1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_trylock(type, member, ptr) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 if (!spin_trylock(&_ret->member)) { \ 179 pcpu_task_unpin(); \ 180 _ret = NULL; \ 181 } \ 182 _ret; \ 183 }) 184 185 #define pcpu_spin_unlock(member, ptr) \ 186 ({ \ 187 spin_unlock(&ptr->member); \ 188 pcpu_task_unpin(); \ 189 }) 190 191 /* struct per_cpu_pages specific helpers. */ 192 #define pcp_spin_lock(ptr) \ 193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 194 195 #define pcp_spin_trylock(ptr) \ 196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 197 198 #define pcp_spin_unlock(ptr) \ 199 pcpu_spin_unlock(lock, ptr) 200 201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 202 DEFINE_PER_CPU(int, numa_node); 203 EXPORT_PER_CPU_SYMBOL(numa_node); 204 #endif 205 206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 207 208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 209 /* 210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 213 * defined in <linux/topology.h>. 214 */ 215 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 216 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 217 #endif 218 219 static DEFINE_MUTEX(pcpu_drain_mutex); 220 221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 222 volatile unsigned long latent_entropy __latent_entropy; 223 EXPORT_SYMBOL(latent_entropy); 224 #endif 225 226 /* 227 * Array of node states. 228 */ 229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 230 [N_POSSIBLE] = NODE_MASK_ALL, 231 [N_ONLINE] = { { [0] = 1UL } }, 232 #ifndef CONFIG_NUMA 233 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 234 #ifdef CONFIG_HIGHMEM 235 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 236 #endif 237 [N_MEMORY] = { { [0] = 1UL } }, 238 [N_CPU] = { { [0] = 1UL } }, 239 #endif /* NUMA */ 240 }; 241 EXPORT_SYMBOL(node_states); 242 243 atomic_long_t _totalram_pages __read_mostly; 244 EXPORT_SYMBOL(_totalram_pages); 245 unsigned long totalreserve_pages __read_mostly; 246 unsigned long totalcma_pages __read_mostly; 247 248 int percpu_pagelist_high_fraction; 249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 251 EXPORT_SYMBOL(init_on_alloc); 252 253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 254 EXPORT_SYMBOL(init_on_free); 255 256 static bool _init_on_alloc_enabled_early __read_mostly 257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 258 static int __init early_init_on_alloc(char *buf) 259 { 260 261 return kstrtobool(buf, &_init_on_alloc_enabled_early); 262 } 263 early_param("init_on_alloc", early_init_on_alloc); 264 265 static bool _init_on_free_enabled_early __read_mostly 266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 267 static int __init early_init_on_free(char *buf) 268 { 269 return kstrtobool(buf, &_init_on_free_enabled_early); 270 } 271 early_param("init_on_free", early_init_on_free); 272 273 /* 274 * A cached value of the page's pageblock's migratetype, used when the page is 275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 276 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 277 * Also the migratetype set in the page does not necessarily match the pcplist 278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 279 * other index - this ensures that it will be put on the correct CMA freelist. 280 */ 281 static inline int get_pcppage_migratetype(struct page *page) 282 { 283 return page->index; 284 } 285 286 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 287 { 288 page->index = migratetype; 289 } 290 291 #ifdef CONFIG_PM_SLEEP 292 /* 293 * The following functions are used by the suspend/hibernate code to temporarily 294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 295 * while devices are suspended. To avoid races with the suspend/hibernate code, 296 * they should always be called with system_transition_mutex held 297 * (gfp_allowed_mask also should only be modified with system_transition_mutex 298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 299 * with that modification). 300 */ 301 302 static gfp_t saved_gfp_mask; 303 304 void pm_restore_gfp_mask(void) 305 { 306 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 307 if (saved_gfp_mask) { 308 gfp_allowed_mask = saved_gfp_mask; 309 saved_gfp_mask = 0; 310 } 311 } 312 313 void pm_restrict_gfp_mask(void) 314 { 315 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 316 WARN_ON(saved_gfp_mask); 317 saved_gfp_mask = gfp_allowed_mask; 318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 319 } 320 321 bool pm_suspended_storage(void) 322 { 323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 324 return false; 325 return true; 326 } 327 #endif /* CONFIG_PM_SLEEP */ 328 329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 330 unsigned int pageblock_order __read_mostly; 331 #endif 332 333 static void __free_pages_ok(struct page *page, unsigned int order, 334 fpi_t fpi_flags); 335 336 /* 337 * results with 256, 32 in the lowmem_reserve sysctl: 338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 339 * 1G machine -> (16M dma, 784M normal, 224M high) 340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 343 * 344 * TBD: should special case ZONE_DMA32 machines here - in those we normally 345 * don't need any ZONE_NORMAL reservation 346 */ 347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 348 #ifdef CONFIG_ZONE_DMA 349 [ZONE_DMA] = 256, 350 #endif 351 #ifdef CONFIG_ZONE_DMA32 352 [ZONE_DMA32] = 256, 353 #endif 354 [ZONE_NORMAL] = 32, 355 #ifdef CONFIG_HIGHMEM 356 [ZONE_HIGHMEM] = 0, 357 #endif 358 [ZONE_MOVABLE] = 0, 359 }; 360 361 static char * const zone_names[MAX_NR_ZONES] = { 362 #ifdef CONFIG_ZONE_DMA 363 "DMA", 364 #endif 365 #ifdef CONFIG_ZONE_DMA32 366 "DMA32", 367 #endif 368 "Normal", 369 #ifdef CONFIG_HIGHMEM 370 "HighMem", 371 #endif 372 "Movable", 373 #ifdef CONFIG_ZONE_DEVICE 374 "Device", 375 #endif 376 }; 377 378 const char * const migratetype_names[MIGRATE_TYPES] = { 379 "Unmovable", 380 "Movable", 381 "Reclaimable", 382 "HighAtomic", 383 #ifdef CONFIG_CMA 384 "CMA", 385 #endif 386 #ifdef CONFIG_MEMORY_ISOLATION 387 "Isolate", 388 #endif 389 }; 390 391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 392 [NULL_COMPOUND_DTOR] = NULL, 393 [COMPOUND_PAGE_DTOR] = free_compound_page, 394 #ifdef CONFIG_HUGETLB_PAGE 395 [HUGETLB_PAGE_DTOR] = free_huge_page, 396 #endif 397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 399 #endif 400 }; 401 402 int min_free_kbytes = 1024; 403 int user_min_free_kbytes = -1; 404 int watermark_boost_factor __read_mostly = 15000; 405 int watermark_scale_factor = 10; 406 407 static unsigned long nr_kernel_pages __initdata; 408 static unsigned long nr_all_pages __initdata; 409 static unsigned long dma_reserve __initdata; 410 411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 413 static unsigned long required_kernelcore __initdata; 414 static unsigned long required_kernelcore_percent __initdata; 415 static unsigned long required_movablecore __initdata; 416 static unsigned long required_movablecore_percent __initdata; 417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 418 bool mirrored_kernelcore __initdata_memblock; 419 420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 421 int movable_zone; 422 EXPORT_SYMBOL(movable_zone); 423 424 #if MAX_NUMNODES > 1 425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 426 unsigned int nr_online_nodes __read_mostly = 1; 427 EXPORT_SYMBOL(nr_node_ids); 428 EXPORT_SYMBOL(nr_online_nodes); 429 #endif 430 431 int page_group_by_mobility_disabled __read_mostly; 432 433 bool deferred_struct_pages __meminitdata; 434 435 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 436 /* 437 * During boot we initialize deferred pages on-demand, as needed, but once 438 * page_alloc_init_late() has finished, the deferred pages are all initialized, 439 * and we can permanently disable that path. 440 */ 441 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 442 443 static inline bool deferred_pages_enabled(void) 444 { 445 return static_branch_unlikely(&deferred_pages); 446 } 447 448 /* Returns true if the struct page for the pfn is initialised */ 449 static inline bool __meminit early_page_initialised(unsigned long pfn) 450 { 451 int nid = early_pfn_to_nid(pfn); 452 453 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 454 return false; 455 456 return true; 457 } 458 459 /* 460 * Returns true when the remaining initialisation should be deferred until 461 * later in the boot cycle when it can be parallelised. 462 */ 463 static bool __meminit 464 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 465 { 466 static unsigned long prev_end_pfn, nr_initialised; 467 468 if (early_page_ext_enabled()) 469 return false; 470 /* 471 * prev_end_pfn static that contains the end of previous zone 472 * No need to protect because called very early in boot before smp_init. 473 */ 474 if (prev_end_pfn != end_pfn) { 475 prev_end_pfn = end_pfn; 476 nr_initialised = 0; 477 } 478 479 /* Always populate low zones for address-constrained allocations */ 480 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 481 return false; 482 483 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 484 return true; 485 /* 486 * We start only with one section of pages, more pages are added as 487 * needed until the rest of deferred pages are initialized. 488 */ 489 nr_initialised++; 490 if ((nr_initialised > PAGES_PER_SECTION) && 491 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 492 NODE_DATA(nid)->first_deferred_pfn = pfn; 493 return true; 494 } 495 return false; 496 } 497 #else 498 static inline bool deferred_pages_enabled(void) 499 { 500 return false; 501 } 502 503 static inline bool early_page_initialised(unsigned long pfn) 504 { 505 return true; 506 } 507 508 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 509 { 510 return false; 511 } 512 #endif 513 514 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 515 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 516 unsigned long pfn) 517 { 518 #ifdef CONFIG_SPARSEMEM 519 return section_to_usemap(__pfn_to_section(pfn)); 520 #else 521 return page_zone(page)->pageblock_flags; 522 #endif /* CONFIG_SPARSEMEM */ 523 } 524 525 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 526 { 527 #ifdef CONFIG_SPARSEMEM 528 pfn &= (PAGES_PER_SECTION-1); 529 #else 530 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 531 #endif /* CONFIG_SPARSEMEM */ 532 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 533 } 534 535 static __always_inline 536 unsigned long __get_pfnblock_flags_mask(const struct page *page, 537 unsigned long pfn, 538 unsigned long mask) 539 { 540 unsigned long *bitmap; 541 unsigned long bitidx, word_bitidx; 542 unsigned long word; 543 544 bitmap = get_pageblock_bitmap(page, pfn); 545 bitidx = pfn_to_bitidx(page, pfn); 546 word_bitidx = bitidx / BITS_PER_LONG; 547 bitidx &= (BITS_PER_LONG-1); 548 /* 549 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 550 * a consistent read of the memory array, so that results, even though 551 * racy, are not corrupted. 552 */ 553 word = READ_ONCE(bitmap[word_bitidx]); 554 return (word >> bitidx) & mask; 555 } 556 557 /** 558 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 559 * @page: The page within the block of interest 560 * @pfn: The target page frame number 561 * @mask: mask of bits that the caller is interested in 562 * 563 * Return: pageblock_bits flags 564 */ 565 unsigned long get_pfnblock_flags_mask(const struct page *page, 566 unsigned long pfn, unsigned long mask) 567 { 568 return __get_pfnblock_flags_mask(page, pfn, mask); 569 } 570 571 static __always_inline int get_pfnblock_migratetype(const struct page *page, 572 unsigned long pfn) 573 { 574 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 575 } 576 577 /** 578 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 579 * @page: The page within the block of interest 580 * @flags: The flags to set 581 * @pfn: The target page frame number 582 * @mask: mask of bits that the caller is interested in 583 */ 584 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 585 unsigned long pfn, 586 unsigned long mask) 587 { 588 unsigned long *bitmap; 589 unsigned long bitidx, word_bitidx; 590 unsigned long word; 591 592 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 593 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 594 595 bitmap = get_pageblock_bitmap(page, pfn); 596 bitidx = pfn_to_bitidx(page, pfn); 597 word_bitidx = bitidx / BITS_PER_LONG; 598 bitidx &= (BITS_PER_LONG-1); 599 600 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 601 602 mask <<= bitidx; 603 flags <<= bitidx; 604 605 word = READ_ONCE(bitmap[word_bitidx]); 606 do { 607 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 608 } 609 610 void set_pageblock_migratetype(struct page *page, int migratetype) 611 { 612 if (unlikely(page_group_by_mobility_disabled && 613 migratetype < MIGRATE_PCPTYPES)) 614 migratetype = MIGRATE_UNMOVABLE; 615 616 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 617 page_to_pfn(page), MIGRATETYPE_MASK); 618 } 619 620 #ifdef CONFIG_DEBUG_VM 621 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 622 { 623 int ret = 0; 624 unsigned seq; 625 unsigned long pfn = page_to_pfn(page); 626 unsigned long sp, start_pfn; 627 628 do { 629 seq = zone_span_seqbegin(zone); 630 start_pfn = zone->zone_start_pfn; 631 sp = zone->spanned_pages; 632 if (!zone_spans_pfn(zone, pfn)) 633 ret = 1; 634 } while (zone_span_seqretry(zone, seq)); 635 636 if (ret) 637 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 638 pfn, zone_to_nid(zone), zone->name, 639 start_pfn, start_pfn + sp); 640 641 return ret; 642 } 643 644 static int page_is_consistent(struct zone *zone, struct page *page) 645 { 646 if (zone != page_zone(page)) 647 return 0; 648 649 return 1; 650 } 651 /* 652 * Temporary debugging check for pages not lying within a given zone. 653 */ 654 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 655 { 656 if (page_outside_zone_boundaries(zone, page)) 657 return 1; 658 if (!page_is_consistent(zone, page)) 659 return 1; 660 661 return 0; 662 } 663 #else 664 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 665 { 666 return 0; 667 } 668 #endif 669 670 static void bad_page(struct page *page, const char *reason) 671 { 672 static unsigned long resume; 673 static unsigned long nr_shown; 674 static unsigned long nr_unshown; 675 676 /* 677 * Allow a burst of 60 reports, then keep quiet for that minute; 678 * or allow a steady drip of one report per second. 679 */ 680 if (nr_shown == 60) { 681 if (time_before(jiffies, resume)) { 682 nr_unshown++; 683 goto out; 684 } 685 if (nr_unshown) { 686 pr_alert( 687 "BUG: Bad page state: %lu messages suppressed\n", 688 nr_unshown); 689 nr_unshown = 0; 690 } 691 nr_shown = 0; 692 } 693 if (nr_shown++ == 0) 694 resume = jiffies + 60 * HZ; 695 696 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 697 current->comm, page_to_pfn(page)); 698 dump_page(page, reason); 699 700 print_modules(); 701 dump_stack(); 702 out: 703 /* Leave bad fields for debug, except PageBuddy could make trouble */ 704 page_mapcount_reset(page); /* remove PageBuddy */ 705 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 706 } 707 708 static inline unsigned int order_to_pindex(int migratetype, int order) 709 { 710 int base = order; 711 712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 713 if (order > PAGE_ALLOC_COSTLY_ORDER) { 714 VM_BUG_ON(order != pageblock_order); 715 return NR_LOWORDER_PCP_LISTS; 716 } 717 #else 718 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 719 #endif 720 721 return (MIGRATE_PCPTYPES * base) + migratetype; 722 } 723 724 static inline int pindex_to_order(unsigned int pindex) 725 { 726 int order = pindex / MIGRATE_PCPTYPES; 727 728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 729 if (pindex == NR_LOWORDER_PCP_LISTS) 730 order = pageblock_order; 731 #else 732 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 733 #endif 734 735 return order; 736 } 737 738 static inline bool pcp_allowed_order(unsigned int order) 739 { 740 if (order <= PAGE_ALLOC_COSTLY_ORDER) 741 return true; 742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 743 if (order == pageblock_order) 744 return true; 745 #endif 746 return false; 747 } 748 749 static inline void free_the_page(struct page *page, unsigned int order) 750 { 751 if (pcp_allowed_order(order)) /* Via pcp? */ 752 free_unref_page(page, order); 753 else 754 __free_pages_ok(page, order, FPI_NONE); 755 } 756 757 /* 758 * Higher-order pages are called "compound pages". They are structured thusly: 759 * 760 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 761 * 762 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 763 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 764 * 765 * The first tail page's ->compound_dtor holds the offset in array of compound 766 * page destructors. See compound_page_dtors. 767 * 768 * The first tail page's ->compound_order holds the order of allocation. 769 * This usage means that zero-order pages may not be compound. 770 */ 771 772 void free_compound_page(struct page *page) 773 { 774 mem_cgroup_uncharge(page_folio(page)); 775 free_the_page(page, compound_order(page)); 776 } 777 778 static void prep_compound_head(struct page *page, unsigned int order) 779 { 780 struct folio *folio = (struct folio *)page; 781 782 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 783 set_compound_order(page, order); 784 atomic_set(&folio->_entire_mapcount, -1); 785 atomic_set(&folio->_nr_pages_mapped, 0); 786 atomic_set(&folio->_pincount, 0); 787 } 788 789 static void prep_compound_tail(struct page *head, int tail_idx) 790 { 791 struct page *p = head + tail_idx; 792 793 p->mapping = TAIL_MAPPING; 794 set_compound_head(p, head); 795 set_page_private(p, 0); 796 } 797 798 void prep_compound_page(struct page *page, unsigned int order) 799 { 800 int i; 801 int nr_pages = 1 << order; 802 803 __SetPageHead(page); 804 for (i = 1; i < nr_pages; i++) 805 prep_compound_tail(page, i); 806 807 prep_compound_head(page, order); 808 } 809 810 void destroy_large_folio(struct folio *folio) 811 { 812 enum compound_dtor_id dtor = folio->_folio_dtor; 813 814 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 815 compound_page_dtors[dtor](&folio->page); 816 } 817 818 #ifdef CONFIG_DEBUG_PAGEALLOC 819 unsigned int _debug_guardpage_minorder; 820 821 bool _debug_pagealloc_enabled_early __read_mostly 822 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 823 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 824 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 825 EXPORT_SYMBOL(_debug_pagealloc_enabled); 826 827 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 828 829 static int __init early_debug_pagealloc(char *buf) 830 { 831 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 832 } 833 early_param("debug_pagealloc", early_debug_pagealloc); 834 835 static int __init debug_guardpage_minorder_setup(char *buf) 836 { 837 unsigned long res; 838 839 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 840 pr_err("Bad debug_guardpage_minorder value\n"); 841 return 0; 842 } 843 _debug_guardpage_minorder = res; 844 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 845 return 0; 846 } 847 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 848 849 static inline bool set_page_guard(struct zone *zone, struct page *page, 850 unsigned int order, int migratetype) 851 { 852 if (!debug_guardpage_enabled()) 853 return false; 854 855 if (order >= debug_guardpage_minorder()) 856 return false; 857 858 __SetPageGuard(page); 859 INIT_LIST_HEAD(&page->buddy_list); 860 set_page_private(page, order); 861 /* Guard pages are not available for any usage */ 862 if (!is_migrate_isolate(migratetype)) 863 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 864 865 return true; 866 } 867 868 static inline void clear_page_guard(struct zone *zone, struct page *page, 869 unsigned int order, int migratetype) 870 { 871 if (!debug_guardpage_enabled()) 872 return; 873 874 __ClearPageGuard(page); 875 876 set_page_private(page, 0); 877 if (!is_migrate_isolate(migratetype)) 878 __mod_zone_freepage_state(zone, (1 << order), migratetype); 879 } 880 #else 881 static inline bool set_page_guard(struct zone *zone, struct page *page, 882 unsigned int order, int migratetype) { return false; } 883 static inline void clear_page_guard(struct zone *zone, struct page *page, 884 unsigned int order, int migratetype) {} 885 #endif 886 887 /* 888 * Enable static keys related to various memory debugging and hardening options. 889 * Some override others, and depend on early params that are evaluated in the 890 * order of appearance. So we need to first gather the full picture of what was 891 * enabled, and then make decisions. 892 */ 893 void __init init_mem_debugging_and_hardening(void) 894 { 895 bool page_poisoning_requested = false; 896 897 #ifdef CONFIG_PAGE_POISONING 898 /* 899 * Page poisoning is debug page alloc for some arches. If 900 * either of those options are enabled, enable poisoning. 901 */ 902 if (page_poisoning_enabled() || 903 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 904 debug_pagealloc_enabled())) { 905 static_branch_enable(&_page_poisoning_enabled); 906 page_poisoning_requested = true; 907 } 908 #endif 909 910 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 911 page_poisoning_requested) { 912 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 913 "will take precedence over init_on_alloc and init_on_free\n"); 914 _init_on_alloc_enabled_early = false; 915 _init_on_free_enabled_early = false; 916 } 917 918 if (_init_on_alloc_enabled_early) 919 static_branch_enable(&init_on_alloc); 920 else 921 static_branch_disable(&init_on_alloc); 922 923 if (_init_on_free_enabled_early) 924 static_branch_enable(&init_on_free); 925 else 926 static_branch_disable(&init_on_free); 927 928 if (IS_ENABLED(CONFIG_KMSAN) && 929 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 930 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 931 932 #ifdef CONFIG_DEBUG_PAGEALLOC 933 if (!debug_pagealloc_enabled()) 934 return; 935 936 static_branch_enable(&_debug_pagealloc_enabled); 937 938 if (!debug_guardpage_minorder()) 939 return; 940 941 static_branch_enable(&_debug_guardpage_enabled); 942 #endif 943 } 944 945 static inline void set_buddy_order(struct page *page, unsigned int order) 946 { 947 set_page_private(page, order); 948 __SetPageBuddy(page); 949 } 950 951 #ifdef CONFIG_COMPACTION 952 static inline struct capture_control *task_capc(struct zone *zone) 953 { 954 struct capture_control *capc = current->capture_control; 955 956 return unlikely(capc) && 957 !(current->flags & PF_KTHREAD) && 958 !capc->page && 959 capc->cc->zone == zone ? capc : NULL; 960 } 961 962 static inline bool 963 compaction_capture(struct capture_control *capc, struct page *page, 964 int order, int migratetype) 965 { 966 if (!capc || order != capc->cc->order) 967 return false; 968 969 /* Do not accidentally pollute CMA or isolated regions*/ 970 if (is_migrate_cma(migratetype) || 971 is_migrate_isolate(migratetype)) 972 return false; 973 974 /* 975 * Do not let lower order allocations pollute a movable pageblock. 976 * This might let an unmovable request use a reclaimable pageblock 977 * and vice-versa but no more than normal fallback logic which can 978 * have trouble finding a high-order free page. 979 */ 980 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 981 return false; 982 983 capc->page = page; 984 return true; 985 } 986 987 #else 988 static inline struct capture_control *task_capc(struct zone *zone) 989 { 990 return NULL; 991 } 992 993 static inline bool 994 compaction_capture(struct capture_control *capc, struct page *page, 995 int order, int migratetype) 996 { 997 return false; 998 } 999 #endif /* CONFIG_COMPACTION */ 1000 1001 /* Used for pages not on another list */ 1002 static inline void add_to_free_list(struct page *page, struct zone *zone, 1003 unsigned int order, int migratetype) 1004 { 1005 struct free_area *area = &zone->free_area[order]; 1006 1007 list_add(&page->buddy_list, &area->free_list[migratetype]); 1008 area->nr_free++; 1009 } 1010 1011 /* Used for pages not on another list */ 1012 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1013 unsigned int order, int migratetype) 1014 { 1015 struct free_area *area = &zone->free_area[order]; 1016 1017 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1018 area->nr_free++; 1019 } 1020 1021 /* 1022 * Used for pages which are on another list. Move the pages to the tail 1023 * of the list - so the moved pages won't immediately be considered for 1024 * allocation again (e.g., optimization for memory onlining). 1025 */ 1026 static inline void move_to_free_list(struct page *page, struct zone *zone, 1027 unsigned int order, int migratetype) 1028 { 1029 struct free_area *area = &zone->free_area[order]; 1030 1031 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1032 } 1033 1034 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1035 unsigned int order) 1036 { 1037 /* clear reported state and update reported page count */ 1038 if (page_reported(page)) 1039 __ClearPageReported(page); 1040 1041 list_del(&page->buddy_list); 1042 __ClearPageBuddy(page); 1043 set_page_private(page, 0); 1044 zone->free_area[order].nr_free--; 1045 } 1046 1047 /* 1048 * If this is not the largest possible page, check if the buddy 1049 * of the next-highest order is free. If it is, it's possible 1050 * that pages are being freed that will coalesce soon. In case, 1051 * that is happening, add the free page to the tail of the list 1052 * so it's less likely to be used soon and more likely to be merged 1053 * as a higher order page 1054 */ 1055 static inline bool 1056 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1057 struct page *page, unsigned int order) 1058 { 1059 unsigned long higher_page_pfn; 1060 struct page *higher_page; 1061 1062 if (order >= MAX_ORDER - 2) 1063 return false; 1064 1065 higher_page_pfn = buddy_pfn & pfn; 1066 higher_page = page + (higher_page_pfn - pfn); 1067 1068 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1069 NULL) != NULL; 1070 } 1071 1072 /* 1073 * Freeing function for a buddy system allocator. 1074 * 1075 * The concept of a buddy system is to maintain direct-mapped table 1076 * (containing bit values) for memory blocks of various "orders". 1077 * The bottom level table contains the map for the smallest allocatable 1078 * units of memory (here, pages), and each level above it describes 1079 * pairs of units from the levels below, hence, "buddies". 1080 * At a high level, all that happens here is marking the table entry 1081 * at the bottom level available, and propagating the changes upward 1082 * as necessary, plus some accounting needed to play nicely with other 1083 * parts of the VM system. 1084 * At each level, we keep a list of pages, which are heads of continuous 1085 * free pages of length of (1 << order) and marked with PageBuddy. 1086 * Page's order is recorded in page_private(page) field. 1087 * So when we are allocating or freeing one, we can derive the state of the 1088 * other. That is, if we allocate a small block, and both were 1089 * free, the remainder of the region must be split into blocks. 1090 * If a block is freed, and its buddy is also free, then this 1091 * triggers coalescing into a block of larger size. 1092 * 1093 * -- nyc 1094 */ 1095 1096 static inline void __free_one_page(struct page *page, 1097 unsigned long pfn, 1098 struct zone *zone, unsigned int order, 1099 int migratetype, fpi_t fpi_flags) 1100 { 1101 struct capture_control *capc = task_capc(zone); 1102 unsigned long buddy_pfn = 0; 1103 unsigned long combined_pfn; 1104 struct page *buddy; 1105 bool to_tail; 1106 1107 VM_BUG_ON(!zone_is_initialized(zone)); 1108 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1109 1110 VM_BUG_ON(migratetype == -1); 1111 if (likely(!is_migrate_isolate(migratetype))) 1112 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1113 1114 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1115 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1116 1117 while (order < MAX_ORDER - 1) { 1118 if (compaction_capture(capc, page, order, migratetype)) { 1119 __mod_zone_freepage_state(zone, -(1 << order), 1120 migratetype); 1121 return; 1122 } 1123 1124 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1125 if (!buddy) 1126 goto done_merging; 1127 1128 if (unlikely(order >= pageblock_order)) { 1129 /* 1130 * We want to prevent merge between freepages on pageblock 1131 * without fallbacks and normal pageblock. Without this, 1132 * pageblock isolation could cause incorrect freepage or CMA 1133 * accounting or HIGHATOMIC accounting. 1134 */ 1135 int buddy_mt = get_pageblock_migratetype(buddy); 1136 1137 if (migratetype != buddy_mt 1138 && (!migratetype_is_mergeable(migratetype) || 1139 !migratetype_is_mergeable(buddy_mt))) 1140 goto done_merging; 1141 } 1142 1143 /* 1144 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1145 * merge with it and move up one order. 1146 */ 1147 if (page_is_guard(buddy)) 1148 clear_page_guard(zone, buddy, order, migratetype); 1149 else 1150 del_page_from_free_list(buddy, zone, order); 1151 combined_pfn = buddy_pfn & pfn; 1152 page = page + (combined_pfn - pfn); 1153 pfn = combined_pfn; 1154 order++; 1155 } 1156 1157 done_merging: 1158 set_buddy_order(page, order); 1159 1160 if (fpi_flags & FPI_TO_TAIL) 1161 to_tail = true; 1162 else if (is_shuffle_order(order)) 1163 to_tail = shuffle_pick_tail(); 1164 else 1165 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1166 1167 if (to_tail) 1168 add_to_free_list_tail(page, zone, order, migratetype); 1169 else 1170 add_to_free_list(page, zone, order, migratetype); 1171 1172 /* Notify page reporting subsystem of freed page */ 1173 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1174 page_reporting_notify_free(order); 1175 } 1176 1177 /** 1178 * split_free_page() -- split a free page at split_pfn_offset 1179 * @free_page: the original free page 1180 * @order: the order of the page 1181 * @split_pfn_offset: split offset within the page 1182 * 1183 * Return -ENOENT if the free page is changed, otherwise 0 1184 * 1185 * It is used when the free page crosses two pageblocks with different migratetypes 1186 * at split_pfn_offset within the page. The split free page will be put into 1187 * separate migratetype lists afterwards. Otherwise, the function achieves 1188 * nothing. 1189 */ 1190 int split_free_page(struct page *free_page, 1191 unsigned int order, unsigned long split_pfn_offset) 1192 { 1193 struct zone *zone = page_zone(free_page); 1194 unsigned long free_page_pfn = page_to_pfn(free_page); 1195 unsigned long pfn; 1196 unsigned long flags; 1197 int free_page_order; 1198 int mt; 1199 int ret = 0; 1200 1201 if (split_pfn_offset == 0) 1202 return ret; 1203 1204 spin_lock_irqsave(&zone->lock, flags); 1205 1206 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1207 ret = -ENOENT; 1208 goto out; 1209 } 1210 1211 mt = get_pageblock_migratetype(free_page); 1212 if (likely(!is_migrate_isolate(mt))) 1213 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1214 1215 del_page_from_free_list(free_page, zone, order); 1216 for (pfn = free_page_pfn; 1217 pfn < free_page_pfn + (1UL << order);) { 1218 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1219 1220 free_page_order = min_t(unsigned int, 1221 pfn ? __ffs(pfn) : order, 1222 __fls(split_pfn_offset)); 1223 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1224 mt, FPI_NONE); 1225 pfn += 1UL << free_page_order; 1226 split_pfn_offset -= (1UL << free_page_order); 1227 /* we have done the first part, now switch to second part */ 1228 if (split_pfn_offset == 0) 1229 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1230 } 1231 out: 1232 spin_unlock_irqrestore(&zone->lock, flags); 1233 return ret; 1234 } 1235 /* 1236 * A bad page could be due to a number of fields. Instead of multiple branches, 1237 * try and check multiple fields with one check. The caller must do a detailed 1238 * check if necessary. 1239 */ 1240 static inline bool page_expected_state(struct page *page, 1241 unsigned long check_flags) 1242 { 1243 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1244 return false; 1245 1246 if (unlikely((unsigned long)page->mapping | 1247 page_ref_count(page) | 1248 #ifdef CONFIG_MEMCG 1249 page->memcg_data | 1250 #endif 1251 (page->flags & check_flags))) 1252 return false; 1253 1254 return true; 1255 } 1256 1257 static const char *page_bad_reason(struct page *page, unsigned long flags) 1258 { 1259 const char *bad_reason = NULL; 1260 1261 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1262 bad_reason = "nonzero mapcount"; 1263 if (unlikely(page->mapping != NULL)) 1264 bad_reason = "non-NULL mapping"; 1265 if (unlikely(page_ref_count(page) != 0)) 1266 bad_reason = "nonzero _refcount"; 1267 if (unlikely(page->flags & flags)) { 1268 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1269 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1270 else 1271 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1272 } 1273 #ifdef CONFIG_MEMCG 1274 if (unlikely(page->memcg_data)) 1275 bad_reason = "page still charged to cgroup"; 1276 #endif 1277 return bad_reason; 1278 } 1279 1280 static void free_page_is_bad_report(struct page *page) 1281 { 1282 bad_page(page, 1283 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1284 } 1285 1286 static inline bool free_page_is_bad(struct page *page) 1287 { 1288 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1289 return false; 1290 1291 /* Something has gone sideways, find it */ 1292 free_page_is_bad_report(page); 1293 return true; 1294 } 1295 1296 static int free_tail_pages_check(struct page *head_page, struct page *page) 1297 { 1298 struct folio *folio = (struct folio *)head_page; 1299 int ret = 1; 1300 1301 /* 1302 * We rely page->lru.next never has bit 0 set, unless the page 1303 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1304 */ 1305 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1306 1307 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1308 ret = 0; 1309 goto out; 1310 } 1311 switch (page - head_page) { 1312 case 1: 1313 /* the first tail page: these may be in place of ->mapping */ 1314 if (unlikely(folio_entire_mapcount(folio))) { 1315 bad_page(page, "nonzero entire_mapcount"); 1316 goto out; 1317 } 1318 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1319 bad_page(page, "nonzero nr_pages_mapped"); 1320 goto out; 1321 } 1322 if (unlikely(atomic_read(&folio->_pincount))) { 1323 bad_page(page, "nonzero pincount"); 1324 goto out; 1325 } 1326 break; 1327 case 2: 1328 /* 1329 * the second tail page: ->mapping is 1330 * deferred_list.next -- ignore value. 1331 */ 1332 break; 1333 default: 1334 if (page->mapping != TAIL_MAPPING) { 1335 bad_page(page, "corrupted mapping in tail page"); 1336 goto out; 1337 } 1338 break; 1339 } 1340 if (unlikely(!PageTail(page))) { 1341 bad_page(page, "PageTail not set"); 1342 goto out; 1343 } 1344 if (unlikely(compound_head(page) != head_page)) { 1345 bad_page(page, "compound_head not consistent"); 1346 goto out; 1347 } 1348 ret = 0; 1349 out: 1350 page->mapping = NULL; 1351 clear_compound_head(page); 1352 return ret; 1353 } 1354 1355 /* 1356 * Skip KASAN memory poisoning when either: 1357 * 1358 * 1. Deferred memory initialization has not yet completed, 1359 * see the explanation below. 1360 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1361 * see the comment next to it. 1362 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1363 * see the comment next to it. 1364 * 4. The allocation is excluded from being checked due to sampling, 1365 * see the call to kasan_unpoison_pages. 1366 * 1367 * Poisoning pages during deferred memory init will greatly lengthen the 1368 * process and cause problem in large memory systems as the deferred pages 1369 * initialization is done with interrupt disabled. 1370 * 1371 * Assuming that there will be no reference to those newly initialized 1372 * pages before they are ever allocated, this should have no effect on 1373 * KASAN memory tracking as the poison will be properly inserted at page 1374 * allocation time. The only corner case is when pages are allocated by 1375 * on-demand allocation and then freed again before the deferred pages 1376 * initialization is done, but this is not likely to happen. 