1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 #define MIN_PERCPU_PAGELIST_FRACTION (8) 73 74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 75 DEFINE_PER_CPU(int, numa_node); 76 EXPORT_PER_CPU_SYMBOL(numa_node); 77 #endif 78 79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 80 /* 81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 84 * defined in <linux/topology.h>. 85 */ 86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 87 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 88 #endif 89 90 /* 91 * Array of node states. 92 */ 93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 94 [N_POSSIBLE] = NODE_MASK_ALL, 95 [N_ONLINE] = { { [0] = 1UL } }, 96 #ifndef CONFIG_NUMA 97 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 98 #ifdef CONFIG_HIGHMEM 99 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 100 #endif 101 #ifdef CONFIG_MOVABLE_NODE 102 [N_MEMORY] = { { [0] = 1UL } }, 103 #endif 104 [N_CPU] = { { [0] = 1UL } }, 105 #endif /* NUMA */ 106 }; 107 EXPORT_SYMBOL(node_states); 108 109 /* Protect totalram_pages and zone->managed_pages */ 110 static DEFINE_SPINLOCK(managed_page_count_lock); 111 112 unsigned long totalram_pages __read_mostly; 113 unsigned long totalreserve_pages __read_mostly; 114 /* 115 * When calculating the number of globally allowed dirty pages, there 116 * is a certain number of per-zone reserves that should not be 117 * considered dirtyable memory. This is the sum of those reserves 118 * over all existing zones that contribute dirtyable memory. 119 */ 120 unsigned long dirty_balance_reserve __read_mostly; 121 122 int percpu_pagelist_fraction; 123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 124 125 #ifdef CONFIG_PM_SLEEP 126 /* 127 * The following functions are used by the suspend/hibernate code to temporarily 128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 129 * while devices are suspended. To avoid races with the suspend/hibernate code, 130 * they should always be called with pm_mutex held (gfp_allowed_mask also should 131 * only be modified with pm_mutex held, unless the suspend/hibernate code is 132 * guaranteed not to run in parallel with that modification). 133 */ 134 135 static gfp_t saved_gfp_mask; 136 137 void pm_restore_gfp_mask(void) 138 { 139 WARN_ON(!mutex_is_locked(&pm_mutex)); 140 if (saved_gfp_mask) { 141 gfp_allowed_mask = saved_gfp_mask; 142 saved_gfp_mask = 0; 143 } 144 } 145 146 void pm_restrict_gfp_mask(void) 147 { 148 WARN_ON(!mutex_is_locked(&pm_mutex)); 149 WARN_ON(saved_gfp_mask); 150 saved_gfp_mask = gfp_allowed_mask; 151 gfp_allowed_mask &= ~GFP_IOFS; 152 } 153 154 bool pm_suspended_storage(void) 155 { 156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 157 return false; 158 return true; 159 } 160 #endif /* CONFIG_PM_SLEEP */ 161 162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 163 int pageblock_order __read_mostly; 164 #endif 165 166 static void __free_pages_ok(struct page *page, unsigned int order); 167 168 /* 169 * results with 256, 32 in the lowmem_reserve sysctl: 170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 171 * 1G machine -> (16M dma, 784M normal, 224M high) 172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 175 * 176 * TBD: should special case ZONE_DMA32 machines here - in those we normally 177 * don't need any ZONE_NORMAL reservation 178 */ 179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 180 #ifdef CONFIG_ZONE_DMA 181 256, 182 #endif 183 #ifdef CONFIG_ZONE_DMA32 184 256, 185 #endif 186 #ifdef CONFIG_HIGHMEM 187 32, 188 #endif 189 32, 190 }; 191 192 EXPORT_SYMBOL(totalram_pages); 193 194 static char * const zone_names[MAX_NR_ZONES] = { 195 #ifdef CONFIG_ZONE_DMA 196 "DMA", 197 #endif 198 #ifdef CONFIG_ZONE_DMA32 199 "DMA32", 200 #endif 201 "Normal", 202 #ifdef CONFIG_HIGHMEM 203 "HighMem", 204 #endif 205 "Movable", 206 }; 207 208 int min_free_kbytes = 1024; 209 int user_min_free_kbytes = -1; 210 211 static unsigned long __meminitdata nr_kernel_pages; 212 static unsigned long __meminitdata nr_all_pages; 213 static unsigned long __meminitdata dma_reserve; 214 215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 218 static unsigned long __initdata required_kernelcore; 219 static unsigned long __initdata required_movablecore; 220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 221 222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 223 int movable_zone; 224 EXPORT_SYMBOL(movable_zone); 225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 226 227 #if MAX_NUMNODES > 1 228 int nr_node_ids __read_mostly = MAX_NUMNODES; 229 int nr_online_nodes __read_mostly = 1; 230 EXPORT_SYMBOL(nr_node_ids); 231 EXPORT_SYMBOL(nr_online_nodes); 232 #endif 233 234 int page_group_by_mobility_disabled __read_mostly; 235 236 void set_pageblock_migratetype(struct page *page, int migratetype) 237 { 238 if (unlikely(page_group_by_mobility_disabled && 239 migratetype < MIGRATE_PCPTYPES)) 240 migratetype = MIGRATE_UNMOVABLE; 241 242 set_pageblock_flags_group(page, (unsigned long)migratetype, 243 PB_migrate, PB_migrate_end); 244 } 245 246 bool oom_killer_disabled __read_mostly; 247 248 #ifdef CONFIG_DEBUG_VM 249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250 { 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270 } 271 272 static int page_is_consistent(struct zone *zone, struct page *page) 273 { 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280 } 281 /* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284 static int bad_range(struct zone *zone, struct page *page) 285 { 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292 } 293 #else 294 static inline int bad_range(struct zone *zone, struct page *page) 295 { 296 return 0; 297 } 298 #endif 299 300 static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302 { 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339 out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343 } 344 345 /* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360 static void free_compound_page(struct page *page) 361 { 362 __free_pages_ok(page, compound_order(page)); 363 } 364 365 void prep_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381 } 382 383 /* update __split_huge_page_refcount if you change this function */ 384 static int destroy_compound_page(struct page *page, unsigned long order) 385 { 386 int i; 387 int nr_pages = 1 << order; 388 int bad = 0; 389 390 if (unlikely(compound_order(page) != order)) { 391 bad_page(page, "wrong compound order", 0); 392 bad++; 393 } 394 395 __ClearPageHead(page); 396 397 for (i = 1; i < nr_pages; i++) { 398 struct page *p = page + i; 399 400 if (unlikely(!PageTail(p))) { 401 bad_page(page, "PageTail not set", 0); 402 bad++; 403 } else if (unlikely(p->first_page != page)) { 404 bad_page(page, "first_page not consistent", 0); 405 bad++; 406 } 407 __ClearPageTail(p); 408 } 409 410 return bad; 411 } 412 413 static inline void prep_zero_page(struct page *page, unsigned int order, 414 gfp_t gfp_flags) 415 { 416 int i; 417 418 /* 419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 420 * and __GFP_HIGHMEM from hard or soft interrupt context. 421 */ 422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 423 for (i = 0; i < (1 << order); i++) 424 clear_highpage(page + i); 425 } 426 427 #ifdef CONFIG_DEBUG_PAGEALLOC 428 unsigned int _debug_guardpage_minorder; 429 430 static int __init debug_guardpage_minorder_setup(char *buf) 431 { 432 unsigned long res; 433 434 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 435 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 436 return 0; 437 } 438 _debug_guardpage_minorder = res; 439 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 440 return 0; 441 } 442 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 443 444 static inline void set_page_guard_flag(struct page *page) 445 { 446 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 447 } 448 449 static inline void clear_page_guard_flag(struct page *page) 450 { 451 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 452 } 453 #else 454 static inline void set_page_guard_flag(struct page *page) { } 455 static inline void clear_page_guard_flag(struct page *page) { } 456 #endif 457 458 static inline void set_page_order(struct page *page, unsigned int order) 459 { 460 set_page_private(page, order); 461 __SetPageBuddy(page); 462 } 463 464 static inline void rmv_page_order(struct page *page) 465 { 466 __ClearPageBuddy(page); 467 set_page_private(page, 0); 468 } 469 470 /* 471 * Locate the struct page for both the matching buddy in our 472 * pair (buddy1) and the combined O(n+1) page they form (page). 473 * 474 * 1) Any buddy B1 will have an order O twin B2 which satisfies 475 * the following equation: 476 * B2 = B1 ^ (1 << O) 477 * For example, if the starting buddy (buddy2) is #8 its order 478 * 1 buddy is #10: 479 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 480 * 481 * 2) Any buddy B will have an order O+1 parent P which 482 * satisfies the following equation: 483 * P = B & ~(1 << O) 484 * 485 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 486 */ 487 static inline unsigned long 488 __find_buddy_index(unsigned long page_idx, unsigned int order) 489 { 490 return page_idx ^ (1 << order); 491 } 492 493 /* 494 * This function checks whether a page is free && is the buddy 495 * we can do coalesce a page and its buddy if 496 * (a) the buddy is not in a hole && 497 * (b) the buddy is in the buddy system && 498 * (c) a page and its buddy have the same order && 499 * (d) a page and its buddy are in the same zone. 500 * 501 * For recording whether a page is in the buddy system, we set ->_mapcount 502 * PAGE_BUDDY_MAPCOUNT_VALUE. 503 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 504 * serialized by zone->lock. 505 * 506 * For recording page's order, we use page_private(page). 507 */ 508 static inline int page_is_buddy(struct page *page, struct page *buddy, 509 unsigned int order) 510 { 511 if (!pfn_valid_within(page_to_pfn(buddy))) 512 return 0; 513 514 if (page_is_guard(buddy) && page_order(buddy) == order) { 515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 516 517 if (page_zone_id(page) != page_zone_id(buddy)) 518 return 0; 519 520 return 1; 521 } 522 523 if (PageBuddy(buddy) && page_order(buddy) == order) { 524 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 525 526 /* 527 * zone check is done late to avoid uselessly 528 * calculating zone/node ids for pages that could 529 * never merge. 530 */ 531 if (page_zone_id(page) != page_zone_id(buddy)) 532 return 0; 533 534 return 1; 535 } 536 return 0; 537 } 538 539 /* 540 * Freeing function for a buddy system allocator. 541 * 542 * The concept of a buddy system is to maintain direct-mapped table 543 * (containing bit values) for memory blocks of various "orders". 544 * The bottom level table contains the map for the smallest allocatable 545 * units of memory (here, pages), and each level above it describes 546 * pairs of units from the levels below, hence, "buddies". 547 * At a high level, all that happens here is marking the table entry 548 * at the bottom level available, and propagating the changes upward 549 * as necessary, plus some accounting needed to play nicely with other 550 * parts of the VM system. 551 * At each level, we keep a list of pages, which are heads of continuous 552 * free pages of length of (1 << order) and marked with _mapcount 553 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 554 * field. 555 * So when we are allocating or freeing one, we can derive the state of the 556 * other. That is, if we allocate a small block, and both were 557 * free, the remainder of the region must be split into blocks. 558 * If a block is freed, and its buddy is also free, then this 559 * triggers coalescing into a block of larger size. 560 * 561 * -- nyc 562 */ 563 564 static inline void __free_one_page(struct page *page, 565 unsigned long pfn, 566 struct zone *zone, unsigned int order, 567 int migratetype) 568 { 569 unsigned long page_idx; 570 unsigned long combined_idx; 571 unsigned long uninitialized_var(buddy_idx); 572 struct page *buddy; 573 574 VM_BUG_ON(!zone_is_initialized(zone)); 575 576 if (unlikely(PageCompound(page))) 577 if (unlikely(destroy_compound_page(page, order))) 578 return; 579 580 VM_BUG_ON(migratetype == -1); 581 582 page_idx = pfn & ((1 << MAX_ORDER) - 1); 583 584 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 585 VM_BUG_ON_PAGE(bad_range(zone, page), page); 586 587 while (order < MAX_ORDER-1) { 588 buddy_idx = __find_buddy_index(page_idx, order); 589 buddy = page + (buddy_idx - page_idx); 590 if (!page_is_buddy(page, buddy, order)) 591 break; 592 /* 593 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 594 * merge with it and move up one order. 595 */ 596 if (page_is_guard(buddy)) { 597 clear_page_guard_flag(buddy); 598 set_page_private(page, 0); 599 __mod_zone_freepage_state(zone, 1 << order, 600 migratetype); 601 } else { 602 list_del(&buddy->lru); 603 zone->free_area[order].nr_free--; 604 rmv_page_order(buddy); 605 } 606 combined_idx = buddy_idx & page_idx; 607 page = page + (combined_idx - page_idx); 608 page_idx = combined_idx; 609 order++; 610 } 611 set_page_order(page, order); 612 613 /* 614 * If this is not the largest possible page, check if the buddy 615 * of the next-highest order is free. If it is, it's possible 616 * that pages are being freed that will coalesce soon. In case, 617 * that is happening, add the free page to the tail of the list 618 * so it's less likely to be used soon and more likely to be merged 619 * as a higher order page 620 */ 621 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 622 struct page *higher_page, *higher_buddy; 623 combined_idx = buddy_idx & page_idx; 624 higher_page = page + (combined_idx - page_idx); 625 buddy_idx = __find_buddy_index(combined_idx, order + 1); 626 higher_buddy = higher_page + (buddy_idx - combined_idx); 627 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 628 list_add_tail(&page->lru, 629 &zone->free_area[order].free_list[migratetype]); 630 goto out; 631 } 632 } 633 634 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 635 out: 636 zone->free_area[order].nr_free++; 637 } 638 639 static inline int free_pages_check(struct page *page) 640 { 641 const char *bad_reason = NULL; 642 unsigned long bad_flags = 0; 643 644 if (unlikely(page_mapcount(page))) 645 bad_reason = "nonzero mapcount"; 646 if (unlikely(page->mapping != NULL)) 647 bad_reason = "non-NULL mapping"; 648 if (unlikely(atomic_read(&page->_count) != 0)) 649 bad_reason = "nonzero _count"; 650 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 651 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 652 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 653 } 654 if (unlikely(mem_cgroup_bad_page_check(page))) 655 bad_reason = "cgroup check failed"; 656 if (unlikely(bad_reason)) { 657 bad_page(page, bad_reason, bad_flags); 658 return 1; 659 } 660 page_cpupid_reset_last(page); 661 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 662 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 663 return 0; 664 } 665 666 /* 667 * Frees a number of pages from the PCP lists 668 * Assumes all pages on list are in same zone, and of same order. 669 * count is the number of pages to free. 670 * 671 * If the zone was previously in an "all pages pinned" state then look to 672 * see if this freeing clears that state. 673 * 674 * And clear the zone's pages_scanned counter, to hold off the "all pages are 675 * pinned" detection logic. 676 */ 677 static void free_pcppages_bulk(struct zone *zone, int count, 678 struct per_cpu_pages *pcp) 679 { 680 int migratetype = 0; 681 int batch_free = 0; 682 int to_free = count; 683 unsigned long nr_scanned; 684 685 spin_lock(&zone->lock); 686 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 687 if (nr_scanned) 688 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 689 690 while (to_free) { 691 struct page *page; 692 struct list_head *list; 693 694 /* 695 * Remove pages from lists in a round-robin fashion. A 696 * batch_free count is maintained that is incremented when an 697 * empty list is encountered. This is so more pages are freed 698 * off fuller lists instead of spinning excessively around empty 699 * lists 700 */ 701 do { 702 batch_free++; 703 if (++migratetype == MIGRATE_PCPTYPES) 704 migratetype = 0; 705 list = &pcp->lists[migratetype]; 706 } while (list_empty(list)); 707 708 /* This is the only non-empty list. Free them all. */ 709 if (batch_free == MIGRATE_PCPTYPES) 710 batch_free = to_free; 711 712 do { 713 int mt; /* migratetype of the to-be-freed page */ 714 715 page = list_entry(list->prev, struct page, lru); 716 /* must delete as __free_one_page list manipulates */ 717 list_del(&page->lru); 718 mt = get_freepage_migratetype(page); 719 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 720 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 721 trace_mm_page_pcpu_drain(page, 0, mt); 722 if (likely(!is_migrate_isolate_page(page))) { 723 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 724 if (is_migrate_cma(mt)) 725 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 726 } 727 } while (--to_free && --batch_free && !list_empty(list)); 728 } 729 spin_unlock(&zone->lock); 730 } 731 732 static void free_one_page(struct zone *zone, 733 struct page *page, unsigned long pfn, 734 unsigned int order, 735 int migratetype) 736 { 737 unsigned long nr_scanned; 738 spin_lock(&zone->lock); 739 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 740 if (nr_scanned) 741 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 742 743 __free_one_page(page, pfn, zone, order, migratetype); 744 if (unlikely(!is_migrate_isolate(migratetype))) 745 __mod_zone_freepage_state(zone, 1 << order, migratetype); 746 spin_unlock(&zone->lock); 747 } 748 749 static bool free_pages_prepare(struct page *page, unsigned int order) 750 { 751 int i; 752 int bad = 0; 753 754 trace_mm_page_free(page, order); 755 kmemcheck_free_shadow(page, order); 756 757 if (PageAnon(page)) 758 page->mapping = NULL; 759 for (i = 0; i < (1 << order); i++) 760 bad += free_pages_check(page + i); 761 if (bad) 762 return false; 763 764 if (!PageHighMem(page)) { 765 debug_check_no_locks_freed(page_address(page), 766 PAGE_SIZE << order); 767 debug_check_no_obj_freed(page_address(page), 768 PAGE_SIZE << order); 769 } 770 arch_free_page(page, order); 771 kernel_map_pages(page, 1 << order, 0); 772 773 return true; 774 } 775 776 static void __free_pages_ok(struct page *page, unsigned int order) 777 { 778 unsigned long flags; 779 int migratetype; 780 unsigned long pfn = page_to_pfn(page); 781 782 if (!free_pages_prepare(page, order)) 783 return; 784 785 migratetype = get_pfnblock_migratetype(page, pfn); 786 local_irq_save(flags); 787 __count_vm_events(PGFREE, 1 << order); 788 set_freepage_migratetype(page, migratetype); 789 free_one_page(page_zone(page), page, pfn, order, migratetype); 790 local_irq_restore(flags); 791 } 792 793 void __init __free_pages_bootmem(struct page *page, unsigned int order) 794 { 795 unsigned int nr_pages = 1 << order; 796 struct page *p = page; 797 unsigned int loop; 798 799 prefetchw(p); 800 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 801 prefetchw(p + 1); 802 __ClearPageReserved(p); 803 set_page_count(p, 0); 804 } 805 __ClearPageReserved(p); 806 set_page_count(p, 0); 807 808 page_zone(page)->managed_pages += nr_pages; 809 set_page_refcounted(page); 810 __free_pages(page, order); 811 } 812 813 #ifdef CONFIG_CMA 814 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 815 void __init init_cma_reserved_pageblock(struct page *page) 816 { 817 unsigned i = pageblock_nr_pages; 818 struct page *p = page; 819 820 do { 821 __ClearPageReserved(p); 822 set_page_count(p, 0); 823 } while (++p, --i); 824 825 set_pageblock_migratetype(page, MIGRATE_CMA); 826 827 if (pageblock_order >= MAX_ORDER) { 828 i = pageblock_nr_pages; 829 p = page; 830 do { 831 set_page_refcounted(p); 832 __free_pages(p, MAX_ORDER - 1); 833 p += MAX_ORDER_NR_PAGES; 834 } while (i -= MAX_ORDER_NR_PAGES); 835 } else { 836 set_page_refcounted(page); 837 __free_pages(page, pageblock_order); 838 } 839 840 adjust_managed_page_count(page, pageblock_nr_pages); 841 } 842 #endif 843 844 /* 845 * The order of subdivision here is critical for the IO subsystem. 846 * Please do not alter this order without good reasons and regression 847 * testing. Specifically, as large blocks of memory are subdivided, 848 * the order in which smaller blocks are delivered depends on the order 849 * they're subdivided in this function. This is the primary factor 850 * influencing the order in which pages are delivered to the IO 851 * subsystem according to empirical testing, and this is also justified 852 * by considering the behavior of a buddy system containing a single 853 * large block of memory acted on by a series of small allocations. 854 * This behavior is a critical factor in sglist merging's success. 855 * 856 * -- nyc 857 */ 858 static inline void expand(struct zone *zone, struct page *page, 859 int low, int high, struct free_area *area, 860 int migratetype) 861 { 862 unsigned long size = 1 << high; 863 864 while (high > low) { 865 area--; 866 high--; 867 size >>= 1; 868 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 869 870 #ifdef CONFIG_DEBUG_PAGEALLOC 871 if (high < debug_guardpage_minorder()) { 872 /* 873 * Mark as guard pages (or page), that will allow to 874 * merge back to allocator when buddy will be freed. 875 * Corresponding page table entries will not be touched, 876 * pages will stay not present in virtual address space 877 */ 878 INIT_LIST_HEAD(&page[size].lru); 879 set_page_guard_flag(&page[size]); 880 set_page_private(&page[size], high); 881 /* Guard pages are not available for any usage */ 882 __mod_zone_freepage_state(zone, -(1 << high), 883 migratetype); 884 continue; 885 } 886 #endif 887 list_add(&page[size].lru, &area->free_list[migratetype]); 888 area->nr_free++; 889 set_page_order(&page[size], high); 890 } 891 } 892 893 /* 894 * This page is about to be returned from the page allocator 895 */ 896 static inline int check_new_page(struct page *page) 897 { 898 const char *bad_reason = NULL; 899 unsigned long bad_flags = 0; 900 901 if (unlikely(page_mapcount(page))) 902 bad_reason = "nonzero mapcount"; 903 if (unlikely(page->mapping != NULL)) 904 bad_reason = "non-NULL mapping"; 905 if (unlikely(atomic_read(&page->_count) != 0)) 906 bad_reason = "nonzero _count"; 907 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 908 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 909 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 910 } 911 if (unlikely(mem_cgroup_bad_page_check(page))) 912 bad_reason = "cgroup check failed"; 913 if (unlikely(bad_reason)) { 914 bad_page(page, bad_reason, bad_flags); 915 return 1; 916 } 917 return 0; 918 } 919 920 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) 921 { 922 int i; 923 924 for (i = 0; i < (1 << order); i++) { 925 struct page *p = page + i; 926 if (unlikely(check_new_page(p))) 927 return 1; 928 } 929 930 set_page_private(page, 0); 931 set_page_refcounted(page); 932 933 arch_alloc_page(page, order); 934 kernel_map_pages(page, 1 << order, 1); 935 936 if (gfp_flags & __GFP_ZERO) 937 prep_zero_page(page, order, gfp_flags); 938 939 if (order && (gfp_flags & __GFP_COMP)) 940 prep_compound_page(page, order); 941 942 return 0; 943 } 944 945 /* 946 * Go through the free lists for the given migratetype and remove 947 * the smallest available page from the freelists 948 */ 949 static inline 950 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 951 int migratetype) 952 { 953 unsigned int current_order; 954 struct free_area *area; 955 struct page *page; 956 957 /* Find a page of the appropriate size in the preferred list */ 958 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 959 area = &(zone->free_area[current_order]); 960 if (list_empty(&area->free_list[migratetype])) 961 continue; 962 963 page = list_entry(area->free_list[migratetype].next, 964 struct page, lru); 965 list_del(&page->lru); 966 rmv_page_order(page); 967 area->nr_free--; 968 expand(zone, page, order, current_order, area, migratetype); 969 set_freepage_migratetype(page, migratetype); 970 return page; 971 } 972 973 return NULL; 974 } 975 976 977 /* 978 * This array describes the order lists are fallen back to when 979 * the free lists for the desirable migrate type are depleted 980 */ 981 static int fallbacks[MIGRATE_TYPES][4] = { 982 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 983 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 984 #ifdef CONFIG_CMA 985 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 986 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 987 #else 988 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 989 #endif 990 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 991 #ifdef CONFIG_MEMORY_ISOLATION 992 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 993 #endif 994 }; 995 996 /* 997 * Move the free pages in a range to the free lists of the requested type. 998 * Note that start_page and end_pages are not aligned on a pageblock 999 * boundary. If alignment is required, use move_freepages_block() 1000 */ 1001 int move_freepages(struct zone *zone, 1002 struct page *start_page, struct page *end_page, 1003 int migratetype) 1004 { 1005 struct page *page; 1006 unsigned long order; 1007 int pages_moved = 0; 1008 1009 #ifndef CONFIG_HOLES_IN_ZONE 1010 /* 1011 * page_zone is not safe to call in this context when 1012 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1013 * anyway as we check zone boundaries in move_freepages_block(). 