1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 116 static DEFINE_MUTEX(pcp_batch_high_lock); 117 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 118 119 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 120 /* 121 * On SMP, spin_trylock is sufficient protection. 122 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 123 */ 124 #define pcp_trylock_prepare(flags) do { } while (0) 125 #define pcp_trylock_finish(flag) do { } while (0) 126 #else 127 128 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 129 #define pcp_trylock_prepare(flags) local_irq_save(flags) 130 #define pcp_trylock_finish(flags) local_irq_restore(flags) 131 #endif 132 133 /* 134 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 135 * a migration causing the wrong PCP to be locked and remote memory being 136 * potentially allocated, pin the task to the CPU for the lookup+lock. 137 * preempt_disable is used on !RT because it is faster than migrate_disable. 138 * migrate_disable is used on RT because otherwise RT spinlock usage is 139 * interfered with and a high priority task cannot preempt the allocator. 140 */ 141 #ifndef CONFIG_PREEMPT_RT 142 #define pcpu_task_pin() preempt_disable() 143 #define pcpu_task_unpin() preempt_enable() 144 #else 145 #define pcpu_task_pin() migrate_disable() 146 #define pcpu_task_unpin() migrate_enable() 147 #endif 148 149 /* 150 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 151 * Return value should be used with equivalent unlock helper. 152 */ 153 #define pcpu_spin_lock(type, member, ptr) \ 154 ({ \ 155 type *_ret; \ 156 pcpu_task_pin(); \ 157 _ret = this_cpu_ptr(ptr); \ 158 spin_lock(&_ret->member); \ 159 _ret; \ 160 }) 161 162 #define pcpu_spin_trylock(type, member, ptr) \ 163 ({ \ 164 type *_ret; \ 165 pcpu_task_pin(); \ 166 _ret = this_cpu_ptr(ptr); \ 167 if (!spin_trylock(&_ret->member)) { \ 168 pcpu_task_unpin(); \ 169 _ret = NULL; \ 170 } \ 171 _ret; \ 172 }) 173 174 #define pcpu_spin_unlock(member, ptr) \ 175 ({ \ 176 spin_unlock(&ptr->member); \ 177 pcpu_task_unpin(); \ 178 }) 179 180 /* struct per_cpu_pages specific helpers. */ 181 #define pcp_spin_lock(ptr) \ 182 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 183 184 #define pcp_spin_trylock(ptr) \ 185 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 186 187 #define pcp_spin_unlock(ptr) \ 188 pcpu_spin_unlock(lock, ptr) 189 190 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 191 DEFINE_PER_CPU(int, numa_node); 192 EXPORT_PER_CPU_SYMBOL(numa_node); 193 #endif 194 195 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 196 197 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 198 /* 199 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 200 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 201 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 202 * defined in <linux/topology.h>. 203 */ 204 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 205 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 206 #endif 207 208 static DEFINE_MUTEX(pcpu_drain_mutex); 209 210 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 211 volatile unsigned long latent_entropy __latent_entropy; 212 EXPORT_SYMBOL(latent_entropy); 213 #endif 214 215 /* 216 * Array of node states. 217 */ 218 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 219 [N_POSSIBLE] = NODE_MASK_ALL, 220 [N_ONLINE] = { { [0] = 1UL } }, 221 #ifndef CONFIG_NUMA 222 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 223 #ifdef CONFIG_HIGHMEM 224 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 225 #endif 226 [N_MEMORY] = { { [0] = 1UL } }, 227 [N_CPU] = { { [0] = 1UL } }, 228 #endif /* NUMA */ 229 }; 230 EXPORT_SYMBOL(node_states); 231 232 atomic_long_t _totalram_pages __read_mostly; 233 EXPORT_SYMBOL(_totalram_pages); 234 unsigned long totalreserve_pages __read_mostly; 235 unsigned long totalcma_pages __read_mostly; 236 237 int percpu_pagelist_high_fraction; 238 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 239 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 240 EXPORT_SYMBOL(init_on_alloc); 241 242 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 243 EXPORT_SYMBOL(init_on_free); 244 245 /* perform sanity checks on struct pages being allocated or freed */ 246 static DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 247 248 static bool _init_on_alloc_enabled_early __read_mostly 249 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 250 static int __init early_init_on_alloc(char *buf) 251 { 252 253 return kstrtobool(buf, &_init_on_alloc_enabled_early); 254 } 255 early_param("init_on_alloc", early_init_on_alloc); 256 257 static bool _init_on_free_enabled_early __read_mostly 258 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 259 static int __init early_init_on_free(char *buf) 260 { 261 return kstrtobool(buf, &_init_on_free_enabled_early); 262 } 263 early_param("init_on_free", early_init_on_free); 264 265 /* 266 * A cached value of the page's pageblock's migratetype, used when the page is 267 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 268 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 269 * Also the migratetype set in the page does not necessarily match the pcplist 270 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 271 * other index - this ensures that it will be put on the correct CMA freelist. 272 */ 273 static inline int get_pcppage_migratetype(struct page *page) 274 { 275 return page->index; 276 } 277 278 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 279 { 280 page->index = migratetype; 281 } 282 283 #ifdef CONFIG_PM_SLEEP 284 /* 285 * The following functions are used by the suspend/hibernate code to temporarily 286 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 287 * while devices are suspended. To avoid races with the suspend/hibernate code, 288 * they should always be called with system_transition_mutex held 289 * (gfp_allowed_mask also should only be modified with system_transition_mutex 290 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 291 * with that modification). 292 */ 293 294 static gfp_t saved_gfp_mask; 295 296 void pm_restore_gfp_mask(void) 297 { 298 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 299 if (saved_gfp_mask) { 300 gfp_allowed_mask = saved_gfp_mask; 301 saved_gfp_mask = 0; 302 } 303 } 304 305 void pm_restrict_gfp_mask(void) 306 { 307 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 308 WARN_ON(saved_gfp_mask); 309 saved_gfp_mask = gfp_allowed_mask; 310 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 311 } 312 313 bool pm_suspended_storage(void) 314 { 315 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 316 return false; 317 return true; 318 } 319 #endif /* CONFIG_PM_SLEEP */ 320 321 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 322 unsigned int pageblock_order __read_mostly; 323 #endif 324 325 static void __free_pages_ok(struct page *page, unsigned int order, 326 fpi_t fpi_flags); 327 328 /* 329 * results with 256, 32 in the lowmem_reserve sysctl: 330 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 331 * 1G machine -> (16M dma, 784M normal, 224M high) 332 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 333 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 334 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 335 * 336 * TBD: should special case ZONE_DMA32 machines here - in those we normally 337 * don't need any ZONE_NORMAL reservation 338 */ 339 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 340 #ifdef CONFIG_ZONE_DMA 341 [ZONE_DMA] = 256, 342 #endif 343 #ifdef CONFIG_ZONE_DMA32 344 [ZONE_DMA32] = 256, 345 #endif 346 [ZONE_NORMAL] = 32, 347 #ifdef CONFIG_HIGHMEM 348 [ZONE_HIGHMEM] = 0, 349 #endif 350 [ZONE_MOVABLE] = 0, 351 }; 352 353 static char * const zone_names[MAX_NR_ZONES] = { 354 #ifdef CONFIG_ZONE_DMA 355 "DMA", 356 #endif 357 #ifdef CONFIG_ZONE_DMA32 358 "DMA32", 359 #endif 360 "Normal", 361 #ifdef CONFIG_HIGHMEM 362 "HighMem", 363 #endif 364 "Movable", 365 #ifdef CONFIG_ZONE_DEVICE 366 "Device", 367 #endif 368 }; 369 370 const char * const migratetype_names[MIGRATE_TYPES] = { 371 "Unmovable", 372 "Movable", 373 "Reclaimable", 374 "HighAtomic", 375 #ifdef CONFIG_CMA 376 "CMA", 377 #endif 378 #ifdef CONFIG_MEMORY_ISOLATION 379 "Isolate", 380 #endif 381 }; 382 383 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 384 [NULL_COMPOUND_DTOR] = NULL, 385 [COMPOUND_PAGE_DTOR] = free_compound_page, 386 #ifdef CONFIG_HUGETLB_PAGE 387 [HUGETLB_PAGE_DTOR] = free_huge_page, 388 #endif 389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 390 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 391 #endif 392 }; 393 394 int min_free_kbytes = 1024; 395 int user_min_free_kbytes = -1; 396 int watermark_boost_factor __read_mostly = 15000; 397 int watermark_scale_factor = 10; 398 399 static unsigned long nr_kernel_pages __initdata; 400 static unsigned long nr_all_pages __initdata; 401 static unsigned long dma_reserve __initdata; 402 403 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 404 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 405 static unsigned long required_kernelcore __initdata; 406 static unsigned long required_kernelcore_percent __initdata; 407 static unsigned long required_movablecore __initdata; 408 static unsigned long required_movablecore_percent __initdata; 409 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 410 bool mirrored_kernelcore __initdata_memblock; 411 412 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 413 int movable_zone; 414 EXPORT_SYMBOL(movable_zone); 415 416 #if MAX_NUMNODES > 1 417 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 418 unsigned int nr_online_nodes __read_mostly = 1; 419 EXPORT_SYMBOL(nr_node_ids); 420 EXPORT_SYMBOL(nr_online_nodes); 421 #endif 422 423 int page_group_by_mobility_disabled __read_mostly; 424 425 bool deferred_struct_pages __meminitdata; 426 427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 428 /* 429 * During boot we initialize deferred pages on-demand, as needed, but once 430 * page_alloc_init_late() has finished, the deferred pages are all initialized, 431 * and we can permanently disable that path. 432 */ 433 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 434 435 static inline bool deferred_pages_enabled(void) 436 { 437 return static_branch_unlikely(&deferred_pages); 438 } 439 440 /* Returns true if the struct page for the pfn is initialised */ 441 static inline bool __meminit early_page_initialised(unsigned long pfn) 442 { 443 int nid = early_pfn_to_nid(pfn); 444 445 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 446 return false; 447 448 return true; 449 } 450 451 /* 452 * Returns true when the remaining initialisation should be deferred until 453 * later in the boot cycle when it can be parallelised. 454 */ 455 static bool __meminit 456 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 457 { 458 static unsigned long prev_end_pfn, nr_initialised; 459 460 if (early_page_ext_enabled()) 461 return false; 462 /* 463 * prev_end_pfn static that contains the end of previous zone 464 * No need to protect because called very early in boot before smp_init. 465 */ 466 if (prev_end_pfn != end_pfn) { 467 prev_end_pfn = end_pfn; 468 nr_initialised = 0; 469 } 470 471 /* Always populate low zones for address-constrained allocations */ 472 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 473 return false; 474 475 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 476 return true; 477 /* 478 * We start only with one section of pages, more pages are added as 479 * needed until the rest of deferred pages are initialized. 