xref: /openbmc/linux/mm/page_alloc.c (revision 44c2cd80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /*
111  * Don't poison memory with KASAN (only for the tag-based modes).
112  * During boot, all non-reserved memblock memory is exposed to page_alloc.
113  * Poisoning all that memory lengthens boot time, especially on systems with
114  * large amount of RAM. This flag is used to skip that poisoning.
115  * This is only done for the tag-based KASAN modes, as those are able to
116  * detect memory corruptions with the memory tags assigned by default.
117  * All memory allocated normally after boot gets poisoned as usual.
118  */
119 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
120 
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124 
125 struct pagesets {
126 	local_lock_t lock;
127 #if defined(CONFIG_DEBUG_INFO_BTF) &&				\
128 	!defined(CONFIG_DEBUG_LOCK_ALLOC) &&			\
129 	!defined(CONFIG_PAHOLE_HAS_ZEROSIZE_PERCPU_SUPPORT)
130 	/*
131 	 * pahole 1.21 and earlier gets confused by zero-sized per-CPU
132 	 * variables and produces invalid BTF. Ensure that
133 	 * sizeof(struct pagesets) != 0 for older versions of pahole.
134 	 */
135 	char __pahole_hack;
136 	#warning "pahole too old to support zero-sized struct pagesets"
137 #endif
138 };
139 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
140 	.lock = INIT_LOCAL_LOCK(lock),
141 };
142 
143 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
144 DEFINE_PER_CPU(int, numa_node);
145 EXPORT_PER_CPU_SYMBOL(numa_node);
146 #endif
147 
148 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
149 
150 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
151 /*
152  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
153  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
154  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
155  * defined in <linux/topology.h>.
156  */
157 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
158 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
159 #endif
160 
161 /* work_structs for global per-cpu drains */
162 struct pcpu_drain {
163 	struct zone *zone;
164 	struct work_struct work;
165 };
166 static DEFINE_MUTEX(pcpu_drain_mutex);
167 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
168 
169 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
170 volatile unsigned long latent_entropy __latent_entropy;
171 EXPORT_SYMBOL(latent_entropy);
172 #endif
173 
174 /*
175  * Array of node states.
176  */
177 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
178 	[N_POSSIBLE] = NODE_MASK_ALL,
179 	[N_ONLINE] = { { [0] = 1UL } },
180 #ifndef CONFIG_NUMA
181 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
182 #ifdef CONFIG_HIGHMEM
183 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
184 #endif
185 	[N_MEMORY] = { { [0] = 1UL } },
186 	[N_CPU] = { { [0] = 1UL } },
187 #endif	/* NUMA */
188 };
189 EXPORT_SYMBOL(node_states);
190 
191 atomic_long_t _totalram_pages __read_mostly;
192 EXPORT_SYMBOL(_totalram_pages);
193 unsigned long totalreserve_pages __read_mostly;
194 unsigned long totalcma_pages __read_mostly;
195 
196 int percpu_pagelist_high_fraction;
197 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
198 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
199 EXPORT_SYMBOL(init_on_alloc);
200 
201 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
202 EXPORT_SYMBOL(init_on_free);
203 
204 static bool _init_on_alloc_enabled_early __read_mostly
205 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
206 static int __init early_init_on_alloc(char *buf)
207 {
208 
209 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
210 }
211 early_param("init_on_alloc", early_init_on_alloc);
212 
213 static bool _init_on_free_enabled_early __read_mostly
214 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
215 static int __init early_init_on_free(char *buf)
216 {
217 	return kstrtobool(buf, &_init_on_free_enabled_early);
218 }
219 early_param("init_on_free", early_init_on_free);
220 
221 /*
222  * A cached value of the page's pageblock's migratetype, used when the page is
223  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
224  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
225  * Also the migratetype set in the page does not necessarily match the pcplist
226  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
227  * other index - this ensures that it will be put on the correct CMA freelist.
228  */
229 static inline int get_pcppage_migratetype(struct page *page)
230 {
231 	return page->index;
232 }
233 
234 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
235 {
236 	page->index = migratetype;
237 }
238 
239 #ifdef CONFIG_PM_SLEEP
240 /*
241  * The following functions are used by the suspend/hibernate code to temporarily
242  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
243  * while devices are suspended.  To avoid races with the suspend/hibernate code,
244  * they should always be called with system_transition_mutex held
245  * (gfp_allowed_mask also should only be modified with system_transition_mutex
246  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
247  * with that modification).
248  */
249 
250 static gfp_t saved_gfp_mask;
251 
252 void pm_restore_gfp_mask(void)
253 {
254 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
255 	if (saved_gfp_mask) {
256 		gfp_allowed_mask = saved_gfp_mask;
257 		saved_gfp_mask = 0;
258 	}
259 }
260 
261 void pm_restrict_gfp_mask(void)
262 {
263 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
264 	WARN_ON(saved_gfp_mask);
265 	saved_gfp_mask = gfp_allowed_mask;
266 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
267 }
268 
269 bool pm_suspended_storage(void)
270 {
271 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
272 		return false;
273 	return true;
274 }
275 #endif /* CONFIG_PM_SLEEP */
276 
277 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
278 unsigned int pageblock_order __read_mostly;
279 #endif
280 
281 static void __free_pages_ok(struct page *page, unsigned int order,
282 			    fpi_t fpi_flags);
283 
284 /*
285  * results with 256, 32 in the lowmem_reserve sysctl:
286  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
287  *	1G machine -> (16M dma, 784M normal, 224M high)
288  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
289  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
290  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
291  *
292  * TBD: should special case ZONE_DMA32 machines here - in those we normally
293  * don't need any ZONE_NORMAL reservation
294  */
295 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
296 #ifdef CONFIG_ZONE_DMA
297 	[ZONE_DMA] = 256,
298 #endif
299 #ifdef CONFIG_ZONE_DMA32
300 	[ZONE_DMA32] = 256,
301 #endif
302 	[ZONE_NORMAL] = 32,
303 #ifdef CONFIG_HIGHMEM
304 	[ZONE_HIGHMEM] = 0,
305 #endif
306 	[ZONE_MOVABLE] = 0,
307 };
308 
309 static char * const zone_names[MAX_NR_ZONES] = {
310 #ifdef CONFIG_ZONE_DMA
311 	 "DMA",
312 #endif
313 #ifdef CONFIG_ZONE_DMA32
314 	 "DMA32",
315 #endif
316 	 "Normal",
317 #ifdef CONFIG_HIGHMEM
318 	 "HighMem",
319 #endif
320 	 "Movable",
321 #ifdef CONFIG_ZONE_DEVICE
322 	 "Device",
323 #endif
324 };
325 
326 const char * const migratetype_names[MIGRATE_TYPES] = {
327 	"Unmovable",
328 	"Movable",
329 	"Reclaimable",
330 	"HighAtomic",
331 #ifdef CONFIG_CMA
332 	"CMA",
333 #endif
334 #ifdef CONFIG_MEMORY_ISOLATION
335 	"Isolate",
336 #endif
337 };
338 
339 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
340 	[NULL_COMPOUND_DTOR] = NULL,
341 	[COMPOUND_PAGE_DTOR] = free_compound_page,
342 #ifdef CONFIG_HUGETLB_PAGE
343 	[HUGETLB_PAGE_DTOR] = free_huge_page,
344 #endif
345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
347 #endif
348 };
349 
350 int min_free_kbytes = 1024;
351 int user_min_free_kbytes = -1;
352 int watermark_boost_factor __read_mostly = 15000;
353 int watermark_scale_factor = 10;
354 
355 static unsigned long nr_kernel_pages __initdata;
356 static unsigned long nr_all_pages __initdata;
357 static unsigned long dma_reserve __initdata;
358 
359 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
360 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
361 static unsigned long required_kernelcore __initdata;
362 static unsigned long required_kernelcore_percent __initdata;
363 static unsigned long required_movablecore __initdata;
364 static unsigned long required_movablecore_percent __initdata;
365 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
366 static bool mirrored_kernelcore __meminitdata;
367 
368 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
369 int movable_zone;
370 EXPORT_SYMBOL(movable_zone);
371 
372 #if MAX_NUMNODES > 1
373 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
374 unsigned int nr_online_nodes __read_mostly = 1;
375 EXPORT_SYMBOL(nr_node_ids);
376 EXPORT_SYMBOL(nr_online_nodes);
377 #endif
378 
379 int page_group_by_mobility_disabled __read_mostly;
380 
381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
382 /*
383  * During boot we initialize deferred pages on-demand, as needed, but once
384  * page_alloc_init_late() has finished, the deferred pages are all initialized,
385  * and we can permanently disable that path.
386  */
387 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
388 
389 /*
390  * Calling kasan_poison_pages() only after deferred memory initialization
391  * has completed. Poisoning pages during deferred memory init will greatly
392  * lengthen the process and cause problem in large memory systems as the
393  * deferred pages initialization is done with interrupt disabled.
394  *
395  * Assuming that there will be no reference to those newly initialized
396  * pages before they are ever allocated, this should have no effect on
397  * KASAN memory tracking as the poison will be properly inserted at page
398  * allocation time. The only corner case is when pages are allocated by
399  * on-demand allocation and then freed again before the deferred pages
400  * initialization is done, but this is not likely to happen.
401  */
402 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
403 {
404 	return static_branch_unlikely(&deferred_pages) ||
405 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
406 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
407 	       PageSkipKASanPoison(page);
408 }
409 
410 /* Returns true if the struct page for the pfn is uninitialised */
411 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
412 {
413 	int nid = early_pfn_to_nid(pfn);
414 
415 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
416 		return true;
417 
418 	return false;
419 }
420 
421 /*
422  * Returns true when the remaining initialisation should be deferred until
423  * later in the boot cycle when it can be parallelised.
424  */
425 static bool __meminit
426 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
427 {
428 	static unsigned long prev_end_pfn, nr_initialised;
429 
430 	/*
431 	 * prev_end_pfn static that contains the end of previous zone
432 	 * No need to protect because called very early in boot before smp_init.
433 	 */
434 	if (prev_end_pfn != end_pfn) {
435 		prev_end_pfn = end_pfn;
436 		nr_initialised = 0;
437 	}
438 
439 	/* Always populate low zones for address-constrained allocations */
440 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
441 		return false;
442 
443 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
444 		return true;
445 	/*
446 	 * We start only with one section of pages, more pages are added as
447 	 * needed until the rest of deferred pages are initialized.
448 	 */
449 	nr_initialised++;
450 	if ((nr_initialised > PAGES_PER_SECTION) &&
451 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
452 		NODE_DATA(nid)->first_deferred_pfn = pfn;
453 		return true;
454 	}
455 	return false;
456 }
457 #else
458 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
459 {
460 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
461 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
462 	       PageSkipKASanPoison(page);
463 }
464 
465 static inline bool early_page_uninitialised(unsigned long pfn)
466 {
467 	return false;
468 }
469 
470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471 {
472 	return false;
473 }
474 #endif
475 
476 /* Return a pointer to the bitmap storing bits affecting a block of pages */
477 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
478 							unsigned long pfn)
479 {
480 #ifdef CONFIG_SPARSEMEM
481 	return section_to_usemap(__pfn_to_section(pfn));
482 #else
483 	return page_zone(page)->pageblock_flags;
484 #endif /* CONFIG_SPARSEMEM */
485 }
486 
487 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 	pfn &= (PAGES_PER_SECTION-1);
491 #else
492 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
493 #endif /* CONFIG_SPARSEMEM */
494 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495 }
496 
497 static __always_inline
498 unsigned long __get_pfnblock_flags_mask(const struct page *page,
499 					unsigned long pfn,
500 					unsigned long mask)
501 {
502 	unsigned long *bitmap;
503 	unsigned long bitidx, word_bitidx;
504 	unsigned long word;
505 
506 	bitmap = get_pageblock_bitmap(page, pfn);
507 	bitidx = pfn_to_bitidx(page, pfn);
508 	word_bitidx = bitidx / BITS_PER_LONG;
509 	bitidx &= (BITS_PER_LONG-1);
510 
511 	word = bitmap[word_bitidx];
512 	return (word >> bitidx) & mask;
513 }
514 
515 /**
516  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517  * @page: The page within the block of interest
518  * @pfn: The target page frame number
519  * @mask: mask of bits that the caller is interested in
520  *
521  * Return: pageblock_bits flags
522  */
523 unsigned long get_pfnblock_flags_mask(const struct page *page,
524 					unsigned long pfn, unsigned long mask)
525 {
526 	return __get_pfnblock_flags_mask(page, pfn, mask);
527 }
528 
529 static __always_inline int get_pfnblock_migratetype(const struct page *page,
530 					unsigned long pfn)
531 {
532 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
533 }
534 
535 /**
536  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
537  * @page: The page within the block of interest
538  * @flags: The flags to set
539  * @pfn: The target page frame number
540  * @mask: mask of bits that the caller is interested in
541  */
542 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
543 					unsigned long pfn,
544 					unsigned long mask)
545 {
546 	unsigned long *bitmap;
547 	unsigned long bitidx, word_bitidx;
548 	unsigned long old_word, word;
549 
550 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
551 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
552 
553 	bitmap = get_pageblock_bitmap(page, pfn);
554 	bitidx = pfn_to_bitidx(page, pfn);
555 	word_bitidx = bitidx / BITS_PER_LONG;
556 	bitidx &= (BITS_PER_LONG-1);
557 
558 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
559 
560 	mask <<= bitidx;
561 	flags <<= bitidx;
562 
563 	word = READ_ONCE(bitmap[word_bitidx]);
564 	for (;;) {
565 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
566 		if (word == old_word)
567 			break;
568 		word = old_word;
569 	}
570 }
571 
572 void set_pageblock_migratetype(struct page *page, int migratetype)
573 {
574 	if (unlikely(page_group_by_mobility_disabled &&
575 		     migratetype < MIGRATE_PCPTYPES))
576 		migratetype = MIGRATE_UNMOVABLE;
577 
578 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
579 				page_to_pfn(page), MIGRATETYPE_MASK);
580 }
581 
582 #ifdef CONFIG_DEBUG_VM
583 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
584 {
585 	int ret = 0;
586 	unsigned seq;
587 	unsigned long pfn = page_to_pfn(page);
588 	unsigned long sp, start_pfn;
589 
590 	do {
591 		seq = zone_span_seqbegin(zone);
592 		start_pfn = zone->zone_start_pfn;
593 		sp = zone->spanned_pages;
594 		if (!zone_spans_pfn(zone, pfn))
595 			ret = 1;
596 	} while (zone_span_seqretry(zone, seq));
597 
598 	if (ret)
599 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
600 			pfn, zone_to_nid(zone), zone->name,
601 			start_pfn, start_pfn + sp);
602 
603 	return ret;
604 }
605 
606 static int page_is_consistent(struct zone *zone, struct page *page)
607 {
608 	if (!pfn_valid_within(page_to_pfn(page)))
609 		return 0;
610 	if (zone != page_zone(page))
611 		return 0;
612 
613 	return 1;
614 }
615 /*
616  * Temporary debugging check for pages not lying within a given zone.
617  */
618 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
619 {
620 	if (page_outside_zone_boundaries(zone, page))
621 		return 1;
622 	if (!page_is_consistent(zone, page))
623 		return 1;
624 
625 	return 0;
626 }
627 #else
628 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
629 {
630 	return 0;
631 }
632 #endif
633 
634 static void bad_page(struct page *page, const char *reason)
635 {
636 	static unsigned long resume;
637 	static unsigned long nr_shown;
638 	static unsigned long nr_unshown;
639 
640 	/*
641 	 * Allow a burst of 60 reports, then keep quiet for that minute;
642 	 * or allow a steady drip of one report per second.
643 	 */
644 	if (nr_shown == 60) {
645 		if (time_before(jiffies, resume)) {
646 			nr_unshown++;
647 			goto out;
648 		}
649 		if (nr_unshown) {
650 			pr_alert(
651 			      "BUG: Bad page state: %lu messages suppressed\n",
652 				nr_unshown);
653 			nr_unshown = 0;
654 		}
655 		nr_shown = 0;
656 	}
657 	if (nr_shown++ == 0)
658 		resume = jiffies + 60 * HZ;
659 
660 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
661 		current->comm, page_to_pfn(page));
662 	dump_page(page, reason);
663 
664 	print_modules();
665 	dump_stack();
666 out:
667 	/* Leave bad fields for debug, except PageBuddy could make trouble */
668 	page_mapcount_reset(page); /* remove PageBuddy */
669 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 }
671 
672 static inline unsigned int order_to_pindex(int migratetype, int order)
673 {
674 	int base = order;
675 
676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
677 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
678 		VM_BUG_ON(order != pageblock_order);
679 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
680 	}
681 #else
682 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
683 #endif
684 
685 	return (MIGRATE_PCPTYPES * base) + migratetype;
686 }
687 
688 static inline int pindex_to_order(unsigned int pindex)
689 {
690 	int order = pindex / MIGRATE_PCPTYPES;
691 
692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
693 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
694 		order = pageblock_order;
695 		VM_BUG_ON(order != pageblock_order);
696 	}
697 #else
698 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
699 #endif
700 
701 	return order;
702 }
703 
704 static inline bool pcp_allowed_order(unsigned int order)
705 {
706 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
707 		return true;
708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
709 	if (order == pageblock_order)
710 		return true;
711 #endif
712 	return false;
713 }
714 
715 static inline void free_the_page(struct page *page, unsigned int order)
716 {
717 	if (pcp_allowed_order(order))		/* Via pcp? */
718 		free_unref_page(page, order);
719 	else
720 		__free_pages_ok(page, order, FPI_NONE);
721 }
722 
723 /*
724  * Higher-order pages are called "compound pages".  They are structured thusly:
725  *
726  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
727  *
728  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
729  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
730  *
731  * The first tail page's ->compound_dtor holds the offset in array of compound
732  * page destructors. See compound_page_dtors.
733  *
734  * The first tail page's ->compound_order holds the order of allocation.
735  * This usage means that zero-order pages may not be compound.
736  */
737 
738 void free_compound_page(struct page *page)
739 {
740 	mem_cgroup_uncharge(page);
741 	free_the_page(page, compound_order(page));
742 }
743 
744 void prep_compound_page(struct page *page, unsigned int order)
745 {
746 	int i;
747 	int nr_pages = 1 << order;
748 
749 	__SetPageHead(page);
750 	for (i = 1; i < nr_pages; i++) {
751 		struct page *p = page + i;
752 		p->mapping = TAIL_MAPPING;
753 		set_compound_head(p, page);
754 	}
755 
756 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
757 	set_compound_order(page, order);
758 	atomic_set(compound_mapcount_ptr(page), -1);
759 	if (hpage_pincount_available(page))
760 		atomic_set(compound_pincount_ptr(page), 0);
761 }
762 
763 #ifdef CONFIG_DEBUG_PAGEALLOC
764 unsigned int _debug_guardpage_minorder;
765 
766 bool _debug_pagealloc_enabled_early __read_mostly
767 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
768 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
769 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
770 EXPORT_SYMBOL(_debug_pagealloc_enabled);
771 
772 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
773 
774 static int __init early_debug_pagealloc(char *buf)
775 {
776 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
777 }
778 early_param("debug_pagealloc", early_debug_pagealloc);
779 
780 static int __init debug_guardpage_minorder_setup(char *buf)
781 {
782 	unsigned long res;
783 
784 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
785 		pr_err("Bad debug_guardpage_minorder value\n");
786 		return 0;
787 	}
788 	_debug_guardpage_minorder = res;
789 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
790 	return 0;
791 }
792 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
793 
794 static inline bool set_page_guard(struct zone *zone, struct page *page,
795 				unsigned int order, int migratetype)
796 {
797 	if (!debug_guardpage_enabled())
798 		return false;
799 
800 	if (order >= debug_guardpage_minorder())
801 		return false;
802 
803 	__SetPageGuard(page);
804 	INIT_LIST_HEAD(&page->lru);
805 	set_page_private(page, order);
806 	/* Guard pages are not available for any usage */
807 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
808 
809 	return true;
810 }
811 
812 static inline void clear_page_guard(struct zone *zone, struct page *page,
813 				unsigned int order, int migratetype)
814 {
815 	if (!debug_guardpage_enabled())
816 		return;
817 
818 	__ClearPageGuard(page);
819 
820 	set_page_private(page, 0);
821 	if (!is_migrate_isolate(migratetype))
822 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
823 }
824 #else
825 static inline bool set_page_guard(struct zone *zone, struct page *page,
826 			unsigned int order, int migratetype) { return false; }
827 static inline void clear_page_guard(struct zone *zone, struct page *page,
828 				unsigned int order, int migratetype) {}
829 #endif
830 
831 /*
832  * Enable static keys related to various memory debugging and hardening options.
833  * Some override others, and depend on early params that are evaluated in the
834  * order of appearance. So we need to first gather the full picture of what was
835  * enabled, and then make decisions.
836  */
837 void init_mem_debugging_and_hardening(void)
838 {
839 	bool page_poisoning_requested = false;
840 
841 #ifdef CONFIG_PAGE_POISONING
842 	/*
843 	 * Page poisoning is debug page alloc for some arches. If
844 	 * either of those options are enabled, enable poisoning.
845 	 */
846 	if (page_poisoning_enabled() ||
847 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
848 	      debug_pagealloc_enabled())) {
849 		static_branch_enable(&_page_poisoning_enabled);
850 		page_poisoning_requested = true;
851 	}
852 #endif
853 
854 	if (_init_on_alloc_enabled_early) {
855 		if (page_poisoning_requested)
856 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
857 				"will take precedence over init_on_alloc\n");
858 		else
859 			static_branch_enable(&init_on_alloc);
860 	}
861 	if (_init_on_free_enabled_early) {
862 		if (page_poisoning_requested)
863 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
864 				"will take precedence over init_on_free\n");
865 		else
866 			static_branch_enable(&init_on_free);
867 	}
868 
869 #ifdef CONFIG_DEBUG_PAGEALLOC
870 	if (!debug_pagealloc_enabled())
871 		return;
872 
873 	static_branch_enable(&_debug_pagealloc_enabled);
874 
875 	if (!debug_guardpage_minorder())
876 		return;
877 
878 	static_branch_enable(&_debug_guardpage_enabled);
879 #endif
880 }
881 
882 static inline void set_buddy_order(struct page *page, unsigned int order)
883 {
884 	set_page_private(page, order);
885 	__SetPageBuddy(page);
886 }
887 
888 /*
889  * This function checks whether a page is free && is the buddy
890  * we can coalesce a page and its buddy if
891  * (a) the buddy is not in a hole (check before calling!) &&
892  * (b) the buddy is in the buddy system &&
893  * (c) a page and its buddy have the same order &&
894  * (d) a page and its buddy are in the same zone.
895  *
896  * For recording whether a page is in the buddy system, we set PageBuddy.
897  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
898  *
899  * For recording page's order, we use page_private(page).
900  */
901 static inline bool page_is_buddy(struct page *page, struct page *buddy,
902 							unsigned int order)
903 {
904 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
905 		return false;
906 
907 	if (buddy_order(buddy) != order)
908 		return false;
909 
910 	/*
911 	 * zone check is done late to avoid uselessly calculating
912 	 * zone/node ids for pages that could never merge.
913 	 */
914 	if (page_zone_id(page) != page_zone_id(buddy))
915 		return false;
916 
917 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
918 
919 	return true;
920 }
921 
922 #ifdef CONFIG_COMPACTION
923 static inline struct capture_control *task_capc(struct zone *zone)
924 {
925 	struct capture_control *capc = current->capture_control;
926 
927 	return unlikely(capc) &&
928 		!(current->flags & PF_KTHREAD) &&
929 		!capc->page &&
930 		capc->cc->zone == zone ? capc : NULL;
931 }
932 
933 static inline bool
934 compaction_capture(struct capture_control *capc, struct page *page,
935 		   int order, int migratetype)
936 {
937 	if (!capc || order != capc->cc->order)
938 		return false;
939 
940 	/* Do not accidentally pollute CMA or isolated regions*/
941 	if (is_migrate_cma(migratetype) ||
942 	    is_migrate_isolate(migratetype))
943 		return false;
944 
945 	/*
946 	 * Do not let lower order allocations pollute a movable pageblock.
947 	 * This might let an unmovable request use a reclaimable pageblock
948 	 * and vice-versa but no more than normal fallback logic which can
949 	 * have trouble finding a high-order free page.
950 	 */
951 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
952 		return false;
953 
954 	capc->page = page;
955 	return true;
956 }
957 
958 #else
959 static inline struct capture_control *task_capc(struct zone *zone)
960 {
961 	return NULL;
962 }
963 
964 static inline bool
965 compaction_capture(struct capture_control *capc, struct page *page,
966 		   int order, int migratetype)
967 {
968 	return false;
969 }
970 #endif /* CONFIG_COMPACTION */
971 
972 /* Used for pages not on another list */
973 static inline void add_to_free_list(struct page *page, struct zone *zone,
974 				    unsigned int order, int migratetype)
975 {
976 	struct free_area *area = &zone->free_area[order];
977 
978 	list_add(&page->lru, &area->free_list[migratetype]);
979 	area->nr_free++;
980 }
981 
982 /* Used for pages not on another list */
983 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
984 					 unsigned int order, int migratetype)
985 {
986 	struct free_area *area = &zone->free_area[order];
987 
988 	list_add_tail(&page->lru, &area->free_list[migratetype]);
989 	area->nr_free++;
990 }
991 
992 /*
993  * Used for pages which are on another list. Move the pages to the tail
994  * of the list - so the moved pages won't immediately be considered for
995  * allocation again (e.g., optimization for memory onlining).
996  */
997 static inline void move_to_free_list(struct page *page, struct zone *zone,
998 				     unsigned int order, int migratetype)
999 {
1000 	struct free_area *area = &zone->free_area[order];
1001 
1002 	list_move_tail(&page->lru, &area->free_list[migratetype]);
1003 }
1004 
1005 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1006 					   unsigned int order)
1007 {
1008 	/* clear reported state and update reported page count */
1009 	if (page_reported(page))
1010 		__ClearPageReported(page);
1011 
1012 	list_del(&page->lru);
1013 	__ClearPageBuddy(page);
1014 	set_page_private(page, 0);
1015 	zone->free_area[order].nr_free--;
1016 }
1017 
1018 /*
1019  * If this is not the largest possible page, check if the buddy
1020  * of the next-highest order is free. If it is, it's possible
1021  * that pages are being freed that will coalesce soon. In case,
1022  * that is happening, add the free page to the tail of the list
1023  * so it's less likely to be used soon and more likely to be merged
1024  * as a higher order page
1025  */
1026 static inline bool
1027 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1028 		   struct page *page, unsigned int order)
1029 {
1030 	struct page *higher_page, *higher_buddy;
1031 	unsigned long combined_pfn;
1032 
1033 	if (order >= MAX_ORDER - 2)
1034 		return false;
1035 
1036 	if (!pfn_valid_within(buddy_pfn))
1037 		return false;
1038 
1039 	combined_pfn = buddy_pfn & pfn;
1040 	higher_page = page + (combined_pfn - pfn);
1041 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1042 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1043 
1044 	return pfn_valid_within(buddy_pfn) &&
1045 	       page_is_buddy(higher_page, higher_buddy, order + 1);
1046 }
1047 
1048 /*
1049  * Freeing function for a buddy system allocator.
1050  *
1051  * The concept of a buddy system is to maintain direct-mapped table
1052  * (containing bit values) for memory blocks of various "orders".
1053  * The bottom level table contains the map for the smallest allocatable
1054  * units of memory (here, pages), and each level above it describes
1055  * pairs of units from the levels below, hence, "buddies".
1056  * At a high level, all that happens here is marking the table entry
1057  * at the bottom level available, and propagating the changes upward
1058  * as necessary, plus some accounting needed to play nicely with other
1059  * parts of the VM system.
1060  * At each level, we keep a list of pages, which are heads of continuous
1061  * free pages of length of (1 << order) and marked with PageBuddy.
1062  * Page's order is recorded in page_private(page) field.
1063  * So when we are allocating or freeing one, we can derive the state of the
1064  * other.  That is, if we allocate a small block, and both were
1065  * free, the remainder of the region must be split into blocks.
1066  * If a block is freed, and its buddy is also free, then this
1067  * triggers coalescing into a block of larger size.
1068  *
1069  * -- nyc
1070  */
1071 
1072 static inline void __free_one_page(struct page *page,
1073 		unsigned long pfn,
1074 		struct zone *zone, unsigned int order,
1075 		int migratetype, fpi_t fpi_flags)
1076 {
1077 	struct capture_control *capc = task_capc(zone);
1078 	unsigned long buddy_pfn;
1079 	unsigned long combined_pfn;
1080 	unsigned int max_order;
1081 	struct page *buddy;
1082 	bool to_tail;
1083 
1084 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1085 
1086 	VM_BUG_ON(!zone_is_initialized(zone));
1087 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1088 
1089 	VM_BUG_ON(migratetype == -1);
1090 	if (likely(!is_migrate_isolate(migratetype)))
1091 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1092 
1093 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1094 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1095 
1096 continue_merging:
1097 	while (order < max_order) {
1098 		if (compaction_capture(capc, page, order, migratetype)) {
1099 			__mod_zone_freepage_state(zone, -(1 << order),
1100 								migratetype);
1101 			return;
1102 		}
1103 		buddy_pfn = __find_buddy_pfn(pfn, order);
1104 		buddy = page + (buddy_pfn - pfn);
1105 
1106 		if (!pfn_valid_within(buddy_pfn))
1107 			goto done_merging;
1108 		if (!page_is_buddy(page, buddy, order))
1109 			goto done_merging;
1110 		/*
1111 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1112 		 * merge with it and move up one order.
1113 		 */
1114 		if (page_is_guard(buddy))
1115 			clear_page_guard(zone, buddy, order, migratetype);
1116 		else
1117 			del_page_from_free_list(buddy, zone, order);
1118 		combined_pfn = buddy_pfn & pfn;
1119 		page = page + (combined_pfn - pfn);
1120 		pfn = combined_pfn;
1121 		order++;
1122 	}
1123 	if (order < MAX_ORDER - 1) {
1124 		/* If we are here, it means order is >= pageblock_order.
1125 		 * We want to prevent merge between freepages on isolate
1126 		 * pageblock and normal pageblock. Without this, pageblock
1127 		 * isolation could cause incorrect freepage or CMA accounting.
1128 		 *
1129 		 * We don't want to hit this code for the more frequent
1130 		 * low-order merging.
1131 		 */
1132 		if (unlikely(has_isolate_pageblock(zone))) {
1133 			int buddy_mt;
1134 
1135 			buddy_pfn = __find_buddy_pfn(pfn, order);
1136 			buddy = page + (buddy_pfn - pfn);
1137 			buddy_mt = get_pageblock_migratetype(buddy);
1138 
1139 			if (migratetype != buddy_mt
1140 					&& (is_migrate_isolate(migratetype) ||
1141 						is_migrate_isolate(buddy_mt)))
1142 				goto done_merging;
1143 		}
1144 		max_order = order + 1;
1145 		goto continue_merging;
1146 	}
1147 
1148 done_merging:
1149 	set_buddy_order(page, order);
1150 
1151 	if (fpi_flags & FPI_TO_TAIL)
1152 		to_tail = true;
1153 	else if (is_shuffle_order(order))
1154 		to_tail = shuffle_pick_tail();
1155 	else
1156 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1157 
1158 	if (to_tail)
1159 		add_to_free_list_tail(page, zone, order, migratetype);
1160 	else
1161 		add_to_free_list(page, zone, order, migratetype);
1162 
1163 	/* Notify page reporting subsystem of freed page */
1164 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1165 		page_reporting_notify_free(order);
1166 }
1167 
1168 /*
1169  * A bad page could be due to a number of fields. Instead of multiple branches,
1170  * try and check multiple fields with one check. The caller must do a detailed
1171  * check if necessary.
1172  */
1173 static inline bool page_expected_state(struct page *page,
1174 					unsigned long check_flags)
1175 {
1176 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1177 		return false;
1178 
1179 	if (unlikely((unsigned long)page->mapping |
1180 			page_ref_count(page) |
1181 #ifdef CONFIG_MEMCG
1182 			page->memcg_data |
1183 #endif
1184 			(page->flags & check_flags)))
1185 		return false;
1186 
1187 	return true;
1188 }
1189 
1190 static const char *page_bad_reason(struct page *page, unsigned long flags)
1191 {
1192 	const char *bad_reason = NULL;
1193 
1194 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1195 		bad_reason = "nonzero mapcount";
1196 	if (unlikely(page->mapping != NULL))
1197 		bad_reason = "non-NULL mapping";
1198 	if (unlikely(page_ref_count(page) != 0))
1199 		bad_reason = "nonzero _refcount";
1200 	if (unlikely(page->flags & flags)) {
1201 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1202 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1203 		else
1204 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1205 	}
1206 #ifdef CONFIG_MEMCG
1207 	if (unlikely(page->memcg_data))
1208 		bad_reason = "page still charged to cgroup";
1209 #endif
1210 	return bad_reason;
1211 }
1212 
1213 static void check_free_page_bad(struct page *page)
1214 {
1215 	bad_page(page,
1216 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1217 }
1218 
1219 static inline int check_free_page(struct page *page)
1220 {
1221 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1222 		return 0;
1223 
1224 	/* Something has gone sideways, find it */
1225 	check_free_page_bad(page);
1226 	return 1;
1227 }
1228 
1229 static int free_tail_pages_check(struct page *head_page, struct page *page)
1230 {
1231 	int ret = 1;
1232 
1233 	/*
1234 	 * We rely page->lru.next never has bit 0 set, unless the page
1235 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1236 	 */
1237 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1238 
1239 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1240 		ret = 0;
1241 		goto out;
1242 	}
1243 	switch (page - head_page) {
1244 	case 1:
1245 		/* the first tail page: ->mapping may be compound_mapcount() */
1246 		if (unlikely(compound_mapcount(page))) {
1247 			bad_page(page, "nonzero compound_mapcount");
1248 			goto out;
1249 		}
1250 		break;
1251 	case 2:
1252 		/*
1253 		 * the second tail page: ->mapping is
1254 		 * deferred_list.next -- ignore value.
1255 		 */
1256 		break;
1257 	default:
1258 		if (page->mapping != TAIL_MAPPING) {
1259 			bad_page(page, "corrupted mapping in tail page");
1260 			goto out;
1261 		}
1262 		break;
1263 	}
1264 	if (unlikely(!PageTail(page))) {
1265 		bad_page(page, "PageTail not set");
1266 		goto out;
1267 	}
1268 	if (unlikely(compound_head(page) != head_page)) {
1269 		bad_page(page, "compound_head not consistent");
1270 		goto out;
1271 	}
1272 	ret = 0;
1273 out:
1274 	page->mapping = NULL;
1275 	clear_compound_head(page);
1276 	return ret;
1277 }
1278 
1279 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1280 {
1281 	int i;
1282 
1283 	if (zero_tags) {
1284 		for (i = 0; i < numpages; i++)
1285 			tag_clear_highpage(page + i);
1286 		return;
1287 	}
1288 
1289 	/* s390's use of memset() could override KASAN redzones. */
1290 	kasan_disable_current();
1291 	for (i = 0; i < numpages; i++) {
1292 		u8 tag = page_kasan_tag(page + i);
1293 		page_kasan_tag_reset(page + i);
1294 		clear_highpage(page + i);
1295 		page_kasan_tag_set(page + i, tag);
1296 	}
1297 	kasan_enable_current();
1298 }
1299 
1300 static __always_inline bool free_pages_prepare(struct page *page,
1301 			unsigned int order, bool check_free, fpi_t fpi_flags)
1302 {
1303 	int bad = 0;
1304 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1305 
1306 	VM_BUG_ON_PAGE(PageTail(page), page);
1307 
1308 	trace_mm_page_free(page, order);
1309 
1310 	if (unlikely(PageHWPoison(page)) && !order) {
1311 		/*
1312 		 * Do not let hwpoison pages hit pcplists/buddy
1313 		 * Untie memcg state and reset page's owner
1314 		 */
1315 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1316 			__memcg_kmem_uncharge_page(page, order);
1317 		reset_page_owner(page, order);
1318 		return false;
1319 	}
1320 
1321 	/*
1322 	 * Check tail pages before head page information is cleared to
1323 	 * avoid checking PageCompound for order-0 pages.
