1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <asm/div64.h> 56 #include "internal.h" 57 #include "shuffle.h" 58 #include "page_reporting.h" 59 60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 61 typedef int __bitwise fpi_t; 62 63 /* No special request */ 64 #define FPI_NONE ((__force fpi_t)0) 65 66 /* 67 * Skip free page reporting notification for the (possibly merged) page. 68 * This does not hinder free page reporting from grabbing the page, 69 * reporting it and marking it "reported" - it only skips notifying 70 * the free page reporting infrastructure about a newly freed page. For 71 * example, used when temporarily pulling a page from a freelist and 72 * putting it back unmodified. 73 */ 74 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 75 76 /* 77 * Place the (possibly merged) page to the tail of the freelist. Will ignore 78 * page shuffling (relevant code - e.g., memory onlining - is expected to 79 * shuffle the whole zone). 80 * 81 * Note: No code should rely on this flag for correctness - it's purely 82 * to allow for optimizations when handing back either fresh pages 83 * (memory onlining) or untouched pages (page isolation, free page 84 * reporting). 85 */ 86 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 87 88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 89 static DEFINE_MUTEX(pcp_batch_high_lock); 90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 91 92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 93 /* 94 * On SMP, spin_trylock is sufficient protection. 95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 96 */ 97 #define pcp_trylock_prepare(flags) do { } while (0) 98 #define pcp_trylock_finish(flag) do { } while (0) 99 #else 100 101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 102 #define pcp_trylock_prepare(flags) local_irq_save(flags) 103 #define pcp_trylock_finish(flags) local_irq_restore(flags) 104 #endif 105 106 /* 107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 108 * a migration causing the wrong PCP to be locked and remote memory being 109 * potentially allocated, pin the task to the CPU for the lookup+lock. 110 * preempt_disable is used on !RT because it is faster than migrate_disable. 111 * migrate_disable is used on RT because otherwise RT spinlock usage is 112 * interfered with and a high priority task cannot preempt the allocator. 113 */ 114 #ifndef CONFIG_PREEMPT_RT 115 #define pcpu_task_pin() preempt_disable() 116 #define pcpu_task_unpin() preempt_enable() 117 #else 118 #define pcpu_task_pin() migrate_disable() 119 #define pcpu_task_unpin() migrate_enable() 120 #endif 121 122 /* 123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 124 * Return value should be used with equivalent unlock helper. 125 */ 126 #define pcpu_spin_lock(type, member, ptr) \ 127 ({ \ 128 type *_ret; \ 129 pcpu_task_pin(); \ 130 _ret = this_cpu_ptr(ptr); \ 131 spin_lock(&_ret->member); \ 132 _ret; \ 133 }) 134 135 #define pcpu_spin_trylock(type, member, ptr) \ 136 ({ \ 137 type *_ret; \ 138 pcpu_task_pin(); \ 139 _ret = this_cpu_ptr(ptr); \ 140 if (!spin_trylock(&_ret->member)) { \ 141 pcpu_task_unpin(); \ 142 _ret = NULL; \ 143 } \ 144 _ret; \ 145 }) 146 147 #define pcpu_spin_unlock(member, ptr) \ 148 ({ \ 149 spin_unlock(&ptr->member); \ 150 pcpu_task_unpin(); \ 151 }) 152 153 /* struct per_cpu_pages specific helpers. */ 154 #define pcp_spin_lock(ptr) \ 155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 156 157 #define pcp_spin_trylock(ptr) \ 158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_unlock(ptr) \ 161 pcpu_spin_unlock(lock, ptr) 162 163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 164 DEFINE_PER_CPU(int, numa_node); 165 EXPORT_PER_CPU_SYMBOL(numa_node); 166 #endif 167 168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 169 170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 171 /* 172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 175 * defined in <linux/topology.h>. 176 */ 177 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 178 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 179 #endif 180 181 static DEFINE_MUTEX(pcpu_drain_mutex); 182 183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 184 volatile unsigned long latent_entropy __latent_entropy; 185 EXPORT_SYMBOL(latent_entropy); 186 #endif 187 188 /* 189 * Array of node states. 190 */ 191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 192 [N_POSSIBLE] = NODE_MASK_ALL, 193 [N_ONLINE] = { { [0] = 1UL } }, 194 #ifndef CONFIG_NUMA 195 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 196 #ifdef CONFIG_HIGHMEM 197 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 198 #endif 199 [N_MEMORY] = { { [0] = 1UL } }, 200 [N_CPU] = { { [0] = 1UL } }, 201 #endif /* NUMA */ 202 }; 203 EXPORT_SYMBOL(node_states); 204 205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 206 207 /* 208 * A cached value of the page's pageblock's migratetype, used when the page is 209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 210 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 211 * Also the migratetype set in the page does not necessarily match the pcplist 212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 213 * other index - this ensures that it will be put on the correct CMA freelist. 214 */ 215 static inline int get_pcppage_migratetype(struct page *page) 216 { 217 return page->index; 218 } 219 220 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 221 { 222 page->index = migratetype; 223 } 224 225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 226 unsigned int pageblock_order __read_mostly; 227 #endif 228 229 static void __free_pages_ok(struct page *page, unsigned int order, 230 fpi_t fpi_flags); 231 232 /* 233 * results with 256, 32 in the lowmem_reserve sysctl: 234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 235 * 1G machine -> (16M dma, 784M normal, 224M high) 236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 239 * 240 * TBD: should special case ZONE_DMA32 machines here - in those we normally 241 * don't need any ZONE_NORMAL reservation 242 */ 243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 244 #ifdef CONFIG_ZONE_DMA 245 [ZONE_DMA] = 256, 246 #endif 247 #ifdef CONFIG_ZONE_DMA32 248 [ZONE_DMA32] = 256, 249 #endif 250 [ZONE_NORMAL] = 32, 251 #ifdef CONFIG_HIGHMEM 252 [ZONE_HIGHMEM] = 0, 253 #endif 254 [ZONE_MOVABLE] = 0, 255 }; 256 257 char * const zone_names[MAX_NR_ZONES] = { 258 #ifdef CONFIG_ZONE_DMA 259 "DMA", 260 #endif 261 #ifdef CONFIG_ZONE_DMA32 262 "DMA32", 263 #endif 264 "Normal", 265 #ifdef CONFIG_HIGHMEM 266 "HighMem", 267 #endif 268 "Movable", 269 #ifdef CONFIG_ZONE_DEVICE 270 "Device", 271 #endif 272 }; 273 274 const char * const migratetype_names[MIGRATE_TYPES] = { 275 "Unmovable", 276 "Movable", 277 "Reclaimable", 278 "HighAtomic", 279 #ifdef CONFIG_CMA 280 "CMA", 281 #endif 282 #ifdef CONFIG_MEMORY_ISOLATION 283 "Isolate", 284 #endif 285 }; 286 287 static compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 288 [NULL_COMPOUND_DTOR] = NULL, 289 [COMPOUND_PAGE_DTOR] = free_compound_page, 290 #ifdef CONFIG_HUGETLB_PAGE 291 [HUGETLB_PAGE_DTOR] = free_huge_page, 292 #endif 293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 294 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 295 #endif 296 }; 297 298 int min_free_kbytes = 1024; 299 int user_min_free_kbytes = -1; 300 static int watermark_boost_factor __read_mostly = 15000; 301 static int watermark_scale_factor = 10; 302 303 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 304 int movable_zone; 305 EXPORT_SYMBOL(movable_zone); 306 307 #if MAX_NUMNODES > 1 308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 309 unsigned int nr_online_nodes __read_mostly = 1; 310 EXPORT_SYMBOL(nr_node_ids); 311 EXPORT_SYMBOL(nr_online_nodes); 312 #endif 313 314 static bool page_contains_unaccepted(struct page *page, unsigned int order); 315 static void accept_page(struct page *page, unsigned int order); 316 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 317 static inline bool has_unaccepted_memory(void); 318 static bool __free_unaccepted(struct page *page); 319 320 int page_group_by_mobility_disabled __read_mostly; 321 322 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 323 /* 324 * During boot we initialize deferred pages on-demand, as needed, but once 325 * page_alloc_init_late() has finished, the deferred pages are all initialized, 326 * and we can permanently disable that path. 327 */ 328 DEFINE_STATIC_KEY_TRUE(deferred_pages); 329 330 static inline bool deferred_pages_enabled(void) 331 { 332 return static_branch_unlikely(&deferred_pages); 333 } 334 335 /* 336 * deferred_grow_zone() is __init, but it is called from 337 * get_page_from_freelist() during early boot until deferred_pages permanently 338 * disables this call. This is why we have refdata wrapper to avoid warning, 339 * and to ensure that the function body gets unloaded. 340 */ 341 static bool __ref 342 _deferred_grow_zone(struct zone *zone, unsigned int order) 343 { 344 return deferred_grow_zone(zone, order); 345 } 346 #else 347 static inline bool deferred_pages_enabled(void) 348 { 349 return false; 350 } 351 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 352 353 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 354 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 355 unsigned long pfn) 356 { 357 #ifdef CONFIG_SPARSEMEM 358 return section_to_usemap(__pfn_to_section(pfn)); 359 #else 360 return page_zone(page)->pageblock_flags; 361 #endif /* CONFIG_SPARSEMEM */ 362 } 363 364 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 365 { 366 #ifdef CONFIG_SPARSEMEM 367 pfn &= (PAGES_PER_SECTION-1); 368 #else 369 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 370 #endif /* CONFIG_SPARSEMEM */ 371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 372 } 373 374 static __always_inline 375 unsigned long __get_pfnblock_flags_mask(const struct page *page, 376 unsigned long pfn, 377 unsigned long mask) 378 { 379 unsigned long *bitmap; 380 unsigned long bitidx, word_bitidx; 381 unsigned long word; 382 383 bitmap = get_pageblock_bitmap(page, pfn); 384 bitidx = pfn_to_bitidx(page, pfn); 385 word_bitidx = bitidx / BITS_PER_LONG; 386 bitidx &= (BITS_PER_LONG-1); 387 /* 388 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 389 * a consistent read of the memory array, so that results, even though 390 * racy, are not corrupted. 391 */ 392 word = READ_ONCE(bitmap[word_bitidx]); 393 return (word >> bitidx) & mask; 394 } 395 396 /** 397 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 398 * @page: The page within the block of interest 399 * @pfn: The target page frame number 400 * @mask: mask of bits that the caller is interested in 401 * 402 * Return: pageblock_bits flags 403 */ 404 unsigned long get_pfnblock_flags_mask(const struct page *page, 405 unsigned long pfn, unsigned long mask) 406 { 407 return __get_pfnblock_flags_mask(page, pfn, mask); 408 } 409 410 static __always_inline int get_pfnblock_migratetype(const struct page *page, 411 unsigned long pfn) 412 { 413 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 414 } 415 416 /** 417 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 418 * @page: The page within the block of interest 419 * @flags: The flags to set 420 * @pfn: The target page frame number 421 * @mask: mask of bits that the caller is interested in 422 */ 423 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 424 unsigned long pfn, 425 unsigned long mask) 426 { 427 unsigned long *bitmap; 428 unsigned long bitidx, word_bitidx; 429 unsigned long word; 430 431 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 432 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 433 434 bitmap = get_pageblock_bitmap(page, pfn); 435 bitidx = pfn_to_bitidx(page, pfn); 436 word_bitidx = bitidx / BITS_PER_LONG; 437 bitidx &= (BITS_PER_LONG-1); 438 439 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 440 441 mask <<= bitidx; 442 flags <<= bitidx; 443 444 word = READ_ONCE(bitmap[word_bitidx]); 445 do { 446 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 447 } 448 449 void set_pageblock_migratetype(struct page *page, int migratetype) 450 { 451 if (unlikely(page_group_by_mobility_disabled && 452 migratetype < MIGRATE_PCPTYPES)) 453 migratetype = MIGRATE_UNMOVABLE; 454 455 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 456 page_to_pfn(page), MIGRATETYPE_MASK); 457 } 458 459 #ifdef CONFIG_DEBUG_VM 460 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 461 { 462 int ret; 463 unsigned seq; 464 unsigned long pfn = page_to_pfn(page); 465 unsigned long sp, start_pfn; 466 467 do { 468 seq = zone_span_seqbegin(zone); 469 start_pfn = zone->zone_start_pfn; 470 sp = zone->spanned_pages; 471 ret = !zone_spans_pfn(zone, pfn); 472 } while (zone_span_seqretry(zone, seq)); 473 474 if (ret) 475 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 476 pfn, zone_to_nid(zone), zone->name, 477 start_pfn, start_pfn + sp); 478 479 return ret; 480 } 481 482 /* 483 * Temporary debugging check for pages not lying within a given zone. 484 */ 485 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 486 { 487 if (page_outside_zone_boundaries(zone, page)) 488 return 1; 489 if (zone != page_zone(page)) 490 return 1; 491 492 return 0; 493 } 494 #else 495 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 496 { 497 return 0; 498 } 499 #endif 500 501 static void bad_page(struct page *page, const char *reason) 502 { 503 static unsigned long resume; 504 static unsigned long nr_shown; 505 static unsigned long nr_unshown; 506 507 /* 508 * Allow a burst of 60 reports, then keep quiet for that minute; 509 * or allow a steady drip of one report per second. 510 */ 511 if (nr_shown == 60) { 512 if (time_before(jiffies, resume)) { 513 nr_unshown++; 514 goto out; 515 } 516 if (nr_unshown) { 517 pr_alert( 518 "BUG: Bad page state: %lu messages suppressed\n", 519 nr_unshown); 520 nr_unshown = 0; 521 } 522 nr_shown = 0; 523 } 524 if (nr_shown++ == 0) 525 resume = jiffies + 60 * HZ; 526 527 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 528 current->comm, page_to_pfn(page)); 529 dump_page(page, reason); 530 531 print_modules(); 532 dump_stack(); 533 out: 534 /* Leave bad fields for debug, except PageBuddy could make trouble */ 535 page_mapcount_reset(page); /* remove PageBuddy */ 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 537 } 538 539 static inline unsigned int order_to_pindex(int migratetype, int order) 540 { 541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 542 if (order > PAGE_ALLOC_COSTLY_ORDER) { 543 VM_BUG_ON(order != pageblock_order); 544 return NR_LOWORDER_PCP_LISTS; 545 } 546 #else 547 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 548 #endif 549 550 return (MIGRATE_PCPTYPES * order) + migratetype; 551 } 552 553 static inline int pindex_to_order(unsigned int pindex) 554 { 555 int order = pindex / MIGRATE_PCPTYPES; 556 557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 558 if (pindex == NR_LOWORDER_PCP_LISTS) 559 order = pageblock_order; 560 #else 561 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 562 #endif 563 564 return order; 565 } 566 567 static inline bool pcp_allowed_order(unsigned int order) 568 { 569 if (order <= PAGE_ALLOC_COSTLY_ORDER) 570 return true; 571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 572 if (order == pageblock_order) 573 return true; 574 #endif 575 return false; 576 } 577 578 static inline void free_the_page(struct page *page, unsigned int order) 579 { 580 if (pcp_allowed_order(order)) /* Via pcp? */ 581 free_unref_page(page, order); 582 else 583 __free_pages_ok(page, order, FPI_NONE); 584 } 585 586 /* 587 * Higher-order pages are called "compound pages". They are structured thusly: 588 * 589 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 590 * 591 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 592 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 593 * 594 * The first tail page's ->compound_dtor holds the offset in array of compound 595 * page destructors. See compound_page_dtors. 596 * 597 * The first tail page's ->compound_order holds the order of allocation. 598 * This usage means that zero-order pages may not be compound. 599 */ 600 601 void free_compound_page(struct page *page) 602 { 603 mem_cgroup_uncharge(page_folio(page)); 604 free_the_page(page, compound_order(page)); 605 } 606 607 void prep_compound_page(struct page *page, unsigned int order) 608 { 609 int i; 610 int nr_pages = 1 << order; 611 612 __SetPageHead(page); 613 for (i = 1; i < nr_pages; i++) 614 prep_compound_tail(page, i); 615 616 prep_compound_head(page, order); 617 } 618 619 void destroy_large_folio(struct folio *folio) 620 { 621 enum compound_dtor_id dtor = folio->_folio_dtor; 622 623 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 624 compound_page_dtors[dtor](&folio->page); 625 } 626 627 static inline void set_buddy_order(struct page *page, unsigned int order) 628 { 629 set_page_private(page, order); 630 __SetPageBuddy(page); 631 } 632 633 #ifdef CONFIG_COMPACTION 634 static inline struct capture_control *task_capc(struct zone *zone) 635 { 636 struct capture_control *capc = current->capture_control; 637 638 return unlikely(capc) && 639 !(current->flags & PF_KTHREAD) && 640 !capc->page && 641 capc->cc->zone == zone ? capc : NULL; 642 } 643 644 static inline bool 645 compaction_capture(struct capture_control *capc, struct page *page, 646 int order, int migratetype) 647 { 648 if (!capc || order != capc->cc->order) 649 return false; 650 651 /* Do not accidentally pollute CMA or isolated regions*/ 652 if (is_migrate_cma(migratetype) || 653 is_migrate_isolate(migratetype)) 654 return false; 655 656 /* 657 * Do not let lower order allocations pollute a movable pageblock. 658 * This might let an unmovable request use a reclaimable pageblock 659 * and vice-versa but no more than normal fallback logic which can 660 * have trouble finding a high-order free page. 661 */ 662 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 663 return false; 664 665 capc->page = page; 666 return true; 667 } 668 669 #else 670 static inline struct capture_control *task_capc(struct zone *zone) 671 { 672 return NULL; 673 } 674 675 static inline bool 676 compaction_capture(struct capture_control *capc, struct page *page, 677 int order, int migratetype) 678 { 679 return false; 680 } 681 #endif /* CONFIG_COMPACTION */ 682 683 /* Used for pages not on another list */ 684 static inline void add_to_free_list(struct page *page, struct zone *zone, 685 unsigned int order, int migratetype) 686 { 687 struct free_area *area = &zone->free_area[order]; 688 689 list_add(&page->buddy_list, &area->free_list[migratetype]); 690 area->nr_free++; 691 } 692 693 /* Used for pages not on another list */ 694 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 695 unsigned int order, int migratetype) 696 { 697 struct free_area *area = &zone->free_area[order]; 698 699 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 700 area->nr_free++; 701 } 702 703 /* 704 * Used for pages which are on another list. Move the pages to the tail 705 * of the list - so the moved pages won't immediately be considered for 706 * allocation again (e.g., optimization for memory onlining). 707 */ 708 static inline void move_to_free_list(struct page *page, struct zone *zone, 709 unsigned int order, int migratetype) 710 { 711 struct free_area *area = &zone->free_area[order]; 712 713 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 714 } 715 716 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 717 unsigned int order) 718 { 719 /* clear reported state and update reported page count */ 720 if (page_reported(page)) 721 __ClearPageReported(page); 722 723 list_del(&page->buddy_list); 724 __ClearPageBuddy(page); 725 set_page_private(page, 0); 726 zone->free_area[order].nr_free--; 727 } 728 729 static inline struct page *get_page_from_free_area(struct free_area *area, 730 int migratetype) 731 { 732 return list_first_entry_or_null(&area->free_list[migratetype], 733 struct page, buddy_list); 734 } 735 736 /* 737 * If this is not the largest possible page, check if the buddy 738 * of the next-highest order is free. If it is, it's possible 739 * that pages are being freed that will coalesce soon. In case, 740 * that is happening, add the free page to the tail of the list 741 * so it's less likely to be used soon and more likely to be merged 742 * as a higher order page 743 */ 744 static inline bool 745 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 746 struct page *page, unsigned int order) 747 { 748 unsigned long higher_page_pfn; 749 struct page *higher_page; 750 751 if (order >= MAX_ORDER - 1) 752 return false; 753 754 higher_page_pfn = buddy_pfn & pfn; 755 higher_page = page + (higher_page_pfn - pfn); 756 757 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 758 NULL) != NULL; 759 } 760 761 /* 762 * Freeing function for a buddy system allocator. 763 * 764 * The concept of a buddy system is to maintain direct-mapped table 765 * (containing bit values) for memory blocks of various "orders". 766 * The bottom level table contains the map for the smallest allocatable 767 * units of memory (here, pages), and each level above it describes 768 * pairs of units from the levels below, hence, "buddies". 769 * At a high level, all that happens here is marking the table entry 770 * at the bottom level available, and propagating the changes upward 771 * as necessary, plus some accounting needed to play nicely with other 772 * parts of the VM system. 773 * At each level, we keep a list of pages, which are heads of continuous 774 * free pages of length of (1 << order) and marked with PageBuddy. 775 * Page's order is recorded in page_private(page) field. 776 * So when we are allocating or freeing one, we can derive the state of the 777 * other. That is, if we allocate a small block, and both were 778 * free, the remainder of the region must be split into blocks. 779 * If a block is freed, and its buddy is also free, then this 780 * triggers coalescing into a block of larger size. 781 * 782 * -- nyc 783 */ 784 785 static inline void __free_one_page(struct page *page, 786 unsigned long pfn, 787 struct zone *zone, unsigned int order, 788 int migratetype, fpi_t fpi_flags) 789 { 790 struct capture_control *capc = task_capc(zone); 791 unsigned long buddy_pfn = 0; 792 unsigned long combined_pfn; 793 struct page *buddy; 794 bool to_tail; 795 796 VM_BUG_ON(!zone_is_initialized(zone)); 797 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 798 799 VM_BUG_ON(migratetype == -1); 800 if (likely(!is_migrate_isolate(migratetype))) 801 __mod_zone_freepage_state(zone, 1 << order, migratetype); 802 803 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 804 VM_BUG_ON_PAGE(bad_range(zone, page), page); 805 806 while (order < MAX_ORDER) { 807 if (compaction_capture(capc, page, order, migratetype)) { 808 __mod_zone_freepage_state(zone, -(1 << order), 809 migratetype); 810 return; 811 } 812 813 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 814 if (!buddy) 815 goto done_merging; 816 817 if (unlikely(order >= pageblock_order)) { 818 /* 819 * We want to prevent merge between freepages on pageblock 820 * without fallbacks and normal pageblock. Without this, 821 * pageblock isolation could cause incorrect freepage or CMA 822 * accounting or HIGHATOMIC accounting. 823 */ 824 int buddy_mt = get_pageblock_migratetype(buddy); 825 826 if (migratetype != buddy_mt 827 && (!migratetype_is_mergeable(migratetype) || 828 !migratetype_is_mergeable(buddy_mt))) 829 goto done_merging; 830 } 831 832 /* 833 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 834 * merge with it and move up one order. 835 */ 836 if (page_is_guard(buddy)) 837 clear_page_guard(zone, buddy, order, migratetype); 838 else 839 del_page_from_free_list(buddy, zone, order); 840 combined_pfn = buddy_pfn & pfn; 841 page = page + (combined_pfn - pfn); 842 pfn = combined_pfn; 843 order++; 844 } 845 846 done_merging: 847 set_buddy_order(page, order); 848 849 if (fpi_flags & FPI_TO_TAIL) 850 to_tail = true; 851 else if (is_shuffle_order(order)) 852 to_tail = shuffle_pick_tail(); 853 else 854 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 855 856 if (to_tail) 857 add_to_free_list_tail(page, zone, order, migratetype); 858 else 859 add_to_free_list(page, zone, order, migratetype); 860 861 /* Notify page reporting subsystem of freed page */ 862 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 863 page_reporting_notify_free(order); 864 } 865 866 /** 867 * split_free_page() -- split a free page at split_pfn_offset 868 * @free_page: the original free page 869 * @order: the order of the page 870 * @split_pfn_offset: split offset within the page 871 * 872 * Return -ENOENT if the free page is changed, otherwise 0 873 * 874 * It is used when the free page crosses two pageblocks with different migratetypes 875 * at split_pfn_offset within the page. The split free page will be put into 876 * separate migratetype lists afterwards. Otherwise, the function achieves 877 * nothing. 