xref: /openbmc/linux/mm/page_alloc.c (revision 384740dc)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126 
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128   /*
129    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130    * ranges of memory (RAM) that may be registered with add_active_range().
131    * Ranges passed to add_active_range() will be merged if possible
132    * so the number of times add_active_range() can be called is
133    * related to the number of nodes and the number of holes
134    */
135   #ifdef CONFIG_MAX_ACTIVE_REGIONS
136     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138   #else
139     #if MAX_NUMNODES >= 32
140       /* If there can be many nodes, allow up to 50 holes per node */
141       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142     #else
143       /* By default, allow up to 256 distinct regions */
144       #define MAX_ACTIVE_REGIONS 256
145     #endif
146   #endif
147 
148   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149   static int __meminitdata nr_nodemap_entries;
150   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156   static unsigned long __initdata required_kernelcore;
157   static unsigned long __initdata required_movablecore;
158   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 
160   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161   int movable_zone;
162   EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169 
170 int page_group_by_mobility_disabled __read_mostly;
171 
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 	set_pageblock_flags_group(page, (unsigned long)migratetype,
175 					PB_migrate, PB_migrate_end);
176 }
177 
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 	int ret = 0;
182 	unsigned seq;
183 	unsigned long pfn = page_to_pfn(page);
184 
185 	do {
186 		seq = zone_span_seqbegin(zone);
187 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 			ret = 1;
189 		else if (pfn < zone->zone_start_pfn)
190 			ret = 1;
191 	} while (zone_span_seqretry(zone, seq));
192 
193 	return ret;
194 }
195 
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 	if (!pfn_valid_within(page_to_pfn(page)))
199 		return 0;
200 	if (zone != page_zone(page))
201 		return 0;
202 
203 	return 1;
204 }
205 /*
206  * Temporary debugging check for pages not lying within a given zone.
207  */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 	if (page_outside_zone_boundaries(zone, page))
211 		return 1;
212 	if (!page_is_consistent(zone, page))
213 		return 1;
214 
215 	return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 	return 0;
221 }
222 #endif
223 
224 static void bad_page(struct page *page)
225 {
226 	void *pc = page_get_page_cgroup(page);
227 
228 	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 		current->comm, page, (int)(2*sizeof(unsigned long)),
231 		(unsigned long)page->flags, page->mapping,
232 		page_mapcount(page), page_count(page));
233 	if (pc) {
234 		printk(KERN_EMERG "cgroup:%p\n", pc);
235 		page_reset_bad_cgroup(page);
236 	}
237 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 		KERN_EMERG "Backtrace:\n");
239 	dump_stack();
240 	page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 	set_page_count(page, 0);
242 	reset_page_mapcount(page);
243 	page->mapping = NULL;
244 	add_taint(TAINT_BAD_PAGE);
245 }
246 
247 /*
248  * Higher-order pages are called "compound pages".  They are structured thusly:
249  *
250  * The first PAGE_SIZE page is called the "head page".
251  *
252  * The remaining PAGE_SIZE pages are called "tail pages".
253  *
254  * All pages have PG_compound set.  All pages have their ->private pointing at
255  * the head page (even the head page has this).
256  *
257  * The first tail page's ->lru.next holds the address of the compound page's
258  * put_page() function.  Its ->lru.prev holds the order of allocation.
259  * This usage means that zero-order pages may not be compound.
260  */
261 
262 static void free_compound_page(struct page *page)
263 {
264 	__free_pages_ok(page, compound_order(page));
265 }
266 
267 void prep_compound_page(struct page *page, unsigned long order)
268 {
269 	int i;
270 	int nr_pages = 1 << order;
271 	struct page *p = page + 1;
272 
273 	set_compound_page_dtor(page, free_compound_page);
274 	set_compound_order(page, order);
275 	__SetPageHead(page);
276 	for (i = 1; i < nr_pages; i++, p++) {
277 		if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
278 			p = pfn_to_page(page_to_pfn(page) + i);
279 		__SetPageTail(p);
280 		p->first_page = page;
281 	}
282 }
283 
284 static void destroy_compound_page(struct page *page, unsigned long order)
285 {
286 	int i;
287 	int nr_pages = 1 << order;
288 	struct page *p = page + 1;
289 
290 	if (unlikely(compound_order(page) != order))
291 		bad_page(page);
292 
293 	if (unlikely(!PageHead(page)))
294 			bad_page(page);
295 	__ClearPageHead(page);
296 	for (i = 1; i < nr_pages; i++, p++) {
297 		if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
298 			p = pfn_to_page(page_to_pfn(page) + i);
299 
300 		if (unlikely(!PageTail(p) |
301 				(p->first_page != page)))
302 			bad_page(page);
303 		__ClearPageTail(p);
304 	}
305 }
306 
307 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
308 {
309 	int i;
310 
311 	/*
312 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
313 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
314 	 */
315 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
316 	for (i = 0; i < (1 << order); i++)
317 		clear_highpage(page + i);
318 }
319 
320 static inline void set_page_order(struct page *page, int order)
321 {
322 	set_page_private(page, order);
323 	__SetPageBuddy(page);
324 }
325 
326 static inline void rmv_page_order(struct page *page)
327 {
328 	__ClearPageBuddy(page);
329 	set_page_private(page, 0);
330 }
331 
332 /*
333  * Locate the struct page for both the matching buddy in our
334  * pair (buddy1) and the combined O(n+1) page they form (page).
335  *
336  * 1) Any buddy B1 will have an order O twin B2 which satisfies
337  * the following equation:
338  *     B2 = B1 ^ (1 << O)
339  * For example, if the starting buddy (buddy2) is #8 its order
340  * 1 buddy is #10:
341  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
342  *
343  * 2) Any buddy B will have an order O+1 parent P which
344  * satisfies the following equation:
345  *     P = B & ~(1 << O)
346  *
347  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
348  */
349 static inline struct page *
350 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
351 {
352 	unsigned long buddy_idx = page_idx ^ (1 << order);
353 
354 	return page + (buddy_idx - page_idx);
355 }
356 
357 static inline unsigned long
358 __find_combined_index(unsigned long page_idx, unsigned int order)
359 {
360 	return (page_idx & ~(1 << order));
361 }
362 
363 /*
364  * This function checks whether a page is free && is the buddy
365  * we can do coalesce a page and its buddy if
366  * (a) the buddy is not in a hole &&
367  * (b) the buddy is in the buddy system &&
368  * (c) a page and its buddy have the same order &&
369  * (d) a page and its buddy are in the same zone.
370  *
371  * For recording whether a page is in the buddy system, we use PG_buddy.
372  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
373  *
374  * For recording page's order, we use page_private(page).
375  */
376 static inline int page_is_buddy(struct page *page, struct page *buddy,
377 								int order)
378 {
379 	if (!pfn_valid_within(page_to_pfn(buddy)))
380 		return 0;
381 
382 	if (page_zone_id(page) != page_zone_id(buddy))
383 		return 0;
384 
385 	if (PageBuddy(buddy) && page_order(buddy) == order) {
386 		BUG_ON(page_count(buddy) != 0);
387 		return 1;
388 	}
389 	return 0;
390 }
391 
392 /*
393  * Freeing function for a buddy system allocator.
394  *
395  * The concept of a buddy system is to maintain direct-mapped table
396  * (containing bit values) for memory blocks of various "orders".
397  * The bottom level table contains the map for the smallest allocatable
398  * units of memory (here, pages), and each level above it describes
399  * pairs of units from the levels below, hence, "buddies".
400  * At a high level, all that happens here is marking the table entry
401  * at the bottom level available, and propagating the changes upward
402  * as necessary, plus some accounting needed to play nicely with other
403  * parts of the VM system.
404  * At each level, we keep a list of pages, which are heads of continuous
405  * free pages of length of (1 << order) and marked with PG_buddy. Page's
406  * order is recorded in page_private(page) field.
407  * So when we are allocating or freeing one, we can derive the state of the
408  * other.  That is, if we allocate a small block, and both were
409  * free, the remainder of the region must be split into blocks.
410  * If a block is freed, and its buddy is also free, then this
411  * triggers coalescing into a block of larger size.
412  *
413  * -- wli
414  */
415 
416 static inline void __free_one_page(struct page *page,
417 		struct zone *zone, unsigned int order)
418 {
419 	unsigned long page_idx;
420 	int order_size = 1 << order;
421 	int migratetype = get_pageblock_migratetype(page);
422 
423 	if (unlikely(PageCompound(page)))
424 		destroy_compound_page(page, order);
425 
426 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
427 
428 	VM_BUG_ON(page_idx & (order_size - 1));
429 	VM_BUG_ON(bad_range(zone, page));
430 
431 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
432 	while (order < MAX_ORDER-1) {
433 		unsigned long combined_idx;
434 		struct page *buddy;
435 
436 		buddy = __page_find_buddy(page, page_idx, order);
437 		if (!page_is_buddy(page, buddy, order))
438 			break;
439 
440 		/* Our buddy is free, merge with it and move up one order. */
441 		list_del(&buddy->lru);
442 		zone->free_area[order].nr_free--;
443 		rmv_page_order(buddy);
444 		combined_idx = __find_combined_index(page_idx, order);
445 		page = page + (combined_idx - page_idx);
446 		page_idx = combined_idx;
447 		order++;
448 	}
449 	set_page_order(page, order);
450 	list_add(&page->lru,
451 		&zone->free_area[order].free_list[migratetype]);
452 	zone->free_area[order].nr_free++;
453 }
454 
455 static inline int free_pages_check(struct page *page)
456 {
457 	if (unlikely(page_mapcount(page) |
458 		(page->mapping != NULL)  |
459 		(page_get_page_cgroup(page) != NULL) |
460 		(page_count(page) != 0)  |
461 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
462 		bad_page(page);
463 	if (PageDirty(page))
464 		__ClearPageDirty(page);
465 	/*
466 	 * For now, we report if PG_reserved was found set, but do not
467 	 * clear it, and do not free the page.  But we shall soon need
468 	 * to do more, for when the ZERO_PAGE count wraps negative.
469 	 */
470 	return PageReserved(page);
471 }
472 
473 /*
474  * Frees a list of pages.
475  * Assumes all pages on list are in same zone, and of same order.
476  * count is the number of pages to free.
477  *
478  * If the zone was previously in an "all pages pinned" state then look to
479  * see if this freeing clears that state.
480  *
481  * And clear the zone's pages_scanned counter, to hold off the "all pages are
482  * pinned" detection logic.
483  */
484 static void free_pages_bulk(struct zone *zone, int count,
485 					struct list_head *list, int order)
486 {
487 	spin_lock(&zone->lock);
488 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
489 	zone->pages_scanned = 0;
490 	while (count--) {
491 		struct page *page;
492 
493 		VM_BUG_ON(list_empty(list));
494 		page = list_entry(list->prev, struct page, lru);
495 		/* have to delete it as __free_one_page list manipulates */
496 		list_del(&page->lru);
497 		__free_one_page(page, zone, order);
498 	}
499 	spin_unlock(&zone->lock);
500 }
501 
502 static void free_one_page(struct zone *zone, struct page *page, int order)
503 {
504 	spin_lock(&zone->lock);
505 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
506 	zone->pages_scanned = 0;
507 	__free_one_page(page, zone, order);
508 	spin_unlock(&zone->lock);
509 }
510 
511 static void __free_pages_ok(struct page *page, unsigned int order)
512 {
513 	unsigned long flags;
514 	int i;
515 	int reserved = 0;
516 
517 	for (i = 0 ; i < (1 << order) ; ++i)
518 		reserved += free_pages_check(page + i);
519 	if (reserved)
520 		return;
521 
522 	if (!PageHighMem(page)) {
523 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
524 		debug_check_no_obj_freed(page_address(page),
525 					   PAGE_SIZE << order);
526 	}
527 	arch_free_page(page, order);
528 	kernel_map_pages(page, 1 << order, 0);
529 
530 	local_irq_save(flags);
531 	__count_vm_events(PGFREE, 1 << order);
532 	free_one_page(page_zone(page), page, order);
533 	local_irq_restore(flags);
534 }
535 
536 /*
537  * permit the bootmem allocator to evade page validation on high-order frees
538  */
539 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
540 {
541 	if (order == 0) {
542 		__ClearPageReserved(page);
543 		set_page_count(page, 0);
544 		set_page_refcounted(page);
545 		__free_page(page);
546 	} else {
547 		int loop;
548 
549 		prefetchw(page);
550 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
551 			struct page *p = &page[loop];
552 
553 			if (loop + 1 < BITS_PER_LONG)
554 				prefetchw(p + 1);
555 			__ClearPageReserved(p);
556 			set_page_count(p, 0);
557 		}
558 
559 		set_page_refcounted(page);
560 		__free_pages(page, order);
561 	}
562 }
563 
564 
565 /*
566  * The order of subdivision here is critical for the IO subsystem.
567  * Please do not alter this order without good reasons and regression
568  * testing. Specifically, as large blocks of memory are subdivided,
569  * the order in which smaller blocks are delivered depends on the order
570  * they're subdivided in this function. This is the primary factor
571  * influencing the order in which pages are delivered to the IO
572  * subsystem according to empirical testing, and this is also justified
573  * by considering the behavior of a buddy system containing a single
574  * large block of memory acted on by a series of small allocations.
575  * This behavior is a critical factor in sglist merging's success.
576  *
577  * -- wli
578  */
579 static inline void expand(struct zone *zone, struct page *page,
580 	int low, int high, struct free_area *area,
581 	int migratetype)
582 {
583 	unsigned long size = 1 << high;
584 
585 	while (high > low) {
586 		area--;
587 		high--;
588 		size >>= 1;
589 		VM_BUG_ON(bad_range(zone, &page[size]));
590 		list_add(&page[size].lru, &area->free_list[migratetype]);
591 		area->nr_free++;
592 		set_page_order(&page[size], high);
593 	}
594 }
595 
596 /*
597  * This page is about to be returned from the page allocator
598  */
599 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
600 {
601 	if (unlikely(page_mapcount(page) |
602 		(page->mapping != NULL)  |
603 		(page_get_page_cgroup(page) != NULL) |
604 		(page_count(page) != 0)  |
605 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
606 		bad_page(page);
607 
608 	/*
609 	 * For now, we report if PG_reserved was found set, but do not
610 	 * clear it, and do not allocate the page: as a safety net.
611 	 */
612 	if (PageReserved(page))
613 		return 1;
614 
615 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
616 			1 << PG_referenced | 1 << PG_arch_1 |
617 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
618 	set_page_private(page, 0);
619 	set_page_refcounted(page);
620 
621 	arch_alloc_page(page, order);
622 	kernel_map_pages(page, 1 << order, 1);
623 
624 	if (gfp_flags & __GFP_ZERO)
625 		prep_zero_page(page, order, gfp_flags);
626 
627 	if (order && (gfp_flags & __GFP_COMP))
628 		prep_compound_page(page, order);
629 
630 	return 0;
631 }
632 
633 /*
634  * Go through the free lists for the given migratetype and remove
635  * the smallest available page from the freelists
636  */
637 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
638 						int migratetype)
639 {
640 	unsigned int current_order;
641 	struct free_area * area;
642 	struct page *page;
643 
644 	/* Find a page of the appropriate size in the preferred list */
645 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
646 		area = &(zone->free_area[current_order]);
647 		if (list_empty(&area->free_list[migratetype]))
648 			continue;
649 
650 		page = list_entry(area->free_list[migratetype].next,
651 							struct page, lru);
652 		list_del(&page->lru);
653 		rmv_page_order(page);
654 		area->nr_free--;
655 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
656 		expand(zone, page, order, current_order, area, migratetype);
657 		return page;
658 	}
659 
660 	return NULL;
661 }
662 
663 
664 /*
665  * This array describes the order lists are fallen back to when
666  * the free lists for the desirable migrate type are depleted
667  */
668 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
669 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
670 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
671 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
672 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
673 };
674 
675 /*
676  * Move the free pages in a range to the free lists of the requested type.
677  * Note that start_page and end_pages are not aligned on a pageblock
678  * boundary. If alignment is required, use move_freepages_block()
679  */
680 static int move_freepages(struct zone *zone,
681 			  struct page *start_page, struct page *end_page,
682 			  int migratetype)
683 {
684 	struct page *page;
685 	unsigned long order;
686 	int pages_moved = 0;
687 
688 #ifndef CONFIG_HOLES_IN_ZONE
689 	/*
690 	 * page_zone is not safe to call in this context when
691 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
692 	 * anyway as we check zone boundaries in move_freepages_block().