1324 	 */
1325 	if (unlikely(order)) {
1326 		bool compound = PageCompound(page);
1327 		int i;
1328 
1329 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1330 
1331 		if (compound)
1332 			ClearPageDoubleMap(page);
1333 		for (i = 1; i < (1 << order); i++) {
1334 			if (compound)
1335 				bad += free_tail_pages_check(page, page + i);
1336 			if (unlikely(check_free_page(page + i))) {
1337 				bad++;
1338 				continue;
1339 			}
1340 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1341 		}
1342 	}
1343 	if (PageMappingFlags(page))
1344 		page->mapping = NULL;
1345 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1346 		__memcg_kmem_uncharge_page(page, order);
1347 	if (check_free)
1348 		bad += check_free_page(page);
1349 	if (bad)
1350 		return false;
1351 
1352 	page_cpupid_reset_last(page);
1353 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1354 	reset_page_owner(page, order);
1355 
1356 	if (!PageHighMem(page)) {
1357 		debug_check_no_locks_freed(page_address(page),
1358 					   PAGE_SIZE << order);
1359 		debug_check_no_obj_freed(page_address(page),
1360 					   PAGE_SIZE << order);
1361 	}
1362 
1363 	kernel_poison_pages(page, 1 << order);
1364 
1365 	/*
1366 	 * As memory initialization might be integrated into KASAN,
1367 	 * kasan_free_pages and kernel_init_free_pages must be
1368 	 * kept together to avoid discrepancies in behavior.
1369 	 *
1370 	 * With hardware tag-based KASAN, memory tags must be set before the
1371 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1372 	 */
1373 	if (kasan_has_integrated_init()) {
1374 		if (!skip_kasan_poison)
1375 			kasan_free_pages(page, order);
1376 	} else {
1377 		bool init = want_init_on_free();
1378 
1379 		if (init)
1380 			kernel_init_free_pages(page, 1 << order, false);
1381 		if (!skip_kasan_poison)
1382 			kasan_poison_pages(page, order, init);
1383 	}
1384 
1385 	/*
1386 	 * arch_free_page() can make the page's contents inaccessible.  s390
1387 	 * does this.  So nothing which can access the page's contents should
1388 	 * happen after this.
1389 	 */
1390 	arch_free_page(page, order);
1391 
1392 	debug_pagealloc_unmap_pages(page, 1 << order);
1393 
1394 	return true;
1395 }
1396 
1397 #ifdef CONFIG_DEBUG_VM
1398 /*
1399  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1400  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1401  * moved from pcp lists to free lists.
1402  */
1403 static bool free_pcp_prepare(struct page *page, unsigned int order)
1404 {
1405 	return free_pages_prepare(page, order, true, FPI_NONE);
1406 }
1407 
1408 static bool bulkfree_pcp_prepare(struct page *page)
1409 {
1410 	if (debug_pagealloc_enabled_static())
1411 		return check_free_page(page);
1412 	else
1413 		return false;
1414 }
1415 #else
1416 /*
1417  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1418  * moving from pcp lists to free list in order to reduce overhead. With
1419  * debug_pagealloc enabled, they are checked also immediately when being freed
1420  * to the pcp lists.
1421  */
1422 static bool free_pcp_prepare(struct page *page, unsigned int order)
1423 {
1424 	if (debug_pagealloc_enabled_static())
1425 		return free_pages_prepare(page, order, true, FPI_NONE);
1426 	else
1427 		return free_pages_prepare(page, order, false, FPI_NONE);
1428 }
1429 
1430 static bool bulkfree_pcp_prepare(struct page *page)
1431 {
1432 	return check_free_page(page);
1433 }
1434 #endif /* CONFIG_DEBUG_VM */
1435 
1436 static inline void prefetch_buddy(struct page *page)
1437 {
1438 	unsigned long pfn = page_to_pfn(page);
1439 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1440 	struct page *buddy = page + (buddy_pfn - pfn);
1441 
1442 	prefetch(buddy);
1443 }
1444 
1445 /*
1446  * Frees a number of pages from the PCP lists
1447  * Assumes all pages on list are in same zone, and of same order.
1448  * count is the number of pages to free.
1449  *
1450  * If the zone was previously in an "all pages pinned" state then look to
1451  * see if this freeing clears that state.
1452  *
1453  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1454  * pinned" detection logic.
1455  */
1456 static void free_pcppages_bulk(struct zone *zone, int count,
1457 					struct per_cpu_pages *pcp)
1458 {
1459 	int pindex = 0;
1460 	int batch_free = 0;
1461 	int nr_freed = 0;
1462 	unsigned int order;
1463 	int prefetch_nr = READ_ONCE(pcp->batch);
1464 	bool isolated_pageblocks;
1465 	struct page *page, *tmp;
1466 	LIST_HEAD(head);
1467 
1468 	/*
1469 	 * Ensure proper count is passed which otherwise would stuck in the
1470 	 * below while (list_empty(list)) loop.
1471 	 */
1472 	count = min(pcp->count, count);
1473 	while (count > 0) {
1474 		struct list_head *list;
1475 
1476 		/*
1477 		 * Remove pages from lists in a round-robin fashion. A
1478 		 * batch_free count is maintained that is incremented when an
1479 		 * empty list is encountered.  This is so more pages are freed
1480 		 * off fuller lists instead of spinning excessively around empty
1481 		 * lists
1482 		 */
1483 		do {
1484 			batch_free++;
1485 			if (++pindex == NR_PCP_LISTS)
1486 				pindex = 0;
1487 			list = &pcp->lists[pindex];
1488 		} while (list_empty(list));
1489 
1490 		/* This is the only non-empty list. Free them all. */
1491 		if (batch_free == NR_PCP_LISTS)
1492 			batch_free = count;
1493 
1494 		order = pindex_to_order(pindex);
1495 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1496 		do {
1497 			page = list_last_entry(list, struct page, lru);
1498 			/* must delete to avoid corrupting pcp list */
1499 			list_del(&page->lru);
1500 			nr_freed += 1 << order;
1501 			count -= 1 << order;
1502 
1503 			if (bulkfree_pcp_prepare(page))
1504 				continue;
1505 
1506 			/* Encode order with the migratetype */
1507 			page->index <<= NR_PCP_ORDER_WIDTH;
1508 			page->index |= order;
1509 
1510 			list_add_tail(&page->lru, &head);
1511 
1512 			/*
1513 			 * We are going to put the page back to the global
1514 			 * pool, prefetch its buddy to speed up later access
1515 			 * under zone->lock. It is believed the overhead of
1516 			 * an additional test and calculating buddy_pfn here
1517 			 * can be offset by reduced memory latency later. To
1518 			 * avoid excessive prefetching due to large count, only
1519 			 * prefetch buddy for the first pcp->batch nr of pages.
1520 			 */
1521 			if (prefetch_nr) {
1522 				prefetch_buddy(page);
1523 				prefetch_nr--;
1524 			}
1525 		} while (count > 0 && --batch_free && !list_empty(list));
1526 	}
1527 	pcp->count -= nr_freed;
1528 
1529 	/*
1530 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1531 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1532 	 */
1533 	spin_lock(&zone->lock);
1534 	isolated_pageblocks = has_isolate_pageblock(zone);
1535 
1536 	/*
1537 	 * Use safe version since after __free_one_page(),
1538 	 * page->lru.next will not point to original list.
1539 	 */
1540 	list_for_each_entry_safe(page, tmp, &head, lru) {
1541 		int mt = get_pcppage_migratetype(page);
1542 
1543 		/* mt has been encoded with the order (see above) */
1544 		order = mt & NR_PCP_ORDER_MASK;
1545 		mt >>= NR_PCP_ORDER_WIDTH;
1546 
1547 		/* MIGRATE_ISOLATE page should not go to pcplists */
1548 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1549 		/* Pageblock could have been isolated meanwhile */
1550 		if (unlikely(isolated_pageblocks))
1551 			mt = get_pageblock_migratetype(page);
1552 
1553 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1554 		trace_mm_page_pcpu_drain(page, order, mt);
1555 	}
1556 	spin_unlock(&zone->lock);
1557 }
1558 
1559 static void free_one_page(struct zone *zone,
1560 				struct page *page, unsigned long pfn,
1561 				unsigned int order,
1562 				int migratetype, fpi_t fpi_flags)
1563 {
1564 	unsigned long flags;
1565 
1566 	spin_lock_irqsave(&zone->lock, flags);
1567 	if (unlikely(has_isolate_pageblock(zone) ||
1568 		is_migrate_isolate(migratetype))) {
1569 		migratetype = get_pfnblock_migratetype(page, pfn);
1570 	}
1571 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1572 	spin_unlock_irqrestore(&zone->lock, flags);
1573 }
1574 
1575 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1576 				unsigned long zone, int nid)
1577 {
1578 	mm_zero_struct_page(page);
1579 	set_page_links(page, zone, nid, pfn);
1580 	init_page_count(page);
1581 	page_mapcount_reset(page);
1582 	page_cpupid_reset_last(page);
1583 	page_kasan_tag_reset(page);
1584 
1585 	INIT_LIST_HEAD(&page->lru);
1586 #ifdef WANT_PAGE_VIRTUAL
1587 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1588 	if (!is_highmem_idx(zone))
1589 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1590 #endif
1591 }
1592 
1593 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1594 static void __meminit init_reserved_page(unsigned long pfn)
1595 {
1596 	pg_data_t *pgdat;
1597 	int nid, zid;
1598 
1599 	if (!early_page_uninitialised(pfn))
1600 		return;
1601 
1602 	nid = early_pfn_to_nid(pfn);
1603 	pgdat = NODE_DATA(nid);
1604 
1605 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1606 		struct zone *zone = &pgdat->node_zones[zid];
1607 
1608 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1609 			break;
1610 	}
1611 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1612 }
1613 #else
1614 static inline void init_reserved_page(unsigned long pfn)
1615 {
1616 }
1617 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1618 
1619 /*
1620  * Initialised pages do not have PageReserved set. This function is
1621  * called for each range allocated by the bootmem allocator and
1622  * marks the pages PageReserved. The remaining valid pages are later
1623  * sent to the buddy page allocator.
1624  */
1625 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1626 {
1627 	unsigned long start_pfn = PFN_DOWN(start);
1628 	unsigned long end_pfn = PFN_UP(end);
1629 
1630 	for (; start_pfn < end_pfn; start_pfn++) {
1631 		if (pfn_valid(start_pfn)) {
1632 			struct page *page = pfn_to_page(start_pfn);
1633 
1634 			init_reserved_page(start_pfn);
1635 
1636 			/* Avoid false-positive PageTail() */
1637 			INIT_LIST_HEAD(&page->lru);
1638 
1639 			/*
1640 			 * no need for atomic set_bit because the struct
1641 			 * page is not visible yet so nobody should
1642 			 * access it yet.
1643 			 */
1644 			__SetPageReserved(page);
1645 		}
1646 	}
1647 }
1648 
1649 static void __free_pages_ok(struct page *page, unsigned int order,
1650 			    fpi_t fpi_flags)
1651 {
1652 	unsigned long flags;
1653 	int migratetype;
1654 	unsigned long pfn = page_to_pfn(page);
1655 	struct zone *zone = page_zone(page);
1656 
1657 	if (!free_pages_prepare(page, order, true, fpi_flags))
1658 		return;
1659 
1660 	migratetype = get_pfnblock_migratetype(page, pfn);
1661 
1662 	spin_lock_irqsave(&zone->lock, flags);
1663 	if (unlikely(has_isolate_pageblock(zone) ||
1664 		is_migrate_isolate(migratetype))) {
1665 		migratetype = get_pfnblock_migratetype(page, pfn);
1666 	}
1667 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1668 	spin_unlock_irqrestore(&zone->lock, flags);
1669 
1670 	__count_vm_events(PGFREE, 1 << order);
1671 }
1672 
1673 void __free_pages_core(struct page *page, unsigned int order)
1674 {
1675 	unsigned int nr_pages = 1 << order;
1676 	struct page *p = page;
1677 	unsigned int loop;
1678 
1679 	/*
1680 	 * When initializing the memmap, __init_single_page() sets the refcount
1681 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1682 	 * refcount of all involved pages to 0.
1683 	 */
1684 	prefetchw(p);
1685 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1686 		prefetchw(p + 1);
1687 		__ClearPageReserved(p);
1688 		set_page_count(p, 0);
1689 	}
1690 	__ClearPageReserved(p);
1691 	set_page_count(p, 0);
1692 
1693 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1694 
1695 	/*
1696 	 * Bypass PCP and place fresh pages right to the tail, primarily
1697 	 * relevant for memory onlining.
1698 	 */
1699 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1700 }
1701 
1702 #ifdef CONFIG_NUMA
1703 
1704 /*
1705  * During memory init memblocks map pfns to nids. The search is expensive and
1706  * this caches recent lookups. The implementation of __early_pfn_to_nid
1707  * treats start/end as pfns.
1708  */
1709 struct mminit_pfnnid_cache {
1710 	unsigned long last_start;
1711 	unsigned long last_end;
1712 	int last_nid;
1713 };
1714 
1715 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1716 
1717 /*
1718  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1719  */
1720 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1721 					struct mminit_pfnnid_cache *state)
1722 {
1723 	unsigned long start_pfn, end_pfn;
1724 	int nid;
1725 
1726 	if (state->last_start <= pfn && pfn < state->last_end)
1727 		return state->last_nid;
1728 
1729 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1730 	if (nid != NUMA_NO_NODE) {
1731 		state->last_start = start_pfn;
1732 		state->last_end = end_pfn;
1733 		state->last_nid = nid;
1734 	}
1735 
1736 	return nid;
1737 }
1738 
1739 int __meminit early_pfn_to_nid(unsigned long pfn)
1740 {
1741 	static DEFINE_SPINLOCK(early_pfn_lock);
1742 	int nid;
1743 
1744 	spin_lock(&early_pfn_lock);
1745 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1746 	if (nid < 0)
1747 		nid = first_online_node;
1748 	spin_unlock(&early_pfn_lock);
1749 
1750 	return nid;
1751 }
1752 #endif /* CONFIG_NUMA */
1753 
1754 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1755 							unsigned int order)
1756 {
1757 	if (early_page_uninitialised(pfn))
1758 		return;
1759 	__free_pages_core(page, order);
1760 }
1761 
1762 /*
1763  * Check that the whole (or subset of) a pageblock given by the interval of
1764  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1765  * with the migration of free compaction scanner. The scanners then need to
1766  * use only pfn_valid_within() check for arches that allow holes within
1767  * pageblocks.
1768  *
1769  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1770  *
1771  * It's possible on some configurations to have a setup like node0 node1 node0
1772  * i.e. it's possible that all pages within a zones range of pages do not
1773  * belong to a single zone. We assume that a border between node0 and node1
1774  * can occur within a single pageblock, but not a node0 node1 node0
1775  * interleaving within a single pageblock. It is therefore sufficient to check
1776  * the first and last page of a pageblock and avoid checking each individual
1777  * page in a pageblock.
1778  */
1779 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1780 				     unsigned long end_pfn, struct zone *zone)
1781 {
1782 	struct page *start_page;
1783 	struct page *end_page;
1784 
1785 	/* end_pfn is one past the range we are checking */
1786 	end_pfn--;
1787 
1788 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1789 		return NULL;
1790 
1791 	start_page = pfn_to_online_page(start_pfn);
1792 	if (!start_page)
1793 		return NULL;
1794 
1795 	if (page_zone(start_page) != zone)
1796 		return NULL;
1797 
1798 	end_page = pfn_to_page(end_pfn);
1799 
1800 	/* This gives a shorter code than deriving page_zone(end_page) */
1801 	if (page_zone_id(start_page) != page_zone_id(end_page))
1802 		return NULL;
1803 
1804 	return start_page;
1805 }
1806 
1807 void set_zone_contiguous(struct zone *zone)
1808 {
1809 	unsigned long block_start_pfn = zone->zone_start_pfn;
1810 	unsigned long block_end_pfn;
1811 
1812 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1813 	for (; block_start_pfn < zone_end_pfn(zone);
1814 			block_start_pfn = block_end_pfn,
1815 			 block_end_pfn += pageblock_nr_pages) {
1816 
1817 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1818 
1819 		if (!__pageblock_pfn_to_page(block_start_pfn,
1820 					     block_end_pfn, zone))
1821 			return;
1822 		cond_resched();
1823 	}
1824 
1825 	/* We confirm that there is no hole */
1826 	zone->contiguous = true;
1827 }
1828 
1829 void clear_zone_contiguous(struct zone *zone)
1830 {
1831 	zone->contiguous = false;
1832 }
1833 
1834 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1835 static void __init deferred_free_range(unsigned long pfn,
1836 				       unsigned long nr_pages)
1837 {
1838 	struct page *page;
1839 	unsigned long i;
1840 
1841 	if (!nr_pages)
1842 		return;
1843 
1844 	page = pfn_to_page(pfn);
1845 
1846 	/* Free a large naturally-aligned chunk if possible */
1847 	if (nr_pages == pageblock_nr_pages &&
1848 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1849 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1850 		__free_pages_core(page, pageblock_order);
1851 		return;
1852 	}
1853 
1854 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1855 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1856 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1857 		__free_pages_core(page, 0);
1858 	}
1859 }
1860 
1861 /* Completion tracking for deferred_init_memmap() threads */
1862 static atomic_t pgdat_init_n_undone __initdata;
1863 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1864 
1865 static inline void __init pgdat_init_report_one_done(void)
1866 {
1867 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1868 		complete(&pgdat_init_all_done_comp);
1869 }
1870 
1871 /*
1872  * Returns true if page needs to be initialized or freed to buddy allocator.
1873  *
1874  * First we check if pfn is valid on architectures where it is possible to have
1875  * holes within pageblock_nr_pages. On systems where it is not possible, this
1876  * function is optimized out.
1877  *
1878  * Then, we check if a current large page is valid by only checking the validity
1879  * of the head pfn.
1880  */
1881 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1882 {
1883 	if (!pfn_valid_within(pfn))
1884 		return false;
1885 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1886 		return false;
1887 	return true;
1888 }
1889 
1890 /*
1891  * Free pages to buddy allocator. Try to free aligned pages in
1892  * pageblock_nr_pages sizes.
1893  */
1894 static void __init deferred_free_pages(unsigned long pfn,
1895 				       unsigned long end_pfn)
1896 {
1897 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1898 	unsigned long nr_free = 0;
1899 
1900 	for (; pfn < end_pfn; pfn++) {
1901 		if (!deferred_pfn_valid(pfn)) {
1902 			deferred_free_range(pfn - nr_free, nr_free);
1903 			nr_free = 0;
1904 		} else if (!(pfn & nr_pgmask)) {
1905 			deferred_free_range(pfn - nr_free, nr_free);
1906 			nr_free = 1;
1907 		} else {
1908 			nr_free++;
1909 		}
1910 	}
1911 	/* Free the last block of pages to allocator */
1912 	deferred_free_range(pfn - nr_free, nr_free);
1913 }
1914 
1915 /*
1916  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1917  * by performing it only once every pageblock_nr_pages.
1918  * Return number of pages initialized.
1919  */
1920 static unsigned long  __init deferred_init_pages(struct zone *zone,
1921 						 unsigned long pfn,
1922 						 unsigned long end_pfn)
1923 {
1924 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1925 	int nid = zone_to_nid(zone);
1926 	unsigned long nr_pages = 0;
1927 	int zid = zone_idx(zone);
1928 	struct page *page = NULL;
1929 
1930 	for (; pfn < end_pfn; pfn++) {
1931 		if (!deferred_pfn_valid(pfn)) {
1932 			page = NULL;
1933 			continue;
1934 		} else if (!page || !(pfn & nr_pgmask)) {
1935 			page = pfn_to_page(pfn);
1936 		} else {
1937 			page++;
1938 		}
1939 		__init_single_page(page, pfn, zid, nid);
1940 		nr_pages++;
1941 	}
1942 	return (nr_pages);
1943 }
1944 
1945 /*
1946  * This function is meant to pre-load the iterator for the zone init.
1947  * Specifically it walks through the ranges until we are caught up to the
1948  * first_init_pfn value and exits there. If we never encounter the value we
1949  * return false indicating there are no valid ranges left.
1950  */
1951 static bool __init
1952 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1953 				    unsigned long *spfn, unsigned long *epfn,
1954 				    unsigned long first_init_pfn)
1955 {
1956 	u64 j;
1957 
1958 	/*
1959 	 * Start out by walking through the ranges in this zone that have
1960 	 * already been initialized. We don't need to do anything with them
1961 	 * so we just need to flush them out of the system.
1962 	 */
1963 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1964 		if (*epfn <= first_init_pfn)
1965 			continue;
1966 		if (*spfn < first_init_pfn)
1967 			*spfn = first_init_pfn;
1968 		*i = j;
1969 		return true;
1970 	}
1971 
1972 	return false;
1973 }
1974 
1975 /*
1976  * Initialize and free pages. We do it in two loops: first we initialize
1977  * struct page, then free to buddy allocator, because while we are
1978  * freeing pages we can access pages that are ahead (computing buddy
1979  * page in __free_one_page()).
1980  *
1981  * In order to try and keep some memory in the cache we have the loop
1982  * broken along max page order boundaries. This way we will not cause
1983  * any issues with the buddy page computation.
1984  */
1985 static unsigned long __init
1986 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1987 		       unsigned long *end_pfn)
1988 {
1989 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1990 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1991 	unsigned long nr_pages = 0;
1992 	u64 j = *i;
1993 
1994 	/* First we loop through and initialize the page values */
1995 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1996 		unsigned long t;
1997 
1998 		if (mo_pfn <= *start_pfn)
1999 			break;
2000 
2001 		t = min(mo_pfn, *end_pfn);
2002 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2003 
2004 		if (mo_pfn < *end_pfn) {
2005 			*start_pfn = mo_pfn;
2006 			break;
2007 		}
2008 	}
2009 
2010 	/* Reset values and now loop through freeing pages as needed */
2011 	swap(j, *i);
2012 
2013 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2014 		unsigned long t;
2015 
2016 		if (mo_pfn <= spfn)
2017 			break;
2018 
2019 		t = min(mo_pfn, epfn);
2020 		deferred_free_pages(spfn, t);
2021 
2022 		if (mo_pfn <= epfn)
2023 			break;
2024 	}
2025 
2026 	return nr_pages;
2027 }
2028 
2029 static void __init
2030 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2031 			   void *arg)
2032 {
2033 	unsigned long spfn, epfn;
2034 	struct zone *zone = arg;
2035 	u64 i;
2036 
2037 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2038 
2039 	/*
2040 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2041 	 * can avoid introducing any issues with the buddy allocator.
2042 	 */
2043 	while (spfn < end_pfn) {
2044 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2045 		cond_resched();
2046 	}
2047 }
2048 
2049 /* An arch may override for more concurrency. */
2050 __weak int __init
2051 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2052 {
2053 	return 1;
2054 }
2055 
2056 /* Initialise remaining memory on a node */
2057 static int __init deferred_init_memmap(void *data)
2058 {
2059 	pg_data_t *pgdat = data;
2060 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2061 	unsigned long spfn = 0, epfn = 0;
2062 	unsigned long first_init_pfn, flags;
2063 	unsigned long start = jiffies;
2064 	struct zone *zone;
2065 	int zid, max_threads;
2066 	u64 i;
2067 
2068 	/* Bind memory initialisation thread to a local node if possible */
2069 	if (!cpumask_empty(cpumask))
2070 		set_cpus_allowed_ptr(current, cpumask);
2071 
2072 	pgdat_resize_lock(pgdat, &flags);
2073 	first_init_pfn = pgdat->first_deferred_pfn;
2074 	if (first_init_pfn == ULONG_MAX) {
2075 		pgdat_resize_unlock(pgdat, &flags);
2076 		pgdat_init_report_one_done();
2077 		return 0;
2078 	}
2079 
2080 	/* Sanity check boundaries */
2081 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2082 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2083 	pgdat->first_deferred_pfn = ULONG_MAX;
2084 
2085 	/*
2086 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2087 	 * interrupt thread must allocate this early in boot, zone must be
2088 	 * pre-grown prior to start of deferred page initialization.
2089 	 */
2090 	pgdat_resize_unlock(pgdat, &flags);
2091 
2092 	/* Only the highest zone is deferred so find it */
2093 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2094 		zone = pgdat->node_zones + zid;
2095 		if (first_init_pfn < zone_end_pfn(zone))
2096 			break;
2097 	}
2098 
2099 	/* If the zone is empty somebody else may have cleared out the zone */
2100 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2101 						 first_init_pfn))
2102 		goto zone_empty;
2103 
2104 	max_threads = deferred_page_init_max_threads(cpumask);
2105 
2106 	while (spfn < epfn) {
2107 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2108 		struct padata_mt_job job = {
2109 			.thread_fn   = deferred_init_memmap_chunk,
2110 			.fn_arg      = zone,
2111 			.start       = spfn,
2112 			.size        = epfn_align - spfn,
2113 			.align       = PAGES_PER_SECTION,
2114 			.min_chunk   = PAGES_PER_SECTION,
2115 			.max_threads = max_threads,
2116 		};
2117 
2118 		padata_do_multithreaded(&job);
2119 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2120 						    epfn_align);
2121 	}
2122 zone_empty:
2123 	/* Sanity check that the next zone really is unpopulated */
2124 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2125 
2126 	pr_info("node %d deferred pages initialised in %ums\n",
2127 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2128 
2129 	pgdat_init_report_one_done();
2130 	return 0;
2131 }
2132 
2133 /*
2134  * If this zone has deferred pages, try to grow it by initializing enough
2135  * deferred pages to satisfy the allocation specified by order, rounded up to
2136  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2137  * of SECTION_SIZE bytes by initializing struct pages in increments of
2138  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2139  *
2140  * Return true when zone was grown, otherwise return false. We return true even
2141  * when we grow less than requested, to let the caller decide if there are
2142  * enough pages to satisfy the allocation.
2143  *
2144  * Note: We use noinline because this function is needed only during boot, and
2145  * it is called from a __ref function _deferred_grow_zone. This way we are
2146  * making sure that it is not inlined into permanent text section.
2147  */
2148 static noinline bool __init
2149 deferred_grow_zone(struct zone *zone, unsigned int order)
2150 {
2151 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2152 	pg_data_t *pgdat = zone->zone_pgdat;
2153 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2154 	unsigned long spfn, epfn, flags;
2155 	unsigned long nr_pages = 0;
2156 	u64 i;
2157 
2158 	/* Only the last zone may have deferred pages */
2159 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2160 		return false;
2161 
2162 	pgdat_resize_lock(pgdat, &flags);
2163 
2164 	/*
2165 	 * If someone grew this zone while we were waiting for spinlock, return
2166 	 * true, as there might be enough pages already.
2167 	 */
2168 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2169 		pgdat_resize_unlock(pgdat, &flags);
2170 		return true;
2171 	}
2172 
2173 	/* If the zone is empty somebody else may have cleared out the zone */
2174 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2175 						 first_deferred_pfn)) {
2176 		pgdat->first_deferred_pfn = ULONG_MAX;
2177 		pgdat_resize_unlock(pgdat, &flags);
2178 		/* Retry only once. */
2179 		return first_deferred_pfn != ULONG_MAX;
2180 	}
2181 
2182 	/*
2183 	 * Initialize and free pages in MAX_ORDER sized increments so
2184 	 * that we can avoid introducing any issues with the buddy
2185 	 * allocator.
2186 	 */
2187 	while (spfn < epfn) {
2188 		/* update our first deferred PFN for this section */
2189 		first_deferred_pfn = spfn;
2190 
2191 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2192 		touch_nmi_watchdog();
2193 
2194 		/* We should only stop along section boundaries */
2195 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2196 			continue;
2197 
2198 		/* If our quota has been met we can stop here */
2199 		if (nr_pages >= nr_pages_needed)
2200 			break;
2201 	}
2202 
2203 	pgdat->first_deferred_pfn = spfn;
2204 	pgdat_resize_unlock(pgdat, &flags);
2205 
2206 	return nr_pages > 0;
2207 }
2208 
2209 /*
2210  * deferred_grow_zone() is __init, but it is called from
2211  * get_page_from_freelist() during early boot until deferred_pages permanently
2212  * disables this call. This is why we have refdata wrapper to avoid warning,
2213  * and to ensure that the function body gets unloaded.
2214  */
2215 static bool __ref
2216 _deferred_grow_zone(struct zone *zone, unsigned int order)
2217 {
2218 	return deferred_grow_zone(zone, order);
2219 }
2220 
2221 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2222 
2223 void __init page_alloc_init_late(void)
2224 {
2225 	struct zone *zone;
2226 	int nid;
2227 
2228 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2229 
2230 	/* There will be num_node_state(N_MEMORY) threads */
2231 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2232 	for_each_node_state(nid, N_MEMORY) {
2233 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2234 	}
2235 
2236 	/* Block until all are initialised */
2237 	wait_for_completion(&pgdat_init_all_done_comp);
2238 
2239 	/*
2240 	 * We initialized the rest of the deferred pages.  Permanently disable
2241 	 * on-demand struct page initialization.
2242 	 */
2243 	static_branch_disable(&deferred_pages);
2244 
2245 	/* Reinit limits that are based on free pages after the kernel is up */
2246 	files_maxfiles_init();
2247 #endif
2248 
2249 	buffer_init();
2250 
2251 	/* Discard memblock private memory */
2252 	memblock_discard();
2253 
2254 	for_each_node_state(nid, N_MEMORY)
2255 		shuffle_free_memory(NODE_DATA(nid));
2256 
2257 	for_each_populated_zone(zone)
2258 		set_zone_contiguous(zone);
2259 }
2260 
2261 #ifdef CONFIG_CMA
2262 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2263 void __init init_cma_reserved_pageblock(struct page *page)
2264 {
2265 	unsigned i = pageblock_nr_pages;
2266 	struct page *p = page;
2267 
2268 	do {
2269 		__ClearPageReserved(p);
2270 		set_page_count(p, 0);
2271 	} while (++p, --i);
2272 
2273 	set_pageblock_migratetype(page, MIGRATE_CMA);
2274 
2275 	if (pageblock_order >= MAX_ORDER) {
2276 		i = pageblock_nr_pages;
2277 		p = page;
2278 		do {
2279 			set_page_refcounted(p);
2280 			__free_pages(p, MAX_ORDER - 1);
2281 			p += MAX_ORDER_NR_PAGES;
2282 		} while (i -= MAX_ORDER_NR_PAGES);
2283 	} else {
2284 		set_page_refcounted(page);
2285 		__free_pages(page, pageblock_order);
2286 	}
2287 
2288 	adjust_managed_page_count(page, pageblock_nr_pages);
2289 	page_zone(page)->cma_pages += pageblock_nr_pages;
2290 }
2291 #endif
2292 
2293 /*
2294  * The order of subdivision here is critical for the IO subsystem.
2295  * Please do not alter this order without good reasons and regression
2296  * testing. Specifically, as large blocks of memory are subdivided,
2297  * the order in which smaller blocks are delivered depends on the order
2298  * they're subdivided in this function. This is the primary factor
2299  * influencing the order in which pages are delivered to the IO
2300  * subsystem according to empirical testing, and this is also justified
2301  * by considering the behavior of a buddy system containing a single
2302  * large block of memory acted on by a series of small allocations.
2303  * This behavior is a critical factor in sglist merging's success.
2304  *
2305  * -- nyc
2306  */
2307 static inline void expand(struct zone *zone, struct page *page,
2308 	int low, int high, int migratetype)
2309 {
2310 	unsigned long size = 1 << high;
2311 
2312 	while (high > low) {
2313 		high--;
2314 		size >>= 1;
2315 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2316 
2317 		/*
2318 		 * Mark as guard pages (or page), that will allow to
2319 		 * merge back to allocator when buddy will be freed.
2320 		 * Corresponding page table entries will not be touched,
2321 		 * pages will stay not present in virtual address space
2322 		 */
2323 		if (set_page_guard(zone, &page[size], high, migratetype))
2324 			continue;
2325 
2326 		add_to_free_list(&page[size], zone, high, migratetype);
2327 		set_buddy_order(&page[size], high);
2328 	}
2329 }
2330 
2331 static void check_new_page_bad(struct page *page)
2332 {
2333 	if (unlikely(page->flags & __PG_HWPOISON)) {
2334 		/* Don't complain about hwpoisoned pages */
2335 		page_mapcount_reset(page); /* remove PageBuddy */
2336 		return;
2337 	}
2338 
2339 	bad_page(page,
2340 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2341 }
2342 
2343 /*
2344  * This page is about to be returned from the page allocator
2345  */
2346 static inline int check_new_page(struct page *page)
2347 {
2348 	if (likely(page_expected_state(page,
2349 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2350 		return 0;
2351 
2352 	check_new_page_bad(page);
2353 	return 1;
2354 }
2355 
2356 #ifdef CONFIG_DEBUG_VM
2357 /*
2358  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2359  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2360  * also checked when pcp lists are refilled from the free lists.
2361  */
2362 static inline bool check_pcp_refill(struct page *page)
2363 {
2364 	if (debug_pagealloc_enabled_static())
2365 		return check_new_page(page);
2366 	else
2367 		return false;
2368 }
2369 
2370 static inline bool check_new_pcp(struct page *page)
2371 {
2372 	return check_new_page(page);
2373 }
2374 #else
2375 /*
2376  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2377  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2378  * enabled, they are also checked when being allocated from the pcp lists.
2379  */
2380 static inline bool check_pcp_refill(struct page *page)
2381 {
2382 	return check_new_page(page);
2383 }
2384 static inline bool check_new_pcp(struct page *page)
2385 {
2386 	if (debug_pagealloc_enabled_static())
2387 		return check_new_page(page);
2388 	else
2389 		return false;
2390 }
2391 #endif /* CONFIG_DEBUG_VM */
2392 
2393 static bool check_new_pages(struct page *page, unsigned int order)
2394 {
2395 	int i;
2396 	for (i = 0; i < (1 << order); i++) {
2397 		struct page *p = page + i;
2398 
2399 		if (unlikely(check_new_page(p)))
2400 			return true;
2401 	}
2402 
2403 	return false;
2404 }
2405 
2406 inline void post_alloc_hook(struct page *page, unsigned int order,
2407 				gfp_t gfp_flags)
2408 {
2409 	set_page_private(page, 0);
2410 	set_page_refcounted(page);
2411 
2412 	arch_alloc_page(page, order);
2413 	debug_pagealloc_map_pages(page, 1 << order);
2414 
2415 	/*
2416 	 * Page unpoisoning must happen before memory initialization.
2417 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2418 	 * allocations and the page unpoisoning code will complain.
2419 	 */
2420 	kernel_unpoison_pages(page, 1 << order);
2421 
2422 	/*
2423 	 * As memory initialization might be integrated into KASAN,
2424 	 * kasan_alloc_pages and kernel_init_free_pages must be
2425 	 * kept together to avoid discrepancies in behavior.
2426 	 */
2427 	if (kasan_has_integrated_init()) {
2428 		kasan_alloc_pages(page, order, gfp_flags);
2429 	} else {
2430 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2431 
2432 		kasan_unpoison_pages(page, order, init);
2433 		if (init)
2434 			kernel_init_free_pages(page, 1 << order,
2435 					       gfp_flags & __GFP_ZEROTAGS);
2436 	}
2437 
2438 	set_page_owner(page, order, gfp_flags);
2439 }
2440 
2441 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2442 							unsigned int alloc_flags)
2443 {
2444 	post_alloc_hook(page, order, gfp_flags);
2445 
2446 	if (order && (gfp_flags & __GFP_COMP))
2447 		prep_compound_page(page, order);
2448 
2449 	/*
2450 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2451 	 * allocate the page. The expectation is that the caller is taking
2452 	 * steps that will free more memory. The caller should avoid the page
2453 	 * being used for !PFMEMALLOC purposes.
2454 	 */
2455 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2456 		set_page_pfmemalloc(page);
2457 	else
2458 		clear_page_pfmemalloc(page);
2459 }
2460 
2461 /*
2462  * Go through the free lists for the given migratetype and remove
2463  * the smallest available page from the freelists
2464  */
2465 static __always_inline
2466 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2467 						int migratetype)
2468 {
2469 	unsigned int current_order;
2470 	struct free_area *area;
2471 	struct page *page;
2472 
2473 	/* Find a page of the appropriate size in the preferred list */
2474 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2475 		area = &(zone->free_area[current_order]);
2476 		page = get_page_from_free_area(area, migratetype);
2477 		if (!page)
2478 			continue;
2479 		del_page_from_free_list(page, zone, current_order);
2480 		expand(zone, page, order, current_order, migratetype);
2481 		set_pcppage_migratetype(page, migratetype);
2482 		return page;
2483 	}
2484 
2485 	return NULL;
2486 }
2487 
2488 
2489 /*
2490  * This array describes the order lists are fallen back to when
2491  * the free lists for the desirable migrate type are depleted
2492  */
2493 static int fallbacks[MIGRATE_TYPES][3] = {
2494 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2495 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2496 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2497 #ifdef CONFIG_CMA
2498 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2499 #endif
2500 #ifdef CONFIG_MEMORY_ISOLATION
2501 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2502 #endif
2503 };
2504 
2505 #ifdef CONFIG_CMA
2506 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2507 					unsigned int order)
2508 {
2509 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2510 }
2511 #else
2512 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2513 					unsigned int order) { return NULL; }
2514 #endif
2515 
2516 /*
2517  * Move the free pages in a range to the freelist tail of the requested type.
