xref: /openbmc/linux/mm/page_alloc.c (revision 44383cef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_trylock(type, member, ptr)				\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	if (!spin_trylock(&_ret->member)) {				\
179 		pcpu_task_unpin();					\
180 		_ret = NULL;						\
181 	}								\
182 	_ret;								\
183 })
184 
185 #define pcpu_spin_unlock(member, ptr)					\
186 ({									\
187 	spin_unlock(&ptr->member);					\
188 	pcpu_task_unpin();						\
189 })
190 
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr)						\
193 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194 
195 #define pcp_spin_trylock(ptr)						\
196 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
197 
198 #define pcp_spin_unlock(ptr)						\
199 	pcpu_spin_unlock(lock, ptr)
200 
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
204 #endif
205 
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207 
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
209 /*
210  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213  * defined in <linux/topology.h>.
214  */
215 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217 #endif
218 
219 static DEFINE_MUTEX(pcpu_drain_mutex);
220 
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
224 #endif
225 
226 /*
227  * Array of node states.
228  */
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 	[N_POSSIBLE] = NODE_MASK_ALL,
231 	[N_ONLINE] = { { [0] = 1UL } },
232 #ifndef CONFIG_NUMA
233 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
236 #endif
237 	[N_MEMORY] = { { [0] = 1UL } },
238 	[N_CPU] = { { [0] = 1UL } },
239 #endif	/* NUMA */
240 };
241 EXPORT_SYMBOL(node_states);
242 
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
247 
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
252 
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
255 
256 static bool _init_on_alloc_enabled_early __read_mostly
257 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
259 {
260 
261 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
262 }
263 early_param("init_on_alloc", early_init_on_alloc);
264 
265 static bool _init_on_free_enabled_early __read_mostly
266 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
268 {
269 	return kstrtobool(buf, &_init_on_free_enabled_early);
270 }
271 early_param("init_on_free", early_init_on_free);
272 
273 /*
274  * A cached value of the page's pageblock's migratetype, used when the page is
275  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277  * Also the migratetype set in the page does not necessarily match the pcplist
278  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279  * other index - this ensures that it will be put on the correct CMA freelist.
280  */
281 static inline int get_pcppage_migratetype(struct page *page)
282 {
283 	return page->index;
284 }
285 
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287 {
288 	page->index = migratetype;
289 }
290 
291 #ifdef CONFIG_PM_SLEEP
292 /*
293  * The following functions are used by the suspend/hibernate code to temporarily
294  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295  * while devices are suspended.  To avoid races with the suspend/hibernate code,
296  * they should always be called with system_transition_mutex held
297  * (gfp_allowed_mask also should only be modified with system_transition_mutex
298  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299  * with that modification).
300  */
301 
302 static gfp_t saved_gfp_mask;
303 
304 void pm_restore_gfp_mask(void)
305 {
306 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 	if (saved_gfp_mask) {
308 		gfp_allowed_mask = saved_gfp_mask;
309 		saved_gfp_mask = 0;
310 	}
311 }
312 
313 void pm_restrict_gfp_mask(void)
314 {
315 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 	WARN_ON(saved_gfp_mask);
317 	saved_gfp_mask = gfp_allowed_mask;
318 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
319 }
320 
321 bool pm_suspended_storage(void)
322 {
323 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
324 		return false;
325 	return true;
326 }
327 #endif /* CONFIG_PM_SLEEP */
328 
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
331 #endif
332 
333 static void __free_pages_ok(struct page *page, unsigned int order,
334 			    fpi_t fpi_flags);
335 
336 /*
337  * results with 256, 32 in the lowmem_reserve sysctl:
338  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339  *	1G machine -> (16M dma, 784M normal, 224M high)
340  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
343  *
344  * TBD: should special case ZONE_DMA32 machines here - in those we normally
345  * don't need any ZONE_NORMAL reservation
346  */
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
349 	[ZONE_DMA] = 256,
350 #endif
351 #ifdef CONFIG_ZONE_DMA32
352 	[ZONE_DMA32] = 256,
353 #endif
354 	[ZONE_NORMAL] = 32,
355 #ifdef CONFIG_HIGHMEM
356 	[ZONE_HIGHMEM] = 0,
357 #endif
358 	[ZONE_MOVABLE] = 0,
359 };
360 
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
363 	 "DMA",
364 #endif
365 #ifdef CONFIG_ZONE_DMA32
366 	 "DMA32",
367 #endif
368 	 "Normal",
369 #ifdef CONFIG_HIGHMEM
370 	 "HighMem",
371 #endif
372 	 "Movable",
373 #ifdef CONFIG_ZONE_DEVICE
374 	 "Device",
375 #endif
376 };
377 
378 const char * const migratetype_names[MIGRATE_TYPES] = {
379 	"Unmovable",
380 	"Movable",
381 	"Reclaimable",
382 	"HighAtomic",
383 #ifdef CONFIG_CMA
384 	"CMA",
385 #endif
386 #ifdef CONFIG_MEMORY_ISOLATION
387 	"Isolate",
388 #endif
389 };
390 
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 	[NULL_COMPOUND_DTOR] = NULL,
393 	[COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 	[HUGETLB_PAGE_DTOR] = free_huge_page,
396 #endif
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
399 #endif
400 };
401 
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
406 
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
410 
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
419 
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421 int movable_zone;
422 EXPORT_SYMBOL(movable_zone);
423 
424 #if MAX_NUMNODES > 1
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
429 #endif
430 
431 int page_group_by_mobility_disabled __read_mostly;
432 
433 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
434 /*
435  * During boot we initialize deferred pages on-demand, as needed, but once
436  * page_alloc_init_late() has finished, the deferred pages are all initialized,
437  * and we can permanently disable that path.
438  */
439 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
440 
441 static inline bool deferred_pages_enabled(void)
442 {
443 	return static_branch_unlikely(&deferred_pages);
444 }
445 
446 /* Returns true if the struct page for the pfn is uninitialised */
447 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
448 {
449 	int nid = early_pfn_to_nid(pfn);
450 
451 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
452 		return true;
453 
454 	return false;
455 }
456 
457 /*
458  * Returns true when the remaining initialisation should be deferred until
459  * later in the boot cycle when it can be parallelised.
460  */
461 static bool __meminit
462 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
463 {
464 	static unsigned long prev_end_pfn, nr_initialised;
465 
466 	if (early_page_ext_enabled())
467 		return false;
468 	/*
469 	 * prev_end_pfn static that contains the end of previous zone
470 	 * No need to protect because called very early in boot before smp_init.
471 	 */
472 	if (prev_end_pfn != end_pfn) {
473 		prev_end_pfn = end_pfn;
474 		nr_initialised = 0;
475 	}
476 
477 	/* Always populate low zones for address-constrained allocations */
478 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
479 		return false;
480 
481 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
482 		return true;
483 	/*
484 	 * We start only with one section of pages, more pages are added as
485 	 * needed until the rest of deferred pages are initialized.
486 	 */
487 	nr_initialised++;
488 	if ((nr_initialised > PAGES_PER_SECTION) &&
489 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
490 		NODE_DATA(nid)->first_deferred_pfn = pfn;
491 		return true;
492 	}
493 	return false;
494 }
495 #else
496 static inline bool deferred_pages_enabled(void)
497 {
498 	return false;
499 }
500 
501 static inline bool early_page_uninitialised(unsigned long pfn)
502 {
503 	return false;
504 }
505 
506 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
507 {
508 	return false;
509 }
510 #endif
511 
512 /* Return a pointer to the bitmap storing bits affecting a block of pages */
513 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
514 							unsigned long pfn)
515 {
516 #ifdef CONFIG_SPARSEMEM
517 	return section_to_usemap(__pfn_to_section(pfn));
518 #else
519 	return page_zone(page)->pageblock_flags;
520 #endif /* CONFIG_SPARSEMEM */
521 }
522 
523 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
524 {
525 #ifdef CONFIG_SPARSEMEM
526 	pfn &= (PAGES_PER_SECTION-1);
527 #else
528 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
529 #endif /* CONFIG_SPARSEMEM */
530 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
531 }
532 
533 static __always_inline
534 unsigned long __get_pfnblock_flags_mask(const struct page *page,
535 					unsigned long pfn,
536 					unsigned long mask)
537 {
538 	unsigned long *bitmap;
539 	unsigned long bitidx, word_bitidx;
540 	unsigned long word;
541 
542 	bitmap = get_pageblock_bitmap(page, pfn);
543 	bitidx = pfn_to_bitidx(page, pfn);
544 	word_bitidx = bitidx / BITS_PER_LONG;
545 	bitidx &= (BITS_PER_LONG-1);
546 	/*
547 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
548 	 * a consistent read of the memory array, so that results, even though
549 	 * racy, are not corrupted.
550 	 */
551 	word = READ_ONCE(bitmap[word_bitidx]);
552 	return (word >> bitidx) & mask;
553 }
554 
555 /**
556  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
557  * @page: The page within the block of interest
558  * @pfn: The target page frame number
559  * @mask: mask of bits that the caller is interested in
560  *
561  * Return: pageblock_bits flags
562  */
563 unsigned long get_pfnblock_flags_mask(const struct page *page,
564 					unsigned long pfn, unsigned long mask)
565 {
566 	return __get_pfnblock_flags_mask(page, pfn, mask);
567 }
568 
569 static __always_inline int get_pfnblock_migratetype(const struct page *page,
570 					unsigned long pfn)
571 {
572 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
573 }
574 
575 /**
576  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @flags: The flags to set
579  * @pfn: The target page frame number
580  * @mask: mask of bits that the caller is interested in
581  */
582 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
583 					unsigned long pfn,
584 					unsigned long mask)
585 {
586 	unsigned long *bitmap;
587 	unsigned long bitidx, word_bitidx;
588 	unsigned long word;
589 
590 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
591 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
592 
593 	bitmap = get_pageblock_bitmap(page, pfn);
594 	bitidx = pfn_to_bitidx(page, pfn);
595 	word_bitidx = bitidx / BITS_PER_LONG;
596 	bitidx &= (BITS_PER_LONG-1);
597 
598 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
599 
600 	mask <<= bitidx;
601 	flags <<= bitidx;
602 
603 	word = READ_ONCE(bitmap[word_bitidx]);
604 	do {
605 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
606 }
607 
608 void set_pageblock_migratetype(struct page *page, int migratetype)
609 {
610 	if (unlikely(page_group_by_mobility_disabled &&
611 		     migratetype < MIGRATE_PCPTYPES))
612 		migratetype = MIGRATE_UNMOVABLE;
613 
614 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
615 				page_to_pfn(page), MIGRATETYPE_MASK);
616 }
617 
618 #ifdef CONFIG_DEBUG_VM
619 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
620 {
621 	int ret = 0;
622 	unsigned seq;
623 	unsigned long pfn = page_to_pfn(page);
624 	unsigned long sp, start_pfn;
625 
626 	do {
627 		seq = zone_span_seqbegin(zone);
628 		start_pfn = zone->zone_start_pfn;
629 		sp = zone->spanned_pages;
630 		if (!zone_spans_pfn(zone, pfn))
631 			ret = 1;
632 	} while (zone_span_seqretry(zone, seq));
633 
634 	if (ret)
635 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
636 			pfn, zone_to_nid(zone), zone->name,
637 			start_pfn, start_pfn + sp);
638 
639 	return ret;
640 }
641 
642 static int page_is_consistent(struct zone *zone, struct page *page)
643 {
644 	if (zone != page_zone(page))
645 		return 0;
646 
647 	return 1;
648 }
649 /*
650  * Temporary debugging check for pages not lying within a given zone.
651  */
652 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
653 {
654 	if (page_outside_zone_boundaries(zone, page))
655 		return 1;
656 	if (!page_is_consistent(zone, page))
657 		return 1;
658 
659 	return 0;
660 }
661 #else
662 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
663 {
664 	return 0;
665 }
666 #endif
667 
668 static void bad_page(struct page *page, const char *reason)
669 {
670 	static unsigned long resume;
671 	static unsigned long nr_shown;
672 	static unsigned long nr_unshown;
673 
674 	/*
675 	 * Allow a burst of 60 reports, then keep quiet for that minute;
676 	 * or allow a steady drip of one report per second.
677 	 */
678 	if (nr_shown == 60) {
679 		if (time_before(jiffies, resume)) {
680 			nr_unshown++;
681 			goto out;
682 		}
683 		if (nr_unshown) {
684 			pr_alert(
685 			      "BUG: Bad page state: %lu messages suppressed\n",
686 				nr_unshown);
687 			nr_unshown = 0;
688 		}
689 		nr_shown = 0;
690 	}
691 	if (nr_shown++ == 0)
692 		resume = jiffies + 60 * HZ;
693 
694 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
695 		current->comm, page_to_pfn(page));
696 	dump_page(page, reason);
697 
698 	print_modules();
699 	dump_stack();
700 out:
701 	/* Leave bad fields for debug, except PageBuddy could make trouble */
702 	page_mapcount_reset(page); /* remove PageBuddy */
703 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
704 }
705 
706 static inline unsigned int order_to_pindex(int migratetype, int order)
707 {
708 	int base = order;
709 
710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
712 		VM_BUG_ON(order != pageblock_order);
713 		return NR_LOWORDER_PCP_LISTS;
714 	}
715 #else
716 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
717 #endif
718 
719 	return (MIGRATE_PCPTYPES * base) + migratetype;
720 }
721 
722 static inline int pindex_to_order(unsigned int pindex)
723 {
724 	int order = pindex / MIGRATE_PCPTYPES;
725 
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 	if (pindex == NR_LOWORDER_PCP_LISTS)
728 		order = pageblock_order;
729 #else
730 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
731 #endif
732 
733 	return order;
734 }
735 
736 static inline bool pcp_allowed_order(unsigned int order)
737 {
738 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
739 		return true;
740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
741 	if (order == pageblock_order)
742 		return true;
743 #endif
744 	return false;
745 }
746 
747 static inline void free_the_page(struct page *page, unsigned int order)
748 {
749 	if (pcp_allowed_order(order))		/* Via pcp? */
750 		free_unref_page(page, order);
751 	else
752 		__free_pages_ok(page, order, FPI_NONE);
753 }
754 
755 /*
756  * Higher-order pages are called "compound pages".  They are structured thusly:
757  *
758  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
759  *
760  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
761  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
762  *
763  * The first tail page's ->compound_dtor holds the offset in array of compound
764  * page destructors. See compound_page_dtors.
765  *
766  * The first tail page's ->compound_order holds the order of allocation.
767  * This usage means that zero-order pages may not be compound.
768  */
769 
770 void free_compound_page(struct page *page)
771 {
772 	mem_cgroup_uncharge(page_folio(page));
773 	free_the_page(page, compound_order(page));
774 }
775 
776 static void prep_compound_head(struct page *page, unsigned int order)
777 {
778 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
779 	set_compound_order(page, order);
780 	atomic_set(compound_mapcount_ptr(page), -1);
781 	atomic_set(subpages_mapcount_ptr(page), 0);
782 	atomic_set(compound_pincount_ptr(page), 0);
783 }
784 
785 static void prep_compound_tail(struct page *head, int tail_idx)
786 {
787 	struct page *p = head + tail_idx;
788 
789 	p->mapping = TAIL_MAPPING;
790 	set_compound_head(p, head);
791 	set_page_private(p, 0);
792 }
793 
794 void prep_compound_page(struct page *page, unsigned int order)
795 {
796 	int i;
797 	int nr_pages = 1 << order;
798 
799 	__SetPageHead(page);
800 	for (i = 1; i < nr_pages; i++)
801 		prep_compound_tail(page, i);
802 
803 	prep_compound_head(page, order);
804 }
805 
806 void destroy_large_folio(struct folio *folio)
807 {
808 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
809 
810 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
811 	compound_page_dtors[dtor](&folio->page);
812 }
813 
814 #ifdef CONFIG_DEBUG_PAGEALLOC
815 unsigned int _debug_guardpage_minorder;
816 
817 bool _debug_pagealloc_enabled_early __read_mostly
818 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
819 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
820 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
821 EXPORT_SYMBOL(_debug_pagealloc_enabled);
822 
823 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
824 
825 static int __init early_debug_pagealloc(char *buf)
826 {
827 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
828 }
829 early_param("debug_pagealloc", early_debug_pagealloc);
830 
831 static int __init debug_guardpage_minorder_setup(char *buf)
832 {
833 	unsigned long res;
834 
835 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
836 		pr_err("Bad debug_guardpage_minorder value\n");
837 		return 0;
838 	}
839 	_debug_guardpage_minorder = res;
840 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
841 	return 0;
842 }
843 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
844 
845 static inline bool set_page_guard(struct zone *zone, struct page *page,
846 				unsigned int order, int migratetype)
847 {
848 	if (!debug_guardpage_enabled())
849 		return false;
850 
851 	if (order >= debug_guardpage_minorder())
852 		return false;
853 
854 	__SetPageGuard(page);
855 	INIT_LIST_HEAD(&page->buddy_list);
856 	set_page_private(page, order);
857 	/* Guard pages are not available for any usage */
858 	if (!is_migrate_isolate(migratetype))
859 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
860 
861 	return true;
862 }
863 
864 static inline void clear_page_guard(struct zone *zone, struct page *page,
865 				unsigned int order, int migratetype)
866 {
867 	if (!debug_guardpage_enabled())
868 		return;
869 
870 	__ClearPageGuard(page);
871 
872 	set_page_private(page, 0);
873 	if (!is_migrate_isolate(migratetype))
874 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
875 }
876 #else
877 static inline bool set_page_guard(struct zone *zone, struct page *page,
878 			unsigned int order, int migratetype) { return false; }
879 static inline void clear_page_guard(struct zone *zone, struct page *page,
880 				unsigned int order, int migratetype) {}
881 #endif
882 
883 /*
884  * Enable static keys related to various memory debugging and hardening options.
885  * Some override others, and depend on early params that are evaluated in the
886  * order of appearance. So we need to first gather the full picture of what was
887  * enabled, and then make decisions.
888  */
889 void __init init_mem_debugging_and_hardening(void)
890 {
891 	bool page_poisoning_requested = false;
892 
893 #ifdef CONFIG_PAGE_POISONING
894 	/*
895 	 * Page poisoning is debug page alloc for some arches. If
896 	 * either of those options are enabled, enable poisoning.
897 	 */
898 	if (page_poisoning_enabled() ||
899 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
900 	      debug_pagealloc_enabled())) {
901 		static_branch_enable(&_page_poisoning_enabled);
902 		page_poisoning_requested = true;
903 	}
904 #endif
905 
906 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
907 	    page_poisoning_requested) {
908 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
909 			"will take precedence over init_on_alloc and init_on_free\n");
910 		_init_on_alloc_enabled_early = false;
911 		_init_on_free_enabled_early = false;
912 	}
913 
914 	if (_init_on_alloc_enabled_early)
915 		static_branch_enable(&init_on_alloc);
916 	else
917 		static_branch_disable(&init_on_alloc);
918 
919 	if (_init_on_free_enabled_early)
920 		static_branch_enable(&init_on_free);
921 	else
922 		static_branch_disable(&init_on_free);
923 
924 	if (IS_ENABLED(CONFIG_KMSAN) &&
925 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
926 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
927 
928 #ifdef CONFIG_DEBUG_PAGEALLOC
929 	if (!debug_pagealloc_enabled())
930 		return;
931 
932 	static_branch_enable(&_debug_pagealloc_enabled);
933 
934 	if (!debug_guardpage_minorder())
935 		return;
936 
937 	static_branch_enable(&_debug_guardpage_enabled);
938 #endif
939 }
940 
941 static inline void set_buddy_order(struct page *page, unsigned int order)
942 {
943 	set_page_private(page, order);
944 	__SetPageBuddy(page);
945 }
946 
947 #ifdef CONFIG_COMPACTION
948 static inline struct capture_control *task_capc(struct zone *zone)
949 {
950 	struct capture_control *capc = current->capture_control;
951 
952 	return unlikely(capc) &&
953 		!(current->flags & PF_KTHREAD) &&
954 		!capc->page &&
955 		capc->cc->zone == zone ? capc : NULL;
956 }
957 
958 static inline bool
959 compaction_capture(struct capture_control *capc, struct page *page,
960 		   int order, int migratetype)
961 {
962 	if (!capc || order != capc->cc->order)
963 		return false;
964 
965 	/* Do not accidentally pollute CMA or isolated regions*/
966 	if (is_migrate_cma(migratetype) ||
967 	    is_migrate_isolate(migratetype))
968 		return false;
969 
970 	/*
971 	 * Do not let lower order allocations pollute a movable pageblock.
972 	 * This might let an unmovable request use a reclaimable pageblock
973 	 * and vice-versa but no more than normal fallback logic which can
974 	 * have trouble finding a high-order free page.
975 	 */
976 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
977 		return false;
978 
979 	capc->page = page;
980 	return true;
981 }
982 
983 #else
984 static inline struct capture_control *task_capc(struct zone *zone)
985 {
986 	return NULL;
987 }
988 
989 static inline bool
990 compaction_capture(struct capture_control *capc, struct page *page,
991 		   int order, int migratetype)
992 {
993 	return false;
994 }
995 #endif /* CONFIG_COMPACTION */
996 
997 /* Used for pages not on another list */
998 static inline void add_to_free_list(struct page *page, struct zone *zone,
999 				    unsigned int order, int migratetype)
1000 {
1001 	struct free_area *area = &zone->free_area[order];
1002 
1003 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1004 	area->nr_free++;
1005 }
1006 
1007 /* Used for pages not on another list */
1008 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1009 					 unsigned int order, int migratetype)
1010 {
1011 	struct free_area *area = &zone->free_area[order];
1012 
1013 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1014 	area->nr_free++;
1015 }
1016 
1017 /*
1018  * Used for pages which are on another list. Move the pages to the tail
1019  * of the list - so the moved pages won't immediately be considered for
1020  * allocation again (e.g., optimization for memory onlining).
1021  */
1022 static inline void move_to_free_list(struct page *page, struct zone *zone,
1023 				     unsigned int order, int migratetype)
1024 {
1025 	struct free_area *area = &zone->free_area[order];
1026 
1027 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1028 }
1029 
1030 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1031 					   unsigned int order)
1032 {
1033 	/* clear reported state and update reported page count */
1034 	if (page_reported(page))
1035 		__ClearPageReported(page);
1036 
1037 	list_del(&page->buddy_list);
1038 	__ClearPageBuddy(page);
1039 	set_page_private(page, 0);
1040 	zone->free_area[order].nr_free--;
1041 }
1042 
1043 /*
1044  * If this is not the largest possible page, check if the buddy
1045  * of the next-highest order is free. If it is, it's possible
1046  * that pages are being freed that will coalesce soon. In case,
1047  * that is happening, add the free page to the tail of the list
1048  * so it's less likely to be used soon and more likely to be merged
1049  * as a higher order page
1050  */
1051 static inline bool
1052 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1053 		   struct page *page, unsigned int order)
1054 {
1055 	unsigned long higher_page_pfn;
1056 	struct page *higher_page;
1057 
1058 	if (order >= MAX_ORDER - 2)
1059 		return false;
1060 
1061 	higher_page_pfn = buddy_pfn & pfn;
1062 	higher_page = page + (higher_page_pfn - pfn);
1063 
1064 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1065 			NULL) != NULL;
1066 }
1067 
1068 /*
1069  * Freeing function for a buddy system allocator.
1070  *
1071  * The concept of a buddy system is to maintain direct-mapped table
1072  * (containing bit values) for memory blocks of various "orders".
1073  * The bottom level table contains the map for the smallest allocatable
1074  * units of memory (here, pages), and each level above it describes
1075  * pairs of units from the levels below, hence, "buddies".
1076  * At a high level, all that happens here is marking the table entry
1077  * at the bottom level available, and propagating the changes upward
1078  * as necessary, plus some accounting needed to play nicely with other
1079  * parts of the VM system.
1080  * At each level, we keep a list of pages, which are heads of continuous
1081  * free pages of length of (1 << order) and marked with PageBuddy.
1082  * Page's order is recorded in page_private(page) field.
1083  * So when we are allocating or freeing one, we can derive the state of the
1084  * other.  That is, if we allocate a small block, and both were
1085  * free, the remainder of the region must be split into blocks.
1086  * If a block is freed, and its buddy is also free, then this
1087  * triggers coalescing into a block of larger size.
1088  *
1089  * -- nyc
1090  */
1091 
1092 static inline void __free_one_page(struct page *page,
1093 		unsigned long pfn,
1094 		struct zone *zone, unsigned int order,
1095 		int migratetype, fpi_t fpi_flags)
1096 {
1097 	struct capture_control *capc = task_capc(zone);
1098 	unsigned long buddy_pfn = 0;
1099 	unsigned long combined_pfn;
1100 	struct page *buddy;
1101 	bool to_tail;
1102 
1103 	VM_BUG_ON(!zone_is_initialized(zone));
1104 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1105 
1106 	VM_BUG_ON(migratetype == -1);
1107 	if (likely(!is_migrate_isolate(migratetype)))
1108 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1109 
1110 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1111 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1112 
1113 	while (order < MAX_ORDER - 1) {
1114 		if (compaction_capture(capc, page, order, migratetype)) {
1115 			__mod_zone_freepage_state(zone, -(1 << order),
1116 								migratetype);
1117 			return;
1118 		}
1119 
1120 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1121 		if (!buddy)
1122 			goto done_merging;
1123 
1124 		if (unlikely(order >= pageblock_order)) {
1125 			/*
1126 			 * We want to prevent merge between freepages on pageblock
1127 			 * without fallbacks and normal pageblock. Without this,
1128 			 * pageblock isolation could cause incorrect freepage or CMA
1129 			 * accounting or HIGHATOMIC accounting.
1130 			 */
1131 			int buddy_mt = get_pageblock_migratetype(buddy);
1132 
1133 			if (migratetype != buddy_mt
1134 					&& (!migratetype_is_mergeable(migratetype) ||
1135 						!migratetype_is_mergeable(buddy_mt)))
1136 				goto done_merging;
1137 		}
1138 
1139 		/*
1140 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1141 		 * merge with it and move up one order.
1142 		 */
1143 		if (page_is_guard(buddy))
1144 			clear_page_guard(zone, buddy, order, migratetype);
1145 		else
1146 			del_page_from_free_list(buddy, zone, order);
1147 		combined_pfn = buddy_pfn & pfn;
1148 		page = page + (combined_pfn - pfn);
1149 		pfn = combined_pfn;
1150 		order++;
1151 	}
1152 
1153 done_merging:
1154 	set_buddy_order(page, order);
1155 
1156 	if (fpi_flags & FPI_TO_TAIL)
1157 		to_tail = true;
1158 	else if (is_shuffle_order(order))
1159 		to_tail = shuffle_pick_tail();
1160 	else
1161 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1162 
1163 	if (to_tail)
1164 		add_to_free_list_tail(page, zone, order, migratetype);
1165 	else
1166 		add_to_free_list(page, zone, order, migratetype);
1167 
1168 	/* Notify page reporting subsystem of freed page */
1169 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1170 		page_reporting_notify_free(order);
1171 }
1172 
1173 /**
1174  * split_free_page() -- split a free page at split_pfn_offset
1175  * @free_page:		the original free page
1176  * @order:		the order of the page
1177  * @split_pfn_offset:	split offset within the page
1178  *
1179  * Return -ENOENT if the free page is changed, otherwise 0
1180  *
1181  * It is used when the free page crosses two pageblocks with different migratetypes
1182  * at split_pfn_offset within the page. The split free page will be put into
1183  * separate migratetype lists afterwards. Otherwise, the function achieves
1184  * nothing.
1185  */
1186 int split_free_page(struct page *free_page,
1187 			unsigned int order, unsigned long split_pfn_offset)
1188 {
1189 	struct zone *zone = page_zone(free_page);
1190 	unsigned long free_page_pfn = page_to_pfn(free_page);
1191 	unsigned long pfn;
1192 	unsigned long flags;
1193 	int free_page_order;
1194 	int mt;
1195 	int ret = 0;
1196 
1197 	if (split_pfn_offset == 0)
1198 		return ret;
1199 
1200 	spin_lock_irqsave(&zone->lock, flags);
1201 
1202 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1203 		ret = -ENOENT;
1204 		goto out;
1205 	}
1206 
1207 	mt = get_pageblock_migratetype(free_page);
1208 	if (likely(!is_migrate_isolate(mt)))
1209 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1210 
1211 	del_page_from_free_list(free_page, zone, order);
1212 	for (pfn = free_page_pfn;
1213 	     pfn < free_page_pfn + (1UL << order);) {
1214 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1215 
1216 		free_page_order = min_t(unsigned int,
1217 					pfn ? __ffs(pfn) : order,
1218 					__fls(split_pfn_offset));
1219 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1220 				mt, FPI_NONE);
1221 		pfn += 1UL << free_page_order;
1222 		split_pfn_offset -= (1UL << free_page_order);
1223 		/* we have done the first part, now switch to second part */
1224 		if (split_pfn_offset == 0)
1225 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1226 	}
1227 out:
1228 	spin_unlock_irqrestore(&zone->lock, flags);
1229 	return ret;
1230 }
1231 /*
1232  * A bad page could be due to a number of fields. Instead of multiple branches,
1233  * try and check multiple fields with one check. The caller must do a detailed
1234  * check if necessary.
1235  */
1236 static inline bool page_expected_state(struct page *page,
1237 					unsigned long check_flags)
1238 {
1239 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1240 		return false;
1241 
1242 	if (unlikely((unsigned long)page->mapping |
1243 			page_ref_count(page) |
1244 #ifdef CONFIG_MEMCG
1245 			page->memcg_data |
1246 #endif
1247 			(page->flags & check_flags)))
1248 		return false;
1249 
1250 	return true;
1251 }
1252 
1253 static const char *page_bad_reason(struct page *page, unsigned long flags)
1254 {
1255 	const char *bad_reason = NULL;
1256 
1257 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1258 		bad_reason = "nonzero mapcount";
1259 	if (unlikely(page->mapping != NULL))
1260 		bad_reason = "non-NULL mapping";
1261 	if (unlikely(page_ref_count(page) != 0))
1262 		bad_reason = "nonzero _refcount";
1263 	if (unlikely(page->flags & flags)) {
1264 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1265 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1266 		else
1267 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1268 	}
1269 #ifdef CONFIG_MEMCG
1270 	if (unlikely(page->memcg_data))
1271 		bad_reason = "page still charged to cgroup";
1272 #endif
1273 	return bad_reason;
1274 }
1275 
1276 static void free_page_is_bad_report(struct page *page)
1277 {
1278 	bad_page(page,
1279 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1280 }
1281 
1282 static inline bool free_page_is_bad(struct page *page)
1283 {
1284 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1285 		return false;
1286 
1287 	/* Something has gone sideways, find it */
1288 	free_page_is_bad_report(page);
1289 	return true;
1290 }
1291 
1292 static int free_tail_pages_check(struct page *head_page, struct page *page)
1293 {
1294 	int ret = 1;
1295 
1296 	/*
1297 	 * We rely page->lru.next never has bit 0 set, unless the page
1298 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1299 	 */
1300 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1301 
1302 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1303 		ret = 0;
1304 		goto out;
1305 	}
1306 	switch (page - head_page) {
1307 	case 1:
1308 		/* the first tail page: these may be in place of ->mapping */
1309 		if (unlikely(head_compound_mapcount(head_page))) {
1310 			bad_page(page, "nonzero compound_mapcount");
1311 			goto out;
1312 		}
1313 		if (unlikely(atomic_read(subpages_mapcount_ptr(head_page)))) {
1314 			bad_page(page, "nonzero subpages_mapcount");
1315 			goto out;
1316 		}
1317 		if (unlikely(head_compound_pincount(head_page))) {
1318 			bad_page(page, "nonzero compound_pincount");
1319 			goto out;
1320 		}
1321 		break;
1322 	case 2:
1323 		/*
1324 		 * the second tail page: ->mapping is
1325 		 * deferred_list.next -- ignore value.
1326 		 */
1327 		break;
1328 	default:
1329 		if (page->mapping != TAIL_MAPPING) {
1330 			bad_page(page, "corrupted mapping in tail page");
1331 			goto out;
1332 		}
1333 		break;
1334 	}
1335 	if (unlikely(!PageTail(page))) {
1336 		bad_page(page, "PageTail not set");
1337 		goto out;
1338 	}
1339 	if (unlikely(compound_head(page) != head_page)) {
1340 		bad_page(page, "compound_head not consistent");
1341 		goto out;
1342 	}
1343 	ret = 0;
1344 out:
1345 	page->mapping = NULL;
1346 	clear_compound_head(page);
1347 	return ret;
1348 }
1349 
1350 /*
1351  * Skip KASAN memory poisoning when either:
1352  *
1353  * 1. Deferred memory initialization has not yet completed,
1354  *    see the explanation below.
1355  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1356  *    see the comment next to it.
1357  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1358  *    see the comment next to it.
1359  * 4. The allocation is excluded from being checked due to sampling,
1360  *    see the call to kasan_unpoison_pages.
1361  *
1362  * Poisoning pages during deferred memory init will greatly lengthen the
1363  * process and cause problem in large memory systems as the deferred pages
1364  * initialization is done with interrupt disabled.
1365  *
1366  * Assuming that there will be no reference to those newly initialized
1367  * pages before they are ever allocated, this should have no effect on
1368  * KASAN memory tracking as the poison will be properly inserted at page
1369  * allocation time. The only corner case is when pages are allocated by
1370  * on-demand allocation and then freed again before the deferred pages
1371  * initialization is done, but this is not likely to happen.
1372  */
1373 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1374 {
1375 	return deferred_pages_enabled() ||
1376 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1377 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1378 	       PageSkipKASanPoison(page);
1379 }
1380 
1381 static void kernel_init_pages(struct page *page, int numpages)
1382 {
1383 	int i;
1384 
1385 	/* s390's use of memset() could override KASAN redzones. */
1386 	kasan_disable_current();
1387 	for (i = 0; i < numpages; i++)
1388 		clear_highpage_kasan_tagged(page + i);
1389 	kasan_enable_current();
1390 }
1391 
1392 static __always_inline bool free_pages_prepare(struct page *page,
1393 			unsigned int order, bool check_free, fpi_t fpi_flags)
1394 {
1395 	int bad = 0;
1396 	bool init = want_init_on_free();
1397 
1398 	VM_BUG_ON_PAGE(PageTail(page), page);
1399 
1400 	trace_mm_page_free(page, order);
1401 	kmsan_free_page(page, order);
1402 
1403 	if (unlikely(PageHWPoison(page)) && !order) {
1404 		/*
1405 		 * Do not let hwpoison pages hit pcplists/buddy
1406 		 * Untie memcg state and reset page's owner
1407 		 */
1408 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1409 			__memcg_kmem_uncharge_page(page, order);
1410 		reset_page_owner(page, order);
1411 		page_table_check_free(page, order);
1412 		return false;
1413 	}
1414 
1415 	/*
1416 	 * Check tail pages before head page information is cleared to
1417 	 * avoid checking PageCompound for order-0 pages.
1418 	 */
1419 	if (unlikely(order)) {
1420 		bool compound = PageCompound(page);
1421 		int i;
1422 
1423 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1424 
1425 		if (compound)
1426 			ClearPageHasHWPoisoned(page);
1427 		for (i = 1; i < (1 << order); i++) {
1428 			if (compound)
1429 				bad += free_tail_pages_check(page, page + i);
1430 			if (unlikely(free_page_is_bad(page + i))) {
1431 				bad++;
1432 				continue;
1433 			}
1434 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1435 		}
1436 	}
1437 	if (PageMappingFlags(page))
1438 		page->mapping = NULL;
1439 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1440 		__memcg_kmem_uncharge_page(page, order);
1441 	if (check_free && free_page_is_bad(page))
1442 		bad++;
1443 	if (bad)
1444 		return false;
1445 
1446 	page_cpupid_reset_last(page);
1447 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1448 	reset_page_owner(page, order);
1449 	page_table_check_free(page, order);
1450 
1451 	if (!PageHighMem(page)) {
1452 		debug_check_no_locks_freed(page_address(page),
1453 					   PAGE_SIZE << order);
1454 		debug_check_no_obj_freed(page_address(page),
1455 					   PAGE_SIZE << order);
1456 	}
1457 
1458 	kernel_poison_pages(page, 1 << order);
1459 
1460 	/*
1461 	 * As memory initialization might be integrated into KASAN,
1462 	 * KASAN poisoning and memory initialization code must be
1463 	 * kept together to avoid discrepancies in behavior.
1464 	 *
1465 	 * With hardware tag-based KASAN, memory tags must be set before the
1466 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1467 	 */
1468 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1469 		kasan_poison_pages(page, order, init);
1470 
1471 		/* Memory is already initialized if KASAN did it internally. */
1472 		if (kasan_has_integrated_init())
1473 			init = false;
1474 	}
1475 	if (init)
1476 		kernel_init_pages(page, 1 << order);
1477 
1478 	/*
1479 	 * arch_free_page() can make the page's contents inaccessible.  s390
1480 	 * does this.  So nothing which can access the page's contents should
1481 	 * happen after this.
