xref: /openbmc/linux/mm/page_alloc.c (revision 2f61c664)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /*
111  * Don't poison memory with KASAN (only for the tag-based modes).
112  * During boot, all non-reserved memblock memory is exposed to page_alloc.
113  * Poisoning all that memory lengthens boot time, especially on systems with
114  * large amount of RAM. This flag is used to skip that poisoning.
115  * This is only done for the tag-based KASAN modes, as those are able to
116  * detect memory corruptions with the memory tags assigned by default.
117  * All memory allocated normally after boot gets poisoned as usual.
118  */
119 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
120 
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
124 
125 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126 DEFINE_PER_CPU(int, numa_node);
127 EXPORT_PER_CPU_SYMBOL(numa_node);
128 #endif
129 
130 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
131 
132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
133 /*
134  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137  * defined in <linux/topology.h>.
138  */
139 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
140 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
141 #endif
142 
143 /* work_structs for global per-cpu drains */
144 struct pcpu_drain {
145 	struct zone *zone;
146 	struct work_struct work;
147 };
148 static DEFINE_MUTEX(pcpu_drain_mutex);
149 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
150 
151 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
152 volatile unsigned long latent_entropy __latent_entropy;
153 EXPORT_SYMBOL(latent_entropy);
154 #endif
155 
156 /*
157  * Array of node states.
158  */
159 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 	[N_POSSIBLE] = NODE_MASK_ALL,
161 	[N_ONLINE] = { { [0] = 1UL } },
162 #ifndef CONFIG_NUMA
163 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
164 #ifdef CONFIG_HIGHMEM
165 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
166 #endif
167 	[N_MEMORY] = { { [0] = 1UL } },
168 	[N_CPU] = { { [0] = 1UL } },
169 #endif	/* NUMA */
170 };
171 EXPORT_SYMBOL(node_states);
172 
173 atomic_long_t _totalram_pages __read_mostly;
174 EXPORT_SYMBOL(_totalram_pages);
175 unsigned long totalreserve_pages __read_mostly;
176 unsigned long totalcma_pages __read_mostly;
177 
178 int percpu_pagelist_fraction;
179 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
180 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
181 EXPORT_SYMBOL(init_on_alloc);
182 
183 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
184 EXPORT_SYMBOL(init_on_free);
185 
186 static bool _init_on_alloc_enabled_early __read_mostly
187 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
188 static int __init early_init_on_alloc(char *buf)
189 {
190 
191 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
192 }
193 early_param("init_on_alloc", early_init_on_alloc);
194 
195 static bool _init_on_free_enabled_early __read_mostly
196 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
197 static int __init early_init_on_free(char *buf)
198 {
199 	return kstrtobool(buf, &_init_on_free_enabled_early);
200 }
201 early_param("init_on_free", early_init_on_free);
202 
203 /*
204  * A cached value of the page's pageblock's migratetype, used when the page is
205  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207  * Also the migratetype set in the page does not necessarily match the pcplist
208  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209  * other index - this ensures that it will be put on the correct CMA freelist.
210  */
211 static inline int get_pcppage_migratetype(struct page *page)
212 {
213 	return page->index;
214 }
215 
216 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
217 {
218 	page->index = migratetype;
219 }
220 
221 #ifdef CONFIG_PM_SLEEP
222 /*
223  * The following functions are used by the suspend/hibernate code to temporarily
224  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225  * while devices are suspended.  To avoid races with the suspend/hibernate code,
226  * they should always be called with system_transition_mutex held
227  * (gfp_allowed_mask also should only be modified with system_transition_mutex
228  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229  * with that modification).
230  */
231 
232 static gfp_t saved_gfp_mask;
233 
234 void pm_restore_gfp_mask(void)
235 {
236 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
237 	if (saved_gfp_mask) {
238 		gfp_allowed_mask = saved_gfp_mask;
239 		saved_gfp_mask = 0;
240 	}
241 }
242 
243 void pm_restrict_gfp_mask(void)
244 {
245 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 	WARN_ON(saved_gfp_mask);
247 	saved_gfp_mask = gfp_allowed_mask;
248 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
249 }
250 
251 bool pm_suspended_storage(void)
252 {
253 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
254 		return false;
255 	return true;
256 }
257 #endif /* CONFIG_PM_SLEEP */
258 
259 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
260 unsigned int pageblock_order __read_mostly;
261 #endif
262 
263 static void __free_pages_ok(struct page *page, unsigned int order,
264 			    fpi_t fpi_flags);
265 
266 /*
267  * results with 256, 32 in the lowmem_reserve sysctl:
268  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269  *	1G machine -> (16M dma, 784M normal, 224M high)
270  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
272  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
273  *
274  * TBD: should special case ZONE_DMA32 machines here - in those we normally
275  * don't need any ZONE_NORMAL reservation
276  */
277 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
278 #ifdef CONFIG_ZONE_DMA
279 	[ZONE_DMA] = 256,
280 #endif
281 #ifdef CONFIG_ZONE_DMA32
282 	[ZONE_DMA32] = 256,
283 #endif
284 	[ZONE_NORMAL] = 32,
285 #ifdef CONFIG_HIGHMEM
286 	[ZONE_HIGHMEM] = 0,
287 #endif
288 	[ZONE_MOVABLE] = 0,
289 };
290 
291 static char * const zone_names[MAX_NR_ZONES] = {
292 #ifdef CONFIG_ZONE_DMA
293 	 "DMA",
294 #endif
295 #ifdef CONFIG_ZONE_DMA32
296 	 "DMA32",
297 #endif
298 	 "Normal",
299 #ifdef CONFIG_HIGHMEM
300 	 "HighMem",
301 #endif
302 	 "Movable",
303 #ifdef CONFIG_ZONE_DEVICE
304 	 "Device",
305 #endif
306 };
307 
308 const char * const migratetype_names[MIGRATE_TYPES] = {
309 	"Unmovable",
310 	"Movable",
311 	"Reclaimable",
312 	"HighAtomic",
313 #ifdef CONFIG_CMA
314 	"CMA",
315 #endif
316 #ifdef CONFIG_MEMORY_ISOLATION
317 	"Isolate",
318 #endif
319 };
320 
321 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 	[NULL_COMPOUND_DTOR] = NULL,
323 	[COMPOUND_PAGE_DTOR] = free_compound_page,
324 #ifdef CONFIG_HUGETLB_PAGE
325 	[HUGETLB_PAGE_DTOR] = free_huge_page,
326 #endif
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
329 #endif
330 };
331 
332 int min_free_kbytes = 1024;
333 int user_min_free_kbytes = -1;
334 #ifdef CONFIG_DISCONTIGMEM
335 /*
336  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337  * are not on separate NUMA nodes. Functionally this works but with
338  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339  * quite small. By default, do not boost watermarks on discontigmem as in
340  * many cases very high-order allocations like THP are likely to be
341  * unsupported and the premature reclaim offsets the advantage of long-term
342  * fragmentation avoidance.
343  */
344 int watermark_boost_factor __read_mostly;
345 #else
346 int watermark_boost_factor __read_mostly = 15000;
347 #endif
348 int watermark_scale_factor = 10;
349 
350 static unsigned long nr_kernel_pages __initdata;
351 static unsigned long nr_all_pages __initdata;
352 static unsigned long dma_reserve __initdata;
353 
354 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
356 static unsigned long required_kernelcore __initdata;
357 static unsigned long required_kernelcore_percent __initdata;
358 static unsigned long required_movablecore __initdata;
359 static unsigned long required_movablecore_percent __initdata;
360 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
361 static bool mirrored_kernelcore __meminitdata;
362 
363 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
364 int movable_zone;
365 EXPORT_SYMBOL(movable_zone);
366 
367 #if MAX_NUMNODES > 1
368 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
369 unsigned int nr_online_nodes __read_mostly = 1;
370 EXPORT_SYMBOL(nr_node_ids);
371 EXPORT_SYMBOL(nr_online_nodes);
372 #endif
373 
374 int page_group_by_mobility_disabled __read_mostly;
375 
376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
377 /*
378  * During boot we initialize deferred pages on-demand, as needed, but once
379  * page_alloc_init_late() has finished, the deferred pages are all initialized,
380  * and we can permanently disable that path.
381  */
382 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
383 
384 /*
385  * Calling kasan_free_pages() only after deferred memory initialization
386  * has completed. Poisoning pages during deferred memory init will greatly
387  * lengthen the process and cause problem in large memory systems as the
388  * deferred pages initialization is done with interrupt disabled.
389  *
390  * Assuming that there will be no reference to those newly initialized
391  * pages before they are ever allocated, this should have no effect on
392  * KASAN memory tracking as the poison will be properly inserted at page
393  * allocation time. The only corner case is when pages are allocated by
394  * on-demand allocation and then freed again before the deferred pages
395  * initialization is done, but this is not likely to happen.
396  */
397 static inline void kasan_free_nondeferred_pages(struct page *page, int order,
398 						bool init, fpi_t fpi_flags)
399 {
400 	if (static_branch_unlikely(&deferred_pages))
401 		return;
402 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
403 			(fpi_flags & FPI_SKIP_KASAN_POISON))
404 		return;
405 	kasan_free_pages(page, order, init);
406 }
407 
408 /* Returns true if the struct page for the pfn is uninitialised */
409 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
410 {
411 	int nid = early_pfn_to_nid(pfn);
412 
413 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
414 		return true;
415 
416 	return false;
417 }
418 
419 /*
420  * Returns true when the remaining initialisation should be deferred until
421  * later in the boot cycle when it can be parallelised.
422  */
423 static bool __meminit
424 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
425 {
426 	static unsigned long prev_end_pfn, nr_initialised;
427 
428 	/*
429 	 * prev_end_pfn static that contains the end of previous zone
430 	 * No need to protect because called very early in boot before smp_init.
431 	 */
432 	if (prev_end_pfn != end_pfn) {
433 		prev_end_pfn = end_pfn;
434 		nr_initialised = 0;
435 	}
436 
437 	/* Always populate low zones for address-constrained allocations */
438 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
439 		return false;
440 
441 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
442 		return true;
443 	/*
444 	 * We start only with one section of pages, more pages are added as
445 	 * needed until the rest of deferred pages are initialized.
446 	 */
447 	nr_initialised++;
448 	if ((nr_initialised > PAGES_PER_SECTION) &&
449 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
450 		NODE_DATA(nid)->first_deferred_pfn = pfn;
451 		return true;
452 	}
453 	return false;
454 }
455 #else
456 static inline void kasan_free_nondeferred_pages(struct page *page, int order,
457 						bool init, fpi_t fpi_flags)
458 {
459 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
460 			(fpi_flags & FPI_SKIP_KASAN_POISON))
461 		return;
462 	kasan_free_pages(page, order, init);
463 }
464 
465 static inline bool early_page_uninitialised(unsigned long pfn)
466 {
467 	return false;
468 }
469 
470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471 {
472 	return false;
473 }
474 #endif
475 
476 /* Return a pointer to the bitmap storing bits affecting a block of pages */
477 static inline unsigned long *get_pageblock_bitmap(struct page *page,
478 							unsigned long pfn)
479 {
480 #ifdef CONFIG_SPARSEMEM
481 	return section_to_usemap(__pfn_to_section(pfn));
482 #else
483 	return page_zone(page)->pageblock_flags;
484 #endif /* CONFIG_SPARSEMEM */
485 }
486 
487 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 	pfn &= (PAGES_PER_SECTION-1);
491 #else
492 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
493 #endif /* CONFIG_SPARSEMEM */
494 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495 }
496 
497 static __always_inline
498 unsigned long __get_pfnblock_flags_mask(struct page *page,
499 					unsigned long pfn,
500 					unsigned long mask)
501 {
502 	unsigned long *bitmap;
503 	unsigned long bitidx, word_bitidx;
504 	unsigned long word;
505 
506 	bitmap = get_pageblock_bitmap(page, pfn);
507 	bitidx = pfn_to_bitidx(page, pfn);
508 	word_bitidx = bitidx / BITS_PER_LONG;
509 	bitidx &= (BITS_PER_LONG-1);
510 
511 	word = bitmap[word_bitidx];
512 	return (word >> bitidx) & mask;
513 }
514 
515 /**
516  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517  * @page: The page within the block of interest
518  * @pfn: The target page frame number
519  * @mask: mask of bits that the caller is interested in
520  *
521  * Return: pageblock_bits flags
522  */
523 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
524 					unsigned long mask)
525 {
526 	return __get_pfnblock_flags_mask(page, pfn, mask);
527 }
528 
529 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
530 {
531 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
532 }
533 
534 /**
535  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
536  * @page: The page within the block of interest
537  * @flags: The flags to set
538  * @pfn: The target page frame number
539  * @mask: mask of bits that the caller is interested in
540  */
541 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
542 					unsigned long pfn,
543 					unsigned long mask)
544 {
545 	unsigned long *bitmap;
546 	unsigned long bitidx, word_bitidx;
547 	unsigned long old_word, word;
548 
549 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
550 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
551 
552 	bitmap = get_pageblock_bitmap(page, pfn);
553 	bitidx = pfn_to_bitidx(page, pfn);
554 	word_bitidx = bitidx / BITS_PER_LONG;
555 	bitidx &= (BITS_PER_LONG-1);
556 
557 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
558 
559 	mask <<= bitidx;
560 	flags <<= bitidx;
561 
562 	word = READ_ONCE(bitmap[word_bitidx]);
563 	for (;;) {
564 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
565 		if (word == old_word)
566 			break;
567 		word = old_word;
568 	}
569 }
570 
571 void set_pageblock_migratetype(struct page *page, int migratetype)
572 {
573 	if (unlikely(page_group_by_mobility_disabled &&
574 		     migratetype < MIGRATE_PCPTYPES))
575 		migratetype = MIGRATE_UNMOVABLE;
576 
577 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
578 				page_to_pfn(page), MIGRATETYPE_MASK);
579 }
580 
581 #ifdef CONFIG_DEBUG_VM
582 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
583 {
584 	int ret = 0;
585 	unsigned seq;
586 	unsigned long pfn = page_to_pfn(page);
587 	unsigned long sp, start_pfn;
588 
589 	do {
590 		seq = zone_span_seqbegin(zone);
591 		start_pfn = zone->zone_start_pfn;
592 		sp = zone->spanned_pages;
593 		if (!zone_spans_pfn(zone, pfn))
594 			ret = 1;
595 	} while (zone_span_seqretry(zone, seq));
596 
597 	if (ret)
598 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
599 			pfn, zone_to_nid(zone), zone->name,
600 			start_pfn, start_pfn + sp);
601 
602 	return ret;
603 }
604 
605 static int page_is_consistent(struct zone *zone, struct page *page)
606 {
607 	if (!pfn_valid_within(page_to_pfn(page)))
608 		return 0;
609 	if (zone != page_zone(page))
610 		return 0;
611 
612 	return 1;
613 }
614 /*
615  * Temporary debugging check for pages not lying within a given zone.
616  */
617 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
618 {
619 	if (page_outside_zone_boundaries(zone, page))
620 		return 1;
621 	if (!page_is_consistent(zone, page))
622 		return 1;
623 
624 	return 0;
625 }
626 #else
627 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
628 {
629 	return 0;
630 }
631 #endif
632 
633 static void bad_page(struct page *page, const char *reason)
634 {
635 	static unsigned long resume;
636 	static unsigned long nr_shown;
637 	static unsigned long nr_unshown;
638 
639 	/*
640 	 * Allow a burst of 60 reports, then keep quiet for that minute;
641 	 * or allow a steady drip of one report per second.
642 	 */
643 	if (nr_shown == 60) {
644 		if (time_before(jiffies, resume)) {
645 			nr_unshown++;
646 			goto out;
647 		}
648 		if (nr_unshown) {
649 			pr_alert(
650 			      "BUG: Bad page state: %lu messages suppressed\n",
651 				nr_unshown);
652 			nr_unshown = 0;
653 		}
654 		nr_shown = 0;
655 	}
656 	if (nr_shown++ == 0)
657 		resume = jiffies + 60 * HZ;
658 
659 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
660 		current->comm, page_to_pfn(page));
661 	__dump_page(page, reason);
662 	dump_page_owner(page);
663 
664 	print_modules();
665 	dump_stack();
666 out:
667 	/* Leave bad fields for debug, except PageBuddy could make trouble */
668 	page_mapcount_reset(page); /* remove PageBuddy */
669 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 }
671 
672 /*
673  * Higher-order pages are called "compound pages".  They are structured thusly:
674  *
675  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
676  *
677  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
678  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
679  *
680  * The first tail page's ->compound_dtor holds the offset in array of compound
681  * page destructors. See compound_page_dtors.
682  *
683  * The first tail page's ->compound_order holds the order of allocation.
684  * This usage means that zero-order pages may not be compound.
685  */
686 
687 void free_compound_page(struct page *page)
688 {
689 	mem_cgroup_uncharge(page);
690 	__free_pages_ok(page, compound_order(page), FPI_NONE);
691 }
692 
693 void prep_compound_page(struct page *page, unsigned int order)
694 {
695 	int i;
696 	int nr_pages = 1 << order;
697 
698 	__SetPageHead(page);
699 	for (i = 1; i < nr_pages; i++) {
700 		struct page *p = page + i;
701 		set_page_count(p, 0);
702 		p->mapping = TAIL_MAPPING;
703 		set_compound_head(p, page);
704 	}
705 
706 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
707 	set_compound_order(page, order);
708 	atomic_set(compound_mapcount_ptr(page), -1);
709 	if (hpage_pincount_available(page))
710 		atomic_set(compound_pincount_ptr(page), 0);
711 }
712 
713 #ifdef CONFIG_DEBUG_PAGEALLOC
714 unsigned int _debug_guardpage_minorder;
715 
716 bool _debug_pagealloc_enabled_early __read_mostly
717 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
718 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
719 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
720 EXPORT_SYMBOL(_debug_pagealloc_enabled);
721 
722 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
723 
724 static int __init early_debug_pagealloc(char *buf)
725 {
726 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
727 }
728 early_param("debug_pagealloc", early_debug_pagealloc);
729 
730 static int __init debug_guardpage_minorder_setup(char *buf)
731 {
732 	unsigned long res;
733 
734 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
735 		pr_err("Bad debug_guardpage_minorder value\n");
736 		return 0;
737 	}
738 	_debug_guardpage_minorder = res;
739 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
740 	return 0;
741 }
742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
743 
744 static inline bool set_page_guard(struct zone *zone, struct page *page,
745 				unsigned int order, int migratetype)
746 {
747 	if (!debug_guardpage_enabled())
748 		return false;
749 
750 	if (order >= debug_guardpage_minorder())
751 		return false;
752 
753 	__SetPageGuard(page);
754 	INIT_LIST_HEAD(&page->lru);
755 	set_page_private(page, order);
756 	/* Guard pages are not available for any usage */
757 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
758 
759 	return true;
760 }
761 
762 static inline void clear_page_guard(struct zone *zone, struct page *page,
763 				unsigned int order, int migratetype)
764 {
765 	if (!debug_guardpage_enabled())
766 		return;
767 
768 	__ClearPageGuard(page);
769 
770 	set_page_private(page, 0);
771 	if (!is_migrate_isolate(migratetype))
772 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
773 }
774 #else
775 static inline bool set_page_guard(struct zone *zone, struct page *page,
776 			unsigned int order, int migratetype) { return false; }
777 static inline void clear_page_guard(struct zone *zone, struct page *page,
778 				unsigned int order, int migratetype) {}
779 #endif
780 
781 /*
782  * Enable static keys related to various memory debugging and hardening options.
783  * Some override others, and depend on early params that are evaluated in the
784  * order of appearance. So we need to first gather the full picture of what was
785  * enabled, and then make decisions.
786  */
787 void init_mem_debugging_and_hardening(void)
788 {
789 	bool page_poisoning_requested = false;
790 
791 #ifdef CONFIG_PAGE_POISONING
792 	/*
793 	 * Page poisoning is debug page alloc for some arches. If
794 	 * either of those options are enabled, enable poisoning.
795 	 */
796 	if (page_poisoning_enabled() ||
797 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
798 	      debug_pagealloc_enabled())) {
799 		static_branch_enable(&_page_poisoning_enabled);
800 		page_poisoning_requested = true;
801 	}
802 #endif
803 
804 	if (_init_on_alloc_enabled_early) {
805 		if (page_poisoning_requested)
806 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
807 				"will take precedence over init_on_alloc\n");
808 		else
809 			static_branch_enable(&init_on_alloc);
810 	}
811 	if (_init_on_free_enabled_early) {
812 		if (page_poisoning_requested)
813 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
814 				"will take precedence over init_on_free\n");
815 		else
816 			static_branch_enable(&init_on_free);
817 	}
818 
819 #ifdef CONFIG_DEBUG_PAGEALLOC
820 	if (!debug_pagealloc_enabled())
821 		return;
822 
823 	static_branch_enable(&_debug_pagealloc_enabled);
824 
825 	if (!debug_guardpage_minorder())
826 		return;
827 
828 	static_branch_enable(&_debug_guardpage_enabled);
829 #endif
830 }
831 
832 static inline void set_buddy_order(struct page *page, unsigned int order)
833 {
834 	set_page_private(page, order);
835 	__SetPageBuddy(page);
836 }
837 
838 /*
839  * This function checks whether a page is free && is the buddy
840  * we can coalesce a page and its buddy if
841  * (a) the buddy is not in a hole (check before calling!) &&
842  * (b) the buddy is in the buddy system &&
843  * (c) a page and its buddy have the same order &&
844  * (d) a page and its buddy are in the same zone.
845  *
846  * For recording whether a page is in the buddy system, we set PageBuddy.
847  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
848  *
849  * For recording page's order, we use page_private(page).
850  */
851 static inline bool page_is_buddy(struct page *page, struct page *buddy,
852 							unsigned int order)
853 {
854 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
855 		return false;
856 
857 	if (buddy_order(buddy) != order)
858 		return false;
859 
860 	/*
861 	 * zone check is done late to avoid uselessly calculating
862 	 * zone/node ids for pages that could never merge.
863 	 */
864 	if (page_zone_id(page) != page_zone_id(buddy))
865 		return false;
866 
867 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
868 
869 	return true;
870 }
871 
872 #ifdef CONFIG_COMPACTION
873 static inline struct capture_control *task_capc(struct zone *zone)
874 {
875 	struct capture_control *capc = current->capture_control;
876 
877 	return unlikely(capc) &&
878 		!(current->flags & PF_KTHREAD) &&
879 		!capc->page &&
880 		capc->cc->zone == zone ? capc : NULL;
881 }
882 
883 static inline bool
884 compaction_capture(struct capture_control *capc, struct page *page,
885 		   int order, int migratetype)
886 {
887 	if (!capc || order != capc->cc->order)
888 		return false;
889 
890 	/* Do not accidentally pollute CMA or isolated regions*/
891 	if (is_migrate_cma(migratetype) ||
892 	    is_migrate_isolate(migratetype))
893 		return false;
894 
895 	/*
896 	 * Do not let lower order allocations pollute a movable pageblock.
897 	 * This might let an unmovable request use a reclaimable pageblock
898 	 * and vice-versa but no more than normal fallback logic which can
899 	 * have trouble finding a high-order free page.
900 	 */
901 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
902 		return false;
903 
904 	capc->page = page;
905 	return true;
906 }
907 
908 #else
909 static inline struct capture_control *task_capc(struct zone *zone)
910 {
911 	return NULL;
912 }
913 
914 static inline bool
915 compaction_capture(struct capture_control *capc, struct page *page,
916 		   int order, int migratetype)
917 {
918 	return false;
919 }
920 #endif /* CONFIG_COMPACTION */
921 
922 /* Used for pages not on another list */
923 static inline void add_to_free_list(struct page *page, struct zone *zone,
924 				    unsigned int order, int migratetype)
925 {
926 	struct free_area *area = &zone->free_area[order];
927 
928 	list_add(&page->lru, &area->free_list[migratetype]);
929 	area->nr_free++;
930 }
931 
932 /* Used for pages not on another list */
933 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
934 					 unsigned int order, int migratetype)
935 {
936 	struct free_area *area = &zone->free_area[order];
937 
938 	list_add_tail(&page->lru, &area->free_list[migratetype]);
939 	area->nr_free++;
940 }
941 
942 /*
943  * Used for pages which are on another list. Move the pages to the tail
944  * of the list - so the moved pages won't immediately be considered for
945  * allocation again (e.g., optimization for memory onlining).
946  */
947 static inline void move_to_free_list(struct page *page, struct zone *zone,
948 				     unsigned int order, int migratetype)
949 {
950 	struct free_area *area = &zone->free_area[order];
951 
952 	list_move_tail(&page->lru, &area->free_list[migratetype]);
953 }
954 
955 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
956 					   unsigned int order)
957 {
958 	/* clear reported state and update reported page count */
959 	if (page_reported(page))
960 		__ClearPageReported(page);
961 
962 	list_del(&page->lru);
963 	__ClearPageBuddy(page);
964 	set_page_private(page, 0);
965 	zone->free_area[order].nr_free--;
966 }
967 
968 /*
969  * If this is not the largest possible page, check if the buddy
970  * of the next-highest order is free. If it is, it's possible
971  * that pages are being freed that will coalesce soon. In case,
972  * that is happening, add the free page to the tail of the list
973  * so it's less likely to be used soon and more likely to be merged
974  * as a higher order page
975  */
976 static inline bool
977 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
978 		   struct page *page, unsigned int order)
979 {
980 	struct page *higher_page, *higher_buddy;
981 	unsigned long combined_pfn;
982 
983 	if (order >= MAX_ORDER - 2)
984 		return false;
985 
986 	if (!pfn_valid_within(buddy_pfn))
987 		return false;
988 
989 	combined_pfn = buddy_pfn & pfn;
990 	higher_page = page + (combined_pfn - pfn);
991 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
992 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
993 
994 	return pfn_valid_within(buddy_pfn) &&
995 	       page_is_buddy(higher_page, higher_buddy, order + 1);
996 }
997 
998 /*
999  * Freeing function for a buddy system allocator.
1000  *
1001  * The concept of a buddy system is to maintain direct-mapped table
1002  * (containing bit values) for memory blocks of various "orders".
1003  * The bottom level table contains the map for the smallest allocatable
1004  * units of memory (here, pages), and each level above it describes
1005  * pairs of units from the levels below, hence, "buddies".
1006  * At a high level, all that happens here is marking the table entry
1007  * at the bottom level available, and propagating the changes upward
1008  * as necessary, plus some accounting needed to play nicely with other
1009  * parts of the VM system.
1010  * At each level, we keep a list of pages, which are heads of continuous
1011  * free pages of length of (1 << order) and marked with PageBuddy.
1012  * Page's order is recorded in page_private(page) field.
1013  * So when we are allocating or freeing one, we can derive the state of the
1014  * other.  That is, if we allocate a small block, and both were
1015  * free, the remainder of the region must be split into blocks.
1016  * If a block is freed, and its buddy is also free, then this
1017  * triggers coalescing into a block of larger size.
1018  *
1019  * -- nyc
1020  */
1021 
1022 static inline void __free_one_page(struct page *page,
1023 		unsigned long pfn,
1024 		struct zone *zone, unsigned int order,
1025 		int migratetype, fpi_t fpi_flags)
1026 {
1027 	struct capture_control *capc = task_capc(zone);
1028 	unsigned long buddy_pfn;
1029 	unsigned long combined_pfn;
1030 	unsigned int max_order;
1031 	struct page *buddy;
1032 	bool to_tail;
1033 
1034 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1035 
1036 	VM_BUG_ON(!zone_is_initialized(zone));
1037 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1038 
1039 	VM_BUG_ON(migratetype == -1);
1040 	if (likely(!is_migrate_isolate(migratetype)))
1041 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1042 
1043 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1044 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1045 
1046 continue_merging:
1047 	while (order < max_order) {
1048 		if (compaction_capture(capc, page, order, migratetype)) {
1049 			__mod_zone_freepage_state(zone, -(1 << order),
1050 								migratetype);
1051 			return;
1052 		}
1053 		buddy_pfn = __find_buddy_pfn(pfn, order);
1054 		buddy = page + (buddy_pfn - pfn);
1055 
1056 		if (!pfn_valid_within(buddy_pfn))
1057 			goto done_merging;
1058 		if (!page_is_buddy(page, buddy, order))
1059 			goto done_merging;
1060 		/*
1061 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1062 		 * merge with it and move up one order.
1063 		 */
1064 		if (page_is_guard(buddy))
1065 			clear_page_guard(zone, buddy, order, migratetype);
1066 		else
1067 			del_page_from_free_list(buddy, zone, order);
1068 		combined_pfn = buddy_pfn & pfn;
1069 		page = page + (combined_pfn - pfn);
1070 		pfn = combined_pfn;
1071 		order++;
1072 	}
1073 	if (order < MAX_ORDER - 1) {
1074 		/* If we are here, it means order is >= pageblock_order.
1075 		 * We want to prevent merge between freepages on isolate
1076 		 * pageblock and normal pageblock. Without this, pageblock
1077 		 * isolation could cause incorrect freepage or CMA accounting.
1078 		 *
1079 		 * We don't want to hit this code for the more frequent
1080 		 * low-order merging.
1081 		 */
1082 		if (unlikely(has_isolate_pageblock(zone))) {
1083 			int buddy_mt;
1084 
1085 			buddy_pfn = __find_buddy_pfn(pfn, order);
1086 			buddy = page + (buddy_pfn - pfn);
1087 			buddy_mt = get_pageblock_migratetype(buddy);
1088 
1089 			if (migratetype != buddy_mt
1090 					&& (is_migrate_isolate(migratetype) ||
1091 						is_migrate_isolate(buddy_mt)))
1092 				goto done_merging;
1093 		}
1094 		max_order = order + 1;
1095 		goto continue_merging;
1096 	}
1097 
1098 done_merging:
1099 	set_buddy_order(page, order);
1100 
1101 	if (fpi_flags & FPI_TO_TAIL)
1102 		to_tail = true;
1103 	else if (is_shuffle_order(order))
1104 		to_tail = shuffle_pick_tail();
1105 	else
1106 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1107 
1108 	if (to_tail)
1109 		add_to_free_list_tail(page, zone, order, migratetype);
1110 	else
1111 		add_to_free_list(page, zone, order, migratetype);
1112 
1113 	/* Notify page reporting subsystem of freed page */
1114 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1115 		page_reporting_notify_free(order);
1116 }
1117 
1118 /*
1119  * A bad page could be due to a number of fields. Instead of multiple branches,
1120  * try and check multiple fields with one check. The caller must do a detailed
1121  * check if necessary.
1122  */
1123 static inline bool page_expected_state(struct page *page,
1124 					unsigned long check_flags)
1125 {
1126 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1127 		return false;
1128 
1129 	if (unlikely((unsigned long)page->mapping |
1130 			page_ref_count(page) |
1131 #ifdef CONFIG_MEMCG
1132 			page->memcg_data |
1133 #endif
1134 			(page->flags & check_flags)))
1135 		return false;
1136 
1137 	return true;
1138 }
1139 
1140 static const char *page_bad_reason(struct page *page, unsigned long flags)
1141 {
1142 	const char *bad_reason = NULL;
1143 
1144 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1145 		bad_reason = "nonzero mapcount";
1146 	if (unlikely(page->mapping != NULL))
1147 		bad_reason = "non-NULL mapping";
1148 	if (unlikely(page_ref_count(page) != 0))
1149 		bad_reason = "nonzero _refcount";
1150 	if (unlikely(page->flags & flags)) {
1151 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1152 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1153 		else
1154 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1155 	}
1156 #ifdef CONFIG_MEMCG
1157 	if (unlikely(page->memcg_data))
1158 		bad_reason = "page still charged to cgroup";
1159 #endif
1160 	return bad_reason;
1161 }
1162 
1163 static void check_free_page_bad(struct page *page)
1164 {
1165 	bad_page(page,
1166 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1167 }
1168 
1169 static inline int check_free_page(struct page *page)
1170 {
1171 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1172 		return 0;
1173 
1174 	/* Something has gone sideways, find it */
1175 	check_free_page_bad(page);
1176 	return 1;
1177 }
1178 
1179 static int free_tail_pages_check(struct page *head_page, struct page *page)
1180 {
1181 	int ret = 1;
1182 
1183 	/*
1184 	 * We rely page->lru.next never has bit 0 set, unless the page
1185 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1186 	 */
1187 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1188 
1189 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1190 		ret = 0;
1191 		goto out;
1192 	}
1193 	switch (page - head_page) {
1194 	case 1:
1195 		/* the first tail page: ->mapping may be compound_mapcount() */
1196 		if (unlikely(compound_mapcount(page))) {
1197 			bad_page(page, "nonzero compound_mapcount");
1198 			goto out;
1199 		}
1200 		break;
1201 	case 2:
1202 		/*
1203 		 * the second tail page: ->mapping is
1204 		 * deferred_list.next -- ignore value.
1205 		 */
1206 		break;
1207 	default:
1208 		if (page->mapping != TAIL_MAPPING) {
1209 			bad_page(page, "corrupted mapping in tail page");
1210 			goto out;
1211 		}
1212 		break;
1213 	}
1214 	if (unlikely(!PageTail(page))) {
1215 		bad_page(page, "PageTail not set");
1216 		goto out;
1217 	}
1218 	if (unlikely(compound_head(page) != head_page)) {
1219 		bad_page(page, "compound_head not consistent");
1220 		goto out;
1221 	}
1222 	ret = 0;
1223 out:
1224 	page->mapping = NULL;
1225 	clear_compound_head(page);
1226 	return ret;
1227 }
1228 
1229 static void kernel_init_free_pages(struct page *page, int numpages)
1230 {
1231 	int i;
1232 
1233 	/* s390's use of memset() could override KASAN redzones. */
1234 	kasan_disable_current();
1235 	for (i = 0; i < numpages; i++) {
1236 		u8 tag = page_kasan_tag(page + i);
1237 		page_kasan_tag_reset(page + i);
1238 		clear_highpage(page + i);
1239 		page_kasan_tag_set(page + i, tag);
1240 	}
1241 	kasan_enable_current();
1242 }
1243 
1244 static __always_inline bool free_pages_prepare(struct page *page,
1245 			unsigned int order, bool check_free, fpi_t fpi_flags)
1246 {
1247 	int bad = 0;
1248 	bool init;
1249 
1250 	VM_BUG_ON_PAGE(PageTail(page), page);
1251 
1252 	trace_mm_page_free(page, order);
1253 
1254 	if (unlikely(PageHWPoison(page)) && !order) {
1255 		/*
1256 		 * Do not let hwpoison pages hit pcplists/buddy
1257 		 * Untie memcg state and reset page's owner
1258 		 */
1259 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1260 			__memcg_kmem_uncharge_page(page, order);
1261 		reset_page_owner(page, order);
1262 		return false;
1263 	}
1264 
1265 	/*
1266 	 * Check tail pages before head page information is cleared to
1267 	 * avoid checking PageCompound for order-0 pages.