480 */ 481 nr_initialised++; 482 if ((nr_initialised > PAGES_PER_SECTION) && 483 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 484 NODE_DATA(nid)->first_deferred_pfn = pfn; 485 return true; 486 } 487 return false; 488 } 489 #else 490 static inline bool deferred_pages_enabled(void) 491 { 492 return false; 493 } 494 495 static inline bool early_page_initialised(unsigned long pfn) 496 { 497 return true; 498 } 499 500 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 501 { 502 return false; 503 } 504 #endif 505 506 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 507 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 508 unsigned long pfn) 509 { 510 #ifdef CONFIG_SPARSEMEM 511 return section_to_usemap(__pfn_to_section(pfn)); 512 #else 513 return page_zone(page)->pageblock_flags; 514 #endif /* CONFIG_SPARSEMEM */ 515 } 516 517 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 518 { 519 #ifdef CONFIG_SPARSEMEM 520 pfn &= (PAGES_PER_SECTION-1); 521 #else 522 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 523 #endif /* CONFIG_SPARSEMEM */ 524 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 525 } 526 527 static __always_inline 528 unsigned long __get_pfnblock_flags_mask(const struct page *page, 529 unsigned long pfn, 530 unsigned long mask) 531 { 532 unsigned long *bitmap; 533 unsigned long bitidx, word_bitidx; 534 unsigned long word; 535 536 bitmap = get_pageblock_bitmap(page, pfn); 537 bitidx = pfn_to_bitidx(page, pfn); 538 word_bitidx = bitidx / BITS_PER_LONG; 539 bitidx &= (BITS_PER_LONG-1); 540 /* 541 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 542 * a consistent read of the memory array, so that results, even though 543 * racy, are not corrupted. 544 */ 545 word = READ_ONCE(bitmap[word_bitidx]); 546 return (word >> bitidx) & mask; 547 } 548 549 /** 550 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 551 * @page: The page within the block of interest 552 * @pfn: The target page frame number 553 * @mask: mask of bits that the caller is interested in 554 * 555 * Return: pageblock_bits flags 556 */ 557 unsigned long get_pfnblock_flags_mask(const struct page *page, 558 unsigned long pfn, unsigned long mask) 559 { 560 return __get_pfnblock_flags_mask(page, pfn, mask); 561 } 562 563 static __always_inline int get_pfnblock_migratetype(const struct page *page, 564 unsigned long pfn) 565 { 566 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 567 } 568 569 /** 570 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 571 * @page: The page within the block of interest 572 * @flags: The flags to set 573 * @pfn: The target page frame number 574 * @mask: mask of bits that the caller is interested in 575 */ 576 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 577 unsigned long pfn, 578 unsigned long mask) 579 { 580 unsigned long *bitmap; 581 unsigned long bitidx, word_bitidx; 582 unsigned long word; 583 584 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 585 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 586 587 bitmap = get_pageblock_bitmap(page, pfn); 588 bitidx = pfn_to_bitidx(page, pfn); 589 word_bitidx = bitidx / BITS_PER_LONG; 590 bitidx &= (BITS_PER_LONG-1); 591 592 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 593 594 mask <<= bitidx; 595 flags <<= bitidx; 596 597 word = READ_ONCE(bitmap[word_bitidx]); 598 do { 599 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 600 } 601 602 void set_pageblock_migratetype(struct page *page, int migratetype) 603 { 604 if (unlikely(page_group_by_mobility_disabled && 605 migratetype < MIGRATE_PCPTYPES)) 606 migratetype = MIGRATE_UNMOVABLE; 607 608 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 609 page_to_pfn(page), MIGRATETYPE_MASK); 610 } 611 612 #ifdef CONFIG_DEBUG_VM 613 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 614 { 615 int ret = 0; 616 unsigned seq; 617 unsigned long pfn = page_to_pfn(page); 618 unsigned long sp, start_pfn; 619 620 do { 621 seq = zone_span_seqbegin(zone); 622 start_pfn = zone->zone_start_pfn; 623 sp = zone->spanned_pages; 624 if (!zone_spans_pfn(zone, pfn)) 625 ret = 1; 626 } while (zone_span_seqretry(zone, seq)); 627 628 if (ret) 629 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 630 pfn, zone_to_nid(zone), zone->name, 631 start_pfn, start_pfn + sp); 632 633 return ret; 634 } 635 636 static int page_is_consistent(struct zone *zone, struct page *page) 637 { 638 if (zone != page_zone(page)) 639 return 0; 640 641 return 1; 642 } 643 /* 644 * Temporary debugging check for pages not lying within a given zone. 645 */ 646 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 647 { 648 if (page_outside_zone_boundaries(zone, page)) 649 return 1; 650 if (!page_is_consistent(zone, page)) 651 return 1; 652 653 return 0; 654 } 655 #else 656 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 657 { 658 return 0; 659 } 660 #endif 661 662 static void bad_page(struct page *page, const char *reason) 663 { 664 static unsigned long resume; 665 static unsigned long nr_shown; 666 static unsigned long nr_unshown; 667 668 /* 669 * Allow a burst of 60 reports, then keep quiet for that minute; 670 * or allow a steady drip of one report per second. 671 */ 672 if (nr_shown == 60) { 673 if (time_before(jiffies, resume)) { 674 nr_unshown++; 675 goto out; 676 } 677 if (nr_unshown) { 678 pr_alert( 679 "BUG: Bad page state: %lu messages suppressed\n", 680 nr_unshown); 681 nr_unshown = 0; 682 } 683 nr_shown = 0; 684 } 685 if (nr_shown++ == 0) 686 resume = jiffies + 60 * HZ; 687 688 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 689 current->comm, page_to_pfn(page)); 690 dump_page(page, reason); 691 692 print_modules(); 693 dump_stack(); 694 out: 695 /* Leave bad fields for debug, except PageBuddy could make trouble */ 696 page_mapcount_reset(page); /* remove PageBuddy */ 697 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 698 } 699 700 static inline unsigned int order_to_pindex(int migratetype, int order) 701 { 702 int base = order; 703 704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 705 if (order > PAGE_ALLOC_COSTLY_ORDER) { 706 VM_BUG_ON(order != pageblock_order); 707 return NR_LOWORDER_PCP_LISTS; 708 } 709 #else 710 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 711 #endif 712 713 return (MIGRATE_PCPTYPES * base) + migratetype; 714 } 715 716 static inline int pindex_to_order(unsigned int pindex) 717 { 718 int order = pindex / MIGRATE_PCPTYPES; 719 720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 721 if (pindex == NR_LOWORDER_PCP_LISTS) 722 order = pageblock_order; 723 #else 724 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 725 #endif 726 727 return order; 728 } 729 730 static inline bool pcp_allowed_order(unsigned int order) 731 { 732 if (order <= PAGE_ALLOC_COSTLY_ORDER) 733 return true; 734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 735 if (order == pageblock_order) 736 return true; 737 #endif 738 return false; 739 } 740 741 static inline void free_the_page(struct page *page, unsigned int order) 742 { 743 if (pcp_allowed_order(order)) /* Via pcp? */ 744 free_unref_page(page, order); 745 else 746 __free_pages_ok(page, order, FPI_NONE); 747 } 748 749 /* 750 * Higher-order pages are called "compound pages". They are structured thusly: 751 * 752 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 753 * 754 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 755 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 756 * 757 * The first tail page's ->compound_dtor holds the offset in array of compound 758 * page destructors. See compound_page_dtors. 759 * 760 * The first tail page's ->compound_order holds the order of allocation. 761 * This usage means that zero-order pages may not be compound. 762 */ 763 764 void free_compound_page(struct page *page) 765 { 766 mem_cgroup_uncharge(page_folio(page)); 767 free_the_page(page, compound_order(page)); 768 } 769 770 static void prep_compound_head(struct page *page, unsigned int order) 771 { 772 struct folio *folio = (struct folio *)page; 773 774 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 775 set_compound_order(page, order); 776 atomic_set(&folio->_entire_mapcount, -1); 777 atomic_set(&folio->_nr_pages_mapped, 0); 778 atomic_set(&folio->_pincount, 0); 779 } 780 781 static void prep_compound_tail(struct page *head, int tail_idx) 782 { 783 struct page *p = head + tail_idx; 784 785 p->mapping = TAIL_MAPPING; 786 set_compound_head(p, head); 787 set_page_private(p, 0); 788 } 789 790 void prep_compound_page(struct page *page, unsigned int order) 791 { 792 int i; 793 int nr_pages = 1 << order; 794 795 __SetPageHead(page); 796 for (i = 1; i < nr_pages; i++) 797 prep_compound_tail(page, i); 798 799 prep_compound_head(page, order); 800 } 801 802 void destroy_large_folio(struct folio *folio) 803 { 804 enum compound_dtor_id dtor = folio->_folio_dtor; 805 806 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 807 compound_page_dtors[dtor](&folio->page); 808 } 809 810 #ifdef CONFIG_DEBUG_PAGEALLOC 811 unsigned int _debug_guardpage_minorder; 812 813 bool _debug_pagealloc_enabled_early __read_mostly 814 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 815 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 816 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 817 EXPORT_SYMBOL(_debug_pagealloc_enabled); 818 819 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 820 821 static int __init early_debug_pagealloc(char *buf) 822 { 823 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 824 } 825 early_param("debug_pagealloc", early_debug_pagealloc); 826 827 static int __init debug_guardpage_minorder_setup(char *buf) 828 { 829 unsigned long res; 830 831 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 832 pr_err("Bad debug_guardpage_minorder value\n"); 833 return 0; 834 } 835 _debug_guardpage_minorder = res; 836 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 837 return 0; 838 } 839 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 840 841 static inline bool set_page_guard(struct zone *zone, struct page *page, 842 unsigned int order, int migratetype) 843 { 844 if (!debug_guardpage_enabled()) 845 return false; 846 847 if (order >= debug_guardpage_minorder()) 848 return false; 849 850 __SetPageGuard(page); 851 INIT_LIST_HEAD(&page->buddy_list); 852 set_page_private(page, order); 853 /* Guard pages are not available for any usage */ 854 if (!is_migrate_isolate(migratetype)) 855 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 856 857 return true; 858 } 859 860 static inline void clear_page_guard(struct zone *zone, struct page *page, 861 unsigned int order, int migratetype) 862 { 863 if (!debug_guardpage_enabled()) 864 return; 865 866 __ClearPageGuard(page); 867 868 set_page_private(page, 0); 869 if (!is_migrate_isolate(migratetype)) 870 __mod_zone_freepage_state(zone, (1 << order), migratetype); 871 } 872 #else 873 static inline bool set_page_guard(struct zone *zone, struct page *page, 874 unsigned int order, int migratetype) { return false; } 875 static inline void clear_page_guard(struct zone *zone, struct page *page, 876 unsigned int order, int migratetype) {} 877 #endif 878 879 /* 880 * Enable static keys related to various memory debugging and hardening options. 881 * Some override others, and depend on early params that are evaluated in the 882 * order of appearance. So we need to first gather the full picture of what was 883 * enabled, and then make decisions. 884 */ 885 void __init init_mem_debugging_and_hardening(void) 886 { 887 bool page_poisoning_requested = false; 888 bool want_check_pages = false; 889 890 #ifdef CONFIG_PAGE_POISONING 891 /* 892 * Page poisoning is debug page alloc for some arches. If 893 * either of those options are enabled, enable poisoning. 