xref: /openbmc/linux/mm/page_alloc.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 #include "swap.h"
85 
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88 
89 /* No special request */
90 #define FPI_NONE		((__force fpi_t)0)
91 
92 /*
93  * Skip free page reporting notification for the (possibly merged) page.
94  * This does not hinder free page reporting from grabbing the page,
95  * reporting it and marking it "reported" -  it only skips notifying
96  * the free page reporting infrastructure about a newly freed page. For
97  * example, used when temporarily pulling a page from a freelist and
98  * putting it back unmodified.
99  */
100 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
101 
102 /*
103  * Place the (possibly merged) page to the tail of the freelist. Will ignore
104  * page shuffling (relevant code - e.g., memory onlining - is expected to
105  * shuffle the whole zone).
106  *
107  * Note: No code should rely on this flag for correctness - it's purely
108  *       to allow for optimizations when handing back either fresh pages
109  *       (memory onlining) or untouched pages (page isolation, free page
110  *       reporting).
111  */
112 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
113 
114 /*
115  * Don't poison memory with KASAN (only for the tag-based modes).
116  * During boot, all non-reserved memblock memory is exposed to page_alloc.
117  * Poisoning all that memory lengthens boot time, especially on systems with
118  * large amount of RAM. This flag is used to skip that poisoning.
119  * This is only done for the tag-based KASAN modes, as those are able to
120  * detect memory corruptions with the memory tags assigned by default.
121  * All memory allocated normally after boot gets poisoned as usual.
122  */
123 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
124 
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128 
129 struct pagesets {
130 	local_lock_t lock;
131 };
132 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
133 	.lock = INIT_LOCAL_LOCK(lock),
134 };
135 
136 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137 DEFINE_PER_CPU(int, numa_node);
138 EXPORT_PER_CPU_SYMBOL(numa_node);
139 #endif
140 
141 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142 
143 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
144 /*
145  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148  * defined in <linux/topology.h>.
149  */
150 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
151 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
152 #endif
153 
154 /* work_structs for global per-cpu drains */
155 struct pcpu_drain {
156 	struct zone *zone;
157 	struct work_struct work;
158 };
159 static DEFINE_MUTEX(pcpu_drain_mutex);
160 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
161 
162 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
163 volatile unsigned long latent_entropy __latent_entropy;
164 EXPORT_SYMBOL(latent_entropy);
165 #endif
166 
167 /*
168  * Array of node states.
169  */
170 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 	[N_POSSIBLE] = NODE_MASK_ALL,
172 	[N_ONLINE] = { { [0] = 1UL } },
173 #ifndef CONFIG_NUMA
174 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
175 #ifdef CONFIG_HIGHMEM
176 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
177 #endif
178 	[N_MEMORY] = { { [0] = 1UL } },
179 	[N_CPU] = { { [0] = 1UL } },
180 #endif	/* NUMA */
181 };
182 EXPORT_SYMBOL(node_states);
183 
184 atomic_long_t _totalram_pages __read_mostly;
185 EXPORT_SYMBOL(_totalram_pages);
186 unsigned long totalreserve_pages __read_mostly;
187 unsigned long totalcma_pages __read_mostly;
188 
189 int percpu_pagelist_high_fraction;
190 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
192 EXPORT_SYMBOL(init_on_alloc);
193 
194 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
195 EXPORT_SYMBOL(init_on_free);
196 
197 static bool _init_on_alloc_enabled_early __read_mostly
198 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
199 static int __init early_init_on_alloc(char *buf)
200 {
201 
202 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
203 }
204 early_param("init_on_alloc", early_init_on_alloc);
205 
206 static bool _init_on_free_enabled_early __read_mostly
207 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
208 static int __init early_init_on_free(char *buf)
209 {
210 	return kstrtobool(buf, &_init_on_free_enabled_early);
211 }
212 early_param("init_on_free", early_init_on_free);
213 
214 /*
215  * A cached value of the page's pageblock's migratetype, used when the page is
216  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218  * Also the migratetype set in the page does not necessarily match the pcplist
219  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220  * other index - this ensures that it will be put on the correct CMA freelist.
221  */
222 static inline int get_pcppage_migratetype(struct page *page)
223 {
224 	return page->index;
225 }
226 
227 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228 {
229 	page->index = migratetype;
230 }
231 
232 #ifdef CONFIG_PM_SLEEP
233 /*
234  * The following functions are used by the suspend/hibernate code to temporarily
235  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236  * while devices are suspended.  To avoid races with the suspend/hibernate code,
237  * they should always be called with system_transition_mutex held
238  * (gfp_allowed_mask also should only be modified with system_transition_mutex
239  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240  * with that modification).
241  */
242 
243 static gfp_t saved_gfp_mask;
244 
245 void pm_restore_gfp_mask(void)
246 {
247 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 	if (saved_gfp_mask) {
249 		gfp_allowed_mask = saved_gfp_mask;
250 		saved_gfp_mask = 0;
251 	}
252 }
253 
254 void pm_restrict_gfp_mask(void)
255 {
256 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
257 	WARN_ON(saved_gfp_mask);
258 	saved_gfp_mask = gfp_allowed_mask;
259 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
260 }
261 
262 bool pm_suspended_storage(void)
263 {
264 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
265 		return false;
266 	return true;
267 }
268 #endif /* CONFIG_PM_SLEEP */
269 
270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
271 unsigned int pageblock_order __read_mostly;
272 #endif
273 
274 static void __free_pages_ok(struct page *page, unsigned int order,
275 			    fpi_t fpi_flags);
276 
277 /*
278  * results with 256, 32 in the lowmem_reserve sysctl:
279  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280  *	1G machine -> (16M dma, 784M normal, 224M high)
281  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
283  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
284  *
285  * TBD: should special case ZONE_DMA32 machines here - in those we normally
286  * don't need any ZONE_NORMAL reservation
287  */
288 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
289 #ifdef CONFIG_ZONE_DMA
290 	[ZONE_DMA] = 256,
291 #endif
292 #ifdef CONFIG_ZONE_DMA32
293 	[ZONE_DMA32] = 256,
294 #endif
295 	[ZONE_NORMAL] = 32,
296 #ifdef CONFIG_HIGHMEM
297 	[ZONE_HIGHMEM] = 0,
298 #endif
299 	[ZONE_MOVABLE] = 0,
300 };
301 
302 static char * const zone_names[MAX_NR_ZONES] = {
303 #ifdef CONFIG_ZONE_DMA
304 	 "DMA",
305 #endif
306 #ifdef CONFIG_ZONE_DMA32
307 	 "DMA32",
308 #endif
309 	 "Normal",
310 #ifdef CONFIG_HIGHMEM
311 	 "HighMem",
312 #endif
313 	 "Movable",
314 #ifdef CONFIG_ZONE_DEVICE
315 	 "Device",
316 #endif
317 };
318 
319 const char * const migratetype_names[MIGRATE_TYPES] = {
320 	"Unmovable",
321 	"Movable",
322 	"Reclaimable",
323 	"HighAtomic",
324 #ifdef CONFIG_CMA
325 	"CMA",
326 #endif
327 #ifdef CONFIG_MEMORY_ISOLATION
328 	"Isolate",
329 #endif
330 };
331 
332 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 	[NULL_COMPOUND_DTOR] = NULL,
334 	[COMPOUND_PAGE_DTOR] = free_compound_page,
335 #ifdef CONFIG_HUGETLB_PAGE
336 	[HUGETLB_PAGE_DTOR] = free_huge_page,
337 #endif
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
340 #endif
341 };
342 
343 int min_free_kbytes = 1024;
344 int user_min_free_kbytes = -1;
345 int watermark_boost_factor __read_mostly = 15000;
346 int watermark_scale_factor = 10;
347 
348 static unsigned long nr_kernel_pages __initdata;
349 static unsigned long nr_all_pages __initdata;
350 static unsigned long dma_reserve __initdata;
351 
352 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
354 static unsigned long required_kernelcore __initdata;
355 static unsigned long required_kernelcore_percent __initdata;
356 static unsigned long required_movablecore __initdata;
357 static unsigned long required_movablecore_percent __initdata;
358 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
359 static bool mirrored_kernelcore __meminitdata;
360 
361 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362 int movable_zone;
363 EXPORT_SYMBOL(movable_zone);
364 
365 #if MAX_NUMNODES > 1
366 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
367 unsigned int nr_online_nodes __read_mostly = 1;
368 EXPORT_SYMBOL(nr_node_ids);
369 EXPORT_SYMBOL(nr_online_nodes);
370 #endif
371 
372 int page_group_by_mobility_disabled __read_mostly;
373 
374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375 /*
376  * During boot we initialize deferred pages on-demand, as needed, but once
377  * page_alloc_init_late() has finished, the deferred pages are all initialized,
378  * and we can permanently disable that path.
379  */
380 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381 
382 static inline bool deferred_pages_enabled(void)
383 {
384 	return static_branch_unlikely(&deferred_pages);
385 }
386 
387 /* Returns true if the struct page for the pfn is uninitialised */
388 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
389 {
390 	int nid = early_pfn_to_nid(pfn);
391 
392 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
393 		return true;
394 
395 	return false;
396 }
397 
398 /*
399  * Returns true when the remaining initialisation should be deferred until
400  * later in the boot cycle when it can be parallelised.
401  */
402 static bool __meminit
403 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
404 {
405 	static unsigned long prev_end_pfn, nr_initialised;
406 
407 	/*
408 	 * prev_end_pfn static that contains the end of previous zone
409 	 * No need to protect because called very early in boot before smp_init.
410 	 */
411 	if (prev_end_pfn != end_pfn) {
412 		prev_end_pfn = end_pfn;
413 		nr_initialised = 0;
414 	}
415 
416 	/* Always populate low zones for address-constrained allocations */
417 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
418 		return false;
419 
420 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
421 		return true;
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 static inline bool deferred_pages_enabled(void)
436 {
437 	return false;
438 }
439 
440 static inline bool early_page_uninitialised(unsigned long pfn)
441 {
442 	return false;
443 }
444 
445 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
446 {
447 	return false;
448 }
449 #endif
450 
451 /* Return a pointer to the bitmap storing bits affecting a block of pages */
452 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
453 							unsigned long pfn)
454 {
455 #ifdef CONFIG_SPARSEMEM
456 	return section_to_usemap(__pfn_to_section(pfn));
457 #else
458 	return page_zone(page)->pageblock_flags;
459 #endif /* CONFIG_SPARSEMEM */
460 }
461 
462 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
463 {
464 #ifdef CONFIG_SPARSEMEM
465 	pfn &= (PAGES_PER_SECTION-1);
466 #else
467 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
468 #endif /* CONFIG_SPARSEMEM */
469 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
470 }
471 
472 static __always_inline
473 unsigned long __get_pfnblock_flags_mask(const struct page *page,
474 					unsigned long pfn,
475 					unsigned long mask)
476 {
477 	unsigned long *bitmap;
478 	unsigned long bitidx, word_bitidx;
479 	unsigned long word;
480 
481 	bitmap = get_pageblock_bitmap(page, pfn);
482 	bitidx = pfn_to_bitidx(page, pfn);
483 	word_bitidx = bitidx / BITS_PER_LONG;
484 	bitidx &= (BITS_PER_LONG-1);
485 
486 	word = bitmap[word_bitidx];
487 	return (word >> bitidx) & mask;
488 }
489 
490 /**
491  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
492  * @page: The page within the block of interest
493  * @pfn: The target page frame number
494  * @mask: mask of bits that the caller is interested in
495  *
496  * Return: pageblock_bits flags
497  */
498 unsigned long get_pfnblock_flags_mask(const struct page *page,
499 					unsigned long pfn, unsigned long mask)
500 {
501 	return __get_pfnblock_flags_mask(page, pfn, mask);
502 }
503 
504 static __always_inline int get_pfnblock_migratetype(const struct page *page,
505 					unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @mask: mask of bits that the caller is interested in
516  */
517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 					unsigned long pfn,
519 					unsigned long mask)
520 {
521 	unsigned long *bitmap;
522 	unsigned long bitidx, word_bitidx;
523 	unsigned long old_word, word;
524 
525 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
526 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
527 
528 	bitmap = get_pageblock_bitmap(page, pfn);
529 	bitidx = pfn_to_bitidx(page, pfn);
530 	word_bitidx = bitidx / BITS_PER_LONG;
531 	bitidx &= (BITS_PER_LONG-1);
532 
533 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534 
535 	mask <<= bitidx;
536 	flags <<= bitidx;
537 
538 	word = READ_ONCE(bitmap[word_bitidx]);
539 	for (;;) {
540 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
541 		if (word == old_word)
542 			break;
543 		word = old_word;
544 	}
545 }
546 
547 void set_pageblock_migratetype(struct page *page, int migratetype)
548 {
549 	if (unlikely(page_group_by_mobility_disabled &&
550 		     migratetype < MIGRATE_PCPTYPES))
551 		migratetype = MIGRATE_UNMOVABLE;
552 
553 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
554 				page_to_pfn(page), MIGRATETYPE_MASK);
555 }
556 
557 #ifdef CONFIG_DEBUG_VM
558 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
559 {
560 	int ret = 0;
561 	unsigned seq;
562 	unsigned long pfn = page_to_pfn(page);
563 	unsigned long sp, start_pfn;
564 
565 	do {
566 		seq = zone_span_seqbegin(zone);
567 		start_pfn = zone->zone_start_pfn;
568 		sp = zone->spanned_pages;
569 		if (!zone_spans_pfn(zone, pfn))
570 			ret = 1;
571 	} while (zone_span_seqretry(zone, seq));
572 
573 	if (ret)
574 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
575 			pfn, zone_to_nid(zone), zone->name,
576 			start_pfn, start_pfn + sp);
577 
578 	return ret;
579 }
580 
581 static int page_is_consistent(struct zone *zone, struct page *page)
582 {
583 	if (zone != page_zone(page))
584 		return 0;
585 
586 	return 1;
587 }
588 /*
589  * Temporary debugging check for pages not lying within a given zone.
590  */
591 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
592 {
593 	if (page_outside_zone_boundaries(zone, page))
594 		return 1;
595 	if (!page_is_consistent(zone, page))
596 		return 1;
597 
598 	return 0;
599 }
600 #else
601 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
602 {
603 	return 0;
604 }
605 #endif
606 
607 static void bad_page(struct page *page, const char *reason)
608 {
609 	static unsigned long resume;
610 	static unsigned long nr_shown;
611 	static unsigned long nr_unshown;
612 
613 	/*
614 	 * Allow a burst of 60 reports, then keep quiet for that minute;
615 	 * or allow a steady drip of one report per second.
616 	 */
617 	if (nr_shown == 60) {
618 		if (time_before(jiffies, resume)) {
619 			nr_unshown++;
620 			goto out;
621 		}
622 		if (nr_unshown) {
623 			pr_alert(
624 			      "BUG: Bad page state: %lu messages suppressed\n",
625 				nr_unshown);
626 			nr_unshown = 0;
627 		}
628 		nr_shown = 0;
629 	}
630 	if (nr_shown++ == 0)
631 		resume = jiffies + 60 * HZ;
632 
633 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
634 		current->comm, page_to_pfn(page));
635 	dump_page(page, reason);
636 
637 	print_modules();
638 	dump_stack();
639 out:
640 	/* Leave bad fields for debug, except PageBuddy could make trouble */
641 	page_mapcount_reset(page); /* remove PageBuddy */
642 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
643 }
644 
645 static inline unsigned int order_to_pindex(int migratetype, int order)
646 {
647 	int base = order;
648 
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
651 		VM_BUG_ON(order != pageblock_order);
652 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
653 	}
654 #else
655 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
656 #endif
657 
658 	return (MIGRATE_PCPTYPES * base) + migratetype;
659 }
660 
661 static inline int pindex_to_order(unsigned int pindex)
662 {
663 	int order = pindex / MIGRATE_PCPTYPES;
664 
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 	if (order > PAGE_ALLOC_COSTLY_ORDER)
667 		order = pageblock_order;
668 #else
669 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671 
672 	return order;
673 }
674 
675 static inline bool pcp_allowed_order(unsigned int order)
676 {
677 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
678 		return true;
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 	if (order == pageblock_order)
681 		return true;
682 #endif
683 	return false;
684 }
685 
686 static inline void free_the_page(struct page *page, unsigned int order)
687 {
688 	if (pcp_allowed_order(order))		/* Via pcp? */
689 		free_unref_page(page, order);
690 	else
691 		__free_pages_ok(page, order, FPI_NONE);
692 }
693 
694 /*
695  * Higher-order pages are called "compound pages".  They are structured thusly:
696  *
697  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
698  *
699  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
700  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
701  *
702  * The first tail page's ->compound_dtor holds the offset in array of compound
703  * page destructors. See compound_page_dtors.
704  *
705  * The first tail page's ->compound_order holds the order of allocation.
706  * This usage means that zero-order pages may not be compound.
707  */
708 
709 void free_compound_page(struct page *page)
710 {
711 	mem_cgroup_uncharge(page_folio(page));
712 	free_the_page(page, compound_order(page));
713 }
714 
715 static void prep_compound_head(struct page *page, unsigned int order)
716 {
717 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
718 	set_compound_order(page, order);
719 	atomic_set(compound_mapcount_ptr(page), -1);
720 	atomic_set(compound_pincount_ptr(page), 0);
721 }
722 
723 static void prep_compound_tail(struct page *head, int tail_idx)
724 {
725 	struct page *p = head + tail_idx;
726 
727 	p->mapping = TAIL_MAPPING;
728 	set_compound_head(p, head);
729 }
730 
731 void prep_compound_page(struct page *page, unsigned int order)
732 {
733 	int i;
734 	int nr_pages = 1 << order;
735 
736 	__SetPageHead(page);
737 	for (i = 1; i < nr_pages; i++)
738 		prep_compound_tail(page, i);
739 
740 	prep_compound_head(page, order);
741 }
742 
743 #ifdef CONFIG_DEBUG_PAGEALLOC
744 unsigned int _debug_guardpage_minorder;
745 
746 bool _debug_pagealloc_enabled_early __read_mostly
747 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
748 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
749 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
750 EXPORT_SYMBOL(_debug_pagealloc_enabled);
751 
752 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
753 
754 static int __init early_debug_pagealloc(char *buf)
755 {
756 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
757 }
758 early_param("debug_pagealloc", early_debug_pagealloc);
759 
760 static int __init debug_guardpage_minorder_setup(char *buf)
761 {
762 	unsigned long res;
763 
764 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
765 		pr_err("Bad debug_guardpage_minorder value\n");
766 		return 0;
767 	}
768 	_debug_guardpage_minorder = res;
769 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
770 	return 0;
771 }
772 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
773 
774 static inline bool set_page_guard(struct zone *zone, struct page *page,
775 				unsigned int order, int migratetype)
776 {
777 	if (!debug_guardpage_enabled())
778 		return false;
779 
780 	if (order >= debug_guardpage_minorder())
781 		return false;
782 
783 	__SetPageGuard(page);
784 	INIT_LIST_HEAD(&page->lru);
785 	set_page_private(page, order);
786 	/* Guard pages are not available for any usage */
787 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
788 
789 	return true;
790 }
791 
792 static inline void clear_page_guard(struct zone *zone, struct page *page,
793 				unsigned int order, int migratetype)
794 {
795 	if (!debug_guardpage_enabled())
796 		return;
797 
798 	__ClearPageGuard(page);
799 
800 	set_page_private(page, 0);
801 	if (!is_migrate_isolate(migratetype))
802 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
803 }
804 #else
805 static inline bool set_page_guard(struct zone *zone, struct page *page,
806 			unsigned int order, int migratetype) { return false; }
807 static inline void clear_page_guard(struct zone *zone, struct page *page,
808 				unsigned int order, int migratetype) {}
809 #endif
810 
811 /*
812  * Enable static keys related to various memory debugging and hardening options.
813  * Some override others, and depend on early params that are evaluated in the
814  * order of appearance. So we need to first gather the full picture of what was
815  * enabled, and then make decisions.
816  */
817 void init_mem_debugging_and_hardening(void)
818 {
819 	bool page_poisoning_requested = false;
820 
821 #ifdef CONFIG_PAGE_POISONING
822 	/*
823 	 * Page poisoning is debug page alloc for some arches. If
824 	 * either of those options are enabled, enable poisoning.
825 	 */
826 	if (page_poisoning_enabled() ||
827 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
828 	      debug_pagealloc_enabled())) {
829 		static_branch_enable(&_page_poisoning_enabled);
830 		page_poisoning_requested = true;
831 	}
832 #endif
833 
834 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
835 	    page_poisoning_requested) {
836 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
837 			"will take precedence over init_on_alloc and init_on_free\n");
838 		_init_on_alloc_enabled_early = false;
839 		_init_on_free_enabled_early = false;
840 	}
841 
842 	if (_init_on_alloc_enabled_early)
843 		static_branch_enable(&init_on_alloc);
844 	else
845 		static_branch_disable(&init_on_alloc);
846 
847 	if (_init_on_free_enabled_early)
848 		static_branch_enable(&init_on_free);
849 	else
850 		static_branch_disable(&init_on_free);
851 
852 #ifdef CONFIG_DEBUG_PAGEALLOC
853 	if (!debug_pagealloc_enabled())
854 		return;
855 
856 	static_branch_enable(&_debug_pagealloc_enabled);
857 
858 	if (!debug_guardpage_minorder())
859 		return;
860 
861 	static_branch_enable(&_debug_guardpage_enabled);
862 #endif
863 }
864 
865 static inline void set_buddy_order(struct page *page, unsigned int order)
866 {
867 	set_page_private(page, order);
868 	__SetPageBuddy(page);
869 }
870 
871 #ifdef CONFIG_COMPACTION
872 static inline struct capture_control *task_capc(struct zone *zone)
873 {
874 	struct capture_control *capc = current->capture_control;
875 
876 	return unlikely(capc) &&
877 		!(current->flags & PF_KTHREAD) &&
878 		!capc->page &&
879 		capc->cc->zone == zone ? capc : NULL;
880 }
881 
882 static inline bool
883 compaction_capture(struct capture_control *capc, struct page *page,
884 		   int order, int migratetype)
885 {
886 	if (!capc || order != capc->cc->order)
887 		return false;
888 
889 	/* Do not accidentally pollute CMA or isolated regions*/
890 	if (is_migrate_cma(migratetype) ||
891 	    is_migrate_isolate(migratetype))
892 		return false;
893 
894 	/*
895 	 * Do not let lower order allocations pollute a movable pageblock.
896 	 * This might let an unmovable request use a reclaimable pageblock
897 	 * and vice-versa but no more than normal fallback logic which can
898 	 * have trouble finding a high-order free page.
899 	 */
900 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
901 		return false;
902 
903 	capc->page = page;
904 	return true;
905 }
906 
907 #else
908 static inline struct capture_control *task_capc(struct zone *zone)
909 {
910 	return NULL;
911 }
912 
913 static inline bool
914 compaction_capture(struct capture_control *capc, struct page *page,
915 		   int order, int migratetype)
916 {
917 	return false;
918 }
919 #endif /* CONFIG_COMPACTION */
920 
921 /* Used for pages not on another list */
922 static inline void add_to_free_list(struct page *page, struct zone *zone,
923 				    unsigned int order, int migratetype)
924 {
925 	struct free_area *area = &zone->free_area[order];
926 
927 	list_add(&page->lru, &area->free_list[migratetype]);
928 	area->nr_free++;
929 }
930 
931 /* Used for pages not on another list */
932 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
933 					 unsigned int order, int migratetype)
934 {
935 	struct free_area *area = &zone->free_area[order];
936 
937 	list_add_tail(&page->lru, &area->free_list[migratetype]);
938 	area->nr_free++;
939 }
940 
941 /*
942  * Used for pages which are on another list. Move the pages to the tail
943  * of the list - so the moved pages won't immediately be considered for
944  * allocation again (e.g., optimization for memory onlining).
945  */
946 static inline void move_to_free_list(struct page *page, struct zone *zone,
947 				     unsigned int order, int migratetype)
948 {
949 	struct free_area *area = &zone->free_area[order];
950 
951 	list_move_tail(&page->lru, &area->free_list[migratetype]);
952 }
953 
954 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
955 					   unsigned int order)
956 {
957 	/* clear reported state and update reported page count */
958 	if (page_reported(page))
959 		__ClearPageReported(page);
960 
961 	list_del(&page->lru);
962 	__ClearPageBuddy(page);
963 	set_page_private(page, 0);
964 	zone->free_area[order].nr_free--;
965 }
966 
967 /*
968  * If this is not the largest possible page, check if the buddy
969  * of the next-highest order is free. If it is, it's possible
970  * that pages are being freed that will coalesce soon. In case,
971  * that is happening, add the free page to the tail of the list
972  * so it's less likely to be used soon and more likely to be merged
973  * as a higher order page
974  */
975 static inline bool
976 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
977 		   struct page *page, unsigned int order)
978 {
979 	unsigned long higher_page_pfn;
980 	struct page *higher_page;
981 
982 	if (order >= MAX_ORDER - 2)
983 		return false;
984 
985 	higher_page_pfn = buddy_pfn & pfn;
986 	higher_page = page + (higher_page_pfn - pfn);
987 
988 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
989 			NULL) != NULL;
990 }
991 
992 /*
993  * Freeing function for a buddy system allocator.
994  *
995  * The concept of a buddy system is to maintain direct-mapped table
996  * (containing bit values) for memory blocks of various "orders".
997  * The bottom level table contains the map for the smallest allocatable
998  * units of memory (here, pages), and each level above it describes
999  * pairs of units from the levels below, hence, "buddies".
1000  * At a high level, all that happens here is marking the table entry
1001  * at the bottom level available, and propagating the changes upward
1002  * as necessary, plus some accounting needed to play nicely with other
1003  * parts of the VM system.
1004  * At each level, we keep a list of pages, which are heads of continuous
1005  * free pages of length of (1 << order) and marked with PageBuddy.
1006  * Page's order is recorded in page_private(page) field.
1007  * So when we are allocating or freeing one, we can derive the state of the
1008  * other.  That is, if we allocate a small block, and both were
1009  * free, the remainder of the region must be split into blocks.
1010  * If a block is freed, and its buddy is also free, then this
1011  * triggers coalescing into a block of larger size.
1012  *
1013  * -- nyc
1014  */
1015 
1016 static inline void __free_one_page(struct page *page,
1017 		unsigned long pfn,
1018 		struct zone *zone, unsigned int order,
1019 		int migratetype, fpi_t fpi_flags)
1020 {
1021 	struct capture_control *capc = task_capc(zone);
1022 	unsigned long buddy_pfn;
1023 	unsigned long combined_pfn;
1024 	struct page *buddy;
1025 	bool to_tail;
1026 
1027 	VM_BUG_ON(!zone_is_initialized(zone));
1028 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1029 
1030 	VM_BUG_ON(migratetype == -1);
1031 	if (likely(!is_migrate_isolate(migratetype)))
1032 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1033 
1034 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1035 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1036 
1037 	while (order < MAX_ORDER - 1) {
1038 		if (compaction_capture(capc, page, order, migratetype)) {
1039 			__mod_zone_freepage_state(zone, -(1 << order),
1040 								migratetype);
1041 			return;
1042 		}
1043 
1044 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1045 		if (!buddy)
1046 			goto done_merging;
1047 
1048 		if (unlikely(order >= pageblock_order)) {
1049 			/*
1050 			 * We want to prevent merge between freepages on pageblock
1051 			 * without fallbacks and normal pageblock. Without this,
1052 			 * pageblock isolation could cause incorrect freepage or CMA
1053 			 * accounting or HIGHATOMIC accounting.
1054 			 */
1055 			int buddy_mt = get_pageblock_migratetype(buddy);
1056 
1057 			if (migratetype != buddy_mt
1058 					&& (!migratetype_is_mergeable(migratetype) ||
1059 						!migratetype_is_mergeable(buddy_mt)))
1060 				goto done_merging;
1061 		}
1062 
1063 		/*
1064 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1065 		 * merge with it and move up one order.
1066 		 */
1067 		if (page_is_guard(buddy))
1068 			clear_page_guard(zone, buddy, order, migratetype);
1069 		else
1070 			del_page_from_free_list(buddy, zone, order);
1071 		combined_pfn = buddy_pfn & pfn;
1072 		page = page + (combined_pfn - pfn);
1073 		pfn = combined_pfn;
1074 		order++;
1075 	}
1076 
1077 done_merging:
1078 	set_buddy_order(page, order);
1079 
1080 	if (fpi_flags & FPI_TO_TAIL)
1081 		to_tail = true;
1082 	else if (is_shuffle_order(order))
1083 		to_tail = shuffle_pick_tail();
1084 	else
1085 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1086 
1087 	if (to_tail)
1088 		add_to_free_list_tail(page, zone, order, migratetype);
1089 	else
1090 		add_to_free_list(page, zone, order, migratetype);
1091 
1092 	/* Notify page reporting subsystem of freed page */
1093 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1094 		page_reporting_notify_free(order);
1095 }
1096 
1097 /*
1098  * A bad page could be due to a number of fields. Instead of multiple branches,
1099  * try and check multiple fields with one check. The caller must do a detailed
1100  * check if necessary.
1101  */
1102 static inline bool page_expected_state(struct page *page,
1103 					unsigned long check_flags)
1104 {
1105 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1106 		return false;
1107 
1108 	if (unlikely((unsigned long)page->mapping |
1109 			page_ref_count(page) |
1110 #ifdef CONFIG_MEMCG
1111 			page->memcg_data |
1112 #endif
1113 			(page->flags & check_flags)))
1114 		return false;
1115 
1116 	return true;
1117 }
1118 
1119 static const char *page_bad_reason(struct page *page, unsigned long flags)
1120 {
1121 	const char *bad_reason = NULL;
1122 
1123 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1124 		bad_reason = "nonzero mapcount";
1125 	if (unlikely(page->mapping != NULL))
1126 		bad_reason = "non-NULL mapping";
1127 	if (unlikely(page_ref_count(page) != 0))
1128 		bad_reason = "nonzero _refcount";
1129 	if (unlikely(page->flags & flags)) {
1130 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1131 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1132 		else
1133 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1134 	}
1135 #ifdef CONFIG_MEMCG
1136 	if (unlikely(page->memcg_data))
1137 		bad_reason = "page still charged to cgroup";
1138 #endif
1139 	return bad_reason;
1140 }
1141 
1142 static void check_free_page_bad(struct page *page)
1143 {
1144 	bad_page(page,
1145 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1146 }
1147 
1148 static inline int check_free_page(struct page *page)
1149 {
1150 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1151 		return 0;
1152 
1153 	/* Something has gone sideways, find it */
1154 	check_free_page_bad(page);
1155 	return 1;
1156 }
1157 
1158 static int free_tail_pages_check(struct page *head_page, struct page *page)
1159 {
1160 	int ret = 1;
1161 
1162 	/*
1163 	 * We rely page->lru.next never has bit 0 set, unless the page
1164 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1165 	 */
1166 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1167 
1168 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1169 		ret = 0;
1170 		goto out;
1171 	}
1172 	switch (page - head_page) {
1173 	case 1:
1174 		/* the first tail page: ->mapping may be compound_mapcount() */
1175 		if (unlikely(compound_mapcount(page))) {
1176 			bad_page(page, "nonzero compound_mapcount");
1177 			goto out;
1178 		}
1179 		break;
1180 	case 2:
1181 		/*
1182 		 * the second tail page: ->mapping is
1183 		 * deferred_list.next -- ignore value.
1184 		 */
1185 		break;
1186 	default:
1187 		if (page->mapping != TAIL_MAPPING) {
1188 			bad_page(page, "corrupted mapping in tail page");
1189 			goto out;
1190 		}
1191 		break;
1192 	}
1193 	if (unlikely(!PageTail(page))) {
1194 		bad_page(page, "PageTail not set");
1195 		goto out;
1196 	}
1197 	if (unlikely(compound_head(page) != head_page)) {
1198 		bad_page(page, "compound_head not consistent");
1199 		goto out;
1200 	}
1201 	ret = 0;
1202 out:
1203 	page->mapping = NULL;
1204 	clear_compound_head(page);
1205 	return ret;
1206 }
1207 
1208 /*
1209  * Skip KASAN memory poisoning when either:
1210  *
1211  * 1. Deferred memory initialization has not yet completed,
1212  *    see the explanation below.
1213  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1214  *    see the comment next to it.
1215  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1216  *    see the comment next to it.
1217  *
1218  * Poisoning pages during deferred memory init will greatly lengthen the
1219  * process and cause problem in large memory systems as the deferred pages
1220  * initialization is done with interrupt disabled.
1221  *
1222  * Assuming that there will be no reference to those newly initialized
1223  * pages before they are ever allocated, this should have no effect on
1224  * KASAN memory tracking as the poison will be properly inserted at page
1225  * allocation time. The only corner case is when pages are allocated by
1226  * on-demand allocation and then freed again before the deferred pages
1227  * initialization is done, but this is not likely to happen.
1228  */
1229 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1230 {
1231 	return deferred_pages_enabled() ||
1232 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1233 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1234 	       PageSkipKASanPoison(page);
1235 }
1236 
1237 static void kernel_init_free_pages(struct page *page, int numpages)
1238 {
1239 	int i;
1240 
1241 	/* s390's use of memset() could override KASAN redzones. */
1242 	kasan_disable_current();
1243 	for (i = 0; i < numpages; i++) {
1244 		u8 tag = page_kasan_tag(page + i);
1245 		page_kasan_tag_reset(page + i);
1246 		clear_highpage(page + i);
1247 		page_kasan_tag_set(page + i, tag);
1248 	}
1249 	kasan_enable_current();
1250 }
1251 
1252 static __always_inline bool free_pages_prepare(struct page *page,
1253 			unsigned int order, bool check_free, fpi_t fpi_flags)
1254 {
1255 	int bad = 0;
1256 	bool init = want_init_on_free();
1257 
1258 	VM_BUG_ON_PAGE(PageTail(page), page);
1259 
1260 	trace_mm_page_free(page, order);
1261 
1262 	if (unlikely(PageHWPoison(page)) && !order) {
1263 		/*
1264 		 * Do not let hwpoison pages hit pcplists/buddy
1265 		 * Untie memcg state and reset page's owner
1266 		 */
1267 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1268 			__memcg_kmem_uncharge_page(page, order);
1269 		reset_page_owner(page, order);
1270 		page_table_check_free(page, order);
1271 		return false;
1272 	}
1273 
1274 	/*
1275 	 * Check tail pages before head page information is cleared to
1276 	 * avoid checking PageCompound for order-0 pages.
1277 	 */
1278 	if (unlikely(order)) {
1279 		bool compound = PageCompound(page);
1280 		int i;
1281 
1282 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1283 
1284 		if (compound) {
1285 			ClearPageDoubleMap(page);
1286 			ClearPageHasHWPoisoned(page);
1287 		}
1288 		for (i = 1; i < (1 << order); i++) {
1289 			if (compound)
1290 				bad += free_tail_pages_check(page, page + i);
1291 			if (unlikely(check_free_page(page + i))) {
1292 				bad++;
1293 				continue;
1294 			}
1295 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1296 		}
1297 	}
1298 	if (PageMappingFlags(page))
1299 		page->mapping = NULL;
1300 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1301 		__memcg_kmem_uncharge_page(page, order);
1302 	if (check_free)
1303 		bad += check_free_page(page);
1304 	if (bad)
1305 		return false;
1306 
1307 	page_cpupid_reset_last(page);
1308 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1309 	reset_page_owner(page, order);
1310 	page_table_check_free(page, order);
1311 
1312 	if (!PageHighMem(page)) {
1313 		debug_check_no_locks_freed(page_address(page),
1314 					   PAGE_SIZE << order);
1315 		debug_check_no_obj_freed(page_address(page),
1316 					   PAGE_SIZE << order);
1317 	}
1318 
1319 	kernel_poison_pages(page, 1 << order);
1320 
1321 	/*
1322 	 * As memory initialization might be integrated into KASAN,
1323 	 * KASAN poisoning and memory initialization code must be
1324 	 * kept together to avoid discrepancies in behavior.
1325 	 *
1326 	 * With hardware tag-based KASAN, memory tags must be set before the
1327 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1328 	 */
1329 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1330 		kasan_poison_pages(page, order, init);
1331 
1332 		/* Memory is already initialized if KASAN did it internally. */
1333 		if (kasan_has_integrated_init())
1334 			init = false;
1335 	}
1336 	if (init)
1337 		kernel_init_free_pages(page, 1 << order);
1338 
1339 	/*
1340 	 * arch_free_page() can make the page's contents inaccessible.  s390
1341 	 * does this.  So nothing which can access the page's contents should
1342 	 * happen after this.
1343 	 */
1344 	arch_free_page(page, order);
1345 
1346 	debug_pagealloc_unmap_pages(page, 1 << order);
1347 
1348 	return true;
1349 }
1350 
1351 #ifdef CONFIG_DEBUG_VM
1352 /*
1353  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1354  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1355  * moved from pcp lists to free lists.