1268 	 */
1269 	if (unlikely(order)) {
1270 		bool compound = PageCompound(page);
1271 		int i;
1272 
1273 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274 
1275 		if (compound)
1276 			ClearPageDoubleMap(page);
1277 		for (i = 1; i < (1 << order); i++) {
1278 			if (compound)
1279 				bad += free_tail_pages_check(page, page + i);
1280 			if (unlikely(check_free_page(page + i))) {
1281 				bad++;
1282 				continue;
1283 			}
1284 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1285 		}
1286 	}
1287 	if (PageMappingFlags(page))
1288 		page->mapping = NULL;
1289 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1290 		__memcg_kmem_uncharge_page(page, order);
1291 	if (check_free)
1292 		bad += check_free_page(page);
1293 	if (bad)
1294 		return false;
1295 
1296 	page_cpupid_reset_last(page);
1297 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1298 	reset_page_owner(page, order);
1299 
1300 	if (!PageHighMem(page)) {
1301 		debug_check_no_locks_freed(page_address(page),
1302 					   PAGE_SIZE << order);
1303 		debug_check_no_obj_freed(page_address(page),
1304 					   PAGE_SIZE << order);
1305 	}
1306 
1307 	kernel_poison_pages(page, 1 << order);
1308 
1309 	/*
1310 	 * As memory initialization might be integrated into KASAN,
1311 	 * kasan_free_pages and kernel_init_free_pages must be
1312 	 * kept together to avoid discrepancies in behavior.
1313 	 *
1314 	 * With hardware tag-based KASAN, memory tags must be set before the
1315 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1316 	 */
1317 	init = want_init_on_free();
1318 	if (init && !kasan_has_integrated_init())
1319 		kernel_init_free_pages(page, 1 << order);
1320 	kasan_free_nondeferred_pages(page, order, init, fpi_flags);
1321 
1322 	/*
1323 	 * arch_free_page() can make the page's contents inaccessible.  s390
1324 	 * does this.  So nothing which can access the page's contents should
1325 	 * happen after this.
1326 	 */
1327 	arch_free_page(page, order);
1328 
1329 	debug_pagealloc_unmap_pages(page, 1 << order);
1330 
1331 	return true;
1332 }
1333 
1334 #ifdef CONFIG_DEBUG_VM
1335 /*
1336  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1337  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1338  * moved from pcp lists to free lists.
1339  */
1340 static bool free_pcp_prepare(struct page *page)
1341 {
1342 	return free_pages_prepare(page, 0, true, FPI_NONE);
1343 }
1344 
1345 static bool bulkfree_pcp_prepare(struct page *page)
1346 {
1347 	if (debug_pagealloc_enabled_static())
1348 		return check_free_page(page);
1349 	else
1350 		return false;
1351 }
1352 #else
1353 /*
1354  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1355  * moving from pcp lists to free list in order to reduce overhead. With
1356  * debug_pagealloc enabled, they are checked also immediately when being freed
1357  * to the pcp lists.
1358  */
1359 static bool free_pcp_prepare(struct page *page)
1360 {
1361 	if (debug_pagealloc_enabled_static())
1362 		return free_pages_prepare(page, 0, true, FPI_NONE);
1363 	else
1364 		return free_pages_prepare(page, 0, false, FPI_NONE);
1365 }
1366 
1367 static bool bulkfree_pcp_prepare(struct page *page)
1368 {
1369 	return check_free_page(page);
1370 }
1371 #endif /* CONFIG_DEBUG_VM */
1372 
1373 static inline void prefetch_buddy(struct page *page)
1374 {
1375 	unsigned long pfn = page_to_pfn(page);
1376 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1377 	struct page *buddy = page + (buddy_pfn - pfn);
1378 
1379 	prefetch(buddy);
1380 }
1381 
1382 /*
1383  * Frees a number of pages from the PCP lists
1384  * Assumes all pages on list are in same zone, and of same order.
1385  * count is the number of pages to free.
1386  *
1387  * If the zone was previously in an "all pages pinned" state then look to
1388  * see if this freeing clears that state.
1389  *
1390  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1391  * pinned" detection logic.
1392  */
1393 static void free_pcppages_bulk(struct zone *zone, int count,
1394 					struct per_cpu_pages *pcp)
1395 {
1396 	int migratetype = 0;
1397 	int batch_free = 0;
1398 	int prefetch_nr = READ_ONCE(pcp->batch);
1399 	bool isolated_pageblocks;
1400 	struct page *page, *tmp;
1401 	LIST_HEAD(head);
1402 
1403 	/*
1404 	 * Ensure proper count is passed which otherwise would stuck in the
1405 	 * below while (list_empty(list)) loop.
1406 	 */
1407 	count = min(pcp->count, count);
1408 	while (count) {
1409 		struct list_head *list;
1410 
1411 		/*
1412 		 * Remove pages from lists in a round-robin fashion. A
1413 		 * batch_free count is maintained that is incremented when an
1414 		 * empty list is encountered.  This is so more pages are freed
1415 		 * off fuller lists instead of spinning excessively around empty
1416 		 * lists
1417 		 */
1418 		do {
1419 			batch_free++;
1420 			if (++migratetype == MIGRATE_PCPTYPES)
1421 				migratetype = 0;
1422 			list = &pcp->lists[migratetype];
1423 		} while (list_empty(list));
1424 
1425 		/* This is the only non-empty list. Free them all. */
1426 		if (batch_free == MIGRATE_PCPTYPES)
1427 			batch_free = count;
1428 
1429 		do {
1430 			page = list_last_entry(list, struct page, lru);
1431 			/* must delete to avoid corrupting pcp list */
1432 			list_del(&page->lru);
1433 			pcp->count--;
1434 
1435 			if (bulkfree_pcp_prepare(page))
1436 				continue;
1437 
1438 			list_add_tail(&page->lru, &head);
1439 
1440 			/*
1441 			 * We are going to put the page back to the global
1442 			 * pool, prefetch its buddy to speed up later access
1443 			 * under zone->lock. It is believed the overhead of
1444 			 * an additional test and calculating buddy_pfn here
1445 			 * can be offset by reduced memory latency later. To
1446 			 * avoid excessive prefetching due to large count, only
1447 			 * prefetch buddy for the first pcp->batch nr of pages.
1448 			 */
1449 			if (prefetch_nr) {
1450 				prefetch_buddy(page);
1451 				prefetch_nr--;
1452 			}
1453 		} while (--count && --batch_free && !list_empty(list));
1454 	}
1455 
1456 	spin_lock(&zone->lock);
1457 	isolated_pageblocks = has_isolate_pageblock(zone);
1458 
1459 	/*
1460 	 * Use safe version since after __free_one_page(),
1461 	 * page->lru.next will not point to original list.
1462 	 */
1463 	list_for_each_entry_safe(page, tmp, &head, lru) {
1464 		int mt = get_pcppage_migratetype(page);
1465 		/* MIGRATE_ISOLATE page should not go to pcplists */
1466 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1467 		/* Pageblock could have been isolated meanwhile */
1468 		if (unlikely(isolated_pageblocks))
1469 			mt = get_pageblock_migratetype(page);
1470 
1471 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1472 		trace_mm_page_pcpu_drain(page, 0, mt);
1473 	}
1474 	spin_unlock(&zone->lock);
1475 }
1476 
1477 static void free_one_page(struct zone *zone,
1478 				struct page *page, unsigned long pfn,
1479 				unsigned int order,
1480 				int migratetype, fpi_t fpi_flags)
1481 {
1482 	spin_lock(&zone->lock);
1483 	if (unlikely(has_isolate_pageblock(zone) ||
1484 		is_migrate_isolate(migratetype))) {
1485 		migratetype = get_pfnblock_migratetype(page, pfn);
1486 	}
1487 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1488 	spin_unlock(&zone->lock);
1489 }
1490 
1491 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1492 				unsigned long zone, int nid)
1493 {
1494 	mm_zero_struct_page(page);
1495 	set_page_links(page, zone, nid, pfn);
1496 	init_page_count(page);
1497 	page_mapcount_reset(page);
1498 	page_cpupid_reset_last(page);
1499 	page_kasan_tag_reset(page);
1500 
1501 	INIT_LIST_HEAD(&page->lru);
1502 #ifdef WANT_PAGE_VIRTUAL
1503 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1504 	if (!is_highmem_idx(zone))
1505 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1506 #endif
1507 }
1508 
1509 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510 static void __meminit init_reserved_page(unsigned long pfn)
1511 {
1512 	pg_data_t *pgdat;
1513 	int nid, zid;
1514 
1515 	if (!early_page_uninitialised(pfn))
1516 		return;
1517 
1518 	nid = early_pfn_to_nid(pfn);
1519 	pgdat = NODE_DATA(nid);
1520 
1521 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1522 		struct zone *zone = &pgdat->node_zones[zid];
1523 
1524 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1525 			break;
1526 	}
1527 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1528 }
1529 #else
1530 static inline void init_reserved_page(unsigned long pfn)
1531 {
1532 }
1533 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1534 
1535 /*
1536  * Initialised pages do not have PageReserved set. This function is
1537  * called for each range allocated by the bootmem allocator and
1538  * marks the pages PageReserved. The remaining valid pages are later
1539  * sent to the buddy page allocator.
1540  */
1541 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1542 {
1543 	unsigned long start_pfn = PFN_DOWN(start);
1544 	unsigned long end_pfn = PFN_UP(end);
1545 
1546 	for (; start_pfn < end_pfn; start_pfn++) {
1547 		if (pfn_valid(start_pfn)) {
1548 			struct page *page = pfn_to_page(start_pfn);
1549 
1550 			init_reserved_page(start_pfn);
1551 
1552 			/* Avoid false-positive PageTail() */
1553 			INIT_LIST_HEAD(&page->lru);
1554 
1555 			/*
1556 			 * no need for atomic set_bit because the struct
1557 			 * page is not visible yet so nobody should
1558 			 * access it yet.
1559 			 */
1560 			__SetPageReserved(page);
1561 		}
1562 	}
1563 }
1564 
1565 static void __free_pages_ok(struct page *page, unsigned int order,
1566 			    fpi_t fpi_flags)
1567 {
1568 	unsigned long flags;
1569 	int migratetype;
1570 	unsigned long pfn = page_to_pfn(page);
1571 
1572 	if (!free_pages_prepare(page, order, true, fpi_flags))
1573 		return;
1574 
1575 	migratetype = get_pfnblock_migratetype(page, pfn);
1576 	local_irq_save(flags);
1577 	__count_vm_events(PGFREE, 1 << order);
1578 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1579 		      fpi_flags);
1580 	local_irq_restore(flags);
1581 }
1582 
1583 void __free_pages_core(struct page *page, unsigned int order)
1584 {
1585 	unsigned int nr_pages = 1 << order;
1586 	struct page *p = page;
1587 	unsigned int loop;
1588 
1589 	/*
1590 	 * When initializing the memmap, __init_single_page() sets the refcount
1591 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1592 	 * refcount of all involved pages to 0.
1593 	 */
1594 	prefetchw(p);
1595 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1596 		prefetchw(p + 1);
1597 		__ClearPageReserved(p);
1598 		set_page_count(p, 0);
1599 	}
1600 	__ClearPageReserved(p);
1601 	set_page_count(p, 0);
1602 
1603 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1604 
1605 	/*
1606 	 * Bypass PCP and place fresh pages right to the tail, primarily
1607 	 * relevant for memory onlining.
1608 	 */
1609 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1610 }
1611 
1612 #ifdef CONFIG_NEED_MULTIPLE_NODES
1613 
1614 /*
1615  * During memory init memblocks map pfns to nids. The search is expensive and
1616  * this caches recent lookups. The implementation of __early_pfn_to_nid
1617  * treats start/end as pfns.
1618  */
1619 struct mminit_pfnnid_cache {
1620 	unsigned long last_start;
1621 	unsigned long last_end;
1622 	int last_nid;
1623 };
1624 
1625 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1626 
1627 /*
1628  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1629  */
1630 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1631 					struct mminit_pfnnid_cache *state)
1632 {
1633 	unsigned long start_pfn, end_pfn;
1634 	int nid;
1635 
1636 	if (state->last_start <= pfn && pfn < state->last_end)
1637 		return state->last_nid;
1638 
1639 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1640 	if (nid != NUMA_NO_NODE) {
1641 		state->last_start = start_pfn;
1642 		state->last_end = end_pfn;
1643 		state->last_nid = nid;
1644 	}
1645 
1646 	return nid;
1647 }
1648 
1649 int __meminit early_pfn_to_nid(unsigned long pfn)
1650 {
1651 	static DEFINE_SPINLOCK(early_pfn_lock);
1652 	int nid;
1653 
1654 	spin_lock(&early_pfn_lock);
1655 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1656 	if (nid < 0)
1657 		nid = first_online_node;
1658 	spin_unlock(&early_pfn_lock);
1659 
1660 	return nid;
1661 }
1662 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1663 
1664 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1665 							unsigned int order)
1666 {
1667 	if (early_page_uninitialised(pfn))
1668 		return;
1669 	__free_pages_core(page, order);
1670 }
1671 
1672 /*
1673  * Check that the whole (or subset of) a pageblock given by the interval of
1674  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1675  * with the migration of free compaction scanner. The scanners then need to
1676  * use only pfn_valid_within() check for arches that allow holes within
1677  * pageblocks.
1678  *
1679  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1680  *
1681  * It's possible on some configurations to have a setup like node0 node1 node0
1682  * i.e. it's possible that all pages within a zones range of pages do not
1683  * belong to a single zone. We assume that a border between node0 and node1
1684  * can occur within a single pageblock, but not a node0 node1 node0
1685  * interleaving within a single pageblock. It is therefore sufficient to check
1686  * the first and last page of a pageblock and avoid checking each individual
1687  * page in a pageblock.
1688  */
1689 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1690 				     unsigned long end_pfn, struct zone *zone)
1691 {
1692 	struct page *start_page;
1693 	struct page *end_page;
1694 
1695 	/* end_pfn is one past the range we are checking */
1696 	end_pfn--;
1697 
1698 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1699 		return NULL;
1700 
1701 	start_page = pfn_to_online_page(start_pfn);
1702 	if (!start_page)
1703 		return NULL;
1704 
1705 	if (page_zone(start_page) != zone)
1706 		return NULL;
1707 
1708 	end_page = pfn_to_page(end_pfn);
1709 
1710 	/* This gives a shorter code than deriving page_zone(end_page) */
1711 	if (page_zone_id(start_page) != page_zone_id(end_page))
1712 		return NULL;
1713 
1714 	return start_page;
1715 }
1716 
1717 void set_zone_contiguous(struct zone *zone)
1718 {
1719 	unsigned long block_start_pfn = zone->zone_start_pfn;
1720 	unsigned long block_end_pfn;
1721 
1722 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1723 	for (; block_start_pfn < zone_end_pfn(zone);
1724 			block_start_pfn = block_end_pfn,
1725 			 block_end_pfn += pageblock_nr_pages) {
1726 
1727 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1728 
1729 		if (!__pageblock_pfn_to_page(block_start_pfn,
1730 					     block_end_pfn, zone))
1731 			return;
1732 		cond_resched();
1733 	}
1734 
1735 	/* We confirm that there is no hole */
1736 	zone->contiguous = true;
1737 }
1738 
1739 void clear_zone_contiguous(struct zone *zone)
1740 {
1741 	zone->contiguous = false;
1742 }
1743 
1744 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1745 static void __init deferred_free_range(unsigned long pfn,
1746 				       unsigned long nr_pages)
1747 {
1748 	struct page *page;
1749 	unsigned long i;
1750 
1751 	if (!nr_pages)
1752 		return;
1753 
1754 	page = pfn_to_page(pfn);
1755 
1756 	/* Free a large naturally-aligned chunk if possible */
1757 	if (nr_pages == pageblock_nr_pages &&
1758 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1759 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1760 		__free_pages_core(page, pageblock_order);
1761 		return;
1762 	}
1763 
1764 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1765 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1766 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1767 		__free_pages_core(page, 0);
1768 	}
1769 }
1770 
1771 /* Completion tracking for deferred_init_memmap() threads */
1772 static atomic_t pgdat_init_n_undone __initdata;
1773 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1774 
1775 static inline void __init pgdat_init_report_one_done(void)
1776 {
1777 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1778 		complete(&pgdat_init_all_done_comp);
1779 }
1780 
1781 /*
1782  * Returns true if page needs to be initialized or freed to buddy allocator.
1783  *
1784  * First we check if pfn is valid on architectures where it is possible to have
1785  * holes within pageblock_nr_pages. On systems where it is not possible, this
1786  * function is optimized out.
1787  *
1788  * Then, we check if a current large page is valid by only checking the validity
1789  * of the head pfn.
1790  */
1791 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1792 {
1793 	if (!pfn_valid_within(pfn))
1794 		return false;
1795 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1796 		return false;
1797 	return true;
1798 }
1799 
1800 /*
1801  * Free pages to buddy allocator. Try to free aligned pages in
1802  * pageblock_nr_pages sizes.
1803  */
1804 static void __init deferred_free_pages(unsigned long pfn,
1805 				       unsigned long end_pfn)
1806 {
1807 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1808 	unsigned long nr_free = 0;
1809 
1810 	for (; pfn < end_pfn; pfn++) {
1811 		if (!deferred_pfn_valid(pfn)) {
1812 			deferred_free_range(pfn - nr_free, nr_free);
1813 			nr_free = 0;
1814 		} else if (!(pfn & nr_pgmask)) {
1815 			deferred_free_range(pfn - nr_free, nr_free);
1816 			nr_free = 1;
1817 		} else {
1818 			nr_free++;
1819 		}
1820 	}
1821 	/* Free the last block of pages to allocator */
1822 	deferred_free_range(pfn - nr_free, nr_free);
1823 }
1824 
1825 /*
1826  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1827  * by performing it only once every pageblock_nr_pages.
1828  * Return number of pages initialized.
1829  */
1830 static unsigned long  __init deferred_init_pages(struct zone *zone,
1831 						 unsigned long pfn,
1832 						 unsigned long end_pfn)
1833 {
1834 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1835 	int nid = zone_to_nid(zone);
1836 	unsigned long nr_pages = 0;
1837 	int zid = zone_idx(zone);
1838 	struct page *page = NULL;
1839 
1840 	for (; pfn < end_pfn; pfn++) {
1841 		if (!deferred_pfn_valid(pfn)) {
1842 			page = NULL;
1843 			continue;
1844 		} else if (!page || !(pfn & nr_pgmask)) {
1845 			page = pfn_to_page(pfn);
1846 		} else {
1847 			page++;
1848 		}
1849 		__init_single_page(page, pfn, zid, nid);
1850 		nr_pages++;
1851 	}
1852 	return (nr_pages);
1853 }
1854 
1855 /*
1856  * This function is meant to pre-load the iterator for the zone init.
1857  * Specifically it walks through the ranges until we are caught up to the
1858  * first_init_pfn value and exits there. If we never encounter the value we
1859  * return false indicating there are no valid ranges left.
1860  */
1861 static bool __init
1862 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1863 				    unsigned long *spfn, unsigned long *epfn,
1864 				    unsigned long first_init_pfn)
1865 {
1866 	u64 j;
1867 
1868 	/*
1869 	 * Start out by walking through the ranges in this zone that have
1870 	 * already been initialized. We don't need to do anything with them
1871 	 * so we just need to flush them out of the system.
1872 	 */
1873 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1874 		if (*epfn <= first_init_pfn)
1875 			continue;
1876 		if (*spfn < first_init_pfn)
1877 			*spfn = first_init_pfn;
1878 		*i = j;
1879 		return true;
1880 	}
1881 
1882 	return false;
1883 }
1884 
1885 /*
1886  * Initialize and free pages. We do it in two loops: first we initialize
1887  * struct page, then free to buddy allocator, because while we are
1888  * freeing pages we can access pages that are ahead (computing buddy
1889  * page in __free_one_page()).
1890  *
1891  * In order to try and keep some memory in the cache we have the loop
1892  * broken along max page order boundaries. This way we will not cause
1893  * any issues with the buddy page computation.
1894  */
1895 static unsigned long __init
1896 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1897 		       unsigned long *end_pfn)
1898 {
1899 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1900 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1901 	unsigned long nr_pages = 0;
1902 	u64 j = *i;
1903 
1904 	/* First we loop through and initialize the page values */
1905 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1906 		unsigned long t;
1907 
1908 		if (mo_pfn <= *start_pfn)
1909 			break;
1910 
1911 		t = min(mo_pfn, *end_pfn);
1912 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1913 
1914 		if (mo_pfn < *end_pfn) {
1915 			*start_pfn = mo_pfn;
1916 			break;
1917 		}
1918 	}
1919 
1920 	/* Reset values and now loop through freeing pages as needed */
1921 	swap(j, *i);
1922 
1923 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1924 		unsigned long t;
1925 
1926 		if (mo_pfn <= spfn)
1927 			break;
1928 
1929 		t = min(mo_pfn, epfn);
1930 		deferred_free_pages(spfn, t);
1931 
1932 		if (mo_pfn <= epfn)
1933 			break;
1934 	}
1935 
1936 	return nr_pages;
1937 }
1938 
1939 static void __init
1940 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1941 			   void *arg)
1942 {
1943 	unsigned long spfn, epfn;
1944 	struct zone *zone = arg;
1945 	u64 i;
1946 
1947 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1948 
1949 	/*
1950 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1951 	 * can avoid introducing any issues with the buddy allocator.
1952 	 */
1953 	while (spfn < end_pfn) {
1954 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1955 		cond_resched();
1956 	}
1957 }
1958 
1959 /* An arch may override for more concurrency. */
1960 __weak int __init
1961 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1962 {
1963 	return 1;
1964 }
1965 
1966 /* Initialise remaining memory on a node */
1967 static int __init deferred_init_memmap(void *data)
1968 {
1969 	pg_data_t *pgdat = data;
1970 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1971 	unsigned long spfn = 0, epfn = 0;
1972 	unsigned long first_init_pfn, flags;
1973 	unsigned long start = jiffies;
1974 	struct zone *zone;
1975 	int zid, max_threads;
1976 	u64 i;
1977 
1978 	/* Bind memory initialisation thread to a local node if possible */
1979 	if (!cpumask_empty(cpumask))
1980 		set_cpus_allowed_ptr(current, cpumask);
1981 
1982 	pgdat_resize_lock(pgdat, &flags);
1983 	first_init_pfn = pgdat->first_deferred_pfn;
1984 	if (first_init_pfn == ULONG_MAX) {
1985 		pgdat_resize_unlock(pgdat, &flags);
1986 		pgdat_init_report_one_done();
1987 		return 0;
1988 	}
1989 
1990 	/* Sanity check boundaries */
1991 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1992 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1993 	pgdat->first_deferred_pfn = ULONG_MAX;
1994 
1995 	/*
1996 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1997 	 * interrupt thread must allocate this early in boot, zone must be
1998 	 * pre-grown prior to start of deferred page initialization.
1999 	 */
2000 	pgdat_resize_unlock(pgdat, &flags);
2001 
2002 	/* Only the highest zone is deferred so find it */
2003 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2004 		zone = pgdat->node_zones + zid;
2005 		if (first_init_pfn < zone_end_pfn(zone))
2006 			break;
2007 	}
2008 
2009 	/* If the zone is empty somebody else may have cleared out the zone */
2010 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2011 						 first_init_pfn))
2012 		goto zone_empty;
2013 
2014 	max_threads = deferred_page_init_max_threads(cpumask);
2015 
2016 	while (spfn < epfn) {
2017 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2018 		struct padata_mt_job job = {
2019 			.thread_fn   = deferred_init_memmap_chunk,
2020 			.fn_arg      = zone,
2021 			.start       = spfn,
2022 			.size        = epfn_align - spfn,
2023 			.align       = PAGES_PER_SECTION,
2024 			.min_chunk   = PAGES_PER_SECTION,
2025 			.max_threads = max_threads,
2026 		};
2027 
2028 		padata_do_multithreaded(&job);
2029 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2030 						    epfn_align);
2031 	}
2032 zone_empty:
2033 	/* Sanity check that the next zone really is unpopulated */
2034 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2035 
2036 	pr_info("node %d deferred pages initialised in %ums\n",
2037 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2038 
2039 	pgdat_init_report_one_done();
2040 	return 0;
2041 }
2042 
2043 /*
2044  * If this zone has deferred pages, try to grow it by initializing enough
2045  * deferred pages to satisfy the allocation specified by order, rounded up to
2046  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2047  * of SECTION_SIZE bytes by initializing struct pages in increments of
2048  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2049  *
2050  * Return true when zone was grown, otherwise return false. We return true even
2051  * when we grow less than requested, to let the caller decide if there are
2052  * enough pages to satisfy the allocation.
2053  *
2054  * Note: We use noinline because this function is needed only during boot, and
2055  * it is called from a __ref function _deferred_grow_zone. This way we are
2056  * making sure that it is not inlined into permanent text section.
2057  */
2058 static noinline bool __init
2059 deferred_grow_zone(struct zone *zone, unsigned int order)
2060 {
2061 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2062 	pg_data_t *pgdat = zone->zone_pgdat;
2063 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2064 	unsigned long spfn, epfn, flags;
2065 	unsigned long nr_pages = 0;
2066 	u64 i;
2067 
2068 	/* Only the last zone may have deferred pages */
2069 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2070 		return false;
2071 
2072 	pgdat_resize_lock(pgdat, &flags);
2073 
2074 	/*
2075 	 * If someone grew this zone while we were waiting for spinlock, return
2076 	 * true, as there might be enough pages already.
2077 	 */
2078 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2079 		pgdat_resize_unlock(pgdat, &flags);
2080 		return true;
2081 	}
2082 
2083 	/* If the zone is empty somebody else may have cleared out the zone */
2084 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 						 first_deferred_pfn)) {
2086 		pgdat->first_deferred_pfn = ULONG_MAX;
2087 		pgdat_resize_unlock(pgdat, &flags);
2088 		/* Retry only once. */
2089 		return first_deferred_pfn != ULONG_MAX;
2090 	}
2091 
2092 	/*
2093 	 * Initialize and free pages in MAX_ORDER sized increments so
2094 	 * that we can avoid introducing any issues with the buddy
2095 	 * allocator.
2096 	 */
2097 	while (spfn < epfn) {
2098 		/* update our first deferred PFN for this section */
2099 		first_deferred_pfn = spfn;
2100 
2101 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2102 		touch_nmi_watchdog();
2103 
2104 		/* We should only stop along section boundaries */
2105 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2106 			continue;
2107 
2108 		/* If our quota has been met we can stop here */
2109 		if (nr_pages >= nr_pages_needed)
2110 			break;
2111 	}
2112 
2113 	pgdat->first_deferred_pfn = spfn;
2114 	pgdat_resize_unlock(pgdat, &flags);
2115 
2116 	return nr_pages > 0;
2117 }
2118 
2119 /*
2120  * deferred_grow_zone() is __init, but it is called from
2121  * get_page_from_freelist() during early boot until deferred_pages permanently
2122  * disables this call. This is why we have refdata wrapper to avoid warning,
2123  * and to ensure that the function body gets unloaded.
2124  */
2125 static bool __ref
2126 _deferred_grow_zone(struct zone *zone, unsigned int order)
2127 {
2128 	return deferred_grow_zone(zone, order);
2129 }
2130 
2131 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2132 
2133 void __init page_alloc_init_late(void)
2134 {
2135 	struct zone *zone;
2136 	int nid;
2137 
2138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2139 
2140 	/* There will be num_node_state(N_MEMORY) threads */
2141 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2142 	for_each_node_state(nid, N_MEMORY) {
2143 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2144 	}
2145 
2146 	/* Block until all are initialised */
2147 	wait_for_completion(&pgdat_init_all_done_comp);
2148 
2149 	/*
2150 	 * The number of managed pages has changed due to the initialisation
2151 	 * so the pcpu batch and high limits needs to be updated or the limits
2152 	 * will be artificially small.
2153 	 */
2154 	for_each_populated_zone(zone)
2155 		zone_pcp_update(zone);
2156 
2157 	/*
2158 	 * We initialized the rest of the deferred pages.  Permanently disable
2159 	 * on-demand struct page initialization.
2160 	 */
2161 	static_branch_disable(&deferred_pages);
2162 
2163 	/* Reinit limits that are based on free pages after the kernel is up */
2164 	files_maxfiles_init();
2165 #endif
2166 
2167 	buffer_init();
2168 
2169 	/* Discard memblock private memory */
2170 	memblock_discard();
2171 
2172 	for_each_node_state(nid, N_MEMORY)
2173 		shuffle_free_memory(NODE_DATA(nid));
2174 
2175 	for_each_populated_zone(zone)
2176 		set_zone_contiguous(zone);
2177 }
2178 
2179 #ifdef CONFIG_CMA
2180 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2181 void __init init_cma_reserved_pageblock(struct page *page)
2182 {
2183 	unsigned i = pageblock_nr_pages;
2184 	struct page *p = page;
2185 
2186 	do {
2187 		__ClearPageReserved(p);
2188 		set_page_count(p, 0);
2189 	} while (++p, --i);
2190 
2191 	set_pageblock_migratetype(page, MIGRATE_CMA);
2192 
2193 	if (pageblock_order >= MAX_ORDER) {
2194 		i = pageblock_nr_pages;
2195 		p = page;
2196 		do {
2197 			set_page_refcounted(p);
2198 			__free_pages(p, MAX_ORDER - 1);
2199 			p += MAX_ORDER_NR_PAGES;
2200 		} while (i -= MAX_ORDER_NR_PAGES);
2201 	} else {
2202 		set_page_refcounted(page);
2203 		__free_pages(page, pageblock_order);
2204 	}
2205 
2206 	adjust_managed_page_count(page, pageblock_nr_pages);
2207 	page_zone(page)->cma_pages += pageblock_nr_pages;
2208 }
2209 #endif
2210 
2211 /*
2212  * The order of subdivision here is critical for the IO subsystem.
2213  * Please do not alter this order without good reasons and regression
2214  * testing. Specifically, as large blocks of memory are subdivided,
2215  * the order in which smaller blocks are delivered depends on the order
2216  * they're subdivided in this function. This is the primary factor
2217  * influencing the order in which pages are delivered to the IO
2218  * subsystem according to empirical testing, and this is also justified
2219  * by considering the behavior of a buddy system containing a single
2220  * large block of memory acted on by a series of small allocations.
2221  * This behavior is a critical factor in sglist merging's success.
2222  *
2223  * -- nyc
2224  */
2225 static inline void expand(struct zone *zone, struct page *page,
2226 	int low, int high, int migratetype)
2227 {
2228 	unsigned long size = 1 << high;
2229 
2230 	while (high > low) {
2231 		high--;
2232 		size >>= 1;
2233 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2234 
2235 		/*
2236 		 * Mark as guard pages (or page), that will allow to
2237 		 * merge back to allocator when buddy will be freed.
2238 		 * Corresponding page table entries will not be touched,
2239 		 * pages will stay not present in virtual address space
2240 		 */
2241 		if (set_page_guard(zone, &page[size], high, migratetype))
2242 			continue;
2243 
2244 		add_to_free_list(&page[size], zone, high, migratetype);
2245 		set_buddy_order(&page[size], high);
2246 	}
2247 }
2248 
2249 static void check_new_page_bad(struct page *page)
2250 {
2251 	if (unlikely(page->flags & __PG_HWPOISON)) {
2252 		/* Don't complain about hwpoisoned pages */
2253 		page_mapcount_reset(page); /* remove PageBuddy */
2254 		return;
2255 	}
2256 
2257 	bad_page(page,
2258 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2259 }
2260 
2261 /*
2262  * This page is about to be returned from the page allocator
2263  */
2264 static inline int check_new_page(struct page *page)
2265 {
2266 	if (likely(page_expected_state(page,
2267 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2268 		return 0;
2269 
2270 	check_new_page_bad(page);
2271 	return 1;
2272 }
2273 
2274 #ifdef CONFIG_DEBUG_VM
2275 /*
2276  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2277  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2278  * also checked when pcp lists are refilled from the free lists.
2279  */
2280 static inline bool check_pcp_refill(struct page *page)
2281 {
2282 	if (debug_pagealloc_enabled_static())
2283 		return check_new_page(page);
2284 	else
2285 		return false;
2286 }
2287 
2288 static inline bool check_new_pcp(struct page *page)
2289 {
2290 	return check_new_page(page);
2291 }
2292 #else
2293 /*
2294  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2295  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2296  * enabled, they are also checked when being allocated from the pcp lists.
2297  */
2298 static inline bool check_pcp_refill(struct page *page)
2299 {
2300 	return check_new_page(page);
2301 }
2302 static inline bool check_new_pcp(struct page *page)
2303 {
2304 	if (debug_pagealloc_enabled_static())
2305 		return check_new_page(page);
2306 	else
2307 		return false;
2308 }
2309 #endif /* CONFIG_DEBUG_VM */
2310 
2311 static bool check_new_pages(struct page *page, unsigned int order)
2312 {
2313 	int i;
2314 	for (i = 0; i < (1 << order); i++) {
2315 		struct page *p = page + i;
2316 
2317 		if (unlikely(check_new_page(p)))
2318 			return true;
2319 	}
2320 
2321 	return false;
2322 }
2323 
2324 inline void post_alloc_hook(struct page *page, unsigned int order,
2325 				gfp_t gfp_flags)
2326 {
2327 	bool init;
2328 
2329 	set_page_private(page, 0);
2330 	set_page_refcounted(page);
2331 
2332 	arch_alloc_page(page, order);
2333 	debug_pagealloc_map_pages(page, 1 << order);
2334 
2335 	/*
2336 	 * Page unpoisoning must happen before memory initialization.
2337 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2338 	 * allocations and the page unpoisoning code will complain.
2339 	 */
2340 	kernel_unpoison_pages(page, 1 << order);
2341 
2342 	/*
2343 	 * As memory initialization might be integrated into KASAN,
2344 	 * kasan_alloc_pages and kernel_init_free_pages must be
2345 	 * kept together to avoid discrepancies in behavior.
2346 	 */
2347 	init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2348 	kasan_alloc_pages(page, order, init);
2349 	if (init && !kasan_has_integrated_init())
2350 		kernel_init_free_pages(page, 1 << order);
2351 
2352 	set_page_owner(page, order, gfp_flags);
2353 }
2354 
2355 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2356 							unsigned int alloc_flags)
2357 {
2358 	post_alloc_hook(page, order, gfp_flags);
2359 
2360 	if (order && (gfp_flags & __GFP_COMP))
2361 		prep_compound_page(page, order);
2362 
2363 	/*
2364 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2365 	 * allocate the page. The expectation is that the caller is taking
2366 	 * steps that will free more memory. The caller should avoid the page
2367 	 * being used for !PFMEMALLOC purposes.
2368 	 */
2369 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2370 		set_page_pfmemalloc(page);
2371 	else
2372 		clear_page_pfmemalloc(page);
2373 }
2374 
2375 /*
2376  * Go through the free lists for the given migratetype and remove
2377  * the smallest available page from the freelists
2378  */
2379 static __always_inline
2380 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2381 						int migratetype)
2382 {
2383 	unsigned int current_order;
2384 	struct free_area *area;
2385 	struct page *page;
2386 
2387 	/* Find a page of the appropriate size in the preferred list */
2388 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2389 		area = &(zone->free_area[current_order]);
2390 		page = get_page_from_free_area(area, migratetype);
2391 		if (!page)
2392 			continue;
2393 		del_page_from_free_list(page, zone, current_order);
2394 		expand(zone, page, order, current_order, migratetype);
2395 		set_pcppage_migratetype(page, migratetype);
2396 		return page;
2397 	}
2398 
2399 	return NULL;
2400 }
2401 
2402 
2403 /*
2404  * This array describes the order lists are fallen back to when
2405  * the free lists for the desirable migrate type are depleted
2406  */
2407 static int fallbacks[MIGRATE_TYPES][3] = {
2408 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2409 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2410 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2411 #ifdef CONFIG_CMA
2412 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2413 #endif
2414 #ifdef CONFIG_MEMORY_ISOLATION
2415 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2416 #endif
2417 };
2418 
2419 #ifdef CONFIG_CMA
2420 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2421 					unsigned int order)
2422 {
2423 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2424 }
2425 #else
2426 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2427 					unsigned int order) { return NULL; }
2428 #endif
2429 
2430 /*
2431  * Move the free pages in a range to the freelist tail of the requested type.
