xref: /openbmc/linux/mm/page_alloc.c (revision 37002bc6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 static compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
288 	[NULL_COMPOUND_DTOR] = NULL,
289 	[COMPOUND_PAGE_DTOR] = free_compound_page,
290 #ifdef CONFIG_HUGETLB_PAGE
291 	[HUGETLB_PAGE_DTOR] = free_huge_page,
292 #endif
293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
294 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
295 #endif
296 };
297 
298 int min_free_kbytes = 1024;
299 int user_min_free_kbytes = -1;
300 static int watermark_boost_factor __read_mostly = 15000;
301 static int watermark_scale_factor = 10;
302 
303 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
304 int movable_zone;
305 EXPORT_SYMBOL(movable_zone);
306 
307 #if MAX_NUMNODES > 1
308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309 unsigned int nr_online_nodes __read_mostly = 1;
310 EXPORT_SYMBOL(nr_node_ids);
311 EXPORT_SYMBOL(nr_online_nodes);
312 #endif
313 
314 static bool page_contains_unaccepted(struct page *page, unsigned int order);
315 static void accept_page(struct page *page, unsigned int order);
316 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
317 static inline bool has_unaccepted_memory(void);
318 static bool __free_unaccepted(struct page *page);
319 
320 int page_group_by_mobility_disabled __read_mostly;
321 
322 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
323 /*
324  * During boot we initialize deferred pages on-demand, as needed, but once
325  * page_alloc_init_late() has finished, the deferred pages are all initialized,
326  * and we can permanently disable that path.
327  */
328 DEFINE_STATIC_KEY_TRUE(deferred_pages);
329 
330 static inline bool deferred_pages_enabled(void)
331 {
332 	return static_branch_unlikely(&deferred_pages);
333 }
334 
335 /*
336  * deferred_grow_zone() is __init, but it is called from
337  * get_page_from_freelist() during early boot until deferred_pages permanently
338  * disables this call. This is why we have refdata wrapper to avoid warning,
339  * and to ensure that the function body gets unloaded.
340  */
341 static bool __ref
342 _deferred_grow_zone(struct zone *zone, unsigned int order)
343 {
344        return deferred_grow_zone(zone, order);
345 }
346 #else
347 static inline bool deferred_pages_enabled(void)
348 {
349 	return false;
350 }
351 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
352 
353 /* Return a pointer to the bitmap storing bits affecting a block of pages */
354 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
355 							unsigned long pfn)
356 {
357 #ifdef CONFIG_SPARSEMEM
358 	return section_to_usemap(__pfn_to_section(pfn));
359 #else
360 	return page_zone(page)->pageblock_flags;
361 #endif /* CONFIG_SPARSEMEM */
362 }
363 
364 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
365 {
366 #ifdef CONFIG_SPARSEMEM
367 	pfn &= (PAGES_PER_SECTION-1);
368 #else
369 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
370 #endif /* CONFIG_SPARSEMEM */
371 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 }
373 
374 static __always_inline
375 unsigned long __get_pfnblock_flags_mask(const struct page *page,
376 					unsigned long pfn,
377 					unsigned long mask)
378 {
379 	unsigned long *bitmap;
380 	unsigned long bitidx, word_bitidx;
381 	unsigned long word;
382 
383 	bitmap = get_pageblock_bitmap(page, pfn);
384 	bitidx = pfn_to_bitidx(page, pfn);
385 	word_bitidx = bitidx / BITS_PER_LONG;
386 	bitidx &= (BITS_PER_LONG-1);
387 	/*
388 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
389 	 * a consistent read of the memory array, so that results, even though
390 	 * racy, are not corrupted.
391 	 */
392 	word = READ_ONCE(bitmap[word_bitidx]);
393 	return (word >> bitidx) & mask;
394 }
395 
396 /**
397  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
398  * @page: The page within the block of interest
399  * @pfn: The target page frame number
400  * @mask: mask of bits that the caller is interested in
401  *
402  * Return: pageblock_bits flags
403  */
404 unsigned long get_pfnblock_flags_mask(const struct page *page,
405 					unsigned long pfn, unsigned long mask)
406 {
407 	return __get_pfnblock_flags_mask(page, pfn, mask);
408 }
409 
410 static __always_inline int get_pfnblock_migratetype(const struct page *page,
411 					unsigned long pfn)
412 {
413 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
414 }
415 
416 /**
417  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
418  * @page: The page within the block of interest
419  * @flags: The flags to set
420  * @pfn: The target page frame number
421  * @mask: mask of bits that the caller is interested in
422  */
423 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
424 					unsigned long pfn,
425 					unsigned long mask)
426 {
427 	unsigned long *bitmap;
428 	unsigned long bitidx, word_bitidx;
429 	unsigned long word;
430 
431 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
432 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
433 
434 	bitmap = get_pageblock_bitmap(page, pfn);
435 	bitidx = pfn_to_bitidx(page, pfn);
436 	word_bitidx = bitidx / BITS_PER_LONG;
437 	bitidx &= (BITS_PER_LONG-1);
438 
439 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
440 
441 	mask <<= bitidx;
442 	flags <<= bitidx;
443 
444 	word = READ_ONCE(bitmap[word_bitidx]);
445 	do {
446 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
447 }
448 
449 void set_pageblock_migratetype(struct page *page, int migratetype)
450 {
451 	if (unlikely(page_group_by_mobility_disabled &&
452 		     migratetype < MIGRATE_PCPTYPES))
453 		migratetype = MIGRATE_UNMOVABLE;
454 
455 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
456 				page_to_pfn(page), MIGRATETYPE_MASK);
457 }
458 
459 #ifdef CONFIG_DEBUG_VM
460 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
461 {
462 	int ret = 0;
463 	unsigned seq;
464 	unsigned long pfn = page_to_pfn(page);
465 	unsigned long sp, start_pfn;
466 
467 	do {
468 		seq = zone_span_seqbegin(zone);
469 		start_pfn = zone->zone_start_pfn;
470 		sp = zone->spanned_pages;
471 		if (!zone_spans_pfn(zone, pfn))
472 			ret = 1;
473 	} while (zone_span_seqretry(zone, seq));
474 
475 	if (ret)
476 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
477 			pfn, zone_to_nid(zone), zone->name,
478 			start_pfn, start_pfn + sp);
479 
480 	return ret;
481 }
482 
483 /*
484  * Temporary debugging check for pages not lying within a given zone.
485  */
486 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
487 {
488 	if (page_outside_zone_boundaries(zone, page))
489 		return 1;
490 	if (zone != page_zone(page))
491 		return 1;
492 
493 	return 0;
494 }
495 #else
496 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
497 {
498 	return 0;
499 }
500 #endif
501 
502 static void bad_page(struct page *page, const char *reason)
503 {
504 	static unsigned long resume;
505 	static unsigned long nr_shown;
506 	static unsigned long nr_unshown;
507 
508 	/*
509 	 * Allow a burst of 60 reports, then keep quiet for that minute;
510 	 * or allow a steady drip of one report per second.
511 	 */
512 	if (nr_shown == 60) {
513 		if (time_before(jiffies, resume)) {
514 			nr_unshown++;
515 			goto out;
516 		}
517 		if (nr_unshown) {
518 			pr_alert(
519 			      "BUG: Bad page state: %lu messages suppressed\n",
520 				nr_unshown);
521 			nr_unshown = 0;
522 		}
523 		nr_shown = 0;
524 	}
525 	if (nr_shown++ == 0)
526 		resume = jiffies + 60 * HZ;
527 
528 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
529 		current->comm, page_to_pfn(page));
530 	dump_page(page, reason);
531 
532 	print_modules();
533 	dump_stack();
534 out:
535 	/* Leave bad fields for debug, except PageBuddy could make trouble */
536 	page_mapcount_reset(page); /* remove PageBuddy */
537 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
538 }
539 
540 static inline unsigned int order_to_pindex(int migratetype, int order)
541 {
542 	int base = order;
543 
544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
545 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
546 		VM_BUG_ON(order != pageblock_order);
547 		return NR_LOWORDER_PCP_LISTS;
548 	}
549 #else
550 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
551 #endif
552 
553 	return (MIGRATE_PCPTYPES * base) + migratetype;
554 }
555 
556 static inline int pindex_to_order(unsigned int pindex)
557 {
558 	int order = pindex / MIGRATE_PCPTYPES;
559 
560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
561 	if (pindex == NR_LOWORDER_PCP_LISTS)
562 		order = pageblock_order;
563 #else
564 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
565 #endif
566 
567 	return order;
568 }
569 
570 static inline bool pcp_allowed_order(unsigned int order)
571 {
572 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
573 		return true;
574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
575 	if (order == pageblock_order)
576 		return true;
577 #endif
578 	return false;
579 }
580 
581 static inline void free_the_page(struct page *page, unsigned int order)
582 {
583 	if (pcp_allowed_order(order))		/* Via pcp? */
584 		free_unref_page(page, order);
585 	else
586 		__free_pages_ok(page, order, FPI_NONE);
587 }
588 
589 /*
590  * Higher-order pages are called "compound pages".  They are structured thusly:
591  *
592  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
593  *
594  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
595  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
596  *
597  * The first tail page's ->compound_dtor holds the offset in array of compound
598  * page destructors. See compound_page_dtors.
599  *
600  * The first tail page's ->compound_order holds the order of allocation.
601  * This usage means that zero-order pages may not be compound.
602  */
603 
604 void free_compound_page(struct page *page)
605 {
606 	mem_cgroup_uncharge(page_folio(page));
607 	free_the_page(page, compound_order(page));
608 }
609 
610 void prep_compound_page(struct page *page, unsigned int order)
611 {
612 	int i;
613 	int nr_pages = 1 << order;
614 
615 	__SetPageHead(page);
616 	for (i = 1; i < nr_pages; i++)
617 		prep_compound_tail(page, i);
618 
619 	prep_compound_head(page, order);
620 }
621 
622 void destroy_large_folio(struct folio *folio)
623 {
624 	enum compound_dtor_id dtor = folio->_folio_dtor;
625 
626 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
627 	compound_page_dtors[dtor](&folio->page);
628 }
629 
630 static inline void set_buddy_order(struct page *page, unsigned int order)
631 {
632 	set_page_private(page, order);
633 	__SetPageBuddy(page);
634 }
635 
636 #ifdef CONFIG_COMPACTION
637 static inline struct capture_control *task_capc(struct zone *zone)
638 {
639 	struct capture_control *capc = current->capture_control;
640 
641 	return unlikely(capc) &&
642 		!(current->flags & PF_KTHREAD) &&
643 		!capc->page &&
644 		capc->cc->zone == zone ? capc : NULL;
645 }
646 
647 static inline bool
648 compaction_capture(struct capture_control *capc, struct page *page,
649 		   int order, int migratetype)
650 {
651 	if (!capc || order != capc->cc->order)
652 		return false;
653 
654 	/* Do not accidentally pollute CMA or isolated regions*/
655 	if (is_migrate_cma(migratetype) ||
656 	    is_migrate_isolate(migratetype))
657 		return false;
658 
659 	/*
660 	 * Do not let lower order allocations pollute a movable pageblock.
661 	 * This might let an unmovable request use a reclaimable pageblock
662 	 * and vice-versa but no more than normal fallback logic which can
663 	 * have trouble finding a high-order free page.
664 	 */
665 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
666 		return false;
667 
668 	capc->page = page;
669 	return true;
670 }
671 
672 #else
673 static inline struct capture_control *task_capc(struct zone *zone)
674 {
675 	return NULL;
676 }
677 
678 static inline bool
679 compaction_capture(struct capture_control *capc, struct page *page,
680 		   int order, int migratetype)
681 {
682 	return false;
683 }
684 #endif /* CONFIG_COMPACTION */
685 
686 /* Used for pages not on another list */
687 static inline void add_to_free_list(struct page *page, struct zone *zone,
688 				    unsigned int order, int migratetype)
689 {
690 	struct free_area *area = &zone->free_area[order];
691 
692 	list_add(&page->buddy_list, &area->free_list[migratetype]);
693 	area->nr_free++;
694 }
695 
696 /* Used for pages not on another list */
697 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
698 					 unsigned int order, int migratetype)
699 {
700 	struct free_area *area = &zone->free_area[order];
701 
702 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
703 	area->nr_free++;
704 }
705 
706 /*
707  * Used for pages which are on another list. Move the pages to the tail
708  * of the list - so the moved pages won't immediately be considered for
709  * allocation again (e.g., optimization for memory onlining).
710  */
711 static inline void move_to_free_list(struct page *page, struct zone *zone,
712 				     unsigned int order, int migratetype)
713 {
714 	struct free_area *area = &zone->free_area[order];
715 
716 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
717 }
718 
719 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
720 					   unsigned int order)
721 {
722 	/* clear reported state and update reported page count */
723 	if (page_reported(page))
724 		__ClearPageReported(page);
725 
726 	list_del(&page->buddy_list);
727 	__ClearPageBuddy(page);
728 	set_page_private(page, 0);
729 	zone->free_area[order].nr_free--;
730 }
731 
732 static inline struct page *get_page_from_free_area(struct free_area *area,
733 					    int migratetype)
734 {
735 	return list_first_entry_or_null(&area->free_list[migratetype],
736 					struct page, buddy_list);
737 }
738 
739 /*
740  * If this is not the largest possible page, check if the buddy
741  * of the next-highest order is free. If it is, it's possible
742  * that pages are being freed that will coalesce soon. In case,
743  * that is happening, add the free page to the tail of the list
744  * so it's less likely to be used soon and more likely to be merged
745  * as a higher order page
746  */
747 static inline bool
748 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
749 		   struct page *page, unsigned int order)
750 {
751 	unsigned long higher_page_pfn;
752 	struct page *higher_page;
753 
754 	if (order >= MAX_ORDER - 1)
755 		return false;
756 
757 	higher_page_pfn = buddy_pfn & pfn;
758 	higher_page = page + (higher_page_pfn - pfn);
759 
760 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
761 			NULL) != NULL;
762 }
763 
764 /*
765  * Freeing function for a buddy system allocator.
766  *
767  * The concept of a buddy system is to maintain direct-mapped table
768  * (containing bit values) for memory blocks of various "orders".
769  * The bottom level table contains the map for the smallest allocatable
770  * units of memory (here, pages), and each level above it describes
771  * pairs of units from the levels below, hence, "buddies".
772  * At a high level, all that happens here is marking the table entry
773  * at the bottom level available, and propagating the changes upward
774  * as necessary, plus some accounting needed to play nicely with other
775  * parts of the VM system.
776  * At each level, we keep a list of pages, which are heads of continuous
777  * free pages of length of (1 << order) and marked with PageBuddy.
778  * Page's order is recorded in page_private(page) field.
779  * So when we are allocating or freeing one, we can derive the state of the
780  * other.  That is, if we allocate a small block, and both were
781  * free, the remainder of the region must be split into blocks.
782  * If a block is freed, and its buddy is also free, then this
783  * triggers coalescing into a block of larger size.
784  *
785  * -- nyc
786  */
787 
788 static inline void __free_one_page(struct page *page,
789 		unsigned long pfn,
790 		struct zone *zone, unsigned int order,
791 		int migratetype, fpi_t fpi_flags)
792 {
793 	struct capture_control *capc = task_capc(zone);
794 	unsigned long buddy_pfn = 0;
795 	unsigned long combined_pfn;
796 	struct page *buddy;
797 	bool to_tail;
798 
799 	VM_BUG_ON(!zone_is_initialized(zone));
800 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801 
802 	VM_BUG_ON(migratetype == -1);
803 	if (likely(!is_migrate_isolate(migratetype)))
804 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
805 
806 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
808 
809 	while (order < MAX_ORDER) {
810 		if (compaction_capture(capc, page, order, migratetype)) {
811 			__mod_zone_freepage_state(zone, -(1 << order),
812 								migratetype);
813 			return;
814 		}
815 
816 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
817 		if (!buddy)
818 			goto done_merging;
819 
820 		if (unlikely(order >= pageblock_order)) {
821 			/*
822 			 * We want to prevent merge between freepages on pageblock
823 			 * without fallbacks and normal pageblock. Without this,
824 			 * pageblock isolation could cause incorrect freepage or CMA
825 			 * accounting or HIGHATOMIC accounting.
826 			 */
827 			int buddy_mt = get_pageblock_migratetype(buddy);
828 
829 			if (migratetype != buddy_mt
830 					&& (!migratetype_is_mergeable(migratetype) ||
831 						!migratetype_is_mergeable(buddy_mt)))
832 				goto done_merging;
833 		}
834 
835 		/*
836 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
837 		 * merge with it and move up one order.
838 		 */
839 		if (page_is_guard(buddy))
840 			clear_page_guard(zone, buddy, order, migratetype);
841 		else
842 			del_page_from_free_list(buddy, zone, order);
843 		combined_pfn = buddy_pfn & pfn;
844 		page = page + (combined_pfn - pfn);
845 		pfn = combined_pfn;
846 		order++;
847 	}
848 
849 done_merging:
850 	set_buddy_order(page, order);
851 
852 	if (fpi_flags & FPI_TO_TAIL)
853 		to_tail = true;
854 	else if (is_shuffle_order(order))
855 		to_tail = shuffle_pick_tail();
856 	else
857 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
858 
859 	if (to_tail)
860 		add_to_free_list_tail(page, zone, order, migratetype);
861 	else
862 		add_to_free_list(page, zone, order, migratetype);
863 
864 	/* Notify page reporting subsystem of freed page */
865 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
866 		page_reporting_notify_free(order);
867 }
868 
869 /**
870  * split_free_page() -- split a free page at split_pfn_offset
871  * @free_page:		the original free page
872  * @order:		the order of the page
873  * @split_pfn_offset:	split offset within the page
874  *
875  * Return -ENOENT if the free page is changed, otherwise 0
876  *
877  * It is used when the free page crosses two pageblocks with different migratetypes
878  * at split_pfn_offset within the page. The split free page will be put into
879  * separate migratetype lists afterwards. Otherwise, the function achieves
880  * nothing.
881  */
882 int split_free_page(struct page *free_page,
883 			unsigned int order, unsigned long split_pfn_offset)
884 {
885 	struct zone *zone = page_zone(free_page);
886 	unsigned long free_page_pfn = page_to_pfn(free_page);
887 	unsigned long pfn;
888 	unsigned long flags;
889 	int free_page_order;
890 	int mt;
891 	int ret = 0;
892 
893 	if (split_pfn_offset == 0)
894 		return ret;
895 
896 	spin_lock_irqsave(&zone->lock, flags);
897 
898 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
899 		ret = -ENOENT;
900 		goto out;
901 	}
902 
903 	mt = get_pageblock_migratetype(free_page);
904 	if (likely(!is_migrate_isolate(mt)))
905 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
906 
907 	del_page_from_free_list(free_page, zone, order);
908 	for (pfn = free_page_pfn;
909 	     pfn < free_page_pfn + (1UL << order);) {
910 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
911 
912 		free_page_order = min_t(unsigned int,
913 					pfn ? __ffs(pfn) : order,
914 					__fls(split_pfn_offset));
915 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
916 				mt, FPI_NONE);
917 		pfn += 1UL << free_page_order;
918 		split_pfn_offset -= (1UL << free_page_order);
919 		/* we have done the first part, now switch to second part */
920 		if (split_pfn_offset == 0)
921 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
922 	}
923 out:
924 	spin_unlock_irqrestore(&zone->lock, flags);
925 	return ret;
926 }
927 /*
928  * A bad page could be due to a number of fields. Instead of multiple branches,
929  * try and check multiple fields with one check. The caller must do a detailed
930  * check if necessary.
931  */
932 static inline bool page_expected_state(struct page *page,
933 					unsigned long check_flags)
934 {
935 	if (unlikely(atomic_read(&page->_mapcount) != -1))
936 		return false;
937 
938 	if (unlikely((unsigned long)page->mapping |
939 			page_ref_count(page) |
940 #ifdef CONFIG_MEMCG
941 			page->memcg_data |
942 #endif
943 			(page->flags & check_flags)))
944 		return false;
945 
946 	return true;
947 }
948 
949 static const char *page_bad_reason(struct page *page, unsigned long flags)
950 {
951 	const char *bad_reason = NULL;
952 
953 	if (unlikely(atomic_read(&page->_mapcount) != -1))
954 		bad_reason = "nonzero mapcount";
955 	if (unlikely(page->mapping != NULL))
956 		bad_reason = "non-NULL mapping";
957 	if (unlikely(page_ref_count(page) != 0))
958 		bad_reason = "nonzero _refcount";
959 	if (unlikely(page->flags & flags)) {
960 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
961 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
962 		else
963 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
964 	}
965 #ifdef CONFIG_MEMCG
966 	if (unlikely(page->memcg_data))
967 		bad_reason = "page still charged to cgroup";
968 #endif
969 	return bad_reason;
970 }
971 
972 static void free_page_is_bad_report(struct page *page)
973 {
974 	bad_page(page,
975 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
976 }
977 
978 static inline bool free_page_is_bad(struct page *page)
979 {
980 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
981 		return false;
982 
983 	/* Something has gone sideways, find it */
984 	free_page_is_bad_report(page);
985 	return true;
986 }
987 
988 static inline bool is_check_pages_enabled(void)
989 {
990 	return static_branch_unlikely(&check_pages_enabled);
991 }
992 
993 static int free_tail_page_prepare(struct page *head_page, struct page *page)
994 {
995 	struct folio *folio = (struct folio *)head_page;
996 	int ret = 1;
997 
998 	/*
999 	 * We rely page->lru.next never has bit 0 set, unless the page
1000 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1001 	 */
1002 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1003 
1004 	if (!is_check_pages_enabled()) {
1005 		ret = 0;
1006 		goto out;
1007 	}
1008 	switch (page - head_page) {
1009 	case 1:
1010 		/* the first tail page: these may be in place of ->mapping */
1011 		if (unlikely(folio_entire_mapcount(folio))) {
1012 			bad_page(page, "nonzero entire_mapcount");
1013 			goto out;
1014 		}
1015 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1016 			bad_page(page, "nonzero nr_pages_mapped");
1017 			goto out;
1018 		}
1019 		if (unlikely(atomic_read(&folio->_pincount))) {
1020 			bad_page(page, "nonzero pincount");
1021 			goto out;
1022 		}
1023 		break;
1024 	case 2:
1025 		/*
1026 		 * the second tail page: ->mapping is
1027 		 * deferred_list.next -- ignore value.
1028 		 */
1029 		break;
1030 	default:
1031 		if (page->mapping != TAIL_MAPPING) {
1032 			bad_page(page, "corrupted mapping in tail page");
1033 			goto out;
1034 		}
1035 		break;
1036 	}
1037 	if (unlikely(!PageTail(page))) {
1038 		bad_page(page, "PageTail not set");
1039 		goto out;
1040 	}
1041 	if (unlikely(compound_head(page) != head_page)) {
1042 		bad_page(page, "compound_head not consistent");
1043 		goto out;
1044 	}
1045 	ret = 0;
1046 out:
1047 	page->mapping = NULL;
1048 	clear_compound_head(page);
1049 	return ret;
1050 }
1051 
1052 /*
1053  * Skip KASAN memory poisoning when either:
1054  *
1055  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1056  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1057  *    using page tags instead (see below).
1058  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1059  *    that error detection is disabled for accesses via the page address.
1060  *
1061  * Pages will have match-all tags in the following circumstances:
1062  *
1063  * 1. Pages are being initialized for the first time, including during deferred
1064  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1065  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1066  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1067  * 3. The allocation was excluded from being checked due to sampling,
1068  *    see the call to kasan_unpoison_pages.
1069  *
1070  * Poisoning pages during deferred memory init will greatly lengthen the
1071  * process and cause problem in large memory systems as the deferred pages
1072  * initialization is done with interrupt disabled.
1073  *
1074  * Assuming that there will be no reference to those newly initialized
1075  * pages before they are ever allocated, this should have no effect on
1076  * KASAN memory tracking as the poison will be properly inserted at page
1077  * allocation time. The only corner case is when pages are allocated by
1078  * on-demand allocation and then freed again before the deferred pages
1079  * initialization is done, but this is not likely to happen.
1080  */
1081 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1082 {
1083 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1084 		return deferred_pages_enabled();
1085 
1086 	return page_kasan_tag(page) == 0xff;
1087 }
1088 
1089 static void kernel_init_pages(struct page *page, int numpages)
1090 {
1091 	int i;
1092 
1093 	/* s390's use of memset() could override KASAN redzones. */
1094 	kasan_disable_current();
1095 	for (i = 0; i < numpages; i++)
1096 		clear_highpage_kasan_tagged(page + i);
1097 	kasan_enable_current();
1098 }
1099 
1100 static __always_inline bool free_pages_prepare(struct page *page,
1101 			unsigned int order, fpi_t fpi_flags)
1102 {
1103 	int bad = 0;
1104 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1105 	bool init = want_init_on_free();
1106 
1107 	VM_BUG_ON_PAGE(PageTail(page), page);
1108 
1109 	trace_mm_page_free(page, order);
1110 	kmsan_free_page(page, order);
1111 
1112 	if (unlikely(PageHWPoison(page)) && !order) {
1113 		/*
1114 		 * Do not let hwpoison pages hit pcplists/buddy
1115 		 * Untie memcg state and reset page's owner
1116 		 */
1117 		if (memcg_kmem_online() && PageMemcgKmem(page))
1118 			__memcg_kmem_uncharge_page(page, order);
1119 		reset_page_owner(page, order);
1120 		page_table_check_free(page, order);
1121 		return false;
1122 	}
1123 
1124 	/*
1125 	 * Check tail pages before head page information is cleared to
1126 	 * avoid checking PageCompound for order-0 pages.
