xref: /openbmc/linux/mm/page_alloc.c (revision 34fa67e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83 
84 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
85 typedef int __bitwise fpi_t;
86 
87 /* No special request */
88 #define FPI_NONE		((__force fpi_t)0)
89 
90 /*
91  * Skip free page reporting notification for the (possibly merged) page.
92  * This does not hinder free page reporting from grabbing the page,
93  * reporting it and marking it "reported" -  it only skips notifying
94  * the free page reporting infrastructure about a newly freed page. For
95  * example, used when temporarily pulling a page from a freelist and
96  * putting it back unmodified.
97  */
98 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
99 
100 /*
101  * Place the (possibly merged) page to the tail of the freelist. Will ignore
102  * page shuffling (relevant code - e.g., memory onlining - is expected to
103  * shuffle the whole zone).
104  *
105  * Note: No code should rely on this flag for correctness - it's purely
106  *       to allow for optimizations when handing back either fresh pages
107  *       (memory onlining) or untouched pages (page isolation, free page
108  *       reporting).
109  */
110 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
111 
112 /*
113  * Don't poison memory with KASAN (only for the tag-based modes).
114  * During boot, all non-reserved memblock memory is exposed to page_alloc.
115  * Poisoning all that memory lengthens boot time, especially on systems with
116  * large amount of RAM. This flag is used to skip that poisoning.
117  * This is only done for the tag-based KASAN modes, as those are able to
118  * detect memory corruptions with the memory tags assigned by default.
119  * All memory allocated normally after boot gets poisoned as usual.
120  */
121 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
122 
123 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
124 static DEFINE_MUTEX(pcp_batch_high_lock);
125 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
126 
127 struct pagesets {
128 	local_lock_t lock;
129 };
130 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
131 	.lock = INIT_LOCAL_LOCK(lock),
132 };
133 
134 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
135 DEFINE_PER_CPU(int, numa_node);
136 EXPORT_PER_CPU_SYMBOL(numa_node);
137 #endif
138 
139 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
140 
141 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
142 /*
143  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
144  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
145  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
146  * defined in <linux/topology.h>.
147  */
148 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
149 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
150 #endif
151 
152 /* work_structs for global per-cpu drains */
153 struct pcpu_drain {
154 	struct zone *zone;
155 	struct work_struct work;
156 };
157 static DEFINE_MUTEX(pcpu_drain_mutex);
158 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
159 
160 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
161 volatile unsigned long latent_entropy __latent_entropy;
162 EXPORT_SYMBOL(latent_entropy);
163 #endif
164 
165 /*
166  * Array of node states.
167  */
168 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
169 	[N_POSSIBLE] = NODE_MASK_ALL,
170 	[N_ONLINE] = { { [0] = 1UL } },
171 #ifndef CONFIG_NUMA
172 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
173 #ifdef CONFIG_HIGHMEM
174 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
175 #endif
176 	[N_MEMORY] = { { [0] = 1UL } },
177 	[N_CPU] = { { [0] = 1UL } },
178 #endif	/* NUMA */
179 };
180 EXPORT_SYMBOL(node_states);
181 
182 atomic_long_t _totalram_pages __read_mostly;
183 EXPORT_SYMBOL(_totalram_pages);
184 unsigned long totalreserve_pages __read_mostly;
185 unsigned long totalcma_pages __read_mostly;
186 
187 int percpu_pagelist_high_fraction;
188 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
189 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
190 EXPORT_SYMBOL(init_on_alloc);
191 
192 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
193 EXPORT_SYMBOL(init_on_free);
194 
195 static bool _init_on_alloc_enabled_early __read_mostly
196 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
197 static int __init early_init_on_alloc(char *buf)
198 {
199 
200 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
201 }
202 early_param("init_on_alloc", early_init_on_alloc);
203 
204 static bool _init_on_free_enabled_early __read_mostly
205 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
206 static int __init early_init_on_free(char *buf)
207 {
208 	return kstrtobool(buf, &_init_on_free_enabled_early);
209 }
210 early_param("init_on_free", early_init_on_free);
211 
212 /*
213  * A cached value of the page's pageblock's migratetype, used when the page is
214  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
215  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
216  * Also the migratetype set in the page does not necessarily match the pcplist
217  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
218  * other index - this ensures that it will be put on the correct CMA freelist.
219  */
220 static inline int get_pcppage_migratetype(struct page *page)
221 {
222 	return page->index;
223 }
224 
225 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
226 {
227 	page->index = migratetype;
228 }
229 
230 #ifdef CONFIG_PM_SLEEP
231 /*
232  * The following functions are used by the suspend/hibernate code to temporarily
233  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
234  * while devices are suspended.  To avoid races with the suspend/hibernate code,
235  * they should always be called with system_transition_mutex held
236  * (gfp_allowed_mask also should only be modified with system_transition_mutex
237  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
238  * with that modification).
239  */
240 
241 static gfp_t saved_gfp_mask;
242 
243 void pm_restore_gfp_mask(void)
244 {
245 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 	if (saved_gfp_mask) {
247 		gfp_allowed_mask = saved_gfp_mask;
248 		saved_gfp_mask = 0;
249 	}
250 }
251 
252 void pm_restrict_gfp_mask(void)
253 {
254 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
255 	WARN_ON(saved_gfp_mask);
256 	saved_gfp_mask = gfp_allowed_mask;
257 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
258 }
259 
260 bool pm_suspended_storage(void)
261 {
262 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
263 		return false;
264 	return true;
265 }
266 #endif /* CONFIG_PM_SLEEP */
267 
268 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
269 unsigned int pageblock_order __read_mostly;
270 #endif
271 
272 static void __free_pages_ok(struct page *page, unsigned int order,
273 			    fpi_t fpi_flags);
274 
275 /*
276  * results with 256, 32 in the lowmem_reserve sysctl:
277  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
278  *	1G machine -> (16M dma, 784M normal, 224M high)
279  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
280  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
281  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
282  *
283  * TBD: should special case ZONE_DMA32 machines here - in those we normally
284  * don't need any ZONE_NORMAL reservation
285  */
286 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
287 #ifdef CONFIG_ZONE_DMA
288 	[ZONE_DMA] = 256,
289 #endif
290 #ifdef CONFIG_ZONE_DMA32
291 	[ZONE_DMA32] = 256,
292 #endif
293 	[ZONE_NORMAL] = 32,
294 #ifdef CONFIG_HIGHMEM
295 	[ZONE_HIGHMEM] = 0,
296 #endif
297 	[ZONE_MOVABLE] = 0,
298 };
299 
300 static char * const zone_names[MAX_NR_ZONES] = {
301 #ifdef CONFIG_ZONE_DMA
302 	 "DMA",
303 #endif
304 #ifdef CONFIG_ZONE_DMA32
305 	 "DMA32",
306 #endif
307 	 "Normal",
308 #ifdef CONFIG_HIGHMEM
309 	 "HighMem",
310 #endif
311 	 "Movable",
312 #ifdef CONFIG_ZONE_DEVICE
313 	 "Device",
314 #endif
315 };
316 
317 const char * const migratetype_names[MIGRATE_TYPES] = {
318 	"Unmovable",
319 	"Movable",
320 	"Reclaimable",
321 	"HighAtomic",
322 #ifdef CONFIG_CMA
323 	"CMA",
324 #endif
325 #ifdef CONFIG_MEMORY_ISOLATION
326 	"Isolate",
327 #endif
328 };
329 
330 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
331 	[NULL_COMPOUND_DTOR] = NULL,
332 	[COMPOUND_PAGE_DTOR] = free_compound_page,
333 #ifdef CONFIG_HUGETLB_PAGE
334 	[HUGETLB_PAGE_DTOR] = free_huge_page,
335 #endif
336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
337 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
338 #endif
339 };
340 
341 int min_free_kbytes = 1024;
342 int user_min_free_kbytes = -1;
343 int watermark_boost_factor __read_mostly = 15000;
344 int watermark_scale_factor = 10;
345 
346 static unsigned long nr_kernel_pages __initdata;
347 static unsigned long nr_all_pages __initdata;
348 static unsigned long dma_reserve __initdata;
349 
350 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
351 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
352 static unsigned long required_kernelcore __initdata;
353 static unsigned long required_kernelcore_percent __initdata;
354 static unsigned long required_movablecore __initdata;
355 static unsigned long required_movablecore_percent __initdata;
356 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
357 static bool mirrored_kernelcore __meminitdata;
358 
359 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
360 int movable_zone;
361 EXPORT_SYMBOL(movable_zone);
362 
363 #if MAX_NUMNODES > 1
364 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
365 unsigned int nr_online_nodes __read_mostly = 1;
366 EXPORT_SYMBOL(nr_node_ids);
367 EXPORT_SYMBOL(nr_online_nodes);
368 #endif
369 
370 int page_group_by_mobility_disabled __read_mostly;
371 
372 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
373 /*
374  * During boot we initialize deferred pages on-demand, as needed, but once
375  * page_alloc_init_late() has finished, the deferred pages are all initialized,
376  * and we can permanently disable that path.
377  */
378 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
379 
380 /*
381  * Calling kasan_poison_pages() only after deferred memory initialization
382  * has completed. Poisoning pages during deferred memory init will greatly
383  * lengthen the process and cause problem in large memory systems as the
384  * deferred pages initialization is done with interrupt disabled.
385  *
386  * Assuming that there will be no reference to those newly initialized
387  * pages before they are ever allocated, this should have no effect on
388  * KASAN memory tracking as the poison will be properly inserted at page
389  * allocation time. The only corner case is when pages are allocated by
390  * on-demand allocation and then freed again before the deferred pages
391  * initialization is done, but this is not likely to happen.
392  */
393 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
394 {
395 	return static_branch_unlikely(&deferred_pages) ||
396 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
397 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
398 	       PageSkipKASanPoison(page);
399 }
400 
401 /* Returns true if the struct page for the pfn is uninitialised */
402 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
403 {
404 	int nid = early_pfn_to_nid(pfn);
405 
406 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
407 		return true;
408 
409 	return false;
410 }
411 
412 /*
413  * Returns true when the remaining initialisation should be deferred until
414  * later in the boot cycle when it can be parallelised.
415  */
416 static bool __meminit
417 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
418 {
419 	static unsigned long prev_end_pfn, nr_initialised;
420 
421 	/*
422 	 * prev_end_pfn static that contains the end of previous zone
423 	 * No need to protect because called very early in boot before smp_init.
424 	 */
425 	if (prev_end_pfn != end_pfn) {
426 		prev_end_pfn = end_pfn;
427 		nr_initialised = 0;
428 	}
429 
430 	/* Always populate low zones for address-constrained allocations */
431 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
432 		return false;
433 
434 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
435 		return true;
436 	/*
437 	 * We start only with one section of pages, more pages are added as
438 	 * needed until the rest of deferred pages are initialized.
439 	 */
440 	nr_initialised++;
441 	if ((nr_initialised > PAGES_PER_SECTION) &&
442 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
443 		NODE_DATA(nid)->first_deferred_pfn = pfn;
444 		return true;
445 	}
446 	return false;
447 }
448 #else
449 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
450 {
451 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
452 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
453 	       PageSkipKASanPoison(page);
454 }
455 
456 static inline bool early_page_uninitialised(unsigned long pfn)
457 {
458 	return false;
459 }
460 
461 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
462 {
463 	return false;
464 }
465 #endif
466 
467 /* Return a pointer to the bitmap storing bits affecting a block of pages */
468 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
469 							unsigned long pfn)
470 {
471 #ifdef CONFIG_SPARSEMEM
472 	return section_to_usemap(__pfn_to_section(pfn));
473 #else
474 	return page_zone(page)->pageblock_flags;
475 #endif /* CONFIG_SPARSEMEM */
476 }
477 
478 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
479 {
480 #ifdef CONFIG_SPARSEMEM
481 	pfn &= (PAGES_PER_SECTION-1);
482 #else
483 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
484 #endif /* CONFIG_SPARSEMEM */
485 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
486 }
487 
488 static __always_inline
489 unsigned long __get_pfnblock_flags_mask(const struct page *page,
490 					unsigned long pfn,
491 					unsigned long mask)
492 {
493 	unsigned long *bitmap;
494 	unsigned long bitidx, word_bitidx;
495 	unsigned long word;
496 
497 	bitmap = get_pageblock_bitmap(page, pfn);
498 	bitidx = pfn_to_bitidx(page, pfn);
499 	word_bitidx = bitidx / BITS_PER_LONG;
500 	bitidx &= (BITS_PER_LONG-1);
501 
502 	word = bitmap[word_bitidx];
503 	return (word >> bitidx) & mask;
504 }
505 
506 /**
507  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
508  * @page: The page within the block of interest
509  * @pfn: The target page frame number
510  * @mask: mask of bits that the caller is interested in
511  *
512  * Return: pageblock_bits flags
513  */
514 unsigned long get_pfnblock_flags_mask(const struct page *page,
515 					unsigned long pfn, unsigned long mask)
516 {
517 	return __get_pfnblock_flags_mask(page, pfn, mask);
518 }
519 
520 static __always_inline int get_pfnblock_migratetype(const struct page *page,
521 					unsigned long pfn)
522 {
523 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
524 }
525 
526 /**
527  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
528  * @page: The page within the block of interest
529  * @flags: The flags to set
530  * @pfn: The target page frame number
531  * @mask: mask of bits that the caller is interested in
532  */
533 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
534 					unsigned long pfn,
535 					unsigned long mask)
536 {
537 	unsigned long *bitmap;
538 	unsigned long bitidx, word_bitidx;
539 	unsigned long old_word, word;
540 
541 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
542 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
543 
544 	bitmap = get_pageblock_bitmap(page, pfn);
545 	bitidx = pfn_to_bitidx(page, pfn);
546 	word_bitidx = bitidx / BITS_PER_LONG;
547 	bitidx &= (BITS_PER_LONG-1);
548 
549 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
550 
551 	mask <<= bitidx;
552 	flags <<= bitidx;
553 
554 	word = READ_ONCE(bitmap[word_bitidx]);
555 	for (;;) {
556 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
557 		if (word == old_word)
558 			break;
559 		word = old_word;
560 	}
561 }
562 
563 void set_pageblock_migratetype(struct page *page, int migratetype)
564 {
565 	if (unlikely(page_group_by_mobility_disabled &&
566 		     migratetype < MIGRATE_PCPTYPES))
567 		migratetype = MIGRATE_UNMOVABLE;
568 
569 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
570 				page_to_pfn(page), MIGRATETYPE_MASK);
571 }
572 
573 #ifdef CONFIG_DEBUG_VM
574 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
575 {
576 	int ret = 0;
577 	unsigned seq;
578 	unsigned long pfn = page_to_pfn(page);
579 	unsigned long sp, start_pfn;
580 
581 	do {
582 		seq = zone_span_seqbegin(zone);
583 		start_pfn = zone->zone_start_pfn;
584 		sp = zone->spanned_pages;
585 		if (!zone_spans_pfn(zone, pfn))
586 			ret = 1;
587 	} while (zone_span_seqretry(zone, seq));
588 
589 	if (ret)
590 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
591 			pfn, zone_to_nid(zone), zone->name,
592 			start_pfn, start_pfn + sp);
593 
594 	return ret;
595 }
596 
597 static int page_is_consistent(struct zone *zone, struct page *page)
598 {
599 	if (zone != page_zone(page))
600 		return 0;
601 
602 	return 1;
603 }
604 /*
605  * Temporary debugging check for pages not lying within a given zone.
606  */
607 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
608 {
609 	if (page_outside_zone_boundaries(zone, page))
610 		return 1;
611 	if (!page_is_consistent(zone, page))
612 		return 1;
613 
614 	return 0;
615 }
616 #else
617 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
618 {
619 	return 0;
620 }
621 #endif
622 
623 static void bad_page(struct page *page, const char *reason)
624 {
625 	static unsigned long resume;
626 	static unsigned long nr_shown;
627 	static unsigned long nr_unshown;
628 
629 	/*
630 	 * Allow a burst of 60 reports, then keep quiet for that minute;
631 	 * or allow a steady drip of one report per second.
632 	 */
633 	if (nr_shown == 60) {
634 		if (time_before(jiffies, resume)) {
635 			nr_unshown++;
636 			goto out;
637 		}
638 		if (nr_unshown) {
639 			pr_alert(
640 			      "BUG: Bad page state: %lu messages suppressed\n",
641 				nr_unshown);
642 			nr_unshown = 0;
643 		}
644 		nr_shown = 0;
645 	}
646 	if (nr_shown++ == 0)
647 		resume = jiffies + 60 * HZ;
648 
649 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
650 		current->comm, page_to_pfn(page));
651 	dump_page(page, reason);
652 
653 	print_modules();
654 	dump_stack();
655 out:
656 	/* Leave bad fields for debug, except PageBuddy could make trouble */
657 	page_mapcount_reset(page); /* remove PageBuddy */
658 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659 }
660 
661 static inline unsigned int order_to_pindex(int migratetype, int order)
662 {
663 	int base = order;
664 
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
667 		VM_BUG_ON(order != pageblock_order);
668 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
669 	}
670 #else
671 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
672 #endif
673 
674 	return (MIGRATE_PCPTYPES * base) + migratetype;
675 }
676 
677 static inline int pindex_to_order(unsigned int pindex)
678 {
679 	int order = pindex / MIGRATE_PCPTYPES;
680 
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 	if (order > PAGE_ALLOC_COSTLY_ORDER)
683 		order = pageblock_order;
684 #else
685 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687 
688 	return order;
689 }
690 
691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 		return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 	if (order == pageblock_order)
697 		return true;
698 #endif
699 	return false;
700 }
701 
702 static inline void free_the_page(struct page *page, unsigned int order)
703 {
704 	if (pcp_allowed_order(order))		/* Via pcp? */
705 		free_unref_page(page, order);
706 	else
707 		__free_pages_ok(page, order, FPI_NONE);
708 }
709 
710 /*
711  * Higher-order pages are called "compound pages".  They are structured thusly:
712  *
713  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
714  *
715  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
717  *
718  * The first tail page's ->compound_dtor holds the offset in array of compound
719  * page destructors. See compound_page_dtors.
720  *
721  * The first tail page's ->compound_order holds the order of allocation.
722  * This usage means that zero-order pages may not be compound.
723  */
724 
725 void free_compound_page(struct page *page)
726 {
727 	mem_cgroup_uncharge(page_folio(page));
728 	free_the_page(page, compound_order(page));
729 }
730 
731 static void prep_compound_head(struct page *page, unsigned int order)
732 {
733 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
734 	set_compound_order(page, order);
735 	atomic_set(compound_mapcount_ptr(page), -1);
736 	if (hpage_pincount_available(page))
737 		atomic_set(compound_pincount_ptr(page), 0);
738 }
739 
740 static void prep_compound_tail(struct page *head, int tail_idx)
741 {
742 	struct page *p = head + tail_idx;
743 
744 	p->mapping = TAIL_MAPPING;
745 	set_compound_head(p, head);
746 }
747 
748 void prep_compound_page(struct page *page, unsigned int order)
749 {
750 	int i;
751 	int nr_pages = 1 << order;
752 
753 	__SetPageHead(page);
754 	for (i = 1; i < nr_pages; i++)
755 		prep_compound_tail(page, i);
756 
757 	prep_compound_head(page, order);
758 }
759 
760 #ifdef CONFIG_DEBUG_PAGEALLOC
761 unsigned int _debug_guardpage_minorder;
762 
763 bool _debug_pagealloc_enabled_early __read_mostly
764 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
765 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
766 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
767 EXPORT_SYMBOL(_debug_pagealloc_enabled);
768 
769 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
770 
771 static int __init early_debug_pagealloc(char *buf)
772 {
773 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
774 }
775 early_param("debug_pagealloc", early_debug_pagealloc);
776 
777 static int __init debug_guardpage_minorder_setup(char *buf)
778 {
779 	unsigned long res;
780 
781 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
782 		pr_err("Bad debug_guardpage_minorder value\n");
783 		return 0;
784 	}
785 	_debug_guardpage_minorder = res;
786 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
787 	return 0;
788 }
789 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
790 
791 static inline bool set_page_guard(struct zone *zone, struct page *page,
792 				unsigned int order, int migratetype)
793 {
794 	if (!debug_guardpage_enabled())
795 		return false;
796 
797 	if (order >= debug_guardpage_minorder())
798 		return false;
799 
800 	__SetPageGuard(page);
801 	INIT_LIST_HEAD(&page->lru);
802 	set_page_private(page, order);
803 	/* Guard pages are not available for any usage */
804 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
805 
806 	return true;
807 }
808 
809 static inline void clear_page_guard(struct zone *zone, struct page *page,
810 				unsigned int order, int migratetype)
811 {
812 	if (!debug_guardpage_enabled())
813 		return;
814 
815 	__ClearPageGuard(page);
816 
817 	set_page_private(page, 0);
818 	if (!is_migrate_isolate(migratetype))
819 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
820 }
821 #else
822 static inline bool set_page_guard(struct zone *zone, struct page *page,
823 			unsigned int order, int migratetype) { return false; }
824 static inline void clear_page_guard(struct zone *zone, struct page *page,
825 				unsigned int order, int migratetype) {}
826 #endif
827 
828 /*
829  * Enable static keys related to various memory debugging and hardening options.
830  * Some override others, and depend on early params that are evaluated in the
831  * order of appearance. So we need to first gather the full picture of what was
832  * enabled, and then make decisions.
833  */
834 void init_mem_debugging_and_hardening(void)
835 {
836 	bool page_poisoning_requested = false;
837 
838 #ifdef CONFIG_PAGE_POISONING
839 	/*
840 	 * Page poisoning is debug page alloc for some arches. If
841 	 * either of those options are enabled, enable poisoning.
842 	 */
843 	if (page_poisoning_enabled() ||
844 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
845 	      debug_pagealloc_enabled())) {
846 		static_branch_enable(&_page_poisoning_enabled);
847 		page_poisoning_requested = true;
848 	}
849 #endif
850 
851 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
852 	    page_poisoning_requested) {
853 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
854 			"will take precedence over init_on_alloc and init_on_free\n");
855 		_init_on_alloc_enabled_early = false;
856 		_init_on_free_enabled_early = false;
857 	}
858 
859 	if (_init_on_alloc_enabled_early)
860 		static_branch_enable(&init_on_alloc);
861 	else
862 		static_branch_disable(&init_on_alloc);
863 
864 	if (_init_on_free_enabled_early)
865 		static_branch_enable(&init_on_free);
866 	else
867 		static_branch_disable(&init_on_free);
868 
869 #ifdef CONFIG_DEBUG_PAGEALLOC
870 	if (!debug_pagealloc_enabled())
871 		return;
872 
873 	static_branch_enable(&_debug_pagealloc_enabled);
874 
875 	if (!debug_guardpage_minorder())
876 		return;
877 
878 	static_branch_enable(&_debug_guardpage_enabled);
879 #endif
880 }
881 
882 static inline void set_buddy_order(struct page *page, unsigned int order)
883 {
884 	set_page_private(page, order);
885 	__SetPageBuddy(page);
886 }
887 
888 /*
889  * This function checks whether a page is free && is the buddy
890  * we can coalesce a page and its buddy if
891  * (a) the buddy is not in a hole (check before calling!) &&
892  * (b) the buddy is in the buddy system &&
893  * (c) a page and its buddy have the same order &&
894  * (d) a page and its buddy are in the same zone.
895  *
896  * For recording whether a page is in the buddy system, we set PageBuddy.
897  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
898  *
899  * For recording page's order, we use page_private(page).
900  */
901 static inline bool page_is_buddy(struct page *page, struct page *buddy,
902 							unsigned int order)
903 {
904 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
905 		return false;
906 
907 	if (buddy_order(buddy) != order)
908 		return false;
909 
910 	/*
911 	 * zone check is done late to avoid uselessly calculating
912 	 * zone/node ids for pages that could never merge.
913 	 */
914 	if (page_zone_id(page) != page_zone_id(buddy))
915 		return false;
916 
917 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
918 
919 	return true;
920 }
921 
922 #ifdef CONFIG_COMPACTION
923 static inline struct capture_control *task_capc(struct zone *zone)
924 {
925 	struct capture_control *capc = current->capture_control;
926 
927 	return unlikely(capc) &&
928 		!(current->flags & PF_KTHREAD) &&
929 		!capc->page &&
930 		capc->cc->zone == zone ? capc : NULL;
931 }
932 
933 static inline bool
934 compaction_capture(struct capture_control *capc, struct page *page,
935 		   int order, int migratetype)
936 {
937 	if (!capc || order != capc->cc->order)
938 		return false;
939 
940 	/* Do not accidentally pollute CMA or isolated regions*/
941 	if (is_migrate_cma(migratetype) ||
942 	    is_migrate_isolate(migratetype))
943 		return false;
944 
945 	/*
946 	 * Do not let lower order allocations pollute a movable pageblock.
947 	 * This might let an unmovable request use a reclaimable pageblock
948 	 * and vice-versa but no more than normal fallback logic which can
949 	 * have trouble finding a high-order free page.
950 	 */
951 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
952 		return false;
953 
954 	capc->page = page;
955 	return true;
956 }
957 
958 #else
959 static inline struct capture_control *task_capc(struct zone *zone)
960 {
961 	return NULL;
962 }
963 
964 static inline bool
965 compaction_capture(struct capture_control *capc, struct page *page,
966 		   int order, int migratetype)
967 {
968 	return false;
969 }
970 #endif /* CONFIG_COMPACTION */
971 
972 /* Used for pages not on another list */
973 static inline void add_to_free_list(struct page *page, struct zone *zone,
974 				    unsigned int order, int migratetype)
975 {
976 	struct free_area *area = &zone->free_area[order];
977 
978 	list_add(&page->lru, &area->free_list[migratetype]);
979 	area->nr_free++;
980 }
981 
982 /* Used for pages not on another list */
983 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
984 					 unsigned int order, int migratetype)
985 {
986 	struct free_area *area = &zone->free_area[order];
987 
988 	list_add_tail(&page->lru, &area->free_list[migratetype]);
989 	area->nr_free++;
990 }
991 
992 /*
993  * Used for pages which are on another list. Move the pages to the tail
994  * of the list - so the moved pages won't immediately be considered for
995  * allocation again (e.g., optimization for memory onlining).
996  */
997 static inline void move_to_free_list(struct page *page, struct zone *zone,
998 				     unsigned int order, int migratetype)
999 {
1000 	struct free_area *area = &zone->free_area[order];
1001 
1002 	list_move_tail(&page->lru, &area->free_list[migratetype]);
1003 }
1004 
1005 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1006 					   unsigned int order)
1007 {
1008 	/* clear reported state and update reported page count */
1009 	if (page_reported(page))
1010 		__ClearPageReported(page);
1011 
1012 	list_del(&page->lru);
1013 	__ClearPageBuddy(page);
1014 	set_page_private(page, 0);
1015 	zone->free_area[order].nr_free--;
1016 }
1017 
1018 /*
1019  * If this is not the largest possible page, check if the buddy
1020  * of the next-highest order is free. If it is, it's possible
1021  * that pages are being freed that will coalesce soon. In case,
1022  * that is happening, add the free page to the tail of the list
1023  * so it's less likely to be used soon and more likely to be merged
1024  * as a higher order page
1025  */
1026 static inline bool
1027 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1028 		   struct page *page, unsigned int order)
1029 {
1030 	struct page *higher_page, *higher_buddy;
1031 	unsigned long combined_pfn;
1032 
1033 	if (order >= MAX_ORDER - 2)
1034 		return false;
1035 
1036 	combined_pfn = buddy_pfn & pfn;
1037 	higher_page = page + (combined_pfn - pfn);
1038 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1039 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1040 
1041 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1042 }
1043 
1044 /*
1045  * Freeing function for a buddy system allocator.
1046  *
1047  * The concept of a buddy system is to maintain direct-mapped table
1048  * (containing bit values) for memory blocks of various "orders".
1049  * The bottom level table contains the map for the smallest allocatable
1050  * units of memory (here, pages), and each level above it describes
1051  * pairs of units from the levels below, hence, "buddies".
1052  * At a high level, all that happens here is marking the table entry
1053  * at the bottom level available, and propagating the changes upward
1054  * as necessary, plus some accounting needed to play nicely with other
1055  * parts of the VM system.
1056  * At each level, we keep a list of pages, which are heads of continuous
1057  * free pages of length of (1 << order) and marked with PageBuddy.
1058  * Page's order is recorded in page_private(page) field.
1059  * So when we are allocating or freeing one, we can derive the state of the
1060  * other.  That is, if we allocate a small block, and both were
1061  * free, the remainder of the region must be split into blocks.
1062  * If a block is freed, and its buddy is also free, then this
1063  * triggers coalescing into a block of larger size.
1064  *
1065  * -- nyc
1066  */
1067 
1068 static inline void __free_one_page(struct page *page,
1069 		unsigned long pfn,
1070 		struct zone *zone, unsigned int order,
1071 		int migratetype, fpi_t fpi_flags)
1072 {
1073 	struct capture_control *capc = task_capc(zone);
1074 	unsigned long buddy_pfn;
1075 	unsigned long combined_pfn;
1076 	unsigned int max_order;
1077 	struct page *buddy;
1078 	bool to_tail;
1079 
1080 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1081 
1082 	VM_BUG_ON(!zone_is_initialized(zone));
1083 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1084 
1085 	VM_BUG_ON(migratetype == -1);
1086 	if (likely(!is_migrate_isolate(migratetype)))
1087 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1088 
1089 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1090 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1091 
1092 continue_merging:
1093 	while (order < max_order) {
1094 		if (compaction_capture(capc, page, order, migratetype)) {
1095 			__mod_zone_freepage_state(zone, -(1 << order),
1096 								migratetype);
1097 			return;
1098 		}
1099 		buddy_pfn = __find_buddy_pfn(pfn, order);
1100 		buddy = page + (buddy_pfn - pfn);
1101 
1102 		if (!page_is_buddy(page, buddy, order))
1103 			goto done_merging;
1104 		/*
1105 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1106 		 * merge with it and move up one order.
1107 		 */
1108 		if (page_is_guard(buddy))
1109 			clear_page_guard(zone, buddy, order, migratetype);
1110 		else
1111 			del_page_from_free_list(buddy, zone, order);
1112 		combined_pfn = buddy_pfn & pfn;
1113 		page = page + (combined_pfn - pfn);
1114 		pfn = combined_pfn;
1115 		order++;
1116 	}
1117 	if (order < MAX_ORDER - 1) {
1118 		/* If we are here, it means order is >= pageblock_order.
1119 		 * We want to prevent merge between freepages on isolate
1120 		 * pageblock and normal pageblock. Without this, pageblock
1121 		 * isolation could cause incorrect freepage or CMA accounting.
1122 		 *
1123 		 * We don't want to hit this code for the more frequent
1124 		 * low-order merging.
1125 		 */
1126 		if (unlikely(has_isolate_pageblock(zone))) {
1127 			int buddy_mt;
1128 
1129 			buddy_pfn = __find_buddy_pfn(pfn, order);
1130 			buddy = page + (buddy_pfn - pfn);
1131 			buddy_mt = get_pageblock_migratetype(buddy);
1132 
1133 			if (migratetype != buddy_mt
1134 					&& (is_migrate_isolate(migratetype) ||
1135 						is_migrate_isolate(buddy_mt)))
1136 				goto done_merging;
1137 		}
1138 		max_order = order + 1;
1139 		goto continue_merging;
1140 	}
1141 
1142 done_merging:
1143 	set_buddy_order(page, order);
1144 
1145 	if (fpi_flags & FPI_TO_TAIL)
1146 		to_tail = true;
1147 	else if (is_shuffle_order(order))
1148 		to_tail = shuffle_pick_tail();
1149 	else
1150 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1151 
1152 	if (to_tail)
1153 		add_to_free_list_tail(page, zone, order, migratetype);
1154 	else
1155 		add_to_free_list(page, zone, order, migratetype);
1156 
1157 	/* Notify page reporting subsystem of freed page */
1158 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1159 		page_reporting_notify_free(order);
1160 }
1161 
1162 /*
1163  * A bad page could be due to a number of fields. Instead of multiple branches,
1164  * try and check multiple fields with one check. The caller must do a detailed
1165  * check if necessary.
1166  */
1167 static inline bool page_expected_state(struct page *page,
1168 					unsigned long check_flags)
1169 {
1170 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1171 		return false;
1172 
1173 	if (unlikely((unsigned long)page->mapping |
1174 			page_ref_count(page) |
1175 #ifdef CONFIG_MEMCG
1176 			page->memcg_data |
1177 #endif
1178 			(page->flags & check_flags)))
1179 		return false;
1180 
1181 	return true;
1182 }
1183 
1184 static const char *page_bad_reason(struct page *page, unsigned long flags)
1185 {
1186 	const char *bad_reason = NULL;
1187 
1188 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1189 		bad_reason = "nonzero mapcount";
1190 	if (unlikely(page->mapping != NULL))
1191 		bad_reason = "non-NULL mapping";
1192 	if (unlikely(page_ref_count(page) != 0))
1193 		bad_reason = "nonzero _refcount";
1194 	if (unlikely(page->flags & flags)) {
1195 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1196 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1197 		else
1198 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1199 	}
1200 #ifdef CONFIG_MEMCG
1201 	if (unlikely(page->memcg_data))
1202 		bad_reason = "page still charged to cgroup";
1203 #endif
1204 	return bad_reason;
1205 }
1206 
1207 static void check_free_page_bad(struct page *page)
1208 {
1209 	bad_page(page,
1210 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1211 }
1212 
1213 static inline int check_free_page(struct page *page)
1214 {
1215 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1216 		return 0;
1217 
1218 	/* Something has gone sideways, find it */
1219 	check_free_page_bad(page);
1220 	return 1;
1221 }
1222 
1223 static int free_tail_pages_check(struct page *head_page, struct page *page)
1224 {
1225 	int ret = 1;
1226 
1227 	/*
1228 	 * We rely page->lru.next never has bit 0 set, unless the page
1229 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1230 	 */
1231 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1232 
1233 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1234 		ret = 0;
1235 		goto out;
1236 	}
1237 	switch (page - head_page) {
1238 	case 1:
1239 		/* the first tail page: ->mapping may be compound_mapcount() */
1240 		if (unlikely(compound_mapcount(page))) {
1241 			bad_page(page, "nonzero compound_mapcount");
1242 			goto out;
1243 		}
1244 		break;
1245 	case 2:
1246 		/*
1247 		 * the second tail page: ->mapping is
1248 		 * deferred_list.next -- ignore value.
1249 		 */
1250 		break;
1251 	default:
1252 		if (page->mapping != TAIL_MAPPING) {
1253 			bad_page(page, "corrupted mapping in tail page");
1254 			goto out;
1255 		}
1256 		break;
1257 	}
1258 	if (unlikely(!PageTail(page))) {
1259 		bad_page(page, "PageTail not set");
1260 		goto out;
1261 	}
1262 	if (unlikely(compound_head(page) != head_page)) {
1263 		bad_page(page, "compound_head not consistent");
1264 		goto out;
1265 	}
1266 	ret = 0;
1267 out:
1268 	page->mapping = NULL;
1269 	clear_compound_head(page);
1270 	return ret;
1271 }
1272 
1273 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1274 {
1275 	int i;
1276 
1277 	if (zero_tags) {
1278 		for (i = 0; i < numpages; i++)
1279 			tag_clear_highpage(page + i);
1280 		return;
1281 	}
1282 
1283 	/* s390's use of memset() could override KASAN redzones. */
1284 	kasan_disable_current();
1285 	for (i = 0; i < numpages; i++) {
1286 		u8 tag = page_kasan_tag(page + i);
1287 		page_kasan_tag_reset(page + i);
1288 		clear_highpage(page + i);
1289 		page_kasan_tag_set(page + i, tag);
1290 	}
1291 	kasan_enable_current();
1292 }
1293 
1294 static __always_inline bool free_pages_prepare(struct page *page,
1295 			unsigned int order, bool check_free, fpi_t fpi_flags)
1296 {
1297 	int bad = 0;
1298 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1299 
1300 	VM_BUG_ON_PAGE(PageTail(page), page);
1301 
1302 	trace_mm_page_free(page, order);
1303 
1304 	if (unlikely(PageHWPoison(page)) && !order) {
1305 		/*
1306 		 * Do not let hwpoison pages hit pcplists/buddy
1307 		 * Untie memcg state and reset page's owner
1308 		 */
1309 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1310 			__memcg_kmem_uncharge_page(page, order);
1311 		reset_page_owner(page, order);
1312 		page_table_check_free(page, order);
1313 		return false;
1314 	}
1315 
1316 	/*
1317 	 * Check tail pages before head page information is cleared to
1318 	 * avoid checking PageCompound for order-0 pages.
