xref: /openbmc/linux/mm/page_alloc.c (revision 2bad466c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
116 static DEFINE_MUTEX(pcp_batch_high_lock);
117 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
118 
119 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
120 /*
121  * On SMP, spin_trylock is sufficient protection.
122  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
123  */
124 #define pcp_trylock_prepare(flags)	do { } while (0)
125 #define pcp_trylock_finish(flag)	do { } while (0)
126 #else
127 
128 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
129 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
130 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
131 #endif
132 
133 /*
134  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
135  * a migration causing the wrong PCP to be locked and remote memory being
136  * potentially allocated, pin the task to the CPU for the lookup+lock.
137  * preempt_disable is used on !RT because it is faster than migrate_disable.
138  * migrate_disable is used on RT because otherwise RT spinlock usage is
139  * interfered with and a high priority task cannot preempt the allocator.
140  */
141 #ifndef CONFIG_PREEMPT_RT
142 #define pcpu_task_pin()		preempt_disable()
143 #define pcpu_task_unpin()	preempt_enable()
144 #else
145 #define pcpu_task_pin()		migrate_disable()
146 #define pcpu_task_unpin()	migrate_enable()
147 #endif
148 
149 /*
150  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
151  * Return value should be used with equivalent unlock helper.
152  */
153 #define pcpu_spin_lock(type, member, ptr)				\
154 ({									\
155 	type *_ret;							\
156 	pcpu_task_pin();						\
157 	_ret = this_cpu_ptr(ptr);					\
158 	spin_lock(&_ret->member);					\
159 	_ret;								\
160 })
161 
162 #define pcpu_spin_trylock(type, member, ptr)				\
163 ({									\
164 	type *_ret;							\
165 	pcpu_task_pin();						\
166 	_ret = this_cpu_ptr(ptr);					\
167 	if (!spin_trylock(&_ret->member)) {				\
168 		pcpu_task_unpin();					\
169 		_ret = NULL;						\
170 	}								\
171 	_ret;								\
172 })
173 
174 #define pcpu_spin_unlock(member, ptr)					\
175 ({									\
176 	spin_unlock(&ptr->member);					\
177 	pcpu_task_unpin();						\
178 })
179 
180 /* struct per_cpu_pages specific helpers. */
181 #define pcp_spin_lock(ptr)						\
182 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
183 
184 #define pcp_spin_trylock(ptr)						\
185 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
186 
187 #define pcp_spin_unlock(ptr)						\
188 	pcpu_spin_unlock(lock, ptr)
189 
190 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
191 DEFINE_PER_CPU(int, numa_node);
192 EXPORT_PER_CPU_SYMBOL(numa_node);
193 #endif
194 
195 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
196 
197 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
198 /*
199  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
200  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
201  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
202  * defined in <linux/topology.h>.
203  */
204 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
205 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
206 #endif
207 
208 static DEFINE_MUTEX(pcpu_drain_mutex);
209 
210 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
211 volatile unsigned long latent_entropy __latent_entropy;
212 EXPORT_SYMBOL(latent_entropy);
213 #endif
214 
215 /*
216  * Array of node states.
217  */
218 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
219 	[N_POSSIBLE] = NODE_MASK_ALL,
220 	[N_ONLINE] = { { [0] = 1UL } },
221 #ifndef CONFIG_NUMA
222 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
223 #ifdef CONFIG_HIGHMEM
224 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
225 #endif
226 	[N_MEMORY] = { { [0] = 1UL } },
227 	[N_CPU] = { { [0] = 1UL } },
228 #endif	/* NUMA */
229 };
230 EXPORT_SYMBOL(node_states);
231 
232 atomic_long_t _totalram_pages __read_mostly;
233 EXPORT_SYMBOL(_totalram_pages);
234 unsigned long totalreserve_pages __read_mostly;
235 unsigned long totalcma_pages __read_mostly;
236 
237 int percpu_pagelist_high_fraction;
238 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
239 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
240 EXPORT_SYMBOL(init_on_alloc);
241 
242 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
243 EXPORT_SYMBOL(init_on_free);
244 
245 /* perform sanity checks on struct pages being allocated or freed */
246 static DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
247 
248 static bool _init_on_alloc_enabled_early __read_mostly
249 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
250 static int __init early_init_on_alloc(char *buf)
251 {
252 
253 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
254 }
255 early_param("init_on_alloc", early_init_on_alloc);
256 
257 static bool _init_on_free_enabled_early __read_mostly
258 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
259 static int __init early_init_on_free(char *buf)
260 {
261 	return kstrtobool(buf, &_init_on_free_enabled_early);
262 }
263 early_param("init_on_free", early_init_on_free);
264 
265 /*
266  * A cached value of the page's pageblock's migratetype, used when the page is
267  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
268  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
269  * Also the migratetype set in the page does not necessarily match the pcplist
270  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
271  * other index - this ensures that it will be put on the correct CMA freelist.
272  */
273 static inline int get_pcppage_migratetype(struct page *page)
274 {
275 	return page->index;
276 }
277 
278 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
279 {
280 	page->index = migratetype;
281 }
282 
283 #ifdef CONFIG_PM_SLEEP
284 /*
285  * The following functions are used by the suspend/hibernate code to temporarily
286  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
287  * while devices are suspended.  To avoid races with the suspend/hibernate code,
288  * they should always be called with system_transition_mutex held
289  * (gfp_allowed_mask also should only be modified with system_transition_mutex
290  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
291  * with that modification).
292  */
293 
294 static gfp_t saved_gfp_mask;
295 
296 void pm_restore_gfp_mask(void)
297 {
298 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
299 	if (saved_gfp_mask) {
300 		gfp_allowed_mask = saved_gfp_mask;
301 		saved_gfp_mask = 0;
302 	}
303 }
304 
305 void pm_restrict_gfp_mask(void)
306 {
307 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
308 	WARN_ON(saved_gfp_mask);
309 	saved_gfp_mask = gfp_allowed_mask;
310 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
311 }
312 
313 bool pm_suspended_storage(void)
314 {
315 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
316 		return false;
317 	return true;
318 }
319 #endif /* CONFIG_PM_SLEEP */
320 
321 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
322 unsigned int pageblock_order __read_mostly;
323 #endif
324 
325 static void __free_pages_ok(struct page *page, unsigned int order,
326 			    fpi_t fpi_flags);
327 
328 /*
329  * results with 256, 32 in the lowmem_reserve sysctl:
330  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
331  *	1G machine -> (16M dma, 784M normal, 224M high)
332  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
333  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
334  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
335  *
336  * TBD: should special case ZONE_DMA32 machines here - in those we normally
337  * don't need any ZONE_NORMAL reservation
338  */
339 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
340 #ifdef CONFIG_ZONE_DMA
341 	[ZONE_DMA] = 256,
342 #endif
343 #ifdef CONFIG_ZONE_DMA32
344 	[ZONE_DMA32] = 256,
345 #endif
346 	[ZONE_NORMAL] = 32,
347 #ifdef CONFIG_HIGHMEM
348 	[ZONE_HIGHMEM] = 0,
349 #endif
350 	[ZONE_MOVABLE] = 0,
351 };
352 
353 static char * const zone_names[MAX_NR_ZONES] = {
354 #ifdef CONFIG_ZONE_DMA
355 	 "DMA",
356 #endif
357 #ifdef CONFIG_ZONE_DMA32
358 	 "DMA32",
359 #endif
360 	 "Normal",
361 #ifdef CONFIG_HIGHMEM
362 	 "HighMem",
363 #endif
364 	 "Movable",
365 #ifdef CONFIG_ZONE_DEVICE
366 	 "Device",
367 #endif
368 };
369 
370 const char * const migratetype_names[MIGRATE_TYPES] = {
371 	"Unmovable",
372 	"Movable",
373 	"Reclaimable",
374 	"HighAtomic",
375 #ifdef CONFIG_CMA
376 	"CMA",
377 #endif
378 #ifdef CONFIG_MEMORY_ISOLATION
379 	"Isolate",
380 #endif
381 };
382 
383 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
384 	[NULL_COMPOUND_DTOR] = NULL,
385 	[COMPOUND_PAGE_DTOR] = free_compound_page,
386 #ifdef CONFIG_HUGETLB_PAGE
387 	[HUGETLB_PAGE_DTOR] = free_huge_page,
388 #endif
389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
390 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
391 #endif
392 };
393 
394 int min_free_kbytes = 1024;
395 int user_min_free_kbytes = -1;
396 int watermark_boost_factor __read_mostly = 15000;
397 int watermark_scale_factor = 10;
398 
399 static unsigned long nr_kernel_pages __initdata;
400 static unsigned long nr_all_pages __initdata;
401 static unsigned long dma_reserve __initdata;
402 
403 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
404 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
405 static unsigned long required_kernelcore __initdata;
406 static unsigned long required_kernelcore_percent __initdata;
407 static unsigned long required_movablecore __initdata;
408 static unsigned long required_movablecore_percent __initdata;
409 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
410 bool mirrored_kernelcore __initdata_memblock;
411 
412 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
413 int movable_zone;
414 EXPORT_SYMBOL(movable_zone);
415 
416 #if MAX_NUMNODES > 1
417 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
418 unsigned int nr_online_nodes __read_mostly = 1;
419 EXPORT_SYMBOL(nr_node_ids);
420 EXPORT_SYMBOL(nr_online_nodes);
421 #endif
422 
423 int page_group_by_mobility_disabled __read_mostly;
424 
425 bool deferred_struct_pages __meminitdata;
426 
427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
428 /*
429  * During boot we initialize deferred pages on-demand, as needed, but once
430  * page_alloc_init_late() has finished, the deferred pages are all initialized,
431  * and we can permanently disable that path.
432  */
433 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
434 
435 static inline bool deferred_pages_enabled(void)
436 {
437 	return static_branch_unlikely(&deferred_pages);
438 }
439 
440 /* Returns true if the struct page for the pfn is initialised */
441 static inline bool __meminit early_page_initialised(unsigned long pfn)
442 {
443 	int nid = early_pfn_to_nid(pfn);
444 
445 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
446 		return false;
447 
448 	return true;
449 }
450 
451 /*
452  * Returns true when the remaining initialisation should be deferred until
453  * later in the boot cycle when it can be parallelised.
454  */
455 static bool __meminit
456 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
457 {
458 	static unsigned long prev_end_pfn, nr_initialised;
459 
460 	if (early_page_ext_enabled())
461 		return false;
462 	/*
463 	 * prev_end_pfn static that contains the end of previous zone
464 	 * No need to protect because called very early in boot before smp_init.
465 	 */
466 	if (prev_end_pfn != end_pfn) {
467 		prev_end_pfn = end_pfn;
468 		nr_initialised = 0;
469 	}
470 
471 	/* Always populate low zones for address-constrained allocations */
472 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
473 		return false;
474 
475 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
476 		return true;
477 	/*
478 	 * We start only with one section of pages, more pages are added as
479 	 * needed until the rest of deferred pages are initialized.
480 	 */
481 	nr_initialised++;
482 	if ((nr_initialised > PAGES_PER_SECTION) &&
483 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
484 		NODE_DATA(nid)->first_deferred_pfn = pfn;
485 		return true;
486 	}
487 	return false;
488 }
489 #else
490 static inline bool deferred_pages_enabled(void)
491 {
492 	return false;
493 }
494 
495 static inline bool early_page_initialised(unsigned long pfn)
496 {
497 	return true;
498 }
499 
500 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
501 {
502 	return false;
503 }
504 #endif
505 
506 /* Return a pointer to the bitmap storing bits affecting a block of pages */
507 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
508 							unsigned long pfn)
509 {
510 #ifdef CONFIG_SPARSEMEM
511 	return section_to_usemap(__pfn_to_section(pfn));
512 #else
513 	return page_zone(page)->pageblock_flags;
514 #endif /* CONFIG_SPARSEMEM */
515 }
516 
517 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
518 {
519 #ifdef CONFIG_SPARSEMEM
520 	pfn &= (PAGES_PER_SECTION-1);
521 #else
522 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
523 #endif /* CONFIG_SPARSEMEM */
524 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
525 }
526 
527 static __always_inline
528 unsigned long __get_pfnblock_flags_mask(const struct page *page,
529 					unsigned long pfn,
530 					unsigned long mask)
531 {
532 	unsigned long *bitmap;
533 	unsigned long bitidx, word_bitidx;
534 	unsigned long word;
535 
536 	bitmap = get_pageblock_bitmap(page, pfn);
537 	bitidx = pfn_to_bitidx(page, pfn);
538 	word_bitidx = bitidx / BITS_PER_LONG;
539 	bitidx &= (BITS_PER_LONG-1);
540 	/*
541 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
542 	 * a consistent read of the memory array, so that results, even though
543 	 * racy, are not corrupted.
544 	 */
545 	word = READ_ONCE(bitmap[word_bitidx]);
546 	return (word >> bitidx) & mask;
547 }
548 
549 /**
550  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
551  * @page: The page within the block of interest
552  * @pfn: The target page frame number
553  * @mask: mask of bits that the caller is interested in
554  *
555  * Return: pageblock_bits flags
556  */
557 unsigned long get_pfnblock_flags_mask(const struct page *page,
558 					unsigned long pfn, unsigned long mask)
559 {
560 	return __get_pfnblock_flags_mask(page, pfn, mask);
561 }
562 
563 static __always_inline int get_pfnblock_migratetype(const struct page *page,
564 					unsigned long pfn)
565 {
566 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
567 }
568 
569 /**
570  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
571  * @page: The page within the block of interest
572  * @flags: The flags to set
573  * @pfn: The target page frame number
574  * @mask: mask of bits that the caller is interested in
575  */
576 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
577 					unsigned long pfn,
578 					unsigned long mask)
579 {
580 	unsigned long *bitmap;
581 	unsigned long bitidx, word_bitidx;
582 	unsigned long word;
583 
584 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
585 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
586 
587 	bitmap = get_pageblock_bitmap(page, pfn);
588 	bitidx = pfn_to_bitidx(page, pfn);
589 	word_bitidx = bitidx / BITS_PER_LONG;
590 	bitidx &= (BITS_PER_LONG-1);
591 
592 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
593 
594 	mask <<= bitidx;
595 	flags <<= bitidx;
596 
597 	word = READ_ONCE(bitmap[word_bitidx]);
598 	do {
599 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
600 }
601 
602 void set_pageblock_migratetype(struct page *page, int migratetype)
603 {
604 	if (unlikely(page_group_by_mobility_disabled &&
605 		     migratetype < MIGRATE_PCPTYPES))
606 		migratetype = MIGRATE_UNMOVABLE;
607 
608 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
609 				page_to_pfn(page), MIGRATETYPE_MASK);
610 }
611 
612 #ifdef CONFIG_DEBUG_VM
613 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
614 {
615 	int ret = 0;
616 	unsigned seq;
617 	unsigned long pfn = page_to_pfn(page);
618 	unsigned long sp, start_pfn;
619 
620 	do {
621 		seq = zone_span_seqbegin(zone);
622 		start_pfn = zone->zone_start_pfn;
623 		sp = zone->spanned_pages;
624 		if (!zone_spans_pfn(zone, pfn))
625 			ret = 1;
626 	} while (zone_span_seqretry(zone, seq));
627 
628 	if (ret)
629 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
630 			pfn, zone_to_nid(zone), zone->name,
631 			start_pfn, start_pfn + sp);
632 
633 	return ret;
634 }
635 
636 static int page_is_consistent(struct zone *zone, struct page *page)
637 {
638 	if (zone != page_zone(page))
639 		return 0;
640 
641 	return 1;
642 }
643 /*
644  * Temporary debugging check for pages not lying within a given zone.
645  */
646 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
647 {
648 	if (page_outside_zone_boundaries(zone, page))
649 		return 1;
650 	if (!page_is_consistent(zone, page))
651 		return 1;
652 
653 	return 0;
654 }
655 #else
656 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
657 {
658 	return 0;
659 }
660 #endif
661 
662 static void bad_page(struct page *page, const char *reason)
663 {
664 	static unsigned long resume;
665 	static unsigned long nr_shown;
666 	static unsigned long nr_unshown;
667 
668 	/*
669 	 * Allow a burst of 60 reports, then keep quiet for that minute;
670 	 * or allow a steady drip of one report per second.
671 	 */
672 	if (nr_shown == 60) {
673 		if (time_before(jiffies, resume)) {
674 			nr_unshown++;
675 			goto out;
676 		}
677 		if (nr_unshown) {
678 			pr_alert(
679 			      "BUG: Bad page state: %lu messages suppressed\n",
680 				nr_unshown);
681 			nr_unshown = 0;
682 		}
683 		nr_shown = 0;
684 	}
685 	if (nr_shown++ == 0)
686 		resume = jiffies + 60 * HZ;
687 
688 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
689 		current->comm, page_to_pfn(page));
690 	dump_page(page, reason);
691 
692 	print_modules();
693 	dump_stack();
694 out:
695 	/* Leave bad fields for debug, except PageBuddy could make trouble */
696 	page_mapcount_reset(page); /* remove PageBuddy */
697 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
698 }
699 
700 static inline unsigned int order_to_pindex(int migratetype, int order)
701 {
702 	int base = order;
703 
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
706 		VM_BUG_ON(order != pageblock_order);
707 		return NR_LOWORDER_PCP_LISTS;
708 	}
709 #else
710 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
711 #endif
712 
713 	return (MIGRATE_PCPTYPES * base) + migratetype;
714 }
715 
716 static inline int pindex_to_order(unsigned int pindex)
717 {
718 	int order = pindex / MIGRATE_PCPTYPES;
719 
720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
721 	if (pindex == NR_LOWORDER_PCP_LISTS)
722 		order = pageblock_order;
723 #else
724 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
725 #endif
726 
727 	return order;
728 }
729 
730 static inline bool pcp_allowed_order(unsigned int order)
731 {
732 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
733 		return true;
734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
735 	if (order == pageblock_order)
736 		return true;
737 #endif
738 	return false;
739 }
740 
741 static inline void free_the_page(struct page *page, unsigned int order)
742 {
743 	if (pcp_allowed_order(order))		/* Via pcp? */
744 		free_unref_page(page, order);
745 	else
746 		__free_pages_ok(page, order, FPI_NONE);
747 }
748 
749 /*
750  * Higher-order pages are called "compound pages".  They are structured thusly:
751  *
752  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
753  *
754  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
755  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
756  *
757  * The first tail page's ->compound_dtor holds the offset in array of compound
758  * page destructors. See compound_page_dtors.
759  *
760  * The first tail page's ->compound_order holds the order of allocation.
761  * This usage means that zero-order pages may not be compound.
762  */
763 
764 void free_compound_page(struct page *page)
765 {
766 	mem_cgroup_uncharge(page_folio(page));
767 	free_the_page(page, compound_order(page));
768 }
769 
770 static void prep_compound_head(struct page *page, unsigned int order)
771 {
772 	struct folio *folio = (struct folio *)page;
773 
774 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
775 	set_compound_order(page, order);
776 	atomic_set(&folio->_entire_mapcount, -1);
777 	atomic_set(&folio->_nr_pages_mapped, 0);
778 	atomic_set(&folio->_pincount, 0);
779 }
780 
781 static void prep_compound_tail(struct page *head, int tail_idx)
782 {
783 	struct page *p = head + tail_idx;
784 
785 	p->mapping = TAIL_MAPPING;
786 	set_compound_head(p, head);
787 	set_page_private(p, 0);
788 }
789 
790 void prep_compound_page(struct page *page, unsigned int order)
791 {
792 	int i;
793 	int nr_pages = 1 << order;
794 
795 	__SetPageHead(page);
796 	for (i = 1; i < nr_pages; i++)
797 		prep_compound_tail(page, i);
798 
799 	prep_compound_head(page, order);
800 }
801 
802 void destroy_large_folio(struct folio *folio)
803 {
804 	enum compound_dtor_id dtor = folio->_folio_dtor;
805 
806 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
807 	compound_page_dtors[dtor](&folio->page);
808 }
809 
810 #ifdef CONFIG_DEBUG_PAGEALLOC
811 unsigned int _debug_guardpage_minorder;
812 
813 bool _debug_pagealloc_enabled_early __read_mostly
814 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
815 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
816 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
817 EXPORT_SYMBOL(_debug_pagealloc_enabled);
818 
819 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
820 
821 static int __init early_debug_pagealloc(char *buf)
822 {
823 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
824 }
825 early_param("debug_pagealloc", early_debug_pagealloc);
826 
827 static int __init debug_guardpage_minorder_setup(char *buf)
828 {
829 	unsigned long res;
830 
831 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
832 		pr_err("Bad debug_guardpage_minorder value\n");
833 		return 0;
834 	}
835 	_debug_guardpage_minorder = res;
836 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
837 	return 0;
838 }
839 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
840 
841 static inline bool set_page_guard(struct zone *zone, struct page *page,
842 				unsigned int order, int migratetype)
843 {
844 	if (!debug_guardpage_enabled())
845 		return false;
846 
847 	if (order >= debug_guardpage_minorder())
848 		return false;
849 
850 	__SetPageGuard(page);
851 	INIT_LIST_HEAD(&page->buddy_list);
852 	set_page_private(page, order);
853 	/* Guard pages are not available for any usage */
854 	if (!is_migrate_isolate(migratetype))
855 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
856 
857 	return true;
858 }
859 
860 static inline void clear_page_guard(struct zone *zone, struct page *page,
861 				unsigned int order, int migratetype)
862 {
863 	if (!debug_guardpage_enabled())
864 		return;
865 
866 	__ClearPageGuard(page);
867 
868 	set_page_private(page, 0);
869 	if (!is_migrate_isolate(migratetype))
870 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
871 }
872 #else
873 static inline bool set_page_guard(struct zone *zone, struct page *page,
874 			unsigned int order, int migratetype) { return false; }
875 static inline void clear_page_guard(struct zone *zone, struct page *page,
876 				unsigned int order, int migratetype) {}
877 #endif
878 
879 /*
880  * Enable static keys related to various memory debugging and hardening options.
881  * Some override others, and depend on early params that are evaluated in the
882  * order of appearance. So we need to first gather the full picture of what was
883  * enabled, and then make decisions.
884  */
885 void __init init_mem_debugging_and_hardening(void)
886 {
887 	bool page_poisoning_requested = false;
888 	bool want_check_pages = false;
889 
890 #ifdef CONFIG_PAGE_POISONING
891 	/*
892 	 * Page poisoning is debug page alloc for some arches. If
893 	 * either of those options are enabled, enable poisoning.
894 	 */
895 	if (page_poisoning_enabled() ||
896 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
897 	      debug_pagealloc_enabled())) {
898 		static_branch_enable(&_page_poisoning_enabled);
899 		page_poisoning_requested = true;
900 		want_check_pages = true;
901 	}
902 #endif
903 
904 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
905 	    page_poisoning_requested) {
906 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
907 			"will take precedence over init_on_alloc and init_on_free\n");
908 		_init_on_alloc_enabled_early = false;
909 		_init_on_free_enabled_early = false;
910 	}
911 
912 	if (_init_on_alloc_enabled_early) {
913 		want_check_pages = true;
914 		static_branch_enable(&init_on_alloc);
915 	} else {
916 		static_branch_disable(&init_on_alloc);
917 	}
918 
919 	if (_init_on_free_enabled_early) {
920 		want_check_pages = true;
921 		static_branch_enable(&init_on_free);
922 	} else {
923 		static_branch_disable(&init_on_free);
924 	}
925 
926 	if (IS_ENABLED(CONFIG_KMSAN) &&
927 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
928 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
929 
930 #ifdef CONFIG_DEBUG_PAGEALLOC
931 	if (debug_pagealloc_enabled()) {
932 		want_check_pages = true;
933 		static_branch_enable(&_debug_pagealloc_enabled);
934 
935 		if (debug_guardpage_minorder())
936 			static_branch_enable(&_debug_guardpage_enabled);
937 	}
938 #endif
939 
940 	/*
941 	 * Any page debugging or hardening option also enables sanity checking
942 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
943 	 * enabled already.
944 	 */
945 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
946 		static_branch_enable(&check_pages_enabled);
947 }
948 
949 static inline void set_buddy_order(struct page *page, unsigned int order)
950 {
951 	set_page_private(page, order);
952 	__SetPageBuddy(page);
953 }
954 
955 #ifdef CONFIG_COMPACTION
956 static inline struct capture_control *task_capc(struct zone *zone)
957 {
958 	struct capture_control *capc = current->capture_control;
959 
960 	return unlikely(capc) &&
961 		!(current->flags & PF_KTHREAD) &&
962 		!capc->page &&
963 		capc->cc->zone == zone ? capc : NULL;
964 }
965 
966 static inline bool
967 compaction_capture(struct capture_control *capc, struct page *page,
968 		   int order, int migratetype)
969 {
970 	if (!capc || order != capc->cc->order)
971 		return false;
972 
973 	/* Do not accidentally pollute CMA or isolated regions*/
974 	if (is_migrate_cma(migratetype) ||
975 	    is_migrate_isolate(migratetype))
976 		return false;
977 
978 	/*
979 	 * Do not let lower order allocations pollute a movable pageblock.
980 	 * This might let an unmovable request use a reclaimable pageblock
981 	 * and vice-versa but no more than normal fallback logic which can
982 	 * have trouble finding a high-order free page.
983 	 */
984 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
985 		return false;
986 
987 	capc->page = page;
988 	return true;
989 }
990 
991 #else
992 static inline struct capture_control *task_capc(struct zone *zone)
993 {
994 	return NULL;
995 }
996 
997 static inline bool
998 compaction_capture(struct capture_control *capc, struct page *page,
999 		   int order, int migratetype)
1000 {
1001 	return false;
1002 }
1003 #endif /* CONFIG_COMPACTION */
1004 
1005 /* Used for pages not on another list */
1006 static inline void add_to_free_list(struct page *page, struct zone *zone,
1007 				    unsigned int order, int migratetype)
1008 {
1009 	struct free_area *area = &zone->free_area[order];
1010 
1011 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1012 	area->nr_free++;
1013 }
1014 
1015 /* Used for pages not on another list */
1016 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1017 					 unsigned int order, int migratetype)
1018 {
1019 	struct free_area *area = &zone->free_area[order];
1020 
1021 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1022 	area->nr_free++;
1023 }
1024 
1025 /*
1026  * Used for pages which are on another list. Move the pages to the tail
1027  * of the list - so the moved pages won't immediately be considered for
1028  * allocation again (e.g., optimization for memory onlining).
1029  */
1030 static inline void move_to_free_list(struct page *page, struct zone *zone,
1031 				     unsigned int order, int migratetype)
1032 {
1033 	struct free_area *area = &zone->free_area[order];
1034 
1035 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1036 }
1037 
1038 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1039 					   unsigned int order)
1040 {
1041 	/* clear reported state and update reported page count */
1042 	if (page_reported(page))
1043 		__ClearPageReported(page);
1044 
1045 	list_del(&page->buddy_list);
1046 	__ClearPageBuddy(page);
1047 	set_page_private(page, 0);
1048 	zone->free_area[order].nr_free--;
1049 }
1050 
1051 /*
1052  * If this is not the largest possible page, check if the buddy
1053  * of the next-highest order is free. If it is, it's possible
1054  * that pages are being freed that will coalesce soon. In case,
1055  * that is happening, add the free page to the tail of the list
1056  * so it's less likely to be used soon and more likely to be merged
1057  * as a higher order page
1058  */
1059 static inline bool
1060 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1061 		   struct page *page, unsigned int order)
1062 {
1063 	unsigned long higher_page_pfn;
1064 	struct page *higher_page;
1065 
1066 	if (order >= MAX_ORDER - 2)
1067 		return false;
1068 
1069 	higher_page_pfn = buddy_pfn & pfn;
1070 	higher_page = page + (higher_page_pfn - pfn);
1071 
1072 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1073 			NULL) != NULL;
1074 }
1075 
1076 /*
1077  * Freeing function for a buddy system allocator.
1078  *
1079  * The concept of a buddy system is to maintain direct-mapped table
1080  * (containing bit values) for memory blocks of various "orders".
1081  * The bottom level table contains the map for the smallest allocatable
1082  * units of memory (here, pages), and each level above it describes
1083  * pairs of units from the levels below, hence, "buddies".
1084  * At a high level, all that happens here is marking the table entry
1085  * at the bottom level available, and propagating the changes upward
1086  * as necessary, plus some accounting needed to play nicely with other
1087  * parts of the VM system.
1088  * At each level, we keep a list of pages, which are heads of continuous
1089  * free pages of length of (1 << order) and marked with PageBuddy.
1090  * Page's order is recorded in page_private(page) field.
1091  * So when we are allocating or freeing one, we can derive the state of the
1092  * other.  That is, if we allocate a small block, and both were
1093  * free, the remainder of the region must be split into blocks.
1094  * If a block is freed, and its buddy is also free, then this
1095  * triggers coalescing into a block of larger size.
1096  *
1097  * -- nyc
1098  */
1099 
1100 static inline void __free_one_page(struct page *page,
1101 		unsigned long pfn,
1102 		struct zone *zone, unsigned int order,
1103 		int migratetype, fpi_t fpi_flags)
1104 {
1105 	struct capture_control *capc = task_capc(zone);
1106 	unsigned long buddy_pfn = 0;
1107 	unsigned long combined_pfn;
1108 	struct page *buddy;
1109 	bool to_tail;
1110 
1111 	VM_BUG_ON(!zone_is_initialized(zone));
1112 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1113 
1114 	VM_BUG_ON(migratetype == -1);
1115 	if (likely(!is_migrate_isolate(migratetype)))
1116 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1117 
1118 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1119 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1120 
1121 	while (order < MAX_ORDER - 1) {
1122 		if (compaction_capture(capc, page, order, migratetype)) {
1123 			__mod_zone_freepage_state(zone, -(1 << order),
1124 								migratetype);
1125 			return;
1126 		}
1127 
1128 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1129 		if (!buddy)
1130 			goto done_merging;
1131 
1132 		if (unlikely(order >= pageblock_order)) {
1133 			/*
1134 			 * We want to prevent merge between freepages on pageblock
1135 			 * without fallbacks and normal pageblock. Without this,
1136 			 * pageblock isolation could cause incorrect freepage or CMA
1137 			 * accounting or HIGHATOMIC accounting.
1138 			 */
1139 			int buddy_mt = get_pageblock_migratetype(buddy);
1140 
1141 			if (migratetype != buddy_mt
1142 					&& (!migratetype_is_mergeable(migratetype) ||
1143 						!migratetype_is_mergeable(buddy_mt)))
1144 				goto done_merging;
1145 		}
1146 
1147 		/*
1148 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1149 		 * merge with it and move up one order.
1150 		 */
1151 		if (page_is_guard(buddy))
1152 			clear_page_guard(zone, buddy, order, migratetype);
1153 		else
1154 			del_page_from_free_list(buddy, zone, order);
1155 		combined_pfn = buddy_pfn & pfn;
1156 		page = page + (combined_pfn - pfn);
1157 		pfn = combined_pfn;
1158 		order++;
1159 	}
1160 
1161 done_merging:
1162 	set_buddy_order(page, order);
1163 
1164 	if (fpi_flags & FPI_TO_TAIL)
1165 		to_tail = true;
1166 	else if (is_shuffle_order(order))
1167 		to_tail = shuffle_pick_tail();
1168 	else
1169 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1170 
1171 	if (to_tail)
1172 		add_to_free_list_tail(page, zone, order, migratetype);
1173 	else
1174 		add_to_free_list(page, zone, order, migratetype);
1175 
1176 	/* Notify page reporting subsystem of freed page */
1177 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1178 		page_reporting_notify_free(order);
1179 }
1180 
1181 /**
1182  * split_free_page() -- split a free page at split_pfn_offset
1183  * @free_page:		the original free page
1184  * @order:		the order of the page
1185  * @split_pfn_offset:	split offset within the page
1186  *
1187  * Return -ENOENT if the free page is changed, otherwise 0
1188  *
1189  * It is used when the free page crosses two pageblocks with different migratetypes
1190  * at split_pfn_offset within the page. The split free page will be put into
1191  * separate migratetype lists afterwards. Otherwise, the function achieves
1192  * nothing.
1193  */
1194 int split_free_page(struct page *free_page,
1195 			unsigned int order, unsigned long split_pfn_offset)
1196 {
1197 	struct zone *zone = page_zone(free_page);
1198 	unsigned long free_page_pfn = page_to_pfn(free_page);
1199 	unsigned long pfn;
1200 	unsigned long flags;
1201 	int free_page_order;
1202 	int mt;
1203 	int ret = 0;
1204 
1205 	if (split_pfn_offset == 0)
1206 		return ret;
1207 
1208 	spin_lock_irqsave(&zone->lock, flags);
1209 
1210 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1211 		ret = -ENOENT;
1212 		goto out;
1213 	}
1214 
1215 	mt = get_pageblock_migratetype(free_page);
1216 	if (likely(!is_migrate_isolate(mt)))
1217 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1218 
1219 	del_page_from_free_list(free_page, zone, order);
1220 	for (pfn = free_page_pfn;
1221 	     pfn < free_page_pfn + (1UL << order);) {
1222 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1223 
1224 		free_page_order = min_t(unsigned int,
1225 					pfn ? __ffs(pfn) : order,
1226 					__fls(split_pfn_offset));
1227 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1228 				mt, FPI_NONE);
1229 		pfn += 1UL << free_page_order;
1230 		split_pfn_offset -= (1UL << free_page_order);
1231 		/* we have done the first part, now switch to second part */
1232 		if (split_pfn_offset == 0)
1233 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1234 	}
1235 out:
1236 	spin_unlock_irqrestore(&zone->lock, flags);
1237 	return ret;
1238 }
1239 /*
1240  * A bad page could be due to a number of fields. Instead of multiple branches,
1241  * try and check multiple fields with one check. The caller must do a detailed
1242  * check if necessary.
1243  */
1244 static inline bool page_expected_state(struct page *page,
1245 					unsigned long check_flags)
1246 {
1247 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1248 		return false;
1249 
1250 	if (unlikely((unsigned long)page->mapping |
1251 			page_ref_count(page) |
1252 #ifdef CONFIG_MEMCG
1253 			page->memcg_data |
1254 #endif
1255 			(page->flags & check_flags)))
1256 		return false;
1257 
1258 	return true;
1259 }
1260 
1261 static const char *page_bad_reason(struct page *page, unsigned long flags)
1262 {
1263 	const char *bad_reason = NULL;
1264 
1265 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1266 		bad_reason = "nonzero mapcount";
1267 	if (unlikely(page->mapping != NULL))
1268 		bad_reason = "non-NULL mapping";
1269 	if (unlikely(page_ref_count(page) != 0))
1270 		bad_reason = "nonzero _refcount";
1271 	if (unlikely(page->flags & flags)) {
1272 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1273 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1274 		else
1275 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1276 	}
1277 #ifdef CONFIG_MEMCG
1278 	if (unlikely(page->memcg_data))
1279 		bad_reason = "page still charged to cgroup";
1280 #endif
1281 	return bad_reason;
1282 }
1283 
1284 static void free_page_is_bad_report(struct page *page)
1285 {
1286 	bad_page(page,
1287 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1288 }
1289 
1290 static inline bool free_page_is_bad(struct page *page)
1291 {
1292 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1293 		return false;
1294 
1295 	/* Something has gone sideways, find it */
1296 	free_page_is_bad_report(page);
1297 	return true;
1298 }
1299 
1300 static int free_tail_pages_check(struct page *head_page, struct page *page)
1301 {
1302 	struct folio *folio = (struct folio *)head_page;
1303 	int ret = 1;
1304 
1305 	/*
1306 	 * We rely page->lru.next never has bit 0 set, unless the page
1307 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1308 	 */
1309 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1310 
1311 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1312 		ret = 0;
1313 		goto out;
1314 	}
1315 	switch (page - head_page) {
1316 	case 1:
1317 		/* the first tail page: these may be in place of ->mapping */
1318 		if (unlikely(folio_entire_mapcount(folio))) {
1319 			bad_page(page, "nonzero entire_mapcount");
1320 			goto out;
1321 		}
1322 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1323 			bad_page(page, "nonzero nr_pages_mapped");
1324 			goto out;
1325 		}
1326 		if (unlikely(atomic_read(&folio->_pincount))) {
1327 			bad_page(page, "nonzero pincount");
1328 			goto out;
1329 		}
1330 		break;
1331 	case 2:
1332 		/*
1333 		 * the second tail page: ->mapping is
1334 		 * deferred_list.next -- ignore value.
1335 		 */
1336 		break;
1337 	default:
1338 		if (page->mapping != TAIL_MAPPING) {
1339 			bad_page(page, "corrupted mapping in tail page");
1340 			goto out;
1341 		}
1342 		break;
1343 	}
1344 	if (unlikely(!PageTail(page))) {
1345 		bad_page(page, "PageTail not set");
1346 		goto out;
1347 	}
1348 	if (unlikely(compound_head(page) != head_page)) {
1349 		bad_page(page, "compound_head not consistent");
1350 		goto out;
1351 	}
1352 	ret = 0;
1353 out:
1354 	page->mapping = NULL;
1355 	clear_compound_head(page);
1356 	return ret;
1357 }
1358 
1359 /*
1360  * Skip KASAN memory poisoning when either:
1361  *
1362  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1363  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1364  *    using page tags instead (see below).