1127 	 */
1128 	if (unlikely(order)) {
1129 		bool compound = PageCompound(page);
1130 		int i;
1131 
1132 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1133 
1134 		if (compound)
1135 			ClearPageHasHWPoisoned(page);
1136 		for (i = 1; i < (1 << order); i++) {
1137 			if (compound)
1138 				bad += free_tail_page_prepare(page, page + i);
1139 			if (is_check_pages_enabled()) {
1140 				if (free_page_is_bad(page + i)) {
1141 					bad++;
1142 					continue;
1143 				}
1144 			}
1145 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1146 		}
1147 	}
1148 	if (PageMappingFlags(page))
1149 		page->mapping = NULL;
1150 	if (memcg_kmem_online() && PageMemcgKmem(page))
1151 		__memcg_kmem_uncharge_page(page, order);
1152 	if (is_check_pages_enabled()) {
1153 		if (free_page_is_bad(page))
1154 			bad++;
1155 		if (bad)
1156 			return false;
1157 	}
1158 
1159 	page_cpupid_reset_last(page);
1160 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1161 	reset_page_owner(page, order);
1162 	page_table_check_free(page, order);
1163 
1164 	if (!PageHighMem(page)) {
1165 		debug_check_no_locks_freed(page_address(page),
1166 					   PAGE_SIZE << order);
1167 		debug_check_no_obj_freed(page_address(page),
1168 					   PAGE_SIZE << order);
1169 	}
1170 
1171 	kernel_poison_pages(page, 1 << order);
1172 
1173 	/*
1174 	 * As memory initialization might be integrated into KASAN,
1175 	 * KASAN poisoning and memory initialization code must be
1176 	 * kept together to avoid discrepancies in behavior.
1177 	 *
1178 	 * With hardware tag-based KASAN, memory tags must be set before the
1179 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1180 	 */
1181 	if (!skip_kasan_poison) {
1182 		kasan_poison_pages(page, order, init);
1183 
1184 		/* Memory is already initialized if KASAN did it internally. */
1185 		if (kasan_has_integrated_init())
1186 			init = false;
1187 	}
1188 	if (init)
1189 		kernel_init_pages(page, 1 << order);
1190 
1191 	/*
1192 	 * arch_free_page() can make the page's contents inaccessible.  s390
1193 	 * does this.  So nothing which can access the page's contents should
1194 	 * happen after this.
1195 	 */
1196 	arch_free_page(page, order);
1197 
1198 	debug_pagealloc_unmap_pages(page, 1 << order);
1199 
1200 	return true;
1201 }
1202 
1203 /*
1204  * Frees a number of pages from the PCP lists
1205  * Assumes all pages on list are in same zone.
1206  * count is the number of pages to free.
1207  */
1208 static void free_pcppages_bulk(struct zone *zone, int count,
1209 					struct per_cpu_pages *pcp,
1210 					int pindex)
1211 {
1212 	unsigned long flags;
1213 	int min_pindex = 0;
1214 	int max_pindex = NR_PCP_LISTS - 1;
1215 	unsigned int order;
1216 	bool isolated_pageblocks;
1217 	struct page *page;
1218 
1219 	/*
1220 	 * Ensure proper count is passed which otherwise would stuck in the
1221 	 * below while (list_empty(list)) loop.
1222 	 */
1223 	count = min(pcp->count, count);
1224 
1225 	/* Ensure requested pindex is drained first. */
1226 	pindex = pindex - 1;
1227 
1228 	spin_lock_irqsave(&zone->lock, flags);
1229 	isolated_pageblocks = has_isolate_pageblock(zone);
1230 
1231 	while (count > 0) {
1232 		struct list_head *list;
1233 		int nr_pages;
1234 
1235 		/* Remove pages from lists in a round-robin fashion. */
1236 		do {
1237 			if (++pindex > max_pindex)
1238 				pindex = min_pindex;
1239 			list = &pcp->lists[pindex];
1240 			if (!list_empty(list))
1241 				break;
1242 
1243 			if (pindex == max_pindex)
1244 				max_pindex--;
1245 			if (pindex == min_pindex)
1246 				min_pindex++;
1247 		} while (1);
1248 
1249 		order = pindex_to_order(pindex);
1250 		nr_pages = 1 << order;
1251 		do {
1252 			int mt;
1253 
1254 			page = list_last_entry(list, struct page, pcp_list);
1255 			mt = get_pcppage_migratetype(page);
1256 
1257 			/* must delete to avoid corrupting pcp list */
1258 			list_del(&page->pcp_list);
1259 			count -= nr_pages;
1260 			pcp->count -= nr_pages;
1261 
1262 			/* MIGRATE_ISOLATE page should not go to pcplists */
1263 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1264 			/* Pageblock could have been isolated meanwhile */
1265 			if (unlikely(isolated_pageblocks))
1266 				mt = get_pageblock_migratetype(page);
1267 
1268 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1269 			trace_mm_page_pcpu_drain(page, order, mt);
1270 		} while (count > 0 && !list_empty(list));
1271 	}
1272 
1273 	spin_unlock_irqrestore(&zone->lock, flags);
1274 }
1275 
1276 static void free_one_page(struct zone *zone,
1277 				struct page *page, unsigned long pfn,
1278 				unsigned int order,
1279 				int migratetype, fpi_t fpi_flags)
1280 {
1281 	unsigned long flags;
1282 
1283 	spin_lock_irqsave(&zone->lock, flags);
1284 	if (unlikely(has_isolate_pageblock(zone) ||
1285 		is_migrate_isolate(migratetype))) {
1286 		migratetype = get_pfnblock_migratetype(page, pfn);
1287 	}
1288 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1289 	spin_unlock_irqrestore(&zone->lock, flags);
1290 }
1291 
1292 static void __free_pages_ok(struct page *page, unsigned int order,
1293 			    fpi_t fpi_flags)
1294 {
1295 	unsigned long flags;
1296 	int migratetype;
1297 	unsigned long pfn = page_to_pfn(page);
1298 	struct zone *zone = page_zone(page);
1299 
1300 	if (!free_pages_prepare(page, order, fpi_flags))
1301 		return;
1302 
1303 	/*
1304 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1305 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1306 	 * This will reduce the lock holding time.
1307 	 */
1308 	migratetype = get_pfnblock_migratetype(page, pfn);
1309 
1310 	spin_lock_irqsave(&zone->lock, flags);
1311 	if (unlikely(has_isolate_pageblock(zone) ||
1312 		is_migrate_isolate(migratetype))) {
1313 		migratetype = get_pfnblock_migratetype(page, pfn);
1314 	}
1315 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1316 	spin_unlock_irqrestore(&zone->lock, flags);
1317 
1318 	__count_vm_events(PGFREE, 1 << order);
1319 }
1320 
1321 void __free_pages_core(struct page *page, unsigned int order)
1322 {
1323 	unsigned int nr_pages = 1 << order;
1324 	struct page *p = page;
1325 	unsigned int loop;
1326 
1327 	/*
1328 	 * When initializing the memmap, __init_single_page() sets the refcount
1329 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1330 	 * refcount of all involved pages to 0.
1331 	 */
1332 	prefetchw(p);
1333 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1334 		prefetchw(p + 1);
1335 		__ClearPageReserved(p);
1336 		set_page_count(p, 0);
1337 	}
1338 	__ClearPageReserved(p);
1339 	set_page_count(p, 0);
1340 
1341 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1342 
1343 	if (page_contains_unaccepted(page, order)) {
1344 		if (order == MAX_ORDER && __free_unaccepted(page))
1345 			return;
1346 
1347 		accept_page(page, order);
1348 	}
1349 
1350 	/*
1351 	 * Bypass PCP and place fresh pages right to the tail, primarily
1352 	 * relevant for memory onlining.
1353 	 */
1354 	__free_pages_ok(page, order, FPI_TO_TAIL);
1355 }
1356 
1357 /*
1358  * Check that the whole (or subset of) a pageblock given by the interval of
1359  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1360  * with the migration of free compaction scanner.
1361  *
1362  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1363  *
1364  * It's possible on some configurations to have a setup like node0 node1 node0
1365  * i.e. it's possible that all pages within a zones range of pages do not
1366  * belong to a single zone. We assume that a border between node0 and node1
1367  * can occur within a single pageblock, but not a node0 node1 node0
1368  * interleaving within a single pageblock. It is therefore sufficient to check
1369  * the first and last page of a pageblock and avoid checking each individual
1370  * page in a pageblock.
1371  *
1372  * Note: the function may return non-NULL struct page even for a page block
1373  * which contains a memory hole (i.e. there is no physical memory for a subset
1374  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1375  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1376  * even though the start pfn is online and valid. This should be safe most of
1377  * the time because struct pages are still initialized via init_unavailable_range()
1378  * and pfn walkers shouldn't touch any physical memory range for which they do
1379  * not recognize any specific metadata in struct pages.
1380  */
1381 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1382 				     unsigned long end_pfn, struct zone *zone)
1383 {
1384 	struct page *start_page;
1385 	struct page *end_page;
1386 
1387 	/* end_pfn is one past the range we are checking */
1388 	end_pfn--;
1389 
1390 	if (!pfn_valid(end_pfn))
1391 		return NULL;
1392 
1393 	start_page = pfn_to_online_page(start_pfn);
1394 	if (!start_page)
1395 		return NULL;
1396 
1397 	if (page_zone(start_page) != zone)
1398 		return NULL;
1399 
1400 	end_page = pfn_to_page(end_pfn);
1401 
1402 	/* This gives a shorter code than deriving page_zone(end_page) */
1403 	if (page_zone_id(start_page) != page_zone_id(end_page))
1404 		return NULL;
1405 
1406 	return start_page;
1407 }
1408 
1409 /*
1410  * The order of subdivision here is critical for the IO subsystem.
1411  * Please do not alter this order without good reasons and regression
1412  * testing. Specifically, as large blocks of memory are subdivided,
1413  * the order in which smaller blocks are delivered depends on the order
1414  * they're subdivided in this function. This is the primary factor
1415  * influencing the order in which pages are delivered to the IO
1416  * subsystem according to empirical testing, and this is also justified
1417  * by considering the behavior of a buddy system containing a single
1418  * large block of memory acted on by a series of small allocations.
1419  * This behavior is a critical factor in sglist merging's success.
1420  *
1421  * -- nyc
1422  */
1423 static inline void expand(struct zone *zone, struct page *page,
1424 	int low, int high, int migratetype)
1425 {
1426 	unsigned long size = 1 << high;
1427 
1428 	while (high > low) {
1429 		high--;
1430 		size >>= 1;
1431 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1432 
1433 		/*
1434 		 * Mark as guard pages (or page), that will allow to
1435 		 * merge back to allocator when buddy will be freed.
1436 		 * Corresponding page table entries will not be touched,
1437 		 * pages will stay not present in virtual address space
1438 		 */
1439 		if (set_page_guard(zone, &page[size], high, migratetype))
1440 			continue;
1441 
1442 		add_to_free_list(&page[size], zone, high, migratetype);
1443 		set_buddy_order(&page[size], high);
1444 	}
1445 }
1446 
1447 static void check_new_page_bad(struct page *page)
1448 {
1449 	if (unlikely(page->flags & __PG_HWPOISON)) {
1450 		/* Don't complain about hwpoisoned pages */
1451 		page_mapcount_reset(page); /* remove PageBuddy */
1452 		return;
1453 	}
1454 
1455 	bad_page(page,
1456 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1457 }
1458 
1459 /*
1460  * This page is about to be returned from the page allocator
1461  */
1462 static int check_new_page(struct page *page)
1463 {
1464 	if (likely(page_expected_state(page,
1465 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1466 		return 0;
1467 
1468 	check_new_page_bad(page);
1469 	return 1;
1470 }
1471 
1472 static inline bool check_new_pages(struct page *page, unsigned int order)
1473 {
1474 	if (is_check_pages_enabled()) {
1475 		for (int i = 0; i < (1 << order); i++) {
1476 			struct page *p = page + i;
1477 
1478 			if (check_new_page(p))
1479 				return true;
1480 		}
1481 	}
1482 
1483 	return false;
1484 }
1485 
1486 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1487 {
1488 	/* Don't skip if a software KASAN mode is enabled. */
1489 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1490 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1491 		return false;
1492 
1493 	/* Skip, if hardware tag-based KASAN is not enabled. */
1494 	if (!kasan_hw_tags_enabled())
1495 		return true;
1496 
1497 	/*
1498 	 * With hardware tag-based KASAN enabled, skip if this has been
1499 	 * requested via __GFP_SKIP_KASAN.
1500 	 */
1501 	return flags & __GFP_SKIP_KASAN;
1502 }
1503 
1504 static inline bool should_skip_init(gfp_t flags)
1505 {
1506 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1507 	if (!kasan_hw_tags_enabled())
1508 		return false;
1509 
1510 	/* For hardware tag-based KASAN, skip if requested. */
1511 	return (flags & __GFP_SKIP_ZERO);
1512 }
1513 
1514 inline void post_alloc_hook(struct page *page, unsigned int order,
1515 				gfp_t gfp_flags)
1516 {
1517 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1518 			!should_skip_init(gfp_flags);
1519 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1520 	int i;
1521 
1522 	set_page_private(page, 0);
1523 	set_page_refcounted(page);
1524 
1525 	arch_alloc_page(page, order);
1526 	debug_pagealloc_map_pages(page, 1 << order);
1527 
1528 	/*
1529 	 * Page unpoisoning must happen before memory initialization.
1530 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1531 	 * allocations and the page unpoisoning code will complain.
1532 	 */
1533 	kernel_unpoison_pages(page, 1 << order);
1534 
1535 	/*
1536 	 * As memory initialization might be integrated into KASAN,
1537 	 * KASAN unpoisoning and memory initializion code must be
1538 	 * kept together to avoid discrepancies in behavior.
1539 	 */
1540 
1541 	/*
1542 	 * If memory tags should be zeroed
1543 	 * (which happens only when memory should be initialized as well).
1544 	 */
1545 	if (zero_tags) {
1546 		/* Initialize both memory and memory tags. */
1547 		for (i = 0; i != 1 << order; ++i)
1548 			tag_clear_highpage(page + i);
1549 
1550 		/* Take note that memory was initialized by the loop above. */
1551 		init = false;
1552 	}
1553 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1554 	    kasan_unpoison_pages(page, order, init)) {
1555 		/* Take note that memory was initialized by KASAN. */
1556 		if (kasan_has_integrated_init())
1557 			init = false;
1558 	} else {
1559 		/*
1560 		 * If memory tags have not been set by KASAN, reset the page
1561 		 * tags to ensure page_address() dereferencing does not fault.
1562 		 */
1563 		for (i = 0; i != 1 << order; ++i)
1564 			page_kasan_tag_reset(page + i);
1565 	}
1566 	/* If memory is still not initialized, initialize it now. */
1567 	if (init)
1568 		kernel_init_pages(page, 1 << order);
1569 
1570 	set_page_owner(page, order, gfp_flags);
1571 	page_table_check_alloc(page, order);
1572 }
1573 
1574 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1575 							unsigned int alloc_flags)
1576 {
1577 	post_alloc_hook(page, order, gfp_flags);
1578 
1579 	if (order && (gfp_flags & __GFP_COMP))
1580 		prep_compound_page(page, order);
1581 
1582 	/*
1583 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1584 	 * allocate the page. The expectation is that the caller is taking
1585 	 * steps that will free more memory. The caller should avoid the page
1586 	 * being used for !PFMEMALLOC purposes.
1587 	 */
1588 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1589 		set_page_pfmemalloc(page);
1590 	else
1591 		clear_page_pfmemalloc(page);
1592 }
1593 
1594 /*
1595  * Go through the free lists for the given migratetype and remove
1596  * the smallest available page from the freelists
1597  */
1598 static __always_inline
1599 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1600 						int migratetype)
1601 {
1602 	unsigned int current_order;
1603 	struct free_area *area;
1604 	struct page *page;
1605 
1606 	/* Find a page of the appropriate size in the preferred list */
1607 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1608 		area = &(zone->free_area[current_order]);
1609 		page = get_page_from_free_area(area, migratetype);
1610 		if (!page)
1611 			continue;
1612 		del_page_from_free_list(page, zone, current_order);
1613 		expand(zone, page, order, current_order, migratetype);
1614 		set_pcppage_migratetype(page, migratetype);
1615 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1616 				pcp_allowed_order(order) &&
1617 				migratetype < MIGRATE_PCPTYPES);
1618 		return page;
1619 	}
1620 
1621 	return NULL;
1622 }
1623 
1624 
1625 /*
1626  * This array describes the order lists are fallen back to when
1627  * the free lists for the desirable migrate type are depleted
1628  *
1629  * The other migratetypes do not have fallbacks.
1630  */
1631 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1632 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1633 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1634 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1635 };
1636 
1637 #ifdef CONFIG_CMA
1638 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1639 					unsigned int order)
1640 {
1641 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1642 }
1643 #else
1644 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1645 					unsigned int order) { return NULL; }
1646 #endif
1647 
1648 /*
1649  * Move the free pages in a range to the freelist tail of the requested type.
1650  * Note that start_page and end_pages are not aligned on a pageblock
1651  * boundary. If alignment is required, use move_freepages_block()
1652  */
1653 static int move_freepages(struct zone *zone,
1654 			  unsigned long start_pfn, unsigned long end_pfn,
1655 			  int migratetype, int *num_movable)
1656 {
1657 	struct page *page;
1658 	unsigned long pfn;
1659 	unsigned int order;
1660 	int pages_moved = 0;
1661 
1662 	for (pfn = start_pfn; pfn <= end_pfn;) {
1663 		page = pfn_to_page(pfn);
1664 		if (!PageBuddy(page)) {
1665 			/*
1666 			 * We assume that pages that could be isolated for
1667 			 * migration are movable. But we don't actually try
1668 			 * isolating, as that would be expensive.
1669 			 */
1670 			if (num_movable &&
1671 					(PageLRU(page) || __PageMovable(page)))
1672 				(*num_movable)++;
1673 			pfn++;
1674 			continue;
1675 		}
1676 
1677 		/* Make sure we are not inadvertently changing nodes */
1678 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1679 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1680 
1681 		order = buddy_order(page);
1682 		move_to_free_list(page, zone, order, migratetype);
1683 		pfn += 1 << order;
1684 		pages_moved += 1 << order;
1685 	}
1686 
1687 	return pages_moved;
1688 }
1689 
1690 int move_freepages_block(struct zone *zone, struct page *page,
1691 				int migratetype, int *num_movable)
1692 {
1693 	unsigned long start_pfn, end_pfn, pfn;
1694 
1695 	if (num_movable)
1696 		*num_movable = 0;
1697 
1698 	pfn = page_to_pfn(page);
1699 	start_pfn = pageblock_start_pfn(pfn);
1700 	end_pfn = pageblock_end_pfn(pfn) - 1;
1701 
1702 	/* Do not cross zone boundaries */
1703 	if (!zone_spans_pfn(zone, start_pfn))
1704 		start_pfn = pfn;
1705 	if (!zone_spans_pfn(zone, end_pfn))
1706 		return 0;
1707 
1708 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1709 								num_movable);
1710 }
1711 
1712 static void change_pageblock_range(struct page *pageblock_page,
1713 					int start_order, int migratetype)
1714 {
1715 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1716 
1717 	while (nr_pageblocks--) {
1718 		set_pageblock_migratetype(pageblock_page, migratetype);
1719 		pageblock_page += pageblock_nr_pages;
1720 	}
1721 }
1722 
1723 /*
1724  * When we are falling back to another migratetype during allocation, try to
1725  * steal extra free pages from the same pageblocks to satisfy further
1726  * allocations, instead of polluting multiple pageblocks.
1727  *
1728  * If we are stealing a relatively large buddy page, it is likely there will
1729  * be more free pages in the pageblock, so try to steal them all. For
1730  * reclaimable and unmovable allocations, we steal regardless of page size,
1731  * as fragmentation caused by those allocations polluting movable pageblocks
1732  * is worse than movable allocations stealing from unmovable and reclaimable
1733  * pageblocks.
1734  */
1735 static bool can_steal_fallback(unsigned int order, int start_mt)
1736 {
1737 	/*
1738 	 * Leaving this order check is intended, although there is
1739 	 * relaxed order check in next check. The reason is that
1740 	 * we can actually steal whole pageblock if this condition met,
1741 	 * but, below check doesn't guarantee it and that is just heuristic
1742 	 * so could be changed anytime.
1743 	 */
1744 	if (order >= pageblock_order)
1745 		return true;
1746 
1747 	if (order >= pageblock_order / 2 ||
1748 		start_mt == MIGRATE_RECLAIMABLE ||
1749 		start_mt == MIGRATE_UNMOVABLE ||
1750 		page_group_by_mobility_disabled)
1751 		return true;
1752 
1753 	return false;
1754 }
1755 
1756 static inline bool boost_watermark(struct zone *zone)
1757 {
1758 	unsigned long max_boost;
1759 
1760 	if (!watermark_boost_factor)
1761 		return false;
1762 	/*
1763 	 * Don't bother in zones that are unlikely to produce results.
1764 	 * On small machines, including kdump capture kernels running
1765 	 * in a small area, boosting the watermark can cause an out of
1766 	 * memory situation immediately.
1767 	 */
1768 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1769 		return false;
1770 
1771 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1772 			watermark_boost_factor, 10000);
1773 
1774 	/*
1775 	 * high watermark may be uninitialised if fragmentation occurs
1776 	 * very early in boot so do not boost. We do not fall
1777 	 * through and boost by pageblock_nr_pages as failing
1778 	 * allocations that early means that reclaim is not going
1779 	 * to help and it may even be impossible to reclaim the
1780 	 * boosted watermark resulting in a hang.
1781 	 */
1782 	if (!max_boost)
1783 		return false;
1784 
1785 	max_boost = max(pageblock_nr_pages, max_boost);
1786 
1787 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1788 		max_boost);
1789 
1790 	return true;
1791 }
1792 
1793 /*
1794  * This function implements actual steal behaviour. If order is large enough,
1795  * we can steal whole pageblock. If not, we first move freepages in this
1796  * pageblock to our migratetype and determine how many already-allocated pages
1797  * are there in the pageblock with a compatible migratetype. If at least half
1798  * of pages are free or compatible, we can change migratetype of the pageblock
1799  * itself, so pages freed in the future will be put on the correct free list.
1800  */
1801 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1802 		unsigned int alloc_flags, int start_type, bool whole_block)
1803 {
1804 	unsigned int current_order = buddy_order(page);
1805 	int free_pages, movable_pages, alike_pages;
1806 	int old_block_type;
1807 
1808 	old_block_type = get_pageblock_migratetype(page);
1809 
1810 	/*
1811 	 * This can happen due to races and we want to prevent broken
1812 	 * highatomic accounting.
1813 	 */
1814 	if (is_migrate_highatomic(old_block_type))
1815 		goto single_page;
1816 
1817 	/* Take ownership for orders >= pageblock_order */
1818 	if (current_order >= pageblock_order) {
1819 		change_pageblock_range(page, current_order, start_type);
1820 		goto single_page;
1821 	}
1822 
1823 	/*
1824 	 * Boost watermarks to increase reclaim pressure to reduce the
1825 	 * likelihood of future fallbacks. Wake kswapd now as the node
1826 	 * may be balanced overall and kswapd will not wake naturally.
1827 	 */
1828 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1829 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1830 
1831 	/* We are not allowed to try stealing from the whole block */
1832 	if (!whole_block)
1833 		goto single_page;
1834 
1835 	free_pages = move_freepages_block(zone, page, start_type,
1836 						&movable_pages);
1837 	/*
1838 	 * Determine how many pages are compatible with our allocation.
1839 	 * For movable allocation, it's the number of movable pages which
1840 	 * we just obtained. For other types it's a bit more tricky.
1841 	 */
1842 	if (start_type == MIGRATE_MOVABLE) {
1843 		alike_pages = movable_pages;
1844 	} else {
1845 		/*
1846 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1847 		 * to MOVABLE pageblock, consider all non-movable pages as
1848 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1849 		 * vice versa, be conservative since we can't distinguish the
1850 		 * exact migratetype of non-movable pages.
1851 		 */
1852 		if (old_block_type == MIGRATE_MOVABLE)
1853 			alike_pages = pageblock_nr_pages
1854 						- (free_pages + movable_pages);
1855 		else
1856 			alike_pages = 0;
1857 	}
1858 
1859 	/* moving whole block can fail due to zone boundary conditions */
1860 	if (!free_pages)
1861 		goto single_page;
1862 
1863 	/*
1864 	 * If a sufficient number of pages in the block are either free or of
1865 	 * comparable migratability as our allocation, claim the whole block.
1866 	 */
1867 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1868 			page_group_by_mobility_disabled)
1869 		set_pageblock_migratetype(page, start_type);
1870 
1871 	return;
1872 
1873 single_page:
1874 	move_to_free_list(page, zone, current_order, start_type);
1875 }
1876 
1877 /*
1878  * Check whether there is a suitable fallback freepage with requested order.
