark;
1630 	struct zone *zone;
1631 	int mt;
1632 
1633 	BUG_ON(!PageBuddy(page));
1634 
1635 	zone = page_zone(page);
1636 	mt = get_pageblock_migratetype(page);
1637 
1638 	if (!is_migrate_isolate(mt)) {
1639 		/* Obey watermarks as if the page was being allocated */
1640 		watermark = low_wmark_pages(zone) + (1 << order);
1641 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1642 			return 0;
1643 
1644 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1645 	}
1646 
1647 	/* Remove page from free list */
1648 	list_del(&page->lru);
1649 	zone->free_area[order].nr_free--;
1650 	rmv_page_order(page);
1651 
1652 	/* Set the pageblock if the isolated page is at least a pageblock */
1653 	if (order >= pageblock_order - 1) {
1654 		struct page *endpage = page + (1 << order) - 1;
1655 		for (; page < endpage; page += pageblock_nr_pages) {
1656 			int mt = get_pageblock_migratetype(page);
1657 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1658 				set_pageblock_migratetype(page,
1659 							  MIGRATE_MOVABLE);
1660 		}
1661 	}
1662 
1663 	set_page_owner(page, order, 0);
1664 	return 1UL << order;
1665 }
1666 
1667 /*
1668  * Similar to split_page except the page is already free. As this is only
1669  * being used for migration, the migratetype of the block also changes.
1670  * As this is called with interrupts disabled, the caller is responsible
1671  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1672  * are enabled.
1673  *
1674  * Note: this is probably too low level an operation for use in drivers.
1675  * Please consult with lkml before using this in your driver.
1676  */
1677 int split_free_page(struct page *page)
1678 {
1679 	unsigned int order;
1680 	int nr_pages;
1681 
1682 	order = page_order(page);
1683 
1684 	nr_pages = __isolate_free_page(page, order);
1685 	if (!nr_pages)
1686 		return 0;
1687 
1688 	/* Split into individual pages */
1689 	set_page_refcounted(page);
1690 	split_page(page, order);
1691 	return nr_pages;
1692 }
1693 
1694 /*
1695  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1696  */
1697 static inline
1698 struct page *buffered_rmqueue(struct zone *preferred_zone,
1699 			struct zone *zone, unsigned int order,
1700 			gfp_t gfp_flags, int migratetype)
1701 {
1702 	unsigned long flags;
1703 	struct page *page;
1704 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1705 
1706 	if (likely(order == 0)) {
1707 		struct per_cpu_pages *pcp;
1708 		struct list_head *list;
1709 
1710 		local_irq_save(flags);
1711 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1712 		list = &pcp->lists[migratetype];
1713 		if (list_empty(list)) {
1714 			pcp->count += rmqueue_bulk(zone, 0,
1715 					pcp->batch, list,
1716 					migratetype, cold);
1717 			if (unlikely(list_empty(list)))
1718 				goto failed;
1719 		}
1720 
1721 		if (cold)
1722 			page = list_entry(list->prev, struct page, lru);
1723 		else
1724 			page = list_entry(list->next, struct page, lru);
1725 
1726 		list_del(&page->lru);
1727 		pcp->count--;
1728 	} else {
1729 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1730 			/*
1731 			 * __GFP_NOFAIL is not to be used in new code.
1732 			 *
1733 			 * All __GFP_NOFAIL callers should be fixed so that they
1734 			 * properly detect and handle allocation failures.
1735 			 *
1736 			 * We most definitely don't want callers attempting to
1737 			 * allocate greater than order-1 page units with
1738 			 * __GFP_NOFAIL.
1739 			 */
1740 			WARN_ON_ONCE(order > 1);
1741 		}
1742 		spin_lock_irqsave(&zone->lock, flags);
1743 		page = __rmqueue(zone, order, migratetype);
1744 		spin_unlock(&zone->lock);
1745 		if (!page)
1746 			goto failed;
1747 		__mod_zone_freepage_state(zone, -(1 << order),
1748 					  get_freepage_migratetype(page));
1749 	}
1750 
1751 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1752 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1753 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1754 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1755 
1756 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1757 	zone_statistics(preferred_zone, zone, gfp_flags);
1758 	local_irq_restore(flags);
1759 
1760 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1761 	return page;
1762 
1763 failed:
1764 	local_irq_restore(flags);
1765 	return NULL;
1766 }
1767 
1768 #ifdef CONFIG_FAIL_PAGE_ALLOC
1769 
1770 static struct {
1771 	struct fault_attr attr;
1772 
1773 	u32 ignore_gfp_highmem;
1774 	u32 ignore_gfp_wait;
1775 	u32 min_order;
1776 } fail_page_alloc = {
1777 	.attr = FAULT_ATTR_INITIALIZER,
1778 	.ignore_gfp_wait = 1,
1779 	.ignore_gfp_highmem = 1,
1780 	.min_order = 1,
1781 };
1782 
1783 static int __init setup_fail_page_alloc(char *str)
1784 {
1785 	return setup_fault_attr(&fail_page_alloc.attr, str);
1786 }
1787 __setup("fail_page_alloc=", setup_fail_page_alloc);
1788 
1789 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1790 {
1791 	if (order < fail_page_alloc.min_order)
1792 		return false;
1793 	if (gfp_mask & __GFP_NOFAIL)
1794 		return false;
1795 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1796 		return false;
1797 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1798 		return false;
1799 
1800 	return should_fail(&fail_page_alloc.attr, 1 << order);
1801 }
1802 
1803 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1804 
1805 static int __init fail_page_alloc_debugfs(void)
1806 {
1807 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1808 	struct dentry *dir;
1809 
1810 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1811 					&fail_page_alloc.attr);
1812 	if (IS_ERR(dir))
1813 		return PTR_ERR(dir);
1814 
1815 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1816 				&fail_page_alloc.ignore_gfp_wait))
1817 		goto fail;
1818 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1819 				&fail_page_alloc.ignore_gfp_highmem))
1820 		goto fail;
1821 	if (!debugfs_create_u32("min-order", mode, dir,
1822 				&fail_page_alloc.min_order))
1823 		goto fail;
1824 
1825 	return 0;
1826 fail:
1827 	debugfs_remove_recursive(dir);
1828 
1829 	return -ENOMEM;
1830 }
1831 
1832 late_initcall(fail_page_alloc_debugfs);
1833 
1834 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1835 
1836 #else /* CONFIG_FAIL_PAGE_ALLOC */
1837 
1838 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1839 {
1840 	return false;
1841 }
1842 
1843 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1844 
1845 /*
1846  * Return true if free pages are above 'mark'. This takes into account the order
1847  * of the allocation.
1848  */
1849 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1850 			unsigned long mark, int classzone_idx, int alloc_flags,
1851 			long free_pages)
1852 {
1853 	/* free_pages may go negative - that's OK */
1854 	long min = mark;
1855 	int o;
1856 	long free_cma = 0;
1857 
1858 	free_pages -= (1 << order) - 1;
1859 	if (alloc_flags & ALLOC_HIGH)
1860 		min -= min / 2;
1861 	if (alloc_flags & ALLOC_HARDER)
1862 		min -= min / 4;
1863 #ifdef CONFIG_CMA
1864 	/* If allocation can't use CMA areas don't use free CMA pages */
1865 	if (!(alloc_flags & ALLOC_CMA))
1866 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1867 #endif
1868 
1869 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1870 		return false;
1871 	for (o = 0; o < order; o++) {
1872 		/* At the next order, this order's pages become unavailable */
1873 		free_pages -= z->free_area[o].nr_free << o;
1874 
1875 		/* Require fewer higher order pages to be free */
1876 		min >>= 1;
1877 
1878 		if (free_pages <= min)
1879 			return false;
1880 	}
1881 	return true;
1882 }
1883 
1884 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1885 		      int classzone_idx, int alloc_flags)
1886 {
1887 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1888 					zone_page_state(z, NR_FREE_PAGES));
1889 }
1890 
1891 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1892 			unsigned long mark, int classzone_idx, int alloc_flags)
1893 {
1894 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1895 
1896 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1897 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1898 
1899 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1900 								free_pages);
1901 }
1902 
1903 #ifdef CONFIG_NUMA
1904 /*
1905  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1906  * skip over zones that are not allowed by the cpuset, or that have
1907  * been recently (in last second) found to be nearly full.  See further
1908  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1909  * that have to skip over a lot of full or unallowed zones.
1910  *
1911  * If the zonelist cache is present in the passed zonelist, then
1912  * returns a pointer to the allowed node mask (either the current
1913  * tasks mems_allowed, or node_states[N_MEMORY].)
1914  *
1915  * If the zonelist cache is not available for this zonelist, does
1916  * nothing and returns NULL.
1917  *
1918  * If the fullzones BITMAP in the zonelist cache is stale (more than
1919  * a second since last zap'd) then we zap it out (clear its bits.)
1920  *
1921  * We hold off even calling zlc_setup, until after we've checked the
1922  * first zone in the zonelist, on the theory that most allocations will
1923  * be satisfied from that first zone, so best to examine that zone as
1924  * quickly as we can.
1925  */
1926 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1927 {
1928 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1929 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1930 
1931 	zlc = zonelist->zlcache_ptr;
1932 	if (!zlc)
1933 		return NULL;
1934 
1935 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1936 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1937 		zlc->last_full_zap = jiffies;
1938 	}
1939 
1940 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1941 					&cpuset_current_mems_allowed :
1942 					&node_states[N_MEMORY];
1943 	return allowednodes;
1944 }
1945 
1946 /*
1947  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1948  * if it is worth looking at further for free memory:
1949  *  1) Check that the zone isn't thought to be full (doesn't have its
1950  *     bit set in the zonelist_cache fullzones BITMAP).
1951  *  2) Check that the zones node (obtained from the zonelist_cache
1952  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1953  * Return true (non-zero) if zone is worth looking at further, or
1954  * else return false (zero) if it is not.
1955  *
1956  * This check -ignores- the distinction between various watermarks,
1957  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1958  * found to be full for any variation of these watermarks, it will
1959  * be considered full for up to one second by all requests, unless
1960  * we are so low on memory on all allowed nodes that we are forced
1961  * into the second scan of the zonelist.
1962  *
1963  * In the second scan we ignore this zonelist cache and exactly
1964  * apply the watermarks to all zones, even it is slower to do so.
1965  * We are low on memory in the second scan, and should leave no stone
1966  * unturned looking for a free page.
1967  */
1968 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1969 						nodemask_t *allowednodes)
1970 {
1971 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1972 	int i;				/* index of *z in zonelist zones */
1973 	int n;				/* node that zone *z is on */
1974 
1975 	zlc = zonelist->zlcache_ptr;
1976 	if (!zlc)
1977 		return 1;
1978 
1979 	i = z - zonelist->_zonerefs;
1980 	n = zlc->z_to_n[i];
1981 
1982 	/* This zone is worth trying if it is allowed but not full */
1983 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1984 }
1985 
1986 /*
1987  * Given 'z' scanning a zonelist, set the corresponding bit in
1988  * zlc->fullzones, so that subsequent attempts to allocate a page
1989  * from that zone don't waste time re-examining it.
1990  */
1991 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1992 {
1993 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1994 	int i;				/* index of *z in zonelist zones */
1995 
1996 	zlc = zonelist->zlcache_ptr;
1997 	if (!zlc)
1998 		return;
1999 
2000 	i = z - zonelist->_zonerefs;
2001 
2002 	set_bit(i, zlc->fullzones);
2003 }
2004 
2005 /*
2006  * clear all zones full, called after direct reclaim makes progress so that
2007  * a zone that was recently full is not skipped over for up to a second
2008  */
2009 static void zlc_clear_zones_full(struct zonelist *zonelist)
2010 {
2011 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2012 
2013 	zlc = zonelist->zlcache_ptr;
2014 	if (!zlc)
2015 		return;
2016 
2017 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2018 }
2019 
2020 static bool zone_local(struct zone *local_zone, struct zone *zone)
2021 {
2022 	return local_zone->node == zone->node;
2023 }
2024 
2025 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2026 {
2027 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2028 				RECLAIM_DISTANCE;
2029 }
2030 
2031 #else	/* CONFIG_NUMA */
2032 
2033 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2034 {
2035 	return NULL;
2036 }
2037 
2038 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2039 				nodemask_t *allowednodes)
2040 {
2041 	return 1;
2042 }
2043 
2044 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2045 {
2046 }
2047 
2048 static void zlc_clear_zones_full(struct zonelist *zonelist)
2049 {
2050 }
2051 
2052 static bool zone_local(struct zone *local_zone, struct zone *zone)
2053 {
2054 	return true;
2055 }
2056 
2057 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2058 {
2059 	return true;
2060 }
2061 
2062 #endif	/* CONFIG_NUMA */
2063 
2064 static void reset_alloc_batches(struct zone *preferred_zone)
2065 {
2066 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2067 
2068 	do {
2069 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2070 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2071 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2072 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2073 	} while (zone++ != preferred_zone);
2074 }
2075 
2076 /*
2077  * get_page_from_freelist goes through the zonelist trying to allocate
2078  * a page.
2079  */
2080 static struct page *
2081 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2082 						const struct alloc_context *ac)
2083 {
2084 	struct zonelist *zonelist = ac->zonelist;
2085 	struct zoneref *z;
2086 	struct page *page = NULL;
2087 	struct zone *zone;
2088 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2089 	int zlc_active = 0;		/* set if using zonelist_cache */
2090 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2091 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2092 				(gfp_mask & __GFP_WRITE);
2093 	int nr_fair_skipped = 0;
2094 	bool zonelist_rescan;
2095 
2096 zonelist_scan:
2097 	zonelist_rescan = false;
2098 
2099 	/*
2100 	 * Scan zonelist, looking for a zone with enough free.
2101 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2102 	 */
2103 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2104 								ac->nodemask) {
2105 		unsigned long mark;
2106 
2107 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2108 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2109 				continue;
2110 		if (cpusets_enabled() &&
2111 			(alloc_flags & ALLOC_CPUSET) &&
2112 			!cpuset_zone_allowed(zone, gfp_mask))
2113 				continue;
2114 		/*
2115 		 * Distribute pages in proportion to the individual
2116 		 * zone size to ensure fair page aging.  The zone a
2117 		 * page was allocated in should have no effect on the
2118 		 * time the page has in memory before being reclaimed.
2119 		 */
2120 		if (alloc_flags & ALLOC_FAIR) {
2121 			if (!zone_local(ac->preferred_zone, zone))
2122 				break;
2123 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2124 				nr_fair_skipped++;
2125 				continue;
2126 			}
2127 		}
2128 		/*
2129 		 * When allocating a page cache page for writing, we
2130 		 * want to get it from a zone that is within its dirty
2131 		 * limit, such that no single zone holds more than its
2132 		 * proportional share of globally allowed dirty pages.
2133 		 * The dirty limits take into account the zone's
2134 		 * lowmem reserves and high watermark so that kswapd
2135 		 * should be able to balance it without having to
2136 		 * write pages from its LRU list.
2137 		 *
2138 		 * This may look like it could increase pressure on
2139 		 * lower zones by failing allocations in higher zones
2140 		 * before they are full.  But the pages that do spill
2141 		 * over are limited as the lower zones are protected
2142 		 * by this very same mechanism.  It should not become
2143 		 * a practical burden to them.
2144 		 *
2145 		 * XXX: For now, allow allocations to potentially
2146 		 * exceed the per-zone dirty limit in the slowpath
2147 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2148 		 * which is important when on a NUMA setup the allowed
2149 		 * zones are together not big enough to reach the
2150 		 * global limit.  The proper fix for these situations
2151 		 * will require awareness of zones in the
2152 		 * dirty-throttling and the flusher threads.
2153 		 */
2154 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2155 			continue;
2156 
2157 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2158 		if (!zone_watermark_ok(zone, order, mark,
2159 				       ac->classzone_idx, alloc_flags)) {
2160 			int ret;
2161 
2162 			/* Checked here to keep the fast path fast */
2163 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2164 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2165 				goto try_this_zone;
2166 
2167 			if (IS_ENABLED(CONFIG_NUMA) &&
2168 					!did_zlc_setup && nr_online_nodes > 1) {
2169 				/*
2170 				 * we do zlc_setup if there are multiple nodes
2171 				 * and before considering the first zone allowed
2172 				 * by the cpuset.
2173 				 */
2174 				allowednodes = zlc_setup(zonelist, alloc_flags);
2175 				zlc_active = 1;
2176 				did_zlc_setup = 1;
2177 			}
2178 
2179 			if (zone_reclaim_mode == 0 ||
2180 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2181 				goto this_zone_full;
2182 
2183 			/*
2184 			 * As we may have just activated ZLC, check if the first
2185 			 * eligible zone has failed zone_reclaim recently.
2186 			 */
2187 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2188 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2189 				continue;
2190 
2191 			ret = zone_reclaim(zone, gfp_mask, order);
2192 			switch (ret) {
2193 			case ZONE_RECLAIM_NOSCAN:
2194 				/* did not scan */
2195 				continue;
2196 			case ZONE_RECLAIM_FULL:
2197 				/* scanned but unreclaimable */
2198 				continue;
2199 			default:
2200 				/* did we reclaim enough */
2201 				if (zone_watermark_ok(zone, order, mark,
2202 						ac->classzone_idx, alloc_flags))
2203 					goto try_this_zone;
2204 
2205 				/*
2206 				 * Failed to reclaim enough to meet watermark.
2207 				 * Only mark the zone full if checking the min
2208 				 * watermark or if we failed to reclaim just
2209 				 * 1<<order pages or else the page allocator
2210 				 * fastpath will prematurely mark zones full
2211 				 * when the watermark is between the low and
2212 				 * min watermarks.
2213 				 */
2214 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2215 				    ret == ZONE_RECLAIM_SOME)
2216 					goto this_zone_full;
2217 
2218 				continue;
2219 			}
2220 		}
2221 
2222 try_this_zone:
2223 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2224 						gfp_mask, ac->migratetype);
2225 		if (page) {
2226 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2227 				goto try_this_zone;
2228 			return page;
2229 		}
2230 this_zone_full:
2231 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2232 			zlc_mark_zone_full(zonelist, z);
2233 	}
2234 
2235 	/*
2236 	 * The first pass makes sure allocations are spread fairly within the
2237 	 * local node.  However, the local node might have free pages left
2238 	 * after the fairness batches are exhausted, and remote zones haven't
2239 	 * even been considered yet.  Try once more without fairness, and
2240 	 * include remote zones now, before entering the slowpath and waking
2241 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2242 	 */
2243 	if (alloc_flags & ALLOC_FAIR) {
2244 		alloc_flags &= ~ALLOC_FAIR;
2245 		if (nr_fair_skipped) {
2246 			zonelist_rescan = true;
2247 			reset_alloc_batches(ac->preferred_zone);
2248 		}
2249 		if (nr_online_nodes > 1)
2250 			zonelist_rescan = true;
2251 	}
2252 
2253 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2254 		/* Disable zlc cache for second zonelist scan */
2255 		zlc_active = 0;
2256 		zonelist_rescan = true;
2257 	}
2258 
2259 	if (zonelist_rescan)
2260 		goto zonelist_scan;
2261 
2262 	return NULL;
2263 }
2264 
2265 /*
2266  * Large machines with many possible nodes should not always dump per-node
2267  * meminfo in irq context.
2268  */
2269 static inline bool should_suppress_show_mem(void)
2270 {
2271 	bool ret = false;
2272 
2273 #if NODES_SHIFT > 8
2274 	ret = in_interrupt();
2275 #endif
2276 	return ret;
2277 }
2278 
2279 static DEFINE_RATELIMIT_STATE(nopage_rs,
2280 		DEFAULT_RATELIMIT_INTERVAL,
2281 		DEFAULT_RATELIMIT_BURST);
2282 
2283 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2284 {
2285 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2286 
2287 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2288 	    debug_guardpage_minorder() > 0)
2289 		return;
2290 
2291 	/*
2292 	 * This documents exceptions given to allocations in certain
2293 	 * contexts that are allowed to allocate outside current's set
2294 	 * of allowed nodes.
