xref: /openbmc/linux/mm/page_alloc.c (revision 3a0d89d3)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114  * When calculating the number of globally allowed dirty pages, there
115  * is a certain number of per-zone reserves that should not be
116  * considered dirtyable memory.  This is the sum of those reserves
117  * over all existing zones that contribute dirtyable memory.
118  */
119 unsigned long dirty_balance_reserve __read_mostly;
120 
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 
124 #ifdef CONFIG_PM_SLEEP
125 /*
126  * The following functions are used by the suspend/hibernate code to temporarily
127  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128  * while devices are suspended.  To avoid races with the suspend/hibernate code,
129  * they should always be called with pm_mutex held (gfp_allowed_mask also should
130  * only be modified with pm_mutex held, unless the suspend/hibernate code is
131  * guaranteed not to run in parallel with that modification).
132  */
133 
134 static gfp_t saved_gfp_mask;
135 
136 void pm_restore_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	if (saved_gfp_mask) {
140 		gfp_allowed_mask = saved_gfp_mask;
141 		saved_gfp_mask = 0;
142 	}
143 }
144 
145 void pm_restrict_gfp_mask(void)
146 {
147 	WARN_ON(!mutex_is_locked(&pm_mutex));
148 	WARN_ON(saved_gfp_mask);
149 	saved_gfp_mask = gfp_allowed_mask;
150 	gfp_allowed_mask &= ~GFP_IOFS;
151 }
152 
153 bool pm_suspended_storage(void)
154 {
155 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 		return false;
157 	return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160 
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164 
165 static void __free_pages_ok(struct page *page, unsigned int order);
166 
167 /*
168  * results with 256, 32 in the lowmem_reserve sysctl:
169  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170  *	1G machine -> (16M dma, 784M normal, 224M high)
171  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174  *
175  * TBD: should special case ZONE_DMA32 machines here - in those we normally
176  * don't need any ZONE_NORMAL reservation
177  */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 	 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 	 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 	 32,
187 #endif
188 	 32,
189 };
190 
191 EXPORT_SYMBOL(totalram_pages);
192 
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 	 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 	 "DMA32",
199 #endif
200 	 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 	 "HighMem",
203 #endif
204 	 "Movable",
205 };
206 
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209 
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213 
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232 
233 int page_group_by_mobility_disabled __read_mostly;
234 
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 	if (unlikely(page_group_by_mobility_disabled &&
238 		     migratetype < MIGRATE_PCPTYPES))
239 		migratetype = MIGRATE_UNMOVABLE;
240 
241 	set_pageblock_flags_group(page, (unsigned long)migratetype,
242 					PB_migrate, PB_migrate_end);
243 }
244 
245 bool oom_killer_disabled __read_mostly;
246 
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 	int ret = 0;
251 	unsigned seq;
252 	unsigned long pfn = page_to_pfn(page);
253 	unsigned long sp, start_pfn;
254 
255 	do {
256 		seq = zone_span_seqbegin(zone);
257 		start_pfn = zone->zone_start_pfn;
258 		sp = zone->spanned_pages;
259 		if (!zone_spans_pfn(zone, pfn))
260 			ret = 1;
261 	} while (zone_span_seqretry(zone, seq));
262 
263 	if (ret)
264 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 			pfn, start_pfn, start_pfn + sp);
266 
267 	return ret;
268 }
269 
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 	if (!pfn_valid_within(page_to_pfn(page)))
273 		return 0;
274 	if (zone != page_zone(page))
275 		return 0;
276 
277 	return 1;
278 }
279 /*
280  * Temporary debugging check for pages not lying within a given zone.
281  */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 	if (page_outside_zone_boundaries(zone, page))
285 		return 1;
286 	if (!page_is_consistent(zone, page))
287 		return 1;
288 
289 	return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 	return 0;
295 }
296 #endif
297 
298 static void bad_page(struct page *page, const char *reason,
299 		unsigned long bad_flags)
300 {
301 	static unsigned long resume;
302 	static unsigned long nr_shown;
303 	static unsigned long nr_unshown;
304 
305 	/* Don't complain about poisoned pages */
306 	if (PageHWPoison(page)) {
307 		page_mapcount_reset(page); /* remove PageBuddy */
308 		return;
309 	}
310 
311 	/*
312 	 * Allow a burst of 60 reports, then keep quiet for that minute;
313 	 * or allow a steady drip of one report per second.
314 	 */
315 	if (nr_shown == 60) {
316 		if (time_before(jiffies, resume)) {
317 			nr_unshown++;
318 			goto out;
319 		}
320 		if (nr_unshown) {
321 			printk(KERN_ALERT
322 			      "BUG: Bad page state: %lu messages suppressed\n",
323 				nr_unshown);
324 			nr_unshown = 0;
325 		}
326 		nr_shown = 0;
327 	}
328 	if (nr_shown++ == 0)
329 		resume = jiffies + 60 * HZ;
330 
331 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
332 		current->comm, page_to_pfn(page));
333 	dump_page_badflags(page, reason, bad_flags);
334 
335 	print_modules();
336 	dump_stack();
337 out:
338 	/* Leave bad fields for debug, except PageBuddy could make trouble */
339 	page_mapcount_reset(page); /* remove PageBuddy */
340 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
341 }
342 
343 /*
344  * Higher-order pages are called "compound pages".  They are structured thusly:
345  *
346  * The first PAGE_SIZE page is called the "head page".
347  *
348  * The remaining PAGE_SIZE pages are called "tail pages".
349  *
350  * All pages have PG_compound set.  All tail pages have their ->first_page
351  * pointing at the head page.
352  *
353  * The first tail page's ->lru.next holds the address of the compound page's
354  * put_page() function.  Its ->lru.prev holds the order of allocation.
355  * This usage means that zero-order pages may not be compound.
356  */
357 
358 static void free_compound_page(struct page *page)
359 {
360 	__free_pages_ok(page, compound_order(page));
361 }
362 
363 void prep_compound_page(struct page *page, unsigned long order)
364 {
365 	int i;
366 	int nr_pages = 1 << order;
367 
368 	set_compound_page_dtor(page, free_compound_page);
369 	set_compound_order(page, order);
370 	__SetPageHead(page);
371 	for (i = 1; i < nr_pages; i++) {
372 		struct page *p = page + i;
373 		set_page_count(p, 0);
374 		p->first_page = page;
375 		/* Make sure p->first_page is always valid for PageTail() */
376 		smp_wmb();
377 		__SetPageTail(p);
378 	}
379 }
380 
381 /* update __split_huge_page_refcount if you change this function */
382 static int destroy_compound_page(struct page *page, unsigned long order)
383 {
384 	int i;
385 	int nr_pages = 1 << order;
386 	int bad = 0;
387 
388 	if (unlikely(compound_order(page) != order)) {
389 		bad_page(page, "wrong compound order", 0);
390 		bad++;
391 	}
392 
393 	__ClearPageHead(page);
394 
395 	for (i = 1; i < nr_pages; i++) {
396 		struct page *p = page + i;
397 
398 		if (unlikely(!PageTail(p))) {
399 			bad_page(page, "PageTail not set", 0);
400 			bad++;
401 		} else if (unlikely(p->first_page != page)) {
402 			bad_page(page, "first_page not consistent", 0);
403 			bad++;
404 		}
405 		__ClearPageTail(p);
406 	}
407 
408 	return bad;
409 }
410 
411 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
412 {
413 	int i;
414 
415 	/*
416 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
417 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
418 	 */
419 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
420 	for (i = 0; i < (1 << order); i++)
421 		clear_highpage(page + i);
422 }
423 
424 #ifdef CONFIG_DEBUG_PAGEALLOC
425 unsigned int _debug_guardpage_minorder;
426 
427 static int __init debug_guardpage_minorder_setup(char *buf)
428 {
429 	unsigned long res;
430 
431 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
432 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
433 		return 0;
434 	}
435 	_debug_guardpage_minorder = res;
436 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
437 	return 0;
438 }
439 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
440 
441 static inline void set_page_guard_flag(struct page *page)
442 {
443 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
444 }
445 
446 static inline void clear_page_guard_flag(struct page *page)
447 {
448 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
449 }
450 #else
451 static inline void set_page_guard_flag(struct page *page) { }
452 static inline void clear_page_guard_flag(struct page *page) { }
453 #endif
454 
455 static inline void set_page_order(struct page *page, int order)
456 {
457 	set_page_private(page, order);
458 	__SetPageBuddy(page);
459 }
460 
461 static inline void rmv_page_order(struct page *page)
462 {
463 	__ClearPageBuddy(page);
464 	set_page_private(page, 0);
465 }
466 
467 /*
468  * Locate the struct page for both the matching buddy in our
469  * pair (buddy1) and the combined O(n+1) page they form (page).
470  *
471  * 1) Any buddy B1 will have an order O twin B2 which satisfies
472  * the following equation:
473  *     B2 = B1 ^ (1 << O)
474  * For example, if the starting buddy (buddy2) is #8 its order
475  * 1 buddy is #10:
476  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
477  *
478  * 2) Any buddy B will have an order O+1 parent P which
479  * satisfies the following equation:
480  *     P = B & ~(1 << O)
481  *
482  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
483  */
484 static inline unsigned long
485 __find_buddy_index(unsigned long page_idx, unsigned int order)
486 {
487 	return page_idx ^ (1 << order);
488 }
489 
490 /*
491  * This function checks whether a page is free && is the buddy
492  * we can do coalesce a page and its buddy if
493  * (a) the buddy is not in a hole &&
494  * (b) the buddy is in the buddy system &&
495  * (c) a page and its buddy have the same order &&
496  * (d) a page and its buddy are in the same zone.
497  *
498  * For recording whether a page is in the buddy system, we set ->_mapcount
499  * PAGE_BUDDY_MAPCOUNT_VALUE.
500  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
501  * serialized by zone->lock.
502  *
503  * For recording page's order, we use page_private(page).
504  */
505 static inline int page_is_buddy(struct page *page, struct page *buddy,
506 								int order)
507 {
508 	if (!pfn_valid_within(page_to_pfn(buddy)))
509 		return 0;
510 
511 	if (page_zone_id(page) != page_zone_id(buddy))
512 		return 0;
513 
514 	if (page_is_guard(buddy) && page_order(buddy) == order) {
515 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
516 		return 1;
517 	}
518 
519 	if (PageBuddy(buddy) && page_order(buddy) == order) {
520 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
521 		return 1;
522 	}
523 	return 0;
524 }
525 
526 /*
527  * Freeing function for a buddy system allocator.
528  *
529  * The concept of a buddy system is to maintain direct-mapped table
530  * (containing bit values) for memory blocks of various "orders".
531  * The bottom level table contains the map for the smallest allocatable
532  * units of memory (here, pages), and each level above it describes
533  * pairs of units from the levels below, hence, "buddies".
534  * At a high level, all that happens here is marking the table entry
535  * at the bottom level available, and propagating the changes upward
536  * as necessary, plus some accounting needed to play nicely with other
537  * parts of the VM system.
538  * At each level, we keep a list of pages, which are heads of continuous
539  * free pages of length of (1 << order) and marked with _mapcount
540  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
541  * field.
542  * So when we are allocating or freeing one, we can derive the state of the
543  * other.  That is, if we allocate a small block, and both were
544  * free, the remainder of the region must be split into blocks.
545  * If a block is freed, and its buddy is also free, then this
546  * triggers coalescing into a block of larger size.
547  *
548  * -- nyc
549  */
550 
551 static inline void __free_one_page(struct page *page,
552 		struct zone *zone, unsigned int order,
553 		int migratetype)
554 {
555 	unsigned long page_idx;
556 	unsigned long combined_idx;
557 	unsigned long uninitialized_var(buddy_idx);
558 	struct page *buddy;
559 
560 	VM_BUG_ON(!zone_is_initialized(zone));
561 
562 	if (unlikely(PageCompound(page)))
563 		if (unlikely(destroy_compound_page(page, order)))
564 			return;
565 
566 	VM_BUG_ON(migratetype == -1);
567 
568 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
569 
570 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
571 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
572 
573 	while (order < MAX_ORDER-1) {
574 		buddy_idx = __find_buddy_index(page_idx, order);
575 		buddy = page + (buddy_idx - page_idx);
576 		if (!page_is_buddy(page, buddy, order))
577 			break;
578 		/*
579 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
580 		 * merge with it and move up one order.
581 		 */
582 		if (page_is_guard(buddy)) {
583 			clear_page_guard_flag(buddy);
584 			set_page_private(page, 0);
585 			__mod_zone_freepage_state(zone, 1 << order,
586 						  migratetype);
587 		} else {
588 			list_del(&buddy->lru);
589 			zone->free_area[order].nr_free--;
590 			rmv_page_order(buddy);
591 		}
592 		combined_idx = buddy_idx & page_idx;
593 		page = page + (combined_idx - page_idx);
594 		page_idx = combined_idx;
595 		order++;
596 	}
597 	set_page_order(page, order);
598 
599 	/*
600 	 * If this is not the largest possible page, check if the buddy
601 	 * of the next-highest order is free. If it is, it's possible
602 	 * that pages are being freed that will coalesce soon. In case,
603 	 * that is happening, add the free page to the tail of the list
604 	 * so it's less likely to be used soon and more likely to be merged
605 	 * as a higher order page
606 	 */
607 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
608 		struct page *higher_page, *higher_buddy;
609 		combined_idx = buddy_idx & page_idx;
610 		higher_page = page + (combined_idx - page_idx);
611 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
612 		higher_buddy = higher_page + (buddy_idx - combined_idx);
613 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
614 			list_add_tail(&page->lru,
615 				&zone->free_area[order].free_list[migratetype]);
616 			goto out;
617 		}
618 	}
619 
620 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
621 out:
622 	zone->free_area[order].nr_free++;
623 }
624 
625 static inline int free_pages_check(struct page *page)
626 {
627 	const char *bad_reason = NULL;
628 	unsigned long bad_flags = 0;
629 
630 	if (unlikely(page_mapcount(page)))
631 		bad_reason = "nonzero mapcount";
632 	if (unlikely(page->mapping != NULL))
633 		bad_reason = "non-NULL mapping";
634 	if (unlikely(atomic_read(&page->_count) != 0))
635 		bad_reason = "nonzero _count";
636 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
637 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
638 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
639 	}
640 	if (unlikely(mem_cgroup_bad_page_check(page)))
641 		bad_reason = "cgroup check failed";
642 	if (unlikely(bad_reason)) {
643 		bad_page(page, bad_reason, bad_flags);
644 		return 1;
645 	}
646 	page_cpupid_reset_last(page);
647 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
648 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
649 	return 0;
650 }
651 
652 /*
653  * Frees a number of pages from the PCP lists
654  * Assumes all pages on list are in same zone, and of same order.
655  * count is the number of pages to free.
656  *
657  * If the zone was previously in an "all pages pinned" state then look to
658  * see if this freeing clears that state.
659  *
660  * And clear the zone's pages_scanned counter, to hold off the "all pages are
661  * pinned" detection logic.
662  */
663 static void free_pcppages_bulk(struct zone *zone, int count,
664 					struct per_cpu_pages *pcp)
665 {
666 	int migratetype = 0;
667 	int batch_free = 0;
668 	int to_free = count;
669 
670 	spin_lock(&zone->lock);
671 	zone->pages_scanned = 0;
672 
673 	while (to_free) {
674 		struct page *page;
675 		struct list_head *list;
676 
677 		/*
678 		 * Remove pages from lists in a round-robin fashion. A
679 		 * batch_free count is maintained that is incremented when an
680 		 * empty list is encountered.  This is so more pages are freed
681 		 * off fuller lists instead of spinning excessively around empty
682 		 * lists
683 		 */
684 		do {
685 			batch_free++;
686 			if (++migratetype == MIGRATE_PCPTYPES)
687 				migratetype = 0;
688 			list = &pcp->lists[migratetype];
689 		} while (list_empty(list));
690 
691 		/* This is the only non-empty list. Free them all. */
692 		if (batch_free == MIGRATE_PCPTYPES)
693 			batch_free = to_free;
694 
695 		do {
696 			int mt;	/* migratetype of the to-be-freed page */
697 
698 			page = list_entry(list->prev, struct page, lru);
699 			/* must delete as __free_one_page list manipulates */
700 			list_del(&page->lru);
701 			mt = get_freepage_migratetype(page);
702 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
703 			__free_one_page(page, zone, 0, mt);
704 			trace_mm_page_pcpu_drain(page, 0, mt);
705 			if (likely(!is_migrate_isolate_page(page))) {
706 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
707 				if (is_migrate_cma(mt))
708 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
709 			}
710 		} while (--to_free && --batch_free && !list_empty(list));
711 	}
712 	spin_unlock(&zone->lock);
713 }
714 
715 static void free_one_page(struct zone *zone, struct page *page, int order,
716 				int migratetype)
717 {
718 	spin_lock(&zone->lock);
719 	zone->pages_scanned = 0;
720 
721 	__free_one_page(page, zone, order, migratetype);
722 	if (unlikely(!is_migrate_isolate(migratetype)))
723 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
724 	spin_unlock(&zone->lock);
725 }
726 
727 static bool free_pages_prepare(struct page *page, unsigned int order)
728 {
729 	int i;
730 	int bad = 0;
731 
732 	trace_mm_page_free(page, order);
733 	kmemcheck_free_shadow(page, order);
734 
735 	if (PageAnon(page))
736 		page->mapping = NULL;
737 	for (i = 0; i < (1 << order); i++)
738 		bad += free_pages_check(page + i);
739 	if (bad)
740 		return false;
741 
742 	if (!PageHighMem(page)) {
743 		debug_check_no_locks_freed(page_address(page),
744 					   PAGE_SIZE << order);
745 		debug_check_no_obj_freed(page_address(page),
746 					   PAGE_SIZE << order);
747 	}
748 	arch_free_page(page, order);
749 	kernel_map_pages(page, 1 << order, 0);
750 
751 	return true;
752 }
753 
754 static void __free_pages_ok(struct page *page, unsigned int order)
755 {
756 	unsigned long flags;
757 	int migratetype;
758 
759 	if (!free_pages_prepare(page, order))
760 		return;
761 
762 	local_irq_save(flags);
763 	__count_vm_events(PGFREE, 1 << order);
764 	migratetype = get_pageblock_migratetype(page);
765 	set_freepage_migratetype(page, migratetype);
766 	free_one_page(page_zone(page), page, order, migratetype);
767 	local_irq_restore(flags);
768 }
769 
770 void __init __free_pages_bootmem(struct page *page, unsigned int order)
771 {
772 	unsigned int nr_pages = 1 << order;
773 	struct page *p = page;
774 	unsigned int loop;
775 
776 	prefetchw(p);
777 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
778 		prefetchw(p + 1);
779 		__ClearPageReserved(p);
780 		set_page_count(p, 0);
781 	}
782 	__ClearPageReserved(p);
783 	set_page_count(p, 0);
784 
785 	page_zone(page)->managed_pages += nr_pages;
786 	set_page_refcounted(page);
787 	__free_pages(page, order);
788 }
789 
790 #ifdef CONFIG_CMA
791 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
792 void __init init_cma_reserved_pageblock(struct page *page)
793 {
794 	unsigned i = pageblock_nr_pages;
795 	struct page *p = page;
796 
797 	do {
798 		__ClearPageReserved(p);
799 		set_page_count(p, 0);
800 	} while (++p, --i);
801 
802 	set_page_refcounted(page);
803 	set_pageblock_migratetype(page, MIGRATE_CMA);
804 	__free_pages(page, pageblock_order);
805 	adjust_managed_page_count(page, pageblock_nr_pages);
806 }
807 #endif
808 
809 /*
810  * The order of subdivision here is critical for the IO subsystem.
811  * Please do not alter this order without good reasons and regression
812  * testing. Specifically, as large blocks of memory are subdivided,
813  * the order in which smaller blocks are delivered depends on the order
814  * they're subdivided in this function. This is the primary factor
815  * influencing the order in which pages are delivered to the IO
816  * subsystem according to empirical testing, and this is also justified
817  * by considering the behavior of a buddy system containing a single
818  * large block of memory acted on by a series of small allocations.
819  * This behavior is a critical factor in sglist merging's success.
820  *
821  * -- nyc
822  */
823 static inline void expand(struct zone *zone, struct page *page,
824 	int low, int high, struct free_area *area,
825 	int migratetype)
826 {
827 	unsigned long size = 1 << high;
828 
829 	while (high > low) {
830 		area--;
831 		high--;
832 		size >>= 1;
833 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
834 
835 #ifdef CONFIG_DEBUG_PAGEALLOC
836 		if (high < debug_guardpage_minorder()) {
837 			/*
838 			 * Mark as guard pages (or page), that will allow to
839 			 * merge back to allocator when buddy will be freed.
840 			 * Corresponding page table entries will not be touched,
841 			 * pages will stay not present in virtual address space
842 			 */
843 			INIT_LIST_HEAD(&page[size].lru);
844 			set_page_guard_flag(&page[size]);
845 			set_page_private(&page[size], high);
846 			/* Guard pages are not available for any usage */
847 			__mod_zone_freepage_state(zone, -(1 << high),
848 						  migratetype);
849 			continue;
850 		}
851 #endif
852 		list_add(&page[size].lru, &area->free_list[migratetype]);
853 		area->nr_free++;
854 		set_page_order(&page[size], high);
855 	}
856 }
857 
858 /*
859  * This page is about to be returned from the page allocator
860  */
861 static inline int check_new_page(struct page *page)
862 {
863 	const char *bad_reason = NULL;
864 	unsigned long bad_flags = 0;
865 
866 	if (unlikely(page_mapcount(page)))
867 		bad_reason = "nonzero mapcount";
868 	if (unlikely(page->mapping != NULL))
869 		bad_reason = "non-NULL mapping";
870 	if (unlikely(atomic_read(&page->_count) != 0))
871 		bad_reason = "nonzero _count";
872 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
873 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
874 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
875 	}
876 	if (unlikely(mem_cgroup_bad_page_check(page)))
877 		bad_reason = "cgroup check failed";
878 	if (unlikely(bad_reason)) {
879 		bad_page(page, bad_reason, bad_flags);
880 		return 1;
881 	}
882 	return 0;
883 }
884 
885 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
886 {
887 	int i;
888 
889 	for (i = 0; i < (1 << order); i++) {
890 		struct page *p = page + i;
891 		if (unlikely(check_new_page(p)))
892 			return 1;
893 	}
894 
895 	set_page_private(page, 0);
896 	set_page_refcounted(page);
897 
898 	arch_alloc_page(page, order);
899 	kernel_map_pages(page, 1 << order, 1);
900 
901 	if (gfp_flags & __GFP_ZERO)
902 		prep_zero_page(page, order, gfp_flags);
903 
904 	if (order && (gfp_flags & __GFP_COMP))
905 		prep_compound_page(page, order);
906 
907 	return 0;
908 }
909 
910 /*
911  * Go through the free lists for the given migratetype and remove
912  * the smallest available page from the freelists
913  */
914 static inline
915 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
916 						int migratetype)
917 {
918 	unsigned int current_order;
919 	struct free_area *area;
920 	struct page *page;
921 
922 	/* Find a page of the appropriate size in the preferred list */
923 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
924 		area = &(zone->free_area[current_order]);
925 		if (list_empty(&area->free_list[migratetype]))
926 			continue;
927 
928 		page = list_entry(area->free_list[migratetype].next,
929 							struct page, lru);
930 		list_del(&page->lru);
931 		rmv_page_order(page);
932 		area->nr_free--;
933 		expand(zone, page, order, current_order, area, migratetype);
934 		return page;
935 	}
936 
937 	return NULL;
938 }
939 
940 
941 /*
942  * This array describes the order lists are fallen back to when
943  * the free lists for the desirable migrate type are depleted
944  */
945 static int fallbacks[MIGRATE_TYPES][4] = {
946 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
947 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
948 #ifdef CONFIG_CMA
949 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
950 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
951 #else
952 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
953 #endif
954 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
955 #ifdef CONFIG_MEMORY_ISOLATION
956 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
957 #endif
958 };
959 
960 /*
961  * Move the free pages in a range to the free lists of the requested type.
962  * Note that start_page and end_pages are not aligned on a pageblock
963  * boundary. If alignment is required, use move_freepages_block()
964  */
965 int move_freepages(struct zone *zone,
966 			  struct page *start_page, struct page *end_page,
967 			  int migratetype)
968 {
969 	struct page *page;
970 	unsigned long order;
971 	int pages_moved = 0;
972 
973 #ifndef CONFIG_HOLES_IN_ZONE
974 	/*
975 	 * page_zone is not safe to call in this context when
976 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
977 	 * anyway as we check zone boundaries in move_freepages_block().