1356  */
1357 static bool free_pcp_prepare(struct page *page, unsigned int order)
1358 {
1359 	return free_pages_prepare(page, order, true, FPI_NONE);
1360 }
1361 
1362 static bool bulkfree_pcp_prepare(struct page *page)
1363 {
1364 	if (debug_pagealloc_enabled_static())
1365 		return check_free_page(page);
1366 	else
1367 		return false;
1368 }
1369 #else
1370 /*
1371  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1372  * moving from pcp lists to free list in order to reduce overhead. With
1373  * debug_pagealloc enabled, they are checked also immediately when being freed
1374  * to the pcp lists.
1375  */
1376 static bool free_pcp_prepare(struct page *page, unsigned int order)
1377 {
1378 	if (debug_pagealloc_enabled_static())
1379 		return free_pages_prepare(page, order, true, FPI_NONE);
1380 	else
1381 		return free_pages_prepare(page, order, false, FPI_NONE);
1382 }
1383 
1384 static bool bulkfree_pcp_prepare(struct page *page)
1385 {
1386 	return check_free_page(page);
1387 }
1388 #endif /* CONFIG_DEBUG_VM */
1389 
1390 /*
1391  * Frees a number of pages from the PCP lists
1392  * Assumes all pages on list are in same zone.
1393  * count is the number of pages to free.
1394  */
1395 static void free_pcppages_bulk(struct zone *zone, int count,
1396 					struct per_cpu_pages *pcp,
1397 					int pindex)
1398 {
1399 	int min_pindex = 0;
1400 	int max_pindex = NR_PCP_LISTS - 1;
1401 	unsigned int order;
1402 	bool isolated_pageblocks;
1403 	struct page *page;
1404 
1405 	/*
1406 	 * Ensure proper count is passed which otherwise would stuck in the
1407 	 * below while (list_empty(list)) loop.
1408 	 */
1409 	count = min(pcp->count, count);
1410 
1411 	/* Ensure requested pindex is drained first. */
1412 	pindex = pindex - 1;
1413 
1414 	/*
1415 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1416 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1417 	 */
1418 	spin_lock(&zone->lock);
1419 	isolated_pageblocks = has_isolate_pageblock(zone);
1420 
1421 	while (count > 0) {
1422 		struct list_head *list;
1423 		int nr_pages;
1424 
1425 		/* Remove pages from lists in a round-robin fashion. */
1426 		do {
1427 			if (++pindex > max_pindex)
1428 				pindex = min_pindex;
1429 			list = &pcp->lists[pindex];
1430 			if (!list_empty(list))
1431 				break;
1432 
1433 			if (pindex == max_pindex)
1434 				max_pindex--;
1435 			if (pindex == min_pindex)
1436 				min_pindex++;
1437 		} while (1);
1438 
1439 		order = pindex_to_order(pindex);
1440 		nr_pages = 1 << order;
1441 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1442 		do {
1443 			int mt;
1444 
1445 			page = list_last_entry(list, struct page, lru);
1446 			mt = get_pcppage_migratetype(page);
1447 
1448 			/* must delete to avoid corrupting pcp list */
1449 			list_del(&page->lru);
1450 			count -= nr_pages;
1451 			pcp->count -= nr_pages;
1452 
1453 			if (bulkfree_pcp_prepare(page))
1454 				continue;
1455 
1456 			/* MIGRATE_ISOLATE page should not go to pcplists */
1457 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1458 			/* Pageblock could have been isolated meanwhile */
1459 			if (unlikely(isolated_pageblocks))
1460 				mt = get_pageblock_migratetype(page);
1461 
1462 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1463 			trace_mm_page_pcpu_drain(page, order, mt);
1464 		} while (count > 0 && !list_empty(list));
1465 	}
1466 
1467 	spin_unlock(&zone->lock);
1468 }
1469 
1470 static void free_one_page(struct zone *zone,
1471 				struct page *page, unsigned long pfn,
1472 				unsigned int order,
1473 				int migratetype, fpi_t fpi_flags)
1474 {
1475 	unsigned long flags;
1476 
1477 	spin_lock_irqsave(&zone->lock, flags);
1478 	if (unlikely(has_isolate_pageblock(zone) ||
1479 		is_migrate_isolate(migratetype))) {
1480 		migratetype = get_pfnblock_migratetype(page, pfn);
1481 	}
1482 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1483 	spin_unlock_irqrestore(&zone->lock, flags);
1484 }
1485 
1486 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1487 				unsigned long zone, int nid)
1488 {
1489 	mm_zero_struct_page(page);
1490 	set_page_links(page, zone, nid, pfn);
1491 	init_page_count(page);
1492 	page_mapcount_reset(page);
1493 	page_cpupid_reset_last(page);
1494 	page_kasan_tag_reset(page);
1495 
1496 	INIT_LIST_HEAD(&page->lru);
1497 #ifdef WANT_PAGE_VIRTUAL
1498 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1499 	if (!is_highmem_idx(zone))
1500 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1501 #endif
1502 }
1503 
1504 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1505 static void __meminit init_reserved_page(unsigned long pfn)
1506 {
1507 	pg_data_t *pgdat;
1508 	int nid, zid;
1509 
1510 	if (!early_page_uninitialised(pfn))
1511 		return;
1512 
1513 	nid = early_pfn_to_nid(pfn);
1514 	pgdat = NODE_DATA(nid);
1515 
1516 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1517 		struct zone *zone = &pgdat->node_zones[zid];
1518 
1519 		if (zone_spans_pfn(zone, pfn))
1520 			break;
1521 	}
1522 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1523 }
1524 #else
1525 static inline void init_reserved_page(unsigned long pfn)
1526 {
1527 }
1528 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1529 
1530 /*
1531  * Initialised pages do not have PageReserved set. This function is
1532  * called for each range allocated by the bootmem allocator and
1533  * marks the pages PageReserved. The remaining valid pages are later
1534  * sent to the buddy page allocator.
1535  */
1536 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1537 {
1538 	unsigned long start_pfn = PFN_DOWN(start);
1539 	unsigned long end_pfn = PFN_UP(end);
1540 
1541 	for (; start_pfn < end_pfn; start_pfn++) {
1542 		if (pfn_valid(start_pfn)) {
1543 			struct page *page = pfn_to_page(start_pfn);
1544 
1545 			init_reserved_page(start_pfn);
1546 
1547 			/* Avoid false-positive PageTail() */
1548 			INIT_LIST_HEAD(&page->lru);
1549 
1550 			/*
1551 			 * no need for atomic set_bit because the struct
1552 			 * page is not visible yet so nobody should
1553 			 * access it yet.
1554 			 */
1555 			__SetPageReserved(page);
1556 		}
1557 	}
1558 }
1559 
1560 static void __free_pages_ok(struct page *page, unsigned int order,
1561 			    fpi_t fpi_flags)
1562 {
1563 	unsigned long flags;
1564 	int migratetype;
1565 	unsigned long pfn = page_to_pfn(page);
1566 	struct zone *zone = page_zone(page);
1567 
1568 	if (!free_pages_prepare(page, order, true, fpi_flags))
1569 		return;
1570 
1571 	migratetype = get_pfnblock_migratetype(page, pfn);
1572 
1573 	spin_lock_irqsave(&zone->lock, flags);
1574 	if (unlikely(has_isolate_pageblock(zone) ||
1575 		is_migrate_isolate(migratetype))) {
1576 		migratetype = get_pfnblock_migratetype(page, pfn);
1577 	}
1578 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1579 	spin_unlock_irqrestore(&zone->lock, flags);
1580 
1581 	__count_vm_events(PGFREE, 1 << order);
1582 }
1583 
1584 void __free_pages_core(struct page *page, unsigned int order)
1585 {
1586 	unsigned int nr_pages = 1 << order;
1587 	struct page *p = page;
1588 	unsigned int loop;
1589 
1590 	/*
1591 	 * When initializing the memmap, __init_single_page() sets the refcount
1592 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1593 	 * refcount of all involved pages to 0.
1594 	 */
1595 	prefetchw(p);
1596 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1597 		prefetchw(p + 1);
1598 		__ClearPageReserved(p);
1599 		set_page_count(p, 0);
1600 	}
1601 	__ClearPageReserved(p);
1602 	set_page_count(p, 0);
1603 
1604 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1605 
1606 	/*
1607 	 * Bypass PCP and place fresh pages right to the tail, primarily
1608 	 * relevant for memory onlining.
1609 	 */
1610 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1611 }
1612 
1613 #ifdef CONFIG_NUMA
1614 
1615 /*
1616  * During memory init memblocks map pfns to nids. The search is expensive and
1617  * this caches recent lookups. The implementation of __early_pfn_to_nid
1618  * treats start/end as pfns.
1619  */
1620 struct mminit_pfnnid_cache {
1621 	unsigned long last_start;
1622 	unsigned long last_end;
1623 	int last_nid;
1624 };
1625 
1626 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1627 
1628 /*
1629  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1630  */
1631 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1632 					struct mminit_pfnnid_cache *state)
1633 {
1634 	unsigned long start_pfn, end_pfn;
1635 	int nid;
1636 
1637 	if (state->last_start <= pfn && pfn < state->last_end)
1638 		return state->last_nid;
1639 
1640 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1641 	if (nid != NUMA_NO_NODE) {
1642 		state->last_start = start_pfn;
1643 		state->last_end = end_pfn;
1644 		state->last_nid = nid;
1645 	}
1646 
1647 	return nid;
1648 }
1649 
1650 int __meminit early_pfn_to_nid(unsigned long pfn)
1651 {
1652 	static DEFINE_SPINLOCK(early_pfn_lock);
1653 	int nid;
1654 
1655 	spin_lock(&early_pfn_lock);
1656 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1657 	if (nid < 0)
1658 		nid = first_online_node;
1659 	spin_unlock(&early_pfn_lock);
1660 
1661 	return nid;
1662 }
1663 #endif /* CONFIG_NUMA */
1664 
1665 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1666 							unsigned int order)
1667 {
1668 	if (early_page_uninitialised(pfn))
1669 		return;
1670 	__free_pages_core(page, order);
1671 }
1672 
1673 /*
1674  * Check that the whole (or subset of) a pageblock given by the interval of
1675  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1676  * with the migration of free compaction scanner.
1677  *
1678  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1679  *
1680  * It's possible on some configurations to have a setup like node0 node1 node0
1681  * i.e. it's possible that all pages within a zones range of pages do not
1682  * belong to a single zone. We assume that a border between node0 and node1
1683  * can occur within a single pageblock, but not a node0 node1 node0
1684  * interleaving within a single pageblock. It is therefore sufficient to check
1685  * the first and last page of a pageblock and avoid checking each individual
1686  * page in a pageblock.
1687  */
1688 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1689 				     unsigned long end_pfn, struct zone *zone)
1690 {
1691 	struct page *start_page;
1692 	struct page *end_page;
1693 
1694 	/* end_pfn is one past the range we are checking */
1695 	end_pfn--;
1696 
1697 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1698 		return NULL;
1699 
1700 	start_page = pfn_to_online_page(start_pfn);
1701 	if (!start_page)
1702 		return NULL;
1703 
1704 	if (page_zone(start_page) != zone)
1705 		return NULL;
1706 
1707 	end_page = pfn_to_page(end_pfn);
1708 
1709 	/* This gives a shorter code than deriving page_zone(end_page) */
1710 	if (page_zone_id(start_page) != page_zone_id(end_page))
1711 		return NULL;
1712 
1713 	return start_page;
1714 }
1715 
1716 void set_zone_contiguous(struct zone *zone)
1717 {
1718 	unsigned long block_start_pfn = zone->zone_start_pfn;
1719 	unsigned long block_end_pfn;
1720 
1721 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1722 	for (; block_start_pfn < zone_end_pfn(zone);
1723 			block_start_pfn = block_end_pfn,
1724 			 block_end_pfn += pageblock_nr_pages) {
1725 
1726 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1727 
1728 		if (!__pageblock_pfn_to_page(block_start_pfn,
1729 					     block_end_pfn, zone))
1730 			return;
1731 		cond_resched();
1732 	}
1733 
1734 	/* We confirm that there is no hole */
1735 	zone->contiguous = true;
1736 }
1737 
1738 void clear_zone_contiguous(struct zone *zone)
1739 {
1740 	zone->contiguous = false;
1741 }
1742 
1743 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1744 static void __init deferred_free_range(unsigned long pfn,
1745 				       unsigned long nr_pages)
1746 {
1747 	struct page *page;
1748 	unsigned long i;
1749 
1750 	if (!nr_pages)
1751 		return;
1752 
1753 	page = pfn_to_page(pfn);
1754 
1755 	/* Free a large naturally-aligned chunk if possible */
1756 	if (nr_pages == pageblock_nr_pages &&
1757 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1758 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1759 		__free_pages_core(page, pageblock_order);
1760 		return;
1761 	}
1762 
1763 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1764 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1765 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1766 		__free_pages_core(page, 0);
1767 	}
1768 }
1769 
1770 /* Completion tracking for deferred_init_memmap() threads */
1771 static atomic_t pgdat_init_n_undone __initdata;
1772 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1773 
1774 static inline void __init pgdat_init_report_one_done(void)
1775 {
1776 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1777 		complete(&pgdat_init_all_done_comp);
1778 }
1779 
1780 /*
1781  * Returns true if page needs to be initialized or freed to buddy allocator.
1782  *
1783  * First we check if pfn is valid on architectures where it is possible to have
1784  * holes within pageblock_nr_pages. On systems where it is not possible, this
1785  * function is optimized out.
1786  *
1787  * Then, we check if a current large page is valid by only checking the validity
1788  * of the head pfn.
1789  */
1790 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1791 {
1792 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1793 		return false;
1794 	return true;
1795 }
1796 
1797 /*
1798  * Free pages to buddy allocator. Try to free aligned pages in
1799  * pageblock_nr_pages sizes.
1800  */
1801 static void __init deferred_free_pages(unsigned long pfn,
1802 				       unsigned long end_pfn)
1803 {
1804 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1805 	unsigned long nr_free = 0;
1806 
1807 	for (; pfn < end_pfn; pfn++) {
1808 		if (!deferred_pfn_valid(pfn)) {
1809 			deferred_free_range(pfn - nr_free, nr_free);
1810 			nr_free = 0;
1811 		} else if (!(pfn & nr_pgmask)) {
1812 			deferred_free_range(pfn - nr_free, nr_free);
1813 			nr_free = 1;
1814 		} else {
1815 			nr_free++;
1816 		}
1817 	}
1818 	/* Free the last block of pages to allocator */
1819 	deferred_free_range(pfn - nr_free, nr_free);
1820 }
1821 
1822 /*
1823  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1824  * by performing it only once every pageblock_nr_pages.
1825  * Return number of pages initialized.
1826  */
1827 static unsigned long  __init deferred_init_pages(struct zone *zone,
1828 						 unsigned long pfn,
1829 						 unsigned long end_pfn)
1830 {
1831 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1832 	int nid = zone_to_nid(zone);
1833 	unsigned long nr_pages = 0;
1834 	int zid = zone_idx(zone);
1835 	struct page *page = NULL;
1836 
1837 	for (; pfn < end_pfn; pfn++) {
1838 		if (!deferred_pfn_valid(pfn)) {
1839 			page = NULL;
1840 			continue;
1841 		} else if (!page || !(pfn & nr_pgmask)) {
1842 			page = pfn_to_page(pfn);
1843 		} else {
1844 			page++;
1845 		}
1846 		__init_single_page(page, pfn, zid, nid);
1847 		nr_pages++;
1848 	}
1849 	return (nr_pages);
1850 }
1851 
1852 /*
1853  * This function is meant to pre-load the iterator for the zone init.
1854  * Specifically it walks through the ranges until we are caught up to the
1855  * first_init_pfn value and exits there. If we never encounter the value we
1856  * return false indicating there are no valid ranges left.
1857  */
1858 static bool __init
1859 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1860 				    unsigned long *spfn, unsigned long *epfn,
1861 				    unsigned long first_init_pfn)
1862 {
1863 	u64 j;
1864 
1865 	/*
1866 	 * Start out by walking through the ranges in this zone that have
1867 	 * already been initialized. We don't need to do anything with them
1868 	 * so we just need to flush them out of the system.
1869 	 */
1870 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1871 		if (*epfn <= first_init_pfn)
1872 			continue;
1873 		if (*spfn < first_init_pfn)
1874 			*spfn = first_init_pfn;
1875 		*i = j;
1876 		return true;
1877 	}
1878 
1879 	return false;
1880 }
1881 
1882 /*
1883  * Initialize and free pages. We do it in two loops: first we initialize
1884  * struct page, then free to buddy allocator, because while we are
1885  * freeing pages we can access pages that are ahead (computing buddy
1886  * page in __free_one_page()).
1887  *
1888  * In order to try and keep some memory in the cache we have the loop
1889  * broken along max page order boundaries. This way we will not cause
1890  * any issues with the buddy page computation.
1891  */
1892 static unsigned long __init
1893 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1894 		       unsigned long *end_pfn)
1895 {
1896 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1897 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1898 	unsigned long nr_pages = 0;
1899 	u64 j = *i;
1900 
1901 	/* First we loop through and initialize the page values */
1902 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1903 		unsigned long t;
1904 
1905 		if (mo_pfn <= *start_pfn)
1906 			break;
1907 
1908 		t = min(mo_pfn, *end_pfn);
1909 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1910 
1911 		if (mo_pfn < *end_pfn) {
1912 			*start_pfn = mo_pfn;
1913 			break;
1914 		}
1915 	}
1916 
1917 	/* Reset values and now loop through freeing pages as needed */
1918 	swap(j, *i);
1919 
1920 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1921 		unsigned long t;
1922 
1923 		if (mo_pfn <= spfn)
1924 			break;
1925 
1926 		t = min(mo_pfn, epfn);
1927 		deferred_free_pages(spfn, t);
1928 
1929 		if (mo_pfn <= epfn)
1930 			break;
1931 	}
1932 
1933 	return nr_pages;
1934 }
1935 
1936 static void __init
1937 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1938 			   void *arg)
1939 {
1940 	unsigned long spfn, epfn;
1941 	struct zone *zone = arg;
1942 	u64 i;
1943 
1944 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1945 
1946 	/*
1947 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1948 	 * can avoid introducing any issues with the buddy allocator.
1949 	 */
1950 	while (spfn < end_pfn) {
1951 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1952 		cond_resched();
1953 	}
1954 }
1955 
1956 /* An arch may override for more concurrency. */
1957 __weak int __init
1958 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1959 {
1960 	return 1;
1961 }
1962 
1963 /* Initialise remaining memory on a node */
1964 static int __init deferred_init_memmap(void *data)
1965 {
1966 	pg_data_t *pgdat = data;
1967 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1968 	unsigned long spfn = 0, epfn = 0;
1969 	unsigned long first_init_pfn, flags;
1970 	unsigned long start = jiffies;
1971 	struct zone *zone;
1972 	int zid, max_threads;
1973 	u64 i;
1974 
1975 	/* Bind memory initialisation thread to a local node if possible */
1976 	if (!cpumask_empty(cpumask))
1977 		set_cpus_allowed_ptr(current, cpumask);
1978 
1979 	pgdat_resize_lock(pgdat, &flags);
1980 	first_init_pfn = pgdat->first_deferred_pfn;
1981 	if (first_init_pfn == ULONG_MAX) {
1982 		pgdat_resize_unlock(pgdat, &flags);
1983 		pgdat_init_report_one_done();
1984 		return 0;
1985 	}
1986 
1987 	/* Sanity check boundaries */
1988 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1989 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1990 	pgdat->first_deferred_pfn = ULONG_MAX;
1991 
1992 	/*
1993 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1994 	 * interrupt thread must allocate this early in boot, zone must be
1995 	 * pre-grown prior to start of deferred page initialization.
1996 	 */
1997 	pgdat_resize_unlock(pgdat, &flags);
1998 
1999 	/* Only the highest zone is deferred so find it */
2000 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2001 		zone = pgdat->node_zones + zid;
2002 		if (first_init_pfn < zone_end_pfn(zone))
2003 			break;
2004 	}
2005 
2006 	/* If the zone is empty somebody else may have cleared out the zone */
2007 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2008 						 first_init_pfn))
2009 		goto zone_empty;
2010 
2011 	max_threads = deferred_page_init_max_threads(cpumask);
2012 
2013 	while (spfn < epfn) {
2014 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2015 		struct padata_mt_job job = {
2016 			.thread_fn   = deferred_init_memmap_chunk,
2017 			.fn_arg      = zone,
2018 			.start       = spfn,
2019 			.size        = epfn_align - spfn,
2020 			.align       = PAGES_PER_SECTION,
2021 			.min_chunk   = PAGES_PER_SECTION,
2022 			.max_threads = max_threads,
2023 		};
2024 
2025 		padata_do_multithreaded(&job);
2026 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2027 						    epfn_align);
2028 	}
2029 zone_empty:
2030 	/* Sanity check that the next zone really is unpopulated */
2031 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2032 
2033 	pr_info("node %d deferred pages initialised in %ums\n",
2034 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2035 
2036 	pgdat_init_report_one_done();
2037 	return 0;
2038 }
2039 
2040 /*
2041  * If this zone has deferred pages, try to grow it by initializing enough
2042  * deferred pages to satisfy the allocation specified by order, rounded up to
2043  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2044  * of SECTION_SIZE bytes by initializing struct pages in increments of
2045  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2046  *
2047  * Return true when zone was grown, otherwise return false. We return true even
2048  * when we grow less than requested, to let the caller decide if there are
2049  * enough pages to satisfy the allocation.
2050  *
2051  * Note: We use noinline because this function is needed only during boot, and
2052  * it is called from a __ref function _deferred_grow_zone. This way we are
2053  * making sure that it is not inlined into permanent text section.
2054  */
2055 static noinline bool __init
2056 deferred_grow_zone(struct zone *zone, unsigned int order)
2057 {
2058 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2059 	pg_data_t *pgdat = zone->zone_pgdat;
2060 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2061 	unsigned long spfn, epfn, flags;
2062 	unsigned long nr_pages = 0;
2063 	u64 i;
2064 
2065 	/* Only the last zone may have deferred pages */
2066 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2067 		return false;
2068 
2069 	pgdat_resize_lock(pgdat, &flags);
2070 
2071 	/*
2072 	 * If someone grew this zone while we were waiting for spinlock, return
2073 	 * true, as there might be enough pages already.
2074 	 */
2075 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2076 		pgdat_resize_unlock(pgdat, &flags);
2077 		return true;
2078 	}
2079 
2080 	/* If the zone is empty somebody else may have cleared out the zone */
2081 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2082 						 first_deferred_pfn)) {
2083 		pgdat->first_deferred_pfn = ULONG_MAX;
2084 		pgdat_resize_unlock(pgdat, &flags);
2085 		/* Retry only once. */
2086 		return first_deferred_pfn != ULONG_MAX;
2087 	}
2088 
2089 	/*
2090 	 * Initialize and free pages in MAX_ORDER sized increments so
2091 	 * that we can avoid introducing any issues with the buddy
2092 	 * allocator.
2093 	 */
2094 	while (spfn < epfn) {
2095 		/* update our first deferred PFN for this section */
2096 		first_deferred_pfn = spfn;
2097 
2098 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2099 		touch_nmi_watchdog();
2100 
2101 		/* We should only stop along section boundaries */
2102 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2103 			continue;
2104 
2105 		/* If our quota has been met we can stop here */
2106 		if (nr_pages >= nr_pages_needed)
2107 			break;
2108 	}
2109 
2110 	pgdat->first_deferred_pfn = spfn;
2111 	pgdat_resize_unlock(pgdat, &flags);
2112 
2113 	return nr_pages > 0;
2114 }
2115 
2116 /*
2117  * deferred_grow_zone() is __init, but it is called from
2118  * get_page_from_freelist() during early boot until deferred_pages permanently
2119  * disables this call. This is why we have refdata wrapper to avoid warning,
2120  * and to ensure that the function body gets unloaded.
2121  */
2122 static bool __ref
2123 _deferred_grow_zone(struct zone *zone, unsigned int order)
2124 {
2125 	return deferred_grow_zone(zone, order);
2126 }
2127 
2128 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2129 
2130 void __init page_alloc_init_late(void)
2131 {
2132 	struct zone *zone;
2133 	int nid;
2134 
2135 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2136 
2137 	/* There will be num_node_state(N_MEMORY) threads */
2138 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2139 	for_each_node_state(nid, N_MEMORY) {
2140 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2141 	}
2142 
2143 	/* Block until all are initialised */
2144 	wait_for_completion(&pgdat_init_all_done_comp);
2145 
2146 	/*
2147 	 * We initialized the rest of the deferred pages.  Permanently disable
2148 	 * on-demand struct page initialization.
2149 	 */
2150 	static_branch_disable(&deferred_pages);
2151 
2152 	/* Reinit limits that are based on free pages after the kernel is up */
2153 	files_maxfiles_init();
2154 #endif
2155 
2156 	buffer_init();
2157 
2158 	/* Discard memblock private memory */
2159 	memblock_discard();
2160 
2161 	for_each_node_state(nid, N_MEMORY)
2162 		shuffle_free_memory(NODE_DATA(nid));
2163 
2164 	for_each_populated_zone(zone)
2165 		set_zone_contiguous(zone);
2166 }
2167 
2168 #ifdef CONFIG_CMA
2169 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2170 void __init init_cma_reserved_pageblock(struct page *page)
2171 {
2172 	unsigned i = pageblock_nr_pages;
2173 	struct page *p = page;
2174 
2175 	do {
2176 		__ClearPageReserved(p);
2177 		set_page_count(p, 0);
2178 	} while (++p, --i);
2179 
2180 	set_pageblock_migratetype(page, MIGRATE_CMA);
2181 	set_page_refcounted(page);
2182 	__free_pages(page, pageblock_order);
2183 
2184 	adjust_managed_page_count(page, pageblock_nr_pages);
2185 	page_zone(page)->cma_pages += pageblock_nr_pages;
2186 }
2187 #endif
2188 
2189 /*
2190  * The order of subdivision here is critical for the IO subsystem.
2191  * Please do not alter this order without good reasons and regression
2192  * testing. Specifically, as large blocks of memory are subdivided,
2193  * the order in which smaller blocks are delivered depends on the order
2194  * they're subdivided in this function. This is the primary factor
2195  * influencing the order in which pages are delivered to the IO
2196  * subsystem according to empirical testing, and this is also justified
2197  * by considering the behavior of a buddy system containing a single
2198  * large block of memory acted on by a series of small allocations.
2199  * This behavior is a critical factor in sglist merging's success.
2200  *
2201  * -- nyc
2202  */
2203 static inline void expand(struct zone *zone, struct page *page,
2204 	int low, int high, int migratetype)
2205 {
2206 	unsigned long size = 1 << high;
2207 
2208 	while (high > low) {
2209 		high--;
2210 		size >>= 1;
2211 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2212 
2213 		/*
2214 		 * Mark as guard pages (or page), that will allow to
2215 		 * merge back to allocator when buddy will be freed.
2216 		 * Corresponding page table entries will not be touched,
2217 		 * pages will stay not present in virtual address space
2218 		 */
2219 		if (set_page_guard(zone, &page[size], high, migratetype))
2220 			continue;
2221 
2222 		add_to_free_list(&page[size], zone, high, migratetype);
2223 		set_buddy_order(&page[size], high);
2224 	}
2225 }
2226 
2227 static void check_new_page_bad(struct page *page)
2228 {
2229 	if (unlikely(page->flags & __PG_HWPOISON)) {
2230 		/* Don't complain about hwpoisoned pages */
2231 		page_mapcount_reset(page); /* remove PageBuddy */
2232 		return;
2233 	}
2234 
2235 	bad_page(page,
2236 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2237 }
2238 
2239 /*
2240  * This page is about to be returned from the page allocator
2241  */
2242 static inline int check_new_page(struct page *page)
2243 {
2244 	if (likely(page_expected_state(page,
2245 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2246 		return 0;
2247 
2248 	check_new_page_bad(page);
2249 	return 1;
2250 }
2251 
2252 static bool check_new_pages(struct page *page, unsigned int order)
2253 {
2254 	int i;
2255 	for (i = 0; i < (1 << order); i++) {
2256 		struct page *p = page + i;
2257 
2258 		if (unlikely(check_new_page(p)))
2259 			return true;
2260 	}
2261 
2262 	return false;
2263 }
2264 
2265 #ifdef CONFIG_DEBUG_VM
2266 /*
2267  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2268  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2269  * also checked when pcp lists are refilled from the free lists.
2270  */
2271 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2272 {
2273 	if (debug_pagealloc_enabled_static())
2274 		return check_new_pages(page, order);
2275 	else
2276 		return false;
2277 }
2278 
2279 static inline bool check_new_pcp(struct page *page, unsigned int order)
2280 {
2281 	return check_new_pages(page, order);
2282 }
2283 #else
2284 /*
2285  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2286  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2287  * enabled, they are also checked when being allocated from the pcp lists.
2288  */
2289 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2290 {
2291 	return check_new_pages(page, order);
2292 }
2293 static inline bool check_new_pcp(struct page *page, unsigned int order)
2294 {
2295 	if (debug_pagealloc_enabled_static())
2296 		return check_new_pages(page, order);
2297 	else
2298 		return false;
2299 }
2300 #endif /* CONFIG_DEBUG_VM */
2301 
2302 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2303 {
2304 	/* Don't skip if a software KASAN mode is enabled. */
2305 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2306 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2307 		return false;
2308 
2309 	/* Skip, if hardware tag-based KASAN is not enabled. */
2310 	if (!kasan_hw_tags_enabled())
2311 		return true;
2312 
2313 	/*
2314 	 * With hardware tag-based KASAN enabled, skip if either:
2315 	 *
2316 	 * 1. Memory tags have already been cleared via tag_clear_highpage().
2317 	 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2318 	 */
2319 	return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2320 }
2321 
2322 static inline bool should_skip_init(gfp_t flags)
2323 {
2324 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2325 	if (!kasan_hw_tags_enabled())
2326 		return false;
2327 
2328 	/* For hardware tag-based KASAN, skip if requested. */
2329 	return (flags & __GFP_SKIP_ZERO);
2330 }
2331 
2332 inline void post_alloc_hook(struct page *page, unsigned int order,
2333 				gfp_t gfp_flags)
2334 {
2335 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2336 			!should_skip_init(gfp_flags);
2337 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2338 
2339 	set_page_private(page, 0);
2340 	set_page_refcounted(page);
2341 
2342 	arch_alloc_page(page, order);
2343 	debug_pagealloc_map_pages(page, 1 << order);
2344 
2345 	/*
2346 	 * Page unpoisoning must happen before memory initialization.
2347 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2348 	 * allocations and the page unpoisoning code will complain.
2349 	 */
2350 	kernel_unpoison_pages(page, 1 << order);
2351 
2352 	/*
2353 	 * As memory initialization might be integrated into KASAN,
2354 	 * KASAN unpoisoning and memory initializion code must be
2355 	 * kept together to avoid discrepancies in behavior.
2356 	 */
2357 
2358 	/*
2359 	 * If memory tags should be zeroed (which happens only when memory
2360 	 * should be initialized as well).
2361 	 */
2362 	if (init_tags) {
2363 		int i;
2364 
2365 		/* Initialize both memory and tags. */
2366 		for (i = 0; i != 1 << order; ++i)
2367 			tag_clear_highpage(page + i);
2368 
2369 		/* Note that memory is already initialized by the loop above. */
2370 		init = false;
2371 	}
2372 	if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2373 		/* Unpoison shadow memory or set memory tags. */
2374 		kasan_unpoison_pages(page, order, init);
2375 
2376 		/* Note that memory is already initialized by KASAN. */
2377 		if (kasan_has_integrated_init())
2378 			init = false;
2379 	}
2380 	/* If memory is still not initialized, do it now. */
2381 	if (init)
2382 		kernel_init_free_pages(page, 1 << order);
2383 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2384 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2385 		SetPageSkipKASanPoison(page);
2386 
2387 	set_page_owner(page, order, gfp_flags);
2388 	page_table_check_alloc(page, order);
2389 }
2390 
2391 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2392 							unsigned int alloc_flags)
2393 {
2394 	post_alloc_hook(page, order, gfp_flags);
2395 
2396 	if (order && (gfp_flags & __GFP_COMP))
2397 		prep_compound_page(page, order);
2398 
2399 	/*
2400 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2401 	 * allocate the page. The expectation is that the caller is taking
2402 	 * steps that will free more memory. The caller should avoid the page
2403 	 * being used for !PFMEMALLOC purposes.
2404 	 */
2405 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2406 		set_page_pfmemalloc(page);
2407 	else
2408 		clear_page_pfmemalloc(page);
2409 }
2410 
2411 /*
2412  * Go through the free lists for the given migratetype and remove
2413  * the smallest available page from the freelists
2414  */
2415 static __always_inline
2416 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2417 						int migratetype)
2418 {
2419 	unsigned int current_order;
2420 	struct free_area *area;
2421 	struct page *page;
2422 
2423 	/* Find a page of the appropriate size in the preferred list */
2424 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2425 		area = &(zone->free_area[current_order]);
2426 		page = get_page_from_free_area(area, migratetype);
2427 		if (!page)
2428 			continue;
2429 		del_page_from_free_list(page, zone, current_order);
2430 		expand(zone, page, order, current_order, migratetype);
2431 		set_pcppage_migratetype(page, migratetype);
2432 		return page;
2433 	}
2434 
2435 	return NULL;
2436 }
2437 
2438 
2439 /*
2440  * This array describes the order lists are fallen back to when
2441  * the free lists for the desirable migrate type are depleted
2442  *
2443  * The other migratetypes do not have fallbacks.
2444  */
2445 static int fallbacks[MIGRATE_TYPES][3] = {
2446 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2447 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2448 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2449 };
2450 
2451 #ifdef CONFIG_CMA
2452 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2453 					unsigned int order)
2454 {
2455 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2456 }
2457 #else
2458 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2459 					unsigned int order) { return NULL; }
2460 #endif
2461 
2462 /*
2463  * Move the free pages in a range to the freelist tail of the requested type.
2464  * Note that start_page and end_pages are not aligned on a pageblock
2465  * boundary. If alignment is required, use move_freepages_block()
2466  */
2467 static int move_freepages(struct zone *zone,
2468 			  unsigned long start_pfn, unsigned long end_pfn,
2469 			  int migratetype, int *num_movable)
2470 {
2471 	struct page *page;
2472 	unsigned long pfn;
2473 	unsigned int order;
2474 	int pages_moved = 0;
2475 
2476 	for (pfn = start_pfn; pfn <= end_pfn;) {
2477 		page = pfn_to_page(pfn);
2478 		if (!PageBuddy(page)) {
2479 			/*
2480 			 * We assume that pages that could be isolated for
2481 			 * migration are movable. But we don't actually try
2482 			 * isolating, as that would be expensive.
2483 			 */
2484 			if (num_movable &&
2485 					(PageLRU(page) || __PageMovable(page)))
2486 				(*num_movable)++;
2487 			pfn++;
2488 			continue;
2489 		}
2490 
2491 		/* Make sure we are not inadvertently changing nodes */
2492 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2493 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2494 
2495 		order = buddy_order(page);
2496 		move_to_free_list(page, zone, order, migratetype);
2497 		pfn += 1 << order;
2498 		pages_moved += 1 << order;
2499 	}
2500 
2501 	return pages_moved;
2502 }
2503 
2504 int move_freepages_block(struct zone *zone, struct page *page,
2505 				int migratetype, int *num_movable)
2506 {
2507 	unsigned long start_pfn, end_pfn, pfn;
2508 
2509 	if (num_movable)
2510 		*num_movable = 0;
2511 
2512 	pfn = page_to_pfn(page);
2513 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2514 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2515 
2516 	/* Do not cross zone boundaries */
2517 	if (!zone_spans_pfn(zone, start_pfn))
2518 		start_pfn = pfn;
2519 	if (!zone_spans_pfn(zone, end_pfn))
2520 		return 0;
2521 
2522 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2523 								num_movable);
2524 }
2525 
2526 static void change_pageblock_range(struct page *pageblock_page,
2527 					int start_order, int migratetype)
2528 {
2529 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2530 
2531 	while (nr_pageblocks--) {
2532 		set_pageblock_migratetype(pageblock_page, migratetype);
2533 		pageblock_page += pageblock_nr_pages;
2534 	}
2535 }
2536 
2537 /*
2538  * When we are falling back to another migratetype during allocation, try to
2539  * steal extra free pages from the same pageblocks to satisfy further
2540  * allocations, instead of polluting multiple pageblocks.
2541  *
2542  * If we are stealing a relatively large buddy page, it is likely there will
2543  * be more free pages in the pageblock, so try to steal them all. For
2544  * reclaimable and unmovable allocations, we steal regardless of page size,
2545  * as fragmentation caused by those allocations polluting movable pageblocks
2546  * is worse than movable allocations stealing from unmovable and reclaimable
2547  * pageblocks.