1377 */ 1378 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1379 { 1380 return deferred_pages_enabled() || 1381 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1382 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1383 PageSkipKASanPoison(page); 1384 } 1385 1386 static void kernel_init_pages(struct page *page, int numpages) 1387 { 1388 int i; 1389 1390 /* s390's use of memset() could override KASAN redzones. */ 1391 kasan_disable_current(); 1392 for (i = 0; i < numpages; i++) 1393 clear_highpage_kasan_tagged(page + i); 1394 kasan_enable_current(); 1395 } 1396 1397 static __always_inline bool free_pages_prepare(struct page *page, 1398 unsigned int order, bool check_free, fpi_t fpi_flags) 1399 { 1400 int bad = 0; 1401 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1402 bool init = want_init_on_free(); 1403 1404 VM_BUG_ON_PAGE(PageTail(page), page); 1405 1406 trace_mm_page_free(page, order); 1407 kmsan_free_page(page, order); 1408 1409 if (unlikely(PageHWPoison(page)) && !order) { 1410 /* 1411 * Do not let hwpoison pages hit pcplists/buddy 1412 * Untie memcg state and reset page's owner 1413 */ 1414 if (memcg_kmem_online() && PageMemcgKmem(page)) 1415 __memcg_kmem_uncharge_page(page, order); 1416 reset_page_owner(page, order); 1417 page_table_check_free(page, order); 1418 return false; 1419 } 1420 1421 /* 1422 * Check tail pages before head page information is cleared to 1423 * avoid checking PageCompound for order-0 pages. 1424 */ 1425 if (unlikely(order)) { 1426 bool compound = PageCompound(page); 1427 int i; 1428 1429 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1430 1431 if (compound) 1432 ClearPageHasHWPoisoned(page); 1433 for (i = 1; i < (1 << order); i++) { 1434 if (compound) 1435 bad += free_tail_pages_check(page, page + i); 1436 if (unlikely(free_page_is_bad(page + i))) { 1437 bad++; 1438 continue; 1439 } 1440 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1441 } 1442 } 1443 if (PageMappingFlags(page)) 1444 page->mapping = NULL; 1445 if (memcg_kmem_online() && PageMemcgKmem(page)) 1446 __memcg_kmem_uncharge_page(page, order); 1447 if (check_free && free_page_is_bad(page)) 1448 bad++; 1449 if (bad) 1450 return false; 1451 1452 page_cpupid_reset_last(page); 1453 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1454 reset_page_owner(page, order); 1455 page_table_check_free(page, order); 1456 1457 if (!PageHighMem(page)) { 1458 debug_check_no_locks_freed(page_address(page), 1459 PAGE_SIZE << order); 1460 debug_check_no_obj_freed(page_address(page), 1461 PAGE_SIZE << order); 1462 } 1463 1464 kernel_poison_pages(page, 1 << order); 1465 1466 /* 1467 * As memory initialization might be integrated into KASAN, 1468 * KASAN poisoning and memory initialization code must be 1469 * kept together to avoid discrepancies in behavior. 1470 * 1471 * With hardware tag-based KASAN, memory tags must be set before the 1472 * page becomes unavailable via debug_pagealloc or arch_free_page. 1473 */ 1474 if (!skip_kasan_poison) { 1475 kasan_poison_pages(page, order, init); 1476 1477 /* Memory is already initialized if KASAN did it internally. */ 1478 if (kasan_has_integrated_init()) 1479 init = false; 1480 } 1481 if (init) 1482 kernel_init_pages(page, 1 << order); 1483 1484 /* 1485 * arch_free_page() can make the page's contents inaccessible. s390 1486 * does this. So nothing which can access the page's contents should 1487 * happen after this. 1488 */ 1489 arch_free_page(page, order); 1490 1491 debug_pagealloc_unmap_pages(page, 1 << order); 1492 1493 return true; 1494 } 1495 1496 #ifdef CONFIG_DEBUG_VM 1497 /* 1498 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1499 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1500 * moved from pcp lists to free lists. 1501 */ 1502 static bool free_pcp_prepare(struct page *page, unsigned int order) 1503 { 1504 return free_pages_prepare(page, order, true, FPI_NONE); 1505 } 1506 1507 /* return true if this page has an inappropriate state */ 1508 static bool bulkfree_pcp_prepare(struct page *page) 1509 { 1510 if (debug_pagealloc_enabled_static()) 1511 return free_page_is_bad(page); 1512 else 1513 return false; 1514 } 1515 #else 1516 /* 1517 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1518 * moving from pcp lists to free list in order to reduce overhead. With 1519 * debug_pagealloc enabled, they are checked also immediately when being freed 1520 * to the pcp lists. 1521 */ 1522 static bool free_pcp_prepare(struct page *page, unsigned int order) 1523 { 1524 if (debug_pagealloc_enabled_static()) 1525 return free_pages_prepare(page, order, true, FPI_NONE); 1526 else 1527 return free_pages_prepare(page, order, false, FPI_NONE); 1528 } 1529 1530 static bool bulkfree_pcp_prepare(struct page *page) 1531 { 1532 return free_page_is_bad(page); 1533 } 1534 #endif /* CONFIG_DEBUG_VM */ 1535 1536 /* 1537 * Frees a number of pages from the PCP lists 1538 * Assumes all pages on list are in same zone. 1539 * count is the number of pages to free. 1540 */ 1541 static void free_pcppages_bulk(struct zone *zone, int count, 1542 struct per_cpu_pages *pcp, 1543 int pindex) 1544 { 1545 unsigned long flags; 1546 int min_pindex = 0; 1547 int max_pindex = NR_PCP_LISTS - 1; 1548 unsigned int order; 1549 bool isolated_pageblocks; 1550 struct page *page; 1551 1552 /* 1553 * Ensure proper count is passed which otherwise would stuck in the 1554 * below while (list_empty(list)) loop. 1555 */ 1556 count = min(pcp->count, count); 1557 1558 /* Ensure requested pindex is drained first. */ 1559 pindex = pindex - 1; 1560 1561 spin_lock_irqsave(&zone->lock, flags); 1562 isolated_pageblocks = has_isolate_pageblock(zone); 1563 1564 while (count > 0) { 1565 struct list_head *list; 1566 int nr_pages; 1567 1568 /* Remove pages from lists in a round-robin fashion. */ 1569 do { 1570 if (++pindex > max_pindex) 1571 pindex = min_pindex; 1572 list = &pcp->lists[pindex]; 1573 if (!list_empty(list)) 1574 break; 1575 1576 if (pindex == max_pindex) 1577 max_pindex--; 1578 if (pindex == min_pindex) 1579 min_pindex++; 1580 } while (1); 1581 1582 order = pindex_to_order(pindex); 1583 nr_pages = 1 << order; 1584 do { 1585 int mt; 1586 1587 page = list_last_entry(list, struct page, pcp_list); 1588 mt = get_pcppage_migratetype(page); 1589 1590 /* must delete to avoid corrupting pcp list */ 1591 list_del(&page->pcp_list); 1592 count -= nr_pages; 1593 pcp->count -= nr_pages; 1594 1595 if (bulkfree_pcp_prepare(page)) 1596 continue; 1597 1598 /* MIGRATE_ISOLATE page should not go to pcplists */ 1599 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1600 /* Pageblock could have been isolated meanwhile */ 1601 if (unlikely(isolated_pageblocks)) 1602 mt = get_pageblock_migratetype(page); 1603 1604 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1605 trace_mm_page_pcpu_drain(page, order, mt); 1606 } while (count > 0 && !list_empty(list)); 1607 } 1608 1609 spin_unlock_irqrestore(&zone->lock, flags); 1610 } 1611 1612 static void free_one_page(struct zone *zone, 1613 struct page *page, unsigned long pfn, 1614 unsigned int order, 1615 int migratetype, fpi_t fpi_flags) 1616 { 1617 unsigned long flags; 1618 1619 spin_lock_irqsave(&zone->lock, flags); 1620 if (unlikely(has_isolate_pageblock(zone) || 1621 is_migrate_isolate(migratetype))) { 1622 migratetype = get_pfnblock_migratetype(page, pfn); 1623 } 1624 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1625 spin_unlock_irqrestore(&zone->lock, flags); 1626 } 1627 1628 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1629 unsigned long zone, int nid) 1630 { 1631 mm_zero_struct_page(page); 1632 set_page_links(page, zone, nid, pfn); 1633 init_page_count(page); 1634 page_mapcount_reset(page); 1635 page_cpupid_reset_last(page); 1636 page_kasan_tag_reset(page); 1637 1638 INIT_LIST_HEAD(&page->lru); 1639 #ifdef WANT_PAGE_VIRTUAL 1640 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1641 if (!is_highmem_idx(zone)) 1642 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1643 #endif 1644 } 1645 1646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1647 static void __meminit init_reserved_page(unsigned long pfn) 1648 { 1649 pg_data_t *pgdat; 1650 int nid, zid; 1651 1652 if (early_page_initialised(pfn)) 1653 return; 1654 1655 nid = early_pfn_to_nid(pfn); 1656 pgdat = NODE_DATA(nid); 1657 1658 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1659 struct zone *zone = &pgdat->node_zones[zid]; 1660 1661 if (zone_spans_pfn(zone, pfn)) 1662 break; 1663 } 1664 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1665 } 1666 #else 1667 static inline void init_reserved_page(unsigned long pfn) 1668 { 1669 } 1670 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1671 1672 /* 1673 * Initialised pages do not have PageReserved set. This function is 1674 * called for each range allocated by the bootmem allocator and 1675 * marks the pages PageReserved. The remaining valid pages are later 1676 * sent to the buddy page allocator. 1677 */ 1678 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1679 { 1680 unsigned long start_pfn = PFN_DOWN(start); 1681 unsigned long end_pfn = PFN_UP(end); 1682 1683 for (; start_pfn < end_pfn; start_pfn++) { 1684 if (pfn_valid(start_pfn)) { 1685 struct page *page = pfn_to_page(start_pfn); 1686 1687 init_reserved_page(start_pfn); 1688 1689 /* Avoid false-positive PageTail() */ 1690 INIT_LIST_HEAD(&page->lru); 1691 1692 /* 1693 * no need for atomic set_bit because the struct 1694 * page is not visible yet so nobody should 1695 * access it yet. 1696 */ 1697 __SetPageReserved(page); 1698 } 1699 } 1700 } 1701 1702 static void __free_pages_ok(struct page *page, unsigned int order, 1703 fpi_t fpi_flags) 1704 { 1705 unsigned long flags; 1706 int migratetype; 1707 unsigned long pfn = page_to_pfn(page); 1708 struct zone *zone = page_zone(page); 1709 1710 if (!free_pages_prepare(page, order, true, fpi_flags)) 1711 return; 1712 1713 /* 1714 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1715 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1716 * This will reduce the lock holding time. 1717 */ 1718 migratetype = get_pfnblock_migratetype(page, pfn); 1719 1720 spin_lock_irqsave(&zone->lock, flags); 1721 if (unlikely(has_isolate_pageblock(zone) || 1722 is_migrate_isolate(migratetype))) { 1723 migratetype = get_pfnblock_migratetype(page, pfn); 1724 } 1725 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1726 spin_unlock_irqrestore(&zone->lock, flags); 1727 1728 __count_vm_events(PGFREE, 1 << order); 1729 } 1730 1731 void __free_pages_core(struct page *page, unsigned int order) 1732 { 1733 unsigned int nr_pages = 1 << order; 1734 struct page *p = page; 1735 unsigned int loop; 1736 1737 /* 1738 * When initializing the memmap, __init_single_page() sets the refcount 1739 * of all pages to 1 ("allocated"/"not free"). We have to set the 1740 * refcount of all involved pages to 0. 1741 */ 1742 prefetchw(p); 1743 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1744 prefetchw(p + 1); 1745 __ClearPageReserved(p); 1746 set_page_count(p, 0); 1747 } 1748 __ClearPageReserved(p); 1749 set_page_count(p, 0); 1750 1751 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1752 1753 /* 1754 * Bypass PCP and place fresh pages right to the tail, primarily 1755 * relevant for memory onlining. 1756 */ 1757 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1758 } 1759 1760 #ifdef CONFIG_NUMA 1761 1762 /* 1763 * During memory init memblocks map pfns to nids. The search is expensive and 1764 * this caches recent lookups. The implementation of __early_pfn_to_nid 1765 * treats start/end as pfns. 1766 */ 1767 struct mminit_pfnnid_cache { 1768 unsigned long last_start; 1769 unsigned long last_end; 1770 int last_nid; 1771 }; 1772 1773 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1774 1775 /* 1776 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1777 */ 1778 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1779 struct mminit_pfnnid_cache *state) 1780 { 1781 unsigned long start_pfn, end_pfn; 1782 int nid; 1783 1784 if (state->last_start <= pfn && pfn < state->last_end) 1785 return state->last_nid; 1786 1787 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1788 if (nid != NUMA_NO_NODE) { 1789 state->last_start = start_pfn; 1790 state->last_end = end_pfn; 1791 state->last_nid = nid; 1792 } 1793 1794 return nid; 1795 } 1796 1797 int __meminit early_pfn_to_nid(unsigned long pfn) 1798 { 1799 static DEFINE_SPINLOCK(early_pfn_lock); 1800 int nid; 1801 1802 spin_lock(&early_pfn_lock); 1803 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1804 if (nid < 0) 1805 nid = first_online_node; 1806 spin_unlock(&early_pfn_lock); 1807 1808 return nid; 1809 } 1810 #endif /* CONFIG_NUMA */ 1811 1812 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1813 unsigned int order) 1814 { 1815 if (!early_page_initialised(pfn)) 1816 return; 1817 if (!kmsan_memblock_free_pages(page, order)) { 1818 /* KMSAN will take care of these pages. */ 1819 return; 1820 } 1821 __free_pages_core(page, order); 1822 } 1823 1824 /* 1825 * Check that the whole (or subset of) a pageblock given by the interval of 1826 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1827 * with the migration of free compaction scanner. 1828 * 1829 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1830 * 1831 * It's possible on some configurations to have a setup like node0 node1 node0 1832 * i.e. it's possible that all pages within a zones range of pages do not 1833 * belong to a single zone. We assume that a border between node0 and node1 1834 * can occur within a single pageblock, but not a node0 node1 node0 1835 * interleaving within a single pageblock. It is therefore sufficient to check 1836 * the first and last page of a pageblock and avoid checking each individual 1837 * page in a pageblock. 1838 */ 1839 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1840 unsigned long end_pfn, struct zone *zone) 1841 { 1842 struct page *start_page; 1843 struct page *end_page; 1844 1845 /* end_pfn is one past the range we are checking */ 1846 end_pfn--; 1847 1848 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1849 return NULL; 1850 1851 start_page = pfn_to_online_page(start_pfn); 1852 if (!start_page) 1853 return NULL; 1854 1855 if (page_zone(start_page) != zone) 1856 return NULL; 1857 1858 end_page = pfn_to_page(end_pfn); 1859 1860 /* This gives a shorter code than deriving page_zone(end_page) */ 1861 if (page_zone_id(start_page) != page_zone_id(end_page)) 1862 return NULL; 1863 1864 return start_page; 1865 } 1866 1867 void set_zone_contiguous(struct zone *zone) 1868 { 1869 unsigned long block_start_pfn = zone->zone_start_pfn; 1870 unsigned long block_end_pfn; 1871 1872 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1873 for (; block_start_pfn < zone_end_pfn(zone); 1874 block_start_pfn = block_end_pfn, 1875 block_end_pfn += pageblock_nr_pages) { 1876 1877 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1878 1879 if (!__pageblock_pfn_to_page(block_start_pfn, 1880 block_end_pfn, zone)) 1881 return; 1882 cond_resched(); 1883 } 1884 1885 /* We confirm that there is no hole */ 1886 zone->contiguous = true; 1887 } 1888 1889 void clear_zone_contiguous(struct zone *zone) 1890 { 1891 zone->contiguous = false; 1892 } 1893 1894 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1895 static void __init deferred_free_range(unsigned long pfn, 1896 unsigned long nr_pages) 1897 { 1898 struct page *page; 1899 unsigned long i; 1900 1901 if (!nr_pages) 1902 return; 1903 1904 page = pfn_to_page(pfn); 1905 1906 /* Free a large naturally-aligned chunk if possible */ 1907 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1908 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1909 __free_pages_core(page, pageblock_order); 1910 return; 1911 } 1912 1913 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1914 if (pageblock_aligned(pfn)) 1915 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1916 __free_pages_core(page, 0); 1917 } 1918 } 1919 1920 /* Completion tracking for deferred_init_memmap() threads */ 1921 static atomic_t pgdat_init_n_undone __initdata; 1922 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1923 1924 static inline void __init pgdat_init_report_one_done(void) 1925 { 1926 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1927 complete(&pgdat_init_all_done_comp); 1928 } 1929 1930 /* 1931 * Returns true if page needs to be initialized or freed to buddy allocator. 1932 * 1933 * We check if a current large page is valid by only checking the validity 1934 * of the head pfn. 1935 */ 1936 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1937 { 1938 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1939 return false; 1940 return true; 1941 } 1942 1943 /* 1944 * Free pages to buddy allocator. Try to free aligned pages in 1945 * pageblock_nr_pages sizes. 1946 */ 1947 static void __init deferred_free_pages(unsigned long pfn, 1948 unsigned long end_pfn) 1949 { 1950 unsigned long nr_free = 0; 1951 1952 for (; pfn < end_pfn; pfn++) { 1953 if (!deferred_pfn_valid(pfn)) { 1954 deferred_free_range(pfn - nr_free, nr_free); 1955 nr_free = 0; 1956 } else if (pageblock_aligned(pfn)) { 1957 deferred_free_range(pfn - nr_free, nr_free); 1958 nr_free = 1; 1959 } else { 1960 nr_free++; 1961 } 1962 } 1963 /* Free the last block of pages to allocator */ 1964 deferred_free_range(pfn - nr_free, nr_free); 1965 } 1966 1967 /* 1968 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1969 * by performing it only once every pageblock_nr_pages. 1970 * Return number of pages initialized. 1971 */ 1972 static unsigned long __init deferred_init_pages(struct zone *zone, 1973 unsigned long pfn, 1974 unsigned long end_pfn) 1975 { 1976 int nid = zone_to_nid(zone); 1977 unsigned long nr_pages = 0; 1978 int zid = zone_idx(zone); 1979 struct page *page = NULL; 1980 1981 for (; pfn < end_pfn; pfn++) { 1982 if (!deferred_pfn_valid(pfn)) { 1983 page = NULL; 1984 continue; 1985 } else if (!page || pageblock_aligned(pfn)) { 1986 page = pfn_to_page(pfn); 1987 } else { 1988 page++; 1989 } 1990 __init_single_page(page, pfn, zid, nid); 1991 nr_pages++; 1992 } 1993 return (nr_pages); 1994 } 1995 1996 /* 1997 * This function is meant to pre-load the iterator for the zone init. 1998 * Specifically it walks through the ranges until we are caught up to the 1999 * first_init_pfn value and exits there. If we never encounter the value we 2000 * return false indicating there are no valid ranges left. 2001 */ 2002 static bool __init 2003 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2004 unsigned long *spfn, unsigned long *epfn, 2005 unsigned long first_init_pfn) 2006 { 2007 u64 j; 2008 2009 /* 2010 * Start out by walking through the ranges in this zone that have 2011 * already been initialized. We don't need to do anything with them 2012 * so we just need to flush them out of the system. 2013 */ 2014 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2015 if (*epfn <= first_init_pfn) 2016 continue; 2017 if (*spfn < first_init_pfn) 2018 *spfn = first_init_pfn; 2019 *i = j; 2020 return true; 2021 } 2022 2023 return false; 2024 } 2025 2026 /* 2027 * Initialize and free pages. We do it in two loops: first we initialize 2028 * struct page, then free to buddy allocator, because while we are 2029 * freeing pages we can access pages that are ahead (computing buddy 2030 * page in __free_one_page()). 2031 * 2032 * In order to try and keep some memory in the cache we have the loop 2033 * broken along max page order boundaries. This way we will not cause 2034 * any issues with the buddy page computation. 2035 */ 2036 static unsigned long __init 2037 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2038 unsigned long *end_pfn) 2039 { 2040 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2041 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2042 unsigned long nr_pages = 0; 2043 u64 j = *i; 2044 2045 /* First we loop through and initialize the page values */ 2046 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2047 unsigned long t; 2048 2049 if (mo_pfn <= *start_pfn) 2050 break; 2051 2052 t = min(mo_pfn, *end_pfn); 2053 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2054 2055 if (mo_pfn < *end_pfn) { 2056 *start_pfn = mo_pfn; 2057 break; 2058 } 2059 } 2060 2061 /* Reset values and now loop through freeing pages as needed */ 2062 swap(j, *i); 2063 2064 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2065 unsigned long t; 2066 2067 if (mo_pfn <= spfn) 2068 break; 2069 2070 t = min(mo_pfn, epfn); 2071 deferred_free_pages(spfn, t); 2072 2073 if (mo_pfn <= epfn) 2074 break; 2075 } 2076 2077 return nr_pages; 2078 } 2079 2080 static void __init 2081 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2082 void *arg) 2083 { 2084 unsigned long spfn, epfn; 2085 struct zone *zone = arg; 2086 u64 i; 2087 2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2089 2090 /* 2091 * Initialize and free pages in MAX_ORDER sized increments so that we 2092 * can avoid introducing any issues with the buddy allocator. 2093 */ 2094 while (spfn < end_pfn) { 2095 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2096 cond_resched(); 2097 } 2098 } 2099 2100 /* An arch may override for more concurrency. */ 2101 __weak int __init 2102 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2103 { 2104 return 1; 2105 } 2106 2107 /* Initialise remaining memory on a node */ 2108 static int __init deferred_init_memmap(void *data) 2109 { 2110 pg_data_t *pgdat = data; 2111 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2112 unsigned long spfn = 0, epfn = 0; 2113 unsigned long first_init_pfn, flags; 2114 unsigned long start = jiffies; 2115 struct zone *zone; 2116 int zid, max_threads; 2117 u64 i; 2118 2119 /* Bind memory initialisation thread to a local node if possible */ 2120 if (!cpumask_empty(cpumask)) 2121 set_cpus_allowed_ptr(current, cpumask); 2122 2123 pgdat_resize_lock(pgdat, &flags); 2124 first_init_pfn = pgdat->first_deferred_pfn; 2125 if (first_init_pfn == ULONG_MAX) { 2126 pgdat_resize_unlock(pgdat, &flags); 2127 pgdat_init_report_one_done(); 2128 return 0; 2129 } 2130 2131 /* Sanity check boundaries */ 2132 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2133 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2134 pgdat->first_deferred_pfn = ULONG_MAX; 2135 2136 /* 2137 * Once we unlock here, the zone cannot be grown anymore, thus if an 2138 * interrupt thread must allocate this early in boot, zone must be 2139 * pre-grown prior to start of deferred page initialization. 2140 */ 2141 pgdat_resize_unlock(pgdat, &flags); 2142 2143 /* Only the highest zone is deferred so find it */ 2144 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2145 zone = pgdat->node_zones + zid; 2146 if (first_init_pfn < zone_end_pfn(zone)) 2147 break; 2148 } 2149 2150 /* If the zone is empty somebody else may have cleared out the zone */ 2151 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2152 first_init_pfn)) 2153 goto zone_empty; 2154 2155 max_threads = deferred_page_init_max_threads(cpumask); 2156 2157 while (spfn < epfn) { 2158 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2159 struct padata_mt_job job = { 2160 .thread_fn = deferred_init_memmap_chunk, 2161 .fn_arg = zone, 2162 .start = spfn, 2163 .size = epfn_align - spfn, 2164 .align = PAGES_PER_SECTION, 2165 .min_chunk = PAGES_PER_SECTION, 2166 .max_threads = max_threads, 2167 }; 2168 2169 padata_do_multithreaded(&job); 2170 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2171 epfn_align); 2172 } 2173 zone_empty: 2174 /* Sanity check that the next zone really is unpopulated */ 2175 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2176 2177 pr_info("node %d deferred pages initialised in %ums\n", 2178 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2179 2180 pgdat_init_report_one_done(); 2181 return 0; 2182 } 2183 2184 /* 2185 * If this zone has deferred pages, try to grow it by initializing enough 2186 * deferred pages to satisfy the allocation specified by order, rounded up to 2187 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2188 * of SECTION_SIZE bytes by initializing struct pages in increments of 2189 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2190 * 2191 * Return true when zone was grown, otherwise return false. We return true even 2192 * when we grow less than requested, to let the caller decide if there are 2193 * enough pages to satisfy the allocation. 2194 * 2195 * Note: We use noinline because this function is needed only during boot, and 2196 * it is called from a __ref function _deferred_grow_zone. This way we are 2197 * making sure that it is not inlined into permanent text section. 2198 */ 2199 static noinline bool __init 2200 deferred_grow_zone(struct zone *zone, unsigned int order) 2201 { 2202 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2203 pg_data_t *pgdat = zone->zone_pgdat; 2204 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2205 unsigned long spfn, epfn, flags; 2206 unsigned long nr_pages = 0; 2207 u64 i; 2208 2209 /* Only the last zone may have deferred pages */ 2210 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2211 return false; 2212 2213 pgdat_resize_lock(pgdat, &flags); 2214 2215 /* 2216 * If someone grew this zone while we were waiting for spinlock, return 2217 * true, as there might be enough pages already. 2218 */ 2219 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2220 pgdat_resize_unlock(pgdat, &flags); 2221 return true; 2222 } 2223 2224 /* If the zone is empty somebody else may have cleared out the zone */ 2225 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2226 first_deferred_pfn)) { 2227 pgdat->first_deferred_pfn = ULONG_MAX; 2228 pgdat_resize_unlock(pgdat, &flags); 2229 /* Retry only once. */ 2230 return first_deferred_pfn != ULONG_MAX; 2231 } 2232 2233 /* 2234 * Initialize and free pages in MAX_ORDER sized increments so 2235 * that we can avoid introducing any issues with the buddy 2236 * allocator. 2237 */ 2238 while (spfn < epfn) { 2239 /* update our first deferred PFN for this section */ 2240 first_deferred_pfn = spfn; 2241 2242 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2243 touch_nmi_watchdog(); 2244 2245 /* We should only stop along section boundaries */ 2246 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2247 continue; 2248 2249 /* If our quota has been met we can stop here */ 2250 if (nr_pages >= nr_pages_needed) 2251 break; 2252 } 2253 2254 pgdat->first_deferred_pfn = spfn; 2255 pgdat_resize_unlock(pgdat, &flags); 2256 2257 return nr_pages > 0; 2258 } 2259 2260 /* 2261 * deferred_grow_zone() is __init, but it is called from 2262 * get_page_from_freelist() during early boot until deferred_pages permanently 2263 * disables this call. This is why we have refdata wrapper to avoid warning, 2264 * and to ensure that the function body gets unloaded. 2265 */ 2266 static bool __ref 2267 _deferred_grow_zone(struct zone *zone, unsigned int order) 2268 { 2269 return deferred_grow_zone(zone, order); 2270 } 2271 2272 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2273 2274 void __init page_alloc_init_late(void) 2275 { 2276 struct zone *zone; 2277 int nid; 2278 2279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2280 2281 /* There will be num_node_state(N_MEMORY) threads */ 2282 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2283 for_each_node_state(nid, N_MEMORY) { 2284 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2285 } 2286 2287 /* Block until all are initialised */ 2288 wait_for_completion(&pgdat_init_all_done_comp); 2289 2290 /* 2291 * We initialized the rest of the deferred pages. Permanently disable 2292 * on-demand struct page initialization. 2293 */ 2294 static_branch_disable(&deferred_pages); 2295 2296 /* Reinit limits that are based on free pages after the kernel is up */ 2297 files_maxfiles_init(); 2298 #endif 2299 2300 buffer_init(); 2301 2302 /* Discard memblock private memory */ 2303 memblock_discard(); 2304 2305 for_each_node_state(nid, N_MEMORY) 2306 shuffle_free_memory(NODE_DATA(nid)); 2307 2308 for_each_populated_zone(zone) 2309 set_zone_contiguous(zone); 2310 } 2311 2312 #ifdef CONFIG_CMA 2313 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2314 void __init init_cma_reserved_pageblock(struct page *page) 2315 { 2316 unsigned i = pageblock_nr_pages; 2317 struct page *p = page; 2318 2319 do { 2320 __ClearPageReserved(p); 2321 set_page_count(p, 0); 2322 } while (++p, --i); 2323 2324 set_pageblock_migratetype(page, MIGRATE_CMA); 2325 set_page_refcounted(page); 2326 __free_pages(page, pageblock_order); 2327 2328 adjust_managed_page_count(page, pageblock_nr_pages); 2329 page_zone(page)->cma_pages += pageblock_nr_pages; 2330 } 2331 #endif 2332 2333 /* 2334 * The order of subdivision here is critical for the IO subsystem. 2335 * Please do not alter this order without good reasons and regression 2336 * testing. Specifically, as large blocks of memory are subdivided, 2337 * the order in which smaller blocks are delivered depends on the order 2338 * they're subdivided in this function. This is the primary factor 2339 * influencing the order in which pages are delivered to the IO 2340 * subsystem according to empirical testing, and this is also justified 2341 * by considering the behavior of a buddy system containing a single 2342 * large block of memory acted on by a series of small allocations. 2343 * This behavior is a critical factor in sglist merging's success. 2344 * 2345 * -- nyc 2346 */ 2347 static inline void expand(struct zone *zone, struct page *page, 2348 int low, int high, int migratetype) 2349 { 2350 unsigned long size = 1 << high; 2351 2352 while (high > low) { 2353 high--; 2354 size >>= 1; 2355 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2356 2357 /* 2358 * Mark as guard pages (or page), that will allow to 2359 * merge back to allocator when buddy will be freed. 2360 * Corresponding page table entries will not be touched, 2361 * pages will stay not present in virtual address space 2362 */ 2363 if (set_page_guard(zone, &page[size], high, migratetype)) 2364 continue; 2365 2366 add_to_free_list(&page[size], zone, high, migratetype); 2367 set_buddy_order(&page[size], high); 2368 } 2369 } 2370 2371 static void check_new_page_bad(struct page *page) 2372 { 2373 if (unlikely(page->flags & __PG_HWPOISON)) { 2374 /* Don't complain about hwpoisoned pages */ 2375 page_mapcount_reset(page); /* remove PageBuddy */ 2376 return; 2377 } 2378 2379 bad_page(page, 2380 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2381 } 2382 2383 /* 2384 * This page is about to be returned from the page allocator 2385 */ 2386 static inline int check_new_page(struct page *page) 2387 { 2388 if (likely(page_expected_state(page, 2389 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2390 return 0; 2391 2392 check_new_page_bad(page); 2393 return 1; 2394 } 2395 2396 static bool check_new_pages(struct page *page, unsigned int order) 2397 { 2398 int i; 2399 for (i = 0; i < (1 << order); i++) { 2400 struct page *p = page + i; 2401 2402 if (unlikely(check_new_page(p))) 2403 return true; 2404 } 2405 2406 return false; 2407 } 2408 2409 #ifdef CONFIG_DEBUG_VM 2410 /* 2411 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2412 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2413 * also checked when pcp lists are refilled from the free lists. 2414 */ 2415 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2416 { 2417 if (debug_pagealloc_enabled_static()) 2418 return check_new_pages(page, order); 2419 else 2420 return false; 2421 } 2422 2423 static inline bool check_new_pcp(struct page *page, unsigned int order) 2424 { 2425 return check_new_pages(page, order); 2426 } 2427 #else 2428 /* 2429 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2430 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2431 * enabled, they are also checked when being allocated from the pcp lists. 2432 */ 2433 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2434 { 2435 return check_new_pages(page, order); 2436 } 2437 static inline bool check_new_pcp(struct page *page, unsigned int order) 2438 { 2439 if (debug_pagealloc_enabled_static()) 2440 return check_new_pages(page, order); 2441 else 2442 return false; 2443 } 2444 #endif /* CONFIG_DEBUG_VM */ 2445 2446 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2447 { 2448 /* Don't skip if a software KASAN mode is enabled. */ 2449 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2450 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2451 return false; 2452 2453 /* Skip, if hardware tag-based KASAN is not enabled. */ 2454 if (!kasan_hw_tags_enabled()) 2455 return true; 2456 2457 /* 2458 * With hardware tag-based KASAN enabled, skip if this has been 2459 * requested via __GFP_SKIP_KASAN_UNPOISON. 2460 */ 2461 return flags & __GFP_SKIP_KASAN_UNPOISON; 2462 } 2463 2464 static inline bool should_skip_init(gfp_t flags) 2465 { 2466 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2467 if (!kasan_hw_tags_enabled()) 2468 return false; 2469 2470 /* For hardware tag-based KASAN, skip if requested. */ 2471 return (flags & __GFP_SKIP_ZERO); 2472 } 2473 2474 inline void post_alloc_hook(struct page *page, unsigned int order, 2475 gfp_t gfp_flags) 2476 { 2477 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2478 !should_skip_init(gfp_flags); 2479 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2480 bool reset_tags = true; 2481 int i; 2482 2483 set_page_private(page, 0); 2484 set_page_refcounted(page); 2485 2486 arch_alloc_page(page, order); 2487 debug_pagealloc_map_pages(page, 1 << order); 2488 2489 /* 2490 * Page unpoisoning must happen before memory initialization. 2491 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2492 * allocations and the page unpoisoning code will complain. 2493 */ 2494 kernel_unpoison_pages(page, 1 << order); 2495 2496 /* 2497 * As memory initialization might be integrated into KASAN, 2498 * KASAN unpoisoning and memory initializion code must be 2499 * kept together to avoid discrepancies in behavior. 2500 */ 2501 2502 /* 2503 * If memory tags should be zeroed 2504 * (which happens only when memory should be initialized as well). 2505 */ 2506 if (zero_tags) { 2507 /* Initialize both memory and memory tags. */ 2508 for (i = 0; i != 1 << order; ++i) 2509 tag_clear_highpage(page + i); 2510 2511 /* Take note that memory was initialized by the loop above. */ 2512 init = false; 2513 } 2514 if (!should_skip_kasan_unpoison(gfp_flags)) { 2515 /* Try unpoisoning (or setting tags) and initializing memory. */ 2516 if (kasan_unpoison_pages(page, order, init)) { 2517 /* Take note that memory was initialized by KASAN. */ 2518 if (kasan_has_integrated_init()) 2519 init = false; 2520 /* Take note that memory tags were set by KASAN. */ 2521 reset_tags = false; 2522 } else { 2523 /* 2524 * KASAN decided to exclude this allocation from being 2525 * (un)poisoned due to sampling. Make KASAN skip 2526 * poisoning when the allocation is freed. 2527 */ 2528 SetPageSkipKASanPoison(page); 2529 } 2530 } 2531 /* 2532 * If memory tags have not been set by KASAN, reset the page tags to 2533 * ensure page_address() dereferencing does not fault. 2534 */ 2535 if (reset_tags) { 2536 for (i = 0; i != 1 << order; ++i) 2537 page_kasan_tag_reset(page + i); 2538 } 2539 /* If memory is still not initialized, initialize it now. */ 2540 if (init) 2541 kernel_init_pages(page, 1 << order); 2542 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2543 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2544 SetPageSkipKASanPoison(page); 2545 2546 set_page_owner(page, order, gfp_flags); 2547 page_table_check_alloc(page, order); 2548 } 2549 2550 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2551 unsigned int alloc_flags) 2552 { 2553 post_alloc_hook(page, order, gfp_flags); 2554 2555 if (order && (gfp_flags & __GFP_COMP)) 2556 prep_compound_page(page, order); 2557 2558 /* 2559 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2560 * allocate the page. The expectation is that the caller is taking 2561 * steps that will free more memory. The caller should avoid the page 2562 * being used for !PFMEMALLOC purposes. 2563 */ 2564 if (alloc_flags & ALLOC_NO_WATERMARKS) 2565 set_page_pfmemalloc(page); 2566 else 2567 clear_page_pfmemalloc(page); 2568 } 2569 2570 /* 2571 * Go through the free lists for the given migratetype and remove 2572 * the smallest available page from the freelists 2573 */ 2574 static __always_inline 2575 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2576 int migratetype) 2577 { 2578 unsigned int current_order; 2579 struct free_area *area; 2580 struct page *page; 2581 2582 /* Find a page of the appropriate size in the preferred list */ 2583 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2584 area = &(zone->free_area[current_order]); 2585 page = get_page_from_free_area(area, migratetype); 2586 if (!page) 2587 continue; 2588 del_page_from_free_list(page, zone, current_order); 2589 expand(zone, page, order, current_order, migratetype); 2590 set_pcppage_migratetype(page, migratetype); 2591 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2592 pcp_allowed_order(order) && 2593 migratetype < MIGRATE_PCPTYPES); 2594 return page; 2595 } 2596 2597 return NULL; 2598 } 2599 2600 2601 /* 2602 * This array describes the order lists are fallen back to when 2603 * the free lists for the desirable migrate type are depleted 2604 * 2605 * The other migratetypes do not have fallbacks. 