894 */ 895 if (page_poisoning_enabled() || 896 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 897 debug_pagealloc_enabled())) { 898 static_branch_enable(&_page_poisoning_enabled); 899 page_poisoning_requested = true; 900 want_check_pages = true; 901 } 902 #endif 903 904 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 905 page_poisoning_requested) { 906 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 907 "will take precedence over init_on_alloc and init_on_free\n"); 908 _init_on_alloc_enabled_early = false; 909 _init_on_free_enabled_early = false; 910 } 911 912 if (_init_on_alloc_enabled_early) { 913 want_check_pages = true; 914 static_branch_enable(&init_on_alloc); 915 } else { 916 static_branch_disable(&init_on_alloc); 917 } 918 919 if (_init_on_free_enabled_early) { 920 want_check_pages = true; 921 static_branch_enable(&init_on_free); 922 } else { 923 static_branch_disable(&init_on_free); 924 } 925 926 if (IS_ENABLED(CONFIG_KMSAN) && 927 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 928 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 929 930 #ifdef CONFIG_DEBUG_PAGEALLOC 931 if (debug_pagealloc_enabled()) { 932 want_check_pages = true; 933 static_branch_enable(&_debug_pagealloc_enabled); 934 935 if (debug_guardpage_minorder()) 936 static_branch_enable(&_debug_guardpage_enabled); 937 } 938 #endif 939 940 /* 941 * Any page debugging or hardening option also enables sanity checking 942 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 943 * enabled already. 944 */ 945 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 946 static_branch_enable(&check_pages_enabled); 947 } 948 949 static inline void set_buddy_order(struct page *page, unsigned int order) 950 { 951 set_page_private(page, order); 952 __SetPageBuddy(page); 953 } 954 955 #ifdef CONFIG_COMPACTION 956 static inline struct capture_control *task_capc(struct zone *zone) 957 { 958 struct capture_control *capc = current->capture_control; 959 960 return unlikely(capc) && 961 !(current->flags & PF_KTHREAD) && 962 !capc->page && 963 capc->cc->zone == zone ? capc : NULL; 964 } 965 966 static inline bool 967 compaction_capture(struct capture_control *capc, struct page *page, 968 int order, int migratetype) 969 { 970 if (!capc || order != capc->cc->order) 971 return false; 972 973 /* Do not accidentally pollute CMA or isolated regions*/ 974 if (is_migrate_cma(migratetype) || 975 is_migrate_isolate(migratetype)) 976 return false; 977 978 /* 979 * Do not let lower order allocations pollute a movable pageblock. 980 * This might let an unmovable request use a reclaimable pageblock 981 * and vice-versa but no more than normal fallback logic which can 982 * have trouble finding a high-order free page. 983 */ 984 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 985 return false; 986 987 capc->page = page; 988 return true; 989 } 990 991 #else 992 static inline struct capture_control *task_capc(struct zone *zone) 993 { 994 return NULL; 995 } 996 997 static inline bool 998 compaction_capture(struct capture_control *capc, struct page *page, 999 int order, int migratetype) 1000 { 1001 return false; 1002 } 1003 #endif /* CONFIG_COMPACTION */ 1004 1005 /* Used for pages not on another list */ 1006 static inline void add_to_free_list(struct page *page, struct zone *zone, 1007 unsigned int order, int migratetype) 1008 { 1009 struct free_area *area = &zone->free_area[order]; 1010 1011 list_add(&page->buddy_list, &area->free_list[migratetype]); 1012 area->nr_free++; 1013 } 1014 1015 /* Used for pages not on another list */ 1016 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1017 unsigned int order, int migratetype) 1018 { 1019 struct free_area *area = &zone->free_area[order]; 1020 1021 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1022 area->nr_free++; 1023 } 1024 1025 /* 1026 * Used for pages which are on another list. Move the pages to the tail 1027 * of the list - so the moved pages won't immediately be considered for 1028 * allocation again (e.g., optimization for memory onlining). 1029 */ 1030 static inline void move_to_free_list(struct page *page, struct zone *zone, 1031 unsigned int order, int migratetype) 1032 { 1033 struct free_area *area = &zone->free_area[order]; 1034 1035 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1036 } 1037 1038 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1039 unsigned int order) 1040 { 1041 /* clear reported state and update reported page count */ 1042 if (page_reported(page)) 1043 __ClearPageReported(page); 1044 1045 list_del(&page->buddy_list); 1046 __ClearPageBuddy(page); 1047 set_page_private(page, 0); 1048 zone->free_area[order].nr_free--; 1049 } 1050 1051 /* 1052 * If this is not the largest possible page, check if the buddy 1053 * of the next-highest order is free. If it is, it's possible 1054 * that pages are being freed that will coalesce soon. In case, 1055 * that is happening, add the free page to the tail of the list 1056 * so it's less likely to be used soon and more likely to be merged 1057 * as a higher order page 1058 */ 1059 static inline bool 1060 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1061 struct page *page, unsigned int order) 1062 { 1063 unsigned long higher_page_pfn; 1064 struct page *higher_page; 1065 1066 if (order >= MAX_ORDER - 2) 1067 return false; 1068 1069 higher_page_pfn = buddy_pfn & pfn; 1070 higher_page = page + (higher_page_pfn - pfn); 1071 1072 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1073 NULL) != NULL; 1074 } 1075 1076 /* 1077 * Freeing function for a buddy system allocator. 1078 * 1079 * The concept of a buddy system is to maintain direct-mapped table 1080 * (containing bit values) for memory blocks of various "orders". 1081 * The bottom level table contains the map for the smallest allocatable 1082 * units of memory (here, pages), and each level above it describes 1083 * pairs of units from the levels below, hence, "buddies". 1084 * At a high level, all that happens here is marking the table entry 1085 * at the bottom level available, and propagating the changes upward 1086 * as necessary, plus some accounting needed to play nicely with other 1087 * parts of the VM system. 1088 * At each level, we keep a list of pages, which are heads of continuous 1089 * free pages of length of (1 << order) and marked with PageBuddy. 1090 * Page's order is recorded in page_private(page) field. 1091 * So when we are allocating or freeing one, we can derive the state of the 1092 * other. That is, if we allocate a small block, and both were 1093 * free, the remainder of the region must be split into blocks. 1094 * If a block is freed, and its buddy is also free, then this 1095 * triggers coalescing into a block of larger size. 1096 * 1097 * -- nyc 1098 */ 1099 1100 static inline void __free_one_page(struct page *page, 1101 unsigned long pfn, 1102 struct zone *zone, unsigned int order, 1103 int migratetype, fpi_t fpi_flags) 1104 { 1105 struct capture_control *capc = task_capc(zone); 1106 unsigned long buddy_pfn = 0; 1107 unsigned long combined_pfn; 1108 struct page *buddy; 1109 bool to_tail; 1110 1111 VM_BUG_ON(!zone_is_initialized(zone)); 1112 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1113 1114 VM_BUG_ON(migratetype == -1); 1115 if (likely(!is_migrate_isolate(migratetype))) 1116 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1117 1118 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1119 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1120 1121 while (order < MAX_ORDER - 1) { 1122 if (compaction_capture(capc, page, order, migratetype)) { 1123 __mod_zone_freepage_state(zone, -(1 << order), 1124 migratetype); 1125 return; 1126 } 1127 1128 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1129 if (!buddy) 1130 goto done_merging; 1131 1132 if (unlikely(order >= pageblock_order)) { 1133 /* 1134 * We want to prevent merge between freepages on pageblock 1135 * without fallbacks and normal pageblock. Without this, 1136 * pageblock isolation could cause incorrect freepage or CMA 1137 * accounting or HIGHATOMIC accounting. 1138 */ 1139 int buddy_mt = get_pageblock_migratetype(buddy); 1140 1141 if (migratetype != buddy_mt 1142 && (!migratetype_is_mergeable(migratetype) || 1143 !migratetype_is_mergeable(buddy_mt))) 1144 goto done_merging; 1145 } 1146 1147 /* 1148 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1149 * merge with it and move up one order. 1150 */ 1151 if (page_is_guard(buddy)) 1152 clear_page_guard(zone, buddy, order, migratetype); 1153 else 1154 del_page_from_free_list(buddy, zone, order); 1155 combined_pfn = buddy_pfn & pfn; 1156 page = page + (combined_pfn - pfn); 1157 pfn = combined_pfn; 1158 order++; 1159 } 1160 1161 done_merging: 1162 set_buddy_order(page, order); 1163 1164 if (fpi_flags & FPI_TO_TAIL) 1165 to_tail = true; 1166 else if (is_shuffle_order(order)) 1167 to_tail = shuffle_pick_tail(); 1168 else 1169 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1170 1171 if (to_tail) 1172 add_to_free_list_tail(page, zone, order, migratetype); 1173 else 1174 add_to_free_list(page, zone, order, migratetype); 1175 1176 /* Notify page reporting subsystem of freed page */ 1177 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1178 page_reporting_notify_free(order); 1179 } 1180 1181 /** 1182 * split_free_page() -- split a free page at split_pfn_offset 1183 * @free_page: the original free page 1184 * @order: the order of the page 1185 * @split_pfn_offset: split offset within the page 1186 * 1187 * Return -ENOENT if the free page is changed, otherwise 0 1188 * 1189 * It is used when the free page crosses two pageblocks with different migratetypes 1190 * at split_pfn_offset within the page. The split free page will be put into 1191 * separate migratetype lists afterwards. Otherwise, the function achieves 1192 * nothing. 1193 */ 1194 int split_free_page(struct page *free_page, 1195 unsigned int order, unsigned long split_pfn_offset) 1196 { 1197 struct zone *zone = page_zone(free_page); 1198 unsigned long free_page_pfn = page_to_pfn(free_page); 1199 unsigned long pfn; 1200 unsigned long flags; 1201 int free_page_order; 1202 int mt; 1203 int ret = 0; 1204 1205 if (split_pfn_offset == 0) 1206 return ret; 1207 1208 spin_lock_irqsave(&zone->lock, flags); 1209 1210 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1211 ret = -ENOENT; 1212 goto out; 1213 } 1214 1215 mt = get_pageblock_migratetype(free_page); 1216 if (likely(!is_migrate_isolate(mt))) 1217 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1218 1219 del_page_from_free_list(free_page, zone, order); 1220 for (pfn = free_page_pfn; 1221 pfn < free_page_pfn + (1UL << order);) { 1222 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1223 1224 free_page_order = min_t(unsigned int, 1225 pfn ? __ffs(pfn) : order, 1226 __fls(split_pfn_offset)); 1227 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1228 mt, FPI_NONE); 1229 pfn += 1UL << free_page_order; 1230 split_pfn_offset -= (1UL << free_page_order); 1231 /* we have done the first part, now switch to second part */ 1232 if (split_pfn_offset == 0) 1233 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1234 } 1235 out: 1236 spin_unlock_irqrestore(&zone->lock, flags); 1237 return ret; 1238 } 1239 /* 1240 * A bad page could be due to a number of fields. Instead of multiple branches, 1241 * try and check multiple fields with one check. The caller must do a detailed 1242 * check if necessary. 