2518  * Note that start_page and end_pages are not aligned on a pageblock
2519  * boundary. If alignment is required, use move_freepages_block()
2520  */
2521 static int move_freepages(struct zone *zone,
2522 			  unsigned long start_pfn, unsigned long end_pfn,
2523 			  int migratetype, int *num_movable)
2524 {
2525 	struct page *page;
2526 	unsigned long pfn;
2527 	unsigned int order;
2528 	int pages_moved = 0;
2529 
2530 	for (pfn = start_pfn; pfn <= end_pfn;) {
2531 		if (!pfn_valid_within(pfn)) {
2532 			pfn++;
2533 			continue;
2534 		}
2535 
2536 		page = pfn_to_page(pfn);
2537 		if (!PageBuddy(page)) {
2538 			/*
2539 			 * We assume that pages that could be isolated for
2540 			 * migration are movable. But we don't actually try
2541 			 * isolating, as that would be expensive.
2542 			 */
2543 			if (num_movable &&
2544 					(PageLRU(page) || __PageMovable(page)))
2545 				(*num_movable)++;
2546 			pfn++;
2547 			continue;
2548 		}
2549 
2550 		/* Make sure we are not inadvertently changing nodes */
2551 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2552 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2553 
2554 		order = buddy_order(page);
2555 		move_to_free_list(page, zone, order, migratetype);
2556 		pfn += 1 << order;
2557 		pages_moved += 1 << order;
2558 	}
2559 
2560 	return pages_moved;
2561 }
2562 
2563 int move_freepages_block(struct zone *zone, struct page *page,
2564 				int migratetype, int *num_movable)
2565 {
2566 	unsigned long start_pfn, end_pfn, pfn;
2567 
2568 	if (num_movable)
2569 		*num_movable = 0;
2570 
2571 	pfn = page_to_pfn(page);
2572 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2573 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2574 
2575 	/* Do not cross zone boundaries */
2576 	if (!zone_spans_pfn(zone, start_pfn))
2577 		start_pfn = pfn;
2578 	if (!zone_spans_pfn(zone, end_pfn))
2579 		return 0;
2580 
2581 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2582 								num_movable);
2583 }
2584 
2585 static void change_pageblock_range(struct page *pageblock_page,
2586 					int start_order, int migratetype)
2587 {
2588 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2589 
2590 	while (nr_pageblocks--) {
2591 		set_pageblock_migratetype(pageblock_page, migratetype);
2592 		pageblock_page += pageblock_nr_pages;
2593 	}
2594 }
2595 
2596 /*
2597  * When we are falling back to another migratetype during allocation, try to
2598  * steal extra free pages from the same pageblocks to satisfy further
2599  * allocations, instead of polluting multiple pageblocks.
2600  *
2601  * If we are stealing a relatively large buddy page, it is likely there will
2602  * be more free pages in the pageblock, so try to steal them all. For
2603  * reclaimable and unmovable allocations, we steal regardless of page size,
2604  * as fragmentation caused by those allocations polluting movable pageblocks
2605  * is worse than movable allocations stealing from unmovable and reclaimable
2606  * pageblocks.
2607  */
2608 static bool can_steal_fallback(unsigned int order, int start_mt)
2609 {
2610 	/*
2611 	 * Leaving this order check is intended, although there is
2612 	 * relaxed order check in next check. The reason is that
2613 	 * we can actually steal whole pageblock if this condition met,
2614 	 * but, below check doesn't guarantee it and that is just heuristic
2615 	 * so could be changed anytime.
2616 	 */
2617 	if (order >= pageblock_order)
2618 		return true;
2619 
2620 	if (order >= pageblock_order / 2 ||
2621 		start_mt == MIGRATE_RECLAIMABLE ||
2622 		start_mt == MIGRATE_UNMOVABLE ||
2623 		page_group_by_mobility_disabled)
2624 		return true;
2625 
2626 	return false;
2627 }
2628 
2629 static inline bool boost_watermark(struct zone *zone)
2630 {
2631 	unsigned long max_boost;
2632 
2633 	if (!watermark_boost_factor)
2634 		return false;
2635 	/*
2636 	 * Don't bother in zones that are unlikely to produce results.
2637 	 * On small machines, including kdump capture kernels running
2638 	 * in a small area, boosting the watermark can cause an out of
2639 	 * memory situation immediately.
2640 	 */
2641 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2642 		return false;
2643 
2644 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2645 			watermark_boost_factor, 10000);
2646 
2647 	/*
2648 	 * high watermark may be uninitialised if fragmentation occurs
2649 	 * very early in boot so do not boost. We do not fall
2650 	 * through and boost by pageblock_nr_pages as failing
2651 	 * allocations that early means that reclaim is not going
2652 	 * to help and it may even be impossible to reclaim the
2653 	 * boosted watermark resulting in a hang.
2654 	 */
2655 	if (!max_boost)
2656 		return false;
2657 
2658 	max_boost = max(pageblock_nr_pages, max_boost);
2659 
2660 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2661 		max_boost);
2662 
2663 	return true;
2664 }
2665 
2666 /*
2667  * This function implements actual steal behaviour. If order is large enough,
2668  * we can steal whole pageblock. If not, we first move freepages in this
2669  * pageblock to our migratetype and determine how many already-allocated pages
2670  * are there in the pageblock with a compatible migratetype. If at least half
2671  * of pages are free or compatible, we can change migratetype of the pageblock
2672  * itself, so pages freed in the future will be put on the correct free list.
2673  */
2674 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2675 		unsigned int alloc_flags, int start_type, bool whole_block)
2676 {
2677 	unsigned int current_order = buddy_order(page);
2678 	int free_pages, movable_pages, alike_pages;
2679 	int old_block_type;
2680 
2681 	old_block_type = get_pageblock_migratetype(page);
2682 
2683 	/*
2684 	 * This can happen due to races and we want to prevent broken
2685 	 * highatomic accounting.
2686 	 */
2687 	if (is_migrate_highatomic(old_block_type))
2688 		goto single_page;
2689 
2690 	/* Take ownership for orders >= pageblock_order */
2691 	if (current_order >= pageblock_order) {
2692 		change_pageblock_range(page, current_order, start_type);
2693 		goto single_page;
2694 	}
2695 
2696 	/*
2697 	 * Boost watermarks to increase reclaim pressure to reduce the
2698 	 * likelihood of future fallbacks. Wake kswapd now as the node
2699 	 * may be balanced overall and kswapd will not wake naturally.
2700 	 */
2701 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2702 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2703 
2704 	/* We are not allowed to try stealing from the whole block */
2705 	if (!whole_block)
2706 		goto single_page;
2707 
2708 	free_pages = move_freepages_block(zone, page, start_type,
2709 						&movable_pages);
2710 	/*
2711 	 * Determine how many pages are compatible with our allocation.
2712 	 * For movable allocation, it's the number of movable pages which
2713 	 * we just obtained. For other types it's a bit more tricky.
2714 	 */
2715 	if (start_type == MIGRATE_MOVABLE) {
2716 		alike_pages = movable_pages;
2717 	} else {
2718 		/*
2719 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2720 		 * to MOVABLE pageblock, consider all non-movable pages as
2721 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2722 		 * vice versa, be conservative since we can't distinguish the
2723 		 * exact migratetype of non-movable pages.
2724 		 */
2725 		if (old_block_type == MIGRATE_MOVABLE)
2726 			alike_pages = pageblock_nr_pages
2727 						- (free_pages + movable_pages);
2728 		else
2729 			alike_pages = 0;
2730 	}
2731 
2732 	/* moving whole block can fail due to zone boundary conditions */
2733 	if (!free_pages)
2734 		goto single_page;
2735 
2736 	/*
2737 	 * If a sufficient number of pages in the block are either free or of
2738 	 * comparable migratability as our allocation, claim the whole block.
2739 	 */
2740 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2741 			page_group_by_mobility_disabled)
2742 		set_pageblock_migratetype(page, start_type);
2743 
2744 	return;
2745 
2746 single_page:
2747 	move_to_free_list(page, zone, current_order, start_type);
2748 }
2749 
2750 /*
2751  * Check whether there is a suitable fallback freepage with requested order.
2752  * If only_stealable is true, this function returns fallback_mt only if
2753  * we can steal other freepages all together. This would help to reduce
2754  * fragmentation due to mixed migratetype pages in one pageblock.
2755  */
2756 int find_suitable_fallback(struct free_area *area, unsigned int order,
2757 			int migratetype, bool only_stealable, bool *can_steal)
2758 {
2759 	int i;
2760 	int fallback_mt;
2761 
2762 	if (area->nr_free == 0)
2763 		return -1;
2764 
2765 	*can_steal = false;
2766 	for (i = 0;; i++) {
2767 		fallback_mt = fallbacks[migratetype][i];
2768 		if (fallback_mt == MIGRATE_TYPES)
2769 			break;
2770 
2771 		if (free_area_empty(area, fallback_mt))
2772 			continue;
2773 
2774 		if (can_steal_fallback(order, migratetype))
2775 			*can_steal = true;
2776 
2777 		if (!only_stealable)
2778 			return fallback_mt;
2779 
2780 		if (*can_steal)
2781 			return fallback_mt;
2782 	}
2783 
2784 	return -1;
2785 }
2786 
2787 /*
2788  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2789  * there are no empty page blocks that contain a page with a suitable order
2790  */
2791 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2792 				unsigned int alloc_order)
2793 {
2794 	int mt;
2795 	unsigned long max_managed, flags;
2796 
2797 	/*
2798 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2799 	 * Check is race-prone but harmless.
2800 	 */
2801 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2802 	if (zone->nr_reserved_highatomic >= max_managed)
2803 		return;
2804 
2805 	spin_lock_irqsave(&zone->lock, flags);
2806 
2807 	/* Recheck the nr_reserved_highatomic limit under the lock */
2808 	if (zone->nr_reserved_highatomic >= max_managed)
2809 		goto out_unlock;
2810 
2811 	/* Yoink! */
2812 	mt = get_pageblock_migratetype(page);
2813 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2814 	    && !is_migrate_cma(mt)) {
2815 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2816 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2817 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2818 	}
2819 
2820 out_unlock:
2821 	spin_unlock_irqrestore(&zone->lock, flags);
2822 }
2823 
2824 /*
2825  * Used when an allocation is about to fail under memory pressure. This
2826  * potentially hurts the reliability of high-order allocations when under
2827  * intense memory pressure but failed atomic allocations should be easier
2828  * to recover from than an OOM.
2829  *
2830  * If @force is true, try to unreserve a pageblock even though highatomic
2831  * pageblock is exhausted.
2832  */
2833 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2834 						bool force)
2835 {
2836 	struct zonelist *zonelist = ac->zonelist;
2837 	unsigned long flags;
2838 	struct zoneref *z;
2839 	struct zone *zone;
2840 	struct page *page;
2841 	int order;
2842 	bool ret;
2843 
2844 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2845 								ac->nodemask) {
2846 		/*
2847 		 * Preserve at least one pageblock unless memory pressure
2848 		 * is really high.
2849 		 */
2850 		if (!force && zone->nr_reserved_highatomic <=
2851 					pageblock_nr_pages)
2852 			continue;
2853 
2854 		spin_lock_irqsave(&zone->lock, flags);
2855 		for (order = 0; order < MAX_ORDER; order++) {
2856 			struct free_area *area = &(zone->free_area[order]);
2857 
2858 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2859 			if (!page)
2860 				continue;
2861 
2862 			/*
2863 			 * In page freeing path, migratetype change is racy so
2864 			 * we can counter several free pages in a pageblock
2865 			 * in this loop although we changed the pageblock type
2866 			 * from highatomic to ac->migratetype. So we should
2867 			 * adjust the count once.
2868 			 */
2869 			if (is_migrate_highatomic_page(page)) {
2870 				/*
2871 				 * It should never happen but changes to
2872 				 * locking could inadvertently allow a per-cpu
2873 				 * drain to add pages to MIGRATE_HIGHATOMIC
2874 				 * while unreserving so be safe and watch for
2875 				 * underflows.
2876 				 */
2877 				zone->nr_reserved_highatomic -= min(
2878 						pageblock_nr_pages,
2879 						zone->nr_reserved_highatomic);
2880 			}
2881 
2882 			/*
2883 			 * Convert to ac->migratetype and avoid the normal
2884 			 * pageblock stealing heuristics. Minimally, the caller
2885 			 * is doing the work and needs the pages. More
2886 			 * importantly, if the block was always converted to
2887 			 * MIGRATE_UNMOVABLE or another type then the number
2888 			 * of pageblocks that cannot be completely freed
2889 			 * may increase.
2890 			 */
2891 			set_pageblock_migratetype(page, ac->migratetype);
2892 			ret = move_freepages_block(zone, page, ac->migratetype,
2893 									NULL);
2894 			if (ret) {
2895 				spin_unlock_irqrestore(&zone->lock, flags);
2896 				return ret;
2897 			}
2898 		}
2899 		spin_unlock_irqrestore(&zone->lock, flags);
2900 	}
2901 
2902 	return false;
2903 }
2904 
2905 /*
2906  * Try finding a free buddy page on the fallback list and put it on the free
2907  * list of requested migratetype, possibly along with other pages from the same
2908  * block, depending on fragmentation avoidance heuristics. Returns true if
2909  * fallback was found so that __rmqueue_smallest() can grab it.
2910  *
2911  * The use of signed ints for order and current_order is a deliberate
2912  * deviation from the rest of this file, to make the for loop
2913  * condition simpler.
2914  */
2915 static __always_inline bool
2916 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2917 						unsigned int alloc_flags)
2918 {
2919 	struct free_area *area;
2920 	int current_order;
2921 	int min_order = order;
2922 	struct page *page;
2923 	int fallback_mt;
2924 	bool can_steal;
2925 
2926 	/*
2927 	 * Do not steal pages from freelists belonging to other pageblocks
2928 	 * i.e. orders < pageblock_order. If there are no local zones free,
2929 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2930 	 */
2931 	if (alloc_flags & ALLOC_NOFRAGMENT)
2932 		min_order = pageblock_order;
2933 
2934 	/*
2935 	 * Find the largest available free page in the other list. This roughly
2936 	 * approximates finding the pageblock with the most free pages, which
2937 	 * would be too costly to do exactly.
2938 	 */
2939 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2940 				--current_order) {
2941 		area = &(zone->free_area[current_order]);
2942 		fallback_mt = find_suitable_fallback(area, current_order,
2943 				start_migratetype, false, &can_steal);
2944 		if (fallback_mt == -1)
2945 			continue;
2946 
2947 		/*
2948 		 * We cannot steal all free pages from the pageblock and the
2949 		 * requested migratetype is movable. In that case it's better to
2950 		 * steal and split the smallest available page instead of the
2951 		 * largest available page, because even if the next movable
2952 		 * allocation falls back into a different pageblock than this
2953 		 * one, it won't cause permanent fragmentation.
2954 		 */
2955 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2956 					&& current_order > order)
2957 			goto find_smallest;
2958 
2959 		goto do_steal;
2960 	}
2961 
2962 	return false;
2963 
2964 find_smallest:
2965 	for (current_order = order; current_order < MAX_ORDER;
2966 							current_order++) {
2967 		area = &(zone->free_area[current_order]);
2968 		fallback_mt = find_suitable_fallback(area, current_order,
2969 				start_migratetype, false, &can_steal);
2970 		if (fallback_mt != -1)
2971 			break;
2972 	}
2973 
2974 	/*
2975 	 * This should not happen - we already found a suitable fallback
2976 	 * when looking for the largest page.
2977 	 */
2978 	VM_BUG_ON(current_order == MAX_ORDER);
2979 
2980 do_steal:
2981 	page = get_page_from_free_area(area, fallback_mt);
2982 
2983 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2984 								can_steal);
2985 
2986 	trace_mm_page_alloc_extfrag(page, order, current_order,
2987 		start_migratetype, fallback_mt);
2988 
2989 	return true;
2990 
2991 }
2992 
2993 /*
2994  * Do the hard work of removing an element from the buddy allocator.
2995  * Call me with the zone->lock already held.
2996  */
2997 static __always_inline struct page *
2998 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2999 						unsigned int alloc_flags)
3000 {
3001 	struct page *page;
3002 
3003 	if (IS_ENABLED(CONFIG_CMA)) {
3004 		/*
3005 		 * Balance movable allocations between regular and CMA areas by
3006 		 * allocating from CMA when over half of the zone's free memory
3007 		 * is in the CMA area.
3008 		 */
3009 		if (alloc_flags & ALLOC_CMA &&
3010 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3011 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3012 			page = __rmqueue_cma_fallback(zone, order);
3013 			if (page)
3014 				goto out;
3015 		}
3016 	}
3017 retry:
3018 	page = __rmqueue_smallest(zone, order, migratetype);
3019 	if (unlikely(!page)) {
3020 		if (alloc_flags & ALLOC_CMA)
3021 			page = __rmqueue_cma_fallback(zone, order);
3022 
3023 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3024 								alloc_flags))
3025 			goto retry;
3026 	}
3027 out:
3028 	if (page)
3029 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3030 	return page;
3031 }
3032 
3033 /*
3034  * Obtain a specified number of elements from the buddy allocator, all under
3035  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3036  * Returns the number of new pages which were placed at *list.
3037  */
3038 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3039 			unsigned long count, struct list_head *list,
3040 			int migratetype, unsigned int alloc_flags)
3041 {
3042 	int i, allocated = 0;
3043 
3044 	/*
3045 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3046 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3047 	 */
3048 	spin_lock(&zone->lock);
3049 	for (i = 0; i < count; ++i) {
3050 		struct page *page = __rmqueue(zone, order, migratetype,
3051 								alloc_flags);
3052 		if (unlikely(page == NULL))
3053 			break;
3054 
3055 		if (unlikely(check_pcp_refill(page)))
3056 			continue;
3057 
3058 		/*
3059 		 * Split buddy pages returned by expand() are received here in
3060 		 * physical page order. The page is added to the tail of
3061 		 * caller's list. From the callers perspective, the linked list
3062 		 * is ordered by page number under some conditions. This is
3063 		 * useful for IO devices that can forward direction from the
3064 		 * head, thus also in the physical page order. This is useful
3065 		 * for IO devices that can merge IO requests if the physical
3066 		 * pages are ordered properly.
3067 		 */
3068 		list_add_tail(&page->lru, list);
3069 		allocated++;
3070 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3071 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3072 					      -(1 << order));
3073 	}
3074 
3075 	/*
3076 	 * i pages were removed from the buddy list even if some leak due
3077 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3078 	 * on i. Do not confuse with 'allocated' which is the number of
3079 	 * pages added to the pcp list.
3080 	 */
3081 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3082 	spin_unlock(&zone->lock);
3083 	return allocated;
3084 }
3085 
3086 #ifdef CONFIG_NUMA
3087 /*
3088  * Called from the vmstat counter updater to drain pagesets of this
3089  * currently executing processor on remote nodes after they have
3090  * expired.
3091  *
3092  * Note that this function must be called with the thread pinned to
3093  * a single processor.
3094  */
3095 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3096 {
3097 	unsigned long flags;
3098 	int to_drain, batch;
3099 
3100 	local_lock_irqsave(&pagesets.lock, flags);
3101 	batch = READ_ONCE(pcp->batch);
3102 	to_drain = min(pcp->count, batch);
3103 	if (to_drain > 0)
3104 		free_pcppages_bulk(zone, to_drain, pcp);
3105 	local_unlock_irqrestore(&pagesets.lock, flags);
3106 }
3107 #endif
3108 
3109 /*
3110  * Drain pcplists of the indicated processor and zone.
3111  *
3112  * The processor must either be the current processor and the
3113  * thread pinned to the current processor or a processor that
3114  * is not online.
3115  */
3116 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3117 {
3118 	unsigned long flags;
3119 	struct per_cpu_pages *pcp;
3120 
3121 	local_lock_irqsave(&pagesets.lock, flags);
3122 
3123 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3124 	if (pcp->count)
3125 		free_pcppages_bulk(zone, pcp->count, pcp);
3126 
3127 	local_unlock_irqrestore(&pagesets.lock, flags);
3128 }
3129 
3130 /*
3131  * Drain pcplists of all zones on the indicated processor.
3132  *
3133  * The processor must either be the current processor and the
3134  * thread pinned to the current processor or a processor that
3135  * is not online.
3136  */
3137 static void drain_pages(unsigned int cpu)
3138 {
3139 	struct zone *zone;
3140 
3141 	for_each_populated_zone(zone) {
3142 		drain_pages_zone(cpu, zone);
3143 	}
3144 }
3145 
3146 /*
3147  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3148  *
3149  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3150  * the single zone's pages.
3151  */
3152 void drain_local_pages(struct zone *zone)
3153 {
3154 	int cpu = smp_processor_id();
3155 
3156 	if (zone)
3157 		drain_pages_zone(cpu, zone);
3158 	else
3159 		drain_pages(cpu);
3160 }
3161 
3162 static void drain_local_pages_wq(struct work_struct *work)
3163 {
3164 	struct pcpu_drain *drain;
3165 
3166 	drain = container_of(work, struct pcpu_drain, work);
3167 
3168 	/*
3169 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3170 	 * we can race with cpu offline when the WQ can move this from
3171 	 * a cpu pinned worker to an unbound one. We can operate on a different
3172 	 * cpu which is alright but we also have to make sure to not move to
3173 	 * a different one.
3174 	 */
3175 	preempt_disable();
3176 	drain_local_pages(drain->zone);
3177 	preempt_enable();
3178 }
3179 
3180 /*
3181  * The implementation of drain_all_pages(), exposing an extra parameter to
3182  * drain on all cpus.
3183  *
3184  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3185  * not empty. The check for non-emptiness can however race with a free to
3186  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3187  * that need the guarantee that every CPU has drained can disable the
3188  * optimizing racy check.
3189  */
3190 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3191 {
3192 	int cpu;
3193 
3194 	/*
3195 	 * Allocate in the BSS so we won't require allocation in
3196 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3197 	 */
3198 	static cpumask_t cpus_with_pcps;
3199 
3200 	/*
3201 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3202 	 * initialized.
3203 	 */
3204 	if (WARN_ON_ONCE(!mm_percpu_wq))
3205 		return;
3206 
3207 	/*
3208 	 * Do not drain if one is already in progress unless it's specific to
3209 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3210 	 * the drain to be complete when the call returns.
3211 	 */
3212 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3213 		if (!zone)
3214 			return;
3215 		mutex_lock(&pcpu_drain_mutex);
3216 	}
3217 
3218 	/*
3219 	 * We don't care about racing with CPU hotplug event
3220 	 * as offline notification will cause the notified
3221 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3222 	 * disables preemption as part of its processing
3223 	 */
3224 	for_each_online_cpu(cpu) {
3225 		struct per_cpu_pages *pcp;
3226 		struct zone *z;
3227 		bool has_pcps = false;
3228 
3229 		if (force_all_cpus) {
3230 			/*
3231 			 * The pcp.count check is racy, some callers need a
3232 			 * guarantee that no cpu is missed.
3233 			 */
3234 			has_pcps = true;
3235 		} else if (zone) {
3236 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3237 			if (pcp->count)
3238 				has_pcps = true;
3239 		} else {
3240 			for_each_populated_zone(z) {
3241 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3242 				if (pcp->count) {
3243 					has_pcps = true;
3244 					break;
3245 				}
3246 			}
3247 		}
3248 
3249 		if (has_pcps)
3250 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3251 		else
3252 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3253 	}
3254 
3255 	for_each_cpu(cpu, &cpus_with_pcps) {
3256 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3257 
3258 		drain->zone = zone;
3259 		INIT_WORK(&drain->work, drain_local_pages_wq);
3260 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3261 	}
3262 	for_each_cpu(cpu, &cpus_with_pcps)
3263 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3264 
3265 	mutex_unlock(&pcpu_drain_mutex);
3266 }
3267 
3268 /*
3269  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3270  *
3271  * When zone parameter is non-NULL, spill just the single zone's pages.
3272  *
3273  * Note that this can be extremely slow as the draining happens in a workqueue.
3274  */
3275 void drain_all_pages(struct zone *zone)
3276 {
3277 	__drain_all_pages(zone, false);
3278 }
3279 
3280 #ifdef CONFIG_HIBERNATION
3281 
3282 /*
3283  * Touch the watchdog for every WD_PAGE_COUNT pages.
3284  */
3285 #define WD_PAGE_COUNT	(128*1024)
3286 
3287 void mark_free_pages(struct zone *zone)
3288 {
3289 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3290 	unsigned long flags;
3291 	unsigned int order, t;
3292 	struct page *page;
3293 
3294 	if (zone_is_empty(zone))
3295 		return;
3296 
3297 	spin_lock_irqsave(&zone->lock, flags);
3298 
3299 	max_zone_pfn = zone_end_pfn(zone);
3300 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3301 		if (pfn_valid(pfn)) {
3302 			page = pfn_to_page(pfn);
3303 
3304 			if (!--page_count) {
3305 				touch_nmi_watchdog();
3306 				page_count = WD_PAGE_COUNT;
3307 			}
3308 
3309 			if (page_zone(page) != zone)
3310 				continue;
3311 
3312 			if (!swsusp_page_is_forbidden(page))
3313 				swsusp_unset_page_free(page);
3314 		}
3315 
3316 	for_each_migratetype_order(order, t) {
3317 		list_for_each_entry(page,
3318 				&zone->free_area[order].free_list[t], lru) {
3319 			unsigned long i;
3320 
3321 			pfn = page_to_pfn(page);
3322 			for (i = 0; i < (1UL << order); i++) {
3323 				if (!--page_count) {
3324 					touch_nmi_watchdog();
3325 					page_count = WD_PAGE_COUNT;
3326 				}
3327 				swsusp_set_page_free(pfn_to_page(pfn + i));
3328 			}
3329 		}
3330 	}
3331 	spin_unlock_irqrestore(&zone->lock, flags);
3332 }
3333 #endif /* CONFIG_PM */
3334 
3335 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3336 							unsigned int order)
3337 {
3338 	int migratetype;
3339 
3340 	if (!free_pcp_prepare(page, order))
3341 		return false;
3342 
3343 	migratetype = get_pfnblock_migratetype(page, pfn);
3344 	set_pcppage_migratetype(page, migratetype);
3345 	return true;
3346 }
3347 
3348 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3349 {
3350 	int min_nr_free, max_nr_free;
3351 
3352 	/* Check for PCP disabled or boot pageset */
3353 	if (unlikely(high < batch))
3354 		return 1;
3355 
3356 	/* Leave at least pcp->batch pages on the list */
3357 	min_nr_free = batch;
3358 	max_nr_free = high - batch;
3359 
3360 	/*
3361 	 * Double the number of pages freed each time there is subsequent
3362 	 * freeing of pages without any allocation.
3363 	 */
3364 	batch <<= pcp->free_factor;
3365 	if (batch < max_nr_free)
3366 		pcp->free_factor++;
3367 	batch = clamp(batch, min_nr_free, max_nr_free);
3368 
3369 	return batch;
3370 }
3371 
3372 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3373 {
3374 	int high = READ_ONCE(pcp->high);
3375 
3376 	if (unlikely(!high))
3377 		return 0;
3378 
3379 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3380 		return high;
3381 
3382 	/*
3383 	 * If reclaim is active, limit the number of pages that can be
3384 	 * stored on pcp lists
3385 	 */
3386 	return min(READ_ONCE(pcp->batch) << 2, high);
3387 }
3388 
3389 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3390 				   int migratetype, unsigned int order)
3391 {
3392 	struct zone *zone = page_zone(page);
3393 	struct per_cpu_pages *pcp;
3394 	int high;
3395 	int pindex;
3396 
3397 	__count_vm_event(PGFREE);
3398 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3399 	pindex = order_to_pindex(migratetype, order);
3400 	list_add(&page->lru, &pcp->lists[pindex]);
3401 	pcp->count += 1 << order;
3402 	high = nr_pcp_high(pcp, zone);
3403 	if (pcp->count >= high) {
3404 		int batch = READ_ONCE(pcp->batch);
3405 
3406 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3407 	}
3408 }
3409 
3410 /*
3411  * Free a pcp page
3412  */
3413 void free_unref_page(struct page *page, unsigned int order)
3414 {
3415 	unsigned long flags;
3416 	unsigned long pfn = page_to_pfn(page);
3417 	int migratetype;
3418 
3419 	if (!free_unref_page_prepare(page, pfn, order))
3420 		return;
3421 
3422 	/*
3423 	 * We only track unmovable, reclaimable and movable on pcp lists.
3424 	 * Place ISOLATE pages on the isolated list because they are being
3425 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3426 	 * areas back if necessary. Otherwise, we may have to free
3427 	 * excessively into the page allocator
3428 	 */
3429 	migratetype = get_pcppage_migratetype(page);
3430 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3431 		if (unlikely(is_migrate_isolate(migratetype))) {
3432 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3433 			return;
3434 		}
3435 		migratetype = MIGRATE_MOVABLE;
3436 	}
3437 
3438 	local_lock_irqsave(&pagesets.lock, flags);
3439 	free_unref_page_commit(page, pfn, migratetype, order);
3440 	local_unlock_irqrestore(&pagesets.lock, flags);
3441 }
3442 
3443 /*
3444  * Free a list of 0-order pages
3445  */
3446 void free_unref_page_list(struct list_head *list)
3447 {
3448 	struct page *page, *next;
3449 	unsigned long flags, pfn;
3450 	int batch_count = 0;
3451 	int migratetype;
3452 
3453 	/* Prepare pages for freeing */
3454 	list_for_each_entry_safe(page, next, list, lru) {
3455 		pfn = page_to_pfn(page);
3456 		if (!free_unref_page_prepare(page, pfn, 0))
3457 			list_del(&page->lru);
3458 
3459 		/*
3460 		 * Free isolated pages directly to the allocator, see
3461 		 * comment in free_unref_page.
3462 		 */
3463 		migratetype = get_pcppage_migratetype(page);
3464 		if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3465 			if (unlikely(is_migrate_isolate(migratetype))) {
3466 				list_del(&page->lru);
3467 				free_one_page(page_zone(page), page, pfn, 0,
3468 							migratetype, FPI_NONE);
3469 				continue;
3470 			}
3471 
3472 			/*
3473 			 * Non-isolated types over MIGRATE_PCPTYPES get added
3474 			 * to the MIGRATE_MOVABLE pcp list.
3475 			 */
3476 			set_pcppage_migratetype(page, MIGRATE_MOVABLE);
3477 		}
3478 
3479 		set_page_private(page, pfn);
3480 	}
3481 
3482 	local_lock_irqsave(&pagesets.lock, flags);
3483 	list_for_each_entry_safe(page, next, list, lru) {
3484 		pfn = page_private(page);
3485 		set_page_private(page, 0);
3486 		migratetype = get_pcppage_migratetype(page);
3487 		trace_mm_page_free_batched(page);
3488 		free_unref_page_commit(page, pfn, migratetype, 0);
3489 
3490 		/*
3491 		 * Guard against excessive IRQ disabled times when we get
3492 		 * a large list of pages to free.
3493 		 */
3494 		if (++batch_count == SWAP_CLUSTER_MAX) {
3495 			local_unlock_irqrestore(&pagesets.lock, flags);
3496 			batch_count = 0;
3497 			local_lock_irqsave(&pagesets.lock, flags);
3498 		}
3499 	}
3500 	local_unlock_irqrestore(&pagesets.lock, flags);
3501 }
3502 
3503 /*
3504  * split_page takes a non-compound higher-order page, and splits it into
3505  * n (1<<order) sub-pages: page[0..n]
3506  * Each sub-page must be freed individually.
3507  *
3508  * Note: this is probably too low level an operation for use in drivers.
3509  * Please consult with lkml before using this in your driver.
3510  */
3511 void split_page(struct page *page, unsigned int order)
3512 {
3513 	int i;
3514 
3515 	VM_BUG_ON_PAGE(PageCompound(page), page);
3516 	VM_BUG_ON_PAGE(!page_count(page), page);
3517 
3518 	for (i = 1; i < (1 << order); i++)
3519 		set_page_refcounted(page + i);
3520 	split_page_owner(page, 1 << order);
3521 	split_page_memcg(page, 1 << order);
3522 }
3523 EXPORT_SYMBOL_GPL(split_page);
3524 
3525 int __isolate_free_page(struct page *page, unsigned int order)
3526 {
3527 	unsigned long watermark;
3528 	struct zone *zone;
3529 	int mt;
3530 
3531 	BUG_ON(!PageBuddy(page));
3532 
3533 	zone = page_zone(page);
3534 	mt = get_pageblock_migratetype(page);
3535 
3536 	if (!is_migrate_isolate(mt)) {
3537 		/*
3538 		 * Obey watermarks as if the page was being allocated. We can
3539 		 * emulate a high-order watermark check with a raised order-0
3540 		 * watermark, because we already know our high-order page
3541 		 * exists.
3542 		 */
3543 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3544 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3545 			return 0;
3546 
3547 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3548 	}
3549 
3550 	/* Remove page from free list */
3551 
3552 	del_page_from_free_list(page, zone, order);
3553 
3554 	/*
3555 	 * Set the pageblock if the isolated page is at least half of a
3556 	 * pageblock
3557 	 */
3558 	if (order >= pageblock_order - 1) {
3559 		struct page *endpage = page + (1 << order) - 1;
3560 		for (; page < endpage; page += pageblock_nr_pages) {
3561 			int mt = get_pageblock_migratetype(page);
3562 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3563 			    && !is_migrate_highatomic(mt))
3564 				set_pageblock_migratetype(page,
3565 							  MIGRATE_MOVABLE);
3566 		}
3567 	}
3568 
3569 
3570 	return 1UL << order;
3571 }
3572 
3573 /**
3574  * __putback_isolated_page - Return a now-isolated page back where we got it
3575  * @page: Page that was isolated
3576  * @order: Order of the isolated page
3577  * @mt: The page's pageblock's migratetype
3578  *
3579  * This function is meant to return a page pulled from the free lists via
3580  * __isolate_free_page back to the free lists they were pulled from.
3581  */
3582 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3583 {
3584 	struct zone *zone = page_zone(page);
3585 
3586 	/* zone lock should be held when this function is called */
3587 	lockdep_assert_held(&zone->lock);
3588 
3589 	/* Return isolated page to tail of freelist. */
3590 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3591 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3592 }
3593 
3594 /*
3595  * Update NUMA hit/miss statistics
3596  *
3597  * Must be called with interrupts disabled.
3598  */
3599 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3600 				   long nr_account)
3601 {
3602 #ifdef CONFIG_NUMA
3603 	enum numa_stat_item local_stat = NUMA_LOCAL;
3604 
3605 	/* skip numa counters update if numa stats is disabled */
3606 	if (!static_branch_likely(&vm_numa_stat_key))
3607 		return;
3608 
3609 	if (zone_to_nid(z) != numa_node_id())
3610 		local_stat = NUMA_OTHER;
3611 
3612 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3613 		__count_numa_events(z, NUMA_HIT, nr_account);
3614 	else {
3615 		__count_numa_events(z, NUMA_MISS, nr_account);
3616 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3617 	}
3618 	__count_numa_events(z, local_stat, nr_account);
3619 #endif
3620 }
3621 
3622 /* Remove page from the per-cpu list, caller must protect the list */
3623 static inline
3624 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3625 			int migratetype,
3626 			unsigned int alloc_flags,
3627 			struct per_cpu_pages *pcp,
3628 			struct list_head *list)
3629 {
3630 	struct page *page;
3631 
3632 	do {
3633 		if (list_empty(list)) {
3634 			int batch = READ_ONCE(pcp->batch);
3635 			int alloced;
3636 
3637 			/*
3638 			 * Scale batch relative to order if batch implies
3639 			 * free pages can be stored on the PCP. Batch can
3640 			 * be 1 for small zones or for boot pagesets which
3641 			 * should never store free pages as the pages may
3642 			 * belong to arbitrary zones.
