1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/oom.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 #include <linux/sysctl.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/memory_hotplug.h> 38 #include <linux/nodemask.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mempolicy.h> 41 #include <linux/stop_machine.h> 42 #include <linux/sort.h> 43 #include <linux/pfn.h> 44 #include <linux/backing-dev.h> 45 #include <linux/fault-inject.h> 46 #include <linux/page-isolation.h> 47 #include <linux/memcontrol.h> 48 #include <linux/debugobjects.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 #include "internal.h" 53 54 /* 55 * Array of node states. 56 */ 57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 58 [N_POSSIBLE] = NODE_MASK_ALL, 59 [N_ONLINE] = { { [0] = 1UL } }, 60 #ifndef CONFIG_NUMA 61 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 62 #ifdef CONFIG_HIGHMEM 63 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 64 #endif 65 [N_CPU] = { { [0] = 1UL } }, 66 #endif /* NUMA */ 67 }; 68 EXPORT_SYMBOL(node_states); 69 70 unsigned long totalram_pages __read_mostly; 71 unsigned long totalreserve_pages __read_mostly; 72 long nr_swap_pages; 73 int percpu_pagelist_fraction; 74 75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 76 int pageblock_order __read_mostly; 77 #endif 78 79 static void __free_pages_ok(struct page *page, unsigned int order); 80 81 /* 82 * results with 256, 32 in the lowmem_reserve sysctl: 83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 84 * 1G machine -> (16M dma, 784M normal, 224M high) 85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 88 * 89 * TBD: should special case ZONE_DMA32 machines here - in those we normally 90 * don't need any ZONE_NORMAL reservation 91 */ 92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 93 #ifdef CONFIG_ZONE_DMA 94 256, 95 #endif 96 #ifdef CONFIG_ZONE_DMA32 97 256, 98 #endif 99 #ifdef CONFIG_HIGHMEM 100 32, 101 #endif 102 32, 103 }; 104 105 EXPORT_SYMBOL(totalram_pages); 106 107 static char * const zone_names[MAX_NR_ZONES] = { 108 #ifdef CONFIG_ZONE_DMA 109 "DMA", 110 #endif 111 #ifdef CONFIG_ZONE_DMA32 112 "DMA32", 113 #endif 114 "Normal", 115 #ifdef CONFIG_HIGHMEM 116 "HighMem", 117 #endif 118 "Movable", 119 }; 120 121 int min_free_kbytes = 1024; 122 123 unsigned long __meminitdata nr_kernel_pages; 124 unsigned long __meminitdata nr_all_pages; 125 static unsigned long __meminitdata dma_reserve; 126 127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 128 /* 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 130 * ranges of memory (RAM) that may be registered with add_active_range(). 131 * Ranges passed to add_active_range() will be merged if possible 132 * so the number of times add_active_range() can be called is 133 * related to the number of nodes and the number of holes 134 */ 135 #ifdef CONFIG_MAX_ACTIVE_REGIONS 136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 138 #else 139 #if MAX_NUMNODES >= 32 140 /* If there can be many nodes, allow up to 50 holes per node */ 141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 142 #else 143 /* By default, allow up to 256 distinct regions */ 144 #define MAX_ACTIVE_REGIONS 256 145 #endif 146 #endif 147 148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 149 static int __meminitdata nr_nodemap_entries; 150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 156 static unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165 #if MAX_NUMNODES > 1 166 int nr_node_ids __read_mostly = MAX_NUMNODES; 167 EXPORT_SYMBOL(nr_node_ids); 168 #endif 169 170 int page_group_by_mobility_disabled __read_mostly; 171 172 static void set_pageblock_migratetype(struct page *page, int migratetype) 173 { 174 set_pageblock_flags_group(page, (unsigned long)migratetype, 175 PB_migrate, PB_migrate_end); 176 } 177 178 #ifdef CONFIG_DEBUG_VM 179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 180 { 181 int ret = 0; 182 unsigned seq; 183 unsigned long pfn = page_to_pfn(page); 184 185 do { 186 seq = zone_span_seqbegin(zone); 187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 188 ret = 1; 189 else if (pfn < zone->zone_start_pfn) 190 ret = 1; 191 } while (zone_span_seqretry(zone, seq)); 192 193 return ret; 194 } 195 196 static int page_is_consistent(struct zone *zone, struct page *page) 197 { 198 if (!pfn_valid_within(page_to_pfn(page))) 199 return 0; 200 if (zone != page_zone(page)) 201 return 0; 202 203 return 1; 204 } 205 /* 206 * Temporary debugging check for pages not lying within a given zone. 207 */ 208 static int bad_range(struct zone *zone, struct page *page) 209 { 210 if (page_outside_zone_boundaries(zone, page)) 211 return 1; 212 if (!page_is_consistent(zone, page)) 213 return 1; 214 215 return 0; 216 } 217 #else 218 static inline int bad_range(struct zone *zone, struct page *page) 219 { 220 return 0; 221 } 222 #endif 223 224 static void bad_page(struct page *page) 225 { 226 void *pc = page_get_page_cgroup(page); 227 228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG 229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 230 current->comm, page, (int)(2*sizeof(unsigned long)), 231 (unsigned long)page->flags, page->mapping, 232 page_mapcount(page), page_count(page)); 233 if (pc) { 234 printk(KERN_EMERG "cgroup:%p\n", pc); 235 page_reset_bad_cgroup(page); 236 } 237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 238 KERN_EMERG "Backtrace:\n"); 239 dump_stack(); 240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD; 241 set_page_count(page, 0); 242 reset_page_mapcount(page); 243 page->mapping = NULL; 244 add_taint(TAINT_BAD_PAGE); 245 } 246 247 /* 248 * Higher-order pages are called "compound pages". They are structured thusly: 249 * 250 * The first PAGE_SIZE page is called the "head page". 251 * 252 * The remaining PAGE_SIZE pages are called "tail pages". 253 * 254 * All pages have PG_compound set. All pages have their ->private pointing at 255 * the head page (even the head page has this). 256 * 257 * The first tail page's ->lru.next holds the address of the compound page's 258 * put_page() function. Its ->lru.prev holds the order of allocation. 259 * This usage means that zero-order pages may not be compound. 260 */ 261 262 static void free_compound_page(struct page *page) 263 { 264 __free_pages_ok(page, compound_order(page)); 265 } 266 267 void prep_compound_page(struct page *page, unsigned long order) 268 { 269 int i; 270 int nr_pages = 1 << order; 271 struct page *p = page + 1; 272 273 set_compound_page_dtor(page, free_compound_page); 274 set_compound_order(page, order); 275 __SetPageHead(page); 276 for (i = 1; i < nr_pages; i++, p++) { 277 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0)) 278 p = pfn_to_page(page_to_pfn(page) + i); 279 __SetPageTail(p); 280 p->first_page = page; 281 } 282 } 283 284 static void destroy_compound_page(struct page *page, unsigned long order) 285 { 286 int i; 287 int nr_pages = 1 << order; 288 struct page *p = page + 1; 289 290 if (unlikely(compound_order(page) != order)) 291 bad_page(page); 292 293 if (unlikely(!PageHead(page))) 294 bad_page(page); 295 __ClearPageHead(page); 296 for (i = 1; i < nr_pages; i++, p++) { 297 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0)) 298 p = pfn_to_page(page_to_pfn(page) + i); 299 300 if (unlikely(!PageTail(p) | 301 (p->first_page != page))) 302 bad_page(page); 303 __ClearPageTail(p); 304 } 305 } 306 307 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 308 { 309 int i; 310 311 /* 312 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 313 * and __GFP_HIGHMEM from hard or soft interrupt context. 314 */ 315 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 316 for (i = 0; i < (1 << order); i++) 317 clear_highpage(page + i); 318 } 319 320 static inline void set_page_order(struct page *page, int order) 321 { 322 set_page_private(page, order); 323 __SetPageBuddy(page); 324 } 325 326 static inline void rmv_page_order(struct page *page) 327 { 328 __ClearPageBuddy(page); 329 set_page_private(page, 0); 330 } 331 332 /* 333 * Locate the struct page for both the matching buddy in our 334 * pair (buddy1) and the combined O(n+1) page they form (page). 335 * 336 * 1) Any buddy B1 will have an order O twin B2 which satisfies 337 * the following equation: 338 * B2 = B1 ^ (1 << O) 339 * For example, if the starting buddy (buddy2) is #8 its order 340 * 1 buddy is #10: 341 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 342 * 343 * 2) Any buddy B will have an order O+1 parent P which 344 * satisfies the following equation: 345 * P = B & ~(1 << O) 346 * 347 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 348 */ 349 static inline struct page * 350 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 351 { 352 unsigned long buddy_idx = page_idx ^ (1 << order); 353 354 return page + (buddy_idx - page_idx); 355 } 356 357 static inline unsigned long 358 __find_combined_index(unsigned long page_idx, unsigned int order) 359 { 360 return (page_idx & ~(1 << order)); 361 } 362 363 /* 364 * This function checks whether a page is free && is the buddy 365 * we can do coalesce a page and its buddy if 366 * (a) the buddy is not in a hole && 367 * (b) the buddy is in the buddy system && 368 * (c) a page and its buddy have the same order && 369 * (d) a page and its buddy are in the same zone. 370 * 371 * For recording whether a page is in the buddy system, we use PG_buddy. 372 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 373 * 374 * For recording page's order, we use page_private(page). 375 */ 376 static inline int page_is_buddy(struct page *page, struct page *buddy, 377 int order) 378 { 379 if (!pfn_valid_within(page_to_pfn(buddy))) 380 return 0; 381 382 if (page_zone_id(page) != page_zone_id(buddy)) 383 return 0; 384 385 if (PageBuddy(buddy) && page_order(buddy) == order) { 386 BUG_ON(page_count(buddy) != 0); 387 return 1; 388 } 389 return 0; 390 } 391 392 /* 393 * Freeing function for a buddy system allocator. 394 * 395 * The concept of a buddy system is to maintain direct-mapped table 396 * (containing bit values) for memory blocks of various "orders". 397 * The bottom level table contains the map for the smallest allocatable 398 * units of memory (here, pages), and each level above it describes 399 * pairs of units from the levels below, hence, "buddies". 400 * At a high level, all that happens here is marking the table entry 401 * at the bottom level available, and propagating the changes upward 402 * as necessary, plus some accounting needed to play nicely with other 403 * parts of the VM system. 404 * At each level, we keep a list of pages, which are heads of continuous 405 * free pages of length of (1 << order) and marked with PG_buddy. Page's 406 * order is recorded in page_private(page) field. 407 * So when we are allocating or freeing one, we can derive the state of the 408 * other. That is, if we allocate a small block, and both were 409 * free, the remainder of the region must be split into blocks. 410 * If a block is freed, and its buddy is also free, then this 411 * triggers coalescing into a block of larger size. 412 * 413 * -- wli 414 */ 415 416 static inline void __free_one_page(struct page *page, 417 struct zone *zone, unsigned int order) 418 { 419 unsigned long page_idx; 420 int order_size = 1 << order; 421 int migratetype = get_pageblock_migratetype(page); 422 423 if (unlikely(PageCompound(page))) 424 destroy_compound_page(page, order); 425 426 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 427 428 VM_BUG_ON(page_idx & (order_size - 1)); 429 VM_BUG_ON(bad_range(zone, page)); 430 431 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 432 while (order < MAX_ORDER-1) { 433 unsigned long combined_idx; 434 struct page *buddy; 435 436 buddy = __page_find_buddy(page, page_idx, order); 437 if (!page_is_buddy(page, buddy, order)) 438 break; 439 440 /* Our buddy is free, merge with it and move up one order. */ 441 list_del(&buddy->lru); 442 zone->free_area[order].nr_free--; 443 rmv_page_order(buddy); 444 combined_idx = __find_combined_index(page_idx, order); 445 page = page + (combined_idx - page_idx); 446 page_idx = combined_idx; 447 order++; 448 } 449 set_page_order(page, order); 450 list_add(&page->lru, 451 &zone->free_area[order].free_list[migratetype]); 452 zone->free_area[order].nr_free++; 453 } 454 455 static inline int free_pages_check(struct page *page) 456 { 457 if (unlikely(page_mapcount(page) | 458 (page->mapping != NULL) | 459 (page_get_page_cgroup(page) != NULL) | 460 (page_count(page) != 0) | 461 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) 462 bad_page(page); 463 if (PageDirty(page)) 464 __ClearPageDirty(page); 465 /* 466 * For now, we report if PG_reserved was found set, but do not 467 * clear it, and do not free the page. But we shall soon need 468 * to do more, for when the ZERO_PAGE count wraps negative. 469 */ 470 return PageReserved(page); 471 } 472 473 /* 474 * Frees a list of pages. 475 * Assumes all pages on list are in same zone, and of same order. 476 * count is the number of pages to free. 477 * 478 * If the zone was previously in an "all pages pinned" state then look to 479 * see if this freeing clears that state. 480 * 481 * And clear the zone's pages_scanned counter, to hold off the "all pages are 482 * pinned" detection logic. 483 */ 484 static void free_pages_bulk(struct zone *zone, int count, 485 struct list_head *list, int order) 486 { 487 spin_lock(&zone->lock); 488 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 489 zone->pages_scanned = 0; 490 while (count--) { 491 struct page *page; 492 493 VM_BUG_ON(list_empty(list)); 494 page = list_entry(list->prev, struct page, lru); 495 /* have to delete it as __free_one_page list manipulates */ 496 list_del(&page->lru); 497 __free_one_page(page, zone, order); 498 } 499 spin_unlock(&zone->lock); 500 } 501 502 static void free_one_page(struct zone *zone, struct page *page, int order) 503 { 504 spin_lock(&zone->lock); 505 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 506 zone->pages_scanned = 0; 507 __free_one_page(page, zone, order); 508 spin_unlock(&zone->lock); 509 } 510 511 static void __free_pages_ok(struct page *page, unsigned int order) 512 { 513 unsigned long flags; 514 int i; 515 int reserved = 0; 516 517 for (i = 0 ; i < (1 << order) ; ++i) 518 reserved += free_pages_check(page + i); 519 if (reserved) 520 return; 521 522 if (!PageHighMem(page)) { 523 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 524 debug_check_no_obj_freed(page_address(page), 525 PAGE_SIZE << order); 526 } 527 arch_free_page(page, order); 528 kernel_map_pages(page, 1 << order, 0); 529 530 local_irq_save(flags); 531 __count_vm_events(PGFREE, 1 << order); 532 free_one_page(page_zone(page), page, order); 533 local_irq_restore(flags); 534 } 535 536 /* 537 * permit the bootmem allocator to evade page validation on high-order frees 538 */ 539 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 540 { 541 if (order == 0) { 542 __ClearPageReserved(page); 543 set_page_count(page, 0); 544 set_page_refcounted(page); 545 __free_page(page); 546 } else { 547 int loop; 548 549 prefetchw(page); 550 for (loop = 0; loop < BITS_PER_LONG; loop++) { 551 struct page *p = &page[loop]; 552 553 if (loop + 1 < BITS_PER_LONG) 554 prefetchw(p + 1); 555 __ClearPageReserved(p); 556 set_page_count(p, 0); 557 } 558 559 set_page_refcounted(page); 560 __free_pages(page, order); 561 } 562 } 563 564 565 /* 566 * The order of subdivision here is critical for the IO subsystem. 567 * Please do not alter this order without good reasons and regression 568 * testing. Specifically, as large blocks of memory are subdivided, 569 * the order in which smaller blocks are delivered depends on the order 570 * they're subdivided in this function. This is the primary factor 571 * influencing the order in which pages are delivered to the IO 572 * subsystem according to empirical testing, and this is also justified 573 * by considering the behavior of a buddy system containing a single 574 * large block of memory acted on by a series of small allocations. 575 * This behavior is a critical factor in sglist merging's success. 