978 	 * Remove at a later date when no bug reports exist related to
979 	 * grouping pages by mobility
980 	 */
981 	BUG_ON(page_zone(start_page) != page_zone(end_page));
982 #endif
983 
984 	for (page = start_page; page <= end_page;) {
985 		/* Make sure we are not inadvertently changing nodes */
986 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
987 
988 		if (!pfn_valid_within(page_to_pfn(page))) {
989 			page++;
990 			continue;
991 		}
992 
993 		if (!PageBuddy(page)) {
994 			page++;
995 			continue;
996 		}
997 
998 		order = page_order(page);
999 		list_move(&page->lru,
1000 			  &zone->free_area[order].free_list[migratetype]);
1001 		set_freepage_migratetype(page, migratetype);
1002 		page += 1 << order;
1003 		pages_moved += 1 << order;
1004 	}
1005 
1006 	return pages_moved;
1007 }
1008 
1009 int move_freepages_block(struct zone *zone, struct page *page,
1010 				int migratetype)
1011 {
1012 	unsigned long start_pfn, end_pfn;
1013 	struct page *start_page, *end_page;
1014 
1015 	start_pfn = page_to_pfn(page);
1016 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1017 	start_page = pfn_to_page(start_pfn);
1018 	end_page = start_page + pageblock_nr_pages - 1;
1019 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1020 
1021 	/* Do not cross zone boundaries */
1022 	if (!zone_spans_pfn(zone, start_pfn))
1023 		start_page = page;
1024 	if (!zone_spans_pfn(zone, end_pfn))
1025 		return 0;
1026 
1027 	return move_freepages(zone, start_page, end_page, migratetype);
1028 }
1029 
1030 static void change_pageblock_range(struct page *pageblock_page,
1031 					int start_order, int migratetype)
1032 {
1033 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1034 
1035 	while (nr_pageblocks--) {
1036 		set_pageblock_migratetype(pageblock_page, migratetype);
1037 		pageblock_page += pageblock_nr_pages;
1038 	}
1039 }
1040 
1041 /*
1042  * If breaking a large block of pages, move all free pages to the preferred
1043  * allocation list. If falling back for a reclaimable kernel allocation, be
1044  * more aggressive about taking ownership of free pages.
1045  *
1046  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1047  * nor move CMA pages to different free lists. We don't want unmovable pages
1048  * to be allocated from MIGRATE_CMA areas.
1049  *
1050  * Returns the new migratetype of the pageblock (or the same old migratetype
1051  * if it was unchanged).
1052  */
1053 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1054 				  int start_type, int fallback_type)
1055 {
1056 	int current_order = page_order(page);
1057 
1058 	/*
1059 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1060 	 * buddy pages to CMA itself.
1061 	 */
1062 	if (is_migrate_cma(fallback_type))
1063 		return fallback_type;
1064 
1065 	/* Take ownership for orders >= pageblock_order */
1066 	if (current_order >= pageblock_order) {
1067 		change_pageblock_range(page, current_order, start_type);
1068 		return start_type;
1069 	}
1070 
1071 	if (current_order >= pageblock_order / 2 ||
1072 	    start_type == MIGRATE_RECLAIMABLE ||
1073 	    page_group_by_mobility_disabled) {
1074 		int pages;
1075 
1076 		pages = move_freepages_block(zone, page, start_type);
1077 
1078 		/* Claim the whole block if over half of it is free */
1079 		if (pages >= (1 << (pageblock_order-1)) ||
1080 				page_group_by_mobility_disabled) {
1081 
1082 			set_pageblock_migratetype(page, start_type);
1083 			return start_type;
1084 		}
1085 
1086 	}
1087 
1088 	return fallback_type;
1089 }
1090 
1091 /* Remove an element from the buddy allocator from the fallback list */
1092 static inline struct page *
1093 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1094 {
1095 	struct free_area *area;
1096 	int current_order;
1097 	struct page *page;
1098 	int migratetype, new_type, i;
1099 
1100 	/* Find the largest possible block of pages in the other list */
1101 	for (current_order = MAX_ORDER-1; current_order >= order;
1102 						--current_order) {
1103 		for (i = 0;; i++) {
1104 			migratetype = fallbacks[start_migratetype][i];
1105 
1106 			/* MIGRATE_RESERVE handled later if necessary */
1107 			if (migratetype == MIGRATE_RESERVE)
1108 				break;
1109 
1110 			area = &(zone->free_area[current_order]);
1111 			if (list_empty(&area->free_list[migratetype]))
1112 				continue;
1113 
1114 			page = list_entry(area->free_list[migratetype].next,
1115 					struct page, lru);
1116 			area->nr_free--;
1117 
1118 			new_type = try_to_steal_freepages(zone, page,
1119 							  start_migratetype,
1120 							  migratetype);
1121 
1122 			/* Remove the page from the freelists */
1123 			list_del(&page->lru);
1124 			rmv_page_order(page);
1125 
1126 			expand(zone, page, order, current_order, area,
1127 			       new_type);
1128 
1129 			trace_mm_page_alloc_extfrag(page, order, current_order,
1130 				start_migratetype, migratetype, new_type);
1131 
1132 			return page;
1133 		}
1134 	}
1135 
1136 	return NULL;
1137 }
1138 
1139 /*
1140  * Do the hard work of removing an element from the buddy allocator.
1141  * Call me with the zone->lock already held.
1142  */
1143 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1144 						int migratetype)
1145 {
1146 	struct page *page;
1147 
1148 retry_reserve:
1149 	page = __rmqueue_smallest(zone, order, migratetype);
1150 
1151 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1152 		page = __rmqueue_fallback(zone, order, migratetype);
1153 
1154 		/*
1155 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1156 		 * is used because __rmqueue_smallest is an inline function
1157 		 * and we want just one call site
1158 		 */
1159 		if (!page) {
1160 			migratetype = MIGRATE_RESERVE;
1161 			goto retry_reserve;
1162 		}
1163 	}
1164 
1165 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1166 	return page;
1167 }
1168 
1169 /*
1170  * Obtain a specified number of elements from the buddy allocator, all under
1171  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1172  * Returns the number of new pages which were placed at *list.
1173  */
1174 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1175 			unsigned long count, struct list_head *list,
1176 			int migratetype, int cold)
1177 {
1178 	int mt = migratetype, i;
1179 
1180 	spin_lock(&zone->lock);
1181 	for (i = 0; i < count; ++i) {
1182 		struct page *page = __rmqueue(zone, order, migratetype);
1183 		if (unlikely(page == NULL))
1184 			break;
1185 
1186 		/*
1187 		 * Split buddy pages returned by expand() are received here
1188 		 * in physical page order. The page is added to the callers and
1189 		 * list and the list head then moves forward. From the callers
1190 		 * perspective, the linked list is ordered by page number in
1191 		 * some conditions. This is useful for IO devices that can
1192 		 * merge IO requests if the physical pages are ordered
1193 		 * properly.
1194 		 */
1195 		if (likely(cold == 0))
1196 			list_add(&page->lru, list);
1197 		else
1198 			list_add_tail(&page->lru, list);
1199 		if (IS_ENABLED(CONFIG_CMA)) {
1200 			mt = get_pageblock_migratetype(page);
1201 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1202 				mt = migratetype;
1203 		}
1204 		set_freepage_migratetype(page, mt);
1205 		list = &page->lru;
1206 		if (is_migrate_cma(mt))
1207 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1208 					      -(1 << order));
1209 	}
1210 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1211 	spin_unlock(&zone->lock);
1212 	return i;
1213 }
1214 
1215 #ifdef CONFIG_NUMA
1216 /*
1217  * Called from the vmstat counter updater to drain pagesets of this
1218  * currently executing processor on remote nodes after they have
1219  * expired.
1220  *
1221  * Note that this function must be called with the thread pinned to
1222  * a single processor.
1223  */
1224 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1225 {
1226 	unsigned long flags;
1227 	int to_drain;
1228 	unsigned long batch;
1229 
1230 	local_irq_save(flags);
1231 	batch = ACCESS_ONCE(pcp->batch);
1232 	if (pcp->count >= batch)
1233 		to_drain = batch;
1234 	else
1235 		to_drain = pcp->count;
1236 	if (to_drain > 0) {
1237 		free_pcppages_bulk(zone, to_drain, pcp);
1238 		pcp->count -= to_drain;
1239 	}
1240 	local_irq_restore(flags);
1241 }
1242 #endif
1243 
1244 /*
1245  * Drain pages of the indicated processor.
1246  *
1247  * The processor must either be the current processor and the
1248  * thread pinned to the current processor or a processor that
1249  * is not online.
1250  */
1251 static void drain_pages(unsigned int cpu)
1252 {
1253 	unsigned long flags;
1254 	struct zone *zone;
1255 
1256 	for_each_populated_zone(zone) {
1257 		struct per_cpu_pageset *pset;
1258 		struct per_cpu_pages *pcp;
1259 
1260 		local_irq_save(flags);
1261 		pset = per_cpu_ptr(zone->pageset, cpu);
1262 
1263 		pcp = &pset->pcp;
1264 		if (pcp->count) {
1265 			free_pcppages_bulk(zone, pcp->count, pcp);
1266 			pcp->count = 0;
1267 		}
1268 		local_irq_restore(flags);
1269 	}
1270 }
1271 
1272 /*
1273  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1274  */
1275 void drain_local_pages(void *arg)
1276 {
1277 	drain_pages(smp_processor_id());
1278 }
1279 
1280 /*
1281  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1282  *
1283  * Note that this code is protected against sending an IPI to an offline
1284  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1285  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1286  * nothing keeps CPUs from showing up after we populated the cpumask and
1287  * before the call to on_each_cpu_mask().
1288  */
1289 void drain_all_pages(void)
1290 {
1291 	int cpu;
1292 	struct per_cpu_pageset *pcp;
1293 	struct zone *zone;
1294 
1295 	/*
1296 	 * Allocate in the BSS so we wont require allocation in
1297 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1298 	 */
1299 	static cpumask_t cpus_with_pcps;
1300 
1301 	/*
1302 	 * We don't care about racing with CPU hotplug event
1303 	 * as offline notification will cause the notified
1304 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1305 	 * disables preemption as part of its processing
1306 	 */
1307 	for_each_online_cpu(cpu) {
1308 		bool has_pcps = false;
1309 		for_each_populated_zone(zone) {
1310 			pcp = per_cpu_ptr(zone->pageset, cpu);
1311 			if (pcp->pcp.count) {
1312 				has_pcps = true;
1313 				break;
1314 			}
1315 		}
1316 		if (has_pcps)
1317 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1318 		else
1319 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1320 	}
1321 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1322 }
1323 
1324 #ifdef CONFIG_HIBERNATION
1325 
1326 void mark_free_pages(struct zone *zone)
1327 {
1328 	unsigned long pfn, max_zone_pfn;
1329 	unsigned long flags;
1330 	int order, t;
1331 	struct list_head *curr;
1332 
1333 	if (zone_is_empty(zone))
1334 		return;
1335 
1336 	spin_lock_irqsave(&zone->lock, flags);
1337 
1338 	max_zone_pfn = zone_end_pfn(zone);
1339 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1340 		if (pfn_valid(pfn)) {
1341 			struct page *page = pfn_to_page(pfn);
1342 
1343 			if (!swsusp_page_is_forbidden(page))
1344 				swsusp_unset_page_free(page);
1345 		}
1346 
1347 	for_each_migratetype_order(order, t) {
1348 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1349 			unsigned long i;
1350 
1351 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1352 			for (i = 0; i < (1UL << order); i++)
1353 				swsusp_set_page_free(pfn_to_page(pfn + i));
1354 		}
1355 	}
1356 	spin_unlock_irqrestore(&zone->lock, flags);
1357 }
1358 #endif /* CONFIG_PM */
1359 
1360 /*
1361  * Free a 0-order page
1362  * cold == 1 ? free a cold page : free a hot page
1363  */
1364 void free_hot_cold_page(struct page *page, int cold)
1365 {
1366 	struct zone *zone = page_zone(page);
1367 	struct per_cpu_pages *pcp;
1368 	unsigned long flags;
1369 	int migratetype;
1370 
1371 	if (!free_pages_prepare(page, 0))
1372 		return;
1373 
1374 	migratetype = get_pageblock_migratetype(page);
1375 	set_freepage_migratetype(page, migratetype);
1376 	local_irq_save(flags);
1377 	__count_vm_event(PGFREE);
1378 
1379 	/*
1380 	 * We only track unmovable, reclaimable and movable on pcp lists.
1381 	 * Free ISOLATE pages back to the allocator because they are being
1382 	 * offlined but treat RESERVE as movable pages so we can get those
1383 	 * areas back if necessary. Otherwise, we may have to free
1384 	 * excessively into the page allocator
1385 	 */
1386 	if (migratetype >= MIGRATE_PCPTYPES) {
1387 		if (unlikely(is_migrate_isolate(migratetype))) {
1388 			free_one_page(zone, page, 0, migratetype);
1389 			goto out;
1390 		}
1391 		migratetype = MIGRATE_MOVABLE;
1392 	}
1393 
1394 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1395 	if (cold)
1396 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1397 	else
1398 		list_add(&page->lru, &pcp->lists[migratetype]);
1399 	pcp->count++;
1400 	if (pcp->count >= pcp->high) {
1401 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1402 		free_pcppages_bulk(zone, batch, pcp);
1403 		pcp->count -= batch;
1404 	}
1405 
1406 out:
1407 	local_irq_restore(flags);
1408 }
1409 
1410 /*
1411  * Free a list of 0-order pages
1412  */
1413 void free_hot_cold_page_list(struct list_head *list, int cold)
1414 {
1415 	struct page *page, *next;
1416 
1417 	list_for_each_entry_safe(page, next, list, lru) {
1418 		trace_mm_page_free_batched(page, cold);
1419 		free_hot_cold_page(page, cold);
1420 	}
1421 }
1422 
1423 /*
1424  * split_page takes a non-compound higher-order page, and splits it into
1425  * n (1<<order) sub-pages: page[0..n]
1426  * Each sub-page must be freed individually.
1427  *
1428  * Note: this is probably too low level an operation for use in drivers.
1429  * Please consult with lkml before using this in your driver.
1430  */
1431 void split_page(struct page *page, unsigned int order)
1432 {
1433 	int i;
1434 
1435 	VM_BUG_ON_PAGE(PageCompound(page), page);
1436 	VM_BUG_ON_PAGE(!page_count(page), page);
1437 
1438 #ifdef CONFIG_KMEMCHECK
1439 	/*
1440 	 * Split shadow pages too, because free(page[0]) would
1441 	 * otherwise free the whole shadow.
1442 	 */
1443 	if (kmemcheck_page_is_tracked(page))
1444 		split_page(virt_to_page(page[0].shadow), order);
1445 #endif
1446 
1447 	for (i = 1; i < (1 << order); i++)
1448 		set_page_refcounted(page + i);
1449 }
1450 EXPORT_SYMBOL_GPL(split_page);
1451 
1452 static int __isolate_free_page(struct page *page, unsigned int order)
1453 {
1454 	unsigned long watermark;
1455 	struct zone *zone;
1456 	int mt;
1457 
1458 	BUG_ON(!PageBuddy(page));
1459 
1460 	zone = page_zone(page);
1461 	mt = get_pageblock_migratetype(page);
1462 
1463 	if (!is_migrate_isolate(mt)) {
1464 		/* Obey watermarks as if the page was being allocated */
1465 		watermark = low_wmark_pages(zone) + (1 << order);
1466 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1467 			return 0;
1468 
1469 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1470 	}
1471 
1472 	/* Remove page from free list */
1473 	list_del(&page->lru);
1474 	zone->free_area[order].nr_free--;
1475 	rmv_page_order(page);
1476 
1477 	/* Set the pageblock if the isolated page is at least a pageblock */
1478 	if (order >= pageblock_order - 1) {
1479 		struct page *endpage = page + (1 << order) - 1;
1480 		for (; page < endpage; page += pageblock_nr_pages) {
1481 			int mt = get_pageblock_migratetype(page);
1482 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1483 				set_pageblock_migratetype(page,
1484 							  MIGRATE_MOVABLE);
1485 		}
1486 	}
1487 
1488 	return 1UL << order;
1489 }
1490 
1491 /*
1492  * Similar to split_page except the page is already free. As this is only
1493  * being used for migration, the migratetype of the block also changes.
1494  * As this is called with interrupts disabled, the caller is responsible
1495  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1496  * are enabled.
1497  *
1498  * Note: this is probably too low level an operation for use in drivers.
1499  * Please consult with lkml before using this in your driver.
1500  */
1501 int split_free_page(struct page *page)
1502 {
1503 	unsigned int order;
1504 	int nr_pages;
1505 
1506 	order = page_order(page);
1507 
1508 	nr_pages = __isolate_free_page(page, order);
1509 	if (!nr_pages)
1510 		return 0;
1511 
1512 	/* Split into individual pages */
1513 	set_page_refcounted(page);
1514 	split_page(page, order);
1515 	return nr_pages;
1516 }
1517 
1518 /*
1519  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1520  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1521  * or two.
1522  */
1523 static inline
1524 struct page *buffered_rmqueue(struct zone *preferred_zone,
1525 			struct zone *zone, int order, gfp_t gfp_flags,
1526 			int migratetype)
1527 {
1528 	unsigned long flags;
1529 	struct page *page;
1530 	int cold = !!(gfp_flags & __GFP_COLD);
1531 
1532 again:
1533 	if (likely(order == 0)) {
1534 		struct per_cpu_pages *pcp;
1535 		struct list_head *list;
1536 
1537 		local_irq_save(flags);
1538 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1539 		list = &pcp->lists[migratetype];
1540 		if (list_empty(list)) {
1541 			pcp->count += rmqueue_bulk(zone, 0,
1542 					pcp->batch, list,
1543 					migratetype, cold);
1544 			if (unlikely(list_empty(list)))
1545 				goto failed;
1546 		}
1547 
1548 		if (cold)
1549 			page = list_entry(list->prev, struct page, lru);
1550 		else
1551 			page = list_entry(list->next, struct page, lru);
1552 
1553 		list_del(&page->lru);
1554 		pcp->count--;
1555 	} else {
1556 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1557 			/*
1558 			 * __GFP_NOFAIL is not to be used in new code.
1559 			 *
1560 			 * All __GFP_NOFAIL callers should be fixed so that they
1561 			 * properly detect and handle allocation failures.
1562 			 *
1563 			 * We most definitely don't want callers attempting to
1564 			 * allocate greater than order-1 page units with
1565 			 * __GFP_NOFAIL.
1566 			 */
1567 			WARN_ON_ONCE(order > 1);
1568 		}
1569 		spin_lock_irqsave(&zone->lock, flags);
1570 		page = __rmqueue(zone, order, migratetype);
1571 		spin_unlock(&zone->lock);
1572 		if (!page)
1573 			goto failed;
1574 		__mod_zone_freepage_state(zone, -(1 << order),
1575 					  get_pageblock_migratetype(page));
1576 	}
1577 
1578 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1579 
1580 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1581 	zone_statistics(preferred_zone, zone, gfp_flags);
1582 	local_irq_restore(flags);
1583 
1584 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1585 	if (prep_new_page(page, order, gfp_flags))
1586 		goto again;
1587 	return page;
1588 
1589 failed:
1590 	local_irq_restore(flags);
1591 	return NULL;
1592 }
1593 
1594 #ifdef CONFIG_FAIL_PAGE_ALLOC
1595 
1596 static struct {
1597 	struct fault_attr attr;
1598 
1599 	u32 ignore_gfp_highmem;
1600 	u32 ignore_gfp_wait;
1601 	u32 min_order;
1602 } fail_page_alloc = {
1603 	.attr = FAULT_ATTR_INITIALIZER,
1604 	.ignore_gfp_wait = 1,
1605 	.ignore_gfp_highmem = 1,
1606 	.min_order = 1,
1607 };
1608 
1609 static int __init setup_fail_page_alloc(char *str)
1610 {
1611 	return setup_fault_attr(&fail_page_alloc.attr, str);
1612 }
1613 __setup("fail_page_alloc=", setup_fail_page_alloc);
1614 
1615 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1616 {
1617 	if (order < fail_page_alloc.min_order)
1618 		return false;
1619 	if (gfp_mask & __GFP_NOFAIL)
1620 		return false;
1621 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1622 		return false;
1623 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1624 		return false;
1625 
1626 	return should_fail(&fail_page_alloc.attr, 1 << order);
1627 }
1628 
1629 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1630 
1631 static int __init fail_page_alloc_debugfs(void)
1632 {
1633 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1634 	struct dentry *dir;
1635 
1636 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1637 					&fail_page_alloc.attr);
1638 	if (IS_ERR(dir))
1639 		return PTR_ERR(dir);
1640 
1641 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1642 				&fail_page_alloc.ignore_gfp_wait))
1643 		goto fail;
1644 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1645 				&fail_page_alloc.ignore_gfp_highmem))
1646 		goto fail;
1647 	if (!debugfs_create_u32("min-order", mode, dir,
1648 				&fail_page_alloc.min_order))
1649 		goto fail;
1650 
1651 	return 0;
1652 fail:
1653 	debugfs_remove_recursive(dir);
1654 
1655 	return -ENOMEM;
1656 }
1657 
1658 late_initcall(fail_page_alloc_debugfs);
1659 
1660 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1661 
1662 #else /* CONFIG_FAIL_PAGE_ALLOC */
1663 
1664 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1665 {
1666 	return false;
1667 }
1668 
1669 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1670 
1671 /*
1672  * Return true if free pages are above 'mark'. This takes into account the order
1673  * of the allocation.
1674  */
1675 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1676 		      int classzone_idx, int alloc_flags, long free_pages)
1677 {
1678 	/* free_pages my go negative - that's OK */
1679 	long min = mark;
1680 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1681 	int o;
1682 	long free_cma = 0;
1683 
1684 	free_pages -= (1 << order) - 1;
1685 	if (alloc_flags & ALLOC_HIGH)
1686 		min -= min / 2;
1687 	if (alloc_flags & ALLOC_HARDER)
1688 		min -= min / 4;
1689 #ifdef CONFIG_CMA
1690 	/* If allocation can't use CMA areas don't use free CMA pages */
1691 	if (!(alloc_flags & ALLOC_CMA))
1692 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1693 #endif
1694 
1695 	if (free_pages - free_cma <= min + lowmem_reserve)
1696 		return false;
1697 	for (o = 0; o < order; o++) {
1698 		/* At the next order, this order's pages become unavailable */
1699 		free_pages -= z->free_area[o].nr_free << o;
1700 
1701 		/* Require fewer higher order pages to be free */
1702 		min >>= 1;
1703 
1704 		if (free_pages <= min)
1705 			return false;
1706 	}
1707 	return true;
1708 }
1709 
1710 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1711 		      int classzone_idx, int alloc_flags)
1712 {
1713 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1714 					zone_page_state(z, NR_FREE_PAGES));
1715 }
1716 
1717 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1718 		      int classzone_idx, int alloc_flags)
1719 {
1720 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1721 
1722 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1723 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1724 
1725 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1726 								free_pages);
1727 }
1728 
1729 #ifdef CONFIG_NUMA
1730 /*
1731  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1732  * skip over zones that are not allowed by the cpuset, or that have
1733  * been recently (in last second) found to be nearly full.  See further
1734  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1735  * that have to skip over a lot of full or unallowed zones.
1736  *
1737  * If the zonelist cache is present in the passed zonelist, then
1738  * returns a pointer to the allowed node mask (either the current
1739  * tasks mems_allowed, or node_states[N_MEMORY].)
1740  *
1741  * If the zonelist cache is not available for this zonelist, does
1742  * nothing and returns NULL.
1743  *
1744  * If the fullzones BITMAP in the zonelist cache is stale (more than
1745  * a second since last zap'd) then we zap it out (clear its bits.)
1746  *
1747  * We hold off even calling zlc_setup, until after we've checked the
1748  * first zone in the zonelist, on the theory that most allocations will
1749  * be satisfied from that first zone, so best to examine that zone as
1750  * quickly as we can.
1751  */
1752 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1753 {
1754 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1755 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1756 
1757 	zlc = zonelist->zlcache_ptr;
1758 	if (!zlc)
1759 		return NULL;
1760 
1761 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1762 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1763 		zlc->last_full_zap = jiffies;
1764 	}
1765 
1766 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1767 					&cpuset_current_mems_allowed :
1768 					&node_states[N_MEMORY];
1769 	return allowednodes;
1770 }
1771 
1772 /*
1773  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1774  * if it is worth looking at further for free memory:
1775  *  1) Check that the zone isn't thought to be full (doesn't have its
1776  *     bit set in the zonelist_cache fullzones BITMAP).
1777  *  2) Check that the zones node (obtained from the zonelist_cache
1778  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1779  * Return true (non-zero) if zone is worth looking at further, or
1780  * else return false (zero) if it is not.
1781  *
1782  * This check -ignores- the distinction between various watermarks,
1783  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1784  * found to be full for any variation of these watermarks, it will
1785  * be considered full for up to one second by all requests, unless
1786  * we are so low on memory on all allowed nodes that we are forced
1787  * into the second scan of the zonelist.
1788  *
1789  * In the second scan we ignore this zonelist cache and exactly
1790  * apply the watermarks to all zones, even it is slower to do so.
1791  * We are low on memory in the second scan, and should leave no stone
1792  * unturned looking for a free page.
1793  */
1794 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1795 						nodemask_t *allowednodes)
1796 {
1797 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1798 	int i;				/* index of *z in zonelist zones */
1799 	int n;				/* node that zone *z is on */
1800 
1801 	zlc = zonelist->zlcache_ptr;
1802 	if (!zlc)
1803 		return 1;
1804 
1805 	i = z - zonelist->_zonerefs;
1806 	n = zlc->z_to_n[i];
1807 
1808 	/* This zone is worth trying if it is allowed but not full */
1809 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1810 }
1811 
1812 /*
1813  * Given 'z' scanning a zonelist, set the corresponding bit in
1814  * zlc->fullzones, so that subsequent attempts to allocate a page
1815  * from that zone don't waste time re-examining it.