2295 	 */
2296 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2297 		if (test_thread_flag(TIF_MEMDIE) ||
2298 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2299 			filter &= ~SHOW_MEM_FILTER_NODES;
2300 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2301 		filter &= ~SHOW_MEM_FILTER_NODES;
2302 
2303 	if (fmt) {
2304 		struct va_format vaf;
2305 		va_list args;
2306 
2307 		va_start(args, fmt);
2308 
2309 		vaf.fmt = fmt;
2310 		vaf.va = &args;
2311 
2312 		pr_warn("%pV", &vaf);
2313 
2314 		va_end(args);
2315 	}
2316 
2317 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2318 		current->comm, order, gfp_mask);
2319 
2320 	dump_stack();
2321 	if (!should_suppress_show_mem())
2322 		show_mem(filter);
2323 }
2324 
2325 static inline int
2326 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2327 				unsigned long did_some_progress,
2328 				unsigned long pages_reclaimed)
2329 {
2330 	/* Do not loop if specifically requested */
2331 	if (gfp_mask & __GFP_NORETRY)
2332 		return 0;
2333 
2334 	/* Always retry if specifically requested */
2335 	if (gfp_mask & __GFP_NOFAIL)
2336 		return 1;
2337 
2338 	/*
2339 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2340 	 * making forward progress without invoking OOM. Suspend also disables
2341 	 * storage devices so kswapd will not help. Bail if we are suspending.
2342 	 */
2343 	if (!did_some_progress && pm_suspended_storage())
2344 		return 0;
2345 
2346 	/*
2347 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2348 	 * means __GFP_NOFAIL, but that may not be true in other
2349 	 * implementations.
2350 	 */
2351 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2352 		return 1;
2353 
2354 	/*
2355 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2356 	 * specified, then we retry until we no longer reclaim any pages
2357 	 * (above), or we've reclaimed an order of pages at least as
2358 	 * large as the allocation's order. In both cases, if the
2359 	 * allocation still fails, we stop retrying.
2360 	 */
2361 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2362 		return 1;
2363 
2364 	return 0;
2365 }
2366 
2367 static inline struct page *
2368 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2369 	const struct alloc_context *ac, unsigned long *did_some_progress)
2370 {
2371 	struct page *page;
2372 
2373 	*did_some_progress = 0;
2374 
2375 	/*
2376 	 * Acquire the per-zone oom lock for each zone.  If that
2377 	 * fails, somebody else is making progress for us.
2378 	 */
2379 	if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2380 		*did_some_progress = 1;
2381 		schedule_timeout_uninterruptible(1);
2382 		return NULL;
2383 	}
2384 
2385 	/*
2386 	 * Go through the zonelist yet one more time, keep very high watermark
2387 	 * here, this is only to catch a parallel oom killing, we must fail if
2388 	 * we're still under heavy pressure.
2389 	 */
2390 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2391 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2392 	if (page)
2393 		goto out;
2394 
2395 	if (!(gfp_mask & __GFP_NOFAIL)) {
2396 		/* Coredumps can quickly deplete all memory reserves */
2397 		if (current->flags & PF_DUMPCORE)
2398 			goto out;
2399 		/* The OOM killer will not help higher order allocs */
2400 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2401 			goto out;
2402 		/* The OOM killer does not needlessly kill tasks for lowmem */
2403 		if (ac->high_zoneidx < ZONE_NORMAL)
2404 			goto out;
2405 		/* The OOM killer does not compensate for light reclaim */
2406 		if (!(gfp_mask & __GFP_FS)) {
2407 			/*
2408 			 * XXX: Page reclaim didn't yield anything,
2409 			 * and the OOM killer can't be invoked, but
2410 			 * keep looping as per should_alloc_retry().
2411 			 */
2412 			*did_some_progress = 1;
2413 			goto out;
2414 		}
2415 		/* The OOM killer may not free memory on a specific node */
2416 		if (gfp_mask & __GFP_THISNODE)
2417 			goto out;
2418 	}
2419 	/* Exhausted what can be done so it's blamo time */
2420 	if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2421 			|| WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2422 		*did_some_progress = 1;
2423 out:
2424 	oom_zonelist_unlock(ac->zonelist, gfp_mask);
2425 	return page;
2426 }
2427 
2428 #ifdef CONFIG_COMPACTION
2429 /* Try memory compaction for high-order allocations before reclaim */
2430 static struct page *
2431 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2432 		int alloc_flags, const struct alloc_context *ac,
2433 		enum migrate_mode mode, int *contended_compaction,
2434 		bool *deferred_compaction)
2435 {
2436 	unsigned long compact_result;
2437 	struct page *page;
2438 
2439 	if (!order)
2440 		return NULL;
2441 
2442 	current->flags |= PF_MEMALLOC;
2443 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2444 						mode, contended_compaction);
2445 	current->flags &= ~PF_MEMALLOC;
2446 
2447 	switch (compact_result) {
2448 	case COMPACT_DEFERRED:
2449 		*deferred_compaction = true;
2450 		/* fall-through */
2451 	case COMPACT_SKIPPED:
2452 		return NULL;
2453 	default:
2454 		break;
2455 	}
2456 
2457 	/*
2458 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2459 	 * count a compaction stall
2460 	 */
2461 	count_vm_event(COMPACTSTALL);
2462 
2463 	page = get_page_from_freelist(gfp_mask, order,
2464 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2465 
2466 	if (page) {
2467 		struct zone *zone = page_zone(page);
2468 
2469 		zone->compact_blockskip_flush = false;
2470 		compaction_defer_reset(zone, order, true);
2471 		count_vm_event(COMPACTSUCCESS);
2472 		return page;
2473 	}
2474 
2475 	/*
2476 	 * It's bad if compaction run occurs and fails. The most likely reason
2477 	 * is that pages exist, but not enough to satisfy watermarks.
2478 	 */
2479 	count_vm_event(COMPACTFAIL);
2480 
2481 	cond_resched();
2482 
2483 	return NULL;
2484 }
2485 #else
2486 static inline struct page *
2487 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2488 		int alloc_flags, const struct alloc_context *ac,
2489 		enum migrate_mode mode, int *contended_compaction,
2490 		bool *deferred_compaction)
2491 {
2492 	return NULL;
2493 }
2494 #endif /* CONFIG_COMPACTION */
2495 
2496 /* Perform direct synchronous page reclaim */
2497 static int
2498 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2499 					const struct alloc_context *ac)
2500 {
2501 	struct reclaim_state reclaim_state;
2502 	int progress;
2503 
2504 	cond_resched();
2505 
2506 	/* We now go into synchronous reclaim */
2507 	cpuset_memory_pressure_bump();
2508 	current->flags |= PF_MEMALLOC;
2509 	lockdep_set_current_reclaim_state(gfp_mask);
2510 	reclaim_state.reclaimed_slab = 0;
2511 	current->reclaim_state = &reclaim_state;
2512 
2513 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2514 								ac->nodemask);
2515 
2516 	current->reclaim_state = NULL;
2517 	lockdep_clear_current_reclaim_state();
2518 	current->flags &= ~PF_MEMALLOC;
2519 
2520 	cond_resched();
2521 
2522 	return progress;
2523 }
2524 
2525 /* The really slow allocator path where we enter direct reclaim */
2526 static inline struct page *
2527 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2528 		int alloc_flags, const struct alloc_context *ac,
2529 		unsigned long *did_some_progress)
2530 {
2531 	struct page *page = NULL;
2532 	bool drained = false;
2533 
2534 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2535 	if (unlikely(!(*did_some_progress)))
2536 		return NULL;
2537 
2538 	/* After successful reclaim, reconsider all zones for allocation */
2539 	if (IS_ENABLED(CONFIG_NUMA))
2540 		zlc_clear_zones_full(ac->zonelist);
2541 
2542 retry:
2543 	page = get_page_from_freelist(gfp_mask, order,
2544 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2545 
2546 	/*
2547 	 * If an allocation failed after direct reclaim, it could be because
2548 	 * pages are pinned on the per-cpu lists. Drain them and try again
2549 	 */
2550 	if (!page && !drained) {
2551 		drain_all_pages(NULL);
2552 		drained = true;
2553 		goto retry;
2554 	}
2555 
2556 	return page;
2557 }
2558 
2559 /*
2560  * This is called in the allocator slow-path if the allocation request is of
2561  * sufficient urgency to ignore watermarks and take other desperate measures
2562  */
2563 static inline struct page *
2564 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2565 				const struct alloc_context *ac)
2566 {
2567 	struct page *page;
2568 
2569 	do {
2570 		page = get_page_from_freelist(gfp_mask, order,
2571 						ALLOC_NO_WATERMARKS, ac);
2572 
2573 		if (!page && gfp_mask & __GFP_NOFAIL)
2574 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2575 									HZ/50);
2576 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2577 
2578 	return page;
2579 }
2580 
2581 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2582 {
2583 	struct zoneref *z;
2584 	struct zone *zone;
2585 
2586 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2587 						ac->high_zoneidx, ac->nodemask)
2588 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2589 }
2590 
2591 static inline int
2592 gfp_to_alloc_flags(gfp_t gfp_mask)
2593 {
2594 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2595 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2596 
2597 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2598 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2599 
2600 	/*
2601 	 * The caller may dip into page reserves a bit more if the caller
2602 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2603 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2604 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2605 	 */
2606 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2607 
2608 	if (atomic) {
2609 		/*
2610 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2611 		 * if it can't schedule.
2612 		 */
2613 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2614 			alloc_flags |= ALLOC_HARDER;
2615 		/*
2616 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2617 		 * comment for __cpuset_node_allowed().
2618 		 */
2619 		alloc_flags &= ~ALLOC_CPUSET;
2620 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2621 		alloc_flags |= ALLOC_HARDER;
2622 
2623 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2624 		if (gfp_mask & __GFP_MEMALLOC)
2625 			alloc_flags |= ALLOC_NO_WATERMARKS;
2626 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2627 			alloc_flags |= ALLOC_NO_WATERMARKS;
2628 		else if (!in_interrupt() &&
2629 				((current->flags & PF_MEMALLOC) ||
2630 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2631 			alloc_flags |= ALLOC_NO_WATERMARKS;
2632 	}
2633 #ifdef CONFIG_CMA
2634 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2635 		alloc_flags |= ALLOC_CMA;
2636 #endif
2637 	return alloc_flags;
2638 }
2639 
2640 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2641 {
2642 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2643 }
2644 
2645 static inline struct page *
2646 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2647 						struct alloc_context *ac)
2648 {
2649 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2650 	struct page *page = NULL;
2651 	int alloc_flags;
2652 	unsigned long pages_reclaimed = 0;
2653 	unsigned long did_some_progress;
2654 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2655 	bool deferred_compaction = false;
2656 	int contended_compaction = COMPACT_CONTENDED_NONE;
2657 
2658 	/*
2659 	 * In the slowpath, we sanity check order to avoid ever trying to
2660 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2661 	 * be using allocators in order of preference for an area that is
2662 	 * too large.
2663 	 */
2664 	if (order >= MAX_ORDER) {
2665 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2666 		return NULL;
2667 	}
2668 
2669 	/*
2670 	 * If this allocation cannot block and it is for a specific node, then
2671 	 * fail early.  There's no need to wakeup kswapd or retry for a
2672 	 * speculative node-specific allocation.
2673 	 */
2674 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2675 		goto nopage;
2676 
2677 retry:
2678 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2679 		wake_all_kswapds(order, ac);
2680 
2681 	/*
2682 	 * OK, we're below the kswapd watermark and have kicked background
2683 	 * reclaim. Now things get more complex, so set up alloc_flags according
2684 	 * to how we want to proceed.
2685 	 */
2686 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2687 
2688 	/*
2689 	 * Find the true preferred zone if the allocation is unconstrained by
2690 	 * cpusets.
2691 	 */
2692 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2693 		struct zoneref *preferred_zoneref;
2694 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
2695 				ac->high_zoneidx, NULL, &ac->preferred_zone);
2696 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2697 	}
2698 
2699 	/* This is the last chance, in general, before the goto nopage. */
2700 	page = get_page_from_freelist(gfp_mask, order,
2701 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2702 	if (page)
2703 		goto got_pg;
2704 
2705 	/* Allocate without watermarks if the context allows */
2706 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2707 		/*
2708 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2709 		 * the allocation is high priority and these type of
2710 		 * allocations are system rather than user orientated
2711 		 */
2712 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2713 
2714 		page = __alloc_pages_high_priority(gfp_mask, order, ac);
2715 
2716 		if (page) {
2717 			goto got_pg;
2718 		}
2719 	}
2720 
2721 	/* Atomic allocations - we can't balance anything */
2722 	if (!wait) {
2723 		/*
2724 		 * All existing users of the deprecated __GFP_NOFAIL are
2725 		 * blockable, so warn of any new users that actually allow this
2726 		 * type of allocation to fail.
2727 		 */
2728 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2729 		goto nopage;
2730 	}
2731 
2732 	/* Avoid recursion of direct reclaim */
2733 	if (current->flags & PF_MEMALLOC)
2734 		goto nopage;
2735 
2736 	/* Avoid allocations with no watermarks from looping endlessly */
2737 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2738 		goto nopage;
2739 
2740 	/*
2741 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2742 	 * attempts after direct reclaim are synchronous
2743 	 */
2744 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2745 					migration_mode,
2746 					&contended_compaction,
2747 					&deferred_compaction);
2748 	if (page)
2749 		goto got_pg;
2750 
2751 	/* Checks for THP-specific high-order allocations */
2752 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2753 		/*
2754 		 * If compaction is deferred for high-order allocations, it is
2755 		 * because sync compaction recently failed. If this is the case
2756 		 * and the caller requested a THP allocation, we do not want
2757 		 * to heavily disrupt the system, so we fail the allocation
2758 		 * instead of entering direct reclaim.
2759 		 */
2760 		if (deferred_compaction)
2761 			goto nopage;
2762 
2763 		/*
2764 		 * In all zones where compaction was attempted (and not
2765 		 * deferred or skipped), lock contention has been detected.
2766 		 * For THP allocation we do not want to disrupt the others
2767 		 * so we fallback to base pages instead.
2768 		 */
2769 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2770 			goto nopage;
2771 
2772 		/*
2773 		 * If compaction was aborted due to need_resched(), we do not
2774 		 * want to further increase allocation latency, unless it is
2775 		 * khugepaged trying to collapse.
2776 		 */
2777 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2778 			&& !(current->flags & PF_KTHREAD))
2779 			goto nopage;
2780 	}
2781 
2782 	/*
2783 	 * It can become very expensive to allocate transparent hugepages at
2784 	 * fault, so use asynchronous memory compaction for THP unless it is
2785 	 * khugepaged trying to collapse.
2786 	 */
2787 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2788 						(current->flags & PF_KTHREAD))
2789 		migration_mode = MIGRATE_SYNC_LIGHT;
2790 
2791 	/* Try direct reclaim and then allocating */
2792 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2793 							&did_some_progress);
2794 	if (page)
2795 		goto got_pg;
2796 
2797 	/* Check if we should retry the allocation */
2798 	pages_reclaimed += did_some_progress;
2799 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2800 						pages_reclaimed)) {
2801 		/*
2802 		 * If we fail to make progress by freeing individual
2803 		 * pages, but the allocation wants us to keep going,
2804 		 * start OOM killing tasks.
2805 		 */
2806 		if (!did_some_progress) {
2807 			page = __alloc_pages_may_oom(gfp_mask, order, ac,
2808 							&did_some_progress);
2809 			if (page)
2810 				goto got_pg;
2811 			if (!did_some_progress)
2812 				goto nopage;
2813 		}
2814 		/* Wait for some write requests to complete then retry */
2815 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2816 		goto retry;
2817 	} else {
2818 		/*
2819 		 * High-order allocations do not necessarily loop after
2820 		 * direct reclaim and reclaim/compaction depends on compaction
2821 		 * being called after reclaim so call directly if necessary
2822 		 */
2823 		page = __alloc_pages_direct_compact(gfp_mask, order,
2824 					alloc_flags, ac, migration_mode,
2825 					&contended_compaction,
2826 					&deferred_compaction);
2827 		if (page)
2828 			goto got_pg;
2829 	}
2830 
2831 nopage:
2832 	warn_alloc_failed(gfp_mask, order, NULL);
2833 got_pg:
2834 	return page;
2835 }
2836 
2837 /*
2838  * This is the 'heart' of the zoned buddy allocator.
2839  */
2840 struct page *
2841 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2842 			struct zonelist *zonelist, nodemask_t *nodemask)
2843 {
2844 	struct zoneref *preferred_zoneref;
2845 	struct page *page = NULL;
2846 	unsigned int cpuset_mems_cookie;
2847 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2848 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2849 	struct alloc_context ac = {
2850 		.high_zoneidx = gfp_zone(gfp_mask),
2851 		.nodemask = nodemask,
2852 		.migratetype = gfpflags_to_migratetype(gfp_mask),
2853 	};
2854 
2855 	gfp_mask &= gfp_allowed_mask;
2856 
2857 	lockdep_trace_alloc(gfp_mask);
2858 
2859 	might_sleep_if(gfp_mask & __GFP_WAIT);
2860 
2861 	if (should_fail_alloc_page(gfp_mask, order))
2862 		return NULL;
2863 
2864 	/*
2865 	 * Check the zones suitable for the gfp_mask contain at least one
2866 	 * valid zone. It's possible to have an empty zonelist as a result
2867 	 * of __GFP_THISNODE and a memoryless node
2868 	 */
2869 	if (unlikely(!zonelist->_zonerefs->zone))
2870 		return NULL;
2871 
2872 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2873 		alloc_flags |= ALLOC_CMA;
2874 
2875 retry_cpuset:
2876 	cpuset_mems_cookie = read_mems_allowed_begin();
2877 
2878 	/* We set it here, as __alloc_pages_slowpath might have changed it */
2879 	ac.zonelist = zonelist;
2880 	/* The preferred zone is used for statistics later */
2881 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2882 				ac.nodemask ? : &cpuset_current_mems_allowed,
2883 				&ac.preferred_zone);
2884 	if (!ac.preferred_zone)
2885 		goto out;
2886 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2887 
2888 	/* First allocation attempt */
2889 	alloc_mask = gfp_mask|__GFP_HARDWALL;
2890 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2891 	if (unlikely(!page)) {
2892 		/*
2893 		 * Runtime PM, block IO and its error handling path
2894 		 * can deadlock because I/O on the device might not
2895 		 * complete.
2896 		 */
2897 		alloc_mask = memalloc_noio_flags(gfp_mask);
2898 
2899 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2900 	}
2901 
2902 	if (kmemcheck_enabled && page)
2903 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2904 
2905 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2906 
2907 out:
2908 	/*
2909 	 * When updating a task's mems_allowed, it is possible to race with
2910 	 * parallel threads in such a way that an allocation can fail while
2911 	 * the mask is being updated. If a page allocation is about to fail,
2912 	 * check if the cpuset changed during allocation and if so, retry.
2913 	 */
2914 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2915 		goto retry_cpuset;
2916 
2917 	return page;
2918 }
2919 EXPORT_SYMBOL(__alloc_pages_nodemask);
2920 
2921 /*
2922  * Common helper functions.
2923  */
2924 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2925 {
2926 	struct page *page;
2927 
2928 	/*
2929 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2930 	 * a highmem page
2931 	 */
2932 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2933 
2934 	page = alloc_pages(gfp_mask, order);
2935 	if (!page)
2936 		return 0;
2937 	return (unsigned long) page_address(page);
2938 }
2939 EXPORT_SYMBOL(__get_free_pages);
2940 
2941 unsigned long get_zeroed_page(gfp_t gfp_mask)
2942 {
2943 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2944 }
2945 EXPORT_SYMBOL(get_zeroed_page);
2946 
2947 void __free_pages(struct page *page, unsigned int order)
2948 {
2949 	if (put_page_testzero(page)) {
2950 		if (order == 0)
2951 			free_hot_cold_page(page, false);
2952 		else
2953 			__free_pages_ok(page, order);
2954 	}
2955 }
2956 
2957 EXPORT_SYMBOL(__free_pages);
2958 
2959 void free_pages(unsigned long addr, unsigned int order)
2960 {
2961 	if (addr != 0) {
2962 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2963 		__free_pages(virt_to_page((void *)addr), order);
2964 	}
2965 }
2966 
2967 EXPORT_SYMBOL(free_pages);
2968 
2969 /*
2970  * Page Fragment:
2971  *  An arbitrary-length arbitrary-offset area of memory which resides
2972  *  within a 0 or higher order page.  Multiple fragments within that page
2973  *  are individually refcounted, in the page's reference counter.