1243 */ 1244 static inline bool page_expected_state(struct page *page, 1245 unsigned long check_flags) 1246 { 1247 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1248 return false; 1249 1250 if (unlikely((unsigned long)page->mapping | 1251 page_ref_count(page) | 1252 #ifdef CONFIG_MEMCG 1253 page->memcg_data | 1254 #endif 1255 (page->flags & check_flags))) 1256 return false; 1257 1258 return true; 1259 } 1260 1261 static const char *page_bad_reason(struct page *page, unsigned long flags) 1262 { 1263 const char *bad_reason = NULL; 1264 1265 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1266 bad_reason = "nonzero mapcount"; 1267 if (unlikely(page->mapping != NULL)) 1268 bad_reason = "non-NULL mapping"; 1269 if (unlikely(page_ref_count(page) != 0)) 1270 bad_reason = "nonzero _refcount"; 1271 if (unlikely(page->flags & flags)) { 1272 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1273 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1274 else 1275 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1276 } 1277 #ifdef CONFIG_MEMCG 1278 if (unlikely(page->memcg_data)) 1279 bad_reason = "page still charged to cgroup"; 1280 #endif 1281 return bad_reason; 1282 } 1283 1284 static void free_page_is_bad_report(struct page *page) 1285 { 1286 bad_page(page, 1287 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1288 } 1289 1290 static inline bool free_page_is_bad(struct page *page) 1291 { 1292 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1293 return false; 1294 1295 /* Something has gone sideways, find it */ 1296 free_page_is_bad_report(page); 1297 return true; 1298 } 1299 1300 static int free_tail_pages_check(struct page *head_page, struct page *page) 1301 { 1302 struct folio *folio = (struct folio *)head_page; 1303 int ret = 1; 1304 1305 /* 1306 * We rely page->lru.next never has bit 0 set, unless the page 1307 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1308 */ 1309 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1310 1311 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1312 ret = 0; 1313 goto out; 1314 } 1315 switch (page - head_page) { 1316 case 1: 1317 /* the first tail page: these may be in place of ->mapping */ 1318 if (unlikely(folio_entire_mapcount(folio))) { 1319 bad_page(page, "nonzero entire_mapcount"); 1320 goto out; 1321 } 1322 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1323 bad_page(page, "nonzero nr_pages_mapped"); 1324 goto out; 1325 } 1326 if (unlikely(atomic_read(&folio->_pincount))) { 1327 bad_page(page, "nonzero pincount"); 1328 goto out; 1329 } 1330 break; 1331 case 2: 1332 /* 1333 * the second tail page: ->mapping is 1334 * deferred_list.next -- ignore value. 1335 */ 1336 break; 1337 default: 1338 if (page->mapping != TAIL_MAPPING) { 1339 bad_page(page, "corrupted mapping in tail page"); 1340 goto out; 1341 } 1342 break; 1343 } 1344 if (unlikely(!PageTail(page))) { 1345 bad_page(page, "PageTail not set"); 1346 goto out; 1347 } 1348 if (unlikely(compound_head(page) != head_page)) { 1349 bad_page(page, "compound_head not consistent"); 1350 goto out; 1351 } 1352 ret = 0; 1353 out: 1354 page->mapping = NULL; 1355 clear_compound_head(page); 1356 return ret; 1357 } 1358 1359 /* 1360 * Skip KASAN memory poisoning when either: 1361 * 1362 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1363 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1364 * using page tags instead (see below). 1365 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1366 * that error detection is disabled for accesses via the page address. 1367 * 1368 * Pages will have match-all tags in the following circumstances: 1369 * 1370 * 1. Pages are being initialized for the first time, including during deferred 1371 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1372 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1373 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1374 * 3. The allocation was excluded from being checked due to sampling, 1375 * see the call to kasan_unpoison_pages. 1376 * 1377 * Poisoning pages during deferred memory init will greatly lengthen the 1378 * process and cause problem in large memory systems as the deferred pages 1379 * initialization is done with interrupt disabled. 1380 * 1381 * Assuming that there will be no reference to those newly initialized 1382 * pages before they are ever allocated, this should have no effect on 1383 * KASAN memory tracking as the poison will be properly inserted at page 1384 * allocation time. The only corner case is when pages are allocated by 1385 * on-demand allocation and then freed again before the deferred pages 1386 * initialization is done, but this is not likely to happen. 1387 */ 1388 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1389 { 1390 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1391 return deferred_pages_enabled(); 1392 1393 return page_kasan_tag(page) == 0xff; 1394 } 1395 1396 static void kernel_init_pages(struct page *page, int numpages) 1397 { 1398 int i; 1399 1400 /* s390's use of memset() could override KASAN redzones. */ 1401 kasan_disable_current(); 1402 for (i = 0; i < numpages; i++) 1403 clear_highpage_kasan_tagged(page + i); 1404 kasan_enable_current(); 1405 } 1406 1407 static __always_inline bool free_pages_prepare(struct page *page, 1408 unsigned int order, fpi_t fpi_flags) 1409 { 1410 int bad = 0; 1411 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1412 bool init = want_init_on_free(); 1413 1414 VM_BUG_ON_PAGE(PageTail(page), page); 1415 1416 trace_mm_page_free(page, order); 1417 kmsan_free_page(page, order); 1418 1419 if (unlikely(PageHWPoison(page)) && !order) { 1420 /* 1421 * Do not let hwpoison pages hit pcplists/buddy 1422 * Untie memcg state and reset page's owner 1423 */ 1424 if (memcg_kmem_online() && PageMemcgKmem(page)) 1425 __memcg_kmem_uncharge_page(page, order); 1426 reset_page_owner(page, order); 1427 page_table_check_free(page, order); 1428 return false; 1429 } 1430 1431 /* 1432 * Check tail pages before head page information is cleared to 1433 * avoid checking PageCompound for order-0 pages. 1434 */ 1435 if (unlikely(order)) { 1436 bool compound = PageCompound(page); 1437 int i; 1438 1439 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1440 1441 if (compound) 1442 ClearPageHasHWPoisoned(page); 1443 for (i = 1; i < (1 << order); i++) { 1444 if (compound) 1445 bad += free_tail_pages_check(page, page + i); 1446 if (static_branch_unlikely(&check_pages_enabled)) { 1447 if (unlikely(free_page_is_bad(page + i))) { 1448 bad++; 1449 continue; 1450 } 1451 } 1452 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1453 } 1454 } 1455 if (PageMappingFlags(page)) 1456 page->mapping = NULL; 1457 if (memcg_kmem_online() && PageMemcgKmem(page)) 1458 __memcg_kmem_uncharge_page(page, order); 1459 if (static_branch_unlikely(&check_pages_enabled)) { 1460 if (free_page_is_bad(page)) 1461 bad++; 1462 if (bad) 1463 return false; 1464 } 1465 1466 page_cpupid_reset_last(page); 1467 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1468 reset_page_owner(page, order); 1469 page_table_check_free(page, order); 1470 1471 if (!PageHighMem(page)) { 1472 debug_check_no_locks_freed(page_address(page), 1473 PAGE_SIZE << order); 1474 debug_check_no_obj_freed(page_address(page), 1475 PAGE_SIZE << order); 1476 } 1477 1478 kernel_poison_pages(page, 1 << order); 1479 1480 /* 1481 * As memory initialization might be integrated into KASAN, 1482 * KASAN poisoning and memory initialization code must be 1483 * kept together to avoid discrepancies in behavior. 1484 * 1485 * With hardware tag-based KASAN, memory tags must be set before the 1486 * page becomes unavailable via debug_pagealloc or arch_free_page. 1487 */ 1488 if (!skip_kasan_poison) { 1489 kasan_poison_pages(page, order, init); 1490 1491 /* Memory is already initialized if KASAN did it internally. */ 1492 if (kasan_has_integrated_init()) 1493 init = false; 1494 } 1495 if (init) 1496 kernel_init_pages(page, 1 << order); 1497 1498 /* 1499 * arch_free_page() can make the page's contents inaccessible. s390 1500 * does this. So nothing which can access the page's contents should 1501 * happen after this. 1502 */ 1503 arch_free_page(page, order); 1504 1505 debug_pagealloc_unmap_pages(page, 1 << order); 1506 1507 return true; 1508 } 1509 1510 /* 1511 * Frees a number of pages from the PCP lists 1512 * Assumes all pages on list are in same zone. 1513 * count is the number of pages to free. 1514 */ 1515 static void free_pcppages_bulk(struct zone *zone, int count, 1516 struct per_cpu_pages *pcp, 1517 int pindex) 1518 { 1519 unsigned long flags; 1520 int min_pindex = 0; 1521 int max_pindex = NR_PCP_LISTS - 1; 1522 unsigned int order; 1523 bool isolated_pageblocks; 1524 struct page *page; 1525 1526 /* 1527 * Ensure proper count is passed which otherwise would stuck in the 1528 * below while (list_empty(list)) loop. 1529 */ 1530 count = min(pcp->count, count); 1531 1532 /* Ensure requested pindex is drained first. */ 1533 pindex = pindex - 1; 1534 1535 spin_lock_irqsave(&zone->lock, flags); 1536 isolated_pageblocks = has_isolate_pageblock(zone); 1537 1538 while (count > 0) { 1539 struct list_head *list; 1540 int nr_pages; 1541 1542 /* Remove pages from lists in a round-robin fashion. */ 1543 do { 1544 if (++pindex > max_pindex) 1545 pindex = min_pindex; 1546 list = &pcp->lists[pindex]; 1547 if (!list_empty(list)) 1548 break; 1549 1550 if (pindex == max_pindex) 1551 max_pindex--; 1552 if (pindex == min_pindex) 1553 min_pindex++; 1554 } while (1); 1555 1556 order = pindex_to_order(pindex); 1557 nr_pages = 1 << order; 1558 do { 1559 int mt; 1560 1561 page = list_last_entry(list, struct page, pcp_list); 1562 mt = get_pcppage_migratetype(page); 1563 1564 /* must delete to avoid corrupting pcp list */ 1565 list_del(&page->pcp_list); 1566 count -= nr_pages; 1567 pcp->count -= nr_pages; 1568 1569 /* MIGRATE_ISOLATE page should not go to pcplists */ 1570 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1571 /* Pageblock could have been isolated meanwhile */ 1572 if (unlikely(isolated_pageblocks)) 1573 mt = get_pageblock_migratetype(page); 1574 1575 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1576 trace_mm_page_pcpu_drain(page, order, mt); 1577 } while (count > 0 && !list_empty(list)); 1578 } 1579 1580 spin_unlock_irqrestore(&zone->lock, flags); 1581 } 1582 1583 static void free_one_page(struct zone *zone, 1584 struct page *page, unsigned long pfn, 1585 unsigned int order, 1586 int migratetype, fpi_t fpi_flags) 1587 { 1588 unsigned long flags; 1589 1590 spin_lock_irqsave(&zone->lock, flags); 1591 if (unlikely(has_isolate_pageblock(zone) || 1592 is_migrate_isolate(migratetype))) { 1593 migratetype = get_pfnblock_migratetype(page, pfn); 1594 } 1595 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1596 spin_unlock_irqrestore(&zone->lock, flags); 1597 } 1598 1599 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1600 unsigned long zone, int nid) 1601 { 1602 mm_zero_struct_page(page); 1603 set_page_links(page, zone, nid, pfn); 1604 init_page_count(page); 1605 page_mapcount_reset(page); 1606 page_cpupid_reset_last(page); 1607 page_kasan_tag_reset(page); 1608 1609 INIT_LIST_HEAD(&page->lru); 1610 #ifdef WANT_PAGE_VIRTUAL 1611 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1612 if (!is_highmem_idx(zone)) 1613 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1614 #endif 1615 } 1616 1617 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1618 static void __meminit init_reserved_page(unsigned long pfn) 1619 { 1620 pg_data_t *pgdat; 1621 int nid, zid; 1622 1623 if (early_page_initialised(pfn)) 1624 return; 1625 1626 nid = early_pfn_to_nid(pfn); 1627 pgdat = NODE_DATA(nid); 1628 1629 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1630 struct zone *zone = &pgdat->node_zones[zid]; 1631 1632 if (zone_spans_pfn(zone, pfn)) 1633 break; 1634 } 1635 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1636 } 1637 #else 1638 static inline void init_reserved_page(unsigned long pfn) 1639 { 1640 } 1641 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1642 1643 /* 1644 * Initialised pages do not have PageReserved set. This function is 1645 * called for each range allocated by the bootmem allocator and 1646 * marks the pages PageReserved. The remaining valid pages are later 1647 * sent to the buddy page allocator. 