1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/page_ext.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/page_owner.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 #define MIN_PERCPU_PAGELIST_FRACTION (8) 73 74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 75 DEFINE_PER_CPU(int, numa_node); 76 EXPORT_PER_CPU_SYMBOL(numa_node); 77 #endif 78 79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 80 /* 81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 84 * defined in <linux/topology.h>. 85 */ 86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 87 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 88 int _node_numa_mem_[MAX_NUMNODES]; 89 #endif 90 91 /* 92 * Array of node states. 93 */ 94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 95 [N_POSSIBLE] = NODE_MASK_ALL, 96 [N_ONLINE] = { { [0] = 1UL } }, 97 #ifndef CONFIG_NUMA 98 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 99 #ifdef CONFIG_HIGHMEM 100 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 101 #endif 102 #ifdef CONFIG_MOVABLE_NODE 103 [N_MEMORY] = { { [0] = 1UL } }, 104 #endif 105 [N_CPU] = { { [0] = 1UL } }, 106 #endif /* NUMA */ 107 }; 108 EXPORT_SYMBOL(node_states); 109 110 /* Protect totalram_pages and zone->managed_pages */ 111 static DEFINE_SPINLOCK(managed_page_count_lock); 112 113 unsigned long totalram_pages __read_mostly; 114 unsigned long totalreserve_pages __read_mostly; 115 unsigned long totalcma_pages __read_mostly; 116 /* 117 * When calculating the number of globally allowed dirty pages, there 118 * is a certain number of per-zone reserves that should not be 119 * considered dirtyable memory. This is the sum of those reserves 120 * over all existing zones that contribute dirtyable memory. 121 */ 122 unsigned long dirty_balance_reserve __read_mostly; 123 124 int percpu_pagelist_fraction; 125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 126 127 #ifdef CONFIG_PM_SLEEP 128 /* 129 * The following functions are used by the suspend/hibernate code to temporarily 130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 131 * while devices are suspended. To avoid races with the suspend/hibernate code, 132 * they should always be called with pm_mutex held (gfp_allowed_mask also should 133 * only be modified with pm_mutex held, unless the suspend/hibernate code is 134 * guaranteed not to run in parallel with that modification). 135 */ 136 137 static gfp_t saved_gfp_mask; 138 139 void pm_restore_gfp_mask(void) 140 { 141 WARN_ON(!mutex_is_locked(&pm_mutex)); 142 if (saved_gfp_mask) { 143 gfp_allowed_mask = saved_gfp_mask; 144 saved_gfp_mask = 0; 145 } 146 } 147 148 void pm_restrict_gfp_mask(void) 149 { 150 WARN_ON(!mutex_is_locked(&pm_mutex)); 151 WARN_ON(saved_gfp_mask); 152 saved_gfp_mask = gfp_allowed_mask; 153 gfp_allowed_mask &= ~GFP_IOFS; 154 } 155 156 bool pm_suspended_storage(void) 157 { 158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 159 return false; 160 return true; 161 } 162 #endif /* CONFIG_PM_SLEEP */ 163 164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 165 int pageblock_order __read_mostly; 166 #endif 167 168 static void __free_pages_ok(struct page *page, unsigned int order); 169 170 /* 171 * results with 256, 32 in the lowmem_reserve sysctl: 172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 173 * 1G machine -> (16M dma, 784M normal, 224M high) 174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 177 * 178 * TBD: should special case ZONE_DMA32 machines here - in those we normally 179 * don't need any ZONE_NORMAL reservation 180 */ 181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 182 #ifdef CONFIG_ZONE_DMA 183 256, 184 #endif 185 #ifdef CONFIG_ZONE_DMA32 186 256, 187 #endif 188 #ifdef CONFIG_HIGHMEM 189 32, 190 #endif 191 32, 192 }; 193 194 EXPORT_SYMBOL(totalram_pages); 195 196 static char * const zone_names[MAX_NR_ZONES] = { 197 #ifdef CONFIG_ZONE_DMA 198 "DMA", 199 #endif 200 #ifdef CONFIG_ZONE_DMA32 201 "DMA32", 202 #endif 203 "Normal", 204 #ifdef CONFIG_HIGHMEM 205 "HighMem", 206 #endif 207 "Movable", 208 }; 209 210 int min_free_kbytes = 1024; 211 int user_min_free_kbytes = -1; 212 213 static unsigned long __meminitdata nr_kernel_pages; 214 static unsigned long __meminitdata nr_all_pages; 215 static unsigned long __meminitdata dma_reserve; 216 217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 220 static unsigned long __initdata required_kernelcore; 221 static unsigned long __initdata required_movablecore; 222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 223 224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 225 int movable_zone; 226 EXPORT_SYMBOL(movable_zone); 227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 228 229 #if MAX_NUMNODES > 1 230 int nr_node_ids __read_mostly = MAX_NUMNODES; 231 int nr_online_nodes __read_mostly = 1; 232 EXPORT_SYMBOL(nr_node_ids); 233 EXPORT_SYMBOL(nr_online_nodes); 234 #endif 235 236 int page_group_by_mobility_disabled __read_mostly; 237 238 void set_pageblock_migratetype(struct page *page, int migratetype) 239 { 240 if (unlikely(page_group_by_mobility_disabled && 241 migratetype < MIGRATE_PCPTYPES)) 242 migratetype = MIGRATE_UNMOVABLE; 243 244 set_pageblock_flags_group(page, (unsigned long)migratetype, 245 PB_migrate, PB_migrate_end); 246 } 247 248 #ifdef CONFIG_DEBUG_VM 249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250 { 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270 } 271 272 static int page_is_consistent(struct zone *zone, struct page *page) 273 { 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280 } 281 /* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284 static int bad_range(struct zone *zone, struct page *page) 285 { 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292 } 293 #else 294 static inline int bad_range(struct zone *zone, struct page *page) 295 { 296 return 0; 297 } 298 #endif 299 300 static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302 { 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339 out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343 } 344 345 /* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360 static void free_compound_page(struct page *page) 361 { 362 __free_pages_ok(page, compound_order(page)); 363 } 364 365 void prep_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381 } 382 383 static inline void prep_zero_page(struct page *page, unsigned int order, 384 gfp_t gfp_flags) 385 { 386 int i; 387 388 /* 389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 390 * and __GFP_HIGHMEM from hard or soft interrupt context. 391 */ 392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 393 for (i = 0; i < (1 << order); i++) 394 clear_highpage(page + i); 395 } 396 397 #ifdef CONFIG_DEBUG_PAGEALLOC 398 unsigned int _debug_guardpage_minorder; 399 bool _debug_pagealloc_enabled __read_mostly; 400 bool _debug_guardpage_enabled __read_mostly; 401 402 static int __init early_debug_pagealloc(char *buf) 403 { 404 if (!buf) 405 return -EINVAL; 406 407 if (strcmp(buf, "on") == 0) 408 _debug_pagealloc_enabled = true; 409 410 return 0; 411 } 412 early_param("debug_pagealloc", early_debug_pagealloc); 413 414 static bool need_debug_guardpage(void) 415 { 416 /* If we don't use debug_pagealloc, we don't need guard page */ 417 if (!debug_pagealloc_enabled()) 418 return false; 419 420 return true; 421 } 422 423 static void init_debug_guardpage(void) 424 { 425 if (!debug_pagealloc_enabled()) 426 return; 427 428 _debug_guardpage_enabled = true; 429 } 430 431 struct page_ext_operations debug_guardpage_ops = { 432 .need = need_debug_guardpage, 433 .init = init_debug_guardpage, 434 }; 435 436 static int __init debug_guardpage_minorder_setup(char *buf) 437 { 438 unsigned long res; 439 440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 442 return 0; 443 } 444 _debug_guardpage_minorder = res; 445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 446 return 0; 447 } 448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 449 450 static inline void set_page_guard(struct zone *zone, struct page *page, 451 unsigned int order, int migratetype) 452 { 453 struct page_ext *page_ext; 454 455 if (!debug_guardpage_enabled()) 456 return; 457 458 page_ext = lookup_page_ext(page); 459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 460 461 INIT_LIST_HEAD(&page->lru); 462 set_page_private(page, order); 463 /* Guard pages are not available for any usage */ 464 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 465 } 466 467 static inline void clear_page_guard(struct zone *zone, struct page *page, 468 unsigned int order, int migratetype) 469 { 470 struct page_ext *page_ext; 471 472 if (!debug_guardpage_enabled()) 473 return; 474 475 page_ext = lookup_page_ext(page); 476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 477 478 set_page_private(page, 0); 479 if (!is_migrate_isolate(migratetype)) 480 __mod_zone_freepage_state(zone, (1 << order), migratetype); 481 } 482 #else 483 struct page_ext_operations debug_guardpage_ops = { NULL, }; 484 static inline void set_page_guard(struct zone *zone, struct page *page, 485 unsigned int order, int migratetype) {} 486 static inline void clear_page_guard(struct zone *zone, struct page *page, 487 unsigned int order, int migratetype) {} 488 #endif 489 490 static inline void set_page_order(struct page *page, unsigned int order) 491 { 492 set_page_private(page, order); 493 __SetPageBuddy(page); 494 } 495 496 static inline void rmv_page_order(struct page *page) 497 { 498 __ClearPageBuddy(page); 499 set_page_private(page, 0); 500 } 501 502 /* 503 * This function checks whether a page is free && is the buddy 504 * we can do coalesce a page and its buddy if 505 * (a) the buddy is not in a hole && 506 * (b) the buddy is in the buddy system && 507 * (c) a page and its buddy have the same order && 508 * (d) a page and its buddy are in the same zone. 509 * 510 * For recording whether a page is in the buddy system, we set ->_mapcount 511 * PAGE_BUDDY_MAPCOUNT_VALUE. 512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 513 * serialized by zone->lock. 514 * 515 * For recording page's order, we use page_private(page). 516 */ 517 static inline int page_is_buddy(struct page *page, struct page *buddy, 518 unsigned int order) 519 { 520 if (!pfn_valid_within(page_to_pfn(buddy))) 521 return 0; 522 523 if (page_is_guard(buddy) && page_order(buddy) == order) { 524 if (page_zone_id(page) != page_zone_id(buddy)) 525 return 0; 526 527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 528 529 return 1; 530 } 531 532 if (PageBuddy(buddy) && page_order(buddy) == order) { 533 /* 534 * zone check is done late to avoid uselessly 535 * calculating zone/node ids for pages that could 536 * never merge. 537 */ 538 if (page_zone_id(page) != page_zone_id(buddy)) 539 return 0; 540 541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 542 543 return 1; 544 } 545 return 0; 546 } 547 548 /* 549 * Freeing function for a buddy system allocator. 550 * 551 * The concept of a buddy system is to maintain direct-mapped table 552 * (containing bit values) for memory blocks of various "orders". 553 * The bottom level table contains the map for the smallest allocatable 554 * units of memory (here, pages), and each level above it describes 555 * pairs of units from the levels below, hence, "buddies". 556 * At a high level, all that happens here is marking the table entry 557 * at the bottom level available, and propagating the changes upward 558 * as necessary, plus some accounting needed to play nicely with other 559 * parts of the VM system. 560 * At each level, we keep a list of pages, which are heads of continuous 561 * free pages of length of (1 << order) and marked with _mapcount 562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 563 * field. 564 * So when we are allocating or freeing one, we can derive the state of the 565 * other. That is, if we allocate a small block, and both were 566 * free, the remainder of the region must be split into blocks. 567 * If a block is freed, and its buddy is also free, then this 568 * triggers coalescing into a block of larger size. 569 * 570 * -- nyc 571 */ 572 573 static inline void __free_one_page(struct page *page, 574 unsigned long pfn, 575 struct zone *zone, unsigned int order, 576 int migratetype) 577 { 578 unsigned long page_idx; 579 unsigned long combined_idx; 580 unsigned long uninitialized_var(buddy_idx); 581 struct page *buddy; 582 int max_order = MAX_ORDER; 583 584 VM_BUG_ON(!zone_is_initialized(zone)); 585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 586 587 VM_BUG_ON(migratetype == -1); 588 if (is_migrate_isolate(migratetype)) { 589 /* 590 * We restrict max order of merging to prevent merge 591 * between freepages on isolate pageblock and normal 592 * pageblock. Without this, pageblock isolation 593 * could cause incorrect freepage accounting. 594 */ 595 max_order = min(MAX_ORDER, pageblock_order + 1); 596 } else { 597 __mod_zone_freepage_state(zone, 1 << order, migratetype); 598 } 599 600 page_idx = pfn & ((1 << max_order) - 1); 601 602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 603 VM_BUG_ON_PAGE(bad_range(zone, page), page); 604 605 while (order < max_order - 1) { 606 buddy_idx = __find_buddy_index(page_idx, order); 607 buddy = page + (buddy_idx - page_idx); 608 if (!page_is_buddy(page, buddy, order)) 609 break; 610 /* 611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 612 * merge with it and move up one order. 613 */ 614 if (page_is_guard(buddy)) { 615 clear_page_guard(zone, buddy, order, migratetype); 616 } else { 617 list_del(&buddy->lru); 618 zone->free_area[order].nr_free--; 619 rmv_page_order(buddy); 620 } 621 combined_idx = buddy_idx & page_idx; 622 page = page + (combined_idx - page_idx); 623 page_idx = combined_idx; 624 order++; 625 } 626 set_page_order(page, order); 627 628 /* 629 * If this is not the largest possible page, check if the buddy 630 * of the next-highest order is free. If it is, it's possible 631 * that pages are being freed that will coalesce soon. In case, 632 * that is happening, add the free page to the tail of the list 633 * so it's less likely to be used soon and more likely to be merged 634 * as a higher order page 635 */ 636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 637 struct page *higher_page, *higher_buddy; 638 combined_idx = buddy_idx & page_idx; 639 higher_page = page + (combined_idx - page_idx); 640 buddy_idx = __find_buddy_index(combined_idx, order + 1); 641 higher_buddy = higher_page + (buddy_idx - combined_idx); 642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 643 list_add_tail(&page->lru, 644 &zone->free_area[order].free_list[migratetype]); 645 goto out; 646 } 647 } 648 649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 650 out: 651 zone->free_area[order].nr_free++; 652 } 653 654 static inline int free_pages_check(struct page *page) 655 { 656 const char *bad_reason = NULL; 657 unsigned long bad_flags = 0; 658 659 if (unlikely(page_mapcount(page))) 660 bad_reason = "nonzero mapcount"; 661 if (unlikely(page->mapping != NULL)) 662 bad_reason = "non-NULL mapping"; 663 if (unlikely(atomic_read(&page->_count) != 0)) 664 bad_reason = "nonzero _count"; 665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 668 } 669 #ifdef CONFIG_MEMCG 670 if (unlikely(page->mem_cgroup)) 671 bad_reason = "page still charged to cgroup"; 672 #endif 673 if (unlikely(bad_reason)) { 674 bad_page(page, bad_reason, bad_flags); 675 return 1; 676 } 677 page_cpupid_reset_last(page); 678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 680 return 0; 681 } 682 683 /* 684 * Frees a number of pages from the PCP lists 685 * Assumes all pages on list are in same zone, and of same order. 686 * count is the number of pages to free. 687 * 688 * If the zone was previously in an "all pages pinned" state then look to 689 * see if this freeing clears that state. 690 * 691 * And clear the zone's pages_scanned counter, to hold off the "all pages are 692 * pinned" detection logic. 693 */ 694 static void free_pcppages_bulk(struct zone *zone, int count, 695 struct per_cpu_pages *pcp) 696 { 697 int migratetype = 0; 698 int batch_free = 0; 699 int to_free = count; 700 unsigned long nr_scanned; 701 702 spin_lock(&zone->lock); 703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 704 if (nr_scanned) 705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 706 707 while (to_free) { 708 struct page *page; 709 struct list_head *list; 710 711 /* 712 * Remove pages from lists in a round-robin fashion. A 713 * batch_free count is maintained that is incremented when an 714 * empty list is encountered. This is so more pages are freed 715 * off fuller lists instead of spinning excessively around empty 716 * lists 717 */ 718 do { 719 batch_free++; 720 if (++migratetype == MIGRATE_PCPTYPES) 721 migratetype = 0; 722 list = &pcp->lists[migratetype]; 723 } while (list_empty(list)); 724 725 /* This is the only non-empty list. Free them all. */ 726 if (batch_free == MIGRATE_PCPTYPES) 727 batch_free = to_free; 728 729 do { 730 int mt; /* migratetype of the to-be-freed page */ 731 732 page = list_entry(list->prev, struct page, lru); 733 /* must delete as __free_one_page list manipulates */ 734 list_del(&page->lru); 735 mt = get_freepage_migratetype(page); 736 if (unlikely(has_isolate_pageblock(zone))) 737 mt = get_pageblock_migratetype(page); 738 739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 740 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 741 trace_mm_page_pcpu_drain(page, 0, mt); 742 } while (--to_free && --batch_free && !list_empty(list)); 743 } 744 spin_unlock(&zone->lock); 745 } 746 747 static void free_one_page(struct zone *zone, 748 struct page *page, unsigned long pfn, 749 unsigned int order, 750 int migratetype) 751 { 752 unsigned long nr_scanned; 753 spin_lock(&zone->lock); 754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 755 if (nr_scanned) 756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 757 758 if (unlikely(has_isolate_pageblock(zone) || 759 is_migrate_isolate(migratetype))) { 760 migratetype = get_pfnblock_migratetype(page, pfn); 761 } 762 __free_one_page(page, pfn, zone, order, migratetype); 763 spin_unlock(&zone->lock); 764 } 765 766 static int free_tail_pages_check(struct page *head_page, struct page *page) 767 { 768 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 769 return 0; 770 if (unlikely(!PageTail(page))) { 771 bad_page(page, "PageTail not set", 0); 772 return 1; 773 } 774 if (unlikely(page->first_page != head_page)) { 775 bad_page(page, "first_page not consistent", 0); 776 return 1; 777 } 778 return 0; 779 } 780 781 static bool free_pages_prepare(struct page *page, unsigned int order) 782 { 783 bool compound = PageCompound(page); 784 int i, bad = 0; 785 786 VM_BUG_ON_PAGE(PageTail(page), page); 787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 788 789 trace_mm_page_free(page, order); 790 kmemcheck_free_shadow(page, order); 791 kasan_free_pages(page, order); 792 793 if (PageAnon(page)) 794 page->mapping = NULL; 795 bad += free_pages_check(page); 796 for (i = 1; i < (1 << order); i++) { 797 if (compound) 798 bad += free_tail_pages_check(page, page + i); 799 bad += free_pages_check(page + i); 800 } 801 if (bad) 802 return false; 803 804 reset_page_owner(page, order); 805 806 if (!PageHighMem(page)) { 807 debug_check_no_locks_freed(page_address(page), 808 PAGE_SIZE << order); 809 debug_check_no_obj_freed(page_address(page), 810 PAGE_SIZE << order); 811 } 812 arch_free_page(page, order); 813 kernel_map_pages(page, 1 << order, 0); 814 815 return true; 816 } 817 818 static void __free_pages_ok(struct page *page, unsigned int order) 819 { 820 unsigned long flags; 821 int migratetype; 822 unsigned long pfn = page_to_pfn(page); 823 824 if (!free_pages_prepare(page, order)) 825 return; 826 827 migratetype = get_pfnblock_migratetype(page, pfn); 828 local_irq_save(flags); 829 __count_vm_events(PGFREE, 1 << order); 830 set_freepage_migratetype(page, migratetype); 831 free_one_page(page_zone(page), page, pfn, order, migratetype); 832 local_irq_restore(flags); 833 } 834 835 void __init __free_pages_bootmem(struct page *page, unsigned int order) 836 { 837 unsigned int nr_pages = 1 << order; 838 struct page *p = page; 839 unsigned int loop; 840 841 prefetchw(p); 842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 843 prefetchw(p + 1); 844 __ClearPageReserved(p); 845 set_page_count(p, 0); 846 } 847 __ClearPageReserved(p); 848 set_page_count(p, 0); 849 850 page_zone(page)->managed_pages += nr_pages; 851 set_page_refcounted(page); 852 __free_pages(page, order); 853 } 854 855 #ifdef CONFIG_CMA 856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 857 void __init init_cma_reserved_pageblock(struct page *page) 858 { 859 unsigned i = pageblock_nr_pages; 860 struct page *p = page; 861 862 do { 863 __ClearPageReserved(p); 864 set_page_count(p, 0); 865 } while (++p, --i); 866 867 set_pageblock_migratetype(page, MIGRATE_CMA); 868 869 if (pageblock_order >= MAX_ORDER) { 870 i = pageblock_nr_pages; 871 p = page; 872 do { 873 set_page_refcounted(p); 874 __free_pages(p, MAX_ORDER - 1); 875 p += MAX_ORDER_NR_PAGES; 876 } while (i -= MAX_ORDER_NR_PAGES); 877 } else { 878 set_page_refcounted(page); 879 __free_pages(page, pageblock_order); 880 } 881 882 adjust_managed_page_count(page, pageblock_nr_pages); 883 } 884 #endif 885 886 /* 887 * The order of subdivision here is critical for the IO subsystem. 888 * Please do not alter this order without good reasons and regression 889 * testing. Specifically, as large blocks of memory are subdivided, 890 * the order in which smaller blocks are delivered depends on the order 891 * they're subdivided in this function. This is the primary factor 892 * influencing the order in which pages are delivered to the IO 893 * subsystem according to empirical testing, and this is also justified 894 * by considering the behavior of a buddy system containing a single 895 * large block of memory acted on by a series of small allocations. 896 * This behavior is a critical factor in sglist merging's success. 897 * 898 * -- nyc 899 */ 900 static inline void expand(struct zone *zone, struct page *page, 901 int low, int high, struct free_area *area, 902 int migratetype) 903 { 904 unsigned long size = 1 << high; 905 906 while (high > low) { 907 area--; 908 high--; 909 size >>= 1; 910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 911 912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 913 debug_guardpage_enabled() && 914 high < debug_guardpage_minorder()) { 915 /* 916 * Mark as guard pages (or page), that will allow to 917 * merge back to allocator when buddy will be freed. 918 * Corresponding page table entries will not be touched, 919 * pages will stay not present in virtual address space 920 */ 921 set_page_guard(zone, &page[size], high, migratetype); 922 continue; 923 } 924 list_add(&page[size].lru, &area->free_list[migratetype]); 925 area->nr_free++; 926 set_page_order(&page[size], high); 927 } 928 } 929 930 /* 931 * This page is about to be returned from the page allocator 932 */ 933 static inline int check_new_page(struct page *page) 934 { 935 const char *bad_reason = NULL; 936 unsigned long bad_flags = 0; 937 938 if (unlikely(page_mapcount(page))) 939 bad_reason = "nonzero mapcount"; 940 if (unlikely(page->mapping != NULL)) 941 bad_reason = "non-NULL mapping"; 942 if (unlikely(atomic_read(&page->_count) != 0)) 943 bad_reason = "nonzero _count"; 944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 947 } 948 #ifdef CONFIG_MEMCG 949 if (unlikely(page->mem_cgroup)) 950 bad_reason = "page still charged to cgroup"; 951 #endif 952 if (unlikely(bad_reason)) { 953 bad_page(page, bad_reason, bad_flags); 954 return 1; 955 } 956 return 0; 957 } 958 959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 960 int alloc_flags) 961 { 962 int i; 963 964 for (i = 0; i < (1 << order); i++) { 965 struct page *p = page + i; 966 if (unlikely(check_new_page(p))) 967 return 1; 968 } 969 970 set_page_private(page, 0); 971 set_page_refcounted(page); 972 973 arch_alloc_page(page, order); 974 kernel_map_pages(page, 1 << order, 1); 975 kasan_alloc_pages(page, order); 976 977 if (gfp_flags & __GFP_ZERO) 978 prep_zero_page(page, order, gfp_flags); 979 980 if (order && (gfp_flags & __GFP_COMP)) 981 prep_compound_page(page, order); 982 983 set_page_owner(page, order, gfp_flags); 984 985 /* 986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to 987 * allocate the page. The expectation is that the caller is taking 988 * steps that will free more memory. The caller should avoid the page 989 * being used for !PFMEMALLOC purposes. 