1482 	 */
1483 	arch_free_page(page, order);
1484 
1485 	debug_pagealloc_unmap_pages(page, 1 << order);
1486 
1487 	return true;
1488 }
1489 
1490 #ifdef CONFIG_DEBUG_VM
1491 /*
1492  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1493  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1494  * moved from pcp lists to free lists.
1495  */
1496 static bool free_pcp_prepare(struct page *page, unsigned int order)
1497 {
1498 	return free_pages_prepare(page, order, true, FPI_NONE);
1499 }
1500 
1501 /* return true if this page has an inappropriate state */
1502 static bool bulkfree_pcp_prepare(struct page *page)
1503 {
1504 	if (debug_pagealloc_enabled_static())
1505 		return free_page_is_bad(page);
1506 	else
1507 		return false;
1508 }
1509 #else
1510 /*
1511  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1512  * moving from pcp lists to free list in order to reduce overhead. With
1513  * debug_pagealloc enabled, they are checked also immediately when being freed
1514  * to the pcp lists.
1515  */
1516 static bool free_pcp_prepare(struct page *page, unsigned int order)
1517 {
1518 	if (debug_pagealloc_enabled_static())
1519 		return free_pages_prepare(page, order, true, FPI_NONE);
1520 	else
1521 		return free_pages_prepare(page, order, false, FPI_NONE);
1522 }
1523 
1524 static bool bulkfree_pcp_prepare(struct page *page)
1525 {
1526 	return free_page_is_bad(page);
1527 }
1528 #endif /* CONFIG_DEBUG_VM */
1529 
1530 /*
1531  * Frees a number of pages from the PCP lists
1532  * Assumes all pages on list are in same zone.
1533  * count is the number of pages to free.
1534  */
1535 static void free_pcppages_bulk(struct zone *zone, int count,
1536 					struct per_cpu_pages *pcp,
1537 					int pindex)
1538 {
1539 	unsigned long flags;
1540 	int min_pindex = 0;
1541 	int max_pindex = NR_PCP_LISTS - 1;
1542 	unsigned int order;
1543 	bool isolated_pageblocks;
1544 	struct page *page;
1545 
1546 	/*
1547 	 * Ensure proper count is passed which otherwise would stuck in the
1548 	 * below while (list_empty(list)) loop.
1549 	 */
1550 	count = min(pcp->count, count);
1551 
1552 	/* Ensure requested pindex is drained first. */
1553 	pindex = pindex - 1;
1554 
1555 	spin_lock_irqsave(&zone->lock, flags);
1556 	isolated_pageblocks = has_isolate_pageblock(zone);
1557 
1558 	while (count > 0) {
1559 		struct list_head *list;
1560 		int nr_pages;
1561 
1562 		/* Remove pages from lists in a round-robin fashion. */
1563 		do {
1564 			if (++pindex > max_pindex)
1565 				pindex = min_pindex;
1566 			list = &pcp->lists[pindex];
1567 			if (!list_empty(list))
1568 				break;
1569 
1570 			if (pindex == max_pindex)
1571 				max_pindex--;
1572 			if (pindex == min_pindex)
1573 				min_pindex++;
1574 		} while (1);
1575 
1576 		order = pindex_to_order(pindex);
1577 		nr_pages = 1 << order;
1578 		do {
1579 			int mt;
1580 
1581 			page = list_last_entry(list, struct page, pcp_list);
1582 			mt = get_pcppage_migratetype(page);
1583 
1584 			/* must delete to avoid corrupting pcp list */
1585 			list_del(&page->pcp_list);
1586 			count -= nr_pages;
1587 			pcp->count -= nr_pages;
1588 
1589 			if (bulkfree_pcp_prepare(page))
1590 				continue;
1591 
1592 			/* MIGRATE_ISOLATE page should not go to pcplists */
1593 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1594 			/* Pageblock could have been isolated meanwhile */
1595 			if (unlikely(isolated_pageblocks))
1596 				mt = get_pageblock_migratetype(page);
1597 
1598 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1599 			trace_mm_page_pcpu_drain(page, order, mt);
1600 		} while (count > 0 && !list_empty(list));
1601 	}
1602 
1603 	spin_unlock_irqrestore(&zone->lock, flags);
1604 }
1605 
1606 static void free_one_page(struct zone *zone,
1607 				struct page *page, unsigned long pfn,
1608 				unsigned int order,
1609 				int migratetype, fpi_t fpi_flags)
1610 {
1611 	unsigned long flags;
1612 
1613 	spin_lock_irqsave(&zone->lock, flags);
1614 	if (unlikely(has_isolate_pageblock(zone) ||
1615 		is_migrate_isolate(migratetype))) {
1616 		migratetype = get_pfnblock_migratetype(page, pfn);
1617 	}
1618 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1619 	spin_unlock_irqrestore(&zone->lock, flags);
1620 }
1621 
1622 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1623 				unsigned long zone, int nid)
1624 {
1625 	mm_zero_struct_page(page);
1626 	set_page_links(page, zone, nid, pfn);
1627 	init_page_count(page);
1628 	page_mapcount_reset(page);
1629 	page_cpupid_reset_last(page);
1630 	page_kasan_tag_reset(page);
1631 
1632 	INIT_LIST_HEAD(&page->lru);
1633 #ifdef WANT_PAGE_VIRTUAL
1634 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1635 	if (!is_highmem_idx(zone))
1636 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1637 #endif
1638 }
1639 
1640 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1641 static void __meminit init_reserved_page(unsigned long pfn)
1642 {
1643 	pg_data_t *pgdat;
1644 	int nid, zid;
1645 
1646 	if (!early_page_uninitialised(pfn))
1647 		return;
1648 
1649 	nid = early_pfn_to_nid(pfn);
1650 	pgdat = NODE_DATA(nid);
1651 
1652 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1653 		struct zone *zone = &pgdat->node_zones[zid];
1654 
1655 		if (zone_spans_pfn(zone, pfn))
1656 			break;
1657 	}
1658 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1659 }
1660 #else
1661 static inline void init_reserved_page(unsigned long pfn)
1662 {
1663 }
1664 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1665 
1666 /*
1667  * Initialised pages do not have PageReserved set. This function is
1668  * called for each range allocated by the bootmem allocator and
1669  * marks the pages PageReserved. The remaining valid pages are later
1670  * sent to the buddy page allocator.
1671  */
1672 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1673 {
1674 	unsigned long start_pfn = PFN_DOWN(start);
1675 	unsigned long end_pfn = PFN_UP(end);
1676 
1677 	for (; start_pfn < end_pfn; start_pfn++) {
1678 		if (pfn_valid(start_pfn)) {
1679 			struct page *page = pfn_to_page(start_pfn);
1680 
1681 			init_reserved_page(start_pfn);
1682 
1683 			/* Avoid false-positive PageTail() */
1684 			INIT_LIST_HEAD(&page->lru);
1685 
1686 			/*
1687 			 * no need for atomic set_bit because the struct
1688 			 * page is not visible yet so nobody should
1689 			 * access it yet.
1690 			 */
1691 			__SetPageReserved(page);
1692 		}
1693 	}
1694 }
1695 
1696 static void __free_pages_ok(struct page *page, unsigned int order,
1697 			    fpi_t fpi_flags)
1698 {
1699 	unsigned long flags;
1700 	int migratetype;
1701 	unsigned long pfn = page_to_pfn(page);
1702 	struct zone *zone = page_zone(page);
1703 
1704 	if (!free_pages_prepare(page, order, true, fpi_flags))
1705 		return;
1706 
1707 	/*
1708 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1709 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1710 	 * This will reduce the lock holding time.
1711 	 */
1712 	migratetype = get_pfnblock_migratetype(page, pfn);
1713 
1714 	spin_lock_irqsave(&zone->lock, flags);
1715 	if (unlikely(has_isolate_pageblock(zone) ||
1716 		is_migrate_isolate(migratetype))) {
1717 		migratetype = get_pfnblock_migratetype(page, pfn);
1718 	}
1719 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1720 	spin_unlock_irqrestore(&zone->lock, flags);
1721 
1722 	__count_vm_events(PGFREE, 1 << order);
1723 }
1724 
1725 void __free_pages_core(struct page *page, unsigned int order)
1726 {
1727 	unsigned int nr_pages = 1 << order;
1728 	struct page *p = page;
1729 	unsigned int loop;
1730 
1731 	/*
1732 	 * When initializing the memmap, __init_single_page() sets the refcount
1733 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1734 	 * refcount of all involved pages to 0.
1735 	 */
1736 	prefetchw(p);
1737 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1738 		prefetchw(p + 1);
1739 		__ClearPageReserved(p);
1740 		set_page_count(p, 0);
1741 	}
1742 	__ClearPageReserved(p);
1743 	set_page_count(p, 0);
1744 
1745 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1746 
1747 	/*
1748 	 * Bypass PCP and place fresh pages right to the tail, primarily
1749 	 * relevant for memory onlining.
1750 	 */
1751 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1752 }
1753 
1754 #ifdef CONFIG_NUMA
1755 
1756 /*
1757  * During memory init memblocks map pfns to nids. The search is expensive and
1758  * this caches recent lookups. The implementation of __early_pfn_to_nid
1759  * treats start/end as pfns.
1760  */
1761 struct mminit_pfnnid_cache {
1762 	unsigned long last_start;
1763 	unsigned long last_end;
1764 	int last_nid;
1765 };
1766 
1767 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1768 
1769 /*
1770  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1771  */
1772 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1773 					struct mminit_pfnnid_cache *state)
1774 {
1775 	unsigned long start_pfn, end_pfn;
1776 	int nid;
1777 
1778 	if (state->last_start <= pfn && pfn < state->last_end)
1779 		return state->last_nid;
1780 
1781 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1782 	if (nid != NUMA_NO_NODE) {
1783 		state->last_start = start_pfn;
1784 		state->last_end = end_pfn;
1785 		state->last_nid = nid;
1786 	}
1787 
1788 	return nid;
1789 }
1790 
1791 int __meminit early_pfn_to_nid(unsigned long pfn)
1792 {
1793 	static DEFINE_SPINLOCK(early_pfn_lock);
1794 	int nid;
1795 
1796 	spin_lock(&early_pfn_lock);
1797 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1798 	if (nid < 0)
1799 		nid = first_online_node;
1800 	spin_unlock(&early_pfn_lock);
1801 
1802 	return nid;
1803 }
1804 #endif /* CONFIG_NUMA */
1805 
1806 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1807 							unsigned int order)
1808 {
1809 	if (early_page_uninitialised(pfn))
1810 		return;
1811 	if (!kmsan_memblock_free_pages(page, order)) {
1812 		/* KMSAN will take care of these pages. */
1813 		return;
1814 	}
1815 	__free_pages_core(page, order);
1816 }
1817 
1818 /*
1819  * Check that the whole (or subset of) a pageblock given by the interval of
1820  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1821  * with the migration of free compaction scanner.
1822  *
1823  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1824  *
1825  * It's possible on some configurations to have a setup like node0 node1 node0
1826  * i.e. it's possible that all pages within a zones range of pages do not
1827  * belong to a single zone. We assume that a border between node0 and node1
1828  * can occur within a single pageblock, but not a node0 node1 node0
1829  * interleaving within a single pageblock. It is therefore sufficient to check
1830  * the first and last page of a pageblock and avoid checking each individual
1831  * page in a pageblock.
1832  */
1833 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1834 				     unsigned long end_pfn, struct zone *zone)
1835 {
1836 	struct page *start_page;
1837 	struct page *end_page;
1838 
1839 	/* end_pfn is one past the range we are checking */
1840 	end_pfn--;
1841 
1842 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1843 		return NULL;
1844 
1845 	start_page = pfn_to_online_page(start_pfn);
1846 	if (!start_page)
1847 		return NULL;
1848 
1849 	if (page_zone(start_page) != zone)
1850 		return NULL;
1851 
1852 	end_page = pfn_to_page(end_pfn);
1853 
1854 	/* This gives a shorter code than deriving page_zone(end_page) */
1855 	if (page_zone_id(start_page) != page_zone_id(end_page))
1856 		return NULL;
1857 
1858 	return start_page;
1859 }
1860 
1861 void set_zone_contiguous(struct zone *zone)
1862 {
1863 	unsigned long block_start_pfn = zone->zone_start_pfn;
1864 	unsigned long block_end_pfn;
1865 
1866 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1867 	for (; block_start_pfn < zone_end_pfn(zone);
1868 			block_start_pfn = block_end_pfn,
1869 			 block_end_pfn += pageblock_nr_pages) {
1870 
1871 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1872 
1873 		if (!__pageblock_pfn_to_page(block_start_pfn,
1874 					     block_end_pfn, zone))
1875 			return;
1876 		cond_resched();
1877 	}
1878 
1879 	/* We confirm that there is no hole */
1880 	zone->contiguous = true;
1881 }
1882 
1883 void clear_zone_contiguous(struct zone *zone)
1884 {
1885 	zone->contiguous = false;
1886 }
1887 
1888 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1889 static void __init deferred_free_range(unsigned long pfn,
1890 				       unsigned long nr_pages)
1891 {
1892 	struct page *page;
1893 	unsigned long i;
1894 
1895 	if (!nr_pages)
1896 		return;
1897 
1898 	page = pfn_to_page(pfn);
1899 
1900 	/* Free a large naturally-aligned chunk if possible */
1901 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1902 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1903 		__free_pages_core(page, pageblock_order);
1904 		return;
1905 	}
1906 
1907 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1908 		if (pageblock_aligned(pfn))
1909 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1910 		__free_pages_core(page, 0);
1911 	}
1912 }
1913 
1914 /* Completion tracking for deferred_init_memmap() threads */
1915 static atomic_t pgdat_init_n_undone __initdata;
1916 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1917 
1918 static inline void __init pgdat_init_report_one_done(void)
1919 {
1920 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1921 		complete(&pgdat_init_all_done_comp);
1922 }
1923 
1924 /*
1925  * Returns true if page needs to be initialized or freed to buddy allocator.
1926  *
1927  * We check if a current large page is valid by only checking the validity
1928  * of the head pfn.
1929  */
1930 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1931 {
1932 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1933 		return false;
1934 	return true;
1935 }
1936 
1937 /*
1938  * Free pages to buddy allocator. Try to free aligned pages in
1939  * pageblock_nr_pages sizes.
1940  */
1941 static void __init deferred_free_pages(unsigned long pfn,
1942 				       unsigned long end_pfn)
1943 {
1944 	unsigned long nr_free = 0;
1945 
1946 	for (; pfn < end_pfn; pfn++) {
1947 		if (!deferred_pfn_valid(pfn)) {
1948 			deferred_free_range(pfn - nr_free, nr_free);
1949 			nr_free = 0;
1950 		} else if (pageblock_aligned(pfn)) {
1951 			deferred_free_range(pfn - nr_free, nr_free);
1952 			nr_free = 1;
1953 		} else {
1954 			nr_free++;
1955 		}
1956 	}
1957 	/* Free the last block of pages to allocator */
1958 	deferred_free_range(pfn - nr_free, nr_free);
1959 }
1960 
1961 /*
1962  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1963  * by performing it only once every pageblock_nr_pages.
1964  * Return number of pages initialized.
1965  */
1966 static unsigned long  __init deferred_init_pages(struct zone *zone,
1967 						 unsigned long pfn,
1968 						 unsigned long end_pfn)
1969 {
1970 	int nid = zone_to_nid(zone);
1971 	unsigned long nr_pages = 0;
1972 	int zid = zone_idx(zone);
1973 	struct page *page = NULL;
1974 
1975 	for (; pfn < end_pfn; pfn++) {
1976 		if (!deferred_pfn_valid(pfn)) {
1977 			page = NULL;
1978 			continue;
1979 		} else if (!page || pageblock_aligned(pfn)) {
1980 			page = pfn_to_page(pfn);
1981 		} else {
1982 			page++;
1983 		}
1984 		__init_single_page(page, pfn, zid, nid);
1985 		nr_pages++;
1986 	}
1987 	return (nr_pages);
1988 }
1989 
1990 /*
1991  * This function is meant to pre-load the iterator for the zone init.
1992  * Specifically it walks through the ranges until we are caught up to the
1993  * first_init_pfn value and exits there. If we never encounter the value we
1994  * return false indicating there are no valid ranges left.
1995  */
1996 static bool __init
1997 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1998 				    unsigned long *spfn, unsigned long *epfn,
1999 				    unsigned long first_init_pfn)
2000 {
2001 	u64 j;
2002 
2003 	/*
2004 	 * Start out by walking through the ranges in this zone that have
2005 	 * already been initialized. We don't need to do anything with them
2006 	 * so we just need to flush them out of the system.
2007 	 */
2008 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2009 		if (*epfn <= first_init_pfn)
2010 			continue;
2011 		if (*spfn < first_init_pfn)
2012 			*spfn = first_init_pfn;
2013 		*i = j;
2014 		return true;
2015 	}
2016 
2017 	return false;
2018 }
2019 
2020 /*
2021  * Initialize and free pages. We do it in two loops: first we initialize
2022  * struct page, then free to buddy allocator, because while we are
2023  * freeing pages we can access pages that are ahead (computing buddy
2024  * page in __free_one_page()).
2025  *
2026  * In order to try and keep some memory in the cache we have the loop
2027  * broken along max page order boundaries. This way we will not cause
2028  * any issues with the buddy page computation.
2029  */
2030 static unsigned long __init
2031 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2032 		       unsigned long *end_pfn)
2033 {
2034 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2035 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2036 	unsigned long nr_pages = 0;
2037 	u64 j = *i;
2038 
2039 	/* First we loop through and initialize the page values */
2040 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2041 		unsigned long t;
2042 
2043 		if (mo_pfn <= *start_pfn)
2044 			break;
2045 
2046 		t = min(mo_pfn, *end_pfn);
2047 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2048 
2049 		if (mo_pfn < *end_pfn) {
2050 			*start_pfn = mo_pfn;
2051 			break;
2052 		}
2053 	}
2054 
2055 	/* Reset values and now loop through freeing pages as needed */
2056 	swap(j, *i);
2057 
2058 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2059 		unsigned long t;
2060 
2061 		if (mo_pfn <= spfn)
2062 			break;
2063 
2064 		t = min(mo_pfn, epfn);
2065 		deferred_free_pages(spfn, t);
2066 
2067 		if (mo_pfn <= epfn)
2068 			break;
2069 	}
2070 
2071 	return nr_pages;
2072 }
2073 
2074 static void __init
2075 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2076 			   void *arg)
2077 {
2078 	unsigned long spfn, epfn;
2079 	struct zone *zone = arg;
2080 	u64 i;
2081 
2082 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2083 
2084 	/*
2085 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2086 	 * can avoid introducing any issues with the buddy allocator.
2087 	 */
2088 	while (spfn < end_pfn) {
2089 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2090 		cond_resched();
2091 	}
2092 }
2093 
2094 /* An arch may override for more concurrency. */
2095 __weak int __init
2096 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2097 {
2098 	return 1;
2099 }
2100 
2101 /* Initialise remaining memory on a node */
2102 static int __init deferred_init_memmap(void *data)
2103 {
2104 	pg_data_t *pgdat = data;
2105 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2106 	unsigned long spfn = 0, epfn = 0;
2107 	unsigned long first_init_pfn, flags;
2108 	unsigned long start = jiffies;
2109 	struct zone *zone;
2110 	int zid, max_threads;
2111 	u64 i;
2112 
2113 	/* Bind memory initialisation thread to a local node if possible */
2114 	if (!cpumask_empty(cpumask))
2115 		set_cpus_allowed_ptr(current, cpumask);
2116 
2117 	pgdat_resize_lock(pgdat, &flags);
2118 	first_init_pfn = pgdat->first_deferred_pfn;
2119 	if (first_init_pfn == ULONG_MAX) {
2120 		pgdat_resize_unlock(pgdat, &flags);
2121 		pgdat_init_report_one_done();
2122 		return 0;
2123 	}
2124 
2125 	/* Sanity check boundaries */
2126 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2127 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2128 	pgdat->first_deferred_pfn = ULONG_MAX;
2129 
2130 	/*
2131 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2132 	 * interrupt thread must allocate this early in boot, zone must be
2133 	 * pre-grown prior to start of deferred page initialization.
2134 	 */
2135 	pgdat_resize_unlock(pgdat, &flags);
2136 
2137 	/* Only the highest zone is deferred so find it */
2138 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2139 		zone = pgdat->node_zones + zid;
2140 		if (first_init_pfn < zone_end_pfn(zone))
2141 			break;
2142 	}
2143 
2144 	/* If the zone is empty somebody else may have cleared out the zone */
2145 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2146 						 first_init_pfn))
2147 		goto zone_empty;
2148 
2149 	max_threads = deferred_page_init_max_threads(cpumask);
2150 
2151 	while (spfn < epfn) {
2152 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2153 		struct padata_mt_job job = {
2154 			.thread_fn   = deferred_init_memmap_chunk,
2155 			.fn_arg      = zone,
2156 			.start       = spfn,
2157 			.size        = epfn_align - spfn,
2158 			.align       = PAGES_PER_SECTION,
2159 			.min_chunk   = PAGES_PER_SECTION,
2160 			.max_threads = max_threads,
2161 		};
2162 
2163 		padata_do_multithreaded(&job);
2164 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2165 						    epfn_align);
2166 	}
2167 zone_empty:
2168 	/* Sanity check that the next zone really is unpopulated */
2169 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2170 
2171 	pr_info("node %d deferred pages initialised in %ums\n",
2172 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2173 
2174 	pgdat_init_report_one_done();
2175 	return 0;
2176 }
2177 
2178 /*
2179  * If this zone has deferred pages, try to grow it by initializing enough
2180  * deferred pages to satisfy the allocation specified by order, rounded up to
2181  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2182  * of SECTION_SIZE bytes by initializing struct pages in increments of
2183  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2184  *
2185  * Return true when zone was grown, otherwise return false. We return true even
2186  * when we grow less than requested, to let the caller decide if there are
2187  * enough pages to satisfy the allocation.
2188  *
2189  * Note: We use noinline because this function is needed only during boot, and
2190  * it is called from a __ref function _deferred_grow_zone. This way we are
2191  * making sure that it is not inlined into permanent text section.
2192  */
2193 static noinline bool __init
2194 deferred_grow_zone(struct zone *zone, unsigned int order)
2195 {
2196 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2197 	pg_data_t *pgdat = zone->zone_pgdat;
2198 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2199 	unsigned long spfn, epfn, flags;
2200 	unsigned long nr_pages = 0;
2201 	u64 i;
2202 
2203 	/* Only the last zone may have deferred pages */
2204 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2205 		return false;
2206 
2207 	pgdat_resize_lock(pgdat, &flags);
2208 
2209 	/*
2210 	 * If someone grew this zone while we were waiting for spinlock, return
2211 	 * true, as there might be enough pages already.
2212 	 */
2213 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2214 		pgdat_resize_unlock(pgdat, &flags);
2215 		return true;
2216 	}
2217 
2218 	/* If the zone is empty somebody else may have cleared out the zone */
2219 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2220 						 first_deferred_pfn)) {
2221 		pgdat->first_deferred_pfn = ULONG_MAX;
2222 		pgdat_resize_unlock(pgdat, &flags);
2223 		/* Retry only once. */
2224 		return first_deferred_pfn != ULONG_MAX;
2225 	}
2226 
2227 	/*
2228 	 * Initialize and free pages in MAX_ORDER sized increments so
2229 	 * that we can avoid introducing any issues with the buddy
2230 	 * allocator.
2231 	 */
2232 	while (spfn < epfn) {
2233 		/* update our first deferred PFN for this section */
2234 		first_deferred_pfn = spfn;
2235 
2236 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2237 		touch_nmi_watchdog();
2238 
2239 		/* We should only stop along section boundaries */
2240 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2241 			continue;
2242 
2243 		/* If our quota has been met we can stop here */
2244 		if (nr_pages >= nr_pages_needed)
2245 			break;
2246 	}
2247 
2248 	pgdat->first_deferred_pfn = spfn;
2249 	pgdat_resize_unlock(pgdat, &flags);
2250 
2251 	return nr_pages > 0;
2252 }
2253 
2254 /*
2255  * deferred_grow_zone() is __init, but it is called from
2256  * get_page_from_freelist() during early boot until deferred_pages permanently
2257  * disables this call. This is why we have refdata wrapper to avoid warning,
2258  * and to ensure that the function body gets unloaded.
2259  */
2260 static bool __ref
2261 _deferred_grow_zone(struct zone *zone, unsigned int order)
2262 {
2263 	return deferred_grow_zone(zone, order);
2264 }
2265 
2266 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2267 
2268 void __init page_alloc_init_late(void)
2269 {
2270 	struct zone *zone;
2271 	int nid;
2272 
2273 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2274 
2275 	/* There will be num_node_state(N_MEMORY) threads */
2276 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2277 	for_each_node_state(nid, N_MEMORY) {
2278 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2279 	}
2280 
2281 	/* Block until all are initialised */
2282 	wait_for_completion(&pgdat_init_all_done_comp);
2283 
2284 	/*
2285 	 * We initialized the rest of the deferred pages.  Permanently disable
2286 	 * on-demand struct page initialization.
2287 	 */
2288 	static_branch_disable(&deferred_pages);
2289 
2290 	/* Reinit limits that are based on free pages after the kernel is up */
2291 	files_maxfiles_init();
2292 #endif
2293 
2294 	buffer_init();
2295 
2296 	/* Discard memblock private memory */
2297 	memblock_discard();
2298 
2299 	for_each_node_state(nid, N_MEMORY)
2300 		shuffle_free_memory(NODE_DATA(nid));
2301 
2302 	for_each_populated_zone(zone)
2303 		set_zone_contiguous(zone);
2304 }
2305 
2306 #ifdef CONFIG_CMA
2307 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2308 void __init init_cma_reserved_pageblock(struct page *page)
2309 {
2310 	unsigned i = pageblock_nr_pages;
2311 	struct page *p = page;
2312 
2313 	do {
2314 		__ClearPageReserved(p);
2315 		set_page_count(p, 0);
2316 	} while (++p, --i);
2317 
2318 	set_pageblock_migratetype(page, MIGRATE_CMA);
2319 	set_page_refcounted(page);
2320 	__free_pages(page, pageblock_order);
2321 
2322 	adjust_managed_page_count(page, pageblock_nr_pages);
2323 	page_zone(page)->cma_pages += pageblock_nr_pages;
2324 }
2325 #endif
2326 
2327 /*
2328  * The order of subdivision here is critical for the IO subsystem.
2329  * Please do not alter this order without good reasons and regression
2330  * testing. Specifically, as large blocks of memory are subdivided,
2331  * the order in which smaller blocks are delivered depends on the order
2332  * they're subdivided in this function. This is the primary factor
2333  * influencing the order in which pages are delivered to the IO
2334  * subsystem according to empirical testing, and this is also justified
2335  * by considering the behavior of a buddy system containing a single
2336  * large block of memory acted on by a series of small allocations.
2337  * This behavior is a critical factor in sglist merging's success.
2338  *
2339  * -- nyc
2340  */
2341 static inline void expand(struct zone *zone, struct page *page,
2342 	int low, int high, int migratetype)
2343 {
2344 	unsigned long size = 1 << high;
2345 
2346 	while (high > low) {
2347 		high--;
2348 		size >>= 1;
2349 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2350 
2351 		/*
2352 		 * Mark as guard pages (or page), that will allow to
2353 		 * merge back to allocator when buddy will be freed.
2354 		 * Corresponding page table entries will not be touched,
2355 		 * pages will stay not present in virtual address space
2356 		 */
2357 		if (set_page_guard(zone, &page[size], high, migratetype))
2358 			continue;
2359 
2360 		add_to_free_list(&page[size], zone, high, migratetype);
2361 		set_buddy_order(&page[size], high);
2362 	}
2363 }
2364 
2365 static void check_new_page_bad(struct page *page)
2366 {
2367 	if (unlikely(page->flags & __PG_HWPOISON)) {
2368 		/* Don't complain about hwpoisoned pages */
2369 		page_mapcount_reset(page); /* remove PageBuddy */
2370 		return;
2371 	}
2372 
2373 	bad_page(page,
2374 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2375 }
2376 
2377 /*
2378  * This page is about to be returned from the page allocator
2379  */
2380 static inline int check_new_page(struct page *page)
2381 {
2382 	if (likely(page_expected_state(page,
2383 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2384 		return 0;
2385 
2386 	check_new_page_bad(page);
2387 	return 1;
2388 }
2389 
2390 static bool check_new_pages(struct page *page, unsigned int order)
2391 {
2392 	int i;
2393 	for (i = 0; i < (1 << order); i++) {
2394 		struct page *p = page + i;
2395 
2396 		if (unlikely(check_new_page(p)))
2397 			return true;
2398 	}
2399 
2400 	return false;
2401 }
2402 
2403 #ifdef CONFIG_DEBUG_VM
2404 /*
2405  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2406  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2407  * also checked when pcp lists are refilled from the free lists.
2408  */
2409 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2410 {
2411 	if (debug_pagealloc_enabled_static())
2412 		return check_new_pages(page, order);
2413 	else
2414 		return false;
2415 }
2416 
2417 static inline bool check_new_pcp(struct page *page, unsigned int order)
2418 {
2419 	return check_new_pages(page, order);
2420 }
2421 #else
2422 /*
2423  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2424  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2425  * enabled, they are also checked when being allocated from the pcp lists.
2426  */
2427 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2428 {
2429 	return check_new_pages(page, order);
2430 }
2431 static inline bool check_new_pcp(struct page *page, unsigned int order)
2432 {
2433 	if (debug_pagealloc_enabled_static())
2434 		return check_new_pages(page, order);
2435 	else
2436 		return false;
2437 }
2438 #endif /* CONFIG_DEBUG_VM */
2439 
2440 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2441 {
2442 	/* Don't skip if a software KASAN mode is enabled. */
2443 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2444 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2445 		return false;
2446 
2447 	/* Skip, if hardware tag-based KASAN is not enabled. */
2448 	if (!kasan_hw_tags_enabled())
2449 		return true;
2450 
2451 	/*
2452 	 * With hardware tag-based KASAN enabled, skip if this has been
2453 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2454 	 */
2455 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2456 }
2457 
2458 static inline bool should_skip_init(gfp_t flags)
2459 {
2460 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2461 	if (!kasan_hw_tags_enabled())
2462 		return false;
2463 
2464 	/* For hardware tag-based KASAN, skip if requested. */
2465 	return (flags & __GFP_SKIP_ZERO);
2466 }
2467 
2468 inline void post_alloc_hook(struct page *page, unsigned int order,
2469 				gfp_t gfp_flags)
2470 {
2471 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2472 			!should_skip_init(gfp_flags);
2473 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2474 	bool reset_tags = !zero_tags;
2475 	int i;
2476 
2477 	set_page_private(page, 0);
2478 	set_page_refcounted(page);
2479 
2480 	arch_alloc_page(page, order);
2481 	debug_pagealloc_map_pages(page, 1 << order);
2482 
2483 	/*
2484 	 * Page unpoisoning must happen before memory initialization.
2485 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2486 	 * allocations and the page unpoisoning code will complain.
2487 	 */
2488 	kernel_unpoison_pages(page, 1 << order);
2489 
2490 	/*
2491 	 * As memory initialization might be integrated into KASAN,
2492 	 * KASAN unpoisoning and memory initializion code must be
2493 	 * kept together to avoid discrepancies in behavior.
2494 	 */
2495 
2496 	/*
2497 	 * If memory tags should be zeroed
2498 	 * (which happens only when memory should be initialized as well).
2499 	 */
2500 	if (zero_tags) {
2501 		/* Initialize both memory and tags. */
2502 		for (i = 0; i != 1 << order; ++i)
2503 			tag_clear_highpage(page + i);
2504 
2505 		/* Take note that memory was initialized by the loop above. */
2506 		init = false;
2507 	}
2508 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2509 		/* Try unpoisoning (or setting tags) and initializing memory. */
2510 		if (kasan_unpoison_pages(page, order, init)) {
2511 			/* Take note that memory was initialized by KASAN. */
2512 			if (kasan_has_integrated_init())
2513 				init = false;
2514 			/* Take note that memory tags were set by KASAN. */
2515 			reset_tags = false;
2516 		} else {
2517 			/*
2518 			 * KASAN decided to exclude this allocation from being
2519 			 * poisoned due to sampling. Skip poisoning as well.
2520 			 */
2521 			SetPageSkipKASanPoison(page);
2522 		}
2523 	}
2524 	/*
2525 	 * If memory tags have not been set, reset the page tags to ensure
2526 	 * page_address() dereferencing does not fault.
2527 	 */
2528 	if (reset_tags) {
2529 		for (i = 0; i != 1 << order; ++i)
2530 			page_kasan_tag_reset(page + i);
2531 	}
2532 	/* If memory is still not initialized, initialize it now. */
2533 	if (init)
2534 		kernel_init_pages(page, 1 << order);
2535 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2536 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2537 		SetPageSkipKASanPoison(page);
2538 
2539 	set_page_owner(page, order, gfp_flags);
2540 	page_table_check_alloc(page, order);
2541 }
2542 
2543 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2544 							unsigned int alloc_flags)
2545 {
2546 	post_alloc_hook(page, order, gfp_flags);
2547 
2548 	if (order && (gfp_flags & __GFP_COMP))
2549 		prep_compound_page(page, order);
2550 
2551 	/*
2552 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2553 	 * allocate the page. The expectation is that the caller is taking
2554 	 * steps that will free more memory. The caller should avoid the page
2555 	 * being used for !PFMEMALLOC purposes.
2556 	 */
2557 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2558 		set_page_pfmemalloc(page);
2559 	else
2560 		clear_page_pfmemalloc(page);
2561 }
2562 
2563 /*
2564  * Go through the free lists for the given migratetype and remove
2565  * the smallest available page from the freelists
2566  */
2567 static __always_inline
2568 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2569 						int migratetype)
2570 {
2571 	unsigned int current_order;
2572 	struct free_area *area;
2573 	struct page *page;
2574 
2575 	/* Find a page of the appropriate size in the preferred list */
2576 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2577 		area = &(zone->free_area[current_order]);
2578 		page = get_page_from_free_area(area, migratetype);
2579 		if (!page)
2580 			continue;
2581 		del_page_from_free_list(page, zone, current_order);
2582 		expand(zone, page, order, current_order, migratetype);
2583 		set_pcppage_migratetype(page, migratetype);
2584 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2585 				pcp_allowed_order(order) &&
2586 				migratetype < MIGRATE_PCPTYPES);
2587 		return page;
2588 	}
2589 
2590 	return NULL;
2591 }
2592 
2593 
2594 /*
2595  * This array describes the order lists are fallen back to when
2596  * the free lists for the desirable migrate type are depleted
2597  *
2598  * The other migratetypes do not have fallbacks.
2599  */
2600 static int fallbacks[MIGRATE_TYPES][3] = {
2601 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2602 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2603 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2604 };
2605 
2606 #ifdef CONFIG_CMA
2607 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2608 					unsigned int order)
2609 {
2610 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2611 }
2612 #else
2613 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2614 					unsigned int order) { return NULL; }
2615 #endif
2616 
2617 /*
2618  * Move the free pages in a range to the freelist tail of the requested type.
2619  * Note that start_page and end_pages are not aligned on a pageblock
2620  * boundary. If alignment is required, use move_freepages_block()
2621  */
2622 static int move_freepages(struct zone *zone,
2623 			  unsigned long start_pfn, unsigned long end_pfn,
2624 			  int migratetype, int *num_movable)
2625 {
2626 	struct page *page;
2627 	unsigned long pfn;
2628 	unsigned int order;
2629 	int pages_moved = 0;
2630 
2631 	for (pfn = start_pfn; pfn <= end_pfn;) {
2632 		page = pfn_to_page(pfn);
2633 		if (!PageBuddy(page)) {
2634 			/*
2635 			 * We assume that pages that could be isolated for
2636 			 * migration are movable. But we don't actually try
2637 			 * isolating, as that would be expensive.