1648 */ 1649 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1650 { 1651 unsigned long start_pfn = PFN_DOWN(start); 1652 unsigned long end_pfn = PFN_UP(end); 1653 1654 for (; start_pfn < end_pfn; start_pfn++) { 1655 if (pfn_valid(start_pfn)) { 1656 struct page *page = pfn_to_page(start_pfn); 1657 1658 init_reserved_page(start_pfn); 1659 1660 /* Avoid false-positive PageTail() */ 1661 INIT_LIST_HEAD(&page->lru); 1662 1663 /* 1664 * no need for atomic set_bit because the struct 1665 * page is not visible yet so nobody should 1666 * access it yet. 1667 */ 1668 __SetPageReserved(page); 1669 } 1670 } 1671 } 1672 1673 static void __free_pages_ok(struct page *page, unsigned int order, 1674 fpi_t fpi_flags) 1675 { 1676 unsigned long flags; 1677 int migratetype; 1678 unsigned long pfn = page_to_pfn(page); 1679 struct zone *zone = page_zone(page); 1680 1681 if (!free_pages_prepare(page, order, fpi_flags)) 1682 return; 1683 1684 /* 1685 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1686 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1687 * This will reduce the lock holding time. 1688 */ 1689 migratetype = get_pfnblock_migratetype(page, pfn); 1690 1691 spin_lock_irqsave(&zone->lock, flags); 1692 if (unlikely(has_isolate_pageblock(zone) || 1693 is_migrate_isolate(migratetype))) { 1694 migratetype = get_pfnblock_migratetype(page, pfn); 1695 } 1696 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1697 spin_unlock_irqrestore(&zone->lock, flags); 1698 1699 __count_vm_events(PGFREE, 1 << order); 1700 } 1701 1702 void __free_pages_core(struct page *page, unsigned int order) 1703 { 1704 unsigned int nr_pages = 1 << order; 1705 struct page *p = page; 1706 unsigned int loop; 1707 1708 /* 1709 * When initializing the memmap, __init_single_page() sets the refcount 1710 * of all pages to 1 ("allocated"/"not free"). We have to set the 1711 * refcount of all involved pages to 0. 1712 */ 1713 prefetchw(p); 1714 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1715 prefetchw(p + 1); 1716 __ClearPageReserved(p); 1717 set_page_count(p, 0); 1718 } 1719 __ClearPageReserved(p); 1720 set_page_count(p, 0); 1721 1722 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1723 1724 /* 1725 * Bypass PCP and place fresh pages right to the tail, primarily 1726 * relevant for memory onlining. 1727 */ 1728 __free_pages_ok(page, order, FPI_TO_TAIL); 1729 } 1730 1731 #ifdef CONFIG_NUMA 1732 1733 /* 1734 * During memory init memblocks map pfns to nids. The search is expensive and 1735 * this caches recent lookups. The implementation of __early_pfn_to_nid 1736 * treats start/end as pfns. 1737 */ 1738 struct mminit_pfnnid_cache { 1739 unsigned long last_start; 1740 unsigned long last_end; 1741 int last_nid; 1742 }; 1743 1744 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1745 1746 /* 1747 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1748 */ 1749 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1750 struct mminit_pfnnid_cache *state) 1751 { 1752 unsigned long start_pfn, end_pfn; 1753 int nid; 1754 1755 if (state->last_start <= pfn && pfn < state->last_end) 1756 return state->last_nid; 1757 1758 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1759 if (nid != NUMA_NO_NODE) { 1760 state->last_start = start_pfn; 1761 state->last_end = end_pfn; 1762 state->last_nid = nid; 1763 } 1764 1765 return nid; 1766 } 1767 1768 int __meminit early_pfn_to_nid(unsigned long pfn) 1769 { 1770 static DEFINE_SPINLOCK(early_pfn_lock); 1771 int nid; 1772 1773 spin_lock(&early_pfn_lock); 1774 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1775 if (nid < 0) 1776 nid = first_online_node; 1777 spin_unlock(&early_pfn_lock); 1778 1779 return nid; 1780 } 1781 #endif /* CONFIG_NUMA */ 1782 1783 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1784 unsigned int order) 1785 { 1786 if (!early_page_initialised(pfn)) 1787 return; 1788 if (!kmsan_memblock_free_pages(page, order)) { 1789 /* KMSAN will take care of these pages. */ 1790 return; 1791 } 1792 __free_pages_core(page, order); 1793 } 1794 1795 /* 1796 * Check that the whole (or subset of) a pageblock given by the interval of 1797 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1798 * with the migration of free compaction scanner. 1799 * 1800 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1801 * 1802 * It's possible on some configurations to have a setup like node0 node1 node0 1803 * i.e. it's possible that all pages within a zones range of pages do not 1804 * belong to a single zone. We assume that a border between node0 and node1 1805 * can occur within a single pageblock, but not a node0 node1 node0 1806 * interleaving within a single pageblock. It is therefore sufficient to check 1807 * the first and last page of a pageblock and avoid checking each individual 1808 * page in a pageblock. 1809 */ 1810 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1811 unsigned long end_pfn, struct zone *zone) 1812 { 1813 struct page *start_page; 1814 struct page *end_page; 1815 1816 /* end_pfn is one past the range we are checking */ 1817 end_pfn--; 1818 1819 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1820 return NULL; 1821 1822 start_page = pfn_to_online_page(start_pfn); 1823 if (!start_page) 1824 return NULL; 1825 1826 if (page_zone(start_page) != zone) 1827 return NULL; 1828 1829 end_page = pfn_to_page(end_pfn); 1830 1831 /* This gives a shorter code than deriving page_zone(end_page) */ 1832 if (page_zone_id(start_page) != page_zone_id(end_page)) 1833 return NULL; 1834 1835 return start_page; 1836 } 1837 1838 void set_zone_contiguous(struct zone *zone) 1839 { 1840 unsigned long block_start_pfn = zone->zone_start_pfn; 1841 unsigned long block_end_pfn; 1842 1843 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1844 for (; block_start_pfn < zone_end_pfn(zone); 1845 block_start_pfn = block_end_pfn, 1846 block_end_pfn += pageblock_nr_pages) { 1847 1848 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1849 1850 if (!__pageblock_pfn_to_page(block_start_pfn, 1851 block_end_pfn, zone)) 1852 return; 1853 cond_resched(); 1854 } 1855 1856 /* We confirm that there is no hole */ 1857 zone->contiguous = true; 1858 } 1859 1860 void clear_zone_contiguous(struct zone *zone) 1861 { 1862 zone->contiguous = false; 1863 } 1864 1865 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1866 static void __init deferred_free_range(unsigned long pfn, 1867 unsigned long nr_pages) 1868 { 1869 struct page *page; 1870 unsigned long i; 1871 1872 if (!nr_pages) 1873 return; 1874 1875 page = pfn_to_page(pfn); 1876 1877 /* Free a large naturally-aligned chunk if possible */ 1878 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1879 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1880 __free_pages_core(page, pageblock_order); 1881 return; 1882 } 1883 1884 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1885 if (pageblock_aligned(pfn)) 1886 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1887 __free_pages_core(page, 0); 1888 } 1889 } 1890 1891 /* Completion tracking for deferred_init_memmap() threads */ 1892 static atomic_t pgdat_init_n_undone __initdata; 1893 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1894 1895 static inline void __init pgdat_init_report_one_done(void) 1896 { 1897 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1898 complete(&pgdat_init_all_done_comp); 1899 } 1900 1901 /* 1902 * Returns true if page needs to be initialized or freed to buddy allocator. 1903 * 1904 * We check if a current large page is valid by only checking the validity 1905 * of the head pfn. 1906 */ 1907 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1908 { 1909 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1910 return false; 1911 return true; 1912 } 1913 1914 /* 1915 * Free pages to buddy allocator. Try to free aligned pages in 1916 * pageblock_nr_pages sizes. 1917 */ 1918 static void __init deferred_free_pages(unsigned long pfn, 1919 unsigned long end_pfn) 1920 { 1921 unsigned long nr_free = 0; 1922 1923 for (; pfn < end_pfn; pfn++) { 1924 if (!deferred_pfn_valid(pfn)) { 1925 deferred_free_range(pfn - nr_free, nr_free); 1926 nr_free = 0; 1927 } else if (pageblock_aligned(pfn)) { 1928 deferred_free_range(pfn - nr_free, nr_free); 1929 nr_free = 1; 1930 } else { 1931 nr_free++; 1932 } 1933 } 1934 /* Free the last block of pages to allocator */ 1935 deferred_free_range(pfn - nr_free, nr_free); 1936 } 1937 1938 /* 1939 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1940 * by performing it only once every pageblock_nr_pages. 1941 * Return number of pages initialized. 1942 */ 1943 static unsigned long __init deferred_init_pages(struct zone *zone, 1944 unsigned long pfn, 1945 unsigned long end_pfn) 1946 { 1947 int nid = zone_to_nid(zone); 1948 unsigned long nr_pages = 0; 1949 int zid = zone_idx(zone); 1950 struct page *page = NULL; 1951 1952 for (; pfn < end_pfn; pfn++) { 1953 if (!deferred_pfn_valid(pfn)) { 1954 page = NULL; 1955 continue; 1956 } else if (!page || pageblock_aligned(pfn)) { 1957 page = pfn_to_page(pfn); 1958 } else { 1959 page++; 1960 } 1961 __init_single_page(page, pfn, zid, nid); 1962 nr_pages++; 1963 } 1964 return (nr_pages); 1965 } 1966 1967 /* 1968 * This function is meant to pre-load the iterator for the zone init. 1969 * Specifically it walks through the ranges until we are caught up to the 1970 * first_init_pfn value and exits there. If we never encounter the value we 1971 * return false indicating there are no valid ranges left. 1972 */ 1973 static bool __init 1974 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1975 unsigned long *spfn, unsigned long *epfn, 1976 unsigned long first_init_pfn) 1977 { 1978 u64 j; 1979 1980 /* 1981 * Start out by walking through the ranges in this zone that have 1982 * already been initialized. We don't need to do anything with them 1983 * so we just need to flush them out of the system. 1984 */ 1985 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1986 if (*epfn <= first_init_pfn) 1987 continue; 1988 if (*spfn < first_init_pfn) 1989 *spfn = first_init_pfn; 1990 *i = j; 1991 return true; 1992 } 1993 1994 return false; 1995 } 1996 1997 /* 1998 * Initialize and free pages. We do it in two loops: first we initialize 1999 * struct page, then free to buddy allocator, because while we are 2000 * freeing pages we can access pages that are ahead (computing buddy 2001 * page in __free_one_page()). 2002 * 2003 * In order to try and keep some memory in the cache we have the loop 2004 * broken along max page order boundaries. This way we will not cause 2005 * any issues with the buddy page computation. 