878 */ 879 int split_free_page(struct page *free_page, 880 unsigned int order, unsigned long split_pfn_offset) 881 { 882 struct zone *zone = page_zone(free_page); 883 unsigned long free_page_pfn = page_to_pfn(free_page); 884 unsigned long pfn; 885 unsigned long flags; 886 int free_page_order; 887 int mt; 888 int ret = 0; 889 890 if (split_pfn_offset == 0) 891 return ret; 892 893 spin_lock_irqsave(&zone->lock, flags); 894 895 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 896 ret = -ENOENT; 897 goto out; 898 } 899 900 mt = get_pageblock_migratetype(free_page); 901 if (likely(!is_migrate_isolate(mt))) 902 __mod_zone_freepage_state(zone, -(1UL << order), mt); 903 904 del_page_from_free_list(free_page, zone, order); 905 for (pfn = free_page_pfn; 906 pfn < free_page_pfn + (1UL << order);) { 907 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 908 909 free_page_order = min_t(unsigned int, 910 pfn ? __ffs(pfn) : order, 911 __fls(split_pfn_offset)); 912 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 913 mt, FPI_NONE); 914 pfn += 1UL << free_page_order; 915 split_pfn_offset -= (1UL << free_page_order); 916 /* we have done the first part, now switch to second part */ 917 if (split_pfn_offset == 0) 918 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 919 } 920 out: 921 spin_unlock_irqrestore(&zone->lock, flags); 922 return ret; 923 } 924 /* 925 * A bad page could be due to a number of fields. Instead of multiple branches, 926 * try and check multiple fields with one check. The caller must do a detailed 927 * check if necessary. 928 */ 929 static inline bool page_expected_state(struct page *page, 930 unsigned long check_flags) 931 { 932 if (unlikely(atomic_read(&page->_mapcount) != -1)) 933 return false; 934 935 if (unlikely((unsigned long)page->mapping | 936 page_ref_count(page) | 937 #ifdef CONFIG_MEMCG 938 page->memcg_data | 939 #endif 940 (page->flags & check_flags))) 941 return false; 942 943 return true; 944 } 945 946 static const char *page_bad_reason(struct page *page, unsigned long flags) 947 { 948 const char *bad_reason = NULL; 949 950 if (unlikely(atomic_read(&page->_mapcount) != -1)) 951 bad_reason = "nonzero mapcount"; 952 if (unlikely(page->mapping != NULL)) 953 bad_reason = "non-NULL mapping"; 954 if (unlikely(page_ref_count(page) != 0)) 955 bad_reason = "nonzero _refcount"; 956 if (unlikely(page->flags & flags)) { 957 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 958 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 959 else 960 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 961 } 962 #ifdef CONFIG_MEMCG 963 if (unlikely(page->memcg_data)) 964 bad_reason = "page still charged to cgroup"; 965 #endif 966 return bad_reason; 967 } 968 969 static void free_page_is_bad_report(struct page *page) 970 { 971 bad_page(page, 972 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 973 } 974 975 static inline bool free_page_is_bad(struct page *page) 976 { 977 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 978 return false; 979 980 /* Something has gone sideways, find it */ 981 free_page_is_bad_report(page); 982 return true; 983 } 984 985 static inline bool is_check_pages_enabled(void) 986 { 987 return static_branch_unlikely(&check_pages_enabled); 988 } 989 990 static int free_tail_page_prepare(struct page *head_page, struct page *page) 991 { 992 struct folio *folio = (struct folio *)head_page; 993 int ret = 1; 994 995 /* 996 * We rely page->lru.next never has bit 0 set, unless the page 997 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 998 */ 999 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1000 1001 if (!is_check_pages_enabled()) { 1002 ret = 0; 1003 goto out; 1004 } 1005 switch (page - head_page) { 1006 case 1: 1007 /* the first tail page: these may be in place of ->mapping */ 1008 if (unlikely(folio_entire_mapcount(folio))) { 1009 bad_page(page, "nonzero entire_mapcount"); 1010 goto out; 1011 } 1012 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1013 bad_page(page, "nonzero nr_pages_mapped"); 1014 goto out; 1015 } 1016 if (unlikely(atomic_read(&folio->_pincount))) { 1017 bad_page(page, "nonzero pincount"); 1018 goto out; 1019 } 1020 break; 1021 case 2: 1022 /* 1023 * the second tail page: ->mapping is 1024 * deferred_list.next -- ignore value. 1025 */ 1026 break; 1027 default: 1028 if (page->mapping != TAIL_MAPPING) { 1029 bad_page(page, "corrupted mapping in tail page"); 1030 goto out; 1031 } 1032 break; 1033 } 1034 if (unlikely(!PageTail(page))) { 1035 bad_page(page, "PageTail not set"); 1036 goto out; 1037 } 1038 if (unlikely(compound_head(page) != head_page)) { 1039 bad_page(page, "compound_head not consistent"); 1040 goto out; 1041 } 1042 ret = 0; 1043 out: 1044 page->mapping = NULL; 1045 clear_compound_head(page); 1046 return ret; 1047 } 1048 1049 /* 1050 * Skip KASAN memory poisoning when either: 1051 * 1052 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1053 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1054 * using page tags instead (see below). 1055 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1056 * that error detection is disabled for accesses via the page address. 1057 * 1058 * Pages will have match-all tags in the following circumstances: 1059 * 1060 * 1. Pages are being initialized for the first time, including during deferred 1061 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1062 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1063 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1064 * 3. The allocation was excluded from being checked due to sampling, 1065 * see the call to kasan_unpoison_pages. 1066 * 1067 * Poisoning pages during deferred memory init will greatly lengthen the 1068 * process and cause problem in large memory systems as the deferred pages 1069 * initialization is done with interrupt disabled. 1070 * 1071 * Assuming that there will be no reference to those newly initialized 1072 * pages before they are ever allocated, this should have no effect on 1073 * KASAN memory tracking as the poison will be properly inserted at page 1074 * allocation time. The only corner case is when pages are allocated by 1075 * on-demand allocation and then freed again before the deferred pages 1076 * initialization is done, but this is not likely to happen. 1077 */ 1078 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1079 { 1080 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1081 return deferred_pages_enabled(); 1082 1083 return page_kasan_tag(page) == 0xff; 1084 } 1085 1086 static void kernel_init_pages(struct page *page, int numpages) 1087 { 1088 int i; 1089 1090 /* s390's use of memset() could override KASAN redzones. */ 1091 kasan_disable_current(); 1092 for (i = 0; i < numpages; i++) 1093 clear_highpage_kasan_tagged(page + i); 1094 kasan_enable_current(); 1095 } 1096 1097 static __always_inline bool free_pages_prepare(struct page *page, 1098 unsigned int order, fpi_t fpi_flags) 1099 { 1100 int bad = 0; 1101 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1102 bool init = want_init_on_free(); 1103 1104 VM_BUG_ON_PAGE(PageTail(page), page); 1105 1106 trace_mm_page_free(page, order); 1107 kmsan_free_page(page, order); 1108 1109 if (unlikely(PageHWPoison(page)) && !order) { 1110 /* 1111 * Do not let hwpoison pages hit pcplists/buddy 1112 * Untie memcg state and reset page's owner 1113 */ 1114 if (memcg_kmem_online() && PageMemcgKmem(page)) 1115 __memcg_kmem_uncharge_page(page, order); 1116 reset_page_owner(page, order); 1117 page_table_check_free(page, order); 1118 return false; 1119 } 1120 1121 /* 1122 * Check tail pages before head page information is cleared to 1123 * avoid checking PageCompound for order-0 pages. 1124 */ 1125 if (unlikely(order)) { 1126 bool compound = PageCompound(page); 1127 int i; 1128 1129 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1130 1131 if (compound) 1132 ClearPageHasHWPoisoned(page); 1133 for (i = 1; i < (1 << order); i++) { 1134 if (compound) 1135 bad += free_tail_page_prepare(page, page + i); 1136 if (is_check_pages_enabled()) { 1137 if (free_page_is_bad(page + i)) { 1138 bad++; 1139 continue; 1140 } 1141 } 1142 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1143 } 1144 } 1145 if (PageMappingFlags(page)) 1146 page->mapping = NULL; 1147 if (memcg_kmem_online() && PageMemcgKmem(page)) 1148 __memcg_kmem_uncharge_page(page, order); 1149 if (is_check_pages_enabled()) { 1150 if (free_page_is_bad(page)) 1151 bad++; 1152 if (bad) 1153 return false; 1154 } 1155 1156 page_cpupid_reset_last(page); 1157 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1158 reset_page_owner(page, order); 1159 page_table_check_free(page, order); 1160 1161 if (!PageHighMem(page)) { 1162 debug_check_no_locks_freed(page_address(page), 1163 PAGE_SIZE << order); 1164 debug_check_no_obj_freed(page_address(page), 1165 PAGE_SIZE << order); 1166 } 1167 1168 kernel_poison_pages(page, 1 << order); 1169 1170 /* 1171 * As memory initialization might be integrated into KASAN, 1172 * KASAN poisoning and memory initialization code must be 1173 * kept together to avoid discrepancies in behavior. 1174 * 1175 * With hardware tag-based KASAN, memory tags must be set before the 1176 * page becomes unavailable via debug_pagealloc or arch_free_page. 1177 */ 1178 if (!skip_kasan_poison) { 1179 kasan_poison_pages(page, order, init); 1180 1181 /* Memory is already initialized if KASAN did it internally. */ 1182 if (kasan_has_integrated_init()) 1183 init = false; 1184 } 1185 if (init) 1186 kernel_init_pages(page, 1 << order); 1187 1188 /* 1189 * arch_free_page() can make the page's contents inaccessible. s390 1190 * does this. So nothing which can access the page's contents should 1191 * happen after this. 1192 */ 1193 arch_free_page(page, order); 1194 1195 debug_pagealloc_unmap_pages(page, 1 << order); 1196 1197 return true; 1198 } 1199 1200 /* 1201 * Frees a number of pages from the PCP lists 1202 * Assumes all pages on list are in same zone. 1203 * count is the number of pages to free. 1204 */ 1205 static void free_pcppages_bulk(struct zone *zone, int count, 1206 struct per_cpu_pages *pcp, 1207 int pindex) 1208 { 1209 unsigned long flags; 1210 int min_pindex = 0; 1211 int max_pindex = NR_PCP_LISTS - 1; 1212 unsigned int order; 1213 bool isolated_pageblocks; 1214 struct page *page; 1215 1216 /* 1217 * Ensure proper count is passed which otherwise would stuck in the 1218 * below while (list_empty(list)) loop. 1219 */ 1220 count = min(pcp->count, count); 1221 1222 /* Ensure requested pindex is drained first. */ 1223 pindex = pindex - 1; 1224 1225 spin_lock_irqsave(&zone->lock, flags); 1226 isolated_pageblocks = has_isolate_pageblock(zone); 1227 1228 while (count > 0) { 1229 struct list_head *list; 1230 int nr_pages; 1231 1232 /* Remove pages from lists in a round-robin fashion. */ 1233 do { 1234 if (++pindex > max_pindex) 1235 pindex = min_pindex; 1236 list = &pcp->lists[pindex]; 1237 if (!list_empty(list)) 1238 break; 1239 1240 if (pindex == max_pindex) 1241 max_pindex--; 1242 if (pindex == min_pindex) 1243 min_pindex++; 1244 } while (1); 1245 1246 order = pindex_to_order(pindex); 1247 nr_pages = 1 << order; 1248 do { 1249 int mt; 1250 1251 page = list_last_entry(list, struct page, pcp_list); 1252 mt = get_pcppage_migratetype(page); 1253 1254 /* must delete to avoid corrupting pcp list */ 1255 list_del(&page->pcp_list); 1256 count -= nr_pages; 1257 pcp->count -= nr_pages; 1258 1259 /* MIGRATE_ISOLATE page should not go to pcplists */ 1260 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1261 /* Pageblock could have been isolated meanwhile */ 1262 if (unlikely(isolated_pageblocks)) 1263 mt = get_pageblock_migratetype(page); 1264 1265 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1266 trace_mm_page_pcpu_drain(page, order, mt); 1267 } while (count > 0 && !list_empty(list)); 1268 } 1269 1270 spin_unlock_irqrestore(&zone->lock, flags); 1271 } 1272 1273 static void free_one_page(struct zone *zone, 1274 struct page *page, unsigned long pfn, 1275 unsigned int order, 1276 int migratetype, fpi_t fpi_flags) 1277 { 1278 unsigned long flags; 1279 1280 spin_lock_irqsave(&zone->lock, flags); 1281 if (unlikely(has_isolate_pageblock(zone) || 1282 is_migrate_isolate(migratetype))) { 1283 migratetype = get_pfnblock_migratetype(page, pfn); 1284 } 1285 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1286 spin_unlock_irqrestore(&zone->lock, flags); 1287 } 1288 1289 static void __free_pages_ok(struct page *page, unsigned int order, 1290 fpi_t fpi_flags) 1291 { 1292 unsigned long flags; 1293 int migratetype; 1294 unsigned long pfn = page_to_pfn(page); 1295 struct zone *zone = page_zone(page); 1296 1297 if (!free_pages_prepare(page, order, fpi_flags)) 1298 return; 1299 1300 /* 1301 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1302 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1303 * This will reduce the lock holding time. 1304 */ 1305 migratetype = get_pfnblock_migratetype(page, pfn); 1306 1307 spin_lock_irqsave(&zone->lock, flags); 1308 if (unlikely(has_isolate_pageblock(zone) || 1309 is_migrate_isolate(migratetype))) { 1310 migratetype = get_pfnblock_migratetype(page, pfn); 1311 } 1312 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1313 spin_unlock_irqrestore(&zone->lock, flags); 1314 1315 __count_vm_events(PGFREE, 1 << order); 1316 } 1317 1318 void __free_pages_core(struct page *page, unsigned int order) 1319 { 1320 unsigned int nr_pages = 1 << order; 1321 struct page *p = page; 1322 unsigned int loop; 1323 1324 /* 1325 * When initializing the memmap, __init_single_page() sets the refcount 1326 * of all pages to 1 ("allocated"/"not free"). We have to set the 1327 * refcount of all involved pages to 0. 1328 */ 1329 prefetchw(p); 1330 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1331 prefetchw(p + 1); 1332 __ClearPageReserved(p); 1333 set_page_count(p, 0); 1334 } 1335 __ClearPageReserved(p); 1336 set_page_count(p, 0); 1337 1338 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1339 1340 if (page_contains_unaccepted(page, order)) { 1341 if (order == MAX_ORDER && __free_unaccepted(page)) 1342 return; 1343 1344 accept_page(page, order); 1345 } 1346 1347 /* 1348 * Bypass PCP and place fresh pages right to the tail, primarily 1349 * relevant for memory onlining. 1350 */ 1351 __free_pages_ok(page, order, FPI_TO_TAIL); 1352 } 1353 1354 /* 1355 * Check that the whole (or subset of) a pageblock given by the interval of 1356 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1357 * with the migration of free compaction scanner. 1358 * 1359 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1360 * 1361 * It's possible on some configurations to have a setup like node0 node1 node0 1362 * i.e. it's possible that all pages within a zones range of pages do not 1363 * belong to a single zone. We assume that a border between node0 and node1 1364 * can occur within a single pageblock, but not a node0 node1 node0 1365 * interleaving within a single pageblock. It is therefore sufficient to check 1366 * the first and last page of a pageblock and avoid checking each individual 1367 * page in a pageblock. 1368 * 1369 * Note: the function may return non-NULL struct page even for a page block 1370 * which contains a memory hole (i.e. there is no physical memory for a subset 1371 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which 1372 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1373 * even though the start pfn is online and valid. This should be safe most of 1374 * the time because struct pages are still initialized via init_unavailable_range() 1375 * and pfn walkers shouldn't touch any physical memory range for which they do 1376 * not recognize any specific metadata in struct pages. 1377 */ 1378 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1379 unsigned long end_pfn, struct zone *zone) 1380 { 1381 struct page *start_page; 1382 struct page *end_page; 1383 1384 /* end_pfn is one past the range we are checking */ 1385 end_pfn--; 1386 1387 if (!pfn_valid(end_pfn)) 1388 return NULL; 1389 1390 start_page = pfn_to_online_page(start_pfn); 1391 if (!start_page) 1392 return NULL; 1393 1394 if (page_zone(start_page) != zone) 1395 return NULL; 1396 1397 end_page = pfn_to_page(end_pfn); 1398 1399 /* This gives a shorter code than deriving page_zone(end_page) */ 1400 if (page_zone_id(start_page) != page_zone_id(end_page)) 1401 return NULL; 1402 1403 return start_page; 1404 } 1405 1406 /* 1407 * The order of subdivision here is critical for the IO subsystem. 1408 * Please do not alter this order without good reasons and regression 1409 * testing. Specifically, as large blocks of memory are subdivided, 1410 * the order in which smaller blocks are delivered depends on the order 1411 * they're subdivided in this function. This is the primary factor 1412 * influencing the order in which pages are delivered to the IO 1413 * subsystem according to empirical testing, and this is also justified 1414 * by considering the behavior of a buddy system containing a single 1415 * large block of memory acted on by a series of small allocations. 1416 * This behavior is a critical factor in sglist merging's success. 1417 * 1418 * -- nyc 1419 */ 1420 static inline void expand(struct zone *zone, struct page *page, 1421 int low, int high, int migratetype) 1422 { 1423 unsigned long size = 1 << high; 1424 1425 while (high > low) { 1426 high--; 1427 size >>= 1; 1428 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1429 1430 /* 1431 * Mark as guard pages (or page), that will allow to 1432 * merge back to allocator when buddy will be freed. 1433 * Corresponding page table entries will not be touched, 1434 * pages will stay not present in virtual address space 1435 */ 1436 if (set_page_guard(zone, &page[size], high, migratetype)) 1437 continue; 1438 1439 add_to_free_list(&page[size], zone, high, migratetype); 1440 set_buddy_order(&page[size], high); 1441 } 1442 } 1443 1444 static void check_new_page_bad(struct page *page) 1445 { 1446 if (unlikely(page->flags & __PG_HWPOISON)) { 1447 /* Don't complain about hwpoisoned pages */ 1448 page_mapcount_reset(page); /* remove PageBuddy */ 1449 return; 1450 } 1451 1452 bad_page(page, 1453 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1454 } 1455 1456 /* 1457 * This page is about to be returned from the page allocator 1458 */ 1459 static int check_new_page(struct page *page) 1460 { 1461 if (likely(page_expected_state(page, 1462 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1463 return 0; 1464 1465 check_new_page_bad(page); 1466 return 1; 1467 } 1468 1469 static inline bool check_new_pages(struct page *page, unsigned int order) 1470 { 1471 if (is_check_pages_enabled()) { 1472 for (int i = 0; i < (1 << order); i++) { 1473 struct page *p = page + i; 1474 1475 if (check_new_page(p)) 1476 return true; 1477 } 1478 } 1479 1480 return false; 1481 } 1482 1483 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1484 { 1485 /* Don't skip if a software KASAN mode is enabled. */ 1486 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1487 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1488 return false; 1489 1490 /* Skip, if hardware tag-based KASAN is not enabled. */ 1491 if (!kasan_hw_tags_enabled()) 1492 return true; 1493 1494 /* 1495 * With hardware tag-based KASAN enabled, skip if this has been 1496 * requested via __GFP_SKIP_KASAN. 1497 */ 1498 return flags & __GFP_SKIP_KASAN; 1499 } 1500 1501 static inline bool should_skip_init(gfp_t flags) 1502 { 1503 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1504 if (!kasan_hw_tags_enabled()) 1505 return false; 1506 1507 /* For hardware tag-based KASAN, skip if requested. */ 1508 return (flags & __GFP_SKIP_ZERO); 1509 } 1510 1511 inline void post_alloc_hook(struct page *page, unsigned int order, 1512 gfp_t gfp_flags) 1513 { 1514 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1515 !should_skip_init(gfp_flags); 1516 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1517 int i; 1518 1519 set_page_private(page, 0); 1520 set_page_refcounted(page); 1521 1522 arch_alloc_page(page, order); 1523 debug_pagealloc_map_pages(page, 1 << order); 1524 1525 /* 1526 * Page unpoisoning must happen before memory initialization. 1527 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1528 * allocations and the page unpoisoning code will complain. 1529 */ 1530 kernel_unpoison_pages(page, 1 << order); 1531 1532 /* 1533 * As memory initialization might be integrated into KASAN, 1534 * KASAN unpoisoning and memory initializion code must be 1535 * kept together to avoid discrepancies in behavior. 1536 */ 1537 1538 /* 1539 * If memory tags should be zeroed 1540 * (which happens only when memory should be initialized as well). 1541 */ 1542 if (zero_tags) { 1543 /* Initialize both memory and memory tags. */ 1544 for (i = 0; i != 1 << order; ++i) 1545 tag_clear_highpage(page + i); 1546 1547 /* Take note that memory was initialized by the loop above. */ 1548 init = false; 1549 } 1550 if (!should_skip_kasan_unpoison(gfp_flags) && 1551 kasan_unpoison_pages(page, order, init)) { 1552 /* Take note that memory was initialized by KASAN. */ 1553 if (kasan_has_integrated_init()) 1554 init = false; 1555 } else { 1556 /* 1557 * If memory tags have not been set by KASAN, reset the page 1558 * tags to ensure page_address() dereferencing does not fault. 1559 */ 1560 for (i = 0; i != 1 << order; ++i) 1561 page_kasan_tag_reset(page + i); 1562 } 1563 /* If memory is still not initialized, initialize it now. */ 1564 if (init) 1565 kernel_init_pages(page, 1 << order); 1566 1567 set_page_owner(page, order, gfp_flags); 1568 page_table_check_alloc(page, order); 1569 } 1570 1571 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1572 unsigned int alloc_flags) 1573 { 1574 post_alloc_hook(page, order, gfp_flags); 1575 1576 if (order && (gfp_flags & __GFP_COMP)) 1577 prep_compound_page(page, order); 1578 1579 /* 1580 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1581 * allocate the page. The expectation is that the caller is taking 1582 * steps that will free more memory. The caller should avoid the page 1583 * being used for !PFMEMALLOC purposes. 1584 */ 1585 if (alloc_flags & ALLOC_NO_WATERMARKS) 1586 set_page_pfmemalloc(page); 1587 else 1588 clear_page_pfmemalloc(page); 1589 } 1590 1591 /* 1592 * Go through the free lists for the given migratetype and remove 1593 * the smallest available page from the freelists 1594 */ 1595 static __always_inline 1596 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1597 int migratetype) 1598 { 1599 unsigned int current_order; 1600 struct free_area *area; 1601 struct page *page; 1602 1603 /* Find a page of the appropriate size in the preferred list */ 1604 for (current_order = order; current_order <= MAX_ORDER; ++current_order) { 1605 area = &(zone->free_area[current_order]); 1606 page = get_page_from_free_area(area, migratetype); 1607 if (!page) 1608 continue; 1609 del_page_from_free_list(page, zone, current_order); 1610 expand(zone, page, order, current_order, migratetype); 1611 set_pcppage_migratetype(page, migratetype); 1612 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1613 pcp_allowed_order(order) && 1614 migratetype < MIGRATE_PCPTYPES); 1615 return page; 1616 } 1617 1618 return NULL; 1619 } 1620 1621 1622 /* 1623 * This array describes the order lists are fallen back to when 1624 * the free lists for the desirable migrate type are depleted 1625 * 1626 * The other migratetypes do not have fallbacks. 1627 */ 1628 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1629 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1630 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1631 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1632 }; 1633 1634 #ifdef CONFIG_CMA 1635 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1636 unsigned int order) 1637 { 1638 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1639 } 1640 #else 1641 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1642 unsigned int order) { return NULL; } 1643 #endif 1644 1645 /* 1646 * Move the free pages in a range to the freelist tail of the requested type. 1647 * Note that start_page and end_pages are not aligned on a pageblock 1648 * boundary. If alignment is required, use move_freepages_block() 1649 */ 1650 static int move_freepages(struct zone *zone, 1651 unsigned long start_pfn, unsigned long end_pfn, 1652 int migratetype, int *num_movable) 1653 { 1654 struct page *page; 1655 unsigned long pfn; 1656 unsigned int order; 1657 int pages_moved = 0; 1658 1659 for (pfn = start_pfn; pfn <= end_pfn;) { 1660 page = pfn_to_page(pfn); 1661 if (!PageBuddy(page)) { 1662 /* 1663 * We assume that pages that could be isolated for 1664 * migration are movable. But we don't actually try 1665 * isolating, as that would be expensive. 1666 */ 1667 if (num_movable && 1668 (PageLRU(page) || __PageMovable(page))) 1669 (*num_movable)++; 1670 pfn++; 1671 continue; 1672 } 1673 1674 /* Make sure we are not inadvertently changing nodes */ 1675 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1676 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1677 1678 order = buddy_order(page); 1679 move_to_free_list(page, zone, order, migratetype); 1680 pfn += 1 << order; 1681 pages_moved += 1 << order; 1682 } 1683 1684 return pages_moved; 1685 } 1686 1687 int move_freepages_block(struct zone *zone, struct page *page, 1688 int migratetype, int *num_movable) 1689 { 1690 unsigned long start_pfn, end_pfn, pfn; 1691 1692 if (num_movable) 1693 *num_movable = 0; 1694 1695 pfn = page_to_pfn(page); 1696 start_pfn = pageblock_start_pfn(pfn); 1697 end_pfn = pageblock_end_pfn(pfn) - 1; 1698 1699 /* Do not cross zone boundaries */ 1700 if (!zone_spans_pfn(zone, start_pfn)) 1701 start_pfn = pfn; 1702 if (!zone_spans_pfn(zone, end_pfn)) 1703 return 0; 1704 1705 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1706 num_movable); 1707 } 1708 1709 static void change_pageblock_range(struct page *pageblock_page, 1710 int start_order, int migratetype) 1711 { 1712 int nr_pageblocks = 1 << (start_order - pageblock_order); 1713 1714 while (nr_pageblocks--) { 1715 set_pageblock_migratetype(pageblock_page, migratetype); 1716 pageblock_page += pageblock_nr_pages; 1717 } 1718 } 1719 1720 /* 1721 * When we are falling back to another migratetype during allocation, try to 1722 * steal extra free pages from the same pageblocks to satisfy further 1723 * allocations, instead of polluting multiple pageblocks. 