3643 			 */
3644 			if (batch > 1)
3645 				batch = max(batch >> order, 2);
3646 			alloced = rmqueue_bulk(zone, order,
3647 					batch, list,
3648 					migratetype, alloc_flags);
3649 
3650 			pcp->count += alloced << order;
3651 			if (unlikely(list_empty(list)))
3652 				return NULL;
3653 		}
3654 
3655 		page = list_first_entry(list, struct page, lru);
3656 		list_del(&page->lru);
3657 		pcp->count -= 1 << order;
3658 	} while (check_new_pcp(page));
3659 
3660 	return page;
3661 }
3662 
3663 /* Lock and remove page from the per-cpu list */
3664 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3665 			struct zone *zone, unsigned int order,
3666 			gfp_t gfp_flags, int migratetype,
3667 			unsigned int alloc_flags)
3668 {
3669 	struct per_cpu_pages *pcp;
3670 	struct list_head *list;
3671 	struct page *page;
3672 	unsigned long flags;
3673 
3674 	local_lock_irqsave(&pagesets.lock, flags);
3675 
3676 	/*
3677 	 * On allocation, reduce the number of pages that are batch freed.
3678 	 * See nr_pcp_free() where free_factor is increased for subsequent
3679 	 * frees.
3680 	 */
3681 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3682 	pcp->free_factor >>= 1;
3683 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3684 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3685 	local_unlock_irqrestore(&pagesets.lock, flags);
3686 	if (page) {
3687 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3688 		zone_statistics(preferred_zone, zone, 1);
3689 	}
3690 	return page;
3691 }
3692 
3693 /*
3694  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3695  */
3696 static inline
3697 struct page *rmqueue(struct zone *preferred_zone,
3698 			struct zone *zone, unsigned int order,
3699 			gfp_t gfp_flags, unsigned int alloc_flags,
3700 			int migratetype)
3701 {
3702 	unsigned long flags;
3703 	struct page *page;
3704 
3705 	if (likely(pcp_allowed_order(order))) {
3706 		/*
3707 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3708 		 * we need to skip it when CMA area isn't allowed.
3709 		 */
3710 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3711 				migratetype != MIGRATE_MOVABLE) {
3712 			page = rmqueue_pcplist(preferred_zone, zone, order,
3713 					gfp_flags, migratetype, alloc_flags);
3714 			goto out;
3715 		}
3716 	}
3717 
3718 	/*
3719 	 * We most definitely don't want callers attempting to
3720 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3721 	 */
3722 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3723 	spin_lock_irqsave(&zone->lock, flags);
3724 
3725 	do {
3726 		page = NULL;
3727 		/*
3728 		 * order-0 request can reach here when the pcplist is skipped
3729 		 * due to non-CMA allocation context. HIGHATOMIC area is
3730 		 * reserved for high-order atomic allocation, so order-0
3731 		 * request should skip it.
3732 		 */
3733 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3734 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3735 			if (page)
3736 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3737 		}
3738 		if (!page)
3739 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3740 	} while (page && check_new_pages(page, order));
3741 	if (!page)
3742 		goto failed;
3743 
3744 	__mod_zone_freepage_state(zone, -(1 << order),
3745 				  get_pcppage_migratetype(page));
3746 	spin_unlock_irqrestore(&zone->lock, flags);
3747 
3748 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3749 	zone_statistics(preferred_zone, zone, 1);
3750 
3751 out:
3752 	/* Separate test+clear to avoid unnecessary atomics */
3753 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3754 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3755 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3756 	}
3757 
3758 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3759 	return page;
3760 
3761 failed:
3762 	spin_unlock_irqrestore(&zone->lock, flags);
3763 	return NULL;
3764 }
3765 
3766 #ifdef CONFIG_FAIL_PAGE_ALLOC
3767 
3768 static struct {
3769 	struct fault_attr attr;
3770 
3771 	bool ignore_gfp_highmem;
3772 	bool ignore_gfp_reclaim;
3773 	u32 min_order;
3774 } fail_page_alloc = {
3775 	.attr = FAULT_ATTR_INITIALIZER,
3776 	.ignore_gfp_reclaim = true,
3777 	.ignore_gfp_highmem = true,
3778 	.min_order = 1,
3779 };
3780 
3781 static int __init setup_fail_page_alloc(char *str)
3782 {
3783 	return setup_fault_attr(&fail_page_alloc.attr, str);
3784 }
3785 __setup("fail_page_alloc=", setup_fail_page_alloc);
3786 
3787 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3788 {
3789 	if (order < fail_page_alloc.min_order)
3790 		return false;
3791 	if (gfp_mask & __GFP_NOFAIL)
3792 		return false;
3793 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3794 		return false;
3795 	if (fail_page_alloc.ignore_gfp_reclaim &&
3796 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3797 		return false;
3798 
3799 	return should_fail(&fail_page_alloc.attr, 1 << order);
3800 }
3801 
3802 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3803 
3804 static int __init fail_page_alloc_debugfs(void)
3805 {
3806 	umode_t mode = S_IFREG | 0600;
3807 	struct dentry *dir;
3808 
3809 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3810 					&fail_page_alloc.attr);
3811 
3812 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3813 			    &fail_page_alloc.ignore_gfp_reclaim);
3814 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3815 			    &fail_page_alloc.ignore_gfp_highmem);
3816 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3817 
3818 	return 0;
3819 }
3820 
3821 late_initcall(fail_page_alloc_debugfs);
3822 
3823 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3824 
3825 #else /* CONFIG_FAIL_PAGE_ALLOC */
3826 
3827 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3828 {
3829 	return false;
3830 }
3831 
3832 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3833 
3834 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3835 {
3836 	return __should_fail_alloc_page(gfp_mask, order);
3837 }
3838 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3839 
3840 static inline long __zone_watermark_unusable_free(struct zone *z,
3841 				unsigned int order, unsigned int alloc_flags)
3842 {
3843 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3844 	long unusable_free = (1 << order) - 1;
3845 
3846 	/*
3847 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3848 	 * the high-atomic reserves. This will over-estimate the size of the
3849 	 * atomic reserve but it avoids a search.
3850 	 */
3851 	if (likely(!alloc_harder))
3852 		unusable_free += z->nr_reserved_highatomic;
3853 
3854 #ifdef CONFIG_CMA
3855 	/* If allocation can't use CMA areas don't use free CMA pages */
3856 	if (!(alloc_flags & ALLOC_CMA))
3857 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3858 #endif
3859 
3860 	return unusable_free;
3861 }
3862 
3863 /*
3864  * Return true if free base pages are above 'mark'. For high-order checks it
3865  * will return true of the order-0 watermark is reached and there is at least
3866  * one free page of a suitable size. Checking now avoids taking the zone lock
3867  * to check in the allocation paths if no pages are free.
3868  */
3869 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3870 			 int highest_zoneidx, unsigned int alloc_flags,
3871 			 long free_pages)
3872 {
3873 	long min = mark;
3874 	int o;
3875 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3876 
3877 	/* free_pages may go negative - that's OK */
3878 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3879 
3880 	if (alloc_flags & ALLOC_HIGH)
3881 		min -= min / 2;
3882 
3883 	if (unlikely(alloc_harder)) {
3884 		/*
3885 		 * OOM victims can try even harder than normal ALLOC_HARDER
3886 		 * users on the grounds that it's definitely going to be in
3887 		 * the exit path shortly and free memory. Any allocation it
3888 		 * makes during the free path will be small and short-lived.
3889 		 */
3890 		if (alloc_flags & ALLOC_OOM)
3891 			min -= min / 2;
3892 		else
3893 			min -= min / 4;
3894 	}
3895 
3896 	/*
3897 	 * Check watermarks for an order-0 allocation request. If these
3898 	 * are not met, then a high-order request also cannot go ahead
3899 	 * even if a suitable page happened to be free.
3900 	 */
3901 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3902 		return false;
3903 
3904 	/* If this is an order-0 request then the watermark is fine */
3905 	if (!order)
3906 		return true;
3907 
3908 	/* For a high-order request, check at least one suitable page is free */
3909 	for (o = order; o < MAX_ORDER; o++) {
3910 		struct free_area *area = &z->free_area[o];
3911 		int mt;
3912 
3913 		if (!area->nr_free)
3914 			continue;
3915 
3916 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3917 			if (!free_area_empty(area, mt))
3918 				return true;
3919 		}
3920 
3921 #ifdef CONFIG_CMA
3922 		if ((alloc_flags & ALLOC_CMA) &&
3923 		    !free_area_empty(area, MIGRATE_CMA)) {
3924 			return true;
3925 		}
3926 #endif
3927 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3928 			return true;
3929 	}
3930 	return false;
3931 }
3932 
3933 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3934 		      int highest_zoneidx, unsigned int alloc_flags)
3935 {
3936 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3937 					zone_page_state(z, NR_FREE_PAGES));
3938 }
3939 
3940 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3941 				unsigned long mark, int highest_zoneidx,
3942 				unsigned int alloc_flags, gfp_t gfp_mask)
3943 {
3944 	long free_pages;
3945 
3946 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3947 
3948 	/*
3949 	 * Fast check for order-0 only. If this fails then the reserves
3950 	 * need to be calculated.
3951 	 */
3952 	if (!order) {
3953 		long fast_free;
3954 
3955 		fast_free = free_pages;
3956 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3957 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3958 			return true;
3959 	}
3960 
3961 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3962 					free_pages))
3963 		return true;
3964 	/*
3965 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3966 	 * when checking the min watermark. The min watermark is the
3967 	 * point where boosting is ignored so that kswapd is woken up
3968 	 * when below the low watermark.
3969 	 */
3970 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3971 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3972 		mark = z->_watermark[WMARK_MIN];
3973 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3974 					alloc_flags, free_pages);
3975 	}
3976 
3977 	return false;
3978 }
3979 
3980 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3981 			unsigned long mark, int highest_zoneidx)
3982 {
3983 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3984 
3985 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3986 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3987 
3988 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3989 								free_pages);
3990 }
3991 
3992 #ifdef CONFIG_NUMA
3993 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3994 {
3995 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3996 				node_reclaim_distance;
3997 }
3998 #else	/* CONFIG_NUMA */
3999 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4000 {
4001 	return true;
4002 }
4003 #endif	/* CONFIG_NUMA */
4004 
4005 /*
4006  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4007  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4008  * premature use of a lower zone may cause lowmem pressure problems that
4009  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4010  * probably too small. It only makes sense to spread allocations to avoid
4011  * fragmentation between the Normal and DMA32 zones.
4012  */
4013 static inline unsigned int
4014 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4015 {
4016 	unsigned int alloc_flags;
4017 
4018 	/*
4019 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4020 	 * to save a branch.
4021 	 */
4022 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4023 
4024 #ifdef CONFIG_ZONE_DMA32
4025 	if (!zone)
4026 		return alloc_flags;
4027 
4028 	if (zone_idx(zone) != ZONE_NORMAL)
4029 		return alloc_flags;
4030 
4031 	/*
4032 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4033 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4034 	 * on UMA that if Normal is populated then so is DMA32.
4035 	 */
4036 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4037 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4038 		return alloc_flags;
4039 
4040 	alloc_flags |= ALLOC_NOFRAGMENT;
4041 #endif /* CONFIG_ZONE_DMA32 */
4042 	return alloc_flags;
4043 }
4044 
4045 /* Must be called after current_gfp_context() which can change gfp_mask */
4046 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4047 						  unsigned int alloc_flags)
4048 {
4049 #ifdef CONFIG_CMA
4050 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4051 		alloc_flags |= ALLOC_CMA;
4052 #endif
4053 	return alloc_flags;
4054 }
4055 
4056 /*
4057  * get_page_from_freelist goes through the zonelist trying to allocate
4058  * a page.
4059  */
4060 static struct page *
4061 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4062 						const struct alloc_context *ac)
4063 {
4064 	struct zoneref *z;
4065 	struct zone *zone;
4066 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4067 	bool no_fallback;
4068 
4069 retry:
4070 	/*
4071 	 * Scan zonelist, looking for a zone with enough free.
4072 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4073 	 */
4074 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4075 	z = ac->preferred_zoneref;
4076 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4077 					ac->nodemask) {
4078 		struct page *page;
4079 		unsigned long mark;
4080 
4081 		if (cpusets_enabled() &&
4082 			(alloc_flags & ALLOC_CPUSET) &&
4083 			!__cpuset_zone_allowed(zone, gfp_mask))
4084 				continue;
4085 		/*
4086 		 * When allocating a page cache page for writing, we
4087 		 * want to get it from a node that is within its dirty
4088 		 * limit, such that no single node holds more than its
4089 		 * proportional share of globally allowed dirty pages.
4090 		 * The dirty limits take into account the node's
4091 		 * lowmem reserves and high watermark so that kswapd
4092 		 * should be able to balance it without having to
4093 		 * write pages from its LRU list.
4094 		 *
4095 		 * XXX: For now, allow allocations to potentially
4096 		 * exceed the per-node dirty limit in the slowpath
4097 		 * (spread_dirty_pages unset) before going into reclaim,
4098 		 * which is important when on a NUMA setup the allowed
4099 		 * nodes are together not big enough to reach the
4100 		 * global limit.  The proper fix for these situations
4101 		 * will require awareness of nodes in the
4102 		 * dirty-throttling and the flusher threads.
4103 		 */
4104 		if (ac->spread_dirty_pages) {
4105 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4106 				continue;
4107 
4108 			if (!node_dirty_ok(zone->zone_pgdat)) {
4109 				last_pgdat_dirty_limit = zone->zone_pgdat;
4110 				continue;
4111 			}
4112 		}
4113 
4114 		if (no_fallback && nr_online_nodes > 1 &&
4115 		    zone != ac->preferred_zoneref->zone) {
4116 			int local_nid;
4117 
4118 			/*
4119 			 * If moving to a remote node, retry but allow
4120 			 * fragmenting fallbacks. Locality is more important
4121 			 * than fragmentation avoidance.
4122 			 */
4123 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4124 			if (zone_to_nid(zone) != local_nid) {
4125 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4126 				goto retry;
4127 			}
4128 		}
4129 
4130 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4131 		if (!zone_watermark_fast(zone, order, mark,
4132 				       ac->highest_zoneidx, alloc_flags,
4133 				       gfp_mask)) {
4134 			int ret;
4135 
4136 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4137 			/*
4138 			 * Watermark failed for this zone, but see if we can
4139 			 * grow this zone if it contains deferred pages.
4140 			 */
4141 			if (static_branch_unlikely(&deferred_pages)) {
4142 				if (_deferred_grow_zone(zone, order))
4143 					goto try_this_zone;
4144 			}
4145 #endif
4146 			/* Checked here to keep the fast path fast */
4147 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4148 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4149 				goto try_this_zone;
4150 
4151 			if (!node_reclaim_enabled() ||
4152 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4153 				continue;
4154 
4155 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4156 			switch (ret) {
4157 			case NODE_RECLAIM_NOSCAN:
4158 				/* did not scan */
4159 				continue;
4160 			case NODE_RECLAIM_FULL:
4161 				/* scanned but unreclaimable */
4162 				continue;
4163 			default:
4164 				/* did we reclaim enough */
4165 				if (zone_watermark_ok(zone, order, mark,
4166 					ac->highest_zoneidx, alloc_flags))
4167 					goto try_this_zone;
4168 
4169 				continue;
4170 			}
4171 		}
4172 
4173 try_this_zone:
4174 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4175 				gfp_mask, alloc_flags, ac->migratetype);
4176 		if (page) {
4177 			prep_new_page(page, order, gfp_mask, alloc_flags);
4178 
4179 			/*
4180 			 * If this is a high-order atomic allocation then check
4181 			 * if the pageblock should be reserved for the future
4182 			 */
4183 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4184 				reserve_highatomic_pageblock(page, zone, order);
4185 
4186 			return page;
4187 		} else {
4188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4189 			/* Try again if zone has deferred pages */
4190 			if (static_branch_unlikely(&deferred_pages)) {
4191 				if (_deferred_grow_zone(zone, order))
4192 					goto try_this_zone;
4193 			}
4194 #endif
4195 		}
4196 	}
4197 
4198 	/*
4199 	 * It's possible on a UMA machine to get through all zones that are
4200 	 * fragmented. If avoiding fragmentation, reset and try again.
4201 	 */
4202 	if (no_fallback) {
4203 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4204 		goto retry;
4205 	}
4206 
4207 	return NULL;
4208 }
4209 
4210 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4211 {
4212 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4213 
4214 	/*
4215 	 * This documents exceptions given to allocations in certain
4216 	 * contexts that are allowed to allocate outside current's set
4217 	 * of allowed nodes.
4218 	 */
4219 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4220 		if (tsk_is_oom_victim(current) ||
4221 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4222 			filter &= ~SHOW_MEM_FILTER_NODES;
4223 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4224 		filter &= ~SHOW_MEM_FILTER_NODES;
4225 
4226 	show_mem(filter, nodemask);
4227 }
4228 
4229 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4230 {
4231 	struct va_format vaf;
4232 	va_list args;
4233 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4234 
4235 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4236 		return;
4237 
4238 	va_start(args, fmt);
4239 	vaf.fmt = fmt;
4240 	vaf.va = &args;
4241 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4242 			current->comm, &vaf, gfp_mask, &gfp_mask,
4243 			nodemask_pr_args(nodemask));
4244 	va_end(args);
4245 
4246 	cpuset_print_current_mems_allowed();
4247 	pr_cont("\n");
4248 	dump_stack();
4249 	warn_alloc_show_mem(gfp_mask, nodemask);
4250 }
4251 
4252 static inline struct page *
4253 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4254 			      unsigned int alloc_flags,
4255 			      const struct alloc_context *ac)
4256 {
4257 	struct page *page;
4258 
4259 	page = get_page_from_freelist(gfp_mask, order,
4260 			alloc_flags|ALLOC_CPUSET, ac);
4261 	/*
4262 	 * fallback to ignore cpuset restriction if our nodes
4263 	 * are depleted
4264 	 */
4265 	if (!page)
4266 		page = get_page_from_freelist(gfp_mask, order,
4267 				alloc_flags, ac);
4268 
4269 	return page;
4270 }
4271 
4272 static inline struct page *
4273 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4274 	const struct alloc_context *ac, unsigned long *did_some_progress)
4275 {
4276 	struct oom_control oc = {
4277 		.zonelist = ac->zonelist,
4278 		.nodemask = ac->nodemask,
4279 		.memcg = NULL,
4280 		.gfp_mask = gfp_mask,
4281 		.order = order,
4282 	};
4283 	struct page *page;
4284 
4285 	*did_some_progress = 0;
4286 
4287 	/*
4288 	 * Acquire the oom lock.  If that fails, somebody else is
4289 	 * making progress for us.
4290 	 */
4291 	if (!mutex_trylock(&oom_lock)) {
4292 		*did_some_progress = 1;
4293 		schedule_timeout_uninterruptible(1);
4294 		return NULL;
4295 	}
4296 
4297 	/*
4298 	 * Go through the zonelist yet one more time, keep very high watermark
4299 	 * here, this is only to catch a parallel oom killing, we must fail if
4300 	 * we're still under heavy pressure. But make sure that this reclaim
4301 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4302 	 * allocation which will never fail due to oom_lock already held.
4303 	 */
4304 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4305 				      ~__GFP_DIRECT_RECLAIM, order,
4306 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4307 	if (page)
4308 		goto out;
4309 
4310 	/* Coredumps can quickly deplete all memory reserves */
4311 	if (current->flags & PF_DUMPCORE)
4312 		goto out;
4313 	/* The OOM killer will not help higher order allocs */
4314 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4315 		goto out;
4316 	/*
4317 	 * We have already exhausted all our reclaim opportunities without any
4318 	 * success so it is time to admit defeat. We will skip the OOM killer
4319 	 * because it is very likely that the caller has a more reasonable
4320 	 * fallback than shooting a random task.
4321 	 *
4322 	 * The OOM killer may not free memory on a specific node.
4323 	 */
4324 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4325 		goto out;
4326 	/* The OOM killer does not needlessly kill tasks for lowmem */
4327 	if (ac->highest_zoneidx < ZONE_NORMAL)
4328 		goto out;
4329 	if (pm_suspended_storage())
4330 		goto out;
4331 	/*
4332 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4333 	 * other request to make a forward progress.
4334 	 * We are in an unfortunate situation where out_of_memory cannot
4335 	 * do much for this context but let's try it to at least get
4336 	 * access to memory reserved if the current task is killed (see
4337 	 * out_of_memory). Once filesystems are ready to handle allocation
4338 	 * failures more gracefully we should just bail out here.
4339 	 */
4340 
4341 	/* Exhausted what can be done so it's blame time */
4342 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4343 		*did_some_progress = 1;
4344 
4345 		/*
4346 		 * Help non-failing allocations by giving them access to memory
4347 		 * reserves
4348 		 */
4349 		if (gfp_mask & __GFP_NOFAIL)
4350 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4351 					ALLOC_NO_WATERMARKS, ac);
4352 	}
4353 out:
4354 	mutex_unlock(&oom_lock);
4355 	return page;
4356 }
4357 
4358 /*
4359  * Maximum number of compaction retries with a progress before OOM
4360  * killer is consider as the only way to move forward.
4361  */
4362 #define MAX_COMPACT_RETRIES 16
4363 
4364 #ifdef CONFIG_COMPACTION
4365 /* Try memory compaction for high-order allocations before reclaim */
4366 static struct page *
4367 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4368 		unsigned int alloc_flags, const struct alloc_context *ac,
4369 		enum compact_priority prio, enum compact_result *compact_result)
4370 {
4371 	struct page *page = NULL;
4372 	unsigned long pflags;
4373 	unsigned int noreclaim_flag;
4374 
4375 	if (!order)
4376 		return NULL;
4377 
4378 	psi_memstall_enter(&pflags);
4379 	noreclaim_flag = memalloc_noreclaim_save();
4380 
4381 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4382 								prio, &page);
4383 
4384 	memalloc_noreclaim_restore(noreclaim_flag);
4385 	psi_memstall_leave(&pflags);
4386 
4387 	if (*compact_result == COMPACT_SKIPPED)
4388 		return NULL;
4389 	/*
4390 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4391 	 * count a compaction stall
4392 	 */
4393 	count_vm_event(COMPACTSTALL);
4394 
4395 	/* Prep a captured page if available */
4396 	if (page)
4397 		prep_new_page(page, order, gfp_mask, alloc_flags);
4398 
4399 	/* Try get a page from the freelist if available */
4400 	if (!page)
4401 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4402 
4403 	if (page) {
4404 		struct zone *zone = page_zone(page);
4405 
4406 		zone->compact_blockskip_flush = false;
4407 		compaction_defer_reset(zone, order, true);
4408 		count_vm_event(COMPACTSUCCESS);
4409 		return page;
4410 	}
4411 
4412 	/*
4413 	 * It's bad if compaction run occurs and fails. The most likely reason
4414 	 * is that pages exist, but not enough to satisfy watermarks.
4415 	 */
4416 	count_vm_event(COMPACTFAIL);
4417 
4418 	cond_resched();
4419 
4420 	return NULL;
4421 }
4422 
4423 static inline bool
4424 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4425 		     enum compact_result compact_result,
4426 		     enum compact_priority *compact_priority,
4427 		     int *compaction_retries)
4428 {
4429 	int max_retries = MAX_COMPACT_RETRIES;
4430 	int min_priority;
4431 	bool ret = false;
4432 	int retries = *compaction_retries;
4433 	enum compact_priority priority = *compact_priority;
4434 
4435 	if (!order)
4436 		return false;
4437 
4438 	if (fatal_signal_pending(current))
4439 		return false;
4440 
4441 	if (compaction_made_progress(compact_result))
4442 		(*compaction_retries)++;
4443 
4444 	/*
4445 	 * compaction considers all the zone as desperately out of memory
4446 	 * so it doesn't really make much sense to retry except when the
4447 	 * failure could be caused by insufficient priority
4448 	 */
4449 	if (compaction_failed(compact_result))
4450 		goto check_priority;
4451 
4452 	/*
4453 	 * compaction was skipped because there are not enough order-0 pages
4454 	 * to work with, so we retry only if it looks like reclaim can help.
4455 	 */
4456 	if (compaction_needs_reclaim(compact_result)) {
4457 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4458 		goto out;
4459 	}
4460 
4461 	/*
4462 	 * make sure the compaction wasn't deferred or didn't bail out early
4463 	 * due to locks contention before we declare that we should give up.
4464 	 * But the next retry should use a higher priority if allowed, so
4465 	 * we don't just keep bailing out endlessly.
4466 	 */
4467 	if (compaction_withdrawn(compact_result)) {
4468 		goto check_priority;
4469 	}
4470 
4471 	/*
4472 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4473 	 * costly ones because they are de facto nofail and invoke OOM
4474 	 * killer to move on while costly can fail and users are ready
4475 	 * to cope with that. 1/4 retries is rather arbitrary but we
4476 	 * would need much more detailed feedback from compaction to
4477 	 * make a better decision.
4478 	 */
4479 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4480 		max_retries /= 4;
4481 	if (*compaction_retries <= max_retries) {
4482 		ret = true;
4483 		goto out;
4484 	}
4485 
4486 	/*
4487 	 * Make sure there are attempts at the highest priority if we exhausted
4488 	 * all retries or failed at the lower priorities.
4489 	 */
4490 check_priority:
4491 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4492 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4493 
4494 	if (*compact_priority > min_priority) {
4495 		(*compact_priority)--;
4496 		*compaction_retries = 0;
4497 		ret = true;
4498 	}
4499 out:
4500 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4501 	return ret;
4502 }
4503 #else
4504 static inline struct page *
4505 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4506 		unsigned int alloc_flags, const struct alloc_context *ac,
4507 		enum compact_priority prio, enum compact_result *compact_result)
4508 {
4509 	*compact_result = COMPACT_SKIPPED;
4510 	return NULL;
4511 }
4512 
4513 static inline bool
4514 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4515 		     enum compact_result compact_result,
4516 		     enum compact_priority *compact_priority,
4517 		     int *compaction_retries)
4518 {
4519 	struct zone *zone;
4520 	struct zoneref *z;
4521 
4522 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4523 		return false;
4524 
4525 	/*
4526 	 * There are setups with compaction disabled which would prefer to loop
4527 	 * inside the allocator rather than hit the oom killer prematurely.
4528 	 * Let's give them a good hope and keep retrying while the order-0
4529 	 * watermarks are OK.
4530 	 */
4531 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4532 				ac->highest_zoneidx, ac->nodemask) {
4533 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4534 					ac->highest_zoneidx, alloc_flags))
4535 			return true;
4536 	}
4537 	return false;
4538 }
4539 #endif /* CONFIG_COMPACTION */
4540 
4541 #ifdef CONFIG_LOCKDEP
4542 static struct lockdep_map __fs_reclaim_map =
4543 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4544 
4545 static bool __need_reclaim(gfp_t gfp_mask)
4546 {
4547 	/* no reclaim without waiting on it */
4548 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4549 		return false;
4550 
4551 	/* this guy won't enter reclaim */
4552 	if (current->flags & PF_MEMALLOC)
4553 		return false;
4554 
4555 	if (gfp_mask & __GFP_NOLOCKDEP)
4556 		return false;
4557 
4558 	return true;
4559 }
4560 
4561 void __fs_reclaim_acquire(void)
4562 {
4563 	lock_map_acquire(&__fs_reclaim_map);
4564 }
4565 
4566 void __fs_reclaim_release(void)
4567 {
4568 	lock_map_release(&__fs_reclaim_map);
4569 }
4570 
4571 void fs_reclaim_acquire(gfp_t gfp_mask)
4572 {
4573 	gfp_mask = current_gfp_context(gfp_mask);
4574 
4575 	if (__need_reclaim(gfp_mask)) {
4576 		if (gfp_mask & __GFP_FS)
4577 			__fs_reclaim_acquire();
4578 
4579 #ifdef CONFIG_MMU_NOTIFIER
4580 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4581 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4582 #endif
4583 
4584 	}
4585 }
4586 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4587 
4588 void fs_reclaim_release(gfp_t gfp_mask)
4589 {
4590 	gfp_mask = current_gfp_context(gfp_mask);
4591 
4592 	if (__need_reclaim(gfp_mask)) {
4593 		if (gfp_mask & __GFP_FS)
4594 			__fs_reclaim_release();
4595 	}
4596 }
4597 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4598 #endif
4599 
4600 /* Perform direct synchronous page reclaim */
4601 static unsigned long
4602 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4603 					const struct alloc_context *ac)
4604 {
4605 	unsigned int noreclaim_flag;
4606 	unsigned long pflags, progress;
4607 
4608 	cond_resched();
4609 
4610 	/* We now go into synchronous reclaim */
4611 	cpuset_memory_pressure_bump();
4612 	psi_memstall_enter(&pflags);
4613 	fs_reclaim_acquire(gfp_mask);
4614 	noreclaim_flag = memalloc_noreclaim_save();
4615 
4616 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4617 								ac->nodemask);
4618 
4619 	memalloc_noreclaim_restore(noreclaim_flag);
4620 	fs_reclaim_release(gfp_mask);
4621 	psi_memstall_leave(&pflags);
4622 
4623 	cond_resched();
4624 
4625 	return progress;
4626 }
4627 
4628 /* The really slow allocator path where we enter direct reclaim */
4629 static inline struct page *
4630 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4631 		unsigned int alloc_flags, const struct alloc_context *ac,
4632 		unsigned long *did_some_progress)
4633 {
4634 	struct page *page = NULL;
4635 	bool drained = false;
4636 
4637 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4638 	if (unlikely(!(*did_some_progress)))
4639 		return NULL;
4640 
4641 retry:
4642 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4643 
4644 	/*
4645 	 * If an allocation failed after direct reclaim, it could be because
4646 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4647 	 * Shrink them and try again
4648 	 */
4649 	if (!page && !drained) {
4650 		unreserve_highatomic_pageblock(ac, false);
4651 		drain_all_pages(NULL);
4652 		drained = true;
4653 		goto retry;
4654 	}
4655 
4656 	return page;
4657 }
4658 
4659 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4660 			     const struct alloc_context *ac)
4661 {
4662 	struct zoneref *z;
4663 	struct zone *zone;
4664 	pg_data_t *last_pgdat = NULL;
4665 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4666 
4667 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4668 					ac->nodemask) {
4669 		if (last_pgdat != zone->zone_pgdat)
4670 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4671 		last_pgdat = zone->zone_pgdat;
4672 	}
4673 }
4674 
4675 static inline unsigned int
4676 gfp_to_alloc_flags(gfp_t gfp_mask)
4677 {
4678 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4679 
4680 	/*
4681 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4682 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4683 	 * to save two branches.
4684 	 */
4685 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4686 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4687 
4688 	/*
4689 	 * The caller may dip into page reserves a bit more if the caller
4690 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4691 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4692 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4693 	 */
4694 	alloc_flags |= (__force int)
4695 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4696 
4697 	if (gfp_mask & __GFP_ATOMIC) {
4698 		/*
4699 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4700 		 * if it can't schedule.
4701 		 */
4702 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4703 			alloc_flags |= ALLOC_HARDER;
4704 		/*
4705 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4706 		 * comment for __cpuset_node_allowed().
4707 		 */
4708 		alloc_flags &= ~ALLOC_CPUSET;
4709 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4710 		alloc_flags |= ALLOC_HARDER;
4711 
4712 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4713 
4714 	return alloc_flags;
4715 }
4716 
4717 static bool oom_reserves_allowed(struct task_struct *tsk)
4718 {
4719 	if (!tsk_is_oom_victim(tsk))
4720 		return false;
4721 
4722 	/*
4723 	 * !MMU doesn't have oom reaper so give access to memory reserves
4724 	 * only to the thread with TIF_MEMDIE set
4725 	 */
4726 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4727 		return false;
4728 
4729 	return true;
4730 }
4731 
4732 /*
4733  * Distinguish requests which really need access to full memory
4734  * reserves from oom victims which can live with a portion of it
4735  */
4736 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4737 {
4738 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4739 		return 0;
4740 	if (gfp_mask & __GFP_MEMALLOC)
4741 		return ALLOC_NO_WATERMARKS;
4742 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4743 		return ALLOC_NO_WATERMARKS;
4744 	if (!in_interrupt()) {
4745 		if (current->flags & PF_MEMALLOC)
4746 			return ALLOC_NO_WATERMARKS;
4747 		else if (oom_reserves_allowed(current))
4748 			return ALLOC_OOM;
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4755 {
4756 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4757 }
4758 
4759 /*
4760  * Checks whether it makes sense to retry the reclaim to make a forward progress
4761  * for the given allocation request.
4762  *
4763  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4764  * without success, or when we couldn't even meet the watermark if we
4765  * reclaimed all remaining pages on the LRU lists.
4766  *
4767  * Returns true if a retry is viable or false to enter the oom path.
4768  */
4769 static inline bool
4770 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4771 		     struct alloc_context *ac, int alloc_flags,
4772 		     bool did_some_progress, int *no_progress_loops)
4773 {
4774 	struct zone *zone;
4775 	struct zoneref *z;
4776 	bool ret = false;
4777 
4778 	/*
4779 	 * Costly allocations might have made a progress but this doesn't mean
4780 	 * their order will become available due to high fragmentation so
4781 	 * always increment the no progress counter for them
4782 	 */
4783 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4784 		*no_progress_loops = 0;
4785 	else
4786 		(*no_progress_loops)++;
4787 
4788 	/*
4789 	 * Make sure we converge to OOM if we cannot make any progress
4790 	 * several times in the row.
4791 	 */
4792 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4793 		/* Before OOM, exhaust highatomic_reserve */
4794 		return unreserve_highatomic_pageblock(ac, true);
4795 	}
4796 
4797 	/*
4798 	 * Keep reclaiming pages while there is a chance this will lead
4799 	 * somewhere.  If none of the target zones can satisfy our allocation
4800 	 * request even if all reclaimable pages are considered then we are
4801 	 * screwed and have to go OOM.
4802 	 */
4803 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4804 				ac->highest_zoneidx, ac->nodemask) {
4805 		unsigned long available;
4806 		unsigned long reclaimable;
4807 		unsigned long min_wmark = min_wmark_pages(zone);
4808 		bool wmark;
4809 
4810 		available = reclaimable = zone_reclaimable_pages(zone);
4811 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4812 
4813 		/*
4814 		 * Would the allocation succeed if we reclaimed all
4815 		 * reclaimable pages?
4816 		 */
4817 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4818 				ac->highest_zoneidx, alloc_flags, available);
4819 		trace_reclaim_retry_zone(z, order, reclaimable,
4820 				available, min_wmark, *no_progress_loops, wmark);
4821 		if (wmark) {
4822 			/*
4823 			 * If we didn't make any progress and have a lot of
4824 			 * dirty + writeback pages then we should wait for
4825 			 * an IO to complete to slow down the reclaim and
4826 			 * prevent from pre mature OOM
4827 			 */
4828 			if (!did_some_progress) {
4829 				unsigned long write_pending;
4830 
4831 				write_pending = zone_page_state_snapshot(zone,
4832 							NR_ZONE_WRITE_PENDING);
4833 
4834 				if (2 * write_pending > reclaimable) {
4835 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4836 					return true;
4837 				}
4838 			}
4839 
4840 			ret = true;
4841 			goto out;
4842 		}
4843 	}
4844 
4845 out:
4846 	/*
4847 	 * Memory allocation/reclaim might be called from a WQ context and the
4848 	 * current implementation of the WQ concurrency control doesn't
4849 	 * recognize that a particular WQ is congested if the worker thread is
4850 	 * looping without ever sleeping. Therefore we have to do a short sleep
4851 	 * here rather than calling cond_resched().
4852 	 */
4853 	if (current->flags & PF_WQ_WORKER)
4854 		schedule_timeout_uninterruptible(1);
4855 	else
4856 		cond_resched();
4857 	return ret;
4858 }
4859 
4860 static inline bool
4861 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4862 {
4863 	/*
4864 	 * It's possible that cpuset's mems_allowed and the nodemask from
4865 	 * mempolicy don't intersect. This should be normally dealt with by
4866 	 * policy_nodemask(), but it's possible to race with cpuset update in
4867 	 * such a way the check therein was true, and then it became false
4868 	 * before we got our cpuset_mems_cookie here.
4869 	 * This assumes that for all allocations, ac->nodemask can come only
4870 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4871 	 * when it does not intersect with the cpuset restrictions) or the
4872 	 * caller can deal with a violated nodemask.