2638 			 */
2639 			if (num_movable &&
2640 					(PageLRU(page) || __PageMovable(page)))
2641 				(*num_movable)++;
2642 			pfn++;
2643 			continue;
2644 		}
2645 
2646 		/* Make sure we are not inadvertently changing nodes */
2647 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2648 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2649 
2650 		order = buddy_order(page);
2651 		move_to_free_list(page, zone, order, migratetype);
2652 		pfn += 1 << order;
2653 		pages_moved += 1 << order;
2654 	}
2655 
2656 	return pages_moved;
2657 }
2658 
2659 int move_freepages_block(struct zone *zone, struct page *page,
2660 				int migratetype, int *num_movable)
2661 {
2662 	unsigned long start_pfn, end_pfn, pfn;
2663 
2664 	if (num_movable)
2665 		*num_movable = 0;
2666 
2667 	pfn = page_to_pfn(page);
2668 	start_pfn = pageblock_start_pfn(pfn);
2669 	end_pfn = pageblock_end_pfn(pfn) - 1;
2670 
2671 	/* Do not cross zone boundaries */
2672 	if (!zone_spans_pfn(zone, start_pfn))
2673 		start_pfn = pfn;
2674 	if (!zone_spans_pfn(zone, end_pfn))
2675 		return 0;
2676 
2677 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2678 								num_movable);
2679 }
2680 
2681 static void change_pageblock_range(struct page *pageblock_page,
2682 					int start_order, int migratetype)
2683 {
2684 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2685 
2686 	while (nr_pageblocks--) {
2687 		set_pageblock_migratetype(pageblock_page, migratetype);
2688 		pageblock_page += pageblock_nr_pages;
2689 	}
2690 }
2691 
2692 /*
2693  * When we are falling back to another migratetype during allocation, try to
2694  * steal extra free pages from the same pageblocks to satisfy further
2695  * allocations, instead of polluting multiple pageblocks.
2696  *
2697  * If we are stealing a relatively large buddy page, it is likely there will
2698  * be more free pages in the pageblock, so try to steal them all. For
2699  * reclaimable and unmovable allocations, we steal regardless of page size,
2700  * as fragmentation caused by those allocations polluting movable pageblocks
2701  * is worse than movable allocations stealing from unmovable and reclaimable
2702  * pageblocks.
2703  */
2704 static bool can_steal_fallback(unsigned int order, int start_mt)
2705 {
2706 	/*
2707 	 * Leaving this order check is intended, although there is
2708 	 * relaxed order check in next check. The reason is that
2709 	 * we can actually steal whole pageblock if this condition met,
2710 	 * but, below check doesn't guarantee it and that is just heuristic
2711 	 * so could be changed anytime.
2712 	 */
2713 	if (order >= pageblock_order)
2714 		return true;
2715 
2716 	if (order >= pageblock_order / 2 ||
2717 		start_mt == MIGRATE_RECLAIMABLE ||
2718 		start_mt == MIGRATE_UNMOVABLE ||
2719 		page_group_by_mobility_disabled)
2720 		return true;
2721 
2722 	return false;
2723 }
2724 
2725 static inline bool boost_watermark(struct zone *zone)
2726 {
2727 	unsigned long max_boost;
2728 
2729 	if (!watermark_boost_factor)
2730 		return false;
2731 	/*
2732 	 * Don't bother in zones that are unlikely to produce results.
2733 	 * On small machines, including kdump capture kernels running
2734 	 * in a small area, boosting the watermark can cause an out of
2735 	 * memory situation immediately.
2736 	 */
2737 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2738 		return false;
2739 
2740 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2741 			watermark_boost_factor, 10000);
2742 
2743 	/*
2744 	 * high watermark may be uninitialised if fragmentation occurs
2745 	 * very early in boot so do not boost. We do not fall
2746 	 * through and boost by pageblock_nr_pages as failing
2747 	 * allocations that early means that reclaim is not going
2748 	 * to help and it may even be impossible to reclaim the
2749 	 * boosted watermark resulting in a hang.
2750 	 */
2751 	if (!max_boost)
2752 		return false;
2753 
2754 	max_boost = max(pageblock_nr_pages, max_boost);
2755 
2756 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2757 		max_boost);
2758 
2759 	return true;
2760 }
2761 
2762 /*
2763  * This function implements actual steal behaviour. If order is large enough,
2764  * we can steal whole pageblock. If not, we first move freepages in this
2765  * pageblock to our migratetype and determine how many already-allocated pages
2766  * are there in the pageblock with a compatible migratetype. If at least half
2767  * of pages are free or compatible, we can change migratetype of the pageblock
2768  * itself, so pages freed in the future will be put on the correct free list.
2769  */
2770 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2771 		unsigned int alloc_flags, int start_type, bool whole_block)
2772 {
2773 	unsigned int current_order = buddy_order(page);
2774 	int free_pages, movable_pages, alike_pages;
2775 	int old_block_type;
2776 
2777 	old_block_type = get_pageblock_migratetype(page);
2778 
2779 	/*
2780 	 * This can happen due to races and we want to prevent broken
2781 	 * highatomic accounting.
2782 	 */
2783 	if (is_migrate_highatomic(old_block_type))
2784 		goto single_page;
2785 
2786 	/* Take ownership for orders >= pageblock_order */
2787 	if (current_order >= pageblock_order) {
2788 		change_pageblock_range(page, current_order, start_type);
2789 		goto single_page;
2790 	}
2791 
2792 	/*
2793 	 * Boost watermarks to increase reclaim pressure to reduce the
2794 	 * likelihood of future fallbacks. Wake kswapd now as the node
2795 	 * may be balanced overall and kswapd will not wake naturally.
2796 	 */
2797 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2798 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2799 
2800 	/* We are not allowed to try stealing from the whole block */
2801 	if (!whole_block)
2802 		goto single_page;
2803 
2804 	free_pages = move_freepages_block(zone, page, start_type,
2805 						&movable_pages);
2806 	/*
2807 	 * Determine how many pages are compatible with our allocation.
2808 	 * For movable allocation, it's the number of movable pages which
2809 	 * we just obtained. For other types it's a bit more tricky.
2810 	 */
2811 	if (start_type == MIGRATE_MOVABLE) {
2812 		alike_pages = movable_pages;
2813 	} else {
2814 		/*
2815 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2816 		 * to MOVABLE pageblock, consider all non-movable pages as
2817 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2818 		 * vice versa, be conservative since we can't distinguish the
2819 		 * exact migratetype of non-movable pages.
2820 		 */
2821 		if (old_block_type == MIGRATE_MOVABLE)
2822 			alike_pages = pageblock_nr_pages
2823 						- (free_pages + movable_pages);
2824 		else
2825 			alike_pages = 0;
2826 	}
2827 
2828 	/* moving whole block can fail due to zone boundary conditions */
2829 	if (!free_pages)
2830 		goto single_page;
2831 
2832 	/*
2833 	 * If a sufficient number of pages in the block are either free or of
2834 	 * comparable migratability as our allocation, claim the whole block.
2835 	 */
2836 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2837 			page_group_by_mobility_disabled)
2838 		set_pageblock_migratetype(page, start_type);
2839 
2840 	return;
2841 
2842 single_page:
2843 	move_to_free_list(page, zone, current_order, start_type);
2844 }
2845 
2846 /*
2847  * Check whether there is a suitable fallback freepage with requested order.
2848  * If only_stealable is true, this function returns fallback_mt only if
2849  * we can steal other freepages all together. This would help to reduce
2850  * fragmentation due to mixed migratetype pages in one pageblock.
2851  */
2852 int find_suitable_fallback(struct free_area *area, unsigned int order,
2853 			int migratetype, bool only_stealable, bool *can_steal)
2854 {
2855 	int i;
2856 	int fallback_mt;
2857 
2858 	if (area->nr_free == 0)
2859 		return -1;
2860 
2861 	*can_steal = false;
2862 	for (i = 0;; i++) {
2863 		fallback_mt = fallbacks[migratetype][i];
2864 		if (fallback_mt == MIGRATE_TYPES)
2865 			break;
2866 
2867 		if (free_area_empty(area, fallback_mt))
2868 			continue;
2869 
2870 		if (can_steal_fallback(order, migratetype))
2871 			*can_steal = true;
2872 
2873 		if (!only_stealable)
2874 			return fallback_mt;
2875 
2876 		if (*can_steal)
2877 			return fallback_mt;
2878 	}
2879 
2880 	return -1;
2881 }
2882 
2883 /*
2884  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2885  * there are no empty page blocks that contain a page with a suitable order
2886  */
2887 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2888 				unsigned int alloc_order)
2889 {
2890 	int mt;
2891 	unsigned long max_managed, flags;
2892 
2893 	/*
2894 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2895 	 * Check is race-prone but harmless.
2896 	 */
2897 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2898 	if (zone->nr_reserved_highatomic >= max_managed)
2899 		return;
2900 
2901 	spin_lock_irqsave(&zone->lock, flags);
2902 
2903 	/* Recheck the nr_reserved_highatomic limit under the lock */
2904 	if (zone->nr_reserved_highatomic >= max_managed)
2905 		goto out_unlock;
2906 
2907 	/* Yoink! */
2908 	mt = get_pageblock_migratetype(page);
2909 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2910 	if (migratetype_is_mergeable(mt)) {
2911 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2912 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2913 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2914 	}
2915 
2916 out_unlock:
2917 	spin_unlock_irqrestore(&zone->lock, flags);
2918 }
2919 
2920 /*
2921  * Used when an allocation is about to fail under memory pressure. This
2922  * potentially hurts the reliability of high-order allocations when under
2923  * intense memory pressure but failed atomic allocations should be easier
2924  * to recover from than an OOM.
2925  *
2926  * If @force is true, try to unreserve a pageblock even though highatomic
2927  * pageblock is exhausted.
2928  */
2929 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2930 						bool force)
2931 {
2932 	struct zonelist *zonelist = ac->zonelist;
2933 	unsigned long flags;
2934 	struct zoneref *z;
2935 	struct zone *zone;
2936 	struct page *page;
2937 	int order;
2938 	bool ret;
2939 
2940 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2941 								ac->nodemask) {
2942 		/*
2943 		 * Preserve at least one pageblock unless memory pressure
2944 		 * is really high.
2945 		 */
2946 		if (!force && zone->nr_reserved_highatomic <=
2947 					pageblock_nr_pages)
2948 			continue;
2949 
2950 		spin_lock_irqsave(&zone->lock, flags);
2951 		for (order = 0; order < MAX_ORDER; order++) {
2952 			struct free_area *area = &(zone->free_area[order]);
2953 
2954 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2955 			if (!page)
2956 				continue;
2957 
2958 			/*
2959 			 * In page freeing path, migratetype change is racy so
2960 			 * we can counter several free pages in a pageblock
2961 			 * in this loop although we changed the pageblock type
2962 			 * from highatomic to ac->migratetype. So we should
2963 			 * adjust the count once.
2964 			 */
2965 			if (is_migrate_highatomic_page(page)) {
2966 				/*
2967 				 * It should never happen but changes to
2968 				 * locking could inadvertently allow a per-cpu
2969 				 * drain to add pages to MIGRATE_HIGHATOMIC
2970 				 * while unreserving so be safe and watch for
2971 				 * underflows.
2972 				 */
2973 				zone->nr_reserved_highatomic -= min(
2974 						pageblock_nr_pages,
2975 						zone->nr_reserved_highatomic);
2976 			}
2977 
2978 			/*
2979 			 * Convert to ac->migratetype and avoid the normal
2980 			 * pageblock stealing heuristics. Minimally, the caller
2981 			 * is doing the work and needs the pages. More
2982 			 * importantly, if the block was always converted to
2983 			 * MIGRATE_UNMOVABLE or another type then the number
2984 			 * of pageblocks that cannot be completely freed
2985 			 * may increase.
2986 			 */
2987 			set_pageblock_migratetype(page, ac->migratetype);
2988 			ret = move_freepages_block(zone, page, ac->migratetype,
2989 									NULL);
2990 			if (ret) {
2991 				spin_unlock_irqrestore(&zone->lock, flags);
2992 				return ret;
2993 			}
2994 		}
2995 		spin_unlock_irqrestore(&zone->lock, flags);
2996 	}
2997 
2998 	return false;
2999 }
3000 
3001 /*
3002  * Try finding a free buddy page on the fallback list and put it on the free
3003  * list of requested migratetype, possibly along with other pages from the same
3004  * block, depending on fragmentation avoidance heuristics. Returns true if
3005  * fallback was found so that __rmqueue_smallest() can grab it.
3006  *
3007  * The use of signed ints for order and current_order is a deliberate
3008  * deviation from the rest of this file, to make the for loop
3009  * condition simpler.
3010  */
3011 static __always_inline bool
3012 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3013 						unsigned int alloc_flags)
3014 {
3015 	struct free_area *area;
3016 	int current_order;
3017 	int min_order = order;
3018 	struct page *page;
3019 	int fallback_mt;
3020 	bool can_steal;
3021 
3022 	/*
3023 	 * Do not steal pages from freelists belonging to other pageblocks
3024 	 * i.e. orders < pageblock_order. If there are no local zones free,
3025 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3026 	 */
3027 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3028 		min_order = pageblock_order;
3029 
3030 	/*
3031 	 * Find the largest available free page in the other list. This roughly
3032 	 * approximates finding the pageblock with the most free pages, which
3033 	 * would be too costly to do exactly.
3034 	 */
3035 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3036 				--current_order) {
3037 		area = &(zone->free_area[current_order]);
3038 		fallback_mt = find_suitable_fallback(area, current_order,
3039 				start_migratetype, false, &can_steal);
3040 		if (fallback_mt == -1)
3041 			continue;
3042 
3043 		/*
3044 		 * We cannot steal all free pages from the pageblock and the
3045 		 * requested migratetype is movable. In that case it's better to
3046 		 * steal and split the smallest available page instead of the
3047 		 * largest available page, because even if the next movable
3048 		 * allocation falls back into a different pageblock than this
3049 		 * one, it won't cause permanent fragmentation.
3050 		 */
3051 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3052 					&& current_order > order)
3053 			goto find_smallest;
3054 
3055 		goto do_steal;
3056 	}
3057 
3058 	return false;
3059 
3060 find_smallest:
3061 	for (current_order = order; current_order < MAX_ORDER;
3062 							current_order++) {
3063 		area = &(zone->free_area[current_order]);
3064 		fallback_mt = find_suitable_fallback(area, current_order,
3065 				start_migratetype, false, &can_steal);
3066 		if (fallback_mt != -1)
3067 			break;
3068 	}
3069 
3070 	/*
3071 	 * This should not happen - we already found a suitable fallback
3072 	 * when looking for the largest page.
3073 	 */
3074 	VM_BUG_ON(current_order == MAX_ORDER);
3075 
3076 do_steal:
3077 	page = get_page_from_free_area(area, fallback_mt);
3078 
3079 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3080 								can_steal);
3081 
3082 	trace_mm_page_alloc_extfrag(page, order, current_order,
3083 		start_migratetype, fallback_mt);
3084 
3085 	return true;
3086 
3087 }
3088 
3089 /*
3090  * Do the hard work of removing an element from the buddy allocator.
3091  * Call me with the zone->lock already held.
3092  */
3093 static __always_inline struct page *
3094 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3095 						unsigned int alloc_flags)
3096 {
3097 	struct page *page;
3098 
3099 	if (IS_ENABLED(CONFIG_CMA)) {
3100 		/*
3101 		 * Balance movable allocations between regular and CMA areas by
3102 		 * allocating from CMA when over half of the zone's free memory
3103 		 * is in the CMA area.
3104 		 */
3105 		if (alloc_flags & ALLOC_CMA &&
3106 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3107 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3108 			page = __rmqueue_cma_fallback(zone, order);
3109 			if (page)
3110 				return page;
3111 		}
3112 	}
3113 retry:
3114 	page = __rmqueue_smallest(zone, order, migratetype);
3115 	if (unlikely(!page)) {
3116 		if (alloc_flags & ALLOC_CMA)
3117 			page = __rmqueue_cma_fallback(zone, order);
3118 
3119 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3120 								alloc_flags))
3121 			goto retry;
3122 	}
3123 	return page;
3124 }
3125 
3126 /*
3127  * Obtain a specified number of elements from the buddy allocator, all under
3128  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3129  * Returns the number of new pages which were placed at *list.
3130  */
3131 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3132 			unsigned long count, struct list_head *list,
3133 			int migratetype, unsigned int alloc_flags)
3134 {
3135 	unsigned long flags;
3136 	int i, allocated = 0;
3137 
3138 	spin_lock_irqsave(&zone->lock, flags);
3139 	for (i = 0; i < count; ++i) {
3140 		struct page *page = __rmqueue(zone, order, migratetype,
3141 								alloc_flags);
3142 		if (unlikely(page == NULL))
3143 			break;
3144 
3145 		if (unlikely(check_pcp_refill(page, order)))
3146 			continue;
3147 
3148 		/*
3149 		 * Split buddy pages returned by expand() are received here in
3150 		 * physical page order. The page is added to the tail of
3151 		 * caller's list. From the callers perspective, the linked list
3152 		 * is ordered by page number under some conditions. This is
3153 		 * useful for IO devices that can forward direction from the
3154 		 * head, thus also in the physical page order. This is useful
3155 		 * for IO devices that can merge IO requests if the physical
3156 		 * pages are ordered properly.
3157 		 */
3158 		list_add_tail(&page->pcp_list, list);
3159 		allocated++;
3160 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3161 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3162 					      -(1 << order));
3163 	}
3164 
3165 	/*
3166 	 * i pages were removed from the buddy list even if some leak due
3167 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3168 	 * on i. Do not confuse with 'allocated' which is the number of
3169 	 * pages added to the pcp list.
3170 	 */
3171 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3172 	spin_unlock_irqrestore(&zone->lock, flags);
3173 	return allocated;
3174 }
3175 
3176 #ifdef CONFIG_NUMA
3177 /*
3178  * Called from the vmstat counter updater to drain pagesets of this
3179  * currently executing processor on remote nodes after they have
3180  * expired.
3181  */
3182 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3183 {
3184 	int to_drain, batch;
3185 
3186 	batch = READ_ONCE(pcp->batch);
3187 	to_drain = min(pcp->count, batch);
3188 	if (to_drain > 0) {
3189 		spin_lock(&pcp->lock);
3190 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3191 		spin_unlock(&pcp->lock);
3192 	}
3193 }
3194 #endif
3195 
3196 /*
3197  * Drain pcplists of the indicated processor and zone.
3198  */
3199 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3200 {
3201 	struct per_cpu_pages *pcp;
3202 
3203 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3204 	if (pcp->count) {
3205 		spin_lock(&pcp->lock);
3206 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3207 		spin_unlock(&pcp->lock);
3208 	}
3209 }
3210 
3211 /*
3212  * Drain pcplists of all zones on the indicated processor.
3213  */
3214 static void drain_pages(unsigned int cpu)
3215 {
3216 	struct zone *zone;
3217 
3218 	for_each_populated_zone(zone) {
3219 		drain_pages_zone(cpu, zone);
3220 	}
3221 }
3222 
3223 /*
3224  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3225  */
3226 void drain_local_pages(struct zone *zone)
3227 {
3228 	int cpu = smp_processor_id();
3229 
3230 	if (zone)
3231 		drain_pages_zone(cpu, zone);
3232 	else
3233 		drain_pages(cpu);
3234 }
3235 
3236 /*
3237  * The implementation of drain_all_pages(), exposing an extra parameter to
3238  * drain on all cpus.
3239  *
3240  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3241  * not empty. The check for non-emptiness can however race with a free to
3242  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3243  * that need the guarantee that every CPU has drained can disable the
3244  * optimizing racy check.
3245  */
3246 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3247 {
3248 	int cpu;
3249 
3250 	/*
3251 	 * Allocate in the BSS so we won't require allocation in
3252 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3253 	 */
3254 	static cpumask_t cpus_with_pcps;
3255 
3256 	/*
3257 	 * Do not drain if one is already in progress unless it's specific to
3258 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3259 	 * the drain to be complete when the call returns.
3260 	 */
3261 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3262 		if (!zone)
3263 			return;
3264 		mutex_lock(&pcpu_drain_mutex);
3265 	}
3266 
3267 	/*
3268 	 * We don't care about racing with CPU hotplug event
3269 	 * as offline notification will cause the notified
3270 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3271 	 * disables preemption as part of its processing
3272 	 */
3273 	for_each_online_cpu(cpu) {
3274 		struct per_cpu_pages *pcp;
3275 		struct zone *z;
3276 		bool has_pcps = false;
3277 
3278 		if (force_all_cpus) {
3279 			/*
3280 			 * The pcp.count check is racy, some callers need a
3281 			 * guarantee that no cpu is missed.
3282 			 */
3283 			has_pcps = true;
3284 		} else if (zone) {
3285 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3286 			if (pcp->count)
3287 				has_pcps = true;
3288 		} else {
3289 			for_each_populated_zone(z) {
3290 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3291 				if (pcp->count) {
3292 					has_pcps = true;
3293 					break;
3294 				}
3295 			}
3296 		}
3297 
3298 		if (has_pcps)
3299 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3300 		else
3301 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3302 	}
3303 
3304 	for_each_cpu(cpu, &cpus_with_pcps) {
3305 		if (zone)
3306 			drain_pages_zone(cpu, zone);
3307 		else
3308 			drain_pages(cpu);
3309 	}
3310 
3311 	mutex_unlock(&pcpu_drain_mutex);
3312 }
3313 
3314 /*
3315  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3316  *
3317  * When zone parameter is non-NULL, spill just the single zone's pages.
3318  */
3319 void drain_all_pages(struct zone *zone)
3320 {
3321 	__drain_all_pages(zone, false);
3322 }
3323 
3324 #ifdef CONFIG_HIBERNATION
3325 
3326 /*
3327  * Touch the watchdog for every WD_PAGE_COUNT pages.
3328  */
3329 #define WD_PAGE_COUNT	(128*1024)
3330 
3331 void mark_free_pages(struct zone *zone)
3332 {
3333 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3334 	unsigned long flags;
3335 	unsigned int order, t;
3336 	struct page *page;
3337 
3338 	if (zone_is_empty(zone))
3339 		return;
3340 
3341 	spin_lock_irqsave(&zone->lock, flags);
3342 
3343 	max_zone_pfn = zone_end_pfn(zone);
3344 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3345 		if (pfn_valid(pfn)) {
3346 			page = pfn_to_page(pfn);
3347 
3348 			if (!--page_count) {
3349 				touch_nmi_watchdog();
3350 				page_count = WD_PAGE_COUNT;
3351 			}
3352 
3353 			if (page_zone(page) != zone)
3354 				continue;
3355 
3356 			if (!swsusp_page_is_forbidden(page))
3357 				swsusp_unset_page_free(page);
3358 		}
3359 
3360 	for_each_migratetype_order(order, t) {
3361 		list_for_each_entry(page,
3362 				&zone->free_area[order].free_list[t], buddy_list) {
3363 			unsigned long i;
3364 
3365 			pfn = page_to_pfn(page);
3366 			for (i = 0; i < (1UL << order); i++) {
3367 				if (!--page_count) {
3368 					touch_nmi_watchdog();
3369 					page_count = WD_PAGE_COUNT;
3370 				}
3371 				swsusp_set_page_free(pfn_to_page(pfn + i));
3372 			}
3373 		}
3374 	}
3375 	spin_unlock_irqrestore(&zone->lock, flags);
3376 }
3377 #endif /* CONFIG_PM */
3378 
3379 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3380 							unsigned int order)
3381 {
3382 	int migratetype;
3383 
3384 	if (!free_pcp_prepare(page, order))
3385 		return false;
3386 
3387 	migratetype = get_pfnblock_migratetype(page, pfn);
3388 	set_pcppage_migratetype(page, migratetype);
3389 	return true;
3390 }
3391 
3392 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3393 		       bool free_high)
3394 {
3395 	int min_nr_free, max_nr_free;
3396 
3397 	/* Free everything if batch freeing high-order pages. */
3398 	if (unlikely(free_high))
3399 		return pcp->count;
3400 
3401 	/* Check for PCP disabled or boot pageset */
3402 	if (unlikely(high < batch))
3403 		return 1;
3404 
3405 	/* Leave at least pcp->batch pages on the list */
3406 	min_nr_free = batch;
3407 	max_nr_free = high - batch;
3408 
3409 	/*
3410 	 * Double the number of pages freed each time there is subsequent
3411 	 * freeing of pages without any allocation.
3412 	 */
3413 	batch <<= pcp->free_factor;
3414 	if (batch < max_nr_free)
3415 		pcp->free_factor++;
3416 	batch = clamp(batch, min_nr_free, max_nr_free);
3417 
3418 	return batch;
3419 }
3420 
3421 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3422 		       bool free_high)
3423 {
3424 	int high = READ_ONCE(pcp->high);
3425 
3426 	if (unlikely(!high || free_high))
3427 		return 0;
3428 
3429 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3430 		return high;
3431 
3432 	/*
3433 	 * If reclaim is active, limit the number of pages that can be
3434 	 * stored on pcp lists
3435 	 */
3436 	return min(READ_ONCE(pcp->batch) << 2, high);
3437 }
3438 
3439 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3440 				   struct page *page, int migratetype,
3441 				   unsigned int order)
3442 {
3443 	int high;
3444 	int pindex;
3445 	bool free_high;
3446 
3447 	__count_vm_events(PGFREE, 1 << order);
3448 	pindex = order_to_pindex(migratetype, order);
3449 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3450 	pcp->count += 1 << order;
3451 
3452 	/*
3453 	 * As high-order pages other than THP's stored on PCP can contribute
3454 	 * to fragmentation, limit the number stored when PCP is heavily
3455 	 * freeing without allocation. The remainder after bulk freeing
3456 	 * stops will be drained from vmstat refresh context.
3457 	 */
3458 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3459 
3460 	high = nr_pcp_high(pcp, zone, free_high);
3461 	if (pcp->count >= high) {
3462 		int batch = READ_ONCE(pcp->batch);
3463 
3464 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3465 	}
3466 }
3467 
3468 /*
3469  * Free a pcp page
3470  */
3471 void free_unref_page(struct page *page, unsigned int order)
3472 {
3473 	unsigned long __maybe_unused UP_flags;
3474 	struct per_cpu_pages *pcp;
3475 	struct zone *zone;
3476 	unsigned long pfn = page_to_pfn(page);
3477 	int migratetype;
3478 
3479 	if (!free_unref_page_prepare(page, pfn, order))
3480 		return;
3481 
3482 	/*
3483 	 * We only track unmovable, reclaimable and movable on pcp lists.
3484 	 * Place ISOLATE pages on the isolated list because they are being
3485 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3486 	 * areas back if necessary. Otherwise, we may have to free
3487 	 * excessively into the page allocator
3488 	 */
3489 	migratetype = get_pcppage_migratetype(page);
3490 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3491 		if (unlikely(is_migrate_isolate(migratetype))) {
3492 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3493 			return;
3494 		}
3495 		migratetype = MIGRATE_MOVABLE;
3496 	}
3497 
3498 	zone = page_zone(page);
3499 	pcp_trylock_prepare(UP_flags);
3500 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3501 	if (pcp) {
3502 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3503 		pcp_spin_unlock(pcp);
3504 	} else {
3505 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3506 	}
3507 	pcp_trylock_finish(UP_flags);
3508 }
3509 
3510 /*
3511  * Free a list of 0-order pages
3512  */
3513 void free_unref_page_list(struct list_head *list)
3514 {
3515 	unsigned long __maybe_unused UP_flags;
3516 	struct page *page, *next;
3517 	struct per_cpu_pages *pcp = NULL;
3518 	struct zone *locked_zone = NULL;
3519 	int batch_count = 0;
3520 	int migratetype;
3521 
3522 	/* Prepare pages for freeing */
3523 	list_for_each_entry_safe(page, next, list, lru) {
3524 		unsigned long pfn = page_to_pfn(page);
3525 		if (!free_unref_page_prepare(page, pfn, 0)) {
3526 			list_del(&page->lru);
3527 			continue;
3528 		}
3529 
3530 		/*
3531 		 * Free isolated pages directly to the allocator, see
3532 		 * comment in free_unref_page.
3533 		 */
3534 		migratetype = get_pcppage_migratetype(page);
3535 		if (unlikely(is_migrate_isolate(migratetype))) {
3536 			list_del(&page->lru);
3537 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3538 			continue;
3539 		}
3540 	}
3541 
3542 	list_for_each_entry_safe(page, next, list, lru) {
3543 		struct zone *zone = page_zone(page);
3544 
3545 		list_del(&page->lru);
3546 		migratetype = get_pcppage_migratetype(page);
3547 
3548 		/*
3549 		 * Either different zone requiring a different pcp lock or
3550 		 * excessive lock hold times when freeing a large list of
3551 		 * pages.
3552 		 */
3553 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3554 			if (pcp) {
3555 				pcp_spin_unlock(pcp);
3556 				pcp_trylock_finish(UP_flags);
3557 			}
3558 
3559 			batch_count = 0;
3560 
3561 			/*
3562 			 * trylock is necessary as pages may be getting freed
3563 			 * from IRQ or SoftIRQ context after an IO completion.
3564 			 */
3565 			pcp_trylock_prepare(UP_flags);
3566 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3567 			if (unlikely(!pcp)) {
3568 				pcp_trylock_finish(UP_flags);
3569 				free_one_page(zone, page, page_to_pfn(page),
3570 					      0, migratetype, FPI_NONE);
3571 				locked_zone = NULL;
3572 				continue;
3573 			}
3574 			locked_zone = zone;
3575 		}
3576 
3577 		/*
3578 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3579 		 * to the MIGRATE_MOVABLE pcp list.
3580 		 */
3581 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3582 			migratetype = MIGRATE_MOVABLE;
3583 
3584 		trace_mm_page_free_batched(page);
3585 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3586 		batch_count++;
3587 	}
3588 
3589 	if (pcp) {
3590 		pcp_spin_unlock(pcp);
3591 		pcp_trylock_finish(UP_flags);
3592 	}
3593 }
3594 
3595 /*
3596  * split_page takes a non-compound higher-order page, and splits it into
3597  * n (1<<order) sub-pages: page[0..n]
3598  * Each sub-page must be freed individually.
3599  *
3600  * Note: this is probably too low level an operation for use in drivers.
3601  * Please consult with lkml before using this in your driver.
3602  */
3603 void split_page(struct page *page, unsigned int order)
3604 {
3605 	int i;
3606 
3607 	VM_BUG_ON_PAGE(PageCompound(page), page);
3608 	VM_BUG_ON_PAGE(!page_count(page), page);
3609 
3610 	for (i = 1; i < (1 << order); i++)
3611 		set_page_refcounted(page + i);
3612 	split_page_owner(page, 1 << order);
3613 	split_page_memcg(page, 1 << order);
3614 }
3615 EXPORT_SYMBOL_GPL(split_page);
3616 
3617 int __isolate_free_page(struct page *page, unsigned int order)
3618 {
3619 	struct zone *zone = page_zone(page);
3620 	int mt = get_pageblock_migratetype(page);
3621 
3622 	if (!is_migrate_isolate(mt)) {
3623 		unsigned long watermark;
3624 		/*
3625 		 * Obey watermarks as if the page was being allocated. We can
3626 		 * emulate a high-order watermark check with a raised order-0
3627 		 * watermark, because we already know our high-order page
3628 		 * exists.
3629 		 */
3630 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3631 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3632 			return 0;
3633 
3634 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3635 	}
3636 
3637 	del_page_from_free_list(page, zone, order);
3638 
3639 	/*
3640 	 * Set the pageblock if the isolated page is at least half of a
3641 	 * pageblock
3642 	 */
3643 	if (order >= pageblock_order - 1) {
3644 		struct page *endpage = page + (1 << order) - 1;
3645 		for (; page < endpage; page += pageblock_nr_pages) {
3646 			int mt = get_pageblock_migratetype(page);
3647 			/*
3648 			 * Only change normal pageblocks (i.e., they can merge
3649 			 * with others)
3650 			 */
3651 			if (migratetype_is_mergeable(mt))
3652 				set_pageblock_migratetype(page,
3653 							  MIGRATE_MOVABLE);
3654 		}
3655 	}
3656 
3657 	return 1UL << order;
3658 }
3659 
3660 /**
3661  * __putback_isolated_page - Return a now-isolated page back where we got it
3662  * @page: Page that was isolated
3663  * @order: Order of the isolated page
3664  * @mt: The page's pageblock's migratetype
3665  *
3666  * This function is meant to return a page pulled from the free lists via
3667  * __isolate_free_page back to the free lists they were pulled from.
3668  */
3669 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3670 {
3671 	struct zone *zone = page_zone(page);
3672 
3673 	/* zone lock should be held when this function is called */
3674 	lockdep_assert_held(&zone->lock);
3675 
3676 	/* Return isolated page to tail of freelist. */
3677 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3678 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3679 }
3680 
3681 /*
3682  * Update NUMA hit/miss statistics
3683  */
3684 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3685 				   long nr_account)
3686 {
3687 #ifdef CONFIG_NUMA
3688 	enum numa_stat_item local_stat = NUMA_LOCAL;
3689 
3690 	/* skip numa counters update if numa stats is disabled */
3691 	if (!static_branch_likely(&vm_numa_stat_key))
3692 		return;
3693 
3694 	if (zone_to_nid(z) != numa_node_id())
3695 		local_stat = NUMA_OTHER;
3696 
3697 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3698 		__count_numa_events(z, NUMA_HIT, nr_account);
3699 	else {
3700 		__count_numa_events(z, NUMA_MISS, nr_account);
3701 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3702 	}
3703 	__count_numa_events(z, local_stat, nr_account);
3704 #endif
3705 }
3706 
3707 static __always_inline
3708 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3709 			   unsigned int order, unsigned int alloc_flags,
3710 			   int migratetype)
3711 {
3712 	struct page *page;
3713 	unsigned long flags;
3714 
3715 	do {
3716 		page = NULL;
3717 		spin_lock_irqsave(&zone->lock, flags);
3718 		/*
3719 		 * order-0 request can reach here when the pcplist is skipped
3720 		 * due to non-CMA allocation context. HIGHATOMIC area is
3721 		 * reserved for high-order atomic allocation, so order-0
3722 		 * request should skip it.
3723 		 */
3724 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3725 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3726 		if (!page) {
3727 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3728 			if (!page) {
3729 				spin_unlock_irqrestore(&zone->lock, flags);
3730 				return NULL;
3731 			}
3732 		}
3733 		__mod_zone_freepage_state(zone, -(1 << order),
3734 					  get_pcppage_migratetype(page));
3735 		spin_unlock_irqrestore(&zone->lock, flags);
3736 	} while (check_new_pages(page, order));
3737 
3738 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3739 	zone_statistics(preferred_zone, zone, 1);
3740 
3741 	return page;
3742 }
3743 
3744 /* Remove page from the per-cpu list, caller must protect the list */
3745 static inline
3746 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3747 			int migratetype,
3748 			unsigned int alloc_flags,
3749 			struct per_cpu_pages *pcp,
3750 			struct list_head *list)
3751 {
3752 	struct page *page;
3753 
3754 	do {
3755 		if (list_empty(list)) {
3756 			int batch = READ_ONCE(pcp->batch);
3757 			int alloced;
3758 
3759 			/*
3760 			 * Scale batch relative to order if batch implies
3761 			 * free pages can be stored on the PCP. Batch can
3762 			 * be 1 for small zones or for boot pagesets which
3763 			 * should never store free pages as the pages may
3764 			 * belong to arbitrary zones.
3765 			 */
3766 			if (batch > 1)
3767 				batch = max(batch >> order, 2);
3768 			alloced = rmqueue_bulk(zone, order,
3769 					batch, list,
3770 					migratetype, alloc_flags);
3771 
3772 			pcp->count += alloced << order;
3773 			if (unlikely(list_empty(list)))
3774 				return NULL;
3775 		}
3776 
3777 		page = list_first_entry(list, struct page, pcp_list);
3778 		list_del(&page->pcp_list);
3779 		pcp->count -= 1 << order;
3780 	} while (check_new_pcp(page, order));
3781 
3782 	return page;
3783 }
3784 
3785 /* Lock and remove page from the per-cpu list */
3786 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3787 			struct zone *zone, unsigned int order,
3788 			int migratetype, unsigned int alloc_flags)
3789 {
3790 	struct per_cpu_pages *pcp;
3791 	struct list_head *list;
3792 	struct page *page;
3793 	unsigned long __maybe_unused UP_flags;
3794 
3795 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3796 	pcp_trylock_prepare(UP_flags);
3797 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3798 	if (!pcp) {
3799 		pcp_trylock_finish(UP_flags);
3800 		return NULL;
3801 	}
3802 
3803 	/*
3804 	 * On allocation, reduce the number of pages that are batch freed.
3805 	 * See nr_pcp_free() where free_factor is increased for subsequent
3806 	 * frees.
3807 	 */
3808 	pcp->free_factor >>= 1;
3809 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3810 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3811 	pcp_spin_unlock(pcp);
3812 	pcp_trylock_finish(UP_flags);
3813 	if (page) {
3814 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3815 		zone_statistics(preferred_zone, zone, 1);
3816 	}
3817 	return page;
3818 }
3819 
3820 /*
3821  * Allocate a page from the given zone.
3822  * Use pcplists for THP or "cheap" high-order allocations.
3823  */
3824 
3825 /*
3826  * Do not instrument rmqueue() with KMSAN. This function may call
3827  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3828  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3829  * may call rmqueue() again, which will result in a deadlock.