1724 * 1725 * If we are stealing a relatively large buddy page, it is likely there will 1726 * be more free pages in the pageblock, so try to steal them all. For 1727 * reclaimable and unmovable allocations, we steal regardless of page size, 1728 * as fragmentation caused by those allocations polluting movable pageblocks 1729 * is worse than movable allocations stealing from unmovable and reclaimable 1730 * pageblocks. 1731 */ 1732 static bool can_steal_fallback(unsigned int order, int start_mt) 1733 { 1734 /* 1735 * Leaving this order check is intended, although there is 1736 * relaxed order check in next check. The reason is that 1737 * we can actually steal whole pageblock if this condition met, 1738 * but, below check doesn't guarantee it and that is just heuristic 1739 * so could be changed anytime. 1740 */ 1741 if (order >= pageblock_order) 1742 return true; 1743 1744 if (order >= pageblock_order / 2 || 1745 start_mt == MIGRATE_RECLAIMABLE || 1746 start_mt == MIGRATE_UNMOVABLE || 1747 page_group_by_mobility_disabled) 1748 return true; 1749 1750 return false; 1751 } 1752 1753 static inline bool boost_watermark(struct zone *zone) 1754 { 1755 unsigned long max_boost; 1756 1757 if (!watermark_boost_factor) 1758 return false; 1759 /* 1760 * Don't bother in zones that are unlikely to produce results. 1761 * On small machines, including kdump capture kernels running 1762 * in a small area, boosting the watermark can cause an out of 1763 * memory situation immediately. 1764 */ 1765 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1766 return false; 1767 1768 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1769 watermark_boost_factor, 10000); 1770 1771 /* 1772 * high watermark may be uninitialised if fragmentation occurs 1773 * very early in boot so do not boost. We do not fall 1774 * through and boost by pageblock_nr_pages as failing 1775 * allocations that early means that reclaim is not going 1776 * to help and it may even be impossible to reclaim the 1777 * boosted watermark resulting in a hang. 1778 */ 1779 if (!max_boost) 1780 return false; 1781 1782 max_boost = max(pageblock_nr_pages, max_boost); 1783 1784 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1785 max_boost); 1786 1787 return true; 1788 } 1789 1790 /* 1791 * This function implements actual steal behaviour. If order is large enough, 1792 * we can steal whole pageblock. If not, we first move freepages in this 1793 * pageblock to our migratetype and determine how many already-allocated pages 1794 * are there in the pageblock with a compatible migratetype. If at least half 1795 * of pages are free or compatible, we can change migratetype of the pageblock 1796 * itself, so pages freed in the future will be put on the correct free list. 1797 */ 1798 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1799 unsigned int alloc_flags, int start_type, bool whole_block) 1800 { 1801 unsigned int current_order = buddy_order(page); 1802 int free_pages, movable_pages, alike_pages; 1803 int old_block_type; 1804 1805 old_block_type = get_pageblock_migratetype(page); 1806 1807 /* 1808 * This can happen due to races and we want to prevent broken 1809 * highatomic accounting. 1810 */ 1811 if (is_migrate_highatomic(old_block_type)) 1812 goto single_page; 1813 1814 /* Take ownership for orders >= pageblock_order */ 1815 if (current_order >= pageblock_order) { 1816 change_pageblock_range(page, current_order, start_type); 1817 goto single_page; 1818 } 1819 1820 /* 1821 * Boost watermarks to increase reclaim pressure to reduce the 1822 * likelihood of future fallbacks. Wake kswapd now as the node 1823 * may be balanced overall and kswapd will not wake naturally. 1824 */ 1825 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1826 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1827 1828 /* We are not allowed to try stealing from the whole block */ 1829 if (!whole_block) 1830 goto single_page; 1831 1832 free_pages = move_freepages_block(zone, page, start_type, 1833 &movable_pages); 1834 /* moving whole block can fail due to zone boundary conditions */ 1835 if (!free_pages) 1836 goto single_page; 1837 1838 /* 1839 * Determine how many pages are compatible with our allocation. 1840 * For movable allocation, it's the number of movable pages which 1841 * we just obtained. For other types it's a bit more tricky. 1842 */ 1843 if (start_type == MIGRATE_MOVABLE) { 1844 alike_pages = movable_pages; 1845 } else { 1846 /* 1847 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1848 * to MOVABLE pageblock, consider all non-movable pages as 1849 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1850 * vice versa, be conservative since we can't distinguish the 1851 * exact migratetype of non-movable pages. 1852 */ 1853 if (old_block_type == MIGRATE_MOVABLE) 1854 alike_pages = pageblock_nr_pages 1855 - (free_pages + movable_pages); 1856 else 1857 alike_pages = 0; 1858 } 1859 /* 1860 * If a sufficient number of pages in the block are either free or of 1861 * compatible migratability as our allocation, claim the whole block. 1862 */ 1863 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1864 page_group_by_mobility_disabled) 1865 set_pageblock_migratetype(page, start_type); 1866 1867 return; 1868 1869 single_page: 1870 move_to_free_list(page, zone, current_order, start_type); 1871 } 1872 1873 /* 1874 * Check whether there is a suitable fallback freepage with requested order. 1875 * If only_stealable is true, this function returns fallback_mt only if 1876 * we can steal other freepages all together. This would help to reduce 1877 * fragmentation due to mixed migratetype pages in one pageblock. 1878 */ 1879 int find_suitable_fallback(struct free_area *area, unsigned int order, 1880 int migratetype, bool only_stealable, bool *can_steal) 1881 { 1882 int i; 1883 int fallback_mt; 1884 1885 if (area->nr_free == 0) 1886 return -1; 1887 1888 *can_steal = false; 1889 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1890 fallback_mt = fallbacks[migratetype][i]; 1891 if (free_area_empty(area, fallback_mt)) 1892 continue; 1893 1894 if (can_steal_fallback(order, migratetype)) 1895 *can_steal = true; 1896 1897 if (!only_stealable) 1898 return fallback_mt; 1899 1900 if (*can_steal) 1901 return fallback_mt; 1902 } 1903 1904 return -1; 1905 } 1906 1907 /* 1908 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1909 * there are no empty page blocks that contain a page with a suitable order 1910 */ 1911 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 1912 unsigned int alloc_order) 1913 { 1914 int mt; 1915 unsigned long max_managed, flags; 1916 1917 /* 1918 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1919 * Check is race-prone but harmless. 1920 */ 1921 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 1922 if (zone->nr_reserved_highatomic >= max_managed) 1923 return; 1924 1925 spin_lock_irqsave(&zone->lock, flags); 1926 1927 /* Recheck the nr_reserved_highatomic limit under the lock */ 1928 if (zone->nr_reserved_highatomic >= max_managed) 1929 goto out_unlock; 1930 1931 /* Yoink! */ 1932 mt = get_pageblock_migratetype(page); 1933 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1934 if (migratetype_is_mergeable(mt)) { 1935 zone->nr_reserved_highatomic += pageblock_nr_pages; 1936 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1937 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1938 } 1939 1940 out_unlock: 1941 spin_unlock_irqrestore(&zone->lock, flags); 1942 } 1943 1944 /* 1945 * Used when an allocation is about to fail under memory pressure. This 1946 * potentially hurts the reliability of high-order allocations when under 1947 * intense memory pressure but failed atomic allocations should be easier 1948 * to recover from than an OOM. 1949 * 1950 * If @force is true, try to unreserve a pageblock even though highatomic 1951 * pageblock is exhausted. 1952 */ 1953 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1954 bool force) 1955 { 1956 struct zonelist *zonelist = ac->zonelist; 1957 unsigned long flags; 1958 struct zoneref *z; 1959 struct zone *zone; 1960 struct page *page; 1961 int order; 1962 bool ret; 1963 1964 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1965 ac->nodemask) { 1966 /* 1967 * Preserve at least one pageblock unless memory pressure 1968 * is really high. 1969 */ 1970 if (!force && zone->nr_reserved_highatomic <= 1971 pageblock_nr_pages) 1972 continue; 1973 1974 spin_lock_irqsave(&zone->lock, flags); 1975 for (order = 0; order <= MAX_ORDER; order++) { 1976 struct free_area *area = &(zone->free_area[order]); 1977 1978 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1979 if (!page) 1980 continue; 1981 1982 /* 1983 * In page freeing path, migratetype change is racy so 1984 * we can counter several free pages in a pageblock 1985 * in this loop although we changed the pageblock type 1986 * from highatomic to ac->migratetype. So we should 1987 * adjust the count once. 1988 */ 1989 if (is_migrate_highatomic_page(page)) { 1990 /* 1991 * It should never happen but changes to 1992 * locking could inadvertently allow a per-cpu 1993 * drain to add pages to MIGRATE_HIGHATOMIC 1994 * while unreserving so be safe and watch for 1995 * underflows. 1996 */ 1997 zone->nr_reserved_highatomic -= min( 1998 pageblock_nr_pages, 1999 zone->nr_reserved_highatomic); 2000 } 2001 2002 /* 2003 * Convert to ac->migratetype and avoid the normal 2004 * pageblock stealing heuristics. Minimally, the caller 2005 * is doing the work and needs the pages. More 2006 * importantly, if the block was always converted to 2007 * MIGRATE_UNMOVABLE or another type then the number 2008 * of pageblocks that cannot be completely freed 2009 * may increase. 2010 */ 2011 set_pageblock_migratetype(page, ac->migratetype); 2012 ret = move_freepages_block(zone, page, ac->migratetype, 2013 NULL); 2014 if (ret) { 2015 spin_unlock_irqrestore(&zone->lock, flags); 2016 return ret; 2017 } 2018 } 2019 spin_unlock_irqrestore(&zone->lock, flags); 2020 } 2021 2022 return false; 2023 } 2024 2025 /* 2026 * Try finding a free buddy page on the fallback list and put it on the free 2027 * list of requested migratetype, possibly along with other pages from the same 2028 * block, depending on fragmentation avoidance heuristics. Returns true if 2029 * fallback was found so that __rmqueue_smallest() can grab it. 2030 * 2031 * The use of signed ints for order and current_order is a deliberate 2032 * deviation from the rest of this file, to make the for loop 2033 * condition simpler. 2034 */ 2035 static __always_inline bool 2036 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2037 unsigned int alloc_flags) 2038 { 2039 struct free_area *area; 2040 int current_order; 2041 int min_order = order; 2042 struct page *page; 2043 int fallback_mt; 2044 bool can_steal; 2045 2046 /* 2047 * Do not steal pages from freelists belonging to other pageblocks 2048 * i.e. orders < pageblock_order. If there are no local zones free, 2049 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2050 */ 2051 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2052 min_order = pageblock_order; 2053 2054 /* 2055 * Find the largest available free page in the other list. This roughly 2056 * approximates finding the pageblock with the most free pages, which 2057 * would be too costly to do exactly. 2058 */ 2059 for (current_order = MAX_ORDER; current_order >= min_order; 2060 --current_order) { 2061 area = &(zone->free_area[current_order]); 2062 fallback_mt = find_suitable_fallback(area, current_order, 2063 start_migratetype, false, &can_steal); 2064 if (fallback_mt == -1) 2065 continue; 2066 2067 /* 2068 * We cannot steal all free pages from the pageblock and the 2069 * requested migratetype is movable. In that case it's better to 2070 * steal and split the smallest available page instead of the 2071 * largest available page, because even if the next movable 2072 * allocation falls back into a different pageblock than this 2073 * one, it won't cause permanent fragmentation. 2074 */ 2075 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2076 && current_order > order) 2077 goto find_smallest; 2078 2079 goto do_steal; 2080 } 2081 2082 return false; 2083 2084 find_smallest: 2085 for (current_order = order; current_order <= MAX_ORDER; 2086 current_order++) { 2087 area = &(zone->free_area[current_order]); 2088 fallback_mt = find_suitable_fallback(area, current_order, 2089 start_migratetype, false, &can_steal); 2090 if (fallback_mt != -1) 2091 break; 2092 } 2093 2094 /* 2095 * This should not happen - we already found a suitable fallback 2096 * when looking for the largest page. 2097 */ 2098 VM_BUG_ON(current_order > MAX_ORDER); 2099 2100 do_steal: 2101 page = get_page_from_free_area(area, fallback_mt); 2102 2103 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2104 can_steal); 2105 2106 trace_mm_page_alloc_extfrag(page, order, current_order, 2107 start_migratetype, fallback_mt); 2108 2109 return true; 2110 2111 } 2112 2113 /* 2114 * Do the hard work of removing an element from the buddy allocator. 2115 * Call me with the zone->lock already held. 2116 */ 2117 static __always_inline struct page * 2118 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2119 unsigned int alloc_flags) 2120 { 2121 struct page *page; 2122 2123 if (IS_ENABLED(CONFIG_CMA)) { 2124 /* 2125 * Balance movable allocations between regular and CMA areas by 2126 * allocating from CMA when over half of the zone's free memory 2127 * is in the CMA area. 2128 */ 2129 if (alloc_flags & ALLOC_CMA && 2130 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2131 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2132 page = __rmqueue_cma_fallback(zone, order); 2133 if (page) 2134 return page; 2135 } 2136 } 2137 retry: 2138 page = __rmqueue_smallest(zone, order, migratetype); 2139 if (unlikely(!page)) { 2140 if (alloc_flags & ALLOC_CMA) 2141 page = __rmqueue_cma_fallback(zone, order); 2142 2143 if (!page && __rmqueue_fallback(zone, order, migratetype, 2144 alloc_flags)) 2145 goto retry; 2146 } 2147 return page; 2148 } 2149 2150 /* 2151 * Obtain a specified number of elements from the buddy allocator, all under 2152 * a single hold of the lock, for efficiency. Add them to the supplied list. 2153 * Returns the number of new pages which were placed at *list. 2154 */ 2155 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2156 unsigned long count, struct list_head *list, 2157 int migratetype, unsigned int alloc_flags) 2158 { 2159 unsigned long flags; 2160 int i; 2161 2162 spin_lock_irqsave(&zone->lock, flags); 2163 for (i = 0; i < count; ++i) { 2164 struct page *page = __rmqueue(zone, order, migratetype, 2165 alloc_flags); 2166 if (unlikely(page == NULL)) 2167 break; 2168 2169 /* 2170 * Split buddy pages returned by expand() are received here in 2171 * physical page order. The page is added to the tail of 2172 * caller's list. From the callers perspective, the linked list 2173 * is ordered by page number under some conditions. This is 2174 * useful for IO devices that can forward direction from the 2175 * head, thus also in the physical page order. This is useful 2176 * for IO devices that can merge IO requests if the physical 2177 * pages are ordered properly. 2178 */ 2179 list_add_tail(&page->pcp_list, list); 2180 if (is_migrate_cma(get_pcppage_migratetype(page))) 2181 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2182 -(1 << order)); 2183 } 2184 2185 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2186 spin_unlock_irqrestore(&zone->lock, flags); 2187 2188 return i; 2189 } 2190 2191 #ifdef CONFIG_NUMA 2192 /* 2193 * Called from the vmstat counter updater to drain pagesets of this 2194 * currently executing processor on remote nodes after they have 2195 * expired. 2196 */ 2197 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2198 { 2199 int to_drain, batch; 2200 2201 batch = READ_ONCE(pcp->batch); 2202 to_drain = min(pcp->count, batch); 2203 if (to_drain > 0) { 2204 spin_lock(&pcp->lock); 2205 free_pcppages_bulk(zone, to_drain, pcp, 0); 2206 spin_unlock(&pcp->lock); 2207 } 2208 } 2209 #endif 2210 2211 /* 2212 * Drain pcplists of the indicated processor and zone. 2213 */ 2214 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2215 { 2216 struct per_cpu_pages *pcp; 2217 2218 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2219 if (pcp->count) { 2220 spin_lock(&pcp->lock); 2221 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2222 spin_unlock(&pcp->lock); 2223 } 2224 } 2225 2226 /* 2227 * Drain pcplists of all zones on the indicated processor. 2228 */ 2229 static void drain_pages(unsigned int cpu) 2230 { 2231 struct zone *zone; 2232 2233 for_each_populated_zone(zone) { 2234 drain_pages_zone(cpu, zone); 2235 } 2236 } 2237 2238 /* 2239 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2240 */ 2241 void drain_local_pages(struct zone *zone) 2242 { 2243 int cpu = smp_processor_id(); 2244 2245 if (zone) 2246 drain_pages_zone(cpu, zone); 2247 else 2248 drain_pages(cpu); 2249 } 2250 2251 /* 2252 * The implementation of drain_all_pages(), exposing an extra parameter to 2253 * drain on all cpus. 2254 * 2255 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2256 * not empty. The check for non-emptiness can however race with a free to 2257 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2258 * that need the guarantee that every CPU has drained can disable the 2259 * optimizing racy check. 2260 */ 2261 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2262 { 2263 int cpu; 2264 2265 /* 2266 * Allocate in the BSS so we won't require allocation in 2267 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2268 */ 2269 static cpumask_t cpus_with_pcps; 2270 2271 /* 2272 * Do not drain if one is already in progress unless it's specific to 2273 * a zone. Such callers are primarily CMA and memory hotplug and need 2274 * the drain to be complete when the call returns. 2275 */ 2276 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2277 if (!zone) 2278 return; 2279 mutex_lock(&pcpu_drain_mutex); 2280 } 2281 2282 /* 2283 * We don't care about racing with CPU hotplug event 2284 * as offline notification will cause the notified 2285 * cpu to drain that CPU pcps and on_each_cpu_mask 2286 * disables preemption as part of its processing 2287 */ 2288 for_each_online_cpu(cpu) { 2289 struct per_cpu_pages *pcp; 2290 struct zone *z; 2291 bool has_pcps = false; 2292 2293 if (force_all_cpus) { 2294 /* 2295 * The pcp.count check is racy, some callers need a 2296 * guarantee that no cpu is missed. 2297 */ 2298 has_pcps = true; 2299 } else if (zone) { 2300 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2301 if (pcp->count) 2302 has_pcps = true; 2303 } else { 2304 for_each_populated_zone(z) { 2305 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2306 if (pcp->count) { 2307 has_pcps = true; 2308 break; 2309 } 2310 } 2311 } 2312 2313 if (has_pcps) 2314 cpumask_set_cpu(cpu, &cpus_with_pcps); 2315 else 2316 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2317 } 2318 2319 for_each_cpu(cpu, &cpus_with_pcps) { 2320 if (zone) 2321 drain_pages_zone(cpu, zone); 2322 else 2323 drain_pages(cpu); 2324 } 2325 2326 mutex_unlock(&pcpu_drain_mutex); 2327 } 2328 2329 /* 2330 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2331 * 2332 * When zone parameter is non-NULL, spill just the single zone's pages. 2333 */ 2334 void drain_all_pages(struct zone *zone) 2335 { 2336 __drain_all_pages(zone, false); 2337 } 2338 2339 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2340 unsigned int order) 2341 { 2342 int migratetype; 2343 2344 if (!free_pages_prepare(page, order, FPI_NONE)) 2345 return false; 2346 2347 migratetype = get_pfnblock_migratetype(page, pfn); 2348 set_pcppage_migratetype(page, migratetype); 2349 return true; 2350 } 2351 2352 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 2353 bool free_high) 2354 { 2355 int min_nr_free, max_nr_free; 2356 2357 /* Free everything if batch freeing high-order pages. */ 2358 if (unlikely(free_high)) 2359 return pcp->count; 2360 2361 /* Check for PCP disabled or boot pageset */ 2362 if (unlikely(high < batch)) 2363 return 1; 2364 2365 /* Leave at least pcp->batch pages on the list */ 2366 min_nr_free = batch; 2367 max_nr_free = high - batch; 2368 2369 /* 2370 * Double the number of pages freed each time there is subsequent 2371 * freeing of pages without any allocation. 2372 */ 2373 batch <<= pcp->free_factor; 2374 if (batch < max_nr_free) 2375 pcp->free_factor++; 2376 batch = clamp(batch, min_nr_free, max_nr_free); 2377 2378 return batch; 2379 } 2380 2381 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2382 bool free_high) 2383 { 2384 int high = READ_ONCE(pcp->high); 2385 2386 if (unlikely(!high || free_high)) 2387 return 0; 2388 2389 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 2390 return high; 2391 2392 /* 2393 * If reclaim is active, limit the number of pages that can be 2394 * stored on pcp lists 2395 */ 2396 return min(READ_ONCE(pcp->batch) << 2, high); 2397 } 2398 2399 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2400 struct page *page, int migratetype, 2401 unsigned int order) 2402 { 2403 int high; 2404 int pindex; 2405 bool free_high; 2406 2407 __count_vm_events(PGFREE, 1 << order); 2408 pindex = order_to_pindex(migratetype, order); 2409 list_add(&page->pcp_list, &pcp->lists[pindex]); 2410 pcp->count += 1 << order; 2411 2412 /* 2413 * As high-order pages other than THP's stored on PCP can contribute 2414 * to fragmentation, limit the number stored when PCP is heavily 2415 * freeing without allocation. The remainder after bulk freeing 2416 * stops will be drained from vmstat refresh context. 2417 */ 2418 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 2419 2420 high = nr_pcp_high(pcp, zone, free_high); 2421 if (pcp->count >= high) { 2422 int batch = READ_ONCE(pcp->batch); 2423 2424 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 2425 } 2426 } 2427 2428 /* 2429 * Free a pcp page 2430 */ 2431 void free_unref_page(struct page *page, unsigned int order) 2432 { 2433 unsigned long __maybe_unused UP_flags; 2434 struct per_cpu_pages *pcp; 2435 struct zone *zone; 2436 unsigned long pfn = page_to_pfn(page); 2437 int migratetype; 2438 2439 if (!free_unref_page_prepare(page, pfn, order)) 2440 return; 2441 2442 /* 2443 * We only track unmovable, reclaimable and movable on pcp lists. 2444 * Place ISOLATE pages on the isolated list because they are being 2445 * offlined but treat HIGHATOMIC as movable pages so we can get those 2446 * areas back if necessary. Otherwise, we may have to free 2447 * excessively into the page allocator 2448 */ 2449 migratetype = get_pcppage_migratetype(page); 2450 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2451 if (unlikely(is_migrate_isolate(migratetype))) { 2452 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2453 return; 2454 } 2455 migratetype = MIGRATE_MOVABLE; 2456 } 2457 2458 zone = page_zone(page); 2459 pcp_trylock_prepare(UP_flags); 2460 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2461 if (pcp) { 2462 free_unref_page_commit(zone, pcp, page, migratetype, order); 2463 pcp_spin_unlock(pcp); 2464 } else { 2465 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2466 } 2467 pcp_trylock_finish(UP_flags); 2468 } 2469 2470 /* 2471 * Free a list of 0-order pages 2472 */ 2473 void free_unref_page_list(struct list_head *list) 2474 { 2475 unsigned long __maybe_unused UP_flags; 2476 struct page *page, *next; 2477 struct per_cpu_pages *pcp = NULL; 2478 struct zone *locked_zone = NULL; 2479 int batch_count = 0; 2480 int migratetype; 2481 2482 /* Prepare pages for freeing */ 2483 list_for_each_entry_safe(page, next, list, lru) { 2484 unsigned long pfn = page_to_pfn(page); 2485 if (!free_unref_page_prepare(page, pfn, 0)) { 2486 list_del(&page->lru); 2487 continue; 2488 } 2489 2490 /* 2491 * Free isolated pages directly to the allocator, see 2492 * comment in free_unref_page. 2493 */ 2494 migratetype = get_pcppage_migratetype(page); 2495 if (unlikely(is_migrate_isolate(migratetype))) { 2496 list_del(&page->lru); 2497 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2498 continue; 2499 } 2500 } 2501 2502 list_for_each_entry_safe(page, next, list, lru) { 2503 struct zone *zone = page_zone(page); 2504 2505 list_del(&page->lru); 2506 migratetype = get_pcppage_migratetype(page); 2507 2508 /* 2509 * Either different zone requiring a different pcp lock or 2510 * excessive lock hold times when freeing a large list of 2511 * pages. 2512 */ 2513 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2514 if (pcp) { 2515 pcp_spin_unlock(pcp); 2516 pcp_trylock_finish(UP_flags); 2517 } 2518 2519 batch_count = 0; 2520 2521 /* 2522 * trylock is necessary as pages may be getting freed 2523 * from IRQ or SoftIRQ context after an IO completion. 2524 */ 2525 pcp_trylock_prepare(UP_flags); 2526 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2527 if (unlikely(!pcp)) { 2528 pcp_trylock_finish(UP_flags); 2529 free_one_page(zone, page, page_to_pfn(page), 2530 0, migratetype, FPI_NONE); 2531 locked_zone = NULL; 2532 continue; 2533 } 2534 locked_zone = zone; 2535 } 2536 2537 /* 2538 * Non-isolated types over MIGRATE_PCPTYPES get added 2539 * to the MIGRATE_MOVABLE pcp list. 2540 */ 2541 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2542 migratetype = MIGRATE_MOVABLE; 2543 2544 trace_mm_page_free_batched(page); 2545 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2546 batch_count++; 2547 } 2548 2549 if (pcp) { 2550 pcp_spin_unlock(pcp); 2551 pcp_trylock_finish(UP_flags); 2552 } 2553 } 2554 2555 /* 2556 * split_page takes a non-compound higher-order page, and splits it into 2557 * n (1<<order) sub-pages: page[0..n] 2558 * Each sub-page must be freed individually. 