2606 */ 2607 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 2608 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 2609 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 2610 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 2611 }; 2612 2613 #ifdef CONFIG_CMA 2614 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2615 unsigned int order) 2616 { 2617 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2618 } 2619 #else 2620 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2621 unsigned int order) { return NULL; } 2622 #endif 2623 2624 /* 2625 * Move the free pages in a range to the freelist tail of the requested type. 2626 * Note that start_page and end_pages are not aligned on a pageblock 2627 * boundary. If alignment is required, use move_freepages_block() 2628 */ 2629 static int move_freepages(struct zone *zone, 2630 unsigned long start_pfn, unsigned long end_pfn, 2631 int migratetype, int *num_movable) 2632 { 2633 struct page *page; 2634 unsigned long pfn; 2635 unsigned int order; 2636 int pages_moved = 0; 2637 2638 for (pfn = start_pfn; pfn <= end_pfn;) { 2639 page = pfn_to_page(pfn); 2640 if (!PageBuddy(page)) { 2641 /* 2642 * We assume that pages that could be isolated for 2643 * migration are movable. But we don't actually try 2644 * isolating, as that would be expensive. 2645 */ 2646 if (num_movable && 2647 (PageLRU(page) || __PageMovable(page))) 2648 (*num_movable)++; 2649 pfn++; 2650 continue; 2651 } 2652 2653 /* Make sure we are not inadvertently changing nodes */ 2654 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2655 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2656 2657 order = buddy_order(page); 2658 move_to_free_list(page, zone, order, migratetype); 2659 pfn += 1 << order; 2660 pages_moved += 1 << order; 2661 } 2662 2663 return pages_moved; 2664 } 2665 2666 int move_freepages_block(struct zone *zone, struct page *page, 2667 int migratetype, int *num_movable) 2668 { 2669 unsigned long start_pfn, end_pfn, pfn; 2670 2671 if (num_movable) 2672 *num_movable = 0; 2673 2674 pfn = page_to_pfn(page); 2675 start_pfn = pageblock_start_pfn(pfn); 2676 end_pfn = pageblock_end_pfn(pfn) - 1; 2677 2678 /* Do not cross zone boundaries */ 2679 if (!zone_spans_pfn(zone, start_pfn)) 2680 start_pfn = pfn; 2681 if (!zone_spans_pfn(zone, end_pfn)) 2682 return 0; 2683 2684 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2685 num_movable); 2686 } 2687 2688 static void change_pageblock_range(struct page *pageblock_page, 2689 int start_order, int migratetype) 2690 { 2691 int nr_pageblocks = 1 << (start_order - pageblock_order); 2692 2693 while (nr_pageblocks--) { 2694 set_pageblock_migratetype(pageblock_page, migratetype); 2695 pageblock_page += pageblock_nr_pages; 2696 } 2697 } 2698 2699 /* 2700 * When we are falling back to another migratetype during allocation, try to 2701 * steal extra free pages from the same pageblocks to satisfy further 2702 * allocations, instead of polluting multiple pageblocks. 2703 * 2704 * If we are stealing a relatively large buddy page, it is likely there will 2705 * be more free pages in the pageblock, so try to steal them all. For 2706 * reclaimable and unmovable allocations, we steal regardless of page size, 2707 * as fragmentation caused by those allocations polluting movable pageblocks 2708 * is worse than movable allocations stealing from unmovable and reclaimable 2709 * pageblocks. 2710 */ 2711 static bool can_steal_fallback(unsigned int order, int start_mt) 2712 { 2713 /* 2714 * Leaving this order check is intended, although there is 2715 * relaxed order check in next check. The reason is that 2716 * we can actually steal whole pageblock if this condition met, 2717 * but, below check doesn't guarantee it and that is just heuristic 2718 * so could be changed anytime. 2719 */ 2720 if (order >= pageblock_order) 2721 return true; 2722 2723 if (order >= pageblock_order / 2 || 2724 start_mt == MIGRATE_RECLAIMABLE || 2725 start_mt == MIGRATE_UNMOVABLE || 2726 page_group_by_mobility_disabled) 2727 return true; 2728 2729 return false; 2730 } 2731 2732 static inline bool boost_watermark(struct zone *zone) 2733 { 2734 unsigned long max_boost; 2735 2736 if (!watermark_boost_factor) 2737 return false; 2738 /* 2739 * Don't bother in zones that are unlikely to produce results. 2740 * On small machines, including kdump capture kernels running 2741 * in a small area, boosting the watermark can cause an out of 2742 * memory situation immediately. 2743 */ 2744 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2745 return false; 2746 2747 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2748 watermark_boost_factor, 10000); 2749 2750 /* 2751 * high watermark may be uninitialised if fragmentation occurs 2752 * very early in boot so do not boost. We do not fall 2753 * through and boost by pageblock_nr_pages as failing 2754 * allocations that early means that reclaim is not going 2755 * to help and it may even be impossible to reclaim the 2756 * boosted watermark resulting in a hang. 2757 */ 2758 if (!max_boost) 2759 return false; 2760 2761 max_boost = max(pageblock_nr_pages, max_boost); 2762 2763 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2764 max_boost); 2765 2766 return true; 2767 } 2768 2769 /* 2770 * This function implements actual steal behaviour. If order is large enough, 2771 * we can steal whole pageblock. If not, we first move freepages in this 2772 * pageblock to our migratetype and determine how many already-allocated pages 2773 * are there in the pageblock with a compatible migratetype. If at least half 2774 * of pages are free or compatible, we can change migratetype of the pageblock 2775 * itself, so pages freed in the future will be put on the correct free list. 2776 */ 2777 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2778 unsigned int alloc_flags, int start_type, bool whole_block) 2779 { 2780 unsigned int current_order = buddy_order(page); 2781 int free_pages, movable_pages, alike_pages; 2782 int old_block_type; 2783 2784 old_block_type = get_pageblock_migratetype(page); 2785 2786 /* 2787 * This can happen due to races and we want to prevent broken 2788 * highatomic accounting. 2789 */ 2790 if (is_migrate_highatomic(old_block_type)) 2791 goto single_page; 2792 2793 /* Take ownership for orders >= pageblock_order */ 2794 if (current_order >= pageblock_order) { 2795 change_pageblock_range(page, current_order, start_type); 2796 goto single_page; 2797 } 2798 2799 /* 2800 * Boost watermarks to increase reclaim pressure to reduce the 2801 * likelihood of future fallbacks. Wake kswapd now as the node 2802 * may be balanced overall and kswapd will not wake naturally. 2803 */ 2804 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2805 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2806 2807 /* We are not allowed to try stealing from the whole block */ 2808 if (!whole_block) 2809 goto single_page; 2810 2811 free_pages = move_freepages_block(zone, page, start_type, 2812 &movable_pages); 2813 /* 2814 * Determine how many pages are compatible with our allocation. 2815 * For movable allocation, it's the number of movable pages which 2816 * we just obtained. For other types it's a bit more tricky. 2817 */ 2818 if (start_type == MIGRATE_MOVABLE) { 2819 alike_pages = movable_pages; 2820 } else { 2821 /* 2822 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2823 * to MOVABLE pageblock, consider all non-movable pages as 2824 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2825 * vice versa, be conservative since we can't distinguish the 2826 * exact migratetype of non-movable pages. 2827 */ 2828 if (old_block_type == MIGRATE_MOVABLE) 2829 alike_pages = pageblock_nr_pages 2830 - (free_pages + movable_pages); 2831 else 2832 alike_pages = 0; 2833 } 2834 2835 /* moving whole block can fail due to zone boundary conditions */ 2836 if (!free_pages) 2837 goto single_page; 2838 2839 /* 2840 * If a sufficient number of pages in the block are either free or of 2841 * comparable migratability as our allocation, claim the whole block. 2842 */ 2843 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2844 page_group_by_mobility_disabled) 2845 set_pageblock_migratetype(page, start_type); 2846 2847 return; 2848 2849 single_page: 2850 move_to_free_list(page, zone, current_order, start_type); 2851 } 2852 2853 /* 2854 * Check whether there is a suitable fallback freepage with requested order. 2855 * If only_stealable is true, this function returns fallback_mt only if 2856 * we can steal other freepages all together. This would help to reduce 2857 * fragmentation due to mixed migratetype pages in one pageblock. 2858 */ 2859 int find_suitable_fallback(struct free_area *area, unsigned int order, 2860 int migratetype, bool only_stealable, bool *can_steal) 2861 { 2862 int i; 2863 int fallback_mt; 2864 2865 if (area->nr_free == 0) 2866 return -1; 2867 2868 *can_steal = false; 2869 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2870 fallback_mt = fallbacks[migratetype][i]; 2871 if (free_area_empty(area, fallback_mt)) 2872 continue; 2873 2874 if (can_steal_fallback(order, migratetype)) 2875 *can_steal = true; 2876 2877 if (!only_stealable) 2878 return fallback_mt; 2879 2880 if (*can_steal) 2881 return fallback_mt; 2882 } 2883 2884 return -1; 2885 } 2886 2887 /* 2888 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2889 * there are no empty page blocks that contain a page with a suitable order 2890 */ 2891 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2892 unsigned int alloc_order) 2893 { 2894 int mt; 2895 unsigned long max_managed, flags; 2896 2897 /* 2898 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2899 * Check is race-prone but harmless. 2900 */ 2901 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2902 if (zone->nr_reserved_highatomic >= max_managed) 2903 return; 2904 2905 spin_lock_irqsave(&zone->lock, flags); 2906 2907 /* Recheck the nr_reserved_highatomic limit under the lock */ 2908 if (zone->nr_reserved_highatomic >= max_managed) 2909 goto out_unlock; 2910 2911 /* Yoink! */ 2912 mt = get_pageblock_migratetype(page); 2913 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2914 if (migratetype_is_mergeable(mt)) { 2915 zone->nr_reserved_highatomic += pageblock_nr_pages; 2916 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2917 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2918 } 2919 2920 out_unlock: 2921 spin_unlock_irqrestore(&zone->lock, flags); 2922 } 2923 2924 /* 2925 * Used when an allocation is about to fail under memory pressure. This 2926 * potentially hurts the reliability of high-order allocations when under 2927 * intense memory pressure but failed atomic allocations should be easier 2928 * to recover from than an OOM. 2929 * 2930 * If @force is true, try to unreserve a pageblock even though highatomic 2931 * pageblock is exhausted. 2932 */ 2933 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2934 bool force) 2935 { 2936 struct zonelist *zonelist = ac->zonelist; 2937 unsigned long flags; 2938 struct zoneref *z; 2939 struct zone *zone; 2940 struct page *page; 2941 int order; 2942 bool ret; 2943 2944 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2945 ac->nodemask) { 2946 /* 2947 * Preserve at least one pageblock unless memory pressure 2948 * is really high. 2949 */ 2950 if (!force && zone->nr_reserved_highatomic <= 2951 pageblock_nr_pages) 2952 continue; 2953 2954 spin_lock_irqsave(&zone->lock, flags); 2955 for (order = 0; order < MAX_ORDER; order++) { 2956 struct free_area *area = &(zone->free_area[order]); 2957 2958 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2959 if (!page) 2960 continue; 2961 2962 /* 2963 * In page freeing path, migratetype change is racy so 2964 * we can counter several free pages in a pageblock 2965 * in this loop although we changed the pageblock type 2966 * from highatomic to ac->migratetype. So we should 2967 * adjust the count once. 2968 */ 2969 if (is_migrate_highatomic_page(page)) { 2970 /* 2971 * It should never happen but changes to 2972 * locking could inadvertently allow a per-cpu 2973 * drain to add pages to MIGRATE_HIGHATOMIC 2974 * while unreserving so be safe and watch for 2975 * underflows. 2976 */ 2977 zone->nr_reserved_highatomic -= min( 2978 pageblock_nr_pages, 2979 zone->nr_reserved_highatomic); 2980 } 2981 2982 /* 2983 * Convert to ac->migratetype and avoid the normal 2984 * pageblock stealing heuristics. Minimally, the caller 2985 * is doing the work and needs the pages. More 2986 * importantly, if the block was always converted to 2987 * MIGRATE_UNMOVABLE or another type then the number 2988 * of pageblocks that cannot be completely freed 2989 * may increase. 2990 */ 2991 set_pageblock_migratetype(page, ac->migratetype); 2992 ret = move_freepages_block(zone, page, ac->migratetype, 2993 NULL); 2994 if (ret) { 2995 spin_unlock_irqrestore(&zone->lock, flags); 2996 return ret; 2997 } 2998 } 2999 spin_unlock_irqrestore(&zone->lock, flags); 3000 } 3001 3002 return false; 3003 } 3004 3005 /* 3006 * Try finding a free buddy page on the fallback list and put it on the free 3007 * list of requested migratetype, possibly along with other pages from the same 3008 * block, depending on fragmentation avoidance heuristics. Returns true if 3009 * fallback was found so that __rmqueue_smallest() can grab it. 3010 * 3011 * The use of signed ints for order and current_order is a deliberate 3012 * deviation from the rest of this file, to make the for loop 3013 * condition simpler. 3014 */ 3015 static __always_inline bool 3016 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 3017 unsigned int alloc_flags) 3018 { 3019 struct free_area *area; 3020 int current_order; 3021 int min_order = order; 3022 struct page *page; 3023 int fallback_mt; 3024 bool can_steal; 3025 3026 /* 3027 * Do not steal pages from freelists belonging to other pageblocks 3028 * i.e. orders < pageblock_order. If there are no local zones free, 3029 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3030 */ 3031 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3032 min_order = pageblock_order; 3033 3034 /* 3035 * Find the largest available free page in the other list. This roughly 3036 * approximates finding the pageblock with the most free pages, which 3037 * would be too costly to do exactly. 3038 */ 3039 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3040 --current_order) { 3041 area = &(zone->free_area[current_order]); 3042 fallback_mt = find_suitable_fallback(area, current_order, 3043 start_migratetype, false, &can_steal); 3044 if (fallback_mt == -1) 3045 continue; 3046 3047 /* 3048 * We cannot steal all free pages from the pageblock and the 3049 * requested migratetype is movable. In that case it's better to 3050 * steal and split the smallest available page instead of the 3051 * largest available page, because even if the next movable 3052 * allocation falls back into a different pageblock than this 3053 * one, it won't cause permanent fragmentation. 3054 */ 3055 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3056 && current_order > order) 3057 goto find_smallest; 3058 3059 goto do_steal; 3060 } 3061 3062 return false; 3063 3064 find_smallest: 3065 for (current_order = order; current_order < MAX_ORDER; 3066 current_order++) { 3067 area = &(zone->free_area[current_order]); 3068 fallback_mt = find_suitable_fallback(area, current_order, 3069 start_migratetype, false, &can_steal); 3070 if (fallback_mt != -1) 3071 break; 3072 } 3073 3074 /* 3075 * This should not happen - we already found a suitable fallback 3076 * when looking for the largest page. 3077 */ 3078 VM_BUG_ON(current_order == MAX_ORDER); 3079 3080 do_steal: 3081 page = get_page_from_free_area(area, fallback_mt); 3082 3083 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3084 can_steal); 3085 3086 trace_mm_page_alloc_extfrag(page, order, current_order, 3087 start_migratetype, fallback_mt); 3088 3089 return true; 3090 3091 } 3092 3093 /* 3094 * Do the hard work of removing an element from the buddy allocator. 3095 * Call me with the zone->lock already held. 3096 */ 3097 static __always_inline struct page * 3098 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3099 unsigned int alloc_flags) 3100 { 3101 struct page *page; 3102 3103 if (IS_ENABLED(CONFIG_CMA)) { 3104 /* 3105 * Balance movable allocations between regular and CMA areas by 3106 * allocating from CMA when over half of the zone's free memory 3107 * is in the CMA area. 3108 */ 3109 if (alloc_flags & ALLOC_CMA && 3110 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3111 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3112 page = __rmqueue_cma_fallback(zone, order); 3113 if (page) 3114 return page; 3115 } 3116 } 3117 retry: 3118 page = __rmqueue_smallest(zone, order, migratetype); 3119 if (unlikely(!page)) { 3120 if (alloc_flags & ALLOC_CMA) 3121 page = __rmqueue_cma_fallback(zone, order); 3122 3123 if (!page && __rmqueue_fallback(zone, order, migratetype, 3124 alloc_flags)) 3125 goto retry; 3126 } 3127 return page; 3128 } 3129 3130 /* 3131 * Obtain a specified number of elements from the buddy allocator, all under 3132 * a single hold of the lock, for efficiency. Add them to the supplied list. 3133 * Returns the number of new pages which were placed at *list. 3134 */ 3135 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3136 unsigned long count, struct list_head *list, 3137 int migratetype, unsigned int alloc_flags) 3138 { 3139 unsigned long flags; 3140 int i, allocated = 0; 3141 3142 spin_lock_irqsave(&zone->lock, flags); 3143 for (i = 0; i < count; ++i) { 3144 struct page *page = __rmqueue(zone, order, migratetype, 3145 alloc_flags); 3146 if (unlikely(page == NULL)) 3147 break; 3148 3149 if (unlikely(check_pcp_refill(page, order))) 3150 continue; 3151 3152 /* 3153 * Split buddy pages returned by expand() are received here in 3154 * physical page order. The page is added to the tail of 3155 * caller's list. From the callers perspective, the linked list 3156 * is ordered by page number under some conditions. This is 3157 * useful for IO devices that can forward direction from the 3158 * head, thus also in the physical page order. This is useful 3159 * for IO devices that can merge IO requests if the physical 3160 * pages are ordered properly. 3161 */ 3162 list_add_tail(&page->pcp_list, list); 3163 allocated++; 3164 if (is_migrate_cma(get_pcppage_migratetype(page))) 3165 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3166 -(1 << order)); 3167 } 3168 3169 /* 3170 * i pages were removed from the buddy list even if some leak due 3171 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3172 * on i. Do not confuse with 'allocated' which is the number of 3173 * pages added to the pcp list. 3174 */ 3175 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3176 spin_unlock_irqrestore(&zone->lock, flags); 3177 return allocated; 3178 } 3179 3180 #ifdef CONFIG_NUMA 3181 /* 3182 * Called from the vmstat counter updater to drain pagesets of this 3183 * currently executing processor on remote nodes after they have 3184 * expired. 3185 */ 3186 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3187 { 3188 int to_drain, batch; 3189 3190 batch = READ_ONCE(pcp->batch); 3191 to_drain = min(pcp->count, batch); 3192 if (to_drain > 0) { 3193 spin_lock(&pcp->lock); 3194 free_pcppages_bulk(zone, to_drain, pcp, 0); 3195 spin_unlock(&pcp->lock); 3196 } 3197 } 3198 #endif 3199 3200 /* 3201 * Drain pcplists of the indicated processor and zone. 3202 */ 3203 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3204 { 3205 struct per_cpu_pages *pcp; 3206 3207 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3208 if (pcp->count) { 3209 spin_lock(&pcp->lock); 3210 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3211 spin_unlock(&pcp->lock); 3212 } 3213 } 3214 3215 /* 3216 * Drain pcplists of all zones on the indicated processor. 3217 */ 3218 static void drain_pages(unsigned int cpu) 3219 { 3220 struct zone *zone; 3221 3222 for_each_populated_zone(zone) { 3223 drain_pages_zone(cpu, zone); 3224 } 3225 } 3226 3227 /* 3228 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3229 */ 3230 void drain_local_pages(struct zone *zone) 3231 { 3232 int cpu = smp_processor_id(); 3233 3234 if (zone) 3235 drain_pages_zone(cpu, zone); 3236 else 3237 drain_pages(cpu); 3238 } 3239 3240 /* 3241 * The implementation of drain_all_pages(), exposing an extra parameter to 3242 * drain on all cpus. 3243 * 3244 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3245 * not empty. The check for non-emptiness can however race with a free to 3246 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3247 * that need the guarantee that every CPU has drained can disable the 3248 * optimizing racy check. 3249 */ 3250 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3251 { 3252 int cpu; 3253 3254 /* 3255 * Allocate in the BSS so we won't require allocation in 3256 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3257 */ 3258 static cpumask_t cpus_with_pcps; 3259 3260 /* 3261 * Do not drain if one is already in progress unless it's specific to 3262 * a zone. Such callers are primarily CMA and memory hotplug and need 3263 * the drain to be complete when the call returns. 3264 */ 3265 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3266 if (!zone) 3267 return; 3268 mutex_lock(&pcpu_drain_mutex); 3269 } 3270 3271 /* 3272 * We don't care about racing with CPU hotplug event 3273 * as offline notification will cause the notified 3274 * cpu to drain that CPU pcps and on_each_cpu_mask 3275 * disables preemption as part of its processing 3276 */ 3277 for_each_online_cpu(cpu) { 3278 struct per_cpu_pages *pcp; 3279 struct zone *z; 3280 bool has_pcps = false; 3281 3282 if (force_all_cpus) { 3283 /* 3284 * The pcp.count check is racy, some callers need a 3285 * guarantee that no cpu is missed. 3286 */ 3287 has_pcps = true; 3288 } else if (zone) { 3289 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3290 if (pcp->count) 3291 has_pcps = true; 3292 } else { 3293 for_each_populated_zone(z) { 3294 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3295 if (pcp->count) { 3296 has_pcps = true; 3297 break; 3298 } 3299 } 3300 } 3301 3302 if (has_pcps) 3303 cpumask_set_cpu(cpu, &cpus_with_pcps); 3304 else 3305 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3306 } 3307 3308 for_each_cpu(cpu, &cpus_with_pcps) { 3309 if (zone) 3310 drain_pages_zone(cpu, zone); 3311 else 3312 drain_pages(cpu); 3313 } 3314 3315 mutex_unlock(&pcpu_drain_mutex); 3316 } 3317 3318 /* 3319 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3320 * 3321 * When zone parameter is non-NULL, spill just the single zone's pages. 3322 */ 3323 void drain_all_pages(struct zone *zone) 3324 { 3325 __drain_all_pages(zone, false); 3326 } 3327 3328 #ifdef CONFIG_HIBERNATION 3329 3330 /* 3331 * Touch the watchdog for every WD_PAGE_COUNT pages. 3332 */ 3333 #define WD_PAGE_COUNT (128*1024) 3334 3335 void mark_free_pages(struct zone *zone) 3336 { 3337 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3338 unsigned long flags; 3339 unsigned int order, t; 3340 struct page *page; 3341 3342 if (zone_is_empty(zone)) 3343 return; 3344 3345 spin_lock_irqsave(&zone->lock, flags); 3346 3347 max_zone_pfn = zone_end_pfn(zone); 3348 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3349 if (pfn_valid(pfn)) { 3350 page = pfn_to_page(pfn); 3351 3352 if (!--page_count) { 3353 touch_nmi_watchdog(); 3354 page_count = WD_PAGE_COUNT; 3355 } 3356 3357 if (page_zone(page) != zone) 3358 continue; 3359 3360 if (!swsusp_page_is_forbidden(page)) 3361 swsusp_unset_page_free(page); 3362 } 3363 3364 for_each_migratetype_order(order, t) { 3365 list_for_each_entry(page, 3366 &zone->free_area[order].free_list[t], buddy_list) { 3367 unsigned long i; 3368 3369 pfn = page_to_pfn(page); 3370 for (i = 0; i < (1UL << order); i++) { 3371 if (!--page_count) { 3372 touch_nmi_watchdog(); 3373 page_count = WD_PAGE_COUNT; 3374 } 3375 swsusp_set_page_free(pfn_to_page(pfn + i)); 3376 } 3377 } 3378 } 3379 spin_unlock_irqrestore(&zone->lock, flags); 3380 } 3381 #endif /* CONFIG_PM */ 3382 3383 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3384 unsigned int order) 3385 { 3386 int migratetype; 3387 3388 if (!free_pcp_prepare(page, order)) 3389 return false; 3390 3391 migratetype = get_pfnblock_migratetype(page, pfn); 3392 set_pcppage_migratetype(page, migratetype); 3393 return true; 3394 } 3395 3396 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3397 bool free_high) 3398 { 3399 int min_nr_free, max_nr_free; 3400 3401 /* Free everything if batch freeing high-order pages. */ 3402 if (unlikely(free_high)) 3403 return pcp->count; 3404 3405 /* Check for PCP disabled or boot pageset */ 3406 if (unlikely(high < batch)) 3407 return 1; 3408 3409 /* Leave at least pcp->batch pages on the list */ 3410 min_nr_free = batch; 3411 max_nr_free = high - batch; 3412 3413 /* 3414 * Double the number of pages freed each time there is subsequent 3415 * freeing of pages without any allocation. 3416 */ 3417 batch <<= pcp->free_factor; 3418 if (batch < max_nr_free) 3419 pcp->free_factor++; 3420 batch = clamp(batch, min_nr_free, max_nr_free); 3421 3422 return batch; 3423 } 3424 3425 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3426 bool free_high) 3427 { 3428 int high = READ_ONCE(pcp->high); 3429 3430 if (unlikely(!high || free_high)) 3431 return 0; 3432 3433 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3434 return high; 3435 3436 /* 3437 * If reclaim is active, limit the number of pages that can be 3438 * stored on pcp lists 3439 */ 3440 return min(READ_ONCE(pcp->batch) << 2, high); 3441 } 3442 3443 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3444 struct page *page, int migratetype, 3445 unsigned int order) 3446 { 3447 int high; 3448 int pindex; 3449 bool free_high; 3450 3451 __count_vm_events(PGFREE, 1 << order); 3452 pindex = order_to_pindex(migratetype, order); 3453 list_add(&page->pcp_list, &pcp->lists[pindex]); 3454 pcp->count += 1 << order; 3455 3456 /* 3457 * As high-order pages other than THP's stored on PCP can contribute 3458 * to fragmentation, limit the number stored when PCP is heavily 3459 * freeing without allocation. The remainder after bulk freeing 3460 * stops will be drained from vmstat refresh context. 3461 */ 3462 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3463 3464 high = nr_pcp_high(pcp, zone, free_high); 3465 if (pcp->count >= high) { 3466 int batch = READ_ONCE(pcp->batch); 3467 3468 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3469 } 3470 } 3471 3472 /* 3473 * Free a pcp page 3474 */ 3475 void free_unref_page(struct page *page, unsigned int order) 3476 { 3477 unsigned long __maybe_unused UP_flags; 3478 struct per_cpu_pages *pcp; 3479 struct zone *zone; 3480 unsigned long pfn = page_to_pfn(page); 3481 int migratetype; 3482 3483 if (!free_unref_page_prepare(page, pfn, order)) 3484 return; 3485 3486 /* 3487 * We only track unmovable, reclaimable and movable on pcp lists. 3488 * Place ISOLATE pages on the isolated list because they are being 3489 * offlined but treat HIGHATOMIC as movable pages so we can get those 3490 * areas back if necessary. Otherwise, we may have to free 3491 * excessively into the page allocator 3492 */ 3493 migratetype = get_pcppage_migratetype(page); 3494 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3495 if (unlikely(is_migrate_isolate(migratetype))) { 3496 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3497 return; 3498 } 3499 migratetype = MIGRATE_MOVABLE; 3500 } 3501 3502 zone = page_zone(page); 3503 pcp_trylock_prepare(UP_flags); 3504 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3505 if (pcp) { 3506 free_unref_page_commit(zone, pcp, page, migratetype, order); 3507 pcp_spin_unlock(pcp); 3508 } else { 3509 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3510 } 3511 pcp_trylock_finish(UP_flags); 3512 } 3513 3514 /* 3515 * Free a list of 0-order pages 3516 */ 3517 void free_unref_page_list(struct list_head *list) 3518 { 3519 unsigned long __maybe_unused UP_flags; 3520 struct page *page, *next; 3521 struct per_cpu_pages *pcp = NULL; 3522 struct zone *locked_zone = NULL; 3523 int batch_count = 0; 3524 int migratetype; 3525 3526 /* Prepare pages for freeing */ 3527 list_for_each_entry_safe(page, next, list, lru) { 3528 unsigned long pfn = page_to_pfn(page); 3529 if (!free_unref_page_prepare(page, pfn, 0)) { 3530 list_del(&page->lru); 3531 continue; 3532 } 3533 3534 /* 3535 * Free isolated pages directly to the allocator, see 3536 * comment in free_unref_page. 3537 */ 3538 migratetype = get_pcppage_migratetype(page); 3539 if (unlikely(is_migrate_isolate(migratetype))) { 3540 list_del(&page->lru); 3541 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3542 continue; 3543 } 3544 } 3545 3546 list_for_each_entry_safe(page, next, list, lru) { 3547 struct zone *zone = page_zone(page); 3548 3549 list_del(&page->lru); 3550 migratetype = get_pcppage_migratetype(page); 3551 3552 /* 3553 * Either different zone requiring a different pcp lock or 3554 * excessive lock hold times when freeing a large list of 3555 * pages. 3556 */ 3557 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 3558 if (pcp) { 3559 pcp_spin_unlock(pcp); 3560 pcp_trylock_finish(UP_flags); 3561 } 3562 3563 batch_count = 0; 3564 3565 /* 3566 * trylock is necessary as pages may be getting freed 3567 * from IRQ or SoftIRQ context after an IO completion. 3568 */ 3569 pcp_trylock_prepare(UP_flags); 3570 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3571 if (unlikely(!pcp)) { 3572 pcp_trylock_finish(UP_flags); 3573 free_one_page(zone, page, page_to_pfn(page), 3574 0, migratetype, FPI_NONE); 3575 locked_zone = NULL; 3576 continue; 3577 } 3578 locked_zone = zone; 3579 } 3580 3581 /* 3582 * Non-isolated types over MIGRATE_PCPTYPES get added 3583 * to the MIGRATE_MOVABLE pcp list. 3584 */ 3585 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3586 migratetype = MIGRATE_MOVABLE; 3587 3588 trace_mm_page_free_batched(page); 3589 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3590 batch_count++; 3591 } 3592 3593 if (pcp) { 3594 pcp_spin_unlock(pcp); 3595 pcp_trylock_finish(UP_flags); 3596 } 3597 } 3598 3599 /* 3600 * split_page takes a non-compound higher-order page, and splits it into 3601 * n (1<<order) sub-pages: page[0..n] 3602 * Each sub-page must be freed individually. 3603 * 3604 * Note: this is probably too low level an operation for use in drivers. 3605 * Please consult with lkml before using this in your driver. 3606 */ 3607 void split_page(struct page *page, unsigned int order) 3608 { 3609 int i; 3610 3611 VM_BUG_ON_PAGE(PageCompound(page), page); 3612 VM_BUG_ON_PAGE(!page_count(page), page); 3613 3614 for (i = 1; i < (1 << order); i++) 3615 set_page_refcounted(page + i); 3616 split_page_owner(page, 1 << order); 3617 split_page_memcg(page, 1 << order); 3618 } 3619 EXPORT_SYMBOL_GPL(split_page); 3620 3621 int __isolate_free_page(struct page *page, unsigned int order) 3622 { 3623 struct zone *zone = page_zone(page); 3624 int mt = get_pageblock_migratetype(page); 3625 3626 if (!is_migrate_isolate(mt)) { 3627 unsigned long watermark; 3628 /* 3629 * Obey watermarks as if the page was being allocated. We can 3630 * emulate a high-order watermark check with a raised order-0 3631 * watermark, because we already know our high-order page 3632 * exists. 3633 */ 3634 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3635 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3636 return 0; 3637 3638 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3639 } 3640 3641 del_page_from_free_list(page, zone, order); 3642 3643 /* 3644 * Set the pageblock if the isolated page is at least half of a 3645 * pageblock 3646 */ 3647 if (order >= pageblock_order - 1) { 3648 struct page *endpage = page + (1 << order) - 1; 3649 for (; page < endpage; page += pageblock_nr_pages) { 3650 int mt = get_pageblock_migratetype(page); 3651 /* 3652 * Only change normal pageblocks (i.e., they can merge 3653 * with others) 3654 */ 3655 if (migratetype_is_mergeable(mt)) 3656 set_pageblock_migratetype(page, 3657 MIGRATE_MOVABLE); 3658 } 3659 } 3660 3661 return 1UL << order; 3662 } 3663 3664 /** 3665 * __putback_isolated_page - Return a now-isolated page back where we got it 3666 * @page: Page that was isolated 3667 * @order: Order of the isolated page 3668 * @mt: The page's pageblock's migratetype 3669 * 3670 * This function is meant to return a page pulled from the free lists via 3671 * __isolate_free_page back to the free lists they were pulled from. 3672 */ 3673 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3674 { 3675 struct zone *zone = page_zone(page); 3676 3677 /* zone lock should be held when this function is called */ 3678 lockdep_assert_held(&zone->lock); 3679 3680 /* Return isolated page to tail of freelist. */ 3681 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3682 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3683 } 3684 3685 /* 3686 * Update NUMA hit/miss statistics 3687 */ 3688 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3689 long nr_account) 3690 { 3691 #ifdef CONFIG_NUMA 3692 enum numa_stat_item local_stat = NUMA_LOCAL; 3693 3694 /* skip numa counters update if numa stats is disabled */ 3695 if (!static_branch_likely(&vm_numa_stat_key)) 3696 return; 3697 3698 if (zone_to_nid(z) != numa_node_id()) 3699 local_stat = NUMA_OTHER; 3700 3701 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3702 __count_numa_events(z, NUMA_HIT, nr_account); 3703 else { 3704 __count_numa_events(z, NUMA_MISS, nr_account); 3705 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3706 } 3707 __count_numa_events(z, local_stat, nr_account); 3708 #endif 3709 } 3710 3711 static __always_inline 3712 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3713 unsigned int order, unsigned int alloc_flags, 3714 int migratetype) 3715 { 3716 struct page *page; 3717 unsigned long flags; 3718 3719 do { 3720 page = NULL; 3721 spin_lock_irqsave(&zone->lock, flags); 3722 /* 3723 * order-0 request can reach here when the pcplist is skipped 3724 * due to non-CMA allocation context. HIGHATOMIC area is 3725 * reserved for high-order atomic allocation, so order-0 3726 * request should skip it. 3727 */ 3728 if (alloc_flags & ALLOC_HIGHATOMIC) 3729 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3730 if (!page) { 3731 page = __rmqueue(zone, order, migratetype, alloc_flags); 3732 3733 /* 3734 * If the allocation fails, allow OOM handling access 3735 * to HIGHATOMIC reserves as failing now is worse than 3736 * failing a high-order atomic allocation in the 3737 * future. 3738 */ 3739 if (!page && (alloc_flags & ALLOC_OOM)) 3740 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3741 3742 if (!page) { 3743 spin_unlock_irqrestore(&zone->lock, flags); 3744 return NULL; 3745 } 3746 } 3747 __mod_zone_freepage_state(zone, -(1 << order), 3748 get_pcppage_migratetype(page)); 3749 spin_unlock_irqrestore(&zone->lock, flags); 3750 } while (check_new_pages(page, order)); 3751 3752 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3753 zone_statistics(preferred_zone, zone, 1); 3754 3755 return page; 3756 } 3757 3758 /* Remove page from the per-cpu list, caller must protect the list */ 3759 static inline 3760 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3761 int migratetype, 3762 unsigned int alloc_flags, 3763 struct per_cpu_pages *pcp, 3764 struct list_head *list) 3765 { 3766 struct page *page; 3767 3768 do { 3769 if (list_empty(list)) { 3770 int batch = READ_ONCE(pcp->batch); 3771 int alloced; 3772 3773 /* 3774 * Scale batch relative to order if batch implies 3775 * free pages can be stored on the PCP. Batch can 3776 * be 1 for small zones or for boot pagesets which 3777 * should never store free pages as the pages may 3778 * belong to arbitrary zones. 3779 */ 3780 if (batch > 1) 3781 batch = max(batch >> order, 2); 3782 alloced = rmqueue_bulk(zone, order, 3783 batch, list, 3784 migratetype, alloc_flags); 3785 3786 pcp->count += alloced << order; 3787 if (unlikely(list_empty(list))) 3788 return NULL; 3789 } 3790 3791 page = list_first_entry(list, struct page, pcp_list); 3792 list_del(&page->pcp_list); 3793 pcp->count -= 1 << order; 3794 } while (check_new_pcp(page, order)); 3795 3796 return page; 3797 } 3798 3799 /* Lock and remove page from the per-cpu list */ 3800 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3801 struct zone *zone, unsigned int order, 3802 int migratetype, unsigned int alloc_flags) 3803 { 3804 struct per_cpu_pages *pcp; 3805 struct list_head *list; 3806 struct page *page; 3807 unsigned long __maybe_unused UP_flags; 3808 3809 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3810 pcp_trylock_prepare(UP_flags); 3811 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3812 if (!pcp) { 3813 pcp_trylock_finish(UP_flags); 3814 return NULL; 3815 } 3816 3817 /* 3818 * On allocation, reduce the number of pages that are batch freed. 3819 * See nr_pcp_free() where free_factor is increased for subsequent 3820 * frees. 3821 */ 3822 pcp->free_factor >>= 1; 3823 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3824 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3825 pcp_spin_unlock(pcp); 3826 pcp_trylock_finish(UP_flags); 3827 if (page) { 3828 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3829 zone_statistics(preferred_zone, zone, 1); 3830 } 3831 return page; 3832 } 3833 3834 /* 3835 * Allocate a page from the given zone. 3836 * Use pcplists for THP or "cheap" high-order allocations. 