1365  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1366  *    that error detection is disabled for accesses via the page address.
1367  *
1368  * Pages will have match-all tags in the following circumstances:
1369  *
1370  * 1. Pages are being initialized for the first time, including during deferred
1371  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1372  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1373  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1374  * 3. The allocation was excluded from being checked due to sampling,
1375  *    see the call to kasan_unpoison_pages.
1376  *
1377  * Poisoning pages during deferred memory init will greatly lengthen the
1378  * process and cause problem in large memory systems as the deferred pages
1379  * initialization is done with interrupt disabled.
1380  *
1381  * Assuming that there will be no reference to those newly initialized
1382  * pages before they are ever allocated, this should have no effect on
1383  * KASAN memory tracking as the poison will be properly inserted at page
1384  * allocation time. The only corner case is when pages are allocated by
1385  * on-demand allocation and then freed again before the deferred pages
1386  * initialization is done, but this is not likely to happen.
1387  */
1388 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1389 {
1390 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1391 		return deferred_pages_enabled();
1392 
1393 	return page_kasan_tag(page) == 0xff;
1394 }
1395 
1396 static void kernel_init_pages(struct page *page, int numpages)
1397 {
1398 	int i;
1399 
1400 	/* s390's use of memset() could override KASAN redzones. */
1401 	kasan_disable_current();
1402 	for (i = 0; i < numpages; i++)
1403 		clear_highpage_kasan_tagged(page + i);
1404 	kasan_enable_current();
1405 }
1406 
1407 static __always_inline bool free_pages_prepare(struct page *page,
1408 			unsigned int order, fpi_t fpi_flags)
1409 {
1410 	int bad = 0;
1411 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1412 	bool init = want_init_on_free();
1413 
1414 	VM_BUG_ON_PAGE(PageTail(page), page);
1415 
1416 	trace_mm_page_free(page, order);
1417 	kmsan_free_page(page, order);
1418 
1419 	if (unlikely(PageHWPoison(page)) && !order) {
1420 		/*
1421 		 * Do not let hwpoison pages hit pcplists/buddy
1422 		 * Untie memcg state and reset page's owner
1423 		 */
1424 		if (memcg_kmem_online() && PageMemcgKmem(page))
1425 			__memcg_kmem_uncharge_page(page, order);
1426 		reset_page_owner(page, order);
1427 		page_table_check_free(page, order);
1428 		return false;
1429 	}
1430 
1431 	/*
1432 	 * Check tail pages before head page information is cleared to
1433 	 * avoid checking PageCompound for order-0 pages.
1434 	 */
1435 	if (unlikely(order)) {
1436 		bool compound = PageCompound(page);
1437 		int i;
1438 
1439 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1440 
1441 		if (compound)
1442 			ClearPageHasHWPoisoned(page);
1443 		for (i = 1; i < (1 << order); i++) {
1444 			if (compound)
1445 				bad += free_tail_pages_check(page, page + i);
1446 			if (static_branch_unlikely(&check_pages_enabled)) {
1447 				if (unlikely(free_page_is_bad(page + i))) {
1448 					bad++;
1449 					continue;
1450 				}
1451 			}
1452 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1453 		}
1454 	}
1455 	if (PageMappingFlags(page))
1456 		page->mapping = NULL;
1457 	if (memcg_kmem_online() && PageMemcgKmem(page))
1458 		__memcg_kmem_uncharge_page(page, order);
1459 	if (static_branch_unlikely(&check_pages_enabled)) {
1460 		if (free_page_is_bad(page))
1461 			bad++;
1462 		if (bad)
1463 			return false;
1464 	}
1465 
1466 	page_cpupid_reset_last(page);
1467 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1468 	reset_page_owner(page, order);
1469 	page_table_check_free(page, order);
1470 
1471 	if (!PageHighMem(page)) {
1472 		debug_check_no_locks_freed(page_address(page),
1473 					   PAGE_SIZE << order);
1474 		debug_check_no_obj_freed(page_address(page),
1475 					   PAGE_SIZE << order);
1476 	}
1477 
1478 	kernel_poison_pages(page, 1 << order);
1479 
1480 	/*
1481 	 * As memory initialization might be integrated into KASAN,
1482 	 * KASAN poisoning and memory initialization code must be
1483 	 * kept together to avoid discrepancies in behavior.
1484 	 *
1485 	 * With hardware tag-based KASAN, memory tags must be set before the
1486 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1487 	 */
1488 	if (!skip_kasan_poison) {
1489 		kasan_poison_pages(page, order, init);
1490 
1491 		/* Memory is already initialized if KASAN did it internally. */
1492 		if (kasan_has_integrated_init())
1493 			init = false;
1494 	}
1495 	if (init)
1496 		kernel_init_pages(page, 1 << order);
1497 
1498 	/*
1499 	 * arch_free_page() can make the page's contents inaccessible.  s390
1500 	 * does this.  So nothing which can access the page's contents should
1501 	 * happen after this.
1502 	 */
1503 	arch_free_page(page, order);
1504 
1505 	debug_pagealloc_unmap_pages(page, 1 << order);
1506 
1507 	return true;
1508 }
1509 
1510 /*
1511  * Frees a number of pages from the PCP lists
1512  * Assumes all pages on list are in same zone.
1513  * count is the number of pages to free.
1514  */
1515 static void free_pcppages_bulk(struct zone *zone, int count,
1516 					struct per_cpu_pages *pcp,
1517 					int pindex)
1518 {
1519 	unsigned long flags;
1520 	int min_pindex = 0;
1521 	int max_pindex = NR_PCP_LISTS - 1;
1522 	unsigned int order;
1523 	bool isolated_pageblocks;
1524 	struct page *page;
1525 
1526 	/*
1527 	 * Ensure proper count is passed which otherwise would stuck in the
1528 	 * below while (list_empty(list)) loop.
1529 	 */
1530 	count = min(pcp->count, count);
1531 
1532 	/* Ensure requested pindex is drained first. */
1533 	pindex = pindex - 1;
1534 
1535 	spin_lock_irqsave(&zone->lock, flags);
1536 	isolated_pageblocks = has_isolate_pageblock(zone);
1537 
1538 	while (count > 0) {
1539 		struct list_head *list;
1540 		int nr_pages;
1541 
1542 		/* Remove pages from lists in a round-robin fashion. */
1543 		do {
1544 			if (++pindex > max_pindex)
1545 				pindex = min_pindex;
1546 			list = &pcp->lists[pindex];
1547 			if (!list_empty(list))
1548 				break;
1549 
1550 			if (pindex == max_pindex)
1551 				max_pindex--;
1552 			if (pindex == min_pindex)
1553 				min_pindex++;
1554 		} while (1);
1555 
1556 		order = pindex_to_order(pindex);
1557 		nr_pages = 1 << order;
1558 		do {
1559 			int mt;
1560 
1561 			page = list_last_entry(list, struct page, pcp_list);
1562 			mt = get_pcppage_migratetype(page);
1563 
1564 			/* must delete to avoid corrupting pcp list */
1565 			list_del(&page->pcp_list);
1566 			count -= nr_pages;
1567 			pcp->count -= nr_pages;
1568 
1569 			/* MIGRATE_ISOLATE page should not go to pcplists */
1570 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1571 			/* Pageblock could have been isolated meanwhile */
1572 			if (unlikely(isolated_pageblocks))
1573 				mt = get_pageblock_migratetype(page);
1574 
1575 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1576 			trace_mm_page_pcpu_drain(page, order, mt);
1577 		} while (count > 0 && !list_empty(list));
1578 	}
1579 
1580 	spin_unlock_irqrestore(&zone->lock, flags);
1581 }
1582 
1583 static void free_one_page(struct zone *zone,
1584 				struct page *page, unsigned long pfn,
1585 				unsigned int order,
1586 				int migratetype, fpi_t fpi_flags)
1587 {
1588 	unsigned long flags;
1589 
1590 	spin_lock_irqsave(&zone->lock, flags);
1591 	if (unlikely(has_isolate_pageblock(zone) ||
1592 		is_migrate_isolate(migratetype))) {
1593 		migratetype = get_pfnblock_migratetype(page, pfn);
1594 	}
1595 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1596 	spin_unlock_irqrestore(&zone->lock, flags);
1597 }
1598 
1599 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1600 				unsigned long zone, int nid)
1601 {
1602 	mm_zero_struct_page(page);
1603 	set_page_links(page, zone, nid, pfn);
1604 	init_page_count(page);
1605 	page_mapcount_reset(page);
1606 	page_cpupid_reset_last(page);
1607 	page_kasan_tag_reset(page);
1608 
1609 	INIT_LIST_HEAD(&page->lru);
1610 #ifdef WANT_PAGE_VIRTUAL
1611 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1612 	if (!is_highmem_idx(zone))
1613 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1614 #endif
1615 }
1616 
1617 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1618 static void __meminit init_reserved_page(unsigned long pfn)
1619 {
1620 	pg_data_t *pgdat;
1621 	int nid, zid;
1622 
1623 	if (early_page_initialised(pfn))
1624 		return;
1625 
1626 	nid = early_pfn_to_nid(pfn);
1627 	pgdat = NODE_DATA(nid);
1628 
1629 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1630 		struct zone *zone = &pgdat->node_zones[zid];
1631 
1632 		if (zone_spans_pfn(zone, pfn))
1633 			break;
1634 	}
1635 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1636 }
1637 #else
1638 static inline void init_reserved_page(unsigned long pfn)
1639 {
1640 }
1641 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1642 
1643 /*
1644  * Initialised pages do not have PageReserved set. This function is
1645  * called for each range allocated by the bootmem allocator and
1646  * marks the pages PageReserved. The remaining valid pages are later
1647  * sent to the buddy page allocator.
1648  */
1649 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1650 {
1651 	unsigned long start_pfn = PFN_DOWN(start);
1652 	unsigned long end_pfn = PFN_UP(end);
1653 
1654 	for (; start_pfn < end_pfn; start_pfn++) {
1655 		if (pfn_valid(start_pfn)) {
1656 			struct page *page = pfn_to_page(start_pfn);
1657 
1658 			init_reserved_page(start_pfn);
1659 
1660 			/* Avoid false-positive PageTail() */
1661 			INIT_LIST_HEAD(&page->lru);
1662 
1663 			/*
1664 			 * no need for atomic set_bit because the struct
1665 			 * page is not visible yet so nobody should
1666 			 * access it yet.
1667 			 */
1668 			__SetPageReserved(page);
1669 		}
1670 	}
1671 }
1672 
1673 static void __free_pages_ok(struct page *page, unsigned int order,
1674 			    fpi_t fpi_flags)
1675 {
1676 	unsigned long flags;
1677 	int migratetype;
1678 	unsigned long pfn = page_to_pfn(page);
1679 	struct zone *zone = page_zone(page);
1680 
1681 	if (!free_pages_prepare(page, order, fpi_flags))
1682 		return;
1683 
1684 	/*
1685 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1686 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1687 	 * This will reduce the lock holding time.
1688 	 */
1689 	migratetype = get_pfnblock_migratetype(page, pfn);
1690 
1691 	spin_lock_irqsave(&zone->lock, flags);
1692 	if (unlikely(has_isolate_pageblock(zone) ||
1693 		is_migrate_isolate(migratetype))) {
1694 		migratetype = get_pfnblock_migratetype(page, pfn);
1695 	}
1696 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1697 	spin_unlock_irqrestore(&zone->lock, flags);
1698 
1699 	__count_vm_events(PGFREE, 1 << order);
1700 }
1701 
1702 void __free_pages_core(struct page *page, unsigned int order)
1703 {
1704 	unsigned int nr_pages = 1 << order;
1705 	struct page *p = page;
1706 	unsigned int loop;
1707 
1708 	/*
1709 	 * When initializing the memmap, __init_single_page() sets the refcount
1710 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1711 	 * refcount of all involved pages to 0.
1712 	 */
1713 	prefetchw(p);
1714 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1715 		prefetchw(p + 1);
1716 		__ClearPageReserved(p);
1717 		set_page_count(p, 0);
1718 	}
1719 	__ClearPageReserved(p);
1720 	set_page_count(p, 0);
1721 
1722 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1723 
1724 	/*
1725 	 * Bypass PCP and place fresh pages right to the tail, primarily
1726 	 * relevant for memory onlining.
1727 	 */
1728 	__free_pages_ok(page, order, FPI_TO_TAIL);
1729 }
1730 
1731 #ifdef CONFIG_NUMA
1732 
1733 /*
1734  * During memory init memblocks map pfns to nids. The search is expensive and
1735  * this caches recent lookups. The implementation of __early_pfn_to_nid
1736  * treats start/end as pfns.
1737  */
1738 struct mminit_pfnnid_cache {
1739 	unsigned long last_start;
1740 	unsigned long last_end;
1741 	int last_nid;
1742 };
1743 
1744 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1745 
1746 /*
1747  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1748  */
1749 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1750 					struct mminit_pfnnid_cache *state)
1751 {
1752 	unsigned long start_pfn, end_pfn;
1753 	int nid;
1754 
1755 	if (state->last_start <= pfn && pfn < state->last_end)
1756 		return state->last_nid;
1757 
1758 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1759 	if (nid != NUMA_NO_NODE) {
1760 		state->last_start = start_pfn;
1761 		state->last_end = end_pfn;
1762 		state->last_nid = nid;
1763 	}
1764 
1765 	return nid;
1766 }
1767 
1768 int __meminit early_pfn_to_nid(unsigned long pfn)
1769 {
1770 	static DEFINE_SPINLOCK(early_pfn_lock);
1771 	int nid;
1772 
1773 	spin_lock(&early_pfn_lock);
1774 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1775 	if (nid < 0)
1776 		nid = first_online_node;
1777 	spin_unlock(&early_pfn_lock);
1778 
1779 	return nid;
1780 }
1781 #endif /* CONFIG_NUMA */
1782 
1783 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1784 							unsigned int order)
1785 {
1786 	if (!early_page_initialised(pfn))
1787 		return;
1788 	if (!kmsan_memblock_free_pages(page, order)) {
1789 		/* KMSAN will take care of these pages. */
1790 		return;
1791 	}
1792 	__free_pages_core(page, order);
1793 }
1794 
1795 /*
1796  * Check that the whole (or subset of) a pageblock given by the interval of
1797  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1798  * with the migration of free compaction scanner.
1799  *
1800  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1801  *
1802  * It's possible on some configurations to have a setup like node0 node1 node0
1803  * i.e. it's possible that all pages within a zones range of pages do not
1804  * belong to a single zone. We assume that a border between node0 and node1
1805  * can occur within a single pageblock, but not a node0 node1 node0
1806  * interleaving within a single pageblock. It is therefore sufficient to check
1807  * the first and last page of a pageblock and avoid checking each individual
1808  * page in a pageblock.
1809  */
1810 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1811 				     unsigned long end_pfn, struct zone *zone)
1812 {
1813 	struct page *start_page;
1814 	struct page *end_page;
1815 
1816 	/* end_pfn is one past the range we are checking */
1817 	end_pfn--;
1818 
1819 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1820 		return NULL;
1821 
1822 	start_page = pfn_to_online_page(start_pfn);
1823 	if (!start_page)
1824 		return NULL;
1825 
1826 	if (page_zone(start_page) != zone)
1827 		return NULL;
1828 
1829 	end_page = pfn_to_page(end_pfn);
1830 
1831 	/* This gives a shorter code than deriving page_zone(end_page) */
1832 	if (page_zone_id(start_page) != page_zone_id(end_page))
1833 		return NULL;
1834 
1835 	return start_page;
1836 }
1837 
1838 void set_zone_contiguous(struct zone *zone)
1839 {
1840 	unsigned long block_start_pfn = zone->zone_start_pfn;
1841 	unsigned long block_end_pfn;
1842 
1843 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1844 	for (; block_start_pfn < zone_end_pfn(zone);
1845 			block_start_pfn = block_end_pfn,
1846 			 block_end_pfn += pageblock_nr_pages) {
1847 
1848 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1849 
1850 		if (!__pageblock_pfn_to_page(block_start_pfn,
1851 					     block_end_pfn, zone))
1852 			return;
1853 		cond_resched();
1854 	}
1855 
1856 	/* We confirm that there is no hole */
1857 	zone->contiguous = true;
1858 }
1859 
1860 void clear_zone_contiguous(struct zone *zone)
1861 {
1862 	zone->contiguous = false;
1863 }
1864 
1865 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1866 static void __init deferred_free_range(unsigned long pfn,
1867 				       unsigned long nr_pages)
1868 {
1869 	struct page *page;
1870 	unsigned long i;
1871 
1872 	if (!nr_pages)
1873 		return;
1874 
1875 	page = pfn_to_page(pfn);
1876 
1877 	/* Free a large naturally-aligned chunk if possible */
1878 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1879 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1880 		__free_pages_core(page, pageblock_order);
1881 		return;
1882 	}
1883 
1884 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1885 		if (pageblock_aligned(pfn))
1886 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1887 		__free_pages_core(page, 0);
1888 	}
1889 }
1890 
1891 /* Completion tracking for deferred_init_memmap() threads */
1892 static atomic_t pgdat_init_n_undone __initdata;
1893 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1894 
1895 static inline void __init pgdat_init_report_one_done(void)
1896 {
1897 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1898 		complete(&pgdat_init_all_done_comp);
1899 }
1900 
1901 /*
1902  * Returns true if page needs to be initialized or freed to buddy allocator.
1903  *
1904  * We check if a current large page is valid by only checking the validity
1905  * of the head pfn.
1906  */
1907 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1908 {
1909 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1910 		return false;
1911 	return true;
1912 }
1913 
1914 /*
1915  * Free pages to buddy allocator. Try to free aligned pages in
1916  * pageblock_nr_pages sizes.
1917  */
1918 static void __init deferred_free_pages(unsigned long pfn,
1919 				       unsigned long end_pfn)
1920 {
1921 	unsigned long nr_free = 0;
1922 
1923 	for (; pfn < end_pfn; pfn++) {
1924 		if (!deferred_pfn_valid(pfn)) {
1925 			deferred_free_range(pfn - nr_free, nr_free);
1926 			nr_free = 0;
1927 		} else if (pageblock_aligned(pfn)) {
1928 			deferred_free_range(pfn - nr_free, nr_free);
1929 			nr_free = 1;
1930 		} else {
1931 			nr_free++;
1932 		}
1933 	}
1934 	/* Free the last block of pages to allocator */
1935 	deferred_free_range(pfn - nr_free, nr_free);
1936 }
1937 
1938 /*
1939  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1940  * by performing it only once every pageblock_nr_pages.
1941  * Return number of pages initialized.
1942  */
1943 static unsigned long  __init deferred_init_pages(struct zone *zone,
1944 						 unsigned long pfn,
1945 						 unsigned long end_pfn)
1946 {
1947 	int nid = zone_to_nid(zone);
1948 	unsigned long nr_pages = 0;
1949 	int zid = zone_idx(zone);
1950 	struct page *page = NULL;
1951 
1952 	for (; pfn < end_pfn; pfn++) {
1953 		if (!deferred_pfn_valid(pfn)) {
1954 			page = NULL;
1955 			continue;
1956 		} else if (!page || pageblock_aligned(pfn)) {
1957 			page = pfn_to_page(pfn);
1958 		} else {
1959 			page++;
1960 		}
1961 		__init_single_page(page, pfn, zid, nid);
1962 		nr_pages++;
1963 	}
1964 	return (nr_pages);
1965 }
1966 
1967 /*
1968  * This function is meant to pre-load the iterator for the zone init.
1969  * Specifically it walks through the ranges until we are caught up to the
1970  * first_init_pfn value and exits there. If we never encounter the value we
1971  * return false indicating there are no valid ranges left.
1972  */
1973 static bool __init
1974 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1975 				    unsigned long *spfn, unsigned long *epfn,
1976 				    unsigned long first_init_pfn)
1977 {
1978 	u64 j;
1979 
1980 	/*
1981 	 * Start out by walking through the ranges in this zone that have
1982 	 * already been initialized. We don't need to do anything with them
1983 	 * so we just need to flush them out of the system.
1984 	 */
1985 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1986 		if (*epfn <= first_init_pfn)
1987 			continue;
1988 		if (*spfn < first_init_pfn)
1989 			*spfn = first_init_pfn;
1990 		*i = j;
1991 		return true;
1992 	}
1993 
1994 	return false;
1995 }
1996 
1997 /*
1998  * Initialize and free pages. We do it in two loops: first we initialize
1999  * struct page, then free to buddy allocator, because while we are
2000  * freeing pages we can access pages that are ahead (computing buddy
2001  * page in __free_one_page()).
2002  *
2003  * In order to try and keep some memory in the cache we have the loop
2004  * broken along max page order boundaries. This way we will not cause
2005  * any issues with the buddy page computation.
2006  */
2007 static unsigned long __init
2008 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2009 		       unsigned long *end_pfn)
2010 {
2011 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2012 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2013 	unsigned long nr_pages = 0;
2014 	u64 j = *i;
2015 
2016 	/* First we loop through and initialize the page values */
2017 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2018 		unsigned long t;
2019 
2020 		if (mo_pfn <= *start_pfn)
2021 			break;
2022 
2023 		t = min(mo_pfn, *end_pfn);
2024 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2025 
2026 		if (mo_pfn < *end_pfn) {
2027 			*start_pfn = mo_pfn;
2028 			break;
2029 		}
2030 	}
2031 
2032 	/* Reset values and now loop through freeing pages as needed */
2033 	swap(j, *i);
2034 
2035 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2036 		unsigned long t;
2037 
2038 		if (mo_pfn <= spfn)
2039 			break;
2040 
2041 		t = min(mo_pfn, epfn);
2042 		deferred_free_pages(spfn, t);
2043 
2044 		if (mo_pfn <= epfn)
2045 			break;
2046 	}
2047 
2048 	return nr_pages;
2049 }
2050 
2051 static void __init
2052 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2053 			   void *arg)
2054 {
2055 	unsigned long spfn, epfn;
2056 	struct zone *zone = arg;
2057 	u64 i;
2058 
2059 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2060 
2061 	/*
2062 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2063 	 * can avoid introducing any issues with the buddy allocator.
2064 	 */
2065 	while (spfn < end_pfn) {
2066 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2067 		cond_resched();
2068 	}
2069 }
2070 
2071 /* An arch may override for more concurrency. */
2072 __weak int __init
2073 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2074 {
2075 	return 1;
2076 }
2077 
2078 /* Initialise remaining memory on a node */
2079 static int __init deferred_init_memmap(void *data)
2080 {
2081 	pg_data_t *pgdat = data;
2082 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2083 	unsigned long spfn = 0, epfn = 0;
2084 	unsigned long first_init_pfn, flags;
2085 	unsigned long start = jiffies;
2086 	struct zone *zone;
2087 	int zid, max_threads;
2088 	u64 i;
2089 
2090 	/* Bind memory initialisation thread to a local node if possible */
2091 	if (!cpumask_empty(cpumask))
2092 		set_cpus_allowed_ptr(current, cpumask);
2093 
2094 	pgdat_resize_lock(pgdat, &flags);
2095 	first_init_pfn = pgdat->first_deferred_pfn;
2096 	if (first_init_pfn == ULONG_MAX) {
2097 		pgdat_resize_unlock(pgdat, &flags);
2098 		pgdat_init_report_one_done();
2099 		return 0;
2100 	}
2101 
2102 	/* Sanity check boundaries */
2103 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2104 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2105 	pgdat->first_deferred_pfn = ULONG_MAX;
2106 
2107 	/*
2108 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2109 	 * interrupt thread must allocate this early in boot, zone must be
2110 	 * pre-grown prior to start of deferred page initialization.
2111 	 */
2112 	pgdat_resize_unlock(pgdat, &flags);
2113 
2114 	/* Only the highest zone is deferred so find it */
2115 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2116 		zone = pgdat->node_zones + zid;
2117 		if (first_init_pfn < zone_end_pfn(zone))
2118 			break;
2119 	}
2120 
2121 	/* If the zone is empty somebody else may have cleared out the zone */
2122 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2123 						 first_init_pfn))
2124 		goto zone_empty;
2125 
2126 	max_threads = deferred_page_init_max_threads(cpumask);
2127 
2128 	while (spfn < epfn) {
2129 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2130 		struct padata_mt_job job = {
2131 			.thread_fn   = deferred_init_memmap_chunk,
2132 			.fn_arg      = zone,
2133 			.start       = spfn,
2134 			.size        = epfn_align - spfn,
2135 			.align       = PAGES_PER_SECTION,
2136 			.min_chunk   = PAGES_PER_SECTION,
2137 			.max_threads = max_threads,
2138 		};
2139 
2140 		padata_do_multithreaded(&job);
2141 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2142 						    epfn_align);
2143 	}
2144 zone_empty:
2145 	/* Sanity check that the next zone really is unpopulated */
2146 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2147 
2148 	pr_info("node %d deferred pages initialised in %ums\n",
2149 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2150 
2151 	pgdat_init_report_one_done();
2152 	return 0;
2153 }
2154 
2155 /*
2156  * If this zone has deferred pages, try to grow it by initializing enough
2157  * deferred pages to satisfy the allocation specified by order, rounded up to
2158  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2159  * of SECTION_SIZE bytes by initializing struct pages in increments of
2160  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2161  *
2162  * Return true when zone was grown, otherwise return false. We return true even
2163  * when we grow less than requested, to let the caller decide if there are
2164  * enough pages to satisfy the allocation.
2165  *
2166  * Note: We use noinline because this function is needed only during boot, and
2167  * it is called from a __ref function _deferred_grow_zone. This way we are
2168  * making sure that it is not inlined into permanent text section.
2169  */
2170 static noinline bool __init
2171 deferred_grow_zone(struct zone *zone, unsigned int order)
2172 {
2173 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2174 	pg_data_t *pgdat = zone->zone_pgdat;
2175 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2176 	unsigned long spfn, epfn, flags;
2177 	unsigned long nr_pages = 0;
2178 	u64 i;
2179 
2180 	/* Only the last zone may have deferred pages */
2181 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2182 		return false;
2183 
2184 	pgdat_resize_lock(pgdat, &flags);
2185 
2186 	/*
2187 	 * If someone grew this zone while we were waiting for spinlock, return
2188 	 * true, as there might be enough pages already.
2189 	 */
2190 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2191 		pgdat_resize_unlock(pgdat, &flags);
2192 		return true;
2193 	}
2194 
2195 	/* If the zone is empty somebody else may have cleared out the zone */
2196 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2197 						 first_deferred_pfn)) {
2198 		pgdat->first_deferred_pfn = ULONG_MAX;
2199 		pgdat_resize_unlock(pgdat, &flags);
2200 		/* Retry only once. */
2201 		return first_deferred_pfn != ULONG_MAX;
2202 	}
2203 
2204 	/*
2205 	 * Initialize and free pages in MAX_ORDER sized increments so
2206 	 * that we can avoid introducing any issues with the buddy
2207 	 * allocator.
2208 	 */
2209 	while (spfn < epfn) {
2210 		/* update our first deferred PFN for this section */
2211 		first_deferred_pfn = spfn;
2212 
2213 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2214 		touch_nmi_watchdog();
2215 
2216 		/* We should only stop along section boundaries */
2217 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2218 			continue;
2219 
2220 		/* If our quota has been met we can stop here */
2221 		if (nr_pages >= nr_pages_needed)
2222 			break;
2223 	}
2224 
2225 	pgdat->first_deferred_pfn = spfn;
2226 	pgdat_resize_unlock(pgdat, &flags);
2227 
2228 	return nr_pages > 0;
2229 }
2230 
2231 /*
2232  * deferred_grow_zone() is __init, but it is called from
2233  * get_page_from_freelist() during early boot until deferred_pages permanently
2234  * disables this call. This is why we have refdata wrapper to avoid warning,
2235  * and to ensure that the function body gets unloaded.
2236  */
2237 static bool __ref
2238 _deferred_grow_zone(struct zone *zone, unsigned int order)
2239 {
2240 	return deferred_grow_zone(zone, order);
2241 }
2242 
2243 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2244 
2245 void __init page_alloc_init_late(void)
2246 {
2247 	struct zone *zone;
2248 	int nid;
2249 
2250 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2251 
2252 	/* There will be num_node_state(N_MEMORY) threads */
2253 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2254 	for_each_node_state(nid, N_MEMORY) {
2255 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2256 	}
2257 
2258 	/* Block until all are initialised */
2259 	wait_for_completion(&pgdat_init_all_done_comp);
2260 
2261 	/*
2262 	 * We initialized the rest of the deferred pages.  Permanently disable
2263 	 * on-demand struct page initialization.
2264 	 */
2265 	static_branch_disable(&deferred_pages);
2266 
2267 	/* Reinit limits that are based on free pages after the kernel is up */
2268 	files_maxfiles_init();
2269 #endif
2270 
2271 	buffer_init();
2272 
2273 	/* Discard memblock private memory */
2274 	memblock_discard();
2275 
2276 	for_each_node_state(nid, N_MEMORY)
2277 		shuffle_free_memory(NODE_DATA(nid));
2278 
2279 	for_each_populated_zone(zone)
2280 		set_zone_contiguous(zone);
2281 }
2282 
2283 #ifdef CONFIG_CMA
2284 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2285 void __init init_cma_reserved_pageblock(struct page *page)
2286 {
2287 	unsigned i = pageblock_nr_pages;
2288 	struct page *p = page;
2289 
2290 	do {
2291 		__ClearPageReserved(p);
2292 		set_page_count(p, 0);
2293 	} while (++p, --i);
2294 
2295 	set_pageblock_migratetype(page, MIGRATE_CMA);
2296 	set_page_refcounted(page);
2297 	__free_pages(page, pageblock_order);
2298 
2299 	adjust_managed_page_count(page, pageblock_nr_pages);
2300 	page_zone(page)->cma_pages += pageblock_nr_pages;
2301 }
2302 #endif
2303 
2304 /*
2305  * The order of subdivision here is critical for the IO subsystem.
2306  * Please do not alter this order without good reasons and regression
2307  * testing. Specifically, as large blocks of memory are subdivided,
2308  * the order in which smaller blocks are delivered depends on the order
2309  * they're subdivided in this function. This is the primary factor
2310  * influencing the order in which pages are delivered to the IO
2311  * subsystem according to empirical testing, and this is also justified
2312  * by considering the behavior of a buddy system containing a single
2313  * large block of memory acted on by a series of small allocations.
2314  * This behavior is a critical factor in sglist merging's success.
2315  *
2316  * -- nyc
2317  */
2318 static inline void expand(struct zone *zone, struct page *page,
2319 	int low, int high, int migratetype)
2320 {
2321 	unsigned long size = 1 << high;
2322 
2323 	while (high > low) {
2324 		high--;
2325 		size >>= 1;
2326 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2327 
2328 		/*
2329 		 * Mark as guard pages (or page), that will allow to
2330 		 * merge back to allocator when buddy will be freed.
2331 		 * Corresponding page table entries will not be touched,
2332 		 * pages will stay not present in virtual address space
2333 		 */
2334 		if (set_page_guard(zone, &page[size], high, migratetype))
2335 			continue;
2336 
2337 		add_to_free_list(&page[size], zone, high, migratetype);
2338 		set_buddy_order(&page[size], high);
2339 	}
2340 }
2341 
2342 static void check_new_page_bad(struct page *page)
2343 {
2344 	if (unlikely(page->flags & __PG_HWPOISON)) {
2345 		/* Don't complain about hwpoisoned pages */
2346 		page_mapcount_reset(page); /* remove PageBuddy */
2347 		return;
2348 	}
2349 
2350 	bad_page(page,
2351 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2352 }
2353 
2354 /*
2355  * This page is about to be returned from the page allocator
2356  */
2357 static int check_new_page(struct page *page)
2358 {
2359 	if (likely(page_expected_state(page,
2360 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2361 		return 0;
2362 
2363 	check_new_page_bad(page);
2364 	return 1;
2365 }
2366 
2367 static inline bool check_new_pages(struct page *page, unsigned int order)
2368 {
2369 	if (static_branch_unlikely(&check_pages_enabled)) {
2370 		for (int i = 0; i < (1 << order); i++) {
2371 			struct page *p = page + i;
2372 
2373 			if (unlikely(check_new_page(p)))
2374 				return true;
2375 		}
2376 	}
2377 
2378 	return false;
2379 }
2380 
2381 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2382 {
2383 	/* Don't skip if a software KASAN mode is enabled. */
2384 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2385 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2386 		return false;
2387 
2388 	/* Skip, if hardware tag-based KASAN is not enabled. */
2389 	if (!kasan_hw_tags_enabled())
2390 		return true;
2391 
2392 	/*
2393 	 * With hardware tag-based KASAN enabled, skip if this has been
2394 	 * requested via __GFP_SKIP_KASAN.
2395 	 */
2396 	return flags & __GFP_SKIP_KASAN;
2397 }
2398 
2399 static inline bool should_skip_init(gfp_t flags)
2400 {
2401 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2402 	if (!kasan_hw_tags_enabled())
2403 		return false;
2404 
2405 	/* For hardware tag-based KASAN, skip if requested. */
2406 	return (flags & __GFP_SKIP_ZERO);
2407 }
2408 
2409 inline void post_alloc_hook(struct page *page, unsigned int order,
2410 				gfp_t gfp_flags)
2411 {
2412 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2413 			!should_skip_init(gfp_flags);
2414 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2415 	int i;
2416 
2417 	set_page_private(page, 0);
2418 	set_page_refcounted(page);
2419 
2420 	arch_alloc_page(page, order);
2421 	debug_pagealloc_map_pages(page, 1 << order);
2422 
2423 	/*
2424 	 * Page unpoisoning must happen before memory initialization.
2425 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2426 	 * allocations and the page unpoisoning code will complain.
2427 	 */
2428 	kernel_unpoison_pages(page, 1 << order);
2429 
2430 	/*
2431 	 * As memory initialization might be integrated into KASAN,
2432 	 * KASAN unpoisoning and memory initializion code must be
2433 	 * kept together to avoid discrepancies in behavior.
2434 	 */
2435 
2436 	/*
2437 	 * If memory tags should be zeroed
2438 	 * (which happens only when memory should be initialized as well).
2439 	 */
2440 	if (zero_tags) {
2441 		/* Initialize both memory and memory tags. */
2442 		for (i = 0; i != 1 << order; ++i)
2443 			tag_clear_highpage(page + i);
2444 
2445 		/* Take note that memory was initialized by the loop above. */
2446 		init = false;
2447 	}
2448 	if (!should_skip_kasan_unpoison(gfp_flags) &&
2449 	    kasan_unpoison_pages(page, order, init)) {
2450 		/* Take note that memory was initialized by KASAN. */
2451 		if (kasan_has_integrated_init())
2452 			init = false;
2453 	} else {
2454 		/*
2455 		 * If memory tags have not been set by KASAN, reset the page
2456 		 * tags to ensure page_address() dereferencing does not fault.
2457 		 */
2458 		for (i = 0; i != 1 << order; ++i)
2459 			page_kasan_tag_reset(page + i);
2460 	}
2461 	/* If memory is still not initialized, initialize it now. */
2462 	if (init)
2463 		kernel_init_pages(page, 1 << order);
2464 
2465 	set_page_owner(page, order, gfp_flags);
2466 	page_table_check_alloc(page, order);
2467 }
2468 
2469 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2470 							unsigned int alloc_flags)
2471 {
2472 	post_alloc_hook(page, order, gfp_flags);
2473 
2474 	if (order && (gfp_flags & __GFP_COMP))
2475 		prep_compound_page(page, order);
2476 
2477 	/*
2478 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2479 	 * allocate the page. The expectation is that the caller is taking
2480 	 * steps that will free more memory. The caller should avoid the page
2481 	 * being used for !PFMEMALLOC purposes.
2482 	 */
2483 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2484 		set_page_pfmemalloc(page);
2485 	else
2486 		clear_page_pfmemalloc(page);
2487 }
2488 
2489 /*
2490  * Go through the free lists for the given migratetype and remove
2491  * the smallest available page from the freelists
2492  */
2493 static __always_inline
2494 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2495 						int migratetype)
2496 {
2497 	unsigned int current_order;
2498 	struct free_area *area;
2499 	struct page *page;
2500 
2501 	/* Find a page of the appropriate size in the preferred list */
2502 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2503 		area = &(zone->free_area[current_order]);
2504 		page = get_page_from_free_area(area, migratetype);
2505 		if (!page)
2506 			continue;
2507 		del_page_from_free_list(page, zone, current_order);
2508 		expand(zone, page, order, current_order, migratetype);
2509 		set_pcppage_migratetype(page, migratetype);
2510 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2511 				pcp_allowed_order(order) &&
2512 				migratetype < MIGRATE_PCPTYPES);
2513 		return page;
2514 	}
2515 
2516 	return NULL;
2517 }
2518 
2519 
2520 /*
2521  * This array describes the order lists are fallen back to when
2522  * the free lists for the desirable migrate type are depleted
2523  *
2524  * The other migratetypes do not have fallbacks.
2525  */
2526 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
2527 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
2528 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
2529 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
2530 };
2531 
2532 #ifdef CONFIG_CMA
2533 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2534 					unsigned int order)
2535 {
2536 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2537 }
2538 #else
2539 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2540 					unsigned int order) { return NULL; }
2541 #endif
2542 
2543 /*
2544  * Move the free pages in a range to the freelist tail of the requested type.