2974  *
2975  * The page_frag functions below provide a simple allocation framework for
2976  * page fragments.  This is used by the network stack and network device
2977  * drivers to provide a backing region of memory for use as either an
2978  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
2979  */
2980 static struct page *__page_frag_refill(struct page_frag_cache *nc,
2981 				       gfp_t gfp_mask)
2982 {
2983 	struct page *page = NULL;
2984 	gfp_t gfp = gfp_mask;
2985 
2986 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
2987 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
2988 		    __GFP_NOMEMALLOC;
2989 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
2990 				PAGE_FRAG_CACHE_MAX_ORDER);
2991 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
2992 #endif
2993 	if (unlikely(!page))
2994 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
2995 
2996 	nc->va = page ? page_address(page) : NULL;
2997 
2998 	return page;
2999 }
3000 
3001 void *__alloc_page_frag(struct page_frag_cache *nc,
3002 			unsigned int fragsz, gfp_t gfp_mask)
3003 {
3004 	unsigned int size = PAGE_SIZE;
3005 	struct page *page;
3006 	int offset;
3007 
3008 	if (unlikely(!nc->va)) {
3009 refill:
3010 		page = __page_frag_refill(nc, gfp_mask);
3011 		if (!page)
3012 			return NULL;
3013 
3014 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3015 		/* if size can vary use size else just use PAGE_SIZE */
3016 		size = nc->size;
3017 #endif
3018 		/* Even if we own the page, we do not use atomic_set().
3019 		 * This would break get_page_unless_zero() users.
3020 		 */
3021 		atomic_add(size - 1, &page->_count);
3022 
3023 		/* reset page count bias and offset to start of new frag */
3024 		nc->pfmemalloc = page->pfmemalloc;
3025 		nc->pagecnt_bias = size;
3026 		nc->offset = size;
3027 	}
3028 
3029 	offset = nc->offset - fragsz;
3030 	if (unlikely(offset < 0)) {
3031 		page = virt_to_page(nc->va);
3032 
3033 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3034 			goto refill;
3035 
3036 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3037 		/* if size can vary use size else just use PAGE_SIZE */
3038 		size = nc->size;
3039 #endif
3040 		/* OK, page count is 0, we can safely set it */
3041 		atomic_set(&page->_count, size);
3042 
3043 		/* reset page count bias and offset to start of new frag */
3044 		nc->pagecnt_bias = size;
3045 		offset = size - fragsz;
3046 	}
3047 
3048 	nc->pagecnt_bias--;
3049 	nc->offset = offset;
3050 
3051 	return nc->va + offset;
3052 }
3053 EXPORT_SYMBOL(__alloc_page_frag);
3054 
3055 /*
3056  * Frees a page fragment allocated out of either a compound or order 0 page.
3057  */
3058 void __free_page_frag(void *addr)
3059 {
3060 	struct page *page = virt_to_head_page(addr);
3061 
3062 	if (unlikely(put_page_testzero(page)))
3063 		__free_pages_ok(page, compound_order(page));
3064 }
3065 EXPORT_SYMBOL(__free_page_frag);
3066 
3067 /*
3068  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3069  * of the current memory cgroup.
3070  *
3071  * It should be used when the caller would like to use kmalloc, but since the
3072  * allocation is large, it has to fall back to the page allocator.
3073  */
3074 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3075 {
3076 	struct page *page;
3077 	struct mem_cgroup *memcg = NULL;
3078 
3079 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3080 		return NULL;
3081 	page = alloc_pages(gfp_mask, order);
3082 	memcg_kmem_commit_charge(page, memcg, order);
3083 	return page;
3084 }
3085 
3086 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3087 {
3088 	struct page *page;
3089 	struct mem_cgroup *memcg = NULL;
3090 
3091 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3092 		return NULL;
3093 	page = alloc_pages_node(nid, gfp_mask, order);
3094 	memcg_kmem_commit_charge(page, memcg, order);
3095 	return page;
3096 }
3097 
3098 /*
3099  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3100  * alloc_kmem_pages.
3101  */
3102 void __free_kmem_pages(struct page *page, unsigned int order)
3103 {
3104 	memcg_kmem_uncharge_pages(page, order);
3105 	__free_pages(page, order);
3106 }
3107 
3108 void free_kmem_pages(unsigned long addr, unsigned int order)
3109 {
3110 	if (addr != 0) {
3111 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3112 		__free_kmem_pages(virt_to_page((void *)addr), order);
3113 	}
3114 }
3115 
3116 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3117 {
3118 	if (addr) {
3119 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3120 		unsigned long used = addr + PAGE_ALIGN(size);
3121 
3122 		split_page(virt_to_page((void *)addr), order);
3123 		while (used < alloc_end) {
3124 			free_page(used);
3125 			used += PAGE_SIZE;
3126 		}
3127 	}
3128 	return (void *)addr;
3129 }
3130 
3131 /**
3132  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3133  * @size: the number of bytes to allocate
3134  * @gfp_mask: GFP flags for the allocation
3135  *
3136  * This function is similar to alloc_pages(), except that it allocates the
3137  * minimum number of pages to satisfy the request.  alloc_pages() can only
3138  * allocate memory in power-of-two pages.
3139  *
3140  * This function is also limited by MAX_ORDER.
3141  *
3142  * Memory allocated by this function must be released by free_pages_exact().
3143  */
3144 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3145 {
3146 	unsigned int order = get_order(size);
3147 	unsigned long addr;
3148 
3149 	addr = __get_free_pages(gfp_mask, order);
3150 	return make_alloc_exact(addr, order, size);
3151 }
3152 EXPORT_SYMBOL(alloc_pages_exact);
3153 
3154 /**
3155  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3156  *			   pages on a node.
3157  * @nid: the preferred node ID where memory should be allocated
3158  * @size: the number of bytes to allocate
3159  * @gfp_mask: GFP flags for the allocation
3160  *
3161  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3162  * back.
3163  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3164  * but is not exact.
3165  */
3166 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3167 {
3168 	unsigned order = get_order(size);
3169 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3170 	if (!p)
3171 		return NULL;
3172 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3173 }
3174 
3175 /**
3176  * free_pages_exact - release memory allocated via alloc_pages_exact()
3177  * @virt: the value returned by alloc_pages_exact.
3178  * @size: size of allocation, same value as passed to alloc_pages_exact().
3179  *
3180  * Release the memory allocated by a previous call to alloc_pages_exact.
3181  */
3182 void free_pages_exact(void *virt, size_t size)
3183 {
3184 	unsigned long addr = (unsigned long)virt;
3185 	unsigned long end = addr + PAGE_ALIGN(size);
3186 
3187 	while (addr < end) {
3188 		free_page(addr);
3189 		addr += PAGE_SIZE;
3190 	}
3191 }
3192 EXPORT_SYMBOL(free_pages_exact);
3193 
3194 /**
3195  * nr_free_zone_pages - count number of pages beyond high watermark
3196  * @offset: The zone index of the highest zone
3197  *
3198  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3199  * high watermark within all zones at or below a given zone index.  For each
3200  * zone, the number of pages is calculated as:
3201  *     managed_pages - high_pages
3202  */
3203 static unsigned long nr_free_zone_pages(int offset)
3204 {
3205 	struct zoneref *z;
3206 	struct zone *zone;
3207 
3208 	/* Just pick one node, since fallback list is circular */
3209 	unsigned long sum = 0;
3210 
3211 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3212 
3213 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3214 		unsigned long size = zone->managed_pages;
3215 		unsigned long high = high_wmark_pages(zone);
3216 		if (size > high)
3217 			sum += size - high;
3218 	}
3219 
3220 	return sum;
3221 }
3222 
3223 /**
3224  * nr_free_buffer_pages - count number of pages beyond high watermark
3225  *
3226  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3227  * watermark within ZONE_DMA and ZONE_NORMAL.
3228  */
3229 unsigned long nr_free_buffer_pages(void)
3230 {
3231 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3232 }
3233 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3234 
3235 /**
3236  * nr_free_pagecache_pages - count number of pages beyond high watermark
3237  *
3238  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3239  * high watermark within all zones.
3240  */
3241 unsigned long nr_free_pagecache_pages(void)
3242 {
3243 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3244 }
3245 
3246 static inline void show_node(struct zone *zone)
3247 {
3248 	if (IS_ENABLED(CONFIG_NUMA))
3249 		printk("Node %d ", zone_to_nid(zone));
3250 }
3251 
3252 void si_meminfo(struct sysinfo *val)
3253 {
3254 	val->totalram = totalram_pages;
3255 	val->sharedram = global_page_state(NR_SHMEM);
3256 	val->freeram = global_page_state(NR_FREE_PAGES);
3257 	val->bufferram = nr_blockdev_pages();
3258 	val->totalhigh = totalhigh_pages;
3259 	val->freehigh = nr_free_highpages();
3260 	val->mem_unit = PAGE_SIZE;
3261 }
3262 
3263 EXPORT_SYMBOL(si_meminfo);
3264 
3265 #ifdef CONFIG_NUMA
3266 void si_meminfo_node(struct sysinfo *val, int nid)
3267 {
3268 	int zone_type;		/* needs to be signed */
3269 	unsigned long managed_pages = 0;
3270 	pg_data_t *pgdat = NODE_DATA(nid);
3271 
3272 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3273 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3274 	val->totalram = managed_pages;
3275 	val->sharedram = node_page_state(nid, NR_SHMEM);
3276 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3277 #ifdef CONFIG_HIGHMEM
3278 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3279 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3280 			NR_FREE_PAGES);
3281 #else
3282 	val->totalhigh = 0;
3283 	val->freehigh = 0;
3284 #endif
3285 	val->mem_unit = PAGE_SIZE;
3286 }
3287 #endif
3288 
3289 /*
3290  * Determine whether the node should be displayed or not, depending on whether
3291  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3292  */
3293 bool skip_free_areas_node(unsigned int flags, int nid)
3294 {
3295 	bool ret = false;
3296 	unsigned int cpuset_mems_cookie;
3297 
3298 	if (!(flags & SHOW_MEM_FILTER_NODES))
3299 		goto out;
3300 
3301 	do {
3302 		cpuset_mems_cookie = read_mems_allowed_begin();
3303 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3304 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3305 out:
3306 	return ret;
3307 }
3308 
3309 #define K(x) ((x) << (PAGE_SHIFT-10))
3310 
3311 static void show_migration_types(unsigned char type)
3312 {
3313 	static const char types[MIGRATE_TYPES] = {
3314 		[MIGRATE_UNMOVABLE]	= 'U',
3315 		[MIGRATE_RECLAIMABLE]	= 'E',
3316 		[MIGRATE_MOVABLE]	= 'M',
3317 		[MIGRATE_RESERVE]	= 'R',
3318 #ifdef CONFIG_CMA
3319 		[MIGRATE_CMA]		= 'C',
3320 #endif
3321 #ifdef CONFIG_MEMORY_ISOLATION
3322 		[MIGRATE_ISOLATE]	= 'I',
3323 #endif
3324 	};
3325 	char tmp[MIGRATE_TYPES + 1];
3326 	char *p = tmp;
3327 	int i;
3328 
3329 	for (i = 0; i < MIGRATE_TYPES; i++) {
3330 		if (type & (1 << i))
3331 			*p++ = types[i];
3332 	}
3333 
3334 	*p = '\0';
3335 	printk("(%s) ", tmp);
3336 }
3337 
3338 /*
3339  * Show free area list (used inside shift_scroll-lock stuff)
3340  * We also calculate the percentage fragmentation. We do this by counting the
3341  * memory on each free list with the exception of the first item on the list.
3342  *
3343  * Bits in @filter:
3344  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3345  *   cpuset.
3346  */
3347 void show_free_areas(unsigned int filter)
3348 {
3349 	unsigned long free_pcp = 0;
3350 	int cpu;
3351 	struct zone *zone;
3352 
3353 	for_each_populated_zone(zone) {
3354 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3355 			continue;
3356 
3357 		for_each_online_cpu(cpu)
3358 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3359 	}
3360 
3361 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3362 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3363 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3364 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3365 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3366 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3367 		global_page_state(NR_ACTIVE_ANON),
3368 		global_page_state(NR_INACTIVE_ANON),
3369 		global_page_state(NR_ISOLATED_ANON),
3370 		global_page_state(NR_ACTIVE_FILE),
3371 		global_page_state(NR_INACTIVE_FILE),
3372 		global_page_state(NR_ISOLATED_FILE),
3373 		global_page_state(NR_UNEVICTABLE),
3374 		global_page_state(NR_FILE_DIRTY),
3375 		global_page_state(NR_WRITEBACK),
3376 		global_page_state(NR_UNSTABLE_NFS),
3377 		global_page_state(NR_SLAB_RECLAIMABLE),
3378 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3379 		global_page_state(NR_FILE_MAPPED),
3380 		global_page_state(NR_SHMEM),
3381 		global_page_state(NR_PAGETABLE),
3382 		global_page_state(NR_BOUNCE),
3383 		global_page_state(NR_FREE_PAGES),
3384 		free_pcp,
3385 		global_page_state(NR_FREE_CMA_PAGES));
3386 
3387 	for_each_populated_zone(zone) {
3388 		int i;
3389 
3390 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3391 			continue;
3392 
3393 		free_pcp = 0;
3394 		for_each_online_cpu(cpu)
3395 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3396 
3397 		show_node(zone);
3398 		printk("%s"
3399 			" free:%lukB"
3400 			" min:%lukB"
3401 			" low:%lukB"
3402 			" high:%lukB"
3403 			" active_anon:%lukB"
3404 			" inactive_anon:%lukB"
3405 			" active_file:%lukB"
3406 			" inactive_file:%lukB"
3407 			" unevictable:%lukB"
3408 			" isolated(anon):%lukB"
3409 			" isolated(file):%lukB"
3410 			" present:%lukB"
3411 			" managed:%lukB"
3412 			" mlocked:%lukB"
3413 			" dirty:%lukB"
3414 			" writeback:%lukB"
3415 			" mapped:%lukB"
3416 			" shmem:%lukB"
3417 			" slab_reclaimable:%lukB"
3418 			" slab_unreclaimable:%lukB"
3419 			" kernel_stack:%lukB"
3420 			" pagetables:%lukB"
3421 			" unstable:%lukB"
3422 			" bounce:%lukB"
3423 			" free_pcp:%lukB"
3424 			" local_pcp:%ukB"
3425 			" free_cma:%lukB"
3426 			" writeback_tmp:%lukB"
3427 			" pages_scanned:%lu"
3428 			" all_unreclaimable? %s"
3429 			"\n",
3430 			zone->name,
3431 			K(zone_page_state(zone, NR_FREE_PAGES)),
3432 			K(min_wmark_pages(zone)),
3433 			K(low_wmark_pages(zone)),
3434 			K(high_wmark_pages(zone)),
3435 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3436 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3437 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3438 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3439 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3440 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3441 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3442 			K(zone->present_pages),
3443 			K(zone->managed_pages),
3444 			K(zone_page_state(zone, NR_MLOCK)),
3445 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3446 			K(zone_page_state(zone, NR_WRITEBACK)),
3447 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3448 			K(zone_page_state(zone, NR_SHMEM)),
3449 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3450 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3451 			zone_page_state(zone, NR_KERNEL_STACK) *
3452 				THREAD_SIZE / 1024,
3453 			K(zone_page_state(zone, NR_PAGETABLE)),
3454 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3455 			K(zone_page_state(zone, NR_BOUNCE)),
3456 			K(free_pcp),
3457 			K(this_cpu_read(zone->pageset->pcp.count)),
3458 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3459 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3460 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3461 			(!zone_reclaimable(zone) ? "yes" : "no")
3462 			);
3463 		printk("lowmem_reserve[]:");
3464 		for (i = 0; i < MAX_NR_ZONES; i++)
3465 			printk(" %ld", zone->lowmem_reserve[i]);
3466 		printk("\n");
3467 	}
3468 
3469 	for_each_populated_zone(zone) {
3470 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3471 		unsigned char types[MAX_ORDER];
3472 
3473 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3474 			continue;
3475 		show_node(zone);
3476 		printk("%s: ", zone->name);
3477 
3478 		spin_lock_irqsave(&zone->lock, flags);
3479 		for (order = 0; order < MAX_ORDER; order++) {
3480 			struct free_area *area = &zone->free_area[order];
3481 			int type;
3482 
3483 			nr[order] = area->nr_free;
3484 			total += nr[order] << order;
3485 
3486 			types[order] = 0;
3487 			for (type = 0; type < MIGRATE_TYPES; type++) {
3488 				if (!list_empty(&area->free_list[type]))
3489 					types[order] |= 1 << type;
3490 			}
3491 		}
3492 		spin_unlock_irqrestore(&zone->lock, flags);
3493 		for (order = 0; order < MAX_ORDER; order++) {
3494 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3495 			if (nr[order])
3496 				show_migration_types(types[order]);
3497 		}
3498 		printk("= %lukB\n", K(total));
3499 	}
3500 
3501 	hugetlb_show_meminfo();
3502 
3503 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3504 
3505 	show_swap_cache_info();
3506 }
3507 
3508 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3509 {
3510 	zoneref->zone = zone;
3511 	zoneref->zone_idx = zone_idx(zone);
3512 }
3513 
3514 /*
3515  * Builds allocation fallback zone lists.
3516  *
3517  * Add all populated zones of a node to the zonelist.
3518  */
3519 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3520 				int nr_zones)
3521 {
3522 	struct zone *zone;
3523 	enum zone_type zone_type = MAX_NR_ZONES;
3524 
3525 	do {
3526 		zone_type--;
3527 		zone = pgdat->node_zones + zone_type;
3528 		if (populated_zone(zone)) {
3529 			zoneref_set_zone(zone,
3530 				&zonelist->_zonerefs[nr_zones++]);
3531 			check_highest_zone(zone_type);
3532 		}
3533 	} while (zone_type);
3534 
3535 	return nr_zones;
3536 }
3537 
3538 
3539 /*
3540  *  zonelist_order:
3541  *  0 = automatic detection of better ordering.
3542  *  1 = order by ([node] distance, -zonetype)
3543  *  2 = order by (-zonetype, [node] distance)
3544  *
3545  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3546  *  the same zonelist. So only NUMA can configure this param.
3547  */
3548 #define ZONELIST_ORDER_DEFAULT  0
3549 #define ZONELIST_ORDER_NODE     1
3550 #define ZONELIST_ORDER_ZONE     2
3551 
3552 /* zonelist order in the kernel.
3553  * set_zonelist_order() will set this to NODE or ZONE.
3554  */
3555 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3556 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3557 
3558 
3559 #ifdef CONFIG_NUMA
3560 /* The value user specified ....changed by config */
3561 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3562 /* string for sysctl */
3563 #define NUMA_ZONELIST_ORDER_LEN	16
3564 char numa_zonelist_order[16] = "default";
3565 
3566 /*
3567  * interface for configure zonelist ordering.
3568  * command line option "numa_zonelist_order"
3569  *	= "[dD]efault	- default, automatic configuration.