2559 * 2560 * Note: this is probably too low level an operation for use in drivers. 2561 * Please consult with lkml before using this in your driver. 2562 */ 2563 void split_page(struct page *page, unsigned int order) 2564 { 2565 int i; 2566 2567 VM_BUG_ON_PAGE(PageCompound(page), page); 2568 VM_BUG_ON_PAGE(!page_count(page), page); 2569 2570 for (i = 1; i < (1 << order); i++) 2571 set_page_refcounted(page + i); 2572 split_page_owner(page, 1 << order); 2573 split_page_memcg(page, 1 << order); 2574 } 2575 EXPORT_SYMBOL_GPL(split_page); 2576 2577 int __isolate_free_page(struct page *page, unsigned int order) 2578 { 2579 struct zone *zone = page_zone(page); 2580 int mt = get_pageblock_migratetype(page); 2581 2582 if (!is_migrate_isolate(mt)) { 2583 unsigned long watermark; 2584 /* 2585 * Obey watermarks as if the page was being allocated. We can 2586 * emulate a high-order watermark check with a raised order-0 2587 * watermark, because we already know our high-order page 2588 * exists. 2589 */ 2590 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2591 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2592 return 0; 2593 2594 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2595 } 2596 2597 del_page_from_free_list(page, zone, order); 2598 2599 /* 2600 * Set the pageblock if the isolated page is at least half of a 2601 * pageblock 2602 */ 2603 if (order >= pageblock_order - 1) { 2604 struct page *endpage = page + (1 << order) - 1; 2605 for (; page < endpage; page += pageblock_nr_pages) { 2606 int mt = get_pageblock_migratetype(page); 2607 /* 2608 * Only change normal pageblocks (i.e., they can merge 2609 * with others) 2610 */ 2611 if (migratetype_is_mergeable(mt)) 2612 set_pageblock_migratetype(page, 2613 MIGRATE_MOVABLE); 2614 } 2615 } 2616 2617 return 1UL << order; 2618 } 2619 2620 /** 2621 * __putback_isolated_page - Return a now-isolated page back where we got it 2622 * @page: Page that was isolated 2623 * @order: Order of the isolated page 2624 * @mt: The page's pageblock's migratetype 2625 * 2626 * This function is meant to return a page pulled from the free lists via 2627 * __isolate_free_page back to the free lists they were pulled from. 2628 */ 2629 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2630 { 2631 struct zone *zone = page_zone(page); 2632 2633 /* zone lock should be held when this function is called */ 2634 lockdep_assert_held(&zone->lock); 2635 2636 /* Return isolated page to tail of freelist. */ 2637 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2638 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2639 } 2640 2641 /* 2642 * Update NUMA hit/miss statistics 2643 */ 2644 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2645 long nr_account) 2646 { 2647 #ifdef CONFIG_NUMA 2648 enum numa_stat_item local_stat = NUMA_LOCAL; 2649 2650 /* skip numa counters update if numa stats is disabled */ 2651 if (!static_branch_likely(&vm_numa_stat_key)) 2652 return; 2653 2654 if (zone_to_nid(z) != numa_node_id()) 2655 local_stat = NUMA_OTHER; 2656 2657 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2658 __count_numa_events(z, NUMA_HIT, nr_account); 2659 else { 2660 __count_numa_events(z, NUMA_MISS, nr_account); 2661 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2662 } 2663 __count_numa_events(z, local_stat, nr_account); 2664 #endif 2665 } 2666 2667 static __always_inline 2668 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2669 unsigned int order, unsigned int alloc_flags, 2670 int migratetype) 2671 { 2672 struct page *page; 2673 unsigned long flags; 2674 2675 do { 2676 page = NULL; 2677 spin_lock_irqsave(&zone->lock, flags); 2678 /* 2679 * order-0 request can reach here when the pcplist is skipped 2680 * due to non-CMA allocation context. HIGHATOMIC area is 2681 * reserved for high-order atomic allocation, so order-0 2682 * request should skip it. 2683 */ 2684 if (alloc_flags & ALLOC_HIGHATOMIC) 2685 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2686 if (!page) { 2687 page = __rmqueue(zone, order, migratetype, alloc_flags); 2688 2689 /* 2690 * If the allocation fails, allow OOM handling access 2691 * to HIGHATOMIC reserves as failing now is worse than 2692 * failing a high-order atomic allocation in the 2693 * future. 2694 */ 2695 if (!page && (alloc_flags & ALLOC_OOM)) 2696 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2697 2698 if (!page) { 2699 spin_unlock_irqrestore(&zone->lock, flags); 2700 return NULL; 2701 } 2702 } 2703 __mod_zone_freepage_state(zone, -(1 << order), 2704 get_pcppage_migratetype(page)); 2705 spin_unlock_irqrestore(&zone->lock, flags); 2706 } while (check_new_pages(page, order)); 2707 2708 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2709 zone_statistics(preferred_zone, zone, 1); 2710 2711 return page; 2712 } 2713 2714 /* Remove page from the per-cpu list, caller must protect the list */ 2715 static inline 2716 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2717 int migratetype, 2718 unsigned int alloc_flags, 2719 struct per_cpu_pages *pcp, 2720 struct list_head *list) 2721 { 2722 struct page *page; 2723 2724 do { 2725 if (list_empty(list)) { 2726 int batch = READ_ONCE(pcp->batch); 2727 int alloced; 2728 2729 /* 2730 * Scale batch relative to order if batch implies 2731 * free pages can be stored on the PCP. Batch can 2732 * be 1 for small zones or for boot pagesets which 2733 * should never store free pages as the pages may 2734 * belong to arbitrary zones. 2735 */ 2736 if (batch > 1) 2737 batch = max(batch >> order, 2); 2738 alloced = rmqueue_bulk(zone, order, 2739 batch, list, 2740 migratetype, alloc_flags); 2741 2742 pcp->count += alloced << order; 2743 if (unlikely(list_empty(list))) 2744 return NULL; 2745 } 2746 2747 page = list_first_entry(list, struct page, pcp_list); 2748 list_del(&page->pcp_list); 2749 pcp->count -= 1 << order; 2750 } while (check_new_pages(page, order)); 2751 2752 return page; 2753 } 2754 2755 /* Lock and remove page from the per-cpu list */ 2756 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2757 struct zone *zone, unsigned int order, 2758 int migratetype, unsigned int alloc_flags) 2759 { 2760 struct per_cpu_pages *pcp; 2761 struct list_head *list; 2762 struct page *page; 2763 unsigned long __maybe_unused UP_flags; 2764 2765 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2766 pcp_trylock_prepare(UP_flags); 2767 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2768 if (!pcp) { 2769 pcp_trylock_finish(UP_flags); 2770 return NULL; 2771 } 2772 2773 /* 2774 * On allocation, reduce the number of pages that are batch freed. 2775 * See nr_pcp_free() where free_factor is increased for subsequent 2776 * frees. 2777 */ 2778 pcp->free_factor >>= 1; 2779 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2780 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2781 pcp_spin_unlock(pcp); 2782 pcp_trylock_finish(UP_flags); 2783 if (page) { 2784 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2785 zone_statistics(preferred_zone, zone, 1); 2786 } 2787 return page; 2788 } 2789 2790 /* 2791 * Allocate a page from the given zone. 2792 * Use pcplists for THP or "cheap" high-order allocations. 2793 */ 2794 2795 /* 2796 * Do not instrument rmqueue() with KMSAN. This function may call 2797 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2798 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2799 * may call rmqueue() again, which will result in a deadlock. 2800 */ 2801 __no_sanitize_memory 2802 static inline 2803 struct page *rmqueue(struct zone *preferred_zone, 2804 struct zone *zone, unsigned int order, 2805 gfp_t gfp_flags, unsigned int alloc_flags, 2806 int migratetype) 2807 { 2808 struct page *page; 2809 2810 /* 2811 * We most definitely don't want callers attempting to 2812 * allocate greater than order-1 page units with __GFP_NOFAIL. 2813 */ 2814 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2815 2816 if (likely(pcp_allowed_order(order))) { 2817 /* 2818 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 2819 * we need to skip it when CMA area isn't allowed. 2820 */ 2821 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 2822 migratetype != MIGRATE_MOVABLE) { 2823 page = rmqueue_pcplist(preferred_zone, zone, order, 2824 migratetype, alloc_flags); 2825 if (likely(page)) 2826 goto out; 2827 } 2828 } 2829 2830 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2831 migratetype); 2832 2833 out: 2834 /* Separate test+clear to avoid unnecessary atomics */ 2835 if ((alloc_flags & ALLOC_KSWAPD) && 2836 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2837 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2838 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2839 } 2840 2841 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2842 return page; 2843 } 2844 2845 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2846 { 2847 return __should_fail_alloc_page(gfp_mask, order); 2848 } 2849 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2850 2851 static inline long __zone_watermark_unusable_free(struct zone *z, 2852 unsigned int order, unsigned int alloc_flags) 2853 { 2854 long unusable_free = (1 << order) - 1; 2855 2856 /* 2857 * If the caller does not have rights to reserves below the min 2858 * watermark then subtract the high-atomic reserves. This will 2859 * over-estimate the size of the atomic reserve but it avoids a search. 2860 */ 2861 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2862 unusable_free += z->nr_reserved_highatomic; 2863 2864 #ifdef CONFIG_CMA 2865 /* If allocation can't use CMA areas don't use free CMA pages */ 2866 if (!(alloc_flags & ALLOC_CMA)) 2867 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2868 #endif 2869 #ifdef CONFIG_UNACCEPTED_MEMORY 2870 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2871 #endif 2872 2873 return unusable_free; 2874 } 2875 2876 /* 2877 * Return true if free base pages are above 'mark'. For high-order checks it 2878 * will return true of the order-0 watermark is reached and there is at least 2879 * one free page of a suitable size. Checking now avoids taking the zone lock 2880 * to check in the allocation paths if no pages are free. 2881 */ 2882 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2883 int highest_zoneidx, unsigned int alloc_flags, 2884 long free_pages) 2885 { 2886 long min = mark; 2887 int o; 2888 2889 /* free_pages may go negative - that's OK */ 2890 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2891 2892 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2893 /* 2894 * __GFP_HIGH allows access to 50% of the min reserve as well 2895 * as OOM. 2896 */ 2897 if (alloc_flags & ALLOC_MIN_RESERVE) { 2898 min -= min / 2; 2899 2900 /* 2901 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2902 * access more reserves than just __GFP_HIGH. Other 2903 * non-blocking allocations requests such as GFP_NOWAIT 2904 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2905 * access to the min reserve. 2906 */ 2907 if (alloc_flags & ALLOC_NON_BLOCK) 2908 min -= min / 4; 2909 } 2910 2911 /* 2912 * OOM victims can try even harder than the normal reserve 2913 * users on the grounds that it's definitely going to be in 2914 * the exit path shortly and free memory. Any allocation it 2915 * makes during the free path will be small and short-lived. 2916 */ 2917 if (alloc_flags & ALLOC_OOM) 2918 min -= min / 2; 2919 } 2920 2921 /* 2922 * Check watermarks for an order-0 allocation request. If these 2923 * are not met, then a high-order request also cannot go ahead 2924 * even if a suitable page happened to be free. 2925 */ 2926 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 2927 return false; 2928 2929 /* If this is an order-0 request then the watermark is fine */ 2930 if (!order) 2931 return true; 2932 2933 /* For a high-order request, check at least one suitable page is free */ 2934 for (o = order; o <= MAX_ORDER; o++) { 2935 struct free_area *area = &z->free_area[o]; 2936 int mt; 2937 2938 if (!area->nr_free) 2939 continue; 2940 2941 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2942 if (!free_area_empty(area, mt)) 2943 return true; 2944 } 2945 2946 #ifdef CONFIG_CMA 2947 if ((alloc_flags & ALLOC_CMA) && 2948 !free_area_empty(area, MIGRATE_CMA)) { 2949 return true; 2950 } 2951 #endif 2952 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 2953 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 2954 return true; 2955 } 2956 } 2957 return false; 2958 } 2959 2960 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2961 int highest_zoneidx, unsigned int alloc_flags) 2962 { 2963 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 2964 zone_page_state(z, NR_FREE_PAGES)); 2965 } 2966 2967 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2968 unsigned long mark, int highest_zoneidx, 2969 unsigned int alloc_flags, gfp_t gfp_mask) 2970 { 2971 long free_pages; 2972 2973 free_pages = zone_page_state(z, NR_FREE_PAGES); 2974 2975 /* 2976 * Fast check for order-0 only. If this fails then the reserves 2977 * need to be calculated. 2978 */ 2979 if (!order) { 2980 long usable_free; 2981 long reserved; 2982 2983 usable_free = free_pages; 2984 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 2985 2986 /* reserved may over estimate high-atomic reserves. */ 2987 usable_free -= min(usable_free, reserved); 2988 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 2989 return true; 2990 } 2991 2992 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 2993 free_pages)) 2994 return true; 2995 2996 /* 2997 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 2998 * when checking the min watermark. The min watermark is the 2999 * point where boosting is ignored so that kswapd is woken up 3000 * when below the low watermark. 3001 */ 3002 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3003 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3004 mark = z->_watermark[WMARK_MIN]; 3005 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3006 alloc_flags, free_pages); 3007 } 3008 3009 return false; 3010 } 3011 3012 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3013 unsigned long mark, int highest_zoneidx) 3014 { 3015 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3016 3017 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3018 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3019 3020 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3021 free_pages); 3022 } 3023 3024 #ifdef CONFIG_NUMA 3025 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3026 3027 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3028 { 3029 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3030 node_reclaim_distance; 3031 } 3032 #else /* CONFIG_NUMA */ 3033 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3034 { 3035 return true; 3036 } 3037 #endif /* CONFIG_NUMA */ 3038 3039 /* 3040 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3041 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3042 * premature use of a lower zone may cause lowmem pressure problems that 3043 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3044 * probably too small. It only makes sense to spread allocations to avoid 3045 * fragmentation between the Normal and DMA32 zones. 3046 */ 3047 static inline unsigned int 3048 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3049 { 3050 unsigned int alloc_flags; 3051 3052 /* 3053 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3054 * to save a branch. 3055 */ 3056 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3057 3058 #ifdef CONFIG_ZONE_DMA32 3059 if (!zone) 3060 return alloc_flags; 3061 3062 if (zone_idx(zone) != ZONE_NORMAL) 3063 return alloc_flags; 3064 3065 /* 3066 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3067 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3068 * on UMA that if Normal is populated then so is DMA32. 3069 */ 3070 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3071 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3072 return alloc_flags; 3073 3074 alloc_flags |= ALLOC_NOFRAGMENT; 3075 #endif /* CONFIG_ZONE_DMA32 */ 3076 return alloc_flags; 3077 } 3078 3079 /* Must be called after current_gfp_context() which can change gfp_mask */ 3080 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3081 unsigned int alloc_flags) 3082 { 3083 #ifdef CONFIG_CMA 3084 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3085 alloc_flags |= ALLOC_CMA; 3086 #endif 3087 return alloc_flags; 3088 } 3089 3090 /* 3091 * get_page_from_freelist goes through the zonelist trying to allocate 3092 * a page. 3093 */ 3094 static struct page * 3095 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3096 const struct alloc_context *ac) 3097 { 3098 struct zoneref *z; 3099 struct zone *zone; 3100 struct pglist_data *last_pgdat = NULL; 3101 bool last_pgdat_dirty_ok = false; 3102 bool no_fallback; 3103 3104 retry: 3105 /* 3106 * Scan zonelist, looking for a zone with enough free. 3107 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3108 */ 3109 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3110 z = ac->preferred_zoneref; 3111 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3112 ac->nodemask) { 3113 struct page *page; 3114 unsigned long mark; 3115 3116 if (cpusets_enabled() && 3117 (alloc_flags & ALLOC_CPUSET) && 3118 !__cpuset_zone_allowed(zone, gfp_mask)) 3119 continue; 3120 /* 3121 * When allocating a page cache page for writing, we 3122 * want to get it from a node that is within its dirty 3123 * limit, such that no single node holds more than its 3124 * proportional share of globally allowed dirty pages. 3125 * The dirty limits take into account the node's 3126 * lowmem reserves and high watermark so that kswapd 3127 * should be able to balance it without having to 3128 * write pages from its LRU list. 3129 * 3130 * XXX: For now, allow allocations to potentially 3131 * exceed the per-node dirty limit in the slowpath 3132 * (spread_dirty_pages unset) before going into reclaim, 3133 * which is important when on a NUMA setup the allowed 3134 * nodes are together not big enough to reach the 3135 * global limit. The proper fix for these situations 3136 * will require awareness of nodes in the 3137 * dirty-throttling and the flusher threads. 3138 */ 3139 if (ac->spread_dirty_pages) { 3140 if (last_pgdat != zone->zone_pgdat) { 3141 last_pgdat = zone->zone_pgdat; 3142 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3143 } 3144 3145 if (!last_pgdat_dirty_ok) 3146 continue; 3147 } 3148 3149 if (no_fallback && nr_online_nodes > 1 && 3150 zone != ac->preferred_zoneref->zone) { 3151 int local_nid; 3152 3153 /* 3154 * If moving to a remote node, retry but allow 3155 * fragmenting fallbacks. Locality is more important 3156 * than fragmentation avoidance. 3157 */ 3158 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3159 if (zone_to_nid(zone) != local_nid) { 3160 alloc_flags &= ~ALLOC_NOFRAGMENT; 3161 goto retry; 3162 } 3163 } 3164 3165 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3166 if (!zone_watermark_fast(zone, order, mark, 3167 ac->highest_zoneidx, alloc_flags, 3168 gfp_mask)) { 3169 int ret; 3170 3171 if (has_unaccepted_memory()) { 3172 if (try_to_accept_memory(zone, order)) 3173 goto try_this_zone; 3174 } 3175 3176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3177 /* 3178 * Watermark failed for this zone, but see if we can 3179 * grow this zone if it contains deferred pages. 3180 */ 3181 if (deferred_pages_enabled()) { 3182 if (_deferred_grow_zone(zone, order)) 3183 goto try_this_zone; 3184 } 3185 #endif 3186 /* Checked here to keep the fast path fast */ 3187 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3188 if (alloc_flags & ALLOC_NO_WATERMARKS) 3189 goto try_this_zone; 3190 3191 if (!node_reclaim_enabled() || 3192 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3193 continue; 3194 3195 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3196 switch (ret) { 3197 case NODE_RECLAIM_NOSCAN: 3198 /* did not scan */ 3199 continue; 3200 case NODE_RECLAIM_FULL: 3201 /* scanned but unreclaimable */ 3202 continue; 3203 default: 3204 /* did we reclaim enough */ 3205 if (zone_watermark_ok(zone, order, mark, 3206 ac->highest_zoneidx, alloc_flags)) 3207 goto try_this_zone; 3208 3209 continue; 3210 } 3211 } 3212 3213 try_this_zone: 3214 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3215 gfp_mask, alloc_flags, ac->migratetype); 3216 if (page) { 3217 prep_new_page(page, order, gfp_mask, alloc_flags); 3218 3219 /* 3220 * If this is a high-order atomic allocation then check 3221 * if the pageblock should be reserved for the future 3222 */ 3223 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3224 reserve_highatomic_pageblock(page, zone, order); 3225 3226 return page; 3227 } else { 3228 if (has_unaccepted_memory()) { 3229 if (try_to_accept_memory(zone, order)) 3230 goto try_this_zone; 3231 } 3232 3233 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3234 /* Try again if zone has deferred pages */ 3235 if (deferred_pages_enabled()) { 3236 if (_deferred_grow_zone(zone, order)) 3237 goto try_this_zone; 3238 } 3239 #endif 3240 } 3241 } 3242 3243 /* 3244 * It's possible on a UMA machine to get through all zones that are 3245 * fragmented. If avoiding fragmentation, reset and try again. 3246 */ 3247 if (no_fallback) { 3248 alloc_flags &= ~ALLOC_NOFRAGMENT; 3249 goto retry; 3250 } 3251 3252 return NULL; 3253 } 3254 3255 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3256 { 3257 unsigned int filter = SHOW_MEM_FILTER_NODES; 3258 3259 /* 3260 * This documents exceptions given to allocations in certain 3261 * contexts that are allowed to allocate outside current's set 3262 * of allowed nodes. 3263 */ 3264 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3265 if (tsk_is_oom_victim(current) || 3266 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3267 filter &= ~SHOW_MEM_FILTER_NODES; 3268 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3269 filter &= ~SHOW_MEM_FILTER_NODES; 3270 3271 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3272 } 3273 3274 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3275 { 3276 struct va_format vaf; 3277 va_list args; 3278 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3279 3280 if ((gfp_mask & __GFP_NOWARN) || 3281 !__ratelimit(&nopage_rs) || 3282 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3283 return; 3284 3285 va_start(args, fmt); 3286 vaf.fmt = fmt; 3287 vaf.va = &args; 3288 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3289 current->comm, &vaf, gfp_mask, &gfp_mask, 3290 nodemask_pr_args(nodemask)); 3291 va_end(args); 3292 3293 cpuset_print_current_mems_allowed(); 3294 pr_cont("\n"); 3295 dump_stack(); 3296 warn_alloc_show_mem(gfp_mask, nodemask); 3297 } 3298 3299 static inline struct page * 3300 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3301 unsigned int alloc_flags, 3302 const struct alloc_context *ac) 3303 { 3304 struct page *page; 3305 3306 page = get_page_from_freelist(gfp_mask, order, 3307 alloc_flags|ALLOC_CPUSET, ac); 3308 /* 3309 * fallback to ignore cpuset restriction if our nodes 3310 * are depleted 3311 */ 3312 if (!page) 3313 page = get_page_from_freelist(gfp_mask, order, 3314 alloc_flags, ac); 3315 3316 return page; 3317 } 3318 3319 static inline struct page * 3320 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3321 const struct alloc_context *ac, unsigned long *did_some_progress) 3322 { 3323 struct oom_control oc = { 3324 .zonelist = ac->zonelist, 3325 .nodemask = ac->nodemask, 3326 .memcg = NULL, 3327 .gfp_mask = gfp_mask, 3328 .order = order, 3329 }; 3330 struct page *page; 3331 3332 *did_some_progress = 0; 3333 3334 /* 3335 * Acquire the oom lock. If that fails, somebody else is 3336 * making progress for us. 3337 */ 3338 if (!mutex_trylock(&oom_lock)) { 3339 *did_some_progress = 1; 3340 schedule_timeout_uninterruptible(1); 3341 return NULL; 3342 } 3343 3344 /* 3345 * Go through the zonelist yet one more time, keep very high watermark 3346 * here, this is only to catch a parallel oom killing, we must fail if 3347 * we're still under heavy pressure. But make sure that this reclaim 3348 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3349 * allocation which will never fail due to oom_lock already held. 3350 */ 3351 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3352 ~__GFP_DIRECT_RECLAIM, order, 3353 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3354 if (page) 3355 goto out; 3356 3357 /* Coredumps can quickly deplete all memory reserves */ 3358 if (current->flags & PF_DUMPCORE) 3359 goto out; 3360 /* The OOM killer will not help higher order allocs */ 3361 if (order > PAGE_ALLOC_COSTLY_ORDER) 3362 goto out; 3363 /* 3364 * We have already exhausted all our reclaim opportunities without any 3365 * success so it is time to admit defeat. We will skip the OOM killer 3366 * because it is very likely that the caller has a more reasonable 3367 * fallback than shooting a random task. 3368 * 3369 * The OOM killer may not free memory on a specific node. 3370 */ 3371 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3372 goto out; 3373 /* The OOM killer does not needlessly kill tasks for lowmem */ 3374 if (ac->highest_zoneidx < ZONE_NORMAL) 3375 goto out; 3376 if (pm_suspended_storage()) 3377 goto out; 3378 /* 3379 * XXX: GFP_NOFS allocations should rather fail than rely on 3380 * other request to make a forward progress. 