576 * 577 * -- wli 578 */ 579 static inline void expand(struct zone *zone, struct page *page, 580 int low, int high, struct free_area *area, 581 int migratetype) 582 { 583 unsigned long size = 1 << high; 584 585 while (high > low) { 586 area--; 587 high--; 588 size >>= 1; 589 VM_BUG_ON(bad_range(zone, &page[size])); 590 list_add(&page[size].lru, &area->free_list[migratetype]); 591 area->nr_free++; 592 set_page_order(&page[size], high); 593 } 594 } 595 596 /* 597 * This page is about to be returned from the page allocator 598 */ 599 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 600 { 601 if (unlikely(page_mapcount(page) | 602 (page->mapping != NULL) | 603 (page_get_page_cgroup(page) != NULL) | 604 (page_count(page) != 0) | 605 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) 606 bad_page(page); 607 608 /* 609 * For now, we report if PG_reserved was found set, but do not 610 * clear it, and do not allocate the page: as a safety net. 611 */ 612 if (PageReserved(page)) 613 return 1; 614 615 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim | 616 1 << PG_referenced | 1 << PG_arch_1 | 617 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); 618 set_page_private(page, 0); 619 set_page_refcounted(page); 620 621 arch_alloc_page(page, order); 622 kernel_map_pages(page, 1 << order, 1); 623 624 if (gfp_flags & __GFP_ZERO) 625 prep_zero_page(page, order, gfp_flags); 626 627 if (order && (gfp_flags & __GFP_COMP)) 628 prep_compound_page(page, order); 629 630 return 0; 631 } 632 633 /* 634 * Go through the free lists for the given migratetype and remove 635 * the smallest available page from the freelists 636 */ 637 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 638 int migratetype) 639 { 640 unsigned int current_order; 641 struct free_area * area; 642 struct page *page; 643 644 /* Find a page of the appropriate size in the preferred list */ 645 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 646 area = &(zone->free_area[current_order]); 647 if (list_empty(&area->free_list[migratetype])) 648 continue; 649 650 page = list_entry(area->free_list[migratetype].next, 651 struct page, lru); 652 list_del(&page->lru); 653 rmv_page_order(page); 654 area->nr_free--; 655 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 656 expand(zone, page, order, current_order, area, migratetype); 657 return page; 658 } 659 660 return NULL; 661 } 662 663 664 /* 665 * This array describes the order lists are fallen back to when 666 * the free lists for the desirable migrate type are depleted 667 */ 668 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 669 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 670 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 671 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 672 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 673 }; 674 675 /* 676 * Move the free pages in a range to the free lists of the requested type. 677 * Note that start_page and end_pages are not aligned on a pageblock 678 * boundary. If alignment is required, use move_freepages_block() 679 */ 680 static int move_freepages(struct zone *zone, 681 struct page *start_page, struct page *end_page, 682 int migratetype) 683 { 684 struct page *page; 685 unsigned long order; 686 int pages_moved = 0; 687 688 #ifndef CONFIG_HOLES_IN_ZONE 689 /* 690 * page_zone is not safe to call in this context when 691 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 692 * anyway as we check zone boundaries in move_freepages_block(). 693 * Remove at a later date when no bug reports exist related to 694 * grouping pages by mobility 695 */ 696 BUG_ON(page_zone(start_page) != page_zone(end_page)); 697 #endif 698 699 for (page = start_page; page <= end_page;) { 700 /* Make sure we are not inadvertently changing nodes */ 701 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 702 703 if (!pfn_valid_within(page_to_pfn(page))) { 704 page++; 705 continue; 706 } 707 708 if (!PageBuddy(page)) { 709 page++; 710 continue; 711 } 712 713 order = page_order(page); 714 list_del(&page->lru); 715 list_add(&page->lru, 716 &zone->free_area[order].free_list[migratetype]); 717 page += 1 << order; 718 pages_moved += 1 << order; 719 } 720 721 return pages_moved; 722 } 723 724 static int move_freepages_block(struct zone *zone, struct page *page, 725 int migratetype) 726 { 727 unsigned long start_pfn, end_pfn; 728 struct page *start_page, *end_page; 729 730 start_pfn = page_to_pfn(page); 731 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 732 start_page = pfn_to_page(start_pfn); 733 end_page = start_page + pageblock_nr_pages - 1; 734 end_pfn = start_pfn + pageblock_nr_pages - 1; 735 736 /* Do not cross zone boundaries */ 737 if (start_pfn < zone->zone_start_pfn) 738 start_page = page; 739 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 740 return 0; 741 742 return move_freepages(zone, start_page, end_page, migratetype); 743 } 744 745 /* Remove an element from the buddy allocator from the fallback list */ 746 static struct page *__rmqueue_fallback(struct zone *zone, int order, 747 int start_migratetype) 748 { 749 struct free_area * area; 750 int current_order; 751 struct page *page; 752 int migratetype, i; 753 754 /* Find the largest possible block of pages in the other list */ 755 for (current_order = MAX_ORDER-1; current_order >= order; 756 --current_order) { 757 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 758 migratetype = fallbacks[start_migratetype][i]; 759 760 /* MIGRATE_RESERVE handled later if necessary */ 761 if (migratetype == MIGRATE_RESERVE) 762 continue; 763 764 area = &(zone->free_area[current_order]); 765 if (list_empty(&area->free_list[migratetype])) 766 continue; 767 768 page = list_entry(area->free_list[migratetype].next, 769 struct page, lru); 770 area->nr_free--; 771 772 /* 773 * If breaking a large block of pages, move all free 774 * pages to the preferred allocation list. If falling 775 * back for a reclaimable kernel allocation, be more 776 * agressive about taking ownership of free pages 777 */ 778 if (unlikely(current_order >= (pageblock_order >> 1)) || 779 start_migratetype == MIGRATE_RECLAIMABLE) { 780 unsigned long pages; 781 pages = move_freepages_block(zone, page, 782 start_migratetype); 783 784 /* Claim the whole block if over half of it is free */ 785 if (pages >= (1 << (pageblock_order-1))) 786 set_pageblock_migratetype(page, 787 start_migratetype); 788 789 migratetype = start_migratetype; 790 } 791 792 /* Remove the page from the freelists */ 793 list_del(&page->lru); 794 rmv_page_order(page); 795 __mod_zone_page_state(zone, NR_FREE_PAGES, 796 -(1UL << order)); 797 798 if (current_order == pageblock_order) 799 set_pageblock_migratetype(page, 800 start_migratetype); 801 802 expand(zone, page, order, current_order, area, migratetype); 803 return page; 804 } 805 } 806 807 /* Use MIGRATE_RESERVE rather than fail an allocation */ 808 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 809 } 810 811 /* 812 * Do the hard work of removing an element from the buddy allocator. 813 * Call me with the zone->lock already held. 814 */ 815 static struct page *__rmqueue(struct zone *zone, unsigned int order, 816 int migratetype) 817 { 818 struct page *page; 819 820 page = __rmqueue_smallest(zone, order, migratetype); 821 822 if (unlikely(!page)) 823 page = __rmqueue_fallback(zone, order, migratetype); 824 825 return page; 826 } 827 828 /* 829 * Obtain a specified number of elements from the buddy allocator, all under 830 * a single hold of the lock, for efficiency. Add them to the supplied list. 831 * Returns the number of new pages which were placed at *list. 832 */ 833 static int rmqueue_bulk(struct zone *zone, unsigned int order, 834 unsigned long count, struct list_head *list, 835 int migratetype) 836 { 837 int i; 838 839 spin_lock(&zone->lock); 840 for (i = 0; i < count; ++i) { 841 struct page *page = __rmqueue(zone, order, migratetype); 842 if (unlikely(page == NULL)) 843 break; 844 845 /* 846 * Split buddy pages returned by expand() are received here 847 * in physical page order. The page is added to the callers and 848 * list and the list head then moves forward. From the callers 849 * perspective, the linked list is ordered by page number in 850 * some conditions. This is useful for IO devices that can 851 * merge IO requests if the physical pages are ordered 852 * properly. 853 */ 854 list_add(&page->lru, list); 855 set_page_private(page, migratetype); 856 list = &page->lru; 857 } 858 spin_unlock(&zone->lock); 859 return i; 860 } 861 862 #ifdef CONFIG_NUMA 863 /* 864 * Called from the vmstat counter updater to drain pagesets of this 865 * currently executing processor on remote nodes after they have 866 * expired. 867 * 868 * Note that this function must be called with the thread pinned to 869 * a single processor. 870 */ 871 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 872 { 873 unsigned long flags; 874 int to_drain; 875 876 local_irq_save(flags); 877 if (pcp->count >= pcp->batch) 878 to_drain = pcp->batch; 879 else 880 to_drain = pcp->count; 881 free_pages_bulk(zone, to_drain, &pcp->list, 0); 882 pcp->count -= to_drain; 883 local_irq_restore(flags); 884 } 885 #endif 886 887 /* 888 * Drain pages of the indicated processor. 889 * 890 * The processor must either be the current processor and the 891 * thread pinned to the current processor or a processor that 892 * is not online. 893 */ 894 static void drain_pages(unsigned int cpu) 895 { 896 unsigned long flags; 897 struct zone *zone; 898 899 for_each_zone(zone) { 900 struct per_cpu_pageset *pset; 901 struct per_cpu_pages *pcp; 902 903 if (!populated_zone(zone)) 904 continue; 905 906 pset = zone_pcp(zone, cpu); 907 908 pcp = &pset->pcp; 909 local_irq_save(flags); 910 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 911 pcp->count = 0; 912 local_irq_restore(flags); 913 } 914 } 915 916 /* 917 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 918 */ 919 void drain_local_pages(void *arg) 920 { 921 drain_pages(smp_processor_id()); 922 } 923 924 /* 925 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 926 */ 927 void drain_all_pages(void) 928 { 929 on_each_cpu(drain_local_pages, NULL, 1); 930 } 931 932 #ifdef CONFIG_HIBERNATION 933 934 void mark_free_pages(struct zone *zone) 935 { 936 unsigned long pfn, max_zone_pfn; 937 unsigned long flags; 938 int order, t; 939 struct list_head *curr; 940 941 if (!zone->spanned_pages) 942 return; 943 944 spin_lock_irqsave(&zone->lock, flags); 945 946 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 947 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 948 if (pfn_valid(pfn)) { 949 struct page *page = pfn_to_page(pfn); 950 951 if (!swsusp_page_is_forbidden(page)) 952 swsusp_unset_page_free(page); 953 } 954 955 for_each_migratetype_order(order, t) { 956 list_for_each(curr, &zone->free_area[order].free_list[t]) { 957 unsigned long i; 958 959 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 960 for (i = 0; i < (1UL << order); i++) 961 swsusp_set_page_free(pfn_to_page(pfn + i)); 962 } 963 } 964 spin_unlock_irqrestore(&zone->lock, flags); 965 } 966 #endif /* CONFIG_PM */ 967 968 /* 969 * Free a 0-order page 970 */ 971 static void free_hot_cold_page(struct page *page, int cold) 972 { 973 struct zone *zone = page_zone(page); 974 struct per_cpu_pages *pcp; 975 unsigned long flags; 976 977 if (PageAnon(page)) 978 page->mapping = NULL; 979 if (free_pages_check(page)) 980 return; 981 982 if (!PageHighMem(page)) { 983 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 984 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 985 } 986 arch_free_page(page, 0); 987 kernel_map_pages(page, 1, 0); 988 989 pcp = &zone_pcp(zone, get_cpu())->pcp; 990 local_irq_save(flags); 991 __count_vm_event(PGFREE); 992 if (cold) 993 list_add_tail(&page->lru, &pcp->list); 994 else 995 list_add(&page->lru, &pcp->list); 996 set_page_private(page, get_pageblock_migratetype(page)); 997 pcp->count++; 998 if (pcp->count >= pcp->high) { 999 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1000 pcp->count -= pcp->batch; 1001 } 1002 local_irq_restore(flags); 1003 put_cpu(); 1004 } 1005 1006 void free_hot_page(struct page *page) 1007 { 1008 free_hot_cold_page(page, 0); 1009 } 1010 1011 void free_cold_page(struct page *page) 1012 { 1013 free_hot_cold_page(page, 1); 1014 } 1015 1016 /* 1017 * split_page takes a non-compound higher-order page, and splits it into 1018 * n (1<<order) sub-pages: page[0..n] 1019 * Each sub-page must be freed individually. 1020 * 1021 * Note: this is probably too low level an operation for use in drivers. 1022 * Please consult with lkml before using this in your driver. 1023 */ 1024 void split_page(struct page *page, unsigned int order) 1025 { 1026 int i; 1027 1028 VM_BUG_ON(PageCompound(page)); 1029 VM_BUG_ON(!page_count(page)); 1030 for (i = 1; i < (1 << order); i++) 1031 set_page_refcounted(page + i); 1032 } 1033 1034 /* 1035 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1036 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1037 * or two. 1038 */ 1039 static struct page *buffered_rmqueue(struct zone *preferred_zone, 1040 struct zone *zone, int order, gfp_t gfp_flags) 1041 { 1042 unsigned long flags; 1043 struct page *page; 1044 int cold = !!(gfp_flags & __GFP_COLD); 1045 int cpu; 1046 int migratetype = allocflags_to_migratetype(gfp_flags); 1047 1048 again: 1049 cpu = get_cpu(); 1050 if (likely(order == 0)) { 1051 struct per_cpu_pages *pcp; 1052 1053 pcp = &zone_pcp(zone, cpu)->pcp; 1054 local_irq_save(flags); 1055 if (!pcp->count) { 1056 pcp->count = rmqueue_bulk(zone, 0, 1057 pcp->batch, &pcp->list, migratetype); 1058 if (unlikely(!pcp->count)) 1059 goto failed; 1060 } 1061 1062 /* Find a page of the appropriate migrate type */ 1063 if (cold) { 1064 list_for_each_entry_reverse(page, &pcp->list, lru) 1065 if (page_private(page) == migratetype) 1066 break; 1067 } else { 1068 list_for_each_entry(page, &pcp->list, lru) 1069 if (page_private(page) == migratetype) 1070 break; 1071 } 1072 1073 /* Allocate more to the pcp list if necessary */ 1074 if (unlikely(&page->lru == &pcp->list)) { 1075 pcp->count += rmqueue_bulk(zone, 0, 1076 pcp->batch, &pcp->list, migratetype); 1077 page = list_entry(pcp->list.next, struct page, lru); 1078 } 1079 1080 list_del(&page->lru); 1081 pcp->count--; 1082 } else { 1083 spin_lock_irqsave(&zone->lock, flags); 1084 page = __rmqueue(zone, order, migratetype); 1085 spin_unlock(&zone->lock); 1086 if (!page) 1087 goto failed; 1088 } 1089 1090 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1091 zone_statistics(preferred_zone, zone); 1092 local_irq_restore(flags); 1093 put_cpu(); 1094 1095 VM_BUG_ON(bad_range(zone, page)); 1096 if (prep_new_page(page, order, gfp_flags)) 1097 goto again; 1098 return page; 1099 1100 failed: 1101 local_irq_restore(flags); 1102 put_cpu(); 1103 return NULL; 1104 } 1105 1106 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1107 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1108 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1109 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1110 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1111 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1112 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1113 1114 #ifdef CONFIG_FAIL_PAGE_ALLOC 1115 1116 static struct fail_page_alloc_attr { 1117 struct fault_attr attr; 1118 1119 u32 ignore_gfp_highmem; 1120 u32 ignore_gfp_wait; 1121 u32 min_order; 1122 1123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1124 1125 struct dentry *ignore_gfp_highmem_file; 1126 struct dentry *ignore_gfp_wait_file; 1127 struct dentry *min_order_file; 1128 1129 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1130 1131 } fail_page_alloc = { 1132 .attr = FAULT_ATTR_INITIALIZER, 1133 .ignore_gfp_wait = 1, 1134 .ignore_gfp_highmem = 1, 1135 .min_order = 1, 1136 }; 1137 1138 static int __init setup_fail_page_alloc(char *str) 1139 { 1140 return setup_fault_attr(&fail_page_alloc.attr, str); 1141 } 1142 __setup("fail_page_alloc=", setup_fail_page_alloc); 1143 1144 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1145 { 1146 if (order < fail_page_alloc.min_order) 1147 return 0; 1148 if (gfp_mask & __GFP_NOFAIL) 1149 return 0; 1150 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1151 return 0; 1152 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1153 return 0; 1154 1155 return should_fail(&fail_page_alloc.attr, 1 << order); 1156 } 1157 1158 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1159 1160 static int __init fail_page_alloc_debugfs(void) 1161 { 1162 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1163 struct dentry *dir; 1164 int err; 1165 1166 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1167 "fail_page_alloc"); 1168 if (err) 1169 return err; 1170 dir = fail_page_alloc.attr.dentries.dir; 1171 1172 fail_page_alloc.ignore_gfp_wait_file = 1173 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1174 &fail_page_alloc.ignore_gfp_wait); 1175 1176 fail_page_alloc.ignore_gfp_highmem_file = 1177 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1178 &fail_page_alloc.ignore_gfp_highmem); 1179 fail_page_alloc.min_order_file = 1180 debugfs_create_u32("min-order", mode, dir, 1181 &fail_page_alloc.min_order); 1182 1183 if (!fail_page_alloc.ignore_gfp_wait_file || 1184 !fail_page_alloc.ignore_gfp_highmem_file || 1185 !fail_page_alloc.min_order_file) { 1186 err = -ENOMEM; 1187 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1188 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1189 debugfs_remove(fail_page_alloc.min_order_file); 1190 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1191 } 1192 1193 return err; 1194 } 1195 1196 late_initcall(fail_page_alloc_debugfs); 1197 1198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1199 1200 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1201 1202 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1203 { 1204 return 0; 1205 } 1206 1207 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1208 1209 /* 1210 * Return 1 if free pages are above 'mark'. This takes into account the order 1211 * of the allocation. 1212 */ 1213 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1214 int classzone_idx, int alloc_flags) 1215 { 1216 /* free_pages my go negative - that's OK */ 1217 long min = mark; 1218 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1219 int o; 1220 1221 if (alloc_flags & ALLOC_HIGH) 1222 min -= min / 2; 1223 if (alloc_flags & ALLOC_HARDER) 1224 min -= min / 4; 1225 1226 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1227 return 0; 1228 for (o = 0; o < order; o++) { 1229 /* At the next order, this order's pages become unavailable */ 1230 free_pages -= z->free_area[o].nr_free << o; 1231 1232 /* Require fewer higher order pages to be free */ 1233 min >>= 1; 1234 1235 if (free_pages <= min) 1236 return 0; 1237 } 1238 return 1; 1239 } 1240 1241 #ifdef CONFIG_NUMA 1242 /* 1243 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1244 * skip over zones that are not allowed by the cpuset, or that have 1245 * been recently (in last second) found to be nearly full. See further 1246 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1247 * that have to skip over a lot of full or unallowed zones. 