1014 * Remove at a later date when no bug reports exist related to 1015 * grouping pages by mobility 1016 */ 1017 BUG_ON(page_zone(start_page) != page_zone(end_page)); 1018 #endif 1019 1020 for (page = start_page; page <= end_page;) { 1021 /* Make sure we are not inadvertently changing nodes */ 1022 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1023 1024 if (!pfn_valid_within(page_to_pfn(page))) { 1025 page++; 1026 continue; 1027 } 1028 1029 if (!PageBuddy(page)) { 1030 page++; 1031 continue; 1032 } 1033 1034 order = page_order(page); 1035 list_move(&page->lru, 1036 &zone->free_area[order].free_list[migratetype]); 1037 set_freepage_migratetype(page, migratetype); 1038 page += 1 << order; 1039 pages_moved += 1 << order; 1040 } 1041 1042 return pages_moved; 1043 } 1044 1045 int move_freepages_block(struct zone *zone, struct page *page, 1046 int migratetype) 1047 { 1048 unsigned long start_pfn, end_pfn; 1049 struct page *start_page, *end_page; 1050 1051 start_pfn = page_to_pfn(page); 1052 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1053 start_page = pfn_to_page(start_pfn); 1054 end_page = start_page + pageblock_nr_pages - 1; 1055 end_pfn = start_pfn + pageblock_nr_pages - 1; 1056 1057 /* Do not cross zone boundaries */ 1058 if (!zone_spans_pfn(zone, start_pfn)) 1059 start_page = page; 1060 if (!zone_spans_pfn(zone, end_pfn)) 1061 return 0; 1062 1063 return move_freepages(zone, start_page, end_page, migratetype); 1064 } 1065 1066 static void change_pageblock_range(struct page *pageblock_page, 1067 int start_order, int migratetype) 1068 { 1069 int nr_pageblocks = 1 << (start_order - pageblock_order); 1070 1071 while (nr_pageblocks--) { 1072 set_pageblock_migratetype(pageblock_page, migratetype); 1073 pageblock_page += pageblock_nr_pages; 1074 } 1075 } 1076 1077 /* 1078 * If breaking a large block of pages, move all free pages to the preferred 1079 * allocation list. If falling back for a reclaimable kernel allocation, be 1080 * more aggressive about taking ownership of free pages. 1081 * 1082 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1083 * nor move CMA pages to different free lists. We don't want unmovable pages 1084 * to be allocated from MIGRATE_CMA areas. 1085 * 1086 * Returns the new migratetype of the pageblock (or the same old migratetype 1087 * if it was unchanged). 1088 */ 1089 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1090 int start_type, int fallback_type) 1091 { 1092 int current_order = page_order(page); 1093 1094 /* 1095 * When borrowing from MIGRATE_CMA, we need to release the excess 1096 * buddy pages to CMA itself. We also ensure the freepage_migratetype 1097 * is set to CMA so it is returned to the correct freelist in case 1098 * the page ends up being not actually allocated from the pcp lists. 1099 */ 1100 if (is_migrate_cma(fallback_type)) 1101 return fallback_type; 1102 1103 /* Take ownership for orders >= pageblock_order */ 1104 if (current_order >= pageblock_order) { 1105 change_pageblock_range(page, current_order, start_type); 1106 return start_type; 1107 } 1108 1109 if (current_order >= pageblock_order / 2 || 1110 start_type == MIGRATE_RECLAIMABLE || 1111 page_group_by_mobility_disabled) { 1112 int pages; 1113 1114 pages = move_freepages_block(zone, page, start_type); 1115 1116 /* Claim the whole block if over half of it is free */ 1117 if (pages >= (1 << (pageblock_order-1)) || 1118 page_group_by_mobility_disabled) { 1119 1120 set_pageblock_migratetype(page, start_type); 1121 return start_type; 1122 } 1123 1124 } 1125 1126 return fallback_type; 1127 } 1128 1129 /* Remove an element from the buddy allocator from the fallback list */ 1130 static inline struct page * 1131 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1132 { 1133 struct free_area *area; 1134 unsigned int current_order; 1135 struct page *page; 1136 int migratetype, new_type, i; 1137 1138 /* Find the largest possible block of pages in the other list */ 1139 for (current_order = MAX_ORDER-1; 1140 current_order >= order && current_order <= MAX_ORDER-1; 1141 --current_order) { 1142 for (i = 0;; i++) { 1143 migratetype = fallbacks[start_migratetype][i]; 1144 1145 /* MIGRATE_RESERVE handled later if necessary */ 1146 if (migratetype == MIGRATE_RESERVE) 1147 break; 1148 1149 area = &(zone->free_area[current_order]); 1150 if (list_empty(&area->free_list[migratetype])) 1151 continue; 1152 1153 page = list_entry(area->free_list[migratetype].next, 1154 struct page, lru); 1155 area->nr_free--; 1156 1157 new_type = try_to_steal_freepages(zone, page, 1158 start_migratetype, 1159 migratetype); 1160 1161 /* Remove the page from the freelists */ 1162 list_del(&page->lru); 1163 rmv_page_order(page); 1164 1165 expand(zone, page, order, current_order, area, 1166 new_type); 1167 /* The freepage_migratetype may differ from pageblock's 1168 * migratetype depending on the decisions in 1169 * try_to_steal_freepages. This is OK as long as it does 1170 * not differ for MIGRATE_CMA type. 1171 */ 1172 set_freepage_migratetype(page, new_type); 1173 1174 trace_mm_page_alloc_extfrag(page, order, current_order, 1175 start_migratetype, migratetype, new_type); 1176 1177 return page; 1178 } 1179 } 1180 1181 return NULL; 1182 } 1183 1184 /* 1185 * Do the hard work of removing an element from the buddy allocator. 1186 * Call me with the zone->lock already held. 1187 */ 1188 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1189 int migratetype) 1190 { 1191 struct page *page; 1192 1193 retry_reserve: 1194 page = __rmqueue_smallest(zone, order, migratetype); 1195 1196 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1197 page = __rmqueue_fallback(zone, order, migratetype); 1198 1199 /* 1200 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1201 * is used because __rmqueue_smallest is an inline function 1202 * and we want just one call site 1203 */ 1204 if (!page) { 1205 migratetype = MIGRATE_RESERVE; 1206 goto retry_reserve; 1207 } 1208 } 1209 1210 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1211 return page; 1212 } 1213 1214 /* 1215 * Obtain a specified number of elements from the buddy allocator, all under 1216 * a single hold of the lock, for efficiency. Add them to the supplied list. 1217 * Returns the number of new pages which were placed at *list. 1218 */ 1219 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1220 unsigned long count, struct list_head *list, 1221 int migratetype, bool cold) 1222 { 1223 int i; 1224 1225 spin_lock(&zone->lock); 1226 for (i = 0; i < count; ++i) { 1227 struct page *page = __rmqueue(zone, order, migratetype); 1228 if (unlikely(page == NULL)) 1229 break; 1230 1231 /* 1232 * Split buddy pages returned by expand() are received here 1233 * in physical page order. The page is added to the callers and 1234 * list and the list head then moves forward. From the callers 1235 * perspective, the linked list is ordered by page number in 1236 * some conditions. This is useful for IO devices that can 1237 * merge IO requests if the physical pages are ordered 1238 * properly. 1239 */ 1240 if (likely(!cold)) 1241 list_add(&page->lru, list); 1242 else 1243 list_add_tail(&page->lru, list); 1244 list = &page->lru; 1245 if (is_migrate_cma(get_freepage_migratetype(page))) 1246 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1247 -(1 << order)); 1248 } 1249 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1250 spin_unlock(&zone->lock); 1251 return i; 1252 } 1253 1254 #ifdef CONFIG_NUMA 1255 /* 1256 * Called from the vmstat counter updater to drain pagesets of this 1257 * currently executing processor on remote nodes after they have 1258 * expired. 1259 * 1260 * Note that this function must be called with the thread pinned to 1261 * a single processor. 1262 */ 1263 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1264 { 1265 unsigned long flags; 1266 int to_drain, batch; 1267 1268 local_irq_save(flags); 1269 batch = ACCESS_ONCE(pcp->batch); 1270 to_drain = min(pcp->count, batch); 1271 if (to_drain > 0) { 1272 free_pcppages_bulk(zone, to_drain, pcp); 1273 pcp->count -= to_drain; 1274 } 1275 local_irq_restore(flags); 1276 } 1277 #endif 1278 1279 /* 1280 * Drain pages of the indicated processor. 1281 * 1282 * The processor must either be the current processor and the 1283 * thread pinned to the current processor or a processor that 1284 * is not online. 1285 */ 1286 static void drain_pages(unsigned int cpu) 1287 { 1288 unsigned long flags; 1289 struct zone *zone; 1290 1291 for_each_populated_zone(zone) { 1292 struct per_cpu_pageset *pset; 1293 struct per_cpu_pages *pcp; 1294 1295 local_irq_save(flags); 1296 pset = per_cpu_ptr(zone->pageset, cpu); 1297 1298 pcp = &pset->pcp; 1299 if (pcp->count) { 1300 free_pcppages_bulk(zone, pcp->count, pcp); 1301 pcp->count = 0; 1302 } 1303 local_irq_restore(flags); 1304 } 1305 } 1306 1307 /* 1308 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1309 */ 1310 void drain_local_pages(void *arg) 1311 { 1312 drain_pages(smp_processor_id()); 1313 } 1314 1315 /* 1316 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1317 * 1318 * Note that this code is protected against sending an IPI to an offline 1319 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1320 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1321 * nothing keeps CPUs from showing up after we populated the cpumask and 1322 * before the call to on_each_cpu_mask(). 1323 */ 1324 void drain_all_pages(void) 1325 { 1326 int cpu; 1327 struct per_cpu_pageset *pcp; 1328 struct zone *zone; 1329 1330 /* 1331 * Allocate in the BSS so we wont require allocation in 1332 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1333 */ 1334 static cpumask_t cpus_with_pcps; 1335 1336 /* 1337 * We don't care about racing with CPU hotplug event 1338 * as offline notification will cause the notified 1339 * cpu to drain that CPU pcps and on_each_cpu_mask 1340 * disables preemption as part of its processing 1341 */ 1342 for_each_online_cpu(cpu) { 1343 bool has_pcps = false; 1344 for_each_populated_zone(zone) { 1345 pcp = per_cpu_ptr(zone->pageset, cpu); 1346 if (pcp->pcp.count) { 1347 has_pcps = true; 1348 break; 1349 } 1350 } 1351 if (has_pcps) 1352 cpumask_set_cpu(cpu, &cpus_with_pcps); 1353 else 1354 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1355 } 1356 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1357 } 1358 1359 #ifdef CONFIG_HIBERNATION 1360 1361 void mark_free_pages(struct zone *zone) 1362 { 1363 unsigned long pfn, max_zone_pfn; 1364 unsigned long flags; 1365 unsigned int order, t; 1366 struct list_head *curr; 1367 1368 if (zone_is_empty(zone)) 1369 return; 1370 1371 spin_lock_irqsave(&zone->lock, flags); 1372 1373 max_zone_pfn = zone_end_pfn(zone); 1374 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1375 if (pfn_valid(pfn)) { 1376 struct page *page = pfn_to_page(pfn); 1377 1378 if (!swsusp_page_is_forbidden(page)) 1379 swsusp_unset_page_free(page); 1380 } 1381 1382 for_each_migratetype_order(order, t) { 1383 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1384 unsigned long i; 1385 1386 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1387 for (i = 0; i < (1UL << order); i++) 1388 swsusp_set_page_free(pfn_to_page(pfn + i)); 1389 } 1390 } 1391 spin_unlock_irqrestore(&zone->lock, flags); 1392 } 1393 #endif /* CONFIG_PM */ 1394 1395 /* 1396 * Free a 0-order page 1397 * cold == true ? free a cold page : free a hot page 1398 */ 1399 void free_hot_cold_page(struct page *page, bool cold) 1400 { 1401 struct zone *zone = page_zone(page); 1402 struct per_cpu_pages *pcp; 1403 unsigned long flags; 1404 unsigned long pfn = page_to_pfn(page); 1405 int migratetype; 1406 1407 if (!free_pages_prepare(page, 0)) 1408 return; 1409 1410 migratetype = get_pfnblock_migratetype(page, pfn); 1411 set_freepage_migratetype(page, migratetype); 1412 local_irq_save(flags); 1413 __count_vm_event(PGFREE); 1414 1415 /* 1416 * We only track unmovable, reclaimable and movable on pcp lists. 1417 * Free ISOLATE pages back to the allocator because they are being 1418 * offlined but treat RESERVE as movable pages so we can get those 1419 * areas back if necessary. Otherwise, we may have to free 1420 * excessively into the page allocator 1421 */ 1422 if (migratetype >= MIGRATE_PCPTYPES) { 1423 if (unlikely(is_migrate_isolate(migratetype))) { 1424 free_one_page(zone, page, pfn, 0, migratetype); 1425 goto out; 1426 } 1427 migratetype = MIGRATE_MOVABLE; 1428 } 1429 1430 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1431 if (!cold) 1432 list_add(&page->lru, &pcp->lists[migratetype]); 1433 else 1434 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1435 pcp->count++; 1436 if (pcp->count >= pcp->high) { 1437 unsigned long batch = ACCESS_ONCE(pcp->batch); 1438 free_pcppages_bulk(zone, batch, pcp); 1439 pcp->count -= batch; 1440 } 1441 1442 out: 1443 local_irq_restore(flags); 1444 } 1445 1446 /* 1447 * Free a list of 0-order pages 1448 */ 1449 void free_hot_cold_page_list(struct list_head *list, bool cold) 1450 { 1451 struct page *page, *next; 1452 1453 list_for_each_entry_safe(page, next, list, lru) { 1454 trace_mm_page_free_batched(page, cold); 1455 free_hot_cold_page(page, cold); 1456 } 1457 } 1458 1459 /* 1460 * split_page takes a non-compound higher-order page, and splits it into 1461 * n (1<<order) sub-pages: page[0..n] 1462 * Each sub-page must be freed individually. 1463 * 1464 * Note: this is probably too low level an operation for use in drivers. 1465 * Please consult with lkml before using this in your driver. 1466 */ 1467 void split_page(struct page *page, unsigned int order) 1468 { 1469 int i; 1470 1471 VM_BUG_ON_PAGE(PageCompound(page), page); 1472 VM_BUG_ON_PAGE(!page_count(page), page); 1473 1474 #ifdef CONFIG_KMEMCHECK 1475 /* 1476 * Split shadow pages too, because free(page[0]) would 1477 * otherwise free the whole shadow. 1478 */ 1479 if (kmemcheck_page_is_tracked(page)) 1480 split_page(virt_to_page(page[0].shadow), order); 1481 #endif 1482 1483 for (i = 1; i < (1 << order); i++) 1484 set_page_refcounted(page + i); 1485 } 1486 EXPORT_SYMBOL_GPL(split_page); 1487 1488 static int __isolate_free_page(struct page *page, unsigned int order) 1489 { 1490 unsigned long watermark; 1491 struct zone *zone; 1492 int mt; 1493 1494 BUG_ON(!PageBuddy(page)); 1495 1496 zone = page_zone(page); 1497 mt = get_pageblock_migratetype(page); 1498 1499 if (!is_migrate_isolate(mt)) { 1500 /* Obey watermarks as if the page was being allocated */ 1501 watermark = low_wmark_pages(zone) + (1 << order); 1502 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1503 return 0; 1504 1505 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1506 } 1507 1508 /* Remove page from free list */ 1509 list_del(&page->lru); 1510 zone->free_area[order].nr_free--; 1511 rmv_page_order(page); 1512 1513 /* Set the pageblock if the isolated page is at least a pageblock */ 1514 if (order >= pageblock_order - 1) { 1515 struct page *endpage = page + (1 << order) - 1; 1516 for (; page < endpage; page += pageblock_nr_pages) { 1517 int mt = get_pageblock_migratetype(page); 1518 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1519 set_pageblock_migratetype(page, 1520 MIGRATE_MOVABLE); 1521 } 1522 } 1523 1524 return 1UL << order; 1525 } 1526 1527 /* 1528 * Similar to split_page except the page is already free. As this is only 1529 * being used for migration, the migratetype of the block also changes. 1530 * As this is called with interrupts disabled, the caller is responsible 1531 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1532 * are enabled. 1533 * 1534 * Note: this is probably too low level an operation for use in drivers. 1535 * Please consult with lkml before using this in your driver. 1536 */ 1537 int split_free_page(struct page *page) 1538 { 1539 unsigned int order; 1540 int nr_pages; 1541 1542 order = page_order(page); 1543 1544 nr_pages = __isolate_free_page(page, order); 1545 if (!nr_pages) 1546 return 0; 1547 1548 /* Split into individual pages */ 1549 set_page_refcounted(page); 1550 split_page(page, order); 1551 return nr_pages; 1552 } 1553 1554 /* 1555 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1556 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1557 * or two. 1558 */ 1559 static inline 1560 struct page *buffered_rmqueue(struct zone *preferred_zone, 1561 struct zone *zone, unsigned int order, 1562 gfp_t gfp_flags, int migratetype) 1563 { 1564 unsigned long flags; 1565 struct page *page; 1566 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1567 1568 again: 1569 if (likely(order == 0)) { 1570 struct per_cpu_pages *pcp; 1571 struct list_head *list; 1572 1573 local_irq_save(flags); 1574 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1575 list = &pcp->lists[migratetype]; 1576 if (list_empty(list)) { 1577 pcp->count += rmqueue_bulk(zone, 0, 1578 pcp->batch, list, 1579 migratetype, cold); 1580 if (unlikely(list_empty(list))) 1581 goto failed; 1582 } 1583 1584 if (cold) 1585 page = list_entry(list->prev, struct page, lru); 1586 else 1587 page = list_entry(list->next, struct page, lru); 1588 1589 list_del(&page->lru); 1590 pcp->count--; 1591 } else { 1592 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1593 /* 1594 * __GFP_NOFAIL is not to be used in new code. 1595 * 1596 * All __GFP_NOFAIL callers should be fixed so that they 1597 * properly detect and handle allocation failures. 1598 * 1599 * We most definitely don't want callers attempting to 1600 * allocate greater than order-1 page units with 1601 * __GFP_NOFAIL. 1602 */ 1603 WARN_ON_ONCE(order > 1); 1604 } 1605 spin_lock_irqsave(&zone->lock, flags); 1606 page = __rmqueue(zone, order, migratetype); 1607 spin_unlock(&zone->lock); 1608 if (!page) 1609 goto failed; 1610 __mod_zone_freepage_state(zone, -(1 << order), 1611 get_freepage_migratetype(page)); 1612 } 1613 1614 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1615 if (zone_page_state(zone, NR_ALLOC_BATCH) == 0 && 1616 !zone_is_fair_depleted(zone)) 1617 zone_set_flag(zone, ZONE_FAIR_DEPLETED); 1618 1619 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1620 zone_statistics(preferred_zone, zone, gfp_flags); 1621 local_irq_restore(flags); 1622 1623 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1624 if (prep_new_page(page, order, gfp_flags)) 1625 goto again; 1626 return page; 1627 1628 failed: 1629 local_irq_restore(flags); 1630 return NULL; 1631 } 1632 1633 #ifdef CONFIG_FAIL_PAGE_ALLOC 1634 1635 static struct { 1636 struct fault_attr attr; 1637 1638 u32 ignore_gfp_highmem; 1639 u32 ignore_gfp_wait; 1640 u32 min_order; 1641 } fail_page_alloc = { 1642 .attr = FAULT_ATTR_INITIALIZER, 1643 .ignore_gfp_wait = 1, 1644 .ignore_gfp_highmem = 1, 1645 .min_order = 1, 1646 }; 1647 1648 static int __init setup_fail_page_alloc(char *str) 1649 { 1650 return setup_fault_attr(&fail_page_alloc.attr, str); 1651 } 1652 __setup("fail_page_alloc=", setup_fail_page_alloc); 1653 1654 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1655 { 1656 if (order < fail_page_alloc.min_order) 1657 return false; 1658 if (gfp_mask & __GFP_NOFAIL) 1659 return false; 1660 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1661 return false; 1662 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1663 return false; 1664 1665 return should_fail(&fail_page_alloc.attr, 1 << order); 1666 } 1667 1668 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1669 1670 static int __init fail_page_alloc_debugfs(void) 1671 { 1672 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1673 struct dentry *dir; 1674 1675 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1676 &fail_page_alloc.attr); 1677 if (IS_ERR(dir)) 1678 return PTR_ERR(dir); 1679 1680 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1681 &fail_page_alloc.ignore_gfp_wait)) 1682 goto fail; 1683 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1684 &fail_page_alloc.ignore_gfp_highmem)) 1685 goto fail; 1686 if (!debugfs_create_u32("min-order", mode, dir, 1687 &fail_page_alloc.min_order)) 1688 goto fail; 1689 1690 return 0; 1691 fail: 1692 debugfs_remove_recursive(dir); 1693 1694 return -ENOMEM; 1695 } 1696 1697 late_initcall(fail_page_alloc_debugfs); 1698 1699 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1700 1701 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1702 1703 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1704 { 1705 return false; 1706 } 1707 1708 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1709 1710 /* 1711 * Return true if free pages are above 'mark'. This takes into account the order 1712 * of the allocation. 1713 */ 1714 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1715 unsigned long mark, int classzone_idx, int alloc_flags, 1716 long free_pages) 1717 { 1718 /* free_pages my go negative - that's OK */ 1719 long min = mark; 1720 int o; 1721 long free_cma = 0; 1722 1723 free_pages -= (1 << order) - 1; 1724 if (alloc_flags & ALLOC_HIGH) 1725 min -= min / 2; 1726 if (alloc_flags & ALLOC_HARDER) 1727 min -= min / 4; 1728 #ifdef CONFIG_CMA 1729 /* If allocation can't use CMA areas don't use free CMA pages */ 1730 if (!(alloc_flags & ALLOC_CMA)) 1731 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1732 #endif 1733 1734 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1735 return false; 1736 for (o = 0; o < order; o++) { 1737 /* At the next order, this order's pages become unavailable */ 1738 free_pages -= z->free_area[o].nr_free << o; 1739 1740 /* Require fewer higher order pages to be free */ 1741 min >>= 1; 1742 1743 if (free_pages <= min) 1744 return false; 1745 } 1746 return true; 1747 } 1748 1749 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1750 int classzone_idx, int alloc_flags) 1751 { 1752 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1753 zone_page_state(z, NR_FREE_PAGES)); 1754 } 1755 1756 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1757 unsigned long mark, int classzone_idx, int alloc_flags) 1758 { 1759 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1760 1761 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1762 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1763 1764 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1765 free_pages); 1766 } 1767 1768 #ifdef CONFIG_NUMA 1769 /* 1770 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1771 * skip over zones that are not allowed by the cpuset, or that have 1772 * been recently (in last second) found to be nearly full. See further 1773 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1774 * that have to skip over a lot of full or unallowed zones. 1775 * 1776 * If the zonelist cache is present in the passed zonelist, then 1777 * returns a pointer to the allowed node mask (either the current 1778 * tasks mems_allowed, or node_states[N_MEMORY].) 1779 * 1780 * If the zonelist cache is not available for this zonelist, does 1781 * nothing and returns NULL. 1782 * 1783 * If the fullzones BITMAP in the zonelist cache is stale (more than 1784 * a second since last zap'd) then we zap it out (clear its bits.) 1785 * 1786 * We hold off even calling zlc_setup, until after we've checked the 1787 * first zone in the zonelist, on the theory that most allocations will 1788 * be satisfied from that first zone, so best to examine that zone as 1789 * quickly as we can. 1790 */ 1791 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1792 { 1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1794 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1795 1796 zlc = zonelist->zlcache_ptr; 1797 if (!zlc) 1798 return NULL; 1799 1800 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1801 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1802 zlc->last_full_zap = jiffies; 1803 } 1804 1805 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1806 &cpuset_current_mems_allowed : 1807 &node_states[N_MEMORY]; 1808 return allowednodes; 1809 } 1810 1811 /* 1812 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1813 * if it is worth looking at further for free memory: 1814 * 1) Check that the zone isn't thought to be full (doesn't have its 1815 * bit set in the zonelist_cache fullzones BITMAP). 1816 * 2) Check that the zones node (obtained from the zonelist_cache 1817 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1818 * Return true (non-zero) if zone is worth looking at further, or 1819 * else return false (zero) if it is not. 1820 * 1821 * This check -ignores- the distinction between various watermarks, 1822 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1823 * found to be full for any variation of these watermarks, it will 1824 * be considered full for up to one second by all requests, unless 1825 * we are so low on memory on all allowed nodes that we are forced 1826 * into the second scan of the zonelist. 