693 	 * Remove at a later date when no bug reports exist related to
694 	 * grouping pages by mobility
695 	 */
696 	BUG_ON(page_zone(start_page) != page_zone(end_page));
697 #endif
698 
699 	for (page = start_page; page <= end_page;) {
700 		/* Make sure we are not inadvertently changing nodes */
701 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
702 
703 		if (!pfn_valid_within(page_to_pfn(page))) {
704 			page++;
705 			continue;
706 		}
707 
708 		if (!PageBuddy(page)) {
709 			page++;
710 			continue;
711 		}
712 
713 		order = page_order(page);
714 		list_del(&page->lru);
715 		list_add(&page->lru,
716 			&zone->free_area[order].free_list[migratetype]);
717 		page += 1 << order;
718 		pages_moved += 1 << order;
719 	}
720 
721 	return pages_moved;
722 }
723 
724 static int move_freepages_block(struct zone *zone, struct page *page,
725 				int migratetype)
726 {
727 	unsigned long start_pfn, end_pfn;
728 	struct page *start_page, *end_page;
729 
730 	start_pfn = page_to_pfn(page);
731 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
732 	start_page = pfn_to_page(start_pfn);
733 	end_page = start_page + pageblock_nr_pages - 1;
734 	end_pfn = start_pfn + pageblock_nr_pages - 1;
735 
736 	/* Do not cross zone boundaries */
737 	if (start_pfn < zone->zone_start_pfn)
738 		start_page = page;
739 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
740 		return 0;
741 
742 	return move_freepages(zone, start_page, end_page, migratetype);
743 }
744 
745 /* Remove an element from the buddy allocator from the fallback list */
746 static struct page *__rmqueue_fallback(struct zone *zone, int order,
747 						int start_migratetype)
748 {
749 	struct free_area * area;
750 	int current_order;
751 	struct page *page;
752 	int migratetype, i;
753 
754 	/* Find the largest possible block of pages in the other list */
755 	for (current_order = MAX_ORDER-1; current_order >= order;
756 						--current_order) {
757 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
758 			migratetype = fallbacks[start_migratetype][i];
759 
760 			/* MIGRATE_RESERVE handled later if necessary */
761 			if (migratetype == MIGRATE_RESERVE)
762 				continue;
763 
764 			area = &(zone->free_area[current_order]);
765 			if (list_empty(&area->free_list[migratetype]))
766 				continue;
767 
768 			page = list_entry(area->free_list[migratetype].next,
769 					struct page, lru);
770 			area->nr_free--;
771 
772 			/*
773 			 * If breaking a large block of pages, move all free
774 			 * pages to the preferred allocation list. If falling
775 			 * back for a reclaimable kernel allocation, be more
776 			 * agressive about taking ownership of free pages
777 			 */
778 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
779 					start_migratetype == MIGRATE_RECLAIMABLE) {
780 				unsigned long pages;
781 				pages = move_freepages_block(zone, page,
782 								start_migratetype);
783 
784 				/* Claim the whole block if over half of it is free */
785 				if (pages >= (1 << (pageblock_order-1)))
786 					set_pageblock_migratetype(page,
787 								start_migratetype);
788 
789 				migratetype = start_migratetype;
790 			}
791 
792 			/* Remove the page from the freelists */
793 			list_del(&page->lru);
794 			rmv_page_order(page);
795 			__mod_zone_page_state(zone, NR_FREE_PAGES,
796 							-(1UL << order));
797 
798 			if (current_order == pageblock_order)
799 				set_pageblock_migratetype(page,
800 							start_migratetype);
801 
802 			expand(zone, page, order, current_order, area, migratetype);
803 			return page;
804 		}
805 	}
806 
807 	/* Use MIGRATE_RESERVE rather than fail an allocation */
808 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
809 }
810 
811 /*
812  * Do the hard work of removing an element from the buddy allocator.
813  * Call me with the zone->lock already held.
814  */
815 static struct page *__rmqueue(struct zone *zone, unsigned int order,
816 						int migratetype)
817 {
818 	struct page *page;
819 
820 	page = __rmqueue_smallest(zone, order, migratetype);
821 
822 	if (unlikely(!page))
823 		page = __rmqueue_fallback(zone, order, migratetype);
824 
825 	return page;
826 }
827 
828 /*
829  * Obtain a specified number of elements from the buddy allocator, all under
830  * a single hold of the lock, for efficiency.  Add them to the supplied list.
831  * Returns the number of new pages which were placed at *list.
832  */
833 static int rmqueue_bulk(struct zone *zone, unsigned int order,
834 			unsigned long count, struct list_head *list,
835 			int migratetype)
836 {
837 	int i;
838 
839 	spin_lock(&zone->lock);
840 	for (i = 0; i < count; ++i) {
841 		struct page *page = __rmqueue(zone, order, migratetype);
842 		if (unlikely(page == NULL))
843 			break;
844 
845 		/*
846 		 * Split buddy pages returned by expand() are received here
847 		 * in physical page order. The page is added to the callers and
848 		 * list and the list head then moves forward. From the callers
849 		 * perspective, the linked list is ordered by page number in
850 		 * some conditions. This is useful for IO devices that can
851 		 * merge IO requests if the physical pages are ordered
852 		 * properly.
853 		 */
854 		list_add(&page->lru, list);
855 		set_page_private(page, migratetype);
856 		list = &page->lru;
857 	}
858 	spin_unlock(&zone->lock);
859 	return i;
860 }
861 
862 #ifdef CONFIG_NUMA
863 /*
864  * Called from the vmstat counter updater to drain pagesets of this
865  * currently executing processor on remote nodes after they have
866  * expired.
867  *
868  * Note that this function must be called with the thread pinned to
869  * a single processor.
870  */
871 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
872 {
873 	unsigned long flags;
874 	int to_drain;
875 
876 	local_irq_save(flags);
877 	if (pcp->count >= pcp->batch)
878 		to_drain = pcp->batch;
879 	else
880 		to_drain = pcp->count;
881 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
882 	pcp->count -= to_drain;
883 	local_irq_restore(flags);
884 }
885 #endif
886 
887 /*
888  * Drain pages of the indicated processor.
889  *
890  * The processor must either be the current processor and the
891  * thread pinned to the current processor or a processor that
892  * is not online.
893  */
894 static void drain_pages(unsigned int cpu)
895 {
896 	unsigned long flags;
897 	struct zone *zone;
898 
899 	for_each_zone(zone) {
900 		struct per_cpu_pageset *pset;
901 		struct per_cpu_pages *pcp;
902 
903 		if (!populated_zone(zone))
904 			continue;
905 
906 		pset = zone_pcp(zone, cpu);
907 
908 		pcp = &pset->pcp;
909 		local_irq_save(flags);
910 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
911 		pcp->count = 0;
912 		local_irq_restore(flags);
913 	}
914 }
915 
916 /*
917  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
918  */
919 void drain_local_pages(void *arg)
920 {
921 	drain_pages(smp_processor_id());
922 }
923 
924 /*
925  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
926  */
927 void drain_all_pages(void)
928 {
929 	on_each_cpu(drain_local_pages, NULL, 1);
930 }
931 
932 #ifdef CONFIG_HIBERNATION
933 
934 void mark_free_pages(struct zone *zone)
935 {
936 	unsigned long pfn, max_zone_pfn;
937 	unsigned long flags;
938 	int order, t;
939 	struct list_head *curr;
940 
941 	if (!zone->spanned_pages)
942 		return;
943 
944 	spin_lock_irqsave(&zone->lock, flags);
945 
946 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
947 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
948 		if (pfn_valid(pfn)) {
949 			struct page *page = pfn_to_page(pfn);
950 
951 			if (!swsusp_page_is_forbidden(page))
952 				swsusp_unset_page_free(page);
953 		}
954 
955 	for_each_migratetype_order(order, t) {
956 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
957 			unsigned long i;
958 
959 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
960 			for (i = 0; i < (1UL << order); i++)
961 				swsusp_set_page_free(pfn_to_page(pfn + i));
962 		}
963 	}
964 	spin_unlock_irqrestore(&zone->lock, flags);
965 }
966 #endif /* CONFIG_PM */
967 
968 /*
969  * Free a 0-order page
970  */
971 static void free_hot_cold_page(struct page *page, int cold)
972 {
973 	struct zone *zone = page_zone(page);
974 	struct per_cpu_pages *pcp;
975 	unsigned long flags;
976 
977 	if (PageAnon(page))
978 		page->mapping = NULL;
979 	if (free_pages_check(page))
980 		return;
981 
982 	if (!PageHighMem(page)) {
983 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
984 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
985 	}
986 	arch_free_page(page, 0);
987 	kernel_map_pages(page, 1, 0);
988 
989 	pcp = &zone_pcp(zone, get_cpu())->pcp;
990 	local_irq_save(flags);
991 	__count_vm_event(PGFREE);
992 	if (cold)
993 		list_add_tail(&page->lru, &pcp->list);
994 	else
995 		list_add(&page->lru, &pcp->list);
996 	set_page_private(page, get_pageblock_migratetype(page));
997 	pcp->count++;
998 	if (pcp->count >= pcp->high) {
999 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1000 		pcp->count -= pcp->batch;
1001 	}
1002 	local_irq_restore(flags);
1003 	put_cpu();
1004 }
1005 
1006 void free_hot_page(struct page *page)
1007 {
1008 	free_hot_cold_page(page, 0);
1009 }
1010 
1011 void free_cold_page(struct page *page)
1012 {
1013 	free_hot_cold_page(page, 1);
1014 }
1015 
1016 /*
1017  * split_page takes a non-compound higher-order page, and splits it into
1018  * n (1<<order) sub-pages: page[0..n]
1019  * Each sub-page must be freed individually.
1020  *
1021  * Note: this is probably too low level an operation for use in drivers.
1022  * Please consult with lkml before using this in your driver.
1023  */
1024 void split_page(struct page *page, unsigned int order)
1025 {
1026 	int i;
1027 
1028 	VM_BUG_ON(PageCompound(page));
1029 	VM_BUG_ON(!page_count(page));
1030 	for (i = 1; i < (1 << order); i++)
1031 		set_page_refcounted(page + i);
1032 }
1033 
1034 /*
1035  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1036  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1037  * or two.
1038  */
1039 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1040 			struct zone *zone, int order, gfp_t gfp_flags)
1041 {
1042 	unsigned long flags;
1043 	struct page *page;
1044 	int cold = !!(gfp_flags & __GFP_COLD);
1045 	int cpu;
1046 	int migratetype = allocflags_to_migratetype(gfp_flags);
1047 
1048 again:
1049 	cpu  = get_cpu();
1050 	if (likely(order == 0)) {
1051 		struct per_cpu_pages *pcp;
1052 
1053 		pcp = &zone_pcp(zone, cpu)->pcp;
1054 		local_irq_save(flags);
1055 		if (!pcp->count) {
1056 			pcp->count = rmqueue_bulk(zone, 0,
1057 					pcp->batch, &pcp->list, migratetype);
1058 			if (unlikely(!pcp->count))
1059 				goto failed;
1060 		}
1061 
1062 		/* Find a page of the appropriate migrate type */
1063 		if (cold) {
1064 			list_for_each_entry_reverse(page, &pcp->list, lru)
1065 				if (page_private(page) == migratetype)
1066 					break;
1067 		} else {
1068 			list_for_each_entry(page, &pcp->list, lru)
1069 				if (page_private(page) == migratetype)
1070 					break;
1071 		}
1072 
1073 		/* Allocate more to the pcp list if necessary */
1074 		if (unlikely(&page->lru == &pcp->list)) {
1075 			pcp->count += rmqueue_bulk(zone, 0,
1076 					pcp->batch, &pcp->list, migratetype);
1077 			page = list_entry(pcp->list.next, struct page, lru);
1078 		}
1079 
1080 		list_del(&page->lru);
1081 		pcp->count--;
1082 	} else {
1083 		spin_lock_irqsave(&zone->lock, flags);
1084 		page = __rmqueue(zone, order, migratetype);
1085 		spin_unlock(&zone->lock);
1086 		if (!page)
1087 			goto failed;
1088 	}
1089 
1090 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1091 	zone_statistics(preferred_zone, zone);
1092 	local_irq_restore(flags);
1093 	put_cpu();
1094 
1095 	VM_BUG_ON(bad_range(zone, page));
1096 	if (prep_new_page(page, order, gfp_flags))
1097 		goto again;
1098 	return page;
1099 
1100 failed:
1101 	local_irq_restore(flags);
1102 	put_cpu();
1103 	return NULL;
1104 }
1105 
1106 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1107 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1108 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1109 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1110 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1111 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1112 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1113 
1114 #ifdef CONFIG_FAIL_PAGE_ALLOC
1115 
1116 static struct fail_page_alloc_attr {
1117 	struct fault_attr attr;
1118 
1119 	u32 ignore_gfp_highmem;
1120 	u32 ignore_gfp_wait;
1121 	u32 min_order;
1122 
1123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1124 
1125 	struct dentry *ignore_gfp_highmem_file;
1126 	struct dentry *ignore_gfp_wait_file;
1127 	struct dentry *min_order_file;
1128 
1129 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1130 
1131 } fail_page_alloc = {
1132 	.attr = FAULT_ATTR_INITIALIZER,
1133 	.ignore_gfp_wait = 1,
1134 	.ignore_gfp_highmem = 1,
1135 	.min_order = 1,
1136 };
1137 
1138 static int __init setup_fail_page_alloc(char *str)
1139 {
1140 	return setup_fault_attr(&fail_page_alloc.attr, str);
1141 }
1142 __setup("fail_page_alloc=", setup_fail_page_alloc);
1143 
1144 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1145 {
1146 	if (order < fail_page_alloc.min_order)
1147 		return 0;
1148 	if (gfp_mask & __GFP_NOFAIL)
1149 		return 0;
1150 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1151 		return 0;
1152 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1153 		return 0;
1154 
1155 	return should_fail(&fail_page_alloc.attr, 1 << order);
1156 }
1157 
1158 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1159 
1160 static int __init fail_page_alloc_debugfs(void)
1161 {
1162 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1163 	struct dentry *dir;
1164 	int err;
1165 
1166 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1167 				       "fail_page_alloc");
1168 	if (err)
1169 		return err;
1170 	dir = fail_page_alloc.attr.dentries.dir;
1171 
1172 	fail_page_alloc.ignore_gfp_wait_file =
1173 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1174 				      &fail_page_alloc.ignore_gfp_wait);
1175 
1176 	fail_page_alloc.ignore_gfp_highmem_file =
1177 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1178 				      &fail_page_alloc.ignore_gfp_highmem);
1179 	fail_page_alloc.min_order_file =
1180 		debugfs_create_u32("min-order", mode, dir,
1181 				   &fail_page_alloc.min_order);
1182 
1183 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1184             !fail_page_alloc.ignore_gfp_highmem_file ||
1185             !fail_page_alloc.min_order_file) {
1186 		err = -ENOMEM;
1187 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1188 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1189 		debugfs_remove(fail_page_alloc.min_order_file);
1190 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1191 	}
1192 
1193 	return err;
1194 }
1195 
1196 late_initcall(fail_page_alloc_debugfs);
1197 
1198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1199 
1200 #else /* CONFIG_FAIL_PAGE_ALLOC */
1201 
1202 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1203 {
1204 	return 0;
1205 }
1206 
1207 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1208 
1209 /*
1210  * Return 1 if free pages are above 'mark'. This takes into account the order
1211  * of the allocation.
1212  */
1213 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1214 		      int classzone_idx, int alloc_flags)
1215 {
1216 	/* free_pages my go negative - that's OK */
1217 	long min = mark;
1218 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1219 	int o;
1220 
1221 	if (alloc_flags & ALLOC_HIGH)
1222 		min -= min / 2;
1223 	if (alloc_flags & ALLOC_HARDER)
1224 		min -= min / 4;
1225 
1226 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1227 		return 0;
1228 	for (o = 0; o < order; o++) {
1229 		/* At the next order, this order's pages become unavailable */
1230 		free_pages -= z->free_area[o].nr_free << o;
1231 
1232 		/* Require fewer higher order pages to be free */
1233 		min >>= 1;
1234 
1235 		if (free_pages <= min)
1236 			return 0;
1237 	}
1238 	return 1;
1239 }
1240 
1241 #ifdef CONFIG_NUMA
1242 /*
1243  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1244  * skip over zones that are not allowed by the cpuset, or that have
1245  * been recently (in last second) found to be nearly full.  See further
1246  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1247  * that have to skip over a lot of full or unallowed zones.
1248  *
1249  * If the zonelist cache is present in the passed in zonelist, then
1250  * returns a pointer to the allowed node mask (either the current
1251  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1252  *
1253  * If the zonelist cache is not available for this zonelist, does
1254  * nothing and returns NULL.
1255  *
1256  * If the fullzones BITMAP in the zonelist cache is stale (more than
1257  * a second since last zap'd) then we zap it out (clear its bits.)
1258  *
1259  * We hold off even calling zlc_setup, until after we've checked the
1260  * first zone in the zonelist, on the theory that most allocations will
1261  * be satisfied from that first zone, so best to examine that zone as
1262  * quickly as we can.
1263  */
1264 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1265 {
1266 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1267 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1268 
1269 	zlc = zonelist->zlcache_ptr;
1270 	if (!zlc)
1271 		return NULL;
1272 
1273 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1274 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1275 		zlc->last_full_zap = jiffies;
1276 	}
1277 
1278 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1279 					&cpuset_current_mems_allowed :
1280 					&node_states[N_HIGH_MEMORY];
1281 	return allowednodes;
1282 }
1283 
1284 /*
1285  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1286  * if it is worth looking at further for free memory:
1287  *  1) Check that the zone isn't thought to be full (doesn't have its
1288  *     bit set in the zonelist_cache fullzones BITMAP).
1289  *  2) Check that the zones node (obtained from the zonelist_cache
1290  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1291  * Return true (non-zero) if zone is worth looking at further, or
1292  * else return false (zero) if it is not.
1293  *
1294  * This check -ignores- the distinction between various watermarks,
1295  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1296  * found to be full for any variation of these watermarks, it will
1297  * be considered full for up to one second by all requests, unless
1298  * we are so low on memory on all allowed nodes that we are forced
1299  * into the second scan of the zonelist.
1300  *
1301  * In the second scan we ignore this zonelist cache and exactly
1302  * apply the watermarks to all zones, even it is slower to do so.
1303  * We are low on memory in the second scan, and should leave no stone
1304  * unturned looking for a free page.
1305  */
1306 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1307 						nodemask_t *allowednodes)
1308 {
1309 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1310 	int i;				/* index of *z in zonelist zones */
1311 	int n;				/* node that zone *z is on */
1312 
1313 	zlc = zonelist->zlcache_ptr;
1314 	if (!zlc)
1315 		return 1;
1316 
1317 	i = z - zonelist->_zonerefs;
1318 	n = zlc->z_to_n[i];
1319 
1320 	/* This zone is worth trying if it is allowed but not full */
1321 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1322 }
1323 
1324 /*
1325  * Given 'z' scanning a zonelist, set the corresponding bit in
1326  * zlc->fullzones, so that subsequent attempts to allocate a page
1327  * from that zone don't waste time re-examining it.
