xref: /openbmc/linux/mm/page_alloc.c (revision 35b288d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_trylock(type, member, ptr)				\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	if (!spin_trylock(&_ret->member)) {				\
179 		pcpu_task_unpin();					\
180 		_ret = NULL;						\
181 	}								\
182 	_ret;								\
183 })
184 
185 #define pcpu_spin_unlock(member, ptr)					\
186 ({									\
187 	spin_unlock(&ptr->member);					\
188 	pcpu_task_unpin();						\
189 })
190 
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr)						\
193 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194 
195 #define pcp_spin_trylock(ptr)						\
196 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
197 
198 #define pcp_spin_unlock(ptr)						\
199 	pcpu_spin_unlock(lock, ptr)
200 
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
204 #endif
205 
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207 
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
209 /*
210  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213  * defined in <linux/topology.h>.
214  */
215 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217 #endif
218 
219 static DEFINE_MUTEX(pcpu_drain_mutex);
220 
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
224 #endif
225 
226 /*
227  * Array of node states.
228  */
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 	[N_POSSIBLE] = NODE_MASK_ALL,
231 	[N_ONLINE] = { { [0] = 1UL } },
232 #ifndef CONFIG_NUMA
233 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
236 #endif
237 	[N_MEMORY] = { { [0] = 1UL } },
238 	[N_CPU] = { { [0] = 1UL } },
239 #endif	/* NUMA */
240 };
241 EXPORT_SYMBOL(node_states);
242 
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
247 
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
252 
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
255 
256 static bool _init_on_alloc_enabled_early __read_mostly
257 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
259 {
260 
261 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
262 }
263 early_param("init_on_alloc", early_init_on_alloc);
264 
265 static bool _init_on_free_enabled_early __read_mostly
266 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
268 {
269 	return kstrtobool(buf, &_init_on_free_enabled_early);
270 }
271 early_param("init_on_free", early_init_on_free);
272 
273 /*
274  * A cached value of the page's pageblock's migratetype, used when the page is
275  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277  * Also the migratetype set in the page does not necessarily match the pcplist
278  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279  * other index - this ensures that it will be put on the correct CMA freelist.
280  */
281 static inline int get_pcppage_migratetype(struct page *page)
282 {
283 	return page->index;
284 }
285 
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287 {
288 	page->index = migratetype;
289 }
290 
291 #ifdef CONFIG_PM_SLEEP
292 /*
293  * The following functions are used by the suspend/hibernate code to temporarily
294  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295  * while devices are suspended.  To avoid races with the suspend/hibernate code,
296  * they should always be called with system_transition_mutex held
297  * (gfp_allowed_mask also should only be modified with system_transition_mutex
298  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299  * with that modification).
300  */
301 
302 static gfp_t saved_gfp_mask;
303 
304 void pm_restore_gfp_mask(void)
305 {
306 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 	if (saved_gfp_mask) {
308 		gfp_allowed_mask = saved_gfp_mask;
309 		saved_gfp_mask = 0;
310 	}
311 }
312 
313 void pm_restrict_gfp_mask(void)
314 {
315 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 	WARN_ON(saved_gfp_mask);
317 	saved_gfp_mask = gfp_allowed_mask;
318 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
319 }
320 
321 bool pm_suspended_storage(void)
322 {
323 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
324 		return false;
325 	return true;
326 }
327 #endif /* CONFIG_PM_SLEEP */
328 
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
331 #endif
332 
333 static void __free_pages_ok(struct page *page, unsigned int order,
334 			    fpi_t fpi_flags);
335 
336 /*
337  * results with 256, 32 in the lowmem_reserve sysctl:
338  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339  *	1G machine -> (16M dma, 784M normal, 224M high)
340  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
343  *
344  * TBD: should special case ZONE_DMA32 machines here - in those we normally
345  * don't need any ZONE_NORMAL reservation
346  */
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
349 	[ZONE_DMA] = 256,
350 #endif
351 #ifdef CONFIG_ZONE_DMA32
352 	[ZONE_DMA32] = 256,
353 #endif
354 	[ZONE_NORMAL] = 32,
355 #ifdef CONFIG_HIGHMEM
356 	[ZONE_HIGHMEM] = 0,
357 #endif
358 	[ZONE_MOVABLE] = 0,
359 };
360 
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
363 	 "DMA",
364 #endif
365 #ifdef CONFIG_ZONE_DMA32
366 	 "DMA32",
367 #endif
368 	 "Normal",
369 #ifdef CONFIG_HIGHMEM
370 	 "HighMem",
371 #endif
372 	 "Movable",
373 #ifdef CONFIG_ZONE_DEVICE
374 	 "Device",
375 #endif
376 };
377 
378 const char * const migratetype_names[MIGRATE_TYPES] = {
379 	"Unmovable",
380 	"Movable",
381 	"Reclaimable",
382 	"HighAtomic",
383 #ifdef CONFIG_CMA
384 	"CMA",
385 #endif
386 #ifdef CONFIG_MEMORY_ISOLATION
387 	"Isolate",
388 #endif
389 };
390 
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 	[NULL_COMPOUND_DTOR] = NULL,
393 	[COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 	[HUGETLB_PAGE_DTOR] = free_huge_page,
396 #endif
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
399 #endif
400 };
401 
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
406 
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
410 
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
419 
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421 int movable_zone;
422 EXPORT_SYMBOL(movable_zone);
423 
424 #if MAX_NUMNODES > 1
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
429 #endif
430 
431 int page_group_by_mobility_disabled __read_mostly;
432 
433 bool deferred_struct_pages __meminitdata;
434 
435 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
436 /*
437  * During boot we initialize deferred pages on-demand, as needed, but once
438  * page_alloc_init_late() has finished, the deferred pages are all initialized,
439  * and we can permanently disable that path.
440  */
441 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
442 
443 static inline bool deferred_pages_enabled(void)
444 {
445 	return static_branch_unlikely(&deferred_pages);
446 }
447 
448 /* Returns true if the struct page for the pfn is initialised */
449 static inline bool __meminit early_page_initialised(unsigned long pfn)
450 {
451 	int nid = early_pfn_to_nid(pfn);
452 
453 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
454 		return false;
455 
456 	return true;
457 }
458 
459 /*
460  * Returns true when the remaining initialisation should be deferred until
461  * later in the boot cycle when it can be parallelised.
462  */
463 static bool __meminit
464 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
465 {
466 	static unsigned long prev_end_pfn, nr_initialised;
467 
468 	if (early_page_ext_enabled())
469 		return false;
470 	/*
471 	 * prev_end_pfn static that contains the end of previous zone
472 	 * No need to protect because called very early in boot before smp_init.
473 	 */
474 	if (prev_end_pfn != end_pfn) {
475 		prev_end_pfn = end_pfn;
476 		nr_initialised = 0;
477 	}
478 
479 	/* Always populate low zones for address-constrained allocations */
480 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
481 		return false;
482 
483 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
484 		return true;
485 	/*
486 	 * We start only with one section of pages, more pages are added as
487 	 * needed until the rest of deferred pages are initialized.
488 	 */
489 	nr_initialised++;
490 	if ((nr_initialised > PAGES_PER_SECTION) &&
491 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
492 		NODE_DATA(nid)->first_deferred_pfn = pfn;
493 		return true;
494 	}
495 	return false;
496 }
497 #else
498 static inline bool deferred_pages_enabled(void)
499 {
500 	return false;
501 }
502 
503 static inline bool early_page_initialised(unsigned long pfn)
504 {
505 	return true;
506 }
507 
508 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
509 {
510 	return false;
511 }
512 #endif
513 
514 /* Return a pointer to the bitmap storing bits affecting a block of pages */
515 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
516 							unsigned long pfn)
517 {
518 #ifdef CONFIG_SPARSEMEM
519 	return section_to_usemap(__pfn_to_section(pfn));
520 #else
521 	return page_zone(page)->pageblock_flags;
522 #endif /* CONFIG_SPARSEMEM */
523 }
524 
525 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
526 {
527 #ifdef CONFIG_SPARSEMEM
528 	pfn &= (PAGES_PER_SECTION-1);
529 #else
530 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
531 #endif /* CONFIG_SPARSEMEM */
532 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
533 }
534 
535 static __always_inline
536 unsigned long __get_pfnblock_flags_mask(const struct page *page,
537 					unsigned long pfn,
538 					unsigned long mask)
539 {
540 	unsigned long *bitmap;
541 	unsigned long bitidx, word_bitidx;
542 	unsigned long word;
543 
544 	bitmap = get_pageblock_bitmap(page, pfn);
545 	bitidx = pfn_to_bitidx(page, pfn);
546 	word_bitidx = bitidx / BITS_PER_LONG;
547 	bitidx &= (BITS_PER_LONG-1);
548 	/*
549 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
550 	 * a consistent read of the memory array, so that results, even though
551 	 * racy, are not corrupted.
552 	 */
553 	word = READ_ONCE(bitmap[word_bitidx]);
554 	return (word >> bitidx) & mask;
555 }
556 
557 /**
558  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
559  * @page: The page within the block of interest
560  * @pfn: The target page frame number
561  * @mask: mask of bits that the caller is interested in
562  *
563  * Return: pageblock_bits flags
564  */
565 unsigned long get_pfnblock_flags_mask(const struct page *page,
566 					unsigned long pfn, unsigned long mask)
567 {
568 	return __get_pfnblock_flags_mask(page, pfn, mask);
569 }
570 
571 static __always_inline int get_pfnblock_migratetype(const struct page *page,
572 					unsigned long pfn)
573 {
574 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
575 }
576 
577 /**
578  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
579  * @page: The page within the block of interest
580  * @flags: The flags to set
581  * @pfn: The target page frame number
582  * @mask: mask of bits that the caller is interested in
583  */
584 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
585 					unsigned long pfn,
586 					unsigned long mask)
587 {
588 	unsigned long *bitmap;
589 	unsigned long bitidx, word_bitidx;
590 	unsigned long word;
591 
592 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
593 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
594 
595 	bitmap = get_pageblock_bitmap(page, pfn);
596 	bitidx = pfn_to_bitidx(page, pfn);
597 	word_bitidx = bitidx / BITS_PER_LONG;
598 	bitidx &= (BITS_PER_LONG-1);
599 
600 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
601 
602 	mask <<= bitidx;
603 	flags <<= bitidx;
604 
605 	word = READ_ONCE(bitmap[word_bitidx]);
606 	do {
607 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
608 }
609 
610 void set_pageblock_migratetype(struct page *page, int migratetype)
611 {
612 	if (unlikely(page_group_by_mobility_disabled &&
613 		     migratetype < MIGRATE_PCPTYPES))
614 		migratetype = MIGRATE_UNMOVABLE;
615 
616 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
617 				page_to_pfn(page), MIGRATETYPE_MASK);
618 }
619 
620 #ifdef CONFIG_DEBUG_VM
621 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
622 {
623 	int ret = 0;
624 	unsigned seq;
625 	unsigned long pfn = page_to_pfn(page);
626 	unsigned long sp, start_pfn;
627 
628 	do {
629 		seq = zone_span_seqbegin(zone);
630 		start_pfn = zone->zone_start_pfn;
631 		sp = zone->spanned_pages;
632 		if (!zone_spans_pfn(zone, pfn))
633 			ret = 1;
634 	} while (zone_span_seqretry(zone, seq));
635 
636 	if (ret)
637 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
638 			pfn, zone_to_nid(zone), zone->name,
639 			start_pfn, start_pfn + sp);
640 
641 	return ret;
642 }
643 
644 static int page_is_consistent(struct zone *zone, struct page *page)
645 {
646 	if (zone != page_zone(page))
647 		return 0;
648 
649 	return 1;
650 }
651 /*
652  * Temporary debugging check for pages not lying within a given zone.
653  */
654 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
655 {
656 	if (page_outside_zone_boundaries(zone, page))
657 		return 1;
658 	if (!page_is_consistent(zone, page))
659 		return 1;
660 
661 	return 0;
662 }
663 #else
664 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
665 {
666 	return 0;
667 }
668 #endif
669 
670 static void bad_page(struct page *page, const char *reason)
671 {
672 	static unsigned long resume;
673 	static unsigned long nr_shown;
674 	static unsigned long nr_unshown;
675 
676 	/*
677 	 * Allow a burst of 60 reports, then keep quiet for that minute;
678 	 * or allow a steady drip of one report per second.
679 	 */
680 	if (nr_shown == 60) {
681 		if (time_before(jiffies, resume)) {
682 			nr_unshown++;
683 			goto out;
684 		}
685 		if (nr_unshown) {
686 			pr_alert(
687 			      "BUG: Bad page state: %lu messages suppressed\n",
688 				nr_unshown);
689 			nr_unshown = 0;
690 		}
691 		nr_shown = 0;
692 	}
693 	if (nr_shown++ == 0)
694 		resume = jiffies + 60 * HZ;
695 
696 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
697 		current->comm, page_to_pfn(page));
698 	dump_page(page, reason);
699 
700 	print_modules();
701 	dump_stack();
702 out:
703 	/* Leave bad fields for debug, except PageBuddy could make trouble */
704 	page_mapcount_reset(page); /* remove PageBuddy */
705 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
706 }
707 
708 static inline unsigned int order_to_pindex(int migratetype, int order)
709 {
710 	int base = order;
711 
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
714 		VM_BUG_ON(order != pageblock_order);
715 		return NR_LOWORDER_PCP_LISTS;
716 	}
717 #else
718 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
719 #endif
720 
721 	return (MIGRATE_PCPTYPES * base) + migratetype;
722 }
723 
724 static inline int pindex_to_order(unsigned int pindex)
725 {
726 	int order = pindex / MIGRATE_PCPTYPES;
727 
728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
729 	if (pindex == NR_LOWORDER_PCP_LISTS)
730 		order = pageblock_order;
731 #else
732 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
733 #endif
734 
735 	return order;
736 }
737 
738 static inline bool pcp_allowed_order(unsigned int order)
739 {
740 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
741 		return true;
742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
743 	if (order == pageblock_order)
744 		return true;
745 #endif
746 	return false;
747 }
748 
749 static inline void free_the_page(struct page *page, unsigned int order)
750 {
751 	if (pcp_allowed_order(order))		/* Via pcp? */
752 		free_unref_page(page, order);
753 	else
754 		__free_pages_ok(page, order, FPI_NONE);
755 }
756 
757 /*
758  * Higher-order pages are called "compound pages".  They are structured thusly:
759  *
760  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
761  *
762  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
763  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
764  *
765  * The first tail page's ->compound_dtor holds the offset in array of compound
766  * page destructors. See compound_page_dtors.
767  *
768  * The first tail page's ->compound_order holds the order of allocation.
769  * This usage means that zero-order pages may not be compound.
770  */
771 
772 void free_compound_page(struct page *page)
773 {
774 	mem_cgroup_uncharge(page_folio(page));
775 	free_the_page(page, compound_order(page));
776 }
777 
778 static void prep_compound_head(struct page *page, unsigned int order)
779 {
780 	struct folio *folio = (struct folio *)page;
781 
782 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
783 	set_compound_order(page, order);
784 	atomic_set(&folio->_entire_mapcount, -1);
785 	atomic_set(&folio->_nr_pages_mapped, 0);
786 	atomic_set(&folio->_pincount, 0);
787 }
788 
789 static void prep_compound_tail(struct page *head, int tail_idx)
790 {
791 	struct page *p = head + tail_idx;
792 
793 	p->mapping = TAIL_MAPPING;
794 	set_compound_head(p, head);
795 	set_page_private(p, 0);
796 }
797 
798 void prep_compound_page(struct page *page, unsigned int order)
799 {
800 	int i;
801 	int nr_pages = 1 << order;
802 
803 	__SetPageHead(page);
804 	for (i = 1; i < nr_pages; i++)
805 		prep_compound_tail(page, i);
806 
807 	prep_compound_head(page, order);
808 }
809 
810 void destroy_large_folio(struct folio *folio)
811 {
812 	enum compound_dtor_id dtor = folio->_folio_dtor;
813 
814 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
815 	compound_page_dtors[dtor](&folio->page);
816 }
817 
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 unsigned int _debug_guardpage_minorder;
820 
821 bool _debug_pagealloc_enabled_early __read_mostly
822 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
823 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
824 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
825 EXPORT_SYMBOL(_debug_pagealloc_enabled);
826 
827 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
828 
829 static int __init early_debug_pagealloc(char *buf)
830 {
831 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
832 }
833 early_param("debug_pagealloc", early_debug_pagealloc);
834 
835 static int __init debug_guardpage_minorder_setup(char *buf)
836 {
837 	unsigned long res;
838 
839 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
840 		pr_err("Bad debug_guardpage_minorder value\n");
841 		return 0;
842 	}
843 	_debug_guardpage_minorder = res;
844 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
845 	return 0;
846 }
847 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
848 
849 static inline bool set_page_guard(struct zone *zone, struct page *page,
850 				unsigned int order, int migratetype)
851 {
852 	if (!debug_guardpage_enabled())
853 		return false;
854 
855 	if (order >= debug_guardpage_minorder())
856 		return false;
857 
858 	__SetPageGuard(page);
859 	INIT_LIST_HEAD(&page->buddy_list);
860 	set_page_private(page, order);
861 	/* Guard pages are not available for any usage */
862 	if (!is_migrate_isolate(migratetype))
863 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
864 
865 	return true;
866 }
867 
868 static inline void clear_page_guard(struct zone *zone, struct page *page,
869 				unsigned int order, int migratetype)
870 {
871 	if (!debug_guardpage_enabled())
872 		return;
873 
874 	__ClearPageGuard(page);
875 
876 	set_page_private(page, 0);
877 	if (!is_migrate_isolate(migratetype))
878 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
879 }
880 #else
881 static inline bool set_page_guard(struct zone *zone, struct page *page,
882 			unsigned int order, int migratetype) { return false; }
883 static inline void clear_page_guard(struct zone *zone, struct page *page,
884 				unsigned int order, int migratetype) {}
885 #endif
886 
887 /*
888  * Enable static keys related to various memory debugging and hardening options.
889  * Some override others, and depend on early params that are evaluated in the
890  * order of appearance. So we need to first gather the full picture of what was
891  * enabled, and then make decisions.
892  */
893 void __init init_mem_debugging_and_hardening(void)
894 {
895 	bool page_poisoning_requested = false;
896 
897 #ifdef CONFIG_PAGE_POISONING
898 	/*
899 	 * Page poisoning is debug page alloc for some arches. If
900 	 * either of those options are enabled, enable poisoning.
901 	 */
902 	if (page_poisoning_enabled() ||
903 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
904 	      debug_pagealloc_enabled())) {
905 		static_branch_enable(&_page_poisoning_enabled);
906 		page_poisoning_requested = true;
907 	}
908 #endif
909 
910 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
911 	    page_poisoning_requested) {
912 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
913 			"will take precedence over init_on_alloc and init_on_free\n");
914 		_init_on_alloc_enabled_early = false;
915 		_init_on_free_enabled_early = false;
916 	}
917 
918 	if (_init_on_alloc_enabled_early)
919 		static_branch_enable(&init_on_alloc);
920 	else
921 		static_branch_disable(&init_on_alloc);
922 
923 	if (_init_on_free_enabled_early)
924 		static_branch_enable(&init_on_free);
925 	else
926 		static_branch_disable(&init_on_free);
927 
928 	if (IS_ENABLED(CONFIG_KMSAN) &&
929 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
930 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
931 
932 #ifdef CONFIG_DEBUG_PAGEALLOC
933 	if (!debug_pagealloc_enabled())
934 		return;
935 
936 	static_branch_enable(&_debug_pagealloc_enabled);
937 
938 	if (!debug_guardpage_minorder())
939 		return;
940 
941 	static_branch_enable(&_debug_guardpage_enabled);
942 #endif
943 }
944 
945 static inline void set_buddy_order(struct page *page, unsigned int order)
946 {
947 	set_page_private(page, order);
948 	__SetPageBuddy(page);
949 }
950 
951 #ifdef CONFIG_COMPACTION
952 static inline struct capture_control *task_capc(struct zone *zone)
953 {
954 	struct capture_control *capc = current->capture_control;
955 
956 	return unlikely(capc) &&
957 		!(current->flags & PF_KTHREAD) &&
958 		!capc->page &&
959 		capc->cc->zone == zone ? capc : NULL;
960 }
961 
962 static inline bool
963 compaction_capture(struct capture_control *capc, struct page *page,
964 		   int order, int migratetype)
965 {
966 	if (!capc || order != capc->cc->order)
967 		return false;
968 
969 	/* Do not accidentally pollute CMA or isolated regions*/
970 	if (is_migrate_cma(migratetype) ||
971 	    is_migrate_isolate(migratetype))
972 		return false;
973 
974 	/*
975 	 * Do not let lower order allocations pollute a movable pageblock.
976 	 * This might let an unmovable request use a reclaimable pageblock
977 	 * and vice-versa but no more than normal fallback logic which can
978 	 * have trouble finding a high-order free page.
979 	 */
980 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
981 		return false;
982 
983 	capc->page = page;
984 	return true;
985 }
986 
987 #else
988 static inline struct capture_control *task_capc(struct zone *zone)
989 {
990 	return NULL;
991 }
992 
993 static inline bool
994 compaction_capture(struct capture_control *capc, struct page *page,
995 		   int order, int migratetype)
996 {
997 	return false;
998 }
999 #endif /* CONFIG_COMPACTION */
1000 
1001 /* Used for pages not on another list */
1002 static inline void add_to_free_list(struct page *page, struct zone *zone,
1003 				    unsigned int order, int migratetype)
1004 {
1005 	struct free_area *area = &zone->free_area[order];
1006 
1007 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1008 	area->nr_free++;
1009 }
1010 
1011 /* Used for pages not on another list */
1012 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1013 					 unsigned int order, int migratetype)
1014 {
1015 	struct free_area *area = &zone->free_area[order];
1016 
1017 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1018 	area->nr_free++;
1019 }
1020 
1021 /*
1022  * Used for pages which are on another list. Move the pages to the tail
1023  * of the list - so the moved pages won't immediately be considered for
1024  * allocation again (e.g., optimization for memory onlining).
1025  */
1026 static inline void move_to_free_list(struct page *page, struct zone *zone,
1027 				     unsigned int order, int migratetype)
1028 {
1029 	struct free_area *area = &zone->free_area[order];
1030 
1031 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1032 }
1033 
1034 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1035 					   unsigned int order)
1036 {
1037 	/* clear reported state and update reported page count */
1038 	if (page_reported(page))
1039 		__ClearPageReported(page);
1040 
1041 	list_del(&page->buddy_list);
1042 	__ClearPageBuddy(page);
1043 	set_page_private(page, 0);
1044 	zone->free_area[order].nr_free--;
1045 }
1046 
1047 /*
1048  * If this is not the largest possible page, check if the buddy
1049  * of the next-highest order is free. If it is, it's possible
1050  * that pages are being freed that will coalesce soon. In case,
1051  * that is happening, add the free page to the tail of the list
1052  * so it's less likely to be used soon and more likely to be merged
1053  * as a higher order page
1054  */
1055 static inline bool
1056 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1057 		   struct page *page, unsigned int order)
1058 {
1059 	unsigned long higher_page_pfn;
1060 	struct page *higher_page;
1061 
1062 	if (order >= MAX_ORDER - 2)
1063 		return false;
1064 
1065 	higher_page_pfn = buddy_pfn & pfn;
1066 	higher_page = page + (higher_page_pfn - pfn);
1067 
1068 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1069 			NULL) != NULL;
1070 }
1071 
1072 /*
1073  * Freeing function for a buddy system allocator.
1074  *
1075  * The concept of a buddy system is to maintain direct-mapped table
1076  * (containing bit values) for memory blocks of various "orders".
1077  * The bottom level table contains the map for the smallest allocatable
1078  * units of memory (here, pages), and each level above it describes
1079  * pairs of units from the levels below, hence, "buddies".
1080  * At a high level, all that happens here is marking the table entry
1081  * at the bottom level available, and propagating the changes upward
1082  * as necessary, plus some accounting needed to play nicely with other
1083  * parts of the VM system.
1084  * At each level, we keep a list of pages, which are heads of continuous
1085  * free pages of length of (1 << order) and marked with PageBuddy.
1086  * Page's order is recorded in page_private(page) field.
1087  * So when we are allocating or freeing one, we can derive the state of the
1088  * other.  That is, if we allocate a small block, and both were
1089  * free, the remainder of the region must be split into blocks.
1090  * If a block is freed, and its buddy is also free, then this
1091  * triggers coalescing into a block of larger size.
1092  *
1093  * -- nyc
1094  */
1095 
1096 static inline void __free_one_page(struct page *page,
1097 		unsigned long pfn,
1098 		struct zone *zone, unsigned int order,
1099 		int migratetype, fpi_t fpi_flags)
1100 {
1101 	struct capture_control *capc = task_capc(zone);
1102 	unsigned long buddy_pfn = 0;
1103 	unsigned long combined_pfn;
1104 	struct page *buddy;
1105 	bool to_tail;
1106 
1107 	VM_BUG_ON(!zone_is_initialized(zone));
1108 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1109 
1110 	VM_BUG_ON(migratetype == -1);
1111 	if (likely(!is_migrate_isolate(migratetype)))
1112 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1113 
1114 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1115 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1116 
1117 	while (order < MAX_ORDER - 1) {
1118 		if (compaction_capture(capc, page, order, migratetype)) {
1119 			__mod_zone_freepage_state(zone, -(1 << order),
1120 								migratetype);
1121 			return;
1122 		}
1123 
1124 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1125 		if (!buddy)
1126 			goto done_merging;
1127 
1128 		if (unlikely(order >= pageblock_order)) {
1129 			/*
1130 			 * We want to prevent merge between freepages on pageblock
1131 			 * without fallbacks and normal pageblock. Without this,
1132 			 * pageblock isolation could cause incorrect freepage or CMA
1133 			 * accounting or HIGHATOMIC accounting.
1134 			 */
1135 			int buddy_mt = get_pageblock_migratetype(buddy);
1136 
1137 			if (migratetype != buddy_mt
1138 					&& (!migratetype_is_mergeable(migratetype) ||
1139 						!migratetype_is_mergeable(buddy_mt)))
1140 				goto done_merging;
1141 		}
1142 
1143 		/*
1144 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1145 		 * merge with it and move up one order.
1146 		 */
1147 		if (page_is_guard(buddy))
1148 			clear_page_guard(zone, buddy, order, migratetype);
1149 		else
1150 			del_page_from_free_list(buddy, zone, order);
1151 		combined_pfn = buddy_pfn & pfn;
1152 		page = page + (combined_pfn - pfn);
1153 		pfn = combined_pfn;
1154 		order++;
1155 	}
1156 
1157 done_merging:
1158 	set_buddy_order(page, order);
1159 
1160 	if (fpi_flags & FPI_TO_TAIL)
1161 		to_tail = true;
1162 	else if (is_shuffle_order(order))
1163 		to_tail = shuffle_pick_tail();
1164 	else
1165 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1166 
1167 	if (to_tail)
1168 		add_to_free_list_tail(page, zone, order, migratetype);
1169 	else
1170 		add_to_free_list(page, zone, order, migratetype);
1171 
1172 	/* Notify page reporting subsystem of freed page */
1173 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1174 		page_reporting_notify_free(order);
1175 }
1176 
1177 /**
1178  * split_free_page() -- split a free page at split_pfn_offset
1179  * @free_page:		the original free page
1180  * @order:		the order of the page
1181  * @split_pfn_offset:	split offset within the page
1182  *
1183  * Return -ENOENT if the free page is changed, otherwise 0
1184  *
1185  * It is used when the free page crosses two pageblocks with different migratetypes
1186  * at split_pfn_offset within the page. The split free page will be put into
1187  * separate migratetype lists afterwards. Otherwise, the function achieves
1188  * nothing.
1189  */
1190 int split_free_page(struct page *free_page,
1191 			unsigned int order, unsigned long split_pfn_offset)
1192 {
1193 	struct zone *zone = page_zone(free_page);
1194 	unsigned long free_page_pfn = page_to_pfn(free_page);
1195 	unsigned long pfn;
1196 	unsigned long flags;
1197 	int free_page_order;
1198 	int mt;
1199 	int ret = 0;
1200 
1201 	if (split_pfn_offset == 0)
1202 		return ret;
1203 
1204 	spin_lock_irqsave(&zone->lock, flags);
1205 
1206 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1207 		ret = -ENOENT;
1208 		goto out;
1209 	}
1210 
1211 	mt = get_pageblock_migratetype(free_page);
1212 	if (likely(!is_migrate_isolate(mt)))
1213 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1214 
1215 	del_page_from_free_list(free_page, zone, order);
1216 	for (pfn = free_page_pfn;
1217 	     pfn < free_page_pfn + (1UL << order);) {
1218 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1219 
1220 		free_page_order = min_t(unsigned int,
1221 					pfn ? __ffs(pfn) : order,
1222 					__fls(split_pfn_offset));
1223 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1224 				mt, FPI_NONE);
1225 		pfn += 1UL << free_page_order;
1226 		split_pfn_offset -= (1UL << free_page_order);
1227 		/* we have done the first part, now switch to second part */
1228 		if (split_pfn_offset == 0)
1229 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1230 	}
1231 out:
1232 	spin_unlock_irqrestore(&zone->lock, flags);
1233 	return ret;
1234 }
1235 /*
1236  * A bad page could be due to a number of fields. Instead of multiple branches,
1237  * try and check multiple fields with one check. The caller must do a detailed
1238  * check if necessary.
1239  */
1240 static inline bool page_expected_state(struct page *page,
1241 					unsigned long check_flags)
1242 {
1243 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1244 		return false;
1245 
1246 	if (unlikely((unsigned long)page->mapping |
1247 			page_ref_count(page) |
1248 #ifdef CONFIG_MEMCG
1249 			page->memcg_data |
1250 #endif
1251 			(page->flags & check_flags)))
1252 		return false;
1253 
1254 	return true;
1255 }
1256 
1257 static const char *page_bad_reason(struct page *page, unsigned long flags)
1258 {
1259 	const char *bad_reason = NULL;
1260 
1261 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1262 		bad_reason = "nonzero mapcount";
1263 	if (unlikely(page->mapping != NULL))
1264 		bad_reason = "non-NULL mapping";
1265 	if (unlikely(page_ref_count(page) != 0))
1266 		bad_reason = "nonzero _refcount";
1267 	if (unlikely(page->flags & flags)) {
1268 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1269 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1270 		else
1271 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1272 	}
1273 #ifdef CONFIG_MEMCG
1274 	if (unlikely(page->memcg_data))
1275 		bad_reason = "page still charged to cgroup";
1276 #endif
1277 	return bad_reason;
1278 }
1279 
1280 static void free_page_is_bad_report(struct page *page)
1281 {
1282 	bad_page(page,
1283 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1284 }
1285 
1286 static inline bool free_page_is_bad(struct page *page)
1287 {
1288 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1289 		return false;
1290 
1291 	/* Something has gone sideways, find it */
1292 	free_page_is_bad_report(page);
1293 	return true;
1294 }
1295 
1296 static int free_tail_pages_check(struct page *head_page, struct page *page)
1297 {
1298 	struct folio *folio = (struct folio *)head_page;
1299 	int ret = 1;
1300 
1301 	/*
1302 	 * We rely page->lru.next never has bit 0 set, unless the page
1303 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1304 	 */
1305 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1306 
1307 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1308 		ret = 0;
1309 		goto out;
1310 	}
1311 	switch (page - head_page) {
1312 	case 1:
1313 		/* the first tail page: these may be in place of ->mapping */
1314 		if (unlikely(folio_entire_mapcount(folio))) {
1315 			bad_page(page, "nonzero entire_mapcount");
1316 			goto out;
1317 		}
1318 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1319 			bad_page(page, "nonzero nr_pages_mapped");
1320 			goto out;
1321 		}
1322 		if (unlikely(atomic_read(&folio->_pincount))) {
1323 			bad_page(page, "nonzero pincount");
1324 			goto out;
1325 		}
1326 		break;
1327 	case 2:
1328 		/*
1329 		 * the second tail page: ->mapping is
1330 		 * deferred_list.next -- ignore value.
1331 		 */
1332 		break;
1333 	default:
1334 		if (page->mapping != TAIL_MAPPING) {
1335 			bad_page(page, "corrupted mapping in tail page");
1336 			goto out;
1337 		}
1338 		break;
1339 	}
1340 	if (unlikely(!PageTail(page))) {
1341 		bad_page(page, "PageTail not set");
1342 		goto out;
1343 	}
1344 	if (unlikely(compound_head(page) != head_page)) {
1345 		bad_page(page, "compound_head not consistent");
1346 		goto out;
1347 	}
1348 	ret = 0;
1349 out:
1350 	page->mapping = NULL;
1351 	clear_compound_head(page);
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Skip KASAN memory poisoning when either:
1357  *
1358  * 1. Deferred memory initialization has not yet completed,
1359  *    see the explanation below.
1360  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361  *    see the comment next to it.
1362  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363  *    see the comment next to it.
1364  * 4. The allocation is excluded from being checked due to sampling,
1365  *    see the call to kasan_unpoison_pages.
1366  *
1367  * Poisoning pages during deferred memory init will greatly lengthen the
1368  * process and cause problem in large memory systems as the deferred pages
1369  * initialization is done with interrupt disabled.
1370  *
1371  * Assuming that there will be no reference to those newly initialized
1372  * pages before they are ever allocated, this should have no effect on
1373  * KASAN memory tracking as the poison will be properly inserted at page
1374  * allocation time. The only corner case is when pages are allocated by
1375  * on-demand allocation and then freed again before the deferred pages
1376  * initialization is done, but this is not likely to happen.
1377  */
1378 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1379 {
1380 	return deferred_pages_enabled() ||
1381 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1382 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1383 	       PageSkipKASanPoison(page);
1384 }
1385 
1386 static void kernel_init_pages(struct page *page, int numpages)
1387 {
1388 	int i;
1389 
1390 	/* s390's use of memset() could override KASAN redzones. */
1391 	kasan_disable_current();
1392 	for (i = 0; i < numpages; i++)
1393 		clear_highpage_kasan_tagged(page + i);
1394 	kasan_enable_current();
1395 }
1396 
1397 static __always_inline bool free_pages_prepare(struct page *page,
1398 			unsigned int order, bool check_free, fpi_t fpi_flags)
1399 {
1400 	int bad = 0;
1401 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1402 	bool init = want_init_on_free();
1403 
1404 	VM_BUG_ON_PAGE(PageTail(page), page);
1405 
1406 	trace_mm_page_free(page, order);
1407 	kmsan_free_page(page, order);
1408 
1409 	if (unlikely(PageHWPoison(page)) && !order) {
1410 		/*
1411 		 * Do not let hwpoison pages hit pcplists/buddy
1412 		 * Untie memcg state and reset page's owner
1413 		 */
1414 		if (memcg_kmem_online() && PageMemcgKmem(page))
1415 			__memcg_kmem_uncharge_page(page, order);
1416 		reset_page_owner(page, order);
1417 		page_table_check_free(page, order);
1418 		return false;
1419 	}
1420 
1421 	/*
1422 	 * Check tail pages before head page information is cleared to
1423 	 * avoid checking PageCompound for order-0 pages.
1424 	 */
1425 	if (unlikely(order)) {
1426 		bool compound = PageCompound(page);
1427 		int i;
1428 
1429 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1430 
1431 		if (compound)
1432 			ClearPageHasHWPoisoned(page);
1433 		for (i = 1; i < (1 << order); i++) {
1434 			if (compound)
1435 				bad += free_tail_pages_check(page, page + i);
1436 			if (unlikely(free_page_is_bad(page + i))) {
1437 				bad++;
1438 				continue;
1439 			}
1440 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1441 		}
1442 	}
1443 	if (PageMappingFlags(page))
1444 		page->mapping = NULL;
1445 	if (memcg_kmem_online() && PageMemcgKmem(page))
1446 		__memcg_kmem_uncharge_page(page, order);
1447 	if (check_free && free_page_is_bad(page))
1448 		bad++;
1449 	if (bad)
1450 		return false;
1451 
1452 	page_cpupid_reset_last(page);
1453 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1454 	reset_page_owner(page, order);
1455 	page_table_check_free(page, order);
1456 
1457 	if (!PageHighMem(page)) {
1458 		debug_check_no_locks_freed(page_address(page),
1459 					   PAGE_SIZE << order);
1460 		debug_check_no_obj_freed(page_address(page),
1461 					   PAGE_SIZE << order);
1462 	}
1463 
1464 	kernel_poison_pages(page, 1 << order);
1465 
1466 	/*
1467 	 * As memory initialization might be integrated into KASAN,
1468 	 * KASAN poisoning and memory initialization code must be
1469 	 * kept together to avoid discrepancies in behavior.
1470 	 *
1471 	 * With hardware tag-based KASAN, memory tags must be set before the
1472 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1473 	 */
1474 	if (!skip_kasan_poison) {
1475 		kasan_poison_pages(page, order, init);
1476 
1477 		/* Memory is already initialized if KASAN did it internally. */
1478 		if (kasan_has_integrated_init())
1479 			init = false;
1480 	}
1481 	if (init)
1482 		kernel_init_pages(page, 1 << order);
1483 
1484 	/*
1485 	 * arch_free_page() can make the page's contents inaccessible.  s390
1486 	 * does this.  So nothing which can access the page's contents should
1487 	 * happen after this.