2545  * Note that start_page and end_pages are not aligned on a pageblock
2546  * boundary. If alignment is required, use move_freepages_block()
2547  */
2548 static int move_freepages(struct zone *zone,
2549 			  unsigned long start_pfn, unsigned long end_pfn,
2550 			  int migratetype, int *num_movable)
2551 {
2552 	struct page *page;
2553 	unsigned long pfn;
2554 	unsigned int order;
2555 	int pages_moved = 0;
2556 
2557 	for (pfn = start_pfn; pfn <= end_pfn;) {
2558 		page = pfn_to_page(pfn);
2559 		if (!PageBuddy(page)) {
2560 			/*
2561 			 * We assume that pages that could be isolated for
2562 			 * migration are movable. But we don't actually try
2563 			 * isolating, as that would be expensive.
2564 			 */
2565 			if (num_movable &&
2566 					(PageLRU(page) || __PageMovable(page)))
2567 				(*num_movable)++;
2568 			pfn++;
2569 			continue;
2570 		}
2571 
2572 		/* Make sure we are not inadvertently changing nodes */
2573 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2574 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2575 
2576 		order = buddy_order(page);
2577 		move_to_free_list(page, zone, order, migratetype);
2578 		pfn += 1 << order;
2579 		pages_moved += 1 << order;
2580 	}
2581 
2582 	return pages_moved;
2583 }
2584 
2585 int move_freepages_block(struct zone *zone, struct page *page,
2586 				int migratetype, int *num_movable)
2587 {
2588 	unsigned long start_pfn, end_pfn, pfn;
2589 
2590 	if (num_movable)
2591 		*num_movable = 0;
2592 
2593 	pfn = page_to_pfn(page);
2594 	start_pfn = pageblock_start_pfn(pfn);
2595 	end_pfn = pageblock_end_pfn(pfn) - 1;
2596 
2597 	/* Do not cross zone boundaries */
2598 	if (!zone_spans_pfn(zone, start_pfn))
2599 		start_pfn = pfn;
2600 	if (!zone_spans_pfn(zone, end_pfn))
2601 		return 0;
2602 
2603 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2604 								num_movable);
2605 }
2606 
2607 static void change_pageblock_range(struct page *pageblock_page,
2608 					int start_order, int migratetype)
2609 {
2610 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2611 
2612 	while (nr_pageblocks--) {
2613 		set_pageblock_migratetype(pageblock_page, migratetype);
2614 		pageblock_page += pageblock_nr_pages;
2615 	}
2616 }
2617 
2618 /*
2619  * When we are falling back to another migratetype during allocation, try to
2620  * steal extra free pages from the same pageblocks to satisfy further
2621  * allocations, instead of polluting multiple pageblocks.
2622  *
2623  * If we are stealing a relatively large buddy page, it is likely there will
2624  * be more free pages in the pageblock, so try to steal them all. For
2625  * reclaimable and unmovable allocations, we steal regardless of page size,
2626  * as fragmentation caused by those allocations polluting movable pageblocks
2627  * is worse than movable allocations stealing from unmovable and reclaimable
2628  * pageblocks.
2629  */
2630 static bool can_steal_fallback(unsigned int order, int start_mt)
2631 {
2632 	/*
2633 	 * Leaving this order check is intended, although there is
2634 	 * relaxed order check in next check. The reason is that
2635 	 * we can actually steal whole pageblock if this condition met,
2636 	 * but, below check doesn't guarantee it and that is just heuristic
2637 	 * so could be changed anytime.
2638 	 */
2639 	if (order >= pageblock_order)
2640 		return true;
2641 
2642 	if (order >= pageblock_order / 2 ||
2643 		start_mt == MIGRATE_RECLAIMABLE ||
2644 		start_mt == MIGRATE_UNMOVABLE ||
2645 		page_group_by_mobility_disabled)
2646 		return true;
2647 
2648 	return false;
2649 }
2650 
2651 static inline bool boost_watermark(struct zone *zone)
2652 {
2653 	unsigned long max_boost;
2654 
2655 	if (!watermark_boost_factor)
2656 		return false;
2657 	/*
2658 	 * Don't bother in zones that are unlikely to produce results.
2659 	 * On small machines, including kdump capture kernels running
2660 	 * in a small area, boosting the watermark can cause an out of
2661 	 * memory situation immediately.
2662 	 */
2663 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2664 		return false;
2665 
2666 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2667 			watermark_boost_factor, 10000);
2668 
2669 	/*
2670 	 * high watermark may be uninitialised if fragmentation occurs
2671 	 * very early in boot so do not boost. We do not fall
2672 	 * through and boost by pageblock_nr_pages as failing
2673 	 * allocations that early means that reclaim is not going
2674 	 * to help and it may even be impossible to reclaim the
2675 	 * boosted watermark resulting in a hang.
2676 	 */
2677 	if (!max_boost)
2678 		return false;
2679 
2680 	max_boost = max(pageblock_nr_pages, max_boost);
2681 
2682 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2683 		max_boost);
2684 
2685 	return true;
2686 }
2687 
2688 /*
2689  * This function implements actual steal behaviour. If order is large enough,
2690  * we can steal whole pageblock. If not, we first move freepages in this
2691  * pageblock to our migratetype and determine how many already-allocated pages
2692  * are there in the pageblock with a compatible migratetype. If at least half
2693  * of pages are free or compatible, we can change migratetype of the pageblock
2694  * itself, so pages freed in the future will be put on the correct free list.
2695  */
2696 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2697 		unsigned int alloc_flags, int start_type, bool whole_block)
2698 {
2699 	unsigned int current_order = buddy_order(page);
2700 	int free_pages, movable_pages, alike_pages;
2701 	int old_block_type;
2702 
2703 	old_block_type = get_pageblock_migratetype(page);
2704 
2705 	/*
2706 	 * This can happen due to races and we want to prevent broken
2707 	 * highatomic accounting.
2708 	 */
2709 	if (is_migrate_highatomic(old_block_type))
2710 		goto single_page;
2711 
2712 	/* Take ownership for orders >= pageblock_order */
2713 	if (current_order >= pageblock_order) {
2714 		change_pageblock_range(page, current_order, start_type);
2715 		goto single_page;
2716 	}
2717 
2718 	/*
2719 	 * Boost watermarks to increase reclaim pressure to reduce the
2720 	 * likelihood of future fallbacks. Wake kswapd now as the node
2721 	 * may be balanced overall and kswapd will not wake naturally.
2722 	 */
2723 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2724 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2725 
2726 	/* We are not allowed to try stealing from the whole block */
2727 	if (!whole_block)
2728 		goto single_page;
2729 
2730 	free_pages = move_freepages_block(zone, page, start_type,
2731 						&movable_pages);
2732 	/*
2733 	 * Determine how many pages are compatible with our allocation.
2734 	 * For movable allocation, it's the number of movable pages which
2735 	 * we just obtained. For other types it's a bit more tricky.
2736 	 */
2737 	if (start_type == MIGRATE_MOVABLE) {
2738 		alike_pages = movable_pages;
2739 	} else {
2740 		/*
2741 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2742 		 * to MOVABLE pageblock, consider all non-movable pages as
2743 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2744 		 * vice versa, be conservative since we can't distinguish the
2745 		 * exact migratetype of non-movable pages.
2746 		 */
2747 		if (old_block_type == MIGRATE_MOVABLE)
2748 			alike_pages = pageblock_nr_pages
2749 						- (free_pages + movable_pages);
2750 		else
2751 			alike_pages = 0;
2752 	}
2753 
2754 	/* moving whole block can fail due to zone boundary conditions */
2755 	if (!free_pages)
2756 		goto single_page;
2757 
2758 	/*
2759 	 * If a sufficient number of pages in the block are either free or of
2760 	 * comparable migratability as our allocation, claim the whole block.
2761 	 */
2762 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2763 			page_group_by_mobility_disabled)
2764 		set_pageblock_migratetype(page, start_type);
2765 
2766 	return;
2767 
2768 single_page:
2769 	move_to_free_list(page, zone, current_order, start_type);
2770 }
2771 
2772 /*
2773  * Check whether there is a suitable fallback freepage with requested order.
2774  * If only_stealable is true, this function returns fallback_mt only if
2775  * we can steal other freepages all together. This would help to reduce
2776  * fragmentation due to mixed migratetype pages in one pageblock.
2777  */
2778 int find_suitable_fallback(struct free_area *area, unsigned int order,
2779 			int migratetype, bool only_stealable, bool *can_steal)
2780 {
2781 	int i;
2782 	int fallback_mt;
2783 
2784 	if (area->nr_free == 0)
2785 		return -1;
2786 
2787 	*can_steal = false;
2788 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2789 		fallback_mt = fallbacks[migratetype][i];
2790 		if (free_area_empty(area, fallback_mt))
2791 			continue;
2792 
2793 		if (can_steal_fallback(order, migratetype))
2794 			*can_steal = true;
2795 
2796 		if (!only_stealable)
2797 			return fallback_mt;
2798 
2799 		if (*can_steal)
2800 			return fallback_mt;
2801 	}
2802 
2803 	return -1;
2804 }
2805 
2806 /*
2807  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2808  * there are no empty page blocks that contain a page with a suitable order
2809  */
2810 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2811 				unsigned int alloc_order)
2812 {
2813 	int mt;
2814 	unsigned long max_managed, flags;
2815 
2816 	/*
2817 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2818 	 * Check is race-prone but harmless.
2819 	 */
2820 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2821 	if (zone->nr_reserved_highatomic >= max_managed)
2822 		return;
2823 
2824 	spin_lock_irqsave(&zone->lock, flags);
2825 
2826 	/* Recheck the nr_reserved_highatomic limit under the lock */
2827 	if (zone->nr_reserved_highatomic >= max_managed)
2828 		goto out_unlock;
2829 
2830 	/* Yoink! */
2831 	mt = get_pageblock_migratetype(page);
2832 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2833 	if (migratetype_is_mergeable(mt)) {
2834 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2835 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2836 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2837 	}
2838 
2839 out_unlock:
2840 	spin_unlock_irqrestore(&zone->lock, flags);
2841 }
2842 
2843 /*
2844  * Used when an allocation is about to fail under memory pressure. This
2845  * potentially hurts the reliability of high-order allocations when under
2846  * intense memory pressure but failed atomic allocations should be easier
2847  * to recover from than an OOM.
2848  *
2849  * If @force is true, try to unreserve a pageblock even though highatomic
2850  * pageblock is exhausted.
2851  */
2852 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2853 						bool force)
2854 {
2855 	struct zonelist *zonelist = ac->zonelist;
2856 	unsigned long flags;
2857 	struct zoneref *z;
2858 	struct zone *zone;
2859 	struct page *page;
2860 	int order;
2861 	bool ret;
2862 
2863 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2864 								ac->nodemask) {
2865 		/*
2866 		 * Preserve at least one pageblock unless memory pressure
2867 		 * is really high.
2868 		 */
2869 		if (!force && zone->nr_reserved_highatomic <=
2870 					pageblock_nr_pages)
2871 			continue;
2872 
2873 		spin_lock_irqsave(&zone->lock, flags);
2874 		for (order = 0; order < MAX_ORDER; order++) {
2875 			struct free_area *area = &(zone->free_area[order]);
2876 
2877 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2878 			if (!page)
2879 				continue;
2880 
2881 			/*
2882 			 * In page freeing path, migratetype change is racy so
2883 			 * we can counter several free pages in a pageblock
2884 			 * in this loop although we changed the pageblock type
2885 			 * from highatomic to ac->migratetype. So we should
2886 			 * adjust the count once.
2887 			 */
2888 			if (is_migrate_highatomic_page(page)) {
2889 				/*
2890 				 * It should never happen but changes to
2891 				 * locking could inadvertently allow a per-cpu
2892 				 * drain to add pages to MIGRATE_HIGHATOMIC
2893 				 * while unreserving so be safe and watch for
2894 				 * underflows.
2895 				 */
2896 				zone->nr_reserved_highatomic -= min(
2897 						pageblock_nr_pages,
2898 						zone->nr_reserved_highatomic);
2899 			}
2900 
2901 			/*
2902 			 * Convert to ac->migratetype and avoid the normal
2903 			 * pageblock stealing heuristics. Minimally, the caller
2904 			 * is doing the work and needs the pages. More
2905 			 * importantly, if the block was always converted to
2906 			 * MIGRATE_UNMOVABLE or another type then the number
2907 			 * of pageblocks that cannot be completely freed
2908 			 * may increase.
2909 			 */
2910 			set_pageblock_migratetype(page, ac->migratetype);
2911 			ret = move_freepages_block(zone, page, ac->migratetype,
2912 									NULL);
2913 			if (ret) {
2914 				spin_unlock_irqrestore(&zone->lock, flags);
2915 				return ret;
2916 			}
2917 		}
2918 		spin_unlock_irqrestore(&zone->lock, flags);
2919 	}
2920 
2921 	return false;
2922 }
2923 
2924 /*
2925  * Try finding a free buddy page on the fallback list and put it on the free
2926  * list of requested migratetype, possibly along with other pages from the same
2927  * block, depending on fragmentation avoidance heuristics. Returns true if
2928  * fallback was found so that __rmqueue_smallest() can grab it.
2929  *
2930  * The use of signed ints for order and current_order is a deliberate
2931  * deviation from the rest of this file, to make the for loop
2932  * condition simpler.
2933  */
2934 static __always_inline bool
2935 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2936 						unsigned int alloc_flags)
2937 {
2938 	struct free_area *area;
2939 	int current_order;
2940 	int min_order = order;
2941 	struct page *page;
2942 	int fallback_mt;
2943 	bool can_steal;
2944 
2945 	/*
2946 	 * Do not steal pages from freelists belonging to other pageblocks
2947 	 * i.e. orders < pageblock_order. If there are no local zones free,
2948 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2949 	 */
2950 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2951 		min_order = pageblock_order;
2952 
2953 	/*
2954 	 * Find the largest available free page in the other list. This roughly
2955 	 * approximates finding the pageblock with the most free pages, which
2956 	 * would be too costly to do exactly.
2957 	 */
2958 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2959 				--current_order) {
2960 		area = &(zone->free_area[current_order]);
2961 		fallback_mt = find_suitable_fallback(area, current_order,
2962 				start_migratetype, false, &can_steal);
2963 		if (fallback_mt == -1)
2964 			continue;
2965 
2966 		/*
2967 		 * We cannot steal all free pages from the pageblock and the
2968 		 * requested migratetype is movable. In that case it's better to
2969 		 * steal and split the smallest available page instead of the
2970 		 * largest available page, because even if the next movable
2971 		 * allocation falls back into a different pageblock than this
2972 		 * one, it won't cause permanent fragmentation.
2973 		 */
2974 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2975 					&& current_order > order)
2976 			goto find_smallest;
2977 
2978 		goto do_steal;
2979 	}
2980 
2981 	return false;
2982 
2983 find_smallest:
2984 	for (current_order = order; current_order < MAX_ORDER;
2985 							current_order++) {
2986 		area = &(zone->free_area[current_order]);
2987 		fallback_mt = find_suitable_fallback(area, current_order,
2988 				start_migratetype, false, &can_steal);
2989 		if (fallback_mt != -1)
2990 			break;
2991 	}
2992 
2993 	/*
2994 	 * This should not happen - we already found a suitable fallback
2995 	 * when looking for the largest page.
2996 	 */
2997 	VM_BUG_ON(current_order == MAX_ORDER);
2998 
2999 do_steal:
3000 	page = get_page_from_free_area(area, fallback_mt);
3001 
3002 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3003 								can_steal);
3004 
3005 	trace_mm_page_alloc_extfrag(page, order, current_order,
3006 		start_migratetype, fallback_mt);
3007 
3008 	return true;
3009 
3010 }
3011 
3012 /*
3013  * Do the hard work of removing an element from the buddy allocator.
3014  * Call me with the zone->lock already held.
3015  */
3016 static __always_inline struct page *
3017 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3018 						unsigned int alloc_flags)
3019 {
3020 	struct page *page;
3021 
3022 	if (IS_ENABLED(CONFIG_CMA)) {
3023 		/*
3024 		 * Balance movable allocations between regular and CMA areas by
3025 		 * allocating from CMA when over half of the zone's free memory
3026 		 * is in the CMA area.
3027 		 */
3028 		if (alloc_flags & ALLOC_CMA &&
3029 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3030 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3031 			page = __rmqueue_cma_fallback(zone, order);
3032 			if (page)
3033 				return page;
3034 		}
3035 	}
3036 retry:
3037 	page = __rmqueue_smallest(zone, order, migratetype);
3038 	if (unlikely(!page)) {
3039 		if (alloc_flags & ALLOC_CMA)
3040 			page = __rmqueue_cma_fallback(zone, order);
3041 
3042 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3043 								alloc_flags))
3044 			goto retry;
3045 	}
3046 	return page;
3047 }
3048 
3049 /*
3050  * Obtain a specified number of elements from the buddy allocator, all under
3051  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3052  * Returns the number of new pages which were placed at *list.
3053  */
3054 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3055 			unsigned long count, struct list_head *list,
3056 			int migratetype, unsigned int alloc_flags)
3057 {
3058 	unsigned long flags;
3059 	int i;
3060 
3061 	spin_lock_irqsave(&zone->lock, flags);
3062 	for (i = 0; i < count; ++i) {
3063 		struct page *page = __rmqueue(zone, order, migratetype,
3064 								alloc_flags);
3065 		if (unlikely(page == NULL))
3066 			break;
3067 
3068 		/*
3069 		 * Split buddy pages returned by expand() are received here in
3070 		 * physical page order. The page is added to the tail of
3071 		 * caller's list. From the callers perspective, the linked list
3072 		 * is ordered by page number under some conditions. This is
3073 		 * useful for IO devices that can forward direction from the
3074 		 * head, thus also in the physical page order. This is useful
3075 		 * for IO devices that can merge IO requests if the physical
3076 		 * pages are ordered properly.
3077 		 */
3078 		list_add_tail(&page->pcp_list, list);
3079 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3080 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3081 					      -(1 << order));
3082 	}
3083 
3084 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3085 	spin_unlock_irqrestore(&zone->lock, flags);
3086 
3087 	return i;
3088 }
3089 
3090 #ifdef CONFIG_NUMA
3091 /*
3092  * Called from the vmstat counter updater to drain pagesets of this
3093  * currently executing processor on remote nodes after they have
3094  * expired.
3095  */
3096 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3097 {
3098 	int to_drain, batch;
3099 
3100 	batch = READ_ONCE(pcp->batch);
3101 	to_drain = min(pcp->count, batch);
3102 	if (to_drain > 0) {
3103 		spin_lock(&pcp->lock);
3104 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3105 		spin_unlock(&pcp->lock);
3106 	}
3107 }
3108 #endif
3109 
3110 /*
3111  * Drain pcplists of the indicated processor and zone.
3112  */
3113 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3114 {
3115 	struct per_cpu_pages *pcp;
3116 
3117 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3118 	if (pcp->count) {
3119 		spin_lock(&pcp->lock);
3120 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3121 		spin_unlock(&pcp->lock);
3122 	}
3123 }
3124 
3125 /*
3126  * Drain pcplists of all zones on the indicated processor.
3127  */
3128 static void drain_pages(unsigned int cpu)
3129 {
3130 	struct zone *zone;
3131 
3132 	for_each_populated_zone(zone) {
3133 		drain_pages_zone(cpu, zone);
3134 	}
3135 }
3136 
3137 /*
3138  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3139  */
3140 void drain_local_pages(struct zone *zone)
3141 {
3142 	int cpu = smp_processor_id();
3143 
3144 	if (zone)
3145 		drain_pages_zone(cpu, zone);
3146 	else
3147 		drain_pages(cpu);
3148 }
3149 
3150 /*
3151  * The implementation of drain_all_pages(), exposing an extra parameter to
3152  * drain on all cpus.
3153  *
3154  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3155  * not empty. The check for non-emptiness can however race with a free to
3156  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3157  * that need the guarantee that every CPU has drained can disable the
3158  * optimizing racy check.
3159  */
3160 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3161 {
3162 	int cpu;
3163 
3164 	/*
3165 	 * Allocate in the BSS so we won't require allocation in
3166 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3167 	 */
3168 	static cpumask_t cpus_with_pcps;
3169 
3170 	/*
3171 	 * Do not drain if one is already in progress unless it's specific to
3172 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3173 	 * the drain to be complete when the call returns.
3174 	 */
3175 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3176 		if (!zone)
3177 			return;
3178 		mutex_lock(&pcpu_drain_mutex);
3179 	}
3180 
3181 	/*
3182 	 * We don't care about racing with CPU hotplug event
3183 	 * as offline notification will cause the notified
3184 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3185 	 * disables preemption as part of its processing
3186 	 */
3187 	for_each_online_cpu(cpu) {
3188 		struct per_cpu_pages *pcp;
3189 		struct zone *z;
3190 		bool has_pcps = false;
3191 
3192 		if (force_all_cpus) {
3193 			/*
3194 			 * The pcp.count check is racy, some callers need a
3195 			 * guarantee that no cpu is missed.
3196 			 */
3197 			has_pcps = true;
3198 		} else if (zone) {
3199 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3200 			if (pcp->count)
3201 				has_pcps = true;
3202 		} else {
3203 			for_each_populated_zone(z) {
3204 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3205 				if (pcp->count) {
3206 					has_pcps = true;
3207 					break;
3208 				}
3209 			}
3210 		}
3211 
3212 		if (has_pcps)
3213 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3214 		else
3215 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3216 	}
3217 
3218 	for_each_cpu(cpu, &cpus_with_pcps) {
3219 		if (zone)
3220 			drain_pages_zone(cpu, zone);
3221 		else
3222 			drain_pages(cpu);
3223 	}
3224 
3225 	mutex_unlock(&pcpu_drain_mutex);
3226 }
3227 
3228 /*
3229  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3230  *
3231  * When zone parameter is non-NULL, spill just the single zone's pages.
3232  */
3233 void drain_all_pages(struct zone *zone)
3234 {
3235 	__drain_all_pages(zone, false);
3236 }
3237 
3238 #ifdef CONFIG_HIBERNATION
3239 
3240 /*
3241  * Touch the watchdog for every WD_PAGE_COUNT pages.
3242  */
3243 #define WD_PAGE_COUNT	(128*1024)
3244 
3245 void mark_free_pages(struct zone *zone)
3246 {
3247 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3248 	unsigned long flags;
3249 	unsigned int order, t;
3250 	struct page *page;
3251 
3252 	if (zone_is_empty(zone))
3253 		return;
3254 
3255 	spin_lock_irqsave(&zone->lock, flags);
3256 
3257 	max_zone_pfn = zone_end_pfn(zone);
3258 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3259 		if (pfn_valid(pfn)) {
3260 			page = pfn_to_page(pfn);
3261 
3262 			if (!--page_count) {
3263 				touch_nmi_watchdog();
3264 				page_count = WD_PAGE_COUNT;
3265 			}
3266 
3267 			if (page_zone(page) != zone)
3268 				continue;
3269 
3270 			if (!swsusp_page_is_forbidden(page))
3271 				swsusp_unset_page_free(page);
3272 		}
3273 
3274 	for_each_migratetype_order(order, t) {
3275 		list_for_each_entry(page,
3276 				&zone->free_area[order].free_list[t], buddy_list) {
3277 			unsigned long i;
3278 
3279 			pfn = page_to_pfn(page);
3280 			for (i = 0; i < (1UL << order); i++) {
3281 				if (!--page_count) {
3282 					touch_nmi_watchdog();
3283 					page_count = WD_PAGE_COUNT;
3284 				}
3285 				swsusp_set_page_free(pfn_to_page(pfn + i));
3286 			}
3287 		}
3288 	}
3289 	spin_unlock_irqrestore(&zone->lock, flags);
3290 }
3291 #endif /* CONFIG_PM */
3292 
3293 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3294 							unsigned int order)
3295 {
3296 	int migratetype;
3297 
3298 	if (!free_pages_prepare(page, order, FPI_NONE))
3299 		return false;
3300 
3301 	migratetype = get_pfnblock_migratetype(page, pfn);
3302 	set_pcppage_migratetype(page, migratetype);
3303 	return true;
3304 }
3305 
3306 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3307 		       bool free_high)
3308 {
3309 	int min_nr_free, max_nr_free;
3310 
3311 	/* Free everything if batch freeing high-order pages. */
3312 	if (unlikely(free_high))
3313 		return pcp->count;
3314 
3315 	/* Check for PCP disabled or boot pageset */
3316 	if (unlikely(high < batch))
3317 		return 1;
3318 
3319 	/* Leave at least pcp->batch pages on the list */
3320 	min_nr_free = batch;
3321 	max_nr_free = high - batch;
3322 
3323 	/*
3324 	 * Double the number of pages freed each time there is subsequent
3325 	 * freeing of pages without any allocation.
3326 	 */
3327 	batch <<= pcp->free_factor;
3328 	if (batch < max_nr_free)
3329 		pcp->free_factor++;
3330 	batch = clamp(batch, min_nr_free, max_nr_free);
3331 
3332 	return batch;
3333 }
3334 
3335 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3336 		       bool free_high)
3337 {
3338 	int high = READ_ONCE(pcp->high);
3339 
3340 	if (unlikely(!high || free_high))
3341 		return 0;
3342 
3343 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3344 		return high;
3345 
3346 	/*
3347 	 * If reclaim is active, limit the number of pages that can be
3348 	 * stored on pcp lists
3349 	 */
3350 	return min(READ_ONCE(pcp->batch) << 2, high);
3351 }
3352 
3353 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3354 				   struct page *page, int migratetype,
3355 				   unsigned int order)
3356 {
3357 	int high;
3358 	int pindex;
3359 	bool free_high;
3360 
3361 	__count_vm_events(PGFREE, 1 << order);
3362 	pindex = order_to_pindex(migratetype, order);
3363 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3364 	pcp->count += 1 << order;
3365 
3366 	/*
3367 	 * As high-order pages other than THP's stored on PCP can contribute
3368 	 * to fragmentation, limit the number stored when PCP is heavily
3369 	 * freeing without allocation. The remainder after bulk freeing
3370 	 * stops will be drained from vmstat refresh context.
3371 	 */
3372 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3373 
3374 	high = nr_pcp_high(pcp, zone, free_high);
3375 	if (pcp->count >= high) {
3376 		int batch = READ_ONCE(pcp->batch);
3377 
3378 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3379 	}
3380 }
3381 
3382 /*
3383  * Free a pcp page
3384  */
3385 void free_unref_page(struct page *page, unsigned int order)
3386 {
3387 	unsigned long __maybe_unused UP_flags;
3388 	struct per_cpu_pages *pcp;
3389 	struct zone *zone;
3390 	unsigned long pfn = page_to_pfn(page);
3391 	int migratetype;
3392 
3393 	if (!free_unref_page_prepare(page, pfn, order))
3394 		return;
3395 
3396 	/*
3397 	 * We only track unmovable, reclaimable and movable on pcp lists.
3398 	 * Place ISOLATE pages on the isolated list because they are being
3399 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3400 	 * areas back if necessary. Otherwise, we may have to free
3401 	 * excessively into the page allocator
3402 	 */
3403 	migratetype = get_pcppage_migratetype(page);
3404 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3405 		if (unlikely(is_migrate_isolate(migratetype))) {
3406 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3407 			return;
3408 		}
3409 		migratetype = MIGRATE_MOVABLE;
3410 	}
3411 
3412 	zone = page_zone(page);
3413 	pcp_trylock_prepare(UP_flags);
3414 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3415 	if (pcp) {
3416 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3417 		pcp_spin_unlock(pcp);
3418 	} else {
3419 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3420 	}
3421 	pcp_trylock_finish(UP_flags);
3422 }
3423 
3424 /*
3425  * Free a list of 0-order pages
3426  */
3427 void free_unref_page_list(struct list_head *list)
3428 {
3429 	unsigned long __maybe_unused UP_flags;
3430 	struct page *page, *next;
3431 	struct per_cpu_pages *pcp = NULL;
3432 	struct zone *locked_zone = NULL;
3433 	int batch_count = 0;
3434 	int migratetype;
3435 
3436 	/* Prepare pages for freeing */
3437 	list_for_each_entry_safe(page, next, list, lru) {
3438 		unsigned long pfn = page_to_pfn(page);
3439 		if (!free_unref_page_prepare(page, pfn, 0)) {
3440 			list_del(&page->lru);
3441 			continue;
3442 		}
3443 
3444 		/*
3445 		 * Free isolated pages directly to the allocator, see
3446 		 * comment in free_unref_page.
3447 		 */
3448 		migratetype = get_pcppage_migratetype(page);
3449 		if (unlikely(is_migrate_isolate(migratetype))) {
3450 			list_del(&page->lru);
3451 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3452 			continue;
3453 		}
3454 	}
3455 
3456 	list_for_each_entry_safe(page, next, list, lru) {
3457 		struct zone *zone = page_zone(page);
3458 
3459 		list_del(&page->lru);
3460 		migratetype = get_pcppage_migratetype(page);
3461 
3462 		/*
3463 		 * Either different zone requiring a different pcp lock or
3464 		 * excessive lock hold times when freeing a large list of
3465 		 * pages.
3466 		 */
3467 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3468 			if (pcp) {
3469 				pcp_spin_unlock(pcp);
3470 				pcp_trylock_finish(UP_flags);
3471 			}
3472 
3473 			batch_count = 0;
3474 
3475 			/*
3476 			 * trylock is necessary as pages may be getting freed
3477 			 * from IRQ or SoftIRQ context after an IO completion.
3478 			 */
3479 			pcp_trylock_prepare(UP_flags);
3480 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3481 			if (unlikely(!pcp)) {
3482 				pcp_trylock_finish(UP_flags);
3483 				free_one_page(zone, page, page_to_pfn(page),
3484 					      0, migratetype, FPI_NONE);
3485 				locked_zone = NULL;
3486 				continue;
3487 			}
3488 			locked_zone = zone;
3489 		}
3490 
3491 		/*
3492 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3493 		 * to the MIGRATE_MOVABLE pcp list.
3494 		 */
3495 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3496 			migratetype = MIGRATE_MOVABLE;
3497 
3498 		trace_mm_page_free_batched(page);
3499 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3500 		batch_count++;
3501 	}
3502 
3503 	if (pcp) {
3504 		pcp_spin_unlock(pcp);
3505 		pcp_trylock_finish(UP_flags);
3506 	}
3507 }
3508 
3509 /*
3510  * split_page takes a non-compound higher-order page, and splits it into
3511  * n (1<<order) sub-pages: page[0..n]
3512  * Each sub-page must be freed individually.
3513  *
3514  * Note: this is probably too low level an operation for use in drivers.
3515  * Please consult with lkml before using this in your driver.
3516  */
3517 void split_page(struct page *page, unsigned int order)
3518 {
3519 	int i;
3520 
3521 	VM_BUG_ON_PAGE(PageCompound(page), page);
3522 	VM_BUG_ON_PAGE(!page_count(page), page);
3523 
3524 	for (i = 1; i < (1 << order); i++)
3525 		set_page_refcounted(page + i);
3526 	split_page_owner(page, 1 << order);
3527 	split_page_memcg(page, 1 << order);
3528 }
3529 EXPORT_SYMBOL_GPL(split_page);
3530 
3531 int __isolate_free_page(struct page *page, unsigned int order)
3532 {
3533 	struct zone *zone = page_zone(page);
3534 	int mt = get_pageblock_migratetype(page);
3535 
3536 	if (!is_migrate_isolate(mt)) {
3537 		unsigned long watermark;
3538 		/*
3539 		 * Obey watermarks as if the page was being allocated. We can
3540 		 * emulate a high-order watermark check with a raised order-0
3541 		 * watermark, because we already know our high-order page
3542 		 * exists.
3543 		 */
3544 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3545 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3546 			return 0;
3547 
3548 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3549 	}
3550 
3551 	del_page_from_free_list(page, zone, order);
3552 
3553 	/*
3554 	 * Set the pageblock if the isolated page is at least half of a
3555 	 * pageblock
3556 	 */
3557 	if (order >= pageblock_order - 1) {
3558 		struct page *endpage = page + (1 << order) - 1;
3559 		for (; page < endpage; page += pageblock_nr_pages) {
3560 			int mt = get_pageblock_migratetype(page);
3561 			/*
3562 			 * Only change normal pageblocks (i.e., they can merge
3563 			 * with others)
3564 			 */
3565 			if (migratetype_is_mergeable(mt))
3566 				set_pageblock_migratetype(page,
3567 							  MIGRATE_MOVABLE);
3568 		}
3569 	}
3570 
3571 	return 1UL << order;
3572 }
3573 
3574 /**
3575  * __putback_isolated_page - Return a now-isolated page back where we got it
3576  * @page: Page that was isolated
3577  * @order: Order of the isolated page
3578  * @mt: The page's pageblock's migratetype
3579  *
3580  * This function is meant to return a page pulled from the free lists via
3581  * __isolate_free_page back to the free lists they were pulled from.
3582  */
3583 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3584 {
3585 	struct zone *zone = page_zone(page);
3586 
3587 	/* zone lock should be held when this function is called */
3588 	lockdep_assert_held(&zone->lock);
3589 
3590 	/* Return isolated page to tail of freelist. */
3591 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3592 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3593 }
3594 
3595 /*
3596  * Update NUMA hit/miss statistics
3597  */
3598 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3599 				   long nr_account)
3600 {
3601 #ifdef CONFIG_NUMA
3602 	enum numa_stat_item local_stat = NUMA_LOCAL;
3603 
3604 	/* skip numa counters update if numa stats is disabled */
3605 	if (!static_branch_likely(&vm_numa_stat_key))
3606 		return;
3607 
3608 	if (zone_to_nid(z) != numa_node_id())
3609 		local_stat = NUMA_OTHER;
3610 
3611 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3612 		__count_numa_events(z, NUMA_HIT, nr_account);
3613 	else {
3614 		__count_numa_events(z, NUMA_MISS, nr_account);
3615 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3616 	}
3617 	__count_numa_events(z, local_stat, nr_account);
3618 #endif
3619 }
3620 
3621 static __always_inline
3622 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3623 			   unsigned int order, unsigned int alloc_flags,
3624 			   int migratetype)
3625 {
3626 	struct page *page;
3627 	unsigned long flags;
3628 
3629 	do {
3630 		page = NULL;
3631 		spin_lock_irqsave(&zone->lock, flags);
3632 		/*
3633 		 * order-0 request can reach here when the pcplist is skipped
3634 		 * due to non-CMA allocation context. HIGHATOMIC area is
3635 		 * reserved for high-order atomic allocation, so order-0
3636 		 * request should skip it.
3637 		 */
3638 		if (alloc_flags & ALLOC_HIGHATOMIC)
3639 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3640 		if (!page) {
3641 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3642 
3643 			/*
3644 			 * If the allocation fails, allow OOM handling access
3645 			 * to HIGHATOMIC reserves as failing now is worse than
3646 			 * failing a high-order atomic allocation in the
3647 			 * future.
3648 			 */
3649 			if (!page && (alloc_flags & ALLOC_OOM))
3650 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3651 
3652 			if (!page) {
3653 				spin_unlock_irqrestore(&zone->lock, flags);
3654 				return NULL;
3655 			}
3656 		}
3657 		__mod_zone_freepage_state(zone, -(1 << order),
3658 					  get_pcppage_migratetype(page));
3659 		spin_unlock_irqrestore(&zone->lock, flags);
3660 	} while (check_new_pages(page, order));
3661 
3662 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3663 	zone_statistics(preferred_zone, zone, 1);
3664 
3665 	return page;
3666 }
3667 
3668 /* Remove page from the per-cpu list, caller must protect the list */
3669 static inline
3670 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3671 			int migratetype,
3672 			unsigned int alloc_flags,
3673 			struct per_cpu_pages *pcp,
3674 			struct list_head *list)
3675 {
3676 	struct page *page;
3677 
3678 	do {
3679 		if (list_empty(list)) {
3680 			int batch = READ_ONCE(pcp->batch);
3681 			int alloced;
3682 
3683 			/*
3684 			 * Scale batch relative to order if batch implies
3685 			 * free pages can be stored on the PCP. Batch can
3686 			 * be 1 for small zones or for boot pagesets which
3687 			 * should never store free pages as the pages may
3688 			 * belong to arbitrary zones.
3689 			 */
3690 			if (batch > 1)
3691 				batch = max(batch >> order, 2);
3692 			alloced = rmqueue_bulk(zone, order,
3693 					batch, list,
3694 					migratetype, alloc_flags);
3695 
3696 			pcp->count += alloced << order;
3697 			if (unlikely(list_empty(list)))
3698 				return NULL;
3699 		}
3700 
3701 		page = list_first_entry(list, struct page, pcp_list);
3702 		list_del(&page->pcp_list);
3703 		pcp->count -= 1 << order;
3704 	} while (check_new_pages(page, order));
3705 
3706 	return page;
3707 }
3708 
3709 /* Lock and remove page from the per-cpu list */
3710 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3711 			struct zone *zone, unsigned int order,
3712 			int migratetype, unsigned int alloc_flags)
3713 {
3714 	struct per_cpu_pages *pcp;
3715 	struct list_head *list;
3716 	struct page *page;
3717 	unsigned long __maybe_unused UP_flags;
3718 
3719 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3720 	pcp_trylock_prepare(UP_flags);
3721 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3722 	if (!pcp) {
3723 		pcp_trylock_finish(UP_flags);
3724 		return NULL;
3725 	}
3726 
3727 	/*
3728 	 * On allocation, reduce the number of pages that are batch freed.