990 */ 991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 992 993 return 0; 994 } 995 996 /* 997 * Go through the free lists for the given migratetype and remove 998 * the smallest available page from the freelists 999 */ 1000 static inline 1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1002 int migratetype) 1003 { 1004 unsigned int current_order; 1005 struct free_area *area; 1006 struct page *page; 1007 1008 /* Find a page of the appropriate size in the preferred list */ 1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1010 area = &(zone->free_area[current_order]); 1011 if (list_empty(&area->free_list[migratetype])) 1012 continue; 1013 1014 page = list_entry(area->free_list[migratetype].next, 1015 struct page, lru); 1016 list_del(&page->lru); 1017 rmv_page_order(page); 1018 area->nr_free--; 1019 expand(zone, page, order, current_order, area, migratetype); 1020 set_freepage_migratetype(page, migratetype); 1021 return page; 1022 } 1023 1024 return NULL; 1025 } 1026 1027 1028 /* 1029 * This array describes the order lists are fallen back to when 1030 * the free lists for the desirable migrate type are depleted 1031 */ 1032 static int fallbacks[MIGRATE_TYPES][4] = { 1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1035 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1036 #ifdef CONFIG_CMA 1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 1038 #endif 1039 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 1040 #ifdef CONFIG_MEMORY_ISOLATION 1041 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 1042 #endif 1043 }; 1044 1045 #ifdef CONFIG_CMA 1046 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1047 unsigned int order) 1048 { 1049 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1050 } 1051 #else 1052 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1053 unsigned int order) { return NULL; } 1054 #endif 1055 1056 /* 1057 * Move the free pages in a range to the free lists of the requested type. 1058 * Note that start_page and end_pages are not aligned on a pageblock 1059 * boundary. If alignment is required, use move_freepages_block() 1060 */ 1061 int move_freepages(struct zone *zone, 1062 struct page *start_page, struct page *end_page, 1063 int migratetype) 1064 { 1065 struct page *page; 1066 unsigned long order; 1067 int pages_moved = 0; 1068 1069 #ifndef CONFIG_HOLES_IN_ZONE 1070 /* 1071 * page_zone is not safe to call in this context when 1072 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1073 * anyway as we check zone boundaries in move_freepages_block(). 1074 * Remove at a later date when no bug reports exist related to 1075 * grouping pages by mobility 1076 */ 1077 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1078 #endif 1079 1080 for (page = start_page; page <= end_page;) { 1081 /* Make sure we are not inadvertently changing nodes */ 1082 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1083 1084 if (!pfn_valid_within(page_to_pfn(page))) { 1085 page++; 1086 continue; 1087 } 1088 1089 if (!PageBuddy(page)) { 1090 page++; 1091 continue; 1092 } 1093 1094 order = page_order(page); 1095 list_move(&page->lru, 1096 &zone->free_area[order].free_list[migratetype]); 1097 set_freepage_migratetype(page, migratetype); 1098 page += 1 << order; 1099 pages_moved += 1 << order; 1100 } 1101 1102 return pages_moved; 1103 } 1104 1105 int move_freepages_block(struct zone *zone, struct page *page, 1106 int migratetype) 1107 { 1108 unsigned long start_pfn, end_pfn; 1109 struct page *start_page, *end_page; 1110 1111 start_pfn = page_to_pfn(page); 1112 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1113 start_page = pfn_to_page(start_pfn); 1114 end_page = start_page + pageblock_nr_pages - 1; 1115 end_pfn = start_pfn + pageblock_nr_pages - 1; 1116 1117 /* Do not cross zone boundaries */ 1118 if (!zone_spans_pfn(zone, start_pfn)) 1119 start_page = page; 1120 if (!zone_spans_pfn(zone, end_pfn)) 1121 return 0; 1122 1123 return move_freepages(zone, start_page, end_page, migratetype); 1124 } 1125 1126 static void change_pageblock_range(struct page *pageblock_page, 1127 int start_order, int migratetype) 1128 { 1129 int nr_pageblocks = 1 << (start_order - pageblock_order); 1130 1131 while (nr_pageblocks--) { 1132 set_pageblock_migratetype(pageblock_page, migratetype); 1133 pageblock_page += pageblock_nr_pages; 1134 } 1135 } 1136 1137 /* 1138 * When we are falling back to another migratetype during allocation, try to 1139 * steal extra free pages from the same pageblocks to satisfy further 1140 * allocations, instead of polluting multiple pageblocks. 1141 * 1142 * If we are stealing a relatively large buddy page, it is likely there will 1143 * be more free pages in the pageblock, so try to steal them all. For 1144 * reclaimable and unmovable allocations, we steal regardless of page size, 1145 * as fragmentation caused by those allocations polluting movable pageblocks 1146 * is worse than movable allocations stealing from unmovable and reclaimable 1147 * pageblocks. 1148 */ 1149 static bool can_steal_fallback(unsigned int order, int start_mt) 1150 { 1151 /* 1152 * Leaving this order check is intended, although there is 1153 * relaxed order check in next check. The reason is that 1154 * we can actually steal whole pageblock if this condition met, 1155 * but, below check doesn't guarantee it and that is just heuristic 1156 * so could be changed anytime. 1157 */ 1158 if (order >= pageblock_order) 1159 return true; 1160 1161 if (order >= pageblock_order / 2 || 1162 start_mt == MIGRATE_RECLAIMABLE || 1163 start_mt == MIGRATE_UNMOVABLE || 1164 page_group_by_mobility_disabled) 1165 return true; 1166 1167 return false; 1168 } 1169 1170 /* 1171 * This function implements actual steal behaviour. If order is large enough, 1172 * we can steal whole pageblock. If not, we first move freepages in this 1173 * pageblock and check whether half of pages are moved or not. If half of 1174 * pages are moved, we can change migratetype of pageblock and permanently 1175 * use it's pages as requested migratetype in the future. 1176 */ 1177 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1178 int start_type) 1179 { 1180 int current_order = page_order(page); 1181 int pages; 1182 1183 /* Take ownership for orders >= pageblock_order */ 1184 if (current_order >= pageblock_order) { 1185 change_pageblock_range(page, current_order, start_type); 1186 return; 1187 } 1188 1189 pages = move_freepages_block(zone, page, start_type); 1190 1191 /* Claim the whole block if over half of it is free */ 1192 if (pages >= (1 << (pageblock_order-1)) || 1193 page_group_by_mobility_disabled) 1194 set_pageblock_migratetype(page, start_type); 1195 } 1196 1197 /* 1198 * Check whether there is a suitable fallback freepage with requested order. 1199 * If only_stealable is true, this function returns fallback_mt only if 1200 * we can steal other freepages all together. This would help to reduce 1201 * fragmentation due to mixed migratetype pages in one pageblock. 1202 */ 1203 int find_suitable_fallback(struct free_area *area, unsigned int order, 1204 int migratetype, bool only_stealable, bool *can_steal) 1205 { 1206 int i; 1207 int fallback_mt; 1208 1209 if (area->nr_free == 0) 1210 return -1; 1211 1212 *can_steal = false; 1213 for (i = 0;; i++) { 1214 fallback_mt = fallbacks[migratetype][i]; 1215 if (fallback_mt == MIGRATE_RESERVE) 1216 break; 1217 1218 if (list_empty(&area->free_list[fallback_mt])) 1219 continue; 1220 1221 if (can_steal_fallback(order, migratetype)) 1222 *can_steal = true; 1223 1224 if (!only_stealable) 1225 return fallback_mt; 1226 1227 if (*can_steal) 1228 return fallback_mt; 1229 } 1230 1231 return -1; 1232 } 1233 1234 /* Remove an element from the buddy allocator from the fallback list */ 1235 static inline struct page * 1236 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1237 { 1238 struct free_area *area; 1239 unsigned int current_order; 1240 struct page *page; 1241 int fallback_mt; 1242 bool can_steal; 1243 1244 /* Find the largest possible block of pages in the other list */ 1245 for (current_order = MAX_ORDER-1; 1246 current_order >= order && current_order <= MAX_ORDER-1; 1247 --current_order) { 1248 area = &(zone->free_area[current_order]); 1249 fallback_mt = find_suitable_fallback(area, current_order, 1250 start_migratetype, false, &can_steal); 1251 if (fallback_mt == -1) 1252 continue; 1253 1254 page = list_entry(area->free_list[fallback_mt].next, 1255 struct page, lru); 1256 if (can_steal) 1257 steal_suitable_fallback(zone, page, start_migratetype); 1258 1259 /* Remove the page from the freelists */ 1260 area->nr_free--; 1261 list_del(&page->lru); 1262 rmv_page_order(page); 1263 1264 expand(zone, page, order, current_order, area, 1265 start_migratetype); 1266 /* 1267 * The freepage_migratetype may differ from pageblock's 1268 * migratetype depending on the decisions in 1269 * try_to_steal_freepages(). This is OK as long as it 1270 * does not differ for MIGRATE_CMA pageblocks. For CMA 1271 * we need to make sure unallocated pages flushed from 1272 * pcp lists are returned to the correct freelist. 1273 */ 1274 set_freepage_migratetype(page, start_migratetype); 1275 1276 trace_mm_page_alloc_extfrag(page, order, current_order, 1277 start_migratetype, fallback_mt); 1278 1279 return page; 1280 } 1281 1282 return NULL; 1283 } 1284 1285 /* 1286 * Do the hard work of removing an element from the buddy allocator. 1287 * Call me with the zone->lock already held. 1288 */ 1289 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1290 int migratetype) 1291 { 1292 struct page *page; 1293 1294 retry_reserve: 1295 page = __rmqueue_smallest(zone, order, migratetype); 1296 1297 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1298 if (migratetype == MIGRATE_MOVABLE) 1299 page = __rmqueue_cma_fallback(zone, order); 1300 1301 if (!page) 1302 page = __rmqueue_fallback(zone, order, migratetype); 1303 1304 /* 1305 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1306 * is used because __rmqueue_smallest is an inline function 1307 * and we want just one call site 1308 */ 1309 if (!page) { 1310 migratetype = MIGRATE_RESERVE; 1311 goto retry_reserve; 1312 } 1313 } 1314 1315 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1316 return page; 1317 } 1318 1319 /* 1320 * Obtain a specified number of elements from the buddy allocator, all under 1321 * a single hold of the lock, for efficiency. Add them to the supplied list. 1322 * Returns the number of new pages which were placed at *list. 1323 */ 1324 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1325 unsigned long count, struct list_head *list, 1326 int migratetype, bool cold) 1327 { 1328 int i; 1329 1330 spin_lock(&zone->lock); 1331 for (i = 0; i < count; ++i) { 1332 struct page *page = __rmqueue(zone, order, migratetype); 1333 if (unlikely(page == NULL)) 1334 break; 1335 1336 /* 1337 * Split buddy pages returned by expand() are received here 1338 * in physical page order. The page is added to the callers and 1339 * list and the list head then moves forward. From the callers 1340 * perspective, the linked list is ordered by page number in 1341 * some conditions. This is useful for IO devices that can 1342 * merge IO requests if the physical pages are ordered 1343 * properly. 1344 */ 1345 if (likely(!cold)) 1346 list_add(&page->lru, list); 1347 else 1348 list_add_tail(&page->lru, list); 1349 list = &page->lru; 1350 if (is_migrate_cma(get_freepage_migratetype(page))) 1351 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1352 -(1 << order)); 1353 } 1354 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1355 spin_unlock(&zone->lock); 1356 return i; 1357 } 1358 1359 #ifdef CONFIG_NUMA 1360 /* 1361 * Called from the vmstat counter updater to drain pagesets of this 1362 * currently executing processor on remote nodes after they have 1363 * expired. 1364 * 1365 * Note that this function must be called with the thread pinned to 1366 * a single processor. 1367 */ 1368 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1369 { 1370 unsigned long flags; 1371 int to_drain, batch; 1372 1373 local_irq_save(flags); 1374 batch = READ_ONCE(pcp->batch); 1375 to_drain = min(pcp->count, batch); 1376 if (to_drain > 0) { 1377 free_pcppages_bulk(zone, to_drain, pcp); 1378 pcp->count -= to_drain; 1379 } 1380 local_irq_restore(flags); 1381 } 1382 #endif 1383 1384 /* 1385 * Drain pcplists of the indicated processor and zone. 1386 * 1387 * The processor must either be the current processor and the 1388 * thread pinned to the current processor or a processor that 1389 * is not online. 1390 */ 1391 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 1392 { 1393 unsigned long flags; 1394 struct per_cpu_pageset *pset; 1395 struct per_cpu_pages *pcp; 1396 1397 local_irq_save(flags); 1398 pset = per_cpu_ptr(zone->pageset, cpu); 1399 1400 pcp = &pset->pcp; 1401 if (pcp->count) { 1402 free_pcppages_bulk(zone, pcp->count, pcp); 1403 pcp->count = 0; 1404 } 1405 local_irq_restore(flags); 1406 } 1407 1408 /* 1409 * Drain pcplists of all zones on the indicated processor. 1410 * 1411 * The processor must either be the current processor and the 1412 * thread pinned to the current processor or a processor that 1413 * is not online. 1414 */ 1415 static void drain_pages(unsigned int cpu) 1416 { 1417 struct zone *zone; 1418 1419 for_each_populated_zone(zone) { 1420 drain_pages_zone(cpu, zone); 1421 } 1422 } 1423 1424 /* 1425 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1426 * 1427 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 1428 * the single zone's pages. 1429 */ 1430 void drain_local_pages(struct zone *zone) 1431 { 1432 int cpu = smp_processor_id(); 1433 1434 if (zone) 1435 drain_pages_zone(cpu, zone); 1436 else 1437 drain_pages(cpu); 1438 } 1439 1440 /* 1441 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1442 * 1443 * When zone parameter is non-NULL, spill just the single zone's pages. 1444 * 1445 * Note that this code is protected against sending an IPI to an offline 1446 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1447 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1448 * nothing keeps CPUs from showing up after we populated the cpumask and 1449 * before the call to on_each_cpu_mask(). 1450 */ 1451 void drain_all_pages(struct zone *zone) 1452 { 1453 int cpu; 1454 1455 /* 1456 * Allocate in the BSS so we wont require allocation in 1457 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1458 */ 1459 static cpumask_t cpus_with_pcps; 1460 1461 /* 1462 * We don't care about racing with CPU hotplug event 1463 * as offline notification will cause the notified 1464 * cpu to drain that CPU pcps and on_each_cpu_mask 1465 * disables preemption as part of its processing 1466 */ 1467 for_each_online_cpu(cpu) { 1468 struct per_cpu_pageset *pcp; 1469 struct zone *z; 1470 bool has_pcps = false; 1471 1472 if (zone) { 1473 pcp = per_cpu_ptr(zone->pageset, cpu); 1474 if (pcp->pcp.count) 1475 has_pcps = true; 1476 } else { 1477 for_each_populated_zone(z) { 1478 pcp = per_cpu_ptr(z->pageset, cpu); 1479 if (pcp->pcp.count) { 1480 has_pcps = true; 1481 break; 1482 } 1483 } 1484 } 1485 1486 if (has_pcps) 1487 cpumask_set_cpu(cpu, &cpus_with_pcps); 1488 else 1489 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1490 } 1491 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 1492 zone, 1); 1493 } 1494 1495 #ifdef CONFIG_HIBERNATION 1496 1497 void mark_free_pages(struct zone *zone) 1498 { 1499 unsigned long pfn, max_zone_pfn; 1500 unsigned long flags; 1501 unsigned int order, t; 1502 struct list_head *curr; 1503 1504 if (zone_is_empty(zone)) 1505 return; 1506 1507 spin_lock_irqsave(&zone->lock, flags); 1508 1509 max_zone_pfn = zone_end_pfn(zone); 1510 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1511 if (pfn_valid(pfn)) { 1512 struct page *page = pfn_to_page(pfn); 1513 1514 if (!swsusp_page_is_forbidden(page)) 1515 swsusp_unset_page_free(page); 1516 } 1517 1518 for_each_migratetype_order(order, t) { 1519 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1520 unsigned long i; 1521 1522 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1523 for (i = 0; i < (1UL << order); i++) 1524 swsusp_set_page_free(pfn_to_page(pfn + i)); 1525 } 1526 } 1527 spin_unlock_irqrestore(&zone->lock, flags); 1528 } 1529 #endif /* CONFIG_PM */ 1530 1531 /* 1532 * Free a 0-order page 1533 * cold == true ? free a cold page : free a hot page 1534 */ 1535 void free_hot_cold_page(struct page *page, bool cold) 1536 { 1537 struct zone *zone = page_zone(page); 1538 struct per_cpu_pages *pcp; 1539 unsigned long flags; 1540 unsigned long pfn = page_to_pfn(page); 1541 int migratetype; 1542 1543 if (!free_pages_prepare(page, 0)) 1544 return; 1545 1546 migratetype = get_pfnblock_migratetype(page, pfn); 1547 set_freepage_migratetype(page, migratetype); 1548 local_irq_save(flags); 1549 __count_vm_event(PGFREE); 1550 1551 /* 1552 * We only track unmovable, reclaimable and movable on pcp lists. 1553 * Free ISOLATE pages back to the allocator because they are being 1554 * offlined but treat RESERVE as movable pages so we can get those 1555 * areas back if necessary. Otherwise, we may have to free 1556 * excessively into the page allocator 1557 */ 1558 if (migratetype >= MIGRATE_PCPTYPES) { 1559 if (unlikely(is_migrate_isolate(migratetype))) { 1560 free_one_page(zone, page, pfn, 0, migratetype); 1561 goto out; 1562 } 1563 migratetype = MIGRATE_MOVABLE; 1564 } 1565 1566 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1567 if (!cold) 1568 list_add(&page->lru, &pcp->lists[migratetype]); 1569 else 1570 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1571 pcp->count++; 1572 if (pcp->count >= pcp->high) { 1573 unsigned long batch = READ_ONCE(pcp->batch); 1574 free_pcppages_bulk(zone, batch, pcp); 1575 pcp->count -= batch; 1576 } 1577 1578 out: 1579 local_irq_restore(flags); 1580 } 1581 1582 /* 1583 * Free a list of 0-order pages 1584 */ 1585 void free_hot_cold_page_list(struct list_head *list, bool cold) 1586 { 1587 struct page *page, *next; 1588 1589 list_for_each_entry_safe(page, next, list, lru) { 1590 trace_mm_page_free_batched(page, cold); 1591 free_hot_cold_page(page, cold); 1592 } 1593 } 1594 1595 /* 1596 * split_page takes a non-compound higher-order page, and splits it into 1597 * n (1<<order) sub-pages: page[0..n] 1598 * Each sub-page must be freed individually. 1599 * 1600 * Note: this is probably too low level an operation for use in drivers. 1601 * Please consult with lkml before using this in your driver. 1602 */ 1603 void split_page(struct page *page, unsigned int order) 1604 { 1605 int i; 1606 1607 VM_BUG_ON_PAGE(PageCompound(page), page); 1608 VM_BUG_ON_PAGE(!page_count(page), page); 1609 1610 #ifdef CONFIG_KMEMCHECK 1611 /* 1612 * Split shadow pages too, because free(page[0]) would 1613 * otherwise free the whole shadow. 1614 */ 1615 if (kmemcheck_page_is_tracked(page)) 1616 split_page(virt_to_page(page[0].shadow), order); 1617 #endif 1618 1619 set_page_owner(page, 0, 0); 1620 for (i = 1; i < (1 << order); i++) { 1621 set_page_refcounted(page + i); 1622 set_page_owner(page + i, 0, 0); 1623 } 1624 } 1625 EXPORT_SYMBOL_GPL(split_page); 1626 1627 int __isolate_free_page(struct page *page, unsigned int order) 1628 { 1629 unsigned long watermark; 1630 struct zone *zone; 1631 int mt; 1632 1633 BUG_ON(!PageBuddy(page)); 1634 1635 zone = page_zone(page); 1636 mt = get_pageblock_migratetype(page); 1637 1638 if (!is_migrate_isolate(mt)) { 1639 /* Obey watermarks as if the page was being allocated */ 1640 watermark = low_wmark_pages(zone) + (1 << order); 1641 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1642 return 0; 1643 1644 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1645 } 1646 1647 /* Remove page from free list */ 1648 list_del(&page->lru); 1649 zone->free_area[order].nr_free--; 1650 rmv_page_order(page); 1651 1652 /* Set the pageblock if the isolated page is at least a pageblock */ 1653 if (order >= pageblock_order - 1) { 1654 struct page *endpage = page + (1 << order) - 1; 1655 for (; page < endpage; page += pageblock_nr_pages) { 1656 int mt = get_pageblock_migratetype(page); 1657 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1658 set_pageblock_migratetype(page, 1659 MIGRATE_MOVABLE); 1660 } 1661 } 1662 1663 set_page_owner(page, order, 0); 1664 return 1UL << order; 1665 } 1666 1667 /* 1668 * Similar to split_page except the page is already free. As this is only 1669 * being used for migration, the migratetype of the block also changes. 1670 * As this is called with interrupts disabled, the caller is responsible 1671 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1672 * are enabled. 1673 * 1674 * Note: this is probably too low level an operation for use in drivers. 1675 * Please consult with lkml before using this in your driver. 1676 */ 1677 int split_free_page(struct page *page) 1678 { 1679 unsigned int order; 1680 int nr_pages; 1681 1682 order = page_order(page); 1683 1684 nr_pages = __isolate_free_page(page, order); 1685 if (!nr_pages) 1686 return 0; 1687 1688 /* Split into individual pages */ 1689 set_page_refcounted(page); 1690 split_page(page, order); 1691 return nr_pages; 1692 } 1693 1694 /* 1695 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 1696 */ 1697 static inline 1698 struct page *buffered_rmqueue(struct zone *preferred_zone, 1699 struct zone *zone, unsigned int order, 1700 gfp_t gfp_flags, int migratetype) 1701 { 1702 unsigned long flags; 1703 struct page *page; 1704 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1705 1706 if (likely(order == 0)) { 1707 struct per_cpu_pages *pcp; 1708 struct list_head *list; 1709 1710 local_irq_save(flags); 1711 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1712 list = &pcp->lists[migratetype]; 1713 if (list_empty(list)) { 1714 pcp->count += rmqueue_bulk(zone, 0, 1715 pcp->batch, list, 1716 migratetype, cold); 1717 if (unlikely(list_empty(list))) 1718 goto failed; 1719 } 1720 1721 if (cold) 1722 page = list_entry(list->prev, struct page, lru); 1723 else 1724 page = list_entry(list->next, struct page, lru); 1725 1726 list_del(&page->lru); 1727 pcp->count--; 1728 } else { 1729 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1730 /* 1731 * __GFP_NOFAIL is not to be used in new code. 1732 * 1733 * All __GFP_NOFAIL callers should be fixed so that they 1734 * properly detect and handle allocation failures. 1735 * 1736 * We most definitely don't want callers attempting to 1737 * allocate greater than order-1 page units with 1738 * __GFP_NOFAIL. 1739 */ 1740 WARN_ON_ONCE(order > 1); 1741 } 1742 spin_lock_irqsave(&zone->lock, flags); 1743 page = __rmqueue(zone, order, migratetype); 1744 spin_unlock(&zone->lock); 1745 if (!page) 1746 goto failed; 1747 __mod_zone_freepage_state(zone, -(1 << order), 1748 get_freepage_migratetype(page)); 1749 } 1750 1751 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1752 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 1753 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 1754 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1755 1756 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1757 zone_statistics(preferred_zone, zone, gfp_flags); 1758 local_irq_restore(flags); 1759 1760 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1761 return page; 1762 1763 failed: 1764 local_irq_restore(flags); 1765 return NULL; 1766 } 1767 1768 #ifdef CONFIG_FAIL_PAGE_ALLOC 1769 1770 static struct { 1771 struct fault_attr attr; 1772 1773 u32 ignore_gfp_highmem; 1774 u32 ignore_gfp_wait; 1775 u32 min_order; 1776 } fail_page_alloc = { 1777 .attr = FAULT_ATTR_INITIALIZER, 1778 .ignore_gfp_wait = 1, 1779 .ignore_gfp_highmem = 1, 1780 .min_order = 1, 1781 }; 1782 1783 static int __init setup_fail_page_alloc(char *str) 1784 { 1785 return setup_fault_attr(&fail_page_alloc.attr, str); 1786 } 1787 __setup("fail_page_alloc=", setup_fail_page_alloc); 1788 1789 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1790 { 1791 if (order < fail_page_alloc.min_order) 1792 return false; 1793 if (gfp_mask & __GFP_NOFAIL) 1794 return false; 1795 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1796 return false; 1797 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1798 return false; 1799 1800 return should_fail(&fail_page_alloc.attr, 1 << order); 1801 } 1802 1803 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1804 1805 static int __init fail_page_alloc_debugfs(void) 1806 { 1807 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1808 struct dentry *dir; 1809 1810 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1811 &fail_page_alloc.attr); 1812 if (IS_ERR(dir)) 1813 return PTR_ERR(dir); 1814 1815 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1816 &fail_page_alloc.ignore_gfp_wait)) 1817 goto fail; 1818 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1819 &fail_page_alloc.ignore_gfp_highmem)) 1820 goto fail; 1821 if (!debugfs_create_u32("min-order", mode, dir, 1822 &fail_page_alloc.min_order)) 1823 goto fail; 1824 1825 return 0; 1826 fail: 1827 debugfs_remove_recursive(dir); 1828 1829 return -ENOMEM; 1830 } 1831 1832 late_initcall(fail_page_alloc_debugfs); 1833 1834 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1835 1836 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1837 1838 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1839 { 1840 return false; 1841 } 1842 1843 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1844 1845 /* 1846 * Return true if free pages are above 'mark'. This takes into account the order 1847 * of the allocation. 1848 */ 1849 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1850 unsigned long mark, int classzone_idx, int alloc_flags, 1851 long free_pages) 1852 { 1853 /* free_pages may go negative - that's OK */ 1854 long min = mark; 1855 int o; 1856 long free_cma = 0; 1857 1858 free_pages -= (1 << order) - 1; 1859 if (alloc_flags & ALLOC_HIGH) 1860 min -= min / 2; 1861 if (alloc_flags & ALLOC_HARDER) 1862 min -= min / 4; 1863 #ifdef CONFIG_CMA 1864 /* If allocation can't use CMA areas don't use free CMA pages */ 1865 if (!