1488 	 */
1489 	arch_free_page(page, order);
1490 
1491 	debug_pagealloc_unmap_pages(page, 1 << order);
1492 
1493 	return true;
1494 }
1495 
1496 #ifdef CONFIG_DEBUG_VM
1497 /*
1498  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1499  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1500  * moved from pcp lists to free lists.
1501  */
1502 static bool free_pcp_prepare(struct page *page, unsigned int order)
1503 {
1504 	return free_pages_prepare(page, order, true, FPI_NONE);
1505 }
1506 
1507 /* return true if this page has an inappropriate state */
1508 static bool bulkfree_pcp_prepare(struct page *page)
1509 {
1510 	if (debug_pagealloc_enabled_static())
1511 		return free_page_is_bad(page);
1512 	else
1513 		return false;
1514 }
1515 #else
1516 /*
1517  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1518  * moving from pcp lists to free list in order to reduce overhead. With
1519  * debug_pagealloc enabled, they are checked also immediately when being freed
1520  * to the pcp lists.
1521  */
1522 static bool free_pcp_prepare(struct page *page, unsigned int order)
1523 {
1524 	if (debug_pagealloc_enabled_static())
1525 		return free_pages_prepare(page, order, true, FPI_NONE);
1526 	else
1527 		return free_pages_prepare(page, order, false, FPI_NONE);
1528 }
1529 
1530 static bool bulkfree_pcp_prepare(struct page *page)
1531 {
1532 	return free_page_is_bad(page);
1533 }
1534 #endif /* CONFIG_DEBUG_VM */
1535 
1536 /*
1537  * Frees a number of pages from the PCP lists
1538  * Assumes all pages on list are in same zone.
1539  * count is the number of pages to free.
1540  */
1541 static void free_pcppages_bulk(struct zone *zone, int count,
1542 					struct per_cpu_pages *pcp,
1543 					int pindex)
1544 {
1545 	unsigned long flags;
1546 	int min_pindex = 0;
1547 	int max_pindex = NR_PCP_LISTS - 1;
1548 	unsigned int order;
1549 	bool isolated_pageblocks;
1550 	struct page *page;
1551 
1552 	/*
1553 	 * Ensure proper count is passed which otherwise would stuck in the
1554 	 * below while (list_empty(list)) loop.
1555 	 */
1556 	count = min(pcp->count, count);
1557 
1558 	/* Ensure requested pindex is drained first. */
1559 	pindex = pindex - 1;
1560 
1561 	spin_lock_irqsave(&zone->lock, flags);
1562 	isolated_pageblocks = has_isolate_pageblock(zone);
1563 
1564 	while (count > 0) {
1565 		struct list_head *list;
1566 		int nr_pages;
1567 
1568 		/* Remove pages from lists in a round-robin fashion. */
1569 		do {
1570 			if (++pindex > max_pindex)
1571 				pindex = min_pindex;
1572 			list = &pcp->lists[pindex];
1573 			if (!list_empty(list))
1574 				break;
1575 
1576 			if (pindex == max_pindex)
1577 				max_pindex--;
1578 			if (pindex == min_pindex)
1579 				min_pindex++;
1580 		} while (1);
1581 
1582 		order = pindex_to_order(pindex);
1583 		nr_pages = 1 << order;
1584 		do {
1585 			int mt;
1586 
1587 			page = list_last_entry(list, struct page, pcp_list);
1588 			mt = get_pcppage_migratetype(page);
1589 
1590 			/* must delete to avoid corrupting pcp list */
1591 			list_del(&page->pcp_list);
1592 			count -= nr_pages;
1593 			pcp->count -= nr_pages;
1594 
1595 			if (bulkfree_pcp_prepare(page))
1596 				continue;
1597 
1598 			/* MIGRATE_ISOLATE page should not go to pcplists */
1599 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1600 			/* Pageblock could have been isolated meanwhile */
1601 			if (unlikely(isolated_pageblocks))
1602 				mt = get_pageblock_migratetype(page);
1603 
1604 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1605 			trace_mm_page_pcpu_drain(page, order, mt);
1606 		} while (count > 0 && !list_empty(list));
1607 	}
1608 
1609 	spin_unlock_irqrestore(&zone->lock, flags);
1610 }
1611 
1612 static void free_one_page(struct zone *zone,
1613 				struct page *page, unsigned long pfn,
1614 				unsigned int order,
1615 				int migratetype, fpi_t fpi_flags)
1616 {
1617 	unsigned long flags;
1618 
1619 	spin_lock_irqsave(&zone->lock, flags);
1620 	if (unlikely(has_isolate_pageblock(zone) ||
1621 		is_migrate_isolate(migratetype))) {
1622 		migratetype = get_pfnblock_migratetype(page, pfn);
1623 	}
1624 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1625 	spin_unlock_irqrestore(&zone->lock, flags);
1626 }
1627 
1628 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1629 				unsigned long zone, int nid)
1630 {
1631 	mm_zero_struct_page(page);
1632 	set_page_links(page, zone, nid, pfn);
1633 	init_page_count(page);
1634 	page_mapcount_reset(page);
1635 	page_cpupid_reset_last(page);
1636 	page_kasan_tag_reset(page);
1637 
1638 	INIT_LIST_HEAD(&page->lru);
1639 #ifdef WANT_PAGE_VIRTUAL
1640 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1641 	if (!is_highmem_idx(zone))
1642 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1643 #endif
1644 }
1645 
1646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1647 static void __meminit init_reserved_page(unsigned long pfn)
1648 {
1649 	pg_data_t *pgdat;
1650 	int nid, zid;
1651 
1652 	if (early_page_initialised(pfn))
1653 		return;
1654 
1655 	nid = early_pfn_to_nid(pfn);
1656 	pgdat = NODE_DATA(nid);
1657 
1658 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1659 		struct zone *zone = &pgdat->node_zones[zid];
1660 
1661 		if (zone_spans_pfn(zone, pfn))
1662 			break;
1663 	}
1664 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1665 }
1666 #else
1667 static inline void init_reserved_page(unsigned long pfn)
1668 {
1669 }
1670 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1671 
1672 /*
1673  * Initialised pages do not have PageReserved set. This function is
1674  * called for each range allocated by the bootmem allocator and
1675  * marks the pages PageReserved. The remaining valid pages are later
1676  * sent to the buddy page allocator.
1677  */
1678 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1679 {
1680 	unsigned long start_pfn = PFN_DOWN(start);
1681 	unsigned long end_pfn = PFN_UP(end);
1682 
1683 	for (; start_pfn < end_pfn; start_pfn++) {
1684 		if (pfn_valid(start_pfn)) {
1685 			struct page *page = pfn_to_page(start_pfn);
1686 
1687 			init_reserved_page(start_pfn);
1688 
1689 			/* Avoid false-positive PageTail() */
1690 			INIT_LIST_HEAD(&page->lru);
1691 
1692 			/*
1693 			 * no need for atomic set_bit because the struct
1694 			 * page is not visible yet so nobody should
1695 			 * access it yet.
1696 			 */
1697 			__SetPageReserved(page);
1698 		}
1699 	}
1700 }
1701 
1702 static void __free_pages_ok(struct page *page, unsigned int order,
1703 			    fpi_t fpi_flags)
1704 {
1705 	unsigned long flags;
1706 	int migratetype;
1707 	unsigned long pfn = page_to_pfn(page);
1708 	struct zone *zone = page_zone(page);
1709 
1710 	if (!free_pages_prepare(page, order, true, fpi_flags))
1711 		return;
1712 
1713 	/*
1714 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1715 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1716 	 * This will reduce the lock holding time.
1717 	 */
1718 	migratetype = get_pfnblock_migratetype(page, pfn);
1719 
1720 	spin_lock_irqsave(&zone->lock, flags);
1721 	if (unlikely(has_isolate_pageblock(zone) ||
1722 		is_migrate_isolate(migratetype))) {
1723 		migratetype = get_pfnblock_migratetype(page, pfn);
1724 	}
1725 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1726 	spin_unlock_irqrestore(&zone->lock, flags);
1727 
1728 	__count_vm_events(PGFREE, 1 << order);
1729 }
1730 
1731 void __free_pages_core(struct page *page, unsigned int order)
1732 {
1733 	unsigned int nr_pages = 1 << order;
1734 	struct page *p = page;
1735 	unsigned int loop;
1736 
1737 	/*
1738 	 * When initializing the memmap, __init_single_page() sets the refcount
1739 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1740 	 * refcount of all involved pages to 0.
1741 	 */
1742 	prefetchw(p);
1743 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1744 		prefetchw(p + 1);
1745 		__ClearPageReserved(p);
1746 		set_page_count(p, 0);
1747 	}
1748 	__ClearPageReserved(p);
1749 	set_page_count(p, 0);
1750 
1751 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1752 
1753 	/*
1754 	 * Bypass PCP and place fresh pages right to the tail, primarily
1755 	 * relevant for memory onlining.
1756 	 */
1757 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1758 }
1759 
1760 #ifdef CONFIG_NUMA
1761 
1762 /*
1763  * During memory init memblocks map pfns to nids. The search is expensive and
1764  * this caches recent lookups. The implementation of __early_pfn_to_nid
1765  * treats start/end as pfns.
1766  */
1767 struct mminit_pfnnid_cache {
1768 	unsigned long last_start;
1769 	unsigned long last_end;
1770 	int last_nid;
1771 };
1772 
1773 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1774 
1775 /*
1776  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1777  */
1778 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1779 					struct mminit_pfnnid_cache *state)
1780 {
1781 	unsigned long start_pfn, end_pfn;
1782 	int nid;
1783 
1784 	if (state->last_start <= pfn && pfn < state->last_end)
1785 		return state->last_nid;
1786 
1787 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1788 	if (nid != NUMA_NO_NODE) {
1789 		state->last_start = start_pfn;
1790 		state->last_end = end_pfn;
1791 		state->last_nid = nid;
1792 	}
1793 
1794 	return nid;
1795 }
1796 
1797 int __meminit early_pfn_to_nid(unsigned long pfn)
1798 {
1799 	static DEFINE_SPINLOCK(early_pfn_lock);
1800 	int nid;
1801 
1802 	spin_lock(&early_pfn_lock);
1803 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1804 	if (nid < 0)
1805 		nid = first_online_node;
1806 	spin_unlock(&early_pfn_lock);
1807 
1808 	return nid;
1809 }
1810 #endif /* CONFIG_NUMA */
1811 
1812 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1813 							unsigned int order)
1814 {
1815 	if (!early_page_initialised(pfn))
1816 		return;
1817 	if (!kmsan_memblock_free_pages(page, order)) {
1818 		/* KMSAN will take care of these pages. */
1819 		return;
1820 	}
1821 	__free_pages_core(page, order);
1822 }
1823 
1824 /*
1825  * Check that the whole (or subset of) a pageblock given by the interval of
1826  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1827  * with the migration of free compaction scanner.
1828  *
1829  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1830  *
1831  * It's possible on some configurations to have a setup like node0 node1 node0
1832  * i.e. it's possible that all pages within a zones range of pages do not
1833  * belong to a single zone. We assume that a border between node0 and node1
1834  * can occur within a single pageblock, but not a node0 node1 node0
1835  * interleaving within a single pageblock. It is therefore sufficient to check
1836  * the first and last page of a pageblock and avoid checking each individual
1837  * page in a pageblock.
1838  */
1839 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1840 				     unsigned long end_pfn, struct zone *zone)
1841 {
1842 	struct page *start_page;
1843 	struct page *end_page;
1844 
1845 	/* end_pfn is one past the range we are checking */
1846 	end_pfn--;
1847 
1848 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1849 		return NULL;
1850 
1851 	start_page = pfn_to_online_page(start_pfn);
1852 	if (!start_page)
1853 		return NULL;
1854 
1855 	if (page_zone(start_page) != zone)
1856 		return NULL;
1857 
1858 	end_page = pfn_to_page(end_pfn);
1859 
1860 	/* This gives a shorter code than deriving page_zone(end_page) */
1861 	if (page_zone_id(start_page) != page_zone_id(end_page))
1862 		return NULL;
1863 
1864 	return start_page;
1865 }
1866 
1867 void set_zone_contiguous(struct zone *zone)
1868 {
1869 	unsigned long block_start_pfn = zone->zone_start_pfn;
1870 	unsigned long block_end_pfn;
1871 
1872 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1873 	for (; block_start_pfn < zone_end_pfn(zone);
1874 			block_start_pfn = block_end_pfn,
1875 			 block_end_pfn += pageblock_nr_pages) {
1876 
1877 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1878 
1879 		if (!__pageblock_pfn_to_page(block_start_pfn,
1880 					     block_end_pfn, zone))
1881 			return;
1882 		cond_resched();
1883 	}
1884 
1885 	/* We confirm that there is no hole */
1886 	zone->contiguous = true;
1887 }
1888 
1889 void clear_zone_contiguous(struct zone *zone)
1890 {
1891 	zone->contiguous = false;
1892 }
1893 
1894 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1895 static void __init deferred_free_range(unsigned long pfn,
1896 				       unsigned long nr_pages)
1897 {
1898 	struct page *page;
1899 	unsigned long i;
1900 
1901 	if (!nr_pages)
1902 		return;
1903 
1904 	page = pfn_to_page(pfn);
1905 
1906 	/* Free a large naturally-aligned chunk if possible */
1907 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1908 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1909 		__free_pages_core(page, pageblock_order);
1910 		return;
1911 	}
1912 
1913 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1914 		if (pageblock_aligned(pfn))
1915 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1916 		__free_pages_core(page, 0);
1917 	}
1918 }
1919 
1920 /* Completion tracking for deferred_init_memmap() threads */
1921 static atomic_t pgdat_init_n_undone __initdata;
1922 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1923 
1924 static inline void __init pgdat_init_report_one_done(void)
1925 {
1926 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1927 		complete(&pgdat_init_all_done_comp);
1928 }
1929 
1930 /*
1931  * Returns true if page needs to be initialized or freed to buddy allocator.
1932  *
1933  * We check if a current large page is valid by only checking the validity
1934  * of the head pfn.
1935  */
1936 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1937 {
1938 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1939 		return false;
1940 	return true;
1941 }
1942 
1943 /*
1944  * Free pages to buddy allocator. Try to free aligned pages in
1945  * pageblock_nr_pages sizes.
1946  */
1947 static void __init deferred_free_pages(unsigned long pfn,
1948 				       unsigned long end_pfn)
1949 {
1950 	unsigned long nr_free = 0;
1951 
1952 	for (; pfn < end_pfn; pfn++) {
1953 		if (!deferred_pfn_valid(pfn)) {
1954 			deferred_free_range(pfn - nr_free, nr_free);
1955 			nr_free = 0;
1956 		} else if (pageblock_aligned(pfn)) {
1957 			deferred_free_range(pfn - nr_free, nr_free);
1958 			nr_free = 1;
1959 		} else {
1960 			nr_free++;
1961 		}
1962 	}
1963 	/* Free the last block of pages to allocator */
1964 	deferred_free_range(pfn - nr_free, nr_free);
1965 }
1966 
1967 /*
1968  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1969  * by performing it only once every pageblock_nr_pages.
1970  * Return number of pages initialized.
1971  */
1972 static unsigned long  __init deferred_init_pages(struct zone *zone,
1973 						 unsigned long pfn,
1974 						 unsigned long end_pfn)
1975 {
1976 	int nid = zone_to_nid(zone);
1977 	unsigned long nr_pages = 0;
1978 	int zid = zone_idx(zone);
1979 	struct page *page = NULL;
1980 
1981 	for (; pfn < end_pfn; pfn++) {
1982 		if (!deferred_pfn_valid(pfn)) {
1983 			page = NULL;
1984 			continue;
1985 		} else if (!page || pageblock_aligned(pfn)) {
1986 			page = pfn_to_page(pfn);
1987 		} else {
1988 			page++;
1989 		}
1990 		__init_single_page(page, pfn, zid, nid);
1991 		nr_pages++;
1992 	}
1993 	return (nr_pages);
1994 }
1995 
1996 /*
1997  * This function is meant to pre-load the iterator for the zone init.
1998  * Specifically it walks through the ranges until we are caught up to the
1999  * first_init_pfn value and exits there. If we never encounter the value we
2000  * return false indicating there are no valid ranges left.
2001  */
2002 static bool __init
2003 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2004 				    unsigned long *spfn, unsigned long *epfn,
2005 				    unsigned long first_init_pfn)
2006 {
2007 	u64 j;
2008 
2009 	/*
2010 	 * Start out by walking through the ranges in this zone that have
2011 	 * already been initialized. We don't need to do anything with them
2012 	 * so we just need to flush them out of the system.
2013 	 */
2014 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2015 		if (*epfn <= first_init_pfn)
2016 			continue;
2017 		if (*spfn < first_init_pfn)
2018 			*spfn = first_init_pfn;
2019 		*i = j;
2020 		return true;
2021 	}
2022 
2023 	return false;
2024 }
2025 
2026 /*
2027  * Initialize and free pages. We do it in two loops: first we initialize
2028  * struct page, then free to buddy allocator, because while we are
2029  * freeing pages we can access pages that are ahead (computing buddy
2030  * page in __free_one_page()).
2031  *
2032  * In order to try and keep some memory in the cache we have the loop
2033  * broken along max page order boundaries. This way we will not cause
2034  * any issues with the buddy page computation.
2035  */
2036 static unsigned long __init
2037 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2038 		       unsigned long *end_pfn)
2039 {
2040 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2041 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2042 	unsigned long nr_pages = 0;
2043 	u64 j = *i;
2044 
2045 	/* First we loop through and initialize the page values */
2046 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2047 		unsigned long t;
2048 
2049 		if (mo_pfn <= *start_pfn)
2050 			break;
2051 
2052 		t = min(mo_pfn, *end_pfn);
2053 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2054 
2055 		if (mo_pfn < *end_pfn) {
2056 			*start_pfn = mo_pfn;
2057 			break;
2058 		}
2059 	}
2060 
2061 	/* Reset values and now loop through freeing pages as needed */
2062 	swap(j, *i);
2063 
2064 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2065 		unsigned long t;
2066 
2067 		if (mo_pfn <= spfn)
2068 			break;
2069 
2070 		t = min(mo_pfn, epfn);
2071 		deferred_free_pages(spfn, t);
2072 
2073 		if (mo_pfn <= epfn)
2074 			break;
2075 	}
2076 
2077 	return nr_pages;
2078 }
2079 
2080 static void __init
2081 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2082 			   void *arg)
2083 {
2084 	unsigned long spfn, epfn;
2085 	struct zone *zone = arg;
2086 	u64 i;
2087 
2088 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2089 
2090 	/*
2091 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2092 	 * can avoid introducing any issues with the buddy allocator.
2093 	 */
2094 	while (spfn < end_pfn) {
2095 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2096 		cond_resched();
2097 	}
2098 }
2099 
2100 /* An arch may override for more concurrency. */
2101 __weak int __init
2102 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2103 {
2104 	return 1;
2105 }
2106 
2107 /* Initialise remaining memory on a node */
2108 static int __init deferred_init_memmap(void *data)
2109 {
2110 	pg_data_t *pgdat = data;
2111 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2112 	unsigned long spfn = 0, epfn = 0;
2113 	unsigned long first_init_pfn, flags;
2114 	unsigned long start = jiffies;
2115 	struct zone *zone;
2116 	int zid, max_threads;
2117 	u64 i;
2118 
2119 	/* Bind memory initialisation thread to a local node if possible */
2120 	if (!cpumask_empty(cpumask))
2121 		set_cpus_allowed_ptr(current, cpumask);
2122 
2123 	pgdat_resize_lock(pgdat, &flags);
2124 	first_init_pfn = pgdat->first_deferred_pfn;
2125 	if (first_init_pfn == ULONG_MAX) {
2126 		pgdat_resize_unlock(pgdat, &flags);
2127 		pgdat_init_report_one_done();
2128 		return 0;
2129 	}
2130 
2131 	/* Sanity check boundaries */
2132 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2133 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2134 	pgdat->first_deferred_pfn = ULONG_MAX;
2135 
2136 	/*
2137 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2138 	 * interrupt thread must allocate this early in boot, zone must be
2139 	 * pre-grown prior to start of deferred page initialization.
2140 	 */
2141 	pgdat_resize_unlock(pgdat, &flags);
2142 
2143 	/* Only the highest zone is deferred so find it */
2144 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2145 		zone = pgdat->node_zones + zid;
2146 		if (first_init_pfn < zone_end_pfn(zone))
2147 			break;
2148 	}
2149 
2150 	/* If the zone is empty somebody else may have cleared out the zone */
2151 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2152 						 first_init_pfn))
2153 		goto zone_empty;
2154 
2155 	max_threads = deferred_page_init_max_threads(cpumask);
2156 
2157 	while (spfn < epfn) {
2158 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2159 		struct padata_mt_job job = {
2160 			.thread_fn   = deferred_init_memmap_chunk,
2161 			.fn_arg      = zone,
2162 			.start       = spfn,
2163 			.size        = epfn_align - spfn,
2164 			.align       = PAGES_PER_SECTION,
2165 			.min_chunk   = PAGES_PER_SECTION,
2166 			.max_threads = max_threads,
2167 		};
2168 
2169 		padata_do_multithreaded(&job);
2170 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2171 						    epfn_align);
2172 	}
2173 zone_empty:
2174 	/* Sanity check that the next zone really is unpopulated */
2175 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2176 
2177 	pr_info("node %d deferred pages initialised in %ums\n",
2178 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2179 
2180 	pgdat_init_report_one_done();
2181 	return 0;
2182 }
2183 
2184 /*
2185  * If this zone has deferred pages, try to grow it by initializing enough
2186  * deferred pages to satisfy the allocation specified by order, rounded up to
2187  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2188  * of SECTION_SIZE bytes by initializing struct pages in increments of
2189  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2190  *
2191  * Return true when zone was grown, otherwise return false. We return true even
2192  * when we grow less than requested, to let the caller decide if there are
2193  * enough pages to satisfy the allocation.
2194  *
2195  * Note: We use noinline because this function is needed only during boot, and
2196  * it is called from a __ref function _deferred_grow_zone. This way we are
2197  * making sure that it is not inlined into permanent text section.
2198  */
2199 static noinline bool __init
2200 deferred_grow_zone(struct zone *zone, unsigned int order)
2201 {
2202 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2203 	pg_data_t *pgdat = zone->zone_pgdat;
2204 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2205 	unsigned long spfn, epfn, flags;
2206 	unsigned long nr_pages = 0;
2207 	u64 i;
2208 
2209 	/* Only the last zone may have deferred pages */
2210 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2211 		return false;
2212 
2213 	pgdat_resize_lock(pgdat, &flags);
2214 
2215 	/*
2216 	 * If someone grew this zone while we were waiting for spinlock, return
2217 	 * true, as there might be enough pages already.
2218 	 */
2219 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2220 		pgdat_resize_unlock(pgdat, &flags);
2221 		return true;
2222 	}
2223 
2224 	/* If the zone is empty somebody else may have cleared out the zone */
2225 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2226 						 first_deferred_pfn)) {
2227 		pgdat->first_deferred_pfn = ULONG_MAX;
2228 		pgdat_resize_unlock(pgdat, &flags);
2229 		/* Retry only once. */
2230 		return first_deferred_pfn != ULONG_MAX;
2231 	}
2232 
2233 	/*
2234 	 * Initialize and free pages in MAX_ORDER sized increments so
2235 	 * that we can avoid introducing any issues with the buddy
2236 	 * allocator.
2237 	 */
2238 	while (spfn < epfn) {
2239 		/* update our first deferred PFN for this section */
2240 		first_deferred_pfn = spfn;
2241 
2242 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2243 		touch_nmi_watchdog();
2244 
2245 		/* We should only stop along section boundaries */
2246 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2247 			continue;
2248 
2249 		/* If our quota has been met we can stop here */
2250 		if (nr_pages >= nr_pages_needed)
2251 			break;
2252 	}
2253 
2254 	pgdat->first_deferred_pfn = spfn;
2255 	pgdat_resize_unlock(pgdat, &flags);
2256 
2257 	return nr_pages > 0;
2258 }
2259 
2260 /*
2261  * deferred_grow_zone() is __init, but it is called from
2262  * get_page_from_freelist() during early boot until deferred_pages permanently
2263  * disables this call. This is why we have refdata wrapper to avoid warning,
2264  * and to ensure that the function body gets unloaded.
2265  */
2266 static bool __ref
2267 _deferred_grow_zone(struct zone *zone, unsigned int order)
2268 {
2269 	return deferred_grow_zone(zone, order);
2270 }
2271 
2272 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2273 
2274 void __init page_alloc_init_late(void)
2275 {
2276 	struct zone *zone;
2277 	int nid;
2278 
2279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2280 
2281 	/* There will be num_node_state(N_MEMORY) threads */
2282 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2283 	for_each_node_state(nid, N_MEMORY) {
2284 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2285 	}
2286 
2287 	/* Block until all are initialised */
2288 	wait_for_completion(&pgdat_init_all_done_comp);
2289 
2290 	/*
2291 	 * We initialized the rest of the deferred pages.  Permanently disable
2292 	 * on-demand struct page initialization.
2293 	 */
2294 	static_branch_disable(&deferred_pages);
2295 
2296 	/* Reinit limits that are based on free pages after the kernel is up */
2297 	files_maxfiles_init();
2298 #endif
2299 
2300 	buffer_init();
2301 
2302 	/* Discard memblock private memory */
2303 	memblock_discard();
2304 
2305 	for_each_node_state(nid, N_MEMORY)
2306 		shuffle_free_memory(NODE_DATA(nid));
2307 
2308 	for_each_populated_zone(zone)
2309 		set_zone_contiguous(zone);
2310 }
2311 
2312 #ifdef CONFIG_CMA
2313 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2314 void __init init_cma_reserved_pageblock(struct page *page)
2315 {
2316 	unsigned i = pageblock_nr_pages;
2317 	struct page *p = page;
2318 
2319 	do {
2320 		__ClearPageReserved(p);
2321 		set_page_count(p, 0);
2322 	} while (++p, --i);
2323 
2324 	set_pageblock_migratetype(page, MIGRATE_CMA);
2325 	set_page_refcounted(page);
2326 	__free_pages(page, pageblock_order);
2327 
2328 	adjust_managed_page_count(page, pageblock_nr_pages);
2329 	page_zone(page)->cma_pages += pageblock_nr_pages;
2330 }
2331 #endif
2332 
2333 /*
2334  * The order of subdivision here is critical for the IO subsystem.
2335  * Please do not alter this order without good reasons and regression
2336  * testing. Specifically, as large blocks of memory are subdivided,
2337  * the order in which smaller blocks are delivered depends on the order
2338  * they're subdivided in this function. This is the primary factor
2339  * influencing the order in which pages are delivered to the IO
2340  * subsystem according to empirical testing, and this is also justified
2341  * by considering the behavior of a buddy system containing a single
2342  * large block of memory acted on by a series of small allocations.
2343  * This behavior is a critical factor in sglist merging's success.
2344  *
2345  * -- nyc
2346  */
2347 static inline void expand(struct zone *zone, struct page *page,
2348 	int low, int high, int migratetype)
2349 {
2350 	unsigned long size = 1 << high;
2351 
2352 	while (high > low) {
2353 		high--;
2354 		size >>= 1;
2355 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2356 
2357 		/*
2358 		 * Mark as guard pages (or page), that will allow to
2359 		 * merge back to allocator when buddy will be freed.
2360 		 * Corresponding page table entries will not be touched,
2361 		 * pages will stay not present in virtual address space
2362 		 */
2363 		if (set_page_guard(zone, &page[size], high, migratetype))
2364 			continue;
2365 
2366 		add_to_free_list(&page[size], zone, high, migratetype);
2367 		set_buddy_order(&page[size], high);
2368 	}
2369 }
2370 
2371 static void check_new_page_bad(struct page *page)
2372 {
2373 	if (unlikely(page->flags & __PG_HWPOISON)) {
2374 		/* Don't complain about hwpoisoned pages */
2375 		page_mapcount_reset(page); /* remove PageBuddy */
2376 		return;
2377 	}
2378 
2379 	bad_page(page,
2380 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2381 }
2382 
2383 /*
2384  * This page is about to be returned from the page allocator
2385  */
2386 static inline int check_new_page(struct page *page)
2387 {
2388 	if (likely(page_expected_state(page,
2389 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2390 		return 0;
2391 
2392 	check_new_page_bad(page);
2393 	return 1;
2394 }
2395 
2396 static bool check_new_pages(struct page *page, unsigned int order)
2397 {
2398 	int i;
2399 	for (i = 0; i < (1 << order); i++) {
2400 		struct page *p = page + i;
2401 
2402 		if (unlikely(check_new_page(p)))
2403 			return true;
2404 	}
2405 
2406 	return false;
2407 }
2408 
2409 #ifdef CONFIG_DEBUG_VM
2410 /*
2411  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2412  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2413  * also checked when pcp lists are refilled from the free lists.
2414  */
2415 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2416 {
2417 	if (debug_pagealloc_enabled_static())
2418 		return check_new_pages(page, order);
2419 	else
2420 		return false;
2421 }
2422 
2423 static inline bool check_new_pcp(struct page *page, unsigned int order)
2424 {
2425 	return check_new_pages(page, order);
2426 }
2427 #else
2428 /*
2429  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2430  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2431  * enabled, they are also checked when being allocated from the pcp lists.
2432  */
2433 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2434 {
2435 	return check_new_pages(page, order);
2436 }
2437 static inline bool check_new_pcp(struct page *page, unsigned int order)
2438 {
2439 	if (debug_pagealloc_enabled_static())
2440 		return check_new_pages(page, order);
2441 	else
2442 		return false;
2443 }
2444 #endif /* CONFIG_DEBUG_VM */
2445 
2446 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2447 {
2448 	/* Don't skip if a software KASAN mode is enabled. */
2449 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2450 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2451 		return false;
2452 
2453 	/* Skip, if hardware tag-based KASAN is not enabled. */
2454 	if (!kasan_hw_tags_enabled())
2455 		return true;
2456 
2457 	/*
2458 	 * With hardware tag-based KASAN enabled, skip if this has been
2459 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2460 	 */
2461 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2462 }
2463 
2464 static inline bool should_skip_init(gfp_t flags)
2465 {
2466 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2467 	if (!kasan_hw_tags_enabled())
2468 		return false;
2469 
2470 	/* For hardware tag-based KASAN, skip if requested. */
2471 	return (flags & __GFP_SKIP_ZERO);
2472 }
2473 
2474 inline void post_alloc_hook(struct page *page, unsigned int order,
2475 				gfp_t gfp_flags)
2476 {
2477 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2478 			!should_skip_init(gfp_flags);
2479 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2480 	bool reset_tags = true;
2481 	int i;
2482 
2483 	set_page_private(page, 0);
2484 	set_page_refcounted(page);
2485 
2486 	arch_alloc_page(page, order);
2487 	debug_pagealloc_map_pages(page, 1 << order);
2488 
2489 	/*
2490 	 * Page unpoisoning must happen before memory initialization.
2491 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2492 	 * allocations and the page unpoisoning code will complain.
2493 	 */
2494 	kernel_unpoison_pages(page, 1 << order);
2495 
2496 	/*
2497 	 * As memory initialization might be integrated into KASAN,
2498 	 * KASAN unpoisoning and memory initializion code must be
2499 	 * kept together to avoid discrepancies in behavior.
2500 	 */
2501 
2502 	/*
2503 	 * If memory tags should be zeroed
2504 	 * (which happens only when memory should be initialized as well).
2505 	 */
2506 	if (zero_tags) {
2507 		/* Initialize both memory and memory tags. */
2508 		for (i = 0; i != 1 << order; ++i)
2509 			tag_clear_highpage(page + i);
2510 
2511 		/* Take note that memory was initialized by the loop above. */
2512 		init = false;
2513 	}
2514 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2515 		/* Try unpoisoning (or setting tags) and initializing memory. */
2516 		if (kasan_unpoison_pages(page, order, init)) {
2517 			/* Take note that memory was initialized by KASAN. */
2518 			if (kasan_has_integrated_init())
2519 				init = false;
2520 			/* Take note that memory tags were set by KASAN. */
2521 			reset_tags = false;
2522 		} else {
2523 			/*
2524 			 * KASAN decided to exclude this allocation from being
2525 			 * (un)poisoned due to sampling. Make KASAN skip
2526 			 * poisoning when the allocation is freed.
2527 			 */
2528 			SetPageSkipKASanPoison(page);
2529 		}
2530 	}
2531 	/*
2532 	 * If memory tags have not been set by KASAN, reset the page tags to
2533 	 * ensure page_address() dereferencing does not fault.
2534 	 */
2535 	if (reset_tags) {
2536 		for (i = 0; i != 1 << order; ++i)
2537 			page_kasan_tag_reset(page + i);
2538 	}
2539 	/* If memory is still not initialized, initialize it now. */
2540 	if (init)
2541 		kernel_init_pages(page, 1 << order);
2542 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2543 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2544 		SetPageSkipKASanPoison(page);
2545 
2546 	set_page_owner(page, order, gfp_flags);
2547 	page_table_check_alloc(page, order);
2548 }
2549 
2550 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2551 							unsigned int alloc_flags)
2552 {
2553 	post_alloc_hook(page, order, gfp_flags);
2554 
2555 	if (order && (gfp_flags & __GFP_COMP))
2556 		prep_compound_page(page, order);
2557 
2558 	/*
2559 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2560 	 * allocate the page. The expectation is that the caller is taking
2561 	 * steps that will free more memory. The caller should avoid the page
2562 	 * being used for !PFMEMALLOC purposes.
2563 	 */
2564 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2565 		set_page_pfmemalloc(page);
2566 	else
2567 		clear_page_pfmemalloc(page);
2568 }
2569 
2570 /*
2571  * Go through the free lists for the given migratetype and remove
2572  * the smallest available page from the freelists
2573  */
2574 static __always_inline
2575 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2576 						int migratetype)
2577 {
2578 	unsigned int current_order;
2579 	struct free_area *area;
2580 	struct page *page;
2581 
2582 	/* Find a page of the appropriate size in the preferred list */
2583 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2584 		area = &(zone->free_area[current_order]);
2585 		page = get_page_from_free_area(area, migratetype);
2586 		if (!page)
2587 			continue;
2588 		del_page_from_free_list(page, zone, current_order);
2589 		expand(zone, page, order, current_order, migratetype);
2590 		set_pcppage_migratetype(page, migratetype);
2591 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2592 				pcp_allowed_order(order) &&
2593 				migratetype < MIGRATE_PCPTYPES);
2594 		return page;
2595 	}
2596 
2597 	return NULL;
2598 }
2599 
2600 
2601 /*
2602  * This array describes the order lists are fallen back to when
2603  * the free lists for the desirable migrate type are depleted
2604  *
2605  * The other migratetypes do not have fallbacks.
2606  */
2607 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
2608 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
2609 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
2610 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
2611 };
2612 
2613 #ifdef CONFIG_CMA
2614 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2615 					unsigned int order)
2616 {
2617 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2618 }
2619 #else
2620 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2621 					unsigned int order) { return NULL; }
2622 #endif
2623 
2624 /*
2625  * Move the free pages in a range to the freelist tail of the requested type.
2626  * Note that start_page and end_pages are not aligned on a pageblock
2627  * boundary. If alignment is required, use move_freepages_block()
2628  */
2629 static int move_freepages(struct zone *zone,
2630 			  unsigned long start_pfn, unsigned long end_pfn,
2631 			  int migratetype, int *num_movable)
2632 {
2633 	struct page *page;
2634 	unsigned long pfn;
2635 	unsigned int order;
2636 	int pages_moved = 0;
2637 
2638 	for (pfn = start_pfn; pfn <= end_pfn;) {
2639 		page = pfn_to_page(pfn);
2640 		if (!PageBuddy(page)) {
2641 			/*
2642 			 * We assume that pages that could be isolated for
2643 			 * migration are movable. But we don't actually try
2644 			 * isolating, as that would be expensive.
2645 			 */
2646 			if (num_movable &&
2647 					(PageLRU(page) || __PageMovable(page)))
2648 				(*num_movable)++;
2649 			pfn++;
2650 			continue;
2651 		}
2652 
2653 		/* Make sure we are not inadvertently changing nodes */
2654 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2655 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2656 
2657 		order = buddy_order(page);
2658 		move_to_free_list(page, zone, order, migratetype);
2659 		pfn += 1 << order;
2660 		pages_moved += 1 << order;
2661 	}
2662 
2663 	return pages_moved;
2664 }
2665 
2666 int move_freepages_block(struct zone *zone, struct page *page,
2667 				int migratetype, int *num_movable)
2668 {
2669 	unsigned long start_pfn, end_pfn, pfn;
2670 
2671 	if (num_movable)
2672 		*num_movable = 0;
2673 
2674 	pfn = page_to_pfn(page);
2675 	start_pfn = pageblock_start_pfn(pfn);
2676 	end_pfn = pageblock_end_pfn(pfn) - 1;
2677 
2678 	/* Do not cross zone boundaries */
2679 	if (!zone_spans_pfn(zone, start_pfn))
2680 		start_pfn = pfn;
2681 	if (!zone_spans_pfn(zone, end_pfn))
2682 		return 0;
2683 
2684 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2685 								num_movable);
2686 }
2687 
2688 static void change_pageblock_range(struct page *pageblock_page,
2689 					int start_order, int migratetype)
2690 {
2691 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2692 
2693 	while (nr_pageblocks--) {
2694 		set_pageblock_migratetype(pageblock_page, migratetype);
2695 		pageblock_page += pageblock_nr_pages;
2696 	}
2697 }
2698 
2699 /*
2700  * When we are falling back to another migratetype during allocation, try to
2701  * steal extra free pages from the same pageblocks to satisfy further
2702  * allocations, instead of polluting multiple pageblocks.