3830  */
3831 __no_sanitize_memory
3832 static inline
3833 struct page *rmqueue(struct zone *preferred_zone,
3834 			struct zone *zone, unsigned int order,
3835 			gfp_t gfp_flags, unsigned int alloc_flags,
3836 			int migratetype)
3837 {
3838 	struct page *page;
3839 
3840 	/*
3841 	 * We most definitely don't want callers attempting to
3842 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3843 	 */
3844 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3845 
3846 	if (likely(pcp_allowed_order(order))) {
3847 		/*
3848 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3849 		 * we need to skip it when CMA area isn't allowed.
3850 		 */
3851 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3852 				migratetype != MIGRATE_MOVABLE) {
3853 			page = rmqueue_pcplist(preferred_zone, zone, order,
3854 					migratetype, alloc_flags);
3855 			if (likely(page))
3856 				goto out;
3857 		}
3858 	}
3859 
3860 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3861 							migratetype);
3862 
3863 out:
3864 	/* Separate test+clear to avoid unnecessary atomics */
3865 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3866 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3867 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3868 	}
3869 
3870 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3871 	return page;
3872 }
3873 
3874 #ifdef CONFIG_FAIL_PAGE_ALLOC
3875 
3876 static struct {
3877 	struct fault_attr attr;
3878 
3879 	bool ignore_gfp_highmem;
3880 	bool ignore_gfp_reclaim;
3881 	u32 min_order;
3882 } fail_page_alloc = {
3883 	.attr = FAULT_ATTR_INITIALIZER,
3884 	.ignore_gfp_reclaim = true,
3885 	.ignore_gfp_highmem = true,
3886 	.min_order = 1,
3887 };
3888 
3889 static int __init setup_fail_page_alloc(char *str)
3890 {
3891 	return setup_fault_attr(&fail_page_alloc.attr, str);
3892 }
3893 __setup("fail_page_alloc=", setup_fail_page_alloc);
3894 
3895 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3896 {
3897 	int flags = 0;
3898 
3899 	if (order < fail_page_alloc.min_order)
3900 		return false;
3901 	if (gfp_mask & __GFP_NOFAIL)
3902 		return false;
3903 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3904 		return false;
3905 	if (fail_page_alloc.ignore_gfp_reclaim &&
3906 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3907 		return false;
3908 
3909 	/* See comment in __should_failslab() */
3910 	if (gfp_mask & __GFP_NOWARN)
3911 		flags |= FAULT_NOWARN;
3912 
3913 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3914 }
3915 
3916 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3917 
3918 static int __init fail_page_alloc_debugfs(void)
3919 {
3920 	umode_t mode = S_IFREG | 0600;
3921 	struct dentry *dir;
3922 
3923 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3924 					&fail_page_alloc.attr);
3925 
3926 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3927 			    &fail_page_alloc.ignore_gfp_reclaim);
3928 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3929 			    &fail_page_alloc.ignore_gfp_highmem);
3930 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3931 
3932 	return 0;
3933 }
3934 
3935 late_initcall(fail_page_alloc_debugfs);
3936 
3937 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3938 
3939 #else /* CONFIG_FAIL_PAGE_ALLOC */
3940 
3941 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3942 {
3943 	return false;
3944 }
3945 
3946 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3947 
3948 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3949 {
3950 	return __should_fail_alloc_page(gfp_mask, order);
3951 }
3952 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3953 
3954 static inline long __zone_watermark_unusable_free(struct zone *z,
3955 				unsigned int order, unsigned int alloc_flags)
3956 {
3957 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3958 	long unusable_free = (1 << order) - 1;
3959 
3960 	/*
3961 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3962 	 * the high-atomic reserves. This will over-estimate the size of the
3963 	 * atomic reserve but it avoids a search.
3964 	 */
3965 	if (likely(!alloc_harder))
3966 		unusable_free += z->nr_reserved_highatomic;
3967 
3968 #ifdef CONFIG_CMA
3969 	/* If allocation can't use CMA areas don't use free CMA pages */
3970 	if (!(alloc_flags & ALLOC_CMA))
3971 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3972 #endif
3973 
3974 	return unusable_free;
3975 }
3976 
3977 /*
3978  * Return true if free base pages are above 'mark'. For high-order checks it
3979  * will return true of the order-0 watermark is reached and there is at least
3980  * one free page of a suitable size. Checking now avoids taking the zone lock
3981  * to check in the allocation paths if no pages are free.
3982  */
3983 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3984 			 int highest_zoneidx, unsigned int alloc_flags,
3985 			 long free_pages)
3986 {
3987 	long min = mark;
3988 	int o;
3989 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3990 
3991 	/* free_pages may go negative - that's OK */
3992 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3993 
3994 	if (alloc_flags & ALLOC_HIGH)
3995 		min -= min / 2;
3996 
3997 	if (unlikely(alloc_harder)) {
3998 		/*
3999 		 * OOM victims can try even harder than normal ALLOC_HARDER
4000 		 * users on the grounds that it's definitely going to be in
4001 		 * the exit path shortly and free memory. Any allocation it
4002 		 * makes during the free path will be small and short-lived.
4003 		 */
4004 		if (alloc_flags & ALLOC_OOM)
4005 			min -= min / 2;
4006 		else
4007 			min -= min / 4;
4008 	}
4009 
4010 	/*
4011 	 * Check watermarks for an order-0 allocation request. If these
4012 	 * are not met, then a high-order request also cannot go ahead
4013 	 * even if a suitable page happened to be free.
4014 	 */
4015 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4016 		return false;
4017 
4018 	/* If this is an order-0 request then the watermark is fine */
4019 	if (!order)
4020 		return true;
4021 
4022 	/* For a high-order request, check at least one suitable page is free */
4023 	for (o = order; o < MAX_ORDER; o++) {
4024 		struct free_area *area = &z->free_area[o];
4025 		int mt;
4026 
4027 		if (!area->nr_free)
4028 			continue;
4029 
4030 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4031 			if (!free_area_empty(area, mt))
4032 				return true;
4033 		}
4034 
4035 #ifdef CONFIG_CMA
4036 		if ((alloc_flags & ALLOC_CMA) &&
4037 		    !free_area_empty(area, MIGRATE_CMA)) {
4038 			return true;
4039 		}
4040 #endif
4041 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4042 			return true;
4043 	}
4044 	return false;
4045 }
4046 
4047 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4048 		      int highest_zoneidx, unsigned int alloc_flags)
4049 {
4050 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4051 					zone_page_state(z, NR_FREE_PAGES));
4052 }
4053 
4054 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4055 				unsigned long mark, int highest_zoneidx,
4056 				unsigned int alloc_flags, gfp_t gfp_mask)
4057 {
4058 	long free_pages;
4059 
4060 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4061 
4062 	/*
4063 	 * Fast check for order-0 only. If this fails then the reserves
4064 	 * need to be calculated.
4065 	 */
4066 	if (!order) {
4067 		long usable_free;
4068 		long reserved;
4069 
4070 		usable_free = free_pages;
4071 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4072 
4073 		/* reserved may over estimate high-atomic reserves. */
4074 		usable_free -= min(usable_free, reserved);
4075 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4076 			return true;
4077 	}
4078 
4079 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4080 					free_pages))
4081 		return true;
4082 	/*
4083 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4084 	 * when checking the min watermark. The min watermark is the
4085 	 * point where boosting is ignored so that kswapd is woken up
4086 	 * when below the low watermark.
4087 	 */
4088 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4089 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4090 		mark = z->_watermark[WMARK_MIN];
4091 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4092 					alloc_flags, free_pages);
4093 	}
4094 
4095 	return false;
4096 }
4097 
4098 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4099 			unsigned long mark, int highest_zoneidx)
4100 {
4101 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4102 
4103 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4104 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4105 
4106 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4107 								free_pages);
4108 }
4109 
4110 #ifdef CONFIG_NUMA
4111 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4112 
4113 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4114 {
4115 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4116 				node_reclaim_distance;
4117 }
4118 #else	/* CONFIG_NUMA */
4119 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4120 {
4121 	return true;
4122 }
4123 #endif	/* CONFIG_NUMA */
4124 
4125 /*
4126  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4127  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4128  * premature use of a lower zone may cause lowmem pressure problems that
4129  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4130  * probably too small. It only makes sense to spread allocations to avoid
4131  * fragmentation between the Normal and DMA32 zones.
4132  */
4133 static inline unsigned int
4134 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4135 {
4136 	unsigned int alloc_flags;
4137 
4138 	/*
4139 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4140 	 * to save a branch.
4141 	 */
4142 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4143 
4144 #ifdef CONFIG_ZONE_DMA32
4145 	if (!zone)
4146 		return alloc_flags;
4147 
4148 	if (zone_idx(zone) != ZONE_NORMAL)
4149 		return alloc_flags;
4150 
4151 	/*
4152 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4153 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4154 	 * on UMA that if Normal is populated then so is DMA32.
4155 	 */
4156 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4157 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4158 		return alloc_flags;
4159 
4160 	alloc_flags |= ALLOC_NOFRAGMENT;
4161 #endif /* CONFIG_ZONE_DMA32 */
4162 	return alloc_flags;
4163 }
4164 
4165 /* Must be called after current_gfp_context() which can change gfp_mask */
4166 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4167 						  unsigned int alloc_flags)
4168 {
4169 #ifdef CONFIG_CMA
4170 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4171 		alloc_flags |= ALLOC_CMA;
4172 #endif
4173 	return alloc_flags;
4174 }
4175 
4176 /*
4177  * get_page_from_freelist goes through the zonelist trying to allocate
4178  * a page.
4179  */
4180 static struct page *
4181 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4182 						const struct alloc_context *ac)
4183 {
4184 	struct zoneref *z;
4185 	struct zone *zone;
4186 	struct pglist_data *last_pgdat = NULL;
4187 	bool last_pgdat_dirty_ok = false;
4188 	bool no_fallback;
4189 
4190 retry:
4191 	/*
4192 	 * Scan zonelist, looking for a zone with enough free.
4193 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4194 	 */
4195 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4196 	z = ac->preferred_zoneref;
4197 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4198 					ac->nodemask) {
4199 		struct page *page;
4200 		unsigned long mark;
4201 
4202 		if (cpusets_enabled() &&
4203 			(alloc_flags & ALLOC_CPUSET) &&
4204 			!__cpuset_zone_allowed(zone, gfp_mask))
4205 				continue;
4206 		/*
4207 		 * When allocating a page cache page for writing, we
4208 		 * want to get it from a node that is within its dirty
4209 		 * limit, such that no single node holds more than its
4210 		 * proportional share of globally allowed dirty pages.
4211 		 * The dirty limits take into account the node's
4212 		 * lowmem reserves and high watermark so that kswapd
4213 		 * should be able to balance it without having to
4214 		 * write pages from its LRU list.
4215 		 *
4216 		 * XXX: For now, allow allocations to potentially
4217 		 * exceed the per-node dirty limit in the slowpath
4218 		 * (spread_dirty_pages unset) before going into reclaim,
4219 		 * which is important when on a NUMA setup the allowed
4220 		 * nodes are together not big enough to reach the
4221 		 * global limit.  The proper fix for these situations
4222 		 * will require awareness of nodes in the
4223 		 * dirty-throttling and the flusher threads.
4224 		 */
4225 		if (ac->spread_dirty_pages) {
4226 			if (last_pgdat != zone->zone_pgdat) {
4227 				last_pgdat = zone->zone_pgdat;
4228 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4229 			}
4230 
4231 			if (!last_pgdat_dirty_ok)
4232 				continue;
4233 		}
4234 
4235 		if (no_fallback && nr_online_nodes > 1 &&
4236 		    zone != ac->preferred_zoneref->zone) {
4237 			int local_nid;
4238 
4239 			/*
4240 			 * If moving to a remote node, retry but allow
4241 			 * fragmenting fallbacks. Locality is more important
4242 			 * than fragmentation avoidance.
4243 			 */
4244 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4245 			if (zone_to_nid(zone) != local_nid) {
4246 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4247 				goto retry;
4248 			}
4249 		}
4250 
4251 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4252 		if (!zone_watermark_fast(zone, order, mark,
4253 				       ac->highest_zoneidx, alloc_flags,
4254 				       gfp_mask)) {
4255 			int ret;
4256 
4257 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4258 			/*
4259 			 * Watermark failed for this zone, but see if we can
4260 			 * grow this zone if it contains deferred pages.
4261 			 */
4262 			if (static_branch_unlikely(&deferred_pages)) {
4263 				if (_deferred_grow_zone(zone, order))
4264 					goto try_this_zone;
4265 			}
4266 #endif
4267 			/* Checked here to keep the fast path fast */
4268 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4269 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4270 				goto try_this_zone;
4271 
4272 			if (!node_reclaim_enabled() ||
4273 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4274 				continue;
4275 
4276 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4277 			switch (ret) {
4278 			case NODE_RECLAIM_NOSCAN:
4279 				/* did not scan */
4280 				continue;
4281 			case NODE_RECLAIM_FULL:
4282 				/* scanned but unreclaimable */
4283 				continue;
4284 			default:
4285 				/* did we reclaim enough */
4286 				if (zone_watermark_ok(zone, order, mark,
4287 					ac->highest_zoneidx, alloc_flags))
4288 					goto try_this_zone;
4289 
4290 				continue;
4291 			}
4292 		}
4293 
4294 try_this_zone:
4295 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4296 				gfp_mask, alloc_flags, ac->migratetype);
4297 		if (page) {
4298 			prep_new_page(page, order, gfp_mask, alloc_flags);
4299 
4300 			/*
4301 			 * If this is a high-order atomic allocation then check
4302 			 * if the pageblock should be reserved for the future
4303 			 */
4304 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4305 				reserve_highatomic_pageblock(page, zone, order);
4306 
4307 			return page;
4308 		} else {
4309 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4310 			/* Try again if zone has deferred pages */
4311 			if (static_branch_unlikely(&deferred_pages)) {
4312 				if (_deferred_grow_zone(zone, order))
4313 					goto try_this_zone;
4314 			}
4315 #endif
4316 		}
4317 	}
4318 
4319 	/*
4320 	 * It's possible on a UMA machine to get through all zones that are
4321 	 * fragmented. If avoiding fragmentation, reset and try again.
4322 	 */
4323 	if (no_fallback) {
4324 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4325 		goto retry;
4326 	}
4327 
4328 	return NULL;
4329 }
4330 
4331 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4332 {
4333 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4334 
4335 	/*
4336 	 * This documents exceptions given to allocations in certain
4337 	 * contexts that are allowed to allocate outside current's set
4338 	 * of allowed nodes.
4339 	 */
4340 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4341 		if (tsk_is_oom_victim(current) ||
4342 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4343 			filter &= ~SHOW_MEM_FILTER_NODES;
4344 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4345 		filter &= ~SHOW_MEM_FILTER_NODES;
4346 
4347 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4348 }
4349 
4350 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4351 {
4352 	struct va_format vaf;
4353 	va_list args;
4354 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4355 
4356 	if ((gfp_mask & __GFP_NOWARN) ||
4357 	     !__ratelimit(&nopage_rs) ||
4358 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4359 		return;
4360 
4361 	va_start(args, fmt);
4362 	vaf.fmt = fmt;
4363 	vaf.va = &args;
4364 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4365 			current->comm, &vaf, gfp_mask, &gfp_mask,
4366 			nodemask_pr_args(nodemask));
4367 	va_end(args);
4368 
4369 	cpuset_print_current_mems_allowed();
4370 	pr_cont("\n");
4371 	dump_stack();
4372 	warn_alloc_show_mem(gfp_mask, nodemask);
4373 }
4374 
4375 static inline struct page *
4376 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4377 			      unsigned int alloc_flags,
4378 			      const struct alloc_context *ac)
4379 {
4380 	struct page *page;
4381 
4382 	page = get_page_from_freelist(gfp_mask, order,
4383 			alloc_flags|ALLOC_CPUSET, ac);
4384 	/*
4385 	 * fallback to ignore cpuset restriction if our nodes
4386 	 * are depleted
4387 	 */
4388 	if (!page)
4389 		page = get_page_from_freelist(gfp_mask, order,
4390 				alloc_flags, ac);
4391 
4392 	return page;
4393 }
4394 
4395 static inline struct page *
4396 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4397 	const struct alloc_context *ac, unsigned long *did_some_progress)
4398 {
4399 	struct oom_control oc = {
4400 		.zonelist = ac->zonelist,
4401 		.nodemask = ac->nodemask,
4402 		.memcg = NULL,
4403 		.gfp_mask = gfp_mask,
4404 		.order = order,
4405 	};
4406 	struct page *page;
4407 
4408 	*did_some_progress = 0;
4409 
4410 	/*
4411 	 * Acquire the oom lock.  If that fails, somebody else is
4412 	 * making progress for us.
4413 	 */
4414 	if (!mutex_trylock(&oom_lock)) {
4415 		*did_some_progress = 1;
4416 		schedule_timeout_uninterruptible(1);
4417 		return NULL;
4418 	}
4419 
4420 	/*
4421 	 * Go through the zonelist yet one more time, keep very high watermark
4422 	 * here, this is only to catch a parallel oom killing, we must fail if
4423 	 * we're still under heavy pressure. But make sure that this reclaim
4424 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4425 	 * allocation which will never fail due to oom_lock already held.
4426 	 */
4427 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4428 				      ~__GFP_DIRECT_RECLAIM, order,
4429 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4430 	if (page)
4431 		goto out;
4432 
4433 	/* Coredumps can quickly deplete all memory reserves */
4434 	if (current->flags & PF_DUMPCORE)
4435 		goto out;
4436 	/* The OOM killer will not help higher order allocs */
4437 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4438 		goto out;
4439 	/*
4440 	 * We have already exhausted all our reclaim opportunities without any
4441 	 * success so it is time to admit defeat. We will skip the OOM killer
4442 	 * because it is very likely that the caller has a more reasonable
4443 	 * fallback than shooting a random task.
4444 	 *
4445 	 * The OOM killer may not free memory on a specific node.
4446 	 */
4447 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4448 		goto out;
4449 	/* The OOM killer does not needlessly kill tasks for lowmem */
4450 	if (ac->highest_zoneidx < ZONE_NORMAL)
4451 		goto out;
4452 	if (pm_suspended_storage())
4453 		goto out;
4454 	/*
4455 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4456 	 * other request to make a forward progress.
4457 	 * We are in an unfortunate situation where out_of_memory cannot
4458 	 * do much for this context but let's try it to at least get
4459 	 * access to memory reserved if the current task is killed (see
4460 	 * out_of_memory). Once filesystems are ready to handle allocation
4461 	 * failures more gracefully we should just bail out here.
4462 	 */
4463 
4464 	/* Exhausted what can be done so it's blame time */
4465 	if (out_of_memory(&oc) ||
4466 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4467 		*did_some_progress = 1;
4468 
4469 		/*
4470 		 * Help non-failing allocations by giving them access to memory
4471 		 * reserves
4472 		 */
4473 		if (gfp_mask & __GFP_NOFAIL)
4474 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4475 					ALLOC_NO_WATERMARKS, ac);
4476 	}
4477 out:
4478 	mutex_unlock(&oom_lock);
4479 	return page;
4480 }
4481 
4482 /*
4483  * Maximum number of compaction retries with a progress before OOM
4484  * killer is consider as the only way to move forward.
4485  */
4486 #define MAX_COMPACT_RETRIES 16
4487 
4488 #ifdef CONFIG_COMPACTION
4489 /* Try memory compaction for high-order allocations before reclaim */
4490 static struct page *
4491 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4492 		unsigned int alloc_flags, const struct alloc_context *ac,
4493 		enum compact_priority prio, enum compact_result *compact_result)
4494 {
4495 	struct page *page = NULL;
4496 	unsigned long pflags;
4497 	unsigned int noreclaim_flag;
4498 
4499 	if (!order)
4500 		return NULL;
4501 
4502 	psi_memstall_enter(&pflags);
4503 	delayacct_compact_start();
4504 	noreclaim_flag = memalloc_noreclaim_save();
4505 
4506 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4507 								prio, &page);
4508 
4509 	memalloc_noreclaim_restore(noreclaim_flag);
4510 	psi_memstall_leave(&pflags);
4511 	delayacct_compact_end();
4512 
4513 	if (*compact_result == COMPACT_SKIPPED)
4514 		return NULL;
4515 	/*
4516 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4517 	 * count a compaction stall
4518 	 */
4519 	count_vm_event(COMPACTSTALL);
4520 
4521 	/* Prep a captured page if available */
4522 	if (page)
4523 		prep_new_page(page, order, gfp_mask, alloc_flags);
4524 
4525 	/* Try get a page from the freelist if available */
4526 	if (!page)
4527 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4528 
4529 	if (page) {
4530 		struct zone *zone = page_zone(page);
4531 
4532 		zone->compact_blockskip_flush = false;
4533 		compaction_defer_reset(zone, order, true);
4534 		count_vm_event(COMPACTSUCCESS);
4535 		return page;
4536 	}
4537 
4538 	/*
4539 	 * It's bad if compaction run occurs and fails. The most likely reason
4540 	 * is that pages exist, but not enough to satisfy watermarks.
4541 	 */
4542 	count_vm_event(COMPACTFAIL);
4543 
4544 	cond_resched();
4545 
4546 	return NULL;
4547 }
4548 
4549 static inline bool
4550 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4551 		     enum compact_result compact_result,
4552 		     enum compact_priority *compact_priority,
4553 		     int *compaction_retries)
4554 {
4555 	int max_retries = MAX_COMPACT_RETRIES;
4556 	int min_priority;
4557 	bool ret = false;
4558 	int retries = *compaction_retries;
4559 	enum compact_priority priority = *compact_priority;
4560 
4561 	if (!order)
4562 		return false;
4563 
4564 	if (fatal_signal_pending(current))
4565 		return false;
4566 
4567 	if (compaction_made_progress(compact_result))
4568 		(*compaction_retries)++;
4569 
4570 	/*
4571 	 * compaction considers all the zone as desperately out of memory
4572 	 * so it doesn't really make much sense to retry except when the
4573 	 * failure could be caused by insufficient priority
4574 	 */
4575 	if (compaction_failed(compact_result))
4576 		goto check_priority;
4577 
4578 	/*
4579 	 * compaction was skipped because there are not enough order-0 pages
4580 	 * to work with, so we retry only if it looks like reclaim can help.
4581 	 */
4582 	if (compaction_needs_reclaim(compact_result)) {
4583 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4584 		goto out;
4585 	}
4586 
4587 	/*
4588 	 * make sure the compaction wasn't deferred or didn't bail out early
4589 	 * due to locks contention before we declare that we should give up.
4590 	 * But the next retry should use a higher priority if allowed, so
4591 	 * we don't just keep bailing out endlessly.
4592 	 */
4593 	if (compaction_withdrawn(compact_result)) {
4594 		goto check_priority;
4595 	}
4596 
4597 	/*
4598 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4599 	 * costly ones because they are de facto nofail and invoke OOM
4600 	 * killer to move on while costly can fail and users are ready
4601 	 * to cope with that. 1/4 retries is rather arbitrary but we
4602 	 * would need much more detailed feedback from compaction to
4603 	 * make a better decision.
4604 	 */
4605 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4606 		max_retries /= 4;
4607 	if (*compaction_retries <= max_retries) {
4608 		ret = true;
4609 		goto out;
4610 	}
4611 
4612 	/*
4613 	 * Make sure there are attempts at the highest priority if we exhausted
4614 	 * all retries or failed at the lower priorities.
4615 	 */
4616 check_priority:
4617 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4618 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4619 
4620 	if (*compact_priority > min_priority) {
4621 		(*compact_priority)--;
4622 		*compaction_retries = 0;
4623 		ret = true;
4624 	}
4625 out:
4626 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4627 	return ret;
4628 }
4629 #else
4630 static inline struct page *
4631 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4632 		unsigned int alloc_flags, const struct alloc_context *ac,
4633 		enum compact_priority prio, enum compact_result *compact_result)
4634 {
4635 	*compact_result = COMPACT_SKIPPED;
4636 	return NULL;
4637 }
4638 
4639 static inline bool
4640 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4641 		     enum compact_result compact_result,
4642 		     enum compact_priority *compact_priority,
4643 		     int *compaction_retries)
4644 {
4645 	struct zone *zone;
4646 	struct zoneref *z;
4647 
4648 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4649 		return false;
4650 
4651 	/*
4652 	 * There are setups with compaction disabled which would prefer to loop
4653 	 * inside the allocator rather than hit the oom killer prematurely.
4654 	 * Let's give them a good hope and keep retrying while the order-0
4655 	 * watermarks are OK.
4656 	 */
4657 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4658 				ac->highest_zoneidx, ac->nodemask) {
4659 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4660 					ac->highest_zoneidx, alloc_flags))
4661 			return true;
4662 	}
4663 	return false;
4664 }
4665 #endif /* CONFIG_COMPACTION */
4666 
4667 #ifdef CONFIG_LOCKDEP
4668 static struct lockdep_map __fs_reclaim_map =
4669 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4670 
4671 static bool __need_reclaim(gfp_t gfp_mask)
4672 {
4673 	/* no reclaim without waiting on it */
4674 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4675 		return false;
4676 
4677 	/* this guy won't enter reclaim */
4678 	if (current->flags & PF_MEMALLOC)
4679 		return false;
4680 
4681 	if (gfp_mask & __GFP_NOLOCKDEP)
4682 		return false;
4683 
4684 	return true;
4685 }
4686 
4687 void __fs_reclaim_acquire(unsigned long ip)
4688 {
4689 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4690 }
4691 
4692 void __fs_reclaim_release(unsigned long ip)
4693 {
4694 	lock_release(&__fs_reclaim_map, ip);
4695 }
4696 
4697 void fs_reclaim_acquire(gfp_t gfp_mask)
4698 {
4699 	gfp_mask = current_gfp_context(gfp_mask);
4700 
4701 	if (__need_reclaim(gfp_mask)) {
4702 		if (gfp_mask & __GFP_FS)
4703 			__fs_reclaim_acquire(_RET_IP_);
4704 
4705 #ifdef CONFIG_MMU_NOTIFIER
4706 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4707 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4708 #endif
4709 
4710 	}
4711 }
4712 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4713 
4714 void fs_reclaim_release(gfp_t gfp_mask)
4715 {
4716 	gfp_mask = current_gfp_context(gfp_mask);
4717 
4718 	if (__need_reclaim(gfp_mask)) {
4719 		if (gfp_mask & __GFP_FS)
4720 			__fs_reclaim_release(_RET_IP_);
4721 	}
4722 }
4723 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4724 #endif
4725 
4726 /*
4727  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4728  * have been rebuilt so allocation retries. Reader side does not lock and
4729  * retries the allocation if zonelist changes. Writer side is protected by the
4730  * embedded spin_lock.
4731  */
4732 static DEFINE_SEQLOCK(zonelist_update_seq);
4733 
4734 static unsigned int zonelist_iter_begin(void)
4735 {
4736 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4737 		return read_seqbegin(&zonelist_update_seq);
4738 
4739 	return 0;
4740 }
4741 
4742 static unsigned int check_retry_zonelist(unsigned int seq)
4743 {
4744 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4745 		return read_seqretry(&zonelist_update_seq, seq);
4746 
4747 	return seq;
4748 }
4749 
4750 /* Perform direct synchronous page reclaim */
4751 static unsigned long
4752 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4753 					const struct alloc_context *ac)
4754 {
4755 	unsigned int noreclaim_flag;
4756 	unsigned long progress;
4757 
4758 	cond_resched();
4759 
4760 	/* We now go into synchronous reclaim */
4761 	cpuset_memory_pressure_bump();
4762 	fs_reclaim_acquire(gfp_mask);
4763 	noreclaim_flag = memalloc_noreclaim_save();
4764 
4765 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4766 								ac->nodemask);
4767 
4768 	memalloc_noreclaim_restore(noreclaim_flag);
4769 	fs_reclaim_release(gfp_mask);
4770 
4771 	cond_resched();
4772 
4773 	return progress;
4774 }
4775 
4776 /* The really slow allocator path where we enter direct reclaim */
4777 static inline struct page *
4778 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4779 		unsigned int alloc_flags, const struct alloc_context *ac,
4780 		unsigned long *did_some_progress)
4781 {
4782 	struct page *page = NULL;
4783 	unsigned long pflags;
4784 	bool drained = false;
4785 
4786 	psi_memstall_enter(&pflags);
4787 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4788 	if (unlikely(!(*did_some_progress)))
4789 		goto out;
4790 
4791 retry:
4792 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4793 
4794 	/*
4795 	 * If an allocation failed after direct reclaim, it could be because
4796 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4797 	 * Shrink them and try again
4798 	 */
4799 	if (!page && !drained) {
4800 		unreserve_highatomic_pageblock(ac, false);
4801 		drain_all_pages(NULL);
4802 		drained = true;
4803 		goto retry;
4804 	}
4805 out:
4806 	psi_memstall_leave(&pflags);
4807 
4808 	return page;
4809 }
4810 
4811 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4812 			     const struct alloc_context *ac)
4813 {
4814 	struct zoneref *z;
4815 	struct zone *zone;
4816 	pg_data_t *last_pgdat = NULL;
4817 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4818 
4819 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4820 					ac->nodemask) {
4821 		if (!managed_zone(zone))
4822 			continue;
4823 		if (last_pgdat != zone->zone_pgdat) {
4824 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4825 			last_pgdat = zone->zone_pgdat;
4826 		}
4827 	}
4828 }
4829 
4830 static inline unsigned int
4831 gfp_to_alloc_flags(gfp_t gfp_mask)
4832 {
4833 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4834 
4835 	/*
4836 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4837 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4838 	 * to save two branches.
4839 	 */
4840 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4841 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4842 
4843 	/*
4844 	 * The caller may dip into page reserves a bit more if the caller
4845 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4846 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4847 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4848 	 */
4849 	alloc_flags |= (__force int)
4850 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4851 
4852 	if (gfp_mask & __GFP_ATOMIC) {
4853 		/*
4854 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4855 		 * if it can't schedule.
4856 		 */
4857 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4858 			alloc_flags |= ALLOC_HARDER;
4859 		/*
4860 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4861 		 * comment for __cpuset_node_allowed().
4862 		 */
4863 		alloc_flags &= ~ALLOC_CPUSET;
4864 	} else if (unlikely(rt_task(current)) && in_task())
4865 		alloc_flags |= ALLOC_HARDER;
4866 
4867 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4868 
4869 	return alloc_flags;
4870 }
4871 
4872 static bool oom_reserves_allowed(struct task_struct *tsk)
4873 {
4874 	if (!tsk_is_oom_victim(tsk))
4875 		return false;
4876 
4877 	/*
4878 	 * !MMU doesn't have oom reaper so give access to memory reserves
4879 	 * only to the thread with TIF_MEMDIE set
4880 	 */
4881 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4882 		return false;
4883 
4884 	return true;
4885 }
4886 
4887 /*
4888  * Distinguish requests which really need access to full memory
4889  * reserves from oom victims which can live with a portion of it
4890  */
4891 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4892 {
4893 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4894 		return 0;
4895 	if (gfp_mask & __GFP_MEMALLOC)
4896 		return ALLOC_NO_WATERMARKS;
4897 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4898 		return ALLOC_NO_WATERMARKS;
4899 	if (!in_interrupt()) {
4900 		if (current->flags & PF_MEMALLOC)
4901 			return ALLOC_NO_WATERMARKS;
4902 		else if (oom_reserves_allowed(current))
4903 			return ALLOC_OOM;
4904 	}
4905 
4906 	return 0;
4907 }
4908 
4909 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4910 {
4911 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4912 }
4913 
4914 /*
4915  * Checks whether it makes sense to retry the reclaim to make a forward progress
4916  * for the given allocation request.
4917  *
4918  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4919  * without success, or when we couldn't even meet the watermark if we
4920  * reclaimed all remaining pages on the LRU lists.
4921  *
4922  * Returns true if a retry is viable or false to enter the oom path.
4923  */
4924 static inline bool
4925 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4926 		     struct alloc_context *ac, int alloc_flags,
4927 		     bool did_some_progress, int *no_progress_loops)
4928 {
4929 	struct zone *zone;
4930 	struct zoneref *z;
4931 	bool ret = false;
4932 
4933 	/*
4934 	 * Costly allocations might have made a progress but this doesn't mean
4935 	 * their order will become available due to high fragmentation so
4936 	 * always increment the no progress counter for them
4937 	 */
4938 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4939 		*no_progress_loops = 0;
4940 	else
4941 		(*no_progress_loops)++;
4942 
4943 	/*
4944 	 * Make sure we converge to OOM if we cannot make any progress
4945 	 * several times in the row.
4946 	 */
4947 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4948 		/* Before OOM, exhaust highatomic_reserve */
4949 		return unreserve_highatomic_pageblock(ac, true);
4950 	}
4951 
4952 	/*
4953 	 * Keep reclaiming pages while there is a chance this will lead
4954 	 * somewhere.  If none of the target zones can satisfy our allocation
4955 	 * request even if all reclaimable pages are considered then we are
4956 	 * screwed and have to go OOM.
4957 	 */
4958 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4959 				ac->highest_zoneidx, ac->nodemask) {
4960 		unsigned long available;
4961 		unsigned long reclaimable;
4962 		unsigned long min_wmark = min_wmark_pages(zone);
4963 		bool wmark;
4964 
4965 		available = reclaimable = zone_reclaimable_pages(zone);
4966 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4967 
4968 		/*
4969 		 * Would the allocation succeed if we reclaimed all
4970 		 * reclaimable pages?
4971 		 */
4972 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4973 				ac->highest_zoneidx, alloc_flags, available);
4974 		trace_reclaim_retry_zone(z, order, reclaimable,
4975 				available, min_wmark, *no_progress_loops, wmark);
4976 		if (wmark) {
4977 			ret = true;
4978 			break;
4979 		}
4980 	}
4981 
4982 	/*
4983 	 * Memory allocation/reclaim might be called from a WQ context and the
4984 	 * current implementation of the WQ concurrency control doesn't
4985 	 * recognize that a particular WQ is congested if the worker thread is
4986 	 * looping without ever sleeping. Therefore we have to do a short sleep
4987 	 * here rather than calling cond_resched().
4988 	 */
4989 	if (current->flags & PF_WQ_WORKER)
4990 		schedule_timeout_uninterruptible(1);
4991 	else
4992 		cond_resched();
4993 	return ret;
4994 }
4995 
4996 static inline bool
4997 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4998 {
4999 	/*
5000 	 * It's possible that cpuset's mems_allowed and the nodemask from
5001 	 * mempolicy don't intersect. This should be normally dealt with by
5002 	 * policy_nodemask(), but it's possible to race with cpuset update in
5003 	 * such a way the check therein was true, and then it became false
5004 	 * before we got our cpuset_mems_cookie here.
5005 	 * This assumes that for all allocations, ac->nodemask can come only
5006 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5007 	 * when it does not intersect with the cpuset restrictions) or the
5008 	 * caller can deal with a violated nodemask.
5009 	 */
5010 	if (cpusets_enabled() && ac->nodemask &&
5011 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5012 		ac->nodemask = NULL;
5013 		return true;
5014 	}
5015 
5016 	/*
5017 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5018 	 * possible to race with parallel threads in such a way that our
5019 	 * allocation can fail while the mask is being updated. If we are about
5020 	 * to fail, check if the cpuset changed during allocation and if so,
5021 	 * retry.
5022 	 */
5023 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5024 		return true;
5025 
5026 	return false;
5027 }
5028 
5029 static inline struct page *
5030 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5031 						struct alloc_context *ac)
5032 {
5033 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5034 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5035 	struct page *page = NULL;
5036 	unsigned int alloc_flags;
5037 	unsigned long did_some_progress;
5038 	enum compact_priority compact_priority;
5039 	enum compact_result compact_result;
5040 	int compaction_retries;
5041 	int no_progress_loops;
5042 	unsigned int cpuset_mems_cookie;
5043 	unsigned int zonelist_iter_cookie;
5044 	int reserve_flags;
5045 
5046 	/*
5047 	 * We also sanity check to catch abuse of atomic reserves being used by
5048 	 * callers that are not in atomic context.
5049 	 */
5050 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5051 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5052 		gfp_mask &= ~__GFP_ATOMIC;
5053 
5054 restart:
5055 	compaction_retries = 0;
5056 	no_progress_loops = 0;
5057 	compact_priority = DEF_COMPACT_PRIORITY;
5058 	cpuset_mems_cookie = read_mems_allowed_begin();
5059 	zonelist_iter_cookie = zonelist_iter_begin();
5060 
5061 	/*
5062 	 * The fast path uses conservative alloc_flags to succeed only until
5063 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5064 	 * alloc_flags precisely. So we do that now.
5065 	 */
5066 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5067 
5068 	/*
5069 	 * We need to recalculate the starting point for the zonelist iterator
5070 	 * because we might have used different nodemask in the fast path, or
5071 	 * there was a cpuset modification and we are retrying - otherwise we
5072 	 * could end up iterating over non-eligible zones endlessly.