1879  * If only_stealable is true, this function returns fallback_mt only if
1880  * we can steal other freepages all together. This would help to reduce
1881  * fragmentation due to mixed migratetype pages in one pageblock.
1882  */
1883 int find_suitable_fallback(struct free_area *area, unsigned int order,
1884 			int migratetype, bool only_stealable, bool *can_steal)
1885 {
1886 	int i;
1887 	int fallback_mt;
1888 
1889 	if (area->nr_free == 0)
1890 		return -1;
1891 
1892 	*can_steal = false;
1893 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1894 		fallback_mt = fallbacks[migratetype][i];
1895 		if (free_area_empty(area, fallback_mt))
1896 			continue;
1897 
1898 		if (can_steal_fallback(order, migratetype))
1899 			*can_steal = true;
1900 
1901 		if (!only_stealable)
1902 			return fallback_mt;
1903 
1904 		if (*can_steal)
1905 			return fallback_mt;
1906 	}
1907 
1908 	return -1;
1909 }
1910 
1911 /*
1912  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1913  * there are no empty page blocks that contain a page with a suitable order
1914  */
1915 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1916 				unsigned int alloc_order)
1917 {
1918 	int mt;
1919 	unsigned long max_managed, flags;
1920 
1921 	/*
1922 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1923 	 * Check is race-prone but harmless.
1924 	 */
1925 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1926 	if (zone->nr_reserved_highatomic >= max_managed)
1927 		return;
1928 
1929 	spin_lock_irqsave(&zone->lock, flags);
1930 
1931 	/* Recheck the nr_reserved_highatomic limit under the lock */
1932 	if (zone->nr_reserved_highatomic >= max_managed)
1933 		goto out_unlock;
1934 
1935 	/* Yoink! */
1936 	mt = get_pageblock_migratetype(page);
1937 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1938 	if (migratetype_is_mergeable(mt)) {
1939 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1940 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1941 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1942 	}
1943 
1944 out_unlock:
1945 	spin_unlock_irqrestore(&zone->lock, flags);
1946 }
1947 
1948 /*
1949  * Used when an allocation is about to fail under memory pressure. This
1950  * potentially hurts the reliability of high-order allocations when under
1951  * intense memory pressure but failed atomic allocations should be easier
1952  * to recover from than an OOM.
1953  *
1954  * If @force is true, try to unreserve a pageblock even though highatomic
1955  * pageblock is exhausted.
1956  */
1957 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1958 						bool force)
1959 {
1960 	struct zonelist *zonelist = ac->zonelist;
1961 	unsigned long flags;
1962 	struct zoneref *z;
1963 	struct zone *zone;
1964 	struct page *page;
1965 	int order;
1966 	bool ret;
1967 
1968 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1969 								ac->nodemask) {
1970 		/*
1971 		 * Preserve at least one pageblock unless memory pressure
1972 		 * is really high.
1973 		 */
1974 		if (!force && zone->nr_reserved_highatomic <=
1975 					pageblock_nr_pages)
1976 			continue;
1977 
1978 		spin_lock_irqsave(&zone->lock, flags);
1979 		for (order = 0; order <= MAX_ORDER; order++) {
1980 			struct free_area *area = &(zone->free_area[order]);
1981 
1982 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1983 			if (!page)
1984 				continue;
1985 
1986 			/*
1987 			 * In page freeing path, migratetype change is racy so
1988 			 * we can counter several free pages in a pageblock
1989 			 * in this loop although we changed the pageblock type
1990 			 * from highatomic to ac->migratetype. So we should
1991 			 * adjust the count once.
1992 			 */
1993 			if (is_migrate_highatomic_page(page)) {
1994 				/*
1995 				 * It should never happen but changes to
1996 				 * locking could inadvertently allow a per-cpu
1997 				 * drain to add pages to MIGRATE_HIGHATOMIC
1998 				 * while unreserving so be safe and watch for
1999 				 * underflows.
2000 				 */
2001 				zone->nr_reserved_highatomic -= min(
2002 						pageblock_nr_pages,
2003 						zone->nr_reserved_highatomic);
2004 			}
2005 
2006 			/*
2007 			 * Convert to ac->migratetype and avoid the normal
2008 			 * pageblock stealing heuristics. Minimally, the caller
2009 			 * is doing the work and needs the pages. More
2010 			 * importantly, if the block was always converted to
2011 			 * MIGRATE_UNMOVABLE or another type then the number
2012 			 * of pageblocks that cannot be completely freed
2013 			 * may increase.
2014 			 */
2015 			set_pageblock_migratetype(page, ac->migratetype);
2016 			ret = move_freepages_block(zone, page, ac->migratetype,
2017 									NULL);
2018 			if (ret) {
2019 				spin_unlock_irqrestore(&zone->lock, flags);
2020 				return ret;
2021 			}
2022 		}
2023 		spin_unlock_irqrestore(&zone->lock, flags);
2024 	}
2025 
2026 	return false;
2027 }
2028 
2029 /*
2030  * Try finding a free buddy page on the fallback list and put it on the free
2031  * list of requested migratetype, possibly along with other pages from the same
2032  * block, depending on fragmentation avoidance heuristics. Returns true if
2033  * fallback was found so that __rmqueue_smallest() can grab it.
2034  *
2035  * The use of signed ints for order and current_order is a deliberate
2036  * deviation from the rest of this file, to make the for loop
2037  * condition simpler.
2038  */
2039 static __always_inline bool
2040 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2041 						unsigned int alloc_flags)
2042 {
2043 	struct free_area *area;
2044 	int current_order;
2045 	int min_order = order;
2046 	struct page *page;
2047 	int fallback_mt;
2048 	bool can_steal;
2049 
2050 	/*
2051 	 * Do not steal pages from freelists belonging to other pageblocks
2052 	 * i.e. orders < pageblock_order. If there are no local zones free,
2053 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2054 	 */
2055 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2056 		min_order = pageblock_order;
2057 
2058 	/*
2059 	 * Find the largest available free page in the other list. This roughly
2060 	 * approximates finding the pageblock with the most free pages, which
2061 	 * would be too costly to do exactly.
2062 	 */
2063 	for (current_order = MAX_ORDER; current_order >= min_order;
2064 				--current_order) {
2065 		area = &(zone->free_area[current_order]);
2066 		fallback_mt = find_suitable_fallback(area, current_order,
2067 				start_migratetype, false, &can_steal);
2068 		if (fallback_mt == -1)
2069 			continue;
2070 
2071 		/*
2072 		 * We cannot steal all free pages from the pageblock and the
2073 		 * requested migratetype is movable. In that case it's better to
2074 		 * steal and split the smallest available page instead of the
2075 		 * largest available page, because even if the next movable
2076 		 * allocation falls back into a different pageblock than this
2077 		 * one, it won't cause permanent fragmentation.
2078 		 */
2079 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2080 					&& current_order > order)
2081 			goto find_smallest;
2082 
2083 		goto do_steal;
2084 	}
2085 
2086 	return false;
2087 
2088 find_smallest:
2089 	for (current_order = order; current_order <= MAX_ORDER;
2090 							current_order++) {
2091 		area = &(zone->free_area[current_order]);
2092 		fallback_mt = find_suitable_fallback(area, current_order,
2093 				start_migratetype, false, &can_steal);
2094 		if (fallback_mt != -1)
2095 			break;
2096 	}
2097 
2098 	/*
2099 	 * This should not happen - we already found a suitable fallback
2100 	 * when looking for the largest page.
2101 	 */
2102 	VM_BUG_ON(current_order > MAX_ORDER);
2103 
2104 do_steal:
2105 	page = get_page_from_free_area(area, fallback_mt);
2106 
2107 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2108 								can_steal);
2109 
2110 	trace_mm_page_alloc_extfrag(page, order, current_order,
2111 		start_migratetype, fallback_mt);
2112 
2113 	return true;
2114 
2115 }
2116 
2117 /*
2118  * Do the hard work of removing an element from the buddy allocator.
2119  * Call me with the zone->lock already held.
2120  */
2121 static __always_inline struct page *
2122 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2123 						unsigned int alloc_flags)
2124 {
2125 	struct page *page;
2126 
2127 	if (IS_ENABLED(CONFIG_CMA)) {
2128 		/*
2129 		 * Balance movable allocations between regular and CMA areas by
2130 		 * allocating from CMA when over half of the zone's free memory
2131 		 * is in the CMA area.
2132 		 */
2133 		if (alloc_flags & ALLOC_CMA &&
2134 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2135 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2136 			page = __rmqueue_cma_fallback(zone, order);
2137 			if (page)
2138 				return page;
2139 		}
2140 	}
2141 retry:
2142 	page = __rmqueue_smallest(zone, order, migratetype);
2143 	if (unlikely(!page)) {
2144 		if (alloc_flags & ALLOC_CMA)
2145 			page = __rmqueue_cma_fallback(zone, order);
2146 
2147 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2148 								alloc_flags))
2149 			goto retry;
2150 	}
2151 	return page;
2152 }
2153 
2154 /*
2155  * Obtain a specified number of elements from the buddy allocator, all under
2156  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2157  * Returns the number of new pages which were placed at *list.
2158  */
2159 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2160 			unsigned long count, struct list_head *list,
2161 			int migratetype, unsigned int alloc_flags)
2162 {
2163 	unsigned long flags;
2164 	int i;
2165 
2166 	spin_lock_irqsave(&zone->lock, flags);
2167 	for (i = 0; i < count; ++i) {
2168 		struct page *page = __rmqueue(zone, order, migratetype,
2169 								alloc_flags);
2170 		if (unlikely(page == NULL))
2171 			break;
2172 
2173 		/*
2174 		 * Split buddy pages returned by expand() are received here in
2175 		 * physical page order. The page is added to the tail of
2176 		 * caller's list. From the callers perspective, the linked list
2177 		 * is ordered by page number under some conditions. This is
2178 		 * useful for IO devices that can forward direction from the
2179 		 * head, thus also in the physical page order. This is useful
2180 		 * for IO devices that can merge IO requests if the physical
2181 		 * pages are ordered properly.
2182 		 */
2183 		list_add_tail(&page->pcp_list, list);
2184 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2185 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2186 					      -(1 << order));
2187 	}
2188 
2189 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2190 	spin_unlock_irqrestore(&zone->lock, flags);
2191 
2192 	return i;
2193 }
2194 
2195 #ifdef CONFIG_NUMA
2196 /*
2197  * Called from the vmstat counter updater to drain pagesets of this
2198  * currently executing processor on remote nodes after they have
2199  * expired.
2200  */
2201 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2202 {
2203 	int to_drain, batch;
2204 
2205 	batch = READ_ONCE(pcp->batch);
2206 	to_drain = min(pcp->count, batch);
2207 	if (to_drain > 0) {
2208 		spin_lock(&pcp->lock);
2209 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2210 		spin_unlock(&pcp->lock);
2211 	}
2212 }
2213 #endif
2214 
2215 /*
2216  * Drain pcplists of the indicated processor and zone.
2217  */
2218 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2219 {
2220 	struct per_cpu_pages *pcp;
2221 
2222 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2223 	if (pcp->count) {
2224 		spin_lock(&pcp->lock);
2225 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2226 		spin_unlock(&pcp->lock);
2227 	}
2228 }
2229 
2230 /*
2231  * Drain pcplists of all zones on the indicated processor.
2232  */
2233 static void drain_pages(unsigned int cpu)
2234 {
2235 	struct zone *zone;
2236 
2237 	for_each_populated_zone(zone) {
2238 		drain_pages_zone(cpu, zone);
2239 	}
2240 }
2241 
2242 /*
2243  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2244  */
2245 void drain_local_pages(struct zone *zone)
2246 {
2247 	int cpu = smp_processor_id();
2248 
2249 	if (zone)
2250 		drain_pages_zone(cpu, zone);
2251 	else
2252 		drain_pages(cpu);
2253 }
2254 
2255 /*
2256  * The implementation of drain_all_pages(), exposing an extra parameter to
2257  * drain on all cpus.
2258  *
2259  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2260  * not empty. The check for non-emptiness can however race with a free to
2261  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2262  * that need the guarantee that every CPU has drained can disable the
2263  * optimizing racy check.
2264  */
2265 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2266 {
2267 	int cpu;
2268 
2269 	/*
2270 	 * Allocate in the BSS so we won't require allocation in
2271 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2272 	 */
2273 	static cpumask_t cpus_with_pcps;
2274 
2275 	/*
2276 	 * Do not drain if one is already in progress unless it's specific to
2277 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2278 	 * the drain to be complete when the call returns.
2279 	 */
2280 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2281 		if (!zone)
2282 			return;
2283 		mutex_lock(&pcpu_drain_mutex);
2284 	}
2285 
2286 	/*
2287 	 * We don't care about racing with CPU hotplug event
2288 	 * as offline notification will cause the notified
2289 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2290 	 * disables preemption as part of its processing
2291 	 */
2292 	for_each_online_cpu(cpu) {
2293 		struct per_cpu_pages *pcp;
2294 		struct zone *z;
2295 		bool has_pcps = false;
2296 
2297 		if (force_all_cpus) {
2298 			/*
2299 			 * The pcp.count check is racy, some callers need a
2300 			 * guarantee that no cpu is missed.
2301 			 */
2302 			has_pcps = true;
2303 		} else if (zone) {
2304 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2305 			if (pcp->count)
2306 				has_pcps = true;
2307 		} else {
2308 			for_each_populated_zone(z) {
2309 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2310 				if (pcp->count) {
2311 					has_pcps = true;
2312 					break;
2313 				}
2314 			}
2315 		}
2316 
2317 		if (has_pcps)
2318 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2319 		else
2320 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2321 	}
2322 
2323 	for_each_cpu(cpu, &cpus_with_pcps) {
2324 		if (zone)
2325 			drain_pages_zone(cpu, zone);
2326 		else
2327 			drain_pages(cpu);
2328 	}
2329 
2330 	mutex_unlock(&pcpu_drain_mutex);
2331 }
2332 
2333 /*
2334  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2335  *
2336  * When zone parameter is non-NULL, spill just the single zone's pages.
2337  */
2338 void drain_all_pages(struct zone *zone)
2339 {
2340 	__drain_all_pages(zone, false);
2341 }
2342 
2343 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2344 							unsigned int order)
2345 {
2346 	int migratetype;
2347 
2348 	if (!free_pages_prepare(page, order, FPI_NONE))
2349 		return false;
2350 
2351 	migratetype = get_pfnblock_migratetype(page, pfn);
2352 	set_pcppage_migratetype(page, migratetype);
2353 	return true;
2354 }
2355 
2356 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2357 		       bool free_high)
2358 {
2359 	int min_nr_free, max_nr_free;
2360 
2361 	/* Free everything if batch freeing high-order pages. */
2362 	if (unlikely(free_high))
2363 		return pcp->count;
2364 
2365 	/* Check for PCP disabled or boot pageset */
2366 	if (unlikely(high < batch))
2367 		return 1;
2368 
2369 	/* Leave at least pcp->batch pages on the list */
2370 	min_nr_free = batch;
2371 	max_nr_free = high - batch;
2372 
2373 	/*
2374 	 * Double the number of pages freed each time there is subsequent
2375 	 * freeing of pages without any allocation.
2376 	 */
2377 	batch <<= pcp->free_factor;
2378 	if (batch < max_nr_free)
2379 		pcp->free_factor++;
2380 	batch = clamp(batch, min_nr_free, max_nr_free);
2381 
2382 	return batch;
2383 }
2384 
2385 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2386 		       bool free_high)
2387 {
2388 	int high = READ_ONCE(pcp->high);
2389 
2390 	if (unlikely(!high || free_high))
2391 		return 0;
2392 
2393 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2394 		return high;
2395 
2396 	/*
2397 	 * If reclaim is active, limit the number of pages that can be
2398 	 * stored on pcp lists
2399 	 */
2400 	return min(READ_ONCE(pcp->batch) << 2, high);
2401 }
2402 
2403 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2404 				   struct page *page, int migratetype,
2405 				   unsigned int order)
2406 {
2407 	int high;
2408 	int pindex;
2409 	bool free_high;
2410 
2411 	__count_vm_events(PGFREE, 1 << order);
2412 	pindex = order_to_pindex(migratetype, order);
2413 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2414 	pcp->count += 1 << order;
2415 
2416 	/*
2417 	 * As high-order pages other than THP's stored on PCP can contribute
2418 	 * to fragmentation, limit the number stored when PCP is heavily
2419 	 * freeing without allocation. The remainder after bulk freeing
2420 	 * stops will be drained from vmstat refresh context.
2421 	 */
2422 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2423 
2424 	high = nr_pcp_high(pcp, zone, free_high);
2425 	if (pcp->count >= high) {
2426 		int batch = READ_ONCE(pcp->batch);
2427 
2428 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2429 	}
2430 }
2431 
2432 /*
2433  * Free a pcp page
2434  */
2435 void free_unref_page(struct page *page, unsigned int order)
2436 {
2437 	unsigned long __maybe_unused UP_flags;
2438 	struct per_cpu_pages *pcp;
2439 	struct zone *zone;
2440 	unsigned long pfn = page_to_pfn(page);
2441 	int migratetype;
2442 
2443 	if (!free_unref_page_prepare(page, pfn, order))
2444 		return;
2445 
2446 	/*
2447 	 * We only track unmovable, reclaimable and movable on pcp lists.
2448 	 * Place ISOLATE pages on the isolated list because they are being
2449 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2450 	 * areas back if necessary. Otherwise, we may have to free
2451 	 * excessively into the page allocator
2452 	 */
2453 	migratetype = get_pcppage_migratetype(page);
2454 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2455 		if (unlikely(is_migrate_isolate(migratetype))) {
2456 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2457 			return;
2458 		}
2459 		migratetype = MIGRATE_MOVABLE;
2460 	}
2461 
2462 	zone = page_zone(page);
2463 	pcp_trylock_prepare(UP_flags);
2464 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2465 	if (pcp) {
2466 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2467 		pcp_spin_unlock(pcp);
2468 	} else {
2469 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2470 	}
2471 	pcp_trylock_finish(UP_flags);
2472 }
2473 
2474 /*
2475  * Free a list of 0-order pages
2476  */
2477 void free_unref_page_list(struct list_head *list)
2478 {
2479 	unsigned long __maybe_unused UP_flags;
2480 	struct page *page, *next;
2481 	struct per_cpu_pages *pcp = NULL;
2482 	struct zone *locked_zone = NULL;
2483 	int batch_count = 0;
2484 	int migratetype;
2485 
2486 	/* Prepare pages for freeing */
2487 	list_for_each_entry_safe(page, next, list, lru) {
2488 		unsigned long pfn = page_to_pfn(page);
2489 		if (!free_unref_page_prepare(page, pfn, 0)) {
2490 			list_del(&page->lru);
2491 			continue;
2492 		}
2493 
2494 		/*
2495 		 * Free isolated pages directly to the allocator, see
2496 		 * comment in free_unref_page.
2497 		 */
2498 		migratetype = get_pcppage_migratetype(page);
2499 		if (unlikely(is_migrate_isolate(migratetype))) {
2500 			list_del(&page->lru);
2501 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2502 			continue;
2503 		}
2504 	}
2505 
2506 	list_for_each_entry_safe(page, next, list, lru) {
2507 		struct zone *zone = page_zone(page);
2508 
2509 		list_del(&page->lru);
2510 		migratetype = get_pcppage_migratetype(page);
2511 
2512 		/*
2513 		 * Either different zone requiring a different pcp lock or
2514 		 * excessive lock hold times when freeing a large list of
2515 		 * pages.
2516 		 */
2517 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2518 			if (pcp) {
2519 				pcp_spin_unlock(pcp);
2520 				pcp_trylock_finish(UP_flags);
2521 			}
2522 
2523 			batch_count = 0;
2524 
2525 			/*
2526 			 * trylock is necessary as pages may be getting freed
2527 			 * from IRQ or SoftIRQ context after an IO completion.
2528 			 */
2529 			pcp_trylock_prepare(UP_flags);
2530 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2531 			if (unlikely(!pcp)) {
2532 				pcp_trylock_finish(UP_flags);
2533 				free_one_page(zone, page, page_to_pfn(page),
2534 					      0, migratetype, FPI_NONE);
2535 				locked_zone = NULL;
2536 				continue;
2537 			}
2538 			locked_zone = zone;
2539 		}
2540 
2541 		/*
2542 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2543 		 * to the MIGRATE_MOVABLE pcp list.
2544 		 */
2545 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2546 			migratetype = MIGRATE_MOVABLE;
2547 
2548 		trace_mm_page_free_batched(page);
2549 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2550 		batch_count++;
2551 	}
2552 
2553 	if (pcp) {
2554 		pcp_spin_unlock(pcp);
2555 		pcp_trylock_finish(UP_flags);
2556 	}
2557 }
2558 
2559 /*
2560  * split_page takes a non-compound higher-order page, and splits it into
2561  * n (1<<order) sub-pages: page[0..n]
2562  * Each sub-page must be freed individually.
2563  *
2564  * Note: this is probably too low level an operation for use in drivers.
2565  * Please consult with lkml before using this in your driver.
2566  */
2567 void split_page(struct page *page, unsigned int order)
2568 {
2569 	int i;
2570 
2571 	VM_BUG_ON_PAGE(PageCompound(page), page);
2572 	VM_BUG_ON_PAGE(!page_count(page), page);
2573 
2574 	for (i = 1; i < (1 << order); i++)
2575 		set_page_refcounted(page + i);
2576 	split_page_owner(page, 1 << order);
2577 	split_page_memcg(page, 1 << order);
2578 }
2579 EXPORT_SYMBOL_GPL(split_page);
2580 
2581 int __isolate_free_page(struct page *page, unsigned int order)
2582 {
2583 	struct zone *zone = page_zone(page);
2584 	int mt = get_pageblock_migratetype(page);
2585 
2586 	if (!is_migrate_isolate(mt)) {
2587 		unsigned long watermark;
2588 		/*
2589 		 * Obey watermarks as if the page was being allocated. We can
2590 		 * emulate a high-order watermark check with a raised order-0
2591 		 * watermark, because we already know our high-order page
2592 		 * exists.
2593 		 */
2594 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2595 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2596 			return 0;
2597 
2598 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2599 	}
2600 
2601 	del_page_from_free_list(page, zone, order);
2602 
2603 	/*
2604 	 * Set the pageblock if the isolated page is at least half of a
2605 	 * pageblock
2606 	 */
2607 	if (order >= pageblock_order - 1) {
2608 		struct page *endpage = page + (1 << order) - 1;
2609 		for (; page < endpage; page += pageblock_nr_pages) {
2610 			int mt = get_pageblock_migratetype(page);
2611 			/*
2612 			 * Only change normal pageblocks (i.e., they can merge
2613 			 * with others)
2614 			 */
2615 			if (migratetype_is_mergeable(mt))
2616 				set_pageblock_migratetype(page,
2617 							  MIGRATE_MOVABLE);
2618 		}
2619 	}
2620 
2621 	return 1UL << order;
2622 }
2623 
2624 /**
2625  * __putback_isolated_page - Return a now-isolated page back where we got it
2626  * @page: Page that was isolated
2627  * @order: Order of the isolated page
2628  * @mt: The page's pageblock's migratetype
2629  *
2630  * This function is meant to return a page pulled from the free lists via
2631  * __isolate_free_page back to the free lists they were pulled from.
2632  */
2633 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2634 {
2635 	struct zone *zone = page_zone(page);
2636 
2637 	/* zone lock should be held when this function is called */
2638 	lockdep_assert_held(&zone->lock);
2639 
2640 	/* Return isolated page to tail of freelist. */
2641 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2642 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2643 }
2644 
2645 /*
2646  * Update NUMA hit/miss statistics
2647  */
2648 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2649 				   long nr_account)
2650 {
2651 #ifdef CONFIG_NUMA
2652 	enum numa_stat_item local_stat = NUMA_LOCAL;
2653 
2654 	/* skip numa counters update if numa stats is disabled */
2655 	if (!static_branch_likely(&vm_numa_stat_key))
2656 		return;
2657 
2658 	if (zone_to_nid(z) != numa_node_id())
2659 		local_stat = NUMA_OTHER;
2660 
2661 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2662 		__count_numa_events(z, NUMA_HIT, nr_account);
2663 	else {
2664 		__count_numa_events(z, NUMA_MISS, nr_account);
2665 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2666 	}
2667 	__count_numa_events(z, local_stat, nr_account);
2668 #endif
2669 }
2670 
2671 static __always_inline
2672 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2673 			   unsigned int order, unsigned int alloc_flags,
2674 			   int migratetype)
2675 {
2676 	struct page *page;
2677 	unsigned long flags;
2678 
2679 	do {
2680 		page = NULL;
2681 		spin_lock_irqsave(&zone->lock, flags);
2682 		/*
2683 		 * order-0 request can reach here when the pcplist is skipped
2684 		 * due to non-CMA allocation context. HIGHATOMIC area is
2685 		 * reserved for high-order atomic allocation, so order-0
2686 		 * request should skip it.
2687 		 */
2688 		if (alloc_flags & ALLOC_HIGHATOMIC)
2689 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2690 		if (!page) {
2691 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2692 
2693 			/*
2694 			 * If the allocation fails, allow OOM handling access
2695 			 * to HIGHATOMIC reserves as failing now is worse than
2696 			 * failing a high-order atomic allocation in the
2697 			 * future.