2006 */ 2007 static unsigned long __init 2008 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2009 unsigned long *end_pfn) 2010 { 2011 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2012 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2013 unsigned long nr_pages = 0; 2014 u64 j = *i; 2015 2016 /* First we loop through and initialize the page values */ 2017 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2018 unsigned long t; 2019 2020 if (mo_pfn <= *start_pfn) 2021 break; 2022 2023 t = min(mo_pfn, *end_pfn); 2024 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2025 2026 if (mo_pfn < *end_pfn) { 2027 *start_pfn = mo_pfn; 2028 break; 2029 } 2030 } 2031 2032 /* Reset values and now loop through freeing pages as needed */ 2033 swap(j, *i); 2034 2035 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2036 unsigned long t; 2037 2038 if (mo_pfn <= spfn) 2039 break; 2040 2041 t = min(mo_pfn, epfn); 2042 deferred_free_pages(spfn, t); 2043 2044 if (mo_pfn <= epfn) 2045 break; 2046 } 2047 2048 return nr_pages; 2049 } 2050 2051 static void __init 2052 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2053 void *arg) 2054 { 2055 unsigned long spfn, epfn; 2056 struct zone *zone = arg; 2057 u64 i; 2058 2059 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2060 2061 /* 2062 * Initialize and free pages in MAX_ORDER sized increments so that we 2063 * can avoid introducing any issues with the buddy allocator. 2064 */ 2065 while (spfn < end_pfn) { 2066 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2067 cond_resched(); 2068 } 2069 } 2070 2071 /* An arch may override for more concurrency. */ 2072 __weak int __init 2073 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2074 { 2075 return 1; 2076 } 2077 2078 /* Initialise remaining memory on a node */ 2079 static int __init deferred_init_memmap(void *data) 2080 { 2081 pg_data_t *pgdat = data; 2082 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2083 unsigned long spfn = 0, epfn = 0; 2084 unsigned long first_init_pfn, flags; 2085 unsigned long start = jiffies; 2086 struct zone *zone; 2087 int zid, max_threads; 2088 u64 i; 2089 2090 /* Bind memory initialisation thread to a local node if possible */ 2091 if (!cpumask_empty(cpumask)) 2092 set_cpus_allowed_ptr(current, cpumask); 2093 2094 pgdat_resize_lock(pgdat, &flags); 2095 first_init_pfn = pgdat->first_deferred_pfn; 2096 if (first_init_pfn == ULONG_MAX) { 2097 pgdat_resize_unlock(pgdat, &flags); 2098 pgdat_init_report_one_done(); 2099 return 0; 2100 } 2101 2102 /* Sanity check boundaries */ 2103 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2104 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2105 pgdat->first_deferred_pfn = ULONG_MAX; 2106 2107 /* 2108 * Once we unlock here, the zone cannot be grown anymore, thus if an 2109 * interrupt thread must allocate this early in boot, zone must be 2110 * pre-grown prior to start of deferred page initialization. 2111 */ 2112 pgdat_resize_unlock(pgdat, &flags); 2113 2114 /* Only the highest zone is deferred so find it */ 2115 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2116 zone = pgdat->node_zones + zid; 2117 if (first_init_pfn < zone_end_pfn(zone)) 2118 break; 2119 } 2120 2121 /* If the zone is empty somebody else may have cleared out the zone */ 2122 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2123 first_init_pfn)) 2124 goto zone_empty; 2125 2126 max_threads = deferred_page_init_max_threads(cpumask); 2127 2128 while (spfn < epfn) { 2129 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2130 struct padata_mt_job job = { 2131 .thread_fn = deferred_init_memmap_chunk, 2132 .fn_arg = zone, 2133 .start = spfn, 2134 .size = epfn_align - spfn, 2135 .align = PAGES_PER_SECTION, 2136 .min_chunk = PAGES_PER_SECTION, 2137 .max_threads = max_threads, 2138 }; 2139 2140 padata_do_multithreaded(&job); 2141 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2142 epfn_align); 2143 } 2144 zone_empty: 2145 /* Sanity check that the next zone really is unpopulated */ 2146 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2147 2148 pr_info("node %d deferred pages initialised in %ums\n", 2149 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2150 2151 pgdat_init_report_one_done(); 2152 return 0; 2153 } 2154 2155 /* 2156 * If this zone has deferred pages, try to grow it by initializing enough 2157 * deferred pages to satisfy the allocation specified by order, rounded up to 2158 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2159 * of SECTION_SIZE bytes by initializing struct pages in increments of 2160 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2161 * 2162 * Return true when zone was grown, otherwise return false. We return true even 2163 * when we grow less than requested, to let the caller decide if there are 2164 * enough pages to satisfy the allocation. 2165 * 2166 * Note: We use noinline because this function is needed only during boot, and 2167 * it is called from a __ref function _deferred_grow_zone. This way we are 2168 * making sure that it is not inlined into permanent text section. 2169 */ 2170 static noinline bool __init 2171 deferred_grow_zone(struct zone *zone, unsigned int order) 2172 { 2173 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2174 pg_data_t *pgdat = zone->zone_pgdat; 2175 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2176 unsigned long spfn, epfn, flags; 2177 unsigned long nr_pages = 0; 2178 u64 i; 2179 2180 /* Only the last zone may have deferred pages */ 2181 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2182 return false; 2183 2184 pgdat_resize_lock(pgdat, &flags); 2185 2186 /* 2187 * If someone grew this zone while we were waiting for spinlock, return 2188 * true, as there might be enough pages already. 2189 */ 2190 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2191 pgdat_resize_unlock(pgdat, &flags); 2192 return true; 2193 } 2194 2195 /* If the zone is empty somebody else may have cleared out the zone */ 2196 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2197 first_deferred_pfn)) { 2198 pgdat->first_deferred_pfn = ULONG_MAX; 2199 pgdat_resize_unlock(pgdat, &flags); 2200 /* Retry only once. */ 2201 return first_deferred_pfn != ULONG_MAX; 2202 } 2203 2204 /* 2205 * Initialize and free pages in MAX_ORDER sized increments so 2206 * that we can avoid introducing any issues with the buddy 2207 * allocator. 2208 */ 2209 while (spfn < epfn) { 2210 /* update our first deferred PFN for this section */ 2211 first_deferred_pfn = spfn; 2212 2213 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2214 touch_nmi_watchdog(); 2215 2216 /* We should only stop along section boundaries */ 2217 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2218 continue; 2219 2220 /* If our quota has been met we can stop here */ 2221 if (nr_pages >= nr_pages_needed) 2222 break; 2223 } 2224 2225 pgdat->first_deferred_pfn = spfn; 2226 pgdat_resize_unlock(pgdat, &flags); 2227 2228 return nr_pages > 0; 2229 } 2230 2231 /* 2232 * deferred_grow_zone() is __init, but it is called from 2233 * get_page_from_freelist() during early boot until deferred_pages permanently 2234 * disables this call. This is why we have refdata wrapper to avoid warning, 2235 * and to ensure that the function body gets unloaded. 2236 */ 2237 static bool __ref 2238 _deferred_grow_zone(struct zone *zone, unsigned int order) 2239 { 2240 return deferred_grow_zone(zone, order); 2241 } 2242 2243 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2244 2245 void __init page_alloc_init_late(void) 2246 { 2247 struct zone *zone; 2248 int nid; 2249 2250 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2251 2252 /* There will be num_node_state(N_MEMORY) threads */ 2253 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2254 for_each_node_state(nid, N_MEMORY) { 2255 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2256 } 2257 2258 /* Block until all are initialised */ 2259 wait_for_completion(&pgdat_init_all_done_comp); 2260 2261 /* 2262 * We initialized the rest of the deferred pages. Permanently disable 2263 * on-demand struct page initialization. 2264 */ 2265 static_branch_disable(&deferred_pages); 2266 2267 /* Reinit limits that are based on free pages after the kernel is up */ 2268 files_maxfiles_init(); 2269 #endif 2270 2271 buffer_init(); 2272 2273 /* Discard memblock private memory */ 2274 memblock_discard(); 2275 2276 for_each_node_state(nid, N_MEMORY) 2277 shuffle_free_memory(NODE_DATA(nid)); 2278 2279 for_each_populated_zone(zone) 2280 set_zone_contiguous(zone); 2281 } 2282 2283 #ifdef CONFIG_CMA 2284 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2285 void __init init_cma_reserved_pageblock(struct page *page) 2286 { 2287 unsigned i = pageblock_nr_pages; 2288 struct page *p = page; 2289 2290 do { 2291 __ClearPageReserved(p); 2292 set_page_count(p, 0); 2293 } while (++p, --i); 2294 2295 set_pageblock_migratetype(page, MIGRATE_CMA); 2296 set_page_refcounted(page); 2297 __free_pages(page, pageblock_order); 2298 2299 adjust_managed_page_count(page, pageblock_nr_pages); 2300 page_zone(page)->cma_pages += pageblock_nr_pages; 2301 } 2302 #endif 2303 2304 /* 2305 * The order of subdivision here is critical for the IO subsystem. 2306 * Please do not alter this order without good reasons and regression 2307 * testing. Specifically, as large blocks of memory are subdivided, 2308 * the order in which smaller blocks are delivered depends on the order 2309 * they're subdivided in this function. This is the primary factor 2310 * influencing the order in which pages are delivered to the IO 2311 * subsystem according to empirical testing, and this is also justified 2312 * by considering the behavior of a buddy system containing a single 2313 * large block of memory acted on by a series of small allocations. 2314 * This behavior is a critical factor in sglist merging's success. 2315 * 2316 * -- nyc 2317 */ 2318 static inline void expand(struct zone *zone, struct page *page, 2319 int low, int high, int migratetype) 2320 { 2321 unsigned long size = 1 << high; 2322 2323 while (high > low) { 2324 high--; 2325 size >>= 1; 2326 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2327 2328 /* 2329 * Mark as guard pages (or page), that will allow to 2330 * merge back to allocator when buddy will be freed. 2331 * Corresponding page table entries will not be touched, 2332 * pages will stay not present in virtual address space 2333 */ 2334 if (set_page_guard(zone, &page[size], high, migratetype)) 2335 continue; 2336 2337 add_to_free_list(&page[size], zone, high, migratetype); 2338 set_buddy_order(&page[size], high); 2339 } 2340 } 2341 2342 static void check_new_page_bad(struct page *page) 2343 { 2344 if (unlikely(page->flags & __PG_HWPOISON)) { 2345 /* Don't complain about hwpoisoned pages */ 2346 page_mapcount_reset(page); /* remove PageBuddy */ 2347 return; 2348 } 2349 2350 bad_page(page, 2351 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2352 } 2353 2354 /* 2355 * This page is about to be returned from the page allocator 2356 */ 2357 static int check_new_page(struct page *page) 2358 { 2359 if (likely(page_expected_state(page, 2360 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2361 return 0; 2362 2363 check_new_page_bad(page); 2364 return 1; 2365 } 2366 2367 static inline bool check_new_pages(struct page *page, unsigned int order) 2368 { 2369 if (static_branch_unlikely(&check_pages_enabled)) { 2370 for (int i = 0; i < (1 << order); i++) { 2371 struct page *p = page + i; 2372 2373 if (unlikely(check_new_page(p))) 2374 return true; 2375 } 2376 } 2377 2378 return false; 2379 } 2380 2381 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2382 { 2383 /* Don't skip if a software KASAN mode is enabled. */ 2384 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2385 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2386 return false; 2387 2388 /* Skip, if hardware tag-based KASAN is not enabled. */ 2389 if (!kasan_hw_tags_enabled()) 2390 return true; 2391 2392 /* 2393 * With hardware tag-based KASAN enabled, skip if this has been 2394 * requested via __GFP_SKIP_KASAN. 