xref: /openbmc/linux/mm/page_alloc.c (revision 2d1f649c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 static compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
288 	[NULL_COMPOUND_DTOR] = NULL,
289 	[COMPOUND_PAGE_DTOR] = free_compound_page,
290 #ifdef CONFIG_HUGETLB_PAGE
291 	[HUGETLB_PAGE_DTOR] = free_huge_page,
292 #endif
293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
294 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
295 #endif
296 };
297 
298 int min_free_kbytes = 1024;
299 int user_min_free_kbytes = -1;
300 static int watermark_boost_factor __read_mostly = 15000;
301 static int watermark_scale_factor = 10;
302 
303 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
304 int movable_zone;
305 EXPORT_SYMBOL(movable_zone);
306 
307 #if MAX_NUMNODES > 1
308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309 unsigned int nr_online_nodes __read_mostly = 1;
310 EXPORT_SYMBOL(nr_node_ids);
311 EXPORT_SYMBOL(nr_online_nodes);
312 #endif
313 
314 static bool page_contains_unaccepted(struct page *page, unsigned int order);
315 static void accept_page(struct page *page, unsigned int order);
316 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
317 static inline bool has_unaccepted_memory(void);
318 static bool __free_unaccepted(struct page *page);
319 
320 int page_group_by_mobility_disabled __read_mostly;
321 
322 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
323 /*
324  * During boot we initialize deferred pages on-demand, as needed, but once
325  * page_alloc_init_late() has finished, the deferred pages are all initialized,
326  * and we can permanently disable that path.
327  */
328 DEFINE_STATIC_KEY_TRUE(deferred_pages);
329 
330 static inline bool deferred_pages_enabled(void)
331 {
332 	return static_branch_unlikely(&deferred_pages);
333 }
334 
335 /*
336  * deferred_grow_zone() is __init, but it is called from
337  * get_page_from_freelist() during early boot until deferred_pages permanently
338  * disables this call. This is why we have refdata wrapper to avoid warning,
339  * and to ensure that the function body gets unloaded.
340  */
341 static bool __ref
342 _deferred_grow_zone(struct zone *zone, unsigned int order)
343 {
344        return deferred_grow_zone(zone, order);
345 }
346 #else
347 static inline bool deferred_pages_enabled(void)
348 {
349 	return false;
350 }
351 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
352 
353 /* Return a pointer to the bitmap storing bits affecting a block of pages */
354 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
355 							unsigned long pfn)
356 {
357 #ifdef CONFIG_SPARSEMEM
358 	return section_to_usemap(__pfn_to_section(pfn));
359 #else
360 	return page_zone(page)->pageblock_flags;
361 #endif /* CONFIG_SPARSEMEM */
362 }
363 
364 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
365 {
366 #ifdef CONFIG_SPARSEMEM
367 	pfn &= (PAGES_PER_SECTION-1);
368 #else
369 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
370 #endif /* CONFIG_SPARSEMEM */
371 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 }
373 
374 static __always_inline
375 unsigned long __get_pfnblock_flags_mask(const struct page *page,
376 					unsigned long pfn,
377 					unsigned long mask)
378 {
379 	unsigned long *bitmap;
380 	unsigned long bitidx, word_bitidx;
381 	unsigned long word;
382 
383 	bitmap = get_pageblock_bitmap(page, pfn);
384 	bitidx = pfn_to_bitidx(page, pfn);
385 	word_bitidx = bitidx / BITS_PER_LONG;
386 	bitidx &= (BITS_PER_LONG-1);
387 	/*
388 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
389 	 * a consistent read of the memory array, so that results, even though
390 	 * racy, are not corrupted.
391 	 */
392 	word = READ_ONCE(bitmap[word_bitidx]);
393 	return (word >> bitidx) & mask;
394 }
395 
396 /**
397  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
398  * @page: The page within the block of interest
399  * @pfn: The target page frame number
400  * @mask: mask of bits that the caller is interested in
401  *
402  * Return: pageblock_bits flags
403  */
404 unsigned long get_pfnblock_flags_mask(const struct page *page,
405 					unsigned long pfn, unsigned long mask)
406 {
407 	return __get_pfnblock_flags_mask(page, pfn, mask);
408 }
409 
410 static __always_inline int get_pfnblock_migratetype(const struct page *page,
411 					unsigned long pfn)
412 {
413 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
414 }
415 
416 /**
417  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
418  * @page: The page within the block of interest
419  * @flags: The flags to set
420  * @pfn: The target page frame number
421  * @mask: mask of bits that the caller is interested in
422  */
423 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
424 					unsigned long pfn,
425 					unsigned long mask)
426 {
427 	unsigned long *bitmap;
428 	unsigned long bitidx, word_bitidx;
429 	unsigned long word;
430 
431 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
432 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
433 
434 	bitmap = get_pageblock_bitmap(page, pfn);
435 	bitidx = pfn_to_bitidx(page, pfn);
436 	word_bitidx = bitidx / BITS_PER_LONG;
437 	bitidx &= (BITS_PER_LONG-1);
438 
439 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
440 
441 	mask <<= bitidx;
442 	flags <<= bitidx;
443 
444 	word = READ_ONCE(bitmap[word_bitidx]);
445 	do {
446 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
447 }
448 
449 void set_pageblock_migratetype(struct page *page, int migratetype)
450 {
451 	if (unlikely(page_group_by_mobility_disabled &&
452 		     migratetype < MIGRATE_PCPTYPES))
453 		migratetype = MIGRATE_UNMOVABLE;
454 
455 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
456 				page_to_pfn(page), MIGRATETYPE_MASK);
457 }
458 
459 #ifdef CONFIG_DEBUG_VM
460 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
461 {
462 	int ret;
463 	unsigned seq;
464 	unsigned long pfn = page_to_pfn(page);
465 	unsigned long sp, start_pfn;
466 
467 	do {
468 		seq = zone_span_seqbegin(zone);
469 		start_pfn = zone->zone_start_pfn;
470 		sp = zone->spanned_pages;
471 		ret = !zone_spans_pfn(zone, pfn);
472 	} while (zone_span_seqretry(zone, seq));
473 
474 	if (ret)
475 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
476 			pfn, zone_to_nid(zone), zone->name,
477 			start_pfn, start_pfn + sp);
478 
479 	return ret;
480 }
481 
482 /*
483  * Temporary debugging check for pages not lying within a given zone.
484  */
485 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
486 {
487 	if (page_outside_zone_boundaries(zone, page))
488 		return 1;
489 	if (zone != page_zone(page))
490 		return 1;
491 
492 	return 0;
493 }
494 #else
495 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
496 {
497 	return 0;
498 }
499 #endif
500 
501 static void bad_page(struct page *page, const char *reason)
502 {
503 	static unsigned long resume;
504 	static unsigned long nr_shown;
505 	static unsigned long nr_unshown;
506 
507 	/*
508 	 * Allow a burst of 60 reports, then keep quiet for that minute;
509 	 * or allow a steady drip of one report per second.
510 	 */
511 	if (nr_shown == 60) {
512 		if (time_before(jiffies, resume)) {
513 			nr_unshown++;
514 			goto out;
515 		}
516 		if (nr_unshown) {
517 			pr_alert(
518 			      "BUG: Bad page state: %lu messages suppressed\n",
519 				nr_unshown);
520 			nr_unshown = 0;
521 		}
522 		nr_shown = 0;
523 	}
524 	if (nr_shown++ == 0)
525 		resume = jiffies + 60 * HZ;
526 
527 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
528 		current->comm, page_to_pfn(page));
529 	dump_page(page, reason);
530 
531 	print_modules();
532 	dump_stack();
533 out:
534 	/* Leave bad fields for debug, except PageBuddy could make trouble */
535 	page_mapcount_reset(page); /* remove PageBuddy */
536 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538 
539 static inline unsigned int order_to_pindex(int migratetype, int order)
540 {
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
543 		VM_BUG_ON(order != pageblock_order);
544 		return NR_LOWORDER_PCP_LISTS;
545 	}
546 #else
547 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
548 #endif
549 
550 	return (MIGRATE_PCPTYPES * order) + migratetype;
551 }
552 
553 static inline int pindex_to_order(unsigned int pindex)
554 {
555 	int order = pindex / MIGRATE_PCPTYPES;
556 
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 	if (pindex == NR_LOWORDER_PCP_LISTS)
559 		order = pageblock_order;
560 #else
561 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
562 #endif
563 
564 	return order;
565 }
566 
567 static inline bool pcp_allowed_order(unsigned int order)
568 {
569 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
570 		return true;
571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 	if (order == pageblock_order)
573 		return true;
574 #endif
575 	return false;
576 }
577 
578 static inline void free_the_page(struct page *page, unsigned int order)
579 {
580 	if (pcp_allowed_order(order))		/* Via pcp? */
581 		free_unref_page(page, order);
582 	else
583 		__free_pages_ok(page, order, FPI_NONE);
584 }
585 
586 /*
587  * Higher-order pages are called "compound pages".  They are structured thusly:
588  *
589  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
590  *
591  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
592  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
593  *
594  * The first tail page's ->compound_dtor holds the offset in array of compound
595  * page destructors. See compound_page_dtors.
596  *
597  * The first tail page's ->compound_order holds the order of allocation.
598  * This usage means that zero-order pages may not be compound.
599  */
600 
601 void free_compound_page(struct page *page)
602 {
603 	mem_cgroup_uncharge(page_folio(page));
604 	free_the_page(page, compound_order(page));
605 }
606 
607 void prep_compound_page(struct page *page, unsigned int order)
608 {
609 	int i;
610 	int nr_pages = 1 << order;
611 
612 	__SetPageHead(page);
613 	for (i = 1; i < nr_pages; i++)
614 		prep_compound_tail(page, i);
615 
616 	prep_compound_head(page, order);
617 }
618 
619 void destroy_large_folio(struct folio *folio)
620 {
621 	enum compound_dtor_id dtor = folio->_folio_dtor;
622 
623 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
624 	compound_page_dtors[dtor](&folio->page);
625 }
626 
627 static inline void set_buddy_order(struct page *page, unsigned int order)
628 {
629 	set_page_private(page, order);
630 	__SetPageBuddy(page);
631 }
632 
633 #ifdef CONFIG_COMPACTION
634 static inline struct capture_control *task_capc(struct zone *zone)
635 {
636 	struct capture_control *capc = current->capture_control;
637 
638 	return unlikely(capc) &&
639 		!(current->flags & PF_KTHREAD) &&
640 		!capc->page &&
641 		capc->cc->zone == zone ? capc : NULL;
642 }
643 
644 static inline bool
645 compaction_capture(struct capture_control *capc, struct page *page,
646 		   int order, int migratetype)
647 {
648 	if (!capc || order != capc->cc->order)
649 		return false;
650 
651 	/* Do not accidentally pollute CMA or isolated regions*/
652 	if (is_migrate_cma(migratetype) ||
653 	    is_migrate_isolate(migratetype))
654 		return false;
655 
656 	/*
657 	 * Do not let lower order allocations pollute a movable pageblock.
658 	 * This might let an unmovable request use a reclaimable pageblock
659 	 * and vice-versa but no more than normal fallback logic which can
660 	 * have trouble finding a high-order free page.
661 	 */
662 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
663 		return false;
664 
665 	capc->page = page;
666 	return true;
667 }
668 
669 #else
670 static inline struct capture_control *task_capc(struct zone *zone)
671 {
672 	return NULL;
673 }
674 
675 static inline bool
676 compaction_capture(struct capture_control *capc, struct page *page,
677 		   int order, int migratetype)
678 {
679 	return false;
680 }
681 #endif /* CONFIG_COMPACTION */
682 
683 /* Used for pages not on another list */
684 static inline void add_to_free_list(struct page *page, struct zone *zone,
685 				    unsigned int order, int migratetype)
686 {
687 	struct free_area *area = &zone->free_area[order];
688 
689 	list_add(&page->buddy_list, &area->free_list[migratetype]);
690 	area->nr_free++;
691 }
692 
693 /* Used for pages not on another list */
694 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
695 					 unsigned int order, int migratetype)
696 {
697 	struct free_area *area = &zone->free_area[order];
698 
699 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
700 	area->nr_free++;
701 }
702 
703 /*
704  * Used for pages which are on another list. Move the pages to the tail
705  * of the list - so the moved pages won't immediately be considered for
706  * allocation again (e.g., optimization for memory onlining).
707  */
708 static inline void move_to_free_list(struct page *page, struct zone *zone,
709 				     unsigned int order, int migratetype)
710 {
711 	struct free_area *area = &zone->free_area[order];
712 
713 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
714 }
715 
716 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
717 					   unsigned int order)
718 {
719 	/* clear reported state and update reported page count */
720 	if (page_reported(page))
721 		__ClearPageReported(page);
722 
723 	list_del(&page->buddy_list);
724 	__ClearPageBuddy(page);
725 	set_page_private(page, 0);
726 	zone->free_area[order].nr_free--;
727 }
728 
729 static inline struct page *get_page_from_free_area(struct free_area *area,
730 					    int migratetype)
731 {
732 	return list_first_entry_or_null(&area->free_list[migratetype],
733 					struct page, buddy_list);
734 }
735 
736 /*
737  * If this is not the largest possible page, check if the buddy
738  * of the next-highest order is free. If it is, it's possible
739  * that pages are being freed that will coalesce soon. In case,
740  * that is happening, add the free page to the tail of the list
741  * so it's less likely to be used soon and more likely to be merged
742  * as a higher order page
743  */
744 static inline bool
745 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
746 		   struct page *page, unsigned int order)
747 {
748 	unsigned long higher_page_pfn;
749 	struct page *higher_page;
750 
751 	if (order >= MAX_ORDER - 1)
752 		return false;
753 
754 	higher_page_pfn = buddy_pfn & pfn;
755 	higher_page = page + (higher_page_pfn - pfn);
756 
757 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
758 			NULL) != NULL;
759 }
760 
761 /*
762  * Freeing function for a buddy system allocator.
763  *
764  * The concept of a buddy system is to maintain direct-mapped table
765  * (containing bit values) for memory blocks of various "orders".
766  * The bottom level table contains the map for the smallest allocatable
767  * units of memory (here, pages), and each level above it describes
768  * pairs of units from the levels below, hence, "buddies".
769  * At a high level, all that happens here is marking the table entry
770  * at the bottom level available, and propagating the changes upward
771  * as necessary, plus some accounting needed to play nicely with other
772  * parts of the VM system.
773  * At each level, we keep a list of pages, which are heads of continuous
774  * free pages of length of (1 << order) and marked with PageBuddy.
775  * Page's order is recorded in page_private(page) field.
776  * So when we are allocating or freeing one, we can derive the state of the
777  * other.  That is, if we allocate a small block, and both were
778  * free, the remainder of the region must be split into blocks.
779  * If a block is freed, and its buddy is also free, then this
780  * triggers coalescing into a block of larger size.
781  *
782  * -- nyc
783  */
784 
785 static inline void __free_one_page(struct page *page,
786 		unsigned long pfn,
787 		struct zone *zone, unsigned int order,
788 		int migratetype, fpi_t fpi_flags)
789 {
790 	struct capture_control *capc = task_capc(zone);
791 	unsigned long buddy_pfn = 0;
792 	unsigned long combined_pfn;
793 	struct page *buddy;
794 	bool to_tail;
795 
796 	VM_BUG_ON(!zone_is_initialized(zone));
797 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
798 
799 	VM_BUG_ON(migratetype == -1);
800 	if (likely(!is_migrate_isolate(migratetype)))
801 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
802 
803 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
804 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
805 
806 	while (order < MAX_ORDER) {
807 		if (compaction_capture(capc, page, order, migratetype)) {
808 			__mod_zone_freepage_state(zone, -(1 << order),
809 								migratetype);
810 			return;
811 		}
812 
813 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
814 		if (!buddy)
815 			goto done_merging;
816 
817 		if (unlikely(order >= pageblock_order)) {
818 			/*
819 			 * We want to prevent merge between freepages on pageblock
820 			 * without fallbacks and normal pageblock. Without this,
821 			 * pageblock isolation could cause incorrect freepage or CMA
822 			 * accounting or HIGHATOMIC accounting.
823 			 */
824 			int buddy_mt = get_pageblock_migratetype(buddy);
825 
826 			if (migratetype != buddy_mt
827 					&& (!migratetype_is_mergeable(migratetype) ||
828 						!migratetype_is_mergeable(buddy_mt)))
829 				goto done_merging;
830 		}
831 
832 		/*
833 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
834 		 * merge with it and move up one order.
835 		 */
836 		if (page_is_guard(buddy))
837 			clear_page_guard(zone, buddy, order, migratetype);
838 		else
839 			del_page_from_free_list(buddy, zone, order);
840 		combined_pfn = buddy_pfn & pfn;
841 		page = page + (combined_pfn - pfn);
842 		pfn = combined_pfn;
843 		order++;
844 	}
845 
846 done_merging:
847 	set_buddy_order(page, order);
848 
849 	if (fpi_flags & FPI_TO_TAIL)
850 		to_tail = true;
851 	else if (is_shuffle_order(order))
852 		to_tail = shuffle_pick_tail();
853 	else
854 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
855 
856 	if (to_tail)
857 		add_to_free_list_tail(page, zone, order, migratetype);
858 	else
859 		add_to_free_list(page, zone, order, migratetype);
860 
861 	/* Notify page reporting subsystem of freed page */
862 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
863 		page_reporting_notify_free(order);
864 }
865 
866 /**
867  * split_free_page() -- split a free page at split_pfn_offset
868  * @free_page:		the original free page
869  * @order:		the order of the page
870  * @split_pfn_offset:	split offset within the page
871  *
872  * Return -ENOENT if the free page is changed, otherwise 0
873  *
874  * It is used when the free page crosses two pageblocks with different migratetypes
875  * at split_pfn_offset within the page. The split free page will be put into
876  * separate migratetype lists afterwards. Otherwise, the function achieves
877  * nothing.
878  */
879 int split_free_page(struct page *free_page,
880 			unsigned int order, unsigned long split_pfn_offset)
881 {
882 	struct zone *zone = page_zone(free_page);
883 	unsigned long free_page_pfn = page_to_pfn(free_page);
884 	unsigned long pfn;
885 	unsigned long flags;
886 	int free_page_order;
887 	int mt;
888 	int ret = 0;
889 
890 	if (split_pfn_offset == 0)
891 		return ret;
892 
893 	spin_lock_irqsave(&zone->lock, flags);
894 
895 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
896 		ret = -ENOENT;
897 		goto out;
898 	}
899 
900 	mt = get_pageblock_migratetype(free_page);
901 	if (likely(!is_migrate_isolate(mt)))
902 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
903 
904 	del_page_from_free_list(free_page, zone, order);
905 	for (pfn = free_page_pfn;
906 	     pfn < free_page_pfn + (1UL << order);) {
907 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
908 
909 		free_page_order = min_t(unsigned int,
910 					pfn ? __ffs(pfn) : order,
911 					__fls(split_pfn_offset));
912 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
913 				mt, FPI_NONE);
914 		pfn += 1UL << free_page_order;
915 		split_pfn_offset -= (1UL << free_page_order);
916 		/* we have done the first part, now switch to second part */
917 		if (split_pfn_offset == 0)
918 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
919 	}
920 out:
921 	spin_unlock_irqrestore(&zone->lock, flags);
922 	return ret;
923 }
924 /*
925  * A bad page could be due to a number of fields. Instead of multiple branches,
926  * try and check multiple fields with one check. The caller must do a detailed
927  * check if necessary.
928  */
929 static inline bool page_expected_state(struct page *page,
930 					unsigned long check_flags)
931 {
932 	if (unlikely(atomic_read(&page->_mapcount) != -1))
933 		return false;
934 
935 	if (unlikely((unsigned long)page->mapping |
936 			page_ref_count(page) |
937 #ifdef CONFIG_MEMCG
938 			page->memcg_data |
939 #endif
940 			(page->flags & check_flags)))
941 		return false;
942 
943 	return true;
944 }
945 
946 static const char *page_bad_reason(struct page *page, unsigned long flags)
947 {
948 	const char *bad_reason = NULL;
949 
950 	if (unlikely(atomic_read(&page->_mapcount) != -1))
951 		bad_reason = "nonzero mapcount";
952 	if (unlikely(page->mapping != NULL))
953 		bad_reason = "non-NULL mapping";
954 	if (unlikely(page_ref_count(page) != 0))
955 		bad_reason = "nonzero _refcount";
956 	if (unlikely(page->flags & flags)) {
957 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
958 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
959 		else
960 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
961 	}
962 #ifdef CONFIG_MEMCG
963 	if (unlikely(page->memcg_data))
964 		bad_reason = "page still charged to cgroup";
965 #endif
966 	return bad_reason;
967 }
968 
969 static void free_page_is_bad_report(struct page *page)
970 {
971 	bad_page(page,
972 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
973 }
974 
975 static inline bool free_page_is_bad(struct page *page)
976 {
977 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
978 		return false;
979 
980 	/* Something has gone sideways, find it */
981 	free_page_is_bad_report(page);
982 	return true;
983 }
984 
985 static inline bool is_check_pages_enabled(void)
986 {
987 	return static_branch_unlikely(&check_pages_enabled);
988 }
989 
990 static int free_tail_page_prepare(struct page *head_page, struct page *page)
991 {
992 	struct folio *folio = (struct folio *)head_page;
993 	int ret = 1;
994 
995 	/*
996 	 * We rely page->lru.next never has bit 0 set, unless the page
997 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
998 	 */
999 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1000 
1001 	if (!is_check_pages_enabled()) {
1002 		ret = 0;
1003 		goto out;
1004 	}
1005 	switch (page - head_page) {
1006 	case 1:
1007 		/* the first tail page: these may be in place of ->mapping */
1008 		if (unlikely(folio_entire_mapcount(folio))) {
1009 			bad_page(page, "nonzero entire_mapcount");
1010 			goto out;
1011 		}
1012 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1013 			bad_page(page, "nonzero nr_pages_mapped");
1014 			goto out;
1015 		}
1016 		if (unlikely(atomic_read(&folio->_pincount))) {
1017 			bad_page(page, "nonzero pincount");
1018 			goto out;
1019 		}
1020 		break;
1021 	case 2:
1022 		/*
1023 		 * the second tail page: ->mapping is
1024 		 * deferred_list.next -- ignore value.
1025 		 */
1026 		break;
1027 	default:
1028 		if (page->mapping != TAIL_MAPPING) {
1029 			bad_page(page, "corrupted mapping in tail page");
1030 			goto out;
1031 		}
1032 		break;
1033 	}
1034 	if (unlikely(!PageTail(page))) {
1035 		bad_page(page, "PageTail not set");
1036 		goto out;
1037 	}
1038 	if (unlikely(compound_head(page) != head_page)) {
1039 		bad_page(page, "compound_head not consistent");
1040 		goto out;
1041 	}
1042 	ret = 0;
1043 out:
1044 	page->mapping = NULL;
1045 	clear_compound_head(page);
1046 	return ret;
1047 }
1048 
1049 /*
1050  * Skip KASAN memory poisoning when either:
1051  *
1052  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1053  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1054  *    using page tags instead (see below).
1055  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1056  *    that error detection is disabled for accesses via the page address.
1057  *
1058  * Pages will have match-all tags in the following circumstances:
1059  *
1060  * 1. Pages are being initialized for the first time, including during deferred
1061  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1062  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1063  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1064  * 3. The allocation was excluded from being checked due to sampling,
1065  *    see the call to kasan_unpoison_pages.
1066  *
1067  * Poisoning pages during deferred memory init will greatly lengthen the
1068  * process and cause problem in large memory systems as the deferred pages
1069  * initialization is done with interrupt disabled.
1070  *
1071  * Assuming that there will be no reference to those newly initialized
1072  * pages before they are ever allocated, this should have no effect on
1073  * KASAN memory tracking as the poison will be properly inserted at page
1074  * allocation time. The only corner case is when pages are allocated by
1075  * on-demand allocation and then freed again before the deferred pages
1076  * initialization is done, but this is not likely to happen.
1077  */
1078 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1079 {
1080 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1081 		return deferred_pages_enabled();
1082 
1083 	return page_kasan_tag(page) == 0xff;
1084 }
1085 
1086 static void kernel_init_pages(struct page *page, int numpages)
1087 {
1088 	int i;
1089 
1090 	/* s390's use of memset() could override KASAN redzones. */
1091 	kasan_disable_current();
1092 	for (i = 0; i < numpages; i++)
1093 		clear_highpage_kasan_tagged(page + i);
1094 	kasan_enable_current();
1095 }
1096 
1097 static __always_inline bool free_pages_prepare(struct page *page,
1098 			unsigned int order, fpi_t fpi_flags)
1099 {
1100 	int bad = 0;
1101 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1102 	bool init = want_init_on_free();
1103 
1104 	VM_BUG_ON_PAGE(PageTail(page), page);
1105 
1106 	trace_mm_page_free(page, order);
1107 	kmsan_free_page(page, order);
1108 
1109 	if (unlikely(PageHWPoison(page)) && !order) {
1110 		/*
1111 		 * Do not let hwpoison pages hit pcplists/buddy
1112 		 * Untie memcg state and reset page's owner
1113 		 */
1114 		if (memcg_kmem_online() && PageMemcgKmem(page))
1115 			__memcg_kmem_uncharge_page(page, order);
1116 		reset_page_owner(page, order);
1117 		page_table_check_free(page, order);
1118 		return false;
1119 	}
1120 
1121 	/*
1122 	 * Check tail pages before head page information is cleared to
1123 	 * avoid checking PageCompound for order-0 pages.