1328  */
1329 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1330 {
1331 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1332 	int i;				/* index of *z in zonelist zones */
1333 
1334 	zlc = zonelist->zlcache_ptr;
1335 	if (!zlc)
1336 		return;
1337 
1338 	i = z - zonelist->_zonerefs;
1339 
1340 	set_bit(i, zlc->fullzones);
1341 }
1342 
1343 #else	/* CONFIG_NUMA */
1344 
1345 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1346 {
1347 	return NULL;
1348 }
1349 
1350 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1351 				nodemask_t *allowednodes)
1352 {
1353 	return 1;
1354 }
1355 
1356 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1357 {
1358 }
1359 #endif	/* CONFIG_NUMA */
1360 
1361 /*
1362  * get_page_from_freelist goes through the zonelist trying to allocate
1363  * a page.
1364  */
1365 static struct page *
1366 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1367 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1368 {
1369 	struct zoneref *z;
1370 	struct page *page = NULL;
1371 	int classzone_idx;
1372 	struct zone *zone, *preferred_zone;
1373 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1374 	int zlc_active = 0;		/* set if using zonelist_cache */
1375 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1376 
1377 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1378 							&preferred_zone);
1379 	if (!preferred_zone)
1380 		return NULL;
1381 
1382 	classzone_idx = zone_idx(preferred_zone);
1383 
1384 zonelist_scan:
1385 	/*
1386 	 * Scan zonelist, looking for a zone with enough free.
1387 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1388 	 */
1389 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1390 						high_zoneidx, nodemask) {
1391 		if (NUMA_BUILD && zlc_active &&
1392 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1393 				continue;
1394 		if ((alloc_flags & ALLOC_CPUSET) &&
1395 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1396 				goto try_next_zone;
1397 
1398 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1399 			unsigned long mark;
1400 			if (alloc_flags & ALLOC_WMARK_MIN)
1401 				mark = zone->pages_min;
1402 			else if (alloc_flags & ALLOC_WMARK_LOW)
1403 				mark = zone->pages_low;
1404 			else
1405 				mark = zone->pages_high;
1406 			if (!zone_watermark_ok(zone, order, mark,
1407 				    classzone_idx, alloc_flags)) {
1408 				if (!zone_reclaim_mode ||
1409 				    !zone_reclaim(zone, gfp_mask, order))
1410 					goto this_zone_full;
1411 			}
1412 		}
1413 
1414 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1415 		if (page)
1416 			break;
1417 this_zone_full:
1418 		if (NUMA_BUILD)
1419 			zlc_mark_zone_full(zonelist, z);
1420 try_next_zone:
1421 		if (NUMA_BUILD && !did_zlc_setup) {
1422 			/* we do zlc_setup after the first zone is tried */
1423 			allowednodes = zlc_setup(zonelist, alloc_flags);
1424 			zlc_active = 1;
1425 			did_zlc_setup = 1;
1426 		}
1427 	}
1428 
1429 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1430 		/* Disable zlc cache for second zonelist scan */
1431 		zlc_active = 0;
1432 		goto zonelist_scan;
1433 	}
1434 	return page;
1435 }
1436 
1437 /*
1438  * This is the 'heart' of the zoned buddy allocator.
1439  */
1440 struct page *
1441 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1442 			struct zonelist *zonelist, nodemask_t *nodemask)
1443 {
1444 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1445 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1446 	struct zoneref *z;
1447 	struct zone *zone;
1448 	struct page *page;
1449 	struct reclaim_state reclaim_state;
1450 	struct task_struct *p = current;
1451 	int do_retry;
1452 	int alloc_flags;
1453 	unsigned long did_some_progress;
1454 	unsigned long pages_reclaimed = 0;
1455 
1456 	might_sleep_if(wait);
1457 
1458 	if (should_fail_alloc_page(gfp_mask, order))
1459 		return NULL;
1460 
1461 restart:
1462 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1463 
1464 	if (unlikely(!z->zone)) {
1465 		/*
1466 		 * Happens if we have an empty zonelist as a result of
1467 		 * GFP_THISNODE being used on a memoryless node
1468 		 */
1469 		return NULL;
1470 	}
1471 
1472 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1473 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1474 	if (page)
1475 		goto got_pg;
1476 
1477 	/*
1478 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1479 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1480 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1481 	 * using a larger set of nodes after it has established that the
1482 	 * allowed per node queues are empty and that nodes are
1483 	 * over allocated.
1484 	 */
1485 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1486 		goto nopage;
1487 
1488 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1489 		wakeup_kswapd(zone, order);
1490 
1491 	/*
1492 	 * OK, we're below the kswapd watermark and have kicked background
1493 	 * reclaim. Now things get more complex, so set up alloc_flags according
1494 	 * to how we want to proceed.
1495 	 *
1496 	 * The caller may dip into page reserves a bit more if the caller
1497 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1498 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1499 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1500 	 */
1501 	alloc_flags = ALLOC_WMARK_MIN;
1502 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1503 		alloc_flags |= ALLOC_HARDER;
1504 	if (gfp_mask & __GFP_HIGH)
1505 		alloc_flags |= ALLOC_HIGH;
1506 	if (wait)
1507 		alloc_flags |= ALLOC_CPUSET;
1508 
1509 	/*
1510 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1511 	 * coming from realtime tasks go deeper into reserves.
1512 	 *
1513 	 * This is the last chance, in general, before the goto nopage.
1514 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1515 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1516 	 */
1517 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1518 						high_zoneidx, alloc_flags);
1519 	if (page)
1520 		goto got_pg;
1521 
1522 	/* This allocation should allow future memory freeing. */
1523 
1524 rebalance:
1525 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1526 			&& !in_interrupt()) {
1527 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1528 nofail_alloc:
1529 			/* go through the zonelist yet again, ignoring mins */
1530 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1531 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1532 			if (page)
1533 				goto got_pg;
1534 			if (gfp_mask & __GFP_NOFAIL) {
1535 				congestion_wait(WRITE, HZ/50);
1536 				goto nofail_alloc;
1537 			}
1538 		}
1539 		goto nopage;
1540 	}
1541 
1542 	/* Atomic allocations - we can't balance anything */
1543 	if (!wait)
1544 		goto nopage;
1545 
1546 	cond_resched();
1547 
1548 	/* We now go into synchronous reclaim */
1549 	cpuset_memory_pressure_bump();
1550 	p->flags |= PF_MEMALLOC;
1551 	reclaim_state.reclaimed_slab = 0;
1552 	p->reclaim_state = &reclaim_state;
1553 
1554 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1555 
1556 	p->reclaim_state = NULL;
1557 	p->flags &= ~PF_MEMALLOC;
1558 
1559 	cond_resched();
1560 
1561 	if (order != 0)
1562 		drain_all_pages();
1563 
1564 	if (likely(did_some_progress)) {
1565 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1566 					zonelist, high_zoneidx, alloc_flags);
1567 		if (page)
1568 			goto got_pg;
1569 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1570 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1571 			schedule_timeout_uninterruptible(1);
1572 			goto restart;
1573 		}
1574 
1575 		/*
1576 		 * Go through the zonelist yet one more time, keep
1577 		 * very high watermark here, this is only to catch
1578 		 * a parallel oom killing, we must fail if we're still
1579 		 * under heavy pressure.
1580 		 */
1581 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1582 			order, zonelist, high_zoneidx,
1583 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1584 		if (page) {
1585 			clear_zonelist_oom(zonelist, gfp_mask);
1586 			goto got_pg;
1587 		}
1588 
1589 		/* The OOM killer will not help higher order allocs so fail */
1590 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1591 			clear_zonelist_oom(zonelist, gfp_mask);
1592 			goto nopage;
1593 		}
1594 
1595 		out_of_memory(zonelist, gfp_mask, order);
1596 		clear_zonelist_oom(zonelist, gfp_mask);
1597 		goto restart;
1598 	}
1599 
1600 	/*
1601 	 * Don't let big-order allocations loop unless the caller explicitly
1602 	 * requests that.  Wait for some write requests to complete then retry.
1603 	 *
1604 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1605 	 * means __GFP_NOFAIL, but that may not be true in other
1606 	 * implementations.
1607 	 *
1608 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1609 	 * specified, then we retry until we no longer reclaim any pages
1610 	 * (above), or we've reclaimed an order of pages at least as
1611 	 * large as the allocation's order. In both cases, if the
1612 	 * allocation still fails, we stop retrying.
1613 	 */
1614 	pages_reclaimed += did_some_progress;
1615 	do_retry = 0;
1616 	if (!(gfp_mask & __GFP_NORETRY)) {
1617 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1618 			do_retry = 1;
1619 		} else {
1620 			if (gfp_mask & __GFP_REPEAT &&
1621 				pages_reclaimed < (1 << order))
1622 					do_retry = 1;
1623 		}
1624 		if (gfp_mask & __GFP_NOFAIL)
1625 			do_retry = 1;
1626 	}
1627 	if (do_retry) {
1628 		congestion_wait(WRITE, HZ/50);
1629 		goto rebalance;
1630 	}
1631 
1632 nopage:
1633 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1634 		printk(KERN_WARNING "%s: page allocation failure."
1635 			" order:%d, mode:0x%x\n",
1636 			p->comm, order, gfp_mask);
1637 		dump_stack();
1638 		show_mem();
1639 	}
1640 got_pg:
1641 	return page;
1642 }
1643 EXPORT_SYMBOL(__alloc_pages_internal);
1644 
1645 /*
1646  * Common helper functions.
1647  */
1648 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1649 {
1650 	struct page * page;
1651 	page = alloc_pages(gfp_mask, order);
1652 	if (!page)
1653 		return 0;
1654 	return (unsigned long) page_address(page);
1655 }
1656 
1657 EXPORT_SYMBOL(__get_free_pages);
1658 
1659 unsigned long get_zeroed_page(gfp_t gfp_mask)
1660 {
1661 	struct page * page;
1662 
1663 	/*
1664 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1665 	 * a highmem page
1666 	 */
1667 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1668 
1669 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1670 	if (page)
1671 		return (unsigned long) page_address(page);
1672 	return 0;
1673 }
1674 
1675 EXPORT_SYMBOL(get_zeroed_page);
1676 
1677 void __pagevec_free(struct pagevec *pvec)
1678 {
1679 	int i = pagevec_count(pvec);
1680 
1681 	while (--i >= 0)
1682 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1683 }
1684 
1685 void __free_pages(struct page *page, unsigned int order)
1686 {
1687 	if (put_page_testzero(page)) {
1688 		if (order == 0)
1689 			free_hot_page(page);
1690 		else
1691 			__free_pages_ok(page, order);
1692 	}
1693 }
1694 
1695 EXPORT_SYMBOL(__free_pages);
1696 
1697 void free_pages(unsigned long addr, unsigned int order)
1698 {
1699 	if (addr != 0) {
1700 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1701 		__free_pages(virt_to_page((void *)addr), order);
1702 	}
1703 }
1704 
1705 EXPORT_SYMBOL(free_pages);
1706 
1707 /**
1708  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1709  * @size: the number of bytes to allocate
1710  * @gfp_mask: GFP flags for the allocation
1711  *
1712  * This function is similar to alloc_pages(), except that it allocates the
1713  * minimum number of pages to satisfy the request.  alloc_pages() can only
1714  * allocate memory in power-of-two pages.
1715  *
1716  * This function is also limited by MAX_ORDER.
1717  *
1718  * Memory allocated by this function must be released by free_pages_exact().
1719  */
1720 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1721 {
1722 	unsigned int order = get_order(size);
1723 	unsigned long addr;
1724 
1725 	addr = __get_free_pages(gfp_mask, order);
1726 	if (addr) {
1727 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1728 		unsigned long used = addr + PAGE_ALIGN(size);
1729 
1730 		split_page(virt_to_page(addr), order);
1731 		while (used < alloc_end) {
1732 			free_page(used);
1733 			used += PAGE_SIZE;
1734 		}
1735 	}
1736 
1737 	return (void *)addr;
1738 }
1739 EXPORT_SYMBOL(alloc_pages_exact);
1740 
1741 /**
1742  * free_pages_exact - release memory allocated via alloc_pages_exact()
1743  * @virt: the value returned by alloc_pages_exact.
1744  * @size: size of allocation, same value as passed to alloc_pages_exact().
1745  *
1746  * Release the memory allocated by a previous call to alloc_pages_exact.
1747  */
1748 void free_pages_exact(void *virt, size_t size)
1749 {
1750 	unsigned long addr = (unsigned long)virt;
1751 	unsigned long end = addr + PAGE_ALIGN(size);
1752 
1753 	while (addr < end) {
1754 		free_page(addr);
1755 		addr += PAGE_SIZE;
1756 	}
1757 }
1758 EXPORT_SYMBOL(free_pages_exact);
1759 
1760 static unsigned int nr_free_zone_pages(int offset)
1761 {
1762 	struct zoneref *z;
1763 	struct zone *zone;
1764 
1765 	/* Just pick one node, since fallback list is circular */
1766 	unsigned int sum = 0;
1767 
1768 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1769 
1770 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1771 		unsigned long size = zone->present_pages;
1772 		unsigned long high = zone->pages_high;
1773 		if (size > high)
1774 			sum += size - high;
1775 	}
1776 
1777 	return sum;
1778 }
1779 
1780 /*
1781  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1782  */
1783 unsigned int nr_free_buffer_pages(void)
1784 {
1785 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1786 }
1787 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1788 
1789 /*
1790  * Amount of free RAM allocatable within all zones
1791  */
1792 unsigned int nr_free_pagecache_pages(void)
1793 {
1794 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1795 }
1796 
1797 static inline void show_node(struct zone *zone)
1798 {
1799 	if (NUMA_BUILD)
1800 		printk("Node %d ", zone_to_nid(zone));
1801 }
1802 
1803 void si_meminfo(struct sysinfo *val)
1804 {
1805 	val->totalram = totalram_pages;
1806 	val->sharedram = 0;
1807 	val->freeram = global_page_state(NR_FREE_PAGES);
1808 	val->bufferram = nr_blockdev_pages();
1809 	val->totalhigh = totalhigh_pages;
1810 	val->freehigh = nr_free_highpages();
1811 	val->mem_unit = PAGE_SIZE;
1812 }
1813 
1814 EXPORT_SYMBOL(si_meminfo);
1815 
1816 #ifdef CONFIG_NUMA
1817 void si_meminfo_node(struct sysinfo *val, int nid)
1818 {
1819 	pg_data_t *pgdat = NODE_DATA(nid);
1820 
1821 	val->totalram = pgdat->node_present_pages;
1822 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1823 #ifdef CONFIG_HIGHMEM
1824 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1825 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1826 			NR_FREE_PAGES);
1827 #else
1828 	val->totalhigh = 0;
1829 	val->freehigh = 0;
1830 #endif
1831 	val->mem_unit = PAGE_SIZE;
1832 }
1833 #endif
1834 
1835 #define K(x) ((x) << (PAGE_SHIFT-10))
1836 
1837 /*
1838  * Show free area list (used inside shift_scroll-lock stuff)
1839  * We also calculate the percentage fragmentation. We do this by counting the
1840  * memory on each free list with the exception of the first item on the list.
1841  */
1842 void show_free_areas(void)
1843 {
1844 	int cpu;
1845 	struct zone *zone;
1846 
1847 	for_each_zone(zone) {
1848 		if (!populated_zone(zone))
1849 			continue;
1850 
1851 		show_node(zone);
1852 		printk("%s per-cpu:\n", zone->name);
1853 
1854 		for_each_online_cpu(cpu) {
1855 			struct per_cpu_pageset *pageset;
1856 
1857 			pageset = zone_pcp(zone, cpu);
1858 
1859 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1860 			       cpu, pageset->pcp.high,
1861 			       pageset->pcp.batch, pageset->pcp.count);
1862 		}
1863 	}
1864 
1865 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1866 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1867 		global_page_state(NR_ACTIVE),
1868 		global_page_state(NR_INACTIVE),
1869 		global_page_state(NR_FILE_DIRTY),
1870 		global_page_state(NR_WRITEBACK),
1871 		global_page_state(NR_UNSTABLE_NFS),
1872 		global_page_state(NR_FREE_PAGES),
1873 		global_page_state(NR_SLAB_RECLAIMABLE) +
1874 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1875 		global_page_state(NR_FILE_MAPPED),
1876 		global_page_state(NR_PAGETABLE),
1877 		global_page_state(NR_BOUNCE));
1878 
1879 	for_each_zone(zone) {
1880 		int i;
1881 
1882 		if (!populated_zone(zone))
1883 			continue;
1884 
1885 		show_node(zone);
1886 		printk("%s"
1887 			" free:%lukB"
1888 			" min:%lukB"
1889 			" low:%lukB"
1890 			" high:%lukB"
1891 			" active:%lukB"
1892 			" inactive:%lukB"
1893 			" present:%lukB"
1894 			" pages_scanned:%lu"
1895 			" all_unreclaimable? %s"
1896 			"\n",
1897 			zone->name,
1898 			K(zone_page_state(zone, NR_FREE_PAGES)),
1899 			K(zone->pages_min),
1900 			K(zone->pages_low),
1901 			K(zone->pages_high),
1902 			K(zone_page_state(zone, NR_ACTIVE)),
1903 			K(zone_page_state(zone, NR_INACTIVE)),
1904 			K(zone->present_pages),
1905 			zone->pages_scanned,
1906 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1907 			);
1908 		printk("lowmem_reserve[]:");
1909 		for (i = 0; i < MAX_NR_ZONES; i++)
1910 			printk(" %lu", zone->lowmem_reserve[i]);
1911 		printk("\n");
1912 	}
1913 
1914 	for_each_zone(zone) {
1915  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1916 
1917 		if (!populated_zone(zone))
1918 			continue;
1919 
1920 		show_node(zone);
1921 		printk("%s: ", zone->name);
1922 
1923 		spin_lock_irqsave(&zone->lock, flags);
1924 		for (order = 0; order < MAX_ORDER; order++) {
1925 			nr[order] = zone->free_area[order].nr_free;
1926 			total += nr[order] << order;
1927 		}
1928 		spin_unlock_irqrestore(&zone->lock, flags);
1929 		for (order = 0; order < MAX_ORDER; order++)
1930 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1931 		printk("= %lukB\n", K(total));
1932 	}
1933 
1934 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1935 
1936 	show_swap_cache_info();
1937 }
1938 
1939 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1940 {
1941 	zoneref->zone = zone;
1942 	zoneref->zone_idx = zone_idx(zone);
1943 }
1944 
1945 /*
1946  * Builds allocation fallback zone lists.