1248 * 1249 * If the zonelist cache is present in the passed in zonelist, then 1250 * returns a pointer to the allowed node mask (either the current 1251 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1252 * 1253 * If the zonelist cache is not available for this zonelist, does 1254 * nothing and returns NULL. 1255 * 1256 * If the fullzones BITMAP in the zonelist cache is stale (more than 1257 * a second since last zap'd) then we zap it out (clear its bits.) 1258 * 1259 * We hold off even calling zlc_setup, until after we've checked the 1260 * first zone in the zonelist, on the theory that most allocations will 1261 * be satisfied from that first zone, so best to examine that zone as 1262 * quickly as we can. 1263 */ 1264 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1265 { 1266 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1267 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1268 1269 zlc = zonelist->zlcache_ptr; 1270 if (!zlc) 1271 return NULL; 1272 1273 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1274 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1275 zlc->last_full_zap = jiffies; 1276 } 1277 1278 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1279 &cpuset_current_mems_allowed : 1280 &node_states[N_HIGH_MEMORY]; 1281 return allowednodes; 1282 } 1283 1284 /* 1285 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1286 * if it is worth looking at further for free memory: 1287 * 1) Check that the zone isn't thought to be full (doesn't have its 1288 * bit set in the zonelist_cache fullzones BITMAP). 1289 * 2) Check that the zones node (obtained from the zonelist_cache 1290 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1291 * Return true (non-zero) if zone is worth looking at further, or 1292 * else return false (zero) if it is not. 1293 * 1294 * This check -ignores- the distinction between various watermarks, 1295 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1296 * found to be full for any variation of these watermarks, it will 1297 * be considered full for up to one second by all requests, unless 1298 * we are so low on memory on all allowed nodes that we are forced 1299 * into the second scan of the zonelist. 1300 * 1301 * In the second scan we ignore this zonelist cache and exactly 1302 * apply the watermarks to all zones, even it is slower to do so. 1303 * We are low on memory in the second scan, and should leave no stone 1304 * unturned looking for a free page. 1305 */ 1306 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1307 nodemask_t *allowednodes) 1308 { 1309 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1310 int i; /* index of *z in zonelist zones */ 1311 int n; /* node that zone *z is on */ 1312 1313 zlc = zonelist->zlcache_ptr; 1314 if (!zlc) 1315 return 1; 1316 1317 i = z - zonelist->_zonerefs; 1318 n = zlc->z_to_n[i]; 1319 1320 /* This zone is worth trying if it is allowed but not full */ 1321 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1322 } 1323 1324 /* 1325 * Given 'z' scanning a zonelist, set the corresponding bit in 1326 * zlc->fullzones, so that subsequent attempts to allocate a page 1327 * from that zone don't waste time re-examining it. 1328 */ 1329 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1330 { 1331 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1332 int i; /* index of *z in zonelist zones */ 1333 1334 zlc = zonelist->zlcache_ptr; 1335 if (!zlc) 1336 return; 1337 1338 i = z - zonelist->_zonerefs; 1339 1340 set_bit(i, zlc->fullzones); 1341 } 1342 1343 #else /* CONFIG_NUMA */ 1344 1345 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1346 { 1347 return NULL; 1348 } 1349 1350 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1351 nodemask_t *allowednodes) 1352 { 1353 return 1; 1354 } 1355 1356 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1357 { 1358 } 1359 #endif /* CONFIG_NUMA */ 1360 1361 /* 1362 * get_page_from_freelist goes through the zonelist trying to allocate 1363 * a page. 1364 */ 1365 static struct page * 1366 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1367 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1368 { 1369 struct zoneref *z; 1370 struct page *page = NULL; 1371 int classzone_idx; 1372 struct zone *zone, *preferred_zone; 1373 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1374 int zlc_active = 0; /* set if using zonelist_cache */ 1375 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1376 1377 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1378 &preferred_zone); 1379 if (!preferred_zone) 1380 return NULL; 1381 1382 classzone_idx = zone_idx(preferred_zone); 1383 1384 zonelist_scan: 1385 /* 1386 * Scan zonelist, looking for a zone with enough free. 1387 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1388 */ 1389 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1390 high_zoneidx, nodemask) { 1391 if (NUMA_BUILD && zlc_active && 1392 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1393 continue; 1394 if ((alloc_flags & ALLOC_CPUSET) && 1395 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1396 goto try_next_zone; 1397 1398 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1399 unsigned long mark; 1400 if (alloc_flags & ALLOC_WMARK_MIN) 1401 mark = zone->pages_min; 1402 else if (alloc_flags & ALLOC_WMARK_LOW) 1403 mark = zone->pages_low; 1404 else 1405 mark = zone->pages_high; 1406 if (!zone_watermark_ok(zone, order, mark, 1407 classzone_idx, alloc_flags)) { 1408 if (!zone_reclaim_mode || 1409 !zone_reclaim(zone, gfp_mask, order)) 1410 goto this_zone_full; 1411 } 1412 } 1413 1414 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1415 if (page) 1416 break; 1417 this_zone_full: 1418 if (NUMA_BUILD) 1419 zlc_mark_zone_full(zonelist, z); 1420 try_next_zone: 1421 if (NUMA_BUILD && !did_zlc_setup) { 1422 /* we do zlc_setup after the first zone is tried */ 1423 allowednodes = zlc_setup(zonelist, alloc_flags); 1424 zlc_active = 1; 1425 did_zlc_setup = 1; 1426 } 1427 } 1428 1429 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1430 /* Disable zlc cache for second zonelist scan */ 1431 zlc_active = 0; 1432 goto zonelist_scan; 1433 } 1434 return page; 1435 } 1436 1437 /* 1438 * This is the 'heart' of the zoned buddy allocator. 1439 */ 1440 struct page * 1441 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1442 struct zonelist *zonelist, nodemask_t *nodemask) 1443 { 1444 const gfp_t wait = gfp_mask & __GFP_WAIT; 1445 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1446 struct zoneref *z; 1447 struct zone *zone; 1448 struct page *page; 1449 struct reclaim_state reclaim_state; 1450 struct task_struct *p = current; 1451 int do_retry; 1452 int alloc_flags; 1453 unsigned long did_some_progress; 1454 unsigned long pages_reclaimed = 0; 1455 1456 might_sleep_if(wait); 1457 1458 if (should_fail_alloc_page(gfp_mask, order)) 1459 return NULL; 1460 1461 restart: 1462 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1463 1464 if (unlikely(!z->zone)) { 1465 /* 1466 * Happens if we have an empty zonelist as a result of 1467 * GFP_THISNODE being used on a memoryless node 1468 */ 1469 return NULL; 1470 } 1471 1472 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1473 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1474 if (page) 1475 goto got_pg; 1476 1477 /* 1478 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1479 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1480 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1481 * using a larger set of nodes after it has established that the 1482 * allowed per node queues are empty and that nodes are 1483 * over allocated. 1484 */ 1485 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1486 goto nopage; 1487 1488 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1489 wakeup_kswapd(zone, order); 1490 1491 /* 1492 * OK, we're below the kswapd watermark and have kicked background 1493 * reclaim. Now things get more complex, so set up alloc_flags according 1494 * to how we want to proceed. 1495 * 1496 * The caller may dip into page reserves a bit more if the caller 1497 * cannot run direct reclaim, or if the caller has realtime scheduling 1498 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1499 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1500 */ 1501 alloc_flags = ALLOC_WMARK_MIN; 1502 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1503 alloc_flags |= ALLOC_HARDER; 1504 if (gfp_mask & __GFP_HIGH) 1505 alloc_flags |= ALLOC_HIGH; 1506 if (wait) 1507 alloc_flags |= ALLOC_CPUSET; 1508 1509 /* 1510 * Go through the zonelist again. Let __GFP_HIGH and allocations 1511 * coming from realtime tasks go deeper into reserves. 1512 * 1513 * This is the last chance, in general, before the goto nopage. 1514 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1515 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1516 */ 1517 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1518 high_zoneidx, alloc_flags); 1519 if (page) 1520 goto got_pg; 1521 1522 /* This allocation should allow future memory freeing. */ 1523 1524 rebalance: 1525 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1526 && !in_interrupt()) { 1527 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1528 nofail_alloc: 1529 /* go through the zonelist yet again, ignoring mins */ 1530 page = get_page_from_freelist(gfp_mask, nodemask, order, 1531 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1532 if (page) 1533 goto got_pg; 1534 if (gfp_mask & __GFP_NOFAIL) { 1535 congestion_wait(WRITE, HZ/50); 1536 goto nofail_alloc; 1537 } 1538 } 1539 goto nopage; 1540 } 1541 1542 /* Atomic allocations - we can't balance anything */ 1543 if (!wait) 1544 goto nopage; 1545 1546 cond_resched(); 1547 1548 /* We now go into synchronous reclaim */ 1549 cpuset_memory_pressure_bump(); 1550 p->flags |= PF_MEMALLOC; 1551 reclaim_state.reclaimed_slab = 0; 1552 p->reclaim_state = &reclaim_state; 1553 1554 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask); 1555 1556 p->reclaim_state = NULL; 1557 p->flags &= ~PF_MEMALLOC; 1558 1559 cond_resched(); 1560 1561 if (order != 0) 1562 drain_all_pages(); 1563 1564 if (likely(did_some_progress)) { 1565 page = get_page_from_freelist(gfp_mask, nodemask, order, 1566 zonelist, high_zoneidx, alloc_flags); 1567 if (page) 1568 goto got_pg; 1569 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1570 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1571 schedule_timeout_uninterruptible(1); 1572 goto restart; 1573 } 1574 1575 /* 1576 * Go through the zonelist yet one more time, keep 1577 * very high watermark here, this is only to catch 1578 * a parallel oom killing, we must fail if we're still 1579 * under heavy pressure. 1580 */ 1581 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1582 order, zonelist, high_zoneidx, 1583 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1584 if (page) { 1585 clear_zonelist_oom(zonelist, gfp_mask); 1586 goto got_pg; 1587 } 1588 1589 /* The OOM killer will not help higher order allocs so fail */ 1590 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1591 clear_zonelist_oom(zonelist, gfp_mask); 1592 goto nopage; 1593 } 1594 1595 out_of_memory(zonelist, gfp_mask, order); 1596 clear_zonelist_oom(zonelist, gfp_mask); 1597 goto restart; 1598 } 1599 1600 /* 1601 * Don't let big-order allocations loop unless the caller explicitly 1602 * requests that. Wait for some write requests to complete then retry. 1603 * 1604 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1605 * means __GFP_NOFAIL, but that may not be true in other 1606 * implementations. 1607 * 1608 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1609 * specified, then we retry until we no longer reclaim any pages 1610 * (above), or we've reclaimed an order of pages at least as 1611 * large as the allocation's order. In both cases, if the 1612 * allocation still fails, we stop retrying. 1613 */ 1614 pages_reclaimed += did_some_progress; 1615 do_retry = 0; 1616 if (!(gfp_mask & __GFP_NORETRY)) { 1617 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1618 do_retry = 1; 1619 } else { 1620 if (gfp_mask & __GFP_REPEAT && 1621 pages_reclaimed < (1 << order)) 1622 do_retry = 1; 1623 } 1624 if (gfp_mask & __GFP_NOFAIL) 1625 do_retry = 1; 1626 } 1627 if (do_retry) { 1628 congestion_wait(WRITE, HZ/50); 1629 goto rebalance; 1630 } 1631 1632 nopage: 1633 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1634 printk(KERN_WARNING "%s: page allocation failure." 1635 " order:%d, mode:0x%x\n", 1636 p->comm, order, gfp_mask); 1637 dump_stack(); 1638 show_mem(); 1639 } 1640 got_pg: 1641 return page; 1642 } 1643 EXPORT_SYMBOL(__alloc_pages_internal); 1644 1645 /* 1646 * Common helper functions. 1647 */ 1648 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1649 { 1650 struct page * page; 1651 page = alloc_pages(gfp_mask, order); 1652 if (!page) 1653 return 0; 1654 return (unsigned long) page_address(page); 1655 } 1656 1657 EXPORT_SYMBOL(__get_free_pages); 1658 1659 unsigned long get_zeroed_page(gfp_t gfp_mask) 1660 { 1661 struct page * page; 1662 1663 /* 1664 * get_zeroed_page() returns a 32-bit address, which cannot represent 1665 * a highmem page 1666 */ 1667 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1668 1669 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1670 if (page) 1671 return (unsigned long) page_address(page); 1672 return 0; 1673 } 1674 1675 EXPORT_SYMBOL(get_zeroed_page); 1676 1677 void __pagevec_free(struct pagevec *pvec) 1678 { 1679 int i = pagevec_count(pvec); 1680 1681 while (--i >= 0) 1682 free_hot_cold_page(pvec->pages[i], pvec->cold); 1683 } 1684 1685 void __free_pages(struct page *page, unsigned int order) 1686 { 1687 if (put_page_testzero(page)) { 1688 if (order == 0) 1689 free_hot_page(page); 1690 else 1691 __free_pages_ok(page, order); 1692 } 1693 } 1694 1695 EXPORT_SYMBOL(__free_pages); 1696 1697 void free_pages(unsigned long addr, unsigned int order) 1698 { 1699 if (addr != 0) { 1700 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1701 __free_pages(virt_to_page((void *)addr), order); 1702 } 1703 } 1704 1705 EXPORT_SYMBOL(free_pages); 1706 1707 /** 1708 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1709 * @size: the number of bytes to allocate 1710 * @gfp_mask: GFP flags for the allocation 1711 * 1712 * This function is similar to alloc_pages(), except that it allocates the 1713 * minimum number of pages to satisfy the request. alloc_pages() can only 1714 * allocate memory in power-of-two pages. 1715 * 1716 * This function is also limited by MAX_ORDER. 1717 * 1718 * Memory allocated by this function must be released by free_pages_exact(). 1719 */ 1720 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1721 { 1722 unsigned int order = get_order(size); 1723 unsigned long addr; 1724 1725 addr = __get_free_pages(gfp_mask, order); 1726 if (addr) { 1727 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1728 unsigned long used = addr + PAGE_ALIGN(size); 1729 1730 split_page(virt_to_page(addr), order); 1731 while (used < alloc_end) { 1732 free_page(used); 1733 used += PAGE_SIZE; 1734 } 1735 } 1736 1737 return (void *)addr; 1738 } 1739 EXPORT_SYMBOL(alloc_pages_exact); 1740 1741 /** 1742 * free_pages_exact - release memory allocated via alloc_pages_exact() 1743 * @virt: the value returned by alloc_pages_exact. 1744 * @size: size of allocation, same value as passed to alloc_pages_exact(). 1745 * 1746 * Release the memory allocated by a previous call to alloc_pages_exact. 