5073 	 */
5074 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5075 					ac->highest_zoneidx, ac->nodemask);
5076 	if (!ac->preferred_zoneref->zone)
5077 		goto nopage;
5078 
5079 	/*
5080 	 * Check for insane configurations where the cpuset doesn't contain
5081 	 * any suitable zone to satisfy the request - e.g. non-movable
5082 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5083 	 */
5084 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5085 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5086 					ac->highest_zoneidx,
5087 					&cpuset_current_mems_allowed);
5088 		if (!z->zone)
5089 			goto nopage;
5090 	}
5091 
5092 	if (alloc_flags & ALLOC_KSWAPD)
5093 		wake_all_kswapds(order, gfp_mask, ac);
5094 
5095 	/*
5096 	 * The adjusted alloc_flags might result in immediate success, so try
5097 	 * that first
5098 	 */
5099 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5100 	if (page)
5101 		goto got_pg;
5102 
5103 	/*
5104 	 * For costly allocations, try direct compaction first, as it's likely
5105 	 * that we have enough base pages and don't need to reclaim. For non-
5106 	 * movable high-order allocations, do that as well, as compaction will
5107 	 * try prevent permanent fragmentation by migrating from blocks of the
5108 	 * same migratetype.
5109 	 * Don't try this for allocations that are allowed to ignore
5110 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5111 	 */
5112 	if (can_direct_reclaim &&
5113 			(costly_order ||
5114 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5115 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5116 		page = __alloc_pages_direct_compact(gfp_mask, order,
5117 						alloc_flags, ac,
5118 						INIT_COMPACT_PRIORITY,
5119 						&compact_result);
5120 		if (page)
5121 			goto got_pg;
5122 
5123 		/*
5124 		 * Checks for costly allocations with __GFP_NORETRY, which
5125 		 * includes some THP page fault allocations
5126 		 */
5127 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5128 			/*
5129 			 * If allocating entire pageblock(s) and compaction
5130 			 * failed because all zones are below low watermarks
5131 			 * or is prohibited because it recently failed at this
5132 			 * order, fail immediately unless the allocator has
5133 			 * requested compaction and reclaim retry.
5134 			 *
5135 			 * Reclaim is
5136 			 *  - potentially very expensive because zones are far
5137 			 *    below their low watermarks or this is part of very
5138 			 *    bursty high order allocations,
5139 			 *  - not guaranteed to help because isolate_freepages()
5140 			 *    may not iterate over freed pages as part of its
5141 			 *    linear scan, and
5142 			 *  - unlikely to make entire pageblocks free on its
5143 			 *    own.
5144 			 */
5145 			if (compact_result == COMPACT_SKIPPED ||
5146 			    compact_result == COMPACT_DEFERRED)
5147 				goto nopage;
5148 
5149 			/*
5150 			 * Looks like reclaim/compaction is worth trying, but
5151 			 * sync compaction could be very expensive, so keep
5152 			 * using async compaction.
5153 			 */
5154 			compact_priority = INIT_COMPACT_PRIORITY;
5155 		}
5156 	}
5157 
5158 retry:
5159 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5160 	if (alloc_flags & ALLOC_KSWAPD)
5161 		wake_all_kswapds(order, gfp_mask, ac);
5162 
5163 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5164 	if (reserve_flags)
5165 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5166 					  (alloc_flags & ALLOC_KSWAPD);
5167 
5168 	/*
5169 	 * Reset the nodemask and zonelist iterators if memory policies can be
5170 	 * ignored. These allocations are high priority and system rather than
5171 	 * user oriented.
5172 	 */
5173 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5174 		ac->nodemask = NULL;
5175 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5176 					ac->highest_zoneidx, ac->nodemask);
5177 	}
5178 
5179 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5180 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5181 	if (page)
5182 		goto got_pg;
5183 
5184 	/* Caller is not willing to reclaim, we can't balance anything */
5185 	if (!can_direct_reclaim)
5186 		goto nopage;
5187 
5188 	/* Avoid recursion of direct reclaim */
5189 	if (current->flags & PF_MEMALLOC)
5190 		goto nopage;
5191 
5192 	/* Try direct reclaim and then allocating */
5193 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5194 							&did_some_progress);
5195 	if (page)
5196 		goto got_pg;
5197 
5198 	/* Try direct compaction and then allocating */
5199 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5200 					compact_priority, &compact_result);
5201 	if (page)
5202 		goto got_pg;
5203 
5204 	/* Do not loop if specifically requested */
5205 	if (gfp_mask & __GFP_NORETRY)
5206 		goto nopage;
5207 
5208 	/*
5209 	 * Do not retry costly high order allocations unless they are
5210 	 * __GFP_RETRY_MAYFAIL
5211 	 */
5212 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5213 		goto nopage;
5214 
5215 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5216 				 did_some_progress > 0, &no_progress_loops))
5217 		goto retry;
5218 
5219 	/*
5220 	 * It doesn't make any sense to retry for the compaction if the order-0
5221 	 * reclaim is not able to make any progress because the current
5222 	 * implementation of the compaction depends on the sufficient amount
5223 	 * of free memory (see __compaction_suitable)
5224 	 */
5225 	if (did_some_progress > 0 &&
5226 			should_compact_retry(ac, order, alloc_flags,
5227 				compact_result, &compact_priority,
5228 				&compaction_retries))
5229 		goto retry;
5230 
5231 
5232 	/*
5233 	 * Deal with possible cpuset update races or zonelist updates to avoid
5234 	 * a unnecessary OOM kill.
5235 	 */
5236 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5237 	    check_retry_zonelist(zonelist_iter_cookie))
5238 		goto restart;
5239 
5240 	/* Reclaim has failed us, start killing things */
5241 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5242 	if (page)
5243 		goto got_pg;
5244 
5245 	/* Avoid allocations with no watermarks from looping endlessly */
5246 	if (tsk_is_oom_victim(current) &&
5247 	    (alloc_flags & ALLOC_OOM ||
5248 	     (gfp_mask & __GFP_NOMEMALLOC)))
5249 		goto nopage;
5250 
5251 	/* Retry as long as the OOM killer is making progress */
5252 	if (did_some_progress) {
5253 		no_progress_loops = 0;
5254 		goto retry;
5255 	}
5256 
5257 nopage:
5258 	/*
5259 	 * Deal with possible cpuset update races or zonelist updates to avoid
5260 	 * a unnecessary OOM kill.
5261 	 */
5262 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5263 	    check_retry_zonelist(zonelist_iter_cookie))
5264 		goto restart;
5265 
5266 	/*
5267 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5268 	 * we always retry
5269 	 */
5270 	if (gfp_mask & __GFP_NOFAIL) {
5271 		/*
5272 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5273 		 * of any new users that actually require GFP_NOWAIT
5274 		 */
5275 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5276 			goto fail;
5277 
5278 		/*
5279 		 * PF_MEMALLOC request from this context is rather bizarre
5280 		 * because we cannot reclaim anything and only can loop waiting
5281 		 * for somebody to do a work for us
5282 		 */
5283 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5284 
5285 		/*
5286 		 * non failing costly orders are a hard requirement which we
5287 		 * are not prepared for much so let's warn about these users
5288 		 * so that we can identify them and convert them to something
5289 		 * else.
5290 		 */
5291 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5292 
5293 		/*
5294 		 * Help non-failing allocations by giving them access to memory
5295 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5296 		 * could deplete whole memory reserves which would just make
5297 		 * the situation worse
5298 		 */
5299 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5300 		if (page)
5301 			goto got_pg;
5302 
5303 		cond_resched();
5304 		goto retry;
5305 	}
5306 fail:
5307 	warn_alloc(gfp_mask, ac->nodemask,
5308 			"page allocation failure: order:%u", order);
5309 got_pg:
5310 	return page;
5311 }
5312 
5313 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5314 		int preferred_nid, nodemask_t *nodemask,
5315 		struct alloc_context *ac, gfp_t *alloc_gfp,
5316 		unsigned int *alloc_flags)
5317 {
5318 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5319 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5320 	ac->nodemask = nodemask;
5321 	ac->migratetype = gfp_migratetype(gfp_mask);
5322 
5323 	if (cpusets_enabled()) {
5324 		*alloc_gfp |= __GFP_HARDWALL;
5325 		/*
5326 		 * When we are in the interrupt context, it is irrelevant
5327 		 * to the current task context. It means that any node ok.
5328 		 */
5329 		if (in_task() && !ac->nodemask)
5330 			ac->nodemask = &cpuset_current_mems_allowed;
5331 		else
5332 			*alloc_flags |= ALLOC_CPUSET;
5333 	}
5334 
5335 	might_alloc(gfp_mask);
5336 
5337 	if (should_fail_alloc_page(gfp_mask, order))
5338 		return false;
5339 
5340 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5341 
5342 	/* Dirty zone balancing only done in the fast path */
5343 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5344 
5345 	/*
5346 	 * The preferred zone is used for statistics but crucially it is
5347 	 * also used as the starting point for the zonelist iterator. It
5348 	 * may get reset for allocations that ignore memory policies.
5349 	 */
5350 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5351 					ac->highest_zoneidx, ac->nodemask);
5352 
5353 	return true;
5354 }
5355 
5356 /*
5357  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5358  * @gfp: GFP flags for the allocation
5359  * @preferred_nid: The preferred NUMA node ID to allocate from
5360  * @nodemask: Set of nodes to allocate from, may be NULL
5361  * @nr_pages: The number of pages desired on the list or array
5362  * @page_list: Optional list to store the allocated pages
5363  * @page_array: Optional array to store the pages
5364  *
5365  * This is a batched version of the page allocator that attempts to
5366  * allocate nr_pages quickly. Pages are added to page_list if page_list
5367  * is not NULL, otherwise it is assumed that the page_array is valid.
5368  *
5369  * For lists, nr_pages is the number of pages that should be allocated.
5370  *
5371  * For arrays, only NULL elements are populated with pages and nr_pages
5372  * is the maximum number of pages that will be stored in the array.
5373  *
5374  * Returns the number of pages on the list or array.
5375  */
5376 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5377 			nodemask_t *nodemask, int nr_pages,
5378 			struct list_head *page_list,
5379 			struct page **page_array)
5380 {
5381 	struct page *page;
5382 	unsigned long __maybe_unused UP_flags;
5383 	struct zone *zone;
5384 	struct zoneref *z;
5385 	struct per_cpu_pages *pcp;
5386 	struct list_head *pcp_list;
5387 	struct alloc_context ac;
5388 	gfp_t alloc_gfp;
5389 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5390 	int nr_populated = 0, nr_account = 0;
5391 
5392 	/*
5393 	 * Skip populated array elements to determine if any pages need
5394 	 * to be allocated before disabling IRQs.
5395 	 */
5396 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5397 		nr_populated++;
5398 
5399 	/* No pages requested? */
5400 	if (unlikely(nr_pages <= 0))
5401 		goto out;
5402 
5403 	/* Already populated array? */
5404 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5405 		goto out;
5406 
5407 	/* Bulk allocator does not support memcg accounting. */
5408 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5409 		goto failed;
5410 
5411 	/* Use the single page allocator for one page. */
5412 	if (nr_pages - nr_populated == 1)
5413 		goto failed;
5414 
5415 #ifdef CONFIG_PAGE_OWNER
5416 	/*
5417 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5418 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5419 	 * removes much of the performance benefit of bulk allocation so
5420 	 * force the caller to allocate one page at a time as it'll have
5421 	 * similar performance to added complexity to the bulk allocator.
5422 	 */
5423 	if (static_branch_unlikely(&page_owner_inited))
5424 		goto failed;
5425 #endif
5426 
5427 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5428 	gfp &= gfp_allowed_mask;
5429 	alloc_gfp = gfp;
5430 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5431 		goto out;
5432 	gfp = alloc_gfp;
5433 
5434 	/* Find an allowed local zone that meets the low watermark. */
5435 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5436 		unsigned long mark;
5437 
5438 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5439 		    !__cpuset_zone_allowed(zone, gfp)) {
5440 			continue;
5441 		}
5442 
5443 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5444 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5445 			goto failed;
5446 		}
5447 
5448 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5449 		if (zone_watermark_fast(zone, 0,  mark,
5450 				zonelist_zone_idx(ac.preferred_zoneref),
5451 				alloc_flags, gfp)) {
5452 			break;
5453 		}
5454 	}
5455 
5456 	/*
5457 	 * If there are no allowed local zones that meets the watermarks then
5458 	 * try to allocate a single page and reclaim if necessary.
5459 	 */
5460 	if (unlikely(!zone))
5461 		goto failed;
5462 
5463 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5464 	pcp_trylock_prepare(UP_flags);
5465 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5466 	if (!pcp)
5467 		goto failed_irq;
5468 
5469 	/* Attempt the batch allocation */
5470 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5471 	while (nr_populated < nr_pages) {
5472 
5473 		/* Skip existing pages */
5474 		if (page_array && page_array[nr_populated]) {
5475 			nr_populated++;
5476 			continue;
5477 		}
5478 
5479 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5480 								pcp, pcp_list);
5481 		if (unlikely(!page)) {
5482 			/* Try and allocate at least one page */
5483 			if (!nr_account) {
5484 				pcp_spin_unlock(pcp);
5485 				goto failed_irq;
5486 			}
5487 			break;
5488 		}
5489 		nr_account++;
5490 
5491 		prep_new_page(page, 0, gfp, 0);
5492 		if (page_list)
5493 			list_add(&page->lru, page_list);
5494 		else
5495 			page_array[nr_populated] = page;
5496 		nr_populated++;
5497 	}
5498 
5499 	pcp_spin_unlock(pcp);
5500 	pcp_trylock_finish(UP_flags);
5501 
5502 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5503 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5504 
5505 out:
5506 	return nr_populated;
5507 
5508 failed_irq:
5509 	pcp_trylock_finish(UP_flags);
5510 
5511 failed:
5512 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5513 	if (page) {
5514 		if (page_list)
5515 			list_add(&page->lru, page_list);
5516 		else
5517 			page_array[nr_populated] = page;
5518 		nr_populated++;
5519 	}
5520 
5521 	goto out;
5522 }
5523 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5524 
5525 /*
5526  * This is the 'heart' of the zoned buddy allocator.
5527  */
5528 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5529 							nodemask_t *nodemask)
5530 {
5531 	struct page *page;
5532 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5533 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5534 	struct alloc_context ac = { };
5535 
5536 	/*
5537 	 * There are several places where we assume that the order value is sane
5538 	 * so bail out early if the request is out of bound.
5539 	 */
5540 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5541 		return NULL;
5542 
5543 	gfp &= gfp_allowed_mask;
5544 	/*
5545 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5546 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5547 	 * from a particular context which has been marked by
5548 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5549 	 * movable zones are not used during allocation.
5550 	 */
5551 	gfp = current_gfp_context(gfp);
5552 	alloc_gfp = gfp;
5553 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5554 			&alloc_gfp, &alloc_flags))
5555 		return NULL;
5556 
5557 	/*
5558 	 * Forbid the first pass from falling back to types that fragment
5559 	 * memory until all local zones are considered.
5560 	 */
5561 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5562 
5563 	/* First allocation attempt */
5564 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5565 	if (likely(page))
5566 		goto out;
5567 
5568 	alloc_gfp = gfp;
5569 	ac.spread_dirty_pages = false;
5570 
5571 	/*
5572 	 * Restore the original nodemask if it was potentially replaced with
5573 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5574 	 */
5575 	ac.nodemask = nodemask;
5576 
5577 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5578 
5579 out:
5580 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5581 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5582 		__free_pages(page, order);
5583 		page = NULL;
5584 	}
5585 
5586 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5587 	kmsan_alloc_page(page, order, alloc_gfp);
5588 
5589 	return page;
5590 }
5591 EXPORT_SYMBOL(__alloc_pages);
5592 
5593 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5594 		nodemask_t *nodemask)
5595 {
5596 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5597 			preferred_nid, nodemask);
5598 
5599 	if (page && order > 1)
5600 		prep_transhuge_page(page);
5601 	return (struct folio *)page;
5602 }
5603 EXPORT_SYMBOL(__folio_alloc);
5604 
5605 /*
5606  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5607  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5608  * you need to access high mem.
5609  */
5610 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5611 {
5612 	struct page *page;
5613 
5614 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5615 	if (!page)
5616 		return 0;
5617 	return (unsigned long) page_address(page);
5618 }
5619 EXPORT_SYMBOL(__get_free_pages);
5620 
5621 unsigned long get_zeroed_page(gfp_t gfp_mask)
5622 {
5623 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5624 }
5625 EXPORT_SYMBOL(get_zeroed_page);
5626 
5627 /**
5628  * __free_pages - Free pages allocated with alloc_pages().
5629  * @page: The page pointer returned from alloc_pages().
5630  * @order: The order of the allocation.
5631  *
5632  * This function can free multi-page allocations that are not compound
5633  * pages.  It does not check that the @order passed in matches that of
5634  * the allocation, so it is easy to leak memory.  Freeing more memory
5635  * than was allocated will probably emit a warning.
5636  *
5637  * If the last reference to this page is speculative, it will be released
5638  * by put_page() which only frees the first page of a non-compound
5639  * allocation.  To prevent the remaining pages from being leaked, we free
5640  * the subsequent pages here.  If you want to use the page's reference
5641  * count to decide when to free the allocation, you should allocate a
5642  * compound page, and use put_page() instead of __free_pages().
5643  *
5644  * Context: May be called in interrupt context or while holding a normal
5645  * spinlock, but not in NMI context or while holding a raw spinlock.
5646  */
5647 void __free_pages(struct page *page, unsigned int order)
5648 {
5649 	if (put_page_testzero(page))
5650 		free_the_page(page, order);
5651 	else if (!PageHead(page))
5652 		while (order-- > 0)
5653 			free_the_page(page + (1 << order), order);
5654 }
5655 EXPORT_SYMBOL(__free_pages);
5656 
5657 void free_pages(unsigned long addr, unsigned int order)
5658 {
5659 	if (addr != 0) {
5660 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5661 		__free_pages(virt_to_page((void *)addr), order);
5662 	}
5663 }
5664 
5665 EXPORT_SYMBOL(free_pages);
5666 
5667 /*
5668  * Page Fragment:
5669  *  An arbitrary-length arbitrary-offset area of memory which resides
5670  *  within a 0 or higher order page.  Multiple fragments within that page
5671  *  are individually refcounted, in the page's reference counter.
5672  *
5673  * The page_frag functions below provide a simple allocation framework for
5674  * page fragments.  This is used by the network stack and network device
5675  * drivers to provide a backing region of memory for use as either an
5676  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5677  */
5678 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5679 					     gfp_t gfp_mask)
5680 {
5681 	struct page *page = NULL;
5682 	gfp_t gfp = gfp_mask;
5683 
5684 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5685 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5686 		    __GFP_NOMEMALLOC;
5687 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5688 				PAGE_FRAG_CACHE_MAX_ORDER);
5689 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5690 #endif
5691 	if (unlikely(!page))
5692 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5693 
5694 	nc->va = page ? page_address(page) : NULL;
5695 
5696 	return page;
5697 }
5698 
5699 void __page_frag_cache_drain(struct page *page, unsigned int count)
5700 {
5701 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5702 
5703 	if (page_ref_sub_and_test(page, count))
5704 		free_the_page(page, compound_order(page));
5705 }
5706 EXPORT_SYMBOL(__page_frag_cache_drain);
5707 
5708 void *page_frag_alloc_align(struct page_frag_cache *nc,
5709 		      unsigned int fragsz, gfp_t gfp_mask,
5710 		      unsigned int align_mask)
5711 {
5712 	unsigned int size = PAGE_SIZE;
5713 	struct page *page;
5714 	int offset;
5715 
5716 	if (unlikely(!nc->va)) {
5717 refill:
5718 		page = __page_frag_cache_refill(nc, gfp_mask);
5719 		if (!page)
5720 			return NULL;
5721 
5722 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5723 		/* if size can vary use size else just use PAGE_SIZE */
5724 		size = nc->size;
5725 #endif
5726 		/* Even if we own the page, we do not use atomic_set().
5727 		 * This would break get_page_unless_zero() users.
5728 		 */
5729 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5730 
5731 		/* reset page count bias and offset to start of new frag */
5732 		nc->pfmemalloc = page_is_pfmemalloc(page);
5733 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5734 		nc->offset = size;
5735 	}
5736 
5737 	offset = nc->offset - fragsz;
5738 	if (unlikely(offset < 0)) {
5739 		page = virt_to_page(nc->va);
5740 
5741 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5742 			goto refill;
5743 
5744 		if (unlikely(nc->pfmemalloc)) {
5745 			free_the_page(page, compound_order(page));
5746 			goto refill;
5747 		}
5748 
5749 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5750 		/* if size can vary use size else just use PAGE_SIZE */
5751 		size = nc->size;
5752 #endif
5753 		/* OK, page count is 0, we can safely set it */
5754 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5755 
5756 		/* reset page count bias and offset to start of new frag */
5757 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5758 		offset = size - fragsz;
5759 		if (unlikely(offset < 0)) {
5760 			/*
5761 			 * The caller is trying to allocate a fragment
5762 			 * with fragsz > PAGE_SIZE but the cache isn't big
5763 			 * enough to satisfy the request, this may
5764 			 * happen in low memory conditions.
5765 			 * We don't release the cache page because
5766 			 * it could make memory pressure worse
5767 			 * so we simply return NULL here.
5768 			 */
5769 			return NULL;
5770 		}
5771 	}
5772 
5773 	nc->pagecnt_bias--;
5774 	offset &= align_mask;
5775 	nc->offset = offset;
5776 
5777 	return nc->va + offset;
5778 }
5779 EXPORT_SYMBOL(page_frag_alloc_align);
5780 
5781 /*
5782  * Frees a page fragment allocated out of either a compound or order 0 page.
5783  */
5784 void page_frag_free(void *addr)
5785 {
5786 	struct page *page = virt_to_head_page(addr);
5787 
5788 	if (unlikely(put_page_testzero(page)))
5789 		free_the_page(page, compound_order(page));
5790 }
5791 EXPORT_SYMBOL(page_frag_free);
5792 
5793 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5794 		size_t size)
5795 {
5796 	if (addr) {
5797 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5798 		struct page *page = virt_to_page((void *)addr);
5799 		struct page *last = page + nr;
5800 
5801 		split_page_owner(page, 1 << order);
5802 		split_page_memcg(page, 1 << order);
5803 		while (page < --last)
5804 			set_page_refcounted(last);
5805 
5806 		last = page + (1UL << order);
5807 		for (page += nr; page < last; page++)
5808 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5809 	}
5810 	return (void *)addr;
5811 }
5812 
5813 /**
5814  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5815  * @size: the number of bytes to allocate
5816  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5817  *
5818  * This function is similar to alloc_pages(), except that it allocates the
5819  * minimum number of pages to satisfy the request.  alloc_pages() can only
5820  * allocate memory in power-of-two pages.
5821  *
5822  * This function is also limited by MAX_ORDER.
5823  *
5824  * Memory allocated by this function must be released by free_pages_exact().
5825  *
5826  * Return: pointer to the allocated area or %NULL in case of error.
5827  */
5828 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5829 {
5830 	unsigned int order = get_order(size);
5831 	unsigned long addr;
5832 
5833 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5834 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5835 
5836 	addr = __get_free_pages(gfp_mask, order);
5837 	return make_alloc_exact(addr, order, size);
5838 }
5839 EXPORT_SYMBOL(alloc_pages_exact);
5840 
5841 /**
5842  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5843  *			   pages on a node.
5844  * @nid: the preferred node ID where memory should be allocated
5845  * @size: the number of bytes to allocate
5846  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5847  *
5848  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5849  * back.
5850  *
5851  * Return: pointer to the allocated area or %NULL in case of error.
5852  */
5853 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5854 {
5855 	unsigned int order = get_order(size);
5856 	struct page *p;
5857 
5858 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5859 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5860 
5861 	p = alloc_pages_node(nid, gfp_mask, order);
5862 	if (!p)
5863 		return NULL;
5864 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5865 }
5866 
5867 /**
5868  * free_pages_exact - release memory allocated via alloc_pages_exact()
5869  * @virt: the value returned by alloc_pages_exact.
5870  * @size: size of allocation, same value as passed to alloc_pages_exact().
5871  *
5872  * Release the memory allocated by a previous call to alloc_pages_exact.
5873  */
5874 void free_pages_exact(void *virt, size_t size)
5875 {
5876 	unsigned long addr = (unsigned long)virt;
5877 	unsigned long end = addr + PAGE_ALIGN(size);
5878 
5879 	while (addr < end) {
5880 		free_page(addr);
5881 		addr += PAGE_SIZE;
5882 	}
5883 }
5884 EXPORT_SYMBOL(free_pages_exact);
5885 
5886 /**
5887  * nr_free_zone_pages - count number of pages beyond high watermark
5888  * @offset: The zone index of the highest zone
5889  *
5890  * nr_free_zone_pages() counts the number of pages which are beyond the
5891  * high watermark within all zones at or below a given zone index.  For each
5892  * zone, the number of pages is calculated as:
5893  *
5894  *     nr_free_zone_pages = managed_pages - high_pages
5895  *
5896  * Return: number of pages beyond high watermark.
5897  */
5898 static unsigned long nr_free_zone_pages(int offset)
5899 {
5900 	struct zoneref *z;
5901 	struct zone *zone;
5902 
5903 	/* Just pick one node, since fallback list is circular */
5904 	unsigned long sum = 0;
5905 
5906 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5907 
5908 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5909 		unsigned long size = zone_managed_pages(zone);
5910 		unsigned long high = high_wmark_pages(zone);
5911 		if (size > high)
5912 			sum += size - high;
5913 	}
5914 
5915 	return sum;
5916 }
5917 
5918 /**
5919  * nr_free_buffer_pages - count number of pages beyond high watermark
5920  *
5921  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5922  * watermark within ZONE_DMA and ZONE_NORMAL.
5923  *
5924  * Return: number of pages beyond high watermark within ZONE_DMA and
5925  * ZONE_NORMAL.
5926  */
5927 unsigned long nr_free_buffer_pages(void)
5928 {
5929 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5930 }
5931 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5932 
5933 static inline void show_node(struct zone *zone)
5934 {
5935 	if (IS_ENABLED(CONFIG_NUMA))
5936 		printk("Node %d ", zone_to_nid(zone));
5937 }
5938 
5939 long si_mem_available(void)
5940 {
5941 	long available;
5942 	unsigned long pagecache;
5943 	unsigned long wmark_low = 0;
5944 	unsigned long pages[NR_LRU_LISTS];
5945 	unsigned long reclaimable;
5946 	struct zone *zone;
5947 	int lru;
5948 
5949 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5950 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5951 
5952 	for_each_zone(zone)
5953 		wmark_low += low_wmark_pages(zone);
5954 
5955 	/*
5956 	 * Estimate the amount of memory available for userspace allocations,
5957 	 * without causing swapping or OOM.
5958 	 */
5959 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5960 
5961 	/*
5962 	 * Not all the page cache can be freed, otherwise the system will
5963 	 * start swapping or thrashing. Assume at least half of the page
5964 	 * cache, or the low watermark worth of cache, needs to stay.
5965 	 */
5966 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5967 	pagecache -= min(pagecache / 2, wmark_low);
5968 	available += pagecache;
5969 
5970 	/*
5971 	 * Part of the reclaimable slab and other kernel memory consists of
5972 	 * items that are in use, and cannot be freed. Cap this estimate at the
5973 	 * low watermark.
5974 	 */
5975 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5976 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5977 	available += reclaimable - min(reclaimable / 2, wmark_low);
5978 
5979 	if (available < 0)
5980 		available = 0;
5981 	return available;
5982 }
5983 EXPORT_SYMBOL_GPL(si_mem_available);
5984 
5985 void si_meminfo(struct sysinfo *val)
5986 {
5987 	val->totalram = totalram_pages();
5988 	val->sharedram = global_node_page_state(NR_SHMEM);
5989 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5990 	val->bufferram = nr_blockdev_pages();
5991 	val->totalhigh = totalhigh_pages();
5992 	val->freehigh = nr_free_highpages();
5993 	val->mem_unit = PAGE_SIZE;
5994 }
5995 
5996 EXPORT_SYMBOL(si_meminfo);
5997 
5998 #ifdef CONFIG_NUMA
5999 void si_meminfo_node(struct sysinfo *val, int nid)
6000 {
6001 	int zone_type;		/* needs to be signed */
6002 	unsigned long managed_pages = 0;
6003 	unsigned long managed_highpages = 0;
6004 	unsigned long free_highpages = 0;
6005 	pg_data_t *pgdat = NODE_DATA(nid);
6006 
6007 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6008 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6009 	val->totalram = managed_pages;
6010 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
6011 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6012 #ifdef CONFIG_HIGHMEM
6013 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6014 		struct zone *zone = &pgdat->node_zones[zone_type];
6015 
6016 		if (is_highmem(zone)) {
6017 			managed_highpages += zone_managed_pages(zone);
6018 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6019 		}
6020 	}
6021 	val->totalhigh = managed_highpages;
6022 	val->freehigh = free_highpages;
6023 #else
6024 	val->totalhigh = managed_highpages;
6025 	val->freehigh = free_highpages;
6026 #endif
6027 	val->mem_unit = PAGE_SIZE;
6028 }
6029 #endif
6030 
6031 /*
6032  * Determine whether the node should be displayed or not, depending on whether
6033  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6034  */
6035 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6036 {
6037 	if (!(flags & SHOW_MEM_FILTER_NODES))
6038 		return false;
6039 
6040 	/*
6041 	 * no node mask - aka implicit memory numa policy. Do not bother with
6042 	 * the synchronization - read_mems_allowed_begin - because we do not
6043 	 * have to be precise here.
6044 	 */
6045 	if (!nodemask)
6046 		nodemask = &cpuset_current_mems_allowed;
6047 
6048 	return !node_isset(nid, *nodemask);
6049 }
6050 
6051 #define K(x) ((x) << (PAGE_SHIFT-10))
6052 
6053 static void show_migration_types(unsigned char type)
6054 {
6055 	static const char types[MIGRATE_TYPES] = {
6056 		[MIGRATE_UNMOVABLE]	= 'U',
6057 		[MIGRATE_MOVABLE]	= 'M',
6058 		[MIGRATE_RECLAIMABLE]	= 'E',
6059 		[MIGRATE_HIGHATOMIC]	= 'H',
6060 #ifdef CONFIG_CMA
6061 		[MIGRATE_CMA]		= 'C',
6062 #endif
6063 #ifdef CONFIG_MEMORY_ISOLATION
6064 		[MIGRATE_ISOLATE]	= 'I',
6065 #endif
6066 	};
6067 	char tmp[MIGRATE_TYPES + 1];
6068 	char *p = tmp;
6069 	int i;
6070 
6071 	for (i = 0; i < MIGRATE_TYPES; i++) {
6072 		if (type & (1 << i))
6073 			*p++ = types[i];
6074 	}
6075 
6076 	*p = '\0';
6077 	printk(KERN_CONT "(%s) ", tmp);
6078 }
6079 
6080 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6081 {
6082 	int zone_idx;
6083 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6084 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6085 			return true;
6086 	return false;
6087 }
6088 
6089 /*
6090  * Show free area list (used inside shift_scroll-lock stuff)
6091  * We also calculate the percentage fragmentation. We do this by counting the
6092  * memory on each free list with the exception of the first item on the list.
6093  *
6094  * Bits in @filter:
6095  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6096  *   cpuset.
6097  */
6098 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6099 {
6100 	unsigned long free_pcp = 0;
6101 	int cpu, nid;
6102 	struct zone *zone;
6103 	pg_data_t *pgdat;
6104 
6105 	for_each_populated_zone(zone) {
6106 		if (zone_idx(zone) > max_zone_idx)
6107 			continue;
6108 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6109 			continue;
6110 
6111 		for_each_online_cpu(cpu)
6112 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6113 	}
6114 
6115 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6116 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6117 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6118 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6119 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6120 		" sec_pagetables:%lu bounce:%lu\n"
6121 		" kernel_misc_reclaimable:%lu\n"
6122 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6123 		global_node_page_state(NR_ACTIVE_ANON),
6124 		global_node_page_state(NR_INACTIVE_ANON),
6125 		global_node_page_state(NR_ISOLATED_ANON),
6126 		global_node_page_state(NR_ACTIVE_FILE),
6127 		global_node_page_state(NR_INACTIVE_FILE),
6128 		global_node_page_state(NR_ISOLATED_FILE),
6129 		global_node_page_state(NR_UNEVICTABLE),
6130 		global_node_page_state(NR_FILE_DIRTY),
6131 		global_node_page_state(NR_WRITEBACK),
6132 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6133 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6134 		global_node_page_state(NR_FILE_MAPPED),
6135 		global_node_page_state(NR_SHMEM),
6136 		global_node_page_state(NR_PAGETABLE),
6137 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6138 		global_zone_page_state(NR_BOUNCE),
6139 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6140 		global_zone_page_state(NR_FREE_PAGES),
6141 		free_pcp,
6142 		global_zone_page_state(NR_FREE_CMA_PAGES));
6143 
6144 	for_each_online_pgdat(pgdat) {
6145 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6146 			continue;
6147 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6148 			continue;
6149 
6150 		printk("Node %d"
6151 			" active_anon:%lukB"
6152 			" inactive_anon:%lukB"
6153 			" active_file:%lukB"
6154 			" inactive_file:%lukB"
6155 			" unevictable:%lukB"
6156 			" isolated(anon):%lukB"
6157 			" isolated(file):%lukB"
6158 			" mapped:%lukB"
6159 			" dirty:%lukB"
6160 			" writeback:%lukB"
6161 			" shmem:%lukB"
6162 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6163 			" shmem_thp: %lukB"
6164 			" shmem_pmdmapped: %lukB"
6165 			" anon_thp: %lukB"
6166 #endif
6167 			" writeback_tmp:%lukB"
6168 			" kernel_stack:%lukB"
6169 #ifdef CONFIG_SHADOW_CALL_STACK
6170 			" shadow_call_stack:%lukB"
6171 #endif
6172 			" pagetables:%lukB"
6173 			" sec_pagetables:%lukB"
6174 			" all_unreclaimable? %s"
6175 			"\n",
6176 			pgdat->node_id,
6177 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6178 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6179 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6180 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6181 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6182 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6183 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6184 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6185 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6186 			K(node_page_state(pgdat, NR_WRITEBACK)),
6187 			K(node_page_state(pgdat, NR_SHMEM)),
6188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6189 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6190 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6191 			K(node_page_state(pgdat, NR_ANON_THPS)),
6192 #endif
6193 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6194 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6195 #ifdef CONFIG_SHADOW_CALL_STACK
6196 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6197 #endif
6198 			K(node_page_state(pgdat, NR_PAGETABLE)),
6199 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6200 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6201 				"yes" : "no");
6202 	}
6203 
6204 	for_each_populated_zone(zone) {
6205 		int i;
6206 
6207 		if (zone_idx(zone) > max_zone_idx)
6208 			continue;
6209 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6210 			continue;
6211 
6212 		free_pcp = 0;
6213 		for_each_online_cpu(cpu)
6214 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6215 
6216 		show_node(zone);
6217 		printk(KERN_CONT
6218 			"%s"
6219 			" free:%lukB"
6220 			" boost:%lukB"
6221 			" min:%lukB"
6222 			" low:%lukB"
6223 			" high:%lukB"
6224 			" reserved_highatomic:%luKB"
6225 			" active_anon:%lukB"
6226 			" inactive_anon:%lukB"
6227 			" active_file:%lukB"
6228 			" inactive_file:%lukB"
6229 			" unevictable:%lukB"
6230 			" writepending:%lukB"
6231 			" present:%lukB"
6232 			" managed:%lukB"
6233 			" mlocked:%lukB"
6234 			" bounce:%lukB"
6235 			" free_pcp:%lukB"
6236 			" local_pcp:%ukB"
6237 			" free_cma:%lukB"
6238 			"\n",
6239 			zone->name,
6240 			K(zone_page_state(zone, NR_FREE_PAGES)),
6241 			K(zone->watermark_boost),
6242 			K(min_wmark_pages(zone)),
6243 			K(low_wmark_pages(zone)),
6244 			K(high_wmark_pages(zone)),
6245 			K(zone->nr_reserved_highatomic),
6246 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6247 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6248 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6249 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6250 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6251 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6252 			K(zone->present_pages),
6253 			K(zone_managed_pages(zone)),
6254 			K(zone_page_state(zone, NR_MLOCK)),
6255 			K(zone_page_state(zone, NR_BOUNCE)),
6256 			K(free_pcp),
6257 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6258 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6259 		printk("lowmem_reserve[]:");
6260 		for (i = 0; i < MAX_NR_ZONES; i++)
6261 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6262 		printk(KERN_CONT "\n");
6263 	}
6264 
6265 	for_each_populated_zone(zone) {
6266 		unsigned int order;
6267 		unsigned long nr[MAX_ORDER], flags, total = 0;
6268 		unsigned char types[MAX_ORDER];
6269 
6270 		if (zone_idx(zone) > max_zone_idx)
6271 			continue;
6272 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6273 			continue;
6274 		show_node(zone);
6275 		printk(KERN_CONT "%s: ", zone->name);
6276 
6277 		spin_lock_irqsave(&zone->lock, flags);
6278 		for (order = 0; order < MAX_ORDER; order++) {
6279 			struct free_area *area = &zone->free_area[order];
6280 			int type;
6281 
6282 			nr[order] = area->nr_free;
6283 			total += nr[order] << order;
6284 
6285 			types[order] = 0;
6286 			for (type = 0; type < MIGRATE_TYPES; type++) {
6287 				if (!free_area_empty(area, type))
6288 					types[order] |= 1 << type;
6289 			}
6290 		}
6291 		spin_unlock_irqrestore(&zone->lock, flags);
6292 		for (order = 0; order < MAX_ORDER; order++) {
6293 			printk(KERN_CONT "%lu*%lukB ",
6294 			       nr[order], K(1UL) << order);
6295 			if (nr[order])
6296 				show_migration_types(types[order]);
6297 		}
6298 		printk(KERN_CONT "= %lukB\n", K(total));
6299 	}
6300 
6301 	for_each_online_node(nid) {
6302 		if (show_mem_node_skip(filter, nid, nodemask))
6303 			continue;
6304 		hugetlb_show_meminfo_node(nid);
6305 	}
6306 
6307 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6308 
6309 	show_swap_cache_info();
6310 }
6311 
6312 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6313 {
6314 	zoneref->zone = zone;
6315 	zoneref->zone_idx = zone_idx(zone);
6316 }
6317 
6318 /*
6319  * Builds allocation fallback zone lists.