2698 			 */
2699 			if (!page && (alloc_flags & ALLOC_OOM))
2700 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2701 
2702 			if (!page) {
2703 				spin_unlock_irqrestore(&zone->lock, flags);
2704 				return NULL;
2705 			}
2706 		}
2707 		__mod_zone_freepage_state(zone, -(1 << order),
2708 					  get_pcppage_migratetype(page));
2709 		spin_unlock_irqrestore(&zone->lock, flags);
2710 	} while (check_new_pages(page, order));
2711 
2712 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2713 	zone_statistics(preferred_zone, zone, 1);
2714 
2715 	return page;
2716 }
2717 
2718 /* Remove page from the per-cpu list, caller must protect the list */
2719 static inline
2720 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2721 			int migratetype,
2722 			unsigned int alloc_flags,
2723 			struct per_cpu_pages *pcp,
2724 			struct list_head *list)
2725 {
2726 	struct page *page;
2727 
2728 	do {
2729 		if (list_empty(list)) {
2730 			int batch = READ_ONCE(pcp->batch);
2731 			int alloced;
2732 
2733 			/*
2734 			 * Scale batch relative to order if batch implies
2735 			 * free pages can be stored on the PCP. Batch can
2736 			 * be 1 for small zones or for boot pagesets which
2737 			 * should never store free pages as the pages may
2738 			 * belong to arbitrary zones.
2739 			 */
2740 			if (batch > 1)
2741 				batch = max(batch >> order, 2);
2742 			alloced = rmqueue_bulk(zone, order,
2743 					batch, list,
2744 					migratetype, alloc_flags);
2745 
2746 			pcp->count += alloced << order;
2747 			if (unlikely(list_empty(list)))
2748 				return NULL;
2749 		}
2750 
2751 		page = list_first_entry(list, struct page, pcp_list);
2752 		list_del(&page->pcp_list);
2753 		pcp->count -= 1 << order;
2754 	} while (check_new_pages(page, order));
2755 
2756 	return page;
2757 }
2758 
2759 /* Lock and remove page from the per-cpu list */
2760 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2761 			struct zone *zone, unsigned int order,
2762 			int migratetype, unsigned int alloc_flags)
2763 {
2764 	struct per_cpu_pages *pcp;
2765 	struct list_head *list;
2766 	struct page *page;
2767 	unsigned long __maybe_unused UP_flags;
2768 
2769 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2770 	pcp_trylock_prepare(UP_flags);
2771 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2772 	if (!pcp) {
2773 		pcp_trylock_finish(UP_flags);
2774 		return NULL;
2775 	}
2776 
2777 	/*
2778 	 * On allocation, reduce the number of pages that are batch freed.
2779 	 * See nr_pcp_free() where free_factor is increased for subsequent
2780 	 * frees.
2781 	 */
2782 	pcp->free_factor >>= 1;
2783 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2784 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2785 	pcp_spin_unlock(pcp);
2786 	pcp_trylock_finish(UP_flags);
2787 	if (page) {
2788 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2789 		zone_statistics(preferred_zone, zone, 1);
2790 	}
2791 	return page;
2792 }
2793 
2794 /*
2795  * Allocate a page from the given zone.
2796  * Use pcplists for THP or "cheap" high-order allocations.
2797  */
2798 
2799 /*
2800  * Do not instrument rmqueue() with KMSAN. This function may call
2801  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2802  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2803  * may call rmqueue() again, which will result in a deadlock.
2804  */
2805 __no_sanitize_memory
2806 static inline
2807 struct page *rmqueue(struct zone *preferred_zone,
2808 			struct zone *zone, unsigned int order,
2809 			gfp_t gfp_flags, unsigned int alloc_flags,
2810 			int migratetype)
2811 {
2812 	struct page *page;
2813 
2814 	/*
2815 	 * We most definitely don't want callers attempting to
2816 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2817 	 */
2818 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2819 
2820 	if (likely(pcp_allowed_order(order))) {
2821 		/*
2822 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2823 		 * we need to skip it when CMA area isn't allowed.
2824 		 */
2825 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2826 				migratetype != MIGRATE_MOVABLE) {
2827 			page = rmqueue_pcplist(preferred_zone, zone, order,
2828 					migratetype, alloc_flags);
2829 			if (likely(page))
2830 				goto out;
2831 		}
2832 	}
2833 
2834 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2835 							migratetype);
2836 
2837 out:
2838 	/* Separate test+clear to avoid unnecessary atomics */
2839 	if ((alloc_flags & ALLOC_KSWAPD) &&
2840 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2841 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2842 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2843 	}
2844 
2845 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2846 	return page;
2847 }
2848 
2849 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2850 {
2851 	return __should_fail_alloc_page(gfp_mask, order);
2852 }
2853 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2854 
2855 static inline long __zone_watermark_unusable_free(struct zone *z,
2856 				unsigned int order, unsigned int alloc_flags)
2857 {
2858 	long unusable_free = (1 << order) - 1;
2859 
2860 	/*
2861 	 * If the caller does not have rights to reserves below the min
2862 	 * watermark then subtract the high-atomic reserves. This will
2863 	 * over-estimate the size of the atomic reserve but it avoids a search.
2864 	 */
2865 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2866 		unusable_free += z->nr_reserved_highatomic;
2867 
2868 #ifdef CONFIG_CMA
2869 	/* If allocation can't use CMA areas don't use free CMA pages */
2870 	if (!(alloc_flags & ALLOC_CMA))
2871 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2872 #endif
2873 #ifdef CONFIG_UNACCEPTED_MEMORY
2874 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2875 #endif
2876 
2877 	return unusable_free;
2878 }
2879 
2880 /*
2881  * Return true if free base pages are above 'mark'. For high-order checks it
2882  * will return true of the order-0 watermark is reached and there is at least
2883  * one free page of a suitable size. Checking now avoids taking the zone lock
2884  * to check in the allocation paths if no pages are free.
2885  */
2886 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2887 			 int highest_zoneidx, unsigned int alloc_flags,
2888 			 long free_pages)
2889 {
2890 	long min = mark;
2891 	int o;
2892 
2893 	/* free_pages may go negative - that's OK */
2894 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2895 
2896 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2897 		/*
2898 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2899 		 * as OOM.
2900 		 */
2901 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2902 			min -= min / 2;
2903 
2904 			/*
2905 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2906 			 * access more reserves than just __GFP_HIGH. Other
2907 			 * non-blocking allocations requests such as GFP_NOWAIT
2908 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2909 			 * access to the min reserve.
2910 			 */
2911 			if (alloc_flags & ALLOC_NON_BLOCK)
2912 				min -= min / 4;
2913 		}
2914 
2915 		/*
2916 		 * OOM victims can try even harder than the normal reserve
2917 		 * users on the grounds that it's definitely going to be in
2918 		 * the exit path shortly and free memory. Any allocation it
2919 		 * makes during the free path will be small and short-lived.
2920 		 */
2921 		if (alloc_flags & ALLOC_OOM)
2922 			min -= min / 2;
2923 	}
2924 
2925 	/*
2926 	 * Check watermarks for an order-0 allocation request. If these
2927 	 * are not met, then a high-order request also cannot go ahead
2928 	 * even if a suitable page happened to be free.
2929 	 */
2930 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2931 		return false;
2932 
2933 	/* If this is an order-0 request then the watermark is fine */
2934 	if (!order)
2935 		return true;
2936 
2937 	/* For a high-order request, check at least one suitable page is free */
2938 	for (o = order; o <= MAX_ORDER; o++) {
2939 		struct free_area *area = &z->free_area[o];
2940 		int mt;
2941 
2942 		if (!area->nr_free)
2943 			continue;
2944 
2945 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2946 			if (!free_area_empty(area, mt))
2947 				return true;
2948 		}
2949 
2950 #ifdef CONFIG_CMA
2951 		if ((alloc_flags & ALLOC_CMA) &&
2952 		    !free_area_empty(area, MIGRATE_CMA)) {
2953 			return true;
2954 		}
2955 #endif
2956 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2957 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2958 			return true;
2959 		}
2960 	}
2961 	return false;
2962 }
2963 
2964 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2965 		      int highest_zoneidx, unsigned int alloc_flags)
2966 {
2967 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2968 					zone_page_state(z, NR_FREE_PAGES));
2969 }
2970 
2971 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2972 				unsigned long mark, int highest_zoneidx,
2973 				unsigned int alloc_flags, gfp_t gfp_mask)
2974 {
2975 	long free_pages;
2976 
2977 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2978 
2979 	/*
2980 	 * Fast check for order-0 only. If this fails then the reserves
2981 	 * need to be calculated.
2982 	 */
2983 	if (!order) {
2984 		long usable_free;
2985 		long reserved;
2986 
2987 		usable_free = free_pages;
2988 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2989 
2990 		/* reserved may over estimate high-atomic reserves. */
2991 		usable_free -= min(usable_free, reserved);
2992 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2993 			return true;
2994 	}
2995 
2996 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2997 					free_pages))
2998 		return true;
2999 
3000 	/*
3001 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3002 	 * when checking the min watermark. The min watermark is the
3003 	 * point where boosting is ignored so that kswapd is woken up
3004 	 * when below the low watermark.
3005 	 */
3006 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3007 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3008 		mark = z->_watermark[WMARK_MIN];
3009 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3010 					alloc_flags, free_pages);
3011 	}
3012 
3013 	return false;
3014 }
3015 
3016 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3017 			unsigned long mark, int highest_zoneidx)
3018 {
3019 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3020 
3021 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3022 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3023 
3024 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3025 								free_pages);
3026 }
3027 
3028 #ifdef CONFIG_NUMA
3029 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3030 
3031 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3032 {
3033 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3034 				node_reclaim_distance;
3035 }
3036 #else	/* CONFIG_NUMA */
3037 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3038 {
3039 	return true;
3040 }
3041 #endif	/* CONFIG_NUMA */
3042 
3043 /*
3044  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3045  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3046  * premature use of a lower zone may cause lowmem pressure problems that
3047  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3048  * probably too small. It only makes sense to spread allocations to avoid
3049  * fragmentation between the Normal and DMA32 zones.
3050  */
3051 static inline unsigned int
3052 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3053 {
3054 	unsigned int alloc_flags;
3055 
3056 	/*
3057 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3058 	 * to save a branch.
3059 	 */
3060 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3061 
3062 #ifdef CONFIG_ZONE_DMA32
3063 	if (!zone)
3064 		return alloc_flags;
3065 
3066 	if (zone_idx(zone) != ZONE_NORMAL)
3067 		return alloc_flags;
3068 
3069 	/*
3070 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3071 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3072 	 * on UMA that if Normal is populated then so is DMA32.
3073 	 */
3074 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3075 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3076 		return alloc_flags;
3077 
3078 	alloc_flags |= ALLOC_NOFRAGMENT;
3079 #endif /* CONFIG_ZONE_DMA32 */
3080 	return alloc_flags;
3081 }
3082 
3083 /* Must be called after current_gfp_context() which can change gfp_mask */
3084 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3085 						  unsigned int alloc_flags)
3086 {
3087 #ifdef CONFIG_CMA
3088 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3089 		alloc_flags |= ALLOC_CMA;
3090 #endif
3091 	return alloc_flags;
3092 }
3093 
3094 /*
3095  * get_page_from_freelist goes through the zonelist trying to allocate
3096  * a page.
3097  */
3098 static struct page *
3099 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3100 						const struct alloc_context *ac)
3101 {
3102 	struct zoneref *z;
3103 	struct zone *zone;
3104 	struct pglist_data *last_pgdat = NULL;
3105 	bool last_pgdat_dirty_ok = false;
3106 	bool no_fallback;
3107 
3108 retry:
3109 	/*
3110 	 * Scan zonelist, looking for a zone with enough free.
3111 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3112 	 */
3113 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3114 	z = ac->preferred_zoneref;
3115 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3116 					ac->nodemask) {
3117 		struct page *page;
3118 		unsigned long mark;
3119 
3120 		if (cpusets_enabled() &&
3121 			(alloc_flags & ALLOC_CPUSET) &&
3122 			!__cpuset_zone_allowed(zone, gfp_mask))
3123 				continue;
3124 		/*
3125 		 * When allocating a page cache page for writing, we
3126 		 * want to get it from a node that is within its dirty
3127 		 * limit, such that no single node holds more than its
3128 		 * proportional share of globally allowed dirty pages.
3129 		 * The dirty limits take into account the node's
3130 		 * lowmem reserves and high watermark so that kswapd
3131 		 * should be able to balance it without having to
3132 		 * write pages from its LRU list.
3133 		 *
3134 		 * XXX: For now, allow allocations to potentially
3135 		 * exceed the per-node dirty limit in the slowpath
3136 		 * (spread_dirty_pages unset) before going into reclaim,
3137 		 * which is important when on a NUMA setup the allowed
3138 		 * nodes are together not big enough to reach the
3139 		 * global limit.  The proper fix for these situations
3140 		 * will require awareness of nodes in the
3141 		 * dirty-throttling and the flusher threads.
3142 		 */
3143 		if (ac->spread_dirty_pages) {
3144 			if (last_pgdat != zone->zone_pgdat) {
3145 				last_pgdat = zone->zone_pgdat;
3146 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3147 			}
3148 
3149 			if (!last_pgdat_dirty_ok)
3150 				continue;
3151 		}
3152 
3153 		if (no_fallback && nr_online_nodes > 1 &&
3154 		    zone != ac->preferred_zoneref->zone) {
3155 			int local_nid;
3156 
3157 			/*
3158 			 * If moving to a remote node, retry but allow
3159 			 * fragmenting fallbacks. Locality is more important
3160 			 * than fragmentation avoidance.
3161 			 */
3162 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3163 			if (zone_to_nid(zone) != local_nid) {
3164 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3165 				goto retry;
3166 			}
3167 		}
3168 
3169 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3170 		if (!zone_watermark_fast(zone, order, mark,
3171 				       ac->highest_zoneidx, alloc_flags,
3172 				       gfp_mask)) {
3173 			int ret;
3174 
3175 			if (has_unaccepted_memory()) {
3176 				if (try_to_accept_memory(zone, order))
3177 					goto try_this_zone;
3178 			}
3179 
3180 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3181 			/*
3182 			 * Watermark failed for this zone, but see if we can
3183 			 * grow this zone if it contains deferred pages.
3184 			 */
3185 			if (deferred_pages_enabled()) {
3186 				if (_deferred_grow_zone(zone, order))
3187 					goto try_this_zone;
3188 			}
3189 #endif
3190 			/* Checked here to keep the fast path fast */
3191 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3192 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3193 				goto try_this_zone;
3194 
3195 			if (!node_reclaim_enabled() ||
3196 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3197 				continue;
3198 
3199 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3200 			switch (ret) {
3201 			case NODE_RECLAIM_NOSCAN:
3202 				/* did not scan */
3203 				continue;
3204 			case NODE_RECLAIM_FULL:
3205 				/* scanned but unreclaimable */
3206 				continue;
3207 			default:
3208 				/* did we reclaim enough */
3209 				if (zone_watermark_ok(zone, order, mark,
3210 					ac->highest_zoneidx, alloc_flags))
3211 					goto try_this_zone;
3212 
3213 				continue;
3214 			}
3215 		}
3216 
3217 try_this_zone:
3218 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3219 				gfp_mask, alloc_flags, ac->migratetype);
3220 		if (page) {
3221 			prep_new_page(page, order, gfp_mask, alloc_flags);
3222 
3223 			/*
3224 			 * If this is a high-order atomic allocation then check
3225 			 * if the pageblock should be reserved for the future
3226 			 */
3227 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3228 				reserve_highatomic_pageblock(page, zone, order);
3229 
3230 			return page;
3231 		} else {
3232 			if (has_unaccepted_memory()) {
3233 				if (try_to_accept_memory(zone, order))
3234 					goto try_this_zone;
3235 			}
3236 
3237 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3238 			/* Try again if zone has deferred pages */
3239 			if (deferred_pages_enabled()) {
3240 				if (_deferred_grow_zone(zone, order))
3241 					goto try_this_zone;
3242 			}
3243 #endif
3244 		}
3245 	}
3246 
3247 	/*
3248 	 * It's possible on a UMA machine to get through all zones that are
3249 	 * fragmented. If avoiding fragmentation, reset and try again.
3250 	 */
3251 	if (no_fallback) {
3252 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3253 		goto retry;
3254 	}
3255 
3256 	return NULL;
3257 }
3258 
3259 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3260 {
3261 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3262 
3263 	/*
3264 	 * This documents exceptions given to allocations in certain
3265 	 * contexts that are allowed to allocate outside current's set
3266 	 * of allowed nodes.
3267 	 */
3268 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3269 		if (tsk_is_oom_victim(current) ||
3270 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3271 			filter &= ~SHOW_MEM_FILTER_NODES;
3272 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3273 		filter &= ~SHOW_MEM_FILTER_NODES;
3274 
3275 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3276 }
3277 
3278 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3279 {
3280 	struct va_format vaf;
3281 	va_list args;
3282 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3283 
3284 	if ((gfp_mask & __GFP_NOWARN) ||
3285 	     !__ratelimit(&nopage_rs) ||
3286 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3287 		return;
3288 
3289 	va_start(args, fmt);
3290 	vaf.fmt = fmt;
3291 	vaf.va = &args;
3292 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3293 			current->comm, &vaf, gfp_mask, &gfp_mask,
3294 			nodemask_pr_args(nodemask));
3295 	va_end(args);
3296 
3297 	cpuset_print_current_mems_allowed();
3298 	pr_cont("\n");
3299 	dump_stack();
3300 	warn_alloc_show_mem(gfp_mask, nodemask);
3301 }
3302 
3303 static inline struct page *
3304 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3305 			      unsigned int alloc_flags,
3306 			      const struct alloc_context *ac)
3307 {
3308 	struct page *page;
3309 
3310 	page = get_page_from_freelist(gfp_mask, order,
3311 			alloc_flags|ALLOC_CPUSET, ac);
3312 	/*
3313 	 * fallback to ignore cpuset restriction if our nodes
3314 	 * are depleted
3315 	 */
3316 	if (!page)
3317 		page = get_page_from_freelist(gfp_mask, order,
3318 				alloc_flags, ac);
3319 
3320 	return page;
3321 }
3322 
3323 static inline struct page *
3324 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3325 	const struct alloc_context *ac, unsigned long *did_some_progress)
3326 {
3327 	struct oom_control oc = {
3328 		.zonelist = ac->zonelist,
3329 		.nodemask = ac->nodemask,
3330 		.memcg = NULL,
3331 		.gfp_mask = gfp_mask,
3332 		.order = order,
3333 	};
3334 	struct page *page;
3335 
3336 	*did_some_progress = 0;
3337 
3338 	/*
3339 	 * Acquire the oom lock.  If that fails, somebody else is
3340 	 * making progress for us.
3341 	 */
3342 	if (!mutex_trylock(&oom_lock)) {
3343 		*did_some_progress = 1;
3344 		schedule_timeout_uninterruptible(1);
3345 		return NULL;
3346 	}
3347 
3348 	/*
3349 	 * Go through the zonelist yet one more time, keep very high watermark
3350 	 * here, this is only to catch a parallel oom killing, we must fail if
3351 	 * we're still under heavy pressure. But make sure that this reclaim
3352 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3353 	 * allocation which will never fail due to oom_lock already held.
3354 	 */
3355 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3356 				      ~__GFP_DIRECT_RECLAIM, order,
3357 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3358 	if (page)
3359 		goto out;
3360 
3361 	/* Coredumps can quickly deplete all memory reserves */
3362 	if (current->flags & PF_DUMPCORE)
3363 		goto out;
3364 	/* The OOM killer will not help higher order allocs */
3365 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3366 		goto out;
3367 	/*
3368 	 * We have already exhausted all our reclaim opportunities without any
3369 	 * success so it is time to admit defeat. We will skip the OOM killer
3370 	 * because it is very likely that the caller has a more reasonable
3371 	 * fallback than shooting a random task.
3372 	 *
3373 	 * The OOM killer may not free memory on a specific node.
3374 	 */
3375 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3376 		goto out;
3377 	/* The OOM killer does not needlessly kill tasks for lowmem */
3378 	if (ac->highest_zoneidx < ZONE_NORMAL)
3379 		goto out;
3380 	if (pm_suspended_storage())
3381 		goto out;
3382 	/*
3383 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3384 	 * other request to make a forward progress.
3385 	 * We are in an unfortunate situation where out_of_memory cannot
3386 	 * do much for this context but let's try it to at least get
3387 	 * access to memory reserved if the current task is killed (see
3388 	 * out_of_memory). Once filesystems are ready to handle allocation
3389 	 * failures more gracefully we should just bail out here.
3390 	 */
3391 
3392 	/* Exhausted what can be done so it's blame time */
3393 	if (out_of_memory(&oc) ||
3394 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3395 		*did_some_progress = 1;
3396 
3397 		/*
3398 		 * Help non-failing allocations by giving them access to memory
3399 		 * reserves
3400 		 */
3401 		if (gfp_mask & __GFP_NOFAIL)
3402 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3403 					ALLOC_NO_WATERMARKS, ac);
3404 	}
3405 out:
3406 	mutex_unlock(&oom_lock);
3407 	return page;
3408 }
3409 
3410 /*
3411  * Maximum number of compaction retries with a progress before OOM
3412  * killer is consider as the only way to move forward.
3413  */
3414 #define MAX_COMPACT_RETRIES 16
3415 
3416 #ifdef CONFIG_COMPACTION
3417 /* Try memory compaction for high-order allocations before reclaim */
3418 static struct page *
3419 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3420 		unsigned int alloc_flags, const struct alloc_context *ac,
3421 		enum compact_priority prio, enum compact_result *compact_result)
3422 {
3423 	struct page *page = NULL;
3424 	unsigned long pflags;
3425 	unsigned int noreclaim_flag;
3426 
3427 	if (!order)
3428 		return NULL;
3429 
3430 	psi_memstall_enter(&pflags);
3431 	delayacct_compact_start();
3432 	noreclaim_flag = memalloc_noreclaim_save();
3433 
3434 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3435 								prio, &page);
3436 
3437 	memalloc_noreclaim_restore(noreclaim_flag);
3438 	psi_memstall_leave(&pflags);
3439 	delayacct_compact_end();
3440 
3441 	if (*compact_result == COMPACT_SKIPPED)
3442 		return NULL;
3443 	/*
3444 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3445 	 * count a compaction stall
3446 	 */
3447 	count_vm_event(COMPACTSTALL);
3448 
3449 	/* Prep a captured page if available */
3450 	if (page)
3451 		prep_new_page(page, order, gfp_mask, alloc_flags);
3452 
3453 	/* Try get a page from the freelist if available */
3454 	if (!page)
3455 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3456 
3457 	if (page) {
3458 		struct zone *zone = page_zone(page);
3459 
3460 		zone->compact_blockskip_flush = false;
3461 		compaction_defer_reset(zone, order, true);
3462 		count_vm_event(COMPACTSUCCESS);
3463 		return page;
3464 	}
3465 
3466 	/*
3467 	 * It's bad if compaction run occurs and fails. The most likely reason
3468 	 * is that pages exist, but not enough to satisfy watermarks.
3469 	 */
3470 	count_vm_event(COMPACTFAIL);
3471 
3472 	cond_resched();
3473 
3474 	return NULL;
3475 }
3476 
3477 static inline bool
3478 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3479 		     enum compact_result compact_result,
3480 		     enum compact_priority *compact_priority,
3481 		     int *compaction_retries)
3482 {
3483 	int max_retries = MAX_COMPACT_RETRIES;
3484 	int min_priority;
3485 	bool ret = false;
3486 	int retries = *compaction_retries;
3487 	enum compact_priority priority = *compact_priority;
3488 
3489 	if (!order)
3490 		return false;
3491 
3492 	if (fatal_signal_pending(current))
3493 		return false;
3494 
3495 	/*
3496 	 * Compaction was skipped due to a lack of free order-0
3497 	 * migration targets. Continue if reclaim can help.
3498 	 */
3499 	if (compact_result == COMPACT_SKIPPED) {
3500 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3501 		goto out;
3502 	}
3503 
3504 	/*
3505 	 * Compaction managed to coalesce some page blocks, but the
3506 	 * allocation failed presumably due to a race. Retry some.
3507 	 */
3508 	if (compact_result == COMPACT_SUCCESS) {
3509 		/*
3510 		 * !costly requests are much more important than
3511 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3512 		 * facto nofail and invoke OOM killer to move on while
3513 		 * costly can fail and users are ready to cope with
3514 		 * that. 1/4 retries is rather arbitrary but we would
3515 		 * need much more detailed feedback from compaction to
3516 		 * make a better decision.
3517 		 */
3518 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3519 			max_retries /= 4;
3520 
3521 		if (++(*compaction_retries) <= max_retries) {
3522 			ret = true;
3523 			goto out;
3524 		}
3525 	}
3526 
3527 	/*
3528 	 * Compaction failed. Retry with increasing priority.