1816  */
1817 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1818 {
1819 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1820 	int i;				/* index of *z in zonelist zones */
1821 
1822 	zlc = zonelist->zlcache_ptr;
1823 	if (!zlc)
1824 		return;
1825 
1826 	i = z - zonelist->_zonerefs;
1827 
1828 	set_bit(i, zlc->fullzones);
1829 }
1830 
1831 /*
1832  * clear all zones full, called after direct reclaim makes progress so that
1833  * a zone that was recently full is not skipped over for up to a second
1834  */
1835 static void zlc_clear_zones_full(struct zonelist *zonelist)
1836 {
1837 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1838 
1839 	zlc = zonelist->zlcache_ptr;
1840 	if (!zlc)
1841 		return;
1842 
1843 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1844 }
1845 
1846 static bool zone_local(struct zone *local_zone, struct zone *zone)
1847 {
1848 	return local_zone->node == zone->node;
1849 }
1850 
1851 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1852 {
1853 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1854 }
1855 
1856 static void __paginginit init_zone_allows_reclaim(int nid)
1857 {
1858 	int i;
1859 
1860 	for_each_node_state(i, N_MEMORY)
1861 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1862 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1863 		else
1864 			zone_reclaim_mode = 1;
1865 }
1866 
1867 #else	/* CONFIG_NUMA */
1868 
1869 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1870 {
1871 	return NULL;
1872 }
1873 
1874 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1875 				nodemask_t *allowednodes)
1876 {
1877 	return 1;
1878 }
1879 
1880 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1881 {
1882 }
1883 
1884 static void zlc_clear_zones_full(struct zonelist *zonelist)
1885 {
1886 }
1887 
1888 static bool zone_local(struct zone *local_zone, struct zone *zone)
1889 {
1890 	return true;
1891 }
1892 
1893 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1894 {
1895 	return true;
1896 }
1897 
1898 static inline void init_zone_allows_reclaim(int nid)
1899 {
1900 }
1901 #endif	/* CONFIG_NUMA */
1902 
1903 /*
1904  * get_page_from_freelist goes through the zonelist trying to allocate
1905  * a page.
1906  */
1907 static struct page *
1908 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1909 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1910 		struct zone *preferred_zone, int migratetype)
1911 {
1912 	struct zoneref *z;
1913 	struct page *page = NULL;
1914 	int classzone_idx;
1915 	struct zone *zone;
1916 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1917 	int zlc_active = 0;		/* set if using zonelist_cache */
1918 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1919 
1920 	classzone_idx = zone_idx(preferred_zone);
1921 zonelist_scan:
1922 	/*
1923 	 * Scan zonelist, looking for a zone with enough free.
1924 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1925 	 */
1926 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1927 						high_zoneidx, nodemask) {
1928 		unsigned long mark;
1929 
1930 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1931 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1932 				continue;
1933 		if ((alloc_flags & ALLOC_CPUSET) &&
1934 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1935 				continue;
1936 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1937 		if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1938 			goto try_this_zone;
1939 		/*
1940 		 * Distribute pages in proportion to the individual
1941 		 * zone size to ensure fair page aging.  The zone a
1942 		 * page was allocated in should have no effect on the
1943 		 * time the page has in memory before being reclaimed.
1944 		 */
1945 		if (alloc_flags & ALLOC_FAIR) {
1946 			if (!zone_local(preferred_zone, zone))
1947 				continue;
1948 			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1949 				continue;
1950 		}
1951 		/*
1952 		 * When allocating a page cache page for writing, we
1953 		 * want to get it from a zone that is within its dirty
1954 		 * limit, such that no single zone holds more than its
1955 		 * proportional share of globally allowed dirty pages.
1956 		 * The dirty limits take into account the zone's
1957 		 * lowmem reserves and high watermark so that kswapd
1958 		 * should be able to balance it without having to
1959 		 * write pages from its LRU list.
1960 		 *
1961 		 * This may look like it could increase pressure on
1962 		 * lower zones by failing allocations in higher zones
1963 		 * before they are full.  But the pages that do spill
1964 		 * over are limited as the lower zones are protected
1965 		 * by this very same mechanism.  It should not become
1966 		 * a practical burden to them.
1967 		 *
1968 		 * XXX: For now, allow allocations to potentially
1969 		 * exceed the per-zone dirty limit in the slowpath
1970 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1971 		 * which is important when on a NUMA setup the allowed
1972 		 * zones are together not big enough to reach the
1973 		 * global limit.  The proper fix for these situations
1974 		 * will require awareness of zones in the
1975 		 * dirty-throttling and the flusher threads.
1976 		 */
1977 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1978 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1979 			goto this_zone_full;
1980 
1981 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1982 		if (!zone_watermark_ok(zone, order, mark,
1983 				       classzone_idx, alloc_flags)) {
1984 			int ret;
1985 
1986 			if (IS_ENABLED(CONFIG_NUMA) &&
1987 					!did_zlc_setup && nr_online_nodes > 1) {
1988 				/*
1989 				 * we do zlc_setup if there are multiple nodes
1990 				 * and before considering the first zone allowed
1991 				 * by the cpuset.
1992 				 */
1993 				allowednodes = zlc_setup(zonelist, alloc_flags);
1994 				zlc_active = 1;
1995 				did_zlc_setup = 1;
1996 			}
1997 
1998 			if (zone_reclaim_mode == 0 ||
1999 			    !zone_allows_reclaim(preferred_zone, zone))
2000 				goto this_zone_full;
2001 
2002 			/*
2003 			 * As we may have just activated ZLC, check if the first
2004 			 * eligible zone has failed zone_reclaim recently.
2005 			 */
2006 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2007 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2008 				continue;
2009 
2010 			ret = zone_reclaim(zone, gfp_mask, order);
2011 			switch (ret) {
2012 			case ZONE_RECLAIM_NOSCAN:
2013 				/* did not scan */
2014 				continue;
2015 			case ZONE_RECLAIM_FULL:
2016 				/* scanned but unreclaimable */
2017 				continue;
2018 			default:
2019 				/* did we reclaim enough */
2020 				if (zone_watermark_ok(zone, order, mark,
2021 						classzone_idx, alloc_flags))
2022 					goto try_this_zone;
2023 
2024 				/*
2025 				 * Failed to reclaim enough to meet watermark.
2026 				 * Only mark the zone full if checking the min
2027 				 * watermark or if we failed to reclaim just
2028 				 * 1<<order pages or else the page allocator
2029 				 * fastpath will prematurely mark zones full
2030 				 * when the watermark is between the low and
2031 				 * min watermarks.
2032 				 */
2033 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2034 				    ret == ZONE_RECLAIM_SOME)
2035 					goto this_zone_full;
2036 
2037 				continue;
2038 			}
2039 		}
2040 
2041 try_this_zone:
2042 		page = buffered_rmqueue(preferred_zone, zone, order,
2043 						gfp_mask, migratetype);
2044 		if (page)
2045 			break;
2046 this_zone_full:
2047 		if (IS_ENABLED(CONFIG_NUMA))
2048 			zlc_mark_zone_full(zonelist, z);
2049 	}
2050 
2051 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2052 		/* Disable zlc cache for second zonelist scan */
2053 		zlc_active = 0;
2054 		goto zonelist_scan;
2055 	}
2056 
2057 	if (page)
2058 		/*
2059 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2060 		 * necessary to allocate the page. The expectation is
2061 		 * that the caller is taking steps that will free more
2062 		 * memory. The caller should avoid the page being used
2063 		 * for !PFMEMALLOC purposes.
2064 		 */
2065 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2066 
2067 	return page;
2068 }
2069 
2070 /*
2071  * Large machines with many possible nodes should not always dump per-node
2072  * meminfo in irq context.
2073  */
2074 static inline bool should_suppress_show_mem(void)
2075 {
2076 	bool ret = false;
2077 
2078 #if NODES_SHIFT > 8
2079 	ret = in_interrupt();
2080 #endif
2081 	return ret;
2082 }
2083 
2084 static DEFINE_RATELIMIT_STATE(nopage_rs,
2085 		DEFAULT_RATELIMIT_INTERVAL,
2086 		DEFAULT_RATELIMIT_BURST);
2087 
2088 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2089 {
2090 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2091 
2092 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2093 	    debug_guardpage_minorder() > 0)
2094 		return;
2095 
2096 	/*
2097 	 * This documents exceptions given to allocations in certain
2098 	 * contexts that are allowed to allocate outside current's set
2099 	 * of allowed nodes.
2100 	 */
2101 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2102 		if (test_thread_flag(TIF_MEMDIE) ||
2103 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2104 			filter &= ~SHOW_MEM_FILTER_NODES;
2105 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2106 		filter &= ~SHOW_MEM_FILTER_NODES;
2107 
2108 	if (fmt) {
2109 		struct va_format vaf;
2110 		va_list args;
2111 
2112 		va_start(args, fmt);
2113 
2114 		vaf.fmt = fmt;
2115 		vaf.va = &args;
2116 
2117 		pr_warn("%pV", &vaf);
2118 
2119 		va_end(args);
2120 	}
2121 
2122 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2123 		current->comm, order, gfp_mask);
2124 
2125 	dump_stack();
2126 	if (!should_suppress_show_mem())
2127 		show_mem(filter);
2128 }
2129 
2130 static inline int
2131 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2132 				unsigned long did_some_progress,
2133 				unsigned long pages_reclaimed)
2134 {
2135 	/* Do not loop if specifically requested */
2136 	if (gfp_mask & __GFP_NORETRY)
2137 		return 0;
2138 
2139 	/* Always retry if specifically requested */
2140 	if (gfp_mask & __GFP_NOFAIL)
2141 		return 1;
2142 
2143 	/*
2144 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2145 	 * making forward progress without invoking OOM. Suspend also disables
2146 	 * storage devices so kswapd will not help. Bail if we are suspending.
2147 	 */
2148 	if (!did_some_progress && pm_suspended_storage())
2149 		return 0;
2150 
2151 	/*
2152 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2153 	 * means __GFP_NOFAIL, but that may not be true in other
2154 	 * implementations.
2155 	 */
2156 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2157 		return 1;
2158 
2159 	/*
2160 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2161 	 * specified, then we retry until we no longer reclaim any pages
2162 	 * (above), or we've reclaimed an order of pages at least as
2163 	 * large as the allocation's order. In both cases, if the
2164 	 * allocation still fails, we stop retrying.
2165 	 */
2166 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2167 		return 1;
2168 
2169 	return 0;
2170 }
2171 
2172 static inline struct page *
2173 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2174 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2175 	nodemask_t *nodemask, struct zone *preferred_zone,
2176 	int migratetype)
2177 {
2178 	struct page *page;
2179 
2180 	/* Acquire the OOM killer lock for the zones in zonelist */
2181 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2182 		schedule_timeout_uninterruptible(1);
2183 		return NULL;
2184 	}
2185 
2186 	/*
2187 	 * Go through the zonelist yet one more time, keep very high watermark
2188 	 * here, this is only to catch a parallel oom killing, we must fail if
2189 	 * we're still under heavy pressure.
2190 	 */
2191 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2192 		order, zonelist, high_zoneidx,
2193 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2194 		preferred_zone, migratetype);
2195 	if (page)
2196 		goto out;
2197 
2198 	if (!(gfp_mask & __GFP_NOFAIL)) {
2199 		/* The OOM killer will not help higher order allocs */
2200 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2201 			goto out;
2202 		/* The OOM killer does not needlessly kill tasks for lowmem */
2203 		if (high_zoneidx < ZONE_NORMAL)
2204 			goto out;
2205 		/*
2206 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2207 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2208 		 * The caller should handle page allocation failure by itself if
2209 		 * it specifies __GFP_THISNODE.
2210 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2211 		 */
2212 		if (gfp_mask & __GFP_THISNODE)
2213 			goto out;
2214 	}
2215 	/* Exhausted what can be done so it's blamo time */
2216 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2217 
2218 out:
2219 	clear_zonelist_oom(zonelist, gfp_mask);
2220 	return page;
2221 }
2222 
2223 #ifdef CONFIG_COMPACTION
2224 /* Try memory compaction for high-order allocations before reclaim */
2225 static struct page *
2226 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2227 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2228 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2229 	int migratetype, bool sync_migration,
2230 	bool *contended_compaction, bool *deferred_compaction,
2231 	unsigned long *did_some_progress)
2232 {
2233 	if (!order)
2234 		return NULL;
2235 
2236 	if (compaction_deferred(preferred_zone, order)) {
2237 		*deferred_compaction = true;
2238 		return NULL;
2239 	}
2240 
2241 	current->flags |= PF_MEMALLOC;
2242 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2243 						nodemask, sync_migration,
2244 						contended_compaction);
2245 	current->flags &= ~PF_MEMALLOC;
2246 
2247 	if (*did_some_progress != COMPACT_SKIPPED) {
2248 		struct page *page;
2249 
2250 		/* Page migration frees to the PCP lists but we want merging */
2251 		drain_pages(get_cpu());
2252 		put_cpu();
2253 
2254 		page = get_page_from_freelist(gfp_mask, nodemask,
2255 				order, zonelist, high_zoneidx,
2256 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2257 				preferred_zone, migratetype);
2258 		if (page) {
2259 			preferred_zone->compact_blockskip_flush = false;
2260 			compaction_defer_reset(preferred_zone, order, true);
2261 			count_vm_event(COMPACTSUCCESS);
2262 			return page;
2263 		}
2264 
2265 		/*
2266 		 * It's bad if compaction run occurs and fails.
2267 		 * The most likely reason is that pages exist,
2268 		 * but not enough to satisfy watermarks.
2269 		 */
2270 		count_vm_event(COMPACTFAIL);
2271 
2272 		/*
2273 		 * As async compaction considers a subset of pageblocks, only
2274 		 * defer if the failure was a sync compaction failure.
2275 		 */
2276 		if (sync_migration)
2277 			defer_compaction(preferred_zone, order);
2278 
2279 		cond_resched();
2280 	}
2281 
2282 	return NULL;
2283 }
2284 #else
2285 static inline struct page *
2286 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2287 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2288 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2289 	int migratetype, bool sync_migration,
2290 	bool *contended_compaction, bool *deferred_compaction,
2291 	unsigned long *did_some_progress)
2292 {
2293 	return NULL;
2294 }
2295 #endif /* CONFIG_COMPACTION */
2296 
2297 /* Perform direct synchronous page reclaim */
2298 static int
2299 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2300 		  nodemask_t *nodemask)
2301 {
2302 	struct reclaim_state reclaim_state;
2303 	int progress;
2304 
2305 	cond_resched();
2306 
2307 	/* We now go into synchronous reclaim */
2308 	cpuset_memory_pressure_bump();
2309 	current->flags |= PF_MEMALLOC;
2310 	lockdep_set_current_reclaim_state(gfp_mask);
2311 	reclaim_state.reclaimed_slab = 0;
2312 	current->reclaim_state = &reclaim_state;
2313 
2314 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2315 
2316 	current->reclaim_state = NULL;
2317 	lockdep_clear_current_reclaim_state();
2318 	current->flags &= ~PF_MEMALLOC;
2319 
2320 	cond_resched();
2321 
2322 	return progress;
2323 }
2324 
2325 /* The really slow allocator path where we enter direct reclaim */
2326 static inline struct page *
2327 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2328 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2329 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2330 	int migratetype, unsigned long *did_some_progress)
2331 {
2332 	struct page *page = NULL;
2333 	bool drained = false;
2334 
2335 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2336 					       nodemask);
2337 	if (unlikely(!(*did_some_progress)))
2338 		return NULL;
2339 
2340 	/* After successful reclaim, reconsider all zones for allocation */
2341 	if (IS_ENABLED(CONFIG_NUMA))
2342 		zlc_clear_zones_full(zonelist);
2343 
2344 retry:
2345 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2346 					zonelist, high_zoneidx,
2347 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2348 					preferred_zone, migratetype);
2349 
2350 	/*
2351 	 * If an allocation failed after direct reclaim, it could be because
2352 	 * pages are pinned on the per-cpu lists. Drain them and try again
2353 	 */
2354 	if (!page && !drained) {
2355 		drain_all_pages();
2356 		drained = true;
2357 		goto retry;
2358 	}
2359 
2360 	return page;
2361 }
2362 
2363 /*
2364  * This is called in the allocator slow-path if the allocation request is of
2365  * sufficient urgency to ignore watermarks and take other desperate measures
2366  */
2367 static inline struct page *
2368 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2369 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2370 	nodemask_t *nodemask, struct zone *preferred_zone,
2371 	int migratetype)
2372 {
2373 	struct page *page;
2374 
2375 	do {
2376 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2377 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2378 			preferred_zone, migratetype);
2379 
2380 		if (!page && gfp_mask & __GFP_NOFAIL)
2381 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2382 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2383 
2384 	return page;
2385 }
2386 
2387 static void reset_alloc_batches(struct zonelist *zonelist,
2388 				enum zone_type high_zoneidx,
2389 				struct zone *preferred_zone)
2390 {
2391 	struct zoneref *z;
2392 	struct zone *zone;
2393 
2394 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2395 		/*
2396 		 * Only reset the batches of zones that were actually
2397 		 * considered in the fairness pass, we don't want to
2398 		 * trash fairness information for zones that are not
2399 		 * actually part of this zonelist's round-robin cycle.
2400 		 */
2401 		if (!zone_local(preferred_zone, zone))
2402 			continue;
2403 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2404 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2405 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2406 	}
2407 }
2408 
2409 static void wake_all_kswapds(unsigned int order,
2410 			     struct zonelist *zonelist,
2411 			     enum zone_type high_zoneidx,
2412 			     struct zone *preferred_zone)
2413 {
2414 	struct zoneref *z;
2415 	struct zone *zone;
2416 
2417 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2418 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2419 }
2420 
2421 static inline int
2422 gfp_to_alloc_flags(gfp_t gfp_mask)
2423 {
2424 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2425 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2426 
2427 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2428 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2429 
2430 	/*
2431 	 * The caller may dip into page reserves a bit more if the caller
2432 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2433 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2434 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2435 	 */
2436 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2437 
2438 	if (!wait) {
2439 		/*
2440 		 * Not worth trying to allocate harder for
2441 		 * __GFP_NOMEMALLOC even if it can't schedule.
2442 		 */
2443 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2444 			alloc_flags |= ALLOC_HARDER;
2445 		/*
2446 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2447 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2448 		 */
2449 		alloc_flags &= ~ALLOC_CPUSET;
2450 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2451 		alloc_flags |= ALLOC_HARDER;
2452 
2453 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2454 		if (gfp_mask & __GFP_MEMALLOC)
2455 			alloc_flags |= ALLOC_NO_WATERMARKS;
2456 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2457 			alloc_flags |= ALLOC_NO_WATERMARKS;
2458 		else if (!in_interrupt() &&
2459 				((current->flags & PF_MEMALLOC) ||
2460 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2461 			alloc_flags |= ALLOC_NO_WATERMARKS;
2462 	}
2463 #ifdef CONFIG_CMA
2464 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2465 		alloc_flags |= ALLOC_CMA;
2466 #endif
2467 	return alloc_flags;
2468 }
2469 
2470 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2471 {
2472 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2473 }
2474 
2475 static inline struct page *
2476 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2477 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2478 	nodemask_t *nodemask, struct zone *preferred_zone,
2479 	int migratetype)
2480 {
2481 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2482 	struct page *page = NULL;
2483 	int alloc_flags;
2484 	unsigned long pages_reclaimed = 0;
2485 	unsigned long did_some_progress;
2486 	bool sync_migration = false;
2487 	bool deferred_compaction = false;
2488 	bool contended_compaction = false;
2489 
2490 	/*
2491 	 * In the slowpath, we sanity check order to avoid ever trying to
2492 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2493 	 * be using allocators in order of preference for an area that is
2494 	 * too large.
2495 	 */
2496 	if (order >= MAX_ORDER) {
2497 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2498 		return NULL;
2499 	}
2500 
2501 	/*
2502 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2503 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2504 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2505 	 * using a larger set of nodes after it has established that the
2506 	 * allowed per node queues are empty and that nodes are
2507 	 * over allocated.
2508 	 */
2509 	if (IS_ENABLED(CONFIG_NUMA) &&
2510 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2511 		goto nopage;
2512 
2513 restart:
2514 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2515 		wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2516 
2517 	/*
2518 	 * OK, we're below the kswapd watermark and have kicked background
2519 	 * reclaim. Now things get more complex, so set up alloc_flags according
2520 	 * to how we want to proceed.
2521 	 */
2522 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2523 
2524 	/*
2525 	 * Find the true preferred zone if the allocation is unconstrained by
2526 	 * cpusets.
2527 	 */
2528 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2529 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2530 					&preferred_zone);
2531 
2532 rebalance:
2533 	/* This is the last chance, in general, before the goto nopage. */
2534 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2535 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2536 			preferred_zone, migratetype);
2537 	if (page)
2538 		goto got_pg;
2539 
2540 	/* Allocate without watermarks if the context allows */
2541 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2542 		/*
2543 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2544 		 * the allocation is high priority and these type of
2545 		 * allocations are system rather than user orientated
2546 		 */
2547 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2548 
2549 		page = __alloc_pages_high_priority(gfp_mask, order,
2550 				zonelist, high_zoneidx, nodemask,
2551 				preferred_zone, migratetype);
2552 		if (page) {
2553 			goto got_pg;
2554 		}
2555 	}
2556 
2557 	/* Atomic allocations - we can't balance anything */
2558 	if (!wait) {
2559 		/*
2560 		 * All existing users of the deprecated __GFP_NOFAIL are
2561 		 * blockable, so warn of any new users that actually allow this
2562 		 * type of allocation to fail.
2563 		 */
2564 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2565 		goto nopage;
2566 	}
2567 
2568 	/* Avoid recursion of direct reclaim */
2569 	if (current->flags & PF_MEMALLOC)
2570 		goto nopage;
2571 
2572 	/* Avoid allocations with no watermarks from looping endlessly */
2573 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2574 		goto nopage;
2575 
2576 	/*
2577 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2578 	 * attempts after direct reclaim are synchronous
2579 	 */
2580 	page = __alloc_pages_direct_compact(gfp_mask, order,
2581 					zonelist, high_zoneidx,
2582 					nodemask,
2583 					alloc_flags, preferred_zone,
2584 					migratetype, sync_migration,
2585 					&contended_compaction,
2586 					&deferred_compaction,
2587 					&did_some_progress);
2588 	if (page)
2589 		goto got_pg;
2590 	sync_migration = true;
2591 
2592 	/*
2593 	 * If compaction is deferred for high-order allocations, it is because
2594 	 * sync compaction recently failed. In this is the case and the caller
2595 	 * requested a movable allocation that does not heavily disrupt the
2596 	 * system then fail the allocation instead of entering direct reclaim.
2597 	 */
2598 	if ((deferred_compaction || contended_compaction) &&
2599 						(gfp_mask & __GFP_NO_KSWAPD))
2600 		goto nopage;
2601 
2602 	/* Try direct reclaim and then allocating */
2603 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2604 					zonelist, high_zoneidx,
2605 					nodemask,
2606 					alloc_flags, preferred_zone,
2607 					migratetype, &did_some_progress);
2608 	if (page)
2609 		goto got_pg;
2610 
2611 	/*
2612 	 * If we failed to make any progress reclaiming, then we are
2613 	 * running out of options and have to consider going OOM
2614 	 */
2615 	if (!did_some_progress) {
2616 		if (oom_gfp_allowed(gfp_mask)) {
2617 			if (oom_killer_disabled)
2618 				goto nopage;
2619 			/* Coredumps can quickly deplete all memory reserves */
2620 			if ((current->flags & PF_DUMPCORE) &&
2621 			    !(gfp_mask & __GFP_NOFAIL))
2622 				goto nopage;
2623 			page = __alloc_pages_may_oom(gfp_mask, order,
2624 					zonelist, high_zoneidx,
2625 					nodemask, preferred_zone,
2626 					migratetype);
2627 			if (page)
2628 				goto got_pg;
2629 
2630 			if (!(gfp_mask & __GFP_NOFAIL)) {
2631 				/*
2632 				 * The oom killer is not called for high-order
2633 				 * allocations that may fail, so if no progress
2634 				 * is being made, there are no other options and
2635 				 * retrying is unlikely to help.
2636 				 */
2637 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2638 					goto nopage;
2639 				/*
2640 				 * The oom killer is not called for lowmem
2641 				 * allocations to prevent needlessly killing
2642 				 * innocent tasks.
2643 				 */
2644 				if (high_zoneidx < ZONE_NORMAL)
2645 					goto nopage;
2646 			}
2647 
2648 			goto restart;
2649 		}
2650 	}
2651 
2652 	/* Check if we should retry the allocation */
2653 	pages_reclaimed += did_some_progress;
2654 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2655 						pages_reclaimed)) {
2656 		/* Wait for some write requests to complete then retry */
2657 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2658 		goto rebalance;
2659 	} else {
2660 		/*
2661 		 * High-order allocations do not necessarily loop after
2662 		 * direct reclaim and reclaim/compaction depends on compaction
2663 		 * being called after reclaim so call directly if necessary
2664 		 */
2665 		page = __alloc_pages_direct_compact(gfp_mask, order,
2666 					zonelist, high_zoneidx,
2667 					nodemask,
2668 					alloc_flags, preferred_zone,
2669 					migratetype, sync_migration,
2670 					&contended_compaction,
2671 					&deferred_compaction,
2672 					&did_some_progress);
2673 		if (page)
2674 			goto got_pg;
2675 	}
2676 
2677 nopage:
2678 	warn_alloc_failed(gfp_mask, order, NULL);
2679 	return page;
2680 got_pg:
2681 	if (kmemcheck_enabled)
2682 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2683 
2684 	return page;
2685 }
2686 
2687 /*
2688  * This is the 'heart' of the zoned buddy allocator.