1947  *
1948  * Add all populated zones of a node to the zonelist.
1949  */
1950 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1951 				int nr_zones, enum zone_type zone_type)
1952 {
1953 	struct zone *zone;
1954 
1955 	BUG_ON(zone_type >= MAX_NR_ZONES);
1956 	zone_type++;
1957 
1958 	do {
1959 		zone_type--;
1960 		zone = pgdat->node_zones + zone_type;
1961 		if (populated_zone(zone)) {
1962 			zoneref_set_zone(zone,
1963 				&zonelist->_zonerefs[nr_zones++]);
1964 			check_highest_zone(zone_type);
1965 		}
1966 
1967 	} while (zone_type);
1968 	return nr_zones;
1969 }
1970 
1971 
1972 /*
1973  *  zonelist_order:
1974  *  0 = automatic detection of better ordering.
1975  *  1 = order by ([node] distance, -zonetype)
1976  *  2 = order by (-zonetype, [node] distance)
1977  *
1978  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1979  *  the same zonelist. So only NUMA can configure this param.
1980  */
1981 #define ZONELIST_ORDER_DEFAULT  0
1982 #define ZONELIST_ORDER_NODE     1
1983 #define ZONELIST_ORDER_ZONE     2
1984 
1985 /* zonelist order in the kernel.
1986  * set_zonelist_order() will set this to NODE or ZONE.
1987  */
1988 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1989 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1990 
1991 
1992 #ifdef CONFIG_NUMA
1993 /* The value user specified ....changed by config */
1994 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1995 /* string for sysctl */
1996 #define NUMA_ZONELIST_ORDER_LEN	16
1997 char numa_zonelist_order[16] = "default";
1998 
1999 /*
2000  * interface for configure zonelist ordering.
2001  * command line option "numa_zonelist_order"
2002  *	= "[dD]efault	- default, automatic configuration.
2003  *	= "[nN]ode 	- order by node locality, then by zone within node
2004  *	= "[zZ]one      - order by zone, then by locality within zone
2005  */
2006 
2007 static int __parse_numa_zonelist_order(char *s)
2008 {
2009 	if (*s == 'd' || *s == 'D') {
2010 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2011 	} else if (*s == 'n' || *s == 'N') {
2012 		user_zonelist_order = ZONELIST_ORDER_NODE;
2013 	} else if (*s == 'z' || *s == 'Z') {
2014 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2015 	} else {
2016 		printk(KERN_WARNING
2017 			"Ignoring invalid numa_zonelist_order value:  "
2018 			"%s\n", s);
2019 		return -EINVAL;
2020 	}
2021 	return 0;
2022 }
2023 
2024 static __init int setup_numa_zonelist_order(char *s)
2025 {
2026 	if (s)
2027 		return __parse_numa_zonelist_order(s);
2028 	return 0;
2029 }
2030 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2031 
2032 /*
2033  * sysctl handler for numa_zonelist_order
2034  */
2035 int numa_zonelist_order_handler(ctl_table *table, int write,
2036 		struct file *file, void __user *buffer, size_t *length,
2037 		loff_t *ppos)
2038 {
2039 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2040 	int ret;
2041 
2042 	if (write)
2043 		strncpy(saved_string, (char*)table->data,
2044 			NUMA_ZONELIST_ORDER_LEN);
2045 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2046 	if (ret)
2047 		return ret;
2048 	if (write) {
2049 		int oldval = user_zonelist_order;
2050 		if (__parse_numa_zonelist_order((char*)table->data)) {
2051 			/*
2052 			 * bogus value.  restore saved string
2053 			 */
2054 			strncpy((char*)table->data, saved_string,
2055 				NUMA_ZONELIST_ORDER_LEN);
2056 			user_zonelist_order = oldval;
2057 		} else if (oldval != user_zonelist_order)
2058 			build_all_zonelists();
2059 	}
2060 	return 0;
2061 }
2062 
2063 
2064 #define MAX_NODE_LOAD (num_online_nodes())
2065 static int node_load[MAX_NUMNODES];
2066 
2067 /**
2068  * find_next_best_node - find the next node that should appear in a given node's fallback list
2069  * @node: node whose fallback list we're appending
2070  * @used_node_mask: nodemask_t of already used nodes
2071  *
2072  * We use a number of factors to determine which is the next node that should
2073  * appear on a given node's fallback list.  The node should not have appeared
2074  * already in @node's fallback list, and it should be the next closest node
2075  * according to the distance array (which contains arbitrary distance values
2076  * from each node to each node in the system), and should also prefer nodes
2077  * with no CPUs, since presumably they'll have very little allocation pressure
2078  * on them otherwise.
2079  * It returns -1 if no node is found.
2080  */
2081 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2082 {
2083 	int n, val;
2084 	int min_val = INT_MAX;
2085 	int best_node = -1;
2086 	node_to_cpumask_ptr(tmp, 0);
2087 
2088 	/* Use the local node if we haven't already */
2089 	if (!node_isset(node, *used_node_mask)) {
2090 		node_set(node, *used_node_mask);
2091 		return node;
2092 	}
2093 
2094 	for_each_node_state(n, N_HIGH_MEMORY) {
2095 
2096 		/* Don't want a node to appear more than once */
2097 		if (node_isset(n, *used_node_mask))
2098 			continue;
2099 
2100 		/* Use the distance array to find the distance */
2101 		val = node_distance(node, n);
2102 
2103 		/* Penalize nodes under us ("prefer the next node") */
2104 		val += (n < node);
2105 
2106 		/* Give preference to headless and unused nodes */
2107 		node_to_cpumask_ptr_next(tmp, n);
2108 		if (!cpus_empty(*tmp))
2109 			val += PENALTY_FOR_NODE_WITH_CPUS;
2110 
2111 		/* Slight preference for less loaded node */
2112 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2113 		val += node_load[n];
2114 
2115 		if (val < min_val) {
2116 			min_val = val;
2117 			best_node = n;
2118 		}
2119 	}
2120 
2121 	if (best_node >= 0)
2122 		node_set(best_node, *used_node_mask);
2123 
2124 	return best_node;
2125 }
2126 
2127 
2128 /*
2129  * Build zonelists ordered by node and zones within node.
2130  * This results in maximum locality--normal zone overflows into local
2131  * DMA zone, if any--but risks exhausting DMA zone.
2132  */
2133 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2134 {
2135 	int j;
2136 	struct zonelist *zonelist;
2137 
2138 	zonelist = &pgdat->node_zonelists[0];
2139 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2140 		;
2141 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2142 							MAX_NR_ZONES - 1);
2143 	zonelist->_zonerefs[j].zone = NULL;
2144 	zonelist->_zonerefs[j].zone_idx = 0;
2145 }
2146 
2147 /*
2148  * Build gfp_thisnode zonelists
2149  */
2150 static void build_thisnode_zonelists(pg_data_t *pgdat)
2151 {
2152 	int j;
2153 	struct zonelist *zonelist;
2154 
2155 	zonelist = &pgdat->node_zonelists[1];
2156 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2157 	zonelist->_zonerefs[j].zone = NULL;
2158 	zonelist->_zonerefs[j].zone_idx = 0;
2159 }
2160 
2161 /*
2162  * Build zonelists ordered by zone and nodes within zones.
2163  * This results in conserving DMA zone[s] until all Normal memory is
2164  * exhausted, but results in overflowing to remote node while memory
2165  * may still exist in local DMA zone.
2166  */
2167 static int node_order[MAX_NUMNODES];
2168 
2169 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2170 {
2171 	int pos, j, node;
2172 	int zone_type;		/* needs to be signed */
2173 	struct zone *z;
2174 	struct zonelist *zonelist;
2175 
2176 	zonelist = &pgdat->node_zonelists[0];
2177 	pos = 0;
2178 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2179 		for (j = 0; j < nr_nodes; j++) {
2180 			node = node_order[j];
2181 			z = &NODE_DATA(node)->node_zones[zone_type];
2182 			if (populated_zone(z)) {
2183 				zoneref_set_zone(z,
2184 					&zonelist->_zonerefs[pos++]);
2185 				check_highest_zone(zone_type);
2186 			}
2187 		}
2188 	}
2189 	zonelist->_zonerefs[pos].zone = NULL;
2190 	zonelist->_zonerefs[pos].zone_idx = 0;
2191 }
2192 
2193 static int default_zonelist_order(void)
2194 {
2195 	int nid, zone_type;
2196 	unsigned long low_kmem_size,total_size;
2197 	struct zone *z;
2198 	int average_size;
2199 	/*
2200          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2201 	 * If they are really small and used heavily, the system can fall
2202 	 * into OOM very easily.
2203 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2204 	 */
2205 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2206 	low_kmem_size = 0;
2207 	total_size = 0;
2208 	for_each_online_node(nid) {
2209 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2210 			z = &NODE_DATA(nid)->node_zones[zone_type];
2211 			if (populated_zone(z)) {
2212 				if (zone_type < ZONE_NORMAL)
2213 					low_kmem_size += z->present_pages;
2214 				total_size += z->present_pages;
2215 			}
2216 		}
2217 	}
2218 	if (!low_kmem_size ||  /* there are no DMA area. */
2219 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2220 		return ZONELIST_ORDER_NODE;
2221 	/*
2222 	 * look into each node's config.
2223   	 * If there is a node whose DMA/DMA32 memory is very big area on
2224  	 * local memory, NODE_ORDER may be suitable.
2225          */
2226 	average_size = total_size /
2227 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2228 	for_each_online_node(nid) {
2229 		low_kmem_size = 0;
2230 		total_size = 0;
2231 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2232 			z = &NODE_DATA(nid)->node_zones[zone_type];
2233 			if (populated_zone(z)) {
2234 				if (zone_type < ZONE_NORMAL)
2235 					low_kmem_size += z->present_pages;
2236 				total_size += z->present_pages;
2237 			}
2238 		}
2239 		if (low_kmem_size &&
2240 		    total_size > average_size && /* ignore small node */
2241 		    low_kmem_size > total_size * 70/100)
2242 			return ZONELIST_ORDER_NODE;
2243 	}
2244 	return ZONELIST_ORDER_ZONE;
2245 }
2246 
2247 static void set_zonelist_order(void)
2248 {
2249 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2250 		current_zonelist_order = default_zonelist_order();
2251 	else
2252 		current_zonelist_order = user_zonelist_order;
2253 }
2254 
2255 static void build_zonelists(pg_data_t *pgdat)
2256 {
2257 	int j, node, load;
2258 	enum zone_type i;
2259 	nodemask_t used_mask;
2260 	int local_node, prev_node;
2261 	struct zonelist *zonelist;
2262 	int order = current_zonelist_order;
2263 
2264 	/* initialize zonelists */
2265 	for (i = 0; i < MAX_ZONELISTS; i++) {
2266 		zonelist = pgdat->node_zonelists + i;
2267 		zonelist->_zonerefs[0].zone = NULL;
2268 		zonelist->_zonerefs[0].zone_idx = 0;
2269 	}
2270 
2271 	/* NUMA-aware ordering of nodes */
2272 	local_node = pgdat->node_id;
2273 	load = num_online_nodes();
2274 	prev_node = local_node;
2275 	nodes_clear(used_mask);
2276 
2277 	memset(node_load, 0, sizeof(node_load));
2278 	memset(node_order, 0, sizeof(node_order));
2279 	j = 0;
2280 
2281 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2282 		int distance = node_distance(local_node, node);
2283 
2284 		/*
2285 		 * If another node is sufficiently far away then it is better
2286 		 * to reclaim pages in a zone before going off node.
2287 		 */
2288 		if (distance > RECLAIM_DISTANCE)
2289 			zone_reclaim_mode = 1;
2290 
2291 		/*
2292 		 * We don't want to pressure a particular node.
2293 		 * So adding penalty to the first node in same
2294 		 * distance group to make it round-robin.
2295 		 */
2296 		if (distance != node_distance(local_node, prev_node))
2297 			node_load[node] = load;
2298 
2299 		prev_node = node;
2300 		load--;
2301 		if (order == ZONELIST_ORDER_NODE)
2302 			build_zonelists_in_node_order(pgdat, node);
2303 		else
2304 			node_order[j++] = node;	/* remember order */
2305 	}
2306 
2307 	if (order == ZONELIST_ORDER_ZONE) {
2308 		/* calculate node order -- i.e., DMA last! */
2309 		build_zonelists_in_zone_order(pgdat, j);
2310 	}
2311 
2312 	build_thisnode_zonelists(pgdat);
2313 }
2314 
2315 /* Construct the zonelist performance cache - see further mmzone.h */
2316 static void build_zonelist_cache(pg_data_t *pgdat)
2317 {
2318 	struct zonelist *zonelist;
2319 	struct zonelist_cache *zlc;
2320 	struct zoneref *z;
2321 
2322 	zonelist = &pgdat->node_zonelists[0];
2323 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2324 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2325 	for (z = zonelist->_zonerefs; z->zone; z++)
2326 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2327 }
2328 
2329 
2330 #else	/* CONFIG_NUMA */
2331 
2332 static void set_zonelist_order(void)
2333 {
2334 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2335 }
2336 
2337 static void build_zonelists(pg_data_t *pgdat)
2338 {
2339 	int node, local_node;
2340 	enum zone_type j;
2341 	struct zonelist *zonelist;
2342 
2343 	local_node = pgdat->node_id;
2344 
2345 	zonelist = &pgdat->node_zonelists[0];
2346 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2347 
2348 	/*
2349 	 * Now we build the zonelist so that it contains the zones
2350 	 * of all the other nodes.
2351 	 * We don't want to pressure a particular node, so when
2352 	 * building the zones for node N, we make sure that the
2353 	 * zones coming right after the local ones are those from
2354 	 * node N+1 (modulo N)
2355 	 */
2356 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2357 		if (!node_online(node))
2358 			continue;
2359 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2360 							MAX_NR_ZONES - 1);
2361 	}
2362 	for (node = 0; node < local_node; node++) {
2363 		if (!node_online(node))
2364 			continue;
2365 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2366 							MAX_NR_ZONES - 1);
2367 	}
2368 
2369 	zonelist->_zonerefs[j].zone = NULL;
2370 	zonelist->_zonerefs[j].zone_idx = 0;
2371 }
2372 
2373 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2374 static void build_zonelist_cache(pg_data_t *pgdat)
2375 {
2376 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2377 }
2378 
2379 #endif	/* CONFIG_NUMA */
2380 
2381 /* return values int ....just for stop_machine() */
2382 static int __build_all_zonelists(void *dummy)
2383 {
2384 	int nid;
2385 
2386 	for_each_online_node(nid) {
2387 		pg_data_t *pgdat = NODE_DATA(nid);
2388 
2389 		build_zonelists(pgdat);
2390 		build_zonelist_cache(pgdat);
2391 	}
2392 	return 0;
2393 }
2394 
2395 void build_all_zonelists(void)
2396 {
2397 	set_zonelist_order();
2398 
2399 	if (system_state == SYSTEM_BOOTING) {
2400 		__build_all_zonelists(NULL);
2401 		mminit_verify_zonelist();
2402 		cpuset_init_current_mems_allowed();
2403 	} else {
2404 		/* we have to stop all cpus to guarantee there is no user
2405 		   of zonelist */
2406 		stop_machine(__build_all_zonelists, NULL, NULL);
2407 		/* cpuset refresh routine should be here */
2408 	}
2409 	vm_total_pages = nr_free_pagecache_pages();
2410 	/*
2411 	 * Disable grouping by mobility if the number of pages in the
2412 	 * system is too low to allow the mechanism to work. It would be
2413 	 * more accurate, but expensive to check per-zone. This check is
2414 	 * made on memory-hotadd so a system can start with mobility
2415 	 * disabled and enable it later
2416 	 */
2417 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2418 		page_group_by_mobility_disabled = 1;
2419 	else
2420 		page_group_by_mobility_disabled = 0;
2421 
2422 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2423 		"Total pages: %ld\n",
2424 			num_online_nodes(),
2425 			zonelist_order_name[current_zonelist_order],
2426 			page_group_by_mobility_disabled ? "off" : "on",
2427 			vm_total_pages);
2428 #ifdef CONFIG_NUMA
2429 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2430 #endif
2431 }
2432 
2433 /*
2434  * Helper functions to size the waitqueue hash table.
2435  * Essentially these want to choose hash table sizes sufficiently
2436  * large so that collisions trying to wait on pages are rare.
2437  * But in fact, the number of active page waitqueues on typical
2438  * systems is ridiculously low, less than 200. So this is even
2439  * conservative, even though it seems large.
2440  *
2441  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2442  * waitqueues, i.e. the size of the waitq table given the number of pages.
2443  */
2444 #define PAGES_PER_WAITQUEUE	256
2445 
2446 #ifndef CONFIG_MEMORY_HOTPLUG
2447 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2448 {
2449 	unsigned long size = 1;
2450 
2451 	pages /= PAGES_PER_WAITQUEUE;
2452 
2453 	while (size < pages)
2454 		size <<= 1;
2455 
2456 	/*
2457 	 * Once we have dozens or even hundreds of threads sleeping
2458 	 * on IO we've got bigger problems than wait queue collision.
2459 	 * Limit the size of the wait table to a reasonable size.
2460 	 */
2461 	size = min(size, 4096UL);
2462 
2463 	return max(size, 4UL);
2464 }
2465 #else
2466 /*
2467  * A zone's size might be changed by hot-add, so it is not possible to determine
2468  * a suitable size for its wait_table.  So we use the maximum size now.