3381 * We are in an unfortunate situation where out_of_memory cannot 3382 * do much for this context but let's try it to at least get 3383 * access to memory reserved if the current task is killed (see 3384 * out_of_memory). Once filesystems are ready to handle allocation 3385 * failures more gracefully we should just bail out here. 3386 */ 3387 3388 /* Exhausted what can be done so it's blame time */ 3389 if (out_of_memory(&oc) || 3390 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3391 *did_some_progress = 1; 3392 3393 /* 3394 * Help non-failing allocations by giving them access to memory 3395 * reserves 3396 */ 3397 if (gfp_mask & __GFP_NOFAIL) 3398 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3399 ALLOC_NO_WATERMARKS, ac); 3400 } 3401 out: 3402 mutex_unlock(&oom_lock); 3403 return page; 3404 } 3405 3406 /* 3407 * Maximum number of compaction retries with a progress before OOM 3408 * killer is consider as the only way to move forward. 3409 */ 3410 #define MAX_COMPACT_RETRIES 16 3411 3412 #ifdef CONFIG_COMPACTION 3413 /* Try memory compaction for high-order allocations before reclaim */ 3414 static struct page * 3415 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3416 unsigned int alloc_flags, const struct alloc_context *ac, 3417 enum compact_priority prio, enum compact_result *compact_result) 3418 { 3419 struct page *page = NULL; 3420 unsigned long pflags; 3421 unsigned int noreclaim_flag; 3422 3423 if (!order) 3424 return NULL; 3425 3426 psi_memstall_enter(&pflags); 3427 delayacct_compact_start(); 3428 noreclaim_flag = memalloc_noreclaim_save(); 3429 3430 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3431 prio, &page); 3432 3433 memalloc_noreclaim_restore(noreclaim_flag); 3434 psi_memstall_leave(&pflags); 3435 delayacct_compact_end(); 3436 3437 if (*compact_result == COMPACT_SKIPPED) 3438 return NULL; 3439 /* 3440 * At least in one zone compaction wasn't deferred or skipped, so let's 3441 * count a compaction stall 3442 */ 3443 count_vm_event(COMPACTSTALL); 3444 3445 /* Prep a captured page if available */ 3446 if (page) 3447 prep_new_page(page, order, gfp_mask, alloc_flags); 3448 3449 /* Try get a page from the freelist if available */ 3450 if (!page) 3451 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3452 3453 if (page) { 3454 struct zone *zone = page_zone(page); 3455 3456 zone->compact_blockskip_flush = false; 3457 compaction_defer_reset(zone, order, true); 3458 count_vm_event(COMPACTSUCCESS); 3459 return page; 3460 } 3461 3462 /* 3463 * It's bad if compaction run occurs and fails. The most likely reason 3464 * is that pages exist, but not enough to satisfy watermarks. 3465 */ 3466 count_vm_event(COMPACTFAIL); 3467 3468 cond_resched(); 3469 3470 return NULL; 3471 } 3472 3473 static inline bool 3474 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3475 enum compact_result compact_result, 3476 enum compact_priority *compact_priority, 3477 int *compaction_retries) 3478 { 3479 int max_retries = MAX_COMPACT_RETRIES; 3480 int min_priority; 3481 bool ret = false; 3482 int retries = *compaction_retries; 3483 enum compact_priority priority = *compact_priority; 3484 3485 if (!order) 3486 return false; 3487 3488 if (fatal_signal_pending(current)) 3489 return false; 3490 3491 /* 3492 * Compaction was skipped due to a lack of free order-0 3493 * migration targets. Continue if reclaim can help. 3494 */ 3495 if (compact_result == COMPACT_SKIPPED) { 3496 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3497 goto out; 3498 } 3499 3500 /* 3501 * Compaction managed to coalesce some page blocks, but the 3502 * allocation failed presumably due to a race. Retry some. 3503 */ 3504 if (compact_result == COMPACT_SUCCESS) { 3505 /* 3506 * !costly requests are much more important than 3507 * __GFP_RETRY_MAYFAIL costly ones because they are de 3508 * facto nofail and invoke OOM killer to move on while 3509 * costly can fail and users are ready to cope with 3510 * that. 1/4 retries is rather arbitrary but we would 3511 * need much more detailed feedback from compaction to 3512 * make a better decision. 3513 */ 3514 if (order > PAGE_ALLOC_COSTLY_ORDER) 3515 max_retries /= 4; 3516 3517 if (++(*compaction_retries) <= max_retries) { 3518 ret = true; 3519 goto out; 3520 } 3521 } 3522 3523 /* 3524 * Compaction failed. Retry with increasing priority. 3525 */ 3526 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3527 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3528 3529 if (*compact_priority > min_priority) { 3530 (*compact_priority)--; 3531 *compaction_retries = 0; 3532 ret = true; 3533 } 3534 out: 3535 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3536 return ret; 3537 } 3538 #else 3539 static inline struct page * 3540 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3541 unsigned int alloc_flags, const struct alloc_context *ac, 3542 enum compact_priority prio, enum compact_result *compact_result) 3543 { 3544 *compact_result = COMPACT_SKIPPED; 3545 return NULL; 3546 } 3547 3548 static inline bool 3549 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3550 enum compact_result compact_result, 3551 enum compact_priority *compact_priority, 3552 int *compaction_retries) 3553 { 3554 struct zone *zone; 3555 struct zoneref *z; 3556 3557 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3558 return false; 3559 3560 /* 3561 * There are setups with compaction disabled which would prefer to loop 3562 * inside the allocator rather than hit the oom killer prematurely. 3563 * Let's give them a good hope and keep retrying while the order-0 3564 * watermarks are OK. 3565 */ 3566 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3567 ac->highest_zoneidx, ac->nodemask) { 3568 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3569 ac->highest_zoneidx, alloc_flags)) 3570 return true; 3571 } 3572 return false; 3573 } 3574 #endif /* CONFIG_COMPACTION */ 3575 3576 #ifdef CONFIG_LOCKDEP 3577 static struct lockdep_map __fs_reclaim_map = 3578 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3579 3580 static bool __need_reclaim(gfp_t gfp_mask) 3581 { 3582 /* no reclaim without waiting on it */ 3583 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3584 return false; 3585 3586 /* this guy won't enter reclaim */ 3587 if (current->flags & PF_MEMALLOC) 3588 return false; 3589 3590 if (gfp_mask & __GFP_NOLOCKDEP) 3591 return false; 3592 3593 return true; 3594 } 3595 3596 void __fs_reclaim_acquire(unsigned long ip) 3597 { 3598 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3599 } 3600 3601 void __fs_reclaim_release(unsigned long ip) 3602 { 3603 lock_release(&__fs_reclaim_map, ip); 3604 } 3605 3606 void fs_reclaim_acquire(gfp_t gfp_mask) 3607 { 3608 gfp_mask = current_gfp_context(gfp_mask); 3609 3610 if (__need_reclaim(gfp_mask)) { 3611 if (gfp_mask & __GFP_FS) 3612 __fs_reclaim_acquire(_RET_IP_); 3613 3614 #ifdef CONFIG_MMU_NOTIFIER 3615 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3616 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3617 #endif 3618 3619 } 3620 } 3621 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3622 3623 void fs_reclaim_release(gfp_t gfp_mask) 3624 { 3625 gfp_mask = current_gfp_context(gfp_mask); 3626 3627 if (__need_reclaim(gfp_mask)) { 3628 if (gfp_mask & __GFP_FS) 3629 __fs_reclaim_release(_RET_IP_); 3630 } 3631 } 3632 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3633 #endif 3634 3635 /* 3636 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3637 * have been rebuilt so allocation retries. Reader side does not lock and 3638 * retries the allocation if zonelist changes. Writer side is protected by the 3639 * embedded spin_lock. 3640 */ 3641 static DEFINE_SEQLOCK(zonelist_update_seq); 3642 3643 static unsigned int zonelist_iter_begin(void) 3644 { 3645 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3646 return read_seqbegin(&zonelist_update_seq); 3647 3648 return 0; 3649 } 3650 3651 static unsigned int check_retry_zonelist(unsigned int seq) 3652 { 3653 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3654 return read_seqretry(&zonelist_update_seq, seq); 3655 3656 return seq; 3657 } 3658 3659 /* Perform direct synchronous page reclaim */ 3660 static unsigned long 3661 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3662 const struct alloc_context *ac) 3663 { 3664 unsigned int noreclaim_flag; 3665 unsigned long progress; 3666 3667 cond_resched(); 3668 3669 /* We now go into synchronous reclaim */ 3670 cpuset_memory_pressure_bump(); 3671 fs_reclaim_acquire(gfp_mask); 3672 noreclaim_flag = memalloc_noreclaim_save(); 3673 3674 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3675 ac->nodemask); 3676 3677 memalloc_noreclaim_restore(noreclaim_flag); 3678 fs_reclaim_release(gfp_mask); 3679 3680 cond_resched(); 3681 3682 return progress; 3683 } 3684 3685 /* The really slow allocator path where we enter direct reclaim */ 3686 static inline struct page * 3687 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3688 unsigned int alloc_flags, const struct alloc_context *ac, 3689 unsigned long *did_some_progress) 3690 { 3691 struct page *page = NULL; 3692 unsigned long pflags; 3693 bool drained = false; 3694 3695 psi_memstall_enter(&pflags); 3696 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3697 if (unlikely(!(*did_some_progress))) 3698 goto out; 3699 3700 retry: 3701 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3702 3703 /* 3704 * If an allocation failed after direct reclaim, it could be because 3705 * pages are pinned on the per-cpu lists or in high alloc reserves. 3706 * Shrink them and try again 3707 */ 3708 if (!page && !drained) { 3709 unreserve_highatomic_pageblock(ac, false); 3710 drain_all_pages(NULL); 3711 drained = true; 3712 goto retry; 3713 } 3714 out: 3715 psi_memstall_leave(&pflags); 3716 3717 return page; 3718 } 3719 3720 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3721 const struct alloc_context *ac) 3722 { 3723 struct zoneref *z; 3724 struct zone *zone; 3725 pg_data_t *last_pgdat = NULL; 3726 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3727 3728 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3729 ac->nodemask) { 3730 if (!managed_zone(zone)) 3731 continue; 3732 if (last_pgdat != zone->zone_pgdat) { 3733 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3734 last_pgdat = zone->zone_pgdat; 3735 } 3736 } 3737 } 3738 3739 static inline unsigned int 3740 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3741 { 3742 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3743 3744 /* 3745 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3746 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3747 * to save two branches. 3748 */ 3749 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3750 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3751 3752 /* 3753 * The caller may dip into page reserves a bit more if the caller 3754 * cannot run direct reclaim, or if the caller has realtime scheduling 3755 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3756 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3757 */ 3758 alloc_flags |= (__force int) 3759 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3760 3761 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3762 /* 3763 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3764 * if it can't schedule. 3765 */ 3766 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3767 alloc_flags |= ALLOC_NON_BLOCK; 3768 3769 if (order > 0) 3770 alloc_flags |= ALLOC_HIGHATOMIC; 3771 } 3772 3773 /* 3774 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3775 * GFP_ATOMIC) rather than fail, see the comment for 3776 * cpuset_node_allowed(). 3777 */ 3778 if (alloc_flags & ALLOC_MIN_RESERVE) 3779 alloc_flags &= ~ALLOC_CPUSET; 3780 } else if (unlikely(rt_task(current)) && in_task()) 3781 alloc_flags |= ALLOC_MIN_RESERVE; 3782 3783 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3784 3785 return alloc_flags; 3786 } 3787 3788 static bool oom_reserves_allowed(struct task_struct *tsk) 3789 { 3790 if (!tsk_is_oom_victim(tsk)) 3791 return false; 3792 3793 /* 3794 * !MMU doesn't have oom reaper so give access to memory reserves 3795 * only to the thread with TIF_MEMDIE set 3796 */ 3797 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3798 return false; 3799 3800 return true; 3801 } 3802 3803 /* 3804 * Distinguish requests which really need access to full memory 3805 * reserves from oom victims which can live with a portion of it 3806 */ 3807 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3808 { 3809 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3810 return 0; 3811 if (gfp_mask & __GFP_MEMALLOC) 3812 return ALLOC_NO_WATERMARKS; 3813 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3814 return ALLOC_NO_WATERMARKS; 3815 if (!in_interrupt()) { 3816 if (current->flags & PF_MEMALLOC) 3817 return ALLOC_NO_WATERMARKS; 3818 else if (oom_reserves_allowed(current)) 3819 return ALLOC_OOM; 3820 } 3821 3822 return 0; 3823 } 3824 3825 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3826 { 3827 return !!__gfp_pfmemalloc_flags(gfp_mask); 3828 } 3829 3830 /* 3831 * Checks whether it makes sense to retry the reclaim to make a forward progress 3832 * for the given allocation request. 3833 * 3834 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3835 * without success, or when we couldn't even meet the watermark if we 3836 * reclaimed all remaining pages on the LRU lists. 3837 * 3838 * Returns true if a retry is viable or false to enter the oom path. 3839 */ 3840 static inline bool 3841 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3842 struct alloc_context *ac, int alloc_flags, 3843 bool did_some_progress, int *no_progress_loops) 3844 { 3845 struct zone *zone; 3846 struct zoneref *z; 3847 bool ret = false; 3848 3849 /* 3850 * Costly allocations might have made a progress but this doesn't mean 3851 * their order will become available due to high fragmentation so 3852 * always increment the no progress counter for them 3853 */ 3854 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3855 *no_progress_loops = 0; 3856 else 3857 (*no_progress_loops)++; 3858 3859 /* 3860 * Make sure we converge to OOM if we cannot make any progress 3861 * several times in the row. 3862 */ 3863 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3864 /* Before OOM, exhaust highatomic_reserve */ 3865 return unreserve_highatomic_pageblock(ac, true); 3866 } 3867 3868 /* 3869 * Keep reclaiming pages while there is a chance this will lead 3870 * somewhere. If none of the target zones can satisfy our allocation 3871 * request even if all reclaimable pages are considered then we are 3872 * screwed and have to go OOM. 3873 */ 3874 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3875 ac->highest_zoneidx, ac->nodemask) { 3876 unsigned long available; 3877 unsigned long reclaimable; 3878 unsigned long min_wmark = min_wmark_pages(zone); 3879 bool wmark; 3880 3881 available = reclaimable = zone_reclaimable_pages(zone); 3882 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3883 3884 /* 3885 * Would the allocation succeed if we reclaimed all 3886 * reclaimable pages? 3887 */ 3888 wmark = __zone_watermark_ok(zone, order, min_wmark, 3889 ac->highest_zoneidx, alloc_flags, available); 3890 trace_reclaim_retry_zone(z, order, reclaimable, 3891 available, min_wmark, *no_progress_loops, wmark); 3892 if (wmark) { 3893 ret = true; 3894 break; 3895 } 3896 } 3897 3898 /* 3899 * Memory allocation/reclaim might be called from a WQ context and the 3900 * current implementation of the WQ concurrency control doesn't 3901 * recognize that a particular WQ is congested if the worker thread is 3902 * looping without ever sleeping. Therefore we have to do a short sleep 3903 * here rather than calling cond_resched(). 3904 */ 3905 if (current->flags & PF_WQ_WORKER) 3906 schedule_timeout_uninterruptible(1); 3907 else 3908 cond_resched(); 3909 return ret; 3910 } 3911 3912 static inline bool 3913 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3914 { 3915 /* 3916 * It's possible that cpuset's mems_allowed and the nodemask from 3917 * mempolicy don't intersect. This should be normally dealt with by 3918 * policy_nodemask(), but it's possible to race with cpuset update in 3919 * such a way the check therein was true, and then it became false 3920 * before we got our cpuset_mems_cookie here. 3921 * This assumes that for all allocations, ac->nodemask can come only 3922 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3923 * when it does not intersect with the cpuset restrictions) or the 3924 * caller can deal with a violated nodemask. 3925 */ 3926 if (cpusets_enabled() && ac->nodemask && 3927 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3928 ac->nodemask = NULL; 3929 return true; 3930 } 3931 3932 /* 3933 * When updating a task's mems_allowed or mempolicy nodemask, it is 3934 * possible to race with parallel threads in such a way that our 3935 * allocation can fail while the mask is being updated. If we are about 3936 * to fail, check if the cpuset changed during allocation and if so, 3937 * retry. 3938 */ 3939 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3940 return true; 3941 3942 return false; 3943 } 3944 3945 static inline struct page * 3946 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3947 struct alloc_context *ac) 3948 { 3949 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3950 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3951 struct page *page = NULL; 3952 unsigned int alloc_flags; 3953 unsigned long did_some_progress; 3954 enum compact_priority compact_priority; 3955 enum compact_result compact_result; 3956 int compaction_retries; 3957 int no_progress_loops; 3958 unsigned int cpuset_mems_cookie; 3959 unsigned int zonelist_iter_cookie; 3960 int reserve_flags; 3961 3962 restart: 3963 compaction_retries = 0; 3964 no_progress_loops = 0; 3965 compact_priority = DEF_COMPACT_PRIORITY; 3966 cpuset_mems_cookie = read_mems_allowed_begin(); 3967 zonelist_iter_cookie = zonelist_iter_begin(); 3968 3969 /* 3970 * The fast path uses conservative alloc_flags to succeed only until 3971 * kswapd needs to be woken up, and to avoid the cost of setting up 3972 * alloc_flags precisely. So we do that now. 3973 */ 3974 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 3975 3976 /* 3977 * We need to recalculate the starting point for the zonelist iterator 3978 * because we might have used different nodemask in the fast path, or 3979 * there was a cpuset modification and we are retrying - otherwise we 3980 * could end up iterating over non-eligible zones endlessly. 3981 */ 3982 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3983 ac->highest_zoneidx, ac->nodemask); 3984 if (!ac->preferred_zoneref->zone) 3985 goto nopage; 3986 3987 /* 3988 * Check for insane configurations where the cpuset doesn't contain 3989 * any suitable zone to satisfy the request - e.g. non-movable 3990 * GFP_HIGHUSER allocations from MOVABLE nodes only. 3991 */ 3992 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 3993 struct zoneref *z = first_zones_zonelist(ac->zonelist, 3994 ac->highest_zoneidx, 3995 &cpuset_current_mems_allowed); 3996 if (!z->zone) 3997 goto nopage; 3998 } 3999 4000 if (alloc_flags & ALLOC_KSWAPD) 4001 wake_all_kswapds(order, gfp_mask, ac); 4002 4003 /* 4004 * The adjusted alloc_flags might result in immediate success, so try 4005 * that first 4006 */ 4007 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4008 if (page) 4009 goto got_pg; 4010 4011 /* 4012 * For costly allocations, try direct compaction first, as it's likely 4013 * that we have enough base pages and don't need to reclaim. For non- 4014 * movable high-order allocations, do that as well, as compaction will 4015 * try prevent permanent fragmentation by migrating from blocks of the 4016 * same migratetype. 4017 * Don't try this for allocations that are allowed to ignore 4018 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4019 */ 4020 if (can_direct_reclaim && 4021 (costly_order || 4022 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4023 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4024 page = __alloc_pages_direct_compact(gfp_mask, order, 4025 alloc_flags, ac, 4026 INIT_COMPACT_PRIORITY, 4027 &compact_result); 4028 if (page) 4029 goto got_pg; 4030 4031 /* 4032 * Checks for costly allocations with __GFP_NORETRY, which 4033 * includes some THP page fault allocations 4034 */ 4035 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4036 /* 4037 * If allocating entire pageblock(s) and compaction 4038 * failed because all zones are below low watermarks 4039 * or is prohibited because it recently failed at this 4040 * order, fail immediately unless the allocator has 4041 * requested compaction and reclaim retry. 4042 * 4043 * Reclaim is 4044 * - potentially very expensive because zones are far 4045 * below their low watermarks or this is part of very 4046 * bursty high order allocations, 4047 * - not guaranteed to help because isolate_freepages() 4048 * may not iterate over freed pages as part of its 4049 * linear scan, and 4050 * - unlikely to make entire pageblocks free on its 4051 * own. 4052 */ 4053 if (compact_result == COMPACT_SKIPPED || 4054 compact_result == COMPACT_DEFERRED) 4055 goto nopage; 4056 4057 /* 4058 * Looks like reclaim/compaction is worth trying, but 4059 * sync compaction could be very expensive, so keep 4060 * using async compaction. 4061 */ 4062 compact_priority = INIT_COMPACT_PRIORITY; 4063 } 4064 } 4065 4066 retry: 4067 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4068 if (alloc_flags & ALLOC_KSWAPD) 4069 wake_all_kswapds(order, gfp_mask, ac); 4070 4071 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4072 if (reserve_flags) 4073 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4074 (alloc_flags & ALLOC_KSWAPD); 4075 4076 /* 4077 * Reset the nodemask and zonelist iterators if memory policies can be 4078 * ignored. These allocations are high priority and system rather than 4079 * user oriented. 4080 */ 4081 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4082 ac->nodemask = NULL; 4083 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4084 ac->highest_zoneidx, ac->nodemask); 4085 } 4086 4087 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4088 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4089 if (page) 4090 goto got_pg; 4091 4092 /* Caller is not willing to reclaim, we can't balance anything */ 4093 if (!can_direct_reclaim) 4094 goto nopage; 4095 4096 /* Avoid recursion of direct reclaim */ 4097 if (current->flags & PF_MEMALLOC) 4098 goto nopage; 4099 4100 /* Try direct reclaim and then allocating */ 4101 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4102 &did_some_progress); 4103 if (page) 4104 goto got_pg; 4105 4106 /* Try direct compaction and then allocating */ 4107 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4108 compact_priority, &compact_result); 4109 if (page) 4110 goto got_pg; 4111 4112 /* Do not loop if specifically requested */ 4113 if (gfp_mask & __GFP_NORETRY) 4114 goto nopage; 4115 4116 /* 4117 * Do not retry costly high order allocations unless they are 4118 * __GFP_RETRY_MAYFAIL 4119 */ 4120 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4121 goto nopage; 4122 4123 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4124 did_some_progress > 0, &no_progress_loops)) 4125 goto retry; 4126 4127 /* 4128 * It doesn't make any sense to retry for the compaction if the order-0 4129 * reclaim is not able to make any progress because the current 4130 * implementation of the compaction depends on the sufficient amount 4131 * of free memory (see __compaction_suitable) 4132 */ 4133 if (did_some_progress > 0 && 4134 should_compact_retry(ac, order, alloc_flags, 4135 compact_result, &compact_priority, 4136 &compaction_retries)) 4137 goto retry; 4138 4139 4140 /* 4141 * Deal with possible cpuset update races or zonelist updates to avoid 4142 * a unnecessary OOM kill. 4143 */ 4144 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4145 check_retry_zonelist(zonelist_iter_cookie)) 4146 goto restart; 4147 4148 /* Reclaim has failed us, start killing things */ 4149 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4150 if (page) 4151 goto got_pg; 4152 4153 /* Avoid allocations with no watermarks from looping endlessly */ 4154 if (tsk_is_oom_victim(current) && 4155 (alloc_flags & ALLOC_OOM || 4156 (gfp_mask & __GFP_NOMEMALLOC))) 4157 goto nopage; 4158 4159 /* Retry as long as the OOM killer is making progress */ 4160 if (did_some_progress) { 4161 no_progress_loops = 0; 4162 goto retry; 4163 } 4164 4165 nopage: 4166 /* 4167 * Deal with possible cpuset update races or zonelist updates to avoid 4168 * a unnecessary OOM kill. 4169 */ 4170 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4171 check_retry_zonelist(zonelist_iter_cookie)) 4172 goto restart; 4173 4174 /* 4175 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4176 * we always retry 4177 */ 4178 if (gfp_mask & __GFP_NOFAIL) { 4179 /* 4180 * All existing users of the __GFP_NOFAIL are blockable, so warn 4181 * of any new users that actually require GFP_NOWAIT 4182 */ 4183 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4184 goto fail; 4185 4186 /* 4187 * PF_MEMALLOC request from this context is rather bizarre 4188 * because we cannot reclaim anything and only can loop waiting 4189 * for somebody to do a work for us 4190 */ 4191 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4192 4193 /* 4194 * non failing costly orders are a hard requirement which we 4195 * are not prepared for much so let's warn about these users 4196 * so that we can identify them and convert them to something 4197 * else. 4198 */ 4199 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4200 4201 /* 4202 * Help non-failing allocations by giving some access to memory 4203 * reserves normally used for high priority non-blocking 4204 * allocations but do not use ALLOC_NO_WATERMARKS because this 4205 * could deplete whole memory reserves which would just make 4206 * the situation worse. 