2689  */
2690 struct page *
2691 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2692 			struct zonelist *zonelist, nodemask_t *nodemask)
2693 {
2694 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2695 	struct zone *preferred_zone;
2696 	struct page *page = NULL;
2697 	int migratetype = allocflags_to_migratetype(gfp_mask);
2698 	unsigned int cpuset_mems_cookie;
2699 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2700 	struct mem_cgroup *memcg = NULL;
2701 
2702 	gfp_mask &= gfp_allowed_mask;
2703 
2704 	lockdep_trace_alloc(gfp_mask);
2705 
2706 	might_sleep_if(gfp_mask & __GFP_WAIT);
2707 
2708 	if (should_fail_alloc_page(gfp_mask, order))
2709 		return NULL;
2710 
2711 	/*
2712 	 * Check the zones suitable for the gfp_mask contain at least one
2713 	 * valid zone. It's possible to have an empty zonelist as a result
2714 	 * of GFP_THISNODE and a memoryless node
2715 	 */
2716 	if (unlikely(!zonelist->_zonerefs->zone))
2717 		return NULL;
2718 
2719 	/*
2720 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2721 	 * verified in the (always inline) callee
2722 	 */
2723 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2724 		return NULL;
2725 
2726 retry_cpuset:
2727 	cpuset_mems_cookie = read_mems_allowed_begin();
2728 
2729 	/* The preferred zone is used for statistics later */
2730 	first_zones_zonelist(zonelist, high_zoneidx,
2731 				nodemask ? : &cpuset_current_mems_allowed,
2732 				&preferred_zone);
2733 	if (!preferred_zone)
2734 		goto out;
2735 
2736 #ifdef CONFIG_CMA
2737 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2738 		alloc_flags |= ALLOC_CMA;
2739 #endif
2740 retry:
2741 	/* First allocation attempt */
2742 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2743 			zonelist, high_zoneidx, alloc_flags,
2744 			preferred_zone, migratetype);
2745 	if (unlikely(!page)) {
2746 		/*
2747 		 * The first pass makes sure allocations are spread
2748 		 * fairly within the local node.  However, the local
2749 		 * node might have free pages left after the fairness
2750 		 * batches are exhausted, and remote zones haven't
2751 		 * even been considered yet.  Try once more without
2752 		 * fairness, and include remote zones now, before
2753 		 * entering the slowpath and waking kswapd: prefer
2754 		 * spilling to a remote zone over swapping locally.
2755 		 */
2756 		if (alloc_flags & ALLOC_FAIR) {
2757 			reset_alloc_batches(zonelist, high_zoneidx,
2758 					    preferred_zone);
2759 			alloc_flags &= ~ALLOC_FAIR;
2760 			goto retry;
2761 		}
2762 		/*
2763 		 * Runtime PM, block IO and its error handling path
2764 		 * can deadlock because I/O on the device might not
2765 		 * complete.
2766 		 */
2767 		gfp_mask = memalloc_noio_flags(gfp_mask);
2768 		page = __alloc_pages_slowpath(gfp_mask, order,
2769 				zonelist, high_zoneidx, nodemask,
2770 				preferred_zone, migratetype);
2771 	}
2772 
2773 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2774 
2775 out:
2776 	/*
2777 	 * When updating a task's mems_allowed, it is possible to race with
2778 	 * parallel threads in such a way that an allocation can fail while
2779 	 * the mask is being updated. If a page allocation is about to fail,
2780 	 * check if the cpuset changed during allocation and if so, retry.
2781 	 */
2782 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2783 		goto retry_cpuset;
2784 
2785 	memcg_kmem_commit_charge(page, memcg, order);
2786 
2787 	return page;
2788 }
2789 EXPORT_SYMBOL(__alloc_pages_nodemask);
2790 
2791 /*
2792  * Common helper functions.
2793  */
2794 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2795 {
2796 	struct page *page;
2797 
2798 	/*
2799 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2800 	 * a highmem page
2801 	 */
2802 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2803 
2804 	page = alloc_pages(gfp_mask, order);
2805 	if (!page)
2806 		return 0;
2807 	return (unsigned long) page_address(page);
2808 }
2809 EXPORT_SYMBOL(__get_free_pages);
2810 
2811 unsigned long get_zeroed_page(gfp_t gfp_mask)
2812 {
2813 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2814 }
2815 EXPORT_SYMBOL(get_zeroed_page);
2816 
2817 void __free_pages(struct page *page, unsigned int order)
2818 {
2819 	if (put_page_testzero(page)) {
2820 		if (order == 0)
2821 			free_hot_cold_page(page, 0);
2822 		else
2823 			__free_pages_ok(page, order);
2824 	}
2825 }
2826 
2827 EXPORT_SYMBOL(__free_pages);
2828 
2829 void free_pages(unsigned long addr, unsigned int order)
2830 {
2831 	if (addr != 0) {
2832 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2833 		__free_pages(virt_to_page((void *)addr), order);
2834 	}
2835 }
2836 
2837 EXPORT_SYMBOL(free_pages);
2838 
2839 /*
2840  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2841  * pages allocated with __GFP_KMEMCG.
2842  *
2843  * Those pages are accounted to a particular memcg, embedded in the
2844  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2845  * for that information only to find out that it is NULL for users who have no
2846  * interest in that whatsoever, we provide these functions.
2847  *
2848  * The caller knows better which flags it relies on.
2849  */
2850 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2851 {
2852 	memcg_kmem_uncharge_pages(page, order);
2853 	__free_pages(page, order);
2854 }
2855 
2856 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2857 {
2858 	if (addr != 0) {
2859 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2860 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2861 	}
2862 }
2863 
2864 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2865 {
2866 	if (addr) {
2867 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2868 		unsigned long used = addr + PAGE_ALIGN(size);
2869 
2870 		split_page(virt_to_page((void *)addr), order);
2871 		while (used < alloc_end) {
2872 			free_page(used);
2873 			used += PAGE_SIZE;
2874 		}
2875 	}
2876 	return (void *)addr;
2877 }
2878 
2879 /**
2880  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2881  * @size: the number of bytes to allocate
2882  * @gfp_mask: GFP flags for the allocation
2883  *
2884  * This function is similar to alloc_pages(), except that it allocates the
2885  * minimum number of pages to satisfy the request.  alloc_pages() can only
2886  * allocate memory in power-of-two pages.
2887  *
2888  * This function is also limited by MAX_ORDER.
2889  *
2890  * Memory allocated by this function must be released by free_pages_exact().
2891  */
2892 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2893 {
2894 	unsigned int order = get_order(size);
2895 	unsigned long addr;
2896 
2897 	addr = __get_free_pages(gfp_mask, order);
2898 	return make_alloc_exact(addr, order, size);
2899 }
2900 EXPORT_SYMBOL(alloc_pages_exact);
2901 
2902 /**
2903  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2904  *			   pages on a node.
2905  * @nid: the preferred node ID where memory should be allocated
2906  * @size: the number of bytes to allocate
2907  * @gfp_mask: GFP flags for the allocation
2908  *
2909  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2910  * back.
2911  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2912  * but is not exact.
2913  */
2914 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2915 {
2916 	unsigned order = get_order(size);
2917 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2918 	if (!p)
2919 		return NULL;
2920 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2921 }
2922 EXPORT_SYMBOL(alloc_pages_exact_nid);
2923 
2924 /**
2925  * free_pages_exact - release memory allocated via alloc_pages_exact()
2926  * @virt: the value returned by alloc_pages_exact.
2927  * @size: size of allocation, same value as passed to alloc_pages_exact().
2928  *
2929  * Release the memory allocated by a previous call to alloc_pages_exact.
2930  */
2931 void free_pages_exact(void *virt, size_t size)
2932 {
2933 	unsigned long addr = (unsigned long)virt;
2934 	unsigned long end = addr + PAGE_ALIGN(size);
2935 
2936 	while (addr < end) {
2937 		free_page(addr);
2938 		addr += PAGE_SIZE;
2939 	}
2940 }
2941 EXPORT_SYMBOL(free_pages_exact);
2942 
2943 /**
2944  * nr_free_zone_pages - count number of pages beyond high watermark
2945  * @offset: The zone index of the highest zone
2946  *
2947  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2948  * high watermark within all zones at or below a given zone index.  For each
2949  * zone, the number of pages is calculated as:
2950  *     managed_pages - high_pages
2951  */
2952 static unsigned long nr_free_zone_pages(int offset)
2953 {
2954 	struct zoneref *z;
2955 	struct zone *zone;
2956 
2957 	/* Just pick one node, since fallback list is circular */
2958 	unsigned long sum = 0;
2959 
2960 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2961 
2962 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2963 		unsigned long size = zone->managed_pages;
2964 		unsigned long high = high_wmark_pages(zone);
2965 		if (size > high)
2966 			sum += size - high;
2967 	}
2968 
2969 	return sum;
2970 }
2971 
2972 /**
2973  * nr_free_buffer_pages - count number of pages beyond high watermark
2974  *
2975  * nr_free_buffer_pages() counts the number of pages which are beyond the high
2976  * watermark within ZONE_DMA and ZONE_NORMAL.
2977  */
2978 unsigned long nr_free_buffer_pages(void)
2979 {
2980 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2981 }
2982 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2983 
2984 /**
2985  * nr_free_pagecache_pages - count number of pages beyond high watermark
2986  *
2987  * nr_free_pagecache_pages() counts the number of pages which are beyond the
2988  * high watermark within all zones.
2989  */
2990 unsigned long nr_free_pagecache_pages(void)
2991 {
2992 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2993 }
2994 
2995 static inline void show_node(struct zone *zone)
2996 {
2997 	if (IS_ENABLED(CONFIG_NUMA))
2998 		printk("Node %d ", zone_to_nid(zone));
2999 }
3000 
3001 void si_meminfo(struct sysinfo *val)
3002 {
3003 	val->totalram = totalram_pages;
3004 	val->sharedram = 0;
3005 	val->freeram = global_page_state(NR_FREE_PAGES);
3006 	val->bufferram = nr_blockdev_pages();
3007 	val->totalhigh = totalhigh_pages;
3008 	val->freehigh = nr_free_highpages();
3009 	val->mem_unit = PAGE_SIZE;
3010 }
3011 
3012 EXPORT_SYMBOL(si_meminfo);
3013 
3014 #ifdef CONFIG_NUMA
3015 void si_meminfo_node(struct sysinfo *val, int nid)
3016 {
3017 	int zone_type;		/* needs to be signed */
3018 	unsigned long managed_pages = 0;
3019 	pg_data_t *pgdat = NODE_DATA(nid);
3020 
3021 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3022 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3023 	val->totalram = managed_pages;
3024 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3025 #ifdef CONFIG_HIGHMEM
3026 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3027 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3028 			NR_FREE_PAGES);
3029 #else
3030 	val->totalhigh = 0;
3031 	val->freehigh = 0;
3032 #endif
3033 	val->mem_unit = PAGE_SIZE;
3034 }
3035 #endif
3036 
3037 /*
3038  * Determine whether the node should be displayed or not, depending on whether
3039  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3040  */
3041 bool skip_free_areas_node(unsigned int flags, int nid)
3042 {
3043 	bool ret = false;
3044 	unsigned int cpuset_mems_cookie;
3045 
3046 	if (!(flags & SHOW_MEM_FILTER_NODES))
3047 		goto out;
3048 
3049 	do {
3050 		cpuset_mems_cookie = read_mems_allowed_begin();
3051 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3052 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3053 out:
3054 	return ret;
3055 }
3056 
3057 #define K(x) ((x) << (PAGE_SHIFT-10))
3058 
3059 static void show_migration_types(unsigned char type)
3060 {
3061 	static const char types[MIGRATE_TYPES] = {
3062 		[MIGRATE_UNMOVABLE]	= 'U',
3063 		[MIGRATE_RECLAIMABLE]	= 'E',
3064 		[MIGRATE_MOVABLE]	= 'M',
3065 		[MIGRATE_RESERVE]	= 'R',
3066 #ifdef CONFIG_CMA
3067 		[MIGRATE_CMA]		= 'C',
3068 #endif
3069 #ifdef CONFIG_MEMORY_ISOLATION
3070 		[MIGRATE_ISOLATE]	= 'I',
3071 #endif
3072 	};
3073 	char tmp[MIGRATE_TYPES + 1];
3074 	char *p = tmp;
3075 	int i;
3076 
3077 	for (i = 0; i < MIGRATE_TYPES; i++) {
3078 		if (type & (1 << i))
3079 			*p++ = types[i];
3080 	}
3081 
3082 	*p = '\0';
3083 	printk("(%s) ", tmp);
3084 }
3085 
3086 /*
3087  * Show free area list (used inside shift_scroll-lock stuff)
3088  * We also calculate the percentage fragmentation. We do this by counting the
3089  * memory on each free list with the exception of the first item on the list.
3090  * Suppresses nodes that are not allowed by current's cpuset if
3091  * SHOW_MEM_FILTER_NODES is passed.
3092  */
3093 void show_free_areas(unsigned int filter)
3094 {
3095 	int cpu;
3096 	struct zone *zone;
3097 
3098 	for_each_populated_zone(zone) {
3099 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3100 			continue;
3101 		show_node(zone);
3102 		printk("%s per-cpu:\n", zone->name);
3103 
3104 		for_each_online_cpu(cpu) {
3105 			struct per_cpu_pageset *pageset;
3106 
3107 			pageset = per_cpu_ptr(zone->pageset, cpu);
3108 
3109 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3110 			       cpu, pageset->pcp.high,
3111 			       pageset->pcp.batch, pageset->pcp.count);
3112 		}
3113 	}
3114 
3115 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3116 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3117 		" unevictable:%lu"
3118 		" dirty:%lu writeback:%lu unstable:%lu\n"
3119 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3120 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3121 		" free_cma:%lu\n",
3122 		global_page_state(NR_ACTIVE_ANON),
3123 		global_page_state(NR_INACTIVE_ANON),
3124 		global_page_state(NR_ISOLATED_ANON),
3125 		global_page_state(NR_ACTIVE_FILE),
3126 		global_page_state(NR_INACTIVE_FILE),
3127 		global_page_state(NR_ISOLATED_FILE),
3128 		global_page_state(NR_UNEVICTABLE),
3129 		global_page_state(NR_FILE_DIRTY),
3130 		global_page_state(NR_WRITEBACK),
3131 		global_page_state(NR_UNSTABLE_NFS),
3132 		global_page_state(NR_FREE_PAGES),
3133 		global_page_state(NR_SLAB_RECLAIMABLE),
3134 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3135 		global_page_state(NR_FILE_MAPPED),
3136 		global_page_state(NR_SHMEM),
3137 		global_page_state(NR_PAGETABLE),
3138 		global_page_state(NR_BOUNCE),
3139 		global_page_state(NR_FREE_CMA_PAGES));
3140 
3141 	for_each_populated_zone(zone) {
3142 		int i;
3143 
3144 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3145 			continue;
3146 		show_node(zone);
3147 		printk("%s"
3148 			" free:%lukB"
3149 			" min:%lukB"
3150 			" low:%lukB"
3151 			" high:%lukB"
3152 			" active_anon:%lukB"
3153 			" inactive_anon:%lukB"
3154 			" active_file:%lukB"
3155 			" inactive_file:%lukB"
3156 			" unevictable:%lukB"
3157 			" isolated(anon):%lukB"
3158 			" isolated(file):%lukB"
3159 			" present:%lukB"
3160 			" managed:%lukB"
3161 			" mlocked:%lukB"
3162 			" dirty:%lukB"
3163 			" writeback:%lukB"
3164 			" mapped:%lukB"
3165 			" shmem:%lukB"
3166 			" slab_reclaimable:%lukB"
3167 			" slab_unreclaimable:%lukB"
3168 			" kernel_stack:%lukB"
3169 			" pagetables:%lukB"
3170 			" unstable:%lukB"
3171 			" bounce:%lukB"
3172 			" free_cma:%lukB"
3173 			" writeback_tmp:%lukB"
3174 			" pages_scanned:%lu"
3175 			" all_unreclaimable? %s"
3176 			"\n",
3177 			zone->name,
3178 			K(zone_page_state(zone, NR_FREE_PAGES)),
3179 			K(min_wmark_pages(zone)),
3180 			K(low_wmark_pages(zone)),
3181 			K(high_wmark_pages(zone)),
3182 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3183 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3184 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3185 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3186 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3187 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3188 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3189 			K(zone->present_pages),
3190 			K(zone->managed_pages),
3191 			K(zone_page_state(zone, NR_MLOCK)),
3192 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3193 			K(zone_page_state(zone, NR_WRITEBACK)),
3194 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3195 			K(zone_page_state(zone, NR_SHMEM)),
3196 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3197 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3198 			zone_page_state(zone, NR_KERNEL_STACK) *
3199 				THREAD_SIZE / 1024,
3200 			K(zone_page_state(zone, NR_PAGETABLE)),
3201 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3202 			K(zone_page_state(zone, NR_BOUNCE)),
3203 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3204 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3205 			zone->pages_scanned,
3206 			(!zone_reclaimable(zone) ? "yes" : "no")
3207 			);
3208 		printk("lowmem_reserve[]:");
3209 		for (i = 0; i < MAX_NR_ZONES; i++)
3210 			printk(" %lu", zone->lowmem_reserve[i]);
3211 		printk("\n");
3212 	}
3213 
3214 	for_each_populated_zone(zone) {
3215 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3216 		unsigned char types[MAX_ORDER];
3217 
3218 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3219 			continue;
3220 		show_node(zone);
3221 		printk("%s: ", zone->name);
3222 
3223 		spin_lock_irqsave(&zone->lock, flags);
3224 		for (order = 0; order < MAX_ORDER; order++) {
3225 			struct free_area *area = &zone->free_area[order];
3226 			int type;
3227 
3228 			nr[order] = area->nr_free;
3229 			total += nr[order] << order;
3230 
3231 			types[order] = 0;
3232 			for (type = 0; type < MIGRATE_TYPES; type++) {
3233 				if (!list_empty(&area->free_list[type]))
3234 					types[order] |= 1 << type;
3235 			}
3236 		}
3237 		spin_unlock_irqrestore(&zone->lock, flags);
3238 		for (order = 0; order < MAX_ORDER; order++) {
3239 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3240 			if (nr[order])
3241 				show_migration_types(types[order]);
3242 		}
3243 		printk("= %lukB\n", K(total));
3244 	}
3245 
3246 	hugetlb_show_meminfo();
3247 
3248 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3249 
3250 	show_swap_cache_info();
3251 }
3252 
3253 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3254 {
3255 	zoneref->zone = zone;
3256 	zoneref->zone_idx = zone_idx(zone);
3257 }
3258 
3259 /*
3260  * Builds allocation fallback zone lists.
3261  *
3262  * Add all populated zones of a node to the zonelist.
3263  */
3264 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3265 				int nr_zones)
3266 {
3267 	struct zone *zone;
3268 	enum zone_type zone_type = MAX_NR_ZONES;
3269 
3270 	do {
3271 		zone_type--;
3272 		zone = pgdat->node_zones + zone_type;
3273 		if (populated_zone(zone)) {
3274 			zoneref_set_zone(zone,
3275 				&zonelist->_zonerefs[nr_zones++]);
3276 			check_highest_zone(zone_type);
3277 		}
3278 	} while (zone_type);
3279 
3280 	return nr_zones;
3281 }
3282 
3283 
3284 /*
3285  *  zonelist_order:
3286  *  0 = automatic detection of better ordering.
3287  *  1 = order by ([node] distance, -zonetype)
3288  *  2 = order by (-zonetype, [node] distance)
3289  *
3290  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3291  *  the same zonelist. So only NUMA can configure this param.
3292  */
3293 #define ZONELIST_ORDER_DEFAULT  0
3294 #define ZONELIST_ORDER_NODE     1
3295 #define ZONELIST_ORDER_ZONE     2
3296 
3297 /* zonelist order in the kernel.
3298  * set_zonelist_order() will set this to NODE or ZONE.
3299  */
3300 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3301 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3302 
3303 
3304 #ifdef CONFIG_NUMA
3305 /* The value user specified ....changed by config */
3306 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3307 /* string for sysctl */
3308 #define NUMA_ZONELIST_ORDER_LEN	16
3309 char numa_zonelist_order[16] = "default";
3310 
3311 /*
3312  * interface for configure zonelist ordering.
3313  * command line option "numa_zonelist_order"
3314  *	= "[dD]efault	- default, automatic configuration.
3315  *	= "[nN]ode 	- order by node locality, then by zone within node
3316  *	= "[zZ]one      - order by zone, then by locality within zone
3317  */
3318 
3319 static int __parse_numa_zonelist_order(char *s)
3320 {
3321 	if (*s == 'd' || *s == 'D') {
3322 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3323 	} else if (*s == 'n' || *s == 'N') {
3324 		user_zonelist_order = ZONELIST_ORDER_NODE;
3325 	} else if (*s == 'z' || *s == 'Z') {
3326 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3327 	} else {
3328 		printk(KERN_WARNING
3329 			"Ignoring invalid numa_zonelist_order value:  "
3330 			"%s\n", s);
3331 		return -EINVAL;
3332 	}
3333 	return 0;
3334 }
3335 
3336 static __init int setup_numa_zonelist_order(char *s)
3337 {
3338 	int ret;
3339 
3340 	if (!s)
3341 		return 0;
3342 
3343 	ret = __parse_numa_zonelist_order(s);
3344 	if (ret == 0)
3345 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3346 
3347 	return ret;
3348 }
3349 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3350 
3351 /*
3352  * sysctl handler for numa_zonelist_order
3353  */
3354 int numa_zonelist_order_handler(ctl_table *table, int write,
3355 		void __user *buffer, size_t *length,
3356 		loff_t *ppos)
3357 {
3358 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3359 	int ret;
3360 	static DEFINE_MUTEX(zl_order_mutex);
3361 
3362 	mutex_lock(&zl_order_mutex);
3363 	if (write) {
3364 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3365 			ret = -EINVAL;
3366 			goto out;
3367 		}
3368 		strcpy(saved_string, (char *)table->data);
3369 	}
3370 	ret = proc_dostring(table, write, buffer, length, ppos);
3371 	if (ret)
3372 		goto out;
3373 	if (write) {
3374 		int oldval = user_zonelist_order;
3375 
3376 		ret = __parse_numa_zonelist_order((char *)table->data);
3377 		if (ret) {
3378 			/*
3379 			 * bogus value.  restore saved string
3380 			 */
3381 			strncpy((char *)table->data, saved_string,
3382 				NUMA_ZONELIST_ORDER_LEN);
3383 			user_zonelist_order = oldval;
3384 		} else if (oldval != user_zonelist_order) {
3385 			mutex_lock(&zonelists_mutex);
3386 			build_all_zonelists(NULL, NULL);
3387 			mutex_unlock(&zonelists_mutex);
3388 		}
3389 	}
3390 out:
3391 	mutex_unlock(&zl_order_mutex);
3392 	return ret;
3393 }
3394 
3395 
3396 #define MAX_NODE_LOAD (nr_online_nodes)
3397 static int node_load[MAX_NUMNODES];
3398 
3399 /**
3400  * find_next_best_node - find the next node that should appear in a given node's fallback list
3401  * @node: node whose fallback list we're appending
3402  * @used_node_mask: nodemask_t of already used nodes
3403  *
3404  * We use a number of factors to determine which is the next node that should
3405  * appear on a given node's fallback list.  The node should not have appeared
3406  * already in @node's fallback list, and it should be the next closest node
3407  * according to the distance array (which contains arbitrary distance values
3408  * from each node to each node in the system), and should also prefer nodes
3409  * with no CPUs, since presumably they'll have very little allocation pressure
3410  * on them otherwise.
3411  * It returns -1 if no node is found.
3412  */
3413 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3414 {
3415 	int n, val;
3416 	int min_val = INT_MAX;
3417 	int best_node = NUMA_NO_NODE;
3418 	const struct cpumask *tmp = cpumask_of_node(0);
3419 
3420 	/* Use the local node if we haven't already */
3421 	if (!node_isset(node, *used_node_mask)) {
3422 		node_set(node, *used_node_mask);
3423 		return node;
3424 	}
3425 
3426 	for_each_node_state(n, N_MEMORY) {
3427 
3428 		/* Don't want a node to appear more than once */
3429 		if (node_isset(n, *used_node_mask))
3430 			continue;
3431 
3432 		/* Use the distance array to find the distance */
3433 		val = node_distance(node, n);
3434 
3435 		/* Penalize nodes under us ("prefer the next node") */
3436 		val += (n < node);
3437 
3438 		/* Give preference to headless and unused nodes */
3439 		tmp = cpumask_of_node(n);
3440 		if (!cpumask_empty(tmp))
3441 			val += PENALTY_FOR_NODE_WITH_CPUS;
3442 
3443 		/* Slight preference for less loaded node */
3444 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3445 		val += node_load[n];
3446 
3447 		if (val < min_val) {
3448 			min_val = val;
3449 			best_node = n;
3450 		}
3451 	}
3452 
3453 	if (best_node >= 0)
3454 		node_set(best_node, *used_node_mask);
3455 
3456 	return best_node;
3457 }
3458 
3459 
3460 /*
3461  * Build zonelists ordered by node and zones within node.