1124 	 */
1125 	if (unlikely(order)) {
1126 		bool compound = PageCompound(page);
1127 		int i;
1128 
1129 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1130 
1131 		if (compound)
1132 			ClearPageHasHWPoisoned(page);
1133 		for (i = 1; i < (1 << order); i++) {
1134 			if (compound)
1135 				bad += free_tail_page_prepare(page, page + i);
1136 			if (is_check_pages_enabled()) {
1137 				if (free_page_is_bad(page + i)) {
1138 					bad++;
1139 					continue;
1140 				}
1141 			}
1142 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1143 		}
1144 	}
1145 	if (PageMappingFlags(page))
1146 		page->mapping = NULL;
1147 	if (memcg_kmem_online() && PageMemcgKmem(page))
1148 		__memcg_kmem_uncharge_page(page, order);
1149 	if (is_check_pages_enabled()) {
1150 		if (free_page_is_bad(page))
1151 			bad++;
1152 		if (bad)
1153 			return false;
1154 	}
1155 
1156 	page_cpupid_reset_last(page);
1157 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1158 	reset_page_owner(page, order);
1159 	page_table_check_free(page, order);
1160 
1161 	if (!PageHighMem(page)) {
1162 		debug_check_no_locks_freed(page_address(page),
1163 					   PAGE_SIZE << order);
1164 		debug_check_no_obj_freed(page_address(page),
1165 					   PAGE_SIZE << order);
1166 	}
1167 
1168 	kernel_poison_pages(page, 1 << order);
1169 
1170 	/*
1171 	 * As memory initialization might be integrated into KASAN,
1172 	 * KASAN poisoning and memory initialization code must be
1173 	 * kept together to avoid discrepancies in behavior.
1174 	 *
1175 	 * With hardware tag-based KASAN, memory tags must be set before the
1176 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1177 	 */
1178 	if (!skip_kasan_poison) {
1179 		kasan_poison_pages(page, order, init);
1180 
1181 		/* Memory is already initialized if KASAN did it internally. */
1182 		if (kasan_has_integrated_init())
1183 			init = false;
1184 	}
1185 	if (init)
1186 		kernel_init_pages(page, 1 << order);
1187 
1188 	/*
1189 	 * arch_free_page() can make the page's contents inaccessible.  s390
1190 	 * does this.  So nothing which can access the page's contents should
1191 	 * happen after this.
1192 	 */
1193 	arch_free_page(page, order);
1194 
1195 	debug_pagealloc_unmap_pages(page, 1 << order);
1196 
1197 	return true;
1198 }
1199 
1200 /*
1201  * Frees a number of pages from the PCP lists
1202  * Assumes all pages on list are in same zone.
1203  * count is the number of pages to free.
1204  */
1205 static void free_pcppages_bulk(struct zone *zone, int count,
1206 					struct per_cpu_pages *pcp,
1207 					int pindex)
1208 {
1209 	unsigned long flags;
1210 	int min_pindex = 0;
1211 	int max_pindex = NR_PCP_LISTS - 1;
1212 	unsigned int order;
1213 	bool isolated_pageblocks;
1214 	struct page *page;
1215 
1216 	/*
1217 	 * Ensure proper count is passed which otherwise would stuck in the
1218 	 * below while (list_empty(list)) loop.
1219 	 */
1220 	count = min(pcp->count, count);
1221 
1222 	/* Ensure requested pindex is drained first. */
1223 	pindex = pindex - 1;
1224 
1225 	spin_lock_irqsave(&zone->lock, flags);
1226 	isolated_pageblocks = has_isolate_pageblock(zone);
1227 
1228 	while (count > 0) {
1229 		struct list_head *list;
1230 		int nr_pages;
1231 
1232 		/* Remove pages from lists in a round-robin fashion. */
1233 		do {
1234 			if (++pindex > max_pindex)
1235 				pindex = min_pindex;
1236 			list = &pcp->lists[pindex];
1237 			if (!list_empty(list))
1238 				break;
1239 
1240 			if (pindex == max_pindex)
1241 				max_pindex--;
1242 			if (pindex == min_pindex)
1243 				min_pindex++;
1244 		} while (1);
1245 
1246 		order = pindex_to_order(pindex);
1247 		nr_pages = 1 << order;
1248 		do {
1249 			int mt;
1250 
1251 			page = list_last_entry(list, struct page, pcp_list);
1252 			mt = get_pcppage_migratetype(page);
1253 
1254 			/* must delete to avoid corrupting pcp list */
1255 			list_del(&page->pcp_list);
1256 			count -= nr_pages;
1257 			pcp->count -= nr_pages;
1258 
1259 			/* MIGRATE_ISOLATE page should not go to pcplists */
1260 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1261 			/* Pageblock could have been isolated meanwhile */
1262 			if (unlikely(isolated_pageblocks))
1263 				mt = get_pageblock_migratetype(page);
1264 
1265 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1266 			trace_mm_page_pcpu_drain(page, order, mt);
1267 		} while (count > 0 && !list_empty(list));
1268 	}
1269 
1270 	spin_unlock_irqrestore(&zone->lock, flags);
1271 }
1272 
1273 static void free_one_page(struct zone *zone,
1274 				struct page *page, unsigned long pfn,
1275 				unsigned int order,
1276 				int migratetype, fpi_t fpi_flags)
1277 {
1278 	unsigned long flags;
1279 
1280 	spin_lock_irqsave(&zone->lock, flags);
1281 	if (unlikely(has_isolate_pageblock(zone) ||
1282 		is_migrate_isolate(migratetype))) {
1283 		migratetype = get_pfnblock_migratetype(page, pfn);
1284 	}
1285 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1286 	spin_unlock_irqrestore(&zone->lock, flags);
1287 }
1288 
1289 static void __free_pages_ok(struct page *page, unsigned int order,
1290 			    fpi_t fpi_flags)
1291 {
1292 	unsigned long flags;
1293 	int migratetype;
1294 	unsigned long pfn = page_to_pfn(page);
1295 	struct zone *zone = page_zone(page);
1296 
1297 	if (!free_pages_prepare(page, order, fpi_flags))
1298 		return;
1299 
1300 	/*
1301 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1302 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1303 	 * This will reduce the lock holding time.
1304 	 */
1305 	migratetype = get_pfnblock_migratetype(page, pfn);
1306 
1307 	spin_lock_irqsave(&zone->lock, flags);
1308 	if (unlikely(has_isolate_pageblock(zone) ||
1309 		is_migrate_isolate(migratetype))) {
1310 		migratetype = get_pfnblock_migratetype(page, pfn);
1311 	}
1312 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1313 	spin_unlock_irqrestore(&zone->lock, flags);
1314 
1315 	__count_vm_events(PGFREE, 1 << order);
1316 }
1317 
1318 void __free_pages_core(struct page *page, unsigned int order)
1319 {
1320 	unsigned int nr_pages = 1 << order;
1321 	struct page *p = page;
1322 	unsigned int loop;
1323 
1324 	/*
1325 	 * When initializing the memmap, __init_single_page() sets the refcount
1326 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1327 	 * refcount of all involved pages to 0.
1328 	 */
1329 	prefetchw(p);
1330 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1331 		prefetchw(p + 1);
1332 		__ClearPageReserved(p);
1333 		set_page_count(p, 0);
1334 	}
1335 	__ClearPageReserved(p);
1336 	set_page_count(p, 0);
1337 
1338 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1339 
1340 	if (page_contains_unaccepted(page, order)) {
1341 		if (order == MAX_ORDER && __free_unaccepted(page))
1342 			return;
1343 
1344 		accept_page(page, order);
1345 	}
1346 
1347 	/*
1348 	 * Bypass PCP and place fresh pages right to the tail, primarily
1349 	 * relevant for memory onlining.
1350 	 */
1351 	__free_pages_ok(page, order, FPI_TO_TAIL);
1352 }
1353 
1354 /*
1355  * Check that the whole (or subset of) a pageblock given by the interval of
1356  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1357  * with the migration of free compaction scanner.
1358  *
1359  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1360  *
1361  * It's possible on some configurations to have a setup like node0 node1 node0
1362  * i.e. it's possible that all pages within a zones range of pages do not
1363  * belong to a single zone. We assume that a border between node0 and node1
1364  * can occur within a single pageblock, but not a node0 node1 node0
1365  * interleaving within a single pageblock. It is therefore sufficient to check
1366  * the first and last page of a pageblock and avoid checking each individual
1367  * page in a pageblock.
1368  *
1369  * Note: the function may return non-NULL struct page even for a page block
1370  * which contains a memory hole (i.e. there is no physical memory for a subset
1371  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1372  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1373  * even though the start pfn is online and valid. This should be safe most of
1374  * the time because struct pages are still initialized via init_unavailable_range()
1375  * and pfn walkers shouldn't touch any physical memory range for which they do
1376  * not recognize any specific metadata in struct pages.
1377  */
1378 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1379 				     unsigned long end_pfn, struct zone *zone)
1380 {
1381 	struct page *start_page;
1382 	struct page *end_page;
1383 
1384 	/* end_pfn is one past the range we are checking */
1385 	end_pfn--;
1386 
1387 	if (!pfn_valid(end_pfn))
1388 		return NULL;
1389 
1390 	start_page = pfn_to_online_page(start_pfn);
1391 	if (!start_page)
1392 		return NULL;
1393 
1394 	if (page_zone(start_page) != zone)
1395 		return NULL;
1396 
1397 	end_page = pfn_to_page(end_pfn);
1398 
1399 	/* This gives a shorter code than deriving page_zone(end_page) */
1400 	if (page_zone_id(start_page) != page_zone_id(end_page))
1401 		return NULL;
1402 
1403 	return start_page;
1404 }
1405 
1406 /*
1407  * The order of subdivision here is critical for the IO subsystem.
1408  * Please do not alter this order without good reasons and regression
1409  * testing. Specifically, as large blocks of memory are subdivided,
1410  * the order in which smaller blocks are delivered depends on the order
1411  * they're subdivided in this function. This is the primary factor
1412  * influencing the order in which pages are delivered to the IO
1413  * subsystem according to empirical testing, and this is also justified
1414  * by considering the behavior of a buddy system containing a single
1415  * large block of memory acted on by a series of small allocations.
1416  * This behavior is a critical factor in sglist merging's success.
1417  *
1418  * -- nyc
1419  */
1420 static inline void expand(struct zone *zone, struct page *page,
1421 	int low, int high, int migratetype)
1422 {
1423 	unsigned long size = 1 << high;
1424 
1425 	while (high > low) {
1426 		high--;
1427 		size >>= 1;
1428 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1429 
1430 		/*
1431 		 * Mark as guard pages (or page), that will allow to
1432 		 * merge back to allocator when buddy will be freed.
1433 		 * Corresponding page table entries will not be touched,
1434 		 * pages will stay not present in virtual address space
1435 		 */
1436 		if (set_page_guard(zone, &page[size], high, migratetype))
1437 			continue;
1438 
1439 		add_to_free_list(&page[size], zone, high, migratetype);
1440 		set_buddy_order(&page[size], high);
1441 	}
1442 }
1443 
1444 static void check_new_page_bad(struct page *page)
1445 {
1446 	if (unlikely(page->flags & __PG_HWPOISON)) {
1447 		/* Don't complain about hwpoisoned pages */
1448 		page_mapcount_reset(page); /* remove PageBuddy */
1449 		return;
1450 	}
1451 
1452 	bad_page(page,
1453 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1454 }
1455 
1456 /*
1457  * This page is about to be returned from the page allocator
1458  */
1459 static int check_new_page(struct page *page)
1460 {
1461 	if (likely(page_expected_state(page,
1462 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1463 		return 0;
1464 
1465 	check_new_page_bad(page);
1466 	return 1;
1467 }
1468 
1469 static inline bool check_new_pages(struct page *page, unsigned int order)
1470 {
1471 	if (is_check_pages_enabled()) {
1472 		for (int i = 0; i < (1 << order); i++) {
1473 			struct page *p = page + i;
1474 
1475 			if (check_new_page(p))
1476 				return true;
1477 		}
1478 	}
1479 
1480 	return false;
1481 }
1482 
1483 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1484 {
1485 	/* Don't skip if a software KASAN mode is enabled. */
1486 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1487 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1488 		return false;
1489 
1490 	/* Skip, if hardware tag-based KASAN is not enabled. */
1491 	if (!kasan_hw_tags_enabled())
1492 		return true;
1493 
1494 	/*
1495 	 * With hardware tag-based KASAN enabled, skip if this has been
1496 	 * requested via __GFP_SKIP_KASAN.
1497 	 */
1498 	return flags & __GFP_SKIP_KASAN;
1499 }
1500 
1501 static inline bool should_skip_init(gfp_t flags)
1502 {
1503 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1504 	if (!kasan_hw_tags_enabled())
1505 		return false;
1506 
1507 	/* For hardware tag-based KASAN, skip if requested. */
1508 	return (flags & __GFP_SKIP_ZERO);
1509 }
1510 
1511 inline void post_alloc_hook(struct page *page, unsigned int order,
1512 				gfp_t gfp_flags)
1513 {
1514 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1515 			!should_skip_init(gfp_flags);
1516 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1517 	int i;
1518 
1519 	set_page_private(page, 0);
1520 	set_page_refcounted(page);
1521 
1522 	arch_alloc_page(page, order);
1523 	debug_pagealloc_map_pages(page, 1 << order);
1524 
1525 	/*
1526 	 * Page unpoisoning must happen before memory initialization.
1527 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1528 	 * allocations and the page unpoisoning code will complain.
1529 	 */
1530 	kernel_unpoison_pages(page, 1 << order);
1531 
1532 	/*
1533 	 * As memory initialization might be integrated into KASAN,
1534 	 * KASAN unpoisoning and memory initializion code must be
1535 	 * kept together to avoid discrepancies in behavior.
1536 	 */
1537 
1538 	/*
1539 	 * If memory tags should be zeroed
1540 	 * (which happens only when memory should be initialized as well).
1541 	 */
1542 	if (zero_tags) {
1543 		/* Initialize both memory and memory tags. */
1544 		for (i = 0; i != 1 << order; ++i)
1545 			tag_clear_highpage(page + i);
1546 
1547 		/* Take note that memory was initialized by the loop above. */
1548 		init = false;
1549 	}
1550 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1551 	    kasan_unpoison_pages(page, order, init)) {
1552 		/* Take note that memory was initialized by KASAN. */
1553 		if (kasan_has_integrated_init())
1554 			init = false;
1555 	} else {
1556 		/*
1557 		 * If memory tags have not been set by KASAN, reset the page
1558 		 * tags to ensure page_address() dereferencing does not fault.
1559 		 */
1560 		for (i = 0; i != 1 << order; ++i)
1561 			page_kasan_tag_reset(page + i);
1562 	}
1563 	/* If memory is still not initialized, initialize it now. */
1564 	if (init)
1565 		kernel_init_pages(page, 1 << order);
1566 
1567 	set_page_owner(page, order, gfp_flags);
1568 	page_table_check_alloc(page, order);
1569 }
1570 
1571 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1572 							unsigned int alloc_flags)
1573 {
1574 	post_alloc_hook(page, order, gfp_flags);
1575 
1576 	if (order && (gfp_flags & __GFP_COMP))
1577 		prep_compound_page(page, order);
1578 
1579 	/*
1580 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1581 	 * allocate the page. The expectation is that the caller is taking
1582 	 * steps that will free more memory. The caller should avoid the page
1583 	 * being used for !PFMEMALLOC purposes.
1584 	 */
1585 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1586 		set_page_pfmemalloc(page);
1587 	else
1588 		clear_page_pfmemalloc(page);
1589 }
1590 
1591 /*
1592  * Go through the free lists for the given migratetype and remove
1593  * the smallest available page from the freelists
1594  */
1595 static __always_inline
1596 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1597 						int migratetype)
1598 {
1599 	unsigned int current_order;
1600 	struct free_area *area;
1601 	struct page *page;
1602 
1603 	/* Find a page of the appropriate size in the preferred list */
1604 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1605 		area = &(zone->free_area[current_order]);
1606 		page = get_page_from_free_area(area, migratetype);
1607 		if (!page)
1608 			continue;
1609 		del_page_from_free_list(page, zone, current_order);
1610 		expand(zone, page, order, current_order, migratetype);
1611 		set_pcppage_migratetype(page, migratetype);
1612 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1613 				pcp_allowed_order(order) &&
1614 				migratetype < MIGRATE_PCPTYPES);
1615 		return page;
1616 	}
1617 
1618 	return NULL;
1619 }
1620 
1621 
1622 /*
1623  * This array describes the order lists are fallen back to when
1624  * the free lists for the desirable migrate type are depleted
1625  *
1626  * The other migratetypes do not have fallbacks.
1627  */
1628 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1629 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1630 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1631 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1632 };
1633 
1634 #ifdef CONFIG_CMA
1635 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1636 					unsigned int order)
1637 {
1638 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1639 }
1640 #else
1641 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1642 					unsigned int order) { return NULL; }
1643 #endif
1644 
1645 /*
1646  * Move the free pages in a range to the freelist tail of the requested type.
1647  * Note that start_page and end_pages are not aligned on a pageblock
1648  * boundary. If alignment is required, use move_freepages_block()
1649  */
1650 static int move_freepages(struct zone *zone,
1651 			  unsigned long start_pfn, unsigned long end_pfn,
1652 			  int migratetype, int *num_movable)
1653 {
1654 	struct page *page;
1655 	unsigned long pfn;
1656 	unsigned int order;
1657 	int pages_moved = 0;
1658 
1659 	for (pfn = start_pfn; pfn <= end_pfn;) {
1660 		page = pfn_to_page(pfn);
1661 		if (!PageBuddy(page)) {
1662 			/*
1663 			 * We assume that pages that could be isolated for
1664 			 * migration are movable. But we don't actually try
1665 			 * isolating, as that would be expensive.
1666 			 */
1667 			if (num_movable &&
1668 					(PageLRU(page) || __PageMovable(page)))
1669 				(*num_movable)++;
1670 			pfn++;
1671 			continue;
1672 		}
1673 
1674 		/* Make sure we are not inadvertently changing nodes */
1675 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1676 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1677 
1678 		order = buddy_order(page);
1679 		move_to_free_list(page, zone, order, migratetype);
1680 		pfn += 1 << order;
1681 		pages_moved += 1 << order;
1682 	}
1683 
1684 	return pages_moved;
1685 }
1686 
1687 int move_freepages_block(struct zone *zone, struct page *page,
1688 				int migratetype, int *num_movable)
1689 {
1690 	unsigned long start_pfn, end_pfn, pfn;
1691 
1692 	if (num_movable)
1693 		*num_movable = 0;
1694 
1695 	pfn = page_to_pfn(page);
1696 	start_pfn = pageblock_start_pfn(pfn);
1697 	end_pfn = pageblock_end_pfn(pfn) - 1;
1698 
1699 	/* Do not cross zone boundaries */
1700 	if (!zone_spans_pfn(zone, start_pfn))
1701 		start_pfn = pfn;
1702 	if (!zone_spans_pfn(zone, end_pfn))
1703 		return 0;
1704 
1705 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1706 								num_movable);
1707 }
1708 
1709 static void change_pageblock_range(struct page *pageblock_page,
1710 					int start_order, int migratetype)
1711 {
1712 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1713 
1714 	while (nr_pageblocks--) {
1715 		set_pageblock_migratetype(pageblock_page, migratetype);
1716 		pageblock_page += pageblock_nr_pages;
1717 	}
1718 }
1719 
1720 /*
1721  * When we are falling back to another migratetype during allocation, try to
1722  * steal extra free pages from the same pageblocks to satisfy further
1723  * allocations, instead of polluting multiple pageblocks.
1724  *
1725  * If we are stealing a relatively large buddy page, it is likely there will
1726  * be more free pages in the pageblock, so try to steal them all. For
1727  * reclaimable and unmovable allocations, we steal regardless of page size,
1728  * as fragmentation caused by those allocations polluting movable pageblocks
1729  * is worse than movable allocations stealing from unmovable and reclaimable
1730  * pageblocks.
1731  */
1732 static bool can_steal_fallback(unsigned int order, int start_mt)
1733 {
1734 	/*
1735 	 * Leaving this order check is intended, although there is
1736 	 * relaxed order check in next check. The reason is that
1737 	 * we can actually steal whole pageblock if this condition met,
1738 	 * but, below check doesn't guarantee it and that is just heuristic
1739 	 * so could be changed anytime.
1740 	 */
1741 	if (order >= pageblock_order)
1742 		return true;
1743 
1744 	if (order >= pageblock_order / 2 ||
1745 		start_mt == MIGRATE_RECLAIMABLE ||
1746 		start_mt == MIGRATE_UNMOVABLE ||
1747 		page_group_by_mobility_disabled)
1748 		return true;
1749 
1750 	return false;
1751 }
1752 
1753 static inline bool boost_watermark(struct zone *zone)
1754 {
1755 	unsigned long max_boost;
1756 
1757 	if (!watermark_boost_factor)
1758 		return false;
1759 	/*
1760 	 * Don't bother in zones that are unlikely to produce results.
1761 	 * On small machines, including kdump capture kernels running
1762 	 * in a small area, boosting the watermark can cause an out of
1763 	 * memory situation immediately.
1764 	 */
1765 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1766 		return false;
1767 
1768 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1769 			watermark_boost_factor, 10000);
1770 
1771 	/*
1772 	 * high watermark may be uninitialised if fragmentation occurs
1773 	 * very early in boot so do not boost. We do not fall
1774 	 * through and boost by pageblock_nr_pages as failing
1775 	 * allocations that early means that reclaim is not going
1776 	 * to help and it may even be impossible to reclaim the
1777 	 * boosted watermark resulting in a hang.
1778 	 */
1779 	if (!max_boost)
1780 		return false;
1781 
1782 	max_boost = max(pageblock_nr_pages, max_boost);
1783 
1784 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1785 		max_boost);
1786 
1787 	return true;
1788 }
1789 
1790 /*
1791  * This function implements actual steal behaviour. If order is large enough,
1792  * we can steal whole pageblock. If not, we first move freepages in this
1793  * pageblock to our migratetype and determine how many already-allocated pages
1794  * are there in the pageblock with a compatible migratetype. If at least half
1795  * of pages are free or compatible, we can change migratetype of the pageblock
1796  * itself, so pages freed in the future will be put on the correct free list.
1797  */
1798 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1799 		unsigned int alloc_flags, int start_type, bool whole_block)
1800 {
1801 	unsigned int current_order = buddy_order(page);
1802 	int free_pages, movable_pages, alike_pages;
1803 	int old_block_type;
1804 
1805 	old_block_type = get_pageblock_migratetype(page);
1806 
1807 	/*
1808 	 * This can happen due to races and we want to prevent broken
1809 	 * highatomic accounting.
1810 	 */
1811 	if (is_migrate_highatomic(old_block_type))
1812 		goto single_page;
1813 
1814 	/* Take ownership for orders >= pageblock_order */
1815 	if (current_order >= pageblock_order) {
1816 		change_pageblock_range(page, current_order, start_type);
1817 		goto single_page;
1818 	}
1819 
1820 	/*
1821 	 * Boost watermarks to increase reclaim pressure to reduce the
1822 	 * likelihood of future fallbacks. Wake kswapd now as the node
1823 	 * may be balanced overall and kswapd will not wake naturally.
1824 	 */
1825 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1826 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1827 
1828 	/* We are not allowed to try stealing from the whole block */
1829 	if (!whole_block)
1830 		goto single_page;
1831 
1832 	free_pages = move_freepages_block(zone, page, start_type,
1833 						&movable_pages);
1834 	/* moving whole block can fail due to zone boundary conditions */
1835 	if (!free_pages)
1836 		goto single_page;
1837 
1838 	/*
1839 	 * Determine how many pages are compatible with our allocation.
1840 	 * For movable allocation, it's the number of movable pages which
1841 	 * we just obtained. For other types it's a bit more tricky.
1842 	 */
1843 	if (start_type == MIGRATE_MOVABLE) {
1844 		alike_pages = movable_pages;
1845 	} else {
1846 		/*
1847 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1848 		 * to MOVABLE pageblock, consider all non-movable pages as
1849 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1850 		 * vice versa, be conservative since we can't distinguish the
1851 		 * exact migratetype of non-movable pages.
1852 		 */
1853 		if (old_block_type == MIGRATE_MOVABLE)
1854 			alike_pages = pageblock_nr_pages
1855 						- (free_pages + movable_pages);
1856 		else
1857 			alike_pages = 0;
1858 	}
1859 	/*
1860 	 * If a sufficient number of pages in the block are either free or of
1861 	 * compatible migratability as our allocation, claim the whole block.
1862 	 */
1863 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1864 			page_group_by_mobility_disabled)
1865 		set_pageblock_migratetype(page, start_type);
1866 
1867 	return;
1868 
1869 single_page:
1870 	move_to_free_list(page, zone, current_order, start_type);
1871 }
1872 
1873 /*
1874  * Check whether there is a suitable fallback freepage with requested order.