2548  */
2549 static bool can_steal_fallback(unsigned int order, int start_mt)
2550 {
2551 	/*
2552 	 * Leaving this order check is intended, although there is
2553 	 * relaxed order check in next check. The reason is that
2554 	 * we can actually steal whole pageblock if this condition met,
2555 	 * but, below check doesn't guarantee it and that is just heuristic
2556 	 * so could be changed anytime.
2557 	 */
2558 	if (order >= pageblock_order)
2559 		return true;
2560 
2561 	if (order >= pageblock_order / 2 ||
2562 		start_mt == MIGRATE_RECLAIMABLE ||
2563 		start_mt == MIGRATE_UNMOVABLE ||
2564 		page_group_by_mobility_disabled)
2565 		return true;
2566 
2567 	return false;
2568 }
2569 
2570 static inline bool boost_watermark(struct zone *zone)
2571 {
2572 	unsigned long max_boost;
2573 
2574 	if (!watermark_boost_factor)
2575 		return false;
2576 	/*
2577 	 * Don't bother in zones that are unlikely to produce results.
2578 	 * On small machines, including kdump capture kernels running
2579 	 * in a small area, boosting the watermark can cause an out of
2580 	 * memory situation immediately.
2581 	 */
2582 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2583 		return false;
2584 
2585 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2586 			watermark_boost_factor, 10000);
2587 
2588 	/*
2589 	 * high watermark may be uninitialised if fragmentation occurs
2590 	 * very early in boot so do not boost. We do not fall
2591 	 * through and boost by pageblock_nr_pages as failing
2592 	 * allocations that early means that reclaim is not going
2593 	 * to help and it may even be impossible to reclaim the
2594 	 * boosted watermark resulting in a hang.
2595 	 */
2596 	if (!max_boost)
2597 		return false;
2598 
2599 	max_boost = max(pageblock_nr_pages, max_boost);
2600 
2601 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2602 		max_boost);
2603 
2604 	return true;
2605 }
2606 
2607 /*
2608  * This function implements actual steal behaviour. If order is large enough,
2609  * we can steal whole pageblock. If not, we first move freepages in this
2610  * pageblock to our migratetype and determine how many already-allocated pages
2611  * are there in the pageblock with a compatible migratetype. If at least half
2612  * of pages are free or compatible, we can change migratetype of the pageblock
2613  * itself, so pages freed in the future will be put on the correct free list.
2614  */
2615 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2616 		unsigned int alloc_flags, int start_type, bool whole_block)
2617 {
2618 	unsigned int current_order = buddy_order(page);
2619 	int free_pages, movable_pages, alike_pages;
2620 	int old_block_type;
2621 
2622 	old_block_type = get_pageblock_migratetype(page);
2623 
2624 	/*
2625 	 * This can happen due to races and we want to prevent broken
2626 	 * highatomic accounting.
2627 	 */
2628 	if (is_migrate_highatomic(old_block_type))
2629 		goto single_page;
2630 
2631 	/* Take ownership for orders >= pageblock_order */
2632 	if (current_order >= pageblock_order) {
2633 		change_pageblock_range(page, current_order, start_type);
2634 		goto single_page;
2635 	}
2636 
2637 	/*
2638 	 * Boost watermarks to increase reclaim pressure to reduce the
2639 	 * likelihood of future fallbacks. Wake kswapd now as the node
2640 	 * may be balanced overall and kswapd will not wake naturally.
2641 	 */
2642 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2643 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2644 
2645 	/* We are not allowed to try stealing from the whole block */
2646 	if (!whole_block)
2647 		goto single_page;
2648 
2649 	free_pages = move_freepages_block(zone, page, start_type,
2650 						&movable_pages);
2651 	/*
2652 	 * Determine how many pages are compatible with our allocation.
2653 	 * For movable allocation, it's the number of movable pages which
2654 	 * we just obtained. For other types it's a bit more tricky.
2655 	 */
2656 	if (start_type == MIGRATE_MOVABLE) {
2657 		alike_pages = movable_pages;
2658 	} else {
2659 		/*
2660 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2661 		 * to MOVABLE pageblock, consider all non-movable pages as
2662 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2663 		 * vice versa, be conservative since we can't distinguish the
2664 		 * exact migratetype of non-movable pages.
2665 		 */
2666 		if (old_block_type == MIGRATE_MOVABLE)
2667 			alike_pages = pageblock_nr_pages
2668 						- (free_pages + movable_pages);
2669 		else
2670 			alike_pages = 0;
2671 	}
2672 
2673 	/* moving whole block can fail due to zone boundary conditions */
2674 	if (!free_pages)
2675 		goto single_page;
2676 
2677 	/*
2678 	 * If a sufficient number of pages in the block are either free or of
2679 	 * comparable migratability as our allocation, claim the whole block.
2680 	 */
2681 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2682 			page_group_by_mobility_disabled)
2683 		set_pageblock_migratetype(page, start_type);
2684 
2685 	return;
2686 
2687 single_page:
2688 	move_to_free_list(page, zone, current_order, start_type);
2689 }
2690 
2691 /*
2692  * Check whether there is a suitable fallback freepage with requested order.
2693  * If only_stealable is true, this function returns fallback_mt only if
2694  * we can steal other freepages all together. This would help to reduce
2695  * fragmentation due to mixed migratetype pages in one pageblock.
2696  */
2697 int find_suitable_fallback(struct free_area *area, unsigned int order,
2698 			int migratetype, bool only_stealable, bool *can_steal)
2699 {
2700 	int i;
2701 	int fallback_mt;
2702 
2703 	if (area->nr_free == 0)
2704 		return -1;
2705 
2706 	*can_steal = false;
2707 	for (i = 0;; i++) {
2708 		fallback_mt = fallbacks[migratetype][i];
2709 		if (fallback_mt == MIGRATE_TYPES)
2710 			break;
2711 
2712 		if (free_area_empty(area, fallback_mt))
2713 			continue;
2714 
2715 		if (can_steal_fallback(order, migratetype))
2716 			*can_steal = true;
2717 
2718 		if (!only_stealable)
2719 			return fallback_mt;
2720 
2721 		if (*can_steal)
2722 			return fallback_mt;
2723 	}
2724 
2725 	return -1;
2726 }
2727 
2728 /*
2729  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2730  * there are no empty page blocks that contain a page with a suitable order
2731  */
2732 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2733 				unsigned int alloc_order)
2734 {
2735 	int mt;
2736 	unsigned long max_managed, flags;
2737 
2738 	/*
2739 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2740 	 * Check is race-prone but harmless.
2741 	 */
2742 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2743 	if (zone->nr_reserved_highatomic >= max_managed)
2744 		return;
2745 
2746 	spin_lock_irqsave(&zone->lock, flags);
2747 
2748 	/* Recheck the nr_reserved_highatomic limit under the lock */
2749 	if (zone->nr_reserved_highatomic >= max_managed)
2750 		goto out_unlock;
2751 
2752 	/* Yoink! */
2753 	mt = get_pageblock_migratetype(page);
2754 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2755 	if (migratetype_is_mergeable(mt)) {
2756 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2757 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2758 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2759 	}
2760 
2761 out_unlock:
2762 	spin_unlock_irqrestore(&zone->lock, flags);
2763 }
2764 
2765 /*
2766  * Used when an allocation is about to fail under memory pressure. This
2767  * potentially hurts the reliability of high-order allocations when under
2768  * intense memory pressure but failed atomic allocations should be easier
2769  * to recover from than an OOM.
2770  *
2771  * If @force is true, try to unreserve a pageblock even though highatomic
2772  * pageblock is exhausted.
2773  */
2774 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2775 						bool force)
2776 {
2777 	struct zonelist *zonelist = ac->zonelist;
2778 	unsigned long flags;
2779 	struct zoneref *z;
2780 	struct zone *zone;
2781 	struct page *page;
2782 	int order;
2783 	bool ret;
2784 
2785 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2786 								ac->nodemask) {
2787 		/*
2788 		 * Preserve at least one pageblock unless memory pressure
2789 		 * is really high.
2790 		 */
2791 		if (!force && zone->nr_reserved_highatomic <=
2792 					pageblock_nr_pages)
2793 			continue;
2794 
2795 		spin_lock_irqsave(&zone->lock, flags);
2796 		for (order = 0; order < MAX_ORDER; order++) {
2797 			struct free_area *area = &(zone->free_area[order]);
2798 
2799 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2800 			if (!page)
2801 				continue;
2802 
2803 			/*
2804 			 * In page freeing path, migratetype change is racy so
2805 			 * we can counter several free pages in a pageblock
2806 			 * in this loop although we changed the pageblock type
2807 			 * from highatomic to ac->migratetype. So we should
2808 			 * adjust the count once.
2809 			 */
2810 			if (is_migrate_highatomic_page(page)) {
2811 				/*
2812 				 * It should never happen but changes to
2813 				 * locking could inadvertently allow a per-cpu
2814 				 * drain to add pages to MIGRATE_HIGHATOMIC
2815 				 * while unreserving so be safe and watch for
2816 				 * underflows.
2817 				 */
2818 				zone->nr_reserved_highatomic -= min(
2819 						pageblock_nr_pages,
2820 						zone->nr_reserved_highatomic);
2821 			}
2822 
2823 			/*
2824 			 * Convert to ac->migratetype and avoid the normal
2825 			 * pageblock stealing heuristics. Minimally, the caller
2826 			 * is doing the work and needs the pages. More
2827 			 * importantly, if the block was always converted to
2828 			 * MIGRATE_UNMOVABLE or another type then the number
2829 			 * of pageblocks that cannot be completely freed
2830 			 * may increase.
2831 			 */
2832 			set_pageblock_migratetype(page, ac->migratetype);
2833 			ret = move_freepages_block(zone, page, ac->migratetype,
2834 									NULL);
2835 			if (ret) {
2836 				spin_unlock_irqrestore(&zone->lock, flags);
2837 				return ret;
2838 			}
2839 		}
2840 		spin_unlock_irqrestore(&zone->lock, flags);
2841 	}
2842 
2843 	return false;
2844 }
2845 
2846 /*
2847  * Try finding a free buddy page on the fallback list and put it on the free
2848  * list of requested migratetype, possibly along with other pages from the same
2849  * block, depending on fragmentation avoidance heuristics. Returns true if
2850  * fallback was found so that __rmqueue_smallest() can grab it.
2851  *
2852  * The use of signed ints for order and current_order is a deliberate
2853  * deviation from the rest of this file, to make the for loop
2854  * condition simpler.
2855  */
2856 static __always_inline bool
2857 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2858 						unsigned int alloc_flags)
2859 {
2860 	struct free_area *area;
2861 	int current_order;
2862 	int min_order = order;
2863 	struct page *page;
2864 	int fallback_mt;
2865 	bool can_steal;
2866 
2867 	/*
2868 	 * Do not steal pages from freelists belonging to other pageblocks
2869 	 * i.e. orders < pageblock_order. If there are no local zones free,
2870 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2871 	 */
2872 	if (alloc_flags & ALLOC_NOFRAGMENT)
2873 		min_order = pageblock_order;
2874 
2875 	/*
2876 	 * Find the largest available free page in the other list. This roughly
2877 	 * approximates finding the pageblock with the most free pages, which
2878 	 * would be too costly to do exactly.
2879 	 */
2880 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2881 				--current_order) {
2882 		area = &(zone->free_area[current_order]);
2883 		fallback_mt = find_suitable_fallback(area, current_order,
2884 				start_migratetype, false, &can_steal);
2885 		if (fallback_mt == -1)
2886 			continue;
2887 
2888 		/*
2889 		 * We cannot steal all free pages from the pageblock and the
2890 		 * requested migratetype is movable. In that case it's better to
2891 		 * steal and split the smallest available page instead of the
2892 		 * largest available page, because even if the next movable
2893 		 * allocation falls back into a different pageblock than this
2894 		 * one, it won't cause permanent fragmentation.
2895 		 */
2896 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2897 					&& current_order > order)
2898 			goto find_smallest;
2899 
2900 		goto do_steal;
2901 	}
2902 
2903 	return false;
2904 
2905 find_smallest:
2906 	for (current_order = order; current_order < MAX_ORDER;
2907 							current_order++) {
2908 		area = &(zone->free_area[current_order]);
2909 		fallback_mt = find_suitable_fallback(area, current_order,
2910 				start_migratetype, false, &can_steal);
2911 		if (fallback_mt != -1)
2912 			break;
2913 	}
2914 
2915 	/*
2916 	 * This should not happen - we already found a suitable fallback
2917 	 * when looking for the largest page.
2918 	 */
2919 	VM_BUG_ON(current_order == MAX_ORDER);
2920 
2921 do_steal:
2922 	page = get_page_from_free_area(area, fallback_mt);
2923 
2924 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2925 								can_steal);
2926 
2927 	trace_mm_page_alloc_extfrag(page, order, current_order,
2928 		start_migratetype, fallback_mt);
2929 
2930 	return true;
2931 
2932 }
2933 
2934 /*
2935  * Do the hard work of removing an element from the buddy allocator.
2936  * Call me with the zone->lock already held.
2937  */
2938 static __always_inline struct page *
2939 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2940 						unsigned int alloc_flags)
2941 {
2942 	struct page *page;
2943 
2944 	if (IS_ENABLED(CONFIG_CMA)) {
2945 		/*
2946 		 * Balance movable allocations between regular and CMA areas by
2947 		 * allocating from CMA when over half of the zone's free memory
2948 		 * is in the CMA area.
2949 		 */
2950 		if (alloc_flags & ALLOC_CMA &&
2951 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2952 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2953 			page = __rmqueue_cma_fallback(zone, order);
2954 			if (page)
2955 				goto out;
2956 		}
2957 	}
2958 retry:
2959 	page = __rmqueue_smallest(zone, order, migratetype);
2960 	if (unlikely(!page)) {
2961 		if (alloc_flags & ALLOC_CMA)
2962 			page = __rmqueue_cma_fallback(zone, order);
2963 
2964 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2965 								alloc_flags))
2966 			goto retry;
2967 	}
2968 out:
2969 	if (page)
2970 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2971 	return page;
2972 }
2973 
2974 /*
2975  * Obtain a specified number of elements from the buddy allocator, all under
2976  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2977  * Returns the number of new pages which were placed at *list.
2978  */
2979 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2980 			unsigned long count, struct list_head *list,
2981 			int migratetype, unsigned int alloc_flags)
2982 {
2983 	int i, allocated = 0;
2984 
2985 	/*
2986 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
2987 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
2988 	 */
2989 	spin_lock(&zone->lock);
2990 	for (i = 0; i < count; ++i) {
2991 		struct page *page = __rmqueue(zone, order, migratetype,
2992 								alloc_flags);
2993 		if (unlikely(page == NULL))
2994 			break;
2995 
2996 		if (unlikely(check_pcp_refill(page, order)))
2997 			continue;
2998 
2999 		/*
3000 		 * Split buddy pages returned by expand() are received here in
3001 		 * physical page order. The page is added to the tail of
3002 		 * caller's list. From the callers perspective, the linked list
3003 		 * is ordered by page number under some conditions. This is
3004 		 * useful for IO devices that can forward direction from the
3005 		 * head, thus also in the physical page order. This is useful
3006 		 * for IO devices that can merge IO requests if the physical
3007 		 * pages are ordered properly.
3008 		 */
3009 		list_add_tail(&page->lru, list);
3010 		allocated++;
3011 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3012 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3013 					      -(1 << order));
3014 	}
3015 
3016 	/*
3017 	 * i pages were removed from the buddy list even if some leak due
3018 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3019 	 * on i. Do not confuse with 'allocated' which is the number of
3020 	 * pages added to the pcp list.
3021 	 */
3022 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3023 	spin_unlock(&zone->lock);
3024 	return allocated;
3025 }
3026 
3027 #ifdef CONFIG_NUMA
3028 /*
3029  * Called from the vmstat counter updater to drain pagesets of this
3030  * currently executing processor on remote nodes after they have
3031  * expired.
3032  *
3033  * Note that this function must be called with the thread pinned to
3034  * a single processor.
3035  */
3036 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3037 {
3038 	unsigned long flags;
3039 	int to_drain, batch;
3040 
3041 	local_lock_irqsave(&pagesets.lock, flags);
3042 	batch = READ_ONCE(pcp->batch);
3043 	to_drain = min(pcp->count, batch);
3044 	if (to_drain > 0)
3045 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3046 	local_unlock_irqrestore(&pagesets.lock, flags);
3047 }
3048 #endif
3049 
3050 /*
3051  * Drain pcplists of the indicated processor and zone.
3052  *
3053  * The processor must either be the current processor and the
3054  * thread pinned to the current processor or a processor that
3055  * is not online.
3056  */
3057 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3058 {
3059 	unsigned long flags;
3060 	struct per_cpu_pages *pcp;
3061 
3062 	local_lock_irqsave(&pagesets.lock, flags);
3063 
3064 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3065 	if (pcp->count)
3066 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3067 
3068 	local_unlock_irqrestore(&pagesets.lock, flags);
3069 }
3070 
3071 /*
3072  * Drain pcplists of all zones on the indicated processor.
3073  *
3074  * The processor must either be the current processor and the
3075  * thread pinned to the current processor or a processor that
3076  * is not online.
3077  */
3078 static void drain_pages(unsigned int cpu)
3079 {
3080 	struct zone *zone;
3081 
3082 	for_each_populated_zone(zone) {
3083 		drain_pages_zone(cpu, zone);
3084 	}
3085 }
3086 
3087 /*
3088  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3089  *
3090  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3091  * the single zone's pages.
3092  */
3093 void drain_local_pages(struct zone *zone)
3094 {
3095 	int cpu = smp_processor_id();
3096 
3097 	if (zone)
3098 		drain_pages_zone(cpu, zone);
3099 	else
3100 		drain_pages(cpu);
3101 }
3102 
3103 static void drain_local_pages_wq(struct work_struct *work)
3104 {
3105 	struct pcpu_drain *drain;
3106 
3107 	drain = container_of(work, struct pcpu_drain, work);
3108 
3109 	/*
3110 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3111 	 * we can race with cpu offline when the WQ can move this from
3112 	 * a cpu pinned worker to an unbound one. We can operate on a different
3113 	 * cpu which is alright but we also have to make sure to not move to
3114 	 * a different one.
3115 	 */
3116 	migrate_disable();
3117 	drain_local_pages(drain->zone);
3118 	migrate_enable();
3119 }
3120 
3121 /*
3122  * The implementation of drain_all_pages(), exposing an extra parameter to
3123  * drain on all cpus.
3124  *
3125  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3126  * not empty. The check for non-emptiness can however race with a free to
3127  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3128  * that need the guarantee that every CPU has drained can disable the
3129  * optimizing racy check.
3130  */
3131 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3132 {
3133 	int cpu;
3134 
3135 	/*
3136 	 * Allocate in the BSS so we won't require allocation in
3137 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3138 	 */
3139 	static cpumask_t cpus_with_pcps;
3140 
3141 	/*
3142 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3143 	 * initialized.
3144 	 */
3145 	if (WARN_ON_ONCE(!mm_percpu_wq))
3146 		return;
3147 
3148 	/*
3149 	 * Do not drain if one is already in progress unless it's specific to
3150 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3151 	 * the drain to be complete when the call returns.
3152 	 */
3153 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3154 		if (!zone)
3155 			return;
3156 		mutex_lock(&pcpu_drain_mutex);
3157 	}
3158 
3159 	/*
3160 	 * We don't care about racing with CPU hotplug event
3161 	 * as offline notification will cause the notified
3162 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3163 	 * disables preemption as part of its processing
3164 	 */
3165 	for_each_online_cpu(cpu) {
3166 		struct per_cpu_pages *pcp;
3167 		struct zone *z;
3168 		bool has_pcps = false;
3169 
3170 		if (force_all_cpus) {
3171 			/*
3172 			 * The pcp.count check is racy, some callers need a
3173 			 * guarantee that no cpu is missed.
3174 			 */
3175 			has_pcps = true;
3176 		} else if (zone) {
3177 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3178 			if (pcp->count)
3179 				has_pcps = true;
3180 		} else {
3181 			for_each_populated_zone(z) {
3182 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3183 				if (pcp->count) {
3184 					has_pcps = true;
3185 					break;
3186 				}
3187 			}
3188 		}
3189 
3190 		if (has_pcps)
3191 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3192 		else
3193 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3194 	}
3195 
3196 	for_each_cpu(cpu, &cpus_with_pcps) {
3197 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3198 
3199 		drain->zone = zone;
3200 		INIT_WORK(&drain->work, drain_local_pages_wq);
3201 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3202 	}
3203 	for_each_cpu(cpu, &cpus_with_pcps)
3204 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3205 
3206 	mutex_unlock(&pcpu_drain_mutex);
3207 }
3208 
3209 /*
3210  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3211  *
3212  * When zone parameter is non-NULL, spill just the single zone's pages.
3213  *
3214  * Note that this can be extremely slow as the draining happens in a workqueue.
3215  */
3216 void drain_all_pages(struct zone *zone)
3217 {
3218 	__drain_all_pages(zone, false);
3219 }
3220 
3221 #ifdef CONFIG_HIBERNATION
3222 
3223 /*
3224  * Touch the watchdog for every WD_PAGE_COUNT pages.
3225  */
3226 #define WD_PAGE_COUNT	(128*1024)
3227 
3228 void mark_free_pages(struct zone *zone)
3229 {
3230 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3231 	unsigned long flags;
3232 	unsigned int order, t;
3233 	struct page *page;
3234 
3235 	if (zone_is_empty(zone))
3236 		return;
3237 
3238 	spin_lock_irqsave(&zone->lock, flags);
3239 
3240 	max_zone_pfn = zone_end_pfn(zone);
3241 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3242 		if (pfn_valid(pfn)) {
3243 			page = pfn_to_page(pfn);
3244 
3245 			if (!--page_count) {
3246 				touch_nmi_watchdog();
3247 				page_count = WD_PAGE_COUNT;
3248 			}
3249 
3250 			if (page_zone(page) != zone)
3251 				continue;
3252 
3253 			if (!swsusp_page_is_forbidden(page))
3254 				swsusp_unset_page_free(page);
3255 		}
3256 
3257 	for_each_migratetype_order(order, t) {
3258 		list_for_each_entry(page,
3259 				&zone->free_area[order].free_list[t], lru) {
3260 			unsigned long i;
3261 
3262 			pfn = page_to_pfn(page);
3263 			for (i = 0; i < (1UL << order); i++) {
3264 				if (!--page_count) {
3265 					touch_nmi_watchdog();
3266 					page_count = WD_PAGE_COUNT;
3267 				}
3268 				swsusp_set_page_free(pfn_to_page(pfn + i));
3269 			}
3270 		}
3271 	}
3272 	spin_unlock_irqrestore(&zone->lock, flags);
3273 }
3274 #endif /* CONFIG_PM */
3275 
3276 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3277 							unsigned int order)
3278 {
3279 	int migratetype;
3280 
3281 	if (!free_pcp_prepare(page, order))
3282 		return false;
3283 
3284 	migratetype = get_pfnblock_migratetype(page, pfn);
3285 	set_pcppage_migratetype(page, migratetype);
3286 	return true;
3287 }
3288 
3289 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3290 		       bool free_high)
3291 {
3292 	int min_nr_free, max_nr_free;
3293 
3294 	/* Free everything if batch freeing high-order pages. */
3295 	if (unlikely(free_high))
3296 		return pcp->count;
3297 
3298 	/* Check for PCP disabled or boot pageset */
3299 	if (unlikely(high < batch))
3300 		return 1;
3301 
3302 	/* Leave at least pcp->batch pages on the list */
3303 	min_nr_free = batch;
3304 	max_nr_free = high - batch;
3305 
3306 	/*
3307 	 * Double the number of pages freed each time there is subsequent
3308 	 * freeing of pages without any allocation.
3309 	 */
3310 	batch <<= pcp->free_factor;
3311 	if (batch < max_nr_free)
3312 		pcp->free_factor++;
3313 	batch = clamp(batch, min_nr_free, max_nr_free);
3314 
3315 	return batch;
3316 }
3317 
3318 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3319 		       bool free_high)
3320 {
3321 	int high = READ_ONCE(pcp->high);
3322 
3323 	if (unlikely(!high || free_high))
3324 		return 0;
3325 
3326 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3327 		return high;
3328 
3329 	/*
3330 	 * If reclaim is active, limit the number of pages that can be
3331 	 * stored on pcp lists
3332 	 */
3333 	return min(READ_ONCE(pcp->batch) << 2, high);
3334 }
3335 
3336 static void free_unref_page_commit(struct page *page, int migratetype,
3337 				   unsigned int order)
3338 {
3339 	struct zone *zone = page_zone(page);
3340 	struct per_cpu_pages *pcp;
3341 	int high;
3342 	int pindex;
3343 	bool free_high;
3344 
3345 	__count_vm_event(PGFREE);
3346 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3347 	pindex = order_to_pindex(migratetype, order);
3348 	list_add(&page->lru, &pcp->lists[pindex]);
3349 	pcp->count += 1 << order;
3350 
3351 	/*
3352 	 * As high-order pages other than THP's stored on PCP can contribute
3353 	 * to fragmentation, limit the number stored when PCP is heavily
3354 	 * freeing without allocation. The remainder after bulk freeing
3355 	 * stops will be drained from vmstat refresh context.
3356 	 */
3357 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3358 
3359 	high = nr_pcp_high(pcp, zone, free_high);
3360 	if (pcp->count >= high) {
3361 		int batch = READ_ONCE(pcp->batch);
3362 
3363 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3364 	}
3365 }
3366 
3367 /*
3368  * Free a pcp page
3369  */
3370 void free_unref_page(struct page *page, unsigned int order)
3371 {
3372 	unsigned long flags;
3373 	unsigned long pfn = page_to_pfn(page);
3374 	int migratetype;
3375 
3376 	if (!free_unref_page_prepare(page, pfn, order))
3377 		return;
3378 
3379 	/*
3380 	 * We only track unmovable, reclaimable and movable on pcp lists.
3381 	 * Place ISOLATE pages on the isolated list because they are being
3382 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3383 	 * areas back if necessary. Otherwise, we may have to free
3384 	 * excessively into the page allocator
3385 	 */
3386 	migratetype = get_pcppage_migratetype(page);
3387 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3388 		if (unlikely(is_migrate_isolate(migratetype))) {
3389 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3390 			return;
3391 		}
3392 		migratetype = MIGRATE_MOVABLE;
3393 	}
3394 
3395 	local_lock_irqsave(&pagesets.lock, flags);
3396 	free_unref_page_commit(page, migratetype, order);
3397 	local_unlock_irqrestore(&pagesets.lock, flags);
3398 }
3399 
3400 /*
3401  * Free a list of 0-order pages
3402  */
3403 void free_unref_page_list(struct list_head *list)
3404 {
3405 	struct page *page, *next;
3406 	unsigned long flags;
3407 	int batch_count = 0;
3408 	int migratetype;
3409 
3410 	/* Prepare pages for freeing */
3411 	list_for_each_entry_safe(page, next, list, lru) {
3412 		unsigned long pfn = page_to_pfn(page);
3413 		if (!free_unref_page_prepare(page, pfn, 0)) {
3414 			list_del(&page->lru);
3415 			continue;
3416 		}
3417 
3418 		/*
3419 		 * Free isolated pages directly to the allocator, see
3420 		 * comment in free_unref_page.
3421 		 */
3422 		migratetype = get_pcppage_migratetype(page);
3423 		if (unlikely(is_migrate_isolate(migratetype))) {
3424 			list_del(&page->lru);
3425 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3426 			continue;
3427 		}
3428 	}
3429 
3430 	local_lock_irqsave(&pagesets.lock, flags);
3431 	list_for_each_entry_safe(page, next, list, lru) {
3432 		/*
3433 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3434 		 * to the MIGRATE_MOVABLE pcp list.
3435 		 */
3436 		migratetype = get_pcppage_migratetype(page);
3437 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3438 			migratetype = MIGRATE_MOVABLE;
3439 
3440 		trace_mm_page_free_batched(page);
3441 		free_unref_page_commit(page, migratetype, 0);
3442 
3443 		/*
3444 		 * Guard against excessive IRQ disabled times when we get
3445 		 * a large list of pages to free.
3446 		 */
3447 		if (++batch_count == SWAP_CLUSTER_MAX) {
3448 			local_unlock_irqrestore(&pagesets.lock, flags);
3449 			batch_count = 0;
3450 			local_lock_irqsave(&pagesets.lock, flags);
3451 		}
3452 	}
3453 	local_unlock_irqrestore(&pagesets.lock, flags);
3454 }
3455 
3456 /*
3457  * split_page takes a non-compound higher-order page, and splits it into
3458  * n (1<<order) sub-pages: page[0..n]
3459  * Each sub-page must be freed individually.
3460  *
3461  * Note: this is probably too low level an operation for use in drivers.
3462  * Please consult with lkml before using this in your driver.
3463  */
3464 void split_page(struct page *page, unsigned int order)
3465 {
3466 	int i;
3467 
3468 	VM_BUG_ON_PAGE(PageCompound(page), page);
3469 	VM_BUG_ON_PAGE(!page_count(page), page);
3470 
3471 	for (i = 1; i < (1 << order); i++)
3472 		set_page_refcounted(page + i);
3473 	split_page_owner(page, 1 << order);
3474 	split_page_memcg(page, 1 << order);
3475 }
3476 EXPORT_SYMBOL_GPL(split_page);
3477 
3478 int __isolate_free_page(struct page *page, unsigned int order)
3479 {
3480 	unsigned long watermark;
3481 	struct zone *zone;
3482 	int mt;
3483 
3484 	BUG_ON(!PageBuddy(page));
3485 
3486 	zone = page_zone(page);
3487 	mt = get_pageblock_migratetype(page);
3488 
3489 	if (!is_migrate_isolate(mt)) {
3490 		/*
3491 		 * Obey watermarks as if the page was being allocated. We can
3492 		 * emulate a high-order watermark check with a raised order-0
3493 		 * watermark, because we already know our high-order page
3494 		 * exists.
3495 		 */
3496 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3497 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3498 			return 0;
3499 
3500 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3501 	}
3502 
3503 	/* Remove page from free list */
3504 
3505 	del_page_from_free_list(page, zone, order);
3506 
3507 	/*
3508 	 * Set the pageblock if the isolated page is at least half of a
3509 	 * pageblock
3510 	 */
3511 	if (order >= pageblock_order - 1) {
3512 		struct page *endpage = page + (1 << order) - 1;
3513 		for (; page < endpage; page += pageblock_nr_pages) {
3514 			int mt = get_pageblock_migratetype(page);
3515 			/*
3516 			 * Only change normal pageblocks (i.e., they can merge
3517 			 * with others)
3518 			 */
3519 			if (migratetype_is_mergeable(mt))
3520 				set_pageblock_migratetype(page,
3521 							  MIGRATE_MOVABLE);
3522 		}
3523 	}
3524 
3525 
3526 	return 1UL << order;
3527 }
3528 
3529 /**
3530  * __putback_isolated_page - Return a now-isolated page back where we got it
3531  * @page: Page that was isolated
3532  * @order: Order of the isolated page
3533  * @mt: The page's pageblock's migratetype
3534  *
3535  * This function is meant to return a page pulled from the free lists via
3536  * __isolate_free_page back to the free lists they were pulled from.
3537  */
3538 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3539 {
3540 	struct zone *zone = page_zone(page);
3541 
3542 	/* zone lock should be held when this function is called */
3543 	lockdep_assert_held(&zone->lock);
3544 
3545 	/* Return isolated page to tail of freelist. */
3546 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3547 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3548 }
3549 
3550 /*
3551  * Update NUMA hit/miss statistics
3552  *
3553  * Must be called with interrupts disabled.
3554  */
3555 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3556 				   long nr_account)
3557 {
3558 #ifdef CONFIG_NUMA
3559 	enum numa_stat_item local_stat = NUMA_LOCAL;
3560 
3561 	/* skip numa counters update if numa stats is disabled */
3562 	if (!static_branch_likely(&vm_numa_stat_key))
3563 		return;
3564 
3565 	if (zone_to_nid(z) != numa_node_id())
3566 		local_stat = NUMA_OTHER;
3567 
3568 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3569 		__count_numa_events(z, NUMA_HIT, nr_account);
3570 	else {
3571 		__count_numa_events(z, NUMA_MISS, nr_account);
3572 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3573 	}
3574 	__count_numa_events(z, local_stat, nr_account);
3575 #endif
3576 }
3577 
3578 /* Remove page from the per-cpu list, caller must protect the list */
3579 static inline
3580 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3581 			int migratetype,
3582 			unsigned int alloc_flags,
3583 			struct per_cpu_pages *pcp,
3584 			struct list_head *list)
3585 {
3586 	struct page *page;
3587 
3588 	do {
3589 		if (list_empty(list)) {
3590 			int batch = READ_ONCE(pcp->batch);
3591 			int alloced;
3592 
3593 			/*
3594 			 * Scale batch relative to order if batch implies
3595 			 * free pages can be stored on the PCP. Batch can
3596 			 * be 1 for small zones or for boot pagesets which
3597 			 * should never store free pages as the pages may
3598 			 * belong to arbitrary zones.
3599 			 */
3600 			if (batch > 1)
3601 				batch = max(batch >> order, 2);
3602 			alloced = rmqueue_bulk(zone, order,
3603 					batch, list,
3604 					migratetype, alloc_flags);
3605 
3606 			pcp->count += alloced << order;
3607 			if (unlikely(list_empty(list)))
3608 				return NULL;
3609 		}
3610 
3611 		page = list_first_entry(list, struct page, lru);
3612 		list_del(&page->lru);
3613 		pcp->count -= 1 << order;
3614 	} while (check_new_pcp(page, order));
3615 
3616 	return page;
3617 }
3618 
3619 /* Lock and remove page from the per-cpu list */
3620 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3621 			struct zone *zone, unsigned int order,
3622 			gfp_t gfp_flags, int migratetype,
3623 			unsigned int alloc_flags)
3624 {
3625 	struct per_cpu_pages *pcp;
3626 	struct list_head *list;
3627 	struct page *page;
3628 	unsigned long flags;
3629 
3630 	local_lock_irqsave(&pagesets.lock, flags);
3631 
3632 	/*
3633 	 * On allocation, reduce the number of pages that are batch freed.
3634 	 * See nr_pcp_free() where free_factor is increased for subsequent
3635 	 * frees.
3636 	 */
3637 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3638 	pcp->free_factor >>= 1;
3639 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3640 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3641 	local_unlock_irqrestore(&pagesets.lock, flags);
3642 	if (page) {
3643 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3644 		zone_statistics(preferred_zone, zone, 1);
3645 	}
3646 	return page;
3647 }
3648 
3649 /*
3650  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3651  */
3652 static inline
3653 struct page *rmqueue(struct zone *preferred_zone,
3654 			struct zone *zone, unsigned int order,
3655 			gfp_t gfp_flags, unsigned int alloc_flags,
3656 			int migratetype)
3657 {
3658 	unsigned long flags;
3659 	struct page *page;
3660 
3661 	if (likely(pcp_allowed_order(order))) {
3662 		/*
3663 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3664 		 * we need to skip it when CMA area isn't allowed.
3665 		 */
3666 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3667 				migratetype != MIGRATE_MOVABLE) {
3668 			page = rmqueue_pcplist(preferred_zone, zone, order,
3669 					gfp_flags, migratetype, alloc_flags);
3670 			goto out;
3671 		}
3672 	}
3673 
3674 	/*
3675 	 * We most definitely don't want callers attempting to
3676 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3677 	 */
3678 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3679 
3680 	do {
3681 		page = NULL;
3682 		spin_lock_irqsave(&zone->lock, flags);
3683 		/*
3684 		 * order-0 request can reach here when the pcplist is skipped
3685 		 * due to non-CMA allocation context. HIGHATOMIC area is
3686 		 * reserved for high-order atomic allocation, so order-0
3687 		 * request should skip it.