(alloc_flags & ALLOC_CMA)) 1866 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1867 #endif 1868 1869 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1870 return false; 1871 for (o = 0; o < order; o++) { 1872 /* At the next order, this order's pages become unavailable */ 1873 free_pages -= z->free_area[o].nr_free << o; 1874 1875 /* Require fewer higher order pages to be free */ 1876 min >>= 1; 1877 1878 if (free_pages <= min) 1879 return false; 1880 } 1881 return true; 1882 } 1883 1884 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1885 int classzone_idx, int alloc_flags) 1886 { 1887 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1888 zone_page_state(z, NR_FREE_PAGES)); 1889 } 1890 1891 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1892 unsigned long mark, int classzone_idx, int alloc_flags) 1893 { 1894 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1895 1896 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1897 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1898 1899 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1900 free_pages); 1901 } 1902 1903 #ifdef CONFIG_NUMA 1904 /* 1905 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1906 * skip over zones that are not allowed by the cpuset, or that have 1907 * been recently (in last second) found to be nearly full. See further 1908 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1909 * that have to skip over a lot of full or unallowed zones. 1910 * 1911 * If the zonelist cache is present in the passed zonelist, then 1912 * returns a pointer to the allowed node mask (either the current 1913 * tasks mems_allowed, or node_states[N_MEMORY].) 1914 * 1915 * If the zonelist cache is not available for this zonelist, does 1916 * nothing and returns NULL. 1917 * 1918 * If the fullzones BITMAP in the zonelist cache is stale (more than 1919 * a second since last zap'd) then we zap it out (clear its bits.) 1920 * 1921 * We hold off even calling zlc_setup, until after we've checked the 1922 * first zone in the zonelist, on the theory that most allocations will 1923 * be satisfied from that first zone, so best to examine that zone as 1924 * quickly as we can. 1925 */ 1926 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1927 { 1928 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1929 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1930 1931 zlc = zonelist->zlcache_ptr; 1932 if (!zlc) 1933 return NULL; 1934 1935 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1936 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1937 zlc->last_full_zap = jiffies; 1938 } 1939 1940 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1941 &cpuset_current_mems_allowed : 1942 &node_states[N_MEMORY]; 1943 return allowednodes; 1944 } 1945 1946 /* 1947 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1948 * if it is worth looking at further for free memory: 1949 * 1) Check that the zone isn't thought to be full (doesn't have its 1950 * bit set in the zonelist_cache fullzones BITMAP). 1951 * 2) Check that the zones node (obtained from the zonelist_cache 1952 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1953 * Return true (non-zero) if zone is worth looking at further, or 1954 * else return false (zero) if it is not. 1955 * 1956 * This check -ignores- the distinction between various watermarks, 1957 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1958 * found to be full for any variation of these watermarks, it will 1959 * be considered full for up to one second by all requests, unless 1960 * we are so low on memory on all allowed nodes that we are forced 1961 * into the second scan of the zonelist. 1962 * 1963 * In the second scan we ignore this zonelist cache and exactly 1964 * apply the watermarks to all zones, even it is slower to do so. 1965 * We are low on memory in the second scan, and should leave no stone 1966 * unturned looking for a free page. 1967 */ 1968 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1969 nodemask_t *allowednodes) 1970 { 1971 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1972 int i; /* index of *z in zonelist zones */ 1973 int n; /* node that zone *z is on */ 1974 1975 zlc = zonelist->zlcache_ptr; 1976 if (!zlc) 1977 return 1; 1978 1979 i = z - zonelist->_zonerefs; 1980 n = zlc->z_to_n[i]; 1981 1982 /* This zone is worth trying if it is allowed but not full */ 1983 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1984 } 1985 1986 /* 1987 * Given 'z' scanning a zonelist, set the corresponding bit in 1988 * zlc->fullzones, so that subsequent attempts to allocate a page 1989 * from that zone don't waste time re-examining it. 1990 */ 1991 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1992 { 1993 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1994 int i; /* index of *z in zonelist zones */ 1995 1996 zlc = zonelist->zlcache_ptr; 1997 if (!zlc) 1998 return; 1999 2000 i = z - zonelist->_zonerefs; 2001 2002 set_bit(i, zlc->fullzones); 2003 } 2004 2005 /* 2006 * clear all zones full, called after direct reclaim makes progress so that 2007 * a zone that was recently full is not skipped over for up to a second 2008 */ 2009 static void zlc_clear_zones_full(struct zonelist *zonelist) 2010 { 2011 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2012 2013 zlc = zonelist->zlcache_ptr; 2014 if (!zlc) 2015 return; 2016 2017 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2018 } 2019 2020 static bool zone_local(struct zone *local_zone, struct zone *zone) 2021 { 2022 return local_zone->node == zone->node; 2023 } 2024 2025 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2026 { 2027 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2028 RECLAIM_DISTANCE; 2029 } 2030 2031 #else /* CONFIG_NUMA */ 2032 2033 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 2034 { 2035 return NULL; 2036 } 2037 2038 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 2039 nodemask_t *allowednodes) 2040 { 2041 return 1; 2042 } 2043 2044 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 2045 { 2046 } 2047 2048 static void zlc_clear_zones_full(struct zonelist *zonelist) 2049 { 2050 } 2051 2052 static bool zone_local(struct zone *local_zone, struct zone *zone) 2053 { 2054 return true; 2055 } 2056 2057 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2058 { 2059 return true; 2060 } 2061 2062 #endif /* CONFIG_NUMA */ 2063 2064 static void reset_alloc_batches(struct zone *preferred_zone) 2065 { 2066 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2067 2068 do { 2069 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2070 high_wmark_pages(zone) - low_wmark_pages(zone) - 2071 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2072 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2073 } while (zone++ != preferred_zone); 2074 } 2075 2076 /* 2077 * get_page_from_freelist goes through the zonelist trying to allocate 2078 * a page. 2079 */ 2080 static struct page * 2081 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2082 const struct alloc_context *ac) 2083 { 2084 struct zonelist *zonelist = ac->zonelist; 2085 struct zoneref *z; 2086 struct page *page = NULL; 2087 struct zone *zone; 2088 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 2089 int zlc_active = 0; /* set if using zonelist_cache */ 2090 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 2091 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 2092 (gfp_mask & __GFP_WRITE); 2093 int nr_fair_skipped = 0; 2094 bool zonelist_rescan; 2095 2096 zonelist_scan: 2097 zonelist_rescan = false; 2098 2099 /* 2100 * Scan zonelist, looking for a zone with enough free. 2101 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2102 */ 2103 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2104 ac->nodemask) { 2105 unsigned long mark; 2106 2107 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2108 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2109 continue; 2110 if (cpusets_enabled() && 2111 (alloc_flags & ALLOC_CPUSET) && 2112 !cpuset_zone_allowed(zone, gfp_mask)) 2113 continue; 2114 /* 2115 * Distribute pages in proportion to the individual 2116 * zone size to ensure fair page aging. The zone a 2117 * page was allocated in should have no effect on the 2118 * time the page has in memory before being reclaimed. 2119 */ 2120 if (alloc_flags & ALLOC_FAIR) { 2121 if (!zone_local(ac->preferred_zone, zone)) 2122 break; 2123 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2124 nr_fair_skipped++; 2125 continue; 2126 } 2127 } 2128 /* 2129 * When allocating a page cache page for writing, we 2130 * want to get it from a zone that is within its dirty 2131 * limit, such that no single zone holds more than its 2132 * proportional share of globally allowed dirty pages. 2133 * The dirty limits take into account the zone's 2134 * lowmem reserves and high watermark so that kswapd 2135 * should be able to balance it without having to 2136 * write pages from its LRU list. 2137 * 2138 * This may look like it could increase pressure on 2139 * lower zones by failing allocations in higher zones 2140 * before they are full. But the pages that do spill 2141 * over are limited as the lower zones are protected 2142 * by this very same mechanism. It should not become 2143 * a practical burden to them. 2144 * 2145 * XXX: For now, allow allocations to potentially 2146 * exceed the per-zone dirty limit in the slowpath 2147 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2148 * which is important when on a NUMA setup the allowed 2149 * zones are together not big enough to reach the 2150 * global limit. The proper fix for these situations 2151 * will require awareness of zones in the 2152 * dirty-throttling and the flusher threads. 2153 */ 2154 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2155 continue; 2156 2157 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2158 if (!zone_watermark_ok(zone, order, mark, 2159 ac->classzone_idx, alloc_flags)) { 2160 int ret; 2161 2162 /* Checked here to keep the fast path fast */ 2163 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2164 if (alloc_flags & ALLOC_NO_WATERMARKS) 2165 goto try_this_zone; 2166 2167 if (IS_ENABLED(CONFIG_NUMA) && 2168 !did_zlc_setup && nr_online_nodes > 1) { 2169 /* 2170 * we do zlc_setup if there are multiple nodes 2171 * and before considering the first zone allowed 2172 * by the cpuset. 2173 */ 2174 allowednodes = zlc_setup(zonelist, alloc_flags); 2175 zlc_active = 1; 2176 did_zlc_setup = 1; 2177 } 2178 2179 if (zone_reclaim_mode == 0 || 2180 !zone_allows_reclaim(ac->preferred_zone, zone)) 2181 goto this_zone_full; 2182 2183 /* 2184 * As we may have just activated ZLC, check if the first 2185 * eligible zone has failed zone_reclaim recently. 2186 */ 2187 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2188 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2189 continue; 2190 2191 ret = zone_reclaim(zone, gfp_mask, order); 2192 switch (ret) { 2193 case ZONE_RECLAIM_NOSCAN: 2194 /* did not scan */ 2195 continue; 2196 case ZONE_RECLAIM_FULL: 2197 /* scanned but unreclaimable */ 2198 continue; 2199 default: 2200 /* did we reclaim enough */ 2201 if (zone_watermark_ok(zone, order, mark, 2202 ac->classzone_idx, alloc_flags)) 2203 goto try_this_zone; 2204 2205 /* 2206 * Failed to reclaim enough to meet watermark. 2207 * Only mark the zone full if checking the min 2208 * watermark or if we failed to reclaim just 2209 * 1<<order pages or else the page allocator 2210 * fastpath will prematurely mark zones full 2211 * when the watermark is between the low and 2212 * min watermarks. 2213 */ 2214 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2215 ret == ZONE_RECLAIM_SOME) 2216 goto this_zone_full; 2217 2218 continue; 2219 } 2220 } 2221 2222 try_this_zone: 2223 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2224 gfp_mask, ac->migratetype); 2225 if (page) { 2226 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2227 goto try_this_zone; 2228 return page; 2229 } 2230 this_zone_full: 2231 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2232 zlc_mark_zone_full(zonelist, z); 2233 } 2234 2235 /* 2236 * The first pass makes sure allocations are spread fairly within the 2237 * local node. However, the local node might have free pages left 2238 * after the fairness batches are exhausted, and remote zones haven't 2239 * even been considered yet. Try once more without fairness, and 2240 * include remote zones now, before entering the slowpath and waking 2241 * kswapd: prefer spilling to a remote zone over swapping locally. 2242 */ 2243 if (alloc_flags & ALLOC_FAIR) { 2244 alloc_flags &= ~ALLOC_FAIR; 2245 if (nr_fair_skipped) { 2246 zonelist_rescan = true; 2247 reset_alloc_batches(ac->preferred_zone); 2248 } 2249 if (nr_online_nodes > 1) 2250 zonelist_rescan = true; 2251 } 2252 2253 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2254 /* Disable zlc cache for second zonelist scan */ 2255 zlc_active = 0; 2256 zonelist_rescan = true; 2257 } 2258 2259 if (zonelist_rescan) 2260 goto zonelist_scan; 2261 2262 return NULL; 2263 } 2264 2265 /* 2266 * Large machines with many possible nodes should not always dump per-node 2267 * meminfo in irq context. 2268 */ 2269 static inline bool should_suppress_show_mem(void) 2270 { 2271 bool ret = false; 2272 2273 #if NODES_SHIFT > 8 2274 ret = in_interrupt(); 2275 #endif 2276 return ret; 2277 } 2278 2279 static DEFINE_RATELIMIT_STATE(nopage_rs, 2280 DEFAULT_RATELIMIT_INTERVAL, 2281 DEFAULT_RATELIMIT_BURST); 2282 2283 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2284 { 2285 unsigned int filter = SHOW_MEM_FILTER_NODES; 2286 2287 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2288 debug_guardpage_minorder() > 0) 2289 return; 2290 2291 /* 2292 * This documents exceptions given to allocations in certain 2293 * contexts that are allowed to allocate outside current's set 2294 * of allowed nodes. 2295 */ 2296 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2297 if (test_thread_flag(TIF_MEMDIE) || 2298 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2299 filter &= ~SHOW_MEM_FILTER_NODES; 2300 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2301 filter &= ~SHOW_MEM_FILTER_NODES; 2302 2303 if (fmt) { 2304 struct va_format vaf; 2305 va_list args; 2306 2307 va_start(args, fmt); 2308 2309 vaf.fmt = fmt; 2310 vaf.va = &args; 2311 2312 pr_warn("%pV", &vaf); 2313 2314 va_end(args); 2315 } 2316 2317 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2318 current->comm, order, gfp_mask); 2319 2320 dump_stack(); 2321 if (!should_suppress_show_mem()) 2322 show_mem(filter); 2323 } 2324 2325 static inline int 2326 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2327 unsigned long did_some_progress, 2328 unsigned long pages_reclaimed) 2329 { 2330 /* Do not loop if specifically requested */ 2331 if (gfp_mask & __GFP_NORETRY) 2332 return 0; 2333 2334 /* Always retry if specifically requested */ 2335 if (gfp_mask & __GFP_NOFAIL) 2336 return 1; 2337 2338 /* 2339 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2340 * making forward progress without invoking OOM. Suspend also disables 2341 * storage devices so kswapd will not help. Bail if we are suspending. 2342 */ 2343 if (!did_some_progress && pm_suspended_storage()) 2344 return 0; 2345 2346 /* 2347 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2348 * means __GFP_NOFAIL, but that may not be true in other 2349 * implementations. 2350 */ 2351 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2352 return 1; 2353 2354 /* 2355 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2356 * specified, then we retry until we no longer reclaim any pages 2357 * (above), or we've reclaimed an order of pages at least as 2358 * large as the allocation's order. In both cases, if the 2359 * allocation still fails, we stop retrying. 2360 */ 2361 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2362 return 1; 2363 2364 return 0; 2365 } 2366 2367 static inline struct page * 2368 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2369 const struct alloc_context *ac, unsigned long *did_some_progress) 2370 { 2371 struct page *page; 2372 2373 *did_some_progress = 0; 2374 2375 /* 2376 * Acquire the per-zone oom lock for each zone. If that 2377 * fails, somebody else is making progress for us. 2378 */ 2379 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) { 2380 *did_some_progress = 1; 2381 schedule_timeout_uninterruptible(1); 2382 return NULL; 2383 } 2384 2385 /* 2386 * Go through the zonelist yet one more time, keep very high watermark 2387 * here, this is only to catch a parallel oom killing, we must fail if 2388 * we're still under heavy pressure. 2389 */ 2390 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2391 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2392 if (page) 2393 goto out; 2394 2395 if (!(gfp_mask & __GFP_NOFAIL)) { 2396 /* Coredumps can quickly deplete all memory reserves */ 2397 if (current->flags & PF_DUMPCORE) 2398 goto out; 2399 /* The OOM killer will not help higher order allocs */ 2400 if (order > PAGE_ALLOC_COSTLY_ORDER) 2401 goto out; 2402 /* The OOM killer does not needlessly kill tasks for lowmem */ 2403 if (ac->high_zoneidx < ZONE_NORMAL) 2404 goto out; 2405 /* The OOM killer does not compensate for light reclaim */ 2406 if (!(gfp_mask & __GFP_FS)) { 2407 /* 2408 * XXX: Page reclaim didn't yield anything, 2409 * and the OOM killer can't be invoked, but 2410 * keep looping as per should_alloc_retry(). 2411 */ 2412 *did_some_progress = 1; 2413 goto out; 2414 } 2415 /* The OOM killer may not free memory on a specific node */ 2416 if (gfp_mask & __GFP_THISNODE) 2417 goto out; 2418 } 2419 /* Exhausted what can be done so it's blamo time */ 2420 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false) 2421 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) 2422 *did_some_progress = 1; 2423 out: 2424 oom_zonelist_unlock(ac->zonelist, gfp_mask); 2425 return page; 2426 } 2427 2428 #ifdef CONFIG_COMPACTION 2429 /* Try memory compaction for high-order allocations before reclaim */ 2430 static struct page * 2431 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2432 int alloc_flags, const struct alloc_context *ac, 2433 enum migrate_mode mode, int *contended_compaction, 2434 bool *deferred_compaction) 2435 { 2436 unsigned long compact_result; 2437 struct page *page; 2438 2439 if (!order) 2440 return NULL; 2441 2442 current->flags |= PF_MEMALLOC; 2443 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2444 mode, contended_compaction); 2445 current->flags &= ~PF_MEMALLOC; 2446 2447 switch (compact_result) { 2448 case COMPACT_DEFERRED: 2449 *deferred_compaction = true; 2450 /* fall-through */ 2451 case COMPACT_SKIPPED: 2452 return NULL; 2453 default: 2454 break; 2455 } 2456 2457 /* 2458 * At least in one zone compaction wasn't deferred or skipped, so let's 2459 * count a compaction stall 2460 */ 2461 count_vm_event(COMPACTSTALL); 2462 2463 page = get_page_from_freelist(gfp_mask, order, 2464 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2465 2466 if (page) { 2467 struct zone *zone = page_zone(page); 2468 2469 zone->compact_blockskip_flush = false; 2470 compaction_defer_reset(zone, order, true); 2471 count_vm_event(COMPACTSUCCESS); 2472 return page; 2473 } 2474 2475 /* 2476 * It's bad if compaction run occurs and fails. The most likely reason 2477 * is that pages exist, but not enough to satisfy watermarks. 2478 */ 2479 count_vm_event(COMPACTFAIL); 2480 2481 cond_resched(); 2482 2483 return NULL; 2484 } 2485 #else 2486 static inline struct page * 2487 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2488 int alloc_flags, const struct alloc_context *ac, 2489 enum migrate_mode mode, int *contended_compaction, 2490 bool *deferred_compaction) 2491 { 2492 return NULL; 2493 } 2494 #endif /* CONFIG_COMPACTION */ 2495 2496 /* Perform direct synchronous page reclaim */ 2497 static int 2498 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2499 const struct alloc_context *ac) 2500 { 2501 struct reclaim_state reclaim_state; 2502 int progress; 2503 2504 cond_resched(); 2505 2506 /* We now go into synchronous reclaim */ 2507 cpuset_memory_pressure_bump(); 2508 current->flags |= PF_MEMALLOC; 2509 lockdep_set_current_reclaim_state(gfp_mask); 2510 reclaim_state.reclaimed_slab = 0; 2511 current->reclaim_state = &reclaim_state; 2512 2513 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2514 ac->nodemask); 2515 2516 current->reclaim_state = NULL; 2517 lockdep_clear_current_reclaim_state(); 2518 current->flags &= ~PF_MEMALLOC; 2519 2520 cond_resched(); 2521 2522 return progress; 2523 } 2524 2525 /* The really slow allocator path where we enter direct reclaim */ 2526 static inline struct page * 2527 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2528 int alloc_flags, const struct alloc_context *ac, 2529 unsigned long *did_some_progress) 2530 { 2531 struct page *page = NULL; 2532 bool drained = false; 2533 2534 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2535 if (unlikely(!(*did_some_progress))) 2536 return NULL; 2537 2538 /* After successful reclaim, reconsider all zones for allocation */ 2539 if (IS_ENABLED(CONFIG_NUMA)) 2540 zlc_clear_zones_full(ac->zonelist); 2541 2542 retry: 2543 page = get_page_from_freelist(gfp_mask, order, 2544 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2545 2546 /* 2547 * If an allocation failed after direct reclaim, it could be because 2548 * pages are pinned on the per-cpu lists. Drain them and try again 2549 */ 2550 if (!page && !drained) { 2551 drain_all_pages(NULL); 2552 drained = true; 2553 goto retry; 2554 } 2555 2556 return page; 2557 } 2558 2559 /* 2560 * This is called in the allocator slow-path if the allocation request is of 2561 * sufficient urgency to ignore watermarks and take other desperate measures 2562 */ 2563 static inline struct page * 2564 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2565 const struct alloc_context *ac) 2566 { 2567 struct page *page; 2568 2569 do { 2570 page = get_page_from_freelist(gfp_mask, order, 2571 ALLOC_NO_WATERMARKS, ac); 2572 2573 if (!page && gfp_mask & __GFP_NOFAIL) 2574 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, 2575 HZ/50); 2576 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2577 2578 return page; 2579 } 2580 2581 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 2582 { 2583 struct zoneref *z; 2584 struct zone *zone; 2585 2586 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2587 ac->high_zoneidx, ac->nodemask) 2588 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 2589 } 2590 2591 static inline int 2592 gfp_to_alloc_flags(gfp_t gfp_mask) 2593 { 2594 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2595 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2596 2597 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2598 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2599 2600 /* 2601 * The caller may dip into page reserves a bit more if the caller 2602 * cannot run direct reclaim, or if the caller has realtime scheduling 2603 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2604 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2605 */ 2606 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2607 2608 if (atomic) { 2609 /* 2610 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2611 * if it can't schedule. 2612 */ 2613 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2614 alloc_flags |= ALLOC_HARDER; 2615 /* 2616 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2617 * comment for __cpuset_node_allowed(). 2618 */ 2619 alloc_flags &= ~ALLOC_CPUSET; 2620 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2621 alloc_flags |= ALLOC_HARDER; 2622 2623 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2624 if (gfp_mask & __GFP_MEMALLOC) 2625 alloc_flags |= ALLOC_NO_WATERMARKS; 2626 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2627 alloc_flags |= ALLOC_NO_WATERMARKS; 2628 else if (!in_interrupt() && 2629 ((current->flags & PF_MEMALLOC) || 2630 unlikely(test_thread_flag(TIF_MEMDIE)))) 2631 alloc_flags |= ALLOC_NO_WATERMARKS; 2632 } 2633 #ifdef CONFIG_CMA 2634 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2635 alloc_flags |= ALLOC_CMA; 2636 #endif 2637 return alloc_flags; 2638 } 2639 2640 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2641 { 2642 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2643 } 2644 2645 static inline struct page * 2646 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2647 struct alloc_context *ac) 2648 { 2649 const gfp_t wait = gfp_mask & __GFP_WAIT; 2650 struct page *page = NULL; 2651 int alloc_flags; 2652 unsigned long pages_reclaimed = 0; 2653 unsigned long did_some_progress; 2654 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2655 bool deferred_compaction = false; 2656 int contended_compaction = COMPACT_CONTENDED_NONE; 2657 2658 /* 2659 * In the slowpath, we sanity check order to avoid ever trying to 2660 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2661 * be using allocators in order of preference for an area that is 2662 * too large. 2663 */ 2664 if (order >= MAX_ORDER) { 2665 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2666 return NULL; 2667 } 2668 2669 /* 2670 * If this allocation cannot block and it is for a specific node, then 2671 * fail early. There's no need to wakeup kswapd or retry for a 2672 * speculative node-specific allocation. 