1747 */ 1748 void free_pages_exact(void *virt, size_t size) 1749 { 1750 unsigned long addr = (unsigned long)virt; 1751 unsigned long end = addr + PAGE_ALIGN(size); 1752 1753 while (addr < end) { 1754 free_page(addr); 1755 addr += PAGE_SIZE; 1756 } 1757 } 1758 EXPORT_SYMBOL(free_pages_exact); 1759 1760 static unsigned int nr_free_zone_pages(int offset) 1761 { 1762 struct zoneref *z; 1763 struct zone *zone; 1764 1765 /* Just pick one node, since fallback list is circular */ 1766 unsigned int sum = 0; 1767 1768 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1769 1770 for_each_zone_zonelist(zone, z, zonelist, offset) { 1771 unsigned long size = zone->present_pages; 1772 unsigned long high = zone->pages_high; 1773 if (size > high) 1774 sum += size - high; 1775 } 1776 1777 return sum; 1778 } 1779 1780 /* 1781 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1782 */ 1783 unsigned int nr_free_buffer_pages(void) 1784 { 1785 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1786 } 1787 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1788 1789 /* 1790 * Amount of free RAM allocatable within all zones 1791 */ 1792 unsigned int nr_free_pagecache_pages(void) 1793 { 1794 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1795 } 1796 1797 static inline void show_node(struct zone *zone) 1798 { 1799 if (NUMA_BUILD) 1800 printk("Node %d ", zone_to_nid(zone)); 1801 } 1802 1803 void si_meminfo(struct sysinfo *val) 1804 { 1805 val->totalram = totalram_pages; 1806 val->sharedram = 0; 1807 val->freeram = global_page_state(NR_FREE_PAGES); 1808 val->bufferram = nr_blockdev_pages(); 1809 val->totalhigh = totalhigh_pages; 1810 val->freehigh = nr_free_highpages(); 1811 val->mem_unit = PAGE_SIZE; 1812 } 1813 1814 EXPORT_SYMBOL(si_meminfo); 1815 1816 #ifdef CONFIG_NUMA 1817 void si_meminfo_node(struct sysinfo *val, int nid) 1818 { 1819 pg_data_t *pgdat = NODE_DATA(nid); 1820 1821 val->totalram = pgdat->node_present_pages; 1822 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1823 #ifdef CONFIG_HIGHMEM 1824 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1825 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1826 NR_FREE_PAGES); 1827 #else 1828 val->totalhigh = 0; 1829 val->freehigh = 0; 1830 #endif 1831 val->mem_unit = PAGE_SIZE; 1832 } 1833 #endif 1834 1835 #define K(x) ((x) << (PAGE_SHIFT-10)) 1836 1837 /* 1838 * Show free area list (used inside shift_scroll-lock stuff) 1839 * We also calculate the percentage fragmentation. We do this by counting the 1840 * memory on each free list with the exception of the first item on the list. 1841 */ 1842 void show_free_areas(void) 1843 { 1844 int cpu; 1845 struct zone *zone; 1846 1847 for_each_zone(zone) { 1848 if (!populated_zone(zone)) 1849 continue; 1850 1851 show_node(zone); 1852 printk("%s per-cpu:\n", zone->name); 1853 1854 for_each_online_cpu(cpu) { 1855 struct per_cpu_pageset *pageset; 1856 1857 pageset = zone_pcp(zone, cpu); 1858 1859 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1860 cpu, pageset->pcp.high, 1861 pageset->pcp.batch, pageset->pcp.count); 1862 } 1863 } 1864 1865 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" 1866 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1867 global_page_state(NR_ACTIVE), 1868 global_page_state(NR_INACTIVE), 1869 global_page_state(NR_FILE_DIRTY), 1870 global_page_state(NR_WRITEBACK), 1871 global_page_state(NR_UNSTABLE_NFS), 1872 global_page_state(NR_FREE_PAGES), 1873 global_page_state(NR_SLAB_RECLAIMABLE) + 1874 global_page_state(NR_SLAB_UNRECLAIMABLE), 1875 global_page_state(NR_FILE_MAPPED), 1876 global_page_state(NR_PAGETABLE), 1877 global_page_state(NR_BOUNCE)); 1878 1879 for_each_zone(zone) { 1880 int i; 1881 1882 if (!populated_zone(zone)) 1883 continue; 1884 1885 show_node(zone); 1886 printk("%s" 1887 " free:%lukB" 1888 " min:%lukB" 1889 " low:%lukB" 1890 " high:%lukB" 1891 " active:%lukB" 1892 " inactive:%lukB" 1893 " present:%lukB" 1894 " pages_scanned:%lu" 1895 " all_unreclaimable? %s" 1896 "\n", 1897 zone->name, 1898 K(zone_page_state(zone, NR_FREE_PAGES)), 1899 K(zone->pages_min), 1900 K(zone->pages_low), 1901 K(zone->pages_high), 1902 K(zone_page_state(zone, NR_ACTIVE)), 1903 K(zone_page_state(zone, NR_INACTIVE)), 1904 K(zone->present_pages), 1905 zone->pages_scanned, 1906 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1907 ); 1908 printk("lowmem_reserve[]:"); 1909 for (i = 0; i < MAX_NR_ZONES; i++) 1910 printk(" %lu", zone->lowmem_reserve[i]); 1911 printk("\n"); 1912 } 1913 1914 for_each_zone(zone) { 1915 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1916 1917 if (!populated_zone(zone)) 1918 continue; 1919 1920 show_node(zone); 1921 printk("%s: ", zone->name); 1922 1923 spin_lock_irqsave(&zone->lock, flags); 1924 for (order = 0; order < MAX_ORDER; order++) { 1925 nr[order] = zone->free_area[order].nr_free; 1926 total += nr[order] << order; 1927 } 1928 spin_unlock_irqrestore(&zone->lock, flags); 1929 for (order = 0; order < MAX_ORDER; order++) 1930 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1931 printk("= %lukB\n", K(total)); 1932 } 1933 1934 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1935 1936 show_swap_cache_info(); 1937 } 1938 1939 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1940 { 1941 zoneref->zone = zone; 1942 zoneref->zone_idx = zone_idx(zone); 1943 } 1944 1945 /* 1946 * Builds allocation fallback zone lists. 1947 * 1948 * Add all populated zones of a node to the zonelist. 1949 */ 1950 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1951 int nr_zones, enum zone_type zone_type) 1952 { 1953 struct zone *zone; 1954 1955 BUG_ON(zone_type >= MAX_NR_ZONES); 1956 zone_type++; 1957 1958 do { 1959 zone_type--; 1960 zone = pgdat->node_zones + zone_type; 1961 if (populated_zone(zone)) { 1962 zoneref_set_zone(zone, 1963 &zonelist->_zonerefs[nr_zones++]); 1964 check_highest_zone(zone_type); 1965 } 1966 1967 } while (zone_type); 1968 return nr_zones; 1969 } 1970 1971 1972 /* 1973 * zonelist_order: 1974 * 0 = automatic detection of better ordering. 1975 * 1 = order by ([node] distance, -zonetype) 1976 * 2 = order by (-zonetype, [node] distance) 1977 * 1978 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 1979 * the same zonelist. So only NUMA can configure this param. 1980 */ 1981 #define ZONELIST_ORDER_DEFAULT 0 1982 #define ZONELIST_ORDER_NODE 1 1983 #define ZONELIST_ORDER_ZONE 2 1984 1985 /* zonelist order in the kernel. 1986 * set_zonelist_order() will set this to NODE or ZONE. 1987 */ 1988 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 1989 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 1990 1991 1992 #ifdef CONFIG_NUMA 1993 /* The value user specified ....changed by config */ 1994 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1995 /* string for sysctl */ 1996 #define NUMA_ZONELIST_ORDER_LEN 16 1997 char numa_zonelist_order[16] = "default"; 1998 1999 /* 2000 * interface for configure zonelist ordering. 2001 * command line option "numa_zonelist_order" 2002 * = "[dD]efault - default, automatic configuration. 2003 * = "[nN]ode - order by node locality, then by zone within node 2004 * = "[zZ]one - order by zone, then by locality within zone 2005 */ 2006 2007 static int __parse_numa_zonelist_order(char *s) 2008 { 2009 if (*s == 'd' || *s == 'D') { 2010 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2011 } else if (*s == 'n' || *s == 'N') { 2012 user_zonelist_order = ZONELIST_ORDER_NODE; 2013 } else if (*s == 'z' || *s == 'Z') { 2014 user_zonelist_order = ZONELIST_ORDER_ZONE; 2015 } else { 2016 printk(KERN_WARNING 2017 "Ignoring invalid numa_zonelist_order value: " 2018 "%s\n", s); 2019 return -EINVAL; 2020 } 2021 return 0; 2022 } 2023 2024 static __init int setup_numa_zonelist_order(char *s) 2025 { 2026 if (s) 2027 return __parse_numa_zonelist_order(s); 2028 return 0; 2029 } 2030 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2031 2032 /* 2033 * sysctl handler for numa_zonelist_order 2034 */ 2035 int numa_zonelist_order_handler(ctl_table *table, int write, 2036 struct file *file, void __user *buffer, size_t *length, 2037 loff_t *ppos) 2038 { 2039 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2040 int ret; 2041 2042 if (write) 2043 strncpy(saved_string, (char*)table->data, 2044 NUMA_ZONELIST_ORDER_LEN); 2045 ret = proc_dostring(table, write, file, buffer, length, ppos); 2046 if (ret) 2047 return ret; 2048 if (write) { 2049 int oldval = user_zonelist_order; 2050 if (__parse_numa_zonelist_order((char*)table->data)) { 2051 /* 2052 * bogus value. restore saved string 2053 */ 2054 strncpy((char*)table->data, saved_string, 2055 NUMA_ZONELIST_ORDER_LEN); 2056 user_zonelist_order = oldval; 2057 } else if (oldval != user_zonelist_order) 2058 build_all_zonelists(); 2059 } 2060 return 0; 2061 } 2062 2063 2064 #define MAX_NODE_LOAD (num_online_nodes()) 2065 static int node_load[MAX_NUMNODES]; 2066 2067 /** 2068 * find_next_best_node - find the next node that should appear in a given node's fallback list 2069 * @node: node whose fallback list we're appending 2070 * @used_node_mask: nodemask_t of already used nodes 2071 * 2072 * We use a number of factors to determine which is the next node that should 2073 * appear on a given node's fallback list. The node should not have appeared 2074 * already in @node's fallback list, and it should be the next closest node 2075 * according to the distance array (which contains arbitrary distance values 2076 * from each node to each node in the system), and should also prefer nodes 2077 * with no CPUs, since presumably they'll have very little allocation pressure 2078 * on them otherwise. 2079 * It returns -1 if no node is found. 2080 */ 2081 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2082 { 2083 int n, val; 2084 int min_val = INT_MAX; 2085 int best_node = -1; 2086 node_to_cpumask_ptr(tmp, 0); 2087 2088 /* Use the local node if we haven't already */ 2089 if (!node_isset(node, *used_node_mask)) { 2090 node_set(node, *used_node_mask); 2091 return node; 2092 } 2093 2094 for_each_node_state(n, N_HIGH_MEMORY) { 2095 2096 /* Don't want a node to appear more than once */ 2097 if (node_isset(n, *used_node_mask)) 2098 continue; 2099 2100 /* Use the distance array to find the distance */ 2101 val = node_distance(node, n); 2102 2103 /* Penalize nodes under us ("prefer the next node") */ 2104 val += (n < node); 2105 2106 /* Give preference to headless and unused nodes */ 2107 node_to_cpumask_ptr_next(tmp, n); 2108 if (!cpus_empty(*tmp)) 2109 val += PENALTY_FOR_NODE_WITH_CPUS; 2110 2111 /* Slight preference for less loaded node */ 2112 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2113 val += node_load[n]; 2114 2115 if (val < min_val) { 2116 min_val = val; 2117 best_node = n; 2118 } 2119 } 2120 2121 if (best_node >= 0) 2122 node_set(best_node, *used_node_mask); 2123 2124 return best_node; 2125 } 2126 2127 2128 /* 2129 * Build zonelists ordered by node and zones within node. 2130 * This results in maximum locality--normal zone overflows into local 2131 * DMA zone, if any--but risks exhausting DMA zone. 2132 */ 2133 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2134 { 2135 int j; 2136 struct zonelist *zonelist; 2137 2138 zonelist = &pgdat->node_zonelists[0]; 2139 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2140 ; 2141 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2142 MAX_NR_ZONES - 1); 2143 zonelist->_zonerefs[j].zone = NULL; 2144 zonelist->_zonerefs[j].zone_idx = 0; 2145 } 2146 2147 /* 2148 * Build gfp_thisnode zonelists 2149 */ 2150 static void build_thisnode_zonelists(pg_data_t *pgdat) 2151 { 2152 int j; 2153 struct zonelist *zonelist; 2154 2155 zonelist = &pgdat->node_zonelists[1]; 2156 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2157 zonelist->_zonerefs[j].zone = NULL; 2158 zonelist->_zonerefs[j].zone_idx = 0; 2159 } 2160 2161 /* 2162 * Build zonelists ordered by zone and nodes within zones. 2163 * This results in conserving DMA zone[s] until all Normal memory is 2164 * exhausted, but results in overflowing to remote node while memory 2165 * may still exist in local DMA zone. 2166 */ 2167 static int node_order[MAX_NUMNODES]; 2168 2169 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2170 { 2171 int pos, j, node; 2172 int zone_type; /* needs to be signed */ 2173 struct zone *z; 2174 struct zonelist *zonelist; 2175 2176 zonelist = &pgdat->node_zonelists[0]; 2177 pos = 0; 2178 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2179 for (j = 0; j < nr_nodes; j++) { 2180 node = node_order[j]; 2181 z = &NODE_DATA(node)->node_zones[zone_type]; 2182 if (populated_zone(z)) { 2183 zoneref_set_zone(z, 2184 &zonelist->_zonerefs[pos++]); 2185 check_highest_zone(zone_type); 2186 } 2187 } 2188 } 2189 zonelist->_zonerefs[pos].zone = NULL; 2190 zonelist->_zonerefs[pos].zone_idx = 0; 2191 } 2192 2193 static int default_zonelist_order(void) 2194 { 2195 int nid, zone_type; 2196 unsigned long low_kmem_size,total_size; 2197 struct zone *z; 2198 int average_size; 2199 /* 2200 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2201 * If they are really small and used heavily, the system can fall 2202 * into OOM very easily. 2203 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2204 */ 2205 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2206 low_kmem_size = 0; 2207 total_size = 0; 2208 for_each_online_node(nid) { 2209 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2210 z = &NODE_DATA(nid)->node_zones[zone_type]; 2211 if (populated_zone(z)) { 2212 if (zone_type < ZONE_NORMAL) 2213 low_kmem_size += z->present_pages; 2214 total_size += z->present_pages; 2215 } 2216 } 2217 } 2218 if (!low_kmem_size || /* there are no DMA area. */ 2219 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2220 return ZONELIST_ORDER_NODE; 2221 /* 2222 * look into each node's config. 2223 * If there is a node whose DMA/DMA32 memory is very big area on 2224 * local memory, NODE_ORDER may be suitable. 2225 */ 2226 average_size = total_size / 2227 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2228 for_each_online_node(nid) { 2229 low_kmem_size = 0; 2230 total_size = 0; 2231 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2232 z = &NODE_DATA(nid)->node_zones[zone_type]; 2233 if (populated_zone(z)) { 2234 if (zone_type < ZONE_NORMAL) 2235 low_kmem_size += z->present_pages; 2236 total_size += z->present_pages; 2237 } 2238 } 2239 if (low_kmem_size && 2240 total_size > average_size && /* ignore small node */ 2241 low_kmem_size > total_size * 70/100) 2242 return ZONELIST_ORDER_NODE; 2243 } 2244 return ZONELIST_ORDER_ZONE; 2245 } 2246 2247 static void set_zonelist_order(void) 2248 { 2249 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2250 current_zonelist_order = default_zonelist_order(); 2251 else 2252 current_zonelist_order = user_zonelist_order; 2253 } 2254 2255 static void build_zonelists(pg_data_t *pgdat) 2256 { 2257 int j, node, load; 2258 enum zone_type i; 2259 nodemask_t used_mask; 2260 int local_node, prev_node; 2261 struct zonelist *zonelist; 2262 int order = current_zonelist_order; 2263 2264 /* initialize zonelists */ 2265 for (i = 0; i < MAX_ZONELISTS; i++) { 2266 zonelist = pgdat->node_zonelists + i; 2267 zonelist->_zonerefs[0].zone = NULL; 2268 zonelist->_zonerefs[0].zone_idx = 0; 2269 } 2270 2271 /* NUMA-aware ordering of nodes */ 2272 local_node = pgdat->node_id; 2273 load = num_online_nodes(); 2274 prev_node = local_node; 2275 nodes_clear(used_mask); 2276 2277 memset(node_load, 0, sizeof(node_load)); 2278 memset(node_order, 0, sizeof(node_order)); 2279 j = 0; 2280 2281 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2282 int distance = node_distance(local_node, node); 2283 2284 /* 2285 * If another node is sufficiently far away then it is better 2286 * to reclaim pages in a zone before going off node. 2287 */ 2288 if (distance > RECLAIM_DISTANCE) 2289 zone_reclaim_mode = 1; 2290 2291 /* 2292 * We don't want to pressure a particular node. 2293 * So adding penalty to the first node in same 2294 * distance group to make it round-robin. 2295 */ 2296 if (distance != node_distance(local_node, prev_node)) 2297 node_load[node] = load; 2298 2299 prev_node = node; 2300 load--; 2301 if (order == ZONELIST_ORDER_NODE) 2302 build_zonelists_in_node_order(pgdat, node); 2303 else 2304 node_order[j++] = node; /* remember order */ 2305 } 2306 2307 if (order == ZONELIST_ORDER_ZONE) { 2308 /* calculate node order -- i.e., DMA last! */ 2309 build_zonelists_in_zone_order(pgdat, j); 2310 } 2311 2312 build_thisnode_zonelists(pgdat); 2313 } 2314 2315 /* Construct the zonelist performance cache - see further mmzone.h */ 2316 static void build_zonelist_cache(pg_data_t *pgdat) 2317 { 2318 struct zonelist *zonelist; 2319 struct zonelist_cache *zlc; 2320 struct zoneref *z; 2321 2322 zonelist = &pgdat->node_zonelists[0]; 2323 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2324 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2325 for (z = zonelist->_zonerefs; z->zone; z++) 2326 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2327 } 2328 2329 2330 #else /* CONFIG_NUMA */ 2331 2332 static void set_zonelist_order(void) 2333 { 2334 current_zonelist_order = ZONELIST_ORDER_ZONE; 2335 } 2336 2337 static void build_zonelists(pg_data_t *pgdat) 2338 { 2339 int node, local_node; 2340 enum zone_type j; 2341 struct zonelist *zonelist; 2342 2343 local_node = pgdat->node_id; 2344 2345 zonelist = &pgdat->node_zonelists[0]; 2346 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2347 2348 /* 2349 * Now we build the zonelist so that it contains the zones 2350 * of all the other nodes. 2351 * We don't want to pressure a particular node, so when 2352 * building the zones for node N, we make sure that the 2353 * zones coming right after the local ones are those from 2354 * node N+1 (modulo N) 2355 */ 2356 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2357 if (!node_online(node)) 2358 continue; 2359 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2360 MAX_NR_ZONES - 1); 2361 } 2362 for (node = 0; node < local_node; node++) { 2363 if (!node_online(node)) 2364 continue; 2365 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2366 MAX_NR_ZONES - 1); 2367 } 2368 2369 zonelist->_zonerefs[j].zone = NULL; 2370 zonelist->_zonerefs[j].zone_idx = 0; 2371 } 2372 2373 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2374 static void build_zonelist_cache(pg_data_t *pgdat) 2375 { 2376 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2377 } 2378 2379 #endif /* CONFIG_NUMA */ 2380 2381 /* return values int ....just for stop_machine() */ 2382 static int __build_all_zonelists(void *dummy) 2383 { 2384 int nid; 2385 2386 for_each_online_node(nid) { 2387 pg_data_t *pgdat = NODE_DATA(nid); 2388 2389 build_zonelists(pgdat); 2390 build_zonelist_cache(pgdat); 2391 } 2392 return 0; 2393 } 2394 2395 void build_all_zonelists(void) 2396 { 2397 set_zonelist_order(); 2398 2399 if (system_state == SYSTEM_BOOTING) { 2400 __build_all_zonelists(NULL); 2401 mminit_verify_zonelist(); 2402 cpuset_init_current_mems_allowed(); 2403 } else { 2404 /* we have to stop all cpus to guarantee there is no user 2405 of zonelist */ 2406 stop_machine(__build_all_zonelists, NULL, NULL); 2407 /* cpuset refresh routine should be here */ 2408 } 2409 vm_total_pages = nr_free_pagecache_pages(); 2410 /* 2411 * Disable grouping by mobility if the number of pages in the 2412 * system is too low to allow the mechanism to work. It would be 2413 * more accurate, but expensive to check per-zone. This check is 2414 * made on memory-hotadd so a system can start with mobility 2415 * disabled and enable it later 2416 */ 2417 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2418 page_group_by_mobility_disabled = 1; 2419 else 2420 page_group_by_mobility_disabled = 0; 2421 2422 printk("Built %i zonelists in %s order, mobility grouping %s. " 2423 "Total pages: %ld\n", 2424 num_online_nodes(), 2425 zonelist_order_name[current_zonelist_order], 2426 page_group_by_mobility_disabled ? "off" : "on", 2427 vm_total_pages); 2428 #ifdef CONFIG_NUMA 2429 printk("Policy zone: %s\n", zone_names[policy_zone]); 2430 #endif 2431 } 2432 2433 /* 2434 * Helper functions to size the waitqueue hash table. 