2469  *
2470  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2471  *
2472  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2473  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2474  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2475  *
2476  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2477  * or more by the traditional way. (See above).  It equals:
2478  *
2479  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2480  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2481  *    powerpc (64K page size)             : =  (32G +16M)byte.
2482  */
2483 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2484 {
2485 	return 4096UL;
2486 }
2487 #endif
2488 
2489 /*
2490  * This is an integer logarithm so that shifts can be used later
2491  * to extract the more random high bits from the multiplicative
2492  * hash function before the remainder is taken.
2493  */
2494 static inline unsigned long wait_table_bits(unsigned long size)
2495 {
2496 	return ffz(~size);
2497 }
2498 
2499 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2500 
2501 /*
2502  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2503  * of blocks reserved is based on zone->pages_min. The memory within the
2504  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2505  * higher will lead to a bigger reserve which will get freed as contiguous
2506  * blocks as reclaim kicks in
2507  */
2508 static void setup_zone_migrate_reserve(struct zone *zone)
2509 {
2510 	unsigned long start_pfn, pfn, end_pfn;
2511 	struct page *page;
2512 	unsigned long reserve, block_migratetype;
2513 
2514 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2515 	start_pfn = zone->zone_start_pfn;
2516 	end_pfn = start_pfn + zone->spanned_pages;
2517 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2518 							pageblock_order;
2519 
2520 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2521 		if (!pfn_valid(pfn))
2522 			continue;
2523 		page = pfn_to_page(pfn);
2524 
2525 		/* Watch out for overlapping nodes */
2526 		if (page_to_nid(page) != zone_to_nid(zone))
2527 			continue;
2528 
2529 		/* Blocks with reserved pages will never free, skip them. */
2530 		if (PageReserved(page))
2531 			continue;
2532 
2533 		block_migratetype = get_pageblock_migratetype(page);
2534 
2535 		/* If this block is reserved, account for it */
2536 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2537 			reserve--;
2538 			continue;
2539 		}
2540 
2541 		/* Suitable for reserving if this block is movable */
2542 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2543 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2544 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2545 			reserve--;
2546 			continue;
2547 		}
2548 
2549 		/*
2550 		 * If the reserve is met and this is a previous reserved block,
2551 		 * take it back
2552 		 */
2553 		if (block_migratetype == MIGRATE_RESERVE) {
2554 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2555 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2556 		}
2557 	}
2558 }
2559 
2560 /*
2561  * Initially all pages are reserved - free ones are freed
2562  * up by free_all_bootmem() once the early boot process is
2563  * done. Non-atomic initialization, single-pass.
2564  */
2565 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2566 		unsigned long start_pfn, enum memmap_context context)
2567 {
2568 	struct page *page;
2569 	unsigned long end_pfn = start_pfn + size;
2570 	unsigned long pfn;
2571 	struct zone *z;
2572 
2573 	z = &NODE_DATA(nid)->node_zones[zone];
2574 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2575 		/*
2576 		 * There can be holes in boot-time mem_map[]s
2577 		 * handed to this function.  They do not
2578 		 * exist on hotplugged memory.
2579 		 */
2580 		if (context == MEMMAP_EARLY) {
2581 			if (!early_pfn_valid(pfn))
2582 				continue;
2583 			if (!early_pfn_in_nid(pfn, nid))
2584 				continue;
2585 		}
2586 		page = pfn_to_page(pfn);
2587 		set_page_links(page, zone, nid, pfn);
2588 		mminit_verify_page_links(page, zone, nid, pfn);
2589 		init_page_count(page);
2590 		reset_page_mapcount(page);
2591 		SetPageReserved(page);
2592 		/*
2593 		 * Mark the block movable so that blocks are reserved for
2594 		 * movable at startup. This will force kernel allocations
2595 		 * to reserve their blocks rather than leaking throughout
2596 		 * the address space during boot when many long-lived
2597 		 * kernel allocations are made. Later some blocks near
2598 		 * the start are marked MIGRATE_RESERVE by
2599 		 * setup_zone_migrate_reserve()
2600 		 *
2601 		 * bitmap is created for zone's valid pfn range. but memmap
2602 		 * can be created for invalid pages (for alignment)
2603 		 * check here not to call set_pageblock_migratetype() against
2604 		 * pfn out of zone.
2605 		 */
2606 		if ((z->zone_start_pfn <= pfn)
2607 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2608 		    && !(pfn & (pageblock_nr_pages - 1)))
2609 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2610 
2611 		INIT_LIST_HEAD(&page->lru);
2612 #ifdef WANT_PAGE_VIRTUAL
2613 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2614 		if (!is_highmem_idx(zone))
2615 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2616 #endif
2617 	}
2618 }
2619 
2620 static void __meminit zone_init_free_lists(struct zone *zone)
2621 {
2622 	int order, t;
2623 	for_each_migratetype_order(order, t) {
2624 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2625 		zone->free_area[order].nr_free = 0;
2626 	}
2627 }
2628 
2629 #ifndef __HAVE_ARCH_MEMMAP_INIT
2630 #define memmap_init(size, nid, zone, start_pfn) \
2631 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2632 #endif
2633 
2634 static int zone_batchsize(struct zone *zone)
2635 {
2636 	int batch;
2637 
2638 	/*
2639 	 * The per-cpu-pages pools are set to around 1000th of the
2640 	 * size of the zone.  But no more than 1/2 of a meg.
2641 	 *
2642 	 * OK, so we don't know how big the cache is.  So guess.
2643 	 */
2644 	batch = zone->present_pages / 1024;
2645 	if (batch * PAGE_SIZE > 512 * 1024)
2646 		batch = (512 * 1024) / PAGE_SIZE;
2647 	batch /= 4;		/* We effectively *= 4 below */
2648 	if (batch < 1)
2649 		batch = 1;
2650 
2651 	/*
2652 	 * Clamp the batch to a 2^n - 1 value. Having a power
2653 	 * of 2 value was found to be more likely to have
2654 	 * suboptimal cache aliasing properties in some cases.
2655 	 *
2656 	 * For example if 2 tasks are alternately allocating
2657 	 * batches of pages, one task can end up with a lot
2658 	 * of pages of one half of the possible page colors
2659 	 * and the other with pages of the other colors.
2660 	 */
2661 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2662 
2663 	return batch;
2664 }
2665 
2666 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2667 {
2668 	struct per_cpu_pages *pcp;
2669 
2670 	memset(p, 0, sizeof(*p));
2671 
2672 	pcp = &p->pcp;
2673 	pcp->count = 0;
2674 	pcp->high = 6 * batch;
2675 	pcp->batch = max(1UL, 1 * batch);
2676 	INIT_LIST_HEAD(&pcp->list);
2677 }
2678 
2679 /*
2680  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2681  * to the value high for the pageset p.
2682  */
2683 
2684 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2685 				unsigned long high)
2686 {
2687 	struct per_cpu_pages *pcp;
2688 
2689 	pcp = &p->pcp;
2690 	pcp->high = high;
2691 	pcp->batch = max(1UL, high/4);
2692 	if ((high/4) > (PAGE_SHIFT * 8))
2693 		pcp->batch = PAGE_SHIFT * 8;
2694 }
2695 
2696 
2697 #ifdef CONFIG_NUMA
2698 /*
2699  * Boot pageset table. One per cpu which is going to be used for all
2700  * zones and all nodes. The parameters will be set in such a way
2701  * that an item put on a list will immediately be handed over to
2702  * the buddy list. This is safe since pageset manipulation is done
2703  * with interrupts disabled.
2704  *
2705  * Some NUMA counter updates may also be caught by the boot pagesets.
2706  *
2707  * The boot_pagesets must be kept even after bootup is complete for
2708  * unused processors and/or zones. They do play a role for bootstrapping
2709  * hotplugged processors.
2710  *
2711  * zoneinfo_show() and maybe other functions do
2712  * not check if the processor is online before following the pageset pointer.
2713  * Other parts of the kernel may not check if the zone is available.
2714  */
2715 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2716 
2717 /*
2718  * Dynamically allocate memory for the
2719  * per cpu pageset array in struct zone.
2720  */
2721 static int __cpuinit process_zones(int cpu)
2722 {
2723 	struct zone *zone, *dzone;
2724 	int node = cpu_to_node(cpu);
2725 
2726 	node_set_state(node, N_CPU);	/* this node has a cpu */
2727 
2728 	for_each_zone(zone) {
2729 
2730 		if (!populated_zone(zone))
2731 			continue;
2732 
2733 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2734 					 GFP_KERNEL, node);
2735 		if (!zone_pcp(zone, cpu))
2736 			goto bad;
2737 
2738 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2739 
2740 		if (percpu_pagelist_fraction)
2741 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2742 			 	(zone->present_pages / percpu_pagelist_fraction));
2743 	}
2744 
2745 	return 0;
2746 bad:
2747 	for_each_zone(dzone) {
2748 		if (!populated_zone(dzone))
2749 			continue;
2750 		if (dzone == zone)
2751 			break;
2752 		kfree(zone_pcp(dzone, cpu));
2753 		zone_pcp(dzone, cpu) = NULL;
2754 	}
2755 	return -ENOMEM;
2756 }
2757 
2758 static inline void free_zone_pagesets(int cpu)
2759 {
2760 	struct zone *zone;
2761 
2762 	for_each_zone(zone) {
2763 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2764 
2765 		/* Free per_cpu_pageset if it is slab allocated */
2766 		if (pset != &boot_pageset[cpu])
2767 			kfree(pset);
2768 		zone_pcp(zone, cpu) = NULL;
2769 	}
2770 }
2771 
2772 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2773 		unsigned long action,
2774 		void *hcpu)
2775 {
2776 	int cpu = (long)hcpu;
2777 	int ret = NOTIFY_OK;
2778 
2779 	switch (action) {
2780 	case CPU_UP_PREPARE:
2781 	case CPU_UP_PREPARE_FROZEN:
2782 		if (process_zones(cpu))
2783 			ret = NOTIFY_BAD;
2784 		break;
2785 	case CPU_UP_CANCELED:
2786 	case CPU_UP_CANCELED_FROZEN:
2787 	case CPU_DEAD:
2788 	case CPU_DEAD_FROZEN:
2789 		free_zone_pagesets(cpu);
2790 		break;
2791 	default:
2792 		break;
2793 	}
2794 	return ret;
2795 }
2796 
2797 static struct notifier_block __cpuinitdata pageset_notifier =
2798 	{ &pageset_cpuup_callback, NULL, 0 };
2799 
2800 void __init setup_per_cpu_pageset(void)
2801 {
2802 	int err;
2803 
2804 	/* Initialize per_cpu_pageset for cpu 0.
2805 	 * A cpuup callback will do this for every cpu
2806 	 * as it comes online
2807 	 */
2808 	err = process_zones(smp_processor_id());
2809 	BUG_ON(err);
2810 	register_cpu_notifier(&pageset_notifier);
2811 }
2812 
2813 #endif
2814 
2815 static noinline __init_refok
2816 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2817 {
2818 	int i;
2819 	struct pglist_data *pgdat = zone->zone_pgdat;
2820 	size_t alloc_size;
2821 
2822 	/*
2823 	 * The per-page waitqueue mechanism uses hashed waitqueues
2824 	 * per zone.
2825 	 */
2826 	zone->wait_table_hash_nr_entries =
2827 		 wait_table_hash_nr_entries(zone_size_pages);
2828 	zone->wait_table_bits =
2829 		wait_table_bits(zone->wait_table_hash_nr_entries);
2830 	alloc_size = zone->wait_table_hash_nr_entries
2831 					* sizeof(wait_queue_head_t);
2832 
2833 	if (!slab_is_available()) {
2834 		zone->wait_table = (wait_queue_head_t *)
2835 			alloc_bootmem_node(pgdat, alloc_size);
2836 	} else {
2837 		/*
2838 		 * This case means that a zone whose size was 0 gets new memory
2839 		 * via memory hot-add.
2840 		 * But it may be the case that a new node was hot-added.  In
2841 		 * this case vmalloc() will not be able to use this new node's
2842 		 * memory - this wait_table must be initialized to use this new
2843 		 * node itself as well.
2844 		 * To use this new node's memory, further consideration will be
2845 		 * necessary.
2846 		 */
2847 		zone->wait_table = vmalloc(alloc_size);
2848 	}
2849 	if (!zone->wait_table)
2850 		return -ENOMEM;
2851 
2852 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2853 		init_waitqueue_head(zone->wait_table + i);
2854 
2855 	return 0;
2856 }
2857 
2858 static __meminit void zone_pcp_init(struct zone *zone)
2859 {
2860 	int cpu;
2861 	unsigned long batch = zone_batchsize(zone);
2862 
2863 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2864 #ifdef CONFIG_NUMA
2865 		/* Early boot. Slab allocator not functional yet */
2866 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2867 		setup_pageset(&boot_pageset[cpu],0);
2868 #else
2869 		setup_pageset(zone_pcp(zone,cpu), batch);
2870 #endif
2871 	}
2872 	if (zone->present_pages)
2873 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2874 			zone->name, zone->present_pages, batch);
2875 }
2876 
2877 __meminit int init_currently_empty_zone(struct zone *zone,
2878 					unsigned long zone_start_pfn,
2879 					unsigned long size,
2880 					enum memmap_context context)
2881 {
2882 	struct pglist_data *pgdat = zone->zone_pgdat;
2883 	int ret;
2884 	ret = zone_wait_table_init(zone, size);
2885 	if (ret)
2886 		return ret;
2887 	pgdat->nr_zones = zone_idx(zone) + 1;
2888 
2889 	zone->zone_start_pfn = zone_start_pfn;
2890 
2891 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2892 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2893 			pgdat->node_id,
2894 			(unsigned long)zone_idx(zone),
2895 			zone_start_pfn, (zone_start_pfn + size));
2896 
2897 	zone_init_free_lists(zone);
2898 
2899 	return 0;
2900 }
2901 
2902 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2903 /*
2904  * Basic iterator support. Return the first range of PFNs for a node
2905  * Note: nid == MAX_NUMNODES returns first region regardless of node
2906  */
2907 static int __meminit first_active_region_index_in_nid(int nid)
2908 {
2909 	int i;
2910 
2911 	for (i = 0; i < nr_nodemap_entries; i++)
2912 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2913 			return i;
2914 
2915 	return -1;
2916 }
2917 
2918 /*
2919  * Basic iterator support. Return the next active range of PFNs for a node
2920  * Note: nid == MAX_NUMNODES returns next region regardless of node
2921  */
2922 static int __meminit next_active_region_index_in_nid(int index, int nid)
2923 {
2924 	for (index = index + 1; index < nr_nodemap_entries; index++)
2925 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2926 			return index;
2927 
2928 	return -1;
2929 }
2930 
2931 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2932 /*
2933  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2934  * Architectures may implement their own version but if add_active_range()
2935  * was used and there are no special requirements, this is a convenient
2936  * alternative
2937  */
2938 int __meminit early_pfn_to_nid(unsigned long pfn)
2939 {
2940 	int i;
2941 
2942 	for (i = 0; i < nr_nodemap_entries; i++) {
2943 		unsigned long start_pfn = early_node_map[i].start_pfn;
2944 		unsigned long end_pfn = early_node_map[i].end_pfn;
2945 
2946 		if (start_pfn <= pfn && pfn < end_pfn)
2947 			return early_node_map[i].nid;
2948 	}
2949 
2950 	return 0;
2951 }
2952 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2953 
2954 /* Basic iterator support to walk early_node_map[] */
2955 #define for_each_active_range_index_in_nid(i, nid) \
2956 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2957 				i = next_active_region_index_in_nid(i, nid))
2958 
2959 /**
2960  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2961  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2962  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2963  *
2964  * If an architecture guarantees that all ranges registered with
2965  * add_active_ranges() contain no holes and may be freed, this
2966  * this function may be used instead of calling free_bootmem() manually.
2967  */
2968 void __init free_bootmem_with_active_regions(int nid,
2969 						unsigned long max_low_pfn)
2970 {
2971 	int i;
2972 
2973 	for_each_active_range_index_in_nid(i, nid) {
2974 		unsigned long size_pages = 0;
2975 		unsigned long end_pfn = early_node_map[i].end_pfn;
2976 
2977 		if (early_node_map[i].start_pfn >= max_low_pfn)
2978 			continue;
2979 
2980 		if (end_pfn > max_low_pfn)
2981 			end_pfn = max_low_pfn;
2982 
2983 		size_pages = end_pfn - early_node_map[i].start_pfn;
2984 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2985 				PFN_PHYS(early_node_map[i].start_pfn),
2986 				size_pages << PAGE_SHIFT);
2987 	}
2988 }
2989 
2990 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2991 {
2992 	int i;
2993 	int ret;
2994 
2995 	for_each_active_range_index_in_nid(i, nid) {
2996 		ret = work_fn(early_node_map[i].start_pfn,
2997 			      early_node_map[i].end_pfn, data);
2998 		if (ret)
2999 			break;
3000 	}
3001 }
3002 /**
3003  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3004  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3005  *
3006  * If an architecture guarantees that all ranges registered with
3007  * add_active_ranges() contain no holes and may be freed, this
3008  * function may be used instead of calling memory_present() manually.
3009  */
3010 void __init sparse_memory_present_with_active_regions(int nid)
3011 {
3012 	int i;
3013 
3014 	for_each_active_range_index_in_nid(i, nid)
3015 		memory_present(early_node_map[i].nid,
3016 				early_node_map[i].start_pfn,
3017 				early_node_map[i].end_pfn);
3018 }
3019 
3020 /**
3021  * push_node_boundaries - Push node boundaries to at least the requested boundary
3022  * @nid: The nid of the node to push the boundary for
3023  * @start_pfn: The start pfn of the node
3024  * @end_pfn: The end pfn of the node
3025  *
3026  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3027  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3028  * be hotplugged even though no physical memory exists. This function allows
3029  * an arch to push out the node boundaries so mem_map is allocated that can
3030  * be used later.