1319 	 */
1320 	if (unlikely(order)) {
1321 		bool compound = PageCompound(page);
1322 		int i;
1323 
1324 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1325 
1326 		if (compound) {
1327 			ClearPageDoubleMap(page);
1328 			ClearPageHasHWPoisoned(page);
1329 		}
1330 		for (i = 1; i < (1 << order); i++) {
1331 			if (compound)
1332 				bad += free_tail_pages_check(page, page + i);
1333 			if (unlikely(check_free_page(page + i))) {
1334 				bad++;
1335 				continue;
1336 			}
1337 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 		}
1339 	}
1340 	if (PageMappingFlags(page))
1341 		page->mapping = NULL;
1342 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1343 		__memcg_kmem_uncharge_page(page, order);
1344 	if (check_free)
1345 		bad += check_free_page(page);
1346 	if (bad)
1347 		return false;
1348 
1349 	page_cpupid_reset_last(page);
1350 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1351 	reset_page_owner(page, order);
1352 	page_table_check_free(page, order);
1353 
1354 	if (!PageHighMem(page)) {
1355 		debug_check_no_locks_freed(page_address(page),
1356 					   PAGE_SIZE << order);
1357 		debug_check_no_obj_freed(page_address(page),
1358 					   PAGE_SIZE << order);
1359 	}
1360 
1361 	kernel_poison_pages(page, 1 << order);
1362 
1363 	/*
1364 	 * As memory initialization might be integrated into KASAN,
1365 	 * kasan_free_pages and kernel_init_free_pages must be
1366 	 * kept together to avoid discrepancies in behavior.
1367 	 *
1368 	 * With hardware tag-based KASAN, memory tags must be set before the
1369 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1370 	 */
1371 	if (kasan_has_integrated_init()) {
1372 		if (!skip_kasan_poison)
1373 			kasan_free_pages(page, order);
1374 	} else {
1375 		bool init = want_init_on_free();
1376 
1377 		if (init)
1378 			kernel_init_free_pages(page, 1 << order, false);
1379 		if (!skip_kasan_poison)
1380 			kasan_poison_pages(page, order, init);
1381 	}
1382 
1383 	/*
1384 	 * arch_free_page() can make the page's contents inaccessible.  s390
1385 	 * does this.  So nothing which can access the page's contents should
1386 	 * happen after this.
1387 	 */
1388 	arch_free_page(page, order);
1389 
1390 	debug_pagealloc_unmap_pages(page, 1 << order);
1391 
1392 	return true;
1393 }
1394 
1395 #ifdef CONFIG_DEBUG_VM
1396 /*
1397  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1398  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1399  * moved from pcp lists to free lists.
1400  */
1401 static bool free_pcp_prepare(struct page *page, unsigned int order)
1402 {
1403 	return free_pages_prepare(page, order, true, FPI_NONE);
1404 }
1405 
1406 static bool bulkfree_pcp_prepare(struct page *page)
1407 {
1408 	if (debug_pagealloc_enabled_static())
1409 		return check_free_page(page);
1410 	else
1411 		return false;
1412 }
1413 #else
1414 /*
1415  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1416  * moving from pcp lists to free list in order to reduce overhead. With
1417  * debug_pagealloc enabled, they are checked also immediately when being freed
1418  * to the pcp lists.
1419  */
1420 static bool free_pcp_prepare(struct page *page, unsigned int order)
1421 {
1422 	if (debug_pagealloc_enabled_static())
1423 		return free_pages_prepare(page, order, true, FPI_NONE);
1424 	else
1425 		return free_pages_prepare(page, order, false, FPI_NONE);
1426 }
1427 
1428 static bool bulkfree_pcp_prepare(struct page *page)
1429 {
1430 	return check_free_page(page);
1431 }
1432 #endif /* CONFIG_DEBUG_VM */
1433 
1434 static inline void prefetch_buddy(struct page *page)
1435 {
1436 	unsigned long pfn = page_to_pfn(page);
1437 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1438 	struct page *buddy = page + (buddy_pfn - pfn);
1439 
1440 	prefetch(buddy);
1441 }
1442 
1443 /*
1444  * Frees a number of pages from the PCP lists
1445  * Assumes all pages on list are in same zone.
1446  * count is the number of pages to free.
1447  */
1448 static void free_pcppages_bulk(struct zone *zone, int count,
1449 					struct per_cpu_pages *pcp)
1450 {
1451 	int pindex = 0;
1452 	int batch_free = 0;
1453 	int nr_freed = 0;
1454 	unsigned int order;
1455 	int prefetch_nr = READ_ONCE(pcp->batch);
1456 	bool isolated_pageblocks;
1457 	struct page *page, *tmp;
1458 	LIST_HEAD(head);
1459 
1460 	/*
1461 	 * Ensure proper count is passed which otherwise would stuck in the
1462 	 * below while (list_empty(list)) loop.
1463 	 */
1464 	count = min(pcp->count, count);
1465 	while (count > 0) {
1466 		struct list_head *list;
1467 
1468 		/*
1469 		 * Remove pages from lists in a round-robin fashion. A
1470 		 * batch_free count is maintained that is incremented when an
1471 		 * empty list is encountered.  This is so more pages are freed
1472 		 * off fuller lists instead of spinning excessively around empty
1473 		 * lists
1474 		 */
1475 		do {
1476 			batch_free++;
1477 			if (++pindex == NR_PCP_LISTS)
1478 				pindex = 0;
1479 			list = &pcp->lists[pindex];
1480 		} while (list_empty(list));
1481 
1482 		/* This is the only non-empty list. Free them all. */
1483 		if (batch_free == NR_PCP_LISTS)
1484 			batch_free = count;
1485 
1486 		order = pindex_to_order(pindex);
1487 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1488 		do {
1489 			page = list_last_entry(list, struct page, lru);
1490 			/* must delete to avoid corrupting pcp list */
1491 			list_del(&page->lru);
1492 			nr_freed += 1 << order;
1493 			count -= 1 << order;
1494 
1495 			if (bulkfree_pcp_prepare(page))
1496 				continue;
1497 
1498 			/* Encode order with the migratetype */
1499 			page->index <<= NR_PCP_ORDER_WIDTH;
1500 			page->index |= order;
1501 
1502 			list_add_tail(&page->lru, &head);
1503 
1504 			/*
1505 			 * We are going to put the page back to the global
1506 			 * pool, prefetch its buddy to speed up later access
1507 			 * under zone->lock. It is believed the overhead of
1508 			 * an additional test and calculating buddy_pfn here
1509 			 * can be offset by reduced memory latency later. To
1510 			 * avoid excessive prefetching due to large count, only
1511 			 * prefetch buddy for the first pcp->batch nr of pages.
1512 			 */
1513 			if (prefetch_nr) {
1514 				prefetch_buddy(page);
1515 				prefetch_nr--;
1516 			}
1517 		} while (count > 0 && --batch_free && !list_empty(list));
1518 	}
1519 	pcp->count -= nr_freed;
1520 
1521 	/*
1522 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1523 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1524 	 */
1525 	spin_lock(&zone->lock);
1526 	isolated_pageblocks = has_isolate_pageblock(zone);
1527 
1528 	/*
1529 	 * Use safe version since after __free_one_page(),
1530 	 * page->lru.next will not point to original list.
1531 	 */
1532 	list_for_each_entry_safe(page, tmp, &head, lru) {
1533 		int mt = get_pcppage_migratetype(page);
1534 
1535 		/* mt has been encoded with the order (see above) */
1536 		order = mt & NR_PCP_ORDER_MASK;
1537 		mt >>= NR_PCP_ORDER_WIDTH;
1538 
1539 		/* MIGRATE_ISOLATE page should not go to pcplists */
1540 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1541 		/* Pageblock could have been isolated meanwhile */
1542 		if (unlikely(isolated_pageblocks))
1543 			mt = get_pageblock_migratetype(page);
1544 
1545 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1546 		trace_mm_page_pcpu_drain(page, order, mt);
1547 	}
1548 	spin_unlock(&zone->lock);
1549 }
1550 
1551 static void free_one_page(struct zone *zone,
1552 				struct page *page, unsigned long pfn,
1553 				unsigned int order,
1554 				int migratetype, fpi_t fpi_flags)
1555 {
1556 	unsigned long flags;
1557 
1558 	spin_lock_irqsave(&zone->lock, flags);
1559 	if (unlikely(has_isolate_pageblock(zone) ||
1560 		is_migrate_isolate(migratetype))) {
1561 		migratetype = get_pfnblock_migratetype(page, pfn);
1562 	}
1563 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1564 	spin_unlock_irqrestore(&zone->lock, flags);
1565 }
1566 
1567 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1568 				unsigned long zone, int nid)
1569 {
1570 	mm_zero_struct_page(page);
1571 	set_page_links(page, zone, nid, pfn);
1572 	init_page_count(page);
1573 	page_mapcount_reset(page);
1574 	page_cpupid_reset_last(page);
1575 	page_kasan_tag_reset(page);
1576 
1577 	INIT_LIST_HEAD(&page->lru);
1578 #ifdef WANT_PAGE_VIRTUAL
1579 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1580 	if (!is_highmem_idx(zone))
1581 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1582 #endif
1583 }
1584 
1585 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1586 static void __meminit init_reserved_page(unsigned long pfn)
1587 {
1588 	pg_data_t *pgdat;
1589 	int nid, zid;
1590 
1591 	if (!early_page_uninitialised(pfn))
1592 		return;
1593 
1594 	nid = early_pfn_to_nid(pfn);
1595 	pgdat = NODE_DATA(nid);
1596 
1597 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1598 		struct zone *zone = &pgdat->node_zones[zid];
1599 
1600 		if (zone_spans_pfn(zone, pfn))
1601 			break;
1602 	}
1603 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1604 }
1605 #else
1606 static inline void init_reserved_page(unsigned long pfn)
1607 {
1608 }
1609 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1610 
1611 /*
1612  * Initialised pages do not have PageReserved set. This function is
1613  * called for each range allocated by the bootmem allocator and
1614  * marks the pages PageReserved. The remaining valid pages are later
1615  * sent to the buddy page allocator.
1616  */
1617 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1618 {
1619 	unsigned long start_pfn = PFN_DOWN(start);
1620 	unsigned long end_pfn = PFN_UP(end);
1621 
1622 	for (; start_pfn < end_pfn; start_pfn++) {
1623 		if (pfn_valid(start_pfn)) {
1624 			struct page *page = pfn_to_page(start_pfn);
1625 
1626 			init_reserved_page(start_pfn);
1627 
1628 			/* Avoid false-positive PageTail() */
1629 			INIT_LIST_HEAD(&page->lru);
1630 
1631 			/*
1632 			 * no need for atomic set_bit because the struct
1633 			 * page is not visible yet so nobody should
1634 			 * access it yet.
1635 			 */
1636 			__SetPageReserved(page);
1637 		}
1638 	}
1639 }
1640 
1641 static void __free_pages_ok(struct page *page, unsigned int order,
1642 			    fpi_t fpi_flags)
1643 {
1644 	unsigned long flags;
1645 	int migratetype;
1646 	unsigned long pfn = page_to_pfn(page);
1647 	struct zone *zone = page_zone(page);
1648 
1649 	if (!free_pages_prepare(page, order, true, fpi_flags))
1650 		return;
1651 
1652 	migratetype = get_pfnblock_migratetype(page, pfn);
1653 
1654 	spin_lock_irqsave(&zone->lock, flags);
1655 	if (unlikely(has_isolate_pageblock(zone) ||
1656 		is_migrate_isolate(migratetype))) {
1657 		migratetype = get_pfnblock_migratetype(page, pfn);
1658 	}
1659 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1660 	spin_unlock_irqrestore(&zone->lock, flags);
1661 
1662 	__count_vm_events(PGFREE, 1 << order);
1663 }
1664 
1665 void __free_pages_core(struct page *page, unsigned int order)
1666 {
1667 	unsigned int nr_pages = 1 << order;
1668 	struct page *p = page;
1669 	unsigned int loop;
1670 
1671 	/*
1672 	 * When initializing the memmap, __init_single_page() sets the refcount
1673 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1674 	 * refcount of all involved pages to 0.
1675 	 */
1676 	prefetchw(p);
1677 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1678 		prefetchw(p + 1);
1679 		__ClearPageReserved(p);
1680 		set_page_count(p, 0);
1681 	}
1682 	__ClearPageReserved(p);
1683 	set_page_count(p, 0);
1684 
1685 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1686 
1687 	/*
1688 	 * Bypass PCP and place fresh pages right to the tail, primarily
1689 	 * relevant for memory onlining.
1690 	 */
1691 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1692 }
1693 
1694 #ifdef CONFIG_NUMA
1695 
1696 /*
1697  * During memory init memblocks map pfns to nids. The search is expensive and
1698  * this caches recent lookups. The implementation of __early_pfn_to_nid
1699  * treats start/end as pfns.
1700  */
1701 struct mminit_pfnnid_cache {
1702 	unsigned long last_start;
1703 	unsigned long last_end;
1704 	int last_nid;
1705 };
1706 
1707 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1708 
1709 /*
1710  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1711  */
1712 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1713 					struct mminit_pfnnid_cache *state)
1714 {
1715 	unsigned long start_pfn, end_pfn;
1716 	int nid;
1717 
1718 	if (state->last_start <= pfn && pfn < state->last_end)
1719 		return state->last_nid;
1720 
1721 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1722 	if (nid != NUMA_NO_NODE) {
1723 		state->last_start = start_pfn;
1724 		state->last_end = end_pfn;
1725 		state->last_nid = nid;
1726 	}
1727 
1728 	return nid;
1729 }
1730 
1731 int __meminit early_pfn_to_nid(unsigned long pfn)
1732 {
1733 	static DEFINE_SPINLOCK(early_pfn_lock);
1734 	int nid;
1735 
1736 	spin_lock(&early_pfn_lock);
1737 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1738 	if (nid < 0)
1739 		nid = first_online_node;
1740 	spin_unlock(&early_pfn_lock);
1741 
1742 	return nid;
1743 }
1744 #endif /* CONFIG_NUMA */
1745 
1746 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1747 							unsigned int order)
1748 {
1749 	if (early_page_uninitialised(pfn))
1750 		return;
1751 	__free_pages_core(page, order);
1752 }
1753 
1754 /*
1755  * Check that the whole (or subset of) a pageblock given by the interval of
1756  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1757  * with the migration of free compaction scanner.
1758  *
1759  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1760  *
1761  * It's possible on some configurations to have a setup like node0 node1 node0
1762  * i.e. it's possible that all pages within a zones range of pages do not
1763  * belong to a single zone. We assume that a border between node0 and node1
1764  * can occur within a single pageblock, but not a node0 node1 node0
1765  * interleaving within a single pageblock. It is therefore sufficient to check
1766  * the first and last page of a pageblock and avoid checking each individual
1767  * page in a pageblock.
1768  */
1769 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1770 				     unsigned long end_pfn, struct zone *zone)
1771 {
1772 	struct page *start_page;
1773 	struct page *end_page;
1774 
1775 	/* end_pfn is one past the range we are checking */
1776 	end_pfn--;
1777 
1778 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1779 		return NULL;
1780 
1781 	start_page = pfn_to_online_page(start_pfn);
1782 	if (!start_page)
1783 		return NULL;
1784 
1785 	if (page_zone(start_page) != zone)
1786 		return NULL;
1787 
1788 	end_page = pfn_to_page(end_pfn);
1789 
1790 	/* This gives a shorter code than deriving page_zone(end_page) */
1791 	if (page_zone_id(start_page) != page_zone_id(end_page))
1792 		return NULL;
1793 
1794 	return start_page;
1795 }
1796 
1797 void set_zone_contiguous(struct zone *zone)
1798 {
1799 	unsigned long block_start_pfn = zone->zone_start_pfn;
1800 	unsigned long block_end_pfn;
1801 
1802 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1803 	for (; block_start_pfn < zone_end_pfn(zone);
1804 			block_start_pfn = block_end_pfn,
1805 			 block_end_pfn += pageblock_nr_pages) {
1806 
1807 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1808 
1809 		if (!__pageblock_pfn_to_page(block_start_pfn,
1810 					     block_end_pfn, zone))
1811 			return;
1812 		cond_resched();
1813 	}
1814 
1815 	/* We confirm that there is no hole */
1816 	zone->contiguous = true;
1817 }
1818 
1819 void clear_zone_contiguous(struct zone *zone)
1820 {
1821 	zone->contiguous = false;
1822 }
1823 
1824 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1825 static void __init deferred_free_range(unsigned long pfn,
1826 				       unsigned long nr_pages)
1827 {
1828 	struct page *page;
1829 	unsigned long i;
1830 
1831 	if (!nr_pages)
1832 		return;
1833 
1834 	page = pfn_to_page(pfn);
1835 
1836 	/* Free a large naturally-aligned chunk if possible */
1837 	if (nr_pages == pageblock_nr_pages &&
1838 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1839 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1840 		__free_pages_core(page, pageblock_order);
1841 		return;
1842 	}
1843 
1844 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1845 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1846 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1847 		__free_pages_core(page, 0);
1848 	}
1849 }
1850 
1851 /* Completion tracking for deferred_init_memmap() threads */
1852 static atomic_t pgdat_init_n_undone __initdata;
1853 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1854 
1855 static inline void __init pgdat_init_report_one_done(void)
1856 {
1857 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1858 		complete(&pgdat_init_all_done_comp);
1859 }
1860 
1861 /*
1862  * Returns true if page needs to be initialized or freed to buddy allocator.
1863  *
1864  * First we check if pfn is valid on architectures where it is possible to have
1865  * holes within pageblock_nr_pages. On systems where it is not possible, this
1866  * function is optimized out.
1867  *
1868  * Then, we check if a current large page is valid by only checking the validity
1869  * of the head pfn.
1870  */
1871 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1872 {
1873 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1874 		return false;
1875 	return true;
1876 }
1877 
1878 /*
1879  * Free pages to buddy allocator. Try to free aligned pages in
1880  * pageblock_nr_pages sizes.
1881  */
1882 static void __init deferred_free_pages(unsigned long pfn,
1883 				       unsigned long end_pfn)
1884 {
1885 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1886 	unsigned long nr_free = 0;
1887 
1888 	for (; pfn < end_pfn; pfn++) {
1889 		if (!deferred_pfn_valid(pfn)) {
1890 			deferred_free_range(pfn - nr_free, nr_free);
1891 			nr_free = 0;
1892 		} else if (!(pfn & nr_pgmask)) {
1893 			deferred_free_range(pfn - nr_free, nr_free);
1894 			nr_free = 1;
1895 		} else {
1896 			nr_free++;
1897 		}
1898 	}
1899 	/* Free the last block of pages to allocator */
1900 	deferred_free_range(pfn - nr_free, nr_free);
1901 }
1902 
1903 /*
1904  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1905  * by performing it only once every pageblock_nr_pages.
1906  * Return number of pages initialized.
1907  */
1908 static unsigned long  __init deferred_init_pages(struct zone *zone,
1909 						 unsigned long pfn,
1910 						 unsigned long end_pfn)
1911 {
1912 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1913 	int nid = zone_to_nid(zone);
1914 	unsigned long nr_pages = 0;
1915 	int zid = zone_idx(zone);
1916 	struct page *page = NULL;
1917 
1918 	for (; pfn < end_pfn; pfn++) {
1919 		if (!deferred_pfn_valid(pfn)) {
1920 			page = NULL;
1921 			continue;
1922 		} else if (!page || !(pfn & nr_pgmask)) {
1923 			page = pfn_to_page(pfn);
1924 		} else {
1925 			page++;
1926 		}
1927 		__init_single_page(page, pfn, zid, nid);
1928 		nr_pages++;
1929 	}
1930 	return (nr_pages);
1931 }
1932 
1933 /*
1934  * This function is meant to pre-load the iterator for the zone init.
1935  * Specifically it walks through the ranges until we are caught up to the
1936  * first_init_pfn value and exits there. If we never encounter the value we
1937  * return false indicating there are no valid ranges left.
1938  */
1939 static bool __init
1940 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1941 				    unsigned long *spfn, unsigned long *epfn,
1942 				    unsigned long first_init_pfn)
1943 {
1944 	u64 j;
1945 
1946 	/*
1947 	 * Start out by walking through the ranges in this zone that have
1948 	 * already been initialized. We don't need to do anything with them
1949 	 * so we just need to flush them out of the system.
1950 	 */
1951 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1952 		if (*epfn <= first_init_pfn)
1953 			continue;
1954 		if (*spfn < first_init_pfn)
1955 			*spfn = first_init_pfn;
1956 		*i = j;
1957 		return true;
1958 	}
1959 
1960 	return false;
1961 }
1962 
1963 /*
1964  * Initialize and free pages. We do it in two loops: first we initialize
1965  * struct page, then free to buddy allocator, because while we are
1966  * freeing pages we can access pages that are ahead (computing buddy
1967  * page in __free_one_page()).
1968  *
1969  * In order to try and keep some memory in the cache we have the loop
1970  * broken along max page order boundaries. This way we will not cause
1971  * any issues with the buddy page computation.
1972  */
1973 static unsigned long __init
1974 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1975 		       unsigned long *end_pfn)
1976 {
1977 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1978 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1979 	unsigned long nr_pages = 0;
1980 	u64 j = *i;
1981 
1982 	/* First we loop through and initialize the page values */
1983 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1984 		unsigned long t;
1985 
1986 		if (mo_pfn <= *start_pfn)
1987 			break;
1988 
1989 		t = min(mo_pfn, *end_pfn);
1990 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1991 
1992 		if (mo_pfn < *end_pfn) {
1993 			*start_pfn = mo_pfn;
1994 			break;
1995 		}
1996 	}
1997 
1998 	/* Reset values and now loop through freeing pages as needed */
1999 	swap(j, *i);
2000 
2001 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2002 		unsigned long t;
2003 
2004 		if (mo_pfn <= spfn)
2005 			break;
2006 
2007 		t = min(mo_pfn, epfn);
2008 		deferred_free_pages(spfn, t);
2009 
2010 		if (mo_pfn <= epfn)
2011 			break;
2012 	}
2013 
2014 	return nr_pages;
2015 }
2016 
2017 static void __init
2018 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2019 			   void *arg)
2020 {
2021 	unsigned long spfn, epfn;
2022 	struct zone *zone = arg;
2023 	u64 i;
2024 
2025 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2026 
2027 	/*
2028 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2029 	 * can avoid introducing any issues with the buddy allocator.
2030 	 */
2031 	while (spfn < end_pfn) {
2032 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2033 		cond_resched();
2034 	}
2035 }
2036 
2037 /* An arch may override for more concurrency. */
2038 __weak int __init
2039 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2040 {
2041 	return 1;
2042 }
2043 
2044 /* Initialise remaining memory on a node */
2045 static int __init deferred_init_memmap(void *data)
2046 {
2047 	pg_data_t *pgdat = data;
2048 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2049 	unsigned long spfn = 0, epfn = 0;
2050 	unsigned long first_init_pfn, flags;
2051 	unsigned long start = jiffies;
2052 	struct zone *zone;
2053 	int zid, max_threads;
2054 	u64 i;
2055 
2056 	/* Bind memory initialisation thread to a local node if possible */
2057 	if (!cpumask_empty(cpumask))
2058 		set_cpus_allowed_ptr(current, cpumask);
2059 
2060 	pgdat_resize_lock(pgdat, &flags);
2061 	first_init_pfn = pgdat->first_deferred_pfn;
2062 	if (first_init_pfn == ULONG_MAX) {
2063 		pgdat_resize_unlock(pgdat, &flags);
2064 		pgdat_init_report_one_done();
2065 		return 0;
2066 	}
2067 
2068 	/* Sanity check boundaries */
2069 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2070 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2071 	pgdat->first_deferred_pfn = ULONG_MAX;
2072 
2073 	/*
2074 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2075 	 * interrupt thread must allocate this early in boot, zone must be
2076 	 * pre-grown prior to start of deferred page initialization.
2077 	 */
2078 	pgdat_resize_unlock(pgdat, &flags);
2079 
2080 	/* Only the highest zone is deferred so find it */
2081 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2082 		zone = pgdat->node_zones + zid;
2083 		if (first_init_pfn < zone_end_pfn(zone))
2084 			break;
2085 	}
2086 
2087 	/* If the zone is empty somebody else may have cleared out the zone */
2088 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2089 						 first_init_pfn))
2090 		goto zone_empty;
2091 
2092 	max_threads = deferred_page_init_max_threads(cpumask);
2093 
2094 	while (spfn < epfn) {
2095 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2096 		struct padata_mt_job job = {
2097 			.thread_fn   = deferred_init_memmap_chunk,
2098 			.fn_arg      = zone,
2099 			.start       = spfn,
2100 			.size        = epfn_align - spfn,
2101 			.align       = PAGES_PER_SECTION,
2102 			.min_chunk   = PAGES_PER_SECTION,
2103 			.max_threads = max_threads,
2104 		};
2105 
2106 		padata_do_multithreaded(&job);
2107 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2108 						    epfn_align);
2109 	}
2110 zone_empty:
2111 	/* Sanity check that the next zone really is unpopulated */
2112 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2113 
2114 	pr_info("node %d deferred pages initialised in %ums\n",
2115 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2116 
2117 	pgdat_init_report_one_done();
2118 	return 0;
2119 }
2120 
2121 /*
2122  * If this zone has deferred pages, try to grow it by initializing enough
2123  * deferred pages to satisfy the allocation specified by order, rounded up to
2124  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2125  * of SECTION_SIZE bytes by initializing struct pages in increments of
2126  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2127  *
2128  * Return true when zone was grown, otherwise return false. We return true even
2129  * when we grow less than requested, to let the caller decide if there are
2130  * enough pages to satisfy the allocation.
2131  *
2132  * Note: We use noinline because this function is needed only during boot, and
2133  * it is called from a __ref function _deferred_grow_zone. This way we are
2134  * making sure that it is not inlined into permanent text section.
2135  */
2136 static noinline bool __init
2137 deferred_grow_zone(struct zone *zone, unsigned int order)
2138 {
2139 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2140 	pg_data_t *pgdat = zone->zone_pgdat;
2141 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2142 	unsigned long spfn, epfn, flags;
2143 	unsigned long nr_pages = 0;
2144 	u64 i;
2145 
2146 	/* Only the last zone may have deferred pages */
2147 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2148 		return false;
2149 
2150 	pgdat_resize_lock(pgdat, &flags);
2151 
2152 	/*
2153 	 * If someone grew this zone while we were waiting for spinlock, return
2154 	 * true, as there might be enough pages already.
2155 	 */
2156 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2157 		pgdat_resize_unlock(pgdat, &flags);
2158 		return true;
2159 	}
2160 
2161 	/* If the zone is empty somebody else may have cleared out the zone */
2162 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2163 						 first_deferred_pfn)) {
2164 		pgdat->first_deferred_pfn = ULONG_MAX;
2165 		pgdat_resize_unlock(pgdat, &flags);
2166 		/* Retry only once. */
2167 		return first_deferred_pfn != ULONG_MAX;
2168 	}
2169 
2170 	/*
2171 	 * Initialize and free pages in MAX_ORDER sized increments so
2172 	 * that we can avoid introducing any issues with the buddy
2173 	 * allocator.
2174 	 */
2175 	while (spfn < epfn) {
2176 		/* update our first deferred PFN for this section */
2177 		first_deferred_pfn = spfn;
2178 
2179 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2180 		touch_nmi_watchdog();
2181 
2182 		/* We should only stop along section boundaries */
2183 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2184 			continue;
2185 
2186 		/* If our quota has been met we can stop here */
2187 		if (nr_pages >= nr_pages_needed)
2188 			break;
2189 	}
2190 
2191 	pgdat->first_deferred_pfn = spfn;
2192 	pgdat_resize_unlock(pgdat, &flags);
2193 
2194 	return nr_pages > 0;
2195 }
2196 
2197 /*
2198  * deferred_grow_zone() is __init, but it is called from
2199  * get_page_from_freelist() during early boot until deferred_pages permanently
2200  * disables this call. This is why we have refdata wrapper to avoid warning,
2201  * and to ensure that the function body gets unloaded.
2202  */
2203 static bool __ref
2204 _deferred_grow_zone(struct zone *zone, unsigned int order)
2205 {
2206 	return deferred_grow_zone(zone, order);
2207 }
2208 
2209 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2210 
2211 void __init page_alloc_init_late(void)
2212 {
2213 	struct zone *zone;
2214 	int nid;
2215 
2216 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2217 
2218 	/* There will be num_node_state(N_MEMORY) threads */
2219 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2220 	for_each_node_state(nid, N_MEMORY) {
2221 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2222 	}
2223 
2224 	/* Block until all are initialised */
2225 	wait_for_completion(&pgdat_init_all_done_comp);
2226 
2227 	/*
2228 	 * We initialized the rest of the deferred pages.  Permanently disable
2229 	 * on-demand struct page initialization.
2230 	 */
2231 	static_branch_disable(&deferred_pages);
2232 
2233 	/* Reinit limits that are based on free pages after the kernel is up */
2234 	files_maxfiles_init();
2235 #endif
2236 
2237 	buffer_init();
2238 
2239 	/* Discard memblock private memory */
2240 	memblock_discard();
2241 
2242 	for_each_node_state(nid, N_MEMORY)
2243 		shuffle_free_memory(NODE_DATA(nid));
2244 
2245 	for_each_populated_zone(zone)
2246 		set_zone_contiguous(zone);
2247 }
2248 
2249 #ifdef CONFIG_CMA
2250 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2251 void __init init_cma_reserved_pageblock(struct page *page)
2252 {
2253 	unsigned i = pageblock_nr_pages;
2254 	struct page *p = page;
2255 
2256 	do {
2257 		__ClearPageReserved(p);
2258 		set_page_count(p, 0);
2259 	} while (++p, --i);
2260 
2261 	set_pageblock_migratetype(page, MIGRATE_CMA);
2262 
2263 	if (pageblock_order >= MAX_ORDER) {
2264 		i = pageblock_nr_pages;
2265 		p = page;
2266 		do {
2267 			set_page_refcounted(p);
2268 			__free_pages(p, MAX_ORDER - 1);
2269 			p += MAX_ORDER_NR_PAGES;
2270 		} while (i -= MAX_ORDER_NR_PAGES);
2271 	} else {
2272 		set_page_refcounted(page);
2273 		__free_pages(page, pageblock_order);
2274 	}
2275 
2276 	adjust_managed_page_count(page, pageblock_nr_pages);
2277 	page_zone(page)->cma_pages += pageblock_nr_pages;
2278 }
2279 #endif
2280 
2281 /*
2282  * The order of subdivision here is critical for the IO subsystem.
2283  * Please do not alter this order without good reasons and regression
2284  * testing. Specifically, as large blocks of memory are subdivided,
2285  * the order in which smaller blocks are delivered depends on the order
2286  * they're subdivided in this function. This is the primary factor
2287  * influencing the order in which pages are delivered to the IO
2288  * subsystem according to empirical testing, and this is also justified
2289  * by considering the behavior of a buddy system containing a single
2290  * large block of memory acted on by a series of small allocations.
2291  * This behavior is a critical factor in sglist merging's success.
2292  *
2293  * -- nyc
2294  */
2295 static inline void expand(struct zone *zone, struct page *page,
2296 	int low, int high, int migratetype)
2297 {
2298 	unsigned long size = 1 << high;
2299 
2300 	while (high > low) {
2301 		high--;
2302 		size >>= 1;
2303 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2304 
2305 		/*
2306 		 * Mark as guard pages (or page), that will allow to
2307 		 * merge back to allocator when buddy will be freed.
2308 		 * Corresponding page table entries will not be touched,
2309 		 * pages will stay not present in virtual address space
2310 		 */
2311 		if (set_page_guard(zone, &page[size], high, migratetype))
2312 			continue;
2313 
2314 		add_to_free_list(&page[size], zone, high, migratetype);
2315 		set_buddy_order(&page[size], high);
2316 	}
2317 }
2318 
2319 static void check_new_page_bad(struct page *page)
2320 {
2321 	if (unlikely(page->flags & __PG_HWPOISON)) {
2322 		/* Don't complain about hwpoisoned pages */
2323 		page_mapcount_reset(page); /* remove PageBuddy */
2324 		return;
2325 	}
2326 
2327 	bad_page(page,
2328 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2329 }
2330 
2331 /*
2332  * This page is about to be returned from the page allocator
2333  */
2334 static inline int check_new_page(struct page *page)
2335 {
2336 	if (likely(page_expected_state(page,
2337 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2338 		return 0;
2339 
2340 	check_new_page_bad(page);
2341 	return 1;
2342 }
2343 
2344 #ifdef CONFIG_DEBUG_VM
2345 /*
2346  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2347  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2348  * also checked when pcp lists are refilled from the free lists.
2349  */
2350 static inline bool check_pcp_refill(struct page *page)
2351 {
2352 	if (debug_pagealloc_enabled_static())
2353 		return check_new_page(page);
2354 	else
2355 		return false;
2356 }
2357 
2358 static inline bool check_new_pcp(struct page *page)
2359 {
2360 	return check_new_page(page);
2361 }
2362 #else
2363 /*
2364  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2365  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2366  * enabled, they are also checked when being allocated from the pcp lists.
2367  */
2368 static inline bool check_pcp_refill(struct page *page)
2369 {
2370 	return check_new_page(page);
2371 }
2372 static inline bool check_new_pcp(struct page *page)
2373 {
2374 	if (debug_pagealloc_enabled_static())
2375 		return check_new_page(page);
2376 	else
2377 		return false;
2378 }
2379 #endif /* CONFIG_DEBUG_VM */
2380 
2381 static bool check_new_pages(struct page *page, unsigned int order)
2382 {
2383 	int i;
2384 	for (i = 0; i < (1 << order); i++) {
2385 		struct page *p = page + i;
2386 
2387 		if (unlikely(check_new_page(p)))
2388 			return true;
2389 	}
2390 
2391 	return false;
2392 }
2393 
2394 inline void post_alloc_hook(struct page *page, unsigned int order,
2395 				gfp_t gfp_flags)
2396 {
2397 	set_page_private(page, 0);
2398 	set_page_refcounted(page);
2399 
2400 	arch_alloc_page(page, order);
2401 	debug_pagealloc_map_pages(page, 1 << order);
2402 
2403 	/*
2404 	 * Page unpoisoning must happen before memory initialization.
2405 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2406 	 * allocations and the page unpoisoning code will complain.
2407 	 */
2408 	kernel_unpoison_pages(page, 1 << order);
2409 
2410 	/*
2411 	 * As memory initialization might be integrated into KASAN,
2412 	 * kasan_alloc_pages and kernel_init_free_pages must be
2413 	 * kept together to avoid discrepancies in behavior.
2414 	 */
2415 	if (kasan_has_integrated_init()) {
2416 		kasan_alloc_pages(page, order, gfp_flags);
2417 	} else {
2418 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2419 
2420 		kasan_unpoison_pages(page, order, init);
2421 		if (init)
2422 			kernel_init_free_pages(page, 1 << order,
2423 					       gfp_flags & __GFP_ZEROTAGS);
2424 	}
2425 
2426 	set_page_owner(page, order, gfp_flags);
2427 	page_table_check_alloc(page, order);
2428 }
2429 
2430 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2431 							unsigned int alloc_flags)
2432 {
2433 	post_alloc_hook(page, order, gfp_flags);
2434 
2435 	if (order && (gfp_flags & __GFP_COMP))
2436 		prep_compound_page(page, order);
2437 
2438 	/*
2439 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2440 	 * allocate the page. The expectation is that the caller is taking
2441 	 * steps that will free more memory. The caller should avoid the page
2442 	 * being used for !PFMEMALLOC purposes.
2443 	 */
2444 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2445 		set_page_pfmemalloc(page);
2446 	else
2447 		clear_page_pfmemalloc(page);
2448 }
2449 
2450 /*
2451  * Go through the free lists for the given migratetype and remove
2452  * the smallest available page from the freelists
2453  */
2454 static __always_inline
2455 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2456 						int migratetype)
2457 {
2458 	unsigned int current_order;
2459 	struct free_area *area;
2460 	struct page *page;
2461 
2462 	/* Find a page of the appropriate size in the preferred list */
2463 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2464 		area = &(zone->free_area[current_order]);
2465 		page = get_page_from_free_area(area, migratetype);
2466 		if (!page)
2467 			continue;
2468 		del_page_from_free_list(page, zone, current_order);
2469 		expand(zone, page, order, current_order, migratetype);
2470 		set_pcppage_migratetype(page, migratetype);
2471 		return page;
2472 	}
2473 
2474 	return NULL;
2475 }
2476 
2477 
2478 /*
2479  * This array describes the order lists are fallen back to when
2480  * the free lists for the desirable migrate type are depleted
2481  */
2482 static int fallbacks[MIGRATE_TYPES][3] = {
2483 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2484 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2485 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2486 #ifdef CONFIG_CMA
2487 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2488 #endif
2489 #ifdef CONFIG_MEMORY_ISOLATION
2490 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2491 #endif
2492 };
2493 
2494 #ifdef CONFIG_CMA
2495 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2496 					unsigned int order)
2497 {
2498 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2499 }
2500 #else
2501 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2502 					unsigned int order) { return NULL; }
2503 #endif
2504 
2505 /*
2506  * Move the free pages in a range to the freelist tail of the requested type.