1827 * 1828 * In the second scan we ignore this zonelist cache and exactly 1829 * apply the watermarks to all zones, even it is slower to do so. 1830 * We are low on memory in the second scan, and should leave no stone 1831 * unturned looking for a free page. 1832 */ 1833 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1834 nodemask_t *allowednodes) 1835 { 1836 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1837 int i; /* index of *z in zonelist zones */ 1838 int n; /* node that zone *z is on */ 1839 1840 zlc = zonelist->zlcache_ptr; 1841 if (!zlc) 1842 return 1; 1843 1844 i = z - zonelist->_zonerefs; 1845 n = zlc->z_to_n[i]; 1846 1847 /* This zone is worth trying if it is allowed but not full */ 1848 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1849 } 1850 1851 /* 1852 * Given 'z' scanning a zonelist, set the corresponding bit in 1853 * zlc->fullzones, so that subsequent attempts to allocate a page 1854 * from that zone don't waste time re-examining it. 1855 */ 1856 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1857 { 1858 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1859 int i; /* index of *z in zonelist zones */ 1860 1861 zlc = zonelist->zlcache_ptr; 1862 if (!zlc) 1863 return; 1864 1865 i = z - zonelist->_zonerefs; 1866 1867 set_bit(i, zlc->fullzones); 1868 } 1869 1870 /* 1871 * clear all zones full, called after direct reclaim makes progress so that 1872 * a zone that was recently full is not skipped over for up to a second 1873 */ 1874 static void zlc_clear_zones_full(struct zonelist *zonelist) 1875 { 1876 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1877 1878 zlc = zonelist->zlcache_ptr; 1879 if (!zlc) 1880 return; 1881 1882 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1883 } 1884 1885 static bool zone_local(struct zone *local_zone, struct zone *zone) 1886 { 1887 return local_zone->node == zone->node; 1888 } 1889 1890 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1891 { 1892 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1893 RECLAIM_DISTANCE; 1894 } 1895 1896 #else /* CONFIG_NUMA */ 1897 1898 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1899 { 1900 return NULL; 1901 } 1902 1903 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1904 nodemask_t *allowednodes) 1905 { 1906 return 1; 1907 } 1908 1909 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1910 { 1911 } 1912 1913 static void zlc_clear_zones_full(struct zonelist *zonelist) 1914 { 1915 } 1916 1917 static bool zone_local(struct zone *local_zone, struct zone *zone) 1918 { 1919 return true; 1920 } 1921 1922 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1923 { 1924 return true; 1925 } 1926 1927 #endif /* CONFIG_NUMA */ 1928 1929 static void reset_alloc_batches(struct zone *preferred_zone) 1930 { 1931 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 1932 1933 do { 1934 mod_zone_page_state(zone, NR_ALLOC_BATCH, 1935 high_wmark_pages(zone) - low_wmark_pages(zone) - 1936 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 1937 zone_clear_flag(zone, ZONE_FAIR_DEPLETED); 1938 } while (zone++ != preferred_zone); 1939 } 1940 1941 /* 1942 * get_page_from_freelist goes through the zonelist trying to allocate 1943 * a page. 1944 */ 1945 static struct page * 1946 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1947 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1948 struct zone *preferred_zone, int classzone_idx, int migratetype) 1949 { 1950 struct zoneref *z; 1951 struct page *page = NULL; 1952 struct zone *zone; 1953 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1954 int zlc_active = 0; /* set if using zonelist_cache */ 1955 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1956 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 1957 (gfp_mask & __GFP_WRITE); 1958 int nr_fair_skipped = 0; 1959 bool zonelist_rescan; 1960 1961 zonelist_scan: 1962 zonelist_rescan = false; 1963 1964 /* 1965 * Scan zonelist, looking for a zone with enough free. 1966 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1967 */ 1968 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1969 high_zoneidx, nodemask) { 1970 unsigned long mark; 1971 1972 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1973 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1974 continue; 1975 if (cpusets_enabled() && 1976 (alloc_flags & ALLOC_CPUSET) && 1977 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1978 continue; 1979 /* 1980 * Distribute pages in proportion to the individual 1981 * zone size to ensure fair page aging. The zone a 1982 * page was allocated in should have no effect on the 1983 * time the page has in memory before being reclaimed. 1984 */ 1985 if (alloc_flags & ALLOC_FAIR) { 1986 if (!zone_local(preferred_zone, zone)) 1987 break; 1988 if (zone_is_fair_depleted(zone)) { 1989 nr_fair_skipped++; 1990 continue; 1991 } 1992 } 1993 /* 1994 * When allocating a page cache page for writing, we 1995 * want to get it from a zone that is within its dirty 1996 * limit, such that no single zone holds more than its 1997 * proportional share of globally allowed dirty pages. 1998 * The dirty limits take into account the zone's 1999 * lowmem reserves and high watermark so that kswapd 2000 * should be able to balance it without having to 2001 * write pages from its LRU list. 2002 * 2003 * This may look like it could increase pressure on 2004 * lower zones by failing allocations in higher zones 2005 * before they are full. But the pages that do spill 2006 * over are limited as the lower zones are protected 2007 * by this very same mechanism. It should not become 2008 * a practical burden to them. 2009 * 2010 * XXX: For now, allow allocations to potentially 2011 * exceed the per-zone dirty limit in the slowpath 2012 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2013 * which is important when on a NUMA setup the allowed 2014 * zones are together not big enough to reach the 2015 * global limit. The proper fix for these situations 2016 * will require awareness of zones in the 2017 * dirty-throttling and the flusher threads. 2018 */ 2019 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2020 continue; 2021 2022 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2023 if (!zone_watermark_ok(zone, order, mark, 2024 classzone_idx, alloc_flags)) { 2025 int ret; 2026 2027 /* Checked here to keep the fast path fast */ 2028 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2029 if (alloc_flags & ALLOC_NO_WATERMARKS) 2030 goto try_this_zone; 2031 2032 if (IS_ENABLED(CONFIG_NUMA) && 2033 !did_zlc_setup && nr_online_nodes > 1) { 2034 /* 2035 * we do zlc_setup if there are multiple nodes 2036 * and before considering the first zone allowed 2037 * by the cpuset. 2038 */ 2039 allowednodes = zlc_setup(zonelist, alloc_flags); 2040 zlc_active = 1; 2041 did_zlc_setup = 1; 2042 } 2043 2044 if (zone_reclaim_mode == 0 || 2045 !zone_allows_reclaim(preferred_zone, zone)) 2046 goto this_zone_full; 2047 2048 /* 2049 * As we may have just activated ZLC, check if the first 2050 * eligible zone has failed zone_reclaim recently. 2051 */ 2052 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2053 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2054 continue; 2055 2056 ret = zone_reclaim(zone, gfp_mask, order); 2057 switch (ret) { 2058 case ZONE_RECLAIM_NOSCAN: 2059 /* did not scan */ 2060 continue; 2061 case ZONE_RECLAIM_FULL: 2062 /* scanned but unreclaimable */ 2063 continue; 2064 default: 2065 /* did we reclaim enough */ 2066 if (zone_watermark_ok(zone, order, mark, 2067 classzone_idx, alloc_flags)) 2068 goto try_this_zone; 2069 2070 /* 2071 * Failed to reclaim enough to meet watermark. 2072 * Only mark the zone full if checking the min 2073 * watermark or if we failed to reclaim just 2074 * 1<<order pages or else the page allocator 2075 * fastpath will prematurely mark zones full 2076 * when the watermark is between the low and 2077 * min watermarks. 2078 */ 2079 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2080 ret == ZONE_RECLAIM_SOME) 2081 goto this_zone_full; 2082 2083 continue; 2084 } 2085 } 2086 2087 try_this_zone: 2088 page = buffered_rmqueue(preferred_zone, zone, order, 2089 gfp_mask, migratetype); 2090 if (page) 2091 break; 2092 this_zone_full: 2093 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2094 zlc_mark_zone_full(zonelist, z); 2095 } 2096 2097 if (page) { 2098 /* 2099 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2100 * necessary to allocate the page. The expectation is 2101 * that the caller is taking steps that will free more 2102 * memory. The caller should avoid the page being used 2103 * for !PFMEMALLOC purposes. 2104 */ 2105 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2106 return page; 2107 } 2108 2109 /* 2110 * The first pass makes sure allocations are spread fairly within the 2111 * local node. However, the local node might have free pages left 2112 * after the fairness batches are exhausted, and remote zones haven't 2113 * even been considered yet. Try once more without fairness, and 2114 * include remote zones now, before entering the slowpath and waking 2115 * kswapd: prefer spilling to a remote zone over swapping locally. 2116 */ 2117 if (alloc_flags & ALLOC_FAIR) { 2118 alloc_flags &= ~ALLOC_FAIR; 2119 if (nr_fair_skipped) { 2120 zonelist_rescan = true; 2121 reset_alloc_batches(preferred_zone); 2122 } 2123 if (nr_online_nodes > 1) 2124 zonelist_rescan = true; 2125 } 2126 2127 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2128 /* Disable zlc cache for second zonelist scan */ 2129 zlc_active = 0; 2130 zonelist_rescan = true; 2131 } 2132 2133 if (zonelist_rescan) 2134 goto zonelist_scan; 2135 2136 return NULL; 2137 } 2138 2139 /* 2140 * Large machines with many possible nodes should not always dump per-node 2141 * meminfo in irq context. 2142 */ 2143 static inline bool should_suppress_show_mem(void) 2144 { 2145 bool ret = false; 2146 2147 #if NODES_SHIFT > 8 2148 ret = in_interrupt(); 2149 #endif 2150 return ret; 2151 } 2152 2153 static DEFINE_RATELIMIT_STATE(nopage_rs, 2154 DEFAULT_RATELIMIT_INTERVAL, 2155 DEFAULT_RATELIMIT_BURST); 2156 2157 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2158 { 2159 unsigned int filter = SHOW_MEM_FILTER_NODES; 2160 2161 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2162 debug_guardpage_minorder() > 0) 2163 return; 2164 2165 /* 2166 * This documents exceptions given to allocations in certain 2167 * contexts that are allowed to allocate outside current's set 2168 * of allowed nodes. 2169 */ 2170 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2171 if (test_thread_flag(TIF_MEMDIE) || 2172 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2173 filter &= ~SHOW_MEM_FILTER_NODES; 2174 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2175 filter &= ~SHOW_MEM_FILTER_NODES; 2176 2177 if (fmt) { 2178 struct va_format vaf; 2179 va_list args; 2180 2181 va_start(args, fmt); 2182 2183 vaf.fmt = fmt; 2184 vaf.va = &args; 2185 2186 pr_warn("%pV", &vaf); 2187 2188 va_end(args); 2189 } 2190 2191 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2192 current->comm, order, gfp_mask); 2193 2194 dump_stack(); 2195 if (!should_suppress_show_mem()) 2196 show_mem(filter); 2197 } 2198 2199 static inline int 2200 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2201 unsigned long did_some_progress, 2202 unsigned long pages_reclaimed) 2203 { 2204 /* Do not loop if specifically requested */ 2205 if (gfp_mask & __GFP_NORETRY) 2206 return 0; 2207 2208 /* Always retry if specifically requested */ 2209 if (gfp_mask & __GFP_NOFAIL) 2210 return 1; 2211 2212 /* 2213 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2214 * making forward progress without invoking OOM. Suspend also disables 2215 * storage devices so kswapd will not help. Bail if we are suspending. 2216 */ 2217 if (!did_some_progress && pm_suspended_storage()) 2218 return 0; 2219 2220 /* 2221 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2222 * means __GFP_NOFAIL, but that may not be true in other 2223 * implementations. 2224 */ 2225 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2226 return 1; 2227 2228 /* 2229 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2230 * specified, then we retry until we no longer reclaim any pages 2231 * (above), or we've reclaimed an order of pages at least as 2232 * large as the allocation's order. In both cases, if the 2233 * allocation still fails, we stop retrying. 2234 */ 2235 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2236 return 1; 2237 2238 return 0; 2239 } 2240 2241 static inline struct page * 2242 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2243 struct zonelist *zonelist, enum zone_type high_zoneidx, 2244 nodemask_t *nodemask, struct zone *preferred_zone, 2245 int classzone_idx, int migratetype) 2246 { 2247 struct page *page; 2248 2249 /* Acquire the per-zone oom lock for each zone */ 2250 if (!oom_zonelist_trylock(zonelist, gfp_mask)) { 2251 schedule_timeout_uninterruptible(1); 2252 return NULL; 2253 } 2254 2255 /* 2256 * Go through the zonelist yet one more time, keep very high watermark 2257 * here, this is only to catch a parallel oom killing, we must fail if 2258 * we're still under heavy pressure. 2259 */ 2260 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2261 order, zonelist, high_zoneidx, 2262 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2263 preferred_zone, classzone_idx, migratetype); 2264 if (page) 2265 goto out; 2266 2267 if (!(gfp_mask & __GFP_NOFAIL)) { 2268 /* The OOM killer will not help higher order allocs */ 2269 if (order > PAGE_ALLOC_COSTLY_ORDER) 2270 goto out; 2271 /* The OOM killer does not needlessly kill tasks for lowmem */ 2272 if (high_zoneidx < ZONE_NORMAL) 2273 goto out; 2274 /* 2275 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2276 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2277 * The caller should handle page allocation failure by itself if 2278 * it specifies __GFP_THISNODE. 2279 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2280 */ 2281 if (gfp_mask & __GFP_THISNODE) 2282 goto out; 2283 } 2284 /* Exhausted what can be done so it's blamo time */ 2285 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2286 2287 out: 2288 oom_zonelist_unlock(zonelist, gfp_mask); 2289 return page; 2290 } 2291 2292 #ifdef CONFIG_COMPACTION 2293 /* Try memory compaction for high-order allocations before reclaim */ 2294 static struct page * 2295 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2296 struct zonelist *zonelist, enum zone_type high_zoneidx, 2297 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2298 int classzone_idx, int migratetype, enum migrate_mode mode, 2299 bool *contended_compaction, bool *deferred_compaction, 2300 unsigned long *did_some_progress) 2301 { 2302 if (!order) 2303 return NULL; 2304 2305 if (compaction_deferred(preferred_zone, order)) { 2306 *deferred_compaction = true; 2307 return NULL; 2308 } 2309 2310 current->flags |= PF_MEMALLOC; 2311 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2312 nodemask, mode, 2313 contended_compaction); 2314 current->flags &= ~PF_MEMALLOC; 2315 2316 if (*did_some_progress != COMPACT_SKIPPED) { 2317 struct page *page; 2318 2319 /* Page migration frees to the PCP lists but we want merging */ 2320 drain_pages(get_cpu()); 2321 put_cpu(); 2322 2323 page = get_page_from_freelist(gfp_mask, nodemask, 2324 order, zonelist, high_zoneidx, 2325 alloc_flags & ~ALLOC_NO_WATERMARKS, 2326 preferred_zone, classzone_idx, migratetype); 2327 if (page) { 2328 preferred_zone->compact_blockskip_flush = false; 2329 compaction_defer_reset(preferred_zone, order, true); 2330 count_vm_event(COMPACTSUCCESS); 2331 return page; 2332 } 2333 2334 /* 2335 * It's bad if compaction run occurs and fails. 2336 * The most likely reason is that pages exist, 2337 * but not enough to satisfy watermarks. 2338 */ 2339 count_vm_event(COMPACTFAIL); 2340 2341 /* 2342 * As async compaction considers a subset of pageblocks, only 2343 * defer if the failure was a sync compaction failure. 2344 */ 2345 if (mode != MIGRATE_ASYNC) 2346 defer_compaction(preferred_zone, order); 2347 2348 cond_resched(); 2349 } 2350 2351 return NULL; 2352 } 2353 #else 2354 static inline struct page * 2355 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2356 struct zonelist *zonelist, enum zone_type high_zoneidx, 2357 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2358 int classzone_idx, int migratetype, 2359 enum migrate_mode mode, bool *contended_compaction, 2360 bool *deferred_compaction, unsigned long *did_some_progress) 2361 { 2362 return NULL; 2363 } 2364 #endif /* CONFIG_COMPACTION */ 2365 2366 /* Perform direct synchronous page reclaim */ 2367 static int 2368 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2369 nodemask_t *nodemask) 2370 { 2371 struct reclaim_state reclaim_state; 2372 int progress; 2373 2374 cond_resched(); 2375 2376 /* We now go into synchronous reclaim */ 2377 cpuset_memory_pressure_bump(); 2378 current->flags |= PF_MEMALLOC; 2379 lockdep_set_current_reclaim_state(gfp_mask); 2380 reclaim_state.reclaimed_slab = 0; 2381 current->reclaim_state = &reclaim_state; 2382 2383 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2384 2385 current->reclaim_state = NULL; 2386 lockdep_clear_current_reclaim_state(); 2387 current->flags &= ~PF_MEMALLOC; 2388 2389 cond_resched(); 2390 2391 return progress; 2392 } 2393 2394 /* The really slow allocator path where we enter direct reclaim */ 2395 static inline struct page * 2396 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2397 struct zonelist *zonelist, enum zone_type high_zoneidx, 2398 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2399 int classzone_idx, int migratetype, unsigned long *did_some_progress) 2400 { 2401 struct page *page = NULL; 2402 bool drained = false; 2403 2404 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2405 nodemask); 2406 if (unlikely(!(*did_some_progress))) 2407 return NULL; 2408 2409 /* After successful reclaim, reconsider all zones for allocation */ 2410 if (IS_ENABLED(CONFIG_NUMA)) 2411 zlc_clear_zones_full(zonelist); 2412 2413 retry: 2414 page = get_page_from_freelist(gfp_mask, nodemask, order, 2415 zonelist, high_zoneidx, 2416 alloc_flags & ~ALLOC_NO_WATERMARKS, 2417 preferred_zone, classzone_idx, 2418 migratetype); 2419 2420 /* 2421 * If an allocation failed after direct reclaim, it could be because 2422 * pages are pinned on the per-cpu lists. Drain them and try again 2423 */ 2424 if (!page && !drained) { 2425 drain_all_pages(); 2426 drained = true; 2427 goto retry; 2428 } 2429 2430 return page; 2431 } 2432 2433 /* 2434 * This is called in the allocator slow-path if the allocation request is of 2435 * sufficient urgency to ignore watermarks and take other desperate measures 2436 */ 2437 static inline struct page * 2438 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2439 struct zonelist *zonelist, enum zone_type high_zoneidx, 2440 nodemask_t *nodemask, struct zone *preferred_zone, 2441 int classzone_idx, int migratetype) 2442 { 2443 struct page *page; 2444 2445 do { 2446 page = get_page_from_freelist(gfp_mask, nodemask, order, 2447 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2448 preferred_zone, classzone_idx, migratetype); 2449 2450 if (!page && gfp_mask & __GFP_NOFAIL) 2451 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2452 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2453 2454 return page; 2455 } 2456 2457 static void wake_all_kswapds(unsigned int order, 2458 struct zonelist *zonelist, 2459 enum zone_type high_zoneidx, 2460 struct zone *preferred_zone) 2461 { 2462 struct zoneref *z; 2463 struct zone *zone; 2464 2465 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2466 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2467 } 2468 2469 static inline int 2470 gfp_to_alloc_flags(gfp_t gfp_mask) 2471 { 2472 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2473 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2474 2475 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2476 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2477 2478 /* 2479 * The caller may dip into page reserves a bit more if the caller 2480 * cannot run direct reclaim, or if the caller has realtime scheduling 2481 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2482 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2483 */ 2484 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2485 2486 if (atomic) { 2487 /* 2488 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2489 * if it can't schedule. 2490 */ 2491 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2492 alloc_flags |= ALLOC_HARDER; 2493 /* 2494 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2495 * comment for __cpuset_node_allowed_softwall(). 2496 */ 2497 alloc_flags &= ~ALLOC_CPUSET; 2498 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2499 alloc_flags |= ALLOC_HARDER; 2500 2501 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2502 if (gfp_mask & __GFP_MEMALLOC) 2503 alloc_flags |= ALLOC_NO_WATERMARKS; 2504 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2505 alloc_flags |= ALLOC_NO_WATERMARKS; 2506 else if (!in_interrupt() && 2507 ((current->flags & PF_MEMALLOC) || 2508 unlikely(test_thread_flag(TIF_MEMDIE)))) 2509 alloc_flags |= ALLOC_NO_WATERMARKS; 2510 } 2511 #ifdef CONFIG_CMA 2512 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2513 alloc_flags |= ALLOC_CMA; 2514 #endif 2515 return alloc_flags; 2516 } 2517 2518 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2519 { 2520 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2521 } 2522 2523 static inline struct page * 2524 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2525 struct zonelist *zonelist, enum zone_type high_zoneidx, 2526 nodemask_t *nodemask, struct zone *preferred_zone, 2527 int classzone_idx, int migratetype) 2528 { 2529 const gfp_t wait = gfp_mask & __GFP_WAIT; 2530 struct page *page = NULL; 2531 int alloc_flags; 2532 unsigned long pages_reclaimed = 0; 2533 unsigned long did_some_progress; 2534 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2535 bool deferred_compaction = false; 2536 bool contended_compaction = false; 2537 2538 /* 2539 * In the slowpath, we sanity check order to avoid ever trying to 2540 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2541 * be using allocators in order of preference for an area that is 2542 * too large. 2543 */ 2544 if (order >= MAX_ORDER) { 2545 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2546 return NULL; 2547 } 2548 2549 /* 2550 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2551 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2552 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2553 * using a larger set of nodes after it has established that the 2554 * allowed per node queues are empty and that nodes are 2555 * over allocated. 2556 */ 2557 if (IS_ENABLED(CONFIG_NUMA) && 2558 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2559 goto nopage; 2560 2561 restart: 2562 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2563 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone); 2564 2565 /* 2566 * OK, we're below the kswapd watermark and have kicked background 2567 * reclaim. Now things get more complex, so set up alloc_flags according 2568 * to how we want to proceed. 2569 */ 2570 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2571 2572 /* 2573 * Find the true preferred zone if the allocation is unconstrained by 2574 * cpusets. 2575 */ 2576 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { 2577 struct zoneref *preferred_zoneref; 2578 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2579 NULL, &preferred_zone); 2580 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2581 } 2582 2583 rebalance: 2584 /* This is the last chance, in general, before the goto nopage. */ 2585 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2586 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2587 preferred_zone, classzone_idx, migratetype); 2588 if (page) 2589 goto got_pg; 2590 2591 /* Allocate without watermarks if the context allows */ 2592 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2593 /* 2594 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2595 * the allocation is high priority and these type of 2596 * allocations are system rather than user orientated 2597 */ 2598 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2599 2600 page = __alloc_pages_high_priority(gfp_mask, order, 2601 zonelist, high_zoneidx, nodemask, 2602 preferred_zone, classzone_idx, migratetype); 2603 if (page) { 2604 goto got_pg; 2605 } 2606 } 2607 2608 /* Atomic allocations - we can't balance anything */ 2609 if (!wait) { 2610 /* 2611 * All existing users of the deprecated __GFP_NOFAIL are 2612 * blockable, so warn of any new users that actually allow this 2613 * type of allocation to fail. 2614 */ 2615 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2616 goto nopage; 2617 } 2618 2619 /* Avoid recursion of direct reclaim */ 2620 if (current->flags & PF_MEMALLOC) 2621 goto nopage; 2622 2623 /* Avoid allocations with no watermarks from looping endlessly */ 2624 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2625 goto nopage; 2626 2627 /* 2628 * Try direct compaction. The first pass is asynchronous. Subsequent 2629 * attempts after direct reclaim are synchronous 2630 */ 2631 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2632 high_zoneidx, nodemask, alloc_flags, 2633 preferred_zone, 2634 classzone_idx, migratetype, 2635 migration_mode, &contended_compaction, 2636 &deferred_compaction, 2637 &did_some_progress); 2638 if (page) 2639 goto got_pg; 2640 2641 /* 2642 * If compaction is deferred for high-order allocations, it is because 2643 * sync compaction recently failed. In this is the case and the caller 2644 * requested a movable allocation that does not heavily disrupt the 2645 * system then fail the allocation instead of entering direct reclaim. 