3529 	 */
3530 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3531 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3532 
3533 	if (*compact_priority > min_priority) {
3534 		(*compact_priority)--;
3535 		*compaction_retries = 0;
3536 		ret = true;
3537 	}
3538 out:
3539 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3540 	return ret;
3541 }
3542 #else
3543 static inline struct page *
3544 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3545 		unsigned int alloc_flags, const struct alloc_context *ac,
3546 		enum compact_priority prio, enum compact_result *compact_result)
3547 {
3548 	*compact_result = COMPACT_SKIPPED;
3549 	return NULL;
3550 }
3551 
3552 static inline bool
3553 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3554 		     enum compact_result compact_result,
3555 		     enum compact_priority *compact_priority,
3556 		     int *compaction_retries)
3557 {
3558 	struct zone *zone;
3559 	struct zoneref *z;
3560 
3561 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3562 		return false;
3563 
3564 	/*
3565 	 * There are setups with compaction disabled which would prefer to loop
3566 	 * inside the allocator rather than hit the oom killer prematurely.
3567 	 * Let's give them a good hope and keep retrying while the order-0
3568 	 * watermarks are OK.
3569 	 */
3570 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3571 				ac->highest_zoneidx, ac->nodemask) {
3572 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3573 					ac->highest_zoneidx, alloc_flags))
3574 			return true;
3575 	}
3576 	return false;
3577 }
3578 #endif /* CONFIG_COMPACTION */
3579 
3580 #ifdef CONFIG_LOCKDEP
3581 static struct lockdep_map __fs_reclaim_map =
3582 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3583 
3584 static bool __need_reclaim(gfp_t gfp_mask)
3585 {
3586 	/* no reclaim without waiting on it */
3587 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3588 		return false;
3589 
3590 	/* this guy won't enter reclaim */
3591 	if (current->flags & PF_MEMALLOC)
3592 		return false;
3593 
3594 	if (gfp_mask & __GFP_NOLOCKDEP)
3595 		return false;
3596 
3597 	return true;
3598 }
3599 
3600 void __fs_reclaim_acquire(unsigned long ip)
3601 {
3602 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3603 }
3604 
3605 void __fs_reclaim_release(unsigned long ip)
3606 {
3607 	lock_release(&__fs_reclaim_map, ip);
3608 }
3609 
3610 void fs_reclaim_acquire(gfp_t gfp_mask)
3611 {
3612 	gfp_mask = current_gfp_context(gfp_mask);
3613 
3614 	if (__need_reclaim(gfp_mask)) {
3615 		if (gfp_mask & __GFP_FS)
3616 			__fs_reclaim_acquire(_RET_IP_);
3617 
3618 #ifdef CONFIG_MMU_NOTIFIER
3619 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3620 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3621 #endif
3622 
3623 	}
3624 }
3625 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3626 
3627 void fs_reclaim_release(gfp_t gfp_mask)
3628 {
3629 	gfp_mask = current_gfp_context(gfp_mask);
3630 
3631 	if (__need_reclaim(gfp_mask)) {
3632 		if (gfp_mask & __GFP_FS)
3633 			__fs_reclaim_release(_RET_IP_);
3634 	}
3635 }
3636 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3637 #endif
3638 
3639 /*
3640  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3641  * have been rebuilt so allocation retries. Reader side does not lock and
3642  * retries the allocation if zonelist changes. Writer side is protected by the
3643  * embedded spin_lock.
3644  */
3645 static DEFINE_SEQLOCK(zonelist_update_seq);
3646 
3647 static unsigned int zonelist_iter_begin(void)
3648 {
3649 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3650 		return read_seqbegin(&zonelist_update_seq);
3651 
3652 	return 0;
3653 }
3654 
3655 static unsigned int check_retry_zonelist(unsigned int seq)
3656 {
3657 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3658 		return read_seqretry(&zonelist_update_seq, seq);
3659 
3660 	return seq;
3661 }
3662 
3663 /* Perform direct synchronous page reclaim */
3664 static unsigned long
3665 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3666 					const struct alloc_context *ac)
3667 {
3668 	unsigned int noreclaim_flag;
3669 	unsigned long progress;
3670 
3671 	cond_resched();
3672 
3673 	/* We now go into synchronous reclaim */
3674 	cpuset_memory_pressure_bump();
3675 	fs_reclaim_acquire(gfp_mask);
3676 	noreclaim_flag = memalloc_noreclaim_save();
3677 
3678 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3679 								ac->nodemask);
3680 
3681 	memalloc_noreclaim_restore(noreclaim_flag);
3682 	fs_reclaim_release(gfp_mask);
3683 
3684 	cond_resched();
3685 
3686 	return progress;
3687 }
3688 
3689 /* The really slow allocator path where we enter direct reclaim */
3690 static inline struct page *
3691 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3692 		unsigned int alloc_flags, const struct alloc_context *ac,
3693 		unsigned long *did_some_progress)
3694 {
3695 	struct page *page = NULL;
3696 	unsigned long pflags;
3697 	bool drained = false;
3698 
3699 	psi_memstall_enter(&pflags);
3700 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3701 	if (unlikely(!(*did_some_progress)))
3702 		goto out;
3703 
3704 retry:
3705 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3706 
3707 	/*
3708 	 * If an allocation failed after direct reclaim, it could be because
3709 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3710 	 * Shrink them and try again
3711 	 */
3712 	if (!page && !drained) {
3713 		unreserve_highatomic_pageblock(ac, false);
3714 		drain_all_pages(NULL);
3715 		drained = true;
3716 		goto retry;
3717 	}
3718 out:
3719 	psi_memstall_leave(&pflags);
3720 
3721 	return page;
3722 }
3723 
3724 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3725 			     const struct alloc_context *ac)
3726 {
3727 	struct zoneref *z;
3728 	struct zone *zone;
3729 	pg_data_t *last_pgdat = NULL;
3730 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3731 
3732 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3733 					ac->nodemask) {
3734 		if (!managed_zone(zone))
3735 			continue;
3736 		if (last_pgdat != zone->zone_pgdat) {
3737 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3738 			last_pgdat = zone->zone_pgdat;
3739 		}
3740 	}
3741 }
3742 
3743 static inline unsigned int
3744 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3745 {
3746 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3747 
3748 	/*
3749 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3750 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3751 	 * to save two branches.
3752 	 */
3753 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3754 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3755 
3756 	/*
3757 	 * The caller may dip into page reserves a bit more if the caller
3758 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3759 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3760 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3761 	 */
3762 	alloc_flags |= (__force int)
3763 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3764 
3765 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3766 		/*
3767 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3768 		 * if it can't schedule.
3769 		 */
3770 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3771 			alloc_flags |= ALLOC_NON_BLOCK;
3772 
3773 			if (order > 0)
3774 				alloc_flags |= ALLOC_HIGHATOMIC;
3775 		}
3776 
3777 		/*
3778 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3779 		 * GFP_ATOMIC) rather than fail, see the comment for
3780 		 * cpuset_node_allowed().
3781 		 */
3782 		if (alloc_flags & ALLOC_MIN_RESERVE)
3783 			alloc_flags &= ~ALLOC_CPUSET;
3784 	} else if (unlikely(rt_task(current)) && in_task())
3785 		alloc_flags |= ALLOC_MIN_RESERVE;
3786 
3787 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3788 
3789 	return alloc_flags;
3790 }
3791 
3792 static bool oom_reserves_allowed(struct task_struct *tsk)
3793 {
3794 	if (!tsk_is_oom_victim(tsk))
3795 		return false;
3796 
3797 	/*
3798 	 * !MMU doesn't have oom reaper so give access to memory reserves
3799 	 * only to the thread with TIF_MEMDIE set
3800 	 */
3801 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3802 		return false;
3803 
3804 	return true;
3805 }
3806 
3807 /*
3808  * Distinguish requests which really need access to full memory
3809  * reserves from oom victims which can live with a portion of it
3810  */
3811 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3812 {
3813 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3814 		return 0;
3815 	if (gfp_mask & __GFP_MEMALLOC)
3816 		return ALLOC_NO_WATERMARKS;
3817 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3818 		return ALLOC_NO_WATERMARKS;
3819 	if (!in_interrupt()) {
3820 		if (current->flags & PF_MEMALLOC)
3821 			return ALLOC_NO_WATERMARKS;
3822 		else if (oom_reserves_allowed(current))
3823 			return ALLOC_OOM;
3824 	}
3825 
3826 	return 0;
3827 }
3828 
3829 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3830 {
3831 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3832 }
3833 
3834 /*
3835  * Checks whether it makes sense to retry the reclaim to make a forward progress
3836  * for the given allocation request.
3837  *
3838  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3839  * without success, or when we couldn't even meet the watermark if we
3840  * reclaimed all remaining pages on the LRU lists.
3841  *
3842  * Returns true if a retry is viable or false to enter the oom path.
3843  */
3844 static inline bool
3845 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3846 		     struct alloc_context *ac, int alloc_flags,
3847 		     bool did_some_progress, int *no_progress_loops)
3848 {
3849 	struct zone *zone;
3850 	struct zoneref *z;
3851 	bool ret = false;
3852 
3853 	/*
3854 	 * Costly allocations might have made a progress but this doesn't mean
3855 	 * their order will become available due to high fragmentation so
3856 	 * always increment the no progress counter for them
3857 	 */
3858 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3859 		*no_progress_loops = 0;
3860 	else
3861 		(*no_progress_loops)++;
3862 
3863 	/*
3864 	 * Make sure we converge to OOM if we cannot make any progress
3865 	 * several times in the row.
3866 	 */
3867 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3868 		/* Before OOM, exhaust highatomic_reserve */
3869 		return unreserve_highatomic_pageblock(ac, true);
3870 	}
3871 
3872 	/*
3873 	 * Keep reclaiming pages while there is a chance this will lead
3874 	 * somewhere.  If none of the target zones can satisfy our allocation
3875 	 * request even if all reclaimable pages are considered then we are
3876 	 * screwed and have to go OOM.
3877 	 */
3878 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3879 				ac->highest_zoneidx, ac->nodemask) {
3880 		unsigned long available;
3881 		unsigned long reclaimable;
3882 		unsigned long min_wmark = min_wmark_pages(zone);
3883 		bool wmark;
3884 
3885 		available = reclaimable = zone_reclaimable_pages(zone);
3886 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3887 
3888 		/*
3889 		 * Would the allocation succeed if we reclaimed all
3890 		 * reclaimable pages?
3891 		 */
3892 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3893 				ac->highest_zoneidx, alloc_flags, available);
3894 		trace_reclaim_retry_zone(z, order, reclaimable,
3895 				available, min_wmark, *no_progress_loops, wmark);
3896 		if (wmark) {
3897 			ret = true;
3898 			break;
3899 		}
3900 	}
3901 
3902 	/*
3903 	 * Memory allocation/reclaim might be called from a WQ context and the
3904 	 * current implementation of the WQ concurrency control doesn't
3905 	 * recognize that a particular WQ is congested if the worker thread is
3906 	 * looping without ever sleeping. Therefore we have to do a short sleep
3907 	 * here rather than calling cond_resched().
3908 	 */
3909 	if (current->flags & PF_WQ_WORKER)
3910 		schedule_timeout_uninterruptible(1);
3911 	else
3912 		cond_resched();
3913 	return ret;
3914 }
3915 
3916 static inline bool
3917 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3918 {
3919 	/*
3920 	 * It's possible that cpuset's mems_allowed and the nodemask from
3921 	 * mempolicy don't intersect. This should be normally dealt with by
3922 	 * policy_nodemask(), but it's possible to race with cpuset update in
3923 	 * such a way the check therein was true, and then it became false
3924 	 * before we got our cpuset_mems_cookie here.
3925 	 * This assumes that for all allocations, ac->nodemask can come only
3926 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3927 	 * when it does not intersect with the cpuset restrictions) or the
3928 	 * caller can deal with a violated nodemask.
3929 	 */
3930 	if (cpusets_enabled() && ac->nodemask &&
3931 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3932 		ac->nodemask = NULL;
3933 		return true;
3934 	}
3935 
3936 	/*
3937 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3938 	 * possible to race with parallel threads in such a way that our
3939 	 * allocation can fail while the mask is being updated. If we are about
3940 	 * to fail, check if the cpuset changed during allocation and if so,
3941 	 * retry.
3942 	 */
3943 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3944 		return true;
3945 
3946 	return false;
3947 }
3948 
3949 static inline struct page *
3950 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3951 						struct alloc_context *ac)
3952 {
3953 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3954 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3955 	struct page *page = NULL;
3956 	unsigned int alloc_flags;
3957 	unsigned long did_some_progress;
3958 	enum compact_priority compact_priority;
3959 	enum compact_result compact_result;
3960 	int compaction_retries;
3961 	int no_progress_loops;
3962 	unsigned int cpuset_mems_cookie;
3963 	unsigned int zonelist_iter_cookie;
3964 	int reserve_flags;
3965 
3966 restart:
3967 	compaction_retries = 0;
3968 	no_progress_loops = 0;
3969 	compact_priority = DEF_COMPACT_PRIORITY;
3970 	cpuset_mems_cookie = read_mems_allowed_begin();
3971 	zonelist_iter_cookie = zonelist_iter_begin();
3972 
3973 	/*
3974 	 * The fast path uses conservative alloc_flags to succeed only until
3975 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3976 	 * alloc_flags precisely. So we do that now.
3977 	 */
3978 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3979 
3980 	/*
3981 	 * We need to recalculate the starting point for the zonelist iterator
3982 	 * because we might have used different nodemask in the fast path, or
3983 	 * there was a cpuset modification and we are retrying - otherwise we
3984 	 * could end up iterating over non-eligible zones endlessly.
3985 	 */
3986 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3987 					ac->highest_zoneidx, ac->nodemask);
3988 	if (!ac->preferred_zoneref->zone)
3989 		goto nopage;
3990 
3991 	/*
3992 	 * Check for insane configurations where the cpuset doesn't contain
3993 	 * any suitable zone to satisfy the request - e.g. non-movable
3994 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3995 	 */
3996 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3997 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3998 					ac->highest_zoneidx,
3999 					&cpuset_current_mems_allowed);
4000 		if (!z->zone)
4001 			goto nopage;
4002 	}
4003 
4004 	if (alloc_flags & ALLOC_KSWAPD)
4005 		wake_all_kswapds(order, gfp_mask, ac);
4006 
4007 	/*
4008 	 * The adjusted alloc_flags might result in immediate success, so try
4009 	 * that first
4010 	 */
4011 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4012 	if (page)
4013 		goto got_pg;
4014 
4015 	/*
4016 	 * For costly allocations, try direct compaction first, as it's likely
4017 	 * that we have enough base pages and don't need to reclaim. For non-
4018 	 * movable high-order allocations, do that as well, as compaction will
4019 	 * try prevent permanent fragmentation by migrating from blocks of the
4020 	 * same migratetype.
4021 	 * Don't try this for allocations that are allowed to ignore
4022 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4023 	 */
4024 	if (can_direct_reclaim &&
4025 			(costly_order ||
4026 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4027 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4028 		page = __alloc_pages_direct_compact(gfp_mask, order,
4029 						alloc_flags, ac,
4030 						INIT_COMPACT_PRIORITY,
4031 						&compact_result);
4032 		if (page)
4033 			goto got_pg;
4034 
4035 		/*
4036 		 * Checks for costly allocations with __GFP_NORETRY, which
4037 		 * includes some THP page fault allocations
4038 		 */
4039 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4040 			/*
4041 			 * If allocating entire pageblock(s) and compaction
4042 			 * failed because all zones are below low watermarks
4043 			 * or is prohibited because it recently failed at this
4044 			 * order, fail immediately unless the allocator has
4045 			 * requested compaction and reclaim retry.
4046 			 *
4047 			 * Reclaim is
4048 			 *  - potentially very expensive because zones are far
4049 			 *    below their low watermarks or this is part of very
4050 			 *    bursty high order allocations,
4051 			 *  - not guaranteed to help because isolate_freepages()
4052 			 *    may not iterate over freed pages as part of its
4053 			 *    linear scan, and
4054 			 *  - unlikely to make entire pageblocks free on its
4055 			 *    own.
4056 			 */
4057 			if (compact_result == COMPACT_SKIPPED ||
4058 			    compact_result == COMPACT_DEFERRED)
4059 				goto nopage;
4060 
4061 			/*
4062 			 * Looks like reclaim/compaction is worth trying, but
4063 			 * sync compaction could be very expensive, so keep
4064 			 * using async compaction.
4065 			 */
4066 			compact_priority = INIT_COMPACT_PRIORITY;
4067 		}
4068 	}
4069 
4070 retry:
4071 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4072 	if (alloc_flags & ALLOC_KSWAPD)
4073 		wake_all_kswapds(order, gfp_mask, ac);
4074 
4075 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4076 	if (reserve_flags)
4077 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4078 					  (alloc_flags & ALLOC_KSWAPD);
4079 
4080 	/*
4081 	 * Reset the nodemask and zonelist iterators if memory policies can be
4082 	 * ignored. These allocations are high priority and system rather than
4083 	 * user oriented.
4084 	 */
4085 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4086 		ac->nodemask = NULL;
4087 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4088 					ac->highest_zoneidx, ac->nodemask);
4089 	}
4090 
4091 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4092 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4093 	if (page)
4094 		goto got_pg;
4095 
4096 	/* Caller is not willing to reclaim, we can't balance anything */
4097 	if (!can_direct_reclaim)
4098 		goto nopage;
4099 
4100 	/* Avoid recursion of direct reclaim */
4101 	if (current->flags & PF_MEMALLOC)
4102 		goto nopage;
4103 
4104 	/* Try direct reclaim and then allocating */
4105 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4106 							&did_some_progress);
4107 	if (page)
4108 		goto got_pg;
4109 
4110 	/* Try direct compaction and then allocating */
4111 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4112 					compact_priority, &compact_result);
4113 	if (page)
4114 		goto got_pg;
4115 
4116 	/* Do not loop if specifically requested */
4117 	if (gfp_mask & __GFP_NORETRY)
4118 		goto nopage;
4119 
4120 	/*
4121 	 * Do not retry costly high order allocations unless they are
4122 	 * __GFP_RETRY_MAYFAIL
4123 	 */
4124 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4125 		goto nopage;
4126 
4127 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4128 				 did_some_progress > 0, &no_progress_loops))
4129 		goto retry;
4130 
4131 	/*
4132 	 * It doesn't make any sense to retry for the compaction if the order-0
4133 	 * reclaim is not able to make any progress because the current
4134 	 * implementation of the compaction depends on the sufficient amount
4135 	 * of free memory (see __compaction_suitable)
4136 	 */
4137 	if (did_some_progress > 0 &&
4138 			should_compact_retry(ac, order, alloc_flags,
4139 				compact_result, &compact_priority,
4140 				&compaction_retries))
4141 		goto retry;
4142 
4143 
4144 	/*
4145 	 * Deal with possible cpuset update races or zonelist updates to avoid
4146 	 * a unnecessary OOM kill.
4147 	 */
4148 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4149 	    check_retry_zonelist(zonelist_iter_cookie))
4150 		goto restart;
4151 
4152 	/* Reclaim has failed us, start killing things */
4153 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4154 	if (page)
4155 		goto got_pg;
4156 
4157 	/* Avoid allocations with no watermarks from looping endlessly */
4158 	if (tsk_is_oom_victim(current) &&
4159 	    (alloc_flags & ALLOC_OOM ||
4160 	     (gfp_mask & __GFP_NOMEMALLOC)))
4161 		goto nopage;
4162 
4163 	/* Retry as long as the OOM killer is making progress */
4164 	if (did_some_progress) {
4165 		no_progress_loops = 0;
4166 		goto retry;
4167 	}
4168 
4169 nopage:
4170 	/*
4171 	 * Deal with possible cpuset update races or zonelist updates to avoid
4172 	 * a unnecessary OOM kill.
4173 	 */
4174 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4175 	    check_retry_zonelist(zonelist_iter_cookie))
4176 		goto restart;
4177 
4178 	/*
4179 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4180 	 * we always retry
4181 	 */
4182 	if (gfp_mask & __GFP_NOFAIL) {
4183 		/*
4184 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4185 		 * of any new users that actually require GFP_NOWAIT
4186 		 */
4187 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4188 			goto fail;
4189 
4190 		/*
4191 		 * PF_MEMALLOC request from this context is rather bizarre
4192 		 * because we cannot reclaim anything and only can loop waiting
4193 		 * for somebody to do a work for us
4194 		 */
4195 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4196 
4197 		/*
4198 		 * non failing costly orders are a hard requirement which we
4199 		 * are not prepared for much so let's warn about these users
4200 		 * so that we can identify them and convert them to something
4201 		 * else.
4202 		 */
4203 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4204 
4205 		/*
4206 		 * Help non-failing allocations by giving some access to memory
4207 		 * reserves normally used for high priority non-blocking
4208 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4209 		 * could deplete whole memory reserves which would just make
4210 		 * the situation worse.
4211 		 */
4212 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4213 		if (page)
4214 			goto got_pg;
4215 
4216 		cond_resched();
4217 		goto retry;
4218 	}
4219 fail:
4220 	warn_alloc(gfp_mask, ac->nodemask,
4221 			"page allocation failure: order:%u", order);
4222 got_pg:
4223 	return page;
4224 }
4225 
4226 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4227 		int preferred_nid, nodemask_t *nodemask,
4228 		struct alloc_context *ac, gfp_t *alloc_gfp,
4229 		unsigned int *alloc_flags)
4230 {
4231 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4232 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4233 	ac->nodemask = nodemask;
4234 	ac->migratetype = gfp_migratetype(gfp_mask);
4235 
4236 	if (cpusets_enabled()) {
4237 		*alloc_gfp |= __GFP_HARDWALL;
4238 		/*
4239 		 * When we are in the interrupt context, it is irrelevant
4240 		 * to the current task context. It means that any node ok.
4241 		 */
4242 		if (in_task() && !ac->nodemask)
4243 			ac->nodemask = &cpuset_current_mems_allowed;
4244 		else
4245 			*alloc_flags |= ALLOC_CPUSET;
4246 	}
4247 
4248 	might_alloc(gfp_mask);
4249 
4250 	if (should_fail_alloc_page(gfp_mask, order))
4251 		return false;
4252 
4253 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4254 
4255 	/* Dirty zone balancing only done in the fast path */
4256 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4257 
4258 	/*
4259 	 * The preferred zone is used for statistics but crucially it is
4260 	 * also used as the starting point for the zonelist iterator. It
4261 	 * may get reset for allocations that ignore memory policies.
4262 	 */
4263 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4264 					ac->highest_zoneidx, ac->nodemask);
4265 
4266 	return true;
4267 }
4268 
4269 /*
4270  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4271  * @gfp: GFP flags for the allocation
4272  * @preferred_nid: The preferred NUMA node ID to allocate from
4273  * @nodemask: Set of nodes to allocate from, may be NULL
4274  * @nr_pages: The number of pages desired on the list or array
4275  * @page_list: Optional list to store the allocated pages
4276  * @page_array: Optional array to store the pages
4277  *
4278  * This is a batched version of the page allocator that attempts to
4279  * allocate nr_pages quickly. Pages are added to page_list if page_list
4280  * is not NULL, otherwise it is assumed that the page_array is valid.
4281  *
4282  * For lists, nr_pages is the number of pages that should be allocated.
4283  *
4284  * For arrays, only NULL elements are populated with pages and nr_pages
4285  * is the maximum number of pages that will be stored in the array.
4286  *
4287  * Returns the number of pages on the list or array.
4288  */
4289 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4290 			nodemask_t *nodemask, int nr_pages,
4291 			struct list_head *page_list,
4292 			struct page **page_array)
4293 {
4294 	struct page *page;
4295 	unsigned long __maybe_unused UP_flags;
4296 	struct zone *zone;
4297 	struct zoneref *z;
4298 	struct per_cpu_pages *pcp;
4299 	struct list_head *pcp_list;
4300 	struct alloc_context ac;
4301 	gfp_t alloc_gfp;
4302 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4303 	int nr_populated = 0, nr_account = 0;
4304 
4305 	/*
4306 	 * Skip populated array elements to determine if any pages need
4307 	 * to be allocated before disabling IRQs.
4308 	 */
4309 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4310 		nr_populated++;
4311 
4312 	/* No pages requested? */
4313 	if (unlikely(nr_pages <= 0))
4314 		goto out;
4315 
4316 	/* Already populated array? */
4317 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4318 		goto out;
4319 
4320 	/* Bulk allocator does not support memcg accounting. */
4321 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4322 		goto failed;
4323 
4324 	/* Use the single page allocator for one page. */
4325 	if (nr_pages - nr_populated == 1)
4326 		goto failed;
4327 
4328 #ifdef CONFIG_PAGE_OWNER
4329 	/*
4330 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4331 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4332 	 * removes much of the performance benefit of bulk allocation so
4333 	 * force the caller to allocate one page at a time as it'll have
4334 	 * similar performance to added complexity to the bulk allocator.
4335 	 */
4336 	if (static_branch_unlikely(&page_owner_inited))
4337 		goto failed;
4338 #endif
4339 
4340 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4341 	gfp &= gfp_allowed_mask;
4342 	alloc_gfp = gfp;
4343 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4344 		goto out;
4345 	gfp = alloc_gfp;
4346 
4347 	/* Find an allowed local zone that meets the low watermark. */
4348 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4349 		unsigned long mark;
4350 
4351 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4352 		    !__cpuset_zone_allowed(zone, gfp)) {
4353 			continue;
4354 		}
4355 
4356 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4357 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4358 			goto failed;
4359 		}
4360 
4361 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4362 		if (zone_watermark_fast(zone, 0,  mark,
4363 				zonelist_zone_idx(ac.preferred_zoneref),
4364 				alloc_flags, gfp)) {
4365 			break;
4366 		}
4367 	}
4368 
4369 	/*
4370 	 * If there are no allowed local zones that meets the watermarks then
4371 	 * try to allocate a single page and reclaim if necessary.