1875  * If only_stealable is true, this function returns fallback_mt only if
1876  * we can steal other freepages all together. This would help to reduce
1877  * fragmentation due to mixed migratetype pages in one pageblock.
1878  */
1879 int find_suitable_fallback(struct free_area *area, unsigned int order,
1880 			int migratetype, bool only_stealable, bool *can_steal)
1881 {
1882 	int i;
1883 	int fallback_mt;
1884 
1885 	if (area->nr_free == 0)
1886 		return -1;
1887 
1888 	*can_steal = false;
1889 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1890 		fallback_mt = fallbacks[migratetype][i];
1891 		if (free_area_empty(area, fallback_mt))
1892 			continue;
1893 
1894 		if (can_steal_fallback(order, migratetype))
1895 			*can_steal = true;
1896 
1897 		if (!only_stealable)
1898 			return fallback_mt;
1899 
1900 		if (*can_steal)
1901 			return fallback_mt;
1902 	}
1903 
1904 	return -1;
1905 }
1906 
1907 /*
1908  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1909  * there are no empty page blocks that contain a page with a suitable order
1910  */
1911 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1912 				unsigned int alloc_order)
1913 {
1914 	int mt;
1915 	unsigned long max_managed, flags;
1916 
1917 	/*
1918 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1919 	 * Check is race-prone but harmless.
1920 	 */
1921 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1922 	if (zone->nr_reserved_highatomic >= max_managed)
1923 		return;
1924 
1925 	spin_lock_irqsave(&zone->lock, flags);
1926 
1927 	/* Recheck the nr_reserved_highatomic limit under the lock */
1928 	if (zone->nr_reserved_highatomic >= max_managed)
1929 		goto out_unlock;
1930 
1931 	/* Yoink! */
1932 	mt = get_pageblock_migratetype(page);
1933 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1934 	if (migratetype_is_mergeable(mt)) {
1935 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1936 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1937 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1938 	}
1939 
1940 out_unlock:
1941 	spin_unlock_irqrestore(&zone->lock, flags);
1942 }
1943 
1944 /*
1945  * Used when an allocation is about to fail under memory pressure. This
1946  * potentially hurts the reliability of high-order allocations when under
1947  * intense memory pressure but failed atomic allocations should be easier
1948  * to recover from than an OOM.
1949  *
1950  * If @force is true, try to unreserve a pageblock even though highatomic
1951  * pageblock is exhausted.
1952  */
1953 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1954 						bool force)
1955 {
1956 	struct zonelist *zonelist = ac->zonelist;
1957 	unsigned long flags;
1958 	struct zoneref *z;
1959 	struct zone *zone;
1960 	struct page *page;
1961 	int order;
1962 	bool ret;
1963 
1964 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1965 								ac->nodemask) {
1966 		/*
1967 		 * Preserve at least one pageblock unless memory pressure
1968 		 * is really high.
1969 		 */
1970 		if (!force && zone->nr_reserved_highatomic <=
1971 					pageblock_nr_pages)
1972 			continue;
1973 
1974 		spin_lock_irqsave(&zone->lock, flags);
1975 		for (order = 0; order <= MAX_ORDER; order++) {
1976 			struct free_area *area = &(zone->free_area[order]);
1977 
1978 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1979 			if (!page)
1980 				continue;
1981 
1982 			/*
1983 			 * In page freeing path, migratetype change is racy so
1984 			 * we can counter several free pages in a pageblock
1985 			 * in this loop although we changed the pageblock type
1986 			 * from highatomic to ac->migratetype. So we should
1987 			 * adjust the count once.
1988 			 */
1989 			if (is_migrate_highatomic_page(page)) {
1990 				/*
1991 				 * It should never happen but changes to
1992 				 * locking could inadvertently allow a per-cpu
1993 				 * drain to add pages to MIGRATE_HIGHATOMIC
1994 				 * while unreserving so be safe and watch for
1995 				 * underflows.
1996 				 */
1997 				zone->nr_reserved_highatomic -= min(
1998 						pageblock_nr_pages,
1999 						zone->nr_reserved_highatomic);
2000 			}
2001 
2002 			/*
2003 			 * Convert to ac->migratetype and avoid the normal
2004 			 * pageblock stealing heuristics. Minimally, the caller
2005 			 * is doing the work and needs the pages. More
2006 			 * importantly, if the block was always converted to
2007 			 * MIGRATE_UNMOVABLE or another type then the number
2008 			 * of pageblocks that cannot be completely freed
2009 			 * may increase.
2010 			 */
2011 			set_pageblock_migratetype(page, ac->migratetype);
2012 			ret = move_freepages_block(zone, page, ac->migratetype,
2013 									NULL);
2014 			if (ret) {
2015 				spin_unlock_irqrestore(&zone->lock, flags);
2016 				return ret;
2017 			}
2018 		}
2019 		spin_unlock_irqrestore(&zone->lock, flags);
2020 	}
2021 
2022 	return false;
2023 }
2024 
2025 /*
2026  * Try finding a free buddy page on the fallback list and put it on the free
2027  * list of requested migratetype, possibly along with other pages from the same
2028  * block, depending on fragmentation avoidance heuristics. Returns true if
2029  * fallback was found so that __rmqueue_smallest() can grab it.
2030  *
2031  * The use of signed ints for order and current_order is a deliberate
2032  * deviation from the rest of this file, to make the for loop
2033  * condition simpler.
2034  */
2035 static __always_inline bool
2036 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2037 						unsigned int alloc_flags)
2038 {
2039 	struct free_area *area;
2040 	int current_order;
2041 	int min_order = order;
2042 	struct page *page;
2043 	int fallback_mt;
2044 	bool can_steal;
2045 
2046 	/*
2047 	 * Do not steal pages from freelists belonging to other pageblocks
2048 	 * i.e. orders < pageblock_order. If there are no local zones free,
2049 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2050 	 */
2051 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2052 		min_order = pageblock_order;
2053 
2054 	/*
2055 	 * Find the largest available free page in the other list. This roughly
2056 	 * approximates finding the pageblock with the most free pages, which
2057 	 * would be too costly to do exactly.
2058 	 */
2059 	for (current_order = MAX_ORDER; current_order >= min_order;
2060 				--current_order) {
2061 		area = &(zone->free_area[current_order]);
2062 		fallback_mt = find_suitable_fallback(area, current_order,
2063 				start_migratetype, false, &can_steal);
2064 		if (fallback_mt == -1)
2065 			continue;
2066 
2067 		/*
2068 		 * We cannot steal all free pages from the pageblock and the
2069 		 * requested migratetype is movable. In that case it's better to
2070 		 * steal and split the smallest available page instead of the
2071 		 * largest available page, because even if the next movable
2072 		 * allocation falls back into a different pageblock than this
2073 		 * one, it won't cause permanent fragmentation.
2074 		 */
2075 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2076 					&& current_order > order)
2077 			goto find_smallest;
2078 
2079 		goto do_steal;
2080 	}
2081 
2082 	return false;
2083 
2084 find_smallest:
2085 	for (current_order = order; current_order <= MAX_ORDER;
2086 							current_order++) {
2087 		area = &(zone->free_area[current_order]);
2088 		fallback_mt = find_suitable_fallback(area, current_order,
2089 				start_migratetype, false, &can_steal);
2090 		if (fallback_mt != -1)
2091 			break;
2092 	}
2093 
2094 	/*
2095 	 * This should not happen - we already found a suitable fallback
2096 	 * when looking for the largest page.
2097 	 */
2098 	VM_BUG_ON(current_order > MAX_ORDER);
2099 
2100 do_steal:
2101 	page = get_page_from_free_area(area, fallback_mt);
2102 
2103 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2104 								can_steal);
2105 
2106 	trace_mm_page_alloc_extfrag(page, order, current_order,
2107 		start_migratetype, fallback_mt);
2108 
2109 	return true;
2110 
2111 }
2112 
2113 /*
2114  * Do the hard work of removing an element from the buddy allocator.
2115  * Call me with the zone->lock already held.
2116  */
2117 static __always_inline struct page *
2118 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2119 						unsigned int alloc_flags)
2120 {
2121 	struct page *page;
2122 
2123 	if (IS_ENABLED(CONFIG_CMA)) {
2124 		/*
2125 		 * Balance movable allocations between regular and CMA areas by
2126 		 * allocating from CMA when over half of the zone's free memory
2127 		 * is in the CMA area.
2128 		 */
2129 		if (alloc_flags & ALLOC_CMA &&
2130 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2131 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2132 			page = __rmqueue_cma_fallback(zone, order);
2133 			if (page)
2134 				return page;
2135 		}
2136 	}
2137 retry:
2138 	page = __rmqueue_smallest(zone, order, migratetype);
2139 	if (unlikely(!page)) {
2140 		if (alloc_flags & ALLOC_CMA)
2141 			page = __rmqueue_cma_fallback(zone, order);
2142 
2143 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2144 								alloc_flags))
2145 			goto retry;
2146 	}
2147 	return page;
2148 }
2149 
2150 /*
2151  * Obtain a specified number of elements from the buddy allocator, all under
2152  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2153  * Returns the number of new pages which were placed at *list.
2154  */
2155 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2156 			unsigned long count, struct list_head *list,
2157 			int migratetype, unsigned int alloc_flags)
2158 {
2159 	unsigned long flags;
2160 	int i;
2161 
2162 	spin_lock_irqsave(&zone->lock, flags);
2163 	for (i = 0; i < count; ++i) {
2164 		struct page *page = __rmqueue(zone, order, migratetype,
2165 								alloc_flags);
2166 		if (unlikely(page == NULL))
2167 			break;
2168 
2169 		/*
2170 		 * Split buddy pages returned by expand() are received here in
2171 		 * physical page order. The page is added to the tail of
2172 		 * caller's list. From the callers perspective, the linked list
2173 		 * is ordered by page number under some conditions. This is
2174 		 * useful for IO devices that can forward direction from the
2175 		 * head, thus also in the physical page order. This is useful
2176 		 * for IO devices that can merge IO requests if the physical
2177 		 * pages are ordered properly.
2178 		 */
2179 		list_add_tail(&page->pcp_list, list);
2180 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2181 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2182 					      -(1 << order));
2183 	}
2184 
2185 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2186 	spin_unlock_irqrestore(&zone->lock, flags);
2187 
2188 	return i;
2189 }
2190 
2191 #ifdef CONFIG_NUMA
2192 /*
2193  * Called from the vmstat counter updater to drain pagesets of this
2194  * currently executing processor on remote nodes after they have
2195  * expired.
2196  */
2197 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2198 {
2199 	int to_drain, batch;
2200 
2201 	batch = READ_ONCE(pcp->batch);
2202 	to_drain = min(pcp->count, batch);
2203 	if (to_drain > 0) {
2204 		spin_lock(&pcp->lock);
2205 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2206 		spin_unlock(&pcp->lock);
2207 	}
2208 }
2209 #endif
2210 
2211 /*
2212  * Drain pcplists of the indicated processor and zone.
2213  */
2214 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2215 {
2216 	struct per_cpu_pages *pcp;
2217 
2218 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2219 	if (pcp->count) {
2220 		spin_lock(&pcp->lock);
2221 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2222 		spin_unlock(&pcp->lock);
2223 	}
2224 }
2225 
2226 /*
2227  * Drain pcplists of all zones on the indicated processor.
2228  */
2229 static void drain_pages(unsigned int cpu)
2230 {
2231 	struct zone *zone;
2232 
2233 	for_each_populated_zone(zone) {
2234 		drain_pages_zone(cpu, zone);
2235 	}
2236 }
2237 
2238 /*
2239  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2240  */
2241 void drain_local_pages(struct zone *zone)
2242 {
2243 	int cpu = smp_processor_id();
2244 
2245 	if (zone)
2246 		drain_pages_zone(cpu, zone);
2247 	else
2248 		drain_pages(cpu);
2249 }
2250 
2251 /*
2252  * The implementation of drain_all_pages(), exposing an extra parameter to
2253  * drain on all cpus.
2254  *
2255  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2256  * not empty. The check for non-emptiness can however race with a free to
2257  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2258  * that need the guarantee that every CPU has drained can disable the
2259  * optimizing racy check.
2260  */
2261 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2262 {
2263 	int cpu;
2264 
2265 	/*
2266 	 * Allocate in the BSS so we won't require allocation in
2267 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2268 	 */
2269 	static cpumask_t cpus_with_pcps;
2270 
2271 	/*
2272 	 * Do not drain if one is already in progress unless it's specific to
2273 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2274 	 * the drain to be complete when the call returns.
2275 	 */
2276 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2277 		if (!zone)
2278 			return;
2279 		mutex_lock(&pcpu_drain_mutex);
2280 	}
2281 
2282 	/*
2283 	 * We don't care about racing with CPU hotplug event
2284 	 * as offline notification will cause the notified
2285 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2286 	 * disables preemption as part of its processing
2287 	 */
2288 	for_each_online_cpu(cpu) {
2289 		struct per_cpu_pages *pcp;
2290 		struct zone *z;
2291 		bool has_pcps = false;
2292 
2293 		if (force_all_cpus) {
2294 			/*
2295 			 * The pcp.count check is racy, some callers need a
2296 			 * guarantee that no cpu is missed.
2297 			 */
2298 			has_pcps = true;
2299 		} else if (zone) {
2300 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2301 			if (pcp->count)
2302 				has_pcps = true;
2303 		} else {
2304 			for_each_populated_zone(z) {
2305 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2306 				if (pcp->count) {
2307 					has_pcps = true;
2308 					break;
2309 				}
2310 			}
2311 		}
2312 
2313 		if (has_pcps)
2314 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2315 		else
2316 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2317 	}
2318 
2319 	for_each_cpu(cpu, &cpus_with_pcps) {
2320 		if (zone)
2321 			drain_pages_zone(cpu, zone);
2322 		else
2323 			drain_pages(cpu);
2324 	}
2325 
2326 	mutex_unlock(&pcpu_drain_mutex);
2327 }
2328 
2329 /*
2330  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2331  *
2332  * When zone parameter is non-NULL, spill just the single zone's pages.
2333  */
2334 void drain_all_pages(struct zone *zone)
2335 {
2336 	__drain_all_pages(zone, false);
2337 }
2338 
2339 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2340 							unsigned int order)
2341 {
2342 	int migratetype;
2343 
2344 	if (!free_pages_prepare(page, order, FPI_NONE))
2345 		return false;
2346 
2347 	migratetype = get_pfnblock_migratetype(page, pfn);
2348 	set_pcppage_migratetype(page, migratetype);
2349 	return true;
2350 }
2351 
2352 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2353 		       bool free_high)
2354 {
2355 	int min_nr_free, max_nr_free;
2356 
2357 	/* Free everything if batch freeing high-order pages. */
2358 	if (unlikely(free_high))
2359 		return pcp->count;
2360 
2361 	/* Check for PCP disabled or boot pageset */
2362 	if (unlikely(high < batch))
2363 		return 1;
2364 
2365 	/* Leave at least pcp->batch pages on the list */
2366 	min_nr_free = batch;
2367 	max_nr_free = high - batch;
2368 
2369 	/*
2370 	 * Double the number of pages freed each time there is subsequent
2371 	 * freeing of pages without any allocation.
2372 	 */
2373 	batch <<= pcp->free_factor;
2374 	if (batch < max_nr_free)
2375 		pcp->free_factor++;
2376 	batch = clamp(batch, min_nr_free, max_nr_free);
2377 
2378 	return batch;
2379 }
2380 
2381 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2382 		       bool free_high)
2383 {
2384 	int high = READ_ONCE(pcp->high);
2385 
2386 	if (unlikely(!high || free_high))
2387 		return 0;
2388 
2389 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2390 		return high;
2391 
2392 	/*
2393 	 * If reclaim is active, limit the number of pages that can be
2394 	 * stored on pcp lists
2395 	 */
2396 	return min(READ_ONCE(pcp->batch) << 2, high);
2397 }
2398 
2399 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2400 				   struct page *page, int migratetype,
2401 				   unsigned int order)
2402 {
2403 	int high;
2404 	int pindex;
2405 	bool free_high;
2406 
2407 	__count_vm_events(PGFREE, 1 << order);
2408 	pindex = order_to_pindex(migratetype, order);
2409 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2410 	pcp->count += 1 << order;
2411 
2412 	/*
2413 	 * As high-order pages other than THP's stored on PCP can contribute
2414 	 * to fragmentation, limit the number stored when PCP is heavily
2415 	 * freeing without allocation. The remainder after bulk freeing
2416 	 * stops will be drained from vmstat refresh context.
2417 	 */
2418 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2419 
2420 	high = nr_pcp_high(pcp, zone, free_high);
2421 	if (pcp->count >= high) {
2422 		int batch = READ_ONCE(pcp->batch);
2423 
2424 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2425 	}
2426 }
2427 
2428 /*
2429  * Free a pcp page
2430  */
2431 void free_unref_page(struct page *page, unsigned int order)
2432 {
2433 	unsigned long __maybe_unused UP_flags;
2434 	struct per_cpu_pages *pcp;
2435 	struct zone *zone;
2436 	unsigned long pfn = page_to_pfn(page);
2437 	int migratetype;
2438 
2439 	if (!free_unref_page_prepare(page, pfn, order))
2440 		return;
2441 
2442 	/*
2443 	 * We only track unmovable, reclaimable and movable on pcp lists.
2444 	 * Place ISOLATE pages on the isolated list because they are being
2445 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2446 	 * areas back if necessary. Otherwise, we may have to free
2447 	 * excessively into the page allocator
2448 	 */
2449 	migratetype = get_pcppage_migratetype(page);
2450 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2451 		if (unlikely(is_migrate_isolate(migratetype))) {
2452 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2453 			return;
2454 		}
2455 		migratetype = MIGRATE_MOVABLE;
2456 	}
2457 
2458 	zone = page_zone(page);
2459 	pcp_trylock_prepare(UP_flags);
2460 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2461 	if (pcp) {
2462 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2463 		pcp_spin_unlock(pcp);
2464 	} else {
2465 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2466 	}
2467 	pcp_trylock_finish(UP_flags);
2468 }
2469 
2470 /*
2471  * Free a list of 0-order pages
2472  */
2473 void free_unref_page_list(struct list_head *list)
2474 {
2475 	unsigned long __maybe_unused UP_flags;
2476 	struct page *page, *next;
2477 	struct per_cpu_pages *pcp = NULL;
2478 	struct zone *locked_zone = NULL;
2479 	int batch_count = 0;
2480 	int migratetype;
2481 
2482 	/* Prepare pages for freeing */
2483 	list_for_each_entry_safe(page, next, list, lru) {
2484 		unsigned long pfn = page_to_pfn(page);
2485 		if (!free_unref_page_prepare(page, pfn, 0)) {
2486 			list_del(&page->lru);
2487 			continue;
2488 		}
2489 
2490 		/*
2491 		 * Free isolated pages directly to the allocator, see
2492 		 * comment in free_unref_page.
2493 		 */
2494 		migratetype = get_pcppage_migratetype(page);
2495 		if (unlikely(is_migrate_isolate(migratetype))) {
2496 			list_del(&page->lru);
2497 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2498 			continue;
2499 		}
2500 	}
2501 
2502 	list_for_each_entry_safe(page, next, list, lru) {
2503 		struct zone *zone = page_zone(page);
2504 
2505 		list_del(&page->lru);
2506 		migratetype = get_pcppage_migratetype(page);
2507 
2508 		/*
2509 		 * Either different zone requiring a different pcp lock or
2510 		 * excessive lock hold times when freeing a large list of
2511 		 * pages.
2512 		 */
2513 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2514 			if (pcp) {
2515 				pcp_spin_unlock(pcp);
2516 				pcp_trylock_finish(UP_flags);
2517 			}
2518 
2519 			batch_count = 0;
2520 
2521 			/*
2522 			 * trylock is necessary as pages may be getting freed
2523 			 * from IRQ or SoftIRQ context after an IO completion.
2524 			 */
2525 			pcp_trylock_prepare(UP_flags);
2526 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2527 			if (unlikely(!pcp)) {
2528 				pcp_trylock_finish(UP_flags);
2529 				free_one_page(zone, page, page_to_pfn(page),
2530 					      0, migratetype, FPI_NONE);
2531 				locked_zone = NULL;
2532 				continue;
2533 			}
2534 			locked_zone = zone;
2535 		}
2536 
2537 		/*
2538 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2539 		 * to the MIGRATE_MOVABLE pcp list.
2540 		 */
2541 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2542 			migratetype = MIGRATE_MOVABLE;
2543 
2544 		trace_mm_page_free_batched(page);
2545 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2546 		batch_count++;
2547 	}
2548 
2549 	if (pcp) {
2550 		pcp_spin_unlock(pcp);
2551 		pcp_trylock_finish(UP_flags);
2552 	}
2553 }
2554 
2555 /*
2556  * split_page takes a non-compound higher-order page, and splits it into
2557  * n (1<<order) sub-pages: page[0..n]
2558  * Each sub-page must be freed individually.
2559  *
2560  * Note: this is probably too low level an operation for use in drivers.
2561  * Please consult with lkml before using this in your driver.
2562  */
2563 void split_page(struct page *page, unsigned int order)
2564 {
2565 	int i;
2566 
2567 	VM_BUG_ON_PAGE(PageCompound(page), page);
2568 	VM_BUG_ON_PAGE(!page_count(page), page);
2569 
2570 	for (i = 1; i < (1 << order); i++)
2571 		set_page_refcounted(page + i);
2572 	split_page_owner(page, 1 << order);
2573 	split_page_memcg(page, 1 << order);
2574 }
2575 EXPORT_SYMBOL_GPL(split_page);
2576 
2577 int __isolate_free_page(struct page *page, unsigned int order)
2578 {
2579 	struct zone *zone = page_zone(page);
2580 	int mt = get_pageblock_migratetype(page);
2581 
2582 	if (!is_migrate_isolate(mt)) {
2583 		unsigned long watermark;
2584 		/*
2585 		 * Obey watermarks as if the page was being allocated. We can
2586 		 * emulate a high-order watermark check with a raised order-0
2587 		 * watermark, because we already know our high-order page
2588 		 * exists.
2589 		 */
2590 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2591 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2592 			return 0;
2593 
2594 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2595 	}
2596 
2597 	del_page_from_free_list(page, zone, order);
2598 
2599 	/*
2600 	 * Set the pageblock if the isolated page is at least half of a
2601 	 * pageblock
2602 	 */
2603 	if (order >= pageblock_order - 1) {
2604 		struct page *endpage = page + (1 << order) - 1;
2605 		for (; page < endpage; page += pageblock_nr_pages) {
2606 			int mt = get_pageblock_migratetype(page);
2607 			/*
2608 			 * Only change normal pageblocks (i.e., they can merge
2609 			 * with others)
2610 			 */
2611 			if (migratetype_is_mergeable(mt))
2612 				set_pageblock_migratetype(page,
2613 							  MIGRATE_MOVABLE);
2614 		}
2615 	}
2616 
2617 	return 1UL << order;
2618 }
2619 
2620 /**
2621  * __putback_isolated_page - Return a now-isolated page back where we got it
2622  * @page: Page that was isolated
2623  * @order: Order of the isolated page
2624  * @mt: The page's pageblock's migratetype
2625  *
2626  * This function is meant to return a page pulled from the free lists via
2627  * __isolate_free_page back to the free lists they were pulled from.
2628  */
2629 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2630 {
2631 	struct zone *zone = page_zone(page);
2632 
2633 	/* zone lock should be held when this function is called */
2634 	lockdep_assert_held(&zone->lock);
2635 
2636 	/* Return isolated page to tail of freelist. */
2637 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2638 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2639 }
2640 
2641 /*
2642  * Update NUMA hit/miss statistics
2643  */
2644 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2645 				   long nr_account)
2646 {
2647 #ifdef CONFIG_NUMA
2648 	enum numa_stat_item local_stat = NUMA_LOCAL;
2649 
2650 	/* skip numa counters update if numa stats is disabled */
2651 	if (!static_branch_likely(&vm_numa_stat_key))
2652 		return;
2653 
2654 	if (zone_to_nid(z) != numa_node_id())
2655 		local_stat = NUMA_OTHER;
2656 
2657 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2658 		__count_numa_events(z, NUMA_HIT, nr_account);
2659 	else {
2660 		__count_numa_events(z, NUMA_MISS, nr_account);
2661 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2662 	}
2663 	__count_numa_events(z, local_stat, nr_account);
2664 #endif
2665 }
2666 
2667 static __always_inline
2668 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2669 			   unsigned int order, unsigned int alloc_flags,
2670 			   int migratetype)
2671 {
2672 	struct page *page;
2673 	unsigned long flags;
2674 
2675 	do {
2676 		page = NULL;
2677 		spin_lock_irqsave(&zone->lock, flags);
2678 		/*
2679 		 * order-0 request can reach here when the pcplist is skipped
2680 		 * due to non-CMA allocation context. HIGHATOMIC area is
2681 		 * reserved for high-order atomic allocation, so order-0
2682 		 * request should skip it.