2507  * Note that start_page and end_pages are not aligned on a pageblock
2508  * boundary. If alignment is required, use move_freepages_block()
2509  */
2510 static int move_freepages(struct zone *zone,
2511 			  unsigned long start_pfn, unsigned long end_pfn,
2512 			  int migratetype, int *num_movable)
2513 {
2514 	struct page *page;
2515 	unsigned long pfn;
2516 	unsigned int order;
2517 	int pages_moved = 0;
2518 
2519 	for (pfn = start_pfn; pfn <= end_pfn;) {
2520 		page = pfn_to_page(pfn);
2521 		if (!PageBuddy(page)) {
2522 			/*
2523 			 * We assume that pages that could be isolated for
2524 			 * migration are movable. But we don't actually try
2525 			 * isolating, as that would be expensive.
2526 			 */
2527 			if (num_movable &&
2528 					(PageLRU(page) || __PageMovable(page)))
2529 				(*num_movable)++;
2530 			pfn++;
2531 			continue;
2532 		}
2533 
2534 		/* Make sure we are not inadvertently changing nodes */
2535 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2536 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2537 
2538 		order = buddy_order(page);
2539 		move_to_free_list(page, zone, order, migratetype);
2540 		pfn += 1 << order;
2541 		pages_moved += 1 << order;
2542 	}
2543 
2544 	return pages_moved;
2545 }
2546 
2547 int move_freepages_block(struct zone *zone, struct page *page,
2548 				int migratetype, int *num_movable)
2549 {
2550 	unsigned long start_pfn, end_pfn, pfn;
2551 
2552 	if (num_movable)
2553 		*num_movable = 0;
2554 
2555 	pfn = page_to_pfn(page);
2556 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2557 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2558 
2559 	/* Do not cross zone boundaries */
2560 	if (!zone_spans_pfn(zone, start_pfn))
2561 		start_pfn = pfn;
2562 	if (!zone_spans_pfn(zone, end_pfn))
2563 		return 0;
2564 
2565 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2566 								num_movable);
2567 }
2568 
2569 static void change_pageblock_range(struct page *pageblock_page,
2570 					int start_order, int migratetype)
2571 {
2572 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2573 
2574 	while (nr_pageblocks--) {
2575 		set_pageblock_migratetype(pageblock_page, migratetype);
2576 		pageblock_page += pageblock_nr_pages;
2577 	}
2578 }
2579 
2580 /*
2581  * When we are falling back to another migratetype during allocation, try to
2582  * steal extra free pages from the same pageblocks to satisfy further
2583  * allocations, instead of polluting multiple pageblocks.
2584  *
2585  * If we are stealing a relatively large buddy page, it is likely there will
2586  * be more free pages in the pageblock, so try to steal them all. For
2587  * reclaimable and unmovable allocations, we steal regardless of page size,
2588  * as fragmentation caused by those allocations polluting movable pageblocks
2589  * is worse than movable allocations stealing from unmovable and reclaimable
2590  * pageblocks.
2591  */
2592 static bool can_steal_fallback(unsigned int order, int start_mt)
2593 {
2594 	/*
2595 	 * Leaving this order check is intended, although there is
2596 	 * relaxed order check in next check. The reason is that
2597 	 * we can actually steal whole pageblock if this condition met,
2598 	 * but, below check doesn't guarantee it and that is just heuristic
2599 	 * so could be changed anytime.
2600 	 */
2601 	if (order >= pageblock_order)
2602 		return true;
2603 
2604 	if (order >= pageblock_order / 2 ||
2605 		start_mt == MIGRATE_RECLAIMABLE ||
2606 		start_mt == MIGRATE_UNMOVABLE ||
2607 		page_group_by_mobility_disabled)
2608 		return true;
2609 
2610 	return false;
2611 }
2612 
2613 static inline bool boost_watermark(struct zone *zone)
2614 {
2615 	unsigned long max_boost;
2616 
2617 	if (!watermark_boost_factor)
2618 		return false;
2619 	/*
2620 	 * Don't bother in zones that are unlikely to produce results.
2621 	 * On small machines, including kdump capture kernels running
2622 	 * in a small area, boosting the watermark can cause an out of
2623 	 * memory situation immediately.
2624 	 */
2625 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2626 		return false;
2627 
2628 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2629 			watermark_boost_factor, 10000);
2630 
2631 	/*
2632 	 * high watermark may be uninitialised if fragmentation occurs
2633 	 * very early in boot so do not boost. We do not fall
2634 	 * through and boost by pageblock_nr_pages as failing
2635 	 * allocations that early means that reclaim is not going
2636 	 * to help and it may even be impossible to reclaim the
2637 	 * boosted watermark resulting in a hang.
2638 	 */
2639 	if (!max_boost)
2640 		return false;
2641 
2642 	max_boost = max(pageblock_nr_pages, max_boost);
2643 
2644 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2645 		max_boost);
2646 
2647 	return true;
2648 }
2649 
2650 /*
2651  * This function implements actual steal behaviour. If order is large enough,
2652  * we can steal whole pageblock. If not, we first move freepages in this
2653  * pageblock to our migratetype and determine how many already-allocated pages
2654  * are there in the pageblock with a compatible migratetype. If at least half
2655  * of pages are free or compatible, we can change migratetype of the pageblock
2656  * itself, so pages freed in the future will be put on the correct free list.
2657  */
2658 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2659 		unsigned int alloc_flags, int start_type, bool whole_block)
2660 {
2661 	unsigned int current_order = buddy_order(page);
2662 	int free_pages, movable_pages, alike_pages;
2663 	int old_block_type;
2664 
2665 	old_block_type = get_pageblock_migratetype(page);
2666 
2667 	/*
2668 	 * This can happen due to races and we want to prevent broken
2669 	 * highatomic accounting.
2670 	 */
2671 	if (is_migrate_highatomic(old_block_type))
2672 		goto single_page;
2673 
2674 	/* Take ownership for orders >= pageblock_order */
2675 	if (current_order >= pageblock_order) {
2676 		change_pageblock_range(page, current_order, start_type);
2677 		goto single_page;
2678 	}
2679 
2680 	/*
2681 	 * Boost watermarks to increase reclaim pressure to reduce the
2682 	 * likelihood of future fallbacks. Wake kswapd now as the node
2683 	 * may be balanced overall and kswapd will not wake naturally.
2684 	 */
2685 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2686 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2687 
2688 	/* We are not allowed to try stealing from the whole block */
2689 	if (!whole_block)
2690 		goto single_page;
2691 
2692 	free_pages = move_freepages_block(zone, page, start_type,
2693 						&movable_pages);
2694 	/*
2695 	 * Determine how many pages are compatible with our allocation.
2696 	 * For movable allocation, it's the number of movable pages which
2697 	 * we just obtained. For other types it's a bit more tricky.
2698 	 */
2699 	if (start_type == MIGRATE_MOVABLE) {
2700 		alike_pages = movable_pages;
2701 	} else {
2702 		/*
2703 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2704 		 * to MOVABLE pageblock, consider all non-movable pages as
2705 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2706 		 * vice versa, be conservative since we can't distinguish the
2707 		 * exact migratetype of non-movable pages.
2708 		 */
2709 		if (old_block_type == MIGRATE_MOVABLE)
2710 			alike_pages = pageblock_nr_pages
2711 						- (free_pages + movable_pages);
2712 		else
2713 			alike_pages = 0;
2714 	}
2715 
2716 	/* moving whole block can fail due to zone boundary conditions */
2717 	if (!free_pages)
2718 		goto single_page;
2719 
2720 	/*
2721 	 * If a sufficient number of pages in the block are either free or of
2722 	 * comparable migratability as our allocation, claim the whole block.
2723 	 */
2724 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2725 			page_group_by_mobility_disabled)
2726 		set_pageblock_migratetype(page, start_type);
2727 
2728 	return;
2729 
2730 single_page:
2731 	move_to_free_list(page, zone, current_order, start_type);
2732 }
2733 
2734 /*
2735  * Check whether there is a suitable fallback freepage with requested order.
2736  * If only_stealable is true, this function returns fallback_mt only if
2737  * we can steal other freepages all together. This would help to reduce
2738  * fragmentation due to mixed migratetype pages in one pageblock.
2739  */
2740 int find_suitable_fallback(struct free_area *area, unsigned int order,
2741 			int migratetype, bool only_stealable, bool *can_steal)
2742 {
2743 	int i;
2744 	int fallback_mt;
2745 
2746 	if (area->nr_free == 0)
2747 		return -1;
2748 
2749 	*can_steal = false;
2750 	for (i = 0;; i++) {
2751 		fallback_mt = fallbacks[migratetype][i];
2752 		if (fallback_mt == MIGRATE_TYPES)
2753 			break;
2754 
2755 		if (free_area_empty(area, fallback_mt))
2756 			continue;
2757 
2758 		if (can_steal_fallback(order, migratetype))
2759 			*can_steal = true;
2760 
2761 		if (!only_stealable)
2762 			return fallback_mt;
2763 
2764 		if (*can_steal)
2765 			return fallback_mt;
2766 	}
2767 
2768 	return -1;
2769 }
2770 
2771 /*
2772  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2773  * there are no empty page blocks that contain a page with a suitable order
2774  */
2775 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2776 				unsigned int alloc_order)
2777 {
2778 	int mt;
2779 	unsigned long max_managed, flags;
2780 
2781 	/*
2782 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2783 	 * Check is race-prone but harmless.
2784 	 */
2785 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2786 	if (zone->nr_reserved_highatomic >= max_managed)
2787 		return;
2788 
2789 	spin_lock_irqsave(&zone->lock, flags);
2790 
2791 	/* Recheck the nr_reserved_highatomic limit under the lock */
2792 	if (zone->nr_reserved_highatomic >= max_managed)
2793 		goto out_unlock;
2794 
2795 	/* Yoink! */
2796 	mt = get_pageblock_migratetype(page);
2797 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2798 	    && !is_migrate_cma(mt)) {
2799 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2800 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2801 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2802 	}
2803 
2804 out_unlock:
2805 	spin_unlock_irqrestore(&zone->lock, flags);
2806 }
2807 
2808 /*
2809  * Used when an allocation is about to fail under memory pressure. This
2810  * potentially hurts the reliability of high-order allocations when under
2811  * intense memory pressure but failed atomic allocations should be easier
2812  * to recover from than an OOM.
2813  *
2814  * If @force is true, try to unreserve a pageblock even though highatomic
2815  * pageblock is exhausted.
2816  */
2817 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2818 						bool force)
2819 {
2820 	struct zonelist *zonelist = ac->zonelist;
2821 	unsigned long flags;
2822 	struct zoneref *z;
2823 	struct zone *zone;
2824 	struct page *page;
2825 	int order;
2826 	bool ret;
2827 
2828 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2829 								ac->nodemask) {
2830 		/*
2831 		 * Preserve at least one pageblock unless memory pressure
2832 		 * is really high.
2833 		 */
2834 		if (!force && zone->nr_reserved_highatomic <=
2835 					pageblock_nr_pages)
2836 			continue;
2837 
2838 		spin_lock_irqsave(&zone->lock, flags);
2839 		for (order = 0; order < MAX_ORDER; order++) {
2840 			struct free_area *area = &(zone->free_area[order]);
2841 
2842 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2843 			if (!page)
2844 				continue;
2845 
2846 			/*
2847 			 * In page freeing path, migratetype change is racy so
2848 			 * we can counter several free pages in a pageblock
2849 			 * in this loop although we changed the pageblock type
2850 			 * from highatomic to ac->migratetype. So we should
2851 			 * adjust the count once.
2852 			 */
2853 			if (is_migrate_highatomic_page(page)) {
2854 				/*
2855 				 * It should never happen but changes to
2856 				 * locking could inadvertently allow a per-cpu
2857 				 * drain to add pages to MIGRATE_HIGHATOMIC
2858 				 * while unreserving so be safe and watch for
2859 				 * underflows.
2860 				 */
2861 				zone->nr_reserved_highatomic -= min(
2862 						pageblock_nr_pages,
2863 						zone->nr_reserved_highatomic);
2864 			}
2865 
2866 			/*
2867 			 * Convert to ac->migratetype and avoid the normal
2868 			 * pageblock stealing heuristics. Minimally, the caller
2869 			 * is doing the work and needs the pages. More
2870 			 * importantly, if the block was always converted to
2871 			 * MIGRATE_UNMOVABLE or another type then the number
2872 			 * of pageblocks that cannot be completely freed
2873 			 * may increase.
2874 			 */
2875 			set_pageblock_migratetype(page, ac->migratetype);
2876 			ret = move_freepages_block(zone, page, ac->migratetype,
2877 									NULL);
2878 			if (ret) {
2879 				spin_unlock_irqrestore(&zone->lock, flags);
2880 				return ret;
2881 			}
2882 		}
2883 		spin_unlock_irqrestore(&zone->lock, flags);
2884 	}
2885 
2886 	return false;
2887 }
2888 
2889 /*
2890  * Try finding a free buddy page on the fallback list and put it on the free
2891  * list of requested migratetype, possibly along with other pages from the same
2892  * block, depending on fragmentation avoidance heuristics. Returns true if
2893  * fallback was found so that __rmqueue_smallest() can grab it.
2894  *
2895  * The use of signed ints for order and current_order is a deliberate
2896  * deviation from the rest of this file, to make the for loop
2897  * condition simpler.
2898  */
2899 static __always_inline bool
2900 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2901 						unsigned int alloc_flags)
2902 {
2903 	struct free_area *area;
2904 	int current_order;
2905 	int min_order = order;
2906 	struct page *page;
2907 	int fallback_mt;
2908 	bool can_steal;
2909 
2910 	/*
2911 	 * Do not steal pages from freelists belonging to other pageblocks
2912 	 * i.e. orders < pageblock_order. If there are no local zones free,
2913 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2914 	 */
2915 	if (alloc_flags & ALLOC_NOFRAGMENT)
2916 		min_order = pageblock_order;
2917 
2918 	/*
2919 	 * Find the largest available free page in the other list. This roughly
2920 	 * approximates finding the pageblock with the most free pages, which
2921 	 * would be too costly to do exactly.
2922 	 */
2923 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2924 				--current_order) {
2925 		area = &(zone->free_area[current_order]);
2926 		fallback_mt = find_suitable_fallback(area, current_order,
2927 				start_migratetype, false, &can_steal);
2928 		if (fallback_mt == -1)
2929 			continue;
2930 
2931 		/*
2932 		 * We cannot steal all free pages from the pageblock and the
2933 		 * requested migratetype is movable. In that case it's better to
2934 		 * steal and split the smallest available page instead of the
2935 		 * largest available page, because even if the next movable
2936 		 * allocation falls back into a different pageblock than this
2937 		 * one, it won't cause permanent fragmentation.
2938 		 */
2939 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2940 					&& current_order > order)
2941 			goto find_smallest;
2942 
2943 		goto do_steal;
2944 	}
2945 
2946 	return false;
2947 
2948 find_smallest:
2949 	for (current_order = order; current_order < MAX_ORDER;
2950 							current_order++) {
2951 		area = &(zone->free_area[current_order]);
2952 		fallback_mt = find_suitable_fallback(area, current_order,
2953 				start_migratetype, false, &can_steal);
2954 		if (fallback_mt != -1)
2955 			break;
2956 	}
2957 
2958 	/*
2959 	 * This should not happen - we already found a suitable fallback
2960 	 * when looking for the largest page.
2961 	 */
2962 	VM_BUG_ON(current_order == MAX_ORDER);
2963 
2964 do_steal:
2965 	page = get_page_from_free_area(area, fallback_mt);
2966 
2967 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2968 								can_steal);
2969 
2970 	trace_mm_page_alloc_extfrag(page, order, current_order,
2971 		start_migratetype, fallback_mt);
2972 
2973 	return true;
2974 
2975 }
2976 
2977 /*
2978  * Do the hard work of removing an element from the buddy allocator.
2979  * Call me with the zone->lock already held.
2980  */
2981 static __always_inline struct page *
2982 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2983 						unsigned int alloc_flags)
2984 {
2985 	struct page *page;
2986 
2987 	if (IS_ENABLED(CONFIG_CMA)) {
2988 		/*
2989 		 * Balance movable allocations between regular and CMA areas by
2990 		 * allocating from CMA when over half of the zone's free memory
2991 		 * is in the CMA area.
2992 		 */
2993 		if (alloc_flags & ALLOC_CMA &&
2994 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2995 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2996 			page = __rmqueue_cma_fallback(zone, order);
2997 			if (page)
2998 				goto out;
2999 		}
3000 	}
3001 retry:
3002 	page = __rmqueue_smallest(zone, order, migratetype);
3003 	if (unlikely(!page)) {
3004 		if (alloc_flags & ALLOC_CMA)
3005 			page = __rmqueue_cma_fallback(zone, order);
3006 
3007 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3008 								alloc_flags))
3009 			goto retry;
3010 	}
3011 out:
3012 	if (page)
3013 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3014 	return page;
3015 }
3016 
3017 /*
3018  * Obtain a specified number of elements from the buddy allocator, all under
3019  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3020  * Returns the number of new pages which were placed at *list.
3021  */
3022 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3023 			unsigned long count, struct list_head *list,
3024 			int migratetype, unsigned int alloc_flags)
3025 {
3026 	int i, allocated = 0;
3027 
3028 	/*
3029 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3030 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3031 	 */
3032 	spin_lock(&zone->lock);
3033 	for (i = 0; i < count; ++i) {
3034 		struct page *page = __rmqueue(zone, order, migratetype,
3035 								alloc_flags);
3036 		if (unlikely(page == NULL))
3037 			break;
3038 
3039 		if (unlikely(check_pcp_refill(page)))
3040 			continue;
3041 
3042 		/*
3043 		 * Split buddy pages returned by expand() are received here in
3044 		 * physical page order. The page is added to the tail of
3045 		 * caller's list. From the callers perspective, the linked list
3046 		 * is ordered by page number under some conditions. This is
3047 		 * useful for IO devices that can forward direction from the
3048 		 * head, thus also in the physical page order. This is useful
3049 		 * for IO devices that can merge IO requests if the physical
3050 		 * pages are ordered properly.
3051 		 */
3052 		list_add_tail(&page->lru, list);
3053 		allocated++;
3054 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3055 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3056 					      -(1 << order));
3057 	}
3058 
3059 	/*
3060 	 * i pages were removed from the buddy list even if some leak due
3061 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3062 	 * on i. Do not confuse with 'allocated' which is the number of
3063 	 * pages added to the pcp list.
3064 	 */
3065 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3066 	spin_unlock(&zone->lock);
3067 	return allocated;
3068 }
3069 
3070 #ifdef CONFIG_NUMA
3071 /*
3072  * Called from the vmstat counter updater to drain pagesets of this
3073  * currently executing processor on remote nodes after they have
3074  * expired.
3075  *
3076  * Note that this function must be called with the thread pinned to
3077  * a single processor.
3078  */
3079 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3080 {
3081 	unsigned long flags;
3082 	int to_drain, batch;
3083 
3084 	local_lock_irqsave(&pagesets.lock, flags);
3085 	batch = READ_ONCE(pcp->batch);
3086 	to_drain = min(pcp->count, batch);
3087 	if (to_drain > 0)
3088 		free_pcppages_bulk(zone, to_drain, pcp);
3089 	local_unlock_irqrestore(&pagesets.lock, flags);
3090 }
3091 #endif
3092 
3093 /*
3094  * Drain pcplists of the indicated processor and zone.
3095  *
3096  * The processor must either be the current processor and the
3097  * thread pinned to the current processor or a processor that
3098  * is not online.
3099  */
3100 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3101 {
3102 	unsigned long flags;
3103 	struct per_cpu_pages *pcp;
3104 
3105 	local_lock_irqsave(&pagesets.lock, flags);
3106 
3107 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3108 	if (pcp->count)
3109 		free_pcppages_bulk(zone, pcp->count, pcp);
3110 
3111 	local_unlock_irqrestore(&pagesets.lock, flags);
3112 }
3113 
3114 /*
3115  * Drain pcplists of all zones on the indicated processor.
3116  *
3117  * The processor must either be the current processor and the
3118  * thread pinned to the current processor or a processor that
3119  * is not online.
3120  */
3121 static void drain_pages(unsigned int cpu)
3122 {
3123 	struct zone *zone;
3124 
3125 	for_each_populated_zone(zone) {
3126 		drain_pages_zone(cpu, zone);
3127 	}
3128 }
3129 
3130 /*
3131  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3132  *
3133  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3134  * the single zone's pages.
3135  */
3136 void drain_local_pages(struct zone *zone)
3137 {
3138 	int cpu = smp_processor_id();
3139 
3140 	if (zone)
3141 		drain_pages_zone(cpu, zone);
3142 	else
3143 		drain_pages(cpu);
3144 }
3145 
3146 static void drain_local_pages_wq(struct work_struct *work)
3147 {
3148 	struct pcpu_drain *drain;
3149 
3150 	drain = container_of(work, struct pcpu_drain, work);
3151 
3152 	/*
3153 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3154 	 * we can race with cpu offline when the WQ can move this from
3155 	 * a cpu pinned worker to an unbound one. We can operate on a different
3156 	 * cpu which is alright but we also have to make sure to not move to
3157 	 * a different one.
3158 	 */
3159 	migrate_disable();
3160 	drain_local_pages(drain->zone);
3161 	migrate_enable();
3162 }
3163 
3164 /*
3165  * The implementation of drain_all_pages(), exposing an extra parameter to
3166  * drain on all cpus.
3167  *
3168  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3169  * not empty. The check for non-emptiness can however race with a free to
3170  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3171  * that need the guarantee that every CPU has drained can disable the
3172  * optimizing racy check.
3173  */
3174 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3175 {
3176 	int cpu;
3177 
3178 	/*
3179 	 * Allocate in the BSS so we won't require allocation in
3180 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3181 	 */
3182 	static cpumask_t cpus_with_pcps;
3183 
3184 	/*
3185 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3186 	 * initialized.
3187 	 */
3188 	if (WARN_ON_ONCE(!mm_percpu_wq))
3189 		return;
3190 
3191 	/*
3192 	 * Do not drain if one is already in progress unless it's specific to
3193 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3194 	 * the drain to be complete when the call returns.
3195 	 */
3196 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3197 		if (!zone)
3198 			return;
3199 		mutex_lock(&pcpu_drain_mutex);
3200 	}
3201 
3202 	/*
3203 	 * We don't care about racing with CPU hotplug event
3204 	 * as offline notification will cause the notified
3205 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3206 	 * disables preemption as part of its processing
3207 	 */
3208 	for_each_online_cpu(cpu) {
3209 		struct per_cpu_pages *pcp;
3210 		struct zone *z;
3211 		bool has_pcps = false;
3212 
3213 		if (force_all_cpus) {
3214 			/*
3215 			 * The pcp.count check is racy, some callers need a
3216 			 * guarantee that no cpu is missed.
3217 			 */
3218 			has_pcps = true;
3219 		} else if (zone) {
3220 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3221 			if (pcp->count)
3222 				has_pcps = true;
3223 		} else {
3224 			for_each_populated_zone(z) {
3225 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3226 				if (pcp->count) {
3227 					has_pcps = true;
3228 					break;
3229 				}
3230 			}
3231 		}
3232 
3233 		if (has_pcps)
3234 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3235 		else
3236 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3237 	}
3238 
3239 	for_each_cpu(cpu, &cpus_with_pcps) {
3240 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3241 
3242 		drain->zone = zone;
3243 		INIT_WORK(&drain->work, drain_local_pages_wq);
3244 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3245 	}
3246 	for_each_cpu(cpu, &cpus_with_pcps)
3247 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3248 
3249 	mutex_unlock(&pcpu_drain_mutex);
3250 }
3251 
3252 /*
3253  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3254  *
3255  * When zone parameter is non-NULL, spill just the single zone's pages.
3256  *
3257  * Note that this can be extremely slow as the draining happens in a workqueue.
3258  */
3259 void drain_all_pages(struct zone *zone)
3260 {
3261 	__drain_all_pages(zone, false);
3262 }
3263 
3264 #ifdef CONFIG_HIBERNATION
3265 
3266 /*
3267  * Touch the watchdog for every WD_PAGE_COUNT pages.
3268  */
3269 #define WD_PAGE_COUNT	(128*1024)
3270 
3271 void mark_free_pages(struct zone *zone)
3272 {
3273 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3274 	unsigned long flags;
3275 	unsigned int order, t;
3276 	struct page *page;
3277 
3278 	if (zone_is_empty(zone))
3279 		return;
3280 
3281 	spin_lock_irqsave(&zone->lock, flags);
3282 
3283 	max_zone_pfn = zone_end_pfn(zone);
3284 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3285 		if (pfn_valid(pfn)) {
3286 			page = pfn_to_page(pfn);
3287 
3288 			if (!--page_count) {
3289 				touch_nmi_watchdog();
3290 				page_count = WD_PAGE_COUNT;
3291 			}
3292 
3293 			if (page_zone(page) != zone)
3294 				continue;
3295 
3296 			if (!swsusp_page_is_forbidden(page))
3297 				swsusp_unset_page_free(page);
3298 		}
3299 
3300 	for_each_migratetype_order(order, t) {
3301 		list_for_each_entry(page,
3302 				&zone->free_area[order].free_list[t], lru) {
3303 			unsigned long i;
3304 
3305 			pfn = page_to_pfn(page);
3306 			for (i = 0; i < (1UL << order); i++) {
3307 				if (!--page_count) {
3308 					touch_nmi_watchdog();
3309 					page_count = WD_PAGE_COUNT;
3310 				}
3311 				swsusp_set_page_free(pfn_to_page(pfn + i));
3312 			}
3313 		}
3314 	}
3315 	spin_unlock_irqrestore(&zone->lock, flags);
3316 }
3317 #endif /* CONFIG_PM */
3318 
3319 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3320 							unsigned int order)
3321 {
3322 	int migratetype;
3323 
3324 	if (!free_pcp_prepare(page, order))
3325 		return false;
3326 
3327 	migratetype = get_pfnblock_migratetype(page, pfn);
3328 	set_pcppage_migratetype(page, migratetype);
3329 	return true;
3330 }
3331 
3332 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3333 {
3334 	int min_nr_free, max_nr_free;
3335 
3336 	/* Check for PCP disabled or boot pageset */
3337 	if (unlikely(high < batch))
3338 		return 1;
3339 
3340 	/* Leave at least pcp->batch pages on the list */
3341 	min_nr_free = batch;
3342 	max_nr_free = high - batch;
3343 
3344 	/*
3345 	 * Double the number of pages freed each time there is subsequent
3346 	 * freeing of pages without any allocation.
3347 	 */
3348 	batch <<= pcp->free_factor;
3349 	if (batch < max_nr_free)
3350 		pcp->free_factor++;
3351 	batch = clamp(batch, min_nr_free, max_nr_free);
3352 
3353 	return batch;
3354 }
3355 
3356 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3357 {
3358 	int high = READ_ONCE(pcp->high);
3359 
3360 	if (unlikely(!high))
3361 		return 0;
3362 
3363 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3364 		return high;
3365 
3366 	/*
3367 	 * If reclaim is active, limit the number of pages that can be
3368 	 * stored on pcp lists
3369 	 */
3370 	return min(READ_ONCE(pcp->batch) << 2, high);
3371 }
3372 
3373 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3374 				   int migratetype, unsigned int order)
3375 {
3376 	struct zone *zone = page_zone(page);
3377 	struct per_cpu_pages *pcp;
3378 	int high;
3379 	int pindex;
3380 
3381 	__count_vm_event(PGFREE);
3382 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3383 	pindex = order_to_pindex(migratetype, order);
3384 	list_add(&page->lru, &pcp->lists[pindex]);
3385 	pcp->count += 1 << order;
3386 	high = nr_pcp_high(pcp, zone);
3387 	if (pcp->count >= high) {
3388 		int batch = READ_ONCE(pcp->batch);
3389 
3390 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3391 	}
3392 }
3393 
3394 /*
3395  * Free a pcp page
3396  */
3397 void free_unref_page(struct page *page, unsigned int order)
3398 {
3399 	unsigned long flags;
3400 	unsigned long pfn = page_to_pfn(page);
3401 	int migratetype;
3402 
3403 	if (!free_unref_page_prepare(page, pfn, order))
3404 		return;
3405 
3406 	/*
3407 	 * We only track unmovable, reclaimable and movable on pcp lists.
3408 	 * Place ISOLATE pages on the isolated list because they are being
3409 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3410 	 * areas back if necessary. Otherwise, we may have to free
3411 	 * excessively into the page allocator
3412 	 */
3413 	migratetype = get_pcppage_migratetype(page);
3414 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3415 		if (unlikely(is_migrate_isolate(migratetype))) {
3416 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3417 			return;
3418 		}
3419 		migratetype = MIGRATE_MOVABLE;
3420 	}
3421 
3422 	local_lock_irqsave(&pagesets.lock, flags);
3423 	free_unref_page_commit(page, pfn, migratetype, order);
3424 	local_unlock_irqrestore(&pagesets.lock, flags);
3425 }
3426 
3427 /*
3428  * Free a list of 0-order pages
3429  */
3430 void free_unref_page_list(struct list_head *list)
3431 {
3432 	struct page *page, *next;
3433 	unsigned long flags, pfn;
3434 	int batch_count = 0;
3435 	int migratetype;
3436 
3437 	/* Prepare pages for freeing */
3438 	list_for_each_entry_safe(page, next, list, lru) {
3439 		pfn = page_to_pfn(page);
3440 		if (!free_unref_page_prepare(page, pfn, 0)) {
3441 			list_del(&page->lru);
3442 			continue;
3443 		}
3444 
3445 		/*
3446 		 * Free isolated pages directly to the allocator, see
3447 		 * comment in free_unref_page.
3448 		 */
3449 		migratetype = get_pcppage_migratetype(page);
3450 		if (unlikely(is_migrate_isolate(migratetype))) {
3451 			list_del(&page->lru);
3452 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3453 			continue;
3454 		}
3455 
3456 		set_page_private(page, pfn);
3457 	}
3458 
3459 	local_lock_irqsave(&pagesets.lock, flags);
3460 	list_for_each_entry_safe(page, next, list, lru) {
3461 		pfn = page_private(page);
3462 		set_page_private(page, 0);
3463 
3464 		/*
3465 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3466 		 * to the MIGRATE_MOVABLE pcp list.
3467 		 */
3468 		migratetype = get_pcppage_migratetype(page);
3469 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3470 			migratetype = MIGRATE_MOVABLE;
3471 
3472 		trace_mm_page_free_batched(page);
3473 		free_unref_page_commit(page, pfn, migratetype, 0);
3474 
3475 		/*
3476 		 * Guard against excessive IRQ disabled times when we get
3477 		 * a large list of pages to free.
3478 		 */
3479 		if (++batch_count == SWAP_CLUSTER_MAX) {
3480 			local_unlock_irqrestore(&pagesets.lock, flags);
3481 			batch_count = 0;
3482 			local_lock_irqsave(&pagesets.lock, flags);
3483 		}
3484 	}
3485 	local_unlock_irqrestore(&pagesets.lock, flags);
3486 }
3487 
3488 /*
3489  * split_page takes a non-compound higher-order page, and splits it into
3490  * n (1<<order) sub-pages: page[0..n]
3491  * Each sub-page must be freed individually.
3492  *
3493  * Note: this is probably too low level an operation for use in drivers.
3494  * Please consult with lkml before using this in your driver.
3495  */
3496 void split_page(struct page *page, unsigned int order)
3497 {
3498 	int i;
3499 
3500 	VM_BUG_ON_PAGE(PageCompound(page), page);
3501 	VM_BUG_ON_PAGE(!page_count(page), page);
3502 
3503 	for (i = 1; i < (1 << order); i++)
3504 		set_page_refcounted(page + i);
3505 	split_page_owner(page, 1 << order);
3506 	split_page_memcg(page, 1 << order);
3507 }
3508 EXPORT_SYMBOL_GPL(split_page);
3509 
3510 int __isolate_free_page(struct page *page, unsigned int order)
3511 {
3512 	unsigned long watermark;
3513 	struct zone *zone;
3514 	int mt;
3515 
3516 	BUG_ON(!PageBuddy(page));
3517 
3518 	zone = page_zone(page);
3519 	mt = get_pageblock_migratetype(page);
3520 
3521 	if (!is_migrate_isolate(mt)) {
3522 		/*
3523 		 * Obey watermarks as if the page was being allocated. We can
3524 		 * emulate a high-order watermark check with a raised order-0
3525 		 * watermark, because we already know our high-order page
3526 		 * exists.
3527 		 */
3528 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3529 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3530 			return 0;
3531 
3532 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3533 	}
3534 
3535 	/* Remove page from free list */
3536 
3537 	del_page_from_free_list(page, zone, order);
3538 
3539 	/*
3540 	 * Set the pageblock if the isolated page is at least half of a
3541 	 * pageblock
3542 	 */
3543 	if (order >= pageblock_order - 1) {
3544 		struct page *endpage = page + (1 << order) - 1;
3545 		for (; page < endpage; page += pageblock_nr_pages) {
3546 			int mt = get_pageblock_migratetype(page);
3547 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3548 			    && !is_migrate_highatomic(mt))
3549 				set_pageblock_migratetype(page,
3550 							  MIGRATE_MOVABLE);
3551 		}
3552 	}
3553 
3554 
3555 	return 1UL << order;
3556 }
3557 
3558 /**
3559  * __putback_isolated_page - Return a now-isolated page back where we got it
3560  * @page: Page that was isolated
3561  * @order: Order of the isolated page
3562  * @mt: The page's pageblock's migratetype
3563  *
3564  * This function is meant to return a page pulled from the free lists via
3565  * __isolate_free_page back to the free lists they were pulled from.
3566  */
3567 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3568 {
3569 	struct zone *zone = page_zone(page);
3570 
3571 	/* zone lock should be held when this function is called */
3572 	lockdep_assert_held(&zone->lock);
3573 
3574 	/* Return isolated page to tail of freelist. */
3575 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3576 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3577 }
3578 
3579 /*
3580  * Update NUMA hit/miss statistics
3581  *
3582  * Must be called with interrupts disabled.
3583  */
3584 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3585 				   long nr_account)
3586 {
3587 #ifdef CONFIG_NUMA
3588 	enum numa_stat_item local_stat = NUMA_LOCAL;
3589 
3590 	/* skip numa counters update if numa stats is disabled */
3591 	if (!static_branch_likely(&vm_numa_stat_key))
3592 		return;
3593 
3594 	if (zone_to_nid(z) != numa_node_id())
3595 		local_stat = NUMA_OTHER;
3596 
3597 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3598 		__count_numa_events(z, NUMA_HIT, nr_account);
3599 	else {
3600 		__count_numa_events(z, NUMA_MISS, nr_account);
3601 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3602 	}
3603 	__count_numa_events(z, local_stat, nr_account);
3604 #endif
3605 }
3606 
3607 /* Remove page from the per-cpu list, caller must protect the list */
3608 static inline
3609 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3610 			int migratetype,
3611 			unsigned int alloc_flags,
3612 			struct per_cpu_pages *pcp,
3613 			struct list_head *list)
3614 {
3615 	struct page *page;
3616 
3617 	do {
3618 		if (list_empty(list)) {
3619 			int batch = READ_ONCE(pcp->batch);
3620 			int alloced;
3621 
3622 			/*
3623 			 * Scale batch relative to order if batch implies
3624 			 * free pages can be stored on the PCP. Batch can
3625 			 * be 1 for small zones or for boot pagesets which
3626 			 * should never store free pages as the pages may
3627 			 * belong to arbitrary zones.
3628 			 */
3629 			if (batch > 1)
3630 				batch = max(batch >> order, 2);
3631 			alloced = rmqueue_bulk(zone, order,
3632 					batch, list,
3633 					migratetype, alloc_flags);
3634 
3635 			pcp->count += alloced << order;
3636 			if (unlikely(list_empty(list)))
3637 				return NULL;
3638 		}
3639 
3640 		page = list_first_entry(list, struct page, lru);
3641 		list_del(&page->lru);
3642 		pcp->count -= 1 << order;
3643 	} while (check_new_pcp(page));
3644 
3645 	return page;
3646 }
3647 
3648 /* Lock and remove page from the per-cpu list */
3649 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3650 			struct zone *zone, unsigned int order,
3651 			gfp_t gfp_flags, int migratetype,
3652 			unsigned int alloc_flags)
3653 {
3654 	struct per_cpu_pages *pcp;
3655 	struct list_head *list;
3656 	struct page *page;
3657 	unsigned long flags;
3658 
3659 	local_lock_irqsave(&pagesets.lock, flags);
3660 
3661 	/*
3662 	 * On allocation, reduce the number of pages that are batch freed.
3663 	 * See nr_pcp_free() where free_factor is increased for subsequent
3664 	 * frees.