2673 */ 2674 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait) 2675 goto nopage; 2676 2677 retry: 2678 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2679 wake_all_kswapds(order, ac); 2680 2681 /* 2682 * OK, we're below the kswapd watermark and have kicked background 2683 * reclaim. Now things get more complex, so set up alloc_flags according 2684 * to how we want to proceed. 2685 */ 2686 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2687 2688 /* 2689 * Find the true preferred zone if the allocation is unconstrained by 2690 * cpusets. 2691 */ 2692 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 2693 struct zoneref *preferred_zoneref; 2694 preferred_zoneref = first_zones_zonelist(ac->zonelist, 2695 ac->high_zoneidx, NULL, &ac->preferred_zone); 2696 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 2697 } 2698 2699 /* This is the last chance, in general, before the goto nopage. */ 2700 page = get_page_from_freelist(gfp_mask, order, 2701 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2702 if (page) 2703 goto got_pg; 2704 2705 /* Allocate without watermarks if the context allows */ 2706 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2707 /* 2708 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2709 * the allocation is high priority and these type of 2710 * allocations are system rather than user orientated 2711 */ 2712 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 2713 2714 page = __alloc_pages_high_priority(gfp_mask, order, ac); 2715 2716 if (page) { 2717 goto got_pg; 2718 } 2719 } 2720 2721 /* Atomic allocations - we can't balance anything */ 2722 if (!wait) { 2723 /* 2724 * All existing users of the deprecated __GFP_NOFAIL are 2725 * blockable, so warn of any new users that actually allow this 2726 * type of allocation to fail. 2727 */ 2728 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2729 goto nopage; 2730 } 2731 2732 /* Avoid recursion of direct reclaim */ 2733 if (current->flags & PF_MEMALLOC) 2734 goto nopage; 2735 2736 /* Avoid allocations with no watermarks from looping endlessly */ 2737 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2738 goto nopage; 2739 2740 /* 2741 * Try direct compaction. The first pass is asynchronous. Subsequent 2742 * attempts after direct reclaim are synchronous 2743 */ 2744 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 2745 migration_mode, 2746 &contended_compaction, 2747 &deferred_compaction); 2748 if (page) 2749 goto got_pg; 2750 2751 /* Checks for THP-specific high-order allocations */ 2752 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 2753 /* 2754 * If compaction is deferred for high-order allocations, it is 2755 * because sync compaction recently failed. If this is the case 2756 * and the caller requested a THP allocation, we do not want 2757 * to heavily disrupt the system, so we fail the allocation 2758 * instead of entering direct reclaim. 2759 */ 2760 if (deferred_compaction) 2761 goto nopage; 2762 2763 /* 2764 * In all zones where compaction was attempted (and not 2765 * deferred or skipped), lock contention has been detected. 2766 * For THP allocation we do not want to disrupt the others 2767 * so we fallback to base pages instead. 2768 */ 2769 if (contended_compaction == COMPACT_CONTENDED_LOCK) 2770 goto nopage; 2771 2772 /* 2773 * If compaction was aborted due to need_resched(), we do not 2774 * want to further increase allocation latency, unless it is 2775 * khugepaged trying to collapse. 2776 */ 2777 if (contended_compaction == COMPACT_CONTENDED_SCHED 2778 && !(current->flags & PF_KTHREAD)) 2779 goto nopage; 2780 } 2781 2782 /* 2783 * It can become very expensive to allocate transparent hugepages at 2784 * fault, so use asynchronous memory compaction for THP unless it is 2785 * khugepaged trying to collapse. 2786 */ 2787 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2788 (current->flags & PF_KTHREAD)) 2789 migration_mode = MIGRATE_SYNC_LIGHT; 2790 2791 /* Try direct reclaim and then allocating */ 2792 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 2793 &did_some_progress); 2794 if (page) 2795 goto got_pg; 2796 2797 /* Check if we should retry the allocation */ 2798 pages_reclaimed += did_some_progress; 2799 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2800 pages_reclaimed)) { 2801 /* 2802 * If we fail to make progress by freeing individual 2803 * pages, but the allocation wants us to keep going, 2804 * start OOM killing tasks. 2805 */ 2806 if (!did_some_progress) { 2807 page = __alloc_pages_may_oom(gfp_mask, order, ac, 2808 &did_some_progress); 2809 if (page) 2810 goto got_pg; 2811 if (!did_some_progress) 2812 goto nopage; 2813 } 2814 /* Wait for some write requests to complete then retry */ 2815 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 2816 goto retry; 2817 } else { 2818 /* 2819 * High-order allocations do not necessarily loop after 2820 * direct reclaim and reclaim/compaction depends on compaction 2821 * being called after reclaim so call directly if necessary 2822 */ 2823 page = __alloc_pages_direct_compact(gfp_mask, order, 2824 alloc_flags, ac, migration_mode, 2825 &contended_compaction, 2826 &deferred_compaction); 2827 if (page) 2828 goto got_pg; 2829 } 2830 2831 nopage: 2832 warn_alloc_failed(gfp_mask, order, NULL); 2833 got_pg: 2834 return page; 2835 } 2836 2837 /* 2838 * This is the 'heart' of the zoned buddy allocator. 2839 */ 2840 struct page * 2841 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2842 struct zonelist *zonelist, nodemask_t *nodemask) 2843 { 2844 struct zoneref *preferred_zoneref; 2845 struct page *page = NULL; 2846 unsigned int cpuset_mems_cookie; 2847 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2848 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 2849 struct alloc_context ac = { 2850 .high_zoneidx = gfp_zone(gfp_mask), 2851 .nodemask = nodemask, 2852 .migratetype = gfpflags_to_migratetype(gfp_mask), 2853 }; 2854 2855 gfp_mask &= gfp_allowed_mask; 2856 2857 lockdep_trace_alloc(gfp_mask); 2858 2859 might_sleep_if(gfp_mask & __GFP_WAIT); 2860 2861 if (should_fail_alloc_page(gfp_mask, order)) 2862 return NULL; 2863 2864 /* 2865 * Check the zones suitable for the gfp_mask contain at least one 2866 * valid zone. It's possible to have an empty zonelist as a result 2867 * of __GFP_THISNODE and a memoryless node 2868 */ 2869 if (unlikely(!zonelist->_zonerefs->zone)) 2870 return NULL; 2871 2872 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 2873 alloc_flags |= ALLOC_CMA; 2874 2875 retry_cpuset: 2876 cpuset_mems_cookie = read_mems_allowed_begin(); 2877 2878 /* We set it here, as __alloc_pages_slowpath might have changed it */ 2879 ac.zonelist = zonelist; 2880 /* The preferred zone is used for statistics later */ 2881 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 2882 ac.nodemask ? : &cpuset_current_mems_allowed, 2883 &ac.preferred_zone); 2884 if (!ac.preferred_zone) 2885 goto out; 2886 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 2887 2888 /* First allocation attempt */ 2889 alloc_mask = gfp_mask|__GFP_HARDWALL; 2890 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 2891 if (unlikely(!page)) { 2892 /* 2893 * Runtime PM, block IO and its error handling path 2894 * can deadlock because I/O on the device might not 2895 * complete. 2896 */ 2897 alloc_mask = memalloc_noio_flags(gfp_mask); 2898 2899 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 2900 } 2901 2902 if (kmemcheck_enabled && page) 2903 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2904 2905 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 2906 2907 out: 2908 /* 2909 * When updating a task's mems_allowed, it is possible to race with 2910 * parallel threads in such a way that an allocation can fail while 2911 * the mask is being updated. If a page allocation is about to fail, 2912 * check if the cpuset changed during allocation and if so, retry. 2913 */ 2914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2915 goto retry_cpuset; 2916 2917 return page; 2918 } 2919 EXPORT_SYMBOL(__alloc_pages_nodemask); 2920 2921 /* 2922 * Common helper functions. 2923 */ 2924 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2925 { 2926 struct page *page; 2927 2928 /* 2929 * __get_free_pages() returns a 32-bit address, which cannot represent 2930 * a highmem page 2931 */ 2932 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2933 2934 page = alloc_pages(gfp_mask, order); 2935 if (!page) 2936 return 0; 2937 return (unsigned long) page_address(page); 2938 } 2939 EXPORT_SYMBOL(__get_free_pages); 2940 2941 unsigned long get_zeroed_page(gfp_t gfp_mask) 2942 { 2943 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2944 } 2945 EXPORT_SYMBOL(get_zeroed_page); 2946 2947 void __free_pages(struct page *page, unsigned int order) 2948 { 2949 if (put_page_testzero(page)) { 2950 if (order == 0) 2951 free_hot_cold_page(page, false); 2952 else 2953 __free_pages_ok(page, order); 2954 } 2955 } 2956 2957 EXPORT_SYMBOL(__free_pages); 2958 2959 void free_pages(unsigned long addr, unsigned int order) 2960 { 2961 if (addr != 0) { 2962 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2963 __free_pages(virt_to_page((void *)addr), order); 2964 } 2965 } 2966 2967 EXPORT_SYMBOL(free_pages); 2968 2969 /* 2970 * Page Fragment: 2971 * An arbitrary-length arbitrary-offset area of memory which resides 2972 * within a 0 or higher order page. Multiple fragments within that page 2973 * are individually refcounted, in the page's reference counter. 2974 * 2975 * The page_frag functions below provide a simple allocation framework for 2976 * page fragments. This is used by the network stack and network device 2977 * drivers to provide a backing region of memory for use as either an 2978 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 2979 */ 2980 static struct page *__page_frag_refill(struct page_frag_cache *nc, 2981 gfp_t gfp_mask) 2982 { 2983 struct page *page = NULL; 2984 gfp_t gfp = gfp_mask; 2985 2986 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 2987 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 2988 __GFP_NOMEMALLOC; 2989 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 2990 PAGE_FRAG_CACHE_MAX_ORDER); 2991 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 2992 #endif 2993 if (unlikely(!page)) 2994 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 2995 2996 nc->va = page ? page_address(page) : NULL; 2997 2998 return page; 2999 } 3000 3001 void *__alloc_page_frag(struct page_frag_cache *nc, 3002 unsigned int fragsz, gfp_t gfp_mask) 3003 { 3004 unsigned int size = PAGE_SIZE; 3005 struct page *page; 3006 int offset; 3007 3008 if (unlikely(!nc->va)) { 3009 refill: 3010 page = __page_frag_refill(nc, gfp_mask); 3011 if (!page) 3012 return NULL; 3013 3014 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3015 /* if size can vary use size else just use PAGE_SIZE */ 3016 size = nc->size; 3017 #endif 3018 /* Even if we own the page, we do not use atomic_set(). 3019 * This would break get_page_unless_zero() users. 3020 */ 3021 atomic_add(size - 1, &page->_count); 3022 3023 /* reset page count bias and offset to start of new frag */ 3024 nc->pfmemalloc = page->pfmemalloc; 3025 nc->pagecnt_bias = size; 3026 nc->offset = size; 3027 } 3028 3029 offset = nc->offset - fragsz; 3030 if (unlikely(offset < 0)) { 3031 page = virt_to_page(nc->va); 3032 3033 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count)) 3034 goto refill; 3035 3036 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3037 /* if size can vary use size else just use PAGE_SIZE */ 3038 size = nc->size; 3039 #endif 3040 /* OK, page count is 0, we can safely set it */ 3041 atomic_set(&page->_count, size); 3042 3043 /* reset page count bias and offset to start of new frag */ 3044 nc->pagecnt_bias = size; 3045 offset = size - fragsz; 3046 } 3047 3048 nc->pagecnt_bias--; 3049 nc->offset = offset; 3050 3051 return nc->va + offset; 3052 } 3053 EXPORT_SYMBOL(__alloc_page_frag); 3054 3055 /* 3056 * Frees a page fragment allocated out of either a compound or order 0 page. 3057 */ 3058 void __free_page_frag(void *addr) 3059 { 3060 struct page *page = virt_to_head_page(addr); 3061 3062 if (unlikely(put_page_testzero(page))) 3063 __free_pages_ok(page, compound_order(page)); 3064 } 3065 EXPORT_SYMBOL(__free_page_frag); 3066 3067 /* 3068 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 3069 * of the current memory cgroup. 3070 * 3071 * It should be used when the caller would like to use kmalloc, but since the 3072 * allocation is large, it has to fall back to the page allocator. 3073 */ 3074 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 3075 { 3076 struct page *page; 3077 struct mem_cgroup *memcg = NULL; 3078 3079 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3080 return NULL; 3081 page = alloc_pages(gfp_mask, order); 3082 memcg_kmem_commit_charge(page, memcg, order); 3083 return page; 3084 } 3085 3086 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 3087 { 3088 struct page *page; 3089 struct mem_cgroup *memcg = NULL; 3090 3091 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3092 return NULL; 3093 page = alloc_pages_node(nid, gfp_mask, order); 3094 memcg_kmem_commit_charge(page, memcg, order); 3095 return page; 3096 } 3097 3098 /* 3099 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3100 * alloc_kmem_pages. 3101 */ 3102 void __free_kmem_pages(struct page *page, unsigned int order) 3103 { 3104 memcg_kmem_uncharge_pages(page, order); 3105 __free_pages(page, order); 3106 } 3107 3108 void free_kmem_pages(unsigned long addr, unsigned int order) 3109 { 3110 if (addr != 0) { 3111 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3112 __free_kmem_pages(virt_to_page((void *)addr), order); 3113 } 3114 } 3115 3116 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 3117 { 3118 if (addr) { 3119 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3120 unsigned long used = addr + PAGE_ALIGN(size); 3121 3122 split_page(virt_to_page((void *)addr), order); 3123 while (used < alloc_end) { 3124 free_page(used); 3125 used += PAGE_SIZE; 3126 } 3127 } 3128 return (void *)addr; 3129 } 3130 3131 /** 3132 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3133 * @size: the number of bytes to allocate 3134 * @gfp_mask: GFP flags for the allocation 3135 * 3136 * This function is similar to alloc_pages(), except that it allocates the 3137 * minimum number of pages to satisfy the request. alloc_pages() can only 3138 * allocate memory in power-of-two pages. 3139 * 3140 * This function is also limited by MAX_ORDER. 3141 * 3142 * Memory allocated by this function must be released by free_pages_exact(). 3143 */ 3144 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3145 { 3146 unsigned int order = get_order(size); 3147 unsigned long addr; 3148 3149 addr = __get_free_pages(gfp_mask, order); 3150 return make_alloc_exact(addr, order, size); 3151 } 3152 EXPORT_SYMBOL(alloc_pages_exact); 3153 3154 /** 3155 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3156 * pages on a node. 3157 * @nid: the preferred node ID where memory should be allocated 3158 * @size: the number of bytes to allocate 3159 * @gfp_mask: GFP flags for the allocation 3160 * 3161 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3162 * back. 3163 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3164 * but is not exact. 3165 */ 3166 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3167 { 3168 unsigned order = get_order(size); 3169 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3170 if (!p) 3171 return NULL; 3172 return make_alloc_exact((unsigned long)page_address(p), order, size); 3173 } 3174 3175 /** 3176 * free_pages_exact - release memory allocated via alloc_pages_exact() 3177 * @virt: the value returned by alloc_pages_exact. 3178 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3179 * 3180 * Release the memory allocated by a previous call to alloc_pages_exact. 3181 */ 3182 void free_pages_exact(void *virt, size_t size) 3183 { 3184 unsigned long addr = (unsigned long)virt; 3185 unsigned long end = addr + PAGE_ALIGN(size); 3186 3187 while (addr < end) { 3188 free_page(addr); 3189 addr += PAGE_SIZE; 3190 } 3191 } 3192 EXPORT_SYMBOL(free_pages_exact); 3193 3194 /** 3195 * nr_free_zone_pages - count number of pages beyond high watermark 3196 * @offset: The zone index of the highest zone 3197 * 3198 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3199 * high watermark within all zones at or below a given zone index. For each 3200 * zone, the number of pages is calculated as: 3201 * managed_pages - high_pages 3202 */ 3203 static unsigned long nr_free_zone_pages(int offset) 3204 { 3205 struct zoneref *z; 3206 struct zone *zone; 3207 3208 /* Just pick one node, since fallback list is circular */ 3209 unsigned long sum = 0; 3210 3211 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3212 3213 for_each_zone_zonelist(zone, z, zonelist, offset) { 3214 unsigned long size = zone->managed_pages; 3215 unsigned long high = high_wmark_pages(zone); 3216 if (size > high) 3217 sum += size - high; 3218 } 3219 3220 return sum; 3221 } 3222 3223 /** 3224 * nr_free_buffer_pages - count number of pages beyond high watermark 3225 * 3226 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3227 * watermark within ZONE_DMA and ZONE_NORMAL. 3228 */ 3229 unsigned long nr_free_buffer_pages(void) 3230 { 3231 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3232 } 3233 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3234 3235 /** 3236 * nr_free_pagecache_pages - count number of pages beyond high watermark 3237 * 3238 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3239 * high watermark within all zones. 3240 */ 3241 unsigned long nr_free_pagecache_pages(void) 3242 { 3243 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3244 } 3245 3246 static inline void show_node(struct zone *zone) 3247 { 3248 if (IS_ENABLED(CONFIG_NUMA)) 3249 printk("Node %d ", zone_to_nid(zone)); 3250 } 3251 3252 void si_meminfo(struct sysinfo *val) 3253 { 3254 val->totalram = totalram_pages; 3255 val->sharedram = global_page_state(NR_SHMEM); 3256 val->freeram = global_page_state(NR_FREE_PAGES); 3257 val->bufferram = nr_blockdev_pages(); 3258 val->totalhigh = totalhigh_pages; 3259 val->freehigh = nr_free_highpages(); 3260 val->mem_unit = PAGE_SIZE; 3261 } 3262 3263 EXPORT_SYMBOL(si_meminfo); 3264 3265 #ifdef CONFIG_NUMA 3266 void si_meminfo_node(struct sysinfo *val, int nid) 3267 { 3268 int zone_type; /* needs to be signed */ 3269 unsigned long managed_pages = 0; 3270 pg_data_t *pgdat = NODE_DATA(nid); 3271 3272 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3273 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3274 val->totalram = managed_pages; 3275 val->sharedram = node_page_state(nid, NR_SHMEM); 3276 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3277 #ifdef CONFIG_HIGHMEM 3278 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3279 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3280 NR_FREE_PAGES); 3281 #else 3282 val->totalhigh = 0; 3283 val->freehigh = 0; 3284 #endif 3285 val->mem_unit = PAGE_SIZE; 3286 } 3287 #endif 3288 3289 /* 3290 * Determine whether the node should be displayed or not, depending on whether 3291 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3292 */ 3293 bool skip_free_areas_node(unsigned int flags, int nid) 3294 { 3295 bool ret = false; 3296 unsigned int cpuset_mems_cookie; 3297 3298 if (!(flags & SHOW_MEM_FILTER_NODES)) 3299 goto out; 3300 3301 do { 3302 cpuset_mems_cookie = read_mems_allowed_begin(); 3303 ret = !node_isset(nid, cpuset_current_mems_allowed); 3304 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3305 out: 3306 return ret; 3307 } 3308 3309 #define K(x) ((x) << (PAGE_SHIFT-10)) 3310 3311 static void show_migration_types(unsigned char type) 3312 { 3313 static const char types[MIGRATE_TYPES] = { 3314 [MIGRATE_UNMOVABLE] = 'U', 3315 [MIGRATE_RECLAIMABLE] = 'E', 3316 [MIGRATE_MOVABLE] = 'M', 3317 [MIGRATE_RESERVE] = 'R', 3318 #ifdef CONFIG_CMA 3319 [MIGRATE_CMA] = 'C', 3320 #endif 3321 #ifdef CONFIG_MEMORY_ISOLATION 3322 [MIGRATE_ISOLATE] = 'I', 3323 #endif 3324 }; 3325 char tmp[MIGRATE_TYPES + 1]; 3326 char *p = tmp; 3327 int i; 3328 3329 for (i = 0; i < MIGRATE_TYPES; i++) { 3330 if (type & (1 << i)) 3331 *p++ = types[i]; 3332 } 3333 3334 *p = '\0'; 3335 printk("(%s) ", tmp); 3336 } 3337 3338 /* 3339 * Show free area list (used inside shift_scroll-lock stuff) 3340 * We also calculate the percentage fragmentation. We do this by counting the 3341 * memory on each free list with the exception of the first item on the list. 3342 * 3343 * Bits in @filter: 3344 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 3345 * cpuset. 3346 */ 3347 void show_free_areas(unsigned int filter) 3348 { 3349 unsigned long free_pcp = 0; 3350 int cpu; 3351 struct zone *zone; 3352 3353 for_each_populated_zone(zone) { 3354 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3355 continue; 3356 3357 for_each_online_cpu(cpu) 3358 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3359 } 3360 3361 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3362 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3363 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 3364 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3365 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3366 " free:%lu free_pcp:%lu free_cma:%lu\n", 3367 global_page_state(NR_ACTIVE_ANON), 3368 global_page_state(NR_INACTIVE_ANON), 3369 global_page_state(NR_ISOLATED_ANON), 3370 global_page_state(NR_ACTIVE_FILE), 3371 global_page_state(NR_INACTIVE_FILE), 3372 global_page_state(NR_ISOLATED_FILE), 3373 global_page_state(NR_UNEVICTABLE), 3374 global_page_state(NR_FILE_DIRTY), 3375 global_page_state(NR_WRITEBACK), 3376 global_page_state(NR_UNSTABLE_NFS), 3377 global_page_state(NR_SLAB_RECLAIMABLE), 3378 global_page_state(NR_SLAB_UNRECLAIMABLE), 3379 global_page_state(NR_FILE_MAPPED), 3380 global_page_state(NR_SHMEM), 3381 global_page_state(NR_PAGETABLE), 3382 global_page_state(NR_BOUNCE), 3383 global_page_state(NR_FREE_PAGES), 3384 free_pcp, 3385 global_page_state(NR_FREE_CMA_PAGES)); 3386 3387 for_each_populated_zone(zone) { 3388 int i; 3389 3390 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3391 continue; 3392 3393 free_pcp = 0; 3394 for_each_online_cpu(cpu) 3395 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3396 3397 show_node(zone); 3398 printk("%s" 3399 " free:%lukB" 3400 " min:%lukB" 3401 " low:%lukB" 3402 " high:%lukB" 3403 " active_anon:%lukB" 3404 " inactive_anon:%lukB" 3405 " active_file:%lukB" 3406 " inactive_file:%lukB" 3407 " unevictable:%lukB" 3408 " isolated(anon):%lukB" 3409 " isolated(file):%lukB" 3410 " present:%lukB" 3411 " managed:%lukB" 3412 " mlocked:%lukB" 3413 " dirty:%lukB" 3414 " writeback:%lukB" 3415 " mapped:%lukB" 3416 " shmem:%lukB" 3417 " slab_reclaimable:%lukB" 3418 " slab_unreclaimable:%lukB" 3419 " kernel_stack:%lukB" 3420 " pagetables:%lukB" 3421 " unstable:%lukB" 3422 " bounce:%lukB" 3423 " free_pcp:%lukB" 3424 " local_pcp:%ukB" 3425 " free_cma:%lukB" 3426 " writeback_tmp:%lukB" 3427 " pages_scanned:%lu" 3428 " all_unreclaimable? %s" 3429 "\n", 3430 zone->name, 3431 K(zone_page_state(zone, NR_FREE_PAGES)), 3432 K(min_wmark_pages(zone)), 3433 K(low_wmark_pages(zone)), 3434 K(high_wmark_pages(zone)), 3435 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3436 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3437 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3438 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3439 K(zone_page_state(zone, NR_UNEVICTABLE)), 3440 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3441 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3442 K(zone->present_pages), 3443 K(zone->managed_pages), 3444 K(zone_page_state(zone, NR_MLOCK)), 3445 K(zone_page_state(zone, NR_FILE_DIRTY)), 3446 K(zone_page_state(zone, NR_WRITEBACK)), 3447 K(zone_page_state(zone, NR_FILE_MAPPED)), 3448 K(zone_page_state(zone, NR_SHMEM)), 3449 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3450 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3451 zone_page_state(zone, NR_KERNEL_STACK) * 3452 THREAD_SIZE / 1024, 3453 K(zone_page_state(zone, NR_PAGETABLE)), 3454 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3455 K(zone_page_state(zone, NR_BOUNCE)), 3456 K(free_pcp), 3457 K(this_cpu_read(zone->pageset->pcp.count)), 3458 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3459 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3460 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3461 (!zone_reclaimable(zone) ? "yes" : "no") 3462 ); 3463 printk("lowmem_reserve[]:"); 3464 for (i = 0; i < MAX_NR_ZONES; i++) 3465 printk(" %ld", zone->lowmem_reserve[i]); 3466 printk("\n"); 3467 } 3468 3469 for_each_populated_zone(zone) { 3470 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3471 unsigned char types[MAX_ORDER]; 3472 3473 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3474 continue; 3475 show_node(zone); 3476 printk("%s: ", zone->name); 3477 3478 spin_lock_irqsave(&zone->lock, flags); 3479 for (order = 0; order < MAX_ORDER; order++) { 3480 struct free_area *area = &zone->free_area[order]; 3481 int type; 3482 3483 nr[order] = area->nr_free; 3484 total += nr[order] << order; 3485 3486 types[order] = 0; 3487 for (type = 0; type < MIGRATE_TYPES; type++) { 3488 if (!list_empty(&area->free_list[type])) 3489 types[order] |= 1 << type; 3490 } 3491 } 3492 spin_unlock_irqrestore(&zone->lock, flags); 3493 for (order = 0; order < MAX_ORDER; order++) { 3494 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3495 if (nr[order]) 3496 show_migration_types(types[order]); 3497 } 3498 printk("= %lukB\n", K(total)); 3499 } 3500 3501 hugetlb_show_meminfo(); 3502 3503 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3504 3505 show_swap_cache_info(); 3506 } 3507 3508 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3509 { 3510 zoneref->zone = zone; 3511 zoneref->zone_idx = zone_idx(zone); 3512 } 3513 3514 /* 3515 * Builds allocation fallback zone lists. 