2683 		 */
2684 		if (alloc_flags & ALLOC_HIGHATOMIC)
2685 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2686 		if (!page) {
2687 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2688 
2689 			/*
2690 			 * If the allocation fails, allow OOM handling access
2691 			 * to HIGHATOMIC reserves as failing now is worse than
2692 			 * failing a high-order atomic allocation in the
2693 			 * future.
2694 			 */
2695 			if (!page && (alloc_flags & ALLOC_OOM))
2696 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2697 
2698 			if (!page) {
2699 				spin_unlock_irqrestore(&zone->lock, flags);
2700 				return NULL;
2701 			}
2702 		}
2703 		__mod_zone_freepage_state(zone, -(1 << order),
2704 					  get_pcppage_migratetype(page));
2705 		spin_unlock_irqrestore(&zone->lock, flags);
2706 	} while (check_new_pages(page, order));
2707 
2708 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2709 	zone_statistics(preferred_zone, zone, 1);
2710 
2711 	return page;
2712 }
2713 
2714 /* Remove page from the per-cpu list, caller must protect the list */
2715 static inline
2716 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2717 			int migratetype,
2718 			unsigned int alloc_flags,
2719 			struct per_cpu_pages *pcp,
2720 			struct list_head *list)
2721 {
2722 	struct page *page;
2723 
2724 	do {
2725 		if (list_empty(list)) {
2726 			int batch = READ_ONCE(pcp->batch);
2727 			int alloced;
2728 
2729 			/*
2730 			 * Scale batch relative to order if batch implies
2731 			 * free pages can be stored on the PCP. Batch can
2732 			 * be 1 for small zones or for boot pagesets which
2733 			 * should never store free pages as the pages may
2734 			 * belong to arbitrary zones.
2735 			 */
2736 			if (batch > 1)
2737 				batch = max(batch >> order, 2);
2738 			alloced = rmqueue_bulk(zone, order,
2739 					batch, list,
2740 					migratetype, alloc_flags);
2741 
2742 			pcp->count += alloced << order;
2743 			if (unlikely(list_empty(list)))
2744 				return NULL;
2745 		}
2746 
2747 		page = list_first_entry(list, struct page, pcp_list);
2748 		list_del(&page->pcp_list);
2749 		pcp->count -= 1 << order;
2750 	} while (check_new_pages(page, order));
2751 
2752 	return page;
2753 }
2754 
2755 /* Lock and remove page from the per-cpu list */
2756 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2757 			struct zone *zone, unsigned int order,
2758 			int migratetype, unsigned int alloc_flags)
2759 {
2760 	struct per_cpu_pages *pcp;
2761 	struct list_head *list;
2762 	struct page *page;
2763 	unsigned long __maybe_unused UP_flags;
2764 
2765 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2766 	pcp_trylock_prepare(UP_flags);
2767 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2768 	if (!pcp) {
2769 		pcp_trylock_finish(UP_flags);
2770 		return NULL;
2771 	}
2772 
2773 	/*
2774 	 * On allocation, reduce the number of pages that are batch freed.
2775 	 * See nr_pcp_free() where free_factor is increased for subsequent
2776 	 * frees.
2777 	 */
2778 	pcp->free_factor >>= 1;
2779 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2780 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2781 	pcp_spin_unlock(pcp);
2782 	pcp_trylock_finish(UP_flags);
2783 	if (page) {
2784 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2785 		zone_statistics(preferred_zone, zone, 1);
2786 	}
2787 	return page;
2788 }
2789 
2790 /*
2791  * Allocate a page from the given zone.
2792  * Use pcplists for THP or "cheap" high-order allocations.
2793  */
2794 
2795 /*
2796  * Do not instrument rmqueue() with KMSAN. This function may call
2797  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2798  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2799  * may call rmqueue() again, which will result in a deadlock.
2800  */
2801 __no_sanitize_memory
2802 static inline
2803 struct page *rmqueue(struct zone *preferred_zone,
2804 			struct zone *zone, unsigned int order,
2805 			gfp_t gfp_flags, unsigned int alloc_flags,
2806 			int migratetype)
2807 {
2808 	struct page *page;
2809 
2810 	/*
2811 	 * We most definitely don't want callers attempting to
2812 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2813 	 */
2814 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2815 
2816 	if (likely(pcp_allowed_order(order))) {
2817 		/*
2818 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2819 		 * we need to skip it when CMA area isn't allowed.
2820 		 */
2821 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2822 				migratetype != MIGRATE_MOVABLE) {
2823 			page = rmqueue_pcplist(preferred_zone, zone, order,
2824 					migratetype, alloc_flags);
2825 			if (likely(page))
2826 				goto out;
2827 		}
2828 	}
2829 
2830 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2831 							migratetype);
2832 
2833 out:
2834 	/* Separate test+clear to avoid unnecessary atomics */
2835 	if ((alloc_flags & ALLOC_KSWAPD) &&
2836 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2837 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2838 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2839 	}
2840 
2841 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2842 	return page;
2843 }
2844 
2845 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2846 {
2847 	return __should_fail_alloc_page(gfp_mask, order);
2848 }
2849 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2850 
2851 static inline long __zone_watermark_unusable_free(struct zone *z,
2852 				unsigned int order, unsigned int alloc_flags)
2853 {
2854 	long unusable_free = (1 << order) - 1;
2855 
2856 	/*
2857 	 * If the caller does not have rights to reserves below the min
2858 	 * watermark then subtract the high-atomic reserves. This will
2859 	 * over-estimate the size of the atomic reserve but it avoids a search.
2860 	 */
2861 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2862 		unusable_free += z->nr_reserved_highatomic;
2863 
2864 #ifdef CONFIG_CMA
2865 	/* If allocation can't use CMA areas don't use free CMA pages */
2866 	if (!(alloc_flags & ALLOC_CMA))
2867 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2868 #endif
2869 #ifdef CONFIG_UNACCEPTED_MEMORY
2870 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2871 #endif
2872 
2873 	return unusable_free;
2874 }
2875 
2876 /*
2877  * Return true if free base pages are above 'mark'. For high-order checks it
2878  * will return true of the order-0 watermark is reached and there is at least
2879  * one free page of a suitable size. Checking now avoids taking the zone lock
2880  * to check in the allocation paths if no pages are free.
2881  */
2882 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2883 			 int highest_zoneidx, unsigned int alloc_flags,
2884 			 long free_pages)
2885 {
2886 	long min = mark;
2887 	int o;
2888 
2889 	/* free_pages may go negative - that's OK */
2890 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2891 
2892 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2893 		/*
2894 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2895 		 * as OOM.
2896 		 */
2897 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2898 			min -= min / 2;
2899 
2900 			/*
2901 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2902 			 * access more reserves than just __GFP_HIGH. Other
2903 			 * non-blocking allocations requests such as GFP_NOWAIT
2904 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2905 			 * access to the min reserve.
2906 			 */
2907 			if (alloc_flags & ALLOC_NON_BLOCK)
2908 				min -= min / 4;
2909 		}
2910 
2911 		/*
2912 		 * OOM victims can try even harder than the normal reserve
2913 		 * users on the grounds that it's definitely going to be in
2914 		 * the exit path shortly and free memory. Any allocation it
2915 		 * makes during the free path will be small and short-lived.
2916 		 */
2917 		if (alloc_flags & ALLOC_OOM)
2918 			min -= min / 2;
2919 	}
2920 
2921 	/*
2922 	 * Check watermarks for an order-0 allocation request. If these
2923 	 * are not met, then a high-order request also cannot go ahead
2924 	 * even if a suitable page happened to be free.
2925 	 */
2926 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2927 		return false;
2928 
2929 	/* If this is an order-0 request then the watermark is fine */
2930 	if (!order)
2931 		return true;
2932 
2933 	/* For a high-order request, check at least one suitable page is free */
2934 	for (o = order; o <= MAX_ORDER; o++) {
2935 		struct free_area *area = &z->free_area[o];
2936 		int mt;
2937 
2938 		if (!area->nr_free)
2939 			continue;
2940 
2941 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2942 			if (!free_area_empty(area, mt))
2943 				return true;
2944 		}
2945 
2946 #ifdef CONFIG_CMA
2947 		if ((alloc_flags & ALLOC_CMA) &&
2948 		    !free_area_empty(area, MIGRATE_CMA)) {
2949 			return true;
2950 		}
2951 #endif
2952 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2953 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2954 			return true;
2955 		}
2956 	}
2957 	return false;
2958 }
2959 
2960 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2961 		      int highest_zoneidx, unsigned int alloc_flags)
2962 {
2963 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2964 					zone_page_state(z, NR_FREE_PAGES));
2965 }
2966 
2967 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2968 				unsigned long mark, int highest_zoneidx,
2969 				unsigned int alloc_flags, gfp_t gfp_mask)
2970 {
2971 	long free_pages;
2972 
2973 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2974 
2975 	/*
2976 	 * Fast check for order-0 only. If this fails then the reserves
2977 	 * need to be calculated.
2978 	 */
2979 	if (!order) {
2980 		long usable_free;
2981 		long reserved;
2982 
2983 		usable_free = free_pages;
2984 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2985 
2986 		/* reserved may over estimate high-atomic reserves. */
2987 		usable_free -= min(usable_free, reserved);
2988 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2989 			return true;
2990 	}
2991 
2992 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2993 					free_pages))
2994 		return true;
2995 
2996 	/*
2997 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2998 	 * when checking the min watermark. The min watermark is the
2999 	 * point where boosting is ignored so that kswapd is woken up
3000 	 * when below the low watermark.
3001 	 */
3002 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3003 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3004 		mark = z->_watermark[WMARK_MIN];
3005 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3006 					alloc_flags, free_pages);
3007 	}
3008 
3009 	return false;
3010 }
3011 
3012 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3013 			unsigned long mark, int highest_zoneidx)
3014 {
3015 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3016 
3017 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3018 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3019 
3020 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3021 								free_pages);
3022 }
3023 
3024 #ifdef CONFIG_NUMA
3025 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3026 
3027 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3028 {
3029 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3030 				node_reclaim_distance;
3031 }
3032 #else	/* CONFIG_NUMA */
3033 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3034 {
3035 	return true;
3036 }
3037 #endif	/* CONFIG_NUMA */
3038 
3039 /*
3040  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3041  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3042  * premature use of a lower zone may cause lowmem pressure problems that
3043  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3044  * probably too small. It only makes sense to spread allocations to avoid
3045  * fragmentation between the Normal and DMA32 zones.
3046  */
3047 static inline unsigned int
3048 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3049 {
3050 	unsigned int alloc_flags;
3051 
3052 	/*
3053 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3054 	 * to save a branch.
3055 	 */
3056 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3057 
3058 #ifdef CONFIG_ZONE_DMA32
3059 	if (!zone)
3060 		return alloc_flags;
3061 
3062 	if (zone_idx(zone) != ZONE_NORMAL)
3063 		return alloc_flags;
3064 
3065 	/*
3066 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3067 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3068 	 * on UMA that if Normal is populated then so is DMA32.
3069 	 */
3070 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3071 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3072 		return alloc_flags;
3073 
3074 	alloc_flags |= ALLOC_NOFRAGMENT;
3075 #endif /* CONFIG_ZONE_DMA32 */
3076 	return alloc_flags;
3077 }
3078 
3079 /* Must be called after current_gfp_context() which can change gfp_mask */
3080 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3081 						  unsigned int alloc_flags)
3082 {
3083 #ifdef CONFIG_CMA
3084 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3085 		alloc_flags |= ALLOC_CMA;
3086 #endif
3087 	return alloc_flags;
3088 }
3089 
3090 /*
3091  * get_page_from_freelist goes through the zonelist trying to allocate
3092  * a page.
3093  */
3094 static struct page *
3095 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3096 						const struct alloc_context *ac)
3097 {
3098 	struct zoneref *z;
3099 	struct zone *zone;
3100 	struct pglist_data *last_pgdat = NULL;
3101 	bool last_pgdat_dirty_ok = false;
3102 	bool no_fallback;
3103 
3104 retry:
3105 	/*
3106 	 * Scan zonelist, looking for a zone with enough free.
3107 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3108 	 */
3109 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3110 	z = ac->preferred_zoneref;
3111 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3112 					ac->nodemask) {
3113 		struct page *page;
3114 		unsigned long mark;
3115 
3116 		if (cpusets_enabled() &&
3117 			(alloc_flags & ALLOC_CPUSET) &&
3118 			!__cpuset_zone_allowed(zone, gfp_mask))
3119 				continue;
3120 		/*
3121 		 * When allocating a page cache page for writing, we
3122 		 * want to get it from a node that is within its dirty
3123 		 * limit, such that no single node holds more than its
3124 		 * proportional share of globally allowed dirty pages.
3125 		 * The dirty limits take into account the node's
3126 		 * lowmem reserves and high watermark so that kswapd
3127 		 * should be able to balance it without having to
3128 		 * write pages from its LRU list.
3129 		 *
3130 		 * XXX: For now, allow allocations to potentially
3131 		 * exceed the per-node dirty limit in the slowpath
3132 		 * (spread_dirty_pages unset) before going into reclaim,
3133 		 * which is important when on a NUMA setup the allowed
3134 		 * nodes are together not big enough to reach the
3135 		 * global limit.  The proper fix for these situations
3136 		 * will require awareness of nodes in the
3137 		 * dirty-throttling and the flusher threads.
3138 		 */
3139 		if (ac->spread_dirty_pages) {
3140 			if (last_pgdat != zone->zone_pgdat) {
3141 				last_pgdat = zone->zone_pgdat;
3142 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3143 			}
3144 
3145 			if (!last_pgdat_dirty_ok)
3146 				continue;
3147 		}
3148 
3149 		if (no_fallback && nr_online_nodes > 1 &&
3150 		    zone != ac->preferred_zoneref->zone) {
3151 			int local_nid;
3152 
3153 			/*
3154 			 * If moving to a remote node, retry but allow
3155 			 * fragmenting fallbacks. Locality is more important
3156 			 * than fragmentation avoidance.
3157 			 */
3158 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3159 			if (zone_to_nid(zone) != local_nid) {
3160 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3161 				goto retry;
3162 			}
3163 		}
3164 
3165 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3166 		if (!zone_watermark_fast(zone, order, mark,
3167 				       ac->highest_zoneidx, alloc_flags,
3168 				       gfp_mask)) {
3169 			int ret;
3170 
3171 			if (has_unaccepted_memory()) {
3172 				if (try_to_accept_memory(zone, order))
3173 					goto try_this_zone;
3174 			}
3175 
3176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3177 			/*
3178 			 * Watermark failed for this zone, but see if we can
3179 			 * grow this zone if it contains deferred pages.
3180 			 */
3181 			if (deferred_pages_enabled()) {
3182 				if (_deferred_grow_zone(zone, order))
3183 					goto try_this_zone;
3184 			}
3185 #endif
3186 			/* Checked here to keep the fast path fast */
3187 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3188 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3189 				goto try_this_zone;
3190 
3191 			if (!node_reclaim_enabled() ||
3192 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3193 				continue;
3194 
3195 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3196 			switch (ret) {
3197 			case NODE_RECLAIM_NOSCAN:
3198 				/* did not scan */
3199 				continue;
3200 			case NODE_RECLAIM_FULL:
3201 				/* scanned but unreclaimable */
3202 				continue;
3203 			default:
3204 				/* did we reclaim enough */
3205 				if (zone_watermark_ok(zone, order, mark,
3206 					ac->highest_zoneidx, alloc_flags))
3207 					goto try_this_zone;
3208 
3209 				continue;
3210 			}
3211 		}
3212 
3213 try_this_zone:
3214 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3215 				gfp_mask, alloc_flags, ac->migratetype);
3216 		if (page) {
3217 			prep_new_page(page, order, gfp_mask, alloc_flags);
3218 
3219 			/*
3220 			 * If this is a high-order atomic allocation then check
3221 			 * if the pageblock should be reserved for the future
3222 			 */
3223 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3224 				reserve_highatomic_pageblock(page, zone, order);
3225 
3226 			return page;
3227 		} else {
3228 			if (has_unaccepted_memory()) {
3229 				if (try_to_accept_memory(zone, order))
3230 					goto try_this_zone;
3231 			}
3232 
3233 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3234 			/* Try again if zone has deferred pages */
3235 			if (deferred_pages_enabled()) {
3236 				if (_deferred_grow_zone(zone, order))
3237 					goto try_this_zone;
3238 			}
3239 #endif
3240 		}
3241 	}
3242 
3243 	/*
3244 	 * It's possible on a UMA machine to get through all zones that are
3245 	 * fragmented. If avoiding fragmentation, reset and try again.
3246 	 */
3247 	if (no_fallback) {
3248 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3249 		goto retry;
3250 	}
3251 
3252 	return NULL;
3253 }
3254 
3255 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3256 {
3257 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3258 
3259 	/*
3260 	 * This documents exceptions given to allocations in certain
3261 	 * contexts that are allowed to allocate outside current's set
3262 	 * of allowed nodes.
3263 	 */
3264 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3265 		if (tsk_is_oom_victim(current) ||
3266 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3267 			filter &= ~SHOW_MEM_FILTER_NODES;
3268 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3269 		filter &= ~SHOW_MEM_FILTER_NODES;
3270 
3271 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3272 }
3273 
3274 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3275 {
3276 	struct va_format vaf;
3277 	va_list args;
3278 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3279 
3280 	if ((gfp_mask & __GFP_NOWARN) ||
3281 	     !__ratelimit(&nopage_rs) ||
3282 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3283 		return;
3284 
3285 	va_start(args, fmt);
3286 	vaf.fmt = fmt;
3287 	vaf.va = &args;
3288 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3289 			current->comm, &vaf, gfp_mask, &gfp_mask,
3290 			nodemask_pr_args(nodemask));
3291 	va_end(args);
3292 
3293 	cpuset_print_current_mems_allowed();
3294 	pr_cont("\n");
3295 	dump_stack();
3296 	warn_alloc_show_mem(gfp_mask, nodemask);
3297 }
3298 
3299 static inline struct page *
3300 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3301 			      unsigned int alloc_flags,
3302 			      const struct alloc_context *ac)
3303 {
3304 	struct page *page;
3305 
3306 	page = get_page_from_freelist(gfp_mask, order,
3307 			alloc_flags|ALLOC_CPUSET, ac);
3308 	/*
3309 	 * fallback to ignore cpuset restriction if our nodes
3310 	 * are depleted
3311 	 */
3312 	if (!page)
3313 		page = get_page_from_freelist(gfp_mask, order,
3314 				alloc_flags, ac);
3315 
3316 	return page;
3317 }
3318 
3319 static inline struct page *
3320 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3321 	const struct alloc_context *ac, unsigned long *did_some_progress)
3322 {
3323 	struct oom_control oc = {
3324 		.zonelist = ac->zonelist,
3325 		.nodemask = ac->nodemask,
3326 		.memcg = NULL,
3327 		.gfp_mask = gfp_mask,
3328 		.order = order,
3329 	};
3330 	struct page *page;
3331 
3332 	*did_some_progress = 0;
3333 
3334 	/*
3335 	 * Acquire the oom lock.  If that fails, somebody else is
3336 	 * making progress for us.
3337 	 */
3338 	if (!mutex_trylock(&oom_lock)) {
3339 		*did_some_progress = 1;
3340 		schedule_timeout_uninterruptible(1);
3341 		return NULL;
3342 	}
3343 
3344 	/*
3345 	 * Go through the zonelist yet one more time, keep very high watermark
3346 	 * here, this is only to catch a parallel oom killing, we must fail if
3347 	 * we're still under heavy pressure. But make sure that this reclaim
3348 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3349 	 * allocation which will never fail due to oom_lock already held.
3350 	 */
3351 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3352 				      ~__GFP_DIRECT_RECLAIM, order,
3353 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3354 	if (page)
3355 		goto out;
3356 
3357 	/* Coredumps can quickly deplete all memory reserves */
3358 	if (current->flags & PF_DUMPCORE)
3359 		goto out;
3360 	/* The OOM killer will not help higher order allocs */
3361 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3362 		goto out;
3363 	/*
3364 	 * We have already exhausted all our reclaim opportunities without any
3365 	 * success so it is time to admit defeat. We will skip the OOM killer
3366 	 * because it is very likely that the caller has a more reasonable
3367 	 * fallback than shooting a random task.
3368 	 *
3369 	 * The OOM killer may not free memory on a specific node.
3370 	 */
3371 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3372 		goto out;
3373 	/* The OOM killer does not needlessly kill tasks for lowmem */
3374 	if (ac->highest_zoneidx < ZONE_NORMAL)
3375 		goto out;
3376 	if (pm_suspended_storage())
3377 		goto out;
3378 	/*
3379 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3380 	 * other request to make a forward progress.
3381 	 * We are in an unfortunate situation where out_of_memory cannot
3382 	 * do much for this context but let's try it to at least get
3383 	 * access to memory reserved if the current task is killed (see
3384 	 * out_of_memory). Once filesystems are ready to handle allocation
3385 	 * failures more gracefully we should just bail out here.
3386 	 */
3387 
3388 	/* Exhausted what can be done so it's blame time */
3389 	if (out_of_memory(&oc) ||
3390 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3391 		*did_some_progress = 1;
3392 
3393 		/*
3394 		 * Help non-failing allocations by giving them access to memory
3395 		 * reserves
3396 		 */
3397 		if (gfp_mask & __GFP_NOFAIL)
3398 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3399 					ALLOC_NO_WATERMARKS, ac);
3400 	}
3401 out:
3402 	mutex_unlock(&oom_lock);
3403 	return page;
3404 }
3405 
3406 /*
3407  * Maximum number of compaction retries with a progress before OOM
3408  * killer is consider as the only way to move forward.
3409  */
3410 #define MAX_COMPACT_RETRIES 16
3411 
3412 #ifdef CONFIG_COMPACTION
3413 /* Try memory compaction for high-order allocations before reclaim */
3414 static struct page *
3415 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3416 		unsigned int alloc_flags, const struct alloc_context *ac,
3417 		enum compact_priority prio, enum compact_result *compact_result)
3418 {
3419 	struct page *page = NULL;
3420 	unsigned long pflags;
3421 	unsigned int noreclaim_flag;
3422 
3423 	if (!order)
3424 		return NULL;
3425 
3426 	psi_memstall_enter(&pflags);
3427 	delayacct_compact_start();
3428 	noreclaim_flag = memalloc_noreclaim_save();
3429 
3430 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3431 								prio, &page);
3432 
3433 	memalloc_noreclaim_restore(noreclaim_flag);
3434 	psi_memstall_leave(&pflags);
3435 	delayacct_compact_end();
3436 
3437 	if (*compact_result == COMPACT_SKIPPED)
3438 		return NULL;
3439 	/*
3440 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3441 	 * count a compaction stall
3442 	 */
3443 	count_vm_event(COMPACTSTALL);
3444 
3445 	/* Prep a captured page if available */
3446 	if (page)
3447 		prep_new_page(page, order, gfp_mask, alloc_flags);
3448 
3449 	/* Try get a page from the freelist if available */
3450 	if (!page)
3451 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3452 
3453 	if (page) {
3454 		struct zone *zone = page_zone(page);
3455 
3456 		zone->compact_blockskip_flush = false;
3457 		compaction_defer_reset(zone, order, true);
3458 		count_vm_event(COMPACTSUCCESS);
3459 		return page;
3460 	}
3461 
3462 	/*
3463 	 * It's bad if compaction run occurs and fails. The most likely reason
3464 	 * is that pages exist, but not enough to satisfy watermarks.
3465 	 */
3466 	count_vm_event(COMPACTFAIL);
3467 
3468 	cond_resched();
3469 
3470 	return NULL;
3471 }
3472 
3473 static inline bool
3474 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3475 		     enum compact_result compact_result,
3476 		     enum compact_priority *compact_priority,
3477 		     int *compaction_retries)
3478 {
3479 	int max_retries = MAX_COMPACT_RETRIES;
3480 	int min_priority;
3481 	bool ret = false;
3482 	int retries = *compaction_retries;
3483 	enum compact_priority priority = *compact_priority;
3484 
3485 	if (!order)
3486 		return false;
3487 
3488 	if (fatal_signal_pending(current))
3489 		return false;
3490 
3491 	/*
3492 	 * Compaction was skipped due to a lack of free order-0
3493 	 * migration targets. Continue if reclaim can help.
3494 	 */
3495 	if (compact_result == COMPACT_SKIPPED) {
3496 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3497 		goto out;
3498 	}
3499 
3500 	/*
3501 	 * Compaction managed to coalesce some page blocks, but the
3502 	 * allocation failed presumably due to a race. Retry some.
3503 	 */
3504 	if (compact_result == COMPACT_SUCCESS) {
3505 		/*
3506 		 * !costly requests are much more important than
3507 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3508 		 * facto nofail and invoke OOM killer to move on while
3509 		 * costly can fail and users are ready to cope with
3510 		 * that. 1/4 retries is rather arbitrary but we would
3511 		 * need much more detailed feedback from compaction to
3512 		 * make a better decision.
3513 		 */
3514 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3515 			max_retries /= 4;
3516 
3517 		if (++(*compaction_retries) <= max_retries) {
3518 			ret = true;
3519 			goto out;
3520 		}
3521 	}
3522 
3523 	/*
3524 	 * Compaction failed. Retry with increasing priority.