2435 * Essentially these want to choose hash table sizes sufficiently 2436 * large so that collisions trying to wait on pages are rare. 2437 * But in fact, the number of active page waitqueues on typical 2438 * systems is ridiculously low, less than 200. So this is even 2439 * conservative, even though it seems large. 2440 * 2441 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2442 * waitqueues, i.e. the size of the waitq table given the number of pages. 2443 */ 2444 #define PAGES_PER_WAITQUEUE 256 2445 2446 #ifndef CONFIG_MEMORY_HOTPLUG 2447 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2448 { 2449 unsigned long size = 1; 2450 2451 pages /= PAGES_PER_WAITQUEUE; 2452 2453 while (size < pages) 2454 size <<= 1; 2455 2456 /* 2457 * Once we have dozens or even hundreds of threads sleeping 2458 * on IO we've got bigger problems than wait queue collision. 2459 * Limit the size of the wait table to a reasonable size. 2460 */ 2461 size = min(size, 4096UL); 2462 2463 return max(size, 4UL); 2464 } 2465 #else 2466 /* 2467 * A zone's size might be changed by hot-add, so it is not possible to determine 2468 * a suitable size for its wait_table. So we use the maximum size now. 2469 * 2470 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2471 * 2472 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2473 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2474 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2475 * 2476 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2477 * or more by the traditional way. (See above). It equals: 2478 * 2479 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2480 * ia64(16K page size) : = ( 8G + 4M)byte. 2481 * powerpc (64K page size) : = (32G +16M)byte. 2482 */ 2483 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2484 { 2485 return 4096UL; 2486 } 2487 #endif 2488 2489 /* 2490 * This is an integer logarithm so that shifts can be used later 2491 * to extract the more random high bits from the multiplicative 2492 * hash function before the remainder is taken. 2493 */ 2494 static inline unsigned long wait_table_bits(unsigned long size) 2495 { 2496 return ffz(~size); 2497 } 2498 2499 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2500 2501 /* 2502 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2503 * of blocks reserved is based on zone->pages_min. The memory within the 2504 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2505 * higher will lead to a bigger reserve which will get freed as contiguous 2506 * blocks as reclaim kicks in 2507 */ 2508 static void setup_zone_migrate_reserve(struct zone *zone) 2509 { 2510 unsigned long start_pfn, pfn, end_pfn; 2511 struct page *page; 2512 unsigned long reserve, block_migratetype; 2513 2514 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2515 start_pfn = zone->zone_start_pfn; 2516 end_pfn = start_pfn + zone->spanned_pages; 2517 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2518 pageblock_order; 2519 2520 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2521 if (!pfn_valid(pfn)) 2522 continue; 2523 page = pfn_to_page(pfn); 2524 2525 /* Watch out for overlapping nodes */ 2526 if (page_to_nid(page) != zone_to_nid(zone)) 2527 continue; 2528 2529 /* Blocks with reserved pages will never free, skip them. */ 2530 if (PageReserved(page)) 2531 continue; 2532 2533 block_migratetype = get_pageblock_migratetype(page); 2534 2535 /* If this block is reserved, account for it */ 2536 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2537 reserve--; 2538 continue; 2539 } 2540 2541 /* Suitable for reserving if this block is movable */ 2542 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2543 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2544 move_freepages_block(zone, page, MIGRATE_RESERVE); 2545 reserve--; 2546 continue; 2547 } 2548 2549 /* 2550 * If the reserve is met and this is a previous reserved block, 2551 * take it back 2552 */ 2553 if (block_migratetype == MIGRATE_RESERVE) { 2554 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2555 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2556 } 2557 } 2558 } 2559 2560 /* 2561 * Initially all pages are reserved - free ones are freed 2562 * up by free_all_bootmem() once the early boot process is 2563 * done. Non-atomic initialization, single-pass. 2564 */ 2565 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2566 unsigned long start_pfn, enum memmap_context context) 2567 { 2568 struct page *page; 2569 unsigned long end_pfn = start_pfn + size; 2570 unsigned long pfn; 2571 struct zone *z; 2572 2573 z = &NODE_DATA(nid)->node_zones[zone]; 2574 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2575 /* 2576 * There can be holes in boot-time mem_map[]s 2577 * handed to this function. They do not 2578 * exist on hotplugged memory. 2579 */ 2580 if (context == MEMMAP_EARLY) { 2581 if (!early_pfn_valid(pfn)) 2582 continue; 2583 if (!early_pfn_in_nid(pfn, nid)) 2584 continue; 2585 } 2586 page = pfn_to_page(pfn); 2587 set_page_links(page, zone, nid, pfn); 2588 mminit_verify_page_links(page, zone, nid, pfn); 2589 init_page_count(page); 2590 reset_page_mapcount(page); 2591 SetPageReserved(page); 2592 /* 2593 * Mark the block movable so that blocks are reserved for 2594 * movable at startup. This will force kernel allocations 2595 * to reserve their blocks rather than leaking throughout 2596 * the address space during boot when many long-lived 2597 * kernel allocations are made. Later some blocks near 2598 * the start are marked MIGRATE_RESERVE by 2599 * setup_zone_migrate_reserve() 2600 * 2601 * bitmap is created for zone's valid pfn range. but memmap 2602 * can be created for invalid pages (for alignment) 2603 * check here not to call set_pageblock_migratetype() against 2604 * pfn out of zone. 2605 */ 2606 if ((z->zone_start_pfn <= pfn) 2607 && (pfn < z->zone_start_pfn + z->spanned_pages) 2608 && !(pfn & (pageblock_nr_pages - 1))) 2609 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2610 2611 INIT_LIST_HEAD(&page->lru); 2612 #ifdef WANT_PAGE_VIRTUAL 2613 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2614 if (!is_highmem_idx(zone)) 2615 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2616 #endif 2617 } 2618 } 2619 2620 static void __meminit zone_init_free_lists(struct zone *zone) 2621 { 2622 int order, t; 2623 for_each_migratetype_order(order, t) { 2624 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2625 zone->free_area[order].nr_free = 0; 2626 } 2627 } 2628 2629 #ifndef __HAVE_ARCH_MEMMAP_INIT 2630 #define memmap_init(size, nid, zone, start_pfn) \ 2631 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2632 #endif 2633 2634 static int zone_batchsize(struct zone *zone) 2635 { 2636 int batch; 2637 2638 /* 2639 * The per-cpu-pages pools are set to around 1000th of the 2640 * size of the zone. But no more than 1/2 of a meg. 2641 * 2642 * OK, so we don't know how big the cache is. So guess. 2643 */ 2644 batch = zone->present_pages / 1024; 2645 if (batch * PAGE_SIZE > 512 * 1024) 2646 batch = (512 * 1024) / PAGE_SIZE; 2647 batch /= 4; /* We effectively *= 4 below */ 2648 if (batch < 1) 2649 batch = 1; 2650 2651 /* 2652 * Clamp the batch to a 2^n - 1 value. Having a power 2653 * of 2 value was found to be more likely to have 2654 * suboptimal cache aliasing properties in some cases. 2655 * 2656 * For example if 2 tasks are alternately allocating 2657 * batches of pages, one task can end up with a lot 2658 * of pages of one half of the possible page colors 2659 * and the other with pages of the other colors. 2660 */ 2661 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2662 2663 return batch; 2664 } 2665 2666 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2667 { 2668 struct per_cpu_pages *pcp; 2669 2670 memset(p, 0, sizeof(*p)); 2671 2672 pcp = &p->pcp; 2673 pcp->count = 0; 2674 pcp->high = 6 * batch; 2675 pcp->batch = max(1UL, 1 * batch); 2676 INIT_LIST_HEAD(&pcp->list); 2677 } 2678 2679 /* 2680 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2681 * to the value high for the pageset p. 2682 */ 2683 2684 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2685 unsigned long high) 2686 { 2687 struct per_cpu_pages *pcp; 2688 2689 pcp = &p->pcp; 2690 pcp->high = high; 2691 pcp->batch = max(1UL, high/4); 2692 if ((high/4) > (PAGE_SHIFT * 8)) 2693 pcp->batch = PAGE_SHIFT * 8; 2694 } 2695 2696 2697 #ifdef CONFIG_NUMA 2698 /* 2699 * Boot pageset table. One per cpu which is going to be used for all 2700 * zones and all nodes. The parameters will be set in such a way 2701 * that an item put on a list will immediately be handed over to 2702 * the buddy list. This is safe since pageset manipulation is done 2703 * with interrupts disabled. 2704 * 2705 * Some NUMA counter updates may also be caught by the boot pagesets. 2706 * 2707 * The boot_pagesets must be kept even after bootup is complete for 2708 * unused processors and/or zones. They do play a role for bootstrapping 2709 * hotplugged processors. 2710 * 2711 * zoneinfo_show() and maybe other functions do 2712 * not check if the processor is online before following the pageset pointer. 2713 * Other parts of the kernel may not check if the zone is available. 2714 */ 2715 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2716 2717 /* 2718 * Dynamically allocate memory for the 2719 * per cpu pageset array in struct zone. 2720 */ 2721 static int __cpuinit process_zones(int cpu) 2722 { 2723 struct zone *zone, *dzone; 2724 int node = cpu_to_node(cpu); 2725 2726 node_set_state(node, N_CPU); /* this node has a cpu */ 2727 2728 for_each_zone(zone) { 2729 2730 if (!populated_zone(zone)) 2731 continue; 2732 2733 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2734 GFP_KERNEL, node); 2735 if (!zone_pcp(zone, cpu)) 2736 goto bad; 2737 2738 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2739 2740 if (percpu_pagelist_fraction) 2741 setup_pagelist_highmark(zone_pcp(zone, cpu), 2742 (zone->present_pages / percpu_pagelist_fraction)); 2743 } 2744 2745 return 0; 2746 bad: 2747 for_each_zone(dzone) { 2748 if (!populated_zone(dzone)) 2749 continue; 2750 if (dzone == zone) 2751 break; 2752 kfree(zone_pcp(dzone, cpu)); 2753 zone_pcp(dzone, cpu) = NULL; 2754 } 2755 return -ENOMEM; 2756 } 2757 2758 static inline void free_zone_pagesets(int cpu) 2759 { 2760 struct zone *zone; 2761 2762 for_each_zone(zone) { 2763 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2764 2765 /* Free per_cpu_pageset if it is slab allocated */ 2766 if (pset != &boot_pageset[cpu]) 2767 kfree(pset); 2768 zone_pcp(zone, cpu) = NULL; 2769 } 2770 } 2771 2772 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2773 unsigned long action, 2774 void *hcpu) 2775 { 2776 int cpu = (long)hcpu; 2777 int ret = NOTIFY_OK; 2778 2779 switch (action) { 2780 case CPU_UP_PREPARE: 2781 case CPU_UP_PREPARE_FROZEN: 2782 if (process_zones(cpu)) 2783 ret = NOTIFY_BAD; 2784 break; 2785 case CPU_UP_CANCELED: 2786 case CPU_UP_CANCELED_FROZEN: 2787 case CPU_DEAD: 2788 case CPU_DEAD_FROZEN: 2789 free_zone_pagesets(cpu); 2790 break; 2791 default: 2792 break; 2793 } 2794 return ret; 2795 } 2796 2797 static struct notifier_block __cpuinitdata pageset_notifier = 2798 { &pageset_cpuup_callback, NULL, 0 }; 2799 2800 void __init setup_per_cpu_pageset(void) 2801 { 2802 int err; 2803 2804 /* Initialize per_cpu_pageset for cpu 0. 2805 * A cpuup callback will do this for every cpu 2806 * as it comes online 2807 */ 2808 err = process_zones(smp_processor_id()); 2809 BUG_ON(err); 2810 register_cpu_notifier(&pageset_notifier); 2811 } 2812 2813 #endif 2814 2815 static noinline __init_refok 2816 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2817 { 2818 int i; 2819 struct pglist_data *pgdat = zone->zone_pgdat; 2820 size_t alloc_size; 2821 2822 /* 2823 * The per-page waitqueue mechanism uses hashed waitqueues 2824 * per zone. 2825 */ 2826 zone->wait_table_hash_nr_entries = 2827 wait_table_hash_nr_entries(zone_size_pages); 2828 zone->wait_table_bits = 2829 wait_table_bits(zone->wait_table_hash_nr_entries); 2830 alloc_size = zone->wait_table_hash_nr_entries 2831 * sizeof(wait_queue_head_t); 2832 2833 if (!slab_is_available()) { 2834 zone->wait_table = (wait_queue_head_t *) 2835 alloc_bootmem_node(pgdat, alloc_size); 2836 } else { 2837 /* 2838 * This case means that a zone whose size was 0 gets new memory 2839 * via memory hot-add. 2840 * But it may be the case that a new node was hot-added. In 2841 * this case vmalloc() will not be able to use this new node's 2842 * memory - this wait_table must be initialized to use this new 2843 * node itself as well. 2844 * To use this new node's memory, further consideration will be 2845 * necessary. 2846 */ 2847 zone->wait_table = vmalloc(alloc_size); 2848 } 2849 if (!zone->wait_table) 2850 return -ENOMEM; 2851 2852 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2853 init_waitqueue_head(zone->wait_table + i); 2854 2855 return 0; 2856 } 2857 2858 static __meminit void zone_pcp_init(struct zone *zone) 2859 { 2860 int cpu; 2861 unsigned long batch = zone_batchsize(zone); 2862 2863 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2864 #ifdef CONFIG_NUMA 2865 /* Early boot. Slab allocator not functional yet */ 2866 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2867 setup_pageset(&boot_pageset[cpu],0); 2868 #else 2869 setup_pageset(zone_pcp(zone,cpu), batch); 2870 #endif 2871 } 2872 if (zone->present_pages) 2873 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2874 zone->name, zone->present_pages, batch); 2875 } 2876 2877 __meminit int init_currently_empty_zone(struct zone *zone, 2878 unsigned long zone_start_pfn, 2879 unsigned long size, 2880 enum memmap_context context) 2881 { 2882 struct pglist_data *pgdat = zone->zone_pgdat; 2883 int ret; 2884 ret = zone_wait_table_init(zone, size); 2885 if (ret) 2886 return ret; 2887 pgdat->nr_zones = zone_idx(zone) + 1; 2888 2889 zone->zone_start_pfn = zone_start_pfn; 2890 2891 mminit_dprintk(MMINIT_TRACE, "memmap_init", 2892 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 2893 pgdat->node_id, 2894 (unsigned long)zone_idx(zone), 2895 zone_start_pfn, (zone_start_pfn + size)); 2896 2897 zone_init_free_lists(zone); 2898 2899 return 0; 2900 } 2901 2902 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2903 /* 2904 * Basic iterator support. Return the first range of PFNs for a node 2905 * Note: nid == MAX_NUMNODES returns first region regardless of node 2906 */ 2907 static int __meminit first_active_region_index_in_nid(int nid) 2908 { 2909 int i; 2910 2911 for (i = 0; i < nr_nodemap_entries; i++) 2912 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2913 return i; 2914 2915 return -1; 2916 } 2917 2918 /* 2919 * Basic iterator support. Return the next active range of PFNs for a node 2920 * Note: nid == MAX_NUMNODES returns next region regardless of node 2921 */ 2922 static int __meminit next_active_region_index_in_nid(int index, int nid) 2923 { 2924 for (index = index + 1; index < nr_nodemap_entries; index++) 2925 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2926 return index; 2927 2928 return -1; 2929 } 2930 2931 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2932 /* 2933 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2934 * Architectures may implement their own version but if add_active_range() 2935 * was used and there are no special requirements, this is a convenient 2936 * alternative 2937 */ 2938 int __meminit early_pfn_to_nid(unsigned long pfn) 2939 { 2940 int i; 2941 2942 for (i = 0; i < nr_nodemap_entries; i++) { 2943 unsigned long start_pfn = early_node_map[i].start_pfn; 2944 unsigned long end_pfn = early_node_map[i].end_pfn; 2945 2946 if (start_pfn <= pfn && pfn < end_pfn) 2947 return early_node_map[i].nid; 2948 } 2949 2950 return 0; 2951 } 2952 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2953 2954 /* Basic iterator support to walk early_node_map[] */ 2955 #define for_each_active_range_index_in_nid(i, nid) \ 2956 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2957 i = next_active_region_index_in_nid(i, nid)) 2958 2959 /** 2960 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2961 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2962 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2963 * 2964 * If an architecture guarantees that all ranges registered with 2965 * add_active_ranges() contain no holes and may be freed, this 2966 * this function may be used instead of calling free_bootmem() manually. 2967 */ 2968 void __init free_bootmem_with_active_regions(int nid, 2969 unsigned long max_low_pfn) 2970 { 2971 int i; 2972 2973 for_each_active_range_index_in_nid(i, nid) { 2974 unsigned long size_pages = 0; 2975 unsigned long end_pfn = early_node_map[i].end_pfn; 2976 2977 if (early_node_map[i].start_pfn >= max_low_pfn) 2978 continue; 2979 2980 if (end_pfn > max_low_pfn) 2981 end_pfn = max_low_pfn; 2982 2983 size_pages = end_pfn - early_node_map[i].start_pfn; 2984 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2985 PFN_PHYS(early_node_map[i].start_pfn), 2986 size_pages << PAGE_SHIFT); 2987 } 2988 } 2989 2990 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 2991 { 2992 int i; 2993 int ret; 2994 2995 for_each_active_range_index_in_nid(i, nid) { 2996 ret = work_fn(early_node_map[i].start_pfn, 2997 early_node_map[i].end_pfn, data); 2998 if (ret) 2999 break; 3000 } 3001 } 3002 /** 3003 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3004 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3005 * 3006 * If an architecture guarantees that all ranges registered with 3007 * add_active_ranges() contain no holes and may be freed, this 3008 * function may be used instead of calling memory_present() manually. 