4873 	 */
4874 	if (cpusets_enabled() && ac->nodemask &&
4875 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4876 		ac->nodemask = NULL;
4877 		return true;
4878 	}
4879 
4880 	/*
4881 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4882 	 * possible to race with parallel threads in such a way that our
4883 	 * allocation can fail while the mask is being updated. If we are about
4884 	 * to fail, check if the cpuset changed during allocation and if so,
4885 	 * retry.
4886 	 */
4887 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4888 		return true;
4889 
4890 	return false;
4891 }
4892 
4893 static inline struct page *
4894 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4895 						struct alloc_context *ac)
4896 {
4897 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4898 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4899 	struct page *page = NULL;
4900 	unsigned int alloc_flags;
4901 	unsigned long did_some_progress;
4902 	enum compact_priority compact_priority;
4903 	enum compact_result compact_result;
4904 	int compaction_retries;
4905 	int no_progress_loops;
4906 	unsigned int cpuset_mems_cookie;
4907 	int reserve_flags;
4908 
4909 	/*
4910 	 * We also sanity check to catch abuse of atomic reserves being used by
4911 	 * callers that are not in atomic context.
4912 	 */
4913 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4914 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4915 		gfp_mask &= ~__GFP_ATOMIC;
4916 
4917 retry_cpuset:
4918 	compaction_retries = 0;
4919 	no_progress_loops = 0;
4920 	compact_priority = DEF_COMPACT_PRIORITY;
4921 	cpuset_mems_cookie = read_mems_allowed_begin();
4922 
4923 	/*
4924 	 * The fast path uses conservative alloc_flags to succeed only until
4925 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4926 	 * alloc_flags precisely. So we do that now.
4927 	 */
4928 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4929 
4930 	/*
4931 	 * We need to recalculate the starting point for the zonelist iterator
4932 	 * because we might have used different nodemask in the fast path, or
4933 	 * there was a cpuset modification and we are retrying - otherwise we
4934 	 * could end up iterating over non-eligible zones endlessly.
4935 	 */
4936 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4937 					ac->highest_zoneidx, ac->nodemask);
4938 	if (!ac->preferred_zoneref->zone)
4939 		goto nopage;
4940 
4941 	if (alloc_flags & ALLOC_KSWAPD)
4942 		wake_all_kswapds(order, gfp_mask, ac);
4943 
4944 	/*
4945 	 * The adjusted alloc_flags might result in immediate success, so try
4946 	 * that first
4947 	 */
4948 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4949 	if (page)
4950 		goto got_pg;
4951 
4952 	/*
4953 	 * For costly allocations, try direct compaction first, as it's likely
4954 	 * that we have enough base pages and don't need to reclaim. For non-
4955 	 * movable high-order allocations, do that as well, as compaction will
4956 	 * try prevent permanent fragmentation by migrating from blocks of the
4957 	 * same migratetype.
4958 	 * Don't try this for allocations that are allowed to ignore
4959 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4960 	 */
4961 	if (can_direct_reclaim &&
4962 			(costly_order ||
4963 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4964 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4965 		page = __alloc_pages_direct_compact(gfp_mask, order,
4966 						alloc_flags, ac,
4967 						INIT_COMPACT_PRIORITY,
4968 						&compact_result);
4969 		if (page)
4970 			goto got_pg;
4971 
4972 		/*
4973 		 * Checks for costly allocations with __GFP_NORETRY, which
4974 		 * includes some THP page fault allocations
4975 		 */
4976 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4977 			/*
4978 			 * If allocating entire pageblock(s) and compaction
4979 			 * failed because all zones are below low watermarks
4980 			 * or is prohibited because it recently failed at this
4981 			 * order, fail immediately unless the allocator has
4982 			 * requested compaction and reclaim retry.
4983 			 *
4984 			 * Reclaim is
4985 			 *  - potentially very expensive because zones are far
4986 			 *    below their low watermarks or this is part of very
4987 			 *    bursty high order allocations,
4988 			 *  - not guaranteed to help because isolate_freepages()
4989 			 *    may not iterate over freed pages as part of its
4990 			 *    linear scan, and
4991 			 *  - unlikely to make entire pageblocks free on its
4992 			 *    own.
4993 			 */
4994 			if (compact_result == COMPACT_SKIPPED ||
4995 			    compact_result == COMPACT_DEFERRED)
4996 				goto nopage;
4997 
4998 			/*
4999 			 * Looks like reclaim/compaction is worth trying, but
5000 			 * sync compaction could be very expensive, so keep
5001 			 * using async compaction.
5002 			 */
5003 			compact_priority = INIT_COMPACT_PRIORITY;
5004 		}
5005 	}
5006 
5007 retry:
5008 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5009 	if (alloc_flags & ALLOC_KSWAPD)
5010 		wake_all_kswapds(order, gfp_mask, ac);
5011 
5012 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5013 	if (reserve_flags)
5014 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5015 
5016 	/*
5017 	 * Reset the nodemask and zonelist iterators if memory policies can be
5018 	 * ignored. These allocations are high priority and system rather than
5019 	 * user oriented.
5020 	 */
5021 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5022 		ac->nodemask = NULL;
5023 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5024 					ac->highest_zoneidx, ac->nodemask);
5025 	}
5026 
5027 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5028 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5029 	if (page)
5030 		goto got_pg;
5031 
5032 	/* Caller is not willing to reclaim, we can't balance anything */
5033 	if (!can_direct_reclaim)
5034 		goto nopage;
5035 
5036 	/* Avoid recursion of direct reclaim */
5037 	if (current->flags & PF_MEMALLOC)
5038 		goto nopage;
5039 
5040 	/* Try direct reclaim and then allocating */
5041 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5042 							&did_some_progress);
5043 	if (page)
5044 		goto got_pg;
5045 
5046 	/* Try direct compaction and then allocating */
5047 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5048 					compact_priority, &compact_result);
5049 	if (page)
5050 		goto got_pg;
5051 
5052 	/* Do not loop if specifically requested */
5053 	if (gfp_mask & __GFP_NORETRY)
5054 		goto nopage;
5055 
5056 	/*
5057 	 * Do not retry costly high order allocations unless they are
5058 	 * __GFP_RETRY_MAYFAIL
5059 	 */
5060 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5061 		goto nopage;
5062 
5063 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5064 				 did_some_progress > 0, &no_progress_loops))
5065 		goto retry;
5066 
5067 	/*
5068 	 * It doesn't make any sense to retry for the compaction if the order-0
5069 	 * reclaim is not able to make any progress because the current
5070 	 * implementation of the compaction depends on the sufficient amount
5071 	 * of free memory (see __compaction_suitable)
5072 	 */
5073 	if (did_some_progress > 0 &&
5074 			should_compact_retry(ac, order, alloc_flags,
5075 				compact_result, &compact_priority,
5076 				&compaction_retries))
5077 		goto retry;
5078 
5079 
5080 	/* Deal with possible cpuset update races before we start OOM killing */
5081 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5082 		goto retry_cpuset;
5083 
5084 	/* Reclaim has failed us, start killing things */
5085 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5086 	if (page)
5087 		goto got_pg;
5088 
5089 	/* Avoid allocations with no watermarks from looping endlessly */
5090 	if (tsk_is_oom_victim(current) &&
5091 	    (alloc_flags & ALLOC_OOM ||
5092 	     (gfp_mask & __GFP_NOMEMALLOC)))
5093 		goto nopage;
5094 
5095 	/* Retry as long as the OOM killer is making progress */
5096 	if (did_some_progress) {
5097 		no_progress_loops = 0;
5098 		goto retry;
5099 	}
5100 
5101 nopage:
5102 	/* Deal with possible cpuset update races before we fail */
5103 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5104 		goto retry_cpuset;
5105 
5106 	/*
5107 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5108 	 * we always retry
5109 	 */
5110 	if (gfp_mask & __GFP_NOFAIL) {
5111 		/*
5112 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5113 		 * of any new users that actually require GFP_NOWAIT
5114 		 */
5115 		if (WARN_ON_ONCE(!can_direct_reclaim))
5116 			goto fail;
5117 
5118 		/*
5119 		 * PF_MEMALLOC request from this context is rather bizarre
5120 		 * because we cannot reclaim anything and only can loop waiting
5121 		 * for somebody to do a work for us
5122 		 */
5123 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5124 
5125 		/*
5126 		 * non failing costly orders are a hard requirement which we
5127 		 * are not prepared for much so let's warn about these users
5128 		 * so that we can identify them and convert them to something
5129 		 * else.
5130 		 */
5131 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5132 
5133 		/*
5134 		 * Help non-failing allocations by giving them access to memory
5135 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5136 		 * could deplete whole memory reserves which would just make
5137 		 * the situation worse
5138 		 */
5139 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5140 		if (page)
5141 			goto got_pg;
5142 
5143 		cond_resched();
5144 		goto retry;
5145 	}
5146 fail:
5147 	warn_alloc(gfp_mask, ac->nodemask,
5148 			"page allocation failure: order:%u", order);
5149 got_pg:
5150 	return page;
5151 }
5152 
5153 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5154 		int preferred_nid, nodemask_t *nodemask,
5155 		struct alloc_context *ac, gfp_t *alloc_gfp,
5156 		unsigned int *alloc_flags)
5157 {
5158 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5159 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5160 	ac->nodemask = nodemask;
5161 	ac->migratetype = gfp_migratetype(gfp_mask);
5162 
5163 	if (cpusets_enabled()) {
5164 		*alloc_gfp |= __GFP_HARDWALL;
5165 		/*
5166 		 * When we are in the interrupt context, it is irrelevant
5167 		 * to the current task context. It means that any node ok.
5168 		 */
5169 		if (!in_interrupt() && !ac->nodemask)
5170 			ac->nodemask = &cpuset_current_mems_allowed;
5171 		else
5172 			*alloc_flags |= ALLOC_CPUSET;
5173 	}
5174 
5175 	fs_reclaim_acquire(gfp_mask);
5176 	fs_reclaim_release(gfp_mask);
5177 
5178 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5179 
5180 	if (should_fail_alloc_page(gfp_mask, order))
5181 		return false;
5182 
5183 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5184 
5185 	/* Dirty zone balancing only done in the fast path */
5186 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5187 
5188 	/*
5189 	 * The preferred zone is used for statistics but crucially it is
5190 	 * also used as the starting point for the zonelist iterator. It
5191 	 * may get reset for allocations that ignore memory policies.
5192 	 */
5193 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5194 					ac->highest_zoneidx, ac->nodemask);
5195 
5196 	return true;
5197 }
5198 
5199 /*
5200  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5201  * @gfp: GFP flags for the allocation
5202  * @preferred_nid: The preferred NUMA node ID to allocate from
5203  * @nodemask: Set of nodes to allocate from, may be NULL
5204  * @nr_pages: The number of pages desired on the list or array
5205  * @page_list: Optional list to store the allocated pages
5206  * @page_array: Optional array to store the pages
5207  *
5208  * This is a batched version of the page allocator that attempts to
5209  * allocate nr_pages quickly. Pages are added to page_list if page_list
5210  * is not NULL, otherwise it is assumed that the page_array is valid.
5211  *
5212  * For lists, nr_pages is the number of pages that should be allocated.
5213  *
5214  * For arrays, only NULL elements are populated with pages and nr_pages
5215  * is the maximum number of pages that will be stored in the array.
5216  *
5217  * Returns the number of pages on the list or array.
5218  */
5219 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5220 			nodemask_t *nodemask, int nr_pages,
5221 			struct list_head *page_list,
5222 			struct page **page_array)
5223 {
5224 	struct page *page;
5225 	unsigned long flags;
5226 	struct zone *zone;
5227 	struct zoneref *z;
5228 	struct per_cpu_pages *pcp;
5229 	struct list_head *pcp_list;
5230 	struct alloc_context ac;
5231 	gfp_t alloc_gfp;
5232 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5233 	int nr_populated = 0, nr_account = 0;
5234 
5235 	if (unlikely(nr_pages <= 0))
5236 		return 0;
5237 
5238 	/*
5239 	 * Skip populated array elements to determine if any pages need
5240 	 * to be allocated before disabling IRQs.
5241 	 */
5242 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5243 		nr_populated++;
5244 
5245 	/* Already populated array? */
5246 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5247 		return nr_populated;
5248 
5249 	/* Use the single page allocator for one page. */
5250 	if (nr_pages - nr_populated == 1)
5251 		goto failed;
5252 
5253 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5254 	gfp &= gfp_allowed_mask;
5255 	alloc_gfp = gfp;
5256 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5257 		return 0;
5258 	gfp = alloc_gfp;
5259 
5260 	/* Find an allowed local zone that meets the low watermark. */
5261 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5262 		unsigned long mark;
5263 
5264 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5265 		    !__cpuset_zone_allowed(zone, gfp)) {
5266 			continue;
5267 		}
5268 
5269 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5270 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5271 			goto failed;
5272 		}
5273 
5274 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5275 		if (zone_watermark_fast(zone, 0,  mark,
5276 				zonelist_zone_idx(ac.preferred_zoneref),
5277 				alloc_flags, gfp)) {
5278 			break;
5279 		}
5280 	}
5281 
5282 	/*
5283 	 * If there are no allowed local zones that meets the watermarks then
5284 	 * try to allocate a single page and reclaim if necessary.
5285 	 */
5286 	if (unlikely(!zone))
5287 		goto failed;
5288 
5289 	/* Attempt the batch allocation */
5290 	local_lock_irqsave(&pagesets.lock, flags);
5291 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5292 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5293 
5294 	while (nr_populated < nr_pages) {
5295 
5296 		/* Skip existing pages */
5297 		if (page_array && page_array[nr_populated]) {
5298 			nr_populated++;
5299 			continue;
5300 		}
5301 
5302 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5303 								pcp, pcp_list);
5304 		if (unlikely(!page)) {
5305 			/* Try and get at least one page */
5306 			if (!nr_populated)
5307 				goto failed_irq;
5308 			break;
5309 		}
5310 		nr_account++;
5311 
5312 		prep_new_page(page, 0, gfp, 0);
5313 		if (page_list)
5314 			list_add(&page->lru, page_list);
5315 		else
5316 			page_array[nr_populated] = page;
5317 		nr_populated++;
5318 	}
5319 
5320 	local_unlock_irqrestore(&pagesets.lock, flags);
5321 
5322 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5323 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5324 
5325 	return nr_populated;
5326 
5327 failed_irq:
5328 	local_unlock_irqrestore(&pagesets.lock, flags);
5329 
5330 failed:
5331 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5332 	if (page) {
5333 		if (page_list)
5334 			list_add(&page->lru, page_list);
5335 		else
5336 			page_array[nr_populated] = page;
5337 		nr_populated++;
5338 	}
5339 
5340 	return nr_populated;
5341 }
5342 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5343 
5344 /*
5345  * This is the 'heart' of the zoned buddy allocator.
5346  */
5347 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5348 							nodemask_t *nodemask)
5349 {
5350 	struct page *page;
5351 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5352 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5353 	struct alloc_context ac = { };
5354 
5355 	/*
5356 	 * There are several places where we assume that the order value is sane
5357 	 * so bail out early if the request is out of bound.
5358 	 */
5359 	if (unlikely(order >= MAX_ORDER)) {
5360 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5361 		return NULL;
5362 	}
5363 
5364 	gfp &= gfp_allowed_mask;
5365 	/*
5366 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5367 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5368 	 * from a particular context which has been marked by
5369 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5370 	 * movable zones are not used during allocation.
5371 	 */
5372 	gfp = current_gfp_context(gfp);
5373 	alloc_gfp = gfp;
5374 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5375 			&alloc_gfp, &alloc_flags))
5376 		return NULL;
5377 
5378 	/*
5379 	 * Forbid the first pass from falling back to types that fragment
5380 	 * memory until all local zones are considered.
5381 	 */
5382 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5383 
5384 	/* First allocation attempt */
5385 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5386 	if (likely(page))
5387 		goto out;
5388 
5389 	alloc_gfp = gfp;
5390 	ac.spread_dirty_pages = false;
5391 
5392 	/*
5393 	 * Restore the original nodemask if it was potentially replaced with
5394 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5395 	 */
5396 	ac.nodemask = nodemask;
5397 
5398 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5399 
5400 out:
5401 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5402 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5403 		__free_pages(page, order);
5404 		page = NULL;
5405 	}
5406 
5407 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5408 
5409 	return page;
5410 }
5411 EXPORT_SYMBOL(__alloc_pages);
5412 
5413 /*
5414  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5415  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5416  * you need to access high mem.
5417  */
5418 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5419 {
5420 	struct page *page;
5421 
5422 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5423 	if (!page)
5424 		return 0;
5425 	return (unsigned long) page_address(page);
5426 }
5427 EXPORT_SYMBOL(__get_free_pages);
5428 
5429 unsigned long get_zeroed_page(gfp_t gfp_mask)
5430 {
5431 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5432 }
5433 EXPORT_SYMBOL(get_zeroed_page);
5434 
5435 /**
5436  * __free_pages - Free pages allocated with alloc_pages().
5437  * @page: The page pointer returned from alloc_pages().
5438  * @order: The order of the allocation.
5439  *
5440  * This function can free multi-page allocations that are not compound
5441  * pages.  It does not check that the @order passed in matches that of
5442  * the allocation, so it is easy to leak memory.  Freeing more memory
5443  * than was allocated will probably emit a warning.
5444  *
5445  * If the last reference to this page is speculative, it will be released
5446  * by put_page() which only frees the first page of a non-compound
5447  * allocation.  To prevent the remaining pages from being leaked, we free
5448  * the subsequent pages here.  If you want to use the page's reference
5449  * count to decide when to free the allocation, you should allocate a
5450  * compound page, and use put_page() instead of __free_pages().
5451  *
5452  * Context: May be called in interrupt context or while holding a normal
5453  * spinlock, but not in NMI context or while holding a raw spinlock.
5454  */
5455 void __free_pages(struct page *page, unsigned int order)
5456 {
5457 	if (put_page_testzero(page))
5458 		free_the_page(page, order);
5459 	else if (!PageHead(page))
5460 		while (order-- > 0)
5461 			free_the_page(page + (1 << order), order);
5462 }
5463 EXPORT_SYMBOL(__free_pages);
5464 
5465 void free_pages(unsigned long addr, unsigned int order)
5466 {
5467 	if (addr != 0) {
5468 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5469 		__free_pages(virt_to_page((void *)addr), order);
5470 	}
5471 }
5472 
5473 EXPORT_SYMBOL(free_pages);
5474 
5475 /*
5476  * Page Fragment:
5477  *  An arbitrary-length arbitrary-offset area of memory which resides
5478  *  within a 0 or higher order page.  Multiple fragments within that page
5479  *  are individually refcounted, in the page's reference counter.
5480  *
5481  * The page_frag functions below provide a simple allocation framework for
5482  * page fragments.  This is used by the network stack and network device
5483  * drivers to provide a backing region of memory for use as either an
5484  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5485  */
5486 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5487 					     gfp_t gfp_mask)
5488 {
5489 	struct page *page = NULL;
5490 	gfp_t gfp = gfp_mask;
5491 
5492 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5493 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5494 		    __GFP_NOMEMALLOC;
5495 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5496 				PAGE_FRAG_CACHE_MAX_ORDER);
5497 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5498 #endif
5499 	if (unlikely(!page))
5500 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5501 
5502 	nc->va = page ? page_address(page) : NULL;
5503 
5504 	return page;
5505 }
5506 
5507 void __page_frag_cache_drain(struct page *page, unsigned int count)
5508 {
5509 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5510 
5511 	if (page_ref_sub_and_test(page, count))
5512 		free_the_page(page, compound_order(page));
5513 }
5514 EXPORT_SYMBOL(__page_frag_cache_drain);
5515 
5516 void *page_frag_alloc_align(struct page_frag_cache *nc,
5517 		      unsigned int fragsz, gfp_t gfp_mask,
5518 		      unsigned int align_mask)
5519 {
5520 	unsigned int size = PAGE_SIZE;
5521 	struct page *page;
5522 	int offset;
5523 
5524 	if (unlikely(!nc->va)) {
5525 refill:
5526 		page = __page_frag_cache_refill(nc, gfp_mask);
5527 		if (!page)
5528 			return NULL;
5529 
5530 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5531 		/* if size can vary use size else just use PAGE_SIZE */
5532 		size = nc->size;
5533 #endif
5534 		/* Even if we own the page, we do not use atomic_set().
5535 		 * This would break get_page_unless_zero() users.
5536 		 */
5537 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5538 
5539 		/* reset page count bias and offset to start of new frag */
5540 		nc->pfmemalloc = page_is_pfmemalloc(page);
5541 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5542 		nc->offset = size;
5543 	}
5544 
5545 	offset = nc->offset - fragsz;
5546 	if (unlikely(offset < 0)) {
5547 		page = virt_to_page(nc->va);
5548 
5549 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5550 			goto refill;
5551 
5552 		if (unlikely(nc->pfmemalloc)) {
5553 			free_the_page(page, compound_order(page));
5554 			goto refill;
5555 		}
5556 
5557 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5558 		/* if size can vary use size else just use PAGE_SIZE */
5559 		size = nc->size;
5560 #endif
5561 		/* OK, page count is 0, we can safely set it */
5562 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5563 
5564 		/* reset page count bias and offset to start of new frag */
5565 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5566 		offset = size - fragsz;
5567 	}
5568 
5569 	nc->pagecnt_bias--;
5570 	offset &= align_mask;
5571 	nc->offset = offset;
5572 
5573 	return nc->va + offset;
5574 }
5575 EXPORT_SYMBOL(page_frag_alloc_align);
5576 
5577 /*
5578  * Frees a page fragment allocated out of either a compound or order 0 page.
5579  */
5580 void page_frag_free(void *addr)
5581 {
5582 	struct page *page = virt_to_head_page(addr);
5583 
5584 	if (unlikely(put_page_testzero(page)))
5585 		free_the_page(page, compound_order(page));
5586 }
5587 EXPORT_SYMBOL(page_frag_free);
5588 
5589 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5590 		size_t size)
5591 {
5592 	if (addr) {
5593 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5594 		unsigned long used = addr + PAGE_ALIGN(size);
5595 
5596 		split_page(virt_to_page((void *)addr), order);
5597 		while (used < alloc_end) {
5598 			free_page(used);
5599 			used += PAGE_SIZE;
5600 		}
5601 	}
5602 	return (void *)addr;
5603 }
5604 
5605 /**
5606  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5607  * @size: the number of bytes to allocate
5608  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5609  *
5610  * This function is similar to alloc_pages(), except that it allocates the
5611  * minimum number of pages to satisfy the request.  alloc_pages() can only
5612  * allocate memory in power-of-two pages.
5613  *
5614  * This function is also limited by MAX_ORDER.
5615  *
5616  * Memory allocated by this function must be released by free_pages_exact().
5617  *
5618  * Return: pointer to the allocated area or %NULL in case of error.
5619  */
5620 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5621 {
5622 	unsigned int order = get_order(size);
5623 	unsigned long addr;
5624 
5625 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5626 		gfp_mask &= ~__GFP_COMP;
5627 
5628 	addr = __get_free_pages(gfp_mask, order);
5629 	return make_alloc_exact(addr, order, size);
5630 }
5631 EXPORT_SYMBOL(alloc_pages_exact);
5632 
5633 /**
5634  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5635  *			   pages on a node.
5636  * @nid: the preferred node ID where memory should be allocated
5637  * @size: the number of bytes to allocate
5638  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5639  *
5640  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5641  * back.
5642  *
5643  * Return: pointer to the allocated area or %NULL in case of error.
5644  */
5645 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5646 {
5647 	unsigned int order = get_order(size);
5648 	struct page *p;
5649 
5650 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5651 		gfp_mask &= ~__GFP_COMP;
5652 
5653 	p = alloc_pages_node(nid, gfp_mask, order);
5654 	if (!p)
5655 		return NULL;
5656 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5657 }
5658 
5659 /**
5660  * free_pages_exact - release memory allocated via alloc_pages_exact()
5661  * @virt: the value returned by alloc_pages_exact.
5662  * @size: size of allocation, same value as passed to alloc_pages_exact().
5663  *
5664  * Release the memory allocated by a previous call to alloc_pages_exact.
5665  */
5666 void free_pages_exact(void *virt, size_t size)
5667 {
5668 	unsigned long addr = (unsigned long)virt;
5669 	unsigned long end = addr + PAGE_ALIGN(size);
5670 
5671 	while (addr < end) {
5672 		free_page(addr);
5673 		addr += PAGE_SIZE;
5674 	}
5675 }
5676 EXPORT_SYMBOL(free_pages_exact);
5677 
5678 /**
5679  * nr_free_zone_pages - count number of pages beyond high watermark
5680  * @offset: The zone index of the highest zone
5681  *
5682  * nr_free_zone_pages() counts the number of pages which are beyond the
5683  * high watermark within all zones at or below a given zone index.  For each
5684  * zone, the number of pages is calculated as:
5685  *
5686  *     nr_free_zone_pages = managed_pages - high_pages
5687  *
5688  * Return: number of pages beyond high watermark.
5689  */
5690 static unsigned long nr_free_zone_pages(int offset)
5691 {
5692 	struct zoneref *z;
5693 	struct zone *zone;
5694 
5695 	/* Just pick one node, since fallback list is circular */
5696 	unsigned long sum = 0;
5697 
5698 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5699 
5700 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5701 		unsigned long size = zone_managed_pages(zone);
5702 		unsigned long high = high_wmark_pages(zone);
5703 		if (size > high)
5704 			sum += size - high;
5705 	}
5706 
5707 	return sum;
5708 }
5709 
5710 /**
5711  * nr_free_buffer_pages - count number of pages beyond high watermark
5712  *
5713  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5714  * watermark within ZONE_DMA and ZONE_NORMAL.
5715  *
5716  * Return: number of pages beyond high watermark within ZONE_DMA and
5717  * ZONE_NORMAL.
5718  */
5719 unsigned long nr_free_buffer_pages(void)
5720 {
5721 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5722 }
5723 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5724 
5725 static inline void show_node(struct zone *zone)
5726 {
5727 	if (IS_ENABLED(CONFIG_NUMA))
5728 		printk("Node %d ", zone_to_nid(zone));
5729 }
5730 
5731 long si_mem_available(void)
5732 {
5733 	long available;
5734 	unsigned long pagecache;
5735 	unsigned long wmark_low = 0;
5736 	unsigned long pages[NR_LRU_LISTS];
5737 	unsigned long reclaimable;
5738 	struct zone *zone;
5739 	int lru;
5740 
5741 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5742 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5743 
5744 	for_each_zone(zone)
5745 		wmark_low += low_wmark_pages(zone);
5746 
5747 	/*
5748 	 * Estimate the amount of memory available for userspace allocations,
5749 	 * without causing swapping.
5750 	 */
5751 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5752 
5753 	/*
5754 	 * Not all the page cache can be freed, otherwise the system will
5755 	 * start swapping. Assume at least half of the page cache, or the
5756 	 * low watermark worth of cache, needs to stay.
5757 	 */
5758 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5759 	pagecache -= min(pagecache / 2, wmark_low);
5760 	available += pagecache;
5761 
5762 	/*
5763 	 * Part of the reclaimable slab and other kernel memory consists of
5764 	 * items that are in use, and cannot be freed. Cap this estimate at the
5765 	 * low watermark.
5766 	 */
5767 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5768 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5769 	available += reclaimable - min(reclaimable / 2, wmark_low);
5770 
5771 	if (available < 0)
5772 		available = 0;
5773 	return available;
5774 }
5775 EXPORT_SYMBOL_GPL(si_mem_available);
5776 
5777 void si_meminfo(struct sysinfo *val)
5778 {
5779 	val->totalram = totalram_pages();
5780 	val->sharedram = global_node_page_state(NR_SHMEM);
5781 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5782 	val->bufferram = nr_blockdev_pages();
5783 	val->totalhigh = totalhigh_pages();
5784 	val->freehigh = nr_free_highpages();
5785 	val->mem_unit = PAGE_SIZE;
5786 }
5787 
5788 EXPORT_SYMBOL(si_meminfo);
5789 
5790 #ifdef CONFIG_NUMA
5791 void si_meminfo_node(struct sysinfo *val, int nid)
5792 {
5793 	int zone_type;		/* needs to be signed */
5794 	unsigned long managed_pages = 0;
5795 	unsigned long managed_highpages = 0;
5796 	unsigned long free_highpages = 0;
5797 	pg_data_t *pgdat = NODE_DATA(nid);
5798 
5799 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5800 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5801 	val->totalram = managed_pages;
5802 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5803 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5804 #ifdef CONFIG_HIGHMEM
5805 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5806 		struct zone *zone = &pgdat->node_zones[zone_type];
5807 
5808 		if (is_highmem(zone)) {
5809 			managed_highpages += zone_managed_pages(zone);
5810 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5811 		}
5812 	}
5813 	val->totalhigh = managed_highpages;
5814 	val->freehigh = free_highpages;
5815 #else
5816 	val->totalhigh = managed_highpages;
5817 	val->freehigh = free_highpages;
5818 #endif
5819 	val->mem_unit = PAGE_SIZE;
5820 }
5821 #endif
5822 
5823 /*
5824  * Determine whether the node should be displayed or not, depending on whether
5825  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5826  */
5827 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5828 {
5829 	if (!(flags & SHOW_MEM_FILTER_NODES))
5830 		return false;
5831 
5832 	/*
5833 	 * no node mask - aka implicit memory numa policy. Do not bother with
5834 	 * the synchronization - read_mems_allowed_begin - because we do not
5835 	 * have to be precise here.
5836 	 */
5837 	if (!nodemask)
5838 		nodemask = &cpuset_current_mems_allowed;
5839 
5840 	return !node_isset(nid, *nodemask);
5841 }
5842 
5843 #define K(x) ((x) << (PAGE_SHIFT-10))
5844 
5845 static void show_migration_types(unsigned char type)
5846 {
5847 	static const char types[MIGRATE_TYPES] = {
5848 		[MIGRATE_UNMOVABLE]	= 'U',
5849 		[MIGRATE_MOVABLE]	= 'M',
5850 		[MIGRATE_RECLAIMABLE]	= 'E',
5851 		[MIGRATE_HIGHATOMIC]	= 'H',
5852 #ifdef CONFIG_CMA
5853 		[MIGRATE_CMA]		= 'C',
5854 #endif
5855 #ifdef CONFIG_MEMORY_ISOLATION
5856 		[MIGRATE_ISOLATE]	= 'I',
5857 #endif
5858 	};
5859 	char tmp[MIGRATE_TYPES + 1];
5860 	char *p = tmp;
5861 	int i;
5862 
5863 	for (i = 0; i < MIGRATE_TYPES; i++) {
5864 		if (type & (1 << i))
5865 			*p++ = types[i];
5866 	}
5867 
5868 	*p = '\0';
5869 	printk(KERN_CONT "(%s) ", tmp);
5870 }
5871 
5872 /*
5873  * Show free area list (used inside shift_scroll-lock stuff)
5874  * We also calculate the percentage fragmentation. We do this by counting the
5875  * memory on each free list with the exception of the first item on the list.
5876  *
5877  * Bits in @filter:
5878  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5879  *   cpuset.
5880  */
5881 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5882 {
5883 	unsigned long free_pcp = 0;
5884 	int cpu;
5885 	struct zone *zone;
5886 	pg_data_t *pgdat;
5887 
5888 	for_each_populated_zone(zone) {
5889 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5890 			continue;
5891 
5892 		for_each_online_cpu(cpu)
5893 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5894 	}
5895 
5896 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5897 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5898 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5899 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5900 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5901 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5902 		global_node_page_state(NR_ACTIVE_ANON),
5903 		global_node_page_state(NR_INACTIVE_ANON),
5904 		global_node_page_state(NR_ISOLATED_ANON),
5905 		global_node_page_state(NR_ACTIVE_FILE),
5906 		global_node_page_state(NR_INACTIVE_FILE),
5907 		global_node_page_state(NR_ISOLATED_FILE),
5908 		global_node_page_state(NR_UNEVICTABLE),
5909 		global_node_page_state(NR_FILE_DIRTY),
5910 		global_node_page_state(NR_WRITEBACK),
5911 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5912 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5913 		global_node_page_state(NR_FILE_MAPPED),
5914 		global_node_page_state(NR_SHMEM),
5915 		global_node_page_state(NR_PAGETABLE),
5916 		global_zone_page_state(NR_BOUNCE),
5917 		global_zone_page_state(NR_FREE_PAGES),
5918 		free_pcp,
5919 		global_zone_page_state(NR_FREE_CMA_PAGES));
5920 
5921 	for_each_online_pgdat(pgdat) {
5922 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5923 			continue;
5924 
5925 		printk("Node %d"
5926 			" active_anon:%lukB"
5927 			" inactive_anon:%lukB"
5928 			" active_file:%lukB"
5929 			" inactive_file:%lukB"
5930 			" unevictable:%lukB"
5931 			" isolated(anon):%lukB"
5932 			" isolated(file):%lukB"
5933 			" mapped:%lukB"
5934 			" dirty:%lukB"
5935 			" writeback:%lukB"
5936 			" shmem:%lukB"
5937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5938 			" shmem_thp: %lukB"
5939 			" shmem_pmdmapped: %lukB"
5940 			" anon_thp: %lukB"
5941 #endif
5942 			" writeback_tmp:%lukB"
5943 			" kernel_stack:%lukB"
5944 #ifdef CONFIG_SHADOW_CALL_STACK
5945 			" shadow_call_stack:%lukB"
5946 #endif
5947 			" pagetables:%lukB"
5948 			" all_unreclaimable? %s"
5949 			"\n",
5950 			pgdat->node_id,
5951 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5952 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5953 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5954 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5955 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5956 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5957 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5958 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5959 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5960 			K(node_page_state(pgdat, NR_WRITEBACK)),
5961 			K(node_page_state(pgdat, NR_SHMEM)),
5962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5963 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5964 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5965 			K(node_page_state(pgdat, NR_ANON_THPS)),
5966 #endif
5967 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5968 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5969 #ifdef CONFIG_SHADOW_CALL_STACK
5970 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5971 #endif
5972 			K(node_page_state(pgdat, NR_PAGETABLE)),
5973 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5974 				"yes" : "no");
5975 	}
5976 
5977 	for_each_populated_zone(zone) {
5978 		int i;
5979 
5980 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5981 			continue;
5982 
5983 		free_pcp = 0;
5984 		for_each_online_cpu(cpu)
5985 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5986 
5987 		show_node(zone);
5988 		printk(KERN_CONT
5989 			"%s"
5990 			" free:%lukB"
5991 			" min:%lukB"
5992 			" low:%lukB"
5993 			" high:%lukB"
5994 			" reserved_highatomic:%luKB"
5995 			" active_anon:%lukB"
5996 			" inactive_anon:%lukB"
5997 			" active_file:%lukB"
5998 			" inactive_file:%lukB"
5999 			" unevictable:%lukB"
6000 			" writepending:%lukB"
6001 			" present:%lukB"
6002 			" managed:%lukB"
6003 			" mlocked:%lukB"
6004 			" bounce:%lukB"
6005 			" free_pcp:%lukB"
6006 			" local_pcp:%ukB"
6007 			" free_cma:%lukB"
6008 			"\n",
6009 			zone->name,
6010 			K(zone_page_state(zone, NR_FREE_PAGES)),
6011 			K(min_wmark_pages(zone)),
6012 			K(low_wmark_pages(zone)),
6013 			K(high_wmark_pages(zone)),
6014 			K(zone->nr_reserved_highatomic),
6015 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6016 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6017 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6018 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6019 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6020 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6021 			K(zone->present_pages),
6022 			K(zone_managed_pages(zone)),
6023 			K(zone_page_state(zone, NR_MLOCK)),
6024 			K(zone_page_state(zone, NR_BOUNCE)),
6025 			K(free_pcp),
6026 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6027 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6028 		printk("lowmem_reserve[]:");
6029 		for (i = 0; i < MAX_NR_ZONES; i++)
6030 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6031 		printk(KERN_CONT "\n");
6032 	}
6033 
6034 	for_each_populated_zone(zone) {
6035 		unsigned int order;
6036 		unsigned long nr[MAX_ORDER], flags, total = 0;
6037 		unsigned char types[MAX_ORDER];
6038 
6039 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6040 			continue;
6041 		show_node(zone);
6042 		printk(KERN_CONT "%s: ", zone->name);
6043 
6044 		spin_lock_irqsave(&zone->lock, flags);
6045 		for (order = 0; order < MAX_ORDER; order++) {
6046 			struct free_area *area = &zone->free_area[order];
6047 			int type;
6048 
6049 			nr[order] = area->nr_free;
6050 			total += nr[order] << order;
6051 
6052 			types[order] = 0;
6053 			for (type = 0; type < MIGRATE_TYPES; type++) {
6054 				if (!free_area_empty(area, type))
6055 					types[order] |= 1 << type;
6056 			}
6057 		}
6058 		spin_unlock_irqrestore(&zone->lock, flags);
6059 		for (order = 0; order < MAX_ORDER; order++) {
6060 			printk(KERN_CONT "%lu*%lukB ",
6061 			       nr[order], K(1UL) << order);
6062 			if (nr[order])
6063 				show_migration_types(types[order]);
6064 		}
6065 		printk(KERN_CONT "= %lukB\n", K(total));
6066 	}
6067 
6068 	hugetlb_show_meminfo();
6069 
6070 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6071 
6072 	show_swap_cache_info();
6073 }
6074 
6075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6076 {
6077 	zoneref->zone = zone;
6078 	zoneref->zone_idx = zone_idx(zone);
6079 }
6080 
6081 /*
6082  * Builds allocation fallback zone lists.