3031  */
3032 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3033 void __init push_node_boundaries(unsigned int nid,
3034 		unsigned long start_pfn, unsigned long end_pfn)
3035 {
3036 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3037 			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3038 			nid, start_pfn, end_pfn);
3039 
3040 	/* Initialise the boundary for this node if necessary */
3041 	if (node_boundary_end_pfn[nid] == 0)
3042 		node_boundary_start_pfn[nid] = -1UL;
3043 
3044 	/* Update the boundaries */
3045 	if (node_boundary_start_pfn[nid] > start_pfn)
3046 		node_boundary_start_pfn[nid] = start_pfn;
3047 	if (node_boundary_end_pfn[nid] < end_pfn)
3048 		node_boundary_end_pfn[nid] = end_pfn;
3049 }
3050 
3051 /* If necessary, push the node boundary out for reserve hotadd */
3052 static void __meminit account_node_boundary(unsigned int nid,
3053 		unsigned long *start_pfn, unsigned long *end_pfn)
3054 {
3055 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3056 			"Entering account_node_boundary(%u, %lu, %lu)\n",
3057 			nid, *start_pfn, *end_pfn);
3058 
3059 	/* Return if boundary information has not been provided */
3060 	if (node_boundary_end_pfn[nid] == 0)
3061 		return;
3062 
3063 	/* Check the boundaries and update if necessary */
3064 	if (node_boundary_start_pfn[nid] < *start_pfn)
3065 		*start_pfn = node_boundary_start_pfn[nid];
3066 	if (node_boundary_end_pfn[nid] > *end_pfn)
3067 		*end_pfn = node_boundary_end_pfn[nid];
3068 }
3069 #else
3070 void __init push_node_boundaries(unsigned int nid,
3071 		unsigned long start_pfn, unsigned long end_pfn) {}
3072 
3073 static void __meminit account_node_boundary(unsigned int nid,
3074 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3075 #endif
3076 
3077 
3078 /**
3079  * get_pfn_range_for_nid - Return the start and end page frames for a node
3080  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3081  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3082  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3083  *
3084  * It returns the start and end page frame of a node based on information
3085  * provided by an arch calling add_active_range(). If called for a node
3086  * with no available memory, a warning is printed and the start and end
3087  * PFNs will be 0.
3088  */
3089 void __meminit get_pfn_range_for_nid(unsigned int nid,
3090 			unsigned long *start_pfn, unsigned long *end_pfn)
3091 {
3092 	int i;
3093 	*start_pfn = -1UL;
3094 	*end_pfn = 0;
3095 
3096 	for_each_active_range_index_in_nid(i, nid) {
3097 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3098 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3099 	}
3100 
3101 	if (*start_pfn == -1UL)
3102 		*start_pfn = 0;
3103 
3104 	/* Push the node boundaries out if requested */
3105 	account_node_boundary(nid, start_pfn, end_pfn);
3106 }
3107 
3108 /*
3109  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3110  * assumption is made that zones within a node are ordered in monotonic
3111  * increasing memory addresses so that the "highest" populated zone is used
3112  */
3113 static void __init find_usable_zone_for_movable(void)
3114 {
3115 	int zone_index;
3116 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3117 		if (zone_index == ZONE_MOVABLE)
3118 			continue;
3119 
3120 		if (arch_zone_highest_possible_pfn[zone_index] >
3121 				arch_zone_lowest_possible_pfn[zone_index])
3122 			break;
3123 	}
3124 
3125 	VM_BUG_ON(zone_index == -1);
3126 	movable_zone = zone_index;
3127 }
3128 
3129 /*
3130  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3131  * because it is sized independant of architecture. Unlike the other zones,
3132  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3133  * in each node depending on the size of each node and how evenly kernelcore
3134  * is distributed. This helper function adjusts the zone ranges
3135  * provided by the architecture for a given node by using the end of the
3136  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3137  * zones within a node are in order of monotonic increases memory addresses
3138  */
3139 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3140 					unsigned long zone_type,
3141 					unsigned long node_start_pfn,
3142 					unsigned long node_end_pfn,
3143 					unsigned long *zone_start_pfn,
3144 					unsigned long *zone_end_pfn)
3145 {
3146 	/* Only adjust if ZONE_MOVABLE is on this node */
3147 	if (zone_movable_pfn[nid]) {
3148 		/* Size ZONE_MOVABLE */
3149 		if (zone_type == ZONE_MOVABLE) {
3150 			*zone_start_pfn = zone_movable_pfn[nid];
3151 			*zone_end_pfn = min(node_end_pfn,
3152 				arch_zone_highest_possible_pfn[movable_zone]);
3153 
3154 		/* Adjust for ZONE_MOVABLE starting within this range */
3155 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3156 				*zone_end_pfn > zone_movable_pfn[nid]) {
3157 			*zone_end_pfn = zone_movable_pfn[nid];
3158 
3159 		/* Check if this whole range is within ZONE_MOVABLE */
3160 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3161 			*zone_start_pfn = *zone_end_pfn;
3162 	}
3163 }
3164 
3165 /*
3166  * Return the number of pages a zone spans in a node, including holes
3167  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3168  */
3169 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3170 					unsigned long zone_type,
3171 					unsigned long *ignored)
3172 {
3173 	unsigned long node_start_pfn, node_end_pfn;
3174 	unsigned long zone_start_pfn, zone_end_pfn;
3175 
3176 	/* Get the start and end of the node and zone */
3177 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3178 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3179 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3180 	adjust_zone_range_for_zone_movable(nid, zone_type,
3181 				node_start_pfn, node_end_pfn,
3182 				&zone_start_pfn, &zone_end_pfn);
3183 
3184 	/* Check that this node has pages within the zone's required range */
3185 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3186 		return 0;
3187 
3188 	/* Move the zone boundaries inside the node if necessary */
3189 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3190 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3191 
3192 	/* Return the spanned pages */
3193 	return zone_end_pfn - zone_start_pfn;
3194 }
3195 
3196 /*
3197  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3198  * then all holes in the requested range will be accounted for.
3199  */
3200 static unsigned long __meminit __absent_pages_in_range(int nid,
3201 				unsigned long range_start_pfn,
3202 				unsigned long range_end_pfn)
3203 {
3204 	int i = 0;
3205 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3206 	unsigned long start_pfn;
3207 
3208 	/* Find the end_pfn of the first active range of pfns in the node */
3209 	i = first_active_region_index_in_nid(nid);
3210 	if (i == -1)
3211 		return 0;
3212 
3213 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3214 
3215 	/* Account for ranges before physical memory on this node */
3216 	if (early_node_map[i].start_pfn > range_start_pfn)
3217 		hole_pages = prev_end_pfn - range_start_pfn;
3218 
3219 	/* Find all holes for the zone within the node */
3220 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3221 
3222 		/* No need to continue if prev_end_pfn is outside the zone */
3223 		if (prev_end_pfn >= range_end_pfn)
3224 			break;
3225 
3226 		/* Make sure the end of the zone is not within the hole */
3227 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3228 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3229 
3230 		/* Update the hole size cound and move on */
3231 		if (start_pfn > range_start_pfn) {
3232 			BUG_ON(prev_end_pfn > start_pfn);
3233 			hole_pages += start_pfn - prev_end_pfn;
3234 		}
3235 		prev_end_pfn = early_node_map[i].end_pfn;
3236 	}
3237 
3238 	/* Account for ranges past physical memory on this node */
3239 	if (range_end_pfn > prev_end_pfn)
3240 		hole_pages += range_end_pfn -
3241 				max(range_start_pfn, prev_end_pfn);
3242 
3243 	return hole_pages;
3244 }
3245 
3246 /**
3247  * absent_pages_in_range - Return number of page frames in holes within a range
3248  * @start_pfn: The start PFN to start searching for holes
3249  * @end_pfn: The end PFN to stop searching for holes
3250  *
3251  * It returns the number of pages frames in memory holes within a range.
3252  */
3253 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3254 							unsigned long end_pfn)
3255 {
3256 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3257 }
3258 
3259 /* Return the number of page frames in holes in a zone on a node */
3260 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3261 					unsigned long zone_type,
3262 					unsigned long *ignored)
3263 {
3264 	unsigned long node_start_pfn, node_end_pfn;
3265 	unsigned long zone_start_pfn, zone_end_pfn;
3266 
3267 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3268 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3269 							node_start_pfn);
3270 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3271 							node_end_pfn);
3272 
3273 	adjust_zone_range_for_zone_movable(nid, zone_type,
3274 			node_start_pfn, node_end_pfn,
3275 			&zone_start_pfn, &zone_end_pfn);
3276 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3277 }
3278 
3279 #else
3280 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3281 					unsigned long zone_type,
3282 					unsigned long *zones_size)
3283 {
3284 	return zones_size[zone_type];
3285 }
3286 
3287 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3288 						unsigned long zone_type,
3289 						unsigned long *zholes_size)
3290 {
3291 	if (!zholes_size)
3292 		return 0;
3293 
3294 	return zholes_size[zone_type];
3295 }
3296 
3297 #endif
3298 
3299 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3300 		unsigned long *zones_size, unsigned long *zholes_size)
3301 {
3302 	unsigned long realtotalpages, totalpages = 0;
3303 	enum zone_type i;
3304 
3305 	for (i = 0; i < MAX_NR_ZONES; i++)
3306 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3307 								zones_size);
3308 	pgdat->node_spanned_pages = totalpages;
3309 
3310 	realtotalpages = totalpages;
3311 	for (i = 0; i < MAX_NR_ZONES; i++)
3312 		realtotalpages -=
3313 			zone_absent_pages_in_node(pgdat->node_id, i,
3314 								zholes_size);
3315 	pgdat->node_present_pages = realtotalpages;
3316 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3317 							realtotalpages);
3318 }
3319 
3320 #ifndef CONFIG_SPARSEMEM
3321 /*
3322  * Calculate the size of the zone->blockflags rounded to an unsigned long
3323  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3324  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3325  * round what is now in bits to nearest long in bits, then return it in
3326  * bytes.
3327  */
3328 static unsigned long __init usemap_size(unsigned long zonesize)
3329 {
3330 	unsigned long usemapsize;
3331 
3332 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3333 	usemapsize = usemapsize >> pageblock_order;
3334 	usemapsize *= NR_PAGEBLOCK_BITS;
3335 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3336 
3337 	return usemapsize / 8;
3338 }
3339 
3340 static void __init setup_usemap(struct pglist_data *pgdat,
3341 				struct zone *zone, unsigned long zonesize)
3342 {
3343 	unsigned long usemapsize = usemap_size(zonesize);
3344 	zone->pageblock_flags = NULL;
3345 	if (usemapsize) {
3346 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3347 		memset(zone->pageblock_flags, 0, usemapsize);
3348 	}
3349 }
3350 #else
3351 static void inline setup_usemap(struct pglist_data *pgdat,
3352 				struct zone *zone, unsigned long zonesize) {}
3353 #endif /* CONFIG_SPARSEMEM */
3354 
3355 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3356 
3357 /* Return a sensible default order for the pageblock size. */
3358 static inline int pageblock_default_order(void)
3359 {
3360 	if (HPAGE_SHIFT > PAGE_SHIFT)
3361 		return HUGETLB_PAGE_ORDER;
3362 
3363 	return MAX_ORDER-1;
3364 }
3365 
3366 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3367 static inline void __init set_pageblock_order(unsigned int order)
3368 {
3369 	/* Check that pageblock_nr_pages has not already been setup */
3370 	if (pageblock_order)
3371 		return;
3372 
3373 	/*
3374 	 * Assume the largest contiguous order of interest is a huge page.
3375 	 * This value may be variable depending on boot parameters on IA64
3376 	 */
3377 	pageblock_order = order;
3378 }
3379 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3380 
3381 /*
3382  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3383  * and pageblock_default_order() are unused as pageblock_order is set
3384  * at compile-time. See include/linux/pageblock-flags.h for the values of
3385  * pageblock_order based on the kernel config
3386  */
3387 static inline int pageblock_default_order(unsigned int order)
3388 {
3389 	return MAX_ORDER-1;
3390 }
3391 #define set_pageblock_order(x)	do {} while (0)
3392 
3393 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3394 
3395 /*
3396  * Set up the zone data structures:
3397  *   - mark all pages reserved
3398  *   - mark all memory queues empty
3399  *   - clear the memory bitmaps
3400  */
3401 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3402 		unsigned long *zones_size, unsigned long *zholes_size)
3403 {
3404 	enum zone_type j;
3405 	int nid = pgdat->node_id;
3406 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3407 	int ret;
3408 
3409 	pgdat_resize_init(pgdat);
3410 	pgdat->nr_zones = 0;
3411 	init_waitqueue_head(&pgdat->kswapd_wait);
3412 	pgdat->kswapd_max_order = 0;
3413 
3414 	for (j = 0; j < MAX_NR_ZONES; j++) {
3415 		struct zone *zone = pgdat->node_zones + j;
3416 		unsigned long size, realsize, memmap_pages;
3417 
3418 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3419 		realsize = size - zone_absent_pages_in_node(nid, j,
3420 								zholes_size);
3421 
3422 		/*
3423 		 * Adjust realsize so that it accounts for how much memory
3424 		 * is used by this zone for memmap. This affects the watermark
3425 		 * and per-cpu initialisations
3426 		 */
3427 		memmap_pages =
3428 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3429 		if (realsize >= memmap_pages) {
3430 			realsize -= memmap_pages;
3431 			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3432 				"%s zone: %lu pages used for memmap\n",
3433 				zone_names[j], memmap_pages);
3434 		} else
3435 			printk(KERN_WARNING
3436 				"  %s zone: %lu pages exceeds realsize %lu\n",
3437 				zone_names[j], memmap_pages, realsize);
3438 
3439 		/* Account for reserved pages */
3440 		if (j == 0 && realsize > dma_reserve) {
3441 			realsize -= dma_reserve;
3442 			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3443 					"%s zone: %lu pages reserved\n",
3444 					zone_names[0], dma_reserve);
3445 		}
3446 
3447 		if (!is_highmem_idx(j))
3448 			nr_kernel_pages += realsize;
3449 		nr_all_pages += realsize;
3450 
3451 		zone->spanned_pages = size;
3452 		zone->present_pages = realsize;
3453 #ifdef CONFIG_NUMA
3454 		zone->node = nid;
3455 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3456 						/ 100;
3457 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3458 #endif
3459 		zone->name = zone_names[j];
3460 		spin_lock_init(&zone->lock);
3461 		spin_lock_init(&zone->lru_lock);
3462 		zone_seqlock_init(zone);
3463 		zone->zone_pgdat = pgdat;
3464 
3465 		zone->prev_priority = DEF_PRIORITY;
3466 
3467 		zone_pcp_init(zone);
3468 		INIT_LIST_HEAD(&zone->active_list);
3469 		INIT_LIST_HEAD(&zone->inactive_list);
3470 		zone->nr_scan_active = 0;
3471 		zone->nr_scan_inactive = 0;
3472 		zap_zone_vm_stats(zone);
3473 		zone->flags = 0;
3474 		if (!size)
3475 			continue;
3476 
3477 		set_pageblock_order(pageblock_default_order());
3478 		setup_usemap(pgdat, zone, size);
3479 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3480 						size, MEMMAP_EARLY);
3481 		BUG_ON(ret);
3482 		memmap_init(size, nid, j, zone_start_pfn);
3483 		zone_start_pfn += size;
3484 	}
3485 }
3486 
3487 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3488 {
3489 	/* Skip empty nodes */
3490 	if (!pgdat->node_spanned_pages)
3491 		return;
3492 
3493 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3494 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3495 	if (!pgdat->node_mem_map) {
3496 		unsigned long size, start, end;
3497 		struct page *map;
3498 
3499 		/*
3500 		 * The zone's endpoints aren't required to be MAX_ORDER
3501 		 * aligned but the node_mem_map endpoints must be in order
3502 		 * for the buddy allocator to function correctly.
3503 		 */
3504 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3505 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3506 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3507 		size =  (end - start) * sizeof(struct page);
3508 		map = alloc_remap(pgdat->node_id, size);
3509 		if (!map)
3510 			map = alloc_bootmem_node(pgdat, size);
3511 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3512 	}
3513 #ifndef CONFIG_NEED_MULTIPLE_NODES
3514 	/*
3515 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3516 	 */
3517 	if (pgdat == NODE_DATA(0)) {
3518 		mem_map = NODE_DATA(0)->node_mem_map;
3519 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3520 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3521 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3522 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3523 	}
3524 #endif
3525 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3526 }
3527 
3528 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3529 		unsigned long node_start_pfn, unsigned long *zholes_size)
3530 {
3531 	pg_data_t *pgdat = NODE_DATA(nid);
3532 
3533 	pgdat->node_id = nid;
3534 	pgdat->node_start_pfn = node_start_pfn;
3535 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3536 
3537 	alloc_node_mem_map(pgdat);
3538 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3539 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3540 		nid, (unsigned long)pgdat,
3541 		(unsigned long)pgdat->node_mem_map);
3542 #endif
3543 
3544 	free_area_init_core(pgdat, zones_size, zholes_size);
3545 }
3546 
3547 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3548 
3549 #if MAX_NUMNODES > 1
3550 /*
3551  * Figure out the number of possible node ids.
3552  */
3553 static void __init setup_nr_node_ids(void)
3554 {
3555 	unsigned int node;
3556 	unsigned int highest = 0;
3557 
3558 	for_each_node_mask(node, node_possible_map)
3559 		highest = node;
3560 	nr_node_ids = highest + 1;
3561 }
3562 #else
3563 static inline void setup_nr_node_ids(void)
3564 {
3565 }
3566 #endif
3567 
3568 /**
3569  * add_active_range - Register a range of PFNs backed by physical memory
3570  * @nid: The node ID the range resides on
3571  * @start_pfn: The start PFN of the available physical memory
3572  * @end_pfn: The end PFN of the available physical memory
3573  *
3574  * These ranges are stored in an early_node_map[] and later used by
3575  * free_area_init_nodes() to calculate zone sizes and holes. If the
3576  * range spans a memory hole, it is up to the architecture to ensure
3577  * the memory is not freed by the bootmem allocator. If possible
3578  * the range being registered will be merged with existing ranges.