2646 */ 2647 if ((deferred_compaction || contended_compaction) && 2648 (gfp_mask & __GFP_NO_KSWAPD)) 2649 goto nopage; 2650 2651 /* 2652 * It can become very expensive to allocate transparent hugepages at 2653 * fault, so use asynchronous memory compaction for THP unless it is 2654 * khugepaged trying to collapse. 2655 */ 2656 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2657 (current->flags & PF_KTHREAD)) 2658 migration_mode = MIGRATE_SYNC_LIGHT; 2659 2660 /* Try direct reclaim and then allocating */ 2661 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2662 zonelist, high_zoneidx, 2663 nodemask, 2664 alloc_flags, preferred_zone, 2665 classzone_idx, migratetype, 2666 &did_some_progress); 2667 if (page) 2668 goto got_pg; 2669 2670 /* 2671 * If we failed to make any progress reclaiming, then we are 2672 * running out of options and have to consider going OOM 2673 */ 2674 if (!did_some_progress) { 2675 if (oom_gfp_allowed(gfp_mask)) { 2676 if (oom_killer_disabled) 2677 goto nopage; 2678 /* Coredumps can quickly deplete all memory reserves */ 2679 if ((current->flags & PF_DUMPCORE) && 2680 !(gfp_mask & __GFP_NOFAIL)) 2681 goto nopage; 2682 page = __alloc_pages_may_oom(gfp_mask, order, 2683 zonelist, high_zoneidx, 2684 nodemask, preferred_zone, 2685 classzone_idx, migratetype); 2686 if (page) 2687 goto got_pg; 2688 2689 if (!(gfp_mask & __GFP_NOFAIL)) { 2690 /* 2691 * The oom killer is not called for high-order 2692 * allocations that may fail, so if no progress 2693 * is being made, there are no other options and 2694 * retrying is unlikely to help. 2695 */ 2696 if (order > PAGE_ALLOC_COSTLY_ORDER) 2697 goto nopage; 2698 /* 2699 * The oom killer is not called for lowmem 2700 * allocations to prevent needlessly killing 2701 * innocent tasks. 2702 */ 2703 if (high_zoneidx < ZONE_NORMAL) 2704 goto nopage; 2705 } 2706 2707 goto restart; 2708 } 2709 } 2710 2711 /* Check if we should retry the allocation */ 2712 pages_reclaimed += did_some_progress; 2713 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2714 pages_reclaimed)) { 2715 /* Wait for some write requests to complete then retry */ 2716 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2717 goto rebalance; 2718 } else { 2719 /* 2720 * High-order allocations do not necessarily loop after 2721 * direct reclaim and reclaim/compaction depends on compaction 2722 * being called after reclaim so call directly if necessary 2723 */ 2724 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2725 high_zoneidx, nodemask, alloc_flags, 2726 preferred_zone, 2727 classzone_idx, migratetype, 2728 migration_mode, &contended_compaction, 2729 &deferred_compaction, 2730 &did_some_progress); 2731 if (page) 2732 goto got_pg; 2733 } 2734 2735 nopage: 2736 warn_alloc_failed(gfp_mask, order, NULL); 2737 return page; 2738 got_pg: 2739 if (kmemcheck_enabled) 2740 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2741 2742 return page; 2743 } 2744 2745 /* 2746 * This is the 'heart' of the zoned buddy allocator. 2747 */ 2748 struct page * 2749 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2750 struct zonelist *zonelist, nodemask_t *nodemask) 2751 { 2752 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2753 struct zone *preferred_zone; 2754 struct zoneref *preferred_zoneref; 2755 struct page *page = NULL; 2756 int migratetype = allocflags_to_migratetype(gfp_mask); 2757 unsigned int cpuset_mems_cookie; 2758 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2759 int classzone_idx; 2760 2761 gfp_mask &= gfp_allowed_mask; 2762 2763 lockdep_trace_alloc(gfp_mask); 2764 2765 might_sleep_if(gfp_mask & __GFP_WAIT); 2766 2767 if (should_fail_alloc_page(gfp_mask, order)) 2768 return NULL; 2769 2770 /* 2771 * Check the zones suitable for the gfp_mask contain at least one 2772 * valid zone. It's possible to have an empty zonelist as a result 2773 * of GFP_THISNODE and a memoryless node 2774 */ 2775 if (unlikely(!zonelist->_zonerefs->zone)) 2776 return NULL; 2777 2778 retry_cpuset: 2779 cpuset_mems_cookie = read_mems_allowed_begin(); 2780 2781 /* The preferred zone is used for statistics later */ 2782 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2783 nodemask ? : &cpuset_current_mems_allowed, 2784 &preferred_zone); 2785 if (!preferred_zone) 2786 goto out; 2787 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2788 2789 #ifdef CONFIG_CMA 2790 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2791 alloc_flags |= ALLOC_CMA; 2792 #endif 2793 /* First allocation attempt */ 2794 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2795 zonelist, high_zoneidx, alloc_flags, 2796 preferred_zone, classzone_idx, migratetype); 2797 if (unlikely(!page)) { 2798 /* 2799 * Runtime PM, block IO and its error handling path 2800 * can deadlock because I/O on the device might not 2801 * complete. 2802 */ 2803 gfp_mask = memalloc_noio_flags(gfp_mask); 2804 page = __alloc_pages_slowpath(gfp_mask, order, 2805 zonelist, high_zoneidx, nodemask, 2806 preferred_zone, classzone_idx, migratetype); 2807 } 2808 2809 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2810 2811 out: 2812 /* 2813 * When updating a task's mems_allowed, it is possible to race with 2814 * parallel threads in such a way that an allocation can fail while 2815 * the mask is being updated. If a page allocation is about to fail, 2816 * check if the cpuset changed during allocation and if so, retry. 2817 */ 2818 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2819 goto retry_cpuset; 2820 2821 return page; 2822 } 2823 EXPORT_SYMBOL(__alloc_pages_nodemask); 2824 2825 /* 2826 * Common helper functions. 2827 */ 2828 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2829 { 2830 struct page *page; 2831 2832 /* 2833 * __get_free_pages() returns a 32-bit address, which cannot represent 2834 * a highmem page 2835 */ 2836 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2837 2838 page = alloc_pages(gfp_mask, order); 2839 if (!page) 2840 return 0; 2841 return (unsigned long) page_address(page); 2842 } 2843 EXPORT_SYMBOL(__get_free_pages); 2844 2845 unsigned long get_zeroed_page(gfp_t gfp_mask) 2846 { 2847 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2848 } 2849 EXPORT_SYMBOL(get_zeroed_page); 2850 2851 void __free_pages(struct page *page, unsigned int order) 2852 { 2853 if (put_page_testzero(page)) { 2854 if (order == 0) 2855 free_hot_cold_page(page, false); 2856 else 2857 __free_pages_ok(page, order); 2858 } 2859 } 2860 2861 EXPORT_SYMBOL(__free_pages); 2862 2863 void free_pages(unsigned long addr, unsigned int order) 2864 { 2865 if (addr != 0) { 2866 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2867 __free_pages(virt_to_page((void *)addr), order); 2868 } 2869 } 2870 2871 EXPORT_SYMBOL(free_pages); 2872 2873 /* 2874 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2875 * of the current memory cgroup. 2876 * 2877 * It should be used when the caller would like to use kmalloc, but since the 2878 * allocation is large, it has to fall back to the page allocator. 2879 */ 2880 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2881 { 2882 struct page *page; 2883 struct mem_cgroup *memcg = NULL; 2884 2885 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2886 return NULL; 2887 page = alloc_pages(gfp_mask, order); 2888 memcg_kmem_commit_charge(page, memcg, order); 2889 return page; 2890 } 2891 2892 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2893 { 2894 struct page *page; 2895 struct mem_cgroup *memcg = NULL; 2896 2897 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2898 return NULL; 2899 page = alloc_pages_node(nid, gfp_mask, order); 2900 memcg_kmem_commit_charge(page, memcg, order); 2901 return page; 2902 } 2903 2904 /* 2905 * __free_kmem_pages and free_kmem_pages will free pages allocated with 2906 * alloc_kmem_pages. 2907 */ 2908 void __free_kmem_pages(struct page *page, unsigned int order) 2909 { 2910 memcg_kmem_uncharge_pages(page, order); 2911 __free_pages(page, order); 2912 } 2913 2914 void free_kmem_pages(unsigned long addr, unsigned int order) 2915 { 2916 if (addr != 0) { 2917 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2918 __free_kmem_pages(virt_to_page((void *)addr), order); 2919 } 2920 } 2921 2922 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2923 { 2924 if (addr) { 2925 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2926 unsigned long used = addr + PAGE_ALIGN(size); 2927 2928 split_page(virt_to_page((void *)addr), order); 2929 while (used < alloc_end) { 2930 free_page(used); 2931 used += PAGE_SIZE; 2932 } 2933 } 2934 return (void *)addr; 2935 } 2936 2937 /** 2938 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2939 * @size: the number of bytes to allocate 2940 * @gfp_mask: GFP flags for the allocation 2941 * 2942 * This function is similar to alloc_pages(), except that it allocates the 2943 * minimum number of pages to satisfy the request. alloc_pages() can only 2944 * allocate memory in power-of-two pages. 2945 * 2946 * This function is also limited by MAX_ORDER. 2947 * 2948 * Memory allocated by this function must be released by free_pages_exact(). 2949 */ 2950 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2951 { 2952 unsigned int order = get_order(size); 2953 unsigned long addr; 2954 2955 addr = __get_free_pages(gfp_mask, order); 2956 return make_alloc_exact(addr, order, size); 2957 } 2958 EXPORT_SYMBOL(alloc_pages_exact); 2959 2960 /** 2961 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2962 * pages on a node. 2963 * @nid: the preferred node ID where memory should be allocated 2964 * @size: the number of bytes to allocate 2965 * @gfp_mask: GFP flags for the allocation 2966 * 2967 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2968 * back. 2969 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2970 * but is not exact. 2971 */ 2972 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2973 { 2974 unsigned order = get_order(size); 2975 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2976 if (!p) 2977 return NULL; 2978 return make_alloc_exact((unsigned long)page_address(p), order, size); 2979 } 2980 2981 /** 2982 * free_pages_exact - release memory allocated via alloc_pages_exact() 2983 * @virt: the value returned by alloc_pages_exact. 2984 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2985 * 2986 * Release the memory allocated by a previous call to alloc_pages_exact. 2987 */ 2988 void free_pages_exact(void *virt, size_t size) 2989 { 2990 unsigned long addr = (unsigned long)virt; 2991 unsigned long end = addr + PAGE_ALIGN(size); 2992 2993 while (addr < end) { 2994 free_page(addr); 2995 addr += PAGE_SIZE; 2996 } 2997 } 2998 EXPORT_SYMBOL(free_pages_exact); 2999 3000 /** 3001 * nr_free_zone_pages - count number of pages beyond high watermark 3002 * @offset: The zone index of the highest zone 3003 * 3004 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3005 * high watermark within all zones at or below a given zone index. For each 3006 * zone, the number of pages is calculated as: 3007 * managed_pages - high_pages 3008 */ 3009 static unsigned long nr_free_zone_pages(int offset) 3010 { 3011 struct zoneref *z; 3012 struct zone *zone; 3013 3014 /* Just pick one node, since fallback list is circular */ 3015 unsigned long sum = 0; 3016 3017 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3018 3019 for_each_zone_zonelist(zone, z, zonelist, offset) { 3020 unsigned long size = zone->managed_pages; 3021 unsigned long high = high_wmark_pages(zone); 3022 if (size > high) 3023 sum += size - high; 3024 } 3025 3026 return sum; 3027 } 3028 3029 /** 3030 * nr_free_buffer_pages - count number of pages beyond high watermark 3031 * 3032 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3033 * watermark within ZONE_DMA and ZONE_NORMAL. 3034 */ 3035 unsigned long nr_free_buffer_pages(void) 3036 { 3037 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3038 } 3039 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3040 3041 /** 3042 * nr_free_pagecache_pages - count number of pages beyond high watermark 3043 * 3044 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3045 * high watermark within all zones. 3046 */ 3047 unsigned long nr_free_pagecache_pages(void) 3048 { 3049 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3050 } 3051 3052 static inline void show_node(struct zone *zone) 3053 { 3054 if (IS_ENABLED(CONFIG_NUMA)) 3055 printk("Node %d ", zone_to_nid(zone)); 3056 } 3057 3058 void si_meminfo(struct sysinfo *val) 3059 { 3060 val->totalram = totalram_pages; 3061 val->sharedram = global_page_state(NR_SHMEM); 3062 val->freeram = global_page_state(NR_FREE_PAGES); 3063 val->bufferram = nr_blockdev_pages(); 3064 val->totalhigh = totalhigh_pages; 3065 val->freehigh = nr_free_highpages(); 3066 val->mem_unit = PAGE_SIZE; 3067 } 3068 3069 EXPORT_SYMBOL(si_meminfo); 3070 3071 #ifdef CONFIG_NUMA 3072 void si_meminfo_node(struct sysinfo *val, int nid) 3073 { 3074 int zone_type; /* needs to be signed */ 3075 unsigned long managed_pages = 0; 3076 pg_data_t *pgdat = NODE_DATA(nid); 3077 3078 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3079 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3080 val->totalram = managed_pages; 3081 val->sharedram = node_page_state(nid, NR_SHMEM); 3082 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3083 #ifdef CONFIG_HIGHMEM 3084 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3085 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3086 NR_FREE_PAGES); 3087 #else 3088 val->totalhigh = 0; 3089 val->freehigh = 0; 3090 #endif 3091 val->mem_unit = PAGE_SIZE; 3092 } 3093 #endif 3094 3095 /* 3096 * Determine whether the node should be displayed or not, depending on whether 3097 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3098 */ 3099 bool skip_free_areas_node(unsigned int flags, int nid) 3100 { 3101 bool ret = false; 3102 unsigned int cpuset_mems_cookie; 3103 3104 if (!(flags & SHOW_MEM_FILTER_NODES)) 3105 goto out; 3106 3107 do { 3108 cpuset_mems_cookie = read_mems_allowed_begin(); 3109 ret = !node_isset(nid, cpuset_current_mems_allowed); 3110 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3111 out: 3112 return ret; 3113 } 3114 3115 #define K(x) ((x) << (PAGE_SHIFT-10)) 3116 3117 static void show_migration_types(unsigned char type) 3118 { 3119 static const char types[MIGRATE_TYPES] = { 3120 [MIGRATE_UNMOVABLE] = 'U', 3121 [MIGRATE_RECLAIMABLE] = 'E', 3122 [MIGRATE_MOVABLE] = 'M', 3123 [MIGRATE_RESERVE] = 'R', 3124 #ifdef CONFIG_CMA 3125 [MIGRATE_CMA] = 'C', 3126 #endif 3127 #ifdef CONFIG_MEMORY_ISOLATION 3128 [MIGRATE_ISOLATE] = 'I', 3129 #endif 3130 }; 3131 char tmp[MIGRATE_TYPES + 1]; 3132 char *p = tmp; 3133 int i; 3134 3135 for (i = 0; i < MIGRATE_TYPES; i++) { 3136 if (type & (1 << i)) 3137 *p++ = types[i]; 3138 } 3139 3140 *p = '\0'; 3141 printk("(%s) ", tmp); 3142 } 3143 3144 /* 3145 * Show free area list (used inside shift_scroll-lock stuff) 3146 * We also calculate the percentage fragmentation. We do this by counting the 3147 * memory on each free list with the exception of the first item on the list. 3148 * Suppresses nodes that are not allowed by current's cpuset if 3149 * SHOW_MEM_FILTER_NODES is passed. 3150 */ 3151 void show_free_areas(unsigned int filter) 3152 { 3153 int cpu; 3154 struct zone *zone; 3155 3156 for_each_populated_zone(zone) { 3157 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3158 continue; 3159 show_node(zone); 3160 printk("%s per-cpu:\n", zone->name); 3161 3162 for_each_online_cpu(cpu) { 3163 struct per_cpu_pageset *pageset; 3164 3165 pageset = per_cpu_ptr(zone->pageset, cpu); 3166 3167 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3168 cpu, pageset->pcp.high, 3169 pageset->pcp.batch, pageset->pcp.count); 3170 } 3171 } 3172 3173 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3174 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3175 " unevictable:%lu" 3176 " dirty:%lu writeback:%lu unstable:%lu\n" 3177 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3178 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3179 " free_cma:%lu\n", 3180 global_page_state(NR_ACTIVE_ANON), 3181 global_page_state(NR_INACTIVE_ANON), 3182 global_page_state(NR_ISOLATED_ANON), 3183 global_page_state(NR_ACTIVE_FILE), 3184 global_page_state(NR_INACTIVE_FILE), 3185 global_page_state(NR_ISOLATED_FILE), 3186 global_page_state(NR_UNEVICTABLE), 3187 global_page_state(NR_FILE_DIRTY), 3188 global_page_state(NR_WRITEBACK), 3189 global_page_state(NR_UNSTABLE_NFS), 3190 global_page_state(NR_FREE_PAGES), 3191 global_page_state(NR_SLAB_RECLAIMABLE), 3192 global_page_state(NR_SLAB_UNRECLAIMABLE), 3193 global_page_state(NR_FILE_MAPPED), 3194 global_page_state(NR_SHMEM), 3195 global_page_state(NR_PAGETABLE), 3196 global_page_state(NR_BOUNCE), 3197 global_page_state(NR_FREE_CMA_PAGES)); 3198 3199 for_each_populated_zone(zone) { 3200 int i; 3201 3202 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3203 continue; 3204 show_node(zone); 3205 printk("%s" 3206 " free:%lukB" 3207 " min:%lukB" 3208 " low:%lukB" 3209 " high:%lukB" 3210 " active_anon:%lukB" 3211 " inactive_anon:%lukB" 3212 " active_file:%lukB" 3213 " inactive_file:%lukB" 3214 " unevictable:%lukB" 3215 " isolated(anon):%lukB" 3216 " isolated(file):%lukB" 3217 " present:%lukB" 3218 " managed:%lukB" 3219 " mlocked:%lukB" 3220 " dirty:%lukB" 3221 " writeback:%lukB" 3222 " mapped:%lukB" 3223 " shmem:%lukB" 3224 " slab_reclaimable:%lukB" 3225 " slab_unreclaimable:%lukB" 3226 " kernel_stack:%lukB" 3227 " pagetables:%lukB" 3228 " unstable:%lukB" 3229 " bounce:%lukB" 3230 " free_cma:%lukB" 3231 " writeback_tmp:%lukB" 3232 " pages_scanned:%lu" 3233 " all_unreclaimable? %s" 3234 "\n", 3235 zone->name, 3236 K(zone_page_state(zone, NR_FREE_PAGES)), 3237 K(min_wmark_pages(zone)), 3238 K(low_wmark_pages(zone)), 3239 K(high_wmark_pages(zone)), 3240 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3241 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3242 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3243 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3244 K(zone_page_state(zone, NR_UNEVICTABLE)), 3245 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3246 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3247 K(zone->present_pages), 3248 K(zone->managed_pages), 3249 K(zone_page_state(zone, NR_MLOCK)), 3250 K(zone_page_state(zone, NR_FILE_DIRTY)), 3251 K(zone_page_state(zone, NR_WRITEBACK)), 3252 K(zone_page_state(zone, NR_FILE_MAPPED)), 3253 K(zone_page_state(zone, NR_SHMEM)), 3254 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3255 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3256 zone_page_state(zone, NR_KERNEL_STACK) * 3257 THREAD_SIZE / 1024, 3258 K(zone_page_state(zone, NR_PAGETABLE)), 3259 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3260 K(zone_page_state(zone, NR_BOUNCE)), 3261 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3262 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3263 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3264 (!zone_reclaimable(zone) ? "yes" : "no") 3265 ); 3266 printk("lowmem_reserve[]:"); 3267 for (i = 0; i < MAX_NR_ZONES; i++) 3268 printk(" %ld", zone->lowmem_reserve[i]); 3269 printk("\n"); 3270 } 3271 3272 for_each_populated_zone(zone) { 3273 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3274 unsigned char types[MAX_ORDER]; 3275 3276 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3277 continue; 3278 show_node(zone); 3279 printk("%s: ", zone->name); 3280 3281 spin_lock_irqsave(&zone->lock, flags); 3282 for (order = 0; order < MAX_ORDER; order++) { 3283 struct free_area *area = &zone->free_area[order]; 3284 int type; 3285 3286 nr[order] = area->nr_free; 3287 total += nr[order] << order; 3288 3289 types[order] = 0; 3290 for (type = 0; type < MIGRATE_TYPES; type++) { 3291 if (!list_empty(&area->free_list[type])) 3292 types[order] |= 1 << type; 3293 } 3294 } 3295 spin_unlock_irqrestore(&zone->lock, flags); 3296 for (order = 0; order < MAX_ORDER; order++) { 3297 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3298 if (nr[order]) 3299 show_migration_types(types[order]); 3300 } 3301 printk("= %lukB\n", K(total)); 3302 } 3303 3304 hugetlb_show_meminfo(); 3305 3306 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3307 3308 show_swap_cache_info(); 3309 } 3310 3311 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3312 { 3313 zoneref->zone = zone; 3314 zoneref->zone_idx = zone_idx(zone); 3315 } 3316 3317 /* 3318 * Builds allocation fallback zone lists. 3319 * 3320 * Add all populated zones of a node to the zonelist. 3321 */ 3322 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3323 int nr_zones) 3324 { 3325 struct zone *zone; 3326 enum zone_type zone_type = MAX_NR_ZONES; 3327 3328 do { 3329 zone_type--; 3330 zone = pgdat->node_zones + zone_type; 3331 if (populated_zone(zone)) { 3332 zoneref_set_zone(zone, 3333 &zonelist->_zonerefs[nr_zones++]); 3334 check_highest_zone(zone_type); 3335 } 3336 } while (zone_type); 3337 3338 return nr_zones; 3339 } 3340 3341 3342 /* 3343 * zonelist_order: 3344 * 0 = automatic detection of better ordering. 3345 * 1 = order by ([node] distance, -zonetype) 3346 * 2 = order by (-zonetype, [node] distance) 3347 * 3348 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3349 * the same zonelist. So only NUMA can configure this param. 3350 */ 3351 #define ZONELIST_ORDER_DEFAULT 0 3352 #define ZONELIST_ORDER_NODE 1 3353 #define ZONELIST_ORDER_ZONE 2 3354 3355 /* zonelist order in the kernel. 3356 * set_zonelist_order() will set this to NODE or ZONE. 3357 */ 3358 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3359 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3360 3361 3362 #ifdef CONFIG_NUMA 3363 /* The value user specified ....changed by config */ 3364 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3365 /* string for sysctl */ 3366 #define NUMA_ZONELIST_ORDER_LEN 16 3367 char numa_zonelist_order[16] = "default"; 3368 3369 /* 3370 * interface for configure zonelist ordering. 3371 * command line option "numa_zonelist_order" 3372 * = "[dD]efault - default, automatic configuration. 3373 * = "[nN]ode - order by node locality, then by zone within node 3374 * = "[zZ]one - order by zone, then by locality within zone 3375 */ 3376 3377 static int __parse_numa_zonelist_order(char *s) 3378 { 3379 if (*s == 'd' || *s == 'D') { 3380 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3381 } else if (*s == 'n' || *s == 'N') { 3382 user_zonelist_order = ZONELIST_ORDER_NODE; 3383 } else if (*s == 'z' || *s == 'Z') { 3384 user_zonelist_order = ZONELIST_ORDER_ZONE; 3385 } else { 3386 printk(KERN_WARNING 3387 "Ignoring invalid numa_zonelist_order value: " 3388 "%s\n", s); 3389 return -EINVAL; 3390 } 3391 return 0; 3392 } 3393 3394 static __init int setup_numa_zonelist_order(char *s) 3395 { 3396 int ret; 3397 3398 if (!s) 3399 return 0; 3400 3401 ret = __parse_numa_zonelist_order(s); 3402 if (ret == 0) 3403 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3404 3405 return ret; 3406 } 3407 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3408 3409 /* 3410 * sysctl handler for numa_zonelist_order 3411 */ 3412 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3413 void __user *buffer, size_t *length, 3414 loff_t *ppos) 3415 { 3416 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3417 int ret; 3418 static DEFINE_MUTEX(zl_order_mutex); 3419 3420 mutex_lock(&zl_order_mutex); 3421 if (write) { 3422 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3423 ret = -EINVAL; 3424 goto out; 3425 } 3426 strcpy(saved_string, (char *)table->data); 3427 } 3428 ret = proc_dostring(table, write, buffer, length, ppos); 3429 if (ret) 3430 goto out; 3431 if (write) { 3432 int oldval = user_zonelist_order; 3433 3434 ret = __parse_numa_zonelist_order((char *)table->data); 3435 if (ret) { 3436 /* 3437 * bogus value. restore saved string 3438 */ 3439 strncpy((char *)table->data, saved_string, 3440 NUMA_ZONELIST_ORDER_LEN); 3441 user_zonelist_order = oldval; 3442 } else if (oldval != user_zonelist_order) { 3443 mutex_lock(&zonelists_mutex); 3444 build_all_zonelists(NULL, NULL); 3445 mutex_unlock(&zonelists_mutex); 3446 } 3447 } 3448 out: 3449 mutex_unlock(&zl_order_mutex); 3450 return ret; 3451 } 3452 3453 3454 #define MAX_NODE_LOAD (nr_online_nodes) 3455 static int node_load[MAX_NUMNODES]; 3456 3457 /** 3458 * find_next_best_node - find the next node that should appear in a given node's fallback list 3459 * @node: node whose fallback list we're appending 3460 * @used_node_mask: nodemask_t of already used nodes 3461 * 3462 * We use a number of factors to determine which is the next node that should 3463 * appear on a given node's fallback list. The node should not have appeared 3464 * already in @node's fallback list, and it should be the next closest node 3465 * according to the distance array (which contains arbitrary distance values 3466 * from each node to each node in the system), and should also prefer nodes 3467 * with no CPUs, since presumably they'll have very little allocation pressure 3468 * on them otherwise. 