2703  *
2704  * If we are stealing a relatively large buddy page, it is likely there will
2705  * be more free pages in the pageblock, so try to steal them all. For
2706  * reclaimable and unmovable allocations, we steal regardless of page size,
2707  * as fragmentation caused by those allocations polluting movable pageblocks
2708  * is worse than movable allocations stealing from unmovable and reclaimable
2709  * pageblocks.
2710  */
2711 static bool can_steal_fallback(unsigned int order, int start_mt)
2712 {
2713 	/*
2714 	 * Leaving this order check is intended, although there is
2715 	 * relaxed order check in next check. The reason is that
2716 	 * we can actually steal whole pageblock if this condition met,
2717 	 * but, below check doesn't guarantee it and that is just heuristic
2718 	 * so could be changed anytime.
2719 	 */
2720 	if (order >= pageblock_order)
2721 		return true;
2722 
2723 	if (order >= pageblock_order / 2 ||
2724 		start_mt == MIGRATE_RECLAIMABLE ||
2725 		start_mt == MIGRATE_UNMOVABLE ||
2726 		page_group_by_mobility_disabled)
2727 		return true;
2728 
2729 	return false;
2730 }
2731 
2732 static inline bool boost_watermark(struct zone *zone)
2733 {
2734 	unsigned long max_boost;
2735 
2736 	if (!watermark_boost_factor)
2737 		return false;
2738 	/*
2739 	 * Don't bother in zones that are unlikely to produce results.
2740 	 * On small machines, including kdump capture kernels running
2741 	 * in a small area, boosting the watermark can cause an out of
2742 	 * memory situation immediately.
2743 	 */
2744 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2745 		return false;
2746 
2747 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2748 			watermark_boost_factor, 10000);
2749 
2750 	/*
2751 	 * high watermark may be uninitialised if fragmentation occurs
2752 	 * very early in boot so do not boost. We do not fall
2753 	 * through and boost by pageblock_nr_pages as failing
2754 	 * allocations that early means that reclaim is not going
2755 	 * to help and it may even be impossible to reclaim the
2756 	 * boosted watermark resulting in a hang.
2757 	 */
2758 	if (!max_boost)
2759 		return false;
2760 
2761 	max_boost = max(pageblock_nr_pages, max_boost);
2762 
2763 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2764 		max_boost);
2765 
2766 	return true;
2767 }
2768 
2769 /*
2770  * This function implements actual steal behaviour. If order is large enough,
2771  * we can steal whole pageblock. If not, we first move freepages in this
2772  * pageblock to our migratetype and determine how many already-allocated pages
2773  * are there in the pageblock with a compatible migratetype. If at least half
2774  * of pages are free or compatible, we can change migratetype of the pageblock
2775  * itself, so pages freed in the future will be put on the correct free list.
2776  */
2777 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2778 		unsigned int alloc_flags, int start_type, bool whole_block)
2779 {
2780 	unsigned int current_order = buddy_order(page);
2781 	int free_pages, movable_pages, alike_pages;
2782 	int old_block_type;
2783 
2784 	old_block_type = get_pageblock_migratetype(page);
2785 
2786 	/*
2787 	 * This can happen due to races and we want to prevent broken
2788 	 * highatomic accounting.
2789 	 */
2790 	if (is_migrate_highatomic(old_block_type))
2791 		goto single_page;
2792 
2793 	/* Take ownership for orders >= pageblock_order */
2794 	if (current_order >= pageblock_order) {
2795 		change_pageblock_range(page, current_order, start_type);
2796 		goto single_page;
2797 	}
2798 
2799 	/*
2800 	 * Boost watermarks to increase reclaim pressure to reduce the
2801 	 * likelihood of future fallbacks. Wake kswapd now as the node
2802 	 * may be balanced overall and kswapd will not wake naturally.
2803 	 */
2804 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2805 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2806 
2807 	/* We are not allowed to try stealing from the whole block */
2808 	if (!whole_block)
2809 		goto single_page;
2810 
2811 	free_pages = move_freepages_block(zone, page, start_type,
2812 						&movable_pages);
2813 	/*
2814 	 * Determine how many pages are compatible with our allocation.
2815 	 * For movable allocation, it's the number of movable pages which
2816 	 * we just obtained. For other types it's a bit more tricky.
2817 	 */
2818 	if (start_type == MIGRATE_MOVABLE) {
2819 		alike_pages = movable_pages;
2820 	} else {
2821 		/*
2822 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2823 		 * to MOVABLE pageblock, consider all non-movable pages as
2824 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2825 		 * vice versa, be conservative since we can't distinguish the
2826 		 * exact migratetype of non-movable pages.
2827 		 */
2828 		if (old_block_type == MIGRATE_MOVABLE)
2829 			alike_pages = pageblock_nr_pages
2830 						- (free_pages + movable_pages);
2831 		else
2832 			alike_pages = 0;
2833 	}
2834 
2835 	/* moving whole block can fail due to zone boundary conditions */
2836 	if (!free_pages)
2837 		goto single_page;
2838 
2839 	/*
2840 	 * If a sufficient number of pages in the block are either free or of
2841 	 * comparable migratability as our allocation, claim the whole block.
2842 	 */
2843 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2844 			page_group_by_mobility_disabled)
2845 		set_pageblock_migratetype(page, start_type);
2846 
2847 	return;
2848 
2849 single_page:
2850 	move_to_free_list(page, zone, current_order, start_type);
2851 }
2852 
2853 /*
2854  * Check whether there is a suitable fallback freepage with requested order.
2855  * If only_stealable is true, this function returns fallback_mt only if
2856  * we can steal other freepages all together. This would help to reduce
2857  * fragmentation due to mixed migratetype pages in one pageblock.
2858  */
2859 int find_suitable_fallback(struct free_area *area, unsigned int order,
2860 			int migratetype, bool only_stealable, bool *can_steal)
2861 {
2862 	int i;
2863 	int fallback_mt;
2864 
2865 	if (area->nr_free == 0)
2866 		return -1;
2867 
2868 	*can_steal = false;
2869 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2870 		fallback_mt = fallbacks[migratetype][i];
2871 		if (free_area_empty(area, fallback_mt))
2872 			continue;
2873 
2874 		if (can_steal_fallback(order, migratetype))
2875 			*can_steal = true;
2876 
2877 		if (!only_stealable)
2878 			return fallback_mt;
2879 
2880 		if (*can_steal)
2881 			return fallback_mt;
2882 	}
2883 
2884 	return -1;
2885 }
2886 
2887 /*
2888  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2889  * there are no empty page blocks that contain a page with a suitable order
2890  */
2891 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2892 				unsigned int alloc_order)
2893 {
2894 	int mt;
2895 	unsigned long max_managed, flags;
2896 
2897 	/*
2898 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2899 	 * Check is race-prone but harmless.
2900 	 */
2901 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2902 	if (zone->nr_reserved_highatomic >= max_managed)
2903 		return;
2904 
2905 	spin_lock_irqsave(&zone->lock, flags);
2906 
2907 	/* Recheck the nr_reserved_highatomic limit under the lock */
2908 	if (zone->nr_reserved_highatomic >= max_managed)
2909 		goto out_unlock;
2910 
2911 	/* Yoink! */
2912 	mt = get_pageblock_migratetype(page);
2913 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2914 	if (migratetype_is_mergeable(mt)) {
2915 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2916 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2917 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2918 	}
2919 
2920 out_unlock:
2921 	spin_unlock_irqrestore(&zone->lock, flags);
2922 }
2923 
2924 /*
2925  * Used when an allocation is about to fail under memory pressure. This
2926  * potentially hurts the reliability of high-order allocations when under
2927  * intense memory pressure but failed atomic allocations should be easier
2928  * to recover from than an OOM.
2929  *
2930  * If @force is true, try to unreserve a pageblock even though highatomic
2931  * pageblock is exhausted.
2932  */
2933 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2934 						bool force)
2935 {
2936 	struct zonelist *zonelist = ac->zonelist;
2937 	unsigned long flags;
2938 	struct zoneref *z;
2939 	struct zone *zone;
2940 	struct page *page;
2941 	int order;
2942 	bool ret;
2943 
2944 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2945 								ac->nodemask) {
2946 		/*
2947 		 * Preserve at least one pageblock unless memory pressure
2948 		 * is really high.
2949 		 */
2950 		if (!force && zone->nr_reserved_highatomic <=
2951 					pageblock_nr_pages)
2952 			continue;
2953 
2954 		spin_lock_irqsave(&zone->lock, flags);
2955 		for (order = 0; order < MAX_ORDER; order++) {
2956 			struct free_area *area = &(zone->free_area[order]);
2957 
2958 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2959 			if (!page)
2960 				continue;
2961 
2962 			/*
2963 			 * In page freeing path, migratetype change is racy so
2964 			 * we can counter several free pages in a pageblock
2965 			 * in this loop although we changed the pageblock type
2966 			 * from highatomic to ac->migratetype. So we should
2967 			 * adjust the count once.
2968 			 */
2969 			if (is_migrate_highatomic_page(page)) {
2970 				/*
2971 				 * It should never happen but changes to
2972 				 * locking could inadvertently allow a per-cpu
2973 				 * drain to add pages to MIGRATE_HIGHATOMIC
2974 				 * while unreserving so be safe and watch for
2975 				 * underflows.
2976 				 */
2977 				zone->nr_reserved_highatomic -= min(
2978 						pageblock_nr_pages,
2979 						zone->nr_reserved_highatomic);
2980 			}
2981 
2982 			/*
2983 			 * Convert to ac->migratetype and avoid the normal
2984 			 * pageblock stealing heuristics. Minimally, the caller
2985 			 * is doing the work and needs the pages. More
2986 			 * importantly, if the block was always converted to
2987 			 * MIGRATE_UNMOVABLE or another type then the number
2988 			 * of pageblocks that cannot be completely freed
2989 			 * may increase.
2990 			 */
2991 			set_pageblock_migratetype(page, ac->migratetype);
2992 			ret = move_freepages_block(zone, page, ac->migratetype,
2993 									NULL);
2994 			if (ret) {
2995 				spin_unlock_irqrestore(&zone->lock, flags);
2996 				return ret;
2997 			}
2998 		}
2999 		spin_unlock_irqrestore(&zone->lock, flags);
3000 	}
3001 
3002 	return false;
3003 }
3004 
3005 /*
3006  * Try finding a free buddy page on the fallback list and put it on the free
3007  * list of requested migratetype, possibly along with other pages from the same
3008  * block, depending on fragmentation avoidance heuristics. Returns true if
3009  * fallback was found so that __rmqueue_smallest() can grab it.
3010  *
3011  * The use of signed ints for order and current_order is a deliberate
3012  * deviation from the rest of this file, to make the for loop
3013  * condition simpler.
3014  */
3015 static __always_inline bool
3016 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3017 						unsigned int alloc_flags)
3018 {
3019 	struct free_area *area;
3020 	int current_order;
3021 	int min_order = order;
3022 	struct page *page;
3023 	int fallback_mt;
3024 	bool can_steal;
3025 
3026 	/*
3027 	 * Do not steal pages from freelists belonging to other pageblocks
3028 	 * i.e. orders < pageblock_order. If there are no local zones free,
3029 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3030 	 */
3031 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3032 		min_order = pageblock_order;
3033 
3034 	/*
3035 	 * Find the largest available free page in the other list. This roughly
3036 	 * approximates finding the pageblock with the most free pages, which
3037 	 * would be too costly to do exactly.
3038 	 */
3039 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3040 				--current_order) {
3041 		area = &(zone->free_area[current_order]);
3042 		fallback_mt = find_suitable_fallback(area, current_order,
3043 				start_migratetype, false, &can_steal);
3044 		if (fallback_mt == -1)
3045 			continue;
3046 
3047 		/*
3048 		 * We cannot steal all free pages from the pageblock and the
3049 		 * requested migratetype is movable. In that case it's better to
3050 		 * steal and split the smallest available page instead of the
3051 		 * largest available page, because even if the next movable
3052 		 * allocation falls back into a different pageblock than this
3053 		 * one, it won't cause permanent fragmentation.
3054 		 */
3055 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3056 					&& current_order > order)
3057 			goto find_smallest;
3058 
3059 		goto do_steal;
3060 	}
3061 
3062 	return false;
3063 
3064 find_smallest:
3065 	for (current_order = order; current_order < MAX_ORDER;
3066 							current_order++) {
3067 		area = &(zone->free_area[current_order]);
3068 		fallback_mt = find_suitable_fallback(area, current_order,
3069 				start_migratetype, false, &can_steal);
3070 		if (fallback_mt != -1)
3071 			break;
3072 	}
3073 
3074 	/*
3075 	 * This should not happen - we already found a suitable fallback
3076 	 * when looking for the largest page.
3077 	 */
3078 	VM_BUG_ON(current_order == MAX_ORDER);
3079 
3080 do_steal:
3081 	page = get_page_from_free_area(area, fallback_mt);
3082 
3083 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3084 								can_steal);
3085 
3086 	trace_mm_page_alloc_extfrag(page, order, current_order,
3087 		start_migratetype, fallback_mt);
3088 
3089 	return true;
3090 
3091 }
3092 
3093 /*
3094  * Do the hard work of removing an element from the buddy allocator.
3095  * Call me with the zone->lock already held.
3096  */
3097 static __always_inline struct page *
3098 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3099 						unsigned int alloc_flags)
3100 {
3101 	struct page *page;
3102 
3103 	if (IS_ENABLED(CONFIG_CMA)) {
3104 		/*
3105 		 * Balance movable allocations between regular and CMA areas by
3106 		 * allocating from CMA when over half of the zone's free memory
3107 		 * is in the CMA area.
3108 		 */
3109 		if (alloc_flags & ALLOC_CMA &&
3110 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3111 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3112 			page = __rmqueue_cma_fallback(zone, order);
3113 			if (page)
3114 				return page;
3115 		}
3116 	}
3117 retry:
3118 	page = __rmqueue_smallest(zone, order, migratetype);
3119 	if (unlikely(!page)) {
3120 		if (alloc_flags & ALLOC_CMA)
3121 			page = __rmqueue_cma_fallback(zone, order);
3122 
3123 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3124 								alloc_flags))
3125 			goto retry;
3126 	}
3127 	return page;
3128 }
3129 
3130 /*
3131  * Obtain a specified number of elements from the buddy allocator, all under
3132  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3133  * Returns the number of new pages which were placed at *list.
3134  */
3135 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3136 			unsigned long count, struct list_head *list,
3137 			int migratetype, unsigned int alloc_flags)
3138 {
3139 	unsigned long flags;
3140 	int i, allocated = 0;
3141 
3142 	spin_lock_irqsave(&zone->lock, flags);
3143 	for (i = 0; i < count; ++i) {
3144 		struct page *page = __rmqueue(zone, order, migratetype,
3145 								alloc_flags);
3146 		if (unlikely(page == NULL))
3147 			break;
3148 
3149 		if (unlikely(check_pcp_refill(page, order)))
3150 			continue;
3151 
3152 		/*
3153 		 * Split buddy pages returned by expand() are received here in
3154 		 * physical page order. The page is added to the tail of
3155 		 * caller's list. From the callers perspective, the linked list
3156 		 * is ordered by page number under some conditions. This is
3157 		 * useful for IO devices that can forward direction from the
3158 		 * head, thus also in the physical page order. This is useful
3159 		 * for IO devices that can merge IO requests if the physical
3160 		 * pages are ordered properly.
3161 		 */
3162 		list_add_tail(&page->pcp_list, list);
3163 		allocated++;
3164 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3165 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3166 					      -(1 << order));
3167 	}
3168 
3169 	/*
3170 	 * i pages were removed from the buddy list even if some leak due
3171 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3172 	 * on i. Do not confuse with 'allocated' which is the number of
3173 	 * pages added to the pcp list.
3174 	 */
3175 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3176 	spin_unlock_irqrestore(&zone->lock, flags);
3177 	return allocated;
3178 }
3179 
3180 #ifdef CONFIG_NUMA
3181 /*
3182  * Called from the vmstat counter updater to drain pagesets of this
3183  * currently executing processor on remote nodes after they have
3184  * expired.
3185  */
3186 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3187 {
3188 	int to_drain, batch;
3189 
3190 	batch = READ_ONCE(pcp->batch);
3191 	to_drain = min(pcp->count, batch);
3192 	if (to_drain > 0) {
3193 		spin_lock(&pcp->lock);
3194 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3195 		spin_unlock(&pcp->lock);
3196 	}
3197 }
3198 #endif
3199 
3200 /*
3201  * Drain pcplists of the indicated processor and zone.
3202  */
3203 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3204 {
3205 	struct per_cpu_pages *pcp;
3206 
3207 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3208 	if (pcp->count) {
3209 		spin_lock(&pcp->lock);
3210 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3211 		spin_unlock(&pcp->lock);
3212 	}
3213 }
3214 
3215 /*
3216  * Drain pcplists of all zones on the indicated processor.
3217  */
3218 static void drain_pages(unsigned int cpu)
3219 {
3220 	struct zone *zone;
3221 
3222 	for_each_populated_zone(zone) {
3223 		drain_pages_zone(cpu, zone);
3224 	}
3225 }
3226 
3227 /*
3228  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3229  */
3230 void drain_local_pages(struct zone *zone)
3231 {
3232 	int cpu = smp_processor_id();
3233 
3234 	if (zone)
3235 		drain_pages_zone(cpu, zone);
3236 	else
3237 		drain_pages(cpu);
3238 }
3239 
3240 /*
3241  * The implementation of drain_all_pages(), exposing an extra parameter to
3242  * drain on all cpus.
3243  *
3244  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3245  * not empty. The check for non-emptiness can however race with a free to
3246  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3247  * that need the guarantee that every CPU has drained can disable the
3248  * optimizing racy check.
3249  */
3250 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3251 {
3252 	int cpu;
3253 
3254 	/*
3255 	 * Allocate in the BSS so we won't require allocation in
3256 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3257 	 */
3258 	static cpumask_t cpus_with_pcps;
3259 
3260 	/*
3261 	 * Do not drain if one is already in progress unless it's specific to
3262 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3263 	 * the drain to be complete when the call returns.
3264 	 */
3265 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3266 		if (!zone)
3267 			return;
3268 		mutex_lock(&pcpu_drain_mutex);
3269 	}
3270 
3271 	/*
3272 	 * We don't care about racing with CPU hotplug event
3273 	 * as offline notification will cause the notified
3274 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3275 	 * disables preemption as part of its processing
3276 	 */
3277 	for_each_online_cpu(cpu) {
3278 		struct per_cpu_pages *pcp;
3279 		struct zone *z;
3280 		bool has_pcps = false;
3281 
3282 		if (force_all_cpus) {
3283 			/*
3284 			 * The pcp.count check is racy, some callers need a
3285 			 * guarantee that no cpu is missed.
3286 			 */
3287 			has_pcps = true;
3288 		} else if (zone) {
3289 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3290 			if (pcp->count)
3291 				has_pcps = true;
3292 		} else {
3293 			for_each_populated_zone(z) {
3294 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3295 				if (pcp->count) {
3296 					has_pcps = true;
3297 					break;
3298 				}
3299 			}
3300 		}
3301 
3302 		if (has_pcps)
3303 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3304 		else
3305 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3306 	}
3307 
3308 	for_each_cpu(cpu, &cpus_with_pcps) {
3309 		if (zone)
3310 			drain_pages_zone(cpu, zone);
3311 		else
3312 			drain_pages(cpu);
3313 	}
3314 
3315 	mutex_unlock(&pcpu_drain_mutex);
3316 }
3317 
3318 /*
3319  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3320  *
3321  * When zone parameter is non-NULL, spill just the single zone's pages.
3322  */
3323 void drain_all_pages(struct zone *zone)
3324 {
3325 	__drain_all_pages(zone, false);
3326 }
3327 
3328 #ifdef CONFIG_HIBERNATION
3329 
3330 /*
3331  * Touch the watchdog for every WD_PAGE_COUNT pages.
3332  */
3333 #define WD_PAGE_COUNT	(128*1024)
3334 
3335 void mark_free_pages(struct zone *zone)
3336 {
3337 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3338 	unsigned long flags;
3339 	unsigned int order, t;
3340 	struct page *page;
3341 
3342 	if (zone_is_empty(zone))
3343 		return;
3344 
3345 	spin_lock_irqsave(&zone->lock, flags);
3346 
3347 	max_zone_pfn = zone_end_pfn(zone);
3348 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3349 		if (pfn_valid(pfn)) {
3350 			page = pfn_to_page(pfn);
3351 
3352 			if (!--page_count) {
3353 				touch_nmi_watchdog();
3354 				page_count = WD_PAGE_COUNT;
3355 			}
3356 
3357 			if (page_zone(page) != zone)
3358 				continue;
3359 
3360 			if (!swsusp_page_is_forbidden(page))
3361 				swsusp_unset_page_free(page);
3362 		}
3363 
3364 	for_each_migratetype_order(order, t) {
3365 		list_for_each_entry(page,
3366 				&zone->free_area[order].free_list[t], buddy_list) {
3367 			unsigned long i;
3368 
3369 			pfn = page_to_pfn(page);
3370 			for (i = 0; i < (1UL << order); i++) {
3371 				if (!--page_count) {
3372 					touch_nmi_watchdog();
3373 					page_count = WD_PAGE_COUNT;
3374 				}
3375 				swsusp_set_page_free(pfn_to_page(pfn + i));
3376 			}
3377 		}
3378 	}
3379 	spin_unlock_irqrestore(&zone->lock, flags);
3380 }
3381 #endif /* CONFIG_PM */
3382 
3383 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3384 							unsigned int order)
3385 {
3386 	int migratetype;
3387 
3388 	if (!free_pcp_prepare(page, order))
3389 		return false;
3390 
3391 	migratetype = get_pfnblock_migratetype(page, pfn);
3392 	set_pcppage_migratetype(page, migratetype);
3393 	return true;
3394 }
3395 
3396 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3397 		       bool free_high)
3398 {
3399 	int min_nr_free, max_nr_free;
3400 
3401 	/* Free everything if batch freeing high-order pages. */
3402 	if (unlikely(free_high))
3403 		return pcp->count;
3404 
3405 	/* Check for PCP disabled or boot pageset */
3406 	if (unlikely(high < batch))
3407 		return 1;
3408 
3409 	/* Leave at least pcp->batch pages on the list */
3410 	min_nr_free = batch;
3411 	max_nr_free = high - batch;
3412 
3413 	/*
3414 	 * Double the number of pages freed each time there is subsequent
3415 	 * freeing of pages without any allocation.
3416 	 */
3417 	batch <<= pcp->free_factor;
3418 	if (batch < max_nr_free)
3419 		pcp->free_factor++;
3420 	batch = clamp(batch, min_nr_free, max_nr_free);
3421 
3422 	return batch;
3423 }
3424 
3425 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3426 		       bool free_high)
3427 {
3428 	int high = READ_ONCE(pcp->high);
3429 
3430 	if (unlikely(!high || free_high))
3431 		return 0;
3432 
3433 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3434 		return high;
3435 
3436 	/*
3437 	 * If reclaim is active, limit the number of pages that can be
3438 	 * stored on pcp lists
3439 	 */
3440 	return min(READ_ONCE(pcp->batch) << 2, high);
3441 }
3442 
3443 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3444 				   struct page *page, int migratetype,
3445 				   unsigned int order)
3446 {
3447 	int high;
3448 	int pindex;
3449 	bool free_high;
3450 
3451 	__count_vm_events(PGFREE, 1 << order);
3452 	pindex = order_to_pindex(migratetype, order);
3453 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3454 	pcp->count += 1 << order;
3455 
3456 	/*
3457 	 * As high-order pages other than THP's stored on PCP can contribute
3458 	 * to fragmentation, limit the number stored when PCP is heavily
3459 	 * freeing without allocation. The remainder after bulk freeing
3460 	 * stops will be drained from vmstat refresh context.
3461 	 */
3462 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3463 
3464 	high = nr_pcp_high(pcp, zone, free_high);
3465 	if (pcp->count >= high) {
3466 		int batch = READ_ONCE(pcp->batch);
3467 
3468 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3469 	}
3470 }
3471 
3472 /*
3473  * Free a pcp page
3474  */
3475 void free_unref_page(struct page *page, unsigned int order)
3476 {
3477 	unsigned long __maybe_unused UP_flags;
3478 	struct per_cpu_pages *pcp;
3479 	struct zone *zone;
3480 	unsigned long pfn = page_to_pfn(page);
3481 	int migratetype;
3482 
3483 	if (!free_unref_page_prepare(page, pfn, order))
3484 		return;
3485 
3486 	/*
3487 	 * We only track unmovable, reclaimable and movable on pcp lists.
3488 	 * Place ISOLATE pages on the isolated list because they are being
3489 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3490 	 * areas back if necessary. Otherwise, we may have to free
3491 	 * excessively into the page allocator
3492 	 */
3493 	migratetype = get_pcppage_migratetype(page);
3494 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3495 		if (unlikely(is_migrate_isolate(migratetype))) {
3496 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3497 			return;
3498 		}
3499 		migratetype = MIGRATE_MOVABLE;
3500 	}
3501 
3502 	zone = page_zone(page);
3503 	pcp_trylock_prepare(UP_flags);
3504 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3505 	if (pcp) {
3506 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3507 		pcp_spin_unlock(pcp);
3508 	} else {
3509 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3510 	}
3511 	pcp_trylock_finish(UP_flags);
3512 }
3513 
3514 /*
3515  * Free a list of 0-order pages
3516  */
3517 void free_unref_page_list(struct list_head *list)
3518 {
3519 	unsigned long __maybe_unused UP_flags;
3520 	struct page *page, *next;
3521 	struct per_cpu_pages *pcp = NULL;
3522 	struct zone *locked_zone = NULL;
3523 	int batch_count = 0;
3524 	int migratetype;
3525 
3526 	/* Prepare pages for freeing */
3527 	list_for_each_entry_safe(page, next, list, lru) {
3528 		unsigned long pfn = page_to_pfn(page);
3529 		if (!free_unref_page_prepare(page, pfn, 0)) {
3530 			list_del(&page->lru);
3531 			continue;
3532 		}
3533 
3534 		/*
3535 		 * Free isolated pages directly to the allocator, see
3536 		 * comment in free_unref_page.
3537 		 */
3538 		migratetype = get_pcppage_migratetype(page);
3539 		if (unlikely(is_migrate_isolate(migratetype))) {
3540 			list_del(&page->lru);
3541 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3542 			continue;
3543 		}
3544 	}
3545 
3546 	list_for_each_entry_safe(page, next, list, lru) {
3547 		struct zone *zone = page_zone(page);
3548 
3549 		list_del(&page->lru);
3550 		migratetype = get_pcppage_migratetype(page);
3551 
3552 		/*
3553 		 * Either different zone requiring a different pcp lock or
3554 		 * excessive lock hold times when freeing a large list of
3555 		 * pages.
3556 		 */
3557 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3558 			if (pcp) {
3559 				pcp_spin_unlock(pcp);
3560 				pcp_trylock_finish(UP_flags);
3561 			}
3562 
3563 			batch_count = 0;
3564 
3565 			/*
3566 			 * trylock is necessary as pages may be getting freed
3567 			 * from IRQ or SoftIRQ context after an IO completion.
3568 			 */
3569 			pcp_trylock_prepare(UP_flags);
3570 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3571 			if (unlikely(!pcp)) {
3572 				pcp_trylock_finish(UP_flags);
3573 				free_one_page(zone, page, page_to_pfn(page),
3574 					      0, migratetype, FPI_NONE);
3575 				locked_zone = NULL;
3576 				continue;
3577 			}
3578 			locked_zone = zone;
3579 		}
3580 
3581 		/*
3582 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3583 		 * to the MIGRATE_MOVABLE pcp list.
3584 		 */
3585 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3586 			migratetype = MIGRATE_MOVABLE;
3587 
3588 		trace_mm_page_free_batched(page);
3589 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3590 		batch_count++;
3591 	}
3592 
3593 	if (pcp) {
3594 		pcp_spin_unlock(pcp);
3595 		pcp_trylock_finish(UP_flags);
3596 	}
3597 }
3598 
3599 /*
3600  * split_page takes a non-compound higher-order page, and splits it into
3601  * n (1<<order) sub-pages: page[0..n]
3602  * Each sub-page must be freed individually.
3603  *
3604  * Note: this is probably too low level an operation for use in drivers.
3605  * Please consult with lkml before using this in your driver.
3606  */
3607 void split_page(struct page *page, unsigned int order)
3608 {
3609 	int i;
3610 
3611 	VM_BUG_ON_PAGE(PageCompound(page), page);
3612 	VM_BUG_ON_PAGE(!page_count(page), page);
3613 
3614 	for (i = 1; i < (1 << order); i++)
3615 		set_page_refcounted(page + i);
3616 	split_page_owner(page, 1 << order);
3617 	split_page_memcg(page, 1 << order);
3618 }
3619 EXPORT_SYMBOL_GPL(split_page);
3620 
3621 int __isolate_free_page(struct page *page, unsigned int order)
3622 {
3623 	struct zone *zone = page_zone(page);
3624 	int mt = get_pageblock_migratetype(page);
3625 
3626 	if (!is_migrate_isolate(mt)) {
3627 		unsigned long watermark;
3628 		/*
3629 		 * Obey watermarks as if the page was being allocated. We can
3630 		 * emulate a high-order watermark check with a raised order-0
3631 		 * watermark, because we already know our high-order page
3632 		 * exists.
3633 		 */
3634 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3635 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3636 			return 0;
3637 
3638 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3639 	}
3640 
3641 	del_page_from_free_list(page, zone, order);
3642 
3643 	/*
3644 	 * Set the pageblock if the isolated page is at least half of a
3645 	 * pageblock
3646 	 */
3647 	if (order >= pageblock_order - 1) {
3648 		struct page *endpage = page + (1 << order) - 1;
3649 		for (; page < endpage; page += pageblock_nr_pages) {
3650 			int mt = get_pageblock_migratetype(page);
3651 			/*
3652 			 * Only change normal pageblocks (i.e., they can merge
3653 			 * with others)
3654 			 */
3655 			if (migratetype_is_mergeable(mt))
3656 				set_pageblock_migratetype(page,
3657 							  MIGRATE_MOVABLE);
3658 		}
3659 	}
3660 
3661 	return 1UL << order;
3662 }
3663 
3664 /**
3665  * __putback_isolated_page - Return a now-isolated page back where we got it
3666  * @page: Page that was isolated
3667  * @order: Order of the isolated page
3668  * @mt: The page's pageblock's migratetype
3669  *
3670  * This function is meant to return a page pulled from the free lists via
3671  * __isolate_free_page back to the free lists they were pulled from.
3672  */
3673 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3674 {
3675 	struct zone *zone = page_zone(page);
3676 
3677 	/* zone lock should be held when this function is called */
3678 	lockdep_assert_held(&zone->lock);
3679 
3680 	/* Return isolated page to tail of freelist. */
3681 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3682 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3683 }
3684 
3685 /*
3686  * Update NUMA hit/miss statistics
3687  */
3688 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3689 				   long nr_account)
3690 {
3691 #ifdef CONFIG_NUMA
3692 	enum numa_stat_item local_stat = NUMA_LOCAL;
3693 
3694 	/* skip numa counters update if numa stats is disabled */
3695 	if (!static_branch_likely(&vm_numa_stat_key))
3696 		return;
3697 
3698 	if (zone_to_nid(z) != numa_node_id())
3699 		local_stat = NUMA_OTHER;
3700 
3701 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3702 		__count_numa_events(z, NUMA_HIT, nr_account);
3703 	else {
3704 		__count_numa_events(z, NUMA_MISS, nr_account);
3705 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3706 	}
3707 	__count_numa_events(z, local_stat, nr_account);
3708 #endif
3709 }
3710 
3711 static __always_inline
3712 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3713 			   unsigned int order, unsigned int alloc_flags,
3714 			   int migratetype)
3715 {
3716 	struct page *page;
3717 	unsigned long flags;
3718 
3719 	do {
3720 		page = NULL;
3721 		spin_lock_irqsave(&zone->lock, flags);
3722 		/*
3723 		 * order-0 request can reach here when the pcplist is skipped
3724 		 * due to non-CMA allocation context. HIGHATOMIC area is
3725 		 * reserved for high-order atomic allocation, so order-0
3726 		 * request should skip it.
3727 		 */
3728 		if (alloc_flags & ALLOC_HIGHATOMIC)
3729 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3730 		if (!page) {
3731 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3732 
3733 			/*
3734 			 * If the allocation fails, allow OOM handling access
3735 			 * to HIGHATOMIC reserves as failing now is worse than
3736 			 * failing a high-order atomic allocation in the
3737 			 * future.
3738 			 */
3739 			if (!page && (alloc_flags & ALLOC_OOM))
3740 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3741 
3742 			if (!page) {
3743 				spin_unlock_irqrestore(&zone->lock, flags);
3744 				return NULL;
3745 			}
3746 		}
3747 		__mod_zone_freepage_state(zone, -(1 << order),
3748 					  get_pcppage_migratetype(page));
3749 		spin_unlock_irqrestore(&zone->lock, flags);
3750 	} while (check_new_pages(page, order));
3751 
3752 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3753 	zone_statistics(preferred_zone, zone, 1);
3754 
3755 	return page;
3756 }
3757 
3758 /* Remove page from the per-cpu list, caller must protect the list */
3759 static inline
3760 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3761 			int migratetype,
3762 			unsigned int alloc_flags,
3763 			struct per_cpu_pages *pcp,
3764 			struct list_head *list)
3765 {
3766 	struct page *page;
3767 
3768 	do {
3769 		if (list_empty(list)) {
3770 			int batch = READ_ONCE(pcp->batch);
3771 			int alloced;
3772 
3773 			/*
3774 			 * Scale batch relative to order if batch implies
3775 			 * free pages can be stored on the PCP. Batch can
3776 			 * be 1 for small zones or for boot pagesets which
3777 			 * should never store free pages as the pages may
3778 			 * belong to arbitrary zones.
3779 			 */
3780 			if (batch > 1)
3781 				batch = max(batch >> order, 2);
3782 			alloced = rmqueue_bulk(zone, order,
3783 					batch, list,
3784 					migratetype, alloc_flags);
3785 
3786 			pcp->count += alloced << order;
3787 			if (unlikely(list_empty(list)))
3788 				return NULL;
3789 		}
3790 
3791 		page = list_first_entry(list, struct page, pcp_list);
3792 		list_del(&page->pcp_list);
3793 		pcp->count -= 1 << order;
3794 	} while (check_new_pcp(page, order));
3795 
3796 	return page;
3797 }
3798 
3799 /* Lock and remove page from the per-cpu list */
3800 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3801 			struct zone *zone, unsigned int order,
3802 			int migratetype, unsigned int alloc_flags)
3803 {
3804 	struct per_cpu_pages *pcp;
3805 	struct list_head *list;
3806 	struct page *page;
3807 	unsigned long __maybe_unused UP_flags;
3808 
3809 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3810 	pcp_trylock_prepare(UP_flags);
3811 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3812 	if (!pcp) {
3813 		pcp_trylock_finish(UP_flags);
3814 		return NULL;
3815 	}
3816 
3817 	/*
3818 	 * On allocation, reduce the number of pages that are batch freed.
3819 	 * See nr_pcp_free() where free_factor is increased for subsequent
3820 	 * frees.
3821 	 */
3822 	pcp->free_factor >>= 1;
3823 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3824 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3825 	pcp_spin_unlock(pcp);
3826 	pcp_trylock_finish(UP_flags);
3827 	if (page) {
3828 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3829 		zone_statistics(preferred_zone, zone, 1);
3830 	}
3831 	return page;
3832 }
3833 
3834 /*
3835  * Allocate a page from the given zone.
3836  * Use pcplists for THP or "cheap" high-order allocations.
3837  */
3838 
3839 /*
3840  * Do not instrument rmqueue() with KMSAN. This function may call
3841  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3842  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3843  * may call rmqueue() again, which will result in a deadlock.
3844  */
3845 __no_sanitize_memory
3846 static inline
3847 struct page *rmqueue(struct zone *preferred_zone,
3848 			struct zone *zone, unsigned int order,
3849 			gfp_t gfp_flags, unsigned int alloc_flags,
3850 			int migratetype)
3851 {
3852 	struct page *page;
3853 
3854 	/*
3855 	 * We most definitely don't want callers attempting to
3856 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3857 	 */
3858 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3859 
3860 	if (likely(pcp_allowed_order(order))) {
3861 		/*
3862 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3863 		 * we need to skip it when CMA area isn't allowed.