3516 * 3517 * Add all populated zones of a node to the zonelist. 3518 */ 3519 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3520 int nr_zones) 3521 { 3522 struct zone *zone; 3523 enum zone_type zone_type = MAX_NR_ZONES; 3524 3525 do { 3526 zone_type--; 3527 zone = pgdat->node_zones + zone_type; 3528 if (populated_zone(zone)) { 3529 zoneref_set_zone(zone, 3530 &zonelist->_zonerefs[nr_zones++]); 3531 check_highest_zone(zone_type); 3532 } 3533 } while (zone_type); 3534 3535 return nr_zones; 3536 } 3537 3538 3539 /* 3540 * zonelist_order: 3541 * 0 = automatic detection of better ordering. 3542 * 1 = order by ([node] distance, -zonetype) 3543 * 2 = order by (-zonetype, [node] distance) 3544 * 3545 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3546 * the same zonelist. So only NUMA can configure this param. 3547 */ 3548 #define ZONELIST_ORDER_DEFAULT 0 3549 #define ZONELIST_ORDER_NODE 1 3550 #define ZONELIST_ORDER_ZONE 2 3551 3552 /* zonelist order in the kernel. 3553 * set_zonelist_order() will set this to NODE or ZONE. 3554 */ 3555 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3556 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3557 3558 3559 #ifdef CONFIG_NUMA 3560 /* The value user specified ....changed by config */ 3561 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3562 /* string for sysctl */ 3563 #define NUMA_ZONELIST_ORDER_LEN 16 3564 char numa_zonelist_order[16] = "default"; 3565 3566 /* 3567 * interface for configure zonelist ordering. 3568 * command line option "numa_zonelist_order" 3569 * = "[dD]efault - default, automatic configuration. 3570 * = "[nN]ode - order by node locality, then by zone within node 3571 * = "[zZ]one - order by zone, then by locality within zone 3572 */ 3573 3574 static int __parse_numa_zonelist_order(char *s) 3575 { 3576 if (*s == 'd' || *s == 'D') { 3577 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3578 } else if (*s == 'n' || *s == 'N') { 3579 user_zonelist_order = ZONELIST_ORDER_NODE; 3580 } else if (*s == 'z' || *s == 'Z') { 3581 user_zonelist_order = ZONELIST_ORDER_ZONE; 3582 } else { 3583 printk(KERN_WARNING 3584 "Ignoring invalid numa_zonelist_order value: " 3585 "%s\n", s); 3586 return -EINVAL; 3587 } 3588 return 0; 3589 } 3590 3591 static __init int setup_numa_zonelist_order(char *s) 3592 { 3593 int ret; 3594 3595 if (!s) 3596 return 0; 3597 3598 ret = __parse_numa_zonelist_order(s); 3599 if (ret == 0) 3600 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3601 3602 return ret; 3603 } 3604 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3605 3606 /* 3607 * sysctl handler for numa_zonelist_order 3608 */ 3609 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3610 void __user *buffer, size_t *length, 3611 loff_t *ppos) 3612 { 3613 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3614 int ret; 3615 static DEFINE_MUTEX(zl_order_mutex); 3616 3617 mutex_lock(&zl_order_mutex); 3618 if (write) { 3619 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3620 ret = -EINVAL; 3621 goto out; 3622 } 3623 strcpy(saved_string, (char *)table->data); 3624 } 3625 ret = proc_dostring(table, write, buffer, length, ppos); 3626 if (ret) 3627 goto out; 3628 if (write) { 3629 int oldval = user_zonelist_order; 3630 3631 ret = __parse_numa_zonelist_order((char *)table->data); 3632 if (ret) { 3633 /* 3634 * bogus value. restore saved string 3635 */ 3636 strncpy((char *)table->data, saved_string, 3637 NUMA_ZONELIST_ORDER_LEN); 3638 user_zonelist_order = oldval; 3639 } else if (oldval != user_zonelist_order) { 3640 mutex_lock(&zonelists_mutex); 3641 build_all_zonelists(NULL, NULL); 3642 mutex_unlock(&zonelists_mutex); 3643 } 3644 } 3645 out: 3646 mutex_unlock(&zl_order_mutex); 3647 return ret; 3648 } 3649 3650 3651 #define MAX_NODE_LOAD (nr_online_nodes) 3652 static int node_load[MAX_NUMNODES]; 3653 3654 /** 3655 * find_next_best_node - find the next node that should appear in a given node's fallback list 3656 * @node: node whose fallback list we're appending 3657 * @used_node_mask: nodemask_t of already used nodes 3658 * 3659 * We use a number of factors to determine which is the next node that should 3660 * appear on a given node's fallback list. The node should not have appeared 3661 * already in @node's fallback list, and it should be the next closest node 3662 * according to the distance array (which contains arbitrary distance values 3663 * from each node to each node in the system), and should also prefer nodes 3664 * with no CPUs, since presumably they'll have very little allocation pressure 3665 * on them otherwise. 3666 * It returns -1 if no node is found. 3667 */ 3668 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3669 { 3670 int n, val; 3671 int min_val = INT_MAX; 3672 int best_node = NUMA_NO_NODE; 3673 const struct cpumask *tmp = cpumask_of_node(0); 3674 3675 /* Use the local node if we haven't already */ 3676 if (!node_isset(node, *used_node_mask)) { 3677 node_set(node, *used_node_mask); 3678 return node; 3679 } 3680 3681 for_each_node_state(n, N_MEMORY) { 3682 3683 /* Don't want a node to appear more than once */ 3684 if (node_isset(n, *used_node_mask)) 3685 continue; 3686 3687 /* Use the distance array to find the distance */ 3688 val = node_distance(node, n); 3689 3690 /* Penalize nodes under us ("prefer the next node") */ 3691 val += (n < node); 3692 3693 /* Give preference to headless and unused nodes */ 3694 tmp = cpumask_of_node(n); 3695 if (!cpumask_empty(tmp)) 3696 val += PENALTY_FOR_NODE_WITH_CPUS; 3697 3698 /* Slight preference for less loaded node */ 3699 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3700 val += node_load[n]; 3701 3702 if (val < min_val) { 3703 min_val = val; 3704 best_node = n; 3705 } 3706 } 3707 3708 if (best_node >= 0) 3709 node_set(best_node, *used_node_mask); 3710 3711 return best_node; 3712 } 3713 3714 3715 /* 3716 * Build zonelists ordered by node and zones within node. 3717 * This results in maximum locality--normal zone overflows into local 3718 * DMA zone, if any--but risks exhausting DMA zone. 3719 */ 3720 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3721 { 3722 int j; 3723 struct zonelist *zonelist; 3724 3725 zonelist = &pgdat->node_zonelists[0]; 3726 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3727 ; 3728 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3729 zonelist->_zonerefs[j].zone = NULL; 3730 zonelist->_zonerefs[j].zone_idx = 0; 3731 } 3732 3733 /* 3734 * Build gfp_thisnode zonelists 3735 */ 3736 static void build_thisnode_zonelists(pg_data_t *pgdat) 3737 { 3738 int j; 3739 struct zonelist *zonelist; 3740 3741 zonelist = &pgdat->node_zonelists[1]; 3742 j = build_zonelists_node(pgdat, zonelist, 0); 3743 zonelist->_zonerefs[j].zone = NULL; 3744 zonelist->_zonerefs[j].zone_idx = 0; 3745 } 3746 3747 /* 3748 * Build zonelists ordered by zone and nodes within zones. 3749 * This results in conserving DMA zone[s] until all Normal memory is 3750 * exhausted, but results in overflowing to remote node while memory 3751 * may still exist in local DMA zone. 3752 */ 3753 static int node_order[MAX_NUMNODES]; 3754 3755 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3756 { 3757 int pos, j, node; 3758 int zone_type; /* needs to be signed */ 3759 struct zone *z; 3760 struct zonelist *zonelist; 3761 3762 zonelist = &pgdat->node_zonelists[0]; 3763 pos = 0; 3764 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3765 for (j = 0; j < nr_nodes; j++) { 3766 node = node_order[j]; 3767 z = &NODE_DATA(node)->node_zones[zone_type]; 3768 if (populated_zone(z)) { 3769 zoneref_set_zone(z, 3770 &zonelist->_zonerefs[pos++]); 3771 check_highest_zone(zone_type); 3772 } 3773 } 3774 } 3775 zonelist->_zonerefs[pos].zone = NULL; 3776 zonelist->_zonerefs[pos].zone_idx = 0; 3777 } 3778 3779 #if defined(CONFIG_64BIT) 3780 /* 3781 * Devices that require DMA32/DMA are relatively rare and do not justify a 3782 * penalty to every machine in case the specialised case applies. Default 3783 * to Node-ordering on 64-bit NUMA machines 3784 */ 3785 static int default_zonelist_order(void) 3786 { 3787 return ZONELIST_ORDER_NODE; 3788 } 3789 #else 3790 /* 3791 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 3792 * by the kernel. If processes running on node 0 deplete the low memory zone 3793 * then reclaim will occur more frequency increasing stalls and potentially 3794 * be easier to OOM if a large percentage of the zone is under writeback or 3795 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 3796 * Hence, default to zone ordering on 32-bit. 3797 */ 3798 static int default_zonelist_order(void) 3799 { 3800 return ZONELIST_ORDER_ZONE; 3801 } 3802 #endif /* CONFIG_64BIT */ 3803 3804 static void set_zonelist_order(void) 3805 { 3806 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3807 current_zonelist_order = default_zonelist_order(); 3808 else 3809 current_zonelist_order = user_zonelist_order; 3810 } 3811 3812 static void build_zonelists(pg_data_t *pgdat) 3813 { 3814 int j, node, load; 3815 enum zone_type i; 3816 nodemask_t used_mask; 3817 int local_node, prev_node; 3818 struct zonelist *zonelist; 3819 int order = current_zonelist_order; 3820 3821 /* initialize zonelists */ 3822 for (i = 0; i < MAX_ZONELISTS; i++) { 3823 zonelist = pgdat->node_zonelists + i; 3824 zonelist->_zonerefs[0].zone = NULL; 3825 zonelist->_zonerefs[0].zone_idx = 0; 3826 } 3827 3828 /* NUMA-aware ordering of nodes */ 3829 local_node = pgdat->node_id; 3830 load = nr_online_nodes; 3831 prev_node = local_node; 3832 nodes_clear(used_mask); 3833 3834 memset(node_order, 0, sizeof(node_order)); 3835 j = 0; 3836 3837 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3838 /* 3839 * We don't want to pressure a particular node. 3840 * So adding penalty to the first node in same 3841 * distance group to make it round-robin. 3842 */ 3843 if (node_distance(local_node, node) != 3844 node_distance(local_node, prev_node)) 3845 node_load[node] = load; 3846 3847 prev_node = node; 3848 load--; 3849 if (order == ZONELIST_ORDER_NODE) 3850 build_zonelists_in_node_order(pgdat, node); 3851 else 3852 node_order[j++] = node; /* remember order */ 3853 } 3854 3855 if (order == ZONELIST_ORDER_ZONE) { 3856 /* calculate node order -- i.e., DMA last! */ 3857 build_zonelists_in_zone_order(pgdat, j); 3858 } 3859 3860 build_thisnode_zonelists(pgdat); 3861 } 3862 3863 /* Construct the zonelist performance cache - see further mmzone.h */ 3864 static void build_zonelist_cache(pg_data_t *pgdat) 3865 { 3866 struct zonelist *zonelist; 3867 struct zonelist_cache *zlc; 3868 struct zoneref *z; 3869 3870 zonelist = &pgdat->node_zonelists[0]; 3871 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3872 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3873 for (z = zonelist->_zonerefs; z->zone; z++) 3874 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3875 } 3876 3877 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3878 /* 3879 * Return node id of node used for "local" allocations. 3880 * I.e., first node id of first zone in arg node's generic zonelist. 3881 * Used for initializing percpu 'numa_mem', which is used primarily 3882 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3883 */ 3884 int local_memory_node(int node) 3885 { 3886 struct zone *zone; 3887 3888 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3889 gfp_zone(GFP_KERNEL), 3890 NULL, 3891 &zone); 3892 return zone->node; 3893 } 3894 #endif 3895 3896 #else /* CONFIG_NUMA */ 3897 3898 static void set_zonelist_order(void) 3899 { 3900 current_zonelist_order = ZONELIST_ORDER_ZONE; 3901 } 3902 3903 static void build_zonelists(pg_data_t *pgdat) 3904 { 3905 int node, local_node; 3906 enum zone_type j; 3907 struct zonelist *zonelist; 3908 3909 local_node = pgdat->node_id; 3910 3911 zonelist = &pgdat->node_zonelists[0]; 3912 j = build_zonelists_node(pgdat, zonelist, 0); 3913 3914 /* 3915 * Now we build the zonelist so that it contains the zones 3916 * of all the other nodes. 3917 * We don't want to pressure a particular node, so when 3918 * building the zones for node N, we make sure that the 3919 * zones coming right after the local ones are those from 3920 * node N+1 (modulo N) 3921 */ 3922 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3923 if (!node_online(node)) 3924 continue; 3925 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3926 } 3927 for (node = 0; node < local_node; node++) { 3928 if (!node_online(node)) 3929 continue; 3930 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3931 } 3932 3933 zonelist->_zonerefs[j].zone = NULL; 3934 zonelist->_zonerefs[j].zone_idx = 0; 3935 } 3936 3937 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3938 static void build_zonelist_cache(pg_data_t *pgdat) 3939 { 3940 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3941 } 3942 3943 #endif /* CONFIG_NUMA */ 3944 3945 /* 3946 * Boot pageset table. One per cpu which is going to be used for all 3947 * zones and all nodes. The parameters will be set in such a way 3948 * that an item put on a list will immediately be handed over to 3949 * the buddy list. This is safe since pageset manipulation is done 3950 * with interrupts disabled. 3951 * 3952 * The boot_pagesets must be kept even after bootup is complete for 3953 * unused processors and/or zones. They do play a role for bootstrapping 3954 * hotplugged processors. 3955 * 3956 * zoneinfo_show() and maybe other functions do 3957 * not check if the processor is online before following the pageset pointer. 3958 * Other parts of the kernel may not check if the zone is available. 3959 */ 3960 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3961 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3962 static void setup_zone_pageset(struct zone *zone); 3963 3964 /* 3965 * Global mutex to protect against size modification of zonelists 3966 * as well as to serialize pageset setup for the new populated zone. 3967 */ 3968 DEFINE_MUTEX(zonelists_mutex); 3969 3970 /* return values int ....just for stop_machine() */ 3971 static int __build_all_zonelists(void *data) 3972 { 3973 int nid; 3974 int cpu; 3975 pg_data_t *self = data; 3976 3977 #ifdef CONFIG_NUMA 3978 memset(node_load, 0, sizeof(node_load)); 3979 #endif 3980 3981 if (self && !node_online(self->node_id)) { 3982 build_zonelists(self); 3983 build_zonelist_cache(self); 3984 } 3985 3986 for_each_online_node(nid) { 3987 pg_data_t *pgdat = NODE_DATA(nid); 3988 3989 build_zonelists(pgdat); 3990 build_zonelist_cache(pgdat); 3991 } 3992 3993 /* 3994 * Initialize the boot_pagesets that are going to be used 3995 * for bootstrapping processors. The real pagesets for 3996 * each zone will be allocated later when the per cpu 3997 * allocator is available. 3998 * 3999 * boot_pagesets are used also for bootstrapping offline 4000 * cpus if the system is already booted because the pagesets 4001 * are needed to initialize allocators on a specific cpu too. 4002 * F.e. the percpu allocator needs the page allocator which 4003 * needs the percpu allocator in order to allocate its pagesets 4004 * (a chicken-egg dilemma). 4005 */ 4006 for_each_possible_cpu(cpu) { 4007 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4008 4009 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4010 /* 4011 * We now know the "local memory node" for each node-- 4012 * i.e., the node of the first zone in the generic zonelist. 4013 * Set up numa_mem percpu variable for on-line cpus. During 4014 * boot, only the boot cpu should be on-line; we'll init the 4015 * secondary cpus' numa_mem as they come on-line. During 4016 * node/memory hotplug, we'll fixup all on-line cpus. 4017 */ 4018 if (cpu_online(cpu)) 4019 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4020 #endif 4021 } 4022 4023 return 0; 4024 } 4025 4026 static noinline void __init 4027 build_all_zonelists_init(void) 4028 { 4029 __build_all_zonelists(NULL); 4030 mminit_verify_zonelist(); 4031 cpuset_init_current_mems_allowed(); 4032 } 4033 4034 /* 4035 * Called with zonelists_mutex held always 4036 * unless system_state == SYSTEM_BOOTING. 4037 * 4038 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4039 * [we're only called with non-NULL zone through __meminit paths] and 4040 * (2) call of __init annotated helper build_all_zonelists_init 4041 * [protected by SYSTEM_BOOTING]. 4042 */ 4043 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4044 { 4045 set_zonelist_order(); 4046 4047 if (system_state == SYSTEM_BOOTING) { 4048 build_all_zonelists_init(); 4049 } else { 4050 #ifdef CONFIG_MEMORY_HOTPLUG 4051 if (zone) 4052 setup_zone_pageset(zone); 4053 #endif 4054 /* we have to stop all cpus to guarantee there is no user 4055 of zonelist */ 4056 stop_machine(__build_all_zonelists, pgdat, NULL); 4057 /* cpuset refresh routine should be here */ 4058 } 4059 vm_total_pages = nr_free_pagecache_pages(); 4060 /* 4061 * Disable grouping by mobility if the number of pages in the 4062 * system is too low to allow the mechanism to work. It would be 4063 * more accurate, but expensive to check per-zone. This check is 4064 * made on memory-hotadd so a system can start with mobility 4065 * disabled and enable it later 4066 */ 4067 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4068 page_group_by_mobility_disabled = 1; 4069 else 4070 page_group_by_mobility_disabled = 0; 4071 4072 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 4073 "Total pages: %ld\n", 4074 nr_online_nodes, 4075 zonelist_order_name[current_zonelist_order], 4076 page_group_by_mobility_disabled ? "off" : "on", 4077 vm_total_pages); 4078 #ifdef CONFIG_NUMA 4079 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4080 #endif 4081 } 4082 4083 /* 4084 * Helper functions to size the waitqueue hash table. 4085 * Essentially these want to choose hash table sizes sufficiently 4086 * large so that collisions trying to wait on pages are rare. 4087 * But in fact, the number of active page waitqueues on typical 4088 * systems is ridiculously low, less than 200. So this is even 4089 * conservative, even though it seems large. 4090 * 4091 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4092 * waitqueues, i.e. the size of the waitq table given the number of pages. 4093 */ 4094 #define PAGES_PER_WAITQUEUE 256 4095 4096 #ifndef CONFIG_MEMORY_HOTPLUG 4097 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4098 { 4099 unsigned long size = 1; 4100 4101 pages /= PAGES_PER_WAITQUEUE; 4102 4103 while (size < pages) 4104 size <<= 1; 4105 4106 /* 4107 * Once we have dozens or even hundreds of threads sleeping 4108 * on IO we've got bigger problems than wait queue collision. 4109 * Limit the size of the wait table to a reasonable size. 4110 */ 4111 size = min(size, 4096UL); 4112 4113 return max(size, 4UL); 4114 } 4115 #else 4116 /* 4117 * A zone's size might be changed by hot-add, so it is not possible to determine 4118 * a suitable size for its wait_table. So we use the maximum size now. 4119 * 4120 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4121 * 4122 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4123 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4124 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4125 * 4126 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4127 * or more by the traditional way. (See above). It equals: 4128 * 4129 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4130 * ia64(16K page size) : = ( 8G + 4M)byte. 4131 * powerpc (64K page size) : = (32G +16M)byte. 4132 */ 4133 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4134 { 4135 return 4096UL; 4136 } 4137 #endif 4138 4139 /* 4140 * This is an integer logarithm so that shifts can be used later 4141 * to extract the more random high bits from the multiplicative 4142 * hash function before the remainder is taken. 4143 */ 4144 static inline unsigned long wait_table_bits(unsigned long size) 4145 { 4146 return ffz(~size); 4147 } 4148 4149 /* 4150 * Check if a pageblock contains reserved pages 4151 */ 4152 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 4153 { 4154 unsigned long pfn; 4155 4156 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4157 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 4158 return 1; 4159 } 4160 return 0; 4161 } 4162 4163 /* 4164 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 4165 * of blocks reserved is based on min_wmark_pages(zone). The memory within 4166 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 4167 * higher will lead to a bigger reserve which will get freed as contiguous 4168 * blocks as reclaim kicks in 4169 */ 4170 static void setup_zone_migrate_reserve(struct zone *zone) 4171 { 4172 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4173 struct page *page; 4174 unsigned long block_migratetype; 4175 int reserve; 4176 int old_reserve; 4177 4178 /* 4179 * Get the start pfn, end pfn and the number of blocks to reserve 4180 * We have to be careful to be aligned to pageblock_nr_pages to 4181 * make sure that we always check pfn_valid for the first page in 4182 * the block. 4183 */ 4184 start_pfn = zone->zone_start_pfn; 4185 end_pfn = zone_end_pfn(zone); 4186 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4187 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4188 pageblock_order; 4189 4190 /* 4191 * Reserve blocks are generally in place to help high-order atomic 4192 * allocations that are short-lived. A min_free_kbytes value that 4193 * would result in more than 2 reserve blocks for atomic allocations 4194 * is assumed to be in place to help anti-fragmentation for the 4195 * future allocation of hugepages at runtime. 4196 */ 4197 reserve = min(2, reserve); 4198 old_reserve = zone->nr_migrate_reserve_block; 4199 4200 /* When memory hot-add, we almost always need to do nothing */ 4201 if (reserve == old_reserve) 4202 return; 4203 zone->nr_migrate_reserve_block = reserve; 4204 4205 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4206 if (!pfn_valid(pfn)) 4207 continue; 4208 page = pfn_to_page(pfn); 4209 4210 /* Watch out for overlapping nodes */ 4211 if (page_to_nid(page) != zone_to_nid(zone)) 4212 continue; 4213 4214 block_migratetype = get_pageblock_migratetype(page); 4215 4216 /* Only test what is necessary when the reserves are not met */ 4217 if (reserve > 0) { 4218 /* 4219 * Blocks with reserved pages will never free, skip 4220 * them. 4221 */ 4222 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4223 if (pageblock_is_reserved(pfn, block_end_pfn)) 4224 continue; 4225 4226 /* If this block is reserved, account for it */ 4227 if (block_migratetype == MIGRATE_RESERVE) { 4228 reserve--; 4229 continue; 4230 } 4231 4232 /* Suitable for reserving if this block is movable */ 4233 if (block_migratetype == MIGRATE_MOVABLE) { 4234 set_pageblock_migratetype(page, 4235 MIGRATE_RESERVE); 4236 move_freepages_block(zone, page, 4237 MIGRATE_RESERVE); 4238 reserve--; 4239 continue; 4240 } 4241 } else if (!old_reserve) { 4242 /* 4243 * At boot time we don't need to scan the whole zone 4244 * for turning off MIGRATE_RESERVE. 4245 */ 4246 break; 4247 } 4248 4249 /* 4250 * If the reserve is met and this is a previous reserved block, 4251 * take it back 4252 */ 4253 if (block_migratetype == MIGRATE_RESERVE) { 4254 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4255 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4256 } 4257 } 4258 } 4259 4260 /* 4261 * Initially all pages are reserved - free ones are freed 4262 * up by free_all_bootmem() once the early boot process is 4263 * done. Non-atomic initialization, single-pass. 4264 */ 4265 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4266 unsigned long start_pfn, enum memmap_context context) 4267 { 4268 struct page *page; 4269 unsigned long end_pfn = start_pfn + size; 4270 unsigned long pfn; 4271 struct zone *z; 4272 4273 if (highest_memmap_pfn < end_pfn - 1) 4274 highest_memmap_pfn = end_pfn - 1; 4275 4276 z = &NODE_DATA(nid)->node_zones[zone]; 4277 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4278 /* 4279 * There can be holes in boot-time mem_map[]s 4280 * handed to this function. They do not 4281 * exist on hotplugged memory. 