6083  *
6084  * Add all populated zones of a node to the zonelist.
6085  */
6086 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6087 {
6088 	struct zone *zone;
6089 	enum zone_type zone_type = MAX_NR_ZONES;
6090 	int nr_zones = 0;
6091 
6092 	do {
6093 		zone_type--;
6094 		zone = pgdat->node_zones + zone_type;
6095 		if (managed_zone(zone)) {
6096 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6097 			check_highest_zone(zone_type);
6098 		}
6099 	} while (zone_type);
6100 
6101 	return nr_zones;
6102 }
6103 
6104 #ifdef CONFIG_NUMA
6105 
6106 static int __parse_numa_zonelist_order(char *s)
6107 {
6108 	/*
6109 	 * We used to support different zonelists modes but they turned
6110 	 * out to be just not useful. Let's keep the warning in place
6111 	 * if somebody still use the cmd line parameter so that we do
6112 	 * not fail it silently
6113 	 */
6114 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6115 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6116 		return -EINVAL;
6117 	}
6118 	return 0;
6119 }
6120 
6121 char numa_zonelist_order[] = "Node";
6122 
6123 /*
6124  * sysctl handler for numa_zonelist_order
6125  */
6126 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6127 		void *buffer, size_t *length, loff_t *ppos)
6128 {
6129 	if (write)
6130 		return __parse_numa_zonelist_order(buffer);
6131 	return proc_dostring(table, write, buffer, length, ppos);
6132 }
6133 
6134 
6135 #define MAX_NODE_LOAD (nr_online_nodes)
6136 static int node_load[MAX_NUMNODES];
6137 
6138 /**
6139  * find_next_best_node - find the next node that should appear in a given node's fallback list
6140  * @node: node whose fallback list we're appending
6141  * @used_node_mask: nodemask_t of already used nodes
6142  *
6143  * We use a number of factors to determine which is the next node that should
6144  * appear on a given node's fallback list.  The node should not have appeared
6145  * already in @node's fallback list, and it should be the next closest node
6146  * according to the distance array (which contains arbitrary distance values
6147  * from each node to each node in the system), and should also prefer nodes
6148  * with no CPUs, since presumably they'll have very little allocation pressure
6149  * on them otherwise.
6150  *
6151  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6152  */
6153 static int find_next_best_node(int node, nodemask_t *used_node_mask)
6154 {
6155 	int n, val;
6156 	int min_val = INT_MAX;
6157 	int best_node = NUMA_NO_NODE;
6158 
6159 	/* Use the local node if we haven't already */
6160 	if (!node_isset(node, *used_node_mask)) {
6161 		node_set(node, *used_node_mask);
6162 		return node;
6163 	}
6164 
6165 	for_each_node_state(n, N_MEMORY) {
6166 
6167 		/* Don't want a node to appear more than once */
6168 		if (node_isset(n, *used_node_mask))
6169 			continue;
6170 
6171 		/* Use the distance array to find the distance */
6172 		val = node_distance(node, n);
6173 
6174 		/* Penalize nodes under us ("prefer the next node") */
6175 		val += (n < node);
6176 
6177 		/* Give preference to headless and unused nodes */
6178 		if (!cpumask_empty(cpumask_of_node(n)))
6179 			val += PENALTY_FOR_NODE_WITH_CPUS;
6180 
6181 		/* Slight preference for less loaded node */
6182 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6183 		val += node_load[n];
6184 
6185 		if (val < min_val) {
6186 			min_val = val;
6187 			best_node = n;
6188 		}
6189 	}
6190 
6191 	if (best_node >= 0)
6192 		node_set(best_node, *used_node_mask);
6193 
6194 	return best_node;
6195 }
6196 
6197 
6198 /*
6199  * Build zonelists ordered by node and zones within node.
6200  * This results in maximum locality--normal zone overflows into local
6201  * DMA zone, if any--but risks exhausting DMA zone.
6202  */
6203 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6204 		unsigned nr_nodes)
6205 {
6206 	struct zoneref *zonerefs;
6207 	int i;
6208 
6209 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6210 
6211 	for (i = 0; i < nr_nodes; i++) {
6212 		int nr_zones;
6213 
6214 		pg_data_t *node = NODE_DATA(node_order[i]);
6215 
6216 		nr_zones = build_zonerefs_node(node, zonerefs);
6217 		zonerefs += nr_zones;
6218 	}
6219 	zonerefs->zone = NULL;
6220 	zonerefs->zone_idx = 0;
6221 }
6222 
6223 /*
6224  * Build gfp_thisnode zonelists
6225  */
6226 static void build_thisnode_zonelists(pg_data_t *pgdat)
6227 {
6228 	struct zoneref *zonerefs;
6229 	int nr_zones;
6230 
6231 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6232 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6233 	zonerefs += nr_zones;
6234 	zonerefs->zone = NULL;
6235 	zonerefs->zone_idx = 0;
6236 }
6237 
6238 /*
6239  * Build zonelists ordered by zone and nodes within zones.
6240  * This results in conserving DMA zone[s] until all Normal memory is
6241  * exhausted, but results in overflowing to remote node while memory
6242  * may still exist in local DMA zone.
6243  */
6244 
6245 static void build_zonelists(pg_data_t *pgdat)
6246 {
6247 	static int node_order[MAX_NUMNODES];
6248 	int node, load, nr_nodes = 0;
6249 	nodemask_t used_mask = NODE_MASK_NONE;
6250 	int local_node, prev_node;
6251 
6252 	/* NUMA-aware ordering of nodes */
6253 	local_node = pgdat->node_id;
6254 	load = nr_online_nodes;
6255 	prev_node = local_node;
6256 
6257 	memset(node_order, 0, sizeof(node_order));
6258 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6259 		/*
6260 		 * We don't want to pressure a particular node.
6261 		 * So adding penalty to the first node in same
6262 		 * distance group to make it round-robin.
6263 		 */
6264 		if (node_distance(local_node, node) !=
6265 		    node_distance(local_node, prev_node))
6266 			node_load[node] = load;
6267 
6268 		node_order[nr_nodes++] = node;
6269 		prev_node = node;
6270 		load--;
6271 	}
6272 
6273 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6274 	build_thisnode_zonelists(pgdat);
6275 }
6276 
6277 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6278 /*
6279  * Return node id of node used for "local" allocations.
6280  * I.e., first node id of first zone in arg node's generic zonelist.
6281  * Used for initializing percpu 'numa_mem', which is used primarily
6282  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6283  */
6284 int local_memory_node(int node)
6285 {
6286 	struct zoneref *z;
6287 
6288 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6289 				   gfp_zone(GFP_KERNEL),
6290 				   NULL);
6291 	return zone_to_nid(z->zone);
6292 }
6293 #endif
6294 
6295 static void setup_min_unmapped_ratio(void);
6296 static void setup_min_slab_ratio(void);
6297 #else	/* CONFIG_NUMA */
6298 
6299 static void build_zonelists(pg_data_t *pgdat)
6300 {
6301 	int node, local_node;
6302 	struct zoneref *zonerefs;
6303 	int nr_zones;
6304 
6305 	local_node = pgdat->node_id;
6306 
6307 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6308 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6309 	zonerefs += nr_zones;
6310 
6311 	/*
6312 	 * Now we build the zonelist so that it contains the zones
6313 	 * of all the other nodes.
6314 	 * We don't want to pressure a particular node, so when
6315 	 * building the zones for node N, we make sure that the
6316 	 * zones coming right after the local ones are those from
6317 	 * node N+1 (modulo N)
6318 	 */
6319 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6320 		if (!node_online(node))
6321 			continue;
6322 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6323 		zonerefs += nr_zones;
6324 	}
6325 	for (node = 0; node < local_node; node++) {
6326 		if (!node_online(node))
6327 			continue;
6328 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6329 		zonerefs += nr_zones;
6330 	}
6331 
6332 	zonerefs->zone = NULL;
6333 	zonerefs->zone_idx = 0;
6334 }
6335 
6336 #endif	/* CONFIG_NUMA */
6337 
6338 /*
6339  * Boot pageset table. One per cpu which is going to be used for all
6340  * zones and all nodes. The parameters will be set in such a way
6341  * that an item put on a list will immediately be handed over to
6342  * the buddy list. This is safe since pageset manipulation is done
6343  * with interrupts disabled.
6344  *
6345  * The boot_pagesets must be kept even after bootup is complete for
6346  * unused processors and/or zones. They do play a role for bootstrapping
6347  * hotplugged processors.
6348  *
6349  * zoneinfo_show() and maybe other functions do
6350  * not check if the processor is online before following the pageset pointer.
6351  * Other parts of the kernel may not check if the zone is available.
6352  */
6353 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6354 /* These effectively disable the pcplists in the boot pageset completely */
6355 #define BOOT_PAGESET_HIGH	0
6356 #define BOOT_PAGESET_BATCH	1
6357 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6358 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6359 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6360 
6361 static void __build_all_zonelists(void *data)
6362 {
6363 	int nid;
6364 	int __maybe_unused cpu;
6365 	pg_data_t *self = data;
6366 	static DEFINE_SPINLOCK(lock);
6367 
6368 	spin_lock(&lock);
6369 
6370 #ifdef CONFIG_NUMA
6371 	memset(node_load, 0, sizeof(node_load));
6372 #endif
6373 
6374 	/*
6375 	 * This node is hotadded and no memory is yet present.   So just
6376 	 * building zonelists is fine - no need to touch other nodes.
6377 	 */
6378 	if (self && !node_online(self->node_id)) {
6379 		build_zonelists(self);
6380 	} else {
6381 		for_each_online_node(nid) {
6382 			pg_data_t *pgdat = NODE_DATA(nid);
6383 
6384 			build_zonelists(pgdat);
6385 		}
6386 
6387 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6388 		/*
6389 		 * We now know the "local memory node" for each node--
6390 		 * i.e., the node of the first zone in the generic zonelist.
6391 		 * Set up numa_mem percpu variable for on-line cpus.  During
6392 		 * boot, only the boot cpu should be on-line;  we'll init the
6393 		 * secondary cpus' numa_mem as they come on-line.  During
6394 		 * node/memory hotplug, we'll fixup all on-line cpus.
6395 		 */
6396 		for_each_online_cpu(cpu)
6397 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6398 #endif
6399 	}
6400 
6401 	spin_unlock(&lock);
6402 }
6403 
6404 static noinline void __init
6405 build_all_zonelists_init(void)
6406 {
6407 	int cpu;
6408 
6409 	__build_all_zonelists(NULL);
6410 
6411 	/*
6412 	 * Initialize the boot_pagesets that are going to be used
6413 	 * for bootstrapping processors. The real pagesets for
6414 	 * each zone will be allocated later when the per cpu
6415 	 * allocator is available.
6416 	 *
6417 	 * boot_pagesets are used also for bootstrapping offline
6418 	 * cpus if the system is already booted because the pagesets
6419 	 * are needed to initialize allocators on a specific cpu too.
6420 	 * F.e. the percpu allocator needs the page allocator which
6421 	 * needs the percpu allocator in order to allocate its pagesets
6422 	 * (a chicken-egg dilemma).
6423 	 */
6424 	for_each_possible_cpu(cpu)
6425 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6426 
6427 	mminit_verify_zonelist();
6428 	cpuset_init_current_mems_allowed();
6429 }
6430 
6431 /*
6432  * unless system_state == SYSTEM_BOOTING.
6433  *
6434  * __ref due to call of __init annotated helper build_all_zonelists_init
6435  * [protected by SYSTEM_BOOTING].
6436  */
6437 void __ref build_all_zonelists(pg_data_t *pgdat)
6438 {
6439 	unsigned long vm_total_pages;
6440 
6441 	if (system_state == SYSTEM_BOOTING) {
6442 		build_all_zonelists_init();
6443 	} else {
6444 		__build_all_zonelists(pgdat);
6445 		/* cpuset refresh routine should be here */
6446 	}
6447 	/* Get the number of free pages beyond high watermark in all zones. */
6448 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6449 	/*
6450 	 * Disable grouping by mobility if the number of pages in the
6451 	 * system is too low to allow the mechanism to work. It would be
6452 	 * more accurate, but expensive to check per-zone. This check is
6453 	 * made on memory-hotadd so a system can start with mobility
6454 	 * disabled and enable it later
6455 	 */
6456 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6457 		page_group_by_mobility_disabled = 1;
6458 	else
6459 		page_group_by_mobility_disabled = 0;
6460 
6461 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6462 		nr_online_nodes,
6463 		page_group_by_mobility_disabled ? "off" : "on",
6464 		vm_total_pages);
6465 #ifdef CONFIG_NUMA
6466 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6467 #endif
6468 }
6469 
6470 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6471 static bool __meminit
6472 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6473 {
6474 	static struct memblock_region *r;
6475 
6476 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6477 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6478 			for_each_mem_region(r) {
6479 				if (*pfn < memblock_region_memory_end_pfn(r))
6480 					break;
6481 			}
6482 		}
6483 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6484 		    memblock_is_mirror(r)) {
6485 			*pfn = memblock_region_memory_end_pfn(r);
6486 			return true;
6487 		}
6488 	}
6489 	return false;
6490 }
6491 
6492 /*
6493  * Initially all pages are reserved - free ones are freed
6494  * up by memblock_free_all() once the early boot process is
6495  * done. Non-atomic initialization, single-pass.
6496  *
6497  * All aligned pageblocks are initialized to the specified migratetype
6498  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6499  * zone stats (e.g., nr_isolate_pageblock) are touched.
6500  */
6501 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6502 		unsigned long start_pfn, unsigned long zone_end_pfn,
6503 		enum meminit_context context,
6504 		struct vmem_altmap *altmap, int migratetype)
6505 {
6506 	unsigned long pfn, end_pfn = start_pfn + size;
6507 	struct page *page;
6508 
6509 	if (highest_memmap_pfn < end_pfn - 1)
6510 		highest_memmap_pfn = end_pfn - 1;
6511 
6512 #ifdef CONFIG_ZONE_DEVICE
6513 	/*
6514 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6515 	 * memory. We limit the total number of pages to initialize to just
6516 	 * those that might contain the memory mapping. We will defer the
6517 	 * ZONE_DEVICE page initialization until after we have released
6518 	 * the hotplug lock.
6519 	 */
6520 	if (zone == ZONE_DEVICE) {
6521 		if (!altmap)
6522 			return;
6523 
6524 		if (start_pfn == altmap->base_pfn)
6525 			start_pfn += altmap->reserve;
6526 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6527 	}
6528 #endif
6529 
6530 	for (pfn = start_pfn; pfn < end_pfn; ) {
6531 		/*
6532 		 * There can be holes in boot-time mem_map[]s handed to this
6533 		 * function.  They do not exist on hotplugged memory.
6534 		 */
6535 		if (context == MEMINIT_EARLY) {
6536 			if (overlap_memmap_init(zone, &pfn))
6537 				continue;
6538 			if (defer_init(nid, pfn, zone_end_pfn))
6539 				break;
6540 		}
6541 
6542 		page = pfn_to_page(pfn);
6543 		__init_single_page(page, pfn, zone, nid);
6544 		if (context == MEMINIT_HOTPLUG)
6545 			__SetPageReserved(page);
6546 
6547 		/*
6548 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6549 		 * such that unmovable allocations won't be scattered all
6550 		 * over the place during system boot.
6551 		 */
6552 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6553 			set_pageblock_migratetype(page, migratetype);
6554 			cond_resched();
6555 		}
6556 		pfn++;
6557 	}
6558 }
6559 
6560 #ifdef CONFIG_ZONE_DEVICE
6561 void __ref memmap_init_zone_device(struct zone *zone,
6562 				   unsigned long start_pfn,
6563 				   unsigned long nr_pages,
6564 				   struct dev_pagemap *pgmap)
6565 {
6566 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6567 	struct pglist_data *pgdat = zone->zone_pgdat;
6568 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6569 	unsigned long zone_idx = zone_idx(zone);
6570 	unsigned long start = jiffies;
6571 	int nid = pgdat->node_id;
6572 
6573 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6574 		return;
6575 
6576 	/*
6577 	 * The call to memmap_init should have already taken care
6578 	 * of the pages reserved for the memmap, so we can just jump to
6579 	 * the end of that region and start processing the device pages.
6580 	 */
6581 	if (altmap) {
6582 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6583 		nr_pages = end_pfn - start_pfn;
6584 	}
6585 
6586 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6587 		struct page *page = pfn_to_page(pfn);
6588 
6589 		__init_single_page(page, pfn, zone_idx, nid);
6590 
6591 		/*
6592 		 * Mark page reserved as it will need to wait for onlining
6593 		 * phase for it to be fully associated with a zone.
6594 		 *
6595 		 * We can use the non-atomic __set_bit operation for setting
6596 		 * the flag as we are still initializing the pages.
6597 		 */
6598 		__SetPageReserved(page);
6599 
6600 		/*
6601 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6602 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6603 		 * ever freed or placed on a driver-private list.
6604 		 */
6605 		page->pgmap = pgmap;
6606 		page->zone_device_data = NULL;
6607 
6608 		/*
6609 		 * Mark the block movable so that blocks are reserved for
6610 		 * movable at startup. This will force kernel allocations
6611 		 * to reserve their blocks rather than leaking throughout
6612 		 * the address space during boot when many long-lived
6613 		 * kernel allocations are made.
6614 		 *
6615 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6616 		 * because this is done early in section_activate()
6617 		 */
6618 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6619 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6620 			cond_resched();
6621 		}
6622 	}
6623 
6624 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6625 		nr_pages, jiffies_to_msecs(jiffies - start));
6626 }
6627 
6628 #endif
6629 static void __meminit zone_init_free_lists(struct zone *zone)
6630 {
6631 	unsigned int order, t;
6632 	for_each_migratetype_order(order, t) {
6633 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6634 		zone->free_area[order].nr_free = 0;
6635 	}
6636 }
6637 
6638 #if !defined(CONFIG_FLATMEM)
6639 /*
6640  * Only struct pages that correspond to ranges defined by memblock.memory
6641  * are zeroed and initialized by going through __init_single_page() during
6642  * memmap_init_zone_range().
6643  *
6644  * But, there could be struct pages that correspond to holes in
6645  * memblock.memory. This can happen because of the following reasons:
6646  * - physical memory bank size is not necessarily the exact multiple of the
6647  *   arbitrary section size
6648  * - early reserved memory may not be listed in memblock.memory
6649  * - memory layouts defined with memmap= kernel parameter may not align
6650  *   nicely with memmap sections
6651  *
6652  * Explicitly initialize those struct pages so that:
6653  * - PG_Reserved is set
6654  * - zone and node links point to zone and node that span the page if the
6655  *   hole is in the middle of a zone
6656  * - zone and node links point to adjacent zone/node if the hole falls on
6657  *   the zone boundary; the pages in such holes will be prepended to the
6658  *   zone/node above the hole except for the trailing pages in the last
6659  *   section that will be appended to the zone/node below.
6660  */
6661 static void __init init_unavailable_range(unsigned long spfn,
6662 					  unsigned long epfn,
6663 					  int zone, int node)
6664 {
6665 	unsigned long pfn;
6666 	u64 pgcnt = 0;
6667 
6668 	for (pfn = spfn; pfn < epfn; pfn++) {
6669 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6670 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6671 				+ pageblock_nr_pages - 1;
6672 			continue;
6673 		}
6674 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6675 		__SetPageReserved(pfn_to_page(pfn));
6676 		pgcnt++;
6677 	}
6678 
6679 	if (pgcnt)
6680 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6681 			node, zone_names[zone], pgcnt);
6682 }
6683 #else
6684 static inline void init_unavailable_range(unsigned long spfn,
6685 					  unsigned long epfn,
6686 					  int zone, int node)
6687 {
6688 }
6689 #endif
6690 
6691 static void __init memmap_init_zone_range(struct zone *zone,
6692 					  unsigned long start_pfn,
6693 					  unsigned long end_pfn,
6694 					  unsigned long *hole_pfn)
6695 {
6696 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6697 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6698 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6699 
6700 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6701 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6702 
6703 	if (start_pfn >= end_pfn)
6704 		return;
6705 
6706 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6707 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6708 
6709 	if (*hole_pfn < start_pfn)
6710 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6711 
6712 	*hole_pfn = end_pfn;
6713 }
6714 
6715 static void __init memmap_init(void)
6716 {
6717 	unsigned long start_pfn, end_pfn;
6718 	unsigned long hole_pfn = 0;
6719 	int i, j, zone_id, nid;
6720 
6721 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6722 		struct pglist_data *node = NODE_DATA(nid);
6723 
6724 		for (j = 0; j < MAX_NR_ZONES; j++) {
6725 			struct zone *zone = node->node_zones + j;
6726 
6727 			if (!populated_zone(zone))
6728 				continue;
6729 
6730 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6731 					       &hole_pfn);
6732 			zone_id = j;
6733 		}
6734 	}
6735 
6736 #ifdef CONFIG_SPARSEMEM
6737 	/*
6738 	 * Initialize the memory map for hole in the range [memory_end,
6739 	 * section_end].
6740 	 * Append the pages in this hole to the highest zone in the last
6741 	 * node.
6742 	 * The call to init_unavailable_range() is outside the ifdef to
6743 	 * silence the compiler warining about zone_id set but not used;
6744 	 * for FLATMEM it is a nop anyway
6745 	 */
6746 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6747 	if (hole_pfn < end_pfn)
6748 #endif
6749 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6750 }
6751 
6752 static int zone_batchsize(struct zone *zone)
6753 {
6754 #ifdef CONFIG_MMU
6755 	int batch;
6756 
6757 	/*
6758 	 * The number of pages to batch allocate is either ~0.1%
6759 	 * of the zone or 1MB, whichever is smaller. The batch
6760 	 * size is striking a balance between allocation latency
6761 	 * and zone lock contention.
6762 	 */
6763 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6764 	batch /= 4;		/* We effectively *= 4 below */
6765 	if (batch < 1)
6766 		batch = 1;
6767 
6768 	/*
6769 	 * Clamp the batch to a 2^n - 1 value. Having a power
6770 	 * of 2 value was found to be more likely to have
6771 	 * suboptimal cache aliasing properties in some cases.
6772 	 *
6773 	 * For example if 2 tasks are alternately allocating
6774 	 * batches of pages, one task can end up with a lot
6775 	 * of pages of one half of the possible page colors
6776 	 * and the other with pages of the other colors.
6777 	 */
6778 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6779 
6780 	return batch;
6781 
6782 #else
6783 	/* The deferral and batching of frees should be suppressed under NOMMU
6784 	 * conditions.
6785 	 *
6786 	 * The problem is that NOMMU needs to be able to allocate large chunks
6787 	 * of contiguous memory as there's no hardware page translation to
6788 	 * assemble apparent contiguous memory from discontiguous pages.
6789 	 *
6790 	 * Queueing large contiguous runs of pages for batching, however,
6791 	 * causes the pages to actually be freed in smaller chunks.  As there
6792 	 * can be a significant delay between the individual batches being
6793 	 * recycled, this leads to the once large chunks of space being
6794 	 * fragmented and becoming unavailable for high-order allocations.
6795 	 */
6796 	return 0;
6797 #endif
6798 }
6799 
6800 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6801 {
6802 #ifdef CONFIG_MMU
6803 	int high;
6804 	int nr_split_cpus;
6805 	unsigned long total_pages;
6806 
6807 	if (!percpu_pagelist_high_fraction) {
6808 		/*
6809 		 * By default, the high value of the pcp is based on the zone
6810 		 * low watermark so that if they are full then background
6811 		 * reclaim will not be started prematurely.
6812 		 */
6813 		total_pages = low_wmark_pages(zone);
6814 	} else {
6815 		/*
6816 		 * If percpu_pagelist_high_fraction is configured, the high
6817 		 * value is based on a fraction of the managed pages in the
6818 		 * zone.
6819 		 */
6820 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6821 	}
6822 
6823 	/*
6824 	 * Split the high value across all online CPUs local to the zone. Note
6825 	 * that early in boot that CPUs may not be online yet and that during
6826 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6827 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6828 	 * all online CPUs to mitigate the risk that reclaim is triggered
6829 	 * prematurely due to pages stored on pcp lists.
6830 	 */
6831 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6832 	if (!nr_split_cpus)
6833 		nr_split_cpus = num_online_cpus();
6834 	high = total_pages / nr_split_cpus;
6835 
6836 	/*
6837 	 * Ensure high is at least batch*4. The multiple is based on the
6838 	 * historical relationship between high and batch.
6839 	 */
6840 	high = max(high, batch << 2);
6841 
6842 	return high;
6843 #else
6844 	return 0;
6845 #endif
6846 }
6847 
6848 /*
6849  * pcp->high and pcp->batch values are related and generally batch is lower
6850  * than high. They are also related to pcp->count such that count is lower
6851  * than high, and as soon as it reaches high, the pcplist is flushed.
6852  *
6853  * However, guaranteeing these relations at all times would require e.g. write
6854  * barriers here but also careful usage of read barriers at the read side, and
6855  * thus be prone to error and bad for performance. Thus the update only prevents
6856  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6857  * can cope with those fields changing asynchronously, and fully trust only the
6858  * pcp->count field on the local CPU with interrupts disabled.
6859  *
6860  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6861  * outside of boot time (or some other assurance that no concurrent updaters
6862  * exist).
6863  */
6864 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6865 		unsigned long batch)
6866 {
6867 	WRITE_ONCE(pcp->batch, batch);
6868 	WRITE_ONCE(pcp->high, high);
6869 }
6870 
6871 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6872 {
6873 	int pindex;
6874 
6875 	memset(pcp, 0, sizeof(*pcp));
6876 	memset(pzstats, 0, sizeof(*pzstats));
6877 
6878 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6879 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6880 
6881 	/*
6882 	 * Set batch and high values safe for a boot pageset. A true percpu
6883 	 * pageset's initialization will update them subsequently. Here we don't
6884 	 * need to be as careful as pageset_update() as nobody can access the
6885 	 * pageset yet.
6886 	 */
6887 	pcp->high = BOOT_PAGESET_HIGH;
6888 	pcp->batch = BOOT_PAGESET_BATCH;
6889 	pcp->free_factor = 0;
6890 }
6891 
6892 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6893 		unsigned long batch)
6894 {
6895 	struct per_cpu_pages *pcp;
6896 	int cpu;
6897 
6898 	for_each_possible_cpu(cpu) {
6899 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6900 		pageset_update(pcp, high, batch);
6901 	}
6902 }
6903 
6904 /*
6905  * Calculate and set new high and batch values for all per-cpu pagesets of a
6906  * zone based on the zone's size.
6907  */
6908 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6909 {
6910 	int new_high, new_batch;
6911 
6912 	new_batch = max(1, zone_batchsize(zone));
6913 	new_high = zone_highsize(zone, new_batch, cpu_online);
6914 
6915 	if (zone->pageset_high == new_high &&
6916 	    zone->pageset_batch == new_batch)
6917 		return;
6918 
6919 	zone->pageset_high = new_high;
6920 	zone->pageset_batch = new_batch;
6921 
6922 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6923 }
6924 
6925 void __meminit setup_zone_pageset(struct zone *zone)
6926 {
6927 	int cpu;
6928 
6929 	/* Size may be 0 on !SMP && !NUMA */
6930 	if (sizeof(struct per_cpu_zonestat) > 0)
6931 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6932 
6933 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6934 	for_each_possible_cpu(cpu) {
6935 		struct per_cpu_pages *pcp;
6936 		struct per_cpu_zonestat *pzstats;
6937 
6938 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6939 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6940 		per_cpu_pages_init(pcp, pzstats);
6941 	}
6942 
6943 	zone_set_pageset_high_and_batch(zone, 0);
6944 }
6945 
6946 /*
6947  * Allocate per cpu pagesets and initialize them.
6948  * Before this call only boot pagesets were available.
6949  */
6950 void __init setup_per_cpu_pageset(void)
6951 {
6952 	struct pglist_data *pgdat;
6953 	struct zone *zone;
6954 	int __maybe_unused cpu;
6955 
6956 	for_each_populated_zone(zone)
6957 		setup_zone_pageset(zone);
6958 
6959 #ifdef CONFIG_NUMA
6960 	/*
6961 	 * Unpopulated zones continue using the boot pagesets.
6962 	 * The numa stats for these pagesets need to be reset.
6963 	 * Otherwise, they will end up skewing the stats of
6964 	 * the nodes these zones are associated with.
6965 	 */
6966 	for_each_possible_cpu(cpu) {
6967 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6968 		memset(pzstats->vm_numa_event, 0,
6969 		       sizeof(pzstats->vm_numa_event));
6970 	}
6971 #endif
6972 
6973 	for_each_online_pgdat(pgdat)
6974 		pgdat->per_cpu_nodestats =
6975 			alloc_percpu(struct per_cpu_nodestat);
6976 }
6977 
6978 static __meminit void zone_pcp_init(struct zone *zone)
6979 {
6980 	/*
6981 	 * per cpu subsystem is not up at this point. The following code
6982 	 * relies on the ability of the linker to provide the
6983 	 * offset of a (static) per cpu variable into the per cpu area.
6984 	 */
6985 	zone->per_cpu_pageset = &boot_pageset;
6986 	zone->per_cpu_zonestats = &boot_zonestats;
6987 	zone->pageset_high = BOOT_PAGESET_HIGH;
6988 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6989 
6990 	if (populated_zone(zone))
6991 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6992 			 zone->present_pages, zone_batchsize(zone));
6993 }
6994 
6995 void __meminit init_currently_empty_zone(struct zone *zone,
6996 					unsigned long zone_start_pfn,
6997 					unsigned long size)
6998 {
6999 	struct pglist_data *pgdat = zone->zone_pgdat;
7000 	int zone_idx = zone_idx(zone) + 1;
7001 
7002 	if (zone_idx > pgdat->nr_zones)
7003 		pgdat->nr_zones = zone_idx;
7004 
7005 	zone->zone_start_pfn = zone_start_pfn;
7006 
7007 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7008 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7009 			pgdat->node_id,
7010 			(unsigned long)zone_idx(zone),
7011 			zone_start_pfn, (zone_start_pfn + size));
7012 
7013 	zone_init_free_lists(zone);
7014 	zone->initialized = 1;
7015 }
7016 
7017 /**
7018  * get_pfn_range_for_nid - Return the start and end page frames for a node
7019  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7020  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7021  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7022  *
7023  * It returns the start and end page frame of a node based on information
7024  * provided by memblock_set_node(). If called for a node
7025  * with no available memory, a warning is printed and the start and end
7026  * PFNs will be 0.
7027  */
7028 void __init get_pfn_range_for_nid(unsigned int nid,
7029 			unsigned long *start_pfn, unsigned long *end_pfn)
7030 {
7031 	unsigned long this_start_pfn, this_end_pfn;
7032 	int i;
7033 
7034 	*start_pfn = -1UL;
7035 	*end_pfn = 0;
7036 
7037 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7038 		*start_pfn = min(*start_pfn, this_start_pfn);
7039 		*end_pfn = max(*end_pfn, this_end_pfn);
7040 	}
7041 
7042 	if (*start_pfn == -1UL)
7043 		*start_pfn = 0;
7044 }
7045 
7046 /*
7047  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7048  * assumption is made that zones within a node are ordered in monotonic
7049  * increasing memory addresses so that the "highest" populated zone is used
7050  */
7051 static void __init find_usable_zone_for_movable(void)
7052 {
7053 	int zone_index;
7054 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7055 		if (zone_index == ZONE_MOVABLE)
7056 			continue;
7057 
7058 		if (arch_zone_highest_possible_pfn[zone_index] >
7059 				arch_zone_lowest_possible_pfn[zone_index])
7060 			break;
7061 	}
7062 
7063 	VM_BUG_ON(zone_index == -1);
7064 	movable_zone = zone_index;
7065 }
7066 
7067 /*
7068  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7069  * because it is sized independent of architecture. Unlike the other zones,
7070  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7071  * in each node depending on the size of each node and how evenly kernelcore
7072  * is distributed. This helper function adjusts the zone ranges
7073  * provided by the architecture for a given node by using the end of the
7074  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7075  * zones within a node are in order of monotonic increases memory addresses
7076  */
7077 static void __init adjust_zone_range_for_zone_movable(int nid,
7078 					unsigned long zone_type,
7079 					unsigned long node_start_pfn,
7080 					unsigned long node_end_pfn,
7081 					unsigned long *zone_start_pfn,
7082 					unsigned long *zone_end_pfn)
7083 {
7084 	/* Only adjust if ZONE_MOVABLE is on this node */
7085 	if (zone_movable_pfn[nid]) {
7086 		/* Size ZONE_MOVABLE */
7087 		if (zone_type == ZONE_MOVABLE) {
7088 			*zone_start_pfn = zone_movable_pfn[nid];
7089 			*zone_end_pfn = min(node_end_pfn,
7090 				arch_zone_highest_possible_pfn[movable_zone]);
7091 
7092 		/* Adjust for ZONE_MOVABLE starting within this range */
7093 		} else if (!mirrored_kernelcore &&
7094 			*zone_start_pfn < zone_movable_pfn[nid] &&
7095 			*zone_end_pfn > zone_movable_pfn[nid]) {
7096 			*zone_end_pfn = zone_movable_pfn[nid];
7097 
7098 		/* Check if this whole range is within ZONE_MOVABLE */
7099 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7100 			*zone_start_pfn = *zone_end_pfn;
7101 	}
7102 }
7103 
7104 /*
7105  * Return the number of pages a zone spans in a node, including holes
7106  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7107  */
7108 static unsigned long __init zone_spanned_pages_in_node(int nid,
7109 					unsigned long zone_type,
7110 					unsigned long node_start_pfn,
7111 					unsigned long node_end_pfn,
7112 					unsigned long *zone_start_pfn,
7113 					unsigned long *zone_end_pfn)
7114 {
7115 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7116 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7117 	/* When hotadd a new node from cpu_up(), the node should be empty */
7118 	if (!node_start_pfn && !node_end_pfn)
7119 		return 0;
7120 
7121 	/* Get the start and end of the zone */
7122 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7123 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7124 	adjust_zone_range_for_zone_movable(nid, zone_type,
7125 				node_start_pfn, node_end_pfn,
7126 				zone_start_pfn, zone_end_pfn);
7127 
7128 	/* Check that this node has pages within the zone's required range */
7129 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7130 		return 0;
7131 
7132 	/* Move the zone boundaries inside the node if necessary */
7133 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7134 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7135 
7136 	/* Return the spanned pages */
7137 	return *zone_end_pfn - *zone_start_pfn;
7138 }
7139 
7140 /*
7141  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7142  * then all holes in the requested range will be accounted for.
7143  */
7144 unsigned long __init __absent_pages_in_range(int nid,
7145 				unsigned long range_start_pfn,
7146 				unsigned long range_end_pfn)
7147 {
7148 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7149 	unsigned long start_pfn, end_pfn;
7150 	int i;
7151 
7152 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7153 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7154 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7155 		nr_absent -= end_pfn - start_pfn;
7156 	}
7157 	return nr_absent;
7158 }
7159 
7160 /**
7161  * absent_pages_in_range - Return number of page frames in holes within a range
7162  * @start_pfn: The start PFN to start searching for holes
7163  * @end_pfn: The end PFN to stop searching for holes
7164  *
7165  * Return: the number of pages frames in memory holes within a range.