3837 */ 3838 3839 /* 3840 * Do not instrument rmqueue() with KMSAN. This function may call 3841 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3842 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3843 * may call rmqueue() again, which will result in a deadlock. 3844 */ 3845 __no_sanitize_memory 3846 static inline 3847 struct page *rmqueue(struct zone *preferred_zone, 3848 struct zone *zone, unsigned int order, 3849 gfp_t gfp_flags, unsigned int alloc_flags, 3850 int migratetype) 3851 { 3852 struct page *page; 3853 3854 /* 3855 * We most definitely don't want callers attempting to 3856 * allocate greater than order-1 page units with __GFP_NOFAIL. 3857 */ 3858 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3859 3860 if (likely(pcp_allowed_order(order))) { 3861 /* 3862 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3863 * we need to skip it when CMA area isn't allowed. 3864 */ 3865 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3866 migratetype != MIGRATE_MOVABLE) { 3867 page = rmqueue_pcplist(preferred_zone, zone, order, 3868 migratetype, alloc_flags); 3869 if (likely(page)) 3870 goto out; 3871 } 3872 } 3873 3874 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3875 migratetype); 3876 3877 out: 3878 /* Separate test+clear to avoid unnecessary atomics */ 3879 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3880 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3881 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3882 } 3883 3884 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3885 return page; 3886 } 3887 3888 #ifdef CONFIG_FAIL_PAGE_ALLOC 3889 3890 static struct { 3891 struct fault_attr attr; 3892 3893 bool ignore_gfp_highmem; 3894 bool ignore_gfp_reclaim; 3895 u32 min_order; 3896 } fail_page_alloc = { 3897 .attr = FAULT_ATTR_INITIALIZER, 3898 .ignore_gfp_reclaim = true, 3899 .ignore_gfp_highmem = true, 3900 .min_order = 1, 3901 }; 3902 3903 static int __init setup_fail_page_alloc(char *str) 3904 { 3905 return setup_fault_attr(&fail_page_alloc.attr, str); 3906 } 3907 __setup("fail_page_alloc=", setup_fail_page_alloc); 3908 3909 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3910 { 3911 int flags = 0; 3912 3913 if (order < fail_page_alloc.min_order) 3914 return false; 3915 if (gfp_mask & __GFP_NOFAIL) 3916 return false; 3917 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3918 return false; 3919 if (fail_page_alloc.ignore_gfp_reclaim && 3920 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3921 return false; 3922 3923 /* See comment in __should_failslab() */ 3924 if (gfp_mask & __GFP_NOWARN) 3925 flags |= FAULT_NOWARN; 3926 3927 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags); 3928 } 3929 3930 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3931 3932 static int __init fail_page_alloc_debugfs(void) 3933 { 3934 umode_t mode = S_IFREG | 0600; 3935 struct dentry *dir; 3936 3937 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3938 &fail_page_alloc.attr); 3939 3940 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3941 &fail_page_alloc.ignore_gfp_reclaim); 3942 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3943 &fail_page_alloc.ignore_gfp_highmem); 3944 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3945 3946 return 0; 3947 } 3948 3949 late_initcall(fail_page_alloc_debugfs); 3950 3951 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3952 3953 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3954 3955 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3956 { 3957 return false; 3958 } 3959 3960 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3961 3962 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3963 { 3964 return __should_fail_alloc_page(gfp_mask, order); 3965 } 3966 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3967 3968 static inline long __zone_watermark_unusable_free(struct zone *z, 3969 unsigned int order, unsigned int alloc_flags) 3970 { 3971 long unusable_free = (1 << order) - 1; 3972 3973 /* 3974 * If the caller does not have rights to reserves below the min 3975 * watermark then subtract the high-atomic reserves. This will 3976 * over-estimate the size of the atomic reserve but it avoids a search. 3977 */ 3978 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3979 unusable_free += z->nr_reserved_highatomic; 3980 3981 #ifdef CONFIG_CMA 3982 /* If allocation can't use CMA areas don't use free CMA pages */ 3983 if (!(alloc_flags & ALLOC_CMA)) 3984 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3985 #endif 3986 3987 return unusable_free; 3988 } 3989 3990 /* 3991 * Return true if free base pages are above 'mark'. For high-order checks it 3992 * will return true of the order-0 watermark is reached and there is at least 3993 * one free page of a suitable size. Checking now avoids taking the zone lock 3994 * to check in the allocation paths if no pages are free. 3995 */ 3996 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3997 int highest_zoneidx, unsigned int alloc_flags, 3998 long free_pages) 3999 { 4000 long min = mark; 4001 int o; 4002 4003 /* free_pages may go negative - that's OK */ 4004 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 4005 4006 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 4007 /* 4008 * __GFP_HIGH allows access to 50% of the min reserve as well 4009 * as OOM. 4010 */ 4011 if (alloc_flags & ALLOC_MIN_RESERVE) { 4012 min -= min / 2; 4013 4014 /* 4015 * Non-blocking allocations (e.g. GFP_ATOMIC) can 4016 * access more reserves than just __GFP_HIGH. Other 4017 * non-blocking allocations requests such as GFP_NOWAIT 4018 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 4019 * access to the min reserve. 4020 */ 4021 if (alloc_flags & ALLOC_NON_BLOCK) 4022 min -= min / 4; 4023 } 4024 4025 /* 4026 * OOM victims can try even harder than the normal reserve 4027 * users on the grounds that it's definitely going to be in 4028 * the exit path shortly and free memory. Any allocation it 4029 * makes during the free path will be small and short-lived. 4030 */ 4031 if (alloc_flags & ALLOC_OOM) 4032 min -= min / 2; 4033 } 4034 4035 /* 4036 * Check watermarks for an order-0 allocation request. If these 4037 * are not met, then a high-order request also cannot go ahead 4038 * even if a suitable page happened to be free. 4039 */ 4040 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4041 return false; 4042 4043 /* If this is an order-0 request then the watermark is fine */ 4044 if (!order) 4045 return true; 4046 4047 /* For a high-order request, check at least one suitable page is free */ 4048 for (o = order; o < MAX_ORDER; o++) { 4049 struct free_area *area = &z->free_area[o]; 4050 int mt; 4051 4052 if (!area->nr_free) 4053 continue; 4054 4055 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4056 if (!free_area_empty(area, mt)) 4057 return true; 4058 } 4059 4060 #ifdef CONFIG_CMA 4061 if ((alloc_flags & ALLOC_CMA) && 4062 !free_area_empty(area, MIGRATE_CMA)) { 4063 return true; 4064 } 4065 #endif 4066 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 4067 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 4068 return true; 4069 } 4070 } 4071 return false; 4072 } 4073 4074 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4075 int highest_zoneidx, unsigned int alloc_flags) 4076 { 4077 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4078 zone_page_state(z, NR_FREE_PAGES)); 4079 } 4080 4081 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4082 unsigned long mark, int highest_zoneidx, 4083 unsigned int alloc_flags, gfp_t gfp_mask) 4084 { 4085 long free_pages; 4086 4087 free_pages = zone_page_state(z, NR_FREE_PAGES); 4088 4089 /* 4090 * Fast check for order-0 only. If this fails then the reserves 4091 * need to be calculated. 4092 */ 4093 if (!order) { 4094 long usable_free; 4095 long reserved; 4096 4097 usable_free = free_pages; 4098 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4099 4100 /* reserved may over estimate high-atomic reserves. */ 4101 usable_free -= min(usable_free, reserved); 4102 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4103 return true; 4104 } 4105 4106 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4107 free_pages)) 4108 return true; 4109 4110 /* 4111 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 4112 * when checking the min watermark. The min watermark is the 4113 * point where boosting is ignored so that kswapd is woken up 4114 * when below the low watermark. 4115 */ 4116 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 4117 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4118 mark = z->_watermark[WMARK_MIN]; 4119 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4120 alloc_flags, free_pages); 4121 } 4122 4123 return false; 4124 } 4125 4126 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4127 unsigned long mark, int highest_zoneidx) 4128 { 4129 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4130 4131 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4132 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4133 4134 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4135 free_pages); 4136 } 4137 4138 #ifdef CONFIG_NUMA 4139 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4140 4141 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4142 { 4143 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4144 node_reclaim_distance; 4145 } 4146 #else /* CONFIG_NUMA */ 4147 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4148 { 4149 return true; 4150 } 4151 #endif /* CONFIG_NUMA */ 4152 4153 /* 4154 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4155 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4156 * premature use of a lower zone may cause lowmem pressure problems that 4157 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4158 * probably too small. It only makes sense to spread allocations to avoid 4159 * fragmentation between the Normal and DMA32 zones. 4160 */ 4161 static inline unsigned int 4162 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4163 { 4164 unsigned int alloc_flags; 4165 4166 /* 4167 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4168 * to save a branch. 4169 */ 4170 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4171 4172 #ifdef CONFIG_ZONE_DMA32 4173 if (!zone) 4174 return alloc_flags; 4175 4176 if (zone_idx(zone) != ZONE_NORMAL) 4177 return alloc_flags; 4178 4179 /* 4180 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4181 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4182 * on UMA that if Normal is populated then so is DMA32. 4183 */ 4184 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4185 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4186 return alloc_flags; 4187 4188 alloc_flags |= ALLOC_NOFRAGMENT; 4189 #endif /* CONFIG_ZONE_DMA32 */ 4190 return alloc_flags; 4191 } 4192 4193 /* Must be called after current_gfp_context() which can change gfp_mask */ 4194 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4195 unsigned int alloc_flags) 4196 { 4197 #ifdef CONFIG_CMA 4198 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4199 alloc_flags |= ALLOC_CMA; 4200 #endif 4201 return alloc_flags; 4202 } 4203 4204 /* 4205 * get_page_from_freelist goes through the zonelist trying to allocate 4206 * a page. 4207 */ 4208 static struct page * 4209 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4210 const struct alloc_context *ac) 4211 { 4212 struct zoneref *z; 4213 struct zone *zone; 4214 struct pglist_data *last_pgdat = NULL; 4215 bool last_pgdat_dirty_ok = false; 4216 bool no_fallback; 4217 4218 retry: 4219 /* 4220 * Scan zonelist, looking for a zone with enough free. 4221 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4222 */ 4223 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4224 z = ac->preferred_zoneref; 4225 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4226 ac->nodemask) { 4227 struct page *page; 4228 unsigned long mark; 4229 4230 if (cpusets_enabled() && 4231 (alloc_flags & ALLOC_CPUSET) && 4232 !__cpuset_zone_allowed(zone, gfp_mask)) 4233 continue; 4234 /* 4235 * When allocating a page cache page for writing, we 4236 * want to get it from a node that is within its dirty 4237 * limit, such that no single node holds more than its 4238 * proportional share of globally allowed dirty pages. 4239 * The dirty limits take into account the node's 4240 * lowmem reserves and high watermark so that kswapd 4241 * should be able to balance it without having to 4242 * write pages from its LRU list. 4243 * 4244 * XXX: For now, allow allocations to potentially 4245 * exceed the per-node dirty limit in the slowpath 4246 * (spread_dirty_pages unset) before going into reclaim, 4247 * which is important when on a NUMA setup the allowed 4248 * nodes are together not big enough to reach the 4249 * global limit. The proper fix for these situations 4250 * will require awareness of nodes in the 4251 * dirty-throttling and the flusher threads. 4252 */ 4253 if (ac->spread_dirty_pages) { 4254 if (last_pgdat != zone->zone_pgdat) { 4255 last_pgdat = zone->zone_pgdat; 4256 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4257 } 4258 4259 if (!last_pgdat_dirty_ok) 4260 continue; 4261 } 4262 4263 if (no_fallback && nr_online_nodes > 1 && 4264 zone != ac->preferred_zoneref->zone) { 4265 int local_nid; 4266 4267 /* 4268 * If moving to a remote node, retry but allow 4269 * fragmenting fallbacks. Locality is more important 4270 * than fragmentation avoidance. 4271 */ 4272 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4273 if (zone_to_nid(zone) != local_nid) { 4274 alloc_flags &= ~ALLOC_NOFRAGMENT; 4275 goto retry; 4276 } 4277 } 4278 4279 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4280 if (!zone_watermark_fast(zone, order, mark, 4281 ac->highest_zoneidx, alloc_flags, 4282 gfp_mask)) { 4283 int ret; 4284 4285 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4286 /* 4287 * Watermark failed for this zone, but see if we can 4288 * grow this zone if it contains deferred pages. 4289 */ 4290 if (deferred_pages_enabled()) { 4291 if (_deferred_grow_zone(zone, order)) 4292 goto try_this_zone; 4293 } 4294 #endif 4295 /* Checked here to keep the fast path fast */ 4296 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4297 if (alloc_flags & ALLOC_NO_WATERMARKS) 4298 goto try_this_zone; 4299 4300 if (!node_reclaim_enabled() || 4301 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4302 continue; 4303 4304 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4305 switch (ret) { 4306 case NODE_RECLAIM_NOSCAN: 4307 /* did not scan */ 4308 continue; 4309 case NODE_RECLAIM_FULL: 4310 /* scanned but unreclaimable */ 4311 continue; 4312 default: 4313 /* did we reclaim enough */ 4314 if (zone_watermark_ok(zone, order, mark, 4315 ac->highest_zoneidx, alloc_flags)) 4316 goto try_this_zone; 4317 4318 continue; 4319 } 4320 } 4321 4322 try_this_zone: 4323 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4324 gfp_mask, alloc_flags, ac->migratetype); 4325 if (page) { 4326 prep_new_page(page, order, gfp_mask, alloc_flags); 4327 4328 /* 4329 * If this is a high-order atomic allocation then check 4330 * if the pageblock should be reserved for the future 4331 */ 4332 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 4333 reserve_highatomic_pageblock(page, zone, order); 4334 4335 return page; 4336 } else { 4337 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4338 /* Try again if zone has deferred pages */ 4339 if (deferred_pages_enabled()) { 4340 if (_deferred_grow_zone(zone, order)) 4341 goto try_this_zone; 4342 } 4343 #endif 4344 } 4345 } 4346 4347 /* 4348 * It's possible on a UMA machine to get through all zones that are 4349 * fragmented. If avoiding fragmentation, reset and try again. 4350 */ 4351 if (no_fallback) { 4352 alloc_flags &= ~ALLOC_NOFRAGMENT; 4353 goto retry; 4354 } 4355 4356 return NULL; 4357 } 4358 4359 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4360 { 4361 unsigned int filter = SHOW_MEM_FILTER_NODES; 4362 4363 /* 4364 * This documents exceptions given to allocations in certain 4365 * contexts that are allowed to allocate outside current's set 4366 * of allowed nodes. 4367 */ 4368 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4369 if (tsk_is_oom_victim(current) || 4370 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4371 filter &= ~SHOW_MEM_FILTER_NODES; 4372 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4373 filter &= ~SHOW_MEM_FILTER_NODES; 4374 4375 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4376 } 4377 4378 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4379 { 4380 struct va_format vaf; 4381 va_list args; 4382 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4383 4384 if ((gfp_mask & __GFP_NOWARN) || 4385 !__ratelimit(&nopage_rs) || 4386 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4387 return; 4388 4389 va_start(args, fmt); 4390 vaf.fmt = fmt; 4391 vaf.va = &args; 4392 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4393 current->comm, &vaf, gfp_mask, &gfp_mask, 4394 nodemask_pr_args(nodemask)); 4395 va_end(args); 4396 4397 cpuset_print_current_mems_allowed(); 4398 pr_cont("\n"); 4399 dump_stack(); 4400 warn_alloc_show_mem(gfp_mask, nodemask); 4401 } 4402 4403 static inline struct page * 4404 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4405 unsigned int alloc_flags, 4406 const struct alloc_context *ac) 4407 { 4408 struct page *page; 4409 4410 page = get_page_from_freelist(gfp_mask, order, 4411 alloc_flags|ALLOC_CPUSET, ac); 4412 /* 4413 * fallback to ignore cpuset restriction if our nodes 4414 * are depleted 4415 */ 4416 if (!page) 4417 page = get_page_from_freelist(gfp_mask, order, 4418 alloc_flags, ac); 4419 4420 return page; 4421 } 4422 4423 static inline struct page * 4424 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4425 const struct alloc_context *ac, unsigned long *did_some_progress) 4426 { 4427 struct oom_control oc = { 4428 .zonelist = ac->zonelist, 4429 .nodemask = ac->nodemask, 4430 .memcg = NULL, 4431 .gfp_mask = gfp_mask, 4432 .order = order, 4433 }; 4434 struct page *page; 4435 4436 *did_some_progress = 0; 4437 4438 /* 4439 * Acquire the oom lock. If that fails, somebody else is 4440 * making progress for us. 4441 */ 4442 if (!mutex_trylock(&oom_lock)) { 4443 *did_some_progress = 1; 4444 schedule_timeout_uninterruptible(1); 4445 return NULL; 4446 } 4447 4448 /* 4449 * Go through the zonelist yet one more time, keep very high watermark 4450 * here, this is only to catch a parallel oom killing, we must fail if 4451 * we're still under heavy pressure. But make sure that this reclaim 4452 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4453 * allocation which will never fail due to oom_lock already held. 4454 */ 4455 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4456 ~__GFP_DIRECT_RECLAIM, order, 4457 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4458 if (page) 4459 goto out; 4460 4461 /* Coredumps can quickly deplete all memory reserves */ 4462 if (current->flags & PF_DUMPCORE) 4463 goto out; 4464 /* The OOM killer will not help higher order allocs */ 4465 if (order > PAGE_ALLOC_COSTLY_ORDER) 4466 goto out; 4467 /* 4468 * We have already exhausted all our reclaim opportunities without any 4469 * success so it is time to admit defeat. We will skip the OOM killer 4470 * because it is very likely that the caller has a more reasonable 4471 * fallback than shooting a random task. 4472 * 4473 * The OOM killer may not free memory on a specific node. 4474 */ 4475 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4476 goto out; 4477 /* The OOM killer does not needlessly kill tasks for lowmem */ 4478 if (ac->highest_zoneidx < ZONE_NORMAL) 4479 goto out; 4480 if (pm_suspended_storage()) 4481 goto out; 4482 /* 4483 * XXX: GFP_NOFS allocations should rather fail than rely on 4484 * other request to make a forward progress. 4485 * We are in an unfortunate situation where out_of_memory cannot 4486 * do much for this context but let's try it to at least get 4487 * access to memory reserved if the current task is killed (see 4488 * out_of_memory). Once filesystems are ready to handle allocation 4489 * failures more gracefully we should just bail out here. 4490 */ 4491 4492 /* Exhausted what can be done so it's blame time */ 4493 if (out_of_memory(&oc) || 4494 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4495 *did_some_progress = 1; 4496 4497 /* 4498 * Help non-failing allocations by giving them access to memory 4499 * reserves 4500 */ 4501 if (gfp_mask & __GFP_NOFAIL) 4502 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4503 ALLOC_NO_WATERMARKS, ac); 4504 } 4505 out: 4506 mutex_unlock(&oom_lock); 4507 return page; 4508 } 4509 4510 /* 4511 * Maximum number of compaction retries with a progress before OOM 4512 * killer is consider as the only way to move forward. 4513 */ 4514 #define MAX_COMPACT_RETRIES 16 4515 4516 #ifdef CONFIG_COMPACTION 4517 /* Try memory compaction for high-order allocations before reclaim */ 4518 static struct page * 4519 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4520 unsigned int alloc_flags, const struct alloc_context *ac, 4521 enum compact_priority prio, enum compact_result *compact_result) 4522 { 4523 struct page *page = NULL; 4524 unsigned long pflags; 4525 unsigned int noreclaim_flag; 4526 4527 if (!order) 4528 return NULL; 4529 4530 psi_memstall_enter(&pflags); 4531 delayacct_compact_start(); 4532 noreclaim_flag = memalloc_noreclaim_save(); 4533 4534 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4535 prio, &page); 4536 4537 memalloc_noreclaim_restore(noreclaim_flag); 4538 psi_memstall_leave(&pflags); 4539 delayacct_compact_end(); 4540 4541 if (*compact_result == COMPACT_SKIPPED) 4542 return NULL; 4543 /* 4544 * At least in one zone compaction wasn't deferred or skipped, so let's 4545 * count a compaction stall 4546 */ 4547 count_vm_event(COMPACTSTALL); 4548 4549 /* Prep a captured page if available */ 4550 if (page) 4551 prep_new_page(page, order, gfp_mask, alloc_flags); 4552 4553 /* Try get a page from the freelist if available */ 4554 if (!page) 4555 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4556 4557 if (page) { 4558 struct zone *zone = page_zone(page); 4559 4560 zone->compact_blockskip_flush = false; 4561 compaction_defer_reset(zone, order, true); 4562 count_vm_event(COMPACTSUCCESS); 4563 return page; 4564 } 4565 4566 /* 4567 * It's bad if compaction run occurs and fails. The most likely reason 4568 * is that pages exist, but not enough to satisfy watermarks. 4569 */ 4570 count_vm_event(COMPACTFAIL); 4571 4572 cond_resched(); 4573 4574 return NULL; 4575 } 4576 4577 static inline bool 4578 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4579 enum compact_result compact_result, 4580 enum compact_priority *compact_priority, 4581 int *compaction_retries) 4582 { 4583 int max_retries = MAX_COMPACT_RETRIES; 4584 int min_priority; 4585 bool ret = false; 4586 int retries = *compaction_retries; 4587 enum compact_priority priority = *compact_priority; 4588 4589 if (!order) 4590 return false; 4591 4592 if (fatal_signal_pending(current)) 4593 return false; 4594 4595 if (compaction_made_progress(compact_result)) 4596 (*compaction_retries)++; 4597 4598 /* 4599 * compaction considers all the zone as desperately out of memory 4600 * so it doesn't really make much sense to retry except when the 4601 * failure could be caused by insufficient priority 4602 */ 4603 if (compaction_failed(compact_result)) 4604 goto check_priority; 4605 4606 /* 4607 * compaction was skipped because there are not enough order-0 pages 4608 * to work with, so we retry only if it looks like reclaim can help. 4609 */ 4610 if (compaction_needs_reclaim(compact_result)) { 4611 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4612 goto out; 4613 } 4614 4615 /* 4616 * make sure the compaction wasn't deferred or didn't bail out early 4617 * due to locks contention before we declare that we should give up. 4618 * But the next retry should use a higher priority if allowed, so 4619 * we don't just keep bailing out endlessly. 4620 */ 4621 if (compaction_withdrawn(compact_result)) { 4622 goto check_priority; 4623 } 4624 4625 /* 4626 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4627 * costly ones because they are de facto nofail and invoke OOM 4628 * killer to move on while costly can fail and users are ready 4629 * to cope with that. 1/4 retries is rather arbitrary but we 4630 * would need much more detailed feedback from compaction to 4631 * make a better decision. 4632 */ 4633 if (order > PAGE_ALLOC_COSTLY_ORDER) 4634 max_retries /= 4; 4635 if (*compaction_retries <= max_retries) { 4636 ret = true; 4637 goto out; 4638 } 4639 4640 /* 4641 * Make sure there are attempts at the highest priority if we exhausted 4642 * all retries or failed at the lower priorities. 4643 */ 4644 check_priority: 4645 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4646 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4647 4648 if (*compact_priority > min_priority) { 4649 (*compact_priority)--; 4650 *compaction_retries = 0; 4651 ret = true; 4652 } 4653 out: 4654 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4655 return ret; 4656 } 4657 #else 4658 static inline struct page * 4659 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4660 unsigned int alloc_flags, const struct alloc_context *ac, 4661 enum compact_priority prio, enum compact_result *compact_result) 4662 { 4663 *compact_result = COMPACT_SKIPPED; 4664 return NULL; 4665 } 4666 4667 static inline bool 4668 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4669 enum compact_result compact_result, 4670 enum compact_priority *compact_priority, 4671 int *compaction_retries) 4672 { 4673 struct zone *zone; 4674 struct zoneref *z; 4675 4676 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4677 return false; 4678 4679 /* 4680 * There are setups with compaction disabled which would prefer to loop 4681 * inside the allocator rather than hit the oom killer prematurely. 4682 * Let's give them a good hope and keep retrying while the order-0 4683 * watermarks are OK. 4684 */ 4685 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4686 ac->highest_zoneidx, ac->nodemask) { 4687 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4688 ac->highest_zoneidx, alloc_flags)) 4689 return true; 4690 } 4691 return false; 4692 } 4693 #endif /* CONFIG_COMPACTION */ 4694 4695 #ifdef CONFIG_LOCKDEP 4696 static struct lockdep_map __fs_reclaim_map = 4697 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4698 4699 static bool __need_reclaim(gfp_t gfp_mask) 4700 { 4701 /* no reclaim without waiting on it */ 4702 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4703 return false; 4704 4705 /* this guy won't enter reclaim */ 4706 if (current->flags & PF_MEMALLOC) 4707 return false; 4708 4709 if (gfp_mask & __GFP_NOLOCKDEP) 4710 return false; 4711 4712 return true; 4713 } 4714 4715 void __fs_reclaim_acquire(unsigned long ip) 4716 { 4717 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4718 } 4719 4720 void __fs_reclaim_release(unsigned long ip) 4721 { 4722 lock_release(&__fs_reclaim_map, ip); 4723 } 4724 4725 void fs_reclaim_acquire(gfp_t gfp_mask) 4726 { 4727 gfp_mask = current_gfp_context(gfp_mask); 4728 4729 if (__need_reclaim(gfp_mask)) { 4730 if (gfp_mask & __GFP_FS) 4731 __fs_reclaim_acquire(_RET_IP_); 4732 4733 #ifdef CONFIG_MMU_NOTIFIER 4734 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4735 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4736 #endif 4737 4738 } 4739 } 4740 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4741 4742 void fs_reclaim_release(gfp_t gfp_mask) 4743 { 4744 gfp_mask = current_gfp_context(gfp_mask); 4745 4746 if (__need_reclaim(gfp_mask)) { 4747 if (gfp_mask & __GFP_FS) 4748 __fs_reclaim_release(_RET_IP_); 4749 } 4750 } 4751 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4752 #endif 4753 4754 /* 4755 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4756 * have been rebuilt so allocation retries. Reader side does not lock and 4757 * retries the allocation if zonelist changes. Writer side is protected by the 4758 * embedded spin_lock. 4759 */ 4760 static DEFINE_SEQLOCK(zonelist_update_seq); 4761 4762 static unsigned int zonelist_iter_begin(void) 4763 { 4764 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4765 return read_seqbegin(&zonelist_update_seq); 4766 4767 return 0; 4768 } 4769 4770 static unsigned int check_retry_zonelist(unsigned int seq) 4771 { 4772 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4773 return read_seqretry(&zonelist_update_seq, seq); 4774 4775 return seq; 4776 } 4777 4778 /* Perform direct synchronous page reclaim */ 4779 static unsigned long 4780 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4781 const struct alloc_context *ac) 4782 { 4783 unsigned int noreclaim_flag; 4784 unsigned long progress; 4785 4786 cond_resched(); 4787 4788 /* We now go into synchronous reclaim */ 4789 cpuset_memory_pressure_bump(); 4790 fs_reclaim_acquire(gfp_mask); 4791 noreclaim_flag = memalloc_noreclaim_save(); 4792 4793 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4794 ac->nodemask); 4795 4796 memalloc_noreclaim_restore(noreclaim_flag); 4797 fs_reclaim_release(gfp_mask); 4798 4799 cond_resched(); 4800 4801 return progress; 4802 } 4803 4804 /* The really slow allocator path where we enter direct reclaim */ 4805 static inline struct page * 4806 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4807 unsigned int alloc_flags, const struct alloc_context *ac, 4808 unsigned long *did_some_progress) 4809 { 4810 struct page *page = NULL; 4811 unsigned long pflags; 4812 bool drained = false; 4813 4814 psi_memstall_enter(&pflags); 4815 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4816 if (unlikely(!(*did_some_progress))) 4817 goto out; 4818 4819 retry: 4820 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4821 4822 /* 4823 * If an allocation failed after direct reclaim, it could be because 4824 * pages are pinned on the per-cpu lists or in high alloc reserves. 4825 * Shrink them and try again 4826 */ 4827 if (!page && !drained) { 4828 unreserve_highatomic_pageblock(ac, false); 4829 drain_all_pages(NULL); 4830 drained = true; 4831 goto retry; 4832 } 4833 out: 4834 psi_memstall_leave(&pflags); 4835 4836 return page; 4837 } 4838 4839 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4840 const struct alloc_context *ac) 4841 { 4842 struct zoneref *z; 4843 struct zone *zone; 4844 pg_data_t *last_pgdat = NULL; 4845 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4846 4847 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4848 ac->nodemask) { 4849 if (!managed_zone(zone)) 4850 continue; 4851 if (last_pgdat != zone->zone_pgdat) { 4852 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4853 last_pgdat = zone->zone_pgdat; 4854 } 4855 } 4856 } 4857 4858 static inline unsigned int 4859 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4860 { 4861 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4862 4863 /* 4864 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4865 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4866 * to save two branches. 4867 */ 4868 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4869 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4870 4871 /* 4872 * The caller may dip into page reserves a bit more if the caller 4873 * cannot run direct reclaim, or if the caller has realtime scheduling 4874 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4875 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4876 */ 4877 alloc_flags |= (__force int) 4878 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4879 4880 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4881 /* 4882 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4883 * if it can't schedule. 4884 */ 4885 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4886 alloc_flags |= ALLOC_NON_BLOCK; 4887 4888 if (order > 0) 4889 alloc_flags |= ALLOC_HIGHATOMIC; 4890 } 4891 4892 /* 4893 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4894 * GFP_ATOMIC) rather than fail, see the comment for 4895 * __cpuset_node_allowed(). 4896 */ 4897 if (alloc_flags & ALLOC_MIN_RESERVE) 4898 alloc_flags &= ~ALLOC_CPUSET; 4899 } else if (unlikely(rt_task(current)) && in_task()) 4900 alloc_flags |= ALLOC_MIN_RESERVE; 4901 4902 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4903 4904 return alloc_flags; 4905 } 4906 4907 static bool oom_reserves_allowed(struct task_struct *tsk) 4908 { 4909 if (!tsk_is_oom_victim(tsk)) 4910 return false; 4911 4912 /* 4913 * !MMU doesn't have oom reaper so give access to memory reserves 4914 * only to the thread with TIF_MEMDIE set 4915 */ 4916 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4917 return false; 4918 4919 return true; 4920 } 4921 4922 /* 4923 * Distinguish requests which really need access to full memory 4924 * reserves from oom victims which can live with a portion of it 4925 */ 4926 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4927 { 4928 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4929 return 0; 4930 if (gfp_mask & __GFP_MEMALLOC) 4931 return ALLOC_NO_WATERMARKS; 4932 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4933 return ALLOC_NO_WATERMARKS; 4934 if (!in_interrupt()) { 4935 if (current->flags & PF_MEMALLOC) 4936 return ALLOC_NO_WATERMARKS; 4937 else if (oom_reserves_allowed(current)) 4938 return ALLOC_OOM; 4939 } 4940 4941 return 0; 4942 } 4943 4944 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4945 { 4946 return !!__gfp_pfmemalloc_flags(gfp_mask); 4947 } 4948 4949 /* 4950 * Checks whether it makes sense to retry the reclaim to make a forward progress 4951 * for the given allocation request. 4952 * 4953 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4954 * without success, or when we couldn't even meet the watermark if we 4955 * reclaimed all remaining pages on the LRU lists. 4956 * 4957 * Returns true if a retry is viable or false to enter the oom path. 4958 */ 4959 static inline bool 4960 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4961 struct alloc_context *ac, int alloc_flags, 4962 bool did_some_progress, int *no_progress_loops) 4963 { 4964 struct zone *zone; 4965 struct zoneref *z; 4966 bool ret = false; 4967 4968 /* 4969 * Costly allocations might have made a progress but this doesn't mean 4970 * their order will become available due to high fragmentation so 4971 * always increment the no progress counter for them 4972 */ 4973 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4974 *no_progress_loops = 0; 4975 else 4976 (*no_progress_loops)++; 4977 4978 /* 4979 * Make sure we converge to OOM if we cannot make any progress 4980 * several times in the row. 4981 */ 4982 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4983 /* Before OOM, exhaust highatomic_reserve */ 4984 return unreserve_highatomic_pageblock(ac, true); 4985 } 4986 4987 /* 4988 * Keep reclaiming pages while there is a chance this will lead 4989 * somewhere. If none of the target zones can satisfy our allocation 4990 * request even if all reclaimable pages are considered then we are 4991 * screwed and have to go OOM. 4992 */ 4993 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4994 ac->highest_zoneidx, ac->nodemask) { 4995 unsigned long available; 4996 unsigned long reclaimable; 4997 unsigned long min_wmark = min_wmark_pages(zone); 4998 bool wmark; 4999 5000 available = reclaimable = zone_reclaimable_pages(zone); 5001 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 5002 5003 /* 5004 * Would the allocation succeed if we reclaimed all 5005 * reclaimable pages? 5006 */ 5007 wmark = __zone_watermark_ok(zone, order, min_wmark, 5008 ac->highest_zoneidx, alloc_flags, available); 5009 trace_reclaim_retry_zone(z, order, reclaimable, 5010 available, min_wmark, *no_progress_loops, wmark); 5011 if (wmark) { 5012 ret = true; 5013 break; 5014 } 5015 } 5016 5017 /* 5018 * Memory allocation/reclaim might be called from a WQ context and the 5019 * current implementation of the WQ concurrency control doesn't 5020 * recognize that a particular WQ is congested if the worker thread is 5021 * looping without ever sleeping. Therefore we have to do a short sleep 5022 * here rather than calling cond_resched(). 5023 */ 5024 if (current->flags & PF_WQ_WORKER) 5025 schedule_timeout_uninterruptible(1); 5026 else 5027 cond_resched(); 5028 return ret; 5029 } 5030 5031 static inline bool 5032 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 5033 { 5034 /* 5035 * It's possible that cpuset's mems_allowed and the nodemask from 5036 * mempolicy don't intersect. This should be normally dealt with by 5037 * policy_nodemask(), but it's possible to race with cpuset update in 5038 * such a way the check therein was true, and then it became false 5039 * before we got our cpuset_mems_cookie here. 5040 * This assumes that for all allocations, ac->nodemask can come only 5041 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 5042 * when it does not intersect with the cpuset restrictions) or the 5043 * caller can deal with a violated nodemask. 