3469 * It returns -1 if no node is found. 3470 */ 3471 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3472 { 3473 int n, val; 3474 int min_val = INT_MAX; 3475 int best_node = NUMA_NO_NODE; 3476 const struct cpumask *tmp = cpumask_of_node(0); 3477 3478 /* Use the local node if we haven't already */ 3479 if (!node_isset(node, *used_node_mask)) { 3480 node_set(node, *used_node_mask); 3481 return node; 3482 } 3483 3484 for_each_node_state(n, N_MEMORY) { 3485 3486 /* Don't want a node to appear more than once */ 3487 if (node_isset(n, *used_node_mask)) 3488 continue; 3489 3490 /* Use the distance array to find the distance */ 3491 val = node_distance(node, n); 3492 3493 /* Penalize nodes under us ("prefer the next node") */ 3494 val += (n < node); 3495 3496 /* Give preference to headless and unused nodes */ 3497 tmp = cpumask_of_node(n); 3498 if (!cpumask_empty(tmp)) 3499 val += PENALTY_FOR_NODE_WITH_CPUS; 3500 3501 /* Slight preference for less loaded node */ 3502 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3503 val += node_load[n]; 3504 3505 if (val < min_val) { 3506 min_val = val; 3507 best_node = n; 3508 } 3509 } 3510 3511 if (best_node >= 0) 3512 node_set(best_node, *used_node_mask); 3513 3514 return best_node; 3515 } 3516 3517 3518 /* 3519 * Build zonelists ordered by node and zones within node. 3520 * This results in maximum locality--normal zone overflows into local 3521 * DMA zone, if any--but risks exhausting DMA zone. 3522 */ 3523 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3524 { 3525 int j; 3526 struct zonelist *zonelist; 3527 3528 zonelist = &pgdat->node_zonelists[0]; 3529 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3530 ; 3531 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3532 zonelist->_zonerefs[j].zone = NULL; 3533 zonelist->_zonerefs[j].zone_idx = 0; 3534 } 3535 3536 /* 3537 * Build gfp_thisnode zonelists 3538 */ 3539 static void build_thisnode_zonelists(pg_data_t *pgdat) 3540 { 3541 int j; 3542 struct zonelist *zonelist; 3543 3544 zonelist = &pgdat->node_zonelists[1]; 3545 j = build_zonelists_node(pgdat, zonelist, 0); 3546 zonelist->_zonerefs[j].zone = NULL; 3547 zonelist->_zonerefs[j].zone_idx = 0; 3548 } 3549 3550 /* 3551 * Build zonelists ordered by zone and nodes within zones. 3552 * This results in conserving DMA zone[s] until all Normal memory is 3553 * exhausted, but results in overflowing to remote node while memory 3554 * may still exist in local DMA zone. 3555 */ 3556 static int node_order[MAX_NUMNODES]; 3557 3558 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3559 { 3560 int pos, j, node; 3561 int zone_type; /* needs to be signed */ 3562 struct zone *z; 3563 struct zonelist *zonelist; 3564 3565 zonelist = &pgdat->node_zonelists[0]; 3566 pos = 0; 3567 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3568 for (j = 0; j < nr_nodes; j++) { 3569 node = node_order[j]; 3570 z = &NODE_DATA(node)->node_zones[zone_type]; 3571 if (populated_zone(z)) { 3572 zoneref_set_zone(z, 3573 &zonelist->_zonerefs[pos++]); 3574 check_highest_zone(zone_type); 3575 } 3576 } 3577 } 3578 zonelist->_zonerefs[pos].zone = NULL; 3579 zonelist->_zonerefs[pos].zone_idx = 0; 3580 } 3581 3582 static int default_zonelist_order(void) 3583 { 3584 int nid, zone_type; 3585 unsigned long low_kmem_size, total_size; 3586 struct zone *z; 3587 int average_size; 3588 /* 3589 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3590 * If they are really small and used heavily, the system can fall 3591 * into OOM very easily. 3592 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3593 */ 3594 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3595 low_kmem_size = 0; 3596 total_size = 0; 3597 for_each_online_node(nid) { 3598 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3599 z = &NODE_DATA(nid)->node_zones[zone_type]; 3600 if (populated_zone(z)) { 3601 if (zone_type < ZONE_NORMAL) 3602 low_kmem_size += z->managed_pages; 3603 total_size += z->managed_pages; 3604 } else if (zone_type == ZONE_NORMAL) { 3605 /* 3606 * If any node has only lowmem, then node order 3607 * is preferred to allow kernel allocations 3608 * locally; otherwise, they can easily infringe 3609 * on other nodes when there is an abundance of 3610 * lowmem available to allocate from. 3611 */ 3612 return ZONELIST_ORDER_NODE; 3613 } 3614 } 3615 } 3616 if (!low_kmem_size || /* there are no DMA area. */ 3617 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3618 return ZONELIST_ORDER_NODE; 3619 /* 3620 * look into each node's config. 3621 * If there is a node whose DMA/DMA32 memory is very big area on 3622 * local memory, NODE_ORDER may be suitable. 3623 */ 3624 average_size = total_size / 3625 (nodes_weight(node_states[N_MEMORY]) + 1); 3626 for_each_online_node(nid) { 3627 low_kmem_size = 0; 3628 total_size = 0; 3629 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3630 z = &NODE_DATA(nid)->node_zones[zone_type]; 3631 if (populated_zone(z)) { 3632 if (zone_type < ZONE_NORMAL) 3633 low_kmem_size += z->present_pages; 3634 total_size += z->present_pages; 3635 } 3636 } 3637 if (low_kmem_size && 3638 total_size > average_size && /* ignore small node */ 3639 low_kmem_size > total_size * 70/100) 3640 return ZONELIST_ORDER_NODE; 3641 } 3642 return ZONELIST_ORDER_ZONE; 3643 } 3644 3645 static void set_zonelist_order(void) 3646 { 3647 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3648 current_zonelist_order = default_zonelist_order(); 3649 else 3650 current_zonelist_order = user_zonelist_order; 3651 } 3652 3653 static void build_zonelists(pg_data_t *pgdat) 3654 { 3655 int j, node, load; 3656 enum zone_type i; 3657 nodemask_t used_mask; 3658 int local_node, prev_node; 3659 struct zonelist *zonelist; 3660 int order = current_zonelist_order; 3661 3662 /* initialize zonelists */ 3663 for (i = 0; i < MAX_ZONELISTS; i++) { 3664 zonelist = pgdat->node_zonelists + i; 3665 zonelist->_zonerefs[0].zone = NULL; 3666 zonelist->_zonerefs[0].zone_idx = 0; 3667 } 3668 3669 /* NUMA-aware ordering of nodes */ 3670 local_node = pgdat->node_id; 3671 load = nr_online_nodes; 3672 prev_node = local_node; 3673 nodes_clear(used_mask); 3674 3675 memset(node_order, 0, sizeof(node_order)); 3676 j = 0; 3677 3678 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3679 /* 3680 * We don't want to pressure a particular node. 3681 * So adding penalty to the first node in same 3682 * distance group to make it round-robin. 3683 */ 3684 if (node_distance(local_node, node) != 3685 node_distance(local_node, prev_node)) 3686 node_load[node] = load; 3687 3688 prev_node = node; 3689 load--; 3690 if (order == ZONELIST_ORDER_NODE) 3691 build_zonelists_in_node_order(pgdat, node); 3692 else 3693 node_order[j++] = node; /* remember order */ 3694 } 3695 3696 if (order == ZONELIST_ORDER_ZONE) { 3697 /* calculate node order -- i.e., DMA last! */ 3698 build_zonelists_in_zone_order(pgdat, j); 3699 } 3700 3701 build_thisnode_zonelists(pgdat); 3702 } 3703 3704 /* Construct the zonelist performance cache - see further mmzone.h */ 3705 static void build_zonelist_cache(pg_data_t *pgdat) 3706 { 3707 struct zonelist *zonelist; 3708 struct zonelist_cache *zlc; 3709 struct zoneref *z; 3710 3711 zonelist = &pgdat->node_zonelists[0]; 3712 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3713 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3714 for (z = zonelist->_zonerefs; z->zone; z++) 3715 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3716 } 3717 3718 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3719 /* 3720 * Return node id of node used for "local" allocations. 3721 * I.e., first node id of first zone in arg node's generic zonelist. 3722 * Used for initializing percpu 'numa_mem', which is used primarily 3723 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3724 */ 3725 int local_memory_node(int node) 3726 { 3727 struct zone *zone; 3728 3729 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3730 gfp_zone(GFP_KERNEL), 3731 NULL, 3732 &zone); 3733 return zone->node; 3734 } 3735 #endif 3736 3737 #else /* CONFIG_NUMA */ 3738 3739 static void set_zonelist_order(void) 3740 { 3741 current_zonelist_order = ZONELIST_ORDER_ZONE; 3742 } 3743 3744 static void build_zonelists(pg_data_t *pgdat) 3745 { 3746 int node, local_node; 3747 enum zone_type j; 3748 struct zonelist *zonelist; 3749 3750 local_node = pgdat->node_id; 3751 3752 zonelist = &pgdat->node_zonelists[0]; 3753 j = build_zonelists_node(pgdat, zonelist, 0); 3754 3755 /* 3756 * Now we build the zonelist so that it contains the zones 3757 * of all the other nodes. 3758 * We don't want to pressure a particular node, so when 3759 * building the zones for node N, we make sure that the 3760 * zones coming right after the local ones are those from 3761 * node N+1 (modulo N) 3762 */ 3763 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3764 if (!node_online(node)) 3765 continue; 3766 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3767 } 3768 for (node = 0; node < local_node; node++) { 3769 if (!node_online(node)) 3770 continue; 3771 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3772 } 3773 3774 zonelist->_zonerefs[j].zone = NULL; 3775 zonelist->_zonerefs[j].zone_idx = 0; 3776 } 3777 3778 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3779 static void build_zonelist_cache(pg_data_t *pgdat) 3780 { 3781 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3782 } 3783 3784 #endif /* CONFIG_NUMA */ 3785 3786 /* 3787 * Boot pageset table. One per cpu which is going to be used for all 3788 * zones and all nodes. The parameters will be set in such a way 3789 * that an item put on a list will immediately be handed over to 3790 * the buddy list. This is safe since pageset manipulation is done 3791 * with interrupts disabled. 3792 * 3793 * The boot_pagesets must be kept even after bootup is complete for 3794 * unused processors and/or zones. They do play a role for bootstrapping 3795 * hotplugged processors. 3796 * 3797 * zoneinfo_show() and maybe other functions do 3798 * not check if the processor is online before following the pageset pointer. 3799 * Other parts of the kernel may not check if the zone is available. 3800 */ 3801 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3802 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3803 static void setup_zone_pageset(struct zone *zone); 3804 3805 /* 3806 * Global mutex to protect against size modification of zonelists 3807 * as well as to serialize pageset setup for the new populated zone. 3808 */ 3809 DEFINE_MUTEX(zonelists_mutex); 3810 3811 /* return values int ....just for stop_machine() */ 3812 static int __build_all_zonelists(void *data) 3813 { 3814 int nid; 3815 int cpu; 3816 pg_data_t *self = data; 3817 3818 #ifdef CONFIG_NUMA 3819 memset(node_load, 0, sizeof(node_load)); 3820 #endif 3821 3822 if (self && !node_online(self->node_id)) { 3823 build_zonelists(self); 3824 build_zonelist_cache(self); 3825 } 3826 3827 for_each_online_node(nid) { 3828 pg_data_t *pgdat = NODE_DATA(nid); 3829 3830 build_zonelists(pgdat); 3831 build_zonelist_cache(pgdat); 3832 } 3833 3834 /* 3835 * Initialize the boot_pagesets that are going to be used 3836 * for bootstrapping processors. The real pagesets for 3837 * each zone will be allocated later when the per cpu 3838 * allocator is available. 3839 * 3840 * boot_pagesets are used also for bootstrapping offline 3841 * cpus if the system is already booted because the pagesets 3842 * are needed to initialize allocators on a specific cpu too. 3843 * F.e. the percpu allocator needs the page allocator which 3844 * needs the percpu allocator in order to allocate its pagesets 3845 * (a chicken-egg dilemma). 3846 */ 3847 for_each_possible_cpu(cpu) { 3848 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3849 3850 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3851 /* 3852 * We now know the "local memory node" for each node-- 3853 * i.e., the node of the first zone in the generic zonelist. 3854 * Set up numa_mem percpu variable for on-line cpus. During 3855 * boot, only the boot cpu should be on-line; we'll init the 3856 * secondary cpus' numa_mem as they come on-line. During 3857 * node/memory hotplug, we'll fixup all on-line cpus. 3858 */ 3859 if (cpu_online(cpu)) 3860 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3861 #endif 3862 } 3863 3864 return 0; 3865 } 3866 3867 /* 3868 * Called with zonelists_mutex held always 3869 * unless system_state == SYSTEM_BOOTING. 3870 */ 3871 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3872 { 3873 set_zonelist_order(); 3874 3875 if (system_state == SYSTEM_BOOTING) { 3876 __build_all_zonelists(NULL); 3877 mminit_verify_zonelist(); 3878 cpuset_init_current_mems_allowed(); 3879 } else { 3880 #ifdef CONFIG_MEMORY_HOTPLUG 3881 if (zone) 3882 setup_zone_pageset(zone); 3883 #endif 3884 /* we have to stop all cpus to guarantee there is no user 3885 of zonelist */ 3886 stop_machine(__build_all_zonelists, pgdat, NULL); 3887 /* cpuset refresh routine should be here */ 3888 } 3889 vm_total_pages = nr_free_pagecache_pages(); 3890 /* 3891 * Disable grouping by mobility if the number of pages in the 3892 * system is too low to allow the mechanism to work. It would be 3893 * more accurate, but expensive to check per-zone. This check is 3894 * made on memory-hotadd so a system can start with mobility 3895 * disabled and enable it later 3896 */ 3897 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3898 page_group_by_mobility_disabled = 1; 3899 else 3900 page_group_by_mobility_disabled = 0; 3901 3902 printk("Built %i zonelists in %s order, mobility grouping %s. " 3903 "Total pages: %ld\n", 3904 nr_online_nodes, 3905 zonelist_order_name[current_zonelist_order], 3906 page_group_by_mobility_disabled ? "off" : "on", 3907 vm_total_pages); 3908 #ifdef CONFIG_NUMA 3909 printk("Policy zone: %s\n", zone_names[policy_zone]); 3910 #endif 3911 } 3912 3913 /* 3914 * Helper functions to size the waitqueue hash table. 3915 * Essentially these want to choose hash table sizes sufficiently 3916 * large so that collisions trying to wait on pages are rare. 3917 * But in fact, the number of active page waitqueues on typical 3918 * systems is ridiculously low, less than 200. So this is even 3919 * conservative, even though it seems large. 3920 * 3921 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3922 * waitqueues, i.e. the size of the waitq table given the number of pages. 3923 */ 3924 #define PAGES_PER_WAITQUEUE 256 3925 3926 #ifndef CONFIG_MEMORY_HOTPLUG 3927 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3928 { 3929 unsigned long size = 1; 3930 3931 pages /= PAGES_PER_WAITQUEUE; 3932 3933 while (size < pages) 3934 size <<= 1; 3935 3936 /* 3937 * Once we have dozens or even hundreds of threads sleeping 3938 * on IO we've got bigger problems than wait queue collision. 3939 * Limit the size of the wait table to a reasonable size. 3940 */ 3941 size = min(size, 4096UL); 3942 3943 return max(size, 4UL); 3944 } 3945 #else 3946 /* 3947 * A zone's size might be changed by hot-add, so it is not possible to determine 3948 * a suitable size for its wait_table. So we use the maximum size now. 3949 * 3950 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3951 * 3952 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3953 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3954 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3955 * 3956 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3957 * or more by the traditional way. (See above). It equals: 3958 * 3959 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3960 * ia64(16K page size) : = ( 8G + 4M)byte. 3961 * powerpc (64K page size) : = (32G +16M)byte. 3962 */ 3963 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3964 { 3965 return 4096UL; 3966 } 3967 #endif 3968 3969 /* 3970 * This is an integer logarithm so that shifts can be used later 3971 * to extract the more random high bits from the multiplicative 3972 * hash function before the remainder is taken. 3973 */ 3974 static inline unsigned long wait_table_bits(unsigned long size) 3975 { 3976 return ffz(~size); 3977 } 3978 3979 /* 3980 * Check if a pageblock contains reserved pages 3981 */ 3982 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3983 { 3984 unsigned long pfn; 3985 3986 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3987 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3988 return 1; 3989 } 3990 return 0; 3991 } 3992 3993 /* 3994 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3995 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3996 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3997 * higher will lead to a bigger reserve which will get freed as contiguous 3998 * blocks as reclaim kicks in 3999 */ 4000 static void setup_zone_migrate_reserve(struct zone *zone) 4001 { 4002 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4003 struct page *page; 4004 unsigned long block_migratetype; 4005 int reserve; 4006 int old_reserve; 4007 4008 /* 4009 * Get the start pfn, end pfn and the number of blocks to reserve 4010 * We have to be careful to be aligned to pageblock_nr_pages to 4011 * make sure that we always check pfn_valid for the first page in 4012 * the block. 4013 */ 4014 start_pfn = zone->zone_start_pfn; 4015 end_pfn = zone_end_pfn(zone); 4016 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4017 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4018 pageblock_order; 4019 4020 /* 4021 * Reserve blocks are generally in place to help high-order atomic 4022 * allocations that are short-lived. A min_free_kbytes value that 4023 * would result in more than 2 reserve blocks for atomic allocations 4024 * is assumed to be in place to help anti-fragmentation for the 4025 * future allocation of hugepages at runtime. 4026 */ 4027 reserve = min(2, reserve); 4028 old_reserve = zone->nr_migrate_reserve_block; 4029 4030 /* When memory hot-add, we almost always need to do nothing */ 4031 if (reserve == old_reserve) 4032 return; 4033 zone->nr_migrate_reserve_block = reserve; 4034 4035 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4036 if (!pfn_valid(pfn)) 4037 continue; 4038 page = pfn_to_page(pfn); 4039 4040 /* Watch out for overlapping nodes */ 4041 if (page_to_nid(page) != zone_to_nid(zone)) 4042 continue; 4043 4044 block_migratetype = get_pageblock_migratetype(page); 4045 4046 /* Only test what is necessary when the reserves are not met */ 4047 if (reserve > 0) { 4048 /* 4049 * Blocks with reserved pages will never free, skip 4050 * them. 4051 */ 4052 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4053 if (pageblock_is_reserved(pfn, block_end_pfn)) 4054 continue; 4055 4056 /* If this block is reserved, account for it */ 4057 if (block_migratetype == MIGRATE_RESERVE) { 4058 reserve--; 4059 continue; 4060 } 4061 4062 /* Suitable for reserving if this block is movable */ 4063 if (block_migratetype == MIGRATE_MOVABLE) { 4064 set_pageblock_migratetype(page, 4065 MIGRATE_RESERVE); 4066 move_freepages_block(zone, page, 4067 MIGRATE_RESERVE); 4068 reserve--; 4069 continue; 4070 } 4071 } else if (!old_reserve) { 4072 /* 4073 * At boot time we don't need to scan the whole zone 4074 * for turning off MIGRATE_RESERVE. 4075 */ 4076 break; 4077 } 4078 4079 /* 4080 * If the reserve is met and this is a previous reserved block, 4081 * take it back 4082 */ 4083 if (block_migratetype == MIGRATE_RESERVE) { 4084 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4085 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4086 } 4087 } 4088 } 4089 4090 /* 4091 * Initially all pages are reserved - free ones are freed 4092 * up by free_all_bootmem() once the early boot process is 4093 * done. Non-atomic initialization, single-pass. 4094 */ 4095 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4096 unsigned long start_pfn, enum memmap_context context) 4097 { 4098 struct page *page; 4099 unsigned long end_pfn = start_pfn + size; 4100 unsigned long pfn; 4101 struct zone *z; 4102 4103 if (highest_memmap_pfn < end_pfn - 1) 4104 highest_memmap_pfn = end_pfn - 1; 4105 4106 z = &NODE_DATA(nid)->node_zones[zone]; 4107 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4108 /* 4109 * There can be holes in boot-time mem_map[]s 4110 * handed to this function. They do not 4111 * exist on hotplugged memory. 4112 */ 4113 if (context == MEMMAP_EARLY) { 4114 if (!early_pfn_valid(pfn)) 4115 continue; 4116 if (!early_pfn_in_nid(pfn, nid)) 4117 continue; 4118 } 4119 page = pfn_to_page(pfn); 4120 set_page_links(page, zone, nid, pfn); 4121 mminit_verify_page_links(page, zone, nid, pfn); 4122 init_page_count(page); 4123 page_mapcount_reset(page); 4124 page_cpupid_reset_last(page); 4125 SetPageReserved(page); 4126 /* 4127 * Mark the block movable so that blocks are reserved for 4128 * movable at startup. This will force kernel allocations 4129 * to reserve their blocks rather than leaking throughout 4130 * the address space during boot when many long-lived 4131 * kernel allocations are made. Later some blocks near 4132 * the start are marked MIGRATE_RESERVE by 4133 * setup_zone_migrate_reserve() 4134 * 4135 * bitmap is created for zone's valid pfn range. but memmap 4136 * can be created for invalid pages (for alignment) 4137 * check here not to call set_pageblock_migratetype() against 4138 * pfn out of zone. 4139 */ 4140 if ((z->zone_start_pfn <= pfn) 4141 && (pfn < zone_end_pfn(z)) 4142 && !(pfn & (pageblock_nr_pages - 1))) 4143 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4144 4145 INIT_LIST_HEAD(&page->lru); 4146 #ifdef WANT_PAGE_VIRTUAL 4147 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4148 if (!is_highmem_idx(zone)) 4149 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4150 #endif 4151 } 4152 } 4153 4154 static void __meminit zone_init_free_lists(struct zone *zone) 4155 { 4156 unsigned int order, t; 4157 for_each_migratetype_order(order, t) { 4158 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4159 zone->free_area[order].nr_free = 0; 4160 } 4161 } 4162 4163 #ifndef __HAVE_ARCH_MEMMAP_INIT 4164 #define memmap_init(size, nid, zone, start_pfn) \ 4165 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4166 #endif 4167 4168 static int zone_batchsize(struct zone *zone) 4169 { 4170 #ifdef CONFIG_MMU 4171 int batch; 4172 4173 /* 4174 * The per-cpu-pages pools are set to around 1000th of the 4175 * size of the zone. But no more than 1/2 of a meg. 4176 * 4177 * OK, so we don't know how big the cache is. So guess. 4178 */ 4179 batch = zone->managed_pages / 1024; 4180 if (batch * PAGE_SIZE > 512 * 1024) 4181 batch = (512 * 1024) / PAGE_SIZE; 4182 batch /= 4; /* We effectively *= 4 below */ 4183 if (batch < 1) 4184 batch = 1; 4185 4186 /* 4187 * Clamp the batch to a 2^n - 1 value. Having a power 4188 * of 2 value was found to be more likely to have 4189 * suboptimal cache aliasing properties in some cases. 4190 * 4191 * For example if 2 tasks are alternately allocating 4192 * batches of pages, one task can end up with a lot 4193 * of pages of one half of the possible page colors 4194 * and the other with pages of the other colors. 4195 */ 4196 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4197 4198 return batch; 4199 4200 #else 4201 /* The deferral and batching of frees should be suppressed under NOMMU 4202 * conditions. 4203 * 4204 * The problem is that NOMMU needs to be able to allocate large chunks 4205 * of contiguous memory as there's no hardware page translation to 4206 * assemble apparent contiguous memory from discontiguous pages. 4207 * 4208 * Queueing large contiguous runs of pages for batching, however, 4209 * causes the pages to actually be freed in smaller chunks. As there 4210 * can be a significant delay between the individual batches being 4211 * recycled, this leads to the once large chunks of space being 4212 * fragmented and becoming unavailable for high-order allocations. 