3525 	 */
3526 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3527 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3528 
3529 	if (*compact_priority > min_priority) {
3530 		(*compact_priority)--;
3531 		*compaction_retries = 0;
3532 		ret = true;
3533 	}
3534 out:
3535 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3536 	return ret;
3537 }
3538 #else
3539 static inline struct page *
3540 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3541 		unsigned int alloc_flags, const struct alloc_context *ac,
3542 		enum compact_priority prio, enum compact_result *compact_result)
3543 {
3544 	*compact_result = COMPACT_SKIPPED;
3545 	return NULL;
3546 }
3547 
3548 static inline bool
3549 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3550 		     enum compact_result compact_result,
3551 		     enum compact_priority *compact_priority,
3552 		     int *compaction_retries)
3553 {
3554 	struct zone *zone;
3555 	struct zoneref *z;
3556 
3557 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3558 		return false;
3559 
3560 	/*
3561 	 * There are setups with compaction disabled which would prefer to loop
3562 	 * inside the allocator rather than hit the oom killer prematurely.
3563 	 * Let's give them a good hope and keep retrying while the order-0
3564 	 * watermarks are OK.
3565 	 */
3566 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3567 				ac->highest_zoneidx, ac->nodemask) {
3568 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3569 					ac->highest_zoneidx, alloc_flags))
3570 			return true;
3571 	}
3572 	return false;
3573 }
3574 #endif /* CONFIG_COMPACTION */
3575 
3576 #ifdef CONFIG_LOCKDEP
3577 static struct lockdep_map __fs_reclaim_map =
3578 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3579 
3580 static bool __need_reclaim(gfp_t gfp_mask)
3581 {
3582 	/* no reclaim without waiting on it */
3583 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3584 		return false;
3585 
3586 	/* this guy won't enter reclaim */
3587 	if (current->flags & PF_MEMALLOC)
3588 		return false;
3589 
3590 	if (gfp_mask & __GFP_NOLOCKDEP)
3591 		return false;
3592 
3593 	return true;
3594 }
3595 
3596 void __fs_reclaim_acquire(unsigned long ip)
3597 {
3598 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3599 }
3600 
3601 void __fs_reclaim_release(unsigned long ip)
3602 {
3603 	lock_release(&__fs_reclaim_map, ip);
3604 }
3605 
3606 void fs_reclaim_acquire(gfp_t gfp_mask)
3607 {
3608 	gfp_mask = current_gfp_context(gfp_mask);
3609 
3610 	if (__need_reclaim(gfp_mask)) {
3611 		if (gfp_mask & __GFP_FS)
3612 			__fs_reclaim_acquire(_RET_IP_);
3613 
3614 #ifdef CONFIG_MMU_NOTIFIER
3615 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3616 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3617 #endif
3618 
3619 	}
3620 }
3621 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3622 
3623 void fs_reclaim_release(gfp_t gfp_mask)
3624 {
3625 	gfp_mask = current_gfp_context(gfp_mask);
3626 
3627 	if (__need_reclaim(gfp_mask)) {
3628 		if (gfp_mask & __GFP_FS)
3629 			__fs_reclaim_release(_RET_IP_);
3630 	}
3631 }
3632 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3633 #endif
3634 
3635 /*
3636  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3637  * have been rebuilt so allocation retries. Reader side does not lock and
3638  * retries the allocation if zonelist changes. Writer side is protected by the
3639  * embedded spin_lock.
3640  */
3641 static DEFINE_SEQLOCK(zonelist_update_seq);
3642 
3643 static unsigned int zonelist_iter_begin(void)
3644 {
3645 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3646 		return read_seqbegin(&zonelist_update_seq);
3647 
3648 	return 0;
3649 }
3650 
3651 static unsigned int check_retry_zonelist(unsigned int seq)
3652 {
3653 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3654 		return read_seqretry(&zonelist_update_seq, seq);
3655 
3656 	return seq;
3657 }
3658 
3659 /* Perform direct synchronous page reclaim */
3660 static unsigned long
3661 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3662 					const struct alloc_context *ac)
3663 {
3664 	unsigned int noreclaim_flag;
3665 	unsigned long progress;
3666 
3667 	cond_resched();
3668 
3669 	/* We now go into synchronous reclaim */
3670 	cpuset_memory_pressure_bump();
3671 	fs_reclaim_acquire(gfp_mask);
3672 	noreclaim_flag = memalloc_noreclaim_save();
3673 
3674 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3675 								ac->nodemask);
3676 
3677 	memalloc_noreclaim_restore(noreclaim_flag);
3678 	fs_reclaim_release(gfp_mask);
3679 
3680 	cond_resched();
3681 
3682 	return progress;
3683 }
3684 
3685 /* The really slow allocator path where we enter direct reclaim */
3686 static inline struct page *
3687 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3688 		unsigned int alloc_flags, const struct alloc_context *ac,
3689 		unsigned long *did_some_progress)
3690 {
3691 	struct page *page = NULL;
3692 	unsigned long pflags;
3693 	bool drained = false;
3694 
3695 	psi_memstall_enter(&pflags);
3696 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3697 	if (unlikely(!(*did_some_progress)))
3698 		goto out;
3699 
3700 retry:
3701 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3702 
3703 	/*
3704 	 * If an allocation failed after direct reclaim, it could be because
3705 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3706 	 * Shrink them and try again
3707 	 */
3708 	if (!page && !drained) {
3709 		unreserve_highatomic_pageblock(ac, false);
3710 		drain_all_pages(NULL);
3711 		drained = true;
3712 		goto retry;
3713 	}
3714 out:
3715 	psi_memstall_leave(&pflags);
3716 
3717 	return page;
3718 }
3719 
3720 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3721 			     const struct alloc_context *ac)
3722 {
3723 	struct zoneref *z;
3724 	struct zone *zone;
3725 	pg_data_t *last_pgdat = NULL;
3726 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3727 
3728 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3729 					ac->nodemask) {
3730 		if (!managed_zone(zone))
3731 			continue;
3732 		if (last_pgdat != zone->zone_pgdat) {
3733 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3734 			last_pgdat = zone->zone_pgdat;
3735 		}
3736 	}
3737 }
3738 
3739 static inline unsigned int
3740 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3741 {
3742 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3743 
3744 	/*
3745 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3746 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3747 	 * to save two branches.
3748 	 */
3749 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3750 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3751 
3752 	/*
3753 	 * The caller may dip into page reserves a bit more if the caller
3754 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3755 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3756 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3757 	 */
3758 	alloc_flags |= (__force int)
3759 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3760 
3761 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3762 		/*
3763 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3764 		 * if it can't schedule.
3765 		 */
3766 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3767 			alloc_flags |= ALLOC_NON_BLOCK;
3768 
3769 			if (order > 0)
3770 				alloc_flags |= ALLOC_HIGHATOMIC;
3771 		}
3772 
3773 		/*
3774 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3775 		 * GFP_ATOMIC) rather than fail, see the comment for
3776 		 * cpuset_node_allowed().
3777 		 */
3778 		if (alloc_flags & ALLOC_MIN_RESERVE)
3779 			alloc_flags &= ~ALLOC_CPUSET;
3780 	} else if (unlikely(rt_task(current)) && in_task())
3781 		alloc_flags |= ALLOC_MIN_RESERVE;
3782 
3783 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3784 
3785 	return alloc_flags;
3786 }
3787 
3788 static bool oom_reserves_allowed(struct task_struct *tsk)
3789 {
3790 	if (!tsk_is_oom_victim(tsk))
3791 		return false;
3792 
3793 	/*
3794 	 * !MMU doesn't have oom reaper so give access to memory reserves
3795 	 * only to the thread with TIF_MEMDIE set
3796 	 */
3797 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3798 		return false;
3799 
3800 	return true;
3801 }
3802 
3803 /*
3804  * Distinguish requests which really need access to full memory
3805  * reserves from oom victims which can live with a portion of it
3806  */
3807 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3808 {
3809 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3810 		return 0;
3811 	if (gfp_mask & __GFP_MEMALLOC)
3812 		return ALLOC_NO_WATERMARKS;
3813 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3814 		return ALLOC_NO_WATERMARKS;
3815 	if (!in_interrupt()) {
3816 		if (current->flags & PF_MEMALLOC)
3817 			return ALLOC_NO_WATERMARKS;
3818 		else if (oom_reserves_allowed(current))
3819 			return ALLOC_OOM;
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3826 {
3827 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3828 }
3829 
3830 /*
3831  * Checks whether it makes sense to retry the reclaim to make a forward progress
3832  * for the given allocation request.
3833  *
3834  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3835  * without success, or when we couldn't even meet the watermark if we
3836  * reclaimed all remaining pages on the LRU lists.
3837  *
3838  * Returns true if a retry is viable or false to enter the oom path.
3839  */
3840 static inline bool
3841 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3842 		     struct alloc_context *ac, int alloc_flags,
3843 		     bool did_some_progress, int *no_progress_loops)
3844 {
3845 	struct zone *zone;
3846 	struct zoneref *z;
3847 	bool ret = false;
3848 
3849 	/*
3850 	 * Costly allocations might have made a progress but this doesn't mean
3851 	 * their order will become available due to high fragmentation so
3852 	 * always increment the no progress counter for them
3853 	 */
3854 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3855 		*no_progress_loops = 0;
3856 	else
3857 		(*no_progress_loops)++;
3858 
3859 	/*
3860 	 * Make sure we converge to OOM if we cannot make any progress
3861 	 * several times in the row.
3862 	 */
3863 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3864 		/* Before OOM, exhaust highatomic_reserve */
3865 		return unreserve_highatomic_pageblock(ac, true);
3866 	}
3867 
3868 	/*
3869 	 * Keep reclaiming pages while there is a chance this will lead
3870 	 * somewhere.  If none of the target zones can satisfy our allocation
3871 	 * request even if all reclaimable pages are considered then we are
3872 	 * screwed and have to go OOM.
3873 	 */
3874 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3875 				ac->highest_zoneidx, ac->nodemask) {
3876 		unsigned long available;
3877 		unsigned long reclaimable;
3878 		unsigned long min_wmark = min_wmark_pages(zone);
3879 		bool wmark;
3880 
3881 		available = reclaimable = zone_reclaimable_pages(zone);
3882 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3883 
3884 		/*
3885 		 * Would the allocation succeed if we reclaimed all
3886 		 * reclaimable pages?
3887 		 */
3888 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3889 				ac->highest_zoneidx, alloc_flags, available);
3890 		trace_reclaim_retry_zone(z, order, reclaimable,
3891 				available, min_wmark, *no_progress_loops, wmark);
3892 		if (wmark) {
3893 			ret = true;
3894 			break;
3895 		}
3896 	}
3897 
3898 	/*
3899 	 * Memory allocation/reclaim might be called from a WQ context and the
3900 	 * current implementation of the WQ concurrency control doesn't
3901 	 * recognize that a particular WQ is congested if the worker thread is
3902 	 * looping without ever sleeping. Therefore we have to do a short sleep
3903 	 * here rather than calling cond_resched().
3904 	 */
3905 	if (current->flags & PF_WQ_WORKER)
3906 		schedule_timeout_uninterruptible(1);
3907 	else
3908 		cond_resched();
3909 	return ret;
3910 }
3911 
3912 static inline bool
3913 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3914 {
3915 	/*
3916 	 * It's possible that cpuset's mems_allowed and the nodemask from
3917 	 * mempolicy don't intersect. This should be normally dealt with by
3918 	 * policy_nodemask(), but it's possible to race with cpuset update in
3919 	 * such a way the check therein was true, and then it became false
3920 	 * before we got our cpuset_mems_cookie here.
3921 	 * This assumes that for all allocations, ac->nodemask can come only
3922 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3923 	 * when it does not intersect with the cpuset restrictions) or the
3924 	 * caller can deal with a violated nodemask.
3925 	 */
3926 	if (cpusets_enabled() && ac->nodemask &&
3927 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3928 		ac->nodemask = NULL;
3929 		return true;
3930 	}
3931 
3932 	/*
3933 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3934 	 * possible to race with parallel threads in such a way that our
3935 	 * allocation can fail while the mask is being updated. If we are about
3936 	 * to fail, check if the cpuset changed during allocation and if so,
3937 	 * retry.
3938 	 */
3939 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3940 		return true;
3941 
3942 	return false;
3943 }
3944 
3945 static inline struct page *
3946 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3947 						struct alloc_context *ac)
3948 {
3949 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3950 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3951 	struct page *page = NULL;
3952 	unsigned int alloc_flags;
3953 	unsigned long did_some_progress;
3954 	enum compact_priority compact_priority;
3955 	enum compact_result compact_result;
3956 	int compaction_retries;
3957 	int no_progress_loops;
3958 	unsigned int cpuset_mems_cookie;
3959 	unsigned int zonelist_iter_cookie;
3960 	int reserve_flags;
3961 
3962 restart:
3963 	compaction_retries = 0;
3964 	no_progress_loops = 0;
3965 	compact_priority = DEF_COMPACT_PRIORITY;
3966 	cpuset_mems_cookie = read_mems_allowed_begin();
3967 	zonelist_iter_cookie = zonelist_iter_begin();
3968 
3969 	/*
3970 	 * The fast path uses conservative alloc_flags to succeed only until
3971 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3972 	 * alloc_flags precisely. So we do that now.
3973 	 */
3974 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3975 
3976 	/*
3977 	 * We need to recalculate the starting point for the zonelist iterator
3978 	 * because we might have used different nodemask in the fast path, or
3979 	 * there was a cpuset modification and we are retrying - otherwise we
3980 	 * could end up iterating over non-eligible zones endlessly.
3981 	 */
3982 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3983 					ac->highest_zoneidx, ac->nodemask);
3984 	if (!ac->preferred_zoneref->zone)
3985 		goto nopage;
3986 
3987 	/*
3988 	 * Check for insane configurations where the cpuset doesn't contain
3989 	 * any suitable zone to satisfy the request - e.g. non-movable
3990 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3991 	 */
3992 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3993 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3994 					ac->highest_zoneidx,
3995 					&cpuset_current_mems_allowed);
3996 		if (!z->zone)
3997 			goto nopage;
3998 	}
3999 
4000 	if (alloc_flags & ALLOC_KSWAPD)
4001 		wake_all_kswapds(order, gfp_mask, ac);
4002 
4003 	/*
4004 	 * The adjusted alloc_flags might result in immediate success, so try
4005 	 * that first
4006 	 */
4007 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4008 	if (page)
4009 		goto got_pg;
4010 
4011 	/*
4012 	 * For costly allocations, try direct compaction first, as it's likely
4013 	 * that we have enough base pages and don't need to reclaim. For non-
4014 	 * movable high-order allocations, do that as well, as compaction will
4015 	 * try prevent permanent fragmentation by migrating from blocks of the
4016 	 * same migratetype.
4017 	 * Don't try this for allocations that are allowed to ignore
4018 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4019 	 */
4020 	if (can_direct_reclaim &&
4021 			(costly_order ||
4022 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4023 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4024 		page = __alloc_pages_direct_compact(gfp_mask, order,
4025 						alloc_flags, ac,
4026 						INIT_COMPACT_PRIORITY,
4027 						&compact_result);
4028 		if (page)
4029 			goto got_pg;
4030 
4031 		/*
4032 		 * Checks for costly allocations with __GFP_NORETRY, which
4033 		 * includes some THP page fault allocations
4034 		 */
4035 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4036 			/*
4037 			 * If allocating entire pageblock(s) and compaction
4038 			 * failed because all zones are below low watermarks
4039 			 * or is prohibited because it recently failed at this
4040 			 * order, fail immediately unless the allocator has
4041 			 * requested compaction and reclaim retry.
4042 			 *
4043 			 * Reclaim is
4044 			 *  - potentially very expensive because zones are far
4045 			 *    below their low watermarks or this is part of very
4046 			 *    bursty high order allocations,
4047 			 *  - not guaranteed to help because isolate_freepages()
4048 			 *    may not iterate over freed pages as part of its
4049 			 *    linear scan, and
4050 			 *  - unlikely to make entire pageblocks free on its
4051 			 *    own.
4052 			 */
4053 			if (compact_result == COMPACT_SKIPPED ||
4054 			    compact_result == COMPACT_DEFERRED)
4055 				goto nopage;
4056 
4057 			/*
4058 			 * Looks like reclaim/compaction is worth trying, but
4059 			 * sync compaction could be very expensive, so keep
4060 			 * using async compaction.
4061 			 */
4062 			compact_priority = INIT_COMPACT_PRIORITY;
4063 		}
4064 	}
4065 
4066 retry:
4067 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4068 	if (alloc_flags & ALLOC_KSWAPD)
4069 		wake_all_kswapds(order, gfp_mask, ac);
4070 
4071 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4072 	if (reserve_flags)
4073 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4074 					  (alloc_flags & ALLOC_KSWAPD);
4075 
4076 	/*
4077 	 * Reset the nodemask and zonelist iterators if memory policies can be
4078 	 * ignored. These allocations are high priority and system rather than
4079 	 * user oriented.
4080 	 */
4081 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4082 		ac->nodemask = NULL;
4083 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4084 					ac->highest_zoneidx, ac->nodemask);
4085 	}
4086 
4087 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4088 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4089 	if (page)
4090 		goto got_pg;
4091 
4092 	/* Caller is not willing to reclaim, we can't balance anything */
4093 	if (!can_direct_reclaim)
4094 		goto nopage;
4095 
4096 	/* Avoid recursion of direct reclaim */
4097 	if (current->flags & PF_MEMALLOC)
4098 		goto nopage;
4099 
4100 	/* Try direct reclaim and then allocating */
4101 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4102 							&did_some_progress);
4103 	if (page)
4104 		goto got_pg;
4105 
4106 	/* Try direct compaction and then allocating */
4107 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4108 					compact_priority, &compact_result);
4109 	if (page)
4110 		goto got_pg;
4111 
4112 	/* Do not loop if specifically requested */
4113 	if (gfp_mask & __GFP_NORETRY)
4114 		goto nopage;
4115 
4116 	/*
4117 	 * Do not retry costly high order allocations unless they are
4118 	 * __GFP_RETRY_MAYFAIL
4119 	 */
4120 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4121 		goto nopage;
4122 
4123 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4124 				 did_some_progress > 0, &no_progress_loops))
4125 		goto retry;
4126 
4127 	/*
4128 	 * It doesn't make any sense to retry for the compaction if the order-0
4129 	 * reclaim is not able to make any progress because the current
4130 	 * implementation of the compaction depends on the sufficient amount
4131 	 * of free memory (see __compaction_suitable)
4132 	 */
4133 	if (did_some_progress > 0 &&
4134 			should_compact_retry(ac, order, alloc_flags,
4135 				compact_result, &compact_priority,
4136 				&compaction_retries))
4137 		goto retry;
4138 
4139 
4140 	/*
4141 	 * Deal with possible cpuset update races or zonelist updates to avoid
4142 	 * a unnecessary OOM kill.
4143 	 */
4144 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4145 	    check_retry_zonelist(zonelist_iter_cookie))
4146 		goto restart;
4147 
4148 	/* Reclaim has failed us, start killing things */
4149 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4150 	if (page)
4151 		goto got_pg;
4152 
4153 	/* Avoid allocations with no watermarks from looping endlessly */
4154 	if (tsk_is_oom_victim(current) &&
4155 	    (alloc_flags & ALLOC_OOM ||
4156 	     (gfp_mask & __GFP_NOMEMALLOC)))
4157 		goto nopage;
4158 
4159 	/* Retry as long as the OOM killer is making progress */
4160 	if (did_some_progress) {
4161 		no_progress_loops = 0;
4162 		goto retry;
4163 	}
4164 
4165 nopage:
4166 	/*
4167 	 * Deal with possible cpuset update races or zonelist updates to avoid
4168 	 * a unnecessary OOM kill.
4169 	 */
4170 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4171 	    check_retry_zonelist(zonelist_iter_cookie))
4172 		goto restart;
4173 
4174 	/*
4175 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4176 	 * we always retry
4177 	 */
4178 	if (gfp_mask & __GFP_NOFAIL) {
4179 		/*
4180 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4181 		 * of any new users that actually require GFP_NOWAIT
4182 		 */
4183 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4184 			goto fail;
4185 
4186 		/*
4187 		 * PF_MEMALLOC request from this context is rather bizarre
4188 		 * because we cannot reclaim anything and only can loop waiting
4189 		 * for somebody to do a work for us
4190 		 */
4191 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4192 
4193 		/*
4194 		 * non failing costly orders are a hard requirement which we
4195 		 * are not prepared for much so let's warn about these users
4196 		 * so that we can identify them and convert them to something
4197 		 * else.
4198 		 */
4199 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4200 
4201 		/*
4202 		 * Help non-failing allocations by giving some access to memory
4203 		 * reserves normally used for high priority non-blocking
4204 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4205 		 * could deplete whole memory reserves which would just make
4206 		 * the situation worse.
4207 		 */
4208 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4209 		if (page)
4210 			goto got_pg;
4211 
4212 		cond_resched();
4213 		goto retry;
4214 	}
4215 fail:
4216 	warn_alloc(gfp_mask, ac->nodemask,
4217 			"page allocation failure: order:%u", order);
4218 got_pg:
4219 	return page;
4220 }
4221 
4222 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4223 		int preferred_nid, nodemask_t *nodemask,
4224 		struct alloc_context *ac, gfp_t *alloc_gfp,
4225 		unsigned int *alloc_flags)
4226 {
4227 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4228 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4229 	ac->nodemask = nodemask;
4230 	ac->migratetype = gfp_migratetype(gfp_mask);
4231 
4232 	if (cpusets_enabled()) {
4233 		*alloc_gfp |= __GFP_HARDWALL;
4234 		/*
4235 		 * When we are in the interrupt context, it is irrelevant
4236 		 * to the current task context. It means that any node ok.
4237 		 */
4238 		if (in_task() && !ac->nodemask)
4239 			ac->nodemask = &cpuset_current_mems_allowed;
4240 		else
4241 			*alloc_flags |= ALLOC_CPUSET;
4242 	}
4243 
4244 	might_alloc(gfp_mask);
4245 
4246 	if (should_fail_alloc_page(gfp_mask, order))
4247 		return false;
4248 
4249 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4250 
4251 	/* Dirty zone balancing only done in the fast path */
4252 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4253 
4254 	/*
4255 	 * The preferred zone is used for statistics but crucially it is
4256 	 * also used as the starting point for the zonelist iterator. It
4257 	 * may get reset for allocations that ignore memory policies.
4258 	 */
4259 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4260 					ac->highest_zoneidx, ac->nodemask);
4261 
4262 	return true;
4263 }
4264 
4265 /*
4266  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4267  * @gfp: GFP flags for the allocation
4268  * @preferred_nid: The preferred NUMA node ID to allocate from
4269  * @nodemask: Set of nodes to allocate from, may be NULL
4270  * @nr_pages: The number of pages desired on the list or array
4271  * @page_list: Optional list to store the allocated pages
4272  * @page_array: Optional array to store the pages
4273  *
4274  * This is a batched version of the page allocator that attempts to
4275  * allocate nr_pages quickly. Pages are added to page_list if page_list
4276  * is not NULL, otherwise it is assumed that the page_array is valid.
4277  *
4278  * For lists, nr_pages is the number of pages that should be allocated.
4279  *
4280  * For arrays, only NULL elements are populated with pages and nr_pages
4281  * is the maximum number of pages that will be stored in the array.
4282  *
4283  * Returns the number of pages on the list or array.
4284  */
4285 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4286 			nodemask_t *nodemask, int nr_pages,
4287 			struct list_head *page_list,
4288 			struct page **page_array)
4289 {
4290 	struct page *page;
4291 	unsigned long __maybe_unused UP_flags;
4292 	struct zone *zone;
4293 	struct zoneref *z;
4294 	struct per_cpu_pages *pcp;
4295 	struct list_head *pcp_list;
4296 	struct alloc_context ac;
4297 	gfp_t alloc_gfp;
4298 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4299 	int nr_populated = 0, nr_account = 0;
4300 
4301 	/*
4302 	 * Skip populated array elements to determine if any pages need
4303 	 * to be allocated before disabling IRQs.
4304 	 */
4305 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4306 		nr_populated++;
4307 
4308 	/* No pages requested? */
4309 	if (unlikely(nr_pages <= 0))
4310 		goto out;
4311 
4312 	/* Already populated array? */
4313 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4314 		goto out;
4315 
4316 	/* Bulk allocator does not support memcg accounting. */
4317 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4318 		goto failed;
4319 
4320 	/* Use the single page allocator for one page. */
4321 	if (nr_pages - nr_populated == 1)
4322 		goto failed;
4323 
4324 #ifdef CONFIG_PAGE_OWNER
4325 	/*
4326 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4327 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4328 	 * removes much of the performance benefit of bulk allocation so
4329 	 * force the caller to allocate one page at a time as it'll have
4330 	 * similar performance to added complexity to the bulk allocator.