4282 */ 4283 if (context == MEMMAP_EARLY) { 4284 if (!early_pfn_valid(pfn)) 4285 continue; 4286 if (!early_pfn_in_nid(pfn, nid)) 4287 continue; 4288 } 4289 page = pfn_to_page(pfn); 4290 set_page_links(page, zone, nid, pfn); 4291 mminit_verify_page_links(page, zone, nid, pfn); 4292 init_page_count(page); 4293 page_mapcount_reset(page); 4294 page_cpupid_reset_last(page); 4295 SetPageReserved(page); 4296 /* 4297 * Mark the block movable so that blocks are reserved for 4298 * movable at startup. This will force kernel allocations 4299 * to reserve their blocks rather than leaking throughout 4300 * the address space during boot when many long-lived 4301 * kernel allocations are made. Later some blocks near 4302 * the start are marked MIGRATE_RESERVE by 4303 * setup_zone_migrate_reserve() 4304 * 4305 * bitmap is created for zone's valid pfn range. but memmap 4306 * can be created for invalid pages (for alignment) 4307 * check here not to call set_pageblock_migratetype() against 4308 * pfn out of zone. 4309 */ 4310 if ((z->zone_start_pfn <= pfn) 4311 && (pfn < zone_end_pfn(z)) 4312 && !(pfn & (pageblock_nr_pages - 1))) 4313 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4314 4315 INIT_LIST_HEAD(&page->lru); 4316 #ifdef WANT_PAGE_VIRTUAL 4317 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4318 if (!is_highmem_idx(zone)) 4319 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4320 #endif 4321 } 4322 } 4323 4324 static void __meminit zone_init_free_lists(struct zone *zone) 4325 { 4326 unsigned int order, t; 4327 for_each_migratetype_order(order, t) { 4328 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4329 zone->free_area[order].nr_free = 0; 4330 } 4331 } 4332 4333 #ifndef __HAVE_ARCH_MEMMAP_INIT 4334 #define memmap_init(size, nid, zone, start_pfn) \ 4335 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4336 #endif 4337 4338 static int zone_batchsize(struct zone *zone) 4339 { 4340 #ifdef CONFIG_MMU 4341 int batch; 4342 4343 /* 4344 * The per-cpu-pages pools are set to around 1000th of the 4345 * size of the zone. But no more than 1/2 of a meg. 4346 * 4347 * OK, so we don't know how big the cache is. So guess. 4348 */ 4349 batch = zone->managed_pages / 1024; 4350 if (batch * PAGE_SIZE > 512 * 1024) 4351 batch = (512 * 1024) / PAGE_SIZE; 4352 batch /= 4; /* We effectively *= 4 below */ 4353 if (batch < 1) 4354 batch = 1; 4355 4356 /* 4357 * Clamp the batch to a 2^n - 1 value. Having a power 4358 * of 2 value was found to be more likely to have 4359 * suboptimal cache aliasing properties in some cases. 4360 * 4361 * For example if 2 tasks are alternately allocating 4362 * batches of pages, one task can end up with a lot 4363 * of pages of one half of the possible page colors 4364 * and the other with pages of the other colors. 4365 */ 4366 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4367 4368 return batch; 4369 4370 #else 4371 /* The deferral and batching of frees should be suppressed under NOMMU 4372 * conditions. 4373 * 4374 * The problem is that NOMMU needs to be able to allocate large chunks 4375 * of contiguous memory as there's no hardware page translation to 4376 * assemble apparent contiguous memory from discontiguous pages. 4377 * 4378 * Queueing large contiguous runs of pages for batching, however, 4379 * causes the pages to actually be freed in smaller chunks. As there 4380 * can be a significant delay between the individual batches being 4381 * recycled, this leads to the once large chunks of space being 4382 * fragmented and becoming unavailable for high-order allocations. 4383 */ 4384 return 0; 4385 #endif 4386 } 4387 4388 /* 4389 * pcp->high and pcp->batch values are related and dependent on one another: 4390 * ->batch must never be higher then ->high. 4391 * The following function updates them in a safe manner without read side 4392 * locking. 4393 * 4394 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4395 * those fields changing asynchronously (acording the the above rule). 4396 * 4397 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4398 * outside of boot time (or some other assurance that no concurrent updaters 4399 * exist). 4400 */ 4401 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4402 unsigned long batch) 4403 { 4404 /* start with a fail safe value for batch */ 4405 pcp->batch = 1; 4406 smp_wmb(); 4407 4408 /* Update high, then batch, in order */ 4409 pcp->high = high; 4410 smp_wmb(); 4411 4412 pcp->batch = batch; 4413 } 4414 4415 /* a companion to pageset_set_high() */ 4416 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4417 { 4418 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4419 } 4420 4421 static void pageset_init(struct per_cpu_pageset *p) 4422 { 4423 struct per_cpu_pages *pcp; 4424 int migratetype; 4425 4426 memset(p, 0, sizeof(*p)); 4427 4428 pcp = &p->pcp; 4429 pcp->count = 0; 4430 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4431 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4432 } 4433 4434 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4435 { 4436 pageset_init(p); 4437 pageset_set_batch(p, batch); 4438 } 4439 4440 /* 4441 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4442 * to the value high for the pageset p. 4443 */ 4444 static void pageset_set_high(struct per_cpu_pageset *p, 4445 unsigned long high) 4446 { 4447 unsigned long batch = max(1UL, high / 4); 4448 if ((high / 4) > (PAGE_SHIFT * 8)) 4449 batch = PAGE_SHIFT * 8; 4450 4451 pageset_update(&p->pcp, high, batch); 4452 } 4453 4454 static void pageset_set_high_and_batch(struct zone *zone, 4455 struct per_cpu_pageset *pcp) 4456 { 4457 if (percpu_pagelist_fraction) 4458 pageset_set_high(pcp, 4459 (zone->managed_pages / 4460 percpu_pagelist_fraction)); 4461 else 4462 pageset_set_batch(pcp, zone_batchsize(zone)); 4463 } 4464 4465 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4466 { 4467 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4468 4469 pageset_init(pcp); 4470 pageset_set_high_and_batch(zone, pcp); 4471 } 4472 4473 static void __meminit setup_zone_pageset(struct zone *zone) 4474 { 4475 int cpu; 4476 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4477 for_each_possible_cpu(cpu) 4478 zone_pageset_init(zone, cpu); 4479 } 4480 4481 /* 4482 * Allocate per cpu pagesets and initialize them. 4483 * Before this call only boot pagesets were available. 4484 */ 4485 void __init setup_per_cpu_pageset(void) 4486 { 4487 struct zone *zone; 4488 4489 for_each_populated_zone(zone) 4490 setup_zone_pageset(zone); 4491 } 4492 4493 static noinline __init_refok 4494 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4495 { 4496 int i; 4497 size_t alloc_size; 4498 4499 /* 4500 * The per-page waitqueue mechanism uses hashed waitqueues 4501 * per zone. 4502 */ 4503 zone->wait_table_hash_nr_entries = 4504 wait_table_hash_nr_entries(zone_size_pages); 4505 zone->wait_table_bits = 4506 wait_table_bits(zone->wait_table_hash_nr_entries); 4507 alloc_size = zone->wait_table_hash_nr_entries 4508 * sizeof(wait_queue_head_t); 4509 4510 if (!slab_is_available()) { 4511 zone->wait_table = (wait_queue_head_t *) 4512 memblock_virt_alloc_node_nopanic( 4513 alloc_size, zone->zone_pgdat->node_id); 4514 } else { 4515 /* 4516 * This case means that a zone whose size was 0 gets new memory 4517 * via memory hot-add. 4518 * But it may be the case that a new node was hot-added. In 4519 * this case vmalloc() will not be able to use this new node's 4520 * memory - this wait_table must be initialized to use this new 4521 * node itself as well. 4522 * To use this new node's memory, further consideration will be 4523 * necessary. 4524 */ 4525 zone->wait_table = vmalloc(alloc_size); 4526 } 4527 if (!zone->wait_table) 4528 return -ENOMEM; 4529 4530 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4531 init_waitqueue_head(zone->wait_table + i); 4532 4533 return 0; 4534 } 4535 4536 static __meminit void zone_pcp_init(struct zone *zone) 4537 { 4538 /* 4539 * per cpu subsystem is not up at this point. The following code 4540 * relies on the ability of the linker to provide the 4541 * offset of a (static) per cpu variable into the per cpu area. 4542 */ 4543 zone->pageset = &boot_pageset; 4544 4545 if (populated_zone(zone)) 4546 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4547 zone->name, zone->present_pages, 4548 zone_batchsize(zone)); 4549 } 4550 4551 int __meminit init_currently_empty_zone(struct zone *zone, 4552 unsigned long zone_start_pfn, 4553 unsigned long size, 4554 enum memmap_context context) 4555 { 4556 struct pglist_data *pgdat = zone->zone_pgdat; 4557 int ret; 4558 ret = zone_wait_table_init(zone, size); 4559 if (ret) 4560 return ret; 4561 pgdat->nr_zones = zone_idx(zone) + 1; 4562 4563 zone->zone_start_pfn = zone_start_pfn; 4564 4565 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4566 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4567 pgdat->node_id, 4568 (unsigned long)zone_idx(zone), 4569 zone_start_pfn, (zone_start_pfn + size)); 4570 4571 zone_init_free_lists(zone); 4572 4573 return 0; 4574 } 4575 4576 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4577 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4578 /* 4579 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4580 */ 4581 int __meminit __early_pfn_to_nid(unsigned long pfn) 4582 { 4583 unsigned long start_pfn, end_pfn; 4584 int nid; 4585 /* 4586 * NOTE: The following SMP-unsafe globals are only used early in boot 4587 * when the kernel is running single-threaded. 4588 */ 4589 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4590 static int __meminitdata last_nid; 4591 4592 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4593 return last_nid; 4594 4595 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4596 if (nid != -1) { 4597 last_start_pfn = start_pfn; 4598 last_end_pfn = end_pfn; 4599 last_nid = nid; 4600 } 4601 4602 return nid; 4603 } 4604 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4605 4606 int __meminit early_pfn_to_nid(unsigned long pfn) 4607 { 4608 int nid; 4609 4610 nid = __early_pfn_to_nid(pfn); 4611 if (nid >= 0) 4612 return nid; 4613 /* just returns 0 */ 4614 return 0; 4615 } 4616 4617 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4618 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4619 { 4620 int nid; 4621 4622 nid = __early_pfn_to_nid(pfn); 4623 if (nid >= 0 && nid != node) 4624 return false; 4625 return true; 4626 } 4627 #endif 4628 4629 /** 4630 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4631 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4632 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4633 * 4634 * If an architecture guarantees that all ranges registered contain no holes 4635 * and may be freed, this this function may be used instead of calling 4636 * memblock_free_early_nid() manually. 4637 */ 4638 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4639 { 4640 unsigned long start_pfn, end_pfn; 4641 int i, this_nid; 4642 4643 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4644 start_pfn = min(start_pfn, max_low_pfn); 4645 end_pfn = min(end_pfn, max_low_pfn); 4646 4647 if (start_pfn < end_pfn) 4648 memblock_free_early_nid(PFN_PHYS(start_pfn), 4649 (end_pfn - start_pfn) << PAGE_SHIFT, 4650 this_nid); 4651 } 4652 } 4653 4654 /** 4655 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4656 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4657 * 4658 * If an architecture guarantees that all ranges registered contain no holes and may 4659 * be freed, this function may be used instead of calling memory_present() manually. 4660 */ 4661 void __init sparse_memory_present_with_active_regions(int nid) 4662 { 4663 unsigned long start_pfn, end_pfn; 4664 int i, this_nid; 4665 4666 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4667 memory_present(this_nid, start_pfn, end_pfn); 4668 } 4669 4670 /** 4671 * get_pfn_range_for_nid - Return the start and end page frames for a node 4672 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4673 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4674 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4675 * 4676 * It returns the start and end page frame of a node based on information 4677 * provided by memblock_set_node(). If called for a node 4678 * with no available memory, a warning is printed and the start and end 4679 * PFNs will be 0. 4680 */ 4681 void __meminit get_pfn_range_for_nid(unsigned int nid, 4682 unsigned long *start_pfn, unsigned long *end_pfn) 4683 { 4684 unsigned long this_start_pfn, this_end_pfn; 4685 int i; 4686 4687 *start_pfn = -1UL; 4688 *end_pfn = 0; 4689 4690 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4691 *start_pfn = min(*start_pfn, this_start_pfn); 4692 *end_pfn = max(*end_pfn, this_end_pfn); 4693 } 4694 4695 if (*start_pfn == -1UL) 4696 *start_pfn = 0; 4697 } 4698 4699 /* 4700 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4701 * assumption is made that zones within a node are ordered in monotonic 4702 * increasing memory addresses so that the "highest" populated zone is used 4703 */ 4704 static void __init find_usable_zone_for_movable(void) 4705 { 4706 int zone_index; 4707 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4708 if (zone_index == ZONE_MOVABLE) 4709 continue; 4710 4711 if (arch_zone_highest_possible_pfn[zone_index] > 4712 arch_zone_lowest_possible_pfn[zone_index]) 4713 break; 4714 } 4715 4716 VM_BUG_ON(zone_index == -1); 4717 movable_zone = zone_index; 4718 } 4719 4720 /* 4721 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4722 * because it is sized independent of architecture. Unlike the other zones, 4723 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4724 * in each node depending on the size of each node and how evenly kernelcore 4725 * is distributed. This helper function adjusts the zone ranges 4726 * provided by the architecture for a given node by using the end of the 4727 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4728 * zones within a node are in order of monotonic increases memory addresses 4729 */ 4730 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4731 unsigned long zone_type, 4732 unsigned long node_start_pfn, 4733 unsigned long node_end_pfn, 4734 unsigned long *zone_start_pfn, 4735 unsigned long *zone_end_pfn) 4736 { 4737 /* Only adjust if ZONE_MOVABLE is on this node */ 4738 if (zone_movable_pfn[nid]) { 4739 /* Size ZONE_MOVABLE */ 4740 if (zone_type == ZONE_MOVABLE) { 4741 *zone_start_pfn = zone_movable_pfn[nid]; 4742 *zone_end_pfn = min(node_end_pfn, 4743 arch_zone_highest_possible_pfn[movable_zone]); 4744 4745 /* Adjust for ZONE_MOVABLE starting within this range */ 4746 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4747 *zone_end_pfn > zone_movable_pfn[nid]) { 4748 *zone_end_pfn = zone_movable_pfn[nid]; 4749 4750 /* Check if this whole range is within ZONE_MOVABLE */ 4751 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4752 *zone_start_pfn = *zone_end_pfn; 4753 } 4754 } 4755 4756 /* 4757 * Return the number of pages a zone spans in a node, including holes 4758 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4759 */ 4760 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4761 unsigned long zone_type, 4762 unsigned long node_start_pfn, 4763 unsigned long node_end_pfn, 4764 unsigned long *ignored) 4765 { 4766 unsigned long zone_start_pfn, zone_end_pfn; 4767 4768 /* Get the start and end of the zone */ 4769 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4770 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4771 adjust_zone_range_for_zone_movable(nid, zone_type, 4772 node_start_pfn, node_end_pfn, 4773 &zone_start_pfn, &zone_end_pfn); 4774 4775 /* Check that this node has pages within the zone's required range */ 4776 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4777 return 0; 4778 4779 /* Move the zone boundaries inside the node if necessary */ 4780 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4781 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4782 4783 /* Return the spanned pages */ 4784 return zone_end_pfn - zone_start_pfn; 4785 } 4786 4787 /* 4788 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4789 * then all holes in the requested range will be accounted for. 4790 */ 4791 unsigned long __meminit __absent_pages_in_range(int nid, 4792 unsigned long range_start_pfn, 4793 unsigned long range_end_pfn) 4794 { 4795 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4796 unsigned long start_pfn, end_pfn; 4797 int i; 4798 4799 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4800 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4801 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4802 nr_absent -= end_pfn - start_pfn; 4803 } 4804 return nr_absent; 4805 } 4806 4807 /** 4808 * absent_pages_in_range - Return number of page frames in holes within a range 4809 * @start_pfn: The start PFN to start searching for holes 4810 * @end_pfn: The end PFN to stop searching for holes 4811 * 4812 * It returns the number of pages frames in memory holes within a range. 4813 */ 4814 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4815 unsigned long end_pfn) 4816 { 4817 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4818 } 4819 4820 /* Return the number of page frames in holes in a zone on a node */ 4821 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4822 unsigned long zone_type, 4823 unsigned long node_start_pfn, 4824 unsigned long node_end_pfn, 4825 unsigned long *ignored) 4826 { 4827 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4828 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4829 unsigned long zone_start_pfn, zone_end_pfn; 4830 4831 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4832 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4833 4834 adjust_zone_range_for_zone_movable(nid, zone_type, 4835 node_start_pfn, node_end_pfn, 4836 &zone_start_pfn, &zone_end_pfn); 4837 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4838 } 4839 4840 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4841 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4842 unsigned long zone_type, 4843 unsigned long node_start_pfn, 4844 unsigned long node_end_pfn, 4845 unsigned long *zones_size) 4846 { 4847 return zones_size[zone_type]; 4848 } 4849 4850 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4851 unsigned long zone_type, 4852 unsigned long node_start_pfn, 4853 unsigned long node_end_pfn, 4854 unsigned long *zholes_size) 4855 { 4856 if (!zholes_size) 4857 return 0; 4858 4859 return zholes_size[zone_type]; 4860 } 4861 4862 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4863 4864 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4865 unsigned long node_start_pfn, 4866 unsigned long node_end_pfn, 4867 unsigned long *zones_size, 4868 unsigned long *zholes_size) 4869 { 4870 unsigned long realtotalpages, totalpages = 0; 4871 enum zone_type i; 4872 4873 for (i = 0; i < MAX_NR_ZONES; i++) 4874 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4875 node_start_pfn, 4876 node_end_pfn, 4877 zones_size); 4878 pgdat->node_spanned_pages = totalpages; 4879 4880 realtotalpages = totalpages; 4881 for (i = 0; i < MAX_NR_ZONES; i++) 4882 realtotalpages -= 4883 zone_absent_pages_in_node(pgdat->node_id, i, 4884 node_start_pfn, node_end_pfn, 4885 zholes_size); 4886 pgdat->node_present_pages = realtotalpages; 4887 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4888 realtotalpages); 4889 } 4890 4891 #ifndef CONFIG_SPARSEMEM 4892 /* 4893 * Calculate the size of the zone->blockflags rounded to an unsigned long 4894 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4895 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4896 * round what is now in bits to nearest long in bits, then return it in 4897 * bytes. 4898 */ 4899 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4900 { 4901 unsigned long usemapsize; 4902 4903 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4904 usemapsize = roundup(zonesize, pageblock_nr_pages); 4905 usemapsize = usemapsize >> pageblock_order; 4906 usemapsize *= NR_PAGEBLOCK_BITS; 4907 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4908 4909 return usemapsize / 8; 4910 } 4911 4912 static void __init setup_usemap(struct pglist_data *pgdat, 4913 struct zone *zone, 4914 unsigned long zone_start_pfn, 4915 unsigned long zonesize) 4916 { 4917 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4918 zone->pageblock_flags = NULL; 4919 if (usemapsize) 4920 zone->pageblock_flags = 4921 memblock_virt_alloc_node_nopanic(usemapsize, 4922 pgdat->node_id); 4923 } 4924 #else 4925 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4926 unsigned long zone_start_pfn, unsigned long zonesize) {} 4927 #endif /* CONFIG_SPARSEMEM */ 4928 4929 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4930 4931 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4932 void __paginginit set_pageblock_order(void) 4933 { 4934 unsigned int order; 4935 4936 /* Check that pageblock_nr_pages has not already been setup */ 4937 if (pageblock_order) 4938 return; 4939 4940 if (HPAGE_SHIFT > PAGE_SHIFT) 4941 order = HUGETLB_PAGE_ORDER; 4942 else 4943 order = MAX_ORDER - 1; 4944 4945 /* 4946 * Assume the largest contiguous order of interest is a huge page. 4947 * This value may be variable depending on boot parameters on IA64 and 4948 * powerpc. 4949 */ 4950 pageblock_order = order; 4951 } 4952 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4953 4954 /* 4955 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4956 * is unused as pageblock_order is set at compile-time. See 4957 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4958 * the kernel config 4959 */ 4960 void __paginginit set_pageblock_order(void) 4961 { 4962 } 4963 4964 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4965 4966 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4967 unsigned long present_pages) 4968 { 4969 unsigned long pages = spanned_pages; 4970 4971 /* 4972 * Provide a more accurate estimation if there are holes within 4973 * the zone and SPARSEMEM is in use. If there are holes within the 4974 * zone, each populated memory region may cost us one or two extra 4975 * memmap pages due to alignment because memmap pages for each 4976 * populated regions may not naturally algined on page boundary. 4977 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4978 */ 4979 if (spanned_pages > present_pages + (present_pages >> 4) && 4980 IS_ENABLED(CONFIG_SPARSEMEM)) 4981 pages = present_pages; 4982 4983 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4984 } 4985 4986 /* 4987 * Set up the zone data structures: 4988 * - mark all pages reserved 4989 * - mark all memory queues empty 4990 * - clear the memory bitmaps 4991 * 4992 * NOTE: pgdat should get zeroed by caller. 4993 */ 4994 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4995 unsigned long node_start_pfn, unsigned long node_end_pfn, 4996 unsigned long *zones_size, unsigned long *zholes_size) 4997 { 4998 enum zone_type j; 4999 int nid = pgdat->node_id; 5000 unsigned long zone_start_pfn = pgdat->node_start_pfn; 5001 int ret; 5002 5003 pgdat_resize_init(pgdat); 5004 #ifdef CONFIG_NUMA_BALANCING 5005 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5006 pgdat->numabalancing_migrate_nr_pages = 0; 5007 pgdat->numabalancing_migrate_next_window = jiffies; 5008 #endif 5009 init_waitqueue_head(&pgdat->kswapd_wait); 5010 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5011 pgdat_page_ext_init(pgdat); 5012 5013 for (j = 0; j < MAX_NR_ZONES; j++) { 5014 struct zone *zone = pgdat->node_zones + j; 5015 unsigned long size, realsize, freesize, memmap_pages; 5016 5017 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 5018 node_end_pfn, zones_size); 5019 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 5020 node_start_pfn, 5021 node_end_pfn, 5022 zholes_size); 5023 5024 /* 5025 * Adjust freesize so that it accounts for how much memory 5026 * is used by this zone for memmap. This affects the watermark 5027 * and per-cpu initialisations 5028 */ 5029 memmap_pages = calc_memmap_size(size, realsize); 5030 if (!is_highmem_idx(j)) { 5031 if (freesize >= memmap_pages) { 5032 freesize -= memmap_pages; 5033 if (memmap_pages) 5034 printk(KERN_DEBUG 5035 " %s zone: %lu pages used for memmap\n", 5036 zone_names[j], memmap_pages); 5037 } else 5038 printk(KERN_WARNING 5039 " %s zone: %lu pages exceeds freesize %lu\n", 5040 zone_names[j], memmap_pages, freesize); 5041 } 5042 5043 /* Account for reserved pages */ 5044 if (j == 0 && freesize > dma_reserve) { 5045 freesize -= dma_reserve; 5046 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5047 zone_names[0], dma_reserve); 5048 } 5049 5050 if (!is_highmem_idx(j)) 5051 nr_kernel_pages += freesize; 5052 /* Charge for highmem memmap if there are enough kernel pages */ 5053 else if (nr_kernel_pages > memmap_pages * 2) 5054 nr_kernel_pages -= memmap_pages; 5055 nr_all_pages += freesize; 5056 5057 zone->spanned_pages = size; 5058 zone->present_pages = realsize; 5059 /* 5060 * Set an approximate value for lowmem here, it will be adjusted 5061 * when the bootmem allocator frees pages into the buddy system. 5062 * And all highmem pages will be managed by the buddy system. 