3688 		 */
3689 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3690 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3691 			if (page)
3692 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3693 		}
3694 		if (!page) {
3695 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3696 			if (!page)
3697 				goto failed;
3698 		}
3699 		__mod_zone_freepage_state(zone, -(1 << order),
3700 					  get_pcppage_migratetype(page));
3701 		spin_unlock_irqrestore(&zone->lock, flags);
3702 	} while (check_new_pages(page, order));
3703 
3704 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3705 	zone_statistics(preferred_zone, zone, 1);
3706 
3707 out:
3708 	/* Separate test+clear to avoid unnecessary atomics */
3709 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3710 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3711 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3712 	}
3713 
3714 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3715 	return page;
3716 
3717 failed:
3718 	spin_unlock_irqrestore(&zone->lock, flags);
3719 	return NULL;
3720 }
3721 
3722 #ifdef CONFIG_FAIL_PAGE_ALLOC
3723 
3724 static struct {
3725 	struct fault_attr attr;
3726 
3727 	bool ignore_gfp_highmem;
3728 	bool ignore_gfp_reclaim;
3729 	u32 min_order;
3730 } fail_page_alloc = {
3731 	.attr = FAULT_ATTR_INITIALIZER,
3732 	.ignore_gfp_reclaim = true,
3733 	.ignore_gfp_highmem = true,
3734 	.min_order = 1,
3735 };
3736 
3737 static int __init setup_fail_page_alloc(char *str)
3738 {
3739 	return setup_fault_attr(&fail_page_alloc.attr, str);
3740 }
3741 __setup("fail_page_alloc=", setup_fail_page_alloc);
3742 
3743 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3744 {
3745 	if (order < fail_page_alloc.min_order)
3746 		return false;
3747 	if (gfp_mask & __GFP_NOFAIL)
3748 		return false;
3749 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3750 		return false;
3751 	if (fail_page_alloc.ignore_gfp_reclaim &&
3752 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3753 		return false;
3754 
3755 	return should_fail(&fail_page_alloc.attr, 1 << order);
3756 }
3757 
3758 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3759 
3760 static int __init fail_page_alloc_debugfs(void)
3761 {
3762 	umode_t mode = S_IFREG | 0600;
3763 	struct dentry *dir;
3764 
3765 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3766 					&fail_page_alloc.attr);
3767 
3768 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3769 			    &fail_page_alloc.ignore_gfp_reclaim);
3770 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3771 			    &fail_page_alloc.ignore_gfp_highmem);
3772 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3773 
3774 	return 0;
3775 }
3776 
3777 late_initcall(fail_page_alloc_debugfs);
3778 
3779 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3780 
3781 #else /* CONFIG_FAIL_PAGE_ALLOC */
3782 
3783 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3784 {
3785 	return false;
3786 }
3787 
3788 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3789 
3790 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3791 {
3792 	return __should_fail_alloc_page(gfp_mask, order);
3793 }
3794 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3795 
3796 static inline long __zone_watermark_unusable_free(struct zone *z,
3797 				unsigned int order, unsigned int alloc_flags)
3798 {
3799 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3800 	long unusable_free = (1 << order) - 1;
3801 
3802 	/*
3803 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3804 	 * the high-atomic reserves. This will over-estimate the size of the
3805 	 * atomic reserve but it avoids a search.
3806 	 */
3807 	if (likely(!alloc_harder))
3808 		unusable_free += z->nr_reserved_highatomic;
3809 
3810 #ifdef CONFIG_CMA
3811 	/* If allocation can't use CMA areas don't use free CMA pages */
3812 	if (!(alloc_flags & ALLOC_CMA))
3813 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3814 #endif
3815 
3816 	return unusable_free;
3817 }
3818 
3819 /*
3820  * Return true if free base pages are above 'mark'. For high-order checks it
3821  * will return true of the order-0 watermark is reached and there is at least
3822  * one free page of a suitable size. Checking now avoids taking the zone lock
3823  * to check in the allocation paths if no pages are free.
3824  */
3825 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3826 			 int highest_zoneidx, unsigned int alloc_flags,
3827 			 long free_pages)
3828 {
3829 	long min = mark;
3830 	int o;
3831 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3832 
3833 	/* free_pages may go negative - that's OK */
3834 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3835 
3836 	if (alloc_flags & ALLOC_HIGH)
3837 		min -= min / 2;
3838 
3839 	if (unlikely(alloc_harder)) {
3840 		/*
3841 		 * OOM victims can try even harder than normal ALLOC_HARDER
3842 		 * users on the grounds that it's definitely going to be in
3843 		 * the exit path shortly and free memory. Any allocation it
3844 		 * makes during the free path will be small and short-lived.
3845 		 */
3846 		if (alloc_flags & ALLOC_OOM)
3847 			min -= min / 2;
3848 		else
3849 			min -= min / 4;
3850 	}
3851 
3852 	/*
3853 	 * Check watermarks for an order-0 allocation request. If these
3854 	 * are not met, then a high-order request also cannot go ahead
3855 	 * even if a suitable page happened to be free.
3856 	 */
3857 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3858 		return false;
3859 
3860 	/* If this is an order-0 request then the watermark is fine */
3861 	if (!order)
3862 		return true;
3863 
3864 	/* For a high-order request, check at least one suitable page is free */
3865 	for (o = order; o < MAX_ORDER; o++) {
3866 		struct free_area *area = &z->free_area[o];
3867 		int mt;
3868 
3869 		if (!area->nr_free)
3870 			continue;
3871 
3872 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3873 			if (!free_area_empty(area, mt))
3874 				return true;
3875 		}
3876 
3877 #ifdef CONFIG_CMA
3878 		if ((alloc_flags & ALLOC_CMA) &&
3879 		    !free_area_empty(area, MIGRATE_CMA)) {
3880 			return true;
3881 		}
3882 #endif
3883 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3884 			return true;
3885 	}
3886 	return false;
3887 }
3888 
3889 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3890 		      int highest_zoneidx, unsigned int alloc_flags)
3891 {
3892 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3893 					zone_page_state(z, NR_FREE_PAGES));
3894 }
3895 
3896 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3897 				unsigned long mark, int highest_zoneidx,
3898 				unsigned int alloc_flags, gfp_t gfp_mask)
3899 {
3900 	long free_pages;
3901 
3902 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3903 
3904 	/*
3905 	 * Fast check for order-0 only. If this fails then the reserves
3906 	 * need to be calculated.
3907 	 */
3908 	if (!order) {
3909 		long fast_free;
3910 
3911 		fast_free = free_pages;
3912 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3913 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3914 			return true;
3915 	}
3916 
3917 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3918 					free_pages))
3919 		return true;
3920 	/*
3921 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3922 	 * when checking the min watermark. The min watermark is the
3923 	 * point where boosting is ignored so that kswapd is woken up
3924 	 * when below the low watermark.
3925 	 */
3926 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3927 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3928 		mark = z->_watermark[WMARK_MIN];
3929 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3930 					alloc_flags, free_pages);
3931 	}
3932 
3933 	return false;
3934 }
3935 
3936 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3937 			unsigned long mark, int highest_zoneidx)
3938 {
3939 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3940 
3941 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3942 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3943 
3944 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3945 								free_pages);
3946 }
3947 
3948 #ifdef CONFIG_NUMA
3949 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3950 
3951 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3952 {
3953 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3954 				node_reclaim_distance;
3955 }
3956 #else	/* CONFIG_NUMA */
3957 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3958 {
3959 	return true;
3960 }
3961 #endif	/* CONFIG_NUMA */
3962 
3963 /*
3964  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3965  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3966  * premature use of a lower zone may cause lowmem pressure problems that
3967  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3968  * probably too small. It only makes sense to spread allocations to avoid
3969  * fragmentation between the Normal and DMA32 zones.
3970  */
3971 static inline unsigned int
3972 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3973 {
3974 	unsigned int alloc_flags;
3975 
3976 	/*
3977 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3978 	 * to save a branch.
3979 	 */
3980 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3981 
3982 #ifdef CONFIG_ZONE_DMA32
3983 	if (!zone)
3984 		return alloc_flags;
3985 
3986 	if (zone_idx(zone) != ZONE_NORMAL)
3987 		return alloc_flags;
3988 
3989 	/*
3990 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3991 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3992 	 * on UMA that if Normal is populated then so is DMA32.
3993 	 */
3994 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3995 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3996 		return alloc_flags;
3997 
3998 	alloc_flags |= ALLOC_NOFRAGMENT;
3999 #endif /* CONFIG_ZONE_DMA32 */
4000 	return alloc_flags;
4001 }
4002 
4003 /* Must be called after current_gfp_context() which can change gfp_mask */
4004 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4005 						  unsigned int alloc_flags)
4006 {
4007 #ifdef CONFIG_CMA
4008 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4009 		alloc_flags |= ALLOC_CMA;
4010 #endif
4011 	return alloc_flags;
4012 }
4013 
4014 /*
4015  * get_page_from_freelist goes through the zonelist trying to allocate
4016  * a page.
4017  */
4018 static struct page *
4019 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4020 						const struct alloc_context *ac)
4021 {
4022 	struct zoneref *z;
4023 	struct zone *zone;
4024 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4025 	bool no_fallback;
4026 
4027 retry:
4028 	/*
4029 	 * Scan zonelist, looking for a zone with enough free.
4030 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4031 	 */
4032 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4033 	z = ac->preferred_zoneref;
4034 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4035 					ac->nodemask) {
4036 		struct page *page;
4037 		unsigned long mark;
4038 
4039 		if (cpusets_enabled() &&
4040 			(alloc_flags & ALLOC_CPUSET) &&
4041 			!__cpuset_zone_allowed(zone, gfp_mask))
4042 				continue;
4043 		/*
4044 		 * When allocating a page cache page for writing, we
4045 		 * want to get it from a node that is within its dirty
4046 		 * limit, such that no single node holds more than its
4047 		 * proportional share of globally allowed dirty pages.
4048 		 * The dirty limits take into account the node's
4049 		 * lowmem reserves and high watermark so that kswapd
4050 		 * should be able to balance it without having to
4051 		 * write pages from its LRU list.
4052 		 *
4053 		 * XXX: For now, allow allocations to potentially
4054 		 * exceed the per-node dirty limit in the slowpath
4055 		 * (spread_dirty_pages unset) before going into reclaim,
4056 		 * which is important when on a NUMA setup the allowed
4057 		 * nodes are together not big enough to reach the
4058 		 * global limit.  The proper fix for these situations
4059 		 * will require awareness of nodes in the
4060 		 * dirty-throttling and the flusher threads.
4061 		 */
4062 		if (ac->spread_dirty_pages) {
4063 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4064 				continue;
4065 
4066 			if (!node_dirty_ok(zone->zone_pgdat)) {
4067 				last_pgdat_dirty_limit = zone->zone_pgdat;
4068 				continue;
4069 			}
4070 		}
4071 
4072 		if (no_fallback && nr_online_nodes > 1 &&
4073 		    zone != ac->preferred_zoneref->zone) {
4074 			int local_nid;
4075 
4076 			/*
4077 			 * If moving to a remote node, retry but allow
4078 			 * fragmenting fallbacks. Locality is more important
4079 			 * than fragmentation avoidance.
4080 			 */
4081 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4082 			if (zone_to_nid(zone) != local_nid) {
4083 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4084 				goto retry;
4085 			}
4086 		}
4087 
4088 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4089 		if (!zone_watermark_fast(zone, order, mark,
4090 				       ac->highest_zoneidx, alloc_flags,
4091 				       gfp_mask)) {
4092 			int ret;
4093 
4094 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4095 			/*
4096 			 * Watermark failed for this zone, but see if we can
4097 			 * grow this zone if it contains deferred pages.
4098 			 */
4099 			if (static_branch_unlikely(&deferred_pages)) {
4100 				if (_deferred_grow_zone(zone, order))
4101 					goto try_this_zone;
4102 			}
4103 #endif
4104 			/* Checked here to keep the fast path fast */
4105 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4106 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4107 				goto try_this_zone;
4108 
4109 			if (!node_reclaim_enabled() ||
4110 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4111 				continue;
4112 
4113 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4114 			switch (ret) {
4115 			case NODE_RECLAIM_NOSCAN:
4116 				/* did not scan */
4117 				continue;
4118 			case NODE_RECLAIM_FULL:
4119 				/* scanned but unreclaimable */
4120 				continue;
4121 			default:
4122 				/* did we reclaim enough */
4123 				if (zone_watermark_ok(zone, order, mark,
4124 					ac->highest_zoneidx, alloc_flags))
4125 					goto try_this_zone;
4126 
4127 				continue;
4128 			}
4129 		}
4130 
4131 try_this_zone:
4132 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4133 				gfp_mask, alloc_flags, ac->migratetype);
4134 		if (page) {
4135 			prep_new_page(page, order, gfp_mask, alloc_flags);
4136 
4137 			/*
4138 			 * If this is a high-order atomic allocation then check
4139 			 * if the pageblock should be reserved for the future
4140 			 */
4141 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4142 				reserve_highatomic_pageblock(page, zone, order);
4143 
4144 			return page;
4145 		} else {
4146 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4147 			/* Try again if zone has deferred pages */
4148 			if (static_branch_unlikely(&deferred_pages)) {
4149 				if (_deferred_grow_zone(zone, order))
4150 					goto try_this_zone;
4151 			}
4152 #endif
4153 		}
4154 	}
4155 
4156 	/*
4157 	 * It's possible on a UMA machine to get through all zones that are
4158 	 * fragmented. If avoiding fragmentation, reset and try again.
4159 	 */
4160 	if (no_fallback) {
4161 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4162 		goto retry;
4163 	}
4164 
4165 	return NULL;
4166 }
4167 
4168 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4169 {
4170 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4171 
4172 	/*
4173 	 * This documents exceptions given to allocations in certain
4174 	 * contexts that are allowed to allocate outside current's set
4175 	 * of allowed nodes.
4176 	 */
4177 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4178 		if (tsk_is_oom_victim(current) ||
4179 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4180 			filter &= ~SHOW_MEM_FILTER_NODES;
4181 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4182 		filter &= ~SHOW_MEM_FILTER_NODES;
4183 
4184 	show_mem(filter, nodemask);
4185 }
4186 
4187 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4188 {
4189 	struct va_format vaf;
4190 	va_list args;
4191 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4192 
4193 	if ((gfp_mask & __GFP_NOWARN) ||
4194 	     !__ratelimit(&nopage_rs) ||
4195 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4196 		return;
4197 
4198 	va_start(args, fmt);
4199 	vaf.fmt = fmt;
4200 	vaf.va = &args;
4201 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4202 			current->comm, &vaf, gfp_mask, &gfp_mask,
4203 			nodemask_pr_args(nodemask));
4204 	va_end(args);
4205 
4206 	cpuset_print_current_mems_allowed();
4207 	pr_cont("\n");
4208 	dump_stack();
4209 	warn_alloc_show_mem(gfp_mask, nodemask);
4210 }
4211 
4212 static inline struct page *
4213 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4214 			      unsigned int alloc_flags,
4215 			      const struct alloc_context *ac)
4216 {
4217 	struct page *page;
4218 
4219 	page = get_page_from_freelist(gfp_mask, order,
4220 			alloc_flags|ALLOC_CPUSET, ac);
4221 	/*
4222 	 * fallback to ignore cpuset restriction if our nodes
4223 	 * are depleted
4224 	 */
4225 	if (!page)
4226 		page = get_page_from_freelist(gfp_mask, order,
4227 				alloc_flags, ac);
4228 
4229 	return page;
4230 }
4231 
4232 static inline struct page *
4233 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4234 	const struct alloc_context *ac, unsigned long *did_some_progress)
4235 {
4236 	struct oom_control oc = {
4237 		.zonelist = ac->zonelist,
4238 		.nodemask = ac->nodemask,
4239 		.memcg = NULL,
4240 		.gfp_mask = gfp_mask,
4241 		.order = order,
4242 	};
4243 	struct page *page;
4244 
4245 	*did_some_progress = 0;
4246 
4247 	/*
4248 	 * Acquire the oom lock.  If that fails, somebody else is
4249 	 * making progress for us.
4250 	 */
4251 	if (!mutex_trylock(&oom_lock)) {
4252 		*did_some_progress = 1;
4253 		schedule_timeout_uninterruptible(1);
4254 		return NULL;
4255 	}
4256 
4257 	/*
4258 	 * Go through the zonelist yet one more time, keep very high watermark
4259 	 * here, this is only to catch a parallel oom killing, we must fail if
4260 	 * we're still under heavy pressure. But make sure that this reclaim
4261 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4262 	 * allocation which will never fail due to oom_lock already held.
4263 	 */
4264 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4265 				      ~__GFP_DIRECT_RECLAIM, order,
4266 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4267 	if (page)
4268 		goto out;
4269 
4270 	/* Coredumps can quickly deplete all memory reserves */
4271 	if (current->flags & PF_DUMPCORE)
4272 		goto out;
4273 	/* The OOM killer will not help higher order allocs */
4274 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4275 		goto out;
4276 	/*
4277 	 * We have already exhausted all our reclaim opportunities without any
4278 	 * success so it is time to admit defeat. We will skip the OOM killer
4279 	 * because it is very likely that the caller has a more reasonable
4280 	 * fallback than shooting a random task.
4281 	 *
4282 	 * The OOM killer may not free memory on a specific node.
4283 	 */
4284 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4285 		goto out;
4286 	/* The OOM killer does not needlessly kill tasks for lowmem */
4287 	if (ac->highest_zoneidx < ZONE_NORMAL)
4288 		goto out;
4289 	if (pm_suspended_storage())
4290 		goto out;
4291 	/*
4292 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4293 	 * other request to make a forward progress.
4294 	 * We are in an unfortunate situation where out_of_memory cannot
4295 	 * do much for this context but let's try it to at least get
4296 	 * access to memory reserved if the current task is killed (see
4297 	 * out_of_memory). Once filesystems are ready to handle allocation
4298 	 * failures more gracefully we should just bail out here.
4299 	 */
4300 
4301 	/* Exhausted what can be done so it's blame time */
4302 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4303 		*did_some_progress = 1;
4304 
4305 		/*
4306 		 * Help non-failing allocations by giving them access to memory
4307 		 * reserves
4308 		 */
4309 		if (gfp_mask & __GFP_NOFAIL)
4310 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4311 					ALLOC_NO_WATERMARKS, ac);
4312 	}
4313 out:
4314 	mutex_unlock(&oom_lock);
4315 	return page;
4316 }
4317 
4318 /*
4319  * Maximum number of compaction retries with a progress before OOM
4320  * killer is consider as the only way to move forward.
4321  */
4322 #define MAX_COMPACT_RETRIES 16
4323 
4324 #ifdef CONFIG_COMPACTION
4325 /* Try memory compaction for high-order allocations before reclaim */
4326 static struct page *
4327 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4328 		unsigned int alloc_flags, const struct alloc_context *ac,
4329 		enum compact_priority prio, enum compact_result *compact_result)
4330 {
4331 	struct page *page = NULL;
4332 	unsigned long pflags;
4333 	unsigned int noreclaim_flag;
4334 
4335 	if (!order)
4336 		return NULL;
4337 
4338 	psi_memstall_enter(&pflags);
4339 	delayacct_compact_start();
4340 	noreclaim_flag = memalloc_noreclaim_save();
4341 
4342 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4343 								prio, &page);
4344 
4345 	memalloc_noreclaim_restore(noreclaim_flag);
4346 	psi_memstall_leave(&pflags);
4347 	delayacct_compact_end();
4348 
4349 	if (*compact_result == COMPACT_SKIPPED)
4350 		return NULL;
4351 	/*
4352 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4353 	 * count a compaction stall
4354 	 */
4355 	count_vm_event(COMPACTSTALL);
4356 
4357 	/* Prep a captured page if available */
4358 	if (page)
4359 		prep_new_page(page, order, gfp_mask, alloc_flags);
4360 
4361 	/* Try get a page from the freelist if available */
4362 	if (!page)
4363 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4364 
4365 	if (page) {
4366 		struct zone *zone = page_zone(page);
4367 
4368 		zone->compact_blockskip_flush = false;
4369 		compaction_defer_reset(zone, order, true);
4370 		count_vm_event(COMPACTSUCCESS);
4371 		return page;
4372 	}
4373 
4374 	/*
4375 	 * It's bad if compaction run occurs and fails. The most likely reason
4376 	 * is that pages exist, but not enough to satisfy watermarks.
4377 	 */
4378 	count_vm_event(COMPACTFAIL);
4379 
4380 	cond_resched();
4381 
4382 	return NULL;
4383 }
4384 
4385 static inline bool
4386 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4387 		     enum compact_result compact_result,
4388 		     enum compact_priority *compact_priority,
4389 		     int *compaction_retries)
4390 {
4391 	int max_retries = MAX_COMPACT_RETRIES;
4392 	int min_priority;
4393 	bool ret = false;
4394 	int retries = *compaction_retries;
4395 	enum compact_priority priority = *compact_priority;
4396 
4397 	if (!order)
4398 		return false;
4399 
4400 	if (fatal_signal_pending(current))
4401 		return false;
4402 
4403 	if (compaction_made_progress(compact_result))
4404 		(*compaction_retries)++;
4405 
4406 	/*
4407 	 * compaction considers all the zone as desperately out of memory
4408 	 * so it doesn't really make much sense to retry except when the
4409 	 * failure could be caused by insufficient priority
4410 	 */
4411 	if (compaction_failed(compact_result))
4412 		goto check_priority;
4413 
4414 	/*
4415 	 * compaction was skipped because there are not enough order-0 pages
4416 	 * to work with, so we retry only if it looks like reclaim can help.
4417 	 */
4418 	if (compaction_needs_reclaim(compact_result)) {
4419 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4420 		goto out;
4421 	}
4422 
4423 	/*
4424 	 * make sure the compaction wasn't deferred or didn't bail out early
4425 	 * due to locks contention before we declare that we should give up.
4426 	 * But the next retry should use a higher priority if allowed, so
4427 	 * we don't just keep bailing out endlessly.
4428 	 */
4429 	if (compaction_withdrawn(compact_result)) {
4430 		goto check_priority;
4431 	}
4432 
4433 	/*
4434 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4435 	 * costly ones because they are de facto nofail and invoke OOM
4436 	 * killer to move on while costly can fail and users are ready
4437 	 * to cope with that. 1/4 retries is rather arbitrary but we
4438 	 * would need much more detailed feedback from compaction to
4439 	 * make a better decision.
4440 	 */
4441 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4442 		max_retries /= 4;
4443 	if (*compaction_retries <= max_retries) {
4444 		ret = true;
4445 		goto out;
4446 	}
4447 
4448 	/*
4449 	 * Make sure there are attempts at the highest priority if we exhausted
4450 	 * all retries or failed at the lower priorities.
4451 	 */
4452 check_priority:
4453 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4454 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4455 
4456 	if (*compact_priority > min_priority) {
4457 		(*compact_priority)--;
4458 		*compaction_retries = 0;
4459 		ret = true;
4460 	}
4461 out:
4462 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4463 	return ret;
4464 }
4465 #else
4466 static inline struct page *
4467 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4468 		unsigned int alloc_flags, const struct alloc_context *ac,
4469 		enum compact_priority prio, enum compact_result *compact_result)
4470 {
4471 	*compact_result = COMPACT_SKIPPED;
4472 	return NULL;
4473 }
4474 
4475 static inline bool
4476 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4477 		     enum compact_result compact_result,
4478 		     enum compact_priority *compact_priority,
4479 		     int *compaction_retries)
4480 {
4481 	struct zone *zone;
4482 	struct zoneref *z;
4483 
4484 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4485 		return false;
4486 
4487 	/*
4488 	 * There are setups with compaction disabled which would prefer to loop
4489 	 * inside the allocator rather than hit the oom killer prematurely.
4490 	 * Let's give them a good hope and keep retrying while the order-0
4491 	 * watermarks are OK.
4492 	 */
4493 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4494 				ac->highest_zoneidx, ac->nodemask) {
4495 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4496 					ac->highest_zoneidx, alloc_flags))
4497 			return true;
4498 	}
4499 	return false;
4500 }
4501 #endif /* CONFIG_COMPACTION */
4502 
4503 #ifdef CONFIG_LOCKDEP
4504 static struct lockdep_map __fs_reclaim_map =
4505 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4506 
4507 static bool __need_reclaim(gfp_t gfp_mask)
4508 {
4509 	/* no reclaim without waiting on it */
4510 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4511 		return false;
4512 
4513 	/* this guy won't enter reclaim */
4514 	if (current->flags & PF_MEMALLOC)
4515 		return false;
4516 
4517 	if (gfp_mask & __GFP_NOLOCKDEP)
4518 		return false;
4519 
4520 	return true;
4521 }
4522 
4523 void __fs_reclaim_acquire(unsigned long ip)
4524 {
4525 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4526 }
4527 
4528 void __fs_reclaim_release(unsigned long ip)
4529 {
4530 	lock_release(&__fs_reclaim_map, ip);
4531 }
4532 
4533 void fs_reclaim_acquire(gfp_t gfp_mask)
4534 {
4535 	gfp_mask = current_gfp_context(gfp_mask);
4536 
4537 	if (__need_reclaim(gfp_mask)) {
4538 		if (gfp_mask & __GFP_FS)
4539 			__fs_reclaim_acquire(_RET_IP_);
4540 
4541 #ifdef CONFIG_MMU_NOTIFIER
4542 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4543 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4544 #endif
4545 
4546 	}
4547 }
4548 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4549 
4550 void fs_reclaim_release(gfp_t gfp_mask)
4551 {
4552 	gfp_mask = current_gfp_context(gfp_mask);
4553 
4554 	if (__need_reclaim(gfp_mask)) {
4555 		if (gfp_mask & __GFP_FS)
4556 			__fs_reclaim_release(_RET_IP_);
4557 	}
4558 }
4559 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4560 #endif
4561 
4562 /* Perform direct synchronous page reclaim */
4563 static unsigned long
4564 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4565 					const struct alloc_context *ac)
4566 {
4567 	unsigned int noreclaim_flag;
4568 	unsigned long progress;
4569 
4570 	cond_resched();
4571 
4572 	/* We now go into synchronous reclaim */
4573 	cpuset_memory_pressure_bump();
4574 	fs_reclaim_acquire(gfp_mask);
4575 	noreclaim_flag = memalloc_noreclaim_save();
4576 
4577 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4578 								ac->nodemask);
4579 
4580 	memalloc_noreclaim_restore(noreclaim_flag);
4581 	fs_reclaim_release(gfp_mask);
4582 
4583 	cond_resched();
4584 
4585 	return progress;
4586 }
4587 
4588 /* The really slow allocator path where we enter direct reclaim */
4589 static inline struct page *
4590 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4591 		unsigned int alloc_flags, const struct alloc_context *ac,
4592 		unsigned long *did_some_progress)
4593 {
4594 	struct page *page = NULL;
4595 	unsigned long pflags;
4596 	bool drained = false;
4597 
4598 	psi_memstall_enter(&pflags);
4599 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4600 	if (unlikely(!(*did_some_progress)))
4601 		goto out;
4602 
4603 retry:
4604 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4605 
4606 	/*
4607 	 * If an allocation failed after direct reclaim, it could be because
4608 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4609 	 * Shrink them and try again
4610 	 */
4611 	if (!page && !drained) {
4612 		unreserve_highatomic_pageblock(ac, false);
4613 		drain_all_pages(NULL);
4614 		drained = true;
4615 		goto retry;
4616 	}
4617 out:
4618 	psi_memstall_leave(&pflags);
4619 
4620 	return page;
4621 }
4622 
4623 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4624 			     const struct alloc_context *ac)
4625 {
4626 	struct zoneref *z;
4627 	struct zone *zone;
4628 	pg_data_t *last_pgdat = NULL;
4629 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4630 
4631 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4632 					ac->nodemask) {
4633 		if (!managed_zone(zone))
4634 			continue;
4635 		if (last_pgdat != zone->zone_pgdat) {
4636 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4637 			last_pgdat = zone->zone_pgdat;
4638 		}
4639 	}
4640 }
4641 
4642 static inline unsigned int
4643 gfp_to_alloc_flags(gfp_t gfp_mask)
4644 {
4645 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4646 
4647 	/*
4648 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4649 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4650 	 * to save two branches.
4651 	 */
4652 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4653 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4654 
4655 	/*
4656 	 * The caller may dip into page reserves a bit more if the caller
4657 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4658 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4659 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4660 	 */
4661 	alloc_flags |= (__force int)
4662 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4663 
4664 	if (gfp_mask & __GFP_ATOMIC) {
4665 		/*
4666 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4667 		 * if it can't schedule.
4668 		 */
4669 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4670 			alloc_flags |= ALLOC_HARDER;
4671 		/*
4672 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4673 		 * comment for __cpuset_node_allowed().
4674 		 */
4675 		alloc_flags &= ~ALLOC_CPUSET;
4676 	} else if (unlikely(rt_task(current)) && in_task())
4677 		alloc_flags |= ALLOC_HARDER;
4678 
4679 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4680 
4681 	return alloc_flags;
4682 }
4683 
4684 static bool oom_reserves_allowed(struct task_struct *tsk)
4685 {
4686 	if (!tsk_is_oom_victim(tsk))
4687 		return false;
4688 
4689 	/*
4690 	 * !MMU doesn't have oom reaper so give access to memory reserves
4691 	 * only to the thread with TIF_MEMDIE set
4692 	 */
4693 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4694 		return false;
4695 
4696 	return true;
4697 }
4698 
4699 /*
4700  * Distinguish requests which really need access to full memory
4701  * reserves from oom victims which can live with a portion of it
4702  */
4703 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4704 {
4705 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4706 		return 0;
4707 	if (gfp_mask & __GFP_MEMALLOC)
4708 		return ALLOC_NO_WATERMARKS;
4709 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4710 		return ALLOC_NO_WATERMARKS;
4711 	if (!in_interrupt()) {
4712 		if (current->flags & PF_MEMALLOC)
4713 			return ALLOC_NO_WATERMARKS;
4714 		else if (oom_reserves_allowed(current))
4715 			return ALLOC_OOM;
4716 	}
4717 
4718 	return 0;
4719 }
4720 
4721 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4722 {
4723 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4724 }
4725 
4726 /*
4727  * Checks whether it makes sense to retry the reclaim to make a forward progress
4728  * for the given allocation request.
4729  *
4730  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4731  * without success, or when we couldn't even meet the watermark if we
4732  * reclaimed all remaining pages on the LRU lists.
4733  *
4734  * Returns true if a retry is viable or false to enter the oom path.
4735  */
4736 static inline bool
4737 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4738 		     struct alloc_context *ac, int alloc_flags,
4739 		     bool did_some_progress, int *no_progress_loops)
4740 {
4741 	struct zone *zone;
4742 	struct zoneref *z;
4743 	bool ret = false;
4744 
4745 	/*
4746 	 * Costly allocations might have made a progress but this doesn't mean
4747 	 * their order will become available due to high fragmentation so
4748 	 * always increment the no progress counter for them
4749 	 */
4750 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4751 		*no_progress_loops = 0;
4752 	else
4753 		(*no_progress_loops)++;
4754 
4755 	/*
4756 	 * Make sure we converge to OOM if we cannot make any progress
4757 	 * several times in the row.
4758 	 */
4759 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4760 		/* Before OOM, exhaust highatomic_reserve */
4761 		return unreserve_highatomic_pageblock(ac, true);
4762 	}
4763 
4764 	/*
4765 	 * Keep reclaiming pages while there is a chance this will lead
4766 	 * somewhere.  If none of the target zones can satisfy our allocation
4767 	 * request even if all reclaimable pages are considered then we are
4768 	 * screwed and have to go OOM.
4769 	 */
4770 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4771 				ac->highest_zoneidx, ac->nodemask) {
4772 		unsigned long available;
4773 		unsigned long reclaimable;
4774 		unsigned long min_wmark = min_wmark_pages(zone);
4775 		bool wmark;
4776 
4777 		available = reclaimable = zone_reclaimable_pages(zone);
4778 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4779 
4780 		/*
4781 		 * Would the allocation succeed if we reclaimed all
4782 		 * reclaimable pages?
4783 		 */
4784 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4785 				ac->highest_zoneidx, alloc_flags, available);
4786 		trace_reclaim_retry_zone(z, order, reclaimable,
4787 				available, min_wmark, *no_progress_loops, wmark);
4788 		if (wmark) {
4789 			ret = true;
4790 			break;
4791 		}
4792 	}
4793 
4794 	/*
4795 	 * Memory allocation/reclaim might be called from a WQ context and the
4796 	 * current implementation of the WQ concurrency control doesn't
4797 	 * recognize that a particular WQ is congested if the worker thread is
4798 	 * looping without ever sleeping. Therefore we have to do a short sleep
4799 	 * here rather than calling cond_resched().
4800 	 */
4801 	if (current->flags & PF_WQ_WORKER)
4802 		schedule_timeout_uninterruptible(1);
4803 	else
4804 		cond_resched();
4805 	return ret;
4806 }
4807 
4808 static inline bool
4809 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4810 {
4811 	/*
4812 	 * It's possible that cpuset's mems_allowed and the nodemask from
4813 	 * mempolicy don't intersect. This should be normally dealt with by
4814 	 * policy_nodemask(), but it's possible to race with cpuset update in
4815 	 * such a way the check therein was true, and then it became false
4816 	 * before we got our cpuset_mems_cookie here.
4817 	 * This assumes that for all allocations, ac->nodemask can come only
4818 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4819 	 * when it does not intersect with the cpuset restrictions) or the
4820 	 * caller can deal with a violated nodemask.
4821 	 */
4822 	if (cpusets_enabled() && ac->nodemask &&
4823 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4824 		ac->nodemask = NULL;
4825 		return true;
4826 	}
4827 
4828 	/*
4829 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4830 	 * possible to race with parallel threads in such a way that our
4831 	 * allocation can fail while the mask is being updated. If we are about
4832 	 * to fail, check if the cpuset changed during allocation and if so,
4833 	 * retry.
4834 	 */
4835 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4836 		return true;
4837 
4838 	return false;
4839 }
4840 
4841 static inline struct page *
4842 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4843 						struct alloc_context *ac)
4844 {
4845 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4846 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4847 	struct page *page = NULL;
4848 	unsigned int alloc_flags;
4849 	unsigned long did_some_progress;
4850 	enum compact_priority compact_priority;
4851 	enum compact_result compact_result;
4852 	int compaction_retries;
4853 	int no_progress_loops;
4854 	unsigned int cpuset_mems_cookie;
4855 	int reserve_flags;
4856 
4857 	/*
4858 	 * We also sanity check to catch abuse of atomic reserves being used by
4859 	 * callers that are not in atomic context.
4860 	 */
4861 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4862 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4863 		gfp_mask &= ~__GFP_ATOMIC;
4864 
4865 retry_cpuset:
4866 	compaction_retries = 0;
4867 	no_progress_loops = 0;
4868 	compact_priority = DEF_COMPACT_PRIORITY;
4869 	cpuset_mems_cookie = read_mems_allowed_begin();
4870 
4871 	/*
4872 	 * The fast path uses conservative alloc_flags to succeed only until
4873 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4874 	 * alloc_flags precisely. So we do that now.
4875 	 */
4876 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4877 
4878 	/*
4879 	 * We need to recalculate the starting point for the zonelist iterator
4880 	 * because we might have used different nodemask in the fast path, or
4881 	 * there was a cpuset modification and we are retrying - otherwise we
4882 	 * could end up iterating over non-eligible zones endlessly.
4883 	 */
4884 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4885 					ac->highest_zoneidx, ac->nodemask);
4886 	if (!ac->preferred_zoneref->zone)
4887 		goto nopage;
4888 
4889 	/*
4890 	 * Check for insane configurations where the cpuset doesn't contain
4891 	 * any suitable zone to satisfy the request - e.g. non-movable
4892 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4893 	 */
4894 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4895 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4896 					ac->highest_zoneidx,
4897 					&cpuset_current_mems_allowed);
4898 		if (!z->zone)
4899 			goto nopage;
4900 	}
4901 
4902 	if (alloc_flags & ALLOC_KSWAPD)
4903 		wake_all_kswapds(order, gfp_mask, ac);
4904 
4905 	/*
4906 	 * The adjusted alloc_flags might result in immediate success, so try
4907 	 * that first
4908 	 */
4909 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4910 	if (page)
4911 		goto got_pg;
4912 
4913 	/*
4914 	 * For costly allocations, try direct compaction first, as it's likely
4915 	 * that we have enough base pages and don't need to reclaim. For non-
4916 	 * movable high-order allocations, do that as well, as compaction will
4917 	 * try prevent permanent fragmentation by migrating from blocks of the
4918 	 * same migratetype.
4919 	 * Don't try this for allocations that are allowed to ignore
4920 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4921 	 */
4922 	if (can_direct_reclaim &&
4923 			(costly_order ||
4924 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4925 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4926 		page = __alloc_pages_direct_compact(gfp_mask, order,
4927 						alloc_flags, ac,
4928 						INIT_COMPACT_PRIORITY,
4929 						&compact_result);
4930 		if (page)
4931 			goto got_pg;
4932 
4933 		/*
4934 		 * Checks for costly allocations with __GFP_NORETRY, which
4935 		 * includes some THP page fault allocations
4936 		 */
4937 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4938 			/*
4939 			 * If allocating entire pageblock(s) and compaction
4940 			 * failed because all zones are below low watermarks
4941 			 * or is prohibited because it recently failed at this
4942 			 * order, fail immediately unless the allocator has
4943 			 * requested compaction and reclaim retry.
4944 			 *
4945 			 * Reclaim is
4946 			 *  - potentially very expensive because zones are far
4947 			 *    below their low watermarks or this is part of very
4948 			 *    bursty high order allocations,
4949 			 *  - not guaranteed to help because isolate_freepages()
4950 			 *    may not iterate over freed pages as part of its
4951 			 *    linear scan, and
4952 			 *  - unlikely to make entire pageblocks free on its
4953 			 *    own.
4954 			 */
4955 			if (compact_result == COMPACT_SKIPPED ||
4956 			    compact_result == COMPACT_DEFERRED)
4957 				goto nopage;
4958 
4959 			/*
4960 			 * Looks like reclaim/compaction is worth trying, but
4961 			 * sync compaction could be very expensive, so keep
4962 			 * using async compaction.