3665 	 */
3666 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3667 	pcp->free_factor >>= 1;
3668 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3669 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3670 	local_unlock_irqrestore(&pagesets.lock, flags);
3671 	if (page) {
3672 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3673 		zone_statistics(preferred_zone, zone, 1);
3674 	}
3675 	return page;
3676 }
3677 
3678 /*
3679  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3680  */
3681 static inline
3682 struct page *rmqueue(struct zone *preferred_zone,
3683 			struct zone *zone, unsigned int order,
3684 			gfp_t gfp_flags, unsigned int alloc_flags,
3685 			int migratetype)
3686 {
3687 	unsigned long flags;
3688 	struct page *page;
3689 
3690 	if (likely(pcp_allowed_order(order))) {
3691 		/*
3692 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3693 		 * we need to skip it when CMA area isn't allowed.
3694 		 */
3695 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3696 				migratetype != MIGRATE_MOVABLE) {
3697 			page = rmqueue_pcplist(preferred_zone, zone, order,
3698 					gfp_flags, migratetype, alloc_flags);
3699 			goto out;
3700 		}
3701 	}
3702 
3703 	/*
3704 	 * We most definitely don't want callers attempting to
3705 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3706 	 */
3707 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3708 	spin_lock_irqsave(&zone->lock, flags);
3709 
3710 	do {
3711 		page = NULL;
3712 		/*
3713 		 * order-0 request can reach here when the pcplist is skipped
3714 		 * due to non-CMA allocation context. HIGHATOMIC area is
3715 		 * reserved for high-order atomic allocation, so order-0
3716 		 * request should skip it.
3717 		 */
3718 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3719 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3720 			if (page)
3721 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3722 		}
3723 		if (!page)
3724 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3725 	} while (page && check_new_pages(page, order));
3726 	if (!page)
3727 		goto failed;
3728 
3729 	__mod_zone_freepage_state(zone, -(1 << order),
3730 				  get_pcppage_migratetype(page));
3731 	spin_unlock_irqrestore(&zone->lock, flags);
3732 
3733 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3734 	zone_statistics(preferred_zone, zone, 1);
3735 
3736 out:
3737 	/* Separate test+clear to avoid unnecessary atomics */
3738 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3739 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3740 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3741 	}
3742 
3743 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3744 	return page;
3745 
3746 failed:
3747 	spin_unlock_irqrestore(&zone->lock, flags);
3748 	return NULL;
3749 }
3750 
3751 #ifdef CONFIG_FAIL_PAGE_ALLOC
3752 
3753 static struct {
3754 	struct fault_attr attr;
3755 
3756 	bool ignore_gfp_highmem;
3757 	bool ignore_gfp_reclaim;
3758 	u32 min_order;
3759 } fail_page_alloc = {
3760 	.attr = FAULT_ATTR_INITIALIZER,
3761 	.ignore_gfp_reclaim = true,
3762 	.ignore_gfp_highmem = true,
3763 	.min_order = 1,
3764 };
3765 
3766 static int __init setup_fail_page_alloc(char *str)
3767 {
3768 	return setup_fault_attr(&fail_page_alloc.attr, str);
3769 }
3770 __setup("fail_page_alloc=", setup_fail_page_alloc);
3771 
3772 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3773 {
3774 	if (order < fail_page_alloc.min_order)
3775 		return false;
3776 	if (gfp_mask & __GFP_NOFAIL)
3777 		return false;
3778 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3779 		return false;
3780 	if (fail_page_alloc.ignore_gfp_reclaim &&
3781 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3782 		return false;
3783 
3784 	return should_fail(&fail_page_alloc.attr, 1 << order);
3785 }
3786 
3787 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3788 
3789 static int __init fail_page_alloc_debugfs(void)
3790 {
3791 	umode_t mode = S_IFREG | 0600;
3792 	struct dentry *dir;
3793 
3794 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3795 					&fail_page_alloc.attr);
3796 
3797 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3798 			    &fail_page_alloc.ignore_gfp_reclaim);
3799 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3800 			    &fail_page_alloc.ignore_gfp_highmem);
3801 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3802 
3803 	return 0;
3804 }
3805 
3806 late_initcall(fail_page_alloc_debugfs);
3807 
3808 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3809 
3810 #else /* CONFIG_FAIL_PAGE_ALLOC */
3811 
3812 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3813 {
3814 	return false;
3815 }
3816 
3817 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3818 
3819 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3820 {
3821 	return __should_fail_alloc_page(gfp_mask, order);
3822 }
3823 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3824 
3825 static inline long __zone_watermark_unusable_free(struct zone *z,
3826 				unsigned int order, unsigned int alloc_flags)
3827 {
3828 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3829 	long unusable_free = (1 << order) - 1;
3830 
3831 	/*
3832 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3833 	 * the high-atomic reserves. This will over-estimate the size of the
3834 	 * atomic reserve but it avoids a search.
3835 	 */
3836 	if (likely(!alloc_harder))
3837 		unusable_free += z->nr_reserved_highatomic;
3838 
3839 #ifdef CONFIG_CMA
3840 	/* If allocation can't use CMA areas don't use free CMA pages */
3841 	if (!(alloc_flags & ALLOC_CMA))
3842 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3843 #endif
3844 
3845 	return unusable_free;
3846 }
3847 
3848 /*
3849  * Return true if free base pages are above 'mark'. For high-order checks it
3850  * will return true of the order-0 watermark is reached and there is at least
3851  * one free page of a suitable size. Checking now avoids taking the zone lock
3852  * to check in the allocation paths if no pages are free.
3853  */
3854 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3855 			 int highest_zoneidx, unsigned int alloc_flags,
3856 			 long free_pages)
3857 {
3858 	long min = mark;
3859 	int o;
3860 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3861 
3862 	/* free_pages may go negative - that's OK */
3863 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3864 
3865 	if (alloc_flags & ALLOC_HIGH)
3866 		min -= min / 2;
3867 
3868 	if (unlikely(alloc_harder)) {
3869 		/*
3870 		 * OOM victims can try even harder than normal ALLOC_HARDER
3871 		 * users on the grounds that it's definitely going to be in
3872 		 * the exit path shortly and free memory. Any allocation it
3873 		 * makes during the free path will be small and short-lived.
3874 		 */
3875 		if (alloc_flags & ALLOC_OOM)
3876 			min -= min / 2;
3877 		else
3878 			min -= min / 4;
3879 	}
3880 
3881 	/*
3882 	 * Check watermarks for an order-0 allocation request. If these
3883 	 * are not met, then a high-order request also cannot go ahead
3884 	 * even if a suitable page happened to be free.
3885 	 */
3886 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3887 		return false;
3888 
3889 	/* If this is an order-0 request then the watermark is fine */
3890 	if (!order)
3891 		return true;
3892 
3893 	/* For a high-order request, check at least one suitable page is free */
3894 	for (o = order; o < MAX_ORDER; o++) {
3895 		struct free_area *area = &z->free_area[o];
3896 		int mt;
3897 
3898 		if (!area->nr_free)
3899 			continue;
3900 
3901 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3902 			if (!free_area_empty(area, mt))
3903 				return true;
3904 		}
3905 
3906 #ifdef CONFIG_CMA
3907 		if ((alloc_flags & ALLOC_CMA) &&
3908 		    !free_area_empty(area, MIGRATE_CMA)) {
3909 			return true;
3910 		}
3911 #endif
3912 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3913 			return true;
3914 	}
3915 	return false;
3916 }
3917 
3918 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3919 		      int highest_zoneidx, unsigned int alloc_flags)
3920 {
3921 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3922 					zone_page_state(z, NR_FREE_PAGES));
3923 }
3924 
3925 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3926 				unsigned long mark, int highest_zoneidx,
3927 				unsigned int alloc_flags, gfp_t gfp_mask)
3928 {
3929 	long free_pages;
3930 
3931 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3932 
3933 	/*
3934 	 * Fast check for order-0 only. If this fails then the reserves
3935 	 * need to be calculated.
3936 	 */
3937 	if (!order) {
3938 		long fast_free;
3939 
3940 		fast_free = free_pages;
3941 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3942 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3943 			return true;
3944 	}
3945 
3946 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3947 					free_pages))
3948 		return true;
3949 	/*
3950 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3951 	 * when checking the min watermark. The min watermark is the
3952 	 * point where boosting is ignored so that kswapd is woken up
3953 	 * when below the low watermark.
3954 	 */
3955 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3956 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3957 		mark = z->_watermark[WMARK_MIN];
3958 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3959 					alloc_flags, free_pages);
3960 	}
3961 
3962 	return false;
3963 }
3964 
3965 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3966 			unsigned long mark, int highest_zoneidx)
3967 {
3968 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3969 
3970 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3971 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3972 
3973 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3974 								free_pages);
3975 }
3976 
3977 #ifdef CONFIG_NUMA
3978 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3979 
3980 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3981 {
3982 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3983 				node_reclaim_distance;
3984 }
3985 #else	/* CONFIG_NUMA */
3986 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3987 {
3988 	return true;
3989 }
3990 #endif	/* CONFIG_NUMA */
3991 
3992 /*
3993  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3994  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3995  * premature use of a lower zone may cause lowmem pressure problems that
3996  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3997  * probably too small. It only makes sense to spread allocations to avoid
3998  * fragmentation between the Normal and DMA32 zones.
3999  */
4000 static inline unsigned int
4001 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4002 {
4003 	unsigned int alloc_flags;
4004 
4005 	/*
4006 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4007 	 * to save a branch.
4008 	 */
4009 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4010 
4011 #ifdef CONFIG_ZONE_DMA32
4012 	if (!zone)
4013 		return alloc_flags;
4014 
4015 	if (zone_idx(zone) != ZONE_NORMAL)
4016 		return alloc_flags;
4017 
4018 	/*
4019 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4020 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4021 	 * on UMA that if Normal is populated then so is DMA32.
4022 	 */
4023 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4024 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4025 		return alloc_flags;
4026 
4027 	alloc_flags |= ALLOC_NOFRAGMENT;
4028 #endif /* CONFIG_ZONE_DMA32 */
4029 	return alloc_flags;
4030 }
4031 
4032 /* Must be called after current_gfp_context() which can change gfp_mask */
4033 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4034 						  unsigned int alloc_flags)
4035 {
4036 #ifdef CONFIG_CMA
4037 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4038 		alloc_flags |= ALLOC_CMA;
4039 #endif
4040 	return alloc_flags;
4041 }
4042 
4043 /*
4044  * get_page_from_freelist goes through the zonelist trying to allocate
4045  * a page.
4046  */
4047 static struct page *
4048 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4049 						const struct alloc_context *ac)
4050 {
4051 	struct zoneref *z;
4052 	struct zone *zone;
4053 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4054 	bool no_fallback;
4055 
4056 retry:
4057 	/*
4058 	 * Scan zonelist, looking for a zone with enough free.
4059 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4060 	 */
4061 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4062 	z = ac->preferred_zoneref;
4063 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4064 					ac->nodemask) {
4065 		struct page *page;
4066 		unsigned long mark;
4067 
4068 		if (cpusets_enabled() &&
4069 			(alloc_flags & ALLOC_CPUSET) &&
4070 			!__cpuset_zone_allowed(zone, gfp_mask))
4071 				continue;
4072 		/*
4073 		 * When allocating a page cache page for writing, we
4074 		 * want to get it from a node that is within its dirty
4075 		 * limit, such that no single node holds more than its
4076 		 * proportional share of globally allowed dirty pages.
4077 		 * The dirty limits take into account the node's
4078 		 * lowmem reserves and high watermark so that kswapd
4079 		 * should be able to balance it without having to
4080 		 * write pages from its LRU list.
4081 		 *
4082 		 * XXX: For now, allow allocations to potentially
4083 		 * exceed the per-node dirty limit in the slowpath
4084 		 * (spread_dirty_pages unset) before going into reclaim,
4085 		 * which is important when on a NUMA setup the allowed
4086 		 * nodes are together not big enough to reach the
4087 		 * global limit.  The proper fix for these situations
4088 		 * will require awareness of nodes in the
4089 		 * dirty-throttling and the flusher threads.
4090 		 */
4091 		if (ac->spread_dirty_pages) {
4092 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4093 				continue;
4094 
4095 			if (!node_dirty_ok(zone->zone_pgdat)) {
4096 				last_pgdat_dirty_limit = zone->zone_pgdat;
4097 				continue;
4098 			}
4099 		}
4100 
4101 		if (no_fallback && nr_online_nodes > 1 &&
4102 		    zone != ac->preferred_zoneref->zone) {
4103 			int local_nid;
4104 
4105 			/*
4106 			 * If moving to a remote node, retry but allow
4107 			 * fragmenting fallbacks. Locality is more important
4108 			 * than fragmentation avoidance.
4109 			 */
4110 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4111 			if (zone_to_nid(zone) != local_nid) {
4112 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4113 				goto retry;
4114 			}
4115 		}
4116 
4117 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4118 		if (!zone_watermark_fast(zone, order, mark,
4119 				       ac->highest_zoneidx, alloc_flags,
4120 				       gfp_mask)) {
4121 			int ret;
4122 
4123 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4124 			/*
4125 			 * Watermark failed for this zone, but see if we can
4126 			 * grow this zone if it contains deferred pages.
4127 			 */
4128 			if (static_branch_unlikely(&deferred_pages)) {
4129 				if (_deferred_grow_zone(zone, order))
4130 					goto try_this_zone;
4131 			}
4132 #endif
4133 			/* Checked here to keep the fast path fast */
4134 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4135 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4136 				goto try_this_zone;
4137 
4138 			if (!node_reclaim_enabled() ||
4139 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4140 				continue;
4141 
4142 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4143 			switch (ret) {
4144 			case NODE_RECLAIM_NOSCAN:
4145 				/* did not scan */
4146 				continue;
4147 			case NODE_RECLAIM_FULL:
4148 				/* scanned but unreclaimable */
4149 				continue;
4150 			default:
4151 				/* did we reclaim enough */
4152 				if (zone_watermark_ok(zone, order, mark,
4153 					ac->highest_zoneidx, alloc_flags))
4154 					goto try_this_zone;
4155 
4156 				continue;
4157 			}
4158 		}
4159 
4160 try_this_zone:
4161 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4162 				gfp_mask, alloc_flags, ac->migratetype);
4163 		if (page) {
4164 			prep_new_page(page, order, gfp_mask, alloc_flags);
4165 
4166 			/*
4167 			 * If this is a high-order atomic allocation then check
4168 			 * if the pageblock should be reserved for the future
4169 			 */
4170 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4171 				reserve_highatomic_pageblock(page, zone, order);
4172 
4173 			return page;
4174 		} else {
4175 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4176 			/* Try again if zone has deferred pages */
4177 			if (static_branch_unlikely(&deferred_pages)) {
4178 				if (_deferred_grow_zone(zone, order))
4179 					goto try_this_zone;
4180 			}
4181 #endif
4182 		}
4183 	}
4184 
4185 	/*
4186 	 * It's possible on a UMA machine to get through all zones that are
4187 	 * fragmented. If avoiding fragmentation, reset and try again.
4188 	 */
4189 	if (no_fallback) {
4190 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4191 		goto retry;
4192 	}
4193 
4194 	return NULL;
4195 }
4196 
4197 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4198 {
4199 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4200 
4201 	/*
4202 	 * This documents exceptions given to allocations in certain
4203 	 * contexts that are allowed to allocate outside current's set
4204 	 * of allowed nodes.
4205 	 */
4206 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4207 		if (tsk_is_oom_victim(current) ||
4208 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4209 			filter &= ~SHOW_MEM_FILTER_NODES;
4210 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4211 		filter &= ~SHOW_MEM_FILTER_NODES;
4212 
4213 	show_mem(filter, nodemask);
4214 }
4215 
4216 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4217 {
4218 	struct va_format vaf;
4219 	va_list args;
4220 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4221 
4222 	if ((gfp_mask & __GFP_NOWARN) ||
4223 	     !__ratelimit(&nopage_rs) ||
4224 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4225 		return;
4226 
4227 	va_start(args, fmt);
4228 	vaf.fmt = fmt;
4229 	vaf.va = &args;
4230 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4231 			current->comm, &vaf, gfp_mask, &gfp_mask,
4232 			nodemask_pr_args(nodemask));
4233 	va_end(args);
4234 
4235 	cpuset_print_current_mems_allowed();
4236 	pr_cont("\n");
4237 	dump_stack();
4238 	warn_alloc_show_mem(gfp_mask, nodemask);
4239 }
4240 
4241 static inline struct page *
4242 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4243 			      unsigned int alloc_flags,
4244 			      const struct alloc_context *ac)
4245 {
4246 	struct page *page;
4247 
4248 	page = get_page_from_freelist(gfp_mask, order,
4249 			alloc_flags|ALLOC_CPUSET, ac);
4250 	/*
4251 	 * fallback to ignore cpuset restriction if our nodes
4252 	 * are depleted
4253 	 */
4254 	if (!page)
4255 		page = get_page_from_freelist(gfp_mask, order,
4256 				alloc_flags, ac);
4257 
4258 	return page;
4259 }
4260 
4261 static inline struct page *
4262 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4263 	const struct alloc_context *ac, unsigned long *did_some_progress)
4264 {
4265 	struct oom_control oc = {
4266 		.zonelist = ac->zonelist,
4267 		.nodemask = ac->nodemask,
4268 		.memcg = NULL,
4269 		.gfp_mask = gfp_mask,
4270 		.order = order,
4271 	};
4272 	struct page *page;
4273 
4274 	*did_some_progress = 0;
4275 
4276 	/*
4277 	 * Acquire the oom lock.  If that fails, somebody else is
4278 	 * making progress for us.
4279 	 */
4280 	if (!mutex_trylock(&oom_lock)) {
4281 		*did_some_progress = 1;
4282 		schedule_timeout_uninterruptible(1);
4283 		return NULL;
4284 	}
4285 
4286 	/*
4287 	 * Go through the zonelist yet one more time, keep very high watermark
4288 	 * here, this is only to catch a parallel oom killing, we must fail if
4289 	 * we're still under heavy pressure. But make sure that this reclaim
4290 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4291 	 * allocation which will never fail due to oom_lock already held.
4292 	 */
4293 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4294 				      ~__GFP_DIRECT_RECLAIM, order,
4295 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4296 	if (page)
4297 		goto out;
4298 
4299 	/* Coredumps can quickly deplete all memory reserves */
4300 	if (current->flags & PF_DUMPCORE)
4301 		goto out;
4302 	/* The OOM killer will not help higher order allocs */
4303 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4304 		goto out;
4305 	/*
4306 	 * We have already exhausted all our reclaim opportunities without any
4307 	 * success so it is time to admit defeat. We will skip the OOM killer
4308 	 * because it is very likely that the caller has a more reasonable
4309 	 * fallback than shooting a random task.
4310 	 *
4311 	 * The OOM killer may not free memory on a specific node.
4312 	 */
4313 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4314 		goto out;
4315 	/* The OOM killer does not needlessly kill tasks for lowmem */
4316 	if (ac->highest_zoneidx < ZONE_NORMAL)
4317 		goto out;
4318 	if (pm_suspended_storage())
4319 		goto out;
4320 	/*
4321 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4322 	 * other request to make a forward progress.
4323 	 * We are in an unfortunate situation where out_of_memory cannot
4324 	 * do much for this context but let's try it to at least get
4325 	 * access to memory reserved if the current task is killed (see
4326 	 * out_of_memory). Once filesystems are ready to handle allocation
4327 	 * failures more gracefully we should just bail out here.
4328 	 */
4329 
4330 	/* Exhausted what can be done so it's blame time */
4331 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4332 		*did_some_progress = 1;
4333 
4334 		/*
4335 		 * Help non-failing allocations by giving them access to memory
4336 		 * reserves
4337 		 */
4338 		if (gfp_mask & __GFP_NOFAIL)
4339 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4340 					ALLOC_NO_WATERMARKS, ac);
4341 	}
4342 out:
4343 	mutex_unlock(&oom_lock);
4344 	return page;
4345 }
4346 
4347 /*
4348  * Maximum number of compaction retries with a progress before OOM
4349  * killer is consider as the only way to move forward.
4350  */
4351 #define MAX_COMPACT_RETRIES 16
4352 
4353 #ifdef CONFIG_COMPACTION
4354 /* Try memory compaction for high-order allocations before reclaim */
4355 static struct page *
4356 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4357 		unsigned int alloc_flags, const struct alloc_context *ac,
4358 		enum compact_priority prio, enum compact_result *compact_result)
4359 {
4360 	struct page *page = NULL;
4361 	unsigned long pflags;
4362 	unsigned int noreclaim_flag;
4363 
4364 	if (!order)
4365 		return NULL;
4366 
4367 	psi_memstall_enter(&pflags);
4368 	noreclaim_flag = memalloc_noreclaim_save();
4369 
4370 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4371 								prio, &page);
4372 
4373 	memalloc_noreclaim_restore(noreclaim_flag);
4374 	psi_memstall_leave(&pflags);
4375 
4376 	if (*compact_result == COMPACT_SKIPPED)
4377 		return NULL;
4378 	/*
4379 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4380 	 * count a compaction stall
4381 	 */
4382 	count_vm_event(COMPACTSTALL);
4383 
4384 	/* Prep a captured page if available */
4385 	if (page)
4386 		prep_new_page(page, order, gfp_mask, alloc_flags);
4387 
4388 	/* Try get a page from the freelist if available */
4389 	if (!page)
4390 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4391 
4392 	if (page) {
4393 		struct zone *zone = page_zone(page);
4394 
4395 		zone->compact_blockskip_flush = false;
4396 		compaction_defer_reset(zone, order, true);
4397 		count_vm_event(COMPACTSUCCESS);
4398 		return page;
4399 	}
4400 
4401 	/*
4402 	 * It's bad if compaction run occurs and fails. The most likely reason
4403 	 * is that pages exist, but not enough to satisfy watermarks.
4404 	 */
4405 	count_vm_event(COMPACTFAIL);
4406 
4407 	cond_resched();
4408 
4409 	return NULL;
4410 }
4411 
4412 static inline bool
4413 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4414 		     enum compact_result compact_result,
4415 		     enum compact_priority *compact_priority,
4416 		     int *compaction_retries)
4417 {
4418 	int max_retries = MAX_COMPACT_RETRIES;
4419 	int min_priority;
4420 	bool ret = false;
4421 	int retries = *compaction_retries;
4422 	enum compact_priority priority = *compact_priority;
4423 
4424 	if (!order)
4425 		return false;
4426 
4427 	if (fatal_signal_pending(current))
4428 		return false;
4429 
4430 	if (compaction_made_progress(compact_result))
4431 		(*compaction_retries)++;
4432 
4433 	/*
4434 	 * compaction considers all the zone as desperately out of memory
4435 	 * so it doesn't really make much sense to retry except when the
4436 	 * failure could be caused by insufficient priority
4437 	 */
4438 	if (compaction_failed(compact_result))
4439 		goto check_priority;
4440 
4441 	/*
4442 	 * compaction was skipped because there are not enough order-0 pages
4443 	 * to work with, so we retry only if it looks like reclaim can help.
4444 	 */
4445 	if (compaction_needs_reclaim(compact_result)) {
4446 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4447 		goto out;
4448 	}
4449 
4450 	/*
4451 	 * make sure the compaction wasn't deferred or didn't bail out early
4452 	 * due to locks contention before we declare that we should give up.
4453 	 * But the next retry should use a higher priority if allowed, so
4454 	 * we don't just keep bailing out endlessly.
4455 	 */
4456 	if (compaction_withdrawn(compact_result)) {
4457 		goto check_priority;
4458 	}
4459 
4460 	/*
4461 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4462 	 * costly ones because they are de facto nofail and invoke OOM
4463 	 * killer to move on while costly can fail and users are ready
4464 	 * to cope with that. 1/4 retries is rather arbitrary but we
4465 	 * would need much more detailed feedback from compaction to
4466 	 * make a better decision.
4467 	 */
4468 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4469 		max_retries /= 4;
4470 	if (*compaction_retries <= max_retries) {
4471 		ret = true;
4472 		goto out;
4473 	}
4474 
4475 	/*
4476 	 * Make sure there are attempts at the highest priority if we exhausted
4477 	 * all retries or failed at the lower priorities.
4478 	 */
4479 check_priority:
4480 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4481 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4482 
4483 	if (*compact_priority > min_priority) {
4484 		(*compact_priority)--;
4485 		*compaction_retries = 0;
4486 		ret = true;
4487 	}
4488 out:
4489 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4490 	return ret;
4491 }
4492 #else
4493 static inline struct page *
4494 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4495 		unsigned int alloc_flags, const struct alloc_context *ac,
4496 		enum compact_priority prio, enum compact_result *compact_result)
4497 {
4498 	*compact_result = COMPACT_SKIPPED;
4499 	return NULL;
4500 }
4501 
4502 static inline bool
4503 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4504 		     enum compact_result compact_result,
4505 		     enum compact_priority *compact_priority,
4506 		     int *compaction_retries)
4507 {
4508 	struct zone *zone;
4509 	struct zoneref *z;
4510 
4511 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4512 		return false;
4513 
4514 	/*
4515 	 * There are setups with compaction disabled which would prefer to loop
4516 	 * inside the allocator rather than hit the oom killer prematurely.
4517 	 * Let's give them a good hope and keep retrying while the order-0
4518 	 * watermarks are OK.
4519 	 */
4520 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4521 				ac->highest_zoneidx, ac->nodemask) {
4522 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4523 					ac->highest_zoneidx, alloc_flags))
4524 			return true;
4525 	}
4526 	return false;
4527 }
4528 #endif /* CONFIG_COMPACTION */
4529 
4530 #ifdef CONFIG_LOCKDEP
4531 static struct lockdep_map __fs_reclaim_map =
4532 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4533 
4534 static bool __need_reclaim(gfp_t gfp_mask)
4535 {
4536 	/* no reclaim without waiting on it */
4537 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4538 		return false;
4539 
4540 	/* this guy won't enter reclaim */
4541 	if (current->flags & PF_MEMALLOC)
4542 		return false;
4543 
4544 	if (gfp_mask & __GFP_NOLOCKDEP)
4545 		return false;
4546 
4547 	return true;
4548 }
4549 
4550 void __fs_reclaim_acquire(unsigned long ip)
4551 {
4552 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4553 }
4554 
4555 void __fs_reclaim_release(unsigned long ip)
4556 {
4557 	lock_release(&__fs_reclaim_map, ip);
4558 }
4559 
4560 void fs_reclaim_acquire(gfp_t gfp_mask)
4561 {
4562 	gfp_mask = current_gfp_context(gfp_mask);
4563 
4564 	if (__need_reclaim(gfp_mask)) {
4565 		if (gfp_mask & __GFP_FS)
4566 			__fs_reclaim_acquire(_RET_IP_);
4567 
4568 #ifdef CONFIG_MMU_NOTIFIER
4569 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4570 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4571 #endif
4572 
4573 	}
4574 }
4575 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4576 
4577 void fs_reclaim_release(gfp_t gfp_mask)
4578 {
4579 	gfp_mask = current_gfp_context(gfp_mask);
4580 
4581 	if (__need_reclaim(gfp_mask)) {
4582 		if (gfp_mask & __GFP_FS)
4583 			__fs_reclaim_release(_RET_IP_);
4584 	}
4585 }
4586 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4587 #endif
4588 
4589 /* Perform direct synchronous page reclaim */
4590 static unsigned long
4591 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4592 					const struct alloc_context *ac)
4593 {
4594 	unsigned int noreclaim_flag;
4595 	unsigned long pflags, progress;
4596 
4597 	cond_resched();
4598 
4599 	/* We now go into synchronous reclaim */
4600 	cpuset_memory_pressure_bump();
4601 	psi_memstall_enter(&pflags);
4602 	fs_reclaim_acquire(gfp_mask);
4603 	noreclaim_flag = memalloc_noreclaim_save();
4604 
4605 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4606 								ac->nodemask);
4607 
4608 	memalloc_noreclaim_restore(noreclaim_flag);
4609 	fs_reclaim_release(gfp_mask);
4610 	psi_memstall_leave(&pflags);
4611 
4612 	cond_resched();
4613 
4614 	return progress;
4615 }
4616 
4617 /* The really slow allocator path where we enter direct reclaim */
4618 static inline struct page *
4619 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4620 		unsigned int alloc_flags, const struct alloc_context *ac,
4621 		unsigned long *did_some_progress)
4622 {
4623 	struct page *page = NULL;
4624 	bool drained = false;
4625 
4626 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4627 	if (unlikely(!(*did_some_progress)))
4628 		return NULL;
4629 
4630 retry:
4631 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4632 
4633 	/*
4634 	 * If an allocation failed after direct reclaim, it could be because
4635 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4636 	 * Shrink them and try again
4637 	 */
4638 	if (!page && !drained) {
4639 		unreserve_highatomic_pageblock(ac, false);
4640 		drain_all_pages(NULL);
4641 		drained = true;
4642 		goto retry;
4643 	}
4644 
4645 	return page;
4646 }
4647 
4648 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4649 			     const struct alloc_context *ac)
4650 {
4651 	struct zoneref *z;
4652 	struct zone *zone;
4653 	pg_data_t *last_pgdat = NULL;
4654 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4655 
4656 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4657 					ac->nodemask) {
4658 		if (last_pgdat != zone->zone_pgdat)
4659 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4660 		last_pgdat = zone->zone_pgdat;
4661 	}
4662 }
4663 
4664 static inline unsigned int
4665 gfp_to_alloc_flags(gfp_t gfp_mask)
4666 {
4667 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4668 
4669 	/*
4670 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4671 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4672 	 * to save two branches.
4673 	 */
4674 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4675 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4676 
4677 	/*
4678 	 * The caller may dip into page reserves a bit more if the caller
4679 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4680 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4681 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4682 	 */
4683 	alloc_flags |= (__force int)
4684 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4685 
4686 	if (gfp_mask & __GFP_ATOMIC) {
4687 		/*
4688 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4689 		 * if it can't schedule.
4690 		 */
4691 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4692 			alloc_flags |= ALLOC_HARDER;
4693 		/*
4694 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4695 		 * comment for __cpuset_node_allowed().
4696 		 */
4697 		alloc_flags &= ~ALLOC_CPUSET;
4698 	} else if (unlikely(rt_task(current)) && in_task())
4699 		alloc_flags |= ALLOC_HARDER;
4700 
4701 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4702 
4703 	return alloc_flags;
4704 }
4705 
4706 static bool oom_reserves_allowed(struct task_struct *tsk)
4707 {
4708 	if (!tsk_is_oom_victim(tsk))
4709 		return false;
4710 
4711 	/*
4712 	 * !MMU doesn't have oom reaper so give access to memory reserves
4713 	 * only to the thread with TIF_MEMDIE set
4714 	 */
4715 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4716 		return false;
4717 
4718 	return true;
4719 }
4720 
4721 /*
4722  * Distinguish requests which really need access to full memory
4723  * reserves from oom victims which can live with a portion of it
4724  */
4725 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4726 {
4727 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4728 		return 0;
4729 	if (gfp_mask & __GFP_MEMALLOC)
4730 		return ALLOC_NO_WATERMARKS;
4731 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4732 		return ALLOC_NO_WATERMARKS;
4733 	if (!in_interrupt()) {
4734 		if (current->flags & PF_MEMALLOC)
4735 			return ALLOC_NO_WATERMARKS;
4736 		else if (oom_reserves_allowed(current))
4737 			return ALLOC_OOM;
4738 	}
4739 
4740 	return 0;
4741 }
4742 
4743 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4744 {
4745 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4746 }
4747 
4748 /*
4749  * Checks whether it makes sense to retry the reclaim to make a forward progress
4750  * for the given allocation request.
4751  *
4752  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4753  * without success, or when we couldn't even meet the watermark if we
4754  * reclaimed all remaining pages on the LRU lists.
4755  *
4756  * Returns true if a retry is viable or false to enter the oom path.
4757  */
4758 static inline bool
4759 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4760 		     struct alloc_context *ac, int alloc_flags,
4761 		     bool did_some_progress, int *no_progress_loops)
4762 {
4763 	struct zone *zone;
4764 	struct zoneref *z;
4765 	bool ret = false;
4766 
4767 	/*
4768 	 * Costly allocations might have made a progress but this doesn't mean
4769 	 * their order will become available due to high fragmentation so
4770 	 * always increment the no progress counter for them
4771 	 */
4772 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4773 		*no_progress_loops = 0;
4774 	else
4775 		(*no_progress_loops)++;
4776 
4777 	/*
4778 	 * Make sure we converge to OOM if we cannot make any progress
4779 	 * several times in the row.
4780 	 */
4781 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4782 		/* Before OOM, exhaust highatomic_reserve */
4783 		return unreserve_highatomic_pageblock(ac, true);
4784 	}
4785 
4786 	/*
4787 	 * Keep reclaiming pages while there is a chance this will lead
4788 	 * somewhere.  If none of the target zones can satisfy our allocation
4789 	 * request even if all reclaimable pages are considered then we are
4790 	 * screwed and have to go OOM.
4791 	 */
4792 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4793 				ac->highest_zoneidx, ac->nodemask) {
4794 		unsigned long available;
4795 		unsigned long reclaimable;
4796 		unsigned long min_wmark = min_wmark_pages(zone);
4797 		bool wmark;
4798 
4799 		available = reclaimable = zone_reclaimable_pages(zone);
4800 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4801 
4802 		/*
4803 		 * Would the allocation succeed if we reclaimed all
4804 		 * reclaimable pages?
4805 		 */
4806 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4807 				ac->highest_zoneidx, alloc_flags, available);
4808 		trace_reclaim_retry_zone(z, order, reclaimable,
4809 				available, min_wmark, *no_progress_loops, wmark);
4810 		if (wmark) {
4811 			ret = true;
4812 			break;
4813 		}
4814 	}
4815 
4816 	/*
4817 	 * Memory allocation/reclaim might be called from a WQ context and the
4818 	 * current implementation of the WQ concurrency control doesn't
4819 	 * recognize that a particular WQ is congested if the worker thread is
4820 	 * looping without ever sleeping. Therefore we have to do a short sleep
4821 	 * here rather than calling cond_resched().
4822 	 */
4823 	if (current->flags & PF_WQ_WORKER)
4824 		schedule_timeout_uninterruptible(1);
4825 	else
4826 		cond_resched();
4827 	return ret;
4828 }
4829 
4830 static inline bool
4831 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4832 {
4833 	/*
4834 	 * It's possible that cpuset's mems_allowed and the nodemask from
4835 	 * mempolicy don't intersect. This should be normally dealt with by
4836 	 * policy_nodemask(), but it's possible to race with cpuset update in
4837 	 * such a way the check therein was true, and then it became false
4838 	 * before we got our cpuset_mems_cookie here.
4839 	 * This assumes that for all allocations, ac->nodemask can come only
4840 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4841 	 * when it does not intersect with the cpuset restrictions) or the
4842 	 * caller can deal with a violated nodemask.
4843 	 */
4844 	if (cpusets_enabled() && ac->nodemask &&
4845 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4846 		ac->nodemask = NULL;
4847 		return true;
4848 	}
4849 
4850 	/*
4851 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4852 	 * possible to race with parallel threads in such a way that our
4853 	 * allocation can fail while the mask is being updated. If we are about
4854 	 * to fail, check if the cpuset changed during allocation and if so,
4855 	 * retry.
4856 	 */
4857 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4858 		return true;
4859 
4860 	return false;
4861 }
4862 
4863 static inline struct page *
4864 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4865 						struct alloc_context *ac)
4866 {
4867 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4868 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4869 	struct page *page = NULL;
4870 	unsigned int alloc_flags;
4871 	unsigned long did_some_progress;
4872 	enum compact_priority compact_priority;
4873 	enum compact_result compact_result;
4874 	int compaction_retries;
4875 	int no_progress_loops;
4876 	unsigned int cpuset_mems_cookie;
4877 	int reserve_flags;
4878 
4879 	/*
4880 	 * We also sanity check to catch abuse of atomic reserves being used by
4881 	 * callers that are not in atomic context.
4882 	 */
4883 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4884 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4885 		gfp_mask &= ~__GFP_ATOMIC;
4886 
4887 retry_cpuset:
4888 	compaction_retries = 0;
4889 	no_progress_loops = 0;
4890 	compact_priority = DEF_COMPACT_PRIORITY;
4891 	cpuset_mems_cookie = read_mems_allowed_begin();
4892 
4893 	/*
4894 	 * The fast path uses conservative alloc_flags to succeed only until
4895 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4896 	 * alloc_flags precisely. So we do that now.
4897 	 */
4898 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4899 
4900 	/*
4901 	 * We need to recalculate the starting point for the zonelist iterator
4902 	 * because we might have used different nodemask in the fast path, or
4903 	 * there was a cpuset modification and we are retrying - otherwise we
4904 	 * could end up iterating over non-eligible zones endlessly.