3009 */ 3010 void __init sparse_memory_present_with_active_regions(int nid) 3011 { 3012 int i; 3013 3014 for_each_active_range_index_in_nid(i, nid) 3015 memory_present(early_node_map[i].nid, 3016 early_node_map[i].start_pfn, 3017 early_node_map[i].end_pfn); 3018 } 3019 3020 /** 3021 * push_node_boundaries - Push node boundaries to at least the requested boundary 3022 * @nid: The nid of the node to push the boundary for 3023 * @start_pfn: The start pfn of the node 3024 * @end_pfn: The end pfn of the node 3025 * 3026 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 3027 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 3028 * be hotplugged even though no physical memory exists. This function allows 3029 * an arch to push out the node boundaries so mem_map is allocated that can 3030 * be used later. 3031 */ 3032 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3033 void __init push_node_boundaries(unsigned int nid, 3034 unsigned long start_pfn, unsigned long end_pfn) 3035 { 3036 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3037 "Entering push_node_boundaries(%u, %lu, %lu)\n", 3038 nid, start_pfn, end_pfn); 3039 3040 /* Initialise the boundary for this node if necessary */ 3041 if (node_boundary_end_pfn[nid] == 0) 3042 node_boundary_start_pfn[nid] = -1UL; 3043 3044 /* Update the boundaries */ 3045 if (node_boundary_start_pfn[nid] > start_pfn) 3046 node_boundary_start_pfn[nid] = start_pfn; 3047 if (node_boundary_end_pfn[nid] < end_pfn) 3048 node_boundary_end_pfn[nid] = end_pfn; 3049 } 3050 3051 /* If necessary, push the node boundary out for reserve hotadd */ 3052 static void __meminit account_node_boundary(unsigned int nid, 3053 unsigned long *start_pfn, unsigned long *end_pfn) 3054 { 3055 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3056 "Entering account_node_boundary(%u, %lu, %lu)\n", 3057 nid, *start_pfn, *end_pfn); 3058 3059 /* Return if boundary information has not been provided */ 3060 if (node_boundary_end_pfn[nid] == 0) 3061 return; 3062 3063 /* Check the boundaries and update if necessary */ 3064 if (node_boundary_start_pfn[nid] < *start_pfn) 3065 *start_pfn = node_boundary_start_pfn[nid]; 3066 if (node_boundary_end_pfn[nid] > *end_pfn) 3067 *end_pfn = node_boundary_end_pfn[nid]; 3068 } 3069 #else 3070 void __init push_node_boundaries(unsigned int nid, 3071 unsigned long start_pfn, unsigned long end_pfn) {} 3072 3073 static void __meminit account_node_boundary(unsigned int nid, 3074 unsigned long *start_pfn, unsigned long *end_pfn) {} 3075 #endif 3076 3077 3078 /** 3079 * get_pfn_range_for_nid - Return the start and end page frames for a node 3080 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3081 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3082 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3083 * 3084 * It returns the start and end page frame of a node based on information 3085 * provided by an arch calling add_active_range(). If called for a node 3086 * with no available memory, a warning is printed and the start and end 3087 * PFNs will be 0. 3088 */ 3089 void __meminit get_pfn_range_for_nid(unsigned int nid, 3090 unsigned long *start_pfn, unsigned long *end_pfn) 3091 { 3092 int i; 3093 *start_pfn = -1UL; 3094 *end_pfn = 0; 3095 3096 for_each_active_range_index_in_nid(i, nid) { 3097 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3098 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3099 } 3100 3101 if (*start_pfn == -1UL) 3102 *start_pfn = 0; 3103 3104 /* Push the node boundaries out if requested */ 3105 account_node_boundary(nid, start_pfn, end_pfn); 3106 } 3107 3108 /* 3109 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3110 * assumption is made that zones within a node are ordered in monotonic 3111 * increasing memory addresses so that the "highest" populated zone is used 3112 */ 3113 static void __init find_usable_zone_for_movable(void) 3114 { 3115 int zone_index; 3116 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3117 if (zone_index == ZONE_MOVABLE) 3118 continue; 3119 3120 if (arch_zone_highest_possible_pfn[zone_index] > 3121 arch_zone_lowest_possible_pfn[zone_index]) 3122 break; 3123 } 3124 3125 VM_BUG_ON(zone_index == -1); 3126 movable_zone = zone_index; 3127 } 3128 3129 /* 3130 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3131 * because it is sized independant of architecture. Unlike the other zones, 3132 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3133 * in each node depending on the size of each node and how evenly kernelcore 3134 * is distributed. This helper function adjusts the zone ranges 3135 * provided by the architecture for a given node by using the end of the 3136 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3137 * zones within a node are in order of monotonic increases memory addresses 3138 */ 3139 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3140 unsigned long zone_type, 3141 unsigned long node_start_pfn, 3142 unsigned long node_end_pfn, 3143 unsigned long *zone_start_pfn, 3144 unsigned long *zone_end_pfn) 3145 { 3146 /* Only adjust if ZONE_MOVABLE is on this node */ 3147 if (zone_movable_pfn[nid]) { 3148 /* Size ZONE_MOVABLE */ 3149 if (zone_type == ZONE_MOVABLE) { 3150 *zone_start_pfn = zone_movable_pfn[nid]; 3151 *zone_end_pfn = min(node_end_pfn, 3152 arch_zone_highest_possible_pfn[movable_zone]); 3153 3154 /* Adjust for ZONE_MOVABLE starting within this range */ 3155 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3156 *zone_end_pfn > zone_movable_pfn[nid]) { 3157 *zone_end_pfn = zone_movable_pfn[nid]; 3158 3159 /* Check if this whole range is within ZONE_MOVABLE */ 3160 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3161 *zone_start_pfn = *zone_end_pfn; 3162 } 3163 } 3164 3165 /* 3166 * Return the number of pages a zone spans in a node, including holes 3167 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3168 */ 3169 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3170 unsigned long zone_type, 3171 unsigned long *ignored) 3172 { 3173 unsigned long node_start_pfn, node_end_pfn; 3174 unsigned long zone_start_pfn, zone_end_pfn; 3175 3176 /* Get the start and end of the node and zone */ 3177 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3178 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3179 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3180 adjust_zone_range_for_zone_movable(nid, zone_type, 3181 node_start_pfn, node_end_pfn, 3182 &zone_start_pfn, &zone_end_pfn); 3183 3184 /* Check that this node has pages within the zone's required range */ 3185 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3186 return 0; 3187 3188 /* Move the zone boundaries inside the node if necessary */ 3189 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3190 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3191 3192 /* Return the spanned pages */ 3193 return zone_end_pfn - zone_start_pfn; 3194 } 3195 3196 /* 3197 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3198 * then all holes in the requested range will be accounted for. 3199 */ 3200 static unsigned long __meminit __absent_pages_in_range(int nid, 3201 unsigned long range_start_pfn, 3202 unsigned long range_end_pfn) 3203 { 3204 int i = 0; 3205 unsigned long prev_end_pfn = 0, hole_pages = 0; 3206 unsigned long start_pfn; 3207 3208 /* Find the end_pfn of the first active range of pfns in the node */ 3209 i = first_active_region_index_in_nid(nid); 3210 if (i == -1) 3211 return 0; 3212 3213 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3214 3215 /* Account for ranges before physical memory on this node */ 3216 if (early_node_map[i].start_pfn > range_start_pfn) 3217 hole_pages = prev_end_pfn - range_start_pfn; 3218 3219 /* Find all holes for the zone within the node */ 3220 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3221 3222 /* No need to continue if prev_end_pfn is outside the zone */ 3223 if (prev_end_pfn >= range_end_pfn) 3224 break; 3225 3226 /* Make sure the end of the zone is not within the hole */ 3227 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3228 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3229 3230 /* Update the hole size cound and move on */ 3231 if (start_pfn > range_start_pfn) { 3232 BUG_ON(prev_end_pfn > start_pfn); 3233 hole_pages += start_pfn - prev_end_pfn; 3234 } 3235 prev_end_pfn = early_node_map[i].end_pfn; 3236 } 3237 3238 /* Account for ranges past physical memory on this node */ 3239 if (range_end_pfn > prev_end_pfn) 3240 hole_pages += range_end_pfn - 3241 max(range_start_pfn, prev_end_pfn); 3242 3243 return hole_pages; 3244 } 3245 3246 /** 3247 * absent_pages_in_range - Return number of page frames in holes within a range 3248 * @start_pfn: The start PFN to start searching for holes 3249 * @end_pfn: The end PFN to stop searching for holes 3250 * 3251 * It returns the number of pages frames in memory holes within a range. 3252 */ 3253 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3254 unsigned long end_pfn) 3255 { 3256 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3257 } 3258 3259 /* Return the number of page frames in holes in a zone on a node */ 3260 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3261 unsigned long zone_type, 3262 unsigned long *ignored) 3263 { 3264 unsigned long node_start_pfn, node_end_pfn; 3265 unsigned long zone_start_pfn, zone_end_pfn; 3266 3267 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3268 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3269 node_start_pfn); 3270 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3271 node_end_pfn); 3272 3273 adjust_zone_range_for_zone_movable(nid, zone_type, 3274 node_start_pfn, node_end_pfn, 3275 &zone_start_pfn, &zone_end_pfn); 3276 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3277 } 3278 3279 #else 3280 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3281 unsigned long zone_type, 3282 unsigned long *zones_size) 3283 { 3284 return zones_size[zone_type]; 3285 } 3286 3287 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3288 unsigned long zone_type, 3289 unsigned long *zholes_size) 3290 { 3291 if (!zholes_size) 3292 return 0; 3293 3294 return zholes_size[zone_type]; 3295 } 3296 3297 #endif 3298 3299 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3300 unsigned long *zones_size, unsigned long *zholes_size) 3301 { 3302 unsigned long realtotalpages, totalpages = 0; 3303 enum zone_type i; 3304 3305 for (i = 0; i < MAX_NR_ZONES; i++) 3306 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3307 zones_size); 3308 pgdat->node_spanned_pages = totalpages; 3309 3310 realtotalpages = totalpages; 3311 for (i = 0; i < MAX_NR_ZONES; i++) 3312 realtotalpages -= 3313 zone_absent_pages_in_node(pgdat->node_id, i, 3314 zholes_size); 3315 pgdat->node_present_pages = realtotalpages; 3316 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3317 realtotalpages); 3318 } 3319 3320 #ifndef CONFIG_SPARSEMEM 3321 /* 3322 * Calculate the size of the zone->blockflags rounded to an unsigned long 3323 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3324 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3325 * round what is now in bits to nearest long in bits, then return it in 3326 * bytes. 3327 */ 3328 static unsigned long __init usemap_size(unsigned long zonesize) 3329 { 3330 unsigned long usemapsize; 3331 3332 usemapsize = roundup(zonesize, pageblock_nr_pages); 3333 usemapsize = usemapsize >> pageblock_order; 3334 usemapsize *= NR_PAGEBLOCK_BITS; 3335 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3336 3337 return usemapsize / 8; 3338 } 3339 3340 static void __init setup_usemap(struct pglist_data *pgdat, 3341 struct zone *zone, unsigned long zonesize) 3342 { 3343 unsigned long usemapsize = usemap_size(zonesize); 3344 zone->pageblock_flags = NULL; 3345 if (usemapsize) { 3346 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3347 memset(zone->pageblock_flags, 0, usemapsize); 3348 } 3349 } 3350 #else 3351 static void inline setup_usemap(struct pglist_data *pgdat, 3352 struct zone *zone, unsigned long zonesize) {} 3353 #endif /* CONFIG_SPARSEMEM */ 3354 3355 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3356 3357 /* Return a sensible default order for the pageblock size. */ 3358 static inline int pageblock_default_order(void) 3359 { 3360 if (HPAGE_SHIFT > PAGE_SHIFT) 3361 return HUGETLB_PAGE_ORDER; 3362 3363 return MAX_ORDER-1; 3364 } 3365 3366 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3367 static inline void __init set_pageblock_order(unsigned int order) 3368 { 3369 /* Check that pageblock_nr_pages has not already been setup */ 3370 if (pageblock_order) 3371 return; 3372 3373 /* 3374 * Assume the largest contiguous order of interest is a huge page. 3375 * This value may be variable depending on boot parameters on IA64 3376 */ 3377 pageblock_order = order; 3378 } 3379 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3380 3381 /* 3382 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3383 * and pageblock_default_order() are unused as pageblock_order is set 3384 * at compile-time. See include/linux/pageblock-flags.h for the values of 3385 * pageblock_order based on the kernel config 3386 */ 3387 static inline int pageblock_default_order(unsigned int order) 3388 { 3389 return MAX_ORDER-1; 3390 } 3391 #define set_pageblock_order(x) do {} while (0) 3392 3393 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3394 3395 /* 3396 * Set up the zone data structures: 3397 * - mark all pages reserved 3398 * - mark all memory queues empty 3399 * - clear the memory bitmaps 3400 */ 3401 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3402 unsigned long *zones_size, unsigned long *zholes_size) 3403 { 3404 enum zone_type j; 3405 int nid = pgdat->node_id; 3406 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3407 int ret; 3408 3409 pgdat_resize_init(pgdat); 3410 pgdat->nr_zones = 0; 3411 init_waitqueue_head(&pgdat->kswapd_wait); 3412 pgdat->kswapd_max_order = 0; 3413 3414 for (j = 0; j < MAX_NR_ZONES; j++) { 3415 struct zone *zone = pgdat->node_zones + j; 3416 unsigned long size, realsize, memmap_pages; 3417 3418 size = zone_spanned_pages_in_node(nid, j, zones_size); 3419 realsize = size - zone_absent_pages_in_node(nid, j, 3420 zholes_size); 3421 3422 /* 3423 * Adjust realsize so that it accounts for how much memory 3424 * is used by this zone for memmap. This affects the watermark 3425 * and per-cpu initialisations 3426 */ 3427 memmap_pages = 3428 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3429 if (realsize >= memmap_pages) { 3430 realsize -= memmap_pages; 3431 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3432 "%s zone: %lu pages used for memmap\n", 3433 zone_names[j], memmap_pages); 3434 } else 3435 printk(KERN_WARNING 3436 " %s zone: %lu pages exceeds realsize %lu\n", 3437 zone_names[j], memmap_pages, realsize); 3438 3439 /* Account for reserved pages */ 3440 if (j == 0 && realsize > dma_reserve) { 3441 realsize -= dma_reserve; 3442 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3443 "%s zone: %lu pages reserved\n", 3444 zone_names[0], dma_reserve); 3445 } 3446 3447 if (!is_highmem_idx(j)) 3448 nr_kernel_pages += realsize; 3449 nr_all_pages += realsize; 3450 3451 zone->spanned_pages = size; 3452 zone->present_pages = realsize; 3453 #ifdef CONFIG_NUMA 3454 zone->node = nid; 3455 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3456 / 100; 3457 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3458 #endif 3459 zone->name = zone_names[j]; 3460 spin_lock_init(&zone->lock); 3461 spin_lock_init(&zone->lru_lock); 3462 zone_seqlock_init(zone); 3463 zone->zone_pgdat = pgdat; 3464 3465 zone->prev_priority = DEF_PRIORITY; 3466 3467 zone_pcp_init(zone); 3468 INIT_LIST_HEAD(&zone->active_list); 3469 INIT_LIST_HEAD(&zone->inactive_list); 3470 zone->nr_scan_active = 0; 3471 zone->nr_scan_inactive = 0; 3472 zap_zone_vm_stats(zone); 3473 zone->flags = 0; 3474 if (!size) 3475 continue; 3476 3477 set_pageblock_order(pageblock_default_order()); 3478 setup_usemap(pgdat, zone, size); 3479 ret = init_currently_empty_zone(zone, zone_start_pfn, 3480 size, MEMMAP_EARLY); 3481 BUG_ON(ret); 3482 memmap_init(size, nid, j, zone_start_pfn); 3483 zone_start_pfn += size; 3484 } 3485 } 3486 3487 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3488 { 3489 /* Skip empty nodes */ 3490 if (!pgdat->node_spanned_pages) 3491 return; 3492 3493 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3494 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3495 if (!pgdat->node_mem_map) { 3496 unsigned long size, start, end; 3497 struct page *map; 3498 3499 /* 3500 * The zone's endpoints aren't required to be MAX_ORDER 3501 * aligned but the node_mem_map endpoints must be in order 3502 * for the buddy allocator to function correctly. 