4331 	 */
4332 	if (static_branch_unlikely(&page_owner_inited))
4333 		goto failed;
4334 #endif
4335 
4336 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4337 	gfp &= gfp_allowed_mask;
4338 	alloc_gfp = gfp;
4339 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4340 		goto out;
4341 	gfp = alloc_gfp;
4342 
4343 	/* Find an allowed local zone that meets the low watermark. */
4344 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4345 		unsigned long mark;
4346 
4347 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4348 		    !__cpuset_zone_allowed(zone, gfp)) {
4349 			continue;
4350 		}
4351 
4352 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4353 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4354 			goto failed;
4355 		}
4356 
4357 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4358 		if (zone_watermark_fast(zone, 0,  mark,
4359 				zonelist_zone_idx(ac.preferred_zoneref),
4360 				alloc_flags, gfp)) {
4361 			break;
4362 		}
4363 	}
4364 
4365 	/*
4366 	 * If there are no allowed local zones that meets the watermarks then
4367 	 * try to allocate a single page and reclaim if necessary.
4368 	 */
4369 	if (unlikely(!zone))
4370 		goto failed;
4371 
4372 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4373 	pcp_trylock_prepare(UP_flags);
4374 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4375 	if (!pcp)
4376 		goto failed_irq;
4377 
4378 	/* Attempt the batch allocation */
4379 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4380 	while (nr_populated < nr_pages) {
4381 
4382 		/* Skip existing pages */
4383 		if (page_array && page_array[nr_populated]) {
4384 			nr_populated++;
4385 			continue;
4386 		}
4387 
4388 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4389 								pcp, pcp_list);
4390 		if (unlikely(!page)) {
4391 			/* Try and allocate at least one page */
4392 			if (!nr_account) {
4393 				pcp_spin_unlock(pcp);
4394 				goto failed_irq;
4395 			}
4396 			break;
4397 		}
4398 		nr_account++;
4399 
4400 		prep_new_page(page, 0, gfp, 0);
4401 		if (page_list)
4402 			list_add(&page->lru, page_list);
4403 		else
4404 			page_array[nr_populated] = page;
4405 		nr_populated++;
4406 	}
4407 
4408 	pcp_spin_unlock(pcp);
4409 	pcp_trylock_finish(UP_flags);
4410 
4411 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4412 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4413 
4414 out:
4415 	return nr_populated;
4416 
4417 failed_irq:
4418 	pcp_trylock_finish(UP_flags);
4419 
4420 failed:
4421 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4422 	if (page) {
4423 		if (page_list)
4424 			list_add(&page->lru, page_list);
4425 		else
4426 			page_array[nr_populated] = page;
4427 		nr_populated++;
4428 	}
4429 
4430 	goto out;
4431 }
4432 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4433 
4434 /*
4435  * This is the 'heart' of the zoned buddy allocator.
4436  */
4437 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4438 							nodemask_t *nodemask)
4439 {
4440 	struct page *page;
4441 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4442 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4443 	struct alloc_context ac = { };
4444 
4445 	/*
4446 	 * There are several places where we assume that the order value is sane
4447 	 * so bail out early if the request is out of bound.
4448 	 */
4449 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4450 		return NULL;
4451 
4452 	gfp &= gfp_allowed_mask;
4453 	/*
4454 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4455 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4456 	 * from a particular context which has been marked by
4457 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4458 	 * movable zones are not used during allocation.
4459 	 */
4460 	gfp = current_gfp_context(gfp);
4461 	alloc_gfp = gfp;
4462 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4463 			&alloc_gfp, &alloc_flags))
4464 		return NULL;
4465 
4466 	/*
4467 	 * Forbid the first pass from falling back to types that fragment
4468 	 * memory until all local zones are considered.
4469 	 */
4470 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4471 
4472 	/* First allocation attempt */
4473 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4474 	if (likely(page))
4475 		goto out;
4476 
4477 	alloc_gfp = gfp;
4478 	ac.spread_dirty_pages = false;
4479 
4480 	/*
4481 	 * Restore the original nodemask if it was potentially replaced with
4482 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4483 	 */
4484 	ac.nodemask = nodemask;
4485 
4486 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4487 
4488 out:
4489 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4490 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4491 		__free_pages(page, order);
4492 		page = NULL;
4493 	}
4494 
4495 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4496 	kmsan_alloc_page(page, order, alloc_gfp);
4497 
4498 	return page;
4499 }
4500 EXPORT_SYMBOL(__alloc_pages);
4501 
4502 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4503 		nodemask_t *nodemask)
4504 {
4505 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4506 			preferred_nid, nodemask);
4507 
4508 	if (page && order > 1)
4509 		prep_transhuge_page(page);
4510 	return (struct folio *)page;
4511 }
4512 EXPORT_SYMBOL(__folio_alloc);
4513 
4514 /*
4515  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4516  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4517  * you need to access high mem.
4518  */
4519 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4520 {
4521 	struct page *page;
4522 
4523 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4524 	if (!page)
4525 		return 0;
4526 	return (unsigned long) page_address(page);
4527 }
4528 EXPORT_SYMBOL(__get_free_pages);
4529 
4530 unsigned long get_zeroed_page(gfp_t gfp_mask)
4531 {
4532 	return __get_free_page(gfp_mask | __GFP_ZERO);
4533 }
4534 EXPORT_SYMBOL(get_zeroed_page);
4535 
4536 /**
4537  * __free_pages - Free pages allocated with alloc_pages().
4538  * @page: The page pointer returned from alloc_pages().
4539  * @order: The order of the allocation.
4540  *
4541  * This function can free multi-page allocations that are not compound
4542  * pages.  It does not check that the @order passed in matches that of
4543  * the allocation, so it is easy to leak memory.  Freeing more memory
4544  * than was allocated will probably emit a warning.
4545  *
4546  * If the last reference to this page is speculative, it will be released
4547  * by put_page() which only frees the first page of a non-compound
4548  * allocation.  To prevent the remaining pages from being leaked, we free
4549  * the subsequent pages here.  If you want to use the page's reference
4550  * count to decide when to free the allocation, you should allocate a
4551  * compound page, and use put_page() instead of __free_pages().
4552  *
4553  * Context: May be called in interrupt context or while holding a normal
4554  * spinlock, but not in NMI context or while holding a raw spinlock.
4555  */
4556 void __free_pages(struct page *page, unsigned int order)
4557 {
4558 	/* get PageHead before we drop reference */
4559 	int head = PageHead(page);
4560 
4561 	if (put_page_testzero(page))
4562 		free_the_page(page, order);
4563 	else if (!head)
4564 		while (order-- > 0)
4565 			free_the_page(page + (1 << order), order);
4566 }
4567 EXPORT_SYMBOL(__free_pages);
4568 
4569 void free_pages(unsigned long addr, unsigned int order)
4570 {
4571 	if (addr != 0) {
4572 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4573 		__free_pages(virt_to_page((void *)addr), order);
4574 	}
4575 }
4576 
4577 EXPORT_SYMBOL(free_pages);
4578 
4579 /*
4580  * Page Fragment:
4581  *  An arbitrary-length arbitrary-offset area of memory which resides
4582  *  within a 0 or higher order page.  Multiple fragments within that page
4583  *  are individually refcounted, in the page's reference counter.
4584  *
4585  * The page_frag functions below provide a simple allocation framework for
4586  * page fragments.  This is used by the network stack and network device
4587  * drivers to provide a backing region of memory for use as either an
4588  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4589  */
4590 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4591 					     gfp_t gfp_mask)
4592 {
4593 	struct page *page = NULL;
4594 	gfp_t gfp = gfp_mask;
4595 
4596 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4597 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4598 		    __GFP_NOMEMALLOC;
4599 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4600 				PAGE_FRAG_CACHE_MAX_ORDER);
4601 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4602 #endif
4603 	if (unlikely(!page))
4604 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4605 
4606 	nc->va = page ? page_address(page) : NULL;
4607 
4608 	return page;
4609 }
4610 
4611 void __page_frag_cache_drain(struct page *page, unsigned int count)
4612 {
4613 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4614 
4615 	if (page_ref_sub_and_test(page, count))
4616 		free_the_page(page, compound_order(page));
4617 }
4618 EXPORT_SYMBOL(__page_frag_cache_drain);
4619 
4620 void *page_frag_alloc_align(struct page_frag_cache *nc,
4621 		      unsigned int fragsz, gfp_t gfp_mask,
4622 		      unsigned int align_mask)
4623 {
4624 	unsigned int size = PAGE_SIZE;
4625 	struct page *page;
4626 	int offset;
4627 
4628 	if (unlikely(!nc->va)) {
4629 refill:
4630 		page = __page_frag_cache_refill(nc, gfp_mask);
4631 		if (!page)
4632 			return NULL;
4633 
4634 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4635 		/* if size can vary use size else just use PAGE_SIZE */
4636 		size = nc->size;
4637 #endif
4638 		/* Even if we own the page, we do not use atomic_set().
4639 		 * This would break get_page_unless_zero() users.
4640 		 */
4641 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4642 
4643 		/* reset page count bias and offset to start of new frag */
4644 		nc->pfmemalloc = page_is_pfmemalloc(page);
4645 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4646 		nc->offset = size;
4647 	}
4648 
4649 	offset = nc->offset - fragsz;
4650 	if (unlikely(offset < 0)) {
4651 		page = virt_to_page(nc->va);
4652 
4653 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4654 			goto refill;
4655 
4656 		if (unlikely(nc->pfmemalloc)) {
4657 			free_the_page(page, compound_order(page));
4658 			goto refill;
4659 		}
4660 
4661 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4662 		/* if size can vary use size else just use PAGE_SIZE */
4663 		size = nc->size;
4664 #endif
4665 		/* OK, page count is 0, we can safely set it */
4666 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4667 
4668 		/* reset page count bias and offset to start of new frag */
4669 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4670 		offset = size - fragsz;
4671 		if (unlikely(offset < 0)) {
4672 			/*
4673 			 * The caller is trying to allocate a fragment
4674 			 * with fragsz > PAGE_SIZE but the cache isn't big
4675 			 * enough to satisfy the request, this may
4676 			 * happen in low memory conditions.
4677 			 * We don't release the cache page because
4678 			 * it could make memory pressure worse
4679 			 * so we simply return NULL here.
4680 			 */
4681 			return NULL;
4682 		}
4683 	}
4684 
4685 	nc->pagecnt_bias--;
4686 	offset &= align_mask;
4687 	nc->offset = offset;
4688 
4689 	return nc->va + offset;
4690 }
4691 EXPORT_SYMBOL(page_frag_alloc_align);
4692 
4693 /*
4694  * Frees a page fragment allocated out of either a compound or order 0 page.
4695  */
4696 void page_frag_free(void *addr)
4697 {
4698 	struct page *page = virt_to_head_page(addr);
4699 
4700 	if (unlikely(put_page_testzero(page)))
4701 		free_the_page(page, compound_order(page));
4702 }
4703 EXPORT_SYMBOL(page_frag_free);
4704 
4705 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4706 		size_t size)
4707 {
4708 	if (addr) {
4709 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4710 		struct page *page = virt_to_page((void *)addr);
4711 		struct page *last = page + nr;
4712 
4713 		split_page_owner(page, 1 << order);
4714 		split_page_memcg(page, 1 << order);
4715 		while (page < --last)
4716 			set_page_refcounted(last);
4717 
4718 		last = page + (1UL << order);
4719 		for (page += nr; page < last; page++)
4720 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4721 	}
4722 	return (void *)addr;
4723 }
4724 
4725 /**
4726  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4727  * @size: the number of bytes to allocate
4728  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4729  *
4730  * This function is similar to alloc_pages(), except that it allocates the
4731  * minimum number of pages to satisfy the request.  alloc_pages() can only
4732  * allocate memory in power-of-two pages.
4733  *
4734  * This function is also limited by MAX_ORDER.
4735  *
4736  * Memory allocated by this function must be released by free_pages_exact().
4737  *
4738  * Return: pointer to the allocated area or %NULL in case of error.
4739  */
4740 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4741 {
4742 	unsigned int order = get_order(size);
4743 	unsigned long addr;
4744 
4745 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4746 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4747 
4748 	addr = __get_free_pages(gfp_mask, order);
4749 	return make_alloc_exact(addr, order, size);
4750 }
4751 EXPORT_SYMBOL(alloc_pages_exact);
4752 
4753 /**
4754  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4755  *			   pages on a node.
4756  * @nid: the preferred node ID where memory should be allocated
4757  * @size: the number of bytes to allocate
4758  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4759  *
4760  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4761  * back.
4762  *
4763  * Return: pointer to the allocated area or %NULL in case of error.
4764  */
4765 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4766 {
4767 	unsigned int order = get_order(size);
4768 	struct page *p;
4769 
4770 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4771 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4772 
4773 	p = alloc_pages_node(nid, gfp_mask, order);
4774 	if (!p)
4775 		return NULL;
4776 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4777 }
4778 
4779 /**
4780  * free_pages_exact - release memory allocated via alloc_pages_exact()
4781  * @virt: the value returned by alloc_pages_exact.
4782  * @size: size of allocation, same value as passed to alloc_pages_exact().
4783  *
4784  * Release the memory allocated by a previous call to alloc_pages_exact.
4785  */
4786 void free_pages_exact(void *virt, size_t size)
4787 {
4788 	unsigned long addr = (unsigned long)virt;
4789 	unsigned long end = addr + PAGE_ALIGN(size);
4790 
4791 	while (addr < end) {
4792 		free_page(addr);
4793 		addr += PAGE_SIZE;
4794 	}
4795 }
4796 EXPORT_SYMBOL(free_pages_exact);
4797 
4798 /**
4799  * nr_free_zone_pages - count number of pages beyond high watermark
4800  * @offset: The zone index of the highest zone
4801  *
4802  * nr_free_zone_pages() counts the number of pages which are beyond the
4803  * high watermark within all zones at or below a given zone index.  For each
4804  * zone, the number of pages is calculated as:
4805  *
4806  *     nr_free_zone_pages = managed_pages - high_pages
4807  *
4808  * Return: number of pages beyond high watermark.
4809  */
4810 static unsigned long nr_free_zone_pages(int offset)
4811 {
4812 	struct zoneref *z;
4813 	struct zone *zone;
4814 
4815 	/* Just pick one node, since fallback list is circular */
4816 	unsigned long sum = 0;
4817 
4818 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4819 
4820 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4821 		unsigned long size = zone_managed_pages(zone);
4822 		unsigned long high = high_wmark_pages(zone);
4823 		if (size > high)
4824 			sum += size - high;
4825 	}
4826 
4827 	return sum;
4828 }
4829 
4830 /**
4831  * nr_free_buffer_pages - count number of pages beyond high watermark
4832  *
4833  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4834  * watermark within ZONE_DMA and ZONE_NORMAL.
4835  *
4836  * Return: number of pages beyond high watermark within ZONE_DMA and
4837  * ZONE_NORMAL.
4838  */
4839 unsigned long nr_free_buffer_pages(void)
4840 {
4841 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4842 }
4843 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4844 
4845 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4846 {
4847 	zoneref->zone = zone;
4848 	zoneref->zone_idx = zone_idx(zone);
4849 }
4850 
4851 /*
4852  * Builds allocation fallback zone lists.
4853  *
4854  * Add all populated zones of a node to the zonelist.
4855  */
4856 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4857 {
4858 	struct zone *zone;
4859 	enum zone_type zone_type = MAX_NR_ZONES;
4860 	int nr_zones = 0;
4861 
4862 	do {
4863 		zone_type--;
4864 		zone = pgdat->node_zones + zone_type;
4865 		if (populated_zone(zone)) {
4866 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4867 			check_highest_zone(zone_type);
4868 		}
4869 	} while (zone_type);
4870 
4871 	return nr_zones;
4872 }
4873 
4874 #ifdef CONFIG_NUMA
4875 
4876 static int __parse_numa_zonelist_order(char *s)
4877 {
4878 	/*
4879 	 * We used to support different zonelists modes but they turned
4880 	 * out to be just not useful. Let's keep the warning in place
4881 	 * if somebody still use the cmd line parameter so that we do
4882 	 * not fail it silently
4883 	 */
4884 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4885 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4886 		return -EINVAL;
4887 	}
4888 	return 0;
4889 }
4890 
4891 static char numa_zonelist_order[] = "Node";
4892 #define NUMA_ZONELIST_ORDER_LEN	16
4893 /*
4894  * sysctl handler for numa_zonelist_order
4895  */
4896 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4897 		void *buffer, size_t *length, loff_t *ppos)
4898 {
4899 	if (write)
4900 		return __parse_numa_zonelist_order(buffer);
4901 	return proc_dostring(table, write, buffer, length, ppos);
4902 }
4903 
4904 static int node_load[MAX_NUMNODES];
4905 
4906 /**
4907  * find_next_best_node - find the next node that should appear in a given node's fallback list
4908  * @node: node whose fallback list we're appending
4909  * @used_node_mask: nodemask_t of already used nodes
4910  *
4911  * We use a number of factors to determine which is the next node that should
4912  * appear on a given node's fallback list.  The node should not have appeared
4913  * already in @node's fallback list, and it should be the next closest node
4914  * according to the distance array (which contains arbitrary distance values
4915  * from each node to each node in the system), and should also prefer nodes
4916  * with no CPUs, since presumably they'll have very little allocation pressure
4917  * on them otherwise.
4918  *
4919  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4920  */
4921 int find_next_best_node(int node, nodemask_t *used_node_mask)
4922 {
4923 	int n, val;
4924 	int min_val = INT_MAX;
4925 	int best_node = NUMA_NO_NODE;
4926 
4927 	/* Use the local node if we haven't already */
4928 	if (!node_isset(node, *used_node_mask)) {
4929 		node_set(node, *used_node_mask);
4930 		return node;
4931 	}
4932 
4933 	for_each_node_state(n, N_MEMORY) {
4934 
4935 		/* Don't want a node to appear more than once */
4936 		if (node_isset(n, *used_node_mask))
4937 			continue;
4938 
4939 		/* Use the distance array to find the distance */
4940 		val = node_distance(node, n);
4941 
4942 		/* Penalize nodes under us ("prefer the next node") */
4943 		val += (n < node);
4944 
4945 		/* Give preference to headless and unused nodes */
4946 		if (!cpumask_empty(cpumask_of_node(n)))
4947 			val += PENALTY_FOR_NODE_WITH_CPUS;
4948 
4949 		/* Slight preference for less loaded node */
4950 		val *= MAX_NUMNODES;
4951 		val += node_load[n];
4952 
4953 		if (val < min_val) {
4954 			min_val = val;
4955 			best_node = n;
4956 		}
4957 	}
4958 
4959 	if (best_node >= 0)
4960 		node_set(best_node, *used_node_mask);
4961 
4962 	return best_node;
4963 }
4964 
4965 
4966 /*
4967  * Build zonelists ordered by node and zones within node.
4968  * This results in maximum locality--normal zone overflows into local
4969  * DMA zone, if any--but risks exhausting DMA zone.
4970  */
4971 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4972 		unsigned nr_nodes)
4973 {
4974 	struct zoneref *zonerefs;
4975 	int i;
4976 
4977 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4978 
4979 	for (i = 0; i < nr_nodes; i++) {
4980 		int nr_zones;
4981 
4982 		pg_data_t *node = NODE_DATA(node_order[i]);
4983 
4984 		nr_zones = build_zonerefs_node(node, zonerefs);
4985 		zonerefs += nr_zones;
4986 	}
4987 	zonerefs->zone = NULL;
4988 	zonerefs->zone_idx = 0;
4989 }
4990 
4991 /*
4992  * Build gfp_thisnode zonelists
4993  */
4994 static void build_thisnode_zonelists(pg_data_t *pgdat)
4995 {
4996 	struct zoneref *zonerefs;
4997 	int nr_zones;
4998 
4999 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5000 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5001 	zonerefs += nr_zones;
5002 	zonerefs->zone = NULL;
5003 	zonerefs->zone_idx = 0;
5004 }
5005 
5006 /*
5007  * Build zonelists ordered by zone and nodes within zones.
5008  * This results in conserving DMA zone[s] until all Normal memory is
5009  * exhausted, but results in overflowing to remote node while memory
5010  * may still exist in local DMA zone.
5011  */
5012 
5013 static void build_zonelists(pg_data_t *pgdat)
5014 {
5015 	static int node_order[MAX_NUMNODES];
5016 	int node, nr_nodes = 0;
5017 	nodemask_t used_mask = NODE_MASK_NONE;
5018 	int local_node, prev_node;
5019 
5020 	/* NUMA-aware ordering of nodes */
5021 	local_node = pgdat->node_id;
5022 	prev_node = local_node;
5023 
5024 	memset(node_order, 0, sizeof(node_order));
5025 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5026 		/*
5027 		 * We don't want to pressure a particular node.
5028 		 * So adding penalty to the first node in same
5029 		 * distance group to make it round-robin.
5030 		 */
5031 		if (node_distance(local_node, node) !=
5032 		    node_distance(local_node, prev_node))
5033 			node_load[node] += 1;
5034 
5035 		node_order[nr_nodes++] = node;
5036 		prev_node = node;
5037 	}
5038 
5039 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5040 	build_thisnode_zonelists(pgdat);
5041 	pr_info("Fallback order for Node %d: ", local_node);
5042 	for (node = 0; node < nr_nodes; node++)
5043 		pr_cont("%d ", node_order[node]);
5044 	pr_cont("\n");
5045 }
5046 
5047 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5048 /*
5049  * Return node id of node used for "local" allocations.
5050  * I.e., first node id of first zone in arg node's generic zonelist.
5051  * Used for initializing percpu 'numa_mem', which is used primarily
5052  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5053  */
5054 int local_memory_node(int node)
5055 {
5056 	struct zoneref *z;
5057 
5058 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5059 				   gfp_zone(GFP_KERNEL),
5060 				   NULL);
5061 	return zone_to_nid(z->zone);
5062 }
5063 #endif
5064 
5065 static void setup_min_unmapped_ratio(void);
5066 static void setup_min_slab_ratio(void);
5067 #else	/* CONFIG_NUMA */
5068 
5069 static void build_zonelists(pg_data_t *pgdat)
5070 {
5071 	int node, local_node;
5072 	struct zoneref *zonerefs;
5073 	int nr_zones;
5074 
5075 	local_node = pgdat->node_id;
5076 
5077 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5078 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5079 	zonerefs += nr_zones;
5080 
5081 	/*
5082 	 * Now we build the zonelist so that it contains the zones
5083 	 * of all the other nodes.
5084 	 * We don't want to pressure a particular node, so when
5085 	 * building the zones for node N, we make sure that the
5086 	 * zones coming right after the local ones are those from
5087 	 * node N+1 (modulo N)
5088 	 */
5089 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5090 		if (!node_online(node))
5091 			continue;
5092 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5093 		zonerefs += nr_zones;
5094 	}
5095 	for (node = 0; node < local_node; node++) {
5096 		if (!node_online(node))
5097 			continue;
5098 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5099 		zonerefs += nr_zones;
5100 	}
5101 
5102 	zonerefs->zone = NULL;
5103 	zonerefs->zone_idx = 0;
5104 }
5105 
5106 #endif	/* CONFIG_NUMA */
5107 
5108 /*
5109  * Boot pageset table. One per cpu which is going to be used for all
5110  * zones and all nodes. The parameters will be set in such a way
5111  * that an item put on a list will immediately be handed over to
5112  * the buddy list. This is safe since pageset manipulation is done
5113  * with interrupts disabled.
5114  *
5115  * The boot_pagesets must be kept even after bootup is complete for
5116  * unused processors and/or zones. They do play a role for bootstrapping
5117  * hotplugged processors.
5118  *
5119  * zoneinfo_show() and maybe other functions do
5120  * not check if the processor is online before following the pageset pointer.
5121  * Other parts of the kernel may not check if the zone is available.
5122  */
5123 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5124 /* These effectively disable the pcplists in the boot pageset completely */
5125 #define BOOT_PAGESET_HIGH	0
5126 #define BOOT_PAGESET_BATCH	1
5127 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5128 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5129 
5130 static void __build_all_zonelists(void *data)
5131 {
5132 	int nid;
5133 	int __maybe_unused cpu;
5134 	pg_data_t *self = data;
5135 	unsigned long flags;
5136 
5137 	/*
5138 	 * The zonelist_update_seq must be acquired with irqsave because the
5139 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5140 	 */
5141 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5142 	/*
5143 	 * Also disable synchronous printk() to prevent any printk() from
5144 	 * trying to hold port->lock, for
5145 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5146 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5147 	 */
5148 	printk_deferred_enter();
5149 
5150 #ifdef CONFIG_NUMA
5151 	memset(node_load, 0, sizeof(node_load));
5152 #endif
5153 
5154 	/*
5155 	 * This node is hotadded and no memory is yet present.   So just
5156 	 * building zonelists is fine - no need to touch other nodes.
5157 	 */
5158 	if (self && !node_online(self->node_id)) {
5159 		build_zonelists(self);
5160 	} else {
5161 		/*
5162 		 * All possible nodes have pgdat preallocated
5163 		 * in free_area_init
5164 		 */
5165 		for_each_node(nid) {
5166 			pg_data_t *pgdat = NODE_DATA(nid);
5167 
5168 			build_zonelists(pgdat);
5169 		}
5170 
5171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5172 		/*
5173 		 * We now know the "local memory node" for each node--
5174 		 * i.e., the node of the first zone in the generic zonelist.
5175 		 * Set up numa_mem percpu variable for on-line cpus.  During
5176 		 * boot, only the boot cpu should be on-line;  we'll init the
5177 		 * secondary cpus' numa_mem as they come on-line.  During
5178 		 * node/memory hotplug, we'll fixup all on-line cpus.