2432  * Note that start_page and end_pages are not aligned on a pageblock
2433  * boundary. If alignment is required, use move_freepages_block()
2434  */
2435 static int move_freepages(struct zone *zone,
2436 			  unsigned long start_pfn, unsigned long end_pfn,
2437 			  int migratetype, int *num_movable)
2438 {
2439 	struct page *page;
2440 	unsigned long pfn;
2441 	unsigned int order;
2442 	int pages_moved = 0;
2443 
2444 	for (pfn = start_pfn; pfn <= end_pfn;) {
2445 		if (!pfn_valid_within(pfn)) {
2446 			pfn++;
2447 			continue;
2448 		}
2449 
2450 		page = pfn_to_page(pfn);
2451 		if (!PageBuddy(page)) {
2452 			/*
2453 			 * We assume that pages that could be isolated for
2454 			 * migration are movable. But we don't actually try
2455 			 * isolating, as that would be expensive.
2456 			 */
2457 			if (num_movable &&
2458 					(PageLRU(page) || __PageMovable(page)))
2459 				(*num_movable)++;
2460 			pfn++;
2461 			continue;
2462 		}
2463 
2464 		/* Make sure we are not inadvertently changing nodes */
2465 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2466 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2467 
2468 		order = buddy_order(page);
2469 		move_to_free_list(page, zone, order, migratetype);
2470 		pfn += 1 << order;
2471 		pages_moved += 1 << order;
2472 	}
2473 
2474 	return pages_moved;
2475 }
2476 
2477 int move_freepages_block(struct zone *zone, struct page *page,
2478 				int migratetype, int *num_movable)
2479 {
2480 	unsigned long start_pfn, end_pfn, pfn;
2481 
2482 	if (num_movable)
2483 		*num_movable = 0;
2484 
2485 	pfn = page_to_pfn(page);
2486 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2487 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2488 
2489 	/* Do not cross zone boundaries */
2490 	if (!zone_spans_pfn(zone, start_pfn))
2491 		start_pfn = pfn;
2492 	if (!zone_spans_pfn(zone, end_pfn))
2493 		return 0;
2494 
2495 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2496 								num_movable);
2497 }
2498 
2499 static void change_pageblock_range(struct page *pageblock_page,
2500 					int start_order, int migratetype)
2501 {
2502 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2503 
2504 	while (nr_pageblocks--) {
2505 		set_pageblock_migratetype(pageblock_page, migratetype);
2506 		pageblock_page += pageblock_nr_pages;
2507 	}
2508 }
2509 
2510 /*
2511  * When we are falling back to another migratetype during allocation, try to
2512  * steal extra free pages from the same pageblocks to satisfy further
2513  * allocations, instead of polluting multiple pageblocks.
2514  *
2515  * If we are stealing a relatively large buddy page, it is likely there will
2516  * be more free pages in the pageblock, so try to steal them all. For
2517  * reclaimable and unmovable allocations, we steal regardless of page size,
2518  * as fragmentation caused by those allocations polluting movable pageblocks
2519  * is worse than movable allocations stealing from unmovable and reclaimable
2520  * pageblocks.
2521  */
2522 static bool can_steal_fallback(unsigned int order, int start_mt)
2523 {
2524 	/*
2525 	 * Leaving this order check is intended, although there is
2526 	 * relaxed order check in next check. The reason is that
2527 	 * we can actually steal whole pageblock if this condition met,
2528 	 * but, below check doesn't guarantee it and that is just heuristic
2529 	 * so could be changed anytime.
2530 	 */
2531 	if (order >= pageblock_order)
2532 		return true;
2533 
2534 	if (order >= pageblock_order / 2 ||
2535 		start_mt == MIGRATE_RECLAIMABLE ||
2536 		start_mt == MIGRATE_UNMOVABLE ||
2537 		page_group_by_mobility_disabled)
2538 		return true;
2539 
2540 	return false;
2541 }
2542 
2543 static inline bool boost_watermark(struct zone *zone)
2544 {
2545 	unsigned long max_boost;
2546 
2547 	if (!watermark_boost_factor)
2548 		return false;
2549 	/*
2550 	 * Don't bother in zones that are unlikely to produce results.
2551 	 * On small machines, including kdump capture kernels running
2552 	 * in a small area, boosting the watermark can cause an out of
2553 	 * memory situation immediately.
2554 	 */
2555 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2556 		return false;
2557 
2558 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2559 			watermark_boost_factor, 10000);
2560 
2561 	/*
2562 	 * high watermark may be uninitialised if fragmentation occurs
2563 	 * very early in boot so do not boost. We do not fall
2564 	 * through and boost by pageblock_nr_pages as failing
2565 	 * allocations that early means that reclaim is not going
2566 	 * to help and it may even be impossible to reclaim the
2567 	 * boosted watermark resulting in a hang.
2568 	 */
2569 	if (!max_boost)
2570 		return false;
2571 
2572 	max_boost = max(pageblock_nr_pages, max_boost);
2573 
2574 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2575 		max_boost);
2576 
2577 	return true;
2578 }
2579 
2580 /*
2581  * This function implements actual steal behaviour. If order is large enough,
2582  * we can steal whole pageblock. If not, we first move freepages in this
2583  * pageblock to our migratetype and determine how many already-allocated pages
2584  * are there in the pageblock with a compatible migratetype. If at least half
2585  * of pages are free or compatible, we can change migratetype of the pageblock
2586  * itself, so pages freed in the future will be put on the correct free list.
2587  */
2588 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2589 		unsigned int alloc_flags, int start_type, bool whole_block)
2590 {
2591 	unsigned int current_order = buddy_order(page);
2592 	int free_pages, movable_pages, alike_pages;
2593 	int old_block_type;
2594 
2595 	old_block_type = get_pageblock_migratetype(page);
2596 
2597 	/*
2598 	 * This can happen due to races and we want to prevent broken
2599 	 * highatomic accounting.
2600 	 */
2601 	if (is_migrate_highatomic(old_block_type))
2602 		goto single_page;
2603 
2604 	/* Take ownership for orders >= pageblock_order */
2605 	if (current_order >= pageblock_order) {
2606 		change_pageblock_range(page, current_order, start_type);
2607 		goto single_page;
2608 	}
2609 
2610 	/*
2611 	 * Boost watermarks to increase reclaim pressure to reduce the
2612 	 * likelihood of future fallbacks. Wake kswapd now as the node
2613 	 * may be balanced overall and kswapd will not wake naturally.
2614 	 */
2615 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2616 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2617 
2618 	/* We are not allowed to try stealing from the whole block */
2619 	if (!whole_block)
2620 		goto single_page;
2621 
2622 	free_pages = move_freepages_block(zone, page, start_type,
2623 						&movable_pages);
2624 	/*
2625 	 * Determine how many pages are compatible with our allocation.
2626 	 * For movable allocation, it's the number of movable pages which
2627 	 * we just obtained. For other types it's a bit more tricky.
2628 	 */
2629 	if (start_type == MIGRATE_MOVABLE) {
2630 		alike_pages = movable_pages;
2631 	} else {
2632 		/*
2633 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2634 		 * to MOVABLE pageblock, consider all non-movable pages as
2635 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2636 		 * vice versa, be conservative since we can't distinguish the
2637 		 * exact migratetype of non-movable pages.
2638 		 */
2639 		if (old_block_type == MIGRATE_MOVABLE)
2640 			alike_pages = pageblock_nr_pages
2641 						- (free_pages + movable_pages);
2642 		else
2643 			alike_pages = 0;
2644 	}
2645 
2646 	/* moving whole block can fail due to zone boundary conditions */
2647 	if (!free_pages)
2648 		goto single_page;
2649 
2650 	/*
2651 	 * If a sufficient number of pages in the block are either free or of
2652 	 * comparable migratability as our allocation, claim the whole block.
2653 	 */
2654 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2655 			page_group_by_mobility_disabled)
2656 		set_pageblock_migratetype(page, start_type);
2657 
2658 	return;
2659 
2660 single_page:
2661 	move_to_free_list(page, zone, current_order, start_type);
2662 }
2663 
2664 /*
2665  * Check whether there is a suitable fallback freepage with requested order.
2666  * If only_stealable is true, this function returns fallback_mt only if
2667  * we can steal other freepages all together. This would help to reduce
2668  * fragmentation due to mixed migratetype pages in one pageblock.
2669  */
2670 int find_suitable_fallback(struct free_area *area, unsigned int order,
2671 			int migratetype, bool only_stealable, bool *can_steal)
2672 {
2673 	int i;
2674 	int fallback_mt;
2675 
2676 	if (area->nr_free == 0)
2677 		return -1;
2678 
2679 	*can_steal = false;
2680 	for (i = 0;; i++) {
2681 		fallback_mt = fallbacks[migratetype][i];
2682 		if (fallback_mt == MIGRATE_TYPES)
2683 			break;
2684 
2685 		if (free_area_empty(area, fallback_mt))
2686 			continue;
2687 
2688 		if (can_steal_fallback(order, migratetype))
2689 			*can_steal = true;
2690 
2691 		if (!only_stealable)
2692 			return fallback_mt;
2693 
2694 		if (*can_steal)
2695 			return fallback_mt;
2696 	}
2697 
2698 	return -1;
2699 }
2700 
2701 /*
2702  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2703  * there are no empty page blocks that contain a page with a suitable order
2704  */
2705 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2706 				unsigned int alloc_order)
2707 {
2708 	int mt;
2709 	unsigned long max_managed, flags;
2710 
2711 	/*
2712 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2713 	 * Check is race-prone but harmless.
2714 	 */
2715 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2716 	if (zone->nr_reserved_highatomic >= max_managed)
2717 		return;
2718 
2719 	spin_lock_irqsave(&zone->lock, flags);
2720 
2721 	/* Recheck the nr_reserved_highatomic limit under the lock */
2722 	if (zone->nr_reserved_highatomic >= max_managed)
2723 		goto out_unlock;
2724 
2725 	/* Yoink! */
2726 	mt = get_pageblock_migratetype(page);
2727 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2728 	    && !is_migrate_cma(mt)) {
2729 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2730 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2731 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2732 	}
2733 
2734 out_unlock:
2735 	spin_unlock_irqrestore(&zone->lock, flags);
2736 }
2737 
2738 /*
2739  * Used when an allocation is about to fail under memory pressure. This
2740  * potentially hurts the reliability of high-order allocations when under
2741  * intense memory pressure but failed atomic allocations should be easier
2742  * to recover from than an OOM.
2743  *
2744  * If @force is true, try to unreserve a pageblock even though highatomic
2745  * pageblock is exhausted.
2746  */
2747 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2748 						bool force)
2749 {
2750 	struct zonelist *zonelist = ac->zonelist;
2751 	unsigned long flags;
2752 	struct zoneref *z;
2753 	struct zone *zone;
2754 	struct page *page;
2755 	int order;
2756 	bool ret;
2757 
2758 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2759 								ac->nodemask) {
2760 		/*
2761 		 * Preserve at least one pageblock unless memory pressure
2762 		 * is really high.
2763 		 */
2764 		if (!force && zone->nr_reserved_highatomic <=
2765 					pageblock_nr_pages)
2766 			continue;
2767 
2768 		spin_lock_irqsave(&zone->lock, flags);
2769 		for (order = 0; order < MAX_ORDER; order++) {
2770 			struct free_area *area = &(zone->free_area[order]);
2771 
2772 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2773 			if (!page)
2774 				continue;
2775 
2776 			/*
2777 			 * In page freeing path, migratetype change is racy so
2778 			 * we can counter several free pages in a pageblock
2779 			 * in this loop although we changed the pageblock type
2780 			 * from highatomic to ac->migratetype. So we should
2781 			 * adjust the count once.
2782 			 */
2783 			if (is_migrate_highatomic_page(page)) {
2784 				/*
2785 				 * It should never happen but changes to
2786 				 * locking could inadvertently allow a per-cpu
2787 				 * drain to add pages to MIGRATE_HIGHATOMIC
2788 				 * while unreserving so be safe and watch for
2789 				 * underflows.
2790 				 */
2791 				zone->nr_reserved_highatomic -= min(
2792 						pageblock_nr_pages,
2793 						zone->nr_reserved_highatomic);
2794 			}
2795 
2796 			/*
2797 			 * Convert to ac->migratetype and avoid the normal
2798 			 * pageblock stealing heuristics. Minimally, the caller
2799 			 * is doing the work and needs the pages. More
2800 			 * importantly, if the block was always converted to
2801 			 * MIGRATE_UNMOVABLE or another type then the number
2802 			 * of pageblocks that cannot be completely freed
2803 			 * may increase.
2804 			 */
2805 			set_pageblock_migratetype(page, ac->migratetype);
2806 			ret = move_freepages_block(zone, page, ac->migratetype,
2807 									NULL);
2808 			if (ret) {
2809 				spin_unlock_irqrestore(&zone->lock, flags);
2810 				return ret;
2811 			}
2812 		}
2813 		spin_unlock_irqrestore(&zone->lock, flags);
2814 	}
2815 
2816 	return false;
2817 }
2818 
2819 /*
2820  * Try finding a free buddy page on the fallback list and put it on the free
2821  * list of requested migratetype, possibly along with other pages from the same
2822  * block, depending on fragmentation avoidance heuristics. Returns true if
2823  * fallback was found so that __rmqueue_smallest() can grab it.
2824  *
2825  * The use of signed ints for order and current_order is a deliberate
2826  * deviation from the rest of this file, to make the for loop
2827  * condition simpler.
2828  */
2829 static __always_inline bool
2830 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2831 						unsigned int alloc_flags)
2832 {
2833 	struct free_area *area;
2834 	int current_order;
2835 	int min_order = order;
2836 	struct page *page;
2837 	int fallback_mt;
2838 	bool can_steal;
2839 
2840 	/*
2841 	 * Do not steal pages from freelists belonging to other pageblocks
2842 	 * i.e. orders < pageblock_order. If there are no local zones free,
2843 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2844 	 */
2845 	if (alloc_flags & ALLOC_NOFRAGMENT)
2846 		min_order = pageblock_order;
2847 
2848 	/*
2849 	 * Find the largest available free page in the other list. This roughly
2850 	 * approximates finding the pageblock with the most free pages, which
2851 	 * would be too costly to do exactly.
2852 	 */
2853 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2854 				--current_order) {
2855 		area = &(zone->free_area[current_order]);
2856 		fallback_mt = find_suitable_fallback(area, current_order,
2857 				start_migratetype, false, &can_steal);
2858 		if (fallback_mt == -1)
2859 			continue;
2860 
2861 		/*
2862 		 * We cannot steal all free pages from the pageblock and the
2863 		 * requested migratetype is movable. In that case it's better to
2864 		 * steal and split the smallest available page instead of the
2865 		 * largest available page, because even if the next movable
2866 		 * allocation falls back into a different pageblock than this
2867 		 * one, it won't cause permanent fragmentation.
2868 		 */
2869 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2870 					&& current_order > order)
2871 			goto find_smallest;
2872 
2873 		goto do_steal;
2874 	}
2875 
2876 	return false;
2877 
2878 find_smallest:
2879 	for (current_order = order; current_order < MAX_ORDER;
2880 							current_order++) {
2881 		area = &(zone->free_area[current_order]);
2882 		fallback_mt = find_suitable_fallback(area, current_order,
2883 				start_migratetype, false, &can_steal);
2884 		if (fallback_mt != -1)
2885 			break;
2886 	}
2887 
2888 	/*
2889 	 * This should not happen - we already found a suitable fallback
2890 	 * when looking for the largest page.
2891 	 */
2892 	VM_BUG_ON(current_order == MAX_ORDER);
2893 
2894 do_steal:
2895 	page = get_page_from_free_area(area, fallback_mt);
2896 
2897 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2898 								can_steal);
2899 
2900 	trace_mm_page_alloc_extfrag(page, order, current_order,
2901 		start_migratetype, fallback_mt);
2902 
2903 	return true;
2904 
2905 }
2906 
2907 /*
2908  * Do the hard work of removing an element from the buddy allocator.
2909  * Call me with the zone->lock already held.
2910  */
2911 static __always_inline struct page *
2912 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2913 						unsigned int alloc_flags)
2914 {
2915 	struct page *page;
2916 
2917 	if (IS_ENABLED(CONFIG_CMA)) {
2918 		/*
2919 		 * Balance movable allocations between regular and CMA areas by
2920 		 * allocating from CMA when over half of the zone's free memory
2921 		 * is in the CMA area.
2922 		 */
2923 		if (alloc_flags & ALLOC_CMA &&
2924 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2925 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2926 			page = __rmqueue_cma_fallback(zone, order);
2927 			if (page)
2928 				goto out;
2929 		}
2930 	}
2931 retry:
2932 	page = __rmqueue_smallest(zone, order, migratetype);
2933 	if (unlikely(!page)) {
2934 		if (alloc_flags & ALLOC_CMA)
2935 			page = __rmqueue_cma_fallback(zone, order);
2936 
2937 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2938 								alloc_flags))
2939 			goto retry;
2940 	}
2941 out:
2942 	if (page)
2943 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2944 	return page;
2945 }
2946 
2947 /*
2948  * Obtain a specified number of elements from the buddy allocator, all under
2949  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2950  * Returns the number of new pages which were placed at *list.
2951  */
2952 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2953 			unsigned long count, struct list_head *list,
2954 			int migratetype, unsigned int alloc_flags)
2955 {
2956 	int i, allocated = 0;
2957 
2958 	spin_lock(&zone->lock);
2959 	for (i = 0; i < count; ++i) {
2960 		struct page *page = __rmqueue(zone, order, migratetype,
2961 								alloc_flags);
2962 		if (unlikely(page == NULL))
2963 			break;
2964 
2965 		if (unlikely(check_pcp_refill(page)))
2966 			continue;
2967 
2968 		/*
2969 		 * Split buddy pages returned by expand() are received here in
2970 		 * physical page order. The page is added to the tail of
2971 		 * caller's list. From the callers perspective, the linked list
2972 		 * is ordered by page number under some conditions. This is
2973 		 * useful for IO devices that can forward direction from the
2974 		 * head, thus also in the physical page order. This is useful
2975 		 * for IO devices that can merge IO requests if the physical
2976 		 * pages are ordered properly.
2977 		 */
2978 		list_add_tail(&page->lru, list);
2979 		allocated++;
2980 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2981 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2982 					      -(1 << order));
2983 	}
2984 
2985 	/*
2986 	 * i pages were removed from the buddy list even if some leak due
2987 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2988 	 * on i. Do not confuse with 'allocated' which is the number of
2989 	 * pages added to the pcp list.
2990 	 */
2991 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2992 	spin_unlock(&zone->lock);
2993 	return allocated;
2994 }
2995 
2996 #ifdef CONFIG_NUMA
2997 /*
2998  * Called from the vmstat counter updater to drain pagesets of this
2999  * currently executing processor on remote nodes after they have
3000  * expired.
3001  *
3002  * Note that this function must be called with the thread pinned to
3003  * a single processor.
3004  */
3005 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3006 {
3007 	unsigned long flags;
3008 	int to_drain, batch;
3009 
3010 	local_irq_save(flags);
3011 	batch = READ_ONCE(pcp->batch);
3012 	to_drain = min(pcp->count, batch);
3013 	if (to_drain > 0)
3014 		free_pcppages_bulk(zone, to_drain, pcp);
3015 	local_irq_restore(flags);
3016 }
3017 #endif
3018 
3019 /*
3020  * Drain pcplists of the indicated processor and zone.
3021  *
3022  * The processor must either be the current processor and the
3023  * thread pinned to the current processor or a processor that
3024  * is not online.
3025  */
3026 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3027 {
3028 	unsigned long flags;
3029 	struct per_cpu_pageset *pset;
3030 	struct per_cpu_pages *pcp;
3031 
3032 	local_irq_save(flags);
3033 	pset = per_cpu_ptr(zone->pageset, cpu);
3034 
3035 	pcp = &pset->pcp;
3036 	if (pcp->count)
3037 		free_pcppages_bulk(zone, pcp->count, pcp);
3038 	local_irq_restore(flags);
3039 }
3040 
3041 /*
3042  * Drain pcplists of all zones on the indicated processor.
3043  *
3044  * The processor must either be the current processor and the
3045  * thread pinned to the current processor or a processor that
3046  * is not online.
3047  */
3048 static void drain_pages(unsigned int cpu)
3049 {
3050 	struct zone *zone;
3051 
3052 	for_each_populated_zone(zone) {
3053 		drain_pages_zone(cpu, zone);
3054 	}
3055 }
3056 
3057 /*
3058  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3059  *
3060  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3061  * the single zone's pages.
3062  */
3063 void drain_local_pages(struct zone *zone)
3064 {
3065 	int cpu = smp_processor_id();
3066 
3067 	if (zone)
3068 		drain_pages_zone(cpu, zone);
3069 	else
3070 		drain_pages(cpu);
3071 }
3072 
3073 static void drain_local_pages_wq(struct work_struct *work)
3074 {
3075 	struct pcpu_drain *drain;
3076 
3077 	drain = container_of(work, struct pcpu_drain, work);
3078 
3079 	/*
3080 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3081 	 * we can race with cpu offline when the WQ can move this from
3082 	 * a cpu pinned worker to an unbound one. We can operate on a different
3083 	 * cpu which is alright but we also have to make sure to not move to
3084 	 * a different one.
3085 	 */
3086 	preempt_disable();
3087 	drain_local_pages(drain->zone);
3088 	preempt_enable();
3089 }
3090 
3091 /*
3092  * The implementation of drain_all_pages(), exposing an extra parameter to
3093  * drain on all cpus.
3094  *
3095  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3096  * not empty. The check for non-emptiness can however race with a free to
3097  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3098  * that need the guarantee that every CPU has drained can disable the
3099  * optimizing racy check.
3100  */
3101 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3102 {
3103 	int cpu;
3104 
3105 	/*
3106 	 * Allocate in the BSS so we wont require allocation in
3107 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3108 	 */
3109 	static cpumask_t cpus_with_pcps;
3110 
3111 	/*
3112 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3113 	 * initialized.
3114 	 */
3115 	if (WARN_ON_ONCE(!mm_percpu_wq))
3116 		return;
3117 
3118 	/*
3119 	 * Do not drain if one is already in progress unless it's specific to
3120 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3121 	 * the drain to be complete when the call returns.
3122 	 */
3123 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3124 		if (!zone)
3125 			return;
3126 		mutex_lock(&pcpu_drain_mutex);
3127 	}
3128 
3129 	/*
3130 	 * We don't care about racing with CPU hotplug event
3131 	 * as offline notification will cause the notified
3132 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3133 	 * disables preemption as part of its processing
3134 	 */
3135 	for_each_online_cpu(cpu) {
3136 		struct per_cpu_pageset *pcp;
3137 		struct zone *z;
3138 		bool has_pcps = false;
3139 
3140 		if (force_all_cpus) {
3141 			/*
3142 			 * The pcp.count check is racy, some callers need a
3143 			 * guarantee that no cpu is missed.
3144 			 */
3145 			has_pcps = true;
3146 		} else if (zone) {
3147 			pcp = per_cpu_ptr(zone->pageset, cpu);
3148 			if (pcp->pcp.count)
3149 				has_pcps = true;
3150 		} else {
3151 			for_each_populated_zone(z) {
3152 				pcp = per_cpu_ptr(z->pageset, cpu);
3153 				if (pcp->pcp.count) {
3154 					has_pcps = true;
3155 					break;
3156 				}
3157 			}
3158 		}
3159 
3160 		if (has_pcps)
3161 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3162 		else
3163 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3164 	}
3165 
3166 	for_each_cpu(cpu, &cpus_with_pcps) {
3167 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3168 
3169 		drain->zone = zone;
3170 		INIT_WORK(&drain->work, drain_local_pages_wq);
3171 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3172 	}
3173 	for_each_cpu(cpu, &cpus_with_pcps)
3174 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3175 
3176 	mutex_unlock(&pcpu_drain_mutex);
3177 }
3178 
3179 /*
3180  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3181  *
3182  * When zone parameter is non-NULL, spill just the single zone's pages.
3183  *
3184  * Note that this can be extremely slow as the draining happens in a workqueue.
3185  */
3186 void drain_all_pages(struct zone *zone)
3187 {
3188 	__drain_all_pages(zone, false);
3189 }
3190 
3191 #ifdef CONFIG_HIBERNATION
3192 
3193 /*
3194  * Touch the watchdog for every WD_PAGE_COUNT pages.
3195  */
3196 #define WD_PAGE_COUNT	(128*1024)
3197 
3198 void mark_free_pages(struct zone *zone)
3199 {
3200 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3201 	unsigned long flags;
3202 	unsigned int order, t;
3203 	struct page *page;
3204 
3205 	if (zone_is_empty(zone))
3206 		return;
3207 
3208 	spin_lock_irqsave(&zone->lock, flags);
3209 
3210 	max_zone_pfn = zone_end_pfn(zone);
3211 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3212 		if (pfn_valid(pfn)) {
3213 			page = pfn_to_page(pfn);
3214 
3215 			if (!--page_count) {
3216 				touch_nmi_watchdog();
3217 				page_count = WD_PAGE_COUNT;
3218 			}
3219 
3220 			if (page_zone(page) != zone)
3221 				continue;
3222 
3223 			if (!swsusp_page_is_forbidden(page))
3224 				swsusp_unset_page_free(page);
3225 		}
3226 
3227 	for_each_migratetype_order(order, t) {
3228 		list_for_each_entry(page,
3229 				&zone->free_area[order].free_list[t], lru) {
3230 			unsigned long i;
3231 
3232 			pfn = page_to_pfn(page);
3233 			for (i = 0; i < (1UL << order); i++) {
3234 				if (!--page_count) {
3235 					touch_nmi_watchdog();
3236 					page_count = WD_PAGE_COUNT;
3237 				}
3238 				swsusp_set_page_free(pfn_to_page(pfn + i));
3239 			}
3240 		}
3241 	}
3242 	spin_unlock_irqrestore(&zone->lock, flags);
3243 }
3244 #endif /* CONFIG_PM */
3245 
3246 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3247 {
3248 	int migratetype;
3249 
3250 	if (!free_pcp_prepare(page))
3251 		return false;
3252 
3253 	migratetype = get_pfnblock_migratetype(page, pfn);
3254 	set_pcppage_migratetype(page, migratetype);
3255 	return true;
3256 }
3257 
3258 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3259 {
3260 	struct zone *zone = page_zone(page);
3261 	struct per_cpu_pages *pcp;
3262 	int migratetype;
3263 
3264 	migratetype = get_pcppage_migratetype(page);
3265 	__count_vm_event(PGFREE);
3266 
3267 	/*
3268 	 * We only track unmovable, reclaimable and movable on pcp lists.
3269 	 * Free ISOLATE pages back to the allocator because they are being
3270 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3271 	 * areas back if necessary. Otherwise, we may have to free
3272 	 * excessively into the page allocator
3273 	 */
3274 	if (migratetype >= MIGRATE_PCPTYPES) {
3275 		if (unlikely(is_migrate_isolate(migratetype))) {
3276 			free_one_page(zone, page, pfn, 0, migratetype,
3277 				      FPI_NONE);
3278 			return;
3279 		}
3280 		migratetype = MIGRATE_MOVABLE;
3281 	}
3282 
3283 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3284 	list_add(&page->lru, &pcp->lists[migratetype]);
3285 	pcp->count++;
3286 	if (pcp->count >= READ_ONCE(pcp->high))
3287 		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3288 }
3289 
3290 /*
3291  * Free a 0-order page
3292  */
3293 void free_unref_page(struct page *page)
3294 {
3295 	unsigned long flags;
3296 	unsigned long pfn = page_to_pfn(page);
3297 
3298 	if (!free_unref_page_prepare(page, pfn))
3299 		return;
3300 
3301 	local_irq_save(flags);
3302 	free_unref_page_commit(page, pfn);
3303 	local_irq_restore(flags);
3304 }
3305 
3306 /*
3307  * Free a list of 0-order pages
3308  */
3309 void free_unref_page_list(struct list_head *list)
3310 {
3311 	struct page *page, *next;
3312 	unsigned long flags, pfn;
3313 	int batch_count = 0;
3314 
3315 	/* Prepare pages for freeing */
3316 	list_for_each_entry_safe(page, next, list, lru) {
3317 		pfn = page_to_pfn(page);
3318 		if (!free_unref_page_prepare(page, pfn))
3319 			list_del(&page->lru);
3320 		set_page_private(page, pfn);
3321 	}
3322 
3323 	local_irq_save(flags);
3324 	list_for_each_entry_safe(page, next, list, lru) {
3325 		unsigned long pfn = page_private(page);
3326 
3327 		set_page_private(page, 0);
3328 		trace_mm_page_free_batched(page);
3329 		free_unref_page_commit(page, pfn);
3330 
3331 		/*
3332 		 * Guard against excessive IRQ disabled times when we get
3333 		 * a large list of pages to free.
3334 		 */
3335 		if (++batch_count == SWAP_CLUSTER_MAX) {
3336 			local_irq_restore(flags);
3337 			batch_count = 0;
3338 			local_irq_save(flags);
3339 		}
3340 	}
3341 	local_irq_restore(flags);
3342 }
3343 
3344 /*
3345  * split_page takes a non-compound higher-order page, and splits it into
3346  * n (1<<order) sub-pages: page[0..n]
3347  * Each sub-page must be freed individually.
3348  *
3349  * Note: this is probably too low level an operation for use in drivers.
3350  * Please consult with lkml before using this in your driver.
3351  */
3352 void split_page(struct page *page, unsigned int order)
3353 {
3354 	int i;
3355 
3356 	VM_BUG_ON_PAGE(PageCompound(page), page);
3357 	VM_BUG_ON_PAGE(!page_count(page), page);
3358 
3359 	for (i = 1; i < (1 << order); i++)
3360 		set_page_refcounted(page + i);
3361 	split_page_owner(page, 1 << order);
3362 	split_page_memcg(page, 1 << order);
3363 }
3364 EXPORT_SYMBOL_GPL(split_page);
3365 
3366 int __isolate_free_page(struct page *page, unsigned int order)
3367 {
3368 	unsigned long watermark;
3369 	struct zone *zone;
3370 	int mt;
3371 
3372 	BUG_ON(!PageBuddy(page));
3373 
3374 	zone = page_zone(page);
3375 	mt = get_pageblock_migratetype(page);
3376 
3377 	if (!is_migrate_isolate(mt)) {
3378 		/*
3379 		 * Obey watermarks as if the page was being allocated. We can
3380 		 * emulate a high-order watermark check with a raised order-0
3381 		 * watermark, because we already know our high-order page
3382 		 * exists.
3383 		 */
3384 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3385 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3386 			return 0;
3387 
3388 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3389 	}
3390 
3391 	/* Remove page from free list */
3392 
3393 	del_page_from_free_list(page, zone, order);
3394 
3395 	/*
3396 	 * Set the pageblock if the isolated page is at least half of a
3397 	 * pageblock
3398 	 */
3399 	if (order >= pageblock_order - 1) {
3400 		struct page *endpage = page + (1 << order) - 1;
3401 		for (; page < endpage; page += pageblock_nr_pages) {
3402 			int mt = get_pageblock_migratetype(page);
3403 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3404 			    && !is_migrate_highatomic(mt))
3405 				set_pageblock_migratetype(page,
3406 							  MIGRATE_MOVABLE);
3407 		}
3408 	}
3409 
3410 
3411 	return 1UL << order;
3412 }
3413 
3414 /**
3415  * __putback_isolated_page - Return a now-isolated page back where we got it
3416  * @page: Page that was isolated
3417  * @order: Order of the isolated page
3418  * @mt: The page's pageblock's migratetype
3419  *
3420  * This function is meant to return a page pulled from the free lists via
3421  * __isolate_free_page back to the free lists they were pulled from.
3422  */
3423 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3424 {
3425 	struct zone *zone = page_zone(page);
3426 
3427 	/* zone lock should be held when this function is called */
3428 	lockdep_assert_held(&zone->lock);
3429 
3430 	/* Return isolated page to tail of freelist. */
3431 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3432 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3433 }
3434 
3435 /*
3436  * Update NUMA hit/miss statistics
3437  *
3438  * Must be called with interrupts disabled.
3439  */
3440 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3441 {
3442 #ifdef CONFIG_NUMA
3443 	enum numa_stat_item local_stat = NUMA_LOCAL;
3444 
3445 	/* skip numa counters update if numa stats is disabled */
3446 	if (!static_branch_likely(&vm_numa_stat_key))
3447 		return;
3448 
3449 	if (zone_to_nid(z) != numa_node_id())
3450 		local_stat = NUMA_OTHER;
3451 
3452 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3453 		__inc_numa_state(z, NUMA_HIT);
3454 	else {
3455 		__inc_numa_state(z, NUMA_MISS);
3456 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3457 	}
3458 	__inc_numa_state(z, local_stat);
3459 #endif
3460 }
3461 
3462 /* Remove page from the per-cpu list, caller must protect the list */
3463 static inline
3464 struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3465 			unsigned int alloc_flags,
3466 			struct per_cpu_pages *pcp,
3467 			struct list_head *list)
3468 {
3469 	struct page *page;
3470 
3471 	do {
3472 		if (list_empty(list)) {
3473 			pcp->count += rmqueue_bulk(zone, 0,
3474 					READ_ONCE(pcp->batch), list,
3475 					migratetype, alloc_flags);
3476 			if (unlikely(list_empty(list)))
3477 				return NULL;
3478 		}
3479 
3480 		page = list_first_entry(list, struct page, lru);
3481 		list_del(&page->lru);
3482 		pcp->count--;
3483 	} while (check_new_pcp(page));
3484 
3485 	return page;
3486 }
3487 
3488 /* Lock and remove page from the per-cpu list */
3489 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3490 			struct zone *zone, gfp_t gfp_flags,
3491 			int migratetype, unsigned int alloc_flags)
3492 {
3493 	struct per_cpu_pages *pcp;
3494 	struct list_head *list;
3495 	struct page *page;
3496 	unsigned long flags;
3497 
3498 	local_irq_save(flags);
3499 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3500 	list = &pcp->lists[migratetype];
3501 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3502 	if (page) {
3503 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3504 		zone_statistics(preferred_zone, zone);
3505 	}
3506 	local_irq_restore(flags);
3507 	return page;
3508 }
3509 
3510 /*
3511  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3512  */
3513 static inline
3514 struct page *rmqueue(struct zone *preferred_zone,
3515 			struct zone *zone, unsigned int order,
3516 			gfp_t gfp_flags, unsigned int alloc_flags,
3517 			int migratetype)
3518 {
3519 	unsigned long flags;
3520 	struct page *page;
3521 
3522 	if (likely(order == 0)) {
3523 		/*
3524 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3525 		 * we need to skip it when CMA area isn't allowed.
3526 		 */
3527 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3528 				migratetype != MIGRATE_MOVABLE) {
3529 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3530 					migratetype, alloc_flags);
3531 			goto out;
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * We most definitely don't want callers attempting to
3537 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3538 	 */
3539 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3540 	spin_lock_irqsave(&zone->lock, flags);
3541 
3542 	do {
3543 		page = NULL;
3544 		/*
3545 		 * order-0 request can reach here when the pcplist is skipped
3546 		 * due to non-CMA allocation context. HIGHATOMIC area is
3547 		 * reserved for high-order atomic allocation, so order-0
3548 		 * request should skip it.