4213 */ 4214 return 0; 4215 #endif 4216 } 4217 4218 /* 4219 * pcp->high and pcp->batch values are related and dependent on one another: 4220 * ->batch must never be higher then ->high. 4221 * The following function updates them in a safe manner without read side 4222 * locking. 4223 * 4224 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4225 * those fields changing asynchronously (acording the the above rule). 4226 * 4227 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4228 * outside of boot time (or some other assurance that no concurrent updaters 4229 * exist). 4230 */ 4231 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4232 unsigned long batch) 4233 { 4234 /* start with a fail safe value for batch */ 4235 pcp->batch = 1; 4236 smp_wmb(); 4237 4238 /* Update high, then batch, in order */ 4239 pcp->high = high; 4240 smp_wmb(); 4241 4242 pcp->batch = batch; 4243 } 4244 4245 /* a companion to pageset_set_high() */ 4246 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4247 { 4248 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4249 } 4250 4251 static void pageset_init(struct per_cpu_pageset *p) 4252 { 4253 struct per_cpu_pages *pcp; 4254 int migratetype; 4255 4256 memset(p, 0, sizeof(*p)); 4257 4258 pcp = &p->pcp; 4259 pcp->count = 0; 4260 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4261 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4262 } 4263 4264 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4265 { 4266 pageset_init(p); 4267 pageset_set_batch(p, batch); 4268 } 4269 4270 /* 4271 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4272 * to the value high for the pageset p. 4273 */ 4274 static void pageset_set_high(struct per_cpu_pageset *p, 4275 unsigned long high) 4276 { 4277 unsigned long batch = max(1UL, high / 4); 4278 if ((high / 4) > (PAGE_SHIFT * 8)) 4279 batch = PAGE_SHIFT * 8; 4280 4281 pageset_update(&p->pcp, high, batch); 4282 } 4283 4284 static void pageset_set_high_and_batch(struct zone *zone, 4285 struct per_cpu_pageset *pcp) 4286 { 4287 if (percpu_pagelist_fraction) 4288 pageset_set_high(pcp, 4289 (zone->managed_pages / 4290 percpu_pagelist_fraction)); 4291 else 4292 pageset_set_batch(pcp, zone_batchsize(zone)); 4293 } 4294 4295 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4296 { 4297 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4298 4299 pageset_init(pcp); 4300 pageset_set_high_and_batch(zone, pcp); 4301 } 4302 4303 static void __meminit setup_zone_pageset(struct zone *zone) 4304 { 4305 int cpu; 4306 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4307 for_each_possible_cpu(cpu) 4308 zone_pageset_init(zone, cpu); 4309 } 4310 4311 /* 4312 * Allocate per cpu pagesets and initialize them. 4313 * Before this call only boot pagesets were available. 4314 */ 4315 void __init setup_per_cpu_pageset(void) 4316 { 4317 struct zone *zone; 4318 4319 for_each_populated_zone(zone) 4320 setup_zone_pageset(zone); 4321 } 4322 4323 static noinline __init_refok 4324 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4325 { 4326 int i; 4327 size_t alloc_size; 4328 4329 /* 4330 * The per-page waitqueue mechanism uses hashed waitqueues 4331 * per zone. 4332 */ 4333 zone->wait_table_hash_nr_entries = 4334 wait_table_hash_nr_entries(zone_size_pages); 4335 zone->wait_table_bits = 4336 wait_table_bits(zone->wait_table_hash_nr_entries); 4337 alloc_size = zone->wait_table_hash_nr_entries 4338 * sizeof(wait_queue_head_t); 4339 4340 if (!slab_is_available()) { 4341 zone->wait_table = (wait_queue_head_t *) 4342 memblock_virt_alloc_node_nopanic( 4343 alloc_size, zone->zone_pgdat->node_id); 4344 } else { 4345 /* 4346 * This case means that a zone whose size was 0 gets new memory 4347 * via memory hot-add. 4348 * But it may be the case that a new node was hot-added. In 4349 * this case vmalloc() will not be able to use this new node's 4350 * memory - this wait_table must be initialized to use this new 4351 * node itself as well. 4352 * To use this new node's memory, further consideration will be 4353 * necessary. 4354 */ 4355 zone->wait_table = vmalloc(alloc_size); 4356 } 4357 if (!zone->wait_table) 4358 return -ENOMEM; 4359 4360 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4361 init_waitqueue_head(zone->wait_table + i); 4362 4363 return 0; 4364 } 4365 4366 static __meminit void zone_pcp_init(struct zone *zone) 4367 { 4368 /* 4369 * per cpu subsystem is not up at this point. The following code 4370 * relies on the ability of the linker to provide the 4371 * offset of a (static) per cpu variable into the per cpu area. 4372 */ 4373 zone->pageset = &boot_pageset; 4374 4375 if (populated_zone(zone)) 4376 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4377 zone->name, zone->present_pages, 4378 zone_batchsize(zone)); 4379 } 4380 4381 int __meminit init_currently_empty_zone(struct zone *zone, 4382 unsigned long zone_start_pfn, 4383 unsigned long size, 4384 enum memmap_context context) 4385 { 4386 struct pglist_data *pgdat = zone->zone_pgdat; 4387 int ret; 4388 ret = zone_wait_table_init(zone, size); 4389 if (ret) 4390 return ret; 4391 pgdat->nr_zones = zone_idx(zone) + 1; 4392 4393 zone->zone_start_pfn = zone_start_pfn; 4394 4395 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4396 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4397 pgdat->node_id, 4398 (unsigned long)zone_idx(zone), 4399 zone_start_pfn, (zone_start_pfn + size)); 4400 4401 zone_init_free_lists(zone); 4402 4403 return 0; 4404 } 4405 4406 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4407 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4408 /* 4409 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4410 */ 4411 int __meminit __early_pfn_to_nid(unsigned long pfn) 4412 { 4413 unsigned long start_pfn, end_pfn; 4414 int nid; 4415 /* 4416 * NOTE: The following SMP-unsafe globals are only used early in boot 4417 * when the kernel is running single-threaded. 4418 */ 4419 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4420 static int __meminitdata last_nid; 4421 4422 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4423 return last_nid; 4424 4425 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4426 if (nid != -1) { 4427 last_start_pfn = start_pfn; 4428 last_end_pfn = end_pfn; 4429 last_nid = nid; 4430 } 4431 4432 return nid; 4433 } 4434 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4435 4436 int __meminit early_pfn_to_nid(unsigned long pfn) 4437 { 4438 int nid; 4439 4440 nid = __early_pfn_to_nid(pfn); 4441 if (nid >= 0) 4442 return nid; 4443 /* just returns 0 */ 4444 return 0; 4445 } 4446 4447 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4448 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4449 { 4450 int nid; 4451 4452 nid = __early_pfn_to_nid(pfn); 4453 if (nid >= 0 && nid != node) 4454 return false; 4455 return true; 4456 } 4457 #endif 4458 4459 /** 4460 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4461 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4462 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4463 * 4464 * If an architecture guarantees that all ranges registered contain no holes 4465 * and may be freed, this this function may be used instead of calling 4466 * memblock_free_early_nid() manually. 4467 */ 4468 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4469 { 4470 unsigned long start_pfn, end_pfn; 4471 int i, this_nid; 4472 4473 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4474 start_pfn = min(start_pfn, max_low_pfn); 4475 end_pfn = min(end_pfn, max_low_pfn); 4476 4477 if (start_pfn < end_pfn) 4478 memblock_free_early_nid(PFN_PHYS(start_pfn), 4479 (end_pfn - start_pfn) << PAGE_SHIFT, 4480 this_nid); 4481 } 4482 } 4483 4484 /** 4485 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4486 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4487 * 4488 * If an architecture guarantees that all ranges registered contain no holes and may 4489 * be freed, this function may be used instead of calling memory_present() manually. 4490 */ 4491 void __init sparse_memory_present_with_active_regions(int nid) 4492 { 4493 unsigned long start_pfn, end_pfn; 4494 int i, this_nid; 4495 4496 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4497 memory_present(this_nid, start_pfn, end_pfn); 4498 } 4499 4500 /** 4501 * get_pfn_range_for_nid - Return the start and end page frames for a node 4502 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4503 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4504 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4505 * 4506 * It returns the start and end page frame of a node based on information 4507 * provided by memblock_set_node(). If called for a node 4508 * with no available memory, a warning is printed and the start and end 4509 * PFNs will be 0. 4510 */ 4511 void __meminit get_pfn_range_for_nid(unsigned int nid, 4512 unsigned long *start_pfn, unsigned long *end_pfn) 4513 { 4514 unsigned long this_start_pfn, this_end_pfn; 4515 int i; 4516 4517 *start_pfn = -1UL; 4518 *end_pfn = 0; 4519 4520 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4521 *start_pfn = min(*start_pfn, this_start_pfn); 4522 *end_pfn = max(*end_pfn, this_end_pfn); 4523 } 4524 4525 if (*start_pfn == -1UL) 4526 *start_pfn = 0; 4527 } 4528 4529 /* 4530 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4531 * assumption is made that zones within a node are ordered in monotonic 4532 * increasing memory addresses so that the "highest" populated zone is used 4533 */ 4534 static void __init find_usable_zone_for_movable(void) 4535 { 4536 int zone_index; 4537 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4538 if (zone_index == ZONE_MOVABLE) 4539 continue; 4540 4541 if (arch_zone_highest_possible_pfn[zone_index] > 4542 arch_zone_lowest_possible_pfn[zone_index]) 4543 break; 4544 } 4545 4546 VM_BUG_ON(zone_index == -1); 4547 movable_zone = zone_index; 4548 } 4549 4550 /* 4551 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4552 * because it is sized independent of architecture. Unlike the other zones, 4553 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4554 * in each node depending on the size of each node and how evenly kernelcore 4555 * is distributed. This helper function adjusts the zone ranges 4556 * provided by the architecture for a given node by using the end of the 4557 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4558 * zones within a node are in order of monotonic increases memory addresses 4559 */ 4560 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4561 unsigned long zone_type, 4562 unsigned long node_start_pfn, 4563 unsigned long node_end_pfn, 4564 unsigned long *zone_start_pfn, 4565 unsigned long *zone_end_pfn) 4566 { 4567 /* Only adjust if ZONE_MOVABLE is on this node */ 4568 if (zone_movable_pfn[nid]) { 4569 /* Size ZONE_MOVABLE */ 4570 if (zone_type == ZONE_MOVABLE) { 4571 *zone_start_pfn = zone_movable_pfn[nid]; 4572 *zone_end_pfn = min(node_end_pfn, 4573 arch_zone_highest_possible_pfn[movable_zone]); 4574 4575 /* Adjust for ZONE_MOVABLE starting within this range */ 4576 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4577 *zone_end_pfn > zone_movable_pfn[nid]) { 4578 *zone_end_pfn = zone_movable_pfn[nid]; 4579 4580 /* Check if this whole range is within ZONE_MOVABLE */ 4581 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4582 *zone_start_pfn = *zone_end_pfn; 4583 } 4584 } 4585 4586 /* 4587 * Return the number of pages a zone spans in a node, including holes 4588 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4589 */ 4590 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4591 unsigned long zone_type, 4592 unsigned long node_start_pfn, 4593 unsigned long node_end_pfn, 4594 unsigned long *ignored) 4595 { 4596 unsigned long zone_start_pfn, zone_end_pfn; 4597 4598 /* Get the start and end of the zone */ 4599 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4600 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4601 adjust_zone_range_for_zone_movable(nid, zone_type, 4602 node_start_pfn, node_end_pfn, 4603 &zone_start_pfn, &zone_end_pfn); 4604 4605 /* Check that this node has pages within the zone's required range */ 4606 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4607 return 0; 4608 4609 /* Move the zone boundaries inside the node if necessary */ 4610 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4611 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4612 4613 /* Return the spanned pages */ 4614 return zone_end_pfn - zone_start_pfn; 4615 } 4616 4617 /* 4618 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4619 * then all holes in the requested range will be accounted for. 4620 */ 4621 unsigned long __meminit __absent_pages_in_range(int nid, 4622 unsigned long range_start_pfn, 4623 unsigned long range_end_pfn) 4624 { 4625 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4626 unsigned long start_pfn, end_pfn; 4627 int i; 4628 4629 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4630 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4631 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4632 nr_absent -= end_pfn - start_pfn; 4633 } 4634 return nr_absent; 4635 } 4636 4637 /** 4638 * absent_pages_in_range - Return number of page frames in holes within a range 4639 * @start_pfn: The start PFN to start searching for holes 4640 * @end_pfn: The end PFN to stop searching for holes 4641 * 4642 * It returns the number of pages frames in memory holes within a range. 4643 */ 4644 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4645 unsigned long end_pfn) 4646 { 4647 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4648 } 4649 4650 /* Return the number of page frames in holes in a zone on a node */ 4651 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4652 unsigned long zone_type, 4653 unsigned long node_start_pfn, 4654 unsigned long node_end_pfn, 4655 unsigned long *ignored) 4656 { 4657 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4658 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4659 unsigned long zone_start_pfn, zone_end_pfn; 4660 4661 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4662 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4663 4664 adjust_zone_range_for_zone_movable(nid, zone_type, 4665 node_start_pfn, node_end_pfn, 4666 &zone_start_pfn, &zone_end_pfn); 4667 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4668 } 4669 4670 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4671 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4672 unsigned long zone_type, 4673 unsigned long node_start_pfn, 4674 unsigned long node_end_pfn, 4675 unsigned long *zones_size) 4676 { 4677 return zones_size[zone_type]; 4678 } 4679 4680 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4681 unsigned long zone_type, 4682 unsigned long node_start_pfn, 4683 unsigned long node_end_pfn, 4684 unsigned long *zholes_size) 4685 { 4686 if (!zholes_size) 4687 return 0; 4688 4689 return zholes_size[zone_type]; 4690 } 4691 4692 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4693 4694 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4695 unsigned long node_start_pfn, 4696 unsigned long node_end_pfn, 4697 unsigned long *zones_size, 4698 unsigned long *zholes_size) 4699 { 4700 unsigned long realtotalpages, totalpages = 0; 4701 enum zone_type i; 4702 4703 for (i = 0; i < MAX_NR_ZONES; i++) 4704 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4705 node_start_pfn, 4706 node_end_pfn, 4707 zones_size); 4708 pgdat->node_spanned_pages = totalpages; 4709 4710 realtotalpages = totalpages; 4711 for (i = 0; i < MAX_NR_ZONES; i++) 4712 realtotalpages -= 4713 zone_absent_pages_in_node(pgdat->node_id, i, 4714 node_start_pfn, node_end_pfn, 4715 zholes_size); 4716 pgdat->node_present_pages = realtotalpages; 4717 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4718 realtotalpages); 4719 } 4720 4721 #ifndef CONFIG_SPARSEMEM 4722 /* 4723 * Calculate the size of the zone->blockflags rounded to an unsigned long 4724 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4725 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4726 * round what is now in bits to nearest long in bits, then return it in 4727 * bytes. 4728 */ 4729 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4730 { 4731 unsigned long usemapsize; 4732 4733 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4734 usemapsize = roundup(zonesize, pageblock_nr_pages); 4735 usemapsize = usemapsize >> pageblock_order; 4736 usemapsize *= NR_PAGEBLOCK_BITS; 4737 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4738 4739 return usemapsize / 8; 4740 } 4741 4742 static void __init setup_usemap(struct pglist_data *pgdat, 4743 struct zone *zone, 4744 unsigned long zone_start_pfn, 4745 unsigned long zonesize) 4746 { 4747 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4748 zone->pageblock_flags = NULL; 4749 if (usemapsize) 4750 zone->pageblock_flags = 4751 memblock_virt_alloc_node_nopanic(usemapsize, 4752 pgdat->node_id); 4753 } 4754 #else 4755 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4756 unsigned long zone_start_pfn, unsigned long zonesize) {} 4757 #endif /* CONFIG_SPARSEMEM */ 4758 4759 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4760 4761 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4762 void __paginginit set_pageblock_order(void) 4763 { 4764 unsigned int order; 4765 4766 /* Check that pageblock_nr_pages has not already been setup */ 4767 if (pageblock_order) 4768 return; 4769 4770 if (HPAGE_SHIFT > PAGE_SHIFT) 4771 order = HUGETLB_PAGE_ORDER; 4772 else 4773 order = MAX_ORDER - 1; 4774 4775 /* 4776 * Assume the largest contiguous order of interest is a huge page. 4777 * This value may be variable depending on boot parameters on IA64 and 4778 * powerpc. 4779 */ 4780 pageblock_order = order; 4781 } 4782 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4783 4784 /* 4785 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4786 * is unused as pageblock_order is set at compile-time. See 4787 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4788 * the kernel config 4789 */ 4790 void __paginginit set_pageblock_order(void) 4791 { 4792 } 4793 4794 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4795 4796 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4797 unsigned long present_pages) 4798 { 4799 unsigned long pages = spanned_pages; 4800 4801 /* 4802 * Provide a more accurate estimation if there are holes within 4803 * the zone and SPARSEMEM is in use. If there are holes within the 4804 * zone, each populated memory region may cost us one or two extra 4805 * memmap pages due to alignment because memmap pages for each 4806 * populated regions may not naturally algined on page boundary. 4807 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4808 */ 4809 if (spanned_pages > present_pages + (present_pages >> 4) && 4810 IS_ENABLED(CONFIG_SPARSEMEM)) 4811 pages = present_pages; 4812 4813 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4814 } 4815 4816 /* 4817 * Set up the zone data structures: 4818 * - mark all pages reserved 4819 * - mark all memory queues empty 4820 * - clear the memory bitmaps 4821 * 4822 * NOTE: pgdat should get zeroed by caller. 4823 */ 4824 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4825 unsigned long node_start_pfn, unsigned long node_end_pfn, 4826 unsigned long *zones_size, unsigned long *zholes_size) 4827 { 4828 enum zone_type j; 4829 int nid = pgdat->node_id; 4830 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4831 int ret; 4832 4833 pgdat_resize_init(pgdat); 4834 #ifdef CONFIG_NUMA_BALANCING 4835 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4836 pgdat->numabalancing_migrate_nr_pages = 0; 4837 pgdat->numabalancing_migrate_next_window = jiffies; 4838 #endif 4839 init_waitqueue_head(&pgdat->kswapd_wait); 4840 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4841 pgdat_page_cgroup_init(pgdat); 4842 4843 for (j = 0; j < MAX_NR_ZONES; j++) { 4844 struct zone *zone = pgdat->node_zones + j; 4845 unsigned long size, realsize, freesize, memmap_pages; 4846 4847 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4848 node_end_pfn, zones_size); 4849 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4850 node_start_pfn, 4851 node_end_pfn, 4852 zholes_size); 4853 4854 /* 4855 * Adjust freesize so that it accounts for how much memory 4856 * is used by this zone for memmap. This affects the watermark 4857 * and per-cpu initialisations 4858 */ 4859 memmap_pages = calc_memmap_size(size, realsize); 4860 if (freesize >= memmap_pages) { 4861 freesize -= memmap_pages; 4862 if (memmap_pages) 4863 printk(KERN_DEBUG 4864 " %s zone: %lu pages used for memmap\n", 4865 zone_names[j], memmap_pages); 4866 } else 4867 printk(KERN_WARNING 4868 " %s zone: %lu pages exceeds freesize %lu\n", 4869 zone_names[j], memmap_pages, freesize); 4870 4871 /* Account for reserved pages */ 4872 if (j == 0 && freesize > dma_reserve) { 4873 freesize -= dma_reserve; 4874 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4875 zone_names[0], dma_reserve); 4876 } 4877 4878 if (!is_highmem_idx(j)) 4879 nr_kernel_pages += freesize; 4880 /* Charge for highmem memmap if there are enough kernel pages */ 4881 else if (nr_kernel_pages > memmap_pages * 2) 4882 nr_kernel_pages -= memmap_pages; 4883 nr_all_pages += freesize; 4884 4885 zone->spanned_pages = size; 4886 zone->present_pages = realsize; 4887 /* 4888 * Set an approximate value for lowmem here, it will be adjusted 4889 * when the bootmem allocator frees pages into the buddy system. 4890 * And all highmem pages will be managed by the buddy system. 4891 */ 4892 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4893 #ifdef CONFIG_NUMA 4894 zone->node = nid; 4895 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4896 / 100; 4897 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4898 #endif 4899 zone->name = zone_names[j]; 4900 spin_lock_init(&zone->lock); 4901 spin_lock_init(&zone->lru_lock); 4902 zone_seqlock_init(zone); 4903 zone->zone_pgdat = pgdat; 4904 zone_pcp_init(zone); 4905 4906 /* For bootup, initialized properly in watermark setup */ 4907 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4908 4909 lruvec_init(&zone->lruvec); 4910 if (!size) 4911 continue; 4912 4913 set_pageblock_order(); 4914 setup_usemap(pgdat, zone, zone_start_pfn, size); 4915 ret = init_currently_empty_zone(zone, zone_start_pfn, 4916 size, MEMMAP_EARLY); 4917 BUG_ON(ret); 4918 memmap_init(size, nid, j, zone_start_pfn); 4919 zone_start_pfn += size; 4920 } 4921 } 4922 4923 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4924 { 4925 /* Skip empty nodes */ 4926 if (!pgdat->node_spanned_pages) 4927 return; 4928 4929 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4930 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4931 if (!pgdat->node_mem_map) { 4932 unsigned long size, start, end; 4933 struct page *map; 4934 4935 /* 4936 * The zone's endpoints aren't required to be MAX_ORDER 4937 * aligned but the node_mem_map endpoints must be in order 4938 * for the buddy allocator to function correctly. 4939 */ 4940 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4941 end = pgdat_end_pfn(pgdat); 4942 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4943 size = (end - start) * sizeof(struct page); 4944 map = alloc_remap(pgdat->node_id, size); 4945 if (!map) 4946 map = memblock_virt_alloc_node_nopanic(size, 4947 pgdat->node_id); 4948 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4949 } 4950 #ifndef CONFIG_NEED_MULTIPLE_NODES 4951 /* 4952 * With no DISCONTIG, the global mem_map is just set as node 0's 4953 */ 4954 if (pgdat == NODE_DATA(0)) { 4955 mem_map = NODE_DATA(0)->node_mem_map; 4956 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4957 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4958 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4959 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4960 } 4961 #endif 4962 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4963 } 4964 4965 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4966 unsigned long node_start_pfn, unsigned long *zholes_size) 4967 { 4968 pg_data_t *pgdat = NODE_DATA(nid); 4969 unsigned long start_pfn = 0; 4970 unsigned long end_pfn = 0; 4971 4972 /* pg_data_t should be reset to zero when it's allocated */ 4973 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4974 4975 pgdat->node_id = nid; 4976 pgdat->node_start_pfn = node_start_pfn; 4977 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4978 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4979 #endif 4980 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4981 zones_size, zholes_size); 4982 4983 alloc_node_mem_map(pgdat); 4984 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4985 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4986 nid, (unsigned long)pgdat, 4987 (unsigned long)pgdat->node_mem_map); 4988 #endif 4989 4990 free_area_init_core(pgdat, start_pfn, end_pfn, 4991 zones_size, zholes_size); 4992 } 4993 4994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4995 4996 #if MAX_NUMNODES > 1 4997 /* 4998 * Figure out the number of possible node ids. 4999 */ 5000 void __init setup_nr_node_ids(void) 5001 { 5002 unsigned int node; 5003 unsigned int highest = 0; 5004 5005 for_each_node_mask(node, node_possible_map) 5006 highest = node; 5007 nr_node_ids = highest + 1; 5008 } 5009 #endif 5010 5011 /** 5012 * node_map_pfn_alignment - determine the maximum internode alignment 5013 * 5014 * This function should be called after node map is populated and sorted. 