5063 */ 5064 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5065 #ifdef CONFIG_NUMA 5066 zone->node = nid; 5067 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 5068 / 100; 5069 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 5070 #endif 5071 zone->name = zone_names[j]; 5072 spin_lock_init(&zone->lock); 5073 spin_lock_init(&zone->lru_lock); 5074 zone_seqlock_init(zone); 5075 zone->zone_pgdat = pgdat; 5076 zone_pcp_init(zone); 5077 5078 /* For bootup, initialized properly in watermark setup */ 5079 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 5080 5081 lruvec_init(&zone->lruvec); 5082 if (!size) 5083 continue; 5084 5085 set_pageblock_order(); 5086 setup_usemap(pgdat, zone, zone_start_pfn, size); 5087 ret = init_currently_empty_zone(zone, zone_start_pfn, 5088 size, MEMMAP_EARLY); 5089 BUG_ON(ret); 5090 memmap_init(size, nid, j, zone_start_pfn); 5091 zone_start_pfn += size; 5092 } 5093 } 5094 5095 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5096 { 5097 /* Skip empty nodes */ 5098 if (!pgdat->node_spanned_pages) 5099 return; 5100 5101 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5102 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5103 if (!pgdat->node_mem_map) { 5104 unsigned long size, start, end; 5105 struct page *map; 5106 5107 /* 5108 * The zone's endpoints aren't required to be MAX_ORDER 5109 * aligned but the node_mem_map endpoints must be in order 5110 * for the buddy allocator to function correctly. 5111 */ 5112 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5113 end = pgdat_end_pfn(pgdat); 5114 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5115 size = (end - start) * sizeof(struct page); 5116 map = alloc_remap(pgdat->node_id, size); 5117 if (!map) 5118 map = memblock_virt_alloc_node_nopanic(size, 5119 pgdat->node_id); 5120 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 5121 } 5122 #ifndef CONFIG_NEED_MULTIPLE_NODES 5123 /* 5124 * With no DISCONTIG, the global mem_map is just set as node 0's 5125 */ 5126 if (pgdat == NODE_DATA(0)) { 5127 mem_map = NODE_DATA(0)->node_mem_map; 5128 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5129 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5130 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 5131 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5132 } 5133 #endif 5134 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5135 } 5136 5137 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5138 unsigned long node_start_pfn, unsigned long *zholes_size) 5139 { 5140 pg_data_t *pgdat = NODE_DATA(nid); 5141 unsigned long start_pfn = 0; 5142 unsigned long end_pfn = 0; 5143 5144 /* pg_data_t should be reset to zero when it's allocated */ 5145 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5146 5147 pgdat->node_id = nid; 5148 pgdat->node_start_pfn = node_start_pfn; 5149 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5150 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5151 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5152 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1); 5153 #endif 5154 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5155 zones_size, zholes_size); 5156 5157 alloc_node_mem_map(pgdat); 5158 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5159 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5160 nid, (unsigned long)pgdat, 5161 (unsigned long)pgdat->node_mem_map); 5162 #endif 5163 5164 free_area_init_core(pgdat, start_pfn, end_pfn, 5165 zones_size, zholes_size); 5166 } 5167 5168 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5169 5170 #if MAX_NUMNODES > 1 5171 /* 5172 * Figure out the number of possible node ids. 5173 */ 5174 void __init setup_nr_node_ids(void) 5175 { 5176 unsigned int node; 5177 unsigned int highest = 0; 5178 5179 for_each_node_mask(node, node_possible_map) 5180 highest = node; 5181 nr_node_ids = highest + 1; 5182 } 5183 #endif 5184 5185 /** 5186 * node_map_pfn_alignment - determine the maximum internode alignment 5187 * 5188 * This function should be called after node map is populated and sorted. 5189 * It calculates the maximum power of two alignment which can distinguish 5190 * all the nodes. 5191 * 5192 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5193 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5194 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5195 * shifted, 1GiB is enough and this function will indicate so. 5196 * 5197 * This is used to test whether pfn -> nid mapping of the chosen memory 5198 * model has fine enough granularity to avoid incorrect mapping for the 5199 * populated node map. 5200 * 5201 * Returns the determined alignment in pfn's. 0 if there is no alignment 5202 * requirement (single node). 5203 */ 5204 unsigned long __init node_map_pfn_alignment(void) 5205 { 5206 unsigned long accl_mask = 0, last_end = 0; 5207 unsigned long start, end, mask; 5208 int last_nid = -1; 5209 int i, nid; 5210 5211 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5212 if (!start || last_nid < 0 || last_nid == nid) { 5213 last_nid = nid; 5214 last_end = end; 5215 continue; 5216 } 5217 5218 /* 5219 * Start with a mask granular enough to pin-point to the 5220 * start pfn and tick off bits one-by-one until it becomes 5221 * too coarse to separate the current node from the last. 5222 */ 5223 mask = ~((1 << __ffs(start)) - 1); 5224 while (mask && last_end <= (start & (mask << 1))) 5225 mask <<= 1; 5226 5227 /* accumulate all internode masks */ 5228 accl_mask |= mask; 5229 } 5230 5231 /* convert mask to number of pages */ 5232 return ~accl_mask + 1; 5233 } 5234 5235 /* Find the lowest pfn for a node */ 5236 static unsigned long __init find_min_pfn_for_node(int nid) 5237 { 5238 unsigned long min_pfn = ULONG_MAX; 5239 unsigned long start_pfn; 5240 int i; 5241 5242 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5243 min_pfn = min(min_pfn, start_pfn); 5244 5245 if (min_pfn == ULONG_MAX) { 5246 printk(KERN_WARNING 5247 "Could not find start_pfn for node %d\n", nid); 5248 return 0; 5249 } 5250 5251 return min_pfn; 5252 } 5253 5254 /** 5255 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5256 * 5257 * It returns the minimum PFN based on information provided via 5258 * memblock_set_node(). 5259 */ 5260 unsigned long __init find_min_pfn_with_active_regions(void) 5261 { 5262 return find_min_pfn_for_node(MAX_NUMNODES); 5263 } 5264 5265 /* 5266 * early_calculate_totalpages() 5267 * Sum pages in active regions for movable zone. 5268 * Populate N_MEMORY for calculating usable_nodes. 5269 */ 5270 static unsigned long __init early_calculate_totalpages(void) 5271 { 5272 unsigned long totalpages = 0; 5273 unsigned long start_pfn, end_pfn; 5274 int i, nid; 5275 5276 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5277 unsigned long pages = end_pfn - start_pfn; 5278 5279 totalpages += pages; 5280 if (pages) 5281 node_set_state(nid, N_MEMORY); 5282 } 5283 return totalpages; 5284 } 5285 5286 /* 5287 * Find the PFN the Movable zone begins in each node. Kernel memory 5288 * is spread evenly between nodes as long as the nodes have enough 5289 * memory. When they don't, some nodes will have more kernelcore than 5290 * others 5291 */ 5292 static void __init find_zone_movable_pfns_for_nodes(void) 5293 { 5294 int i, nid; 5295 unsigned long usable_startpfn; 5296 unsigned long kernelcore_node, kernelcore_remaining; 5297 /* save the state before borrow the nodemask */ 5298 nodemask_t saved_node_state = node_states[N_MEMORY]; 5299 unsigned long totalpages = early_calculate_totalpages(); 5300 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5301 struct memblock_region *r; 5302 5303 /* Need to find movable_zone earlier when movable_node is specified. */ 5304 find_usable_zone_for_movable(); 5305 5306 /* 5307 * If movable_node is specified, ignore kernelcore and movablecore 5308 * options. 5309 */ 5310 if (movable_node_is_enabled()) { 5311 for_each_memblock(memory, r) { 5312 if (!memblock_is_hotpluggable(r)) 5313 continue; 5314 5315 nid = r->nid; 5316 5317 usable_startpfn = PFN_DOWN(r->base); 5318 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5319 min(usable_startpfn, zone_movable_pfn[nid]) : 5320 usable_startpfn; 5321 } 5322 5323 goto out2; 5324 } 5325 5326 /* 5327 * If movablecore=nn[KMG] was specified, calculate what size of 5328 * kernelcore that corresponds so that memory usable for 5329 * any allocation type is evenly spread. If both kernelcore 5330 * and movablecore are specified, then the value of kernelcore 5331 * will be used for required_kernelcore if it's greater than 5332 * what movablecore would have allowed. 5333 */ 5334 if (required_movablecore) { 5335 unsigned long corepages; 5336 5337 /* 5338 * Round-up so that ZONE_MOVABLE is at least as large as what 5339 * was requested by the user 5340 */ 5341 required_movablecore = 5342 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5343 corepages = totalpages - required_movablecore; 5344 5345 required_kernelcore = max(required_kernelcore, corepages); 5346 } 5347 5348 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5349 if (!required_kernelcore) 5350 goto out; 5351 5352 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5353 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5354 5355 restart: 5356 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5357 kernelcore_node = required_kernelcore / usable_nodes; 5358 for_each_node_state(nid, N_MEMORY) { 5359 unsigned long start_pfn, end_pfn; 5360 5361 /* 5362 * Recalculate kernelcore_node if the division per node 5363 * now exceeds what is necessary to satisfy the requested 5364 * amount of memory for the kernel 5365 */ 5366 if (required_kernelcore < kernelcore_node) 5367 kernelcore_node = required_kernelcore / usable_nodes; 5368 5369 /* 5370 * As the map is walked, we track how much memory is usable 5371 * by the kernel using kernelcore_remaining. When it is 5372 * 0, the rest of the node is usable by ZONE_MOVABLE 5373 */ 5374 kernelcore_remaining = kernelcore_node; 5375 5376 /* Go through each range of PFNs within this node */ 5377 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5378 unsigned long size_pages; 5379 5380 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5381 if (start_pfn >= end_pfn) 5382 continue; 5383 5384 /* Account for what is only usable for kernelcore */ 5385 if (start_pfn < usable_startpfn) { 5386 unsigned long kernel_pages; 5387 kernel_pages = min(end_pfn, usable_startpfn) 5388 - start_pfn; 5389 5390 kernelcore_remaining -= min(kernel_pages, 5391 kernelcore_remaining); 5392 required_kernelcore -= min(kernel_pages, 5393 required_kernelcore); 5394 5395 /* Continue if range is now fully accounted */ 5396 if (end_pfn <= usable_startpfn) { 5397 5398 /* 5399 * Push zone_movable_pfn to the end so 5400 * that if we have to rebalance 5401 * kernelcore across nodes, we will 5402 * not double account here 5403 */ 5404 zone_movable_pfn[nid] = end_pfn; 5405 continue; 5406 } 5407 start_pfn = usable_startpfn; 5408 } 5409 5410 /* 5411 * The usable PFN range for ZONE_MOVABLE is from 5412 * start_pfn->end_pfn. Calculate size_pages as the 5413 * number of pages used as kernelcore 5414 */ 5415 size_pages = end_pfn - start_pfn; 5416 if (size_pages > kernelcore_remaining) 5417 size_pages = kernelcore_remaining; 5418 zone_movable_pfn[nid] = start_pfn + size_pages; 5419 5420 /* 5421 * Some kernelcore has been met, update counts and 5422 * break if the kernelcore for this node has been 5423 * satisfied 5424 */ 5425 required_kernelcore -= min(required_kernelcore, 5426 size_pages); 5427 kernelcore_remaining -= size_pages; 5428 if (!kernelcore_remaining) 5429 break; 5430 } 5431 } 5432 5433 /* 5434 * If there is still required_kernelcore, we do another pass with one 5435 * less node in the count. This will push zone_movable_pfn[nid] further 5436 * along on the nodes that still have memory until kernelcore is 5437 * satisfied 5438 */ 5439 usable_nodes--; 5440 if (usable_nodes && required_kernelcore > usable_nodes) 5441 goto restart; 5442 5443 out2: 5444 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5445 for (nid = 0; nid < MAX_NUMNODES; nid++) 5446 zone_movable_pfn[nid] = 5447 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5448 5449 out: 5450 /* restore the node_state */ 5451 node_states[N_MEMORY] = saved_node_state; 5452 } 5453 5454 /* Any regular or high memory on that node ? */ 5455 static void check_for_memory(pg_data_t *pgdat, int nid) 5456 { 5457 enum zone_type zone_type; 5458 5459 if (N_MEMORY == N_NORMAL_MEMORY) 5460 return; 5461 5462 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5463 struct zone *zone = &pgdat->node_zones[zone_type]; 5464 if (populated_zone(zone)) { 5465 node_set_state(nid, N_HIGH_MEMORY); 5466 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5467 zone_type <= ZONE_NORMAL) 5468 node_set_state(nid, N_NORMAL_MEMORY); 5469 break; 5470 } 5471 } 5472 } 5473 5474 /** 5475 * free_area_init_nodes - Initialise all pg_data_t and zone data 5476 * @max_zone_pfn: an array of max PFNs for each zone 5477 * 5478 * This will call free_area_init_node() for each active node in the system. 5479 * Using the page ranges provided by memblock_set_node(), the size of each 5480 * zone in each node and their holes is calculated. If the maximum PFN 5481 * between two adjacent zones match, it is assumed that the zone is empty. 5482 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5483 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5484 * starts where the previous one ended. For example, ZONE_DMA32 starts 5485 * at arch_max_dma_pfn. 5486 */ 5487 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5488 { 5489 unsigned long start_pfn, end_pfn; 5490 int i, nid; 5491 5492 /* Record where the zone boundaries are */ 5493 memset(arch_zone_lowest_possible_pfn, 0, 5494 sizeof(arch_zone_lowest_possible_pfn)); 5495 memset(arch_zone_highest_possible_pfn, 0, 5496 sizeof(arch_zone_highest_possible_pfn)); 5497 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5498 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5499 for (i = 1; i < MAX_NR_ZONES; i++) { 5500 if (i == ZONE_MOVABLE) 5501 continue; 5502 arch_zone_lowest_possible_pfn[i] = 5503 arch_zone_highest_possible_pfn[i-1]; 5504 arch_zone_highest_possible_pfn[i] = 5505 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5506 } 5507 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5508 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5509 5510 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5511 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5512 find_zone_movable_pfns_for_nodes(); 5513 5514 /* Print out the zone ranges */ 5515 pr_info("Zone ranges:\n"); 5516 for (i = 0; i < MAX_NR_ZONES; i++) { 5517 if (i == ZONE_MOVABLE) 5518 continue; 5519 pr_info(" %-8s ", zone_names[i]); 5520 if (arch_zone_lowest_possible_pfn[i] == 5521 arch_zone_highest_possible_pfn[i]) 5522 pr_cont("empty\n"); 5523 else 5524 pr_cont("[mem %#018Lx-%#018Lx]\n", 5525 (u64)arch_zone_lowest_possible_pfn[i] 5526 << PAGE_SHIFT, 5527 ((u64)arch_zone_highest_possible_pfn[i] 5528 << PAGE_SHIFT) - 1); 5529 } 5530 5531 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5532 pr_info("Movable zone start for each node\n"); 5533 for (i = 0; i < MAX_NUMNODES; i++) { 5534 if (zone_movable_pfn[i]) 5535 pr_info(" Node %d: %#018Lx\n", i, 5536 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5537 } 5538 5539 /* Print out the early node map */ 5540 pr_info("Early memory node ranges\n"); 5541 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5542 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5543 (u64)start_pfn << PAGE_SHIFT, 5544 ((u64)end_pfn << PAGE_SHIFT) - 1); 5545 5546 /* Initialise every node */ 5547 mminit_verify_pageflags_layout(); 5548 setup_nr_node_ids(); 5549 for_each_online_node(nid) { 5550 pg_data_t *pgdat = NODE_DATA(nid); 5551 free_area_init_node(nid, NULL, 5552 find_min_pfn_for_node(nid), NULL); 5553 5554 /* Any memory on that node */ 5555 if (pgdat->node_present_pages) 5556 node_set_state(nid, N_MEMORY); 5557 check_for_memory(pgdat, nid); 5558 } 5559 } 5560 5561 static int __init cmdline_parse_core(char *p, unsigned long *core) 5562 { 5563 unsigned long long coremem; 5564 if (!p) 5565 return -EINVAL; 5566 5567 coremem = memparse(p, &p); 5568 *core = coremem >> PAGE_SHIFT; 5569 5570 /* Paranoid check that UL is enough for the coremem value */ 5571 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5572 5573 return 0; 5574 } 5575 5576 /* 5577 * kernelcore=size sets the amount of memory for use for allocations that 5578 * cannot be reclaimed or migrated. 5579 */ 5580 static int __init cmdline_parse_kernelcore(char *p) 5581 { 5582 return cmdline_parse_core(p, &required_kernelcore); 5583 } 5584 5585 /* 5586 * movablecore=size sets the amount of memory for use for allocations that 5587 * can be reclaimed or migrated. 5588 */ 5589 static int __init cmdline_parse_movablecore(char *p) 5590 { 5591 return cmdline_parse_core(p, &required_movablecore); 5592 } 5593 5594 early_param("kernelcore", cmdline_parse_kernelcore); 5595 early_param("movablecore", cmdline_parse_movablecore); 5596 5597 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5598 5599 void adjust_managed_page_count(struct page *page, long count) 5600 { 5601 spin_lock(&managed_page_count_lock); 5602 page_zone(page)->managed_pages += count; 5603 totalram_pages += count; 5604 #ifdef CONFIG_HIGHMEM 5605 if (PageHighMem(page)) 5606 totalhigh_pages += count; 5607 #endif 5608 spin_unlock(&managed_page_count_lock); 5609 } 5610 EXPORT_SYMBOL(adjust_managed_page_count); 5611 5612 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5613 { 5614 void *pos; 5615 unsigned long pages = 0; 5616 5617 start = (void *)PAGE_ALIGN((unsigned long)start); 5618 end = (void *)((unsigned long)end & PAGE_MASK); 5619 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5620 if ((unsigned int)poison <= 0xFF) 5621 memset(pos, poison, PAGE_SIZE); 5622 free_reserved_page(virt_to_page(pos)); 5623 } 5624 5625 if (pages && s) 5626 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5627 s, pages << (PAGE_SHIFT - 10), start, end); 5628 5629 return pages; 5630 } 5631 EXPORT_SYMBOL(free_reserved_area); 5632 5633 #ifdef CONFIG_HIGHMEM 5634 void free_highmem_page(struct page *page) 5635 { 5636 __free_reserved_page(page); 5637 totalram_pages++; 5638 page_zone(page)->managed_pages++; 5639 totalhigh_pages++; 5640 } 5641 #endif 5642 5643 5644 void __init mem_init_print_info(const char *str) 5645 { 5646 unsigned long physpages, codesize, datasize, rosize, bss_size; 5647 unsigned long init_code_size, init_data_size; 5648 5649 physpages = get_num_physpages(); 5650 codesize = _etext - _stext; 5651 datasize = _edata - _sdata; 5652 rosize = __end_rodata - __start_rodata; 5653 bss_size = __bss_stop - __bss_start; 5654 init_data_size = __init_end - __init_begin; 5655 init_code_size = _einittext - _sinittext; 5656 5657 /* 5658 * Detect special cases and adjust section sizes accordingly: 5659 * 1) .init.* may be embedded into .data sections 5660 * 2) .init.text.* may be out of [__init_begin, __init_end], 5661 * please refer to arch/tile/kernel/vmlinux.lds.S. 5662 * 3) .rodata.* may be embedded into .text or .data sections. 5663 */ 5664 #define adj_init_size(start, end, size, pos, adj) \ 5665 do { \ 5666 if (start <= pos && pos < end && size > adj) \ 5667 size -= adj; \ 5668 } while (0) 5669 5670 adj_init_size(__init_begin, __init_end, init_data_size, 5671 _sinittext, init_code_size); 5672 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5673 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5674 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5675 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5676 5677 #undef adj_init_size 5678 5679 pr_info("Memory: %luK/%luK available " 5680 "(%luK kernel code, %luK rwdata, %luK rodata, " 5681 "%luK init, %luK bss, %luK reserved, %luK cma-reserved" 5682 #ifdef CONFIG_HIGHMEM 5683 ", %luK highmem" 5684 #endif 5685 "%s%s)\n", 5686 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5687 codesize >> 10, datasize >> 10, rosize >> 10, 5688 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5689 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), 5690 totalcma_pages << (PAGE_SHIFT-10), 5691 #ifdef CONFIG_HIGHMEM 5692 totalhigh_pages << (PAGE_SHIFT-10), 5693 #endif 5694 str ? ", " : "", str ? str : ""); 5695 } 5696 5697 /** 5698 * set_dma_reserve - set the specified number of pages reserved in the first zone 5699 * @new_dma_reserve: The number of pages to mark reserved 5700 * 5701 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5702 * In the DMA zone, a significant percentage may be consumed by kernel image 5703 * and other unfreeable allocations which can skew the watermarks badly. This 5704 * function may optionally be used to account for unfreeable pages in the 5705 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5706 * smaller per-cpu batchsize. 5707 */ 5708 void __init set_dma_reserve(unsigned long new_dma_reserve) 5709 { 5710 dma_reserve = new_dma_reserve; 5711 } 5712 5713 void __init free_area_init(unsigned long *zones_size) 5714 { 5715 free_area_init_node(0, zones_size, 5716 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5717 } 5718 5719 static int page_alloc_cpu_notify(struct notifier_block *self, 5720 unsigned long action, void *hcpu) 5721 { 5722 int cpu = (unsigned long)hcpu; 5723 5724 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5725 lru_add_drain_cpu(cpu); 5726 drain_pages(cpu); 5727 5728 /* 5729 * Spill the event counters of the dead processor 5730 * into the current processors event counters. 5731 * This artificially elevates the count of the current 5732 * processor. 5733 */ 5734 vm_events_fold_cpu(cpu); 5735 5736 /* 5737 * Zero the differential counters of the dead processor 5738 * so that the vm statistics are consistent. 5739 * 5740 * This is only okay since the processor is dead and cannot 5741 * race with what we are doing. 5742 */ 5743 cpu_vm_stats_fold(cpu); 5744 } 5745 return NOTIFY_OK; 5746 } 5747 5748 void __init page_alloc_init(void) 5749 { 5750 hotcpu_notifier(page_alloc_cpu_notify, 0); 5751 } 5752 5753 /* 5754 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5755 * or min_free_kbytes changes. 5756 */ 5757 static void calculate_totalreserve_pages(void) 5758 { 5759 struct pglist_data *pgdat; 5760 unsigned long reserve_pages = 0; 5761 enum zone_type i, j; 5762 5763 for_each_online_pgdat(pgdat) { 5764 for (i = 0; i < MAX_NR_ZONES; i++) { 5765 struct zone *zone = pgdat->node_zones + i; 5766 long max = 0; 5767 5768 /* Find valid and maximum lowmem_reserve in the zone */ 5769 for (j = i; j < MAX_NR_ZONES; j++) { 5770 if (zone->lowmem_reserve[j] > max) 5771 max = zone->lowmem_reserve[j]; 5772 } 5773 5774 /* we treat the high watermark as reserved pages. */ 5775 max += high_wmark_pages(zone); 5776 5777 if (max > zone->managed_pages) 5778 max = zone->managed_pages; 5779 reserve_pages += max; 5780 /* 5781 * Lowmem reserves are not available to 5782 * GFP_HIGHUSER page cache allocations and 5783 * kswapd tries to balance zones to their high 5784 * watermark. As a result, neither should be 5785 * regarded as dirtyable memory, to prevent a 5786 * situation where reclaim has to clean pages 5787 * in order to balance the zones. 5788 */ 5789 zone->dirty_balance_reserve = max; 5790 } 5791 } 5792 dirty_balance_reserve = reserve_pages; 5793 totalreserve_pages = reserve_pages; 5794 } 5795 5796 /* 5797 * setup_per_zone_lowmem_reserve - called whenever 5798 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5799 * has a correct pages reserved value, so an adequate number of 5800 * pages are left in the zone after a successful __alloc_pages(). 5801 */ 5802 static void setup_per_zone_lowmem_reserve(void) 5803 { 5804 struct pglist_data *pgdat; 5805 enum zone_type j, idx; 5806 5807 for_each_online_pgdat(pgdat) { 5808 for (j = 0; j < MAX_NR_ZONES; j++) { 5809 struct zone *zone = pgdat->node_zones + j; 5810 unsigned long managed_pages = zone->managed_pages; 5811 5812 zone->lowmem_reserve[j] = 0; 5813 5814 idx = j; 5815 while (idx) { 5816 struct zone *lower_zone; 5817 5818 idx--; 5819 5820 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5821 sysctl_lowmem_reserve_ratio[idx] = 1; 5822 5823 lower_zone = pgdat->node_zones + idx; 5824 lower_zone->lowmem_reserve[j] = managed_pages / 5825 sysctl_lowmem_reserve_ratio[idx]; 5826 managed_pages += lower_zone->managed_pages; 5827 } 5828 } 5829 } 5830 5831 /* update totalreserve_pages */ 5832 calculate_totalreserve_pages(); 5833 } 5834 5835 static void __setup_per_zone_wmarks(void) 5836 { 5837 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5838 unsigned long lowmem_pages = 0; 5839 struct zone *zone; 5840 unsigned long flags; 5841 5842 /* Calculate total number of !ZONE_HIGHMEM pages */ 5843 for_each_zone(zone) { 5844 if (!is_highmem(zone)) 5845 lowmem_pages += zone->managed_pages; 5846 } 5847 5848 for_each_zone(zone) { 5849 u64 tmp; 5850 5851 spin_lock_irqsave(&zone->lock, flags); 5852 tmp = (u64)pages_min * zone->managed_pages; 5853 do_div(tmp, lowmem_pages); 5854 if (is_highmem(zone)) { 5855 /* 5856 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5857 * need highmem pages, so cap pages_min to a small 5858 * value here. 5859 * 5860 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5861 * deltas control asynch page reclaim, and so should 5862 * not be capped for highmem. 