3549 		 */
3550 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3551 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3552 			if (page)
3553 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3554 		}
3555 		if (!page)
3556 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3557 	} while (page && check_new_pages(page, order));
3558 	spin_unlock(&zone->lock);
3559 	if (!page)
3560 		goto failed;
3561 	__mod_zone_freepage_state(zone, -(1 << order),
3562 				  get_pcppage_migratetype(page));
3563 
3564 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3565 	zone_statistics(preferred_zone, zone);
3566 	local_irq_restore(flags);
3567 
3568 out:
3569 	/* Separate test+clear to avoid unnecessary atomics */
3570 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3571 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3572 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3573 	}
3574 
3575 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3576 	return page;
3577 
3578 failed:
3579 	local_irq_restore(flags);
3580 	return NULL;
3581 }
3582 
3583 #ifdef CONFIG_FAIL_PAGE_ALLOC
3584 
3585 static struct {
3586 	struct fault_attr attr;
3587 
3588 	bool ignore_gfp_highmem;
3589 	bool ignore_gfp_reclaim;
3590 	u32 min_order;
3591 } fail_page_alloc = {
3592 	.attr = FAULT_ATTR_INITIALIZER,
3593 	.ignore_gfp_reclaim = true,
3594 	.ignore_gfp_highmem = true,
3595 	.min_order = 1,
3596 };
3597 
3598 static int __init setup_fail_page_alloc(char *str)
3599 {
3600 	return setup_fault_attr(&fail_page_alloc.attr, str);
3601 }
3602 __setup("fail_page_alloc=", setup_fail_page_alloc);
3603 
3604 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3605 {
3606 	if (order < fail_page_alloc.min_order)
3607 		return false;
3608 	if (gfp_mask & __GFP_NOFAIL)
3609 		return false;
3610 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3611 		return false;
3612 	if (fail_page_alloc.ignore_gfp_reclaim &&
3613 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3614 		return false;
3615 
3616 	return should_fail(&fail_page_alloc.attr, 1 << order);
3617 }
3618 
3619 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3620 
3621 static int __init fail_page_alloc_debugfs(void)
3622 {
3623 	umode_t mode = S_IFREG | 0600;
3624 	struct dentry *dir;
3625 
3626 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3627 					&fail_page_alloc.attr);
3628 
3629 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3630 			    &fail_page_alloc.ignore_gfp_reclaim);
3631 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3632 			    &fail_page_alloc.ignore_gfp_highmem);
3633 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3634 
3635 	return 0;
3636 }
3637 
3638 late_initcall(fail_page_alloc_debugfs);
3639 
3640 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3641 
3642 #else /* CONFIG_FAIL_PAGE_ALLOC */
3643 
3644 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3645 {
3646 	return false;
3647 }
3648 
3649 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3650 
3651 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3652 {
3653 	return __should_fail_alloc_page(gfp_mask, order);
3654 }
3655 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3656 
3657 static inline long __zone_watermark_unusable_free(struct zone *z,
3658 				unsigned int order, unsigned int alloc_flags)
3659 {
3660 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3661 	long unusable_free = (1 << order) - 1;
3662 
3663 	/*
3664 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3665 	 * the high-atomic reserves. This will over-estimate the size of the
3666 	 * atomic reserve but it avoids a search.
3667 	 */
3668 	if (likely(!alloc_harder))
3669 		unusable_free += z->nr_reserved_highatomic;
3670 
3671 #ifdef CONFIG_CMA
3672 	/* If allocation can't use CMA areas don't use free CMA pages */
3673 	if (!(alloc_flags & ALLOC_CMA))
3674 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3675 #endif
3676 
3677 	return unusable_free;
3678 }
3679 
3680 /*
3681  * Return true if free base pages are above 'mark'. For high-order checks it
3682  * will return true of the order-0 watermark is reached and there is at least
3683  * one free page of a suitable size. Checking now avoids taking the zone lock
3684  * to check in the allocation paths if no pages are free.
3685  */
3686 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3687 			 int highest_zoneidx, unsigned int alloc_flags,
3688 			 long free_pages)
3689 {
3690 	long min = mark;
3691 	int o;
3692 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3693 
3694 	/* free_pages may go negative - that's OK */
3695 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3696 
3697 	if (alloc_flags & ALLOC_HIGH)
3698 		min -= min / 2;
3699 
3700 	if (unlikely(alloc_harder)) {
3701 		/*
3702 		 * OOM victims can try even harder than normal ALLOC_HARDER
3703 		 * users on the grounds that it's definitely going to be in
3704 		 * the exit path shortly and free memory. Any allocation it
3705 		 * makes during the free path will be small and short-lived.
3706 		 */
3707 		if (alloc_flags & ALLOC_OOM)
3708 			min -= min / 2;
3709 		else
3710 			min -= min / 4;
3711 	}
3712 
3713 	/*
3714 	 * Check watermarks for an order-0 allocation request. If these
3715 	 * are not met, then a high-order request also cannot go ahead
3716 	 * even if a suitable page happened to be free.
3717 	 */
3718 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3719 		return false;
3720 
3721 	/* If this is an order-0 request then the watermark is fine */
3722 	if (!order)
3723 		return true;
3724 
3725 	/* For a high-order request, check at least one suitable page is free */
3726 	for (o = order; o < MAX_ORDER; o++) {
3727 		struct free_area *area = &z->free_area[o];
3728 		int mt;
3729 
3730 		if (!area->nr_free)
3731 			continue;
3732 
3733 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3734 			if (!free_area_empty(area, mt))
3735 				return true;
3736 		}
3737 
3738 #ifdef CONFIG_CMA
3739 		if ((alloc_flags & ALLOC_CMA) &&
3740 		    !free_area_empty(area, MIGRATE_CMA)) {
3741 			return true;
3742 		}
3743 #endif
3744 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3745 			return true;
3746 	}
3747 	return false;
3748 }
3749 
3750 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3751 		      int highest_zoneidx, unsigned int alloc_flags)
3752 {
3753 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3754 					zone_page_state(z, NR_FREE_PAGES));
3755 }
3756 
3757 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3758 				unsigned long mark, int highest_zoneidx,
3759 				unsigned int alloc_flags, gfp_t gfp_mask)
3760 {
3761 	long free_pages;
3762 
3763 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3764 
3765 	/*
3766 	 * Fast check for order-0 only. If this fails then the reserves
3767 	 * need to be calculated.
3768 	 */
3769 	if (!order) {
3770 		long fast_free;
3771 
3772 		fast_free = free_pages;
3773 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3774 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3775 			return true;
3776 	}
3777 
3778 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3779 					free_pages))
3780 		return true;
3781 	/*
3782 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3783 	 * when checking the min watermark. The min watermark is the
3784 	 * point where boosting is ignored so that kswapd is woken up
3785 	 * when below the low watermark.
3786 	 */
3787 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3788 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3789 		mark = z->_watermark[WMARK_MIN];
3790 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3791 					alloc_flags, free_pages);
3792 	}
3793 
3794 	return false;
3795 }
3796 
3797 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3798 			unsigned long mark, int highest_zoneidx)
3799 {
3800 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3801 
3802 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3803 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3804 
3805 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3806 								free_pages);
3807 }
3808 
3809 #ifdef CONFIG_NUMA
3810 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3811 {
3812 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3813 				node_reclaim_distance;
3814 }
3815 #else	/* CONFIG_NUMA */
3816 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3817 {
3818 	return true;
3819 }
3820 #endif	/* CONFIG_NUMA */
3821 
3822 /*
3823  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3824  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3825  * premature use of a lower zone may cause lowmem pressure problems that
3826  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3827  * probably too small. It only makes sense to spread allocations to avoid
3828  * fragmentation between the Normal and DMA32 zones.
3829  */
3830 static inline unsigned int
3831 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3832 {
3833 	unsigned int alloc_flags;
3834 
3835 	/*
3836 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3837 	 * to save a branch.
3838 	 */
3839 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3840 
3841 #ifdef CONFIG_ZONE_DMA32
3842 	if (!zone)
3843 		return alloc_flags;
3844 
3845 	if (zone_idx(zone) != ZONE_NORMAL)
3846 		return alloc_flags;
3847 
3848 	/*
3849 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3850 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3851 	 * on UMA that if Normal is populated then so is DMA32.
3852 	 */
3853 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3854 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3855 		return alloc_flags;
3856 
3857 	alloc_flags |= ALLOC_NOFRAGMENT;
3858 #endif /* CONFIG_ZONE_DMA32 */
3859 	return alloc_flags;
3860 }
3861 
3862 /* Must be called after current_gfp_context() which can change gfp_mask */
3863 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3864 						  unsigned int alloc_flags)
3865 {
3866 #ifdef CONFIG_CMA
3867 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3868 		alloc_flags |= ALLOC_CMA;
3869 #endif
3870 	return alloc_flags;
3871 }
3872 
3873 /*
3874  * get_page_from_freelist goes through the zonelist trying to allocate
3875  * a page.
3876  */
3877 static struct page *
3878 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3879 						const struct alloc_context *ac)
3880 {
3881 	struct zoneref *z;
3882 	struct zone *zone;
3883 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3884 	bool no_fallback;
3885 
3886 retry:
3887 	/*
3888 	 * Scan zonelist, looking for a zone with enough free.
3889 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3890 	 */
3891 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3892 	z = ac->preferred_zoneref;
3893 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3894 					ac->nodemask) {
3895 		struct page *page;
3896 		unsigned long mark;
3897 
3898 		if (cpusets_enabled() &&
3899 			(alloc_flags & ALLOC_CPUSET) &&
3900 			!__cpuset_zone_allowed(zone, gfp_mask))
3901 				continue;
3902 		/*
3903 		 * When allocating a page cache page for writing, we
3904 		 * want to get it from a node that is within its dirty
3905 		 * limit, such that no single node holds more than its
3906 		 * proportional share of globally allowed dirty pages.
3907 		 * The dirty limits take into account the node's
3908 		 * lowmem reserves and high watermark so that kswapd
3909 		 * should be able to balance it without having to
3910 		 * write pages from its LRU list.
3911 		 *
3912 		 * XXX: For now, allow allocations to potentially
3913 		 * exceed the per-node dirty limit in the slowpath
3914 		 * (spread_dirty_pages unset) before going into reclaim,
3915 		 * which is important when on a NUMA setup the allowed
3916 		 * nodes are together not big enough to reach the
3917 		 * global limit.  The proper fix for these situations
3918 		 * will require awareness of nodes in the
3919 		 * dirty-throttling and the flusher threads.
3920 		 */
3921 		if (ac->spread_dirty_pages) {
3922 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3923 				continue;
3924 
3925 			if (!node_dirty_ok(zone->zone_pgdat)) {
3926 				last_pgdat_dirty_limit = zone->zone_pgdat;
3927 				continue;
3928 			}
3929 		}
3930 
3931 		if (no_fallback && nr_online_nodes > 1 &&
3932 		    zone != ac->preferred_zoneref->zone) {
3933 			int local_nid;
3934 
3935 			/*
3936 			 * If moving to a remote node, retry but allow
3937 			 * fragmenting fallbacks. Locality is more important
3938 			 * than fragmentation avoidance.
3939 			 */
3940 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3941 			if (zone_to_nid(zone) != local_nid) {
3942 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3943 				goto retry;
3944 			}
3945 		}
3946 
3947 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3948 		if (!zone_watermark_fast(zone, order, mark,
3949 				       ac->highest_zoneidx, alloc_flags,
3950 				       gfp_mask)) {
3951 			int ret;
3952 
3953 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3954 			/*
3955 			 * Watermark failed for this zone, but see if we can
3956 			 * grow this zone if it contains deferred pages.
3957 			 */
3958 			if (static_branch_unlikely(&deferred_pages)) {
3959 				if (_deferred_grow_zone(zone, order))
3960 					goto try_this_zone;
3961 			}
3962 #endif
3963 			/* Checked here to keep the fast path fast */
3964 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3965 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3966 				goto try_this_zone;
3967 
3968 			if (!node_reclaim_enabled() ||
3969 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3970 				continue;
3971 
3972 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3973 			switch (ret) {
3974 			case NODE_RECLAIM_NOSCAN:
3975 				/* did not scan */
3976 				continue;
3977 			case NODE_RECLAIM_FULL:
3978 				/* scanned but unreclaimable */
3979 				continue;
3980 			default:
3981 				/* did we reclaim enough */
3982 				if (zone_watermark_ok(zone, order, mark,
3983 					ac->highest_zoneidx, alloc_flags))
3984 					goto try_this_zone;
3985 
3986 				continue;
3987 			}
3988 		}
3989 
3990 try_this_zone:
3991 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3992 				gfp_mask, alloc_flags, ac->migratetype);
3993 		if (page) {
3994 			prep_new_page(page, order, gfp_mask, alloc_flags);
3995 
3996 			/*
3997 			 * If this is a high-order atomic allocation then check
3998 			 * if the pageblock should be reserved for the future
3999 			 */
4000 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4001 				reserve_highatomic_pageblock(page, zone, order);
4002 
4003 			return page;
4004 		} else {
4005 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4006 			/* Try again if zone has deferred pages */
4007 			if (static_branch_unlikely(&deferred_pages)) {
4008 				if (_deferred_grow_zone(zone, order))
4009 					goto try_this_zone;
4010 			}
4011 #endif
4012 		}
4013 	}
4014 
4015 	/*
4016 	 * It's possible on a UMA machine to get through all zones that are
4017 	 * fragmented. If avoiding fragmentation, reset and try again.
4018 	 */
4019 	if (no_fallback) {
4020 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4021 		goto retry;
4022 	}
4023 
4024 	return NULL;
4025 }
4026 
4027 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4028 {
4029 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4030 
4031 	/*
4032 	 * This documents exceptions given to allocations in certain
4033 	 * contexts that are allowed to allocate outside current's set
4034 	 * of allowed nodes.
4035 	 */
4036 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4037 		if (tsk_is_oom_victim(current) ||
4038 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4039 			filter &= ~SHOW_MEM_FILTER_NODES;
4040 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4041 		filter &= ~SHOW_MEM_FILTER_NODES;
4042 
4043 	show_mem(filter, nodemask);
4044 }
4045 
4046 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4047 {
4048 	struct va_format vaf;
4049 	va_list args;
4050 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4051 
4052 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4053 		return;
4054 
4055 	va_start(args, fmt);
4056 	vaf.fmt = fmt;
4057 	vaf.va = &args;
4058 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4059 			current->comm, &vaf, gfp_mask, &gfp_mask,
4060 			nodemask_pr_args(nodemask));
4061 	va_end(args);
4062 
4063 	cpuset_print_current_mems_allowed();
4064 	pr_cont("\n");
4065 	dump_stack();
4066 	warn_alloc_show_mem(gfp_mask, nodemask);
4067 }
4068 
4069 static inline struct page *
4070 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4071 			      unsigned int alloc_flags,
4072 			      const struct alloc_context *ac)
4073 {
4074 	struct page *page;
4075 
4076 	page = get_page_from_freelist(gfp_mask, order,
4077 			alloc_flags|ALLOC_CPUSET, ac);
4078 	/*
4079 	 * fallback to ignore cpuset restriction if our nodes
4080 	 * are depleted
4081 	 */
4082 	if (!page)
4083 		page = get_page_from_freelist(gfp_mask, order,
4084 				alloc_flags, ac);
4085 
4086 	return page;
4087 }
4088 
4089 static inline struct page *
4090 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4091 	const struct alloc_context *ac, unsigned long *did_some_progress)
4092 {
4093 	struct oom_control oc = {
4094 		.zonelist = ac->zonelist,
4095 		.nodemask = ac->nodemask,
4096 		.memcg = NULL,
4097 		.gfp_mask = gfp_mask,
4098 		.order = order,
4099 	};
4100 	struct page *page;
4101 
4102 	*did_some_progress = 0;
4103 
4104 	/*
4105 	 * Acquire the oom lock.  If that fails, somebody else is
4106 	 * making progress for us.
4107 	 */
4108 	if (!mutex_trylock(&oom_lock)) {
4109 		*did_some_progress = 1;
4110 		schedule_timeout_uninterruptible(1);
4111 		return NULL;
4112 	}
4113 
4114 	/*
4115 	 * Go through the zonelist yet one more time, keep very high watermark
4116 	 * here, this is only to catch a parallel oom killing, we must fail if
4117 	 * we're still under heavy pressure. But make sure that this reclaim
4118 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4119 	 * allocation which will never fail due to oom_lock already held.
4120 	 */
4121 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4122 				      ~__GFP_DIRECT_RECLAIM, order,
4123 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4124 	if (page)
4125 		goto out;
4126 
4127 	/* Coredumps can quickly deplete all memory reserves */
4128 	if (current->flags & PF_DUMPCORE)
4129 		goto out;
4130 	/* The OOM killer will not help higher order allocs */
4131 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4132 		goto out;
4133 	/*
4134 	 * We have already exhausted all our reclaim opportunities without any
4135 	 * success so it is time to admit defeat. We will skip the OOM killer
4136 	 * because it is very likely that the caller has a more reasonable
4137 	 * fallback than shooting a random task.
4138 	 *
4139 	 * The OOM killer may not free memory on a specific node.
4140 	 */
4141 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4142 		goto out;
4143 	/* The OOM killer does not needlessly kill tasks for lowmem */
4144 	if (ac->highest_zoneidx < ZONE_NORMAL)
4145 		goto out;
4146 	if (pm_suspended_storage())
4147 		goto out;
4148 	/*
4149 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4150 	 * other request to make a forward progress.
4151 	 * We are in an unfortunate situation where out_of_memory cannot
4152 	 * do much for this context but let's try it to at least get
4153 	 * access to memory reserved if the current task is killed (see
4154 	 * out_of_memory). Once filesystems are ready to handle allocation
4155 	 * failures more gracefully we should just bail out here.
4156 	 */
4157 
4158 	/* Exhausted what can be done so it's blame time */
4159 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4160 		*did_some_progress = 1;
4161 
4162 		/*
4163 		 * Help non-failing allocations by giving them access to memory
4164 		 * reserves
4165 		 */
4166 		if (gfp_mask & __GFP_NOFAIL)
4167 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4168 					ALLOC_NO_WATERMARKS, ac);
4169 	}
4170 out:
4171 	mutex_unlock(&oom_lock);
4172 	return page;
4173 }
4174 
4175 /*
4176  * Maximum number of compaction retries with a progress before OOM
4177  * killer is consider as the only way to move forward.
4178  */
4179 #define MAX_COMPACT_RETRIES 16
4180 
4181 #ifdef CONFIG_COMPACTION
4182 /* Try memory compaction for high-order allocations before reclaim */
4183 static struct page *
4184 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4185 		unsigned int alloc_flags, const struct alloc_context *ac,
4186 		enum compact_priority prio, enum compact_result *compact_result)
4187 {
4188 	struct page *page = NULL;
4189 	unsigned long pflags;
4190 	unsigned int noreclaim_flag;
4191 
4192 	if (!order)
4193 		return NULL;
4194 
4195 	psi_memstall_enter(&pflags);
4196 	noreclaim_flag = memalloc_noreclaim_save();
4197 
4198 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4199 								prio, &page);
4200 
4201 	memalloc_noreclaim_restore(noreclaim_flag);
4202 	psi_memstall_leave(&pflags);
4203 
4204 	if (*compact_result == COMPACT_SKIPPED)
4205 		return NULL;
4206 	/*
4207 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4208 	 * count a compaction stall
4209 	 */
4210 	count_vm_event(COMPACTSTALL);
4211 
4212 	/* Prep a captured page if available */
4213 	if (page)
4214 		prep_new_page(page, order, gfp_mask, alloc_flags);
4215 
4216 	/* Try get a page from the freelist if available */
4217 	if (!page)
4218 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4219 
4220 	if (page) {
4221 		struct zone *zone = page_zone(page);
4222 
4223 		zone->compact_blockskip_flush = false;
4224 		compaction_defer_reset(zone, order, true);
4225 		count_vm_event(COMPACTSUCCESS);
4226 		return page;
4227 	}
4228 
4229 	/*
4230 	 * It's bad if compaction run occurs and fails. The most likely reason
4231 	 * is that pages exist, but not enough to satisfy watermarks.
4232 	 */
4233 	count_vm_event(COMPACTFAIL);
4234 
4235 	cond_resched();
4236 
4237 	return NULL;
4238 }
4239 
4240 static inline bool
4241 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4242 		     enum compact_result compact_result,
4243 		     enum compact_priority *compact_priority,
4244 		     int *compaction_retries)
4245 {
4246 	int max_retries = MAX_COMPACT_RETRIES;
4247 	int min_priority;
4248 	bool ret = false;
4249 	int retries = *compaction_retries;
4250 	enum compact_priority priority = *compact_priority;
4251 
4252 	if (!order)
4253 		return false;
4254 
4255 	if (compaction_made_progress(compact_result))
4256 		(*compaction_retries)++;
4257 
4258 	/*
4259 	 * compaction considers all the zone as desperately out of memory
4260 	 * so it doesn't really make much sense to retry except when the
4261 	 * failure could be caused by insufficient priority
4262 	 */
4263 	if (compaction_failed(compact_result))
4264 		goto check_priority;
4265 
4266 	/*
4267 	 * compaction was skipped because there are not enough order-0 pages
4268 	 * to work with, so we retry only if it looks like reclaim can help.
4269 	 */
4270 	if (compaction_needs_reclaim(compact_result)) {
4271 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4272 		goto out;
4273 	}
4274 
4275 	/*
4276 	 * make sure the compaction wasn't deferred or didn't bail out early
4277 	 * due to locks contention before we declare that we should give up.
4278 	 * But the next retry should use a higher priority if allowed, so
4279 	 * we don't just keep bailing out endlessly.
4280 	 */
4281 	if (compaction_withdrawn(compact_result)) {
4282 		goto check_priority;
4283 	}
4284 
4285 	/*
4286 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4287 	 * costly ones because they are de facto nofail and invoke OOM
4288 	 * killer to move on while costly can fail and users are ready
4289 	 * to cope with that. 1/4 retries is rather arbitrary but we
4290 	 * would need much more detailed feedback from compaction to
4291 	 * make a better decision.
4292 	 */
4293 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4294 		max_retries /= 4;
4295 	if (*compaction_retries <= max_retries) {
4296 		ret = true;
4297 		goto out;
4298 	}
4299 
4300 	/*
4301 	 * Make sure there are attempts at the highest priority if we exhausted
4302 	 * all retries or failed at the lower priorities.
4303 	 */
4304 check_priority:
4305 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4306 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4307 
4308 	if (*compact_priority > min_priority) {
4309 		(*compact_priority)--;
4310 		*compaction_retries = 0;
4311 		ret = true;
4312 	}
4313 out:
4314 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4315 	return ret;
4316 }
4317 #else
4318 static inline struct page *
4319 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4320 		unsigned int alloc_flags, const struct alloc_context *ac,
4321 		enum compact_priority prio, enum compact_result *compact_result)
4322 {
4323 	*compact_result = COMPACT_SKIPPED;
4324 	return NULL;
4325 }
4326 
4327 static inline bool
4328 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4329 		     enum compact_result compact_result,
4330 		     enum compact_priority *compact_priority,
4331 		     int *compaction_retries)
4332 {
4333 	struct zone *zone;
4334 	struct zoneref *z;
4335 
4336 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4337 		return false;
4338 
4339 	/*
4340 	 * There are setups with compaction disabled which would prefer to loop
4341 	 * inside the allocator rather than hit the oom killer prematurely.
4342 	 * Let's give them a good hope and keep retrying while the order-0
4343 	 * watermarks are OK.
4344 	 */
4345 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4346 				ac->highest_zoneidx, ac->nodemask) {
4347 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4348 					ac->highest_zoneidx, alloc_flags))
4349 			return true;
4350 	}
4351 	return false;
4352 }
4353 #endif /* CONFIG_COMPACTION */
4354 
4355 #ifdef CONFIG_LOCKDEP
4356 static struct lockdep_map __fs_reclaim_map =
4357 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4358 
4359 static bool __need_reclaim(gfp_t gfp_mask)
4360 {
4361 	/* no reclaim without waiting on it */
4362 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4363 		return false;
4364 
4365 	/* this guy won't enter reclaim */
4366 	if (current->flags & PF_MEMALLOC)
4367 		return false;
4368 
4369 	if (gfp_mask & __GFP_NOLOCKDEP)
4370 		return false;
4371 
4372 	return true;
4373 }
4374 
4375 void __fs_reclaim_acquire(void)
4376 {
4377 	lock_map_acquire(&__fs_reclaim_map);
4378 }
4379 
4380 void __fs_reclaim_release(void)
4381 {
4382 	lock_map_release(&__fs_reclaim_map);
4383 }
4384 
4385 void fs_reclaim_acquire(gfp_t gfp_mask)
4386 {
4387 	gfp_mask = current_gfp_context(gfp_mask);
4388 
4389 	if (__need_reclaim(gfp_mask)) {
4390 		if (gfp_mask & __GFP_FS)
4391 			__fs_reclaim_acquire();
4392 
4393 #ifdef CONFIG_MMU_NOTIFIER
4394 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4395 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4396 #endif
4397 
4398 	}
4399 }
4400 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4401 
4402 void fs_reclaim_release(gfp_t gfp_mask)
4403 {
4404 	gfp_mask = current_gfp_context(gfp_mask);
4405 
4406 	if (__need_reclaim(gfp_mask)) {
4407 		if (gfp_mask & __GFP_FS)
4408 			__fs_reclaim_release();
4409 	}
4410 }
4411 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4412 #endif
4413 
4414 /* Perform direct synchronous page reclaim */
4415 static unsigned long
4416 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4417 					const struct alloc_context *ac)
4418 {
4419 	unsigned int noreclaim_flag;
4420 	unsigned long pflags, progress;
4421 
4422 	cond_resched();
4423 
4424 	/* We now go into synchronous reclaim */
4425 	cpuset_memory_pressure_bump();
4426 	psi_memstall_enter(&pflags);
4427 	fs_reclaim_acquire(gfp_mask);
4428 	noreclaim_flag = memalloc_noreclaim_save();
4429 
4430 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4431 								ac->nodemask);
4432 
4433 	memalloc_noreclaim_restore(noreclaim_flag);
4434 	fs_reclaim_release(gfp_mask);
4435 	psi_memstall_leave(&pflags);
4436 
4437 	cond_resched();
4438 
4439 	return progress;
4440 }
4441 
4442 /* The really slow allocator path where we enter direct reclaim */
4443 static inline struct page *
4444 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4445 		unsigned int alloc_flags, const struct alloc_context *ac,
4446 		unsigned long *did_some_progress)
4447 {
4448 	struct page *page = NULL;
4449 	bool drained = false;
4450 
4451 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4452 	if (unlikely(!(*did_some_progress)))
4453 		return NULL;
4454 
4455 retry:
4456 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4457 
4458 	/*
4459 	 * If an allocation failed after direct reclaim, it could be because
4460 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4461 	 * Shrink them and try again
4462 	 */
4463 	if (!page && !drained) {
4464 		unreserve_highatomic_pageblock(ac, false);
4465 		drain_all_pages(NULL);
4466 		drained = true;
4467 		goto retry;
4468 	}
4469 
4470 	return page;
4471 }
4472 
4473 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4474 			     const struct alloc_context *ac)
4475 {
4476 	struct zoneref *z;
4477 	struct zone *zone;
4478 	pg_data_t *last_pgdat = NULL;
4479 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4480 
4481 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4482 					ac->nodemask) {
4483 		if (last_pgdat != zone->zone_pgdat)
4484 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4485 		last_pgdat = zone->zone_pgdat;
4486 	}
4487 }
4488 
4489 static inline unsigned int
4490 gfp_to_alloc_flags(gfp_t gfp_mask)
4491 {
4492 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4493 
4494 	/*
4495 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4496 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4497 	 * to save two branches.
4498 	 */
4499 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4500 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4501 
4502 	/*
4503 	 * The caller may dip into page reserves a bit more if the caller
4504 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4505 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4506 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4507 	 */
4508 	alloc_flags |= (__force int)
4509 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4510 
4511 	if (gfp_mask & __GFP_ATOMIC) {
4512 		/*
4513 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4514 		 * if it can't schedule.
4515 		 */
4516 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4517 			alloc_flags |= ALLOC_HARDER;
4518 		/*
4519 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4520 		 * comment for __cpuset_node_allowed().
4521 		 */
4522 		alloc_flags &= ~ALLOC_CPUSET;
4523 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4524 		alloc_flags |= ALLOC_HARDER;
4525 
4526 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4527 
4528 	return alloc_flags;
4529 }
4530 
4531 static bool oom_reserves_allowed(struct task_struct *tsk)
4532 {
4533 	if (!tsk_is_oom_victim(tsk))
4534 		return false;
4535 
4536 	/*
4537 	 * !MMU doesn't have oom reaper so give access to memory reserves
4538 	 * only to the thread with TIF_MEMDIE set
4539 	 */
4540 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4541 		return false;
4542 
4543 	return true;
4544 }
4545 
4546 /*
4547  * Distinguish requests which really need access to full memory
4548  * reserves from oom victims which can live with a portion of it
4549  */
4550 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4551 {
4552 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4553 		return 0;
4554 	if (gfp_mask & __GFP_MEMALLOC)
4555 		return ALLOC_NO_WATERMARKS;
4556 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4557 		return ALLOC_NO_WATERMARKS;
4558 	if (!in_interrupt()) {
4559 		if (current->flags & PF_MEMALLOC)
4560 			return ALLOC_NO_WATERMARKS;
4561 		else if (oom_reserves_allowed(current))
4562 			return ALLOC_OOM;
4563 	}
4564 
4565 	return 0;
4566 }
4567 
4568 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4569 {
4570 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4571 }
4572 
4573 /*
4574  * Checks whether it makes sense to retry the reclaim to make a forward progress
4575  * for the given allocation request.
4576  *
4577  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4578  * without success, or when we couldn't even meet the watermark if we
4579  * reclaimed all remaining pages on the LRU lists.
4580  *
4581  * Returns true if a retry is viable or false to enter the oom path.
4582  */
4583 static inline bool
4584 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4585 		     struct alloc_context *ac, int alloc_flags,
4586 		     bool did_some_progress, int *no_progress_loops)
4587 {
4588 	struct zone *zone;
4589 	struct zoneref *z;
4590 	bool ret = false;
4591 
4592 	/*
4593 	 * Costly allocations might have made a progress but this doesn't mean
4594 	 * their order will become available due to high fragmentation so
4595 	 * always increment the no progress counter for them
4596 	 */
4597 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4598 		*no_progress_loops = 0;
4599 	else
4600 		(*no_progress_loops)++;
4601 
4602 	/*
4603 	 * Make sure we converge to OOM if we cannot make any progress
4604 	 * several times in the row.
4605 	 */
4606 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4607 		/* Before OOM, exhaust highatomic_reserve */
4608 		return unreserve_highatomic_pageblock(ac, true);
4609 	}
4610 
4611 	/*
4612 	 * Keep reclaiming pages while there is a chance this will lead
4613 	 * somewhere.  If none of the target zones can satisfy our allocation
4614 	 * request even if all reclaimable pages are considered then we are
4615 	 * screwed and have to go OOM.
4616 	 */
4617 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4618 				ac->highest_zoneidx, ac->nodemask) {
4619 		unsigned long available;
4620 		unsigned long reclaimable;
4621 		unsigned long min_wmark = min_wmark_pages(zone);
4622 		bool wmark;
4623 
4624 		available = reclaimable = zone_reclaimable_pages(zone);
4625 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4626 
4627 		/*
4628 		 * Would the allocation succeed if we reclaimed all
4629 		 * reclaimable pages?
4630 		 */
4631 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4632 				ac->highest_zoneidx, alloc_flags, available);
4633 		trace_reclaim_retry_zone(z, order, reclaimable,
4634 				available, min_wmark, *no_progress_loops, wmark);
4635 		if (wmark) {
4636 			/*
4637 			 * If we didn't make any progress and have a lot of
4638 			 * dirty + writeback pages then we should wait for
4639 			 * an IO to complete to slow down the reclaim and
4640 			 * prevent from pre mature OOM
4641 			 */
4642 			if (!did_some_progress) {
4643 				unsigned long write_pending;
4644 
4645 				write_pending = zone_page_state_snapshot(zone,
4646 							NR_ZONE_WRITE_PENDING);
4647 
4648 				if (2 * write_pending > reclaimable) {
4649 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4650 					return true;
4651 				}
4652 			}
4653 
4654 			ret = true;
4655 			goto out;
4656 		}
4657 	}
4658 
4659 out:
4660 	/*
4661 	 * Memory allocation/reclaim might be called from a WQ context and the
4662 	 * current implementation of the WQ concurrency control doesn't
4663 	 * recognize that a particular WQ is congested if the worker thread is
4664 	 * looping without ever sleeping. Therefore we have to do a short sleep
4665 	 * here rather than calling cond_resched().
4666 	 */
4667 	if (current->flags & PF_WQ_WORKER)
4668 		schedule_timeout_uninterruptible(1);
4669 	else
4670 		cond_resched();
4671 	return ret;
4672 }
4673 
4674 static inline bool
4675 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4676 {
4677 	/*
4678 	 * It's possible that cpuset's mems_allowed and the nodemask from
4679 	 * mempolicy don't intersect. This should be normally dealt with by
4680 	 * policy_nodemask(), but it's possible to race with cpuset update in
4681 	 * such a way the check therein was true, and then it became false
4682 	 * before we got our cpuset_mems_cookie here.
4683 	 * This assumes that for all allocations, ac->nodemask can come only
4684 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4685 	 * when it does not intersect with the cpuset restrictions) or the
4686 	 * caller can deal with a violated nodemask.
4687 	 */
4688 	if (cpusets_enabled() && ac->nodemask &&
4689 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4690 		ac->nodemask = NULL;
4691 		return true;
4692 	}
4693 
4694 	/*
4695 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4696 	 * possible to race with parallel threads in such a way that our
4697 	 * allocation can fail while the mask is being updated. If we are about
4698 	 * to fail, check if the cpuset changed during allocation and if so,
4699 	 * retry.
4700 	 */
4701 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4702 		return true;
4703 
4704 	return false;
4705 }
4706 
4707 static inline struct page *
4708 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4709 						struct alloc_context *ac)
4710 {
4711 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4712 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4713 	struct page *page = NULL;
4714 	unsigned int alloc_flags;
4715 	unsigned long did_some_progress;
4716 	enum compact_priority compact_priority;
4717 	enum compact_result compact_result;
4718 	int compaction_retries;
4719 	int no_progress_loops;
4720 	unsigned int cpuset_mems_cookie;
4721 	int reserve_flags;
4722 
4723 	/*
4724 	 * We also sanity check to catch abuse of atomic reserves being used by
4725 	 * callers that are not in atomic context.
4726 	 */
4727 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4728 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4729 		gfp_mask &= ~__GFP_ATOMIC;
4730 
4731 retry_cpuset:
4732 	compaction_retries = 0;
4733 	no_progress_loops = 0;
4734 	compact_priority = DEF_COMPACT_PRIORITY;
4735 	cpuset_mems_cookie = read_mems_allowed_begin();
4736 
4737 	/*
4738 	 * The fast path uses conservative alloc_flags to succeed only until
4739 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4740 	 * alloc_flags precisely. So we do that now.
4741 	 */
4742 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4743 
4744 	/*
4745 	 * We need to recalculate the starting point for the zonelist iterator
4746 	 * because we might have used different nodemask in the fast path, or
4747 	 * there was a cpuset modification and we are retrying - otherwise we
4748 	 * could end up iterating over non-eligible zones endlessly.