4963 			 */
4964 			compact_priority = INIT_COMPACT_PRIORITY;
4965 		}
4966 	}
4967 
4968 retry:
4969 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4970 	if (alloc_flags & ALLOC_KSWAPD)
4971 		wake_all_kswapds(order, gfp_mask, ac);
4972 
4973 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4974 	if (reserve_flags)
4975 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4976 
4977 	/*
4978 	 * Reset the nodemask and zonelist iterators if memory policies can be
4979 	 * ignored. These allocations are high priority and system rather than
4980 	 * user oriented.
4981 	 */
4982 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4983 		ac->nodemask = NULL;
4984 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4985 					ac->highest_zoneidx, ac->nodemask);
4986 	}
4987 
4988 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4989 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4990 	if (page)
4991 		goto got_pg;
4992 
4993 	/* Caller is not willing to reclaim, we can't balance anything */
4994 	if (!can_direct_reclaim)
4995 		goto nopage;
4996 
4997 	/* Avoid recursion of direct reclaim */
4998 	if (current->flags & PF_MEMALLOC)
4999 		goto nopage;
5000 
5001 	/* Try direct reclaim and then allocating */
5002 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5003 							&did_some_progress);
5004 	if (page)
5005 		goto got_pg;
5006 
5007 	/* Try direct compaction and then allocating */
5008 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5009 					compact_priority, &compact_result);
5010 	if (page)
5011 		goto got_pg;
5012 
5013 	/* Do not loop if specifically requested */
5014 	if (gfp_mask & __GFP_NORETRY)
5015 		goto nopage;
5016 
5017 	/*
5018 	 * Do not retry costly high order allocations unless they are
5019 	 * __GFP_RETRY_MAYFAIL
5020 	 */
5021 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5022 		goto nopage;
5023 
5024 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5025 				 did_some_progress > 0, &no_progress_loops))
5026 		goto retry;
5027 
5028 	/*
5029 	 * It doesn't make any sense to retry for the compaction if the order-0
5030 	 * reclaim is not able to make any progress because the current
5031 	 * implementation of the compaction depends on the sufficient amount
5032 	 * of free memory (see __compaction_suitable)
5033 	 */
5034 	if (did_some_progress > 0 &&
5035 			should_compact_retry(ac, order, alloc_flags,
5036 				compact_result, &compact_priority,
5037 				&compaction_retries))
5038 		goto retry;
5039 
5040 
5041 	/* Deal with possible cpuset update races before we start OOM killing */
5042 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5043 		goto retry_cpuset;
5044 
5045 	/* Reclaim has failed us, start killing things */
5046 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5047 	if (page)
5048 		goto got_pg;
5049 
5050 	/* Avoid allocations with no watermarks from looping endlessly */
5051 	if (tsk_is_oom_victim(current) &&
5052 	    (alloc_flags & ALLOC_OOM ||
5053 	     (gfp_mask & __GFP_NOMEMALLOC)))
5054 		goto nopage;
5055 
5056 	/* Retry as long as the OOM killer is making progress */
5057 	if (did_some_progress) {
5058 		no_progress_loops = 0;
5059 		goto retry;
5060 	}
5061 
5062 nopage:
5063 	/* Deal with possible cpuset update races before we fail */
5064 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5065 		goto retry_cpuset;
5066 
5067 	/*
5068 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5069 	 * we always retry
5070 	 */
5071 	if (gfp_mask & __GFP_NOFAIL) {
5072 		/*
5073 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5074 		 * of any new users that actually require GFP_NOWAIT
5075 		 */
5076 		if (WARN_ON_ONCE(!can_direct_reclaim))
5077 			goto fail;
5078 
5079 		/*
5080 		 * PF_MEMALLOC request from this context is rather bizarre
5081 		 * because we cannot reclaim anything and only can loop waiting
5082 		 * for somebody to do a work for us
5083 		 */
5084 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5085 
5086 		/*
5087 		 * non failing costly orders are a hard requirement which we
5088 		 * are not prepared for much so let's warn about these users
5089 		 * so that we can identify them and convert them to something
5090 		 * else.
5091 		 */
5092 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5093 
5094 		/*
5095 		 * Help non-failing allocations by giving them access to memory
5096 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5097 		 * could deplete whole memory reserves which would just make
5098 		 * the situation worse
5099 		 */
5100 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5101 		if (page)
5102 			goto got_pg;
5103 
5104 		cond_resched();
5105 		goto retry;
5106 	}
5107 fail:
5108 	warn_alloc(gfp_mask, ac->nodemask,
5109 			"page allocation failure: order:%u", order);
5110 got_pg:
5111 	return page;
5112 }
5113 
5114 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5115 		int preferred_nid, nodemask_t *nodemask,
5116 		struct alloc_context *ac, gfp_t *alloc_gfp,
5117 		unsigned int *alloc_flags)
5118 {
5119 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5120 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5121 	ac->nodemask = nodemask;
5122 	ac->migratetype = gfp_migratetype(gfp_mask);
5123 
5124 	if (cpusets_enabled()) {
5125 		*alloc_gfp |= __GFP_HARDWALL;
5126 		/*
5127 		 * When we are in the interrupt context, it is irrelevant
5128 		 * to the current task context. It means that any node ok.
5129 		 */
5130 		if (in_task() && !ac->nodemask)
5131 			ac->nodemask = &cpuset_current_mems_allowed;
5132 		else
5133 			*alloc_flags |= ALLOC_CPUSET;
5134 	}
5135 
5136 	fs_reclaim_acquire(gfp_mask);
5137 	fs_reclaim_release(gfp_mask);
5138 
5139 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5140 
5141 	if (should_fail_alloc_page(gfp_mask, order))
5142 		return false;
5143 
5144 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5145 
5146 	/* Dirty zone balancing only done in the fast path */
5147 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5148 
5149 	/*
5150 	 * The preferred zone is used for statistics but crucially it is
5151 	 * also used as the starting point for the zonelist iterator. It
5152 	 * may get reset for allocations that ignore memory policies.
5153 	 */
5154 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5155 					ac->highest_zoneidx, ac->nodemask);
5156 
5157 	return true;
5158 }
5159 
5160 /*
5161  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5162  * @gfp: GFP flags for the allocation
5163  * @preferred_nid: The preferred NUMA node ID to allocate from
5164  * @nodemask: Set of nodes to allocate from, may be NULL
5165  * @nr_pages: The number of pages desired on the list or array
5166  * @page_list: Optional list to store the allocated pages
5167  * @page_array: Optional array to store the pages
5168  *
5169  * This is a batched version of the page allocator that attempts to
5170  * allocate nr_pages quickly. Pages are added to page_list if page_list
5171  * is not NULL, otherwise it is assumed that the page_array is valid.
5172  *
5173  * For lists, nr_pages is the number of pages that should be allocated.
5174  *
5175  * For arrays, only NULL elements are populated with pages and nr_pages
5176  * is the maximum number of pages that will be stored in the array.
5177  *
5178  * Returns the number of pages on the list or array.
5179  */
5180 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5181 			nodemask_t *nodemask, int nr_pages,
5182 			struct list_head *page_list,
5183 			struct page **page_array)
5184 {
5185 	struct page *page;
5186 	unsigned long flags;
5187 	struct zone *zone;
5188 	struct zoneref *z;
5189 	struct per_cpu_pages *pcp;
5190 	struct list_head *pcp_list;
5191 	struct alloc_context ac;
5192 	gfp_t alloc_gfp;
5193 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5194 	int nr_populated = 0, nr_account = 0;
5195 
5196 	/*
5197 	 * Skip populated array elements to determine if any pages need
5198 	 * to be allocated before disabling IRQs.
5199 	 */
5200 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5201 		nr_populated++;
5202 
5203 	/* No pages requested? */
5204 	if (unlikely(nr_pages <= 0))
5205 		goto out;
5206 
5207 	/* Already populated array? */
5208 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5209 		goto out;
5210 
5211 	/* Bulk allocator does not support memcg accounting. */
5212 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5213 		goto failed;
5214 
5215 	/* Use the single page allocator for one page. */
5216 	if (nr_pages - nr_populated == 1)
5217 		goto failed;
5218 
5219 #ifdef CONFIG_PAGE_OWNER
5220 	/*
5221 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5222 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5223 	 * removes much of the performance benefit of bulk allocation so
5224 	 * force the caller to allocate one page at a time as it'll have
5225 	 * similar performance to added complexity to the bulk allocator.
5226 	 */
5227 	if (static_branch_unlikely(&page_owner_inited))
5228 		goto failed;
5229 #endif
5230 
5231 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5232 	gfp &= gfp_allowed_mask;
5233 	alloc_gfp = gfp;
5234 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5235 		goto out;
5236 	gfp = alloc_gfp;
5237 
5238 	/* Find an allowed local zone that meets the low watermark. */
5239 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5240 		unsigned long mark;
5241 
5242 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5243 		    !__cpuset_zone_allowed(zone, gfp)) {
5244 			continue;
5245 		}
5246 
5247 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5248 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5249 			goto failed;
5250 		}
5251 
5252 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5253 		if (zone_watermark_fast(zone, 0,  mark,
5254 				zonelist_zone_idx(ac.preferred_zoneref),
5255 				alloc_flags, gfp)) {
5256 			break;
5257 		}
5258 	}
5259 
5260 	/*
5261 	 * If there are no allowed local zones that meets the watermarks then
5262 	 * try to allocate a single page and reclaim if necessary.
5263 	 */
5264 	if (unlikely(!zone))
5265 		goto failed;
5266 
5267 	/* Attempt the batch allocation */
5268 	local_lock_irqsave(&pagesets.lock, flags);
5269 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5270 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5271 
5272 	while (nr_populated < nr_pages) {
5273 
5274 		/* Skip existing pages */
5275 		if (page_array && page_array[nr_populated]) {
5276 			nr_populated++;
5277 			continue;
5278 		}
5279 
5280 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5281 								pcp, pcp_list);
5282 		if (unlikely(!page)) {
5283 			/* Try and get at least one page */
5284 			if (!nr_populated)
5285 				goto failed_irq;
5286 			break;
5287 		}
5288 		nr_account++;
5289 
5290 		prep_new_page(page, 0, gfp, 0);
5291 		if (page_list)
5292 			list_add(&page->lru, page_list);
5293 		else
5294 			page_array[nr_populated] = page;
5295 		nr_populated++;
5296 	}
5297 
5298 	local_unlock_irqrestore(&pagesets.lock, flags);
5299 
5300 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5301 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5302 
5303 out:
5304 	return nr_populated;
5305 
5306 failed_irq:
5307 	local_unlock_irqrestore(&pagesets.lock, flags);
5308 
5309 failed:
5310 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5311 	if (page) {
5312 		if (page_list)
5313 			list_add(&page->lru, page_list);
5314 		else
5315 			page_array[nr_populated] = page;
5316 		nr_populated++;
5317 	}
5318 
5319 	goto out;
5320 }
5321 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5322 
5323 /*
5324  * This is the 'heart' of the zoned buddy allocator.
5325  */
5326 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5327 							nodemask_t *nodemask)
5328 {
5329 	struct page *page;
5330 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5331 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5332 	struct alloc_context ac = { };
5333 
5334 	/*
5335 	 * There are several places where we assume that the order value is sane
5336 	 * so bail out early if the request is out of bound.
5337 	 */
5338 	if (unlikely(order >= MAX_ORDER)) {
5339 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5340 		return NULL;
5341 	}
5342 
5343 	gfp &= gfp_allowed_mask;
5344 	/*
5345 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5346 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5347 	 * from a particular context which has been marked by
5348 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5349 	 * movable zones are not used during allocation.
5350 	 */
5351 	gfp = current_gfp_context(gfp);
5352 	alloc_gfp = gfp;
5353 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5354 			&alloc_gfp, &alloc_flags))
5355 		return NULL;
5356 
5357 	/*
5358 	 * Forbid the first pass from falling back to types that fragment
5359 	 * memory until all local zones are considered.
5360 	 */
5361 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5362 
5363 	/* First allocation attempt */
5364 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5365 	if (likely(page))
5366 		goto out;
5367 
5368 	alloc_gfp = gfp;
5369 	ac.spread_dirty_pages = false;
5370 
5371 	/*
5372 	 * Restore the original nodemask if it was potentially replaced with
5373 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5374 	 */
5375 	ac.nodemask = nodemask;
5376 
5377 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5378 
5379 out:
5380 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5381 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5382 		__free_pages(page, order);
5383 		page = NULL;
5384 	}
5385 
5386 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5387 
5388 	return page;
5389 }
5390 EXPORT_SYMBOL(__alloc_pages);
5391 
5392 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5393 		nodemask_t *nodemask)
5394 {
5395 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5396 			preferred_nid, nodemask);
5397 
5398 	if (page && order > 1)
5399 		prep_transhuge_page(page);
5400 	return (struct folio *)page;
5401 }
5402 EXPORT_SYMBOL(__folio_alloc);
5403 
5404 /*
5405  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5406  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5407  * you need to access high mem.
5408  */
5409 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5410 {
5411 	struct page *page;
5412 
5413 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5414 	if (!page)
5415 		return 0;
5416 	return (unsigned long) page_address(page);
5417 }
5418 EXPORT_SYMBOL(__get_free_pages);
5419 
5420 unsigned long get_zeroed_page(gfp_t gfp_mask)
5421 {
5422 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5423 }
5424 EXPORT_SYMBOL(get_zeroed_page);
5425 
5426 /**
5427  * __free_pages - Free pages allocated with alloc_pages().
5428  * @page: The page pointer returned from alloc_pages().
5429  * @order: The order of the allocation.
5430  *
5431  * This function can free multi-page allocations that are not compound
5432  * pages.  It does not check that the @order passed in matches that of
5433  * the allocation, so it is easy to leak memory.  Freeing more memory
5434  * than was allocated will probably emit a warning.
5435  *
5436  * If the last reference to this page is speculative, it will be released
5437  * by put_page() which only frees the first page of a non-compound
5438  * allocation.  To prevent the remaining pages from being leaked, we free
5439  * the subsequent pages here.  If you want to use the page's reference
5440  * count to decide when to free the allocation, you should allocate a
5441  * compound page, and use put_page() instead of __free_pages().
5442  *
5443  * Context: May be called in interrupt context or while holding a normal
5444  * spinlock, but not in NMI context or while holding a raw spinlock.
5445  */
5446 void __free_pages(struct page *page, unsigned int order)
5447 {
5448 	if (put_page_testzero(page))
5449 		free_the_page(page, order);
5450 	else if (!PageHead(page))
5451 		while (order-- > 0)
5452 			free_the_page(page + (1 << order), order);
5453 }
5454 EXPORT_SYMBOL(__free_pages);
5455 
5456 void free_pages(unsigned long addr, unsigned int order)
5457 {
5458 	if (addr != 0) {
5459 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5460 		__free_pages(virt_to_page((void *)addr), order);
5461 	}
5462 }
5463 
5464 EXPORT_SYMBOL(free_pages);
5465 
5466 /*
5467  * Page Fragment:
5468  *  An arbitrary-length arbitrary-offset area of memory which resides
5469  *  within a 0 or higher order page.  Multiple fragments within that page
5470  *  are individually refcounted, in the page's reference counter.
5471  *
5472  * The page_frag functions below provide a simple allocation framework for
5473  * page fragments.  This is used by the network stack and network device
5474  * drivers to provide a backing region of memory for use as either an
5475  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5476  */
5477 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5478 					     gfp_t gfp_mask)
5479 {
5480 	struct page *page = NULL;
5481 	gfp_t gfp = gfp_mask;
5482 
5483 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5484 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5485 		    __GFP_NOMEMALLOC;
5486 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5487 				PAGE_FRAG_CACHE_MAX_ORDER);
5488 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5489 #endif
5490 	if (unlikely(!page))
5491 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5492 
5493 	nc->va = page ? page_address(page) : NULL;
5494 
5495 	return page;
5496 }
5497 
5498 void __page_frag_cache_drain(struct page *page, unsigned int count)
5499 {
5500 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5501 
5502 	if (page_ref_sub_and_test(page, count))
5503 		free_the_page(page, compound_order(page));
5504 }
5505 EXPORT_SYMBOL(__page_frag_cache_drain);
5506 
5507 void *page_frag_alloc_align(struct page_frag_cache *nc,
5508 		      unsigned int fragsz, gfp_t gfp_mask,
5509 		      unsigned int align_mask)
5510 {
5511 	unsigned int size = PAGE_SIZE;
5512 	struct page *page;
5513 	int offset;
5514 
5515 	if (unlikely(!nc->va)) {
5516 refill:
5517 		page = __page_frag_cache_refill(nc, gfp_mask);
5518 		if (!page)
5519 			return NULL;
5520 
5521 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5522 		/* if size can vary use size else just use PAGE_SIZE */
5523 		size = nc->size;
5524 #endif
5525 		/* Even if we own the page, we do not use atomic_set().
5526 		 * This would break get_page_unless_zero() users.
5527 		 */
5528 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5529 
5530 		/* reset page count bias and offset to start of new frag */
5531 		nc->pfmemalloc = page_is_pfmemalloc(page);
5532 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5533 		nc->offset = size;
5534 	}
5535 
5536 	offset = nc->offset - fragsz;
5537 	if (unlikely(offset < 0)) {
5538 		page = virt_to_page(nc->va);
5539 
5540 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5541 			goto refill;
5542 
5543 		if (unlikely(nc->pfmemalloc)) {
5544 			free_the_page(page, compound_order(page));
5545 			goto refill;
5546 		}
5547 
5548 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5549 		/* if size can vary use size else just use PAGE_SIZE */
5550 		size = nc->size;
5551 #endif
5552 		/* OK, page count is 0, we can safely set it */
5553 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5554 
5555 		/* reset page count bias and offset to start of new frag */
5556 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5557 		offset = size - fragsz;
5558 	}
5559 
5560 	nc->pagecnt_bias--;
5561 	offset &= align_mask;
5562 	nc->offset = offset;
5563 
5564 	return nc->va + offset;
5565 }
5566 EXPORT_SYMBOL(page_frag_alloc_align);
5567 
5568 /*
5569  * Frees a page fragment allocated out of either a compound or order 0 page.
5570  */
5571 void page_frag_free(void *addr)
5572 {
5573 	struct page *page = virt_to_head_page(addr);
5574 
5575 	if (unlikely(put_page_testzero(page)))
5576 		free_the_page(page, compound_order(page));
5577 }
5578 EXPORT_SYMBOL(page_frag_free);
5579 
5580 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5581 		size_t size)
5582 {
5583 	if (addr) {
5584 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5585 		unsigned long used = addr + PAGE_ALIGN(size);
5586 
5587 		split_page(virt_to_page((void *)addr), order);
5588 		while (used < alloc_end) {
5589 			free_page(used);
5590 			used += PAGE_SIZE;
5591 		}
5592 	}
5593 	return (void *)addr;
5594 }
5595 
5596 /**
5597  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5598  * @size: the number of bytes to allocate
5599  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5600  *
5601  * This function is similar to alloc_pages(), except that it allocates the
5602  * minimum number of pages to satisfy the request.  alloc_pages() can only
5603  * allocate memory in power-of-two pages.
5604  *
5605  * This function is also limited by MAX_ORDER.
5606  *
5607  * Memory allocated by this function must be released by free_pages_exact().
5608  *
5609  * Return: pointer to the allocated area or %NULL in case of error.
5610  */
5611 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5612 {
5613 	unsigned int order = get_order(size);
5614 	unsigned long addr;
5615 
5616 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5617 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5618 
5619 	addr = __get_free_pages(gfp_mask, order);
5620 	return make_alloc_exact(addr, order, size);
5621 }
5622 EXPORT_SYMBOL(alloc_pages_exact);
5623 
5624 /**
5625  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5626  *			   pages on a node.
5627  * @nid: the preferred node ID where memory should be allocated
5628  * @size: the number of bytes to allocate
5629  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5630  *
5631  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5632  * back.
5633  *
5634  * Return: pointer to the allocated area or %NULL in case of error.
5635  */
5636 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5637 {
5638 	unsigned int order = get_order(size);
5639 	struct page *p;
5640 
5641 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5642 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5643 
5644 	p = alloc_pages_node(nid, gfp_mask, order);
5645 	if (!p)
5646 		return NULL;
5647 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5648 }
5649 
5650 /**
5651  * free_pages_exact - release memory allocated via alloc_pages_exact()
5652  * @virt: the value returned by alloc_pages_exact.
5653  * @size: size of allocation, same value as passed to alloc_pages_exact().
5654  *
5655  * Release the memory allocated by a previous call to alloc_pages_exact.
5656  */
5657 void free_pages_exact(void *virt, size_t size)
5658 {
5659 	unsigned long addr = (unsigned long)virt;
5660 	unsigned long end = addr + PAGE_ALIGN(size);
5661 
5662 	while (addr < end) {
5663 		free_page(addr);
5664 		addr += PAGE_SIZE;
5665 	}
5666 }
5667 EXPORT_SYMBOL(free_pages_exact);
5668 
5669 /**
5670  * nr_free_zone_pages - count number of pages beyond high watermark
5671  * @offset: The zone index of the highest zone
5672  *
5673  * nr_free_zone_pages() counts the number of pages which are beyond the
5674  * high watermark within all zones at or below a given zone index.  For each
5675  * zone, the number of pages is calculated as:
5676  *
5677  *     nr_free_zone_pages = managed_pages - high_pages
5678  *
5679  * Return: number of pages beyond high watermark.
5680  */
5681 static unsigned long nr_free_zone_pages(int offset)
5682 {
5683 	struct zoneref *z;
5684 	struct zone *zone;
5685 
5686 	/* Just pick one node, since fallback list is circular */
5687 	unsigned long sum = 0;
5688 
5689 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5690 
5691 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5692 		unsigned long size = zone_managed_pages(zone);
5693 		unsigned long high = high_wmark_pages(zone);
5694 		if (size > high)
5695 			sum += size - high;
5696 	}
5697 
5698 	return sum;
5699 }
5700 
5701 /**
5702  * nr_free_buffer_pages - count number of pages beyond high watermark
5703  *
5704  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5705  * watermark within ZONE_DMA and ZONE_NORMAL.
5706  *
5707  * Return: number of pages beyond high watermark within ZONE_DMA and
5708  * ZONE_NORMAL.
5709  */
5710 unsigned long nr_free_buffer_pages(void)
5711 {
5712 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5713 }
5714 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5715 
5716 static inline void show_node(struct zone *zone)
5717 {
5718 	if (IS_ENABLED(CONFIG_NUMA))
5719 		printk("Node %d ", zone_to_nid(zone));
5720 }
5721 
5722 long si_mem_available(void)
5723 {
5724 	long available;
5725 	unsigned long pagecache;
5726 	unsigned long wmark_low = 0;
5727 	unsigned long pages[NR_LRU_LISTS];
5728 	unsigned long reclaimable;
5729 	struct zone *zone;
5730 	int lru;
5731 
5732 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5733 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5734 
5735 	for_each_zone(zone)
5736 		wmark_low += low_wmark_pages(zone);
5737 
5738 	/*
5739 	 * Estimate the amount of memory available for userspace allocations,
5740 	 * without causing swapping.
5741 	 */
5742 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5743 
5744 	/*
5745 	 * Not all the page cache can be freed, otherwise the system will
5746 	 * start swapping. Assume at least half of the page cache, or the
5747 	 * low watermark worth of cache, needs to stay.
5748 	 */
5749 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5750 	pagecache -= min(pagecache / 2, wmark_low);
5751 	available += pagecache;
5752 
5753 	/*
5754 	 * Part of the reclaimable slab and other kernel memory consists of
5755 	 * items that are in use, and cannot be freed. Cap this estimate at the
5756 	 * low watermark.
5757 	 */
5758 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5759 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5760 	available += reclaimable - min(reclaimable / 2, wmark_low);
5761 
5762 	if (available < 0)
5763 		available = 0;
5764 	return available;
5765 }
5766 EXPORT_SYMBOL_GPL(si_mem_available);
5767 
5768 void si_meminfo(struct sysinfo *val)
5769 {
5770 	val->totalram = totalram_pages();
5771 	val->sharedram = global_node_page_state(NR_SHMEM);
5772 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5773 	val->bufferram = nr_blockdev_pages();
5774 	val->totalhigh = totalhigh_pages();
5775 	val->freehigh = nr_free_highpages();
5776 	val->mem_unit = PAGE_SIZE;
5777 }
5778 
5779 EXPORT_SYMBOL(si_meminfo);
5780 
5781 #ifdef CONFIG_NUMA
5782 void si_meminfo_node(struct sysinfo *val, int nid)
5783 {
5784 	int zone_type;		/* needs to be signed */
5785 	unsigned long managed_pages = 0;
5786 	unsigned long managed_highpages = 0;
5787 	unsigned long free_highpages = 0;
5788 	pg_data_t *pgdat = NODE_DATA(nid);
5789 
5790 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5791 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5792 	val->totalram = managed_pages;
5793 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5794 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5795 #ifdef CONFIG_HIGHMEM
5796 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5797 		struct zone *zone = &pgdat->node_zones[zone_type];
5798 
5799 		if (is_highmem(zone)) {
5800 			managed_highpages += zone_managed_pages(zone);
5801 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5802 		}
5803 	}
5804 	val->totalhigh = managed_highpages;
5805 	val->freehigh = free_highpages;
5806 #else
5807 	val->totalhigh = managed_highpages;
5808 	val->freehigh = free_highpages;
5809 #endif
5810 	val->mem_unit = PAGE_SIZE;
5811 }
5812 #endif
5813 
5814 /*
5815  * Determine whether the node should be displayed or not, depending on whether
5816  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5817  */
5818 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5819 {
5820 	if (!(flags & SHOW_MEM_FILTER_NODES))
5821 		return false;
5822 
5823 	/*
5824 	 * no node mask - aka implicit memory numa policy. Do not bother with
5825 	 * the synchronization - read_mems_allowed_begin - because we do not
5826 	 * have to be precise here.
5827 	 */
5828 	if (!nodemask)
5829 		nodemask = &cpuset_current_mems_allowed;
5830 
5831 	return !node_isset(nid, *nodemask);
5832 }
5833 
5834 #define K(x) ((x) << (PAGE_SHIFT-10))
5835 
5836 static void show_migration_types(unsigned char type)
5837 {
5838 	static const char types[MIGRATE_TYPES] = {
5839 		[MIGRATE_UNMOVABLE]	= 'U',
5840 		[MIGRATE_MOVABLE]	= 'M',
5841 		[MIGRATE_RECLAIMABLE]	= 'E',
5842 		[MIGRATE_HIGHATOMIC]	= 'H',
5843 #ifdef CONFIG_CMA
5844 		[MIGRATE_CMA]		= 'C',
5845 #endif
5846 #ifdef CONFIG_MEMORY_ISOLATION
5847 		[MIGRATE_ISOLATE]	= 'I',
5848 #endif
5849 	};
5850 	char tmp[MIGRATE_TYPES + 1];
5851 	char *p = tmp;
5852 	int i;
5853 
5854 	for (i = 0; i < MIGRATE_TYPES; i++) {
5855 		if (type & (1 << i))
5856 			*p++ = types[i];
5857 	}
5858 
5859 	*p = '\0';
5860 	printk(KERN_CONT "(%s) ", tmp);
5861 }
5862 
5863 /*
5864  * Show free area list (used inside shift_scroll-lock stuff)
5865  * We also calculate the percentage fragmentation. We do this by counting the
5866  * memory on each free list with the exception of the first item on the list.
5867  *
5868  * Bits in @filter:
5869  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5870  *   cpuset.
5871  */
5872 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5873 {
5874 	unsigned long free_pcp = 0;
5875 	int cpu;
5876 	struct zone *zone;
5877 	pg_data_t *pgdat;
5878 
5879 	for_each_populated_zone(zone) {
5880 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5881 			continue;
5882 
5883 		for_each_online_cpu(cpu)
5884 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5885 	}
5886 
5887 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5888 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5889 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5890 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5891 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5892 		" kernel_misc_reclaimable:%lu\n"
5893 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5894 		global_node_page_state(NR_ACTIVE_ANON),
5895 		global_node_page_state(NR_INACTIVE_ANON),
5896 		global_node_page_state(NR_ISOLATED_ANON),
5897 		global_node_page_state(NR_ACTIVE_FILE),
5898 		global_node_page_state(NR_INACTIVE_FILE),
5899 		global_node_page_state(NR_ISOLATED_FILE),
5900 		global_node_page_state(NR_UNEVICTABLE),
5901 		global_node_page_state(NR_FILE_DIRTY),
5902 		global_node_page_state(NR_WRITEBACK),
5903 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5904 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5905 		global_node_page_state(NR_FILE_MAPPED),
5906 		global_node_page_state(NR_SHMEM),
5907 		global_node_page_state(NR_PAGETABLE),
5908 		global_zone_page_state(NR_BOUNCE),
5909 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5910 		global_zone_page_state(NR_FREE_PAGES),
5911 		free_pcp,
5912 		global_zone_page_state(NR_FREE_CMA_PAGES));
5913 
5914 	for_each_online_pgdat(pgdat) {
5915 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5916 			continue;
5917 
5918 		printk("Node %d"
5919 			" active_anon:%lukB"
5920 			" inactive_anon:%lukB"
5921 			" active_file:%lukB"
5922 			" inactive_file:%lukB"
5923 			" unevictable:%lukB"
5924 			" isolated(anon):%lukB"
5925 			" isolated(file):%lukB"
5926 			" mapped:%lukB"
5927 			" dirty:%lukB"
5928 			" writeback:%lukB"
5929 			" shmem:%lukB"
5930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5931 			" shmem_thp: %lukB"
5932 			" shmem_pmdmapped: %lukB"
5933 			" anon_thp: %lukB"
5934 #endif
5935 			" writeback_tmp:%lukB"
5936 			" kernel_stack:%lukB"
5937 #ifdef CONFIG_SHADOW_CALL_STACK
5938 			" shadow_call_stack:%lukB"
5939 #endif
5940 			" pagetables:%lukB"
5941 			" all_unreclaimable? %s"
5942 			"\n",
5943 			pgdat->node_id,
5944 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5945 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5946 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5947 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5948 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5949 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5950 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5951 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5952 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5953 			K(node_page_state(pgdat, NR_WRITEBACK)),
5954 			K(node_page_state(pgdat, NR_SHMEM)),
5955 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5956 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5957 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5958 			K(node_page_state(pgdat, NR_ANON_THPS)),
5959 #endif
5960 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5961 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5962 #ifdef CONFIG_SHADOW_CALL_STACK
5963 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5964 #endif
5965 			K(node_page_state(pgdat, NR_PAGETABLE)),
5966 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5967 				"yes" : "no");
5968 	}
5969 
5970 	for_each_populated_zone(zone) {
5971 		int i;
5972 
5973 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5974 			continue;
5975 
5976 		free_pcp = 0;
5977 		for_each_online_cpu(cpu)
5978 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5979 
5980 		show_node(zone);
5981 		printk(KERN_CONT
5982 			"%s"
5983 			" free:%lukB"
5984 			" boost:%lukB"
5985 			" min:%lukB"
5986 			" low:%lukB"
5987 			" high:%lukB"
5988 			" reserved_highatomic:%luKB"
5989 			" active_anon:%lukB"
5990 			" inactive_anon:%lukB"
5991 			" active_file:%lukB"
5992 			" inactive_file:%lukB"
5993 			" unevictable:%lukB"
5994 			" writepending:%lukB"
5995 			" present:%lukB"
5996 			" managed:%lukB"
5997 			" mlocked:%lukB"
5998 			" bounce:%lukB"
5999 			" free_pcp:%lukB"
6000 			" local_pcp:%ukB"
6001 			" free_cma:%lukB"
6002 			"\n",
6003 			zone->name,
6004 			K(zone_page_state(zone, NR_FREE_PAGES)),
6005 			K(zone->watermark_boost),
6006 			K(min_wmark_pages(zone)),
6007 			K(low_wmark_pages(zone)),
6008 			K(high_wmark_pages(zone)),
6009 			K(zone->nr_reserved_highatomic),
6010 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6011 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6012 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6013 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6014 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6015 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6016 			K(zone->present_pages),
6017 			K(zone_managed_pages(zone)),
6018 			K(zone_page_state(zone, NR_MLOCK)),
6019 			K(zone_page_state(zone, NR_BOUNCE)),
6020 			K(free_pcp),
6021 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6022 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6023 		printk("lowmem_reserve[]:");
6024 		for (i = 0; i < MAX_NR_ZONES; i++)
6025 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6026 		printk(KERN_CONT "\n");
6027 	}
6028 
6029 	for_each_populated_zone(zone) {
6030 		unsigned int order;
6031 		unsigned long nr[MAX_ORDER], flags, total = 0;
6032 		unsigned char types[MAX_ORDER];
6033 
6034 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6035 			continue;
6036 		show_node(zone);
6037 		printk(KERN_CONT "%s: ", zone->name);
6038 
6039 		spin_lock_irqsave(&zone->lock, flags);
6040 		for (order = 0; order < MAX_ORDER; order++) {
6041 			struct free_area *area = &zone->free_area[order];
6042 			int type;
6043 
6044 			nr[order] = area->nr_free;
6045 			total += nr[order] << order;
6046 
6047 			types[order] = 0;
6048 			for (type = 0; type < MIGRATE_TYPES; type++) {
6049 				if (!free_area_empty(area, type))
6050 					types[order] |= 1 << type;
6051 			}
6052 		}
6053 		spin_unlock_irqrestore(&zone->lock, flags);
6054 		for (order = 0; order < MAX_ORDER; order++) {
6055 			printk(KERN_CONT "%lu*%lukB ",
6056 			       nr[order], K(1UL) << order);
6057 			if (nr[order])
6058 				show_migration_types(types[order]);
6059 		}
6060 		printk(KERN_CONT "= %lukB\n", K(total));
6061 	}
6062 
6063 	hugetlb_show_meminfo();
6064 
6065 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6066 
6067 	show_swap_cache_info();
6068 }
6069 
6070 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6071 {
6072 	zoneref->zone = zone;
6073 	zoneref->zone_idx = zone_idx(zone);
6074 }
6075 
6076 /*
6077  * Builds allocation fallback zone lists.
6078  *
6079  * Add all populated zones of a node to the zonelist.
6080  */
6081 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6082 {
6083 	struct zone *zone;
6084 	enum zone_type zone_type = MAX_NR_ZONES;
6085 	int nr_zones = 0;
6086 
6087 	do {
6088 		zone_type--;
6089 		zone = pgdat->node_zones + zone_type;
6090 		if (populated_zone(zone)) {
6091 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6092 			check_highest_zone(zone_type);
6093 		}
6094 	} while (zone_type);
6095 
6096 	return nr_zones;
6097 }
6098 
6099 #ifdef CONFIG_NUMA
6100 
6101 static int __parse_numa_zonelist_order(char *s)
6102 {
6103 	/*
6104 	 * We used to support different zonelists modes but they turned
6105 	 * out to be just not useful. Let's keep the warning in place
6106 	 * if somebody still use the cmd line parameter so that we do
6107 	 * not fail it silently
6108 	 */
6109 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6110 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6111 		return -EINVAL;
6112 	}
6113 	return 0;
6114 }
6115 
6116 char numa_zonelist_order[] = "Node";
6117 
6118 /*
6119  * sysctl handler for numa_zonelist_order
6120  */
6121 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6122 		void *buffer, size_t *length, loff_t *ppos)
6123 {
6124 	if (write)
6125 		return __parse_numa_zonelist_order(buffer);
6126 	return proc_dostring(table, write, buffer, length, ppos);
6127 }
6128 
6129 
6130 static int node_load[MAX_NUMNODES];
6131 
6132 /**
6133  * find_next_best_node - find the next node that should appear in a given node's fallback list
6134  * @node: node whose fallback list we're appending
6135  * @used_node_mask: nodemask_t of already used nodes
6136  *
6137  * We use a number of factors to determine which is the next node that should
6138  * appear on a given node's fallback list.  The node should not have appeared
6139  * already in @node's fallback list, and it should be the next closest node
6140  * according to the distance array (which contains arbitrary distance values
6141  * from each node to each node in the system), and should also prefer nodes
6142  * with no CPUs, since presumably they'll have very little allocation pressure
6143  * on them otherwise.
6144  *
6145  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6146  */
6147 int find_next_best_node(int node, nodemask_t *used_node_mask)
6148 {
6149 	int n, val;
6150 	int min_val = INT_MAX;
6151 	int best_node = NUMA_NO_NODE;
6152 
6153 	/* Use the local node if we haven't already */
6154 	if (!node_isset(node, *used_node_mask)) {
6155 		node_set(node, *used_node_mask);
6156 		return node;
6157 	}
6158 
6159 	for_each_node_state(n, N_MEMORY) {
6160 
6161 		/* Don't want a node to appear more than once */
6162 		if (node_isset(n, *used_node_mask))
6163 			continue;
6164 
6165 		/* Use the distance array to find the distance */
6166 		val = node_distance(node, n);
6167 
6168 		/* Penalize nodes under us ("prefer the next node") */
6169 		val += (n < node);
6170 
6171 		/* Give preference to headless and unused nodes */
6172 		if (!cpumask_empty(cpumask_of_node(n)))
6173 			val += PENALTY_FOR_NODE_WITH_CPUS;
6174 
6175 		/* Slight preference for less loaded node */
6176 		val *= MAX_NUMNODES;
6177 		val += node_load[n];
6178 
6179 		if (val < min_val) {
6180 			min_val = val;
6181 			best_node = n;
6182 		}
6183 	}
6184 
6185 	if (best_node >= 0)
6186 		node_set(best_node, *used_node_mask);
6187 
6188 	return best_node;
6189 }
6190 
6191 
6192 /*
6193  * Build zonelists ordered by node and zones within node.