3462  * This results in maximum locality--normal zone overflows into local
3463  * DMA zone, if any--but risks exhausting DMA zone.
3464  */
3465 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3466 {
3467 	int j;
3468 	struct zonelist *zonelist;
3469 
3470 	zonelist = &pgdat->node_zonelists[0];
3471 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3472 		;
3473 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3474 	zonelist->_zonerefs[j].zone = NULL;
3475 	zonelist->_zonerefs[j].zone_idx = 0;
3476 }
3477 
3478 /*
3479  * Build gfp_thisnode zonelists
3480  */
3481 static void build_thisnode_zonelists(pg_data_t *pgdat)
3482 {
3483 	int j;
3484 	struct zonelist *zonelist;
3485 
3486 	zonelist = &pgdat->node_zonelists[1];
3487 	j = build_zonelists_node(pgdat, zonelist, 0);
3488 	zonelist->_zonerefs[j].zone = NULL;
3489 	zonelist->_zonerefs[j].zone_idx = 0;
3490 }
3491 
3492 /*
3493  * Build zonelists ordered by zone and nodes within zones.
3494  * This results in conserving DMA zone[s] until all Normal memory is
3495  * exhausted, but results in overflowing to remote node while memory
3496  * may still exist in local DMA zone.
3497  */
3498 static int node_order[MAX_NUMNODES];
3499 
3500 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3501 {
3502 	int pos, j, node;
3503 	int zone_type;		/* needs to be signed */
3504 	struct zone *z;
3505 	struct zonelist *zonelist;
3506 
3507 	zonelist = &pgdat->node_zonelists[0];
3508 	pos = 0;
3509 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3510 		for (j = 0; j < nr_nodes; j++) {
3511 			node = node_order[j];
3512 			z = &NODE_DATA(node)->node_zones[zone_type];
3513 			if (populated_zone(z)) {
3514 				zoneref_set_zone(z,
3515 					&zonelist->_zonerefs[pos++]);
3516 				check_highest_zone(zone_type);
3517 			}
3518 		}
3519 	}
3520 	zonelist->_zonerefs[pos].zone = NULL;
3521 	zonelist->_zonerefs[pos].zone_idx = 0;
3522 }
3523 
3524 static int default_zonelist_order(void)
3525 {
3526 	int nid, zone_type;
3527 	unsigned long low_kmem_size, total_size;
3528 	struct zone *z;
3529 	int average_size;
3530 	/*
3531 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3532 	 * If they are really small and used heavily, the system can fall
3533 	 * into OOM very easily.
3534 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3535 	 */
3536 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3537 	low_kmem_size = 0;
3538 	total_size = 0;
3539 	for_each_online_node(nid) {
3540 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3541 			z = &NODE_DATA(nid)->node_zones[zone_type];
3542 			if (populated_zone(z)) {
3543 				if (zone_type < ZONE_NORMAL)
3544 					low_kmem_size += z->managed_pages;
3545 				total_size += z->managed_pages;
3546 			} else if (zone_type == ZONE_NORMAL) {
3547 				/*
3548 				 * If any node has only lowmem, then node order
3549 				 * is preferred to allow kernel allocations
3550 				 * locally; otherwise, they can easily infringe
3551 				 * on other nodes when there is an abundance of
3552 				 * lowmem available to allocate from.
3553 				 */
3554 				return ZONELIST_ORDER_NODE;
3555 			}
3556 		}
3557 	}
3558 	if (!low_kmem_size ||  /* there are no DMA area. */
3559 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3560 		return ZONELIST_ORDER_NODE;
3561 	/*
3562 	 * look into each node's config.
3563 	 * If there is a node whose DMA/DMA32 memory is very big area on
3564 	 * local memory, NODE_ORDER may be suitable.
3565 	 */
3566 	average_size = total_size /
3567 				(nodes_weight(node_states[N_MEMORY]) + 1);
3568 	for_each_online_node(nid) {
3569 		low_kmem_size = 0;
3570 		total_size = 0;
3571 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3572 			z = &NODE_DATA(nid)->node_zones[zone_type];
3573 			if (populated_zone(z)) {
3574 				if (zone_type < ZONE_NORMAL)
3575 					low_kmem_size += z->present_pages;
3576 				total_size += z->present_pages;
3577 			}
3578 		}
3579 		if (low_kmem_size &&
3580 		    total_size > average_size && /* ignore small node */
3581 		    low_kmem_size > total_size * 70/100)
3582 			return ZONELIST_ORDER_NODE;
3583 	}
3584 	return ZONELIST_ORDER_ZONE;
3585 }
3586 
3587 static void set_zonelist_order(void)
3588 {
3589 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3590 		current_zonelist_order = default_zonelist_order();
3591 	else
3592 		current_zonelist_order = user_zonelist_order;
3593 }
3594 
3595 static void build_zonelists(pg_data_t *pgdat)
3596 {
3597 	int j, node, load;
3598 	enum zone_type i;
3599 	nodemask_t used_mask;
3600 	int local_node, prev_node;
3601 	struct zonelist *zonelist;
3602 	int order = current_zonelist_order;
3603 
3604 	/* initialize zonelists */
3605 	for (i = 0; i < MAX_ZONELISTS; i++) {
3606 		zonelist = pgdat->node_zonelists + i;
3607 		zonelist->_zonerefs[0].zone = NULL;
3608 		zonelist->_zonerefs[0].zone_idx = 0;
3609 	}
3610 
3611 	/* NUMA-aware ordering of nodes */
3612 	local_node = pgdat->node_id;
3613 	load = nr_online_nodes;
3614 	prev_node = local_node;
3615 	nodes_clear(used_mask);
3616 
3617 	memset(node_order, 0, sizeof(node_order));
3618 	j = 0;
3619 
3620 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3621 		/*
3622 		 * We don't want to pressure a particular node.
3623 		 * So adding penalty to the first node in same
3624 		 * distance group to make it round-robin.
3625 		 */
3626 		if (node_distance(local_node, node) !=
3627 		    node_distance(local_node, prev_node))
3628 			node_load[node] = load;
3629 
3630 		prev_node = node;
3631 		load--;
3632 		if (order == ZONELIST_ORDER_NODE)
3633 			build_zonelists_in_node_order(pgdat, node);
3634 		else
3635 			node_order[j++] = node;	/* remember order */
3636 	}
3637 
3638 	if (order == ZONELIST_ORDER_ZONE) {
3639 		/* calculate node order -- i.e., DMA last! */
3640 		build_zonelists_in_zone_order(pgdat, j);
3641 	}
3642 
3643 	build_thisnode_zonelists(pgdat);
3644 }
3645 
3646 /* Construct the zonelist performance cache - see further mmzone.h */
3647 static void build_zonelist_cache(pg_data_t *pgdat)
3648 {
3649 	struct zonelist *zonelist;
3650 	struct zonelist_cache *zlc;
3651 	struct zoneref *z;
3652 
3653 	zonelist = &pgdat->node_zonelists[0];
3654 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3655 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3656 	for (z = zonelist->_zonerefs; z->zone; z++)
3657 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3658 }
3659 
3660 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3661 /*
3662  * Return node id of node used for "local" allocations.
3663  * I.e., first node id of first zone in arg node's generic zonelist.
3664  * Used for initializing percpu 'numa_mem', which is used primarily
3665  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3666  */
3667 int local_memory_node(int node)
3668 {
3669 	struct zone *zone;
3670 
3671 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3672 				   gfp_zone(GFP_KERNEL),
3673 				   NULL,
3674 				   &zone);
3675 	return zone->node;
3676 }
3677 #endif
3678 
3679 #else	/* CONFIG_NUMA */
3680 
3681 static void set_zonelist_order(void)
3682 {
3683 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3684 }
3685 
3686 static void build_zonelists(pg_data_t *pgdat)
3687 {
3688 	int node, local_node;
3689 	enum zone_type j;
3690 	struct zonelist *zonelist;
3691 
3692 	local_node = pgdat->node_id;
3693 
3694 	zonelist = &pgdat->node_zonelists[0];
3695 	j = build_zonelists_node(pgdat, zonelist, 0);
3696 
3697 	/*
3698 	 * Now we build the zonelist so that it contains the zones
3699 	 * of all the other nodes.
3700 	 * We don't want to pressure a particular node, so when
3701 	 * building the zones for node N, we make sure that the
3702 	 * zones coming right after the local ones are those from
3703 	 * node N+1 (modulo N)
3704 	 */
3705 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3706 		if (!node_online(node))
3707 			continue;
3708 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3709 	}
3710 	for (node = 0; node < local_node; node++) {
3711 		if (!node_online(node))
3712 			continue;
3713 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3714 	}
3715 
3716 	zonelist->_zonerefs[j].zone = NULL;
3717 	zonelist->_zonerefs[j].zone_idx = 0;
3718 }
3719 
3720 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3721 static void build_zonelist_cache(pg_data_t *pgdat)
3722 {
3723 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3724 }
3725 
3726 #endif	/* CONFIG_NUMA */
3727 
3728 /*
3729  * Boot pageset table. One per cpu which is going to be used for all
3730  * zones and all nodes. The parameters will be set in such a way
3731  * that an item put on a list will immediately be handed over to
3732  * the buddy list. This is safe since pageset manipulation is done
3733  * with interrupts disabled.
3734  *
3735  * The boot_pagesets must be kept even after bootup is complete for
3736  * unused processors and/or zones. They do play a role for bootstrapping
3737  * hotplugged processors.
3738  *
3739  * zoneinfo_show() and maybe other functions do
3740  * not check if the processor is online before following the pageset pointer.
3741  * Other parts of the kernel may not check if the zone is available.
3742  */
3743 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3744 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3745 static void setup_zone_pageset(struct zone *zone);
3746 
3747 /*
3748  * Global mutex to protect against size modification of zonelists
3749  * as well as to serialize pageset setup for the new populated zone.
3750  */
3751 DEFINE_MUTEX(zonelists_mutex);
3752 
3753 /* return values int ....just for stop_machine() */
3754 static int __build_all_zonelists(void *data)
3755 {
3756 	int nid;
3757 	int cpu;
3758 	pg_data_t *self = data;
3759 
3760 #ifdef CONFIG_NUMA
3761 	memset(node_load, 0, sizeof(node_load));
3762 #endif
3763 
3764 	if (self && !node_online(self->node_id)) {
3765 		build_zonelists(self);
3766 		build_zonelist_cache(self);
3767 	}
3768 
3769 	for_each_online_node(nid) {
3770 		pg_data_t *pgdat = NODE_DATA(nid);
3771 
3772 		build_zonelists(pgdat);
3773 		build_zonelist_cache(pgdat);
3774 	}
3775 
3776 	/*
3777 	 * Initialize the boot_pagesets that are going to be used
3778 	 * for bootstrapping processors. The real pagesets for
3779 	 * each zone will be allocated later when the per cpu
3780 	 * allocator is available.
3781 	 *
3782 	 * boot_pagesets are used also for bootstrapping offline
3783 	 * cpus if the system is already booted because the pagesets
3784 	 * are needed to initialize allocators on a specific cpu too.
3785 	 * F.e. the percpu allocator needs the page allocator which
3786 	 * needs the percpu allocator in order to allocate its pagesets
3787 	 * (a chicken-egg dilemma).
3788 	 */
3789 	for_each_possible_cpu(cpu) {
3790 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3791 
3792 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3793 		/*
3794 		 * We now know the "local memory node" for each node--
3795 		 * i.e., the node of the first zone in the generic zonelist.
3796 		 * Set up numa_mem percpu variable for on-line cpus.  During
3797 		 * boot, only the boot cpu should be on-line;  we'll init the
3798 		 * secondary cpus' numa_mem as they come on-line.  During
3799 		 * node/memory hotplug, we'll fixup all on-line cpus.
3800 		 */
3801 		if (cpu_online(cpu))
3802 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3803 #endif
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 /*
3810  * Called with zonelists_mutex held always
3811  * unless system_state == SYSTEM_BOOTING.
3812  */
3813 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3814 {
3815 	set_zonelist_order();
3816 
3817 	if (system_state == SYSTEM_BOOTING) {
3818 		__build_all_zonelists(NULL);
3819 		mminit_verify_zonelist();
3820 		cpuset_init_current_mems_allowed();
3821 	} else {
3822 #ifdef CONFIG_MEMORY_HOTPLUG
3823 		if (zone)
3824 			setup_zone_pageset(zone);
3825 #endif
3826 		/* we have to stop all cpus to guarantee there is no user
3827 		   of zonelist */
3828 		stop_machine(__build_all_zonelists, pgdat, NULL);
3829 		/* cpuset refresh routine should be here */
3830 	}
3831 	vm_total_pages = nr_free_pagecache_pages();
3832 	/*
3833 	 * Disable grouping by mobility if the number of pages in the
3834 	 * system is too low to allow the mechanism to work. It would be
3835 	 * more accurate, but expensive to check per-zone. This check is
3836 	 * made on memory-hotadd so a system can start with mobility
3837 	 * disabled and enable it later
3838 	 */
3839 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3840 		page_group_by_mobility_disabled = 1;
3841 	else
3842 		page_group_by_mobility_disabled = 0;
3843 
3844 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3845 		"Total pages: %ld\n",
3846 			nr_online_nodes,
3847 			zonelist_order_name[current_zonelist_order],
3848 			page_group_by_mobility_disabled ? "off" : "on",
3849 			vm_total_pages);
3850 #ifdef CONFIG_NUMA
3851 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3852 #endif
3853 }
3854 
3855 /*
3856  * Helper functions to size the waitqueue hash table.
3857  * Essentially these want to choose hash table sizes sufficiently
3858  * large so that collisions trying to wait on pages are rare.
3859  * But in fact, the number of active page waitqueues on typical
3860  * systems is ridiculously low, less than 200. So this is even
3861  * conservative, even though it seems large.
3862  *
3863  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3864  * waitqueues, i.e. the size of the waitq table given the number of pages.
3865  */
3866 #define PAGES_PER_WAITQUEUE	256
3867 
3868 #ifndef CONFIG_MEMORY_HOTPLUG
3869 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3870 {
3871 	unsigned long size = 1;
3872 
3873 	pages /= PAGES_PER_WAITQUEUE;
3874 
3875 	while (size < pages)
3876 		size <<= 1;
3877 
3878 	/*
3879 	 * Once we have dozens or even hundreds of threads sleeping
3880 	 * on IO we've got bigger problems than wait queue collision.
3881 	 * Limit the size of the wait table to a reasonable size.
3882 	 */
3883 	size = min(size, 4096UL);
3884 
3885 	return max(size, 4UL);
3886 }
3887 #else
3888 /*
3889  * A zone's size might be changed by hot-add, so it is not possible to determine
3890  * a suitable size for its wait_table.  So we use the maximum size now.
3891  *
3892  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3893  *
3894  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3895  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3896  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3897  *
3898  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3899  * or more by the traditional way. (See above).  It equals:
3900  *
3901  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3902  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3903  *    powerpc (64K page size)             : =  (32G +16M)byte.
3904  */
3905 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3906 {
3907 	return 4096UL;
3908 }
3909 #endif
3910 
3911 /*
3912  * This is an integer logarithm so that shifts can be used later
3913  * to extract the more random high bits from the multiplicative
3914  * hash function before the remainder is taken.
3915  */
3916 static inline unsigned long wait_table_bits(unsigned long size)
3917 {
3918 	return ffz(~size);
3919 }
3920 
3921 /*
3922  * Check if a pageblock contains reserved pages
3923  */
3924 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3925 {
3926 	unsigned long pfn;
3927 
3928 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3929 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3930 			return 1;
3931 	}
3932 	return 0;
3933 }
3934 
3935 /*
3936  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3937  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3938  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3939  * higher will lead to a bigger reserve which will get freed as contiguous
3940  * blocks as reclaim kicks in
3941  */
3942 static void setup_zone_migrate_reserve(struct zone *zone)
3943 {
3944 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3945 	struct page *page;
3946 	unsigned long block_migratetype;
3947 	int reserve;
3948 	int old_reserve;
3949 
3950 	/*
3951 	 * Get the start pfn, end pfn and the number of blocks to reserve
3952 	 * We have to be careful to be aligned to pageblock_nr_pages to
3953 	 * make sure that we always check pfn_valid for the first page in
3954 	 * the block.
3955 	 */
3956 	start_pfn = zone->zone_start_pfn;
3957 	end_pfn = zone_end_pfn(zone);
3958 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3959 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3960 							pageblock_order;
3961 
3962 	/*
3963 	 * Reserve blocks are generally in place to help high-order atomic
3964 	 * allocations that are short-lived. A min_free_kbytes value that
3965 	 * would result in more than 2 reserve blocks for atomic allocations
3966 	 * is assumed to be in place to help anti-fragmentation for the
3967 	 * future allocation of hugepages at runtime.
3968 	 */
3969 	reserve = min(2, reserve);
3970 	old_reserve = zone->nr_migrate_reserve_block;
3971 
3972 	/* When memory hot-add, we almost always need to do nothing */
3973 	if (reserve == old_reserve)
3974 		return;
3975 	zone->nr_migrate_reserve_block = reserve;
3976 
3977 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3978 		if (!pfn_valid(pfn))
3979 			continue;
3980 		page = pfn_to_page(pfn);
3981 
3982 		/* Watch out for overlapping nodes */
3983 		if (page_to_nid(page) != zone_to_nid(zone))
3984 			continue;
3985 
3986 		block_migratetype = get_pageblock_migratetype(page);
3987 
3988 		/* Only test what is necessary when the reserves are not met */
3989 		if (reserve > 0) {
3990 			/*
3991 			 * Blocks with reserved pages will never free, skip
3992 			 * them.
3993 			 */
3994 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3995 			if (pageblock_is_reserved(pfn, block_end_pfn))
3996 				continue;
3997 
3998 			/* If this block is reserved, account for it */
3999 			if (block_migratetype == MIGRATE_RESERVE) {
4000 				reserve--;
4001 				continue;
4002 			}
4003 
4004 			/* Suitable for reserving if this block is movable */
4005 			if (block_migratetype == MIGRATE_MOVABLE) {
4006 				set_pageblock_migratetype(page,
4007 							MIGRATE_RESERVE);
4008 				move_freepages_block(zone, page,
4009 							MIGRATE_RESERVE);
4010 				reserve--;
4011 				continue;
4012 			}
4013 		} else if (!old_reserve) {
4014 			/*
4015 			 * At boot time we don't need to scan the whole zone
4016 			 * for turning off MIGRATE_RESERVE.
4017 			 */
4018 			break;
4019 		}
4020 
4021 		/*
4022 		 * If the reserve is met and this is a previous reserved block,
4023 		 * take it back
4024 		 */
4025 		if (block_migratetype == MIGRATE_RESERVE) {
4026 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4027 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4028 		}
4029 	}
4030 }
4031 
4032 /*
4033  * Initially all pages are reserved - free ones are freed
4034  * up by free_all_bootmem() once the early boot process is
4035  * done. Non-atomic initialization, single-pass.
4036  */
4037 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4038 		unsigned long start_pfn, enum memmap_context context)
4039 {
4040 	struct page *page;
4041 	unsigned long end_pfn = start_pfn + size;
4042 	unsigned long pfn;
4043 	struct zone *z;
4044 
4045 	if (highest_memmap_pfn < end_pfn - 1)
4046 		highest_memmap_pfn = end_pfn - 1;
4047 
4048 	z = &NODE_DATA(nid)->node_zones[zone];
4049 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4050 		/*
4051 		 * There can be holes in boot-time mem_map[]s
4052 		 * handed to this function.  They do not
4053 		 * exist on hotplugged memory.
4054 		 */
4055 		if (context == MEMMAP_EARLY) {
4056 			if (!early_pfn_valid(pfn))
4057 				continue;
4058 			if (!early_pfn_in_nid(pfn, nid))
4059 				continue;
4060 		}
4061 		page = pfn_to_page(pfn);
4062 		set_page_links(page, zone, nid, pfn);
4063 		mminit_verify_page_links(page, zone, nid, pfn);
4064 		init_page_count(page);
4065 		page_mapcount_reset(page);
4066 		page_cpupid_reset_last(page);
4067 		SetPageReserved(page);
4068 		/*
4069 		 * Mark the block movable so that blocks are reserved for
4070 		 * movable at startup. This will force kernel allocations
4071 		 * to reserve their blocks rather than leaking throughout
4072 		 * the address space during boot when many long-lived
4073 		 * kernel allocations are made. Later some blocks near
4074 		 * the start are marked MIGRATE_RESERVE by
4075 		 * setup_zone_migrate_reserve()
4076 		 *
4077 		 * bitmap is created for zone's valid pfn range. but memmap
4078 		 * can be created for invalid pages (for alignment)
4079 		 * check here not to call set_pageblock_migratetype() against
4080 		 * pfn out of zone.
4081 		 */
4082 		if ((z->zone_start_pfn <= pfn)
4083 		    && (pfn < zone_end_pfn(z))
4084 		    && !(pfn & (pageblock_nr_pages - 1)))
4085 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4086 
4087 		INIT_LIST_HEAD(&page->lru);
4088 #ifdef WANT_PAGE_VIRTUAL
4089 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4090 		if (!is_highmem_idx(zone))
4091 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4092 #endif
4093 	}
4094 }
4095 
4096 static void __meminit zone_init_free_lists(struct zone *zone)
4097 {
4098 	int order, t;
4099 	for_each_migratetype_order(order, t) {
4100 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4101 		zone->free_area[order].nr_free = 0;
4102 	}
4103 }
4104 
4105 #ifndef __HAVE_ARCH_MEMMAP_INIT
4106 #define memmap_init(size, nid, zone, start_pfn) \
4107 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4108 #endif
4109 
4110 static int __meminit zone_batchsize(struct zone *zone)
4111 {
4112 #ifdef CONFIG_MMU
4113 	int batch;
4114 
4115 	/*
4116 	 * The per-cpu-pages pools are set to around 1000th of the
4117 	 * size of the zone.  But no more than 1/2 of a meg.
4118 	 *
4119 	 * OK, so we don't know how big the cache is.  So guess.
4120 	 */
4121 	batch = zone->managed_pages / 1024;
4122 	if (batch * PAGE_SIZE > 512 * 1024)
4123 		batch = (512 * 1024) / PAGE_SIZE;
4124 	batch /= 4;		/* We effectively *= 4 below */
4125 	if (batch < 1)
4126 		batch = 1;
4127 
4128 	/*
4129 	 * Clamp the batch to a 2^n - 1 value. Having a power
4130 	 * of 2 value was found to be more likely to have
4131 	 * suboptimal cache aliasing properties in some cases.
4132 	 *
4133 	 * For example if 2 tasks are alternately allocating
4134 	 * batches of pages, one task can end up with a lot
4135 	 * of pages of one half of the possible page colors
4136 	 * and the other with pages of the other colors.
4137 	 */
4138 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4139 
4140 	return batch;
4141 
4142 #else
4143 	/* The deferral and batching of frees should be suppressed under NOMMU
4144 	 * conditions.
4145 	 *
4146 	 * The problem is that NOMMU needs to be able to allocate large chunks
4147 	 * of contiguous memory as there's no hardware page translation to
4148 	 * assemble apparent contiguous memory from discontiguous pages.
4149 	 *
4150 	 * Queueing large contiguous runs of pages for batching, however,
4151 	 * causes the pages to actually be freed in smaller chunks.  As there
4152 	 * can be a significant delay between the individual batches being
4153 	 * recycled, this leads to the once large chunks of space being
4154 	 * fragmented and becoming unavailable for high-order allocations.
4155 	 */
4156 	return 0;
4157 #endif
4158 }
4159 
4160 /*
4161  * pcp->high and pcp->batch values are related and dependent on one another:
4162  * ->batch must never be higher then ->high.
4163  * The following function updates them in a safe manner without read side
4164  * locking.
4165  *
4166  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4167  * those fields changing asynchronously (acording the the above rule).
4168  *
4169  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4170  * outside of boot time (or some other assurance that no concurrent updaters
4171  * exist).
4172  */
4173 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4174 		unsigned long batch)
4175 {
4176        /* start with a fail safe value for batch */
4177 	pcp->batch = 1;
4178 	smp_wmb();
4179 
4180        /* Update high, then batch, in order */
4181 	pcp->high = high;
4182 	smp_wmb();
4183 
4184 	pcp->batch = batch;
4185 }
4186 
4187 /* a companion to pageset_set_high() */
4188 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4189 {
4190 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4191 }
4192 
4193 static void pageset_init(struct per_cpu_pageset *p)
4194 {
4195 	struct per_cpu_pages *pcp;
4196 	int migratetype;
4197 
4198 	memset(p, 0, sizeof(*p));
4199 
4200 	pcp = &p->pcp;
4201 	pcp->count = 0;
4202 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4203 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4204 }
4205 
4206 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4207 {
4208 	pageset_init(p);
4209 	pageset_set_batch(p, batch);
4210 }
4211 
4212 /*
4213  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4214  * to the value high for the pageset p.