4905 	 */
4906 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4907 					ac->highest_zoneidx, ac->nodemask);
4908 	if (!ac->preferred_zoneref->zone)
4909 		goto nopage;
4910 
4911 	/*
4912 	 * Check for insane configurations where the cpuset doesn't contain
4913 	 * any suitable zone to satisfy the request - e.g. non-movable
4914 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4915 	 */
4916 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4917 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4918 					ac->highest_zoneidx,
4919 					&cpuset_current_mems_allowed);
4920 		if (!z->zone)
4921 			goto nopage;
4922 	}
4923 
4924 	if (alloc_flags & ALLOC_KSWAPD)
4925 		wake_all_kswapds(order, gfp_mask, ac);
4926 
4927 	/*
4928 	 * The adjusted alloc_flags might result in immediate success, so try
4929 	 * that first
4930 	 */
4931 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4932 	if (page)
4933 		goto got_pg;
4934 
4935 	/*
4936 	 * For costly allocations, try direct compaction first, as it's likely
4937 	 * that we have enough base pages and don't need to reclaim. For non-
4938 	 * movable high-order allocations, do that as well, as compaction will
4939 	 * try prevent permanent fragmentation by migrating from blocks of the
4940 	 * same migratetype.
4941 	 * Don't try this for allocations that are allowed to ignore
4942 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4943 	 */
4944 	if (can_direct_reclaim &&
4945 			(costly_order ||
4946 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4947 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4948 		page = __alloc_pages_direct_compact(gfp_mask, order,
4949 						alloc_flags, ac,
4950 						INIT_COMPACT_PRIORITY,
4951 						&compact_result);
4952 		if (page)
4953 			goto got_pg;
4954 
4955 		/*
4956 		 * Checks for costly allocations with __GFP_NORETRY, which
4957 		 * includes some THP page fault allocations
4958 		 */
4959 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4960 			/*
4961 			 * If allocating entire pageblock(s) and compaction
4962 			 * failed because all zones are below low watermarks
4963 			 * or is prohibited because it recently failed at this
4964 			 * order, fail immediately unless the allocator has
4965 			 * requested compaction and reclaim retry.
4966 			 *
4967 			 * Reclaim is
4968 			 *  - potentially very expensive because zones are far
4969 			 *    below their low watermarks or this is part of very
4970 			 *    bursty high order allocations,
4971 			 *  - not guaranteed to help because isolate_freepages()
4972 			 *    may not iterate over freed pages as part of its
4973 			 *    linear scan, and
4974 			 *  - unlikely to make entire pageblocks free on its
4975 			 *    own.
4976 			 */
4977 			if (compact_result == COMPACT_SKIPPED ||
4978 			    compact_result == COMPACT_DEFERRED)
4979 				goto nopage;
4980 
4981 			/*
4982 			 * Looks like reclaim/compaction is worth trying, but
4983 			 * sync compaction could be very expensive, so keep
4984 			 * using async compaction.
4985 			 */
4986 			compact_priority = INIT_COMPACT_PRIORITY;
4987 		}
4988 	}
4989 
4990 retry:
4991 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4992 	if (alloc_flags & ALLOC_KSWAPD)
4993 		wake_all_kswapds(order, gfp_mask, ac);
4994 
4995 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4996 	if (reserve_flags)
4997 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4998 
4999 	/*
5000 	 * Reset the nodemask and zonelist iterators if memory policies can be
5001 	 * ignored. These allocations are high priority and system rather than
5002 	 * user oriented.
5003 	 */
5004 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5005 		ac->nodemask = NULL;
5006 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5007 					ac->highest_zoneidx, ac->nodemask);
5008 	}
5009 
5010 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5011 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5012 	if (page)
5013 		goto got_pg;
5014 
5015 	/* Caller is not willing to reclaim, we can't balance anything */
5016 	if (!can_direct_reclaim)
5017 		goto nopage;
5018 
5019 	/* Avoid recursion of direct reclaim */
5020 	if (current->flags & PF_MEMALLOC)
5021 		goto nopage;
5022 
5023 	/* Try direct reclaim and then allocating */
5024 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5025 							&did_some_progress);
5026 	if (page)
5027 		goto got_pg;
5028 
5029 	/* Try direct compaction and then allocating */
5030 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5031 					compact_priority, &compact_result);
5032 	if (page)
5033 		goto got_pg;
5034 
5035 	/* Do not loop if specifically requested */
5036 	if (gfp_mask & __GFP_NORETRY)
5037 		goto nopage;
5038 
5039 	/*
5040 	 * Do not retry costly high order allocations unless they are
5041 	 * __GFP_RETRY_MAYFAIL
5042 	 */
5043 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5044 		goto nopage;
5045 
5046 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5047 				 did_some_progress > 0, &no_progress_loops))
5048 		goto retry;
5049 
5050 	/*
5051 	 * It doesn't make any sense to retry for the compaction if the order-0
5052 	 * reclaim is not able to make any progress because the current
5053 	 * implementation of the compaction depends on the sufficient amount
5054 	 * of free memory (see __compaction_suitable)
5055 	 */
5056 	if (did_some_progress > 0 &&
5057 			should_compact_retry(ac, order, alloc_flags,
5058 				compact_result, &compact_priority,
5059 				&compaction_retries))
5060 		goto retry;
5061 
5062 
5063 	/* Deal with possible cpuset update races before we start OOM killing */
5064 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5065 		goto retry_cpuset;
5066 
5067 	/* Reclaim has failed us, start killing things */
5068 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5069 	if (page)
5070 		goto got_pg;
5071 
5072 	/* Avoid allocations with no watermarks from looping endlessly */
5073 	if (tsk_is_oom_victim(current) &&
5074 	    (alloc_flags & ALLOC_OOM ||
5075 	     (gfp_mask & __GFP_NOMEMALLOC)))
5076 		goto nopage;
5077 
5078 	/* Retry as long as the OOM killer is making progress */
5079 	if (did_some_progress) {
5080 		no_progress_loops = 0;
5081 		goto retry;
5082 	}
5083 
5084 nopage:
5085 	/* Deal with possible cpuset update races before we fail */
5086 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5087 		goto retry_cpuset;
5088 
5089 	/*
5090 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5091 	 * we always retry
5092 	 */
5093 	if (gfp_mask & __GFP_NOFAIL) {
5094 		/*
5095 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5096 		 * of any new users that actually require GFP_NOWAIT
5097 		 */
5098 		if (WARN_ON_ONCE(!can_direct_reclaim))
5099 			goto fail;
5100 
5101 		/*
5102 		 * PF_MEMALLOC request from this context is rather bizarre
5103 		 * because we cannot reclaim anything and only can loop waiting
5104 		 * for somebody to do a work for us
5105 		 */
5106 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5107 
5108 		/*
5109 		 * non failing costly orders are a hard requirement which we
5110 		 * are not prepared for much so let's warn about these users
5111 		 * so that we can identify them and convert them to something
5112 		 * else.
5113 		 */
5114 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5115 
5116 		/*
5117 		 * Help non-failing allocations by giving them access to memory
5118 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5119 		 * could deplete whole memory reserves which would just make
5120 		 * the situation worse
5121 		 */
5122 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5123 		if (page)
5124 			goto got_pg;
5125 
5126 		cond_resched();
5127 		goto retry;
5128 	}
5129 fail:
5130 	warn_alloc(gfp_mask, ac->nodemask,
5131 			"page allocation failure: order:%u", order);
5132 got_pg:
5133 	return page;
5134 }
5135 
5136 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5137 		int preferred_nid, nodemask_t *nodemask,
5138 		struct alloc_context *ac, gfp_t *alloc_gfp,
5139 		unsigned int *alloc_flags)
5140 {
5141 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5142 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5143 	ac->nodemask = nodemask;
5144 	ac->migratetype = gfp_migratetype(gfp_mask);
5145 
5146 	if (cpusets_enabled()) {
5147 		*alloc_gfp |= __GFP_HARDWALL;
5148 		/*
5149 		 * When we are in the interrupt context, it is irrelevant
5150 		 * to the current task context. It means that any node ok.
5151 		 */
5152 		if (in_task() && !ac->nodemask)
5153 			ac->nodemask = &cpuset_current_mems_allowed;
5154 		else
5155 			*alloc_flags |= ALLOC_CPUSET;
5156 	}
5157 
5158 	fs_reclaim_acquire(gfp_mask);
5159 	fs_reclaim_release(gfp_mask);
5160 
5161 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5162 
5163 	if (should_fail_alloc_page(gfp_mask, order))
5164 		return false;
5165 
5166 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5167 
5168 	/* Dirty zone balancing only done in the fast path */
5169 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5170 
5171 	/*
5172 	 * The preferred zone is used for statistics but crucially it is
5173 	 * also used as the starting point for the zonelist iterator. It
5174 	 * may get reset for allocations that ignore memory policies.
5175 	 */
5176 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5177 					ac->highest_zoneidx, ac->nodemask);
5178 
5179 	return true;
5180 }
5181 
5182 /*
5183  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5184  * @gfp: GFP flags for the allocation
5185  * @preferred_nid: The preferred NUMA node ID to allocate from
5186  * @nodemask: Set of nodes to allocate from, may be NULL
5187  * @nr_pages: The number of pages desired on the list or array
5188  * @page_list: Optional list to store the allocated pages
5189  * @page_array: Optional array to store the pages
5190  *
5191  * This is a batched version of the page allocator that attempts to
5192  * allocate nr_pages quickly. Pages are added to page_list if page_list
5193  * is not NULL, otherwise it is assumed that the page_array is valid.
5194  *
5195  * For lists, nr_pages is the number of pages that should be allocated.
5196  *
5197  * For arrays, only NULL elements are populated with pages and nr_pages
5198  * is the maximum number of pages that will be stored in the array.
5199  *
5200  * Returns the number of pages on the list or array.
5201  */
5202 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5203 			nodemask_t *nodemask, int nr_pages,
5204 			struct list_head *page_list,
5205 			struct page **page_array)
5206 {
5207 	struct page *page;
5208 	unsigned long flags;
5209 	struct zone *zone;
5210 	struct zoneref *z;
5211 	struct per_cpu_pages *pcp;
5212 	struct list_head *pcp_list;
5213 	struct alloc_context ac;
5214 	gfp_t alloc_gfp;
5215 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5216 	int nr_populated = 0, nr_account = 0;
5217 
5218 	/*
5219 	 * Skip populated array elements to determine if any pages need
5220 	 * to be allocated before disabling IRQs.
5221 	 */
5222 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5223 		nr_populated++;
5224 
5225 	/* No pages requested? */
5226 	if (unlikely(nr_pages <= 0))
5227 		goto out;
5228 
5229 	/* Already populated array? */
5230 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5231 		goto out;
5232 
5233 	/* Bulk allocator does not support memcg accounting. */
5234 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5235 		goto failed;
5236 
5237 	/* Use the single page allocator for one page. */
5238 	if (nr_pages - nr_populated == 1)
5239 		goto failed;
5240 
5241 #ifdef CONFIG_PAGE_OWNER
5242 	/*
5243 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5244 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5245 	 * removes much of the performance benefit of bulk allocation so
5246 	 * force the caller to allocate one page at a time as it'll have
5247 	 * similar performance to added complexity to the bulk allocator.
5248 	 */
5249 	if (static_branch_unlikely(&page_owner_inited))
5250 		goto failed;
5251 #endif
5252 
5253 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5254 	gfp &= gfp_allowed_mask;
5255 	alloc_gfp = gfp;
5256 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5257 		goto out;
5258 	gfp = alloc_gfp;
5259 
5260 	/* Find an allowed local zone that meets the low watermark. */
5261 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5262 		unsigned long mark;
5263 
5264 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5265 		    !__cpuset_zone_allowed(zone, gfp)) {
5266 			continue;
5267 		}
5268 
5269 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5270 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5271 			goto failed;
5272 		}
5273 
5274 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5275 		if (zone_watermark_fast(zone, 0,  mark,
5276 				zonelist_zone_idx(ac.preferred_zoneref),
5277 				alloc_flags, gfp)) {
5278 			break;
5279 		}
5280 	}
5281 
5282 	/*
5283 	 * If there are no allowed local zones that meets the watermarks then
5284 	 * try to allocate a single page and reclaim if necessary.
5285 	 */
5286 	if (unlikely(!zone))
5287 		goto failed;
5288 
5289 	/* Attempt the batch allocation */
5290 	local_lock_irqsave(&pagesets.lock, flags);
5291 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5292 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5293 
5294 	while (nr_populated < nr_pages) {
5295 
5296 		/* Skip existing pages */
5297 		if (page_array && page_array[nr_populated]) {
5298 			nr_populated++;
5299 			continue;
5300 		}
5301 
5302 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5303 								pcp, pcp_list);
5304 		if (unlikely(!page)) {
5305 			/* Try and get at least one page */
5306 			if (!nr_populated)
5307 				goto failed_irq;
5308 			break;
5309 		}
5310 		nr_account++;
5311 
5312 		prep_new_page(page, 0, gfp, 0);
5313 		if (page_list)
5314 			list_add(&page->lru, page_list);
5315 		else
5316 			page_array[nr_populated] = page;
5317 		nr_populated++;
5318 	}
5319 
5320 	local_unlock_irqrestore(&pagesets.lock, flags);
5321 
5322 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5323 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5324 
5325 out:
5326 	return nr_populated;
5327 
5328 failed_irq:
5329 	local_unlock_irqrestore(&pagesets.lock, flags);
5330 
5331 failed:
5332 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5333 	if (page) {
5334 		if (page_list)
5335 			list_add(&page->lru, page_list);
5336 		else
5337 			page_array[nr_populated] = page;
5338 		nr_populated++;
5339 	}
5340 
5341 	goto out;
5342 }
5343 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5344 
5345 /*
5346  * This is the 'heart' of the zoned buddy allocator.
5347  */
5348 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5349 							nodemask_t *nodemask)
5350 {
5351 	struct page *page;
5352 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5353 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5354 	struct alloc_context ac = { };
5355 
5356 	/*
5357 	 * There are several places where we assume that the order value is sane
5358 	 * so bail out early if the request is out of bound.
5359 	 */
5360 	if (unlikely(order >= MAX_ORDER)) {
5361 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5362 		return NULL;
5363 	}
5364 
5365 	gfp &= gfp_allowed_mask;
5366 	/*
5367 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5368 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5369 	 * from a particular context which has been marked by
5370 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5371 	 * movable zones are not used during allocation.
5372 	 */
5373 	gfp = current_gfp_context(gfp);
5374 	alloc_gfp = gfp;
5375 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5376 			&alloc_gfp, &alloc_flags))
5377 		return NULL;
5378 
5379 	/*
5380 	 * Forbid the first pass from falling back to types that fragment
5381 	 * memory until all local zones are considered.
5382 	 */
5383 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5384 
5385 	/* First allocation attempt */
5386 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5387 	if (likely(page))
5388 		goto out;
5389 
5390 	alloc_gfp = gfp;
5391 	ac.spread_dirty_pages = false;
5392 
5393 	/*
5394 	 * Restore the original nodemask if it was potentially replaced with
5395 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5396 	 */
5397 	ac.nodemask = nodemask;
5398 
5399 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5400 
5401 out:
5402 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5403 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5404 		__free_pages(page, order);
5405 		page = NULL;
5406 	}
5407 
5408 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5409 
5410 	return page;
5411 }
5412 EXPORT_SYMBOL(__alloc_pages);
5413 
5414 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5415 		nodemask_t *nodemask)
5416 {
5417 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5418 			preferred_nid, nodemask);
5419 
5420 	if (page && order > 1)
5421 		prep_transhuge_page(page);
5422 	return (struct folio *)page;
5423 }
5424 EXPORT_SYMBOL(__folio_alloc);
5425 
5426 /*
5427  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5428  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5429  * you need to access high mem.
5430  */
5431 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5432 {
5433 	struct page *page;
5434 
5435 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5436 	if (!page)
5437 		return 0;
5438 	return (unsigned long) page_address(page);
5439 }
5440 EXPORT_SYMBOL(__get_free_pages);
5441 
5442 unsigned long get_zeroed_page(gfp_t gfp_mask)
5443 {
5444 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5445 }
5446 EXPORT_SYMBOL(get_zeroed_page);
5447 
5448 /**
5449  * __free_pages - Free pages allocated with alloc_pages().
5450  * @page: The page pointer returned from alloc_pages().
5451  * @order: The order of the allocation.
5452  *
5453  * This function can free multi-page allocations that are not compound
5454  * pages.  It does not check that the @order passed in matches that of
5455  * the allocation, so it is easy to leak memory.  Freeing more memory
5456  * than was allocated will probably emit a warning.
5457  *
5458  * If the last reference to this page is speculative, it will be released
5459  * by put_page() which only frees the first page of a non-compound
5460  * allocation.  To prevent the remaining pages from being leaked, we free
5461  * the subsequent pages here.  If you want to use the page's reference
5462  * count to decide when to free the allocation, you should allocate a
5463  * compound page, and use put_page() instead of __free_pages().
5464  *
5465  * Context: May be called in interrupt context or while holding a normal
5466  * spinlock, but not in NMI context or while holding a raw spinlock.
5467  */
5468 void __free_pages(struct page *page, unsigned int order)
5469 {
5470 	if (put_page_testzero(page))
5471 		free_the_page(page, order);
5472 	else if (!PageHead(page))
5473 		while (order-- > 0)
5474 			free_the_page(page + (1 << order), order);
5475 }
5476 EXPORT_SYMBOL(__free_pages);
5477 
5478 void free_pages(unsigned long addr, unsigned int order)
5479 {
5480 	if (addr != 0) {
5481 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5482 		__free_pages(virt_to_page((void *)addr), order);
5483 	}
5484 }
5485 
5486 EXPORT_SYMBOL(free_pages);
5487 
5488 /*
5489  * Page Fragment:
5490  *  An arbitrary-length arbitrary-offset area of memory which resides
5491  *  within a 0 or higher order page.  Multiple fragments within that page
5492  *  are individually refcounted, in the page's reference counter.
5493  *
5494  * The page_frag functions below provide a simple allocation framework for
5495  * page fragments.  This is used by the network stack and network device
5496  * drivers to provide a backing region of memory for use as either an
5497  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5498  */
5499 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5500 					     gfp_t gfp_mask)
5501 {
5502 	struct page *page = NULL;
5503 	gfp_t gfp = gfp_mask;
5504 
5505 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5506 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5507 		    __GFP_NOMEMALLOC;
5508 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5509 				PAGE_FRAG_CACHE_MAX_ORDER);
5510 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5511 #endif
5512 	if (unlikely(!page))
5513 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5514 
5515 	nc->va = page ? page_address(page) : NULL;
5516 
5517 	return page;
5518 }
5519 
5520 void __page_frag_cache_drain(struct page *page, unsigned int count)
5521 {
5522 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5523 
5524 	if (page_ref_sub_and_test(page, count))
5525 		free_the_page(page, compound_order(page));
5526 }
5527 EXPORT_SYMBOL(__page_frag_cache_drain);
5528 
5529 void *page_frag_alloc_align(struct page_frag_cache *nc,
5530 		      unsigned int fragsz, gfp_t gfp_mask,
5531 		      unsigned int align_mask)
5532 {
5533 	unsigned int size = PAGE_SIZE;
5534 	struct page *page;
5535 	int offset;
5536 
5537 	if (unlikely(!nc->va)) {
5538 refill:
5539 		page = __page_frag_cache_refill(nc, gfp_mask);
5540 		if (!page)
5541 			return NULL;
5542 
5543 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5544 		/* if size can vary use size else just use PAGE_SIZE */
5545 		size = nc->size;
5546 #endif
5547 		/* Even if we own the page, we do not use atomic_set().
5548 		 * This would break get_page_unless_zero() users.
5549 		 */
5550 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5551 
5552 		/* reset page count bias and offset to start of new frag */
5553 		nc->pfmemalloc = page_is_pfmemalloc(page);
5554 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5555 		nc->offset = size;
5556 	}
5557 
5558 	offset = nc->offset - fragsz;
5559 	if (unlikely(offset < 0)) {
5560 		page = virt_to_page(nc->va);
5561 
5562 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5563 			goto refill;
5564 
5565 		if (unlikely(nc->pfmemalloc)) {
5566 			free_the_page(page, compound_order(page));
5567 			goto refill;
5568 		}
5569 
5570 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5571 		/* if size can vary use size else just use PAGE_SIZE */
5572 		size = nc->size;
5573 #endif
5574 		/* OK, page count is 0, we can safely set it */
5575 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5576 
5577 		/* reset page count bias and offset to start of new frag */
5578 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5579 		offset = size - fragsz;
5580 	}
5581 
5582 	nc->pagecnt_bias--;
5583 	offset &= align_mask;
5584 	nc->offset = offset;
5585 
5586 	return nc->va + offset;
5587 }
5588 EXPORT_SYMBOL(page_frag_alloc_align);
5589 
5590 /*
5591  * Frees a page fragment allocated out of either a compound or order 0 page.
5592  */
5593 void page_frag_free(void *addr)
5594 {
5595 	struct page *page = virt_to_head_page(addr);
5596 
5597 	if (unlikely(put_page_testzero(page)))
5598 		free_the_page(page, compound_order(page));
5599 }
5600 EXPORT_SYMBOL(page_frag_free);
5601 
5602 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5603 		size_t size)
5604 {
5605 	if (addr) {
5606 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5607 		unsigned long used = addr + PAGE_ALIGN(size);
5608 
5609 		split_page(virt_to_page((void *)addr), order);
5610 		while (used < alloc_end) {
5611 			free_page(used);
5612 			used += PAGE_SIZE;
5613 		}
5614 	}
5615 	return (void *)addr;
5616 }
5617 
5618 /**
5619  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5620  * @size: the number of bytes to allocate
5621  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5622  *
5623  * This function is similar to alloc_pages(), except that it allocates the
5624  * minimum number of pages to satisfy the request.  alloc_pages() can only
5625  * allocate memory in power-of-two pages.
5626  *
5627  * This function is also limited by MAX_ORDER.
5628  *
5629  * Memory allocated by this function must be released by free_pages_exact().
5630  *
5631  * Return: pointer to the allocated area or %NULL in case of error.
5632  */
5633 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5634 {
5635 	unsigned int order = get_order(size);
5636 	unsigned long addr;
5637 
5638 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5639 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5640 
5641 	addr = __get_free_pages(gfp_mask, order);
5642 	return make_alloc_exact(addr, order, size);
5643 }
5644 EXPORT_SYMBOL(alloc_pages_exact);
5645 
5646 /**
5647  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5648  *			   pages on a node.
5649  * @nid: the preferred node ID where memory should be allocated
5650  * @size: the number of bytes to allocate
5651  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5652  *
5653  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5654  * back.
5655  *
5656  * Return: pointer to the allocated area or %NULL in case of error.
5657  */
5658 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5659 {
5660 	unsigned int order = get_order(size);
5661 	struct page *p;
5662 
5663 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5664 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5665 
5666 	p = alloc_pages_node(nid, gfp_mask, order);
5667 	if (!p)
5668 		return NULL;
5669 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5670 }
5671 
5672 /**
5673  * free_pages_exact - release memory allocated via alloc_pages_exact()
5674  * @virt: the value returned by alloc_pages_exact.
5675  * @size: size of allocation, same value as passed to alloc_pages_exact().
5676  *
5677  * Release the memory allocated by a previous call to alloc_pages_exact.
5678  */
5679 void free_pages_exact(void *virt, size_t size)
5680 {
5681 	unsigned long addr = (unsigned long)virt;
5682 	unsigned long end = addr + PAGE_ALIGN(size);
5683 
5684 	while (addr < end) {
5685 		free_page(addr);
5686 		addr += PAGE_SIZE;
5687 	}
5688 }
5689 EXPORT_SYMBOL(free_pages_exact);
5690 
5691 /**
5692  * nr_free_zone_pages - count number of pages beyond high watermark
5693  * @offset: The zone index of the highest zone
5694  *
5695  * nr_free_zone_pages() counts the number of pages which are beyond the
5696  * high watermark within all zones at or below a given zone index.  For each
5697  * zone, the number of pages is calculated as:
5698  *
5699  *     nr_free_zone_pages = managed_pages - high_pages
5700  *
5701  * Return: number of pages beyond high watermark.
5702  */
5703 static unsigned long nr_free_zone_pages(int offset)
5704 {
5705 	struct zoneref *z;
5706 	struct zone *zone;
5707 
5708 	/* Just pick one node, since fallback list is circular */
5709 	unsigned long sum = 0;
5710 
5711 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5712 
5713 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5714 		unsigned long size = zone_managed_pages(zone);
5715 		unsigned long high = high_wmark_pages(zone);
5716 		if (size > high)
5717 			sum += size - high;
5718 	}
5719 
5720 	return sum;
5721 }
5722 
5723 /**
5724  * nr_free_buffer_pages - count number of pages beyond high watermark
5725  *
5726  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5727  * watermark within ZONE_DMA and ZONE_NORMAL.
5728  *
5729  * Return: number of pages beyond high watermark within ZONE_DMA and
5730  * ZONE_NORMAL.
5731  */
5732 unsigned long nr_free_buffer_pages(void)
5733 {
5734 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5735 }
5736 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5737 
5738 static inline void show_node(struct zone *zone)
5739 {
5740 	if (IS_ENABLED(CONFIG_NUMA))
5741 		printk("Node %d ", zone_to_nid(zone));
5742 }
5743 
5744 long si_mem_available(void)
5745 {
5746 	long available;
5747 	unsigned long pagecache;
5748 	unsigned long wmark_low = 0;
5749 	unsigned long pages[NR_LRU_LISTS];
5750 	unsigned long reclaimable;
5751 	struct zone *zone;
5752 	int lru;
5753 
5754 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5755 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5756 
5757 	for_each_zone(zone)
5758 		wmark_low += low_wmark_pages(zone);
5759 
5760 	/*
5761 	 * Estimate the amount of memory available for userspace allocations,
5762 	 * without causing swapping.
5763 	 */
5764 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5765 
5766 	/*
5767 	 * Not all the page cache can be freed, otherwise the system will
5768 	 * start swapping. Assume at least half of the page cache, or the
5769 	 * low watermark worth of cache, needs to stay.
5770 	 */
5771 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5772 	pagecache -= min(pagecache / 2, wmark_low);
5773 	available += pagecache;
5774 
5775 	/*
5776 	 * Part of the reclaimable slab and other kernel memory consists of
5777 	 * items that are in use, and cannot be freed. Cap this estimate at the
5778 	 * low watermark.
5779 	 */
5780 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5781 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5782 	available += reclaimable - min(reclaimable / 2, wmark_low);
5783 
5784 	if (available < 0)
5785 		available = 0;
5786 	return available;
5787 }
5788 EXPORT_SYMBOL_GPL(si_mem_available);
5789 
5790 void si_meminfo(struct sysinfo *val)
5791 {
5792 	val->totalram = totalram_pages();
5793 	val->sharedram = global_node_page_state(NR_SHMEM);
5794 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5795 	val->bufferram = nr_blockdev_pages();
5796 	val->totalhigh = totalhigh_pages();
5797 	val->freehigh = nr_free_highpages();
5798 	val->mem_unit = PAGE_SIZE;
5799 }
5800 
5801 EXPORT_SYMBOL(si_meminfo);
5802 
5803 #ifdef CONFIG_NUMA
5804 void si_meminfo_node(struct sysinfo *val, int nid)
5805 {
5806 	int zone_type;		/* needs to be signed */
5807 	unsigned long managed_pages = 0;
5808 	unsigned long managed_highpages = 0;
5809 	unsigned long free_highpages = 0;
5810 	pg_data_t *pgdat = NODE_DATA(nid);
5811 
5812 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5813 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5814 	val->totalram = managed_pages;
5815 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5816 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5817 #ifdef CONFIG_HIGHMEM
5818 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5819 		struct zone *zone = &pgdat->node_zones[zone_type];
5820 
5821 		if (is_highmem(zone)) {
5822 			managed_highpages += zone_managed_pages(zone);
5823 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5824 		}
5825 	}
5826 	val->totalhigh = managed_highpages;
5827 	val->freehigh = free_highpages;
5828 #else
5829 	val->totalhigh = managed_highpages;
5830 	val->freehigh = free_highpages;
5831 #endif
5832 	val->mem_unit = PAGE_SIZE;
5833 }
5834 #endif
5835 
5836 /*
5837  * Determine whether the node should be displayed or not, depending on whether
5838  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5839  */
5840 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5841 {
5842 	if (!(flags & SHOW_MEM_FILTER_NODES))
5843 		return false;
5844 
5845 	/*
5846 	 * no node mask - aka implicit memory numa policy. Do not bother with
5847 	 * the synchronization - read_mems_allowed_begin - because we do not
5848 	 * have to be precise here.
5849 	 */
5850 	if (!nodemask)
5851 		nodemask = &cpuset_current_mems_allowed;
5852 
5853 	return !node_isset(nid, *nodemask);
5854 }
5855 
5856 #define K(x) ((x) << (PAGE_SHIFT-10))
5857 
5858 static void show_migration_types(unsigned char type)
5859 {
5860 	static const char types[MIGRATE_TYPES] = {
5861 		[MIGRATE_UNMOVABLE]	= 'U',
5862 		[MIGRATE_MOVABLE]	= 'M',
5863 		[MIGRATE_RECLAIMABLE]	= 'E',
5864 		[MIGRATE_HIGHATOMIC]	= 'H',
5865 #ifdef CONFIG_CMA
5866 		[MIGRATE_CMA]		= 'C',
5867 #endif
5868 #ifdef CONFIG_MEMORY_ISOLATION
5869 		[MIGRATE_ISOLATE]	= 'I',
5870 #endif
5871 	};
5872 	char tmp[MIGRATE_TYPES + 1];
5873 	char *p = tmp;
5874 	int i;
5875 
5876 	for (i = 0; i < MIGRATE_TYPES; i++) {
5877 		if (type & (1 << i))
5878 			*p++ = types[i];
5879 	}
5880 
5881 	*p = '\0';
5882 	printk(KERN_CONT "(%s) ", tmp);
5883 }
5884 
5885 /*
5886  * Show free area list (used inside shift_scroll-lock stuff)
5887  * We also calculate the percentage fragmentation. We do this by counting the
5888  * memory on each free list with the exception of the first item on the list.
5889  *
5890  * Bits in @filter:
5891  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5892  *   cpuset.
5893  */
5894 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5895 {
5896 	unsigned long free_pcp = 0;
5897 	int cpu;
5898 	struct zone *zone;
5899 	pg_data_t *pgdat;
5900 
5901 	for_each_populated_zone(zone) {
5902 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5903 			continue;
5904 
5905 		for_each_online_cpu(cpu)
5906 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5907 	}
5908 
5909 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5910 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5911 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5912 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5913 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5914 		" kernel_misc_reclaimable:%lu\n"
5915 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5916 		global_node_page_state(NR_ACTIVE_ANON),
5917 		global_node_page_state(NR_INACTIVE_ANON),
5918 		global_node_page_state(NR_ISOLATED_ANON),
5919 		global_node_page_state(NR_ACTIVE_FILE),
5920 		global_node_page_state(NR_INACTIVE_FILE),
5921 		global_node_page_state(NR_ISOLATED_FILE),
5922 		global_node_page_state(NR_UNEVICTABLE),
5923 		global_node_page_state(NR_FILE_DIRTY),
5924 		global_node_page_state(NR_WRITEBACK),
5925 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5926 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5927 		global_node_page_state(NR_FILE_MAPPED),
5928 		global_node_page_state(NR_SHMEM),
5929 		global_node_page_state(NR_PAGETABLE),
5930 		global_zone_page_state(NR_BOUNCE),
5931 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5932 		global_zone_page_state(NR_FREE_PAGES),
5933 		free_pcp,
5934 		global_zone_page_state(NR_FREE_CMA_PAGES));
5935 
5936 	for_each_online_pgdat(pgdat) {
5937 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5938 			continue;
5939 
5940 		printk("Node %d"
5941 			" active_anon:%lukB"
5942 			" inactive_anon:%lukB"
5943 			" active_file:%lukB"
5944 			" inactive_file:%lukB"
5945 			" unevictable:%lukB"
5946 			" isolated(anon):%lukB"
5947 			" isolated(file):%lukB"
5948 			" mapped:%lukB"
5949 			" dirty:%lukB"
5950 			" writeback:%lukB"
5951 			" shmem:%lukB"
5952 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5953 			" shmem_thp: %lukB"
5954 			" shmem_pmdmapped: %lukB"
5955 			" anon_thp: %lukB"
5956 #endif
5957 			" writeback_tmp:%lukB"
5958 			" kernel_stack:%lukB"
5959 #ifdef CONFIG_SHADOW_CALL_STACK
5960 			" shadow_call_stack:%lukB"
5961 #endif
5962 			" pagetables:%lukB"
5963 			" all_unreclaimable? %s"
5964 			"\n",
5965 			pgdat->node_id,
5966 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5967 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5968 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5969 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5970 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5971 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5972 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5973 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5974 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5975 			K(node_page_state(pgdat, NR_WRITEBACK)),
5976 			K(node_page_state(pgdat, NR_SHMEM)),
5977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5978 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5979 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5980 			K(node_page_state(pgdat, NR_ANON_THPS)),
5981 #endif
5982 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5983 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5984 #ifdef CONFIG_SHADOW_CALL_STACK
5985 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5986 #endif
5987 			K(node_page_state(pgdat, NR_PAGETABLE)),
5988 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5989 				"yes" : "no");
5990 	}
5991 
5992 	for_each_populated_zone(zone) {
5993 		int i;
5994 
5995 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5996 			continue;
5997 
5998 		free_pcp = 0;
5999 		for_each_online_cpu(cpu)
6000 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6001 
6002 		show_node(zone);
6003 		printk(KERN_CONT
6004 			"%s"
6005 			" free:%lukB"
6006 			" boost:%lukB"
6007 			" min:%lukB"
6008 			" low:%lukB"
6009 			" high:%lukB"
6010 			" reserved_highatomic:%luKB"
6011 			" active_anon:%lukB"
6012 			" inactive_anon:%lukB"
6013 			" active_file:%lukB"
6014 			" inactive_file:%lukB"
6015 			" unevictable:%lukB"
6016 			" writepending:%lukB"
6017 			" present:%lukB"
6018 			" managed:%lukB"
6019 			" mlocked:%lukB"
6020 			" bounce:%lukB"
6021 			" free_pcp:%lukB"
6022 			" local_pcp:%ukB"
6023 			" free_cma:%lukB"
6024 			"\n",
6025 			zone->name,
6026 			K(zone_page_state(zone, NR_FREE_PAGES)),
6027 			K(zone->watermark_boost),
6028 			K(min_wmark_pages(zone)),
6029 			K(low_wmark_pages(zone)),
6030 			K(high_wmark_pages(zone)),
6031 			K(zone->nr_reserved_highatomic),
6032 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6033 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6034 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6035 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6036 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6037 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6038 			K(zone->present_pages),
6039 			K(zone_managed_pages(zone)),
6040 			K(zone_page_state(zone, NR_MLOCK)),
6041 			K(zone_page_state(zone, NR_BOUNCE)),
6042 			K(free_pcp),
6043 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6044 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6045 		printk("lowmem_reserve[]:");
6046 		for (i = 0; i < MAX_NR_ZONES; i++)
6047 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6048 		printk(KERN_CONT "\n");
6049 	}
6050 
6051 	for_each_populated_zone(zone) {
6052 		unsigned int order;
6053 		unsigned long nr[MAX_ORDER], flags, total = 0;
6054 		unsigned char types[MAX_ORDER];
6055 
6056 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6057 			continue;
6058 		show_node(zone);
6059 		printk(KERN_CONT "%s: ", zone->name);
6060 
6061 		spin_lock_irqsave(&zone->lock, flags);
6062 		for (order = 0; order < MAX_ORDER; order++) {
6063 			struct free_area *area = &zone->free_area[order];
6064 			int type;
6065 
6066 			nr[order] = area->nr_free;
6067 			total += nr[order] << order;
6068 
6069 			types[order] = 0;
6070 			for (type = 0; type < MIGRATE_TYPES; type++) {
6071 				if (!free_area_empty(area, type))
6072 					types[order] |= 1 << type;
6073 			}
6074 		}
6075 		spin_unlock_irqrestore(&zone->lock, flags);
6076 		for (order = 0; order < MAX_ORDER; order++) {
6077 			printk(KERN_CONT "%lu*%lukB ",
6078 			       nr[order], K(1UL) << order);
6079 			if (nr[order])
6080 				show_migration_types(types[order]);
6081 		}
6082 		printk(KERN_CONT "= %lukB\n", K(total));
6083 	}
6084 
6085 	hugetlb_show_meminfo();
6086 
6087 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6088 
6089 	show_swap_cache_info();
6090 }
6091 
6092 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6093 {
6094 	zoneref->zone = zone;
6095 	zoneref->zone_idx = zone_idx(zone);
6096 }
6097 
6098 /*
6099  * Builds allocation fallback zone lists.
6100  *
6101  * Add all populated zones of a node to the zonelist.