6320  *
6321  * Add all populated zones of a node to the zonelist.
6322  */
6323 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6324 {
6325 	struct zone *zone;
6326 	enum zone_type zone_type = MAX_NR_ZONES;
6327 	int nr_zones = 0;
6328 
6329 	do {
6330 		zone_type--;
6331 		zone = pgdat->node_zones + zone_type;
6332 		if (populated_zone(zone)) {
6333 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6334 			check_highest_zone(zone_type);
6335 		}
6336 	} while (zone_type);
6337 
6338 	return nr_zones;
6339 }
6340 
6341 #ifdef CONFIG_NUMA
6342 
6343 static int __parse_numa_zonelist_order(char *s)
6344 {
6345 	/*
6346 	 * We used to support different zonelists modes but they turned
6347 	 * out to be just not useful. Let's keep the warning in place
6348 	 * if somebody still use the cmd line parameter so that we do
6349 	 * not fail it silently
6350 	 */
6351 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6352 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6353 		return -EINVAL;
6354 	}
6355 	return 0;
6356 }
6357 
6358 char numa_zonelist_order[] = "Node";
6359 
6360 /*
6361  * sysctl handler for numa_zonelist_order
6362  */
6363 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6364 		void *buffer, size_t *length, loff_t *ppos)
6365 {
6366 	if (write)
6367 		return __parse_numa_zonelist_order(buffer);
6368 	return proc_dostring(table, write, buffer, length, ppos);
6369 }
6370 
6371 
6372 static int node_load[MAX_NUMNODES];
6373 
6374 /**
6375  * find_next_best_node - find the next node that should appear in a given node's fallback list
6376  * @node: node whose fallback list we're appending
6377  * @used_node_mask: nodemask_t of already used nodes
6378  *
6379  * We use a number of factors to determine which is the next node that should
6380  * appear on a given node's fallback list.  The node should not have appeared
6381  * already in @node's fallback list, and it should be the next closest node
6382  * according to the distance array (which contains arbitrary distance values
6383  * from each node to each node in the system), and should also prefer nodes
6384  * with no CPUs, since presumably they'll have very little allocation pressure
6385  * on them otherwise.
6386  *
6387  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6388  */
6389 int find_next_best_node(int node, nodemask_t *used_node_mask)
6390 {
6391 	int n, val;
6392 	int min_val = INT_MAX;
6393 	int best_node = NUMA_NO_NODE;
6394 
6395 	/* Use the local node if we haven't already */
6396 	if (!node_isset(node, *used_node_mask)) {
6397 		node_set(node, *used_node_mask);
6398 		return node;
6399 	}
6400 
6401 	for_each_node_state(n, N_MEMORY) {
6402 
6403 		/* Don't want a node to appear more than once */
6404 		if (node_isset(n, *used_node_mask))
6405 			continue;
6406 
6407 		/* Use the distance array to find the distance */
6408 		val = node_distance(node, n);
6409 
6410 		/* Penalize nodes under us ("prefer the next node") */
6411 		val += (n < node);
6412 
6413 		/* Give preference to headless and unused nodes */
6414 		if (!cpumask_empty(cpumask_of_node(n)))
6415 			val += PENALTY_FOR_NODE_WITH_CPUS;
6416 
6417 		/* Slight preference for less loaded node */
6418 		val *= MAX_NUMNODES;
6419 		val += node_load[n];
6420 
6421 		if (val < min_val) {
6422 			min_val = val;
6423 			best_node = n;
6424 		}
6425 	}
6426 
6427 	if (best_node >= 0)
6428 		node_set(best_node, *used_node_mask);
6429 
6430 	return best_node;
6431 }
6432 
6433 
6434 /*
6435  * Build zonelists ordered by node and zones within node.
6436  * This results in maximum locality--normal zone overflows into local
6437  * DMA zone, if any--but risks exhausting DMA zone.
6438  */
6439 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6440 		unsigned nr_nodes)
6441 {
6442 	struct zoneref *zonerefs;
6443 	int i;
6444 
6445 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6446 
6447 	for (i = 0; i < nr_nodes; i++) {
6448 		int nr_zones;
6449 
6450 		pg_data_t *node = NODE_DATA(node_order[i]);
6451 
6452 		nr_zones = build_zonerefs_node(node, zonerefs);
6453 		zonerefs += nr_zones;
6454 	}
6455 	zonerefs->zone = NULL;
6456 	zonerefs->zone_idx = 0;
6457 }
6458 
6459 /*
6460  * Build gfp_thisnode zonelists
6461  */
6462 static void build_thisnode_zonelists(pg_data_t *pgdat)
6463 {
6464 	struct zoneref *zonerefs;
6465 	int nr_zones;
6466 
6467 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6468 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6469 	zonerefs += nr_zones;
6470 	zonerefs->zone = NULL;
6471 	zonerefs->zone_idx = 0;
6472 }
6473 
6474 /*
6475  * Build zonelists ordered by zone and nodes within zones.
6476  * This results in conserving DMA zone[s] until all Normal memory is
6477  * exhausted, but results in overflowing to remote node while memory
6478  * may still exist in local DMA zone.
6479  */
6480 
6481 static void build_zonelists(pg_data_t *pgdat)
6482 {
6483 	static int node_order[MAX_NUMNODES];
6484 	int node, nr_nodes = 0;
6485 	nodemask_t used_mask = NODE_MASK_NONE;
6486 	int local_node, prev_node;
6487 
6488 	/* NUMA-aware ordering of nodes */
6489 	local_node = pgdat->node_id;
6490 	prev_node = local_node;
6491 
6492 	memset(node_order, 0, sizeof(node_order));
6493 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6494 		/*
6495 		 * We don't want to pressure a particular node.
6496 		 * So adding penalty to the first node in same
6497 		 * distance group to make it round-robin.
6498 		 */
6499 		if (node_distance(local_node, node) !=
6500 		    node_distance(local_node, prev_node))
6501 			node_load[node] += 1;
6502 
6503 		node_order[nr_nodes++] = node;
6504 		prev_node = node;
6505 	}
6506 
6507 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6508 	build_thisnode_zonelists(pgdat);
6509 	pr_info("Fallback order for Node %d: ", local_node);
6510 	for (node = 0; node < nr_nodes; node++)
6511 		pr_cont("%d ", node_order[node]);
6512 	pr_cont("\n");
6513 }
6514 
6515 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6516 /*
6517  * Return node id of node used for "local" allocations.
6518  * I.e., first node id of first zone in arg node's generic zonelist.
6519  * Used for initializing percpu 'numa_mem', which is used primarily
6520  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6521  */
6522 int local_memory_node(int node)
6523 {
6524 	struct zoneref *z;
6525 
6526 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6527 				   gfp_zone(GFP_KERNEL),
6528 				   NULL);
6529 	return zone_to_nid(z->zone);
6530 }
6531 #endif
6532 
6533 static void setup_min_unmapped_ratio(void);
6534 static void setup_min_slab_ratio(void);
6535 #else	/* CONFIG_NUMA */
6536 
6537 static void build_zonelists(pg_data_t *pgdat)
6538 {
6539 	int node, local_node;
6540 	struct zoneref *zonerefs;
6541 	int nr_zones;
6542 
6543 	local_node = pgdat->node_id;
6544 
6545 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6546 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6547 	zonerefs += nr_zones;
6548 
6549 	/*
6550 	 * Now we build the zonelist so that it contains the zones
6551 	 * of all the other nodes.
6552 	 * We don't want to pressure a particular node, so when
6553 	 * building the zones for node N, we make sure that the
6554 	 * zones coming right after the local ones are those from
6555 	 * node N+1 (modulo N)
6556 	 */
6557 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6558 		if (!node_online(node))
6559 			continue;
6560 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6561 		zonerefs += nr_zones;
6562 	}
6563 	for (node = 0; node < local_node; node++) {
6564 		if (!node_online(node))
6565 			continue;
6566 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6567 		zonerefs += nr_zones;
6568 	}
6569 
6570 	zonerefs->zone = NULL;
6571 	zonerefs->zone_idx = 0;
6572 }
6573 
6574 #endif	/* CONFIG_NUMA */
6575 
6576 /*
6577  * Boot pageset table. One per cpu which is going to be used for all
6578  * zones and all nodes. The parameters will be set in such a way
6579  * that an item put on a list will immediately be handed over to
6580  * the buddy list. This is safe since pageset manipulation is done
6581  * with interrupts disabled.
6582  *
6583  * The boot_pagesets must be kept even after bootup is complete for
6584  * unused processors and/or zones. They do play a role for bootstrapping
6585  * hotplugged processors.
6586  *
6587  * zoneinfo_show() and maybe other functions do
6588  * not check if the processor is online before following the pageset pointer.
6589  * Other parts of the kernel may not check if the zone is available.
6590  */
6591 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6592 /* These effectively disable the pcplists in the boot pageset completely */
6593 #define BOOT_PAGESET_HIGH	0
6594 #define BOOT_PAGESET_BATCH	1
6595 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6596 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6597 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6598 
6599 static void __build_all_zonelists(void *data)
6600 {
6601 	int nid;
6602 	int __maybe_unused cpu;
6603 	pg_data_t *self = data;
6604 
6605 	write_seqlock(&zonelist_update_seq);
6606 
6607 #ifdef CONFIG_NUMA
6608 	memset(node_load, 0, sizeof(node_load));
6609 #endif
6610 
6611 	/*
6612 	 * This node is hotadded and no memory is yet present.   So just
6613 	 * building zonelists is fine - no need to touch other nodes.
6614 	 */
6615 	if (self && !node_online(self->node_id)) {
6616 		build_zonelists(self);
6617 	} else {
6618 		/*
6619 		 * All possible nodes have pgdat preallocated
6620 		 * in free_area_init
6621 		 */
6622 		for_each_node(nid) {
6623 			pg_data_t *pgdat = NODE_DATA(nid);
6624 
6625 			build_zonelists(pgdat);
6626 		}
6627 
6628 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6629 		/*
6630 		 * We now know the "local memory node" for each node--
6631 		 * i.e., the node of the first zone in the generic zonelist.
6632 		 * Set up numa_mem percpu variable for on-line cpus.  During
6633 		 * boot, only the boot cpu should be on-line;  we'll init the
6634 		 * secondary cpus' numa_mem as they come on-line.  During
6635 		 * node/memory hotplug, we'll fixup all on-line cpus.
6636 		 */
6637 		for_each_online_cpu(cpu)
6638 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6639 #endif
6640 	}
6641 
6642 	write_sequnlock(&zonelist_update_seq);
6643 }
6644 
6645 static noinline void __init
6646 build_all_zonelists_init(void)
6647 {
6648 	int cpu;
6649 
6650 	__build_all_zonelists(NULL);
6651 
6652 	/*
6653 	 * Initialize the boot_pagesets that are going to be used
6654 	 * for bootstrapping processors. The real pagesets for
6655 	 * each zone will be allocated later when the per cpu
6656 	 * allocator is available.
6657 	 *
6658 	 * boot_pagesets are used also for bootstrapping offline
6659 	 * cpus if the system is already booted because the pagesets
6660 	 * are needed to initialize allocators on a specific cpu too.
6661 	 * F.e. the percpu allocator needs the page allocator which
6662 	 * needs the percpu allocator in order to allocate its pagesets
6663 	 * (a chicken-egg dilemma).
6664 	 */
6665 	for_each_possible_cpu(cpu)
6666 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6667 
6668 	mminit_verify_zonelist();
6669 	cpuset_init_current_mems_allowed();
6670 }
6671 
6672 /*
6673  * unless system_state == SYSTEM_BOOTING.
6674  *
6675  * __ref due to call of __init annotated helper build_all_zonelists_init
6676  * [protected by SYSTEM_BOOTING].
6677  */
6678 void __ref build_all_zonelists(pg_data_t *pgdat)
6679 {
6680 	unsigned long vm_total_pages;
6681 
6682 	if (system_state == SYSTEM_BOOTING) {
6683 		build_all_zonelists_init();
6684 	} else {
6685 		__build_all_zonelists(pgdat);
6686 		/* cpuset refresh routine should be here */
6687 	}
6688 	/* Get the number of free pages beyond high watermark in all zones. */
6689 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6690 	/*
6691 	 * Disable grouping by mobility if the number of pages in the
6692 	 * system is too low to allow the mechanism to work. It would be
6693 	 * more accurate, but expensive to check per-zone. This check is
6694 	 * made on memory-hotadd so a system can start with mobility
6695 	 * disabled and enable it later
6696 	 */
6697 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6698 		page_group_by_mobility_disabled = 1;
6699 	else
6700 		page_group_by_mobility_disabled = 0;
6701 
6702 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6703 		nr_online_nodes,
6704 		page_group_by_mobility_disabled ? "off" : "on",
6705 		vm_total_pages);
6706 #ifdef CONFIG_NUMA
6707 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6708 #endif
6709 }
6710 
6711 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6712 static bool __meminit
6713 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6714 {
6715 	static struct memblock_region *r;
6716 
6717 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6718 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6719 			for_each_mem_region(r) {
6720 				if (*pfn < memblock_region_memory_end_pfn(r))
6721 					break;
6722 			}
6723 		}
6724 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6725 		    memblock_is_mirror(r)) {
6726 			*pfn = memblock_region_memory_end_pfn(r);
6727 			return true;
6728 		}
6729 	}
6730 	return false;
6731 }
6732 
6733 /*
6734  * Initially all pages are reserved - free ones are freed
6735  * up by memblock_free_all() once the early boot process is
6736  * done. Non-atomic initialization, single-pass.
6737  *
6738  * All aligned pageblocks are initialized to the specified migratetype
6739  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6740  * zone stats (e.g., nr_isolate_pageblock) are touched.
6741  */
6742 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6743 		unsigned long start_pfn, unsigned long zone_end_pfn,
6744 		enum meminit_context context,
6745 		struct vmem_altmap *altmap, int migratetype)
6746 {
6747 	unsigned long pfn, end_pfn = start_pfn + size;
6748 	struct page *page;
6749 
6750 	if (highest_memmap_pfn < end_pfn - 1)
6751 		highest_memmap_pfn = end_pfn - 1;
6752 
6753 #ifdef CONFIG_ZONE_DEVICE
6754 	/*
6755 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6756 	 * memory. We limit the total number of pages to initialize to just
6757 	 * those that might contain the memory mapping. We will defer the
6758 	 * ZONE_DEVICE page initialization until after we have released
6759 	 * the hotplug lock.
6760 	 */
6761 	if (zone == ZONE_DEVICE) {
6762 		if (!altmap)
6763 			return;
6764 
6765 		if (start_pfn == altmap->base_pfn)
6766 			start_pfn += altmap->reserve;
6767 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6768 	}
6769 #endif
6770 
6771 	for (pfn = start_pfn; pfn < end_pfn; ) {
6772 		/*
6773 		 * There can be holes in boot-time mem_map[]s handed to this
6774 		 * function.  They do not exist on hotplugged memory.
6775 		 */
6776 		if (context == MEMINIT_EARLY) {
6777 			if (overlap_memmap_init(zone, &pfn))
6778 				continue;
6779 			if (defer_init(nid, pfn, zone_end_pfn))
6780 				break;
6781 		}
6782 
6783 		page = pfn_to_page(pfn);
6784 		__init_single_page(page, pfn, zone, nid);
6785 		if (context == MEMINIT_HOTPLUG)
6786 			__SetPageReserved(page);
6787 
6788 		/*
6789 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6790 		 * such that unmovable allocations won't be scattered all
6791 		 * over the place during system boot.
6792 		 */
6793 		if (pageblock_aligned(pfn)) {
6794 			set_pageblock_migratetype(page, migratetype);
6795 			cond_resched();
6796 		}
6797 		pfn++;
6798 	}
6799 }
6800 
6801 #ifdef CONFIG_ZONE_DEVICE
6802 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6803 					  unsigned long zone_idx, int nid,
6804 					  struct dev_pagemap *pgmap)
6805 {
6806 
6807 	__init_single_page(page, pfn, zone_idx, nid);
6808 
6809 	/*
6810 	 * Mark page reserved as it will need to wait for onlining
6811 	 * phase for it to be fully associated with a zone.
6812 	 *
6813 	 * We can use the non-atomic __set_bit operation for setting
6814 	 * the flag as we are still initializing the pages.
6815 	 */
6816 	__SetPageReserved(page);
6817 
6818 	/*
6819 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6820 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6821 	 * ever freed or placed on a driver-private list.
6822 	 */
6823 	page->pgmap = pgmap;
6824 	page->zone_device_data = NULL;
6825 
6826 	/*
6827 	 * Mark the block movable so that blocks are reserved for
6828 	 * movable at startup. This will force kernel allocations
6829 	 * to reserve their blocks rather than leaking throughout
6830 	 * the address space during boot when many long-lived
6831 	 * kernel allocations are made.
6832 	 *
6833 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6834 	 * because this is done early in section_activate()
6835 	 */
6836 	if (pageblock_aligned(pfn)) {
6837 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6838 		cond_resched();
6839 	}
6840 
6841 	/*
6842 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6843 	 * which will set the page count to 1 when allocating the page.
6844 	 */
6845 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6846 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6847 		set_page_count(page, 0);
6848 }
6849 
6850 /*
6851  * With compound page geometry and when struct pages are stored in ram most
6852  * tail pages are reused. Consequently, the amount of unique struct pages to
6853  * initialize is a lot smaller that the total amount of struct pages being
6854  * mapped. This is a paired / mild layering violation with explicit knowledge
6855  * of how the sparse_vmemmap internals handle compound pages in the lack
6856  * of an altmap. See vmemmap_populate_compound_pages().
6857  */
6858 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6859 					      unsigned long nr_pages)
6860 {
6861 	return is_power_of_2(sizeof(struct page)) &&
6862 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6863 }
6864 
6865 static void __ref memmap_init_compound(struct page *head,
6866 				       unsigned long head_pfn,
6867 				       unsigned long zone_idx, int nid,
6868 				       struct dev_pagemap *pgmap,
6869 				       unsigned long nr_pages)
6870 {
6871 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6872 	unsigned int order = pgmap->vmemmap_shift;
6873 
6874 	__SetPageHead(head);
6875 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6876 		struct page *page = pfn_to_page(pfn);
6877 
6878 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6879 		prep_compound_tail(head, pfn - head_pfn);
6880 		set_page_count(page, 0);
6881 
6882 		/*
6883 		 * The first tail page stores important compound page info.
6884 		 * Call prep_compound_head() after the first tail page has
6885 		 * been initialized, to not have the data overwritten.
6886 		 */
6887 		if (pfn == head_pfn + 1)
6888 			prep_compound_head(head, order);
6889 	}
6890 }
6891 
6892 void __ref memmap_init_zone_device(struct zone *zone,
6893 				   unsigned long start_pfn,
6894 				   unsigned long nr_pages,
6895 				   struct dev_pagemap *pgmap)
6896 {
6897 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6898 	struct pglist_data *pgdat = zone->zone_pgdat;
6899 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6900 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6901 	unsigned long zone_idx = zone_idx(zone);
6902 	unsigned long start = jiffies;
6903 	int nid = pgdat->node_id;
6904 
6905 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6906 		return;
6907 
6908 	/*
6909 	 * The call to memmap_init should have already taken care
6910 	 * of the pages reserved for the memmap, so we can just jump to
6911 	 * the end of that region and start processing the device pages.
6912 	 */
6913 	if (altmap) {
6914 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6915 		nr_pages = end_pfn - start_pfn;
6916 	}
6917 
6918 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6919 		struct page *page = pfn_to_page(pfn);
6920 
6921 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6922 
6923 		if (pfns_per_compound == 1)
6924 			continue;
6925 
6926 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6927 				     compound_nr_pages(altmap, pfns_per_compound));
6928 	}
6929 
6930 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6931 		nr_pages, jiffies_to_msecs(jiffies - start));
6932 }
6933 
6934 #endif
6935 static void __meminit zone_init_free_lists(struct zone *zone)
6936 {
6937 	unsigned int order, t;
6938 	for_each_migratetype_order(order, t) {
6939 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6940 		zone->free_area[order].nr_free = 0;
6941 	}
6942 }
6943 
6944 /*
6945  * Only struct pages that correspond to ranges defined by memblock.memory
6946  * are zeroed and initialized by going through __init_single_page() during
6947  * memmap_init_zone_range().
6948  *
6949  * But, there could be struct pages that correspond to holes in
6950  * memblock.memory. This can happen because of the following reasons:
6951  * - physical memory bank size is not necessarily the exact multiple of the
6952  *   arbitrary section size
6953  * - early reserved memory may not be listed in memblock.memory
6954  * - memory layouts defined with memmap= kernel parameter may not align
6955  *   nicely with memmap sections
6956  *
6957  * Explicitly initialize those struct pages so that:
6958  * - PG_Reserved is set
6959  * - zone and node links point to zone and node that span the page if the
6960  *   hole is in the middle of a zone
6961  * - zone and node links point to adjacent zone/node if the hole falls on
6962  *   the zone boundary; the pages in such holes will be prepended to the
6963  *   zone/node above the hole except for the trailing pages in the last
6964  *   section that will be appended to the zone/node below.
6965  */
6966 static void __init init_unavailable_range(unsigned long spfn,
6967 					  unsigned long epfn,
6968 					  int zone, int node)
6969 {
6970 	unsigned long pfn;
6971 	u64 pgcnt = 0;
6972 
6973 	for (pfn = spfn; pfn < epfn; pfn++) {
6974 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6975 			pfn = pageblock_end_pfn(pfn) - 1;
6976 			continue;
6977 		}
6978 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6979 		__SetPageReserved(pfn_to_page(pfn));
6980 		pgcnt++;
6981 	}
6982 
6983 	if (pgcnt)
6984 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6985 			node, zone_names[zone], pgcnt);
6986 }
6987 
6988 static void __init memmap_init_zone_range(struct zone *zone,
6989 					  unsigned long start_pfn,
6990 					  unsigned long end_pfn,
6991 					  unsigned long *hole_pfn)
6992 {
6993 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6994 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6995 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6996 
6997 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6998 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6999 
7000 	if (start_pfn >= end_pfn)
7001 		return;
7002 
7003 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7004 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7005 
7006 	if (*hole_pfn < start_pfn)
7007 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7008 
7009 	*hole_pfn = end_pfn;
7010 }
7011 
7012 static void __init memmap_init(void)
7013 {
7014 	unsigned long start_pfn, end_pfn;
7015 	unsigned long hole_pfn = 0;
7016 	int i, j, zone_id = 0, nid;
7017 
7018 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7019 		struct pglist_data *node = NODE_DATA(nid);
7020 
7021 		for (j = 0; j < MAX_NR_ZONES; j++) {
7022 			struct zone *zone = node->node_zones + j;
7023 
7024 			if (!populated_zone(zone))
7025 				continue;
7026 
7027 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7028 					       &hole_pfn);
7029 			zone_id = j;
7030 		}
7031 	}
7032 
7033 #ifdef CONFIG_SPARSEMEM
7034 	/*
7035 	 * Initialize the memory map for hole in the range [memory_end,
7036 	 * section_end].
7037 	 * Append the pages in this hole to the highest zone in the last
7038 	 * node.
7039 	 * The call to init_unavailable_range() is outside the ifdef to
7040 	 * silence the compiler warining about zone_id set but not used;
7041 	 * for FLATMEM it is a nop anyway
7042 	 */
7043 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7044 	if (hole_pfn < end_pfn)
7045 #endif
7046 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7047 }
7048 
7049 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7050 			  phys_addr_t min_addr, int nid, bool exact_nid)
7051 {
7052 	void *ptr;
7053 
7054 	if (exact_nid)
7055 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7056 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7057 						   nid);
7058 	else
7059 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7060 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7061 						 nid);
7062 
7063 	if (ptr && size > 0)
7064 		page_init_poison(ptr, size);
7065 
7066 	return ptr;
7067 }
7068 
7069 static int zone_batchsize(struct zone *zone)
7070 {
7071 #ifdef CONFIG_MMU
7072 	int batch;
7073 
7074 	/*
7075 	 * The number of pages to batch allocate is either ~0.1%
7076 	 * of the zone or 1MB, whichever is smaller. The batch
7077 	 * size is striking a balance between allocation latency
7078 	 * and zone lock contention.
7079 	 */
7080 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7081 	batch /= 4;		/* We effectively *= 4 below */
7082 	if (batch < 1)
7083 		batch = 1;
7084 
7085 	/*
7086 	 * Clamp the batch to a 2^n - 1 value. Having a power
7087 	 * of 2 value was found to be more likely to have
7088 	 * suboptimal cache aliasing properties in some cases.
7089 	 *
7090 	 * For example if 2 tasks are alternately allocating
7091 	 * batches of pages, one task can end up with a lot
7092 	 * of pages of one half of the possible page colors
7093 	 * and the other with pages of the other colors.
7094 	 */
7095 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7096 
7097 	return batch;
7098 
7099 #else
7100 	/* The deferral and batching of frees should be suppressed under NOMMU
7101 	 * conditions.
7102 	 *
7103 	 * The problem is that NOMMU needs to be able to allocate large chunks
7104 	 * of contiguous memory as there's no hardware page translation to
7105 	 * assemble apparent contiguous memory from discontiguous pages.
7106 	 *
7107 	 * Queueing large contiguous runs of pages for batching, however,
7108 	 * causes the pages to actually be freed in smaller chunks.  As there
7109 	 * can be a significant delay between the individual batches being
7110 	 * recycled, this leads to the once large chunks of space being
7111 	 * fragmented and becoming unavailable for high-order allocations.
7112 	 */
7113 	return 0;
7114 #endif
7115 }
7116 
7117 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7118 {
7119 #ifdef CONFIG_MMU
7120 	int high;
7121 	int nr_split_cpus;
7122 	unsigned long total_pages;
7123 
7124 	if (!percpu_pagelist_high_fraction) {
7125 		/*
7126 		 * By default, the high value of the pcp is based on the zone
7127 		 * low watermark so that if they are full then background
7128 		 * reclaim will not be started prematurely.
7129 		 */
7130 		total_pages = low_wmark_pages(zone);
7131 	} else {
7132 		/*
7133 		 * If percpu_pagelist_high_fraction is configured, the high
7134 		 * value is based on a fraction of the managed pages in the
7135 		 * zone.
7136 		 */
7137 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7138 	}
7139 
7140 	/*
7141 	 * Split the high value across all online CPUs local to the zone. Note
7142 	 * that early in boot that CPUs may not be online yet and that during
7143 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7144 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7145 	 * all online CPUs to mitigate the risk that reclaim is triggered
7146 	 * prematurely due to pages stored on pcp lists.
7147 	 */
7148 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7149 	if (!nr_split_cpus)
7150 		nr_split_cpus = num_online_cpus();
7151 	high = total_pages / nr_split_cpus;
7152 
7153 	/*
7154 	 * Ensure high is at least batch*4. The multiple is based on the
7155 	 * historical relationship between high and batch.
7156 	 */
7157 	high = max(high, batch << 2);
7158 
7159 	return high;
7160 #else
7161 	return 0;
7162 #endif
7163 }
7164 
7165 /*
7166  * pcp->high and pcp->batch values are related and generally batch is lower
7167  * than high. They are also related to pcp->count such that count is lower
7168  * than high, and as soon as it reaches high, the pcplist is flushed.
7169  *
7170  * However, guaranteeing these relations at all times would require e.g. write
7171  * barriers here but also careful usage of read barriers at the read side, and
7172  * thus be prone to error and bad for performance. Thus the update only prevents
7173  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7174  * can cope with those fields changing asynchronously, and fully trust only the
7175  * pcp->count field on the local CPU with interrupts disabled.
7176  *
7177  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7178  * outside of boot time (or some other assurance that no concurrent updaters
7179  * exist).
7180  */
7181 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7182 		unsigned long batch)
7183 {
7184 	WRITE_ONCE(pcp->batch, batch);
7185 	WRITE_ONCE(pcp->high, high);
7186 }
7187 
7188 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7189 {
7190 	int pindex;
7191 
7192 	memset(pcp, 0, sizeof(*pcp));
7193 	memset(pzstats, 0, sizeof(*pzstats));
7194 
7195 	spin_lock_init(&pcp->lock);
7196 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7197 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7198 
7199 	/*
7200 	 * Set batch and high values safe for a boot pageset. A true percpu
7201 	 * pageset's initialization will update them subsequently. Here we don't
7202 	 * need to be as careful as pageset_update() as nobody can access the
7203 	 * pageset yet.
7204 	 */
7205 	pcp->high = BOOT_PAGESET_HIGH;
7206 	pcp->batch = BOOT_PAGESET_BATCH;
7207 	pcp->free_factor = 0;
7208 }
7209 
7210 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7211 		unsigned long batch)
7212 {
7213 	struct per_cpu_pages *pcp;
7214 	int cpu;
7215 
7216 	for_each_possible_cpu(cpu) {
7217 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7218 		pageset_update(pcp, high, batch);
7219 	}
7220 }
7221 
7222 /*
7223  * Calculate and set new high and batch values for all per-cpu pagesets of a
7224  * zone based on the zone's size.
7225  */
7226 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7227 {
7228 	int new_high, new_batch;
7229 
7230 	new_batch = max(1, zone_batchsize(zone));
7231 	new_high = zone_highsize(zone, new_batch, cpu_online);
7232 
7233 	if (zone->pageset_high == new_high &&
7234 	    zone->pageset_batch == new_batch)
7235 		return;
7236 
7237 	zone->pageset_high = new_high;
7238 	zone->pageset_batch = new_batch;
7239 
7240 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7241 }
7242 
7243 void __meminit setup_zone_pageset(struct zone *zone)
7244 {
7245 	int cpu;
7246 
7247 	/* Size may be 0 on !SMP && !NUMA */
7248 	if (sizeof(struct per_cpu_zonestat) > 0)
7249 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7250 
7251 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7252 	for_each_possible_cpu(cpu) {
7253 		struct per_cpu_pages *pcp;
7254 		struct per_cpu_zonestat *pzstats;
7255 
7256 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7257 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7258 		per_cpu_pages_init(pcp, pzstats);
7259 	}
7260 
7261 	zone_set_pageset_high_and_batch(zone, 0);
7262 }
7263 
7264 /*
7265  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7266  * page high values need to be recalculated.
7267  */
7268 static void zone_pcp_update(struct zone *zone, int cpu_online)
7269 {
7270 	mutex_lock(&pcp_batch_high_lock);
7271 	zone_set_pageset_high_and_batch(zone, cpu_online);
7272 	mutex_unlock(&pcp_batch_high_lock);
7273 }
7274 
7275 /*
7276  * Allocate per cpu pagesets and initialize them.
7277  * Before this call only boot pagesets were available.
7278  */
7279 void __init setup_per_cpu_pageset(void)
7280 {
7281 	struct pglist_data *pgdat;
7282 	struct zone *zone;
7283 	int __maybe_unused cpu;
7284 
7285 	for_each_populated_zone(zone)
7286 		setup_zone_pageset(zone);
7287 
7288 #ifdef CONFIG_NUMA
7289 	/*
7290 	 * Unpopulated zones continue using the boot pagesets.
7291 	 * The numa stats for these pagesets need to be reset.
7292 	 * Otherwise, they will end up skewing the stats of
7293 	 * the nodes these zones are associated with.
7294 	 */
7295 	for_each_possible_cpu(cpu) {
7296 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7297 		memset(pzstats->vm_numa_event, 0,
7298 		       sizeof(pzstats->vm_numa_event));
7299 	}
7300 #endif
7301 
7302 	for_each_online_pgdat(pgdat)
7303 		pgdat->per_cpu_nodestats =
7304 			alloc_percpu(struct per_cpu_nodestat);
7305 }
7306 
7307 static __meminit void zone_pcp_init(struct zone *zone)
7308 {
7309 	/*
7310 	 * per cpu subsystem is not up at this point. The following code
7311 	 * relies on the ability of the linker to provide the
7312 	 * offset of a (static) per cpu variable into the per cpu area.
7313 	 */
7314 	zone->per_cpu_pageset = &boot_pageset;
7315 	zone->per_cpu_zonestats = &boot_zonestats;
7316 	zone->pageset_high = BOOT_PAGESET_HIGH;
7317 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7318 
7319 	if (populated_zone(zone))
7320 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7321 			 zone->present_pages, zone_batchsize(zone));
7322 }
7323 
7324 void __meminit init_currently_empty_zone(struct zone *zone,
7325 					unsigned long zone_start_pfn,
7326 					unsigned long size)
7327 {
7328 	struct pglist_data *pgdat = zone->zone_pgdat;
7329 	int zone_idx = zone_idx(zone) + 1;
7330 
7331 	if (zone_idx > pgdat->nr_zones)
7332 		pgdat->nr_zones = zone_idx;
7333 
7334 	zone->zone_start_pfn = zone_start_pfn;
7335 
7336 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7337 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7338 			pgdat->node_id,
7339 			(unsigned long)zone_idx(zone),
7340 			zone_start_pfn, (zone_start_pfn + size));
7341 
7342 	zone_init_free_lists(zone);
7343 	zone->initialized = 1;
7344 }
7345 
7346 /**
7347  * get_pfn_range_for_nid - Return the start and end page frames for a node
7348  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7349  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7350  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7351  *
7352  * It returns the start and end page frame of a node based on information
7353  * provided by memblock_set_node(). If called for a node
7354  * with no available memory, a warning is printed and the start and end
7355  * PFNs will be 0.