4215  */
4216 static void pageset_set_high(struct per_cpu_pageset *p,
4217 				unsigned long high)
4218 {
4219 	unsigned long batch = max(1UL, high / 4);
4220 	if ((high / 4) > (PAGE_SHIFT * 8))
4221 		batch = PAGE_SHIFT * 8;
4222 
4223 	pageset_update(&p->pcp, high, batch);
4224 }
4225 
4226 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4227 		struct per_cpu_pageset *pcp)
4228 {
4229 	if (percpu_pagelist_fraction)
4230 		pageset_set_high(pcp,
4231 			(zone->managed_pages /
4232 				percpu_pagelist_fraction));
4233 	else
4234 		pageset_set_batch(pcp, zone_batchsize(zone));
4235 }
4236 
4237 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4238 {
4239 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4240 
4241 	pageset_init(pcp);
4242 	pageset_set_high_and_batch(zone, pcp);
4243 }
4244 
4245 static void __meminit setup_zone_pageset(struct zone *zone)
4246 {
4247 	int cpu;
4248 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4249 	for_each_possible_cpu(cpu)
4250 		zone_pageset_init(zone, cpu);
4251 }
4252 
4253 /*
4254  * Allocate per cpu pagesets and initialize them.
4255  * Before this call only boot pagesets were available.
4256  */
4257 void __init setup_per_cpu_pageset(void)
4258 {
4259 	struct zone *zone;
4260 
4261 	for_each_populated_zone(zone)
4262 		setup_zone_pageset(zone);
4263 }
4264 
4265 static noinline __init_refok
4266 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4267 {
4268 	int i;
4269 	size_t alloc_size;
4270 
4271 	/*
4272 	 * The per-page waitqueue mechanism uses hashed waitqueues
4273 	 * per zone.
4274 	 */
4275 	zone->wait_table_hash_nr_entries =
4276 		 wait_table_hash_nr_entries(zone_size_pages);
4277 	zone->wait_table_bits =
4278 		wait_table_bits(zone->wait_table_hash_nr_entries);
4279 	alloc_size = zone->wait_table_hash_nr_entries
4280 					* sizeof(wait_queue_head_t);
4281 
4282 	if (!slab_is_available()) {
4283 		zone->wait_table = (wait_queue_head_t *)
4284 			memblock_virt_alloc_node_nopanic(
4285 				alloc_size, zone->zone_pgdat->node_id);
4286 	} else {
4287 		/*
4288 		 * This case means that a zone whose size was 0 gets new memory
4289 		 * via memory hot-add.
4290 		 * But it may be the case that a new node was hot-added.  In
4291 		 * this case vmalloc() will not be able to use this new node's
4292 		 * memory - this wait_table must be initialized to use this new
4293 		 * node itself as well.
4294 		 * To use this new node's memory, further consideration will be
4295 		 * necessary.
4296 		 */
4297 		zone->wait_table = vmalloc(alloc_size);
4298 	}
4299 	if (!zone->wait_table)
4300 		return -ENOMEM;
4301 
4302 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4303 		init_waitqueue_head(zone->wait_table + i);
4304 
4305 	return 0;
4306 }
4307 
4308 static __meminit void zone_pcp_init(struct zone *zone)
4309 {
4310 	/*
4311 	 * per cpu subsystem is not up at this point. The following code
4312 	 * relies on the ability of the linker to provide the
4313 	 * offset of a (static) per cpu variable into the per cpu area.
4314 	 */
4315 	zone->pageset = &boot_pageset;
4316 
4317 	if (populated_zone(zone))
4318 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4319 			zone->name, zone->present_pages,
4320 					 zone_batchsize(zone));
4321 }
4322 
4323 int __meminit init_currently_empty_zone(struct zone *zone,
4324 					unsigned long zone_start_pfn,
4325 					unsigned long size,
4326 					enum memmap_context context)
4327 {
4328 	struct pglist_data *pgdat = zone->zone_pgdat;
4329 	int ret;
4330 	ret = zone_wait_table_init(zone, size);
4331 	if (ret)
4332 		return ret;
4333 	pgdat->nr_zones = zone_idx(zone) + 1;
4334 
4335 	zone->zone_start_pfn = zone_start_pfn;
4336 
4337 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4338 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4339 			pgdat->node_id,
4340 			(unsigned long)zone_idx(zone),
4341 			zone_start_pfn, (zone_start_pfn + size));
4342 
4343 	zone_init_free_lists(zone);
4344 
4345 	return 0;
4346 }
4347 
4348 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4349 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4350 /*
4351  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4352  * Architectures may implement their own version but if add_active_range()
4353  * was used and there are no special requirements, this is a convenient
4354  * alternative
4355  */
4356 int __meminit __early_pfn_to_nid(unsigned long pfn)
4357 {
4358 	unsigned long start_pfn, end_pfn;
4359 	int nid;
4360 	/*
4361 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4362 	 * when the kernel is running single-threaded.
4363 	 */
4364 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4365 	static int __meminitdata last_nid;
4366 
4367 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4368 		return last_nid;
4369 
4370 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4371 	if (nid != -1) {
4372 		last_start_pfn = start_pfn;
4373 		last_end_pfn = end_pfn;
4374 		last_nid = nid;
4375 	}
4376 
4377 	return nid;
4378 }
4379 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4380 
4381 int __meminit early_pfn_to_nid(unsigned long pfn)
4382 {
4383 	int nid;
4384 
4385 	nid = __early_pfn_to_nid(pfn);
4386 	if (nid >= 0)
4387 		return nid;
4388 	/* just returns 0 */
4389 	return 0;
4390 }
4391 
4392 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4393 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4394 {
4395 	int nid;
4396 
4397 	nid = __early_pfn_to_nid(pfn);
4398 	if (nid >= 0 && nid != node)
4399 		return false;
4400 	return true;
4401 }
4402 #endif
4403 
4404 /**
4405  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4406  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4407  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4408  *
4409  * If an architecture guarantees that all ranges registered with
4410  * add_active_ranges() contain no holes and may be freed, this
4411  * this function may be used instead of calling memblock_free_early_nid()
4412  * manually.
4413  */
4414 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4415 {
4416 	unsigned long start_pfn, end_pfn;
4417 	int i, this_nid;
4418 
4419 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4420 		start_pfn = min(start_pfn, max_low_pfn);
4421 		end_pfn = min(end_pfn, max_low_pfn);
4422 
4423 		if (start_pfn < end_pfn)
4424 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4425 					(end_pfn - start_pfn) << PAGE_SHIFT,
4426 					this_nid);
4427 	}
4428 }
4429 
4430 /**
4431  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4432  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4433  *
4434  * If an architecture guarantees that all ranges registered with
4435  * add_active_ranges() contain no holes and may be freed, this
4436  * function may be used instead of calling memory_present() manually.
4437  */
4438 void __init sparse_memory_present_with_active_regions(int nid)
4439 {
4440 	unsigned long start_pfn, end_pfn;
4441 	int i, this_nid;
4442 
4443 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4444 		memory_present(this_nid, start_pfn, end_pfn);
4445 }
4446 
4447 /**
4448  * get_pfn_range_for_nid - Return the start and end page frames for a node
4449  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4450  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4451  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4452  *
4453  * It returns the start and end page frame of a node based on information
4454  * provided by an arch calling add_active_range(). If called for a node
4455  * with no available memory, a warning is printed and the start and end
4456  * PFNs will be 0.
4457  */
4458 void __meminit get_pfn_range_for_nid(unsigned int nid,
4459 			unsigned long *start_pfn, unsigned long *end_pfn)
4460 {
4461 	unsigned long this_start_pfn, this_end_pfn;
4462 	int i;
4463 
4464 	*start_pfn = -1UL;
4465 	*end_pfn = 0;
4466 
4467 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4468 		*start_pfn = min(*start_pfn, this_start_pfn);
4469 		*end_pfn = max(*end_pfn, this_end_pfn);
4470 	}
4471 
4472 	if (*start_pfn == -1UL)
4473 		*start_pfn = 0;
4474 }
4475 
4476 /*
4477  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4478  * assumption is made that zones within a node are ordered in monotonic
4479  * increasing memory addresses so that the "highest" populated zone is used
4480  */
4481 static void __init find_usable_zone_for_movable(void)
4482 {
4483 	int zone_index;
4484 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4485 		if (zone_index == ZONE_MOVABLE)
4486 			continue;
4487 
4488 		if (arch_zone_highest_possible_pfn[zone_index] >
4489 				arch_zone_lowest_possible_pfn[zone_index])
4490 			break;
4491 	}
4492 
4493 	VM_BUG_ON(zone_index == -1);
4494 	movable_zone = zone_index;
4495 }
4496 
4497 /*
4498  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4499  * because it is sized independent of architecture. Unlike the other zones,
4500  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4501  * in each node depending on the size of each node and how evenly kernelcore
4502  * is distributed. This helper function adjusts the zone ranges
4503  * provided by the architecture for a given node by using the end of the
4504  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4505  * zones within a node are in order of monotonic increases memory addresses
4506  */
4507 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4508 					unsigned long zone_type,
4509 					unsigned long node_start_pfn,
4510 					unsigned long node_end_pfn,
4511 					unsigned long *zone_start_pfn,
4512 					unsigned long *zone_end_pfn)
4513 {
4514 	/* Only adjust if ZONE_MOVABLE is on this node */
4515 	if (zone_movable_pfn[nid]) {
4516 		/* Size ZONE_MOVABLE */
4517 		if (zone_type == ZONE_MOVABLE) {
4518 			*zone_start_pfn = zone_movable_pfn[nid];
4519 			*zone_end_pfn = min(node_end_pfn,
4520 				arch_zone_highest_possible_pfn[movable_zone]);
4521 
4522 		/* Adjust for ZONE_MOVABLE starting within this range */
4523 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4524 				*zone_end_pfn > zone_movable_pfn[nid]) {
4525 			*zone_end_pfn = zone_movable_pfn[nid];
4526 
4527 		/* Check if this whole range is within ZONE_MOVABLE */
4528 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4529 			*zone_start_pfn = *zone_end_pfn;
4530 	}
4531 }
4532 
4533 /*
4534  * Return the number of pages a zone spans in a node, including holes
4535  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4536  */
4537 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4538 					unsigned long zone_type,
4539 					unsigned long node_start_pfn,
4540 					unsigned long node_end_pfn,
4541 					unsigned long *ignored)
4542 {
4543 	unsigned long zone_start_pfn, zone_end_pfn;
4544 
4545 	/* Get the start and end of the zone */
4546 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4547 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4548 	adjust_zone_range_for_zone_movable(nid, zone_type,
4549 				node_start_pfn, node_end_pfn,
4550 				&zone_start_pfn, &zone_end_pfn);
4551 
4552 	/* Check that this node has pages within the zone's required range */
4553 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4554 		return 0;
4555 
4556 	/* Move the zone boundaries inside the node if necessary */
4557 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4558 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4559 
4560 	/* Return the spanned pages */
4561 	return zone_end_pfn - zone_start_pfn;
4562 }
4563 
4564 /*
4565  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4566  * then all holes in the requested range will be accounted for.
4567  */
4568 unsigned long __meminit __absent_pages_in_range(int nid,
4569 				unsigned long range_start_pfn,
4570 				unsigned long range_end_pfn)
4571 {
4572 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4573 	unsigned long start_pfn, end_pfn;
4574 	int i;
4575 
4576 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4577 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4578 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4579 		nr_absent -= end_pfn - start_pfn;
4580 	}
4581 	return nr_absent;
4582 }
4583 
4584 /**
4585  * absent_pages_in_range - Return number of page frames in holes within a range
4586  * @start_pfn: The start PFN to start searching for holes
4587  * @end_pfn: The end PFN to stop searching for holes
4588  *
4589  * It returns the number of pages frames in memory holes within a range.
4590  */
4591 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4592 							unsigned long end_pfn)
4593 {
4594 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4595 }
4596 
4597 /* Return the number of page frames in holes in a zone on a node */
4598 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4599 					unsigned long zone_type,
4600 					unsigned long node_start_pfn,
4601 					unsigned long node_end_pfn,
4602 					unsigned long *ignored)
4603 {
4604 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4605 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4606 	unsigned long zone_start_pfn, zone_end_pfn;
4607 
4608 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4609 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4610 
4611 	adjust_zone_range_for_zone_movable(nid, zone_type,
4612 			node_start_pfn, node_end_pfn,
4613 			&zone_start_pfn, &zone_end_pfn);
4614 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4615 }
4616 
4617 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4618 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4619 					unsigned long zone_type,
4620 					unsigned long node_start_pfn,
4621 					unsigned long node_end_pfn,
4622 					unsigned long *zones_size)
4623 {
4624 	return zones_size[zone_type];
4625 }
4626 
4627 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4628 						unsigned long zone_type,
4629 						unsigned long node_start_pfn,
4630 						unsigned long node_end_pfn,
4631 						unsigned long *zholes_size)
4632 {
4633 	if (!zholes_size)
4634 		return 0;
4635 
4636 	return zholes_size[zone_type];
4637 }
4638 
4639 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4640 
4641 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4642 						unsigned long node_start_pfn,
4643 						unsigned long node_end_pfn,
4644 						unsigned long *zones_size,
4645 						unsigned long *zholes_size)
4646 {
4647 	unsigned long realtotalpages, totalpages = 0;
4648 	enum zone_type i;
4649 
4650 	for (i = 0; i < MAX_NR_ZONES; i++)
4651 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4652 							 node_start_pfn,
4653 							 node_end_pfn,
4654 							 zones_size);
4655 	pgdat->node_spanned_pages = totalpages;
4656 
4657 	realtotalpages = totalpages;
4658 	for (i = 0; i < MAX_NR_ZONES; i++)
4659 		realtotalpages -=
4660 			zone_absent_pages_in_node(pgdat->node_id, i,
4661 						  node_start_pfn, node_end_pfn,
4662 						  zholes_size);
4663 	pgdat->node_present_pages = realtotalpages;
4664 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4665 							realtotalpages);
4666 }
4667 
4668 #ifndef CONFIG_SPARSEMEM
4669 /*
4670  * Calculate the size of the zone->blockflags rounded to an unsigned long
4671  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4672  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4673  * round what is now in bits to nearest long in bits, then return it in
4674  * bytes.
4675  */
4676 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4677 {
4678 	unsigned long usemapsize;
4679 
4680 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4681 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4682 	usemapsize = usemapsize >> pageblock_order;
4683 	usemapsize *= NR_PAGEBLOCK_BITS;
4684 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4685 
4686 	return usemapsize / 8;
4687 }
4688 
4689 static void __init setup_usemap(struct pglist_data *pgdat,
4690 				struct zone *zone,
4691 				unsigned long zone_start_pfn,
4692 				unsigned long zonesize)
4693 {
4694 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4695 	zone->pageblock_flags = NULL;
4696 	if (usemapsize)
4697 		zone->pageblock_flags =
4698 			memblock_virt_alloc_node_nopanic(usemapsize,
4699 							 pgdat->node_id);
4700 }
4701 #else
4702 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4703 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4704 #endif /* CONFIG_SPARSEMEM */
4705 
4706 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4707 
4708 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4709 void __paginginit set_pageblock_order(void)
4710 {
4711 	unsigned int order;
4712 
4713 	/* Check that pageblock_nr_pages has not already been setup */
4714 	if (pageblock_order)
4715 		return;
4716 
4717 	if (HPAGE_SHIFT > PAGE_SHIFT)
4718 		order = HUGETLB_PAGE_ORDER;
4719 	else
4720 		order = MAX_ORDER - 1;
4721 
4722 	/*
4723 	 * Assume the largest contiguous order of interest is a huge page.
4724 	 * This value may be variable depending on boot parameters on IA64 and
4725 	 * powerpc.
4726 	 */
4727 	pageblock_order = order;
4728 }
4729 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4730 
4731 /*
4732  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4733  * is unused as pageblock_order is set at compile-time. See
4734  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4735  * the kernel config
4736  */
4737 void __paginginit set_pageblock_order(void)
4738 {
4739 }
4740 
4741 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4742 
4743 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4744 						   unsigned long present_pages)
4745 {
4746 	unsigned long pages = spanned_pages;
4747 
4748 	/*
4749 	 * Provide a more accurate estimation if there are holes within
4750 	 * the zone and SPARSEMEM is in use. If there are holes within the
4751 	 * zone, each populated memory region may cost us one or two extra
4752 	 * memmap pages due to alignment because memmap pages for each
4753 	 * populated regions may not naturally algined on page boundary.
4754 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4755 	 */
4756 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4757 	    IS_ENABLED(CONFIG_SPARSEMEM))
4758 		pages = present_pages;
4759 
4760 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4761 }
4762 
4763 /*
4764  * Set up the zone data structures:
4765  *   - mark all pages reserved
4766  *   - mark all memory queues empty
4767  *   - clear the memory bitmaps
4768  *
4769  * NOTE: pgdat should get zeroed by caller.
4770  */
4771 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4772 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4773 		unsigned long *zones_size, unsigned long *zholes_size)
4774 {
4775 	enum zone_type j;
4776 	int nid = pgdat->node_id;
4777 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4778 	int ret;
4779 
4780 	pgdat_resize_init(pgdat);
4781 #ifdef CONFIG_NUMA_BALANCING
4782 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4783 	pgdat->numabalancing_migrate_nr_pages = 0;
4784 	pgdat->numabalancing_migrate_next_window = jiffies;
4785 #endif
4786 	init_waitqueue_head(&pgdat->kswapd_wait);
4787 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4788 	pgdat_page_cgroup_init(pgdat);
4789 
4790 	for (j = 0; j < MAX_NR_ZONES; j++) {
4791 		struct zone *zone = pgdat->node_zones + j;
4792 		unsigned long size, realsize, freesize, memmap_pages;
4793 
4794 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4795 						  node_end_pfn, zones_size);
4796 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4797 								node_start_pfn,
4798 								node_end_pfn,
4799 								zholes_size);
4800 
4801 		/*
4802 		 * Adjust freesize so that it accounts for how much memory
4803 		 * is used by this zone for memmap. This affects the watermark
4804 		 * and per-cpu initialisations
4805 		 */
4806 		memmap_pages = calc_memmap_size(size, realsize);
4807 		if (freesize >= memmap_pages) {
4808 			freesize -= memmap_pages;
4809 			if (memmap_pages)
4810 				printk(KERN_DEBUG
4811 				       "  %s zone: %lu pages used for memmap\n",
4812 				       zone_names[j], memmap_pages);
4813 		} else
4814 			printk(KERN_WARNING
4815 				"  %s zone: %lu pages exceeds freesize %lu\n",
4816 				zone_names[j], memmap_pages, freesize);
4817 
4818 		/* Account for reserved pages */
4819 		if (j == 0 && freesize > dma_reserve) {
4820 			freesize -= dma_reserve;
4821 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4822 					zone_names[0], dma_reserve);
4823 		}
4824 
4825 		if (!is_highmem_idx(j))
4826 			nr_kernel_pages += freesize;
4827 		/* Charge for highmem memmap if there are enough kernel pages */
4828 		else if (nr_kernel_pages > memmap_pages * 2)
4829 			nr_kernel_pages -= memmap_pages;
4830 		nr_all_pages += freesize;
4831 
4832 		zone->spanned_pages = size;
4833 		zone->present_pages = realsize;
4834 		/*
4835 		 * Set an approximate value for lowmem here, it will be adjusted
4836 		 * when the bootmem allocator frees pages into the buddy system.
4837 		 * And all highmem pages will be managed by the buddy system.
4838 		 */
4839 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4840 #ifdef CONFIG_NUMA
4841 		zone->node = nid;
4842 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4843 						/ 100;
4844 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4845 #endif
4846 		zone->name = zone_names[j];
4847 		spin_lock_init(&zone->lock);
4848 		spin_lock_init(&zone->lru_lock);
4849 		zone_seqlock_init(zone);
4850 		zone->zone_pgdat = pgdat;
4851 		zone_pcp_init(zone);
4852 
4853 		/* For bootup, initialized properly in watermark setup */
4854 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4855 
4856 		lruvec_init(&zone->lruvec);
4857 		if (!size)
4858 			continue;
4859 
4860 		set_pageblock_order();
4861 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4862 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4863 						size, MEMMAP_EARLY);
4864 		BUG_ON(ret);
4865 		memmap_init(size, nid, j, zone_start_pfn);
4866 		zone_start_pfn += size;
4867 	}
4868 }
4869 
4870 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4871 {
4872 	/* Skip empty nodes */
4873 	if (!pgdat->node_spanned_pages)
4874 		return;
4875 
4876 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4877 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4878 	if (!pgdat->node_mem_map) {
4879 		unsigned long size, start, end;
4880 		struct page *map;
4881 
4882 		/*
4883 		 * The zone's endpoints aren't required to be MAX_ORDER
4884 		 * aligned but the node_mem_map endpoints must be in order
4885 		 * for the buddy allocator to function correctly.
4886 		 */
4887 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4888 		end = pgdat_end_pfn(pgdat);
4889 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4890 		size =  (end - start) * sizeof(struct page);
4891 		map = alloc_remap(pgdat->node_id, size);
4892 		if (!map)
4893 			map = memblock_virt_alloc_node_nopanic(size,
4894 							       pgdat->node_id);
4895 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4896 	}
4897 #ifndef CONFIG_NEED_MULTIPLE_NODES
4898 	/*
4899 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4900 	 */
4901 	if (pgdat == NODE_DATA(0)) {
4902 		mem_map = NODE_DATA(0)->node_mem_map;
4903 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4904 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4905 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4906 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4907 	}
4908 #endif
4909 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4910 }
4911 
4912 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4913 		unsigned long node_start_pfn, unsigned long *zholes_size)
4914 {
4915 	pg_data_t *pgdat = NODE_DATA(nid);
4916 	unsigned long start_pfn = 0;
4917 	unsigned long end_pfn = 0;
4918 
4919 	/* pg_data_t should be reset to zero when it's allocated */
4920 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4921 
4922 	pgdat->node_id = nid;
4923 	pgdat->node_start_pfn = node_start_pfn;
4924 	if (node_state(nid, N_MEMORY))
4925 		init_zone_allows_reclaim(nid);
4926 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4927 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4928 #endif
4929 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4930 				  zones_size, zholes_size);
4931 
4932 	alloc_node_mem_map(pgdat);
4933 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4934 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4935 		nid, (unsigned long)pgdat,
4936 		(unsigned long)pgdat->node_mem_map);
4937 #endif
4938 
4939 	free_area_init_core(pgdat, start_pfn, end_pfn,
4940 			    zones_size, zholes_size);
4941 }
4942 
4943 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4944 
4945 #if MAX_NUMNODES > 1
4946 /*
4947  * Figure out the number of possible node ids.
4948  */
4949 void __init setup_nr_node_ids(void)
4950 {
4951 	unsigned int node;
4952 	unsigned int highest = 0;
4953 
4954 	for_each_node_mask(node, node_possible_map)
4955 		highest = node;
4956 	nr_node_ids = highest + 1;
4957 }
4958 #endif
4959 
4960 /**
4961  * node_map_pfn_alignment - determine the maximum internode alignment
4962  *
4963  * This function should be called after node map is populated and sorted.
4964  * It calculates the maximum power of two alignment which can distinguish
4965  * all the nodes.
4966  *
4967  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4968  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4969  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4970  * shifted, 1GiB is enough and this function will indicate so.
4971  *
4972  * This is used to test whether pfn -> nid mapping of the chosen memory
4973  * model has fine enough granularity to avoid incorrect mapping for the
4974  * populated node map.
4975  *
4976  * Returns the determined alignment in pfn's.  0 if there is no alignment
4977  * requirement (single node).
4978  */
4979 unsigned long __init node_map_pfn_alignment(void)
4980 {
4981 	unsigned long accl_mask = 0, last_end = 0;
4982 	unsigned long start, end, mask;
4983 	int last_nid = -1;
4984 	int i, nid;
4985 
4986 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4987 		if (!start || last_nid < 0 || last_nid == nid) {
4988 			last_nid = nid;
4989 			last_end = end;
4990 			continue;
4991 		}
4992 
4993 		/*
4994 		 * Start with a mask granular enough to pin-point to the
4995 		 * start pfn and tick off bits one-by-one until it becomes
4996 		 * too coarse to separate the current node from the last.
4997 		 */
4998 		mask = ~((1 << __ffs(start)) - 1);
4999 		while (mask && last_end <= (start & (mask << 1)))
5000 			mask <<= 1;
5001 
5002 		/* accumulate all internode masks */
5003 		accl_mask |= mask;
5004 	}
5005 
5006 	/* convert mask to number of pages */
5007 	return ~accl_mask + 1;
5008 }
5009 
5010 /* Find the lowest pfn for a node */
5011 static unsigned long __init find_min_pfn_for_node(int nid)
5012 {
5013 	unsigned long min_pfn = ULONG_MAX;
5014 	unsigned long start_pfn;
5015 	int i;
5016 
5017 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5018 		min_pfn = min(min_pfn, start_pfn);
5019 
5020 	if (min_pfn == ULONG_MAX) {
5021 		printk(KERN_WARNING
5022 			"Could not find start_pfn for node %d\n", nid);
5023 		return 0;
5024 	}
5025 
5026 	return min_pfn;
5027 }
5028 
5029 /**
5030  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5031  *
5032  * It returns the minimum PFN based on information provided via
5033  * add_active_range().