5015 * It calculates the maximum power of two alignment which can distinguish 5016 * all the nodes. 5017 * 5018 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5019 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5020 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5021 * shifted, 1GiB is enough and this function will indicate so. 5022 * 5023 * This is used to test whether pfn -> nid mapping of the chosen memory 5024 * model has fine enough granularity to avoid incorrect mapping for the 5025 * populated node map. 5026 * 5027 * Returns the determined alignment in pfn's. 0 if there is no alignment 5028 * requirement (single node). 5029 */ 5030 unsigned long __init node_map_pfn_alignment(void) 5031 { 5032 unsigned long accl_mask = 0, last_end = 0; 5033 unsigned long start, end, mask; 5034 int last_nid = -1; 5035 int i, nid; 5036 5037 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5038 if (!start || last_nid < 0 || last_nid == nid) { 5039 last_nid = nid; 5040 last_end = end; 5041 continue; 5042 } 5043 5044 /* 5045 * Start with a mask granular enough to pin-point to the 5046 * start pfn and tick off bits one-by-one until it becomes 5047 * too coarse to separate the current node from the last. 5048 */ 5049 mask = ~((1 << __ffs(start)) - 1); 5050 while (mask && last_end <= (start & (mask << 1))) 5051 mask <<= 1; 5052 5053 /* accumulate all internode masks */ 5054 accl_mask |= mask; 5055 } 5056 5057 /* convert mask to number of pages */ 5058 return ~accl_mask + 1; 5059 } 5060 5061 /* Find the lowest pfn for a node */ 5062 static unsigned long __init find_min_pfn_for_node(int nid) 5063 { 5064 unsigned long min_pfn = ULONG_MAX; 5065 unsigned long start_pfn; 5066 int i; 5067 5068 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5069 min_pfn = min(min_pfn, start_pfn); 5070 5071 if (min_pfn == ULONG_MAX) { 5072 printk(KERN_WARNING 5073 "Could not find start_pfn for node %d\n", nid); 5074 return 0; 5075 } 5076 5077 return min_pfn; 5078 } 5079 5080 /** 5081 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5082 * 5083 * It returns the minimum PFN based on information provided via 5084 * memblock_set_node(). 5085 */ 5086 unsigned long __init find_min_pfn_with_active_regions(void) 5087 { 5088 return find_min_pfn_for_node(MAX_NUMNODES); 5089 } 5090 5091 /* 5092 * early_calculate_totalpages() 5093 * Sum pages in active regions for movable zone. 5094 * Populate N_MEMORY for calculating usable_nodes. 5095 */ 5096 static unsigned long __init early_calculate_totalpages(void) 5097 { 5098 unsigned long totalpages = 0; 5099 unsigned long start_pfn, end_pfn; 5100 int i, nid; 5101 5102 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5103 unsigned long pages = end_pfn - start_pfn; 5104 5105 totalpages += pages; 5106 if (pages) 5107 node_set_state(nid, N_MEMORY); 5108 } 5109 return totalpages; 5110 } 5111 5112 /* 5113 * Find the PFN the Movable zone begins in each node. Kernel memory 5114 * is spread evenly between nodes as long as the nodes have enough 5115 * memory. When they don't, some nodes will have more kernelcore than 5116 * others 5117 */ 5118 static void __init find_zone_movable_pfns_for_nodes(void) 5119 { 5120 int i, nid; 5121 unsigned long usable_startpfn; 5122 unsigned long kernelcore_node, kernelcore_remaining; 5123 /* save the state before borrow the nodemask */ 5124 nodemask_t saved_node_state = node_states[N_MEMORY]; 5125 unsigned long totalpages = early_calculate_totalpages(); 5126 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5127 struct memblock_region *r; 5128 5129 /* Need to find movable_zone earlier when movable_node is specified. */ 5130 find_usable_zone_for_movable(); 5131 5132 /* 5133 * If movable_node is specified, ignore kernelcore and movablecore 5134 * options. 5135 */ 5136 if (movable_node_is_enabled()) { 5137 for_each_memblock(memory, r) { 5138 if (!memblock_is_hotpluggable(r)) 5139 continue; 5140 5141 nid = r->nid; 5142 5143 usable_startpfn = PFN_DOWN(r->base); 5144 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5145 min(usable_startpfn, zone_movable_pfn[nid]) : 5146 usable_startpfn; 5147 } 5148 5149 goto out2; 5150 } 5151 5152 /* 5153 * If movablecore=nn[KMG] was specified, calculate what size of 5154 * kernelcore that corresponds so that memory usable for 5155 * any allocation type is evenly spread. If both kernelcore 5156 * and movablecore are specified, then the value of kernelcore 5157 * will be used for required_kernelcore if it's greater than 5158 * what movablecore would have allowed. 5159 */ 5160 if (required_movablecore) { 5161 unsigned long corepages; 5162 5163 /* 5164 * Round-up so that ZONE_MOVABLE is at least as large as what 5165 * was requested by the user 5166 */ 5167 required_movablecore = 5168 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5169 corepages = totalpages - required_movablecore; 5170 5171 required_kernelcore = max(required_kernelcore, corepages); 5172 } 5173 5174 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5175 if (!required_kernelcore) 5176 goto out; 5177 5178 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5179 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5180 5181 restart: 5182 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5183 kernelcore_node = required_kernelcore / usable_nodes; 5184 for_each_node_state(nid, N_MEMORY) { 5185 unsigned long start_pfn, end_pfn; 5186 5187 /* 5188 * Recalculate kernelcore_node if the division per node 5189 * now exceeds what is necessary to satisfy the requested 5190 * amount of memory for the kernel 5191 */ 5192 if (required_kernelcore < kernelcore_node) 5193 kernelcore_node = required_kernelcore / usable_nodes; 5194 5195 /* 5196 * As the map is walked, we track how much memory is usable 5197 * by the kernel using kernelcore_remaining. When it is 5198 * 0, the rest of the node is usable by ZONE_MOVABLE 5199 */ 5200 kernelcore_remaining = kernelcore_node; 5201 5202 /* Go through each range of PFNs within this node */ 5203 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5204 unsigned long size_pages; 5205 5206 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5207 if (start_pfn >= end_pfn) 5208 continue; 5209 5210 /* Account for what is only usable for kernelcore */ 5211 if (start_pfn < usable_startpfn) { 5212 unsigned long kernel_pages; 5213 kernel_pages = min(end_pfn, usable_startpfn) 5214 - start_pfn; 5215 5216 kernelcore_remaining -= min(kernel_pages, 5217 kernelcore_remaining); 5218 required_kernelcore -= min(kernel_pages, 5219 required_kernelcore); 5220 5221 /* Continue if range is now fully accounted */ 5222 if (end_pfn <= usable_startpfn) { 5223 5224 /* 5225 * Push zone_movable_pfn to the end so 5226 * that if we have to rebalance 5227 * kernelcore across nodes, we will 5228 * not double account here 5229 */ 5230 zone_movable_pfn[nid] = end_pfn; 5231 continue; 5232 } 5233 start_pfn = usable_startpfn; 5234 } 5235 5236 /* 5237 * The usable PFN range for ZONE_MOVABLE is from 5238 * start_pfn->end_pfn. Calculate size_pages as the 5239 * number of pages used as kernelcore 5240 */ 5241 size_pages = end_pfn - start_pfn; 5242 if (size_pages > kernelcore_remaining) 5243 size_pages = kernelcore_remaining; 5244 zone_movable_pfn[nid] = start_pfn + size_pages; 5245 5246 /* 5247 * Some kernelcore has been met, update counts and 5248 * break if the kernelcore for this node has been 5249 * satisfied 5250 */ 5251 required_kernelcore -= min(required_kernelcore, 5252 size_pages); 5253 kernelcore_remaining -= size_pages; 5254 if (!kernelcore_remaining) 5255 break; 5256 } 5257 } 5258 5259 /* 5260 * If there is still required_kernelcore, we do another pass with one 5261 * less node in the count. This will push zone_movable_pfn[nid] further 5262 * along on the nodes that still have memory until kernelcore is 5263 * satisfied 5264 */ 5265 usable_nodes--; 5266 if (usable_nodes && required_kernelcore > usable_nodes) 5267 goto restart; 5268 5269 out2: 5270 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5271 for (nid = 0; nid < MAX_NUMNODES; nid++) 5272 zone_movable_pfn[nid] = 5273 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5274 5275 out: 5276 /* restore the node_state */ 5277 node_states[N_MEMORY] = saved_node_state; 5278 } 5279 5280 /* Any regular or high memory on that node ? */ 5281 static void check_for_memory(pg_data_t *pgdat, int nid) 5282 { 5283 enum zone_type zone_type; 5284 5285 if (N_MEMORY == N_NORMAL_MEMORY) 5286 return; 5287 5288 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5289 struct zone *zone = &pgdat->node_zones[zone_type]; 5290 if (populated_zone(zone)) { 5291 node_set_state(nid, N_HIGH_MEMORY); 5292 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5293 zone_type <= ZONE_NORMAL) 5294 node_set_state(nid, N_NORMAL_MEMORY); 5295 break; 5296 } 5297 } 5298 } 5299 5300 /** 5301 * free_area_init_nodes - Initialise all pg_data_t and zone data 5302 * @max_zone_pfn: an array of max PFNs for each zone 5303 * 5304 * This will call free_area_init_node() for each active node in the system. 5305 * Using the page ranges provided by memblock_set_node(), the size of each 5306 * zone in each node and their holes is calculated. If the maximum PFN 5307 * between two adjacent zones match, it is assumed that the zone is empty. 5308 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5309 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5310 * starts where the previous one ended. For example, ZONE_DMA32 starts 5311 * at arch_max_dma_pfn. 5312 */ 5313 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5314 { 5315 unsigned long start_pfn, end_pfn; 5316 int i, nid; 5317 5318 /* Record where the zone boundaries are */ 5319 memset(arch_zone_lowest_possible_pfn, 0, 5320 sizeof(arch_zone_lowest_possible_pfn)); 5321 memset(arch_zone_highest_possible_pfn, 0, 5322 sizeof(arch_zone_highest_possible_pfn)); 5323 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5324 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5325 for (i = 1; i < MAX_NR_ZONES; i++) { 5326 if (i == ZONE_MOVABLE) 5327 continue; 5328 arch_zone_lowest_possible_pfn[i] = 5329 arch_zone_highest_possible_pfn[i-1]; 5330 arch_zone_highest_possible_pfn[i] = 5331 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5332 } 5333 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5334 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5335 5336 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5337 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5338 find_zone_movable_pfns_for_nodes(); 5339 5340 /* Print out the zone ranges */ 5341 printk("Zone ranges:\n"); 5342 for (i = 0; i < MAX_NR_ZONES; i++) { 5343 if (i == ZONE_MOVABLE) 5344 continue; 5345 printk(KERN_CONT " %-8s ", zone_names[i]); 5346 if (arch_zone_lowest_possible_pfn[i] == 5347 arch_zone_highest_possible_pfn[i]) 5348 printk(KERN_CONT "empty\n"); 5349 else 5350 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5351 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5352 (arch_zone_highest_possible_pfn[i] 5353 << PAGE_SHIFT) - 1); 5354 } 5355 5356 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5357 printk("Movable zone start for each node\n"); 5358 for (i = 0; i < MAX_NUMNODES; i++) { 5359 if (zone_movable_pfn[i]) 5360 printk(" Node %d: %#010lx\n", i, 5361 zone_movable_pfn[i] << PAGE_SHIFT); 5362 } 5363 5364 /* Print out the early node map */ 5365 printk("Early memory node ranges\n"); 5366 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5367 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5368 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5369 5370 /* Initialise every node */ 5371 mminit_verify_pageflags_layout(); 5372 setup_nr_node_ids(); 5373 for_each_online_node(nid) { 5374 pg_data_t *pgdat = NODE_DATA(nid); 5375 free_area_init_node(nid, NULL, 5376 find_min_pfn_for_node(nid), NULL); 5377 5378 /* Any memory on that node */ 5379 if (pgdat->node_present_pages) 5380 node_set_state(nid, N_MEMORY); 5381 check_for_memory(pgdat, nid); 5382 } 5383 } 5384 5385 static int __init cmdline_parse_core(char *p, unsigned long *core) 5386 { 5387 unsigned long long coremem; 5388 if (!p) 5389 return -EINVAL; 5390 5391 coremem = memparse(p, &p); 5392 *core = coremem >> PAGE_SHIFT; 5393 5394 /* Paranoid check that UL is enough for the coremem value */ 5395 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5396 5397 return 0; 5398 } 5399 5400 /* 5401 * kernelcore=size sets the amount of memory for use for allocations that 5402 * cannot be reclaimed or migrated. 5403 */ 5404 static int __init cmdline_parse_kernelcore(char *p) 5405 { 5406 return cmdline_parse_core(p, &required_kernelcore); 5407 } 5408 5409 /* 5410 * movablecore=size sets the amount of memory for use for allocations that 5411 * can be reclaimed or migrated. 5412 */ 5413 static int __init cmdline_parse_movablecore(char *p) 5414 { 5415 return cmdline_parse_core(p, &required_movablecore); 5416 } 5417 5418 early_param("kernelcore", cmdline_parse_kernelcore); 5419 early_param("movablecore", cmdline_parse_movablecore); 5420 5421 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5422 5423 void adjust_managed_page_count(struct page *page, long count) 5424 { 5425 spin_lock(&managed_page_count_lock); 5426 page_zone(page)->managed_pages += count; 5427 totalram_pages += count; 5428 #ifdef CONFIG_HIGHMEM 5429 if (PageHighMem(page)) 5430 totalhigh_pages += count; 5431 #endif 5432 spin_unlock(&managed_page_count_lock); 5433 } 5434 EXPORT_SYMBOL(adjust_managed_page_count); 5435 5436 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5437 { 5438 void *pos; 5439 unsigned long pages = 0; 5440 5441 start = (void *)PAGE_ALIGN((unsigned long)start); 5442 end = (void *)((unsigned long)end & PAGE_MASK); 5443 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5444 if ((unsigned int)poison <= 0xFF) 5445 memset(pos, poison, PAGE_SIZE); 5446 free_reserved_page(virt_to_page(pos)); 5447 } 5448 5449 if (pages && s) 5450 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5451 s, pages << (PAGE_SHIFT - 10), start, end); 5452 5453 return pages; 5454 } 5455 EXPORT_SYMBOL(free_reserved_area); 5456 5457 #ifdef CONFIG_HIGHMEM 5458 void free_highmem_page(struct page *page) 5459 { 5460 __free_reserved_page(page); 5461 totalram_pages++; 5462 page_zone(page)->managed_pages++; 5463 totalhigh_pages++; 5464 } 5465 #endif 5466 5467 5468 void __init mem_init_print_info(const char *str) 5469 { 5470 unsigned long physpages, codesize, datasize, rosize, bss_size; 5471 unsigned long init_code_size, init_data_size; 5472 5473 physpages = get_num_physpages(); 5474 codesize = _etext - _stext; 5475 datasize = _edata - _sdata; 5476 rosize = __end_rodata - __start_rodata; 5477 bss_size = __bss_stop - __bss_start; 5478 init_data_size = __init_end - __init_begin; 5479 init_code_size = _einittext - _sinittext; 5480 5481 /* 5482 * Detect special cases and adjust section sizes accordingly: 5483 * 1) .init.* may be embedded into .data sections 5484 * 2) .init.text.* may be out of [__init_begin, __init_end], 5485 * please refer to arch/tile/kernel/vmlinux.lds.S. 5486 * 3) .rodata.* may be embedded into .text or .data sections. 5487 */ 5488 #define adj_init_size(start, end, size, pos, adj) \ 5489 do { \ 5490 if (start <= pos && pos < end && size > adj) \ 5491 size -= adj; \ 5492 } while (0) 5493 5494 adj_init_size(__init_begin, __init_end, init_data_size, 5495 _sinittext, init_code_size); 5496 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5497 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5498 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5499 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5500 5501 #undef adj_init_size 5502 5503 printk("Memory: %luK/%luK available " 5504 "(%luK kernel code, %luK rwdata, %luK rodata, " 5505 "%luK init, %luK bss, %luK reserved" 5506 #ifdef CONFIG_HIGHMEM 5507 ", %luK highmem" 5508 #endif 5509 "%s%s)\n", 5510 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5511 codesize >> 10, datasize >> 10, rosize >> 10, 5512 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5513 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5514 #ifdef CONFIG_HIGHMEM 5515 totalhigh_pages << (PAGE_SHIFT-10), 5516 #endif 5517 str ? ", " : "", str ? str : ""); 5518 } 5519 5520 /** 5521 * set_dma_reserve - set the specified number of pages reserved in the first zone 5522 * @new_dma_reserve: The number of pages to mark reserved 5523 * 5524 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5525 * In the DMA zone, a significant percentage may be consumed by kernel image 5526 * and other unfreeable allocations which can skew the watermarks badly. This 5527 * function may optionally be used to account for unfreeable pages in the 5528 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5529 * smaller per-cpu batchsize. 5530 */ 5531 void __init set_dma_reserve(unsigned long new_dma_reserve) 5532 { 5533 dma_reserve = new_dma_reserve; 5534 } 5535 5536 void __init free_area_init(unsigned long *zones_size) 5537 { 5538 free_area_init_node(0, zones_size, 5539 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5540 } 5541 5542 static int page_alloc_cpu_notify(struct notifier_block *self, 5543 unsigned long action, void *hcpu) 5544 { 5545 int cpu = (unsigned long)hcpu; 5546 5547 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5548 lru_add_drain_cpu(cpu); 5549 drain_pages(cpu); 5550 5551 /* 5552 * Spill the event counters of the dead processor 5553 * into the current processors event counters. 5554 * This artificially elevates the count of the current 5555 * processor. 5556 */ 5557 vm_events_fold_cpu(cpu); 5558 5559 /* 5560 * Zero the differential counters of the dead processor 5561 * so that the vm statistics are consistent. 5562 * 5563 * This is only okay since the processor is dead and cannot 5564 * race with what we are doing. 5565 */ 5566 cpu_vm_stats_fold(cpu); 5567 } 5568 return NOTIFY_OK; 5569 } 5570 5571 void __init page_alloc_init(void) 5572 { 5573 hotcpu_notifier(page_alloc_cpu_notify, 0); 5574 } 5575 5576 /* 5577 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5578 * or min_free_kbytes changes. 5579 */ 5580 static void calculate_totalreserve_pages(void) 5581 { 5582 struct pglist_data *pgdat; 5583 unsigned long reserve_pages = 0; 5584 enum zone_type i, j; 5585 5586 for_each_online_pgdat(pgdat) { 5587 for (i = 0; i < MAX_NR_ZONES; i++) { 5588 struct zone *zone = pgdat->node_zones + i; 5589 long max = 0; 5590 5591 /* Find valid and maximum lowmem_reserve in the zone */ 5592 for (j = i; j < MAX_NR_ZONES; j++) { 5593 if (zone->lowmem_reserve[j] > max) 5594 max = zone->lowmem_reserve[j]; 5595 } 5596 5597 /* we treat the high watermark as reserved pages. */ 5598 max += high_wmark_pages(zone); 5599 5600 if (max > zone->managed_pages) 5601 max = zone->managed_pages; 5602 reserve_pages += max; 5603 /* 5604 * Lowmem reserves are not available to 5605 * GFP_HIGHUSER page cache allocations and 5606 * kswapd tries to balance zones to their high 5607 * watermark. As a result, neither should be 5608 * regarded as dirtyable memory, to prevent a 5609 * situation where reclaim has to clean pages 5610 * in order to balance the zones. 5611 */ 5612 zone->dirty_balance_reserve = max; 5613 } 5614 } 5615 dirty_balance_reserve = reserve_pages; 5616 totalreserve_pages = reserve_pages; 5617 } 5618 5619 /* 5620 * setup_per_zone_lowmem_reserve - called whenever 5621 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5622 * has a correct pages reserved value, so an adequate number of 5623 * pages are left in the zone after a successful __alloc_pages(). 5624 */ 5625 static void setup_per_zone_lowmem_reserve(void) 5626 { 5627 struct pglist_data *pgdat; 5628 enum zone_type j, idx; 5629 5630 for_each_online_pgdat(pgdat) { 5631 for (j = 0; j < MAX_NR_ZONES; j++) { 5632 struct zone *zone = pgdat->node_zones + j; 5633 unsigned long managed_pages = zone->managed_pages; 5634 5635 zone->lowmem_reserve[j] = 0; 5636 5637 idx = j; 5638 while (idx) { 5639 struct zone *lower_zone; 5640 5641 idx--; 5642 5643 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5644 sysctl_lowmem_reserve_ratio[idx] = 1; 5645 5646 lower_zone = pgdat->node_zones + idx; 5647 lower_zone->lowmem_reserve[j] = managed_pages / 5648 sysctl_lowmem_reserve_ratio[idx]; 5649 managed_pages += lower_zone->managed_pages; 5650 } 5651 } 5652 } 5653 5654 /* update totalreserve_pages */ 5655 calculate_totalreserve_pages(); 5656 } 5657 5658 static void __setup_per_zone_wmarks(void) 5659 { 5660 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5661 unsigned long lowmem_pages = 0; 5662 struct zone *zone; 5663 unsigned long flags; 5664 5665 /* Calculate total number of !ZONE_HIGHMEM pages */ 5666 for_each_zone(zone) { 5667 if (!is_highmem(zone)) 5668 lowmem_pages += zone->managed_pages; 5669 } 5670 5671 for_each_zone(zone) { 5672 u64 tmp; 5673 5674 spin_lock_irqsave(&zone->lock, flags); 5675 tmp = (u64)pages_min * zone->managed_pages; 5676 do_div(tmp, lowmem_pages); 5677 if (is_highmem(zone)) { 5678 /* 5679 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5680 * need highmem pages, so cap pages_min to a small 5681 * value here. 5682 * 5683 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5684 * deltas controls asynch page reclaim, and so should 5685 * not be capped for highmem. 5686 */ 5687 unsigned long min_pages; 5688 5689 min_pages = zone->managed_pages / 1024; 5690 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5691 zone->watermark[WMARK_MIN] = min_pages; 5692 } else { 5693 /* 5694 * If it's a lowmem zone, reserve a number of pages 5695 * proportionate to the zone's size. 5696 */ 5697 zone->watermark[WMARK_MIN] = tmp; 5698 } 5699 5700 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5701 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5702 5703 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5704 high_wmark_pages(zone) - 5705 low_wmark_pages(zone) - 5706 zone_page_state(zone, NR_ALLOC_BATCH)); 5707 5708 setup_zone_migrate_reserve(zone); 5709 spin_unlock_irqrestore(&zone->lock, flags); 5710 } 5711 5712 /* update totalreserve_pages */ 5713 calculate_totalreserve_pages(); 5714 } 5715 5716 /** 5717 * setup_per_zone_wmarks - called when min_free_kbytes changes 5718 * or when memory is hot-{added|removed} 5719 * 5720 * Ensures that the watermark[min,low,high] values for each zone are set 5721 * correctly with respect to min_free_kbytes. 5722 */ 5723 void setup_per_zone_wmarks(void) 5724 { 5725 mutex_lock(&zonelists_mutex); 5726 __setup_per_zone_wmarks(); 5727 mutex_unlock(&zonelists_mutex); 5728 } 5729 5730 /* 5731 * The inactive anon list should be small enough that the VM never has to 5732 * do too much work, but large enough that each inactive page has a chance 5733 * to be referenced again before it is swapped out. 5734 * 5735 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5736 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5737 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5738 * the anonymous pages are kept on the inactive list. 5739 * 5740 * total target max 5741 * memory ratio inactive anon 5742 * ------------------------------------- 5743 * 10MB 1 5MB 5744 * 100MB 1 50MB 5745 * 1GB 3 250MB 5746 * 10GB 10 0.9GB 5747 * 100GB 31 3GB 5748 * 1TB 101 10GB 5749 * 10TB 320 32GB 5750 */ 5751 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5752 { 5753 unsigned int gb, ratio; 5754 5755 /* Zone size in gigabytes */ 5756 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5757 if (gb) 5758 ratio = int_sqrt(10 * gb); 5759 else 5760 ratio = 1; 5761 5762 zone->inactive_ratio = ratio; 5763 } 5764 5765 static void __meminit setup_per_zone_inactive_ratio(void) 5766 { 5767 struct zone *zone; 5768 5769 for_each_zone(zone) 5770 calculate_zone_inactive_ratio(zone); 5771 } 5772 5773 /* 5774 * Initialise min_free_kbytes. 5775 * 5776 * For small machines we want it small (128k min). For large machines 5777 * we want it large (64MB max). But it is not linear, because network 5778 * bandwidth does not increase linearly with machine size. We use 5779 * 5780 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5781 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5782 * 5783 * which yields 5784 * 5785 * 16MB: 512k 5786 * 32MB: 724k 5787 * 64MB: 1024k 5788 * 128MB: 1448k 5789 * 256MB: 2048k 5790 * 512MB: 2896k 5791 * 1024MB: 4096k 5792 * 2048MB: 5792k 5793 * 4096MB: 8192k 5794 * 8192MB: 11584k 5795 * 16384MB: 16384k 5796 */ 5797 int __meminit init_per_zone_wmark_min(void) 5798 { 5799 unsigned long lowmem_kbytes; 5800 int new_min_free_kbytes; 5801 5802 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5803 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5804 5805 if (new_min_free_kbytes > user_min_free_kbytes) { 5806 min_free_kbytes = new_min_free_kbytes; 5807 if (min_free_kbytes < 128) 5808 min_free_kbytes = 128; 5809 if (min_free_kbytes > 65536) 5810 min_free_kbytes = 65536; 5811 } else { 5812 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5813 new_min_free_kbytes, user_min_free_kbytes); 5814 } 5815 setup_per_zone_wmarks(); 5816 refresh_zone_stat_thresholds(); 5817 setup_per_zone_lowmem_reserve(); 5818 setup_per_zone_inactive_ratio(); 5819 return 0; 5820 } 5821 module_init(init_per_zone_wmark_min) 5822 5823 /* 5824 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5825 * that we can call two helper functions whenever min_free_kbytes 5826 * changes. 