3729 	 * See nr_pcp_free() where free_factor is increased for subsequent
3730 	 * frees.
3731 	 */
3732 	pcp->free_factor >>= 1;
3733 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3734 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3735 	pcp_spin_unlock(pcp);
3736 	pcp_trylock_finish(UP_flags);
3737 	if (page) {
3738 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3739 		zone_statistics(preferred_zone, zone, 1);
3740 	}
3741 	return page;
3742 }
3743 
3744 /*
3745  * Allocate a page from the given zone.
3746  * Use pcplists for THP or "cheap" high-order allocations.
3747  */
3748 
3749 /*
3750  * Do not instrument rmqueue() with KMSAN. This function may call
3751  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3752  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3753  * may call rmqueue() again, which will result in a deadlock.
3754  */
3755 __no_sanitize_memory
3756 static inline
3757 struct page *rmqueue(struct zone *preferred_zone,
3758 			struct zone *zone, unsigned int order,
3759 			gfp_t gfp_flags, unsigned int alloc_flags,
3760 			int migratetype)
3761 {
3762 	struct page *page;
3763 
3764 	/*
3765 	 * We most definitely don't want callers attempting to
3766 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3767 	 */
3768 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3769 
3770 	if (likely(pcp_allowed_order(order))) {
3771 		/*
3772 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3773 		 * we need to skip it when CMA area isn't allowed.
3774 		 */
3775 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3776 				migratetype != MIGRATE_MOVABLE) {
3777 			page = rmqueue_pcplist(preferred_zone, zone, order,
3778 					migratetype, alloc_flags);
3779 			if (likely(page))
3780 				goto out;
3781 		}
3782 	}
3783 
3784 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3785 							migratetype);
3786 
3787 out:
3788 	/* Separate test+clear to avoid unnecessary atomics */
3789 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3790 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3791 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3792 	}
3793 
3794 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3795 	return page;
3796 }
3797 
3798 #ifdef CONFIG_FAIL_PAGE_ALLOC
3799 
3800 static struct {
3801 	struct fault_attr attr;
3802 
3803 	bool ignore_gfp_highmem;
3804 	bool ignore_gfp_reclaim;
3805 	u32 min_order;
3806 } fail_page_alloc = {
3807 	.attr = FAULT_ATTR_INITIALIZER,
3808 	.ignore_gfp_reclaim = true,
3809 	.ignore_gfp_highmem = true,
3810 	.min_order = 1,
3811 };
3812 
3813 static int __init setup_fail_page_alloc(char *str)
3814 {
3815 	return setup_fault_attr(&fail_page_alloc.attr, str);
3816 }
3817 __setup("fail_page_alloc=", setup_fail_page_alloc);
3818 
3819 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3820 {
3821 	int flags = 0;
3822 
3823 	if (order < fail_page_alloc.min_order)
3824 		return false;
3825 	if (gfp_mask & __GFP_NOFAIL)
3826 		return false;
3827 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3828 		return false;
3829 	if (fail_page_alloc.ignore_gfp_reclaim &&
3830 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3831 		return false;
3832 
3833 	/* See comment in __should_failslab() */
3834 	if (gfp_mask & __GFP_NOWARN)
3835 		flags |= FAULT_NOWARN;
3836 
3837 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3838 }
3839 
3840 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3841 
3842 static int __init fail_page_alloc_debugfs(void)
3843 {
3844 	umode_t mode = S_IFREG | 0600;
3845 	struct dentry *dir;
3846 
3847 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3848 					&fail_page_alloc.attr);
3849 
3850 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3851 			    &fail_page_alloc.ignore_gfp_reclaim);
3852 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3853 			    &fail_page_alloc.ignore_gfp_highmem);
3854 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3855 
3856 	return 0;
3857 }
3858 
3859 late_initcall(fail_page_alloc_debugfs);
3860 
3861 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3862 
3863 #else /* CONFIG_FAIL_PAGE_ALLOC */
3864 
3865 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3866 {
3867 	return false;
3868 }
3869 
3870 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3871 
3872 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3873 {
3874 	return __should_fail_alloc_page(gfp_mask, order);
3875 }
3876 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3877 
3878 static inline long __zone_watermark_unusable_free(struct zone *z,
3879 				unsigned int order, unsigned int alloc_flags)
3880 {
3881 	long unusable_free = (1 << order) - 1;
3882 
3883 	/*
3884 	 * If the caller does not have rights to reserves below the min
3885 	 * watermark then subtract the high-atomic reserves. This will
3886 	 * over-estimate the size of the atomic reserve but it avoids a search.
3887 	 */
3888 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3889 		unusable_free += z->nr_reserved_highatomic;
3890 
3891 #ifdef CONFIG_CMA
3892 	/* If allocation can't use CMA areas don't use free CMA pages */
3893 	if (!(alloc_flags & ALLOC_CMA))
3894 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3895 #endif
3896 
3897 	return unusable_free;
3898 }
3899 
3900 /*
3901  * Return true if free base pages are above 'mark'. For high-order checks it
3902  * will return true of the order-0 watermark is reached and there is at least
3903  * one free page of a suitable size. Checking now avoids taking the zone lock
3904  * to check in the allocation paths if no pages are free.
3905  */
3906 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3907 			 int highest_zoneidx, unsigned int alloc_flags,
3908 			 long free_pages)
3909 {
3910 	long min = mark;
3911 	int o;
3912 
3913 	/* free_pages may go negative - that's OK */
3914 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3915 
3916 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3917 		/*
3918 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3919 		 * as OOM.
3920 		 */
3921 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3922 			min -= min / 2;
3923 
3924 			/*
3925 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3926 			 * access more reserves than just __GFP_HIGH. Other
3927 			 * non-blocking allocations requests such as GFP_NOWAIT
3928 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3929 			 * access to the min reserve.
3930 			 */
3931 			if (alloc_flags & ALLOC_NON_BLOCK)
3932 				min -= min / 4;
3933 		}
3934 
3935 		/*
3936 		 * OOM victims can try even harder than the normal reserve
3937 		 * users on the grounds that it's definitely going to be in
3938 		 * the exit path shortly and free memory. Any allocation it
3939 		 * makes during the free path will be small and short-lived.
3940 		 */
3941 		if (alloc_flags & ALLOC_OOM)
3942 			min -= min / 2;
3943 	}
3944 
3945 	/*
3946 	 * Check watermarks for an order-0 allocation request. If these
3947 	 * are not met, then a high-order request also cannot go ahead
3948 	 * even if a suitable page happened to be free.
3949 	 */
3950 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3951 		return false;
3952 
3953 	/* If this is an order-0 request then the watermark is fine */
3954 	if (!order)
3955 		return true;
3956 
3957 	/* For a high-order request, check at least one suitable page is free */
3958 	for (o = order; o < MAX_ORDER; o++) {
3959 		struct free_area *area = &z->free_area[o];
3960 		int mt;
3961 
3962 		if (!area->nr_free)
3963 			continue;
3964 
3965 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3966 			if (!free_area_empty(area, mt))
3967 				return true;
3968 		}
3969 
3970 #ifdef CONFIG_CMA
3971 		if ((alloc_flags & ALLOC_CMA) &&
3972 		    !free_area_empty(area, MIGRATE_CMA)) {
3973 			return true;
3974 		}
3975 #endif
3976 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3977 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3978 			return true;
3979 		}
3980 	}
3981 	return false;
3982 }
3983 
3984 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3985 		      int highest_zoneidx, unsigned int alloc_flags)
3986 {
3987 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3988 					zone_page_state(z, NR_FREE_PAGES));
3989 }
3990 
3991 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3992 				unsigned long mark, int highest_zoneidx,
3993 				unsigned int alloc_flags, gfp_t gfp_mask)
3994 {
3995 	long free_pages;
3996 
3997 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3998 
3999 	/*
4000 	 * Fast check for order-0 only. If this fails then the reserves
4001 	 * need to be calculated.
4002 	 */
4003 	if (!order) {
4004 		long usable_free;
4005 		long reserved;
4006 
4007 		usable_free = free_pages;
4008 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4009 
4010 		/* reserved may over estimate high-atomic reserves. */
4011 		usable_free -= min(usable_free, reserved);
4012 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4013 			return true;
4014 	}
4015 
4016 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4017 					free_pages))
4018 		return true;
4019 
4020 	/*
4021 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
4022 	 * when checking the min watermark. The min watermark is the
4023 	 * point where boosting is ignored so that kswapd is woken up
4024 	 * when below the low watermark.
4025 	 */
4026 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
4027 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4028 		mark = z->_watermark[WMARK_MIN];
4029 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4030 					alloc_flags, free_pages);
4031 	}
4032 
4033 	return false;
4034 }
4035 
4036 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4037 			unsigned long mark, int highest_zoneidx)
4038 {
4039 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4040 
4041 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4042 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4043 
4044 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4045 								free_pages);
4046 }
4047 
4048 #ifdef CONFIG_NUMA
4049 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4050 
4051 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4052 {
4053 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4054 				node_reclaim_distance;
4055 }
4056 #else	/* CONFIG_NUMA */
4057 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4058 {
4059 	return true;
4060 }
4061 #endif	/* CONFIG_NUMA */
4062 
4063 /*
4064  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4065  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4066  * premature use of a lower zone may cause lowmem pressure problems that
4067  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4068  * probably too small. It only makes sense to spread allocations to avoid
4069  * fragmentation between the Normal and DMA32 zones.
4070  */
4071 static inline unsigned int
4072 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4073 {
4074 	unsigned int alloc_flags;
4075 
4076 	/*
4077 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4078 	 * to save a branch.
4079 	 */
4080 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4081 
4082 #ifdef CONFIG_ZONE_DMA32
4083 	if (!zone)
4084 		return alloc_flags;
4085 
4086 	if (zone_idx(zone) != ZONE_NORMAL)
4087 		return alloc_flags;
4088 
4089 	/*
4090 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4091 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4092 	 * on UMA that if Normal is populated then so is DMA32.
4093 	 */
4094 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4095 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4096 		return alloc_flags;
4097 
4098 	alloc_flags |= ALLOC_NOFRAGMENT;
4099 #endif /* CONFIG_ZONE_DMA32 */
4100 	return alloc_flags;
4101 }
4102 
4103 /* Must be called after current_gfp_context() which can change gfp_mask */
4104 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4105 						  unsigned int alloc_flags)
4106 {
4107 #ifdef CONFIG_CMA
4108 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4109 		alloc_flags |= ALLOC_CMA;
4110 #endif
4111 	return alloc_flags;
4112 }
4113 
4114 /*
4115  * get_page_from_freelist goes through the zonelist trying to allocate
4116  * a page.
4117  */
4118 static struct page *
4119 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4120 						const struct alloc_context *ac)
4121 {
4122 	struct zoneref *z;
4123 	struct zone *zone;
4124 	struct pglist_data *last_pgdat = NULL;
4125 	bool last_pgdat_dirty_ok = false;
4126 	bool no_fallback;
4127 
4128 retry:
4129 	/*
4130 	 * Scan zonelist, looking for a zone with enough free.
4131 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4132 	 */
4133 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4134 	z = ac->preferred_zoneref;
4135 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4136 					ac->nodemask) {
4137 		struct page *page;
4138 		unsigned long mark;
4139 
4140 		if (cpusets_enabled() &&
4141 			(alloc_flags & ALLOC_CPUSET) &&
4142 			!__cpuset_zone_allowed(zone, gfp_mask))
4143 				continue;
4144 		/*
4145 		 * When allocating a page cache page for writing, we
4146 		 * want to get it from a node that is within its dirty
4147 		 * limit, such that no single node holds more than its
4148 		 * proportional share of globally allowed dirty pages.
4149 		 * The dirty limits take into account the node's
4150 		 * lowmem reserves and high watermark so that kswapd
4151 		 * should be able to balance it without having to
4152 		 * write pages from its LRU list.
4153 		 *
4154 		 * XXX: For now, allow allocations to potentially
4155 		 * exceed the per-node dirty limit in the slowpath
4156 		 * (spread_dirty_pages unset) before going into reclaim,
4157 		 * which is important when on a NUMA setup the allowed
4158 		 * nodes are together not big enough to reach the
4159 		 * global limit.  The proper fix for these situations
4160 		 * will require awareness of nodes in the
4161 		 * dirty-throttling and the flusher threads.
4162 		 */
4163 		if (ac->spread_dirty_pages) {
4164 			if (last_pgdat != zone->zone_pgdat) {
4165 				last_pgdat = zone->zone_pgdat;
4166 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4167 			}
4168 
4169 			if (!last_pgdat_dirty_ok)
4170 				continue;
4171 		}
4172 
4173 		if (no_fallback && nr_online_nodes > 1 &&
4174 		    zone != ac->preferred_zoneref->zone) {
4175 			int local_nid;
4176 
4177 			/*
4178 			 * If moving to a remote node, retry but allow
4179 			 * fragmenting fallbacks. Locality is more important
4180 			 * than fragmentation avoidance.
4181 			 */
4182 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4183 			if (zone_to_nid(zone) != local_nid) {
4184 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4185 				goto retry;
4186 			}
4187 		}
4188 
4189 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4190 		if (!zone_watermark_fast(zone, order, mark,
4191 				       ac->highest_zoneidx, alloc_flags,
4192 				       gfp_mask)) {
4193 			int ret;
4194 
4195 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4196 			/*
4197 			 * Watermark failed for this zone, but see if we can
4198 			 * grow this zone if it contains deferred pages.
4199 			 */
4200 			if (deferred_pages_enabled()) {
4201 				if (_deferred_grow_zone(zone, order))
4202 					goto try_this_zone;
4203 			}
4204 #endif
4205 			/* Checked here to keep the fast path fast */
4206 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4207 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4208 				goto try_this_zone;
4209 
4210 			if (!node_reclaim_enabled() ||
4211 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4212 				continue;
4213 
4214 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4215 			switch (ret) {
4216 			case NODE_RECLAIM_NOSCAN:
4217 				/* did not scan */
4218 				continue;
4219 			case NODE_RECLAIM_FULL:
4220 				/* scanned but unreclaimable */
4221 				continue;
4222 			default:
4223 				/* did we reclaim enough */
4224 				if (zone_watermark_ok(zone, order, mark,
4225 					ac->highest_zoneidx, alloc_flags))
4226 					goto try_this_zone;
4227 
4228 				continue;
4229 			}
4230 		}
4231 
4232 try_this_zone:
4233 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4234 				gfp_mask, alloc_flags, ac->migratetype);
4235 		if (page) {
4236 			prep_new_page(page, order, gfp_mask, alloc_flags);
4237 
4238 			/*
4239 			 * If this is a high-order atomic allocation then check
4240 			 * if the pageblock should be reserved for the future
4241 			 */
4242 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4243 				reserve_highatomic_pageblock(page, zone, order);
4244 
4245 			return page;
4246 		} else {
4247 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4248 			/* Try again if zone has deferred pages */
4249 			if (deferred_pages_enabled()) {
4250 				if (_deferred_grow_zone(zone, order))
4251 					goto try_this_zone;
4252 			}
4253 #endif
4254 		}
4255 	}
4256 
4257 	/*
4258 	 * It's possible on a UMA machine to get through all zones that are
4259 	 * fragmented. If avoiding fragmentation, reset and try again.
4260 	 */
4261 	if (no_fallback) {
4262 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4263 		goto retry;
4264 	}
4265 
4266 	return NULL;
4267 }
4268 
4269 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4270 {
4271 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4272 
4273 	/*
4274 	 * This documents exceptions given to allocations in certain
4275 	 * contexts that are allowed to allocate outside current's set
4276 	 * of allowed nodes.
4277 	 */
4278 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4279 		if (tsk_is_oom_victim(current) ||
4280 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4281 			filter &= ~SHOW_MEM_FILTER_NODES;
4282 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4283 		filter &= ~SHOW_MEM_FILTER_NODES;
4284 
4285 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4286 }
4287 
4288 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4289 {
4290 	struct va_format vaf;
4291 	va_list args;
4292 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4293 
4294 	if ((gfp_mask & __GFP_NOWARN) ||
4295 	     !__ratelimit(&nopage_rs) ||
4296 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4297 		return;
4298 
4299 	va_start(args, fmt);
4300 	vaf.fmt = fmt;
4301 	vaf.va = &args;
4302 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4303 			current->comm, &vaf, gfp_mask, &gfp_mask,
4304 			nodemask_pr_args(nodemask));
4305 	va_end(args);
4306 
4307 	cpuset_print_current_mems_allowed();
4308 	pr_cont("\n");
4309 	dump_stack();
4310 	warn_alloc_show_mem(gfp_mask, nodemask);
4311 }
4312 
4313 static inline struct page *
4314 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4315 			      unsigned int alloc_flags,
4316 			      const struct alloc_context *ac)
4317 {
4318 	struct page *page;
4319 
4320 	page = get_page_from_freelist(gfp_mask, order,
4321 			alloc_flags|ALLOC_CPUSET, ac);
4322 	/*
4323 	 * fallback to ignore cpuset restriction if our nodes
4324 	 * are depleted
4325 	 */
4326 	if (!page)
4327 		page = get_page_from_freelist(gfp_mask, order,
4328 				alloc_flags, ac);
4329 
4330 	return page;
4331 }
4332 
4333 static inline struct page *
4334 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4335 	const struct alloc_context *ac, unsigned long *did_some_progress)
4336 {
4337 	struct oom_control oc = {
4338 		.zonelist = ac->zonelist,
4339 		.nodemask = ac->nodemask,
4340 		.memcg = NULL,
4341 		.gfp_mask = gfp_mask,
4342 		.order = order,
4343 	};
4344 	struct page *page;
4345 
4346 	*did_some_progress = 0;
4347 
4348 	/*
4349 	 * Acquire the oom lock.  If that fails, somebody else is
4350 	 * making progress for us.
4351 	 */
4352 	if (!mutex_trylock(&oom_lock)) {
4353 		*did_some_progress = 1;
4354 		schedule_timeout_uninterruptible(1);
4355 		return NULL;
4356 	}
4357 
4358 	/*
4359 	 * Go through the zonelist yet one more time, keep very high watermark
4360 	 * here, this is only to catch a parallel oom killing, we must fail if
4361 	 * we're still under heavy pressure. But make sure that this reclaim
4362 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4363 	 * allocation which will never fail due to oom_lock already held.
4364 	 */
4365 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4366 				      ~__GFP_DIRECT_RECLAIM, order,
4367 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4368 	if (page)
4369 		goto out;
4370 
4371 	/* Coredumps can quickly deplete all memory reserves */
4372 	if (current->flags & PF_DUMPCORE)
4373 		goto out;
4374 	/* The OOM killer will not help higher order allocs */
4375 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4376 		goto out;
4377 	/*
4378 	 * We have already exhausted all our reclaim opportunities without any
4379 	 * success so it is time to admit defeat. We will skip the OOM killer
4380 	 * because it is very likely that the caller has a more reasonable
4381 	 * fallback than shooting a random task.
4382 	 *
4383 	 * The OOM killer may not free memory on a specific node.
4384 	 */
4385 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4386 		goto out;
4387 	/* The OOM killer does not needlessly kill tasks for lowmem */
4388 	if (ac->highest_zoneidx < ZONE_NORMAL)
4389 		goto out;
4390 	if (pm_suspended_storage())
4391 		goto out;
4392 	/*
4393 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4394 	 * other request to make a forward progress.
4395 	 * We are in an unfortunate situation where out_of_memory cannot
4396 	 * do much for this context but let's try it to at least get
4397 	 * access to memory reserved if the current task is killed (see
4398 	 * out_of_memory). Once filesystems are ready to handle allocation
4399 	 * failures more gracefully we should just bail out here.
4400 	 */
4401 
4402 	/* Exhausted what can be done so it's blame time */
4403 	if (out_of_memory(&oc) ||
4404 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4405 		*did_some_progress = 1;
4406 
4407 		/*
4408 		 * Help non-failing allocations by giving them access to memory
4409 		 * reserves
4410 		 */
4411 		if (gfp_mask & __GFP_NOFAIL)
4412 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4413 					ALLOC_NO_WATERMARKS, ac);
4414 	}
4415 out:
4416 	mutex_unlock(&oom_lock);
4417 	return page;
4418 }
4419 
4420 /*
4421  * Maximum number of compaction retries with a progress before OOM
4422  * killer is consider as the only way to move forward.
4423  */
4424 #define MAX_COMPACT_RETRIES 16
4425 
4426 #ifdef CONFIG_COMPACTION
4427 /* Try memory compaction for high-order allocations before reclaim */
4428 static struct page *
4429 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4430 		unsigned int alloc_flags, const struct alloc_context *ac,
4431 		enum compact_priority prio, enum compact_result *compact_result)
4432 {
4433 	struct page *page = NULL;
4434 	unsigned long pflags;
4435 	unsigned int noreclaim_flag;
4436 
4437 	if (!order)
4438 		return NULL;
4439 
4440 	psi_memstall_enter(&pflags);
4441 	delayacct_compact_start();
4442 	noreclaim_flag = memalloc_noreclaim_save();
4443 
4444 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4445 								prio, &page);
4446 
4447 	memalloc_noreclaim_restore(noreclaim_flag);
4448 	psi_memstall_leave(&pflags);
4449 	delayacct_compact_end();
4450 
4451 	if (*compact_result == COMPACT_SKIPPED)
4452 		return NULL;
4453 	/*
4454 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4455 	 * count a compaction stall
4456 	 */
4457 	count_vm_event(COMPACTSTALL);
4458 
4459 	/* Prep a captured page if available */
4460 	if (page)
4461 		prep_new_page(page, order, gfp_mask, alloc_flags);
4462 
4463 	/* Try get a page from the freelist if available */
4464 	if (!page)
4465 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4466 
4467 	if (page) {
4468 		struct zone *zone = page_zone(page);
4469 
4470 		zone->compact_blockskip_flush = false;
4471 		compaction_defer_reset(zone, order, true);
4472 		count_vm_event(COMPACTSUCCESS);
4473 		return page;
4474 	}
4475 
4476 	/*
4477 	 * It's bad if compaction run occurs and fails. The most likely reason
4478 	 * is that pages exist, but not enough to satisfy watermarks.
4479 	 */
4480 	count_vm_event(COMPACTFAIL);
4481 
4482 	cond_resched();
4483 
4484 	return NULL;
4485 }
4486 
4487 static inline bool
4488 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4489 		     enum compact_result compact_result,
4490 		     enum compact_priority *compact_priority,
4491 		     int *compaction_retries)
4492 {
4493 	int max_retries = MAX_COMPACT_RETRIES;
4494 	int min_priority;
4495 	bool ret = false;
4496 	int retries = *compaction_retries;
4497 	enum compact_priority priority = *compact_priority;
4498 
4499 	if (!order)
4500 		return false;
4501 
4502 	if (fatal_signal_pending(current))
4503 		return false;
4504 
4505 	if (compaction_made_progress(compact_result))
4506 		(*compaction_retries)++;
4507 
4508 	/*
4509 	 * compaction considers all the zone as desperately out of memory
4510 	 * so it doesn't really make much sense to retry except when the
4511 	 * failure could be caused by insufficient priority
4512 	 */
4513 	if (compaction_failed(compact_result))
4514 		goto check_priority;
4515 
4516 	/*
4517 	 * compaction was skipped because there are not enough order-0 pages
4518 	 * to work with, so we retry only if it looks like reclaim can help.
4519 	 */
4520 	if (compaction_needs_reclaim(compact_result)) {
4521 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4522 		goto out;
4523 	}
4524 
4525 	/*
4526 	 * make sure the compaction wasn't deferred or didn't bail out early
4527 	 * due to locks contention before we declare that we should give up.
4528 	 * But the next retry should use a higher priority if allowed, so
4529 	 * we don't just keep bailing out endlessly.
4530 	 */
4531 	if (compaction_withdrawn(compact_result)) {
4532 		goto check_priority;
4533 	}
4534 
4535 	/*
4536 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4537 	 * costly ones because they are de facto nofail and invoke OOM
4538 	 * killer to move on while costly can fail and users are ready
4539 	 * to cope with that. 1/4 retries is rather arbitrary but we
4540 	 * would need much more detailed feedback from compaction to
4541 	 * make a better decision.
4542 	 */
4543 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4544 		max_retries /= 4;
4545 	if (*compaction_retries <= max_retries) {
4546 		ret = true;
4547 		goto out;
4548 	}
4549 
4550 	/*
4551 	 * Make sure there are attempts at the highest priority if we exhausted
4552 	 * all retries or failed at the lower priorities.
4553 	 */
4554 check_priority:
4555 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4556 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4557 
4558 	if (*compact_priority > min_priority) {
4559 		(*compact_priority)--;
4560 		*compaction_retries = 0;
4561 		ret = true;
4562 	}
4563 out:
4564 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4565 	return ret;
4566 }
4567 #else
4568 static inline struct page *
4569 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4570 		unsigned int alloc_flags, const struct alloc_context *ac,
4571 		enum compact_priority prio, enum compact_result *compact_result)
4572 {
4573 	*compact_result = COMPACT_SKIPPED;
4574 	return NULL;
4575 }
4576 
4577 static inline bool
4578 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4579 		     enum compact_result compact_result,
4580 		     enum compact_priority *compact_priority,
4581 		     int *compaction_retries)
4582 {
4583 	struct zone *zone;
4584 	struct zoneref *z;
4585 
4586 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4587 		return false;
4588 
4589 	/*
4590 	 * There are setups with compaction disabled which would prefer to loop
4591 	 * inside the allocator rather than hit the oom killer prematurely.
4592 	 * Let's give them a good hope and keep retrying while the order-0
4593 	 * watermarks are OK.
4594 	 */
4595 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4596 				ac->highest_zoneidx, ac->nodemask) {
4597 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4598 					ac->highest_zoneidx, alloc_flags))
4599 			return true;
4600 	}
4601 	return false;
4602 }
4603 #endif /* CONFIG_COMPACTION */
4604 
4605 #ifdef CONFIG_LOCKDEP
4606 static struct lockdep_map __fs_reclaim_map =
4607 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4608 
4609 static bool __need_reclaim(gfp_t gfp_mask)
4610 {
4611 	/* no reclaim without waiting on it */
4612 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4613 		return false;
4614 
4615 	/* this guy won't enter reclaim */
4616 	if (current->flags & PF_MEMALLOC)
4617 		return false;
4618 
4619 	if (gfp_mask & __GFP_NOLOCKDEP)
4620 		return false;
4621 
4622 	return true;
4623 }
4624 
4625 void __fs_reclaim_acquire(unsigned long ip)
4626 {
4627 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4628 }
4629 
4630 void __fs_reclaim_release(unsigned long ip)
4631 {
4632 	lock_release(&__fs_reclaim_map, ip);
4633 }
4634 
4635 void fs_reclaim_acquire(gfp_t gfp_mask)
4636 {
4637 	gfp_mask = current_gfp_context(gfp_mask);
4638 
4639 	if (__need_reclaim(gfp_mask)) {
4640 		if (gfp_mask & __GFP_FS)
4641 			__fs_reclaim_acquire(_RET_IP_);
4642 
4643 #ifdef CONFIG_MMU_NOTIFIER
4644 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4645 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4646 #endif
4647 
4648 	}
4649 }
4650 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4651 
4652 void fs_reclaim_release(gfp_t gfp_mask)
4653 {
4654 	gfp_mask = current_gfp_context(gfp_mask);
4655 
4656 	if (__need_reclaim(gfp_mask)) {
4657 		if (gfp_mask & __GFP_FS)
4658 			__fs_reclaim_release(_RET_IP_);
4659 	}
4660 }
4661 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4662 #endif
4663 
4664 /*
4665  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4666  * have been rebuilt so allocation retries. Reader side does not lock and
4667  * retries the allocation if zonelist changes. Writer side is protected by the
4668  * embedded spin_lock.
4669  */
4670 static DEFINE_SEQLOCK(zonelist_update_seq);
4671 
4672 static unsigned int zonelist_iter_begin(void)
4673 {
4674 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4675 		return read_seqbegin(&zonelist_update_seq);
4676 
4677 	return 0;
4678 }
4679 
4680 static unsigned int check_retry_zonelist(unsigned int seq)
4681 {
4682 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4683 		return read_seqretry(&zonelist_update_seq, seq);
4684 
4685 	return seq;
4686 }
4687 
4688 /* Perform direct synchronous page reclaim */
4689 static unsigned long
4690 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4691 					const struct alloc_context *ac)
4692 {
4693 	unsigned int noreclaim_flag;
4694 	unsigned long progress;
4695 
4696 	cond_resched();
4697 
4698 	/* We now go into synchronous reclaim */
4699 	cpuset_memory_pressure_bump();
4700 	fs_reclaim_acquire(gfp_mask);
4701 	noreclaim_flag = memalloc_noreclaim_save();
4702 
4703 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4704 								ac->nodemask);
4705 
4706 	memalloc_noreclaim_restore(noreclaim_flag);
4707 	fs_reclaim_release(gfp_mask);
4708 
4709 	cond_resched();
4710 
4711 	return progress;
4712 }
4713 
4714 /* The really slow allocator path where we enter direct reclaim */
4715 static inline struct page *
4716 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4717 		unsigned int alloc_flags, const struct alloc_context *ac,
4718 		unsigned long *did_some_progress)
4719 {
4720 	struct page *page = NULL;
4721 	unsigned long pflags;
4722 	bool drained = false;
4723 
4724 	psi_memstall_enter(&pflags);
4725 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4726 	if (unlikely(!(*did_some_progress)))
4727 		goto out;
4728 
4729 retry:
4730 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4731 
4732 	/*
4733 	 * If an allocation failed after direct reclaim, it could be because
4734 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4735 	 * Shrink them and try again
4736 	 */
4737 	if (!page && !drained) {
4738 		unreserve_highatomic_pageblock(ac, false);
4739 		drain_all_pages(NULL);
4740 		drained = true;
4741 		goto retry;
4742 	}
4743 out:
4744 	psi_memstall_leave(&pflags);
4745 
4746 	return page;
4747 }
4748 
4749 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4750 			     const struct alloc_context *ac)
4751 {
4752 	struct zoneref *z;
4753 	struct zone *zone;
4754 	pg_data_t *last_pgdat = NULL;
4755 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4756 
4757 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4758 					ac->nodemask) {
4759 		if (!managed_zone(zone))
4760 			continue;
4761 		if (last_pgdat != zone->zone_pgdat) {
4762 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4763 			last_pgdat = zone->zone_pgdat;
4764 		}
4765 	}
4766 }
4767 
4768 static inline unsigned int
4769 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4770 {
4771 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4772 
4773 	/*
4774 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4775 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4776 	 * to save two branches.
4777 	 */
4778 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4779 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4780 
4781 	/*
4782 	 * The caller may dip into page reserves a bit more if the caller
4783 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4784 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4785 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4786 	 */
4787 	alloc_flags |= (__force int)
4788 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4789 
4790 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4791 		/*
4792 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4793 		 * if it can't schedule.
4794 		 */
4795 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4796 			alloc_flags |= ALLOC_NON_BLOCK;
4797 
4798 			if (order > 0)
4799 				alloc_flags |= ALLOC_HIGHATOMIC;
4800 		}
4801 
4802 		/*
4803 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4804 		 * GFP_ATOMIC) rather than fail, see the comment for
4805 		 * __cpuset_node_allowed().
4806 		 */
4807 		if (alloc_flags & ALLOC_MIN_RESERVE)
4808 			alloc_flags &= ~ALLOC_CPUSET;
4809 	} else if (unlikely(rt_task(current)) && in_task())
4810 		alloc_flags |= ALLOC_MIN_RESERVE;
4811 
4812 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4813 
4814 	return alloc_flags;
4815 }
4816 
4817 static bool oom_reserves_allowed(struct task_struct *tsk)
4818 {
4819 	if (!tsk_is_oom_victim(tsk))
4820 		return false;
4821 
4822 	/*
4823 	 * !MMU doesn't have oom reaper so give access to memory reserves
4824 	 * only to the thread with TIF_MEMDIE set
4825 	 */
4826 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4827 		return false;
4828 
4829 	return true;
4830 }
4831 
4832 /*
4833  * Distinguish requests which really need access to full memory
4834  * reserves from oom victims which can live with a portion of it
4835  */
4836 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4837 {
4838 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4839 		return 0;
4840 	if (gfp_mask & __GFP_MEMALLOC)
4841 		return ALLOC_NO_WATERMARKS;
4842 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4843 		return ALLOC_NO_WATERMARKS;
4844 	if (!in_interrupt()) {
4845 		if (current->flags & PF_MEMALLOC)
4846 			return ALLOC_NO_WATERMARKS;
4847 		else if (oom_reserves_allowed(current))
4848 			return ALLOC_OOM;
4849 	}
4850 
4851 	return 0;
4852 }
4853 
4854 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4855 {
4856 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4857 }
4858 
4859 /*
4860  * Checks whether it makes sense to retry the reclaim to make a forward progress
4861  * for the given allocation request.
4862  *
4863  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4864  * without success, or when we couldn't even meet the watermark if we
4865  * reclaimed all remaining pages on the LRU lists.
4866  *
4867  * Returns true if a retry is viable or false to enter the oom path.
4868  */
4869 static inline bool
4870 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4871 		     struct alloc_context *ac, int alloc_flags,
4872 		     bool did_some_progress, int *no_progress_loops)
4873 {
4874 	struct zone *zone;
4875 	struct zoneref *z;
4876 	bool ret = false;
4877 
4878 	/*
4879 	 * Costly allocations might have made a progress but this doesn't mean
4880 	 * their order will become available due to high fragmentation so
4881 	 * always increment the no progress counter for them
4882 	 */
4883 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4884 		*no_progress_loops = 0;
4885 	else
4886 		(*no_progress_loops)++;
4887 
4888 	/*
4889 	 * Make sure we converge to OOM if we cannot make any progress
4890 	 * several times in the row.
4891 	 */
4892 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4893 		/* Before OOM, exhaust highatomic_reserve */
4894 		return unreserve_highatomic_pageblock(ac, true);
4895 	}
4896 
4897 	/*
4898 	 * Keep reclaiming pages while there is a chance this will lead
4899 	 * somewhere.  If none of the target zones can satisfy our allocation
4900 	 * request even if all reclaimable pages are considered then we are
4901 	 * screwed and have to go OOM.
4902 	 */
4903 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4904 				ac->highest_zoneidx, ac->nodemask) {
4905 		unsigned long available;
4906 		unsigned long reclaimable;
4907 		unsigned long min_wmark = min_wmark_pages(zone);
4908 		bool wmark;
4909 
4910 		available = reclaimable = zone_reclaimable_pages(zone);
4911 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4912 
4913 		/*
4914 		 * Would the allocation succeed if we reclaimed all
4915 		 * reclaimable pages?
4916 		 */
4917 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4918 				ac->highest_zoneidx, alloc_flags, available);
4919 		trace_reclaim_retry_zone(z, order, reclaimable,
4920 				available, min_wmark, *no_progress_loops, wmark);
4921 		if (wmark) {
4922 			ret = true;
4923 			break;
4924 		}
4925 	}
4926 
4927 	/*
4928 	 * Memory allocation/reclaim might be called from a WQ context and the
4929 	 * current implementation of the WQ concurrency control doesn't
4930 	 * recognize that a particular WQ is congested if the worker thread is
4931 	 * looping without ever sleeping. Therefore we have to do a short sleep
4932 	 * here rather than calling cond_resched().
4933 	 */
4934 	if (current->flags & PF_WQ_WORKER)
4935 		schedule_timeout_uninterruptible(1);
4936 	else
4937 		cond_resched();
4938 	return ret;
4939 }
4940 
4941 static inline bool
4942 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4943 {
4944 	/*
4945 	 * It's possible that cpuset's mems_allowed and the nodemask from
4946 	 * mempolicy don't intersect. This should be normally dealt with by
4947 	 * policy_nodemask(), but it's possible to race with cpuset update in
4948 	 * such a way the check therein was true, and then it became false
4949 	 * before we got our cpuset_mems_cookie here.
4950 	 * This assumes that for all allocations, ac->nodemask can come only
4951 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4952 	 * when it does not intersect with the cpuset restrictions) or the
4953 	 * caller can deal with a violated nodemask.
4954 	 */
4955 	if (cpusets_enabled() && ac->nodemask &&
4956 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4957 		ac->nodemask = NULL;
4958 		return true;
4959 	}
4960 
4961 	/*
4962 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4963 	 * possible to race with parallel threads in such a way that our
4964 	 * allocation can fail while the mask is being updated. If we are about
4965 	 * to fail, check if the cpuset changed during allocation and if so,
4966 	 * retry.