5034  */
5035 unsigned long __init find_min_pfn_with_active_regions(void)
5036 {
5037 	return find_min_pfn_for_node(MAX_NUMNODES);
5038 }
5039 
5040 /*
5041  * early_calculate_totalpages()
5042  * Sum pages in active regions for movable zone.
5043  * Populate N_MEMORY for calculating usable_nodes.
5044  */
5045 static unsigned long __init early_calculate_totalpages(void)
5046 {
5047 	unsigned long totalpages = 0;
5048 	unsigned long start_pfn, end_pfn;
5049 	int i, nid;
5050 
5051 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5052 		unsigned long pages = end_pfn - start_pfn;
5053 
5054 		totalpages += pages;
5055 		if (pages)
5056 			node_set_state(nid, N_MEMORY);
5057 	}
5058 	return totalpages;
5059 }
5060 
5061 /*
5062  * Find the PFN the Movable zone begins in each node. Kernel memory
5063  * is spread evenly between nodes as long as the nodes have enough
5064  * memory. When they don't, some nodes will have more kernelcore than
5065  * others
5066  */
5067 static void __init find_zone_movable_pfns_for_nodes(void)
5068 {
5069 	int i, nid;
5070 	unsigned long usable_startpfn;
5071 	unsigned long kernelcore_node, kernelcore_remaining;
5072 	/* save the state before borrow the nodemask */
5073 	nodemask_t saved_node_state = node_states[N_MEMORY];
5074 	unsigned long totalpages = early_calculate_totalpages();
5075 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5076 	struct memblock_region *r;
5077 
5078 	/* Need to find movable_zone earlier when movable_node is specified. */
5079 	find_usable_zone_for_movable();
5080 
5081 	/*
5082 	 * If movable_node is specified, ignore kernelcore and movablecore
5083 	 * options.
5084 	 */
5085 	if (movable_node_is_enabled()) {
5086 		for_each_memblock(memory, r) {
5087 			if (!memblock_is_hotpluggable(r))
5088 				continue;
5089 
5090 			nid = r->nid;
5091 
5092 			usable_startpfn = PFN_DOWN(r->base);
5093 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5094 				min(usable_startpfn, zone_movable_pfn[nid]) :
5095 				usable_startpfn;
5096 		}
5097 
5098 		goto out2;
5099 	}
5100 
5101 	/*
5102 	 * If movablecore=nn[KMG] was specified, calculate what size of
5103 	 * kernelcore that corresponds so that memory usable for
5104 	 * any allocation type is evenly spread. If both kernelcore
5105 	 * and movablecore are specified, then the value of kernelcore
5106 	 * will be used for required_kernelcore if it's greater than
5107 	 * what movablecore would have allowed.
5108 	 */
5109 	if (required_movablecore) {
5110 		unsigned long corepages;
5111 
5112 		/*
5113 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5114 		 * was requested by the user
5115 		 */
5116 		required_movablecore =
5117 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5118 		corepages = totalpages - required_movablecore;
5119 
5120 		required_kernelcore = max(required_kernelcore, corepages);
5121 	}
5122 
5123 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5124 	if (!required_kernelcore)
5125 		goto out;
5126 
5127 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5128 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5129 
5130 restart:
5131 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5132 	kernelcore_node = required_kernelcore / usable_nodes;
5133 	for_each_node_state(nid, N_MEMORY) {
5134 		unsigned long start_pfn, end_pfn;
5135 
5136 		/*
5137 		 * Recalculate kernelcore_node if the division per node
5138 		 * now exceeds what is necessary to satisfy the requested
5139 		 * amount of memory for the kernel
5140 		 */
5141 		if (required_kernelcore < kernelcore_node)
5142 			kernelcore_node = required_kernelcore / usable_nodes;
5143 
5144 		/*
5145 		 * As the map is walked, we track how much memory is usable
5146 		 * by the kernel using kernelcore_remaining. When it is
5147 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5148 		 */
5149 		kernelcore_remaining = kernelcore_node;
5150 
5151 		/* Go through each range of PFNs within this node */
5152 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5153 			unsigned long size_pages;
5154 
5155 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5156 			if (start_pfn >= end_pfn)
5157 				continue;
5158 
5159 			/* Account for what is only usable for kernelcore */
5160 			if (start_pfn < usable_startpfn) {
5161 				unsigned long kernel_pages;
5162 				kernel_pages = min(end_pfn, usable_startpfn)
5163 								- start_pfn;
5164 
5165 				kernelcore_remaining -= min(kernel_pages,
5166 							kernelcore_remaining);
5167 				required_kernelcore -= min(kernel_pages,
5168 							required_kernelcore);
5169 
5170 				/* Continue if range is now fully accounted */
5171 				if (end_pfn <= usable_startpfn) {
5172 
5173 					/*
5174 					 * Push zone_movable_pfn to the end so
5175 					 * that if we have to rebalance
5176 					 * kernelcore across nodes, we will
5177 					 * not double account here
5178 					 */
5179 					zone_movable_pfn[nid] = end_pfn;
5180 					continue;
5181 				}
5182 				start_pfn = usable_startpfn;
5183 			}
5184 
5185 			/*
5186 			 * The usable PFN range for ZONE_MOVABLE is from
5187 			 * start_pfn->end_pfn. Calculate size_pages as the
5188 			 * number of pages used as kernelcore
5189 			 */
5190 			size_pages = end_pfn - start_pfn;
5191 			if (size_pages > kernelcore_remaining)
5192 				size_pages = kernelcore_remaining;
5193 			zone_movable_pfn[nid] = start_pfn + size_pages;
5194 
5195 			/*
5196 			 * Some kernelcore has been met, update counts and
5197 			 * break if the kernelcore for this node has been
5198 			 * satisfied
5199 			 */
5200 			required_kernelcore -= min(required_kernelcore,
5201 								size_pages);
5202 			kernelcore_remaining -= size_pages;
5203 			if (!kernelcore_remaining)
5204 				break;
5205 		}
5206 	}
5207 
5208 	/*
5209 	 * If there is still required_kernelcore, we do another pass with one
5210 	 * less node in the count. This will push zone_movable_pfn[nid] further
5211 	 * along on the nodes that still have memory until kernelcore is
5212 	 * satisfied
5213 	 */
5214 	usable_nodes--;
5215 	if (usable_nodes && required_kernelcore > usable_nodes)
5216 		goto restart;
5217 
5218 out2:
5219 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5220 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5221 		zone_movable_pfn[nid] =
5222 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5223 
5224 out:
5225 	/* restore the node_state */
5226 	node_states[N_MEMORY] = saved_node_state;
5227 }
5228 
5229 /* Any regular or high memory on that node ? */
5230 static void check_for_memory(pg_data_t *pgdat, int nid)
5231 {
5232 	enum zone_type zone_type;
5233 
5234 	if (N_MEMORY == N_NORMAL_MEMORY)
5235 		return;
5236 
5237 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5238 		struct zone *zone = &pgdat->node_zones[zone_type];
5239 		if (populated_zone(zone)) {
5240 			node_set_state(nid, N_HIGH_MEMORY);
5241 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5242 			    zone_type <= ZONE_NORMAL)
5243 				node_set_state(nid, N_NORMAL_MEMORY);
5244 			break;
5245 		}
5246 	}
5247 }
5248 
5249 /**
5250  * free_area_init_nodes - Initialise all pg_data_t and zone data
5251  * @max_zone_pfn: an array of max PFNs for each zone
5252  *
5253  * This will call free_area_init_node() for each active node in the system.
5254  * Using the page ranges provided by add_active_range(), the size of each
5255  * zone in each node and their holes is calculated. If the maximum PFN
5256  * between two adjacent zones match, it is assumed that the zone is empty.
5257  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5258  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5259  * starts where the previous one ended. For example, ZONE_DMA32 starts
5260  * at arch_max_dma_pfn.
5261  */
5262 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5263 {
5264 	unsigned long start_pfn, end_pfn;
5265 	int i, nid;
5266 
5267 	/* Record where the zone boundaries are */
5268 	memset(arch_zone_lowest_possible_pfn, 0,
5269 				sizeof(arch_zone_lowest_possible_pfn));
5270 	memset(arch_zone_highest_possible_pfn, 0,
5271 				sizeof(arch_zone_highest_possible_pfn));
5272 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5273 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5274 	for (i = 1; i < MAX_NR_ZONES; i++) {
5275 		if (i == ZONE_MOVABLE)
5276 			continue;
5277 		arch_zone_lowest_possible_pfn[i] =
5278 			arch_zone_highest_possible_pfn[i-1];
5279 		arch_zone_highest_possible_pfn[i] =
5280 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5281 	}
5282 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5283 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5284 
5285 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5286 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5287 	find_zone_movable_pfns_for_nodes();
5288 
5289 	/* Print out the zone ranges */
5290 	printk("Zone ranges:\n");
5291 	for (i = 0; i < MAX_NR_ZONES; i++) {
5292 		if (i == ZONE_MOVABLE)
5293 			continue;
5294 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5295 		if (arch_zone_lowest_possible_pfn[i] ==
5296 				arch_zone_highest_possible_pfn[i])
5297 			printk(KERN_CONT "empty\n");
5298 		else
5299 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5300 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5301 				(arch_zone_highest_possible_pfn[i]
5302 					<< PAGE_SHIFT) - 1);
5303 	}
5304 
5305 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5306 	printk("Movable zone start for each node\n");
5307 	for (i = 0; i < MAX_NUMNODES; i++) {
5308 		if (zone_movable_pfn[i])
5309 			printk("  Node %d: %#010lx\n", i,
5310 			       zone_movable_pfn[i] << PAGE_SHIFT);
5311 	}
5312 
5313 	/* Print out the early node map */
5314 	printk("Early memory node ranges\n");
5315 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5316 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5317 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5318 
5319 	/* Initialise every node */
5320 	mminit_verify_pageflags_layout();
5321 	setup_nr_node_ids();
5322 	for_each_online_node(nid) {
5323 		pg_data_t *pgdat = NODE_DATA(nid);
5324 		free_area_init_node(nid, NULL,
5325 				find_min_pfn_for_node(nid), NULL);
5326 
5327 		/* Any memory on that node */
5328 		if (pgdat->node_present_pages)
5329 			node_set_state(nid, N_MEMORY);
5330 		check_for_memory(pgdat, nid);
5331 	}
5332 }
5333 
5334 static int __init cmdline_parse_core(char *p, unsigned long *core)
5335 {
5336 	unsigned long long coremem;
5337 	if (!p)
5338 		return -EINVAL;
5339 
5340 	coremem = memparse(p, &p);
5341 	*core = coremem >> PAGE_SHIFT;
5342 
5343 	/* Paranoid check that UL is enough for the coremem value */
5344 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5345 
5346 	return 0;
5347 }
5348 
5349 /*
5350  * kernelcore=size sets the amount of memory for use for allocations that
5351  * cannot be reclaimed or migrated.
5352  */
5353 static int __init cmdline_parse_kernelcore(char *p)
5354 {
5355 	return cmdline_parse_core(p, &required_kernelcore);
5356 }
5357 
5358 /*
5359  * movablecore=size sets the amount of memory for use for allocations that
5360  * can be reclaimed or migrated.
5361  */
5362 static int __init cmdline_parse_movablecore(char *p)
5363 {
5364 	return cmdline_parse_core(p, &required_movablecore);
5365 }
5366 
5367 early_param("kernelcore", cmdline_parse_kernelcore);
5368 early_param("movablecore", cmdline_parse_movablecore);
5369 
5370 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5371 
5372 void adjust_managed_page_count(struct page *page, long count)
5373 {
5374 	spin_lock(&managed_page_count_lock);
5375 	page_zone(page)->managed_pages += count;
5376 	totalram_pages += count;
5377 #ifdef CONFIG_HIGHMEM
5378 	if (PageHighMem(page))
5379 		totalhigh_pages += count;
5380 #endif
5381 	spin_unlock(&managed_page_count_lock);
5382 }
5383 EXPORT_SYMBOL(adjust_managed_page_count);
5384 
5385 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5386 {
5387 	void *pos;
5388 	unsigned long pages = 0;
5389 
5390 	start = (void *)PAGE_ALIGN((unsigned long)start);
5391 	end = (void *)((unsigned long)end & PAGE_MASK);
5392 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5393 		if ((unsigned int)poison <= 0xFF)
5394 			memset(pos, poison, PAGE_SIZE);
5395 		free_reserved_page(virt_to_page(pos));
5396 	}
5397 
5398 	if (pages && s)
5399 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5400 			s, pages << (PAGE_SHIFT - 10), start, end);
5401 
5402 	return pages;
5403 }
5404 EXPORT_SYMBOL(free_reserved_area);
5405 
5406 #ifdef	CONFIG_HIGHMEM
5407 void free_highmem_page(struct page *page)
5408 {
5409 	__free_reserved_page(page);
5410 	totalram_pages++;
5411 	page_zone(page)->managed_pages++;
5412 	totalhigh_pages++;
5413 }
5414 #endif
5415 
5416 
5417 void __init mem_init_print_info(const char *str)
5418 {
5419 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5420 	unsigned long init_code_size, init_data_size;
5421 
5422 	physpages = get_num_physpages();
5423 	codesize = _etext - _stext;
5424 	datasize = _edata - _sdata;
5425 	rosize = __end_rodata - __start_rodata;
5426 	bss_size = __bss_stop - __bss_start;
5427 	init_data_size = __init_end - __init_begin;
5428 	init_code_size = _einittext - _sinittext;
5429 
5430 	/*
5431 	 * Detect special cases and adjust section sizes accordingly:
5432 	 * 1) .init.* may be embedded into .data sections
5433 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5434 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5435 	 * 3) .rodata.* may be embedded into .text or .data sections.
5436 	 */
5437 #define adj_init_size(start, end, size, pos, adj) \
5438 	do { \
5439 		if (start <= pos && pos < end && size > adj) \
5440 			size -= adj; \
5441 	} while (0)
5442 
5443 	adj_init_size(__init_begin, __init_end, init_data_size,
5444 		     _sinittext, init_code_size);
5445 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5446 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5447 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5448 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5449 
5450 #undef	adj_init_size
5451 
5452 	printk("Memory: %luK/%luK available "
5453 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5454 	       "%luK init, %luK bss, %luK reserved"
5455 #ifdef	CONFIG_HIGHMEM
5456 	       ", %luK highmem"
5457 #endif
5458 	       "%s%s)\n",
5459 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5460 	       codesize >> 10, datasize >> 10, rosize >> 10,
5461 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5462 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5463 #ifdef	CONFIG_HIGHMEM
5464 	       totalhigh_pages << (PAGE_SHIFT-10),
5465 #endif
5466 	       str ? ", " : "", str ? str : "");
5467 }
5468 
5469 /**
5470  * set_dma_reserve - set the specified number of pages reserved in the first zone
5471  * @new_dma_reserve: The number of pages to mark reserved
5472  *
5473  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5474  * In the DMA zone, a significant percentage may be consumed by kernel image
5475  * and other unfreeable allocations which can skew the watermarks badly. This
5476  * function may optionally be used to account for unfreeable pages in the
5477  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5478  * smaller per-cpu batchsize.
5479  */
5480 void __init set_dma_reserve(unsigned long new_dma_reserve)
5481 {
5482 	dma_reserve = new_dma_reserve;
5483 }
5484 
5485 void __init free_area_init(unsigned long *zones_size)
5486 {
5487 	free_area_init_node(0, zones_size,
5488 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5489 }
5490 
5491 static int page_alloc_cpu_notify(struct notifier_block *self,
5492 				 unsigned long action, void *hcpu)
5493 {
5494 	int cpu = (unsigned long)hcpu;
5495 
5496 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5497 		lru_add_drain_cpu(cpu);
5498 		drain_pages(cpu);
5499 
5500 		/*
5501 		 * Spill the event counters of the dead processor
5502 		 * into the current processors event counters.
5503 		 * This artificially elevates the count of the current
5504 		 * processor.
5505 		 */
5506 		vm_events_fold_cpu(cpu);
5507 
5508 		/*
5509 		 * Zero the differential counters of the dead processor
5510 		 * so that the vm statistics are consistent.
5511 		 *
5512 		 * This is only okay since the processor is dead and cannot
5513 		 * race with what we are doing.
5514 		 */
5515 		cpu_vm_stats_fold(cpu);
5516 	}
5517 	return NOTIFY_OK;
5518 }
5519 
5520 void __init page_alloc_init(void)
5521 {
5522 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5523 }
5524 
5525 /*
5526  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5527  *	or min_free_kbytes changes.
5528  */
5529 static void calculate_totalreserve_pages(void)
5530 {
5531 	struct pglist_data *pgdat;
5532 	unsigned long reserve_pages = 0;
5533 	enum zone_type i, j;
5534 
5535 	for_each_online_pgdat(pgdat) {
5536 		for (i = 0; i < MAX_NR_ZONES; i++) {
5537 			struct zone *zone = pgdat->node_zones + i;
5538 			unsigned long max = 0;
5539 
5540 			/* Find valid and maximum lowmem_reserve in the zone */
5541 			for (j = i; j < MAX_NR_ZONES; j++) {
5542 				if (zone->lowmem_reserve[j] > max)
5543 					max = zone->lowmem_reserve[j];
5544 			}
5545 
5546 			/* we treat the high watermark as reserved pages. */
5547 			max += high_wmark_pages(zone);
5548 
5549 			if (max > zone->managed_pages)
5550 				max = zone->managed_pages;
5551 			reserve_pages += max;
5552 			/*
5553 			 * Lowmem reserves are not available to
5554 			 * GFP_HIGHUSER page cache allocations and
5555 			 * kswapd tries to balance zones to their high
5556 			 * watermark.  As a result, neither should be
5557 			 * regarded as dirtyable memory, to prevent a
5558 			 * situation where reclaim has to clean pages
5559 			 * in order to balance the zones.
5560 			 */
5561 			zone->dirty_balance_reserve = max;
5562 		}
5563 	}
5564 	dirty_balance_reserve = reserve_pages;
5565 	totalreserve_pages = reserve_pages;
5566 }
5567 
5568 /*
5569  * setup_per_zone_lowmem_reserve - called whenever
5570  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5571  *	has a correct pages reserved value, so an adequate number of
5572  *	pages are left in the zone after a successful __alloc_pages().
5573  */
5574 static void setup_per_zone_lowmem_reserve(void)
5575 {
5576 	struct pglist_data *pgdat;
5577 	enum zone_type j, idx;
5578 
5579 	for_each_online_pgdat(pgdat) {
5580 		for (j = 0; j < MAX_NR_ZONES; j++) {
5581 			struct zone *zone = pgdat->node_zones + j;
5582 			unsigned long managed_pages = zone->managed_pages;
5583 
5584 			zone->lowmem_reserve[j] = 0;
5585 
5586 			idx = j;
5587 			while (idx) {
5588 				struct zone *lower_zone;
5589 
5590 				idx--;
5591 
5592 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5593 					sysctl_lowmem_reserve_ratio[idx] = 1;
5594 
5595 				lower_zone = pgdat->node_zones + idx;
5596 				lower_zone->lowmem_reserve[j] = managed_pages /
5597 					sysctl_lowmem_reserve_ratio[idx];
5598 				managed_pages += lower_zone->managed_pages;
5599 			}
5600 		}
5601 	}
5602 
5603 	/* update totalreserve_pages */
5604 	calculate_totalreserve_pages();
5605 }
5606 
5607 static void __setup_per_zone_wmarks(void)
5608 {
5609 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5610 	unsigned long lowmem_pages = 0;
5611 	struct zone *zone;
5612 	unsigned long flags;
5613 
5614 	/* Calculate total number of !ZONE_HIGHMEM pages */
5615 	for_each_zone(zone) {
5616 		if (!is_highmem(zone))
5617 			lowmem_pages += zone->managed_pages;
5618 	}
5619 
5620 	for_each_zone(zone) {
5621 		u64 tmp;
5622 
5623 		spin_lock_irqsave(&zone->lock, flags);
5624 		tmp = (u64)pages_min * zone->managed_pages;
5625 		do_div(tmp, lowmem_pages);
5626 		if (is_highmem(zone)) {
5627 			/*
5628 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5629 			 * need highmem pages, so cap pages_min to a small
5630 			 * value here.
5631 			 *
5632 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5633 			 * deltas controls asynch page reclaim, and so should
5634 			 * not be capped for highmem.
5635 			 */
5636 			unsigned long min_pages;
5637 
5638 			min_pages = zone->managed_pages / 1024;
5639 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5640 			zone->watermark[WMARK_MIN] = min_pages;
5641 		} else {
5642 			/*
5643 			 * If it's a lowmem zone, reserve a number of pages
5644 			 * proportionate to the zone's size.
5645 			 */
5646 			zone->watermark[WMARK_MIN] = tmp;
5647 		}
5648 
5649 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5650 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5651 
5652 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5653 				      high_wmark_pages(zone) -
5654 				      low_wmark_pages(zone) -
5655 				      zone_page_state(zone, NR_ALLOC_BATCH));
5656 
5657 		setup_zone_migrate_reserve(zone);
5658 		spin_unlock_irqrestore(&zone->lock, flags);
5659 	}
5660 
5661 	/* update totalreserve_pages */
5662 	calculate_totalreserve_pages();
5663 }
5664 
5665 /**
5666  * setup_per_zone_wmarks - called when min_free_kbytes changes
5667  * or when memory is hot-{added|removed}
5668  *
5669  * Ensures that the watermark[min,low,high] values for each zone are set
5670  * correctly with respect to min_free_kbytes.
5671  */
5672 void setup_per_zone_wmarks(void)
5673 {
5674 	mutex_lock(&zonelists_mutex);
5675 	__setup_per_zone_wmarks();
5676 	mutex_unlock(&zonelists_mutex);
5677 }
5678 
5679 /*
5680  * The inactive anon list should be small enough that the VM never has to
5681  * do too much work, but large enough that each inactive page has a chance
5682  * to be referenced again before it is swapped out.
5683  *
5684  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5685  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5686  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5687  * the anonymous pages are kept on the inactive list.
5688  *
5689  * total     target    max
5690  * memory    ratio     inactive anon
5691  * -------------------------------------
5692  *   10MB       1         5MB
5693  *  100MB       1        50MB
5694  *    1GB       3       250MB
5695  *   10GB      10       0.9GB
5696  *  100GB      31         3GB
5697  *    1TB     101        10GB
5698  *   10TB     320        32GB
5699  */
5700 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5701 {
5702 	unsigned int gb, ratio;
5703 
5704 	/* Zone size in gigabytes */
5705 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5706 	if (gb)
5707 		ratio = int_sqrt(10 * gb);
5708 	else
5709 		ratio = 1;
5710 
5711 	zone->inactive_ratio = ratio;
5712 }
5713 
5714 static void __meminit setup_per_zone_inactive_ratio(void)
5715 {
5716 	struct zone *zone;
5717 
5718 	for_each_zone(zone)
5719 		calculate_zone_inactive_ratio(zone);
5720 }
5721 
5722 /*
5723  * Initialise min_free_kbytes.
5724  *
5725  * For small machines we want it small (128k min).  For large machines
5726  * we want it large (64MB max).  But it is not linear, because network
5727  * bandwidth does not increase linearly with machine size.  We use
5728  *
5729  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5730  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5731  *
5732  * which yields
5733  *
5734  * 16MB:	512k
5735  * 32MB:	724k
5736  * 64MB:	1024k
5737  * 128MB:	1448k
5738  * 256MB:	2048k
5739  * 512MB:	2896k
5740  * 1024MB:	4096k
5741  * 2048MB:	5792k
5742  * 4096MB:	8192k
5743  * 8192MB:	11584k
5744  * 16384MB:	16384k
5745  */
5746 int __meminit init_per_zone_wmark_min(void)
5747 {
5748 	unsigned long lowmem_kbytes;
5749 	int new_min_free_kbytes;
5750 
5751 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5752 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5753 
5754 	if (new_min_free_kbytes > user_min_free_kbytes) {
5755 		min_free_kbytes = new_min_free_kbytes;
5756 		if (min_free_kbytes < 128)
5757 			min_free_kbytes = 128;
5758 		if (min_free_kbytes > 65536)
5759 			min_free_kbytes = 65536;
5760 	} else {
5761 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5762 				new_min_free_kbytes, user_min_free_kbytes);
5763 	}
5764 	setup_per_zone_wmarks();
5765 	refresh_zone_stat_thresholds();
5766 	setup_per_zone_lowmem_reserve();
5767 	setup_per_zone_inactive_ratio();
5768 	return 0;
5769 }
5770 module_init(init_per_zone_wmark_min)
5771 
5772 /*
5773  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5774  *	that we can call two helper functions whenever min_free_kbytes
5775  *	changes.
5776  */
5777 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5778 	void __user *buffer, size_t *length, loff_t *ppos)
5779 {
5780 	int rc;
5781 
5782 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5783 	if (rc)
5784 		return rc;
5785 
5786 	if (write) {
5787 		user_min_free_kbytes = min_free_kbytes;
5788 		setup_per_zone_wmarks();
5789 	}
5790 	return 0;
5791 }
5792 
5793 #ifdef CONFIG_NUMA
5794 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5795 	void __user *buffer, size_t *length, loff_t *ppos)
5796 {
5797 	struct zone *zone;
5798 	int rc;
5799 
5800 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5801 	if (rc)
5802 		return rc;
5803 
5804 	for_each_zone(zone)
5805 		zone->min_unmapped_pages = (zone->managed_pages *
5806 				sysctl_min_unmapped_ratio) / 100;
5807 	return 0;
5808 }
5809 
5810 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5811 	void __user *buffer, size_t *length, loff_t *ppos)
5812 {
5813 	struct zone *zone;
5814 	int rc;
5815 
5816 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5817 	if (rc)
5818 		return rc;
5819 
5820 	for_each_zone(zone)
5821 		zone->min_slab_pages = (zone->managed_pages *
5822 				sysctl_min_slab_ratio) / 100;
5823 	return 0;
5824 }
5825 #endif
5826 
5827 /*
5828  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5829  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5830  *	whenever sysctl_lowmem_reserve_ratio changes.