4372 	 */
4373 	if (unlikely(!zone))
4374 		goto failed;
4375 
4376 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4377 	pcp_trylock_prepare(UP_flags);
4378 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4379 	if (!pcp)
4380 		goto failed_irq;
4381 
4382 	/* Attempt the batch allocation */
4383 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4384 	while (nr_populated < nr_pages) {
4385 
4386 		/* Skip existing pages */
4387 		if (page_array && page_array[nr_populated]) {
4388 			nr_populated++;
4389 			continue;
4390 		}
4391 
4392 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4393 								pcp, pcp_list);
4394 		if (unlikely(!page)) {
4395 			/* Try and allocate at least one page */
4396 			if (!nr_account) {
4397 				pcp_spin_unlock(pcp);
4398 				goto failed_irq;
4399 			}
4400 			break;
4401 		}
4402 		nr_account++;
4403 
4404 		prep_new_page(page, 0, gfp, 0);
4405 		if (page_list)
4406 			list_add(&page->lru, page_list);
4407 		else
4408 			page_array[nr_populated] = page;
4409 		nr_populated++;
4410 	}
4411 
4412 	pcp_spin_unlock(pcp);
4413 	pcp_trylock_finish(UP_flags);
4414 
4415 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4416 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4417 
4418 out:
4419 	return nr_populated;
4420 
4421 failed_irq:
4422 	pcp_trylock_finish(UP_flags);
4423 
4424 failed:
4425 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4426 	if (page) {
4427 		if (page_list)
4428 			list_add(&page->lru, page_list);
4429 		else
4430 			page_array[nr_populated] = page;
4431 		nr_populated++;
4432 	}
4433 
4434 	goto out;
4435 }
4436 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4437 
4438 /*
4439  * This is the 'heart' of the zoned buddy allocator.
4440  */
4441 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4442 							nodemask_t *nodemask)
4443 {
4444 	struct page *page;
4445 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4446 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4447 	struct alloc_context ac = { };
4448 
4449 	/*
4450 	 * There are several places where we assume that the order value is sane
4451 	 * so bail out early if the request is out of bound.
4452 	 */
4453 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4454 		return NULL;
4455 
4456 	gfp &= gfp_allowed_mask;
4457 	/*
4458 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4459 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4460 	 * from a particular context which has been marked by
4461 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4462 	 * movable zones are not used during allocation.
4463 	 */
4464 	gfp = current_gfp_context(gfp);
4465 	alloc_gfp = gfp;
4466 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4467 			&alloc_gfp, &alloc_flags))
4468 		return NULL;
4469 
4470 	/*
4471 	 * Forbid the first pass from falling back to types that fragment
4472 	 * memory until all local zones are considered.
4473 	 */
4474 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4475 
4476 	/* First allocation attempt */
4477 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4478 	if (likely(page))
4479 		goto out;
4480 
4481 	alloc_gfp = gfp;
4482 	ac.spread_dirty_pages = false;
4483 
4484 	/*
4485 	 * Restore the original nodemask if it was potentially replaced with
4486 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4487 	 */
4488 	ac.nodemask = nodemask;
4489 
4490 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4491 
4492 out:
4493 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4494 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4495 		__free_pages(page, order);
4496 		page = NULL;
4497 	}
4498 
4499 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4500 	kmsan_alloc_page(page, order, alloc_gfp);
4501 
4502 	return page;
4503 }
4504 EXPORT_SYMBOL(__alloc_pages);
4505 
4506 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4507 		nodemask_t *nodemask)
4508 {
4509 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4510 			preferred_nid, nodemask);
4511 
4512 	if (page && order > 1)
4513 		prep_transhuge_page(page);
4514 	return (struct folio *)page;
4515 }
4516 EXPORT_SYMBOL(__folio_alloc);
4517 
4518 /*
4519  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4520  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4521  * you need to access high mem.
4522  */
4523 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4524 {
4525 	struct page *page;
4526 
4527 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4528 	if (!page)
4529 		return 0;
4530 	return (unsigned long) page_address(page);
4531 }
4532 EXPORT_SYMBOL(__get_free_pages);
4533 
4534 unsigned long get_zeroed_page(gfp_t gfp_mask)
4535 {
4536 	return __get_free_page(gfp_mask | __GFP_ZERO);
4537 }
4538 EXPORT_SYMBOL(get_zeroed_page);
4539 
4540 /**
4541  * __free_pages - Free pages allocated with alloc_pages().
4542  * @page: The page pointer returned from alloc_pages().
4543  * @order: The order of the allocation.
4544  *
4545  * This function can free multi-page allocations that are not compound
4546  * pages.  It does not check that the @order passed in matches that of
4547  * the allocation, so it is easy to leak memory.  Freeing more memory
4548  * than was allocated will probably emit a warning.
4549  *
4550  * If the last reference to this page is speculative, it will be released
4551  * by put_page() which only frees the first page of a non-compound
4552  * allocation.  To prevent the remaining pages from being leaked, we free
4553  * the subsequent pages here.  If you want to use the page's reference
4554  * count to decide when to free the allocation, you should allocate a
4555  * compound page, and use put_page() instead of __free_pages().
4556  *
4557  * Context: May be called in interrupt context or while holding a normal
4558  * spinlock, but not in NMI context or while holding a raw spinlock.
4559  */
4560 void __free_pages(struct page *page, unsigned int order)
4561 {
4562 	/* get PageHead before we drop reference */
4563 	int head = PageHead(page);
4564 
4565 	if (put_page_testzero(page))
4566 		free_the_page(page, order);
4567 	else if (!head)
4568 		while (order-- > 0)
4569 			free_the_page(page + (1 << order), order);
4570 }
4571 EXPORT_SYMBOL(__free_pages);
4572 
4573 void free_pages(unsigned long addr, unsigned int order)
4574 {
4575 	if (addr != 0) {
4576 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4577 		__free_pages(virt_to_page((void *)addr), order);
4578 	}
4579 }
4580 
4581 EXPORT_SYMBOL(free_pages);
4582 
4583 /*
4584  * Page Fragment:
4585  *  An arbitrary-length arbitrary-offset area of memory which resides
4586  *  within a 0 or higher order page.  Multiple fragments within that page
4587  *  are individually refcounted, in the page's reference counter.
4588  *
4589  * The page_frag functions below provide a simple allocation framework for
4590  * page fragments.  This is used by the network stack and network device
4591  * drivers to provide a backing region of memory for use as either an
4592  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4593  */
4594 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4595 					     gfp_t gfp_mask)
4596 {
4597 	struct page *page = NULL;
4598 	gfp_t gfp = gfp_mask;
4599 
4600 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4601 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4602 		    __GFP_NOMEMALLOC;
4603 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4604 				PAGE_FRAG_CACHE_MAX_ORDER);
4605 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4606 #endif
4607 	if (unlikely(!page))
4608 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4609 
4610 	nc->va = page ? page_address(page) : NULL;
4611 
4612 	return page;
4613 }
4614 
4615 void __page_frag_cache_drain(struct page *page, unsigned int count)
4616 {
4617 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4618 
4619 	if (page_ref_sub_and_test(page, count))
4620 		free_the_page(page, compound_order(page));
4621 }
4622 EXPORT_SYMBOL(__page_frag_cache_drain);
4623 
4624 void *page_frag_alloc_align(struct page_frag_cache *nc,
4625 		      unsigned int fragsz, gfp_t gfp_mask,
4626 		      unsigned int align_mask)
4627 {
4628 	unsigned int size = PAGE_SIZE;
4629 	struct page *page;
4630 	int offset;
4631 
4632 	if (unlikely(!nc->va)) {
4633 refill:
4634 		page = __page_frag_cache_refill(nc, gfp_mask);
4635 		if (!page)
4636 			return NULL;
4637 
4638 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4639 		/* if size can vary use size else just use PAGE_SIZE */
4640 		size = nc->size;
4641 #endif
4642 		/* Even if we own the page, we do not use atomic_set().
4643 		 * This would break get_page_unless_zero() users.
4644 		 */
4645 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4646 
4647 		/* reset page count bias and offset to start of new frag */
4648 		nc->pfmemalloc = page_is_pfmemalloc(page);
4649 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4650 		nc->offset = size;
4651 	}
4652 
4653 	offset = nc->offset - fragsz;
4654 	if (unlikely(offset < 0)) {
4655 		page = virt_to_page(nc->va);
4656 
4657 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4658 			goto refill;
4659 
4660 		if (unlikely(nc->pfmemalloc)) {
4661 			free_the_page(page, compound_order(page));
4662 			goto refill;
4663 		}
4664 
4665 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4666 		/* if size can vary use size else just use PAGE_SIZE */
4667 		size = nc->size;
4668 #endif
4669 		/* OK, page count is 0, we can safely set it */
4670 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4671 
4672 		/* reset page count bias and offset to start of new frag */
4673 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4674 		offset = size - fragsz;
4675 		if (unlikely(offset < 0)) {
4676 			/*
4677 			 * The caller is trying to allocate a fragment
4678 			 * with fragsz > PAGE_SIZE but the cache isn't big
4679 			 * enough to satisfy the request, this may
4680 			 * happen in low memory conditions.
4681 			 * We don't release the cache page because
4682 			 * it could make memory pressure worse
4683 			 * so we simply return NULL here.
4684 			 */
4685 			return NULL;
4686 		}
4687 	}
4688 
4689 	nc->pagecnt_bias--;
4690 	offset &= align_mask;
4691 	nc->offset = offset;
4692 
4693 	return nc->va + offset;
4694 }
4695 EXPORT_SYMBOL(page_frag_alloc_align);
4696 
4697 /*
4698  * Frees a page fragment allocated out of either a compound or order 0 page.
4699  */
4700 void page_frag_free(void *addr)
4701 {
4702 	struct page *page = virt_to_head_page(addr);
4703 
4704 	if (unlikely(put_page_testzero(page)))
4705 		free_the_page(page, compound_order(page));
4706 }
4707 EXPORT_SYMBOL(page_frag_free);
4708 
4709 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4710 		size_t size)
4711 {
4712 	if (addr) {
4713 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4714 		struct page *page = virt_to_page((void *)addr);
4715 		struct page *last = page + nr;
4716 
4717 		split_page_owner(page, 1 << order);
4718 		split_page_memcg(page, 1 << order);
4719 		while (page < --last)
4720 			set_page_refcounted(last);
4721 
4722 		last = page + (1UL << order);
4723 		for (page += nr; page < last; page++)
4724 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4725 	}
4726 	return (void *)addr;
4727 }
4728 
4729 /**
4730  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4731  * @size: the number of bytes to allocate
4732  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4733  *
4734  * This function is similar to alloc_pages(), except that it allocates the
4735  * minimum number of pages to satisfy the request.  alloc_pages() can only
4736  * allocate memory in power-of-two pages.
4737  *
4738  * This function is also limited by MAX_ORDER.
4739  *
4740  * Memory allocated by this function must be released by free_pages_exact().
4741  *
4742  * Return: pointer to the allocated area or %NULL in case of error.
4743  */
4744 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4745 {
4746 	unsigned int order = get_order(size);
4747 	unsigned long addr;
4748 
4749 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4750 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4751 
4752 	addr = __get_free_pages(gfp_mask, order);
4753 	return make_alloc_exact(addr, order, size);
4754 }
4755 EXPORT_SYMBOL(alloc_pages_exact);
4756 
4757 /**
4758  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4759  *			   pages on a node.
4760  * @nid: the preferred node ID where memory should be allocated
4761  * @size: the number of bytes to allocate
4762  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4763  *
4764  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4765  * back.
4766  *
4767  * Return: pointer to the allocated area or %NULL in case of error.
4768  */
4769 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4770 {
4771 	unsigned int order = get_order(size);
4772 	struct page *p;
4773 
4774 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4775 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4776 
4777 	p = alloc_pages_node(nid, gfp_mask, order);
4778 	if (!p)
4779 		return NULL;
4780 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4781 }
4782 
4783 /**
4784  * free_pages_exact - release memory allocated via alloc_pages_exact()
4785  * @virt: the value returned by alloc_pages_exact.
4786  * @size: size of allocation, same value as passed to alloc_pages_exact().
4787  *
4788  * Release the memory allocated by a previous call to alloc_pages_exact.
4789  */
4790 void free_pages_exact(void *virt, size_t size)
4791 {
4792 	unsigned long addr = (unsigned long)virt;
4793 	unsigned long end = addr + PAGE_ALIGN(size);
4794 
4795 	while (addr < end) {
4796 		free_page(addr);
4797 		addr += PAGE_SIZE;
4798 	}
4799 }
4800 EXPORT_SYMBOL(free_pages_exact);
4801 
4802 /**
4803  * nr_free_zone_pages - count number of pages beyond high watermark
4804  * @offset: The zone index of the highest zone
4805  *
4806  * nr_free_zone_pages() counts the number of pages which are beyond the
4807  * high watermark within all zones at or below a given zone index.  For each
4808  * zone, the number of pages is calculated as:
4809  *
4810  *     nr_free_zone_pages = managed_pages - high_pages
4811  *
4812  * Return: number of pages beyond high watermark.
4813  */
4814 static unsigned long nr_free_zone_pages(int offset)
4815 {
4816 	struct zoneref *z;
4817 	struct zone *zone;
4818 
4819 	/* Just pick one node, since fallback list is circular */
4820 	unsigned long sum = 0;
4821 
4822 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4823 
4824 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4825 		unsigned long size = zone_managed_pages(zone);
4826 		unsigned long high = high_wmark_pages(zone);
4827 		if (size > high)
4828 			sum += size - high;
4829 	}
4830 
4831 	return sum;
4832 }
4833 
4834 /**
4835  * nr_free_buffer_pages - count number of pages beyond high watermark
4836  *
4837  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4838  * watermark within ZONE_DMA and ZONE_NORMAL.
4839  *
4840  * Return: number of pages beyond high watermark within ZONE_DMA and
4841  * ZONE_NORMAL.
4842  */
4843 unsigned long nr_free_buffer_pages(void)
4844 {
4845 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4846 }
4847 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4848 
4849 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4850 {
4851 	zoneref->zone = zone;
4852 	zoneref->zone_idx = zone_idx(zone);
4853 }
4854 
4855 /*
4856  * Builds allocation fallback zone lists.
4857  *
4858  * Add all populated zones of a node to the zonelist.
4859  */
4860 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4861 {
4862 	struct zone *zone;
4863 	enum zone_type zone_type = MAX_NR_ZONES;
4864 	int nr_zones = 0;
4865 
4866 	do {
4867 		zone_type--;
4868 		zone = pgdat->node_zones + zone_type;
4869 		if (populated_zone(zone)) {
4870 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4871 			check_highest_zone(zone_type);
4872 		}
4873 	} while (zone_type);
4874 
4875 	return nr_zones;
4876 }
4877 
4878 #ifdef CONFIG_NUMA
4879 
4880 static int __parse_numa_zonelist_order(char *s)
4881 {
4882 	/*
4883 	 * We used to support different zonelists modes but they turned
4884 	 * out to be just not useful. Let's keep the warning in place
4885 	 * if somebody still use the cmd line parameter so that we do
4886 	 * not fail it silently
4887 	 */
4888 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4889 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4890 		return -EINVAL;
4891 	}
4892 	return 0;
4893 }
4894 
4895 static char numa_zonelist_order[] = "Node";
4896 #define NUMA_ZONELIST_ORDER_LEN	16
4897 /*
4898  * sysctl handler for numa_zonelist_order
4899  */
4900 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4901 		void *buffer, size_t *length, loff_t *ppos)
4902 {
4903 	if (write)
4904 		return __parse_numa_zonelist_order(buffer);
4905 	return proc_dostring(table, write, buffer, length, ppos);
4906 }
4907 
4908 static int node_load[MAX_NUMNODES];
4909 
4910 /**
4911  * find_next_best_node - find the next node that should appear in a given node's fallback list
4912  * @node: node whose fallback list we're appending
4913  * @used_node_mask: nodemask_t of already used nodes
4914  *
4915  * We use a number of factors to determine which is the next node that should
4916  * appear on a given node's fallback list.  The node should not have appeared
4917  * already in @node's fallback list, and it should be the next closest node
4918  * according to the distance array (which contains arbitrary distance values
4919  * from each node to each node in the system), and should also prefer nodes
4920  * with no CPUs, since presumably they'll have very little allocation pressure
4921  * on them otherwise.
4922  *
4923  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4924  */
4925 int find_next_best_node(int node, nodemask_t *used_node_mask)
4926 {
4927 	int n, val;
4928 	int min_val = INT_MAX;
4929 	int best_node = NUMA_NO_NODE;
4930 
4931 	/* Use the local node if we haven't already */
4932 	if (!node_isset(node, *used_node_mask)) {
4933 		node_set(node, *used_node_mask);
4934 		return node;
4935 	}
4936 
4937 	for_each_node_state(n, N_MEMORY) {
4938 
4939 		/* Don't want a node to appear more than once */
4940 		if (node_isset(n, *used_node_mask))
4941 			continue;
4942 
4943 		/* Use the distance array to find the distance */
4944 		val = node_distance(node, n);
4945 
4946 		/* Penalize nodes under us ("prefer the next node") */
4947 		val += (n < node);
4948 
4949 		/* Give preference to headless and unused nodes */
4950 		if (!cpumask_empty(cpumask_of_node(n)))
4951 			val += PENALTY_FOR_NODE_WITH_CPUS;
4952 
4953 		/* Slight preference for less loaded node */
4954 		val *= MAX_NUMNODES;
4955 		val += node_load[n];
4956 
4957 		if (val < min_val) {
4958 			min_val = val;
4959 			best_node = n;
4960 		}
4961 	}
4962 
4963 	if (best_node >= 0)
4964 		node_set(best_node, *used_node_mask);
4965 
4966 	return best_node;
4967 }
4968 
4969 
4970 /*
4971  * Build zonelists ordered by node and zones within node.
4972  * This results in maximum locality--normal zone overflows into local
4973  * DMA zone, if any--but risks exhausting DMA zone.
4974  */
4975 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4976 		unsigned nr_nodes)
4977 {
4978 	struct zoneref *zonerefs;
4979 	int i;
4980 
4981 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4982 
4983 	for (i = 0; i < nr_nodes; i++) {
4984 		int nr_zones;
4985 
4986 		pg_data_t *node = NODE_DATA(node_order[i]);
4987 
4988 		nr_zones = build_zonerefs_node(node, zonerefs);
4989 		zonerefs += nr_zones;
4990 	}
4991 	zonerefs->zone = NULL;
4992 	zonerefs->zone_idx = 0;
4993 }
4994 
4995 /*
4996  * Build gfp_thisnode zonelists
4997  */
4998 static void build_thisnode_zonelists(pg_data_t *pgdat)
4999 {
5000 	struct zoneref *zonerefs;
5001 	int nr_zones;
5002 
5003 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5004 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5005 	zonerefs += nr_zones;
5006 	zonerefs->zone = NULL;
5007 	zonerefs->zone_idx = 0;
5008 }
5009 
5010 /*
5011  * Build zonelists ordered by zone and nodes within zones.
5012  * This results in conserving DMA zone[s] until all Normal memory is
5013  * exhausted, but results in overflowing to remote node while memory
5014  * may still exist in local DMA zone.
5015  */
5016 
5017 static void build_zonelists(pg_data_t *pgdat)
5018 {
5019 	static int node_order[MAX_NUMNODES];
5020 	int node, nr_nodes = 0;
5021 	nodemask_t used_mask = NODE_MASK_NONE;
5022 	int local_node, prev_node;
5023 
5024 	/* NUMA-aware ordering of nodes */
5025 	local_node = pgdat->node_id;
5026 	prev_node = local_node;
5027 
5028 	memset(node_order, 0, sizeof(node_order));
5029 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5030 		/*
5031 		 * We don't want to pressure a particular node.
5032 		 * So adding penalty to the first node in same
5033 		 * distance group to make it round-robin.
5034 		 */
5035 		if (node_distance(local_node, node) !=
5036 		    node_distance(local_node, prev_node))
5037 			node_load[node] += 1;
5038 
5039 		node_order[nr_nodes++] = node;
5040 		prev_node = node;
5041 	}
5042 
5043 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5044 	build_thisnode_zonelists(pgdat);
5045 	pr_info("Fallback order for Node %d: ", local_node);
5046 	for (node = 0; node < nr_nodes; node++)
5047 		pr_cont("%d ", node_order[node]);
5048 	pr_cont("\n");
5049 }
5050 
5051 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5052 /*
5053  * Return node id of node used for "local" allocations.
5054  * I.e., first node id of first zone in arg node's generic zonelist.
5055  * Used for initializing percpu 'numa_mem', which is used primarily
5056  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5057  */
5058 int local_memory_node(int node)
5059 {
5060 	struct zoneref *z;
5061 
5062 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5063 				   gfp_zone(GFP_KERNEL),
5064 				   NULL);
5065 	return zone_to_nid(z->zone);
5066 }
5067 #endif
5068 
5069 static void setup_min_unmapped_ratio(void);
5070 static void setup_min_slab_ratio(void);
5071 #else	/* CONFIG_NUMA */
5072 
5073 static void build_zonelists(pg_data_t *pgdat)
5074 {
5075 	int node, local_node;
5076 	struct zoneref *zonerefs;
5077 	int nr_zones;
5078 
5079 	local_node = pgdat->node_id;
5080 
5081 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5082 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5083 	zonerefs += nr_zones;
5084 
5085 	/*
5086 	 * Now we build the zonelist so that it contains the zones
5087 	 * of all the other nodes.
5088 	 * We don't want to pressure a particular node, so when
5089 	 * building the zones for node N, we make sure that the
5090 	 * zones coming right after the local ones are those from
5091 	 * node N+1 (modulo N)
5092 	 */
5093 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5094 		if (!node_online(node))
5095 			continue;
5096 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5097 		zonerefs += nr_zones;
5098 	}
5099 	for (node = 0; node < local_node; node++) {
5100 		if (!node_online(node))
5101 			continue;
5102 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5103 		zonerefs += nr_zones;
5104 	}
5105 
5106 	zonerefs->zone = NULL;
5107 	zonerefs->zone_idx = 0;
5108 }
5109 
5110 #endif	/* CONFIG_NUMA */
5111 
5112 /*
5113  * Boot pageset table. One per cpu which is going to be used for all
5114  * zones and all nodes. The parameters will be set in such a way
5115  * that an item put on a list will immediately be handed over to
5116  * the buddy list. This is safe since pageset manipulation is done
5117  * with interrupts disabled.
5118  *
5119  * The boot_pagesets must be kept even after bootup is complete for
5120  * unused processors and/or zones. They do play a role for bootstrapping
5121  * hotplugged processors.
5122  *
5123  * zoneinfo_show() and maybe other functions do
5124  * not check if the processor is online before following the pageset pointer.
5125  * Other parts of the kernel may not check if the zone is available.
5126  */
5127 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5128 /* These effectively disable the pcplists in the boot pageset completely */
5129 #define BOOT_PAGESET_HIGH	0
5130 #define BOOT_PAGESET_BATCH	1
5131 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5132 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5133 
5134 static void __build_all_zonelists(void *data)
5135 {
5136 	int nid;
5137 	int __maybe_unused cpu;
5138 	pg_data_t *self = data;
5139 	unsigned long flags;
5140 
5141 	/*
5142 	 * Explicitly disable this CPU's interrupts before taking seqlock
5143 	 * to prevent any IRQ handler from calling into the page allocator
5144 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5145 	 */
5146 	local_irq_save(flags);
5147 	/*
5148 	 * Explicitly disable this CPU's synchronous printk() before taking
5149 	 * seqlock to prevent any printk() from trying to hold port->lock, for
5150 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5151 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5152 	 */
5153 	printk_deferred_enter();
5154 	write_seqlock(&zonelist_update_seq);
5155 
5156 #ifdef CONFIG_NUMA
5157 	memset(node_load, 0, sizeof(node_load));
5158 #endif
5159 
5160 	/*
5161 	 * This node is hotadded and no memory is yet present.   So just
5162 	 * building zonelists is fine - no need to touch other nodes.
5163 	 */
5164 	if (self && !node_online(self->node_id)) {
5165 		build_zonelists(self);
5166 	} else {
5167 		/*
5168 		 * All possible nodes have pgdat preallocated
5169 		 * in free_area_init
5170 		 */
5171 		for_each_node(nid) {
5172 			pg_data_t *pgdat = NODE_DATA(nid);
5173 
5174 			build_zonelists(pgdat);
5175 		}
5176 
5177 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5178 		/*
5179 		 * We now know the "local memory node" for each node--
5180 		 * i.e., the node of the first zone in the generic zonelist.
5181 		 * Set up numa_mem percpu variable for on-line cpus.  During
5182 		 * boot, only the boot cpu should be on-line;  we'll init the
5183 		 * secondary cpus' numa_mem as they come on-line.  During
5184 		 * node/memory hotplug, we'll fixup all on-line cpus.