3579  */
3580 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3581 						unsigned long end_pfn)
3582 {
3583 	int i;
3584 
3585 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3586 			"Entering add_active_range(%d, %#lx, %#lx) "
3587 			"%d entries of %d used\n",
3588 			nid, start_pfn, end_pfn,
3589 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3590 
3591 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3592 
3593 	/* Merge with existing active regions if possible */
3594 	for (i = 0; i < nr_nodemap_entries; i++) {
3595 		if (early_node_map[i].nid != nid)
3596 			continue;
3597 
3598 		/* Skip if an existing region covers this new one */
3599 		if (start_pfn >= early_node_map[i].start_pfn &&
3600 				end_pfn <= early_node_map[i].end_pfn)
3601 			return;
3602 
3603 		/* Merge forward if suitable */
3604 		if (start_pfn <= early_node_map[i].end_pfn &&
3605 				end_pfn > early_node_map[i].end_pfn) {
3606 			early_node_map[i].end_pfn = end_pfn;
3607 			return;
3608 		}
3609 
3610 		/* Merge backward if suitable */
3611 		if (start_pfn < early_node_map[i].end_pfn &&
3612 				end_pfn >= early_node_map[i].start_pfn) {
3613 			early_node_map[i].start_pfn = start_pfn;
3614 			return;
3615 		}
3616 	}
3617 
3618 	/* Check that early_node_map is large enough */
3619 	if (i >= MAX_ACTIVE_REGIONS) {
3620 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3621 							MAX_ACTIVE_REGIONS);
3622 		return;
3623 	}
3624 
3625 	early_node_map[i].nid = nid;
3626 	early_node_map[i].start_pfn = start_pfn;
3627 	early_node_map[i].end_pfn = end_pfn;
3628 	nr_nodemap_entries = i + 1;
3629 }
3630 
3631 /**
3632  * remove_active_range - Shrink an existing registered range of PFNs
3633  * @nid: The node id the range is on that should be shrunk
3634  * @start_pfn: The new PFN of the range
3635  * @end_pfn: The new PFN of the range
3636  *
3637  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3638  * The map is kept near the end physical page range that has already been
3639  * registered. This function allows an arch to shrink an existing registered
3640  * range.
3641  */
3642 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3643 				unsigned long end_pfn)
3644 {
3645 	int i, j;
3646 	int removed = 0;
3647 
3648 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3649 			  nid, start_pfn, end_pfn);
3650 
3651 	/* Find the old active region end and shrink */
3652 	for_each_active_range_index_in_nid(i, nid) {
3653 		if (early_node_map[i].start_pfn >= start_pfn &&
3654 		    early_node_map[i].end_pfn <= end_pfn) {
3655 			/* clear it */
3656 			early_node_map[i].start_pfn = 0;
3657 			early_node_map[i].end_pfn = 0;
3658 			removed = 1;
3659 			continue;
3660 		}
3661 		if (early_node_map[i].start_pfn < start_pfn &&
3662 		    early_node_map[i].end_pfn > start_pfn) {
3663 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3664 			early_node_map[i].end_pfn = start_pfn;
3665 			if (temp_end_pfn > end_pfn)
3666 				add_active_range(nid, end_pfn, temp_end_pfn);
3667 			continue;
3668 		}
3669 		if (early_node_map[i].start_pfn >= start_pfn &&
3670 		    early_node_map[i].end_pfn > end_pfn &&
3671 		    early_node_map[i].start_pfn < end_pfn) {
3672 			early_node_map[i].start_pfn = end_pfn;
3673 			continue;
3674 		}
3675 	}
3676 
3677 	if (!removed)
3678 		return;
3679 
3680 	/* remove the blank ones */
3681 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3682 		if (early_node_map[i].nid != nid)
3683 			continue;
3684 		if (early_node_map[i].end_pfn)
3685 			continue;
3686 		/* we found it, get rid of it */
3687 		for (j = i; j < nr_nodemap_entries - 1; j++)
3688 			memcpy(&early_node_map[j], &early_node_map[j+1],
3689 				sizeof(early_node_map[j]));
3690 		j = nr_nodemap_entries - 1;
3691 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3692 		nr_nodemap_entries--;
3693 	}
3694 }
3695 
3696 /**
3697  * remove_all_active_ranges - Remove all currently registered regions
3698  *
3699  * During discovery, it may be found that a table like SRAT is invalid
3700  * and an alternative discovery method must be used. This function removes
3701  * all currently registered regions.
3702  */
3703 void __init remove_all_active_ranges(void)
3704 {
3705 	memset(early_node_map, 0, sizeof(early_node_map));
3706 	nr_nodemap_entries = 0;
3707 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3708 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3709 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3710 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3711 }
3712 
3713 /* Compare two active node_active_regions */
3714 static int __init cmp_node_active_region(const void *a, const void *b)
3715 {
3716 	struct node_active_region *arange = (struct node_active_region *)a;
3717 	struct node_active_region *brange = (struct node_active_region *)b;
3718 
3719 	/* Done this way to avoid overflows */
3720 	if (arange->start_pfn > brange->start_pfn)
3721 		return 1;
3722 	if (arange->start_pfn < brange->start_pfn)
3723 		return -1;
3724 
3725 	return 0;
3726 }
3727 
3728 /* sort the node_map by start_pfn */
3729 static void __init sort_node_map(void)
3730 {
3731 	sort(early_node_map, (size_t)nr_nodemap_entries,
3732 			sizeof(struct node_active_region),
3733 			cmp_node_active_region, NULL);
3734 }
3735 
3736 /* Find the lowest pfn for a node */
3737 static unsigned long __init find_min_pfn_for_node(int nid)
3738 {
3739 	int i;
3740 	unsigned long min_pfn = ULONG_MAX;
3741 
3742 	/* Assuming a sorted map, the first range found has the starting pfn */
3743 	for_each_active_range_index_in_nid(i, nid)
3744 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3745 
3746 	if (min_pfn == ULONG_MAX) {
3747 		printk(KERN_WARNING
3748 			"Could not find start_pfn for node %d\n", nid);
3749 		return 0;
3750 	}
3751 
3752 	return min_pfn;
3753 }
3754 
3755 /**
3756  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3757  *
3758  * It returns the minimum PFN based on information provided via
3759  * add_active_range().
3760  */
3761 unsigned long __init find_min_pfn_with_active_regions(void)
3762 {
3763 	return find_min_pfn_for_node(MAX_NUMNODES);
3764 }
3765 
3766 /*
3767  * early_calculate_totalpages()
3768  * Sum pages in active regions for movable zone.
3769  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3770  */
3771 static unsigned long __init early_calculate_totalpages(void)
3772 {
3773 	int i;
3774 	unsigned long totalpages = 0;
3775 
3776 	for (i = 0; i < nr_nodemap_entries; i++) {
3777 		unsigned long pages = early_node_map[i].end_pfn -
3778 						early_node_map[i].start_pfn;
3779 		totalpages += pages;
3780 		if (pages)
3781 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3782 	}
3783   	return totalpages;
3784 }
3785 
3786 /*
3787  * Find the PFN the Movable zone begins in each node. Kernel memory
3788  * is spread evenly between nodes as long as the nodes have enough
3789  * memory. When they don't, some nodes will have more kernelcore than
3790  * others
3791  */
3792 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3793 {
3794 	int i, nid;
3795 	unsigned long usable_startpfn;
3796 	unsigned long kernelcore_node, kernelcore_remaining;
3797 	unsigned long totalpages = early_calculate_totalpages();
3798 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3799 
3800 	/*
3801 	 * If movablecore was specified, calculate what size of
3802 	 * kernelcore that corresponds so that memory usable for
3803 	 * any allocation type is evenly spread. If both kernelcore
3804 	 * and movablecore are specified, then the value of kernelcore
3805 	 * will be used for required_kernelcore if it's greater than
3806 	 * what movablecore would have allowed.
3807 	 */
3808 	if (required_movablecore) {
3809 		unsigned long corepages;
3810 
3811 		/*
3812 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3813 		 * was requested by the user
3814 		 */
3815 		required_movablecore =
3816 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3817 		corepages = totalpages - required_movablecore;
3818 
3819 		required_kernelcore = max(required_kernelcore, corepages);
3820 	}
3821 
3822 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3823 	if (!required_kernelcore)
3824 		return;
3825 
3826 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3827 	find_usable_zone_for_movable();
3828 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3829 
3830 restart:
3831 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3832 	kernelcore_node = required_kernelcore / usable_nodes;
3833 	for_each_node_state(nid, N_HIGH_MEMORY) {
3834 		/*
3835 		 * Recalculate kernelcore_node if the division per node
3836 		 * now exceeds what is necessary to satisfy the requested
3837 		 * amount of memory for the kernel
3838 		 */
3839 		if (required_kernelcore < kernelcore_node)
3840 			kernelcore_node = required_kernelcore / usable_nodes;
3841 
3842 		/*
3843 		 * As the map is walked, we track how much memory is usable
3844 		 * by the kernel using kernelcore_remaining. When it is
3845 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3846 		 */
3847 		kernelcore_remaining = kernelcore_node;
3848 
3849 		/* Go through each range of PFNs within this node */
3850 		for_each_active_range_index_in_nid(i, nid) {
3851 			unsigned long start_pfn, end_pfn;
3852 			unsigned long size_pages;
3853 
3854 			start_pfn = max(early_node_map[i].start_pfn,
3855 						zone_movable_pfn[nid]);
3856 			end_pfn = early_node_map[i].end_pfn;
3857 			if (start_pfn >= end_pfn)
3858 				continue;
3859 
3860 			/* Account for what is only usable for kernelcore */
3861 			if (start_pfn < usable_startpfn) {
3862 				unsigned long kernel_pages;
3863 				kernel_pages = min(end_pfn, usable_startpfn)
3864 								- start_pfn;
3865 
3866 				kernelcore_remaining -= min(kernel_pages,
3867 							kernelcore_remaining);
3868 				required_kernelcore -= min(kernel_pages,
3869 							required_kernelcore);
3870 
3871 				/* Continue if range is now fully accounted */
3872 				if (end_pfn <= usable_startpfn) {
3873 
3874 					/*
3875 					 * Push zone_movable_pfn to the end so
3876 					 * that if we have to rebalance
3877 					 * kernelcore across nodes, we will
3878 					 * not double account here
3879 					 */
3880 					zone_movable_pfn[nid] = end_pfn;
3881 					continue;
3882 				}
3883 				start_pfn = usable_startpfn;
3884 			}
3885 
3886 			/*
3887 			 * The usable PFN range for ZONE_MOVABLE is from
3888 			 * start_pfn->end_pfn. Calculate size_pages as the
3889 			 * number of pages used as kernelcore
3890 			 */
3891 			size_pages = end_pfn - start_pfn;
3892 			if (size_pages > kernelcore_remaining)
3893 				size_pages = kernelcore_remaining;
3894 			zone_movable_pfn[nid] = start_pfn + size_pages;
3895 
3896 			/*
3897 			 * Some kernelcore has been met, update counts and
3898 			 * break if the kernelcore for this node has been
3899 			 * satisified
3900 			 */
3901 			required_kernelcore -= min(required_kernelcore,
3902 								size_pages);
3903 			kernelcore_remaining -= size_pages;
3904 			if (!kernelcore_remaining)
3905 				break;
3906 		}
3907 	}
3908 
3909 	/*
3910 	 * If there is still required_kernelcore, we do another pass with one
3911 	 * less node in the count. This will push zone_movable_pfn[nid] further
3912 	 * along on the nodes that still have memory until kernelcore is
3913 	 * satisified
3914 	 */
3915 	usable_nodes--;
3916 	if (usable_nodes && required_kernelcore > usable_nodes)
3917 		goto restart;
3918 
3919 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3920 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3921 		zone_movable_pfn[nid] =
3922 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3923 }
3924 
3925 /* Any regular memory on that node ? */
3926 static void check_for_regular_memory(pg_data_t *pgdat)
3927 {
3928 #ifdef CONFIG_HIGHMEM
3929 	enum zone_type zone_type;
3930 
3931 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3932 		struct zone *zone = &pgdat->node_zones[zone_type];
3933 		if (zone->present_pages)
3934 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3935 	}
3936 #endif
3937 }
3938 
3939 /**
3940  * free_area_init_nodes - Initialise all pg_data_t and zone data
3941  * @max_zone_pfn: an array of max PFNs for each zone
3942  *
3943  * This will call free_area_init_node() for each active node in the system.
3944  * Using the page ranges provided by add_active_range(), the size of each
3945  * zone in each node and their holes is calculated. If the maximum PFN
3946  * between two adjacent zones match, it is assumed that the zone is empty.
3947  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3948  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3949  * starts where the previous one ended. For example, ZONE_DMA32 starts
3950  * at arch_max_dma_pfn.
3951  */
3952 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3953 {
3954 	unsigned long nid;
3955 	enum zone_type i;
3956 
3957 	/* Sort early_node_map as initialisation assumes it is sorted */
3958 	sort_node_map();
3959 
3960 	/* Record where the zone boundaries are */
3961 	memset(arch_zone_lowest_possible_pfn, 0,
3962 				sizeof(arch_zone_lowest_possible_pfn));
3963 	memset(arch_zone_highest_possible_pfn, 0,
3964 				sizeof(arch_zone_highest_possible_pfn));
3965 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3966 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3967 	for (i = 1; i < MAX_NR_ZONES; i++) {
3968 		if (i == ZONE_MOVABLE)
3969 			continue;
3970 		arch_zone_lowest_possible_pfn[i] =
3971 			arch_zone_highest_possible_pfn[i-1];
3972 		arch_zone_highest_possible_pfn[i] =
3973 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3974 	}
3975 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3976 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3977 
3978 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3979 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3980 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3981 
3982 	/* Print out the zone ranges */
3983 	printk("Zone PFN ranges:\n");
3984 	for (i = 0; i < MAX_NR_ZONES; i++) {
3985 		if (i == ZONE_MOVABLE)
3986 			continue;
3987 		printk("  %-8s %0#10lx -> %0#10lx\n",
3988 				zone_names[i],
3989 				arch_zone_lowest_possible_pfn[i],
3990 				arch_zone_highest_possible_pfn[i]);
3991 	}
3992 
3993 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3994 	printk("Movable zone start PFN for each node\n");
3995 	for (i = 0; i < MAX_NUMNODES; i++) {
3996 		if (zone_movable_pfn[i])
3997 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3998 	}
3999 
4000 	/* Print out the early_node_map[] */
4001 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4002 	for (i = 0; i < nr_nodemap_entries; i++)
4003 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4004 						early_node_map[i].start_pfn,
4005 						early_node_map[i].end_pfn);
4006 
4007 	/* Initialise every node */
4008 	mminit_verify_pageflags_layout();
4009 	setup_nr_node_ids();
4010 	for_each_online_node(nid) {
4011 		pg_data_t *pgdat = NODE_DATA(nid);
4012 		free_area_init_node(nid, NULL,
4013 				find_min_pfn_for_node(nid), NULL);
4014 
4015 		/* Any memory on that node */
4016 		if (pgdat->node_present_pages)
4017 			node_set_state(nid, N_HIGH_MEMORY);
4018 		check_for_regular_memory(pgdat);
4019 	}
4020 }
4021 
4022 static int __init cmdline_parse_core(char *p, unsigned long *core)
4023 {
4024 	unsigned long long coremem;
4025 	if (!p)
4026 		return -EINVAL;
4027 
4028 	coremem = memparse(p, &p);
4029 	*core = coremem >> PAGE_SHIFT;
4030 
4031 	/* Paranoid check that UL is enough for the coremem value */
4032 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4033 
4034 	return 0;
4035 }
4036 
4037 /*
4038  * kernelcore=size sets the amount of memory for use for allocations that
4039  * cannot be reclaimed or migrated.
4040  */
4041 static int __init cmdline_parse_kernelcore(char *p)
4042 {
4043 	return cmdline_parse_core(p, &required_kernelcore);
4044 }
4045 
4046 /*
4047  * movablecore=size sets the amount of memory for use for allocations that
4048  * can be reclaimed or migrated.
4049  */
4050 static int __init cmdline_parse_movablecore(char *p)
4051 {
4052 	return cmdline_parse_core(p, &required_movablecore);
4053 }
4054 
4055 early_param("kernelcore", cmdline_parse_kernelcore);
4056 early_param("movablecore", cmdline_parse_movablecore);
4057 
4058 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4059 
4060 /**
4061  * set_dma_reserve - set the specified number of pages reserved in the first zone
4062  * @new_dma_reserve: The number of pages to mark reserved
4063  *
4064  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4065  * In the DMA zone, a significant percentage may be consumed by kernel image
4066  * and other unfreeable allocations which can skew the watermarks badly. This
4067  * function may optionally be used to account for unfreeable pages in the
4068  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4069  * smaller per-cpu batchsize.
4070  */
4071 void __init set_dma_reserve(unsigned long new_dma_reserve)
4072 {
4073 	dma_reserve = new_dma_reserve;
4074 }
4075 
4076 #ifndef CONFIG_NEED_MULTIPLE_NODES
4077 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4078 EXPORT_SYMBOL(contig_page_data);
4079 #endif
4080 
4081 void __init free_area_init(unsigned long *zones_size)
4082 {
4083 	free_area_init_node(0, zones_size,
4084 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4085 }
4086 
4087 static int page_alloc_cpu_notify(struct notifier_block *self,
4088 				 unsigned long action, void *hcpu)
4089 {
4090 	int cpu = (unsigned long)hcpu;
4091 
4092 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4093 		drain_pages(cpu);
4094 
4095 		/*
4096 		 * Spill the event counters of the dead processor
4097 		 * into the current processors event counters.