3570  *	= "[nN]ode 	- order by node locality, then by zone within node
3571  *	= "[zZ]one      - order by zone, then by locality within zone
3572  */
3573 
3574 static int __parse_numa_zonelist_order(char *s)
3575 {
3576 	if (*s == 'd' || *s == 'D') {
3577 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3578 	} else if (*s == 'n' || *s == 'N') {
3579 		user_zonelist_order = ZONELIST_ORDER_NODE;
3580 	} else if (*s == 'z' || *s == 'Z') {
3581 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3582 	} else {
3583 		printk(KERN_WARNING
3584 			"Ignoring invalid numa_zonelist_order value:  "
3585 			"%s\n", s);
3586 		return -EINVAL;
3587 	}
3588 	return 0;
3589 }
3590 
3591 static __init int setup_numa_zonelist_order(char *s)
3592 {
3593 	int ret;
3594 
3595 	if (!s)
3596 		return 0;
3597 
3598 	ret = __parse_numa_zonelist_order(s);
3599 	if (ret == 0)
3600 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3601 
3602 	return ret;
3603 }
3604 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3605 
3606 /*
3607  * sysctl handler for numa_zonelist_order
3608  */
3609 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3610 		void __user *buffer, size_t *length,
3611 		loff_t *ppos)
3612 {
3613 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3614 	int ret;
3615 	static DEFINE_MUTEX(zl_order_mutex);
3616 
3617 	mutex_lock(&zl_order_mutex);
3618 	if (write) {
3619 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3620 			ret = -EINVAL;
3621 			goto out;
3622 		}
3623 		strcpy(saved_string, (char *)table->data);
3624 	}
3625 	ret = proc_dostring(table, write, buffer, length, ppos);
3626 	if (ret)
3627 		goto out;
3628 	if (write) {
3629 		int oldval = user_zonelist_order;
3630 
3631 		ret = __parse_numa_zonelist_order((char *)table->data);
3632 		if (ret) {
3633 			/*
3634 			 * bogus value.  restore saved string
3635 			 */
3636 			strncpy((char *)table->data, saved_string,
3637 				NUMA_ZONELIST_ORDER_LEN);
3638 			user_zonelist_order = oldval;
3639 		} else if (oldval != user_zonelist_order) {
3640 			mutex_lock(&zonelists_mutex);
3641 			build_all_zonelists(NULL, NULL);
3642 			mutex_unlock(&zonelists_mutex);
3643 		}
3644 	}
3645 out:
3646 	mutex_unlock(&zl_order_mutex);
3647 	return ret;
3648 }
3649 
3650 
3651 #define MAX_NODE_LOAD (nr_online_nodes)
3652 static int node_load[MAX_NUMNODES];
3653 
3654 /**
3655  * find_next_best_node - find the next node that should appear in a given node's fallback list
3656  * @node: node whose fallback list we're appending
3657  * @used_node_mask: nodemask_t of already used nodes
3658  *
3659  * We use a number of factors to determine which is the next node that should
3660  * appear on a given node's fallback list.  The node should not have appeared
3661  * already in @node's fallback list, and it should be the next closest node
3662  * according to the distance array (which contains arbitrary distance values
3663  * from each node to each node in the system), and should also prefer nodes
3664  * with no CPUs, since presumably they'll have very little allocation pressure
3665  * on them otherwise.
3666  * It returns -1 if no node is found.
3667  */
3668 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3669 {
3670 	int n, val;
3671 	int min_val = INT_MAX;
3672 	int best_node = NUMA_NO_NODE;
3673 	const struct cpumask *tmp = cpumask_of_node(0);
3674 
3675 	/* Use the local node if we haven't already */
3676 	if (!node_isset(node, *used_node_mask)) {
3677 		node_set(node, *used_node_mask);
3678 		return node;
3679 	}
3680 
3681 	for_each_node_state(n, N_MEMORY) {
3682 
3683 		/* Don't want a node to appear more than once */
3684 		if (node_isset(n, *used_node_mask))
3685 			continue;
3686 
3687 		/* Use the distance array to find the distance */
3688 		val = node_distance(node, n);
3689 
3690 		/* Penalize nodes under us ("prefer the next node") */
3691 		val += (n < node);
3692 
3693 		/* Give preference to headless and unused nodes */
3694 		tmp = cpumask_of_node(n);
3695 		if (!cpumask_empty(tmp))
3696 			val += PENALTY_FOR_NODE_WITH_CPUS;
3697 
3698 		/* Slight preference for less loaded node */
3699 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3700 		val += node_load[n];
3701 
3702 		if (val < min_val) {
3703 			min_val = val;
3704 			best_node = n;
3705 		}
3706 	}
3707 
3708 	if (best_node >= 0)
3709 		node_set(best_node, *used_node_mask);
3710 
3711 	return best_node;
3712 }
3713 
3714 
3715 /*
3716  * Build zonelists ordered by node and zones within node.
3717  * This results in maximum locality--normal zone overflows into local
3718  * DMA zone, if any--but risks exhausting DMA zone.
3719  */
3720 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3721 {
3722 	int j;
3723 	struct zonelist *zonelist;
3724 
3725 	zonelist = &pgdat->node_zonelists[0];
3726 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3727 		;
3728 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3729 	zonelist->_zonerefs[j].zone = NULL;
3730 	zonelist->_zonerefs[j].zone_idx = 0;
3731 }
3732 
3733 /*
3734  * Build gfp_thisnode zonelists
3735  */
3736 static void build_thisnode_zonelists(pg_data_t *pgdat)
3737 {
3738 	int j;
3739 	struct zonelist *zonelist;
3740 
3741 	zonelist = &pgdat->node_zonelists[1];
3742 	j = build_zonelists_node(pgdat, zonelist, 0);
3743 	zonelist->_zonerefs[j].zone = NULL;
3744 	zonelist->_zonerefs[j].zone_idx = 0;
3745 }
3746 
3747 /*
3748  * Build zonelists ordered by zone and nodes within zones.
3749  * This results in conserving DMA zone[s] until all Normal memory is
3750  * exhausted, but results in overflowing to remote node while memory
3751  * may still exist in local DMA zone.
3752  */
3753 static int node_order[MAX_NUMNODES];
3754 
3755 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3756 {
3757 	int pos, j, node;
3758 	int zone_type;		/* needs to be signed */
3759 	struct zone *z;
3760 	struct zonelist *zonelist;
3761 
3762 	zonelist = &pgdat->node_zonelists[0];
3763 	pos = 0;
3764 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3765 		for (j = 0; j < nr_nodes; j++) {
3766 			node = node_order[j];
3767 			z = &NODE_DATA(node)->node_zones[zone_type];
3768 			if (populated_zone(z)) {
3769 				zoneref_set_zone(z,
3770 					&zonelist->_zonerefs[pos++]);
3771 				check_highest_zone(zone_type);
3772 			}
3773 		}
3774 	}
3775 	zonelist->_zonerefs[pos].zone = NULL;
3776 	zonelist->_zonerefs[pos].zone_idx = 0;
3777 }
3778 
3779 #if defined(CONFIG_64BIT)
3780 /*
3781  * Devices that require DMA32/DMA are relatively rare and do not justify a
3782  * penalty to every machine in case the specialised case applies. Default
3783  * to Node-ordering on 64-bit NUMA machines
3784  */
3785 static int default_zonelist_order(void)
3786 {
3787 	return ZONELIST_ORDER_NODE;
3788 }
3789 #else
3790 /*
3791  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3792  * by the kernel. If processes running on node 0 deplete the low memory zone
3793  * then reclaim will occur more frequency increasing stalls and potentially
3794  * be easier to OOM if a large percentage of the zone is under writeback or
3795  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3796  * Hence, default to zone ordering on 32-bit.
3797  */
3798 static int default_zonelist_order(void)
3799 {
3800 	return ZONELIST_ORDER_ZONE;
3801 }
3802 #endif /* CONFIG_64BIT */
3803 
3804 static void set_zonelist_order(void)
3805 {
3806 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3807 		current_zonelist_order = default_zonelist_order();
3808 	else
3809 		current_zonelist_order = user_zonelist_order;
3810 }
3811 
3812 static void build_zonelists(pg_data_t *pgdat)
3813 {
3814 	int j, node, load;
3815 	enum zone_type i;
3816 	nodemask_t used_mask;
3817 	int local_node, prev_node;
3818 	struct zonelist *zonelist;
3819 	int order = current_zonelist_order;
3820 
3821 	/* initialize zonelists */
3822 	for (i = 0; i < MAX_ZONELISTS; i++) {
3823 		zonelist = pgdat->node_zonelists + i;
3824 		zonelist->_zonerefs[0].zone = NULL;
3825 		zonelist->_zonerefs[0].zone_idx = 0;
3826 	}
3827 
3828 	/* NUMA-aware ordering of nodes */
3829 	local_node = pgdat->node_id;
3830 	load = nr_online_nodes;
3831 	prev_node = local_node;
3832 	nodes_clear(used_mask);
3833 
3834 	memset(node_order, 0, sizeof(node_order));
3835 	j = 0;
3836 
3837 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3838 		/*
3839 		 * We don't want to pressure a particular node.
3840 		 * So adding penalty to the first node in same
3841 		 * distance group to make it round-robin.
3842 		 */
3843 		if (node_distance(local_node, node) !=
3844 		    node_distance(local_node, prev_node))
3845 			node_load[node] = load;
3846 
3847 		prev_node = node;
3848 		load--;
3849 		if (order == ZONELIST_ORDER_NODE)
3850 			build_zonelists_in_node_order(pgdat, node);
3851 		else
3852 			node_order[j++] = node;	/* remember order */
3853 	}
3854 
3855 	if (order == ZONELIST_ORDER_ZONE) {
3856 		/* calculate node order -- i.e., DMA last! */
3857 		build_zonelists_in_zone_order(pgdat, j);
3858 	}
3859 
3860 	build_thisnode_zonelists(pgdat);
3861 }
3862 
3863 /* Construct the zonelist performance cache - see further mmzone.h */
3864 static void build_zonelist_cache(pg_data_t *pgdat)
3865 {
3866 	struct zonelist *zonelist;
3867 	struct zonelist_cache *zlc;
3868 	struct zoneref *z;
3869 
3870 	zonelist = &pgdat->node_zonelists[0];
3871 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3872 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3873 	for (z = zonelist->_zonerefs; z->zone; z++)
3874 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3875 }
3876 
3877 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3878 /*
3879  * Return node id of node used for "local" allocations.
3880  * I.e., first node id of first zone in arg node's generic zonelist.
3881  * Used for initializing percpu 'numa_mem', which is used primarily
3882  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3883  */
3884 int local_memory_node(int node)
3885 {
3886 	struct zone *zone;
3887 
3888 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3889 				   gfp_zone(GFP_KERNEL),
3890 				   NULL,
3891 				   &zone);
3892 	return zone->node;
3893 }
3894 #endif
3895 
3896 #else	/* CONFIG_NUMA */
3897 
3898 static void set_zonelist_order(void)
3899 {
3900 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3901 }
3902 
3903 static void build_zonelists(pg_data_t *pgdat)
3904 {
3905 	int node, local_node;
3906 	enum zone_type j;
3907 	struct zonelist *zonelist;
3908 
3909 	local_node = pgdat->node_id;
3910 
3911 	zonelist = &pgdat->node_zonelists[0];
3912 	j = build_zonelists_node(pgdat, zonelist, 0);
3913 
3914 	/*
3915 	 * Now we build the zonelist so that it contains the zones
3916 	 * of all the other nodes.
3917 	 * We don't want to pressure a particular node, so when
3918 	 * building the zones for node N, we make sure that the
3919 	 * zones coming right after the local ones are those from
3920 	 * node N+1 (modulo N)
3921 	 */
3922 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3923 		if (!node_online(node))
3924 			continue;
3925 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3926 	}
3927 	for (node = 0; node < local_node; node++) {
3928 		if (!node_online(node))
3929 			continue;
3930 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3931 	}
3932 
3933 	zonelist->_zonerefs[j].zone = NULL;
3934 	zonelist->_zonerefs[j].zone_idx = 0;
3935 }
3936 
3937 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3938 static void build_zonelist_cache(pg_data_t *pgdat)
3939 {
3940 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3941 }
3942 
3943 #endif	/* CONFIG_NUMA */
3944 
3945 /*
3946  * Boot pageset table. One per cpu which is going to be used for all
3947  * zones and all nodes. The parameters will be set in such a way
3948  * that an item put on a list will immediately be handed over to
3949  * the buddy list. This is safe since pageset manipulation is done
3950  * with interrupts disabled.
3951  *
3952  * The boot_pagesets must be kept even after bootup is complete for
3953  * unused processors and/or zones. They do play a role for bootstrapping
3954  * hotplugged processors.
3955  *
3956  * zoneinfo_show() and maybe other functions do
3957  * not check if the processor is online before following the pageset pointer.
3958  * Other parts of the kernel may not check if the zone is available.
3959  */
3960 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3961 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3962 static void setup_zone_pageset(struct zone *zone);
3963 
3964 /*
3965  * Global mutex to protect against size modification of zonelists
3966  * as well as to serialize pageset setup for the new populated zone.
3967  */
3968 DEFINE_MUTEX(zonelists_mutex);
3969 
3970 /* return values int ....just for stop_machine() */
3971 static int __build_all_zonelists(void *data)
3972 {
3973 	int nid;
3974 	int cpu;
3975 	pg_data_t *self = data;
3976 
3977 #ifdef CONFIG_NUMA
3978 	memset(node_load, 0, sizeof(node_load));
3979 #endif
3980 
3981 	if (self && !node_online(self->node_id)) {
3982 		build_zonelists(self);
3983 		build_zonelist_cache(self);
3984 	}
3985 
3986 	for_each_online_node(nid) {
3987 		pg_data_t *pgdat = NODE_DATA(nid);
3988 
3989 		build_zonelists(pgdat);
3990 		build_zonelist_cache(pgdat);
3991 	}
3992 
3993 	/*
3994 	 * Initialize the boot_pagesets that are going to be used
3995 	 * for bootstrapping processors. The real pagesets for
3996 	 * each zone will be allocated later when the per cpu
3997 	 * allocator is available.
3998 	 *
3999 	 * boot_pagesets are used also for bootstrapping offline
4000 	 * cpus if the system is already booted because the pagesets
4001 	 * are needed to initialize allocators on a specific cpu too.
4002 	 * F.e. the percpu allocator needs the page allocator which
4003 	 * needs the percpu allocator in order to allocate its pagesets
4004 	 * (a chicken-egg dilemma).
4005 	 */
4006 	for_each_possible_cpu(cpu) {
4007 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4008 
4009 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4010 		/*
4011 		 * We now know the "local memory node" for each node--
4012 		 * i.e., the node of the first zone in the generic zonelist.
4013 		 * Set up numa_mem percpu variable for on-line cpus.  During
4014 		 * boot, only the boot cpu should be on-line;  we'll init the
4015 		 * secondary cpus' numa_mem as they come on-line.  During
4016 		 * node/memory hotplug, we'll fixup all on-line cpus.
4017 		 */
4018 		if (cpu_online(cpu))
4019 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4020 #endif
4021 	}
4022 
4023 	return 0;
4024 }
4025 
4026 static noinline void __init
4027 build_all_zonelists_init(void)
4028 {
4029 	__build_all_zonelists(NULL);
4030 	mminit_verify_zonelist();
4031 	cpuset_init_current_mems_allowed();
4032 }
4033 
4034 /*
4035  * Called with zonelists_mutex held always
4036  * unless system_state == SYSTEM_BOOTING.
4037  *
4038  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4039  * [we're only called with non-NULL zone through __meminit paths] and
4040  * (2) call of __init annotated helper build_all_zonelists_init
4041  * [protected by SYSTEM_BOOTING].
4042  */
4043 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4044 {
4045 	set_zonelist_order();
4046 
4047 	if (system_state == SYSTEM_BOOTING) {
4048 		build_all_zonelists_init();
4049 	} else {
4050 #ifdef CONFIG_MEMORY_HOTPLUG
4051 		if (zone)
4052 			setup_zone_pageset(zone);
4053 #endif
4054 		/* we have to stop all cpus to guarantee there is no user
4055 		   of zonelist */
4056 		stop_machine(__build_all_zonelists, pgdat, NULL);
4057 		/* cpuset refresh routine should be here */
4058 	}
4059 	vm_total_pages = nr_free_pagecache_pages();
4060 	/*
4061 	 * Disable grouping by mobility if the number of pages in the
4062 	 * system is too low to allow the mechanism to work. It would be
4063 	 * more accurate, but expensive to check per-zone. This check is
4064 	 * made on memory-hotadd so a system can start with mobility
4065 	 * disabled and enable it later
4066 	 */
4067 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4068 		page_group_by_mobility_disabled = 1;
4069 	else
4070 		page_group_by_mobility_disabled = 0;
4071 
4072 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
4073 		"Total pages: %ld\n",
4074 			nr_online_nodes,
4075 			zonelist_order_name[current_zonelist_order],
4076 			page_group_by_mobility_disabled ? "off" : "on",
4077 			vm_total_pages);
4078 #ifdef CONFIG_NUMA
4079 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4080 #endif
4081 }
4082 
4083 /*
4084  * Helper functions to size the waitqueue hash table.
4085  * Essentially these want to choose hash table sizes sufficiently
4086  * large so that collisions trying to wait on pages are rare.
4087  * But in fact, the number of active page waitqueues on typical
4088  * systems is ridiculously low, less than 200. So this is even
4089  * conservative, even though it seems large.
4090  *
4091  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4092  * waitqueues, i.e. the size of the waitq table given the number of pages.
4093  */
4094 #define PAGES_PER_WAITQUEUE	256
4095 
4096 #ifndef CONFIG_MEMORY_HOTPLUG
4097 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4098 {
4099 	unsigned long size = 1;
4100 
4101 	pages /= PAGES_PER_WAITQUEUE;
4102 
4103 	while (size < pages)
4104 		size <<= 1;
4105 
4106 	/*
4107 	 * Once we have dozens or even hundreds of threads sleeping
4108 	 * on IO we've got bigger problems than wait queue collision.
4109 	 * Limit the size of the wait table to a reasonable size.
4110 	 */
4111 	size = min(size, 4096UL);
4112 
4113 	return max(size, 4UL);
4114 }
4115 #else
4116 /*
4117  * A zone's size might be changed by hot-add, so it is not possible to determine
4118  * a suitable size for its wait_table.  So we use the maximum size now.
4119  *
4120  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4121  *
4122  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4123  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4124  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4125  *
4126  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4127  * or more by the traditional way. (See above).  It equals:
4128  *
4129  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4130  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4131  *    powerpc (64K page size)             : =  (32G +16M)byte.
4132  */
4133 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4134 {
4135 	return 4096UL;
4136 }
4137 #endif
4138 
4139 /*
4140  * This is an integer logarithm so that shifts can be used later
4141  * to extract the more random high bits from the multiplicative
4142  * hash function before the remainder is taken.
4143  */
4144 static inline unsigned long wait_table_bits(unsigned long size)
4145 {
4146 	return ffz(~size);
4147 }
4148 
4149 /*
4150  * Check if a pageblock contains reserved pages
4151  */
4152 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4153 {
4154 	unsigned long pfn;
4155 
4156 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4157 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4158 			return 1;
4159 	}
4160 	return 0;
4161 }
4162 
4163 /*
4164  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4165  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4166  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4167  * higher will lead to a bigger reserve which will get freed as contiguous
4168  * blocks as reclaim kicks in
4169  */
4170 static void setup_zone_migrate_reserve(struct zone *zone)
4171 {
4172 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4173 	struct page *page;
4174 	unsigned long block_migratetype;
4175 	int reserve;
4176 	int old_reserve;
4177 
4178 	/*
4179 	 * Get the start pfn, end pfn and the number of blocks to reserve
4180 	 * We have to be careful to be aligned to pageblock_nr_pages to
4181 	 * make sure that we always check pfn_valid for the first page in
4182 	 * the block.
4183 	 */
4184 	start_pfn = zone->zone_start_pfn;
4185 	end_pfn = zone_end_pfn(zone);
4186 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4187 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4188 							pageblock_order;
4189 
4190 	/*
4191 	 * Reserve blocks are generally in place to help high-order atomic
4192 	 * allocations that are short-lived. A min_free_kbytes value that
4193 	 * would result in more than 2 reserve blocks for atomic allocations
4194 	 * is assumed to be in place to help anti-fragmentation for the
4195 	 * future allocation of hugepages at runtime.
4196 	 */
4197 	reserve = min(2, reserve);
4198 	old_reserve = zone->nr_migrate_reserve_block;
4199 
4200 	/* When memory hot-add, we almost always need to do nothing */
4201 	if (reserve == old_reserve)
4202 		return;
4203 	zone->nr_migrate_reserve_block = reserve;
4204 
4205 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4206 		if (!pfn_valid(pfn))
4207 			continue;
4208 		page = pfn_to_page(pfn);
4209 
4210 		/* Watch out for overlapping nodes */
4211 		if (page_to_nid(page) != zone_to_nid(zone))
4212 			continue;
4213 
4214 		block_migratetype = get_pageblock_migratetype(page);
4215 
4216 		/* Only test what is necessary when the reserves are not met */
4217 		if (reserve > 0) {
4218 			/*
4219 			 * Blocks with reserved pages will never free, skip
4220 			 * them.