4749 	 */
4750 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4751 					ac->highest_zoneidx, ac->nodemask);
4752 	if (!ac->preferred_zoneref->zone)
4753 		goto nopage;
4754 
4755 	if (alloc_flags & ALLOC_KSWAPD)
4756 		wake_all_kswapds(order, gfp_mask, ac);
4757 
4758 	/*
4759 	 * The adjusted alloc_flags might result in immediate success, so try
4760 	 * that first
4761 	 */
4762 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4763 	if (page)
4764 		goto got_pg;
4765 
4766 	/*
4767 	 * For costly allocations, try direct compaction first, as it's likely
4768 	 * that we have enough base pages and don't need to reclaim. For non-
4769 	 * movable high-order allocations, do that as well, as compaction will
4770 	 * try prevent permanent fragmentation by migrating from blocks of the
4771 	 * same migratetype.
4772 	 * Don't try this for allocations that are allowed to ignore
4773 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4774 	 */
4775 	if (can_direct_reclaim &&
4776 			(costly_order ||
4777 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4778 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4779 		page = __alloc_pages_direct_compact(gfp_mask, order,
4780 						alloc_flags, ac,
4781 						INIT_COMPACT_PRIORITY,
4782 						&compact_result);
4783 		if (page)
4784 			goto got_pg;
4785 
4786 		/*
4787 		 * Checks for costly allocations with __GFP_NORETRY, which
4788 		 * includes some THP page fault allocations
4789 		 */
4790 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4791 			/*
4792 			 * If allocating entire pageblock(s) and compaction
4793 			 * failed because all zones are below low watermarks
4794 			 * or is prohibited because it recently failed at this
4795 			 * order, fail immediately unless the allocator has
4796 			 * requested compaction and reclaim retry.
4797 			 *
4798 			 * Reclaim is
4799 			 *  - potentially very expensive because zones are far
4800 			 *    below their low watermarks or this is part of very
4801 			 *    bursty high order allocations,
4802 			 *  - not guaranteed to help because isolate_freepages()
4803 			 *    may not iterate over freed pages as part of its
4804 			 *    linear scan, and
4805 			 *  - unlikely to make entire pageblocks free on its
4806 			 *    own.
4807 			 */
4808 			if (compact_result == COMPACT_SKIPPED ||
4809 			    compact_result == COMPACT_DEFERRED)
4810 				goto nopage;
4811 
4812 			/*
4813 			 * Looks like reclaim/compaction is worth trying, but
4814 			 * sync compaction could be very expensive, so keep
4815 			 * using async compaction.
4816 			 */
4817 			compact_priority = INIT_COMPACT_PRIORITY;
4818 		}
4819 	}
4820 
4821 retry:
4822 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4823 	if (alloc_flags & ALLOC_KSWAPD)
4824 		wake_all_kswapds(order, gfp_mask, ac);
4825 
4826 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4827 	if (reserve_flags)
4828 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4829 
4830 	/*
4831 	 * Reset the nodemask and zonelist iterators if memory policies can be
4832 	 * ignored. These allocations are high priority and system rather than
4833 	 * user oriented.
4834 	 */
4835 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4836 		ac->nodemask = NULL;
4837 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4838 					ac->highest_zoneidx, ac->nodemask);
4839 	}
4840 
4841 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4842 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4843 	if (page)
4844 		goto got_pg;
4845 
4846 	/* Caller is not willing to reclaim, we can't balance anything */
4847 	if (!can_direct_reclaim)
4848 		goto nopage;
4849 
4850 	/* Avoid recursion of direct reclaim */
4851 	if (current->flags & PF_MEMALLOC)
4852 		goto nopage;
4853 
4854 	/* Try direct reclaim and then allocating */
4855 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4856 							&did_some_progress);
4857 	if (page)
4858 		goto got_pg;
4859 
4860 	/* Try direct compaction and then allocating */
4861 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4862 					compact_priority, &compact_result);
4863 	if (page)
4864 		goto got_pg;
4865 
4866 	/* Do not loop if specifically requested */
4867 	if (gfp_mask & __GFP_NORETRY)
4868 		goto nopage;
4869 
4870 	/*
4871 	 * Do not retry costly high order allocations unless they are
4872 	 * __GFP_RETRY_MAYFAIL
4873 	 */
4874 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4875 		goto nopage;
4876 
4877 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4878 				 did_some_progress > 0, &no_progress_loops))
4879 		goto retry;
4880 
4881 	/*
4882 	 * It doesn't make any sense to retry for the compaction if the order-0
4883 	 * reclaim is not able to make any progress because the current
4884 	 * implementation of the compaction depends on the sufficient amount
4885 	 * of free memory (see __compaction_suitable)
4886 	 */
4887 	if (did_some_progress > 0 &&
4888 			should_compact_retry(ac, order, alloc_flags,
4889 				compact_result, &compact_priority,
4890 				&compaction_retries))
4891 		goto retry;
4892 
4893 
4894 	/* Deal with possible cpuset update races before we start OOM killing */
4895 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4896 		goto retry_cpuset;
4897 
4898 	/* Reclaim has failed us, start killing things */
4899 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4900 	if (page)
4901 		goto got_pg;
4902 
4903 	/* Avoid allocations with no watermarks from looping endlessly */
4904 	if (tsk_is_oom_victim(current) &&
4905 	    (alloc_flags & ALLOC_OOM ||
4906 	     (gfp_mask & __GFP_NOMEMALLOC)))
4907 		goto nopage;
4908 
4909 	/* Retry as long as the OOM killer is making progress */
4910 	if (did_some_progress) {
4911 		no_progress_loops = 0;
4912 		goto retry;
4913 	}
4914 
4915 nopage:
4916 	/* Deal with possible cpuset update races before we fail */
4917 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4918 		goto retry_cpuset;
4919 
4920 	/*
4921 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4922 	 * we always retry
4923 	 */
4924 	if (gfp_mask & __GFP_NOFAIL) {
4925 		/*
4926 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4927 		 * of any new users that actually require GFP_NOWAIT
4928 		 */
4929 		if (WARN_ON_ONCE(!can_direct_reclaim))
4930 			goto fail;
4931 
4932 		/*
4933 		 * PF_MEMALLOC request from this context is rather bizarre
4934 		 * because we cannot reclaim anything and only can loop waiting
4935 		 * for somebody to do a work for us
4936 		 */
4937 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4938 
4939 		/*
4940 		 * non failing costly orders are a hard requirement which we
4941 		 * are not prepared for much so let's warn about these users
4942 		 * so that we can identify them and convert them to something
4943 		 * else.
4944 		 */
4945 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4946 
4947 		/*
4948 		 * Help non-failing allocations by giving them access to memory
4949 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4950 		 * could deplete whole memory reserves which would just make
4951 		 * the situation worse
4952 		 */
4953 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4954 		if (page)
4955 			goto got_pg;
4956 
4957 		cond_resched();
4958 		goto retry;
4959 	}
4960 fail:
4961 	warn_alloc(gfp_mask, ac->nodemask,
4962 			"page allocation failure: order:%u", order);
4963 got_pg:
4964 	return page;
4965 }
4966 
4967 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4968 		int preferred_nid, nodemask_t *nodemask,
4969 		struct alloc_context *ac, gfp_t *alloc_gfp,
4970 		unsigned int *alloc_flags)
4971 {
4972 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4973 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4974 	ac->nodemask = nodemask;
4975 	ac->migratetype = gfp_migratetype(gfp_mask);
4976 
4977 	if (cpusets_enabled()) {
4978 		*alloc_gfp |= __GFP_HARDWALL;
4979 		/*
4980 		 * When we are in the interrupt context, it is irrelevant
4981 		 * to the current task context. It means that any node ok.
4982 		 */
4983 		if (!in_interrupt() && !ac->nodemask)
4984 			ac->nodemask = &cpuset_current_mems_allowed;
4985 		else
4986 			*alloc_flags |= ALLOC_CPUSET;
4987 	}
4988 
4989 	fs_reclaim_acquire(gfp_mask);
4990 	fs_reclaim_release(gfp_mask);
4991 
4992 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4993 
4994 	if (should_fail_alloc_page(gfp_mask, order))
4995 		return false;
4996 
4997 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4998 
4999 	/* Dirty zone balancing only done in the fast path */
5000 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5001 
5002 	/*
5003 	 * The preferred zone is used for statistics but crucially it is
5004 	 * also used as the starting point for the zonelist iterator. It
5005 	 * may get reset for allocations that ignore memory policies.
5006 	 */
5007 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5008 					ac->highest_zoneidx, ac->nodemask);
5009 
5010 	return true;
5011 }
5012 
5013 /*
5014  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5015  * @gfp: GFP flags for the allocation
5016  * @preferred_nid: The preferred NUMA node ID to allocate from
5017  * @nodemask: Set of nodes to allocate from, may be NULL
5018  * @nr_pages: The number of pages desired on the list or array
5019  * @page_list: Optional list to store the allocated pages
5020  * @page_array: Optional array to store the pages
5021  *
5022  * This is a batched version of the page allocator that attempts to
5023  * allocate nr_pages quickly. Pages are added to page_list if page_list
5024  * is not NULL, otherwise it is assumed that the page_array is valid.
5025  *
5026  * For lists, nr_pages is the number of pages that should be allocated.
5027  *
5028  * For arrays, only NULL elements are populated with pages and nr_pages
5029  * is the maximum number of pages that will be stored in the array.
5030  *
5031  * Returns the number of pages on the list or array.
5032  */
5033 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5034 			nodemask_t *nodemask, int nr_pages,
5035 			struct list_head *page_list,
5036 			struct page **page_array)
5037 {
5038 	struct page *page;
5039 	unsigned long flags;
5040 	struct zone *zone;
5041 	struct zoneref *z;
5042 	struct per_cpu_pages *pcp;
5043 	struct list_head *pcp_list;
5044 	struct alloc_context ac;
5045 	gfp_t alloc_gfp;
5046 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5047 	int nr_populated = 0;
5048 
5049 	if (unlikely(nr_pages <= 0))
5050 		return 0;
5051 
5052 	/*
5053 	 * Skip populated array elements to determine if any pages need
5054 	 * to be allocated before disabling IRQs.
5055 	 */
5056 	while (page_array && page_array[nr_populated] && nr_populated < nr_pages)
5057 		nr_populated++;
5058 
5059 	/* Use the single page allocator for one page. */
5060 	if (nr_pages - nr_populated == 1)
5061 		goto failed;
5062 
5063 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5064 	gfp &= gfp_allowed_mask;
5065 	alloc_gfp = gfp;
5066 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5067 		return 0;
5068 	gfp = alloc_gfp;
5069 
5070 	/* Find an allowed local zone that meets the low watermark. */
5071 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5072 		unsigned long mark;
5073 
5074 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5075 		    !__cpuset_zone_allowed(zone, gfp)) {
5076 			continue;
5077 		}
5078 
5079 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5080 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5081 			goto failed;
5082 		}
5083 
5084 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5085 		if (zone_watermark_fast(zone, 0,  mark,
5086 				zonelist_zone_idx(ac.preferred_zoneref),
5087 				alloc_flags, gfp)) {
5088 			break;
5089 		}
5090 	}
5091 
5092 	/*
5093 	 * If there are no allowed local zones that meets the watermarks then
5094 	 * try to allocate a single page and reclaim if necessary.
5095 	 */
5096 	if (unlikely(!zone))
5097 		goto failed;
5098 
5099 	/* Attempt the batch allocation */
5100 	local_irq_save(flags);
5101 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
5102 	pcp_list = &pcp->lists[ac.migratetype];
5103 
5104 	while (nr_populated < nr_pages) {
5105 
5106 		/* Skip existing pages */
5107 		if (page_array && page_array[nr_populated]) {
5108 			nr_populated++;
5109 			continue;
5110 		}
5111 
5112 		page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5113 								pcp, pcp_list);
5114 		if (unlikely(!page)) {
5115 			/* Try and get at least one page */
5116 			if (!nr_populated)
5117 				goto failed_irq;
5118 			break;
5119 		}
5120 
5121 		/*
5122 		 * Ideally this would be batched but the best way to do
5123 		 * that cheaply is to first convert zone_statistics to
5124 		 * be inaccurate per-cpu counter like vm_events to avoid
5125 		 * a RMW cycle then do the accounting with IRQs enabled.
5126 		 */
5127 		__count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5128 		zone_statistics(ac.preferred_zoneref->zone, zone);
5129 
5130 		prep_new_page(page, 0, gfp, 0);
5131 		if (page_list)
5132 			list_add(&page->lru, page_list);
5133 		else
5134 			page_array[nr_populated] = page;
5135 		nr_populated++;
5136 	}
5137 
5138 	local_irq_restore(flags);
5139 
5140 	return nr_populated;
5141 
5142 failed_irq:
5143 	local_irq_restore(flags);
5144 
5145 failed:
5146 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5147 	if (page) {
5148 		if (page_list)
5149 			list_add(&page->lru, page_list);
5150 		else
5151 			page_array[nr_populated] = page;
5152 		nr_populated++;
5153 	}
5154 
5155 	return nr_populated;
5156 }
5157 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5158 
5159 /*
5160  * This is the 'heart' of the zoned buddy allocator.
5161  */
5162 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5163 							nodemask_t *nodemask)
5164 {
5165 	struct page *page;
5166 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5167 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5168 	struct alloc_context ac = { };
5169 
5170 	/*
5171 	 * There are several places where we assume that the order value is sane
5172 	 * so bail out early if the request is out of bound.
5173 	 */
5174 	if (unlikely(order >= MAX_ORDER)) {
5175 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5176 		return NULL;
5177 	}
5178 
5179 	gfp &= gfp_allowed_mask;
5180 	/*
5181 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5182 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5183 	 * from a particular context which has been marked by
5184 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5185 	 * movable zones are not used during allocation.
5186 	 */
5187 	gfp = current_gfp_context(gfp);
5188 	alloc_gfp = gfp;
5189 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5190 			&alloc_gfp, &alloc_flags))
5191 		return NULL;
5192 
5193 	/*
5194 	 * Forbid the first pass from falling back to types that fragment
5195 	 * memory until all local zones are considered.
5196 	 */
5197 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5198 
5199 	/* First allocation attempt */
5200 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5201 	if (likely(page))
5202 		goto out;
5203 
5204 	alloc_gfp = gfp;
5205 	ac.spread_dirty_pages = false;
5206 
5207 	/*
5208 	 * Restore the original nodemask if it was potentially replaced with
5209 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5210 	 */
5211 	ac.nodemask = nodemask;
5212 
5213 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5214 
5215 out:
5216 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5217 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5218 		__free_pages(page, order);
5219 		page = NULL;
5220 	}
5221 
5222 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5223 
5224 	return page;
5225 }
5226 EXPORT_SYMBOL(__alloc_pages);
5227 
5228 /*
5229  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5230  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5231  * you need to access high mem.
5232  */
5233 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5234 {
5235 	struct page *page;
5236 
5237 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5238 	if (!page)
5239 		return 0;
5240 	return (unsigned long) page_address(page);
5241 }
5242 EXPORT_SYMBOL(__get_free_pages);
5243 
5244 unsigned long get_zeroed_page(gfp_t gfp_mask)
5245 {
5246 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5247 }
5248 EXPORT_SYMBOL(get_zeroed_page);
5249 
5250 static inline void free_the_page(struct page *page, unsigned int order)
5251 {
5252 	if (order == 0)		/* Via pcp? */
5253 		free_unref_page(page);
5254 	else
5255 		__free_pages_ok(page, order, FPI_NONE);
5256 }
5257 
5258 /**
5259  * __free_pages - Free pages allocated with alloc_pages().
5260  * @page: The page pointer returned from alloc_pages().
5261  * @order: The order of the allocation.
5262  *
5263  * This function can free multi-page allocations that are not compound
5264  * pages.  It does not check that the @order passed in matches that of
5265  * the allocation, so it is easy to leak memory.  Freeing more memory
5266  * than was allocated will probably emit a warning.
5267  *
5268  * If the last reference to this page is speculative, it will be released
5269  * by put_page() which only frees the first page of a non-compound
5270  * allocation.  To prevent the remaining pages from being leaked, we free
5271  * the subsequent pages here.  If you want to use the page's reference
5272  * count to decide when to free the allocation, you should allocate a
5273  * compound page, and use put_page() instead of __free_pages().
5274  *
5275  * Context: May be called in interrupt context or while holding a normal
5276  * spinlock, but not in NMI context or while holding a raw spinlock.
5277  */
5278 void __free_pages(struct page *page, unsigned int order)
5279 {
5280 	if (put_page_testzero(page))
5281 		free_the_page(page, order);
5282 	else if (!PageHead(page))
5283 		while (order-- > 0)
5284 			free_the_page(page + (1 << order), order);
5285 }
5286 EXPORT_SYMBOL(__free_pages);
5287 
5288 void free_pages(unsigned long addr, unsigned int order)
5289 {
5290 	if (addr != 0) {
5291 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5292 		__free_pages(virt_to_page((void *)addr), order);
5293 	}
5294 }
5295 
5296 EXPORT_SYMBOL(free_pages);
5297 
5298 /*
5299  * Page Fragment:
5300  *  An arbitrary-length arbitrary-offset area of memory which resides
5301  *  within a 0 or higher order page.  Multiple fragments within that page
5302  *  are individually refcounted, in the page's reference counter.
5303  *
5304  * The page_frag functions below provide a simple allocation framework for
5305  * page fragments.  This is used by the network stack and network device
5306  * drivers to provide a backing region of memory for use as either an
5307  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5308  */
5309 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5310 					     gfp_t gfp_mask)
5311 {
5312 	struct page *page = NULL;
5313 	gfp_t gfp = gfp_mask;
5314 
5315 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5316 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5317 		    __GFP_NOMEMALLOC;
5318 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5319 				PAGE_FRAG_CACHE_MAX_ORDER);
5320 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5321 #endif
5322 	if (unlikely(!page))
5323 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5324 
5325 	nc->va = page ? page_address(page) : NULL;
5326 
5327 	return page;
5328 }
5329 
5330 void __page_frag_cache_drain(struct page *page, unsigned int count)
5331 {
5332 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5333 
5334 	if (page_ref_sub_and_test(page, count))
5335 		free_the_page(page, compound_order(page));
5336 }
5337 EXPORT_SYMBOL(__page_frag_cache_drain);
5338 
5339 void *page_frag_alloc_align(struct page_frag_cache *nc,
5340 		      unsigned int fragsz, gfp_t gfp_mask,
5341 		      unsigned int align_mask)
5342 {
5343 	unsigned int size = PAGE_SIZE;
5344 	struct page *page;
5345 	int offset;
5346 
5347 	if (unlikely(!nc->va)) {
5348 refill:
5349 		page = __page_frag_cache_refill(nc, gfp_mask);
5350 		if (!page)
5351 			return NULL;
5352 
5353 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5354 		/* if size can vary use size else just use PAGE_SIZE */
5355 		size = nc->size;
5356 #endif
5357 		/* Even if we own the page, we do not use atomic_set().
5358 		 * This would break get_page_unless_zero() users.
5359 		 */
5360 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5361 
5362 		/* reset page count bias and offset to start of new frag */
5363 		nc->pfmemalloc = page_is_pfmemalloc(page);
5364 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5365 		nc->offset = size;
5366 	}
5367 
5368 	offset = nc->offset - fragsz;
5369 	if (unlikely(offset < 0)) {
5370 		page = virt_to_page(nc->va);
5371 
5372 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5373 			goto refill;
5374 
5375 		if (unlikely(nc->pfmemalloc)) {
5376 			free_the_page(page, compound_order(page));
5377 			goto refill;
5378 		}
5379 
5380 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5381 		/* if size can vary use size else just use PAGE_SIZE */
5382 		size = nc->size;
5383 #endif
5384 		/* OK, page count is 0, we can safely set it */
5385 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5386 
5387 		/* reset page count bias and offset to start of new frag */
5388 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5389 		offset = size - fragsz;
5390 	}
5391 
5392 	nc->pagecnt_bias--;
5393 	offset &= align_mask;
5394 	nc->offset = offset;
5395 
5396 	return nc->va + offset;
5397 }
5398 EXPORT_SYMBOL(page_frag_alloc_align);
5399 
5400 /*
5401  * Frees a page fragment allocated out of either a compound or order 0 page.
5402  */
5403 void page_frag_free(void *addr)
5404 {
5405 	struct page *page = virt_to_head_page(addr);
5406 
5407 	if (unlikely(put_page_testzero(page)))
5408 		free_the_page(page, compound_order(page));
5409 }
5410 EXPORT_SYMBOL(page_frag_free);
5411 
5412 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5413 		size_t size)
5414 {
5415 	if (addr) {
5416 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5417 		unsigned long used = addr + PAGE_ALIGN(size);
5418 
5419 		split_page(virt_to_page((void *)addr), order);
5420 		while (used < alloc_end) {
5421 			free_page(used);
5422 			used += PAGE_SIZE;
5423 		}
5424 	}
5425 	return (void *)addr;
5426 }
5427 
5428 /**
5429  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5430  * @size: the number of bytes to allocate
5431  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5432  *
5433  * This function is similar to alloc_pages(), except that it allocates the
5434  * minimum number of pages to satisfy the request.  alloc_pages() can only
5435  * allocate memory in power-of-two pages.
5436  *
5437  * This function is also limited by MAX_ORDER.
5438  *
5439  * Memory allocated by this function must be released by free_pages_exact().
5440  *
5441  * Return: pointer to the allocated area or %NULL in case of error.
5442  */
5443 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5444 {
5445 	unsigned int order = get_order(size);
5446 	unsigned long addr;
5447 
5448 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5449 		gfp_mask &= ~__GFP_COMP;
5450 
5451 	addr = __get_free_pages(gfp_mask, order);
5452 	return make_alloc_exact(addr, order, size);
5453 }
5454 EXPORT_SYMBOL(alloc_pages_exact);
5455 
5456 /**
5457  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5458  *			   pages on a node.
5459  * @nid: the preferred node ID where memory should be allocated
5460  * @size: the number of bytes to allocate
5461  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5462  *
5463  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5464  * back.
5465  *
5466  * Return: pointer to the allocated area or %NULL in case of error.
5467  */
5468 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5469 {
5470 	unsigned int order = get_order(size);
5471 	struct page *p;
5472 
5473 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5474 		gfp_mask &= ~__GFP_COMP;
5475 
5476 	p = alloc_pages_node(nid, gfp_mask, order);
5477 	if (!p)
5478 		return NULL;
5479 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5480 }
5481 
5482 /**
5483  * free_pages_exact - release memory allocated via alloc_pages_exact()
5484  * @virt: the value returned by alloc_pages_exact.
5485  * @size: size of allocation, same value as passed to alloc_pages_exact().
5486  *
5487  * Release the memory allocated by a previous call to alloc_pages_exact.
5488  */
5489 void free_pages_exact(void *virt, size_t size)
5490 {
5491 	unsigned long addr = (unsigned long)virt;
5492 	unsigned long end = addr + PAGE_ALIGN(size);
5493 
5494 	while (addr < end) {
5495 		free_page(addr);
5496 		addr += PAGE_SIZE;
5497 	}
5498 }
5499 EXPORT_SYMBOL(free_pages_exact);
5500 
5501 /**
5502  * nr_free_zone_pages - count number of pages beyond high watermark
5503  * @offset: The zone index of the highest zone
5504  *
5505  * nr_free_zone_pages() counts the number of pages which are beyond the
5506  * high watermark within all zones at or below a given zone index.  For each
5507  * zone, the number of pages is calculated as:
5508  *
5509  *     nr_free_zone_pages = managed_pages - high_pages
5510  *
5511  * Return: number of pages beyond high watermark.
5512  */
5513 static unsigned long nr_free_zone_pages(int offset)
5514 {
5515 	struct zoneref *z;
5516 	struct zone *zone;
5517 
5518 	/* Just pick one node, since fallback list is circular */
5519 	unsigned long sum = 0;
5520 
5521 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5522 
5523 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5524 		unsigned long size = zone_managed_pages(zone);
5525 		unsigned long high = high_wmark_pages(zone);
5526 		if (size > high)
5527 			sum += size - high;
5528 	}
5529 
5530 	return sum;
5531 }
5532 
5533 /**
5534  * nr_free_buffer_pages - count number of pages beyond high watermark
5535  *
5536  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5537  * watermark within ZONE_DMA and ZONE_NORMAL.
5538  *
5539  * Return: number of pages beyond high watermark within ZONE_DMA and
5540  * ZONE_NORMAL.
5541  */
5542 unsigned long nr_free_buffer_pages(void)
5543 {
5544 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5545 }
5546 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5547 
5548 static inline void show_node(struct zone *zone)
5549 {
5550 	if (IS_ENABLED(CONFIG_NUMA))
5551 		printk("Node %d ", zone_to_nid(zone));
5552 }
5553 
5554 long si_mem_available(void)
5555 {
5556 	long available;
5557 	unsigned long pagecache;
5558 	unsigned long wmark_low = 0;
5559 	unsigned long pages[NR_LRU_LISTS];
5560 	unsigned long reclaimable;
5561 	struct zone *zone;
5562 	int lru;
5563 
5564 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5565 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5566 
5567 	for_each_zone(zone)
5568 		wmark_low += low_wmark_pages(zone);
5569 
5570 	/*
5571 	 * Estimate the amount of memory available for userspace allocations,
5572 	 * without causing swapping.
5573 	 */
5574 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5575 
5576 	/*
5577 	 * Not all the page cache can be freed, otherwise the system will
5578 	 * start swapping. Assume at least half of the page cache, or the
5579 	 * low watermark worth of cache, needs to stay.
5580 	 */
5581 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5582 	pagecache -= min(pagecache / 2, wmark_low);
5583 	available += pagecache;
5584 
5585 	/*
5586 	 * Part of the reclaimable slab and other kernel memory consists of
5587 	 * items that are in use, and cannot be freed. Cap this estimate at the
5588 	 * low watermark.
5589 	 */
5590 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5591 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5592 	available += reclaimable - min(reclaimable / 2, wmark_low);
5593 
5594 	if (available < 0)
5595 		available = 0;
5596 	return available;
5597 }
5598 EXPORT_SYMBOL_GPL(si_mem_available);
5599 
5600 void si_meminfo(struct sysinfo *val)
5601 {
5602 	val->totalram = totalram_pages();
5603 	val->sharedram = global_node_page_state(NR_SHMEM);
5604 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5605 	val->bufferram = nr_blockdev_pages();
5606 	val->totalhigh = totalhigh_pages();
5607 	val->freehigh = nr_free_highpages();
5608 	val->mem_unit = PAGE_SIZE;
5609 }
5610 
5611 EXPORT_SYMBOL(si_meminfo);
5612 
5613 #ifdef CONFIG_NUMA
5614 void si_meminfo_node(struct sysinfo *val, int nid)
5615 {
5616 	int zone_type;		/* needs to be signed */
5617 	unsigned long managed_pages = 0;
5618 	unsigned long managed_highpages = 0;
5619 	unsigned long free_highpages = 0;
5620 	pg_data_t *pgdat = NODE_DATA(nid);
5621 
5622 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5623 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5624 	val->totalram = managed_pages;
5625 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5626 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5627 #ifdef CONFIG_HIGHMEM
5628 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5629 		struct zone *zone = &pgdat->node_zones[zone_type];
5630 
5631 		if (is_highmem(zone)) {
5632 			managed_highpages += zone_managed_pages(zone);
5633 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5634 		}
5635 	}
5636 	val->totalhigh = managed_highpages;
5637 	val->freehigh = free_highpages;
5638 #else
5639 	val->totalhigh = managed_highpages;
5640 	val->freehigh = free_highpages;
5641 #endif
5642 	val->mem_unit = PAGE_SIZE;
5643 }
5644 #endif
5645 
5646 /*
5647  * Determine whether the node should be displayed or not, depending on whether
5648  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5649  */
5650 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5651 {
5652 	if (!(flags & SHOW_MEM_FILTER_NODES))
5653 		return false;
5654 
5655 	/*
5656 	 * no node mask - aka implicit memory numa policy. Do not bother with
5657 	 * the synchronization - read_mems_allowed_begin - because we do not
5658 	 * have to be precise here.
5659 	 */
5660 	if (!nodemask)
5661 		nodemask = &cpuset_current_mems_allowed;
5662 
5663 	return !node_isset(nid, *nodemask);
5664 }
5665 
5666 #define K(x) ((x) << (PAGE_SHIFT-10))
5667 
5668 static void show_migration_types(unsigned char type)
5669 {
5670 	static const char types[MIGRATE_TYPES] = {
5671 		[MIGRATE_UNMOVABLE]	= 'U',
5672 		[MIGRATE_MOVABLE]	= 'M',
5673 		[MIGRATE_RECLAIMABLE]	= 'E',
5674 		[MIGRATE_HIGHATOMIC]	= 'H',
5675 #ifdef CONFIG_CMA
5676 		[MIGRATE_CMA]		= 'C',
5677 #endif
5678 #ifdef CONFIG_MEMORY_ISOLATION
5679 		[MIGRATE_ISOLATE]	= 'I',
5680 #endif
5681 	};
5682 	char tmp[MIGRATE_TYPES + 1];
5683 	char *p = tmp;
5684 	int i;
5685 
5686 	for (i = 0; i < MIGRATE_TYPES; i++) {
5687 		if (type & (1 << i))
5688 			*p++ = types[i];
5689 	}
5690 
5691 	*p = '\0';
5692 	printk(KERN_CONT "(%s) ", tmp);
5693 }
5694 
5695 /*
5696  * Show free area list (used inside shift_scroll-lock stuff)
5697  * We also calculate the percentage fragmentation. We do this by counting the
5698  * memory on each free list with the exception of the first item on the list.
5699  *
5700  * Bits in @filter:
5701  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5702  *   cpuset.
5703  */
5704 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5705 {
5706 	unsigned long free_pcp = 0;
5707 	int cpu;
5708 	struct zone *zone;
5709 	pg_data_t *pgdat;
5710 
5711 	for_each_populated_zone(zone) {
5712 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5713 			continue;
5714 
5715 		for_each_online_cpu(cpu)
5716 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5717 	}
5718 
5719 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5720 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5721 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5722 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5723 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5724 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5725 		global_node_page_state(NR_ACTIVE_ANON),
5726 		global_node_page_state(NR_INACTIVE_ANON),
5727 		global_node_page_state(NR_ISOLATED_ANON),
5728 		global_node_page_state(NR_ACTIVE_FILE),
5729 		global_node_page_state(NR_INACTIVE_FILE),
5730 		global_node_page_state(NR_ISOLATED_FILE),
5731 		global_node_page_state(NR_UNEVICTABLE),
5732 		global_node_page_state(NR_FILE_DIRTY),
5733 		global_node_page_state(NR_WRITEBACK),
5734 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5735 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5736 		global_node_page_state(NR_FILE_MAPPED),
5737 		global_node_page_state(NR_SHMEM),
5738 		global_node_page_state(NR_PAGETABLE),
5739 		global_zone_page_state(NR_BOUNCE),
5740 		global_zone_page_state(NR_FREE_PAGES),
5741 		free_pcp,
5742 		global_zone_page_state(NR_FREE_CMA_PAGES));
5743 
5744 	for_each_online_pgdat(pgdat) {
5745 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5746 			continue;
5747 
5748 		printk("Node %d"
5749 			" active_anon:%lukB"
5750 			" inactive_anon:%lukB"
5751 			" active_file:%lukB"
5752 			" inactive_file:%lukB"
5753 			" unevictable:%lukB"
5754 			" isolated(anon):%lukB"
5755 			" isolated(file):%lukB"
5756 			" mapped:%lukB"
5757 			" dirty:%lukB"
5758 			" writeback:%lukB"
5759 			" shmem:%lukB"
5760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5761 			" shmem_thp: %lukB"
5762 			" shmem_pmdmapped: %lukB"
5763 			" anon_thp: %lukB"
5764 #endif
5765 			" writeback_tmp:%lukB"
5766 			" kernel_stack:%lukB"
5767 #ifdef CONFIG_SHADOW_CALL_STACK
5768 			" shadow_call_stack:%lukB"
5769 #endif
5770 			" pagetables:%lukB"
5771 			" all_unreclaimable? %s"
5772 			"\n",
5773 			pgdat->node_id,
5774 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5775 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5776 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5777 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5778 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5779 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5780 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5781 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5782 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5783 			K(node_page_state(pgdat, NR_WRITEBACK)),
5784 			K(node_page_state(pgdat, NR_SHMEM)),
5785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5786 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5787 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5788 			K(node_page_state(pgdat, NR_ANON_THPS)),
5789 #endif
5790 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5791 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5792 #ifdef CONFIG_SHADOW_CALL_STACK
5793 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5794 #endif
5795 			K(node_page_state(pgdat, NR_PAGETABLE)),
5796 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5797 				"yes" : "no");
5798 	}
5799 
5800 	for_each_populated_zone(zone) {
5801 		int i;
5802 
5803 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5804 			continue;
5805 
5806 		free_pcp = 0;
5807 		for_each_online_cpu(cpu)
5808 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5809 
5810 		show_node(zone);
5811 		printk(KERN_CONT
5812 			"%s"
5813 			" free:%lukB"
5814 			" min:%lukB"
5815 			" low:%lukB"
5816 			" high:%lukB"
5817 			" reserved_highatomic:%luKB"
5818 			" active_anon:%lukB"
5819 			" inactive_anon:%lukB"
5820 			" active_file:%lukB"
5821 			" inactive_file:%lukB"
5822 			" unevictable:%lukB"
5823 			" writepending:%lukB"
5824 			" present:%lukB"
5825 			" managed:%lukB"
5826 			" mlocked:%lukB"
5827 			" bounce:%lukB"
5828 			" free_pcp:%lukB"
5829 			" local_pcp:%ukB"
5830 			" free_cma:%lukB"
5831 			"\n",
5832 			zone->name,
5833 			K(zone_page_state(zone, NR_FREE_PAGES)),
5834 			K(min_wmark_pages(zone)),
5835 			K(low_wmark_pages(zone)),
5836 			K(high_wmark_pages(zone)),
5837 			K(zone->nr_reserved_highatomic),
5838 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5839 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5840 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5841 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5842 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5843 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5844 			K(zone->present_pages),
5845 			K(zone_managed_pages(zone)),
5846 			K(zone_page_state(zone, NR_MLOCK)),
5847 			K(zone_page_state(zone, NR_BOUNCE)),
5848 			K(free_pcp),
5849 			K(this_cpu_read(zone->pageset->pcp.count)),
5850 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5851 		printk("lowmem_reserve[]:");
5852 		for (i = 0; i < MAX_NR_ZONES; i++)
5853 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5854 		printk(KERN_CONT "\n");
5855 	}
5856 
5857 	for_each_populated_zone(zone) {
5858 		unsigned int order;
5859 		unsigned long nr[MAX_ORDER], flags, total = 0;
5860 		unsigned char types[MAX_ORDER];
5861 
5862 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5863 			continue;
5864 		show_node(zone);
5865 		printk(KERN_CONT "%s: ", zone->name);
5866 
5867 		spin_lock_irqsave(&zone->lock, flags);
5868 		for (order = 0; order < MAX_ORDER; order++) {
5869 			struct free_area *area = &zone->free_area[order];
5870 			int type;
5871 
5872 			nr[order] = area->nr_free;
5873 			total += nr[order] << order;
5874 
5875 			types[order] = 0;
5876 			for (type = 0; type < MIGRATE_TYPES; type++) {
5877 				if (!free_area_empty(area, type))
5878 					types[order] |= 1 << type;
5879 			}
5880 		}
5881 		spin_unlock_irqrestore(&zone->lock, flags);
5882 		for (order = 0; order < MAX_ORDER; order++) {
5883 			printk(KERN_CONT "%lu*%lukB ",
5884 			       nr[order], K(1UL) << order);
5885 			if (nr[order])
5886 				show_migration_types(types[order]);
5887 		}
5888 		printk(KERN_CONT "= %lukB\n", K(total));
5889 	}
5890 
5891 	hugetlb_show_meminfo();
5892 
5893 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5894 
5895 	show_swap_cache_info();
5896 }
5897 
5898 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5899 {
5900 	zoneref->zone = zone;
5901 	zoneref->zone_idx = zone_idx(zone);
5902 }
5903 
5904 /*
5905  * Builds allocation fallback zone lists.