5827 */ 5828 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5829 void __user *buffer, size_t *length, loff_t *ppos) 5830 { 5831 int rc; 5832 5833 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5834 if (rc) 5835 return rc; 5836 5837 if (write) { 5838 user_min_free_kbytes = min_free_kbytes; 5839 setup_per_zone_wmarks(); 5840 } 5841 return 0; 5842 } 5843 5844 #ifdef CONFIG_NUMA 5845 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5846 void __user *buffer, size_t *length, loff_t *ppos) 5847 { 5848 struct zone *zone; 5849 int rc; 5850 5851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5852 if (rc) 5853 return rc; 5854 5855 for_each_zone(zone) 5856 zone->min_unmapped_pages = (zone->managed_pages * 5857 sysctl_min_unmapped_ratio) / 100; 5858 return 0; 5859 } 5860 5861 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5862 void __user *buffer, size_t *length, loff_t *ppos) 5863 { 5864 struct zone *zone; 5865 int rc; 5866 5867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5868 if (rc) 5869 return rc; 5870 5871 for_each_zone(zone) 5872 zone->min_slab_pages = (zone->managed_pages * 5873 sysctl_min_slab_ratio) / 100; 5874 return 0; 5875 } 5876 #endif 5877 5878 /* 5879 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5880 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5881 * whenever sysctl_lowmem_reserve_ratio changes. 5882 * 5883 * The reserve ratio obviously has absolutely no relation with the 5884 * minimum watermarks. The lowmem reserve ratio can only make sense 5885 * if in function of the boot time zone sizes. 5886 */ 5887 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5888 void __user *buffer, size_t *length, loff_t *ppos) 5889 { 5890 proc_dointvec_minmax(table, write, buffer, length, ppos); 5891 setup_per_zone_lowmem_reserve(); 5892 return 0; 5893 } 5894 5895 /* 5896 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5897 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5898 * pagelist can have before it gets flushed back to buddy allocator. 5899 */ 5900 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5901 void __user *buffer, size_t *length, loff_t *ppos) 5902 { 5903 struct zone *zone; 5904 int old_percpu_pagelist_fraction; 5905 int ret; 5906 5907 mutex_lock(&pcp_batch_high_lock); 5908 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5909 5910 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5911 if (!write || ret < 0) 5912 goto out; 5913 5914 /* Sanity checking to avoid pcp imbalance */ 5915 if (percpu_pagelist_fraction && 5916 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 5917 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 5918 ret = -EINVAL; 5919 goto out; 5920 } 5921 5922 /* No change? */ 5923 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 5924 goto out; 5925 5926 for_each_populated_zone(zone) { 5927 unsigned int cpu; 5928 5929 for_each_possible_cpu(cpu) 5930 pageset_set_high_and_batch(zone, 5931 per_cpu_ptr(zone->pageset, cpu)); 5932 } 5933 out: 5934 mutex_unlock(&pcp_batch_high_lock); 5935 return ret; 5936 } 5937 5938 int hashdist = HASHDIST_DEFAULT; 5939 5940 #ifdef CONFIG_NUMA 5941 static int __init set_hashdist(char *str) 5942 { 5943 if (!str) 5944 return 0; 5945 hashdist = simple_strtoul(str, &str, 0); 5946 return 1; 5947 } 5948 __setup("hashdist=", set_hashdist); 5949 #endif 5950 5951 /* 5952 * allocate a large system hash table from bootmem 5953 * - it is assumed that the hash table must contain an exact power-of-2 5954 * quantity of entries 5955 * - limit is the number of hash buckets, not the total allocation size 5956 */ 5957 void *__init alloc_large_system_hash(const char *tablename, 5958 unsigned long bucketsize, 5959 unsigned long numentries, 5960 int scale, 5961 int flags, 5962 unsigned int *_hash_shift, 5963 unsigned int *_hash_mask, 5964 unsigned long low_limit, 5965 unsigned long high_limit) 5966 { 5967 unsigned long long max = high_limit; 5968 unsigned long log2qty, size; 5969 void *table = NULL; 5970 5971 /* allow the kernel cmdline to have a say */ 5972 if (!numentries) { 5973 /* round applicable memory size up to nearest megabyte */ 5974 numentries = nr_kernel_pages; 5975 5976 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5977 if (PAGE_SHIFT < 20) 5978 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5979 5980 /* limit to 1 bucket per 2^scale bytes of low memory */ 5981 if (scale > PAGE_SHIFT) 5982 numentries >>= (scale - PAGE_SHIFT); 5983 else 5984 numentries <<= (PAGE_SHIFT - scale); 5985 5986 /* Make sure we've got at least a 0-order allocation.. */ 5987 if (unlikely(flags & HASH_SMALL)) { 5988 /* Makes no sense without HASH_EARLY */ 5989 WARN_ON(!(flags & HASH_EARLY)); 5990 if (!(numentries >> *_hash_shift)) { 5991 numentries = 1UL << *_hash_shift; 5992 BUG_ON(!numentries); 5993 } 5994 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5995 numentries = PAGE_SIZE / bucketsize; 5996 } 5997 numentries = roundup_pow_of_two(numentries); 5998 5999 /* limit allocation size to 1/16 total memory by default */ 6000 if (max == 0) { 6001 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6002 do_div(max, bucketsize); 6003 } 6004 max = min(max, 0x80000000ULL); 6005 6006 if (numentries < low_limit) 6007 numentries = low_limit; 6008 if (numentries > max) 6009 numentries = max; 6010 6011 log2qty = ilog2(numentries); 6012 6013 do { 6014 size = bucketsize << log2qty; 6015 if (flags & HASH_EARLY) 6016 table = memblock_virt_alloc_nopanic(size, 0); 6017 else if (hashdist) 6018 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6019 else { 6020 /* 6021 * If bucketsize is not a power-of-two, we may free 6022 * some pages at the end of hash table which 6023 * alloc_pages_exact() automatically does 6024 */ 6025 if (get_order(size) < MAX_ORDER) { 6026 table = alloc_pages_exact(size, GFP_ATOMIC); 6027 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6028 } 6029 } 6030 } while (!table && size > PAGE_SIZE && --log2qty); 6031 6032 if (!table) 6033 panic("Failed to allocate %s hash table\n", tablename); 6034 6035 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6036 tablename, 6037 (1UL << log2qty), 6038 ilog2(size) - PAGE_SHIFT, 6039 size); 6040 6041 if (_hash_shift) 6042 *_hash_shift = log2qty; 6043 if (_hash_mask) 6044 *_hash_mask = (1 << log2qty) - 1; 6045 6046 return table; 6047 } 6048 6049 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6050 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6051 unsigned long pfn) 6052 { 6053 #ifdef CONFIG_SPARSEMEM 6054 return __pfn_to_section(pfn)->pageblock_flags; 6055 #else 6056 return zone->pageblock_flags; 6057 #endif /* CONFIG_SPARSEMEM */ 6058 } 6059 6060 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6061 { 6062 #ifdef CONFIG_SPARSEMEM 6063 pfn &= (PAGES_PER_SECTION-1); 6064 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6065 #else 6066 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6067 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6068 #endif /* CONFIG_SPARSEMEM */ 6069 } 6070 6071 /** 6072 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6073 * @page: The page within the block of interest 6074 * @pfn: The target page frame number 6075 * @end_bitidx: The last bit of interest to retrieve 6076 * @mask: mask of bits that the caller is interested in 6077 * 6078 * Return: pageblock_bits flags 6079 */ 6080 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6081 unsigned long end_bitidx, 6082 unsigned long mask) 6083 { 6084 struct zone *zone; 6085 unsigned long *bitmap; 6086 unsigned long bitidx, word_bitidx; 6087 unsigned long word; 6088 6089 zone = page_zone(page); 6090 bitmap = get_pageblock_bitmap(zone, pfn); 6091 bitidx = pfn_to_bitidx(zone, pfn); 6092 word_bitidx = bitidx / BITS_PER_LONG; 6093 bitidx &= (BITS_PER_LONG-1); 6094 6095 word = bitmap[word_bitidx]; 6096 bitidx += end_bitidx; 6097 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6098 } 6099 6100 /** 6101 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6102 * @page: The page within the block of interest 6103 * @flags: The flags to set 6104 * @pfn: The target page frame number 6105 * @end_bitidx: The last bit of interest 6106 * @mask: mask of bits that the caller is interested in 6107 */ 6108 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6109 unsigned long pfn, 6110 unsigned long end_bitidx, 6111 unsigned long mask) 6112 { 6113 struct zone *zone; 6114 unsigned long *bitmap; 6115 unsigned long bitidx, word_bitidx; 6116 unsigned long old_word, word; 6117 6118 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6119 6120 zone = page_zone(page); 6121 bitmap = get_pageblock_bitmap(zone, pfn); 6122 bitidx = pfn_to_bitidx(zone, pfn); 6123 word_bitidx = bitidx / BITS_PER_LONG; 6124 bitidx &= (BITS_PER_LONG-1); 6125 6126 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6127 6128 bitidx += end_bitidx; 6129 mask <<= (BITS_PER_LONG - bitidx - 1); 6130 flags <<= (BITS_PER_LONG - bitidx - 1); 6131 6132 word = ACCESS_ONCE(bitmap[word_bitidx]); 6133 for (;;) { 6134 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6135 if (word == old_word) 6136 break; 6137 word = old_word; 6138 } 6139 } 6140 6141 /* 6142 * This function checks whether pageblock includes unmovable pages or not. 6143 * If @count is not zero, it is okay to include less @count unmovable pages 6144 * 6145 * PageLRU check without isolation or lru_lock could race so that 6146 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6147 * expect this function should be exact. 6148 */ 6149 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6150 bool skip_hwpoisoned_pages) 6151 { 6152 unsigned long pfn, iter, found; 6153 int mt; 6154 6155 /* 6156 * For avoiding noise data, lru_add_drain_all() should be called 6157 * If ZONE_MOVABLE, the zone never contains unmovable pages 6158 */ 6159 if (zone_idx(zone) == ZONE_MOVABLE) 6160 return false; 6161 mt = get_pageblock_migratetype(page); 6162 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6163 return false; 6164 6165 pfn = page_to_pfn(page); 6166 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6167 unsigned long check = pfn + iter; 6168 6169 if (!pfn_valid_within(check)) 6170 continue; 6171 6172 page = pfn_to_page(check); 6173 6174 /* 6175 * Hugepages are not in LRU lists, but they're movable. 6176 * We need not scan over tail pages bacause we don't 6177 * handle each tail page individually in migration. 6178 */ 6179 if (PageHuge(page)) { 6180 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6181 continue; 6182 } 6183 6184 /* 6185 * We can't use page_count without pin a page 6186 * because another CPU can free compound page. 6187 * This check already skips compound tails of THP 6188 * because their page->_count is zero at all time. 6189 */ 6190 if (!atomic_read(&page->_count)) { 6191 if (PageBuddy(page)) 6192 iter += (1 << page_order(page)) - 1; 6193 continue; 6194 } 6195 6196 /* 6197 * The HWPoisoned page may be not in buddy system, and 6198 * page_count() is not 0. 6199 */ 6200 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6201 continue; 6202 6203 if (!PageLRU(page)) 6204 found++; 6205 /* 6206 * If there are RECLAIMABLE pages, we need to check it. 6207 * But now, memory offline itself doesn't call shrink_slab() 6208 * and it still to be fixed. 6209 */ 6210 /* 6211 * If the page is not RAM, page_count()should be 0. 6212 * we don't need more check. This is an _used_ not-movable page. 6213 * 6214 * The problematic thing here is PG_reserved pages. PG_reserved 6215 * is set to both of a memory hole page and a _used_ kernel 6216 * page at boot. 6217 */ 6218 if (found > count) 6219 return true; 6220 } 6221 return false; 6222 } 6223 6224 bool is_pageblock_removable_nolock(struct page *page) 6225 { 6226 struct zone *zone; 6227 unsigned long pfn; 6228 6229 /* 6230 * We have to be careful here because we are iterating over memory 6231 * sections which are not zone aware so we might end up outside of 6232 * the zone but still within the section. 6233 * We have to take care about the node as well. If the node is offline 6234 * its NODE_DATA will be NULL - see page_zone. 6235 */ 6236 if (!node_online(page_to_nid(page))) 6237 return false; 6238 6239 zone = page_zone(page); 6240 pfn = page_to_pfn(page); 6241 if (!zone_spans_pfn(zone, pfn)) 6242 return false; 6243 6244 return !has_unmovable_pages(zone, page, 0, true); 6245 } 6246 6247 #ifdef CONFIG_CMA 6248 6249 static unsigned long pfn_max_align_down(unsigned long pfn) 6250 { 6251 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6252 pageblock_nr_pages) - 1); 6253 } 6254 6255 static unsigned long pfn_max_align_up(unsigned long pfn) 6256 { 6257 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6258 pageblock_nr_pages)); 6259 } 6260 6261 /* [start, end) must belong to a single zone. */ 6262 static int __alloc_contig_migrate_range(struct compact_control *cc, 6263 unsigned long start, unsigned long end) 6264 { 6265 /* This function is based on compact_zone() from compaction.c. */ 6266 unsigned long nr_reclaimed; 6267 unsigned long pfn = start; 6268 unsigned int tries = 0; 6269 int ret = 0; 6270 6271 migrate_prep(); 6272 6273 while (pfn < end || !list_empty(&cc->migratepages)) { 6274 if (fatal_signal_pending(current)) { 6275 ret = -EINTR; 6276 break; 6277 } 6278 6279 if (list_empty(&cc->migratepages)) { 6280 cc->nr_migratepages = 0; 6281 pfn = isolate_migratepages_range(cc->zone, cc, 6282 pfn, end, true); 6283 if (!pfn) { 6284 ret = -EINTR; 6285 break; 6286 } 6287 tries = 0; 6288 } else if (++tries == 5) { 6289 ret = ret < 0 ? ret : -EBUSY; 6290 break; 6291 } 6292 6293 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6294 &cc->migratepages); 6295 cc->nr_migratepages -= nr_reclaimed; 6296 6297 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6298 NULL, 0, cc->mode, MR_CMA); 6299 } 6300 if (ret < 0) { 6301 putback_movable_pages(&cc->migratepages); 6302 return ret; 6303 } 6304 return 0; 6305 } 6306 6307 /** 6308 * alloc_contig_range() -- tries to allocate given range of pages 6309 * @start: start PFN to allocate 6310 * @end: one-past-the-last PFN to allocate 6311 * @migratetype: migratetype of the underlaying pageblocks (either 6312 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6313 * in range must have the same migratetype and it must 6314 * be either of the two. 6315 * 6316 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6317 * aligned, however it's the caller's responsibility to guarantee that 6318 * we are the only thread that changes migrate type of pageblocks the 6319 * pages fall in. 6320 * 6321 * The PFN range must belong to a single zone. 6322 * 6323 * Returns zero on success or negative error code. On success all 6324 * pages which PFN is in [start, end) are allocated for the caller and 6325 * need to be freed with free_contig_range(). 6326 */ 6327 int alloc_contig_range(unsigned long start, unsigned long end, 6328 unsigned migratetype) 6329 { 6330 unsigned long outer_start, outer_end; 6331 int ret = 0, order; 6332 6333 struct compact_control cc = { 6334 .nr_migratepages = 0, 6335 .order = -1, 6336 .zone = page_zone(pfn_to_page(start)), 6337 .mode = MIGRATE_SYNC, 6338 .ignore_skip_hint = true, 6339 }; 6340 INIT_LIST_HEAD(&cc.migratepages); 6341 6342 /* 6343 * What we do here is we mark all pageblocks in range as 6344 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6345 * have different sizes, and due to the way page allocator 6346 * work, we align the range to biggest of the two pages so 6347 * that page allocator won't try to merge buddies from 6348 * different pageblocks and change MIGRATE_ISOLATE to some 6349 * other migration type. 6350 * 6351 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6352 * migrate the pages from an unaligned range (ie. pages that 6353 * we are interested in). This will put all the pages in 6354 * range back to page allocator as MIGRATE_ISOLATE. 6355 * 6356 * When this is done, we take the pages in range from page 6357 * allocator removing them from the buddy system. This way 6358 * page allocator will never consider using them. 6359 * 6360 * This lets us mark the pageblocks back as 6361 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6362 * aligned range but not in the unaligned, original range are 6363 * put back to page allocator so that buddy can use them. 6364 */ 6365 6366 ret = start_isolate_page_range(pfn_max_align_down(start), 6367 pfn_max_align_up(end), migratetype, 6368 false); 6369 if (ret) 6370 return ret; 6371 6372 ret = __alloc_contig_migrate_range(&cc, start, end); 6373 if (ret) 6374 goto done; 6375 6376 /* 6377 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6378 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6379 * more, all pages in [start, end) are free in page allocator. 6380 * What we are going to do is to allocate all pages from 6381 * [start, end) (that is remove them from page allocator). 6382 * 6383 * The only problem is that pages at the beginning and at the 6384 * end of interesting range may be not aligned with pages that 6385 * page allocator holds, ie. they can be part of higher order 6386 * pages. Because of this, we reserve the bigger range and 6387 * once this is done free the pages we are not interested in. 6388 * 6389 * We don't have to hold zone->lock here because the pages are 6390 * isolated thus they won't get removed from buddy. 6391 */ 6392 6393 lru_add_drain_all(); 6394 drain_all_pages(); 6395 6396 order = 0; 6397 outer_start = start; 6398 while (!PageBuddy(pfn_to_page(outer_start))) { 6399 if (++order >= MAX_ORDER) { 6400 ret = -EBUSY; 6401 goto done; 6402 } 6403 outer_start &= ~0UL << order; 6404 } 6405 6406 /* Make sure the range is really isolated. */ 6407 if (test_pages_isolated(outer_start, end, false)) { 6408 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6409 outer_start, end); 6410 ret = -EBUSY; 6411 goto done; 6412 } 6413 6414 6415 /* Grab isolated pages from freelists. */ 6416 outer_end = isolate_freepages_range(&cc, outer_start, end); 6417 if (!outer_end) { 6418 ret = -EBUSY; 6419 goto done; 6420 } 6421 6422 /* Free head and tail (if any) */ 6423 if (start != outer_start) 6424 free_contig_range(outer_start, start - outer_start); 6425 if (end != outer_end) 6426 free_contig_range(end, outer_end - end); 6427 6428 done: 6429 undo_isolate_page_range(pfn_max_align_down(start), 6430 pfn_max_align_up(end), migratetype); 6431 return ret; 6432 } 6433 6434 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6435 { 6436 unsigned int count = 0; 6437 6438 for (; nr_pages--; pfn++) { 6439 struct page *page = pfn_to_page(pfn); 6440 6441 count += page_count(page) != 1; 6442 __free_page(page); 6443 } 6444 WARN(count != 0, "%d pages are still in use!\n", count); 6445 } 6446 #endif 6447 6448 #ifdef CONFIG_MEMORY_HOTPLUG 6449 /* 6450 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6451 * page high values need to be recalulated. 6452 */ 6453 void __meminit zone_pcp_update(struct zone *zone) 6454 { 6455 unsigned cpu; 6456 mutex_lock(&pcp_batch_high_lock); 6457 for_each_possible_cpu(cpu) 6458 pageset_set_high_and_batch(zone, 6459 per_cpu_ptr(zone->pageset, cpu)); 6460 mutex_unlock(&pcp_batch_high_lock); 6461 } 6462 #endif 6463 6464 void zone_pcp_reset(struct zone *zone) 6465 { 6466 unsigned long flags; 6467 int cpu; 6468 struct per_cpu_pageset *pset; 6469 6470 /* avoid races with drain_pages() */ 6471 local_irq_save(flags); 6472 if (zone->pageset != &boot_pageset) { 6473 for_each_online_cpu(cpu) { 6474 pset = per_cpu_ptr(zone->pageset, cpu); 6475 drain_zonestat(zone, pset); 6476 } 6477 free_percpu(zone->pageset); 6478 zone->pageset = &boot_pageset; 6479 } 6480 local_irq_restore(flags); 6481 } 6482 6483 #ifdef CONFIG_MEMORY_HOTREMOVE 6484 /* 6485 * All pages in the range must be isolated before calling this. 6486 */ 6487 void 6488 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6489 { 6490 struct page *page; 6491 struct zone *zone; 6492 unsigned int order, i; 6493 unsigned long pfn; 6494 unsigned long flags; 6495 /* find the first valid pfn */ 6496 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6497 if (pfn_valid(pfn)) 6498 break; 6499 if (pfn == end_pfn) 6500 return; 6501 zone = page_zone(pfn_to_page(pfn)); 6502 spin_lock_irqsave(&zone->lock, flags); 6503 pfn = start_pfn; 6504 while (pfn < end_pfn) { 6505 if (!pfn_valid(pfn)) { 6506 pfn++; 6507 continue; 6508 } 6509 page = pfn_to_page(pfn); 6510 /* 6511 * The HWPoisoned page may be not in buddy system, and 6512 * page_count() is not 0. 6513 */ 6514 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6515 pfn++; 6516 SetPageReserved(page); 6517 continue; 6518 } 6519 6520 BUG_ON(page_count(page)); 6521 BUG_ON(!PageBuddy(page)); 6522 order = page_order(page); 6523 #ifdef CONFIG_DEBUG_VM 6524 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6525 pfn, 1 << order, end_pfn); 6526 #endif 6527 list_del(&page->lru); 6528 rmv_page_order(page); 6529 zone->free_area[order].nr_free--; 6530 for (i = 0; i < (1 << order); i++) 6531 SetPageReserved((page+i)); 6532 pfn += (1 << order); 6533 } 6534 spin_unlock_irqrestore(&zone->lock, flags); 6535 } 6536 #endif 6537 6538 #ifdef CONFIG_MEMORY_FAILURE 6539 bool is_free_buddy_page(struct page *page) 6540 { 6541 struct zone *zone = page_zone(page); 6542 unsigned long pfn = page_to_pfn(page); 6543 unsigned long flags; 6544 unsigned int order; 6545 6546 spin_lock_irqsave(&zone->lock, flags); 6547 for (order = 0; order < MAX_ORDER; order++) { 6548 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6549 6550 if (PageBuddy(page_head) && page_order(page_head) >= order) 6551 break; 6552 } 6553 spin_unlock_irqrestore(&zone->lock, flags); 6554 6555 return order < MAX_ORDER; 6556 } 6557 #endif 6558 6559 static const struct trace_print_flags pageflag_names[] = { 6560 {1UL << PG_locked, "locked" }, 6561 {1UL << PG_error, "error" }, 6562 {1UL << PG_referenced, "referenced" }, 6563 {1UL << PG_uptodate, "uptodate" }, 6564 {1UL << PG_dirty, "dirty" }, 6565 {1UL << PG_lru, "lru" }, 6566 {1UL << PG_active, "active" }, 6567 {1UL << PG_slab, "slab" }, 6568 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6569 {1UL << PG_arch_1, "arch_1" }, 6570 {1UL << PG_reserved, "reserved" }, 6571 {1UL << PG_private, "private" }, 6572 {1UL << PG_private_2, "private_2" }, 6573 {1UL << PG_writeback, "writeback" }, 6574 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6575 {1UL << PG_head, "head" }, 6576 {1UL << PG_tail, "tail" }, 6577 #else 6578 {1UL << PG_compound, "compound" }, 6579 #endif 6580 {1UL << PG_swapcache, "swapcache" }, 6581 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6582 {1UL << PG_reclaim, "reclaim" }, 6583 {1UL << PG_swapbacked, "swapbacked" }, 6584 {1UL << PG_unevictable, "unevictable" }, 6585 #ifdef CONFIG_MMU 6586 {1UL << PG_mlocked, "mlocked" }, 6587 #endif 6588 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6589 {1UL << PG_uncached, "uncached" }, 6590 #endif 6591 #ifdef CONFIG_MEMORY_FAILURE 6592 {1UL << PG_hwpoison, "hwpoison" }, 6593 #endif 6594 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6595 {1UL << PG_compound_lock, "compound_lock" }, 6596 #endif 6597 }; 6598 6599 static void dump_page_flags(unsigned long flags) 6600 { 6601 const char *delim = ""; 6602 unsigned long mask; 6603 int i; 6604 6605 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6606 6607 printk(KERN_ALERT "page flags: %#lx(", flags); 6608 6609 /* remove zone id */ 6610 flags &= (1UL << NR_PAGEFLAGS) - 1; 6611 6612 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6613 6614 mask = pageflag_names[i].mask; 6615 if ((flags & mask) != mask) 6616 continue; 6617 6618 flags &= ~mask; 6619 printk("%s%s", delim, pageflag_names[i].name); 6620 delim = "|"; 6621 } 6622 6623 /* check for left over flags */ 6624 if (flags) 6625 printk("%s%#lx", delim, flags); 6626 6627 printk(")\n"); 6628 } 6629 6630 void dump_page_badflags(struct page *page, const char *reason, 6631 unsigned long badflags) 6632 { 6633 printk(KERN_ALERT 6634 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6635 page, atomic_read(&page->_count), page_mapcount(page), 6636 page->mapping, page->index); 6637 dump_page_flags(page->flags); 6638 if (reason) 6639 pr_alert("page dumped because: %s\n", reason); 6640 if (page->flags & badflags) { 6641 pr_alert("bad because of flags:\n"); 6642 dump_page_flags(page->flags & badflags); 6643 } 6644 mem_cgroup_print_bad_page(page); 6645 } 6646 6647 void dump_page(struct page *page, const char *reason) 6648 { 6649 dump_page_badflags(page, reason, 0); 6650 } 6651 EXPORT_SYMBOL(dump_page); 6652