3864 		 */
3865 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3866 				migratetype != MIGRATE_MOVABLE) {
3867 			page = rmqueue_pcplist(preferred_zone, zone, order,
3868 					migratetype, alloc_flags);
3869 			if (likely(page))
3870 				goto out;
3871 		}
3872 	}
3873 
3874 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3875 							migratetype);
3876 
3877 out:
3878 	/* Separate test+clear to avoid unnecessary atomics */
3879 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3880 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3881 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3882 	}
3883 
3884 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3885 	return page;
3886 }
3887 
3888 #ifdef CONFIG_FAIL_PAGE_ALLOC
3889 
3890 static struct {
3891 	struct fault_attr attr;
3892 
3893 	bool ignore_gfp_highmem;
3894 	bool ignore_gfp_reclaim;
3895 	u32 min_order;
3896 } fail_page_alloc = {
3897 	.attr = FAULT_ATTR_INITIALIZER,
3898 	.ignore_gfp_reclaim = true,
3899 	.ignore_gfp_highmem = true,
3900 	.min_order = 1,
3901 };
3902 
3903 static int __init setup_fail_page_alloc(char *str)
3904 {
3905 	return setup_fault_attr(&fail_page_alloc.attr, str);
3906 }
3907 __setup("fail_page_alloc=", setup_fail_page_alloc);
3908 
3909 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3910 {
3911 	int flags = 0;
3912 
3913 	if (order < fail_page_alloc.min_order)
3914 		return false;
3915 	if (gfp_mask & __GFP_NOFAIL)
3916 		return false;
3917 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3918 		return false;
3919 	if (fail_page_alloc.ignore_gfp_reclaim &&
3920 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3921 		return false;
3922 
3923 	/* See comment in __should_failslab() */
3924 	if (gfp_mask & __GFP_NOWARN)
3925 		flags |= FAULT_NOWARN;
3926 
3927 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3928 }
3929 
3930 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3931 
3932 static int __init fail_page_alloc_debugfs(void)
3933 {
3934 	umode_t mode = S_IFREG | 0600;
3935 	struct dentry *dir;
3936 
3937 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3938 					&fail_page_alloc.attr);
3939 
3940 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3941 			    &fail_page_alloc.ignore_gfp_reclaim);
3942 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3943 			    &fail_page_alloc.ignore_gfp_highmem);
3944 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3945 
3946 	return 0;
3947 }
3948 
3949 late_initcall(fail_page_alloc_debugfs);
3950 
3951 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3952 
3953 #else /* CONFIG_FAIL_PAGE_ALLOC */
3954 
3955 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3956 {
3957 	return false;
3958 }
3959 
3960 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3961 
3962 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3963 {
3964 	return __should_fail_alloc_page(gfp_mask, order);
3965 }
3966 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3967 
3968 static inline long __zone_watermark_unusable_free(struct zone *z,
3969 				unsigned int order, unsigned int alloc_flags)
3970 {
3971 	long unusable_free = (1 << order) - 1;
3972 
3973 	/*
3974 	 * If the caller does not have rights to reserves below the min
3975 	 * watermark then subtract the high-atomic reserves. This will
3976 	 * over-estimate the size of the atomic reserve but it avoids a search.
3977 	 */
3978 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3979 		unusable_free += z->nr_reserved_highatomic;
3980 
3981 #ifdef CONFIG_CMA
3982 	/* If allocation can't use CMA areas don't use free CMA pages */
3983 	if (!(alloc_flags & ALLOC_CMA))
3984 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3985 #endif
3986 
3987 	return unusable_free;
3988 }
3989 
3990 /*
3991  * Return true if free base pages are above 'mark'. For high-order checks it
3992  * will return true of the order-0 watermark is reached and there is at least
3993  * one free page of a suitable size. Checking now avoids taking the zone lock
3994  * to check in the allocation paths if no pages are free.
3995  */
3996 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3997 			 int highest_zoneidx, unsigned int alloc_flags,
3998 			 long free_pages)
3999 {
4000 	long min = mark;
4001 	int o;
4002 
4003 	/* free_pages may go negative - that's OK */
4004 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4005 
4006 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
4007 		/*
4008 		 * __GFP_HIGH allows access to 50% of the min reserve as well
4009 		 * as OOM.
4010 		 */
4011 		if (alloc_flags & ALLOC_MIN_RESERVE) {
4012 			min -= min / 2;
4013 
4014 			/*
4015 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
4016 			 * access more reserves than just __GFP_HIGH. Other
4017 			 * non-blocking allocations requests such as GFP_NOWAIT
4018 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
4019 			 * access to the min reserve.
4020 			 */
4021 			if (alloc_flags & ALLOC_NON_BLOCK)
4022 				min -= min / 4;
4023 		}
4024 
4025 		/*
4026 		 * OOM victims can try even harder than the normal reserve
4027 		 * users on the grounds that it's definitely going to be in
4028 		 * the exit path shortly and free memory. Any allocation it
4029 		 * makes during the free path will be small and short-lived.
4030 		 */
4031 		if (alloc_flags & ALLOC_OOM)
4032 			min -= min / 2;
4033 	}
4034 
4035 	/*
4036 	 * Check watermarks for an order-0 allocation request. If these
4037 	 * are not met, then a high-order request also cannot go ahead
4038 	 * even if a suitable page happened to be free.
4039 	 */
4040 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4041 		return false;
4042 
4043 	/* If this is an order-0 request then the watermark is fine */
4044 	if (!order)
4045 		return true;
4046 
4047 	/* For a high-order request, check at least one suitable page is free */
4048 	for (o = order; o < MAX_ORDER; o++) {
4049 		struct free_area *area = &z->free_area[o];
4050 		int mt;
4051 
4052 		if (!area->nr_free)
4053 			continue;
4054 
4055 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4056 			if (!free_area_empty(area, mt))
4057 				return true;
4058 		}
4059 
4060 #ifdef CONFIG_CMA
4061 		if ((alloc_flags & ALLOC_CMA) &&
4062 		    !free_area_empty(area, MIGRATE_CMA)) {
4063 			return true;
4064 		}
4065 #endif
4066 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4067 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
4068 			return true;
4069 		}
4070 	}
4071 	return false;
4072 }
4073 
4074 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4075 		      int highest_zoneidx, unsigned int alloc_flags)
4076 {
4077 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4078 					zone_page_state(z, NR_FREE_PAGES));
4079 }
4080 
4081 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4082 				unsigned long mark, int highest_zoneidx,
4083 				unsigned int alloc_flags, gfp_t gfp_mask)
4084 {
4085 	long free_pages;
4086 
4087 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4088 
4089 	/*
4090 	 * Fast check for order-0 only. If this fails then the reserves
4091 	 * need to be calculated.
4092 	 */
4093 	if (!order) {
4094 		long usable_free;
4095 		long reserved;
4096 
4097 		usable_free = free_pages;
4098 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4099 
4100 		/* reserved may over estimate high-atomic reserves. */
4101 		usable_free -= min(usable_free, reserved);
4102 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4103 			return true;
4104 	}
4105 
4106 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4107 					free_pages))
4108 		return true;
4109 
4110 	/*
4111 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
4112 	 * when checking the min watermark. The min watermark is the
4113 	 * point where boosting is ignored so that kswapd is woken up
4114 	 * when below the low watermark.
4115 	 */
4116 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
4117 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4118 		mark = z->_watermark[WMARK_MIN];
4119 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4120 					alloc_flags, free_pages);
4121 	}
4122 
4123 	return false;
4124 }
4125 
4126 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4127 			unsigned long mark, int highest_zoneidx)
4128 {
4129 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4130 
4131 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4132 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4133 
4134 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4135 								free_pages);
4136 }
4137 
4138 #ifdef CONFIG_NUMA
4139 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4140 
4141 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4142 {
4143 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4144 				node_reclaim_distance;
4145 }
4146 #else	/* CONFIG_NUMA */
4147 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4148 {
4149 	return true;
4150 }
4151 #endif	/* CONFIG_NUMA */
4152 
4153 /*
4154  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4155  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4156  * premature use of a lower zone may cause lowmem pressure problems that
4157  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4158  * probably too small. It only makes sense to spread allocations to avoid
4159  * fragmentation between the Normal and DMA32 zones.
4160  */
4161 static inline unsigned int
4162 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4163 {
4164 	unsigned int alloc_flags;
4165 
4166 	/*
4167 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4168 	 * to save a branch.
4169 	 */
4170 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4171 
4172 #ifdef CONFIG_ZONE_DMA32
4173 	if (!zone)
4174 		return alloc_flags;
4175 
4176 	if (zone_idx(zone) != ZONE_NORMAL)
4177 		return alloc_flags;
4178 
4179 	/*
4180 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4181 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4182 	 * on UMA that if Normal is populated then so is DMA32.
4183 	 */
4184 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4185 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4186 		return alloc_flags;
4187 
4188 	alloc_flags |= ALLOC_NOFRAGMENT;
4189 #endif /* CONFIG_ZONE_DMA32 */
4190 	return alloc_flags;
4191 }
4192 
4193 /* Must be called after current_gfp_context() which can change gfp_mask */
4194 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4195 						  unsigned int alloc_flags)
4196 {
4197 #ifdef CONFIG_CMA
4198 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4199 		alloc_flags |= ALLOC_CMA;
4200 #endif
4201 	return alloc_flags;
4202 }
4203 
4204 /*
4205  * get_page_from_freelist goes through the zonelist trying to allocate
4206  * a page.
4207  */
4208 static struct page *
4209 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4210 						const struct alloc_context *ac)
4211 {
4212 	struct zoneref *z;
4213 	struct zone *zone;
4214 	struct pglist_data *last_pgdat = NULL;
4215 	bool last_pgdat_dirty_ok = false;
4216 	bool no_fallback;
4217 
4218 retry:
4219 	/*
4220 	 * Scan zonelist, looking for a zone with enough free.
4221 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4222 	 */
4223 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4224 	z = ac->preferred_zoneref;
4225 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4226 					ac->nodemask) {
4227 		struct page *page;
4228 		unsigned long mark;
4229 
4230 		if (cpusets_enabled() &&
4231 			(alloc_flags & ALLOC_CPUSET) &&
4232 			!__cpuset_zone_allowed(zone, gfp_mask))
4233 				continue;
4234 		/*
4235 		 * When allocating a page cache page for writing, we
4236 		 * want to get it from a node that is within its dirty
4237 		 * limit, such that no single node holds more than its
4238 		 * proportional share of globally allowed dirty pages.
4239 		 * The dirty limits take into account the node's
4240 		 * lowmem reserves and high watermark so that kswapd
4241 		 * should be able to balance it without having to
4242 		 * write pages from its LRU list.
4243 		 *
4244 		 * XXX: For now, allow allocations to potentially
4245 		 * exceed the per-node dirty limit in the slowpath
4246 		 * (spread_dirty_pages unset) before going into reclaim,
4247 		 * which is important when on a NUMA setup the allowed
4248 		 * nodes are together not big enough to reach the
4249 		 * global limit.  The proper fix for these situations
4250 		 * will require awareness of nodes in the
4251 		 * dirty-throttling and the flusher threads.
4252 		 */
4253 		if (ac->spread_dirty_pages) {
4254 			if (last_pgdat != zone->zone_pgdat) {
4255 				last_pgdat = zone->zone_pgdat;
4256 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4257 			}
4258 
4259 			if (!last_pgdat_dirty_ok)
4260 				continue;
4261 		}
4262 
4263 		if (no_fallback && nr_online_nodes > 1 &&
4264 		    zone != ac->preferred_zoneref->zone) {
4265 			int local_nid;
4266 
4267 			/*
4268 			 * If moving to a remote node, retry but allow
4269 			 * fragmenting fallbacks. Locality is more important
4270 			 * than fragmentation avoidance.
4271 			 */
4272 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4273 			if (zone_to_nid(zone) != local_nid) {
4274 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4275 				goto retry;
4276 			}
4277 		}
4278 
4279 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4280 		if (!zone_watermark_fast(zone, order, mark,
4281 				       ac->highest_zoneidx, alloc_flags,
4282 				       gfp_mask)) {
4283 			int ret;
4284 
4285 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4286 			/*
4287 			 * Watermark failed for this zone, but see if we can
4288 			 * grow this zone if it contains deferred pages.
4289 			 */
4290 			if (deferred_pages_enabled()) {
4291 				if (_deferred_grow_zone(zone, order))
4292 					goto try_this_zone;
4293 			}
4294 #endif
4295 			/* Checked here to keep the fast path fast */
4296 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4297 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4298 				goto try_this_zone;
4299 
4300 			if (!node_reclaim_enabled() ||
4301 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4302 				continue;
4303 
4304 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4305 			switch (ret) {
4306 			case NODE_RECLAIM_NOSCAN:
4307 				/* did not scan */
4308 				continue;
4309 			case NODE_RECLAIM_FULL:
4310 				/* scanned but unreclaimable */
4311 				continue;
4312 			default:
4313 				/* did we reclaim enough */
4314 				if (zone_watermark_ok(zone, order, mark,
4315 					ac->highest_zoneidx, alloc_flags))
4316 					goto try_this_zone;
4317 
4318 				continue;
4319 			}
4320 		}
4321 
4322 try_this_zone:
4323 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4324 				gfp_mask, alloc_flags, ac->migratetype);
4325 		if (page) {
4326 			prep_new_page(page, order, gfp_mask, alloc_flags);
4327 
4328 			/*
4329 			 * If this is a high-order atomic allocation then check
4330 			 * if the pageblock should be reserved for the future
4331 			 */
4332 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4333 				reserve_highatomic_pageblock(page, zone, order);
4334 
4335 			return page;
4336 		} else {
4337 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4338 			/* Try again if zone has deferred pages */
4339 			if (deferred_pages_enabled()) {
4340 				if (_deferred_grow_zone(zone, order))
4341 					goto try_this_zone;
4342 			}
4343 #endif
4344 		}
4345 	}
4346 
4347 	/*
4348 	 * It's possible on a UMA machine to get through all zones that are
4349 	 * fragmented. If avoiding fragmentation, reset and try again.
4350 	 */
4351 	if (no_fallback) {
4352 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4353 		goto retry;
4354 	}
4355 
4356 	return NULL;
4357 }
4358 
4359 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4360 {
4361 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4362 
4363 	/*
4364 	 * This documents exceptions given to allocations in certain
4365 	 * contexts that are allowed to allocate outside current's set
4366 	 * of allowed nodes.
4367 	 */
4368 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4369 		if (tsk_is_oom_victim(current) ||
4370 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4371 			filter &= ~SHOW_MEM_FILTER_NODES;
4372 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4373 		filter &= ~SHOW_MEM_FILTER_NODES;
4374 
4375 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4376 }
4377 
4378 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4379 {
4380 	struct va_format vaf;
4381 	va_list args;
4382 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4383 
4384 	if ((gfp_mask & __GFP_NOWARN) ||
4385 	     !__ratelimit(&nopage_rs) ||
4386 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4387 		return;
4388 
4389 	va_start(args, fmt);
4390 	vaf.fmt = fmt;
4391 	vaf.va = &args;
4392 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4393 			current->comm, &vaf, gfp_mask, &gfp_mask,
4394 			nodemask_pr_args(nodemask));
4395 	va_end(args);
4396 
4397 	cpuset_print_current_mems_allowed();
4398 	pr_cont("\n");
4399 	dump_stack();
4400 	warn_alloc_show_mem(gfp_mask, nodemask);
4401 }
4402 
4403 static inline struct page *
4404 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4405 			      unsigned int alloc_flags,
4406 			      const struct alloc_context *ac)
4407 {
4408 	struct page *page;
4409 
4410 	page = get_page_from_freelist(gfp_mask, order,
4411 			alloc_flags|ALLOC_CPUSET, ac);
4412 	/*
4413 	 * fallback to ignore cpuset restriction if our nodes
4414 	 * are depleted
4415 	 */
4416 	if (!page)
4417 		page = get_page_from_freelist(gfp_mask, order,
4418 				alloc_flags, ac);
4419 
4420 	return page;
4421 }
4422 
4423 static inline struct page *
4424 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4425 	const struct alloc_context *ac, unsigned long *did_some_progress)
4426 {
4427 	struct oom_control oc = {
4428 		.zonelist = ac->zonelist,
4429 		.nodemask = ac->nodemask,
4430 		.memcg = NULL,
4431 		.gfp_mask = gfp_mask,
4432 		.order = order,
4433 	};
4434 	struct page *page;
4435 
4436 	*did_some_progress = 0;
4437 
4438 	/*
4439 	 * Acquire the oom lock.  If that fails, somebody else is
4440 	 * making progress for us.
4441 	 */
4442 	if (!mutex_trylock(&oom_lock)) {
4443 		*did_some_progress = 1;
4444 		schedule_timeout_uninterruptible(1);
4445 		return NULL;
4446 	}
4447 
4448 	/*
4449 	 * Go through the zonelist yet one more time, keep very high watermark
4450 	 * here, this is only to catch a parallel oom killing, we must fail if
4451 	 * we're still under heavy pressure. But make sure that this reclaim
4452 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4453 	 * allocation which will never fail due to oom_lock already held.
4454 	 */
4455 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4456 				      ~__GFP_DIRECT_RECLAIM, order,
4457 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4458 	if (page)
4459 		goto out;
4460 
4461 	/* Coredumps can quickly deplete all memory reserves */
4462 	if (current->flags & PF_DUMPCORE)
4463 		goto out;
4464 	/* The OOM killer will not help higher order allocs */
4465 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4466 		goto out;
4467 	/*
4468 	 * We have already exhausted all our reclaim opportunities without any
4469 	 * success so it is time to admit defeat. We will skip the OOM killer
4470 	 * because it is very likely that the caller has a more reasonable
4471 	 * fallback than shooting a random task.
4472 	 *
4473 	 * The OOM killer may not free memory on a specific node.
4474 	 */
4475 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4476 		goto out;
4477 	/* The OOM killer does not needlessly kill tasks for lowmem */
4478 	if (ac->highest_zoneidx < ZONE_NORMAL)
4479 		goto out;
4480 	if (pm_suspended_storage())
4481 		goto out;
4482 	/*
4483 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4484 	 * other request to make a forward progress.
4485 	 * We are in an unfortunate situation where out_of_memory cannot
4486 	 * do much for this context but let's try it to at least get
4487 	 * access to memory reserved if the current task is killed (see
4488 	 * out_of_memory). Once filesystems are ready to handle allocation
4489 	 * failures more gracefully we should just bail out here.
4490 	 */
4491 
4492 	/* Exhausted what can be done so it's blame time */
4493 	if (out_of_memory(&oc) ||
4494 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4495 		*did_some_progress = 1;
4496 
4497 		/*
4498 		 * Help non-failing allocations by giving them access to memory
4499 		 * reserves
4500 		 */
4501 		if (gfp_mask & __GFP_NOFAIL)
4502 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4503 					ALLOC_NO_WATERMARKS, ac);
4504 	}
4505 out:
4506 	mutex_unlock(&oom_lock);
4507 	return page;
4508 }
4509 
4510 /*
4511  * Maximum number of compaction retries with a progress before OOM
4512  * killer is consider as the only way to move forward.
4513  */
4514 #define MAX_COMPACT_RETRIES 16
4515 
4516 #ifdef CONFIG_COMPACTION
4517 /* Try memory compaction for high-order allocations before reclaim */
4518 static struct page *
4519 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4520 		unsigned int alloc_flags, const struct alloc_context *ac,
4521 		enum compact_priority prio, enum compact_result *compact_result)
4522 {
4523 	struct page *page = NULL;
4524 	unsigned long pflags;
4525 	unsigned int noreclaim_flag;
4526 
4527 	if (!order)
4528 		return NULL;
4529 
4530 	psi_memstall_enter(&pflags);
4531 	delayacct_compact_start();
4532 	noreclaim_flag = memalloc_noreclaim_save();
4533 
4534 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4535 								prio, &page);
4536 
4537 	memalloc_noreclaim_restore(noreclaim_flag);
4538 	psi_memstall_leave(&pflags);
4539 	delayacct_compact_end();
4540 
4541 	if (*compact_result == COMPACT_SKIPPED)
4542 		return NULL;
4543 	/*
4544 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4545 	 * count a compaction stall
4546 	 */
4547 	count_vm_event(COMPACTSTALL);
4548 
4549 	/* Prep a captured page if available */
4550 	if (page)
4551 		prep_new_page(page, order, gfp_mask, alloc_flags);
4552 
4553 	/* Try get a page from the freelist if available */
4554 	if (!page)
4555 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4556 
4557 	if (page) {
4558 		struct zone *zone = page_zone(page);
4559 
4560 		zone->compact_blockskip_flush = false;
4561 		compaction_defer_reset(zone, order, true);
4562 		count_vm_event(COMPACTSUCCESS);
4563 		return page;
4564 	}
4565 
4566 	/*
4567 	 * It's bad if compaction run occurs and fails. The most likely reason
4568 	 * is that pages exist, but not enough to satisfy watermarks.
4569 	 */
4570 	count_vm_event(COMPACTFAIL);
4571 
4572 	cond_resched();
4573 
4574 	return NULL;
4575 }
4576 
4577 static inline bool
4578 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4579 		     enum compact_result compact_result,
4580 		     enum compact_priority *compact_priority,
4581 		     int *compaction_retries)
4582 {
4583 	int max_retries = MAX_COMPACT_RETRIES;
4584 	int min_priority;
4585 	bool ret = false;
4586 	int retries = *compaction_retries;
4587 	enum compact_priority priority = *compact_priority;
4588 
4589 	if (!order)
4590 		return false;
4591 
4592 	if (fatal_signal_pending(current))
4593 		return false;
4594 
4595 	if (compaction_made_progress(compact_result))
4596 		(*compaction_retries)++;
4597 
4598 	/*
4599 	 * compaction considers all the zone as desperately out of memory
4600 	 * so it doesn't really make much sense to retry except when the
4601 	 * failure could be caused by insufficient priority
4602 	 */
4603 	if (compaction_failed(compact_result))
4604 		goto check_priority;
4605 
4606 	/*
4607 	 * compaction was skipped because there are not enough order-0 pages
4608 	 * to work with, so we retry only if it looks like reclaim can help.
4609 	 */
4610 	if (compaction_needs_reclaim(compact_result)) {
4611 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4612 		goto out;
4613 	}
4614 
4615 	/*
4616 	 * make sure the compaction wasn't deferred or didn't bail out early
4617 	 * due to locks contention before we declare that we should give up.
4618 	 * But the next retry should use a higher priority if allowed, so
4619 	 * we don't just keep bailing out endlessly.
4620 	 */
4621 	if (compaction_withdrawn(compact_result)) {
4622 		goto check_priority;
4623 	}
4624 
4625 	/*
4626 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4627 	 * costly ones because they are de facto nofail and invoke OOM
4628 	 * killer to move on while costly can fail and users are ready
4629 	 * to cope with that. 1/4 retries is rather arbitrary but we
4630 	 * would need much more detailed feedback from compaction to
4631 	 * make a better decision.
4632 	 */
4633 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4634 		max_retries /= 4;
4635 	if (*compaction_retries <= max_retries) {
4636 		ret = true;
4637 		goto out;
4638 	}
4639 
4640 	/*
4641 	 * Make sure there are attempts at the highest priority if we exhausted
4642 	 * all retries or failed at the lower priorities.
4643 	 */
4644 check_priority:
4645 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4646 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4647 
4648 	if (*compact_priority > min_priority) {
4649 		(*compact_priority)--;
4650 		*compaction_retries = 0;
4651 		ret = true;
4652 	}
4653 out:
4654 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4655 	return ret;
4656 }
4657 #else
4658 static inline struct page *
4659 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4660 		unsigned int alloc_flags, const struct alloc_context *ac,
4661 		enum compact_priority prio, enum compact_result *compact_result)
4662 {
4663 	*compact_result = COMPACT_SKIPPED;
4664 	return NULL;
4665 }
4666 
4667 static inline bool
4668 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4669 		     enum compact_result compact_result,
4670 		     enum compact_priority *compact_priority,
4671 		     int *compaction_retries)
4672 {
4673 	struct zone *zone;
4674 	struct zoneref *z;
4675 
4676 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4677 		return false;
4678 
4679 	/*
4680 	 * There are setups with compaction disabled which would prefer to loop
4681 	 * inside the allocator rather than hit the oom killer prematurely.
4682 	 * Let's give them a good hope and keep retrying while the order-0
4683 	 * watermarks are OK.
4684 	 */
4685 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4686 				ac->highest_zoneidx, ac->nodemask) {
4687 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4688 					ac->highest_zoneidx, alloc_flags))
4689 			return true;
4690 	}
4691 	return false;
4692 }
4693 #endif /* CONFIG_COMPACTION */
4694 
4695 #ifdef CONFIG_LOCKDEP
4696 static struct lockdep_map __fs_reclaim_map =
4697 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4698 
4699 static bool __need_reclaim(gfp_t gfp_mask)
4700 {
4701 	/* no reclaim without waiting on it */
4702 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4703 		return false;
4704 
4705 	/* this guy won't enter reclaim */
4706 	if (current->flags & PF_MEMALLOC)
4707 		return false;
4708 
4709 	if (gfp_mask & __GFP_NOLOCKDEP)
4710 		return false;
4711 
4712 	return true;
4713 }
4714 
4715 void __fs_reclaim_acquire(unsigned long ip)
4716 {
4717 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4718 }
4719 
4720 void __fs_reclaim_release(unsigned long ip)
4721 {
4722 	lock_release(&__fs_reclaim_map, ip);
4723 }
4724 
4725 void fs_reclaim_acquire(gfp_t gfp_mask)
4726 {
4727 	gfp_mask = current_gfp_context(gfp_mask);
4728 
4729 	if (__need_reclaim(gfp_mask)) {
4730 		if (gfp_mask & __GFP_FS)
4731 			__fs_reclaim_acquire(_RET_IP_);
4732 
4733 #ifdef CONFIG_MMU_NOTIFIER
4734 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4735 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4736 #endif
4737 
4738 	}
4739 }
4740 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4741 
4742 void fs_reclaim_release(gfp_t gfp_mask)
4743 {
4744 	gfp_mask = current_gfp_context(gfp_mask);
4745 
4746 	if (__need_reclaim(gfp_mask)) {
4747 		if (gfp_mask & __GFP_FS)
4748 			__fs_reclaim_release(_RET_IP_);
4749 	}
4750 }
4751 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4752 #endif
4753 
4754 /*
4755  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4756  * have been rebuilt so allocation retries. Reader side does not lock and
4757  * retries the allocation if zonelist changes. Writer side is protected by the
4758  * embedded spin_lock.
4759  */
4760 static DEFINE_SEQLOCK(zonelist_update_seq);
4761 
4762 static unsigned int zonelist_iter_begin(void)
4763 {
4764 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4765 		return read_seqbegin(&zonelist_update_seq);
4766 
4767 	return 0;
4768 }
4769 
4770 static unsigned int check_retry_zonelist(unsigned int seq)
4771 {
4772 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4773 		return read_seqretry(&zonelist_update_seq, seq);
4774 
4775 	return seq;
4776 }
4777 
4778 /* Perform direct synchronous page reclaim */
4779 static unsigned long
4780 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4781 					const struct alloc_context *ac)
4782 {
4783 	unsigned int noreclaim_flag;
4784 	unsigned long progress;
4785 
4786 	cond_resched();
4787 
4788 	/* We now go into synchronous reclaim */
4789 	cpuset_memory_pressure_bump();
4790 	fs_reclaim_acquire(gfp_mask);
4791 	noreclaim_flag = memalloc_noreclaim_save();
4792 
4793 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4794 								ac->nodemask);
4795 
4796 	memalloc_noreclaim_restore(noreclaim_flag);
4797 	fs_reclaim_release(gfp_mask);
4798 
4799 	cond_resched();
4800 
4801 	return progress;
4802 }
4803 
4804 /* The really slow allocator path where we enter direct reclaim */
4805 static inline struct page *
4806 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4807 		unsigned int alloc_flags, const struct alloc_context *ac,
4808 		unsigned long *did_some_progress)
4809 {
4810 	struct page *page = NULL;
4811 	unsigned long pflags;
4812 	bool drained = false;
4813 
4814 	psi_memstall_enter(&pflags);
4815 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4816 	if (unlikely(!(*did_some_progress)))
4817 		goto out;
4818 
4819 retry:
4820 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4821 
4822 	/*
4823 	 * If an allocation failed after direct reclaim, it could be because
4824 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4825 	 * Shrink them and try again
4826 	 */
4827 	if (!page && !drained) {
4828 		unreserve_highatomic_pageblock(ac, false);
4829 		drain_all_pages(NULL);
4830 		drained = true;
4831 		goto retry;
4832 	}
4833 out:
4834 	psi_memstall_leave(&pflags);
4835 
4836 	return page;
4837 }
4838 
4839 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4840 			     const struct alloc_context *ac)
4841 {
4842 	struct zoneref *z;
4843 	struct zone *zone;
4844 	pg_data_t *last_pgdat = NULL;
4845 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4846 
4847 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4848 					ac->nodemask) {
4849 		if (!managed_zone(zone))
4850 			continue;
4851 		if (last_pgdat != zone->zone_pgdat) {
4852 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4853 			last_pgdat = zone->zone_pgdat;
4854 		}
4855 	}
4856 }
4857 
4858 static inline unsigned int
4859 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4860 {
4861 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4862 
4863 	/*
4864 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4865 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4866 	 * to save two branches.
4867 	 */
4868 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4869 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4870 
4871 	/*
4872 	 * The caller may dip into page reserves a bit more if the caller
4873 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4874 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4875 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4876 	 */
4877 	alloc_flags |= (__force int)
4878 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4879 
4880 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4881 		/*
4882 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4883 		 * if it can't schedule.
4884 		 */
4885 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4886 			alloc_flags |= ALLOC_NON_BLOCK;
4887 
4888 			if (order > 0)
4889 				alloc_flags |= ALLOC_HIGHATOMIC;
4890 		}
4891 
4892 		/*
4893 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4894 		 * GFP_ATOMIC) rather than fail, see the comment for
4895 		 * __cpuset_node_allowed().
4896 		 */
4897 		if (alloc_flags & ALLOC_MIN_RESERVE)
4898 			alloc_flags &= ~ALLOC_CPUSET;
4899 	} else if (unlikely(rt_task(current)) && in_task())
4900 		alloc_flags |= ALLOC_MIN_RESERVE;
4901 
4902 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4903 
4904 	return alloc_flags;
4905 }
4906 
4907 static bool oom_reserves_allowed(struct task_struct *tsk)
4908 {
4909 	if (!tsk_is_oom_victim(tsk))
4910 		return false;
4911 
4912 	/*
4913 	 * !MMU doesn't have oom reaper so give access to memory reserves
4914 	 * only to the thread with TIF_MEMDIE set
4915 	 */
4916 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4917 		return false;
4918 
4919 	return true;
4920 }
4921 
4922 /*
4923  * Distinguish requests which really need access to full memory
4924  * reserves from oom victims which can live with a portion of it
4925  */
4926 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4927 {
4928 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4929 		return 0;
4930 	if (gfp_mask & __GFP_MEMALLOC)
4931 		return ALLOC_NO_WATERMARKS;
4932 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4933 		return ALLOC_NO_WATERMARKS;
4934 	if (!in_interrupt()) {
4935 		if (current->flags & PF_MEMALLOC)
4936 			return ALLOC_NO_WATERMARKS;
4937 		else if (oom_reserves_allowed(current))
4938 			return ALLOC_OOM;
4939 	}
4940 
4941 	return 0;
4942 }
4943 
4944 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4945 {
4946 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4947 }
4948 
4949 /*
4950  * Checks whether it makes sense to retry the reclaim to make a forward progress
4951  * for the given allocation request.
4952  *
4953  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4954  * without success, or when we couldn't even meet the watermark if we
4955  * reclaimed all remaining pages on the LRU lists.
4956  *
4957  * Returns true if a retry is viable or false to enter the oom path.
4958  */
4959 static inline bool
4960 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4961 		     struct alloc_context *ac, int alloc_flags,
4962 		     bool did_some_progress, int *no_progress_loops)
4963 {
4964 	struct zone *zone;
4965 	struct zoneref *z;
4966 	bool ret = false;
4967 
4968 	/*
4969 	 * Costly allocations might have made a progress but this doesn't mean
4970 	 * their order will become available due to high fragmentation so
4971 	 * always increment the no progress counter for them
4972 	 */
4973 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4974 		*no_progress_loops = 0;
4975 	else
4976 		(*no_progress_loops)++;
4977 
4978 	/*
4979 	 * Make sure we converge to OOM if we cannot make any progress
4980 	 * several times in the row.
4981 	 */
4982 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4983 		/* Before OOM, exhaust highatomic_reserve */
4984 		return unreserve_highatomic_pageblock(ac, true);
4985 	}
4986 
4987 	/*
4988 	 * Keep reclaiming pages while there is a chance this will lead
4989 	 * somewhere.  If none of the target zones can satisfy our allocation
4990 	 * request even if all reclaimable pages are considered then we are
4991 	 * screwed and have to go OOM.
4992 	 */
4993 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4994 				ac->highest_zoneidx, ac->nodemask) {
4995 		unsigned long available;
4996 		unsigned long reclaimable;
4997 		unsigned long min_wmark = min_wmark_pages(zone);
4998 		bool wmark;
4999 
5000 		available = reclaimable = zone_reclaimable_pages(zone);
5001 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
5002 
5003 		/*
5004 		 * Would the allocation succeed if we reclaimed all
5005 		 * reclaimable pages?
5006 		 */
5007 		wmark = __zone_watermark_ok(zone, order, min_wmark,
5008 				ac->highest_zoneidx, alloc_flags, available);
5009 		trace_reclaim_retry_zone(z, order, reclaimable,
5010 				available, min_wmark, *no_progress_loops, wmark);
5011 		if (wmark) {
5012 			ret = true;
5013 			break;
5014 		}
5015 	}
5016 
5017 	/*
5018 	 * Memory allocation/reclaim might be called from a WQ context and the
5019 	 * current implementation of the WQ concurrency control doesn't
5020 	 * recognize that a particular WQ is congested if the worker thread is
5021 	 * looping without ever sleeping. Therefore we have to do a short sleep
5022 	 * here rather than calling cond_resched().
5023 	 */
5024 	if (current->flags & PF_WQ_WORKER)
5025 		schedule_timeout_uninterruptible(1);
5026 	else
5027 		cond_resched();
5028 	return ret;
5029 }
5030 
5031 static inline bool
5032 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5033 {
5034 	/*
5035 	 * It's possible that cpuset's mems_allowed and the nodemask from
5036 	 * mempolicy don't intersect. This should be normally dealt with by
5037 	 * policy_nodemask(), but it's possible to race with cpuset update in
5038 	 * such a way the check therein was true, and then it became false
5039 	 * before we got our cpuset_mems_cookie here.
5040 	 * This assumes that for all allocations, ac->nodemask can come only
5041 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5042 	 * when it does not intersect with the cpuset restrictions) or the
5043 	 * caller can deal with a violated nodemask.
5044 	 */
5045 	if (cpusets_enabled() && ac->nodemask &&
5046 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5047 		ac->nodemask = NULL;
5048 		return true;
5049 	}
5050 
5051 	/*
5052 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5053 	 * possible to race with parallel threads in such a way that our
5054 	 * allocation can fail while the mask is being updated. If we are about
5055 	 * to fail, check if the cpuset changed during allocation and if so,
5056 	 * retry.
5057 	 */
5058 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5059 		return true;
5060 
5061 	return false;
5062 }
5063 
5064 static inline struct page *
5065 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5066 						struct alloc_context *ac)
5067 {
5068 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5069 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5070 	struct page *page = NULL;
5071 	unsigned int alloc_flags;
5072 	unsigned long did_some_progress;
5073 	enum compact_priority compact_priority;
5074 	enum compact_result compact_result;
5075 	int compaction_retries;
5076 	int no_progress_loops;
5077 	unsigned int cpuset_mems_cookie;
5078 	unsigned int zonelist_iter_cookie;
5079 	int reserve_flags;
5080 
5081 restart:
5082 	compaction_retries = 0;
5083 	no_progress_loops = 0;
5084 	compact_priority = DEF_COMPACT_PRIORITY;
5085 	cpuset_mems_cookie = read_mems_allowed_begin();
5086 	zonelist_iter_cookie = zonelist_iter_begin();
5087 
5088 	/*
5089 	 * The fast path uses conservative alloc_flags to succeed only until
5090 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5091 	 * alloc_flags precisely. So we do that now.
5092 	 */
5093 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5094 
5095 	/*
5096 	 * We need to recalculate the starting point for the zonelist iterator
5097 	 * because we might have used different nodemask in the fast path, or
5098 	 * there was a cpuset modification and we are retrying - otherwise we
5099 	 * could end up iterating over non-eligible zones endlessly.