5906  *
5907  * Add all populated zones of a node to the zonelist.
5908  */
5909 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5910 {
5911 	struct zone *zone;
5912 	enum zone_type zone_type = MAX_NR_ZONES;
5913 	int nr_zones = 0;
5914 
5915 	do {
5916 		zone_type--;
5917 		zone = pgdat->node_zones + zone_type;
5918 		if (managed_zone(zone)) {
5919 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5920 			check_highest_zone(zone_type);
5921 		}
5922 	} while (zone_type);
5923 
5924 	return nr_zones;
5925 }
5926 
5927 #ifdef CONFIG_NUMA
5928 
5929 static int __parse_numa_zonelist_order(char *s)
5930 {
5931 	/*
5932 	 * We used to support different zonelists modes but they turned
5933 	 * out to be just not useful. Let's keep the warning in place
5934 	 * if somebody still use the cmd line parameter so that we do
5935 	 * not fail it silently
5936 	 */
5937 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5938 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5939 		return -EINVAL;
5940 	}
5941 	return 0;
5942 }
5943 
5944 char numa_zonelist_order[] = "Node";
5945 
5946 /*
5947  * sysctl handler for numa_zonelist_order
5948  */
5949 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5950 		void *buffer, size_t *length, loff_t *ppos)
5951 {
5952 	if (write)
5953 		return __parse_numa_zonelist_order(buffer);
5954 	return proc_dostring(table, write, buffer, length, ppos);
5955 }
5956 
5957 
5958 #define MAX_NODE_LOAD (nr_online_nodes)
5959 static int node_load[MAX_NUMNODES];
5960 
5961 /**
5962  * find_next_best_node - find the next node that should appear in a given node's fallback list
5963  * @node: node whose fallback list we're appending
5964  * @used_node_mask: nodemask_t of already used nodes
5965  *
5966  * We use a number of factors to determine which is the next node that should
5967  * appear on a given node's fallback list.  The node should not have appeared
5968  * already in @node's fallback list, and it should be the next closest node
5969  * according to the distance array (which contains arbitrary distance values
5970  * from each node to each node in the system), and should also prefer nodes
5971  * with no CPUs, since presumably they'll have very little allocation pressure
5972  * on them otherwise.
5973  *
5974  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5975  */
5976 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5977 {
5978 	int n, val;
5979 	int min_val = INT_MAX;
5980 	int best_node = NUMA_NO_NODE;
5981 
5982 	/* Use the local node if we haven't already */
5983 	if (!node_isset(node, *used_node_mask)) {
5984 		node_set(node, *used_node_mask);
5985 		return node;
5986 	}
5987 
5988 	for_each_node_state(n, N_MEMORY) {
5989 
5990 		/* Don't want a node to appear more than once */
5991 		if (node_isset(n, *used_node_mask))
5992 			continue;
5993 
5994 		/* Use the distance array to find the distance */
5995 		val = node_distance(node, n);
5996 
5997 		/* Penalize nodes under us ("prefer the next node") */
5998 		val += (n < node);
5999 
6000 		/* Give preference to headless and unused nodes */
6001 		if (!cpumask_empty(cpumask_of_node(n)))
6002 			val += PENALTY_FOR_NODE_WITH_CPUS;
6003 
6004 		/* Slight preference for less loaded node */
6005 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6006 		val += node_load[n];
6007 
6008 		if (val < min_val) {
6009 			min_val = val;
6010 			best_node = n;
6011 		}
6012 	}
6013 
6014 	if (best_node >= 0)
6015 		node_set(best_node, *used_node_mask);
6016 
6017 	return best_node;
6018 }
6019 
6020 
6021 /*
6022  * Build zonelists ordered by node and zones within node.
6023  * This results in maximum locality--normal zone overflows into local
6024  * DMA zone, if any--but risks exhausting DMA zone.
6025  */
6026 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6027 		unsigned nr_nodes)
6028 {
6029 	struct zoneref *zonerefs;
6030 	int i;
6031 
6032 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6033 
6034 	for (i = 0; i < nr_nodes; i++) {
6035 		int nr_zones;
6036 
6037 		pg_data_t *node = NODE_DATA(node_order[i]);
6038 
6039 		nr_zones = build_zonerefs_node(node, zonerefs);
6040 		zonerefs += nr_zones;
6041 	}
6042 	zonerefs->zone = NULL;
6043 	zonerefs->zone_idx = 0;
6044 }
6045 
6046 /*
6047  * Build gfp_thisnode zonelists
6048  */
6049 static void build_thisnode_zonelists(pg_data_t *pgdat)
6050 {
6051 	struct zoneref *zonerefs;
6052 	int nr_zones;
6053 
6054 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6055 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6056 	zonerefs += nr_zones;
6057 	zonerefs->zone = NULL;
6058 	zonerefs->zone_idx = 0;
6059 }
6060 
6061 /*
6062  * Build zonelists ordered by zone and nodes within zones.
6063  * This results in conserving DMA zone[s] until all Normal memory is
6064  * exhausted, but results in overflowing to remote node while memory
6065  * may still exist in local DMA zone.
6066  */
6067 
6068 static void build_zonelists(pg_data_t *pgdat)
6069 {
6070 	static int node_order[MAX_NUMNODES];
6071 	int node, load, nr_nodes = 0;
6072 	nodemask_t used_mask = NODE_MASK_NONE;
6073 	int local_node, prev_node;
6074 
6075 	/* NUMA-aware ordering of nodes */
6076 	local_node = pgdat->node_id;
6077 	load = nr_online_nodes;
6078 	prev_node = local_node;
6079 
6080 	memset(node_order, 0, sizeof(node_order));
6081 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6082 		/*
6083 		 * We don't want to pressure a particular node.
6084 		 * So adding penalty to the first node in same
6085 		 * distance group to make it round-robin.
6086 		 */
6087 		if (node_distance(local_node, node) !=
6088 		    node_distance(local_node, prev_node))
6089 			node_load[node] = load;
6090 
6091 		node_order[nr_nodes++] = node;
6092 		prev_node = node;
6093 		load--;
6094 	}
6095 
6096 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6097 	build_thisnode_zonelists(pgdat);
6098 }
6099 
6100 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6101 /*
6102  * Return node id of node used for "local" allocations.
6103  * I.e., first node id of first zone in arg node's generic zonelist.
6104  * Used for initializing percpu 'numa_mem', which is used primarily
6105  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6106  */
6107 int local_memory_node(int node)
6108 {
6109 	struct zoneref *z;
6110 
6111 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6112 				   gfp_zone(GFP_KERNEL),
6113 				   NULL);
6114 	return zone_to_nid(z->zone);
6115 }
6116 #endif
6117 
6118 static void setup_min_unmapped_ratio(void);
6119 static void setup_min_slab_ratio(void);
6120 #else	/* CONFIG_NUMA */
6121 
6122 static void build_zonelists(pg_data_t *pgdat)
6123 {
6124 	int node, local_node;
6125 	struct zoneref *zonerefs;
6126 	int nr_zones;
6127 
6128 	local_node = pgdat->node_id;
6129 
6130 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6131 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6132 	zonerefs += nr_zones;
6133 
6134 	/*
6135 	 * Now we build the zonelist so that it contains the zones
6136 	 * of all the other nodes.
6137 	 * We don't want to pressure a particular node, so when
6138 	 * building the zones for node N, we make sure that the
6139 	 * zones coming right after the local ones are those from
6140 	 * node N+1 (modulo N)
6141 	 */
6142 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6143 		if (!node_online(node))
6144 			continue;
6145 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6146 		zonerefs += nr_zones;
6147 	}
6148 	for (node = 0; node < local_node; node++) {
6149 		if (!node_online(node))
6150 			continue;
6151 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6152 		zonerefs += nr_zones;
6153 	}
6154 
6155 	zonerefs->zone = NULL;
6156 	zonerefs->zone_idx = 0;
6157 }
6158 
6159 #endif	/* CONFIG_NUMA */
6160 
6161 /*
6162  * Boot pageset table. One per cpu which is going to be used for all
6163  * zones and all nodes. The parameters will be set in such a way
6164  * that an item put on a list will immediately be handed over to
6165  * the buddy list. This is safe since pageset manipulation is done
6166  * with interrupts disabled.
6167  *
6168  * The boot_pagesets must be kept even after bootup is complete for
6169  * unused processors and/or zones. They do play a role for bootstrapping
6170  * hotplugged processors.
6171  *
6172  * zoneinfo_show() and maybe other functions do
6173  * not check if the processor is online before following the pageset pointer.
6174  * Other parts of the kernel may not check if the zone is available.
6175  */
6176 static void pageset_init(struct per_cpu_pageset *p);
6177 /* These effectively disable the pcplists in the boot pageset completely */
6178 #define BOOT_PAGESET_HIGH	0
6179 #define BOOT_PAGESET_BATCH	1
6180 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6181 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6182 
6183 static void __build_all_zonelists(void *data)
6184 {
6185 	int nid;
6186 	int __maybe_unused cpu;
6187 	pg_data_t *self = data;
6188 	static DEFINE_SPINLOCK(lock);
6189 
6190 	spin_lock(&lock);
6191 
6192 #ifdef CONFIG_NUMA
6193 	memset(node_load, 0, sizeof(node_load));
6194 #endif
6195 
6196 	/*
6197 	 * This node is hotadded and no memory is yet present.   So just
6198 	 * building zonelists is fine - no need to touch other nodes.
6199 	 */
6200 	if (self && !node_online(self->node_id)) {
6201 		build_zonelists(self);
6202 	} else {
6203 		for_each_online_node(nid) {
6204 			pg_data_t *pgdat = NODE_DATA(nid);
6205 
6206 			build_zonelists(pgdat);
6207 		}
6208 
6209 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6210 		/*
6211 		 * We now know the "local memory node" for each node--
6212 		 * i.e., the node of the first zone in the generic zonelist.
6213 		 * Set up numa_mem percpu variable for on-line cpus.  During
6214 		 * boot, only the boot cpu should be on-line;  we'll init the
6215 		 * secondary cpus' numa_mem as they come on-line.  During
6216 		 * node/memory hotplug, we'll fixup all on-line cpus.
6217 		 */
6218 		for_each_online_cpu(cpu)
6219 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6220 #endif
6221 	}
6222 
6223 	spin_unlock(&lock);
6224 }
6225 
6226 static noinline void __init
6227 build_all_zonelists_init(void)
6228 {
6229 	int cpu;
6230 
6231 	__build_all_zonelists(NULL);
6232 
6233 	/*
6234 	 * Initialize the boot_pagesets that are going to be used
6235 	 * for bootstrapping processors. The real pagesets for
6236 	 * each zone will be allocated later when the per cpu
6237 	 * allocator is available.
6238 	 *
6239 	 * boot_pagesets are used also for bootstrapping offline
6240 	 * cpus if the system is already booted because the pagesets
6241 	 * are needed to initialize allocators on a specific cpu too.
6242 	 * F.e. the percpu allocator needs the page allocator which
6243 	 * needs the percpu allocator in order to allocate its pagesets
6244 	 * (a chicken-egg dilemma).
6245 	 */
6246 	for_each_possible_cpu(cpu)
6247 		pageset_init(&per_cpu(boot_pageset, cpu));
6248 
6249 	mminit_verify_zonelist();
6250 	cpuset_init_current_mems_allowed();
6251 }
6252 
6253 /*
6254  * unless system_state == SYSTEM_BOOTING.
6255  *
6256  * __ref due to call of __init annotated helper build_all_zonelists_init
6257  * [protected by SYSTEM_BOOTING].
6258  */
6259 void __ref build_all_zonelists(pg_data_t *pgdat)
6260 {
6261 	unsigned long vm_total_pages;
6262 
6263 	if (system_state == SYSTEM_BOOTING) {
6264 		build_all_zonelists_init();
6265 	} else {
6266 		__build_all_zonelists(pgdat);
6267 		/* cpuset refresh routine should be here */
6268 	}
6269 	/* Get the number of free pages beyond high watermark in all zones. */
6270 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6271 	/*
6272 	 * Disable grouping by mobility if the number of pages in the
6273 	 * system is too low to allow the mechanism to work. It would be
6274 	 * more accurate, but expensive to check per-zone. This check is
6275 	 * made on memory-hotadd so a system can start with mobility
6276 	 * disabled and enable it later
6277 	 */
6278 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6279 		page_group_by_mobility_disabled = 1;
6280 	else
6281 		page_group_by_mobility_disabled = 0;
6282 
6283 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6284 		nr_online_nodes,
6285 		page_group_by_mobility_disabled ? "off" : "on",
6286 		vm_total_pages);
6287 #ifdef CONFIG_NUMA
6288 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6289 #endif
6290 }
6291 
6292 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6293 static bool __meminit
6294 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6295 {
6296 	static struct memblock_region *r;
6297 
6298 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6299 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6300 			for_each_mem_region(r) {
6301 				if (*pfn < memblock_region_memory_end_pfn(r))
6302 					break;
6303 			}
6304 		}
6305 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6306 		    memblock_is_mirror(r)) {
6307 			*pfn = memblock_region_memory_end_pfn(r);
6308 			return true;
6309 		}
6310 	}
6311 	return false;
6312 }
6313 
6314 /*
6315  * Initially all pages are reserved - free ones are freed
6316  * up by memblock_free_all() once the early boot process is
6317  * done. Non-atomic initialization, single-pass.
6318  *
6319  * All aligned pageblocks are initialized to the specified migratetype
6320  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6321  * zone stats (e.g., nr_isolate_pageblock) are touched.
6322  */
6323 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6324 		unsigned long start_pfn, unsigned long zone_end_pfn,
6325 		enum meminit_context context,
6326 		struct vmem_altmap *altmap, int migratetype)
6327 {
6328 	unsigned long pfn, end_pfn = start_pfn + size;
6329 	struct page *page;
6330 
6331 	if (highest_memmap_pfn < end_pfn - 1)
6332 		highest_memmap_pfn = end_pfn - 1;
6333 
6334 #ifdef CONFIG_ZONE_DEVICE
6335 	/*
6336 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6337 	 * memory. We limit the total number of pages to initialize to just
6338 	 * those that might contain the memory mapping. We will defer the
6339 	 * ZONE_DEVICE page initialization until after we have released
6340 	 * the hotplug lock.
6341 	 */
6342 	if (zone == ZONE_DEVICE) {
6343 		if (!altmap)
6344 			return;
6345 
6346 		if (start_pfn == altmap->base_pfn)
6347 			start_pfn += altmap->reserve;
6348 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6349 	}
6350 #endif
6351 
6352 	for (pfn = start_pfn; pfn < end_pfn; ) {
6353 		/*
6354 		 * There can be holes in boot-time mem_map[]s handed to this
6355 		 * function.  They do not exist on hotplugged memory.
6356 		 */
6357 		if (context == MEMINIT_EARLY) {
6358 			if (overlap_memmap_init(zone, &pfn))
6359 				continue;
6360 			if (defer_init(nid, pfn, zone_end_pfn))
6361 				break;
6362 		}
6363 
6364 		page = pfn_to_page(pfn);
6365 		__init_single_page(page, pfn, zone, nid);
6366 		if (context == MEMINIT_HOTPLUG)
6367 			__SetPageReserved(page);
6368 
6369 		/*
6370 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6371 		 * such that unmovable allocations won't be scattered all
6372 		 * over the place during system boot.
6373 		 */
6374 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6375 			set_pageblock_migratetype(page, migratetype);
6376 			cond_resched();
6377 		}
6378 		pfn++;
6379 	}
6380 }
6381 
6382 #ifdef CONFIG_ZONE_DEVICE
6383 void __ref memmap_init_zone_device(struct zone *zone,
6384 				   unsigned long start_pfn,
6385 				   unsigned long nr_pages,
6386 				   struct dev_pagemap *pgmap)
6387 {
6388 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6389 	struct pglist_data *pgdat = zone->zone_pgdat;
6390 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6391 	unsigned long zone_idx = zone_idx(zone);
6392 	unsigned long start = jiffies;
6393 	int nid = pgdat->node_id;
6394 
6395 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6396 		return;
6397 
6398 	/*
6399 	 * The call to memmap_init_zone should have already taken care
6400 	 * of the pages reserved for the memmap, so we can just jump to
6401 	 * the end of that region and start processing the device pages.
6402 	 */
6403 	if (altmap) {
6404 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6405 		nr_pages = end_pfn - start_pfn;
6406 	}
6407 
6408 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6409 		struct page *page = pfn_to_page(pfn);
6410 
6411 		__init_single_page(page, pfn, zone_idx, nid);
6412 
6413 		/*
6414 		 * Mark page reserved as it will need to wait for onlining
6415 		 * phase for it to be fully associated with a zone.
6416 		 *
6417 		 * We can use the non-atomic __set_bit operation for setting
6418 		 * the flag as we are still initializing the pages.
6419 		 */
6420 		__SetPageReserved(page);
6421 
6422 		/*
6423 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6424 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6425 		 * ever freed or placed on a driver-private list.
6426 		 */
6427 		page->pgmap = pgmap;
6428 		page->zone_device_data = NULL;
6429 
6430 		/*
6431 		 * Mark the block movable so that blocks are reserved for
6432 		 * movable at startup. This will force kernel allocations
6433 		 * to reserve their blocks rather than leaking throughout
6434 		 * the address space during boot when many long-lived
6435 		 * kernel allocations are made.
6436 		 *
6437 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6438 		 * because this is done early in section_activate()
6439 		 */
6440 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6441 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6442 			cond_resched();
6443 		}
6444 	}
6445 
6446 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6447 		nr_pages, jiffies_to_msecs(jiffies - start));
6448 }
6449 
6450 #endif
6451 static void __meminit zone_init_free_lists(struct zone *zone)
6452 {
6453 	unsigned int order, t;
6454 	for_each_migratetype_order(order, t) {
6455 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6456 		zone->free_area[order].nr_free = 0;
6457 	}
6458 }
6459 
6460 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6461 /*
6462  * Only struct pages that correspond to ranges defined by memblock.memory
6463  * are zeroed and initialized by going through __init_single_page() during
6464  * memmap_init_zone().
6465  *
6466  * But, there could be struct pages that correspond to holes in
6467  * memblock.memory. This can happen because of the following reasons:
6468  * - physical memory bank size is not necessarily the exact multiple of the
6469  *   arbitrary section size
6470  * - early reserved memory may not be listed in memblock.memory
6471  * - memory layouts defined with memmap= kernel parameter may not align
6472  *   nicely with memmap sections
6473  *
6474  * Explicitly initialize those struct pages so that:
6475  * - PG_Reserved is set
6476  * - zone and node links point to zone and node that span the page if the
6477  *   hole is in the middle of a zone
6478  * - zone and node links point to adjacent zone/node if the hole falls on
6479  *   the zone boundary; the pages in such holes will be prepended to the
6480  *   zone/node above the hole except for the trailing pages in the last
6481  *   section that will be appended to the zone/node below.
6482  */
6483 static u64 __meminit init_unavailable_range(unsigned long spfn,
6484 					    unsigned long epfn,
6485 					    int zone, int node)
6486 {
6487 	unsigned long pfn;
6488 	u64 pgcnt = 0;
6489 
6490 	for (pfn = spfn; pfn < epfn; pfn++) {
6491 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6492 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6493 				+ pageblock_nr_pages - 1;
6494 			continue;
6495 		}
6496 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6497 		__SetPageReserved(pfn_to_page(pfn));
6498 		pgcnt++;
6499 	}
6500 
6501 	return pgcnt;
6502 }
6503 #else
6504 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6505 					 int zone, int node)
6506 {
6507 	return 0;
6508 }
6509 #endif
6510 
6511 void __meminit __weak memmap_init_zone(struct zone *zone)
6512 {
6513 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6514 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6515 	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6516 	static unsigned long hole_pfn;
6517 	unsigned long start_pfn, end_pfn;
6518 	u64 pgcnt = 0;
6519 
6520 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6521 		start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6522 		end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6523 
6524 		if (end_pfn > start_pfn)
6525 			memmap_init_range(end_pfn - start_pfn, nid,
6526 					zone_id, start_pfn, zone_end_pfn,
6527 					MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6528 
6529 		if (hole_pfn < start_pfn)
6530 			pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6531 							zone_id, nid);
6532 		hole_pfn = end_pfn;
6533 	}
6534 
6535 #ifdef CONFIG_SPARSEMEM
6536 	/*
6537 	 * Initialize the hole in the range [zone_end_pfn, section_end].
6538 	 * If zone boundary falls in the middle of a section, this hole
6539 	 * will be re-initialized during the call to this function for the
6540 	 * higher zone.
6541 	 */
6542 	end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6543 	if (hole_pfn < end_pfn)
6544 		pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6545 						zone_id, nid);
6546 #endif
6547 
6548 	if (pgcnt)
6549 		pr_info("  %s zone: %llu pages in unavailable ranges\n",
6550 			zone->name, pgcnt);
6551 }
6552 
6553 static int zone_batchsize(struct zone *zone)
6554 {
6555 #ifdef CONFIG_MMU
6556 	int batch;
6557 
6558 	/*
6559 	 * The per-cpu-pages pools are set to around 1000th of the
6560 	 * size of the zone.
6561 	 */
6562 	batch = zone_managed_pages(zone) / 1024;
6563 	/* But no more than a meg. */
6564 	if (batch * PAGE_SIZE > 1024 * 1024)
6565 		batch = (1024 * 1024) / PAGE_SIZE;
6566 	batch /= 4;		/* We effectively *= 4 below */
6567 	if (batch < 1)
6568 		batch = 1;
6569 
6570 	/*
6571 	 * Clamp the batch to a 2^n - 1 value. Having a power
6572 	 * of 2 value was found to be more likely to have
6573 	 * suboptimal cache aliasing properties in some cases.
6574 	 *
6575 	 * For example if 2 tasks are alternately allocating
6576 	 * batches of pages, one task can end up with a lot
6577 	 * of pages of one half of the possible page colors
6578 	 * and the other with pages of the other colors.
6579 	 */
6580 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6581 
6582 	return batch;
6583 
6584 #else
6585 	/* The deferral and batching of frees should be suppressed under NOMMU
6586 	 * conditions.
6587 	 *
6588 	 * The problem is that NOMMU needs to be able to allocate large chunks
6589 	 * of contiguous memory as there's no hardware page translation to
6590 	 * assemble apparent contiguous memory from discontiguous pages.
6591 	 *
6592 	 * Queueing large contiguous runs of pages for batching, however,
6593 	 * causes the pages to actually be freed in smaller chunks.  As there
6594 	 * can be a significant delay between the individual batches being
6595 	 * recycled, this leads to the once large chunks of space being
6596 	 * fragmented and becoming unavailable for high-order allocations.
6597 	 */
6598 	return 0;
6599 #endif
6600 }
6601 
6602 /*
6603  * pcp->high and pcp->batch values are related and generally batch is lower
6604  * than high. They are also related to pcp->count such that count is lower
6605  * than high, and as soon as it reaches high, the pcplist is flushed.
6606  *
6607  * However, guaranteeing these relations at all times would require e.g. write
6608  * barriers here but also careful usage of read barriers at the read side, and
6609  * thus be prone to error and bad for performance. Thus the update only prevents
6610  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6611  * can cope with those fields changing asynchronously, and fully trust only the
6612  * pcp->count field on the local CPU with interrupts disabled.
6613  *
6614  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6615  * outside of boot time (or some other assurance that no concurrent updaters
6616  * exist).
6617  */
6618 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6619 		unsigned long batch)
6620 {
6621 	WRITE_ONCE(pcp->batch, batch);
6622 	WRITE_ONCE(pcp->high, high);
6623 }
6624 
6625 static void pageset_init(struct per_cpu_pageset *p)
6626 {
6627 	struct per_cpu_pages *pcp;
6628 	int migratetype;
6629 
6630 	memset(p, 0, sizeof(*p));
6631 
6632 	pcp = &p->pcp;
6633 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6634 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6635 
6636 	/*
6637 	 * Set batch and high values safe for a boot pageset. A true percpu
6638 	 * pageset's initialization will update them subsequently. Here we don't
6639 	 * need to be as careful as pageset_update() as nobody can access the
6640 	 * pageset yet.
6641 	 */
6642 	pcp->high = BOOT_PAGESET_HIGH;
6643 	pcp->batch = BOOT_PAGESET_BATCH;
6644 }
6645 
6646 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6647 		unsigned long batch)
6648 {
6649 	struct per_cpu_pageset *p;
6650 	int cpu;
6651 
6652 	for_each_possible_cpu(cpu) {
6653 		p = per_cpu_ptr(zone->pageset, cpu);
6654 		pageset_update(&p->pcp, high, batch);
6655 	}
6656 }
6657 
6658 /*
6659  * Calculate and set new high and batch values for all per-cpu pagesets of a
6660  * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6661  */
6662 static void zone_set_pageset_high_and_batch(struct zone *zone)
6663 {
6664 	unsigned long new_high, new_batch;
6665 
6666 	if (percpu_pagelist_fraction) {
6667 		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6668 		new_batch = max(1UL, new_high / 4);
6669 		if ((new_high / 4) > (PAGE_SHIFT * 8))
6670 			new_batch = PAGE_SHIFT * 8;
6671 	} else {
6672 		new_batch = zone_batchsize(zone);
6673 		new_high = 6 * new_batch;
6674 		new_batch = max(1UL, 1 * new_batch);
6675 	}
6676 
6677 	if (zone->pageset_high == new_high &&
6678 	    zone->pageset_batch == new_batch)
6679 		return;
6680 
6681 	zone->pageset_high = new_high;
6682 	zone->pageset_batch = new_batch;
6683 
6684 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6685 }
6686 
6687 void __meminit setup_zone_pageset(struct zone *zone)
6688 {
6689 	struct per_cpu_pageset *p;
6690 	int cpu;
6691 
6692 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6693 	for_each_possible_cpu(cpu) {
6694 		p = per_cpu_ptr(zone->pageset, cpu);
6695 		pageset_init(p);
6696 	}
6697 
6698 	zone_set_pageset_high_and_batch(zone);
6699 }
6700 
6701 /*
6702  * Allocate per cpu pagesets and initialize them.
6703  * Before this call only boot pagesets were available.
6704  */
6705 void __init setup_per_cpu_pageset(void)
6706 {
6707 	struct pglist_data *pgdat;
6708 	struct zone *zone;
6709 	int __maybe_unused cpu;
6710 
6711 	for_each_populated_zone(zone)
6712 		setup_zone_pageset(zone);
6713 
6714 #ifdef CONFIG_NUMA
6715 	/*
6716 	 * Unpopulated zones continue using the boot pagesets.
6717 	 * The numa stats for these pagesets need to be reset.
6718 	 * Otherwise, they will end up skewing the stats of
6719 	 * the nodes these zones are associated with.
6720 	 */
6721 	for_each_possible_cpu(cpu) {
6722 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6723 		memset(pcp->vm_numa_stat_diff, 0,
6724 		       sizeof(pcp->vm_numa_stat_diff));
6725 	}
6726 #endif
6727 
6728 	for_each_online_pgdat(pgdat)
6729 		pgdat->per_cpu_nodestats =
6730 			alloc_percpu(struct per_cpu_nodestat);
6731 }
6732 
6733 static __meminit void zone_pcp_init(struct zone *zone)
6734 {
6735 	/*
6736 	 * per cpu subsystem is not up at this point. The following code
6737 	 * relies on the ability of the linker to provide the
6738 	 * offset of a (static) per cpu variable into the per cpu area.
6739 	 */
6740 	zone->pageset = &boot_pageset;
6741 	zone->pageset_high = BOOT_PAGESET_HIGH;
6742 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6743 
6744 	if (populated_zone(zone))
6745 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6746 			zone->name, zone->present_pages,
6747 					 zone_batchsize(zone));
6748 }
6749 
6750 void __meminit init_currently_empty_zone(struct zone *zone,
6751 					unsigned long zone_start_pfn,
6752 					unsigned long size)
6753 {
6754 	struct pglist_data *pgdat = zone->zone_pgdat;
6755 	int zone_idx = zone_idx(zone) + 1;
6756 
6757 	if (zone_idx > pgdat->nr_zones)
6758 		pgdat->nr_zones = zone_idx;
6759 
6760 	zone->zone_start_pfn = zone_start_pfn;
6761 
6762 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6763 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6764 			pgdat->node_id,
6765 			(unsigned long)zone_idx(zone),
6766 			zone_start_pfn, (zone_start_pfn + size));
6767 
6768 	zone_init_free_lists(zone);
6769 	zone->initialized = 1;
6770 }
6771 
6772 /**
6773  * get_pfn_range_for_nid - Return the start and end page frames for a node
6774  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6775  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6776  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6777  *
6778  * It returns the start and end page frame of a node based on information
6779  * provided by memblock_set_node(). If called for a node
6780  * with no available memory, a warning is printed and the start and end
6781  * PFNs will be 0.
6782  */
6783 void __init get_pfn_range_for_nid(unsigned int nid,
6784 			unsigned long *start_pfn, unsigned long *end_pfn)
6785 {
6786 	unsigned long this_start_pfn, this_end_pfn;
6787 	int i;
6788 
6789 	*start_pfn = -1UL;
6790 	*end_pfn = 0;
6791 
6792 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6793 		*start_pfn = min(*start_pfn, this_start_pfn);
6794 		*end_pfn = max(*end_pfn, this_end_pfn);
6795 	}
6796 
6797 	if (*start_pfn == -1UL)
6798 		*start_pfn = 0;
6799 }
6800 
6801 /*
6802  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6803  * assumption is made that zones within a node are ordered in monotonic
6804  * increasing memory addresses so that the "highest" populated zone is used
6805  */
6806 static void __init find_usable_zone_for_movable(void)
6807 {
6808 	int zone_index;
6809 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6810 		if (zone_index == ZONE_MOVABLE)
6811 			continue;
6812 
6813 		if (arch_zone_highest_possible_pfn[zone_index] >
6814 				arch_zone_lowest_possible_pfn[zone_index])
6815 			break;
6816 	}
6817 
6818 	VM_BUG_ON(zone_index == -1);
6819 	movable_zone = zone_index;
6820 }
6821 
6822 /*
6823  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6824  * because it is sized independent of architecture. Unlike the other zones,
6825  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6826  * in each node depending on the size of each node and how evenly kernelcore
6827  * is distributed. This helper function adjusts the zone ranges
6828  * provided by the architecture for a given node by using the end of the
6829  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6830  * zones within a node are in order of monotonic increases memory addresses
6831  */
6832 static void __init adjust_zone_range_for_zone_movable(int nid,
6833 					unsigned long zone_type,
6834 					unsigned long node_start_pfn,
6835 					unsigned long node_end_pfn,
6836 					unsigned long *zone_start_pfn,
6837 					unsigned long *zone_end_pfn)
6838 {
6839 	/* Only adjust if ZONE_MOVABLE is on this node */
6840 	if (zone_movable_pfn[nid]) {
6841 		/* Size ZONE_MOVABLE */
6842 		if (zone_type == ZONE_MOVABLE) {
6843 			*zone_start_pfn = zone_movable_pfn[nid];
6844 			*zone_end_pfn = min(node_end_pfn,
6845 				arch_zone_highest_possible_pfn[movable_zone]);
6846 
6847 		/* Adjust for ZONE_MOVABLE starting within this range */
6848 		} else if (!mirrored_kernelcore &&
6849 			*zone_start_pfn < zone_movable_pfn[nid] &&
6850 			*zone_end_pfn > zone_movable_pfn[nid]) {
6851 			*zone_end_pfn = zone_movable_pfn[nid];
6852 
6853 		/* Check if this whole range is within ZONE_MOVABLE */
6854 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6855 			*zone_start_pfn = *zone_end_pfn;
6856 	}
6857 }
6858 
6859 /*
6860  * Return the number of pages a zone spans in a node, including holes
6861  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6862  */
6863 static unsigned long __init zone_spanned_pages_in_node(int nid,
6864 					unsigned long zone_type,
6865 					unsigned long node_start_pfn,
6866 					unsigned long node_end_pfn,
6867 					unsigned long *zone_start_pfn,
6868 					unsigned long *zone_end_pfn)
6869 {
6870 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6871 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6872 	/* When hotadd a new node from cpu_up(), the node should be empty */
6873 	if (!node_start_pfn && !node_end_pfn)
6874 		return 0;
6875 
6876 	/* Get the start and end of the zone */
6877 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6878 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6879 	adjust_zone_range_for_zone_movable(nid, zone_type,
6880 				node_start_pfn, node_end_pfn,
6881 				zone_start_pfn, zone_end_pfn);
6882 
6883 	/* Check that this node has pages within the zone's required range */
6884 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6885 		return 0;
6886 
6887 	/* Move the zone boundaries inside the node if necessary */
6888 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6889 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6890 
6891 	/* Return the spanned pages */
6892 	return *zone_end_pfn - *zone_start_pfn;
6893 }
6894 
6895 /*
6896  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6897  * then all holes in the requested range will be accounted for.
6898  */
6899 unsigned long __init __absent_pages_in_range(int nid,
6900 				unsigned long range_start_pfn,
6901 				unsigned long range_end_pfn)
6902 {
6903 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6904 	unsigned long start_pfn, end_pfn;
6905 	int i;
6906 
6907 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6908 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6909 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6910 		nr_absent -= end_pfn - start_pfn;
6911 	}
6912 	return nr_absent;
6913 }
6914 
6915 /**
6916  * absent_pages_in_range - Return number of page frames in holes within a range
6917  * @start_pfn: The start PFN to start searching for holes
6918  * @end_pfn: The end PFN to stop searching for holes
6919  *
6920  * Return: the number of pages frames in memory holes within a range.
6921  */
6922 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6923 							unsigned long end_pfn)
6924 {
6925 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6926 }
6927 
6928 /* Return the number of page frames in holes in a zone on a node */
6929 static unsigned long __init zone_absent_pages_in_node(int nid,
6930 					unsigned long zone_type,
6931 					unsigned long node_start_pfn,
6932 					unsigned long node_end_pfn)
6933 {
6934 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6935 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6936 	unsigned long zone_start_pfn, zone_end_pfn;
6937 	unsigned long nr_absent;
6938 
6939 	/* When hotadd a new node from cpu_up(), the node should be empty */
6940 	if (!node_start_pfn && !node_end_pfn)
6941 		return 0;
6942 
6943 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6944 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6945 
6946 	adjust_zone_range_for_zone_movable(nid, zone_type,
6947 			node_start_pfn, node_end_pfn,
6948 			&zone_start_pfn, &zone_end_pfn);
6949 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6950 
6951 	/*
6952 	 * ZONE_MOVABLE handling.
6953 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6954 	 * and vice versa.