4221 			 */
4222 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4223 			if (pageblock_is_reserved(pfn, block_end_pfn))
4224 				continue;
4225 
4226 			/* If this block is reserved, account for it */
4227 			if (block_migratetype == MIGRATE_RESERVE) {
4228 				reserve--;
4229 				continue;
4230 			}
4231 
4232 			/* Suitable for reserving if this block is movable */
4233 			if (block_migratetype == MIGRATE_MOVABLE) {
4234 				set_pageblock_migratetype(page,
4235 							MIGRATE_RESERVE);
4236 				move_freepages_block(zone, page,
4237 							MIGRATE_RESERVE);
4238 				reserve--;
4239 				continue;
4240 			}
4241 		} else if (!old_reserve) {
4242 			/*
4243 			 * At boot time we don't need to scan the whole zone
4244 			 * for turning off MIGRATE_RESERVE.
4245 			 */
4246 			break;
4247 		}
4248 
4249 		/*
4250 		 * If the reserve is met and this is a previous reserved block,
4251 		 * take it back
4252 		 */
4253 		if (block_migratetype == MIGRATE_RESERVE) {
4254 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4255 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4256 		}
4257 	}
4258 }
4259 
4260 /*
4261  * Initially all pages are reserved - free ones are freed
4262  * up by free_all_bootmem() once the early boot process is
4263  * done. Non-atomic initialization, single-pass.
4264  */
4265 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4266 		unsigned long start_pfn, enum memmap_context context)
4267 {
4268 	struct page *page;
4269 	unsigned long end_pfn = start_pfn + size;
4270 	unsigned long pfn;
4271 	struct zone *z;
4272 
4273 	if (highest_memmap_pfn < end_pfn - 1)
4274 		highest_memmap_pfn = end_pfn - 1;
4275 
4276 	z = &NODE_DATA(nid)->node_zones[zone];
4277 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4278 		/*
4279 		 * There can be holes in boot-time mem_map[]s
4280 		 * handed to this function.  They do not
4281 		 * exist on hotplugged memory.
4282 		 */
4283 		if (context == MEMMAP_EARLY) {
4284 			if (!early_pfn_valid(pfn))
4285 				continue;
4286 			if (!early_pfn_in_nid(pfn, nid))
4287 				continue;
4288 		}
4289 		page = pfn_to_page(pfn);
4290 		set_page_links(page, zone, nid, pfn);
4291 		mminit_verify_page_links(page, zone, nid, pfn);
4292 		init_page_count(page);
4293 		page_mapcount_reset(page);
4294 		page_cpupid_reset_last(page);
4295 		SetPageReserved(page);
4296 		/*
4297 		 * Mark the block movable so that blocks are reserved for
4298 		 * movable at startup. This will force kernel allocations
4299 		 * to reserve their blocks rather than leaking throughout
4300 		 * the address space during boot when many long-lived
4301 		 * kernel allocations are made. Later some blocks near
4302 		 * the start are marked MIGRATE_RESERVE by
4303 		 * setup_zone_migrate_reserve()
4304 		 *
4305 		 * bitmap is created for zone's valid pfn range. but memmap
4306 		 * can be created for invalid pages (for alignment)
4307 		 * check here not to call set_pageblock_migratetype() against
4308 		 * pfn out of zone.
4309 		 */
4310 		if ((z->zone_start_pfn <= pfn)
4311 		    && (pfn < zone_end_pfn(z))
4312 		    && !(pfn & (pageblock_nr_pages - 1)))
4313 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4314 
4315 		INIT_LIST_HEAD(&page->lru);
4316 #ifdef WANT_PAGE_VIRTUAL
4317 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4318 		if (!is_highmem_idx(zone))
4319 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4320 #endif
4321 	}
4322 }
4323 
4324 static void __meminit zone_init_free_lists(struct zone *zone)
4325 {
4326 	unsigned int order, t;
4327 	for_each_migratetype_order(order, t) {
4328 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4329 		zone->free_area[order].nr_free = 0;
4330 	}
4331 }
4332 
4333 #ifndef __HAVE_ARCH_MEMMAP_INIT
4334 #define memmap_init(size, nid, zone, start_pfn) \
4335 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4336 #endif
4337 
4338 static int zone_batchsize(struct zone *zone)
4339 {
4340 #ifdef CONFIG_MMU
4341 	int batch;
4342 
4343 	/*
4344 	 * The per-cpu-pages pools are set to around 1000th of the
4345 	 * size of the zone.  But no more than 1/2 of a meg.
4346 	 *
4347 	 * OK, so we don't know how big the cache is.  So guess.
4348 	 */
4349 	batch = zone->managed_pages / 1024;
4350 	if (batch * PAGE_SIZE > 512 * 1024)
4351 		batch = (512 * 1024) / PAGE_SIZE;
4352 	batch /= 4;		/* We effectively *= 4 below */
4353 	if (batch < 1)
4354 		batch = 1;
4355 
4356 	/*
4357 	 * Clamp the batch to a 2^n - 1 value. Having a power
4358 	 * of 2 value was found to be more likely to have
4359 	 * suboptimal cache aliasing properties in some cases.
4360 	 *
4361 	 * For example if 2 tasks are alternately allocating
4362 	 * batches of pages, one task can end up with a lot
4363 	 * of pages of one half of the possible page colors
4364 	 * and the other with pages of the other colors.
4365 	 */
4366 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4367 
4368 	return batch;
4369 
4370 #else
4371 	/* The deferral and batching of frees should be suppressed under NOMMU
4372 	 * conditions.
4373 	 *
4374 	 * The problem is that NOMMU needs to be able to allocate large chunks
4375 	 * of contiguous memory as there's no hardware page translation to
4376 	 * assemble apparent contiguous memory from discontiguous pages.
4377 	 *
4378 	 * Queueing large contiguous runs of pages for batching, however,
4379 	 * causes the pages to actually be freed in smaller chunks.  As there
4380 	 * can be a significant delay between the individual batches being
4381 	 * recycled, this leads to the once large chunks of space being
4382 	 * fragmented and becoming unavailable for high-order allocations.
4383 	 */
4384 	return 0;
4385 #endif
4386 }
4387 
4388 /*
4389  * pcp->high and pcp->batch values are related and dependent on one another:
4390  * ->batch must never be higher then ->high.
4391  * The following function updates them in a safe manner without read side
4392  * locking.
4393  *
4394  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4395  * those fields changing asynchronously (acording the the above rule).
4396  *
4397  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4398  * outside of boot time (or some other assurance that no concurrent updaters
4399  * exist).
4400  */
4401 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4402 		unsigned long batch)
4403 {
4404        /* start with a fail safe value for batch */
4405 	pcp->batch = 1;
4406 	smp_wmb();
4407 
4408        /* Update high, then batch, in order */
4409 	pcp->high = high;
4410 	smp_wmb();
4411 
4412 	pcp->batch = batch;
4413 }
4414 
4415 /* a companion to pageset_set_high() */
4416 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4417 {
4418 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4419 }
4420 
4421 static void pageset_init(struct per_cpu_pageset *p)
4422 {
4423 	struct per_cpu_pages *pcp;
4424 	int migratetype;
4425 
4426 	memset(p, 0, sizeof(*p));
4427 
4428 	pcp = &p->pcp;
4429 	pcp->count = 0;
4430 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4431 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4432 }
4433 
4434 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4435 {
4436 	pageset_init(p);
4437 	pageset_set_batch(p, batch);
4438 }
4439 
4440 /*
4441  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4442  * to the value high for the pageset p.
4443  */
4444 static void pageset_set_high(struct per_cpu_pageset *p,
4445 				unsigned long high)
4446 {
4447 	unsigned long batch = max(1UL, high / 4);
4448 	if ((high / 4) > (PAGE_SHIFT * 8))
4449 		batch = PAGE_SHIFT * 8;
4450 
4451 	pageset_update(&p->pcp, high, batch);
4452 }
4453 
4454 static void pageset_set_high_and_batch(struct zone *zone,
4455 				       struct per_cpu_pageset *pcp)
4456 {
4457 	if (percpu_pagelist_fraction)
4458 		pageset_set_high(pcp,
4459 			(zone->managed_pages /
4460 				percpu_pagelist_fraction));
4461 	else
4462 		pageset_set_batch(pcp, zone_batchsize(zone));
4463 }
4464 
4465 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4466 {
4467 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4468 
4469 	pageset_init(pcp);
4470 	pageset_set_high_and_batch(zone, pcp);
4471 }
4472 
4473 static void __meminit setup_zone_pageset(struct zone *zone)
4474 {
4475 	int cpu;
4476 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4477 	for_each_possible_cpu(cpu)
4478 		zone_pageset_init(zone, cpu);
4479 }
4480 
4481 /*
4482  * Allocate per cpu pagesets and initialize them.
4483  * Before this call only boot pagesets were available.
4484  */
4485 void __init setup_per_cpu_pageset(void)
4486 {
4487 	struct zone *zone;
4488 
4489 	for_each_populated_zone(zone)
4490 		setup_zone_pageset(zone);
4491 }
4492 
4493 static noinline __init_refok
4494 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4495 {
4496 	int i;
4497 	size_t alloc_size;
4498 
4499 	/*
4500 	 * The per-page waitqueue mechanism uses hashed waitqueues
4501 	 * per zone.
4502 	 */
4503 	zone->wait_table_hash_nr_entries =
4504 		 wait_table_hash_nr_entries(zone_size_pages);
4505 	zone->wait_table_bits =
4506 		wait_table_bits(zone->wait_table_hash_nr_entries);
4507 	alloc_size = zone->wait_table_hash_nr_entries
4508 					* sizeof(wait_queue_head_t);
4509 
4510 	if (!slab_is_available()) {
4511 		zone->wait_table = (wait_queue_head_t *)
4512 			memblock_virt_alloc_node_nopanic(
4513 				alloc_size, zone->zone_pgdat->node_id);
4514 	} else {
4515 		/*
4516 		 * This case means that a zone whose size was 0 gets new memory
4517 		 * via memory hot-add.
4518 		 * But it may be the case that a new node was hot-added.  In
4519 		 * this case vmalloc() will not be able to use this new node's
4520 		 * memory - this wait_table must be initialized to use this new
4521 		 * node itself as well.
4522 		 * To use this new node's memory, further consideration will be
4523 		 * necessary.
4524 		 */
4525 		zone->wait_table = vmalloc(alloc_size);
4526 	}
4527 	if (!zone->wait_table)
4528 		return -ENOMEM;
4529 
4530 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4531 		init_waitqueue_head(zone->wait_table + i);
4532 
4533 	return 0;
4534 }
4535 
4536 static __meminit void zone_pcp_init(struct zone *zone)
4537 {
4538 	/*
4539 	 * per cpu subsystem is not up at this point. The following code
4540 	 * relies on the ability of the linker to provide the
4541 	 * offset of a (static) per cpu variable into the per cpu area.
4542 	 */
4543 	zone->pageset = &boot_pageset;
4544 
4545 	if (populated_zone(zone))
4546 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4547 			zone->name, zone->present_pages,
4548 					 zone_batchsize(zone));
4549 }
4550 
4551 int __meminit init_currently_empty_zone(struct zone *zone,
4552 					unsigned long zone_start_pfn,
4553 					unsigned long size,
4554 					enum memmap_context context)
4555 {
4556 	struct pglist_data *pgdat = zone->zone_pgdat;
4557 	int ret;
4558 	ret = zone_wait_table_init(zone, size);
4559 	if (ret)
4560 		return ret;
4561 	pgdat->nr_zones = zone_idx(zone) + 1;
4562 
4563 	zone->zone_start_pfn = zone_start_pfn;
4564 
4565 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4566 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4567 			pgdat->node_id,
4568 			(unsigned long)zone_idx(zone),
4569 			zone_start_pfn, (zone_start_pfn + size));
4570 
4571 	zone_init_free_lists(zone);
4572 
4573 	return 0;
4574 }
4575 
4576 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4577 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4578 /*
4579  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4580  */
4581 int __meminit __early_pfn_to_nid(unsigned long pfn)
4582 {
4583 	unsigned long start_pfn, end_pfn;
4584 	int nid;
4585 	/*
4586 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4587 	 * when the kernel is running single-threaded.
4588 	 */
4589 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4590 	static int __meminitdata last_nid;
4591 
4592 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4593 		return last_nid;
4594 
4595 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4596 	if (nid != -1) {
4597 		last_start_pfn = start_pfn;
4598 		last_end_pfn = end_pfn;
4599 		last_nid = nid;
4600 	}
4601 
4602 	return nid;
4603 }
4604 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4605 
4606 int __meminit early_pfn_to_nid(unsigned long pfn)
4607 {
4608 	int nid;
4609 
4610 	nid = __early_pfn_to_nid(pfn);
4611 	if (nid >= 0)
4612 		return nid;
4613 	/* just returns 0 */
4614 	return 0;
4615 }
4616 
4617 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4618 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4619 {
4620 	int nid;
4621 
4622 	nid = __early_pfn_to_nid(pfn);
4623 	if (nid >= 0 && nid != node)
4624 		return false;
4625 	return true;
4626 }
4627 #endif
4628 
4629 /**
4630  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4631  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4632  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4633  *
4634  * If an architecture guarantees that all ranges registered contain no holes
4635  * and may be freed, this this function may be used instead of calling
4636  * memblock_free_early_nid() manually.
4637  */
4638 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4639 {
4640 	unsigned long start_pfn, end_pfn;
4641 	int i, this_nid;
4642 
4643 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4644 		start_pfn = min(start_pfn, max_low_pfn);
4645 		end_pfn = min(end_pfn, max_low_pfn);
4646 
4647 		if (start_pfn < end_pfn)
4648 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4649 					(end_pfn - start_pfn) << PAGE_SHIFT,
4650 					this_nid);
4651 	}
4652 }
4653 
4654 /**
4655  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4656  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4657  *
4658  * If an architecture guarantees that all ranges registered contain no holes and may
4659  * be freed, this function may be used instead of calling memory_present() manually.
4660  */
4661 void __init sparse_memory_present_with_active_regions(int nid)
4662 {
4663 	unsigned long start_pfn, end_pfn;
4664 	int i, this_nid;
4665 
4666 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4667 		memory_present(this_nid, start_pfn, end_pfn);
4668 }
4669 
4670 /**
4671  * get_pfn_range_for_nid - Return the start and end page frames for a node
4672  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4673  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4674  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4675  *
4676  * It returns the start and end page frame of a node based on information
4677  * provided by memblock_set_node(). If called for a node
4678  * with no available memory, a warning is printed and the start and end
4679  * PFNs will be 0.
4680  */
4681 void __meminit get_pfn_range_for_nid(unsigned int nid,
4682 			unsigned long *start_pfn, unsigned long *end_pfn)
4683 {
4684 	unsigned long this_start_pfn, this_end_pfn;
4685 	int i;
4686 
4687 	*start_pfn = -1UL;
4688 	*end_pfn = 0;
4689 
4690 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4691 		*start_pfn = min(*start_pfn, this_start_pfn);
4692 		*end_pfn = max(*end_pfn, this_end_pfn);
4693 	}
4694 
4695 	if (*start_pfn == -1UL)
4696 		*start_pfn = 0;
4697 }
4698 
4699 /*
4700  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4701  * assumption is made that zones within a node are ordered in monotonic
4702  * increasing memory addresses so that the "highest" populated zone is used
4703  */
4704 static void __init find_usable_zone_for_movable(void)
4705 {
4706 	int zone_index;
4707 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4708 		if (zone_index == ZONE_MOVABLE)
4709 			continue;
4710 
4711 		if (arch_zone_highest_possible_pfn[zone_index] >
4712 				arch_zone_lowest_possible_pfn[zone_index])
4713 			break;
4714 	}
4715 
4716 	VM_BUG_ON(zone_index == -1);
4717 	movable_zone = zone_index;
4718 }
4719 
4720 /*
4721  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4722  * because it is sized independent of architecture. Unlike the other zones,
4723  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4724  * in each node depending on the size of each node and how evenly kernelcore
4725  * is distributed. This helper function adjusts the zone ranges
4726  * provided by the architecture for a given node by using the end of the
4727  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4728  * zones within a node are in order of monotonic increases memory addresses
4729  */
4730 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4731 					unsigned long zone_type,
4732 					unsigned long node_start_pfn,
4733 					unsigned long node_end_pfn,
4734 					unsigned long *zone_start_pfn,
4735 					unsigned long *zone_end_pfn)
4736 {
4737 	/* Only adjust if ZONE_MOVABLE is on this node */
4738 	if (zone_movable_pfn[nid]) {
4739 		/* Size ZONE_MOVABLE */
4740 		if (zone_type == ZONE_MOVABLE) {
4741 			*zone_start_pfn = zone_movable_pfn[nid];
4742 			*zone_end_pfn = min(node_end_pfn,
4743 				arch_zone_highest_possible_pfn[movable_zone]);
4744 
4745 		/* Adjust for ZONE_MOVABLE starting within this range */
4746 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4747 				*zone_end_pfn > zone_movable_pfn[nid]) {
4748 			*zone_end_pfn = zone_movable_pfn[nid];
4749 
4750 		/* Check if this whole range is within ZONE_MOVABLE */
4751 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4752 			*zone_start_pfn = *zone_end_pfn;
4753 	}
4754 }
4755 
4756 /*
4757  * Return the number of pages a zone spans in a node, including holes
4758  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4759  */
4760 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4761 					unsigned long zone_type,
4762 					unsigned long node_start_pfn,
4763 					unsigned long node_end_pfn,
4764 					unsigned long *ignored)
4765 {
4766 	unsigned long zone_start_pfn, zone_end_pfn;
4767 
4768 	/* Get the start and end of the zone */
4769 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4770 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4771 	adjust_zone_range_for_zone_movable(nid, zone_type,
4772 				node_start_pfn, node_end_pfn,
4773 				&zone_start_pfn, &zone_end_pfn);
4774 
4775 	/* Check that this node has pages within the zone's required range */
4776 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4777 		return 0;
4778 
4779 	/* Move the zone boundaries inside the node if necessary */
4780 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4781 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4782 
4783 	/* Return the spanned pages */
4784 	return zone_end_pfn - zone_start_pfn;
4785 }
4786 
4787 /*
4788  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4789  * then all holes in the requested range will be accounted for.
4790  */
4791 unsigned long __meminit __absent_pages_in_range(int nid,
4792 				unsigned long range_start_pfn,
4793 				unsigned long range_end_pfn)
4794 {
4795 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4796 	unsigned long start_pfn, end_pfn;
4797 	int i;
4798 
4799 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4800 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4801 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4802 		nr_absent -= end_pfn - start_pfn;
4803 	}
4804 	return nr_absent;
4805 }
4806 
4807 /**
4808  * absent_pages_in_range - Return number of page frames in holes within a range
4809  * @start_pfn: The start PFN to start searching for holes
4810  * @end_pfn: The end PFN to stop searching for holes
4811  *
4812  * It returns the number of pages frames in memory holes within a range.
4813  */
4814 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4815 							unsigned long end_pfn)
4816 {
4817 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4818 }
4819 
4820 /* Return the number of page frames in holes in a zone on a node */
4821 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4822 					unsigned long zone_type,
4823 					unsigned long node_start_pfn,
4824 					unsigned long node_end_pfn,
4825 					unsigned long *ignored)
4826 {
4827 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4828 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4829 	unsigned long zone_start_pfn, zone_end_pfn;
4830 
4831 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4832 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4833 
4834 	adjust_zone_range_for_zone_movable(nid, zone_type,
4835 			node_start_pfn, node_end_pfn,
4836 			&zone_start_pfn, &zone_end_pfn);
4837 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4838 }
4839 
4840 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4841 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4842 					unsigned long zone_type,
4843 					unsigned long node_start_pfn,
4844 					unsigned long node_end_pfn,
4845 					unsigned long *zones_size)
4846 {
4847 	return zones_size[zone_type];
4848 }
4849 
4850 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4851 						unsigned long zone_type,
4852 						unsigned long node_start_pfn,
4853 						unsigned long node_end_pfn,
4854 						unsigned long *zholes_size)
4855 {
4856 	if (!zholes_size)
4857 		return 0;
4858 
4859 	return zholes_size[zone_type];
4860 }
4861 
4862 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4863 
4864 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4865 						unsigned long node_start_pfn,
4866 						unsigned long node_end_pfn,
4867 						unsigned long *zones_size,
4868 						unsigned long *zholes_size)
4869 {
4870 	unsigned long realtotalpages, totalpages = 0;
4871 	enum zone_type i;
4872 
4873 	for (i = 0; i < MAX_NR_ZONES; i++)
4874 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4875 							 node_start_pfn,
4876 							 node_end_pfn,
4877 							 zones_size);
4878 	pgdat->node_spanned_pages = totalpages;
4879 
4880 	realtotalpages = totalpages;
4881 	for (i = 0; i < MAX_NR_ZONES; i++)
4882 		realtotalpages -=
4883 			zone_absent_pages_in_node(pgdat->node_id, i,
4884 						  node_start_pfn, node_end_pfn,
4885 						  zholes_size);
4886 	pgdat->node_present_pages = realtotalpages;
4887 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4888 							realtotalpages);
4889 }
4890 
4891 #ifndef CONFIG_SPARSEMEM
4892 /*
4893  * Calculate the size of the zone->blockflags rounded to an unsigned long
4894  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4895  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4896  * round what is now in bits to nearest long in bits, then return it in
4897  * bytes.