6102  */
6103 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6104 {
6105 	struct zone *zone;
6106 	enum zone_type zone_type = MAX_NR_ZONES;
6107 	int nr_zones = 0;
6108 
6109 	do {
6110 		zone_type--;
6111 		zone = pgdat->node_zones + zone_type;
6112 		if (managed_zone(zone)) {
6113 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6114 			check_highest_zone(zone_type);
6115 		}
6116 	} while (zone_type);
6117 
6118 	return nr_zones;
6119 }
6120 
6121 #ifdef CONFIG_NUMA
6122 
6123 static int __parse_numa_zonelist_order(char *s)
6124 {
6125 	/*
6126 	 * We used to support different zonelists modes but they turned
6127 	 * out to be just not useful. Let's keep the warning in place
6128 	 * if somebody still use the cmd line parameter so that we do
6129 	 * not fail it silently
6130 	 */
6131 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6132 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6133 		return -EINVAL;
6134 	}
6135 	return 0;
6136 }
6137 
6138 char numa_zonelist_order[] = "Node";
6139 
6140 /*
6141  * sysctl handler for numa_zonelist_order
6142  */
6143 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6144 		void *buffer, size_t *length, loff_t *ppos)
6145 {
6146 	if (write)
6147 		return __parse_numa_zonelist_order(buffer);
6148 	return proc_dostring(table, write, buffer, length, ppos);
6149 }
6150 
6151 
6152 #define MAX_NODE_LOAD (nr_online_nodes)
6153 static int node_load[MAX_NUMNODES];
6154 
6155 /**
6156  * find_next_best_node - find the next node that should appear in a given node's fallback list
6157  * @node: node whose fallback list we're appending
6158  * @used_node_mask: nodemask_t of already used nodes
6159  *
6160  * We use a number of factors to determine which is the next node that should
6161  * appear on a given node's fallback list.  The node should not have appeared
6162  * already in @node's fallback list, and it should be the next closest node
6163  * according to the distance array (which contains arbitrary distance values
6164  * from each node to each node in the system), and should also prefer nodes
6165  * with no CPUs, since presumably they'll have very little allocation pressure
6166  * on them otherwise.
6167  *
6168  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6169  */
6170 int find_next_best_node(int node, nodemask_t *used_node_mask)
6171 {
6172 	int n, val;
6173 	int min_val = INT_MAX;
6174 	int best_node = NUMA_NO_NODE;
6175 
6176 	/* Use the local node if we haven't already */
6177 	if (!node_isset(node, *used_node_mask)) {
6178 		node_set(node, *used_node_mask);
6179 		return node;
6180 	}
6181 
6182 	for_each_node_state(n, N_MEMORY) {
6183 
6184 		/* Don't want a node to appear more than once */
6185 		if (node_isset(n, *used_node_mask))
6186 			continue;
6187 
6188 		/* Use the distance array to find the distance */
6189 		val = node_distance(node, n);
6190 
6191 		/* Penalize nodes under us ("prefer the next node") */
6192 		val += (n < node);
6193 
6194 		/* Give preference to headless and unused nodes */
6195 		if (!cpumask_empty(cpumask_of_node(n)))
6196 			val += PENALTY_FOR_NODE_WITH_CPUS;
6197 
6198 		/* Slight preference for less loaded node */
6199 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6200 		val += node_load[n];
6201 
6202 		if (val < min_val) {
6203 			min_val = val;
6204 			best_node = n;
6205 		}
6206 	}
6207 
6208 	if (best_node >= 0)
6209 		node_set(best_node, *used_node_mask);
6210 
6211 	return best_node;
6212 }
6213 
6214 
6215 /*
6216  * Build zonelists ordered by node and zones within node.
6217  * This results in maximum locality--normal zone overflows into local
6218  * DMA zone, if any--but risks exhausting DMA zone.
6219  */
6220 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6221 		unsigned nr_nodes)
6222 {
6223 	struct zoneref *zonerefs;
6224 	int i;
6225 
6226 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6227 
6228 	for (i = 0; i < nr_nodes; i++) {
6229 		int nr_zones;
6230 
6231 		pg_data_t *node = NODE_DATA(node_order[i]);
6232 
6233 		nr_zones = build_zonerefs_node(node, zonerefs);
6234 		zonerefs += nr_zones;
6235 	}
6236 	zonerefs->zone = NULL;
6237 	zonerefs->zone_idx = 0;
6238 }
6239 
6240 /*
6241  * Build gfp_thisnode zonelists
6242  */
6243 static void build_thisnode_zonelists(pg_data_t *pgdat)
6244 {
6245 	struct zoneref *zonerefs;
6246 	int nr_zones;
6247 
6248 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6249 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6250 	zonerefs += nr_zones;
6251 	zonerefs->zone = NULL;
6252 	zonerefs->zone_idx = 0;
6253 }
6254 
6255 /*
6256  * Build zonelists ordered by zone and nodes within zones.
6257  * This results in conserving DMA zone[s] until all Normal memory is
6258  * exhausted, but results in overflowing to remote node while memory
6259  * may still exist in local DMA zone.
6260  */
6261 
6262 static void build_zonelists(pg_data_t *pgdat)
6263 {
6264 	static int node_order[MAX_NUMNODES];
6265 	int node, load, nr_nodes = 0;
6266 	nodemask_t used_mask = NODE_MASK_NONE;
6267 	int local_node, prev_node;
6268 
6269 	/* NUMA-aware ordering of nodes */
6270 	local_node = pgdat->node_id;
6271 	load = nr_online_nodes;
6272 	prev_node = local_node;
6273 
6274 	memset(node_order, 0, sizeof(node_order));
6275 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6276 		/*
6277 		 * We don't want to pressure a particular node.
6278 		 * So adding penalty to the first node in same
6279 		 * distance group to make it round-robin.
6280 		 */
6281 		if (node_distance(local_node, node) !=
6282 		    node_distance(local_node, prev_node))
6283 			node_load[node] += load;
6284 
6285 		node_order[nr_nodes++] = node;
6286 		prev_node = node;
6287 		load--;
6288 	}
6289 
6290 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6291 	build_thisnode_zonelists(pgdat);
6292 	pr_info("Fallback order for Node %d: ", local_node);
6293 	for (node = 0; node < nr_nodes; node++)
6294 		pr_cont("%d ", node_order[node]);
6295 	pr_cont("\n");
6296 }
6297 
6298 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6299 /*
6300  * Return node id of node used for "local" allocations.
6301  * I.e., first node id of first zone in arg node's generic zonelist.
6302  * Used for initializing percpu 'numa_mem', which is used primarily
6303  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6304  */
6305 int local_memory_node(int node)
6306 {
6307 	struct zoneref *z;
6308 
6309 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6310 				   gfp_zone(GFP_KERNEL),
6311 				   NULL);
6312 	return zone_to_nid(z->zone);
6313 }
6314 #endif
6315 
6316 static void setup_min_unmapped_ratio(void);
6317 static void setup_min_slab_ratio(void);
6318 #else	/* CONFIG_NUMA */
6319 
6320 static void build_zonelists(pg_data_t *pgdat)
6321 {
6322 	int node, local_node;
6323 	struct zoneref *zonerefs;
6324 	int nr_zones;
6325 
6326 	local_node = pgdat->node_id;
6327 
6328 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6329 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6330 	zonerefs += nr_zones;
6331 
6332 	/*
6333 	 * Now we build the zonelist so that it contains the zones
6334 	 * of all the other nodes.
6335 	 * We don't want to pressure a particular node, so when
6336 	 * building the zones for node N, we make sure that the
6337 	 * zones coming right after the local ones are those from
6338 	 * node N+1 (modulo N)
6339 	 */
6340 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6341 		if (!node_online(node))
6342 			continue;
6343 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6344 		zonerefs += nr_zones;
6345 	}
6346 	for (node = 0; node < local_node; node++) {
6347 		if (!node_online(node))
6348 			continue;
6349 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6350 		zonerefs += nr_zones;
6351 	}
6352 
6353 	zonerefs->zone = NULL;
6354 	zonerefs->zone_idx = 0;
6355 }
6356 
6357 #endif	/* CONFIG_NUMA */
6358 
6359 /*
6360  * Boot pageset table. One per cpu which is going to be used for all
6361  * zones and all nodes. The parameters will be set in such a way
6362  * that an item put on a list will immediately be handed over to
6363  * the buddy list. This is safe since pageset manipulation is done
6364  * with interrupts disabled.
6365  *
6366  * The boot_pagesets must be kept even after bootup is complete for
6367  * unused processors and/or zones. They do play a role for bootstrapping
6368  * hotplugged processors.
6369  *
6370  * zoneinfo_show() and maybe other functions do
6371  * not check if the processor is online before following the pageset pointer.
6372  * Other parts of the kernel may not check if the zone is available.
6373  */
6374 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6375 /* These effectively disable the pcplists in the boot pageset completely */
6376 #define BOOT_PAGESET_HIGH	0
6377 #define BOOT_PAGESET_BATCH	1
6378 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6379 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6380 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6381 
6382 static void __build_all_zonelists(void *data)
6383 {
6384 	int nid;
6385 	int __maybe_unused cpu;
6386 	pg_data_t *self = data;
6387 	static DEFINE_SPINLOCK(lock);
6388 
6389 	spin_lock(&lock);
6390 
6391 #ifdef CONFIG_NUMA
6392 	memset(node_load, 0, sizeof(node_load));
6393 #endif
6394 
6395 	/*
6396 	 * This node is hotadded and no memory is yet present.   So just
6397 	 * building zonelists is fine - no need to touch other nodes.
6398 	 */
6399 	if (self && !node_online(self->node_id)) {
6400 		build_zonelists(self);
6401 	} else {
6402 		for_each_online_node(nid) {
6403 			pg_data_t *pgdat = NODE_DATA(nid);
6404 
6405 			build_zonelists(pgdat);
6406 		}
6407 
6408 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6409 		/*
6410 		 * We now know the "local memory node" for each node--
6411 		 * i.e., the node of the first zone in the generic zonelist.
6412 		 * Set up numa_mem percpu variable for on-line cpus.  During
6413 		 * boot, only the boot cpu should be on-line;  we'll init the
6414 		 * secondary cpus' numa_mem as they come on-line.  During
6415 		 * node/memory hotplug, we'll fixup all on-line cpus.
6416 		 */
6417 		for_each_online_cpu(cpu)
6418 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6419 #endif
6420 	}
6421 
6422 	spin_unlock(&lock);
6423 }
6424 
6425 static noinline void __init
6426 build_all_zonelists_init(void)
6427 {
6428 	int cpu;
6429 
6430 	__build_all_zonelists(NULL);
6431 
6432 	/*
6433 	 * Initialize the boot_pagesets that are going to be used
6434 	 * for bootstrapping processors. The real pagesets for
6435 	 * each zone will be allocated later when the per cpu
6436 	 * allocator is available.
6437 	 *
6438 	 * boot_pagesets are used also for bootstrapping offline
6439 	 * cpus if the system is already booted because the pagesets
6440 	 * are needed to initialize allocators on a specific cpu too.
6441 	 * F.e. the percpu allocator needs the page allocator which
6442 	 * needs the percpu allocator in order to allocate its pagesets
6443 	 * (a chicken-egg dilemma).
6444 	 */
6445 	for_each_possible_cpu(cpu)
6446 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6447 
6448 	mminit_verify_zonelist();
6449 	cpuset_init_current_mems_allowed();
6450 }
6451 
6452 /*
6453  * unless system_state == SYSTEM_BOOTING.
6454  *
6455  * __ref due to call of __init annotated helper build_all_zonelists_init
6456  * [protected by SYSTEM_BOOTING].
6457  */
6458 void __ref build_all_zonelists(pg_data_t *pgdat)
6459 {
6460 	unsigned long vm_total_pages;
6461 
6462 	if (system_state == SYSTEM_BOOTING) {
6463 		build_all_zonelists_init();
6464 	} else {
6465 		__build_all_zonelists(pgdat);
6466 		/* cpuset refresh routine should be here */
6467 	}
6468 	/* Get the number of free pages beyond high watermark in all zones. */
6469 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6470 	/*
6471 	 * Disable grouping by mobility if the number of pages in the
6472 	 * system is too low to allow the mechanism to work. It would be
6473 	 * more accurate, but expensive to check per-zone. This check is
6474 	 * made on memory-hotadd so a system can start with mobility
6475 	 * disabled and enable it later
6476 	 */
6477 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6478 		page_group_by_mobility_disabled = 1;
6479 	else
6480 		page_group_by_mobility_disabled = 0;
6481 
6482 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6483 		nr_online_nodes,
6484 		page_group_by_mobility_disabled ? "off" : "on",
6485 		vm_total_pages);
6486 #ifdef CONFIG_NUMA
6487 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6488 #endif
6489 }
6490 
6491 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6492 static bool __meminit
6493 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6494 {
6495 	static struct memblock_region *r;
6496 
6497 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6498 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6499 			for_each_mem_region(r) {
6500 				if (*pfn < memblock_region_memory_end_pfn(r))
6501 					break;
6502 			}
6503 		}
6504 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6505 		    memblock_is_mirror(r)) {
6506 			*pfn = memblock_region_memory_end_pfn(r);
6507 			return true;
6508 		}
6509 	}
6510 	return false;
6511 }
6512 
6513 /*
6514  * Initially all pages are reserved - free ones are freed
6515  * up by memblock_free_all() once the early boot process is
6516  * done. Non-atomic initialization, single-pass.
6517  *
6518  * All aligned pageblocks are initialized to the specified migratetype
6519  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6520  * zone stats (e.g., nr_isolate_pageblock) are touched.
6521  */
6522 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6523 		unsigned long start_pfn, unsigned long zone_end_pfn,
6524 		enum meminit_context context,
6525 		struct vmem_altmap *altmap, int migratetype)
6526 {
6527 	unsigned long pfn, end_pfn = start_pfn + size;
6528 	struct page *page;
6529 
6530 	if (highest_memmap_pfn < end_pfn - 1)
6531 		highest_memmap_pfn = end_pfn - 1;
6532 
6533 #ifdef CONFIG_ZONE_DEVICE
6534 	/*
6535 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6536 	 * memory. We limit the total number of pages to initialize to just
6537 	 * those that might contain the memory mapping. We will defer the
6538 	 * ZONE_DEVICE page initialization until after we have released
6539 	 * the hotplug lock.
6540 	 */
6541 	if (zone == ZONE_DEVICE) {
6542 		if (!altmap)
6543 			return;
6544 
6545 		if (start_pfn == altmap->base_pfn)
6546 			start_pfn += altmap->reserve;
6547 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6548 	}
6549 #endif
6550 
6551 	for (pfn = start_pfn; pfn < end_pfn; ) {
6552 		/*
6553 		 * There can be holes in boot-time mem_map[]s handed to this
6554 		 * function.  They do not exist on hotplugged memory.
6555 		 */
6556 		if (context == MEMINIT_EARLY) {
6557 			if (overlap_memmap_init(zone, &pfn))
6558 				continue;
6559 			if (defer_init(nid, pfn, zone_end_pfn))
6560 				break;
6561 		}
6562 
6563 		page = pfn_to_page(pfn);
6564 		__init_single_page(page, pfn, zone, nid);
6565 		if (context == MEMINIT_HOTPLUG)
6566 			__SetPageReserved(page);
6567 
6568 		/*
6569 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6570 		 * such that unmovable allocations won't be scattered all
6571 		 * over the place during system boot.
6572 		 */
6573 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6574 			set_pageblock_migratetype(page, migratetype);
6575 			cond_resched();
6576 		}
6577 		pfn++;
6578 	}
6579 }
6580 
6581 #ifdef CONFIG_ZONE_DEVICE
6582 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6583 					  unsigned long zone_idx, int nid,
6584 					  struct dev_pagemap *pgmap)
6585 {
6586 
6587 	__init_single_page(page, pfn, zone_idx, nid);
6588 
6589 	/*
6590 	 * Mark page reserved as it will need to wait for onlining
6591 	 * phase for it to be fully associated with a zone.
6592 	 *
6593 	 * We can use the non-atomic __set_bit operation for setting
6594 	 * the flag as we are still initializing the pages.
6595 	 */
6596 	__SetPageReserved(page);
6597 
6598 	/*
6599 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6600 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6601 	 * ever freed or placed on a driver-private list.
6602 	 */
6603 	page->pgmap = pgmap;
6604 	page->zone_device_data = NULL;
6605 
6606 	/*
6607 	 * Mark the block movable so that blocks are reserved for
6608 	 * movable at startup. This will force kernel allocations
6609 	 * to reserve their blocks rather than leaking throughout
6610 	 * the address space during boot when many long-lived
6611 	 * kernel allocations are made.
6612 	 *
6613 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6614 	 * because this is done early in section_activate()
6615 	 */
6616 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6617 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6618 		cond_resched();
6619 	}
6620 }
6621 
6622 static void __ref memmap_init_compound(struct page *head,
6623 				       unsigned long head_pfn,
6624 				       unsigned long zone_idx, int nid,
6625 				       struct dev_pagemap *pgmap,
6626 				       unsigned long nr_pages)
6627 {
6628 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6629 	unsigned int order = pgmap->vmemmap_shift;
6630 
6631 	__SetPageHead(head);
6632 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6633 		struct page *page = pfn_to_page(pfn);
6634 
6635 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6636 		prep_compound_tail(head, pfn - head_pfn);
6637 		set_page_count(page, 0);
6638 
6639 		/*
6640 		 * The first tail page stores compound_mapcount_ptr() and
6641 		 * compound_order() and the second tail page stores
6642 		 * compound_pincount_ptr(). Call prep_compound_head() after
6643 		 * the first and second tail pages have been initialized to
6644 		 * not have the data overwritten.
6645 		 */
6646 		if (pfn == head_pfn + 2)
6647 			prep_compound_head(head, order);
6648 	}
6649 }
6650 
6651 void __ref memmap_init_zone_device(struct zone *zone,
6652 				   unsigned long start_pfn,
6653 				   unsigned long nr_pages,
6654 				   struct dev_pagemap *pgmap)
6655 {
6656 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6657 	struct pglist_data *pgdat = zone->zone_pgdat;
6658 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6659 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6660 	unsigned long zone_idx = zone_idx(zone);
6661 	unsigned long start = jiffies;
6662 	int nid = pgdat->node_id;
6663 
6664 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6665 		return;
6666 
6667 	/*
6668 	 * The call to memmap_init should have already taken care
6669 	 * of the pages reserved for the memmap, so we can just jump to
6670 	 * the end of that region and start processing the device pages.
6671 	 */
6672 	if (altmap) {
6673 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6674 		nr_pages = end_pfn - start_pfn;
6675 	}
6676 
6677 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6678 		struct page *page = pfn_to_page(pfn);
6679 
6680 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6681 
6682 		if (pfns_per_compound == 1)
6683 			continue;
6684 
6685 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6686 				     pfns_per_compound);
6687 	}
6688 
6689 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6690 		nr_pages, jiffies_to_msecs(jiffies - start));
6691 }
6692 
6693 #endif
6694 static void __meminit zone_init_free_lists(struct zone *zone)
6695 {
6696 	unsigned int order, t;
6697 	for_each_migratetype_order(order, t) {
6698 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6699 		zone->free_area[order].nr_free = 0;
6700 	}
6701 }
6702 
6703 /*
6704  * Only struct pages that correspond to ranges defined by memblock.memory
6705  * are zeroed and initialized by going through __init_single_page() during
6706  * memmap_init_zone_range().
6707  *
6708  * But, there could be struct pages that correspond to holes in
6709  * memblock.memory. This can happen because of the following reasons:
6710  * - physical memory bank size is not necessarily the exact multiple of the
6711  *   arbitrary section size
6712  * - early reserved memory may not be listed in memblock.memory
6713  * - memory layouts defined with memmap= kernel parameter may not align
6714  *   nicely with memmap sections
6715  *
6716  * Explicitly initialize those struct pages so that:
6717  * - PG_Reserved is set
6718  * - zone and node links point to zone and node that span the page if the
6719  *   hole is in the middle of a zone
6720  * - zone and node links point to adjacent zone/node if the hole falls on
6721  *   the zone boundary; the pages in such holes will be prepended to the
6722  *   zone/node above the hole except for the trailing pages in the last
6723  *   section that will be appended to the zone/node below.
6724  */
6725 static void __init init_unavailable_range(unsigned long spfn,
6726 					  unsigned long epfn,
6727 					  int zone, int node)
6728 {
6729 	unsigned long pfn;
6730 	u64 pgcnt = 0;
6731 
6732 	for (pfn = spfn; pfn < epfn; pfn++) {
6733 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6734 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6735 				+ pageblock_nr_pages - 1;
6736 			continue;
6737 		}
6738 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6739 		__SetPageReserved(pfn_to_page(pfn));
6740 		pgcnt++;
6741 	}
6742 
6743 	if (pgcnt)
6744 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6745 			node, zone_names[zone], pgcnt);
6746 }
6747 
6748 static void __init memmap_init_zone_range(struct zone *zone,
6749 					  unsigned long start_pfn,
6750 					  unsigned long end_pfn,
6751 					  unsigned long *hole_pfn)
6752 {
6753 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6754 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6755 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6756 
6757 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6758 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6759 
6760 	if (start_pfn >= end_pfn)
6761 		return;
6762 
6763 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6764 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6765 
6766 	if (*hole_pfn < start_pfn)
6767 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6768 
6769 	*hole_pfn = end_pfn;
6770 }
6771 
6772 static void __init memmap_init(void)
6773 {
6774 	unsigned long start_pfn, end_pfn;
6775 	unsigned long hole_pfn = 0;
6776 	int i, j, zone_id = 0, nid;
6777 
6778 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6779 		struct pglist_data *node = NODE_DATA(nid);
6780 
6781 		for (j = 0; j < MAX_NR_ZONES; j++) {
6782 			struct zone *zone = node->node_zones + j;
6783 
6784 			if (!populated_zone(zone))
6785 				continue;
6786 
6787 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6788 					       &hole_pfn);
6789 			zone_id = j;
6790 		}
6791 	}
6792 
6793 #ifdef CONFIG_SPARSEMEM
6794 	/*
6795 	 * Initialize the memory map for hole in the range [memory_end,
6796 	 * section_end].
6797 	 * Append the pages in this hole to the highest zone in the last
6798 	 * node.
6799 	 * The call to init_unavailable_range() is outside the ifdef to
6800 	 * silence the compiler warining about zone_id set but not used;
6801 	 * for FLATMEM it is a nop anyway
6802 	 */
6803 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6804 	if (hole_pfn < end_pfn)
6805 #endif
6806 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6807 }
6808 
6809 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6810 			  phys_addr_t min_addr, int nid, bool exact_nid)
6811 {
6812 	void *ptr;
6813 
6814 	if (exact_nid)
6815 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6816 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6817 						   nid);
6818 	else
6819 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6820 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6821 						 nid);
6822 
6823 	if (ptr && size > 0)
6824 		page_init_poison(ptr, size);
6825 
6826 	return ptr;
6827 }
6828 
6829 static int zone_batchsize(struct zone *zone)
6830 {
6831 #ifdef CONFIG_MMU
6832 	int batch;
6833 
6834 	/*
6835 	 * The number of pages to batch allocate is either ~0.1%
6836 	 * of the zone or 1MB, whichever is smaller. The batch
6837 	 * size is striking a balance between allocation latency
6838 	 * and zone lock contention.
6839 	 */
6840 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6841 	batch /= 4;		/* We effectively *= 4 below */
6842 	if (batch < 1)
6843 		batch = 1;
6844 
6845 	/*
6846 	 * Clamp the batch to a 2^n - 1 value. Having a power
6847 	 * of 2 value was found to be more likely to have
6848 	 * suboptimal cache aliasing properties in some cases.
6849 	 *
6850 	 * For example if 2 tasks are alternately allocating
6851 	 * batches of pages, one task can end up with a lot
6852 	 * of pages of one half of the possible page colors
6853 	 * and the other with pages of the other colors.
6854 	 */
6855 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6856 
6857 	return batch;
6858 
6859 #else
6860 	/* The deferral and batching of frees should be suppressed under NOMMU
6861 	 * conditions.
6862 	 *
6863 	 * The problem is that NOMMU needs to be able to allocate large chunks
6864 	 * of contiguous memory as there's no hardware page translation to
6865 	 * assemble apparent contiguous memory from discontiguous pages.
6866 	 *
6867 	 * Queueing large contiguous runs of pages for batching, however,
6868 	 * causes the pages to actually be freed in smaller chunks.  As there
6869 	 * can be a significant delay between the individual batches being
6870 	 * recycled, this leads to the once large chunks of space being
6871 	 * fragmented and becoming unavailable for high-order allocations.
6872 	 */
6873 	return 0;
6874 #endif
6875 }
6876 
6877 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6878 {
6879 #ifdef CONFIG_MMU
6880 	int high;
6881 	int nr_split_cpus;
6882 	unsigned long total_pages;
6883 
6884 	if (!percpu_pagelist_high_fraction) {
6885 		/*
6886 		 * By default, the high value of the pcp is based on the zone
6887 		 * low watermark so that if they are full then background
6888 		 * reclaim will not be started prematurely.
6889 		 */
6890 		total_pages = low_wmark_pages(zone);
6891 	} else {
6892 		/*
6893 		 * If percpu_pagelist_high_fraction is configured, the high
6894 		 * value is based on a fraction of the managed pages in the
6895 		 * zone.
6896 		 */
6897 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6898 	}
6899 
6900 	/*
6901 	 * Split the high value across all online CPUs local to the zone. Note
6902 	 * that early in boot that CPUs may not be online yet and that during
6903 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6904 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6905 	 * all online CPUs to mitigate the risk that reclaim is triggered
6906 	 * prematurely due to pages stored on pcp lists.
6907 	 */
6908 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6909 	if (!nr_split_cpus)
6910 		nr_split_cpus = num_online_cpus();
6911 	high = total_pages / nr_split_cpus;
6912 
6913 	/*
6914 	 * Ensure high is at least batch*4. The multiple is based on the
6915 	 * historical relationship between high and batch.
6916 	 */
6917 	high = max(high, batch << 2);
6918 
6919 	return high;
6920 #else
6921 	return 0;
6922 #endif
6923 }
6924 
6925 /*
6926  * pcp->high and pcp->batch values are related and generally batch is lower
6927  * than high. They are also related to pcp->count such that count is lower
6928  * than high, and as soon as it reaches high, the pcplist is flushed.
6929  *
6930  * However, guaranteeing these relations at all times would require e.g. write
6931  * barriers here but also careful usage of read barriers at the read side, and
6932  * thus be prone to error and bad for performance. Thus the update only prevents
6933  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6934  * can cope with those fields changing asynchronously, and fully trust only the
6935  * pcp->count field on the local CPU with interrupts disabled.
6936  *
6937  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6938  * outside of boot time (or some other assurance that no concurrent updaters
6939  * exist).
6940  */
6941 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6942 		unsigned long batch)
6943 {
6944 	WRITE_ONCE(pcp->batch, batch);
6945 	WRITE_ONCE(pcp->high, high);
6946 }
6947 
6948 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6949 {
6950 	int pindex;
6951 
6952 	memset(pcp, 0, sizeof(*pcp));
6953 	memset(pzstats, 0, sizeof(*pzstats));
6954 
6955 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6956 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6957 
6958 	/*
6959 	 * Set batch and high values safe for a boot pageset. A true percpu
6960 	 * pageset's initialization will update them subsequently. Here we don't
6961 	 * need to be as careful as pageset_update() as nobody can access the
6962 	 * pageset yet.
6963 	 */
6964 	pcp->high = BOOT_PAGESET_HIGH;
6965 	pcp->batch = BOOT_PAGESET_BATCH;
6966 	pcp->free_factor = 0;
6967 }
6968 
6969 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6970 		unsigned long batch)
6971 {
6972 	struct per_cpu_pages *pcp;
6973 	int cpu;
6974 
6975 	for_each_possible_cpu(cpu) {
6976 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6977 		pageset_update(pcp, high, batch);
6978 	}
6979 }
6980 
6981 /*
6982  * Calculate and set new high and batch values for all per-cpu pagesets of a
6983  * zone based on the zone's size.
6984  */
6985 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6986 {
6987 	int new_high, new_batch;
6988 
6989 	new_batch = max(1, zone_batchsize(zone));
6990 	new_high = zone_highsize(zone, new_batch, cpu_online);
6991 
6992 	if (zone->pageset_high == new_high &&
6993 	    zone->pageset_batch == new_batch)
6994 		return;
6995 
6996 	zone->pageset_high = new_high;
6997 	zone->pageset_batch = new_batch;
6998 
6999 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7000 }
7001 
7002 void __meminit setup_zone_pageset(struct zone *zone)
7003 {
7004 	int cpu;
7005 
7006 	/* Size may be 0 on !SMP && !NUMA */
7007 	if (sizeof(struct per_cpu_zonestat) > 0)
7008 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7009 
7010 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7011 	for_each_possible_cpu(cpu) {
7012 		struct per_cpu_pages *pcp;
7013 		struct per_cpu_zonestat *pzstats;
7014 
7015 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7016 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7017 		per_cpu_pages_init(pcp, pzstats);
7018 	}
7019 
7020 	zone_set_pageset_high_and_batch(zone, 0);
7021 }
7022 
7023 /*
7024  * Allocate per cpu pagesets and initialize them.
7025  * Before this call only boot pagesets were available.
7026  */
7027 void __init setup_per_cpu_pageset(void)
7028 {
7029 	struct pglist_data *pgdat;
7030 	struct zone *zone;
7031 	int __maybe_unused cpu;
7032 
7033 	for_each_populated_zone(zone)
7034 		setup_zone_pageset(zone);
7035 
7036 #ifdef CONFIG_NUMA
7037 	/*
7038 	 * Unpopulated zones continue using the boot pagesets.
7039 	 * The numa stats for these pagesets need to be reset.
7040 	 * Otherwise, they will end up skewing the stats of
7041 	 * the nodes these zones are associated with.
7042 	 */
7043 	for_each_possible_cpu(cpu) {
7044 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7045 		memset(pzstats->vm_numa_event, 0,
7046 		       sizeof(pzstats->vm_numa_event));
7047 	}
7048 #endif
7049 
7050 	for_each_online_pgdat(pgdat)
7051 		pgdat->per_cpu_nodestats =
7052 			alloc_percpu(struct per_cpu_nodestat);
7053 }
7054 
7055 static __meminit void zone_pcp_init(struct zone *zone)
7056 {
7057 	/*
7058 	 * per cpu subsystem is not up at this point. The following code
7059 	 * relies on the ability of the linker to provide the
7060 	 * offset of a (static) per cpu variable into the per cpu area.
7061 	 */
7062 	zone->per_cpu_pageset = &boot_pageset;
7063 	zone->per_cpu_zonestats = &boot_zonestats;
7064 	zone->pageset_high = BOOT_PAGESET_HIGH;
7065 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7066 
7067 	if (populated_zone(zone))
7068 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7069 			 zone->present_pages, zone_batchsize(zone));
7070 }
7071 
7072 void __meminit init_currently_empty_zone(struct zone *zone,
7073 					unsigned long zone_start_pfn,
7074 					unsigned long size)
7075 {
7076 	struct pglist_data *pgdat = zone->zone_pgdat;
7077 	int zone_idx = zone_idx(zone) + 1;
7078 
7079 	if (zone_idx > pgdat->nr_zones)
7080 		pgdat->nr_zones = zone_idx;
7081 
7082 	zone->zone_start_pfn = zone_start_pfn;
7083 
7084 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7085 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7086 			pgdat->node_id,
7087 			(unsigned long)zone_idx(zone),
7088 			zone_start_pfn, (zone_start_pfn + size));
7089 
7090 	zone_init_free_lists(zone);
7091 	zone->initialized = 1;
7092 }
7093 
7094 /**
7095  * get_pfn_range_for_nid - Return the start and end page frames for a node
7096  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7097  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7098  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7099  *
7100  * It returns the start and end page frame of a node based on information
7101  * provided by memblock_set_node(). If called for a node
7102  * with no available memory, a warning is printed and the start and end
7103  * PFNs will be 0.
7104  */
7105 void __init get_pfn_range_for_nid(unsigned int nid,
7106 			unsigned long *start_pfn, unsigned long *end_pfn)
7107 {
7108 	unsigned long this_start_pfn, this_end_pfn;
7109 	int i;
7110 
7111 	*start_pfn = -1UL;
7112 	*end_pfn = 0;
7113 
7114 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7115 		*start_pfn = min(*start_pfn, this_start_pfn);
7116 		*end_pfn = max(*end_pfn, this_end_pfn);
7117 	}
7118 
7119 	if (*start_pfn == -1UL)
7120 		*start_pfn = 0;
7121 }
7122 
7123 /*
7124  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7125  * assumption is made that zones within a node are ordered in monotonic
7126  * increasing memory addresses so that the "highest" populated zone is used
7127  */
7128 static void __init find_usable_zone_for_movable(void)
7129 {
7130 	int zone_index;
7131 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7132 		if (zone_index == ZONE_MOVABLE)
7133 			continue;
7134 
7135 		if (arch_zone_highest_possible_pfn[zone_index] >
7136 				arch_zone_lowest_possible_pfn[zone_index])
7137 			break;
7138 	}
7139 
7140 	VM_BUG_ON(zone_index == -1);
7141 	movable_zone = zone_index;
7142 }
7143 
7144 /*
7145  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7146  * because it is sized independent of architecture. Unlike the other zones,
7147  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7148  * in each node depending on the size of each node and how evenly kernelcore
7149  * is distributed. This helper function adjusts the zone ranges
7150  * provided by the architecture for a given node by using the end of the
7151  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7152  * zones within a node are in order of monotonic increases memory addresses
7153  */
7154 static void __init adjust_zone_range_for_zone_movable(int nid,
7155 					unsigned long zone_type,
7156 					unsigned long node_start_pfn,
7157 					unsigned long node_end_pfn,
7158 					unsigned long *zone_start_pfn,
7159 					unsigned long *zone_end_pfn)
7160 {
7161 	/* Only adjust if ZONE_MOVABLE is on this node */
7162 	if (zone_movable_pfn[nid]) {
7163 		/* Size ZONE_MOVABLE */
7164 		if (zone_type == ZONE_MOVABLE) {
7165 			*zone_start_pfn = zone_movable_pfn[nid];
7166 			*zone_end_pfn = min(node_end_pfn,
7167 				arch_zone_highest_possible_pfn[movable_zone]);
7168 
7169 		/* Adjust for ZONE_MOVABLE starting within this range */
7170 		} else if (!mirrored_kernelcore &&
7171 			*zone_start_pfn < zone_movable_pfn[nid] &&
7172 			*zone_end_pfn > zone_movable_pfn[nid]) {
7173 			*zone_end_pfn = zone_movable_pfn[nid];
7174 
7175 		/* Check if this whole range is within ZONE_MOVABLE */
7176 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7177 			*zone_start_pfn = *zone_end_pfn;
7178 	}
7179 }
7180 
7181 /*
7182  * Return the number of pages a zone spans in a node, including holes
7183  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7184  */
7185 static unsigned long __init zone_spanned_pages_in_node(int nid,
7186 					unsigned long zone_type,
7187 					unsigned long node_start_pfn,
7188 					unsigned long node_end_pfn,
7189 					unsigned long *zone_start_pfn,
7190 					unsigned long *zone_end_pfn)
7191 {
7192 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7193 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7194 	/* When hotadd a new node from cpu_up(), the node should be empty */
7195 	if (!node_start_pfn && !node_end_pfn)
7196 		return 0;
7197 
7198 	/* Get the start and end of the zone */
7199 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7200 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7201 	adjust_zone_range_for_zone_movable(nid, zone_type,
7202 				node_start_pfn, node_end_pfn,
7203 				zone_start_pfn, zone_end_pfn);
7204 
7205 	/* Check that this node has pages within the zone's required range */
7206 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7207 		return 0;
7208 
7209 	/* Move the zone boundaries inside the node if necessary */
7210 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7211 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7212 
7213 	/* Return the spanned pages */
7214 	return *zone_end_pfn - *zone_start_pfn;
7215 }
7216 
7217 /*
7218  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7219  * then all holes in the requested range will be accounted for.
7220  */
7221 unsigned long __init __absent_pages_in_range(int nid,
7222 				unsigned long range_start_pfn,
7223 				unsigned long range_end_pfn)
7224 {
7225 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7226 	unsigned long start_pfn, end_pfn;
7227 	int i;
7228 
7229 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7230 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7231 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7232 		nr_absent -= end_pfn - start_pfn;
7233 	}
7234 	return nr_absent;
7235 }
7236 
7237 /**
7238  * absent_pages_in_range - Return number of page frames in holes within a range
7239  * @start_pfn: The start PFN to start searching for holes
7240  * @end_pfn: The end PFN to stop searching for holes
7241  *
7242  * Return: the number of pages frames in memory holes within a range.
7243  */
7244 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7245 							unsigned long end_pfn)
7246 {
7247 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7248 }
7249 
7250 /* Return the number of page frames in holes in a zone on a node */
7251 static unsigned long __init zone_absent_pages_in_node(int nid,
7252 					unsigned long zone_type,
7253 					unsigned long node_start_pfn,
7254 					unsigned long node_end_pfn)
7255 {
7256 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7257 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7258 	unsigned long zone_start_pfn, zone_end_pfn;
7259 	unsigned long nr_absent;
7260 
7261 	/* When hotadd a new node from cpu_up(), the node should be empty */
7262 	if (!node_start_pfn && !node_end_pfn)
7263 		return 0;
7264 
7265 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7266 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7267 
7268 	adjust_zone_range_for_zone_movable(nid, zone_type,
7269 			node_start_pfn, node_end_pfn,
7270 			&zone_start_pfn, &zone_end_pfn);
7271 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7272 
7273 	/*
7274 	 * ZONE_MOVABLE handling.