3503 */ 3504 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3505 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3506 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3507 size = (end - start) * sizeof(struct page); 3508 map = alloc_remap(pgdat->node_id, size); 3509 if (!map) 3510 map = alloc_bootmem_node(pgdat, size); 3511 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3512 } 3513 #ifndef CONFIG_NEED_MULTIPLE_NODES 3514 /* 3515 * With no DISCONTIG, the global mem_map is just set as node 0's 3516 */ 3517 if (pgdat == NODE_DATA(0)) { 3518 mem_map = NODE_DATA(0)->node_mem_map; 3519 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3520 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3521 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3522 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3523 } 3524 #endif 3525 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3526 } 3527 3528 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3529 unsigned long node_start_pfn, unsigned long *zholes_size) 3530 { 3531 pg_data_t *pgdat = NODE_DATA(nid); 3532 3533 pgdat->node_id = nid; 3534 pgdat->node_start_pfn = node_start_pfn; 3535 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3536 3537 alloc_node_mem_map(pgdat); 3538 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3539 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3540 nid, (unsigned long)pgdat, 3541 (unsigned long)pgdat->node_mem_map); 3542 #endif 3543 3544 free_area_init_core(pgdat, zones_size, zholes_size); 3545 } 3546 3547 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3548 3549 #if MAX_NUMNODES > 1 3550 /* 3551 * Figure out the number of possible node ids. 3552 */ 3553 static void __init setup_nr_node_ids(void) 3554 { 3555 unsigned int node; 3556 unsigned int highest = 0; 3557 3558 for_each_node_mask(node, node_possible_map) 3559 highest = node; 3560 nr_node_ids = highest + 1; 3561 } 3562 #else 3563 static inline void setup_nr_node_ids(void) 3564 { 3565 } 3566 #endif 3567 3568 /** 3569 * add_active_range - Register a range of PFNs backed by physical memory 3570 * @nid: The node ID the range resides on 3571 * @start_pfn: The start PFN of the available physical memory 3572 * @end_pfn: The end PFN of the available physical memory 3573 * 3574 * These ranges are stored in an early_node_map[] and later used by 3575 * free_area_init_nodes() to calculate zone sizes and holes. If the 3576 * range spans a memory hole, it is up to the architecture to ensure 3577 * the memory is not freed by the bootmem allocator. If possible 3578 * the range being registered will be merged with existing ranges. 3579 */ 3580 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3581 unsigned long end_pfn) 3582 { 3583 int i; 3584 3585 mminit_dprintk(MMINIT_TRACE, "memory_register", 3586 "Entering add_active_range(%d, %#lx, %#lx) " 3587 "%d entries of %d used\n", 3588 nid, start_pfn, end_pfn, 3589 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3590 3591 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3592 3593 /* Merge with existing active regions if possible */ 3594 for (i = 0; i < nr_nodemap_entries; i++) { 3595 if (early_node_map[i].nid != nid) 3596 continue; 3597 3598 /* Skip if an existing region covers this new one */ 3599 if (start_pfn >= early_node_map[i].start_pfn && 3600 end_pfn <= early_node_map[i].end_pfn) 3601 return; 3602 3603 /* Merge forward if suitable */ 3604 if (start_pfn <= early_node_map[i].end_pfn && 3605 end_pfn > early_node_map[i].end_pfn) { 3606 early_node_map[i].end_pfn = end_pfn; 3607 return; 3608 } 3609 3610 /* Merge backward if suitable */ 3611 if (start_pfn < early_node_map[i].end_pfn && 3612 end_pfn >= early_node_map[i].start_pfn) { 3613 early_node_map[i].start_pfn = start_pfn; 3614 return; 3615 } 3616 } 3617 3618 /* Check that early_node_map is large enough */ 3619 if (i >= MAX_ACTIVE_REGIONS) { 3620 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3621 MAX_ACTIVE_REGIONS); 3622 return; 3623 } 3624 3625 early_node_map[i].nid = nid; 3626 early_node_map[i].start_pfn = start_pfn; 3627 early_node_map[i].end_pfn = end_pfn; 3628 nr_nodemap_entries = i + 1; 3629 } 3630 3631 /** 3632 * remove_active_range - Shrink an existing registered range of PFNs 3633 * @nid: The node id the range is on that should be shrunk 3634 * @start_pfn: The new PFN of the range 3635 * @end_pfn: The new PFN of the range 3636 * 3637 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3638 * The map is kept near the end physical page range that has already been 3639 * registered. This function allows an arch to shrink an existing registered 3640 * range. 3641 */ 3642 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3643 unsigned long end_pfn) 3644 { 3645 int i, j; 3646 int removed = 0; 3647 3648 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3649 nid, start_pfn, end_pfn); 3650 3651 /* Find the old active region end and shrink */ 3652 for_each_active_range_index_in_nid(i, nid) { 3653 if (early_node_map[i].start_pfn >= start_pfn && 3654 early_node_map[i].end_pfn <= end_pfn) { 3655 /* clear it */ 3656 early_node_map[i].start_pfn = 0; 3657 early_node_map[i].end_pfn = 0; 3658 removed = 1; 3659 continue; 3660 } 3661 if (early_node_map[i].start_pfn < start_pfn && 3662 early_node_map[i].end_pfn > start_pfn) { 3663 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3664 early_node_map[i].end_pfn = start_pfn; 3665 if (temp_end_pfn > end_pfn) 3666 add_active_range(nid, end_pfn, temp_end_pfn); 3667 continue; 3668 } 3669 if (early_node_map[i].start_pfn >= start_pfn && 3670 early_node_map[i].end_pfn > end_pfn && 3671 early_node_map[i].start_pfn < end_pfn) { 3672 early_node_map[i].start_pfn = end_pfn; 3673 continue; 3674 } 3675 } 3676 3677 if (!removed) 3678 return; 3679 3680 /* remove the blank ones */ 3681 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3682 if (early_node_map[i].nid != nid) 3683 continue; 3684 if (early_node_map[i].end_pfn) 3685 continue; 3686 /* we found it, get rid of it */ 3687 for (j = i; j < nr_nodemap_entries - 1; j++) 3688 memcpy(&early_node_map[j], &early_node_map[j+1], 3689 sizeof(early_node_map[j])); 3690 j = nr_nodemap_entries - 1; 3691 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3692 nr_nodemap_entries--; 3693 } 3694 } 3695 3696 /** 3697 * remove_all_active_ranges - Remove all currently registered regions 3698 * 3699 * During discovery, it may be found that a table like SRAT is invalid 3700 * and an alternative discovery method must be used. This function removes 3701 * all currently registered regions. 3702 */ 3703 void __init remove_all_active_ranges(void) 3704 { 3705 memset(early_node_map, 0, sizeof(early_node_map)); 3706 nr_nodemap_entries = 0; 3707 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3708 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3709 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3710 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3711 } 3712 3713 /* Compare two active node_active_regions */ 3714 static int __init cmp_node_active_region(const void *a, const void *b) 3715 { 3716 struct node_active_region *arange = (struct node_active_region *)a; 3717 struct node_active_region *brange = (struct node_active_region *)b; 3718 3719 /* Done this way to avoid overflows */ 3720 if (arange->start_pfn > brange->start_pfn) 3721 return 1; 3722 if (arange->start_pfn < brange->start_pfn) 3723 return -1; 3724 3725 return 0; 3726 } 3727 3728 /* sort the node_map by start_pfn */ 3729 static void __init sort_node_map(void) 3730 { 3731 sort(early_node_map, (size_t)nr_nodemap_entries, 3732 sizeof(struct node_active_region), 3733 cmp_node_active_region, NULL); 3734 } 3735 3736 /* Find the lowest pfn for a node */ 3737 static unsigned long __init find_min_pfn_for_node(int nid) 3738 { 3739 int i; 3740 unsigned long min_pfn = ULONG_MAX; 3741 3742 /* Assuming a sorted map, the first range found has the starting pfn */ 3743 for_each_active_range_index_in_nid(i, nid) 3744 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3745 3746 if (min_pfn == ULONG_MAX) { 3747 printk(KERN_WARNING 3748 "Could not find start_pfn for node %d\n", nid); 3749 return 0; 3750 } 3751 3752 return min_pfn; 3753 } 3754 3755 /** 3756 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3757 * 3758 * It returns the minimum PFN based on information provided via 3759 * add_active_range(). 3760 */ 3761 unsigned long __init find_min_pfn_with_active_regions(void) 3762 { 3763 return find_min_pfn_for_node(MAX_NUMNODES); 3764 } 3765 3766 /* 3767 * early_calculate_totalpages() 3768 * Sum pages in active regions for movable zone. 3769 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3770 */ 3771 static unsigned long __init early_calculate_totalpages(void) 3772 { 3773 int i; 3774 unsigned long totalpages = 0; 3775 3776 for (i = 0; i < nr_nodemap_entries; i++) { 3777 unsigned long pages = early_node_map[i].end_pfn - 3778 early_node_map[i].start_pfn; 3779 totalpages += pages; 3780 if (pages) 3781 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3782 } 3783 return totalpages; 3784 } 3785 3786 /* 3787 * Find the PFN the Movable zone begins in each node. Kernel memory 3788 * is spread evenly between nodes as long as the nodes have enough 3789 * memory. When they don't, some nodes will have more kernelcore than 3790 * others 3791 */ 3792 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3793 { 3794 int i, nid; 3795 unsigned long usable_startpfn; 3796 unsigned long kernelcore_node, kernelcore_remaining; 3797 unsigned long totalpages = early_calculate_totalpages(); 3798 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3799 3800 /* 3801 * If movablecore was specified, calculate what size of 3802 * kernelcore that corresponds so that memory usable for 3803 * any allocation type is evenly spread. If both kernelcore 3804 * and movablecore are specified, then the value of kernelcore 3805 * will be used for required_kernelcore if it's greater than 3806 * what movablecore would have allowed. 3807 */ 3808 if (required_movablecore) { 3809 unsigned long corepages; 3810 3811 /* 3812 * Round-up so that ZONE_MOVABLE is at least as large as what 3813 * was requested by the user 3814 */ 3815 required_movablecore = 3816 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3817 corepages = totalpages - required_movablecore; 3818 3819 required_kernelcore = max(required_kernelcore, corepages); 3820 } 3821 3822 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3823 if (!required_kernelcore) 3824 return; 3825 3826 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3827 find_usable_zone_for_movable(); 3828 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3829 3830 restart: 3831 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3832 kernelcore_node = required_kernelcore / usable_nodes; 3833 for_each_node_state(nid, N_HIGH_MEMORY) { 3834 /* 3835 * Recalculate kernelcore_node if the division per node 3836 * now exceeds what is necessary to satisfy the requested 3837 * amount of memory for the kernel 3838 */ 3839 if (required_kernelcore < kernelcore_node) 3840 kernelcore_node = required_kernelcore / usable_nodes; 3841 3842 /* 3843 * As the map is walked, we track how much memory is usable 3844 * by the kernel using kernelcore_remaining. When it is 3845 * 0, the rest of the node is usable by ZONE_MOVABLE 3846 */ 3847 kernelcore_remaining = kernelcore_node; 3848 3849 /* Go through each range of PFNs within this node */ 3850 for_each_active_range_index_in_nid(i, nid) { 3851 unsigned long start_pfn, end_pfn; 3852 unsigned long size_pages; 3853 3854 start_pfn = max(early_node_map[i].start_pfn, 3855 zone_movable_pfn[nid]); 3856 end_pfn = early_node_map[i].end_pfn; 3857 if (start_pfn >= end_pfn) 3858 continue; 3859 3860 /* Account for what is only usable for kernelcore */ 3861 if (start_pfn < usable_startpfn) { 3862 unsigned long kernel_pages; 3863 kernel_pages = min(end_pfn, usable_startpfn) 3864 - start_pfn; 3865 3866 kernelcore_remaining -= min(kernel_pages, 3867 kernelcore_remaining); 3868 required_kernelcore -= min(kernel_pages, 3869 required_kernelcore); 3870 3871 /* Continue if range is now fully accounted */ 3872 if (end_pfn <= usable_startpfn) { 3873 3874 /* 3875 * Push zone_movable_pfn to the end so 3876 * that if we have to rebalance 3877 * kernelcore across nodes, we will 3878 * not double account here 3879 */ 3880 zone_movable_pfn[nid] = end_pfn; 3881 continue; 3882 } 3883 start_pfn = usable_startpfn; 3884 } 3885 3886 /* 3887 * The usable PFN range for ZONE_MOVABLE is from 3888 * start_pfn->end_pfn. Calculate size_pages as the 3889 * number of pages used as kernelcore 3890 */ 3891 size_pages = end_pfn - start_pfn; 3892 if (size_pages > kernelcore_remaining) 3893 size_pages = kernelcore_remaining; 3894 zone_movable_pfn[nid] = start_pfn + size_pages; 3895 3896 /* 3897 * Some kernelcore has been met, update counts and 3898 * break if the kernelcore for this node has been 3899 * satisified 3900 */ 3901 required_kernelcore -= min(required_kernelcore, 3902 size_pages); 3903 kernelcore_remaining -= size_pages; 3904 if (!kernelcore_remaining) 3905 break; 3906 } 3907 } 3908 3909 /* 3910 * If there is still required_kernelcore, we do another pass with one 3911 * less node in the count. This will push zone_movable_pfn[nid] further 3912 * along on the nodes that still have memory until kernelcore is 3913 * satisified 3914 */ 3915 usable_nodes--; 3916 if (usable_nodes && required_kernelcore > usable_nodes) 3917 goto restart; 3918 3919 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3920 for (nid = 0; nid < MAX_NUMNODES; nid++) 3921 zone_movable_pfn[nid] = 3922 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3923 } 3924 3925 /* Any regular memory on that node ? */ 3926 static void check_for_regular_memory(pg_data_t *pgdat) 3927 { 3928 #ifdef CONFIG_HIGHMEM 3929 enum zone_type zone_type; 3930 3931 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 3932 struct zone *zone = &pgdat->node_zones[zone_type]; 3933 if (zone->present_pages) 3934 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 3935 } 3936 #endif 3937 } 3938 3939 /** 3940 * free_area_init_nodes - Initialise all pg_data_t and zone data 3941 * @max_zone_pfn: an array of max PFNs for each zone 3942 * 3943 * This will call free_area_init_node() for each active node in the system. 3944 * Using the page ranges provided by add_active_range(), the size of each 3945 * zone in each node and their holes is calculated. If the maximum PFN 3946 * between two adjacent zones match, it is assumed that the zone is empty. 3947 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3948 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3949 * starts where the previous one ended. For example, ZONE_DMA32 starts 3950 * at arch_max_dma_pfn. 3951 */ 3952 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3953 { 3954 unsigned long nid; 3955 enum zone_type i; 3956 3957 /* Sort early_node_map as initialisation assumes it is sorted */ 3958 sort_node_map(); 3959 3960 /* Record where the zone boundaries are */ 3961 memset(arch_zone_lowest_possible_pfn, 0, 3962 sizeof(arch_zone_lowest_possible_pfn)); 3963 memset(arch_zone_highest_possible_pfn, 0, 3964 sizeof(arch_zone_highest_possible_pfn)); 3965 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 3966 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 3967 for (i = 1; i < MAX_NR_ZONES; i++) { 3968 if (i == ZONE_MOVABLE) 3969 continue; 3970 arch_zone_lowest_possible_pfn[i] = 3971 arch_zone_highest_possible_pfn[i-1]; 3972 arch_zone_highest_possible_pfn[i] = 3973 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 3974 } 3975 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 3976 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 3977 3978 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 3979 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 3980 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 3981 3982 /* Print out the zone ranges */ 3983 printk("Zone PFN ranges:\n"); 3984 for (i = 0; i < MAX_NR_ZONES; i++) { 3985 if (i == ZONE_MOVABLE) 3986 continue; 3987 printk(" %-8s %0#10lx -> %0#10lx\n", 3988 zone_names[i], 3989 arch_zone_lowest_possible_pfn[i], 3990 arch_zone_highest_possible_pfn[i]); 3991 } 3992 3993 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 3994 printk("Movable zone start PFN for each node\n"); 3995 for (i = 0; i < MAX_NUMNODES; i++) { 3996 if (zone_movable_pfn[i]) 3997 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 3998 } 3999 4000 /* Print out the early_node_map[] */ 4001 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4002 for (i = 0; i < nr_nodemap_entries; i++) 4003 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4004 early_node_map[i].start_pfn, 4005 early_node_map[i].end_pfn); 4006 4007 /* Initialise every node */ 4008 mminit_verify_pageflags_layout(); 4009 setup_nr_node_ids(); 4010 for_each_online_node(nid) { 4011 pg_data_t *pgdat = NODE_DATA(nid); 4012 free_area_init_node(nid, NULL, 4013 find_min_pfn_for_node(nid), NULL); 4014 4015 /* Any memory on that node */ 4016 if (pgdat->node_present_pages) 4017 node_set_state(nid, N_HIGH_MEMORY); 4018 check_for_regular_memory(pgdat); 4019 } 4020 } 4021 4022 static int __init cmdline_parse_core(char *p, unsigned long *core) 4023 { 4024 unsigned long long coremem; 4025 if (!p) 4026 return -EINVAL; 4027 4028 coremem = memparse(p, &p); 4029 *core = coremem >> PAGE_SHIFT; 4030 4031 /* Paranoid check that UL is enough for the coremem value */ 4032 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4033 4034 return 0; 4035 } 4036 4037 /* 4038 * kernelcore=size sets the amount of memory for use for allocations that 4039 * cannot be reclaimed or migrated. 4040 */ 4041 static int __init cmdline_parse_kernelcore(char *p) 4042 { 4043 return cmdline_parse_core(p, &required_kernelcore); 4044 } 4045 4046 /* 4047 * movablecore=size sets the amount of memory for use for allocations that 4048 * can be reclaimed or migrated. 4049 */ 4050 static int __init cmdline_parse_movablecore(char *p) 4051 { 4052 return cmdline_parse_core(p, &required_movablecore); 4053 } 4054 4055 early_param("kernelcore", cmdline_parse_kernelcore); 4056 early_param("movablecore", cmdline_parse_movablecore); 4057 4058 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4059 4060 /** 4061 * set_dma_reserve - set the specified number of pages reserved in the first zone 4062 * @new_dma_reserve: The number of pages to mark reserved 4063 * 4064 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4065 * In the DMA zone, a significant percentage may be consumed by kernel image 4066 * and other unfreeable allocations which can skew the watermarks badly. This 4067 * function may optionally be used to account for unfreeable pages in the 4068 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4069 * smaller per-cpu batchsize. 