2395 */ 2396 return flags & __GFP_SKIP_KASAN; 2397 } 2398 2399 static inline bool should_skip_init(gfp_t flags) 2400 { 2401 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2402 if (!kasan_hw_tags_enabled()) 2403 return false; 2404 2405 /* For hardware tag-based KASAN, skip if requested. */ 2406 return (flags & __GFP_SKIP_ZERO); 2407 } 2408 2409 inline void post_alloc_hook(struct page *page, unsigned int order, 2410 gfp_t gfp_flags) 2411 { 2412 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2413 !should_skip_init(gfp_flags); 2414 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2415 int i; 2416 2417 set_page_private(page, 0); 2418 set_page_refcounted(page); 2419 2420 arch_alloc_page(page, order); 2421 debug_pagealloc_map_pages(page, 1 << order); 2422 2423 /* 2424 * Page unpoisoning must happen before memory initialization. 2425 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2426 * allocations and the page unpoisoning code will complain. 2427 */ 2428 kernel_unpoison_pages(page, 1 << order); 2429 2430 /* 2431 * As memory initialization might be integrated into KASAN, 2432 * KASAN unpoisoning and memory initializion code must be 2433 * kept together to avoid discrepancies in behavior. 2434 */ 2435 2436 /* 2437 * If memory tags should be zeroed 2438 * (which happens only when memory should be initialized as well). 2439 */ 2440 if (zero_tags) { 2441 /* Initialize both memory and memory tags. */ 2442 for (i = 0; i != 1 << order; ++i) 2443 tag_clear_highpage(page + i); 2444 2445 /* Take note that memory was initialized by the loop above. */ 2446 init = false; 2447 } 2448 if (!should_skip_kasan_unpoison(gfp_flags) && 2449 kasan_unpoison_pages(page, order, init)) { 2450 /* Take note that memory was initialized by KASAN. */ 2451 if (kasan_has_integrated_init()) 2452 init = false; 2453 } else { 2454 /* 2455 * If memory tags have not been set by KASAN, reset the page 2456 * tags to ensure page_address() dereferencing does not fault. 2457 */ 2458 for (i = 0; i != 1 << order; ++i) 2459 page_kasan_tag_reset(page + i); 2460 } 2461 /* If memory is still not initialized, initialize it now. */ 2462 if (init) 2463 kernel_init_pages(page, 1 << order); 2464 2465 set_page_owner(page, order, gfp_flags); 2466 page_table_check_alloc(page, order); 2467 } 2468 2469 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2470 unsigned int alloc_flags) 2471 { 2472 post_alloc_hook(page, order, gfp_flags); 2473 2474 if (order && (gfp_flags & __GFP_COMP)) 2475 prep_compound_page(page, order); 2476 2477 /* 2478 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2479 * allocate the page. The expectation is that the caller is taking 2480 * steps that will free more memory. The caller should avoid the page 2481 * being used for !PFMEMALLOC purposes. 2482 */ 2483 if (alloc_flags & ALLOC_NO_WATERMARKS) 2484 set_page_pfmemalloc(page); 2485 else 2486 clear_page_pfmemalloc(page); 2487 } 2488 2489 /* 2490 * Go through the free lists for the given migratetype and remove 2491 * the smallest available page from the freelists 2492 */ 2493 static __always_inline 2494 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2495 int migratetype) 2496 { 2497 unsigned int current_order; 2498 struct free_area *area; 2499 struct page *page; 2500 2501 /* Find a page of the appropriate size in the preferred list */ 2502 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2503 area = &(zone->free_area[current_order]); 2504 page = get_page_from_free_area(area, migratetype); 2505 if (!page) 2506 continue; 2507 del_page_from_free_list(page, zone, current_order); 2508 expand(zone, page, order, current_order, migratetype); 2509 set_pcppage_migratetype(page, migratetype); 2510 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2511 pcp_allowed_order(order) && 2512 migratetype < MIGRATE_PCPTYPES); 2513 return page; 2514 } 2515 2516 return NULL; 2517 } 2518 2519 2520 /* 2521 * This array describes the order lists are fallen back to when 2522 * the free lists for the desirable migrate type are depleted 2523 * 2524 * The other migratetypes do not have fallbacks. 2525 */ 2526 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 2527 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 2528 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 2529 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 2530 }; 2531 2532 #ifdef CONFIG_CMA 2533 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2534 unsigned int order) 2535 { 2536 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2537 } 2538 #else 2539 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2540 unsigned int order) { return NULL; } 2541 #endif 2542 2543 /* 2544 * Move the free pages in a range to the freelist tail of the requested type. 2545 * Note that start_page and end_pages are not aligned on a pageblock 2546 * boundary. If alignment is required, use move_freepages_block() 2547 */ 2548 static int move_freepages(struct zone *zone, 2549 unsigned long start_pfn, unsigned long end_pfn, 2550 int migratetype, int *num_movable) 2551 { 2552 struct page *page; 2553 unsigned long pfn; 2554 unsigned int order; 2555 int pages_moved = 0; 2556 2557 for (pfn = start_pfn; pfn <= end_pfn;) { 2558 page = pfn_to_page(pfn); 2559 if (!PageBuddy(page)) { 2560 /* 2561 * We assume that pages that could be isolated for 2562 * migration are movable. But we don't actually try 2563 * isolating, as that would be expensive. 2564 */ 2565 if (num_movable && 2566 (PageLRU(page) || __PageMovable(page))) 2567 (*num_movable)++; 2568 pfn++; 2569 continue; 2570 } 2571 2572 /* Make sure we are not inadvertently changing nodes */ 2573 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2574 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2575 2576 order = buddy_order(page); 2577 move_to_free_list(page, zone, order, migratetype); 2578 pfn += 1 << order; 2579 pages_moved += 1 << order; 2580 } 2581 2582 return pages_moved; 2583 } 2584 2585 int move_freepages_block(struct zone *zone, struct page *page, 2586 int migratetype, int *num_movable) 2587 { 2588 unsigned long start_pfn, end_pfn, pfn; 2589 2590 if (num_movable) 2591 *num_movable = 0; 2592 2593 pfn = page_to_pfn(page); 2594 start_pfn = pageblock_start_pfn(pfn); 2595 end_pfn = pageblock_end_pfn(pfn) - 1; 2596 2597 /* Do not cross zone boundaries */ 2598 if (!zone_spans_pfn(zone, start_pfn)) 2599 start_pfn = pfn; 2600 if (!zone_spans_pfn(zone, end_pfn)) 2601 return 0; 2602 2603 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2604 num_movable); 2605 } 2606 2607 static void change_pageblock_range(struct page *pageblock_page, 2608 int start_order, int migratetype) 2609 { 2610 int nr_pageblocks = 1 << (start_order - pageblock_order); 2611 2612 while (nr_pageblocks--) { 2613 set_pageblock_migratetype(pageblock_page, migratetype); 2614 pageblock_page += pageblock_nr_pages; 2615 } 2616 } 2617 2618 /* 2619 * When we are falling back to another migratetype during allocation, try to 2620 * steal extra free pages from the same pageblocks to satisfy further 2621 * allocations, instead of polluting multiple pageblocks. 2622 * 2623 * If we are stealing a relatively large buddy page, it is likely there will 2624 * be more free pages in the pageblock, so try to steal them all. For 2625 * reclaimable and unmovable allocations, we steal regardless of page size, 2626 * as fragmentation caused by those allocations polluting movable pageblocks 2627 * is worse than movable allocations stealing from unmovable and reclaimable 2628 * pageblocks. 2629 */ 2630 static bool can_steal_fallback(unsigned int order, int start_mt) 2631 { 2632 /* 2633 * Leaving this order check is intended, although there is 2634 * relaxed order check in next check. The reason is that 2635 * we can actually steal whole pageblock if this condition met, 2636 * but, below check doesn't guarantee it and that is just heuristic 2637 * so could be changed anytime. 2638 */ 2639 if (order >= pageblock_order) 2640 return true; 2641 2642 if (order >= pageblock_order / 2 || 2643 start_mt == MIGRATE_RECLAIMABLE || 2644 start_mt == MIGRATE_UNMOVABLE || 2645 page_group_by_mobility_disabled) 2646 return true; 2647 2648 return false; 2649 } 2650 2651 static inline bool boost_watermark(struct zone *zone) 2652 { 2653 unsigned long max_boost; 2654 2655 if (!watermark_boost_factor) 2656 return false; 2657 /* 2658 * Don't bother in zones that are unlikely to produce results. 2659 * On small machines, including kdump capture kernels running 2660 * in a small area, boosting the watermark can cause an out of 2661 * memory situation immediately. 2662 */ 2663 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2664 return false; 2665 2666 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2667 watermark_boost_factor, 10000); 2668 2669 /* 2670 * high watermark may be uninitialised if fragmentation occurs 2671 * very early in boot so do not boost. We do not fall 2672 * through and boost by pageblock_nr_pages as failing 2673 * allocations that early means that reclaim is not going 2674 * to help and it may even be impossible to reclaim the 2675 * boosted watermark resulting in a hang. 2676 */ 2677 if (!max_boost) 2678 return false; 2679 2680 max_boost = max(pageblock_nr_pages, max_boost); 2681 2682 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2683 max_boost); 2684 2685 return true; 2686 } 2687 2688 /* 2689 * This function implements actual steal behaviour. If order is large enough, 2690 * we can steal whole pageblock. If not, we first move freepages in this 2691 * pageblock to our migratetype and determine how many already-allocated pages 2692 * are there in the pageblock with a compatible migratetype. If at least half 2693 * of pages are free or compatible, we can change migratetype of the pageblock 2694 * itself, so pages freed in the future will be put on the correct free list. 2695 */ 2696 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2697 unsigned int alloc_flags, int start_type, bool whole_block) 2698 { 2699 unsigned int current_order = buddy_order(page); 2700 int free_pages, movable_pages, alike_pages; 2701 int old_block_type; 2702 2703 old_block_type = get_pageblock_migratetype(page); 2704 2705 /* 2706 * This can happen due to races and we want to prevent broken 2707 * highatomic accounting. 2708 */ 2709 if (is_migrate_highatomic(old_block_type)) 2710 goto single_page; 2711 2712 /* Take ownership for orders >= pageblock_order */ 2713 if (current_order >= pageblock_order) { 2714 change_pageblock_range(page, current_order, start_type); 2715 goto single_page; 2716 } 2717 2718 /* 2719 * Boost watermarks to increase reclaim pressure to reduce the 2720 * likelihood of future fallbacks. Wake kswapd now as the node 2721 * may be balanced overall and kswapd will not wake naturally. 2722 */ 2723 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2724 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2725 2726 /* We are not allowed to try stealing from the whole block */ 2727 if (!whole_block) 2728 goto single_page; 2729 2730 free_pages = move_freepages_block(zone, page, start_type, 2731 &movable_pages); 2732 /* 2733 * Determine how many pages are compatible with our allocation. 2734 * For movable allocation, it's the number of movable pages which 2735 * we just obtained. For other types it's a bit more tricky. 2736 */ 2737 if (start_type == MIGRATE_MOVABLE) { 2738 alike_pages = movable_pages; 2739 } else { 2740 /* 2741 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2742 * to MOVABLE pageblock, consider all non-movable pages as 2743 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2744 * vice versa, be conservative since we can't distinguish the 2745 * exact migratetype of non-movable pages. 