5100 	 */
5101 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5102 					ac->highest_zoneidx, ac->nodemask);
5103 	if (!ac->preferred_zoneref->zone)
5104 		goto nopage;
5105 
5106 	/*
5107 	 * Check for insane configurations where the cpuset doesn't contain
5108 	 * any suitable zone to satisfy the request - e.g. non-movable
5109 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5110 	 */
5111 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5112 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5113 					ac->highest_zoneidx,
5114 					&cpuset_current_mems_allowed);
5115 		if (!z->zone)
5116 			goto nopage;
5117 	}
5118 
5119 	if (alloc_flags & ALLOC_KSWAPD)
5120 		wake_all_kswapds(order, gfp_mask, ac);
5121 
5122 	/*
5123 	 * The adjusted alloc_flags might result in immediate success, so try
5124 	 * that first
5125 	 */
5126 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5127 	if (page)
5128 		goto got_pg;
5129 
5130 	/*
5131 	 * For costly allocations, try direct compaction first, as it's likely
5132 	 * that we have enough base pages and don't need to reclaim. For non-
5133 	 * movable high-order allocations, do that as well, as compaction will
5134 	 * try prevent permanent fragmentation by migrating from blocks of the
5135 	 * same migratetype.
5136 	 * Don't try this for allocations that are allowed to ignore
5137 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5138 	 */
5139 	if (can_direct_reclaim &&
5140 			(costly_order ||
5141 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5142 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5143 		page = __alloc_pages_direct_compact(gfp_mask, order,
5144 						alloc_flags, ac,
5145 						INIT_COMPACT_PRIORITY,
5146 						&compact_result);
5147 		if (page)
5148 			goto got_pg;
5149 
5150 		/*
5151 		 * Checks for costly allocations with __GFP_NORETRY, which
5152 		 * includes some THP page fault allocations
5153 		 */
5154 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5155 			/*
5156 			 * If allocating entire pageblock(s) and compaction
5157 			 * failed because all zones are below low watermarks
5158 			 * or is prohibited because it recently failed at this
5159 			 * order, fail immediately unless the allocator has
5160 			 * requested compaction and reclaim retry.
5161 			 *
5162 			 * Reclaim is
5163 			 *  - potentially very expensive because zones are far
5164 			 *    below their low watermarks or this is part of very
5165 			 *    bursty high order allocations,
5166 			 *  - not guaranteed to help because isolate_freepages()
5167 			 *    may not iterate over freed pages as part of its
5168 			 *    linear scan, and
5169 			 *  - unlikely to make entire pageblocks free on its
5170 			 *    own.
5171 			 */
5172 			if (compact_result == COMPACT_SKIPPED ||
5173 			    compact_result == COMPACT_DEFERRED)
5174 				goto nopage;
5175 
5176 			/*
5177 			 * Looks like reclaim/compaction is worth trying, but
5178 			 * sync compaction could be very expensive, so keep
5179 			 * using async compaction.
5180 			 */
5181 			compact_priority = INIT_COMPACT_PRIORITY;
5182 		}
5183 	}
5184 
5185 retry:
5186 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5187 	if (alloc_flags & ALLOC_KSWAPD)
5188 		wake_all_kswapds(order, gfp_mask, ac);
5189 
5190 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5191 	if (reserve_flags)
5192 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5193 					  (alloc_flags & ALLOC_KSWAPD);
5194 
5195 	/*
5196 	 * Reset the nodemask and zonelist iterators if memory policies can be
5197 	 * ignored. These allocations are high priority and system rather than
5198 	 * user oriented.
5199 	 */
5200 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5201 		ac->nodemask = NULL;
5202 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5203 					ac->highest_zoneidx, ac->nodemask);
5204 	}
5205 
5206 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5207 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5208 	if (page)
5209 		goto got_pg;
5210 
5211 	/* Caller is not willing to reclaim, we can't balance anything */
5212 	if (!can_direct_reclaim)
5213 		goto nopage;
5214 
5215 	/* Avoid recursion of direct reclaim */
5216 	if (current->flags & PF_MEMALLOC)
5217 		goto nopage;
5218 
5219 	/* Try direct reclaim and then allocating */
5220 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5221 							&did_some_progress);
5222 	if (page)
5223 		goto got_pg;
5224 
5225 	/* Try direct compaction and then allocating */
5226 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5227 					compact_priority, &compact_result);
5228 	if (page)
5229 		goto got_pg;
5230 
5231 	/* Do not loop if specifically requested */
5232 	if (gfp_mask & __GFP_NORETRY)
5233 		goto nopage;
5234 
5235 	/*
5236 	 * Do not retry costly high order allocations unless they are
5237 	 * __GFP_RETRY_MAYFAIL
5238 	 */
5239 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5240 		goto nopage;
5241 
5242 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5243 				 did_some_progress > 0, &no_progress_loops))
5244 		goto retry;
5245 
5246 	/*
5247 	 * It doesn't make any sense to retry for the compaction if the order-0
5248 	 * reclaim is not able to make any progress because the current
5249 	 * implementation of the compaction depends on the sufficient amount
5250 	 * of free memory (see __compaction_suitable)
5251 	 */
5252 	if (did_some_progress > 0 &&
5253 			should_compact_retry(ac, order, alloc_flags,
5254 				compact_result, &compact_priority,
5255 				&compaction_retries))
5256 		goto retry;
5257 
5258 
5259 	/*
5260 	 * Deal with possible cpuset update races or zonelist updates to avoid
5261 	 * a unnecessary OOM kill.
5262 	 */
5263 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5264 	    check_retry_zonelist(zonelist_iter_cookie))
5265 		goto restart;
5266 
5267 	/* Reclaim has failed us, start killing things */
5268 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5269 	if (page)
5270 		goto got_pg;
5271 
5272 	/* Avoid allocations with no watermarks from looping endlessly */
5273 	if (tsk_is_oom_victim(current) &&
5274 	    (alloc_flags & ALLOC_OOM ||
5275 	     (gfp_mask & __GFP_NOMEMALLOC)))
5276 		goto nopage;
5277 
5278 	/* Retry as long as the OOM killer is making progress */
5279 	if (did_some_progress) {
5280 		no_progress_loops = 0;
5281 		goto retry;
5282 	}
5283 
5284 nopage:
5285 	/*
5286 	 * Deal with possible cpuset update races or zonelist updates to avoid
5287 	 * a unnecessary OOM kill.
5288 	 */
5289 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5290 	    check_retry_zonelist(zonelist_iter_cookie))
5291 		goto restart;
5292 
5293 	/*
5294 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5295 	 * we always retry
5296 	 */
5297 	if (gfp_mask & __GFP_NOFAIL) {
5298 		/*
5299 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5300 		 * of any new users that actually require GFP_NOWAIT
5301 		 */
5302 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5303 			goto fail;
5304 
5305 		/*
5306 		 * PF_MEMALLOC request from this context is rather bizarre
5307 		 * because we cannot reclaim anything and only can loop waiting
5308 		 * for somebody to do a work for us
5309 		 */
5310 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5311 
5312 		/*
5313 		 * non failing costly orders are a hard requirement which we
5314 		 * are not prepared for much so let's warn about these users
5315 		 * so that we can identify them and convert them to something
5316 		 * else.
5317 		 */
5318 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5319 
5320 		/*
5321 		 * Help non-failing allocations by giving some access to memory
5322 		 * reserves normally used for high priority non-blocking
5323 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
5324 		 * could deplete whole memory reserves which would just make
5325 		 * the situation worse.
5326 		 */
5327 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
5328 		if (page)
5329 			goto got_pg;
5330 
5331 		cond_resched();
5332 		goto retry;
5333 	}
5334 fail:
5335 	warn_alloc(gfp_mask, ac->nodemask,
5336 			"page allocation failure: order:%u", order);
5337 got_pg:
5338 	return page;
5339 }
5340 
5341 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5342 		int preferred_nid, nodemask_t *nodemask,
5343 		struct alloc_context *ac, gfp_t *alloc_gfp,
5344 		unsigned int *alloc_flags)
5345 {
5346 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5347 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5348 	ac->nodemask = nodemask;
5349 	ac->migratetype = gfp_migratetype(gfp_mask);
5350 
5351 	if (cpusets_enabled()) {
5352 		*alloc_gfp |= __GFP_HARDWALL;
5353 		/*
5354 		 * When we are in the interrupt context, it is irrelevant
5355 		 * to the current task context. It means that any node ok.
5356 		 */
5357 		if (in_task() && !ac->nodemask)
5358 			ac->nodemask = &cpuset_current_mems_allowed;
5359 		else
5360 			*alloc_flags |= ALLOC_CPUSET;
5361 	}
5362 
5363 	might_alloc(gfp_mask);
5364 
5365 	if (should_fail_alloc_page(gfp_mask, order))
5366 		return false;
5367 
5368 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5369 
5370 	/* Dirty zone balancing only done in the fast path */
5371 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5372 
5373 	/*
5374 	 * The preferred zone is used for statistics but crucially it is
5375 	 * also used as the starting point for the zonelist iterator. It
5376 	 * may get reset for allocations that ignore memory policies.
5377 	 */
5378 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5379 					ac->highest_zoneidx, ac->nodemask);
5380 
5381 	return true;
5382 }
5383 
5384 /*
5385  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5386  * @gfp: GFP flags for the allocation
5387  * @preferred_nid: The preferred NUMA node ID to allocate from
5388  * @nodemask: Set of nodes to allocate from, may be NULL
5389  * @nr_pages: The number of pages desired on the list or array
5390  * @page_list: Optional list to store the allocated pages
5391  * @page_array: Optional array to store the pages
5392  *
5393  * This is a batched version of the page allocator that attempts to
5394  * allocate nr_pages quickly. Pages are added to page_list if page_list
5395  * is not NULL, otherwise it is assumed that the page_array is valid.
5396  *
5397  * For lists, nr_pages is the number of pages that should be allocated.
5398  *
5399  * For arrays, only NULL elements are populated with pages and nr_pages
5400  * is the maximum number of pages that will be stored in the array.
5401  *
5402  * Returns the number of pages on the list or array.
5403  */
5404 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5405 			nodemask_t *nodemask, int nr_pages,
5406 			struct list_head *page_list,
5407 			struct page **page_array)
5408 {
5409 	struct page *page;
5410 	unsigned long __maybe_unused UP_flags;
5411 	struct zone *zone;
5412 	struct zoneref *z;
5413 	struct per_cpu_pages *pcp;
5414 	struct list_head *pcp_list;
5415 	struct alloc_context ac;
5416 	gfp_t alloc_gfp;
5417 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5418 	int nr_populated = 0, nr_account = 0;
5419 
5420 	/*
5421 	 * Skip populated array elements to determine if any pages need
5422 	 * to be allocated before disabling IRQs.
5423 	 */
5424 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5425 		nr_populated++;
5426 
5427 	/* No pages requested? */
5428 	if (unlikely(nr_pages <= 0))
5429 		goto out;
5430 
5431 	/* Already populated array? */
5432 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5433 		goto out;
5434 
5435 	/* Bulk allocator does not support memcg accounting. */
5436 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5437 		goto failed;
5438 
5439 	/* Use the single page allocator for one page. */
5440 	if (nr_pages - nr_populated == 1)
5441 		goto failed;
5442 
5443 #ifdef CONFIG_PAGE_OWNER
5444 	/*
5445 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5446 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5447 	 * removes much of the performance benefit of bulk allocation so
5448 	 * force the caller to allocate one page at a time as it'll have
5449 	 * similar performance to added complexity to the bulk allocator.
5450 	 */
5451 	if (static_branch_unlikely(&page_owner_inited))
5452 		goto failed;
5453 #endif
5454 
5455 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5456 	gfp &= gfp_allowed_mask;
5457 	alloc_gfp = gfp;
5458 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5459 		goto out;
5460 	gfp = alloc_gfp;
5461 
5462 	/* Find an allowed local zone that meets the low watermark. */
5463 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5464 		unsigned long mark;
5465 
5466 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5467 		    !__cpuset_zone_allowed(zone, gfp)) {
5468 			continue;
5469 		}
5470 
5471 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5472 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5473 			goto failed;
5474 		}
5475 
5476 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5477 		if (zone_watermark_fast(zone, 0,  mark,
5478 				zonelist_zone_idx(ac.preferred_zoneref),
5479 				alloc_flags, gfp)) {
5480 			break;
5481 		}
5482 	}
5483 
5484 	/*
5485 	 * If there are no allowed local zones that meets the watermarks then
5486 	 * try to allocate a single page and reclaim if necessary.
5487 	 */
5488 	if (unlikely(!zone))
5489 		goto failed;
5490 
5491 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5492 	pcp_trylock_prepare(UP_flags);
5493 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5494 	if (!pcp)
5495 		goto failed_irq;
5496 
5497 	/* Attempt the batch allocation */
5498 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5499 	while (nr_populated < nr_pages) {
5500 
5501 		/* Skip existing pages */
5502 		if (page_array && page_array[nr_populated]) {
5503 			nr_populated++;
5504 			continue;
5505 		}
5506 
5507 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5508 								pcp, pcp_list);
5509 		if (unlikely(!page)) {
5510 			/* Try and allocate at least one page */
5511 			if (!nr_account) {
5512 				pcp_spin_unlock(pcp);
5513 				goto failed_irq;
5514 			}
5515 			break;
5516 		}
5517 		nr_account++;
5518 
5519 		prep_new_page(page, 0, gfp, 0);
5520 		if (page_list)
5521 			list_add(&page->lru, page_list);
5522 		else
5523 			page_array[nr_populated] = page;
5524 		nr_populated++;
5525 	}
5526 
5527 	pcp_spin_unlock(pcp);
5528 	pcp_trylock_finish(UP_flags);
5529 
5530 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5531 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5532 
5533 out:
5534 	return nr_populated;
5535 
5536 failed_irq:
5537 	pcp_trylock_finish(UP_flags);
5538 
5539 failed:
5540 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5541 	if (page) {
5542 		if (page_list)
5543 			list_add(&page->lru, page_list);
5544 		else
5545 			page_array[nr_populated] = page;
5546 		nr_populated++;
5547 	}
5548 
5549 	goto out;
5550 }
5551 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5552 
5553 /*
5554  * This is the 'heart' of the zoned buddy allocator.
5555  */
5556 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5557 							nodemask_t *nodemask)
5558 {
5559 	struct page *page;
5560 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5561 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5562 	struct alloc_context ac = { };
5563 
5564 	/*
5565 	 * There are several places where we assume that the order value is sane
5566 	 * so bail out early if the request is out of bound.
5567 	 */
5568 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5569 		return NULL;
5570 
5571 	gfp &= gfp_allowed_mask;
5572 	/*
5573 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5574 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5575 	 * from a particular context which has been marked by
5576 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5577 	 * movable zones are not used during allocation.
5578 	 */
5579 	gfp = current_gfp_context(gfp);
5580 	alloc_gfp = gfp;
5581 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5582 			&alloc_gfp, &alloc_flags))
5583 		return NULL;
5584 
5585 	/*
5586 	 * Forbid the first pass from falling back to types that fragment
5587 	 * memory until all local zones are considered.
5588 	 */
5589 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5590 
5591 	/* First allocation attempt */
5592 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5593 	if (likely(page))
5594 		goto out;
5595 
5596 	alloc_gfp = gfp;
5597 	ac.spread_dirty_pages = false;
5598 
5599 	/*
5600 	 * Restore the original nodemask if it was potentially replaced with
5601 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5602 	 */
5603 	ac.nodemask = nodemask;
5604 
5605 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5606 
5607 out:
5608 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5609 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5610 		__free_pages(page, order);
5611 		page = NULL;
5612 	}
5613 
5614 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5615 	kmsan_alloc_page(page, order, alloc_gfp);
5616 
5617 	return page;
5618 }
5619 EXPORT_SYMBOL(__alloc_pages);
5620 
5621 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5622 		nodemask_t *nodemask)
5623 {
5624 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5625 			preferred_nid, nodemask);
5626 
5627 	if (page && order > 1)
5628 		prep_transhuge_page(page);
5629 	return (struct folio *)page;
5630 }
5631 EXPORT_SYMBOL(__folio_alloc);
5632 
5633 /*
5634  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5635  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5636  * you need to access high mem.
5637  */
5638 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5639 {
5640 	struct page *page;
5641 
5642 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5643 	if (!page)
5644 		return 0;
5645 	return (unsigned long) page_address(page);
5646 }
5647 EXPORT_SYMBOL(__get_free_pages);
5648 
5649 unsigned long get_zeroed_page(gfp_t gfp_mask)
5650 {
5651 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5652 }
5653 EXPORT_SYMBOL(get_zeroed_page);
5654 
5655 /**
5656  * __free_pages - Free pages allocated with alloc_pages().
5657  * @page: The page pointer returned from alloc_pages().
5658  * @order: The order of the allocation.
5659  *
5660  * This function can free multi-page allocations that are not compound
5661  * pages.  It does not check that the @order passed in matches that of
5662  * the allocation, so it is easy to leak memory.  Freeing more memory
5663  * than was allocated will probably emit a warning.
5664  *
5665  * If the last reference to this page is speculative, it will be released
5666  * by put_page() which only frees the first page of a non-compound
5667  * allocation.  To prevent the remaining pages from being leaked, we free
5668  * the subsequent pages here.  If you want to use the page's reference
5669  * count to decide when to free the allocation, you should allocate a
5670  * compound page, and use put_page() instead of __free_pages().
5671  *
5672  * Context: May be called in interrupt context or while holding a normal
5673  * spinlock, but not in NMI context or while holding a raw spinlock.
5674  */
5675 void __free_pages(struct page *page, unsigned int order)
5676 {
5677 	/* get PageHead before we drop reference */
5678 	int head = PageHead(page);
5679 
5680 	if (put_page_testzero(page))
5681 		free_the_page(page, order);
5682 	else if (!head)
5683 		while (order-- > 0)
5684 			free_the_page(page + (1 << order), order);
5685 }
5686 EXPORT_SYMBOL(__free_pages);
5687 
5688 void free_pages(unsigned long addr, unsigned int order)
5689 {
5690 	if (addr != 0) {
5691 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5692 		__free_pages(virt_to_page((void *)addr), order);
5693 	}
5694 }
5695 
5696 EXPORT_SYMBOL(free_pages);
5697 
5698 /*
5699  * Page Fragment:
5700  *  An arbitrary-length arbitrary-offset area of memory which resides
5701  *  within a 0 or higher order page.  Multiple fragments within that page
5702  *  are individually refcounted, in the page's reference counter.
5703  *
5704  * The page_frag functions below provide a simple allocation framework for
5705  * page fragments.  This is used by the network stack and network device
5706  * drivers to provide a backing region of memory for use as either an
5707  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5708  */
5709 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5710 					     gfp_t gfp_mask)
5711 {
5712 	struct page *page = NULL;
5713 	gfp_t gfp = gfp_mask;
5714 
5715 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5716 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5717 		    __GFP_NOMEMALLOC;
5718 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5719 				PAGE_FRAG_CACHE_MAX_ORDER);
5720 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5721 #endif
5722 	if (unlikely(!page))
5723 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5724 
5725 	nc->va = page ? page_address(page) : NULL;
5726 
5727 	return page;
5728 }
5729 
5730 void __page_frag_cache_drain(struct page *page, unsigned int count)
5731 {
5732 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5733 
5734 	if (page_ref_sub_and_test(page, count))
5735 		free_the_page(page, compound_order(page));
5736 }
5737 EXPORT_SYMBOL(__page_frag_cache_drain);
5738 
5739 void *page_frag_alloc_align(struct page_frag_cache *nc,
5740 		      unsigned int fragsz, gfp_t gfp_mask,
5741 		      unsigned int align_mask)
5742 {
5743 	unsigned int size = PAGE_SIZE;
5744 	struct page *page;
5745 	int offset;
5746 
5747 	if (unlikely(!nc->va)) {
5748 refill:
5749 		page = __page_frag_cache_refill(nc, gfp_mask);
5750 		if (!page)
5751 			return NULL;
5752 
5753 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5754 		/* if size can vary use size else just use PAGE_SIZE */
5755 		size = nc->size;
5756 #endif
5757 		/* Even if we own the page, we do not use atomic_set().
5758 		 * This would break get_page_unless_zero() users.
5759 		 */
5760 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5761 
5762 		/* reset page count bias and offset to start of new frag */
5763 		nc->pfmemalloc = page_is_pfmemalloc(page);
5764 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5765 		nc->offset = size;
5766 	}
5767 
5768 	offset = nc->offset - fragsz;
5769 	if (unlikely(offset < 0)) {
5770 		page = virt_to_page(nc->va);
5771 
5772 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5773 			goto refill;
5774 
5775 		if (unlikely(nc->pfmemalloc)) {
5776 			free_the_page(page, compound_order(page));
5777 			goto refill;
5778 		}
5779 
5780 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5781 		/* if size can vary use size else just use PAGE_SIZE */
5782 		size = nc->size;
5783 #endif
5784 		/* OK, page count is 0, we can safely set it */
5785 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5786 
5787 		/* reset page count bias and offset to start of new frag */
5788 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5789 		offset = size - fragsz;
5790 		if (unlikely(offset < 0)) {
5791 			/*
5792 			 * The caller is trying to allocate a fragment
5793 			 * with fragsz > PAGE_SIZE but the cache isn't big
5794 			 * enough to satisfy the request, this may
5795 			 * happen in low memory conditions.
5796 			 * We don't release the cache page because
5797 			 * it could make memory pressure worse
5798 			 * so we simply return NULL here.
5799 			 */
5800 			return NULL;
5801 		}
5802 	}
5803 
5804 	nc->pagecnt_bias--;
5805 	offset &= align_mask;
5806 	nc->offset = offset;
5807 
5808 	return nc->va + offset;
5809 }
5810 EXPORT_SYMBOL(page_frag_alloc_align);
5811 
5812 /*
5813  * Frees a page fragment allocated out of either a compound or order 0 page.
5814  */
5815 void page_frag_free(void *addr)
5816 {
5817 	struct page *page = virt_to_head_page(addr);
5818 
5819 	if (unlikely(put_page_testzero(page)))
5820 		free_the_page(page, compound_order(page));
5821 }
5822 EXPORT_SYMBOL(page_frag_free);
5823 
5824 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5825 		size_t size)
5826 {
5827 	if (addr) {
5828 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5829 		struct page *page = virt_to_page((void *)addr);
5830 		struct page *last = page + nr;
5831 
5832 		split_page_owner(page, 1 << order);
5833 		split_page_memcg(page, 1 << order);
5834 		while (page < --last)
5835 			set_page_refcounted(last);
5836 
5837 		last = page + (1UL << order);
5838 		for (page += nr; page < last; page++)
5839 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5840 	}
5841 	return (void *)addr;
5842 }
5843 
5844 /**
5845  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5846  * @size: the number of bytes to allocate
5847  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5848  *
5849  * This function is similar to alloc_pages(), except that it allocates the
5850  * minimum number of pages to satisfy the request.  alloc_pages() can only
5851  * allocate memory in power-of-two pages.
5852  *
5853  * This function is also limited by MAX_ORDER.
5854  *
5855  * Memory allocated by this function must be released by free_pages_exact().
5856  *
5857  * Return: pointer to the allocated area or %NULL in case of error.
5858  */
5859 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5860 {
5861 	unsigned int order = get_order(size);
5862 	unsigned long addr;
5863 
5864 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5865 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5866 
5867 	addr = __get_free_pages(gfp_mask, order);
5868 	return make_alloc_exact(addr, order, size);
5869 }
5870 EXPORT_SYMBOL(alloc_pages_exact);
5871 
5872 /**
5873  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5874  *			   pages on a node.
5875  * @nid: the preferred node ID where memory should be allocated
5876  * @size: the number of bytes to allocate
5877  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5878  *
5879  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5880  * back.
5881  *
5882  * Return: pointer to the allocated area or %NULL in case of error.
5883  */
5884 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5885 {
5886 	unsigned int order = get_order(size);
5887 	struct page *p;
5888 
5889 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5890 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5891 
5892 	p = alloc_pages_node(nid, gfp_mask, order);
5893 	if (!p)
5894 		return NULL;
5895 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5896 }
5897 
5898 /**
5899  * free_pages_exact - release memory allocated via alloc_pages_exact()
5900  * @virt: the value returned by alloc_pages_exact.
5901  * @size: size of allocation, same value as passed to alloc_pages_exact().
5902  *
5903  * Release the memory allocated by a previous call to alloc_pages_exact.
5904  */
5905 void free_pages_exact(void *virt, size_t size)
5906 {
5907 	unsigned long addr = (unsigned long)virt;
5908 	unsigned long end = addr + PAGE_ALIGN(size);
5909 
5910 	while (addr < end) {
5911 		free_page(addr);
5912 		addr += PAGE_SIZE;
5913 	}
5914 }
5915 EXPORT_SYMBOL(free_pages_exact);
5916 
5917 /**
5918  * nr_free_zone_pages - count number of pages beyond high watermark
5919  * @offset: The zone index of the highest zone
5920  *
5921  * nr_free_zone_pages() counts the number of pages which are beyond the
5922  * high watermark within all zones at or below a given zone index.  For each
5923  * zone, the number of pages is calculated as:
5924  *
5925  *     nr_free_zone_pages = managed_pages - high_pages
5926  *
5927  * Return: number of pages beyond high watermark.
5928  */
5929 static unsigned long nr_free_zone_pages(int offset)
5930 {
5931 	struct zoneref *z;
5932 	struct zone *zone;
5933 
5934 	/* Just pick one node, since fallback list is circular */
5935 	unsigned long sum = 0;
5936 
5937 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5938 
5939 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5940 		unsigned long size = zone_managed_pages(zone);
5941 		unsigned long high = high_wmark_pages(zone);
5942 		if (size > high)
5943 			sum += size - high;
5944 	}
5945 
5946 	return sum;
5947 }
5948 
5949 /**
5950  * nr_free_buffer_pages - count number of pages beyond high watermark
5951  *
5952  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5953  * watermark within ZONE_DMA and ZONE_NORMAL.
5954  *
5955  * Return: number of pages beyond high watermark within ZONE_DMA and
5956  * ZONE_NORMAL.
5957  */
5958 unsigned long nr_free_buffer_pages(void)
5959 {
5960 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5961 }
5962 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5963 
5964 static inline void show_node(struct zone *zone)
5965 {
5966 	if (IS_ENABLED(CONFIG_NUMA))
5967 		printk("Node %d ", zone_to_nid(zone));
5968 }
5969 
5970 long si_mem_available(void)
5971 {
5972 	long available;
5973 	unsigned long pagecache;
5974 	unsigned long wmark_low = 0;
5975 	unsigned long pages[NR_LRU_LISTS];
5976 	unsigned long reclaimable;
5977 	struct zone *zone;
5978 	int lru;
5979 
5980 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5981 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5982 
5983 	for_each_zone(zone)
5984 		wmark_low += low_wmark_pages(zone);
5985 
5986 	/*
5987 	 * Estimate the amount of memory available for userspace allocations,
5988 	 * without causing swapping or OOM.
5989 	 */
5990 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5991 
5992 	/*
5993 	 * Not all the page cache can be freed, otherwise the system will
5994 	 * start swapping or thrashing. Assume at least half of the page
5995 	 * cache, or the low watermark worth of cache, needs to stay.
5996 	 */
5997 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5998 	pagecache -= min(pagecache / 2, wmark_low);
5999 	available += pagecache;
6000 
6001 	/*
6002 	 * Part of the reclaimable slab and other kernel memory consists of
6003 	 * items that are in use, and cannot be freed. Cap this estimate at the
6004 	 * low watermark.
6005 	 */
6006 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6007 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
6008 	available += reclaimable - min(reclaimable / 2, wmark_low);
6009 
6010 	if (available < 0)
6011 		available = 0;
6012 	return available;
6013 }
6014 EXPORT_SYMBOL_GPL(si_mem_available);
6015 
6016 void si_meminfo(struct sysinfo *val)
6017 {
6018 	val->totalram = totalram_pages();
6019 	val->sharedram = global_node_page_state(NR_SHMEM);
6020 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
6021 	val->bufferram = nr_blockdev_pages();
6022 	val->totalhigh = totalhigh_pages();
6023 	val->freehigh = nr_free_highpages();
6024 	val->mem_unit = PAGE_SIZE;
6025 }
6026 
6027 EXPORT_SYMBOL(si_meminfo);
6028 
6029 #ifdef CONFIG_NUMA
6030 void si_meminfo_node(struct sysinfo *val, int nid)
6031 {
6032 	int zone_type;		/* needs to be signed */
6033 	unsigned long managed_pages = 0;
6034 	unsigned long managed_highpages = 0;
6035 	unsigned long free_highpages = 0;
6036 	pg_data_t *pgdat = NODE_DATA(nid);
6037 
6038 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6039 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6040 	val->totalram = managed_pages;
6041 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
6042 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6043 #ifdef CONFIG_HIGHMEM
6044 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6045 		struct zone *zone = &pgdat->node_zones[zone_type];
6046 
6047 		if (is_highmem(zone)) {
6048 			managed_highpages += zone_managed_pages(zone);
6049 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6050 		}
6051 	}
6052 	val->totalhigh = managed_highpages;
6053 	val->freehigh = free_highpages;
6054 #else
6055 	val->totalhigh = managed_highpages;
6056 	val->freehigh = free_highpages;
6057 #endif
6058 	val->mem_unit = PAGE_SIZE;
6059 }
6060 #endif
6061 
6062 /*
6063  * Determine whether the node should be displayed or not, depending on whether
6064  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6065  */
6066 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6067 {
6068 	if (!(flags & SHOW_MEM_FILTER_NODES))
6069 		return false;
6070 
6071 	/*
6072 	 * no node mask - aka implicit memory numa policy. Do not bother with
6073 	 * the synchronization - read_mems_allowed_begin - because we do not
6074 	 * have to be precise here.
6075 	 */
6076 	if (!nodemask)
6077 		nodemask = &cpuset_current_mems_allowed;
6078 
6079 	return !node_isset(nid, *nodemask);
6080 }
6081 
6082 #define K(x) ((x) << (PAGE_SHIFT-10))
6083 
6084 static void show_migration_types(unsigned char type)
6085 {
6086 	static const char types[MIGRATE_TYPES] = {
6087 		[MIGRATE_UNMOVABLE]	= 'U',
6088 		[MIGRATE_MOVABLE]	= 'M',
6089 		[MIGRATE_RECLAIMABLE]	= 'E',
6090 		[MIGRATE_HIGHATOMIC]	= 'H',
6091 #ifdef CONFIG_CMA
6092 		[MIGRATE_CMA]		= 'C',
6093 #endif
6094 #ifdef CONFIG_MEMORY_ISOLATION
6095 		[MIGRATE_ISOLATE]	= 'I',
6096 #endif
6097 	};
6098 	char tmp[MIGRATE_TYPES + 1];
6099 	char *p = tmp;
6100 	int i;
6101 
6102 	for (i = 0; i < MIGRATE_TYPES; i++) {
6103 		if (type & (1 << i))
6104 			*p++ = types[i];
6105 	}
6106 
6107 	*p = '\0';
6108 	printk(KERN_CONT "(%s) ", tmp);
6109 }
6110 
6111 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6112 {
6113 	int zone_idx;
6114 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6115 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6116 			return true;
6117 	return false;
6118 }
6119 
6120 /*
6121  * Show free area list (used inside shift_scroll-lock stuff)
6122  * We also calculate the percentage fragmentation. We do this by counting the
6123  * memory on each free list with the exception of the first item on the list.
6124  *
6125  * Bits in @filter:
6126  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6127  *   cpuset.
6128  */
6129 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6130 {
6131 	unsigned long free_pcp = 0;
6132 	int cpu, nid;
6133 	struct zone *zone;
6134 	pg_data_t *pgdat;
6135 
6136 	for_each_populated_zone(zone) {
6137 		if (zone_idx(zone) > max_zone_idx)
6138 			continue;
6139 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6140 			continue;
6141 
6142 		for_each_online_cpu(cpu)
6143 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6144 	}
6145 
6146 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6147 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6148 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6149 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6150 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6151 		" sec_pagetables:%lu bounce:%lu\n"
6152 		" kernel_misc_reclaimable:%lu\n"
6153 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6154 		global_node_page_state(NR_ACTIVE_ANON),
6155 		global_node_page_state(NR_INACTIVE_ANON),
6156 		global_node_page_state(NR_ISOLATED_ANON),
6157 		global_node_page_state(NR_ACTIVE_FILE),
6158 		global_node_page_state(NR_INACTIVE_FILE),
6159 		global_node_page_state(NR_ISOLATED_FILE),
6160 		global_node_page_state(NR_UNEVICTABLE),
6161 		global_node_page_state(NR_FILE_DIRTY),
6162 		global_node_page_state(NR_WRITEBACK),
6163 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6164 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6165 		global_node_page_state(NR_FILE_MAPPED),
6166 		global_node_page_state(NR_SHMEM),
6167 		global_node_page_state(NR_PAGETABLE),
6168 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6169 		global_zone_page_state(NR_BOUNCE),
6170 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6171 		global_zone_page_state(NR_FREE_PAGES),
6172 		free_pcp,
6173 		global_zone_page_state(NR_FREE_CMA_PAGES));
6174 
6175 	for_each_online_pgdat(pgdat) {
6176 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6177 			continue;
6178 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6179 			continue;
6180 
6181 		printk("Node %d"
6182 			" active_anon:%lukB"
6183 			" inactive_anon:%lukB"
6184 			" active_file:%lukB"
6185 			" inactive_file:%lukB"
6186 			" unevictable:%lukB"
6187 			" isolated(anon):%lukB"
6188 			" isolated(file):%lukB"
6189 			" mapped:%lukB"
6190 			" dirty:%lukB"
6191 			" writeback:%lukB"
6192 			" shmem:%lukB"
6193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6194 			" shmem_thp: %lukB"
6195 			" shmem_pmdmapped: %lukB"
6196 			" anon_thp: %lukB"
6197 #endif
6198 			" writeback_tmp:%lukB"
6199 			" kernel_stack:%lukB"
6200 #ifdef CONFIG_SHADOW_CALL_STACK
6201 			" shadow_call_stack:%lukB"
6202 #endif
6203 			" pagetables:%lukB"
6204 			" sec_pagetables:%lukB"
6205 			" all_unreclaimable? %s"
6206 			"\n",
6207 			pgdat->node_id,
6208 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6209 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6210 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6211 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6212 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6213 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6214 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6215 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6216 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6217 			K(node_page_state(pgdat, NR_WRITEBACK)),
6218 			K(node_page_state(pgdat, NR_SHMEM)),
6219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6220 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6221 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6222 			K(node_page_state(pgdat, NR_ANON_THPS)),
6223 #endif
6224 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6225 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6226 #ifdef CONFIG_SHADOW_CALL_STACK
6227 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6228 #endif
6229 			K(node_page_state(pgdat, NR_PAGETABLE)),
6230 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6231 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6232 				"yes" : "no");
6233 	}
6234 
6235 	for_each_populated_zone(zone) {
6236 		int i;
6237 
6238 		if (zone_idx(zone) > max_zone_idx)
6239 			continue;
6240 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6241 			continue;
6242 
6243 		free_pcp = 0;
6244 		for_each_online_cpu(cpu)
6245 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6246 
6247 		show_node(zone);
6248 		printk(KERN_CONT
6249 			"%s"
6250 			" free:%lukB"
6251 			" boost:%lukB"
6252 			" min:%lukB"
6253 			" low:%lukB"
6254 			" high:%lukB"
6255 			" reserved_highatomic:%luKB"
6256 			" active_anon:%lukB"
6257 			" inactive_anon:%lukB"
6258 			" active_file:%lukB"
6259 			" inactive_file:%lukB"
6260 			" unevictable:%lukB"
6261 			" writepending:%lukB"
6262 			" present:%lukB"
6263 			" managed:%lukB"
6264 			" mlocked:%lukB"
6265 			" bounce:%lukB"
6266 			" free_pcp:%lukB"
6267 			" local_pcp:%ukB"
6268 			" free_cma:%lukB"
6269 			"\n",
6270 			zone->name,
6271 			K(zone_page_state(zone, NR_FREE_PAGES)),
6272 			K(zone->watermark_boost),
6273 			K(min_wmark_pages(zone)),
6274 			K(low_wmark_pages(zone)),
6275 			K(high_wmark_pages(zone)),
6276 			K(zone->nr_reserved_highatomic),
6277 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6278 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6279 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6280 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6281 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6282 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6283 			K(zone->present_pages),
6284 			K(zone_managed_pages(zone)),
6285 			K(zone_page_state(zone, NR_MLOCK)),
6286 			K(zone_page_state(zone, NR_BOUNCE)),
6287 			K(free_pcp),
6288 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6289 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6290 		printk("lowmem_reserve[]:");
6291 		for (i = 0; i < MAX_NR_ZONES; i++)
6292 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6293 		printk(KERN_CONT "\n");
6294 	}
6295 
6296 	for_each_populated_zone(zone) {
6297 		unsigned int order;
6298 		unsigned long nr[MAX_ORDER], flags, total = 0;
6299 		unsigned char types[MAX_ORDER];
6300 
6301 		if (zone_idx(zone) > max_zone_idx)
6302 			continue;
6303 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6304 			continue;
6305 		show_node(zone);
6306 		printk(KERN_CONT "%s: ", zone->name);
6307 
6308 		spin_lock_irqsave(&zone->lock, flags);
6309 		for (order = 0; order < MAX_ORDER; order++) {
6310 			struct free_area *area = &zone->free_area[order];
6311 			int type;
6312 
6313 			nr[order] = area->nr_free;
6314 			total += nr[order] << order;
6315 
6316 			types[order] = 0;
6317 			for (type = 0; type < MIGRATE_TYPES; type++) {
6318 				if (!free_area_empty(area, type))
6319 					types[order] |= 1 << type;
6320 			}
6321 		}
6322 		spin_unlock_irqrestore(&zone->lock, flags);
6323 		for (order = 0; order < MAX_ORDER; order++) {
6324 			printk(KERN_CONT "%lu*%lukB ",
6325 			       nr[order], K(1UL) << order);
6326 			if (nr[order])
6327 				show_migration_types(types[order]);
6328 		}
6329 		printk(KERN_CONT "= %lukB\n", K(total));
6330 	}
6331 
6332 	for_each_online_node(nid) {
6333 		if (show_mem_node_skip(filter, nid, nodemask))
6334 			continue;
6335 		hugetlb_show_meminfo_node(nid);
6336 	}
6337 
6338 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6339 
6340 	show_swap_cache_info();
6341 }
6342 
6343 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6344 {
6345 	zoneref->zone = zone;
6346 	zoneref->zone_idx = zone_idx(zone);
6347 }
6348 
6349 /*
6350  * Builds allocation fallback zone lists.