4207 */ 4208 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4209 if (page) 4210 goto got_pg; 4211 4212 cond_resched(); 4213 goto retry; 4214 } 4215 fail: 4216 warn_alloc(gfp_mask, ac->nodemask, 4217 "page allocation failure: order:%u", order); 4218 got_pg: 4219 return page; 4220 } 4221 4222 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4223 int preferred_nid, nodemask_t *nodemask, 4224 struct alloc_context *ac, gfp_t *alloc_gfp, 4225 unsigned int *alloc_flags) 4226 { 4227 ac->highest_zoneidx = gfp_zone(gfp_mask); 4228 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4229 ac->nodemask = nodemask; 4230 ac->migratetype = gfp_migratetype(gfp_mask); 4231 4232 if (cpusets_enabled()) { 4233 *alloc_gfp |= __GFP_HARDWALL; 4234 /* 4235 * When we are in the interrupt context, it is irrelevant 4236 * to the current task context. It means that any node ok. 4237 */ 4238 if (in_task() && !ac->nodemask) 4239 ac->nodemask = &cpuset_current_mems_allowed; 4240 else 4241 *alloc_flags |= ALLOC_CPUSET; 4242 } 4243 4244 might_alloc(gfp_mask); 4245 4246 if (should_fail_alloc_page(gfp_mask, order)) 4247 return false; 4248 4249 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4250 4251 /* Dirty zone balancing only done in the fast path */ 4252 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4253 4254 /* 4255 * The preferred zone is used for statistics but crucially it is 4256 * also used as the starting point for the zonelist iterator. It 4257 * may get reset for allocations that ignore memory policies. 4258 */ 4259 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4260 ac->highest_zoneidx, ac->nodemask); 4261 4262 return true; 4263 } 4264 4265 /* 4266 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4267 * @gfp: GFP flags for the allocation 4268 * @preferred_nid: The preferred NUMA node ID to allocate from 4269 * @nodemask: Set of nodes to allocate from, may be NULL 4270 * @nr_pages: The number of pages desired on the list or array 4271 * @page_list: Optional list to store the allocated pages 4272 * @page_array: Optional array to store the pages 4273 * 4274 * This is a batched version of the page allocator that attempts to 4275 * allocate nr_pages quickly. Pages are added to page_list if page_list 4276 * is not NULL, otherwise it is assumed that the page_array is valid. 4277 * 4278 * For lists, nr_pages is the number of pages that should be allocated. 4279 * 4280 * For arrays, only NULL elements are populated with pages and nr_pages 4281 * is the maximum number of pages that will be stored in the array. 4282 * 4283 * Returns the number of pages on the list or array. 4284 */ 4285 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4286 nodemask_t *nodemask, int nr_pages, 4287 struct list_head *page_list, 4288 struct page **page_array) 4289 { 4290 struct page *page; 4291 unsigned long __maybe_unused UP_flags; 4292 struct zone *zone; 4293 struct zoneref *z; 4294 struct per_cpu_pages *pcp; 4295 struct list_head *pcp_list; 4296 struct alloc_context ac; 4297 gfp_t alloc_gfp; 4298 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4299 int nr_populated = 0, nr_account = 0; 4300 4301 /* 4302 * Skip populated array elements to determine if any pages need 4303 * to be allocated before disabling IRQs. 4304 */ 4305 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4306 nr_populated++; 4307 4308 /* No pages requested? */ 4309 if (unlikely(nr_pages <= 0)) 4310 goto out; 4311 4312 /* Already populated array? */ 4313 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4314 goto out; 4315 4316 /* Bulk allocator does not support memcg accounting. */ 4317 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4318 goto failed; 4319 4320 /* Use the single page allocator for one page. */ 4321 if (nr_pages - nr_populated == 1) 4322 goto failed; 4323 4324 #ifdef CONFIG_PAGE_OWNER 4325 /* 4326 * PAGE_OWNER may recurse into the allocator to allocate space to 4327 * save the stack with pagesets.lock held. Releasing/reacquiring 4328 * removes much of the performance benefit of bulk allocation so 4329 * force the caller to allocate one page at a time as it'll have 4330 * similar performance to added complexity to the bulk allocator. 4331 */ 4332 if (static_branch_unlikely(&page_owner_inited)) 4333 goto failed; 4334 #endif 4335 4336 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4337 gfp &= gfp_allowed_mask; 4338 alloc_gfp = gfp; 4339 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4340 goto out; 4341 gfp = alloc_gfp; 4342 4343 /* Find an allowed local zone that meets the low watermark. */ 4344 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4345 unsigned long mark; 4346 4347 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4348 !__cpuset_zone_allowed(zone, gfp)) { 4349 continue; 4350 } 4351 4352 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4353 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4354 goto failed; 4355 } 4356 4357 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4358 if (zone_watermark_fast(zone, 0, mark, 4359 zonelist_zone_idx(ac.preferred_zoneref), 4360 alloc_flags, gfp)) { 4361 break; 4362 } 4363 } 4364 4365 /* 4366 * If there are no allowed local zones that meets the watermarks then 4367 * try to allocate a single page and reclaim if necessary. 4368 */ 4369 if (unlikely(!zone)) 4370 goto failed; 4371 4372 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4373 pcp_trylock_prepare(UP_flags); 4374 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4375 if (!pcp) 4376 goto failed_irq; 4377 4378 /* Attempt the batch allocation */ 4379 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4380 while (nr_populated < nr_pages) { 4381 4382 /* Skip existing pages */ 4383 if (page_array && page_array[nr_populated]) { 4384 nr_populated++; 4385 continue; 4386 } 4387 4388 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4389 pcp, pcp_list); 4390 if (unlikely(!page)) { 4391 /* Try and allocate at least one page */ 4392 if (!nr_account) { 4393 pcp_spin_unlock(pcp); 4394 goto failed_irq; 4395 } 4396 break; 4397 } 4398 nr_account++; 4399 4400 prep_new_page(page, 0, gfp, 0); 4401 if (page_list) 4402 list_add(&page->lru, page_list); 4403 else 4404 page_array[nr_populated] = page; 4405 nr_populated++; 4406 } 4407 4408 pcp_spin_unlock(pcp); 4409 pcp_trylock_finish(UP_flags); 4410 4411 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4412 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4413 4414 out: 4415 return nr_populated; 4416 4417 failed_irq: 4418 pcp_trylock_finish(UP_flags); 4419 4420 failed: 4421 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4422 if (page) { 4423 if (page_list) 4424 list_add(&page->lru, page_list); 4425 else 4426 page_array[nr_populated] = page; 4427 nr_populated++; 4428 } 4429 4430 goto out; 4431 } 4432 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4433 4434 /* 4435 * This is the 'heart' of the zoned buddy allocator. 4436 */ 4437 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4438 nodemask_t *nodemask) 4439 { 4440 struct page *page; 4441 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4442 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4443 struct alloc_context ac = { }; 4444 4445 /* 4446 * There are several places where we assume that the order value is sane 4447 * so bail out early if the request is out of bound. 4448 */ 4449 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4450 return NULL; 4451 4452 gfp &= gfp_allowed_mask; 4453 /* 4454 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4455 * resp. GFP_NOIO which has to be inherited for all allocation requests 4456 * from a particular context which has been marked by 4457 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4458 * movable zones are not used during allocation. 4459 */ 4460 gfp = current_gfp_context(gfp); 4461 alloc_gfp = gfp; 4462 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4463 &alloc_gfp, &alloc_flags)) 4464 return NULL; 4465 4466 /* 4467 * Forbid the first pass from falling back to types that fragment 4468 * memory until all local zones are considered. 4469 */ 4470 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4471 4472 /* First allocation attempt */ 4473 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4474 if (likely(page)) 4475 goto out; 4476 4477 alloc_gfp = gfp; 4478 ac.spread_dirty_pages = false; 4479 4480 /* 4481 * Restore the original nodemask if it was potentially replaced with 4482 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4483 */ 4484 ac.nodemask = nodemask; 4485 4486 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4487 4488 out: 4489 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4490 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4491 __free_pages(page, order); 4492 page = NULL; 4493 } 4494 4495 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4496 kmsan_alloc_page(page, order, alloc_gfp); 4497 4498 return page; 4499 } 4500 EXPORT_SYMBOL(__alloc_pages); 4501 4502 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4503 nodemask_t *nodemask) 4504 { 4505 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4506 preferred_nid, nodemask); 4507 4508 if (page && order > 1) 4509 prep_transhuge_page(page); 4510 return (struct folio *)page; 4511 } 4512 EXPORT_SYMBOL(__folio_alloc); 4513 4514 /* 4515 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4516 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4517 * you need to access high mem. 4518 */ 4519 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4520 { 4521 struct page *page; 4522 4523 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4524 if (!page) 4525 return 0; 4526 return (unsigned long) page_address(page); 4527 } 4528 EXPORT_SYMBOL(__get_free_pages); 4529 4530 unsigned long get_zeroed_page(gfp_t gfp_mask) 4531 { 4532 return __get_free_page(gfp_mask | __GFP_ZERO); 4533 } 4534 EXPORT_SYMBOL(get_zeroed_page); 4535 4536 /** 4537 * __free_pages - Free pages allocated with alloc_pages(). 4538 * @page: The page pointer returned from alloc_pages(). 4539 * @order: The order of the allocation. 4540 * 4541 * This function can free multi-page allocations that are not compound 4542 * pages. It does not check that the @order passed in matches that of 4543 * the allocation, so it is easy to leak memory. Freeing more memory 4544 * than was allocated will probably emit a warning. 4545 * 4546 * If the last reference to this page is speculative, it will be released 4547 * by put_page() which only frees the first page of a non-compound 4548 * allocation. To prevent the remaining pages from being leaked, we free 4549 * the subsequent pages here. If you want to use the page's reference 4550 * count to decide when to free the allocation, you should allocate a 4551 * compound page, and use put_page() instead of __free_pages(). 4552 * 4553 * Context: May be called in interrupt context or while holding a normal 4554 * spinlock, but not in NMI context or while holding a raw spinlock. 4555 */ 4556 void __free_pages(struct page *page, unsigned int order) 4557 { 4558 /* get PageHead before we drop reference */ 4559 int head = PageHead(page); 4560 4561 if (put_page_testzero(page)) 4562 free_the_page(page, order); 4563 else if (!head) 4564 while (order-- > 0) 4565 free_the_page(page + (1 << order), order); 4566 } 4567 EXPORT_SYMBOL(__free_pages); 4568 4569 void free_pages(unsigned long addr, unsigned int order) 4570 { 4571 if (addr != 0) { 4572 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4573 __free_pages(virt_to_page((void *)addr), order); 4574 } 4575 } 4576 4577 EXPORT_SYMBOL(free_pages); 4578 4579 /* 4580 * Page Fragment: 4581 * An arbitrary-length arbitrary-offset area of memory which resides 4582 * within a 0 or higher order page. Multiple fragments within that page 4583 * are individually refcounted, in the page's reference counter. 4584 * 4585 * The page_frag functions below provide a simple allocation framework for 4586 * page fragments. This is used by the network stack and network device 4587 * drivers to provide a backing region of memory for use as either an 4588 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4589 */ 4590 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4591 gfp_t gfp_mask) 4592 { 4593 struct page *page = NULL; 4594 gfp_t gfp = gfp_mask; 4595 4596 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4597 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4598 __GFP_NOMEMALLOC; 4599 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4600 PAGE_FRAG_CACHE_MAX_ORDER); 4601 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4602 #endif 4603 if (unlikely(!page)) 4604 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4605 4606 nc->va = page ? page_address(page) : NULL; 4607 4608 return page; 4609 } 4610 4611 void __page_frag_cache_drain(struct page *page, unsigned int count) 4612 { 4613 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4614 4615 if (page_ref_sub_and_test(page, count)) 4616 free_the_page(page, compound_order(page)); 4617 } 4618 EXPORT_SYMBOL(__page_frag_cache_drain); 4619 4620 void *page_frag_alloc_align(struct page_frag_cache *nc, 4621 unsigned int fragsz, gfp_t gfp_mask, 4622 unsigned int align_mask) 4623 { 4624 unsigned int size = PAGE_SIZE; 4625 struct page *page; 4626 int offset; 4627 4628 if (unlikely(!nc->va)) { 4629 refill: 4630 page = __page_frag_cache_refill(nc, gfp_mask); 4631 if (!page) 4632 return NULL; 4633 4634 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4635 /* if size can vary use size else just use PAGE_SIZE */ 4636 size = nc->size; 4637 #endif 4638 /* Even if we own the page, we do not use atomic_set(). 4639 * This would break get_page_unless_zero() users. 4640 */ 4641 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4642 4643 /* reset page count bias and offset to start of new frag */ 4644 nc->pfmemalloc = page_is_pfmemalloc(page); 4645 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4646 nc->offset = size; 4647 } 4648 4649 offset = nc->offset - fragsz; 4650 if (unlikely(offset < 0)) { 4651 page = virt_to_page(nc->va); 4652 4653 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4654 goto refill; 4655 4656 if (unlikely(nc->pfmemalloc)) { 4657 free_the_page(page, compound_order(page)); 4658 goto refill; 4659 } 4660 4661 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4662 /* if size can vary use size else just use PAGE_SIZE */ 4663 size = nc->size; 4664 #endif 4665 /* OK, page count is 0, we can safely set it */ 4666 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4667 4668 /* reset page count bias and offset to start of new frag */ 4669 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4670 offset = size - fragsz; 4671 if (unlikely(offset < 0)) { 4672 /* 4673 * The caller is trying to allocate a fragment 4674 * with fragsz > PAGE_SIZE but the cache isn't big 4675 * enough to satisfy the request, this may 4676 * happen in low memory conditions. 4677 * We don't release the cache page because 4678 * it could make memory pressure worse 4679 * so we simply return NULL here. 4680 */ 4681 return NULL; 4682 } 4683 } 4684 4685 nc->pagecnt_bias--; 4686 offset &= align_mask; 4687 nc->offset = offset; 4688 4689 return nc->va + offset; 4690 } 4691 EXPORT_SYMBOL(page_frag_alloc_align); 4692 4693 /* 4694 * Frees a page fragment allocated out of either a compound or order 0 page. 4695 */ 4696 void page_frag_free(void *addr) 4697 { 4698 struct page *page = virt_to_head_page(addr); 4699 4700 if (unlikely(put_page_testzero(page))) 4701 free_the_page(page, compound_order(page)); 4702 } 4703 EXPORT_SYMBOL(page_frag_free); 4704 4705 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4706 size_t size) 4707 { 4708 if (addr) { 4709 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4710 struct page *page = virt_to_page((void *)addr); 4711 struct page *last = page + nr; 4712 4713 split_page_owner(page, 1 << order); 4714 split_page_memcg(page, 1 << order); 4715 while (page < --last) 4716 set_page_refcounted(last); 4717 4718 last = page + (1UL << order); 4719 for (page += nr; page < last; page++) 4720 __free_pages_ok(page, 0, FPI_TO_TAIL); 4721 } 4722 return (void *)addr; 4723 } 4724 4725 /** 4726 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4727 * @size: the number of bytes to allocate 4728 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4729 * 4730 * This function is similar to alloc_pages(), except that it allocates the 4731 * minimum number of pages to satisfy the request. alloc_pages() can only 4732 * allocate memory in power-of-two pages. 4733 * 4734 * This function is also limited by MAX_ORDER. 4735 * 4736 * Memory allocated by this function must be released by free_pages_exact(). 4737 * 4738 * Return: pointer to the allocated area or %NULL in case of error. 4739 */ 4740 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4741 { 4742 unsigned int order = get_order(size); 4743 unsigned long addr; 4744 4745 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4746 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4747 4748 addr = __get_free_pages(gfp_mask, order); 4749 return make_alloc_exact(addr, order, size); 4750 } 4751 EXPORT_SYMBOL(alloc_pages_exact); 4752 4753 /** 4754 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4755 * pages on a node. 4756 * @nid: the preferred node ID where memory should be allocated 4757 * @size: the number of bytes to allocate 4758 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4759 * 4760 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4761 * back. 4762 * 4763 * Return: pointer to the allocated area or %NULL in case of error. 4764 */ 4765 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4766 { 4767 unsigned int order = get_order(size); 4768 struct page *p; 4769 4770 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4771 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4772 4773 p = alloc_pages_node(nid, gfp_mask, order); 4774 if (!p) 4775 return NULL; 4776 return make_alloc_exact((unsigned long)page_address(p), order, size); 4777 } 4778 4779 /** 4780 * free_pages_exact - release memory allocated via alloc_pages_exact() 4781 * @virt: the value returned by alloc_pages_exact. 4782 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4783 * 4784 * Release the memory allocated by a previous call to alloc_pages_exact. 4785 */ 4786 void free_pages_exact(void *virt, size_t size) 4787 { 4788 unsigned long addr = (unsigned long)virt; 4789 unsigned long end = addr + PAGE_ALIGN(size); 4790 4791 while (addr < end) { 4792 free_page(addr); 4793 addr += PAGE_SIZE; 4794 } 4795 } 4796 EXPORT_SYMBOL(free_pages_exact); 4797 4798 /** 4799 * nr_free_zone_pages - count number of pages beyond high watermark 4800 * @offset: The zone index of the highest zone 4801 * 4802 * nr_free_zone_pages() counts the number of pages which are beyond the 4803 * high watermark within all zones at or below a given zone index. For each 4804 * zone, the number of pages is calculated as: 4805 * 4806 * nr_free_zone_pages = managed_pages - high_pages 4807 * 4808 * Return: number of pages beyond high watermark. 4809 */ 4810 static unsigned long nr_free_zone_pages(int offset) 4811 { 4812 struct zoneref *z; 4813 struct zone *zone; 4814 4815 /* Just pick one node, since fallback list is circular */ 4816 unsigned long sum = 0; 4817 4818 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4819 4820 for_each_zone_zonelist(zone, z, zonelist, offset) { 4821 unsigned long size = zone_managed_pages(zone); 4822 unsigned long high = high_wmark_pages(zone); 4823 if (size > high) 4824 sum += size - high; 4825 } 4826 4827 return sum; 4828 } 4829 4830 /** 4831 * nr_free_buffer_pages - count number of pages beyond high watermark 4832 * 4833 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4834 * watermark within ZONE_DMA and ZONE_NORMAL. 4835 * 4836 * Return: number of pages beyond high watermark within ZONE_DMA and 4837 * ZONE_NORMAL. 4838 */ 4839 unsigned long nr_free_buffer_pages(void) 4840 { 4841 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4842 } 4843 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4844 4845 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4846 { 4847 zoneref->zone = zone; 4848 zoneref->zone_idx = zone_idx(zone); 4849 } 4850 4851 /* 4852 * Builds allocation fallback zone lists. 4853 * 4854 * Add all populated zones of a node to the zonelist. 4855 */ 4856 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4857 { 4858 struct zone *zone; 4859 enum zone_type zone_type = MAX_NR_ZONES; 4860 int nr_zones = 0; 4861 4862 do { 4863 zone_type--; 4864 zone = pgdat->node_zones + zone_type; 4865 if (populated_zone(zone)) { 4866 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4867 check_highest_zone(zone_type); 4868 } 4869 } while (zone_type); 4870 4871 return nr_zones; 4872 } 4873 4874 #ifdef CONFIG_NUMA 4875 4876 static int __parse_numa_zonelist_order(char *s) 4877 { 4878 /* 4879 * We used to support different zonelists modes but they turned 4880 * out to be just not useful. Let's keep the warning in place 4881 * if somebody still use the cmd line parameter so that we do 4882 * not fail it silently 4883 */ 4884 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4885 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4886 return -EINVAL; 4887 } 4888 return 0; 4889 } 4890 4891 static char numa_zonelist_order[] = "Node"; 4892 #define NUMA_ZONELIST_ORDER_LEN 16 4893 /* 4894 * sysctl handler for numa_zonelist_order 4895 */ 4896 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4897 void *buffer, size_t *length, loff_t *ppos) 4898 { 4899 if (write) 4900 return __parse_numa_zonelist_order(buffer); 4901 return proc_dostring(table, write, buffer, length, ppos); 4902 } 4903 4904 static int node_load[MAX_NUMNODES]; 4905 4906 /** 4907 * find_next_best_node - find the next node that should appear in a given node's fallback list 4908 * @node: node whose fallback list we're appending 4909 * @used_node_mask: nodemask_t of already used nodes 4910 * 4911 * We use a number of factors to determine which is the next node that should 4912 * appear on a given node's fallback list. The node should not have appeared 4913 * already in @node's fallback list, and it should be the next closest node 4914 * according to the distance array (which contains arbitrary distance values 4915 * from each node to each node in the system), and should also prefer nodes 4916 * with no CPUs, since presumably they'll have very little allocation pressure 4917 * on them otherwise. 4918 * 4919 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 4920 */ 4921 int find_next_best_node(int node, nodemask_t *used_node_mask) 4922 { 4923 int n, val; 4924 int min_val = INT_MAX; 4925 int best_node = NUMA_NO_NODE; 4926 4927 /* Use the local node if we haven't already */ 4928 if (!node_isset(node, *used_node_mask)) { 4929 node_set(node, *used_node_mask); 4930 return node; 4931 } 4932 4933 for_each_node_state(n, N_MEMORY) { 4934 4935 /* Don't want a node to appear more than once */ 4936 if (node_isset(n, *used_node_mask)) 4937 continue; 4938 4939 /* Use the distance array to find the distance */ 4940 val = node_distance(node, n); 4941 4942 /* Penalize nodes under us ("prefer the next node") */ 4943 val += (n < node); 4944 4945 /* Give preference to headless and unused nodes */ 4946 if (!cpumask_empty(cpumask_of_node(n))) 4947 val += PENALTY_FOR_NODE_WITH_CPUS; 4948 4949 /* Slight preference for less loaded node */ 4950 val *= MAX_NUMNODES; 4951 val += node_load[n]; 4952 4953 if (val < min_val) { 4954 min_val = val; 4955 best_node = n; 4956 } 4957 } 4958 4959 if (best_node >= 0) 4960 node_set(best_node, *used_node_mask); 4961 4962 return best_node; 4963 } 4964 4965 4966 /* 4967 * Build zonelists ordered by node and zones within node. 4968 * This results in maximum locality--normal zone overflows into local 4969 * DMA zone, if any--but risks exhausting DMA zone. 4970 */ 4971 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 4972 unsigned nr_nodes) 4973 { 4974 struct zoneref *zonerefs; 4975 int i; 4976 4977 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 4978 4979 for (i = 0; i < nr_nodes; i++) { 4980 int nr_zones; 4981 4982 pg_data_t *node = NODE_DATA(node_order[i]); 4983 4984 nr_zones = build_zonerefs_node(node, zonerefs); 4985 zonerefs += nr_zones; 4986 } 4987 zonerefs->zone = NULL; 4988 zonerefs->zone_idx = 0; 4989 } 4990 4991 /* 4992 * Build gfp_thisnode zonelists 4993 */ 4994 static void build_thisnode_zonelists(pg_data_t *pgdat) 4995 { 4996 struct zoneref *zonerefs; 4997 int nr_zones; 4998 4999 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5000 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5001 zonerefs += nr_zones; 5002 zonerefs->zone = NULL; 5003 zonerefs->zone_idx = 0; 5004 } 5005 5006 /* 5007 * Build zonelists ordered by zone and nodes within zones. 5008 * This results in conserving DMA zone[s] until all Normal memory is 5009 * exhausted, but results in overflowing to remote node while memory 5010 * may still exist in local DMA zone. 5011 */ 5012 5013 static void build_zonelists(pg_data_t *pgdat) 5014 { 5015 static int node_order[MAX_NUMNODES]; 5016 int node, nr_nodes = 0; 5017 nodemask_t used_mask = NODE_MASK_NONE; 5018 int local_node, prev_node; 5019 5020 /* NUMA-aware ordering of nodes */ 5021 local_node = pgdat->node_id; 5022 prev_node = local_node; 5023 5024 memset(node_order, 0, sizeof(node_order)); 5025 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5026 /* 5027 * We don't want to pressure a particular node. 5028 * So adding penalty to the first node in same 5029 * distance group to make it round-robin. 