5044 */ 5045 if (cpusets_enabled() && ac->nodemask && 5046 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 5047 ac->nodemask = NULL; 5048 return true; 5049 } 5050 5051 /* 5052 * When updating a task's mems_allowed or mempolicy nodemask, it is 5053 * possible to race with parallel threads in such a way that our 5054 * allocation can fail while the mask is being updated. If we are about 5055 * to fail, check if the cpuset changed during allocation and if so, 5056 * retry. 5057 */ 5058 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5059 return true; 5060 5061 return false; 5062 } 5063 5064 static inline struct page * 5065 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5066 struct alloc_context *ac) 5067 { 5068 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5069 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5070 struct page *page = NULL; 5071 unsigned int alloc_flags; 5072 unsigned long did_some_progress; 5073 enum compact_priority compact_priority; 5074 enum compact_result compact_result; 5075 int compaction_retries; 5076 int no_progress_loops; 5077 unsigned int cpuset_mems_cookie; 5078 unsigned int zonelist_iter_cookie; 5079 int reserve_flags; 5080 5081 restart: 5082 compaction_retries = 0; 5083 no_progress_loops = 0; 5084 compact_priority = DEF_COMPACT_PRIORITY; 5085 cpuset_mems_cookie = read_mems_allowed_begin(); 5086 zonelist_iter_cookie = zonelist_iter_begin(); 5087 5088 /* 5089 * The fast path uses conservative alloc_flags to succeed only until 5090 * kswapd needs to be woken up, and to avoid the cost of setting up 5091 * alloc_flags precisely. So we do that now. 5092 */ 5093 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 5094 5095 /* 5096 * We need to recalculate the starting point for the zonelist iterator 5097 * because we might have used different nodemask in the fast path, or 5098 * there was a cpuset modification and we are retrying - otherwise we 5099 * could end up iterating over non-eligible zones endlessly. 5100 */ 5101 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5102 ac->highest_zoneidx, ac->nodemask); 5103 if (!ac->preferred_zoneref->zone) 5104 goto nopage; 5105 5106 /* 5107 * Check for insane configurations where the cpuset doesn't contain 5108 * any suitable zone to satisfy the request - e.g. non-movable 5109 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5110 */ 5111 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5112 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5113 ac->highest_zoneidx, 5114 &cpuset_current_mems_allowed); 5115 if (!z->zone) 5116 goto nopage; 5117 } 5118 5119 if (alloc_flags & ALLOC_KSWAPD) 5120 wake_all_kswapds(order, gfp_mask, ac); 5121 5122 /* 5123 * The adjusted alloc_flags might result in immediate success, so try 5124 * that first 5125 */ 5126 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5127 if (page) 5128 goto got_pg; 5129 5130 /* 5131 * For costly allocations, try direct compaction first, as it's likely 5132 * that we have enough base pages and don't need to reclaim. For non- 5133 * movable high-order allocations, do that as well, as compaction will 5134 * try prevent permanent fragmentation by migrating from blocks of the 5135 * same migratetype. 5136 * Don't try this for allocations that are allowed to ignore 5137 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5138 */ 5139 if (can_direct_reclaim && 5140 (costly_order || 5141 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5142 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5143 page = __alloc_pages_direct_compact(gfp_mask, order, 5144 alloc_flags, ac, 5145 INIT_COMPACT_PRIORITY, 5146 &compact_result); 5147 if (page) 5148 goto got_pg; 5149 5150 /* 5151 * Checks for costly allocations with __GFP_NORETRY, which 5152 * includes some THP page fault allocations 5153 */ 5154 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5155 /* 5156 * If allocating entire pageblock(s) and compaction 5157 * failed because all zones are below low watermarks 5158 * or is prohibited because it recently failed at this 5159 * order, fail immediately unless the allocator has 5160 * requested compaction and reclaim retry. 5161 * 5162 * Reclaim is 5163 * - potentially very expensive because zones are far 5164 * below their low watermarks or this is part of very 5165 * bursty high order allocations, 5166 * - not guaranteed to help because isolate_freepages() 5167 * may not iterate over freed pages as part of its 5168 * linear scan, and 5169 * - unlikely to make entire pageblocks free on its 5170 * own. 5171 */ 5172 if (compact_result == COMPACT_SKIPPED || 5173 compact_result == COMPACT_DEFERRED) 5174 goto nopage; 5175 5176 /* 5177 * Looks like reclaim/compaction is worth trying, but 5178 * sync compaction could be very expensive, so keep 5179 * using async compaction. 5180 */ 5181 compact_priority = INIT_COMPACT_PRIORITY; 5182 } 5183 } 5184 5185 retry: 5186 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5187 if (alloc_flags & ALLOC_KSWAPD) 5188 wake_all_kswapds(order, gfp_mask, ac); 5189 5190 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5191 if (reserve_flags) 5192 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 5193 (alloc_flags & ALLOC_KSWAPD); 5194 5195 /* 5196 * Reset the nodemask and zonelist iterators if memory policies can be 5197 * ignored. These allocations are high priority and system rather than 5198 * user oriented. 5199 */ 5200 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5201 ac->nodemask = NULL; 5202 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5203 ac->highest_zoneidx, ac->nodemask); 5204 } 5205 5206 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5207 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5208 if (page) 5209 goto got_pg; 5210 5211 /* Caller is not willing to reclaim, we can't balance anything */ 5212 if (!can_direct_reclaim) 5213 goto nopage; 5214 5215 /* Avoid recursion of direct reclaim */ 5216 if (current->flags & PF_MEMALLOC) 5217 goto nopage; 5218 5219 /* Try direct reclaim and then allocating */ 5220 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5221 &did_some_progress); 5222 if (page) 5223 goto got_pg; 5224 5225 /* Try direct compaction and then allocating */ 5226 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5227 compact_priority, &compact_result); 5228 if (page) 5229 goto got_pg; 5230 5231 /* Do not loop if specifically requested */ 5232 if (gfp_mask & __GFP_NORETRY) 5233 goto nopage; 5234 5235 /* 5236 * Do not retry costly high order allocations unless they are 5237 * __GFP_RETRY_MAYFAIL 5238 */ 5239 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5240 goto nopage; 5241 5242 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5243 did_some_progress > 0, &no_progress_loops)) 5244 goto retry; 5245 5246 /* 5247 * It doesn't make any sense to retry for the compaction if the order-0 5248 * reclaim is not able to make any progress because the current 5249 * implementation of the compaction depends on the sufficient amount 5250 * of free memory (see __compaction_suitable) 5251 */ 5252 if (did_some_progress > 0 && 5253 should_compact_retry(ac, order, alloc_flags, 5254 compact_result, &compact_priority, 5255 &compaction_retries)) 5256 goto retry; 5257 5258 5259 /* 5260 * Deal with possible cpuset update races or zonelist updates to avoid 5261 * a unnecessary OOM kill. 5262 */ 5263 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5264 check_retry_zonelist(zonelist_iter_cookie)) 5265 goto restart; 5266 5267 /* Reclaim has failed us, start killing things */ 5268 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5269 if (page) 5270 goto got_pg; 5271 5272 /* Avoid allocations with no watermarks from looping endlessly */ 5273 if (tsk_is_oom_victim(current) && 5274 (alloc_flags & ALLOC_OOM || 5275 (gfp_mask & __GFP_NOMEMALLOC))) 5276 goto nopage; 5277 5278 /* Retry as long as the OOM killer is making progress */ 5279 if (did_some_progress) { 5280 no_progress_loops = 0; 5281 goto retry; 5282 } 5283 5284 nopage: 5285 /* 5286 * Deal with possible cpuset update races or zonelist updates to avoid 5287 * a unnecessary OOM kill. 5288 */ 5289 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5290 check_retry_zonelist(zonelist_iter_cookie)) 5291 goto restart; 5292 5293 /* 5294 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5295 * we always retry 5296 */ 5297 if (gfp_mask & __GFP_NOFAIL) { 5298 /* 5299 * All existing users of the __GFP_NOFAIL are blockable, so warn 5300 * of any new users that actually require GFP_NOWAIT 5301 */ 5302 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5303 goto fail; 5304 5305 /* 5306 * PF_MEMALLOC request from this context is rather bizarre 5307 * because we cannot reclaim anything and only can loop waiting 5308 * for somebody to do a work for us 5309 */ 5310 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5311 5312 /* 5313 * non failing costly orders are a hard requirement which we 5314 * are not prepared for much so let's warn about these users 5315 * so that we can identify them and convert them to something 5316 * else. 5317 */ 5318 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 5319 5320 /* 5321 * Help non-failing allocations by giving some access to memory 5322 * reserves normally used for high priority non-blocking 5323 * allocations but do not use ALLOC_NO_WATERMARKS because this 5324 * could deplete whole memory reserves which would just make 5325 * the situation worse. 5326 */ 5327 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 5328 if (page) 5329 goto got_pg; 5330 5331 cond_resched(); 5332 goto retry; 5333 } 5334 fail: 5335 warn_alloc(gfp_mask, ac->nodemask, 5336 "page allocation failure: order:%u", order); 5337 got_pg: 5338 return page; 5339 } 5340 5341 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5342 int preferred_nid, nodemask_t *nodemask, 5343 struct alloc_context *ac, gfp_t *alloc_gfp, 5344 unsigned int *alloc_flags) 5345 { 5346 ac->highest_zoneidx = gfp_zone(gfp_mask); 5347 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5348 ac->nodemask = nodemask; 5349 ac->migratetype = gfp_migratetype(gfp_mask); 5350 5351 if (cpusets_enabled()) { 5352 *alloc_gfp |= __GFP_HARDWALL; 5353 /* 5354 * When we are in the interrupt context, it is irrelevant 5355 * to the current task context. It means that any node ok. 5356 */ 5357 if (in_task() && !ac->nodemask) 5358 ac->nodemask = &cpuset_current_mems_allowed; 5359 else 5360 *alloc_flags |= ALLOC_CPUSET; 5361 } 5362 5363 might_alloc(gfp_mask); 5364 5365 if (should_fail_alloc_page(gfp_mask, order)) 5366 return false; 5367 5368 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5369 5370 /* Dirty zone balancing only done in the fast path */ 5371 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5372 5373 /* 5374 * The preferred zone is used for statistics but crucially it is 5375 * also used as the starting point for the zonelist iterator. It 5376 * may get reset for allocations that ignore memory policies. 5377 */ 5378 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5379 ac->highest_zoneidx, ac->nodemask); 5380 5381 return true; 5382 } 5383 5384 /* 5385 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5386 * @gfp: GFP flags for the allocation 5387 * @preferred_nid: The preferred NUMA node ID to allocate from 5388 * @nodemask: Set of nodes to allocate from, may be NULL 5389 * @nr_pages: The number of pages desired on the list or array 5390 * @page_list: Optional list to store the allocated pages 5391 * @page_array: Optional array to store the pages 5392 * 5393 * This is a batched version of the page allocator that attempts to 5394 * allocate nr_pages quickly. Pages are added to page_list if page_list 5395 * is not NULL, otherwise it is assumed that the page_array is valid. 5396 * 5397 * For lists, nr_pages is the number of pages that should be allocated. 5398 * 5399 * For arrays, only NULL elements are populated with pages and nr_pages 5400 * is the maximum number of pages that will be stored in the array. 5401 * 5402 * Returns the number of pages on the list or array. 5403 */ 5404 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5405 nodemask_t *nodemask, int nr_pages, 5406 struct list_head *page_list, 5407 struct page **page_array) 5408 { 5409 struct page *page; 5410 unsigned long __maybe_unused UP_flags; 5411 struct zone *zone; 5412 struct zoneref *z; 5413 struct per_cpu_pages *pcp; 5414 struct list_head *pcp_list; 5415 struct alloc_context ac; 5416 gfp_t alloc_gfp; 5417 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5418 int nr_populated = 0, nr_account = 0; 5419 5420 /* 5421 * Skip populated array elements to determine if any pages need 5422 * to be allocated before disabling IRQs. 5423 */ 5424 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5425 nr_populated++; 5426 5427 /* No pages requested? */ 5428 if (unlikely(nr_pages <= 0)) 5429 goto out; 5430 5431 /* Already populated array? */ 5432 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5433 goto out; 5434 5435 /* Bulk allocator does not support memcg accounting. */ 5436 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 5437 goto failed; 5438 5439 /* Use the single page allocator for one page. */ 5440 if (nr_pages - nr_populated == 1) 5441 goto failed; 5442 5443 #ifdef CONFIG_PAGE_OWNER 5444 /* 5445 * PAGE_OWNER may recurse into the allocator to allocate space to 5446 * save the stack with pagesets.lock held. Releasing/reacquiring 5447 * removes much of the performance benefit of bulk allocation so 5448 * force the caller to allocate one page at a time as it'll have 5449 * similar performance to added complexity to the bulk allocator. 5450 */ 5451 if (static_branch_unlikely(&page_owner_inited)) 5452 goto failed; 5453 #endif 5454 5455 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5456 gfp &= gfp_allowed_mask; 5457 alloc_gfp = gfp; 5458 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5459 goto out; 5460 gfp = alloc_gfp; 5461 5462 /* Find an allowed local zone that meets the low watermark. */ 5463 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5464 unsigned long mark; 5465 5466 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5467 !__cpuset_zone_allowed(zone, gfp)) { 5468 continue; 5469 } 5470 5471 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5472 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5473 goto failed; 5474 } 5475 5476 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5477 if (zone_watermark_fast(zone, 0, mark, 5478 zonelist_zone_idx(ac.preferred_zoneref), 5479 alloc_flags, gfp)) { 5480 break; 5481 } 5482 } 5483 5484 /* 5485 * If there are no allowed local zones that meets the watermarks then 5486 * try to allocate a single page and reclaim if necessary. 5487 */ 5488 if (unlikely(!zone)) 5489 goto failed; 5490 5491 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5492 pcp_trylock_prepare(UP_flags); 5493 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5494 if (!pcp) 5495 goto failed_irq; 5496 5497 /* Attempt the batch allocation */ 5498 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5499 while (nr_populated < nr_pages) { 5500 5501 /* Skip existing pages */ 5502 if (page_array && page_array[nr_populated]) { 5503 nr_populated++; 5504 continue; 5505 } 5506 5507 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5508 pcp, pcp_list); 5509 if (unlikely(!page)) { 5510 /* Try and allocate at least one page */ 5511 if (!nr_account) { 5512 pcp_spin_unlock(pcp); 5513 goto failed_irq; 5514 } 5515 break; 5516 } 5517 nr_account++; 5518 5519 prep_new_page(page, 0, gfp, 0); 5520 if (page_list) 5521 list_add(&page->lru, page_list); 5522 else 5523 page_array[nr_populated] = page; 5524 nr_populated++; 5525 } 5526 5527 pcp_spin_unlock(pcp); 5528 pcp_trylock_finish(UP_flags); 5529 5530 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5531 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5532 5533 out: 5534 return nr_populated; 5535 5536 failed_irq: 5537 pcp_trylock_finish(UP_flags); 5538 5539 failed: 5540 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5541 if (page) { 5542 if (page_list) 5543 list_add(&page->lru, page_list); 5544 else 5545 page_array[nr_populated] = page; 5546 nr_populated++; 5547 } 5548 5549 goto out; 5550 } 5551 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5552 5553 /* 5554 * This is the 'heart' of the zoned buddy allocator. 5555 */ 5556 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5557 nodemask_t *nodemask) 5558 { 5559 struct page *page; 5560 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5561 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5562 struct alloc_context ac = { }; 5563 5564 /* 5565 * There are several places where we assume that the order value is sane 5566 * so bail out early if the request is out of bound. 5567 */ 5568 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5569 return NULL; 5570 5571 gfp &= gfp_allowed_mask; 5572 /* 5573 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5574 * resp. GFP_NOIO which has to be inherited for all allocation requests 5575 * from a particular context which has been marked by 5576 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5577 * movable zones are not used during allocation. 5578 */ 5579 gfp = current_gfp_context(gfp); 5580 alloc_gfp = gfp; 5581 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5582 &alloc_gfp, &alloc_flags)) 5583 return NULL; 5584 5585 /* 5586 * Forbid the first pass from falling back to types that fragment 5587 * memory until all local zones are considered. 5588 */ 5589 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5590 5591 /* First allocation attempt */ 5592 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5593 if (likely(page)) 5594 goto out; 5595 5596 alloc_gfp = gfp; 5597 ac.spread_dirty_pages = false; 5598 5599 /* 5600 * Restore the original nodemask if it was potentially replaced with 5601 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5602 */ 5603 ac.nodemask = nodemask; 5604 5605 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5606 5607 out: 5608 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5609 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5610 __free_pages(page, order); 5611 page = NULL; 5612 } 5613 5614 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5615 kmsan_alloc_page(page, order, alloc_gfp); 5616 5617 return page; 5618 } 5619 EXPORT_SYMBOL(__alloc_pages); 5620 5621 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5622 nodemask_t *nodemask) 5623 { 5624 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5625 preferred_nid, nodemask); 5626 5627 if (page && order > 1) 5628 prep_transhuge_page(page); 5629 return (struct folio *)page; 5630 } 5631 EXPORT_SYMBOL(__folio_alloc); 5632 5633 /* 5634 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5635 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5636 * you need to access high mem. 5637 */ 5638 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5639 { 5640 struct page *page; 5641 5642 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5643 if (!page) 5644 return 0; 5645 return (unsigned long) page_address(page); 5646 } 5647 EXPORT_SYMBOL(__get_free_pages); 5648 5649 unsigned long get_zeroed_page(gfp_t gfp_mask) 5650 { 5651 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5652 } 5653 EXPORT_SYMBOL(get_zeroed_page); 5654 5655 /** 5656 * __free_pages - Free pages allocated with alloc_pages(). 5657 * @page: The page pointer returned from alloc_pages(). 5658 * @order: The order of the allocation. 5659 * 5660 * This function can free multi-page allocations that are not compound 5661 * pages. It does not check that the @order passed in matches that of 5662 * the allocation, so it is easy to leak memory. Freeing more memory 5663 * than was allocated will probably emit a warning. 5664 * 5665 * If the last reference to this page is speculative, it will be released 5666 * by put_page() which only frees the first page of a non-compound 5667 * allocation. To prevent the remaining pages from being leaked, we free 5668 * the subsequent pages here. If you want to use the page's reference 5669 * count to decide when to free the allocation, you should allocate a 5670 * compound page, and use put_page() instead of __free_pages(). 5671 * 5672 * Context: May be called in interrupt context or while holding a normal 5673 * spinlock, but not in NMI context or while holding a raw spinlock. 5674 */ 5675 void __free_pages(struct page *page, unsigned int order) 5676 { 5677 /* get PageHead before we drop reference */ 5678 int head = PageHead(page); 5679 5680 if (put_page_testzero(page)) 5681 free_the_page(page, order); 5682 else if (!head) 5683 while (order-- > 0) 5684 free_the_page(page + (1 << order), order); 5685 } 5686 EXPORT_SYMBOL(__free_pages); 5687 5688 void free_pages(unsigned long addr, unsigned int order) 5689 { 5690 if (addr != 0) { 5691 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5692 __free_pages(virt_to_page((void *)addr), order); 5693 } 5694 } 5695 5696 EXPORT_SYMBOL(free_pages); 5697 5698 /* 5699 * Page Fragment: 5700 * An arbitrary-length arbitrary-offset area of memory which resides 5701 * within a 0 or higher order page. Multiple fragments within that page 5702 * are individually refcounted, in the page's reference counter. 5703 * 5704 * The page_frag functions below provide a simple allocation framework for 5705 * page fragments. This is used by the network stack and network device 5706 * drivers to provide a backing region of memory for use as either an 5707 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5708 */ 5709 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5710 gfp_t gfp_mask) 5711 { 5712 struct page *page = NULL; 5713 gfp_t gfp = gfp_mask; 5714 5715 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5716 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5717 __GFP_NOMEMALLOC; 5718 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5719 PAGE_FRAG_CACHE_MAX_ORDER); 5720 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5721 #endif 5722 if (unlikely(!page)) 5723 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5724 5725 nc->va = page ? page_address(page) : NULL; 5726 5727 return page; 5728 } 5729 5730 void __page_frag_cache_drain(struct page *page, unsigned int count) 5731 { 5732 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5733 5734 if (page_ref_sub_and_test(page, count)) 5735 free_the_page(page, compound_order(page)); 5736 } 5737 EXPORT_SYMBOL(__page_frag_cache_drain); 5738 5739 void *page_frag_alloc_align(struct page_frag_cache *nc, 5740 unsigned int fragsz, gfp_t gfp_mask, 5741 unsigned int align_mask) 5742 { 5743 unsigned int size = PAGE_SIZE; 5744 struct page *page; 5745 int offset; 5746 5747 if (unlikely(!nc->va)) { 5748 refill: 5749 page = __page_frag_cache_refill(nc, gfp_mask); 5750 if (!page) 5751 return NULL; 5752 5753 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5754 /* if size can vary use size else just use PAGE_SIZE */ 5755 size = nc->size; 5756 #endif 5757 /* Even if we own the page, we do not use atomic_set(). 5758 * This would break get_page_unless_zero() users. 5759 */ 5760 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5761 5762 /* reset page count bias and offset to start of new frag */ 5763 nc->pfmemalloc = page_is_pfmemalloc(page); 5764 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5765 nc->offset = size; 5766 } 5767 5768 offset = nc->offset - fragsz; 5769 if (unlikely(offset < 0)) { 5770 page = virt_to_page(nc->va); 5771 5772 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5773 goto refill; 5774 5775 if (unlikely(nc->pfmemalloc)) { 5776 free_the_page(page, compound_order(page)); 5777 goto refill; 5778 } 5779 5780 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5781 /* if size can vary use size else just use PAGE_SIZE */ 5782 size = nc->size; 5783 #endif 5784 /* OK, page count is 0, we can safely set it */ 5785 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5786 5787 /* reset page count bias and offset to start of new frag */ 5788 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5789 offset = size - fragsz; 5790 if (unlikely(offset < 0)) { 5791 /* 5792 * The caller is trying to allocate a fragment 5793 * with fragsz > PAGE_SIZE but the cache isn't big 5794 * enough to satisfy the request, this may 5795 * happen in low memory conditions. 5796 * We don't release the cache page because 5797 * it could make memory pressure worse 5798 * so we simply return NULL here. 5799 */ 5800 return NULL; 5801 } 5802 } 5803 5804 nc->pagecnt_bias--; 5805 offset &= align_mask; 5806 nc->offset = offset; 5807 5808 return nc->va + offset; 5809 } 5810 EXPORT_SYMBOL(page_frag_alloc_align); 5811 5812 /* 5813 * Frees a page fragment allocated out of either a compound or order 0 page. 5814 */ 5815 void page_frag_free(void *addr) 5816 { 5817 struct page *page = virt_to_head_page(addr); 5818 5819 if (unlikely(put_page_testzero(page))) 5820 free_the_page(page, compound_order(page)); 5821 } 5822 EXPORT_SYMBOL(page_frag_free); 5823 5824 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5825 size_t size) 5826 { 5827 if (addr) { 5828 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5829 struct page *page = virt_to_page((void *)addr); 5830 struct page *last = page + nr; 5831 5832 split_page_owner(page, 1 << order); 5833 split_page_memcg(page, 1 << order); 5834 while (page < --last) 5835 set_page_refcounted(last); 5836 5837 last = page + (1UL << order); 5838 for (page += nr; page < last; page++) 5839 __free_pages_ok(page, 0, FPI_TO_TAIL); 5840 } 5841 return (void *)addr; 5842 } 5843 5844 /** 5845 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5846 * @size: the number of bytes to allocate 5847 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5848 * 5849 * This function is similar to alloc_pages(), except that it allocates the 5850 * minimum number of pages to satisfy the request. alloc_pages() can only 5851 * allocate memory in power-of-two pages. 5852 * 5853 * This function is also limited by MAX_ORDER. 5854 * 5855 * Memory allocated by this function must be released by free_pages_exact(). 5856 * 5857 * Return: pointer to the allocated area or %NULL in case of error. 5858 */ 5859 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5860 { 5861 unsigned int order = get_order(size); 5862 unsigned long addr; 5863 5864 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5865 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5866 5867 addr = __get_free_pages(gfp_mask, order); 5868 return make_alloc_exact(addr, order, size); 5869 } 5870 EXPORT_SYMBOL(alloc_pages_exact); 5871 5872 /** 5873 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5874 * pages on a node. 5875 * @nid: the preferred node ID where memory should be allocated 5876 * @size: the number of bytes to allocate 5877 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5878 * 5879 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5880 * back. 5881 * 5882 * Return: pointer to the allocated area or %NULL in case of error. 5883 */ 5884 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5885 { 5886 unsigned int order = get_order(size); 5887 struct page *p; 5888 5889 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5890 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5891 5892 p = alloc_pages_node(nid, gfp_mask, order); 5893 if (!p) 5894 return NULL; 5895 return make_alloc_exact((unsigned long)page_address(p), order, size); 5896 } 5897 5898 /** 5899 * free_pages_exact - release memory allocated via alloc_pages_exact() 5900 * @virt: the value returned by alloc_pages_exact. 5901 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5902 * 5903 * Release the memory allocated by a previous call to alloc_pages_exact. 5904 */ 5905 void free_pages_exact(void *virt, size_t size) 5906 { 5907 unsigned long addr = (unsigned long)virt; 5908 unsigned long end = addr + PAGE_ALIGN(size); 5909 5910 while (addr < end) { 5911 free_page(addr); 5912 addr += PAGE_SIZE; 5913 } 5914 } 5915 EXPORT_SYMBOL(free_pages_exact); 5916 5917 /** 5918 * nr_free_zone_pages - count number of pages beyond high watermark 5919 * @offset: The zone index of the highest zone 5920 * 5921 * nr_free_zone_pages() counts the number of pages which are beyond the 5922 * high watermark within all zones at or below a given zone index. For each 5923 * zone, the number of pages is calculated as: 5924 * 5925 * nr_free_zone_pages = managed_pages - high_pages 5926 * 5927 * Return: number of pages beyond high watermark. 5928 */ 5929 static unsigned long nr_free_zone_pages(int offset) 5930 { 5931 struct zoneref *z; 5932 struct zone *zone; 5933 5934 /* Just pick one node, since fallback list is circular */ 5935 unsigned long sum = 0; 5936 5937 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5938 5939 for_each_zone_zonelist(zone, z, zonelist, offset) { 5940 unsigned long size = zone_managed_pages(zone); 5941 unsigned long high = high_wmark_pages(zone); 5942 if (size > high) 5943 sum += size - high; 5944 } 5945 5946 return sum; 5947 } 5948 5949 /** 5950 * nr_free_buffer_pages - count number of pages beyond high watermark 5951 * 5952 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5953 * watermark within ZONE_DMA and ZONE_NORMAL. 5954 * 5955 * Return: number of pages beyond high watermark within ZONE_DMA and 5956 * ZONE_NORMAL. 5957 */ 5958 unsigned long nr_free_buffer_pages(void) 5959 { 5960 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5961 } 5962 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5963 5964 static inline void show_node(struct zone *zone) 5965 { 5966 if (IS_ENABLED(CONFIG_NUMA)) 5967 printk("Node %d ", zone_to_nid(zone)); 5968 } 5969 5970 long si_mem_available(void) 5971 { 5972 long available; 5973 unsigned long pagecache; 5974 unsigned long wmark_low = 0; 5975 unsigned long pages[NR_LRU_LISTS]; 5976 unsigned long reclaimable; 5977 struct zone *zone; 5978 int lru; 5979 5980 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5981 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5982 5983 for_each_zone(zone) 5984 wmark_low += low_wmark_pages(zone); 5985 5986 /* 5987 * Estimate the amount of memory available for userspace allocations, 5988 * without causing swapping or OOM. 5989 */ 5990 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5991 5992 /* 5993 * Not all the page cache can be freed, otherwise the system will 5994 * start swapping or thrashing. Assume at least half of the page 5995 * cache, or the low watermark worth of cache, needs to stay. 5996 */ 5997 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5998 pagecache -= min(pagecache / 2, wmark_low); 5999 available += pagecache; 6000 6001 /* 6002 * Part of the reclaimable slab and other kernel memory consists of 6003 * items that are in use, and cannot be freed. Cap this estimate at the 6004 * low watermark. 6005 */ 6006 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 6007 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 6008 available += reclaimable - min(reclaimable / 2, wmark_low); 6009 6010 if (available < 0) 6011 available = 0; 6012 return available; 6013 } 6014 EXPORT_SYMBOL_GPL(si_mem_available); 6015 6016 void si_meminfo(struct sysinfo *val) 6017 { 6018 val->totalram = totalram_pages(); 6019 val->sharedram = global_node_page_state(NR_SHMEM); 6020 val->freeram = global_zone_page_state(NR_FREE_PAGES); 6021 val->bufferram = nr_blockdev_pages(); 6022 val->totalhigh = totalhigh_pages(); 6023 val->freehigh = nr_free_highpages(); 6024 val->mem_unit = PAGE_SIZE; 6025 } 6026 6027 EXPORT_SYMBOL(si_meminfo); 6028 6029 #ifdef CONFIG_NUMA 6030 void si_meminfo_node(struct sysinfo *val, int nid) 6031 { 6032 int zone_type; /* needs to be signed */ 6033 unsigned long managed_pages = 0; 6034 unsigned long managed_highpages = 0; 6035 unsigned long free_highpages = 0; 6036 pg_data_t *pgdat = NODE_DATA(nid); 6037 6038 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 6039 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 6040 val->totalram = managed_pages; 6041 val->sharedram = node_page_state(pgdat, NR_SHMEM); 6042 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 6043 #ifdef CONFIG_HIGHMEM 6044 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 6045 struct zone *zone = &pgdat->node_zones[zone_type]; 6046 6047 if (is_highmem(zone)) { 6048 managed_highpages += zone_managed_pages(zone); 6049 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 6050 } 6051 } 6052 val->totalhigh = managed_highpages; 6053 val->freehigh = free_highpages; 6054 #else 6055 val->totalhigh = managed_highpages; 6056 val->freehigh = free_highpages; 6057 #endif 6058 val->mem_unit = PAGE_SIZE; 6059 } 6060 #endif 6061 6062 /* 6063 * Determine whether the node should be displayed or not, depending on whether 6064 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6065 */ 6066 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6067 { 6068 if (!(flags & SHOW_MEM_FILTER_NODES)) 6069 return false; 6070 6071 /* 6072 * no node mask - aka implicit memory numa policy. Do not bother with 6073 * the synchronization - read_mems_allowed_begin - because we do not 6074 * have to be precise here. 6075 */ 6076 if (!nodemask) 6077 nodemask = &cpuset_current_mems_allowed; 6078 6079 return !node_isset(nid, *nodemask); 6080 } 6081 6082 #define K(x) ((x) << (PAGE_SHIFT-10)) 6083 6084 static void show_migration_types(unsigned char type) 6085 { 6086 static const char types[MIGRATE_TYPES] = { 6087 [MIGRATE_UNMOVABLE] = 'U', 6088 [MIGRATE_MOVABLE] = 'M', 6089 [MIGRATE_RECLAIMABLE] = 'E', 6090 [MIGRATE_HIGHATOMIC] = 'H', 6091 #ifdef CONFIG_CMA 6092 [MIGRATE_CMA] = 'C', 6093 #endif 6094 #ifdef CONFIG_MEMORY_ISOLATION 6095 [MIGRATE_ISOLATE] = 'I', 6096 #endif 6097 }; 6098 char tmp[MIGRATE_TYPES + 1]; 6099 char *p = tmp; 6100 int i; 6101 6102 for (i = 0; i < MIGRATE_TYPES; i++) { 6103 if (type & (1 << i)) 6104 *p++ = types[i]; 6105 } 6106 6107 *p = '\0'; 6108 printk(KERN_CONT "(%s) ", tmp); 6109 } 6110 6111 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6112 { 6113 int zone_idx; 6114 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6115 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6116 return true; 6117 return false; 6118 } 6119 6120 /* 6121 * Show free area list (used inside shift_scroll-lock stuff) 6122 * We also calculate the percentage fragmentation. We do this by counting the 6123 * memory on each free list with the exception of the first item on the list. 6124 * 6125 * Bits in @filter: 6126 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6127 * cpuset. 