6351  *
6352  * Add all populated zones of a node to the zonelist.
6353  */
6354 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6355 {
6356 	struct zone *zone;
6357 	enum zone_type zone_type = MAX_NR_ZONES;
6358 	int nr_zones = 0;
6359 
6360 	do {
6361 		zone_type--;
6362 		zone = pgdat->node_zones + zone_type;
6363 		if (populated_zone(zone)) {
6364 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6365 			check_highest_zone(zone_type);
6366 		}
6367 	} while (zone_type);
6368 
6369 	return nr_zones;
6370 }
6371 
6372 #ifdef CONFIG_NUMA
6373 
6374 static int __parse_numa_zonelist_order(char *s)
6375 {
6376 	/*
6377 	 * We used to support different zonelists modes but they turned
6378 	 * out to be just not useful. Let's keep the warning in place
6379 	 * if somebody still use the cmd line parameter so that we do
6380 	 * not fail it silently
6381 	 */
6382 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6383 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6384 		return -EINVAL;
6385 	}
6386 	return 0;
6387 }
6388 
6389 char numa_zonelist_order[] = "Node";
6390 
6391 /*
6392  * sysctl handler for numa_zonelist_order
6393  */
6394 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6395 		void *buffer, size_t *length, loff_t *ppos)
6396 {
6397 	if (write)
6398 		return __parse_numa_zonelist_order(buffer);
6399 	return proc_dostring(table, write, buffer, length, ppos);
6400 }
6401 
6402 
6403 static int node_load[MAX_NUMNODES];
6404 
6405 /**
6406  * find_next_best_node - find the next node that should appear in a given node's fallback list
6407  * @node: node whose fallback list we're appending
6408  * @used_node_mask: nodemask_t of already used nodes
6409  *
6410  * We use a number of factors to determine which is the next node that should
6411  * appear on a given node's fallback list.  The node should not have appeared
6412  * already in @node's fallback list, and it should be the next closest node
6413  * according to the distance array (which contains arbitrary distance values
6414  * from each node to each node in the system), and should also prefer nodes
6415  * with no CPUs, since presumably they'll have very little allocation pressure
6416  * on them otherwise.
6417  *
6418  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6419  */
6420 int find_next_best_node(int node, nodemask_t *used_node_mask)
6421 {
6422 	int n, val;
6423 	int min_val = INT_MAX;
6424 	int best_node = NUMA_NO_NODE;
6425 
6426 	/* Use the local node if we haven't already */
6427 	if (!node_isset(node, *used_node_mask)) {
6428 		node_set(node, *used_node_mask);
6429 		return node;
6430 	}
6431 
6432 	for_each_node_state(n, N_MEMORY) {
6433 
6434 		/* Don't want a node to appear more than once */
6435 		if (node_isset(n, *used_node_mask))
6436 			continue;
6437 
6438 		/* Use the distance array to find the distance */
6439 		val = node_distance(node, n);
6440 
6441 		/* Penalize nodes under us ("prefer the next node") */
6442 		val += (n < node);
6443 
6444 		/* Give preference to headless and unused nodes */
6445 		if (!cpumask_empty(cpumask_of_node(n)))
6446 			val += PENALTY_FOR_NODE_WITH_CPUS;
6447 
6448 		/* Slight preference for less loaded node */
6449 		val *= MAX_NUMNODES;
6450 		val += node_load[n];
6451 
6452 		if (val < min_val) {
6453 			min_val = val;
6454 			best_node = n;
6455 		}
6456 	}
6457 
6458 	if (best_node >= 0)
6459 		node_set(best_node, *used_node_mask);
6460 
6461 	return best_node;
6462 }
6463 
6464 
6465 /*
6466  * Build zonelists ordered by node and zones within node.
6467  * This results in maximum locality--normal zone overflows into local
6468  * DMA zone, if any--but risks exhausting DMA zone.
6469  */
6470 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6471 		unsigned nr_nodes)
6472 {
6473 	struct zoneref *zonerefs;
6474 	int i;
6475 
6476 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6477 
6478 	for (i = 0; i < nr_nodes; i++) {
6479 		int nr_zones;
6480 
6481 		pg_data_t *node = NODE_DATA(node_order[i]);
6482 
6483 		nr_zones = build_zonerefs_node(node, zonerefs);
6484 		zonerefs += nr_zones;
6485 	}
6486 	zonerefs->zone = NULL;
6487 	zonerefs->zone_idx = 0;
6488 }
6489 
6490 /*
6491  * Build gfp_thisnode zonelists
6492  */
6493 static void build_thisnode_zonelists(pg_data_t *pgdat)
6494 {
6495 	struct zoneref *zonerefs;
6496 	int nr_zones;
6497 
6498 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6499 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6500 	zonerefs += nr_zones;
6501 	zonerefs->zone = NULL;
6502 	zonerefs->zone_idx = 0;
6503 }
6504 
6505 /*
6506  * Build zonelists ordered by zone and nodes within zones.
6507  * This results in conserving DMA zone[s] until all Normal memory is
6508  * exhausted, but results in overflowing to remote node while memory
6509  * may still exist in local DMA zone.
6510  */
6511 
6512 static void build_zonelists(pg_data_t *pgdat)
6513 {
6514 	static int node_order[MAX_NUMNODES];
6515 	int node, nr_nodes = 0;
6516 	nodemask_t used_mask = NODE_MASK_NONE;
6517 	int local_node, prev_node;
6518 
6519 	/* NUMA-aware ordering of nodes */
6520 	local_node = pgdat->node_id;
6521 	prev_node = local_node;
6522 
6523 	memset(node_order, 0, sizeof(node_order));
6524 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6525 		/*
6526 		 * We don't want to pressure a particular node.
6527 		 * So adding penalty to the first node in same
6528 		 * distance group to make it round-robin.
6529 		 */
6530 		if (node_distance(local_node, node) !=
6531 		    node_distance(local_node, prev_node))
6532 			node_load[node] += 1;
6533 
6534 		node_order[nr_nodes++] = node;
6535 		prev_node = node;
6536 	}
6537 
6538 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6539 	build_thisnode_zonelists(pgdat);
6540 	pr_info("Fallback order for Node %d: ", local_node);
6541 	for (node = 0; node < nr_nodes; node++)
6542 		pr_cont("%d ", node_order[node]);
6543 	pr_cont("\n");
6544 }
6545 
6546 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6547 /*
6548  * Return node id of node used for "local" allocations.
6549  * I.e., first node id of first zone in arg node's generic zonelist.
6550  * Used for initializing percpu 'numa_mem', which is used primarily
6551  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6552  */
6553 int local_memory_node(int node)
6554 {
6555 	struct zoneref *z;
6556 
6557 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6558 				   gfp_zone(GFP_KERNEL),
6559 				   NULL);
6560 	return zone_to_nid(z->zone);
6561 }
6562 #endif
6563 
6564 static void setup_min_unmapped_ratio(void);
6565 static void setup_min_slab_ratio(void);
6566 #else	/* CONFIG_NUMA */
6567 
6568 static void build_zonelists(pg_data_t *pgdat)
6569 {
6570 	int node, local_node;
6571 	struct zoneref *zonerefs;
6572 	int nr_zones;
6573 
6574 	local_node = pgdat->node_id;
6575 
6576 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6577 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6578 	zonerefs += nr_zones;
6579 
6580 	/*
6581 	 * Now we build the zonelist so that it contains the zones
6582 	 * of all the other nodes.
6583 	 * We don't want to pressure a particular node, so when
6584 	 * building the zones for node N, we make sure that the
6585 	 * zones coming right after the local ones are those from
6586 	 * node N+1 (modulo N)
6587 	 */
6588 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6589 		if (!node_online(node))
6590 			continue;
6591 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6592 		zonerefs += nr_zones;
6593 	}
6594 	for (node = 0; node < local_node; node++) {
6595 		if (!node_online(node))
6596 			continue;
6597 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6598 		zonerefs += nr_zones;
6599 	}
6600 
6601 	zonerefs->zone = NULL;
6602 	zonerefs->zone_idx = 0;
6603 }
6604 
6605 #endif	/* CONFIG_NUMA */
6606 
6607 /*
6608  * Boot pageset table. One per cpu which is going to be used for all
6609  * zones and all nodes. The parameters will be set in such a way
6610  * that an item put on a list will immediately be handed over to
6611  * the buddy list. This is safe since pageset manipulation is done
6612  * with interrupts disabled.
6613  *
6614  * The boot_pagesets must be kept even after bootup is complete for
6615  * unused processors and/or zones. They do play a role for bootstrapping
6616  * hotplugged processors.
6617  *
6618  * zoneinfo_show() and maybe other functions do
6619  * not check if the processor is online before following the pageset pointer.
6620  * Other parts of the kernel may not check if the zone is available.
6621  */
6622 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6623 /* These effectively disable the pcplists in the boot pageset completely */
6624 #define BOOT_PAGESET_HIGH	0
6625 #define BOOT_PAGESET_BATCH	1
6626 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6627 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6628 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6629 
6630 static void __build_all_zonelists(void *data)
6631 {
6632 	int nid;
6633 	int __maybe_unused cpu;
6634 	pg_data_t *self = data;
6635 	unsigned long flags;
6636 
6637 	/*
6638 	 * Explicitly disable this CPU's interrupts before taking seqlock
6639 	 * to prevent any IRQ handler from calling into the page allocator
6640 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
6641 	 */
6642 	local_irq_save(flags);
6643 	/*
6644 	 * Explicitly disable this CPU's synchronous printk() before taking
6645 	 * seqlock to prevent any printk() from trying to hold port->lock, for
6646 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
6647 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
6648 	 */
6649 	printk_deferred_enter();
6650 	write_seqlock(&zonelist_update_seq);
6651 
6652 #ifdef CONFIG_NUMA
6653 	memset(node_load, 0, sizeof(node_load));
6654 #endif
6655 
6656 	/*
6657 	 * This node is hotadded and no memory is yet present.   So just
6658 	 * building zonelists is fine - no need to touch other nodes.
6659 	 */
6660 	if (self && !node_online(self->node_id)) {
6661 		build_zonelists(self);
6662 	} else {
6663 		/*
6664 		 * All possible nodes have pgdat preallocated
6665 		 * in free_area_init
6666 		 */
6667 		for_each_node(nid) {
6668 			pg_data_t *pgdat = NODE_DATA(nid);
6669 
6670 			build_zonelists(pgdat);
6671 		}
6672 
6673 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6674 		/*
6675 		 * We now know the "local memory node" for each node--
6676 		 * i.e., the node of the first zone in the generic zonelist.
6677 		 * Set up numa_mem percpu variable for on-line cpus.  During
6678 		 * boot, only the boot cpu should be on-line;  we'll init the
6679 		 * secondary cpus' numa_mem as they come on-line.  During
6680 		 * node/memory hotplug, we'll fixup all on-line cpus.
6681 		 */
6682 		for_each_online_cpu(cpu)
6683 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6684 #endif
6685 	}
6686 
6687 	write_sequnlock(&zonelist_update_seq);
6688 	printk_deferred_exit();
6689 	local_irq_restore(flags);
6690 }
6691 
6692 static noinline void __init
6693 build_all_zonelists_init(void)
6694 {
6695 	int cpu;
6696 
6697 	__build_all_zonelists(NULL);
6698 
6699 	/*
6700 	 * Initialize the boot_pagesets that are going to be used
6701 	 * for bootstrapping processors. The real pagesets for
6702 	 * each zone will be allocated later when the per cpu
6703 	 * allocator is available.
6704 	 *
6705 	 * boot_pagesets are used also for bootstrapping offline
6706 	 * cpus if the system is already booted because the pagesets
6707 	 * are needed to initialize allocators on a specific cpu too.
6708 	 * F.e. the percpu allocator needs the page allocator which
6709 	 * needs the percpu allocator in order to allocate its pagesets
6710 	 * (a chicken-egg dilemma).
6711 	 */
6712 	for_each_possible_cpu(cpu)
6713 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6714 
6715 	mminit_verify_zonelist();
6716 	cpuset_init_current_mems_allowed();
6717 }
6718 
6719 /*
6720  * unless system_state == SYSTEM_BOOTING.
6721  *
6722  * __ref due to call of __init annotated helper build_all_zonelists_init
6723  * [protected by SYSTEM_BOOTING].
6724  */
6725 void __ref build_all_zonelists(pg_data_t *pgdat)
6726 {
6727 	unsigned long vm_total_pages;
6728 
6729 	if (system_state == SYSTEM_BOOTING) {
6730 		build_all_zonelists_init();
6731 	} else {
6732 		__build_all_zonelists(pgdat);
6733 		/* cpuset refresh routine should be here */
6734 	}
6735 	/* Get the number of free pages beyond high watermark in all zones. */
6736 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6737 	/*
6738 	 * Disable grouping by mobility if the number of pages in the
6739 	 * system is too low to allow the mechanism to work. It would be
6740 	 * more accurate, but expensive to check per-zone. This check is
6741 	 * made on memory-hotadd so a system can start with mobility
6742 	 * disabled and enable it later
6743 	 */
6744 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6745 		page_group_by_mobility_disabled = 1;
6746 	else
6747 		page_group_by_mobility_disabled = 0;
6748 
6749 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6750 		nr_online_nodes,
6751 		page_group_by_mobility_disabled ? "off" : "on",
6752 		vm_total_pages);
6753 #ifdef CONFIG_NUMA
6754 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6755 #endif
6756 }
6757 
6758 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6759 static bool __meminit
6760 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6761 {
6762 	static struct memblock_region *r;
6763 
6764 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6765 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6766 			for_each_mem_region(r) {
6767 				if (*pfn < memblock_region_memory_end_pfn(r))
6768 					break;
6769 			}
6770 		}
6771 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6772 		    memblock_is_mirror(r)) {
6773 			*pfn = memblock_region_memory_end_pfn(r);
6774 			return true;
6775 		}
6776 	}
6777 	return false;
6778 }
6779 
6780 /*
6781  * Initially all pages are reserved - free ones are freed
6782  * up by memblock_free_all() once the early boot process is
6783  * done. Non-atomic initialization, single-pass.
6784  *
6785  * All aligned pageblocks are initialized to the specified migratetype
6786  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6787  * zone stats (e.g., nr_isolate_pageblock) are touched.
6788  */
6789 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6790 		unsigned long start_pfn, unsigned long zone_end_pfn,
6791 		enum meminit_context context,
6792 		struct vmem_altmap *altmap, int migratetype)
6793 {
6794 	unsigned long pfn, end_pfn = start_pfn + size;
6795 	struct page *page;
6796 
6797 	if (highest_memmap_pfn < end_pfn - 1)
6798 		highest_memmap_pfn = end_pfn - 1;
6799 
6800 #ifdef CONFIG_ZONE_DEVICE
6801 	/*
6802 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6803 	 * memory. We limit the total number of pages to initialize to just
6804 	 * those that might contain the memory mapping. We will defer the
6805 	 * ZONE_DEVICE page initialization until after we have released
6806 	 * the hotplug lock.
6807 	 */
6808 	if (zone == ZONE_DEVICE) {
6809 		if (!altmap)
6810 			return;
6811 
6812 		if (start_pfn == altmap->base_pfn)
6813 			start_pfn += altmap->reserve;
6814 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6815 	}
6816 #endif
6817 
6818 	for (pfn = start_pfn; pfn < end_pfn; ) {
6819 		/*
6820 		 * There can be holes in boot-time mem_map[]s handed to this
6821 		 * function.  They do not exist on hotplugged memory.
6822 		 */
6823 		if (context == MEMINIT_EARLY) {
6824 			if (overlap_memmap_init(zone, &pfn))
6825 				continue;
6826 			if (defer_init(nid, pfn, zone_end_pfn)) {
6827 				deferred_struct_pages = true;
6828 				break;
6829 			}
6830 		}
6831 
6832 		page = pfn_to_page(pfn);
6833 		__init_single_page(page, pfn, zone, nid);
6834 		if (context == MEMINIT_HOTPLUG)
6835 			__SetPageReserved(page);
6836 
6837 		/*
6838 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6839 		 * such that unmovable allocations won't be scattered all
6840 		 * over the place during system boot.
6841 		 */
6842 		if (pageblock_aligned(pfn)) {
6843 			set_pageblock_migratetype(page, migratetype);
6844 			cond_resched();
6845 		}
6846 		pfn++;
6847 	}
6848 }
6849 
6850 #ifdef CONFIG_ZONE_DEVICE
6851 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6852 					  unsigned long zone_idx, int nid,
6853 					  struct dev_pagemap *pgmap)
6854 {
6855 
6856 	__init_single_page(page, pfn, zone_idx, nid);
6857 
6858 	/*
6859 	 * Mark page reserved as it will need to wait for onlining
6860 	 * phase for it to be fully associated with a zone.
6861 	 *
6862 	 * We can use the non-atomic __set_bit operation for setting
6863 	 * the flag as we are still initializing the pages.
6864 	 */
6865 	__SetPageReserved(page);
6866 
6867 	/*
6868 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6869 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6870 	 * ever freed or placed on a driver-private list.
6871 	 */
6872 	page->pgmap = pgmap;
6873 	page->zone_device_data = NULL;
6874 
6875 	/*
6876 	 * Mark the block movable so that blocks are reserved for
6877 	 * movable at startup. This will force kernel allocations
6878 	 * to reserve their blocks rather than leaking throughout
6879 	 * the address space during boot when many long-lived
6880 	 * kernel allocations are made.
6881 	 *
6882 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6883 	 * because this is done early in section_activate()
6884 	 */
6885 	if (pageblock_aligned(pfn)) {
6886 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6887 		cond_resched();
6888 	}
6889 
6890 	/*
6891 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6892 	 * which will set the page count to 1 when allocating the page.
6893 	 */
6894 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6895 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6896 		set_page_count(page, 0);
6897 }
6898 
6899 /*
6900  * With compound page geometry and when struct pages are stored in ram most
6901  * tail pages are reused. Consequently, the amount of unique struct pages to
6902  * initialize is a lot smaller that the total amount of struct pages being
6903  * mapped. This is a paired / mild layering violation with explicit knowledge
6904  * of how the sparse_vmemmap internals handle compound pages in the lack
6905  * of an altmap. See vmemmap_populate_compound_pages().
6906  */
6907 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6908 					      unsigned long nr_pages)
6909 {
6910 	return is_power_of_2(sizeof(struct page)) &&
6911 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6912 }
6913 
6914 static void __ref memmap_init_compound(struct page *head,
6915 				       unsigned long head_pfn,
6916 				       unsigned long zone_idx, int nid,
6917 				       struct dev_pagemap *pgmap,
6918 				       unsigned long nr_pages)
6919 {
6920 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6921 	unsigned int order = pgmap->vmemmap_shift;
6922 
6923 	__SetPageHead(head);
6924 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6925 		struct page *page = pfn_to_page(pfn);
6926 
6927 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6928 		prep_compound_tail(head, pfn - head_pfn);
6929 		set_page_count(page, 0);
6930 
6931 		/*
6932 		 * The first tail page stores important compound page info.
6933 		 * Call prep_compound_head() after the first tail page has
6934 		 * been initialized, to not have the data overwritten.
6935 		 */
6936 		if (pfn == head_pfn + 1)
6937 			prep_compound_head(head, order);
6938 	}
6939 }
6940 
6941 void __ref memmap_init_zone_device(struct zone *zone,
6942 				   unsigned long start_pfn,
6943 				   unsigned long nr_pages,
6944 				   struct dev_pagemap *pgmap)
6945 {
6946 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6947 	struct pglist_data *pgdat = zone->zone_pgdat;
6948 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6949 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6950 	unsigned long zone_idx = zone_idx(zone);
6951 	unsigned long start = jiffies;
6952 	int nid = pgdat->node_id;
6953 
6954 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6955 		return;
6956 
6957 	/*
6958 	 * The call to memmap_init should have already taken care
6959 	 * of the pages reserved for the memmap, so we can just jump to
6960 	 * the end of that region and start processing the device pages.
6961 	 */
6962 	if (altmap) {
6963 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6964 		nr_pages = end_pfn - start_pfn;
6965 	}
6966 
6967 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6968 		struct page *page = pfn_to_page(pfn);
6969 
6970 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6971 
6972 		if (pfns_per_compound == 1)
6973 			continue;
6974 
6975 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6976 				     compound_nr_pages(altmap, pfns_per_compound));
6977 	}
6978 
6979 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6980 		nr_pages, jiffies_to_msecs(jiffies - start));
6981 }
6982 
6983 #endif
6984 static void __meminit zone_init_free_lists(struct zone *zone)
6985 {
6986 	unsigned int order, t;
6987 	for_each_migratetype_order(order, t) {
6988 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6989 		zone->free_area[order].nr_free = 0;
6990 	}
6991 }
6992 
6993 /*
6994  * Only struct pages that correspond to ranges defined by memblock.memory
6995  * are zeroed and initialized by going through __init_single_page() during
6996  * memmap_init_zone_range().
6997  *
6998  * But, there could be struct pages that correspond to holes in
6999  * memblock.memory. This can happen because of the following reasons:
7000  * - physical memory bank size is not necessarily the exact multiple of the
7001  *   arbitrary section size
7002  * - early reserved memory may not be listed in memblock.memory
7003  * - memory layouts defined with memmap= kernel parameter may not align
7004  *   nicely with memmap sections
7005  *
7006  * Explicitly initialize those struct pages so that:
7007  * - PG_Reserved is set
7008  * - zone and node links point to zone and node that span the page if the
7009  *   hole is in the middle of a zone
7010  * - zone and node links point to adjacent zone/node if the hole falls on
7011  *   the zone boundary; the pages in such holes will be prepended to the
7012  *   zone/node above the hole except for the trailing pages in the last
7013  *   section that will be appended to the zone/node below.
7014  */
7015 static void __init init_unavailable_range(unsigned long spfn,
7016 					  unsigned long epfn,
7017 					  int zone, int node)
7018 {
7019 	unsigned long pfn;
7020 	u64 pgcnt = 0;
7021 
7022 	for (pfn = spfn; pfn < epfn; pfn++) {
7023 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
7024 			pfn = pageblock_end_pfn(pfn) - 1;
7025 			continue;
7026 		}
7027 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
7028 		__SetPageReserved(pfn_to_page(pfn));
7029 		pgcnt++;
7030 	}
7031 
7032 	if (pgcnt)
7033 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7034 			node, zone_names[zone], pgcnt);
7035 }
7036 
7037 static void __init memmap_init_zone_range(struct zone *zone,
7038 					  unsigned long start_pfn,
7039 					  unsigned long end_pfn,
7040 					  unsigned long *hole_pfn)
7041 {
7042 	unsigned long zone_start_pfn = zone->zone_start_pfn;
7043 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7044 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7045 
7046 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7047 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7048 
7049 	if (start_pfn >= end_pfn)
7050 		return;
7051 
7052 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7053 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7054 
7055 	if (*hole_pfn < start_pfn)
7056 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7057 
7058 	*hole_pfn = end_pfn;
7059 }
7060 
7061 static void __init memmap_init(void)
7062 {
7063 	unsigned long start_pfn, end_pfn;
7064 	unsigned long hole_pfn = 0;
7065 	int i, j, zone_id = 0, nid;
7066 
7067 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7068 		struct pglist_data *node = NODE_DATA(nid);
7069 
7070 		for (j = 0; j < MAX_NR_ZONES; j++) {
7071 			struct zone *zone = node->node_zones + j;
7072 
7073 			if (!populated_zone(zone))
7074 				continue;
7075 
7076 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7077 					       &hole_pfn);
7078 			zone_id = j;
7079 		}
7080 	}
7081 
7082 #ifdef CONFIG_SPARSEMEM
7083 	/*
7084 	 * Initialize the memory map for hole in the range [memory_end,
7085 	 * section_end].
7086 	 * Append the pages in this hole to the highest zone in the last
7087 	 * node.
7088 	 * The call to init_unavailable_range() is outside the ifdef to
7089 	 * silence the compiler warining about zone_id set but not used;
7090 	 * for FLATMEM it is a nop anyway
7091 	 */
7092 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7093 	if (hole_pfn < end_pfn)
7094 #endif
7095 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7096 }
7097 
7098 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7099 			  phys_addr_t min_addr, int nid, bool exact_nid)
7100 {
7101 	void *ptr;
7102 
7103 	if (exact_nid)
7104 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7105 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7106 						   nid);
7107 	else
7108 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7109 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7110 						 nid);
7111 
7112 	if (ptr && size > 0)
7113 		page_init_poison(ptr, size);
7114 
7115 	return ptr;
7116 }
7117 
7118 static int zone_batchsize(struct zone *zone)
7119 {
7120 #ifdef CONFIG_MMU
7121 	int batch;
7122 
7123 	/*
7124 	 * The number of pages to batch allocate is either ~0.1%
7125 	 * of the zone or 1MB, whichever is smaller. The batch
7126 	 * size is striking a balance between allocation latency
7127 	 * and zone lock contention.
7128 	 */
7129 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7130 	batch /= 4;		/* We effectively *= 4 below */
7131 	if (batch < 1)
7132 		batch = 1;
7133 
7134 	/*
7135 	 * Clamp the batch to a 2^n - 1 value. Having a power
7136 	 * of 2 value was found to be more likely to have
7137 	 * suboptimal cache aliasing properties in some cases.
7138 	 *
7139 	 * For example if 2 tasks are alternately allocating
7140 	 * batches of pages, one task can end up with a lot
7141 	 * of pages of one half of the possible page colors
7142 	 * and the other with pages of the other colors.
7143 	 */
7144 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7145 
7146 	return batch;
7147 
7148 #else
7149 	/* The deferral and batching of frees should be suppressed under NOMMU
7150 	 * conditions.
7151 	 *
7152 	 * The problem is that NOMMU needs to be able to allocate large chunks
7153 	 * of contiguous memory as there's no hardware page translation to
7154 	 * assemble apparent contiguous memory from discontiguous pages.
7155 	 *
7156 	 * Queueing large contiguous runs of pages for batching, however,
7157 	 * causes the pages to actually be freed in smaller chunks.  As there
7158 	 * can be a significant delay between the individual batches being
7159 	 * recycled, this leads to the once large chunks of space being
7160 	 * fragmented and becoming unavailable for high-order allocations.
7161 	 */
7162 	return 0;
7163 #endif
7164 }
7165 
7166 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7167 {
7168 #ifdef CONFIG_MMU
7169 	int high;
7170 	int nr_split_cpus;
7171 	unsigned long total_pages;
7172 
7173 	if (!percpu_pagelist_high_fraction) {
7174 		/*
7175 		 * By default, the high value of the pcp is based on the zone
7176 		 * low watermark so that if they are full then background
7177 		 * reclaim will not be started prematurely.
7178 		 */
7179 		total_pages = low_wmark_pages(zone);
7180 	} else {
7181 		/*
7182 		 * If percpu_pagelist_high_fraction is configured, the high
7183 		 * value is based on a fraction of the managed pages in the
7184 		 * zone.
7185 		 */
7186 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7187 	}
7188 
7189 	/*
7190 	 * Split the high value across all online CPUs local to the zone. Note
7191 	 * that early in boot that CPUs may not be online yet and that during
7192 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7193 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7194 	 * all online CPUs to mitigate the risk that reclaim is triggered
7195 	 * prematurely due to pages stored on pcp lists.
7196 	 */
7197 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7198 	if (!nr_split_cpus)
7199 		nr_split_cpus = num_online_cpus();
7200 	high = total_pages / nr_split_cpus;
7201 
7202 	/*
7203 	 * Ensure high is at least batch*4. The multiple is based on the
7204 	 * historical relationship between high and batch.
7205 	 */
7206 	high = max(high, batch << 2);
7207 
7208 	return high;
7209 #else
7210 	return 0;
7211 #endif
7212 }
7213 
7214 /*
7215  * pcp->high and pcp->batch values are related and generally batch is lower
7216  * than high. They are also related to pcp->count such that count is lower
7217  * than high, and as soon as it reaches high, the pcplist is flushed.
7218  *
7219  * However, guaranteeing these relations at all times would require e.g. write
7220  * barriers here but also careful usage of read barriers at the read side, and
7221  * thus be prone to error and bad for performance. Thus the update only prevents
7222  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7223  * can cope with those fields changing asynchronously, and fully trust only the
7224  * pcp->count field on the local CPU with interrupts disabled.
7225  *
7226  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7227  * outside of boot time (or some other assurance that no concurrent updaters
7228  * exist).
7229  */
7230 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7231 		unsigned long batch)
7232 {
7233 	WRITE_ONCE(pcp->batch, batch);
7234 	WRITE_ONCE(pcp->high, high);
7235 }
7236 
7237 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7238 {
7239 	int pindex;
7240 
7241 	memset(pcp, 0, sizeof(*pcp));
7242 	memset(pzstats, 0, sizeof(*pzstats));
7243 
7244 	spin_lock_init(&pcp->lock);
7245 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7246 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7247 
7248 	/*
7249 	 * Set batch and high values safe for a boot pageset. A true percpu
7250 	 * pageset's initialization will update them subsequently. Here we don't
7251 	 * need to be as careful as pageset_update() as nobody can access the
7252 	 * pageset yet.
7253 	 */
7254 	pcp->high = BOOT_PAGESET_HIGH;
7255 	pcp->batch = BOOT_PAGESET_BATCH;
7256 	pcp->free_factor = 0;
7257 }
7258 
7259 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7260 		unsigned long batch)
7261 {
7262 	struct per_cpu_pages *pcp;
7263 	int cpu;
7264 
7265 	for_each_possible_cpu(cpu) {
7266 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7267 		pageset_update(pcp, high, batch);
7268 	}
7269 }
7270 
7271 /*
7272  * Calculate and set new high and batch values for all per-cpu pagesets of a
7273  * zone based on the zone's size.
7274  */
7275 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7276 {
7277 	int new_high, new_batch;
7278 
7279 	new_batch = max(1, zone_batchsize(zone));
7280 	new_high = zone_highsize(zone, new_batch, cpu_online);
7281 
7282 	if (zone->pageset_high == new_high &&
7283 	    zone->pageset_batch == new_batch)
7284 		return;
7285 
7286 	zone->pageset_high = new_high;
7287 	zone->pageset_batch = new_batch;
7288 
7289 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7290 }
7291 
7292 void __meminit setup_zone_pageset(struct zone *zone)
7293 {
7294 	int cpu;
7295 
7296 	/* Size may be 0 on !SMP && !NUMA */
7297 	if (sizeof(struct per_cpu_zonestat) > 0)
7298 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7299 
7300 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7301 	for_each_possible_cpu(cpu) {
7302 		struct per_cpu_pages *pcp;
7303 		struct per_cpu_zonestat *pzstats;
7304 
7305 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7306 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7307 		per_cpu_pages_init(pcp, pzstats);
7308 	}
7309 
7310 	zone_set_pageset_high_and_batch(zone, 0);
7311 }
7312 
7313 /*
7314  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7315  * page high values need to be recalculated.
7316  */
7317 static void zone_pcp_update(struct zone *zone, int cpu_online)
7318 {
7319 	mutex_lock(&pcp_batch_high_lock);
7320 	zone_set_pageset_high_and_batch(zone, cpu_online);
7321 	mutex_unlock(&pcp_batch_high_lock);
7322 }
7323 
7324 /*
7325  * Allocate per cpu pagesets and initialize them.
7326  * Before this call only boot pagesets were available.
7327  */
7328 void __init setup_per_cpu_pageset(void)
7329 {
7330 	struct pglist_data *pgdat;
7331 	struct zone *zone;
7332 	int __maybe_unused cpu;
7333 
7334 	for_each_populated_zone(zone)
7335 		setup_zone_pageset(zone);
7336 
7337 #ifdef CONFIG_NUMA
7338 	/*
7339 	 * Unpopulated zones continue using the boot pagesets.
7340 	 * The numa stats for these pagesets need to be reset.
7341 	 * Otherwise, they will end up skewing the stats of
7342 	 * the nodes these zones are associated with.
7343 	 */
7344 	for_each_possible_cpu(cpu) {
7345 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7346 		memset(pzstats->vm_numa_event, 0,
7347 		       sizeof(pzstats->vm_numa_event));
7348 	}
7349 #endif
7350 
7351 	for_each_online_pgdat(pgdat)
7352 		pgdat->per_cpu_nodestats =
7353 			alloc_percpu(struct per_cpu_nodestat);
7354 }
7355 
7356 static __meminit void zone_pcp_init(struct zone *zone)
7357 {
7358 	/*
7359 	 * per cpu subsystem is not up at this point. The following code
7360 	 * relies on the ability of the linker to provide the
7361 	 * offset of a (static) per cpu variable into the per cpu area.
7362 	 */
7363 	zone->per_cpu_pageset = &boot_pageset;
7364 	zone->per_cpu_zonestats = &boot_zonestats;
7365 	zone->pageset_high = BOOT_PAGESET_HIGH;
7366 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7367 
7368 	if (populated_zone(zone))
7369 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7370 			 zone->present_pages, zone_batchsize(zone));
7371 }
7372 
7373 void __meminit init_currently_empty_zone(struct zone *zone,
7374 					unsigned long zone_start_pfn,
7375 					unsigned long size)
7376 {
7377 	struct pglist_data *pgdat = zone->zone_pgdat;
7378 	int zone_idx = zone_idx(zone) + 1;
7379 
7380 	if (zone_idx > pgdat->nr_zones)
7381 		pgdat->nr_zones = zone_idx;
7382 
7383 	zone->zone_start_pfn = zone_start_pfn;
7384 
7385 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7386 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7387 			pgdat->node_id,
7388 			(unsigned long)zone_idx(zone),
7389 			zone_start_pfn, (zone_start_pfn + size));
7390 
7391 	zone_init_free_lists(zone);
7392 	zone->initialized = 1;
7393 }
7394 
7395 /**
7396  * get_pfn_range_for_nid - Return the start and end page frames for a node
7397  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7398  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7399  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7400  *
7401  * It returns the start and end page frame of a node based on information
7402  * provided by memblock_set_node(). If called for a node
7403  * with no available memory, a warning is printed and the start and end
7404  * PFNs will be 0.