6194  * This results in maximum locality--normal zone overflows into local
6195  * DMA zone, if any--but risks exhausting DMA zone.
6196  */
6197 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6198 		unsigned nr_nodes)
6199 {
6200 	struct zoneref *zonerefs;
6201 	int i;
6202 
6203 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6204 
6205 	for (i = 0; i < nr_nodes; i++) {
6206 		int nr_zones;
6207 
6208 		pg_data_t *node = NODE_DATA(node_order[i]);
6209 
6210 		nr_zones = build_zonerefs_node(node, zonerefs);
6211 		zonerefs += nr_zones;
6212 	}
6213 	zonerefs->zone = NULL;
6214 	zonerefs->zone_idx = 0;
6215 }
6216 
6217 /*
6218  * Build gfp_thisnode zonelists
6219  */
6220 static void build_thisnode_zonelists(pg_data_t *pgdat)
6221 {
6222 	struct zoneref *zonerefs;
6223 	int nr_zones;
6224 
6225 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6226 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6227 	zonerefs += nr_zones;
6228 	zonerefs->zone = NULL;
6229 	zonerefs->zone_idx = 0;
6230 }
6231 
6232 /*
6233  * Build zonelists ordered by zone and nodes within zones.
6234  * This results in conserving DMA zone[s] until all Normal memory is
6235  * exhausted, but results in overflowing to remote node while memory
6236  * may still exist in local DMA zone.
6237  */
6238 
6239 static void build_zonelists(pg_data_t *pgdat)
6240 {
6241 	static int node_order[MAX_NUMNODES];
6242 	int node, nr_nodes = 0;
6243 	nodemask_t used_mask = NODE_MASK_NONE;
6244 	int local_node, prev_node;
6245 
6246 	/* NUMA-aware ordering of nodes */
6247 	local_node = pgdat->node_id;
6248 	prev_node = local_node;
6249 
6250 	memset(node_order, 0, sizeof(node_order));
6251 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6252 		/*
6253 		 * We don't want to pressure a particular node.
6254 		 * So adding penalty to the first node in same
6255 		 * distance group to make it round-robin.
6256 		 */
6257 		if (node_distance(local_node, node) !=
6258 		    node_distance(local_node, prev_node))
6259 			node_load[node] += 1;
6260 
6261 		node_order[nr_nodes++] = node;
6262 		prev_node = node;
6263 	}
6264 
6265 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6266 	build_thisnode_zonelists(pgdat);
6267 	pr_info("Fallback order for Node %d: ", local_node);
6268 	for (node = 0; node < nr_nodes; node++)
6269 		pr_cont("%d ", node_order[node]);
6270 	pr_cont("\n");
6271 }
6272 
6273 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6274 /*
6275  * Return node id of node used for "local" allocations.
6276  * I.e., first node id of first zone in arg node's generic zonelist.
6277  * Used for initializing percpu 'numa_mem', which is used primarily
6278  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6279  */
6280 int local_memory_node(int node)
6281 {
6282 	struct zoneref *z;
6283 
6284 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6285 				   gfp_zone(GFP_KERNEL),
6286 				   NULL);
6287 	return zone_to_nid(z->zone);
6288 }
6289 #endif
6290 
6291 static void setup_min_unmapped_ratio(void);
6292 static void setup_min_slab_ratio(void);
6293 #else	/* CONFIG_NUMA */
6294 
6295 static void build_zonelists(pg_data_t *pgdat)
6296 {
6297 	int node, local_node;
6298 	struct zoneref *zonerefs;
6299 	int nr_zones;
6300 
6301 	local_node = pgdat->node_id;
6302 
6303 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6304 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6305 	zonerefs += nr_zones;
6306 
6307 	/*
6308 	 * Now we build the zonelist so that it contains the zones
6309 	 * of all the other nodes.
6310 	 * We don't want to pressure a particular node, so when
6311 	 * building the zones for node N, we make sure that the
6312 	 * zones coming right after the local ones are those from
6313 	 * node N+1 (modulo N)
6314 	 */
6315 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6316 		if (!node_online(node))
6317 			continue;
6318 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6319 		zonerefs += nr_zones;
6320 	}
6321 	for (node = 0; node < local_node; node++) {
6322 		if (!node_online(node))
6323 			continue;
6324 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6325 		zonerefs += nr_zones;
6326 	}
6327 
6328 	zonerefs->zone = NULL;
6329 	zonerefs->zone_idx = 0;
6330 }
6331 
6332 #endif	/* CONFIG_NUMA */
6333 
6334 /*
6335  * Boot pageset table. One per cpu which is going to be used for all
6336  * zones and all nodes. The parameters will be set in such a way
6337  * that an item put on a list will immediately be handed over to
6338  * the buddy list. This is safe since pageset manipulation is done
6339  * with interrupts disabled.
6340  *
6341  * The boot_pagesets must be kept even after bootup is complete for
6342  * unused processors and/or zones. They do play a role for bootstrapping
6343  * hotplugged processors.
6344  *
6345  * zoneinfo_show() and maybe other functions do
6346  * not check if the processor is online before following the pageset pointer.
6347  * Other parts of the kernel may not check if the zone is available.
6348  */
6349 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6350 /* These effectively disable the pcplists in the boot pageset completely */
6351 #define BOOT_PAGESET_HIGH	0
6352 #define BOOT_PAGESET_BATCH	1
6353 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6354 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6355 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6356 
6357 static void __build_all_zonelists(void *data)
6358 {
6359 	int nid;
6360 	int __maybe_unused cpu;
6361 	pg_data_t *self = data;
6362 	static DEFINE_SPINLOCK(lock);
6363 
6364 	spin_lock(&lock);
6365 
6366 #ifdef CONFIG_NUMA
6367 	memset(node_load, 0, sizeof(node_load));
6368 #endif
6369 
6370 	/*
6371 	 * This node is hotadded and no memory is yet present.   So just
6372 	 * building zonelists is fine - no need to touch other nodes.
6373 	 */
6374 	if (self && !node_online(self->node_id)) {
6375 		build_zonelists(self);
6376 	} else {
6377 		/*
6378 		 * All possible nodes have pgdat preallocated
6379 		 * in free_area_init
6380 		 */
6381 		for_each_node(nid) {
6382 			pg_data_t *pgdat = NODE_DATA(nid);
6383 
6384 			build_zonelists(pgdat);
6385 		}
6386 
6387 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6388 		/*
6389 		 * We now know the "local memory node" for each node--
6390 		 * i.e., the node of the first zone in the generic zonelist.
6391 		 * Set up numa_mem percpu variable for on-line cpus.  During
6392 		 * boot, only the boot cpu should be on-line;  we'll init the
6393 		 * secondary cpus' numa_mem as they come on-line.  During
6394 		 * node/memory hotplug, we'll fixup all on-line cpus.
6395 		 */
6396 		for_each_online_cpu(cpu)
6397 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6398 #endif
6399 	}
6400 
6401 	spin_unlock(&lock);
6402 }
6403 
6404 static noinline void __init
6405 build_all_zonelists_init(void)
6406 {
6407 	int cpu;
6408 
6409 	__build_all_zonelists(NULL);
6410 
6411 	/*
6412 	 * Initialize the boot_pagesets that are going to be used
6413 	 * for bootstrapping processors. The real pagesets for
6414 	 * each zone will be allocated later when the per cpu
6415 	 * allocator is available.
6416 	 *
6417 	 * boot_pagesets are used also for bootstrapping offline
6418 	 * cpus if the system is already booted because the pagesets
6419 	 * are needed to initialize allocators on a specific cpu too.
6420 	 * F.e. the percpu allocator needs the page allocator which
6421 	 * needs the percpu allocator in order to allocate its pagesets
6422 	 * (a chicken-egg dilemma).
6423 	 */
6424 	for_each_possible_cpu(cpu)
6425 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6426 
6427 	mminit_verify_zonelist();
6428 	cpuset_init_current_mems_allowed();
6429 }
6430 
6431 /*
6432  * unless system_state == SYSTEM_BOOTING.
6433  *
6434  * __ref due to call of __init annotated helper build_all_zonelists_init
6435  * [protected by SYSTEM_BOOTING].
6436  */
6437 void __ref build_all_zonelists(pg_data_t *pgdat)
6438 {
6439 	unsigned long vm_total_pages;
6440 
6441 	if (system_state == SYSTEM_BOOTING) {
6442 		build_all_zonelists_init();
6443 	} else {
6444 		__build_all_zonelists(pgdat);
6445 		/* cpuset refresh routine should be here */
6446 	}
6447 	/* Get the number of free pages beyond high watermark in all zones. */
6448 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6449 	/*
6450 	 * Disable grouping by mobility if the number of pages in the
6451 	 * system is too low to allow the mechanism to work. It would be
6452 	 * more accurate, but expensive to check per-zone. This check is
6453 	 * made on memory-hotadd so a system can start with mobility
6454 	 * disabled and enable it later
6455 	 */
6456 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6457 		page_group_by_mobility_disabled = 1;
6458 	else
6459 		page_group_by_mobility_disabled = 0;
6460 
6461 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6462 		nr_online_nodes,
6463 		page_group_by_mobility_disabled ? "off" : "on",
6464 		vm_total_pages);
6465 #ifdef CONFIG_NUMA
6466 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6467 #endif
6468 }
6469 
6470 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6471 static bool __meminit
6472 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6473 {
6474 	static struct memblock_region *r;
6475 
6476 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6477 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6478 			for_each_mem_region(r) {
6479 				if (*pfn < memblock_region_memory_end_pfn(r))
6480 					break;
6481 			}
6482 		}
6483 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6484 		    memblock_is_mirror(r)) {
6485 			*pfn = memblock_region_memory_end_pfn(r);
6486 			return true;
6487 		}
6488 	}
6489 	return false;
6490 }
6491 
6492 /*
6493  * Initially all pages are reserved - free ones are freed
6494  * up by memblock_free_all() once the early boot process is
6495  * done. Non-atomic initialization, single-pass.
6496  *
6497  * All aligned pageblocks are initialized to the specified migratetype
6498  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6499  * zone stats (e.g., nr_isolate_pageblock) are touched.
6500  */
6501 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6502 		unsigned long start_pfn, unsigned long zone_end_pfn,
6503 		enum meminit_context context,
6504 		struct vmem_altmap *altmap, int migratetype)
6505 {
6506 	unsigned long pfn, end_pfn = start_pfn + size;
6507 	struct page *page;
6508 
6509 	if (highest_memmap_pfn < end_pfn - 1)
6510 		highest_memmap_pfn = end_pfn - 1;
6511 
6512 #ifdef CONFIG_ZONE_DEVICE
6513 	/*
6514 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6515 	 * memory. We limit the total number of pages to initialize to just
6516 	 * those that might contain the memory mapping. We will defer the
6517 	 * ZONE_DEVICE page initialization until after we have released
6518 	 * the hotplug lock.
6519 	 */
6520 	if (zone == ZONE_DEVICE) {
6521 		if (!altmap)
6522 			return;
6523 
6524 		if (start_pfn == altmap->base_pfn)
6525 			start_pfn += altmap->reserve;
6526 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6527 	}
6528 #endif
6529 
6530 	for (pfn = start_pfn; pfn < end_pfn; ) {
6531 		/*
6532 		 * There can be holes in boot-time mem_map[]s handed to this
6533 		 * function.  They do not exist on hotplugged memory.
6534 		 */
6535 		if (context == MEMINIT_EARLY) {
6536 			if (overlap_memmap_init(zone, &pfn))
6537 				continue;
6538 			if (defer_init(nid, pfn, zone_end_pfn))
6539 				break;
6540 		}
6541 
6542 		page = pfn_to_page(pfn);
6543 		__init_single_page(page, pfn, zone, nid);
6544 		if (context == MEMINIT_HOTPLUG)
6545 			__SetPageReserved(page);
6546 
6547 		/*
6548 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6549 		 * such that unmovable allocations won't be scattered all
6550 		 * over the place during system boot.
6551 		 */
6552 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6553 			set_pageblock_migratetype(page, migratetype);
6554 			cond_resched();
6555 		}
6556 		pfn++;
6557 	}
6558 }
6559 
6560 #ifdef CONFIG_ZONE_DEVICE
6561 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6562 					  unsigned long zone_idx, int nid,
6563 					  struct dev_pagemap *pgmap)
6564 {
6565 
6566 	__init_single_page(page, pfn, zone_idx, nid);
6567 
6568 	/*
6569 	 * Mark page reserved as it will need to wait for onlining
6570 	 * phase for it to be fully associated with a zone.
6571 	 *
6572 	 * We can use the non-atomic __set_bit operation for setting
6573 	 * the flag as we are still initializing the pages.
6574 	 */
6575 	__SetPageReserved(page);
6576 
6577 	/*
6578 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6579 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6580 	 * ever freed or placed on a driver-private list.
6581 	 */
6582 	page->pgmap = pgmap;
6583 	page->zone_device_data = NULL;
6584 
6585 	/*
6586 	 * Mark the block movable so that blocks are reserved for
6587 	 * movable at startup. This will force kernel allocations
6588 	 * to reserve their blocks rather than leaking throughout
6589 	 * the address space during boot when many long-lived
6590 	 * kernel allocations are made.
6591 	 *
6592 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6593 	 * because this is done early in section_activate()
6594 	 */
6595 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6596 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6597 		cond_resched();
6598 	}
6599 }
6600 
6601 /*
6602  * With compound page geometry and when struct pages are stored in ram most
6603  * tail pages are reused. Consequently, the amount of unique struct pages to
6604  * initialize is a lot smaller that the total amount of struct pages being
6605  * mapped. This is a paired / mild layering violation with explicit knowledge
6606  * of how the sparse_vmemmap internals handle compound pages in the lack
6607  * of an altmap. See vmemmap_populate_compound_pages().
6608  */
6609 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6610 					      unsigned long nr_pages)
6611 {
6612 	return is_power_of_2(sizeof(struct page)) &&
6613 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6614 }
6615 
6616 static void __ref memmap_init_compound(struct page *head,
6617 				       unsigned long head_pfn,
6618 				       unsigned long zone_idx, int nid,
6619 				       struct dev_pagemap *pgmap,
6620 				       unsigned long nr_pages)
6621 {
6622 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6623 	unsigned int order = pgmap->vmemmap_shift;
6624 
6625 	__SetPageHead(head);
6626 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6627 		struct page *page = pfn_to_page(pfn);
6628 
6629 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6630 		prep_compound_tail(head, pfn - head_pfn);
6631 		set_page_count(page, 0);
6632 
6633 		/*
6634 		 * The first tail page stores compound_mapcount_ptr() and
6635 		 * compound_order() and the second tail page stores
6636 		 * compound_pincount_ptr(). Call prep_compound_head() after
6637 		 * the first and second tail pages have been initialized to
6638 		 * not have the data overwritten.
6639 		 */
6640 		if (pfn == head_pfn + 2)
6641 			prep_compound_head(head, order);
6642 	}
6643 }
6644 
6645 void __ref memmap_init_zone_device(struct zone *zone,
6646 				   unsigned long start_pfn,
6647 				   unsigned long nr_pages,
6648 				   struct dev_pagemap *pgmap)
6649 {
6650 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6651 	struct pglist_data *pgdat = zone->zone_pgdat;
6652 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6653 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6654 	unsigned long zone_idx = zone_idx(zone);
6655 	unsigned long start = jiffies;
6656 	int nid = pgdat->node_id;
6657 
6658 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6659 		return;
6660 
6661 	/*
6662 	 * The call to memmap_init should have already taken care
6663 	 * of the pages reserved for the memmap, so we can just jump to
6664 	 * the end of that region and start processing the device pages.
6665 	 */
6666 	if (altmap) {
6667 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6668 		nr_pages = end_pfn - start_pfn;
6669 	}
6670 
6671 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6672 		struct page *page = pfn_to_page(pfn);
6673 
6674 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6675 
6676 		if (pfns_per_compound == 1)
6677 			continue;
6678 
6679 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6680 				     compound_nr_pages(altmap, pfns_per_compound));
6681 	}
6682 
6683 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6684 		nr_pages, jiffies_to_msecs(jiffies - start));
6685 }
6686 
6687 #endif
6688 static void __meminit zone_init_free_lists(struct zone *zone)
6689 {
6690 	unsigned int order, t;
6691 	for_each_migratetype_order(order, t) {
6692 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6693 		zone->free_area[order].nr_free = 0;
6694 	}
6695 }
6696 
6697 /*
6698  * Only struct pages that correspond to ranges defined by memblock.memory
6699  * are zeroed and initialized by going through __init_single_page() during
6700  * memmap_init_zone_range().
6701  *
6702  * But, there could be struct pages that correspond to holes in
6703  * memblock.memory. This can happen because of the following reasons:
6704  * - physical memory bank size is not necessarily the exact multiple of the
6705  *   arbitrary section size
6706  * - early reserved memory may not be listed in memblock.memory
6707  * - memory layouts defined with memmap= kernel parameter may not align
6708  *   nicely with memmap sections
6709  *
6710  * Explicitly initialize those struct pages so that:
6711  * - PG_Reserved is set
6712  * - zone and node links point to zone and node that span the page if the
6713  *   hole is in the middle of a zone
6714  * - zone and node links point to adjacent zone/node if the hole falls on
6715  *   the zone boundary; the pages in such holes will be prepended to the
6716  *   zone/node above the hole except for the trailing pages in the last
6717  *   section that will be appended to the zone/node below.
6718  */
6719 static void __init init_unavailable_range(unsigned long spfn,
6720 					  unsigned long epfn,
6721 					  int zone, int node)
6722 {
6723 	unsigned long pfn;
6724 	u64 pgcnt = 0;
6725 
6726 	for (pfn = spfn; pfn < epfn; pfn++) {
6727 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6728 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6729 				+ pageblock_nr_pages - 1;
6730 			continue;
6731 		}
6732 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6733 		__SetPageReserved(pfn_to_page(pfn));
6734 		pgcnt++;
6735 	}
6736 
6737 	if (pgcnt)
6738 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6739 			node, zone_names[zone], pgcnt);
6740 }
6741 
6742 static void __init memmap_init_zone_range(struct zone *zone,
6743 					  unsigned long start_pfn,
6744 					  unsigned long end_pfn,
6745 					  unsigned long *hole_pfn)
6746 {
6747 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6748 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6749 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6750 
6751 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6752 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6753 
6754 	if (start_pfn >= end_pfn)
6755 		return;
6756 
6757 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6758 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6759 
6760 	if (*hole_pfn < start_pfn)
6761 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6762 
6763 	*hole_pfn = end_pfn;
6764 }
6765 
6766 static void __init memmap_init(void)
6767 {
6768 	unsigned long start_pfn, end_pfn;
6769 	unsigned long hole_pfn = 0;
6770 	int i, j, zone_id = 0, nid;
6771 
6772 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6773 		struct pglist_data *node = NODE_DATA(nid);
6774 
6775 		for (j = 0; j < MAX_NR_ZONES; j++) {
6776 			struct zone *zone = node->node_zones + j;
6777 
6778 			if (!populated_zone(zone))
6779 				continue;
6780 
6781 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6782 					       &hole_pfn);
6783 			zone_id = j;
6784 		}
6785 	}
6786 
6787 #ifdef CONFIG_SPARSEMEM
6788 	/*
6789 	 * Initialize the memory map for hole in the range [memory_end,
6790 	 * section_end].
6791 	 * Append the pages in this hole to the highest zone in the last
6792 	 * node.
6793 	 * The call to init_unavailable_range() is outside the ifdef to
6794 	 * silence the compiler warining about zone_id set but not used;
6795 	 * for FLATMEM it is a nop anyway
6796 	 */
6797 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6798 	if (hole_pfn < end_pfn)
6799 #endif
6800 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6801 }
6802 
6803 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6804 			  phys_addr_t min_addr, int nid, bool exact_nid)
6805 {
6806 	void *ptr;
6807 
6808 	if (exact_nid)
6809 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6810 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6811 						   nid);
6812 	else
6813 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6814 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6815 						 nid);
6816 
6817 	if (ptr && size > 0)
6818 		page_init_poison(ptr, size);
6819 
6820 	return ptr;
6821 }
6822 
6823 static int zone_batchsize(struct zone *zone)
6824 {
6825 #ifdef CONFIG_MMU
6826 	int batch;
6827 
6828 	/*
6829 	 * The number of pages to batch allocate is either ~0.1%
6830 	 * of the zone or 1MB, whichever is smaller. The batch
6831 	 * size is striking a balance between allocation latency
6832 	 * and zone lock contention.
6833 	 */
6834 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6835 	batch /= 4;		/* We effectively *= 4 below */
6836 	if (batch < 1)
6837 		batch = 1;
6838 
6839 	/*
6840 	 * Clamp the batch to a 2^n - 1 value. Having a power
6841 	 * of 2 value was found to be more likely to have
6842 	 * suboptimal cache aliasing properties in some cases.
6843 	 *
6844 	 * For example if 2 tasks are alternately allocating
6845 	 * batches of pages, one task can end up with a lot
6846 	 * of pages of one half of the possible page colors
6847 	 * and the other with pages of the other colors.
6848 	 */
6849 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6850 
6851 	return batch;
6852 
6853 #else
6854 	/* The deferral and batching of frees should be suppressed under NOMMU
6855 	 * conditions.
6856 	 *
6857 	 * The problem is that NOMMU needs to be able to allocate large chunks
6858 	 * of contiguous memory as there's no hardware page translation to
6859 	 * assemble apparent contiguous memory from discontiguous pages.
6860 	 *
6861 	 * Queueing large contiguous runs of pages for batching, however,
6862 	 * causes the pages to actually be freed in smaller chunks.  As there
6863 	 * can be a significant delay between the individual batches being
6864 	 * recycled, this leads to the once large chunks of space being
6865 	 * fragmented and becoming unavailable for high-order allocations.
6866 	 */
6867 	return 0;
6868 #endif
6869 }
6870 
6871 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6872 {
6873 #ifdef CONFIG_MMU
6874 	int high;
6875 	int nr_split_cpus;
6876 	unsigned long total_pages;
6877 
6878 	if (!percpu_pagelist_high_fraction) {
6879 		/*
6880 		 * By default, the high value of the pcp is based on the zone
6881 		 * low watermark so that if they are full then background
6882 		 * reclaim will not be started prematurely.
6883 		 */
6884 		total_pages = low_wmark_pages(zone);
6885 	} else {
6886 		/*
6887 		 * If percpu_pagelist_high_fraction is configured, the high
6888 		 * value is based on a fraction of the managed pages in the
6889 		 * zone.
6890 		 */
6891 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6892 	}
6893 
6894 	/*
6895 	 * Split the high value across all online CPUs local to the zone. Note
6896 	 * that early in boot that CPUs may not be online yet and that during
6897 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6898 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6899 	 * all online CPUs to mitigate the risk that reclaim is triggered
6900 	 * prematurely due to pages stored on pcp lists.
6901 	 */
6902 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6903 	if (!nr_split_cpus)
6904 		nr_split_cpus = num_online_cpus();
6905 	high = total_pages / nr_split_cpus;
6906 
6907 	/*
6908 	 * Ensure high is at least batch*4. The multiple is based on the
6909 	 * historical relationship between high and batch.
6910 	 */
6911 	high = max(high, batch << 2);
6912 
6913 	return high;
6914 #else
6915 	return 0;
6916 #endif
6917 }
6918 
6919 /*
6920  * pcp->high and pcp->batch values are related and generally batch is lower
6921  * than high. They are also related to pcp->count such that count is lower
6922  * than high, and as soon as it reaches high, the pcplist is flushed.
6923  *
6924  * However, guaranteeing these relations at all times would require e.g. write
6925  * barriers here but also careful usage of read barriers at the read side, and
6926  * thus be prone to error and bad for performance. Thus the update only prevents
6927  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6928  * can cope with those fields changing asynchronously, and fully trust only the
6929  * pcp->count field on the local CPU with interrupts disabled.
6930  *
6931  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6932  * outside of boot time (or some other assurance that no concurrent updaters
6933  * exist).
6934  */
6935 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6936 		unsigned long batch)
6937 {
6938 	WRITE_ONCE(pcp->batch, batch);
6939 	WRITE_ONCE(pcp->high, high);
6940 }
6941 
6942 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6943 {
6944 	int pindex;
6945 
6946 	memset(pcp, 0, sizeof(*pcp));
6947 	memset(pzstats, 0, sizeof(*pzstats));
6948 
6949 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6950 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6951 
6952 	/*
6953 	 * Set batch and high values safe for a boot pageset. A true percpu
6954 	 * pageset's initialization will update them subsequently. Here we don't
6955 	 * need to be as careful as pageset_update() as nobody can access the
6956 	 * pageset yet.
6957 	 */
6958 	pcp->high = BOOT_PAGESET_HIGH;
6959 	pcp->batch = BOOT_PAGESET_BATCH;
6960 	pcp->free_factor = 0;
6961 }
6962 
6963 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6964 		unsigned long batch)
6965 {
6966 	struct per_cpu_pages *pcp;
6967 	int cpu;
6968 
6969 	for_each_possible_cpu(cpu) {
6970 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6971 		pageset_update(pcp, high, batch);
6972 	}
6973 }
6974 
6975 /*
6976  * Calculate and set new high and batch values for all per-cpu pagesets of a
6977  * zone based on the zone's size.
6978  */
6979 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6980 {
6981 	int new_high, new_batch;
6982 
6983 	new_batch = max(1, zone_batchsize(zone));
6984 	new_high = zone_highsize(zone, new_batch, cpu_online);
6985 
6986 	if (zone->pageset_high == new_high &&
6987 	    zone->pageset_batch == new_batch)
6988 		return;
6989 
6990 	zone->pageset_high = new_high;
6991 	zone->pageset_batch = new_batch;
6992 
6993 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6994 }
6995 
6996 void __meminit setup_zone_pageset(struct zone *zone)
6997 {
6998 	int cpu;
6999 
7000 	/* Size may be 0 on !SMP && !NUMA */
7001 	if (sizeof(struct per_cpu_zonestat) > 0)
7002 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7003 
7004 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7005 	for_each_possible_cpu(cpu) {
7006 		struct per_cpu_pages *pcp;
7007 		struct per_cpu_zonestat *pzstats;
7008 
7009 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7010 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7011 		per_cpu_pages_init(pcp, pzstats);
7012 	}
7013 
7014 	zone_set_pageset_high_and_batch(zone, 0);
7015 }
7016 
7017 /*
7018  * Allocate per cpu pagesets and initialize them.
7019  * Before this call only boot pagesets were available.
7020  */
7021 void __init setup_per_cpu_pageset(void)
7022 {
7023 	struct pglist_data *pgdat;
7024 	struct zone *zone;
7025 	int __maybe_unused cpu;
7026 
7027 	for_each_populated_zone(zone)
7028 		setup_zone_pageset(zone);
7029 
7030 #ifdef CONFIG_NUMA
7031 	/*
7032 	 * Unpopulated zones continue using the boot pagesets.
7033 	 * The numa stats for these pagesets need to be reset.
7034 	 * Otherwise, they will end up skewing the stats of
7035 	 * the nodes these zones are associated with.
7036 	 */
7037 	for_each_possible_cpu(cpu) {
7038 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7039 		memset(pzstats->vm_numa_event, 0,
7040 		       sizeof(pzstats->vm_numa_event));
7041 	}
7042 #endif
7043 
7044 	for_each_online_pgdat(pgdat)
7045 		pgdat->per_cpu_nodestats =
7046 			alloc_percpu(struct per_cpu_nodestat);
7047 }
7048 
7049 static __meminit void zone_pcp_init(struct zone *zone)
7050 {
7051 	/*
7052 	 * per cpu subsystem is not up at this point. The following code
7053 	 * relies on the ability of the linker to provide the
7054 	 * offset of a (static) per cpu variable into the per cpu area.
7055 	 */
7056 	zone->per_cpu_pageset = &boot_pageset;
7057 	zone->per_cpu_zonestats = &boot_zonestats;
7058 	zone->pageset_high = BOOT_PAGESET_HIGH;
7059 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7060 
7061 	if (populated_zone(zone))
7062 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7063 			 zone->present_pages, zone_batchsize(zone));
7064 }
7065 
7066 void __meminit init_currently_empty_zone(struct zone *zone,
7067 					unsigned long zone_start_pfn,
7068 					unsigned long size)
7069 {
7070 	struct pglist_data *pgdat = zone->zone_pgdat;
7071 	int zone_idx = zone_idx(zone) + 1;
7072 
7073 	if (zone_idx > pgdat->nr_zones)
7074 		pgdat->nr_zones = zone_idx;
7075 
7076 	zone->zone_start_pfn = zone_start_pfn;
7077 
7078 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7079 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7080 			pgdat->node_id,
7081 			(unsigned long)zone_idx(zone),
7082 			zone_start_pfn, (zone_start_pfn + size));
7083 
7084 	zone_init_free_lists(zone);
7085 	zone->initialized = 1;
7086 }
7087 
7088 /**
7089  * get_pfn_range_for_nid - Return the start and end page frames for a node
7090  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7091  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7092  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7093  *
7094  * It returns the start and end page frame of a node based on information
7095  * provided by memblock_set_node(). If called for a node
7096  * with no available memory, a warning is printed and the start and end
7097  * PFNs will be 0.
7098  */
7099 void __init get_pfn_range_for_nid(unsigned int nid,
7100 			unsigned long *start_pfn, unsigned long *end_pfn)
7101 {
7102 	unsigned long this_start_pfn, this_end_pfn;
7103 	int i;
7104 
7105 	*start_pfn = -1UL;
7106 	*end_pfn = 0;
7107 
7108 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7109 		*start_pfn = min(*start_pfn, this_start_pfn);
7110 		*end_pfn = max(*end_pfn, this_end_pfn);
7111 	}
7112 
7113 	if (*start_pfn == -1UL)
7114 		*start_pfn = 0;
7115 }
7116 
7117 /*
7118  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7119  * assumption is made that zones within a node are ordered in monotonic
7120  * increasing memory addresses so that the "highest" populated zone is used
7121  */
7122 static void __init find_usable_zone_for_movable(void)
7123 {
7124 	int zone_index;
7125 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7126 		if (zone_index == ZONE_MOVABLE)
7127 			continue;
7128 
7129 		if (arch_zone_highest_possible_pfn[zone_index] >
7130 				arch_zone_lowest_possible_pfn[zone_index])
7131 			break;
7132 	}
7133 
7134 	VM_BUG_ON(zone_index == -1);
7135 	movable_zone = zone_index;
7136 }
7137 
7138 /*
7139  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7140  * because it is sized independent of architecture. Unlike the other zones,
7141  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7142  * in each node depending on the size of each node and how evenly kernelcore
7143  * is distributed. This helper function adjusts the zone ranges
7144  * provided by the architecture for a given node by using the end of the
7145  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7146  * zones within a node are in order of monotonic increases memory addresses
7147  */
7148 static void __init adjust_zone_range_for_zone_movable(int nid,
7149 					unsigned long zone_type,
7150 					unsigned long node_start_pfn,
7151 					unsigned long node_end_pfn,
7152 					unsigned long *zone_start_pfn,
7153 					unsigned long *zone_end_pfn)
7154 {
7155 	/* Only adjust if ZONE_MOVABLE is on this node */
7156 	if (zone_movable_pfn[nid]) {
7157 		/* Size ZONE_MOVABLE */
7158 		if (zone_type == ZONE_MOVABLE) {
7159 			*zone_start_pfn = zone_movable_pfn[nid];
7160 			*zone_end_pfn = min(node_end_pfn,
7161 				arch_zone_highest_possible_pfn[movable_zone]);
7162 
7163 		/* Adjust for ZONE_MOVABLE starting within this range */
7164 		} else if (!mirrored_kernelcore &&
7165 			*zone_start_pfn < zone_movable_pfn[nid] &&
7166 			*zone_end_pfn > zone_movable_pfn[nid]) {
7167 			*zone_end_pfn = zone_movable_pfn[nid];
7168 
7169 		/* Check if this whole range is within ZONE_MOVABLE */
7170 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7171 			*zone_start_pfn = *zone_end_pfn;
7172 	}
7173 }
7174 
7175 /*
7176  * Return the number of pages a zone spans in a node, including holes
7177  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7178  */
7179 static unsigned long __init zone_spanned_pages_in_node(int nid,
7180 					unsigned long zone_type,
7181 					unsigned long node_start_pfn,
7182 					unsigned long node_end_pfn,
7183 					unsigned long *zone_start_pfn,
7184 					unsigned long *zone_end_pfn)
7185 {
7186 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7187 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7188 	/* When hotadd a new node from cpu_up(), the node should be empty */
7189 	if (!node_start_pfn && !node_end_pfn)
7190 		return 0;
7191 
7192 	/* Get the start and end of the zone */
7193 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7194 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7195 	adjust_zone_range_for_zone_movable(nid, zone_type,
7196 				node_start_pfn, node_end_pfn,
7197 				zone_start_pfn, zone_end_pfn);
7198 
7199 	/* Check that this node has pages within the zone's required range */
7200 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7201 		return 0;
7202 
7203 	/* Move the zone boundaries inside the node if necessary */
7204 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7205 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7206 
7207 	/* Return the spanned pages */
7208 	return *zone_end_pfn - *zone_start_pfn;
7209 }
7210 
7211 /*
7212  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7213  * then all holes in the requested range will be accounted for.
7214  */
7215 unsigned long __init __absent_pages_in_range(int nid,
7216 				unsigned long range_start_pfn,
7217 				unsigned long range_end_pfn)
7218 {
7219 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7220 	unsigned long start_pfn, end_pfn;
7221 	int i;
7222 
7223 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7224 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7225 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7226 		nr_absent -= end_pfn - start_pfn;
7227 	}
7228 	return nr_absent;
7229 }
7230 
7231 /**
7232  * absent_pages_in_range - Return number of page frames in holes within a range
7233  * @start_pfn: The start PFN to start searching for holes
7234  * @end_pfn: The end PFN to stop searching for holes
7235  *
7236  * Return: the number of pages frames in memory holes within a range.
7237  */
7238 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7239 							unsigned long end_pfn)
7240 {
7241 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7242 }
7243 
7244 /* Return the number of page frames in holes in a zone on a node */
7245 static unsigned long __init zone_absent_pages_in_node(int nid,
7246 					unsigned long zone_type,
7247 					unsigned long node_start_pfn,
7248 					unsigned long node_end_pfn)
7249 {
7250 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7251 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7252 	unsigned long zone_start_pfn, zone_end_pfn;
7253 	unsigned long nr_absent;
7254 
7255 	/* When hotadd a new node from cpu_up(), the node should be empty */
7256 	if (!node_start_pfn && !node_end_pfn)
7257 		return 0;
7258 
7259 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7260 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7261 
7262 	adjust_zone_range_for_zone_movable(nid, zone_type,
7263 			node_start_pfn, node_end_pfn,
7264 			&zone_start_pfn, &zone_end_pfn);
7265 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7266 
7267 	/*
7268 	 * ZONE_MOVABLE handling.
7269 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7270 	 * and vice versa.
7271 	 */
7272 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7273 		unsigned long start_pfn, end_pfn;
7274 		struct memblock_region *r;
7275 
7276 		for_each_mem_region(r) {
7277 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7278 					  zone_start_pfn, zone_end_pfn);
7279 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7280 					zone_start_pfn, zone_end_pfn);
7281 
7282 			if (zone_type == ZONE_MOVABLE &&
7283 			    memblock_is_mirror(r))
7284 				nr_absent += end_pfn - start_pfn;
7285 
7286 			if (zone_type == ZONE_NORMAL &&
7287 			    !memblock_is_mirror(r))
7288 				nr_absent += end_pfn - start_pfn;
7289 		}
7290 	}
7291 
7292 	return nr_absent;
7293 }
7294 
7295 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7296 						unsigned long node_start_pfn,
7297 						unsigned long node_end_pfn)
7298 {
7299 	unsigned long realtotalpages = 0, totalpages = 0;
7300 	enum zone_type i;
7301 
7302 	for (i = 0; i < MAX_NR_ZONES; i++) {
7303 		struct zone *zone = pgdat->node_zones + i;
7304 		unsigned long zone_start_pfn, zone_end_pfn;
7305 		unsigned long spanned, absent;
7306 		unsigned long size, real_size;
7307 
7308 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7309 						     node_start_pfn,
7310 						     node_end_pfn,
7311 						     &zone_start_pfn,
7312 						     &zone_end_pfn);
7313 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7314 						   node_start_pfn,
7315 						   node_end_pfn);
7316 
7317 		size = spanned;
7318 		real_size = size - absent;
7319 
7320 		if (size)
7321 			zone->zone_start_pfn = zone_start_pfn;
7322 		else
7323 			zone->zone_start_pfn = 0;
7324 		zone->spanned_pages = size;
7325 		zone->present_pages = real_size;
7326 #if defined(CONFIG_MEMORY_HOTPLUG)
7327 		zone->present_early_pages = real_size;
7328 #endif
7329 
7330 		totalpages += size;
7331 		realtotalpages += real_size;
7332 	}
7333 
7334 	pgdat->node_spanned_pages = totalpages;
7335 	pgdat->node_present_pages = realtotalpages;
7336 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7337 }
7338 
7339 #ifndef CONFIG_SPARSEMEM
7340 /*
7341  * Calculate the size of the zone->blockflags rounded to an unsigned long
7342  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7343  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7344  * round what is now in bits to nearest long in bits, then return it in
7345  * bytes.