5179 		 */
5180 		for_each_online_cpu(cpu)
5181 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5182 #endif
5183 	}
5184 
5185 	printk_deferred_exit();
5186 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5187 }
5188 
5189 static noinline void __init
5190 build_all_zonelists_init(void)
5191 {
5192 	int cpu;
5193 
5194 	__build_all_zonelists(NULL);
5195 
5196 	/*
5197 	 * Initialize the boot_pagesets that are going to be used
5198 	 * for bootstrapping processors. The real pagesets for
5199 	 * each zone will be allocated later when the per cpu
5200 	 * allocator is available.
5201 	 *
5202 	 * boot_pagesets are used also for bootstrapping offline
5203 	 * cpus if the system is already booted because the pagesets
5204 	 * are needed to initialize allocators on a specific cpu too.
5205 	 * F.e. the percpu allocator needs the page allocator which
5206 	 * needs the percpu allocator in order to allocate its pagesets
5207 	 * (a chicken-egg dilemma).
5208 	 */
5209 	for_each_possible_cpu(cpu)
5210 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5211 
5212 	mminit_verify_zonelist();
5213 	cpuset_init_current_mems_allowed();
5214 }
5215 
5216 /*
5217  * unless system_state == SYSTEM_BOOTING.
5218  *
5219  * __ref due to call of __init annotated helper build_all_zonelists_init
5220  * [protected by SYSTEM_BOOTING].
5221  */
5222 void __ref build_all_zonelists(pg_data_t *pgdat)
5223 {
5224 	unsigned long vm_total_pages;
5225 
5226 	if (system_state == SYSTEM_BOOTING) {
5227 		build_all_zonelists_init();
5228 	} else {
5229 		__build_all_zonelists(pgdat);
5230 		/* cpuset refresh routine should be here */
5231 	}
5232 	/* Get the number of free pages beyond high watermark in all zones. */
5233 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5234 	/*
5235 	 * Disable grouping by mobility if the number of pages in the
5236 	 * system is too low to allow the mechanism to work. It would be
5237 	 * more accurate, but expensive to check per-zone. This check is
5238 	 * made on memory-hotadd so a system can start with mobility
5239 	 * disabled and enable it later
5240 	 */
5241 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5242 		page_group_by_mobility_disabled = 1;
5243 	else
5244 		page_group_by_mobility_disabled = 0;
5245 
5246 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5247 		nr_online_nodes,
5248 		page_group_by_mobility_disabled ? "off" : "on",
5249 		vm_total_pages);
5250 #ifdef CONFIG_NUMA
5251 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5252 #endif
5253 }
5254 
5255 static int zone_batchsize(struct zone *zone)
5256 {
5257 #ifdef CONFIG_MMU
5258 	int batch;
5259 
5260 	/*
5261 	 * The number of pages to batch allocate is either ~0.1%
5262 	 * of the zone or 1MB, whichever is smaller. The batch
5263 	 * size is striking a balance between allocation latency
5264 	 * and zone lock contention.
5265 	 */
5266 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5267 	batch /= 4;		/* We effectively *= 4 below */
5268 	if (batch < 1)
5269 		batch = 1;
5270 
5271 	/*
5272 	 * Clamp the batch to a 2^n - 1 value. Having a power
5273 	 * of 2 value was found to be more likely to have
5274 	 * suboptimal cache aliasing properties in some cases.
5275 	 *
5276 	 * For example if 2 tasks are alternately allocating
5277 	 * batches of pages, one task can end up with a lot
5278 	 * of pages of one half of the possible page colors
5279 	 * and the other with pages of the other colors.
5280 	 */
5281 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5282 
5283 	return batch;
5284 
5285 #else
5286 	/* The deferral and batching of frees should be suppressed under NOMMU
5287 	 * conditions.
5288 	 *
5289 	 * The problem is that NOMMU needs to be able to allocate large chunks
5290 	 * of contiguous memory as there's no hardware page translation to
5291 	 * assemble apparent contiguous memory from discontiguous pages.
5292 	 *
5293 	 * Queueing large contiguous runs of pages for batching, however,
5294 	 * causes the pages to actually be freed in smaller chunks.  As there
5295 	 * can be a significant delay between the individual batches being
5296 	 * recycled, this leads to the once large chunks of space being
5297 	 * fragmented and becoming unavailable for high-order allocations.
5298 	 */
5299 	return 0;
5300 #endif
5301 }
5302 
5303 static int percpu_pagelist_high_fraction;
5304 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5305 {
5306 #ifdef CONFIG_MMU
5307 	int high;
5308 	int nr_split_cpus;
5309 	unsigned long total_pages;
5310 
5311 	if (!percpu_pagelist_high_fraction) {
5312 		/*
5313 		 * By default, the high value of the pcp is based on the zone
5314 		 * low watermark so that if they are full then background
5315 		 * reclaim will not be started prematurely.
5316 		 */
5317 		total_pages = low_wmark_pages(zone);
5318 	} else {
5319 		/*
5320 		 * If percpu_pagelist_high_fraction is configured, the high
5321 		 * value is based on a fraction of the managed pages in the
5322 		 * zone.
5323 		 */
5324 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5325 	}
5326 
5327 	/*
5328 	 * Split the high value across all online CPUs local to the zone. Note
5329 	 * that early in boot that CPUs may not be online yet and that during
5330 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5331 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5332 	 * all online CPUs to mitigate the risk that reclaim is triggered
5333 	 * prematurely due to pages stored on pcp lists.
5334 	 */
5335 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5336 	if (!nr_split_cpus)
5337 		nr_split_cpus = num_online_cpus();
5338 	high = total_pages / nr_split_cpus;
5339 
5340 	/*
5341 	 * Ensure high is at least batch*4. The multiple is based on the
5342 	 * historical relationship between high and batch.
5343 	 */
5344 	high = max(high, batch << 2);
5345 
5346 	return high;
5347 #else
5348 	return 0;
5349 #endif
5350 }
5351 
5352 /*
5353  * pcp->high and pcp->batch values are related and generally batch is lower
5354  * than high. They are also related to pcp->count such that count is lower
5355  * than high, and as soon as it reaches high, the pcplist is flushed.
5356  *
5357  * However, guaranteeing these relations at all times would require e.g. write
5358  * barriers here but also careful usage of read barriers at the read side, and
5359  * thus be prone to error and bad for performance. Thus the update only prevents
5360  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5361  * can cope with those fields changing asynchronously, and fully trust only the
5362  * pcp->count field on the local CPU with interrupts disabled.
5363  *
5364  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5365  * outside of boot time (or some other assurance that no concurrent updaters
5366  * exist).
5367  */
5368 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5369 		unsigned long batch)
5370 {
5371 	WRITE_ONCE(pcp->batch, batch);
5372 	WRITE_ONCE(pcp->high, high);
5373 }
5374 
5375 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5376 {
5377 	int pindex;
5378 
5379 	memset(pcp, 0, sizeof(*pcp));
5380 	memset(pzstats, 0, sizeof(*pzstats));
5381 
5382 	spin_lock_init(&pcp->lock);
5383 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5384 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5385 
5386 	/*
5387 	 * Set batch and high values safe for a boot pageset. A true percpu
5388 	 * pageset's initialization will update them subsequently. Here we don't
5389 	 * need to be as careful as pageset_update() as nobody can access the
5390 	 * pageset yet.
5391 	 */
5392 	pcp->high = BOOT_PAGESET_HIGH;
5393 	pcp->batch = BOOT_PAGESET_BATCH;
5394 	pcp->free_factor = 0;
5395 }
5396 
5397 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5398 		unsigned long batch)
5399 {
5400 	struct per_cpu_pages *pcp;
5401 	int cpu;
5402 
5403 	for_each_possible_cpu(cpu) {
5404 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5405 		pageset_update(pcp, high, batch);
5406 	}
5407 }
5408 
5409 /*
5410  * Calculate and set new high and batch values for all per-cpu pagesets of a
5411  * zone based on the zone's size.
5412  */
5413 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5414 {
5415 	int new_high, new_batch;
5416 
5417 	new_batch = max(1, zone_batchsize(zone));
5418 	new_high = zone_highsize(zone, new_batch, cpu_online);
5419 
5420 	if (zone->pageset_high == new_high &&
5421 	    zone->pageset_batch == new_batch)
5422 		return;
5423 
5424 	zone->pageset_high = new_high;
5425 	zone->pageset_batch = new_batch;
5426 
5427 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5428 }
5429 
5430 void __meminit setup_zone_pageset(struct zone *zone)
5431 {
5432 	int cpu;
5433 
5434 	/* Size may be 0 on !SMP && !NUMA */
5435 	if (sizeof(struct per_cpu_zonestat) > 0)
5436 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5437 
5438 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5439 	for_each_possible_cpu(cpu) {
5440 		struct per_cpu_pages *pcp;
5441 		struct per_cpu_zonestat *pzstats;
5442 
5443 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5444 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5445 		per_cpu_pages_init(pcp, pzstats);
5446 	}
5447 
5448 	zone_set_pageset_high_and_batch(zone, 0);
5449 }
5450 
5451 /*
5452  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5453  * page high values need to be recalculated.
5454  */
5455 static void zone_pcp_update(struct zone *zone, int cpu_online)
5456 {
5457 	mutex_lock(&pcp_batch_high_lock);
5458 	zone_set_pageset_high_and_batch(zone, cpu_online);
5459 	mutex_unlock(&pcp_batch_high_lock);
5460 }
5461 
5462 /*
5463  * Allocate per cpu pagesets and initialize them.
5464  * Before this call only boot pagesets were available.
5465  */
5466 void __init setup_per_cpu_pageset(void)
5467 {
5468 	struct pglist_data *pgdat;
5469 	struct zone *zone;
5470 	int __maybe_unused cpu;
5471 
5472 	for_each_populated_zone(zone)
5473 		setup_zone_pageset(zone);
5474 
5475 #ifdef CONFIG_NUMA
5476 	/*
5477 	 * Unpopulated zones continue using the boot pagesets.
5478 	 * The numa stats for these pagesets need to be reset.
5479 	 * Otherwise, they will end up skewing the stats of
5480 	 * the nodes these zones are associated with.
5481 	 */
5482 	for_each_possible_cpu(cpu) {
5483 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5484 		memset(pzstats->vm_numa_event, 0,
5485 		       sizeof(pzstats->vm_numa_event));
5486 	}
5487 #endif
5488 
5489 	for_each_online_pgdat(pgdat)
5490 		pgdat->per_cpu_nodestats =
5491 			alloc_percpu(struct per_cpu_nodestat);
5492 }
5493 
5494 __meminit void zone_pcp_init(struct zone *zone)
5495 {
5496 	/*
5497 	 * per cpu subsystem is not up at this point. The following code
5498 	 * relies on the ability of the linker to provide the
5499 	 * offset of a (static) per cpu variable into the per cpu area.
5500 	 */
5501 	zone->per_cpu_pageset = &boot_pageset;
5502 	zone->per_cpu_zonestats = &boot_zonestats;
5503 	zone->pageset_high = BOOT_PAGESET_HIGH;
5504 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5505 
5506 	if (populated_zone(zone))
5507 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5508 			 zone->present_pages, zone_batchsize(zone));
5509 }
5510 
5511 void adjust_managed_page_count(struct page *page, long count)
5512 {
5513 	atomic_long_add(count, &page_zone(page)->managed_pages);
5514 	totalram_pages_add(count);
5515 #ifdef CONFIG_HIGHMEM
5516 	if (PageHighMem(page))
5517 		totalhigh_pages_add(count);
5518 #endif
5519 }
5520 EXPORT_SYMBOL(adjust_managed_page_count);
5521 
5522 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5523 {
5524 	void *pos;
5525 	unsigned long pages = 0;
5526 
5527 	start = (void *)PAGE_ALIGN((unsigned long)start);
5528 	end = (void *)((unsigned long)end & PAGE_MASK);
5529 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5530 		struct page *page = virt_to_page(pos);
5531 		void *direct_map_addr;
5532 
5533 		/*
5534 		 * 'direct_map_addr' might be different from 'pos'
5535 		 * because some architectures' virt_to_page()
5536 		 * work with aliases.  Getting the direct map
5537 		 * address ensures that we get a _writeable_
5538 		 * alias for the memset().
5539 		 */
5540 		direct_map_addr = page_address(page);
5541 		/*
5542 		 * Perform a kasan-unchecked memset() since this memory
5543 		 * has not been initialized.
5544 		 */
5545 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5546 		if ((unsigned int)poison <= 0xFF)
5547 			memset(direct_map_addr, poison, PAGE_SIZE);
5548 
5549 		free_reserved_page(page);
5550 	}
5551 
5552 	if (pages && s)
5553 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5554 
5555 	return pages;
5556 }
5557 
5558 static int page_alloc_cpu_dead(unsigned int cpu)
5559 {
5560 	struct zone *zone;
5561 
5562 	lru_add_drain_cpu(cpu);
5563 	mlock_drain_remote(cpu);
5564 	drain_pages(cpu);
5565 
5566 	/*
5567 	 * Spill the event counters of the dead processor
5568 	 * into the current processors event counters.
5569 	 * This artificially elevates the count of the current
5570 	 * processor.
5571 	 */
5572 	vm_events_fold_cpu(cpu);
5573 
5574 	/*
5575 	 * Zero the differential counters of the dead processor
5576 	 * so that the vm statistics are consistent.
5577 	 *
5578 	 * This is only okay since the processor is dead and cannot
5579 	 * race with what we are doing.
5580 	 */
5581 	cpu_vm_stats_fold(cpu);
5582 
5583 	for_each_populated_zone(zone)
5584 		zone_pcp_update(zone, 0);
5585 
5586 	return 0;
5587 }
5588 
5589 static int page_alloc_cpu_online(unsigned int cpu)
5590 {
5591 	struct zone *zone;
5592 
5593 	for_each_populated_zone(zone)
5594 		zone_pcp_update(zone, 1);
5595 	return 0;
5596 }
5597 
5598 void __init page_alloc_init_cpuhp(void)
5599 {
5600 	int ret;
5601 
5602 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5603 					"mm/page_alloc:pcp",
5604 					page_alloc_cpu_online,
5605 					page_alloc_cpu_dead);
5606 	WARN_ON(ret < 0);
5607 }
5608 
5609 /*
5610  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5611  *	or min_free_kbytes changes.
5612  */
5613 static void calculate_totalreserve_pages(void)
5614 {
5615 	struct pglist_data *pgdat;
5616 	unsigned long reserve_pages = 0;
5617 	enum zone_type i, j;
5618 
5619 	for_each_online_pgdat(pgdat) {
5620 
5621 		pgdat->totalreserve_pages = 0;
5622 
5623 		for (i = 0; i < MAX_NR_ZONES; i++) {
5624 			struct zone *zone = pgdat->node_zones + i;
5625 			long max = 0;
5626 			unsigned long managed_pages = zone_managed_pages(zone);
5627 
5628 			/* Find valid and maximum lowmem_reserve in the zone */
5629 			for (j = i; j < MAX_NR_ZONES; j++) {
5630 				if (zone->lowmem_reserve[j] > max)
5631 					max = zone->lowmem_reserve[j];
5632 			}
5633 
5634 			/* we treat the high watermark as reserved pages. */
5635 			max += high_wmark_pages(zone);
5636 
5637 			if (max > managed_pages)
5638 				max = managed_pages;
5639 
5640 			pgdat->totalreserve_pages += max;
5641 
5642 			reserve_pages += max;
5643 		}
5644 	}
5645 	totalreserve_pages = reserve_pages;
5646 }
5647 
5648 /*
5649  * setup_per_zone_lowmem_reserve - called whenever
5650  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5651  *	has a correct pages reserved value, so an adequate number of
5652  *	pages are left in the zone after a successful __alloc_pages().
5653  */
5654 static void setup_per_zone_lowmem_reserve(void)
5655 {
5656 	struct pglist_data *pgdat;
5657 	enum zone_type i, j;
5658 
5659 	for_each_online_pgdat(pgdat) {
5660 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5661 			struct zone *zone = &pgdat->node_zones[i];
5662 			int ratio = sysctl_lowmem_reserve_ratio[i];
5663 			bool clear = !ratio || !zone_managed_pages(zone);
5664 			unsigned long managed_pages = 0;
5665 
5666 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5667 				struct zone *upper_zone = &pgdat->node_zones[j];
5668 
5669 				managed_pages += zone_managed_pages(upper_zone);
5670 
5671 				if (clear)
5672 					zone->lowmem_reserve[j] = 0;
5673 				else
5674 					zone->lowmem_reserve[j] = managed_pages / ratio;
5675 			}
5676 		}
5677 	}
5678 
5679 	/* update totalreserve_pages */
5680 	calculate_totalreserve_pages();
5681 }
5682 
5683 static void __setup_per_zone_wmarks(void)
5684 {
5685 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5686 	unsigned long lowmem_pages = 0;
5687 	struct zone *zone;
5688 	unsigned long flags;
5689 
5690 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5691 	for_each_zone(zone) {
5692 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5693 			lowmem_pages += zone_managed_pages(zone);
5694 	}
5695 
5696 	for_each_zone(zone) {
5697 		u64 tmp;
5698 
5699 		spin_lock_irqsave(&zone->lock, flags);
5700 		tmp = (u64)pages_min * zone_managed_pages(zone);
5701 		do_div(tmp, lowmem_pages);
5702 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5703 			/*
5704 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5705 			 * need highmem and movable zones pages, so cap pages_min
5706 			 * to a small  value here.
5707 			 *
5708 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5709 			 * deltas control async page reclaim, and so should
5710 			 * not be capped for highmem and movable zones.
5711 			 */
5712 			unsigned long min_pages;
5713 
5714 			min_pages = zone_managed_pages(zone) / 1024;
5715 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5716 			zone->_watermark[WMARK_MIN] = min_pages;
5717 		} else {
5718 			/*
5719 			 * If it's a lowmem zone, reserve a number of pages
5720 			 * proportionate to the zone's size.
5721 			 */
5722 			zone->_watermark[WMARK_MIN] = tmp;
5723 		}
5724 
5725 		/*
5726 		 * Set the kswapd watermarks distance according to the
5727 		 * scale factor in proportion to available memory, but
5728 		 * ensure a minimum size on small systems.
5729 		 */
5730 		tmp = max_t(u64, tmp >> 2,
5731 			    mult_frac(zone_managed_pages(zone),
5732 				      watermark_scale_factor, 10000));
5733 
5734 		zone->watermark_boost = 0;
5735 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5736 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5737 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5738 
5739 		spin_unlock_irqrestore(&zone->lock, flags);
5740 	}
5741 
5742 	/* update totalreserve_pages */
5743 	calculate_totalreserve_pages();
5744 }
5745 
5746 /**
5747  * setup_per_zone_wmarks - called when min_free_kbytes changes
5748  * or when memory is hot-{added|removed}
5749  *
5750  * Ensures that the watermark[min,low,high] values for each zone are set
5751  * correctly with respect to min_free_kbytes.
5752  */
5753 void setup_per_zone_wmarks(void)
5754 {
5755 	struct zone *zone;
5756 	static DEFINE_SPINLOCK(lock);
5757 
5758 	spin_lock(&lock);
5759 	__setup_per_zone_wmarks();
5760 	spin_unlock(&lock);
5761 
5762 	/*
5763 	 * The watermark size have changed so update the pcpu batch
5764 	 * and high limits or the limits may be inappropriate.
5765 	 */
5766 	for_each_zone(zone)
5767 		zone_pcp_update(zone, 0);
5768 }
5769 
5770 /*
5771  * Initialise min_free_kbytes.
5772  *
5773  * For small machines we want it small (128k min).  For large machines
5774  * we want it large (256MB max).  But it is not linear, because network
5775  * bandwidth does not increase linearly with machine size.  We use
5776  *
5777  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5778  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5779  *
5780  * which yields
5781  *
5782  * 16MB:	512k
5783  * 32MB:	724k
5784  * 64MB:	1024k
5785  * 128MB:	1448k
5786  * 256MB:	2048k
5787  * 512MB:	2896k
5788  * 1024MB:	4096k
5789  * 2048MB:	5792k
5790  * 4096MB:	8192k
5791  * 8192MB:	11584k
5792  * 16384MB:	16384k
5793  */
5794 void calculate_min_free_kbytes(void)
5795 {
5796 	unsigned long lowmem_kbytes;
5797 	int new_min_free_kbytes;
5798 
5799 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5800 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5801 
5802 	if (new_min_free_kbytes > user_min_free_kbytes)
5803 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5804 	else
5805 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5806 				new_min_free_kbytes, user_min_free_kbytes);
5807 
5808 }
5809 
5810 int __meminit init_per_zone_wmark_min(void)
5811 {
5812 	calculate_min_free_kbytes();
5813 	setup_per_zone_wmarks();
5814 	refresh_zone_stat_thresholds();
5815 	setup_per_zone_lowmem_reserve();
5816 
5817 #ifdef CONFIG_NUMA
5818 	setup_min_unmapped_ratio();
5819 	setup_min_slab_ratio();
5820 #endif
5821 
5822 	khugepaged_min_free_kbytes_update();
5823 
5824 	return 0;
5825 }
5826 postcore_initcall(init_per_zone_wmark_min)
5827 
5828 /*
5829  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5830  *	that we can call two helper functions whenever min_free_kbytes
5831  *	changes.
5832  */
5833 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5834 		void *buffer, size_t *length, loff_t *ppos)
5835 {
5836 	int rc;
5837 
5838 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5839 	if (rc)
5840 		return rc;
5841 
5842 	if (write) {
5843 		user_min_free_kbytes = min_free_kbytes;
5844 		setup_per_zone_wmarks();
5845 	}
5846 	return 0;
5847 }
5848 
5849 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5850 		void *buffer, size_t *length, loff_t *ppos)
5851 {
5852 	int rc;
5853 
5854 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5855 	if (rc)
5856 		return rc;
5857 
5858 	if (write)
5859 		setup_per_zone_wmarks();
5860 
5861 	return 0;
5862 }
5863 
5864 #ifdef CONFIG_NUMA
5865 static void setup_min_unmapped_ratio(void)
5866 {
5867 	pg_data_t *pgdat;
5868 	struct zone *zone;
5869 
5870 	for_each_online_pgdat(pgdat)
5871 		pgdat->min_unmapped_pages = 0;
5872 
5873 	for_each_zone(zone)
5874 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5875 						         sysctl_min_unmapped_ratio) / 100;
5876 }
5877 
5878 
5879 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5880 		void *buffer, size_t *length, loff_t *ppos)
5881 {
5882 	int rc;
5883 
5884 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5885 	if (rc)
5886 		return rc;
5887 
5888 	setup_min_unmapped_ratio();
5889 
5890 	return 0;
5891 }
5892 
5893 static void setup_min_slab_ratio(void)
5894 {
5895 	pg_data_t *pgdat;
5896 	struct zone *zone;
5897 
5898 	for_each_online_pgdat(pgdat)
5899 		pgdat->min_slab_pages = 0;
5900 
5901 	for_each_zone(zone)
5902 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5903 						     sysctl_min_slab_ratio) / 100;
5904 }
5905 
5906 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5907 		void *buffer, size_t *length, loff_t *ppos)
5908 {
5909 	int rc;
5910 
5911 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5912 	if (rc)
5913 		return rc;
5914 
5915 	setup_min_slab_ratio();
5916 
5917 	return 0;
5918 }
5919 #endif
5920 
5921 /*
5922  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5923  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5924  *	whenever sysctl_lowmem_reserve_ratio changes.
5925  *
5926  * The reserve ratio obviously has absolutely no relation with the
5927  * minimum watermarks. The lowmem reserve ratio can only make sense
5928  * if in function of the boot time zone sizes.
5929  */
5930 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5931 		int write, void *buffer, size_t *length, loff_t *ppos)
5932 {
5933 	int i;
5934 
5935 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5936 
5937 	for (i = 0; i < MAX_NR_ZONES; i++) {
5938 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5939 			sysctl_lowmem_reserve_ratio[i] = 0;
5940 	}
5941 
5942 	setup_per_zone_lowmem_reserve();
5943 	return 0;
5944 }
5945 
5946 /*
5947  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5948  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5949  * pagelist can have before it gets flushed back to buddy allocator.