7166  */
7167 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7168 							unsigned long end_pfn)
7169 {
7170 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7171 }
7172 
7173 /* Return the number of page frames in holes in a zone on a node */
7174 static unsigned long __init zone_absent_pages_in_node(int nid,
7175 					unsigned long zone_type,
7176 					unsigned long node_start_pfn,
7177 					unsigned long node_end_pfn)
7178 {
7179 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7180 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7181 	unsigned long zone_start_pfn, zone_end_pfn;
7182 	unsigned long nr_absent;
7183 
7184 	/* When hotadd a new node from cpu_up(), the node should be empty */
7185 	if (!node_start_pfn && !node_end_pfn)
7186 		return 0;
7187 
7188 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7189 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7190 
7191 	adjust_zone_range_for_zone_movable(nid, zone_type,
7192 			node_start_pfn, node_end_pfn,
7193 			&zone_start_pfn, &zone_end_pfn);
7194 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7195 
7196 	/*
7197 	 * ZONE_MOVABLE handling.
7198 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7199 	 * and vice versa.
7200 	 */
7201 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7202 		unsigned long start_pfn, end_pfn;
7203 		struct memblock_region *r;
7204 
7205 		for_each_mem_region(r) {
7206 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7207 					  zone_start_pfn, zone_end_pfn);
7208 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7209 					zone_start_pfn, zone_end_pfn);
7210 
7211 			if (zone_type == ZONE_MOVABLE &&
7212 			    memblock_is_mirror(r))
7213 				nr_absent += end_pfn - start_pfn;
7214 
7215 			if (zone_type == ZONE_NORMAL &&
7216 			    !memblock_is_mirror(r))
7217 				nr_absent += end_pfn - start_pfn;
7218 		}
7219 	}
7220 
7221 	return nr_absent;
7222 }
7223 
7224 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7225 						unsigned long node_start_pfn,
7226 						unsigned long node_end_pfn)
7227 {
7228 	unsigned long realtotalpages = 0, totalpages = 0;
7229 	enum zone_type i;
7230 
7231 	for (i = 0; i < MAX_NR_ZONES; i++) {
7232 		struct zone *zone = pgdat->node_zones + i;
7233 		unsigned long zone_start_pfn, zone_end_pfn;
7234 		unsigned long spanned, absent;
7235 		unsigned long size, real_size;
7236 
7237 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7238 						     node_start_pfn,
7239 						     node_end_pfn,
7240 						     &zone_start_pfn,
7241 						     &zone_end_pfn);
7242 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7243 						   node_start_pfn,
7244 						   node_end_pfn);
7245 
7246 		size = spanned;
7247 		real_size = size - absent;
7248 
7249 		if (size)
7250 			zone->zone_start_pfn = zone_start_pfn;
7251 		else
7252 			zone->zone_start_pfn = 0;
7253 		zone->spanned_pages = size;
7254 		zone->present_pages = real_size;
7255 
7256 		totalpages += size;
7257 		realtotalpages += real_size;
7258 	}
7259 
7260 	pgdat->node_spanned_pages = totalpages;
7261 	pgdat->node_present_pages = realtotalpages;
7262 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7263 }
7264 
7265 #ifndef CONFIG_SPARSEMEM
7266 /*
7267  * Calculate the size of the zone->blockflags rounded to an unsigned long
7268  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7269  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7270  * round what is now in bits to nearest long in bits, then return it in
7271  * bytes.
7272  */
7273 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7274 {
7275 	unsigned long usemapsize;
7276 
7277 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7278 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7279 	usemapsize = usemapsize >> pageblock_order;
7280 	usemapsize *= NR_PAGEBLOCK_BITS;
7281 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7282 
7283 	return usemapsize / 8;
7284 }
7285 
7286 static void __ref setup_usemap(struct zone *zone)
7287 {
7288 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7289 					       zone->spanned_pages);
7290 	zone->pageblock_flags = NULL;
7291 	if (usemapsize) {
7292 		zone->pageblock_flags =
7293 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7294 					    zone_to_nid(zone));
7295 		if (!zone->pageblock_flags)
7296 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7297 			      usemapsize, zone->name, zone_to_nid(zone));
7298 	}
7299 }
7300 #else
7301 static inline void setup_usemap(struct zone *zone) {}
7302 #endif /* CONFIG_SPARSEMEM */
7303 
7304 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7305 
7306 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7307 void __init set_pageblock_order(void)
7308 {
7309 	unsigned int order;
7310 
7311 	/* Check that pageblock_nr_pages has not already been setup */
7312 	if (pageblock_order)
7313 		return;
7314 
7315 	if (HPAGE_SHIFT > PAGE_SHIFT)
7316 		order = HUGETLB_PAGE_ORDER;
7317 	else
7318 		order = MAX_ORDER - 1;
7319 
7320 	/*
7321 	 * Assume the largest contiguous order of interest is a huge page.
7322 	 * This value may be variable depending on boot parameters on IA64 and
7323 	 * powerpc.
7324 	 */
7325 	pageblock_order = order;
7326 }
7327 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7328 
7329 /*
7330  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7331  * is unused as pageblock_order is set at compile-time. See
7332  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7333  * the kernel config
7334  */
7335 void __init set_pageblock_order(void)
7336 {
7337 }
7338 
7339 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7340 
7341 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7342 						unsigned long present_pages)
7343 {
7344 	unsigned long pages = spanned_pages;
7345 
7346 	/*
7347 	 * Provide a more accurate estimation if there are holes within
7348 	 * the zone and SPARSEMEM is in use. If there are holes within the
7349 	 * zone, each populated memory region may cost us one or two extra
7350 	 * memmap pages due to alignment because memmap pages for each
7351 	 * populated regions may not be naturally aligned on page boundary.
7352 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7353 	 */
7354 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7355 	    IS_ENABLED(CONFIG_SPARSEMEM))
7356 		pages = present_pages;
7357 
7358 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7359 }
7360 
7361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7362 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7363 {
7364 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7365 
7366 	spin_lock_init(&ds_queue->split_queue_lock);
7367 	INIT_LIST_HEAD(&ds_queue->split_queue);
7368 	ds_queue->split_queue_len = 0;
7369 }
7370 #else
7371 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7372 #endif
7373 
7374 #ifdef CONFIG_COMPACTION
7375 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7376 {
7377 	init_waitqueue_head(&pgdat->kcompactd_wait);
7378 }
7379 #else
7380 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7381 #endif
7382 
7383 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7384 {
7385 	pgdat_resize_init(pgdat);
7386 
7387 	pgdat_init_split_queue(pgdat);
7388 	pgdat_init_kcompactd(pgdat);
7389 
7390 	init_waitqueue_head(&pgdat->kswapd_wait);
7391 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7392 
7393 	pgdat_page_ext_init(pgdat);
7394 	lruvec_init(&pgdat->__lruvec);
7395 }
7396 
7397 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7398 							unsigned long remaining_pages)
7399 {
7400 	atomic_long_set(&zone->managed_pages, remaining_pages);
7401 	zone_set_nid(zone, nid);
7402 	zone->name = zone_names[idx];
7403 	zone->zone_pgdat = NODE_DATA(nid);
7404 	spin_lock_init(&zone->lock);
7405 	zone_seqlock_init(zone);
7406 	zone_pcp_init(zone);
7407 }
7408 
7409 /*
7410  * Set up the zone data structures
7411  * - init pgdat internals
7412  * - init all zones belonging to this node
7413  *
7414  * NOTE: this function is only called during memory hotplug
7415  */
7416 #ifdef CONFIG_MEMORY_HOTPLUG
7417 void __ref free_area_init_core_hotplug(int nid)
7418 {
7419 	enum zone_type z;
7420 	pg_data_t *pgdat = NODE_DATA(nid);
7421 
7422 	pgdat_init_internals(pgdat);
7423 	for (z = 0; z < MAX_NR_ZONES; z++)
7424 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7425 }
7426 #endif
7427 
7428 /*
7429  * Set up the zone data structures:
7430  *   - mark all pages reserved
7431  *   - mark all memory queues empty
7432  *   - clear the memory bitmaps
7433  *
7434  * NOTE: pgdat should get zeroed by caller.
7435  * NOTE: this function is only called during early init.
7436  */
7437 static void __init free_area_init_core(struct pglist_data *pgdat)
7438 {
7439 	enum zone_type j;
7440 	int nid = pgdat->node_id;
7441 
7442 	pgdat_init_internals(pgdat);
7443 	pgdat->per_cpu_nodestats = &boot_nodestats;
7444 
7445 	for (j = 0; j < MAX_NR_ZONES; j++) {
7446 		struct zone *zone = pgdat->node_zones + j;
7447 		unsigned long size, freesize, memmap_pages;
7448 
7449 		size = zone->spanned_pages;
7450 		freesize = zone->present_pages;
7451 
7452 		/*
7453 		 * Adjust freesize so that it accounts for how much memory
7454 		 * is used by this zone for memmap. This affects the watermark
7455 		 * and per-cpu initialisations
7456 		 */
7457 		memmap_pages = calc_memmap_size(size, freesize);
7458 		if (!is_highmem_idx(j)) {
7459 			if (freesize >= memmap_pages) {
7460 				freesize -= memmap_pages;
7461 				if (memmap_pages)
7462 					pr_debug("  %s zone: %lu pages used for memmap\n",
7463 						 zone_names[j], memmap_pages);
7464 			} else
7465 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7466 					zone_names[j], memmap_pages, freesize);
7467 		}
7468 
7469 		/* Account for reserved pages */
7470 		if (j == 0 && freesize > dma_reserve) {
7471 			freesize -= dma_reserve;
7472 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7473 		}
7474 
7475 		if (!is_highmem_idx(j))
7476 			nr_kernel_pages += freesize;
7477 		/* Charge for highmem memmap if there are enough kernel pages */
7478 		else if (nr_kernel_pages > memmap_pages * 2)
7479 			nr_kernel_pages -= memmap_pages;
7480 		nr_all_pages += freesize;
7481 
7482 		/*
7483 		 * Set an approximate value for lowmem here, it will be adjusted
7484 		 * when the bootmem allocator frees pages into the buddy system.
7485 		 * And all highmem pages will be managed by the buddy system.
7486 		 */
7487 		zone_init_internals(zone, j, nid, freesize);
7488 
7489 		if (!size)
7490 			continue;
7491 
7492 		set_pageblock_order();
7493 		setup_usemap(zone);
7494 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7495 	}
7496 }
7497 
7498 #ifdef CONFIG_FLATMEM
7499 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7500 {
7501 	unsigned long __maybe_unused start = 0;
7502 	unsigned long __maybe_unused offset = 0;
7503 
7504 	/* Skip empty nodes */
7505 	if (!pgdat->node_spanned_pages)
7506 		return;
7507 
7508 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7509 	offset = pgdat->node_start_pfn - start;
7510 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7511 	if (!pgdat->node_mem_map) {
7512 		unsigned long size, end;
7513 		struct page *map;
7514 
7515 		/*
7516 		 * The zone's endpoints aren't required to be MAX_ORDER
7517 		 * aligned but the node_mem_map endpoints must be in order
7518 		 * for the buddy allocator to function correctly.
7519 		 */
7520 		end = pgdat_end_pfn(pgdat);
7521 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7522 		size =  (end - start) * sizeof(struct page);
7523 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7524 					  pgdat->node_id);
7525 		if (!map)
7526 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7527 			      size, pgdat->node_id);
7528 		pgdat->node_mem_map = map + offset;
7529 	}
7530 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7531 				__func__, pgdat->node_id, (unsigned long)pgdat,
7532 				(unsigned long)pgdat->node_mem_map);
7533 #ifndef CONFIG_NUMA
7534 	/*
7535 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7536 	 */
7537 	if (pgdat == NODE_DATA(0)) {
7538 		mem_map = NODE_DATA(0)->node_mem_map;
7539 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7540 			mem_map -= offset;
7541 	}
7542 #endif
7543 }
7544 #else
7545 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7546 #endif /* CONFIG_FLATMEM */
7547 
7548 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7549 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7550 {
7551 	pgdat->first_deferred_pfn = ULONG_MAX;
7552 }
7553 #else
7554 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7555 #endif
7556 
7557 static void __init free_area_init_node(int nid)
7558 {
7559 	pg_data_t *pgdat = NODE_DATA(nid);
7560 	unsigned long start_pfn = 0;
7561 	unsigned long end_pfn = 0;
7562 
7563 	/* pg_data_t should be reset to zero when it's allocated */
7564 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7565 
7566 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7567 
7568 	pgdat->node_id = nid;
7569 	pgdat->node_start_pfn = start_pfn;
7570 	pgdat->per_cpu_nodestats = NULL;
7571 
7572 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7573 		(u64)start_pfn << PAGE_SHIFT,
7574 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7575 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7576 
7577 	alloc_node_mem_map(pgdat);
7578 	pgdat_set_deferred_range(pgdat);
7579 
7580 	free_area_init_core(pgdat);
7581 }
7582 
7583 void __init free_area_init_memoryless_node(int nid)
7584 {
7585 	free_area_init_node(nid);
7586 }
7587 
7588 #if MAX_NUMNODES > 1
7589 /*
7590  * Figure out the number of possible node ids.
7591  */
7592 void __init setup_nr_node_ids(void)
7593 {
7594 	unsigned int highest;
7595 
7596 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7597 	nr_node_ids = highest + 1;
7598 }
7599 #endif
7600 
7601 /**
7602  * node_map_pfn_alignment - determine the maximum internode alignment
7603  *
7604  * This function should be called after node map is populated and sorted.
7605  * It calculates the maximum power of two alignment which can distinguish
7606  * all the nodes.
7607  *
7608  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7609  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7610  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7611  * shifted, 1GiB is enough and this function will indicate so.
7612  *
7613  * This is used to test whether pfn -> nid mapping of the chosen memory
7614  * model has fine enough granularity to avoid incorrect mapping for the
7615  * populated node map.
7616  *
7617  * Return: the determined alignment in pfn's.  0 if there is no alignment
7618  * requirement (single node).
7619  */
7620 unsigned long __init node_map_pfn_alignment(void)
7621 {
7622 	unsigned long accl_mask = 0, last_end = 0;
7623 	unsigned long start, end, mask;
7624 	int last_nid = NUMA_NO_NODE;
7625 	int i, nid;
7626 
7627 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7628 		if (!start || last_nid < 0 || last_nid == nid) {
7629 			last_nid = nid;
7630 			last_end = end;
7631 			continue;
7632 		}
7633 
7634 		/*
7635 		 * Start with a mask granular enough to pin-point to the
7636 		 * start pfn and tick off bits one-by-one until it becomes
7637 		 * too coarse to separate the current node from the last.
7638 		 */
7639 		mask = ~((1 << __ffs(start)) - 1);
7640 		while (mask && last_end <= (start & (mask << 1)))
7641 			mask <<= 1;
7642 
7643 		/* accumulate all internode masks */
7644 		accl_mask |= mask;
7645 	}
7646 
7647 	/* convert mask to number of pages */
7648 	return ~accl_mask + 1;
7649 }
7650 
7651 /**
7652  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7653  *
7654  * Return: the minimum PFN based on information provided via
7655  * memblock_set_node().
7656  */
7657 unsigned long __init find_min_pfn_with_active_regions(void)
7658 {
7659 	return PHYS_PFN(memblock_start_of_DRAM());
7660 }
7661 
7662 /*
7663  * early_calculate_totalpages()
7664  * Sum pages in active regions for movable zone.
7665  * Populate N_MEMORY for calculating usable_nodes.
7666  */
7667 static unsigned long __init early_calculate_totalpages(void)
7668 {
7669 	unsigned long totalpages = 0;
7670 	unsigned long start_pfn, end_pfn;
7671 	int i, nid;
7672 
7673 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7674 		unsigned long pages = end_pfn - start_pfn;
7675 
7676 		totalpages += pages;
7677 		if (pages)
7678 			node_set_state(nid, N_MEMORY);
7679 	}
7680 	return totalpages;
7681 }
7682 
7683 /*
7684  * Find the PFN the Movable zone begins in each node. Kernel memory
7685  * is spread evenly between nodes as long as the nodes have enough
7686  * memory. When they don't, some nodes will have more kernelcore than
7687  * others
7688  */
7689 static void __init find_zone_movable_pfns_for_nodes(void)
7690 {
7691 	int i, nid;
7692 	unsigned long usable_startpfn;
7693 	unsigned long kernelcore_node, kernelcore_remaining;
7694 	/* save the state before borrow the nodemask */
7695 	nodemask_t saved_node_state = node_states[N_MEMORY];
7696 	unsigned long totalpages = early_calculate_totalpages();
7697 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7698 	struct memblock_region *r;
7699 
7700 	/* Need to find movable_zone earlier when movable_node is specified. */
7701 	find_usable_zone_for_movable();
7702 
7703 	/*
7704 	 * If movable_node is specified, ignore kernelcore and movablecore
7705 	 * options.
7706 	 */
7707 	if (movable_node_is_enabled()) {
7708 		for_each_mem_region(r) {
7709 			if (!memblock_is_hotpluggable(r))
7710 				continue;
7711 
7712 			nid = memblock_get_region_node(r);
7713 
7714 			usable_startpfn = PFN_DOWN(r->base);
7715 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7716 				min(usable_startpfn, zone_movable_pfn[nid]) :
7717 				usable_startpfn;
7718 		}
7719 
7720 		goto out2;
7721 	}
7722 
7723 	/*
7724 	 * If kernelcore=mirror is specified, ignore movablecore option
7725 	 */
7726 	if (mirrored_kernelcore) {
7727 		bool mem_below_4gb_not_mirrored = false;
7728 
7729 		for_each_mem_region(r) {
7730 			if (memblock_is_mirror(r))
7731 				continue;
7732 
7733 			nid = memblock_get_region_node(r);
7734 
7735 			usable_startpfn = memblock_region_memory_base_pfn(r);
7736 
7737 			if (usable_startpfn < 0x100000) {
7738 				mem_below_4gb_not_mirrored = true;
7739 				continue;
7740 			}
7741 
7742 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7743 				min(usable_startpfn, zone_movable_pfn[nid]) :
7744 				usable_startpfn;
7745 		}
7746 
7747 		if (mem_below_4gb_not_mirrored)
7748 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7749 
7750 		goto out2;
7751 	}
7752 
7753 	/*
7754 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7755 	 * amount of necessary memory.
7756 	 */
7757 	if (required_kernelcore_percent)
7758 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7759 				       10000UL;
7760 	if (required_movablecore_percent)
7761 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7762 					10000UL;
7763 
7764 	/*
7765 	 * If movablecore= was specified, calculate what size of
7766 	 * kernelcore that corresponds so that memory usable for
7767 	 * any allocation type is evenly spread. If both kernelcore
7768 	 * and movablecore are specified, then the value of kernelcore
7769 	 * will be used for required_kernelcore if it's greater than
7770 	 * what movablecore would have allowed.
7771 	 */
7772 	if (required_movablecore) {
7773 		unsigned long corepages;
7774 
7775 		/*
7776 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7777 		 * was requested by the user
7778 		 */
7779 		required_movablecore =
7780 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7781 		required_movablecore = min(totalpages, required_movablecore);
7782 		corepages = totalpages - required_movablecore;
7783 
7784 		required_kernelcore = max(required_kernelcore, corepages);
7785 	}
7786 
7787 	/*
7788 	 * If kernelcore was not specified or kernelcore size is larger
7789 	 * than totalpages, there is no ZONE_MOVABLE.
7790 	 */
7791 	if (!required_kernelcore || required_kernelcore >= totalpages)
7792 		goto out;
7793 
7794 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7795 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7796 
7797 restart:
7798 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7799 	kernelcore_node = required_kernelcore / usable_nodes;
7800 	for_each_node_state(nid, N_MEMORY) {
7801 		unsigned long start_pfn, end_pfn;
7802 
7803 		/*
7804 		 * Recalculate kernelcore_node if the division per node
7805 		 * now exceeds what is necessary to satisfy the requested
7806 		 * amount of memory for the kernel
7807 		 */
7808 		if (required_kernelcore < kernelcore_node)
7809 			kernelcore_node = required_kernelcore / usable_nodes;
7810 
7811 		/*
7812 		 * As the map is walked, we track how much memory is usable
7813 		 * by the kernel using kernelcore_remaining. When it is
7814 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7815 		 */
7816 		kernelcore_remaining = kernelcore_node;
7817 
7818 		/* Go through each range of PFNs within this node */
7819 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7820 			unsigned long size_pages;
7821 
7822 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7823 			if (start_pfn >= end_pfn)
7824 				continue;
7825 
7826 			/* Account for what is only usable for kernelcore */
7827 			if (start_pfn < usable_startpfn) {
7828 				unsigned long kernel_pages;
7829 				kernel_pages = min(end_pfn, usable_startpfn)
7830 								- start_pfn;
7831 
7832 				kernelcore_remaining -= min(kernel_pages,
7833 							kernelcore_remaining);
7834 				required_kernelcore -= min(kernel_pages,
7835 							required_kernelcore);
7836 
7837 				/* Continue if range is now fully accounted */
7838 				if (end_pfn <= usable_startpfn) {
7839 
7840 					/*
7841 					 * Push zone_movable_pfn to the end so
7842 					 * that if we have to rebalance
7843 					 * kernelcore across nodes, we will
7844 					 * not double account here
7845 					 */
7846 					zone_movable_pfn[nid] = end_pfn;
7847 					continue;
7848 				}
7849 				start_pfn = usable_startpfn;
7850 			}
7851 
7852 			/*
7853 			 * The usable PFN range for ZONE_MOVABLE is from
7854 			 * start_pfn->end_pfn. Calculate size_pages as the
7855 			 * number of pages used as kernelcore
7856 			 */
7857 			size_pages = end_pfn - start_pfn;
7858 			if (size_pages > kernelcore_remaining)
7859 				size_pages = kernelcore_remaining;
7860 			zone_movable_pfn[nid] = start_pfn + size_pages;
7861 
7862 			/*
7863 			 * Some kernelcore has been met, update counts and
7864 			 * break if the kernelcore for this node has been
7865 			 * satisfied
7866 			 */
7867 			required_kernelcore -= min(required_kernelcore,
7868 								size_pages);
7869 			kernelcore_remaining -= size_pages;
7870 			if (!kernelcore_remaining)
7871 				break;
7872 		}
7873 	}
7874 
7875 	/*
7876 	 * If there is still required_kernelcore, we do another pass with one
7877 	 * less node in the count. This will push zone_movable_pfn[nid] further
7878 	 * along on the nodes that still have memory until kernelcore is
7879 	 * satisfied
7880 	 */
7881 	usable_nodes--;
7882 	if (usable_nodes && required_kernelcore > usable_nodes)
7883 		goto restart;
7884 
7885 out2:
7886 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7887 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7888 		zone_movable_pfn[nid] =
7889 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7890 
7891 out:
7892 	/* restore the node_state */
7893 	node_states[N_MEMORY] = saved_node_state;
7894 }
7895 
7896 /* Any regular or high memory on that node ? */
7897 static void check_for_memory(pg_data_t *pgdat, int nid)
7898 {
7899 	enum zone_type zone_type;
7900 
7901 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7902 		struct zone *zone = &pgdat->node_zones[zone_type];
7903 		if (populated_zone(zone)) {
7904 			if (IS_ENABLED(CONFIG_HIGHMEM))
7905 				node_set_state(nid, N_HIGH_MEMORY);
7906 			if (zone_type <= ZONE_NORMAL)
7907 				node_set_state(nid, N_NORMAL_MEMORY);
7908 			break;
7909 		}
7910 	}
7911 }
7912 
7913 /*
7914  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7915  * such cases we allow max_zone_pfn sorted in the descending order
7916  */
7917 bool __weak arch_has_descending_max_zone_pfns(void)
7918 {
7919 	return false;
7920 }
7921 
7922 /**
7923  * free_area_init - Initialise all pg_data_t and zone data
7924  * @max_zone_pfn: an array of max PFNs for each zone
7925  *
7926  * This will call free_area_init_node() for each active node in the system.
7927  * Using the page ranges provided by memblock_set_node(), the size of each
7928  * zone in each node and their holes is calculated. If the maximum PFN
7929  * between two adjacent zones match, it is assumed that the zone is empty.
7930  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7931  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7932  * starts where the previous one ended. For example, ZONE_DMA32 starts
7933  * at arch_max_dma_pfn.
7934  */
7935 void __init free_area_init(unsigned long *max_zone_pfn)
7936 {
7937 	unsigned long start_pfn, end_pfn;
7938 	int i, nid, zone;
7939 	bool descending;
7940 
7941 	/* Record where the zone boundaries are */
7942 	memset(arch_zone_lowest_possible_pfn, 0,
7943 				sizeof(arch_zone_lowest_possible_pfn));
7944 	memset(arch_zone_highest_possible_pfn, 0,
7945 				sizeof(arch_zone_highest_possible_pfn));
7946 
7947 	start_pfn = find_min_pfn_with_active_regions();
7948 	descending = arch_has_descending_max_zone_pfns();
7949 
7950 	for (i = 0; i < MAX_NR_ZONES; i++) {
7951 		if (descending)
7952 			zone = MAX_NR_ZONES - i - 1;
7953 		else
7954 			zone = i;
7955 
7956 		if (zone == ZONE_MOVABLE)
7957 			continue;
7958 
7959 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7960 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7961 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7962 
7963 		start_pfn = end_pfn;
7964 	}
7965 
7966 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7967 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7968 	find_zone_movable_pfns_for_nodes();
7969 
7970 	/* Print out the zone ranges */
7971 	pr_info("Zone ranges:\n");
7972 	for (i = 0; i < MAX_NR_ZONES; i++) {
7973 		if (i == ZONE_MOVABLE)
7974 			continue;
7975 		pr_info("  %-8s ", zone_names[i]);
7976 		if (arch_zone_lowest_possible_pfn[i] ==
7977 				arch_zone_highest_possible_pfn[i])
7978 			pr_cont("empty\n");
7979 		else
7980 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7981 				(u64)arch_zone_lowest_possible_pfn[i]
7982 					<< PAGE_SHIFT,
7983 				((u64)arch_zone_highest_possible_pfn[i]
7984 					<< PAGE_SHIFT) - 1);
7985 	}
7986 
7987 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7988 	pr_info("Movable zone start for each node\n");
7989 	for (i = 0; i < MAX_NUMNODES; i++) {
7990 		if (zone_movable_pfn[i])
7991 			pr_info("  Node %d: %#018Lx\n", i,
7992 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7993 	}
7994 
7995 	/*
7996 	 * Print out the early node map, and initialize the
7997 	 * subsection-map relative to active online memory ranges to
7998 	 * enable future "sub-section" extensions of the memory map.
7999 	 */
8000 	pr_info("Early memory node ranges\n");
8001 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8002 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8003 			(u64)start_pfn << PAGE_SHIFT,
8004 			((u64)end_pfn << PAGE_SHIFT) - 1);
8005 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8006 	}
8007 
8008 	/* Initialise every node */
8009 	mminit_verify_pageflags_layout();
8010 	setup_nr_node_ids();
8011 	for_each_online_node(nid) {
8012 		pg_data_t *pgdat = NODE_DATA(nid);
8013 		free_area_init_node(nid);
8014 
8015 		/* Any memory on that node */
8016 		if (pgdat->node_present_pages)
8017 			node_set_state(nid, N_MEMORY);
8018 		check_for_memory(pgdat, nid);
8019 	}
8020 
8021 	memmap_init();
8022 }
8023 
8024 static int __init cmdline_parse_core(char *p, unsigned long *core,
8025 				     unsigned long *percent)
8026 {
8027 	unsigned long long coremem;
8028 	char *endptr;
8029 
8030 	if (!p)
8031 		return -EINVAL;
8032 
8033 	/* Value may be a percentage of total memory, otherwise bytes */
8034 	coremem = simple_strtoull(p, &endptr, 0);
8035 	if (*endptr == '%') {
8036 		/* Paranoid check for percent values greater than 100 */
8037 		WARN_ON(coremem > 100);
8038 
8039 		*percent = coremem;
8040 	} else {
8041 		coremem = memparse(p, &p);
8042 		/* Paranoid check that UL is enough for the coremem value */
8043 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8044 
8045 		*core = coremem >> PAGE_SHIFT;
8046 		*percent = 0UL;
8047 	}
8048 	return 0;
8049 }
8050 
8051 /*
8052  * kernelcore=size sets the amount of memory for use for allocations that
8053  * cannot be reclaimed or migrated.
8054  */
8055 static int __init cmdline_parse_kernelcore(char *p)
8056 {
8057 	/* parse kernelcore=mirror */
8058 	if (parse_option_str(p, "mirror")) {
8059 		mirrored_kernelcore = true;
8060 		return 0;
8061 	}
8062 
8063 	return cmdline_parse_core(p, &required_kernelcore,
8064 				  &required_kernelcore_percent);
8065 }
8066 
8067 /*
8068  * movablecore=size sets the amount of memory for use for allocations that
8069  * can be reclaimed or migrated.
8070  */
8071 static int __init cmdline_parse_movablecore(char *p)
8072 {
8073 	return cmdline_parse_core(p, &required_movablecore,
8074 				  &required_movablecore_percent);
8075 }
8076 
8077 early_param("kernelcore", cmdline_parse_kernelcore);
8078 early_param("movablecore", cmdline_parse_movablecore);
8079 
8080 void adjust_managed_page_count(struct page *page, long count)
8081 {
8082 	atomic_long_add(count, &page_zone(page)->managed_pages);
8083 	totalram_pages_add(count);
8084 #ifdef CONFIG_HIGHMEM
8085 	if (PageHighMem(page))
8086 		totalhigh_pages_add(count);
8087 #endif
8088 }
8089 EXPORT_SYMBOL(adjust_managed_page_count);
8090 
8091 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8092 {
8093 	void *pos;
8094 	unsigned long pages = 0;
8095 
8096 	start = (void *)PAGE_ALIGN((unsigned long)start);
8097 	end = (void *)((unsigned long)end & PAGE_MASK);
8098 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8099 		struct page *page = virt_to_page(pos);
8100 		void *direct_map_addr;
8101 
8102 		/*
8103 		 * 'direct_map_addr' might be different from 'pos'
8104 		 * because some architectures' virt_to_page()
8105 		 * work with aliases.  Getting the direct map
8106 		 * address ensures that we get a _writeable_
8107 		 * alias for the memset().
8108 		 */
8109 		direct_map_addr = page_address(page);
8110 		/*
8111 		 * Perform a kasan-unchecked memset() since this memory
8112 		 * has not been initialized.
8113 		 */
8114 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8115 		if ((unsigned int)poison <= 0xFF)
8116 			memset(direct_map_addr, poison, PAGE_SIZE);
8117 
8118 		free_reserved_page(page);
8119 	}
8120 
8121 	if (pages && s)
8122 		pr_info("Freeing %s memory: %ldK\n",
8123 			s, pages << (PAGE_SHIFT - 10));
8124 
8125 	return pages;
8126 }
8127 
8128 void __init mem_init_print_info(void)
8129 {
8130 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8131 	unsigned long init_code_size, init_data_size;
8132 
8133 	physpages = get_num_physpages();
8134 	codesize = _etext - _stext;
8135 	datasize = _edata - _sdata;
8136 	rosize = __end_rodata - __start_rodata;
8137 	bss_size = __bss_stop - __bss_start;
8138 	init_data_size = __init_end - __init_begin;
8139 	init_code_size = _einittext - _sinittext;
8140 
8141 	/*
8142 	 * Detect special cases and adjust section sizes accordingly:
8143 	 * 1) .init.* may be embedded into .data sections
8144 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8145 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8146 	 * 3) .rodata.* may be embedded into .text or .data sections.
8147 	 */
8148 #define adj_init_size(start, end, size, pos, adj) \
8149 	do { \
8150 		if (start <= pos && pos < end && size > adj) \
8151 			size -= adj; \
8152 	} while (0)
8153 
8154 	adj_init_size(__init_begin, __init_end, init_data_size,
8155 		     _sinittext, init_code_size);
8156 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8157 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8158 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8159 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8160 
8161 #undef	adj_init_size
8162 
8163 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8164 #ifdef	CONFIG_HIGHMEM
8165 		", %luK highmem"
8166 #endif
8167 		")\n",
8168 		nr_free_pages() << (PAGE_SHIFT - 10),
8169 		physpages << (PAGE_SHIFT - 10),
8170 		codesize >> 10, datasize >> 10, rosize >> 10,
8171 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8172 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8173 		totalcma_pages << (PAGE_SHIFT - 10)
8174 #ifdef	CONFIG_HIGHMEM
8175 		, totalhigh_pages() << (PAGE_SHIFT - 10)
8176 #endif
8177 		);
8178 }
8179 
8180 /**
8181  * set_dma_reserve - set the specified number of pages reserved in the first zone
8182  * @new_dma_reserve: The number of pages to mark reserved
8183  *
8184  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8185  * In the DMA zone, a significant percentage may be consumed by kernel image
8186  * and other unfreeable allocations which can skew the watermarks badly. This
8187  * function may optionally be used to account for unfreeable pages in the
8188  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8189  * smaller per-cpu batchsize.
8190  */
8191 void __init set_dma_reserve(unsigned long new_dma_reserve)
8192 {
8193 	dma_reserve = new_dma_reserve;
8194 }
8195 
8196 static int page_alloc_cpu_dead(unsigned int cpu)
8197 {
8198 	struct zone *zone;
8199 
8200 	lru_add_drain_cpu(cpu);
8201 	drain_pages(cpu);
8202 
8203 	/*
8204 	 * Spill the event counters of the dead processor
8205 	 * into the current processors event counters.
8206 	 * This artificially elevates the count of the current
8207 	 * processor.
8208 	 */
8209 	vm_events_fold_cpu(cpu);
8210 
8211 	/*
8212 	 * Zero the differential counters of the dead processor
8213 	 * so that the vm statistics are consistent.
8214 	 *
8215 	 * This is only okay since the processor is dead and cannot
8216 	 * race with what we are doing.
8217 	 */
8218 	cpu_vm_stats_fold(cpu);
8219 
8220 	for_each_populated_zone(zone)
8221 		zone_pcp_update(zone, 0);
8222 
8223 	return 0;
8224 }
8225 
8226 static int page_alloc_cpu_online(unsigned int cpu)
8227 {
8228 	struct zone *zone;
8229 
8230 	for_each_populated_zone(zone)
8231 		zone_pcp_update(zone, 1);
8232 	return 0;
8233 }
8234 
8235 #ifdef CONFIG_NUMA
8236 int hashdist = HASHDIST_DEFAULT;
8237 
8238 static int __init set_hashdist(char *str)
8239 {
8240 	if (!str)
8241 		return 0;
8242 	hashdist = simple_strtoul(str, &str, 0);
8243 	return 1;
8244 }
8245 __setup("hashdist=", set_hashdist);
8246 #endif
8247 
8248 void __init page_alloc_init(void)
8249 {
8250 	int ret;
8251 
8252 #ifdef CONFIG_NUMA
8253 	if (num_node_state(N_MEMORY) == 1)
8254 		hashdist = 0;
8255 #endif
8256 
8257 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8258 					"mm/page_alloc:pcp",
8259 					page_alloc_cpu_online,
8260 					page_alloc_cpu_dead);
8261 	WARN_ON(ret < 0);
8262 }
8263 
8264 /*
8265  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8266  *	or min_free_kbytes changes.
8267  */
8268 static void calculate_totalreserve_pages(void)
8269 {
8270 	struct pglist_data *pgdat;
8271 	unsigned long reserve_pages = 0;
8272 	enum zone_type i, j;
8273 
8274 	for_each_online_pgdat(pgdat) {
8275 
8276 		pgdat->totalreserve_pages = 0;
8277 
8278 		for (i = 0; i < MAX_NR_ZONES; i++) {
8279 			struct zone *zone = pgdat->node_zones + i;
8280 			long max = 0;
8281 			unsigned long managed_pages = zone_managed_pages(zone);
8282 
8283 			/* Find valid and maximum lowmem_reserve in the zone */
8284 			for (j = i; j < MAX_NR_ZONES; j++) {
8285 				if (zone->lowmem_reserve[j] > max)
8286 					max = zone->lowmem_reserve[j];
8287 			}
8288 
8289 			/* we treat the high watermark as reserved pages. */
8290 			max += high_wmark_pages(zone);
8291 
8292 			if (max > managed_pages)
8293 				max = managed_pages;
8294 
8295 			pgdat->totalreserve_pages += max;
8296 
8297 			reserve_pages += max;
8298 		}
8299 	}
8300 	totalreserve_pages = reserve_pages;
8301 }
8302 
8303 /*
8304  * setup_per_zone_lowmem_reserve - called whenever
8305  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8306  *	has a correct pages reserved value, so an adequate number of
8307  *	pages are left in the zone after a successful __alloc_pages().