4898  */
4899 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4900 {
4901 	unsigned long usemapsize;
4902 
4903 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4904 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4905 	usemapsize = usemapsize >> pageblock_order;
4906 	usemapsize *= NR_PAGEBLOCK_BITS;
4907 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4908 
4909 	return usemapsize / 8;
4910 }
4911 
4912 static void __init setup_usemap(struct pglist_data *pgdat,
4913 				struct zone *zone,
4914 				unsigned long zone_start_pfn,
4915 				unsigned long zonesize)
4916 {
4917 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4918 	zone->pageblock_flags = NULL;
4919 	if (usemapsize)
4920 		zone->pageblock_flags =
4921 			memblock_virt_alloc_node_nopanic(usemapsize,
4922 							 pgdat->node_id);
4923 }
4924 #else
4925 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4926 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4927 #endif /* CONFIG_SPARSEMEM */
4928 
4929 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4930 
4931 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4932 void __paginginit set_pageblock_order(void)
4933 {
4934 	unsigned int order;
4935 
4936 	/* Check that pageblock_nr_pages has not already been setup */
4937 	if (pageblock_order)
4938 		return;
4939 
4940 	if (HPAGE_SHIFT > PAGE_SHIFT)
4941 		order = HUGETLB_PAGE_ORDER;
4942 	else
4943 		order = MAX_ORDER - 1;
4944 
4945 	/*
4946 	 * Assume the largest contiguous order of interest is a huge page.
4947 	 * This value may be variable depending on boot parameters on IA64 and
4948 	 * powerpc.
4949 	 */
4950 	pageblock_order = order;
4951 }
4952 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4953 
4954 /*
4955  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4956  * is unused as pageblock_order is set at compile-time. See
4957  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4958  * the kernel config
4959  */
4960 void __paginginit set_pageblock_order(void)
4961 {
4962 }
4963 
4964 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4965 
4966 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4967 						   unsigned long present_pages)
4968 {
4969 	unsigned long pages = spanned_pages;
4970 
4971 	/*
4972 	 * Provide a more accurate estimation if there are holes within
4973 	 * the zone and SPARSEMEM is in use. If there are holes within the
4974 	 * zone, each populated memory region may cost us one or two extra
4975 	 * memmap pages due to alignment because memmap pages for each
4976 	 * populated regions may not naturally algined on page boundary.
4977 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4978 	 */
4979 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4980 	    IS_ENABLED(CONFIG_SPARSEMEM))
4981 		pages = present_pages;
4982 
4983 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4984 }
4985 
4986 /*
4987  * Set up the zone data structures:
4988  *   - mark all pages reserved
4989  *   - mark all memory queues empty
4990  *   - clear the memory bitmaps
4991  *
4992  * NOTE: pgdat should get zeroed by caller.
4993  */
4994 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4995 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4996 		unsigned long *zones_size, unsigned long *zholes_size)
4997 {
4998 	enum zone_type j;
4999 	int nid = pgdat->node_id;
5000 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
5001 	int ret;
5002 
5003 	pgdat_resize_init(pgdat);
5004 #ifdef CONFIG_NUMA_BALANCING
5005 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5006 	pgdat->numabalancing_migrate_nr_pages = 0;
5007 	pgdat->numabalancing_migrate_next_window = jiffies;
5008 #endif
5009 	init_waitqueue_head(&pgdat->kswapd_wait);
5010 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5011 	pgdat_page_ext_init(pgdat);
5012 
5013 	for (j = 0; j < MAX_NR_ZONES; j++) {
5014 		struct zone *zone = pgdat->node_zones + j;
5015 		unsigned long size, realsize, freesize, memmap_pages;
5016 
5017 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
5018 						  node_end_pfn, zones_size);
5019 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
5020 								node_start_pfn,
5021 								node_end_pfn,
5022 								zholes_size);
5023 
5024 		/*
5025 		 * Adjust freesize so that it accounts for how much memory
5026 		 * is used by this zone for memmap. This affects the watermark
5027 		 * and per-cpu initialisations
5028 		 */
5029 		memmap_pages = calc_memmap_size(size, realsize);
5030 		if (!is_highmem_idx(j)) {
5031 			if (freesize >= memmap_pages) {
5032 				freesize -= memmap_pages;
5033 				if (memmap_pages)
5034 					printk(KERN_DEBUG
5035 					       "  %s zone: %lu pages used for memmap\n",
5036 					       zone_names[j], memmap_pages);
5037 			} else
5038 				printk(KERN_WARNING
5039 					"  %s zone: %lu pages exceeds freesize %lu\n",
5040 					zone_names[j], memmap_pages, freesize);
5041 		}
5042 
5043 		/* Account for reserved pages */
5044 		if (j == 0 && freesize > dma_reserve) {
5045 			freesize -= dma_reserve;
5046 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5047 					zone_names[0], dma_reserve);
5048 		}
5049 
5050 		if (!is_highmem_idx(j))
5051 			nr_kernel_pages += freesize;
5052 		/* Charge for highmem memmap if there are enough kernel pages */
5053 		else if (nr_kernel_pages > memmap_pages * 2)
5054 			nr_kernel_pages -= memmap_pages;
5055 		nr_all_pages += freesize;
5056 
5057 		zone->spanned_pages = size;
5058 		zone->present_pages = realsize;
5059 		/*
5060 		 * Set an approximate value for lowmem here, it will be adjusted
5061 		 * when the bootmem allocator frees pages into the buddy system.
5062 		 * And all highmem pages will be managed by the buddy system.
5063 		 */
5064 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5065 #ifdef CONFIG_NUMA
5066 		zone->node = nid;
5067 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5068 						/ 100;
5069 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5070 #endif
5071 		zone->name = zone_names[j];
5072 		spin_lock_init(&zone->lock);
5073 		spin_lock_init(&zone->lru_lock);
5074 		zone_seqlock_init(zone);
5075 		zone->zone_pgdat = pgdat;
5076 		zone_pcp_init(zone);
5077 
5078 		/* For bootup, initialized properly in watermark setup */
5079 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5080 
5081 		lruvec_init(&zone->lruvec);
5082 		if (!size)
5083 			continue;
5084 
5085 		set_pageblock_order();
5086 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5087 		ret = init_currently_empty_zone(zone, zone_start_pfn,
5088 						size, MEMMAP_EARLY);
5089 		BUG_ON(ret);
5090 		memmap_init(size, nid, j, zone_start_pfn);
5091 		zone_start_pfn += size;
5092 	}
5093 }
5094 
5095 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5096 {
5097 	/* Skip empty nodes */
5098 	if (!pgdat->node_spanned_pages)
5099 		return;
5100 
5101 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5102 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5103 	if (!pgdat->node_mem_map) {
5104 		unsigned long size, start, end;
5105 		struct page *map;
5106 
5107 		/*
5108 		 * The zone's endpoints aren't required to be MAX_ORDER
5109 		 * aligned but the node_mem_map endpoints must be in order
5110 		 * for the buddy allocator to function correctly.
5111 		 */
5112 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5113 		end = pgdat_end_pfn(pgdat);
5114 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5115 		size =  (end - start) * sizeof(struct page);
5116 		map = alloc_remap(pgdat->node_id, size);
5117 		if (!map)
5118 			map = memblock_virt_alloc_node_nopanic(size,
5119 							       pgdat->node_id);
5120 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5121 	}
5122 #ifndef CONFIG_NEED_MULTIPLE_NODES
5123 	/*
5124 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5125 	 */
5126 	if (pgdat == NODE_DATA(0)) {
5127 		mem_map = NODE_DATA(0)->node_mem_map;
5128 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5129 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5130 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5131 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5132 	}
5133 #endif
5134 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5135 }
5136 
5137 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5138 		unsigned long node_start_pfn, unsigned long *zholes_size)
5139 {
5140 	pg_data_t *pgdat = NODE_DATA(nid);
5141 	unsigned long start_pfn = 0;
5142 	unsigned long end_pfn = 0;
5143 
5144 	/* pg_data_t should be reset to zero when it's allocated */
5145 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5146 
5147 	pgdat->node_id = nid;
5148 	pgdat->node_start_pfn = node_start_pfn;
5149 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5150 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5151 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5152 		(u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5153 #endif
5154 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5155 				  zones_size, zholes_size);
5156 
5157 	alloc_node_mem_map(pgdat);
5158 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5159 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5160 		nid, (unsigned long)pgdat,
5161 		(unsigned long)pgdat->node_mem_map);
5162 #endif
5163 
5164 	free_area_init_core(pgdat, start_pfn, end_pfn,
5165 			    zones_size, zholes_size);
5166 }
5167 
5168 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5169 
5170 #if MAX_NUMNODES > 1
5171 /*
5172  * Figure out the number of possible node ids.
5173  */
5174 void __init setup_nr_node_ids(void)
5175 {
5176 	unsigned int node;
5177 	unsigned int highest = 0;
5178 
5179 	for_each_node_mask(node, node_possible_map)
5180 		highest = node;
5181 	nr_node_ids = highest + 1;
5182 }
5183 #endif
5184 
5185 /**
5186  * node_map_pfn_alignment - determine the maximum internode alignment
5187  *
5188  * This function should be called after node map is populated and sorted.
5189  * It calculates the maximum power of two alignment which can distinguish
5190  * all the nodes.
5191  *
5192  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5193  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5194  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5195  * shifted, 1GiB is enough and this function will indicate so.
5196  *
5197  * This is used to test whether pfn -> nid mapping of the chosen memory
5198  * model has fine enough granularity to avoid incorrect mapping for the
5199  * populated node map.
5200  *
5201  * Returns the determined alignment in pfn's.  0 if there is no alignment
5202  * requirement (single node).
5203  */
5204 unsigned long __init node_map_pfn_alignment(void)
5205 {
5206 	unsigned long accl_mask = 0, last_end = 0;
5207 	unsigned long start, end, mask;
5208 	int last_nid = -1;
5209 	int i, nid;
5210 
5211 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5212 		if (!start || last_nid < 0 || last_nid == nid) {
5213 			last_nid = nid;
5214 			last_end = end;
5215 			continue;
5216 		}
5217 
5218 		/*
5219 		 * Start with a mask granular enough to pin-point to the
5220 		 * start pfn and tick off bits one-by-one until it becomes
5221 		 * too coarse to separate the current node from the last.
5222 		 */
5223 		mask = ~((1 << __ffs(start)) - 1);
5224 		while (mask && last_end <= (start & (mask << 1)))
5225 			mask <<= 1;
5226 
5227 		/* accumulate all internode masks */
5228 		accl_mask |= mask;
5229 	}
5230 
5231 	/* convert mask to number of pages */
5232 	return ~accl_mask + 1;
5233 }
5234 
5235 /* Find the lowest pfn for a node */
5236 static unsigned long __init find_min_pfn_for_node(int nid)
5237 {
5238 	unsigned long min_pfn = ULONG_MAX;
5239 	unsigned long start_pfn;
5240 	int i;
5241 
5242 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5243 		min_pfn = min(min_pfn, start_pfn);
5244 
5245 	if (min_pfn == ULONG_MAX) {
5246 		printk(KERN_WARNING
5247 			"Could not find start_pfn for node %d\n", nid);
5248 		return 0;
5249 	}
5250 
5251 	return min_pfn;
5252 }
5253 
5254 /**
5255  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5256  *
5257  * It returns the minimum PFN based on information provided via
5258  * memblock_set_node().
5259  */
5260 unsigned long __init find_min_pfn_with_active_regions(void)
5261 {
5262 	return find_min_pfn_for_node(MAX_NUMNODES);
5263 }
5264 
5265 /*
5266  * early_calculate_totalpages()
5267  * Sum pages in active regions for movable zone.
5268  * Populate N_MEMORY for calculating usable_nodes.
5269  */
5270 static unsigned long __init early_calculate_totalpages(void)
5271 {
5272 	unsigned long totalpages = 0;
5273 	unsigned long start_pfn, end_pfn;
5274 	int i, nid;
5275 
5276 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5277 		unsigned long pages = end_pfn - start_pfn;
5278 
5279 		totalpages += pages;
5280 		if (pages)
5281 			node_set_state(nid, N_MEMORY);
5282 	}
5283 	return totalpages;
5284 }
5285 
5286 /*
5287  * Find the PFN the Movable zone begins in each node. Kernel memory
5288  * is spread evenly between nodes as long as the nodes have enough
5289  * memory. When they don't, some nodes will have more kernelcore than
5290  * others
5291  */
5292 static void __init find_zone_movable_pfns_for_nodes(void)
5293 {
5294 	int i, nid;
5295 	unsigned long usable_startpfn;
5296 	unsigned long kernelcore_node, kernelcore_remaining;
5297 	/* save the state before borrow the nodemask */
5298 	nodemask_t saved_node_state = node_states[N_MEMORY];
5299 	unsigned long totalpages = early_calculate_totalpages();
5300 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5301 	struct memblock_region *r;
5302 
5303 	/* Need to find movable_zone earlier when movable_node is specified. */
5304 	find_usable_zone_for_movable();
5305 
5306 	/*
5307 	 * If movable_node is specified, ignore kernelcore and movablecore
5308 	 * options.
5309 	 */
5310 	if (movable_node_is_enabled()) {
5311 		for_each_memblock(memory, r) {
5312 			if (!memblock_is_hotpluggable(r))
5313 				continue;
5314 
5315 			nid = r->nid;
5316 
5317 			usable_startpfn = PFN_DOWN(r->base);
5318 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5319 				min(usable_startpfn, zone_movable_pfn[nid]) :
5320 				usable_startpfn;
5321 		}
5322 
5323 		goto out2;
5324 	}
5325 
5326 	/*
5327 	 * If movablecore=nn[KMG] was specified, calculate what size of
5328 	 * kernelcore that corresponds so that memory usable for
5329 	 * any allocation type is evenly spread. If both kernelcore
5330 	 * and movablecore are specified, then the value of kernelcore
5331 	 * will be used for required_kernelcore if it's greater than
5332 	 * what movablecore would have allowed.
5333 	 */
5334 	if (required_movablecore) {
5335 		unsigned long corepages;
5336 
5337 		/*
5338 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5339 		 * was requested by the user
5340 		 */
5341 		required_movablecore =
5342 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5343 		corepages = totalpages - required_movablecore;
5344 
5345 		required_kernelcore = max(required_kernelcore, corepages);
5346 	}
5347 
5348 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5349 	if (!required_kernelcore)
5350 		goto out;
5351 
5352 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5353 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5354 
5355 restart:
5356 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5357 	kernelcore_node = required_kernelcore / usable_nodes;
5358 	for_each_node_state(nid, N_MEMORY) {
5359 		unsigned long start_pfn, end_pfn;
5360 
5361 		/*
5362 		 * Recalculate kernelcore_node if the division per node
5363 		 * now exceeds what is necessary to satisfy the requested
5364 		 * amount of memory for the kernel
5365 		 */
5366 		if (required_kernelcore < kernelcore_node)
5367 			kernelcore_node = required_kernelcore / usable_nodes;
5368 
5369 		/*
5370 		 * As the map is walked, we track how much memory is usable
5371 		 * by the kernel using kernelcore_remaining. When it is
5372 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5373 		 */
5374 		kernelcore_remaining = kernelcore_node;
5375 
5376 		/* Go through each range of PFNs within this node */
5377 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5378 			unsigned long size_pages;
5379 
5380 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5381 			if (start_pfn >= end_pfn)
5382 				continue;
5383 
5384 			/* Account for what is only usable for kernelcore */
5385 			if (start_pfn < usable_startpfn) {
5386 				unsigned long kernel_pages;
5387 				kernel_pages = min(end_pfn, usable_startpfn)
5388 								- start_pfn;
5389 
5390 				kernelcore_remaining -= min(kernel_pages,
5391 							kernelcore_remaining);
5392 				required_kernelcore -= min(kernel_pages,
5393 							required_kernelcore);
5394 
5395 				/* Continue if range is now fully accounted */
5396 				if (end_pfn <= usable_startpfn) {
5397 
5398 					/*
5399 					 * Push zone_movable_pfn to the end so
5400 					 * that if we have to rebalance
5401 					 * kernelcore across nodes, we will
5402 					 * not double account here
5403 					 */
5404 					zone_movable_pfn[nid] = end_pfn;
5405 					continue;
5406 				}
5407 				start_pfn = usable_startpfn;
5408 			}
5409 
5410 			/*
5411 			 * The usable PFN range for ZONE_MOVABLE is from
5412 			 * start_pfn->end_pfn. Calculate size_pages as the
5413 			 * number of pages used as kernelcore
5414 			 */
5415 			size_pages = end_pfn - start_pfn;
5416 			if (size_pages > kernelcore_remaining)
5417 				size_pages = kernelcore_remaining;
5418 			zone_movable_pfn[nid] = start_pfn + size_pages;
5419 
5420 			/*
5421 			 * Some kernelcore has been met, update counts and
5422 			 * break if the kernelcore for this node has been
5423 			 * satisfied
5424 			 */
5425 			required_kernelcore -= min(required_kernelcore,
5426 								size_pages);
5427 			kernelcore_remaining -= size_pages;
5428 			if (!kernelcore_remaining)
5429 				break;
5430 		}
5431 	}
5432 
5433 	/*
5434 	 * If there is still required_kernelcore, we do another pass with one
5435 	 * less node in the count. This will push zone_movable_pfn[nid] further
5436 	 * along on the nodes that still have memory until kernelcore is
5437 	 * satisfied
5438 	 */
5439 	usable_nodes--;
5440 	if (usable_nodes && required_kernelcore > usable_nodes)
5441 		goto restart;
5442 
5443 out2:
5444 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5445 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5446 		zone_movable_pfn[nid] =
5447 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5448 
5449 out:
5450 	/* restore the node_state */
5451 	node_states[N_MEMORY] = saved_node_state;
5452 }
5453 
5454 /* Any regular or high memory on that node ? */
5455 static void check_for_memory(pg_data_t *pgdat, int nid)
5456 {
5457 	enum zone_type zone_type;
5458 
5459 	if (N_MEMORY == N_NORMAL_MEMORY)
5460 		return;
5461 
5462 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5463 		struct zone *zone = &pgdat->node_zones[zone_type];
5464 		if (populated_zone(zone)) {
5465 			node_set_state(nid, N_HIGH_MEMORY);
5466 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5467 			    zone_type <= ZONE_NORMAL)
5468 				node_set_state(nid, N_NORMAL_MEMORY);
5469 			break;
5470 		}
5471 	}
5472 }
5473 
5474 /**
5475  * free_area_init_nodes - Initialise all pg_data_t and zone data
5476  * @max_zone_pfn: an array of max PFNs for each zone
5477  *
5478  * This will call free_area_init_node() for each active node in the system.
5479  * Using the page ranges provided by memblock_set_node(), the size of each
5480  * zone in each node and their holes is calculated. If the maximum PFN
5481  * between two adjacent zones match, it is assumed that the zone is empty.
5482  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5483  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5484  * starts where the previous one ended. For example, ZONE_DMA32 starts
5485  * at arch_max_dma_pfn.