7405  */
7406 void __init get_pfn_range_for_nid(unsigned int nid,
7407 			unsigned long *start_pfn, unsigned long *end_pfn)
7408 {
7409 	unsigned long this_start_pfn, this_end_pfn;
7410 	int i;
7411 
7412 	*start_pfn = -1UL;
7413 	*end_pfn = 0;
7414 
7415 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7416 		*start_pfn = min(*start_pfn, this_start_pfn);
7417 		*end_pfn = max(*end_pfn, this_end_pfn);
7418 	}
7419 
7420 	if (*start_pfn == -1UL)
7421 		*start_pfn = 0;
7422 }
7423 
7424 /*
7425  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7426  * assumption is made that zones within a node are ordered in monotonic
7427  * increasing memory addresses so that the "highest" populated zone is used
7428  */
7429 static void __init find_usable_zone_for_movable(void)
7430 {
7431 	int zone_index;
7432 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7433 		if (zone_index == ZONE_MOVABLE)
7434 			continue;
7435 
7436 		if (arch_zone_highest_possible_pfn[zone_index] >
7437 				arch_zone_lowest_possible_pfn[zone_index])
7438 			break;
7439 	}
7440 
7441 	VM_BUG_ON(zone_index == -1);
7442 	movable_zone = zone_index;
7443 }
7444 
7445 /*
7446  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7447  * because it is sized independent of architecture. Unlike the other zones,
7448  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7449  * in each node depending on the size of each node and how evenly kernelcore
7450  * is distributed. This helper function adjusts the zone ranges
7451  * provided by the architecture for a given node by using the end of the
7452  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7453  * zones within a node are in order of monotonic increases memory addresses
7454  */
7455 static void __init adjust_zone_range_for_zone_movable(int nid,
7456 					unsigned long zone_type,
7457 					unsigned long node_start_pfn,
7458 					unsigned long node_end_pfn,
7459 					unsigned long *zone_start_pfn,
7460 					unsigned long *zone_end_pfn)
7461 {
7462 	/* Only adjust if ZONE_MOVABLE is on this node */
7463 	if (zone_movable_pfn[nid]) {
7464 		/* Size ZONE_MOVABLE */
7465 		if (zone_type == ZONE_MOVABLE) {
7466 			*zone_start_pfn = zone_movable_pfn[nid];
7467 			*zone_end_pfn = min(node_end_pfn,
7468 				arch_zone_highest_possible_pfn[movable_zone]);
7469 
7470 		/* Adjust for ZONE_MOVABLE starting within this range */
7471 		} else if (!mirrored_kernelcore &&
7472 			*zone_start_pfn < zone_movable_pfn[nid] &&
7473 			*zone_end_pfn > zone_movable_pfn[nid]) {
7474 			*zone_end_pfn = zone_movable_pfn[nid];
7475 
7476 		/* Check if this whole range is within ZONE_MOVABLE */
7477 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7478 			*zone_start_pfn = *zone_end_pfn;
7479 	}
7480 }
7481 
7482 /*
7483  * Return the number of pages a zone spans in a node, including holes
7484  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7485  */
7486 static unsigned long __init zone_spanned_pages_in_node(int nid,
7487 					unsigned long zone_type,
7488 					unsigned long node_start_pfn,
7489 					unsigned long node_end_pfn,
7490 					unsigned long *zone_start_pfn,
7491 					unsigned long *zone_end_pfn)
7492 {
7493 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7494 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7495 	/* When hotadd a new node from cpu_up(), the node should be empty */
7496 	if (!node_start_pfn && !node_end_pfn)
7497 		return 0;
7498 
7499 	/* Get the start and end of the zone */
7500 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7501 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7502 	adjust_zone_range_for_zone_movable(nid, zone_type,
7503 				node_start_pfn, node_end_pfn,
7504 				zone_start_pfn, zone_end_pfn);
7505 
7506 	/* Check that this node has pages within the zone's required range */
7507 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7508 		return 0;
7509 
7510 	/* Move the zone boundaries inside the node if necessary */
7511 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7512 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7513 
7514 	/* Return the spanned pages */
7515 	return *zone_end_pfn - *zone_start_pfn;
7516 }
7517 
7518 /*
7519  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7520  * then all holes in the requested range will be accounted for.
7521  */
7522 unsigned long __init __absent_pages_in_range(int nid,
7523 				unsigned long range_start_pfn,
7524 				unsigned long range_end_pfn)
7525 {
7526 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7527 	unsigned long start_pfn, end_pfn;
7528 	int i;
7529 
7530 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7531 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7532 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7533 		nr_absent -= end_pfn - start_pfn;
7534 	}
7535 	return nr_absent;
7536 }
7537 
7538 /**
7539  * absent_pages_in_range - Return number of page frames in holes within a range
7540  * @start_pfn: The start PFN to start searching for holes
7541  * @end_pfn: The end PFN to stop searching for holes
7542  *
7543  * Return: the number of pages frames in memory holes within a range.
7544  */
7545 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7546 							unsigned long end_pfn)
7547 {
7548 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7549 }
7550 
7551 /* Return the number of page frames in holes in a zone on a node */
7552 static unsigned long __init zone_absent_pages_in_node(int nid,
7553 					unsigned long zone_type,
7554 					unsigned long node_start_pfn,
7555 					unsigned long node_end_pfn)
7556 {
7557 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7558 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7559 	unsigned long zone_start_pfn, zone_end_pfn;
7560 	unsigned long nr_absent;
7561 
7562 	/* When hotadd a new node from cpu_up(), the node should be empty */
7563 	if (!node_start_pfn && !node_end_pfn)
7564 		return 0;
7565 
7566 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7567 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7568 
7569 	adjust_zone_range_for_zone_movable(nid, zone_type,
7570 			node_start_pfn, node_end_pfn,
7571 			&zone_start_pfn, &zone_end_pfn);
7572 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7573 
7574 	/*
7575 	 * ZONE_MOVABLE handling.
7576 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7577 	 * and vice versa.
7578 	 */
7579 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7580 		unsigned long start_pfn, end_pfn;
7581 		struct memblock_region *r;
7582 
7583 		for_each_mem_region(r) {
7584 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7585 					  zone_start_pfn, zone_end_pfn);
7586 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7587 					zone_start_pfn, zone_end_pfn);
7588 
7589 			if (zone_type == ZONE_MOVABLE &&
7590 			    memblock_is_mirror(r))
7591 				nr_absent += end_pfn - start_pfn;
7592 
7593 			if (zone_type == ZONE_NORMAL &&
7594 			    !memblock_is_mirror(r))
7595 				nr_absent += end_pfn - start_pfn;
7596 		}
7597 	}
7598 
7599 	return nr_absent;
7600 }
7601 
7602 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7603 						unsigned long node_start_pfn,
7604 						unsigned long node_end_pfn)
7605 {
7606 	unsigned long realtotalpages = 0, totalpages = 0;
7607 	enum zone_type i;
7608 
7609 	for (i = 0; i < MAX_NR_ZONES; i++) {
7610 		struct zone *zone = pgdat->node_zones + i;
7611 		unsigned long zone_start_pfn, zone_end_pfn;
7612 		unsigned long spanned, absent;
7613 		unsigned long size, real_size;
7614 
7615 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7616 						     node_start_pfn,
7617 						     node_end_pfn,
7618 						     &zone_start_pfn,
7619 						     &zone_end_pfn);
7620 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7621 						   node_start_pfn,
7622 						   node_end_pfn);
7623 
7624 		size = spanned;
7625 		real_size = size - absent;
7626 
7627 		if (size)
7628 			zone->zone_start_pfn = zone_start_pfn;
7629 		else
7630 			zone->zone_start_pfn = 0;
7631 		zone->spanned_pages = size;
7632 		zone->present_pages = real_size;
7633 #if defined(CONFIG_MEMORY_HOTPLUG)
7634 		zone->present_early_pages = real_size;
7635 #endif
7636 
7637 		totalpages += size;
7638 		realtotalpages += real_size;
7639 	}
7640 
7641 	pgdat->node_spanned_pages = totalpages;
7642 	pgdat->node_present_pages = realtotalpages;
7643 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7644 }
7645 
7646 #ifndef CONFIG_SPARSEMEM
7647 /*
7648  * Calculate the size of the zone->blockflags rounded to an unsigned long
7649  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7650  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7651  * round what is now in bits to nearest long in bits, then return it in
7652  * bytes.
7653  */
7654 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7655 {
7656 	unsigned long usemapsize;
7657 
7658 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7659 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7660 	usemapsize = usemapsize >> pageblock_order;
7661 	usemapsize *= NR_PAGEBLOCK_BITS;
7662 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7663 
7664 	return usemapsize / 8;
7665 }
7666 
7667 static void __ref setup_usemap(struct zone *zone)
7668 {
7669 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7670 					       zone->spanned_pages);
7671 	zone->pageblock_flags = NULL;
7672 	if (usemapsize) {
7673 		zone->pageblock_flags =
7674 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7675 					    zone_to_nid(zone));
7676 		if (!zone->pageblock_flags)
7677 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7678 			      usemapsize, zone->name, zone_to_nid(zone));
7679 	}
7680 }
7681 #else
7682 static inline void setup_usemap(struct zone *zone) {}
7683 #endif /* CONFIG_SPARSEMEM */
7684 
7685 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7686 
7687 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7688 void __init set_pageblock_order(void)
7689 {
7690 	unsigned int order = MAX_ORDER - 1;
7691 
7692 	/* Check that pageblock_nr_pages has not already been setup */
7693 	if (pageblock_order)
7694 		return;
7695 
7696 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7697 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7698 		order = HUGETLB_PAGE_ORDER;
7699 
7700 	/*
7701 	 * Assume the largest contiguous order of interest is a huge page.
7702 	 * This value may be variable depending on boot parameters on IA64 and
7703 	 * powerpc.
7704 	 */
7705 	pageblock_order = order;
7706 }
7707 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7708 
7709 /*
7710  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7711  * is unused as pageblock_order is set at compile-time. See
7712  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7713  * the kernel config
7714  */
7715 void __init set_pageblock_order(void)
7716 {
7717 }
7718 
7719 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7720 
7721 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7722 						unsigned long present_pages)
7723 {
7724 	unsigned long pages = spanned_pages;
7725 
7726 	/*
7727 	 * Provide a more accurate estimation if there are holes within
7728 	 * the zone and SPARSEMEM is in use. If there are holes within the
7729 	 * zone, each populated memory region may cost us one or two extra
7730 	 * memmap pages due to alignment because memmap pages for each
7731 	 * populated regions may not be naturally aligned on page boundary.
7732 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7733 	 */
7734 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7735 	    IS_ENABLED(CONFIG_SPARSEMEM))
7736 		pages = present_pages;
7737 
7738 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7739 }
7740 
7741 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7742 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7743 {
7744 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7745 
7746 	spin_lock_init(&ds_queue->split_queue_lock);
7747 	INIT_LIST_HEAD(&ds_queue->split_queue);
7748 	ds_queue->split_queue_len = 0;
7749 }
7750 #else
7751 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7752 #endif
7753 
7754 #ifdef CONFIG_COMPACTION
7755 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7756 {
7757 	init_waitqueue_head(&pgdat->kcompactd_wait);
7758 }
7759 #else
7760 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7761 #endif
7762 
7763 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7764 {
7765 	int i;
7766 
7767 	pgdat_resize_init(pgdat);
7768 	pgdat_kswapd_lock_init(pgdat);
7769 
7770 	pgdat_init_split_queue(pgdat);
7771 	pgdat_init_kcompactd(pgdat);
7772 
7773 	init_waitqueue_head(&pgdat->kswapd_wait);
7774 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7775 
7776 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7777 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7778 
7779 	pgdat_page_ext_init(pgdat);
7780 	lruvec_init(&pgdat->__lruvec);
7781 }
7782 
7783 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7784 							unsigned long remaining_pages)
7785 {
7786 	atomic_long_set(&zone->managed_pages, remaining_pages);
7787 	zone_set_nid(zone, nid);
7788 	zone->name = zone_names[idx];
7789 	zone->zone_pgdat = NODE_DATA(nid);
7790 	spin_lock_init(&zone->lock);
7791 	zone_seqlock_init(zone);
7792 	zone_pcp_init(zone);
7793 }
7794 
7795 /*
7796  * Set up the zone data structures
7797  * - init pgdat internals
7798  * - init all zones belonging to this node
7799  *
7800  * NOTE: this function is only called during memory hotplug
7801  */
7802 #ifdef CONFIG_MEMORY_HOTPLUG
7803 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7804 {
7805 	int nid = pgdat->node_id;
7806 	enum zone_type z;
7807 	int cpu;
7808 
7809 	pgdat_init_internals(pgdat);
7810 
7811 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7812 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7813 
7814 	/*
7815 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7816 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7817 	 * when it starts in the near future.
7818 	 */
7819 	pgdat->nr_zones = 0;
7820 	pgdat->kswapd_order = 0;
7821 	pgdat->kswapd_highest_zoneidx = 0;
7822 	pgdat->node_start_pfn = 0;
7823 	for_each_online_cpu(cpu) {
7824 		struct per_cpu_nodestat *p;
7825 
7826 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7827 		memset(p, 0, sizeof(*p));
7828 	}
7829 
7830 	for (z = 0; z < MAX_NR_ZONES; z++)
7831 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7832 }
7833 #endif
7834 
7835 /*
7836  * Set up the zone data structures:
7837  *   - mark all pages reserved
7838  *   - mark all memory queues empty
7839  *   - clear the memory bitmaps
7840  *
7841  * NOTE: pgdat should get zeroed by caller.
7842  * NOTE: this function is only called during early init.
7843  */
7844 static void __init free_area_init_core(struct pglist_data *pgdat)
7845 {
7846 	enum zone_type j;
7847 	int nid = pgdat->node_id;
7848 
7849 	pgdat_init_internals(pgdat);
7850 	pgdat->per_cpu_nodestats = &boot_nodestats;
7851 
7852 	for (j = 0; j < MAX_NR_ZONES; j++) {
7853 		struct zone *zone = pgdat->node_zones + j;
7854 		unsigned long size, freesize, memmap_pages;
7855 
7856 		size = zone->spanned_pages;
7857 		freesize = zone->present_pages;
7858 
7859 		/*
7860 		 * Adjust freesize so that it accounts for how much memory
7861 		 * is used by this zone for memmap. This affects the watermark
7862 		 * and per-cpu initialisations
7863 		 */
7864 		memmap_pages = calc_memmap_size(size, freesize);
7865 		if (!is_highmem_idx(j)) {
7866 			if (freesize >= memmap_pages) {
7867 				freesize -= memmap_pages;
7868 				if (memmap_pages)
7869 					pr_debug("  %s zone: %lu pages used for memmap\n",
7870 						 zone_names[j], memmap_pages);
7871 			} else
7872 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7873 					zone_names[j], memmap_pages, freesize);
7874 		}
7875 
7876 		/* Account for reserved pages */
7877 		if (j == 0 && freesize > dma_reserve) {
7878 			freesize -= dma_reserve;
7879 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7880 		}
7881 
7882 		if (!is_highmem_idx(j))
7883 			nr_kernel_pages += freesize;
7884 		/* Charge for highmem memmap if there are enough kernel pages */
7885 		else if (nr_kernel_pages > memmap_pages * 2)
7886 			nr_kernel_pages -= memmap_pages;
7887 		nr_all_pages += freesize;
7888 
7889 		/*
7890 		 * Set an approximate value for lowmem here, it will be adjusted
7891 		 * when the bootmem allocator frees pages into the buddy system.
7892 		 * And all highmem pages will be managed by the buddy system.
7893 		 */
7894 		zone_init_internals(zone, j, nid, freesize);
7895 
7896 		if (!size)
7897 			continue;
7898 
7899 		set_pageblock_order();
7900 		setup_usemap(zone);
7901 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7902 	}
7903 }
7904 
7905 #ifdef CONFIG_FLATMEM
7906 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7907 {
7908 	unsigned long __maybe_unused start = 0;
7909 	unsigned long __maybe_unused offset = 0;
7910 
7911 	/* Skip empty nodes */
7912 	if (!pgdat->node_spanned_pages)
7913 		return;
7914 
7915 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7916 	offset = pgdat->node_start_pfn - start;
7917 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7918 	if (!pgdat->node_mem_map) {
7919 		unsigned long size, end;
7920 		struct page *map;
7921 
7922 		/*
7923 		 * The zone's endpoints aren't required to be MAX_ORDER
7924 		 * aligned but the node_mem_map endpoints must be in order
7925 		 * for the buddy allocator to function correctly.
7926 		 */
7927 		end = pgdat_end_pfn(pgdat);
7928 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7929 		size =  (end - start) * sizeof(struct page);
7930 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7931 				   pgdat->node_id, false);
7932 		if (!map)
7933 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7934 			      size, pgdat->node_id);
7935 		pgdat->node_mem_map = map + offset;
7936 	}
7937 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7938 				__func__, pgdat->node_id, (unsigned long)pgdat,
7939 				(unsigned long)pgdat->node_mem_map);
7940 #ifndef CONFIG_NUMA
7941 	/*
7942 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7943 	 */
7944 	if (pgdat == NODE_DATA(0)) {
7945 		mem_map = NODE_DATA(0)->node_mem_map;
7946 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7947 			mem_map -= offset;
7948 	}
7949 #endif
7950 }
7951 #else
7952 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7953 #endif /* CONFIG_FLATMEM */
7954 
7955 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7956 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7957 {
7958 	pgdat->first_deferred_pfn = ULONG_MAX;
7959 }
7960 #else
7961 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7962 #endif
7963 
7964 static void __init free_area_init_node(int nid)
7965 {
7966 	pg_data_t *pgdat = NODE_DATA(nid);
7967 	unsigned long start_pfn = 0;
7968 	unsigned long end_pfn = 0;
7969 
7970 	/* pg_data_t should be reset to zero when it's allocated */
7971 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7972 
7973 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7974 
7975 	pgdat->node_id = nid;
7976 	pgdat->node_start_pfn = start_pfn;
7977 	pgdat->per_cpu_nodestats = NULL;
7978 
7979 	if (start_pfn != end_pfn) {
7980 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7981 			(u64)start_pfn << PAGE_SHIFT,
7982 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7983 	} else {
7984 		pr_info("Initmem setup node %d as memoryless\n", nid);
7985 	}
7986 
7987 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7988 
7989 	alloc_node_mem_map(pgdat);
7990 	pgdat_set_deferred_range(pgdat);
7991 
7992 	free_area_init_core(pgdat);
7993 	lru_gen_init_pgdat(pgdat);
7994 }
7995 
7996 static void __init free_area_init_memoryless_node(int nid)
7997 {
7998 	free_area_init_node(nid);
7999 }
8000 
8001 #if MAX_NUMNODES > 1
8002 /*
8003  * Figure out the number of possible node ids.
8004  */
8005 void __init setup_nr_node_ids(void)
8006 {
8007 	unsigned int highest;
8008 
8009 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
8010 	nr_node_ids = highest + 1;
8011 }
8012 #endif
8013 
8014 /**
8015  * node_map_pfn_alignment - determine the maximum internode alignment
8016  *
8017  * This function should be called after node map is populated and sorted.
8018  * It calculates the maximum power of two alignment which can distinguish
8019  * all the nodes.
8020  *
8021  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
8022  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
8023  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
8024  * shifted, 1GiB is enough and this function will indicate so.
8025  *
8026  * This is used to test whether pfn -> nid mapping of the chosen memory
8027  * model has fine enough granularity to avoid incorrect mapping for the
8028  * populated node map.
8029  *
8030  * Return: the determined alignment in pfn's.  0 if there is no alignment
8031  * requirement (single node).
8032  */
8033 unsigned long __init node_map_pfn_alignment(void)
8034 {
8035 	unsigned long accl_mask = 0, last_end = 0;
8036 	unsigned long start, end, mask;
8037 	int last_nid = NUMA_NO_NODE;
8038 	int i, nid;
8039 
8040 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
8041 		if (!start || last_nid < 0 || last_nid == nid) {
8042 			last_nid = nid;
8043 			last_end = end;
8044 			continue;
8045 		}
8046 
8047 		/*
8048 		 * Start with a mask granular enough to pin-point to the
8049 		 * start pfn and tick off bits one-by-one until it becomes
8050 		 * too coarse to separate the current node from the last.
8051 		 */
8052 		mask = ~((1 << __ffs(start)) - 1);
8053 		while (mask && last_end <= (start & (mask << 1)))
8054 			mask <<= 1;
8055 
8056 		/* accumulate all internode masks */
8057 		accl_mask |= mask;
8058 	}
8059 
8060 	/* convert mask to number of pages */
8061 	return ~accl_mask + 1;
8062 }
8063 
8064 /*
8065  * early_calculate_totalpages()
8066  * Sum pages in active regions for movable zone.
8067  * Populate N_MEMORY for calculating usable_nodes.
8068  */
8069 static unsigned long __init early_calculate_totalpages(void)
8070 {
8071 	unsigned long totalpages = 0;
8072 	unsigned long start_pfn, end_pfn;
8073 	int i, nid;
8074 
8075 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8076 		unsigned long pages = end_pfn - start_pfn;
8077 
8078 		totalpages += pages;
8079 		if (pages)
8080 			node_set_state(nid, N_MEMORY);
8081 	}
8082 	return totalpages;
8083 }
8084 
8085 /*
8086  * Find the PFN the Movable zone begins in each node. Kernel memory
8087  * is spread evenly between nodes as long as the nodes have enough
8088  * memory. When they don't, some nodes will have more kernelcore than
8089  * others
8090  */
8091 static void __init find_zone_movable_pfns_for_nodes(void)
8092 {
8093 	int i, nid;
8094 	unsigned long usable_startpfn;
8095 	unsigned long kernelcore_node, kernelcore_remaining;
8096 	/* save the state before borrow the nodemask */
8097 	nodemask_t saved_node_state = node_states[N_MEMORY];
8098 	unsigned long totalpages = early_calculate_totalpages();
8099 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8100 	struct memblock_region *r;
8101 
8102 	/* Need to find movable_zone earlier when movable_node is specified. */
8103 	find_usable_zone_for_movable();
8104 
8105 	/*
8106 	 * If movable_node is specified, ignore kernelcore and movablecore
8107 	 * options.
8108 	 */
8109 	if (movable_node_is_enabled()) {
8110 		for_each_mem_region(r) {
8111 			if (!memblock_is_hotpluggable(r))
8112 				continue;
8113 
8114 			nid = memblock_get_region_node(r);
8115 
8116 			usable_startpfn = PFN_DOWN(r->base);
8117 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8118 				min(usable_startpfn, zone_movable_pfn[nid]) :
8119 				usable_startpfn;
8120 		}
8121 
8122 		goto out2;
8123 	}
8124 
8125 	/*
8126 	 * If kernelcore=mirror is specified, ignore movablecore option
8127 	 */
8128 	if (mirrored_kernelcore) {
8129 		bool mem_below_4gb_not_mirrored = false;
8130 
8131 		for_each_mem_region(r) {
8132 			if (memblock_is_mirror(r))
8133 				continue;
8134 
8135 			nid = memblock_get_region_node(r);
8136 
8137 			usable_startpfn = memblock_region_memory_base_pfn(r);
8138 
8139 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8140 				mem_below_4gb_not_mirrored = true;
8141 				continue;
8142 			}
8143 
8144 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8145 				min(usable_startpfn, zone_movable_pfn[nid]) :
8146 				usable_startpfn;
8147 		}
8148 
8149 		if (mem_below_4gb_not_mirrored)
8150 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8151 
8152 		goto out2;
8153 	}
8154 
8155 	/*
8156 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8157 	 * amount of necessary memory.
8158 	 */
8159 	if (required_kernelcore_percent)
8160 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8161 				       10000UL;
8162 	if (required_movablecore_percent)
8163 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8164 					10000UL;
8165 
8166 	/*
8167 	 * If movablecore= was specified, calculate what size of
8168 	 * kernelcore that corresponds so that memory usable for
8169 	 * any allocation type is evenly spread. If both kernelcore
8170 	 * and movablecore are specified, then the value of kernelcore
8171 	 * will be used for required_kernelcore if it's greater than
8172 	 * what movablecore would have allowed.
8173 	 */
8174 	if (required_movablecore) {
8175 		unsigned long corepages;
8176 
8177 		/*
8178 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8179 		 * was requested by the user
8180 		 */
8181 		required_movablecore =
8182 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8183 		required_movablecore = min(totalpages, required_movablecore);
8184 		corepages = totalpages - required_movablecore;
8185 
8186 		required_kernelcore = max(required_kernelcore, corepages);
8187 	}
8188 
8189 	/*
8190 	 * If kernelcore was not specified or kernelcore size is larger
8191 	 * than totalpages, there is no ZONE_MOVABLE.
8192 	 */
8193 	if (!required_kernelcore || required_kernelcore >= totalpages)
8194 		goto out;
8195 
8196 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8197 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8198 
8199 restart:
8200 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8201 	kernelcore_node = required_kernelcore / usable_nodes;
8202 	for_each_node_state(nid, N_MEMORY) {
8203 		unsigned long start_pfn, end_pfn;
8204 
8205 		/*
8206 		 * Recalculate kernelcore_node if the division per node
8207 		 * now exceeds what is necessary to satisfy the requested
8208 		 * amount of memory for the kernel
8209 		 */
8210 		if (required_kernelcore < kernelcore_node)
8211 			kernelcore_node = required_kernelcore / usable_nodes;
8212 
8213 		/*
8214 		 * As the map is walked, we track how much memory is usable
8215 		 * by the kernel using kernelcore_remaining. When it is
8216 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8217 		 */
8218 		kernelcore_remaining = kernelcore_node;
8219 
8220 		/* Go through each range of PFNs within this node */
8221 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8222 			unsigned long size_pages;
8223 
8224 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8225 			if (start_pfn >= end_pfn)
8226 				continue;
8227 
8228 			/* Account for what is only usable for kernelcore */
8229 			if (start_pfn < usable_startpfn) {
8230 				unsigned long kernel_pages;
8231 				kernel_pages = min(end_pfn, usable_startpfn)
8232 								- start_pfn;
8233 
8234 				kernelcore_remaining -= min(kernel_pages,
8235 							kernelcore_remaining);
8236 				required_kernelcore -= min(kernel_pages,
8237 							required_kernelcore);
8238 
8239 				/* Continue if range is now fully accounted */
8240 				if (end_pfn <= usable_startpfn) {
8241 
8242 					/*
8243 					 * Push zone_movable_pfn to the end so
8244 					 * that if we have to rebalance
8245 					 * kernelcore across nodes, we will
8246 					 * not double account here
8247 					 */
8248 					zone_movable_pfn[nid] = end_pfn;
8249 					continue;
8250 				}
8251 				start_pfn = usable_startpfn;
8252 			}
8253 
8254 			/*
8255 			 * The usable PFN range for ZONE_MOVABLE is from
8256 			 * start_pfn->end_pfn. Calculate size_pages as the
8257 			 * number of pages used as kernelcore
8258 			 */
8259 			size_pages = end_pfn - start_pfn;
8260 			if (size_pages > kernelcore_remaining)
8261 				size_pages = kernelcore_remaining;
8262 			zone_movable_pfn[nid] = start_pfn + size_pages;
8263 
8264 			/*
8265 			 * Some kernelcore has been met, update counts and
8266 			 * break if the kernelcore for this node has been
8267 			 * satisfied
8268 			 */
8269 			required_kernelcore -= min(required_kernelcore,
8270 								size_pages);
8271 			kernelcore_remaining -= size_pages;
8272 			if (!kernelcore_remaining)
8273 				break;
8274 		}
8275 	}
8276 
8277 	/*
8278 	 * If there is still required_kernelcore, we do another pass with one
8279 	 * less node in the count. This will push zone_movable_pfn[nid] further
8280 	 * along on the nodes that still have memory until kernelcore is
8281 	 * satisfied
8282 	 */
8283 	usable_nodes--;
8284 	if (usable_nodes && required_kernelcore > usable_nodes)
8285 		goto restart;
8286 
8287 out2:
8288 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8289 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8290 		unsigned long start_pfn, end_pfn;
8291 
8292 		zone_movable_pfn[nid] =
8293 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8294 
8295 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8296 		if (zone_movable_pfn[nid] >= end_pfn)
8297 			zone_movable_pfn[nid] = 0;
8298 	}
8299 
8300 out:
8301 	/* restore the node_state */
8302 	node_states[N_MEMORY] = saved_node_state;
8303 }
8304 
8305 /* Any regular or high memory on that node ? */
8306 static void check_for_memory(pg_data_t *pgdat, int nid)
8307 {
8308 	enum zone_type zone_type;
8309 
8310 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8311 		struct zone *zone = &pgdat->node_zones[zone_type];
8312 		if (populated_zone(zone)) {
8313 			if (IS_ENABLED(CONFIG_HIGHMEM))
8314 				node_set_state(nid, N_HIGH_MEMORY);
8315 			if (zone_type <= ZONE_NORMAL)
8316 				node_set_state(nid, N_NORMAL_MEMORY);
8317 			break;
8318 		}
8319 	}
8320 }
8321 
8322 /*
8323  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8324  * such cases we allow max_zone_pfn sorted in the descending order
8325  */
8326 bool __weak arch_has_descending_max_zone_pfns(void)
8327 {
8328 	return false;
8329 }
8330 
8331 /**
8332  * free_area_init - Initialise all pg_data_t and zone data
8333  * @max_zone_pfn: an array of max PFNs for each zone
8334  *
8335  * This will call free_area_init_node() for each active node in the system.
8336  * Using the page ranges provided by memblock_set_node(), the size of each
8337  * zone in each node and their holes is calculated. If the maximum PFN
8338  * between two adjacent zones match, it is assumed that the zone is empty.
8339  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8340  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8341  * starts where the previous one ended. For example, ZONE_DMA32 starts
8342  * at arch_max_dma_pfn.
8343  */
8344 void __init free_area_init(unsigned long *max_zone_pfn)
8345 {
8346 	unsigned long start_pfn, end_pfn;
8347 	int i, nid, zone;
8348 	bool descending;
8349 
8350 	/* Record where the zone boundaries are */
8351 	memset(arch_zone_lowest_possible_pfn, 0,
8352 				sizeof(arch_zone_lowest_possible_pfn));
8353 	memset(arch_zone_highest_possible_pfn, 0,
8354 				sizeof(arch_zone_highest_possible_pfn));
8355 
8356 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8357 	descending = arch_has_descending_max_zone_pfns();
8358 
8359 	for (i = 0; i < MAX_NR_ZONES; i++) {
8360 		if (descending)
8361 			zone = MAX_NR_ZONES - i - 1;
8362 		else
8363 			zone = i;
8364 
8365 		if (zone == ZONE_MOVABLE)
8366 			continue;
8367 
8368 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8369 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8370 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8371 
8372 		start_pfn = end_pfn;
8373 	}
8374 
8375 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8376 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8377 	find_zone_movable_pfns_for_nodes();
8378 
8379 	/* Print out the zone ranges */
8380 	pr_info("Zone ranges:\n");
8381 	for (i = 0; i < MAX_NR_ZONES; i++) {
8382 		if (i == ZONE_MOVABLE)
8383 			continue;
8384 		pr_info("  %-8s ", zone_names[i]);
8385 		if (arch_zone_lowest_possible_pfn[i] ==
8386 				arch_zone_highest_possible_pfn[i])
8387 			pr_cont("empty\n");
8388 		else
8389 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8390 				(u64)arch_zone_lowest_possible_pfn[i]
8391 					<< PAGE_SHIFT,
8392 				((u64)arch_zone_highest_possible_pfn[i]
8393 					<< PAGE_SHIFT) - 1);
8394 	}
8395 
8396 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8397 	pr_info("Movable zone start for each node\n");
8398 	for (i = 0; i < MAX_NUMNODES; i++) {
8399 		if (zone_movable_pfn[i])
8400 			pr_info("  Node %d: %#018Lx\n", i,
8401 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8402 	}
8403 
8404 	/*
8405 	 * Print out the early node map, and initialize the
8406 	 * subsection-map relative to active online memory ranges to
8407 	 * enable future "sub-section" extensions of the memory map.
8408 	 */
8409 	pr_info("Early memory node ranges\n");
8410 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8411 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8412 			(u64)start_pfn << PAGE_SHIFT,
8413 			((u64)end_pfn << PAGE_SHIFT) - 1);
8414 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8415 	}
8416 
8417 	/* Initialise every node */
8418 	mminit_verify_pageflags_layout();
8419 	setup_nr_node_ids();
8420 	for_each_node(nid) {
8421 		pg_data_t *pgdat;
8422 
8423 		if (!node_online(nid)) {
8424 			pr_info("Initializing node %d as memoryless\n", nid);
8425 
8426 			/* Allocator not initialized yet */
8427 			pgdat = arch_alloc_nodedata(nid);
8428 			if (!pgdat)
8429 				panic("Cannot allocate %zuB for node %d.\n",
8430 				       sizeof(*pgdat), nid);
8431 			arch_refresh_nodedata(nid, pgdat);
8432 			free_area_init_memoryless_node(nid);
8433 
8434 			/*
8435 			 * We do not want to confuse userspace by sysfs
8436 			 * files/directories for node without any memory
8437 			 * attached to it, so this node is not marked as
8438 			 * N_MEMORY and not marked online so that no sysfs
8439 			 * hierarchy will be created via register_one_node for
8440 			 * it. The pgdat will get fully initialized by
8441 			 * hotadd_init_pgdat() when memory is hotplugged into
8442 			 * this node.
8443 			 */
8444 			continue;
8445 		}
8446 
8447 		pgdat = NODE_DATA(nid);
8448 		free_area_init_node(nid);
8449 
8450 		/* Any memory on that node */
8451 		if (pgdat->node_present_pages)
8452 			node_set_state(nid, N_MEMORY);
8453 		check_for_memory(pgdat, nid);
8454 	}
8455 
8456 	memmap_init();
8457 }
8458 
8459 static int __init cmdline_parse_core(char *p, unsigned long *core,
8460 				     unsigned long *percent)
8461 {
8462 	unsigned long long coremem;
8463 	char *endptr;
8464 
8465 	if (!p)
8466 		return -EINVAL;
8467 
8468 	/* Value may be a percentage of total memory, otherwise bytes */
8469 	coremem = simple_strtoull(p, &endptr, 0);
8470 	if (*endptr == '%') {
8471 		/* Paranoid check for percent values greater than 100 */
8472 		WARN_ON(coremem > 100);
8473 
8474 		*percent = coremem;
8475 	} else {
8476 		coremem = memparse(p, &p);
8477 		/* Paranoid check that UL is enough for the coremem value */
8478 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8479 
8480 		*core = coremem >> PAGE_SHIFT;
8481 		*percent = 0UL;
8482 	}
8483 	return 0;
8484 }
8485 
8486 /*
8487  * kernelcore=size sets the amount of memory for use for allocations that
8488  * cannot be reclaimed or migrated.
8489  */
8490 static int __init cmdline_parse_kernelcore(char *p)
8491 {
8492 	/* parse kernelcore=mirror */
8493 	if (parse_option_str(p, "mirror")) {
8494 		mirrored_kernelcore = true;
8495 		return 0;
8496 	}
8497 
8498 	return cmdline_parse_core(p, &required_kernelcore,
8499 				  &required_kernelcore_percent);
8500 }
8501 
8502 /*
8503  * movablecore=size sets the amount of memory for use for allocations that
8504  * can be reclaimed or migrated.
8505  */
8506 static int __init cmdline_parse_movablecore(char *p)
8507 {
8508 	return cmdline_parse_core(p, &required_movablecore,
8509 				  &required_movablecore_percent);
8510 }
8511 
8512 early_param("kernelcore", cmdline_parse_kernelcore);
8513 early_param("movablecore", cmdline_parse_movablecore);
8514 
8515 void adjust_managed_page_count(struct page *page, long count)
8516 {
8517 	atomic_long_add(count, &page_zone(page)->managed_pages);
8518 	totalram_pages_add(count);
8519 #ifdef CONFIG_HIGHMEM
8520 	if (PageHighMem(page))
8521 		totalhigh_pages_add(count);
8522 #endif
8523 }
8524 EXPORT_SYMBOL(adjust_managed_page_count);
8525 
8526 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8527 {
8528 	void *pos;
8529 	unsigned long pages = 0;
8530 
8531 	start = (void *)PAGE_ALIGN((unsigned long)start);
8532 	end = (void *)((unsigned long)end & PAGE_MASK);
8533 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8534 		struct page *page = virt_to_page(pos);
8535 		void *direct_map_addr;
8536 
8537 		/*
8538 		 * 'direct_map_addr' might be different from 'pos'
8539 		 * because some architectures' virt_to_page()
8540 		 * work with aliases.  Getting the direct map
8541 		 * address ensures that we get a _writeable_
8542 		 * alias for the memset().
8543 		 */
8544 		direct_map_addr = page_address(page);
8545 		/*
8546 		 * Perform a kasan-unchecked memset() since this memory
8547 		 * has not been initialized.
8548 		 */
8549 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8550 		if ((unsigned int)poison <= 0xFF)
8551 			memset(direct_map_addr, poison, PAGE_SIZE);
8552 
8553 		free_reserved_page(page);
8554 	}
8555 
8556 	if (pages && s)
8557 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8558 
8559 	return pages;
8560 }
8561 
8562 void __init mem_init_print_info(void)
8563 {
8564 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8565 	unsigned long init_code_size, init_data_size;
8566 
8567 	physpages = get_num_physpages();
8568 	codesize = _etext - _stext;
8569 	datasize = _edata - _sdata;
8570 	rosize = __end_rodata - __start_rodata;
8571 	bss_size = __bss_stop - __bss_start;
8572 	init_data_size = __init_end - __init_begin;
8573 	init_code_size = _einittext - _sinittext;
8574 
8575 	/*
8576 	 * Detect special cases and adjust section sizes accordingly:
8577 	 * 1) .init.* may be embedded into .data sections
8578 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8579 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8580 	 * 3) .rodata.* may be embedded into .text or .data sections.
8581 	 */
8582 #define adj_init_size(start, end, size, pos, adj) \
8583 	do { \
8584 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8585 			size -= adj; \
8586 	} while (0)
8587 
8588 	adj_init_size(__init_begin, __init_end, init_data_size,
8589 		     _sinittext, init_code_size);
8590 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8591 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8592 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8593 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8594 
8595 #undef	adj_init_size
8596 
8597 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8598 #ifdef	CONFIG_HIGHMEM
8599 		", %luK highmem"
8600 #endif
8601 		")\n",
8602 		K(nr_free_pages()), K(physpages),
8603 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8604 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8605 		K(physpages - totalram_pages() - totalcma_pages),
8606 		K(totalcma_pages)
8607 #ifdef	CONFIG_HIGHMEM
8608 		, K(totalhigh_pages())
8609 #endif
8610 		);
8611 }
8612 
8613 /**
8614  * set_dma_reserve - set the specified number of pages reserved in the first zone
8615  * @new_dma_reserve: The number of pages to mark reserved
8616  *
8617  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8618  * In the DMA zone, a significant percentage may be consumed by kernel image
8619  * and other unfreeable allocations which can skew the watermarks badly. This
8620  * function may optionally be used to account for unfreeable pages in the
8621  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8622  * smaller per-cpu batchsize.