8308  */
8309 static void setup_per_zone_lowmem_reserve(void)
8310 {
8311 	struct pglist_data *pgdat;
8312 	enum zone_type i, j;
8313 
8314 	for_each_online_pgdat(pgdat) {
8315 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8316 			struct zone *zone = &pgdat->node_zones[i];
8317 			int ratio = sysctl_lowmem_reserve_ratio[i];
8318 			bool clear = !ratio || !zone_managed_pages(zone);
8319 			unsigned long managed_pages = 0;
8320 
8321 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8322 				struct zone *upper_zone = &pgdat->node_zones[j];
8323 
8324 				managed_pages += zone_managed_pages(upper_zone);
8325 
8326 				if (clear)
8327 					zone->lowmem_reserve[j] = 0;
8328 				else
8329 					zone->lowmem_reserve[j] = managed_pages / ratio;
8330 			}
8331 		}
8332 	}
8333 
8334 	/* update totalreserve_pages */
8335 	calculate_totalreserve_pages();
8336 }
8337 
8338 static void __setup_per_zone_wmarks(void)
8339 {
8340 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8341 	unsigned long lowmem_pages = 0;
8342 	struct zone *zone;
8343 	unsigned long flags;
8344 
8345 	/* Calculate total number of !ZONE_HIGHMEM pages */
8346 	for_each_zone(zone) {
8347 		if (!is_highmem(zone))
8348 			lowmem_pages += zone_managed_pages(zone);
8349 	}
8350 
8351 	for_each_zone(zone) {
8352 		u64 tmp;
8353 
8354 		spin_lock_irqsave(&zone->lock, flags);
8355 		tmp = (u64)pages_min * zone_managed_pages(zone);
8356 		do_div(tmp, lowmem_pages);
8357 		if (is_highmem(zone)) {
8358 			/*
8359 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8360 			 * need highmem pages, so cap pages_min to a small
8361 			 * value here.
8362 			 *
8363 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8364 			 * deltas control async page reclaim, and so should
8365 			 * not be capped for highmem.
8366 			 */
8367 			unsigned long min_pages;
8368 
8369 			min_pages = zone_managed_pages(zone) / 1024;
8370 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8371 			zone->_watermark[WMARK_MIN] = min_pages;
8372 		} else {
8373 			/*
8374 			 * If it's a lowmem zone, reserve a number of pages
8375 			 * proportionate to the zone's size.
8376 			 */
8377 			zone->_watermark[WMARK_MIN] = tmp;
8378 		}
8379 
8380 		/*
8381 		 * Set the kswapd watermarks distance according to the
8382 		 * scale factor in proportion to available memory, but
8383 		 * ensure a minimum size on small systems.
8384 		 */
8385 		tmp = max_t(u64, tmp >> 2,
8386 			    mult_frac(zone_managed_pages(zone),
8387 				      watermark_scale_factor, 10000));
8388 
8389 		zone->watermark_boost = 0;
8390 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8391 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8392 
8393 		spin_unlock_irqrestore(&zone->lock, flags);
8394 	}
8395 
8396 	/* update totalreserve_pages */
8397 	calculate_totalreserve_pages();
8398 }
8399 
8400 /**
8401  * setup_per_zone_wmarks - called when min_free_kbytes changes
8402  * or when memory is hot-{added|removed}
8403  *
8404  * Ensures that the watermark[min,low,high] values for each zone are set
8405  * correctly with respect to min_free_kbytes.
8406  */
8407 void setup_per_zone_wmarks(void)
8408 {
8409 	struct zone *zone;
8410 	static DEFINE_SPINLOCK(lock);
8411 
8412 	spin_lock(&lock);
8413 	__setup_per_zone_wmarks();
8414 	spin_unlock(&lock);
8415 
8416 	/*
8417 	 * The watermark size have changed so update the pcpu batch
8418 	 * and high limits or the limits may be inappropriate.
8419 	 */
8420 	for_each_zone(zone)
8421 		zone_pcp_update(zone, 0);
8422 }
8423 
8424 /*
8425  * Initialise min_free_kbytes.
8426  *
8427  * For small machines we want it small (128k min).  For large machines
8428  * we want it large (256MB max).  But it is not linear, because network
8429  * bandwidth does not increase linearly with machine size.  We use
8430  *
8431  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8432  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8433  *
8434  * which yields
8435  *
8436  * 16MB:	512k
8437  * 32MB:	724k
8438  * 64MB:	1024k
8439  * 128MB:	1448k
8440  * 256MB:	2048k
8441  * 512MB:	2896k
8442  * 1024MB:	4096k
8443  * 2048MB:	5792k
8444  * 4096MB:	8192k
8445  * 8192MB:	11584k
8446  * 16384MB:	16384k
8447  */
8448 int __meminit init_per_zone_wmark_min(void)
8449 {
8450 	unsigned long lowmem_kbytes;
8451 	int new_min_free_kbytes;
8452 
8453 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8454 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8455 
8456 	if (new_min_free_kbytes > user_min_free_kbytes) {
8457 		min_free_kbytes = new_min_free_kbytes;
8458 		if (min_free_kbytes < 128)
8459 			min_free_kbytes = 128;
8460 		if (min_free_kbytes > 262144)
8461 			min_free_kbytes = 262144;
8462 	} else {
8463 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8464 				new_min_free_kbytes, user_min_free_kbytes);
8465 	}
8466 	setup_per_zone_wmarks();
8467 	refresh_zone_stat_thresholds();
8468 	setup_per_zone_lowmem_reserve();
8469 
8470 #ifdef CONFIG_NUMA
8471 	setup_min_unmapped_ratio();
8472 	setup_min_slab_ratio();
8473 #endif
8474 
8475 	khugepaged_min_free_kbytes_update();
8476 
8477 	return 0;
8478 }
8479 postcore_initcall(init_per_zone_wmark_min)
8480 
8481 /*
8482  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8483  *	that we can call two helper functions whenever min_free_kbytes
8484  *	changes.
8485  */
8486 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8487 		void *buffer, size_t *length, loff_t *ppos)
8488 {
8489 	int rc;
8490 
8491 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8492 	if (rc)
8493 		return rc;
8494 
8495 	if (write) {
8496 		user_min_free_kbytes = min_free_kbytes;
8497 		setup_per_zone_wmarks();
8498 	}
8499 	return 0;
8500 }
8501 
8502 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8503 		void *buffer, size_t *length, loff_t *ppos)
8504 {
8505 	int rc;
8506 
8507 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8508 	if (rc)
8509 		return rc;
8510 
8511 	if (write)
8512 		setup_per_zone_wmarks();
8513 
8514 	return 0;
8515 }
8516 
8517 #ifdef CONFIG_NUMA
8518 static void setup_min_unmapped_ratio(void)
8519 {
8520 	pg_data_t *pgdat;
8521 	struct zone *zone;
8522 
8523 	for_each_online_pgdat(pgdat)
8524 		pgdat->min_unmapped_pages = 0;
8525 
8526 	for_each_zone(zone)
8527 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8528 						         sysctl_min_unmapped_ratio) / 100;
8529 }
8530 
8531 
8532 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8533 		void *buffer, size_t *length, loff_t *ppos)
8534 {
8535 	int rc;
8536 
8537 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8538 	if (rc)
8539 		return rc;
8540 
8541 	setup_min_unmapped_ratio();
8542 
8543 	return 0;
8544 }
8545 
8546 static void setup_min_slab_ratio(void)
8547 {
8548 	pg_data_t *pgdat;
8549 	struct zone *zone;
8550 
8551 	for_each_online_pgdat(pgdat)
8552 		pgdat->min_slab_pages = 0;
8553 
8554 	for_each_zone(zone)
8555 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8556 						     sysctl_min_slab_ratio) / 100;
8557 }
8558 
8559 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8560 		void *buffer, size_t *length, loff_t *ppos)
8561 {
8562 	int rc;
8563 
8564 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8565 	if (rc)
8566 		return rc;
8567 
8568 	setup_min_slab_ratio();
8569 
8570 	return 0;
8571 }
8572 #endif
8573 
8574 /*
8575  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8576  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8577  *	whenever sysctl_lowmem_reserve_ratio changes.
8578  *
8579  * The reserve ratio obviously has absolutely no relation with the
8580  * minimum watermarks. The lowmem reserve ratio can only make sense
8581  * if in function of the boot time zone sizes.
8582  */
8583 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8584 		void *buffer, size_t *length, loff_t *ppos)
8585 {
8586 	int i;
8587 
8588 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8589 
8590 	for (i = 0; i < MAX_NR_ZONES; i++) {
8591 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8592 			sysctl_lowmem_reserve_ratio[i] = 0;
8593 	}
8594 
8595 	setup_per_zone_lowmem_reserve();
8596 	return 0;
8597 }
8598 
8599 /*
8600  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8601  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8602  * pagelist can have before it gets flushed back to buddy allocator.
8603  */
8604 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8605 		int write, void *buffer, size_t *length, loff_t *ppos)
8606 {
8607 	struct zone *zone;
8608 	int old_percpu_pagelist_high_fraction;
8609 	int ret;
8610 
8611 	mutex_lock(&pcp_batch_high_lock);
8612 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8613 
8614 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8615 	if (!write || ret < 0)
8616 		goto out;
8617 
8618 	/* Sanity checking to avoid pcp imbalance */
8619 	if (percpu_pagelist_high_fraction &&
8620 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8621 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8622 		ret = -EINVAL;
8623 		goto out;
8624 	}
8625 
8626 	/* No change? */
8627 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8628 		goto out;
8629 
8630 	for_each_populated_zone(zone)
8631 		zone_set_pageset_high_and_batch(zone, 0);
8632 out:
8633 	mutex_unlock(&pcp_batch_high_lock);
8634 	return ret;
8635 }
8636 
8637 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8638 /*
8639  * Returns the number of pages that arch has reserved but
8640  * is not known to alloc_large_system_hash().
8641  */
8642 static unsigned long __init arch_reserved_kernel_pages(void)
8643 {
8644 	return 0;
8645 }
8646 #endif
8647 
8648 /*
8649  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8650  * machines. As memory size is increased the scale is also increased but at
8651  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8652  * quadruples the scale is increased by one, which means the size of hash table
8653  * only doubles, instead of quadrupling as well.
8654  * Because 32-bit systems cannot have large physical memory, where this scaling
8655  * makes sense, it is disabled on such platforms.
8656  */
8657 #if __BITS_PER_LONG > 32
8658 #define ADAPT_SCALE_BASE	(64ul << 30)
8659 #define ADAPT_SCALE_SHIFT	2
8660 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8661 #endif
8662 
8663 /*
8664  * allocate a large system hash table from bootmem
8665  * - it is assumed that the hash table must contain an exact power-of-2
8666  *   quantity of entries
8667  * - limit is the number of hash buckets, not the total allocation size
8668  */
8669 void *__init alloc_large_system_hash(const char *tablename,
8670 				     unsigned long bucketsize,
8671 				     unsigned long numentries,
8672 				     int scale,
8673 				     int flags,
8674 				     unsigned int *_hash_shift,
8675 				     unsigned int *_hash_mask,
8676 				     unsigned long low_limit,
8677 				     unsigned long high_limit)
8678 {
8679 	unsigned long long max = high_limit;
8680 	unsigned long log2qty, size;
8681 	void *table = NULL;
8682 	gfp_t gfp_flags;
8683 	bool virt;
8684 	bool huge;
8685 
8686 	/* allow the kernel cmdline to have a say */
8687 	if (!numentries) {
8688 		/* round applicable memory size up to nearest megabyte */
8689 		numentries = nr_kernel_pages;
8690 		numentries -= arch_reserved_kernel_pages();
8691 
8692 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8693 		if (PAGE_SHIFT < 20)
8694 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8695 
8696 #if __BITS_PER_LONG > 32
8697 		if (!high_limit) {
8698 			unsigned long adapt;
8699 
8700 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8701 			     adapt <<= ADAPT_SCALE_SHIFT)
8702 				scale++;
8703 		}
8704 #endif
8705 
8706 		/* limit to 1 bucket per 2^scale bytes of low memory */
8707 		if (scale > PAGE_SHIFT)
8708 			numentries >>= (scale - PAGE_SHIFT);
8709 		else
8710 			numentries <<= (PAGE_SHIFT - scale);
8711 
8712 		/* Make sure we've got at least a 0-order allocation.. */
8713 		if (unlikely(flags & HASH_SMALL)) {
8714 			/* Makes no sense without HASH_EARLY */
8715 			WARN_ON(!(flags & HASH_EARLY));
8716 			if (!(numentries >> *_hash_shift)) {
8717 				numentries = 1UL << *_hash_shift;
8718 				BUG_ON(!numentries);
8719 			}
8720 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8721 			numentries = PAGE_SIZE / bucketsize;
8722 	}
8723 	numentries = roundup_pow_of_two(numentries);
8724 
8725 	/* limit allocation size to 1/16 total memory by default */
8726 	if (max == 0) {
8727 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8728 		do_div(max, bucketsize);
8729 	}
8730 	max = min(max, 0x80000000ULL);
8731 
8732 	if (numentries < low_limit)
8733 		numentries = low_limit;
8734 	if (numentries > max)
8735 		numentries = max;
8736 
8737 	log2qty = ilog2(numentries);
8738 
8739 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8740 	do {
8741 		virt = false;
8742 		size = bucketsize << log2qty;
8743 		if (flags & HASH_EARLY) {
8744 			if (flags & HASH_ZERO)
8745 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8746 			else
8747 				table = memblock_alloc_raw(size,
8748 							   SMP_CACHE_BYTES);
8749 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8750 			table = __vmalloc(size, gfp_flags);
8751 			virt = true;
8752 			huge = is_vm_area_hugepages(table);
8753 		} else {
8754 			/*
8755 			 * If bucketsize is not a power-of-two, we may free
8756 			 * some pages at the end of hash table which
8757 			 * alloc_pages_exact() automatically does
8758 			 */
8759 			table = alloc_pages_exact(size, gfp_flags);
8760 			kmemleak_alloc(table, size, 1, gfp_flags);
8761 		}
8762 	} while (!table && size > PAGE_SIZE && --log2qty);
8763 
8764 	if (!table)
8765 		panic("Failed to allocate %s hash table\n", tablename);
8766 
8767 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8768 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8769 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8770 
8771 	if (_hash_shift)
8772 		*_hash_shift = log2qty;
8773 	if (_hash_mask)
8774 		*_hash_mask = (1 << log2qty) - 1;
8775 
8776 	return table;
8777 }
8778 
8779 /*
8780  * This function checks whether pageblock includes unmovable pages or not.
8781  *
8782  * PageLRU check without isolation or lru_lock could race so that
8783  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8784  * check without lock_page also may miss some movable non-lru pages at
8785  * race condition. So you can't expect this function should be exact.
8786  *
8787  * Returns a page without holding a reference. If the caller wants to
8788  * dereference that page (e.g., dumping), it has to make sure that it
8789  * cannot get removed (e.g., via memory unplug) concurrently.
8790  *
8791  */
8792 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8793 				 int migratetype, int flags)
8794 {
8795 	unsigned long iter = 0;
8796 	unsigned long pfn = page_to_pfn(page);
8797 	unsigned long offset = pfn % pageblock_nr_pages;
8798 
8799 	if (is_migrate_cma_page(page)) {
8800 		/*
8801 		 * CMA allocations (alloc_contig_range) really need to mark
8802 		 * isolate CMA pageblocks even when they are not movable in fact
8803 		 * so consider them movable here.
8804 		 */
8805 		if (is_migrate_cma(migratetype))
8806 			return NULL;
8807 
8808 		return page;
8809 	}
8810 
8811 	for (; iter < pageblock_nr_pages - offset; iter++) {
8812 		if (!pfn_valid_within(pfn + iter))
8813 			continue;
8814 
8815 		page = pfn_to_page(pfn + iter);
8816 
8817 		/*
8818 		 * Both, bootmem allocations and memory holes are marked
8819 		 * PG_reserved and are unmovable. We can even have unmovable
8820 		 * allocations inside ZONE_MOVABLE, for example when
8821 		 * specifying "movablecore".
8822 		 */
8823 		if (PageReserved(page))
8824 			return page;
8825 
8826 		/*
8827 		 * If the zone is movable and we have ruled out all reserved
8828 		 * pages then it should be reasonably safe to assume the rest
8829 		 * is movable.
8830 		 */
8831 		if (zone_idx(zone) == ZONE_MOVABLE)
8832 			continue;
8833 
8834 		/*
8835 		 * Hugepages are not in LRU lists, but they're movable.
8836 		 * THPs are on the LRU, but need to be counted as #small pages.
8837 		 * We need not scan over tail pages because we don't
8838 		 * handle each tail page individually in migration.
8839 		 */
8840 		if (PageHuge(page) || PageTransCompound(page)) {
8841 			struct page *head = compound_head(page);
8842 			unsigned int skip_pages;
8843 
8844 			if (PageHuge(page)) {
8845 				if (!hugepage_migration_supported(page_hstate(head)))
8846 					return page;
8847 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8848 				return page;
8849 			}
8850 
8851 			skip_pages = compound_nr(head) - (page - head);
8852 			iter += skip_pages - 1;
8853 			continue;
8854 		}
8855 
8856 		/*
8857 		 * We can't use page_count without pin a page
8858 		 * because another CPU can free compound page.
8859 		 * This check already skips compound tails of THP
8860 		 * because their page->_refcount is zero at all time.
8861 		 */
8862 		if (!page_ref_count(page)) {
8863 			if (PageBuddy(page))
8864 				iter += (1 << buddy_order(page)) - 1;
8865 			continue;
8866 		}
8867 
8868 		/*
8869 		 * The HWPoisoned page may be not in buddy system, and
8870 		 * page_count() is not 0.
8871 		 */
8872 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8873 			continue;
8874 
8875 		/*
8876 		 * We treat all PageOffline() pages as movable when offlining
8877 		 * to give drivers a chance to decrement their reference count
8878 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8879 		 * can be offlined as there are no direct references anymore.
8880 		 * For actually unmovable PageOffline() where the driver does
8881 		 * not support this, we will fail later when trying to actually
8882 		 * move these pages that still have a reference count > 0.
8883 		 * (false negatives in this function only)
8884 		 */
8885 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8886 			continue;
8887 
8888 		if (__PageMovable(page) || PageLRU(page))
8889 			continue;
8890 
8891 		/*
8892 		 * If there are RECLAIMABLE pages, we need to check
8893 		 * it.  But now, memory offline itself doesn't call
8894 		 * shrink_node_slabs() and it still to be fixed.
8895 		 */
8896 		return page;
8897 	}
8898 	return NULL;
8899 }
8900 
8901 #ifdef CONFIG_CONTIG_ALLOC
8902 static unsigned long pfn_max_align_down(unsigned long pfn)
8903 {
8904 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8905 			     pageblock_nr_pages) - 1);
8906 }
8907 
8908 static unsigned long pfn_max_align_up(unsigned long pfn)
8909 {
8910 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8911 				pageblock_nr_pages));
8912 }
8913 
8914 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8915 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8916 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8917 static void alloc_contig_dump_pages(struct list_head *page_list)
8918 {
8919 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8920 
8921 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8922 		struct page *page;
8923 
8924 		dump_stack();
8925 		list_for_each_entry(page, page_list, lru)
8926 			dump_page(page, "migration failure");
8927 	}
8928 }
8929 #else
8930 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8931 {
8932 }
8933 #endif
8934 
8935 /* [start, end) must belong to a single zone. */
8936 static int __alloc_contig_migrate_range(struct compact_control *cc,
8937 					unsigned long start, unsigned long end)
8938 {
8939 	/* This function is based on compact_zone() from compaction.c. */
8940 	unsigned int nr_reclaimed;
8941 	unsigned long pfn = start;
8942 	unsigned int tries = 0;
8943 	int ret = 0;
8944 	struct migration_target_control mtc = {
8945 		.nid = zone_to_nid(cc->zone),
8946 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8947 	};
8948 
8949 	lru_cache_disable();
8950 
8951 	while (pfn < end || !list_empty(&cc->migratepages)) {
8952 		if (fatal_signal_pending(current)) {
8953 			ret = -EINTR;
8954 			break;
8955 		}
8956 
8957 		if (list_empty(&cc->migratepages)) {
8958 			cc->nr_migratepages = 0;
8959 			ret = isolate_migratepages_range(cc, pfn, end);
8960 			if (ret && ret != -EAGAIN)
8961 				break;
8962 			pfn = cc->migrate_pfn;
8963 			tries = 0;
8964 		} else if (++tries == 5) {
8965 			ret = -EBUSY;
8966 			break;
8967 		}
8968 
8969 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8970 							&cc->migratepages);
8971 		cc->nr_migratepages -= nr_reclaimed;
8972 
8973 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8974 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8975 
8976 		/*
8977 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8978 		 * to retry again over this error, so do the same here.
8979 		 */
8980 		if (ret == -ENOMEM)
8981 			break;
8982 	}
8983 
8984 	lru_cache_enable();
8985 	if (ret < 0) {
8986 		if (ret == -EBUSY)
8987 			alloc_contig_dump_pages(&cc->migratepages);
8988 		putback_movable_pages(&cc->migratepages);
8989 		return ret;
8990 	}
8991 	return 0;
8992 }
8993 
8994 /**
8995  * alloc_contig_range() -- tries to allocate given range of pages
8996  * @start:	start PFN to allocate
8997  * @end:	one-past-the-last PFN to allocate
8998  * @migratetype:	migratetype of the underlying pageblocks (either
8999  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9000  *			in range must have the same migratetype and it must
9001  *			be either of the two.
9002  * @gfp_mask:	GFP mask to use during compaction
9003  *
9004  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9005  * aligned.  The PFN range must belong to a single zone.
9006  *
9007  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9008  * pageblocks in the range.  Once isolated, the pageblocks should not
9009  * be modified by others.
9010  *
9011  * Return: zero on success or negative error code.  On success all
9012  * pages which PFN is in [start, end) are allocated for the caller and
9013  * need to be freed with free_contig_range().
9014  */
9015 int alloc_contig_range(unsigned long start, unsigned long end,
9016 		       unsigned migratetype, gfp_t gfp_mask)
9017 {
9018 	unsigned long outer_start, outer_end;
9019 	unsigned int order;
9020 	int ret = 0;
9021 
9022 	struct compact_control cc = {
9023 		.nr_migratepages = 0,
9024 		.order = -1,
9025 		.zone = page_zone(pfn_to_page(start)),
9026 		.mode = MIGRATE_SYNC,
9027 		.ignore_skip_hint = true,
9028 		.no_set_skip_hint = true,
9029 		.gfp_mask = current_gfp_context(gfp_mask),
9030 		.alloc_contig = true,
9031 	};
9032 	INIT_LIST_HEAD(&cc.migratepages);
9033 
9034 	/*
9035 	 * What we do here is we mark all pageblocks in range as
9036 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9037 	 * have different sizes, and due to the way page allocator
9038 	 * work, we align the range to biggest of the two pages so
9039 	 * that page allocator won't try to merge buddies from
9040 	 * different pageblocks and change MIGRATE_ISOLATE to some
9041 	 * other migration type.
9042 	 *
9043 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9044 	 * migrate the pages from an unaligned range (ie. pages that
9045 	 * we are interested in).  This will put all the pages in
9046 	 * range back to page allocator as MIGRATE_ISOLATE.
9047 	 *
9048 	 * When this is done, we take the pages in range from page
9049 	 * allocator removing them from the buddy system.  This way
9050 	 * page allocator will never consider using them.
9051 	 *
9052 	 * This lets us mark the pageblocks back as
9053 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9054 	 * aligned range but not in the unaligned, original range are
9055 	 * put back to page allocator so that buddy can use them.
9056 	 */
9057 
9058 	ret = start_isolate_page_range(pfn_max_align_down(start),
9059 				       pfn_max_align_up(end), migratetype, 0);
9060 	if (ret)
9061 		return ret;
9062 
9063 	drain_all_pages(cc.zone);
9064 
9065 	/*
9066 	 * In case of -EBUSY, we'd like to know which page causes problem.
9067 	 * So, just fall through. test_pages_isolated() has a tracepoint
9068 	 * which will report the busy page.
9069 	 *
9070 	 * It is possible that busy pages could become available before
9071 	 * the call to test_pages_isolated, and the range will actually be
9072 	 * allocated.  So, if we fall through be sure to clear ret so that
9073 	 * -EBUSY is not accidentally used or returned to caller.
9074 	 */
9075 	ret = __alloc_contig_migrate_range(&cc, start, end);
9076 	if (ret && ret != -EBUSY)
9077 		goto done;
9078 	ret = 0;
9079 
9080 	/*
9081 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9082 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9083 	 * more, all pages in [start, end) are free in page allocator.
9084 	 * What we are going to do is to allocate all pages from
9085 	 * [start, end) (that is remove them from page allocator).
9086 	 *
9087 	 * The only problem is that pages at the beginning and at the
9088 	 * end of interesting range may be not aligned with pages that
9089 	 * page allocator holds, ie. they can be part of higher order
9090 	 * pages.  Because of this, we reserve the bigger range and
9091 	 * once this is done free the pages we are not interested in.
9092 	 *
9093 	 * We don't have to hold zone->lock here because the pages are
9094 	 * isolated thus they won't get removed from buddy.
9095 	 */
9096 
9097 	order = 0;
9098 	outer_start = start;
9099 	while (!PageBuddy(pfn_to_page(outer_start))) {
9100 		if (++order >= MAX_ORDER) {
9101 			outer_start = start;
9102 			break;
9103 		}
9104 		outer_start &= ~0UL << order;
9105 	}
9106 
9107 	if (outer_start != start) {
9108 		order = buddy_order(pfn_to_page(outer_start));
9109 
9110 		/*
9111 		 * outer_start page could be small order buddy page and
9112 		 * it doesn't include start page. Adjust outer_start
9113 		 * in this case to report failed page properly
9114 		 * on tracepoint in test_pages_isolated()
9115 		 */
9116 		if (outer_start + (1UL << order) <= start)
9117 			outer_start = start;
9118 	}
9119 
9120 	/* Make sure the range is really isolated. */
9121 	if (test_pages_isolated(outer_start, end, 0)) {
9122 		ret = -EBUSY;
9123 		goto done;
9124 	}
9125 
9126 	/* Grab isolated pages from freelists. */
9127 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9128 	if (!outer_end) {
9129 		ret = -EBUSY;
9130 		goto done;
9131 	}
9132 
9133 	/* Free head and tail (if any) */
9134 	if (start != outer_start)
9135 		free_contig_range(outer_start, start - outer_start);
9136 	if (end != outer_end)
9137 		free_contig_range(end, outer_end - end);
9138 
9139 done:
9140 	undo_isolate_page_range(pfn_max_align_down(start),
9141 				pfn_max_align_up(end), migratetype);
9142 	return ret;
9143 }
9144 EXPORT_SYMBOL(alloc_contig_range);
9145 
9146 static int __alloc_contig_pages(unsigned long start_pfn,
9147 				unsigned long nr_pages, gfp_t gfp_mask)
9148 {
9149 	unsigned long end_pfn = start_pfn + nr_pages;
9150 
9151 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9152 				  gfp_mask);
9153 }
9154 
9155 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9156 				   unsigned long nr_pages)
9157 {
9158 	unsigned long i, end_pfn = start_pfn + nr_pages;
9159 	struct page *page;
9160 
9161 	for (i = start_pfn; i < end_pfn; i++) {
9162 		page = pfn_to_online_page(i);
9163 		if (!page)
9164 			return false;
9165 
9166 		if (page_zone(page) != z)
9167 			return false;
9168 
9169 		if (PageReserved(page))
9170 			return false;
9171 	}
9172 	return true;
9173 }
9174 
9175 static bool zone_spans_last_pfn(const struct zone *zone,
9176 				unsigned long start_pfn, unsigned long nr_pages)
9177 {
9178 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9179 
9180 	return zone_spans_pfn(zone, last_pfn);
9181 }
9182 
9183 /**
9184  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9185  * @nr_pages:	Number of contiguous pages to allocate
9186  * @gfp_mask:	GFP mask to limit search and used during compaction
9187  * @nid:	Target node
9188  * @nodemask:	Mask for other possible nodes
9189  *
9190  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9191  * on an applicable zonelist to find a contiguous pfn range which can then be
9192  * tried for allocation with alloc_contig_range(). This routine is intended
9193  * for allocation requests which can not be fulfilled with the buddy allocator.
9194  *
9195  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9196  * power of two then the alignment is guaranteed to be to the given nr_pages
9197  * (e.g. 1GB request would be aligned to 1GB).
9198  *
9199  * Allocated pages can be freed with free_contig_range() or by manually calling
9200  * __free_page() on each allocated page.
9201  *
9202  * Return: pointer to contiguous pages on success, or NULL if not successful.
9203  */
9204 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9205 				int nid, nodemask_t *nodemask)
9206 {
9207 	unsigned long ret, pfn, flags;
9208 	struct zonelist *zonelist;
9209 	struct zone *zone;
9210 	struct zoneref *z;
9211 
9212 	zonelist = node_zonelist(nid, gfp_mask);
9213 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9214 					gfp_zone(gfp_mask), nodemask) {
9215 		spin_lock_irqsave(&zone->lock, flags);
9216 
9217 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9218 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9219 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9220 				/*
9221 				 * We release the zone lock here because
9222 				 * alloc_contig_range() will also lock the zone
9223 				 * at some point. If there's an allocation
9224 				 * spinning on this lock, it may win the race
9225 				 * and cause alloc_contig_range() to fail...
9226 				 */
9227 				spin_unlock_irqrestore(&zone->lock, flags);
9228 				ret = __alloc_contig_pages(pfn, nr_pages,
9229 							gfp_mask);
9230 				if (!ret)
9231 					return pfn_to_page(pfn);
9232 				spin_lock_irqsave(&zone->lock, flags);
9233 			}
9234 			pfn += nr_pages;
9235 		}
9236 		spin_unlock_irqrestore(&zone->lock, flags);
9237 	}
9238 	return NULL;
9239 }
9240 #endif /* CONFIG_CONTIG_ALLOC */
9241 
9242 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9243 {
9244 	unsigned long count = 0;
9245 
9246 	for (; nr_pages--; pfn++) {
9247 		struct page *page = pfn_to_page(pfn);
9248 
9249 		count += page_count(page) != 1;
9250 		__free_page(page);
9251 	}
9252 	WARN(count != 0, "%lu pages are still in use!\n", count);
9253 }
9254 EXPORT_SYMBOL(free_contig_range);
9255 
9256 /*
9257  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9258  * page high values need to be recalculated.
9259  */
9260 void zone_pcp_update(struct zone *zone, int cpu_online)
9261 {
9262 	mutex_lock(&pcp_batch_high_lock);
9263 	zone_set_pageset_high_and_batch(zone, cpu_online);
9264 	mutex_unlock(&pcp_batch_high_lock);
9265 }
9266 
9267 /*
9268  * Effectively disable pcplists for the zone by setting the high limit to 0
9269  * and draining all cpus. A concurrent page freeing on another CPU that's about
9270  * to put the page on pcplist will either finish before the drain and the page
9271  * will be drained, or observe the new high limit and skip the pcplist.
9272  *
9273  * Must be paired with a call to zone_pcp_enable().
9274  */
9275 void zone_pcp_disable(struct zone *zone)
9276 {
9277 	mutex_lock(&pcp_batch_high_lock);
9278 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9279 	__drain_all_pages(zone, true);
9280 }
9281 
9282 void zone_pcp_enable(struct zone *zone)
9283 {
9284 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9285 	mutex_unlock(&pcp_batch_high_lock);
9286 }
9287 
9288 void zone_pcp_reset(struct zone *zone)
9289 {
9290 	int cpu;
9291 	struct per_cpu_zonestat *pzstats;
9292 
9293 	if (zone->per_cpu_pageset != &boot_pageset) {
9294 		for_each_online_cpu(cpu) {
9295 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9296 			drain_zonestat(zone, pzstats);
9297 		}
9298 		free_percpu(zone->per_cpu_pageset);
9299 		free_percpu(zone->per_cpu_zonestats);
9300 		zone->per_cpu_pageset = &boot_pageset;
9301 		zone->per_cpu_zonestats = &boot_zonestats;
9302 	}
9303 }
9304 
9305 #ifdef CONFIG_MEMORY_HOTREMOVE
9306 /*
9307  * All pages in the range must be in a single zone, must not contain holes,
9308  * must span full sections, and must be isolated before calling this function.
9309  */
9310 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9311 {
9312 	unsigned long pfn = start_pfn;
9313 	struct page *page;
9314 	struct zone *zone;
9315 	unsigned int order;
9316 	unsigned long flags;
9317 
9318 	offline_mem_sections(pfn, end_pfn);
9319 	zone = page_zone(pfn_to_page(pfn));
9320 	spin_lock_irqsave(&zone->lock, flags);
9321 	while (pfn < end_pfn) {
9322 		page = pfn_to_page(pfn);
9323 		/*
9324 		 * The HWPoisoned page may be not in buddy system, and
9325 		 * page_count() is not 0.
9326 		 */
9327 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9328 			pfn++;
9329 			continue;
9330 		}
9331 		/*
9332 		 * At this point all remaining PageOffline() pages have a
9333 		 * reference count of 0 and can simply be skipped.
9334 		 */
9335 		if (PageOffline(page)) {
9336 			BUG_ON(page_count(page));
9337 			BUG_ON(PageBuddy(page));
9338 			pfn++;
9339 			continue;
9340 		}
9341 
9342 		BUG_ON(page_count(page));
9343 		BUG_ON(!PageBuddy(page));
9344 		order = buddy_order(page);
9345 		del_page_from_free_list(page, zone, order);
9346 		pfn += (1 << order);
9347 	}
9348 	spin_unlock_irqrestore(&zone->lock, flags);
9349 }
9350 #endif
9351 
9352 bool is_free_buddy_page(struct page *page)
9353 {
9354 	struct zone *zone = page_zone(page);
9355 	unsigned long pfn = page_to_pfn(page);
9356 	unsigned long flags;
9357 	unsigned int order;
9358 
9359 	spin_lock_irqsave(&zone->lock, flags);
9360 	for (order = 0; order < MAX_ORDER; order++) {
9361 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9362 
9363 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9364 			break;
9365 	}
9366 	spin_unlock_irqrestore(&zone->lock, flags);
9367 
9368 	return order < MAX_ORDER;
9369 }
9370 
9371 #ifdef CONFIG_MEMORY_FAILURE
9372 /*
9373  * Break down a higher-order page in sub-pages, and keep our target out of
9374  * buddy allocator.
9375  */
9376 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9377 				   struct page *target, int low, int high,
9378 				   int migratetype)
9379 {
9380 	unsigned long size = 1 << high;
9381 	struct page *current_buddy, *next_page;
9382 
9383 	while (high > low) {
9384 		high--;
9385 		size >>= 1;
9386 
9387 		if (target >= &page[size]) {
9388 			next_page = page + size;
9389 			current_buddy = page;
9390 		} else {
9391 			next_page = page;
9392 			current_buddy = page + size;
9393 		}
9394 
9395 		if (set_page_guard(zone, current_buddy, high, migratetype))
9396 			continue;
9397 
9398 		if (current_buddy != target) {
9399 			add_to_free_list(current_buddy, zone, high, migratetype);
9400 			set_buddy_order(current_buddy, high);
9401 			page = next_page;
9402 		}
9403 	}
9404 }
9405 
9406 /*
9407  * Take a page that will be marked as poisoned off the buddy allocator.
9408  */
9409 bool take_page_off_buddy(struct page *page)
9410 {
9411 	struct zone *zone = page_zone(page);
9412 	unsigned long pfn = page_to_pfn(page);
9413 	unsigned long flags;
9414 	unsigned int order;
9415 	bool ret = false;
9416 
9417 	spin_lock_irqsave(&zone->lock, flags);
9418 	for (order = 0; order < MAX_ORDER; order++) {
9419 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9420 		int page_order = buddy_order(page_head);
9421 
9422 		if (PageBuddy(page_head) && page_order >= order) {
9423 			unsigned long pfn_head = page_to_pfn(page_head);
9424 			int migratetype = get_pfnblock_migratetype(page_head,
9425 								   pfn_head);
9426 
9427 			del_page_from_free_list(page_head, zone, page_order);
9428 			break_down_buddy_pages(zone, page_head, page, 0,
9429 						page_order, migratetype);
9430 			if (!is_migrate_isolate(migratetype))
9431 				__mod_zone_freepage_state(zone, -1, migratetype);
9432 			ret = true;
9433 			break;
9434 		}
9435 		if (page_count(page_head) > 0)
9436 			break;
9437 	}
9438 	spin_unlock_irqrestore(&zone->lock, flags);
9439 	return ret;
9440 }
9441 #endif
9442