7346  */
7347 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7348 {
7349 	unsigned long usemapsize;
7350 
7351 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7352 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7353 	usemapsize = usemapsize >> pageblock_order;
7354 	usemapsize *= NR_PAGEBLOCK_BITS;
7355 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7356 
7357 	return usemapsize / 8;
7358 }
7359 
7360 static void __ref setup_usemap(struct zone *zone)
7361 {
7362 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7363 					       zone->spanned_pages);
7364 	zone->pageblock_flags = NULL;
7365 	if (usemapsize) {
7366 		zone->pageblock_flags =
7367 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7368 					    zone_to_nid(zone));
7369 		if (!zone->pageblock_flags)
7370 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7371 			      usemapsize, zone->name, zone_to_nid(zone));
7372 	}
7373 }
7374 #else
7375 static inline void setup_usemap(struct zone *zone) {}
7376 #endif /* CONFIG_SPARSEMEM */
7377 
7378 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7379 
7380 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7381 void __init set_pageblock_order(void)
7382 {
7383 	unsigned int order = MAX_ORDER - 1;
7384 
7385 	/* Check that pageblock_nr_pages has not already been setup */
7386 	if (pageblock_order)
7387 		return;
7388 
7389 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7390 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7391 		order = HUGETLB_PAGE_ORDER;
7392 
7393 	/*
7394 	 * Assume the largest contiguous order of interest is a huge page.
7395 	 * This value may be variable depending on boot parameters on IA64 and
7396 	 * powerpc.
7397 	 */
7398 	pageblock_order = order;
7399 }
7400 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7401 
7402 /*
7403  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7404  * is unused as pageblock_order is set at compile-time. See
7405  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7406  * the kernel config
7407  */
7408 void __init set_pageblock_order(void)
7409 {
7410 }
7411 
7412 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7413 
7414 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7415 						unsigned long present_pages)
7416 {
7417 	unsigned long pages = spanned_pages;
7418 
7419 	/*
7420 	 * Provide a more accurate estimation if there are holes within
7421 	 * the zone and SPARSEMEM is in use. If there are holes within the
7422 	 * zone, each populated memory region may cost us one or two extra
7423 	 * memmap pages due to alignment because memmap pages for each
7424 	 * populated regions may not be naturally aligned on page boundary.
7425 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7426 	 */
7427 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7428 	    IS_ENABLED(CONFIG_SPARSEMEM))
7429 		pages = present_pages;
7430 
7431 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7432 }
7433 
7434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7435 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7436 {
7437 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7438 
7439 	spin_lock_init(&ds_queue->split_queue_lock);
7440 	INIT_LIST_HEAD(&ds_queue->split_queue);
7441 	ds_queue->split_queue_len = 0;
7442 }
7443 #else
7444 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7445 #endif
7446 
7447 #ifdef CONFIG_COMPACTION
7448 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7449 {
7450 	init_waitqueue_head(&pgdat->kcompactd_wait);
7451 }
7452 #else
7453 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7454 #endif
7455 
7456 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7457 {
7458 	int i;
7459 
7460 	pgdat_resize_init(pgdat);
7461 
7462 	pgdat_init_split_queue(pgdat);
7463 	pgdat_init_kcompactd(pgdat);
7464 
7465 	init_waitqueue_head(&pgdat->kswapd_wait);
7466 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7467 
7468 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7469 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7470 
7471 	pgdat_page_ext_init(pgdat);
7472 	lruvec_init(&pgdat->__lruvec);
7473 }
7474 
7475 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7476 							unsigned long remaining_pages)
7477 {
7478 	atomic_long_set(&zone->managed_pages, remaining_pages);
7479 	zone_set_nid(zone, nid);
7480 	zone->name = zone_names[idx];
7481 	zone->zone_pgdat = NODE_DATA(nid);
7482 	spin_lock_init(&zone->lock);
7483 	zone_seqlock_init(zone);
7484 	zone_pcp_init(zone);
7485 }
7486 
7487 /*
7488  * Set up the zone data structures
7489  * - init pgdat internals
7490  * - init all zones belonging to this node
7491  *
7492  * NOTE: this function is only called during memory hotplug
7493  */
7494 #ifdef CONFIG_MEMORY_HOTPLUG
7495 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7496 {
7497 	int nid = pgdat->node_id;
7498 	enum zone_type z;
7499 	int cpu;
7500 
7501 	pgdat_init_internals(pgdat);
7502 
7503 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7504 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7505 
7506 	/*
7507 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7508 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7509 	 * when it starts in the near future.
7510 	 */
7511 	pgdat->nr_zones = 0;
7512 	pgdat->kswapd_order = 0;
7513 	pgdat->kswapd_highest_zoneidx = 0;
7514 	pgdat->node_start_pfn = 0;
7515 	for_each_online_cpu(cpu) {
7516 		struct per_cpu_nodestat *p;
7517 
7518 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7519 		memset(p, 0, sizeof(*p));
7520 	}
7521 
7522 	for (z = 0; z < MAX_NR_ZONES; z++)
7523 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7524 }
7525 #endif
7526 
7527 /*
7528  * Set up the zone data structures:
7529  *   - mark all pages reserved
7530  *   - mark all memory queues empty
7531  *   - clear the memory bitmaps
7532  *
7533  * NOTE: pgdat should get zeroed by caller.
7534  * NOTE: this function is only called during early init.
7535  */
7536 static void __init free_area_init_core(struct pglist_data *pgdat)
7537 {
7538 	enum zone_type j;
7539 	int nid = pgdat->node_id;
7540 
7541 	pgdat_init_internals(pgdat);
7542 	pgdat->per_cpu_nodestats = &boot_nodestats;
7543 
7544 	for (j = 0; j < MAX_NR_ZONES; j++) {
7545 		struct zone *zone = pgdat->node_zones + j;
7546 		unsigned long size, freesize, memmap_pages;
7547 
7548 		size = zone->spanned_pages;
7549 		freesize = zone->present_pages;
7550 
7551 		/*
7552 		 * Adjust freesize so that it accounts for how much memory
7553 		 * is used by this zone for memmap. This affects the watermark
7554 		 * and per-cpu initialisations
7555 		 */
7556 		memmap_pages = calc_memmap_size(size, freesize);
7557 		if (!is_highmem_idx(j)) {
7558 			if (freesize >= memmap_pages) {
7559 				freesize -= memmap_pages;
7560 				if (memmap_pages)
7561 					pr_debug("  %s zone: %lu pages used for memmap\n",
7562 						 zone_names[j], memmap_pages);
7563 			} else
7564 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7565 					zone_names[j], memmap_pages, freesize);
7566 		}
7567 
7568 		/* Account for reserved pages */
7569 		if (j == 0 && freesize > dma_reserve) {
7570 			freesize -= dma_reserve;
7571 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7572 		}
7573 
7574 		if (!is_highmem_idx(j))
7575 			nr_kernel_pages += freesize;
7576 		/* Charge for highmem memmap if there are enough kernel pages */
7577 		else if (nr_kernel_pages > memmap_pages * 2)
7578 			nr_kernel_pages -= memmap_pages;
7579 		nr_all_pages += freesize;
7580 
7581 		/*
7582 		 * Set an approximate value for lowmem here, it will be adjusted
7583 		 * when the bootmem allocator frees pages into the buddy system.
7584 		 * And all highmem pages will be managed by the buddy system.
7585 		 */
7586 		zone_init_internals(zone, j, nid, freesize);
7587 
7588 		if (!size)
7589 			continue;
7590 
7591 		set_pageblock_order();
7592 		setup_usemap(zone);
7593 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7594 	}
7595 }
7596 
7597 #ifdef CONFIG_FLATMEM
7598 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7599 {
7600 	unsigned long __maybe_unused start = 0;
7601 	unsigned long __maybe_unused offset = 0;
7602 
7603 	/* Skip empty nodes */
7604 	if (!pgdat->node_spanned_pages)
7605 		return;
7606 
7607 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7608 	offset = pgdat->node_start_pfn - start;
7609 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7610 	if (!pgdat->node_mem_map) {
7611 		unsigned long size, end;
7612 		struct page *map;
7613 
7614 		/*
7615 		 * The zone's endpoints aren't required to be MAX_ORDER
7616 		 * aligned but the node_mem_map endpoints must be in order
7617 		 * for the buddy allocator to function correctly.
7618 		 */
7619 		end = pgdat_end_pfn(pgdat);
7620 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7621 		size =  (end - start) * sizeof(struct page);
7622 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7623 				   pgdat->node_id, false);
7624 		if (!map)
7625 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7626 			      size, pgdat->node_id);
7627 		pgdat->node_mem_map = map + offset;
7628 	}
7629 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7630 				__func__, pgdat->node_id, (unsigned long)pgdat,
7631 				(unsigned long)pgdat->node_mem_map);
7632 #ifndef CONFIG_NUMA
7633 	/*
7634 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7635 	 */
7636 	if (pgdat == NODE_DATA(0)) {
7637 		mem_map = NODE_DATA(0)->node_mem_map;
7638 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7639 			mem_map -= offset;
7640 	}
7641 #endif
7642 }
7643 #else
7644 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7645 #endif /* CONFIG_FLATMEM */
7646 
7647 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7648 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7649 {
7650 	pgdat->first_deferred_pfn = ULONG_MAX;
7651 }
7652 #else
7653 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7654 #endif
7655 
7656 static void __init free_area_init_node(int nid)
7657 {
7658 	pg_data_t *pgdat = NODE_DATA(nid);
7659 	unsigned long start_pfn = 0;
7660 	unsigned long end_pfn = 0;
7661 
7662 	/* pg_data_t should be reset to zero when it's allocated */
7663 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7664 
7665 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7666 
7667 	pgdat->node_id = nid;
7668 	pgdat->node_start_pfn = start_pfn;
7669 	pgdat->per_cpu_nodestats = NULL;
7670 
7671 	if (start_pfn != end_pfn) {
7672 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7673 			(u64)start_pfn << PAGE_SHIFT,
7674 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7675 	} else {
7676 		pr_info("Initmem setup node %d as memoryless\n", nid);
7677 	}
7678 
7679 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7680 
7681 	alloc_node_mem_map(pgdat);
7682 	pgdat_set_deferred_range(pgdat);
7683 
7684 	free_area_init_core(pgdat);
7685 }
7686 
7687 static void __init free_area_init_memoryless_node(int nid)
7688 {
7689 	free_area_init_node(nid);
7690 }
7691 
7692 #if MAX_NUMNODES > 1
7693 /*
7694  * Figure out the number of possible node ids.
7695  */
7696 void __init setup_nr_node_ids(void)
7697 {
7698 	unsigned int highest;
7699 
7700 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7701 	nr_node_ids = highest + 1;
7702 }
7703 #endif
7704 
7705 /**
7706  * node_map_pfn_alignment - determine the maximum internode alignment
7707  *
7708  * This function should be called after node map is populated and sorted.
7709  * It calculates the maximum power of two alignment which can distinguish
7710  * all the nodes.
7711  *
7712  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7713  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7714  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7715  * shifted, 1GiB is enough and this function will indicate so.
7716  *
7717  * This is used to test whether pfn -> nid mapping of the chosen memory
7718  * model has fine enough granularity to avoid incorrect mapping for the
7719  * populated node map.
7720  *
7721  * Return: the determined alignment in pfn's.  0 if there is no alignment
7722  * requirement (single node).
7723  */
7724 unsigned long __init node_map_pfn_alignment(void)
7725 {
7726 	unsigned long accl_mask = 0, last_end = 0;
7727 	unsigned long start, end, mask;
7728 	int last_nid = NUMA_NO_NODE;
7729 	int i, nid;
7730 
7731 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7732 		if (!start || last_nid < 0 || last_nid == nid) {
7733 			last_nid = nid;
7734 			last_end = end;
7735 			continue;
7736 		}
7737 
7738 		/*
7739 		 * Start with a mask granular enough to pin-point to the
7740 		 * start pfn and tick off bits one-by-one until it becomes
7741 		 * too coarse to separate the current node from the last.
7742 		 */
7743 		mask = ~((1 << __ffs(start)) - 1);
7744 		while (mask && last_end <= (start & (mask << 1)))
7745 			mask <<= 1;
7746 
7747 		/* accumulate all internode masks */
7748 		accl_mask |= mask;
7749 	}
7750 
7751 	/* convert mask to number of pages */
7752 	return ~accl_mask + 1;
7753 }
7754 
7755 /**
7756  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7757  *
7758  * Return: the minimum PFN based on information provided via
7759  * memblock_set_node().
7760  */
7761 unsigned long __init find_min_pfn_with_active_regions(void)
7762 {
7763 	return PHYS_PFN(memblock_start_of_DRAM());
7764 }
7765 
7766 /*
7767  * early_calculate_totalpages()
7768  * Sum pages in active regions for movable zone.
7769  * Populate N_MEMORY for calculating usable_nodes.
7770  */
7771 static unsigned long __init early_calculate_totalpages(void)
7772 {
7773 	unsigned long totalpages = 0;
7774 	unsigned long start_pfn, end_pfn;
7775 	int i, nid;
7776 
7777 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7778 		unsigned long pages = end_pfn - start_pfn;
7779 
7780 		totalpages += pages;
7781 		if (pages)
7782 			node_set_state(nid, N_MEMORY);
7783 	}
7784 	return totalpages;
7785 }
7786 
7787 /*
7788  * Find the PFN the Movable zone begins in each node. Kernel memory
7789  * is spread evenly between nodes as long as the nodes have enough
7790  * memory. When they don't, some nodes will have more kernelcore than
7791  * others
7792  */
7793 static void __init find_zone_movable_pfns_for_nodes(void)
7794 {
7795 	int i, nid;
7796 	unsigned long usable_startpfn;
7797 	unsigned long kernelcore_node, kernelcore_remaining;
7798 	/* save the state before borrow the nodemask */
7799 	nodemask_t saved_node_state = node_states[N_MEMORY];
7800 	unsigned long totalpages = early_calculate_totalpages();
7801 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7802 	struct memblock_region *r;
7803 
7804 	/* Need to find movable_zone earlier when movable_node is specified. */
7805 	find_usable_zone_for_movable();
7806 
7807 	/*
7808 	 * If movable_node is specified, ignore kernelcore and movablecore
7809 	 * options.
7810 	 */
7811 	if (movable_node_is_enabled()) {
7812 		for_each_mem_region(r) {
7813 			if (!memblock_is_hotpluggable(r))
7814 				continue;
7815 
7816 			nid = memblock_get_region_node(r);
7817 
7818 			usable_startpfn = PFN_DOWN(r->base);
7819 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7820 				min(usable_startpfn, zone_movable_pfn[nid]) :
7821 				usable_startpfn;
7822 		}
7823 
7824 		goto out2;
7825 	}
7826 
7827 	/*
7828 	 * If kernelcore=mirror is specified, ignore movablecore option
7829 	 */
7830 	if (mirrored_kernelcore) {
7831 		bool mem_below_4gb_not_mirrored = false;
7832 
7833 		for_each_mem_region(r) {
7834 			if (memblock_is_mirror(r))
7835 				continue;
7836 
7837 			nid = memblock_get_region_node(r);
7838 
7839 			usable_startpfn = memblock_region_memory_base_pfn(r);
7840 
7841 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7842 				mem_below_4gb_not_mirrored = true;
7843 				continue;
7844 			}
7845 
7846 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7847 				min(usable_startpfn, zone_movable_pfn[nid]) :
7848 				usable_startpfn;
7849 		}
7850 
7851 		if (mem_below_4gb_not_mirrored)
7852 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7853 
7854 		goto out2;
7855 	}
7856 
7857 	/*
7858 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7859 	 * amount of necessary memory.
7860 	 */
7861 	if (required_kernelcore_percent)
7862 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7863 				       10000UL;
7864 	if (required_movablecore_percent)
7865 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7866 					10000UL;
7867 
7868 	/*
7869 	 * If movablecore= was specified, calculate what size of
7870 	 * kernelcore that corresponds so that memory usable for
7871 	 * any allocation type is evenly spread. If both kernelcore
7872 	 * and movablecore are specified, then the value of kernelcore
7873 	 * will be used for required_kernelcore if it's greater than
7874 	 * what movablecore would have allowed.
7875 	 */
7876 	if (required_movablecore) {
7877 		unsigned long corepages;
7878 
7879 		/*
7880 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7881 		 * was requested by the user
7882 		 */
7883 		required_movablecore =
7884 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7885 		required_movablecore = min(totalpages, required_movablecore);
7886 		corepages = totalpages - required_movablecore;
7887 
7888 		required_kernelcore = max(required_kernelcore, corepages);
7889 	}
7890 
7891 	/*
7892 	 * If kernelcore was not specified or kernelcore size is larger
7893 	 * than totalpages, there is no ZONE_MOVABLE.
7894 	 */
7895 	if (!required_kernelcore || required_kernelcore >= totalpages)
7896 		goto out;
7897 
7898 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7899 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7900 
7901 restart:
7902 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7903 	kernelcore_node = required_kernelcore / usable_nodes;
7904 	for_each_node_state(nid, N_MEMORY) {
7905 		unsigned long start_pfn, end_pfn;
7906 
7907 		/*
7908 		 * Recalculate kernelcore_node if the division per node
7909 		 * now exceeds what is necessary to satisfy the requested
7910 		 * amount of memory for the kernel
7911 		 */
7912 		if (required_kernelcore < kernelcore_node)
7913 			kernelcore_node = required_kernelcore / usable_nodes;
7914 
7915 		/*
7916 		 * As the map is walked, we track how much memory is usable
7917 		 * by the kernel using kernelcore_remaining. When it is
7918 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7919 		 */
7920 		kernelcore_remaining = kernelcore_node;
7921 
7922 		/* Go through each range of PFNs within this node */
7923 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7924 			unsigned long size_pages;
7925 
7926 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7927 			if (start_pfn >= end_pfn)
7928 				continue;
7929 
7930 			/* Account for what is only usable for kernelcore */
7931 			if (start_pfn < usable_startpfn) {
7932 				unsigned long kernel_pages;
7933 				kernel_pages = min(end_pfn, usable_startpfn)
7934 								- start_pfn;
7935 
7936 				kernelcore_remaining -= min(kernel_pages,
7937 							kernelcore_remaining);
7938 				required_kernelcore -= min(kernel_pages,
7939 							required_kernelcore);
7940 
7941 				/* Continue if range is now fully accounted */
7942 				if (end_pfn <= usable_startpfn) {
7943 
7944 					/*
7945 					 * Push zone_movable_pfn to the end so
7946 					 * that if we have to rebalance
7947 					 * kernelcore across nodes, we will
7948 					 * not double account here
7949 					 */
7950 					zone_movable_pfn[nid] = end_pfn;
7951 					continue;
7952 				}
7953 				start_pfn = usable_startpfn;
7954 			}
7955 
7956 			/*
7957 			 * The usable PFN range for ZONE_MOVABLE is from
7958 			 * start_pfn->end_pfn. Calculate size_pages as the
7959 			 * number of pages used as kernelcore
7960 			 */
7961 			size_pages = end_pfn - start_pfn;
7962 			if (size_pages > kernelcore_remaining)
7963 				size_pages = kernelcore_remaining;
7964 			zone_movable_pfn[nid] = start_pfn + size_pages;
7965 
7966 			/*
7967 			 * Some kernelcore has been met, update counts and
7968 			 * break if the kernelcore for this node has been
7969 			 * satisfied
7970 			 */
7971 			required_kernelcore -= min(required_kernelcore,
7972 								size_pages);
7973 			kernelcore_remaining -= size_pages;
7974 			if (!kernelcore_remaining)
7975 				break;
7976 		}
7977 	}
7978 
7979 	/*
7980 	 * If there is still required_kernelcore, we do another pass with one
7981 	 * less node in the count. This will push zone_movable_pfn[nid] further
7982 	 * along on the nodes that still have memory until kernelcore is
7983 	 * satisfied
7984 	 */
7985 	usable_nodes--;
7986 	if (usable_nodes && required_kernelcore > usable_nodes)
7987 		goto restart;
7988 
7989 out2:
7990 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7991 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7992 		unsigned long start_pfn, end_pfn;
7993 
7994 		zone_movable_pfn[nid] =
7995 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7996 
7997 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7998 		if (zone_movable_pfn[nid] >= end_pfn)
7999 			zone_movable_pfn[nid] = 0;
8000 	}
8001 
8002 out:
8003 	/* restore the node_state */
8004 	node_states[N_MEMORY] = saved_node_state;
8005 }
8006 
8007 /* Any regular or high memory on that node ? */
8008 static void check_for_memory(pg_data_t *pgdat, int nid)
8009 {
8010 	enum zone_type zone_type;
8011 
8012 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8013 		struct zone *zone = &pgdat->node_zones[zone_type];
8014 		if (populated_zone(zone)) {
8015 			if (IS_ENABLED(CONFIG_HIGHMEM))
8016 				node_set_state(nid, N_HIGH_MEMORY);
8017 			if (zone_type <= ZONE_NORMAL)
8018 				node_set_state(nid, N_NORMAL_MEMORY);
8019 			break;
8020 		}
8021 	}
8022 }
8023 
8024 /*
8025  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8026  * such cases we allow max_zone_pfn sorted in the descending order
8027  */
8028 bool __weak arch_has_descending_max_zone_pfns(void)
8029 {
8030 	return false;
8031 }
8032 
8033 /**
8034  * free_area_init - Initialise all pg_data_t and zone data
8035  * @max_zone_pfn: an array of max PFNs for each zone
8036  *
8037  * This will call free_area_init_node() for each active node in the system.
8038  * Using the page ranges provided by memblock_set_node(), the size of each
8039  * zone in each node and their holes is calculated. If the maximum PFN
8040  * between two adjacent zones match, it is assumed that the zone is empty.
8041  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8042  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8043  * starts where the previous one ended. For example, ZONE_DMA32 starts
8044  * at arch_max_dma_pfn.
8045  */
8046 void __init free_area_init(unsigned long *max_zone_pfn)
8047 {
8048 	unsigned long start_pfn, end_pfn;
8049 	int i, nid, zone;
8050 	bool descending;
8051 
8052 	/* Record where the zone boundaries are */
8053 	memset(arch_zone_lowest_possible_pfn, 0,
8054 				sizeof(arch_zone_lowest_possible_pfn));
8055 	memset(arch_zone_highest_possible_pfn, 0,
8056 				sizeof(arch_zone_highest_possible_pfn));
8057 
8058 	start_pfn = find_min_pfn_with_active_regions();
8059 	descending = arch_has_descending_max_zone_pfns();
8060 
8061 	for (i = 0; i < MAX_NR_ZONES; i++) {
8062 		if (descending)
8063 			zone = MAX_NR_ZONES - i - 1;
8064 		else
8065 			zone = i;
8066 
8067 		if (zone == ZONE_MOVABLE)
8068 			continue;
8069 
8070 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8071 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8072 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8073 
8074 		start_pfn = end_pfn;
8075 	}
8076 
8077 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8078 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8079 	find_zone_movable_pfns_for_nodes();
8080 
8081 	/* Print out the zone ranges */
8082 	pr_info("Zone ranges:\n");
8083 	for (i = 0; i < MAX_NR_ZONES; i++) {
8084 		if (i == ZONE_MOVABLE)
8085 			continue;
8086 		pr_info("  %-8s ", zone_names[i]);
8087 		if (arch_zone_lowest_possible_pfn[i] ==
8088 				arch_zone_highest_possible_pfn[i])
8089 			pr_cont("empty\n");
8090 		else
8091 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8092 				(u64)arch_zone_lowest_possible_pfn[i]
8093 					<< PAGE_SHIFT,
8094 				((u64)arch_zone_highest_possible_pfn[i]
8095 					<< PAGE_SHIFT) - 1);
8096 	}
8097 
8098 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8099 	pr_info("Movable zone start for each node\n");
8100 	for (i = 0; i < MAX_NUMNODES; i++) {
8101 		if (zone_movable_pfn[i])
8102 			pr_info("  Node %d: %#018Lx\n", i,
8103 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8104 	}
8105 
8106 	/*
8107 	 * Print out the early node map, and initialize the
8108 	 * subsection-map relative to active online memory ranges to
8109 	 * enable future "sub-section" extensions of the memory map.
8110 	 */
8111 	pr_info("Early memory node ranges\n");
8112 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8113 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8114 			(u64)start_pfn << PAGE_SHIFT,
8115 			((u64)end_pfn << PAGE_SHIFT) - 1);
8116 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8117 	}
8118 
8119 	/* Initialise every node */
8120 	mminit_verify_pageflags_layout();
8121 	setup_nr_node_ids();
8122 	for_each_node(nid) {
8123 		pg_data_t *pgdat;
8124 
8125 		if (!node_online(nid)) {
8126 			pr_info("Initializing node %d as memoryless\n", nid);
8127 
8128 			/* Allocator not initialized yet */
8129 			pgdat = arch_alloc_nodedata(nid);
8130 			if (!pgdat) {
8131 				pr_err("Cannot allocate %zuB for node %d.\n",
8132 						sizeof(*pgdat), nid);
8133 				continue;
8134 			}
8135 			arch_refresh_nodedata(nid, pgdat);
8136 			free_area_init_memoryless_node(nid);
8137 
8138 			/*
8139 			 * We do not want to confuse userspace by sysfs
8140 			 * files/directories for node without any memory
8141 			 * attached to it, so this node is not marked as
8142 			 * N_MEMORY and not marked online so that no sysfs
8143 			 * hierarchy will be created via register_one_node for
8144 			 * it. The pgdat will get fully initialized by
8145 			 * hotadd_init_pgdat() when memory is hotplugged into
8146 			 * this node.
8147 			 */
8148 			continue;
8149 		}
8150 
8151 		pgdat = NODE_DATA(nid);
8152 		free_area_init_node(nid);
8153 
8154 		/* Any memory on that node */
8155 		if (pgdat->node_present_pages)
8156 			node_set_state(nid, N_MEMORY);
8157 		check_for_memory(pgdat, nid);
8158 	}
8159 
8160 	memmap_init();
8161 }
8162 
8163 static int __init cmdline_parse_core(char *p, unsigned long *core,
8164 				     unsigned long *percent)
8165 {
8166 	unsigned long long coremem;
8167 	char *endptr;
8168 
8169 	if (!p)
8170 		return -EINVAL;
8171 
8172 	/* Value may be a percentage of total memory, otherwise bytes */
8173 	coremem = simple_strtoull(p, &endptr, 0);
8174 	if (*endptr == '%') {
8175 		/* Paranoid check for percent values greater than 100 */
8176 		WARN_ON(coremem > 100);
8177 
8178 		*percent = coremem;
8179 	} else {
8180 		coremem = memparse(p, &p);
8181 		/* Paranoid check that UL is enough for the coremem value */
8182 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8183 
8184 		*core = coremem >> PAGE_SHIFT;
8185 		*percent = 0UL;
8186 	}
8187 	return 0;
8188 }
8189 
8190 /*
8191  * kernelcore=size sets the amount of memory for use for allocations that
8192  * cannot be reclaimed or migrated.
8193  */
8194 static int __init cmdline_parse_kernelcore(char *p)
8195 {
8196 	/* parse kernelcore=mirror */
8197 	if (parse_option_str(p, "mirror")) {
8198 		mirrored_kernelcore = true;
8199 		return 0;
8200 	}
8201 
8202 	return cmdline_parse_core(p, &required_kernelcore,
8203 				  &required_kernelcore_percent);
8204 }
8205 
8206 /*
8207  * movablecore=size sets the amount of memory for use for allocations that
8208  * can be reclaimed or migrated.
8209  */
8210 static int __init cmdline_parse_movablecore(char *p)
8211 {
8212 	return cmdline_parse_core(p, &required_movablecore,
8213 				  &required_movablecore_percent);
8214 }
8215 
8216 early_param("kernelcore", cmdline_parse_kernelcore);
8217 early_param("movablecore", cmdline_parse_movablecore);
8218 
8219 void adjust_managed_page_count(struct page *page, long count)
8220 {
8221 	atomic_long_add(count, &page_zone(page)->managed_pages);
8222 	totalram_pages_add(count);
8223 #ifdef CONFIG_HIGHMEM
8224 	if (PageHighMem(page))
8225 		totalhigh_pages_add(count);
8226 #endif
8227 }
8228 EXPORT_SYMBOL(adjust_managed_page_count);
8229 
8230 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8231 {
8232 	void *pos;
8233 	unsigned long pages = 0;
8234 
8235 	start = (void *)PAGE_ALIGN((unsigned long)start);
8236 	end = (void *)((unsigned long)end & PAGE_MASK);
8237 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8238 		struct page *page = virt_to_page(pos);
8239 		void *direct_map_addr;
8240 
8241 		/*
8242 		 * 'direct_map_addr' might be different from 'pos'
8243 		 * because some architectures' virt_to_page()
8244 		 * work with aliases.  Getting the direct map
8245 		 * address ensures that we get a _writeable_
8246 		 * alias for the memset().
8247 		 */
8248 		direct_map_addr = page_address(page);
8249 		/*
8250 		 * Perform a kasan-unchecked memset() since this memory
8251 		 * has not been initialized.
8252 		 */
8253 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8254 		if ((unsigned int)poison <= 0xFF)
8255 			memset(direct_map_addr, poison, PAGE_SIZE);
8256 
8257 		free_reserved_page(page);
8258 	}
8259 
8260 	if (pages && s)
8261 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8262 
8263 	return pages;
8264 }
8265 
8266 void __init mem_init_print_info(void)
8267 {
8268 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8269 	unsigned long init_code_size, init_data_size;
8270 
8271 	physpages = get_num_physpages();
8272 	codesize = _etext - _stext;
8273 	datasize = _edata - _sdata;
8274 	rosize = __end_rodata - __start_rodata;
8275 	bss_size = __bss_stop - __bss_start;
8276 	init_data_size = __init_end - __init_begin;
8277 	init_code_size = _einittext - _sinittext;
8278 
8279 	/*
8280 	 * Detect special cases and adjust section sizes accordingly:
8281 	 * 1) .init.* may be embedded into .data sections
8282 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8283 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8284 	 * 3) .rodata.* may be embedded into .text or .data sections.
8285 	 */
8286 #define adj_init_size(start, end, size, pos, adj) \
8287 	do { \
8288 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8289 			size -= adj; \
8290 	} while (0)
8291 
8292 	adj_init_size(__init_begin, __init_end, init_data_size,
8293 		     _sinittext, init_code_size);
8294 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8295 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8296 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8297 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8298 
8299 #undef	adj_init_size
8300 
8301 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8302 #ifdef	CONFIG_HIGHMEM
8303 		", %luK highmem"
8304 #endif
8305 		")\n",
8306 		K(nr_free_pages()), K(physpages),
8307 		codesize >> 10, datasize >> 10, rosize >> 10,
8308 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8309 		K(physpages - totalram_pages() - totalcma_pages),
8310 		K(totalcma_pages)
8311 #ifdef	CONFIG_HIGHMEM
8312 		, K(totalhigh_pages())
8313 #endif
8314 		);
8315 }
8316 
8317 /**
8318  * set_dma_reserve - set the specified number of pages reserved in the first zone
8319  * @new_dma_reserve: The number of pages to mark reserved
8320  *
8321  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8322  * In the DMA zone, a significant percentage may be consumed by kernel image
8323  * and other unfreeable allocations which can skew the watermarks badly. This
8324  * function may optionally be used to account for unfreeable pages in the
8325  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8326  * smaller per-cpu batchsize.
8327  */
8328 void __init set_dma_reserve(unsigned long new_dma_reserve)
8329 {
8330 	dma_reserve = new_dma_reserve;
8331 }
8332 
8333 static int page_alloc_cpu_dead(unsigned int cpu)
8334 {
8335 	struct zone *zone;
8336 
8337 	lru_add_drain_cpu(cpu);
8338 	mlock_page_drain_remote(cpu);
8339 	drain_pages(cpu);
8340 
8341 	/*
8342 	 * Spill the event counters of the dead processor
8343 	 * into the current processors event counters.
8344 	 * This artificially elevates the count of the current
8345 	 * processor.
8346 	 */
8347 	vm_events_fold_cpu(cpu);
8348 
8349 	/*
8350 	 * Zero the differential counters of the dead processor
8351 	 * so that the vm statistics are consistent.
8352 	 *
8353 	 * This is only okay since the processor is dead and cannot
8354 	 * race with what we are doing.
8355 	 */
8356 	cpu_vm_stats_fold(cpu);
8357 
8358 	for_each_populated_zone(zone)
8359 		zone_pcp_update(zone, 0);
8360 
8361 	return 0;
8362 }
8363 
8364 static int page_alloc_cpu_online(unsigned int cpu)
8365 {
8366 	struct zone *zone;
8367 
8368 	for_each_populated_zone(zone)
8369 		zone_pcp_update(zone, 1);
8370 	return 0;
8371 }
8372 
8373 #ifdef CONFIG_NUMA
8374 int hashdist = HASHDIST_DEFAULT;
8375 
8376 static int __init set_hashdist(char *str)
8377 {
8378 	if (!str)
8379 		return 0;
8380 	hashdist = simple_strtoul(str, &str, 0);
8381 	return 1;
8382 }
8383 __setup("hashdist=", set_hashdist);
8384 #endif
8385 
8386 void __init page_alloc_init(void)
8387 {
8388 	int ret;
8389 
8390 #ifdef CONFIG_NUMA
8391 	if (num_node_state(N_MEMORY) == 1)
8392 		hashdist = 0;
8393 #endif
8394 
8395 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8396 					"mm/page_alloc:pcp",
8397 					page_alloc_cpu_online,
8398 					page_alloc_cpu_dead);
8399 	WARN_ON(ret < 0);
8400 }
8401 
8402 /*
8403  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8404  *	or min_free_kbytes changes.
8405  */
8406 static void calculate_totalreserve_pages(void)
8407 {
8408 	struct pglist_data *pgdat;
8409 	unsigned long reserve_pages = 0;
8410 	enum zone_type i, j;
8411 
8412 	for_each_online_pgdat(pgdat) {
8413 
8414 		pgdat->totalreserve_pages = 0;
8415 
8416 		for (i = 0; i < MAX_NR_ZONES; i++) {
8417 			struct zone *zone = pgdat->node_zones + i;
8418 			long max = 0;
8419 			unsigned long managed_pages = zone_managed_pages(zone);
8420 
8421 			/* Find valid and maximum lowmem_reserve in the zone */
8422 			for (j = i; j < MAX_NR_ZONES; j++) {
8423 				if (zone->lowmem_reserve[j] > max)
8424 					max = zone->lowmem_reserve[j];
8425 			}
8426 
8427 			/* we treat the high watermark as reserved pages. */
8428 			max += high_wmark_pages(zone);
8429 
8430 			if (max > managed_pages)
8431 				max = managed_pages;
8432 
8433 			pgdat->totalreserve_pages += max;
8434 
8435 			reserve_pages += max;
8436 		}
8437 	}
8438 	totalreserve_pages = reserve_pages;
8439 }
8440 
8441 /*
8442  * setup_per_zone_lowmem_reserve - called whenever
8443  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8444  *	has a correct pages reserved value, so an adequate number of
8445  *	pages are left in the zone after a successful __alloc_pages().