5831  *
5832  * The reserve ratio obviously has absolutely no relation with the
5833  * minimum watermarks. The lowmem reserve ratio can only make sense
5834  * if in function of the boot time zone sizes.
5835  */
5836 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5837 	void __user *buffer, size_t *length, loff_t *ppos)
5838 {
5839 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5840 	setup_per_zone_lowmem_reserve();
5841 	return 0;
5842 }
5843 
5844 /*
5845  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5846  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5847  * pagelist can have before it gets flushed back to buddy allocator.
5848  */
5849 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5850 	void __user *buffer, size_t *length, loff_t *ppos)
5851 {
5852 	struct zone *zone;
5853 	unsigned int cpu;
5854 	int ret;
5855 
5856 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5857 	if (!write || (ret < 0))
5858 		return ret;
5859 
5860 	mutex_lock(&pcp_batch_high_lock);
5861 	for_each_populated_zone(zone) {
5862 		unsigned long  high;
5863 		high = zone->managed_pages / percpu_pagelist_fraction;
5864 		for_each_possible_cpu(cpu)
5865 			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5866 					 high);
5867 	}
5868 	mutex_unlock(&pcp_batch_high_lock);
5869 	return 0;
5870 }
5871 
5872 int hashdist = HASHDIST_DEFAULT;
5873 
5874 #ifdef CONFIG_NUMA
5875 static int __init set_hashdist(char *str)
5876 {
5877 	if (!str)
5878 		return 0;
5879 	hashdist = simple_strtoul(str, &str, 0);
5880 	return 1;
5881 }
5882 __setup("hashdist=", set_hashdist);
5883 #endif
5884 
5885 /*
5886  * allocate a large system hash table from bootmem
5887  * - it is assumed that the hash table must contain an exact power-of-2
5888  *   quantity of entries
5889  * - limit is the number of hash buckets, not the total allocation size
5890  */
5891 void *__init alloc_large_system_hash(const char *tablename,
5892 				     unsigned long bucketsize,
5893 				     unsigned long numentries,
5894 				     int scale,
5895 				     int flags,
5896 				     unsigned int *_hash_shift,
5897 				     unsigned int *_hash_mask,
5898 				     unsigned long low_limit,
5899 				     unsigned long high_limit)
5900 {
5901 	unsigned long long max = high_limit;
5902 	unsigned long log2qty, size;
5903 	void *table = NULL;
5904 
5905 	/* allow the kernel cmdline to have a say */
5906 	if (!numentries) {
5907 		/* round applicable memory size up to nearest megabyte */
5908 		numentries = nr_kernel_pages;
5909 
5910 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5911 		if (PAGE_SHIFT < 20)
5912 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5913 
5914 		/* limit to 1 bucket per 2^scale bytes of low memory */
5915 		if (scale > PAGE_SHIFT)
5916 			numentries >>= (scale - PAGE_SHIFT);
5917 		else
5918 			numentries <<= (PAGE_SHIFT - scale);
5919 
5920 		/* Make sure we've got at least a 0-order allocation.. */
5921 		if (unlikely(flags & HASH_SMALL)) {
5922 			/* Makes no sense without HASH_EARLY */
5923 			WARN_ON(!(flags & HASH_EARLY));
5924 			if (!(numentries >> *_hash_shift)) {
5925 				numentries = 1UL << *_hash_shift;
5926 				BUG_ON(!numentries);
5927 			}
5928 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5929 			numentries = PAGE_SIZE / bucketsize;
5930 	}
5931 	numentries = roundup_pow_of_two(numentries);
5932 
5933 	/* limit allocation size to 1/16 total memory by default */
5934 	if (max == 0) {
5935 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5936 		do_div(max, bucketsize);
5937 	}
5938 	max = min(max, 0x80000000ULL);
5939 
5940 	if (numentries < low_limit)
5941 		numentries = low_limit;
5942 	if (numentries > max)
5943 		numentries = max;
5944 
5945 	log2qty = ilog2(numentries);
5946 
5947 	do {
5948 		size = bucketsize << log2qty;
5949 		if (flags & HASH_EARLY)
5950 			table = memblock_virt_alloc_nopanic(size, 0);
5951 		else if (hashdist)
5952 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5953 		else {
5954 			/*
5955 			 * If bucketsize is not a power-of-two, we may free
5956 			 * some pages at the end of hash table which
5957 			 * alloc_pages_exact() automatically does
5958 			 */
5959 			if (get_order(size) < MAX_ORDER) {
5960 				table = alloc_pages_exact(size, GFP_ATOMIC);
5961 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5962 			}
5963 		}
5964 	} while (!table && size > PAGE_SIZE && --log2qty);
5965 
5966 	if (!table)
5967 		panic("Failed to allocate %s hash table\n", tablename);
5968 
5969 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5970 	       tablename,
5971 	       (1UL << log2qty),
5972 	       ilog2(size) - PAGE_SHIFT,
5973 	       size);
5974 
5975 	if (_hash_shift)
5976 		*_hash_shift = log2qty;
5977 	if (_hash_mask)
5978 		*_hash_mask = (1 << log2qty) - 1;
5979 
5980 	return table;
5981 }
5982 
5983 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5984 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5985 							unsigned long pfn)
5986 {
5987 #ifdef CONFIG_SPARSEMEM
5988 	return __pfn_to_section(pfn)->pageblock_flags;
5989 #else
5990 	return zone->pageblock_flags;
5991 #endif /* CONFIG_SPARSEMEM */
5992 }
5993 
5994 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5995 {
5996 #ifdef CONFIG_SPARSEMEM
5997 	pfn &= (PAGES_PER_SECTION-1);
5998 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5999 #else
6000 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6001 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6002 #endif /* CONFIG_SPARSEMEM */
6003 }
6004 
6005 /**
6006  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6007  * @page: The page within the block of interest
6008  * @start_bitidx: The first bit of interest to retrieve
6009  * @end_bitidx: The last bit of interest
6010  * returns pageblock_bits flags
6011  */
6012 unsigned long get_pageblock_flags_group(struct page *page,
6013 					int start_bitidx, int end_bitidx)
6014 {
6015 	struct zone *zone;
6016 	unsigned long *bitmap;
6017 	unsigned long pfn, bitidx;
6018 	unsigned long flags = 0;
6019 	unsigned long value = 1;
6020 
6021 	zone = page_zone(page);
6022 	pfn = page_to_pfn(page);
6023 	bitmap = get_pageblock_bitmap(zone, pfn);
6024 	bitidx = pfn_to_bitidx(zone, pfn);
6025 
6026 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6027 		if (test_bit(bitidx + start_bitidx, bitmap))
6028 			flags |= value;
6029 
6030 	return flags;
6031 }
6032 
6033 /**
6034  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6035  * @page: The page within the block of interest
6036  * @start_bitidx: The first bit of interest
6037  * @end_bitidx: The last bit of interest
6038  * @flags: The flags to set
6039  */
6040 void set_pageblock_flags_group(struct page *page, unsigned long flags,
6041 					int start_bitidx, int end_bitidx)
6042 {
6043 	struct zone *zone;
6044 	unsigned long *bitmap;
6045 	unsigned long pfn, bitidx;
6046 	unsigned long value = 1;
6047 
6048 	zone = page_zone(page);
6049 	pfn = page_to_pfn(page);
6050 	bitmap = get_pageblock_bitmap(zone, pfn);
6051 	bitidx = pfn_to_bitidx(zone, pfn);
6052 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6053 
6054 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6055 		if (flags & value)
6056 			__set_bit(bitidx + start_bitidx, bitmap);
6057 		else
6058 			__clear_bit(bitidx + start_bitidx, bitmap);
6059 }
6060 
6061 /*
6062  * This function checks whether pageblock includes unmovable pages or not.
6063  * If @count is not zero, it is okay to include less @count unmovable pages
6064  *
6065  * PageLRU check without isolation or lru_lock could race so that
6066  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6067  * expect this function should be exact.
6068  */
6069 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6070 			 bool skip_hwpoisoned_pages)
6071 {
6072 	unsigned long pfn, iter, found;
6073 	int mt;
6074 
6075 	/*
6076 	 * For avoiding noise data, lru_add_drain_all() should be called
6077 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6078 	 */
6079 	if (zone_idx(zone) == ZONE_MOVABLE)
6080 		return false;
6081 	mt = get_pageblock_migratetype(page);
6082 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6083 		return false;
6084 
6085 	pfn = page_to_pfn(page);
6086 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6087 		unsigned long check = pfn + iter;
6088 
6089 		if (!pfn_valid_within(check))
6090 			continue;
6091 
6092 		page = pfn_to_page(check);
6093 
6094 		/*
6095 		 * Hugepages are not in LRU lists, but they're movable.
6096 		 * We need not scan over tail pages bacause we don't
6097 		 * handle each tail page individually in migration.
6098 		 */
6099 		if (PageHuge(page)) {
6100 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6101 			continue;
6102 		}
6103 
6104 		/*
6105 		 * We can't use page_count without pin a page
6106 		 * because another CPU can free compound page.
6107 		 * This check already skips compound tails of THP
6108 		 * because their page->_count is zero at all time.
6109 		 */
6110 		if (!atomic_read(&page->_count)) {
6111 			if (PageBuddy(page))
6112 				iter += (1 << page_order(page)) - 1;
6113 			continue;
6114 		}
6115 
6116 		/*
6117 		 * The HWPoisoned page may be not in buddy system, and
6118 		 * page_count() is not 0.
6119 		 */
6120 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6121 			continue;
6122 
6123 		if (!PageLRU(page))
6124 			found++;
6125 		/*
6126 		 * If there are RECLAIMABLE pages, we need to check it.
6127 		 * But now, memory offline itself doesn't call shrink_slab()
6128 		 * and it still to be fixed.
6129 		 */
6130 		/*
6131 		 * If the page is not RAM, page_count()should be 0.
6132 		 * we don't need more check. This is an _used_ not-movable page.
6133 		 *
6134 		 * The problematic thing here is PG_reserved pages. PG_reserved
6135 		 * is set to both of a memory hole page and a _used_ kernel
6136 		 * page at boot.
6137 		 */
6138 		if (found > count)
6139 			return true;
6140 	}
6141 	return false;
6142 }
6143 
6144 bool is_pageblock_removable_nolock(struct page *page)
6145 {
6146 	struct zone *zone;
6147 	unsigned long pfn;
6148 
6149 	/*
6150 	 * We have to be careful here because we are iterating over memory
6151 	 * sections which are not zone aware so we might end up outside of
6152 	 * the zone but still within the section.
6153 	 * We have to take care about the node as well. If the node is offline
6154 	 * its NODE_DATA will be NULL - see page_zone.
6155 	 */
6156 	if (!node_online(page_to_nid(page)))
6157 		return false;
6158 
6159 	zone = page_zone(page);
6160 	pfn = page_to_pfn(page);
6161 	if (!zone_spans_pfn(zone, pfn))
6162 		return false;
6163 
6164 	return !has_unmovable_pages(zone, page, 0, true);
6165 }
6166 
6167 #ifdef CONFIG_CMA
6168 
6169 static unsigned long pfn_max_align_down(unsigned long pfn)
6170 {
6171 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6172 			     pageblock_nr_pages) - 1);
6173 }
6174 
6175 static unsigned long pfn_max_align_up(unsigned long pfn)
6176 {
6177 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6178 				pageblock_nr_pages));
6179 }
6180 
6181 /* [start, end) must belong to a single zone. */
6182 static int __alloc_contig_migrate_range(struct compact_control *cc,
6183 					unsigned long start, unsigned long end)
6184 {
6185 	/* This function is based on compact_zone() from compaction.c. */
6186 	unsigned long nr_reclaimed;
6187 	unsigned long pfn = start;
6188 	unsigned int tries = 0;
6189 	int ret = 0;
6190 
6191 	migrate_prep();
6192 
6193 	while (pfn < end || !list_empty(&cc->migratepages)) {
6194 		if (fatal_signal_pending(current)) {
6195 			ret = -EINTR;
6196 			break;
6197 		}
6198 
6199 		if (list_empty(&cc->migratepages)) {
6200 			cc->nr_migratepages = 0;
6201 			pfn = isolate_migratepages_range(cc->zone, cc,
6202 							 pfn, end, true);
6203 			if (!pfn) {
6204 				ret = -EINTR;
6205 				break;
6206 			}
6207 			tries = 0;
6208 		} else if (++tries == 5) {
6209 			ret = ret < 0 ? ret : -EBUSY;
6210 			break;
6211 		}
6212 
6213 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6214 							&cc->migratepages);
6215 		cc->nr_migratepages -= nr_reclaimed;
6216 
6217 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6218 				    0, MIGRATE_SYNC, MR_CMA);
6219 	}
6220 	if (ret < 0) {
6221 		putback_movable_pages(&cc->migratepages);
6222 		return ret;
6223 	}
6224 	return 0;
6225 }
6226 
6227 /**
6228  * alloc_contig_range() -- tries to allocate given range of pages
6229  * @start:	start PFN to allocate
6230  * @end:	one-past-the-last PFN to allocate
6231  * @migratetype:	migratetype of the underlaying pageblocks (either
6232  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6233  *			in range must have the same migratetype and it must
6234  *			be either of the two.
6235  *
6236  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6237  * aligned, however it's the caller's responsibility to guarantee that
6238  * we are the only thread that changes migrate type of pageblocks the
6239  * pages fall in.
6240  *
6241  * The PFN range must belong to a single zone.
6242  *
6243  * Returns zero on success or negative error code.  On success all
6244  * pages which PFN is in [start, end) are allocated for the caller and
6245  * need to be freed with free_contig_range().
6246  */
6247 int alloc_contig_range(unsigned long start, unsigned long end,
6248 		       unsigned migratetype)
6249 {
6250 	unsigned long outer_start, outer_end;
6251 	int ret = 0, order;
6252 
6253 	struct compact_control cc = {
6254 		.nr_migratepages = 0,
6255 		.order = -1,
6256 		.zone = page_zone(pfn_to_page(start)),
6257 		.sync = true,
6258 		.ignore_skip_hint = true,
6259 	};
6260 	INIT_LIST_HEAD(&cc.migratepages);
6261 
6262 	/*
6263 	 * What we do here is we mark all pageblocks in range as
6264 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6265 	 * have different sizes, and due to the way page allocator
6266 	 * work, we align the range to biggest of the two pages so
6267 	 * that page allocator won't try to merge buddies from
6268 	 * different pageblocks and change MIGRATE_ISOLATE to some
6269 	 * other migration type.
6270 	 *
6271 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6272 	 * migrate the pages from an unaligned range (ie. pages that
6273 	 * we are interested in).  This will put all the pages in
6274 	 * range back to page allocator as MIGRATE_ISOLATE.
6275 	 *
6276 	 * When this is done, we take the pages in range from page
6277 	 * allocator removing them from the buddy system.  This way
6278 	 * page allocator will never consider using them.
6279 	 *
6280 	 * This lets us mark the pageblocks back as
6281 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6282 	 * aligned range but not in the unaligned, original range are
6283 	 * put back to page allocator so that buddy can use them.
6284 	 */
6285 
6286 	ret = start_isolate_page_range(pfn_max_align_down(start),
6287 				       pfn_max_align_up(end), migratetype,
6288 				       false);
6289 	if (ret)
6290 		return ret;
6291 
6292 	ret = __alloc_contig_migrate_range(&cc, start, end);
6293 	if (ret)
6294 		goto done;
6295 
6296 	/*
6297 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6298 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6299 	 * more, all pages in [start, end) are free in page allocator.
6300 	 * What we are going to do is to allocate all pages from
6301 	 * [start, end) (that is remove them from page allocator).
6302 	 *
6303 	 * The only problem is that pages at the beginning and at the
6304 	 * end of interesting range may be not aligned with pages that
6305 	 * page allocator holds, ie. they can be part of higher order
6306 	 * pages.  Because of this, we reserve the bigger range and
6307 	 * once this is done free the pages we are not interested in.
6308 	 *
6309 	 * We don't have to hold zone->lock here because the pages are
6310 	 * isolated thus they won't get removed from buddy.
6311 	 */
6312 
6313 	lru_add_drain_all();
6314 	drain_all_pages();
6315 
6316 	order = 0;
6317 	outer_start = start;
6318 	while (!PageBuddy(pfn_to_page(outer_start))) {
6319 		if (++order >= MAX_ORDER) {
6320 			ret = -EBUSY;
6321 			goto done;
6322 		}
6323 		outer_start &= ~0UL << order;
6324 	}
6325 
6326 	/* Make sure the range is really isolated. */
6327 	if (test_pages_isolated(outer_start, end, false)) {
6328 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6329 		       outer_start, end);
6330 		ret = -EBUSY;
6331 		goto done;
6332 	}
6333 
6334 
6335 	/* Grab isolated pages from freelists. */
6336 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6337 	if (!outer_end) {
6338 		ret = -EBUSY;
6339 		goto done;
6340 	}
6341 
6342 	/* Free head and tail (if any) */
6343 	if (start != outer_start)
6344 		free_contig_range(outer_start, start - outer_start);
6345 	if (end != outer_end)
6346 		free_contig_range(end, outer_end - end);
6347 
6348 done:
6349 	undo_isolate_page_range(pfn_max_align_down(start),
6350 				pfn_max_align_up(end), migratetype);
6351 	return ret;
6352 }
6353 
6354 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6355 {
6356 	unsigned int count = 0;
6357 
6358 	for (; nr_pages--; pfn++) {
6359 		struct page *page = pfn_to_page(pfn);
6360 
6361 		count += page_count(page) != 1;
6362 		__free_page(page);
6363 	}
6364 	WARN(count != 0, "%d pages are still in use!\n", count);
6365 }
6366 #endif
6367 
6368 #ifdef CONFIG_MEMORY_HOTPLUG
6369 /*
6370  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6371  * page high values need to be recalulated.
6372  */
6373 void __meminit zone_pcp_update(struct zone *zone)
6374 {
6375 	unsigned cpu;
6376 	mutex_lock(&pcp_batch_high_lock);
6377 	for_each_possible_cpu(cpu)
6378 		pageset_set_high_and_batch(zone,
6379 				per_cpu_ptr(zone->pageset, cpu));
6380 	mutex_unlock(&pcp_batch_high_lock);
6381 }
6382 #endif
6383 
6384 void zone_pcp_reset(struct zone *zone)
6385 {
6386 	unsigned long flags;
6387 	int cpu;
6388 	struct per_cpu_pageset *pset;
6389 
6390 	/* avoid races with drain_pages()  */
6391 	local_irq_save(flags);
6392 	if (zone->pageset != &boot_pageset) {
6393 		for_each_online_cpu(cpu) {
6394 			pset = per_cpu_ptr(zone->pageset, cpu);
6395 			drain_zonestat(zone, pset);
6396 		}
6397 		free_percpu(zone->pageset);
6398 		zone->pageset = &boot_pageset;
6399 	}
6400 	local_irq_restore(flags);
6401 }
6402 
6403 #ifdef CONFIG_MEMORY_HOTREMOVE
6404 /*
6405  * All pages in the range must be isolated before calling this.
6406  */
6407 void
6408 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6409 {
6410 	struct page *page;
6411 	struct zone *zone;
6412 	int order, i;
6413 	unsigned long pfn;
6414 	unsigned long flags;
6415 	/* find the first valid pfn */
6416 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6417 		if (pfn_valid(pfn))
6418 			break;
6419 	if (pfn == end_pfn)
6420 		return;
6421 	zone = page_zone(pfn_to_page(pfn));
6422 	spin_lock_irqsave(&zone->lock, flags);
6423 	pfn = start_pfn;
6424 	while (pfn < end_pfn) {
6425 		if (!pfn_valid(pfn)) {
6426 			pfn++;
6427 			continue;
6428 		}
6429 		page = pfn_to_page(pfn);
6430 		/*
6431 		 * The HWPoisoned page may be not in buddy system, and
6432 		 * page_count() is not 0.
6433 		 */
6434 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6435 			pfn++;
6436 			SetPageReserved(page);
6437 			continue;
6438 		}
6439 
6440 		BUG_ON(page_count(page));
6441 		BUG_ON(!PageBuddy(page));
6442 		order = page_order(page);
6443 #ifdef CONFIG_DEBUG_VM
6444 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6445 		       pfn, 1 << order, end_pfn);
6446 #endif
6447 		list_del(&page->lru);
6448 		rmv_page_order(page);
6449 		zone->free_area[order].nr_free--;
6450 		for (i = 0; i < (1 << order); i++)
6451 			SetPageReserved((page+i));
6452 		pfn += (1 << order);
6453 	}
6454 	spin_unlock_irqrestore(&zone->lock, flags);
6455 }
6456 #endif
6457 
6458 #ifdef CONFIG_MEMORY_FAILURE
6459 bool is_free_buddy_page(struct page *page)
6460 {
6461 	struct zone *zone = page_zone(page);
6462 	unsigned long pfn = page_to_pfn(page);
6463 	unsigned long flags;
6464 	int order;
6465 
6466 	spin_lock_irqsave(&zone->lock, flags);
6467 	for (order = 0; order < MAX_ORDER; order++) {
6468 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6469 
6470 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6471 			break;
6472 	}
6473 	spin_unlock_irqrestore(&zone->lock, flags);
6474 
6475 	return order < MAX_ORDER;
6476 }
6477 #endif
6478 
6479 static const struct trace_print_flags pageflag_names[] = {
6480 	{1UL << PG_locked,		"locked"	},
6481 	{1UL << PG_error,		"error"		},
6482 	{1UL << PG_referenced,		"referenced"	},
6483 	{1UL << PG_uptodate,		"uptodate"	},
6484 	{1UL << PG_dirty,		"dirty"		},
6485 	{1UL << PG_lru,			"lru"		},
6486 	{1UL << PG_active,		"active"	},
6487 	{1UL << PG_slab,		"slab"		},
6488 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6489 	{1UL << PG_arch_1,		"arch_1"	},
6490 	{1UL << PG_reserved,		"reserved"	},
6491 	{1UL << PG_private,		"private"	},
6492 	{1UL << PG_private_2,		"private_2"	},
6493 	{1UL << PG_writeback,		"writeback"	},
6494 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6495 	{1UL << PG_head,		"head"		},
6496 	{1UL << PG_tail,		"tail"		},
6497 #else
6498 	{1UL << PG_compound,		"compound"	},
6499 #endif
6500 	{1UL << PG_swapcache,		"swapcache"	},
6501 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6502 	{1UL << PG_reclaim,		"reclaim"	},
6503 	{1UL << PG_swapbacked,		"swapbacked"	},
6504 	{1UL << PG_unevictable,		"unevictable"	},
6505 #ifdef CONFIG_MMU
6506 	{1UL << PG_mlocked,		"mlocked"	},
6507 #endif
6508 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6509 	{1UL << PG_uncached,		"uncached"	},
6510 #endif
6511 #ifdef CONFIG_MEMORY_FAILURE
6512 	{1UL << PG_hwpoison,		"hwpoison"	},
6513 #endif
6514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6515 	{1UL << PG_compound_lock,	"compound_lock"	},
6516 #endif
6517 };
6518 
6519 static void dump_page_flags(unsigned long flags)
6520 {
6521 	const char *delim = "";
6522 	unsigned long mask;
6523 	int i;
6524 
6525 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6526 
6527 	printk(KERN_ALERT "page flags: %#lx(", flags);
6528 
6529 	/* remove zone id */
6530 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6531 
6532 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6533 
6534 		mask = pageflag_names[i].mask;
6535 		if ((flags & mask) != mask)
6536 			continue;
6537 
6538 		flags &= ~mask;
6539 		printk("%s%s", delim, pageflag_names[i].name);
6540 		delim = "|";
6541 	}
6542 
6543 	/* check for left over flags */
6544 	if (flags)
6545 		printk("%s%#lx", delim, flags);
6546 
6547 	printk(")\n");
6548 }
6549 
6550 void dump_page_badflags(struct page *page, const char *reason,
6551 		unsigned long badflags)
6552 {
6553 	printk(KERN_ALERT
6554 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6555 		page, atomic_read(&page->_count), page_mapcount(page),
6556 		page->mapping, page->index);
6557 	dump_page_flags(page->flags);
6558 	if (reason)
6559 		pr_alert("page dumped because: %s\n", reason);
6560 	if (page->flags & badflags) {
6561 		pr_alert("bad because of flags:\n");
6562 		dump_page_flags(page->flags & badflags);
6563 	}
6564 	mem_cgroup_print_bad_page(page);
6565 }
6566 
6567 void dump_page(struct page *page, const char *reason)
6568 {
6569 	dump_page_badflags(page, reason, 0);
6570 }
6571 EXPORT_SYMBOL(dump_page);
6572