6128 */ 6129 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6130 { 6131 unsigned long free_pcp = 0; 6132 int cpu, nid; 6133 struct zone *zone; 6134 pg_data_t *pgdat; 6135 6136 for_each_populated_zone(zone) { 6137 if (zone_idx(zone) > max_zone_idx) 6138 continue; 6139 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6140 continue; 6141 6142 for_each_online_cpu(cpu) 6143 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6144 } 6145 6146 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6147 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6148 " unevictable:%lu dirty:%lu writeback:%lu\n" 6149 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6150 " mapped:%lu shmem:%lu pagetables:%lu\n" 6151 " sec_pagetables:%lu bounce:%lu\n" 6152 " kernel_misc_reclaimable:%lu\n" 6153 " free:%lu free_pcp:%lu free_cma:%lu\n", 6154 global_node_page_state(NR_ACTIVE_ANON), 6155 global_node_page_state(NR_INACTIVE_ANON), 6156 global_node_page_state(NR_ISOLATED_ANON), 6157 global_node_page_state(NR_ACTIVE_FILE), 6158 global_node_page_state(NR_INACTIVE_FILE), 6159 global_node_page_state(NR_ISOLATED_FILE), 6160 global_node_page_state(NR_UNEVICTABLE), 6161 global_node_page_state(NR_FILE_DIRTY), 6162 global_node_page_state(NR_WRITEBACK), 6163 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6164 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6165 global_node_page_state(NR_FILE_MAPPED), 6166 global_node_page_state(NR_SHMEM), 6167 global_node_page_state(NR_PAGETABLE), 6168 global_node_page_state(NR_SECONDARY_PAGETABLE), 6169 global_zone_page_state(NR_BOUNCE), 6170 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6171 global_zone_page_state(NR_FREE_PAGES), 6172 free_pcp, 6173 global_zone_page_state(NR_FREE_CMA_PAGES)); 6174 6175 for_each_online_pgdat(pgdat) { 6176 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6177 continue; 6178 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6179 continue; 6180 6181 printk("Node %d" 6182 " active_anon:%lukB" 6183 " inactive_anon:%lukB" 6184 " active_file:%lukB" 6185 " inactive_file:%lukB" 6186 " unevictable:%lukB" 6187 " isolated(anon):%lukB" 6188 " isolated(file):%lukB" 6189 " mapped:%lukB" 6190 " dirty:%lukB" 6191 " writeback:%lukB" 6192 " shmem:%lukB" 6193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6194 " shmem_thp: %lukB" 6195 " shmem_pmdmapped: %lukB" 6196 " anon_thp: %lukB" 6197 #endif 6198 " writeback_tmp:%lukB" 6199 " kernel_stack:%lukB" 6200 #ifdef CONFIG_SHADOW_CALL_STACK 6201 " shadow_call_stack:%lukB" 6202 #endif 6203 " pagetables:%lukB" 6204 " sec_pagetables:%lukB" 6205 " all_unreclaimable? %s" 6206 "\n", 6207 pgdat->node_id, 6208 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6209 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6210 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6211 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6212 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6213 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6214 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6215 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6216 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6217 K(node_page_state(pgdat, NR_WRITEBACK)), 6218 K(node_page_state(pgdat, NR_SHMEM)), 6219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6220 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6221 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6222 K(node_page_state(pgdat, NR_ANON_THPS)), 6223 #endif 6224 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6225 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6226 #ifdef CONFIG_SHADOW_CALL_STACK 6227 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6228 #endif 6229 K(node_page_state(pgdat, NR_PAGETABLE)), 6230 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 6231 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6232 "yes" : "no"); 6233 } 6234 6235 for_each_populated_zone(zone) { 6236 int i; 6237 6238 if (zone_idx(zone) > max_zone_idx) 6239 continue; 6240 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6241 continue; 6242 6243 free_pcp = 0; 6244 for_each_online_cpu(cpu) 6245 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6246 6247 show_node(zone); 6248 printk(KERN_CONT 6249 "%s" 6250 " free:%lukB" 6251 " boost:%lukB" 6252 " min:%lukB" 6253 " low:%lukB" 6254 " high:%lukB" 6255 " reserved_highatomic:%luKB" 6256 " active_anon:%lukB" 6257 " inactive_anon:%lukB" 6258 " active_file:%lukB" 6259 " inactive_file:%lukB" 6260 " unevictable:%lukB" 6261 " writepending:%lukB" 6262 " present:%lukB" 6263 " managed:%lukB" 6264 " mlocked:%lukB" 6265 " bounce:%lukB" 6266 " free_pcp:%lukB" 6267 " local_pcp:%ukB" 6268 " free_cma:%lukB" 6269 "\n", 6270 zone->name, 6271 K(zone_page_state(zone, NR_FREE_PAGES)), 6272 K(zone->watermark_boost), 6273 K(min_wmark_pages(zone)), 6274 K(low_wmark_pages(zone)), 6275 K(high_wmark_pages(zone)), 6276 K(zone->nr_reserved_highatomic), 6277 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6278 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6279 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6280 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6281 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6282 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6283 K(zone->present_pages), 6284 K(zone_managed_pages(zone)), 6285 K(zone_page_state(zone, NR_MLOCK)), 6286 K(zone_page_state(zone, NR_BOUNCE)), 6287 K(free_pcp), 6288 K(this_cpu_read(zone->per_cpu_pageset->count)), 6289 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6290 printk("lowmem_reserve[]:"); 6291 for (i = 0; i < MAX_NR_ZONES; i++) 6292 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6293 printk(KERN_CONT "\n"); 6294 } 6295 6296 for_each_populated_zone(zone) { 6297 unsigned int order; 6298 unsigned long nr[MAX_ORDER], flags, total = 0; 6299 unsigned char types[MAX_ORDER]; 6300 6301 if (zone_idx(zone) > max_zone_idx) 6302 continue; 6303 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6304 continue; 6305 show_node(zone); 6306 printk(KERN_CONT "%s: ", zone->name); 6307 6308 spin_lock_irqsave(&zone->lock, flags); 6309 for (order = 0; order < MAX_ORDER; order++) { 6310 struct free_area *area = &zone->free_area[order]; 6311 int type; 6312 6313 nr[order] = area->nr_free; 6314 total += nr[order] << order; 6315 6316 types[order] = 0; 6317 for (type = 0; type < MIGRATE_TYPES; type++) { 6318 if (!free_area_empty(area, type)) 6319 types[order] |= 1 << type; 6320 } 6321 } 6322 spin_unlock_irqrestore(&zone->lock, flags); 6323 for (order = 0; order < MAX_ORDER; order++) { 6324 printk(KERN_CONT "%lu*%lukB ", 6325 nr[order], K(1UL) << order); 6326 if (nr[order]) 6327 show_migration_types(types[order]); 6328 } 6329 printk(KERN_CONT "= %lukB\n", K(total)); 6330 } 6331 6332 for_each_online_node(nid) { 6333 if (show_mem_node_skip(filter, nid, nodemask)) 6334 continue; 6335 hugetlb_show_meminfo_node(nid); 6336 } 6337 6338 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6339 6340 show_swap_cache_info(); 6341 } 6342 6343 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6344 { 6345 zoneref->zone = zone; 6346 zoneref->zone_idx = zone_idx(zone); 6347 } 6348 6349 /* 6350 * Builds allocation fallback zone lists. 6351 * 6352 * Add all populated zones of a node to the zonelist. 6353 */ 6354 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6355 { 6356 struct zone *zone; 6357 enum zone_type zone_type = MAX_NR_ZONES; 6358 int nr_zones = 0; 6359 6360 do { 6361 zone_type--; 6362 zone = pgdat->node_zones + zone_type; 6363 if (populated_zone(zone)) { 6364 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6365 check_highest_zone(zone_type); 6366 } 6367 } while (zone_type); 6368 6369 return nr_zones; 6370 } 6371 6372 #ifdef CONFIG_NUMA 6373 6374 static int __parse_numa_zonelist_order(char *s) 6375 { 6376 /* 6377 * We used to support different zonelists modes but they turned 6378 * out to be just not useful. Let's keep the warning in place 6379 * if somebody still use the cmd line parameter so that we do 6380 * not fail it silently 6381 */ 6382 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6383 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6384 return -EINVAL; 6385 } 6386 return 0; 6387 } 6388 6389 char numa_zonelist_order[] = "Node"; 6390 6391 /* 6392 * sysctl handler for numa_zonelist_order 6393 */ 6394 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6395 void *buffer, size_t *length, loff_t *ppos) 6396 { 6397 if (write) 6398 return __parse_numa_zonelist_order(buffer); 6399 return proc_dostring(table, write, buffer, length, ppos); 6400 } 6401 6402 6403 static int node_load[MAX_NUMNODES]; 6404 6405 /** 6406 * find_next_best_node - find the next node that should appear in a given node's fallback list 6407 * @node: node whose fallback list we're appending 6408 * @used_node_mask: nodemask_t of already used nodes 6409 * 6410 * We use a number of factors to determine which is the next node that should 6411 * appear on a given node's fallback list. The node should not have appeared 6412 * already in @node's fallback list, and it should be the next closest node 6413 * according to the distance array (which contains arbitrary distance values 6414 * from each node to each node in the system), and should also prefer nodes 6415 * with no CPUs, since presumably they'll have very little allocation pressure 6416 * on them otherwise. 6417 * 6418 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6419 */ 6420 int find_next_best_node(int node, nodemask_t *used_node_mask) 6421 { 6422 int n, val; 6423 int min_val = INT_MAX; 6424 int best_node = NUMA_NO_NODE; 6425 6426 /* Use the local node if we haven't already */ 6427 if (!node_isset(node, *used_node_mask)) { 6428 node_set(node, *used_node_mask); 6429 return node; 6430 } 6431 6432 for_each_node_state(n, N_MEMORY) { 6433 6434 /* Don't want a node to appear more than once */ 6435 if (node_isset(n, *used_node_mask)) 6436 continue; 6437 6438 /* Use the distance array to find the distance */ 6439 val = node_distance(node, n); 6440 6441 /* Penalize nodes under us ("prefer the next node") */ 6442 val += (n < node); 6443 6444 /* Give preference to headless and unused nodes */ 6445 if (!cpumask_empty(cpumask_of_node(n))) 6446 val += PENALTY_FOR_NODE_WITH_CPUS; 6447 6448 /* Slight preference for less loaded node */ 6449 val *= MAX_NUMNODES; 6450 val += node_load[n]; 6451 6452 if (val < min_val) { 6453 min_val = val; 6454 best_node = n; 6455 } 6456 } 6457 6458 if (best_node >= 0) 6459 node_set(best_node, *used_node_mask); 6460 6461 return best_node; 6462 } 6463 6464 6465 /* 6466 * Build zonelists ordered by node and zones within node. 6467 * This results in maximum locality--normal zone overflows into local 6468 * DMA zone, if any--but risks exhausting DMA zone. 6469 */ 6470 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6471 unsigned nr_nodes) 6472 { 6473 struct zoneref *zonerefs; 6474 int i; 6475 6476 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6477 6478 for (i = 0; i < nr_nodes; i++) { 6479 int nr_zones; 6480 6481 pg_data_t *node = NODE_DATA(node_order[i]); 6482 6483 nr_zones = build_zonerefs_node(node, zonerefs); 6484 zonerefs += nr_zones; 6485 } 6486 zonerefs->zone = NULL; 6487 zonerefs->zone_idx = 0; 6488 } 6489 6490 /* 6491 * Build gfp_thisnode zonelists 6492 */ 6493 static void build_thisnode_zonelists(pg_data_t *pgdat) 6494 { 6495 struct zoneref *zonerefs; 6496 int nr_zones; 6497 6498 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6499 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6500 zonerefs += nr_zones; 6501 zonerefs->zone = NULL; 6502 zonerefs->zone_idx = 0; 6503 } 6504 6505 /* 6506 * Build zonelists ordered by zone and nodes within zones. 6507 * This results in conserving DMA zone[s] until all Normal memory is 6508 * exhausted, but results in overflowing to remote node while memory 6509 * may still exist in local DMA zone. 6510 */ 6511 6512 static void build_zonelists(pg_data_t *pgdat) 6513 { 6514 static int node_order[MAX_NUMNODES]; 6515 int node, nr_nodes = 0; 6516 nodemask_t used_mask = NODE_MASK_NONE; 6517 int local_node, prev_node; 6518 6519 /* NUMA-aware ordering of nodes */ 6520 local_node = pgdat->node_id; 6521 prev_node = local_node; 6522 6523 memset(node_order, 0, sizeof(node_order)); 6524 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6525 /* 6526 * We don't want to pressure a particular node. 6527 * So adding penalty to the first node in same 6528 * distance group to make it round-robin. 6529 */ 6530 if (node_distance(local_node, node) != 6531 node_distance(local_node, prev_node)) 6532 node_load[node] += 1; 6533 6534 node_order[nr_nodes++] = node; 6535 prev_node = node; 6536 } 6537 6538 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6539 build_thisnode_zonelists(pgdat); 6540 pr_info("Fallback order for Node %d: ", local_node); 6541 for (node = 0; node < nr_nodes; node++) 6542 pr_cont("%d ", node_order[node]); 6543 pr_cont("\n"); 6544 } 6545 6546 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6547 /* 6548 * Return node id of node used for "local" allocations. 6549 * I.e., first node id of first zone in arg node's generic zonelist. 6550 * Used for initializing percpu 'numa_mem', which is used primarily 6551 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6552 */ 6553 int local_memory_node(int node) 6554 { 6555 struct zoneref *z; 6556 6557 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6558 gfp_zone(GFP_KERNEL), 6559 NULL); 6560 return zone_to_nid(z->zone); 6561 } 6562 #endif 6563 6564 static void setup_min_unmapped_ratio(void); 6565 static void setup_min_slab_ratio(void); 6566 #else /* CONFIG_NUMA */ 6567 6568 static void build_zonelists(pg_data_t *pgdat) 6569 { 6570 int node, local_node; 6571 struct zoneref *zonerefs; 6572 int nr_zones; 6573 6574 local_node = pgdat->node_id; 6575 6576 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6577 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6578 zonerefs += nr_zones; 6579 6580 /* 6581 * Now we build the zonelist so that it contains the zones 6582 * of all the other nodes. 6583 * We don't want to pressure a particular node, so when 6584 * building the zones for node N, we make sure that the 6585 * zones coming right after the local ones are those from 6586 * node N+1 (modulo N) 6587 */ 6588 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6589 if (!node_online(node)) 6590 continue; 6591 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6592 zonerefs += nr_zones; 6593 } 6594 for (node = 0; node < local_node; node++) { 6595 if (!node_online(node)) 6596 continue; 6597 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6598 zonerefs += nr_zones; 6599 } 6600 6601 zonerefs->zone = NULL; 6602 zonerefs->zone_idx = 0; 6603 } 6604 6605 #endif /* CONFIG_NUMA */ 6606 6607 /* 6608 * Boot pageset table. One per cpu which is going to be used for all 6609 * zones and all nodes. The parameters will be set in such a way 6610 * that an item put on a list will immediately be handed over to 6611 * the buddy list. This is safe since pageset manipulation is done 6612 * with interrupts disabled. 6613 * 6614 * The boot_pagesets must be kept even after bootup is complete for 6615 * unused processors and/or zones. They do play a role for bootstrapping 6616 * hotplugged processors. 6617 * 6618 * zoneinfo_show() and maybe other functions do 6619 * not check if the processor is online before following the pageset pointer. 6620 * Other parts of the kernel may not check if the zone is available. 6621 */ 6622 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6623 /* These effectively disable the pcplists in the boot pageset completely */ 6624 #define BOOT_PAGESET_HIGH 0 6625 #define BOOT_PAGESET_BATCH 1 6626 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6627 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6628 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6629 6630 static void __build_all_zonelists(void *data) 6631 { 6632 int nid; 6633 int __maybe_unused cpu; 6634 pg_data_t *self = data; 6635 unsigned long flags; 6636 6637 /* 6638 * Explicitly disable this CPU's interrupts before taking seqlock 6639 * to prevent any IRQ handler from calling into the page allocator 6640 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock. 6641 */ 6642 local_irq_save(flags); 6643 /* 6644 * Explicitly disable this CPU's synchronous printk() before taking 6645 * seqlock to prevent any printk() from trying to hold port->lock, for 6646 * tty_insert_flip_string_and_push_buffer() on other CPU might be 6647 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 6648 */ 6649 printk_deferred_enter(); 6650 write_seqlock(&zonelist_update_seq); 6651 6652 #ifdef CONFIG_NUMA 6653 memset(node_load, 0, sizeof(node_load)); 6654 #endif 6655 6656 /* 6657 * This node is hotadded and no memory is yet present. So just 6658 * building zonelists is fine - no need to touch other nodes. 6659 */ 6660 if (self && !node_online(self->node_id)) { 6661 build_zonelists(self); 6662 } else { 6663 /* 6664 * All possible nodes have pgdat preallocated 6665 * in free_area_init 6666 */ 6667 for_each_node(nid) { 6668 pg_data_t *pgdat = NODE_DATA(nid); 6669 6670 build_zonelists(pgdat); 6671 } 6672 6673 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6674 /* 6675 * We now know the "local memory node" for each node-- 6676 * i.e., the node of the first zone in the generic zonelist. 6677 * Set up numa_mem percpu variable for on-line cpus. During 6678 * boot, only the boot cpu should be on-line; we'll init the 6679 * secondary cpus' numa_mem as they come on-line. During 6680 * node/memory hotplug, we'll fixup all on-line cpus. 6681 */ 6682 for_each_online_cpu(cpu) 6683 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6684 #endif 6685 } 6686 6687 write_sequnlock(&zonelist_update_seq); 6688 printk_deferred_exit(); 6689 local_irq_restore(flags); 6690 } 6691 6692 static noinline void __init 6693 build_all_zonelists_init(void) 6694 { 6695 int cpu; 6696 6697 __build_all_zonelists(NULL); 6698 6699 /* 6700 * Initialize the boot_pagesets that are going to be used 6701 * for bootstrapping processors. The real pagesets for 6702 * each zone will be allocated later when the per cpu 6703 * allocator is available. 6704 * 6705 * boot_pagesets are used also for bootstrapping offline 6706 * cpus if the system is already booted because the pagesets 6707 * are needed to initialize allocators on a specific cpu too. 6708 * F.e. the percpu allocator needs the page allocator which 6709 * needs the percpu allocator in order to allocate its pagesets 6710 * (a chicken-egg dilemma). 6711 */ 6712 for_each_possible_cpu(cpu) 6713 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6714 6715 mminit_verify_zonelist(); 6716 cpuset_init_current_mems_allowed(); 6717 } 6718 6719 /* 6720 * unless system_state == SYSTEM_BOOTING. 6721 * 6722 * __ref due to call of __init annotated helper build_all_zonelists_init 6723 * [protected by SYSTEM_BOOTING]. 6724 */ 6725 void __ref build_all_zonelists(pg_data_t *pgdat) 6726 { 6727 unsigned long vm_total_pages; 6728 6729 if (system_state == SYSTEM_BOOTING) { 6730 build_all_zonelists_init(); 6731 } else { 6732 __build_all_zonelists(pgdat); 6733 /* cpuset refresh routine should be here */ 6734 } 6735 /* Get the number of free pages beyond high watermark in all zones. */ 6736 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6737 /* 6738 * Disable grouping by mobility if the number of pages in the 6739 * system is too low to allow the mechanism to work. It would be 6740 * more accurate, but expensive to check per-zone. This check is 6741 * made on memory-hotadd so a system can start with mobility 6742 * disabled and enable it later 6743 */ 6744 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6745 page_group_by_mobility_disabled = 1; 6746 else 6747 page_group_by_mobility_disabled = 0; 6748 6749 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6750 nr_online_nodes, 6751 page_group_by_mobility_disabled ? "off" : "on", 6752 vm_total_pages); 6753 #ifdef CONFIG_NUMA 6754 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6755 #endif 6756 } 6757 6758 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6759 static bool __meminit 6760 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6761 { 6762 static struct memblock_region *r; 6763 6764 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6765 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6766 for_each_mem_region(r) { 6767 if (*pfn < memblock_region_memory_end_pfn(r)) 6768 break; 6769 } 6770 } 6771 if (*pfn >= memblock_region_memory_base_pfn(r) && 6772 memblock_is_mirror(r)) { 6773 *pfn = memblock_region_memory_end_pfn(r); 6774 return true; 6775 } 6776 } 6777 return false; 6778 } 6779 6780 /* 6781 * Initially all pages are reserved - free ones are freed 6782 * up by memblock_free_all() once the early boot process is 6783 * done. Non-atomic initialization, single-pass. 6784 * 6785 * All aligned pageblocks are initialized to the specified migratetype 6786 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6787 * zone stats (e.g., nr_isolate_pageblock) are touched. 6788 */ 6789 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6790 unsigned long start_pfn, unsigned long zone_end_pfn, 6791 enum meminit_context context, 6792 struct vmem_altmap *altmap, int migratetype) 6793 { 6794 unsigned long pfn, end_pfn = start_pfn + size; 6795 struct page *page; 6796 6797 if (highest_memmap_pfn < end_pfn - 1) 6798 highest_memmap_pfn = end_pfn - 1; 6799 6800 #ifdef CONFIG_ZONE_DEVICE 6801 /* 6802 * Honor reservation requested by the driver for this ZONE_DEVICE 6803 * memory. We limit the total number of pages to initialize to just 6804 * those that might contain the memory mapping. We will defer the 6805 * ZONE_DEVICE page initialization until after we have released 6806 * the hotplug lock. 6807 */ 6808 if (zone == ZONE_DEVICE) { 6809 if (!altmap) 6810 return; 6811 6812 if (start_pfn == altmap->base_pfn) 6813 start_pfn += altmap->reserve; 6814 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6815 } 6816 #endif 6817 6818 for (pfn = start_pfn; pfn < end_pfn; ) { 6819 /* 6820 * There can be holes in boot-time mem_map[]s handed to this 6821 * function. They do not exist on hotplugged memory. 6822 */ 6823 if (context == MEMINIT_EARLY) { 6824 if (overlap_memmap_init(zone, &pfn)) 6825 continue; 6826 if (defer_init(nid, pfn, zone_end_pfn)) { 6827 deferred_struct_pages = true; 6828 break; 6829 } 6830 } 6831 6832 page = pfn_to_page(pfn); 6833 __init_single_page(page, pfn, zone, nid); 6834 if (context == MEMINIT_HOTPLUG) 6835 __SetPageReserved(page); 6836 6837 /* 6838 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6839 * such that unmovable allocations won't be scattered all 6840 * over the place during system boot. 6841 */ 6842 if (pageblock_aligned(pfn)) { 6843 set_pageblock_migratetype(page, migratetype); 6844 cond_resched(); 6845 } 6846 pfn++; 6847 } 6848 } 6849 6850 #ifdef CONFIG_ZONE_DEVICE 6851 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6852 unsigned long zone_idx, int nid, 6853 struct dev_pagemap *pgmap) 6854 { 6855 6856 __init_single_page(page, pfn, zone_idx, nid); 6857 6858 /* 6859 * Mark page reserved as it will need to wait for onlining 6860 * phase for it to be fully associated with a zone. 6861 * 6862 * We can use the non-atomic __set_bit operation for setting 6863 * the flag as we are still initializing the pages. 6864 */ 6865 __SetPageReserved(page); 6866 6867 /* 6868 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6869 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6870 * ever freed or placed on a driver-private list. 6871 */ 6872 page->pgmap = pgmap; 6873 page->zone_device_data = NULL; 6874 6875 /* 6876 * Mark the block movable so that blocks are reserved for 6877 * movable at startup. This will force kernel allocations 6878 * to reserve their blocks rather than leaking throughout 6879 * the address space during boot when many long-lived 6880 * kernel allocations are made. 6881 * 6882 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6883 * because this is done early in section_activate() 6884 */ 6885 if (pageblock_aligned(pfn)) { 6886 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6887 cond_resched(); 6888 } 6889 6890 /* 6891 * ZONE_DEVICE pages are released directly to the driver page allocator 6892 * which will set the page count to 1 when allocating the page. 6893 */ 6894 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 6895 pgmap->type == MEMORY_DEVICE_COHERENT) 6896 set_page_count(page, 0); 6897 } 6898 6899 /* 6900 * With compound page geometry and when struct pages are stored in ram most 6901 * tail pages are reused. Consequently, the amount of unique struct pages to 6902 * initialize is a lot smaller that the total amount of struct pages being 6903 * mapped. This is a paired / mild layering violation with explicit knowledge 6904 * of how the sparse_vmemmap internals handle compound pages in the lack 6905 * of an altmap. See vmemmap_populate_compound_pages(). 6906 */ 6907 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6908 unsigned long nr_pages) 6909 { 6910 return is_power_of_2(sizeof(struct page)) && 6911 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6912 } 6913 6914 static void __ref memmap_init_compound(struct page *head, 6915 unsigned long head_pfn, 6916 unsigned long zone_idx, int nid, 6917 struct dev_pagemap *pgmap, 6918 unsigned long nr_pages) 6919 { 6920 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6921 unsigned int order = pgmap->vmemmap_shift; 6922 6923 __SetPageHead(head); 6924 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6925 struct page *page = pfn_to_page(pfn); 6926 6927 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6928 prep_compound_tail(head, pfn - head_pfn); 6929 set_page_count(page, 0); 6930 6931 /* 6932 * The first tail page stores important compound page info. 6933 * Call prep_compound_head() after the first tail page has 6934 * been initialized, to not have the data overwritten. 6935 */ 6936 if (pfn == head_pfn + 1) 6937 prep_compound_head(head, order); 6938 } 6939 } 6940 6941 void __ref memmap_init_zone_device(struct zone *zone, 6942 unsigned long start_pfn, 6943 unsigned long nr_pages, 6944 struct dev_pagemap *pgmap) 6945 { 6946 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6947 struct pglist_data *pgdat = zone->zone_pgdat; 6948 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6949 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6950 unsigned long zone_idx = zone_idx(zone); 6951 unsigned long start = jiffies; 6952 int nid = pgdat->node_id; 6953 6954 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 6955 return; 6956 6957 /* 6958 * The call to memmap_init should have already taken care 6959 * of the pages reserved for the memmap, so we can just jump to 6960 * the end of that region and start processing the device pages. 6961 */ 6962 if (altmap) { 6963 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6964 nr_pages = end_pfn - start_pfn; 6965 } 6966 6967 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6968 struct page *page = pfn_to_page(pfn); 6969 6970 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6971 6972 if (pfns_per_compound == 1) 6973 continue; 6974 6975 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6976 compound_nr_pages(altmap, pfns_per_compound)); 6977 } 6978 6979 pr_info("%s initialised %lu pages in %ums\n", __func__, 6980 nr_pages, jiffies_to_msecs(jiffies - start)); 6981 } 6982 6983 #endif 6984 static void __meminit zone_init_free_lists(struct zone *zone) 6985 { 6986 unsigned int order, t; 6987 for_each_migratetype_order(order, t) { 6988 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6989 zone->free_area[order].nr_free = 0; 6990 } 6991 } 6992 6993 /* 6994 * Only struct pages that correspond to ranges defined by memblock.memory 6995 * are zeroed and initialized by going through __init_single_page() during 6996 * memmap_init_zone_range(). 6997 * 6998 * But, there could be struct pages that correspond to holes in 6999 * memblock.memory. This can happen because of the following reasons: 7000 * - physical memory bank size is not necessarily the exact multiple of the 7001 * arbitrary section size 7002 * - early reserved memory may not be listed in memblock.memory 7003 * - memory layouts defined with memmap= kernel parameter may not align 7004 * nicely with memmap sections 7005 * 7006 * Explicitly initialize those struct pages so that: 7007 * - PG_Reserved is set 7008 * - zone and node links point to zone and node that span the page if the 7009 * hole is in the middle of a zone 7010 * - zone and node links point to adjacent zone/node if the hole falls on 7011 * the zone boundary; the pages in such holes will be prepended to the 7012 * zone/node above the hole except for the trailing pages in the last 7013 * section that will be appended to the zone/node below. 7014 */ 7015 static void __init init_unavailable_range(unsigned long spfn, 7016 unsigned long epfn, 7017 int zone, int node) 7018 { 7019 unsigned long pfn; 7020 u64 pgcnt = 0; 7021 7022 for (pfn = spfn; pfn < epfn; pfn++) { 7023 if (!pfn_valid(pageblock_start_pfn(pfn))) { 7024 pfn = pageblock_end_pfn(pfn) - 1; 7025 continue; 7026 } 7027 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 7028 __SetPageReserved(pfn_to_page(pfn)); 7029 pgcnt++; 7030 } 7031 7032 if (pgcnt) 7033 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 7034 node, zone_names[zone], pgcnt); 7035 } 7036 7037 static void __init memmap_init_zone_range(struct zone *zone, 7038 unsigned long start_pfn, 7039 unsigned long end_pfn, 7040 unsigned long *hole_pfn) 7041 { 7042 unsigned long zone_start_pfn = zone->zone_start_pfn; 7043 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 7044 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 7045 7046 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 7047 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 7048 7049 if (start_pfn >= end_pfn) 7050 return; 7051 7052 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 7053 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 7054 7055 if (*hole_pfn < start_pfn) 7056 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 7057 7058 *hole_pfn = end_pfn; 7059 } 7060 7061 static void __init memmap_init(void) 7062 { 7063 unsigned long start_pfn, end_pfn; 7064 unsigned long hole_pfn = 0; 7065 int i, j, zone_id = 0, nid; 7066 7067 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7068 struct pglist_data *node = NODE_DATA(nid); 7069 7070 for (j = 0; j < MAX_NR_ZONES; j++) { 7071 struct zone *zone = node->node_zones + j; 7072 7073 if (!populated_zone(zone)) 7074 continue; 7075 7076 memmap_init_zone_range(zone, start_pfn, end_pfn, 7077 &hole_pfn); 7078 zone_id = j; 7079 } 7080 } 7081 7082 #ifdef CONFIG_SPARSEMEM 7083 /* 7084 * Initialize the memory map for hole in the range [memory_end, 7085 * section_end]. 7086 * Append the pages in this hole to the highest zone in the last 7087 * node. 7088 * The call to init_unavailable_range() is outside the ifdef to 7089 * silence the compiler warining about zone_id set but not used; 7090 * for FLATMEM it is a nop anyway 7091 */ 7092 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7093 if (hole_pfn < end_pfn) 7094 #endif 7095 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7096 } 7097 7098 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7099 phys_addr_t min_addr, int nid, bool exact_nid) 7100 { 7101 void *ptr; 7102 7103 if (exact_nid) 7104 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7105 MEMBLOCK_ALLOC_ACCESSIBLE, 7106 nid); 7107 else 7108 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7109 MEMBLOCK_ALLOC_ACCESSIBLE, 7110 nid); 7111 7112 if (ptr && size > 0) 7113 page_init_poison(ptr, size); 7114 7115 return ptr; 7116 } 7117 7118 static int zone_batchsize(struct zone *zone) 7119 { 7120 #ifdef CONFIG_MMU 7121 int batch; 7122 7123 /* 7124 * The number of pages to batch allocate is either ~0.1% 7125 * of the zone or 1MB, whichever is smaller. The batch 7126 * size is striking a balance between allocation latency 7127 * and zone lock contention. 7128 */ 7129 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 7130 batch /= 4; /* We effectively *= 4 below */ 7131 if (batch < 1) 7132 batch = 1; 7133 7134 /* 7135 * Clamp the batch to a 2^n - 1 value. Having a power 7136 * of 2 value was found to be more likely to have 7137 * suboptimal cache aliasing properties in some cases. 7138 * 7139 * For example if 2 tasks are alternately allocating 7140 * batches of pages, one task can end up with a lot 7141 * of pages of one half of the possible page colors 7142 * and the other with pages of the other colors. 7143 */ 7144 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7145 7146 return batch; 7147 7148 #else 7149 /* The deferral and batching of frees should be suppressed under NOMMU 7150 * conditions. 7151 * 7152 * The problem is that NOMMU needs to be able to allocate large chunks 7153 * of contiguous memory as there's no hardware page translation to 7154 * assemble apparent contiguous memory from discontiguous pages. 7155 * 7156 * Queueing large contiguous runs of pages for batching, however, 7157 * causes the pages to actually be freed in smaller chunks. As there 7158 * can be a significant delay between the individual batches being 7159 * recycled, this leads to the once large chunks of space being 7160 * fragmented and becoming unavailable for high-order allocations. 7161 */ 7162 return 0; 7163 #endif 7164 } 7165 7166 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7167 { 7168 #ifdef CONFIG_MMU 7169 int high; 7170 int nr_split_cpus; 7171 unsigned long total_pages; 7172 7173 if (!percpu_pagelist_high_fraction) { 7174 /* 7175 * By default, the high value of the pcp is based on the zone 7176 * low watermark so that if they are full then background 7177 * reclaim will not be started prematurely. 7178 */ 7179 total_pages = low_wmark_pages(zone); 7180 } else { 7181 /* 7182 * If percpu_pagelist_high_fraction is configured, the high 7183 * value is based on a fraction of the managed pages in the 7184 * zone. 7185 */ 7186 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7187 } 7188 7189 /* 7190 * Split the high value across all online CPUs local to the zone. Note 7191 * that early in boot that CPUs may not be online yet and that during 7192 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7193 * onlined. For memory nodes that have no CPUs, split pcp->high across 7194 * all online CPUs to mitigate the risk that reclaim is triggered 7195 * prematurely due to pages stored on pcp lists. 7196 */ 7197 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7198 if (!nr_split_cpus) 7199 nr_split_cpus = num_online_cpus(); 7200 high = total_pages / nr_split_cpus; 7201 7202 /* 7203 * Ensure high is at least batch*4. The multiple is based on the 7204 * historical relationship between high and batch. 7205 */ 7206 high = max(high, batch << 2); 7207 7208 return high; 7209 #else 7210 return 0; 7211 #endif 7212 } 7213 7214 /* 7215 * pcp->high and pcp->batch values are related and generally batch is lower 7216 * than high. They are also related to pcp->count such that count is lower 7217 * than high, and as soon as it reaches high, the pcplist is flushed. 7218 * 7219 * However, guaranteeing these relations at all times would require e.g. write 7220 * barriers here but also careful usage of read barriers at the read side, and 7221 * thus be prone to error and bad for performance. Thus the update only prevents 7222 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7223 * can cope with those fields changing asynchronously, and fully trust only the 7224 * pcp->count field on the local CPU with interrupts disabled. 7225 * 7226 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7227 * outside of boot time (or some other assurance that no concurrent updaters 7228 * exist). 7229 */ 7230 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7231 unsigned long batch) 7232 { 7233 WRITE_ONCE(pcp->batch, batch); 7234 WRITE_ONCE(pcp->high, high); 7235 } 7236 7237 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7238 { 7239 int pindex; 7240 7241 memset(pcp, 0, sizeof(*pcp)); 7242 memset(pzstats, 0, sizeof(*pzstats)); 7243 7244 spin_lock_init(&pcp->lock); 7245 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7246 INIT_LIST_HEAD(&pcp->lists[pindex]); 7247 7248 /* 7249 * Set batch and high values safe for a boot pageset. A true percpu 7250 * pageset's initialization will update them subsequently. Here we don't 7251 * need to be as careful as pageset_update() as nobody can access the 7252 * pageset yet. 7253 */ 7254 pcp->high = BOOT_PAGESET_HIGH; 7255 pcp->batch = BOOT_PAGESET_BATCH; 7256 pcp->free_factor = 0; 7257 } 7258 7259 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7260 unsigned long batch) 7261 { 7262 struct per_cpu_pages *pcp; 7263 int cpu; 7264 7265 for_each_possible_cpu(cpu) { 7266 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7267 pageset_update(pcp, high, batch); 7268 } 7269 } 7270 7271 /* 7272 * Calculate and set new high and batch values for all per-cpu pagesets of a 7273 * zone based on the zone's size. 7274 */ 7275 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7276 { 7277 int new_high, new_batch; 7278 7279 new_batch = max(1, zone_batchsize(zone)); 7280 new_high = zone_highsize(zone, new_batch, cpu_online); 7281 7282 if (zone->pageset_high == new_high && 7283 zone->pageset_batch == new_batch) 7284 return; 7285 7286 zone->pageset_high = new_high; 7287 zone->pageset_batch = new_batch; 7288 7289 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7290 } 7291 7292 void __meminit setup_zone_pageset(struct zone *zone) 7293 { 7294 int cpu; 7295 7296 /* Size may be 0 on !SMP && !NUMA */ 7297 if (sizeof(struct per_cpu_zonestat) > 0) 7298 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7299 7300 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7301 for_each_possible_cpu(cpu) { 7302 struct per_cpu_pages *pcp; 7303 struct per_cpu_zonestat *pzstats; 7304 7305 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7306 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7307 per_cpu_pages_init(pcp, pzstats); 7308 } 7309 7310 zone_set_pageset_high_and_batch(zone, 0); 7311 } 7312 7313 /* 7314 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7315 * page high values need to be recalculated. 7316 */ 7317 static void zone_pcp_update(struct zone *zone, int cpu_online) 7318 { 7319 mutex_lock(&pcp_batch_high_lock); 7320 zone_set_pageset_high_and_batch(zone, cpu_online); 7321 mutex_unlock(&pcp_batch_high_lock); 7322 } 7323 7324 /* 7325 * Allocate per cpu pagesets and initialize them. 7326 * Before this call only boot pagesets were available. 7327 */ 7328 void __init setup_per_cpu_pageset(void) 7329 { 7330 struct pglist_data *pgdat; 7331 struct zone *zone; 7332 int __maybe_unused cpu; 7333 7334 for_each_populated_zone(zone) 7335 setup_zone_pageset(zone); 7336 7337 #ifdef CONFIG_NUMA 7338 /* 7339 * Unpopulated zones continue using the boot pagesets. 7340 * The numa stats for these pagesets need to be reset. 