7275 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7276 	 * and vice versa.
7277 	 */
7278 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7279 		unsigned long start_pfn, end_pfn;
7280 		struct memblock_region *r;
7281 
7282 		for_each_mem_region(r) {
7283 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7284 					  zone_start_pfn, zone_end_pfn);
7285 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7286 					zone_start_pfn, zone_end_pfn);
7287 
7288 			if (zone_type == ZONE_MOVABLE &&
7289 			    memblock_is_mirror(r))
7290 				nr_absent += end_pfn - start_pfn;
7291 
7292 			if (zone_type == ZONE_NORMAL &&
7293 			    !memblock_is_mirror(r))
7294 				nr_absent += end_pfn - start_pfn;
7295 		}
7296 	}
7297 
7298 	return nr_absent;
7299 }
7300 
7301 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7302 						unsigned long node_start_pfn,
7303 						unsigned long node_end_pfn)
7304 {
7305 	unsigned long realtotalpages = 0, totalpages = 0;
7306 	enum zone_type i;
7307 
7308 	for (i = 0; i < MAX_NR_ZONES; i++) {
7309 		struct zone *zone = pgdat->node_zones + i;
7310 		unsigned long zone_start_pfn, zone_end_pfn;
7311 		unsigned long spanned, absent;
7312 		unsigned long size, real_size;
7313 
7314 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7315 						     node_start_pfn,
7316 						     node_end_pfn,
7317 						     &zone_start_pfn,
7318 						     &zone_end_pfn);
7319 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7320 						   node_start_pfn,
7321 						   node_end_pfn);
7322 
7323 		size = spanned;
7324 		real_size = size - absent;
7325 
7326 		if (size)
7327 			zone->zone_start_pfn = zone_start_pfn;
7328 		else
7329 			zone->zone_start_pfn = 0;
7330 		zone->spanned_pages = size;
7331 		zone->present_pages = real_size;
7332 #if defined(CONFIG_MEMORY_HOTPLUG)
7333 		zone->present_early_pages = real_size;
7334 #endif
7335 
7336 		totalpages += size;
7337 		realtotalpages += real_size;
7338 	}
7339 
7340 	pgdat->node_spanned_pages = totalpages;
7341 	pgdat->node_present_pages = realtotalpages;
7342 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7343 }
7344 
7345 #ifndef CONFIG_SPARSEMEM
7346 /*
7347  * Calculate the size of the zone->blockflags rounded to an unsigned long
7348  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7349  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7350  * round what is now in bits to nearest long in bits, then return it in
7351  * bytes.
7352  */
7353 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7354 {
7355 	unsigned long usemapsize;
7356 
7357 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7358 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7359 	usemapsize = usemapsize >> pageblock_order;
7360 	usemapsize *= NR_PAGEBLOCK_BITS;
7361 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7362 
7363 	return usemapsize / 8;
7364 }
7365 
7366 static void __ref setup_usemap(struct zone *zone)
7367 {
7368 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7369 					       zone->spanned_pages);
7370 	zone->pageblock_flags = NULL;
7371 	if (usemapsize) {
7372 		zone->pageblock_flags =
7373 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7374 					    zone_to_nid(zone));
7375 		if (!zone->pageblock_flags)
7376 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7377 			      usemapsize, zone->name, zone_to_nid(zone));
7378 	}
7379 }
7380 #else
7381 static inline void setup_usemap(struct zone *zone) {}
7382 #endif /* CONFIG_SPARSEMEM */
7383 
7384 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7385 
7386 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7387 void __init set_pageblock_order(void)
7388 {
7389 	unsigned int order;
7390 
7391 	/* Check that pageblock_nr_pages has not already been setup */
7392 	if (pageblock_order)
7393 		return;
7394 
7395 	if (HPAGE_SHIFT > PAGE_SHIFT)
7396 		order = HUGETLB_PAGE_ORDER;
7397 	else
7398 		order = MAX_ORDER - 1;
7399 
7400 	/*
7401 	 * Assume the largest contiguous order of interest is a huge page.
7402 	 * This value may be variable depending on boot parameters on IA64 and
7403 	 * powerpc.
7404 	 */
7405 	pageblock_order = order;
7406 }
7407 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7408 
7409 /*
7410  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7411  * is unused as pageblock_order is set at compile-time. See
7412  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7413  * the kernel config
7414  */
7415 void __init set_pageblock_order(void)
7416 {
7417 }
7418 
7419 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7420 
7421 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7422 						unsigned long present_pages)
7423 {
7424 	unsigned long pages = spanned_pages;
7425 
7426 	/*
7427 	 * Provide a more accurate estimation if there are holes within
7428 	 * the zone and SPARSEMEM is in use. If there are holes within the
7429 	 * zone, each populated memory region may cost us one or two extra
7430 	 * memmap pages due to alignment because memmap pages for each
7431 	 * populated regions may not be naturally aligned on page boundary.
7432 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7433 	 */
7434 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7435 	    IS_ENABLED(CONFIG_SPARSEMEM))
7436 		pages = present_pages;
7437 
7438 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7439 }
7440 
7441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7442 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7443 {
7444 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7445 
7446 	spin_lock_init(&ds_queue->split_queue_lock);
7447 	INIT_LIST_HEAD(&ds_queue->split_queue);
7448 	ds_queue->split_queue_len = 0;
7449 }
7450 #else
7451 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7452 #endif
7453 
7454 #ifdef CONFIG_COMPACTION
7455 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7456 {
7457 	init_waitqueue_head(&pgdat->kcompactd_wait);
7458 }
7459 #else
7460 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7461 #endif
7462 
7463 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7464 {
7465 	int i;
7466 
7467 	pgdat_resize_init(pgdat);
7468 
7469 	pgdat_init_split_queue(pgdat);
7470 	pgdat_init_kcompactd(pgdat);
7471 
7472 	init_waitqueue_head(&pgdat->kswapd_wait);
7473 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7474 
7475 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7476 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7477 
7478 	pgdat_page_ext_init(pgdat);
7479 	lruvec_init(&pgdat->__lruvec);
7480 }
7481 
7482 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7483 							unsigned long remaining_pages)
7484 {
7485 	atomic_long_set(&zone->managed_pages, remaining_pages);
7486 	zone_set_nid(zone, nid);
7487 	zone->name = zone_names[idx];
7488 	zone->zone_pgdat = NODE_DATA(nid);
7489 	spin_lock_init(&zone->lock);
7490 	zone_seqlock_init(zone);
7491 	zone_pcp_init(zone);
7492 }
7493 
7494 /*
7495  * Set up the zone data structures
7496  * - init pgdat internals
7497  * - init all zones belonging to this node
7498  *
7499  * NOTE: this function is only called during memory hotplug
7500  */
7501 #ifdef CONFIG_MEMORY_HOTPLUG
7502 void __ref free_area_init_core_hotplug(int nid)
7503 {
7504 	enum zone_type z;
7505 	pg_data_t *pgdat = NODE_DATA(nid);
7506 
7507 	pgdat_init_internals(pgdat);
7508 	for (z = 0; z < MAX_NR_ZONES; z++)
7509 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7510 }
7511 #endif
7512 
7513 /*
7514  * Set up the zone data structures:
7515  *   - mark all pages reserved
7516  *   - mark all memory queues empty
7517  *   - clear the memory bitmaps
7518  *
7519  * NOTE: pgdat should get zeroed by caller.
7520  * NOTE: this function is only called during early init.
7521  */
7522 static void __init free_area_init_core(struct pglist_data *pgdat)
7523 {
7524 	enum zone_type j;
7525 	int nid = pgdat->node_id;
7526 
7527 	pgdat_init_internals(pgdat);
7528 	pgdat->per_cpu_nodestats = &boot_nodestats;
7529 
7530 	for (j = 0; j < MAX_NR_ZONES; j++) {
7531 		struct zone *zone = pgdat->node_zones + j;
7532 		unsigned long size, freesize, memmap_pages;
7533 
7534 		size = zone->spanned_pages;
7535 		freesize = zone->present_pages;
7536 
7537 		/*
7538 		 * Adjust freesize so that it accounts for how much memory
7539 		 * is used by this zone for memmap. This affects the watermark
7540 		 * and per-cpu initialisations
7541 		 */
7542 		memmap_pages = calc_memmap_size(size, freesize);
7543 		if (!is_highmem_idx(j)) {
7544 			if (freesize >= memmap_pages) {
7545 				freesize -= memmap_pages;
7546 				if (memmap_pages)
7547 					pr_debug("  %s zone: %lu pages used for memmap\n",
7548 						 zone_names[j], memmap_pages);
7549 			} else
7550 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7551 					zone_names[j], memmap_pages, freesize);
7552 		}
7553 
7554 		/* Account for reserved pages */
7555 		if (j == 0 && freesize > dma_reserve) {
7556 			freesize -= dma_reserve;
7557 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7558 		}
7559 
7560 		if (!is_highmem_idx(j))
7561 			nr_kernel_pages += freesize;
7562 		/* Charge for highmem memmap if there are enough kernel pages */
7563 		else if (nr_kernel_pages > memmap_pages * 2)
7564 			nr_kernel_pages -= memmap_pages;
7565 		nr_all_pages += freesize;
7566 
7567 		/*
7568 		 * Set an approximate value for lowmem here, it will be adjusted
7569 		 * when the bootmem allocator frees pages into the buddy system.
7570 		 * And all highmem pages will be managed by the buddy system.
7571 		 */
7572 		zone_init_internals(zone, j, nid, freesize);
7573 
7574 		if (!size)
7575 			continue;
7576 
7577 		set_pageblock_order();
7578 		setup_usemap(zone);
7579 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7580 	}
7581 }
7582 
7583 #ifdef CONFIG_FLATMEM
7584 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7585 {
7586 	unsigned long __maybe_unused start = 0;
7587 	unsigned long __maybe_unused offset = 0;
7588 
7589 	/* Skip empty nodes */
7590 	if (!pgdat->node_spanned_pages)
7591 		return;
7592 
7593 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7594 	offset = pgdat->node_start_pfn - start;
7595 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7596 	if (!pgdat->node_mem_map) {
7597 		unsigned long size, end;
7598 		struct page *map;
7599 
7600 		/*
7601 		 * The zone's endpoints aren't required to be MAX_ORDER
7602 		 * aligned but the node_mem_map endpoints must be in order
7603 		 * for the buddy allocator to function correctly.
7604 		 */
7605 		end = pgdat_end_pfn(pgdat);
7606 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7607 		size =  (end - start) * sizeof(struct page);
7608 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7609 				   pgdat->node_id, false);
7610 		if (!map)
7611 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7612 			      size, pgdat->node_id);
7613 		pgdat->node_mem_map = map + offset;
7614 	}
7615 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7616 				__func__, pgdat->node_id, (unsigned long)pgdat,
7617 				(unsigned long)pgdat->node_mem_map);
7618 #ifndef CONFIG_NUMA
7619 	/*
7620 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7621 	 */
7622 	if (pgdat == NODE_DATA(0)) {
7623 		mem_map = NODE_DATA(0)->node_mem_map;
7624 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7625 			mem_map -= offset;
7626 	}
7627 #endif
7628 }
7629 #else
7630 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7631 #endif /* CONFIG_FLATMEM */
7632 
7633 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7634 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7635 {
7636 	pgdat->first_deferred_pfn = ULONG_MAX;
7637 }
7638 #else
7639 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7640 #endif
7641 
7642 static void __init free_area_init_node(int nid)
7643 {
7644 	pg_data_t *pgdat = NODE_DATA(nid);
7645 	unsigned long start_pfn = 0;
7646 	unsigned long end_pfn = 0;
7647 
7648 	/* pg_data_t should be reset to zero when it's allocated */
7649 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7650 
7651 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7652 
7653 	pgdat->node_id = nid;
7654 	pgdat->node_start_pfn = start_pfn;
7655 	pgdat->per_cpu_nodestats = NULL;
7656 
7657 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7658 		(u64)start_pfn << PAGE_SHIFT,
7659 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7660 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7661 
7662 	alloc_node_mem_map(pgdat);
7663 	pgdat_set_deferred_range(pgdat);
7664 
7665 	free_area_init_core(pgdat);
7666 }
7667 
7668 void __init free_area_init_memoryless_node(int nid)
7669 {
7670 	free_area_init_node(nid);
7671 }
7672 
7673 #if MAX_NUMNODES > 1
7674 /*
7675  * Figure out the number of possible node ids.
7676  */
7677 void __init setup_nr_node_ids(void)
7678 {
7679 	unsigned int highest;
7680 
7681 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7682 	nr_node_ids = highest + 1;
7683 }
7684 #endif
7685 
7686 /**
7687  * node_map_pfn_alignment - determine the maximum internode alignment
7688  *
7689  * This function should be called after node map is populated and sorted.
7690  * It calculates the maximum power of two alignment which can distinguish
7691  * all the nodes.
7692  *
7693  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7694  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7695  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7696  * shifted, 1GiB is enough and this function will indicate so.
7697  *
7698  * This is used to test whether pfn -> nid mapping of the chosen memory
7699  * model has fine enough granularity to avoid incorrect mapping for the
7700  * populated node map.
7701  *
7702  * Return: the determined alignment in pfn's.  0 if there is no alignment
7703  * requirement (single node).
7704  */
7705 unsigned long __init node_map_pfn_alignment(void)
7706 {
7707 	unsigned long accl_mask = 0, last_end = 0;
7708 	unsigned long start, end, mask;
7709 	int last_nid = NUMA_NO_NODE;
7710 	int i, nid;
7711 
7712 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7713 		if (!start || last_nid < 0 || last_nid == nid) {
7714 			last_nid = nid;
7715 			last_end = end;
7716 			continue;
7717 		}
7718 
7719 		/*
7720 		 * Start with a mask granular enough to pin-point to the
7721 		 * start pfn and tick off bits one-by-one until it becomes
7722 		 * too coarse to separate the current node from the last.
7723 		 */
7724 		mask = ~((1 << __ffs(start)) - 1);
7725 		while (mask && last_end <= (start & (mask << 1)))
7726 			mask <<= 1;
7727 
7728 		/* accumulate all internode masks */
7729 		accl_mask |= mask;
7730 	}
7731 
7732 	/* convert mask to number of pages */
7733 	return ~accl_mask + 1;
7734 }
7735 
7736 /**
7737  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7738  *
7739  * Return: the minimum PFN based on information provided via
7740  * memblock_set_node().
7741  */
7742 unsigned long __init find_min_pfn_with_active_regions(void)
7743 {
7744 	return PHYS_PFN(memblock_start_of_DRAM());
7745 }
7746 
7747 /*
7748  * early_calculate_totalpages()
7749  * Sum pages in active regions for movable zone.
7750  * Populate N_MEMORY for calculating usable_nodes.
7751  */
7752 static unsigned long __init early_calculate_totalpages(void)
7753 {
7754 	unsigned long totalpages = 0;
7755 	unsigned long start_pfn, end_pfn;
7756 	int i, nid;
7757 
7758 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7759 		unsigned long pages = end_pfn - start_pfn;
7760 
7761 		totalpages += pages;
7762 		if (pages)
7763 			node_set_state(nid, N_MEMORY);
7764 	}
7765 	return totalpages;
7766 }
7767 
7768 /*
7769  * Find the PFN the Movable zone begins in each node. Kernel memory
7770  * is spread evenly between nodes as long as the nodes have enough
7771  * memory. When they don't, some nodes will have more kernelcore than
7772  * others
7773  */
7774 static void __init find_zone_movable_pfns_for_nodes(void)
7775 {
7776 	int i, nid;
7777 	unsigned long usable_startpfn;
7778 	unsigned long kernelcore_node, kernelcore_remaining;
7779 	/* save the state before borrow the nodemask */
7780 	nodemask_t saved_node_state = node_states[N_MEMORY];
7781 	unsigned long totalpages = early_calculate_totalpages();
7782 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7783 	struct memblock_region *r;
7784 
7785 	/* Need to find movable_zone earlier when movable_node is specified. */
7786 	find_usable_zone_for_movable();
7787 
7788 	/*
7789 	 * If movable_node is specified, ignore kernelcore and movablecore
7790 	 * options.
7791 	 */
7792 	if (movable_node_is_enabled()) {
7793 		for_each_mem_region(r) {
7794 			if (!memblock_is_hotpluggable(r))
7795 				continue;
7796 
7797 			nid = memblock_get_region_node(r);
7798 
7799 			usable_startpfn = PFN_DOWN(r->base);
7800 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7801 				min(usable_startpfn, zone_movable_pfn[nid]) :
7802 				usable_startpfn;
7803 		}
7804 
7805 		goto out2;
7806 	}
7807 
7808 	/*
7809 	 * If kernelcore=mirror is specified, ignore movablecore option
7810 	 */
7811 	if (mirrored_kernelcore) {
7812 		bool mem_below_4gb_not_mirrored = false;
7813 
7814 		for_each_mem_region(r) {
7815 			if (memblock_is_mirror(r))
7816 				continue;
7817 
7818 			nid = memblock_get_region_node(r);
7819 
7820 			usable_startpfn = memblock_region_memory_base_pfn(r);
7821 
7822 			if (usable_startpfn < 0x100000) {
7823 				mem_below_4gb_not_mirrored = true;
7824 				continue;
7825 			}
7826 
7827 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7828 				min(usable_startpfn, zone_movable_pfn[nid]) :
7829 				usable_startpfn;
7830 		}
7831 
7832 		if (mem_below_4gb_not_mirrored)
7833 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7834 
7835 		goto out2;
7836 	}
7837 
7838 	/*
7839 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7840 	 * amount of necessary memory.
7841 	 */
7842 	if (required_kernelcore_percent)
7843 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7844 				       10000UL;
7845 	if (required_movablecore_percent)
7846 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7847 					10000UL;
7848 
7849 	/*
7850 	 * If movablecore= was specified, calculate what size of
7851 	 * kernelcore that corresponds so that memory usable for
7852 	 * any allocation type is evenly spread. If both kernelcore
7853 	 * and movablecore are specified, then the value of kernelcore
7854 	 * will be used for required_kernelcore if it's greater than
7855 	 * what movablecore would have allowed.
7856 	 */
7857 	if (required_movablecore) {
7858 		unsigned long corepages;
7859 
7860 		/*
7861 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7862 		 * was requested by the user
7863 		 */
7864 		required_movablecore =
7865 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7866 		required_movablecore = min(totalpages, required_movablecore);
7867 		corepages = totalpages - required_movablecore;
7868 
7869 		required_kernelcore = max(required_kernelcore, corepages);
7870 	}
7871 
7872 	/*
7873 	 * If kernelcore was not specified or kernelcore size is larger
7874 	 * than totalpages, there is no ZONE_MOVABLE.
7875 	 */
7876 	if (!required_kernelcore || required_kernelcore >= totalpages)
7877 		goto out;
7878 
7879 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7880 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7881 
7882 restart:
7883 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7884 	kernelcore_node = required_kernelcore / usable_nodes;
7885 	for_each_node_state(nid, N_MEMORY) {
7886 		unsigned long start_pfn, end_pfn;
7887 
7888 		/*
7889 		 * Recalculate kernelcore_node if the division per node
7890 		 * now exceeds what is necessary to satisfy the requested
7891 		 * amount of memory for the kernel
7892 		 */
7893 		if (required_kernelcore < kernelcore_node)
7894 			kernelcore_node = required_kernelcore / usable_nodes;
7895 
7896 		/*
7897 		 * As the map is walked, we track how much memory is usable
7898 		 * by the kernel using kernelcore_remaining. When it is
7899 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7900 		 */
7901 		kernelcore_remaining = kernelcore_node;
7902 
7903 		/* Go through each range of PFNs within this node */
7904 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7905 			unsigned long size_pages;
7906 
7907 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7908 			if (start_pfn >= end_pfn)
7909 				continue;
7910 
7911 			/* Account for what is only usable for kernelcore */
7912 			if (start_pfn < usable_startpfn) {
7913 				unsigned long kernel_pages;
7914 				kernel_pages = min(end_pfn, usable_startpfn)
7915 								- start_pfn;
7916 
7917 				kernelcore_remaining -= min(kernel_pages,
7918 							kernelcore_remaining);
7919 				required_kernelcore -= min(kernel_pages,
7920 							required_kernelcore);
7921 
7922 				/* Continue if range is now fully accounted */
7923 				if (end_pfn <= usable_startpfn) {
7924 
7925 					/*
7926 					 * Push zone_movable_pfn to the end so
7927 					 * that if we have to rebalance
7928 					 * kernelcore across nodes, we will
7929 					 * not double account here
7930 					 */
7931 					zone_movable_pfn[nid] = end_pfn;
7932 					continue;
7933 				}
7934 				start_pfn = usable_startpfn;
7935 			}
7936 
7937 			/*
7938 			 * The usable PFN range for ZONE_MOVABLE is from
7939 			 * start_pfn->end_pfn. Calculate size_pages as the
7940 			 * number of pages used as kernelcore
7941 			 */
7942 			size_pages = end_pfn - start_pfn;
7943 			if (size_pages > kernelcore_remaining)
7944 				size_pages = kernelcore_remaining;
7945 			zone_movable_pfn[nid] = start_pfn + size_pages;
7946 
7947 			/*
7948 			 * Some kernelcore has been met, update counts and
7949 			 * break if the kernelcore for this node has been
7950 			 * satisfied
7951 			 */
7952 			required_kernelcore -= min(required_kernelcore,
7953 								size_pages);
7954 			kernelcore_remaining -= size_pages;
7955 			if (!kernelcore_remaining)
7956 				break;
7957 		}
7958 	}
7959 
7960 	/*
7961 	 * If there is still required_kernelcore, we do another pass with one
7962 	 * less node in the count. This will push zone_movable_pfn[nid] further
7963 	 * along on the nodes that still have memory until kernelcore is
7964 	 * satisfied
7965 	 */
7966 	usable_nodes--;
7967 	if (usable_nodes && required_kernelcore > usable_nodes)
7968 		goto restart;
7969 
7970 out2:
7971 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7972 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7973 		zone_movable_pfn[nid] =
7974 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7975 
7976 out:
7977 	/* restore the node_state */
7978 	node_states[N_MEMORY] = saved_node_state;
7979 }
7980 
7981 /* Any regular or high memory on that node ? */
7982 static void check_for_memory(pg_data_t *pgdat, int nid)
7983 {
7984 	enum zone_type zone_type;
7985 
7986 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7987 		struct zone *zone = &pgdat->node_zones[zone_type];
7988 		if (populated_zone(zone)) {
7989 			if (IS_ENABLED(CONFIG_HIGHMEM))
7990 				node_set_state(nid, N_HIGH_MEMORY);
7991 			if (zone_type <= ZONE_NORMAL)
7992 				node_set_state(nid, N_NORMAL_MEMORY);
7993 			break;
7994 		}
7995 	}
7996 }
7997 
7998 /*
7999  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8000  * such cases we allow max_zone_pfn sorted in the descending order
8001  */
8002 bool __weak arch_has_descending_max_zone_pfns(void)
8003 {
8004 	return false;
8005 }
8006 
8007 /**
8008  * free_area_init - Initialise all pg_data_t and zone data
8009  * @max_zone_pfn: an array of max PFNs for each zone
8010  *
8011  * This will call free_area_init_node() for each active node in the system.
8012  * Using the page ranges provided by memblock_set_node(), the size of each
8013  * zone in each node and their holes is calculated. If the maximum PFN
8014  * between two adjacent zones match, it is assumed that the zone is empty.
8015  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8016  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8017  * starts where the previous one ended. For example, ZONE_DMA32 starts
8018  * at arch_max_dma_pfn.
8019  */
8020 void __init free_area_init(unsigned long *max_zone_pfn)
8021 {
8022 	unsigned long start_pfn, end_pfn;
8023 	int i, nid, zone;
8024 	bool descending;
8025 
8026 	/* Record where the zone boundaries are */
8027 	memset(arch_zone_lowest_possible_pfn, 0,
8028 				sizeof(arch_zone_lowest_possible_pfn));
8029 	memset(arch_zone_highest_possible_pfn, 0,
8030 				sizeof(arch_zone_highest_possible_pfn));
8031 
8032 	start_pfn = find_min_pfn_with_active_regions();
8033 	descending = arch_has_descending_max_zone_pfns();
8034 
8035 	for (i = 0; i < MAX_NR_ZONES; i++) {
8036 		if (descending)
8037 			zone = MAX_NR_ZONES - i - 1;
8038 		else
8039 			zone = i;
8040 
8041 		if (zone == ZONE_MOVABLE)
8042 			continue;
8043 
8044 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8045 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8046 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8047 
8048 		start_pfn = end_pfn;
8049 	}
8050 
8051 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8052 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8053 	find_zone_movable_pfns_for_nodes();
8054 
8055 	/* Print out the zone ranges */
8056 	pr_info("Zone ranges:\n");
8057 	for (i = 0; i < MAX_NR_ZONES; i++) {
8058 		if (i == ZONE_MOVABLE)
8059 			continue;
8060 		pr_info("  %-8s ", zone_names[i]);
8061 		if (arch_zone_lowest_possible_pfn[i] ==
8062 				arch_zone_highest_possible_pfn[i])
8063 			pr_cont("empty\n");
8064 		else
8065 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8066 				(u64)arch_zone_lowest_possible_pfn[i]
8067 					<< PAGE_SHIFT,
8068 				((u64)arch_zone_highest_possible_pfn[i]
8069 					<< PAGE_SHIFT) - 1);
8070 	}
8071 
8072 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8073 	pr_info("Movable zone start for each node\n");
8074 	for (i = 0; i < MAX_NUMNODES; i++) {
8075 		if (zone_movable_pfn[i])
8076 			pr_info("  Node %d: %#018Lx\n", i,
8077 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8078 	}
8079 
8080 	/*
8081 	 * Print out the early node map, and initialize the
8082 	 * subsection-map relative to active online memory ranges to
8083 	 * enable future "sub-section" extensions of the memory map.
8084 	 */
8085 	pr_info("Early memory node ranges\n");
8086 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8087 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8088 			(u64)start_pfn << PAGE_SHIFT,
8089 			((u64)end_pfn << PAGE_SHIFT) - 1);
8090 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8091 	}
8092 
8093 	/* Initialise every node */
8094 	mminit_verify_pageflags_layout();
8095 	setup_nr_node_ids();
8096 	for_each_online_node(nid) {
8097 		pg_data_t *pgdat = NODE_DATA(nid);
8098 		free_area_init_node(nid);
8099 
8100 		/* Any memory on that node */
8101 		if (pgdat->node_present_pages)
8102 			node_set_state(nid, N_MEMORY);
8103 		check_for_memory(pgdat, nid);
8104 	}
8105 
8106 	memmap_init();
8107 }
8108 
8109 static int __init cmdline_parse_core(char *p, unsigned long *core,
8110 				     unsigned long *percent)
8111 {
8112 	unsigned long long coremem;
8113 	char *endptr;
8114 
8115 	if (!p)
8116 		return -EINVAL;
8117 
8118 	/* Value may be a percentage of total memory, otherwise bytes */
8119 	coremem = simple_strtoull(p, &endptr, 0);
8120 	if (*endptr == '%') {
8121 		/* Paranoid check for percent values greater than 100 */
8122 		WARN_ON(coremem > 100);
8123 
8124 		*percent = coremem;
8125 	} else {
8126 		coremem = memparse(p, &p);
8127 		/* Paranoid check that UL is enough for the coremem value */
8128 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8129 
8130 		*core = coremem >> PAGE_SHIFT;
8131 		*percent = 0UL;
8132 	}
8133 	return 0;
8134 }
8135 
8136 /*
8137  * kernelcore=size sets the amount of memory for use for allocations that
8138  * cannot be reclaimed or migrated.
8139  */
8140 static int __init cmdline_parse_kernelcore(char *p)
8141 {
8142 	/* parse kernelcore=mirror */
8143 	if (parse_option_str(p, "mirror")) {
8144 		mirrored_kernelcore = true;
8145 		return 0;
8146 	}
8147 
8148 	return cmdline_parse_core(p, &required_kernelcore,
8149 				  &required_kernelcore_percent);
8150 }
8151 
8152 /*
8153  * movablecore=size sets the amount of memory for use for allocations that
8154  * can be reclaimed or migrated.
8155  */
8156 static int __init cmdline_parse_movablecore(char *p)
8157 {
8158 	return cmdline_parse_core(p, &required_movablecore,
8159 				  &required_movablecore_percent);
8160 }
8161 
8162 early_param("kernelcore", cmdline_parse_kernelcore);
8163 early_param("movablecore", cmdline_parse_movablecore);
8164 
8165 void adjust_managed_page_count(struct page *page, long count)
8166 {
8167 	atomic_long_add(count, &page_zone(page)->managed_pages);
8168 	totalram_pages_add(count);
8169 #ifdef CONFIG_HIGHMEM
8170 	if (PageHighMem(page))
8171 		totalhigh_pages_add(count);
8172 #endif
8173 }
8174 EXPORT_SYMBOL(adjust_managed_page_count);
8175 
8176 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8177 {
8178 	void *pos;
8179 	unsigned long pages = 0;
8180 
8181 	start = (void *)PAGE_ALIGN((unsigned long)start);
8182 	end = (void *)((unsigned long)end & PAGE_MASK);
8183 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8184 		struct page *page = virt_to_page(pos);
8185 		void *direct_map_addr;
8186 
8187 		/*
8188 		 * 'direct_map_addr' might be different from 'pos'
8189 		 * because some architectures' virt_to_page()
8190 		 * work with aliases.  Getting the direct map
8191 		 * address ensures that we get a _writeable_
8192 		 * alias for the memset().
8193 		 */
8194 		direct_map_addr = page_address(page);
8195 		/*
8196 		 * Perform a kasan-unchecked memset() since this memory
8197 		 * has not been initialized.
8198 		 */
8199 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8200 		if ((unsigned int)poison <= 0xFF)
8201 			memset(direct_map_addr, poison, PAGE_SIZE);
8202 
8203 		free_reserved_page(page);
8204 	}
8205 
8206 	if (pages && s)
8207 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8208 
8209 	return pages;
8210 }
8211 
8212 void __init mem_init_print_info(void)
8213 {
8214 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8215 	unsigned long init_code_size, init_data_size;
8216 
8217 	physpages = get_num_physpages();
8218 	codesize = _etext - _stext;
8219 	datasize = _edata - _sdata;
8220 	rosize = __end_rodata - __start_rodata;
8221 	bss_size = __bss_stop - __bss_start;
8222 	init_data_size = __init_end - __init_begin;
8223 	init_code_size = _einittext - _sinittext;
8224 
8225 	/*
8226 	 * Detect special cases and adjust section sizes accordingly:
8227 	 * 1) .init.* may be embedded into .data sections
8228 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8229 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8230 	 * 3) .rodata.* may be embedded into .text or .data sections.
8231 	 */
8232 #define adj_init_size(start, end, size, pos, adj) \
8233 	do { \
8234 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8235 			size -= adj; \
8236 	} while (0)
8237 
8238 	adj_init_size(__init_begin, __init_end, init_data_size,
8239 		     _sinittext, init_code_size);
8240 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8241 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8242 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8243 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8244 
8245 #undef	adj_init_size
8246 
8247 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8248 #ifdef	CONFIG_HIGHMEM
8249 		", %luK highmem"
8250 #endif
8251 		")\n",
8252 		K(nr_free_pages()), K(physpages),
8253 		codesize >> 10, datasize >> 10, rosize >> 10,
8254 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8255 		K(physpages - totalram_pages() - totalcma_pages),
8256 		K(totalcma_pages)
8257 #ifdef	CONFIG_HIGHMEM
8258 		, K(totalhigh_pages())
8259 #endif
8260 		);
8261 }
8262 
8263 /**
8264  * set_dma_reserve - set the specified number of pages reserved in the first zone
8265  * @new_dma_reserve: The number of pages to mark reserved
8266  *
8267  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8268  * In the DMA zone, a significant percentage may be consumed by kernel image
8269  * and other unfreeable allocations which can skew the watermarks badly. This
8270  * function may optionally be used to account for unfreeable pages in the
8271  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8272  * smaller per-cpu batchsize.
8273  */
8274 void __init set_dma_reserve(unsigned long new_dma_reserve)
8275 {
8276 	dma_reserve = new_dma_reserve;
8277 }
8278 
8279 static int page_alloc_cpu_dead(unsigned int cpu)
8280 {
8281 	struct zone *zone;
8282 
8283 	lru_add_drain_cpu(cpu);
8284 	drain_pages(cpu);
8285 
8286 	/*
8287 	 * Spill the event counters of the dead processor
8288 	 * into the current processors event counters.
8289 	 * This artificially elevates the count of the current
8290 	 * processor.
8291 	 */
8292 	vm_events_fold_cpu(cpu);
8293 
8294 	/*
8295 	 * Zero the differential counters of the dead processor
8296 	 * so that the vm statistics are consistent.
8297 	 *
8298 	 * This is only okay since the processor is dead and cannot
8299 	 * race with what we are doing.
8300 	 */
8301 	cpu_vm_stats_fold(cpu);
8302 
8303 	for_each_populated_zone(zone)
8304 		zone_pcp_update(zone, 0);
8305 
8306 	return 0;
8307 }
8308 
8309 static int page_alloc_cpu_online(unsigned int cpu)
8310 {
8311 	struct zone *zone;
8312 
8313 	for_each_populated_zone(zone)
8314 		zone_pcp_update(zone, 1);
8315 	return 0;
8316 }
8317 
8318 #ifdef CONFIG_NUMA
8319 int hashdist = HASHDIST_DEFAULT;
8320 
8321 static int __init set_hashdist(char *str)
8322 {
8323 	if (!str)
8324 		return 0;
8325 	hashdist = simple_strtoul(str, &str, 0);
8326 	return 1;
8327 }
8328 __setup("hashdist=", set_hashdist);
8329 #endif
8330 
8331 void __init page_alloc_init(void)
8332 {
8333 	int ret;
8334 
8335 #ifdef CONFIG_NUMA
8336 	if (num_node_state(N_MEMORY) == 1)
8337 		hashdist = 0;
8338 #endif
8339 
8340 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8341 					"mm/page_alloc:pcp",
8342 					page_alloc_cpu_online,
8343 					page_alloc_cpu_dead);
8344 	WARN_ON(ret < 0);
8345 }
8346 
8347 /*
8348  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8349  *	or min_free_kbytes changes.
8350  */
8351 static void calculate_totalreserve_pages(void)
8352 {
8353 	struct pglist_data *pgdat;
8354 	unsigned long reserve_pages = 0;
8355 	enum zone_type i, j;
8356 
8357 	for_each_online_pgdat(pgdat) {
8358 
8359 		pgdat->totalreserve_pages = 0;
8360 
8361 		for (i = 0; i < MAX_NR_ZONES; i++) {
8362 			struct zone *zone = pgdat->node_zones + i;
8363 			long max = 0;
8364 			unsigned long managed_pages = zone_managed_pages(zone);
8365 
8366 			/* Find valid and maximum lowmem_reserve in the zone */
8367 			for (j = i; j < MAX_NR_ZONES; j++) {
8368 				if (zone->lowmem_reserve[j] > max)
8369 					max = zone->lowmem_reserve[j];
8370 			}
8371 
8372 			/* we treat the high watermark as reserved pages. */
8373 			max += high_wmark_pages(zone);
8374 
8375 			if (max > managed_pages)
8376 				max = managed_pages;
8377 
8378 			pgdat->totalreserve_pages += max;
8379 
8380 			reserve_pages += max;
8381 		}
8382 	}
8383 	totalreserve_pages = reserve_pages;
8384 }
8385 
8386 /*
8387  * setup_per_zone_lowmem_reserve - called whenever
8388  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8389  *	has a correct pages reserved value, so an adequate number of
8390  *	pages are left in the zone after a successful __alloc_pages().