5486  */
5487 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5488 {
5489 	unsigned long start_pfn, end_pfn;
5490 	int i, nid;
5491 
5492 	/* Record where the zone boundaries are */
5493 	memset(arch_zone_lowest_possible_pfn, 0,
5494 				sizeof(arch_zone_lowest_possible_pfn));
5495 	memset(arch_zone_highest_possible_pfn, 0,
5496 				sizeof(arch_zone_highest_possible_pfn));
5497 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5498 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5499 	for (i = 1; i < MAX_NR_ZONES; i++) {
5500 		if (i == ZONE_MOVABLE)
5501 			continue;
5502 		arch_zone_lowest_possible_pfn[i] =
5503 			arch_zone_highest_possible_pfn[i-1];
5504 		arch_zone_highest_possible_pfn[i] =
5505 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5506 	}
5507 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5508 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5509 
5510 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5511 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5512 	find_zone_movable_pfns_for_nodes();
5513 
5514 	/* Print out the zone ranges */
5515 	pr_info("Zone ranges:\n");
5516 	for (i = 0; i < MAX_NR_ZONES; i++) {
5517 		if (i == ZONE_MOVABLE)
5518 			continue;
5519 		pr_info("  %-8s ", zone_names[i]);
5520 		if (arch_zone_lowest_possible_pfn[i] ==
5521 				arch_zone_highest_possible_pfn[i])
5522 			pr_cont("empty\n");
5523 		else
5524 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5525 				(u64)arch_zone_lowest_possible_pfn[i]
5526 					<< PAGE_SHIFT,
5527 				((u64)arch_zone_highest_possible_pfn[i]
5528 					<< PAGE_SHIFT) - 1);
5529 	}
5530 
5531 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5532 	pr_info("Movable zone start for each node\n");
5533 	for (i = 0; i < MAX_NUMNODES; i++) {
5534 		if (zone_movable_pfn[i])
5535 			pr_info("  Node %d: %#018Lx\n", i,
5536 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5537 	}
5538 
5539 	/* Print out the early node map */
5540 	pr_info("Early memory node ranges\n");
5541 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5542 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5543 			(u64)start_pfn << PAGE_SHIFT,
5544 			((u64)end_pfn << PAGE_SHIFT) - 1);
5545 
5546 	/* Initialise every node */
5547 	mminit_verify_pageflags_layout();
5548 	setup_nr_node_ids();
5549 	for_each_online_node(nid) {
5550 		pg_data_t *pgdat = NODE_DATA(nid);
5551 		free_area_init_node(nid, NULL,
5552 				find_min_pfn_for_node(nid), NULL);
5553 
5554 		/* Any memory on that node */
5555 		if (pgdat->node_present_pages)
5556 			node_set_state(nid, N_MEMORY);
5557 		check_for_memory(pgdat, nid);
5558 	}
5559 }
5560 
5561 static int __init cmdline_parse_core(char *p, unsigned long *core)
5562 {
5563 	unsigned long long coremem;
5564 	if (!p)
5565 		return -EINVAL;
5566 
5567 	coremem = memparse(p, &p);
5568 	*core = coremem >> PAGE_SHIFT;
5569 
5570 	/* Paranoid check that UL is enough for the coremem value */
5571 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5572 
5573 	return 0;
5574 }
5575 
5576 /*
5577  * kernelcore=size sets the amount of memory for use for allocations that
5578  * cannot be reclaimed or migrated.
5579  */
5580 static int __init cmdline_parse_kernelcore(char *p)
5581 {
5582 	return cmdline_parse_core(p, &required_kernelcore);
5583 }
5584 
5585 /*
5586  * movablecore=size sets the amount of memory for use for allocations that
5587  * can be reclaimed or migrated.
5588  */
5589 static int __init cmdline_parse_movablecore(char *p)
5590 {
5591 	return cmdline_parse_core(p, &required_movablecore);
5592 }
5593 
5594 early_param("kernelcore", cmdline_parse_kernelcore);
5595 early_param("movablecore", cmdline_parse_movablecore);
5596 
5597 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5598 
5599 void adjust_managed_page_count(struct page *page, long count)
5600 {
5601 	spin_lock(&managed_page_count_lock);
5602 	page_zone(page)->managed_pages += count;
5603 	totalram_pages += count;
5604 #ifdef CONFIG_HIGHMEM
5605 	if (PageHighMem(page))
5606 		totalhigh_pages += count;
5607 #endif
5608 	spin_unlock(&managed_page_count_lock);
5609 }
5610 EXPORT_SYMBOL(adjust_managed_page_count);
5611 
5612 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5613 {
5614 	void *pos;
5615 	unsigned long pages = 0;
5616 
5617 	start = (void *)PAGE_ALIGN((unsigned long)start);
5618 	end = (void *)((unsigned long)end & PAGE_MASK);
5619 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5620 		if ((unsigned int)poison <= 0xFF)
5621 			memset(pos, poison, PAGE_SIZE);
5622 		free_reserved_page(virt_to_page(pos));
5623 	}
5624 
5625 	if (pages && s)
5626 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5627 			s, pages << (PAGE_SHIFT - 10), start, end);
5628 
5629 	return pages;
5630 }
5631 EXPORT_SYMBOL(free_reserved_area);
5632 
5633 #ifdef	CONFIG_HIGHMEM
5634 void free_highmem_page(struct page *page)
5635 {
5636 	__free_reserved_page(page);
5637 	totalram_pages++;
5638 	page_zone(page)->managed_pages++;
5639 	totalhigh_pages++;
5640 }
5641 #endif
5642 
5643 
5644 void __init mem_init_print_info(const char *str)
5645 {
5646 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5647 	unsigned long init_code_size, init_data_size;
5648 
5649 	physpages = get_num_physpages();
5650 	codesize = _etext - _stext;
5651 	datasize = _edata - _sdata;
5652 	rosize = __end_rodata - __start_rodata;
5653 	bss_size = __bss_stop - __bss_start;
5654 	init_data_size = __init_end - __init_begin;
5655 	init_code_size = _einittext - _sinittext;
5656 
5657 	/*
5658 	 * Detect special cases and adjust section sizes accordingly:
5659 	 * 1) .init.* may be embedded into .data sections
5660 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5661 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5662 	 * 3) .rodata.* may be embedded into .text or .data sections.
5663 	 */
5664 #define adj_init_size(start, end, size, pos, adj) \
5665 	do { \
5666 		if (start <= pos && pos < end && size > adj) \
5667 			size -= adj; \
5668 	} while (0)
5669 
5670 	adj_init_size(__init_begin, __init_end, init_data_size,
5671 		     _sinittext, init_code_size);
5672 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5673 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5674 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5675 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5676 
5677 #undef	adj_init_size
5678 
5679 	pr_info("Memory: %luK/%luK available "
5680 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5681 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5682 #ifdef	CONFIG_HIGHMEM
5683 	       ", %luK highmem"
5684 #endif
5685 	       "%s%s)\n",
5686 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5687 	       codesize >> 10, datasize >> 10, rosize >> 10,
5688 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5689 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5690 	       totalcma_pages << (PAGE_SHIFT-10),
5691 #ifdef	CONFIG_HIGHMEM
5692 	       totalhigh_pages << (PAGE_SHIFT-10),
5693 #endif
5694 	       str ? ", " : "", str ? str : "");
5695 }
5696 
5697 /**
5698  * set_dma_reserve - set the specified number of pages reserved in the first zone
5699  * @new_dma_reserve: The number of pages to mark reserved
5700  *
5701  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5702  * In the DMA zone, a significant percentage may be consumed by kernel image
5703  * and other unfreeable allocations which can skew the watermarks badly. This
5704  * function may optionally be used to account for unfreeable pages in the
5705  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5706  * smaller per-cpu batchsize.
5707  */
5708 void __init set_dma_reserve(unsigned long new_dma_reserve)
5709 {
5710 	dma_reserve = new_dma_reserve;
5711 }
5712 
5713 void __init free_area_init(unsigned long *zones_size)
5714 {
5715 	free_area_init_node(0, zones_size,
5716 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5717 }
5718 
5719 static int page_alloc_cpu_notify(struct notifier_block *self,
5720 				 unsigned long action, void *hcpu)
5721 {
5722 	int cpu = (unsigned long)hcpu;
5723 
5724 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5725 		lru_add_drain_cpu(cpu);
5726 		drain_pages(cpu);
5727 
5728 		/*
5729 		 * Spill the event counters of the dead processor
5730 		 * into the current processors event counters.
5731 		 * This artificially elevates the count of the current
5732 		 * processor.
5733 		 */
5734 		vm_events_fold_cpu(cpu);
5735 
5736 		/*
5737 		 * Zero the differential counters of the dead processor
5738 		 * so that the vm statistics are consistent.
5739 		 *
5740 		 * This is only okay since the processor is dead and cannot
5741 		 * race with what we are doing.
5742 		 */
5743 		cpu_vm_stats_fold(cpu);
5744 	}
5745 	return NOTIFY_OK;
5746 }
5747 
5748 void __init page_alloc_init(void)
5749 {
5750 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5751 }
5752 
5753 /*
5754  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5755  *	or min_free_kbytes changes.
5756  */
5757 static void calculate_totalreserve_pages(void)
5758 {
5759 	struct pglist_data *pgdat;
5760 	unsigned long reserve_pages = 0;
5761 	enum zone_type i, j;
5762 
5763 	for_each_online_pgdat(pgdat) {
5764 		for (i = 0; i < MAX_NR_ZONES; i++) {
5765 			struct zone *zone = pgdat->node_zones + i;
5766 			long max = 0;
5767 
5768 			/* Find valid and maximum lowmem_reserve in the zone */
5769 			for (j = i; j < MAX_NR_ZONES; j++) {
5770 				if (zone->lowmem_reserve[j] > max)
5771 					max = zone->lowmem_reserve[j];
5772 			}
5773 
5774 			/* we treat the high watermark as reserved pages. */
5775 			max += high_wmark_pages(zone);
5776 
5777 			if (max > zone->managed_pages)
5778 				max = zone->managed_pages;
5779 			reserve_pages += max;
5780 			/*
5781 			 * Lowmem reserves are not available to
5782 			 * GFP_HIGHUSER page cache allocations and
5783 			 * kswapd tries to balance zones to their high
5784 			 * watermark.  As a result, neither should be
5785 			 * regarded as dirtyable memory, to prevent a
5786 			 * situation where reclaim has to clean pages
5787 			 * in order to balance the zones.
5788 			 */
5789 			zone->dirty_balance_reserve = max;
5790 		}
5791 	}
5792 	dirty_balance_reserve = reserve_pages;
5793 	totalreserve_pages = reserve_pages;
5794 }
5795 
5796 /*
5797  * setup_per_zone_lowmem_reserve - called whenever
5798  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5799  *	has a correct pages reserved value, so an adequate number of
5800  *	pages are left in the zone after a successful __alloc_pages().
5801  */
5802 static void setup_per_zone_lowmem_reserve(void)
5803 {
5804 	struct pglist_data *pgdat;
5805 	enum zone_type j, idx;
5806 
5807 	for_each_online_pgdat(pgdat) {
5808 		for (j = 0; j < MAX_NR_ZONES; j++) {
5809 			struct zone *zone = pgdat->node_zones + j;
5810 			unsigned long managed_pages = zone->managed_pages;
5811 
5812 			zone->lowmem_reserve[j] = 0;
5813 
5814 			idx = j;
5815 			while (idx) {
5816 				struct zone *lower_zone;
5817 
5818 				idx--;
5819 
5820 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5821 					sysctl_lowmem_reserve_ratio[idx] = 1;
5822 
5823 				lower_zone = pgdat->node_zones + idx;
5824 				lower_zone->lowmem_reserve[j] = managed_pages /
5825 					sysctl_lowmem_reserve_ratio[idx];
5826 				managed_pages += lower_zone->managed_pages;
5827 			}
5828 		}
5829 	}
5830 
5831 	/* update totalreserve_pages */
5832 	calculate_totalreserve_pages();
5833 }
5834 
5835 static void __setup_per_zone_wmarks(void)
5836 {
5837 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5838 	unsigned long lowmem_pages = 0;
5839 	struct zone *zone;
5840 	unsigned long flags;
5841 
5842 	/* Calculate total number of !ZONE_HIGHMEM pages */
5843 	for_each_zone(zone) {
5844 		if (!is_highmem(zone))
5845 			lowmem_pages += zone->managed_pages;
5846 	}
5847 
5848 	for_each_zone(zone) {
5849 		u64 tmp;
5850 
5851 		spin_lock_irqsave(&zone->lock, flags);
5852 		tmp = (u64)pages_min * zone->managed_pages;
5853 		do_div(tmp, lowmem_pages);
5854 		if (is_highmem(zone)) {
5855 			/*
5856 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5857 			 * need highmem pages, so cap pages_min to a small
5858 			 * value here.
5859 			 *
5860 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5861 			 * deltas control asynch page reclaim, and so should
5862 			 * not be capped for highmem.
5863 			 */
5864 			unsigned long min_pages;
5865 
5866 			min_pages = zone->managed_pages / 1024;
5867 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5868 			zone->watermark[WMARK_MIN] = min_pages;
5869 		} else {
5870 			/*
5871 			 * If it's a lowmem zone, reserve a number of pages
5872 			 * proportionate to the zone's size.
5873 			 */
5874 			zone->watermark[WMARK_MIN] = tmp;
5875 		}
5876 
5877 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5878 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5879 
5880 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5881 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5882 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5883 
5884 		setup_zone_migrate_reserve(zone);
5885 		spin_unlock_irqrestore(&zone->lock, flags);
5886 	}
5887 
5888 	/* update totalreserve_pages */
5889 	calculate_totalreserve_pages();
5890 }
5891 
5892 /**
5893  * setup_per_zone_wmarks - called when min_free_kbytes changes
5894  * or when memory is hot-{added|removed}
5895  *
5896  * Ensures that the watermark[min,low,high] values for each zone are set
5897  * correctly with respect to min_free_kbytes.
5898  */
5899 void setup_per_zone_wmarks(void)
5900 {
5901 	mutex_lock(&zonelists_mutex);
5902 	__setup_per_zone_wmarks();
5903 	mutex_unlock(&zonelists_mutex);
5904 }
5905 
5906 /*
5907  * The inactive anon list should be small enough that the VM never has to
5908  * do too much work, but large enough that each inactive page has a chance
5909  * to be referenced again before it is swapped out.
5910  *
5911  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5912  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5913  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5914  * the anonymous pages are kept on the inactive list.
5915  *
5916  * total     target    max
5917  * memory    ratio     inactive anon
5918  * -------------------------------------
5919  *   10MB       1         5MB
5920  *  100MB       1        50MB
5921  *    1GB       3       250MB
5922  *   10GB      10       0.9GB
5923  *  100GB      31         3GB
5924  *    1TB     101        10GB
5925  *   10TB     320        32GB
5926  */
5927 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5928 {
5929 	unsigned int gb, ratio;
5930 
5931 	/* Zone size in gigabytes */
5932 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5933 	if (gb)
5934 		ratio = int_sqrt(10 * gb);
5935 	else
5936 		ratio = 1;
5937 
5938 	zone->inactive_ratio = ratio;
5939 }
5940 
5941 static void __meminit setup_per_zone_inactive_ratio(void)
5942 {
5943 	struct zone *zone;
5944 
5945 	for_each_zone(zone)
5946 		calculate_zone_inactive_ratio(zone);
5947 }
5948 
5949 /*
5950  * Initialise min_free_kbytes.
5951  *
5952  * For small machines we want it small (128k min).  For large machines
5953  * we want it large (64MB max).  But it is not linear, because network
5954  * bandwidth does not increase linearly with machine size.  We use
5955  *
5956  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5957  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5958  *
5959  * which yields
5960  *
5961  * 16MB:	512k
5962  * 32MB:	724k
5963  * 64MB:	1024k
5964  * 128MB:	1448k
5965  * 256MB:	2048k
5966  * 512MB:	2896k
5967  * 1024MB:	4096k
5968  * 2048MB:	5792k
5969  * 4096MB:	8192k
5970  * 8192MB:	11584k
5971  * 16384MB:	16384k
5972  */
5973 int __meminit init_per_zone_wmark_min(void)
5974 {
5975 	unsigned long lowmem_kbytes;
5976 	int new_min_free_kbytes;
5977 
5978 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5979 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5980 
5981 	if (new_min_free_kbytes > user_min_free_kbytes) {
5982 		min_free_kbytes = new_min_free_kbytes;
5983 		if (min_free_kbytes < 128)
5984 			min_free_kbytes = 128;
5985 		if (min_free_kbytes > 65536)
5986 			min_free_kbytes = 65536;
5987 	} else {
5988 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5989 				new_min_free_kbytes, user_min_free_kbytes);
5990 	}
5991 	setup_per_zone_wmarks();
5992 	refresh_zone_stat_thresholds();
5993 	setup_per_zone_lowmem_reserve();
5994 	setup_per_zone_inactive_ratio();
5995 	return 0;
5996 }
5997 module_init(init_per_zone_wmark_min)
5998 
5999 /*
6000  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6001  *	that we can call two helper functions whenever min_free_kbytes
6002  *	changes.
6003  */
6004 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6005 	void __user *buffer, size_t *length, loff_t *ppos)
6006 {
6007 	int rc;
6008 
6009 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6010 	if (rc)
6011 		return rc;
6012 
6013 	if (write) {
6014 		user_min_free_kbytes = min_free_kbytes;
6015 		setup_per_zone_wmarks();
6016 	}
6017 	return 0;
6018 }
6019 
6020 #ifdef CONFIG_NUMA
6021 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6022 	void __user *buffer, size_t *length, loff_t *ppos)
6023 {
6024 	struct zone *zone;
6025 	int rc;
6026 
6027 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6028 	if (rc)
6029 		return rc;
6030 
6031 	for_each_zone(zone)
6032 		zone->min_unmapped_pages = (zone->managed_pages *
6033 				sysctl_min_unmapped_ratio) / 100;
6034 	return 0;
6035 }
6036 
6037 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6038 	void __user *buffer, size_t *length, loff_t *ppos)
6039 {
6040 	struct zone *zone;
6041 	int rc;
6042 
6043 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6044 	if (rc)
6045 		return rc;
6046 
6047 	for_each_zone(zone)
6048 		zone->min_slab_pages = (zone->managed_pages *
6049 				sysctl_min_slab_ratio) / 100;
6050 	return 0;
6051 }
6052 #endif
6053 
6054 /*
6055  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6056  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6057  *	whenever sysctl_lowmem_reserve_ratio changes.
6058  *
6059  * The reserve ratio obviously has absolutely no relation with the
6060  * minimum watermarks. The lowmem reserve ratio can only make sense
6061  * if in function of the boot time zone sizes.
6062  */
6063 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6064 	void __user *buffer, size_t *length, loff_t *ppos)
6065 {
6066 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6067 	setup_per_zone_lowmem_reserve();
6068 	return 0;
6069 }
6070 
6071 /*
6072  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6073  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6074  * pagelist can have before it gets flushed back to buddy allocator.