7341 * Otherwise, they will end up skewing the stats of 7342 * the nodes these zones are associated with. 7343 */ 7344 for_each_possible_cpu(cpu) { 7345 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7346 memset(pzstats->vm_numa_event, 0, 7347 sizeof(pzstats->vm_numa_event)); 7348 } 7349 #endif 7350 7351 for_each_online_pgdat(pgdat) 7352 pgdat->per_cpu_nodestats = 7353 alloc_percpu(struct per_cpu_nodestat); 7354 } 7355 7356 static __meminit void zone_pcp_init(struct zone *zone) 7357 { 7358 /* 7359 * per cpu subsystem is not up at this point. The following code 7360 * relies on the ability of the linker to provide the 7361 * offset of a (static) per cpu variable into the per cpu area. 7362 */ 7363 zone->per_cpu_pageset = &boot_pageset; 7364 zone->per_cpu_zonestats = &boot_zonestats; 7365 zone->pageset_high = BOOT_PAGESET_HIGH; 7366 zone->pageset_batch = BOOT_PAGESET_BATCH; 7367 7368 if (populated_zone(zone)) 7369 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7370 zone->present_pages, zone_batchsize(zone)); 7371 } 7372 7373 void __meminit init_currently_empty_zone(struct zone *zone, 7374 unsigned long zone_start_pfn, 7375 unsigned long size) 7376 { 7377 struct pglist_data *pgdat = zone->zone_pgdat; 7378 int zone_idx = zone_idx(zone) + 1; 7379 7380 if (zone_idx > pgdat->nr_zones) 7381 pgdat->nr_zones = zone_idx; 7382 7383 zone->zone_start_pfn = zone_start_pfn; 7384 7385 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7386 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7387 pgdat->node_id, 7388 (unsigned long)zone_idx(zone), 7389 zone_start_pfn, (zone_start_pfn + size)); 7390 7391 zone_init_free_lists(zone); 7392 zone->initialized = 1; 7393 } 7394 7395 /** 7396 * get_pfn_range_for_nid - Return the start and end page frames for a node 7397 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7398 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7399 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7400 * 7401 * It returns the start and end page frame of a node based on information 7402 * provided by memblock_set_node(). If called for a node 7403 * with no available memory, a warning is printed and the start and end 7404 * PFNs will be 0. 7405 */ 7406 void __init get_pfn_range_for_nid(unsigned int nid, 7407 unsigned long *start_pfn, unsigned long *end_pfn) 7408 { 7409 unsigned long this_start_pfn, this_end_pfn; 7410 int i; 7411 7412 *start_pfn = -1UL; 7413 *end_pfn = 0; 7414 7415 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7416 *start_pfn = min(*start_pfn, this_start_pfn); 7417 *end_pfn = max(*end_pfn, this_end_pfn); 7418 } 7419 7420 if (*start_pfn == -1UL) 7421 *start_pfn = 0; 7422 } 7423 7424 /* 7425 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7426 * assumption is made that zones within a node are ordered in monotonic 7427 * increasing memory addresses so that the "highest" populated zone is used 7428 */ 7429 static void __init find_usable_zone_for_movable(void) 7430 { 7431 int zone_index; 7432 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7433 if (zone_index == ZONE_MOVABLE) 7434 continue; 7435 7436 if (arch_zone_highest_possible_pfn[zone_index] > 7437 arch_zone_lowest_possible_pfn[zone_index]) 7438 break; 7439 } 7440 7441 VM_BUG_ON(zone_index == -1); 7442 movable_zone = zone_index; 7443 } 7444 7445 /* 7446 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7447 * because it is sized independent of architecture. Unlike the other zones, 7448 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7449 * in each node depending on the size of each node and how evenly kernelcore 7450 * is distributed. This helper function adjusts the zone ranges 7451 * provided by the architecture for a given node by using the end of the 7452 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7453 * zones within a node are in order of monotonic increases memory addresses 7454 */ 7455 static void __init adjust_zone_range_for_zone_movable(int nid, 7456 unsigned long zone_type, 7457 unsigned long node_start_pfn, 7458 unsigned long node_end_pfn, 7459 unsigned long *zone_start_pfn, 7460 unsigned long *zone_end_pfn) 7461 { 7462 /* Only adjust if ZONE_MOVABLE is on this node */ 7463 if (zone_movable_pfn[nid]) { 7464 /* Size ZONE_MOVABLE */ 7465 if (zone_type == ZONE_MOVABLE) { 7466 *zone_start_pfn = zone_movable_pfn[nid]; 7467 *zone_end_pfn = min(node_end_pfn, 7468 arch_zone_highest_possible_pfn[movable_zone]); 7469 7470 /* Adjust for ZONE_MOVABLE starting within this range */ 7471 } else if (!mirrored_kernelcore && 7472 *zone_start_pfn < zone_movable_pfn[nid] && 7473 *zone_end_pfn > zone_movable_pfn[nid]) { 7474 *zone_end_pfn = zone_movable_pfn[nid]; 7475 7476 /* Check if this whole range is within ZONE_MOVABLE */ 7477 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7478 *zone_start_pfn = *zone_end_pfn; 7479 } 7480 } 7481 7482 /* 7483 * Return the number of pages a zone spans in a node, including holes 7484 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7485 */ 7486 static unsigned long __init zone_spanned_pages_in_node(int nid, 7487 unsigned long zone_type, 7488 unsigned long node_start_pfn, 7489 unsigned long node_end_pfn, 7490 unsigned long *zone_start_pfn, 7491 unsigned long *zone_end_pfn) 7492 { 7493 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7494 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7495 /* When hotadd a new node from cpu_up(), the node should be empty */ 7496 if (!node_start_pfn && !node_end_pfn) 7497 return 0; 7498 7499 /* Get the start and end of the zone */ 7500 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7501 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7502 adjust_zone_range_for_zone_movable(nid, zone_type, 7503 node_start_pfn, node_end_pfn, 7504 zone_start_pfn, zone_end_pfn); 7505 7506 /* Check that this node has pages within the zone's required range */ 7507 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7508 return 0; 7509 7510 /* Move the zone boundaries inside the node if necessary */ 7511 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7512 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7513 7514 /* Return the spanned pages */ 7515 return *zone_end_pfn - *zone_start_pfn; 7516 } 7517 7518 /* 7519 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7520 * then all holes in the requested range will be accounted for. 7521 */ 7522 unsigned long __init __absent_pages_in_range(int nid, 7523 unsigned long range_start_pfn, 7524 unsigned long range_end_pfn) 7525 { 7526 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7527 unsigned long start_pfn, end_pfn; 7528 int i; 7529 7530 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7531 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7532 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7533 nr_absent -= end_pfn - start_pfn; 7534 } 7535 return nr_absent; 7536 } 7537 7538 /** 7539 * absent_pages_in_range - Return number of page frames in holes within a range 7540 * @start_pfn: The start PFN to start searching for holes 7541 * @end_pfn: The end PFN to stop searching for holes 7542 * 7543 * Return: the number of pages frames in memory holes within a range. 7544 */ 7545 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7546 unsigned long end_pfn) 7547 { 7548 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7549 } 7550 7551 /* Return the number of page frames in holes in a zone on a node */ 7552 static unsigned long __init zone_absent_pages_in_node(int nid, 7553 unsigned long zone_type, 7554 unsigned long node_start_pfn, 7555 unsigned long node_end_pfn) 7556 { 7557 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7558 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7559 unsigned long zone_start_pfn, zone_end_pfn; 7560 unsigned long nr_absent; 7561 7562 /* When hotadd a new node from cpu_up(), the node should be empty */ 7563 if (!node_start_pfn && !node_end_pfn) 7564 return 0; 7565 7566 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7567 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7568 7569 adjust_zone_range_for_zone_movable(nid, zone_type, 7570 node_start_pfn, node_end_pfn, 7571 &zone_start_pfn, &zone_end_pfn); 7572 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7573 7574 /* 7575 * ZONE_MOVABLE handling. 7576 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7577 * and vice versa. 7578 */ 7579 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7580 unsigned long start_pfn, end_pfn; 7581 struct memblock_region *r; 7582 7583 for_each_mem_region(r) { 7584 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7585 zone_start_pfn, zone_end_pfn); 7586 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7587 zone_start_pfn, zone_end_pfn); 7588 7589 if (zone_type == ZONE_MOVABLE && 7590 memblock_is_mirror(r)) 7591 nr_absent += end_pfn - start_pfn; 7592 7593 if (zone_type == ZONE_NORMAL && 7594 !memblock_is_mirror(r)) 7595 nr_absent += end_pfn - start_pfn; 7596 } 7597 } 7598 7599 return nr_absent; 7600 } 7601 7602 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7603 unsigned long node_start_pfn, 7604 unsigned long node_end_pfn) 7605 { 7606 unsigned long realtotalpages = 0, totalpages = 0; 7607 enum zone_type i; 7608 7609 for (i = 0; i < MAX_NR_ZONES; i++) { 7610 struct zone *zone = pgdat->node_zones + i; 7611 unsigned long zone_start_pfn, zone_end_pfn; 7612 unsigned long spanned, absent; 7613 unsigned long size, real_size; 7614 7615 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7616 node_start_pfn, 7617 node_end_pfn, 7618 &zone_start_pfn, 7619 &zone_end_pfn); 7620 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7621 node_start_pfn, 7622 node_end_pfn); 7623 7624 size = spanned; 7625 real_size = size - absent; 7626 7627 if (size) 7628 zone->zone_start_pfn = zone_start_pfn; 7629 else 7630 zone->zone_start_pfn = 0; 7631 zone->spanned_pages = size; 7632 zone->present_pages = real_size; 7633 #if defined(CONFIG_MEMORY_HOTPLUG) 7634 zone->present_early_pages = real_size; 7635 #endif 7636 7637 totalpages += size; 7638 realtotalpages += real_size; 7639 } 7640 7641 pgdat->node_spanned_pages = totalpages; 7642 pgdat->node_present_pages = realtotalpages; 7643 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7644 } 7645 7646 #ifndef CONFIG_SPARSEMEM 7647 /* 7648 * Calculate the size of the zone->blockflags rounded to an unsigned long 7649 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7650 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7651 * round what is now in bits to nearest long in bits, then return it in 7652 * bytes. 7653 */ 7654 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7655 { 7656 unsigned long usemapsize; 7657 7658 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7659 usemapsize = roundup(zonesize, pageblock_nr_pages); 7660 usemapsize = usemapsize >> pageblock_order; 7661 usemapsize *= NR_PAGEBLOCK_BITS; 7662 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7663 7664 return usemapsize / 8; 7665 } 7666 7667 static void __ref setup_usemap(struct zone *zone) 7668 { 7669 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7670 zone->spanned_pages); 7671 zone->pageblock_flags = NULL; 7672 if (usemapsize) { 7673 zone->pageblock_flags = 7674 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7675 zone_to_nid(zone)); 7676 if (!zone->pageblock_flags) 7677 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7678 usemapsize, zone->name, zone_to_nid(zone)); 7679 } 7680 } 7681 #else 7682 static inline void setup_usemap(struct zone *zone) {} 7683 #endif /* CONFIG_SPARSEMEM */ 7684 7685 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7686 7687 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7688 void __init set_pageblock_order(void) 7689 { 7690 unsigned int order = MAX_ORDER - 1; 7691 7692 /* Check that pageblock_nr_pages has not already been setup */ 7693 if (pageblock_order) 7694 return; 7695 7696 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7697 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7698 order = HUGETLB_PAGE_ORDER; 7699 7700 /* 7701 * Assume the largest contiguous order of interest is a huge page. 7702 * This value may be variable depending on boot parameters on IA64 and 7703 * powerpc. 7704 */ 7705 pageblock_order = order; 7706 } 7707 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7708 7709 /* 7710 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7711 * is unused as pageblock_order is set at compile-time. See 7712 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7713 * the kernel config 7714 */ 7715 void __init set_pageblock_order(void) 7716 { 7717 } 7718 7719 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7720 7721 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7722 unsigned long present_pages) 7723 { 7724 unsigned long pages = spanned_pages; 7725 7726 /* 7727 * Provide a more accurate estimation if there are holes within 7728 * the zone and SPARSEMEM is in use. If there are holes within the 7729 * zone, each populated memory region may cost us one or two extra 7730 * memmap pages due to alignment because memmap pages for each 7731 * populated regions may not be naturally aligned on page boundary. 7732 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7733 */ 7734 if (spanned_pages > present_pages + (present_pages >> 4) && 7735 IS_ENABLED(CONFIG_SPARSEMEM)) 7736 pages = present_pages; 7737 7738 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7739 } 7740 7741 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7742 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7743 { 7744 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7745 7746 spin_lock_init(&ds_queue->split_queue_lock); 7747 INIT_LIST_HEAD(&ds_queue->split_queue); 7748 ds_queue->split_queue_len = 0; 7749 } 7750 #else 7751 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7752 #endif 7753 7754 #ifdef CONFIG_COMPACTION 7755 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7756 { 7757 init_waitqueue_head(&pgdat->kcompactd_wait); 7758 } 7759 #else 7760 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7761 #endif 7762 7763 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7764 { 7765 int i; 7766 7767 pgdat_resize_init(pgdat); 7768 pgdat_kswapd_lock_init(pgdat); 7769 7770 pgdat_init_split_queue(pgdat); 7771 pgdat_init_kcompactd(pgdat); 7772 7773 init_waitqueue_head(&pgdat->kswapd_wait); 7774 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7775 7776 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7777 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7778 7779 pgdat_page_ext_init(pgdat); 7780 lruvec_init(&pgdat->__lruvec); 7781 } 7782 7783 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7784 unsigned long remaining_pages) 7785 { 7786 atomic_long_set(&zone->managed_pages, remaining_pages); 7787 zone_set_nid(zone, nid); 7788 zone->name = zone_names[idx]; 7789 zone->zone_pgdat = NODE_DATA(nid); 7790 spin_lock_init(&zone->lock); 7791 zone_seqlock_init(zone); 7792 zone_pcp_init(zone); 7793 } 7794 7795 /* 7796 * Set up the zone data structures 7797 * - init pgdat internals 7798 * - init all zones belonging to this node 7799 * 7800 * NOTE: this function is only called during memory hotplug 7801 */ 7802 #ifdef CONFIG_MEMORY_HOTPLUG 7803 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7804 { 7805 int nid = pgdat->node_id; 7806 enum zone_type z; 7807 int cpu; 7808 7809 pgdat_init_internals(pgdat); 7810 7811 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7812 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7813 7814 /* 7815 * Reset the nr_zones, order and highest_zoneidx before reuse. 7816 * Note that kswapd will init kswapd_highest_zoneidx properly 7817 * when it starts in the near future. 7818 */ 7819 pgdat->nr_zones = 0; 7820 pgdat->kswapd_order = 0; 7821 pgdat->kswapd_highest_zoneidx = 0; 7822 pgdat->node_start_pfn = 0; 7823 for_each_online_cpu(cpu) { 7824 struct per_cpu_nodestat *p; 7825 7826 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7827 memset(p, 0, sizeof(*p)); 7828 } 7829 7830 for (z = 0; z < MAX_NR_ZONES; z++) 7831 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7832 } 7833 #endif 7834 7835 /* 7836 * Set up the zone data structures: 7837 * - mark all pages reserved 7838 * - mark all memory queues empty 7839 * - clear the memory bitmaps 7840 * 7841 * NOTE: pgdat should get zeroed by caller. 7842 * NOTE: this function is only called during early init. 7843 */ 7844 static void __init free_area_init_core(struct pglist_data *pgdat) 7845 { 7846 enum zone_type j; 7847 int nid = pgdat->node_id; 7848 7849 pgdat_init_internals(pgdat); 7850 pgdat->per_cpu_nodestats = &boot_nodestats; 7851 7852 for (j = 0; j < MAX_NR_ZONES; j++) { 7853 struct zone *zone = pgdat->node_zones + j; 7854 unsigned long size, freesize, memmap_pages; 7855 7856 size = zone->spanned_pages; 7857 freesize = zone->present_pages; 7858 7859 /* 7860 * Adjust freesize so that it accounts for how much memory 7861 * is used by this zone for memmap. This affects the watermark 7862 * and per-cpu initialisations 7863 */ 7864 memmap_pages = calc_memmap_size(size, freesize); 7865 if (!is_highmem_idx(j)) { 7866 if (freesize >= memmap_pages) { 7867 freesize -= memmap_pages; 7868 if (memmap_pages) 7869 pr_debug(" %s zone: %lu pages used for memmap\n", 7870 zone_names[j], memmap_pages); 7871 } else 7872 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7873 zone_names[j], memmap_pages, freesize); 7874 } 7875 7876 /* Account for reserved pages */ 7877 if (j == 0 && freesize > dma_reserve) { 7878 freesize -= dma_reserve; 7879 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7880 } 7881 7882 if (!is_highmem_idx(j)) 7883 nr_kernel_pages += freesize; 7884 /* Charge for highmem memmap if there are enough kernel pages */ 7885 else if (nr_kernel_pages > memmap_pages * 2) 7886 nr_kernel_pages -= memmap_pages; 7887 nr_all_pages += freesize; 7888 7889 /* 7890 * Set an approximate value for lowmem here, it will be adjusted 7891 * when the bootmem allocator frees pages into the buddy system. 7892 * And all highmem pages will be managed by the buddy system. 7893 */ 7894 zone_init_internals(zone, j, nid, freesize); 7895 7896 if (!size) 7897 continue; 7898 7899 set_pageblock_order(); 7900 setup_usemap(zone); 7901 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7902 } 7903 } 7904 7905 #ifdef CONFIG_FLATMEM 7906 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7907 { 7908 unsigned long __maybe_unused start = 0; 7909 unsigned long __maybe_unused offset = 0; 7910 7911 /* Skip empty nodes */ 7912 if (!pgdat->node_spanned_pages) 7913 return; 7914 7915 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7916 offset = pgdat->node_start_pfn - start; 7917 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7918 if (!pgdat->node_mem_map) { 7919 unsigned long size, end; 7920 struct page *map; 7921 7922 /* 7923 * The zone's endpoints aren't required to be MAX_ORDER 7924 * aligned but the node_mem_map endpoints must be in order 7925 * for the buddy allocator to function correctly. 7926 */ 7927 end = pgdat_end_pfn(pgdat); 7928 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7929 size = (end - start) * sizeof(struct page); 7930 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7931 pgdat->node_id, false); 7932 if (!map) 7933 panic("Failed to allocate %ld bytes for node %d memory map\n", 7934 size, pgdat->node_id); 7935 pgdat->node_mem_map = map + offset; 7936 } 7937 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7938 __func__, pgdat->node_id, (unsigned long)pgdat, 7939 (unsigned long)pgdat->node_mem_map); 7940 #ifndef CONFIG_NUMA 7941 /* 7942 * With no DISCONTIG, the global mem_map is just set as node 0's 7943 */ 7944 if (pgdat == NODE_DATA(0)) { 7945 mem_map = NODE_DATA(0)->node_mem_map; 7946 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7947 mem_map -= offset; 7948 } 7949 #endif 7950 } 7951 #else 7952 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7953 #endif /* CONFIG_FLATMEM */ 7954 7955 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7956 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7957 { 7958 pgdat->first_deferred_pfn = ULONG_MAX; 7959 } 7960 #else 7961 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7962 #endif 7963 7964 static void __init free_area_init_node(int nid) 7965 { 7966 pg_data_t *pgdat = NODE_DATA(nid); 7967 unsigned long start_pfn = 0; 7968 unsigned long end_pfn = 0; 7969 7970 /* pg_data_t should be reset to zero when it's allocated */ 7971 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7972 7973 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7974 7975 pgdat->node_id = nid; 7976 pgdat->node_start_pfn = start_pfn; 7977 pgdat->per_cpu_nodestats = NULL; 7978 7979 if (start_pfn != end_pfn) { 7980 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7981 (u64)start_pfn << PAGE_SHIFT, 7982 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7983 } else { 7984 pr_info("Initmem setup node %d as memoryless\n", nid); 7985 } 7986 7987 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7988 7989 alloc_node_mem_map(pgdat); 7990 pgdat_set_deferred_range(pgdat); 7991 7992 free_area_init_core(pgdat); 7993 lru_gen_init_pgdat(pgdat); 7994 } 7995 7996 static void __init free_area_init_memoryless_node(int nid) 7997 { 7998 free_area_init_node(nid); 7999 } 8000 8001 #if MAX_NUMNODES > 1 8002 /* 8003 * Figure out the number of possible node ids. 8004 */ 8005 void __init setup_nr_node_ids(void) 8006 { 8007 unsigned int highest; 8008 8009 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 8010 nr_node_ids = highest + 1; 8011 } 8012 #endif 8013 8014 /** 8015 * node_map_pfn_alignment - determine the maximum internode alignment 8016 * 8017 * This function should be called after node map is populated and sorted. 8018 * It calculates the maximum power of two alignment which can distinguish 8019 * all the nodes. 8020 * 8021 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 8022 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 8023 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 8024 * shifted, 1GiB is enough and this function will indicate so. 8025 * 8026 * This is used to test whether pfn -> nid mapping of the chosen memory 8027 * model has fine enough granularity to avoid incorrect mapping for the 8028 * populated node map. 8029 * 8030 * Return: the determined alignment in pfn's. 0 if there is no alignment 8031 * requirement (single node). 8032 */ 8033 unsigned long __init node_map_pfn_alignment(void) 8034 { 8035 unsigned long accl_mask = 0, last_end = 0; 8036 unsigned long start, end, mask; 8037 int last_nid = NUMA_NO_NODE; 8038 int i, nid; 8039 8040 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 8041 if (!start || last_nid < 0 || last_nid == nid) { 8042 last_nid = nid; 8043 last_end = end; 8044 continue; 8045 } 8046 8047 /* 8048 * Start with a mask granular enough to pin-point to the 8049 * start pfn and tick off bits one-by-one until it becomes 8050 * too coarse to separate the current node from the last. 8051 */ 8052 mask = ~((1 << __ffs(start)) - 1); 8053 while (mask && last_end <= (start & (mask << 1))) 8054 mask <<= 1; 8055 8056 /* accumulate all internode masks */ 8057 accl_mask |= mask; 8058 } 8059 8060 /* convert mask to number of pages */ 8061 return ~accl_mask + 1; 8062 } 8063 8064 /* 8065 * early_calculate_totalpages() 8066 * Sum pages in active regions for movable zone. 8067 * Populate N_MEMORY for calculating usable_nodes. 8068 */ 8069 static unsigned long __init early_calculate_totalpages(void) 8070 { 8071 unsigned long totalpages = 0; 8072 unsigned long start_pfn, end_pfn; 8073 int i, nid; 8074 8075 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8076 unsigned long pages = end_pfn - start_pfn; 8077 8078 totalpages += pages; 8079 if (pages) 8080 node_set_state(nid, N_MEMORY); 8081 } 8082 return totalpages; 8083 } 8084 8085 /* 8086 * Find the PFN the Movable zone begins in each node. Kernel memory 8087 * is spread evenly between nodes as long as the nodes have enough 8088 * memory. When they don't, some nodes will have more kernelcore than 8089 * others 8090 */ 8091 static void __init find_zone_movable_pfns_for_nodes(void) 8092 { 8093 int i, nid; 8094 unsigned long usable_startpfn; 8095 unsigned long kernelcore_node, kernelcore_remaining; 8096 /* save the state before borrow the nodemask */ 8097 nodemask_t saved_node_state = node_states[N_MEMORY]; 8098 unsigned long totalpages = early_calculate_totalpages(); 8099 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8100 struct memblock_region *r; 8101 8102 /* Need to find movable_zone earlier when movable_node is specified. */ 8103 find_usable_zone_for_movable(); 8104 8105 /* 8106 * If movable_node is specified, ignore kernelcore and movablecore 8107 * options. 8108 */ 8109 if (movable_node_is_enabled()) { 8110 for_each_mem_region(r) { 8111 if (!memblock_is_hotpluggable(r)) 8112 continue; 8113 8114 nid = memblock_get_region_node(r); 8115 8116 usable_startpfn = PFN_DOWN(r->base); 8117 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8118 min(usable_startpfn, zone_movable_pfn[nid]) : 8119 usable_startpfn; 8120 } 8121 8122 goto out2; 8123 } 8124 8125 /* 8126 * If kernelcore=mirror is specified, ignore movablecore option 8127 */ 8128 if (mirrored_kernelcore) { 8129 bool mem_below_4gb_not_mirrored = false; 8130 8131 for_each_mem_region(r) { 8132 if (memblock_is_mirror(r)) 8133 continue; 8134 8135 nid = memblock_get_region_node(r); 8136 8137 usable_startpfn = memblock_region_memory_base_pfn(r); 8138 8139 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8140 mem_below_4gb_not_mirrored = true; 8141 continue; 8142 } 8143 8144 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8145 min(usable_startpfn, zone_movable_pfn[nid]) : 8146 usable_startpfn; 8147 } 8148 8149 if (mem_below_4gb_not_mirrored) 8150 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8151 8152 goto out2; 8153 } 8154 8155 /* 8156 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8157 * amount of necessary memory. 8158 */ 8159 if (required_kernelcore_percent) 8160 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8161 10000UL; 8162 if (required_movablecore_percent) 8163 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8164 10000UL; 8165 8166 /* 8167 * If movablecore= was specified, calculate what size of 8168 * kernelcore that corresponds so that memory usable for 8169 * any allocation type is evenly spread. If both kernelcore 8170 * and movablecore are specified, then the value of kernelcore 8171 * will be used for required_kernelcore if it's greater than 8172 * what movablecore would have allowed. 8173 */ 8174 if (required_movablecore) { 8175 unsigned long corepages; 8176 8177 /* 8178 * Round-up so that ZONE_MOVABLE is at least as large as what 8179 * was requested by the user 8180 */ 8181 required_movablecore = 8182 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8183 required_movablecore = min(totalpages, required_movablecore); 8184 corepages = totalpages - required_movablecore; 8185 8186 required_kernelcore = max(required_kernelcore, corepages); 8187 } 8188 8189 /* 8190 * If kernelcore was not specified or kernelcore size is larger 8191 * than totalpages, there is no ZONE_MOVABLE. 8192 */ 8193 if (!required_kernelcore || required_kernelcore >= totalpages) 8194 goto out; 8195 8196 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8197 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8198 8199 restart: 8200 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8201 kernelcore_node = required_kernelcore / usable_nodes; 8202 for_each_node_state(nid, N_MEMORY) { 8203 unsigned long start_pfn, end_pfn; 8204 8205 /* 8206 * Recalculate kernelcore_node if the division per node 8207 * now exceeds what is necessary to satisfy the requested 8208 * amount of memory for the kernel 8209 */ 8210 if (required_kernelcore < kernelcore_node) 8211 kernelcore_node = required_kernelcore / usable_nodes; 8212 8213 /* 8214 * As the map is walked, we track how much memory is usable 8215 * by the kernel using kernelcore_remaining. When it is 8216 * 0, the rest of the node is usable by ZONE_MOVABLE 8217 */ 8218 kernelcore_remaining = kernelcore_node; 8219 8220 /* Go through each range of PFNs within this node */ 8221 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8222 unsigned long size_pages; 8223 8224 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8225 if (start_pfn >= end_pfn) 8226 continue; 8227 8228 /* Account for what is only usable for kernelcore */ 8229 if (start_pfn < usable_startpfn) { 8230 unsigned long kernel_pages; 8231 kernel_pages = min(end_pfn, usable_startpfn) 8232 - start_pfn; 8233 8234 kernelcore_remaining -= min(kernel_pages, 8235 kernelcore_remaining); 8236 required_kernelcore -= min(kernel_pages, 8237 required_kernelcore); 8238 8239 /* Continue if range is now fully accounted */ 8240 if (end_pfn <= usable_startpfn) { 8241 8242 /* 8243 * Push zone_movable_pfn to the end so 8244 * that if we have to rebalance 8245 * kernelcore across nodes, we will 8246 * not double account here 8247 */ 8248 zone_movable_pfn[nid] = end_pfn; 8249 continue; 8250 } 8251 start_pfn = usable_startpfn; 8252 } 8253 8254 /* 8255 * The usable PFN range for ZONE_MOVABLE is from 8256 * start_pfn->end_pfn. Calculate size_pages as the 8257 * number of pages used as kernelcore 8258 */ 8259 size_pages = end_pfn - start_pfn; 8260 if (size_pages > kernelcore_remaining) 8261 size_pages = kernelcore_remaining; 8262 zone_movable_pfn[nid] = start_pfn + size_pages; 8263 8264 /* 8265 * Some kernelcore has been met, update counts and 8266 * break if the kernelcore for this node has been 8267 * satisfied 8268 */ 8269 required_kernelcore -= min(required_kernelcore, 8270 size_pages); 8271 kernelcore_remaining -= size_pages; 8272 if (!kernelcore_remaining) 8273 break; 8274 } 8275 } 8276 8277 /* 8278 * If there is still required_kernelcore, we do another pass with one 8279 * less node in the count. This will push zone_movable_pfn[nid] further 8280 * along on the nodes that still have memory until kernelcore is 8281 * satisfied 8282 */ 8283 usable_nodes--; 8284 if (usable_nodes && required_kernelcore > usable_nodes) 8285 goto restart; 8286 8287 out2: 8288 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8289 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8290 unsigned long start_pfn, end_pfn; 8291 8292 zone_movable_pfn[nid] = 8293 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8294 8295 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8296 if (zone_movable_pfn[nid] >= end_pfn) 8297 zone_movable_pfn[nid] = 0; 8298 } 8299 8300 out: 8301 /* restore the node_state */ 8302 node_states[N_MEMORY] = saved_node_state; 8303 } 8304 8305 /* Any regular or high memory on that node ? */ 8306 static void check_for_memory(pg_data_t *pgdat, int nid) 8307 { 8308 enum zone_type zone_type; 8309 8310 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8311 struct zone *zone = &pgdat->node_zones[zone_type]; 8312 if (populated_zone(zone)) { 8313 if (IS_ENABLED(CONFIG_HIGHMEM)) 8314 node_set_state(nid, N_HIGH_MEMORY); 8315 if (zone_type <= ZONE_NORMAL) 8316 node_set_state(nid, N_NORMAL_MEMORY); 8317 break; 8318 } 8319 } 8320 } 8321 8322 /* 8323 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8324 * such cases we allow max_zone_pfn sorted in the descending order 8325 */ 8326 bool __weak arch_has_descending_max_zone_pfns(void) 8327 { 8328 return false; 8329 } 8330 8331 /** 8332 * free_area_init - Initialise all pg_data_t and zone data 8333 * @max_zone_pfn: an array of max PFNs for each zone 8334 * 8335 * This will call free_area_init_node() for each active node in the system. 8336 * Using the page ranges provided by memblock_set_node(), the size of each 8337 * zone in each node and their holes is calculated. If the maximum PFN 8338 * between two adjacent zones match, it is assumed that the zone is empty. 8339 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8340 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8341 * starts where the previous one ended. For example, ZONE_DMA32 starts 8342 * at arch_max_dma_pfn. 8343 */ 8344 void __init free_area_init(unsigned long *max_zone_pfn) 8345 { 8346 unsigned long start_pfn, end_pfn; 8347 int i, nid, zone; 8348 bool descending; 8349 8350 /* Record where the zone boundaries are */ 8351 memset(arch_zone_lowest_possible_pfn, 0, 8352 sizeof(arch_zone_lowest_possible_pfn)); 8353 memset(arch_zone_highest_possible_pfn, 0, 8354 sizeof(arch_zone_highest_possible_pfn)); 8355 8356 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8357 descending = arch_has_descending_max_zone_pfns(); 8358 8359 for (i = 0; i < MAX_NR_ZONES; i++) { 8360 if (descending) 8361 zone = MAX_NR_ZONES - i - 1; 8362 else 8363 zone = i; 8364 8365 if (zone == ZONE_MOVABLE) 8366 continue; 8367 8368 end_pfn = max(max_zone_pfn[zone], start_pfn); 8369 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8370 arch_zone_highest_possible_pfn[zone] = end_pfn; 8371 8372 start_pfn = end_pfn; 8373 } 8374 8375 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8376 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8377 find_zone_movable_pfns_for_nodes(); 8378 8379 /* Print out the zone ranges */ 8380 pr_info("Zone ranges:\n"); 8381 for (i = 0; i < MAX_NR_ZONES; i++) { 8382 if (i == ZONE_MOVABLE) 8383 continue; 8384 pr_info(" %-8s ", zone_names[i]); 8385 if (arch_zone_lowest_possible_pfn[i] == 8386 arch_zone_highest_possible_pfn[i]) 8387 pr_cont("empty\n"); 8388 else 8389 pr_cont("[mem %#018Lx-%#018Lx]\n", 8390 (u64)arch_zone_lowest_possible_pfn[i] 8391 << PAGE_SHIFT, 8392 ((u64)arch_zone_highest_possible_pfn[i] 8393 << PAGE_SHIFT) - 1); 8394 } 8395 8396 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8397 pr_info("Movable zone start for each node\n"); 8398 for (i = 0; i < MAX_NUMNODES; i++) { 8399 if (zone_movable_pfn[i]) 8400 pr_info(" Node %d: %#018Lx\n", i, 8401 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8402 } 8403 8404 /* 8405 * Print out the early node map, and initialize the 8406 * subsection-map relative to active online memory ranges to 8407 * enable future "sub-section" extensions of the memory map. 8408 */ 8409 pr_info("Early memory node ranges\n"); 8410 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8411 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8412 (u64)start_pfn << PAGE_SHIFT, 8413 ((u64)end_pfn << PAGE_SHIFT) - 1); 8414 subsection_map_init(start_pfn, end_pfn - start_pfn); 8415 } 8416 8417 /* Initialise every node */ 8418 mminit_verify_pageflags_layout(); 8419 setup_nr_node_ids(); 8420 for_each_node(nid) { 8421 pg_data_t *pgdat; 8422 8423 if (!node_online(nid)) { 8424 pr_info("Initializing node %d as memoryless\n", nid); 8425 8426 /* Allocator not initialized yet */ 8427 pgdat = arch_alloc_nodedata(nid); 8428 if (!pgdat) 8429 panic("Cannot allocate %zuB for node %d.\n", 8430 sizeof(*pgdat), nid); 8431 arch_refresh_nodedata(nid, pgdat); 8432 free_area_init_memoryless_node(nid); 8433 8434 /* 8435 * We do not want to confuse userspace by sysfs 8436 * files/directories for node without any memory 8437 * attached to it, so this node is not marked as 8438 * N_MEMORY and not marked online so that no sysfs 8439 * hierarchy will be created via register_one_node for 8440 * it. The pgdat will get fully initialized by 8441 * hotadd_init_pgdat() when memory is hotplugged into 8442 * this node. 8443 */ 8444 continue; 8445 } 8446 8447 pgdat = NODE_DATA(nid); 8448 free_area_init_node(nid); 8449 8450 /* Any memory on that node */ 8451 if (pgdat->node_present_pages) 8452 node_set_state(nid, N_MEMORY); 8453 check_for_memory(pgdat, nid); 8454 } 8455 8456 memmap_init(); 8457 } 8458 8459 static int __init cmdline_parse_core(char *p, unsigned long *core, 8460 unsigned long *percent) 8461 { 8462 unsigned long long coremem; 8463 char *endptr; 8464 8465 if (!p) 8466 return -EINVAL; 8467 8468 /* Value may be a percentage of total memory, otherwise bytes */ 8469 coremem = simple_strtoull(p, &endptr, 0); 8470 if (*endptr == '%') { 8471 /* Paranoid check for percent values greater than 100 */ 8472 WARN_ON(coremem > 100); 8473 8474 *percent = coremem; 8475 } else { 8476 coremem = memparse(p, &p); 8477 /* Paranoid check that UL is enough for the coremem value */ 8478 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8479 8480 *core = coremem >> PAGE_SHIFT; 8481 *percent = 0UL; 8482 } 8483 return 0; 8484 } 8485 8486 /* 8487 * kernelcore=size sets the amount of memory for use for allocations that 8488 * cannot be reclaimed or migrated. 8489 */ 8490 static int __init cmdline_parse_kernelcore(char *p) 8491 { 8492 /* parse kernelcore=mirror */ 8493 if (parse_option_str(p, "mirror")) { 8494 mirrored_kernelcore = true; 8495 return 0; 8496 } 8497 8498 return cmdline_parse_core(p, &required_kernelcore, 8499 &required_kernelcore_percent); 8500 } 8501 8502 /* 8503 * movablecore=size sets the amount of memory for use for allocations that 8504 * can be reclaimed or migrated. 8505 */ 8506 static int __init cmdline_parse_movablecore(char *p) 8507 { 8508 return cmdline_parse_core(p, &required_movablecore, 8509 &required_movablecore_percent); 8510 } 8511 8512 early_param("kernelcore", cmdline_parse_kernelcore); 8513 early_param("movablecore", cmdline_parse_movablecore); 8514 8515 void adjust_managed_page_count(struct page *page, long count) 8516 { 8517 atomic_long_add(count, &page_zone(page)->managed_pages); 8518 totalram_pages_add(count); 8519 #ifdef CONFIG_HIGHMEM 8520 if (PageHighMem(page)) 8521 totalhigh_pages_add(count); 8522 #endif 8523 } 8524 EXPORT_SYMBOL(adjust_managed_page_count); 8525 8526 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8527 { 8528 void *pos; 8529 unsigned long pages = 0; 8530 8531 start = (void *)PAGE_ALIGN((unsigned long)start); 8532 end = (void *)((unsigned long)end & PAGE_MASK); 8533 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8534 struct page *page = virt_to_page(pos); 8535 void *direct_map_addr; 8536 8537 /* 8538 * 'direct_map_addr' might be different from 'pos' 8539 * because some architectures' virt_to_page() 8540 * work with aliases. Getting the direct map 8541 * address ensures that we get a _writeable_ 8542 * alias for the memset(). 