5185 		 */
5186 		for_each_online_cpu(cpu)
5187 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5188 #endif
5189 	}
5190 
5191 	write_sequnlock(&zonelist_update_seq);
5192 	printk_deferred_exit();
5193 	local_irq_restore(flags);
5194 }
5195 
5196 static noinline void __init
5197 build_all_zonelists_init(void)
5198 {
5199 	int cpu;
5200 
5201 	__build_all_zonelists(NULL);
5202 
5203 	/*
5204 	 * Initialize the boot_pagesets that are going to be used
5205 	 * for bootstrapping processors. The real pagesets for
5206 	 * each zone will be allocated later when the per cpu
5207 	 * allocator is available.
5208 	 *
5209 	 * boot_pagesets are used also for bootstrapping offline
5210 	 * cpus if the system is already booted because the pagesets
5211 	 * are needed to initialize allocators on a specific cpu too.
5212 	 * F.e. the percpu allocator needs the page allocator which
5213 	 * needs the percpu allocator in order to allocate its pagesets
5214 	 * (a chicken-egg dilemma).
5215 	 */
5216 	for_each_possible_cpu(cpu)
5217 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5218 
5219 	mminit_verify_zonelist();
5220 	cpuset_init_current_mems_allowed();
5221 }
5222 
5223 /*
5224  * unless system_state == SYSTEM_BOOTING.
5225  *
5226  * __ref due to call of __init annotated helper build_all_zonelists_init
5227  * [protected by SYSTEM_BOOTING].
5228  */
5229 void __ref build_all_zonelists(pg_data_t *pgdat)
5230 {
5231 	unsigned long vm_total_pages;
5232 
5233 	if (system_state == SYSTEM_BOOTING) {
5234 		build_all_zonelists_init();
5235 	} else {
5236 		__build_all_zonelists(pgdat);
5237 		/* cpuset refresh routine should be here */
5238 	}
5239 	/* Get the number of free pages beyond high watermark in all zones. */
5240 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5241 	/*
5242 	 * Disable grouping by mobility if the number of pages in the
5243 	 * system is too low to allow the mechanism to work. It would be
5244 	 * more accurate, but expensive to check per-zone. This check is
5245 	 * made on memory-hotadd so a system can start with mobility
5246 	 * disabled and enable it later
5247 	 */
5248 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5249 		page_group_by_mobility_disabled = 1;
5250 	else
5251 		page_group_by_mobility_disabled = 0;
5252 
5253 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5254 		nr_online_nodes,
5255 		page_group_by_mobility_disabled ? "off" : "on",
5256 		vm_total_pages);
5257 #ifdef CONFIG_NUMA
5258 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5259 #endif
5260 }
5261 
5262 static int zone_batchsize(struct zone *zone)
5263 {
5264 #ifdef CONFIG_MMU
5265 	int batch;
5266 
5267 	/*
5268 	 * The number of pages to batch allocate is either ~0.1%
5269 	 * of the zone or 1MB, whichever is smaller. The batch
5270 	 * size is striking a balance between allocation latency
5271 	 * and zone lock contention.
5272 	 */
5273 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5274 	batch /= 4;		/* We effectively *= 4 below */
5275 	if (batch < 1)
5276 		batch = 1;
5277 
5278 	/*
5279 	 * Clamp the batch to a 2^n - 1 value. Having a power
5280 	 * of 2 value was found to be more likely to have
5281 	 * suboptimal cache aliasing properties in some cases.
5282 	 *
5283 	 * For example if 2 tasks are alternately allocating
5284 	 * batches of pages, one task can end up with a lot
5285 	 * of pages of one half of the possible page colors
5286 	 * and the other with pages of the other colors.
5287 	 */
5288 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5289 
5290 	return batch;
5291 
5292 #else
5293 	/* The deferral and batching of frees should be suppressed under NOMMU
5294 	 * conditions.
5295 	 *
5296 	 * The problem is that NOMMU needs to be able to allocate large chunks
5297 	 * of contiguous memory as there's no hardware page translation to
5298 	 * assemble apparent contiguous memory from discontiguous pages.
5299 	 *
5300 	 * Queueing large contiguous runs of pages for batching, however,
5301 	 * causes the pages to actually be freed in smaller chunks.  As there
5302 	 * can be a significant delay between the individual batches being
5303 	 * recycled, this leads to the once large chunks of space being
5304 	 * fragmented and becoming unavailable for high-order allocations.
5305 	 */
5306 	return 0;
5307 #endif
5308 }
5309 
5310 static int percpu_pagelist_high_fraction;
5311 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5312 {
5313 #ifdef CONFIG_MMU
5314 	int high;
5315 	int nr_split_cpus;
5316 	unsigned long total_pages;
5317 
5318 	if (!percpu_pagelist_high_fraction) {
5319 		/*
5320 		 * By default, the high value of the pcp is based on the zone
5321 		 * low watermark so that if they are full then background
5322 		 * reclaim will not be started prematurely.
5323 		 */
5324 		total_pages = low_wmark_pages(zone);
5325 	} else {
5326 		/*
5327 		 * If percpu_pagelist_high_fraction is configured, the high
5328 		 * value is based on a fraction of the managed pages in the
5329 		 * zone.
5330 		 */
5331 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5332 	}
5333 
5334 	/*
5335 	 * Split the high value across all online CPUs local to the zone. Note
5336 	 * that early in boot that CPUs may not be online yet and that during
5337 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5338 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5339 	 * all online CPUs to mitigate the risk that reclaim is triggered
5340 	 * prematurely due to pages stored on pcp lists.
5341 	 */
5342 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5343 	if (!nr_split_cpus)
5344 		nr_split_cpus = num_online_cpus();
5345 	high = total_pages / nr_split_cpus;
5346 
5347 	/*
5348 	 * Ensure high is at least batch*4. The multiple is based on the
5349 	 * historical relationship between high and batch.
5350 	 */
5351 	high = max(high, batch << 2);
5352 
5353 	return high;
5354 #else
5355 	return 0;
5356 #endif
5357 }
5358 
5359 /*
5360  * pcp->high and pcp->batch values are related and generally batch is lower
5361  * than high. They are also related to pcp->count such that count is lower
5362  * than high, and as soon as it reaches high, the pcplist is flushed.
5363  *
5364  * However, guaranteeing these relations at all times would require e.g. write
5365  * barriers here but also careful usage of read barriers at the read side, and
5366  * thus be prone to error and bad for performance. Thus the update only prevents
5367  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5368  * can cope with those fields changing asynchronously, and fully trust only the
5369  * pcp->count field on the local CPU with interrupts disabled.
5370  *
5371  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5372  * outside of boot time (or some other assurance that no concurrent updaters
5373  * exist).
5374  */
5375 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5376 		unsigned long batch)
5377 {
5378 	WRITE_ONCE(pcp->batch, batch);
5379 	WRITE_ONCE(pcp->high, high);
5380 }
5381 
5382 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5383 {
5384 	int pindex;
5385 
5386 	memset(pcp, 0, sizeof(*pcp));
5387 	memset(pzstats, 0, sizeof(*pzstats));
5388 
5389 	spin_lock_init(&pcp->lock);
5390 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5391 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5392 
5393 	/*
5394 	 * Set batch and high values safe for a boot pageset. A true percpu
5395 	 * pageset's initialization will update them subsequently. Here we don't
5396 	 * need to be as careful as pageset_update() as nobody can access the
5397 	 * pageset yet.
5398 	 */
5399 	pcp->high = BOOT_PAGESET_HIGH;
5400 	pcp->batch = BOOT_PAGESET_BATCH;
5401 	pcp->free_factor = 0;
5402 }
5403 
5404 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5405 		unsigned long batch)
5406 {
5407 	struct per_cpu_pages *pcp;
5408 	int cpu;
5409 
5410 	for_each_possible_cpu(cpu) {
5411 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5412 		pageset_update(pcp, high, batch);
5413 	}
5414 }
5415 
5416 /*
5417  * Calculate and set new high and batch values for all per-cpu pagesets of a
5418  * zone based on the zone's size.
5419  */
5420 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5421 {
5422 	int new_high, new_batch;
5423 
5424 	new_batch = max(1, zone_batchsize(zone));
5425 	new_high = zone_highsize(zone, new_batch, cpu_online);
5426 
5427 	if (zone->pageset_high == new_high &&
5428 	    zone->pageset_batch == new_batch)
5429 		return;
5430 
5431 	zone->pageset_high = new_high;
5432 	zone->pageset_batch = new_batch;
5433 
5434 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5435 }
5436 
5437 void __meminit setup_zone_pageset(struct zone *zone)
5438 {
5439 	int cpu;
5440 
5441 	/* Size may be 0 on !SMP && !NUMA */
5442 	if (sizeof(struct per_cpu_zonestat) > 0)
5443 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5444 
5445 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5446 	for_each_possible_cpu(cpu) {
5447 		struct per_cpu_pages *pcp;
5448 		struct per_cpu_zonestat *pzstats;
5449 
5450 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5451 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5452 		per_cpu_pages_init(pcp, pzstats);
5453 	}
5454 
5455 	zone_set_pageset_high_and_batch(zone, 0);
5456 }
5457 
5458 /*
5459  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5460  * page high values need to be recalculated.
5461  */
5462 static void zone_pcp_update(struct zone *zone, int cpu_online)
5463 {
5464 	mutex_lock(&pcp_batch_high_lock);
5465 	zone_set_pageset_high_and_batch(zone, cpu_online);
5466 	mutex_unlock(&pcp_batch_high_lock);
5467 }
5468 
5469 /*
5470  * Allocate per cpu pagesets and initialize them.
5471  * Before this call only boot pagesets were available.
5472  */
5473 void __init setup_per_cpu_pageset(void)
5474 {
5475 	struct pglist_data *pgdat;
5476 	struct zone *zone;
5477 	int __maybe_unused cpu;
5478 
5479 	for_each_populated_zone(zone)
5480 		setup_zone_pageset(zone);
5481 
5482 #ifdef CONFIG_NUMA
5483 	/*
5484 	 * Unpopulated zones continue using the boot pagesets.
5485 	 * The numa stats for these pagesets need to be reset.
5486 	 * Otherwise, they will end up skewing the stats of
5487 	 * the nodes these zones are associated with.
5488 	 */
5489 	for_each_possible_cpu(cpu) {
5490 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5491 		memset(pzstats->vm_numa_event, 0,
5492 		       sizeof(pzstats->vm_numa_event));
5493 	}
5494 #endif
5495 
5496 	for_each_online_pgdat(pgdat)
5497 		pgdat->per_cpu_nodestats =
5498 			alloc_percpu(struct per_cpu_nodestat);
5499 }
5500 
5501 __meminit void zone_pcp_init(struct zone *zone)
5502 {
5503 	/*
5504 	 * per cpu subsystem is not up at this point. The following code
5505 	 * relies on the ability of the linker to provide the
5506 	 * offset of a (static) per cpu variable into the per cpu area.
5507 	 */
5508 	zone->per_cpu_pageset = &boot_pageset;
5509 	zone->per_cpu_zonestats = &boot_zonestats;
5510 	zone->pageset_high = BOOT_PAGESET_HIGH;
5511 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5512 
5513 	if (populated_zone(zone))
5514 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5515 			 zone->present_pages, zone_batchsize(zone));
5516 }
5517 
5518 void adjust_managed_page_count(struct page *page, long count)
5519 {
5520 	atomic_long_add(count, &page_zone(page)->managed_pages);
5521 	totalram_pages_add(count);
5522 #ifdef CONFIG_HIGHMEM
5523 	if (PageHighMem(page))
5524 		totalhigh_pages_add(count);
5525 #endif
5526 }
5527 EXPORT_SYMBOL(adjust_managed_page_count);
5528 
5529 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5530 {
5531 	void *pos;
5532 	unsigned long pages = 0;
5533 
5534 	start = (void *)PAGE_ALIGN((unsigned long)start);
5535 	end = (void *)((unsigned long)end & PAGE_MASK);
5536 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5537 		struct page *page = virt_to_page(pos);
5538 		void *direct_map_addr;
5539 
5540 		/*
5541 		 * 'direct_map_addr' might be different from 'pos'
5542 		 * because some architectures' virt_to_page()
5543 		 * work with aliases.  Getting the direct map
5544 		 * address ensures that we get a _writeable_
5545 		 * alias for the memset().
5546 		 */
5547 		direct_map_addr = page_address(page);
5548 		/*
5549 		 * Perform a kasan-unchecked memset() since this memory
5550 		 * has not been initialized.
5551 		 */
5552 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5553 		if ((unsigned int)poison <= 0xFF)
5554 			memset(direct_map_addr, poison, PAGE_SIZE);
5555 
5556 		free_reserved_page(page);
5557 	}
5558 
5559 	if (pages && s)
5560 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5561 
5562 	return pages;
5563 }
5564 
5565 static int page_alloc_cpu_dead(unsigned int cpu)
5566 {
5567 	struct zone *zone;
5568 
5569 	lru_add_drain_cpu(cpu);
5570 	mlock_drain_remote(cpu);
5571 	drain_pages(cpu);
5572 
5573 	/*
5574 	 * Spill the event counters of the dead processor
5575 	 * into the current processors event counters.
5576 	 * This artificially elevates the count of the current
5577 	 * processor.
5578 	 */
5579 	vm_events_fold_cpu(cpu);
5580 
5581 	/*
5582 	 * Zero the differential counters of the dead processor
5583 	 * so that the vm statistics are consistent.
5584 	 *
5585 	 * This is only okay since the processor is dead and cannot
5586 	 * race with what we are doing.
5587 	 */
5588 	cpu_vm_stats_fold(cpu);
5589 
5590 	for_each_populated_zone(zone)
5591 		zone_pcp_update(zone, 0);
5592 
5593 	return 0;
5594 }
5595 
5596 static int page_alloc_cpu_online(unsigned int cpu)
5597 {
5598 	struct zone *zone;
5599 
5600 	for_each_populated_zone(zone)
5601 		zone_pcp_update(zone, 1);
5602 	return 0;
5603 }
5604 
5605 void __init page_alloc_init_cpuhp(void)
5606 {
5607 	int ret;
5608 
5609 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5610 					"mm/page_alloc:pcp",
5611 					page_alloc_cpu_online,
5612 					page_alloc_cpu_dead);
5613 	WARN_ON(ret < 0);
5614 }
5615 
5616 /*
5617  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5618  *	or min_free_kbytes changes.
5619  */
5620 static void calculate_totalreserve_pages(void)
5621 {
5622 	struct pglist_data *pgdat;
5623 	unsigned long reserve_pages = 0;
5624 	enum zone_type i, j;
5625 
5626 	for_each_online_pgdat(pgdat) {
5627 
5628 		pgdat->totalreserve_pages = 0;
5629 
5630 		for (i = 0; i < MAX_NR_ZONES; i++) {
5631 			struct zone *zone = pgdat->node_zones + i;
5632 			long max = 0;
5633 			unsigned long managed_pages = zone_managed_pages(zone);
5634 
5635 			/* Find valid and maximum lowmem_reserve in the zone */
5636 			for (j = i; j < MAX_NR_ZONES; j++) {
5637 				if (zone->lowmem_reserve[j] > max)
5638 					max = zone->lowmem_reserve[j];
5639 			}
5640 
5641 			/* we treat the high watermark as reserved pages. */
5642 			max += high_wmark_pages(zone);
5643 
5644 			if (max > managed_pages)
5645 				max = managed_pages;
5646 
5647 			pgdat->totalreserve_pages += max;
5648 
5649 			reserve_pages += max;
5650 		}
5651 	}
5652 	totalreserve_pages = reserve_pages;
5653 }
5654 
5655 /*
5656  * setup_per_zone_lowmem_reserve - called whenever
5657  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5658  *	has a correct pages reserved value, so an adequate number of
5659  *	pages are left in the zone after a successful __alloc_pages().
5660  */
5661 static void setup_per_zone_lowmem_reserve(void)
5662 {
5663 	struct pglist_data *pgdat;
5664 	enum zone_type i, j;
5665 
5666 	for_each_online_pgdat(pgdat) {
5667 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5668 			struct zone *zone = &pgdat->node_zones[i];
5669 			int ratio = sysctl_lowmem_reserve_ratio[i];
5670 			bool clear = !ratio || !zone_managed_pages(zone);
5671 			unsigned long managed_pages = 0;
5672 
5673 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5674 				struct zone *upper_zone = &pgdat->node_zones[j];
5675 
5676 				managed_pages += zone_managed_pages(upper_zone);
5677 
5678 				if (clear)
5679 					zone->lowmem_reserve[j] = 0;
5680 				else
5681 					zone->lowmem_reserve[j] = managed_pages / ratio;
5682 			}
5683 		}
5684 	}
5685 
5686 	/* update totalreserve_pages */
5687 	calculate_totalreserve_pages();
5688 }
5689 
5690 static void __setup_per_zone_wmarks(void)
5691 {
5692 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5693 	unsigned long lowmem_pages = 0;
5694 	struct zone *zone;
5695 	unsigned long flags;
5696 
5697 	/* Calculate total number of !ZONE_HIGHMEM pages */
5698 	for_each_zone(zone) {
5699 		if (!is_highmem(zone))
5700 			lowmem_pages += zone_managed_pages(zone);
5701 	}
5702 
5703 	for_each_zone(zone) {
5704 		u64 tmp;
5705 
5706 		spin_lock_irqsave(&zone->lock, flags);
5707 		tmp = (u64)pages_min * zone_managed_pages(zone);
5708 		do_div(tmp, lowmem_pages);
5709 		if (is_highmem(zone)) {
5710 			/*
5711 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5712 			 * need highmem pages, so cap pages_min to a small
5713 			 * value here.
5714 			 *
5715 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5716 			 * deltas control async page reclaim, and so should
5717 			 * not be capped for highmem.
5718 			 */
5719 			unsigned long min_pages;
5720 
5721 			min_pages = zone_managed_pages(zone) / 1024;
5722 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5723 			zone->_watermark[WMARK_MIN] = min_pages;
5724 		} else {
5725 			/*
5726 			 * If it's a lowmem zone, reserve a number of pages
5727 			 * proportionate to the zone's size.
5728 			 */
5729 			zone->_watermark[WMARK_MIN] = tmp;
5730 		}
5731 
5732 		/*
5733 		 * Set the kswapd watermarks distance according to the
5734 		 * scale factor in proportion to available memory, but
5735 		 * ensure a minimum size on small systems.
5736 		 */
5737 		tmp = max_t(u64, tmp >> 2,
5738 			    mult_frac(zone_managed_pages(zone),
5739 				      watermark_scale_factor, 10000));
5740 
5741 		zone->watermark_boost = 0;
5742 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5743 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5744 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5745 
5746 		spin_unlock_irqrestore(&zone->lock, flags);
5747 	}
5748 
5749 	/* update totalreserve_pages */
5750 	calculate_totalreserve_pages();
5751 }
5752 
5753 /**
5754  * setup_per_zone_wmarks - called when min_free_kbytes changes
5755  * or when memory is hot-{added|removed}
5756  *
5757  * Ensures that the watermark[min,low,high] values for each zone are set
5758  * correctly with respect to min_free_kbytes.
5759  */
5760 void setup_per_zone_wmarks(void)
5761 {
5762 	struct zone *zone;
5763 	static DEFINE_SPINLOCK(lock);
5764 
5765 	spin_lock(&lock);
5766 	__setup_per_zone_wmarks();
5767 	spin_unlock(&lock);
5768 
5769 	/*
5770 	 * The watermark size have changed so update the pcpu batch
5771 	 * and high limits or the limits may be inappropriate.
5772 	 */
5773 	for_each_zone(zone)
5774 		zone_pcp_update(zone, 0);
5775 }
5776 
5777 /*
5778  * Initialise min_free_kbytes.
5779  *
5780  * For small machines we want it small (128k min).  For large machines
5781  * we want it large (256MB max).  But it is not linear, because network
5782  * bandwidth does not increase linearly with machine size.  We use
5783  *
5784  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5785  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5786  *
5787  * which yields
5788  *
5789  * 16MB:	512k
5790  * 32MB:	724k
5791  * 64MB:	1024k
5792  * 128MB:	1448k
5793  * 256MB:	2048k
5794  * 512MB:	2896k
5795  * 1024MB:	4096k
5796  * 2048MB:	5792k
5797  * 4096MB:	8192k
5798  * 8192MB:	11584k
5799  * 16384MB:	16384k
5800  */
5801 void calculate_min_free_kbytes(void)
5802 {
5803 	unsigned long lowmem_kbytes;
5804 	int new_min_free_kbytes;
5805 
5806 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5807 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5808 
5809 	if (new_min_free_kbytes > user_min_free_kbytes)
5810 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5811 	else
5812 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5813 				new_min_free_kbytes, user_min_free_kbytes);
5814 
5815 }
5816 
5817 int __meminit init_per_zone_wmark_min(void)
5818 {
5819 	calculate_min_free_kbytes();
5820 	setup_per_zone_wmarks();
5821 	refresh_zone_stat_thresholds();
5822 	setup_per_zone_lowmem_reserve();
5823 
5824 #ifdef CONFIG_NUMA
5825 	setup_min_unmapped_ratio();
5826 	setup_min_slab_ratio();
5827 #endif
5828 
5829 	khugepaged_min_free_kbytes_update();
5830 
5831 	return 0;
5832 }
5833 postcore_initcall(init_per_zone_wmark_min)
5834 
5835 /*
5836  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5837  *	that we can call two helper functions whenever min_free_kbytes
5838  *	changes.
5839  */
5840 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5841 		void *buffer, size_t *length, loff_t *ppos)
5842 {
5843 	int rc;
5844 
5845 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5846 	if (rc)
5847 		return rc;
5848 
5849 	if (write) {
5850 		user_min_free_kbytes = min_free_kbytes;
5851 		setup_per_zone_wmarks();
5852 	}
5853 	return 0;
5854 }
5855 
5856 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5857 		void *buffer, size_t *length, loff_t *ppos)
5858 {
5859 	int rc;
5860 
5861 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5862 	if (rc)
5863 		return rc;
5864 
5865 	if (write)
5866 		setup_per_zone_wmarks();
5867 
5868 	return 0;
5869 }
5870 
5871 #ifdef CONFIG_NUMA
5872 static void setup_min_unmapped_ratio(void)
5873 {
5874 	pg_data_t *pgdat;
5875 	struct zone *zone;
5876 
5877 	for_each_online_pgdat(pgdat)
5878 		pgdat->min_unmapped_pages = 0;
5879 
5880 	for_each_zone(zone)
5881 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5882 						         sysctl_min_unmapped_ratio) / 100;
5883 }
5884 
5885 
5886 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5887 		void *buffer, size_t *length, loff_t *ppos)
5888 {
5889 	int rc;
5890 
5891 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5892 	if (rc)
5893 		return rc;
5894 
5895 	setup_min_unmapped_ratio();
5896 
5897 	return 0;
5898 }
5899 
5900 static void setup_min_slab_ratio(void)
5901 {
5902 	pg_data_t *pgdat;
5903 	struct zone *zone;
5904 
5905 	for_each_online_pgdat(pgdat)
5906 		pgdat->min_slab_pages = 0;
5907 
5908 	for_each_zone(zone)
5909 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5910 						     sysctl_min_slab_ratio) / 100;
5911 }
5912 
5913 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5914 		void *buffer, size_t *length, loff_t *ppos)
5915 {
5916 	int rc;
5917 
5918 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5919 	if (rc)
5920 		return rc;
5921 
5922 	setup_min_slab_ratio();
5923 
5924 	return 0;
5925 }
5926 #endif
5927 
5928 /*
5929  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5930  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5931  *	whenever sysctl_lowmem_reserve_ratio changes.
5932  *
5933  * The reserve ratio obviously has absolutely no relation with the
5934  * minimum watermarks. The lowmem reserve ratio can only make sense
5935  * if in function of the boot time zone sizes.
5936  */
5937 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5938 		int write, void *buffer, size_t *length, loff_t *ppos)
5939 {
5940 	int i;
5941 
5942 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5943 
5944 	for (i = 0; i < MAX_NR_ZONES; i++) {
5945 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5946 			sysctl_lowmem_reserve_ratio[i] = 0;
5947 	}
5948 
5949 	setup_per_zone_lowmem_reserve();
5950 	return 0;
5951 }
5952 
5953 /*
5954  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5955  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5956  * pagelist can have before it gets flushed back to buddy allocator.