8623  */
8624 void __init set_dma_reserve(unsigned long new_dma_reserve)
8625 {
8626 	dma_reserve = new_dma_reserve;
8627 }
8628 
8629 static int page_alloc_cpu_dead(unsigned int cpu)
8630 {
8631 	struct zone *zone;
8632 
8633 	lru_add_drain_cpu(cpu);
8634 	mlock_drain_remote(cpu);
8635 	drain_pages(cpu);
8636 
8637 	/*
8638 	 * Spill the event counters of the dead processor
8639 	 * into the current processors event counters.
8640 	 * This artificially elevates the count of the current
8641 	 * processor.
8642 	 */
8643 	vm_events_fold_cpu(cpu);
8644 
8645 	/*
8646 	 * Zero the differential counters of the dead processor
8647 	 * so that the vm statistics are consistent.
8648 	 *
8649 	 * This is only okay since the processor is dead and cannot
8650 	 * race with what we are doing.
8651 	 */
8652 	cpu_vm_stats_fold(cpu);
8653 
8654 	for_each_populated_zone(zone)
8655 		zone_pcp_update(zone, 0);
8656 
8657 	return 0;
8658 }
8659 
8660 static int page_alloc_cpu_online(unsigned int cpu)
8661 {
8662 	struct zone *zone;
8663 
8664 	for_each_populated_zone(zone)
8665 		zone_pcp_update(zone, 1);
8666 	return 0;
8667 }
8668 
8669 #ifdef CONFIG_NUMA
8670 int hashdist = HASHDIST_DEFAULT;
8671 
8672 static int __init set_hashdist(char *str)
8673 {
8674 	if (!str)
8675 		return 0;
8676 	hashdist = simple_strtoul(str, &str, 0);
8677 	return 1;
8678 }
8679 __setup("hashdist=", set_hashdist);
8680 #endif
8681 
8682 void __init page_alloc_init(void)
8683 {
8684 	int ret;
8685 
8686 #ifdef CONFIG_NUMA
8687 	if (num_node_state(N_MEMORY) == 1)
8688 		hashdist = 0;
8689 #endif
8690 
8691 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8692 					"mm/page_alloc:pcp",
8693 					page_alloc_cpu_online,
8694 					page_alloc_cpu_dead);
8695 	WARN_ON(ret < 0);
8696 }
8697 
8698 /*
8699  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8700  *	or min_free_kbytes changes.
8701  */
8702 static void calculate_totalreserve_pages(void)
8703 {
8704 	struct pglist_data *pgdat;
8705 	unsigned long reserve_pages = 0;
8706 	enum zone_type i, j;
8707 
8708 	for_each_online_pgdat(pgdat) {
8709 
8710 		pgdat->totalreserve_pages = 0;
8711 
8712 		for (i = 0; i < MAX_NR_ZONES; i++) {
8713 			struct zone *zone = pgdat->node_zones + i;
8714 			long max = 0;
8715 			unsigned long managed_pages = zone_managed_pages(zone);
8716 
8717 			/* Find valid and maximum lowmem_reserve in the zone */
8718 			for (j = i; j < MAX_NR_ZONES; j++) {
8719 				if (zone->lowmem_reserve[j] > max)
8720 					max = zone->lowmem_reserve[j];
8721 			}
8722 
8723 			/* we treat the high watermark as reserved pages. */
8724 			max += high_wmark_pages(zone);
8725 
8726 			if (max > managed_pages)
8727 				max = managed_pages;
8728 
8729 			pgdat->totalreserve_pages += max;
8730 
8731 			reserve_pages += max;
8732 		}
8733 	}
8734 	totalreserve_pages = reserve_pages;
8735 }
8736 
8737 /*
8738  * setup_per_zone_lowmem_reserve - called whenever
8739  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8740  *	has a correct pages reserved value, so an adequate number of
8741  *	pages are left in the zone after a successful __alloc_pages().
8742  */
8743 static void setup_per_zone_lowmem_reserve(void)
8744 {
8745 	struct pglist_data *pgdat;
8746 	enum zone_type i, j;
8747 
8748 	for_each_online_pgdat(pgdat) {
8749 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8750 			struct zone *zone = &pgdat->node_zones[i];
8751 			int ratio = sysctl_lowmem_reserve_ratio[i];
8752 			bool clear = !ratio || !zone_managed_pages(zone);
8753 			unsigned long managed_pages = 0;
8754 
8755 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8756 				struct zone *upper_zone = &pgdat->node_zones[j];
8757 
8758 				managed_pages += zone_managed_pages(upper_zone);
8759 
8760 				if (clear)
8761 					zone->lowmem_reserve[j] = 0;
8762 				else
8763 					zone->lowmem_reserve[j] = managed_pages / ratio;
8764 			}
8765 		}
8766 	}
8767 
8768 	/* update totalreserve_pages */
8769 	calculate_totalreserve_pages();
8770 }
8771 
8772 static void __setup_per_zone_wmarks(void)
8773 {
8774 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8775 	unsigned long lowmem_pages = 0;
8776 	struct zone *zone;
8777 	unsigned long flags;
8778 
8779 	/* Calculate total number of !ZONE_HIGHMEM pages */
8780 	for_each_zone(zone) {
8781 		if (!is_highmem(zone))
8782 			lowmem_pages += zone_managed_pages(zone);
8783 	}
8784 
8785 	for_each_zone(zone) {
8786 		u64 tmp;
8787 
8788 		spin_lock_irqsave(&zone->lock, flags);
8789 		tmp = (u64)pages_min * zone_managed_pages(zone);
8790 		do_div(tmp, lowmem_pages);
8791 		if (is_highmem(zone)) {
8792 			/*
8793 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8794 			 * need highmem pages, so cap pages_min to a small
8795 			 * value here.
8796 			 *
8797 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8798 			 * deltas control async page reclaim, and so should
8799 			 * not be capped for highmem.
8800 			 */
8801 			unsigned long min_pages;
8802 
8803 			min_pages = zone_managed_pages(zone) / 1024;
8804 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8805 			zone->_watermark[WMARK_MIN] = min_pages;
8806 		} else {
8807 			/*
8808 			 * If it's a lowmem zone, reserve a number of pages
8809 			 * proportionate to the zone's size.
8810 			 */
8811 			zone->_watermark[WMARK_MIN] = tmp;
8812 		}
8813 
8814 		/*
8815 		 * Set the kswapd watermarks distance according to the
8816 		 * scale factor in proportion to available memory, but
8817 		 * ensure a minimum size on small systems.
8818 		 */
8819 		tmp = max_t(u64, tmp >> 2,
8820 			    mult_frac(zone_managed_pages(zone),
8821 				      watermark_scale_factor, 10000));
8822 
8823 		zone->watermark_boost = 0;
8824 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8825 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8826 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8827 
8828 		spin_unlock_irqrestore(&zone->lock, flags);
8829 	}
8830 
8831 	/* update totalreserve_pages */
8832 	calculate_totalreserve_pages();
8833 }
8834 
8835 /**
8836  * setup_per_zone_wmarks - called when min_free_kbytes changes
8837  * or when memory is hot-{added|removed}
8838  *
8839  * Ensures that the watermark[min,low,high] values for each zone are set
8840  * correctly with respect to min_free_kbytes.
8841  */
8842 void setup_per_zone_wmarks(void)
8843 {
8844 	struct zone *zone;
8845 	static DEFINE_SPINLOCK(lock);
8846 
8847 	spin_lock(&lock);
8848 	__setup_per_zone_wmarks();
8849 	spin_unlock(&lock);
8850 
8851 	/*
8852 	 * The watermark size have changed so update the pcpu batch
8853 	 * and high limits or the limits may be inappropriate.
8854 	 */
8855 	for_each_zone(zone)
8856 		zone_pcp_update(zone, 0);
8857 }
8858 
8859 /*
8860  * Initialise min_free_kbytes.
8861  *
8862  * For small machines we want it small (128k min).  For large machines
8863  * we want it large (256MB max).  But it is not linear, because network
8864  * bandwidth does not increase linearly with machine size.  We use
8865  *
8866  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8867  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8868  *
8869  * which yields
8870  *
8871  * 16MB:	512k
8872  * 32MB:	724k
8873  * 64MB:	1024k
8874  * 128MB:	1448k
8875  * 256MB:	2048k
8876  * 512MB:	2896k
8877  * 1024MB:	4096k
8878  * 2048MB:	5792k
8879  * 4096MB:	8192k
8880  * 8192MB:	11584k
8881  * 16384MB:	16384k
8882  */
8883 void calculate_min_free_kbytes(void)
8884 {
8885 	unsigned long lowmem_kbytes;
8886 	int new_min_free_kbytes;
8887 
8888 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8889 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8890 
8891 	if (new_min_free_kbytes > user_min_free_kbytes)
8892 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8893 	else
8894 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8895 				new_min_free_kbytes, user_min_free_kbytes);
8896 
8897 }
8898 
8899 int __meminit init_per_zone_wmark_min(void)
8900 {
8901 	calculate_min_free_kbytes();
8902 	setup_per_zone_wmarks();
8903 	refresh_zone_stat_thresholds();
8904 	setup_per_zone_lowmem_reserve();
8905 
8906 #ifdef CONFIG_NUMA
8907 	setup_min_unmapped_ratio();
8908 	setup_min_slab_ratio();
8909 #endif
8910 
8911 	khugepaged_min_free_kbytes_update();
8912 
8913 	return 0;
8914 }
8915 postcore_initcall(init_per_zone_wmark_min)
8916 
8917 /*
8918  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8919  *	that we can call two helper functions whenever min_free_kbytes
8920  *	changes.
8921  */
8922 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8923 		void *buffer, size_t *length, loff_t *ppos)
8924 {
8925 	int rc;
8926 
8927 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8928 	if (rc)
8929 		return rc;
8930 
8931 	if (write) {
8932 		user_min_free_kbytes = min_free_kbytes;
8933 		setup_per_zone_wmarks();
8934 	}
8935 	return 0;
8936 }
8937 
8938 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8939 		void *buffer, size_t *length, loff_t *ppos)
8940 {
8941 	int rc;
8942 
8943 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8944 	if (rc)
8945 		return rc;
8946 
8947 	if (write)
8948 		setup_per_zone_wmarks();
8949 
8950 	return 0;
8951 }
8952 
8953 #ifdef CONFIG_NUMA
8954 static void setup_min_unmapped_ratio(void)
8955 {
8956 	pg_data_t *pgdat;
8957 	struct zone *zone;
8958 
8959 	for_each_online_pgdat(pgdat)
8960 		pgdat->min_unmapped_pages = 0;
8961 
8962 	for_each_zone(zone)
8963 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8964 						         sysctl_min_unmapped_ratio) / 100;
8965 }
8966 
8967 
8968 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8969 		void *buffer, size_t *length, loff_t *ppos)
8970 {
8971 	int rc;
8972 
8973 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8974 	if (rc)
8975 		return rc;
8976 
8977 	setup_min_unmapped_ratio();
8978 
8979 	return 0;
8980 }
8981 
8982 static void setup_min_slab_ratio(void)
8983 {
8984 	pg_data_t *pgdat;
8985 	struct zone *zone;
8986 
8987 	for_each_online_pgdat(pgdat)
8988 		pgdat->min_slab_pages = 0;
8989 
8990 	for_each_zone(zone)
8991 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8992 						     sysctl_min_slab_ratio) / 100;
8993 }
8994 
8995 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8996 		void *buffer, size_t *length, loff_t *ppos)
8997 {
8998 	int rc;
8999 
9000 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9001 	if (rc)
9002 		return rc;
9003 
9004 	setup_min_slab_ratio();
9005 
9006 	return 0;
9007 }
9008 #endif
9009 
9010 /*
9011  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
9012  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
9013  *	whenever sysctl_lowmem_reserve_ratio changes.
9014  *
9015  * The reserve ratio obviously has absolutely no relation with the
9016  * minimum watermarks. The lowmem reserve ratio can only make sense
9017  * if in function of the boot time zone sizes.
9018  */
9019 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
9020 		void *buffer, size_t *length, loff_t *ppos)
9021 {
9022 	int i;
9023 
9024 	proc_dointvec_minmax(table, write, buffer, length, ppos);
9025 
9026 	for (i = 0; i < MAX_NR_ZONES; i++) {
9027 		if (sysctl_lowmem_reserve_ratio[i] < 1)
9028 			sysctl_lowmem_reserve_ratio[i] = 0;
9029 	}
9030 
9031 	setup_per_zone_lowmem_reserve();
9032 	return 0;
9033 }
9034 
9035 /*
9036  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9037  * cpu. It is the fraction of total pages in each zone that a hot per cpu
9038  * pagelist can have before it gets flushed back to buddy allocator.
9039  */
9040 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9041 		int write, void *buffer, size_t *length, loff_t *ppos)
9042 {
9043 	struct zone *zone;
9044 	int old_percpu_pagelist_high_fraction;
9045 	int ret;
9046 
9047 	mutex_lock(&pcp_batch_high_lock);
9048 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9049 
9050 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9051 	if (!write || ret < 0)
9052 		goto out;
9053 
9054 	/* Sanity checking to avoid pcp imbalance */
9055 	if (percpu_pagelist_high_fraction &&
9056 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9057 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9058 		ret = -EINVAL;
9059 		goto out;
9060 	}
9061 
9062 	/* No change? */
9063 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9064 		goto out;
9065 
9066 	for_each_populated_zone(zone)
9067 		zone_set_pageset_high_and_batch(zone, 0);
9068 out:
9069 	mutex_unlock(&pcp_batch_high_lock);
9070 	return ret;
9071 }
9072 
9073 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9074 /*
9075  * Returns the number of pages that arch has reserved but
9076  * is not known to alloc_large_system_hash().
9077  */
9078 static unsigned long __init arch_reserved_kernel_pages(void)
9079 {
9080 	return 0;
9081 }
9082 #endif
9083 
9084 /*
9085  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9086  * machines. As memory size is increased the scale is also increased but at
9087  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9088  * quadruples the scale is increased by one, which means the size of hash table
9089  * only doubles, instead of quadrupling as well.
9090  * Because 32-bit systems cannot have large physical memory, where this scaling
9091  * makes sense, it is disabled on such platforms.
9092  */
9093 #if __BITS_PER_LONG > 32
9094 #define ADAPT_SCALE_BASE	(64ul << 30)
9095 #define ADAPT_SCALE_SHIFT	2
9096 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9097 #endif
9098 
9099 /*
9100  * allocate a large system hash table from bootmem
9101  * - it is assumed that the hash table must contain an exact power-of-2
9102  *   quantity of entries
9103  * - limit is the number of hash buckets, not the total allocation size
9104  */
9105 void *__init alloc_large_system_hash(const char *tablename,
9106 				     unsigned long bucketsize,
9107 				     unsigned long numentries,
9108 				     int scale,
9109 				     int flags,
9110 				     unsigned int *_hash_shift,
9111 				     unsigned int *_hash_mask,
9112 				     unsigned long low_limit,
9113 				     unsigned long high_limit)
9114 {
9115 	unsigned long long max = high_limit;
9116 	unsigned long log2qty, size;
9117 	void *table;
9118 	gfp_t gfp_flags;
9119 	bool virt;
9120 	bool huge;
9121 
9122 	/* allow the kernel cmdline to have a say */
9123 	if (!numentries) {
9124 		/* round applicable memory size up to nearest megabyte */
9125 		numentries = nr_kernel_pages;
9126 		numentries -= arch_reserved_kernel_pages();
9127 
9128 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9129 		if (PAGE_SIZE < SZ_1M)
9130 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9131 
9132 #if __BITS_PER_LONG > 32
9133 		if (!high_limit) {
9134 			unsigned long adapt;
9135 
9136 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9137 			     adapt <<= ADAPT_SCALE_SHIFT)
9138 				scale++;
9139 		}
9140 #endif
9141 
9142 		/* limit to 1 bucket per 2^scale bytes of low memory */
9143 		if (scale > PAGE_SHIFT)
9144 			numentries >>= (scale - PAGE_SHIFT);
9145 		else
9146 			numentries <<= (PAGE_SHIFT - scale);
9147 
9148 		/* Make sure we've got at least a 0-order allocation.. */
9149 		if (unlikely(flags & HASH_SMALL)) {
9150 			/* Makes no sense without HASH_EARLY */
9151 			WARN_ON(!(flags & HASH_EARLY));
9152 			if (!(numentries >> *_hash_shift)) {
9153 				numentries = 1UL << *_hash_shift;
9154 				BUG_ON(!numentries);
9155 			}
9156 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9157 			numentries = PAGE_SIZE / bucketsize;
9158 	}
9159 	numentries = roundup_pow_of_two(numentries);
9160 
9161 	/* limit allocation size to 1/16 total memory by default */
9162 	if (max == 0) {
9163 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9164 		do_div(max, bucketsize);
9165 	}
9166 	max = min(max, 0x80000000ULL);
9167 
9168 	if (numentries < low_limit)
9169 		numentries = low_limit;
9170 	if (numentries > max)
9171 		numentries = max;
9172 
9173 	log2qty = ilog2(numentries);
9174 
9175 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9176 	do {
9177 		virt = false;
9178 		size = bucketsize << log2qty;
9179 		if (flags & HASH_EARLY) {
9180 			if (flags & HASH_ZERO)
9181 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9182 			else
9183 				table = memblock_alloc_raw(size,
9184 							   SMP_CACHE_BYTES);
9185 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9186 			table = vmalloc_huge(size, gfp_flags);
9187 			virt = true;
9188 			if (table)
9189 				huge = is_vm_area_hugepages(table);
9190 		} else {
9191 			/*
9192 			 * If bucketsize is not a power-of-two, we may free
9193 			 * some pages at the end of hash table which
9194 			 * alloc_pages_exact() automatically does
9195 			 */
9196 			table = alloc_pages_exact(size, gfp_flags);
9197 			kmemleak_alloc(table, size, 1, gfp_flags);
9198 		}
9199 	} while (!table && size > PAGE_SIZE && --log2qty);
9200 
9201 	if (!table)
9202 		panic("Failed to allocate %s hash table\n", tablename);
9203 
9204 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9205 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9206 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9207 
9208 	if (_hash_shift)
9209 		*_hash_shift = log2qty;
9210 	if (_hash_mask)
9211 		*_hash_mask = (1 << log2qty) - 1;
9212 
9213 	return table;
9214 }
9215 
9216 #ifdef CONFIG_CONTIG_ALLOC
9217 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9218 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9219 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9220 static void alloc_contig_dump_pages(struct list_head *page_list)
9221 {
9222 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9223 
9224 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9225 		struct page *page;
9226 
9227 		dump_stack();
9228 		list_for_each_entry(page, page_list, lru)
9229 			dump_page(page, "migration failure");
9230 	}
9231 }
9232 #else
9233 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9234 {
9235 }
9236 #endif
9237 
9238 /* [start, end) must belong to a single zone. */
9239 int __alloc_contig_migrate_range(struct compact_control *cc,
9240 					unsigned long start, unsigned long end)
9241 {
9242 	/* This function is based on compact_zone() from compaction.c. */
9243 	unsigned int nr_reclaimed;
9244 	unsigned long pfn = start;
9245 	unsigned int tries = 0;
9246 	int ret = 0;
9247 	struct migration_target_control mtc = {
9248 		.nid = zone_to_nid(cc->zone),
9249 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9250 	};
9251 
9252 	lru_cache_disable();
9253 
9254 	while (pfn < end || !list_empty(&cc->migratepages)) {
9255 		if (fatal_signal_pending(current)) {
9256 			ret = -EINTR;
9257 			break;
9258 		}
9259 
9260 		if (list_empty(&cc->migratepages)) {
9261 			cc->nr_migratepages = 0;
9262 			ret = isolate_migratepages_range(cc, pfn, end);
9263 			if (ret && ret != -EAGAIN)
9264 				break;
9265 			pfn = cc->migrate_pfn;
9266 			tries = 0;
9267 		} else if (++tries == 5) {
9268 			ret = -EBUSY;
9269 			break;
9270 		}
9271 
9272 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9273 							&cc->migratepages);
9274 		cc->nr_migratepages -= nr_reclaimed;
9275 
9276 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9277 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9278 
9279 		/*
9280 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9281 		 * to retry again over this error, so do the same here.
9282 		 */
9283 		if (ret == -ENOMEM)
9284 			break;
9285 	}
9286 
9287 	lru_cache_enable();
9288 	if (ret < 0) {
9289 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9290 			alloc_contig_dump_pages(&cc->migratepages);
9291 		putback_movable_pages(&cc->migratepages);
9292 		return ret;
9293 	}
9294 	return 0;
9295 }
9296 
9297 /**
9298  * alloc_contig_range() -- tries to allocate given range of pages
9299  * @start:	start PFN to allocate
9300  * @end:	one-past-the-last PFN to allocate
9301  * @migratetype:	migratetype of the underlying pageblocks (either
9302  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9303  *			in range must have the same migratetype and it must
9304  *			be either of the two.
9305  * @gfp_mask:	GFP mask to use during compaction
9306  *
9307  * The PFN range does not have to be pageblock aligned. The PFN range must
9308  * belong to a single zone.
9309  *
9310  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9311  * pageblocks in the range.  Once isolated, the pageblocks should not
9312  * be modified by others.
9313  *
9314  * Return: zero on success or negative error code.  On success all
9315  * pages which PFN is in [start, end) are allocated for the caller and
9316  * need to be freed with free_contig_range().
9317  */
9318 int alloc_contig_range(unsigned long start, unsigned long end,
9319 		       unsigned migratetype, gfp_t gfp_mask)
9320 {
9321 	unsigned long outer_start, outer_end;
9322 	int order;
9323 	int ret = 0;
9324 
9325 	struct compact_control cc = {
9326 		.nr_migratepages = 0,
9327 		.order = -1,
9328 		.zone = page_zone(pfn_to_page(start)),
9329 		.mode = MIGRATE_SYNC,
9330 		.ignore_skip_hint = true,
9331 		.no_set_skip_hint = true,
9332 		.gfp_mask = current_gfp_context(gfp_mask),
9333 		.alloc_contig = true,
9334 	};
9335 	INIT_LIST_HEAD(&cc.migratepages);
9336 
9337 	/*
9338 	 * What we do here is we mark all pageblocks in range as
9339 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9340 	 * have different sizes, and due to the way page allocator
9341 	 * work, start_isolate_page_range() has special handlings for this.
9342 	 *
9343 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9344 	 * migrate the pages from an unaligned range (ie. pages that
9345 	 * we are interested in). This will put all the pages in
9346 	 * range back to page allocator as MIGRATE_ISOLATE.
9347 	 *
9348 	 * When this is done, we take the pages in range from page
9349 	 * allocator removing them from the buddy system.  This way
9350 	 * page allocator will never consider using them.
9351 	 *
9352 	 * This lets us mark the pageblocks back as
9353 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9354 	 * aligned range but not in the unaligned, original range are
9355 	 * put back to page allocator so that buddy can use them.
9356 	 */
9357 
9358 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9359 	if (ret)
9360 		goto done;
9361 
9362 	drain_all_pages(cc.zone);
9363 
9364 	/*
9365 	 * In case of -EBUSY, we'd like to know which page causes problem.
9366 	 * So, just fall through. test_pages_isolated() has a tracepoint
9367 	 * which will report the busy page.
9368 	 *
9369 	 * It is possible that busy pages could become available before
9370 	 * the call to test_pages_isolated, and the range will actually be
9371 	 * allocated.  So, if we fall through be sure to clear ret so that
9372 	 * -EBUSY is not accidentally used or returned to caller.
9373 	 */
9374 	ret = __alloc_contig_migrate_range(&cc, start, end);
9375 	if (ret && ret != -EBUSY)
9376 		goto done;
9377 	ret = 0;
9378 
9379 	/*
9380 	 * Pages from [start, end) are within a pageblock_nr_pages
9381 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9382 	 * more, all pages in [start, end) are free in page allocator.
9383 	 * What we are going to do is to allocate all pages from
9384 	 * [start, end) (that is remove them from page allocator).
9385 	 *
9386 	 * The only problem is that pages at the beginning and at the
9387 	 * end of interesting range may be not aligned with pages that
9388 	 * page allocator holds, ie. they can be part of higher order
9389 	 * pages.  Because of this, we reserve the bigger range and
9390 	 * once this is done free the pages we are not interested in.
9391 	 *
9392 	 * We don't have to hold zone->lock here because the pages are
9393 	 * isolated thus they won't get removed from buddy.
9394 	 */
9395 
9396 	order = 0;
9397 	outer_start = start;
9398 	while (!PageBuddy(pfn_to_page(outer_start))) {
9399 		if (++order >= MAX_ORDER) {
9400 			outer_start = start;
9401 			break;
9402 		}
9403 		outer_start &= ~0UL << order;
9404 	}
9405 
9406 	if (outer_start != start) {
9407 		order = buddy_order(pfn_to_page(outer_start));
9408 
9409 		/*
9410 		 * outer_start page could be small order buddy page and
9411 		 * it doesn't include start page. Adjust outer_start
9412 		 * in this case to report failed page properly
9413 		 * on tracepoint in test_pages_isolated()
9414 		 */
9415 		if (outer_start + (1UL << order) <= start)
9416 			outer_start = start;
9417 	}
9418 
9419 	/* Make sure the range is really isolated. */
9420 	if (test_pages_isolated(outer_start, end, 0)) {
9421 		ret = -EBUSY;
9422 		goto done;
9423 	}
9424 
9425 	/* Grab isolated pages from freelists. */
9426 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9427 	if (!outer_end) {
9428 		ret = -EBUSY;
9429 		goto done;
9430 	}
9431 
9432 	/* Free head and tail (if any) */
9433 	if (start != outer_start)
9434 		free_contig_range(outer_start, start - outer_start);
9435 	if (end != outer_end)
9436 		free_contig_range(end, outer_end - end);
9437 
9438 done:
9439 	undo_isolate_page_range(start, end, migratetype);
9440 	return ret;
9441 }
9442 EXPORT_SYMBOL(alloc_contig_range);
9443 
9444 static int __alloc_contig_pages(unsigned long start_pfn,
9445 				unsigned long nr_pages, gfp_t gfp_mask)
9446 {
9447 	unsigned long end_pfn = start_pfn + nr_pages;
9448 
9449 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9450 				  gfp_mask);
9451 }
9452 
9453 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9454 				   unsigned long nr_pages)
9455 {
9456 	unsigned long i, end_pfn = start_pfn + nr_pages;
9457 	struct page *page;
9458 
9459 	for (i = start_pfn; i < end_pfn; i++) {
9460 		page = pfn_to_online_page(i);
9461 		if (!page)
9462 			return false;
9463 
9464 		if (page_zone(page) != z)
9465 			return false;
9466 
9467 		if (PageReserved(page))
9468 			return false;
9469 
9470 		if (PageHuge(page))
9471 			return false;
9472 	}
9473 	return true;
9474 }
9475 
9476 static bool zone_spans_last_pfn(const struct zone *zone,
9477 				unsigned long start_pfn, unsigned long nr_pages)
9478 {
9479 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9480 
9481 	return zone_spans_pfn(zone, last_pfn);
9482 }
9483 
9484 /**
9485  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9486  * @nr_pages:	Number of contiguous pages to allocate
9487  * @gfp_mask:	GFP mask to limit search and used during compaction
9488  * @nid:	Target node
9489  * @nodemask:	Mask for other possible nodes
9490  *
9491  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9492  * on an applicable zonelist to find a contiguous pfn range which can then be
9493  * tried for allocation with alloc_contig_range(). This routine is intended
9494  * for allocation requests which can not be fulfilled with the buddy allocator.
9495  *
9496  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9497  * power of two, then allocated range is also guaranteed to be aligned to same
9498  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9499  *
9500  * Allocated pages can be freed with free_contig_range() or by manually calling
9501  * __free_page() on each allocated page.
9502  *
9503  * Return: pointer to contiguous pages on success, or NULL if not successful.
9504  */
9505 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9506 				int nid, nodemask_t *nodemask)
9507 {
9508 	unsigned long ret, pfn, flags;
9509 	struct zonelist *zonelist;
9510 	struct zone *zone;
9511 	struct zoneref *z;
9512 
9513 	zonelist = node_zonelist(nid, gfp_mask);
9514 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9515 					gfp_zone(gfp_mask), nodemask) {
9516 		spin_lock_irqsave(&zone->lock, flags);
9517 
9518 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9519 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9520 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9521 				/*
9522 				 * We release the zone lock here because
9523 				 * alloc_contig_range() will also lock the zone
9524 				 * at some point. If there's an allocation
9525 				 * spinning on this lock, it may win the race
9526 				 * and cause alloc_contig_range() to fail...
9527 				 */
9528 				spin_unlock_irqrestore(&zone->lock, flags);
9529 				ret = __alloc_contig_pages(pfn, nr_pages,
9530 							gfp_mask);
9531 				if (!ret)
9532 					return pfn_to_page(pfn);
9533 				spin_lock_irqsave(&zone->lock, flags);
9534 			}
9535 			pfn += nr_pages;
9536 		}
9537 		spin_unlock_irqrestore(&zone->lock, flags);
9538 	}
9539 	return NULL;
9540 }
9541 #endif /* CONFIG_CONTIG_ALLOC */
9542 
9543 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9544 {
9545 	unsigned long count = 0;
9546 
9547 	for (; nr_pages--; pfn++) {
9548 		struct page *page = pfn_to_page(pfn);
9549 
9550 		count += page_count(page) != 1;
9551 		__free_page(page);
9552 	}
9553 	WARN(count != 0, "%lu pages are still in use!\n", count);
9554 }
9555 EXPORT_SYMBOL(free_contig_range);
9556 
9557 /*
9558  * Effectively disable pcplists for the zone by setting the high limit to 0
9559  * and draining all cpus. A concurrent page freeing on another CPU that's about
9560  * to put the page on pcplist will either finish before the drain and the page
9561  * will be drained, or observe the new high limit and skip the pcplist.
9562  *
9563  * Must be paired with a call to zone_pcp_enable().
9564  */
9565 void zone_pcp_disable(struct zone *zone)
9566 {
9567 	mutex_lock(&pcp_batch_high_lock);
9568 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9569 	__drain_all_pages(zone, true);
9570 }
9571 
9572 void zone_pcp_enable(struct zone *zone)
9573 {
9574 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9575 	mutex_unlock(&pcp_batch_high_lock);
9576 }
9577 
9578 void zone_pcp_reset(struct zone *zone)
9579 {
9580 	int cpu;
9581 	struct per_cpu_zonestat *pzstats;
9582 
9583 	if (zone->per_cpu_pageset != &boot_pageset) {
9584 		for_each_online_cpu(cpu) {
9585 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9586 			drain_zonestat(zone, pzstats);
9587 		}
9588 		free_percpu(zone->per_cpu_pageset);
9589 		zone->per_cpu_pageset = &boot_pageset;
9590 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9591 			free_percpu(zone->per_cpu_zonestats);
9592 			zone->per_cpu_zonestats = &boot_zonestats;
9593 		}
9594 	}
9595 }
9596 
9597 #ifdef CONFIG_MEMORY_HOTREMOVE
9598 /*
9599  * All pages in the range must be in a single zone, must not contain holes,
9600  * must span full sections, and must be isolated before calling this function.
9601  */
9602 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9603 {
9604 	unsigned long pfn = start_pfn;
9605 	struct page *page;
9606 	struct zone *zone;
9607 	unsigned int order;
9608 	unsigned long flags;
9609 
9610 	offline_mem_sections(pfn, end_pfn);
9611 	zone = page_zone(pfn_to_page(pfn));
9612 	spin_lock_irqsave(&zone->lock, flags);
9613 	while (pfn < end_pfn) {
9614 		page = pfn_to_page(pfn);
9615 		/*
9616 		 * The HWPoisoned page may be not in buddy system, and
9617 		 * page_count() is not 0.
9618 		 */
9619 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9620 			pfn++;
9621 			continue;
9622 		}
9623 		/*
9624 		 * At this point all remaining PageOffline() pages have a
9625 		 * reference count of 0 and can simply be skipped.
9626 		 */
9627 		if (PageOffline(page)) {
9628 			BUG_ON(page_count(page));
9629 			BUG_ON(PageBuddy(page));
9630 			pfn++;
9631 			continue;
9632 		}
9633 
9634 		BUG_ON(page_count(page));
9635 		BUG_ON(!PageBuddy(page));
9636 		order = buddy_order(page);
9637 		del_page_from_free_list(page, zone, order);
9638 		pfn += (1 << order);
9639 	}
9640 	spin_unlock_irqrestore(&zone->lock, flags);
9641 }
9642 #endif
9643 
9644 /*
9645  * This function returns a stable result only if called under zone lock.
9646  */
9647 bool is_free_buddy_page(struct page *page)
9648 {
9649 	unsigned long pfn = page_to_pfn(page);
9650 	unsigned int order;
9651 
9652 	for (order = 0; order < MAX_ORDER; order++) {
9653 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9654 
9655 		if (PageBuddy(page_head) &&
9656 		    buddy_order_unsafe(page_head) >= order)
9657 			break;
9658 	}
9659 
9660 	return order < MAX_ORDER;
9661 }
9662 EXPORT_SYMBOL(is_free_buddy_page);
9663 
9664 #ifdef CONFIG_MEMORY_FAILURE
9665 /*
9666  * Break down a higher-order page in sub-pages, and keep our target out of
9667  * buddy allocator.
9668  */
9669 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9670 				   struct page *target, int low, int high,
9671 				   int migratetype)
9672 {
9673 	unsigned long size = 1 << high;
9674 	struct page *current_buddy, *next_page;
9675 
9676 	while (high > low) {
9677 		high--;
9678 		size >>= 1;
9679 
9680 		if (target >= &page[size]) {
9681 			next_page = page + size;
9682 			current_buddy = page;
9683 		} else {
9684 			next_page = page;
9685 			current_buddy = page + size;
9686 		}
9687 
9688 		if (set_page_guard(zone, current_buddy, high, migratetype))
9689 			continue;
9690 
9691 		if (current_buddy != target) {
9692 			add_to_free_list(current_buddy, zone, high, migratetype);
9693 			set_buddy_order(current_buddy, high);
9694 			page = next_page;
9695 		}
9696 	}
9697 }
9698 
9699 /*
9700  * Take a page that will be marked as poisoned off the buddy allocator.
9701  */
9702 bool take_page_off_buddy(struct page *page)
9703 {
9704 	struct zone *zone = page_zone(page);
9705 	unsigned long pfn = page_to_pfn(page);
9706 	unsigned long flags;
9707 	unsigned int order;
9708 	bool ret = false;
9709 
9710 	spin_lock_irqsave(&zone->lock, flags);
9711 	for (order = 0; order < MAX_ORDER; order++) {
9712 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9713 		int page_order = buddy_order(page_head);
9714 
9715 		if (PageBuddy(page_head) && page_order >= order) {
9716 			unsigned long pfn_head = page_to_pfn(page_head);
9717 			int migratetype = get_pfnblock_migratetype(page_head,
9718 								   pfn_head);
9719 
9720 			del_page_from_free_list(page_head, zone, page_order);
9721 			break_down_buddy_pages(zone, page_head, page, 0,
9722 						page_order, migratetype);
9723 			SetPageHWPoisonTakenOff(page);
9724 			if (!is_migrate_isolate(migratetype))
9725 				__mod_zone_freepage_state(zone, -1, migratetype);
9726 			ret = true;
9727 			break;
9728 		}
9729 		if (page_count(page_head) > 0)
9730 			break;
9731 	}
9732 	spin_unlock_irqrestore(&zone->lock, flags);
9733 	return ret;
9734 }
9735 
9736 /*
9737  * Cancel takeoff done by take_page_off_buddy().
9738  */
9739 bool put_page_back_buddy(struct page *page)
9740 {
9741 	struct zone *zone = page_zone(page);
9742 	unsigned long pfn = page_to_pfn(page);
9743 	unsigned long flags;
9744 	int migratetype = get_pfnblock_migratetype(page, pfn);
9745 	bool ret = false;
9746 
9747 	spin_lock_irqsave(&zone->lock, flags);
9748 	if (put_page_testzero(page)) {
9749 		ClearPageHWPoisonTakenOff(page);
9750 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9751 		if (TestClearPageHWPoison(page)) {
9752 			ret = true;
9753 		}
9754 	}
9755 	spin_unlock_irqrestore(&zone->lock, flags);
9756 
9757 	return ret;
9758 }
9759 #endif
9760 
9761 #ifdef CONFIG_ZONE_DMA
9762 bool has_managed_dma(void)
9763 {
9764 	struct pglist_data *pgdat;
9765 
9766 	for_each_online_pgdat(pgdat) {
9767 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9768 
9769 		if (managed_zone(zone))
9770 			return true;
9771 	}
9772 	return false;
9773 }
9774 #endif /* CONFIG_ZONE_DMA */
9775