6075  */
6076 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6077 	void __user *buffer, size_t *length, loff_t *ppos)
6078 {
6079 	struct zone *zone;
6080 	int old_percpu_pagelist_fraction;
6081 	int ret;
6082 
6083 	mutex_lock(&pcp_batch_high_lock);
6084 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6085 
6086 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6087 	if (!write || ret < 0)
6088 		goto out;
6089 
6090 	/* Sanity checking to avoid pcp imbalance */
6091 	if (percpu_pagelist_fraction &&
6092 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6093 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6094 		ret = -EINVAL;
6095 		goto out;
6096 	}
6097 
6098 	/* No change? */
6099 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6100 		goto out;
6101 
6102 	for_each_populated_zone(zone) {
6103 		unsigned int cpu;
6104 
6105 		for_each_possible_cpu(cpu)
6106 			pageset_set_high_and_batch(zone,
6107 					per_cpu_ptr(zone->pageset, cpu));
6108 	}
6109 out:
6110 	mutex_unlock(&pcp_batch_high_lock);
6111 	return ret;
6112 }
6113 
6114 int hashdist = HASHDIST_DEFAULT;
6115 
6116 #ifdef CONFIG_NUMA
6117 static int __init set_hashdist(char *str)
6118 {
6119 	if (!str)
6120 		return 0;
6121 	hashdist = simple_strtoul(str, &str, 0);
6122 	return 1;
6123 }
6124 __setup("hashdist=", set_hashdist);
6125 #endif
6126 
6127 /*
6128  * allocate a large system hash table from bootmem
6129  * - it is assumed that the hash table must contain an exact power-of-2
6130  *   quantity of entries
6131  * - limit is the number of hash buckets, not the total allocation size
6132  */
6133 void *__init alloc_large_system_hash(const char *tablename,
6134 				     unsigned long bucketsize,
6135 				     unsigned long numentries,
6136 				     int scale,
6137 				     int flags,
6138 				     unsigned int *_hash_shift,
6139 				     unsigned int *_hash_mask,
6140 				     unsigned long low_limit,
6141 				     unsigned long high_limit)
6142 {
6143 	unsigned long long max = high_limit;
6144 	unsigned long log2qty, size;
6145 	void *table = NULL;
6146 
6147 	/* allow the kernel cmdline to have a say */
6148 	if (!numentries) {
6149 		/* round applicable memory size up to nearest megabyte */
6150 		numentries = nr_kernel_pages;
6151 
6152 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6153 		if (PAGE_SHIFT < 20)
6154 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6155 
6156 		/* limit to 1 bucket per 2^scale bytes of low memory */
6157 		if (scale > PAGE_SHIFT)
6158 			numentries >>= (scale - PAGE_SHIFT);
6159 		else
6160 			numentries <<= (PAGE_SHIFT - scale);
6161 
6162 		/* Make sure we've got at least a 0-order allocation.. */
6163 		if (unlikely(flags & HASH_SMALL)) {
6164 			/* Makes no sense without HASH_EARLY */
6165 			WARN_ON(!(flags & HASH_EARLY));
6166 			if (!(numentries >> *_hash_shift)) {
6167 				numentries = 1UL << *_hash_shift;
6168 				BUG_ON(!numentries);
6169 			}
6170 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6171 			numentries = PAGE_SIZE / bucketsize;
6172 	}
6173 	numentries = roundup_pow_of_two(numentries);
6174 
6175 	/* limit allocation size to 1/16 total memory by default */
6176 	if (max == 0) {
6177 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6178 		do_div(max, bucketsize);
6179 	}
6180 	max = min(max, 0x80000000ULL);
6181 
6182 	if (numentries < low_limit)
6183 		numentries = low_limit;
6184 	if (numentries > max)
6185 		numentries = max;
6186 
6187 	log2qty = ilog2(numentries);
6188 
6189 	do {
6190 		size = bucketsize << log2qty;
6191 		if (flags & HASH_EARLY)
6192 			table = memblock_virt_alloc_nopanic(size, 0);
6193 		else if (hashdist)
6194 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6195 		else {
6196 			/*
6197 			 * If bucketsize is not a power-of-two, we may free
6198 			 * some pages at the end of hash table which
6199 			 * alloc_pages_exact() automatically does
6200 			 */
6201 			if (get_order(size) < MAX_ORDER) {
6202 				table = alloc_pages_exact(size, GFP_ATOMIC);
6203 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6204 			}
6205 		}
6206 	} while (!table && size > PAGE_SIZE && --log2qty);
6207 
6208 	if (!table)
6209 		panic("Failed to allocate %s hash table\n", tablename);
6210 
6211 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6212 	       tablename,
6213 	       (1UL << log2qty),
6214 	       ilog2(size) - PAGE_SHIFT,
6215 	       size);
6216 
6217 	if (_hash_shift)
6218 		*_hash_shift = log2qty;
6219 	if (_hash_mask)
6220 		*_hash_mask = (1 << log2qty) - 1;
6221 
6222 	return table;
6223 }
6224 
6225 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6226 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6227 							unsigned long pfn)
6228 {
6229 #ifdef CONFIG_SPARSEMEM
6230 	return __pfn_to_section(pfn)->pageblock_flags;
6231 #else
6232 	return zone->pageblock_flags;
6233 #endif /* CONFIG_SPARSEMEM */
6234 }
6235 
6236 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6237 {
6238 #ifdef CONFIG_SPARSEMEM
6239 	pfn &= (PAGES_PER_SECTION-1);
6240 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6241 #else
6242 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6243 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6244 #endif /* CONFIG_SPARSEMEM */
6245 }
6246 
6247 /**
6248  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6249  * @page: The page within the block of interest
6250  * @pfn: The target page frame number
6251  * @end_bitidx: The last bit of interest to retrieve
6252  * @mask: mask of bits that the caller is interested in
6253  *
6254  * Return: pageblock_bits flags
6255  */
6256 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6257 					unsigned long end_bitidx,
6258 					unsigned long mask)
6259 {
6260 	struct zone *zone;
6261 	unsigned long *bitmap;
6262 	unsigned long bitidx, word_bitidx;
6263 	unsigned long word;
6264 
6265 	zone = page_zone(page);
6266 	bitmap = get_pageblock_bitmap(zone, pfn);
6267 	bitidx = pfn_to_bitidx(zone, pfn);
6268 	word_bitidx = bitidx / BITS_PER_LONG;
6269 	bitidx &= (BITS_PER_LONG-1);
6270 
6271 	word = bitmap[word_bitidx];
6272 	bitidx += end_bitidx;
6273 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6274 }
6275 
6276 /**
6277  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6278  * @page: The page within the block of interest
6279  * @flags: The flags to set
6280  * @pfn: The target page frame number
6281  * @end_bitidx: The last bit of interest
6282  * @mask: mask of bits that the caller is interested in
6283  */
6284 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6285 					unsigned long pfn,
6286 					unsigned long end_bitidx,
6287 					unsigned long mask)
6288 {
6289 	struct zone *zone;
6290 	unsigned long *bitmap;
6291 	unsigned long bitidx, word_bitidx;
6292 	unsigned long old_word, word;
6293 
6294 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6295 
6296 	zone = page_zone(page);
6297 	bitmap = get_pageblock_bitmap(zone, pfn);
6298 	bitidx = pfn_to_bitidx(zone, pfn);
6299 	word_bitidx = bitidx / BITS_PER_LONG;
6300 	bitidx &= (BITS_PER_LONG-1);
6301 
6302 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6303 
6304 	bitidx += end_bitidx;
6305 	mask <<= (BITS_PER_LONG - bitidx - 1);
6306 	flags <<= (BITS_PER_LONG - bitidx - 1);
6307 
6308 	word = READ_ONCE(bitmap[word_bitidx]);
6309 	for (;;) {
6310 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6311 		if (word == old_word)
6312 			break;
6313 		word = old_word;
6314 	}
6315 }
6316 
6317 /*
6318  * This function checks whether pageblock includes unmovable pages or not.
6319  * If @count is not zero, it is okay to include less @count unmovable pages
6320  *
6321  * PageLRU check without isolation or lru_lock could race so that
6322  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6323  * expect this function should be exact.
6324  */
6325 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6326 			 bool skip_hwpoisoned_pages)
6327 {
6328 	unsigned long pfn, iter, found;
6329 	int mt;
6330 
6331 	/*
6332 	 * For avoiding noise data, lru_add_drain_all() should be called
6333 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6334 	 */
6335 	if (zone_idx(zone) == ZONE_MOVABLE)
6336 		return false;
6337 	mt = get_pageblock_migratetype(page);
6338 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6339 		return false;
6340 
6341 	pfn = page_to_pfn(page);
6342 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6343 		unsigned long check = pfn + iter;
6344 
6345 		if (!pfn_valid_within(check))
6346 			continue;
6347 
6348 		page = pfn_to_page(check);
6349 
6350 		/*
6351 		 * Hugepages are not in LRU lists, but they're movable.
6352 		 * We need not scan over tail pages bacause we don't
6353 		 * handle each tail page individually in migration.
6354 		 */
6355 		if (PageHuge(page)) {
6356 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6357 			continue;
6358 		}
6359 
6360 		/*
6361 		 * We can't use page_count without pin a page
6362 		 * because another CPU can free compound page.
6363 		 * This check already skips compound tails of THP
6364 		 * because their page->_count is zero at all time.
6365 		 */
6366 		if (!atomic_read(&page->_count)) {
6367 			if (PageBuddy(page))
6368 				iter += (1 << page_order(page)) - 1;
6369 			continue;
6370 		}
6371 
6372 		/*
6373 		 * The HWPoisoned page may be not in buddy system, and
6374 		 * page_count() is not 0.
6375 		 */
6376 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6377 			continue;
6378 
6379 		if (!PageLRU(page))
6380 			found++;
6381 		/*
6382 		 * If there are RECLAIMABLE pages, we need to check
6383 		 * it.  But now, memory offline itself doesn't call
6384 		 * shrink_node_slabs() and it still to be fixed.
6385 		 */
6386 		/*
6387 		 * If the page is not RAM, page_count()should be 0.
6388 		 * we don't need more check. This is an _used_ not-movable page.
6389 		 *
6390 		 * The problematic thing here is PG_reserved pages. PG_reserved
6391 		 * is set to both of a memory hole page and a _used_ kernel
6392 		 * page at boot.
6393 		 */
6394 		if (found > count)
6395 			return true;
6396 	}
6397 	return false;
6398 }
6399 
6400 bool is_pageblock_removable_nolock(struct page *page)
6401 {
6402 	struct zone *zone;
6403 	unsigned long pfn;
6404 
6405 	/*
6406 	 * We have to be careful here because we are iterating over memory
6407 	 * sections which are not zone aware so we might end up outside of
6408 	 * the zone but still within the section.
6409 	 * We have to take care about the node as well. If the node is offline
6410 	 * its NODE_DATA will be NULL - see page_zone.
6411 	 */
6412 	if (!node_online(page_to_nid(page)))
6413 		return false;
6414 
6415 	zone = page_zone(page);
6416 	pfn = page_to_pfn(page);
6417 	if (!zone_spans_pfn(zone, pfn))
6418 		return false;
6419 
6420 	return !has_unmovable_pages(zone, page, 0, true);
6421 }
6422 
6423 #ifdef CONFIG_CMA
6424 
6425 static unsigned long pfn_max_align_down(unsigned long pfn)
6426 {
6427 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6428 			     pageblock_nr_pages) - 1);
6429 }
6430 
6431 static unsigned long pfn_max_align_up(unsigned long pfn)
6432 {
6433 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6434 				pageblock_nr_pages));
6435 }
6436 
6437 /* [start, end) must belong to a single zone. */
6438 static int __alloc_contig_migrate_range(struct compact_control *cc,
6439 					unsigned long start, unsigned long end)
6440 {
6441 	/* This function is based on compact_zone() from compaction.c. */
6442 	unsigned long nr_reclaimed;
6443 	unsigned long pfn = start;
6444 	unsigned int tries = 0;
6445 	int ret = 0;
6446 
6447 	migrate_prep();
6448 
6449 	while (pfn < end || !list_empty(&cc->migratepages)) {
6450 		if (fatal_signal_pending(current)) {
6451 			ret = -EINTR;
6452 			break;
6453 		}
6454 
6455 		if (list_empty(&cc->migratepages)) {
6456 			cc->nr_migratepages = 0;
6457 			pfn = isolate_migratepages_range(cc, pfn, end);
6458 			if (!pfn) {
6459 				ret = -EINTR;
6460 				break;
6461 			}
6462 			tries = 0;
6463 		} else if (++tries == 5) {
6464 			ret = ret < 0 ? ret : -EBUSY;
6465 			break;
6466 		}
6467 
6468 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6469 							&cc->migratepages);
6470 		cc->nr_migratepages -= nr_reclaimed;
6471 
6472 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6473 				    NULL, 0, cc->mode, MR_CMA);
6474 	}
6475 	if (ret < 0) {
6476 		putback_movable_pages(&cc->migratepages);
6477 		return ret;
6478 	}
6479 	return 0;
6480 }
6481 
6482 /**
6483  * alloc_contig_range() -- tries to allocate given range of pages
6484  * @start:	start PFN to allocate
6485  * @end:	one-past-the-last PFN to allocate
6486  * @migratetype:	migratetype of the underlaying pageblocks (either
6487  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6488  *			in range must have the same migratetype and it must
6489  *			be either of the two.
6490  *
6491  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6492  * aligned, however it's the caller's responsibility to guarantee that
6493  * we are the only thread that changes migrate type of pageblocks the
6494  * pages fall in.
6495  *
6496  * The PFN range must belong to a single zone.
6497  *
6498  * Returns zero on success or negative error code.  On success all
6499  * pages which PFN is in [start, end) are allocated for the caller and
6500  * need to be freed with free_contig_range().
6501  */
6502 int alloc_contig_range(unsigned long start, unsigned long end,
6503 		       unsigned migratetype)
6504 {
6505 	unsigned long outer_start, outer_end;
6506 	int ret = 0, order;
6507 
6508 	struct compact_control cc = {
6509 		.nr_migratepages = 0,
6510 		.order = -1,
6511 		.zone = page_zone(pfn_to_page(start)),
6512 		.mode = MIGRATE_SYNC,
6513 		.ignore_skip_hint = true,
6514 	};
6515 	INIT_LIST_HEAD(&cc.migratepages);
6516 
6517 	/*
6518 	 * What we do here is we mark all pageblocks in range as
6519 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6520 	 * have different sizes, and due to the way page allocator
6521 	 * work, we align the range to biggest of the two pages so
6522 	 * that page allocator won't try to merge buddies from
6523 	 * different pageblocks and change MIGRATE_ISOLATE to some
6524 	 * other migration type.
6525 	 *
6526 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6527 	 * migrate the pages from an unaligned range (ie. pages that
6528 	 * we are interested in).  This will put all the pages in
6529 	 * range back to page allocator as MIGRATE_ISOLATE.
6530 	 *
6531 	 * When this is done, we take the pages in range from page
6532 	 * allocator removing them from the buddy system.  This way
6533 	 * page allocator will never consider using them.
6534 	 *
6535 	 * This lets us mark the pageblocks back as
6536 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6537 	 * aligned range but not in the unaligned, original range are
6538 	 * put back to page allocator so that buddy can use them.
6539 	 */
6540 
6541 	ret = start_isolate_page_range(pfn_max_align_down(start),
6542 				       pfn_max_align_up(end), migratetype,
6543 				       false);
6544 	if (ret)
6545 		return ret;
6546 
6547 	ret = __alloc_contig_migrate_range(&cc, start, end);
6548 	if (ret)
6549 		goto done;
6550 
6551 	/*
6552 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6553 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6554 	 * more, all pages in [start, end) are free in page allocator.
6555 	 * What we are going to do is to allocate all pages from
6556 	 * [start, end) (that is remove them from page allocator).
6557 	 *
6558 	 * The only problem is that pages at the beginning and at the
6559 	 * end of interesting range may be not aligned with pages that
6560 	 * page allocator holds, ie. they can be part of higher order
6561 	 * pages.  Because of this, we reserve the bigger range and
6562 	 * once this is done free the pages we are not interested in.
6563 	 *
6564 	 * We don't have to hold zone->lock here because the pages are
6565 	 * isolated thus they won't get removed from buddy.
6566 	 */
6567 
6568 	lru_add_drain_all();
6569 	drain_all_pages(cc.zone);
6570 
6571 	order = 0;
6572 	outer_start = start;
6573 	while (!PageBuddy(pfn_to_page(outer_start))) {
6574 		if (++order >= MAX_ORDER) {
6575 			ret = -EBUSY;
6576 			goto done;
6577 		}
6578 		outer_start &= ~0UL << order;
6579 	}
6580 
6581 	/* Make sure the range is really isolated. */
6582 	if (test_pages_isolated(outer_start, end, false)) {
6583 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6584 			__func__, outer_start, end);
6585 		ret = -EBUSY;
6586 		goto done;
6587 	}
6588 
6589 	/* Grab isolated pages from freelists. */
6590 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6591 	if (!outer_end) {
6592 		ret = -EBUSY;
6593 		goto done;
6594 	}
6595 
6596 	/* Free head and tail (if any) */
6597 	if (start != outer_start)
6598 		free_contig_range(outer_start, start - outer_start);
6599 	if (end != outer_end)
6600 		free_contig_range(end, outer_end - end);
6601 
6602 done:
6603 	undo_isolate_page_range(pfn_max_align_down(start),
6604 				pfn_max_align_up(end), migratetype);
6605 	return ret;
6606 }
6607 
6608 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6609 {
6610 	unsigned int count = 0;
6611 
6612 	for (; nr_pages--; pfn++) {
6613 		struct page *page = pfn_to_page(pfn);
6614 
6615 		count += page_count(page) != 1;
6616 		__free_page(page);
6617 	}
6618 	WARN(count != 0, "%d pages are still in use!\n", count);
6619 }
6620 #endif
6621 
6622 #ifdef CONFIG_MEMORY_HOTPLUG
6623 /*
6624  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6625  * page high values need to be recalulated.
6626  */
6627 void __meminit zone_pcp_update(struct zone *zone)
6628 {
6629 	unsigned cpu;
6630 	mutex_lock(&pcp_batch_high_lock);
6631 	for_each_possible_cpu(cpu)
6632 		pageset_set_high_and_batch(zone,
6633 				per_cpu_ptr(zone->pageset, cpu));
6634 	mutex_unlock(&pcp_batch_high_lock);
6635 }
6636 #endif
6637 
6638 void zone_pcp_reset(struct zone *zone)
6639 {
6640 	unsigned long flags;
6641 	int cpu;
6642 	struct per_cpu_pageset *pset;
6643 
6644 	/* avoid races with drain_pages()  */
6645 	local_irq_save(flags);
6646 	if (zone->pageset != &boot_pageset) {
6647 		for_each_online_cpu(cpu) {
6648 			pset = per_cpu_ptr(zone->pageset, cpu);
6649 			drain_zonestat(zone, pset);
6650 		}
6651 		free_percpu(zone->pageset);
6652 		zone->pageset = &boot_pageset;
6653 	}
6654 	local_irq_restore(flags);
6655 }
6656 
6657 #ifdef CONFIG_MEMORY_HOTREMOVE
6658 /*
6659  * All pages in the range must be isolated before calling this.
6660  */
6661 void
6662 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6663 {
6664 	struct page *page;
6665 	struct zone *zone;
6666 	unsigned int order, i;
6667 	unsigned long pfn;
6668 	unsigned long flags;
6669 	/* find the first valid pfn */
6670 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6671 		if (pfn_valid(pfn))
6672 			break;
6673 	if (pfn == end_pfn)
6674 		return;
6675 	zone = page_zone(pfn_to_page(pfn));
6676 	spin_lock_irqsave(&zone->lock, flags);
6677 	pfn = start_pfn;
6678 	while (pfn < end_pfn) {
6679 		if (!pfn_valid(pfn)) {
6680 			pfn++;
6681 			continue;
6682 		}
6683 		page = pfn_to_page(pfn);
6684 		/*
6685 		 * The HWPoisoned page may be not in buddy system, and
6686 		 * page_count() is not 0.
6687 		 */
6688 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6689 			pfn++;
6690 			SetPageReserved(page);
6691 			continue;
6692 		}
6693 
6694 		BUG_ON(page_count(page));
6695 		BUG_ON(!PageBuddy(page));
6696 		order = page_order(page);
6697 #ifdef CONFIG_DEBUG_VM
6698 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6699 		       pfn, 1 << order, end_pfn);
6700 #endif
6701 		list_del(&page->lru);
6702 		rmv_page_order(page);
6703 		zone->free_area[order].nr_free--;
6704 		for (i = 0; i < (1 << order); i++)
6705 			SetPageReserved((page+i));
6706 		pfn += (1 << order);
6707 	}
6708 	spin_unlock_irqrestore(&zone->lock, flags);
6709 }
6710 #endif
6711 
6712 #ifdef CONFIG_MEMORY_FAILURE
6713 bool is_free_buddy_page(struct page *page)
6714 {
6715 	struct zone *zone = page_zone(page);
6716 	unsigned long pfn = page_to_pfn(page);
6717 	unsigned long flags;
6718 	unsigned int order;
6719 
6720 	spin_lock_irqsave(&zone->lock, flags);
6721 	for (order = 0; order < MAX_ORDER; order++) {
6722 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6723 
6724 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6725 			break;
6726 	}
6727 	spin_unlock_irqrestore(&zone->lock, flags);
6728 
6729 	return order < MAX_ORDER;
6730 }
6731 #endif
6732