8446  */
8447 static void setup_per_zone_lowmem_reserve(void)
8448 {
8449 	struct pglist_data *pgdat;
8450 	enum zone_type i, j;
8451 
8452 	for_each_online_pgdat(pgdat) {
8453 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8454 			struct zone *zone = &pgdat->node_zones[i];
8455 			int ratio = sysctl_lowmem_reserve_ratio[i];
8456 			bool clear = !ratio || !zone_managed_pages(zone);
8457 			unsigned long managed_pages = 0;
8458 
8459 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8460 				struct zone *upper_zone = &pgdat->node_zones[j];
8461 
8462 				managed_pages += zone_managed_pages(upper_zone);
8463 
8464 				if (clear)
8465 					zone->lowmem_reserve[j] = 0;
8466 				else
8467 					zone->lowmem_reserve[j] = managed_pages / ratio;
8468 			}
8469 		}
8470 	}
8471 
8472 	/* update totalreserve_pages */
8473 	calculate_totalreserve_pages();
8474 }
8475 
8476 static void __setup_per_zone_wmarks(void)
8477 {
8478 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8479 	unsigned long lowmem_pages = 0;
8480 	struct zone *zone;
8481 	unsigned long flags;
8482 
8483 	/* Calculate total number of !ZONE_HIGHMEM pages */
8484 	for_each_zone(zone) {
8485 		if (!is_highmem(zone))
8486 			lowmem_pages += zone_managed_pages(zone);
8487 	}
8488 
8489 	for_each_zone(zone) {
8490 		u64 tmp;
8491 
8492 		spin_lock_irqsave(&zone->lock, flags);
8493 		tmp = (u64)pages_min * zone_managed_pages(zone);
8494 		do_div(tmp, lowmem_pages);
8495 		if (is_highmem(zone)) {
8496 			/*
8497 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8498 			 * need highmem pages, so cap pages_min to a small
8499 			 * value here.
8500 			 *
8501 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8502 			 * deltas control async page reclaim, and so should
8503 			 * not be capped for highmem.
8504 			 */
8505 			unsigned long min_pages;
8506 
8507 			min_pages = zone_managed_pages(zone) / 1024;
8508 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8509 			zone->_watermark[WMARK_MIN] = min_pages;
8510 		} else {
8511 			/*
8512 			 * If it's a lowmem zone, reserve a number of pages
8513 			 * proportionate to the zone's size.
8514 			 */
8515 			zone->_watermark[WMARK_MIN] = tmp;
8516 		}
8517 
8518 		/*
8519 		 * Set the kswapd watermarks distance according to the
8520 		 * scale factor in proportion to available memory, but
8521 		 * ensure a minimum size on small systems.
8522 		 */
8523 		tmp = max_t(u64, tmp >> 2,
8524 			    mult_frac(zone_managed_pages(zone),
8525 				      watermark_scale_factor, 10000));
8526 
8527 		zone->watermark_boost = 0;
8528 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8529 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8530 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8531 
8532 		spin_unlock_irqrestore(&zone->lock, flags);
8533 	}
8534 
8535 	/* update totalreserve_pages */
8536 	calculate_totalreserve_pages();
8537 }
8538 
8539 /**
8540  * setup_per_zone_wmarks - called when min_free_kbytes changes
8541  * or when memory is hot-{added|removed}
8542  *
8543  * Ensures that the watermark[min,low,high] values for each zone are set
8544  * correctly with respect to min_free_kbytes.
8545  */
8546 void setup_per_zone_wmarks(void)
8547 {
8548 	struct zone *zone;
8549 	static DEFINE_SPINLOCK(lock);
8550 
8551 	spin_lock(&lock);
8552 	__setup_per_zone_wmarks();
8553 	spin_unlock(&lock);
8554 
8555 	/*
8556 	 * The watermark size have changed so update the pcpu batch
8557 	 * and high limits or the limits may be inappropriate.
8558 	 */
8559 	for_each_zone(zone)
8560 		zone_pcp_update(zone, 0);
8561 }
8562 
8563 /*
8564  * Initialise min_free_kbytes.
8565  *
8566  * For small machines we want it small (128k min).  For large machines
8567  * we want it large (256MB max).  But it is not linear, because network
8568  * bandwidth does not increase linearly with machine size.  We use
8569  *
8570  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8571  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8572  *
8573  * which yields
8574  *
8575  * 16MB:	512k
8576  * 32MB:	724k
8577  * 64MB:	1024k
8578  * 128MB:	1448k
8579  * 256MB:	2048k
8580  * 512MB:	2896k
8581  * 1024MB:	4096k
8582  * 2048MB:	5792k
8583  * 4096MB:	8192k
8584  * 8192MB:	11584k
8585  * 16384MB:	16384k
8586  */
8587 void calculate_min_free_kbytes(void)
8588 {
8589 	unsigned long lowmem_kbytes;
8590 	int new_min_free_kbytes;
8591 
8592 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8593 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8594 
8595 	if (new_min_free_kbytes > user_min_free_kbytes)
8596 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8597 	else
8598 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8599 				new_min_free_kbytes, user_min_free_kbytes);
8600 
8601 }
8602 
8603 int __meminit init_per_zone_wmark_min(void)
8604 {
8605 	calculate_min_free_kbytes();
8606 	setup_per_zone_wmarks();
8607 	refresh_zone_stat_thresholds();
8608 	setup_per_zone_lowmem_reserve();
8609 
8610 #ifdef CONFIG_NUMA
8611 	setup_min_unmapped_ratio();
8612 	setup_min_slab_ratio();
8613 #endif
8614 
8615 	khugepaged_min_free_kbytes_update();
8616 
8617 	return 0;
8618 }
8619 postcore_initcall(init_per_zone_wmark_min)
8620 
8621 /*
8622  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8623  *	that we can call two helper functions whenever min_free_kbytes
8624  *	changes.
8625  */
8626 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8627 		void *buffer, size_t *length, loff_t *ppos)
8628 {
8629 	int rc;
8630 
8631 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8632 	if (rc)
8633 		return rc;
8634 
8635 	if (write) {
8636 		user_min_free_kbytes = min_free_kbytes;
8637 		setup_per_zone_wmarks();
8638 	}
8639 	return 0;
8640 }
8641 
8642 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8643 		void *buffer, size_t *length, loff_t *ppos)
8644 {
8645 	int rc;
8646 
8647 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8648 	if (rc)
8649 		return rc;
8650 
8651 	if (write)
8652 		setup_per_zone_wmarks();
8653 
8654 	return 0;
8655 }
8656 
8657 #ifdef CONFIG_NUMA
8658 static void setup_min_unmapped_ratio(void)
8659 {
8660 	pg_data_t *pgdat;
8661 	struct zone *zone;
8662 
8663 	for_each_online_pgdat(pgdat)
8664 		pgdat->min_unmapped_pages = 0;
8665 
8666 	for_each_zone(zone)
8667 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8668 						         sysctl_min_unmapped_ratio) / 100;
8669 }
8670 
8671 
8672 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8673 		void *buffer, size_t *length, loff_t *ppos)
8674 {
8675 	int rc;
8676 
8677 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8678 	if (rc)
8679 		return rc;
8680 
8681 	setup_min_unmapped_ratio();
8682 
8683 	return 0;
8684 }
8685 
8686 static void setup_min_slab_ratio(void)
8687 {
8688 	pg_data_t *pgdat;
8689 	struct zone *zone;
8690 
8691 	for_each_online_pgdat(pgdat)
8692 		pgdat->min_slab_pages = 0;
8693 
8694 	for_each_zone(zone)
8695 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8696 						     sysctl_min_slab_ratio) / 100;
8697 }
8698 
8699 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8700 		void *buffer, size_t *length, loff_t *ppos)
8701 {
8702 	int rc;
8703 
8704 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8705 	if (rc)
8706 		return rc;
8707 
8708 	setup_min_slab_ratio();
8709 
8710 	return 0;
8711 }
8712 #endif
8713 
8714 /*
8715  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8716  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8717  *	whenever sysctl_lowmem_reserve_ratio changes.
8718  *
8719  * The reserve ratio obviously has absolutely no relation with the
8720  * minimum watermarks. The lowmem reserve ratio can only make sense
8721  * if in function of the boot time zone sizes.
8722  */
8723 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8724 		void *buffer, size_t *length, loff_t *ppos)
8725 {
8726 	int i;
8727 
8728 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8729 
8730 	for (i = 0; i < MAX_NR_ZONES; i++) {
8731 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8732 			sysctl_lowmem_reserve_ratio[i] = 0;
8733 	}
8734 
8735 	setup_per_zone_lowmem_reserve();
8736 	return 0;
8737 }
8738 
8739 /*
8740  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8741  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8742  * pagelist can have before it gets flushed back to buddy allocator.
8743  */
8744 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8745 		int write, void *buffer, size_t *length, loff_t *ppos)
8746 {
8747 	struct zone *zone;
8748 	int old_percpu_pagelist_high_fraction;
8749 	int ret;
8750 
8751 	mutex_lock(&pcp_batch_high_lock);
8752 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8753 
8754 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8755 	if (!write || ret < 0)
8756 		goto out;
8757 
8758 	/* Sanity checking to avoid pcp imbalance */
8759 	if (percpu_pagelist_high_fraction &&
8760 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8761 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8762 		ret = -EINVAL;
8763 		goto out;
8764 	}
8765 
8766 	/* No change? */
8767 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8768 		goto out;
8769 
8770 	for_each_populated_zone(zone)
8771 		zone_set_pageset_high_and_batch(zone, 0);
8772 out:
8773 	mutex_unlock(&pcp_batch_high_lock);
8774 	return ret;
8775 }
8776 
8777 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8778 /*
8779  * Returns the number of pages that arch has reserved but
8780  * is not known to alloc_large_system_hash().
8781  */
8782 static unsigned long __init arch_reserved_kernel_pages(void)
8783 {
8784 	return 0;
8785 }
8786 #endif
8787 
8788 /*
8789  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8790  * machines. As memory size is increased the scale is also increased but at
8791  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8792  * quadruples the scale is increased by one, which means the size of hash table
8793  * only doubles, instead of quadrupling as well.
8794  * Because 32-bit systems cannot have large physical memory, where this scaling
8795  * makes sense, it is disabled on such platforms.
8796  */
8797 #if __BITS_PER_LONG > 32
8798 #define ADAPT_SCALE_BASE	(64ul << 30)
8799 #define ADAPT_SCALE_SHIFT	2
8800 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8801 #endif
8802 
8803 /*
8804  * allocate a large system hash table from bootmem
8805  * - it is assumed that the hash table must contain an exact power-of-2
8806  *   quantity of entries
8807  * - limit is the number of hash buckets, not the total allocation size
8808  */
8809 void *__init alloc_large_system_hash(const char *tablename,
8810 				     unsigned long bucketsize,
8811 				     unsigned long numentries,
8812 				     int scale,
8813 				     int flags,
8814 				     unsigned int *_hash_shift,
8815 				     unsigned int *_hash_mask,
8816 				     unsigned long low_limit,
8817 				     unsigned long high_limit)
8818 {
8819 	unsigned long long max = high_limit;
8820 	unsigned long log2qty, size;
8821 	void *table = NULL;
8822 	gfp_t gfp_flags;
8823 	bool virt;
8824 	bool huge;
8825 
8826 	/* allow the kernel cmdline to have a say */
8827 	if (!numentries) {
8828 		/* round applicable memory size up to nearest megabyte */
8829 		numentries = nr_kernel_pages;
8830 		numentries -= arch_reserved_kernel_pages();
8831 
8832 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8833 		if (PAGE_SHIFT < 20)
8834 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8835 
8836 #if __BITS_PER_LONG > 32
8837 		if (!high_limit) {
8838 			unsigned long adapt;
8839 
8840 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8841 			     adapt <<= ADAPT_SCALE_SHIFT)
8842 				scale++;
8843 		}
8844 #endif
8845 
8846 		/* limit to 1 bucket per 2^scale bytes of low memory */
8847 		if (scale > PAGE_SHIFT)
8848 			numentries >>= (scale - PAGE_SHIFT);
8849 		else
8850 			numentries <<= (PAGE_SHIFT - scale);
8851 
8852 		/* Make sure we've got at least a 0-order allocation.. */
8853 		if (unlikely(flags & HASH_SMALL)) {
8854 			/* Makes no sense without HASH_EARLY */
8855 			WARN_ON(!(flags & HASH_EARLY));
8856 			if (!(numentries >> *_hash_shift)) {
8857 				numentries = 1UL << *_hash_shift;
8858 				BUG_ON(!numentries);
8859 			}
8860 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8861 			numentries = PAGE_SIZE / bucketsize;
8862 	}
8863 	numentries = roundup_pow_of_two(numentries);
8864 
8865 	/* limit allocation size to 1/16 total memory by default */
8866 	if (max == 0) {
8867 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8868 		do_div(max, bucketsize);
8869 	}
8870 	max = min(max, 0x80000000ULL);
8871 
8872 	if (numentries < low_limit)
8873 		numentries = low_limit;
8874 	if (numentries > max)
8875 		numentries = max;
8876 
8877 	log2qty = ilog2(numentries);
8878 
8879 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8880 	do {
8881 		virt = false;
8882 		size = bucketsize << log2qty;
8883 		if (flags & HASH_EARLY) {
8884 			if (flags & HASH_ZERO)
8885 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8886 			else
8887 				table = memblock_alloc_raw(size,
8888 							   SMP_CACHE_BYTES);
8889 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8890 			table = vmalloc_huge(size, gfp_flags);
8891 			virt = true;
8892 			if (table)
8893 				huge = is_vm_area_hugepages(table);
8894 		} else {
8895 			/*
8896 			 * If bucketsize is not a power-of-two, we may free
8897 			 * some pages at the end of hash table which
8898 			 * alloc_pages_exact() automatically does
8899 			 */
8900 			table = alloc_pages_exact(size, gfp_flags);
8901 			kmemleak_alloc(table, size, 1, gfp_flags);
8902 		}
8903 	} while (!table && size > PAGE_SIZE && --log2qty);
8904 
8905 	if (!table)
8906 		panic("Failed to allocate %s hash table\n", tablename);
8907 
8908 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8909 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8910 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8911 
8912 	if (_hash_shift)
8913 		*_hash_shift = log2qty;
8914 	if (_hash_mask)
8915 		*_hash_mask = (1 << log2qty) - 1;
8916 
8917 	return table;
8918 }
8919 
8920 /*
8921  * This function checks whether pageblock includes unmovable pages or not.
8922  *
8923  * PageLRU check without isolation or lru_lock could race so that
8924  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8925  * check without lock_page also may miss some movable non-lru pages at
8926  * race condition. So you can't expect this function should be exact.
8927  *
8928  * Returns a page without holding a reference. If the caller wants to
8929  * dereference that page (e.g., dumping), it has to make sure that it
8930  * cannot get removed (e.g., via memory unplug) concurrently.
8931  *
8932  */
8933 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8934 				 int migratetype, int flags)
8935 {
8936 	unsigned long iter = 0;
8937 	unsigned long pfn = page_to_pfn(page);
8938 	unsigned long offset = pfn % pageblock_nr_pages;
8939 
8940 	if (is_migrate_cma_page(page)) {
8941 		/*
8942 		 * CMA allocations (alloc_contig_range) really need to mark
8943 		 * isolate CMA pageblocks even when they are not movable in fact
8944 		 * so consider them movable here.
8945 		 */
8946 		if (is_migrate_cma(migratetype))
8947 			return NULL;
8948 
8949 		return page;
8950 	}
8951 
8952 	for (; iter < pageblock_nr_pages - offset; iter++) {
8953 		page = pfn_to_page(pfn + iter);
8954 
8955 		/*
8956 		 * Both, bootmem allocations and memory holes are marked
8957 		 * PG_reserved and are unmovable. We can even have unmovable
8958 		 * allocations inside ZONE_MOVABLE, for example when
8959 		 * specifying "movablecore".
8960 		 */
8961 		if (PageReserved(page))
8962 			return page;
8963 
8964 		/*
8965 		 * If the zone is movable and we have ruled out all reserved
8966 		 * pages then it should be reasonably safe to assume the rest
8967 		 * is movable.
8968 		 */
8969 		if (zone_idx(zone) == ZONE_MOVABLE)
8970 			continue;
8971 
8972 		/*
8973 		 * Hugepages are not in LRU lists, but they're movable.
8974 		 * THPs are on the LRU, but need to be counted as #small pages.
8975 		 * We need not scan over tail pages because we don't
8976 		 * handle each tail page individually in migration.
8977 		 */
8978 		if (PageHuge(page) || PageTransCompound(page)) {
8979 			struct page *head = compound_head(page);
8980 			unsigned int skip_pages;
8981 
8982 			if (PageHuge(page)) {
8983 				if (!hugepage_migration_supported(page_hstate(head)))
8984 					return page;
8985 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8986 				return page;
8987 			}
8988 
8989 			skip_pages = compound_nr(head) - (page - head);
8990 			iter += skip_pages - 1;
8991 			continue;
8992 		}
8993 
8994 		/*
8995 		 * We can't use page_count without pin a page
8996 		 * because another CPU can free compound page.
8997 		 * This check already skips compound tails of THP
8998 		 * because their page->_refcount is zero at all time.
8999 		 */
9000 		if (!page_ref_count(page)) {
9001 			if (PageBuddy(page))
9002 				iter += (1 << buddy_order(page)) - 1;
9003 			continue;
9004 		}
9005 
9006 		/*
9007 		 * The HWPoisoned page may be not in buddy system, and
9008 		 * page_count() is not 0.
9009 		 */
9010 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
9011 			continue;
9012 
9013 		/*
9014 		 * We treat all PageOffline() pages as movable when offlining
9015 		 * to give drivers a chance to decrement their reference count
9016 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
9017 		 * can be offlined as there are no direct references anymore.
9018 		 * For actually unmovable PageOffline() where the driver does
9019 		 * not support this, we will fail later when trying to actually
9020 		 * move these pages that still have a reference count > 0.
9021 		 * (false negatives in this function only)
9022 		 */
9023 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9024 			continue;
9025 
9026 		if (__PageMovable(page) || PageLRU(page))
9027 			continue;
9028 
9029 		/*
9030 		 * If there are RECLAIMABLE pages, we need to check
9031 		 * it.  But now, memory offline itself doesn't call
9032 		 * shrink_node_slabs() and it still to be fixed.
9033 		 */
9034 		return page;
9035 	}
9036 	return NULL;
9037 }
9038 
9039 #ifdef CONFIG_CONTIG_ALLOC
9040 static unsigned long pfn_max_align_down(unsigned long pfn)
9041 {
9042 	return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
9043 }
9044 
9045 static unsigned long pfn_max_align_up(unsigned long pfn)
9046 {
9047 	return ALIGN(pfn, MAX_ORDER_NR_PAGES);
9048 }
9049 
9050 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9051 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9052 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9053 static void alloc_contig_dump_pages(struct list_head *page_list)
9054 {
9055 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9056 
9057 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9058 		struct page *page;
9059 
9060 		dump_stack();
9061 		list_for_each_entry(page, page_list, lru)
9062 			dump_page(page, "migration failure");
9063 	}
9064 }
9065 #else
9066 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9067 {
9068 }
9069 #endif
9070 
9071 /* [start, end) must belong to a single zone. */
9072 static int __alloc_contig_migrate_range(struct compact_control *cc,
9073 					unsigned long start, unsigned long end)
9074 {
9075 	/* This function is based on compact_zone() from compaction.c. */
9076 	unsigned int nr_reclaimed;
9077 	unsigned long pfn = start;
9078 	unsigned int tries = 0;
9079 	int ret = 0;
9080 	struct migration_target_control mtc = {
9081 		.nid = zone_to_nid(cc->zone),
9082 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9083 	};
9084 
9085 	lru_cache_disable();
9086 
9087 	while (pfn < end || !list_empty(&cc->migratepages)) {
9088 		if (fatal_signal_pending(current)) {
9089 			ret = -EINTR;
9090 			break;
9091 		}
9092 
9093 		if (list_empty(&cc->migratepages)) {
9094 			cc->nr_migratepages = 0;
9095 			ret = isolate_migratepages_range(cc, pfn, end);
9096 			if (ret && ret != -EAGAIN)
9097 				break;
9098 			pfn = cc->migrate_pfn;
9099 			tries = 0;
9100 		} else if (++tries == 5) {
9101 			ret = -EBUSY;
9102 			break;
9103 		}
9104 
9105 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9106 							&cc->migratepages);
9107 		cc->nr_migratepages -= nr_reclaimed;
9108 
9109 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9110 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9111 
9112 		/*
9113 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9114 		 * to retry again over this error, so do the same here.
9115 		 */
9116 		if (ret == -ENOMEM)
9117 			break;
9118 	}
9119 
9120 	lru_cache_enable();
9121 	if (ret < 0) {
9122 		if (ret == -EBUSY)
9123 			alloc_contig_dump_pages(&cc->migratepages);
9124 		putback_movable_pages(&cc->migratepages);
9125 		return ret;
9126 	}
9127 	return 0;
9128 }
9129 
9130 /**
9131  * alloc_contig_range() -- tries to allocate given range of pages
9132  * @start:	start PFN to allocate
9133  * @end:	one-past-the-last PFN to allocate
9134  * @migratetype:	migratetype of the underlying pageblocks (either
9135  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9136  *			in range must have the same migratetype and it must
9137  *			be either of the two.
9138  * @gfp_mask:	GFP mask to use during compaction
9139  *
9140  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9141  * aligned.  The PFN range must belong to a single zone.
9142  *
9143  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9144  * pageblocks in the range.  Once isolated, the pageblocks should not
9145  * be modified by others.
9146  *
9147  * Return: zero on success or negative error code.  On success all
9148  * pages which PFN is in [start, end) are allocated for the caller and
9149  * need to be freed with free_contig_range().
9150  */
9151 int alloc_contig_range(unsigned long start, unsigned long end,
9152 		       unsigned migratetype, gfp_t gfp_mask)
9153 {
9154 	unsigned long outer_start, outer_end;
9155 	unsigned int order;
9156 	int ret = 0;
9157 
9158 	struct compact_control cc = {
9159 		.nr_migratepages = 0,
9160 		.order = -1,
9161 		.zone = page_zone(pfn_to_page(start)),
9162 		.mode = MIGRATE_SYNC,
9163 		.ignore_skip_hint = true,
9164 		.no_set_skip_hint = true,
9165 		.gfp_mask = current_gfp_context(gfp_mask),
9166 		.alloc_contig = true,
9167 	};
9168 	INIT_LIST_HEAD(&cc.migratepages);
9169 
9170 	/*
9171 	 * What we do here is we mark all pageblocks in range as
9172 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9173 	 * have different sizes, and due to the way page allocator
9174 	 * work, we align the range to biggest of the two pages so
9175 	 * that page allocator won't try to merge buddies from
9176 	 * different pageblocks and change MIGRATE_ISOLATE to some
9177 	 * other migration type.
9178 	 *
9179 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9180 	 * migrate the pages from an unaligned range (ie. pages that
9181 	 * we are interested in).  This will put all the pages in
9182 	 * range back to page allocator as MIGRATE_ISOLATE.
9183 	 *
9184 	 * When this is done, we take the pages in range from page
9185 	 * allocator removing them from the buddy system.  This way
9186 	 * page allocator will never consider using them.
9187 	 *
9188 	 * This lets us mark the pageblocks back as
9189 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9190 	 * aligned range but not in the unaligned, original range are
9191 	 * put back to page allocator so that buddy can use them.
9192 	 */
9193 
9194 	ret = start_isolate_page_range(pfn_max_align_down(start),
9195 				       pfn_max_align_up(end), migratetype, 0);
9196 	if (ret)
9197 		return ret;
9198 
9199 	drain_all_pages(cc.zone);
9200 
9201 	/*
9202 	 * In case of -EBUSY, we'd like to know which page causes problem.
9203 	 * So, just fall through. test_pages_isolated() has a tracepoint
9204 	 * which will report the busy page.
9205 	 *
9206 	 * It is possible that busy pages could become available before
9207 	 * the call to test_pages_isolated, and the range will actually be
9208 	 * allocated.  So, if we fall through be sure to clear ret so that
9209 	 * -EBUSY is not accidentally used or returned to caller.
9210 	 */
9211 	ret = __alloc_contig_migrate_range(&cc, start, end);
9212 	if (ret && ret != -EBUSY)
9213 		goto done;
9214 	ret = 0;
9215 
9216 	/*
9217 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9218 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9219 	 * more, all pages in [start, end) are free in page allocator.
9220 	 * What we are going to do is to allocate all pages from
9221 	 * [start, end) (that is remove them from page allocator).
9222 	 *
9223 	 * The only problem is that pages at the beginning and at the
9224 	 * end of interesting range may be not aligned with pages that
9225 	 * page allocator holds, ie. they can be part of higher order
9226 	 * pages.  Because of this, we reserve the bigger range and
9227 	 * once this is done free the pages we are not interested in.
9228 	 *
9229 	 * We don't have to hold zone->lock here because the pages are
9230 	 * isolated thus they won't get removed from buddy.
9231 	 */
9232 
9233 	order = 0;
9234 	outer_start = start;
9235 	while (!PageBuddy(pfn_to_page(outer_start))) {
9236 		if (++order >= MAX_ORDER) {
9237 			outer_start = start;
9238 			break;
9239 		}
9240 		outer_start &= ~0UL << order;
9241 	}
9242 
9243 	if (outer_start != start) {
9244 		order = buddy_order(pfn_to_page(outer_start));
9245 
9246 		/*
9247 		 * outer_start page could be small order buddy page and
9248 		 * it doesn't include start page. Adjust outer_start
9249 		 * in this case to report failed page properly
9250 		 * on tracepoint in test_pages_isolated()
9251 		 */
9252 		if (outer_start + (1UL << order) <= start)
9253 			outer_start = start;
9254 	}
9255 
9256 	/* Make sure the range is really isolated. */
9257 	if (test_pages_isolated(outer_start, end, 0)) {
9258 		ret = -EBUSY;
9259 		goto done;
9260 	}
9261 
9262 	/* Grab isolated pages from freelists. */
9263 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9264 	if (!outer_end) {
9265 		ret = -EBUSY;
9266 		goto done;
9267 	}
9268 
9269 	/* Free head and tail (if any) */
9270 	if (start != outer_start)
9271 		free_contig_range(outer_start, start - outer_start);
9272 	if (end != outer_end)
9273 		free_contig_range(end, outer_end - end);
9274 
9275 done:
9276 	undo_isolate_page_range(pfn_max_align_down(start),
9277 				pfn_max_align_up(end), migratetype);
9278 	return ret;
9279 }
9280 EXPORT_SYMBOL(alloc_contig_range);
9281 
9282 static int __alloc_contig_pages(unsigned long start_pfn,
9283 				unsigned long nr_pages, gfp_t gfp_mask)
9284 {
9285 	unsigned long end_pfn = start_pfn + nr_pages;
9286 
9287 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9288 				  gfp_mask);
9289 }
9290 
9291 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9292 				   unsigned long nr_pages)
9293 {
9294 	unsigned long i, end_pfn = start_pfn + nr_pages;
9295 	struct page *page;
9296 
9297 	for (i = start_pfn; i < end_pfn; i++) {
9298 		page = pfn_to_online_page(i);
9299 		if (!page)
9300 			return false;
9301 
9302 		if (page_zone(page) != z)
9303 			return false;
9304 
9305 		if (PageReserved(page))
9306 			return false;
9307 	}
9308 	return true;
9309 }
9310 
9311 static bool zone_spans_last_pfn(const struct zone *zone,
9312 				unsigned long start_pfn, unsigned long nr_pages)
9313 {
9314 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9315 
9316 	return zone_spans_pfn(zone, last_pfn);
9317 }
9318 
9319 /**
9320  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9321  * @nr_pages:	Number of contiguous pages to allocate
9322  * @gfp_mask:	GFP mask to limit search and used during compaction
9323  * @nid:	Target node
9324  * @nodemask:	Mask for other possible nodes
9325  *
9326  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9327  * on an applicable zonelist to find a contiguous pfn range which can then be
9328  * tried for allocation with alloc_contig_range(). This routine is intended
9329  * for allocation requests which can not be fulfilled with the buddy allocator.
9330  *
9331  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9332  * power of two, then allocated range is also guaranteed to be aligned to same
9333  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9334  *
9335  * Allocated pages can be freed with free_contig_range() or by manually calling
9336  * __free_page() on each allocated page.
9337  *
9338  * Return: pointer to contiguous pages on success, or NULL if not successful.
9339  */
9340 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9341 				int nid, nodemask_t *nodemask)
9342 {
9343 	unsigned long ret, pfn, flags;
9344 	struct zonelist *zonelist;
9345 	struct zone *zone;
9346 	struct zoneref *z;
9347 
9348 	zonelist = node_zonelist(nid, gfp_mask);
9349 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9350 					gfp_zone(gfp_mask), nodemask) {
9351 		spin_lock_irqsave(&zone->lock, flags);
9352 
9353 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9354 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9355 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9356 				/*
9357 				 * We release the zone lock here because
9358 				 * alloc_contig_range() will also lock the zone
9359 				 * at some point. If there's an allocation
9360 				 * spinning on this lock, it may win the race
9361 				 * and cause alloc_contig_range() to fail...
9362 				 */
9363 				spin_unlock_irqrestore(&zone->lock, flags);
9364 				ret = __alloc_contig_pages(pfn, nr_pages,
9365 							gfp_mask);
9366 				if (!ret)
9367 					return pfn_to_page(pfn);
9368 				spin_lock_irqsave(&zone->lock, flags);
9369 			}
9370 			pfn += nr_pages;
9371 		}
9372 		spin_unlock_irqrestore(&zone->lock, flags);
9373 	}
9374 	return NULL;
9375 }
9376 #endif /* CONFIG_CONTIG_ALLOC */
9377 
9378 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9379 {
9380 	unsigned long count = 0;
9381 
9382 	for (; nr_pages--; pfn++) {
9383 		struct page *page = pfn_to_page(pfn);
9384 
9385 		count += page_count(page) != 1;
9386 		__free_page(page);
9387 	}
9388 	WARN(count != 0, "%lu pages are still in use!\n", count);
9389 }
9390 EXPORT_SYMBOL(free_contig_range);
9391 
9392 /*
9393  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9394  * page high values need to be recalculated.
9395  */
9396 void zone_pcp_update(struct zone *zone, int cpu_online)
9397 {
9398 	mutex_lock(&pcp_batch_high_lock);
9399 	zone_set_pageset_high_and_batch(zone, cpu_online);
9400 	mutex_unlock(&pcp_batch_high_lock);
9401 }
9402 
9403 /*
9404  * Effectively disable pcplists for the zone by setting the high limit to 0
9405  * and draining all cpus. A concurrent page freeing on another CPU that's about
9406  * to put the page on pcplist will either finish before the drain and the page
9407  * will be drained, or observe the new high limit and skip the pcplist.
9408  *
9409  * Must be paired with a call to zone_pcp_enable().
9410  */
9411 void zone_pcp_disable(struct zone *zone)
9412 {
9413 	mutex_lock(&pcp_batch_high_lock);
9414 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9415 	__drain_all_pages(zone, true);
9416 }
9417 
9418 void zone_pcp_enable(struct zone *zone)
9419 {
9420 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9421 	mutex_unlock(&pcp_batch_high_lock);
9422 }
9423 
9424 void zone_pcp_reset(struct zone *zone)
9425 {
9426 	int cpu;
9427 	struct per_cpu_zonestat *pzstats;
9428 
9429 	if (zone->per_cpu_pageset != &boot_pageset) {
9430 		for_each_online_cpu(cpu) {
9431 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9432 			drain_zonestat(zone, pzstats);
9433 		}
9434 		free_percpu(zone->per_cpu_pageset);
9435 		free_percpu(zone->per_cpu_zonestats);
9436 		zone->per_cpu_pageset = &boot_pageset;
9437 		zone->per_cpu_zonestats = &boot_zonestats;
9438 	}
9439 }
9440 
9441 #ifdef CONFIG_MEMORY_HOTREMOVE
9442 /*
9443  * All pages in the range must be in a single zone, must not contain holes,
9444  * must span full sections, and must be isolated before calling this function.
9445  */
9446 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9447 {
9448 	unsigned long pfn = start_pfn;
9449 	struct page *page;
9450 	struct zone *zone;
9451 	unsigned int order;
9452 	unsigned long flags;
9453 
9454 	offline_mem_sections(pfn, end_pfn);
9455 	zone = page_zone(pfn_to_page(pfn));
9456 	spin_lock_irqsave(&zone->lock, flags);
9457 	while (pfn < end_pfn) {
9458 		page = pfn_to_page(pfn);
9459 		/*
9460 		 * The HWPoisoned page may be not in buddy system, and
9461 		 * page_count() is not 0.
9462 		 */
9463 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9464 			pfn++;
9465 			continue;
9466 		}
9467 		/*
9468 		 * At this point all remaining PageOffline() pages have a
9469 		 * reference count of 0 and can simply be skipped.
9470 		 */
9471 		if (PageOffline(page)) {
9472 			BUG_ON(page_count(page));
9473 			BUG_ON(PageBuddy(page));
9474 			pfn++;
9475 			continue;
9476 		}
9477 
9478 		BUG_ON(page_count(page));
9479 		BUG_ON(!PageBuddy(page));
9480 		order = buddy_order(page);
9481 		del_page_from_free_list(page, zone, order);
9482 		pfn += (1 << order);
9483 	}
9484 	spin_unlock_irqrestore(&zone->lock, flags);
9485 }
9486 #endif
9487 
9488 /*
9489  * This function returns a stable result only if called under zone lock.
9490  */
9491 bool is_free_buddy_page(struct page *page)
9492 {
9493 	unsigned long pfn = page_to_pfn(page);
9494 	unsigned int order;
9495 
9496 	for (order = 0; order < MAX_ORDER; order++) {
9497 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9498 
9499 		if (PageBuddy(page_head) &&
9500 		    buddy_order_unsafe(page_head) >= order)
9501 			break;
9502 	}
9503 
9504 	return order < MAX_ORDER;
9505 }
9506 EXPORT_SYMBOL(is_free_buddy_page);
9507 
9508 #ifdef CONFIG_MEMORY_FAILURE
9509 /*
9510  * Break down a higher-order page in sub-pages, and keep our target out of
9511  * buddy allocator.
9512  */
9513 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9514 				   struct page *target, int low, int high,
9515 				   int migratetype)
9516 {
9517 	unsigned long size = 1 << high;
9518 	struct page *current_buddy, *next_page;
9519 
9520 	while (high > low) {
9521 		high--;
9522 		size >>= 1;
9523 
9524 		if (target >= &page[size]) {
9525 			next_page = page + size;
9526 			current_buddy = page;
9527 		} else {
9528 			next_page = page;
9529 			current_buddy = page + size;
9530 		}
9531 
9532 		if (set_page_guard(zone, current_buddy, high, migratetype))
9533 			continue;
9534 
9535 		if (current_buddy != target) {
9536 			add_to_free_list(current_buddy, zone, high, migratetype);
9537 			set_buddy_order(current_buddy, high);
9538 			page = next_page;
9539 		}
9540 	}
9541 }
9542 
9543 /*
9544  * Take a page that will be marked as poisoned off the buddy allocator.
9545  */
9546 bool take_page_off_buddy(struct page *page)
9547 {
9548 	struct zone *zone = page_zone(page);
9549 	unsigned long pfn = page_to_pfn(page);
9550 	unsigned long flags;
9551 	unsigned int order;
9552 	bool ret = false;
9553 
9554 	spin_lock_irqsave(&zone->lock, flags);
9555 	for (order = 0; order < MAX_ORDER; order++) {
9556 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9557 		int page_order = buddy_order(page_head);
9558 
9559 		if (PageBuddy(page_head) && page_order >= order) {
9560 			unsigned long pfn_head = page_to_pfn(page_head);
9561 			int migratetype = get_pfnblock_migratetype(page_head,
9562 								   pfn_head);
9563 
9564 			del_page_from_free_list(page_head, zone, page_order);
9565 			break_down_buddy_pages(zone, page_head, page, 0,
9566 						page_order, migratetype);
9567 			SetPageHWPoisonTakenOff(page);
9568 			if (!is_migrate_isolate(migratetype))
9569 				__mod_zone_freepage_state(zone, -1, migratetype);
9570 			ret = true;
9571 			break;
9572 		}
9573 		if (page_count(page_head) > 0)
9574 			break;
9575 	}
9576 	spin_unlock_irqrestore(&zone->lock, flags);
9577 	return ret;
9578 }
9579 
9580 /*
9581  * Cancel takeoff done by take_page_off_buddy().
9582  */
9583 bool put_page_back_buddy(struct page *page)
9584 {
9585 	struct zone *zone = page_zone(page);
9586 	unsigned long pfn = page_to_pfn(page);
9587 	unsigned long flags;
9588 	int migratetype = get_pfnblock_migratetype(page, pfn);
9589 	bool ret = false;
9590 
9591 	spin_lock_irqsave(&zone->lock, flags);
9592 	if (put_page_testzero(page)) {
9593 		ClearPageHWPoisonTakenOff(page);
9594 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9595 		if (TestClearPageHWPoison(page)) {
9596 			num_poisoned_pages_dec();
9597 			ret = true;
9598 		}
9599 	}
9600 	spin_unlock_irqrestore(&zone->lock, flags);
9601 
9602 	return ret;
9603 }
9604 #endif
9605 
9606 #ifdef CONFIG_ZONE_DMA
9607 bool has_managed_dma(void)
9608 {
9609 	struct pglist_data *pgdat;
9610 
9611 	for_each_online_pgdat(pgdat) {
9612 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9613 
9614 		if (managed_zone(zone))
9615 			return true;
9616 	}
9617 	return false;
9618 }
9619 #endif /* CONFIG_ZONE_DMA */
9620