4967 	 */
4968 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4969 		return true;
4970 
4971 	return false;
4972 }
4973 
4974 static inline struct page *
4975 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4976 						struct alloc_context *ac)
4977 {
4978 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4979 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4980 	struct page *page = NULL;
4981 	unsigned int alloc_flags;
4982 	unsigned long did_some_progress;
4983 	enum compact_priority compact_priority;
4984 	enum compact_result compact_result;
4985 	int compaction_retries;
4986 	int no_progress_loops;
4987 	unsigned int cpuset_mems_cookie;
4988 	unsigned int zonelist_iter_cookie;
4989 	int reserve_flags;
4990 
4991 restart:
4992 	compaction_retries = 0;
4993 	no_progress_loops = 0;
4994 	compact_priority = DEF_COMPACT_PRIORITY;
4995 	cpuset_mems_cookie = read_mems_allowed_begin();
4996 	zonelist_iter_cookie = zonelist_iter_begin();
4997 
4998 	/*
4999 	 * The fast path uses conservative alloc_flags to succeed only until
5000 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5001 	 * alloc_flags precisely. So we do that now.
5002 	 */
5003 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5004 
5005 	/*
5006 	 * We need to recalculate the starting point for the zonelist iterator
5007 	 * because we might have used different nodemask in the fast path, or
5008 	 * there was a cpuset modification and we are retrying - otherwise we
5009 	 * could end up iterating over non-eligible zones endlessly.
5010 	 */
5011 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5012 					ac->highest_zoneidx, ac->nodemask);
5013 	if (!ac->preferred_zoneref->zone)
5014 		goto nopage;
5015 
5016 	/*
5017 	 * Check for insane configurations where the cpuset doesn't contain
5018 	 * any suitable zone to satisfy the request - e.g. non-movable
5019 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5020 	 */
5021 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5022 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5023 					ac->highest_zoneidx,
5024 					&cpuset_current_mems_allowed);
5025 		if (!z->zone)
5026 			goto nopage;
5027 	}
5028 
5029 	if (alloc_flags & ALLOC_KSWAPD)
5030 		wake_all_kswapds(order, gfp_mask, ac);
5031 
5032 	/*
5033 	 * The adjusted alloc_flags might result in immediate success, so try
5034 	 * that first
5035 	 */
5036 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5037 	if (page)
5038 		goto got_pg;
5039 
5040 	/*
5041 	 * For costly allocations, try direct compaction first, as it's likely
5042 	 * that we have enough base pages and don't need to reclaim. For non-
5043 	 * movable high-order allocations, do that as well, as compaction will
5044 	 * try prevent permanent fragmentation by migrating from blocks of the
5045 	 * same migratetype.
5046 	 * Don't try this for allocations that are allowed to ignore
5047 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5048 	 */
5049 	if (can_direct_reclaim &&
5050 			(costly_order ||
5051 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5052 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5053 		page = __alloc_pages_direct_compact(gfp_mask, order,
5054 						alloc_flags, ac,
5055 						INIT_COMPACT_PRIORITY,
5056 						&compact_result);
5057 		if (page)
5058 			goto got_pg;
5059 
5060 		/*
5061 		 * Checks for costly allocations with __GFP_NORETRY, which
5062 		 * includes some THP page fault allocations
5063 		 */
5064 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5065 			/*
5066 			 * If allocating entire pageblock(s) and compaction
5067 			 * failed because all zones are below low watermarks
5068 			 * or is prohibited because it recently failed at this
5069 			 * order, fail immediately unless the allocator has
5070 			 * requested compaction and reclaim retry.
5071 			 *
5072 			 * Reclaim is
5073 			 *  - potentially very expensive because zones are far
5074 			 *    below their low watermarks or this is part of very
5075 			 *    bursty high order allocations,
5076 			 *  - not guaranteed to help because isolate_freepages()
5077 			 *    may not iterate over freed pages as part of its
5078 			 *    linear scan, and
5079 			 *  - unlikely to make entire pageblocks free on its
5080 			 *    own.
5081 			 */
5082 			if (compact_result == COMPACT_SKIPPED ||
5083 			    compact_result == COMPACT_DEFERRED)
5084 				goto nopage;
5085 
5086 			/*
5087 			 * Looks like reclaim/compaction is worth trying, but
5088 			 * sync compaction could be very expensive, so keep
5089 			 * using async compaction.
5090 			 */
5091 			compact_priority = INIT_COMPACT_PRIORITY;
5092 		}
5093 	}
5094 
5095 retry:
5096 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5097 	if (alloc_flags & ALLOC_KSWAPD)
5098 		wake_all_kswapds(order, gfp_mask, ac);
5099 
5100 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5101 	if (reserve_flags)
5102 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5103 					  (alloc_flags & ALLOC_KSWAPD);
5104 
5105 	/*
5106 	 * Reset the nodemask and zonelist iterators if memory policies can be
5107 	 * ignored. These allocations are high priority and system rather than
5108 	 * user oriented.
5109 	 */
5110 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5111 		ac->nodemask = NULL;
5112 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5113 					ac->highest_zoneidx, ac->nodemask);
5114 	}
5115 
5116 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5117 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5118 	if (page)
5119 		goto got_pg;
5120 
5121 	/* Caller is not willing to reclaim, we can't balance anything */
5122 	if (!can_direct_reclaim)
5123 		goto nopage;
5124 
5125 	/* Avoid recursion of direct reclaim */
5126 	if (current->flags & PF_MEMALLOC)
5127 		goto nopage;
5128 
5129 	/* Try direct reclaim and then allocating */
5130 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5131 							&did_some_progress);
5132 	if (page)
5133 		goto got_pg;
5134 
5135 	/* Try direct compaction and then allocating */
5136 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5137 					compact_priority, &compact_result);
5138 	if (page)
5139 		goto got_pg;
5140 
5141 	/* Do not loop if specifically requested */
5142 	if (gfp_mask & __GFP_NORETRY)
5143 		goto nopage;
5144 
5145 	/*
5146 	 * Do not retry costly high order allocations unless they are
5147 	 * __GFP_RETRY_MAYFAIL
5148 	 */
5149 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5150 		goto nopage;
5151 
5152 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5153 				 did_some_progress > 0, &no_progress_loops))
5154 		goto retry;
5155 
5156 	/*
5157 	 * It doesn't make any sense to retry for the compaction if the order-0
5158 	 * reclaim is not able to make any progress because the current
5159 	 * implementation of the compaction depends on the sufficient amount
5160 	 * of free memory (see __compaction_suitable)
5161 	 */
5162 	if (did_some_progress > 0 &&
5163 			should_compact_retry(ac, order, alloc_flags,
5164 				compact_result, &compact_priority,
5165 				&compaction_retries))
5166 		goto retry;
5167 
5168 
5169 	/*
5170 	 * Deal with possible cpuset update races or zonelist updates to avoid
5171 	 * a unnecessary OOM kill.
5172 	 */
5173 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5174 	    check_retry_zonelist(zonelist_iter_cookie))
5175 		goto restart;
5176 
5177 	/* Reclaim has failed us, start killing things */
5178 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5179 	if (page)
5180 		goto got_pg;
5181 
5182 	/* Avoid allocations with no watermarks from looping endlessly */
5183 	if (tsk_is_oom_victim(current) &&
5184 	    (alloc_flags & ALLOC_OOM ||
5185 	     (gfp_mask & __GFP_NOMEMALLOC)))
5186 		goto nopage;
5187 
5188 	/* Retry as long as the OOM killer is making progress */
5189 	if (did_some_progress) {
5190 		no_progress_loops = 0;
5191 		goto retry;
5192 	}
5193 
5194 nopage:
5195 	/*
5196 	 * Deal with possible cpuset update races or zonelist updates to avoid
5197 	 * a unnecessary OOM kill.
5198 	 */
5199 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5200 	    check_retry_zonelist(zonelist_iter_cookie))
5201 		goto restart;
5202 
5203 	/*
5204 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5205 	 * we always retry
5206 	 */
5207 	if (gfp_mask & __GFP_NOFAIL) {
5208 		/*
5209 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5210 		 * of any new users that actually require GFP_NOWAIT
5211 		 */
5212 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5213 			goto fail;
5214 
5215 		/*
5216 		 * PF_MEMALLOC request from this context is rather bizarre
5217 		 * because we cannot reclaim anything and only can loop waiting
5218 		 * for somebody to do a work for us
5219 		 */
5220 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5221 
5222 		/*
5223 		 * non failing costly orders are a hard requirement which we
5224 		 * are not prepared for much so let's warn about these users
5225 		 * so that we can identify them and convert them to something
5226 		 * else.
5227 		 */
5228 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5229 
5230 		/*
5231 		 * Help non-failing allocations by giving some access to memory
5232 		 * reserves normally used for high priority non-blocking
5233 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
5234 		 * could deplete whole memory reserves which would just make
5235 		 * the situation worse.
5236 		 */
5237 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
5238 		if (page)
5239 			goto got_pg;
5240 
5241 		cond_resched();
5242 		goto retry;
5243 	}
5244 fail:
5245 	warn_alloc(gfp_mask, ac->nodemask,
5246 			"page allocation failure: order:%u", order);
5247 got_pg:
5248 	return page;
5249 }
5250 
5251 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5252 		int preferred_nid, nodemask_t *nodemask,
5253 		struct alloc_context *ac, gfp_t *alloc_gfp,
5254 		unsigned int *alloc_flags)
5255 {
5256 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5257 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5258 	ac->nodemask = nodemask;
5259 	ac->migratetype = gfp_migratetype(gfp_mask);
5260 
5261 	if (cpusets_enabled()) {
5262 		*alloc_gfp |= __GFP_HARDWALL;
5263 		/*
5264 		 * When we are in the interrupt context, it is irrelevant
5265 		 * to the current task context. It means that any node ok.
5266 		 */
5267 		if (in_task() && !ac->nodemask)
5268 			ac->nodemask = &cpuset_current_mems_allowed;
5269 		else
5270 			*alloc_flags |= ALLOC_CPUSET;
5271 	}
5272 
5273 	might_alloc(gfp_mask);
5274 
5275 	if (should_fail_alloc_page(gfp_mask, order))
5276 		return false;
5277 
5278 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5279 
5280 	/* Dirty zone balancing only done in the fast path */
5281 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5282 
5283 	/*
5284 	 * The preferred zone is used for statistics but crucially it is
5285 	 * also used as the starting point for the zonelist iterator. It
5286 	 * may get reset for allocations that ignore memory policies.
5287 	 */
5288 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5289 					ac->highest_zoneidx, ac->nodemask);
5290 
5291 	return true;
5292 }
5293 
5294 /*
5295  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5296  * @gfp: GFP flags for the allocation
5297  * @preferred_nid: The preferred NUMA node ID to allocate from
5298  * @nodemask: Set of nodes to allocate from, may be NULL
5299  * @nr_pages: The number of pages desired on the list or array
5300  * @page_list: Optional list to store the allocated pages
5301  * @page_array: Optional array to store the pages
5302  *
5303  * This is a batched version of the page allocator that attempts to
5304  * allocate nr_pages quickly. Pages are added to page_list if page_list
5305  * is not NULL, otherwise it is assumed that the page_array is valid.
5306  *
5307  * For lists, nr_pages is the number of pages that should be allocated.
5308  *
5309  * For arrays, only NULL elements are populated with pages and nr_pages
5310  * is the maximum number of pages that will be stored in the array.
5311  *
5312  * Returns the number of pages on the list or array.
5313  */
5314 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5315 			nodemask_t *nodemask, int nr_pages,
5316 			struct list_head *page_list,
5317 			struct page **page_array)
5318 {
5319 	struct page *page;
5320 	unsigned long __maybe_unused UP_flags;
5321 	struct zone *zone;
5322 	struct zoneref *z;
5323 	struct per_cpu_pages *pcp;
5324 	struct list_head *pcp_list;
5325 	struct alloc_context ac;
5326 	gfp_t alloc_gfp;
5327 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5328 	int nr_populated = 0, nr_account = 0;
5329 
5330 	/*
5331 	 * Skip populated array elements to determine if any pages need
5332 	 * to be allocated before disabling IRQs.
5333 	 */
5334 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5335 		nr_populated++;
5336 
5337 	/* No pages requested? */
5338 	if (unlikely(nr_pages <= 0))
5339 		goto out;
5340 
5341 	/* Already populated array? */
5342 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5343 		goto out;
5344 
5345 	/* Bulk allocator does not support memcg accounting. */
5346 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5347 		goto failed;
5348 
5349 	/* Use the single page allocator for one page. */
5350 	if (nr_pages - nr_populated == 1)
5351 		goto failed;
5352 
5353 #ifdef CONFIG_PAGE_OWNER
5354 	/*
5355 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5356 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5357 	 * removes much of the performance benefit of bulk allocation so
5358 	 * force the caller to allocate one page at a time as it'll have
5359 	 * similar performance to added complexity to the bulk allocator.
5360 	 */
5361 	if (static_branch_unlikely(&page_owner_inited))
5362 		goto failed;
5363 #endif
5364 
5365 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5366 	gfp &= gfp_allowed_mask;
5367 	alloc_gfp = gfp;
5368 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5369 		goto out;
5370 	gfp = alloc_gfp;
5371 
5372 	/* Find an allowed local zone that meets the low watermark. */
5373 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5374 		unsigned long mark;
5375 
5376 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5377 		    !__cpuset_zone_allowed(zone, gfp)) {
5378 			continue;
5379 		}
5380 
5381 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5382 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5383 			goto failed;
5384 		}
5385 
5386 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5387 		if (zone_watermark_fast(zone, 0,  mark,
5388 				zonelist_zone_idx(ac.preferred_zoneref),
5389 				alloc_flags, gfp)) {
5390 			break;
5391 		}
5392 	}
5393 
5394 	/*
5395 	 * If there are no allowed local zones that meets the watermarks then
5396 	 * try to allocate a single page and reclaim if necessary.
5397 	 */
5398 	if (unlikely(!zone))
5399 		goto failed;
5400 
5401 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5402 	pcp_trylock_prepare(UP_flags);
5403 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5404 	if (!pcp)
5405 		goto failed_irq;
5406 
5407 	/* Attempt the batch allocation */
5408 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5409 	while (nr_populated < nr_pages) {
5410 
5411 		/* Skip existing pages */
5412 		if (page_array && page_array[nr_populated]) {
5413 			nr_populated++;
5414 			continue;
5415 		}
5416 
5417 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5418 								pcp, pcp_list);
5419 		if (unlikely(!page)) {
5420 			/* Try and allocate at least one page */
5421 			if (!nr_account) {
5422 				pcp_spin_unlock(pcp);
5423 				goto failed_irq;
5424 			}
5425 			break;
5426 		}
5427 		nr_account++;
5428 
5429 		prep_new_page(page, 0, gfp, 0);
5430 		if (page_list)
5431 			list_add(&page->lru, page_list);
5432 		else
5433 			page_array[nr_populated] = page;
5434 		nr_populated++;
5435 	}
5436 
5437 	pcp_spin_unlock(pcp);
5438 	pcp_trylock_finish(UP_flags);
5439 
5440 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5441 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5442 
5443 out:
5444 	return nr_populated;
5445 
5446 failed_irq:
5447 	pcp_trylock_finish(UP_flags);
5448 
5449 failed:
5450 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5451 	if (page) {
5452 		if (page_list)
5453 			list_add(&page->lru, page_list);
5454 		else
5455 			page_array[nr_populated] = page;
5456 		nr_populated++;
5457 	}
5458 
5459 	goto out;
5460 }
5461 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5462 
5463 /*
5464  * This is the 'heart' of the zoned buddy allocator.
5465  */
5466 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5467 							nodemask_t *nodemask)
5468 {
5469 	struct page *page;
5470 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5471 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5472 	struct alloc_context ac = { };
5473 
5474 	/*
5475 	 * There are several places where we assume that the order value is sane
5476 	 * so bail out early if the request is out of bound.
5477 	 */
5478 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5479 		return NULL;
5480 
5481 	gfp &= gfp_allowed_mask;
5482 	/*
5483 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5484 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5485 	 * from a particular context which has been marked by
5486 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5487 	 * movable zones are not used during allocation.
5488 	 */
5489 	gfp = current_gfp_context(gfp);
5490 	alloc_gfp = gfp;
5491 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5492 			&alloc_gfp, &alloc_flags))
5493 		return NULL;
5494 
5495 	/*
5496 	 * Forbid the first pass from falling back to types that fragment
5497 	 * memory until all local zones are considered.
5498 	 */
5499 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5500 
5501 	/* First allocation attempt */
5502 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5503 	if (likely(page))
5504 		goto out;
5505 
5506 	alloc_gfp = gfp;
5507 	ac.spread_dirty_pages = false;
5508 
5509 	/*
5510 	 * Restore the original nodemask if it was potentially replaced with
5511 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5512 	 */
5513 	ac.nodemask = nodemask;
5514 
5515 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5516 
5517 out:
5518 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5519 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5520 		__free_pages(page, order);
5521 		page = NULL;
5522 	}
5523 
5524 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5525 	kmsan_alloc_page(page, order, alloc_gfp);
5526 
5527 	return page;
5528 }
5529 EXPORT_SYMBOL(__alloc_pages);
5530 
5531 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5532 		nodemask_t *nodemask)
5533 {
5534 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5535 			preferred_nid, nodemask);
5536 
5537 	if (page && order > 1)
5538 		prep_transhuge_page(page);
5539 	return (struct folio *)page;
5540 }
5541 EXPORT_SYMBOL(__folio_alloc);
5542 
5543 /*
5544  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5545  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5546  * you need to access high mem.
5547  */
5548 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5549 {
5550 	struct page *page;
5551 
5552 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5553 	if (!page)
5554 		return 0;
5555 	return (unsigned long) page_address(page);
5556 }
5557 EXPORT_SYMBOL(__get_free_pages);
5558 
5559 unsigned long get_zeroed_page(gfp_t gfp_mask)
5560 {
5561 	return __get_free_page(gfp_mask | __GFP_ZERO);
5562 }
5563 EXPORT_SYMBOL(get_zeroed_page);
5564 
5565 /**
5566  * __free_pages - Free pages allocated with alloc_pages().
5567  * @page: The page pointer returned from alloc_pages().
5568  * @order: The order of the allocation.
5569  *
5570  * This function can free multi-page allocations that are not compound
5571  * pages.  It does not check that the @order passed in matches that of
5572  * the allocation, so it is easy to leak memory.  Freeing more memory
5573  * than was allocated will probably emit a warning.
5574  *
5575  * If the last reference to this page is speculative, it will be released
5576  * by put_page() which only frees the first page of a non-compound
5577  * allocation.  To prevent the remaining pages from being leaked, we free
5578  * the subsequent pages here.  If you want to use the page's reference
5579  * count to decide when to free the allocation, you should allocate a
5580  * compound page, and use put_page() instead of __free_pages().
5581  *
5582  * Context: May be called in interrupt context or while holding a normal
5583  * spinlock, but not in NMI context or while holding a raw spinlock.
5584  */
5585 void __free_pages(struct page *page, unsigned int order)
5586 {
5587 	/* get PageHead before we drop reference */
5588 	int head = PageHead(page);
5589 
5590 	if (put_page_testzero(page))
5591 		free_the_page(page, order);
5592 	else if (!head)
5593 		while (order-- > 0)
5594 			free_the_page(page + (1 << order), order);
5595 }
5596 EXPORT_SYMBOL(__free_pages);
5597 
5598 void free_pages(unsigned long addr, unsigned int order)
5599 {
5600 	if (addr != 0) {
5601 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5602 		__free_pages(virt_to_page((void *)addr), order);
5603 	}
5604 }
5605 
5606 EXPORT_SYMBOL(free_pages);
5607 
5608 /*
5609  * Page Fragment:
5610  *  An arbitrary-length arbitrary-offset area of memory which resides
5611  *  within a 0 or higher order page.  Multiple fragments within that page
5612  *  are individually refcounted, in the page's reference counter.
5613  *
5614  * The page_frag functions below provide a simple allocation framework for
5615  * page fragments.  This is used by the network stack and network device
5616  * drivers to provide a backing region of memory for use as either an
5617  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5618  */
5619 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5620 					     gfp_t gfp_mask)
5621 {
5622 	struct page *page = NULL;
5623 	gfp_t gfp = gfp_mask;
5624 
5625 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5626 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5627 		    __GFP_NOMEMALLOC;
5628 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5629 				PAGE_FRAG_CACHE_MAX_ORDER);
5630 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5631 #endif
5632 	if (unlikely(!page))
5633 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5634 
5635 	nc->va = page ? page_address(page) : NULL;
5636 
5637 	return page;
5638 }
5639 
5640 void __page_frag_cache_drain(struct page *page, unsigned int count)
5641 {
5642 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5643 
5644 	if (page_ref_sub_and_test(page, count))
5645 		free_the_page(page, compound_order(page));
5646 }
5647 EXPORT_SYMBOL(__page_frag_cache_drain);
5648 
5649 void *page_frag_alloc_align(struct page_frag_cache *nc,
5650 		      unsigned int fragsz, gfp_t gfp_mask,
5651 		      unsigned int align_mask)
5652 {
5653 	unsigned int size = PAGE_SIZE;
5654 	struct page *page;
5655 	int offset;
5656 
5657 	if (unlikely(!nc->va)) {
5658 refill:
5659 		page = __page_frag_cache_refill(nc, gfp_mask);
5660 		if (!page)
5661 			return NULL;
5662 
5663 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5664 		/* if size can vary use size else just use PAGE_SIZE */
5665 		size = nc->size;
5666 #endif
5667 		/* Even if we own the page, we do not use atomic_set().
5668 		 * This would break get_page_unless_zero() users.
5669 		 */
5670 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5671 
5672 		/* reset page count bias and offset to start of new frag */
5673 		nc->pfmemalloc = page_is_pfmemalloc(page);
5674 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5675 		nc->offset = size;
5676 	}
5677 
5678 	offset = nc->offset - fragsz;
5679 	if (unlikely(offset < 0)) {
5680 		page = virt_to_page(nc->va);
5681 
5682 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5683 			goto refill;
5684 
5685 		if (unlikely(nc->pfmemalloc)) {
5686 			free_the_page(page, compound_order(page));
5687 			goto refill;
5688 		}
5689 
5690 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5691 		/* if size can vary use size else just use PAGE_SIZE */
5692 		size = nc->size;
5693 #endif
5694 		/* OK, page count is 0, we can safely set it */
5695 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5696 
5697 		/* reset page count bias and offset to start of new frag */
5698 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5699 		offset = size - fragsz;
5700 		if (unlikely(offset < 0)) {
5701 			/*
5702 			 * The caller is trying to allocate a fragment
5703 			 * with fragsz > PAGE_SIZE but the cache isn't big
5704 			 * enough to satisfy the request, this may
5705 			 * happen in low memory conditions.
5706 			 * We don't release the cache page because
5707 			 * it could make memory pressure worse
5708 			 * so we simply return NULL here.
5709 			 */
5710 			return NULL;
5711 		}
5712 	}
5713 
5714 	nc->pagecnt_bias--;
5715 	offset &= align_mask;
5716 	nc->offset = offset;
5717 
5718 	return nc->va + offset;
5719 }
5720 EXPORT_SYMBOL(page_frag_alloc_align);
5721 
5722 /*
5723  * Frees a page fragment allocated out of either a compound or order 0 page.
5724  */
5725 void page_frag_free(void *addr)
5726 {
5727 	struct page *page = virt_to_head_page(addr);
5728 
5729 	if (unlikely(put_page_testzero(page)))
5730 		free_the_page(page, compound_order(page));
5731 }
5732 EXPORT_SYMBOL(page_frag_free);
5733 
5734 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5735 		size_t size)
5736 {
5737 	if (addr) {
5738 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5739 		struct page *page = virt_to_page((void *)addr);
5740 		struct page *last = page + nr;
5741 
5742 		split_page_owner(page, 1 << order);
5743 		split_page_memcg(page, 1 << order);
5744 		while (page < --last)
5745 			set_page_refcounted(last);
5746 
5747 		last = page + (1UL << order);
5748 		for (page += nr; page < last; page++)
5749 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5750 	}
5751 	return (void *)addr;
5752 }
5753 
5754 /**
5755  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5756  * @size: the number of bytes to allocate
5757  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5758  *
5759  * This function is similar to alloc_pages(), except that it allocates the
5760  * minimum number of pages to satisfy the request.  alloc_pages() can only
5761  * allocate memory in power-of-two pages.
5762  *
5763  * This function is also limited by MAX_ORDER.
5764  *
5765  * Memory allocated by this function must be released by free_pages_exact().
5766  *
5767  * Return: pointer to the allocated area or %NULL in case of error.
5768  */
5769 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5770 {
5771 	unsigned int order = get_order(size);
5772 	unsigned long addr;
5773 
5774 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5775 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5776 
5777 	addr = __get_free_pages(gfp_mask, order);
5778 	return make_alloc_exact(addr, order, size);
5779 }
5780 EXPORT_SYMBOL(alloc_pages_exact);
5781 
5782 /**
5783  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5784  *			   pages on a node.
5785  * @nid: the preferred node ID where memory should be allocated
5786  * @size: the number of bytes to allocate
5787  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5788  *
5789  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5790  * back.
5791  *
5792  * Return: pointer to the allocated area or %NULL in case of error.
5793  */
5794 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5795 {
5796 	unsigned int order = get_order(size);
5797 	struct page *p;
5798 
5799 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5800 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5801 
5802 	p = alloc_pages_node(nid, gfp_mask, order);
5803 	if (!p)
5804 		return NULL;
5805 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5806 }
5807 
5808 /**
5809  * free_pages_exact - release memory allocated via alloc_pages_exact()
5810  * @virt: the value returned by alloc_pages_exact.
5811  * @size: size of allocation, same value as passed to alloc_pages_exact().
5812  *
5813  * Release the memory allocated by a previous call to alloc_pages_exact.
5814  */
5815 void free_pages_exact(void *virt, size_t size)
5816 {
5817 	unsigned long addr = (unsigned long)virt;
5818 	unsigned long end = addr + PAGE_ALIGN(size);
5819 
5820 	while (addr < end) {
5821 		free_page(addr);
5822 		addr += PAGE_SIZE;
5823 	}
5824 }
5825 EXPORT_SYMBOL(free_pages_exact);
5826 
5827 /**
5828  * nr_free_zone_pages - count number of pages beyond high watermark
5829  * @offset: The zone index of the highest zone
5830  *
5831  * nr_free_zone_pages() counts the number of pages which are beyond the
5832  * high watermark within all zones at or below a given zone index.  For each
5833  * zone, the number of pages is calculated as:
5834  *
5835  *     nr_free_zone_pages = managed_pages - high_pages
5836  *
5837  * Return: number of pages beyond high watermark.
5838  */
5839 static unsigned long nr_free_zone_pages(int offset)
5840 {
5841 	struct zoneref *z;
5842 	struct zone *zone;
5843 
5844 	/* Just pick one node, since fallback list is circular */
5845 	unsigned long sum = 0;
5846 
5847 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5848 
5849 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5850 		unsigned long size = zone_managed_pages(zone);
5851 		unsigned long high = high_wmark_pages(zone);
5852 		if (size > high)
5853 			sum += size - high;
5854 	}
5855 
5856 	return sum;
5857 }
5858 
5859 /**
5860  * nr_free_buffer_pages - count number of pages beyond high watermark
5861  *
5862  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5863  * watermark within ZONE_DMA and ZONE_NORMAL.
5864  *
5865  * Return: number of pages beyond high watermark within ZONE_DMA and
5866  * ZONE_NORMAL.
5867  */
5868 unsigned long nr_free_buffer_pages(void)
5869 {
5870 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5871 }
5872 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5873 
5874 static inline void show_node(struct zone *zone)
5875 {
5876 	if (IS_ENABLED(CONFIG_NUMA))
5877 		printk("Node %d ", zone_to_nid(zone));
5878 }
5879 
5880 long si_mem_available(void)
5881 {
5882 	long available;
5883 	unsigned long pagecache;
5884 	unsigned long wmark_low = 0;
5885 	unsigned long pages[NR_LRU_LISTS];
5886 	unsigned long reclaimable;
5887 	struct zone *zone;
5888 	int lru;
5889 
5890 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5891 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5892 
5893 	for_each_zone(zone)
5894 		wmark_low += low_wmark_pages(zone);
5895 
5896 	/*
5897 	 * Estimate the amount of memory available for userspace allocations,
5898 	 * without causing swapping or OOM.
5899 	 */
5900 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5901 
5902 	/*
5903 	 * Not all the page cache can be freed, otherwise the system will
5904 	 * start swapping or thrashing. Assume at least half of the page
5905 	 * cache, or the low watermark worth of cache, needs to stay.
5906 	 */
5907 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5908 	pagecache -= min(pagecache / 2, wmark_low);
5909 	available += pagecache;
5910 
5911 	/*
5912 	 * Part of the reclaimable slab and other kernel memory consists of
5913 	 * items that are in use, and cannot be freed. Cap this estimate at the
5914 	 * low watermark.
5915 	 */
5916 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5917 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5918 	available += reclaimable - min(reclaimable / 2, wmark_low);
5919 
5920 	if (available < 0)
5921 		available = 0;
5922 	return available;
5923 }
5924 EXPORT_SYMBOL_GPL(si_mem_available);
5925 
5926 void si_meminfo(struct sysinfo *val)
5927 {
5928 	val->totalram = totalram_pages();
5929 	val->sharedram = global_node_page_state(NR_SHMEM);
5930 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5931 	val->bufferram = nr_blockdev_pages();
5932 	val->totalhigh = totalhigh_pages();
5933 	val->freehigh = nr_free_highpages();
5934 	val->mem_unit = PAGE_SIZE;
5935 }
5936 
5937 EXPORT_SYMBOL(si_meminfo);
5938 
5939 #ifdef CONFIG_NUMA
5940 void si_meminfo_node(struct sysinfo *val, int nid)
5941 {
5942 	int zone_type;		/* needs to be signed */
5943 	unsigned long managed_pages = 0;
5944 	unsigned long managed_highpages = 0;
5945 	unsigned long free_highpages = 0;
5946 	pg_data_t *pgdat = NODE_DATA(nid);
5947 
5948 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5949 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5950 	val->totalram = managed_pages;
5951 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5952 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5953 #ifdef CONFIG_HIGHMEM
5954 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5955 		struct zone *zone = &pgdat->node_zones[zone_type];
5956 
5957 		if (is_highmem(zone)) {
5958 			managed_highpages += zone_managed_pages(zone);
5959 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5960 		}
5961 	}
5962 	val->totalhigh = managed_highpages;
5963 	val->freehigh = free_highpages;
5964 #else
5965 	val->totalhigh = managed_highpages;
5966 	val->freehigh = free_highpages;
5967 #endif
5968 	val->mem_unit = PAGE_SIZE;
5969 }
5970 #endif
5971 
5972 /*
5973  * Determine whether the node should be displayed or not, depending on whether
5974  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5975  */
5976 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5977 {
5978 	if (!(flags & SHOW_MEM_FILTER_NODES))
5979 		return false;
5980 
5981 	/*
5982 	 * no node mask - aka implicit memory numa policy. Do not bother with
5983 	 * the synchronization - read_mems_allowed_begin - because we do not
5984 	 * have to be precise here.
5985 	 */
5986 	if (!nodemask)
5987 		nodemask = &cpuset_current_mems_allowed;
5988 
5989 	return !node_isset(nid, *nodemask);
5990 }
5991 
5992 #define K(x) ((x) << (PAGE_SHIFT-10))
5993 
5994 static void show_migration_types(unsigned char type)
5995 {
5996 	static const char types[MIGRATE_TYPES] = {
5997 		[MIGRATE_UNMOVABLE]	= 'U',
5998 		[MIGRATE_MOVABLE]	= 'M',
5999 		[MIGRATE_RECLAIMABLE]	= 'E',
6000 		[MIGRATE_HIGHATOMIC]	= 'H',
6001 #ifdef CONFIG_CMA
6002 		[MIGRATE_CMA]		= 'C',
6003 #endif
6004 #ifdef CONFIG_MEMORY_ISOLATION
6005 		[MIGRATE_ISOLATE]	= 'I',
6006 #endif
6007 	};
6008 	char tmp[MIGRATE_TYPES + 1];
6009 	char *p = tmp;
6010 	int i;
6011 
6012 	for (i = 0; i < MIGRATE_TYPES; i++) {
6013 		if (type & (1 << i))
6014 			*p++ = types[i];
6015 	}
6016 
6017 	*p = '\0';
6018 	printk(KERN_CONT "(%s) ", tmp);
6019 }
6020 
6021 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6022 {
6023 	int zone_idx;
6024 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6025 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6026 			return true;
6027 	return false;
6028 }
6029 
6030 /*
6031  * Show free area list (used inside shift_scroll-lock stuff)
6032  * We also calculate the percentage fragmentation. We do this by counting the
6033  * memory on each free list with the exception of the first item on the list.
6034  *
6035  * Bits in @filter:
6036  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6037  *   cpuset.
6038  */
6039 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6040 {
6041 	unsigned long free_pcp = 0;
6042 	int cpu, nid;
6043 	struct zone *zone;
6044 	pg_data_t *pgdat;
6045 
6046 	for_each_populated_zone(zone) {
6047 		if (zone_idx(zone) > max_zone_idx)
6048 			continue;
6049 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6050 			continue;
6051 
6052 		for_each_online_cpu(cpu)
6053 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6054 	}
6055 
6056 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6057 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6058 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6059 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6060 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6061 		" sec_pagetables:%lu bounce:%lu\n"
6062 		" kernel_misc_reclaimable:%lu\n"
6063 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6064 		global_node_page_state(NR_ACTIVE_ANON),
6065 		global_node_page_state(NR_INACTIVE_ANON),
6066 		global_node_page_state(NR_ISOLATED_ANON),
6067 		global_node_page_state(NR_ACTIVE_FILE),
6068 		global_node_page_state(NR_INACTIVE_FILE),
6069 		global_node_page_state(NR_ISOLATED_FILE),
6070 		global_node_page_state(NR_UNEVICTABLE),
6071 		global_node_page_state(NR_FILE_DIRTY),
6072 		global_node_page_state(NR_WRITEBACK),
6073 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6074 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6075 		global_node_page_state(NR_FILE_MAPPED),
6076 		global_node_page_state(NR_SHMEM),
6077 		global_node_page_state(NR_PAGETABLE),
6078 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6079 		global_zone_page_state(NR_BOUNCE),
6080 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6081 		global_zone_page_state(NR_FREE_PAGES),
6082 		free_pcp,
6083 		global_zone_page_state(NR_FREE_CMA_PAGES));
6084 
6085 	for_each_online_pgdat(pgdat) {
6086 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6087 			continue;
6088 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6089 			continue;
6090 
6091 		printk("Node %d"
6092 			" active_anon:%lukB"
6093 			" inactive_anon:%lukB"
6094 			" active_file:%lukB"
6095 			" inactive_file:%lukB"
6096 			" unevictable:%lukB"
6097 			" isolated(anon):%lukB"
6098 			" isolated(file):%lukB"
6099 			" mapped:%lukB"
6100 			" dirty:%lukB"
6101 			" writeback:%lukB"
6102 			" shmem:%lukB"
6103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6104 			" shmem_thp: %lukB"
6105 			" shmem_pmdmapped: %lukB"
6106 			" anon_thp: %lukB"
6107 #endif
6108 			" writeback_tmp:%lukB"
6109 			" kernel_stack:%lukB"
6110 #ifdef CONFIG_SHADOW_CALL_STACK
6111 			" shadow_call_stack:%lukB"
6112 #endif
6113 			" pagetables:%lukB"
6114 			" sec_pagetables:%lukB"
6115 			" all_unreclaimable? %s"
6116 			"\n",
6117 			pgdat->node_id,
6118 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6119 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6120 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6121 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6122 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6123 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6124 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6125 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6126 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6127 			K(node_page_state(pgdat, NR_WRITEBACK)),
6128 			K(node_page_state(pgdat, NR_SHMEM)),
6129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6130 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6131 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6132 			K(node_page_state(pgdat, NR_ANON_THPS)),
6133 #endif
6134 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6135 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6136 #ifdef CONFIG_SHADOW_CALL_STACK
6137 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6138 #endif
6139 			K(node_page_state(pgdat, NR_PAGETABLE)),
6140 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6141 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6142 				"yes" : "no");
6143 	}
6144 
6145 	for_each_populated_zone(zone) {
6146 		int i;
6147 
6148 		if (zone_idx(zone) > max_zone_idx)
6149 			continue;
6150 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6151 			continue;
6152 
6153 		free_pcp = 0;
6154 		for_each_online_cpu(cpu)
6155 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6156 
6157 		show_node(zone);
6158 		printk(KERN_CONT
6159 			"%s"
6160 			" free:%lukB"
6161 			" boost:%lukB"
6162 			" min:%lukB"
6163 			" low:%lukB"
6164 			" high:%lukB"
6165 			" reserved_highatomic:%luKB"
6166 			" active_anon:%lukB"
6167 			" inactive_anon:%lukB"
6168 			" active_file:%lukB"
6169 			" inactive_file:%lukB"
6170 			" unevictable:%lukB"
6171 			" writepending:%lukB"
6172 			" present:%lukB"
6173 			" managed:%lukB"
6174 			" mlocked:%lukB"
6175 			" bounce:%lukB"
6176 			" free_pcp:%lukB"
6177 			" local_pcp:%ukB"
6178 			" free_cma:%lukB"
6179 			"\n",
6180 			zone->name,
6181 			K(zone_page_state(zone, NR_FREE_PAGES)),
6182 			K(zone->watermark_boost),
6183 			K(min_wmark_pages(zone)),
6184 			K(low_wmark_pages(zone)),
6185 			K(high_wmark_pages(zone)),
6186 			K(zone->nr_reserved_highatomic),
6187 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6188 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6189 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6190 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6191 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6192 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6193 			K(zone->present_pages),
6194 			K(zone_managed_pages(zone)),
6195 			K(zone_page_state(zone, NR_MLOCK)),
6196 			K(zone_page_state(zone, NR_BOUNCE)),
6197 			K(free_pcp),
6198 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6199 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6200 		printk("lowmem_reserve[]:");
6201 		for (i = 0; i < MAX_NR_ZONES; i++)
6202 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6203 		printk(KERN_CONT "\n");
6204 	}
6205 
6206 	for_each_populated_zone(zone) {
6207 		unsigned int order;
6208 		unsigned long nr[MAX_ORDER], flags, total = 0;
6209 		unsigned char types[MAX_ORDER];
6210 
6211 		if (zone_idx(zone) > max_zone_idx)
6212 			continue;
6213 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6214 			continue;
6215 		show_node(zone);
6216 		printk(KERN_CONT "%s: ", zone->name);
6217 
6218 		spin_lock_irqsave(&zone->lock, flags);
6219 		for (order = 0; order < MAX_ORDER; order++) {
6220 			struct free_area *area = &zone->free_area[order];
6221 			int type;
6222 
6223 			nr[order] = area->nr_free;
6224 			total += nr[order] << order;
6225 
6226 			types[order] = 0;
6227 			for (type = 0; type < MIGRATE_TYPES; type++) {
6228 				if (!free_area_empty(area, type))
6229 					types[order] |= 1 << type;
6230 			}
6231 		}
6232 		spin_unlock_irqrestore(&zone->lock, flags);
6233 		for (order = 0; order < MAX_ORDER; order++) {
6234 			printk(KERN_CONT "%lu*%lukB ",
6235 			       nr[order], K(1UL) << order);
6236 			if (nr[order])
6237 				show_migration_types(types[order]);
6238 		}
6239 		printk(KERN_CONT "= %lukB\n", K(total));
6240 	}
6241 
6242 	for_each_online_node(nid) {
6243 		if (show_mem_node_skip(filter, nid, nodemask))
6244 			continue;
6245 		hugetlb_show_meminfo_node(nid);
6246 	}
6247 
6248 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6249 
6250 	show_swap_cache_info();
6251 }
6252 
6253 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6254 {
6255 	zoneref->zone = zone;
6256 	zoneref->zone_idx = zone_idx(zone);
6257 }
6258 
6259 /*
6260  * Builds allocation fallback zone lists.