6955 	 */
6956 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6957 		unsigned long start_pfn, end_pfn;
6958 		struct memblock_region *r;
6959 
6960 		for_each_mem_region(r) {
6961 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6962 					  zone_start_pfn, zone_end_pfn);
6963 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6964 					zone_start_pfn, zone_end_pfn);
6965 
6966 			if (zone_type == ZONE_MOVABLE &&
6967 			    memblock_is_mirror(r))
6968 				nr_absent += end_pfn - start_pfn;
6969 
6970 			if (zone_type == ZONE_NORMAL &&
6971 			    !memblock_is_mirror(r))
6972 				nr_absent += end_pfn - start_pfn;
6973 		}
6974 	}
6975 
6976 	return nr_absent;
6977 }
6978 
6979 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6980 						unsigned long node_start_pfn,
6981 						unsigned long node_end_pfn)
6982 {
6983 	unsigned long realtotalpages = 0, totalpages = 0;
6984 	enum zone_type i;
6985 
6986 	for (i = 0; i < MAX_NR_ZONES; i++) {
6987 		struct zone *zone = pgdat->node_zones + i;
6988 		unsigned long zone_start_pfn, zone_end_pfn;
6989 		unsigned long spanned, absent;
6990 		unsigned long size, real_size;
6991 
6992 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6993 						     node_start_pfn,
6994 						     node_end_pfn,
6995 						     &zone_start_pfn,
6996 						     &zone_end_pfn);
6997 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6998 						   node_start_pfn,
6999 						   node_end_pfn);
7000 
7001 		size = spanned;
7002 		real_size = size - absent;
7003 
7004 		if (size)
7005 			zone->zone_start_pfn = zone_start_pfn;
7006 		else
7007 			zone->zone_start_pfn = 0;
7008 		zone->spanned_pages = size;
7009 		zone->present_pages = real_size;
7010 
7011 		totalpages += size;
7012 		realtotalpages += real_size;
7013 	}
7014 
7015 	pgdat->node_spanned_pages = totalpages;
7016 	pgdat->node_present_pages = realtotalpages;
7017 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7018 							realtotalpages);
7019 }
7020 
7021 #ifndef CONFIG_SPARSEMEM
7022 /*
7023  * Calculate the size of the zone->blockflags rounded to an unsigned long
7024  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7025  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7026  * round what is now in bits to nearest long in bits, then return it in
7027  * bytes.
7028  */
7029 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7030 {
7031 	unsigned long usemapsize;
7032 
7033 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7034 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7035 	usemapsize = usemapsize >> pageblock_order;
7036 	usemapsize *= NR_PAGEBLOCK_BITS;
7037 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7038 
7039 	return usemapsize / 8;
7040 }
7041 
7042 static void __ref setup_usemap(struct zone *zone)
7043 {
7044 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7045 					       zone->spanned_pages);
7046 	zone->pageblock_flags = NULL;
7047 	if (usemapsize) {
7048 		zone->pageblock_flags =
7049 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7050 					    zone_to_nid(zone));
7051 		if (!zone->pageblock_flags)
7052 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7053 			      usemapsize, zone->name, zone_to_nid(zone));
7054 	}
7055 }
7056 #else
7057 static inline void setup_usemap(struct zone *zone) {}
7058 #endif /* CONFIG_SPARSEMEM */
7059 
7060 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7061 
7062 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7063 void __init set_pageblock_order(void)
7064 {
7065 	unsigned int order;
7066 
7067 	/* Check that pageblock_nr_pages has not already been setup */
7068 	if (pageblock_order)
7069 		return;
7070 
7071 	if (HPAGE_SHIFT > PAGE_SHIFT)
7072 		order = HUGETLB_PAGE_ORDER;
7073 	else
7074 		order = MAX_ORDER - 1;
7075 
7076 	/*
7077 	 * Assume the largest contiguous order of interest is a huge page.
7078 	 * This value may be variable depending on boot parameters on IA64 and
7079 	 * powerpc.
7080 	 */
7081 	pageblock_order = order;
7082 }
7083 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7084 
7085 /*
7086  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7087  * is unused as pageblock_order is set at compile-time. See
7088  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7089  * the kernel config
7090  */
7091 void __init set_pageblock_order(void)
7092 {
7093 }
7094 
7095 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7096 
7097 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7098 						unsigned long present_pages)
7099 {
7100 	unsigned long pages = spanned_pages;
7101 
7102 	/*
7103 	 * Provide a more accurate estimation if there are holes within
7104 	 * the zone and SPARSEMEM is in use. If there are holes within the
7105 	 * zone, each populated memory region may cost us one or two extra
7106 	 * memmap pages due to alignment because memmap pages for each
7107 	 * populated regions may not be naturally aligned on page boundary.
7108 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7109 	 */
7110 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7111 	    IS_ENABLED(CONFIG_SPARSEMEM))
7112 		pages = present_pages;
7113 
7114 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7115 }
7116 
7117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7118 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7119 {
7120 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7121 
7122 	spin_lock_init(&ds_queue->split_queue_lock);
7123 	INIT_LIST_HEAD(&ds_queue->split_queue);
7124 	ds_queue->split_queue_len = 0;
7125 }
7126 #else
7127 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7128 #endif
7129 
7130 #ifdef CONFIG_COMPACTION
7131 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7132 {
7133 	init_waitqueue_head(&pgdat->kcompactd_wait);
7134 }
7135 #else
7136 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7137 #endif
7138 
7139 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7140 {
7141 	pgdat_resize_init(pgdat);
7142 
7143 	pgdat_init_split_queue(pgdat);
7144 	pgdat_init_kcompactd(pgdat);
7145 
7146 	init_waitqueue_head(&pgdat->kswapd_wait);
7147 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7148 
7149 	pgdat_page_ext_init(pgdat);
7150 	lruvec_init(&pgdat->__lruvec);
7151 }
7152 
7153 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7154 							unsigned long remaining_pages)
7155 {
7156 	atomic_long_set(&zone->managed_pages, remaining_pages);
7157 	zone_set_nid(zone, nid);
7158 	zone->name = zone_names[idx];
7159 	zone->zone_pgdat = NODE_DATA(nid);
7160 	spin_lock_init(&zone->lock);
7161 	zone_seqlock_init(zone);
7162 	zone_pcp_init(zone);
7163 }
7164 
7165 /*
7166  * Set up the zone data structures
7167  * - init pgdat internals
7168  * - init all zones belonging to this node
7169  *
7170  * NOTE: this function is only called during memory hotplug
7171  */
7172 #ifdef CONFIG_MEMORY_HOTPLUG
7173 void __ref free_area_init_core_hotplug(int nid)
7174 {
7175 	enum zone_type z;
7176 	pg_data_t *pgdat = NODE_DATA(nid);
7177 
7178 	pgdat_init_internals(pgdat);
7179 	for (z = 0; z < MAX_NR_ZONES; z++)
7180 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7181 }
7182 #endif
7183 
7184 /*
7185  * Set up the zone data structures:
7186  *   - mark all pages reserved
7187  *   - mark all memory queues empty
7188  *   - clear the memory bitmaps
7189  *
7190  * NOTE: pgdat should get zeroed by caller.
7191  * NOTE: this function is only called during early init.
7192  */
7193 static void __init free_area_init_core(struct pglist_data *pgdat)
7194 {
7195 	enum zone_type j;
7196 	int nid = pgdat->node_id;
7197 
7198 	pgdat_init_internals(pgdat);
7199 	pgdat->per_cpu_nodestats = &boot_nodestats;
7200 
7201 	for (j = 0; j < MAX_NR_ZONES; j++) {
7202 		struct zone *zone = pgdat->node_zones + j;
7203 		unsigned long size, freesize, memmap_pages;
7204 
7205 		size = zone->spanned_pages;
7206 		freesize = zone->present_pages;
7207 
7208 		/*
7209 		 * Adjust freesize so that it accounts for how much memory
7210 		 * is used by this zone for memmap. This affects the watermark
7211 		 * and per-cpu initialisations
7212 		 */
7213 		memmap_pages = calc_memmap_size(size, freesize);
7214 		if (!is_highmem_idx(j)) {
7215 			if (freesize >= memmap_pages) {
7216 				freesize -= memmap_pages;
7217 				if (memmap_pages)
7218 					printk(KERN_DEBUG
7219 					       "  %s zone: %lu pages used for memmap\n",
7220 					       zone_names[j], memmap_pages);
7221 			} else
7222 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7223 					zone_names[j], memmap_pages, freesize);
7224 		}
7225 
7226 		/* Account for reserved pages */
7227 		if (j == 0 && freesize > dma_reserve) {
7228 			freesize -= dma_reserve;
7229 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7230 					zone_names[0], dma_reserve);
7231 		}
7232 
7233 		if (!is_highmem_idx(j))
7234 			nr_kernel_pages += freesize;
7235 		/* Charge for highmem memmap if there are enough kernel pages */
7236 		else if (nr_kernel_pages > memmap_pages * 2)
7237 			nr_kernel_pages -= memmap_pages;
7238 		nr_all_pages += freesize;
7239 
7240 		/*
7241 		 * Set an approximate value for lowmem here, it will be adjusted
7242 		 * when the bootmem allocator frees pages into the buddy system.
7243 		 * And all highmem pages will be managed by the buddy system.
7244 		 */
7245 		zone_init_internals(zone, j, nid, freesize);
7246 
7247 		if (!size)
7248 			continue;
7249 
7250 		set_pageblock_order();
7251 		setup_usemap(zone);
7252 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7253 		memmap_init_zone(zone);
7254 	}
7255 }
7256 
7257 #ifdef CONFIG_FLAT_NODE_MEM_MAP
7258 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7259 {
7260 	unsigned long __maybe_unused start = 0;
7261 	unsigned long __maybe_unused offset = 0;
7262 
7263 	/* Skip empty nodes */
7264 	if (!pgdat->node_spanned_pages)
7265 		return;
7266 
7267 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7268 	offset = pgdat->node_start_pfn - start;
7269 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7270 	if (!pgdat->node_mem_map) {
7271 		unsigned long size, end;
7272 		struct page *map;
7273 
7274 		/*
7275 		 * The zone's endpoints aren't required to be MAX_ORDER
7276 		 * aligned but the node_mem_map endpoints must be in order
7277 		 * for the buddy allocator to function correctly.
7278 		 */
7279 		end = pgdat_end_pfn(pgdat);
7280 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7281 		size =  (end - start) * sizeof(struct page);
7282 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7283 					  pgdat->node_id);
7284 		if (!map)
7285 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7286 			      size, pgdat->node_id);
7287 		pgdat->node_mem_map = map + offset;
7288 	}
7289 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7290 				__func__, pgdat->node_id, (unsigned long)pgdat,
7291 				(unsigned long)pgdat->node_mem_map);
7292 #ifndef CONFIG_NEED_MULTIPLE_NODES
7293 	/*
7294 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7295 	 */
7296 	if (pgdat == NODE_DATA(0)) {
7297 		mem_map = NODE_DATA(0)->node_mem_map;
7298 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7299 			mem_map -= offset;
7300 	}
7301 #endif
7302 }
7303 #else
7304 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7305 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7306 
7307 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7308 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7309 {
7310 	pgdat->first_deferred_pfn = ULONG_MAX;
7311 }
7312 #else
7313 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7314 #endif
7315 
7316 static void __init free_area_init_node(int nid)
7317 {
7318 	pg_data_t *pgdat = NODE_DATA(nid);
7319 	unsigned long start_pfn = 0;
7320 	unsigned long end_pfn = 0;
7321 
7322 	/* pg_data_t should be reset to zero when it's allocated */
7323 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7324 
7325 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7326 
7327 	pgdat->node_id = nid;
7328 	pgdat->node_start_pfn = start_pfn;
7329 	pgdat->per_cpu_nodestats = NULL;
7330 
7331 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7332 		(u64)start_pfn << PAGE_SHIFT,
7333 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7334 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7335 
7336 	alloc_node_mem_map(pgdat);
7337 	pgdat_set_deferred_range(pgdat);
7338 
7339 	free_area_init_core(pgdat);
7340 }
7341 
7342 void __init free_area_init_memoryless_node(int nid)
7343 {
7344 	free_area_init_node(nid);
7345 }
7346 
7347 #if MAX_NUMNODES > 1
7348 /*
7349  * Figure out the number of possible node ids.
7350  */
7351 void __init setup_nr_node_ids(void)
7352 {
7353 	unsigned int highest;
7354 
7355 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7356 	nr_node_ids = highest + 1;
7357 }
7358 #endif
7359 
7360 /**
7361  * node_map_pfn_alignment - determine the maximum internode alignment
7362  *
7363  * This function should be called after node map is populated and sorted.
7364  * It calculates the maximum power of two alignment which can distinguish
7365  * all the nodes.
7366  *
7367  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7368  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7369  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7370  * shifted, 1GiB is enough and this function will indicate so.
7371  *
7372  * This is used to test whether pfn -> nid mapping of the chosen memory
7373  * model has fine enough granularity to avoid incorrect mapping for the
7374  * populated node map.
7375  *
7376  * Return: the determined alignment in pfn's.  0 if there is no alignment
7377  * requirement (single node).
7378  */
7379 unsigned long __init node_map_pfn_alignment(void)
7380 {
7381 	unsigned long accl_mask = 0, last_end = 0;
7382 	unsigned long start, end, mask;
7383 	int last_nid = NUMA_NO_NODE;
7384 	int i, nid;
7385 
7386 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7387 		if (!start || last_nid < 0 || last_nid == nid) {
7388 			last_nid = nid;
7389 			last_end = end;
7390 			continue;
7391 		}
7392 
7393 		/*
7394 		 * Start with a mask granular enough to pin-point to the
7395 		 * start pfn and tick off bits one-by-one until it becomes
7396 		 * too coarse to separate the current node from the last.
7397 		 */
7398 		mask = ~((1 << __ffs(start)) - 1);
7399 		while (mask && last_end <= (start & (mask << 1)))
7400 			mask <<= 1;
7401 
7402 		/* accumulate all internode masks */
7403 		accl_mask |= mask;
7404 	}
7405 
7406 	/* convert mask to number of pages */
7407 	return ~accl_mask + 1;
7408 }
7409 
7410 /**
7411  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7412  *
7413  * Return: the minimum PFN based on information provided via
7414  * memblock_set_node().
7415  */
7416 unsigned long __init find_min_pfn_with_active_regions(void)
7417 {
7418 	return PHYS_PFN(memblock_start_of_DRAM());
7419 }
7420 
7421 /*
7422  * early_calculate_totalpages()
7423  * Sum pages in active regions for movable zone.
7424  * Populate N_MEMORY for calculating usable_nodes.
7425  */
7426 static unsigned long __init early_calculate_totalpages(void)
7427 {
7428 	unsigned long totalpages = 0;
7429 	unsigned long start_pfn, end_pfn;
7430 	int i, nid;
7431 
7432 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7433 		unsigned long pages = end_pfn - start_pfn;
7434 
7435 		totalpages += pages;
7436 		if (pages)
7437 			node_set_state(nid, N_MEMORY);
7438 	}
7439 	return totalpages;
7440 }
7441 
7442 /*
7443  * Find the PFN the Movable zone begins in each node. Kernel memory
7444  * is spread evenly between nodes as long as the nodes have enough
7445  * memory. When they don't, some nodes will have more kernelcore than
7446  * others
7447  */
7448 static void __init find_zone_movable_pfns_for_nodes(void)
7449 {
7450 	int i, nid;
7451 	unsigned long usable_startpfn;
7452 	unsigned long kernelcore_node, kernelcore_remaining;
7453 	/* save the state before borrow the nodemask */
7454 	nodemask_t saved_node_state = node_states[N_MEMORY];
7455 	unsigned long totalpages = early_calculate_totalpages();
7456 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7457 	struct memblock_region *r;
7458 
7459 	/* Need to find movable_zone earlier when movable_node is specified. */
7460 	find_usable_zone_for_movable();
7461 
7462 	/*
7463 	 * If movable_node is specified, ignore kernelcore and movablecore
7464 	 * options.
7465 	 */
7466 	if (movable_node_is_enabled()) {
7467 		for_each_mem_region(r) {
7468 			if (!memblock_is_hotpluggable(r))
7469 				continue;
7470 
7471 			nid = memblock_get_region_node(r);
7472 
7473 			usable_startpfn = PFN_DOWN(r->base);
7474 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7475 				min(usable_startpfn, zone_movable_pfn[nid]) :
7476 				usable_startpfn;
7477 		}
7478 
7479 		goto out2;
7480 	}
7481 
7482 	/*
7483 	 * If kernelcore=mirror is specified, ignore movablecore option
7484 	 */
7485 	if (mirrored_kernelcore) {
7486 		bool mem_below_4gb_not_mirrored = false;
7487 
7488 		for_each_mem_region(r) {
7489 			if (memblock_is_mirror(r))
7490 				continue;
7491 
7492 			nid = memblock_get_region_node(r);
7493 
7494 			usable_startpfn = memblock_region_memory_base_pfn(r);
7495 
7496 			if (usable_startpfn < 0x100000) {
7497 				mem_below_4gb_not_mirrored = true;
7498 				continue;
7499 			}
7500 
7501 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7502 				min(usable_startpfn, zone_movable_pfn[nid]) :
7503 				usable_startpfn;
7504 		}
7505 
7506 		if (mem_below_4gb_not_mirrored)
7507 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7508 
7509 		goto out2;
7510 	}
7511 
7512 	/*
7513 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7514 	 * amount of necessary memory.
7515 	 */
7516 	if (required_kernelcore_percent)
7517 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7518 				       10000UL;
7519 	if (required_movablecore_percent)
7520 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7521 					10000UL;
7522 
7523 	/*
7524 	 * If movablecore= was specified, calculate what size of
7525 	 * kernelcore that corresponds so that memory usable for
7526 	 * any allocation type is evenly spread. If both kernelcore
7527 	 * and movablecore are specified, then the value of kernelcore
7528 	 * will be used for required_kernelcore if it's greater than
7529 	 * what movablecore would have allowed.
7530 	 */
7531 	if (required_movablecore) {
7532 		unsigned long corepages;
7533 
7534 		/*
7535 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7536 		 * was requested by the user
7537 		 */
7538 		required_movablecore =
7539 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7540 		required_movablecore = min(totalpages, required_movablecore);
7541 		corepages = totalpages - required_movablecore;
7542 
7543 		required_kernelcore = max(required_kernelcore, corepages);
7544 	}
7545 
7546 	/*
7547 	 * If kernelcore was not specified or kernelcore size is larger
7548 	 * than totalpages, there is no ZONE_MOVABLE.
7549 	 */
7550 	if (!required_kernelcore || required_kernelcore >= totalpages)
7551 		goto out;
7552 
7553 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7554 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7555 
7556 restart:
7557 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7558 	kernelcore_node = required_kernelcore / usable_nodes;
7559 	for_each_node_state(nid, N_MEMORY) {
7560 		unsigned long start_pfn, end_pfn;
7561 
7562 		/*
7563 		 * Recalculate kernelcore_node if the division per node
7564 		 * now exceeds what is necessary to satisfy the requested
7565 		 * amount of memory for the kernel
7566 		 */
7567 		if (required_kernelcore < kernelcore_node)
7568 			kernelcore_node = required_kernelcore / usable_nodes;
7569 
7570 		/*
7571 		 * As the map is walked, we track how much memory is usable
7572 		 * by the kernel using kernelcore_remaining. When it is
7573 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7574 		 */
7575 		kernelcore_remaining = kernelcore_node;
7576 
7577 		/* Go through each range of PFNs within this node */
7578 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7579 			unsigned long size_pages;
7580 
7581 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7582 			if (start_pfn >= end_pfn)
7583 				continue;
7584 
7585 			/* Account for what is only usable for kernelcore */
7586 			if (start_pfn < usable_startpfn) {
7587 				unsigned long kernel_pages;
7588 				kernel_pages = min(end_pfn, usable_startpfn)
7589 								- start_pfn;
7590 
7591 				kernelcore_remaining -= min(kernel_pages,
7592 							kernelcore_remaining);
7593 				required_kernelcore -= min(kernel_pages,
7594 							required_kernelcore);
7595 
7596 				/* Continue if range is now fully accounted */
7597 				if (end_pfn <= usable_startpfn) {
7598 
7599 					/*
7600 					 * Push zone_movable_pfn to the end so
7601 					 * that if we have to rebalance
7602 					 * kernelcore across nodes, we will
7603 					 * not double account here
7604 					 */
7605 					zone_movable_pfn[nid] = end_pfn;
7606 					continue;
7607 				}
7608 				start_pfn = usable_startpfn;
7609 			}
7610 
7611 			/*
7612 			 * The usable PFN range for ZONE_MOVABLE is from
7613 			 * start_pfn->end_pfn. Calculate size_pages as the
7614 			 * number of pages used as kernelcore
7615 			 */
7616 			size_pages = end_pfn - start_pfn;
7617 			if (size_pages > kernelcore_remaining)
7618 				size_pages = kernelcore_remaining;
7619 			zone_movable_pfn[nid] = start_pfn + size_pages;
7620 
7621 			/*
7622 			 * Some kernelcore has been met, update counts and
7623 			 * break if the kernelcore for this node has been
7624 			 * satisfied
7625 			 */
7626 			required_kernelcore -= min(required_kernelcore,
7627 								size_pages);
7628 			kernelcore_remaining -= size_pages;
7629 			if (!kernelcore_remaining)
7630 				break;
7631 		}
7632 	}
7633 
7634 	/*
7635 	 * If there is still required_kernelcore, we do another pass with one
7636 	 * less node in the count. This will push zone_movable_pfn[nid] further
7637 	 * along on the nodes that still have memory until kernelcore is
7638 	 * satisfied
7639 	 */
7640 	usable_nodes--;
7641 	if (usable_nodes && required_kernelcore > usable_nodes)
7642 		goto restart;
7643 
7644 out2:
7645 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7646 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7647 		zone_movable_pfn[nid] =
7648 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7649 
7650 out:
7651 	/* restore the node_state */
7652 	node_states[N_MEMORY] = saved_node_state;
7653 }
7654 
7655 /* Any regular or high memory on that node ? */
7656 static void check_for_memory(pg_data_t *pgdat, int nid)
7657 {
7658 	enum zone_type zone_type;
7659 
7660 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7661 		struct zone *zone = &pgdat->node_zones[zone_type];
7662 		if (populated_zone(zone)) {
7663 			if (IS_ENABLED(CONFIG_HIGHMEM))
7664 				node_set_state(nid, N_HIGH_MEMORY);
7665 			if (zone_type <= ZONE_NORMAL)
7666 				node_set_state(nid, N_NORMAL_MEMORY);
7667 			break;
7668 		}
7669 	}
7670 }
7671 
7672 /*
7673  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7674  * such cases we allow max_zone_pfn sorted in the descending order
7675  */
7676 bool __weak arch_has_descending_max_zone_pfns(void)
7677 {
7678 	return false;
7679 }
7680 
7681 /**
7682  * free_area_init - Initialise all pg_data_t and zone data
7683  * @max_zone_pfn: an array of max PFNs for each zone
7684  *
7685  * This will call free_area_init_node() for each active node in the system.
7686  * Using the page ranges provided by memblock_set_node(), the size of each
7687  * zone in each node and their holes is calculated. If the maximum PFN
7688  * between two adjacent zones match, it is assumed that the zone is empty.
7689  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7690  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7691  * starts where the previous one ended. For example, ZONE_DMA32 starts
7692  * at arch_max_dma_pfn.
7693  */
7694 void __init free_area_init(unsigned long *max_zone_pfn)
7695 {
7696 	unsigned long start_pfn, end_pfn;
7697 	int i, nid, zone;
7698 	bool descending;
7699 
7700 	/* Record where the zone boundaries are */
7701 	memset(arch_zone_lowest_possible_pfn, 0,
7702 				sizeof(arch_zone_lowest_possible_pfn));
7703 	memset(arch_zone_highest_possible_pfn, 0,
7704 				sizeof(arch_zone_highest_possible_pfn));
7705 
7706 	start_pfn = find_min_pfn_with_active_regions();
7707 	descending = arch_has_descending_max_zone_pfns();
7708 
7709 	for (i = 0; i < MAX_NR_ZONES; i++) {
7710 		if (descending)
7711 			zone = MAX_NR_ZONES - i - 1;
7712 		else
7713 			zone = i;
7714 
7715 		if (zone == ZONE_MOVABLE)
7716 			continue;
7717 
7718 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7719 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7720 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7721 
7722 		start_pfn = end_pfn;
7723 	}
7724 
7725 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7726 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7727 	find_zone_movable_pfns_for_nodes();
7728 
7729 	/* Print out the zone ranges */
7730 	pr_info("Zone ranges:\n");
7731 	for (i = 0; i < MAX_NR_ZONES; i++) {
7732 		if (i == ZONE_MOVABLE)
7733 			continue;
7734 		pr_info("  %-8s ", zone_names[i]);
7735 		if (arch_zone_lowest_possible_pfn[i] ==
7736 				arch_zone_highest_possible_pfn[i])
7737 			pr_cont("empty\n");
7738 		else
7739 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7740 				(u64)arch_zone_lowest_possible_pfn[i]
7741 					<< PAGE_SHIFT,
7742 				((u64)arch_zone_highest_possible_pfn[i]
7743 					<< PAGE_SHIFT) - 1);
7744 	}
7745 
7746 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7747 	pr_info("Movable zone start for each node\n");
7748 	for (i = 0; i < MAX_NUMNODES; i++) {
7749 		if (zone_movable_pfn[i])
7750 			pr_info("  Node %d: %#018Lx\n", i,
7751 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7752 	}
7753 
7754 	/*
7755 	 * Print out the early node map, and initialize the
7756 	 * subsection-map relative to active online memory ranges to
7757 	 * enable future "sub-section" extensions of the memory map.
7758 	 */
7759 	pr_info("Early memory node ranges\n");
7760 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7761 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7762 			(u64)start_pfn << PAGE_SHIFT,
7763 			((u64)end_pfn << PAGE_SHIFT) - 1);
7764 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7765 	}
7766 
7767 	/* Initialise every node */
7768 	mminit_verify_pageflags_layout();
7769 	setup_nr_node_ids();
7770 	for_each_online_node(nid) {
7771 		pg_data_t *pgdat = NODE_DATA(nid);
7772 		free_area_init_node(nid);
7773 
7774 		/* Any memory on that node */
7775 		if (pgdat->node_present_pages)
7776 			node_set_state(nid, N_MEMORY);
7777 		check_for_memory(pgdat, nid);
7778 	}
7779 }
7780 
7781 static int __init cmdline_parse_core(char *p, unsigned long *core,
7782 				     unsigned long *percent)
7783 {
7784 	unsigned long long coremem;
7785 	char *endptr;
7786 
7787 	if (!p)
7788 		return -EINVAL;
7789 
7790 	/* Value may be a percentage of total memory, otherwise bytes */
7791 	coremem = simple_strtoull(p, &endptr, 0);
7792 	if (*endptr == '%') {
7793 		/* Paranoid check for percent values greater than 100 */
7794 		WARN_ON(coremem > 100);
7795 
7796 		*percent = coremem;
7797 	} else {
7798 		coremem = memparse(p, &p);
7799 		/* Paranoid check that UL is enough for the coremem value */
7800 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7801 
7802 		*core = coremem >> PAGE_SHIFT;
7803 		*percent = 0UL;
7804 	}
7805 	return 0;
7806 }
7807 
7808 /*
7809  * kernelcore=size sets the amount of memory for use for allocations that
7810  * cannot be reclaimed or migrated.
7811  */
7812 static int __init cmdline_parse_kernelcore(char *p)
7813 {
7814 	/* parse kernelcore=mirror */
7815 	if (parse_option_str(p, "mirror")) {
7816 		mirrored_kernelcore = true;
7817 		return 0;
7818 	}
7819 
7820 	return cmdline_parse_core(p, &required_kernelcore,
7821 				  &required_kernelcore_percent);
7822 }
7823 
7824 /*
7825  * movablecore=size sets the amount of memory for use for allocations that
7826  * can be reclaimed or migrated.
7827  */
7828 static int __init cmdline_parse_movablecore(char *p)
7829 {
7830 	return cmdline_parse_core(p, &required_movablecore,
7831 				  &required_movablecore_percent);
7832 }
7833 
7834 early_param("kernelcore", cmdline_parse_kernelcore);
7835 early_param("movablecore", cmdline_parse_movablecore);
7836 
7837 void adjust_managed_page_count(struct page *page, long count)
7838 {
7839 	atomic_long_add(count, &page_zone(page)->managed_pages);
7840 	totalram_pages_add(count);
7841 #ifdef CONFIG_HIGHMEM
7842 	if (PageHighMem(page))
7843 		totalhigh_pages_add(count);
7844 #endif
7845 }
7846 EXPORT_SYMBOL(adjust_managed_page_count);
7847 
7848 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7849 {
7850 	void *pos;
7851 	unsigned long pages = 0;
7852 
7853 	start = (void *)PAGE_ALIGN((unsigned long)start);
7854 	end = (void *)((unsigned long)end & PAGE_MASK);
7855 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7856 		struct page *page = virt_to_page(pos);
7857 		void *direct_map_addr;
7858 
7859 		/*
7860 		 * 'direct_map_addr' might be different from 'pos'
7861 		 * because some architectures' virt_to_page()
7862 		 * work with aliases.  Getting the direct map
7863 		 * address ensures that we get a _writeable_
7864 		 * alias for the memset().
7865 		 */
7866 		direct_map_addr = page_address(page);
7867 		/*
7868 		 * Perform a kasan-unchecked memset() since this memory
7869 		 * has not been initialized.
7870 		 */
7871 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7872 		if ((unsigned int)poison <= 0xFF)
7873 			memset(direct_map_addr, poison, PAGE_SIZE);
7874 
7875 		free_reserved_page(page);
7876 	}
7877 
7878 	if (pages && s)
7879 		pr_info("Freeing %s memory: %ldK\n",
7880 			s, pages << (PAGE_SHIFT - 10));
7881 
7882 	return pages;
7883 }
7884 
7885 void __init mem_init_print_info(void)
7886 {
7887 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7888 	unsigned long init_code_size, init_data_size;
7889 
7890 	physpages = get_num_physpages();
7891 	codesize = _etext - _stext;
7892 	datasize = _edata - _sdata;
7893 	rosize = __end_rodata - __start_rodata;
7894 	bss_size = __bss_stop - __bss_start;
7895 	init_data_size = __init_end - __init_begin;
7896 	init_code_size = _einittext - _sinittext;
7897 
7898 	/*
7899 	 * Detect special cases and adjust section sizes accordingly:
7900 	 * 1) .init.* may be embedded into .data sections
7901 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7902 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7903 	 * 3) .rodata.* may be embedded into .text or .data sections.
7904 	 */
7905 #define adj_init_size(start, end, size, pos, adj) \
7906 	do { \
7907 		if (start <= pos && pos < end && size > adj) \
7908 			size -= adj; \
7909 	} while (0)
7910 
7911 	adj_init_size(__init_begin, __init_end, init_data_size,
7912 		     _sinittext, init_code_size);
7913 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7914 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7915 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7916 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7917 
7918 #undef	adj_init_size
7919 
7920 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7921 #ifdef	CONFIG_HIGHMEM
7922 		", %luK highmem"
7923 #endif
7924 		")\n",
7925 		nr_free_pages() << (PAGE_SHIFT - 10),
7926 		physpages << (PAGE_SHIFT - 10),
7927 		codesize >> 10, datasize >> 10, rosize >> 10,
7928 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7929 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7930 		totalcma_pages << (PAGE_SHIFT - 10)
7931 #ifdef	CONFIG_HIGHMEM
7932 		, totalhigh_pages() << (PAGE_SHIFT - 10)
7933 #endif
7934 		);
7935 }
7936 
7937 /**
7938  * set_dma_reserve - set the specified number of pages reserved in the first zone
7939  * @new_dma_reserve: The number of pages to mark reserved
7940  *
7941  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7942  * In the DMA zone, a significant percentage may be consumed by kernel image
7943  * and other unfreeable allocations which can skew the watermarks badly. This
7944  * function may optionally be used to account for unfreeable pages in the
7945  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7946  * smaller per-cpu batchsize.
7947  */
7948 void __init set_dma_reserve(unsigned long new_dma_reserve)
7949 {
7950 	dma_reserve = new_dma_reserve;
7951 }
7952 
7953 static int page_alloc_cpu_dead(unsigned int cpu)
7954 {
7955 
7956 	lru_add_drain_cpu(cpu);
7957 	drain_pages(cpu);
7958 
7959 	/*
7960 	 * Spill the event counters of the dead processor
7961 	 * into the current processors event counters.
7962 	 * This artificially elevates the count of the current
7963 	 * processor.
7964 	 */
7965 	vm_events_fold_cpu(cpu);
7966 
7967 	/*
7968 	 * Zero the differential counters of the dead processor
7969 	 * so that the vm statistics are consistent.
7970 	 *
7971 	 * This is only okay since the processor is dead and cannot
7972 	 * race with what we are doing.
7973 	 */
7974 	cpu_vm_stats_fold(cpu);
7975 	return 0;
7976 }
7977 
7978 #ifdef CONFIG_NUMA
7979 int hashdist = HASHDIST_DEFAULT;
7980 
7981 static int __init set_hashdist(char *str)
7982 {
7983 	if (!str)
7984 		return 0;
7985 	hashdist = simple_strtoul(str, &str, 0);
7986 	return 1;
7987 }
7988 __setup("hashdist=", set_hashdist);
7989 #endif
7990 
7991 void __init page_alloc_init(void)
7992 {
7993 	int ret;
7994 
7995 #ifdef CONFIG_NUMA
7996 	if (num_node_state(N_MEMORY) == 1)
7997 		hashdist = 0;
7998 #endif
7999 
8000 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8001 					"mm/page_alloc:dead", NULL,
8002 					page_alloc_cpu_dead);
8003 	WARN_ON(ret < 0);
8004 }
8005 
8006 /*
8007  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8008  *	or min_free_kbytes changes.
8009  */
8010 static void calculate_totalreserve_pages(void)
8011 {
8012 	struct pglist_data *pgdat;
8013 	unsigned long reserve_pages = 0;
8014 	enum zone_type i, j;
8015 
8016 	for_each_online_pgdat(pgdat) {
8017 
8018 		pgdat->totalreserve_pages = 0;
8019 
8020 		for (i = 0; i < MAX_NR_ZONES; i++) {
8021 			struct zone *zone = pgdat->node_zones + i;
8022 			long max = 0;
8023 			unsigned long managed_pages = zone_managed_pages(zone);
8024 
8025 			/* Find valid and maximum lowmem_reserve in the zone */
8026 			for (j = i; j < MAX_NR_ZONES; j++) {
8027 				if (zone->lowmem_reserve[j] > max)
8028 					max = zone->lowmem_reserve[j];
8029 			}
8030 
8031 			/* we treat the high watermark as reserved pages. */
8032 			max += high_wmark_pages(zone);
8033 
8034 			if (max > managed_pages)
8035 				max = managed_pages;
8036 
8037 			pgdat->totalreserve_pages += max;
8038 
8039 			reserve_pages += max;
8040 		}
8041 	}
8042 	totalreserve_pages = reserve_pages;
8043 }
8044 
8045 /*
8046  * setup_per_zone_lowmem_reserve - called whenever
8047  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8048  *	has a correct pages reserved value, so an adequate number of
8049  *	pages are left in the zone after a successful __alloc_pages().