7356  */
7357 void __init get_pfn_range_for_nid(unsigned int nid,
7358 			unsigned long *start_pfn, unsigned long *end_pfn)
7359 {
7360 	unsigned long this_start_pfn, this_end_pfn;
7361 	int i;
7362 
7363 	*start_pfn = -1UL;
7364 	*end_pfn = 0;
7365 
7366 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7367 		*start_pfn = min(*start_pfn, this_start_pfn);
7368 		*end_pfn = max(*end_pfn, this_end_pfn);
7369 	}
7370 
7371 	if (*start_pfn == -1UL)
7372 		*start_pfn = 0;
7373 }
7374 
7375 /*
7376  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7377  * assumption is made that zones within a node are ordered in monotonic
7378  * increasing memory addresses so that the "highest" populated zone is used
7379  */
7380 static void __init find_usable_zone_for_movable(void)
7381 {
7382 	int zone_index;
7383 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7384 		if (zone_index == ZONE_MOVABLE)
7385 			continue;
7386 
7387 		if (arch_zone_highest_possible_pfn[zone_index] >
7388 				arch_zone_lowest_possible_pfn[zone_index])
7389 			break;
7390 	}
7391 
7392 	VM_BUG_ON(zone_index == -1);
7393 	movable_zone = zone_index;
7394 }
7395 
7396 /*
7397  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7398  * because it is sized independent of architecture. Unlike the other zones,
7399  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7400  * in each node depending on the size of each node and how evenly kernelcore
7401  * is distributed. This helper function adjusts the zone ranges
7402  * provided by the architecture for a given node by using the end of the
7403  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7404  * zones within a node are in order of monotonic increases memory addresses
7405  */
7406 static void __init adjust_zone_range_for_zone_movable(int nid,
7407 					unsigned long zone_type,
7408 					unsigned long node_start_pfn,
7409 					unsigned long node_end_pfn,
7410 					unsigned long *zone_start_pfn,
7411 					unsigned long *zone_end_pfn)
7412 {
7413 	/* Only adjust if ZONE_MOVABLE is on this node */
7414 	if (zone_movable_pfn[nid]) {
7415 		/* Size ZONE_MOVABLE */
7416 		if (zone_type == ZONE_MOVABLE) {
7417 			*zone_start_pfn = zone_movable_pfn[nid];
7418 			*zone_end_pfn = min(node_end_pfn,
7419 				arch_zone_highest_possible_pfn[movable_zone]);
7420 
7421 		/* Adjust for ZONE_MOVABLE starting within this range */
7422 		} else if (!mirrored_kernelcore &&
7423 			*zone_start_pfn < zone_movable_pfn[nid] &&
7424 			*zone_end_pfn > zone_movable_pfn[nid]) {
7425 			*zone_end_pfn = zone_movable_pfn[nid];
7426 
7427 		/* Check if this whole range is within ZONE_MOVABLE */
7428 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7429 			*zone_start_pfn = *zone_end_pfn;
7430 	}
7431 }
7432 
7433 /*
7434  * Return the number of pages a zone spans in a node, including holes
7435  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7436  */
7437 static unsigned long __init zone_spanned_pages_in_node(int nid,
7438 					unsigned long zone_type,
7439 					unsigned long node_start_pfn,
7440 					unsigned long node_end_pfn,
7441 					unsigned long *zone_start_pfn,
7442 					unsigned long *zone_end_pfn)
7443 {
7444 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7445 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7446 	/* When hotadd a new node from cpu_up(), the node should be empty */
7447 	if (!node_start_pfn && !node_end_pfn)
7448 		return 0;
7449 
7450 	/* Get the start and end of the zone */
7451 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7452 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7453 	adjust_zone_range_for_zone_movable(nid, zone_type,
7454 				node_start_pfn, node_end_pfn,
7455 				zone_start_pfn, zone_end_pfn);
7456 
7457 	/* Check that this node has pages within the zone's required range */
7458 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7459 		return 0;
7460 
7461 	/* Move the zone boundaries inside the node if necessary */
7462 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7463 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7464 
7465 	/* Return the spanned pages */
7466 	return *zone_end_pfn - *zone_start_pfn;
7467 }
7468 
7469 /*
7470  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7471  * then all holes in the requested range will be accounted for.
7472  */
7473 unsigned long __init __absent_pages_in_range(int nid,
7474 				unsigned long range_start_pfn,
7475 				unsigned long range_end_pfn)
7476 {
7477 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7478 	unsigned long start_pfn, end_pfn;
7479 	int i;
7480 
7481 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7482 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7483 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7484 		nr_absent -= end_pfn - start_pfn;
7485 	}
7486 	return nr_absent;
7487 }
7488 
7489 /**
7490  * absent_pages_in_range - Return number of page frames in holes within a range
7491  * @start_pfn: The start PFN to start searching for holes
7492  * @end_pfn: The end PFN to stop searching for holes
7493  *
7494  * Return: the number of pages frames in memory holes within a range.
7495  */
7496 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7497 							unsigned long end_pfn)
7498 {
7499 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7500 }
7501 
7502 /* Return the number of page frames in holes in a zone on a node */
7503 static unsigned long __init zone_absent_pages_in_node(int nid,
7504 					unsigned long zone_type,
7505 					unsigned long node_start_pfn,
7506 					unsigned long node_end_pfn)
7507 {
7508 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7509 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7510 	unsigned long zone_start_pfn, zone_end_pfn;
7511 	unsigned long nr_absent;
7512 
7513 	/* When hotadd a new node from cpu_up(), the node should be empty */
7514 	if (!node_start_pfn && !node_end_pfn)
7515 		return 0;
7516 
7517 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7518 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7519 
7520 	adjust_zone_range_for_zone_movable(nid, zone_type,
7521 			node_start_pfn, node_end_pfn,
7522 			&zone_start_pfn, &zone_end_pfn);
7523 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7524 
7525 	/*
7526 	 * ZONE_MOVABLE handling.
7527 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7528 	 * and vice versa.
7529 	 */
7530 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7531 		unsigned long start_pfn, end_pfn;
7532 		struct memblock_region *r;
7533 
7534 		for_each_mem_region(r) {
7535 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7536 					  zone_start_pfn, zone_end_pfn);
7537 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7538 					zone_start_pfn, zone_end_pfn);
7539 
7540 			if (zone_type == ZONE_MOVABLE &&
7541 			    memblock_is_mirror(r))
7542 				nr_absent += end_pfn - start_pfn;
7543 
7544 			if (zone_type == ZONE_NORMAL &&
7545 			    !memblock_is_mirror(r))
7546 				nr_absent += end_pfn - start_pfn;
7547 		}
7548 	}
7549 
7550 	return nr_absent;
7551 }
7552 
7553 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7554 						unsigned long node_start_pfn,
7555 						unsigned long node_end_pfn)
7556 {
7557 	unsigned long realtotalpages = 0, totalpages = 0;
7558 	enum zone_type i;
7559 
7560 	for (i = 0; i < MAX_NR_ZONES; i++) {
7561 		struct zone *zone = pgdat->node_zones + i;
7562 		unsigned long zone_start_pfn, zone_end_pfn;
7563 		unsigned long spanned, absent;
7564 		unsigned long size, real_size;
7565 
7566 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7567 						     node_start_pfn,
7568 						     node_end_pfn,
7569 						     &zone_start_pfn,
7570 						     &zone_end_pfn);
7571 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7572 						   node_start_pfn,
7573 						   node_end_pfn);
7574 
7575 		size = spanned;
7576 		real_size = size - absent;
7577 
7578 		if (size)
7579 			zone->zone_start_pfn = zone_start_pfn;
7580 		else
7581 			zone->zone_start_pfn = 0;
7582 		zone->spanned_pages = size;
7583 		zone->present_pages = real_size;
7584 #if defined(CONFIG_MEMORY_HOTPLUG)
7585 		zone->present_early_pages = real_size;
7586 #endif
7587 
7588 		totalpages += size;
7589 		realtotalpages += real_size;
7590 	}
7591 
7592 	pgdat->node_spanned_pages = totalpages;
7593 	pgdat->node_present_pages = realtotalpages;
7594 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7595 }
7596 
7597 #ifndef CONFIG_SPARSEMEM
7598 /*
7599  * Calculate the size of the zone->blockflags rounded to an unsigned long
7600  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7601  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7602  * round what is now in bits to nearest long in bits, then return it in
7603  * bytes.
7604  */
7605 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7606 {
7607 	unsigned long usemapsize;
7608 
7609 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7610 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7611 	usemapsize = usemapsize >> pageblock_order;
7612 	usemapsize *= NR_PAGEBLOCK_BITS;
7613 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7614 
7615 	return usemapsize / 8;
7616 }
7617 
7618 static void __ref setup_usemap(struct zone *zone)
7619 {
7620 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7621 					       zone->spanned_pages);
7622 	zone->pageblock_flags = NULL;
7623 	if (usemapsize) {
7624 		zone->pageblock_flags =
7625 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7626 					    zone_to_nid(zone));
7627 		if (!zone->pageblock_flags)
7628 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7629 			      usemapsize, zone->name, zone_to_nid(zone));
7630 	}
7631 }
7632 #else
7633 static inline void setup_usemap(struct zone *zone) {}
7634 #endif /* CONFIG_SPARSEMEM */
7635 
7636 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7637 
7638 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7639 void __init set_pageblock_order(void)
7640 {
7641 	unsigned int order = MAX_ORDER - 1;
7642 
7643 	/* Check that pageblock_nr_pages has not already been setup */
7644 	if (pageblock_order)
7645 		return;
7646 
7647 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7648 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7649 		order = HUGETLB_PAGE_ORDER;
7650 
7651 	/*
7652 	 * Assume the largest contiguous order of interest is a huge page.
7653 	 * This value may be variable depending on boot parameters on IA64 and
7654 	 * powerpc.
7655 	 */
7656 	pageblock_order = order;
7657 }
7658 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7659 
7660 /*
7661  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7662  * is unused as pageblock_order is set at compile-time. See
7663  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7664  * the kernel config
7665  */
7666 void __init set_pageblock_order(void)
7667 {
7668 }
7669 
7670 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7671 
7672 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7673 						unsigned long present_pages)
7674 {
7675 	unsigned long pages = spanned_pages;
7676 
7677 	/*
7678 	 * Provide a more accurate estimation if there are holes within
7679 	 * the zone and SPARSEMEM is in use. If there are holes within the
7680 	 * zone, each populated memory region may cost us one or two extra
7681 	 * memmap pages due to alignment because memmap pages for each
7682 	 * populated regions may not be naturally aligned on page boundary.
7683 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7684 	 */
7685 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7686 	    IS_ENABLED(CONFIG_SPARSEMEM))
7687 		pages = present_pages;
7688 
7689 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7690 }
7691 
7692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7693 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7694 {
7695 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7696 
7697 	spin_lock_init(&ds_queue->split_queue_lock);
7698 	INIT_LIST_HEAD(&ds_queue->split_queue);
7699 	ds_queue->split_queue_len = 0;
7700 }
7701 #else
7702 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7703 #endif
7704 
7705 #ifdef CONFIG_COMPACTION
7706 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7707 {
7708 	init_waitqueue_head(&pgdat->kcompactd_wait);
7709 }
7710 #else
7711 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7712 #endif
7713 
7714 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7715 {
7716 	int i;
7717 
7718 	pgdat_resize_init(pgdat);
7719 	pgdat_kswapd_lock_init(pgdat);
7720 
7721 	pgdat_init_split_queue(pgdat);
7722 	pgdat_init_kcompactd(pgdat);
7723 
7724 	init_waitqueue_head(&pgdat->kswapd_wait);
7725 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7726 
7727 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7728 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7729 
7730 	pgdat_page_ext_init(pgdat);
7731 	lruvec_init(&pgdat->__lruvec);
7732 }
7733 
7734 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7735 							unsigned long remaining_pages)
7736 {
7737 	atomic_long_set(&zone->managed_pages, remaining_pages);
7738 	zone_set_nid(zone, nid);
7739 	zone->name = zone_names[idx];
7740 	zone->zone_pgdat = NODE_DATA(nid);
7741 	spin_lock_init(&zone->lock);
7742 	zone_seqlock_init(zone);
7743 	zone_pcp_init(zone);
7744 }
7745 
7746 /*
7747  * Set up the zone data structures
7748  * - init pgdat internals
7749  * - init all zones belonging to this node
7750  *
7751  * NOTE: this function is only called during memory hotplug
7752  */
7753 #ifdef CONFIG_MEMORY_HOTPLUG
7754 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7755 {
7756 	int nid = pgdat->node_id;
7757 	enum zone_type z;
7758 	int cpu;
7759 
7760 	pgdat_init_internals(pgdat);
7761 
7762 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7763 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7764 
7765 	/*
7766 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7767 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7768 	 * when it starts in the near future.
7769 	 */
7770 	pgdat->nr_zones = 0;
7771 	pgdat->kswapd_order = 0;
7772 	pgdat->kswapd_highest_zoneidx = 0;
7773 	pgdat->node_start_pfn = 0;
7774 	for_each_online_cpu(cpu) {
7775 		struct per_cpu_nodestat *p;
7776 
7777 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7778 		memset(p, 0, sizeof(*p));
7779 	}
7780 
7781 	for (z = 0; z < MAX_NR_ZONES; z++)
7782 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7783 }
7784 #endif
7785 
7786 /*
7787  * Set up the zone data structures:
7788  *   - mark all pages reserved
7789  *   - mark all memory queues empty
7790  *   - clear the memory bitmaps
7791  *
7792  * NOTE: pgdat should get zeroed by caller.
7793  * NOTE: this function is only called during early init.
7794  */
7795 static void __init free_area_init_core(struct pglist_data *pgdat)
7796 {
7797 	enum zone_type j;
7798 	int nid = pgdat->node_id;
7799 
7800 	pgdat_init_internals(pgdat);
7801 	pgdat->per_cpu_nodestats = &boot_nodestats;
7802 
7803 	for (j = 0; j < MAX_NR_ZONES; j++) {
7804 		struct zone *zone = pgdat->node_zones + j;
7805 		unsigned long size, freesize, memmap_pages;
7806 
7807 		size = zone->spanned_pages;
7808 		freesize = zone->present_pages;
7809 
7810 		/*
7811 		 * Adjust freesize so that it accounts for how much memory
7812 		 * is used by this zone for memmap. This affects the watermark
7813 		 * and per-cpu initialisations
7814 		 */
7815 		memmap_pages = calc_memmap_size(size, freesize);
7816 		if (!is_highmem_idx(j)) {
7817 			if (freesize >= memmap_pages) {
7818 				freesize -= memmap_pages;
7819 				if (memmap_pages)
7820 					pr_debug("  %s zone: %lu pages used for memmap\n",
7821 						 zone_names[j], memmap_pages);
7822 			} else
7823 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7824 					zone_names[j], memmap_pages, freesize);
7825 		}
7826 
7827 		/* Account for reserved pages */
7828 		if (j == 0 && freesize > dma_reserve) {
7829 			freesize -= dma_reserve;
7830 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7831 		}
7832 
7833 		if (!is_highmem_idx(j))
7834 			nr_kernel_pages += freesize;
7835 		/* Charge for highmem memmap if there are enough kernel pages */
7836 		else if (nr_kernel_pages > memmap_pages * 2)
7837 			nr_kernel_pages -= memmap_pages;
7838 		nr_all_pages += freesize;
7839 
7840 		/*
7841 		 * Set an approximate value for lowmem here, it will be adjusted
7842 		 * when the bootmem allocator frees pages into the buddy system.
7843 		 * And all highmem pages will be managed by the buddy system.
7844 		 */
7845 		zone_init_internals(zone, j, nid, freesize);
7846 
7847 		if (!size)
7848 			continue;
7849 
7850 		set_pageblock_order();
7851 		setup_usemap(zone);
7852 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7853 	}
7854 }
7855 
7856 #ifdef CONFIG_FLATMEM
7857 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7858 {
7859 	unsigned long __maybe_unused start = 0;
7860 	unsigned long __maybe_unused offset = 0;
7861 
7862 	/* Skip empty nodes */
7863 	if (!pgdat->node_spanned_pages)
7864 		return;
7865 
7866 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7867 	offset = pgdat->node_start_pfn - start;
7868 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7869 	if (!pgdat->node_mem_map) {
7870 		unsigned long size, end;
7871 		struct page *map;
7872 
7873 		/*
7874 		 * The zone's endpoints aren't required to be MAX_ORDER
7875 		 * aligned but the node_mem_map endpoints must be in order
7876 		 * for the buddy allocator to function correctly.
7877 		 */
7878 		end = pgdat_end_pfn(pgdat);
7879 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7880 		size =  (end - start) * sizeof(struct page);
7881 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7882 				   pgdat->node_id, false);
7883 		if (!map)
7884 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7885 			      size, pgdat->node_id);
7886 		pgdat->node_mem_map = map + offset;
7887 	}
7888 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7889 				__func__, pgdat->node_id, (unsigned long)pgdat,
7890 				(unsigned long)pgdat->node_mem_map);
7891 #ifndef CONFIG_NUMA
7892 	/*
7893 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7894 	 */
7895 	if (pgdat == NODE_DATA(0)) {
7896 		mem_map = NODE_DATA(0)->node_mem_map;
7897 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7898 			mem_map -= offset;
7899 	}
7900 #endif
7901 }
7902 #else
7903 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7904 #endif /* CONFIG_FLATMEM */
7905 
7906 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7907 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7908 {
7909 	pgdat->first_deferred_pfn = ULONG_MAX;
7910 }
7911 #else
7912 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7913 #endif
7914 
7915 static void __init free_area_init_node(int nid)
7916 {
7917 	pg_data_t *pgdat = NODE_DATA(nid);
7918 	unsigned long start_pfn = 0;
7919 	unsigned long end_pfn = 0;
7920 
7921 	/* pg_data_t should be reset to zero when it's allocated */
7922 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7923 
7924 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7925 
7926 	pgdat->node_id = nid;
7927 	pgdat->node_start_pfn = start_pfn;
7928 	pgdat->per_cpu_nodestats = NULL;
7929 
7930 	if (start_pfn != end_pfn) {
7931 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7932 			(u64)start_pfn << PAGE_SHIFT,
7933 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7934 	} else {
7935 		pr_info("Initmem setup node %d as memoryless\n", nid);
7936 	}
7937 
7938 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7939 
7940 	alloc_node_mem_map(pgdat);
7941 	pgdat_set_deferred_range(pgdat);
7942 
7943 	free_area_init_core(pgdat);
7944 }
7945 
7946 static void __init free_area_init_memoryless_node(int nid)
7947 {
7948 	free_area_init_node(nid);
7949 }
7950 
7951 #if MAX_NUMNODES > 1
7952 /*
7953  * Figure out the number of possible node ids.
7954  */
7955 void __init setup_nr_node_ids(void)
7956 {
7957 	unsigned int highest;
7958 
7959 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7960 	nr_node_ids = highest + 1;
7961 }
7962 #endif
7963 
7964 /**
7965  * node_map_pfn_alignment - determine the maximum internode alignment
7966  *
7967  * This function should be called after node map is populated and sorted.
7968  * It calculates the maximum power of two alignment which can distinguish
7969  * all the nodes.
7970  *
7971  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7972  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7973  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7974  * shifted, 1GiB is enough and this function will indicate so.
7975  *
7976  * This is used to test whether pfn -> nid mapping of the chosen memory
7977  * model has fine enough granularity to avoid incorrect mapping for the
7978  * populated node map.
7979  *
7980  * Return: the determined alignment in pfn's.  0 if there is no alignment
7981  * requirement (single node).
7982  */
7983 unsigned long __init node_map_pfn_alignment(void)
7984 {
7985 	unsigned long accl_mask = 0, last_end = 0;
7986 	unsigned long start, end, mask;
7987 	int last_nid = NUMA_NO_NODE;
7988 	int i, nid;
7989 
7990 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7991 		if (!start || last_nid < 0 || last_nid == nid) {
7992 			last_nid = nid;
7993 			last_end = end;
7994 			continue;
7995 		}
7996 
7997 		/*
7998 		 * Start with a mask granular enough to pin-point to the
7999 		 * start pfn and tick off bits one-by-one until it becomes
8000 		 * too coarse to separate the current node from the last.
8001 		 */
8002 		mask = ~((1 << __ffs(start)) - 1);
8003 		while (mask && last_end <= (start & (mask << 1)))
8004 			mask <<= 1;
8005 
8006 		/* accumulate all internode masks */
8007 		accl_mask |= mask;
8008 	}
8009 
8010 	/* convert mask to number of pages */
8011 	return ~accl_mask + 1;
8012 }
8013 
8014 /*
8015  * early_calculate_totalpages()
8016  * Sum pages in active regions for movable zone.
8017  * Populate N_MEMORY for calculating usable_nodes.
8018  */
8019 static unsigned long __init early_calculate_totalpages(void)
8020 {
8021 	unsigned long totalpages = 0;
8022 	unsigned long start_pfn, end_pfn;
8023 	int i, nid;
8024 
8025 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8026 		unsigned long pages = end_pfn - start_pfn;
8027 
8028 		totalpages += pages;
8029 		if (pages)
8030 			node_set_state(nid, N_MEMORY);
8031 	}
8032 	return totalpages;
8033 }
8034 
8035 /*
8036  * Find the PFN the Movable zone begins in each node. Kernel memory
8037  * is spread evenly between nodes as long as the nodes have enough
8038  * memory. When they don't, some nodes will have more kernelcore than
8039  * others
8040  */
8041 static void __init find_zone_movable_pfns_for_nodes(void)
8042 {
8043 	int i, nid;
8044 	unsigned long usable_startpfn;
8045 	unsigned long kernelcore_node, kernelcore_remaining;
8046 	/* save the state before borrow the nodemask */
8047 	nodemask_t saved_node_state = node_states[N_MEMORY];
8048 	unsigned long totalpages = early_calculate_totalpages();
8049 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8050 	struct memblock_region *r;
8051 
8052 	/* Need to find movable_zone earlier when movable_node is specified. */
8053 	find_usable_zone_for_movable();
8054 
8055 	/*
8056 	 * If movable_node is specified, ignore kernelcore and movablecore
8057 	 * options.
8058 	 */
8059 	if (movable_node_is_enabled()) {
8060 		for_each_mem_region(r) {
8061 			if (!memblock_is_hotpluggable(r))
8062 				continue;
8063 
8064 			nid = memblock_get_region_node(r);
8065 
8066 			usable_startpfn = PFN_DOWN(r->base);
8067 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8068 				min(usable_startpfn, zone_movable_pfn[nid]) :
8069 				usable_startpfn;
8070 		}
8071 
8072 		goto out2;
8073 	}
8074 
8075 	/*
8076 	 * If kernelcore=mirror is specified, ignore movablecore option
8077 	 */
8078 	if (mirrored_kernelcore) {
8079 		bool mem_below_4gb_not_mirrored = false;
8080 
8081 		for_each_mem_region(r) {
8082 			if (memblock_is_mirror(r))
8083 				continue;
8084 
8085 			nid = memblock_get_region_node(r);
8086 
8087 			usable_startpfn = memblock_region_memory_base_pfn(r);
8088 
8089 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8090 				mem_below_4gb_not_mirrored = true;
8091 				continue;
8092 			}
8093 
8094 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8095 				min(usable_startpfn, zone_movable_pfn[nid]) :
8096 				usable_startpfn;
8097 		}
8098 
8099 		if (mem_below_4gb_not_mirrored)
8100 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8101 
8102 		goto out2;
8103 	}
8104 
8105 	/*
8106 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8107 	 * amount of necessary memory.
8108 	 */
8109 	if (required_kernelcore_percent)
8110 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8111 				       10000UL;
8112 	if (required_movablecore_percent)
8113 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8114 					10000UL;
8115 
8116 	/*
8117 	 * If movablecore= was specified, calculate what size of
8118 	 * kernelcore that corresponds so that memory usable for
8119 	 * any allocation type is evenly spread. If both kernelcore
8120 	 * and movablecore are specified, then the value of kernelcore
8121 	 * will be used for required_kernelcore if it's greater than
8122 	 * what movablecore would have allowed.
8123 	 */
8124 	if (required_movablecore) {
8125 		unsigned long corepages;
8126 
8127 		/*
8128 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8129 		 * was requested by the user
8130 		 */
8131 		required_movablecore =
8132 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8133 		required_movablecore = min(totalpages, required_movablecore);
8134 		corepages = totalpages - required_movablecore;
8135 
8136 		required_kernelcore = max(required_kernelcore, corepages);
8137 	}
8138 
8139 	/*
8140 	 * If kernelcore was not specified or kernelcore size is larger
8141 	 * than totalpages, there is no ZONE_MOVABLE.
8142 	 */
8143 	if (!required_kernelcore || required_kernelcore >= totalpages)
8144 		goto out;
8145 
8146 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8147 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8148 
8149 restart:
8150 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8151 	kernelcore_node = required_kernelcore / usable_nodes;
8152 	for_each_node_state(nid, N_MEMORY) {
8153 		unsigned long start_pfn, end_pfn;
8154 
8155 		/*
8156 		 * Recalculate kernelcore_node if the division per node
8157 		 * now exceeds what is necessary to satisfy the requested
8158 		 * amount of memory for the kernel
8159 		 */
8160 		if (required_kernelcore < kernelcore_node)
8161 			kernelcore_node = required_kernelcore / usable_nodes;
8162 
8163 		/*
8164 		 * As the map is walked, we track how much memory is usable
8165 		 * by the kernel using kernelcore_remaining. When it is
8166 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8167 		 */
8168 		kernelcore_remaining = kernelcore_node;
8169 
8170 		/* Go through each range of PFNs within this node */
8171 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8172 			unsigned long size_pages;
8173 
8174 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8175 			if (start_pfn >= end_pfn)
8176 				continue;
8177 
8178 			/* Account for what is only usable for kernelcore */
8179 			if (start_pfn < usable_startpfn) {
8180 				unsigned long kernel_pages;
8181 				kernel_pages = min(end_pfn, usable_startpfn)
8182 								- start_pfn;
8183 
8184 				kernelcore_remaining -= min(kernel_pages,
8185 							kernelcore_remaining);
8186 				required_kernelcore -= min(kernel_pages,
8187 							required_kernelcore);
8188 
8189 				/* Continue if range is now fully accounted */
8190 				if (end_pfn <= usable_startpfn) {
8191 
8192 					/*
8193 					 * Push zone_movable_pfn to the end so
8194 					 * that if we have to rebalance
8195 					 * kernelcore across nodes, we will
8196 					 * not double account here
8197 					 */
8198 					zone_movable_pfn[nid] = end_pfn;
8199 					continue;
8200 				}
8201 				start_pfn = usable_startpfn;
8202 			}
8203 
8204 			/*
8205 			 * The usable PFN range for ZONE_MOVABLE is from
8206 			 * start_pfn->end_pfn. Calculate size_pages as the
8207 			 * number of pages used as kernelcore
8208 			 */
8209 			size_pages = end_pfn - start_pfn;
8210 			if (size_pages > kernelcore_remaining)
8211 				size_pages = kernelcore_remaining;
8212 			zone_movable_pfn[nid] = start_pfn + size_pages;
8213 
8214 			/*
8215 			 * Some kernelcore has been met, update counts and
8216 			 * break if the kernelcore for this node has been
8217 			 * satisfied
8218 			 */
8219 			required_kernelcore -= min(required_kernelcore,
8220 								size_pages);
8221 			kernelcore_remaining -= size_pages;
8222 			if (!kernelcore_remaining)
8223 				break;
8224 		}
8225 	}
8226 
8227 	/*
8228 	 * If there is still required_kernelcore, we do another pass with one
8229 	 * less node in the count. This will push zone_movable_pfn[nid] further
8230 	 * along on the nodes that still have memory until kernelcore is
8231 	 * satisfied
8232 	 */
8233 	usable_nodes--;
8234 	if (usable_nodes && required_kernelcore > usable_nodes)
8235 		goto restart;
8236 
8237 out2:
8238 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8239 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8240 		unsigned long start_pfn, end_pfn;
8241 
8242 		zone_movable_pfn[nid] =
8243 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8244 
8245 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8246 		if (zone_movable_pfn[nid] >= end_pfn)
8247 			zone_movable_pfn[nid] = 0;
8248 	}
8249 
8250 out:
8251 	/* restore the node_state */
8252 	node_states[N_MEMORY] = saved_node_state;
8253 }
8254 
8255 /* Any regular or high memory on that node ? */
8256 static void check_for_memory(pg_data_t *pgdat, int nid)
8257 {
8258 	enum zone_type zone_type;
8259 
8260 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8261 		struct zone *zone = &pgdat->node_zones[zone_type];
8262 		if (populated_zone(zone)) {
8263 			if (IS_ENABLED(CONFIG_HIGHMEM))
8264 				node_set_state(nid, N_HIGH_MEMORY);
8265 			if (zone_type <= ZONE_NORMAL)
8266 				node_set_state(nid, N_NORMAL_MEMORY);
8267 			break;
8268 		}
8269 	}
8270 }
8271 
8272 /*
8273  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8274  * such cases we allow max_zone_pfn sorted in the descending order
8275  */
8276 bool __weak arch_has_descending_max_zone_pfns(void)
8277 {
8278 	return false;
8279 }
8280 
8281 /**
8282  * free_area_init - Initialise all pg_data_t and zone data
8283  * @max_zone_pfn: an array of max PFNs for each zone
8284  *
8285  * This will call free_area_init_node() for each active node in the system.
8286  * Using the page ranges provided by memblock_set_node(), the size of each
8287  * zone in each node and their holes is calculated. If the maximum PFN
8288  * between two adjacent zones match, it is assumed that the zone is empty.
8289  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8290  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8291  * starts where the previous one ended. For example, ZONE_DMA32 starts
8292  * at arch_max_dma_pfn.
8293  */
8294 void __init free_area_init(unsigned long *max_zone_pfn)
8295 {
8296 	unsigned long start_pfn, end_pfn;
8297 	int i, nid, zone;
8298 	bool descending;
8299 
8300 	/* Record where the zone boundaries are */
8301 	memset(arch_zone_lowest_possible_pfn, 0,
8302 				sizeof(arch_zone_lowest_possible_pfn));
8303 	memset(arch_zone_highest_possible_pfn, 0,
8304 				sizeof(arch_zone_highest_possible_pfn));
8305 
8306 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8307 	descending = arch_has_descending_max_zone_pfns();
8308 
8309 	for (i = 0; i < MAX_NR_ZONES; i++) {
8310 		if (descending)
8311 			zone = MAX_NR_ZONES - i - 1;
8312 		else
8313 			zone = i;
8314 
8315 		if (zone == ZONE_MOVABLE)
8316 			continue;
8317 
8318 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8319 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8320 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8321 
8322 		start_pfn = end_pfn;
8323 	}
8324 
8325 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8326 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8327 	find_zone_movable_pfns_for_nodes();
8328 
8329 	/* Print out the zone ranges */
8330 	pr_info("Zone ranges:\n");
8331 	for (i = 0; i < MAX_NR_ZONES; i++) {
8332 		if (i == ZONE_MOVABLE)
8333 			continue;
8334 		pr_info("  %-8s ", zone_names[i]);
8335 		if (arch_zone_lowest_possible_pfn[i] ==
8336 				arch_zone_highest_possible_pfn[i])
8337 			pr_cont("empty\n");
8338 		else
8339 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8340 				(u64)arch_zone_lowest_possible_pfn[i]
8341 					<< PAGE_SHIFT,
8342 				((u64)arch_zone_highest_possible_pfn[i]
8343 					<< PAGE_SHIFT) - 1);
8344 	}
8345 
8346 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8347 	pr_info("Movable zone start for each node\n");
8348 	for (i = 0; i < MAX_NUMNODES; i++) {
8349 		if (zone_movable_pfn[i])
8350 			pr_info("  Node %d: %#018Lx\n", i,
8351 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8352 	}
8353 
8354 	/*
8355 	 * Print out the early node map, and initialize the
8356 	 * subsection-map relative to active online memory ranges to
8357 	 * enable future "sub-section" extensions of the memory map.
8358 	 */
8359 	pr_info("Early memory node ranges\n");
8360 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8361 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8362 			(u64)start_pfn << PAGE_SHIFT,
8363 			((u64)end_pfn << PAGE_SHIFT) - 1);
8364 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8365 	}
8366 
8367 	/* Initialise every node */
8368 	mminit_verify_pageflags_layout();
8369 	setup_nr_node_ids();
8370 	for_each_node(nid) {
8371 		pg_data_t *pgdat;
8372 
8373 		if (!node_online(nid)) {
8374 			pr_info("Initializing node %d as memoryless\n", nid);
8375 
8376 			/* Allocator not initialized yet */
8377 			pgdat = arch_alloc_nodedata(nid);
8378 			if (!pgdat) {
8379 				pr_err("Cannot allocate %zuB for node %d.\n",
8380 						sizeof(*pgdat), nid);
8381 				continue;
8382 			}
8383 			arch_refresh_nodedata(nid, pgdat);
8384 			free_area_init_memoryless_node(nid);
8385 
8386 			/*
8387 			 * We do not want to confuse userspace by sysfs
8388 			 * files/directories for node without any memory
8389 			 * attached to it, so this node is not marked as
8390 			 * N_MEMORY and not marked online so that no sysfs
8391 			 * hierarchy will be created via register_one_node for
8392 			 * it. The pgdat will get fully initialized by
8393 			 * hotadd_init_pgdat() when memory is hotplugged into
8394 			 * this node.
8395 			 */
8396 			continue;
8397 		}
8398 
8399 		pgdat = NODE_DATA(nid);
8400 		free_area_init_node(nid);
8401 
8402 		/* Any memory on that node */
8403 		if (pgdat->node_present_pages)
8404 			node_set_state(nid, N_MEMORY);
8405 		check_for_memory(pgdat, nid);
8406 	}
8407 
8408 	memmap_init();
8409 }
8410 
8411 static int __init cmdline_parse_core(char *p, unsigned long *core,
8412 				     unsigned long *percent)
8413 {
8414 	unsigned long long coremem;
8415 	char *endptr;
8416 
8417 	if (!p)
8418 		return -EINVAL;
8419 
8420 	/* Value may be a percentage of total memory, otherwise bytes */
8421 	coremem = simple_strtoull(p, &endptr, 0);
8422 	if (*endptr == '%') {
8423 		/* Paranoid check for percent values greater than 100 */
8424 		WARN_ON(coremem > 100);
8425 
8426 		*percent = coremem;
8427 	} else {
8428 		coremem = memparse(p, &p);
8429 		/* Paranoid check that UL is enough for the coremem value */
8430 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8431 
8432 		*core = coremem >> PAGE_SHIFT;
8433 		*percent = 0UL;
8434 	}
8435 	return 0;
8436 }
8437 
8438 /*
8439  * kernelcore=size sets the amount of memory for use for allocations that
8440  * cannot be reclaimed or migrated.
8441  */
8442 static int __init cmdline_parse_kernelcore(char *p)
8443 {
8444 	/* parse kernelcore=mirror */
8445 	if (parse_option_str(p, "mirror")) {
8446 		mirrored_kernelcore = true;
8447 		return 0;
8448 	}
8449 
8450 	return cmdline_parse_core(p, &required_kernelcore,
8451 				  &required_kernelcore_percent);
8452 }
8453 
8454 /*
8455  * movablecore=size sets the amount of memory for use for allocations that
8456  * can be reclaimed or migrated.
8457  */
8458 static int __init cmdline_parse_movablecore(char *p)
8459 {
8460 	return cmdline_parse_core(p, &required_movablecore,
8461 				  &required_movablecore_percent);
8462 }
8463 
8464 early_param("kernelcore", cmdline_parse_kernelcore);
8465 early_param("movablecore", cmdline_parse_movablecore);
8466 
8467 void adjust_managed_page_count(struct page *page, long count)
8468 {
8469 	atomic_long_add(count, &page_zone(page)->managed_pages);
8470 	totalram_pages_add(count);
8471 #ifdef CONFIG_HIGHMEM
8472 	if (PageHighMem(page))
8473 		totalhigh_pages_add(count);
8474 #endif
8475 }
8476 EXPORT_SYMBOL(adjust_managed_page_count);
8477 
8478 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8479 {
8480 	void *pos;
8481 	unsigned long pages = 0;
8482 
8483 	start = (void *)PAGE_ALIGN((unsigned long)start);
8484 	end = (void *)((unsigned long)end & PAGE_MASK);
8485 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8486 		struct page *page = virt_to_page(pos);
8487 		void *direct_map_addr;
8488 
8489 		/*
8490 		 * 'direct_map_addr' might be different from 'pos'
8491 		 * because some architectures' virt_to_page()
8492 		 * work with aliases.  Getting the direct map
8493 		 * address ensures that we get a _writeable_
8494 		 * alias for the memset().
8495 		 */
8496 		direct_map_addr = page_address(page);
8497 		/*
8498 		 * Perform a kasan-unchecked memset() since this memory
8499 		 * has not been initialized.
8500 		 */
8501 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8502 		if ((unsigned int)poison <= 0xFF)
8503 			memset(direct_map_addr, poison, PAGE_SIZE);
8504 
8505 		free_reserved_page(page);
8506 	}
8507 
8508 	if (pages && s)
8509 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8510 
8511 	return pages;
8512 }
8513 
8514 void __init mem_init_print_info(void)
8515 {
8516 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8517 	unsigned long init_code_size, init_data_size;
8518 
8519 	physpages = get_num_physpages();
8520 	codesize = _etext - _stext;
8521 	datasize = _edata - _sdata;
8522 	rosize = __end_rodata - __start_rodata;
8523 	bss_size = __bss_stop - __bss_start;
8524 	init_data_size = __init_end - __init_begin;
8525 	init_code_size = _einittext - _sinittext;
8526 
8527 	/*
8528 	 * Detect special cases and adjust section sizes accordingly:
8529 	 * 1) .init.* may be embedded into .data sections
8530 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8531 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8532 	 * 3) .rodata.* may be embedded into .text or .data sections.
8533 	 */
8534 #define adj_init_size(start, end, size, pos, adj) \
8535 	do { \
8536 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8537 			size -= adj; \
8538 	} while (0)
8539 
8540 	adj_init_size(__init_begin, __init_end, init_data_size,
8541 		     _sinittext, init_code_size);
8542 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8543 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8544 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8545 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8546 
8547 #undef	adj_init_size
8548 
8549 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8550 #ifdef	CONFIG_HIGHMEM
8551 		", %luK highmem"
8552 #endif
8553 		")\n",
8554 		K(nr_free_pages()), K(physpages),
8555 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8556 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8557 		K(physpages - totalram_pages() - totalcma_pages),
8558 		K(totalcma_pages)
8559 #ifdef	CONFIG_HIGHMEM
8560 		, K(totalhigh_pages())
8561 #endif
8562 		);
8563 }
8564 
8565 /**
8566  * set_dma_reserve - set the specified number of pages reserved in the first zone
8567  * @new_dma_reserve: The number of pages to mark reserved
8568  *
8569  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8570  * In the DMA zone, a significant percentage may be consumed by kernel image
8571  * and other unfreeable allocations which can skew the watermarks badly. This
8572  * function may optionally be used to account for unfreeable pages in the
8573  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8574  * smaller per-cpu batchsize.