4070 */ 4071 void __init set_dma_reserve(unsigned long new_dma_reserve) 4072 { 4073 dma_reserve = new_dma_reserve; 4074 } 4075 4076 #ifndef CONFIG_NEED_MULTIPLE_NODES 4077 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4078 EXPORT_SYMBOL(contig_page_data); 4079 #endif 4080 4081 void __init free_area_init(unsigned long *zones_size) 4082 { 4083 free_area_init_node(0, zones_size, 4084 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4085 } 4086 4087 static int page_alloc_cpu_notify(struct notifier_block *self, 4088 unsigned long action, void *hcpu) 4089 { 4090 int cpu = (unsigned long)hcpu; 4091 4092 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4093 drain_pages(cpu); 4094 4095 /* 4096 * Spill the event counters of the dead processor 4097 * into the current processors event counters. 4098 * This artificially elevates the count of the current 4099 * processor. 4100 */ 4101 vm_events_fold_cpu(cpu); 4102 4103 /* 4104 * Zero the differential counters of the dead processor 4105 * so that the vm statistics are consistent. 4106 * 4107 * This is only okay since the processor is dead and cannot 4108 * race with what we are doing. 4109 */ 4110 refresh_cpu_vm_stats(cpu); 4111 } 4112 return NOTIFY_OK; 4113 } 4114 4115 void __init page_alloc_init(void) 4116 { 4117 hotcpu_notifier(page_alloc_cpu_notify, 0); 4118 } 4119 4120 /* 4121 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4122 * or min_free_kbytes changes. 4123 */ 4124 static void calculate_totalreserve_pages(void) 4125 { 4126 struct pglist_data *pgdat; 4127 unsigned long reserve_pages = 0; 4128 enum zone_type i, j; 4129 4130 for_each_online_pgdat(pgdat) { 4131 for (i = 0; i < MAX_NR_ZONES; i++) { 4132 struct zone *zone = pgdat->node_zones + i; 4133 unsigned long max = 0; 4134 4135 /* Find valid and maximum lowmem_reserve in the zone */ 4136 for (j = i; j < MAX_NR_ZONES; j++) { 4137 if (zone->lowmem_reserve[j] > max) 4138 max = zone->lowmem_reserve[j]; 4139 } 4140 4141 /* we treat pages_high as reserved pages. */ 4142 max += zone->pages_high; 4143 4144 if (max > zone->present_pages) 4145 max = zone->present_pages; 4146 reserve_pages += max; 4147 } 4148 } 4149 totalreserve_pages = reserve_pages; 4150 } 4151 4152 /* 4153 * setup_per_zone_lowmem_reserve - called whenever 4154 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4155 * has a correct pages reserved value, so an adequate number of 4156 * pages are left in the zone after a successful __alloc_pages(). 4157 */ 4158 static void setup_per_zone_lowmem_reserve(void) 4159 { 4160 struct pglist_data *pgdat; 4161 enum zone_type j, idx; 4162 4163 for_each_online_pgdat(pgdat) { 4164 for (j = 0; j < MAX_NR_ZONES; j++) { 4165 struct zone *zone = pgdat->node_zones + j; 4166 unsigned long present_pages = zone->present_pages; 4167 4168 zone->lowmem_reserve[j] = 0; 4169 4170 idx = j; 4171 while (idx) { 4172 struct zone *lower_zone; 4173 4174 idx--; 4175 4176 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4177 sysctl_lowmem_reserve_ratio[idx] = 1; 4178 4179 lower_zone = pgdat->node_zones + idx; 4180 lower_zone->lowmem_reserve[j] = present_pages / 4181 sysctl_lowmem_reserve_ratio[idx]; 4182 present_pages += lower_zone->present_pages; 4183 } 4184 } 4185 } 4186 4187 /* update totalreserve_pages */ 4188 calculate_totalreserve_pages(); 4189 } 4190 4191 /** 4192 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4193 * 4194 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4195 * with respect to min_free_kbytes. 4196 */ 4197 void setup_per_zone_pages_min(void) 4198 { 4199 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4200 unsigned long lowmem_pages = 0; 4201 struct zone *zone; 4202 unsigned long flags; 4203 4204 /* Calculate total number of !ZONE_HIGHMEM pages */ 4205 for_each_zone(zone) { 4206 if (!is_highmem(zone)) 4207 lowmem_pages += zone->present_pages; 4208 } 4209 4210 for_each_zone(zone) { 4211 u64 tmp; 4212 4213 spin_lock_irqsave(&zone->lru_lock, flags); 4214 tmp = (u64)pages_min * zone->present_pages; 4215 do_div(tmp, lowmem_pages); 4216 if (is_highmem(zone)) { 4217 /* 4218 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4219 * need highmem pages, so cap pages_min to a small 4220 * value here. 4221 * 4222 * The (pages_high-pages_low) and (pages_low-pages_min) 4223 * deltas controls asynch page reclaim, and so should 4224 * not be capped for highmem. 4225 */ 4226 int min_pages; 4227 4228 min_pages = zone->present_pages / 1024; 4229 if (min_pages < SWAP_CLUSTER_MAX) 4230 min_pages = SWAP_CLUSTER_MAX; 4231 if (min_pages > 128) 4232 min_pages = 128; 4233 zone->pages_min = min_pages; 4234 } else { 4235 /* 4236 * If it's a lowmem zone, reserve a number of pages 4237 * proportionate to the zone's size. 4238 */ 4239 zone->pages_min = tmp; 4240 } 4241 4242 zone->pages_low = zone->pages_min + (tmp >> 2); 4243 zone->pages_high = zone->pages_min + (tmp >> 1); 4244 setup_zone_migrate_reserve(zone); 4245 spin_unlock_irqrestore(&zone->lru_lock, flags); 4246 } 4247 4248 /* update totalreserve_pages */ 4249 calculate_totalreserve_pages(); 4250 } 4251 4252 /* 4253 * Initialise min_free_kbytes. 4254 * 4255 * For small machines we want it small (128k min). For large machines 4256 * we want it large (64MB max). But it is not linear, because network 4257 * bandwidth does not increase linearly with machine size. We use 4258 * 4259 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4260 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4261 * 4262 * which yields 4263 * 4264 * 16MB: 512k 4265 * 32MB: 724k 4266 * 64MB: 1024k 4267 * 128MB: 1448k 4268 * 256MB: 2048k 4269 * 512MB: 2896k 4270 * 1024MB: 4096k 4271 * 2048MB: 5792k 4272 * 4096MB: 8192k 4273 * 8192MB: 11584k 4274 * 16384MB: 16384k 4275 */ 4276 static int __init init_per_zone_pages_min(void) 4277 { 4278 unsigned long lowmem_kbytes; 4279 4280 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4281 4282 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4283 if (min_free_kbytes < 128) 4284 min_free_kbytes = 128; 4285 if (min_free_kbytes > 65536) 4286 min_free_kbytes = 65536; 4287 setup_per_zone_pages_min(); 4288 setup_per_zone_lowmem_reserve(); 4289 return 0; 4290 } 4291 module_init(init_per_zone_pages_min) 4292 4293 /* 4294 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4295 * that we can call two helper functions whenever min_free_kbytes 4296 * changes. 4297 */ 4298 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4299 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4300 { 4301 proc_dointvec(table, write, file, buffer, length, ppos); 4302 if (write) 4303 setup_per_zone_pages_min(); 4304 return 0; 4305 } 4306 4307 #ifdef CONFIG_NUMA 4308 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4309 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4310 { 4311 struct zone *zone; 4312 int rc; 4313 4314 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4315 if (rc) 4316 return rc; 4317 4318 for_each_zone(zone) 4319 zone->min_unmapped_pages = (zone->present_pages * 4320 sysctl_min_unmapped_ratio) / 100; 4321 return 0; 4322 } 4323 4324 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4325 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4326 { 4327 struct zone *zone; 4328 int rc; 4329 4330 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4331 if (rc) 4332 return rc; 4333 4334 for_each_zone(zone) 4335 zone->min_slab_pages = (zone->present_pages * 4336 sysctl_min_slab_ratio) / 100; 4337 return 0; 4338 } 4339 #endif 4340 4341 /* 4342 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4343 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4344 * whenever sysctl_lowmem_reserve_ratio changes. 4345 * 4346 * The reserve ratio obviously has absolutely no relation with the 4347 * pages_min watermarks. The lowmem reserve ratio can only make sense 4348 * if in function of the boot time zone sizes. 4349 */ 4350 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4351 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4352 { 4353 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4354 setup_per_zone_lowmem_reserve(); 4355 return 0; 4356 } 4357 4358 /* 4359 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4360 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4361 * can have before it gets flushed back to buddy allocator. 4362 */ 4363 4364 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4365 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4366 { 4367 struct zone *zone; 4368 unsigned int cpu; 4369 int ret; 4370 4371 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4372 if (!write || (ret == -EINVAL)) 4373 return ret; 4374 for_each_zone(zone) { 4375 for_each_online_cpu(cpu) { 4376 unsigned long high; 4377 high = zone->present_pages / percpu_pagelist_fraction; 4378 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4379 } 4380 } 4381 return 0; 4382 } 4383 4384 int hashdist = HASHDIST_DEFAULT; 4385 4386 #ifdef CONFIG_NUMA 4387 static int __init set_hashdist(char *str) 4388 { 4389 if (!str) 4390 return 0; 4391 hashdist = simple_strtoul(str, &str, 0); 4392 return 1; 4393 } 4394 __setup("hashdist=", set_hashdist); 4395 #endif 4396 4397 /* 4398 * allocate a large system hash table from bootmem 4399 * - it is assumed that the hash table must contain an exact power-of-2 4400 * quantity of entries 4401 * - limit is the number of hash buckets, not the total allocation size 4402 */ 4403 void *__init alloc_large_system_hash(const char *tablename, 4404 unsigned long bucketsize, 4405 unsigned long numentries, 4406 int scale, 4407 int flags, 4408 unsigned int *_hash_shift, 4409 unsigned int *_hash_mask, 4410 unsigned long limit) 4411 { 4412 unsigned long long max = limit; 4413 unsigned long log2qty, size; 4414 void *table = NULL; 4415 4416 /* allow the kernel cmdline to have a say */ 4417 if (!numentries) { 4418 /* round applicable memory size up to nearest megabyte */ 4419 numentries = nr_kernel_pages; 4420 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4421 numentries >>= 20 - PAGE_SHIFT; 4422 numentries <<= 20 - PAGE_SHIFT; 4423 4424 /* limit to 1 bucket per 2^scale bytes of low memory */ 4425 if (scale > PAGE_SHIFT) 4426 numentries >>= (scale - PAGE_SHIFT); 4427 else 4428 numentries <<= (PAGE_SHIFT - scale); 4429 4430 /* Make sure we've got at least a 0-order allocation.. */ 4431 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4432 numentries = PAGE_SIZE / bucketsize; 4433 } 4434 numentries = roundup_pow_of_two(numentries); 4435 4436 /* limit allocation size to 1/16 total memory by default */ 4437 if (max == 0) { 4438 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4439 do_div(max, bucketsize); 4440 } 4441 4442 if (numentries > max) 4443 numentries = max; 4444 4445 log2qty = ilog2(numentries); 4446 4447 do { 4448 size = bucketsize << log2qty; 4449 if (flags & HASH_EARLY) 4450 table = alloc_bootmem_nopanic(size); 4451 else if (hashdist) 4452 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4453 else { 4454 unsigned long order = get_order(size); 4455 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4456 /* 4457 * If bucketsize is not a power-of-two, we may free 4458 * some pages at the end of hash table. 4459 */ 4460 if (table) { 4461 unsigned long alloc_end = (unsigned long)table + 4462 (PAGE_SIZE << order); 4463 unsigned long used = (unsigned long)table + 4464 PAGE_ALIGN(size); 4465 split_page(virt_to_page(table), order); 4466 while (used < alloc_end) { 4467 free_page(used); 4468 used += PAGE_SIZE; 4469 } 4470 } 4471 } 4472 } while (!table && size > PAGE_SIZE && --log2qty); 4473 4474 if (!table) 4475 panic("Failed to allocate %s hash table\n", tablename); 4476 4477 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4478 tablename, 4479 (1U << log2qty), 4480 ilog2(size) - PAGE_SHIFT, 4481 size); 4482 4483 if (_hash_shift) 4484 *_hash_shift = log2qty; 4485 if (_hash_mask) 4486 *_hash_mask = (1 << log2qty) - 1; 4487 4488 return table; 4489 } 4490 4491 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 4492 struct page *pfn_to_page(unsigned long pfn) 4493 { 4494 return __pfn_to_page(pfn); 4495 } 4496 unsigned long page_to_pfn(struct page *page) 4497 { 4498 return __page_to_pfn(page); 4499 } 4500 EXPORT_SYMBOL(pfn_to_page); 4501 EXPORT_SYMBOL(page_to_pfn); 4502 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 4503 4504 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4505 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4506 unsigned long pfn) 4507 { 4508 #ifdef CONFIG_SPARSEMEM 4509 return __pfn_to_section(pfn)->pageblock_flags; 4510 #else 4511 return zone->pageblock_flags; 4512 #endif /* CONFIG_SPARSEMEM */ 4513 } 4514 4515 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4516 { 4517 #ifdef CONFIG_SPARSEMEM 4518 pfn &= (PAGES_PER_SECTION-1); 4519 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4520 #else 4521 pfn = pfn - zone->zone_start_pfn; 4522 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4523 #endif /* CONFIG_SPARSEMEM */ 4524 } 4525 4526 /** 4527 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4528 * @page: The page within the block of interest 4529 * @start_bitidx: The first bit of interest to retrieve 4530 * @end_bitidx: The last bit of interest 4531 * returns pageblock_bits flags 4532 */ 4533 unsigned long get_pageblock_flags_group(struct page *page, 4534 int start_bitidx, int end_bitidx) 4535 { 4536 struct zone *zone; 4537 unsigned long *bitmap; 4538 unsigned long pfn, bitidx; 4539 unsigned long flags = 0; 4540 unsigned long value = 1; 4541 4542 zone = page_zone(page); 4543 pfn = page_to_pfn(page); 4544 bitmap = get_pageblock_bitmap(zone, pfn); 4545 bitidx = pfn_to_bitidx(zone, pfn); 4546 4547 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4548 if (test_bit(bitidx + start_bitidx, bitmap)) 4549 flags |= value; 4550 4551 return flags; 4552 } 4553 4554 /** 4555 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4556 * @page: The page within the block of interest 4557 * @start_bitidx: The first bit of interest 4558 * @end_bitidx: The last bit of interest 4559 * @flags: The flags to set 4560 */ 4561 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4562 int start_bitidx, int end_bitidx) 4563 { 4564 struct zone *zone; 4565 unsigned long *bitmap; 4566 unsigned long pfn, bitidx; 4567 unsigned long value = 1; 4568 4569 zone = page_zone(page); 4570 pfn = page_to_pfn(page); 4571 bitmap = get_pageblock_bitmap(zone, pfn); 4572 bitidx = pfn_to_bitidx(zone, pfn); 4573 VM_BUG_ON(pfn < zone->zone_start_pfn); 4574 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4575 4576 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4577 if (flags & value) 4578 __set_bit(bitidx + start_bitidx, bitmap); 4579 else 4580 __clear_bit(bitidx + start_bitidx, bitmap); 4581 } 4582 4583 /* 4584 * This is designed as sub function...plz see page_isolation.c also. 4585 * set/clear page block's type to be ISOLATE. 4586 * page allocater never alloc memory from ISOLATE block. 4587 */ 4588 4589 int set_migratetype_isolate(struct page *page) 4590 { 4591 struct zone *zone; 4592 unsigned long flags; 4593 int ret = -EBUSY; 4594 4595 zone = page_zone(page); 4596 spin_lock_irqsave(&zone->lock, flags); 4597 /* 4598 * In future, more migrate types will be able to be isolation target. 4599 */ 4600 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4601 goto out; 4602 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4603 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4604 ret = 0; 4605 out: 4606 spin_unlock_irqrestore(&zone->lock, flags); 4607 if (!ret) 4608 drain_all_pages(); 4609 return ret; 4610 } 4611 4612 void unset_migratetype_isolate(struct page *page) 4613 { 4614 struct zone *zone; 4615 unsigned long flags; 4616 zone = page_zone(page); 4617 spin_lock_irqsave(&zone->lock, flags); 4618 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4619 goto out; 4620 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4621 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4622 out: 4623 spin_unlock_irqrestore(&zone->lock, flags); 4624 } 4625 4626 #ifdef CONFIG_MEMORY_HOTREMOVE 4627 /* 4628 * All pages in the range must be isolated before calling this. 4629 */ 4630 void 4631 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4632 { 4633 struct page *page; 4634 struct zone *zone; 4635 int order, i; 4636 unsigned long pfn; 4637 unsigned long flags; 4638 /* find the first valid pfn */ 4639 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4640 if (pfn_valid(pfn)) 4641 break; 4642 if (pfn == end_pfn) 4643 return; 4644 zone = page_zone(pfn_to_page(pfn)); 4645 spin_lock_irqsave(&zone->lock, flags); 4646 pfn = start_pfn; 4647 while (pfn < end_pfn) { 4648 if (!pfn_valid(pfn)) { 4649 pfn++; 4650 continue; 4651 } 4652 page = pfn_to_page(pfn); 4653 BUG_ON(page_count(page)); 4654 BUG_ON(!PageBuddy(page)); 4655 order = page_order(page); 4656 #ifdef CONFIG_DEBUG_VM 4657 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4658 pfn, 1 << order, end_pfn); 4659 #endif 4660 list_del(&page->lru); 4661 rmv_page_order(page); 4662 zone->free_area[order].nr_free--; 4663 __mod_zone_page_state(zone, NR_FREE_PAGES, 4664 - (1UL << order)); 4665 for (i = 0; i < (1 << order); i++) 4666 SetPageReserved((page+i)); 4667 pfn += (1 << order); 4668 } 4669 spin_unlock_irqrestore(&zone->lock, flags); 4670 } 4671 #endif 4672