6261  *
6262  * Add all populated zones of a node to the zonelist.
6263  */
6264 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6265 {
6266 	struct zone *zone;
6267 	enum zone_type zone_type = MAX_NR_ZONES;
6268 	int nr_zones = 0;
6269 
6270 	do {
6271 		zone_type--;
6272 		zone = pgdat->node_zones + zone_type;
6273 		if (populated_zone(zone)) {
6274 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6275 			check_highest_zone(zone_type);
6276 		}
6277 	} while (zone_type);
6278 
6279 	return nr_zones;
6280 }
6281 
6282 #ifdef CONFIG_NUMA
6283 
6284 static int __parse_numa_zonelist_order(char *s)
6285 {
6286 	/*
6287 	 * We used to support different zonelists modes but they turned
6288 	 * out to be just not useful. Let's keep the warning in place
6289 	 * if somebody still use the cmd line parameter so that we do
6290 	 * not fail it silently
6291 	 */
6292 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6293 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6294 		return -EINVAL;
6295 	}
6296 	return 0;
6297 }
6298 
6299 char numa_zonelist_order[] = "Node";
6300 
6301 /*
6302  * sysctl handler for numa_zonelist_order
6303  */
6304 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6305 		void *buffer, size_t *length, loff_t *ppos)
6306 {
6307 	if (write)
6308 		return __parse_numa_zonelist_order(buffer);
6309 	return proc_dostring(table, write, buffer, length, ppos);
6310 }
6311 
6312 
6313 static int node_load[MAX_NUMNODES];
6314 
6315 /**
6316  * find_next_best_node - find the next node that should appear in a given node's fallback list
6317  * @node: node whose fallback list we're appending
6318  * @used_node_mask: nodemask_t of already used nodes
6319  *
6320  * We use a number of factors to determine which is the next node that should
6321  * appear on a given node's fallback list.  The node should not have appeared
6322  * already in @node's fallback list, and it should be the next closest node
6323  * according to the distance array (which contains arbitrary distance values
6324  * from each node to each node in the system), and should also prefer nodes
6325  * with no CPUs, since presumably they'll have very little allocation pressure
6326  * on them otherwise.
6327  *
6328  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6329  */
6330 int find_next_best_node(int node, nodemask_t *used_node_mask)
6331 {
6332 	int n, val;
6333 	int min_val = INT_MAX;
6334 	int best_node = NUMA_NO_NODE;
6335 
6336 	/* Use the local node if we haven't already */
6337 	if (!node_isset(node, *used_node_mask)) {
6338 		node_set(node, *used_node_mask);
6339 		return node;
6340 	}
6341 
6342 	for_each_node_state(n, N_MEMORY) {
6343 
6344 		/* Don't want a node to appear more than once */
6345 		if (node_isset(n, *used_node_mask))
6346 			continue;
6347 
6348 		/* Use the distance array to find the distance */
6349 		val = node_distance(node, n);
6350 
6351 		/* Penalize nodes under us ("prefer the next node") */
6352 		val += (n < node);
6353 
6354 		/* Give preference to headless and unused nodes */
6355 		if (!cpumask_empty(cpumask_of_node(n)))
6356 			val += PENALTY_FOR_NODE_WITH_CPUS;
6357 
6358 		/* Slight preference for less loaded node */
6359 		val *= MAX_NUMNODES;
6360 		val += node_load[n];
6361 
6362 		if (val < min_val) {
6363 			min_val = val;
6364 			best_node = n;
6365 		}
6366 	}
6367 
6368 	if (best_node >= 0)
6369 		node_set(best_node, *used_node_mask);
6370 
6371 	return best_node;
6372 }
6373 
6374 
6375 /*
6376  * Build zonelists ordered by node and zones within node.
6377  * This results in maximum locality--normal zone overflows into local
6378  * DMA zone, if any--but risks exhausting DMA zone.
6379  */
6380 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6381 		unsigned nr_nodes)
6382 {
6383 	struct zoneref *zonerefs;
6384 	int i;
6385 
6386 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6387 
6388 	for (i = 0; i < nr_nodes; i++) {
6389 		int nr_zones;
6390 
6391 		pg_data_t *node = NODE_DATA(node_order[i]);
6392 
6393 		nr_zones = build_zonerefs_node(node, zonerefs);
6394 		zonerefs += nr_zones;
6395 	}
6396 	zonerefs->zone = NULL;
6397 	zonerefs->zone_idx = 0;
6398 }
6399 
6400 /*
6401  * Build gfp_thisnode zonelists
6402  */
6403 static void build_thisnode_zonelists(pg_data_t *pgdat)
6404 {
6405 	struct zoneref *zonerefs;
6406 	int nr_zones;
6407 
6408 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6409 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6410 	zonerefs += nr_zones;
6411 	zonerefs->zone = NULL;
6412 	zonerefs->zone_idx = 0;
6413 }
6414 
6415 /*
6416  * Build zonelists ordered by zone and nodes within zones.
6417  * This results in conserving DMA zone[s] until all Normal memory is
6418  * exhausted, but results in overflowing to remote node while memory
6419  * may still exist in local DMA zone.
6420  */
6421 
6422 static void build_zonelists(pg_data_t *pgdat)
6423 {
6424 	static int node_order[MAX_NUMNODES];
6425 	int node, nr_nodes = 0;
6426 	nodemask_t used_mask = NODE_MASK_NONE;
6427 	int local_node, prev_node;
6428 
6429 	/* NUMA-aware ordering of nodes */
6430 	local_node = pgdat->node_id;
6431 	prev_node = local_node;
6432 
6433 	memset(node_order, 0, sizeof(node_order));
6434 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6435 		/*
6436 		 * We don't want to pressure a particular node.
6437 		 * So adding penalty to the first node in same
6438 		 * distance group to make it round-robin.
6439 		 */
6440 		if (node_distance(local_node, node) !=
6441 		    node_distance(local_node, prev_node))
6442 			node_load[node] += 1;
6443 
6444 		node_order[nr_nodes++] = node;
6445 		prev_node = node;
6446 	}
6447 
6448 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6449 	build_thisnode_zonelists(pgdat);
6450 	pr_info("Fallback order for Node %d: ", local_node);
6451 	for (node = 0; node < nr_nodes; node++)
6452 		pr_cont("%d ", node_order[node]);
6453 	pr_cont("\n");
6454 }
6455 
6456 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6457 /*
6458  * Return node id of node used for "local" allocations.
6459  * I.e., first node id of first zone in arg node's generic zonelist.
6460  * Used for initializing percpu 'numa_mem', which is used primarily
6461  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6462  */
6463 int local_memory_node(int node)
6464 {
6465 	struct zoneref *z;
6466 
6467 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6468 				   gfp_zone(GFP_KERNEL),
6469 				   NULL);
6470 	return zone_to_nid(z->zone);
6471 }
6472 #endif
6473 
6474 static void setup_min_unmapped_ratio(void);
6475 static void setup_min_slab_ratio(void);
6476 #else	/* CONFIG_NUMA */
6477 
6478 static void build_zonelists(pg_data_t *pgdat)
6479 {
6480 	int node, local_node;
6481 	struct zoneref *zonerefs;
6482 	int nr_zones;
6483 
6484 	local_node = pgdat->node_id;
6485 
6486 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6487 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6488 	zonerefs += nr_zones;
6489 
6490 	/*
6491 	 * Now we build the zonelist so that it contains the zones
6492 	 * of all the other nodes.
6493 	 * We don't want to pressure a particular node, so when
6494 	 * building the zones for node N, we make sure that the
6495 	 * zones coming right after the local ones are those from
6496 	 * node N+1 (modulo N)
6497 	 */
6498 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6499 		if (!node_online(node))
6500 			continue;
6501 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6502 		zonerefs += nr_zones;
6503 	}
6504 	for (node = 0; node < local_node; node++) {
6505 		if (!node_online(node))
6506 			continue;
6507 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6508 		zonerefs += nr_zones;
6509 	}
6510 
6511 	zonerefs->zone = NULL;
6512 	zonerefs->zone_idx = 0;
6513 }
6514 
6515 #endif	/* CONFIG_NUMA */
6516 
6517 /*
6518  * Boot pageset table. One per cpu which is going to be used for all
6519  * zones and all nodes. The parameters will be set in such a way
6520  * that an item put on a list will immediately be handed over to
6521  * the buddy list. This is safe since pageset manipulation is done
6522  * with interrupts disabled.
6523  *
6524  * The boot_pagesets must be kept even after bootup is complete for
6525  * unused processors and/or zones. They do play a role for bootstrapping
6526  * hotplugged processors.
6527  *
6528  * zoneinfo_show() and maybe other functions do
6529  * not check if the processor is online before following the pageset pointer.
6530  * Other parts of the kernel may not check if the zone is available.
6531  */
6532 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6533 /* These effectively disable the pcplists in the boot pageset completely */
6534 #define BOOT_PAGESET_HIGH	0
6535 #define BOOT_PAGESET_BATCH	1
6536 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6537 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6538 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6539 
6540 static void __build_all_zonelists(void *data)
6541 {
6542 	int nid;
6543 	int __maybe_unused cpu;
6544 	pg_data_t *self = data;
6545 
6546 	write_seqlock(&zonelist_update_seq);
6547 
6548 #ifdef CONFIG_NUMA
6549 	memset(node_load, 0, sizeof(node_load));
6550 #endif
6551 
6552 	/*
6553 	 * This node is hotadded and no memory is yet present.   So just
6554 	 * building zonelists is fine - no need to touch other nodes.
6555 	 */
6556 	if (self && !node_online(self->node_id)) {
6557 		build_zonelists(self);
6558 	} else {
6559 		/*
6560 		 * All possible nodes have pgdat preallocated
6561 		 * in free_area_init
6562 		 */
6563 		for_each_node(nid) {
6564 			pg_data_t *pgdat = NODE_DATA(nid);
6565 
6566 			build_zonelists(pgdat);
6567 		}
6568 
6569 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6570 		/*
6571 		 * We now know the "local memory node" for each node--
6572 		 * i.e., the node of the first zone in the generic zonelist.
6573 		 * Set up numa_mem percpu variable for on-line cpus.  During
6574 		 * boot, only the boot cpu should be on-line;  we'll init the
6575 		 * secondary cpus' numa_mem as they come on-line.  During
6576 		 * node/memory hotplug, we'll fixup all on-line cpus.
6577 		 */
6578 		for_each_online_cpu(cpu)
6579 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6580 #endif
6581 	}
6582 
6583 	write_sequnlock(&zonelist_update_seq);
6584 }
6585 
6586 static noinline void __init
6587 build_all_zonelists_init(void)
6588 {
6589 	int cpu;
6590 
6591 	__build_all_zonelists(NULL);
6592 
6593 	/*
6594 	 * Initialize the boot_pagesets that are going to be used
6595 	 * for bootstrapping processors. The real pagesets for
6596 	 * each zone will be allocated later when the per cpu
6597 	 * allocator is available.
6598 	 *
6599 	 * boot_pagesets are used also for bootstrapping offline
6600 	 * cpus if the system is already booted because the pagesets
6601 	 * are needed to initialize allocators on a specific cpu too.
6602 	 * F.e. the percpu allocator needs the page allocator which
6603 	 * needs the percpu allocator in order to allocate its pagesets
6604 	 * (a chicken-egg dilemma).
6605 	 */
6606 	for_each_possible_cpu(cpu)
6607 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6608 
6609 	mminit_verify_zonelist();
6610 	cpuset_init_current_mems_allowed();
6611 }
6612 
6613 /*
6614  * unless system_state == SYSTEM_BOOTING.
6615  *
6616  * __ref due to call of __init annotated helper build_all_zonelists_init
6617  * [protected by SYSTEM_BOOTING].
6618  */
6619 void __ref build_all_zonelists(pg_data_t *pgdat)
6620 {
6621 	unsigned long vm_total_pages;
6622 
6623 	if (system_state == SYSTEM_BOOTING) {
6624 		build_all_zonelists_init();
6625 	} else {
6626 		__build_all_zonelists(pgdat);
6627 		/* cpuset refresh routine should be here */
6628 	}
6629 	/* Get the number of free pages beyond high watermark in all zones. */
6630 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6631 	/*
6632 	 * Disable grouping by mobility if the number of pages in the
6633 	 * system is too low to allow the mechanism to work. It would be
6634 	 * more accurate, but expensive to check per-zone. This check is
6635 	 * made on memory-hotadd so a system can start with mobility
6636 	 * disabled and enable it later
6637 	 */
6638 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6639 		page_group_by_mobility_disabled = 1;
6640 	else
6641 		page_group_by_mobility_disabled = 0;
6642 
6643 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6644 		nr_online_nodes,
6645 		page_group_by_mobility_disabled ? "off" : "on",
6646 		vm_total_pages);
6647 #ifdef CONFIG_NUMA
6648 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6649 #endif
6650 }
6651 
6652 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6653 static bool __meminit
6654 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6655 {
6656 	static struct memblock_region *r;
6657 
6658 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6659 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6660 			for_each_mem_region(r) {
6661 				if (*pfn < memblock_region_memory_end_pfn(r))
6662 					break;
6663 			}
6664 		}
6665 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6666 		    memblock_is_mirror(r)) {
6667 			*pfn = memblock_region_memory_end_pfn(r);
6668 			return true;
6669 		}
6670 	}
6671 	return false;
6672 }
6673 
6674 /*
6675  * Initially all pages are reserved - free ones are freed
6676  * up by memblock_free_all() once the early boot process is
6677  * done. Non-atomic initialization, single-pass.
6678  *
6679  * All aligned pageblocks are initialized to the specified migratetype
6680  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6681  * zone stats (e.g., nr_isolate_pageblock) are touched.
6682  */
6683 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6684 		unsigned long start_pfn, unsigned long zone_end_pfn,
6685 		enum meminit_context context,
6686 		struct vmem_altmap *altmap, int migratetype)
6687 {
6688 	unsigned long pfn, end_pfn = start_pfn + size;
6689 	struct page *page;
6690 
6691 	if (highest_memmap_pfn < end_pfn - 1)
6692 		highest_memmap_pfn = end_pfn - 1;
6693 
6694 #ifdef CONFIG_ZONE_DEVICE
6695 	/*
6696 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6697 	 * memory. We limit the total number of pages to initialize to just
6698 	 * those that might contain the memory mapping. We will defer the
6699 	 * ZONE_DEVICE page initialization until after we have released
6700 	 * the hotplug lock.
6701 	 */
6702 	if (zone == ZONE_DEVICE) {
6703 		if (!altmap)
6704 			return;
6705 
6706 		if (start_pfn == altmap->base_pfn)
6707 			start_pfn += altmap->reserve;
6708 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6709 	}
6710 #endif
6711 
6712 	for (pfn = start_pfn; pfn < end_pfn; ) {
6713 		/*
6714 		 * There can be holes in boot-time mem_map[]s handed to this
6715 		 * function.  They do not exist on hotplugged memory.
6716 		 */
6717 		if (context == MEMINIT_EARLY) {
6718 			if (overlap_memmap_init(zone, &pfn))
6719 				continue;
6720 			if (defer_init(nid, pfn, zone_end_pfn)) {
6721 				deferred_struct_pages = true;
6722 				break;
6723 			}
6724 		}
6725 
6726 		page = pfn_to_page(pfn);
6727 		__init_single_page(page, pfn, zone, nid);
6728 		if (context == MEMINIT_HOTPLUG)
6729 			__SetPageReserved(page);
6730 
6731 		/*
6732 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6733 		 * such that unmovable allocations won't be scattered all
6734 		 * over the place during system boot.
6735 		 */
6736 		if (pageblock_aligned(pfn)) {
6737 			set_pageblock_migratetype(page, migratetype);
6738 			cond_resched();
6739 		}
6740 		pfn++;
6741 	}
6742 }
6743 
6744 #ifdef CONFIG_ZONE_DEVICE
6745 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6746 					  unsigned long zone_idx, int nid,
6747 					  struct dev_pagemap *pgmap)
6748 {
6749 
6750 	__init_single_page(page, pfn, zone_idx, nid);
6751 
6752 	/*
6753 	 * Mark page reserved as it will need to wait for onlining
6754 	 * phase for it to be fully associated with a zone.
6755 	 *
6756 	 * We can use the non-atomic __set_bit operation for setting
6757 	 * the flag as we are still initializing the pages.
6758 	 */
6759 	__SetPageReserved(page);
6760 
6761 	/*
6762 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6763 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6764 	 * ever freed or placed on a driver-private list.
6765 	 */
6766 	page->pgmap = pgmap;
6767 	page->zone_device_data = NULL;
6768 
6769 	/*
6770 	 * Mark the block movable so that blocks are reserved for
6771 	 * movable at startup. This will force kernel allocations
6772 	 * to reserve their blocks rather than leaking throughout
6773 	 * the address space during boot when many long-lived
6774 	 * kernel allocations are made.
6775 	 *
6776 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6777 	 * because this is done early in section_activate()
6778 	 */
6779 	if (pageblock_aligned(pfn)) {
6780 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6781 		cond_resched();
6782 	}
6783 
6784 	/*
6785 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6786 	 * which will set the page count to 1 when allocating the page.
6787 	 */
6788 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6789 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6790 		set_page_count(page, 0);
6791 }
6792 
6793 /*
6794  * With compound page geometry and when struct pages are stored in ram most
6795  * tail pages are reused. Consequently, the amount of unique struct pages to
6796  * initialize is a lot smaller that the total amount of struct pages being
6797  * mapped. This is a paired / mild layering violation with explicit knowledge
6798  * of how the sparse_vmemmap internals handle compound pages in the lack
6799  * of an altmap. See vmemmap_populate_compound_pages().
6800  */
6801 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6802 					      unsigned long nr_pages)
6803 {
6804 	return is_power_of_2(sizeof(struct page)) &&
6805 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6806 }
6807 
6808 static void __ref memmap_init_compound(struct page *head,
6809 				       unsigned long head_pfn,
6810 				       unsigned long zone_idx, int nid,
6811 				       struct dev_pagemap *pgmap,
6812 				       unsigned long nr_pages)
6813 {
6814 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6815 	unsigned int order = pgmap->vmemmap_shift;
6816 
6817 	__SetPageHead(head);
6818 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6819 		struct page *page = pfn_to_page(pfn);
6820 
6821 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6822 		prep_compound_tail(head, pfn - head_pfn);
6823 		set_page_count(page, 0);
6824 
6825 		/*
6826 		 * The first tail page stores important compound page info.
6827 		 * Call prep_compound_head() after the first tail page has
6828 		 * been initialized, to not have the data overwritten.
6829 		 */
6830 		if (pfn == head_pfn + 1)
6831 			prep_compound_head(head, order);
6832 	}
6833 }
6834 
6835 void __ref memmap_init_zone_device(struct zone *zone,
6836 				   unsigned long start_pfn,
6837 				   unsigned long nr_pages,
6838 				   struct dev_pagemap *pgmap)
6839 {
6840 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6841 	struct pglist_data *pgdat = zone->zone_pgdat;
6842 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6843 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6844 	unsigned long zone_idx = zone_idx(zone);
6845 	unsigned long start = jiffies;
6846 	int nid = pgdat->node_id;
6847 
6848 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6849 		return;
6850 
6851 	/*
6852 	 * The call to memmap_init should have already taken care
6853 	 * of the pages reserved for the memmap, so we can just jump to
6854 	 * the end of that region and start processing the device pages.
6855 	 */
6856 	if (altmap) {
6857 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6858 		nr_pages = end_pfn - start_pfn;
6859 	}
6860 
6861 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6862 		struct page *page = pfn_to_page(pfn);
6863 
6864 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6865 
6866 		if (pfns_per_compound == 1)
6867 			continue;
6868 
6869 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6870 				     compound_nr_pages(altmap, pfns_per_compound));
6871 	}
6872 
6873 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6874 		nr_pages, jiffies_to_msecs(jiffies - start));
6875 }
6876 
6877 #endif
6878 static void __meminit zone_init_free_lists(struct zone *zone)
6879 {
6880 	unsigned int order, t;
6881 	for_each_migratetype_order(order, t) {
6882 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6883 		zone->free_area[order].nr_free = 0;
6884 	}
6885 }
6886 
6887 /*
6888  * Only struct pages that correspond to ranges defined by memblock.memory
6889  * are zeroed and initialized by going through __init_single_page() during
6890  * memmap_init_zone_range().
6891  *
6892  * But, there could be struct pages that correspond to holes in
6893  * memblock.memory. This can happen because of the following reasons:
6894  * - physical memory bank size is not necessarily the exact multiple of the
6895  *   arbitrary section size
6896  * - early reserved memory may not be listed in memblock.memory
6897  * - memory layouts defined with memmap= kernel parameter may not align
6898  *   nicely with memmap sections
6899  *
6900  * Explicitly initialize those struct pages so that:
6901  * - PG_Reserved is set
6902  * - zone and node links point to zone and node that span the page if the
6903  *   hole is in the middle of a zone
6904  * - zone and node links point to adjacent zone/node if the hole falls on
6905  *   the zone boundary; the pages in such holes will be prepended to the
6906  *   zone/node above the hole except for the trailing pages in the last
6907  *   section that will be appended to the zone/node below.
6908  */
6909 static void __init init_unavailable_range(unsigned long spfn,
6910 					  unsigned long epfn,
6911 					  int zone, int node)
6912 {
6913 	unsigned long pfn;
6914 	u64 pgcnt = 0;
6915 
6916 	for (pfn = spfn; pfn < epfn; pfn++) {
6917 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6918 			pfn = pageblock_end_pfn(pfn) - 1;
6919 			continue;
6920 		}
6921 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6922 		__SetPageReserved(pfn_to_page(pfn));
6923 		pgcnt++;
6924 	}
6925 
6926 	if (pgcnt)
6927 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6928 			node, zone_names[zone], pgcnt);
6929 }
6930 
6931 static void __init memmap_init_zone_range(struct zone *zone,
6932 					  unsigned long start_pfn,
6933 					  unsigned long end_pfn,
6934 					  unsigned long *hole_pfn)
6935 {
6936 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6937 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6938 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6939 
6940 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6941 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6942 
6943 	if (start_pfn >= end_pfn)
6944 		return;
6945 
6946 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6947 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6948 
6949 	if (*hole_pfn < start_pfn)
6950 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6951 
6952 	*hole_pfn = end_pfn;
6953 }
6954 
6955 static void __init memmap_init(void)
6956 {
6957 	unsigned long start_pfn, end_pfn;
6958 	unsigned long hole_pfn = 0;
6959 	int i, j, zone_id = 0, nid;
6960 
6961 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6962 		struct pglist_data *node = NODE_DATA(nid);
6963 
6964 		for (j = 0; j < MAX_NR_ZONES; j++) {
6965 			struct zone *zone = node->node_zones + j;
6966 
6967 			if (!populated_zone(zone))
6968 				continue;
6969 
6970 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6971 					       &hole_pfn);
6972 			zone_id = j;
6973 		}
6974 	}
6975 
6976 #ifdef CONFIG_SPARSEMEM
6977 	/*
6978 	 * Initialize the memory map for hole in the range [memory_end,
6979 	 * section_end].
6980 	 * Append the pages in this hole to the highest zone in the last
6981 	 * node.
6982 	 * The call to init_unavailable_range() is outside the ifdef to
6983 	 * silence the compiler warining about zone_id set but not used;
6984 	 * for FLATMEM it is a nop anyway
6985 	 */
6986 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6987 	if (hole_pfn < end_pfn)
6988 #endif
6989 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6990 }
6991 
6992 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6993 			  phys_addr_t min_addr, int nid, bool exact_nid)
6994 {
6995 	void *ptr;
6996 
6997 	if (exact_nid)
6998 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6999 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7000 						   nid);
7001 	else
7002 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7003 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7004 						 nid);
7005 
7006 	if (ptr && size > 0)
7007 		page_init_poison(ptr, size);
7008 
7009 	return ptr;
7010 }
7011 
7012 static int zone_batchsize(struct zone *zone)
7013 {
7014 #ifdef CONFIG_MMU
7015 	int batch;
7016 
7017 	/*
7018 	 * The number of pages to batch allocate is either ~0.1%
7019 	 * of the zone or 1MB, whichever is smaller. The batch
7020 	 * size is striking a balance between allocation latency
7021 	 * and zone lock contention.
7022 	 */
7023 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7024 	batch /= 4;		/* We effectively *= 4 below */
7025 	if (batch < 1)
7026 		batch = 1;
7027 
7028 	/*
7029 	 * Clamp the batch to a 2^n - 1 value. Having a power
7030 	 * of 2 value was found to be more likely to have
7031 	 * suboptimal cache aliasing properties in some cases.
7032 	 *
7033 	 * For example if 2 tasks are alternately allocating
7034 	 * batches of pages, one task can end up with a lot
7035 	 * of pages of one half of the possible page colors
7036 	 * and the other with pages of the other colors.
7037 	 */
7038 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7039 
7040 	return batch;
7041 
7042 #else
7043 	/* The deferral and batching of frees should be suppressed under NOMMU
7044 	 * conditions.
7045 	 *
7046 	 * The problem is that NOMMU needs to be able to allocate large chunks
7047 	 * of contiguous memory as there's no hardware page translation to
7048 	 * assemble apparent contiguous memory from discontiguous pages.
7049 	 *
7050 	 * Queueing large contiguous runs of pages for batching, however,
7051 	 * causes the pages to actually be freed in smaller chunks.  As there
7052 	 * can be a significant delay between the individual batches being
7053 	 * recycled, this leads to the once large chunks of space being
7054 	 * fragmented and becoming unavailable for high-order allocations.
7055 	 */
7056 	return 0;
7057 #endif
7058 }
7059 
7060 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7061 {
7062 #ifdef CONFIG_MMU
7063 	int high;
7064 	int nr_split_cpus;
7065 	unsigned long total_pages;
7066 
7067 	if (!percpu_pagelist_high_fraction) {
7068 		/*
7069 		 * By default, the high value of the pcp is based on the zone
7070 		 * low watermark so that if they are full then background
7071 		 * reclaim will not be started prematurely.
7072 		 */
7073 		total_pages = low_wmark_pages(zone);
7074 	} else {
7075 		/*
7076 		 * If percpu_pagelist_high_fraction is configured, the high
7077 		 * value is based on a fraction of the managed pages in the
7078 		 * zone.
7079 		 */
7080 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7081 	}
7082 
7083 	/*
7084 	 * Split the high value across all online CPUs local to the zone. Note
7085 	 * that early in boot that CPUs may not be online yet and that during
7086 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7087 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7088 	 * all online CPUs to mitigate the risk that reclaim is triggered
7089 	 * prematurely due to pages stored on pcp lists.
7090 	 */
7091 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7092 	if (!nr_split_cpus)
7093 		nr_split_cpus = num_online_cpus();
7094 	high = total_pages / nr_split_cpus;
7095 
7096 	/*
7097 	 * Ensure high is at least batch*4. The multiple is based on the
7098 	 * historical relationship between high and batch.
7099 	 */
7100 	high = max(high, batch << 2);
7101 
7102 	return high;
7103 #else
7104 	return 0;
7105 #endif
7106 }
7107 
7108 /*
7109  * pcp->high and pcp->batch values are related and generally batch is lower
7110  * than high. They are also related to pcp->count such that count is lower
7111  * than high, and as soon as it reaches high, the pcplist is flushed.
7112  *
7113  * However, guaranteeing these relations at all times would require e.g. write
7114  * barriers here but also careful usage of read barriers at the read side, and
7115  * thus be prone to error and bad for performance. Thus the update only prevents
7116  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7117  * can cope with those fields changing asynchronously, and fully trust only the
7118  * pcp->count field on the local CPU with interrupts disabled.
7119  *
7120  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7121  * outside of boot time (or some other assurance that no concurrent updaters
7122  * exist).
7123  */
7124 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7125 		unsigned long batch)
7126 {
7127 	WRITE_ONCE(pcp->batch, batch);
7128 	WRITE_ONCE(pcp->high, high);
7129 }
7130 
7131 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7132 {
7133 	int pindex;
7134 
7135 	memset(pcp, 0, sizeof(*pcp));
7136 	memset(pzstats, 0, sizeof(*pzstats));
7137 
7138 	spin_lock_init(&pcp->lock);
7139 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7140 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7141 
7142 	/*
7143 	 * Set batch and high values safe for a boot pageset. A true percpu
7144 	 * pageset's initialization will update them subsequently. Here we don't
7145 	 * need to be as careful as pageset_update() as nobody can access the
7146 	 * pageset yet.
7147 	 */
7148 	pcp->high = BOOT_PAGESET_HIGH;
7149 	pcp->batch = BOOT_PAGESET_BATCH;
7150 	pcp->free_factor = 0;
7151 }
7152 
7153 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7154 		unsigned long batch)
7155 {
7156 	struct per_cpu_pages *pcp;
7157 	int cpu;
7158 
7159 	for_each_possible_cpu(cpu) {
7160 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7161 		pageset_update(pcp, high, batch);
7162 	}
7163 }
7164 
7165 /*
7166  * Calculate and set new high and batch values for all per-cpu pagesets of a
7167  * zone based on the zone's size.
7168  */
7169 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7170 {
7171 	int new_high, new_batch;
7172 
7173 	new_batch = max(1, zone_batchsize(zone));
7174 	new_high = zone_highsize(zone, new_batch, cpu_online);
7175 
7176 	if (zone->pageset_high == new_high &&
7177 	    zone->pageset_batch == new_batch)
7178 		return;
7179 
7180 	zone->pageset_high = new_high;
7181 	zone->pageset_batch = new_batch;
7182 
7183 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7184 }
7185 
7186 void __meminit setup_zone_pageset(struct zone *zone)
7187 {
7188 	int cpu;
7189 
7190 	/* Size may be 0 on !SMP && !NUMA */
7191 	if (sizeof(struct per_cpu_zonestat) > 0)
7192 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7193 
7194 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7195 	for_each_possible_cpu(cpu) {
7196 		struct per_cpu_pages *pcp;
7197 		struct per_cpu_zonestat *pzstats;
7198 
7199 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7200 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7201 		per_cpu_pages_init(pcp, pzstats);
7202 	}
7203 
7204 	zone_set_pageset_high_and_batch(zone, 0);
7205 }
7206 
7207 /*
7208  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7209  * page high values need to be recalculated.
7210  */
7211 static void zone_pcp_update(struct zone *zone, int cpu_online)
7212 {
7213 	mutex_lock(&pcp_batch_high_lock);
7214 	zone_set_pageset_high_and_batch(zone, cpu_online);
7215 	mutex_unlock(&pcp_batch_high_lock);
7216 }
7217 
7218 /*
7219  * Allocate per cpu pagesets and initialize them.
7220  * Before this call only boot pagesets were available.
7221  */
7222 void __init setup_per_cpu_pageset(void)
7223 {
7224 	struct pglist_data *pgdat;
7225 	struct zone *zone;
7226 	int __maybe_unused cpu;
7227 
7228 	for_each_populated_zone(zone)
7229 		setup_zone_pageset(zone);
7230 
7231 #ifdef CONFIG_NUMA
7232 	/*
7233 	 * Unpopulated zones continue using the boot pagesets.
7234 	 * The numa stats for these pagesets need to be reset.
7235 	 * Otherwise, they will end up skewing the stats of
7236 	 * the nodes these zones are associated with.
7237 	 */
7238 	for_each_possible_cpu(cpu) {
7239 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7240 		memset(pzstats->vm_numa_event, 0,
7241 		       sizeof(pzstats->vm_numa_event));
7242 	}
7243 #endif
7244 
7245 	for_each_online_pgdat(pgdat)
7246 		pgdat->per_cpu_nodestats =
7247 			alloc_percpu(struct per_cpu_nodestat);
7248 }
7249 
7250 static __meminit void zone_pcp_init(struct zone *zone)
7251 {
7252 	/*
7253 	 * per cpu subsystem is not up at this point. The following code
7254 	 * relies on the ability of the linker to provide the
7255 	 * offset of a (static) per cpu variable into the per cpu area.
7256 	 */
7257 	zone->per_cpu_pageset = &boot_pageset;
7258 	zone->per_cpu_zonestats = &boot_zonestats;
7259 	zone->pageset_high = BOOT_PAGESET_HIGH;
7260 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7261 
7262 	if (populated_zone(zone))
7263 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7264 			 zone->present_pages, zone_batchsize(zone));
7265 }
7266 
7267 void __meminit init_currently_empty_zone(struct zone *zone,
7268 					unsigned long zone_start_pfn,
7269 					unsigned long size)
7270 {
7271 	struct pglist_data *pgdat = zone->zone_pgdat;
7272 	int zone_idx = zone_idx(zone) + 1;
7273 
7274 	if (zone_idx > pgdat->nr_zones)
7275 		pgdat->nr_zones = zone_idx;
7276 
7277 	zone->zone_start_pfn = zone_start_pfn;
7278 
7279 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7280 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7281 			pgdat->node_id,
7282 			(unsigned long)zone_idx(zone),
7283 			zone_start_pfn, (zone_start_pfn + size));
7284 
7285 	zone_init_free_lists(zone);
7286 	zone->initialized = 1;
7287 }
7288 
7289 /**
7290  * get_pfn_range_for_nid - Return the start and end page frames for a node
7291  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7292  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7293  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7294  *
7295  * It returns the start and end page frame of a node based on information
7296  * provided by memblock_set_node(). If called for a node
7297  * with no available memory, a warning is printed and the start and end
7298  * PFNs will be 0.