8575  */
8576 void __init set_dma_reserve(unsigned long new_dma_reserve)
8577 {
8578 	dma_reserve = new_dma_reserve;
8579 }
8580 
8581 static int page_alloc_cpu_dead(unsigned int cpu)
8582 {
8583 	struct zone *zone;
8584 
8585 	lru_add_drain_cpu(cpu);
8586 	mlock_page_drain_remote(cpu);
8587 	drain_pages(cpu);
8588 
8589 	/*
8590 	 * Spill the event counters of the dead processor
8591 	 * into the current processors event counters.
8592 	 * This artificially elevates the count of the current
8593 	 * processor.
8594 	 */
8595 	vm_events_fold_cpu(cpu);
8596 
8597 	/*
8598 	 * Zero the differential counters of the dead processor
8599 	 * so that the vm statistics are consistent.
8600 	 *
8601 	 * This is only okay since the processor is dead and cannot
8602 	 * race with what we are doing.
8603 	 */
8604 	cpu_vm_stats_fold(cpu);
8605 
8606 	for_each_populated_zone(zone)
8607 		zone_pcp_update(zone, 0);
8608 
8609 	return 0;
8610 }
8611 
8612 static int page_alloc_cpu_online(unsigned int cpu)
8613 {
8614 	struct zone *zone;
8615 
8616 	for_each_populated_zone(zone)
8617 		zone_pcp_update(zone, 1);
8618 	return 0;
8619 }
8620 
8621 #ifdef CONFIG_NUMA
8622 int hashdist = HASHDIST_DEFAULT;
8623 
8624 static int __init set_hashdist(char *str)
8625 {
8626 	if (!str)
8627 		return 0;
8628 	hashdist = simple_strtoul(str, &str, 0);
8629 	return 1;
8630 }
8631 __setup("hashdist=", set_hashdist);
8632 #endif
8633 
8634 void __init page_alloc_init(void)
8635 {
8636 	int ret;
8637 
8638 #ifdef CONFIG_NUMA
8639 	if (num_node_state(N_MEMORY) == 1)
8640 		hashdist = 0;
8641 #endif
8642 
8643 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8644 					"mm/page_alloc:pcp",
8645 					page_alloc_cpu_online,
8646 					page_alloc_cpu_dead);
8647 	WARN_ON(ret < 0);
8648 }
8649 
8650 /*
8651  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8652  *	or min_free_kbytes changes.
8653  */
8654 static void calculate_totalreserve_pages(void)
8655 {
8656 	struct pglist_data *pgdat;
8657 	unsigned long reserve_pages = 0;
8658 	enum zone_type i, j;
8659 
8660 	for_each_online_pgdat(pgdat) {
8661 
8662 		pgdat->totalreserve_pages = 0;
8663 
8664 		for (i = 0; i < MAX_NR_ZONES; i++) {
8665 			struct zone *zone = pgdat->node_zones + i;
8666 			long max = 0;
8667 			unsigned long managed_pages = zone_managed_pages(zone);
8668 
8669 			/* Find valid and maximum lowmem_reserve in the zone */
8670 			for (j = i; j < MAX_NR_ZONES; j++) {
8671 				if (zone->lowmem_reserve[j] > max)
8672 					max = zone->lowmem_reserve[j];
8673 			}
8674 
8675 			/* we treat the high watermark as reserved pages. */
8676 			max += high_wmark_pages(zone);
8677 
8678 			if (max > managed_pages)
8679 				max = managed_pages;
8680 
8681 			pgdat->totalreserve_pages += max;
8682 
8683 			reserve_pages += max;
8684 		}
8685 	}
8686 	totalreserve_pages = reserve_pages;
8687 }
8688 
8689 /*
8690  * setup_per_zone_lowmem_reserve - called whenever
8691  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8692  *	has a correct pages reserved value, so an adequate number of
8693  *	pages are left in the zone after a successful __alloc_pages().
8694  */
8695 static void setup_per_zone_lowmem_reserve(void)
8696 {
8697 	struct pglist_data *pgdat;
8698 	enum zone_type i, j;
8699 
8700 	for_each_online_pgdat(pgdat) {
8701 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8702 			struct zone *zone = &pgdat->node_zones[i];
8703 			int ratio = sysctl_lowmem_reserve_ratio[i];
8704 			bool clear = !ratio || !zone_managed_pages(zone);
8705 			unsigned long managed_pages = 0;
8706 
8707 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8708 				struct zone *upper_zone = &pgdat->node_zones[j];
8709 
8710 				managed_pages += zone_managed_pages(upper_zone);
8711 
8712 				if (clear)
8713 					zone->lowmem_reserve[j] = 0;
8714 				else
8715 					zone->lowmem_reserve[j] = managed_pages / ratio;
8716 			}
8717 		}
8718 	}
8719 
8720 	/* update totalreserve_pages */
8721 	calculate_totalreserve_pages();
8722 }
8723 
8724 static void __setup_per_zone_wmarks(void)
8725 {
8726 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8727 	unsigned long lowmem_pages = 0;
8728 	struct zone *zone;
8729 	unsigned long flags;
8730 
8731 	/* Calculate total number of !ZONE_HIGHMEM pages */
8732 	for_each_zone(zone) {
8733 		if (!is_highmem(zone))
8734 			lowmem_pages += zone_managed_pages(zone);
8735 	}
8736 
8737 	for_each_zone(zone) {
8738 		u64 tmp;
8739 
8740 		spin_lock_irqsave(&zone->lock, flags);
8741 		tmp = (u64)pages_min * zone_managed_pages(zone);
8742 		do_div(tmp, lowmem_pages);
8743 		if (is_highmem(zone)) {
8744 			/*
8745 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8746 			 * need highmem pages, so cap pages_min to a small
8747 			 * value here.
8748 			 *
8749 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8750 			 * deltas control async page reclaim, and so should
8751 			 * not be capped for highmem.
8752 			 */
8753 			unsigned long min_pages;
8754 
8755 			min_pages = zone_managed_pages(zone) / 1024;
8756 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8757 			zone->_watermark[WMARK_MIN] = min_pages;
8758 		} else {
8759 			/*
8760 			 * If it's a lowmem zone, reserve a number of pages
8761 			 * proportionate to the zone's size.
8762 			 */
8763 			zone->_watermark[WMARK_MIN] = tmp;
8764 		}
8765 
8766 		/*
8767 		 * Set the kswapd watermarks distance according to the
8768 		 * scale factor in proportion to available memory, but
8769 		 * ensure a minimum size on small systems.
8770 		 */
8771 		tmp = max_t(u64, tmp >> 2,
8772 			    mult_frac(zone_managed_pages(zone),
8773 				      watermark_scale_factor, 10000));
8774 
8775 		zone->watermark_boost = 0;
8776 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8777 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8778 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8779 
8780 		spin_unlock_irqrestore(&zone->lock, flags);
8781 	}
8782 
8783 	/* update totalreserve_pages */
8784 	calculate_totalreserve_pages();
8785 }
8786 
8787 /**
8788  * setup_per_zone_wmarks - called when min_free_kbytes changes
8789  * or when memory is hot-{added|removed}
8790  *
8791  * Ensures that the watermark[min,low,high] values for each zone are set
8792  * correctly with respect to min_free_kbytes.
8793  */
8794 void setup_per_zone_wmarks(void)
8795 {
8796 	struct zone *zone;
8797 	static DEFINE_SPINLOCK(lock);
8798 
8799 	spin_lock(&lock);
8800 	__setup_per_zone_wmarks();
8801 	spin_unlock(&lock);
8802 
8803 	/*
8804 	 * The watermark size have changed so update the pcpu batch
8805 	 * and high limits or the limits may be inappropriate.
8806 	 */
8807 	for_each_zone(zone)
8808 		zone_pcp_update(zone, 0);
8809 }
8810 
8811 /*
8812  * Initialise min_free_kbytes.
8813  *
8814  * For small machines we want it small (128k min).  For large machines
8815  * we want it large (256MB max).  But it is not linear, because network
8816  * bandwidth does not increase linearly with machine size.  We use
8817  *
8818  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8819  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8820  *
8821  * which yields
8822  *
8823  * 16MB:	512k
8824  * 32MB:	724k
8825  * 64MB:	1024k
8826  * 128MB:	1448k
8827  * 256MB:	2048k
8828  * 512MB:	2896k
8829  * 1024MB:	4096k
8830  * 2048MB:	5792k
8831  * 4096MB:	8192k
8832  * 8192MB:	11584k
8833  * 16384MB:	16384k
8834  */
8835 void calculate_min_free_kbytes(void)
8836 {
8837 	unsigned long lowmem_kbytes;
8838 	int new_min_free_kbytes;
8839 
8840 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8841 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8842 
8843 	if (new_min_free_kbytes > user_min_free_kbytes)
8844 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8845 	else
8846 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8847 				new_min_free_kbytes, user_min_free_kbytes);
8848 
8849 }
8850 
8851 int __meminit init_per_zone_wmark_min(void)
8852 {
8853 	calculate_min_free_kbytes();
8854 	setup_per_zone_wmarks();
8855 	refresh_zone_stat_thresholds();
8856 	setup_per_zone_lowmem_reserve();
8857 
8858 #ifdef CONFIG_NUMA
8859 	setup_min_unmapped_ratio();
8860 	setup_min_slab_ratio();
8861 #endif
8862 
8863 	khugepaged_min_free_kbytes_update();
8864 
8865 	return 0;
8866 }
8867 postcore_initcall(init_per_zone_wmark_min)
8868 
8869 /*
8870  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8871  *	that we can call two helper functions whenever min_free_kbytes
8872  *	changes.
8873  */
8874 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8875 		void *buffer, size_t *length, loff_t *ppos)
8876 {
8877 	int rc;
8878 
8879 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8880 	if (rc)
8881 		return rc;
8882 
8883 	if (write) {
8884 		user_min_free_kbytes = min_free_kbytes;
8885 		setup_per_zone_wmarks();
8886 	}
8887 	return 0;
8888 }
8889 
8890 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8891 		void *buffer, size_t *length, loff_t *ppos)
8892 {
8893 	int rc;
8894 
8895 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8896 	if (rc)
8897 		return rc;
8898 
8899 	if (write)
8900 		setup_per_zone_wmarks();
8901 
8902 	return 0;
8903 }
8904 
8905 #ifdef CONFIG_NUMA
8906 static void setup_min_unmapped_ratio(void)
8907 {
8908 	pg_data_t *pgdat;
8909 	struct zone *zone;
8910 
8911 	for_each_online_pgdat(pgdat)
8912 		pgdat->min_unmapped_pages = 0;
8913 
8914 	for_each_zone(zone)
8915 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8916 						         sysctl_min_unmapped_ratio) / 100;
8917 }
8918 
8919 
8920 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8921 		void *buffer, size_t *length, loff_t *ppos)
8922 {
8923 	int rc;
8924 
8925 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8926 	if (rc)
8927 		return rc;
8928 
8929 	setup_min_unmapped_ratio();
8930 
8931 	return 0;
8932 }
8933 
8934 static void setup_min_slab_ratio(void)
8935 {
8936 	pg_data_t *pgdat;
8937 	struct zone *zone;
8938 
8939 	for_each_online_pgdat(pgdat)
8940 		pgdat->min_slab_pages = 0;
8941 
8942 	for_each_zone(zone)
8943 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8944 						     sysctl_min_slab_ratio) / 100;
8945 }
8946 
8947 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8948 		void *buffer, size_t *length, loff_t *ppos)
8949 {
8950 	int rc;
8951 
8952 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8953 	if (rc)
8954 		return rc;
8955 
8956 	setup_min_slab_ratio();
8957 
8958 	return 0;
8959 }
8960 #endif
8961 
8962 /*
8963  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8964  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8965  *	whenever sysctl_lowmem_reserve_ratio changes.
8966  *
8967  * The reserve ratio obviously has absolutely no relation with the
8968  * minimum watermarks. The lowmem reserve ratio can only make sense
8969  * if in function of the boot time zone sizes.
8970  */
8971 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8972 		void *buffer, size_t *length, loff_t *ppos)
8973 {
8974 	int i;
8975 
8976 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8977 
8978 	for (i = 0; i < MAX_NR_ZONES; i++) {
8979 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8980 			sysctl_lowmem_reserve_ratio[i] = 0;
8981 	}
8982 
8983 	setup_per_zone_lowmem_reserve();
8984 	return 0;
8985 }
8986 
8987 /*
8988  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8989  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8990  * pagelist can have before it gets flushed back to buddy allocator.
8991  */
8992 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8993 		int write, void *buffer, size_t *length, loff_t *ppos)
8994 {
8995 	struct zone *zone;
8996 	int old_percpu_pagelist_high_fraction;
8997 	int ret;
8998 
8999 	mutex_lock(&pcp_batch_high_lock);
9000 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9001 
9002 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9003 	if (!write || ret < 0)
9004 		goto out;
9005 
9006 	/* Sanity checking to avoid pcp imbalance */
9007 	if (percpu_pagelist_high_fraction &&
9008 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9009 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9010 		ret = -EINVAL;
9011 		goto out;
9012 	}
9013 
9014 	/* No change? */
9015 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9016 		goto out;
9017 
9018 	for_each_populated_zone(zone)
9019 		zone_set_pageset_high_and_batch(zone, 0);
9020 out:
9021 	mutex_unlock(&pcp_batch_high_lock);
9022 	return ret;
9023 }
9024 
9025 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9026 /*
9027  * Returns the number of pages that arch has reserved but
9028  * is not known to alloc_large_system_hash().
9029  */
9030 static unsigned long __init arch_reserved_kernel_pages(void)
9031 {
9032 	return 0;
9033 }
9034 #endif
9035 
9036 /*
9037  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9038  * machines. As memory size is increased the scale is also increased but at
9039  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9040  * quadruples the scale is increased by one, which means the size of hash table
9041  * only doubles, instead of quadrupling as well.
9042  * Because 32-bit systems cannot have large physical memory, where this scaling
9043  * makes sense, it is disabled on such platforms.
9044  */
9045 #if __BITS_PER_LONG > 32
9046 #define ADAPT_SCALE_BASE	(64ul << 30)
9047 #define ADAPT_SCALE_SHIFT	2
9048 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9049 #endif
9050 
9051 /*
9052  * allocate a large system hash table from bootmem
9053  * - it is assumed that the hash table must contain an exact power-of-2
9054  *   quantity of entries
9055  * - limit is the number of hash buckets, not the total allocation size
9056  */
9057 void *__init alloc_large_system_hash(const char *tablename,
9058 				     unsigned long bucketsize,
9059 				     unsigned long numentries,
9060 				     int scale,
9061 				     int flags,
9062 				     unsigned int *_hash_shift,
9063 				     unsigned int *_hash_mask,
9064 				     unsigned long low_limit,
9065 				     unsigned long high_limit)
9066 {
9067 	unsigned long long max = high_limit;
9068 	unsigned long log2qty, size;
9069 	void *table;
9070 	gfp_t gfp_flags;
9071 	bool virt;
9072 	bool huge;
9073 
9074 	/* allow the kernel cmdline to have a say */
9075 	if (!numentries) {
9076 		/* round applicable memory size up to nearest megabyte */
9077 		numentries = nr_kernel_pages;
9078 		numentries -= arch_reserved_kernel_pages();
9079 
9080 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9081 		if (PAGE_SIZE < SZ_1M)
9082 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9083 
9084 #if __BITS_PER_LONG > 32
9085 		if (!high_limit) {
9086 			unsigned long adapt;
9087 
9088 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9089 			     adapt <<= ADAPT_SCALE_SHIFT)
9090 				scale++;
9091 		}
9092 #endif
9093 
9094 		/* limit to 1 bucket per 2^scale bytes of low memory */
9095 		if (scale > PAGE_SHIFT)
9096 			numentries >>= (scale - PAGE_SHIFT);
9097 		else
9098 			numentries <<= (PAGE_SHIFT - scale);
9099 
9100 		/* Make sure we've got at least a 0-order allocation.. */
9101 		if (unlikely(flags & HASH_SMALL)) {
9102 			/* Makes no sense without HASH_EARLY */
9103 			WARN_ON(!(flags & HASH_EARLY));
9104 			if (!(numentries >> *_hash_shift)) {
9105 				numentries = 1UL << *_hash_shift;
9106 				BUG_ON(!numentries);
9107 			}
9108 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9109 			numentries = PAGE_SIZE / bucketsize;
9110 	}
9111 	numentries = roundup_pow_of_two(numentries);
9112 
9113 	/* limit allocation size to 1/16 total memory by default */
9114 	if (max == 0) {
9115 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9116 		do_div(max, bucketsize);
9117 	}
9118 	max = min(max, 0x80000000ULL);
9119 
9120 	if (numentries < low_limit)
9121 		numentries = low_limit;
9122 	if (numentries > max)
9123 		numentries = max;
9124 
9125 	log2qty = ilog2(numentries);
9126 
9127 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9128 	do {
9129 		virt = false;
9130 		size = bucketsize << log2qty;
9131 		if (flags & HASH_EARLY) {
9132 			if (flags & HASH_ZERO)
9133 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9134 			else
9135 				table = memblock_alloc_raw(size,
9136 							   SMP_CACHE_BYTES);
9137 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9138 			table = vmalloc_huge(size, gfp_flags);
9139 			virt = true;
9140 			if (table)
9141 				huge = is_vm_area_hugepages(table);
9142 		} else {
9143 			/*
9144 			 * If bucketsize is not a power-of-two, we may free
9145 			 * some pages at the end of hash table which
9146 			 * alloc_pages_exact() automatically does
9147 			 */
9148 			table = alloc_pages_exact(size, gfp_flags);
9149 			kmemleak_alloc(table, size, 1, gfp_flags);
9150 		}
9151 	} while (!table && size > PAGE_SIZE && --log2qty);
9152 
9153 	if (!table)
9154 		panic("Failed to allocate %s hash table\n", tablename);
9155 
9156 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9157 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9158 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9159 
9160 	if (_hash_shift)
9161 		*_hash_shift = log2qty;
9162 	if (_hash_mask)
9163 		*_hash_mask = (1 << log2qty) - 1;
9164 
9165 	return table;
9166 }
9167 
9168 #ifdef CONFIG_CONTIG_ALLOC
9169 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9170 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9171 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9172 static void alloc_contig_dump_pages(struct list_head *page_list)
9173 {
9174 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9175 
9176 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9177 		struct page *page;
9178 
9179 		dump_stack();
9180 		list_for_each_entry(page, page_list, lru)
9181 			dump_page(page, "migration failure");
9182 	}
9183 }
9184 #else
9185 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9186 {
9187 }
9188 #endif
9189 
9190 /* [start, end) must belong to a single zone. */
9191 int __alloc_contig_migrate_range(struct compact_control *cc,
9192 					unsigned long start, unsigned long end)
9193 {
9194 	/* This function is based on compact_zone() from compaction.c. */
9195 	unsigned int nr_reclaimed;
9196 	unsigned long pfn = start;
9197 	unsigned int tries = 0;
9198 	int ret = 0;
9199 	struct migration_target_control mtc = {
9200 		.nid = zone_to_nid(cc->zone),
9201 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9202 	};
9203 
9204 	lru_cache_disable();
9205 
9206 	while (pfn < end || !list_empty(&cc->migratepages)) {
9207 		if (fatal_signal_pending(current)) {
9208 			ret = -EINTR;
9209 			break;
9210 		}
9211 
9212 		if (list_empty(&cc->migratepages)) {
9213 			cc->nr_migratepages = 0;
9214 			ret = isolate_migratepages_range(cc, pfn, end);
9215 			if (ret && ret != -EAGAIN)
9216 				break;
9217 			pfn = cc->migrate_pfn;
9218 			tries = 0;
9219 		} else if (++tries == 5) {
9220 			ret = -EBUSY;
9221 			break;
9222 		}
9223 
9224 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9225 							&cc->migratepages);
9226 		cc->nr_migratepages -= nr_reclaimed;
9227 
9228 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9229 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9230 
9231 		/*
9232 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9233 		 * to retry again over this error, so do the same here.
9234 		 */
9235 		if (ret == -ENOMEM)
9236 			break;
9237 	}
9238 
9239 	lru_cache_enable();
9240 	if (ret < 0) {
9241 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9242 			alloc_contig_dump_pages(&cc->migratepages);
9243 		putback_movable_pages(&cc->migratepages);
9244 		return ret;
9245 	}
9246 	return 0;
9247 }
9248 
9249 /**
9250  * alloc_contig_range() -- tries to allocate given range of pages
9251  * @start:	start PFN to allocate
9252  * @end:	one-past-the-last PFN to allocate
9253  * @migratetype:	migratetype of the underlying pageblocks (either
9254  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9255  *			in range must have the same migratetype and it must
9256  *			be either of the two.
9257  * @gfp_mask:	GFP mask to use during compaction
9258  *
9259  * The PFN range does not have to be pageblock aligned. The PFN range must
9260  * belong to a single zone.
9261  *
9262  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9263  * pageblocks in the range.  Once isolated, the pageblocks should not
9264  * be modified by others.
9265  *
9266  * Return: zero on success or negative error code.  On success all
9267  * pages which PFN is in [start, end) are allocated for the caller and
9268  * need to be freed with free_contig_range().
9269  */
9270 int alloc_contig_range(unsigned long start, unsigned long end,
9271 		       unsigned migratetype, gfp_t gfp_mask)
9272 {
9273 	unsigned long outer_start, outer_end;
9274 	int order;
9275 	int ret = 0;
9276 
9277 	struct compact_control cc = {
9278 		.nr_migratepages = 0,
9279 		.order = -1,
9280 		.zone = page_zone(pfn_to_page(start)),
9281 		.mode = MIGRATE_SYNC,
9282 		.ignore_skip_hint = true,
9283 		.no_set_skip_hint = true,
9284 		.gfp_mask = current_gfp_context(gfp_mask),
9285 		.alloc_contig = true,
9286 	};
9287 	INIT_LIST_HEAD(&cc.migratepages);
9288 
9289 	/*
9290 	 * What we do here is we mark all pageblocks in range as
9291 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9292 	 * have different sizes, and due to the way page allocator
9293 	 * work, start_isolate_page_range() has special handlings for this.
9294 	 *
9295 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9296 	 * migrate the pages from an unaligned range (ie. pages that
9297 	 * we are interested in). This will put all the pages in
9298 	 * range back to page allocator as MIGRATE_ISOLATE.
9299 	 *
9300 	 * When this is done, we take the pages in range from page
9301 	 * allocator removing them from the buddy system.  This way
9302 	 * page allocator will never consider using them.
9303 	 *
9304 	 * This lets us mark the pageblocks back as
9305 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9306 	 * aligned range but not in the unaligned, original range are
9307 	 * put back to page allocator so that buddy can use them.
9308 	 */
9309 
9310 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9311 	if (ret)
9312 		goto done;
9313 
9314 	drain_all_pages(cc.zone);
9315 
9316 	/*
9317 	 * In case of -EBUSY, we'd like to know which page causes problem.
9318 	 * So, just fall through. test_pages_isolated() has a tracepoint
9319 	 * which will report the busy page.
9320 	 *
9321 	 * It is possible that busy pages could become available before
9322 	 * the call to test_pages_isolated, and the range will actually be
9323 	 * allocated.  So, if we fall through be sure to clear ret so that
9324 	 * -EBUSY is not accidentally used or returned to caller.
9325 	 */
9326 	ret = __alloc_contig_migrate_range(&cc, start, end);
9327 	if (ret && ret != -EBUSY)
9328 		goto done;
9329 	ret = 0;
9330 
9331 	/*
9332 	 * Pages from [start, end) are within a pageblock_nr_pages
9333 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9334 	 * more, all pages in [start, end) are free in page allocator.
9335 	 * What we are going to do is to allocate all pages from
9336 	 * [start, end) (that is remove them from page allocator).
9337 	 *
9338 	 * The only problem is that pages at the beginning and at the
9339 	 * end of interesting range may be not aligned with pages that
9340 	 * page allocator holds, ie. they can be part of higher order
9341 	 * pages.  Because of this, we reserve the bigger range and
9342 	 * once this is done free the pages we are not interested in.
9343 	 *
9344 	 * We don't have to hold zone->lock here because the pages are
9345 	 * isolated thus they won't get removed from buddy.
9346 	 */
9347 
9348 	order = 0;
9349 	outer_start = start;
9350 	while (!PageBuddy(pfn_to_page(outer_start))) {
9351 		if (++order >= MAX_ORDER) {
9352 			outer_start = start;
9353 			break;
9354 		}
9355 		outer_start &= ~0UL << order;
9356 	}
9357 
9358 	if (outer_start != start) {
9359 		order = buddy_order(pfn_to_page(outer_start));
9360 
9361 		/*
9362 		 * outer_start page could be small order buddy page and
9363 		 * it doesn't include start page. Adjust outer_start
9364 		 * in this case to report failed page properly
9365 		 * on tracepoint in test_pages_isolated()
9366 		 */
9367 		if (outer_start + (1UL << order) <= start)
9368 			outer_start = start;
9369 	}
9370 
9371 	/* Make sure the range is really isolated. */
9372 	if (test_pages_isolated(outer_start, end, 0)) {
9373 		ret = -EBUSY;
9374 		goto done;
9375 	}
9376 
9377 	/* Grab isolated pages from freelists. */
9378 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9379 	if (!outer_end) {
9380 		ret = -EBUSY;
9381 		goto done;
9382 	}
9383 
9384 	/* Free head and tail (if any) */
9385 	if (start != outer_start)
9386 		free_contig_range(outer_start, start - outer_start);
9387 	if (end != outer_end)
9388 		free_contig_range(end, outer_end - end);
9389 
9390 done:
9391 	undo_isolate_page_range(start, end, migratetype);
9392 	return ret;
9393 }
9394 EXPORT_SYMBOL(alloc_contig_range);
9395 
9396 static int __alloc_contig_pages(unsigned long start_pfn,
9397 				unsigned long nr_pages, gfp_t gfp_mask)
9398 {
9399 	unsigned long end_pfn = start_pfn + nr_pages;
9400 
9401 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9402 				  gfp_mask);
9403 }
9404 
9405 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9406 				   unsigned long nr_pages)
9407 {
9408 	unsigned long i, end_pfn = start_pfn + nr_pages;
9409 	struct page *page;
9410 
9411 	for (i = start_pfn; i < end_pfn; i++) {
9412 		page = pfn_to_online_page(i);
9413 		if (!page)
9414 			return false;
9415 
9416 		if (page_zone(page) != z)
9417 			return false;
9418 
9419 		if (PageReserved(page))
9420 			return false;
9421 	}
9422 	return true;
9423 }
9424 
9425 static bool zone_spans_last_pfn(const struct zone *zone,
9426 				unsigned long start_pfn, unsigned long nr_pages)
9427 {
9428 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9429 
9430 	return zone_spans_pfn(zone, last_pfn);
9431 }
9432 
9433 /**
9434  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9435  * @nr_pages:	Number of contiguous pages to allocate
9436  * @gfp_mask:	GFP mask to limit search and used during compaction
9437  * @nid:	Target node
9438  * @nodemask:	Mask for other possible nodes
9439  *
9440  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9441  * on an applicable zonelist to find a contiguous pfn range which can then be
9442  * tried for allocation with alloc_contig_range(). This routine is intended
9443  * for allocation requests which can not be fulfilled with the buddy allocator.
9444  *
9445  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9446  * power of two, then allocated range is also guaranteed to be aligned to same
9447  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9448  *
9449  * Allocated pages can be freed with free_contig_range() or by manually calling
9450  * __free_page() on each allocated page.
9451  *
9452  * Return: pointer to contiguous pages on success, or NULL if not successful.
9453  */
9454 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9455 				int nid, nodemask_t *nodemask)
9456 {
9457 	unsigned long ret, pfn, flags;
9458 	struct zonelist *zonelist;
9459 	struct zone *zone;
9460 	struct zoneref *z;
9461 
9462 	zonelist = node_zonelist(nid, gfp_mask);
9463 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9464 					gfp_zone(gfp_mask), nodemask) {
9465 		spin_lock_irqsave(&zone->lock, flags);
9466 
9467 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9468 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9469 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9470 				/*
9471 				 * We release the zone lock here because
9472 				 * alloc_contig_range() will also lock the zone
9473 				 * at some point. If there's an allocation
9474 				 * spinning on this lock, it may win the race
9475 				 * and cause alloc_contig_range() to fail...
9476 				 */
9477 				spin_unlock_irqrestore(&zone->lock, flags);
9478 				ret = __alloc_contig_pages(pfn, nr_pages,
9479 							gfp_mask);
9480 				if (!ret)
9481 					return pfn_to_page(pfn);
9482 				spin_lock_irqsave(&zone->lock, flags);
9483 			}
9484 			pfn += nr_pages;
9485 		}
9486 		spin_unlock_irqrestore(&zone->lock, flags);
9487 	}
9488 	return NULL;
9489 }
9490 #endif /* CONFIG_CONTIG_ALLOC */
9491 
9492 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9493 {
9494 	unsigned long count = 0;
9495 
9496 	for (; nr_pages--; pfn++) {
9497 		struct page *page = pfn_to_page(pfn);
9498 
9499 		count += page_count(page) != 1;
9500 		__free_page(page);
9501 	}
9502 	WARN(count != 0, "%lu pages are still in use!\n", count);
9503 }
9504 EXPORT_SYMBOL(free_contig_range);
9505 
9506 /*
9507  * Effectively disable pcplists for the zone by setting the high limit to 0
9508  * and draining all cpus. A concurrent page freeing on another CPU that's about
9509  * to put the page on pcplist will either finish before the drain and the page
9510  * will be drained, or observe the new high limit and skip the pcplist.
9511  *
9512  * Must be paired with a call to zone_pcp_enable().
9513  */
9514 void zone_pcp_disable(struct zone *zone)
9515 {
9516 	mutex_lock(&pcp_batch_high_lock);
9517 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9518 	__drain_all_pages(zone, true);
9519 }
9520 
9521 void zone_pcp_enable(struct zone *zone)
9522 {
9523 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9524 	mutex_unlock(&pcp_batch_high_lock);
9525 }
9526 
9527 void zone_pcp_reset(struct zone *zone)
9528 {
9529 	int cpu;
9530 	struct per_cpu_zonestat *pzstats;
9531 
9532 	if (zone->per_cpu_pageset != &boot_pageset) {
9533 		for_each_online_cpu(cpu) {
9534 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9535 			drain_zonestat(zone, pzstats);
9536 		}
9537 		free_percpu(zone->per_cpu_pageset);
9538 		zone->per_cpu_pageset = &boot_pageset;
9539 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9540 			free_percpu(zone->per_cpu_zonestats);
9541 			zone->per_cpu_zonestats = &boot_zonestats;
9542 		}
9543 	}
9544 }
9545 
9546 #ifdef CONFIG_MEMORY_HOTREMOVE
9547 /*
9548  * All pages in the range must be in a single zone, must not contain holes,
9549  * must span full sections, and must be isolated before calling this function.
9550  */
9551 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9552 {
9553 	unsigned long pfn = start_pfn;
9554 	struct page *page;
9555 	struct zone *zone;
9556 	unsigned int order;
9557 	unsigned long flags;
9558 
9559 	offline_mem_sections(pfn, end_pfn);
9560 	zone = page_zone(pfn_to_page(pfn));
9561 	spin_lock_irqsave(&zone->lock, flags);
9562 	while (pfn < end_pfn) {
9563 		page = pfn_to_page(pfn);
9564 		/*
9565 		 * The HWPoisoned page may be not in buddy system, and
9566 		 * page_count() is not 0.
9567 		 */
9568 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9569 			pfn++;
9570 			continue;
9571 		}
9572 		/*
9573 		 * At this point all remaining PageOffline() pages have a
9574 		 * reference count of 0 and can simply be skipped.
9575 		 */
9576 		if (PageOffline(page)) {
9577 			BUG_ON(page_count(page));
9578 			BUG_ON(PageBuddy(page));
9579 			pfn++;
9580 			continue;
9581 		}
9582 
9583 		BUG_ON(page_count(page));
9584 		BUG_ON(!PageBuddy(page));
9585 		order = buddy_order(page);
9586 		del_page_from_free_list(page, zone, order);
9587 		pfn += (1 << order);
9588 	}
9589 	spin_unlock_irqrestore(&zone->lock, flags);
9590 }
9591 #endif
9592 
9593 /*
9594  * This function returns a stable result only if called under zone lock.
9595  */
9596 bool is_free_buddy_page(struct page *page)
9597 {
9598 	unsigned long pfn = page_to_pfn(page);
9599 	unsigned int order;
9600 
9601 	for (order = 0; order < MAX_ORDER; order++) {
9602 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9603 
9604 		if (PageBuddy(page_head) &&
9605 		    buddy_order_unsafe(page_head) >= order)
9606 			break;
9607 	}
9608 
9609 	return order < MAX_ORDER;
9610 }
9611 EXPORT_SYMBOL(is_free_buddy_page);
9612 
9613 #ifdef CONFIG_MEMORY_FAILURE
9614 /*
9615  * Break down a higher-order page in sub-pages, and keep our target out of
9616  * buddy allocator.
9617  */
9618 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9619 				   struct page *target, int low, int high,
9620 				   int migratetype)
9621 {
9622 	unsigned long size = 1 << high;
9623 	struct page *current_buddy, *next_page;
9624 
9625 	while (high > low) {
9626 		high--;
9627 		size >>= 1;
9628 
9629 		if (target >= &page[size]) {
9630 			next_page = page + size;
9631 			current_buddy = page;
9632 		} else {
9633 			next_page = page;
9634 			current_buddy = page + size;
9635 		}
9636 
9637 		if (set_page_guard(zone, current_buddy, high, migratetype))
9638 			continue;
9639 
9640 		if (current_buddy != target) {
9641 			add_to_free_list(current_buddy, zone, high, migratetype);
9642 			set_buddy_order(current_buddy, high);
9643 			page = next_page;
9644 		}
9645 	}
9646 }
9647 
9648 /*
9649  * Take a page that will be marked as poisoned off the buddy allocator.
9650  */
9651 bool take_page_off_buddy(struct page *page)
9652 {
9653 	struct zone *zone = page_zone(page);
9654 	unsigned long pfn = page_to_pfn(page);
9655 	unsigned long flags;
9656 	unsigned int order;
9657 	bool ret = false;
9658 
9659 	spin_lock_irqsave(&zone->lock, flags);
9660 	for (order = 0; order < MAX_ORDER; order++) {
9661 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9662 		int page_order = buddy_order(page_head);
9663 
9664 		if (PageBuddy(page_head) && page_order >= order) {
9665 			unsigned long pfn_head = page_to_pfn(page_head);
9666 			int migratetype = get_pfnblock_migratetype(page_head,
9667 								   pfn_head);
9668 
9669 			del_page_from_free_list(page_head, zone, page_order);
9670 			break_down_buddy_pages(zone, page_head, page, 0,
9671 						page_order, migratetype);
9672 			SetPageHWPoisonTakenOff(page);
9673 			if (!is_migrate_isolate(migratetype))
9674 				__mod_zone_freepage_state(zone, -1, migratetype);
9675 			ret = true;
9676 			break;
9677 		}
9678 		if (page_count(page_head) > 0)
9679 			break;
9680 	}
9681 	spin_unlock_irqrestore(&zone->lock, flags);
9682 	return ret;
9683 }
9684 
9685 /*
9686  * Cancel takeoff done by take_page_off_buddy().
9687  */
9688 bool put_page_back_buddy(struct page *page)
9689 {
9690 	struct zone *zone = page_zone(page);
9691 	unsigned long pfn = page_to_pfn(page);
9692 	unsigned long flags;
9693 	int migratetype = get_pfnblock_migratetype(page, pfn);
9694 	bool ret = false;
9695 
9696 	spin_lock_irqsave(&zone->lock, flags);
9697 	if (put_page_testzero(page)) {
9698 		ClearPageHWPoisonTakenOff(page);
9699 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9700 		if (TestClearPageHWPoison(page)) {
9701 			ret = true;
9702 		}
9703 	}
9704 	spin_unlock_irqrestore(&zone->lock, flags);
9705 
9706 	return ret;
9707 }
9708 #endif
9709 
9710 #ifdef CONFIG_ZONE_DMA
9711 bool has_managed_dma(void)
9712 {
9713 	struct pglist_data *pgdat;
9714 
9715 	for_each_online_pgdat(pgdat) {
9716 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9717 
9718 		if (managed_zone(zone))
9719 			return true;
9720 	}
9721 	return false;
9722 }
9723 #endif /* CONFIG_ZONE_DMA */
9724