5030 */ 5031 if (node_distance(local_node, node) != 5032 node_distance(local_node, prev_node)) 5033 node_load[node] += 1; 5034 5035 node_order[nr_nodes++] = node; 5036 prev_node = node; 5037 } 5038 5039 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5040 build_thisnode_zonelists(pgdat); 5041 pr_info("Fallback order for Node %d: ", local_node); 5042 for (node = 0; node < nr_nodes; node++) 5043 pr_cont("%d ", node_order[node]); 5044 pr_cont("\n"); 5045 } 5046 5047 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5048 /* 5049 * Return node id of node used for "local" allocations. 5050 * I.e., first node id of first zone in arg node's generic zonelist. 5051 * Used for initializing percpu 'numa_mem', which is used primarily 5052 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5053 */ 5054 int local_memory_node(int node) 5055 { 5056 struct zoneref *z; 5057 5058 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5059 gfp_zone(GFP_KERNEL), 5060 NULL); 5061 return zone_to_nid(z->zone); 5062 } 5063 #endif 5064 5065 static void setup_min_unmapped_ratio(void); 5066 static void setup_min_slab_ratio(void); 5067 #else /* CONFIG_NUMA */ 5068 5069 static void build_zonelists(pg_data_t *pgdat) 5070 { 5071 int node, local_node; 5072 struct zoneref *zonerefs; 5073 int nr_zones; 5074 5075 local_node = pgdat->node_id; 5076 5077 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5078 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5079 zonerefs += nr_zones; 5080 5081 /* 5082 * Now we build the zonelist so that it contains the zones 5083 * of all the other nodes. 5084 * We don't want to pressure a particular node, so when 5085 * building the zones for node N, we make sure that the 5086 * zones coming right after the local ones are those from 5087 * node N+1 (modulo N) 5088 */ 5089 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5090 if (!node_online(node)) 5091 continue; 5092 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5093 zonerefs += nr_zones; 5094 } 5095 for (node = 0; node < local_node; node++) { 5096 if (!node_online(node)) 5097 continue; 5098 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5099 zonerefs += nr_zones; 5100 } 5101 5102 zonerefs->zone = NULL; 5103 zonerefs->zone_idx = 0; 5104 } 5105 5106 #endif /* CONFIG_NUMA */ 5107 5108 /* 5109 * Boot pageset table. One per cpu which is going to be used for all 5110 * zones and all nodes. The parameters will be set in such a way 5111 * that an item put on a list will immediately be handed over to 5112 * the buddy list. This is safe since pageset manipulation is done 5113 * with interrupts disabled. 5114 * 5115 * The boot_pagesets must be kept even after bootup is complete for 5116 * unused processors and/or zones. They do play a role for bootstrapping 5117 * hotplugged processors. 5118 * 5119 * zoneinfo_show() and maybe other functions do 5120 * not check if the processor is online before following the pageset pointer. 5121 * Other parts of the kernel may not check if the zone is available. 5122 */ 5123 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5124 /* These effectively disable the pcplists in the boot pageset completely */ 5125 #define BOOT_PAGESET_HIGH 0 5126 #define BOOT_PAGESET_BATCH 1 5127 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5128 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5129 5130 static void __build_all_zonelists(void *data) 5131 { 5132 int nid; 5133 int __maybe_unused cpu; 5134 pg_data_t *self = data; 5135 unsigned long flags; 5136 5137 /* 5138 * The zonelist_update_seq must be acquired with irqsave because the 5139 * reader can be invoked from IRQ with GFP_ATOMIC. 5140 */ 5141 write_seqlock_irqsave(&zonelist_update_seq, flags); 5142 /* 5143 * Also disable synchronous printk() to prevent any printk() from 5144 * trying to hold port->lock, for 5145 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5146 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5147 */ 5148 printk_deferred_enter(); 5149 5150 #ifdef CONFIG_NUMA 5151 memset(node_load, 0, sizeof(node_load)); 5152 #endif 5153 5154 /* 5155 * This node is hotadded and no memory is yet present. So just 5156 * building zonelists is fine - no need to touch other nodes. 5157 */ 5158 if (self && !node_online(self->node_id)) { 5159 build_zonelists(self); 5160 } else { 5161 /* 5162 * All possible nodes have pgdat preallocated 5163 * in free_area_init 5164 */ 5165 for_each_node(nid) { 5166 pg_data_t *pgdat = NODE_DATA(nid); 5167 5168 build_zonelists(pgdat); 5169 } 5170 5171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5172 /* 5173 * We now know the "local memory node" for each node-- 5174 * i.e., the node of the first zone in the generic zonelist. 5175 * Set up numa_mem percpu variable for on-line cpus. During 5176 * boot, only the boot cpu should be on-line; we'll init the 5177 * secondary cpus' numa_mem as they come on-line. During 5178 * node/memory hotplug, we'll fixup all on-line cpus. 5179 */ 5180 for_each_online_cpu(cpu) 5181 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5182 #endif 5183 } 5184 5185 printk_deferred_exit(); 5186 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5187 } 5188 5189 static noinline void __init 5190 build_all_zonelists_init(void) 5191 { 5192 int cpu; 5193 5194 __build_all_zonelists(NULL); 5195 5196 /* 5197 * Initialize the boot_pagesets that are going to be used 5198 * for bootstrapping processors. The real pagesets for 5199 * each zone will be allocated later when the per cpu 5200 * allocator is available. 5201 * 5202 * boot_pagesets are used also for bootstrapping offline 5203 * cpus if the system is already booted because the pagesets 5204 * are needed to initialize allocators on a specific cpu too. 5205 * F.e. the percpu allocator needs the page allocator which 5206 * needs the percpu allocator in order to allocate its pagesets 5207 * (a chicken-egg dilemma). 5208 */ 5209 for_each_possible_cpu(cpu) 5210 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5211 5212 mminit_verify_zonelist(); 5213 cpuset_init_current_mems_allowed(); 5214 } 5215 5216 /* 5217 * unless system_state == SYSTEM_BOOTING. 5218 * 5219 * __ref due to call of __init annotated helper build_all_zonelists_init 5220 * [protected by SYSTEM_BOOTING]. 5221 */ 5222 void __ref build_all_zonelists(pg_data_t *pgdat) 5223 { 5224 unsigned long vm_total_pages; 5225 5226 if (system_state == SYSTEM_BOOTING) { 5227 build_all_zonelists_init(); 5228 } else { 5229 __build_all_zonelists(pgdat); 5230 /* cpuset refresh routine should be here */ 5231 } 5232 /* Get the number of free pages beyond high watermark in all zones. */ 5233 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5234 /* 5235 * Disable grouping by mobility if the number of pages in the 5236 * system is too low to allow the mechanism to work. It would be 5237 * more accurate, but expensive to check per-zone. This check is 5238 * made on memory-hotadd so a system can start with mobility 5239 * disabled and enable it later 5240 */ 5241 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5242 page_group_by_mobility_disabled = 1; 5243 else 5244 page_group_by_mobility_disabled = 0; 5245 5246 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5247 nr_online_nodes, 5248 page_group_by_mobility_disabled ? "off" : "on", 5249 vm_total_pages); 5250 #ifdef CONFIG_NUMA 5251 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5252 #endif 5253 } 5254 5255 static int zone_batchsize(struct zone *zone) 5256 { 5257 #ifdef CONFIG_MMU 5258 int batch; 5259 5260 /* 5261 * The number of pages to batch allocate is either ~0.1% 5262 * of the zone or 1MB, whichever is smaller. The batch 5263 * size is striking a balance between allocation latency 5264 * and zone lock contention. 5265 */ 5266 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5267 batch /= 4; /* We effectively *= 4 below */ 5268 if (batch < 1) 5269 batch = 1; 5270 5271 /* 5272 * Clamp the batch to a 2^n - 1 value. Having a power 5273 * of 2 value was found to be more likely to have 5274 * suboptimal cache aliasing properties in some cases. 5275 * 5276 * For example if 2 tasks are alternately allocating 5277 * batches of pages, one task can end up with a lot 5278 * of pages of one half of the possible page colors 5279 * and the other with pages of the other colors. 5280 */ 5281 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5282 5283 return batch; 5284 5285 #else 5286 /* The deferral and batching of frees should be suppressed under NOMMU 5287 * conditions. 5288 * 5289 * The problem is that NOMMU needs to be able to allocate large chunks 5290 * of contiguous memory as there's no hardware page translation to 5291 * assemble apparent contiguous memory from discontiguous pages. 5292 * 5293 * Queueing large contiguous runs of pages for batching, however, 5294 * causes the pages to actually be freed in smaller chunks. As there 5295 * can be a significant delay between the individual batches being 5296 * recycled, this leads to the once large chunks of space being 5297 * fragmented and becoming unavailable for high-order allocations. 5298 */ 5299 return 0; 5300 #endif 5301 } 5302 5303 static int percpu_pagelist_high_fraction; 5304 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 5305 { 5306 #ifdef CONFIG_MMU 5307 int high; 5308 int nr_split_cpus; 5309 unsigned long total_pages; 5310 5311 if (!percpu_pagelist_high_fraction) { 5312 /* 5313 * By default, the high value of the pcp is based on the zone 5314 * low watermark so that if they are full then background 5315 * reclaim will not be started prematurely. 5316 */ 5317 total_pages = low_wmark_pages(zone); 5318 } else { 5319 /* 5320 * If percpu_pagelist_high_fraction is configured, the high 5321 * value is based on a fraction of the managed pages in the 5322 * zone. 5323 */ 5324 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 5325 } 5326 5327 /* 5328 * Split the high value across all online CPUs local to the zone. Note 5329 * that early in boot that CPUs may not be online yet and that during 5330 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5331 * onlined. For memory nodes that have no CPUs, split pcp->high across 5332 * all online CPUs to mitigate the risk that reclaim is triggered 5333 * prematurely due to pages stored on pcp lists. 5334 */ 5335 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5336 if (!nr_split_cpus) 5337 nr_split_cpus = num_online_cpus(); 5338 high = total_pages / nr_split_cpus; 5339 5340 /* 5341 * Ensure high is at least batch*4. The multiple is based on the 5342 * historical relationship between high and batch. 5343 */ 5344 high = max(high, batch << 2); 5345 5346 return high; 5347 #else 5348 return 0; 5349 #endif 5350 } 5351 5352 /* 5353 * pcp->high and pcp->batch values are related and generally batch is lower 5354 * than high. They are also related to pcp->count such that count is lower 5355 * than high, and as soon as it reaches high, the pcplist is flushed. 5356 * 5357 * However, guaranteeing these relations at all times would require e.g. write 5358 * barriers here but also careful usage of read barriers at the read side, and 5359 * thus be prone to error and bad for performance. Thus the update only prevents 5360 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 5361 * can cope with those fields changing asynchronously, and fully trust only the 5362 * pcp->count field on the local CPU with interrupts disabled. 5363 * 5364 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5365 * outside of boot time (or some other assurance that no concurrent updaters 5366 * exist). 5367 */ 5368 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5369 unsigned long batch) 5370 { 5371 WRITE_ONCE(pcp->batch, batch); 5372 WRITE_ONCE(pcp->high, high); 5373 } 5374 5375 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5376 { 5377 int pindex; 5378 5379 memset(pcp, 0, sizeof(*pcp)); 5380 memset(pzstats, 0, sizeof(*pzstats)); 5381 5382 spin_lock_init(&pcp->lock); 5383 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5384 INIT_LIST_HEAD(&pcp->lists[pindex]); 5385 5386 /* 5387 * Set batch and high values safe for a boot pageset. A true percpu 5388 * pageset's initialization will update them subsequently. Here we don't 5389 * need to be as careful as pageset_update() as nobody can access the 5390 * pageset yet. 5391 */ 5392 pcp->high = BOOT_PAGESET_HIGH; 5393 pcp->batch = BOOT_PAGESET_BATCH; 5394 pcp->free_factor = 0; 5395 } 5396 5397 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 5398 unsigned long batch) 5399 { 5400 struct per_cpu_pages *pcp; 5401 int cpu; 5402 5403 for_each_possible_cpu(cpu) { 5404 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5405 pageset_update(pcp, high, batch); 5406 } 5407 } 5408 5409 /* 5410 * Calculate and set new high and batch values for all per-cpu pagesets of a 5411 * zone based on the zone's size. 5412 */ 5413 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5414 { 5415 int new_high, new_batch; 5416 5417 new_batch = max(1, zone_batchsize(zone)); 5418 new_high = zone_highsize(zone, new_batch, cpu_online); 5419 5420 if (zone->pageset_high == new_high && 5421 zone->pageset_batch == new_batch) 5422 return; 5423 5424 zone->pageset_high = new_high; 5425 zone->pageset_batch = new_batch; 5426 5427 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 5428 } 5429 5430 void __meminit setup_zone_pageset(struct zone *zone) 5431 { 5432 int cpu; 5433 5434 /* Size may be 0 on !SMP && !NUMA */ 5435 if (sizeof(struct per_cpu_zonestat) > 0) 5436 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5437 5438 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5439 for_each_possible_cpu(cpu) { 5440 struct per_cpu_pages *pcp; 5441 struct per_cpu_zonestat *pzstats; 5442 5443 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5444 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5445 per_cpu_pages_init(pcp, pzstats); 5446 } 5447 5448 zone_set_pageset_high_and_batch(zone, 0); 5449 } 5450 5451 /* 5452 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5453 * page high values need to be recalculated. 5454 */ 5455 static void zone_pcp_update(struct zone *zone, int cpu_online) 5456 { 5457 mutex_lock(&pcp_batch_high_lock); 5458 zone_set_pageset_high_and_batch(zone, cpu_online); 5459 mutex_unlock(&pcp_batch_high_lock); 5460 } 5461 5462 /* 5463 * Allocate per cpu pagesets and initialize them. 5464 * Before this call only boot pagesets were available. 5465 */ 5466 void __init setup_per_cpu_pageset(void) 5467 { 5468 struct pglist_data *pgdat; 5469 struct zone *zone; 5470 int __maybe_unused cpu; 5471 5472 for_each_populated_zone(zone) 5473 setup_zone_pageset(zone); 5474 5475 #ifdef CONFIG_NUMA 5476 /* 5477 * Unpopulated zones continue using the boot pagesets. 5478 * The numa stats for these pagesets need to be reset. 5479 * Otherwise, they will end up skewing the stats of 5480 * the nodes these zones are associated with. 5481 */ 5482 for_each_possible_cpu(cpu) { 5483 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5484 memset(pzstats->vm_numa_event, 0, 5485 sizeof(pzstats->vm_numa_event)); 5486 } 5487 #endif 5488 5489 for_each_online_pgdat(pgdat) 5490 pgdat->per_cpu_nodestats = 5491 alloc_percpu(struct per_cpu_nodestat); 5492 } 5493 5494 __meminit void zone_pcp_init(struct zone *zone) 5495 { 5496 /* 5497 * per cpu subsystem is not up at this point. The following code 5498 * relies on the ability of the linker to provide the 5499 * offset of a (static) per cpu variable into the per cpu area. 5500 */ 5501 zone->per_cpu_pageset = &boot_pageset; 5502 zone->per_cpu_zonestats = &boot_zonestats; 5503 zone->pageset_high = BOOT_PAGESET_HIGH; 5504 zone->pageset_batch = BOOT_PAGESET_BATCH; 5505 5506 if (populated_zone(zone)) 5507 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5508 zone->present_pages, zone_batchsize(zone)); 5509 } 5510 5511 void adjust_managed_page_count(struct page *page, long count) 5512 { 5513 atomic_long_add(count, &page_zone(page)->managed_pages); 5514 totalram_pages_add(count); 5515 #ifdef CONFIG_HIGHMEM 5516 if (PageHighMem(page)) 5517 totalhigh_pages_add(count); 5518 #endif 5519 } 5520 EXPORT_SYMBOL(adjust_managed_page_count); 5521 5522 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5523 { 5524 void *pos; 5525 unsigned long pages = 0; 5526 5527 start = (void *)PAGE_ALIGN((unsigned long)start); 5528 end = (void *)((unsigned long)end & PAGE_MASK); 5529 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5530 struct page *page = virt_to_page(pos); 5531 void *direct_map_addr; 5532 5533 /* 5534 * 'direct_map_addr' might be different from 'pos' 5535 * because some architectures' virt_to_page() 5536 * work with aliases. Getting the direct map 5537 * address ensures that we get a _writeable_ 5538 * alias for the memset(). 5539 */ 5540 direct_map_addr = page_address(page); 5541 /* 5542 * Perform a kasan-unchecked memset() since this memory 5543 * has not been initialized. 5544 */ 5545 direct_map_addr = kasan_reset_tag(direct_map_addr); 5546 if ((unsigned int)poison <= 0xFF) 5547 memset(direct_map_addr, poison, PAGE_SIZE); 5548 5549 free_reserved_page(page); 5550 } 5551 5552 if (pages && s) 5553 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5554 5555 return pages; 5556 } 5557 5558 static int page_alloc_cpu_dead(unsigned int cpu) 5559 { 5560 struct zone *zone; 5561 5562 lru_add_drain_cpu(cpu); 5563 mlock_drain_remote(cpu); 5564 drain_pages(cpu); 5565 5566 /* 5567 * Spill the event counters of the dead processor 5568 * into the current processors event counters. 5569 * This artificially elevates the count of the current 5570 * processor. 5571 */ 5572 vm_events_fold_cpu(cpu); 5573 5574 /* 5575 * Zero the differential counters of the dead processor 5576 * so that the vm statistics are consistent. 5577 * 5578 * This is only okay since the processor is dead and cannot 5579 * race with what we are doing. 5580 */ 5581 cpu_vm_stats_fold(cpu); 5582 5583 for_each_populated_zone(zone) 5584 zone_pcp_update(zone, 0); 5585 5586 return 0; 5587 } 5588 5589 static int page_alloc_cpu_online(unsigned int cpu) 5590 { 5591 struct zone *zone; 5592 5593 for_each_populated_zone(zone) 5594 zone_pcp_update(zone, 1); 5595 return 0; 5596 } 5597 5598 void __init page_alloc_init_cpuhp(void) 5599 { 5600 int ret; 5601 5602 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5603 "mm/page_alloc:pcp", 5604 page_alloc_cpu_online, 5605 page_alloc_cpu_dead); 5606 WARN_ON(ret < 0); 5607 } 5608 5609 /* 5610 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5611 * or min_free_kbytes changes. 5612 */ 5613 static void calculate_totalreserve_pages(void) 5614 { 5615 struct pglist_data *pgdat; 5616 unsigned long reserve_pages = 0; 5617 enum zone_type i, j; 5618 5619 for_each_online_pgdat(pgdat) { 5620 5621 pgdat->totalreserve_pages = 0; 5622 5623 for (i = 0; i < MAX_NR_ZONES; i++) { 5624 struct zone *zone = pgdat->node_zones + i; 5625 long max = 0; 5626 unsigned long managed_pages = zone_managed_pages(zone); 5627 5628 /* Find valid and maximum lowmem_reserve in the zone */ 5629 for (j = i; j < MAX_NR_ZONES; j++) { 5630 if (zone->lowmem_reserve[j] > max) 5631 max = zone->lowmem_reserve[j]; 5632 } 5633 5634 /* we treat the high watermark as reserved pages. */ 5635 max += high_wmark_pages(zone); 5636 5637 if (max > managed_pages) 5638 max = managed_pages; 5639 5640 pgdat->totalreserve_pages += max; 5641 5642 reserve_pages += max; 5643 } 5644 } 5645 totalreserve_pages = reserve_pages; 5646 } 5647 5648 /* 5649 * setup_per_zone_lowmem_reserve - called whenever 5650 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5651 * has a correct pages reserved value, so an adequate number of 5652 * pages are left in the zone after a successful __alloc_pages(). 5653 */ 5654 static void setup_per_zone_lowmem_reserve(void) 5655 { 5656 struct pglist_data *pgdat; 5657 enum zone_type i, j; 5658 5659 for_each_online_pgdat(pgdat) { 5660 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5661 struct zone *zone = &pgdat->node_zones[i]; 5662 int ratio = sysctl_lowmem_reserve_ratio[i]; 5663 bool clear = !ratio || !zone_managed_pages(zone); 5664 unsigned long managed_pages = 0; 5665 5666 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5667 struct zone *upper_zone = &pgdat->node_zones[j]; 5668 5669 managed_pages += zone_managed_pages(upper_zone); 5670 5671 if (clear) 5672 zone->lowmem_reserve[j] = 0; 5673 else 5674 zone->lowmem_reserve[j] = managed_pages / ratio; 5675 } 5676 } 5677 } 5678 5679 /* update totalreserve_pages */ 5680 calculate_totalreserve_pages(); 5681 } 5682 5683 static void __setup_per_zone_wmarks(void) 5684 { 5685 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5686 unsigned long lowmem_pages = 0; 5687 struct zone *zone; 5688 unsigned long flags; 5689 5690 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5691 for_each_zone(zone) { 5692 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5693 lowmem_pages += zone_managed_pages(zone); 5694 } 5695 5696 for_each_zone(zone) { 5697 u64 tmp; 5698 5699 spin_lock_irqsave(&zone->lock, flags); 5700 tmp = (u64)pages_min * zone_managed_pages(zone); 5701 do_div(tmp, lowmem_pages); 5702 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5703 /* 5704 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5705 * need highmem and movable zones pages, so cap pages_min 5706 * to a small value here. 5707 * 5708 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5709 * deltas control async page reclaim, and so should 5710 * not be capped for highmem and movable zones. 5711 */ 5712 unsigned long min_pages; 5713 5714 min_pages = zone_managed_pages(zone) / 1024; 5715 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5716 zone->_watermark[WMARK_MIN] = min_pages; 5717 } else { 5718 /* 5719 * If it's a lowmem zone, reserve a number of pages 5720 * proportionate to the zone's size. 5721 */ 5722 zone->_watermark[WMARK_MIN] = tmp; 5723 } 5724 5725 /* 5726 * Set the kswapd watermarks distance according to the 5727 * scale factor in proportion to available memory, but 5728 * ensure a minimum size on small systems. 5729 */ 5730 tmp = max_t(u64, tmp >> 2, 5731 mult_frac(zone_managed_pages(zone), 5732 watermark_scale_factor, 10000)); 5733 5734 zone->watermark_boost = 0; 5735 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5736 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5737 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5738 5739 spin_unlock_irqrestore(&zone->lock, flags); 5740 } 5741 5742 /* update totalreserve_pages */ 5743 calculate_totalreserve_pages(); 5744 } 5745 5746 /** 5747 * setup_per_zone_wmarks - called when min_free_kbytes changes 5748 * or when memory is hot-{added|removed} 5749 * 5750 * Ensures that the watermark[min,low,high] values for each zone are set 5751 * correctly with respect to min_free_kbytes. 5752 */ 5753 void setup_per_zone_wmarks(void) 5754 { 5755 struct zone *zone; 5756 static DEFINE_SPINLOCK(lock); 5757 5758 spin_lock(&lock); 5759 __setup_per_zone_wmarks(); 5760 spin_unlock(&lock); 5761 5762 /* 5763 * The watermark size have changed so update the pcpu batch 5764 * and high limits or the limits may be inappropriate. 5765 */ 5766 for_each_zone(zone) 5767 zone_pcp_update(zone, 0); 5768 } 5769 5770 /* 5771 * Initialise min_free_kbytes. 5772 * 5773 * For small machines we want it small (128k min). For large machines 5774 * we want it large (256MB max). But it is not linear, because network 5775 * bandwidth does not increase linearly with machine size. We use 5776 * 5777 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5778 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5779 * 5780 * which yields 5781 * 5782 * 16MB: 512k 5783 * 32MB: 724k 5784 * 64MB: 1024k 5785 * 128MB: 1448k 5786 * 256MB: 2048k 5787 * 512MB: 2896k 5788 * 1024MB: 4096k 5789 * 2048MB: 5792k 5790 * 4096MB: 8192k 5791 * 8192MB: 11584k 5792 * 16384MB: 16384k 5793 */ 5794 void calculate_min_free_kbytes(void) 5795 { 5796 unsigned long lowmem_kbytes; 5797 int new_min_free_kbytes; 5798 5799 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5800 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5801 5802 if (new_min_free_kbytes > user_min_free_kbytes) 5803 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5804 else 5805 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5806 new_min_free_kbytes, user_min_free_kbytes); 5807 5808 } 5809 5810 int __meminit init_per_zone_wmark_min(void) 5811 { 5812 calculate_min_free_kbytes(); 5813 setup_per_zone_wmarks(); 5814 refresh_zone_stat_thresholds(); 5815 setup_per_zone_lowmem_reserve(); 5816 5817 #ifdef CONFIG_NUMA 5818 setup_min_unmapped_ratio(); 5819 setup_min_slab_ratio(); 5820 #endif 5821 5822 khugepaged_min_free_kbytes_update(); 5823 5824 return 0; 5825 } 5826 postcore_initcall(init_per_zone_wmark_min) 5827 5828 /* 5829 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5830 * that we can call two helper functions whenever min_free_kbytes 5831 * changes. 5832 */ 5833 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5834 void *buffer, size_t *length, loff_t *ppos) 5835 { 5836 int rc; 5837 5838 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5839 if (rc) 5840 return rc; 5841 5842 if (write) { 5843 user_min_free_kbytes = min_free_kbytes; 5844 setup_per_zone_wmarks(); 5845 } 5846 return 0; 5847 } 5848 5849 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 5850 void *buffer, size_t *length, loff_t *ppos) 5851 { 5852 int rc; 5853 5854 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5855 if (rc) 5856 return rc; 5857 5858 if (write) 5859 setup_per_zone_wmarks(); 5860 5861 return 0; 5862 } 5863 5864 #ifdef CONFIG_NUMA 5865 static void setup_min_unmapped_ratio(void) 5866 { 5867 pg_data_t *pgdat; 5868 struct zone *zone; 5869 5870 for_each_online_pgdat(pgdat) 5871 pgdat->min_unmapped_pages = 0; 5872 5873 for_each_zone(zone) 5874 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 5875 sysctl_min_unmapped_ratio) / 100; 5876 } 5877 5878 5879 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5880 void *buffer, size_t *length, loff_t *ppos) 5881 { 5882 int rc; 5883 5884 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5885 if (rc) 5886 return rc; 5887 5888 setup_min_unmapped_ratio(); 5889 5890 return 0; 5891 } 5892 5893 static void setup_min_slab_ratio(void) 5894 { 5895 pg_data_t *pgdat; 5896 struct zone *zone; 5897 5898 for_each_online_pgdat(pgdat) 5899 pgdat->min_slab_pages = 0; 5900 5901 for_each_zone(zone) 5902 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 5903 sysctl_min_slab_ratio) / 100; 5904 } 5905 5906 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5907 void *buffer, size_t *length, loff_t *ppos) 5908 { 5909 int rc; 5910 5911 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5912 if (rc) 5913 return rc; 5914 5915 setup_min_slab_ratio(); 5916 5917 return 0; 5918 } 5919 #endif 5920 5921 /* 5922 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5923 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5924 * whenever sysctl_lowmem_reserve_ratio changes. 