5863 */ 5864 unsigned long min_pages; 5865 5866 min_pages = zone->managed_pages / 1024; 5867 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5868 zone->watermark[WMARK_MIN] = min_pages; 5869 } else { 5870 /* 5871 * If it's a lowmem zone, reserve a number of pages 5872 * proportionate to the zone's size. 5873 */ 5874 zone->watermark[WMARK_MIN] = tmp; 5875 } 5876 5877 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5878 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5879 5880 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5881 high_wmark_pages(zone) - low_wmark_pages(zone) - 5882 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 5883 5884 setup_zone_migrate_reserve(zone); 5885 spin_unlock_irqrestore(&zone->lock, flags); 5886 } 5887 5888 /* update totalreserve_pages */ 5889 calculate_totalreserve_pages(); 5890 } 5891 5892 /** 5893 * setup_per_zone_wmarks - called when min_free_kbytes changes 5894 * or when memory is hot-{added|removed} 5895 * 5896 * Ensures that the watermark[min,low,high] values for each zone are set 5897 * correctly with respect to min_free_kbytes. 5898 */ 5899 void setup_per_zone_wmarks(void) 5900 { 5901 mutex_lock(&zonelists_mutex); 5902 __setup_per_zone_wmarks(); 5903 mutex_unlock(&zonelists_mutex); 5904 } 5905 5906 /* 5907 * The inactive anon list should be small enough that the VM never has to 5908 * do too much work, but large enough that each inactive page has a chance 5909 * to be referenced again before it is swapped out. 5910 * 5911 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5912 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5913 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5914 * the anonymous pages are kept on the inactive list. 5915 * 5916 * total target max 5917 * memory ratio inactive anon 5918 * ------------------------------------- 5919 * 10MB 1 5MB 5920 * 100MB 1 50MB 5921 * 1GB 3 250MB 5922 * 10GB 10 0.9GB 5923 * 100GB 31 3GB 5924 * 1TB 101 10GB 5925 * 10TB 320 32GB 5926 */ 5927 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5928 { 5929 unsigned int gb, ratio; 5930 5931 /* Zone size in gigabytes */ 5932 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5933 if (gb) 5934 ratio = int_sqrt(10 * gb); 5935 else 5936 ratio = 1; 5937 5938 zone->inactive_ratio = ratio; 5939 } 5940 5941 static void __meminit setup_per_zone_inactive_ratio(void) 5942 { 5943 struct zone *zone; 5944 5945 for_each_zone(zone) 5946 calculate_zone_inactive_ratio(zone); 5947 } 5948 5949 /* 5950 * Initialise min_free_kbytes. 5951 * 5952 * For small machines we want it small (128k min). For large machines 5953 * we want it large (64MB max). But it is not linear, because network 5954 * bandwidth does not increase linearly with machine size. We use 5955 * 5956 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5957 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5958 * 5959 * which yields 5960 * 5961 * 16MB: 512k 5962 * 32MB: 724k 5963 * 64MB: 1024k 5964 * 128MB: 1448k 5965 * 256MB: 2048k 5966 * 512MB: 2896k 5967 * 1024MB: 4096k 5968 * 2048MB: 5792k 5969 * 4096MB: 8192k 5970 * 8192MB: 11584k 5971 * 16384MB: 16384k 5972 */ 5973 int __meminit init_per_zone_wmark_min(void) 5974 { 5975 unsigned long lowmem_kbytes; 5976 int new_min_free_kbytes; 5977 5978 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5979 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5980 5981 if (new_min_free_kbytes > user_min_free_kbytes) { 5982 min_free_kbytes = new_min_free_kbytes; 5983 if (min_free_kbytes < 128) 5984 min_free_kbytes = 128; 5985 if (min_free_kbytes > 65536) 5986 min_free_kbytes = 65536; 5987 } else { 5988 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5989 new_min_free_kbytes, user_min_free_kbytes); 5990 } 5991 setup_per_zone_wmarks(); 5992 refresh_zone_stat_thresholds(); 5993 setup_per_zone_lowmem_reserve(); 5994 setup_per_zone_inactive_ratio(); 5995 return 0; 5996 } 5997 module_init(init_per_zone_wmark_min) 5998 5999 /* 6000 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6001 * that we can call two helper functions whenever min_free_kbytes 6002 * changes. 6003 */ 6004 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6005 void __user *buffer, size_t *length, loff_t *ppos) 6006 { 6007 int rc; 6008 6009 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6010 if (rc) 6011 return rc; 6012 6013 if (write) { 6014 user_min_free_kbytes = min_free_kbytes; 6015 setup_per_zone_wmarks(); 6016 } 6017 return 0; 6018 } 6019 6020 #ifdef CONFIG_NUMA 6021 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6022 void __user *buffer, size_t *length, loff_t *ppos) 6023 { 6024 struct zone *zone; 6025 int rc; 6026 6027 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6028 if (rc) 6029 return rc; 6030 6031 for_each_zone(zone) 6032 zone->min_unmapped_pages = (zone->managed_pages * 6033 sysctl_min_unmapped_ratio) / 100; 6034 return 0; 6035 } 6036 6037 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6038 void __user *buffer, size_t *length, loff_t *ppos) 6039 { 6040 struct zone *zone; 6041 int rc; 6042 6043 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6044 if (rc) 6045 return rc; 6046 6047 for_each_zone(zone) 6048 zone->min_slab_pages = (zone->managed_pages * 6049 sysctl_min_slab_ratio) / 100; 6050 return 0; 6051 } 6052 #endif 6053 6054 /* 6055 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6056 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6057 * whenever sysctl_lowmem_reserve_ratio changes. 6058 * 6059 * The reserve ratio obviously has absolutely no relation with the 6060 * minimum watermarks. The lowmem reserve ratio can only make sense 6061 * if in function of the boot time zone sizes. 6062 */ 6063 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6064 void __user *buffer, size_t *length, loff_t *ppos) 6065 { 6066 proc_dointvec_minmax(table, write, buffer, length, ppos); 6067 setup_per_zone_lowmem_reserve(); 6068 return 0; 6069 } 6070 6071 /* 6072 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6073 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6074 * pagelist can have before it gets flushed back to buddy allocator. 6075 */ 6076 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6077 void __user *buffer, size_t *length, loff_t *ppos) 6078 { 6079 struct zone *zone; 6080 int old_percpu_pagelist_fraction; 6081 int ret; 6082 6083 mutex_lock(&pcp_batch_high_lock); 6084 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6085 6086 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6087 if (!write || ret < 0) 6088 goto out; 6089 6090 /* Sanity checking to avoid pcp imbalance */ 6091 if (percpu_pagelist_fraction && 6092 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6093 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6094 ret = -EINVAL; 6095 goto out; 6096 } 6097 6098 /* No change? */ 6099 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6100 goto out; 6101 6102 for_each_populated_zone(zone) { 6103 unsigned int cpu; 6104 6105 for_each_possible_cpu(cpu) 6106 pageset_set_high_and_batch(zone, 6107 per_cpu_ptr(zone->pageset, cpu)); 6108 } 6109 out: 6110 mutex_unlock(&pcp_batch_high_lock); 6111 return ret; 6112 } 6113 6114 int hashdist = HASHDIST_DEFAULT; 6115 6116 #ifdef CONFIG_NUMA 6117 static int __init set_hashdist(char *str) 6118 { 6119 if (!str) 6120 return 0; 6121 hashdist = simple_strtoul(str, &str, 0); 6122 return 1; 6123 } 6124 __setup("hashdist=", set_hashdist); 6125 #endif 6126 6127 /* 6128 * allocate a large system hash table from bootmem 6129 * - it is assumed that the hash table must contain an exact power-of-2 6130 * quantity of entries 6131 * - limit is the number of hash buckets, not the total allocation size 6132 */ 6133 void *__init alloc_large_system_hash(const char *tablename, 6134 unsigned long bucketsize, 6135 unsigned long numentries, 6136 int scale, 6137 int flags, 6138 unsigned int *_hash_shift, 6139 unsigned int *_hash_mask, 6140 unsigned long low_limit, 6141 unsigned long high_limit) 6142 { 6143 unsigned long long max = high_limit; 6144 unsigned long log2qty, size; 6145 void *table = NULL; 6146 6147 /* allow the kernel cmdline to have a say */ 6148 if (!numentries) { 6149 /* round applicable memory size up to nearest megabyte */ 6150 numentries = nr_kernel_pages; 6151 6152 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6153 if (PAGE_SHIFT < 20) 6154 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6155 6156 /* limit to 1 bucket per 2^scale bytes of low memory */ 6157 if (scale > PAGE_SHIFT) 6158 numentries >>= (scale - PAGE_SHIFT); 6159 else 6160 numentries <<= (PAGE_SHIFT - scale); 6161 6162 /* Make sure we've got at least a 0-order allocation.. */ 6163 if (unlikely(flags & HASH_SMALL)) { 6164 /* Makes no sense without HASH_EARLY */ 6165 WARN_ON(!(flags & HASH_EARLY)); 6166 if (!(numentries >> *_hash_shift)) { 6167 numentries = 1UL << *_hash_shift; 6168 BUG_ON(!numentries); 6169 } 6170 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6171 numentries = PAGE_SIZE / bucketsize; 6172 } 6173 numentries = roundup_pow_of_two(numentries); 6174 6175 /* limit allocation size to 1/16 total memory by default */ 6176 if (max == 0) { 6177 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6178 do_div(max, bucketsize); 6179 } 6180 max = min(max, 0x80000000ULL); 6181 6182 if (numentries < low_limit) 6183 numentries = low_limit; 6184 if (numentries > max) 6185 numentries = max; 6186 6187 log2qty = ilog2(numentries); 6188 6189 do { 6190 size = bucketsize << log2qty; 6191 if (flags & HASH_EARLY) 6192 table = memblock_virt_alloc_nopanic(size, 0); 6193 else if (hashdist) 6194 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6195 else { 6196 /* 6197 * If bucketsize is not a power-of-two, we may free 6198 * some pages at the end of hash table which 6199 * alloc_pages_exact() automatically does 6200 */ 6201 if (get_order(size) < MAX_ORDER) { 6202 table = alloc_pages_exact(size, GFP_ATOMIC); 6203 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6204 } 6205 } 6206 } while (!table && size > PAGE_SIZE && --log2qty); 6207 6208 if (!table) 6209 panic("Failed to allocate %s hash table\n", tablename); 6210 6211 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6212 tablename, 6213 (1UL << log2qty), 6214 ilog2(size) - PAGE_SHIFT, 6215 size); 6216 6217 if (_hash_shift) 6218 *_hash_shift = log2qty; 6219 if (_hash_mask) 6220 *_hash_mask = (1 << log2qty) - 1; 6221 6222 return table; 6223 } 6224 6225 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6226 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6227 unsigned long pfn) 6228 { 6229 #ifdef CONFIG_SPARSEMEM 6230 return __pfn_to_section(pfn)->pageblock_flags; 6231 #else 6232 return zone->pageblock_flags; 6233 #endif /* CONFIG_SPARSEMEM */ 6234 } 6235 6236 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6237 { 6238 #ifdef CONFIG_SPARSEMEM 6239 pfn &= (PAGES_PER_SECTION-1); 6240 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6241 #else 6242 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6243 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6244 #endif /* CONFIG_SPARSEMEM */ 6245 } 6246 6247 /** 6248 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6249 * @page: The page within the block of interest 6250 * @pfn: The target page frame number 6251 * @end_bitidx: The last bit of interest to retrieve 6252 * @mask: mask of bits that the caller is interested in 6253 * 6254 * Return: pageblock_bits flags 6255 */ 6256 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6257 unsigned long end_bitidx, 6258 unsigned long mask) 6259 { 6260 struct zone *zone; 6261 unsigned long *bitmap; 6262 unsigned long bitidx, word_bitidx; 6263 unsigned long word; 6264 6265 zone = page_zone(page); 6266 bitmap = get_pageblock_bitmap(zone, pfn); 6267 bitidx = pfn_to_bitidx(zone, pfn); 6268 word_bitidx = bitidx / BITS_PER_LONG; 6269 bitidx &= (BITS_PER_LONG-1); 6270 6271 word = bitmap[word_bitidx]; 6272 bitidx += end_bitidx; 6273 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6274 } 6275 6276 /** 6277 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6278 * @page: The page within the block of interest 6279 * @flags: The flags to set 6280 * @pfn: The target page frame number 6281 * @end_bitidx: The last bit of interest 6282 * @mask: mask of bits that the caller is interested in 6283 */ 6284 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6285 unsigned long pfn, 6286 unsigned long end_bitidx, 6287 unsigned long mask) 6288 { 6289 struct zone *zone; 6290 unsigned long *bitmap; 6291 unsigned long bitidx, word_bitidx; 6292 unsigned long old_word, word; 6293 6294 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6295 6296 zone = page_zone(page); 6297 bitmap = get_pageblock_bitmap(zone, pfn); 6298 bitidx = pfn_to_bitidx(zone, pfn); 6299 word_bitidx = bitidx / BITS_PER_LONG; 6300 bitidx &= (BITS_PER_LONG-1); 6301 6302 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6303 6304 bitidx += end_bitidx; 6305 mask <<= (BITS_PER_LONG - bitidx - 1); 6306 flags <<= (BITS_PER_LONG - bitidx - 1); 6307 6308 word = READ_ONCE(bitmap[word_bitidx]); 6309 for (;;) { 6310 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6311 if (word == old_word) 6312 break; 6313 word = old_word; 6314 } 6315 } 6316 6317 /* 6318 * This function checks whether pageblock includes unmovable pages or not. 6319 * If @count is not zero, it is okay to include less @count unmovable pages 6320 * 6321 * PageLRU check without isolation or lru_lock could race so that 6322 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6323 * expect this function should be exact. 6324 */ 6325 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6326 bool skip_hwpoisoned_pages) 6327 { 6328 unsigned long pfn, iter, found; 6329 int mt; 6330 6331 /* 6332 * For avoiding noise data, lru_add_drain_all() should be called 6333 * If ZONE_MOVABLE, the zone never contains unmovable pages 6334 */ 6335 if (zone_idx(zone) == ZONE_MOVABLE) 6336 return false; 6337 mt = get_pageblock_migratetype(page); 6338 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6339 return false; 6340 6341 pfn = page_to_pfn(page); 6342 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6343 unsigned long check = pfn + iter; 6344 6345 if (!pfn_valid_within(check)) 6346 continue; 6347 6348 page = pfn_to_page(check); 6349 6350 /* 6351 * Hugepages are not in LRU lists, but they're movable. 6352 * We need not scan over tail pages bacause we don't 6353 * handle each tail page individually in migration. 6354 */ 6355 if (PageHuge(page)) { 6356 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6357 continue; 6358 } 6359 6360 /* 6361 * We can't use page_count without pin a page 6362 * because another CPU can free compound page. 6363 * This check already skips compound tails of THP 6364 * because their page->_count is zero at all time. 6365 */ 6366 if (!atomic_read(&page->_count)) { 6367 if (PageBuddy(page)) 6368 iter += (1 << page_order(page)) - 1; 6369 continue; 6370 } 6371 6372 /* 6373 * The HWPoisoned page may be not in buddy system, and 6374 * page_count() is not 0. 6375 */ 6376 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6377 continue; 6378 6379 if (!PageLRU(page)) 6380 found++; 6381 /* 6382 * If there are RECLAIMABLE pages, we need to check 6383 * it. But now, memory offline itself doesn't call 6384 * shrink_node_slabs() and it still to be fixed. 6385 */ 6386 /* 6387 * If the page is not RAM, page_count()should be 0. 6388 * we don't need more check. This is an _used_ not-movable page. 6389 * 6390 * The problematic thing here is PG_reserved pages. PG_reserved 6391 * is set to both of a memory hole page and a _used_ kernel 6392 * page at boot. 6393 */ 6394 if (found > count) 6395 return true; 6396 } 6397 return false; 6398 } 6399 6400 bool is_pageblock_removable_nolock(struct page *page) 6401 { 6402 struct zone *zone; 6403 unsigned long pfn; 6404 6405 /* 6406 * We have to be careful here because we are iterating over memory 6407 * sections which are not zone aware so we might end up outside of 6408 * the zone but still within the section. 6409 * We have to take care about the node as well. If the node is offline 6410 * its NODE_DATA will be NULL - see page_zone. 6411 */ 6412 if (!node_online(page_to_nid(page))) 6413 return false; 6414 6415 zone = page_zone(page); 6416 pfn = page_to_pfn(page); 6417 if (!zone_spans_pfn(zone, pfn)) 6418 return false; 6419 6420 return !has_unmovable_pages(zone, page, 0, true); 6421 } 6422 6423 #ifdef CONFIG_CMA 6424 6425 static unsigned long pfn_max_align_down(unsigned long pfn) 6426 { 6427 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6428 pageblock_nr_pages) - 1); 6429 } 6430 6431 static unsigned long pfn_max_align_up(unsigned long pfn) 6432 { 6433 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6434 pageblock_nr_pages)); 6435 } 6436 6437 /* [start, end) must belong to a single zone. */ 6438 static int __alloc_contig_migrate_range(struct compact_control *cc, 6439 unsigned long start, unsigned long end) 6440 { 6441 /* This function is based on compact_zone() from compaction.c. */ 6442 unsigned long nr_reclaimed; 6443 unsigned long pfn = start; 6444 unsigned int tries = 0; 6445 int ret = 0; 6446 6447 migrate_prep(); 6448 6449 while (pfn < end || !list_empty(&cc->migratepages)) { 6450 if (fatal_signal_pending(current)) { 6451 ret = -EINTR; 6452 break; 6453 } 6454 6455 if (list_empty(&cc->migratepages)) { 6456 cc->nr_migratepages = 0; 6457 pfn = isolate_migratepages_range(cc, pfn, end); 6458 if (!pfn) { 6459 ret = -EINTR; 6460 break; 6461 } 6462 tries = 0; 6463 } else if (++tries == 5) { 6464 ret = ret < 0 ? ret : -EBUSY; 6465 break; 6466 } 6467 6468 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6469 &cc->migratepages); 6470 cc->nr_migratepages -= nr_reclaimed; 6471 6472 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6473 NULL, 0, cc->mode, MR_CMA); 6474 } 6475 if (ret < 0) { 6476 putback_movable_pages(&cc->migratepages); 6477 return ret; 6478 } 6479 return 0; 6480 } 6481 6482 /** 6483 * alloc_contig_range() -- tries to allocate given range of pages 6484 * @start: start PFN to allocate 6485 * @end: one-past-the-last PFN to allocate 6486 * @migratetype: migratetype of the underlaying pageblocks (either 6487 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6488 * in range must have the same migratetype and it must 6489 * be either of the two. 6490 * 6491 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6492 * aligned, however it's the caller's responsibility to guarantee that 6493 * we are the only thread that changes migrate type of pageblocks the 6494 * pages fall in. 6495 * 6496 * The PFN range must belong to a single zone. 6497 * 6498 * Returns zero on success or negative error code. On success all 6499 * pages which PFN is in [start, end) are allocated for the caller and 6500 * need to be freed with free_contig_range(). 6501 */ 6502 int alloc_contig_range(unsigned long start, unsigned long end, 6503 unsigned migratetype) 6504 { 6505 unsigned long outer_start, outer_end; 6506 int ret = 0, order; 6507 6508 struct compact_control cc = { 6509 .nr_migratepages = 0, 6510 .order = -1, 6511 .zone = page_zone(pfn_to_page(start)), 6512 .mode = MIGRATE_SYNC, 6513 .ignore_skip_hint = true, 6514 }; 6515 INIT_LIST_HEAD(&cc.migratepages); 6516 6517 /* 6518 * What we do here is we mark all pageblocks in range as 6519 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6520 * have different sizes, and due to the way page allocator 6521 * work, we align the range to biggest of the two pages so 6522 * that page allocator won't try to merge buddies from 6523 * different pageblocks and change MIGRATE_ISOLATE to some 6524 * other migration type. 6525 * 6526 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6527 * migrate the pages from an unaligned range (ie. pages that 6528 * we are interested in). This will put all the pages in 6529 * range back to page allocator as MIGRATE_ISOLATE. 6530 * 6531 * When this is done, we take the pages in range from page 6532 * allocator removing them from the buddy system. This way 6533 * page allocator will never consider using them. 6534 * 6535 * This lets us mark the pageblocks back as 6536 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6537 * aligned range but not in the unaligned, original range are 6538 * put back to page allocator so that buddy can use them. 6539 */ 6540 6541 ret = start_isolate_page_range(pfn_max_align_down(start), 6542 pfn_max_align_up(end), migratetype, 6543 false); 6544 if (ret) 6545 return ret; 6546 6547 ret = __alloc_contig_migrate_range(&cc, start, end); 6548 if (ret) 6549 goto done; 6550 6551 /* 6552 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6553 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6554 * more, all pages in [start, end) are free in page allocator. 6555 * What we are going to do is to allocate all pages from 6556 * [start, end) (that is remove them from page allocator). 6557 * 6558 * The only problem is that pages at the beginning and at the 6559 * end of interesting range may be not aligned with pages that 6560 * page allocator holds, ie. they can be part of higher order 6561 * pages. Because of this, we reserve the bigger range and 6562 * once this is done free the pages we are not interested in. 6563 * 6564 * We don't have to hold zone->lock here because the pages are 6565 * isolated thus they won't get removed from buddy. 6566 */ 6567 6568 lru_add_drain_all(); 6569 drain_all_pages(cc.zone); 6570 6571 order = 0; 6572 outer_start = start; 6573 while (!PageBuddy(pfn_to_page(outer_start))) { 6574 if (++order >= MAX_ORDER) { 6575 ret = -EBUSY; 6576 goto done; 6577 } 6578 outer_start &= ~0UL << order; 6579 } 6580 6581 /* Make sure the range is really isolated. */ 6582 if (test_pages_isolated(outer_start, end, false)) { 6583 pr_info("%s: [%lx, %lx) PFNs busy\n", 6584 __func__, outer_start, end); 6585 ret = -EBUSY; 6586 goto done; 6587 } 6588 6589 /* Grab isolated pages from freelists. */ 6590 outer_end = isolate_freepages_range(&cc, outer_start, end); 6591 if (!outer_end) { 6592 ret = -EBUSY; 6593 goto done; 6594 } 6595 6596 /* Free head and tail (if any) */ 6597 if (start != outer_start) 6598 free_contig_range(outer_start, start - outer_start); 6599 if (end != outer_end) 6600 free_contig_range(end, outer_end - end); 6601 6602 done: 6603 undo_isolate_page_range(pfn_max_align_down(start), 6604 pfn_max_align_up(end), migratetype); 6605 return ret; 6606 } 6607 6608 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6609 { 6610 unsigned int count = 0; 6611 6612 for (; nr_pages--; pfn++) { 6613 struct page *page = pfn_to_page(pfn); 6614 6615 count += page_count(page) != 1; 6616 __free_page(page); 6617 } 6618 WARN(count != 0, "%d pages are still in use!\n", count); 6619 } 6620 #endif 6621 6622 #ifdef CONFIG_MEMORY_HOTPLUG 6623 /* 6624 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6625 * page high values need to be recalulated. 6626 */ 6627 void __meminit zone_pcp_update(struct zone *zone) 6628 { 6629 unsigned cpu; 6630 mutex_lock(&pcp_batch_high_lock); 6631 for_each_possible_cpu(cpu) 6632 pageset_set_high_and_batch(zone, 6633 per_cpu_ptr(zone->pageset, cpu)); 6634 mutex_unlock(&pcp_batch_high_lock); 6635 } 6636 #endif 6637 6638 void zone_pcp_reset(struct zone *zone) 6639 { 6640 unsigned long flags; 6641 int cpu; 6642 struct per_cpu_pageset *pset; 6643 6644 /* avoid races with drain_pages() */ 6645 local_irq_save(flags); 6646 if (zone->pageset != &boot_pageset) { 6647 for_each_online_cpu(cpu) { 6648 pset = per_cpu_ptr(zone->pageset, cpu); 6649 drain_zonestat(zone, pset); 6650 } 6651 free_percpu(zone->pageset); 6652 zone->pageset = &boot_pageset; 6653 } 6654 local_irq_restore(flags); 6655 } 6656 6657 #ifdef CONFIG_MEMORY_HOTREMOVE 6658 /* 6659 * All pages in the range must be isolated before calling this. 6660 */ 6661 void 6662 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6663 { 6664 struct page *page; 6665 struct zone *zone; 6666 unsigned int order, i; 6667 unsigned long pfn; 6668 unsigned long flags; 6669 /* find the first valid pfn */ 6670 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6671 if (pfn_valid(pfn)) 6672 break; 6673 if (pfn == end_pfn) 6674 return; 6675 zone = page_zone(pfn_to_page(pfn)); 6676 spin_lock_irqsave(&zone->lock, flags); 6677 pfn = start_pfn; 6678 while (pfn < end_pfn) { 6679 if (!pfn_valid(pfn)) { 6680 pfn++; 6681 continue; 6682 } 6683 page = pfn_to_page(pfn); 6684 /* 6685 * The HWPoisoned page may be not in buddy system, and 6686 * page_count() is not 0. 6687 */ 6688 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6689 pfn++; 6690 SetPageReserved(page); 6691 continue; 6692 } 6693 6694 BUG_ON(page_count(page)); 6695 BUG_ON(!PageBuddy(page)); 6696 order = page_order(page); 6697 #ifdef CONFIG_DEBUG_VM 6698 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6699 pfn, 1 << order, end_pfn); 6700 #endif 6701 list_del(&page->lru); 6702 rmv_page_order(page); 6703 zone->free_area[order].nr_free--; 6704 for (i = 0; i < (1 << order); i++) 6705 SetPageReserved((page+i)); 6706 pfn += (1 << order); 6707 } 6708 spin_unlock_irqrestore(&zone->lock, flags); 6709 } 6710 #endif 6711 6712 #ifdef CONFIG_MEMORY_FAILURE 6713 bool is_free_buddy_page(struct page *page) 6714 { 6715 struct zone *zone = page_zone(page); 6716 unsigned long pfn = page_to_pfn(page); 6717 unsigned long flags; 6718 unsigned int order; 6719 6720 spin_lock_irqsave(&zone->lock, flags); 6721 for (order = 0; order < MAX_ORDER; order++) { 6722 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6723 6724 if (PageBuddy(page_head) && page_order(page_head) >= order) 6725 break; 6726 } 6727 spin_unlock_irqrestore(&zone->lock, flags); 6728 6729 return order < MAX_ORDER; 6730 } 6731 #endif 6732