8543 */ 8544 direct_map_addr = page_address(page); 8545 /* 8546 * Perform a kasan-unchecked memset() since this memory 8547 * has not been initialized. 8548 */ 8549 direct_map_addr = kasan_reset_tag(direct_map_addr); 8550 if ((unsigned int)poison <= 0xFF) 8551 memset(direct_map_addr, poison, PAGE_SIZE); 8552 8553 free_reserved_page(page); 8554 } 8555 8556 if (pages && s) 8557 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8558 8559 return pages; 8560 } 8561 8562 void __init mem_init_print_info(void) 8563 { 8564 unsigned long physpages, codesize, datasize, rosize, bss_size; 8565 unsigned long init_code_size, init_data_size; 8566 8567 physpages = get_num_physpages(); 8568 codesize = _etext - _stext; 8569 datasize = _edata - _sdata; 8570 rosize = __end_rodata - __start_rodata; 8571 bss_size = __bss_stop - __bss_start; 8572 init_data_size = __init_end - __init_begin; 8573 init_code_size = _einittext - _sinittext; 8574 8575 /* 8576 * Detect special cases and adjust section sizes accordingly: 8577 * 1) .init.* may be embedded into .data sections 8578 * 2) .init.text.* may be out of [__init_begin, __init_end], 8579 * please refer to arch/tile/kernel/vmlinux.lds.S. 8580 * 3) .rodata.* may be embedded into .text or .data sections. 8581 */ 8582 #define adj_init_size(start, end, size, pos, adj) \ 8583 do { \ 8584 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8585 size -= adj; \ 8586 } while (0) 8587 8588 adj_init_size(__init_begin, __init_end, init_data_size, 8589 _sinittext, init_code_size); 8590 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8591 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8592 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8593 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8594 8595 #undef adj_init_size 8596 8597 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8598 #ifdef CONFIG_HIGHMEM 8599 ", %luK highmem" 8600 #endif 8601 ")\n", 8602 K(nr_free_pages()), K(physpages), 8603 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 8604 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 8605 K(physpages - totalram_pages() - totalcma_pages), 8606 K(totalcma_pages) 8607 #ifdef CONFIG_HIGHMEM 8608 , K(totalhigh_pages()) 8609 #endif 8610 ); 8611 } 8612 8613 /** 8614 * set_dma_reserve - set the specified number of pages reserved in the first zone 8615 * @new_dma_reserve: The number of pages to mark reserved 8616 * 8617 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8618 * In the DMA zone, a significant percentage may be consumed by kernel image 8619 * and other unfreeable allocations which can skew the watermarks badly. This 8620 * function may optionally be used to account for unfreeable pages in the 8621 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8622 * smaller per-cpu batchsize. 8623 */ 8624 void __init set_dma_reserve(unsigned long new_dma_reserve) 8625 { 8626 dma_reserve = new_dma_reserve; 8627 } 8628 8629 static int page_alloc_cpu_dead(unsigned int cpu) 8630 { 8631 struct zone *zone; 8632 8633 lru_add_drain_cpu(cpu); 8634 mlock_drain_remote(cpu); 8635 drain_pages(cpu); 8636 8637 /* 8638 * Spill the event counters of the dead processor 8639 * into the current processors event counters. 8640 * This artificially elevates the count of the current 8641 * processor. 8642 */ 8643 vm_events_fold_cpu(cpu); 8644 8645 /* 8646 * Zero the differential counters of the dead processor 8647 * so that the vm statistics are consistent. 8648 * 8649 * This is only okay since the processor is dead and cannot 8650 * race with what we are doing. 8651 */ 8652 cpu_vm_stats_fold(cpu); 8653 8654 for_each_populated_zone(zone) 8655 zone_pcp_update(zone, 0); 8656 8657 return 0; 8658 } 8659 8660 static int page_alloc_cpu_online(unsigned int cpu) 8661 { 8662 struct zone *zone; 8663 8664 for_each_populated_zone(zone) 8665 zone_pcp_update(zone, 1); 8666 return 0; 8667 } 8668 8669 #ifdef CONFIG_NUMA 8670 int hashdist = HASHDIST_DEFAULT; 8671 8672 static int __init set_hashdist(char *str) 8673 { 8674 if (!str) 8675 return 0; 8676 hashdist = simple_strtoul(str, &str, 0); 8677 return 1; 8678 } 8679 __setup("hashdist=", set_hashdist); 8680 #endif 8681 8682 void __init page_alloc_init(void) 8683 { 8684 int ret; 8685 8686 #ifdef CONFIG_NUMA 8687 if (num_node_state(N_MEMORY) == 1) 8688 hashdist = 0; 8689 #endif 8690 8691 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8692 "mm/page_alloc:pcp", 8693 page_alloc_cpu_online, 8694 page_alloc_cpu_dead); 8695 WARN_ON(ret < 0); 8696 } 8697 8698 /* 8699 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8700 * or min_free_kbytes changes. 8701 */ 8702 static void calculate_totalreserve_pages(void) 8703 { 8704 struct pglist_data *pgdat; 8705 unsigned long reserve_pages = 0; 8706 enum zone_type i, j; 8707 8708 for_each_online_pgdat(pgdat) { 8709 8710 pgdat->totalreserve_pages = 0; 8711 8712 for (i = 0; i < MAX_NR_ZONES; i++) { 8713 struct zone *zone = pgdat->node_zones + i; 8714 long max = 0; 8715 unsigned long managed_pages = zone_managed_pages(zone); 8716 8717 /* Find valid and maximum lowmem_reserve in the zone */ 8718 for (j = i; j < MAX_NR_ZONES; j++) { 8719 if (zone->lowmem_reserve[j] > max) 8720 max = zone->lowmem_reserve[j]; 8721 } 8722 8723 /* we treat the high watermark as reserved pages. */ 8724 max += high_wmark_pages(zone); 8725 8726 if (max > managed_pages) 8727 max = managed_pages; 8728 8729 pgdat->totalreserve_pages += max; 8730 8731 reserve_pages += max; 8732 } 8733 } 8734 totalreserve_pages = reserve_pages; 8735 } 8736 8737 /* 8738 * setup_per_zone_lowmem_reserve - called whenever 8739 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8740 * has a correct pages reserved value, so an adequate number of 8741 * pages are left in the zone after a successful __alloc_pages(). 8742 */ 8743 static void setup_per_zone_lowmem_reserve(void) 8744 { 8745 struct pglist_data *pgdat; 8746 enum zone_type i, j; 8747 8748 for_each_online_pgdat(pgdat) { 8749 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8750 struct zone *zone = &pgdat->node_zones[i]; 8751 int ratio = sysctl_lowmem_reserve_ratio[i]; 8752 bool clear = !ratio || !zone_managed_pages(zone); 8753 unsigned long managed_pages = 0; 8754 8755 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8756 struct zone *upper_zone = &pgdat->node_zones[j]; 8757 8758 managed_pages += zone_managed_pages(upper_zone); 8759 8760 if (clear) 8761 zone->lowmem_reserve[j] = 0; 8762 else 8763 zone->lowmem_reserve[j] = managed_pages / ratio; 8764 } 8765 } 8766 } 8767 8768 /* update totalreserve_pages */ 8769 calculate_totalreserve_pages(); 8770 } 8771 8772 static void __setup_per_zone_wmarks(void) 8773 { 8774 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8775 unsigned long lowmem_pages = 0; 8776 struct zone *zone; 8777 unsigned long flags; 8778 8779 /* Calculate total number of !ZONE_HIGHMEM pages */ 8780 for_each_zone(zone) { 8781 if (!is_highmem(zone)) 8782 lowmem_pages += zone_managed_pages(zone); 8783 } 8784 8785 for_each_zone(zone) { 8786 u64 tmp; 8787 8788 spin_lock_irqsave(&zone->lock, flags); 8789 tmp = (u64)pages_min * zone_managed_pages(zone); 8790 do_div(tmp, lowmem_pages); 8791 if (is_highmem(zone)) { 8792 /* 8793 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8794 * need highmem pages, so cap pages_min to a small 8795 * value here. 8796 * 8797 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8798 * deltas control async page reclaim, and so should 8799 * not be capped for highmem. 8800 */ 8801 unsigned long min_pages; 8802 8803 min_pages = zone_managed_pages(zone) / 1024; 8804 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8805 zone->_watermark[WMARK_MIN] = min_pages; 8806 } else { 8807 /* 8808 * If it's a lowmem zone, reserve a number of pages 8809 * proportionate to the zone's size. 8810 */ 8811 zone->_watermark[WMARK_MIN] = tmp; 8812 } 8813 8814 /* 8815 * Set the kswapd watermarks distance according to the 8816 * scale factor in proportion to available memory, but 8817 * ensure a minimum size on small systems. 8818 */ 8819 tmp = max_t(u64, tmp >> 2, 8820 mult_frac(zone_managed_pages(zone), 8821 watermark_scale_factor, 10000)); 8822 8823 zone->watermark_boost = 0; 8824 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8825 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8826 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8827 8828 spin_unlock_irqrestore(&zone->lock, flags); 8829 } 8830 8831 /* update totalreserve_pages */ 8832 calculate_totalreserve_pages(); 8833 } 8834 8835 /** 8836 * setup_per_zone_wmarks - called when min_free_kbytes changes 8837 * or when memory is hot-{added|removed} 8838 * 8839 * Ensures that the watermark[min,low,high] values for each zone are set 8840 * correctly with respect to min_free_kbytes. 8841 */ 8842 void setup_per_zone_wmarks(void) 8843 { 8844 struct zone *zone; 8845 static DEFINE_SPINLOCK(lock); 8846 8847 spin_lock(&lock); 8848 __setup_per_zone_wmarks(); 8849 spin_unlock(&lock); 8850 8851 /* 8852 * The watermark size have changed so update the pcpu batch 8853 * and high limits or the limits may be inappropriate. 8854 */ 8855 for_each_zone(zone) 8856 zone_pcp_update(zone, 0); 8857 } 8858 8859 /* 8860 * Initialise min_free_kbytes. 8861 * 8862 * For small machines we want it small (128k min). For large machines 8863 * we want it large (256MB max). But it is not linear, because network 8864 * bandwidth does not increase linearly with machine size. We use 8865 * 8866 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8867 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8868 * 8869 * which yields 8870 * 8871 * 16MB: 512k 8872 * 32MB: 724k 8873 * 64MB: 1024k 8874 * 128MB: 1448k 8875 * 256MB: 2048k 8876 * 512MB: 2896k 8877 * 1024MB: 4096k 8878 * 2048MB: 5792k 8879 * 4096MB: 8192k 8880 * 8192MB: 11584k 8881 * 16384MB: 16384k 8882 */ 8883 void calculate_min_free_kbytes(void) 8884 { 8885 unsigned long lowmem_kbytes; 8886 int new_min_free_kbytes; 8887 8888 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8889 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8890 8891 if (new_min_free_kbytes > user_min_free_kbytes) 8892 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8893 else 8894 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8895 new_min_free_kbytes, user_min_free_kbytes); 8896 8897 } 8898 8899 int __meminit init_per_zone_wmark_min(void) 8900 { 8901 calculate_min_free_kbytes(); 8902 setup_per_zone_wmarks(); 8903 refresh_zone_stat_thresholds(); 8904 setup_per_zone_lowmem_reserve(); 8905 8906 #ifdef CONFIG_NUMA 8907 setup_min_unmapped_ratio(); 8908 setup_min_slab_ratio(); 8909 #endif 8910 8911 khugepaged_min_free_kbytes_update(); 8912 8913 return 0; 8914 } 8915 postcore_initcall(init_per_zone_wmark_min) 8916 8917 /* 8918 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8919 * that we can call two helper functions whenever min_free_kbytes 8920 * changes. 8921 */ 8922 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8923 void *buffer, size_t *length, loff_t *ppos) 8924 { 8925 int rc; 8926 8927 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8928 if (rc) 8929 return rc; 8930 8931 if (write) { 8932 user_min_free_kbytes = min_free_kbytes; 8933 setup_per_zone_wmarks(); 8934 } 8935 return 0; 8936 } 8937 8938 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8939 void *buffer, size_t *length, loff_t *ppos) 8940 { 8941 int rc; 8942 8943 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8944 if (rc) 8945 return rc; 8946 8947 if (write) 8948 setup_per_zone_wmarks(); 8949 8950 return 0; 8951 } 8952 8953 #ifdef CONFIG_NUMA 8954 static void setup_min_unmapped_ratio(void) 8955 { 8956 pg_data_t *pgdat; 8957 struct zone *zone; 8958 8959 for_each_online_pgdat(pgdat) 8960 pgdat->min_unmapped_pages = 0; 8961 8962 for_each_zone(zone) 8963 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8964 sysctl_min_unmapped_ratio) / 100; 8965 } 8966 8967 8968 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8969 void *buffer, size_t *length, loff_t *ppos) 8970 { 8971 int rc; 8972 8973 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8974 if (rc) 8975 return rc; 8976 8977 setup_min_unmapped_ratio(); 8978 8979 return 0; 8980 } 8981 8982 static void setup_min_slab_ratio(void) 8983 { 8984 pg_data_t *pgdat; 8985 struct zone *zone; 8986 8987 for_each_online_pgdat(pgdat) 8988 pgdat->min_slab_pages = 0; 8989 8990 for_each_zone(zone) 8991 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8992 sysctl_min_slab_ratio) / 100; 8993 } 8994 8995 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8996 void *buffer, size_t *length, loff_t *ppos) 8997 { 8998 int rc; 8999 9000 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 9001 if (rc) 9002 return rc; 9003 9004 setup_min_slab_ratio(); 9005 9006 return 0; 9007 } 9008 #endif 9009 9010 /* 9011 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 9012 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 9013 * whenever sysctl_lowmem_reserve_ratio changes. 9014 * 9015 * The reserve ratio obviously has absolutely no relation with the 9016 * minimum watermarks. The lowmem reserve ratio can only make sense 9017 * if in function of the boot time zone sizes. 9018 */ 9019 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 9020 void *buffer, size_t *length, loff_t *ppos) 9021 { 9022 int i; 9023 9024 proc_dointvec_minmax(table, write, buffer, length, ppos); 9025 9026 for (i = 0; i < MAX_NR_ZONES; i++) { 9027 if (sysctl_lowmem_reserve_ratio[i] < 1) 9028 sysctl_lowmem_reserve_ratio[i] = 0; 9029 } 9030 9031 setup_per_zone_lowmem_reserve(); 9032 return 0; 9033 } 9034 9035 /* 9036 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 9037 * cpu. It is the fraction of total pages in each zone that a hot per cpu 9038 * pagelist can have before it gets flushed back to buddy allocator. 9039 */ 9040 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 9041 int write, void *buffer, size_t *length, loff_t *ppos) 9042 { 9043 struct zone *zone; 9044 int old_percpu_pagelist_high_fraction; 9045 int ret; 9046 9047 mutex_lock(&pcp_batch_high_lock); 9048 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 9049 9050 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 9051 if (!write || ret < 0) 9052 goto out; 9053 9054 /* Sanity checking to avoid pcp imbalance */ 9055 if (percpu_pagelist_high_fraction && 9056 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 9057 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 9058 ret = -EINVAL; 9059 goto out; 9060 } 9061 9062 /* No change? */ 9063 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 9064 goto out; 9065 9066 for_each_populated_zone(zone) 9067 zone_set_pageset_high_and_batch(zone, 0); 9068 out: 9069 mutex_unlock(&pcp_batch_high_lock); 9070 return ret; 9071 } 9072 9073 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 9074 /* 9075 * Returns the number of pages that arch has reserved but 9076 * is not known to alloc_large_system_hash(). 9077 */ 9078 static unsigned long __init arch_reserved_kernel_pages(void) 9079 { 9080 return 0; 9081 } 9082 #endif 9083 9084 /* 9085 * Adaptive scale is meant to reduce sizes of hash tables on large memory 9086 * machines. As memory size is increased the scale is also increased but at 9087 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9088 * quadruples the scale is increased by one, which means the size of hash table 9089 * only doubles, instead of quadrupling as well. 9090 * Because 32-bit systems cannot have large physical memory, where this scaling 9091 * makes sense, it is disabled on such platforms. 9092 */ 9093 #if __BITS_PER_LONG > 32 9094 #define ADAPT_SCALE_BASE (64ul << 30) 9095 #define ADAPT_SCALE_SHIFT 2 9096 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9097 #endif 9098 9099 /* 9100 * allocate a large system hash table from bootmem 9101 * - it is assumed that the hash table must contain an exact power-of-2 9102 * quantity of entries 9103 * - limit is the number of hash buckets, not the total allocation size 9104 */ 9105 void *__init alloc_large_system_hash(const char *tablename, 9106 unsigned long bucketsize, 9107 unsigned long numentries, 9108 int scale, 9109 int flags, 9110 unsigned int *_hash_shift, 9111 unsigned int *_hash_mask, 9112 unsigned long low_limit, 9113 unsigned long high_limit) 9114 { 9115 unsigned long long max = high_limit; 9116 unsigned long log2qty, size; 9117 void *table; 9118 gfp_t gfp_flags; 9119 bool virt; 9120 bool huge; 9121 9122 /* allow the kernel cmdline to have a say */ 9123 if (!numentries) { 9124 /* round applicable memory size up to nearest megabyte */ 9125 numentries = nr_kernel_pages; 9126 numentries -= arch_reserved_kernel_pages(); 9127 9128 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9129 if (PAGE_SIZE < SZ_1M) 9130 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 9131 9132 #if __BITS_PER_LONG > 32 9133 if (!high_limit) { 9134 unsigned long adapt; 9135 9136 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9137 adapt <<= ADAPT_SCALE_SHIFT) 9138 scale++; 9139 } 9140 #endif 9141 9142 /* limit to 1 bucket per 2^scale bytes of low memory */ 9143 if (scale > PAGE_SHIFT) 9144 numentries >>= (scale - PAGE_SHIFT); 9145 else 9146 numentries <<= (PAGE_SHIFT - scale); 9147 9148 /* Make sure we've got at least a 0-order allocation.. */ 9149 if (unlikely(flags & HASH_SMALL)) { 9150 /* Makes no sense without HASH_EARLY */ 9151 WARN_ON(!(flags & HASH_EARLY)); 9152 if (!(numentries >> *_hash_shift)) { 9153 numentries = 1UL << *_hash_shift; 9154 BUG_ON(!numentries); 9155 } 9156 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9157 numentries = PAGE_SIZE / bucketsize; 9158 } 9159 numentries = roundup_pow_of_two(numentries); 9160 9161 /* limit allocation size to 1/16 total memory by default */ 9162 if (max == 0) { 9163 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9164 do_div(max, bucketsize); 9165 } 9166 max = min(max, 0x80000000ULL); 9167 9168 if (numentries < low_limit) 9169 numentries = low_limit; 9170 if (numentries > max) 9171 numentries = max; 9172 9173 log2qty = ilog2(numentries); 9174 9175 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9176 do { 9177 virt = false; 9178 size = bucketsize << log2qty; 9179 if (flags & HASH_EARLY) { 9180 if (flags & HASH_ZERO) 9181 table = memblock_alloc(size, SMP_CACHE_BYTES); 9182 else 9183 table = memblock_alloc_raw(size, 9184 SMP_CACHE_BYTES); 9185 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9186 table = vmalloc_huge(size, gfp_flags); 9187 virt = true; 9188 if (table) 9189 huge = is_vm_area_hugepages(table); 9190 } else { 9191 /* 9192 * If bucketsize is not a power-of-two, we may free 9193 * some pages at the end of hash table which 9194 * alloc_pages_exact() automatically does 9195 */ 9196 table = alloc_pages_exact(size, gfp_flags); 9197 kmemleak_alloc(table, size, 1, gfp_flags); 9198 } 9199 } while (!table && size > PAGE_SIZE && --log2qty); 9200 9201 if (!table) 9202 panic("Failed to allocate %s hash table\n", tablename); 9203 9204 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9205 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9206 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9207 9208 if (_hash_shift) 9209 *_hash_shift = log2qty; 9210 if (_hash_mask) 9211 *_hash_mask = (1 << log2qty) - 1; 9212 9213 return table; 9214 } 9215 9216 #ifdef CONFIG_CONTIG_ALLOC 9217 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9218 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9219 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9220 static void alloc_contig_dump_pages(struct list_head *page_list) 9221 { 9222 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9223 9224 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9225 struct page *page; 9226 9227 dump_stack(); 9228 list_for_each_entry(page, page_list, lru) 9229 dump_page(page, "migration failure"); 9230 } 9231 } 9232 #else 9233 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9234 { 9235 } 9236 #endif 9237 9238 /* [start, end) must belong to a single zone. */ 9239 int __alloc_contig_migrate_range(struct compact_control *cc, 9240 unsigned long start, unsigned long end) 9241 { 9242 /* This function is based on compact_zone() from compaction.c. */ 9243 unsigned int nr_reclaimed; 9244 unsigned long pfn = start; 9245 unsigned int tries = 0; 9246 int ret = 0; 9247 struct migration_target_control mtc = { 9248 .nid = zone_to_nid(cc->zone), 9249 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9250 }; 9251 9252 lru_cache_disable(); 9253 9254 while (pfn < end || !list_empty(&cc->migratepages)) { 9255 if (fatal_signal_pending(current)) { 9256 ret = -EINTR; 9257 break; 9258 } 9259 9260 if (list_empty(&cc->migratepages)) { 9261 cc->nr_migratepages = 0; 9262 ret = isolate_migratepages_range(cc, pfn, end); 9263 if (ret && ret != -EAGAIN) 9264 break; 9265 pfn = cc->migrate_pfn; 9266 tries = 0; 9267 } else if (++tries == 5) { 9268 ret = -EBUSY; 9269 break; 9270 } 9271 9272 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9273 &cc->migratepages); 9274 cc->nr_migratepages -= nr_reclaimed; 9275 9276 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9277 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9278 9279 /* 9280 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9281 * to retry again over this error, so do the same here. 9282 */ 9283 if (ret == -ENOMEM) 9284 break; 9285 } 9286 9287 lru_cache_enable(); 9288 if (ret < 0) { 9289 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9290 alloc_contig_dump_pages(&cc->migratepages); 9291 putback_movable_pages(&cc->migratepages); 9292 return ret; 9293 } 9294 return 0; 9295 } 9296 9297 /** 9298 * alloc_contig_range() -- tries to allocate given range of pages 9299 * @start: start PFN to allocate 9300 * @end: one-past-the-last PFN to allocate 9301 * @migratetype: migratetype of the underlying pageblocks (either 9302 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9303 * in range must have the same migratetype and it must 9304 * be either of the two. 9305 * @gfp_mask: GFP mask to use during compaction 9306 * 9307 * The PFN range does not have to be pageblock aligned. The PFN range must 9308 * belong to a single zone. 9309 * 9310 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9311 * pageblocks in the range. Once isolated, the pageblocks should not 9312 * be modified by others. 9313 * 9314 * Return: zero on success or negative error code. On success all 9315 * pages which PFN is in [start, end) are allocated for the caller and 9316 * need to be freed with free_contig_range(). 9317 */ 9318 int alloc_contig_range(unsigned long start, unsigned long end, 9319 unsigned migratetype, gfp_t gfp_mask) 9320 { 9321 unsigned long outer_start, outer_end; 9322 int order; 9323 int ret = 0; 9324 9325 struct compact_control cc = { 9326 .nr_migratepages = 0, 9327 .order = -1, 9328 .zone = page_zone(pfn_to_page(start)), 9329 .mode = MIGRATE_SYNC, 9330 .ignore_skip_hint = true, 9331 .no_set_skip_hint = true, 9332 .gfp_mask = current_gfp_context(gfp_mask), 9333 .alloc_contig = true, 9334 }; 9335 INIT_LIST_HEAD(&cc.migratepages); 9336 9337 /* 9338 * What we do here is we mark all pageblocks in range as 9339 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9340 * have different sizes, and due to the way page allocator 9341 * work, start_isolate_page_range() has special handlings for this. 9342 * 9343 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9344 * migrate the pages from an unaligned range (ie. pages that 9345 * we are interested in). This will put all the pages in 9346 * range back to page allocator as MIGRATE_ISOLATE. 9347 * 9348 * When this is done, we take the pages in range from page 9349 * allocator removing them from the buddy system. This way 9350 * page allocator will never consider using them. 9351 * 9352 * This lets us mark the pageblocks back as 9353 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9354 * aligned range but not in the unaligned, original range are 9355 * put back to page allocator so that buddy can use them. 9356 */ 9357 9358 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9359 if (ret) 9360 goto done; 9361 9362 drain_all_pages(cc.zone); 9363 9364 /* 9365 * In case of -EBUSY, we'd like to know which page causes problem. 9366 * So, just fall through. test_pages_isolated() has a tracepoint 9367 * which will report the busy page. 9368 * 9369 * It is possible that busy pages could become available before 9370 * the call to test_pages_isolated, and the range will actually be 9371 * allocated. So, if we fall through be sure to clear ret so that 9372 * -EBUSY is not accidentally used or returned to caller. 9373 */ 9374 ret = __alloc_contig_migrate_range(&cc, start, end); 9375 if (ret && ret != -EBUSY) 9376 goto done; 9377 ret = 0; 9378 9379 /* 9380 * Pages from [start, end) are within a pageblock_nr_pages 9381 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9382 * more, all pages in [start, end) are free in page allocator. 9383 * What we are going to do is to allocate all pages from 9384 * [start, end) (that is remove them from page allocator). 9385 * 9386 * The only problem is that pages at the beginning and at the 9387 * end of interesting range may be not aligned with pages that 9388 * page allocator holds, ie. they can be part of higher order 9389 * pages. Because of this, we reserve the bigger range and 9390 * once this is done free the pages we are not interested in. 9391 * 9392 * We don't have to hold zone->lock here because the pages are 9393 * isolated thus they won't get removed from buddy. 9394 */ 9395 9396 order = 0; 9397 outer_start = start; 9398 while (!PageBuddy(pfn_to_page(outer_start))) { 9399 if (++order >= MAX_ORDER) { 9400 outer_start = start; 9401 break; 9402 } 9403 outer_start &= ~0UL << order; 9404 } 9405 9406 if (outer_start != start) { 9407 order = buddy_order(pfn_to_page(outer_start)); 9408 9409 /* 9410 * outer_start page could be small order buddy page and 9411 * it doesn't include start page. Adjust outer_start 9412 * in this case to report failed page properly 9413 * on tracepoint in test_pages_isolated() 9414 */ 9415 if (outer_start + (1UL << order) <= start) 9416 outer_start = start; 9417 } 9418 9419 /* Make sure the range is really isolated. */ 9420 if (test_pages_isolated(outer_start, end, 0)) { 9421 ret = -EBUSY; 9422 goto done; 9423 } 9424 9425 /* Grab isolated pages from freelists. */ 9426 outer_end = isolate_freepages_range(&cc, outer_start, end); 9427 if (!outer_end) { 9428 ret = -EBUSY; 9429 goto done; 9430 } 9431 9432 /* Free head and tail (if any) */ 9433 if (start != outer_start) 9434 free_contig_range(outer_start, start - outer_start); 9435 if (end != outer_end) 9436 free_contig_range(end, outer_end - end); 9437 9438 done: 9439 undo_isolate_page_range(start, end, migratetype); 9440 return ret; 9441 } 9442 EXPORT_SYMBOL(alloc_contig_range); 9443 9444 static int __alloc_contig_pages(unsigned long start_pfn, 9445 unsigned long nr_pages, gfp_t gfp_mask) 9446 { 9447 unsigned long end_pfn = start_pfn + nr_pages; 9448 9449 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9450 gfp_mask); 9451 } 9452 9453 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9454 unsigned long nr_pages) 9455 { 9456 unsigned long i, end_pfn = start_pfn + nr_pages; 9457 struct page *page; 9458 9459 for (i = start_pfn; i < end_pfn; i++) { 9460 page = pfn_to_online_page(i); 9461 if (!page) 9462 return false; 9463 9464 if (page_zone(page) != z) 9465 return false; 9466 9467 if (PageReserved(page)) 9468 return false; 9469 9470 if (PageHuge(page)) 9471 return false; 9472 } 9473 return true; 9474 } 9475 9476 static bool zone_spans_last_pfn(const struct zone *zone, 9477 unsigned long start_pfn, unsigned long nr_pages) 9478 { 9479 unsigned long last_pfn = start_pfn + nr_pages - 1; 9480 9481 return zone_spans_pfn(zone, last_pfn); 9482 } 9483 9484 /** 9485 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9486 * @nr_pages: Number of contiguous pages to allocate 9487 * @gfp_mask: GFP mask to limit search and used during compaction 9488 * @nid: Target node 9489 * @nodemask: Mask for other possible nodes 9490 * 9491 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9492 * on an applicable zonelist to find a contiguous pfn range which can then be 9493 * tried for allocation with alloc_contig_range(). This routine is intended 9494 * for allocation requests which can not be fulfilled with the buddy allocator. 9495 * 9496 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9497 * power of two, then allocated range is also guaranteed to be aligned to same 9498 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9499 * 9500 * Allocated pages can be freed with free_contig_range() or by manually calling 9501 * __free_page() on each allocated page. 9502 * 9503 * Return: pointer to contiguous pages on success, or NULL if not successful. 9504 */ 9505 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9506 int nid, nodemask_t *nodemask) 9507 { 9508 unsigned long ret, pfn, flags; 9509 struct zonelist *zonelist; 9510 struct zone *zone; 9511 struct zoneref *z; 9512 9513 zonelist = node_zonelist(nid, gfp_mask); 9514 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9515 gfp_zone(gfp_mask), nodemask) { 9516 spin_lock_irqsave(&zone->lock, flags); 9517 9518 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9519 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9520 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9521 /* 9522 * We release the zone lock here because 9523 * alloc_contig_range() will also lock the zone 9524 * at some point. If there's an allocation 9525 * spinning on this lock, it may win the race 9526 * and cause alloc_contig_range() to fail... 9527 */ 9528 spin_unlock_irqrestore(&zone->lock, flags); 9529 ret = __alloc_contig_pages(pfn, nr_pages, 9530 gfp_mask); 9531 if (!ret) 9532 return pfn_to_page(pfn); 9533 spin_lock_irqsave(&zone->lock, flags); 9534 } 9535 pfn += nr_pages; 9536 } 9537 spin_unlock_irqrestore(&zone->lock, flags); 9538 } 9539 return NULL; 9540 } 9541 #endif /* CONFIG_CONTIG_ALLOC */ 9542 9543 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9544 { 9545 unsigned long count = 0; 9546 9547 for (; nr_pages--; pfn++) { 9548 struct page *page = pfn_to_page(pfn); 9549 9550 count += page_count(page) != 1; 9551 __free_page(page); 9552 } 9553 WARN(count != 0, "%lu pages are still in use!\n", count); 9554 } 9555 EXPORT_SYMBOL(free_contig_range); 9556 9557 /* 9558 * Effectively disable pcplists for the zone by setting the high limit to 0 9559 * and draining all cpus. A concurrent page freeing on another CPU that's about 9560 * to put the page on pcplist will either finish before the drain and the page 9561 * will be drained, or observe the new high limit and skip the pcplist. 9562 * 9563 * Must be paired with a call to zone_pcp_enable(). 9564 */ 9565 void zone_pcp_disable(struct zone *zone) 9566 { 9567 mutex_lock(&pcp_batch_high_lock); 9568 __zone_set_pageset_high_and_batch(zone, 0, 1); 9569 __drain_all_pages(zone, true); 9570 } 9571 9572 void zone_pcp_enable(struct zone *zone) 9573 { 9574 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9575 mutex_unlock(&pcp_batch_high_lock); 9576 } 9577 9578 void zone_pcp_reset(struct zone *zone) 9579 { 9580 int cpu; 9581 struct per_cpu_zonestat *pzstats; 9582 9583 if (zone->per_cpu_pageset != &boot_pageset) { 9584 for_each_online_cpu(cpu) { 9585 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9586 drain_zonestat(zone, pzstats); 9587 } 9588 free_percpu(zone->per_cpu_pageset); 9589 zone->per_cpu_pageset = &boot_pageset; 9590 if (zone->per_cpu_zonestats != &boot_zonestats) { 9591 free_percpu(zone->per_cpu_zonestats); 9592 zone->per_cpu_zonestats = &boot_zonestats; 9593 } 9594 } 9595 } 9596 9597 #ifdef CONFIG_MEMORY_HOTREMOVE 9598 /* 9599 * All pages in the range must be in a single zone, must not contain holes, 9600 * must span full sections, and must be isolated before calling this function. 9601 */ 9602 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9603 { 9604 unsigned long pfn = start_pfn; 9605 struct page *page; 9606 struct zone *zone; 9607 unsigned int order; 9608 unsigned long flags; 9609 9610 offline_mem_sections(pfn, end_pfn); 9611 zone = page_zone(pfn_to_page(pfn)); 9612 spin_lock_irqsave(&zone->lock, flags); 9613 while (pfn < end_pfn) { 9614 page = pfn_to_page(pfn); 9615 /* 9616 * The HWPoisoned page may be not in buddy system, and 9617 * page_count() is not 0. 9618 */ 9619 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9620 pfn++; 9621 continue; 9622 } 9623 /* 9624 * At this point all remaining PageOffline() pages have a 9625 * reference count of 0 and can simply be skipped. 9626 */ 9627 if (PageOffline(page)) { 9628 BUG_ON(page_count(page)); 9629 BUG_ON(PageBuddy(page)); 9630 pfn++; 9631 continue; 9632 } 9633 9634 BUG_ON(page_count(page)); 9635 BUG_ON(!PageBuddy(page)); 9636 order = buddy_order(page); 9637 del_page_from_free_list(page, zone, order); 9638 pfn += (1 << order); 9639 } 9640 spin_unlock_irqrestore(&zone->lock, flags); 9641 } 9642 #endif 9643 9644 /* 9645 * This function returns a stable result only if called under zone lock. 9646 */ 9647 bool is_free_buddy_page(struct page *page) 9648 { 9649 unsigned long pfn = page_to_pfn(page); 9650 unsigned int order; 9651 9652 for (order = 0; order < MAX_ORDER; order++) { 9653 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9654 9655 if (PageBuddy(page_head) && 9656 buddy_order_unsafe(page_head) >= order) 9657 break; 9658 } 9659 9660 return order < MAX_ORDER; 9661 } 9662 EXPORT_SYMBOL(is_free_buddy_page); 9663 9664 #ifdef CONFIG_MEMORY_FAILURE 9665 /* 9666 * Break down a higher-order page in sub-pages, and keep our target out of 9667 * buddy allocator. 9668 */ 9669 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9670 struct page *target, int low, int high, 9671 int migratetype) 9672 { 9673 unsigned long size = 1 << high; 9674 struct page *current_buddy, *next_page; 9675 9676 while (high > low) { 9677 high--; 9678 size >>= 1; 9679 9680 if (target >= &page[size]) { 9681 next_page = page + size; 9682 current_buddy = page; 9683 } else { 9684 next_page = page; 9685 current_buddy = page + size; 9686 } 9687 9688 if (set_page_guard(zone, current_buddy, high, migratetype)) 9689 continue; 9690 9691 if (current_buddy != target) { 9692 add_to_free_list(current_buddy, zone, high, migratetype); 9693 set_buddy_order(current_buddy, high); 9694 page = next_page; 9695 } 9696 } 9697 } 9698 9699 /* 9700 * Take a page that will be marked as poisoned off the buddy allocator. 9701 */ 9702 bool take_page_off_buddy(struct page *page) 9703 { 9704 struct zone *zone = page_zone(page); 9705 unsigned long pfn = page_to_pfn(page); 9706 unsigned long flags; 9707 unsigned int order; 9708 bool ret = false; 9709 9710 spin_lock_irqsave(&zone->lock, flags); 9711 for (order = 0; order < MAX_ORDER; order++) { 9712 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9713 int page_order = buddy_order(page_head); 9714 9715 if (PageBuddy(page_head) && page_order >= order) { 9716 unsigned long pfn_head = page_to_pfn(page_head); 9717 int migratetype = get_pfnblock_migratetype(page_head, 9718 pfn_head); 9719 9720 del_page_from_free_list(page_head, zone, page_order); 9721 break_down_buddy_pages(zone, page_head, page, 0, 9722 page_order, migratetype); 9723 SetPageHWPoisonTakenOff(page); 9724 if (!is_migrate_isolate(migratetype)) 9725 __mod_zone_freepage_state(zone, -1, migratetype); 9726 ret = true; 9727 break; 9728 } 9729 if (page_count(page_head) > 0) 9730 break; 9731 } 9732 spin_unlock_irqrestore(&zone->lock, flags); 9733 return ret; 9734 } 9735 9736 /* 9737 * Cancel takeoff done by take_page_off_buddy(). 9738 */ 9739 bool put_page_back_buddy(struct page *page) 9740 { 9741 struct zone *zone = page_zone(page); 9742 unsigned long pfn = page_to_pfn(page); 9743 unsigned long flags; 9744 int migratetype = get_pfnblock_migratetype(page, pfn); 9745 bool ret = false; 9746 9747 spin_lock_irqsave(&zone->lock, flags); 9748 if (put_page_testzero(page)) { 9749 ClearPageHWPoisonTakenOff(page); 9750 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9751 if (TestClearPageHWPoison(page)) { 9752 ret = true; 9753 } 9754 } 9755 spin_unlock_irqrestore(&zone->lock, flags); 9756 9757 return ret; 9758 } 9759 #endif 9760 9761 #ifdef CONFIG_ZONE_DMA 9762 bool has_managed_dma(void) 9763 { 9764 struct pglist_data *pgdat; 9765 9766 for_each_online_pgdat(pgdat) { 9767 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9768 9769 if (managed_zone(zone)) 9770 return true; 9771 } 9772 return false; 9773 } 9774 #endif /* CONFIG_ZONE_DMA */ 9775