5925 * 5926 * The reserve ratio obviously has absolutely no relation with the 5927 * minimum watermarks. The lowmem reserve ratio can only make sense 5928 * if in function of the boot time zone sizes. 5929 */ 5930 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 5931 int write, void *buffer, size_t *length, loff_t *ppos) 5932 { 5933 int i; 5934 5935 proc_dointvec_minmax(table, write, buffer, length, ppos); 5936 5937 for (i = 0; i < MAX_NR_ZONES; i++) { 5938 if (sysctl_lowmem_reserve_ratio[i] < 1) 5939 sysctl_lowmem_reserve_ratio[i] = 0; 5940 } 5941 5942 setup_per_zone_lowmem_reserve(); 5943 return 0; 5944 } 5945 5946 /* 5947 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 5948 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5949 * pagelist can have before it gets flushed back to buddy allocator. 5950 */ 5951 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 5952 int write, void *buffer, size_t *length, loff_t *ppos) 5953 { 5954 struct zone *zone; 5955 int old_percpu_pagelist_high_fraction; 5956 int ret; 5957 5958 mutex_lock(&pcp_batch_high_lock); 5959 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 5960 5961 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5962 if (!write || ret < 0) 5963 goto out; 5964 5965 /* Sanity checking to avoid pcp imbalance */ 5966 if (percpu_pagelist_high_fraction && 5967 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 5968 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 5969 ret = -EINVAL; 5970 goto out; 5971 } 5972 5973 /* No change? */ 5974 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 5975 goto out; 5976 5977 for_each_populated_zone(zone) 5978 zone_set_pageset_high_and_batch(zone, 0); 5979 out: 5980 mutex_unlock(&pcp_batch_high_lock); 5981 return ret; 5982 } 5983 5984 static struct ctl_table page_alloc_sysctl_table[] = { 5985 { 5986 .procname = "min_free_kbytes", 5987 .data = &min_free_kbytes, 5988 .maxlen = sizeof(min_free_kbytes), 5989 .mode = 0644, 5990 .proc_handler = min_free_kbytes_sysctl_handler, 5991 .extra1 = SYSCTL_ZERO, 5992 }, 5993 { 5994 .procname = "watermark_boost_factor", 5995 .data = &watermark_boost_factor, 5996 .maxlen = sizeof(watermark_boost_factor), 5997 .mode = 0644, 5998 .proc_handler = proc_dointvec_minmax, 5999 .extra1 = SYSCTL_ZERO, 6000 }, 6001 { 6002 .procname = "watermark_scale_factor", 6003 .data = &watermark_scale_factor, 6004 .maxlen = sizeof(watermark_scale_factor), 6005 .mode = 0644, 6006 .proc_handler = watermark_scale_factor_sysctl_handler, 6007 .extra1 = SYSCTL_ONE, 6008 .extra2 = SYSCTL_THREE_THOUSAND, 6009 }, 6010 { 6011 .procname = "percpu_pagelist_high_fraction", 6012 .data = &percpu_pagelist_high_fraction, 6013 .maxlen = sizeof(percpu_pagelist_high_fraction), 6014 .mode = 0644, 6015 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6016 .extra1 = SYSCTL_ZERO, 6017 }, 6018 { 6019 .procname = "lowmem_reserve_ratio", 6020 .data = &sysctl_lowmem_reserve_ratio, 6021 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6022 .mode = 0644, 6023 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6024 }, 6025 #ifdef CONFIG_NUMA 6026 { 6027 .procname = "numa_zonelist_order", 6028 .data = &numa_zonelist_order, 6029 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6030 .mode = 0644, 6031 .proc_handler = numa_zonelist_order_handler, 6032 }, 6033 { 6034 .procname = "min_unmapped_ratio", 6035 .data = &sysctl_min_unmapped_ratio, 6036 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6037 .mode = 0644, 6038 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6039 .extra1 = SYSCTL_ZERO, 6040 .extra2 = SYSCTL_ONE_HUNDRED, 6041 }, 6042 { 6043 .procname = "min_slab_ratio", 6044 .data = &sysctl_min_slab_ratio, 6045 .maxlen = sizeof(sysctl_min_slab_ratio), 6046 .mode = 0644, 6047 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6048 .extra1 = SYSCTL_ZERO, 6049 .extra2 = SYSCTL_ONE_HUNDRED, 6050 }, 6051 #endif 6052 {} 6053 }; 6054 6055 void __init page_alloc_sysctl_init(void) 6056 { 6057 register_sysctl_init("vm", page_alloc_sysctl_table); 6058 } 6059 6060 #ifdef CONFIG_CONTIG_ALLOC 6061 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6062 static void alloc_contig_dump_pages(struct list_head *page_list) 6063 { 6064 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6065 6066 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6067 struct page *page; 6068 6069 dump_stack(); 6070 list_for_each_entry(page, page_list, lru) 6071 dump_page(page, "migration failure"); 6072 } 6073 } 6074 6075 /* [start, end) must belong to a single zone. */ 6076 int __alloc_contig_migrate_range(struct compact_control *cc, 6077 unsigned long start, unsigned long end) 6078 { 6079 /* This function is based on compact_zone() from compaction.c. */ 6080 unsigned int nr_reclaimed; 6081 unsigned long pfn = start; 6082 unsigned int tries = 0; 6083 int ret = 0; 6084 struct migration_target_control mtc = { 6085 .nid = zone_to_nid(cc->zone), 6086 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6087 }; 6088 6089 lru_cache_disable(); 6090 6091 while (pfn < end || !list_empty(&cc->migratepages)) { 6092 if (fatal_signal_pending(current)) { 6093 ret = -EINTR; 6094 break; 6095 } 6096 6097 if (list_empty(&cc->migratepages)) { 6098 cc->nr_migratepages = 0; 6099 ret = isolate_migratepages_range(cc, pfn, end); 6100 if (ret && ret != -EAGAIN) 6101 break; 6102 pfn = cc->migrate_pfn; 6103 tries = 0; 6104 } else if (++tries == 5) { 6105 ret = -EBUSY; 6106 break; 6107 } 6108 6109 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6110 &cc->migratepages); 6111 cc->nr_migratepages -= nr_reclaimed; 6112 6113 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6114 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6115 6116 /* 6117 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6118 * to retry again over this error, so do the same here. 6119 */ 6120 if (ret == -ENOMEM) 6121 break; 6122 } 6123 6124 lru_cache_enable(); 6125 if (ret < 0) { 6126 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6127 alloc_contig_dump_pages(&cc->migratepages); 6128 putback_movable_pages(&cc->migratepages); 6129 return ret; 6130 } 6131 return 0; 6132 } 6133 6134 /** 6135 * alloc_contig_range() -- tries to allocate given range of pages 6136 * @start: start PFN to allocate 6137 * @end: one-past-the-last PFN to allocate 6138 * @migratetype: migratetype of the underlying pageblocks (either 6139 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6140 * in range must have the same migratetype and it must 6141 * be either of the two. 6142 * @gfp_mask: GFP mask to use during compaction 6143 * 6144 * The PFN range does not have to be pageblock aligned. The PFN range must 6145 * belong to a single zone. 6146 * 6147 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6148 * pageblocks in the range. Once isolated, the pageblocks should not 6149 * be modified by others. 6150 * 6151 * Return: zero on success or negative error code. On success all 6152 * pages which PFN is in [start, end) are allocated for the caller and 6153 * need to be freed with free_contig_range(). 6154 */ 6155 int alloc_contig_range(unsigned long start, unsigned long end, 6156 unsigned migratetype, gfp_t gfp_mask) 6157 { 6158 unsigned long outer_start, outer_end; 6159 int order; 6160 int ret = 0; 6161 6162 struct compact_control cc = { 6163 .nr_migratepages = 0, 6164 .order = -1, 6165 .zone = page_zone(pfn_to_page(start)), 6166 .mode = MIGRATE_SYNC, 6167 .ignore_skip_hint = true, 6168 .no_set_skip_hint = true, 6169 .gfp_mask = current_gfp_context(gfp_mask), 6170 .alloc_contig = true, 6171 }; 6172 INIT_LIST_HEAD(&cc.migratepages); 6173 6174 /* 6175 * What we do here is we mark all pageblocks in range as 6176 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6177 * have different sizes, and due to the way page allocator 6178 * work, start_isolate_page_range() has special handlings for this. 6179 * 6180 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6181 * migrate the pages from an unaligned range (ie. pages that 6182 * we are interested in). This will put all the pages in 6183 * range back to page allocator as MIGRATE_ISOLATE. 6184 * 6185 * When this is done, we take the pages in range from page 6186 * allocator removing them from the buddy system. This way 6187 * page allocator will never consider using them. 6188 * 6189 * This lets us mark the pageblocks back as 6190 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6191 * aligned range but not in the unaligned, original range are 6192 * put back to page allocator so that buddy can use them. 6193 */ 6194 6195 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6196 if (ret) 6197 goto done; 6198 6199 drain_all_pages(cc.zone); 6200 6201 /* 6202 * In case of -EBUSY, we'd like to know which page causes problem. 6203 * So, just fall through. test_pages_isolated() has a tracepoint 6204 * which will report the busy page. 6205 * 6206 * It is possible that busy pages could become available before 6207 * the call to test_pages_isolated, and the range will actually be 6208 * allocated. So, if we fall through be sure to clear ret so that 6209 * -EBUSY is not accidentally used or returned to caller. 6210 */ 6211 ret = __alloc_contig_migrate_range(&cc, start, end); 6212 if (ret && ret != -EBUSY) 6213 goto done; 6214 ret = 0; 6215 6216 /* 6217 * Pages from [start, end) are within a pageblock_nr_pages 6218 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6219 * more, all pages in [start, end) are free in page allocator. 6220 * What we are going to do is to allocate all pages from 6221 * [start, end) (that is remove them from page allocator). 6222 * 6223 * The only problem is that pages at the beginning and at the 6224 * end of interesting range may be not aligned with pages that 6225 * page allocator holds, ie. they can be part of higher order 6226 * pages. Because of this, we reserve the bigger range and 6227 * once this is done free the pages we are not interested in. 6228 * 6229 * We don't have to hold zone->lock here because the pages are 6230 * isolated thus they won't get removed from buddy. 6231 */ 6232 6233 order = 0; 6234 outer_start = start; 6235 while (!PageBuddy(pfn_to_page(outer_start))) { 6236 if (++order > MAX_ORDER) { 6237 outer_start = start; 6238 break; 6239 } 6240 outer_start &= ~0UL << order; 6241 } 6242 6243 if (outer_start != start) { 6244 order = buddy_order(pfn_to_page(outer_start)); 6245 6246 /* 6247 * outer_start page could be small order buddy page and 6248 * it doesn't include start page. Adjust outer_start 6249 * in this case to report failed page properly 6250 * on tracepoint in test_pages_isolated() 6251 */ 6252 if (outer_start + (1UL << order) <= start) 6253 outer_start = start; 6254 } 6255 6256 /* Make sure the range is really isolated. */ 6257 if (test_pages_isolated(outer_start, end, 0)) { 6258 ret = -EBUSY; 6259 goto done; 6260 } 6261 6262 /* Grab isolated pages from freelists. */ 6263 outer_end = isolate_freepages_range(&cc, outer_start, end); 6264 if (!outer_end) { 6265 ret = -EBUSY; 6266 goto done; 6267 } 6268 6269 /* Free head and tail (if any) */ 6270 if (start != outer_start) 6271 free_contig_range(outer_start, start - outer_start); 6272 if (end != outer_end) 6273 free_contig_range(end, outer_end - end); 6274 6275 done: 6276 undo_isolate_page_range(start, end, migratetype); 6277 return ret; 6278 } 6279 EXPORT_SYMBOL(alloc_contig_range); 6280 6281 static int __alloc_contig_pages(unsigned long start_pfn, 6282 unsigned long nr_pages, gfp_t gfp_mask) 6283 { 6284 unsigned long end_pfn = start_pfn + nr_pages; 6285 6286 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6287 gfp_mask); 6288 } 6289 6290 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6291 unsigned long nr_pages) 6292 { 6293 unsigned long i, end_pfn = start_pfn + nr_pages; 6294 struct page *page; 6295 6296 for (i = start_pfn; i < end_pfn; i++) { 6297 page = pfn_to_online_page(i); 6298 if (!page) 6299 return false; 6300 6301 if (page_zone(page) != z) 6302 return false; 6303 6304 if (PageReserved(page)) 6305 return false; 6306 6307 if (PageHuge(page)) 6308 return false; 6309 } 6310 return true; 6311 } 6312 6313 static bool zone_spans_last_pfn(const struct zone *zone, 6314 unsigned long start_pfn, unsigned long nr_pages) 6315 { 6316 unsigned long last_pfn = start_pfn + nr_pages - 1; 6317 6318 return zone_spans_pfn(zone, last_pfn); 6319 } 6320 6321 /** 6322 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6323 * @nr_pages: Number of contiguous pages to allocate 6324 * @gfp_mask: GFP mask to limit search and used during compaction 6325 * @nid: Target node 6326 * @nodemask: Mask for other possible nodes 6327 * 6328 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6329 * on an applicable zonelist to find a contiguous pfn range which can then be 6330 * tried for allocation with alloc_contig_range(). This routine is intended 6331 * for allocation requests which can not be fulfilled with the buddy allocator. 6332 * 6333 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6334 * power of two, then allocated range is also guaranteed to be aligned to same 6335 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6336 * 6337 * Allocated pages can be freed with free_contig_range() or by manually calling 6338 * __free_page() on each allocated page. 6339 * 6340 * Return: pointer to contiguous pages on success, or NULL if not successful. 6341 */ 6342 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6343 int nid, nodemask_t *nodemask) 6344 { 6345 unsigned long ret, pfn, flags; 6346 struct zonelist *zonelist; 6347 struct zone *zone; 6348 struct zoneref *z; 6349 6350 zonelist = node_zonelist(nid, gfp_mask); 6351 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6352 gfp_zone(gfp_mask), nodemask) { 6353 spin_lock_irqsave(&zone->lock, flags); 6354 6355 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6356 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6357 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6358 /* 6359 * We release the zone lock here because 6360 * alloc_contig_range() will also lock the zone 6361 * at some point. If there's an allocation 6362 * spinning on this lock, it may win the race 6363 * and cause alloc_contig_range() to fail... 6364 */ 6365 spin_unlock_irqrestore(&zone->lock, flags); 6366 ret = __alloc_contig_pages(pfn, nr_pages, 6367 gfp_mask); 6368 if (!ret) 6369 return pfn_to_page(pfn); 6370 spin_lock_irqsave(&zone->lock, flags); 6371 } 6372 pfn += nr_pages; 6373 } 6374 spin_unlock_irqrestore(&zone->lock, flags); 6375 } 6376 return NULL; 6377 } 6378 #endif /* CONFIG_CONTIG_ALLOC */ 6379 6380 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6381 { 6382 unsigned long count = 0; 6383 6384 for (; nr_pages--; pfn++) { 6385 struct page *page = pfn_to_page(pfn); 6386 6387 count += page_count(page) != 1; 6388 __free_page(page); 6389 } 6390 WARN(count != 0, "%lu pages are still in use!\n", count); 6391 } 6392 EXPORT_SYMBOL(free_contig_range); 6393 6394 /* 6395 * Effectively disable pcplists for the zone by setting the high limit to 0 6396 * and draining all cpus. A concurrent page freeing on another CPU that's about 6397 * to put the page on pcplist will either finish before the drain and the page 6398 * will be drained, or observe the new high limit and skip the pcplist. 6399 * 6400 * Must be paired with a call to zone_pcp_enable(). 6401 */ 6402 void zone_pcp_disable(struct zone *zone) 6403 { 6404 mutex_lock(&pcp_batch_high_lock); 6405 __zone_set_pageset_high_and_batch(zone, 0, 1); 6406 __drain_all_pages(zone, true); 6407 } 6408 6409 void zone_pcp_enable(struct zone *zone) 6410 { 6411 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 6412 mutex_unlock(&pcp_batch_high_lock); 6413 } 6414 6415 void zone_pcp_reset(struct zone *zone) 6416 { 6417 int cpu; 6418 struct per_cpu_zonestat *pzstats; 6419 6420 if (zone->per_cpu_pageset != &boot_pageset) { 6421 for_each_online_cpu(cpu) { 6422 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6423 drain_zonestat(zone, pzstats); 6424 } 6425 free_percpu(zone->per_cpu_pageset); 6426 zone->per_cpu_pageset = &boot_pageset; 6427 if (zone->per_cpu_zonestats != &boot_zonestats) { 6428 free_percpu(zone->per_cpu_zonestats); 6429 zone->per_cpu_zonestats = &boot_zonestats; 6430 } 6431 } 6432 } 6433 6434 #ifdef CONFIG_MEMORY_HOTREMOVE 6435 /* 6436 * All pages in the range must be in a single zone, must not contain holes, 6437 * must span full sections, and must be isolated before calling this function. 6438 */ 6439 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6440 { 6441 unsigned long pfn = start_pfn; 6442 struct page *page; 6443 struct zone *zone; 6444 unsigned int order; 6445 unsigned long flags; 6446 6447 offline_mem_sections(pfn, end_pfn); 6448 zone = page_zone(pfn_to_page(pfn)); 6449 spin_lock_irqsave(&zone->lock, flags); 6450 while (pfn < end_pfn) { 6451 page = pfn_to_page(pfn); 6452 /* 6453 * The HWPoisoned page may be not in buddy system, and 6454 * page_count() is not 0. 6455 */ 6456 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6457 pfn++; 6458 continue; 6459 } 6460 /* 6461 * At this point all remaining PageOffline() pages have a 6462 * reference count of 0 and can simply be skipped. 6463 */ 6464 if (PageOffline(page)) { 6465 BUG_ON(page_count(page)); 6466 BUG_ON(PageBuddy(page)); 6467 pfn++; 6468 continue; 6469 } 6470 6471 BUG_ON(page_count(page)); 6472 BUG_ON(!PageBuddy(page)); 6473 order = buddy_order(page); 6474 del_page_from_free_list(page, zone, order); 6475 pfn += (1 << order); 6476 } 6477 spin_unlock_irqrestore(&zone->lock, flags); 6478 } 6479 #endif 6480 6481 /* 6482 * This function returns a stable result only if called under zone lock. 6483 */ 6484 bool is_free_buddy_page(struct page *page) 6485 { 6486 unsigned long pfn = page_to_pfn(page); 6487 unsigned int order; 6488 6489 for (order = 0; order <= MAX_ORDER; order++) { 6490 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6491 6492 if (PageBuddy(page_head) && 6493 buddy_order_unsafe(page_head) >= order) 6494 break; 6495 } 6496 6497 return order <= MAX_ORDER; 6498 } 6499 EXPORT_SYMBOL(is_free_buddy_page); 6500 6501 #ifdef CONFIG_MEMORY_FAILURE 6502 /* 6503 * Break down a higher-order page in sub-pages, and keep our target out of 6504 * buddy allocator. 6505 */ 6506 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6507 struct page *target, int low, int high, 6508 int migratetype) 6509 { 6510 unsigned long size = 1 << high; 6511 struct page *current_buddy, *next_page; 6512 6513 while (high > low) { 6514 high--; 6515 size >>= 1; 6516 6517 if (target >= &page[size]) { 6518 next_page = page + size; 6519 current_buddy = page; 6520 } else { 6521 next_page = page; 6522 current_buddy = page + size; 6523 } 6524 6525 if (set_page_guard(zone, current_buddy, high, migratetype)) 6526 continue; 6527 6528 if (current_buddy != target) { 6529 add_to_free_list(current_buddy, zone, high, migratetype); 6530 set_buddy_order(current_buddy, high); 6531 page = next_page; 6532 } 6533 } 6534 } 6535 6536 /* 6537 * Take a page that will be marked as poisoned off the buddy allocator. 6538 */ 6539 bool take_page_off_buddy(struct page *page) 6540 { 6541 struct zone *zone = page_zone(page); 6542 unsigned long pfn = page_to_pfn(page); 6543 unsigned long flags; 6544 unsigned int order; 6545 bool ret = false; 6546 6547 spin_lock_irqsave(&zone->lock, flags); 6548 for (order = 0; order <= MAX_ORDER; order++) { 6549 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6550 int page_order = buddy_order(page_head); 6551 6552 if (PageBuddy(page_head) && page_order >= order) { 6553 unsigned long pfn_head = page_to_pfn(page_head); 6554 int migratetype = get_pfnblock_migratetype(page_head, 6555 pfn_head); 6556 6557 del_page_from_free_list(page_head, zone, page_order); 6558 break_down_buddy_pages(zone, page_head, page, 0, 6559 page_order, migratetype); 6560 SetPageHWPoisonTakenOff(page); 6561 if (!is_migrate_isolate(migratetype)) 6562 __mod_zone_freepage_state(zone, -1, migratetype); 6563 ret = true; 6564 break; 6565 } 6566 if (page_count(page_head) > 0) 6567 break; 6568 } 6569 spin_unlock_irqrestore(&zone->lock, flags); 6570 return ret; 6571 } 6572 6573 /* 6574 * Cancel takeoff done by take_page_off_buddy(). 6575 */ 6576 bool put_page_back_buddy(struct page *page) 6577 { 6578 struct zone *zone = page_zone(page); 6579 unsigned long pfn = page_to_pfn(page); 6580 unsigned long flags; 6581 int migratetype = get_pfnblock_migratetype(page, pfn); 6582 bool ret = false; 6583 6584 spin_lock_irqsave(&zone->lock, flags); 6585 if (put_page_testzero(page)) { 6586 ClearPageHWPoisonTakenOff(page); 6587 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6588 if (TestClearPageHWPoison(page)) { 6589 ret = true; 6590 } 6591 } 6592 spin_unlock_irqrestore(&zone->lock, flags); 6593 6594 return ret; 6595 } 6596 #endif 6597 6598 #ifdef CONFIG_ZONE_DMA 6599 bool has_managed_dma(void) 6600 { 6601 struct pglist_data *pgdat; 6602 6603 for_each_online_pgdat(pgdat) { 6604 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6605 6606 if (managed_zone(zone)) 6607 return true; 6608 } 6609 return false; 6610 } 6611 #endif /* CONFIG_ZONE_DMA */ 6612 6613 #ifdef CONFIG_UNACCEPTED_MEMORY 6614 6615 /* Counts number of zones with unaccepted pages. */ 6616 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6617 6618 static bool lazy_accept = true; 6619 6620 static int __init accept_memory_parse(char *p) 6621 { 6622 if (!strcmp(p, "lazy")) { 6623 lazy_accept = true; 6624 return 0; 6625 } else if (!strcmp(p, "eager")) { 6626 lazy_accept = false; 6627 return 0; 6628 } else { 6629 return -EINVAL; 6630 } 6631 } 6632 early_param("accept_memory", accept_memory_parse); 6633 6634 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6635 { 6636 phys_addr_t start = page_to_phys(page); 6637 phys_addr_t end = start + (PAGE_SIZE << order); 6638 6639 return range_contains_unaccepted_memory(start, end); 6640 } 6641 6642 static void accept_page(struct page *page, unsigned int order) 6643 { 6644 phys_addr_t start = page_to_phys(page); 6645 6646 accept_memory(start, start + (PAGE_SIZE << order)); 6647 } 6648 6649 static bool try_to_accept_memory_one(struct zone *zone) 6650 { 6651 unsigned long flags; 6652 struct page *page; 6653 bool last; 6654 6655 if (list_empty(&zone->unaccepted_pages)) 6656 return false; 6657 6658 spin_lock_irqsave(&zone->lock, flags); 6659 page = list_first_entry_or_null(&zone->unaccepted_pages, 6660 struct page, lru); 6661 if (!page) { 6662 spin_unlock_irqrestore(&zone->lock, flags); 6663 return false; 6664 } 6665 6666 list_del(&page->lru); 6667 last = list_empty(&zone->unaccepted_pages); 6668 6669 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6670 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6671 spin_unlock_irqrestore(&zone->lock, flags); 6672 6673 accept_page(page, MAX_ORDER); 6674 6675 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL); 6676 6677 if (last) 6678 static_branch_dec(&zones_with_unaccepted_pages); 6679 6680 return true; 6681 } 6682 6683 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6684 { 6685 long to_accept; 6686 int ret = false; 6687 6688 /* How much to accept to get to high watermark? */ 6689 to_accept = high_wmark_pages(zone) - 6690 (zone_page_state(zone, NR_FREE_PAGES) - 6691 __zone_watermark_unusable_free(zone, order, 0)); 6692 6693 /* Accept at least one page */ 6694 do { 6695 if (!try_to_accept_memory_one(zone)) 6696 break; 6697 ret = true; 6698 to_accept -= MAX_ORDER_NR_PAGES; 6699 } while (to_accept > 0); 6700 6701 return ret; 6702 } 6703 6704 static inline bool has_unaccepted_memory(void) 6705 { 6706 return static_branch_unlikely(&zones_with_unaccepted_pages); 6707 } 6708 6709 static bool __free_unaccepted(struct page *page) 6710 { 6711 struct zone *zone = page_zone(page); 6712 unsigned long flags; 6713 bool first = false; 6714 6715 if (!lazy_accept) 6716 return false; 6717 6718 spin_lock_irqsave(&zone->lock, flags); 6719 first = list_empty(&zone->unaccepted_pages); 6720 list_add_tail(&page->lru, &zone->unaccepted_pages); 6721 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6722 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6723 spin_unlock_irqrestore(&zone->lock, flags); 6724 6725 if (first) 6726 static_branch_inc(&zones_with_unaccepted_pages); 6727 6728 return true; 6729 } 6730 6731 #else 6732 6733 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6734 { 6735 return false; 6736 } 6737 6738 static void accept_page(struct page *page, unsigned int order) 6739 { 6740 } 6741 6742 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6743 { 6744 return false; 6745 } 6746 6747 static inline bool has_unaccepted_memory(void) 6748 { 6749 return false; 6750 } 6751 6752 static bool __free_unaccepted(struct page *page) 6753 { 6754 BUILD_BUG(); 6755 return false; 6756 } 6757 6758 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6759