8050  */
8051 static void setup_per_zone_lowmem_reserve(void)
8052 {
8053 	struct pglist_data *pgdat;
8054 	enum zone_type i, j;
8055 
8056 	for_each_online_pgdat(pgdat) {
8057 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8058 			struct zone *zone = &pgdat->node_zones[i];
8059 			int ratio = sysctl_lowmem_reserve_ratio[i];
8060 			bool clear = !ratio || !zone_managed_pages(zone);
8061 			unsigned long managed_pages = 0;
8062 
8063 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8064 				if (clear) {
8065 					zone->lowmem_reserve[j] = 0;
8066 				} else {
8067 					struct zone *upper_zone = &pgdat->node_zones[j];
8068 
8069 					managed_pages += zone_managed_pages(upper_zone);
8070 					zone->lowmem_reserve[j] = managed_pages / ratio;
8071 				}
8072 			}
8073 		}
8074 	}
8075 
8076 	/* update totalreserve_pages */
8077 	calculate_totalreserve_pages();
8078 }
8079 
8080 static void __setup_per_zone_wmarks(void)
8081 {
8082 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8083 	unsigned long lowmem_pages = 0;
8084 	struct zone *zone;
8085 	unsigned long flags;
8086 
8087 	/* Calculate total number of !ZONE_HIGHMEM pages */
8088 	for_each_zone(zone) {
8089 		if (!is_highmem(zone))
8090 			lowmem_pages += zone_managed_pages(zone);
8091 	}
8092 
8093 	for_each_zone(zone) {
8094 		u64 tmp;
8095 
8096 		spin_lock_irqsave(&zone->lock, flags);
8097 		tmp = (u64)pages_min * zone_managed_pages(zone);
8098 		do_div(tmp, lowmem_pages);
8099 		if (is_highmem(zone)) {
8100 			/*
8101 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8102 			 * need highmem pages, so cap pages_min to a small
8103 			 * value here.
8104 			 *
8105 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8106 			 * deltas control async page reclaim, and so should
8107 			 * not be capped for highmem.
8108 			 */
8109 			unsigned long min_pages;
8110 
8111 			min_pages = zone_managed_pages(zone) / 1024;
8112 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8113 			zone->_watermark[WMARK_MIN] = min_pages;
8114 		} else {
8115 			/*
8116 			 * If it's a lowmem zone, reserve a number of pages
8117 			 * proportionate to the zone's size.
8118 			 */
8119 			zone->_watermark[WMARK_MIN] = tmp;
8120 		}
8121 
8122 		/*
8123 		 * Set the kswapd watermarks distance according to the
8124 		 * scale factor in proportion to available memory, but
8125 		 * ensure a minimum size on small systems.
8126 		 */
8127 		tmp = max_t(u64, tmp >> 2,
8128 			    mult_frac(zone_managed_pages(zone),
8129 				      watermark_scale_factor, 10000));
8130 
8131 		zone->watermark_boost = 0;
8132 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8133 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8134 
8135 		spin_unlock_irqrestore(&zone->lock, flags);
8136 	}
8137 
8138 	/* update totalreserve_pages */
8139 	calculate_totalreserve_pages();
8140 }
8141 
8142 /**
8143  * setup_per_zone_wmarks - called when min_free_kbytes changes
8144  * or when memory is hot-{added|removed}
8145  *
8146  * Ensures that the watermark[min,low,high] values for each zone are set
8147  * correctly with respect to min_free_kbytes.
8148  */
8149 void setup_per_zone_wmarks(void)
8150 {
8151 	static DEFINE_SPINLOCK(lock);
8152 
8153 	spin_lock(&lock);
8154 	__setup_per_zone_wmarks();
8155 	spin_unlock(&lock);
8156 }
8157 
8158 /*
8159  * Initialise min_free_kbytes.
8160  *
8161  * For small machines we want it small (128k min).  For large machines
8162  * we want it large (256MB max).  But it is not linear, because network
8163  * bandwidth does not increase linearly with machine size.  We use
8164  *
8165  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8166  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8167  *
8168  * which yields
8169  *
8170  * 16MB:	512k
8171  * 32MB:	724k
8172  * 64MB:	1024k
8173  * 128MB:	1448k
8174  * 256MB:	2048k
8175  * 512MB:	2896k
8176  * 1024MB:	4096k
8177  * 2048MB:	5792k
8178  * 4096MB:	8192k
8179  * 8192MB:	11584k
8180  * 16384MB:	16384k
8181  */
8182 int __meminit init_per_zone_wmark_min(void)
8183 {
8184 	unsigned long lowmem_kbytes;
8185 	int new_min_free_kbytes;
8186 
8187 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8188 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8189 
8190 	if (new_min_free_kbytes > user_min_free_kbytes) {
8191 		min_free_kbytes = new_min_free_kbytes;
8192 		if (min_free_kbytes < 128)
8193 			min_free_kbytes = 128;
8194 		if (min_free_kbytes > 262144)
8195 			min_free_kbytes = 262144;
8196 	} else {
8197 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8198 				new_min_free_kbytes, user_min_free_kbytes);
8199 	}
8200 	setup_per_zone_wmarks();
8201 	refresh_zone_stat_thresholds();
8202 	setup_per_zone_lowmem_reserve();
8203 
8204 #ifdef CONFIG_NUMA
8205 	setup_min_unmapped_ratio();
8206 	setup_min_slab_ratio();
8207 #endif
8208 
8209 	khugepaged_min_free_kbytes_update();
8210 
8211 	return 0;
8212 }
8213 postcore_initcall(init_per_zone_wmark_min)
8214 
8215 /*
8216  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8217  *	that we can call two helper functions whenever min_free_kbytes
8218  *	changes.
8219  */
8220 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8221 		void *buffer, size_t *length, loff_t *ppos)
8222 {
8223 	int rc;
8224 
8225 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8226 	if (rc)
8227 		return rc;
8228 
8229 	if (write) {
8230 		user_min_free_kbytes = min_free_kbytes;
8231 		setup_per_zone_wmarks();
8232 	}
8233 	return 0;
8234 }
8235 
8236 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8237 		void *buffer, size_t *length, loff_t *ppos)
8238 {
8239 	int rc;
8240 
8241 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8242 	if (rc)
8243 		return rc;
8244 
8245 	if (write)
8246 		setup_per_zone_wmarks();
8247 
8248 	return 0;
8249 }
8250 
8251 #ifdef CONFIG_NUMA
8252 static void setup_min_unmapped_ratio(void)
8253 {
8254 	pg_data_t *pgdat;
8255 	struct zone *zone;
8256 
8257 	for_each_online_pgdat(pgdat)
8258 		pgdat->min_unmapped_pages = 0;
8259 
8260 	for_each_zone(zone)
8261 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8262 						         sysctl_min_unmapped_ratio) / 100;
8263 }
8264 
8265 
8266 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8267 		void *buffer, size_t *length, loff_t *ppos)
8268 {
8269 	int rc;
8270 
8271 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8272 	if (rc)
8273 		return rc;
8274 
8275 	setup_min_unmapped_ratio();
8276 
8277 	return 0;
8278 }
8279 
8280 static void setup_min_slab_ratio(void)
8281 {
8282 	pg_data_t *pgdat;
8283 	struct zone *zone;
8284 
8285 	for_each_online_pgdat(pgdat)
8286 		pgdat->min_slab_pages = 0;
8287 
8288 	for_each_zone(zone)
8289 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8290 						     sysctl_min_slab_ratio) / 100;
8291 }
8292 
8293 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8294 		void *buffer, size_t *length, loff_t *ppos)
8295 {
8296 	int rc;
8297 
8298 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8299 	if (rc)
8300 		return rc;
8301 
8302 	setup_min_slab_ratio();
8303 
8304 	return 0;
8305 }
8306 #endif
8307 
8308 /*
8309  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8310  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8311  *	whenever sysctl_lowmem_reserve_ratio changes.
8312  *
8313  * The reserve ratio obviously has absolutely no relation with the
8314  * minimum watermarks. The lowmem reserve ratio can only make sense
8315  * if in function of the boot time zone sizes.
8316  */
8317 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8318 		void *buffer, size_t *length, loff_t *ppos)
8319 {
8320 	int i;
8321 
8322 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8323 
8324 	for (i = 0; i < MAX_NR_ZONES; i++) {
8325 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8326 			sysctl_lowmem_reserve_ratio[i] = 0;
8327 	}
8328 
8329 	setup_per_zone_lowmem_reserve();
8330 	return 0;
8331 }
8332 
8333 /*
8334  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8335  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8336  * pagelist can have before it gets flushed back to buddy allocator.
8337  */
8338 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8339 		void *buffer, size_t *length, loff_t *ppos)
8340 {
8341 	struct zone *zone;
8342 	int old_percpu_pagelist_fraction;
8343 	int ret;
8344 
8345 	mutex_lock(&pcp_batch_high_lock);
8346 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8347 
8348 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8349 	if (!write || ret < 0)
8350 		goto out;
8351 
8352 	/* Sanity checking to avoid pcp imbalance */
8353 	if (percpu_pagelist_fraction &&
8354 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8355 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8356 		ret = -EINVAL;
8357 		goto out;
8358 	}
8359 
8360 	/* No change? */
8361 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8362 		goto out;
8363 
8364 	for_each_populated_zone(zone)
8365 		zone_set_pageset_high_and_batch(zone);
8366 out:
8367 	mutex_unlock(&pcp_batch_high_lock);
8368 	return ret;
8369 }
8370 
8371 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8372 /*
8373  * Returns the number of pages that arch has reserved but
8374  * is not known to alloc_large_system_hash().
8375  */
8376 static unsigned long __init arch_reserved_kernel_pages(void)
8377 {
8378 	return 0;
8379 }
8380 #endif
8381 
8382 /*
8383  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8384  * machines. As memory size is increased the scale is also increased but at
8385  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8386  * quadruples the scale is increased by one, which means the size of hash table
8387  * only doubles, instead of quadrupling as well.
8388  * Because 32-bit systems cannot have large physical memory, where this scaling
8389  * makes sense, it is disabled on such platforms.
8390  */
8391 #if __BITS_PER_LONG > 32
8392 #define ADAPT_SCALE_BASE	(64ul << 30)
8393 #define ADAPT_SCALE_SHIFT	2
8394 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8395 #endif
8396 
8397 /*
8398  * allocate a large system hash table from bootmem
8399  * - it is assumed that the hash table must contain an exact power-of-2
8400  *   quantity of entries
8401  * - limit is the number of hash buckets, not the total allocation size
8402  */
8403 void *__init alloc_large_system_hash(const char *tablename,
8404 				     unsigned long bucketsize,
8405 				     unsigned long numentries,
8406 				     int scale,
8407 				     int flags,
8408 				     unsigned int *_hash_shift,
8409 				     unsigned int *_hash_mask,
8410 				     unsigned long low_limit,
8411 				     unsigned long high_limit)
8412 {
8413 	unsigned long long max = high_limit;
8414 	unsigned long log2qty, size;
8415 	void *table = NULL;
8416 	gfp_t gfp_flags;
8417 	bool virt;
8418 	bool huge;
8419 
8420 	/* allow the kernel cmdline to have a say */
8421 	if (!numentries) {
8422 		/* round applicable memory size up to nearest megabyte */
8423 		numentries = nr_kernel_pages;
8424 		numentries -= arch_reserved_kernel_pages();
8425 
8426 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8427 		if (PAGE_SHIFT < 20)
8428 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8429 
8430 #if __BITS_PER_LONG > 32
8431 		if (!high_limit) {
8432 			unsigned long adapt;
8433 
8434 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8435 			     adapt <<= ADAPT_SCALE_SHIFT)
8436 				scale++;
8437 		}
8438 #endif
8439 
8440 		/* limit to 1 bucket per 2^scale bytes of low memory */
8441 		if (scale > PAGE_SHIFT)
8442 			numentries >>= (scale - PAGE_SHIFT);
8443 		else
8444 			numentries <<= (PAGE_SHIFT - scale);
8445 
8446 		/* Make sure we've got at least a 0-order allocation.. */
8447 		if (unlikely(flags & HASH_SMALL)) {
8448 			/* Makes no sense without HASH_EARLY */
8449 			WARN_ON(!(flags & HASH_EARLY));
8450 			if (!(numentries >> *_hash_shift)) {
8451 				numentries = 1UL << *_hash_shift;
8452 				BUG_ON(!numentries);
8453 			}
8454 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8455 			numentries = PAGE_SIZE / bucketsize;
8456 	}
8457 	numentries = roundup_pow_of_two(numentries);
8458 
8459 	/* limit allocation size to 1/16 total memory by default */
8460 	if (max == 0) {
8461 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8462 		do_div(max, bucketsize);
8463 	}
8464 	max = min(max, 0x80000000ULL);
8465 
8466 	if (numentries < low_limit)
8467 		numentries = low_limit;
8468 	if (numentries > max)
8469 		numentries = max;
8470 
8471 	log2qty = ilog2(numentries);
8472 
8473 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8474 	do {
8475 		virt = false;
8476 		size = bucketsize << log2qty;
8477 		if (flags & HASH_EARLY) {
8478 			if (flags & HASH_ZERO)
8479 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8480 			else
8481 				table = memblock_alloc_raw(size,
8482 							   SMP_CACHE_BYTES);
8483 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8484 			table = __vmalloc(size, gfp_flags);
8485 			virt = true;
8486 			huge = is_vm_area_hugepages(table);
8487 		} else {
8488 			/*
8489 			 * If bucketsize is not a power-of-two, we may free
8490 			 * some pages at the end of hash table which
8491 			 * alloc_pages_exact() automatically does
8492 			 */
8493 			table = alloc_pages_exact(size, gfp_flags);
8494 			kmemleak_alloc(table, size, 1, gfp_flags);
8495 		}
8496 	} while (!table && size > PAGE_SIZE && --log2qty);
8497 
8498 	if (!table)
8499 		panic("Failed to allocate %s hash table\n", tablename);
8500 
8501 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8502 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8503 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8504 
8505 	if (_hash_shift)
8506 		*_hash_shift = log2qty;
8507 	if (_hash_mask)
8508 		*_hash_mask = (1 << log2qty) - 1;
8509 
8510 	return table;
8511 }
8512 
8513 /*
8514  * This function checks whether pageblock includes unmovable pages or not.
8515  *
8516  * PageLRU check without isolation or lru_lock could race so that
8517  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8518  * check without lock_page also may miss some movable non-lru pages at
8519  * race condition. So you can't expect this function should be exact.
8520  *
8521  * Returns a page without holding a reference. If the caller wants to
8522  * dereference that page (e.g., dumping), it has to make sure that it
8523  * cannot get removed (e.g., via memory unplug) concurrently.
8524  *
8525  */
8526 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8527 				 int migratetype, int flags)
8528 {
8529 	unsigned long iter = 0;
8530 	unsigned long pfn = page_to_pfn(page);
8531 	unsigned long offset = pfn % pageblock_nr_pages;
8532 
8533 	if (is_migrate_cma_page(page)) {
8534 		/*
8535 		 * CMA allocations (alloc_contig_range) really need to mark
8536 		 * isolate CMA pageblocks even when they are not movable in fact
8537 		 * so consider them movable here.
8538 		 */
8539 		if (is_migrate_cma(migratetype))
8540 			return NULL;
8541 
8542 		return page;
8543 	}
8544 
8545 	for (; iter < pageblock_nr_pages - offset; iter++) {
8546 		if (!pfn_valid_within(pfn + iter))
8547 			continue;
8548 
8549 		page = pfn_to_page(pfn + iter);
8550 
8551 		/*
8552 		 * Both, bootmem allocations and memory holes are marked
8553 		 * PG_reserved and are unmovable. We can even have unmovable
8554 		 * allocations inside ZONE_MOVABLE, for example when
8555 		 * specifying "movablecore".
8556 		 */
8557 		if (PageReserved(page))
8558 			return page;
8559 
8560 		/*
8561 		 * If the zone is movable and we have ruled out all reserved
8562 		 * pages then it should be reasonably safe to assume the rest
8563 		 * is movable.
8564 		 */
8565 		if (zone_idx(zone) == ZONE_MOVABLE)
8566 			continue;
8567 
8568 		/*
8569 		 * Hugepages are not in LRU lists, but they're movable.
8570 		 * THPs are on the LRU, but need to be counted as #small pages.
8571 		 * We need not scan over tail pages because we don't
8572 		 * handle each tail page individually in migration.
8573 		 */
8574 		if (PageHuge(page) || PageTransCompound(page)) {
8575 			struct page *head = compound_head(page);
8576 			unsigned int skip_pages;
8577 
8578 			if (PageHuge(page)) {
8579 				if (!hugepage_migration_supported(page_hstate(head)))
8580 					return page;
8581 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8582 				return page;
8583 			}
8584 
8585 			skip_pages = compound_nr(head) - (page - head);
8586 			iter += skip_pages - 1;
8587 			continue;
8588 		}
8589 
8590 		/*
8591 		 * We can't use page_count without pin a page
8592 		 * because another CPU can free compound page.
8593 		 * This check already skips compound tails of THP
8594 		 * because their page->_refcount is zero at all time.
8595 		 */
8596 		if (!page_ref_count(page)) {
8597 			if (PageBuddy(page))
8598 				iter += (1 << buddy_order(page)) - 1;
8599 			continue;
8600 		}
8601 
8602 		/*
8603 		 * The HWPoisoned page may be not in buddy system, and
8604 		 * page_count() is not 0.
8605 		 */
8606 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8607 			continue;
8608 
8609 		/*
8610 		 * We treat all PageOffline() pages as movable when offlining
8611 		 * to give drivers a chance to decrement their reference count
8612 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8613 		 * can be offlined as there are no direct references anymore.
8614 		 * For actually unmovable PageOffline() where the driver does
8615 		 * not support this, we will fail later when trying to actually
8616 		 * move these pages that still have a reference count > 0.
8617 		 * (false negatives in this function only)
8618 		 */
8619 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8620 			continue;
8621 
8622 		if (__PageMovable(page) || PageLRU(page))
8623 			continue;
8624 
8625 		/*
8626 		 * If there are RECLAIMABLE pages, we need to check
8627 		 * it.  But now, memory offline itself doesn't call
8628 		 * shrink_node_slabs() and it still to be fixed.
8629 		 */
8630 		return page;
8631 	}
8632 	return NULL;
8633 }
8634 
8635 #ifdef CONFIG_CONTIG_ALLOC
8636 static unsigned long pfn_max_align_down(unsigned long pfn)
8637 {
8638 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8639 			     pageblock_nr_pages) - 1);
8640 }
8641 
8642 static unsigned long pfn_max_align_up(unsigned long pfn)
8643 {
8644 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8645 				pageblock_nr_pages));
8646 }
8647 
8648 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8649 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8650 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8651 static void alloc_contig_dump_pages(struct list_head *page_list)
8652 {
8653 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8654 
8655 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8656 		struct page *page;
8657 
8658 		dump_stack();
8659 		list_for_each_entry(page, page_list, lru)
8660 			dump_page(page, "migration failure");
8661 	}
8662 }
8663 #else
8664 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8665 {
8666 }
8667 #endif
8668 
8669 /* [start, end) must belong to a single zone. */
8670 static int __alloc_contig_migrate_range(struct compact_control *cc,
8671 					unsigned long start, unsigned long end)
8672 {
8673 	/* This function is based on compact_zone() from compaction.c. */
8674 	unsigned int nr_reclaimed;
8675 	unsigned long pfn = start;
8676 	unsigned int tries = 0;
8677 	int ret = 0;
8678 	struct migration_target_control mtc = {
8679 		.nid = zone_to_nid(cc->zone),
8680 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8681 	};
8682 
8683 	lru_cache_disable();
8684 
8685 	while (pfn < end || !list_empty(&cc->migratepages)) {
8686 		if (fatal_signal_pending(current)) {
8687 			ret = -EINTR;
8688 			break;
8689 		}
8690 
8691 		if (list_empty(&cc->migratepages)) {
8692 			cc->nr_migratepages = 0;
8693 			ret = isolate_migratepages_range(cc, pfn, end);
8694 			if (ret && ret != -EAGAIN)
8695 				break;
8696 			pfn = cc->migrate_pfn;
8697 			tries = 0;
8698 		} else if (++tries == 5) {
8699 			ret = -EBUSY;
8700 			break;
8701 		}
8702 
8703 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8704 							&cc->migratepages);
8705 		cc->nr_migratepages -= nr_reclaimed;
8706 
8707 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8708 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8709 
8710 		/*
8711 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8712 		 * to retry again over this error, so do the same here.
8713 		 */
8714 		if (ret == -ENOMEM)
8715 			break;
8716 	}
8717 
8718 	lru_cache_enable();
8719 	if (ret < 0) {
8720 		alloc_contig_dump_pages(&cc->migratepages);
8721 		putback_movable_pages(&cc->migratepages);
8722 		return ret;
8723 	}
8724 	return 0;
8725 }
8726 
8727 /**
8728  * alloc_contig_range() -- tries to allocate given range of pages
8729  * @start:	start PFN to allocate
8730  * @end:	one-past-the-last PFN to allocate
8731  * @migratetype:	migratetype of the underlying pageblocks (either
8732  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8733  *			in range must have the same migratetype and it must
8734  *			be either of the two.
8735  * @gfp_mask:	GFP mask to use during compaction
8736  *
8737  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8738  * aligned.  The PFN range must belong to a single zone.
8739  *
8740  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8741  * pageblocks in the range.  Once isolated, the pageblocks should not
8742  * be modified by others.
8743  *
8744  * Return: zero on success or negative error code.  On success all
8745  * pages which PFN is in [start, end) are allocated for the caller and
8746  * need to be freed with free_contig_range().
8747  */
8748 int alloc_contig_range(unsigned long start, unsigned long end,
8749 		       unsigned migratetype, gfp_t gfp_mask)
8750 {
8751 	unsigned long outer_start, outer_end;
8752 	unsigned int order;
8753 	int ret = 0;
8754 
8755 	struct compact_control cc = {
8756 		.nr_migratepages = 0,
8757 		.order = -1,
8758 		.zone = page_zone(pfn_to_page(start)),
8759 		.mode = MIGRATE_SYNC,
8760 		.ignore_skip_hint = true,
8761 		.no_set_skip_hint = true,
8762 		.gfp_mask = current_gfp_context(gfp_mask),
8763 		.alloc_contig = true,
8764 	};
8765 	INIT_LIST_HEAD(&cc.migratepages);
8766 
8767 	/*
8768 	 * What we do here is we mark all pageblocks in range as
8769 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8770 	 * have different sizes, and due to the way page allocator
8771 	 * work, we align the range to biggest of the two pages so
8772 	 * that page allocator won't try to merge buddies from
8773 	 * different pageblocks and change MIGRATE_ISOLATE to some
8774 	 * other migration type.
8775 	 *
8776 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8777 	 * migrate the pages from an unaligned range (ie. pages that
8778 	 * we are interested in).  This will put all the pages in
8779 	 * range back to page allocator as MIGRATE_ISOLATE.
8780 	 *
8781 	 * When this is done, we take the pages in range from page
8782 	 * allocator removing them from the buddy system.  This way
8783 	 * page allocator will never consider using them.
8784 	 *
8785 	 * This lets us mark the pageblocks back as
8786 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8787 	 * aligned range but not in the unaligned, original range are
8788 	 * put back to page allocator so that buddy can use them.
8789 	 */
8790 
8791 	ret = start_isolate_page_range(pfn_max_align_down(start),
8792 				       pfn_max_align_up(end), migratetype, 0);
8793 	if (ret)
8794 		return ret;
8795 
8796 	drain_all_pages(cc.zone);
8797 
8798 	/*
8799 	 * In case of -EBUSY, we'd like to know which page causes problem.
8800 	 * So, just fall through. test_pages_isolated() has a tracepoint
8801 	 * which will report the busy page.
8802 	 *
8803 	 * It is possible that busy pages could become available before
8804 	 * the call to test_pages_isolated, and the range will actually be
8805 	 * allocated.  So, if we fall through be sure to clear ret so that
8806 	 * -EBUSY is not accidentally used or returned to caller.
8807 	 */
8808 	ret = __alloc_contig_migrate_range(&cc, start, end);
8809 	if (ret && ret != -EBUSY)
8810 		goto done;
8811 	ret = 0;
8812 
8813 	/*
8814 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8815 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8816 	 * more, all pages in [start, end) are free in page allocator.
8817 	 * What we are going to do is to allocate all pages from
8818 	 * [start, end) (that is remove them from page allocator).
8819 	 *
8820 	 * The only problem is that pages at the beginning and at the
8821 	 * end of interesting range may be not aligned with pages that
8822 	 * page allocator holds, ie. they can be part of higher order
8823 	 * pages.  Because of this, we reserve the bigger range and
8824 	 * once this is done free the pages we are not interested in.
8825 	 *
8826 	 * We don't have to hold zone->lock here because the pages are
8827 	 * isolated thus they won't get removed from buddy.
8828 	 */
8829 
8830 	order = 0;
8831 	outer_start = start;
8832 	while (!PageBuddy(pfn_to_page(outer_start))) {
8833 		if (++order >= MAX_ORDER) {
8834 			outer_start = start;
8835 			break;
8836 		}
8837 		outer_start &= ~0UL << order;
8838 	}
8839 
8840 	if (outer_start != start) {
8841 		order = buddy_order(pfn_to_page(outer_start));
8842 
8843 		/*
8844 		 * outer_start page could be small order buddy page and
8845 		 * it doesn't include start page. Adjust outer_start
8846 		 * in this case to report failed page properly
8847 		 * on tracepoint in test_pages_isolated()
8848 		 */
8849 		if (outer_start + (1UL << order) <= start)
8850 			outer_start = start;
8851 	}
8852 
8853 	/* Make sure the range is really isolated. */
8854 	if (test_pages_isolated(outer_start, end, 0)) {
8855 		ret = -EBUSY;
8856 		goto done;
8857 	}
8858 
8859 	/* Grab isolated pages from freelists. */
8860 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8861 	if (!outer_end) {
8862 		ret = -EBUSY;
8863 		goto done;
8864 	}
8865 
8866 	/* Free head and tail (if any) */
8867 	if (start != outer_start)
8868 		free_contig_range(outer_start, start - outer_start);
8869 	if (end != outer_end)
8870 		free_contig_range(end, outer_end - end);
8871 
8872 done:
8873 	undo_isolate_page_range(pfn_max_align_down(start),
8874 				pfn_max_align_up(end), migratetype);
8875 	return ret;
8876 }
8877 EXPORT_SYMBOL(alloc_contig_range);
8878 
8879 static int __alloc_contig_pages(unsigned long start_pfn,
8880 				unsigned long nr_pages, gfp_t gfp_mask)
8881 {
8882 	unsigned long end_pfn = start_pfn + nr_pages;
8883 
8884 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8885 				  gfp_mask);
8886 }
8887 
8888 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8889 				   unsigned long nr_pages)
8890 {
8891 	unsigned long i, end_pfn = start_pfn + nr_pages;
8892 	struct page *page;
8893 
8894 	for (i = start_pfn; i < end_pfn; i++) {
8895 		page = pfn_to_online_page(i);
8896 		if (!page)
8897 			return false;
8898 
8899 		if (page_zone(page) != z)
8900 			return false;
8901 
8902 		if (PageReserved(page))
8903 			return false;
8904 	}
8905 	return true;
8906 }
8907 
8908 static bool zone_spans_last_pfn(const struct zone *zone,
8909 				unsigned long start_pfn, unsigned long nr_pages)
8910 {
8911 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8912 
8913 	return zone_spans_pfn(zone, last_pfn);
8914 }
8915 
8916 /**
8917  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8918  * @nr_pages:	Number of contiguous pages to allocate
8919  * @gfp_mask:	GFP mask to limit search and used during compaction
8920  * @nid:	Target node
8921  * @nodemask:	Mask for other possible nodes
8922  *
8923  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8924  * on an applicable zonelist to find a contiguous pfn range which can then be
8925  * tried for allocation with alloc_contig_range(). This routine is intended
8926  * for allocation requests which can not be fulfilled with the buddy allocator.
8927  *
8928  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8929  * power of two then the alignment is guaranteed to be to the given nr_pages
8930  * (e.g. 1GB request would be aligned to 1GB).
8931  *
8932  * Allocated pages can be freed with free_contig_range() or by manually calling
8933  * __free_page() on each allocated page.
8934  *
8935  * Return: pointer to contiguous pages on success, or NULL if not successful.
8936  */
8937 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8938 				int nid, nodemask_t *nodemask)
8939 {
8940 	unsigned long ret, pfn, flags;
8941 	struct zonelist *zonelist;
8942 	struct zone *zone;
8943 	struct zoneref *z;
8944 
8945 	zonelist = node_zonelist(nid, gfp_mask);
8946 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8947 					gfp_zone(gfp_mask), nodemask) {
8948 		spin_lock_irqsave(&zone->lock, flags);
8949 
8950 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8951 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8952 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8953 				/*
8954 				 * We release the zone lock here because
8955 				 * alloc_contig_range() will also lock the zone
8956 				 * at some point. If there's an allocation
8957 				 * spinning on this lock, it may win the race
8958 				 * and cause alloc_contig_range() to fail...
8959 				 */
8960 				spin_unlock_irqrestore(&zone->lock, flags);
8961 				ret = __alloc_contig_pages(pfn, nr_pages,
8962 							gfp_mask);
8963 				if (!ret)
8964 					return pfn_to_page(pfn);
8965 				spin_lock_irqsave(&zone->lock, flags);
8966 			}
8967 			pfn += nr_pages;
8968 		}
8969 		spin_unlock_irqrestore(&zone->lock, flags);
8970 	}
8971 	return NULL;
8972 }
8973 #endif /* CONFIG_CONTIG_ALLOC */
8974 
8975 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
8976 {
8977 	unsigned long count = 0;
8978 
8979 	for (; nr_pages--; pfn++) {
8980 		struct page *page = pfn_to_page(pfn);
8981 
8982 		count += page_count(page) != 1;
8983 		__free_page(page);
8984 	}
8985 	WARN(count != 0, "%lu pages are still in use!\n", count);
8986 }
8987 EXPORT_SYMBOL(free_contig_range);
8988 
8989 /*
8990  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8991  * page high values need to be recalculated.
8992  */
8993 void __meminit zone_pcp_update(struct zone *zone)
8994 {
8995 	mutex_lock(&pcp_batch_high_lock);
8996 	zone_set_pageset_high_and_batch(zone);
8997 	mutex_unlock(&pcp_batch_high_lock);
8998 }
8999 
9000 /*
9001  * Effectively disable pcplists for the zone by setting the high limit to 0
9002  * and draining all cpus. A concurrent page freeing on another CPU that's about
9003  * to put the page on pcplist will either finish before the drain and the page
9004  * will be drained, or observe the new high limit and skip the pcplist.
9005  *
9006  * Must be paired with a call to zone_pcp_enable().
9007  */
9008 void zone_pcp_disable(struct zone *zone)
9009 {
9010 	mutex_lock(&pcp_batch_high_lock);
9011 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9012 	__drain_all_pages(zone, true);
9013 }
9014 
9015 void zone_pcp_enable(struct zone *zone)
9016 {
9017 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9018 	mutex_unlock(&pcp_batch_high_lock);
9019 }
9020 
9021 void zone_pcp_reset(struct zone *zone)
9022 {
9023 	int cpu;
9024 	struct per_cpu_pageset *pset;
9025 
9026 	if (zone->pageset != &boot_pageset) {
9027 		for_each_online_cpu(cpu) {
9028 			pset = per_cpu_ptr(zone->pageset, cpu);
9029 			drain_zonestat(zone, pset);
9030 		}
9031 		free_percpu(zone->pageset);
9032 		zone->pageset = &boot_pageset;
9033 	}
9034 }
9035 
9036 #ifdef CONFIG_MEMORY_HOTREMOVE
9037 /*
9038  * All pages in the range must be in a single zone, must not contain holes,
9039  * must span full sections, and must be isolated before calling this function.
9040  */
9041 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9042 {
9043 	unsigned long pfn = start_pfn;
9044 	struct page *page;
9045 	struct zone *zone;
9046 	unsigned int order;
9047 	unsigned long flags;
9048 
9049 	offline_mem_sections(pfn, end_pfn);
9050 	zone = page_zone(pfn_to_page(pfn));
9051 	spin_lock_irqsave(&zone->lock, flags);
9052 	while (pfn < end_pfn) {
9053 		page = pfn_to_page(pfn);
9054 		/*
9055 		 * The HWPoisoned page may be not in buddy system, and
9056 		 * page_count() is not 0.
9057 		 */
9058 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9059 			pfn++;
9060 			continue;
9061 		}
9062 		/*
9063 		 * At this point all remaining PageOffline() pages have a
9064 		 * reference count of 0 and can simply be skipped.
9065 		 */
9066 		if (PageOffline(page)) {
9067 			BUG_ON(page_count(page));
9068 			BUG_ON(PageBuddy(page));
9069 			pfn++;
9070 			continue;
9071 		}
9072 
9073 		BUG_ON(page_count(page));
9074 		BUG_ON(!PageBuddy(page));
9075 		order = buddy_order(page);
9076 		del_page_from_free_list(page, zone, order);
9077 		pfn += (1 << order);
9078 	}
9079 	spin_unlock_irqrestore(&zone->lock, flags);
9080 }
9081 #endif
9082 
9083 bool is_free_buddy_page(struct page *page)
9084 {
9085 	struct zone *zone = page_zone(page);
9086 	unsigned long pfn = page_to_pfn(page);
9087 	unsigned long flags;
9088 	unsigned int order;
9089 
9090 	spin_lock_irqsave(&zone->lock, flags);
9091 	for (order = 0; order < MAX_ORDER; order++) {
9092 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9093 
9094 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9095 			break;
9096 	}
9097 	spin_unlock_irqrestore(&zone->lock, flags);
9098 
9099 	return order < MAX_ORDER;
9100 }
9101 
9102 #ifdef CONFIG_MEMORY_FAILURE
9103 /*
9104  * Break down a higher-order page in sub-pages, and keep our target out of
9105  * buddy allocator.
9106  */
9107 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9108 				   struct page *target, int low, int high,
9109 				   int migratetype)
9110 {
9111 	unsigned long size = 1 << high;
9112 	struct page *current_buddy, *next_page;
9113 
9114 	while (high > low) {
9115 		high--;
9116 		size >>= 1;
9117 
9118 		if (target >= &page[size]) {
9119 			next_page = page + size;
9120 			current_buddy = page;
9121 		} else {
9122 			next_page = page;
9123 			current_buddy = page + size;
9124 		}
9125 
9126 		if (set_page_guard(zone, current_buddy, high, migratetype))
9127 			continue;
9128 
9129 		if (current_buddy != target) {
9130 			add_to_free_list(current_buddy, zone, high, migratetype);
9131 			set_buddy_order(current_buddy, high);
9132 			page = next_page;
9133 		}
9134 	}
9135 }
9136 
9137 /*
9138  * Take a page that will be marked as poisoned off the buddy allocator.
9139  */
9140 bool take_page_off_buddy(struct page *page)
9141 {
9142 	struct zone *zone = page_zone(page);
9143 	unsigned long pfn = page_to_pfn(page);
9144 	unsigned long flags;
9145 	unsigned int order;
9146 	bool ret = false;
9147 
9148 	spin_lock_irqsave(&zone->lock, flags);
9149 	for (order = 0; order < MAX_ORDER; order++) {
9150 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9151 		int page_order = buddy_order(page_head);
9152 
9153 		if (PageBuddy(page_head) && page_order >= order) {
9154 			unsigned long pfn_head = page_to_pfn(page_head);
9155 			int migratetype = get_pfnblock_migratetype(page_head,
9156 								   pfn_head);
9157 
9158 			del_page_from_free_list(page_head, zone, page_order);
9159 			break_down_buddy_pages(zone, page_head, page, 0,
9160 						page_order, migratetype);
9161 			ret = true;
9162 			break;
9163 		}
9164 		if (page_count(page_head) > 0)
9165 			break;
9166 	}
9167 	spin_unlock_irqrestore(&zone->lock, flags);
9168 	return ret;
9169 }
9170 #endif
9171