5950  */
5951 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5952 		int write, void *buffer, size_t *length, loff_t *ppos)
5953 {
5954 	struct zone *zone;
5955 	int old_percpu_pagelist_high_fraction;
5956 	int ret;
5957 
5958 	mutex_lock(&pcp_batch_high_lock);
5959 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5960 
5961 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5962 	if (!write || ret < 0)
5963 		goto out;
5964 
5965 	/* Sanity checking to avoid pcp imbalance */
5966 	if (percpu_pagelist_high_fraction &&
5967 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5968 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5969 		ret = -EINVAL;
5970 		goto out;
5971 	}
5972 
5973 	/* No change? */
5974 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5975 		goto out;
5976 
5977 	for_each_populated_zone(zone)
5978 		zone_set_pageset_high_and_batch(zone, 0);
5979 out:
5980 	mutex_unlock(&pcp_batch_high_lock);
5981 	return ret;
5982 }
5983 
5984 static struct ctl_table page_alloc_sysctl_table[] = {
5985 	{
5986 		.procname	= "min_free_kbytes",
5987 		.data		= &min_free_kbytes,
5988 		.maxlen		= sizeof(min_free_kbytes),
5989 		.mode		= 0644,
5990 		.proc_handler	= min_free_kbytes_sysctl_handler,
5991 		.extra1		= SYSCTL_ZERO,
5992 	},
5993 	{
5994 		.procname	= "watermark_boost_factor",
5995 		.data		= &watermark_boost_factor,
5996 		.maxlen		= sizeof(watermark_boost_factor),
5997 		.mode		= 0644,
5998 		.proc_handler	= proc_dointvec_minmax,
5999 		.extra1		= SYSCTL_ZERO,
6000 	},
6001 	{
6002 		.procname	= "watermark_scale_factor",
6003 		.data		= &watermark_scale_factor,
6004 		.maxlen		= sizeof(watermark_scale_factor),
6005 		.mode		= 0644,
6006 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6007 		.extra1		= SYSCTL_ONE,
6008 		.extra2		= SYSCTL_THREE_THOUSAND,
6009 	},
6010 	{
6011 		.procname	= "percpu_pagelist_high_fraction",
6012 		.data		= &percpu_pagelist_high_fraction,
6013 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6014 		.mode		= 0644,
6015 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6016 		.extra1		= SYSCTL_ZERO,
6017 	},
6018 	{
6019 		.procname	= "lowmem_reserve_ratio",
6020 		.data		= &sysctl_lowmem_reserve_ratio,
6021 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6022 		.mode		= 0644,
6023 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6024 	},
6025 #ifdef CONFIG_NUMA
6026 	{
6027 		.procname	= "numa_zonelist_order",
6028 		.data		= &numa_zonelist_order,
6029 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6030 		.mode		= 0644,
6031 		.proc_handler	= numa_zonelist_order_handler,
6032 	},
6033 	{
6034 		.procname	= "min_unmapped_ratio",
6035 		.data		= &sysctl_min_unmapped_ratio,
6036 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6037 		.mode		= 0644,
6038 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6039 		.extra1		= SYSCTL_ZERO,
6040 		.extra2		= SYSCTL_ONE_HUNDRED,
6041 	},
6042 	{
6043 		.procname	= "min_slab_ratio",
6044 		.data		= &sysctl_min_slab_ratio,
6045 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6046 		.mode		= 0644,
6047 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6048 		.extra1		= SYSCTL_ZERO,
6049 		.extra2		= SYSCTL_ONE_HUNDRED,
6050 	},
6051 #endif
6052 	{}
6053 };
6054 
6055 void __init page_alloc_sysctl_init(void)
6056 {
6057 	register_sysctl_init("vm", page_alloc_sysctl_table);
6058 }
6059 
6060 #ifdef CONFIG_CONTIG_ALLOC
6061 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6062 static void alloc_contig_dump_pages(struct list_head *page_list)
6063 {
6064 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6065 
6066 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6067 		struct page *page;
6068 
6069 		dump_stack();
6070 		list_for_each_entry(page, page_list, lru)
6071 			dump_page(page, "migration failure");
6072 	}
6073 }
6074 
6075 /* [start, end) must belong to a single zone. */
6076 int __alloc_contig_migrate_range(struct compact_control *cc,
6077 					unsigned long start, unsigned long end)
6078 {
6079 	/* This function is based on compact_zone() from compaction.c. */
6080 	unsigned int nr_reclaimed;
6081 	unsigned long pfn = start;
6082 	unsigned int tries = 0;
6083 	int ret = 0;
6084 	struct migration_target_control mtc = {
6085 		.nid = zone_to_nid(cc->zone),
6086 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6087 	};
6088 
6089 	lru_cache_disable();
6090 
6091 	while (pfn < end || !list_empty(&cc->migratepages)) {
6092 		if (fatal_signal_pending(current)) {
6093 			ret = -EINTR;
6094 			break;
6095 		}
6096 
6097 		if (list_empty(&cc->migratepages)) {
6098 			cc->nr_migratepages = 0;
6099 			ret = isolate_migratepages_range(cc, pfn, end);
6100 			if (ret && ret != -EAGAIN)
6101 				break;
6102 			pfn = cc->migrate_pfn;
6103 			tries = 0;
6104 		} else if (++tries == 5) {
6105 			ret = -EBUSY;
6106 			break;
6107 		}
6108 
6109 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6110 							&cc->migratepages);
6111 		cc->nr_migratepages -= nr_reclaimed;
6112 
6113 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6114 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6115 
6116 		/*
6117 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6118 		 * to retry again over this error, so do the same here.
6119 		 */
6120 		if (ret == -ENOMEM)
6121 			break;
6122 	}
6123 
6124 	lru_cache_enable();
6125 	if (ret < 0) {
6126 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6127 			alloc_contig_dump_pages(&cc->migratepages);
6128 		putback_movable_pages(&cc->migratepages);
6129 		return ret;
6130 	}
6131 	return 0;
6132 }
6133 
6134 /**
6135  * alloc_contig_range() -- tries to allocate given range of pages
6136  * @start:	start PFN to allocate
6137  * @end:	one-past-the-last PFN to allocate
6138  * @migratetype:	migratetype of the underlying pageblocks (either
6139  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6140  *			in range must have the same migratetype and it must
6141  *			be either of the two.
6142  * @gfp_mask:	GFP mask to use during compaction
6143  *
6144  * The PFN range does not have to be pageblock aligned. The PFN range must
6145  * belong to a single zone.
6146  *
6147  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6148  * pageblocks in the range.  Once isolated, the pageblocks should not
6149  * be modified by others.
6150  *
6151  * Return: zero on success or negative error code.  On success all
6152  * pages which PFN is in [start, end) are allocated for the caller and
6153  * need to be freed with free_contig_range().
6154  */
6155 int alloc_contig_range(unsigned long start, unsigned long end,
6156 		       unsigned migratetype, gfp_t gfp_mask)
6157 {
6158 	unsigned long outer_start, outer_end;
6159 	int order;
6160 	int ret = 0;
6161 
6162 	struct compact_control cc = {
6163 		.nr_migratepages = 0,
6164 		.order = -1,
6165 		.zone = page_zone(pfn_to_page(start)),
6166 		.mode = MIGRATE_SYNC,
6167 		.ignore_skip_hint = true,
6168 		.no_set_skip_hint = true,
6169 		.gfp_mask = current_gfp_context(gfp_mask),
6170 		.alloc_contig = true,
6171 	};
6172 	INIT_LIST_HEAD(&cc.migratepages);
6173 
6174 	/*
6175 	 * What we do here is we mark all pageblocks in range as
6176 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6177 	 * have different sizes, and due to the way page allocator
6178 	 * work, start_isolate_page_range() has special handlings for this.
6179 	 *
6180 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6181 	 * migrate the pages from an unaligned range (ie. pages that
6182 	 * we are interested in). This will put all the pages in
6183 	 * range back to page allocator as MIGRATE_ISOLATE.
6184 	 *
6185 	 * When this is done, we take the pages in range from page
6186 	 * allocator removing them from the buddy system.  This way
6187 	 * page allocator will never consider using them.
6188 	 *
6189 	 * This lets us mark the pageblocks back as
6190 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6191 	 * aligned range but not in the unaligned, original range are
6192 	 * put back to page allocator so that buddy can use them.
6193 	 */
6194 
6195 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6196 	if (ret)
6197 		goto done;
6198 
6199 	drain_all_pages(cc.zone);
6200 
6201 	/*
6202 	 * In case of -EBUSY, we'd like to know which page causes problem.
6203 	 * So, just fall through. test_pages_isolated() has a tracepoint
6204 	 * which will report the busy page.
6205 	 *
6206 	 * It is possible that busy pages could become available before
6207 	 * the call to test_pages_isolated, and the range will actually be
6208 	 * allocated.  So, if we fall through be sure to clear ret so that
6209 	 * -EBUSY is not accidentally used or returned to caller.
6210 	 */
6211 	ret = __alloc_contig_migrate_range(&cc, start, end);
6212 	if (ret && ret != -EBUSY)
6213 		goto done;
6214 	ret = 0;
6215 
6216 	/*
6217 	 * Pages from [start, end) are within a pageblock_nr_pages
6218 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6219 	 * more, all pages in [start, end) are free in page allocator.
6220 	 * What we are going to do is to allocate all pages from
6221 	 * [start, end) (that is remove them from page allocator).
6222 	 *
6223 	 * The only problem is that pages at the beginning and at the
6224 	 * end of interesting range may be not aligned with pages that
6225 	 * page allocator holds, ie. they can be part of higher order
6226 	 * pages.  Because of this, we reserve the bigger range and
6227 	 * once this is done free the pages we are not interested in.
6228 	 *
6229 	 * We don't have to hold zone->lock here because the pages are
6230 	 * isolated thus they won't get removed from buddy.
6231 	 */
6232 
6233 	order = 0;
6234 	outer_start = start;
6235 	while (!PageBuddy(pfn_to_page(outer_start))) {
6236 		if (++order > MAX_ORDER) {
6237 			outer_start = start;
6238 			break;
6239 		}
6240 		outer_start &= ~0UL << order;
6241 	}
6242 
6243 	if (outer_start != start) {
6244 		order = buddy_order(pfn_to_page(outer_start));
6245 
6246 		/*
6247 		 * outer_start page could be small order buddy page and
6248 		 * it doesn't include start page. Adjust outer_start
6249 		 * in this case to report failed page properly
6250 		 * on tracepoint in test_pages_isolated()
6251 		 */
6252 		if (outer_start + (1UL << order) <= start)
6253 			outer_start = start;
6254 	}
6255 
6256 	/* Make sure the range is really isolated. */
6257 	if (test_pages_isolated(outer_start, end, 0)) {
6258 		ret = -EBUSY;
6259 		goto done;
6260 	}
6261 
6262 	/* Grab isolated pages from freelists. */
6263 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6264 	if (!outer_end) {
6265 		ret = -EBUSY;
6266 		goto done;
6267 	}
6268 
6269 	/* Free head and tail (if any) */
6270 	if (start != outer_start)
6271 		free_contig_range(outer_start, start - outer_start);
6272 	if (end != outer_end)
6273 		free_contig_range(end, outer_end - end);
6274 
6275 done:
6276 	undo_isolate_page_range(start, end, migratetype);
6277 	return ret;
6278 }
6279 EXPORT_SYMBOL(alloc_contig_range);
6280 
6281 static int __alloc_contig_pages(unsigned long start_pfn,
6282 				unsigned long nr_pages, gfp_t gfp_mask)
6283 {
6284 	unsigned long end_pfn = start_pfn + nr_pages;
6285 
6286 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6287 				  gfp_mask);
6288 }
6289 
6290 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6291 				   unsigned long nr_pages)
6292 {
6293 	unsigned long i, end_pfn = start_pfn + nr_pages;
6294 	struct page *page;
6295 
6296 	for (i = start_pfn; i < end_pfn; i++) {
6297 		page = pfn_to_online_page(i);
6298 		if (!page)
6299 			return false;
6300 
6301 		if (page_zone(page) != z)
6302 			return false;
6303 
6304 		if (PageReserved(page))
6305 			return false;
6306 
6307 		if (PageHuge(page))
6308 			return false;
6309 	}
6310 	return true;
6311 }
6312 
6313 static bool zone_spans_last_pfn(const struct zone *zone,
6314 				unsigned long start_pfn, unsigned long nr_pages)
6315 {
6316 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6317 
6318 	return zone_spans_pfn(zone, last_pfn);
6319 }
6320 
6321 /**
6322  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6323  * @nr_pages:	Number of contiguous pages to allocate
6324  * @gfp_mask:	GFP mask to limit search and used during compaction
6325  * @nid:	Target node
6326  * @nodemask:	Mask for other possible nodes
6327  *
6328  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6329  * on an applicable zonelist to find a contiguous pfn range which can then be
6330  * tried for allocation with alloc_contig_range(). This routine is intended
6331  * for allocation requests which can not be fulfilled with the buddy allocator.
6332  *
6333  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6334  * power of two, then allocated range is also guaranteed to be aligned to same
6335  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6336  *
6337  * Allocated pages can be freed with free_contig_range() or by manually calling
6338  * __free_page() on each allocated page.
6339  *
6340  * Return: pointer to contiguous pages on success, or NULL if not successful.
6341  */
6342 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6343 				int nid, nodemask_t *nodemask)
6344 {
6345 	unsigned long ret, pfn, flags;
6346 	struct zonelist *zonelist;
6347 	struct zone *zone;
6348 	struct zoneref *z;
6349 
6350 	zonelist = node_zonelist(nid, gfp_mask);
6351 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6352 					gfp_zone(gfp_mask), nodemask) {
6353 		spin_lock_irqsave(&zone->lock, flags);
6354 
6355 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6356 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6357 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6358 				/*
6359 				 * We release the zone lock here because
6360 				 * alloc_contig_range() will also lock the zone
6361 				 * at some point. If there's an allocation
6362 				 * spinning on this lock, it may win the race
6363 				 * and cause alloc_contig_range() to fail...
6364 				 */
6365 				spin_unlock_irqrestore(&zone->lock, flags);
6366 				ret = __alloc_contig_pages(pfn, nr_pages,
6367 							gfp_mask);
6368 				if (!ret)
6369 					return pfn_to_page(pfn);
6370 				spin_lock_irqsave(&zone->lock, flags);
6371 			}
6372 			pfn += nr_pages;
6373 		}
6374 		spin_unlock_irqrestore(&zone->lock, flags);
6375 	}
6376 	return NULL;
6377 }
6378 #endif /* CONFIG_CONTIG_ALLOC */
6379 
6380 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6381 {
6382 	unsigned long count = 0;
6383 
6384 	for (; nr_pages--; pfn++) {
6385 		struct page *page = pfn_to_page(pfn);
6386 
6387 		count += page_count(page) != 1;
6388 		__free_page(page);
6389 	}
6390 	WARN(count != 0, "%lu pages are still in use!\n", count);
6391 }
6392 EXPORT_SYMBOL(free_contig_range);
6393 
6394 /*
6395  * Effectively disable pcplists for the zone by setting the high limit to 0
6396  * and draining all cpus. A concurrent page freeing on another CPU that's about
6397  * to put the page on pcplist will either finish before the drain and the page
6398  * will be drained, or observe the new high limit and skip the pcplist.
6399  *
6400  * Must be paired with a call to zone_pcp_enable().
6401  */
6402 void zone_pcp_disable(struct zone *zone)
6403 {
6404 	mutex_lock(&pcp_batch_high_lock);
6405 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6406 	__drain_all_pages(zone, true);
6407 }
6408 
6409 void zone_pcp_enable(struct zone *zone)
6410 {
6411 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6412 	mutex_unlock(&pcp_batch_high_lock);
6413 }
6414 
6415 void zone_pcp_reset(struct zone *zone)
6416 {
6417 	int cpu;
6418 	struct per_cpu_zonestat *pzstats;
6419 
6420 	if (zone->per_cpu_pageset != &boot_pageset) {
6421 		for_each_online_cpu(cpu) {
6422 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6423 			drain_zonestat(zone, pzstats);
6424 		}
6425 		free_percpu(zone->per_cpu_pageset);
6426 		zone->per_cpu_pageset = &boot_pageset;
6427 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6428 			free_percpu(zone->per_cpu_zonestats);
6429 			zone->per_cpu_zonestats = &boot_zonestats;
6430 		}
6431 	}
6432 }
6433 
6434 #ifdef CONFIG_MEMORY_HOTREMOVE
6435 /*
6436  * All pages in the range must be in a single zone, must not contain holes,
6437  * must span full sections, and must be isolated before calling this function.
6438  */
6439 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6440 {
6441 	unsigned long pfn = start_pfn;
6442 	struct page *page;
6443 	struct zone *zone;
6444 	unsigned int order;
6445 	unsigned long flags;
6446 
6447 	offline_mem_sections(pfn, end_pfn);
6448 	zone = page_zone(pfn_to_page(pfn));
6449 	spin_lock_irqsave(&zone->lock, flags);
6450 	while (pfn < end_pfn) {
6451 		page = pfn_to_page(pfn);
6452 		/*
6453 		 * The HWPoisoned page may be not in buddy system, and
6454 		 * page_count() is not 0.
6455 		 */
6456 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6457 			pfn++;
6458 			continue;
6459 		}
6460 		/*
6461 		 * At this point all remaining PageOffline() pages have a
6462 		 * reference count of 0 and can simply be skipped.
6463 		 */
6464 		if (PageOffline(page)) {
6465 			BUG_ON(page_count(page));
6466 			BUG_ON(PageBuddy(page));
6467 			pfn++;
6468 			continue;
6469 		}
6470 
6471 		BUG_ON(page_count(page));
6472 		BUG_ON(!PageBuddy(page));
6473 		order = buddy_order(page);
6474 		del_page_from_free_list(page, zone, order);
6475 		pfn += (1 << order);
6476 	}
6477 	spin_unlock_irqrestore(&zone->lock, flags);
6478 }
6479 #endif
6480 
6481 /*
6482  * This function returns a stable result only if called under zone lock.
6483  */
6484 bool is_free_buddy_page(struct page *page)
6485 {
6486 	unsigned long pfn = page_to_pfn(page);
6487 	unsigned int order;
6488 
6489 	for (order = 0; order <= MAX_ORDER; order++) {
6490 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6491 
6492 		if (PageBuddy(page_head) &&
6493 		    buddy_order_unsafe(page_head) >= order)
6494 			break;
6495 	}
6496 
6497 	return order <= MAX_ORDER;
6498 }
6499 EXPORT_SYMBOL(is_free_buddy_page);
6500 
6501 #ifdef CONFIG_MEMORY_FAILURE
6502 /*
6503  * Break down a higher-order page in sub-pages, and keep our target out of
6504  * buddy allocator.
6505  */
6506 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6507 				   struct page *target, int low, int high,
6508 				   int migratetype)
6509 {
6510 	unsigned long size = 1 << high;
6511 	struct page *current_buddy, *next_page;
6512 
6513 	while (high > low) {
6514 		high--;
6515 		size >>= 1;
6516 
6517 		if (target >= &page[size]) {
6518 			next_page = page + size;
6519 			current_buddy = page;
6520 		} else {
6521 			next_page = page;
6522 			current_buddy = page + size;
6523 		}
6524 
6525 		if (set_page_guard(zone, current_buddy, high, migratetype))
6526 			continue;
6527 
6528 		if (current_buddy != target) {
6529 			add_to_free_list(current_buddy, zone, high, migratetype);
6530 			set_buddy_order(current_buddy, high);
6531 			page = next_page;
6532 		}
6533 	}
6534 }
6535 
6536 /*
6537  * Take a page that will be marked as poisoned off the buddy allocator.
6538  */
6539 bool take_page_off_buddy(struct page *page)
6540 {
6541 	struct zone *zone = page_zone(page);
6542 	unsigned long pfn = page_to_pfn(page);
6543 	unsigned long flags;
6544 	unsigned int order;
6545 	bool ret = false;
6546 
6547 	spin_lock_irqsave(&zone->lock, flags);
6548 	for (order = 0; order <= MAX_ORDER; order++) {
6549 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6550 		int page_order = buddy_order(page_head);
6551 
6552 		if (PageBuddy(page_head) && page_order >= order) {
6553 			unsigned long pfn_head = page_to_pfn(page_head);
6554 			int migratetype = get_pfnblock_migratetype(page_head,
6555 								   pfn_head);
6556 
6557 			del_page_from_free_list(page_head, zone, page_order);
6558 			break_down_buddy_pages(zone, page_head, page, 0,
6559 						page_order, migratetype);
6560 			SetPageHWPoisonTakenOff(page);
6561 			if (!is_migrate_isolate(migratetype))
6562 				__mod_zone_freepage_state(zone, -1, migratetype);
6563 			ret = true;
6564 			break;
6565 		}
6566 		if (page_count(page_head) > 0)
6567 			break;
6568 	}
6569 	spin_unlock_irqrestore(&zone->lock, flags);
6570 	return ret;
6571 }
6572 
6573 /*
6574  * Cancel takeoff done by take_page_off_buddy().
6575  */
6576 bool put_page_back_buddy(struct page *page)
6577 {
6578 	struct zone *zone = page_zone(page);
6579 	unsigned long pfn = page_to_pfn(page);
6580 	unsigned long flags;
6581 	int migratetype = get_pfnblock_migratetype(page, pfn);
6582 	bool ret = false;
6583 
6584 	spin_lock_irqsave(&zone->lock, flags);
6585 	if (put_page_testzero(page)) {
6586 		ClearPageHWPoisonTakenOff(page);
6587 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6588 		if (TestClearPageHWPoison(page)) {
6589 			ret = true;
6590 		}
6591 	}
6592 	spin_unlock_irqrestore(&zone->lock, flags);
6593 
6594 	return ret;
6595 }
6596 #endif
6597 
6598 #ifdef CONFIG_ZONE_DMA
6599 bool has_managed_dma(void)
6600 {
6601 	struct pglist_data *pgdat;
6602 
6603 	for_each_online_pgdat(pgdat) {
6604 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6605 
6606 		if (managed_zone(zone))
6607 			return true;
6608 	}
6609 	return false;
6610 }
6611 #endif /* CONFIG_ZONE_DMA */
6612 
6613 #ifdef CONFIG_UNACCEPTED_MEMORY
6614 
6615 /* Counts number of zones with unaccepted pages. */
6616 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6617 
6618 static bool lazy_accept = true;
6619 
6620 static int __init accept_memory_parse(char *p)
6621 {
6622 	if (!strcmp(p, "lazy")) {
6623 		lazy_accept = true;
6624 		return 0;
6625 	} else if (!strcmp(p, "eager")) {
6626 		lazy_accept = false;
6627 		return 0;
6628 	} else {
6629 		return -EINVAL;
6630 	}
6631 }
6632 early_param("accept_memory", accept_memory_parse);
6633 
6634 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6635 {
6636 	phys_addr_t start = page_to_phys(page);
6637 	phys_addr_t end = start + (PAGE_SIZE << order);
6638 
6639 	return range_contains_unaccepted_memory(start, end);
6640 }
6641 
6642 static void accept_page(struct page *page, unsigned int order)
6643 {
6644 	phys_addr_t start = page_to_phys(page);
6645 
6646 	accept_memory(start, start + (PAGE_SIZE << order));
6647 }
6648 
6649 static bool try_to_accept_memory_one(struct zone *zone)
6650 {
6651 	unsigned long flags;
6652 	struct page *page;
6653 	bool last;
6654 
6655 	if (list_empty(&zone->unaccepted_pages))
6656 		return false;
6657 
6658 	spin_lock_irqsave(&zone->lock, flags);
6659 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6660 					struct page, lru);
6661 	if (!page) {
6662 		spin_unlock_irqrestore(&zone->lock, flags);
6663 		return false;
6664 	}
6665 
6666 	list_del(&page->lru);
6667 	last = list_empty(&zone->unaccepted_pages);
6668 
6669 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6670 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6671 	spin_unlock_irqrestore(&zone->lock, flags);
6672 
6673 	accept_page(page, MAX_ORDER);
6674 
6675 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6676 
6677 	if (last)
6678 		static_branch_dec(&zones_with_unaccepted_pages);
6679 
6680 	return true;
6681 }
6682 
6683 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6684 {
6685 	long to_accept;
6686 	int ret = false;
6687 
6688 	/* How much to accept to get to high watermark? */
6689 	to_accept = high_wmark_pages(zone) -
6690 		    (zone_page_state(zone, NR_FREE_PAGES) -
6691 		    __zone_watermark_unusable_free(zone, order, 0));
6692 
6693 	/* Accept at least one page */
6694 	do {
6695 		if (!try_to_accept_memory_one(zone))
6696 			break;
6697 		ret = true;
6698 		to_accept -= MAX_ORDER_NR_PAGES;
6699 	} while (to_accept > 0);
6700 
6701 	return ret;
6702 }
6703 
6704 static inline bool has_unaccepted_memory(void)
6705 {
6706 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6707 }
6708 
6709 static bool __free_unaccepted(struct page *page)
6710 {
6711 	struct zone *zone = page_zone(page);
6712 	unsigned long flags;
6713 	bool first = false;
6714 
6715 	if (!lazy_accept)
6716 		return false;
6717 
6718 	spin_lock_irqsave(&zone->lock, flags);
6719 	first = list_empty(&zone->unaccepted_pages);
6720 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6721 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6722 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6723 	spin_unlock_irqrestore(&zone->lock, flags);
6724 
6725 	if (first)
6726 		static_branch_inc(&zones_with_unaccepted_pages);
6727 
6728 	return true;
6729 }
6730 
6731 #else
6732 
6733 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6734 {
6735 	return false;
6736 }
6737 
6738 static void accept_page(struct page *page, unsigned int order)
6739 {
6740 }
6741 
6742 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6743 {
6744 	return false;
6745 }
6746 
6747 static inline bool has_unaccepted_memory(void)
6748 {
6749 	return false;
6750 }
6751 
6752 static bool __free_unaccepted(struct page *page)
6753 {
6754 	BUILD_BUG();
6755 	return false;
6756 }
6757 
6758 #endif /* CONFIG_UNACCEPTED_MEMORY */
6759