5957  */
5958 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5959 		int write, void *buffer, size_t *length, loff_t *ppos)
5960 {
5961 	struct zone *zone;
5962 	int old_percpu_pagelist_high_fraction;
5963 	int ret;
5964 
5965 	mutex_lock(&pcp_batch_high_lock);
5966 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5967 
5968 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5969 	if (!write || ret < 0)
5970 		goto out;
5971 
5972 	/* Sanity checking to avoid pcp imbalance */
5973 	if (percpu_pagelist_high_fraction &&
5974 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5975 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5976 		ret = -EINVAL;
5977 		goto out;
5978 	}
5979 
5980 	/* No change? */
5981 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5982 		goto out;
5983 
5984 	for_each_populated_zone(zone)
5985 		zone_set_pageset_high_and_batch(zone, 0);
5986 out:
5987 	mutex_unlock(&pcp_batch_high_lock);
5988 	return ret;
5989 }
5990 
5991 static struct ctl_table page_alloc_sysctl_table[] = {
5992 	{
5993 		.procname	= "min_free_kbytes",
5994 		.data		= &min_free_kbytes,
5995 		.maxlen		= sizeof(min_free_kbytes),
5996 		.mode		= 0644,
5997 		.proc_handler	= min_free_kbytes_sysctl_handler,
5998 		.extra1		= SYSCTL_ZERO,
5999 	},
6000 	{
6001 		.procname	= "watermark_boost_factor",
6002 		.data		= &watermark_boost_factor,
6003 		.maxlen		= sizeof(watermark_boost_factor),
6004 		.mode		= 0644,
6005 		.proc_handler	= proc_dointvec_minmax,
6006 		.extra1		= SYSCTL_ZERO,
6007 	},
6008 	{
6009 		.procname	= "watermark_scale_factor",
6010 		.data		= &watermark_scale_factor,
6011 		.maxlen		= sizeof(watermark_scale_factor),
6012 		.mode		= 0644,
6013 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6014 		.extra1		= SYSCTL_ONE,
6015 		.extra2		= SYSCTL_THREE_THOUSAND,
6016 	},
6017 	{
6018 		.procname	= "percpu_pagelist_high_fraction",
6019 		.data		= &percpu_pagelist_high_fraction,
6020 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6021 		.mode		= 0644,
6022 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6023 		.extra1		= SYSCTL_ZERO,
6024 	},
6025 	{
6026 		.procname	= "lowmem_reserve_ratio",
6027 		.data		= &sysctl_lowmem_reserve_ratio,
6028 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6029 		.mode		= 0644,
6030 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6031 	},
6032 #ifdef CONFIG_NUMA
6033 	{
6034 		.procname	= "numa_zonelist_order",
6035 		.data		= &numa_zonelist_order,
6036 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6037 		.mode		= 0644,
6038 		.proc_handler	= numa_zonelist_order_handler,
6039 	},
6040 	{
6041 		.procname	= "min_unmapped_ratio",
6042 		.data		= &sysctl_min_unmapped_ratio,
6043 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6044 		.mode		= 0644,
6045 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6046 		.extra1		= SYSCTL_ZERO,
6047 		.extra2		= SYSCTL_ONE_HUNDRED,
6048 	},
6049 	{
6050 		.procname	= "min_slab_ratio",
6051 		.data		= &sysctl_min_slab_ratio,
6052 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6053 		.mode		= 0644,
6054 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6055 		.extra1		= SYSCTL_ZERO,
6056 		.extra2		= SYSCTL_ONE_HUNDRED,
6057 	},
6058 #endif
6059 	{}
6060 };
6061 
6062 void __init page_alloc_sysctl_init(void)
6063 {
6064 	register_sysctl_init("vm", page_alloc_sysctl_table);
6065 }
6066 
6067 #ifdef CONFIG_CONTIG_ALLOC
6068 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6069 static void alloc_contig_dump_pages(struct list_head *page_list)
6070 {
6071 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6072 
6073 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6074 		struct page *page;
6075 
6076 		dump_stack();
6077 		list_for_each_entry(page, page_list, lru)
6078 			dump_page(page, "migration failure");
6079 	}
6080 }
6081 
6082 /* [start, end) must belong to a single zone. */
6083 int __alloc_contig_migrate_range(struct compact_control *cc,
6084 					unsigned long start, unsigned long end)
6085 {
6086 	/* This function is based on compact_zone() from compaction.c. */
6087 	unsigned int nr_reclaimed;
6088 	unsigned long pfn = start;
6089 	unsigned int tries = 0;
6090 	int ret = 0;
6091 	struct migration_target_control mtc = {
6092 		.nid = zone_to_nid(cc->zone),
6093 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6094 	};
6095 
6096 	lru_cache_disable();
6097 
6098 	while (pfn < end || !list_empty(&cc->migratepages)) {
6099 		if (fatal_signal_pending(current)) {
6100 			ret = -EINTR;
6101 			break;
6102 		}
6103 
6104 		if (list_empty(&cc->migratepages)) {
6105 			cc->nr_migratepages = 0;
6106 			ret = isolate_migratepages_range(cc, pfn, end);
6107 			if (ret && ret != -EAGAIN)
6108 				break;
6109 			pfn = cc->migrate_pfn;
6110 			tries = 0;
6111 		} else if (++tries == 5) {
6112 			ret = -EBUSY;
6113 			break;
6114 		}
6115 
6116 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6117 							&cc->migratepages);
6118 		cc->nr_migratepages -= nr_reclaimed;
6119 
6120 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6121 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6122 
6123 		/*
6124 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6125 		 * to retry again over this error, so do the same here.
6126 		 */
6127 		if (ret == -ENOMEM)
6128 			break;
6129 	}
6130 
6131 	lru_cache_enable();
6132 	if (ret < 0) {
6133 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6134 			alloc_contig_dump_pages(&cc->migratepages);
6135 		putback_movable_pages(&cc->migratepages);
6136 		return ret;
6137 	}
6138 	return 0;
6139 }
6140 
6141 /**
6142  * alloc_contig_range() -- tries to allocate given range of pages
6143  * @start:	start PFN to allocate
6144  * @end:	one-past-the-last PFN to allocate
6145  * @migratetype:	migratetype of the underlying pageblocks (either
6146  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6147  *			in range must have the same migratetype and it must
6148  *			be either of the two.
6149  * @gfp_mask:	GFP mask to use during compaction
6150  *
6151  * The PFN range does not have to be pageblock aligned. The PFN range must
6152  * belong to a single zone.
6153  *
6154  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6155  * pageblocks in the range.  Once isolated, the pageblocks should not
6156  * be modified by others.
6157  *
6158  * Return: zero on success or negative error code.  On success all
6159  * pages which PFN is in [start, end) are allocated for the caller and
6160  * need to be freed with free_contig_range().
6161  */
6162 int alloc_contig_range(unsigned long start, unsigned long end,
6163 		       unsigned migratetype, gfp_t gfp_mask)
6164 {
6165 	unsigned long outer_start, outer_end;
6166 	int order;
6167 	int ret = 0;
6168 
6169 	struct compact_control cc = {
6170 		.nr_migratepages = 0,
6171 		.order = -1,
6172 		.zone = page_zone(pfn_to_page(start)),
6173 		.mode = MIGRATE_SYNC,
6174 		.ignore_skip_hint = true,
6175 		.no_set_skip_hint = true,
6176 		.gfp_mask = current_gfp_context(gfp_mask),
6177 		.alloc_contig = true,
6178 	};
6179 	INIT_LIST_HEAD(&cc.migratepages);
6180 
6181 	/*
6182 	 * What we do here is we mark all pageblocks in range as
6183 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6184 	 * have different sizes, and due to the way page allocator
6185 	 * work, start_isolate_page_range() has special handlings for this.
6186 	 *
6187 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6188 	 * migrate the pages from an unaligned range (ie. pages that
6189 	 * we are interested in). This will put all the pages in
6190 	 * range back to page allocator as MIGRATE_ISOLATE.
6191 	 *
6192 	 * When this is done, we take the pages in range from page
6193 	 * allocator removing them from the buddy system.  This way
6194 	 * page allocator will never consider using them.
6195 	 *
6196 	 * This lets us mark the pageblocks back as
6197 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6198 	 * aligned range but not in the unaligned, original range are
6199 	 * put back to page allocator so that buddy can use them.
6200 	 */
6201 
6202 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6203 	if (ret)
6204 		goto done;
6205 
6206 	drain_all_pages(cc.zone);
6207 
6208 	/*
6209 	 * In case of -EBUSY, we'd like to know which page causes problem.
6210 	 * So, just fall through. test_pages_isolated() has a tracepoint
6211 	 * which will report the busy page.
6212 	 *
6213 	 * It is possible that busy pages could become available before
6214 	 * the call to test_pages_isolated, and the range will actually be
6215 	 * allocated.  So, if we fall through be sure to clear ret so that
6216 	 * -EBUSY is not accidentally used or returned to caller.
6217 	 */
6218 	ret = __alloc_contig_migrate_range(&cc, start, end);
6219 	if (ret && ret != -EBUSY)
6220 		goto done;
6221 	ret = 0;
6222 
6223 	/*
6224 	 * Pages from [start, end) are within a pageblock_nr_pages
6225 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6226 	 * more, all pages in [start, end) are free in page allocator.
6227 	 * What we are going to do is to allocate all pages from
6228 	 * [start, end) (that is remove them from page allocator).
6229 	 *
6230 	 * The only problem is that pages at the beginning and at the
6231 	 * end of interesting range may be not aligned with pages that
6232 	 * page allocator holds, ie. they can be part of higher order
6233 	 * pages.  Because of this, we reserve the bigger range and
6234 	 * once this is done free the pages we are not interested in.
6235 	 *
6236 	 * We don't have to hold zone->lock here because the pages are
6237 	 * isolated thus they won't get removed from buddy.
6238 	 */
6239 
6240 	order = 0;
6241 	outer_start = start;
6242 	while (!PageBuddy(pfn_to_page(outer_start))) {
6243 		if (++order > MAX_ORDER) {
6244 			outer_start = start;
6245 			break;
6246 		}
6247 		outer_start &= ~0UL << order;
6248 	}
6249 
6250 	if (outer_start != start) {
6251 		order = buddy_order(pfn_to_page(outer_start));
6252 
6253 		/*
6254 		 * outer_start page could be small order buddy page and
6255 		 * it doesn't include start page. Adjust outer_start
6256 		 * in this case to report failed page properly
6257 		 * on tracepoint in test_pages_isolated()
6258 		 */
6259 		if (outer_start + (1UL << order) <= start)
6260 			outer_start = start;
6261 	}
6262 
6263 	/* Make sure the range is really isolated. */
6264 	if (test_pages_isolated(outer_start, end, 0)) {
6265 		ret = -EBUSY;
6266 		goto done;
6267 	}
6268 
6269 	/* Grab isolated pages from freelists. */
6270 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6271 	if (!outer_end) {
6272 		ret = -EBUSY;
6273 		goto done;
6274 	}
6275 
6276 	/* Free head and tail (if any) */
6277 	if (start != outer_start)
6278 		free_contig_range(outer_start, start - outer_start);
6279 	if (end != outer_end)
6280 		free_contig_range(end, outer_end - end);
6281 
6282 done:
6283 	undo_isolate_page_range(start, end, migratetype);
6284 	return ret;
6285 }
6286 EXPORT_SYMBOL(alloc_contig_range);
6287 
6288 static int __alloc_contig_pages(unsigned long start_pfn,
6289 				unsigned long nr_pages, gfp_t gfp_mask)
6290 {
6291 	unsigned long end_pfn = start_pfn + nr_pages;
6292 
6293 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6294 				  gfp_mask);
6295 }
6296 
6297 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6298 				   unsigned long nr_pages)
6299 {
6300 	unsigned long i, end_pfn = start_pfn + nr_pages;
6301 	struct page *page;
6302 
6303 	for (i = start_pfn; i < end_pfn; i++) {
6304 		page = pfn_to_online_page(i);
6305 		if (!page)
6306 			return false;
6307 
6308 		if (page_zone(page) != z)
6309 			return false;
6310 
6311 		if (PageReserved(page))
6312 			return false;
6313 
6314 		if (PageHuge(page))
6315 			return false;
6316 	}
6317 	return true;
6318 }
6319 
6320 static bool zone_spans_last_pfn(const struct zone *zone,
6321 				unsigned long start_pfn, unsigned long nr_pages)
6322 {
6323 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6324 
6325 	return zone_spans_pfn(zone, last_pfn);
6326 }
6327 
6328 /**
6329  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6330  * @nr_pages:	Number of contiguous pages to allocate
6331  * @gfp_mask:	GFP mask to limit search and used during compaction
6332  * @nid:	Target node
6333  * @nodemask:	Mask for other possible nodes
6334  *
6335  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6336  * on an applicable zonelist to find a contiguous pfn range which can then be
6337  * tried for allocation with alloc_contig_range(). This routine is intended
6338  * for allocation requests which can not be fulfilled with the buddy allocator.
6339  *
6340  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6341  * power of two, then allocated range is also guaranteed to be aligned to same
6342  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6343  *
6344  * Allocated pages can be freed with free_contig_range() or by manually calling
6345  * __free_page() on each allocated page.
6346  *
6347  * Return: pointer to contiguous pages on success, or NULL if not successful.
6348  */
6349 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6350 				int nid, nodemask_t *nodemask)
6351 {
6352 	unsigned long ret, pfn, flags;
6353 	struct zonelist *zonelist;
6354 	struct zone *zone;
6355 	struct zoneref *z;
6356 
6357 	zonelist = node_zonelist(nid, gfp_mask);
6358 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6359 					gfp_zone(gfp_mask), nodemask) {
6360 		spin_lock_irqsave(&zone->lock, flags);
6361 
6362 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6363 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6364 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6365 				/*
6366 				 * We release the zone lock here because
6367 				 * alloc_contig_range() will also lock the zone
6368 				 * at some point. If there's an allocation
6369 				 * spinning on this lock, it may win the race
6370 				 * and cause alloc_contig_range() to fail...
6371 				 */
6372 				spin_unlock_irqrestore(&zone->lock, flags);
6373 				ret = __alloc_contig_pages(pfn, nr_pages,
6374 							gfp_mask);
6375 				if (!ret)
6376 					return pfn_to_page(pfn);
6377 				spin_lock_irqsave(&zone->lock, flags);
6378 			}
6379 			pfn += nr_pages;
6380 		}
6381 		spin_unlock_irqrestore(&zone->lock, flags);
6382 	}
6383 	return NULL;
6384 }
6385 #endif /* CONFIG_CONTIG_ALLOC */
6386 
6387 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6388 {
6389 	unsigned long count = 0;
6390 
6391 	for (; nr_pages--; pfn++) {
6392 		struct page *page = pfn_to_page(pfn);
6393 
6394 		count += page_count(page) != 1;
6395 		__free_page(page);
6396 	}
6397 	WARN(count != 0, "%lu pages are still in use!\n", count);
6398 }
6399 EXPORT_SYMBOL(free_contig_range);
6400 
6401 /*
6402  * Effectively disable pcplists for the zone by setting the high limit to 0
6403  * and draining all cpus. A concurrent page freeing on another CPU that's about
6404  * to put the page on pcplist will either finish before the drain and the page
6405  * will be drained, or observe the new high limit and skip the pcplist.
6406  *
6407  * Must be paired with a call to zone_pcp_enable().
6408  */
6409 void zone_pcp_disable(struct zone *zone)
6410 {
6411 	mutex_lock(&pcp_batch_high_lock);
6412 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6413 	__drain_all_pages(zone, true);
6414 }
6415 
6416 void zone_pcp_enable(struct zone *zone)
6417 {
6418 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6419 	mutex_unlock(&pcp_batch_high_lock);
6420 }
6421 
6422 void zone_pcp_reset(struct zone *zone)
6423 {
6424 	int cpu;
6425 	struct per_cpu_zonestat *pzstats;
6426 
6427 	if (zone->per_cpu_pageset != &boot_pageset) {
6428 		for_each_online_cpu(cpu) {
6429 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6430 			drain_zonestat(zone, pzstats);
6431 		}
6432 		free_percpu(zone->per_cpu_pageset);
6433 		zone->per_cpu_pageset = &boot_pageset;
6434 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6435 			free_percpu(zone->per_cpu_zonestats);
6436 			zone->per_cpu_zonestats = &boot_zonestats;
6437 		}
6438 	}
6439 }
6440 
6441 #ifdef CONFIG_MEMORY_HOTREMOVE
6442 /*
6443  * All pages in the range must be in a single zone, must not contain holes,
6444  * must span full sections, and must be isolated before calling this function.
6445  */
6446 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6447 {
6448 	unsigned long pfn = start_pfn;
6449 	struct page *page;
6450 	struct zone *zone;
6451 	unsigned int order;
6452 	unsigned long flags;
6453 
6454 	offline_mem_sections(pfn, end_pfn);
6455 	zone = page_zone(pfn_to_page(pfn));
6456 	spin_lock_irqsave(&zone->lock, flags);
6457 	while (pfn < end_pfn) {
6458 		page = pfn_to_page(pfn);
6459 		/*
6460 		 * The HWPoisoned page may be not in buddy system, and
6461 		 * page_count() is not 0.
6462 		 */
6463 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6464 			pfn++;
6465 			continue;
6466 		}
6467 		/*
6468 		 * At this point all remaining PageOffline() pages have a
6469 		 * reference count of 0 and can simply be skipped.
6470 		 */
6471 		if (PageOffline(page)) {
6472 			BUG_ON(page_count(page));
6473 			BUG_ON(PageBuddy(page));
6474 			pfn++;
6475 			continue;
6476 		}
6477 
6478 		BUG_ON(page_count(page));
6479 		BUG_ON(!PageBuddy(page));
6480 		order = buddy_order(page);
6481 		del_page_from_free_list(page, zone, order);
6482 		pfn += (1 << order);
6483 	}
6484 	spin_unlock_irqrestore(&zone->lock, flags);
6485 }
6486 #endif
6487 
6488 /*
6489  * This function returns a stable result only if called under zone lock.
6490  */
6491 bool is_free_buddy_page(struct page *page)
6492 {
6493 	unsigned long pfn = page_to_pfn(page);
6494 	unsigned int order;
6495 
6496 	for (order = 0; order <= MAX_ORDER; order++) {
6497 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6498 
6499 		if (PageBuddy(page_head) &&
6500 		    buddy_order_unsafe(page_head) >= order)
6501 			break;
6502 	}
6503 
6504 	return order <= MAX_ORDER;
6505 }
6506 EXPORT_SYMBOL(is_free_buddy_page);
6507 
6508 #ifdef CONFIG_MEMORY_FAILURE
6509 /*
6510  * Break down a higher-order page in sub-pages, and keep our target out of
6511  * buddy allocator.
6512  */
6513 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6514 				   struct page *target, int low, int high,
6515 				   int migratetype)
6516 {
6517 	unsigned long size = 1 << high;
6518 	struct page *current_buddy, *next_page;
6519 
6520 	while (high > low) {
6521 		high--;
6522 		size >>= 1;
6523 
6524 		if (target >= &page[size]) {
6525 			next_page = page + size;
6526 			current_buddy = page;
6527 		} else {
6528 			next_page = page;
6529 			current_buddy = page + size;
6530 		}
6531 
6532 		if (set_page_guard(zone, current_buddy, high, migratetype))
6533 			continue;
6534 
6535 		if (current_buddy != target) {
6536 			add_to_free_list(current_buddy, zone, high, migratetype);
6537 			set_buddy_order(current_buddy, high);
6538 			page = next_page;
6539 		}
6540 	}
6541 }
6542 
6543 /*
6544  * Take a page that will be marked as poisoned off the buddy allocator.
6545  */
6546 bool take_page_off_buddy(struct page *page)
6547 {
6548 	struct zone *zone = page_zone(page);
6549 	unsigned long pfn = page_to_pfn(page);
6550 	unsigned long flags;
6551 	unsigned int order;
6552 	bool ret = false;
6553 
6554 	spin_lock_irqsave(&zone->lock, flags);
6555 	for (order = 0; order <= MAX_ORDER; order++) {
6556 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6557 		int page_order = buddy_order(page_head);
6558 
6559 		if (PageBuddy(page_head) && page_order >= order) {
6560 			unsigned long pfn_head = page_to_pfn(page_head);
6561 			int migratetype = get_pfnblock_migratetype(page_head,
6562 								   pfn_head);
6563 
6564 			del_page_from_free_list(page_head, zone, page_order);
6565 			break_down_buddy_pages(zone, page_head, page, 0,
6566 						page_order, migratetype);
6567 			SetPageHWPoisonTakenOff(page);
6568 			if (!is_migrate_isolate(migratetype))
6569 				__mod_zone_freepage_state(zone, -1, migratetype);
6570 			ret = true;
6571 			break;
6572 		}
6573 		if (page_count(page_head) > 0)
6574 			break;
6575 	}
6576 	spin_unlock_irqrestore(&zone->lock, flags);
6577 	return ret;
6578 }
6579 
6580 /*
6581  * Cancel takeoff done by take_page_off_buddy().
6582  */
6583 bool put_page_back_buddy(struct page *page)
6584 {
6585 	struct zone *zone = page_zone(page);
6586 	unsigned long pfn = page_to_pfn(page);
6587 	unsigned long flags;
6588 	int migratetype = get_pfnblock_migratetype(page, pfn);
6589 	bool ret = false;
6590 
6591 	spin_lock_irqsave(&zone->lock, flags);
6592 	if (put_page_testzero(page)) {
6593 		ClearPageHWPoisonTakenOff(page);
6594 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6595 		if (TestClearPageHWPoison(page)) {
6596 			ret = true;
6597 		}
6598 	}
6599 	spin_unlock_irqrestore(&zone->lock, flags);
6600 
6601 	return ret;
6602 }
6603 #endif
6604 
6605 #ifdef CONFIG_ZONE_DMA
6606 bool has_managed_dma(void)
6607 {
6608 	struct pglist_data *pgdat;
6609 
6610 	for_each_online_pgdat(pgdat) {
6611 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6612 
6613 		if (managed_zone(zone))
6614 			return true;
6615 	}
6616 	return false;
6617 }
6618 #endif /* CONFIG_ZONE_DMA */
6619 
6620 #ifdef CONFIG_UNACCEPTED_MEMORY
6621 
6622 /* Counts number of zones with unaccepted pages. */
6623 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6624 
6625 static bool lazy_accept = true;
6626 
6627 static int __init accept_memory_parse(char *p)
6628 {
6629 	if (!strcmp(p, "lazy")) {
6630 		lazy_accept = true;
6631 		return 0;
6632 	} else if (!strcmp(p, "eager")) {
6633 		lazy_accept = false;
6634 		return 0;
6635 	} else {
6636 		return -EINVAL;
6637 	}
6638 }
6639 early_param("accept_memory", accept_memory_parse);
6640 
6641 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6642 {
6643 	phys_addr_t start = page_to_phys(page);
6644 	phys_addr_t end = start + (PAGE_SIZE << order);
6645 
6646 	return range_contains_unaccepted_memory(start, end);
6647 }
6648 
6649 static void accept_page(struct page *page, unsigned int order)
6650 {
6651 	phys_addr_t start = page_to_phys(page);
6652 
6653 	accept_memory(start, start + (PAGE_SIZE << order));
6654 }
6655 
6656 static bool try_to_accept_memory_one(struct zone *zone)
6657 {
6658 	unsigned long flags;
6659 	struct page *page;
6660 	bool last;
6661 
6662 	if (list_empty(&zone->unaccepted_pages))
6663 		return false;
6664 
6665 	spin_lock_irqsave(&zone->lock, flags);
6666 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6667 					struct page, lru);
6668 	if (!page) {
6669 		spin_unlock_irqrestore(&zone->lock, flags);
6670 		return false;
6671 	}
6672 
6673 	list_del(&page->lru);
6674 	last = list_empty(&zone->unaccepted_pages);
6675 
6676 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6677 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6678 	spin_unlock_irqrestore(&zone->lock, flags);
6679 
6680 	accept_page(page, MAX_ORDER);
6681 
6682 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6683 
6684 	if (last)
6685 		static_branch_dec(&zones_with_unaccepted_pages);
6686 
6687 	return true;
6688 }
6689 
6690 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6691 {
6692 	long to_accept;
6693 	int ret = false;
6694 
6695 	/* How much to accept to get to high watermark? */
6696 	to_accept = high_wmark_pages(zone) -
6697 		    (zone_page_state(zone, NR_FREE_PAGES) -
6698 		    __zone_watermark_unusable_free(zone, order, 0));
6699 
6700 	/* Accept at least one page */
6701 	do {
6702 		if (!try_to_accept_memory_one(zone))
6703 			break;
6704 		ret = true;
6705 		to_accept -= MAX_ORDER_NR_PAGES;
6706 	} while (to_accept > 0);
6707 
6708 	return ret;
6709 }
6710 
6711 static inline bool has_unaccepted_memory(void)
6712 {
6713 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6714 }
6715 
6716 static bool __free_unaccepted(struct page *page)
6717 {
6718 	struct zone *zone = page_zone(page);
6719 	unsigned long flags;
6720 	bool first = false;
6721 
6722 	if (!lazy_accept)
6723 		return false;
6724 
6725 	spin_lock_irqsave(&zone->lock, flags);
6726 	first = list_empty(&zone->unaccepted_pages);
6727 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6728 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6729 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6730 	spin_unlock_irqrestore(&zone->lock, flags);
6731 
6732 	if (first)
6733 		static_branch_inc(&zones_with_unaccepted_pages);
6734 
6735 	return true;
6736 }
6737 
6738 #else
6739 
6740 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6741 {
6742 	return false;
6743 }
6744 
6745 static void accept_page(struct page *page, unsigned int order)
6746 {
6747 }
6748 
6749 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6750 {
6751 	return false;
6752 }
6753 
6754 static inline bool has_unaccepted_memory(void)
6755 {
6756 	return false;
6757 }
6758 
6759 static bool __free_unaccepted(struct page *page)
6760 {
6761 	BUILD_BUG();
6762 	return false;
6763 }
6764 
6765 #endif /* CONFIG_UNACCEPTED_MEMORY */
6766