4098 		 * This artificially elevates the count of the current
4099 		 * processor.
4100 		 */
4101 		vm_events_fold_cpu(cpu);
4102 
4103 		/*
4104 		 * Zero the differential counters of the dead processor
4105 		 * so that the vm statistics are consistent.
4106 		 *
4107 		 * This is only okay since the processor is dead and cannot
4108 		 * race with what we are doing.
4109 		 */
4110 		refresh_cpu_vm_stats(cpu);
4111 	}
4112 	return NOTIFY_OK;
4113 }
4114 
4115 void __init page_alloc_init(void)
4116 {
4117 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4118 }
4119 
4120 /*
4121  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4122  *	or min_free_kbytes changes.
4123  */
4124 static void calculate_totalreserve_pages(void)
4125 {
4126 	struct pglist_data *pgdat;
4127 	unsigned long reserve_pages = 0;
4128 	enum zone_type i, j;
4129 
4130 	for_each_online_pgdat(pgdat) {
4131 		for (i = 0; i < MAX_NR_ZONES; i++) {
4132 			struct zone *zone = pgdat->node_zones + i;
4133 			unsigned long max = 0;
4134 
4135 			/* Find valid and maximum lowmem_reserve in the zone */
4136 			for (j = i; j < MAX_NR_ZONES; j++) {
4137 				if (zone->lowmem_reserve[j] > max)
4138 					max = zone->lowmem_reserve[j];
4139 			}
4140 
4141 			/* we treat pages_high as reserved pages. */
4142 			max += zone->pages_high;
4143 
4144 			if (max > zone->present_pages)
4145 				max = zone->present_pages;
4146 			reserve_pages += max;
4147 		}
4148 	}
4149 	totalreserve_pages = reserve_pages;
4150 }
4151 
4152 /*
4153  * setup_per_zone_lowmem_reserve - called whenever
4154  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4155  *	has a correct pages reserved value, so an adequate number of
4156  *	pages are left in the zone after a successful __alloc_pages().
4157  */
4158 static void setup_per_zone_lowmem_reserve(void)
4159 {
4160 	struct pglist_data *pgdat;
4161 	enum zone_type j, idx;
4162 
4163 	for_each_online_pgdat(pgdat) {
4164 		for (j = 0; j < MAX_NR_ZONES; j++) {
4165 			struct zone *zone = pgdat->node_zones + j;
4166 			unsigned long present_pages = zone->present_pages;
4167 
4168 			zone->lowmem_reserve[j] = 0;
4169 
4170 			idx = j;
4171 			while (idx) {
4172 				struct zone *lower_zone;
4173 
4174 				idx--;
4175 
4176 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4177 					sysctl_lowmem_reserve_ratio[idx] = 1;
4178 
4179 				lower_zone = pgdat->node_zones + idx;
4180 				lower_zone->lowmem_reserve[j] = present_pages /
4181 					sysctl_lowmem_reserve_ratio[idx];
4182 				present_pages += lower_zone->present_pages;
4183 			}
4184 		}
4185 	}
4186 
4187 	/* update totalreserve_pages */
4188 	calculate_totalreserve_pages();
4189 }
4190 
4191 /**
4192  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4193  *
4194  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4195  * with respect to min_free_kbytes.
4196  */
4197 void setup_per_zone_pages_min(void)
4198 {
4199 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4200 	unsigned long lowmem_pages = 0;
4201 	struct zone *zone;
4202 	unsigned long flags;
4203 
4204 	/* Calculate total number of !ZONE_HIGHMEM pages */
4205 	for_each_zone(zone) {
4206 		if (!is_highmem(zone))
4207 			lowmem_pages += zone->present_pages;
4208 	}
4209 
4210 	for_each_zone(zone) {
4211 		u64 tmp;
4212 
4213 		spin_lock_irqsave(&zone->lru_lock, flags);
4214 		tmp = (u64)pages_min * zone->present_pages;
4215 		do_div(tmp, lowmem_pages);
4216 		if (is_highmem(zone)) {
4217 			/*
4218 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4219 			 * need highmem pages, so cap pages_min to a small
4220 			 * value here.
4221 			 *
4222 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4223 			 * deltas controls asynch page reclaim, and so should
4224 			 * not be capped for highmem.
4225 			 */
4226 			int min_pages;
4227 
4228 			min_pages = zone->present_pages / 1024;
4229 			if (min_pages < SWAP_CLUSTER_MAX)
4230 				min_pages = SWAP_CLUSTER_MAX;
4231 			if (min_pages > 128)
4232 				min_pages = 128;
4233 			zone->pages_min = min_pages;
4234 		} else {
4235 			/*
4236 			 * If it's a lowmem zone, reserve a number of pages
4237 			 * proportionate to the zone's size.
4238 			 */
4239 			zone->pages_min = tmp;
4240 		}
4241 
4242 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4243 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4244 		setup_zone_migrate_reserve(zone);
4245 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4246 	}
4247 
4248 	/* update totalreserve_pages */
4249 	calculate_totalreserve_pages();
4250 }
4251 
4252 /*
4253  * Initialise min_free_kbytes.
4254  *
4255  * For small machines we want it small (128k min).  For large machines
4256  * we want it large (64MB max).  But it is not linear, because network
4257  * bandwidth does not increase linearly with machine size.  We use
4258  *
4259  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4260  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4261  *
4262  * which yields
4263  *
4264  * 16MB:	512k
4265  * 32MB:	724k
4266  * 64MB:	1024k
4267  * 128MB:	1448k
4268  * 256MB:	2048k
4269  * 512MB:	2896k
4270  * 1024MB:	4096k
4271  * 2048MB:	5792k
4272  * 4096MB:	8192k
4273  * 8192MB:	11584k
4274  * 16384MB:	16384k
4275  */
4276 static int __init init_per_zone_pages_min(void)
4277 {
4278 	unsigned long lowmem_kbytes;
4279 
4280 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4281 
4282 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4283 	if (min_free_kbytes < 128)
4284 		min_free_kbytes = 128;
4285 	if (min_free_kbytes > 65536)
4286 		min_free_kbytes = 65536;
4287 	setup_per_zone_pages_min();
4288 	setup_per_zone_lowmem_reserve();
4289 	return 0;
4290 }
4291 module_init(init_per_zone_pages_min)
4292 
4293 /*
4294  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4295  *	that we can call two helper functions whenever min_free_kbytes
4296  *	changes.
4297  */
4298 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4299 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4300 {
4301 	proc_dointvec(table, write, file, buffer, length, ppos);
4302 	if (write)
4303 		setup_per_zone_pages_min();
4304 	return 0;
4305 }
4306 
4307 #ifdef CONFIG_NUMA
4308 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4309 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4310 {
4311 	struct zone *zone;
4312 	int rc;
4313 
4314 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4315 	if (rc)
4316 		return rc;
4317 
4318 	for_each_zone(zone)
4319 		zone->min_unmapped_pages = (zone->present_pages *
4320 				sysctl_min_unmapped_ratio) / 100;
4321 	return 0;
4322 }
4323 
4324 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4325 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4326 {
4327 	struct zone *zone;
4328 	int rc;
4329 
4330 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4331 	if (rc)
4332 		return rc;
4333 
4334 	for_each_zone(zone)
4335 		zone->min_slab_pages = (zone->present_pages *
4336 				sysctl_min_slab_ratio) / 100;
4337 	return 0;
4338 }
4339 #endif
4340 
4341 /*
4342  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4343  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4344  *	whenever sysctl_lowmem_reserve_ratio changes.
4345  *
4346  * The reserve ratio obviously has absolutely no relation with the
4347  * pages_min watermarks. The lowmem reserve ratio can only make sense
4348  * if in function of the boot time zone sizes.
4349  */
4350 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4351 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4352 {
4353 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4354 	setup_per_zone_lowmem_reserve();
4355 	return 0;
4356 }
4357 
4358 /*
4359  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4360  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4361  * can have before it gets flushed back to buddy allocator.
4362  */
4363 
4364 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4365 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4366 {
4367 	struct zone *zone;
4368 	unsigned int cpu;
4369 	int ret;
4370 
4371 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4372 	if (!write || (ret == -EINVAL))
4373 		return ret;
4374 	for_each_zone(zone) {
4375 		for_each_online_cpu(cpu) {
4376 			unsigned long  high;
4377 			high = zone->present_pages / percpu_pagelist_fraction;
4378 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4379 		}
4380 	}
4381 	return 0;
4382 }
4383 
4384 int hashdist = HASHDIST_DEFAULT;
4385 
4386 #ifdef CONFIG_NUMA
4387 static int __init set_hashdist(char *str)
4388 {
4389 	if (!str)
4390 		return 0;
4391 	hashdist = simple_strtoul(str, &str, 0);
4392 	return 1;
4393 }
4394 __setup("hashdist=", set_hashdist);
4395 #endif
4396 
4397 /*
4398  * allocate a large system hash table from bootmem
4399  * - it is assumed that the hash table must contain an exact power-of-2
4400  *   quantity of entries
4401  * - limit is the number of hash buckets, not the total allocation size
4402  */
4403 void *__init alloc_large_system_hash(const char *tablename,
4404 				     unsigned long bucketsize,
4405 				     unsigned long numentries,
4406 				     int scale,
4407 				     int flags,
4408 				     unsigned int *_hash_shift,
4409 				     unsigned int *_hash_mask,
4410 				     unsigned long limit)
4411 {
4412 	unsigned long long max = limit;
4413 	unsigned long log2qty, size;
4414 	void *table = NULL;
4415 
4416 	/* allow the kernel cmdline to have a say */
4417 	if (!numentries) {
4418 		/* round applicable memory size up to nearest megabyte */
4419 		numentries = nr_kernel_pages;
4420 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4421 		numentries >>= 20 - PAGE_SHIFT;
4422 		numentries <<= 20 - PAGE_SHIFT;
4423 
4424 		/* limit to 1 bucket per 2^scale bytes of low memory */
4425 		if (scale > PAGE_SHIFT)
4426 			numentries >>= (scale - PAGE_SHIFT);
4427 		else
4428 			numentries <<= (PAGE_SHIFT - scale);
4429 
4430 		/* Make sure we've got at least a 0-order allocation.. */
4431 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4432 			numentries = PAGE_SIZE / bucketsize;
4433 	}
4434 	numentries = roundup_pow_of_two(numentries);
4435 
4436 	/* limit allocation size to 1/16 total memory by default */
4437 	if (max == 0) {
4438 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4439 		do_div(max, bucketsize);
4440 	}
4441 
4442 	if (numentries > max)
4443 		numentries = max;
4444 
4445 	log2qty = ilog2(numentries);
4446 
4447 	do {
4448 		size = bucketsize << log2qty;
4449 		if (flags & HASH_EARLY)
4450 			table = alloc_bootmem_nopanic(size);
4451 		else if (hashdist)
4452 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4453 		else {
4454 			unsigned long order = get_order(size);
4455 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4456 			/*
4457 			 * If bucketsize is not a power-of-two, we may free
4458 			 * some pages at the end of hash table.
4459 			 */
4460 			if (table) {
4461 				unsigned long alloc_end = (unsigned long)table +
4462 						(PAGE_SIZE << order);
4463 				unsigned long used = (unsigned long)table +
4464 						PAGE_ALIGN(size);
4465 				split_page(virt_to_page(table), order);
4466 				while (used < alloc_end) {
4467 					free_page(used);
4468 					used += PAGE_SIZE;
4469 				}
4470 			}
4471 		}
4472 	} while (!table && size > PAGE_SIZE && --log2qty);
4473 
4474 	if (!table)
4475 		panic("Failed to allocate %s hash table\n", tablename);
4476 
4477 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4478 	       tablename,
4479 	       (1U << log2qty),
4480 	       ilog2(size) - PAGE_SHIFT,
4481 	       size);
4482 
4483 	if (_hash_shift)
4484 		*_hash_shift = log2qty;
4485 	if (_hash_mask)
4486 		*_hash_mask = (1 << log2qty) - 1;
4487 
4488 	return table;
4489 }
4490 
4491 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4492 struct page *pfn_to_page(unsigned long pfn)
4493 {
4494 	return __pfn_to_page(pfn);
4495 }
4496 unsigned long page_to_pfn(struct page *page)
4497 {
4498 	return __page_to_pfn(page);
4499 }
4500 EXPORT_SYMBOL(pfn_to_page);
4501 EXPORT_SYMBOL(page_to_pfn);
4502 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4503 
4504 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4505 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4506 							unsigned long pfn)
4507 {
4508 #ifdef CONFIG_SPARSEMEM
4509 	return __pfn_to_section(pfn)->pageblock_flags;
4510 #else
4511 	return zone->pageblock_flags;
4512 #endif /* CONFIG_SPARSEMEM */
4513 }
4514 
4515 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4516 {
4517 #ifdef CONFIG_SPARSEMEM
4518 	pfn &= (PAGES_PER_SECTION-1);
4519 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4520 #else
4521 	pfn = pfn - zone->zone_start_pfn;
4522 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4523 #endif /* CONFIG_SPARSEMEM */
4524 }
4525 
4526 /**
4527  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4528  * @page: The page within the block of interest
4529  * @start_bitidx: The first bit of interest to retrieve
4530  * @end_bitidx: The last bit of interest
4531  * returns pageblock_bits flags
4532  */
4533 unsigned long get_pageblock_flags_group(struct page *page,
4534 					int start_bitidx, int end_bitidx)
4535 {
4536 	struct zone *zone;
4537 	unsigned long *bitmap;
4538 	unsigned long pfn, bitidx;
4539 	unsigned long flags = 0;
4540 	unsigned long value = 1;
4541 
4542 	zone = page_zone(page);
4543 	pfn = page_to_pfn(page);
4544 	bitmap = get_pageblock_bitmap(zone, pfn);
4545 	bitidx = pfn_to_bitidx(zone, pfn);
4546 
4547 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4548 		if (test_bit(bitidx + start_bitidx, bitmap))
4549 			flags |= value;
4550 
4551 	return flags;
4552 }
4553 
4554 /**
4555  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4556  * @page: The page within the block of interest
4557  * @start_bitidx: The first bit of interest
4558  * @end_bitidx: The last bit of interest
4559  * @flags: The flags to set
4560  */
4561 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4562 					int start_bitidx, int end_bitidx)
4563 {
4564 	struct zone *zone;
4565 	unsigned long *bitmap;
4566 	unsigned long pfn, bitidx;
4567 	unsigned long value = 1;
4568 
4569 	zone = page_zone(page);
4570 	pfn = page_to_pfn(page);
4571 	bitmap = get_pageblock_bitmap(zone, pfn);
4572 	bitidx = pfn_to_bitidx(zone, pfn);
4573 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4574 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4575 
4576 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4577 		if (flags & value)
4578 			__set_bit(bitidx + start_bitidx, bitmap);
4579 		else
4580 			__clear_bit(bitidx + start_bitidx, bitmap);
4581 }
4582 
4583 /*
4584  * This is designed as sub function...plz see page_isolation.c also.
4585  * set/clear page block's type to be ISOLATE.
4586  * page allocater never alloc memory from ISOLATE block.
4587  */
4588 
4589 int set_migratetype_isolate(struct page *page)
4590 {
4591 	struct zone *zone;
4592 	unsigned long flags;
4593 	int ret = -EBUSY;
4594 
4595 	zone = page_zone(page);
4596 	spin_lock_irqsave(&zone->lock, flags);
4597 	/*
4598 	 * In future, more migrate types will be able to be isolation target.
4599 	 */
4600 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4601 		goto out;
4602 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4603 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4604 	ret = 0;
4605 out:
4606 	spin_unlock_irqrestore(&zone->lock, flags);
4607 	if (!ret)
4608 		drain_all_pages();
4609 	return ret;
4610 }
4611 
4612 void unset_migratetype_isolate(struct page *page)
4613 {
4614 	struct zone *zone;
4615 	unsigned long flags;
4616 	zone = page_zone(page);
4617 	spin_lock_irqsave(&zone->lock, flags);
4618 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4619 		goto out;
4620 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4621 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4622 out:
4623 	spin_unlock_irqrestore(&zone->lock, flags);
4624 }
4625 
4626 #ifdef CONFIG_MEMORY_HOTREMOVE
4627 /*
4628  * All pages in the range must be isolated before calling this.
4629  */
4630 void
4631 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4632 {
4633 	struct page *page;
4634 	struct zone *zone;
4635 	int order, i;
4636 	unsigned long pfn;
4637 	unsigned long flags;
4638 	/* find the first valid pfn */
4639 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4640 		if (pfn_valid(pfn))
4641 			break;
4642 	if (pfn == end_pfn)
4643 		return;
4644 	zone = page_zone(pfn_to_page(pfn));
4645 	spin_lock_irqsave(&zone->lock, flags);
4646 	pfn = start_pfn;
4647 	while (pfn < end_pfn) {
4648 		if (!pfn_valid(pfn)) {
4649 			pfn++;
4650 			continue;
4651 		}
4652 		page = pfn_to_page(pfn);
4653 		BUG_ON(page_count(page));
4654 		BUG_ON(!PageBuddy(page));
4655 		order = page_order(page);
4656 #ifdef CONFIG_DEBUG_VM
4657 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4658 		       pfn, 1 << order, end_pfn);
4659 #endif
4660 		list_del(&page->lru);
4661 		rmv_page_order(page);
4662 		zone->free_area[order].nr_free--;
4663 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4664 				      - (1UL << order));
4665 		for (i = 0; i < (1 << order); i++)
4666 			SetPageReserved((page+i));
4667 		pfn += (1 << order);
4668 	}
4669 	spin_unlock_irqrestore(&zone->lock, flags);
4670 }
4671 #endif
4672