7299  */
7300 void __init get_pfn_range_for_nid(unsigned int nid,
7301 			unsigned long *start_pfn, unsigned long *end_pfn)
7302 {
7303 	unsigned long this_start_pfn, this_end_pfn;
7304 	int i;
7305 
7306 	*start_pfn = -1UL;
7307 	*end_pfn = 0;
7308 
7309 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7310 		*start_pfn = min(*start_pfn, this_start_pfn);
7311 		*end_pfn = max(*end_pfn, this_end_pfn);
7312 	}
7313 
7314 	if (*start_pfn == -1UL)
7315 		*start_pfn = 0;
7316 }
7317 
7318 /*
7319  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7320  * assumption is made that zones within a node are ordered in monotonic
7321  * increasing memory addresses so that the "highest" populated zone is used
7322  */
7323 static void __init find_usable_zone_for_movable(void)
7324 {
7325 	int zone_index;
7326 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7327 		if (zone_index == ZONE_MOVABLE)
7328 			continue;
7329 
7330 		if (arch_zone_highest_possible_pfn[zone_index] >
7331 				arch_zone_lowest_possible_pfn[zone_index])
7332 			break;
7333 	}
7334 
7335 	VM_BUG_ON(zone_index == -1);
7336 	movable_zone = zone_index;
7337 }
7338 
7339 /*
7340  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7341  * because it is sized independent of architecture. Unlike the other zones,
7342  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7343  * in each node depending on the size of each node and how evenly kernelcore
7344  * is distributed. This helper function adjusts the zone ranges
7345  * provided by the architecture for a given node by using the end of the
7346  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7347  * zones within a node are in order of monotonic increases memory addresses
7348  */
7349 static void __init adjust_zone_range_for_zone_movable(int nid,
7350 					unsigned long zone_type,
7351 					unsigned long node_start_pfn,
7352 					unsigned long node_end_pfn,
7353 					unsigned long *zone_start_pfn,
7354 					unsigned long *zone_end_pfn)
7355 {
7356 	/* Only adjust if ZONE_MOVABLE is on this node */
7357 	if (zone_movable_pfn[nid]) {
7358 		/* Size ZONE_MOVABLE */
7359 		if (zone_type == ZONE_MOVABLE) {
7360 			*zone_start_pfn = zone_movable_pfn[nid];
7361 			*zone_end_pfn = min(node_end_pfn,
7362 				arch_zone_highest_possible_pfn[movable_zone]);
7363 
7364 		/* Adjust for ZONE_MOVABLE starting within this range */
7365 		} else if (!mirrored_kernelcore &&
7366 			*zone_start_pfn < zone_movable_pfn[nid] &&
7367 			*zone_end_pfn > zone_movable_pfn[nid]) {
7368 			*zone_end_pfn = zone_movable_pfn[nid];
7369 
7370 		/* Check if this whole range is within ZONE_MOVABLE */
7371 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7372 			*zone_start_pfn = *zone_end_pfn;
7373 	}
7374 }
7375 
7376 /*
7377  * Return the number of pages a zone spans in a node, including holes
7378  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7379  */
7380 static unsigned long __init zone_spanned_pages_in_node(int nid,
7381 					unsigned long zone_type,
7382 					unsigned long node_start_pfn,
7383 					unsigned long node_end_pfn,
7384 					unsigned long *zone_start_pfn,
7385 					unsigned long *zone_end_pfn)
7386 {
7387 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7388 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7389 	/* When hotadd a new node from cpu_up(), the node should be empty */
7390 	if (!node_start_pfn && !node_end_pfn)
7391 		return 0;
7392 
7393 	/* Get the start and end of the zone */
7394 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7395 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7396 	adjust_zone_range_for_zone_movable(nid, zone_type,
7397 				node_start_pfn, node_end_pfn,
7398 				zone_start_pfn, zone_end_pfn);
7399 
7400 	/* Check that this node has pages within the zone's required range */
7401 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7402 		return 0;
7403 
7404 	/* Move the zone boundaries inside the node if necessary */
7405 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7406 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7407 
7408 	/* Return the spanned pages */
7409 	return *zone_end_pfn - *zone_start_pfn;
7410 }
7411 
7412 /*
7413  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7414  * then all holes in the requested range will be accounted for.
7415  */
7416 unsigned long __init __absent_pages_in_range(int nid,
7417 				unsigned long range_start_pfn,
7418 				unsigned long range_end_pfn)
7419 {
7420 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7421 	unsigned long start_pfn, end_pfn;
7422 	int i;
7423 
7424 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7425 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7426 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7427 		nr_absent -= end_pfn - start_pfn;
7428 	}
7429 	return nr_absent;
7430 }
7431 
7432 /**
7433  * absent_pages_in_range - Return number of page frames in holes within a range
7434  * @start_pfn: The start PFN to start searching for holes
7435  * @end_pfn: The end PFN to stop searching for holes
7436  *
7437  * Return: the number of pages frames in memory holes within a range.
7438  */
7439 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7440 							unsigned long end_pfn)
7441 {
7442 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7443 }
7444 
7445 /* Return the number of page frames in holes in a zone on a node */
7446 static unsigned long __init zone_absent_pages_in_node(int nid,
7447 					unsigned long zone_type,
7448 					unsigned long node_start_pfn,
7449 					unsigned long node_end_pfn)
7450 {
7451 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7452 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7453 	unsigned long zone_start_pfn, zone_end_pfn;
7454 	unsigned long nr_absent;
7455 
7456 	/* When hotadd a new node from cpu_up(), the node should be empty */
7457 	if (!node_start_pfn && !node_end_pfn)
7458 		return 0;
7459 
7460 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7461 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7462 
7463 	adjust_zone_range_for_zone_movable(nid, zone_type,
7464 			node_start_pfn, node_end_pfn,
7465 			&zone_start_pfn, &zone_end_pfn);
7466 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7467 
7468 	/*
7469 	 * ZONE_MOVABLE handling.
7470 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7471 	 * and vice versa.
7472 	 */
7473 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7474 		unsigned long start_pfn, end_pfn;
7475 		struct memblock_region *r;
7476 
7477 		for_each_mem_region(r) {
7478 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7479 					  zone_start_pfn, zone_end_pfn);
7480 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7481 					zone_start_pfn, zone_end_pfn);
7482 
7483 			if (zone_type == ZONE_MOVABLE &&
7484 			    memblock_is_mirror(r))
7485 				nr_absent += end_pfn - start_pfn;
7486 
7487 			if (zone_type == ZONE_NORMAL &&
7488 			    !memblock_is_mirror(r))
7489 				nr_absent += end_pfn - start_pfn;
7490 		}
7491 	}
7492 
7493 	return nr_absent;
7494 }
7495 
7496 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7497 						unsigned long node_start_pfn,
7498 						unsigned long node_end_pfn)
7499 {
7500 	unsigned long realtotalpages = 0, totalpages = 0;
7501 	enum zone_type i;
7502 
7503 	for (i = 0; i < MAX_NR_ZONES; i++) {
7504 		struct zone *zone = pgdat->node_zones + i;
7505 		unsigned long zone_start_pfn, zone_end_pfn;
7506 		unsigned long spanned, absent;
7507 		unsigned long size, real_size;
7508 
7509 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7510 						     node_start_pfn,
7511 						     node_end_pfn,
7512 						     &zone_start_pfn,
7513 						     &zone_end_pfn);
7514 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7515 						   node_start_pfn,
7516 						   node_end_pfn);
7517 
7518 		size = spanned;
7519 		real_size = size - absent;
7520 
7521 		if (size)
7522 			zone->zone_start_pfn = zone_start_pfn;
7523 		else
7524 			zone->zone_start_pfn = 0;
7525 		zone->spanned_pages = size;
7526 		zone->present_pages = real_size;
7527 #if defined(CONFIG_MEMORY_HOTPLUG)
7528 		zone->present_early_pages = real_size;
7529 #endif
7530 
7531 		totalpages += size;
7532 		realtotalpages += real_size;
7533 	}
7534 
7535 	pgdat->node_spanned_pages = totalpages;
7536 	pgdat->node_present_pages = realtotalpages;
7537 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7538 }
7539 
7540 #ifndef CONFIG_SPARSEMEM
7541 /*
7542  * Calculate the size of the zone->blockflags rounded to an unsigned long
7543  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7544  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7545  * round what is now in bits to nearest long in bits, then return it in
7546  * bytes.
7547  */
7548 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7549 {
7550 	unsigned long usemapsize;
7551 
7552 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7553 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7554 	usemapsize = usemapsize >> pageblock_order;
7555 	usemapsize *= NR_PAGEBLOCK_BITS;
7556 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7557 
7558 	return usemapsize / 8;
7559 }
7560 
7561 static void __ref setup_usemap(struct zone *zone)
7562 {
7563 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7564 					       zone->spanned_pages);
7565 	zone->pageblock_flags = NULL;
7566 	if (usemapsize) {
7567 		zone->pageblock_flags =
7568 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7569 					    zone_to_nid(zone));
7570 		if (!zone->pageblock_flags)
7571 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7572 			      usemapsize, zone->name, zone_to_nid(zone));
7573 	}
7574 }
7575 #else
7576 static inline void setup_usemap(struct zone *zone) {}
7577 #endif /* CONFIG_SPARSEMEM */
7578 
7579 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7580 
7581 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7582 void __init set_pageblock_order(void)
7583 {
7584 	unsigned int order = MAX_ORDER - 1;
7585 
7586 	/* Check that pageblock_nr_pages has not already been setup */
7587 	if (pageblock_order)
7588 		return;
7589 
7590 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7591 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7592 		order = HUGETLB_PAGE_ORDER;
7593 
7594 	/*
7595 	 * Assume the largest contiguous order of interest is a huge page.
7596 	 * This value may be variable depending on boot parameters on IA64 and
7597 	 * powerpc.
7598 	 */
7599 	pageblock_order = order;
7600 }
7601 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7602 
7603 /*
7604  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7605  * is unused as pageblock_order is set at compile-time. See
7606  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7607  * the kernel config
7608  */
7609 void __init set_pageblock_order(void)
7610 {
7611 }
7612 
7613 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7614 
7615 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7616 						unsigned long present_pages)
7617 {
7618 	unsigned long pages = spanned_pages;
7619 
7620 	/*
7621 	 * Provide a more accurate estimation if there are holes within
7622 	 * the zone and SPARSEMEM is in use. If there are holes within the
7623 	 * zone, each populated memory region may cost us one or two extra
7624 	 * memmap pages due to alignment because memmap pages for each
7625 	 * populated regions may not be naturally aligned on page boundary.
7626 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7627 	 */
7628 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7629 	    IS_ENABLED(CONFIG_SPARSEMEM))
7630 		pages = present_pages;
7631 
7632 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7633 }
7634 
7635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7636 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7637 {
7638 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7639 
7640 	spin_lock_init(&ds_queue->split_queue_lock);
7641 	INIT_LIST_HEAD(&ds_queue->split_queue);
7642 	ds_queue->split_queue_len = 0;
7643 }
7644 #else
7645 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7646 #endif
7647 
7648 #ifdef CONFIG_COMPACTION
7649 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7650 {
7651 	init_waitqueue_head(&pgdat->kcompactd_wait);
7652 }
7653 #else
7654 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7655 #endif
7656 
7657 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7658 {
7659 	int i;
7660 
7661 	pgdat_resize_init(pgdat);
7662 	pgdat_kswapd_lock_init(pgdat);
7663 
7664 	pgdat_init_split_queue(pgdat);
7665 	pgdat_init_kcompactd(pgdat);
7666 
7667 	init_waitqueue_head(&pgdat->kswapd_wait);
7668 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7669 
7670 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7671 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7672 
7673 	pgdat_page_ext_init(pgdat);
7674 	lruvec_init(&pgdat->__lruvec);
7675 }
7676 
7677 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7678 							unsigned long remaining_pages)
7679 {
7680 	atomic_long_set(&zone->managed_pages, remaining_pages);
7681 	zone_set_nid(zone, nid);
7682 	zone->name = zone_names[idx];
7683 	zone->zone_pgdat = NODE_DATA(nid);
7684 	spin_lock_init(&zone->lock);
7685 	zone_seqlock_init(zone);
7686 	zone_pcp_init(zone);
7687 }
7688 
7689 /*
7690  * Set up the zone data structures
7691  * - init pgdat internals
7692  * - init all zones belonging to this node
7693  *
7694  * NOTE: this function is only called during memory hotplug
7695  */
7696 #ifdef CONFIG_MEMORY_HOTPLUG
7697 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7698 {
7699 	int nid = pgdat->node_id;
7700 	enum zone_type z;
7701 	int cpu;
7702 
7703 	pgdat_init_internals(pgdat);
7704 
7705 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7706 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7707 
7708 	/*
7709 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7710 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7711 	 * when it starts in the near future.
7712 	 */
7713 	pgdat->nr_zones = 0;
7714 	pgdat->kswapd_order = 0;
7715 	pgdat->kswapd_highest_zoneidx = 0;
7716 	pgdat->node_start_pfn = 0;
7717 	for_each_online_cpu(cpu) {
7718 		struct per_cpu_nodestat *p;
7719 
7720 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7721 		memset(p, 0, sizeof(*p));
7722 	}
7723 
7724 	for (z = 0; z < MAX_NR_ZONES; z++)
7725 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7726 }
7727 #endif
7728 
7729 /*
7730  * Set up the zone data structures:
7731  *   - mark all pages reserved
7732  *   - mark all memory queues empty
7733  *   - clear the memory bitmaps
7734  *
7735  * NOTE: pgdat should get zeroed by caller.
7736  * NOTE: this function is only called during early init.
7737  */
7738 static void __init free_area_init_core(struct pglist_data *pgdat)
7739 {
7740 	enum zone_type j;
7741 	int nid = pgdat->node_id;
7742 
7743 	pgdat_init_internals(pgdat);
7744 	pgdat->per_cpu_nodestats = &boot_nodestats;
7745 
7746 	for (j = 0; j < MAX_NR_ZONES; j++) {
7747 		struct zone *zone = pgdat->node_zones + j;
7748 		unsigned long size, freesize, memmap_pages;
7749 
7750 		size = zone->spanned_pages;
7751 		freesize = zone->present_pages;
7752 
7753 		/*
7754 		 * Adjust freesize so that it accounts for how much memory
7755 		 * is used by this zone for memmap. This affects the watermark
7756 		 * and per-cpu initialisations
7757 		 */
7758 		memmap_pages = calc_memmap_size(size, freesize);
7759 		if (!is_highmem_idx(j)) {
7760 			if (freesize >= memmap_pages) {
7761 				freesize -= memmap_pages;
7762 				if (memmap_pages)
7763 					pr_debug("  %s zone: %lu pages used for memmap\n",
7764 						 zone_names[j], memmap_pages);
7765 			} else
7766 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7767 					zone_names[j], memmap_pages, freesize);
7768 		}
7769 
7770 		/* Account for reserved pages */
7771 		if (j == 0 && freesize > dma_reserve) {
7772 			freesize -= dma_reserve;
7773 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7774 		}
7775 
7776 		if (!is_highmem_idx(j))
7777 			nr_kernel_pages += freesize;
7778 		/* Charge for highmem memmap if there are enough kernel pages */
7779 		else if (nr_kernel_pages > memmap_pages * 2)
7780 			nr_kernel_pages -= memmap_pages;
7781 		nr_all_pages += freesize;
7782 
7783 		/*
7784 		 * Set an approximate value for lowmem here, it will be adjusted
7785 		 * when the bootmem allocator frees pages into the buddy system.
7786 		 * And all highmem pages will be managed by the buddy system.
7787 		 */
7788 		zone_init_internals(zone, j, nid, freesize);
7789 
7790 		if (!size)
7791 			continue;
7792 
7793 		set_pageblock_order();
7794 		setup_usemap(zone);
7795 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7796 	}
7797 }
7798 
7799 #ifdef CONFIG_FLATMEM
7800 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7801 {
7802 	unsigned long __maybe_unused start = 0;
7803 	unsigned long __maybe_unused offset = 0;
7804 
7805 	/* Skip empty nodes */
7806 	if (!pgdat->node_spanned_pages)
7807 		return;
7808 
7809 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7810 	offset = pgdat->node_start_pfn - start;
7811 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7812 	if (!pgdat->node_mem_map) {
7813 		unsigned long size, end;
7814 		struct page *map;
7815 
7816 		/*
7817 		 * The zone's endpoints aren't required to be MAX_ORDER
7818 		 * aligned but the node_mem_map endpoints must be in order
7819 		 * for the buddy allocator to function correctly.
7820 		 */
7821 		end = pgdat_end_pfn(pgdat);
7822 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7823 		size =  (end - start) * sizeof(struct page);
7824 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7825 				   pgdat->node_id, false);
7826 		if (!map)
7827 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7828 			      size, pgdat->node_id);
7829 		pgdat->node_mem_map = map + offset;
7830 	}
7831 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7832 				__func__, pgdat->node_id, (unsigned long)pgdat,
7833 				(unsigned long)pgdat->node_mem_map);
7834 #ifndef CONFIG_NUMA
7835 	/*
7836 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7837 	 */
7838 	if (pgdat == NODE_DATA(0)) {
7839 		mem_map = NODE_DATA(0)->node_mem_map;
7840 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7841 			mem_map -= offset;
7842 	}
7843 #endif
7844 }
7845 #else
7846 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7847 #endif /* CONFIG_FLATMEM */
7848 
7849 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7850 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7851 {
7852 	pgdat->first_deferred_pfn = ULONG_MAX;
7853 }
7854 #else
7855 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7856 #endif
7857 
7858 static void __init free_area_init_node(int nid)
7859 {
7860 	pg_data_t *pgdat = NODE_DATA(nid);
7861 	unsigned long start_pfn = 0;
7862 	unsigned long end_pfn = 0;
7863 
7864 	/* pg_data_t should be reset to zero when it's allocated */
7865 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7866 
7867 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7868 
7869 	pgdat->node_id = nid;
7870 	pgdat->node_start_pfn = start_pfn;
7871 	pgdat->per_cpu_nodestats = NULL;
7872 
7873 	if (start_pfn != end_pfn) {
7874 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7875 			(u64)start_pfn << PAGE_SHIFT,
7876 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7877 	} else {
7878 		pr_info("Initmem setup node %d as memoryless\n", nid);
7879 	}
7880 
7881 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7882 
7883 	alloc_node_mem_map(pgdat);
7884 	pgdat_set_deferred_range(pgdat);
7885 
7886 	free_area_init_core(pgdat);
7887 	lru_gen_init_pgdat(pgdat);
7888 }
7889 
7890 static void __init free_area_init_memoryless_node(int nid)
7891 {
7892 	free_area_init_node(nid);
7893 }
7894 
7895 #if MAX_NUMNODES > 1
7896 /*
7897  * Figure out the number of possible node ids.
7898  */
7899 void __init setup_nr_node_ids(void)
7900 {
7901 	unsigned int highest;
7902 
7903 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7904 	nr_node_ids = highest + 1;
7905 }
7906 #endif
7907 
7908 /**
7909  * node_map_pfn_alignment - determine the maximum internode alignment
7910  *
7911  * This function should be called after node map is populated and sorted.
7912  * It calculates the maximum power of two alignment which can distinguish
7913  * all the nodes.
7914  *
7915  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7916  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7917  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7918  * shifted, 1GiB is enough and this function will indicate so.
7919  *
7920  * This is used to test whether pfn -> nid mapping of the chosen memory
7921  * model has fine enough granularity to avoid incorrect mapping for the
7922  * populated node map.
7923  *
7924  * Return: the determined alignment in pfn's.  0 if there is no alignment
7925  * requirement (single node).
7926  */
7927 unsigned long __init node_map_pfn_alignment(void)
7928 {
7929 	unsigned long accl_mask = 0, last_end = 0;
7930 	unsigned long start, end, mask;
7931 	int last_nid = NUMA_NO_NODE;
7932 	int i, nid;
7933 
7934 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7935 		if (!start || last_nid < 0 || last_nid == nid) {
7936 			last_nid = nid;
7937 			last_end = end;
7938 			continue;
7939 		}
7940 
7941 		/*
7942 		 * Start with a mask granular enough to pin-point to the
7943 		 * start pfn and tick off bits one-by-one until it becomes
7944 		 * too coarse to separate the current node from the last.
7945 		 */
7946 		mask = ~((1 << __ffs(start)) - 1);
7947 		while (mask && last_end <= (start & (mask << 1)))
7948 			mask <<= 1;
7949 
7950 		/* accumulate all internode masks */
7951 		accl_mask |= mask;
7952 	}
7953 
7954 	/* convert mask to number of pages */
7955 	return ~accl_mask + 1;
7956 }
7957 
7958 /*
7959  * early_calculate_totalpages()
7960  * Sum pages in active regions for movable zone.
7961  * Populate N_MEMORY for calculating usable_nodes.
7962  */
7963 static unsigned long __init early_calculate_totalpages(void)
7964 {
7965 	unsigned long totalpages = 0;
7966 	unsigned long start_pfn, end_pfn;
7967 	int i, nid;
7968 
7969 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7970 		unsigned long pages = end_pfn - start_pfn;
7971 
7972 		totalpages += pages;
7973 		if (pages)
7974 			node_set_state(nid, N_MEMORY);
7975 	}
7976 	return totalpages;
7977 }
7978 
7979 /*
7980  * Find the PFN the Movable zone begins in each node. Kernel memory
7981  * is spread evenly between nodes as long as the nodes have enough
7982  * memory. When they don't, some nodes will have more kernelcore than
7983  * others
7984  */
7985 static void __init find_zone_movable_pfns_for_nodes(void)
7986 {
7987 	int i, nid;
7988 	unsigned long usable_startpfn;
7989 	unsigned long kernelcore_node, kernelcore_remaining;
7990 	/* save the state before borrow the nodemask */
7991 	nodemask_t saved_node_state = node_states[N_MEMORY];
7992 	unsigned long totalpages = early_calculate_totalpages();
7993 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7994 	struct memblock_region *r;
7995 
7996 	/* Need to find movable_zone earlier when movable_node is specified. */
7997 	find_usable_zone_for_movable();
7998 
7999 	/*
8000 	 * If movable_node is specified, ignore kernelcore and movablecore
8001 	 * options.
8002 	 */
8003 	if (movable_node_is_enabled()) {
8004 		for_each_mem_region(r) {
8005 			if (!memblock_is_hotpluggable(r))
8006 				continue;
8007 
8008 			nid = memblock_get_region_node(r);
8009 
8010 			usable_startpfn = PFN_DOWN(r->base);
8011 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8012 				min(usable_startpfn, zone_movable_pfn[nid]) :
8013 				usable_startpfn;
8014 		}
8015 
8016 		goto out2;
8017 	}
8018 
8019 	/*
8020 	 * If kernelcore=mirror is specified, ignore movablecore option
8021 	 */
8022 	if (mirrored_kernelcore) {
8023 		bool mem_below_4gb_not_mirrored = false;
8024 
8025 		for_each_mem_region(r) {
8026 			if (memblock_is_mirror(r))
8027 				continue;
8028 
8029 			nid = memblock_get_region_node(r);
8030 
8031 			usable_startpfn = memblock_region_memory_base_pfn(r);
8032 
8033 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8034 				mem_below_4gb_not_mirrored = true;
8035 				continue;
8036 			}
8037 
8038 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8039 				min(usable_startpfn, zone_movable_pfn[nid]) :
8040 				usable_startpfn;
8041 		}
8042 
8043 		if (mem_below_4gb_not_mirrored)
8044 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8045 
8046 		goto out2;
8047 	}
8048 
8049 	/*
8050 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8051 	 * amount of necessary memory.
8052 	 */
8053 	if (required_kernelcore_percent)
8054 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8055 				       10000UL;
8056 	if (required_movablecore_percent)
8057 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8058 					10000UL;
8059 
8060 	/*
8061 	 * If movablecore= was specified, calculate what size of
8062 	 * kernelcore that corresponds so that memory usable for
8063 	 * any allocation type is evenly spread. If both kernelcore
8064 	 * and movablecore are specified, then the value of kernelcore
8065 	 * will be used for required_kernelcore if it's greater than
8066 	 * what movablecore would have allowed.
8067 	 */
8068 	if (required_movablecore) {
8069 		unsigned long corepages;
8070 
8071 		/*
8072 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8073 		 * was requested by the user
8074 		 */
8075 		required_movablecore =
8076 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8077 		required_movablecore = min(totalpages, required_movablecore);
8078 		corepages = totalpages - required_movablecore;
8079 
8080 		required_kernelcore = max(required_kernelcore, corepages);
8081 	}
8082 
8083 	/*
8084 	 * If kernelcore was not specified or kernelcore size is larger
8085 	 * than totalpages, there is no ZONE_MOVABLE.
8086 	 */
8087 	if (!required_kernelcore || required_kernelcore >= totalpages)
8088 		goto out;
8089 
8090 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8091 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8092 
8093 restart:
8094 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8095 	kernelcore_node = required_kernelcore / usable_nodes;
8096 	for_each_node_state(nid, N_MEMORY) {
8097 		unsigned long start_pfn, end_pfn;
8098 
8099 		/*
8100 		 * Recalculate kernelcore_node if the division per node
8101 		 * now exceeds what is necessary to satisfy the requested
8102 		 * amount of memory for the kernel
8103 		 */
8104 		if (required_kernelcore < kernelcore_node)
8105 			kernelcore_node = required_kernelcore / usable_nodes;
8106 
8107 		/*
8108 		 * As the map is walked, we track how much memory is usable
8109 		 * by the kernel using kernelcore_remaining. When it is
8110 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8111 		 */
8112 		kernelcore_remaining = kernelcore_node;
8113 
8114 		/* Go through each range of PFNs within this node */
8115 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8116 			unsigned long size_pages;
8117 
8118 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8119 			if (start_pfn >= end_pfn)
8120 				continue;
8121 
8122 			/* Account for what is only usable for kernelcore */
8123 			if (start_pfn < usable_startpfn) {
8124 				unsigned long kernel_pages;
8125 				kernel_pages = min(end_pfn, usable_startpfn)
8126 								- start_pfn;
8127 
8128 				kernelcore_remaining -= min(kernel_pages,
8129 							kernelcore_remaining);
8130 				required_kernelcore -= min(kernel_pages,
8131 							required_kernelcore);
8132 
8133 				/* Continue if range is now fully accounted */
8134 				if (end_pfn <= usable_startpfn) {
8135 
8136 					/*
8137 					 * Push zone_movable_pfn to the end so
8138 					 * that if we have to rebalance
8139 					 * kernelcore across nodes, we will
8140 					 * not double account here
8141 					 */
8142 					zone_movable_pfn[nid] = end_pfn;
8143 					continue;
8144 				}
8145 				start_pfn = usable_startpfn;
8146 			}
8147 
8148 			/*
8149 			 * The usable PFN range for ZONE_MOVABLE is from
8150 			 * start_pfn->end_pfn. Calculate size_pages as the
8151 			 * number of pages used as kernelcore
8152 			 */
8153 			size_pages = end_pfn - start_pfn;
8154 			if (size_pages > kernelcore_remaining)
8155 				size_pages = kernelcore_remaining;
8156 			zone_movable_pfn[nid] = start_pfn + size_pages;
8157 
8158 			/*
8159 			 * Some kernelcore has been met, update counts and
8160 			 * break if the kernelcore for this node has been
8161 			 * satisfied
8162 			 */
8163 			required_kernelcore -= min(required_kernelcore,
8164 								size_pages);
8165 			kernelcore_remaining -= size_pages;
8166 			if (!kernelcore_remaining)
8167 				break;
8168 		}
8169 	}
8170 
8171 	/*
8172 	 * If there is still required_kernelcore, we do another pass with one
8173 	 * less node in the count. This will push zone_movable_pfn[nid] further
8174 	 * along on the nodes that still have memory until kernelcore is
8175 	 * satisfied
8176 	 */
8177 	usable_nodes--;
8178 	if (usable_nodes && required_kernelcore > usable_nodes)
8179 		goto restart;
8180 
8181 out2:
8182 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8183 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8184 		unsigned long start_pfn, end_pfn;
8185 
8186 		zone_movable_pfn[nid] =
8187 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8188 
8189 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8190 		if (zone_movable_pfn[nid] >= end_pfn)
8191 			zone_movable_pfn[nid] = 0;
8192 	}
8193 
8194 out:
8195 	/* restore the node_state */
8196 	node_states[N_MEMORY] = saved_node_state;
8197 }
8198 
8199 /* Any regular or high memory on that node ? */
8200 static void check_for_memory(pg_data_t *pgdat, int nid)
8201 {
8202 	enum zone_type zone_type;
8203 
8204 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8205 		struct zone *zone = &pgdat->node_zones[zone_type];
8206 		if (populated_zone(zone)) {
8207 			if (IS_ENABLED(CONFIG_HIGHMEM))
8208 				node_set_state(nid, N_HIGH_MEMORY);
8209 			if (zone_type <= ZONE_NORMAL)
8210 				node_set_state(nid, N_NORMAL_MEMORY);
8211 			break;
8212 		}
8213 	}
8214 }
8215 
8216 /*
8217  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8218  * such cases we allow max_zone_pfn sorted in the descending order
8219  */
8220 bool __weak arch_has_descending_max_zone_pfns(void)
8221 {
8222 	return false;
8223 }
8224 
8225 /**
8226  * free_area_init - Initialise all pg_data_t and zone data
8227  * @max_zone_pfn: an array of max PFNs for each zone
8228  *
8229  * This will call free_area_init_node() for each active node in the system.
8230  * Using the page ranges provided by memblock_set_node(), the size of each
8231  * zone in each node and their holes is calculated. If the maximum PFN
8232  * between two adjacent zones match, it is assumed that the zone is empty.
8233  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8234  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8235  * starts where the previous one ended. For example, ZONE_DMA32 starts
8236  * at arch_max_dma_pfn.
8237  */
8238 void __init free_area_init(unsigned long *max_zone_pfn)
8239 {
8240 	unsigned long start_pfn, end_pfn;
8241 	int i, nid, zone;
8242 	bool descending;
8243 
8244 	/* Record where the zone boundaries are */
8245 	memset(arch_zone_lowest_possible_pfn, 0,
8246 				sizeof(arch_zone_lowest_possible_pfn));
8247 	memset(arch_zone_highest_possible_pfn, 0,
8248 				sizeof(arch_zone_highest_possible_pfn));
8249 
8250 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8251 	descending = arch_has_descending_max_zone_pfns();
8252 
8253 	for (i = 0; i < MAX_NR_ZONES; i++) {
8254 		if (descending)
8255 			zone = MAX_NR_ZONES - i - 1;
8256 		else
8257 			zone = i;
8258 
8259 		if (zone == ZONE_MOVABLE)
8260 			continue;
8261 
8262 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8263 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8264 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8265 
8266 		start_pfn = end_pfn;
8267 	}
8268 
8269 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8270 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8271 	find_zone_movable_pfns_for_nodes();
8272 
8273 	/* Print out the zone ranges */
8274 	pr_info("Zone ranges:\n");
8275 	for (i = 0; i < MAX_NR_ZONES; i++) {
8276 		if (i == ZONE_MOVABLE)
8277 			continue;
8278 		pr_info("  %-8s ", zone_names[i]);
8279 		if (arch_zone_lowest_possible_pfn[i] ==
8280 				arch_zone_highest_possible_pfn[i])
8281 			pr_cont("empty\n");
8282 		else
8283 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8284 				(u64)arch_zone_lowest_possible_pfn[i]
8285 					<< PAGE_SHIFT,
8286 				((u64)arch_zone_highest_possible_pfn[i]
8287 					<< PAGE_SHIFT) - 1);
8288 	}
8289 
8290 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8291 	pr_info("Movable zone start for each node\n");
8292 	for (i = 0; i < MAX_NUMNODES; i++) {
8293 		if (zone_movable_pfn[i])
8294 			pr_info("  Node %d: %#018Lx\n", i,
8295 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8296 	}
8297 
8298 	/*
8299 	 * Print out the early node map, and initialize the
8300 	 * subsection-map relative to active online memory ranges to
8301 	 * enable future "sub-section" extensions of the memory map.
8302 	 */
8303 	pr_info("Early memory node ranges\n");
8304 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8305 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8306 			(u64)start_pfn << PAGE_SHIFT,
8307 			((u64)end_pfn << PAGE_SHIFT) - 1);
8308 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8309 	}
8310 
8311 	/* Initialise every node */
8312 	mminit_verify_pageflags_layout();
8313 	setup_nr_node_ids();
8314 	for_each_node(nid) {
8315 		pg_data_t *pgdat;
8316 
8317 		if (!node_online(nid)) {
8318 			pr_info("Initializing node %d as memoryless\n", nid);
8319 
8320 			/* Allocator not initialized yet */
8321 			pgdat = arch_alloc_nodedata(nid);
8322 			if (!pgdat)
8323 				panic("Cannot allocate %zuB for node %d.\n",
8324 				       sizeof(*pgdat), nid);
8325 			arch_refresh_nodedata(nid, pgdat);
8326 			free_area_init_memoryless_node(nid);
8327 
8328 			/*
8329 			 * We do not want to confuse userspace by sysfs
8330 			 * files/directories for node without any memory
8331 			 * attached to it, so this node is not marked as
8332 			 * N_MEMORY and not marked online so that no sysfs
8333 			 * hierarchy will be created via register_one_node for
8334 			 * it. The pgdat will get fully initialized by
8335 			 * hotadd_init_pgdat() when memory is hotplugged into
8336 			 * this node.
8337 			 */
8338 			continue;
8339 		}
8340 
8341 		pgdat = NODE_DATA(nid);
8342 		free_area_init_node(nid);
8343 
8344 		/* Any memory on that node */
8345 		if (pgdat->node_present_pages)
8346 			node_set_state(nid, N_MEMORY);
8347 		check_for_memory(pgdat, nid);
8348 	}
8349 
8350 	memmap_init();
8351 }
8352 
8353 static int __init cmdline_parse_core(char *p, unsigned long *core,
8354 				     unsigned long *percent)
8355 {
8356 	unsigned long long coremem;
8357 	char *endptr;
8358 
8359 	if (!p)
8360 		return -EINVAL;
8361 
8362 	/* Value may be a percentage of total memory, otherwise bytes */
8363 	coremem = simple_strtoull(p, &endptr, 0);
8364 	if (*endptr == '%') {
8365 		/* Paranoid check for percent values greater than 100 */
8366 		WARN_ON(coremem > 100);
8367 
8368 		*percent = coremem;
8369 	} else {
8370 		coremem = memparse(p, &p);
8371 		/* Paranoid check that UL is enough for the coremem value */
8372 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8373 
8374 		*core = coremem >> PAGE_SHIFT;
8375 		*percent = 0UL;
8376 	}
8377 	return 0;
8378 }
8379 
8380 /*
8381  * kernelcore=size sets the amount of memory for use for allocations that
8382  * cannot be reclaimed or migrated.
8383  */
8384 static int __init cmdline_parse_kernelcore(char *p)
8385 {
8386 	/* parse kernelcore=mirror */
8387 	if (parse_option_str(p, "mirror")) {
8388 		mirrored_kernelcore = true;
8389 		return 0;
8390 	}
8391 
8392 	return cmdline_parse_core(p, &required_kernelcore,
8393 				  &required_kernelcore_percent);
8394 }
8395 
8396 /*
8397  * movablecore=size sets the amount of memory for use for allocations that
8398  * can be reclaimed or migrated.
8399  */
8400 static int __init cmdline_parse_movablecore(char *p)
8401 {
8402 	return cmdline_parse_core(p, &required_movablecore,
8403 				  &required_movablecore_percent);
8404 }
8405 
8406 early_param("kernelcore", cmdline_parse_kernelcore);
8407 early_param("movablecore", cmdline_parse_movablecore);
8408 
8409 void adjust_managed_page_count(struct page *page, long count)
8410 {
8411 	atomic_long_add(count, &page_zone(page)->managed_pages);
8412 	totalram_pages_add(count);
8413 #ifdef CONFIG_HIGHMEM
8414 	if (PageHighMem(page))
8415 		totalhigh_pages_add(count);
8416 #endif
8417 }
8418 EXPORT_SYMBOL(adjust_managed_page_count);
8419 
8420 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8421 {
8422 	void *pos;
8423 	unsigned long pages = 0;
8424 
8425 	start = (void *)PAGE_ALIGN((unsigned long)start);
8426 	end = (void *)((unsigned long)end & PAGE_MASK);
8427 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8428 		struct page *page = virt_to_page(pos);
8429 		void *direct_map_addr;
8430 
8431 		/*
8432 		 * 'direct_map_addr' might be different from 'pos'
8433 		 * because some architectures' virt_to_page()
8434 		 * work with aliases.  Getting the direct map
8435 		 * address ensures that we get a _writeable_
8436 		 * alias for the memset().
8437 		 */
8438 		direct_map_addr = page_address(page);
8439 		/*
8440 		 * Perform a kasan-unchecked memset() since this memory
8441 		 * has not been initialized.
8442 		 */
8443 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8444 		if ((unsigned int)poison <= 0xFF)
8445 			memset(direct_map_addr, poison, PAGE_SIZE);
8446 
8447 		free_reserved_page(page);
8448 	}
8449 
8450 	if (pages && s)
8451 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8452 
8453 	return pages;
8454 }
8455 
8456 void __init mem_init_print_info(void)
8457 {
8458 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8459 	unsigned long init_code_size, init_data_size;
8460 
8461 	physpages = get_num_physpages();
8462 	codesize = _etext - _stext;
8463 	datasize = _edata - _sdata;
8464 	rosize = __end_rodata - __start_rodata;
8465 	bss_size = __bss_stop - __bss_start;
8466 	init_data_size = __init_end - __init_begin;
8467 	init_code_size = _einittext - _sinittext;
8468 
8469 	/*
8470 	 * Detect special cases and adjust section sizes accordingly:
8471 	 * 1) .init.* may be embedded into .data sections
8472 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8473 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8474 	 * 3) .rodata.* may be embedded into .text or .data sections.