8391  */
8392 static void setup_per_zone_lowmem_reserve(void)
8393 {
8394 	struct pglist_data *pgdat;
8395 	enum zone_type i, j;
8396 
8397 	for_each_online_pgdat(pgdat) {
8398 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8399 			struct zone *zone = &pgdat->node_zones[i];
8400 			int ratio = sysctl_lowmem_reserve_ratio[i];
8401 			bool clear = !ratio || !zone_managed_pages(zone);
8402 			unsigned long managed_pages = 0;
8403 
8404 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8405 				struct zone *upper_zone = &pgdat->node_zones[j];
8406 
8407 				managed_pages += zone_managed_pages(upper_zone);
8408 
8409 				if (clear)
8410 					zone->lowmem_reserve[j] = 0;
8411 				else
8412 					zone->lowmem_reserve[j] = managed_pages / ratio;
8413 			}
8414 		}
8415 	}
8416 
8417 	/* update totalreserve_pages */
8418 	calculate_totalreserve_pages();
8419 }
8420 
8421 static void __setup_per_zone_wmarks(void)
8422 {
8423 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8424 	unsigned long lowmem_pages = 0;
8425 	struct zone *zone;
8426 	unsigned long flags;
8427 
8428 	/* Calculate total number of !ZONE_HIGHMEM pages */
8429 	for_each_zone(zone) {
8430 		if (!is_highmem(zone))
8431 			lowmem_pages += zone_managed_pages(zone);
8432 	}
8433 
8434 	for_each_zone(zone) {
8435 		u64 tmp;
8436 
8437 		spin_lock_irqsave(&zone->lock, flags);
8438 		tmp = (u64)pages_min * zone_managed_pages(zone);
8439 		do_div(tmp, lowmem_pages);
8440 		if (is_highmem(zone)) {
8441 			/*
8442 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8443 			 * need highmem pages, so cap pages_min to a small
8444 			 * value here.
8445 			 *
8446 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8447 			 * deltas control async page reclaim, and so should
8448 			 * not be capped for highmem.
8449 			 */
8450 			unsigned long min_pages;
8451 
8452 			min_pages = zone_managed_pages(zone) / 1024;
8453 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8454 			zone->_watermark[WMARK_MIN] = min_pages;
8455 		} else {
8456 			/*
8457 			 * If it's a lowmem zone, reserve a number of pages
8458 			 * proportionate to the zone's size.
8459 			 */
8460 			zone->_watermark[WMARK_MIN] = tmp;
8461 		}
8462 
8463 		/*
8464 		 * Set the kswapd watermarks distance according to the
8465 		 * scale factor in proportion to available memory, but
8466 		 * ensure a minimum size on small systems.
8467 		 */
8468 		tmp = max_t(u64, tmp >> 2,
8469 			    mult_frac(zone_managed_pages(zone),
8470 				      watermark_scale_factor, 10000));
8471 
8472 		zone->watermark_boost = 0;
8473 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8474 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8475 
8476 		spin_unlock_irqrestore(&zone->lock, flags);
8477 	}
8478 
8479 	/* update totalreserve_pages */
8480 	calculate_totalreserve_pages();
8481 }
8482 
8483 /**
8484  * setup_per_zone_wmarks - called when min_free_kbytes changes
8485  * or when memory is hot-{added|removed}
8486  *
8487  * Ensures that the watermark[min,low,high] values for each zone are set
8488  * correctly with respect to min_free_kbytes.
8489  */
8490 void setup_per_zone_wmarks(void)
8491 {
8492 	struct zone *zone;
8493 	static DEFINE_SPINLOCK(lock);
8494 
8495 	spin_lock(&lock);
8496 	__setup_per_zone_wmarks();
8497 	spin_unlock(&lock);
8498 
8499 	/*
8500 	 * The watermark size have changed so update the pcpu batch
8501 	 * and high limits or the limits may be inappropriate.
8502 	 */
8503 	for_each_zone(zone)
8504 		zone_pcp_update(zone, 0);
8505 }
8506 
8507 /*
8508  * Initialise min_free_kbytes.
8509  *
8510  * For small machines we want it small (128k min).  For large machines
8511  * we want it large (256MB max).  But it is not linear, because network
8512  * bandwidth does not increase linearly with machine size.  We use
8513  *
8514  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8515  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8516  *
8517  * which yields
8518  *
8519  * 16MB:	512k
8520  * 32MB:	724k
8521  * 64MB:	1024k
8522  * 128MB:	1448k
8523  * 256MB:	2048k
8524  * 512MB:	2896k
8525  * 1024MB:	4096k
8526  * 2048MB:	5792k
8527  * 4096MB:	8192k
8528  * 8192MB:	11584k
8529  * 16384MB:	16384k
8530  */
8531 void calculate_min_free_kbytes(void)
8532 {
8533 	unsigned long lowmem_kbytes;
8534 	int new_min_free_kbytes;
8535 
8536 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8537 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8538 
8539 	if (new_min_free_kbytes > user_min_free_kbytes)
8540 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8541 	else
8542 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8543 				new_min_free_kbytes, user_min_free_kbytes);
8544 
8545 }
8546 
8547 int __meminit init_per_zone_wmark_min(void)
8548 {
8549 	calculate_min_free_kbytes();
8550 	setup_per_zone_wmarks();
8551 	refresh_zone_stat_thresholds();
8552 	setup_per_zone_lowmem_reserve();
8553 
8554 #ifdef CONFIG_NUMA
8555 	setup_min_unmapped_ratio();
8556 	setup_min_slab_ratio();
8557 #endif
8558 
8559 	khugepaged_min_free_kbytes_update();
8560 
8561 	return 0;
8562 }
8563 postcore_initcall(init_per_zone_wmark_min)
8564 
8565 /*
8566  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8567  *	that we can call two helper functions whenever min_free_kbytes
8568  *	changes.
8569  */
8570 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8571 		void *buffer, size_t *length, loff_t *ppos)
8572 {
8573 	int rc;
8574 
8575 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8576 	if (rc)
8577 		return rc;
8578 
8579 	if (write) {
8580 		user_min_free_kbytes = min_free_kbytes;
8581 		setup_per_zone_wmarks();
8582 	}
8583 	return 0;
8584 }
8585 
8586 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8587 		void *buffer, size_t *length, loff_t *ppos)
8588 {
8589 	int rc;
8590 
8591 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8592 	if (rc)
8593 		return rc;
8594 
8595 	if (write)
8596 		setup_per_zone_wmarks();
8597 
8598 	return 0;
8599 }
8600 
8601 #ifdef CONFIG_NUMA
8602 static void setup_min_unmapped_ratio(void)
8603 {
8604 	pg_data_t *pgdat;
8605 	struct zone *zone;
8606 
8607 	for_each_online_pgdat(pgdat)
8608 		pgdat->min_unmapped_pages = 0;
8609 
8610 	for_each_zone(zone)
8611 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8612 						         sysctl_min_unmapped_ratio) / 100;
8613 }
8614 
8615 
8616 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8617 		void *buffer, size_t *length, loff_t *ppos)
8618 {
8619 	int rc;
8620 
8621 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8622 	if (rc)
8623 		return rc;
8624 
8625 	setup_min_unmapped_ratio();
8626 
8627 	return 0;
8628 }
8629 
8630 static void setup_min_slab_ratio(void)
8631 {
8632 	pg_data_t *pgdat;
8633 	struct zone *zone;
8634 
8635 	for_each_online_pgdat(pgdat)
8636 		pgdat->min_slab_pages = 0;
8637 
8638 	for_each_zone(zone)
8639 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8640 						     sysctl_min_slab_ratio) / 100;
8641 }
8642 
8643 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8644 		void *buffer, size_t *length, loff_t *ppos)
8645 {
8646 	int rc;
8647 
8648 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8649 	if (rc)
8650 		return rc;
8651 
8652 	setup_min_slab_ratio();
8653 
8654 	return 0;
8655 }
8656 #endif
8657 
8658 /*
8659  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8660  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8661  *	whenever sysctl_lowmem_reserve_ratio changes.
8662  *
8663  * The reserve ratio obviously has absolutely no relation with the
8664  * minimum watermarks. The lowmem reserve ratio can only make sense
8665  * if in function of the boot time zone sizes.
8666  */
8667 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8668 		void *buffer, size_t *length, loff_t *ppos)
8669 {
8670 	int i;
8671 
8672 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8673 
8674 	for (i = 0; i < MAX_NR_ZONES; i++) {
8675 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8676 			sysctl_lowmem_reserve_ratio[i] = 0;
8677 	}
8678 
8679 	setup_per_zone_lowmem_reserve();
8680 	return 0;
8681 }
8682 
8683 /*
8684  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8685  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8686  * pagelist can have before it gets flushed back to buddy allocator.
8687  */
8688 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8689 		int write, void *buffer, size_t *length, loff_t *ppos)
8690 {
8691 	struct zone *zone;
8692 	int old_percpu_pagelist_high_fraction;
8693 	int ret;
8694 
8695 	mutex_lock(&pcp_batch_high_lock);
8696 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8697 
8698 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8699 	if (!write || ret < 0)
8700 		goto out;
8701 
8702 	/* Sanity checking to avoid pcp imbalance */
8703 	if (percpu_pagelist_high_fraction &&
8704 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8705 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8706 		ret = -EINVAL;
8707 		goto out;
8708 	}
8709 
8710 	/* No change? */
8711 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8712 		goto out;
8713 
8714 	for_each_populated_zone(zone)
8715 		zone_set_pageset_high_and_batch(zone, 0);
8716 out:
8717 	mutex_unlock(&pcp_batch_high_lock);
8718 	return ret;
8719 }
8720 
8721 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8722 /*
8723  * Returns the number of pages that arch has reserved but
8724  * is not known to alloc_large_system_hash().
8725  */
8726 static unsigned long __init arch_reserved_kernel_pages(void)
8727 {
8728 	return 0;
8729 }
8730 #endif
8731 
8732 /*
8733  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8734  * machines. As memory size is increased the scale is also increased but at
8735  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8736  * quadruples the scale is increased by one, which means the size of hash table
8737  * only doubles, instead of quadrupling as well.
8738  * Because 32-bit systems cannot have large physical memory, where this scaling
8739  * makes sense, it is disabled on such platforms.
8740  */
8741 #if __BITS_PER_LONG > 32
8742 #define ADAPT_SCALE_BASE	(64ul << 30)
8743 #define ADAPT_SCALE_SHIFT	2
8744 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8745 #endif
8746 
8747 /*
8748  * allocate a large system hash table from bootmem
8749  * - it is assumed that the hash table must contain an exact power-of-2
8750  *   quantity of entries
8751  * - limit is the number of hash buckets, not the total allocation size
8752  */
8753 void *__init alloc_large_system_hash(const char *tablename,
8754 				     unsigned long bucketsize,
8755 				     unsigned long numentries,
8756 				     int scale,
8757 				     int flags,
8758 				     unsigned int *_hash_shift,
8759 				     unsigned int *_hash_mask,
8760 				     unsigned long low_limit,
8761 				     unsigned long high_limit)
8762 {
8763 	unsigned long long max = high_limit;
8764 	unsigned long log2qty, size;
8765 	void *table = NULL;
8766 	gfp_t gfp_flags;
8767 	bool virt;
8768 	bool huge;
8769 
8770 	/* allow the kernel cmdline to have a say */
8771 	if (!numentries) {
8772 		/* round applicable memory size up to nearest megabyte */
8773 		numentries = nr_kernel_pages;
8774 		numentries -= arch_reserved_kernel_pages();
8775 
8776 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8777 		if (PAGE_SHIFT < 20)
8778 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8779 
8780 #if __BITS_PER_LONG > 32
8781 		if (!high_limit) {
8782 			unsigned long adapt;
8783 
8784 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8785 			     adapt <<= ADAPT_SCALE_SHIFT)
8786 				scale++;
8787 		}
8788 #endif
8789 
8790 		/* limit to 1 bucket per 2^scale bytes of low memory */
8791 		if (scale > PAGE_SHIFT)
8792 			numentries >>= (scale - PAGE_SHIFT);
8793 		else
8794 			numentries <<= (PAGE_SHIFT - scale);
8795 
8796 		/* Make sure we've got at least a 0-order allocation.. */
8797 		if (unlikely(flags & HASH_SMALL)) {
8798 			/* Makes no sense without HASH_EARLY */
8799 			WARN_ON(!(flags & HASH_EARLY));
8800 			if (!(numentries >> *_hash_shift)) {
8801 				numentries = 1UL << *_hash_shift;
8802 				BUG_ON(!numentries);
8803 			}
8804 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8805 			numentries = PAGE_SIZE / bucketsize;
8806 	}
8807 	numentries = roundup_pow_of_two(numentries);
8808 
8809 	/* limit allocation size to 1/16 total memory by default */
8810 	if (max == 0) {
8811 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8812 		do_div(max, bucketsize);
8813 	}
8814 	max = min(max, 0x80000000ULL);
8815 
8816 	if (numentries < low_limit)
8817 		numentries = low_limit;
8818 	if (numentries > max)
8819 		numentries = max;
8820 
8821 	log2qty = ilog2(numentries);
8822 
8823 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8824 	do {
8825 		virt = false;
8826 		size = bucketsize << log2qty;
8827 		if (flags & HASH_EARLY) {
8828 			if (flags & HASH_ZERO)
8829 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8830 			else
8831 				table = memblock_alloc_raw(size,
8832 							   SMP_CACHE_BYTES);
8833 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8834 			table = __vmalloc(size, gfp_flags);
8835 			virt = true;
8836 			if (table)
8837 				huge = is_vm_area_hugepages(table);
8838 		} else {
8839 			/*
8840 			 * If bucketsize is not a power-of-two, we may free
8841 			 * some pages at the end of hash table which
8842 			 * alloc_pages_exact() automatically does
8843 			 */
8844 			table = alloc_pages_exact(size, gfp_flags);
8845 			kmemleak_alloc(table, size, 1, gfp_flags);
8846 		}
8847 	} while (!table && size > PAGE_SIZE && --log2qty);
8848 
8849 	if (!table)
8850 		panic("Failed to allocate %s hash table\n", tablename);
8851 
8852 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8853 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8854 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8855 
8856 	if (_hash_shift)
8857 		*_hash_shift = log2qty;
8858 	if (_hash_mask)
8859 		*_hash_mask = (1 << log2qty) - 1;
8860 
8861 	return table;
8862 }
8863 
8864 /*
8865  * This function checks whether pageblock includes unmovable pages or not.
8866  *
8867  * PageLRU check without isolation or lru_lock could race so that
8868  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8869  * check without lock_page also may miss some movable non-lru pages at
8870  * race condition. So you can't expect this function should be exact.
8871  *
8872  * Returns a page without holding a reference. If the caller wants to
8873  * dereference that page (e.g., dumping), it has to make sure that it
8874  * cannot get removed (e.g., via memory unplug) concurrently.
8875  *
8876  */
8877 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8878 				 int migratetype, int flags)
8879 {
8880 	unsigned long iter = 0;
8881 	unsigned long pfn = page_to_pfn(page);
8882 	unsigned long offset = pfn % pageblock_nr_pages;
8883 
8884 	if (is_migrate_cma_page(page)) {
8885 		/*
8886 		 * CMA allocations (alloc_contig_range) really need to mark
8887 		 * isolate CMA pageblocks even when they are not movable in fact
8888 		 * so consider them movable here.
8889 		 */
8890 		if (is_migrate_cma(migratetype))
8891 			return NULL;
8892 
8893 		return page;
8894 	}
8895 
8896 	for (; iter < pageblock_nr_pages - offset; iter++) {
8897 		page = pfn_to_page(pfn + iter);
8898 
8899 		/*
8900 		 * Both, bootmem allocations and memory holes are marked
8901 		 * PG_reserved and are unmovable. We can even have unmovable
8902 		 * allocations inside ZONE_MOVABLE, for example when
8903 		 * specifying "movablecore".
8904 		 */
8905 		if (PageReserved(page))
8906 			return page;
8907 
8908 		/*
8909 		 * If the zone is movable and we have ruled out all reserved
8910 		 * pages then it should be reasonably safe to assume the rest
8911 		 * is movable.
8912 		 */
8913 		if (zone_idx(zone) == ZONE_MOVABLE)
8914 			continue;
8915 
8916 		/*
8917 		 * Hugepages are not in LRU lists, but they're movable.
8918 		 * THPs are on the LRU, but need to be counted as #small pages.
8919 		 * We need not scan over tail pages because we don't
8920 		 * handle each tail page individually in migration.
8921 		 */
8922 		if (PageHuge(page) || PageTransCompound(page)) {
8923 			struct page *head = compound_head(page);
8924 			unsigned int skip_pages;
8925 
8926 			if (PageHuge(page)) {
8927 				if (!hugepage_migration_supported(page_hstate(head)))
8928 					return page;
8929 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8930 				return page;
8931 			}
8932 
8933 			skip_pages = compound_nr(head) - (page - head);
8934 			iter += skip_pages - 1;
8935 			continue;
8936 		}
8937 
8938 		/*
8939 		 * We can't use page_count without pin a page
8940 		 * because another CPU can free compound page.
8941 		 * This check already skips compound tails of THP
8942 		 * because their page->_refcount is zero at all time.
8943 		 */
8944 		if (!page_ref_count(page)) {
8945 			if (PageBuddy(page))
8946 				iter += (1 << buddy_order(page)) - 1;
8947 			continue;
8948 		}
8949 
8950 		/*
8951 		 * The HWPoisoned page may be not in buddy system, and
8952 		 * page_count() is not 0.
8953 		 */
8954 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8955 			continue;
8956 
8957 		/*
8958 		 * We treat all PageOffline() pages as movable when offlining
8959 		 * to give drivers a chance to decrement their reference count
8960 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8961 		 * can be offlined as there are no direct references anymore.
8962 		 * For actually unmovable PageOffline() where the driver does
8963 		 * not support this, we will fail later when trying to actually
8964 		 * move these pages that still have a reference count > 0.
8965 		 * (false negatives in this function only)
8966 		 */
8967 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8968 			continue;
8969 
8970 		if (__PageMovable(page) || PageLRU(page))
8971 			continue;
8972 
8973 		/*
8974 		 * If there are RECLAIMABLE pages, we need to check
8975 		 * it.  But now, memory offline itself doesn't call
8976 		 * shrink_node_slabs() and it still to be fixed.
8977 		 */
8978 		return page;
8979 	}
8980 	return NULL;
8981 }
8982 
8983 #ifdef CONFIG_CONTIG_ALLOC
8984 static unsigned long pfn_max_align_down(unsigned long pfn)
8985 {
8986 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8987 			     pageblock_nr_pages) - 1);
8988 }
8989 
8990 static unsigned long pfn_max_align_up(unsigned long pfn)
8991 {
8992 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8993 				pageblock_nr_pages));
8994 }
8995 
8996 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8997 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8998 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8999 static void alloc_contig_dump_pages(struct list_head *page_list)
9000 {
9001 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9002 
9003 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9004 		struct page *page;
9005 
9006 		dump_stack();
9007 		list_for_each_entry(page, page_list, lru)
9008 			dump_page(page, "migration failure");
9009 	}
9010 }
9011 #else
9012 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9013 {
9014 }
9015 #endif
9016 
9017 /* [start, end) must belong to a single zone. */
9018 static int __alloc_contig_migrate_range(struct compact_control *cc,
9019 					unsigned long start, unsigned long end)
9020 {
9021 	/* This function is based on compact_zone() from compaction.c. */
9022 	unsigned int nr_reclaimed;
9023 	unsigned long pfn = start;
9024 	unsigned int tries = 0;
9025 	int ret = 0;
9026 	struct migration_target_control mtc = {
9027 		.nid = zone_to_nid(cc->zone),
9028 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9029 	};
9030 
9031 	lru_cache_disable();
9032 
9033 	while (pfn < end || !list_empty(&cc->migratepages)) {
9034 		if (fatal_signal_pending(current)) {
9035 			ret = -EINTR;
9036 			break;
9037 		}
9038 
9039 		if (list_empty(&cc->migratepages)) {
9040 			cc->nr_migratepages = 0;
9041 			ret = isolate_migratepages_range(cc, pfn, end);
9042 			if (ret && ret != -EAGAIN)
9043 				break;
9044 			pfn = cc->migrate_pfn;
9045 			tries = 0;
9046 		} else if (++tries == 5) {
9047 			ret = -EBUSY;
9048 			break;
9049 		}
9050 
9051 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9052 							&cc->migratepages);
9053 		cc->nr_migratepages -= nr_reclaimed;
9054 
9055 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9056 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9057 
9058 		/*
9059 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9060 		 * to retry again over this error, so do the same here.
9061 		 */
9062 		if (ret == -ENOMEM)
9063 			break;
9064 	}
9065 
9066 	lru_cache_enable();
9067 	if (ret < 0) {
9068 		if (ret == -EBUSY)
9069 			alloc_contig_dump_pages(&cc->migratepages);
9070 		putback_movable_pages(&cc->migratepages);
9071 		return ret;
9072 	}
9073 	return 0;
9074 }
9075 
9076 /**
9077  * alloc_contig_range() -- tries to allocate given range of pages
9078  * @start:	start PFN to allocate
9079  * @end:	one-past-the-last PFN to allocate
9080  * @migratetype:	migratetype of the underlying pageblocks (either
9081  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9082  *			in range must have the same migratetype and it must
9083  *			be either of the two.
9084  * @gfp_mask:	GFP mask to use during compaction
9085  *
9086  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9087  * aligned.  The PFN range must belong to a single zone.
9088  *
9089  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9090  * pageblocks in the range.  Once isolated, the pageblocks should not
9091  * be modified by others.
9092  *
9093  * Return: zero on success or negative error code.  On success all
9094  * pages which PFN is in [start, end) are allocated for the caller and
9095  * need to be freed with free_contig_range().
9096  */
9097 int alloc_contig_range(unsigned long start, unsigned long end,
9098 		       unsigned migratetype, gfp_t gfp_mask)
9099 {
9100 	unsigned long outer_start, outer_end;
9101 	unsigned int order;
9102 	int ret = 0;
9103 
9104 	struct compact_control cc = {
9105 		.nr_migratepages = 0,
9106 		.order = -1,
9107 		.zone = page_zone(pfn_to_page(start)),
9108 		.mode = MIGRATE_SYNC,
9109 		.ignore_skip_hint = true,
9110 		.no_set_skip_hint = true,
9111 		.gfp_mask = current_gfp_context(gfp_mask),
9112 		.alloc_contig = true,
9113 	};
9114 	INIT_LIST_HEAD(&cc.migratepages);
9115 
9116 	/*
9117 	 * What we do here is we mark all pageblocks in range as
9118 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9119 	 * have different sizes, and due to the way page allocator
9120 	 * work, we align the range to biggest of the two pages so
9121 	 * that page allocator won't try to merge buddies from
9122 	 * different pageblocks and change MIGRATE_ISOLATE to some
9123 	 * other migration type.
9124 	 *
9125 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9126 	 * migrate the pages from an unaligned range (ie. pages that
9127 	 * we are interested in).  This will put all the pages in
9128 	 * range back to page allocator as MIGRATE_ISOLATE.
9129 	 *
9130 	 * When this is done, we take the pages in range from page
9131 	 * allocator removing them from the buddy system.  This way
9132 	 * page allocator will never consider using them.
9133 	 *
9134 	 * This lets us mark the pageblocks back as
9135 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9136 	 * aligned range but not in the unaligned, original range are
9137 	 * put back to page allocator so that buddy can use them.
9138 	 */
9139 
9140 	ret = start_isolate_page_range(pfn_max_align_down(start),
9141 				       pfn_max_align_up(end), migratetype, 0);
9142 	if (ret)
9143 		return ret;
9144 
9145 	drain_all_pages(cc.zone);
9146 
9147 	/*
9148 	 * In case of -EBUSY, we'd like to know which page causes problem.
9149 	 * So, just fall through. test_pages_isolated() has a tracepoint
9150 	 * which will report the busy page.
9151 	 *
9152 	 * It is possible that busy pages could become available before
9153 	 * the call to test_pages_isolated, and the range will actually be
9154 	 * allocated.  So, if we fall through be sure to clear ret so that
9155 	 * -EBUSY is not accidentally used or returned to caller.
9156 	 */
9157 	ret = __alloc_contig_migrate_range(&cc, start, end);
9158 	if (ret && ret != -EBUSY)
9159 		goto done;
9160 	ret = 0;
9161 
9162 	/*
9163 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9164 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9165 	 * more, all pages in [start, end) are free in page allocator.
9166 	 * What we are going to do is to allocate all pages from
9167 	 * [start, end) (that is remove them from page allocator).
9168 	 *
9169 	 * The only problem is that pages at the beginning and at the
9170 	 * end of interesting range may be not aligned with pages that
9171 	 * page allocator holds, ie. they can be part of higher order
9172 	 * pages.  Because of this, we reserve the bigger range and
9173 	 * once this is done free the pages we are not interested in.
9174 	 *
9175 	 * We don't have to hold zone->lock here because the pages are
9176 	 * isolated thus they won't get removed from buddy.
9177 	 */
9178 
9179 	order = 0;
9180 	outer_start = start;
9181 	while (!PageBuddy(pfn_to_page(outer_start))) {
9182 		if (++order >= MAX_ORDER) {
9183 			outer_start = start;
9184 			break;
9185 		}
9186 		outer_start &= ~0UL << order;
9187 	}
9188 
9189 	if (outer_start != start) {
9190 		order = buddy_order(pfn_to_page(outer_start));
9191 
9192 		/*
9193 		 * outer_start page could be small order buddy page and
9194 		 * it doesn't include start page. Adjust outer_start
9195 		 * in this case to report failed page properly
9196 		 * on tracepoint in test_pages_isolated()
9197 		 */
9198 		if (outer_start + (1UL << order) <= start)
9199 			outer_start = start;
9200 	}
9201 
9202 	/* Make sure the range is really isolated. */
9203 	if (test_pages_isolated(outer_start, end, 0)) {
9204 		ret = -EBUSY;
9205 		goto done;
9206 	}
9207 
9208 	/* Grab isolated pages from freelists. */
9209 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9210 	if (!outer_end) {
9211 		ret = -EBUSY;
9212 		goto done;
9213 	}
9214 
9215 	/* Free head and tail (if any) */
9216 	if (start != outer_start)
9217 		free_contig_range(outer_start, start - outer_start);
9218 	if (end != outer_end)
9219 		free_contig_range(end, outer_end - end);
9220 
9221 done:
9222 	undo_isolate_page_range(pfn_max_align_down(start),
9223 				pfn_max_align_up(end), migratetype);
9224 	return ret;
9225 }
9226 EXPORT_SYMBOL(alloc_contig_range);
9227 
9228 static int __alloc_contig_pages(unsigned long start_pfn,
9229 				unsigned long nr_pages, gfp_t gfp_mask)
9230 {
9231 	unsigned long end_pfn = start_pfn + nr_pages;
9232 
9233 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9234 				  gfp_mask);
9235 }
9236 
9237 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9238 				   unsigned long nr_pages)
9239 {
9240 	unsigned long i, end_pfn = start_pfn + nr_pages;
9241 	struct page *page;
9242 
9243 	for (i = start_pfn; i < end_pfn; i++) {
9244 		page = pfn_to_online_page(i);
9245 		if (!page)
9246 			return false;
9247 
9248 		if (page_zone(page) != z)
9249 			return false;
9250 
9251 		if (PageReserved(page))
9252 			return false;
9253 	}
9254 	return true;
9255 }
9256 
9257 static bool zone_spans_last_pfn(const struct zone *zone,
9258 				unsigned long start_pfn, unsigned long nr_pages)
9259 {
9260 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9261 
9262 	return zone_spans_pfn(zone, last_pfn);
9263 }
9264 
9265 /**
9266  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9267  * @nr_pages:	Number of contiguous pages to allocate
9268  * @gfp_mask:	GFP mask to limit search and used during compaction
9269  * @nid:	Target node
9270  * @nodemask:	Mask for other possible nodes
9271  *
9272  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9273  * on an applicable zonelist to find a contiguous pfn range which can then be
9274  * tried for allocation with alloc_contig_range(). This routine is intended
9275  * for allocation requests which can not be fulfilled with the buddy allocator.
9276  *
9277  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9278  * power of two, then allocated range is also guaranteed to be aligned to same
9279  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9280  *
9281  * Allocated pages can be freed with free_contig_range() or by manually calling
9282  * __free_page() on each allocated page.
9283  *
9284  * Return: pointer to contiguous pages on success, or NULL if not successful.
9285  */
9286 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9287 				int nid, nodemask_t *nodemask)
9288 {
9289 	unsigned long ret, pfn, flags;
9290 	struct zonelist *zonelist;
9291 	struct zone *zone;
9292 	struct zoneref *z;
9293 
9294 	zonelist = node_zonelist(nid, gfp_mask);
9295 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9296 					gfp_zone(gfp_mask), nodemask) {
9297 		spin_lock_irqsave(&zone->lock, flags);
9298 
9299 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9300 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9301 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9302 				/*
9303 				 * We release the zone lock here because
9304 				 * alloc_contig_range() will also lock the zone
9305 				 * at some point. If there's an allocation
9306 				 * spinning on this lock, it may win the race
9307 				 * and cause alloc_contig_range() to fail...
9308 				 */
9309 				spin_unlock_irqrestore(&zone->lock, flags);
9310 				ret = __alloc_contig_pages(pfn, nr_pages,
9311 							gfp_mask);
9312 				if (!ret)
9313 					return pfn_to_page(pfn);
9314 				spin_lock_irqsave(&zone->lock, flags);
9315 			}
9316 			pfn += nr_pages;
9317 		}
9318 		spin_unlock_irqrestore(&zone->lock, flags);
9319 	}
9320 	return NULL;
9321 }
9322 #endif /* CONFIG_CONTIG_ALLOC */
9323 
9324 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9325 {
9326 	unsigned long count = 0;
9327 
9328 	for (; nr_pages--; pfn++) {
9329 		struct page *page = pfn_to_page(pfn);
9330 
9331 		count += page_count(page) != 1;
9332 		__free_page(page);
9333 	}
9334 	WARN(count != 0, "%lu pages are still in use!\n", count);
9335 }
9336 EXPORT_SYMBOL(free_contig_range);
9337 
9338 /*
9339  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9340  * page high values need to be recalculated.
9341  */
9342 void zone_pcp_update(struct zone *zone, int cpu_online)
9343 {
9344 	mutex_lock(&pcp_batch_high_lock);
9345 	zone_set_pageset_high_and_batch(zone, cpu_online);
9346 	mutex_unlock(&pcp_batch_high_lock);
9347 }
9348 
9349 /*
9350  * Effectively disable pcplists for the zone by setting the high limit to 0
9351  * and draining all cpus. A concurrent page freeing on another CPU that's about
9352  * to put the page on pcplist will either finish before the drain and the page
9353  * will be drained, or observe the new high limit and skip the pcplist.
9354  *
9355  * Must be paired with a call to zone_pcp_enable().
9356  */
9357 void zone_pcp_disable(struct zone *zone)
9358 {
9359 	mutex_lock(&pcp_batch_high_lock);
9360 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9361 	__drain_all_pages(zone, true);
9362 }
9363 
9364 void zone_pcp_enable(struct zone *zone)
9365 {
9366 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9367 	mutex_unlock(&pcp_batch_high_lock);
9368 }
9369 
9370 void zone_pcp_reset(struct zone *zone)
9371 {
9372 	int cpu;
9373 	struct per_cpu_zonestat *pzstats;
9374 
9375 	if (zone->per_cpu_pageset != &boot_pageset) {
9376 		for_each_online_cpu(cpu) {
9377 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9378 			drain_zonestat(zone, pzstats);
9379 		}
9380 		free_percpu(zone->per_cpu_pageset);
9381 		free_percpu(zone->per_cpu_zonestats);
9382 		zone->per_cpu_pageset = &boot_pageset;
9383 		zone->per_cpu_zonestats = &boot_zonestats;
9384 	}
9385 }
9386 
9387 #ifdef CONFIG_MEMORY_HOTREMOVE
9388 /*
9389  * All pages in the range must be in a single zone, must not contain holes,
9390  * must span full sections, and must be isolated before calling this function.
9391  */
9392 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9393 {
9394 	unsigned long pfn = start_pfn;
9395 	struct page *page;
9396 	struct zone *zone;
9397 	unsigned int order;
9398 	unsigned long flags;
9399 
9400 	offline_mem_sections(pfn, end_pfn);
9401 	zone = page_zone(pfn_to_page(pfn));
9402 	spin_lock_irqsave(&zone->lock, flags);
9403 	while (pfn < end_pfn) {
9404 		page = pfn_to_page(pfn);
9405 		/*
9406 		 * The HWPoisoned page may be not in buddy system, and
9407 		 * page_count() is not 0.
9408 		 */
9409 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9410 			pfn++;
9411 			continue;
9412 		}
9413 		/*
9414 		 * At this point all remaining PageOffline() pages have a
9415 		 * reference count of 0 and can simply be skipped.
9416 		 */
9417 		if (PageOffline(page)) {
9418 			BUG_ON(page_count(page));
9419 			BUG_ON(PageBuddy(page));
9420 			pfn++;
9421 			continue;
9422 		}
9423 
9424 		BUG_ON(page_count(page));
9425 		BUG_ON(!PageBuddy(page));
9426 		order = buddy_order(page);
9427 		del_page_from_free_list(page, zone, order);
9428 		pfn += (1 << order);
9429 	}
9430 	spin_unlock_irqrestore(&zone->lock, flags);
9431 }
9432 #endif
9433 
9434 /*
9435  * This function returns a stable result only if called under zone lock.
9436  */
9437 bool is_free_buddy_page(struct page *page)
9438 {
9439 	unsigned long pfn = page_to_pfn(page);
9440 	unsigned int order;
9441 
9442 	for (order = 0; order < MAX_ORDER; order++) {
9443 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9444 
9445 		if (PageBuddy(page_head) &&
9446 		    buddy_order_unsafe(page_head) >= order)
9447 			break;
9448 	}
9449 
9450 	return order < MAX_ORDER;
9451 }
9452 
9453 #ifdef CONFIG_MEMORY_FAILURE
9454 /*
9455  * Break down a higher-order page in sub-pages, and keep our target out of
9456  * buddy allocator.
9457  */
9458 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9459 				   struct page *target, int low, int high,
9460 				   int migratetype)
9461 {
9462 	unsigned long size = 1 << high;
9463 	struct page *current_buddy, *next_page;
9464 
9465 	while (high > low) {
9466 		high--;
9467 		size >>= 1;
9468 
9469 		if (target >= &page[size]) {
9470 			next_page = page + size;
9471 			current_buddy = page;
9472 		} else {
9473 			next_page = page;
9474 			current_buddy = page + size;
9475 		}
9476 
9477 		if (set_page_guard(zone, current_buddy, high, migratetype))
9478 			continue;
9479 
9480 		if (current_buddy != target) {
9481 			add_to_free_list(current_buddy, zone, high, migratetype);
9482 			set_buddy_order(current_buddy, high);
9483 			page = next_page;
9484 		}
9485 	}
9486 }
9487 
9488 /*
9489  * Take a page that will be marked as poisoned off the buddy allocator.
9490  */
9491 bool take_page_off_buddy(struct page *page)
9492 {
9493 	struct zone *zone = page_zone(page);
9494 	unsigned long pfn = page_to_pfn(page);
9495 	unsigned long flags;
9496 	unsigned int order;
9497 	bool ret = false;
9498 
9499 	spin_lock_irqsave(&zone->lock, flags);
9500 	for (order = 0; order < MAX_ORDER; order++) {
9501 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9502 		int page_order = buddy_order(page_head);
9503 
9504 		if (PageBuddy(page_head) && page_order >= order) {
9505 			unsigned long pfn_head = page_to_pfn(page_head);
9506 			int migratetype = get_pfnblock_migratetype(page_head,
9507 								   pfn_head);
9508 
9509 			del_page_from_free_list(page_head, zone, page_order);
9510 			break_down_buddy_pages(zone, page_head, page, 0,
9511 						page_order, migratetype);
9512 			SetPageHWPoisonTakenOff(page);
9513 			if (!is_migrate_isolate(migratetype))
9514 				__mod_zone_freepage_state(zone, -1, migratetype);
9515 			ret = true;
9516 			break;
9517 		}
9518 		if (page_count(page_head) > 0)
9519 			break;
9520 	}
9521 	spin_unlock_irqrestore(&zone->lock, flags);
9522 	return ret;
9523 }
9524 
9525 /*
9526  * Cancel takeoff done by take_page_off_buddy().
9527  */
9528 bool put_page_back_buddy(struct page *page)
9529 {
9530 	struct zone *zone = page_zone(page);
9531 	unsigned long pfn = page_to_pfn(page);
9532 	unsigned long flags;
9533 	int migratetype = get_pfnblock_migratetype(page, pfn);
9534 	bool ret = false;
9535 
9536 	spin_lock_irqsave(&zone->lock, flags);
9537 	if (put_page_testzero(page)) {
9538 		ClearPageHWPoisonTakenOff(page);
9539 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9540 		if (TestClearPageHWPoison(page)) {
9541 			num_poisoned_pages_dec();
9542 			ret = true;
9543 		}
9544 	}
9545 	spin_unlock_irqrestore(&zone->lock, flags);
9546 
9547 	return ret;
9548 }
9549 #endif
9550 
9551 #ifdef CONFIG_ZONE_DMA
9552 bool has_managed_dma(void)
9553 {
9554 	struct pglist_data *pgdat;
9555 
9556 	for_each_online_pgdat(pgdat) {
9557 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9558 
9559 		if (managed_zone(zone))
9560 			return true;
9561 	}
9562 	return false;
9563 }
9564 #endif /* CONFIG_ZONE_DMA */
9565