8475 	 */
8476 #define adj_init_size(start, end, size, pos, adj) \
8477 	do { \
8478 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8479 			size -= adj; \
8480 	} while (0)
8481 
8482 	adj_init_size(__init_begin, __init_end, init_data_size,
8483 		     _sinittext, init_code_size);
8484 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8485 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8486 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8487 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8488 
8489 #undef	adj_init_size
8490 
8491 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8492 #ifdef	CONFIG_HIGHMEM
8493 		", %luK highmem"
8494 #endif
8495 		")\n",
8496 		K(nr_free_pages()), K(physpages),
8497 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8498 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8499 		K(physpages - totalram_pages() - totalcma_pages),
8500 		K(totalcma_pages)
8501 #ifdef	CONFIG_HIGHMEM
8502 		, K(totalhigh_pages())
8503 #endif
8504 		);
8505 }
8506 
8507 /**
8508  * set_dma_reserve - set the specified number of pages reserved in the first zone
8509  * @new_dma_reserve: The number of pages to mark reserved
8510  *
8511  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8512  * In the DMA zone, a significant percentage may be consumed by kernel image
8513  * and other unfreeable allocations which can skew the watermarks badly. This
8514  * function may optionally be used to account for unfreeable pages in the
8515  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8516  * smaller per-cpu batchsize.
8517  */
8518 void __init set_dma_reserve(unsigned long new_dma_reserve)
8519 {
8520 	dma_reserve = new_dma_reserve;
8521 }
8522 
8523 static int page_alloc_cpu_dead(unsigned int cpu)
8524 {
8525 	struct zone *zone;
8526 
8527 	lru_add_drain_cpu(cpu);
8528 	mlock_drain_remote(cpu);
8529 	drain_pages(cpu);
8530 
8531 	/*
8532 	 * Spill the event counters of the dead processor
8533 	 * into the current processors event counters.
8534 	 * This artificially elevates the count of the current
8535 	 * processor.
8536 	 */
8537 	vm_events_fold_cpu(cpu);
8538 
8539 	/*
8540 	 * Zero the differential counters of the dead processor
8541 	 * so that the vm statistics are consistent.
8542 	 *
8543 	 * This is only okay since the processor is dead and cannot
8544 	 * race with what we are doing.
8545 	 */
8546 	cpu_vm_stats_fold(cpu);
8547 
8548 	for_each_populated_zone(zone)
8549 		zone_pcp_update(zone, 0);
8550 
8551 	return 0;
8552 }
8553 
8554 static int page_alloc_cpu_online(unsigned int cpu)
8555 {
8556 	struct zone *zone;
8557 
8558 	for_each_populated_zone(zone)
8559 		zone_pcp_update(zone, 1);
8560 	return 0;
8561 }
8562 
8563 #ifdef CONFIG_NUMA
8564 int hashdist = HASHDIST_DEFAULT;
8565 
8566 static int __init set_hashdist(char *str)
8567 {
8568 	if (!str)
8569 		return 0;
8570 	hashdist = simple_strtoul(str, &str, 0);
8571 	return 1;
8572 }
8573 __setup("hashdist=", set_hashdist);
8574 #endif
8575 
8576 void __init page_alloc_init(void)
8577 {
8578 	int ret;
8579 
8580 #ifdef CONFIG_NUMA
8581 	if (num_node_state(N_MEMORY) == 1)
8582 		hashdist = 0;
8583 #endif
8584 
8585 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8586 					"mm/page_alloc:pcp",
8587 					page_alloc_cpu_online,
8588 					page_alloc_cpu_dead);
8589 	WARN_ON(ret < 0);
8590 }
8591 
8592 /*
8593  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8594  *	or min_free_kbytes changes.
8595  */
8596 static void calculate_totalreserve_pages(void)
8597 {
8598 	struct pglist_data *pgdat;
8599 	unsigned long reserve_pages = 0;
8600 	enum zone_type i, j;
8601 
8602 	for_each_online_pgdat(pgdat) {
8603 
8604 		pgdat->totalreserve_pages = 0;
8605 
8606 		for (i = 0; i < MAX_NR_ZONES; i++) {
8607 			struct zone *zone = pgdat->node_zones + i;
8608 			long max = 0;
8609 			unsigned long managed_pages = zone_managed_pages(zone);
8610 
8611 			/* Find valid and maximum lowmem_reserve in the zone */
8612 			for (j = i; j < MAX_NR_ZONES; j++) {
8613 				if (zone->lowmem_reserve[j] > max)
8614 					max = zone->lowmem_reserve[j];
8615 			}
8616 
8617 			/* we treat the high watermark as reserved pages. */
8618 			max += high_wmark_pages(zone);
8619 
8620 			if (max > managed_pages)
8621 				max = managed_pages;
8622 
8623 			pgdat->totalreserve_pages += max;
8624 
8625 			reserve_pages += max;
8626 		}
8627 	}
8628 	totalreserve_pages = reserve_pages;
8629 }
8630 
8631 /*
8632  * setup_per_zone_lowmem_reserve - called whenever
8633  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8634  *	has a correct pages reserved value, so an adequate number of
8635  *	pages are left in the zone after a successful __alloc_pages().
8636  */
8637 static void setup_per_zone_lowmem_reserve(void)
8638 {
8639 	struct pglist_data *pgdat;
8640 	enum zone_type i, j;
8641 
8642 	for_each_online_pgdat(pgdat) {
8643 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8644 			struct zone *zone = &pgdat->node_zones[i];
8645 			int ratio = sysctl_lowmem_reserve_ratio[i];
8646 			bool clear = !ratio || !zone_managed_pages(zone);
8647 			unsigned long managed_pages = 0;
8648 
8649 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8650 				struct zone *upper_zone = &pgdat->node_zones[j];
8651 
8652 				managed_pages += zone_managed_pages(upper_zone);
8653 
8654 				if (clear)
8655 					zone->lowmem_reserve[j] = 0;
8656 				else
8657 					zone->lowmem_reserve[j] = managed_pages / ratio;
8658 			}
8659 		}
8660 	}
8661 
8662 	/* update totalreserve_pages */
8663 	calculate_totalreserve_pages();
8664 }
8665 
8666 static void __setup_per_zone_wmarks(void)
8667 {
8668 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8669 	unsigned long lowmem_pages = 0;
8670 	struct zone *zone;
8671 	unsigned long flags;
8672 
8673 	/* Calculate total number of !ZONE_HIGHMEM pages */
8674 	for_each_zone(zone) {
8675 		if (!is_highmem(zone))
8676 			lowmem_pages += zone_managed_pages(zone);
8677 	}
8678 
8679 	for_each_zone(zone) {
8680 		u64 tmp;
8681 
8682 		spin_lock_irqsave(&zone->lock, flags);
8683 		tmp = (u64)pages_min * zone_managed_pages(zone);
8684 		do_div(tmp, lowmem_pages);
8685 		if (is_highmem(zone)) {
8686 			/*
8687 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8688 			 * need highmem pages, so cap pages_min to a small
8689 			 * value here.
8690 			 *
8691 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8692 			 * deltas control async page reclaim, and so should
8693 			 * not be capped for highmem.
8694 			 */
8695 			unsigned long min_pages;
8696 
8697 			min_pages = zone_managed_pages(zone) / 1024;
8698 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8699 			zone->_watermark[WMARK_MIN] = min_pages;
8700 		} else {
8701 			/*
8702 			 * If it's a lowmem zone, reserve a number of pages
8703 			 * proportionate to the zone's size.
8704 			 */
8705 			zone->_watermark[WMARK_MIN] = tmp;
8706 		}
8707 
8708 		/*
8709 		 * Set the kswapd watermarks distance according to the
8710 		 * scale factor in proportion to available memory, but
8711 		 * ensure a minimum size on small systems.
8712 		 */
8713 		tmp = max_t(u64, tmp >> 2,
8714 			    mult_frac(zone_managed_pages(zone),
8715 				      watermark_scale_factor, 10000));
8716 
8717 		zone->watermark_boost = 0;
8718 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8719 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8720 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8721 
8722 		spin_unlock_irqrestore(&zone->lock, flags);
8723 	}
8724 
8725 	/* update totalreserve_pages */
8726 	calculate_totalreserve_pages();
8727 }
8728 
8729 /**
8730  * setup_per_zone_wmarks - called when min_free_kbytes changes
8731  * or when memory is hot-{added|removed}
8732  *
8733  * Ensures that the watermark[min,low,high] values for each zone are set
8734  * correctly with respect to min_free_kbytes.
8735  */
8736 void setup_per_zone_wmarks(void)
8737 {
8738 	struct zone *zone;
8739 	static DEFINE_SPINLOCK(lock);
8740 
8741 	spin_lock(&lock);
8742 	__setup_per_zone_wmarks();
8743 	spin_unlock(&lock);
8744 
8745 	/*
8746 	 * The watermark size have changed so update the pcpu batch
8747 	 * and high limits or the limits may be inappropriate.
8748 	 */
8749 	for_each_zone(zone)
8750 		zone_pcp_update(zone, 0);
8751 }
8752 
8753 /*
8754  * Initialise min_free_kbytes.
8755  *
8756  * For small machines we want it small (128k min).  For large machines
8757  * we want it large (256MB max).  But it is not linear, because network
8758  * bandwidth does not increase linearly with machine size.  We use
8759  *
8760  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8761  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8762  *
8763  * which yields
8764  *
8765  * 16MB:	512k
8766  * 32MB:	724k
8767  * 64MB:	1024k
8768  * 128MB:	1448k
8769  * 256MB:	2048k
8770  * 512MB:	2896k
8771  * 1024MB:	4096k
8772  * 2048MB:	5792k
8773  * 4096MB:	8192k
8774  * 8192MB:	11584k
8775  * 16384MB:	16384k
8776  */
8777 void calculate_min_free_kbytes(void)
8778 {
8779 	unsigned long lowmem_kbytes;
8780 	int new_min_free_kbytes;
8781 
8782 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8783 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8784 
8785 	if (new_min_free_kbytes > user_min_free_kbytes)
8786 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8787 	else
8788 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8789 				new_min_free_kbytes, user_min_free_kbytes);
8790 
8791 }
8792 
8793 int __meminit init_per_zone_wmark_min(void)
8794 {
8795 	calculate_min_free_kbytes();
8796 	setup_per_zone_wmarks();
8797 	refresh_zone_stat_thresholds();
8798 	setup_per_zone_lowmem_reserve();
8799 
8800 #ifdef CONFIG_NUMA
8801 	setup_min_unmapped_ratio();
8802 	setup_min_slab_ratio();
8803 #endif
8804 
8805 	khugepaged_min_free_kbytes_update();
8806 
8807 	return 0;
8808 }
8809 postcore_initcall(init_per_zone_wmark_min)
8810 
8811 /*
8812  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8813  *	that we can call two helper functions whenever min_free_kbytes
8814  *	changes.
8815  */
8816 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8817 		void *buffer, size_t *length, loff_t *ppos)
8818 {
8819 	int rc;
8820 
8821 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8822 	if (rc)
8823 		return rc;
8824 
8825 	if (write) {
8826 		user_min_free_kbytes = min_free_kbytes;
8827 		setup_per_zone_wmarks();
8828 	}
8829 	return 0;
8830 }
8831 
8832 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8833 		void *buffer, size_t *length, loff_t *ppos)
8834 {
8835 	int rc;
8836 
8837 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8838 	if (rc)
8839 		return rc;
8840 
8841 	if (write)
8842 		setup_per_zone_wmarks();
8843 
8844 	return 0;
8845 }
8846 
8847 #ifdef CONFIG_NUMA
8848 static void setup_min_unmapped_ratio(void)
8849 {
8850 	pg_data_t *pgdat;
8851 	struct zone *zone;
8852 
8853 	for_each_online_pgdat(pgdat)
8854 		pgdat->min_unmapped_pages = 0;
8855 
8856 	for_each_zone(zone)
8857 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8858 						         sysctl_min_unmapped_ratio) / 100;
8859 }
8860 
8861 
8862 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8863 		void *buffer, size_t *length, loff_t *ppos)
8864 {
8865 	int rc;
8866 
8867 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8868 	if (rc)
8869 		return rc;
8870 
8871 	setup_min_unmapped_ratio();
8872 
8873 	return 0;
8874 }
8875 
8876 static void setup_min_slab_ratio(void)
8877 {
8878 	pg_data_t *pgdat;
8879 	struct zone *zone;
8880 
8881 	for_each_online_pgdat(pgdat)
8882 		pgdat->min_slab_pages = 0;
8883 
8884 	for_each_zone(zone)
8885 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8886 						     sysctl_min_slab_ratio) / 100;
8887 }
8888 
8889 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8890 		void *buffer, size_t *length, loff_t *ppos)
8891 {
8892 	int rc;
8893 
8894 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8895 	if (rc)
8896 		return rc;
8897 
8898 	setup_min_slab_ratio();
8899 
8900 	return 0;
8901 }
8902 #endif
8903 
8904 /*
8905  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8906  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8907  *	whenever sysctl_lowmem_reserve_ratio changes.
8908  *
8909  * The reserve ratio obviously has absolutely no relation with the
8910  * minimum watermarks. The lowmem reserve ratio can only make sense
8911  * if in function of the boot time zone sizes.
8912  */
8913 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8914 		void *buffer, size_t *length, loff_t *ppos)
8915 {
8916 	int i;
8917 
8918 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8919 
8920 	for (i = 0; i < MAX_NR_ZONES; i++) {
8921 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8922 			sysctl_lowmem_reserve_ratio[i] = 0;
8923 	}
8924 
8925 	setup_per_zone_lowmem_reserve();
8926 	return 0;
8927 }
8928 
8929 /*
8930  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8931  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8932  * pagelist can have before it gets flushed back to buddy allocator.
8933  */
8934 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8935 		int write, void *buffer, size_t *length, loff_t *ppos)
8936 {
8937 	struct zone *zone;
8938 	int old_percpu_pagelist_high_fraction;
8939 	int ret;
8940 
8941 	mutex_lock(&pcp_batch_high_lock);
8942 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8943 
8944 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8945 	if (!write || ret < 0)
8946 		goto out;
8947 
8948 	/* Sanity checking to avoid pcp imbalance */
8949 	if (percpu_pagelist_high_fraction &&
8950 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8951 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8952 		ret = -EINVAL;
8953 		goto out;
8954 	}
8955 
8956 	/* No change? */
8957 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8958 		goto out;
8959 
8960 	for_each_populated_zone(zone)
8961 		zone_set_pageset_high_and_batch(zone, 0);
8962 out:
8963 	mutex_unlock(&pcp_batch_high_lock);
8964 	return ret;
8965 }
8966 
8967 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8968 /*
8969  * Returns the number of pages that arch has reserved but
8970  * is not known to alloc_large_system_hash().
8971  */
8972 static unsigned long __init arch_reserved_kernel_pages(void)
8973 {
8974 	return 0;
8975 }
8976 #endif
8977 
8978 /*
8979  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8980  * machines. As memory size is increased the scale is also increased but at
8981  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8982  * quadruples the scale is increased by one, which means the size of hash table
8983  * only doubles, instead of quadrupling as well.
8984  * Because 32-bit systems cannot have large physical memory, where this scaling
8985  * makes sense, it is disabled on such platforms.
8986  */
8987 #if __BITS_PER_LONG > 32
8988 #define ADAPT_SCALE_BASE	(64ul << 30)
8989 #define ADAPT_SCALE_SHIFT	2
8990 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8991 #endif
8992 
8993 /*
8994  * allocate a large system hash table from bootmem
8995  * - it is assumed that the hash table must contain an exact power-of-2
8996  *   quantity of entries
8997  * - limit is the number of hash buckets, not the total allocation size
8998  */
8999 void *__init alloc_large_system_hash(const char *tablename,
9000 				     unsigned long bucketsize,
9001 				     unsigned long numentries,
9002 				     int scale,
9003 				     int flags,
9004 				     unsigned int *_hash_shift,
9005 				     unsigned int *_hash_mask,
9006 				     unsigned long low_limit,
9007 				     unsigned long high_limit)
9008 {
9009 	unsigned long long max = high_limit;
9010 	unsigned long log2qty, size;
9011 	void *table;
9012 	gfp_t gfp_flags;
9013 	bool virt;
9014 	bool huge;
9015 
9016 	/* allow the kernel cmdline to have a say */
9017 	if (!numentries) {
9018 		/* round applicable memory size up to nearest megabyte */
9019 		numentries = nr_kernel_pages;
9020 		numentries -= arch_reserved_kernel_pages();
9021 
9022 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9023 		if (PAGE_SIZE < SZ_1M)
9024 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9025 
9026 #if __BITS_PER_LONG > 32
9027 		if (!high_limit) {
9028 			unsigned long adapt;
9029 
9030 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9031 			     adapt <<= ADAPT_SCALE_SHIFT)
9032 				scale++;
9033 		}
9034 #endif
9035 
9036 		/* limit to 1 bucket per 2^scale bytes of low memory */
9037 		if (scale > PAGE_SHIFT)
9038 			numentries >>= (scale - PAGE_SHIFT);
9039 		else
9040 			numentries <<= (PAGE_SHIFT - scale);
9041 
9042 		/* Make sure we've got at least a 0-order allocation.. */
9043 		if (unlikely(flags & HASH_SMALL)) {
9044 			/* Makes no sense without HASH_EARLY */
9045 			WARN_ON(!(flags & HASH_EARLY));
9046 			if (!(numentries >> *_hash_shift)) {
9047 				numentries = 1UL << *_hash_shift;
9048 				BUG_ON(!numentries);
9049 			}
9050 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9051 			numentries = PAGE_SIZE / bucketsize;
9052 	}
9053 	numentries = roundup_pow_of_two(numentries);
9054 
9055 	/* limit allocation size to 1/16 total memory by default */
9056 	if (max == 0) {
9057 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9058 		do_div(max, bucketsize);
9059 	}
9060 	max = min(max, 0x80000000ULL);
9061 
9062 	if (numentries < low_limit)
9063 		numentries = low_limit;
9064 	if (numentries > max)
9065 		numentries = max;
9066 
9067 	log2qty = ilog2(numentries);
9068 
9069 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9070 	do {
9071 		virt = false;
9072 		size = bucketsize << log2qty;
9073 		if (flags & HASH_EARLY) {
9074 			if (flags & HASH_ZERO)
9075 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9076 			else
9077 				table = memblock_alloc_raw(size,
9078 							   SMP_CACHE_BYTES);
9079 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9080 			table = vmalloc_huge(size, gfp_flags);
9081 			virt = true;
9082 			if (table)
9083 				huge = is_vm_area_hugepages(table);
9084 		} else {
9085 			/*
9086 			 * If bucketsize is not a power-of-two, we may free
9087 			 * some pages at the end of hash table which
9088 			 * alloc_pages_exact() automatically does
9089 			 */
9090 			table = alloc_pages_exact(size, gfp_flags);
9091 			kmemleak_alloc(table, size, 1, gfp_flags);
9092 		}
9093 	} while (!table && size > PAGE_SIZE && --log2qty);
9094 
9095 	if (!table)
9096 		panic("Failed to allocate %s hash table\n", tablename);
9097 
9098 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9099 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9100 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9101 
9102 	if (_hash_shift)
9103 		*_hash_shift = log2qty;
9104 	if (_hash_mask)
9105 		*_hash_mask = (1 << log2qty) - 1;
9106 
9107 	return table;
9108 }
9109 
9110 #ifdef CONFIG_CONTIG_ALLOC
9111 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9112 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9113 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9114 static void alloc_contig_dump_pages(struct list_head *page_list)
9115 {
9116 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9117 
9118 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9119 		struct page *page;
9120 
9121 		dump_stack();
9122 		list_for_each_entry(page, page_list, lru)
9123 			dump_page(page, "migration failure");
9124 	}
9125 }
9126 #else
9127 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9128 {
9129 }
9130 #endif
9131 
9132 /* [start, end) must belong to a single zone. */
9133 int __alloc_contig_migrate_range(struct compact_control *cc,
9134 					unsigned long start, unsigned long end)
9135 {
9136 	/* This function is based on compact_zone() from compaction.c. */
9137 	unsigned int nr_reclaimed;
9138 	unsigned long pfn = start;
9139 	unsigned int tries = 0;
9140 	int ret = 0;
9141 	struct migration_target_control mtc = {
9142 		.nid = zone_to_nid(cc->zone),
9143 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9144 	};
9145 
9146 	lru_cache_disable();
9147 
9148 	while (pfn < end || !list_empty(&cc->migratepages)) {
9149 		if (fatal_signal_pending(current)) {
9150 			ret = -EINTR;
9151 			break;
9152 		}
9153 
9154 		if (list_empty(&cc->migratepages)) {
9155 			cc->nr_migratepages = 0;
9156 			ret = isolate_migratepages_range(cc, pfn, end);
9157 			if (ret && ret != -EAGAIN)
9158 				break;
9159 			pfn = cc->migrate_pfn;
9160 			tries = 0;
9161 		} else if (++tries == 5) {
9162 			ret = -EBUSY;
9163 			break;
9164 		}
9165 
9166 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9167 							&cc->migratepages);
9168 		cc->nr_migratepages -= nr_reclaimed;
9169 
9170 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9171 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9172 
9173 		/*
9174 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9175 		 * to retry again over this error, so do the same here.
9176 		 */
9177 		if (ret == -ENOMEM)
9178 			break;
9179 	}
9180 
9181 	lru_cache_enable();
9182 	if (ret < 0) {
9183 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9184 			alloc_contig_dump_pages(&cc->migratepages);
9185 		putback_movable_pages(&cc->migratepages);
9186 		return ret;
9187 	}
9188 	return 0;
9189 }
9190 
9191 /**
9192  * alloc_contig_range() -- tries to allocate given range of pages
9193  * @start:	start PFN to allocate
9194  * @end:	one-past-the-last PFN to allocate
9195  * @migratetype:	migratetype of the underlying pageblocks (either
9196  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9197  *			in range must have the same migratetype and it must
9198  *			be either of the two.
9199  * @gfp_mask:	GFP mask to use during compaction
9200  *
9201  * The PFN range does not have to be pageblock aligned. The PFN range must
9202  * belong to a single zone.
9203  *
9204  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9205  * pageblocks in the range.  Once isolated, the pageblocks should not
9206  * be modified by others.
9207  *
9208  * Return: zero on success or negative error code.  On success all
9209  * pages which PFN is in [start, end) are allocated for the caller and
9210  * need to be freed with free_contig_range().
9211  */
9212 int alloc_contig_range(unsigned long start, unsigned long end,
9213 		       unsigned migratetype, gfp_t gfp_mask)
9214 {
9215 	unsigned long outer_start, outer_end;
9216 	int order;
9217 	int ret = 0;
9218 
9219 	struct compact_control cc = {
9220 		.nr_migratepages = 0,
9221 		.order = -1,
9222 		.zone = page_zone(pfn_to_page(start)),
9223 		.mode = MIGRATE_SYNC,
9224 		.ignore_skip_hint = true,
9225 		.no_set_skip_hint = true,
9226 		.gfp_mask = current_gfp_context(gfp_mask),
9227 		.alloc_contig = true,
9228 	};
9229 	INIT_LIST_HEAD(&cc.migratepages);
9230 
9231 	/*
9232 	 * What we do here is we mark all pageblocks in range as
9233 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9234 	 * have different sizes, and due to the way page allocator
9235 	 * work, start_isolate_page_range() has special handlings for this.
9236 	 *
9237 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9238 	 * migrate the pages from an unaligned range (ie. pages that
9239 	 * we are interested in). This will put all the pages in
9240 	 * range back to page allocator as MIGRATE_ISOLATE.
9241 	 *
9242 	 * When this is done, we take the pages in range from page
9243 	 * allocator removing them from the buddy system.  This way
9244 	 * page allocator will never consider using them.
9245 	 *
9246 	 * This lets us mark the pageblocks back as
9247 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9248 	 * aligned range but not in the unaligned, original range are
9249 	 * put back to page allocator so that buddy can use them.
9250 	 */
9251 
9252 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9253 	if (ret)
9254 		goto done;
9255 
9256 	drain_all_pages(cc.zone);
9257 
9258 	/*
9259 	 * In case of -EBUSY, we'd like to know which page causes problem.
9260 	 * So, just fall through. test_pages_isolated() has a tracepoint
9261 	 * which will report the busy page.
9262 	 *
9263 	 * It is possible that busy pages could become available before
9264 	 * the call to test_pages_isolated, and the range will actually be
9265 	 * allocated.  So, if we fall through be sure to clear ret so that
9266 	 * -EBUSY is not accidentally used or returned to caller.
9267 	 */
9268 	ret = __alloc_contig_migrate_range(&cc, start, end);
9269 	if (ret && ret != -EBUSY)
9270 		goto done;
9271 	ret = 0;
9272 
9273 	/*
9274 	 * Pages from [start, end) are within a pageblock_nr_pages
9275 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9276 	 * more, all pages in [start, end) are free in page allocator.
9277 	 * What we are going to do is to allocate all pages from
9278 	 * [start, end) (that is remove them from page allocator).
9279 	 *
9280 	 * The only problem is that pages at the beginning and at the
9281 	 * end of interesting range may be not aligned with pages that
9282 	 * page allocator holds, ie. they can be part of higher order
9283 	 * pages.  Because of this, we reserve the bigger range and
9284 	 * once this is done free the pages we are not interested in.
9285 	 *
9286 	 * We don't have to hold zone->lock here because the pages are
9287 	 * isolated thus they won't get removed from buddy.
9288 	 */
9289 
9290 	order = 0;
9291 	outer_start = start;
9292 	while (!PageBuddy(pfn_to_page(outer_start))) {
9293 		if (++order >= MAX_ORDER) {
9294 			outer_start = start;
9295 			break;
9296 		}
9297 		outer_start &= ~0UL << order;
9298 	}
9299 
9300 	if (outer_start != start) {
9301 		order = buddy_order(pfn_to_page(outer_start));
9302 
9303 		/*
9304 		 * outer_start page could be small order buddy page and
9305 		 * it doesn't include start page. Adjust outer_start
9306 		 * in this case to report failed page properly
9307 		 * on tracepoint in test_pages_isolated()
9308 		 */
9309 		if (outer_start + (1UL << order) <= start)
9310 			outer_start = start;
9311 	}
9312 
9313 	/* Make sure the range is really isolated. */
9314 	if (test_pages_isolated(outer_start, end, 0)) {
9315 		ret = -EBUSY;
9316 		goto done;
9317 	}
9318 
9319 	/* Grab isolated pages from freelists. */
9320 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9321 	if (!outer_end) {
9322 		ret = -EBUSY;
9323 		goto done;
9324 	}
9325 
9326 	/* Free head and tail (if any) */
9327 	if (start != outer_start)
9328 		free_contig_range(outer_start, start - outer_start);
9329 	if (end != outer_end)
9330 		free_contig_range(end, outer_end - end);
9331 
9332 done:
9333 	undo_isolate_page_range(start, end, migratetype);
9334 	return ret;
9335 }
9336 EXPORT_SYMBOL(alloc_contig_range);
9337 
9338 static int __alloc_contig_pages(unsigned long start_pfn,
9339 				unsigned long nr_pages, gfp_t gfp_mask)
9340 {
9341 	unsigned long end_pfn = start_pfn + nr_pages;
9342 
9343 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9344 				  gfp_mask);
9345 }
9346 
9347 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9348 				   unsigned long nr_pages)
9349 {
9350 	unsigned long i, end_pfn = start_pfn + nr_pages;
9351 	struct page *page;
9352 
9353 	for (i = start_pfn; i < end_pfn; i++) {
9354 		page = pfn_to_online_page(i);
9355 		if (!page)
9356 			return false;
9357 
9358 		if (page_zone(page) != z)
9359 			return false;
9360 
9361 		if (PageReserved(page))
9362 			return false;
9363 	}
9364 	return true;
9365 }
9366 
9367 static bool zone_spans_last_pfn(const struct zone *zone,
9368 				unsigned long start_pfn, unsigned long nr_pages)
9369 {
9370 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9371 
9372 	return zone_spans_pfn(zone, last_pfn);
9373 }
9374 
9375 /**
9376  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9377  * @nr_pages:	Number of contiguous pages to allocate
9378  * @gfp_mask:	GFP mask to limit search and used during compaction
9379  * @nid:	Target node
9380  * @nodemask:	Mask for other possible nodes
9381  *
9382  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9383  * on an applicable zonelist to find a contiguous pfn range which can then be
9384  * tried for allocation with alloc_contig_range(). This routine is intended
9385  * for allocation requests which can not be fulfilled with the buddy allocator.
9386  *
9387  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9388  * power of two, then allocated range is also guaranteed to be aligned to same
9389  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9390  *
9391  * Allocated pages can be freed with free_contig_range() or by manually calling
9392  * __free_page() on each allocated page.
9393  *
9394  * Return: pointer to contiguous pages on success, or NULL if not successful.
9395  */
9396 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9397 				int nid, nodemask_t *nodemask)
9398 {
9399 	unsigned long ret, pfn, flags;
9400 	struct zonelist *zonelist;
9401 	struct zone *zone;
9402 	struct zoneref *z;
9403 
9404 	zonelist = node_zonelist(nid, gfp_mask);
9405 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9406 					gfp_zone(gfp_mask), nodemask) {
9407 		spin_lock_irqsave(&zone->lock, flags);
9408 
9409 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9410 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9411 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9412 				/*
9413 				 * We release the zone lock here because
9414 				 * alloc_contig_range() will also lock the zone
9415 				 * at some point. If there's an allocation
9416 				 * spinning on this lock, it may win the race
9417 				 * and cause alloc_contig_range() to fail...
9418 				 */
9419 				spin_unlock_irqrestore(&zone->lock, flags);
9420 				ret = __alloc_contig_pages(pfn, nr_pages,
9421 							gfp_mask);
9422 				if (!ret)
9423 					return pfn_to_page(pfn);
9424 				spin_lock_irqsave(&zone->lock, flags);
9425 			}
9426 			pfn += nr_pages;
9427 		}
9428 		spin_unlock_irqrestore(&zone->lock, flags);
9429 	}
9430 	return NULL;
9431 }
9432 #endif /* CONFIG_CONTIG_ALLOC */
9433 
9434 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9435 {
9436 	unsigned long count = 0;
9437 
9438 	for (; nr_pages--; pfn++) {
9439 		struct page *page = pfn_to_page(pfn);
9440 
9441 		count += page_count(page) != 1;
9442 		__free_page(page);
9443 	}
9444 	WARN(count != 0, "%lu pages are still in use!\n", count);
9445 }
9446 EXPORT_SYMBOL(free_contig_range);
9447 
9448 /*
9449  * Effectively disable pcplists for the zone by setting the high limit to 0
9450  * and draining all cpus. A concurrent page freeing on another CPU that's about
9451  * to put the page on pcplist will either finish before the drain and the page
9452  * will be drained, or observe the new high limit and skip the pcplist.
9453  *
9454  * Must be paired with a call to zone_pcp_enable().
9455  */
9456 void zone_pcp_disable(struct zone *zone)
9457 {
9458 	mutex_lock(&pcp_batch_high_lock);
9459 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9460 	__drain_all_pages(zone, true);
9461 }
9462 
9463 void zone_pcp_enable(struct zone *zone)
9464 {
9465 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9466 	mutex_unlock(&pcp_batch_high_lock);
9467 }
9468 
9469 void zone_pcp_reset(struct zone *zone)
9470 {
9471 	int cpu;
9472 	struct per_cpu_zonestat *pzstats;
9473 
9474 	if (zone->per_cpu_pageset != &boot_pageset) {
9475 		for_each_online_cpu(cpu) {
9476 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9477 			drain_zonestat(zone, pzstats);
9478 		}
9479 		free_percpu(zone->per_cpu_pageset);
9480 		zone->per_cpu_pageset = &boot_pageset;
9481 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9482 			free_percpu(zone->per_cpu_zonestats);
9483 			zone->per_cpu_zonestats = &boot_zonestats;
9484 		}
9485 	}
9486 }
9487 
9488 #ifdef CONFIG_MEMORY_HOTREMOVE
9489 /*
9490  * All pages in the range must be in a single zone, must not contain holes,
9491  * must span full sections, and must be isolated before calling this function.
9492  */
9493 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9494 {
9495 	unsigned long pfn = start_pfn;
9496 	struct page *page;
9497 	struct zone *zone;
9498 	unsigned int order;
9499 	unsigned long flags;
9500 
9501 	offline_mem_sections(pfn, end_pfn);
9502 	zone = page_zone(pfn_to_page(pfn));
9503 	spin_lock_irqsave(&zone->lock, flags);
9504 	while (pfn < end_pfn) {
9505 		page = pfn_to_page(pfn);
9506 		/*
9507 		 * The HWPoisoned page may be not in buddy system, and
9508 		 * page_count() is not 0.
9509 		 */
9510 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9511 			pfn++;
9512 			continue;
9513 		}
9514 		/*
9515 		 * At this point all remaining PageOffline() pages have a
9516 		 * reference count of 0 and can simply be skipped.
9517 		 */
9518 		if (PageOffline(page)) {
9519 			BUG_ON(page_count(page));
9520 			BUG_ON(PageBuddy(page));
9521 			pfn++;
9522 			continue;
9523 		}
9524 
9525 		BUG_ON(page_count(page));
9526 		BUG_ON(!PageBuddy(page));
9527 		order = buddy_order(page);
9528 		del_page_from_free_list(page, zone, order);
9529 		pfn += (1 << order);
9530 	}
9531 	spin_unlock_irqrestore(&zone->lock, flags);
9532 }
9533 #endif
9534 
9535 /*
9536  * This function returns a stable result only if called under zone lock.
9537  */
9538 bool is_free_buddy_page(struct page *page)
9539 {
9540 	unsigned long pfn = page_to_pfn(page);
9541 	unsigned int order;
9542 
9543 	for (order = 0; order < MAX_ORDER; order++) {
9544 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9545 
9546 		if (PageBuddy(page_head) &&
9547 		    buddy_order_unsafe(page_head) >= order)
9548 			break;
9549 	}
9550 
9551 	return order < MAX_ORDER;
9552 }
9553 EXPORT_SYMBOL(is_free_buddy_page);
9554 
9555 #ifdef CONFIG_MEMORY_FAILURE
9556 /*
9557  * Break down a higher-order page in sub-pages, and keep our target out of
9558  * buddy allocator.
9559  */
9560 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9561 				   struct page *target, int low, int high,
9562 				   int migratetype)
9563 {
9564 	unsigned long size = 1 << high;
9565 	struct page *current_buddy, *next_page;
9566 
9567 	while (high > low) {
9568 		high--;
9569 		size >>= 1;
9570 
9571 		if (target >= &page[size]) {
9572 			next_page = page + size;
9573 			current_buddy = page;
9574 		} else {
9575 			next_page = page;
9576 			current_buddy = page + size;
9577 		}
9578 
9579 		if (set_page_guard(zone, current_buddy, high, migratetype))
9580 			continue;
9581 
9582 		if (current_buddy != target) {
9583 			add_to_free_list(current_buddy, zone, high, migratetype);
9584 			set_buddy_order(current_buddy, high);
9585 			page = next_page;
9586 		}
9587 	}
9588 }
9589 
9590 /*
9591  * Take a page that will be marked as poisoned off the buddy allocator.
9592  */
9593 bool take_page_off_buddy(struct page *page)
9594 {
9595 	struct zone *zone = page_zone(page);
9596 	unsigned long pfn = page_to_pfn(page);
9597 	unsigned long flags;
9598 	unsigned int order;
9599 	bool ret = false;
9600 
9601 	spin_lock_irqsave(&zone->lock, flags);
9602 	for (order = 0; order < MAX_ORDER; order++) {
9603 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9604 		int page_order = buddy_order(page_head);
9605 
9606 		if (PageBuddy(page_head) && page_order >= order) {
9607 			unsigned long pfn_head = page_to_pfn(page_head);
9608 			int migratetype = get_pfnblock_migratetype(page_head,
9609 								   pfn_head);
9610 
9611 			del_page_from_free_list(page_head, zone, page_order);
9612 			break_down_buddy_pages(zone, page_head, page, 0,
9613 						page_order, migratetype);
9614 			SetPageHWPoisonTakenOff(page);
9615 			if (!is_migrate_isolate(migratetype))
9616 				__mod_zone_freepage_state(zone, -1, migratetype);
9617 			ret = true;
9618 			break;
9619 		}
9620 		if (page_count(page_head) > 0)
9621 			break;
9622 	}
9623 	spin_unlock_irqrestore(&zone->lock, flags);
9624 	return ret;
9625 }
9626 
9627 /*
9628  * Cancel takeoff done by take_page_off_buddy().
9629  */
9630 bool put_page_back_buddy(struct page *page)
9631 {
9632 	struct zone *zone = page_zone(page);
9633 	unsigned long pfn = page_to_pfn(page);
9634 	unsigned long flags;
9635 	int migratetype = get_pfnblock_migratetype(page, pfn);
9636 	bool ret = false;
9637 
9638 	spin_lock_irqsave(&zone->lock, flags);
9639 	if (put_page_testzero(page)) {
9640 		ClearPageHWPoisonTakenOff(page);
9641 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9642 		if (TestClearPageHWPoison(page)) {
9643 			ret = true;
9644 		}
9645 	}
9646 	spin_unlock_irqrestore(&zone->lock, flags);
9647 
9648 	return ret;
9649 }
9650 #endif
9651 
9652 #ifdef CONFIG_ZONE_DMA
9653 bool has_managed_dma(void)
9654 {
9655 	struct pglist_data *pgdat;
9656 
9657 	for_each_online_pgdat(pgdat) {
9658 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9659 
9660 		if (managed_zone(zone))
9661 			return true;
9662 	}
9663 	return false;
9664 }
9665 #endif /* CONFIG_ZONE_DMA */
9666