2746 */ 2747 if (old_block_type == MIGRATE_MOVABLE) 2748 alike_pages = pageblock_nr_pages 2749 - (free_pages + movable_pages); 2750 else 2751 alike_pages = 0; 2752 } 2753 2754 /* moving whole block can fail due to zone boundary conditions */ 2755 if (!free_pages) 2756 goto single_page; 2757 2758 /* 2759 * If a sufficient number of pages in the block are either free or of 2760 * comparable migratability as our allocation, claim the whole block. 2761 */ 2762 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2763 page_group_by_mobility_disabled) 2764 set_pageblock_migratetype(page, start_type); 2765 2766 return; 2767 2768 single_page: 2769 move_to_free_list(page, zone, current_order, start_type); 2770 } 2771 2772 /* 2773 * Check whether there is a suitable fallback freepage with requested order. 2774 * If only_stealable is true, this function returns fallback_mt only if 2775 * we can steal other freepages all together. This would help to reduce 2776 * fragmentation due to mixed migratetype pages in one pageblock. 2777 */ 2778 int find_suitable_fallback(struct free_area *area, unsigned int order, 2779 int migratetype, bool only_stealable, bool *can_steal) 2780 { 2781 int i; 2782 int fallback_mt; 2783 2784 if (area->nr_free == 0) 2785 return -1; 2786 2787 *can_steal = false; 2788 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2789 fallback_mt = fallbacks[migratetype][i]; 2790 if (free_area_empty(area, fallback_mt)) 2791 continue; 2792 2793 if (can_steal_fallback(order, migratetype)) 2794 *can_steal = true; 2795 2796 if (!only_stealable) 2797 return fallback_mt; 2798 2799 if (*can_steal) 2800 return fallback_mt; 2801 } 2802 2803 return -1; 2804 } 2805 2806 /* 2807 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2808 * there are no empty page blocks that contain a page with a suitable order 2809 */ 2810 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2811 unsigned int alloc_order) 2812 { 2813 int mt; 2814 unsigned long max_managed, flags; 2815 2816 /* 2817 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2818 * Check is race-prone but harmless. 2819 */ 2820 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2821 if (zone->nr_reserved_highatomic >= max_managed) 2822 return; 2823 2824 spin_lock_irqsave(&zone->lock, flags); 2825 2826 /* Recheck the nr_reserved_highatomic limit under the lock */ 2827 if (zone->nr_reserved_highatomic >= max_managed) 2828 goto out_unlock; 2829 2830 /* Yoink! */ 2831 mt = get_pageblock_migratetype(page); 2832 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2833 if (migratetype_is_mergeable(mt)) { 2834 zone->nr_reserved_highatomic += pageblock_nr_pages; 2835 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2836 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2837 } 2838 2839 out_unlock: 2840 spin_unlock_irqrestore(&zone->lock, flags); 2841 } 2842 2843 /* 2844 * Used when an allocation is about to fail under memory pressure. This 2845 * potentially hurts the reliability of high-order allocations when under 2846 * intense memory pressure but failed atomic allocations should be easier 2847 * to recover from than an OOM. 2848 * 2849 * If @force is true, try to unreserve a pageblock even though highatomic 2850 * pageblock is exhausted. 2851 */ 2852 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2853 bool force) 2854 { 2855 struct zonelist *zonelist = ac->zonelist; 2856 unsigned long flags; 2857 struct zoneref *z; 2858 struct zone *zone; 2859 struct page *page; 2860 int order; 2861 bool ret; 2862 2863 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2864 ac->nodemask) { 2865 /* 2866 * Preserve at least one pageblock unless memory pressure 2867 * is really high. 2868 */ 2869 if (!force && zone->nr_reserved_highatomic <= 2870 pageblock_nr_pages) 2871 continue; 2872 2873 spin_lock_irqsave(&zone->lock, flags); 2874 for (order = 0; order < MAX_ORDER; order++) { 2875 struct free_area *area = &(zone->free_area[order]); 2876 2877 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2878 if (!page) 2879 continue; 2880 2881 /* 2882 * In page freeing path, migratetype change is racy so 2883 * we can counter several free pages in a pageblock 2884 * in this loop although we changed the pageblock type 2885 * from highatomic to ac->migratetype. So we should 2886 * adjust the count once. 2887 */ 2888 if (is_migrate_highatomic_page(page)) { 2889 /* 2890 * It should never happen but changes to 2891 * locking could inadvertently allow a per-cpu 2892 * drain to add pages to MIGRATE_HIGHATOMIC 2893 * while unreserving so be safe and watch for 2894 * underflows. 2895 */ 2896 zone->nr_reserved_highatomic -= min( 2897 pageblock_nr_pages, 2898 zone->nr_reserved_highatomic); 2899 } 2900 2901 /* 2902 * Convert to ac->migratetype and avoid the normal 2903 * pageblock stealing heuristics. Minimally, the caller 2904 * is doing the work and needs the pages. More 2905 * importantly, if the block was always converted to 2906 * MIGRATE_UNMOVABLE or another type then the number 2907 * of pageblocks that cannot be completely freed 2908 * may increase. 2909 */ 2910 set_pageblock_migratetype(page, ac->migratetype); 2911 ret = move_freepages_block(zone, page, ac->migratetype, 2912 NULL); 2913 if (ret) { 2914 spin_unlock_irqrestore(&zone->lock, flags); 2915 return ret; 2916 } 2917 } 2918 spin_unlock_irqrestore(&zone->lock, flags); 2919 } 2920 2921 return false; 2922 } 2923 2924 /* 2925 * Try finding a free buddy page on the fallback list and put it on the free 2926 * list of requested migratetype, possibly along with other pages from the same 2927 * block, depending on fragmentation avoidance heuristics. Returns true if 2928 * fallback was found so that __rmqueue_smallest() can grab it. 2929 * 2930 * The use of signed ints for order and current_order is a deliberate 2931 * deviation from the rest of this file, to make the for loop 2932 * condition simpler. 2933 */ 2934 static __always_inline bool 2935 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2936 unsigned int alloc_flags) 2937 { 2938 struct free_area *area; 2939 int current_order; 2940 int min_order = order; 2941 struct page *page; 2942 int fallback_mt; 2943 bool can_steal; 2944 2945 /* 2946 * Do not steal pages from freelists belonging to other pageblocks 2947 * i.e. orders < pageblock_order. If there are no local zones free, 2948 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2949 */ 2950 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2951 min_order = pageblock_order; 2952 2953 /* 2954 * Find the largest available free page in the other list. This roughly 2955 * approximates finding the pageblock with the most free pages, which 2956 * would be too costly to do exactly. 2957 */ 2958 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2959 --current_order) { 2960 area = &(zone->free_area[current_order]); 2961 fallback_mt = find_suitable_fallback(area, current_order, 2962 start_migratetype, false, &can_steal); 2963 if (fallback_mt == -1) 2964 continue; 2965 2966 /* 2967 * We cannot steal all free pages from the pageblock and the 2968 * requested migratetype is movable. In that case it's better to 2969 * steal and split the smallest available page instead of the 2970 * largest available page, because even if the next movable 2971 * allocation falls back into a different pageblock than this 2972 * one, it won't cause permanent fragmentation. 2973 */ 2974 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2975 && current_order > order) 2976 goto find_smallest; 2977 2978 goto do_steal; 2979 } 2980 2981 return false; 2982 2983 find_smallest: 2984 for (current_order = order; current_order < MAX_ORDER; 2985 current_order++) { 2986 area = &(zone->free_area[current_order]); 2987 fallback_mt = find_suitable_fallback(area, current_order, 2988 start_migratetype, false, &can_steal); 2989 if (fallback_mt != -1) 2990 break; 2991 } 2992 2993 /* 2994 * This should not happen - we already found a suitable fallback 2995 * when looking for the largest page. 2996 */ 2997 VM_BUG_ON(current_order == MAX_ORDER); 2998 2999 do_steal: 3000 page = get_page_from_free_area(area, fallback_mt); 3001 3002 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3003 can_steal); 3004 3005 trace_mm_page_alloc_extfrag(page, order, current_order, 3006 start_migratetype, fallback_mt); 3007 3008 return true; 3009 3010 } 3011 3012 /* 3013 * Do the hard work of removing an element from the buddy allocator. 3014 * Call me with the zone->lock already held. 3015 */ 3016 static __always_inline struct page * 3017 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3018 unsigned int alloc_flags) 3019 { 3020 struct page *page; 3021 3022 if (IS_ENABLED(CONFIG_CMA)) { 3023 /* 3024 * Balance movable allocations between regular and CMA areas by 3025 * allocating from CMA when over half of the zone's free memory 3026 * is in the CMA area. 3027 */ 3028 if (alloc_flags & ALLOC_CMA && 3029 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3030 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3031 page = __rmqueue_cma_fallback(zone, order); 3032 if (page) 3033 return page; 3034 } 3035 } 3036 retry: 3037 page = __rmqueue_smallest(zone, order, migratetype); 3038 if (unlikely(!page)) { 3039 if (alloc_flags & ALLOC_CMA) 3040 page = __rmqueue_cma_fallback(zone, order); 3041 3042 if (!page && __rmqueue_fallback(zone, order, migratetype, 3043 alloc_flags)) 3044 goto retry; 3045 } 3046 return page; 3047 } 3048 3049 /* 3050 * Obtain a specified number of elements from the buddy allocator, all under 3051 * a single hold of the lock, for efficiency. Add them to the supplied list. 3052 * Returns the number of new pages which were placed at *list. 3053 */ 3054 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3055 unsigned long count, struct list_head *list, 3056 int migratetype, unsigned int alloc_flags) 3057 { 3058 unsigned long flags; 3059 int i; 3060 3061 spin_lock_irqsave(&zone->lock, flags); 3062 for (i = 0; i < count; ++i) { 3063 struct page *page = __rmqueue(zone, order, migratetype, 3064 alloc_flags); 3065 if (unlikely(page == NULL)) 3066 break; 3067 3068 /* 3069 * Split buddy pages returned by expand() are received here in 3070 * physical page order. The page is added to the tail of 3071 * caller's list. From the callers perspective, the linked list 3072 * is ordered by page number under some conditions. This is 3073 * useful for IO devices that can forward direction from the 3074 * head, thus also in the physical page order. This is useful 3075 * for IO devices that can merge IO requests if the physical 3076 * pages are ordered properly. 3077 */ 3078 list_add_tail(&page->pcp_list, list); 3079 if (is_migrate_cma(get_pcppage_migratetype(page))) 3080 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3081 -(1 << order)); 3082 } 3083 3084 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3085 spin_unlock_irqrestore(&zone->lock, flags); 3086 3087 return i; 3088 } 3089 3090 #ifdef CONFIG_NUMA 3091 /* 3092 * Called from the vmstat counter updater to drain pagesets of this 3093 * currently executing processor on remote nodes after they have 3094 * expired. 3095 */ 3096 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3097 { 3098 int to_drain, batch; 3099 3100 batch = READ_ONCE(pcp->batch); 3101 to_drain = min(pcp->count, batch); 3102 if (to_drain > 0) { 3103 spin_lock(&pcp->lock); 3104 free_pcppages_bulk(zone, to_drain, pcp, 0); 3105 spin_unlock(&pcp->lock); 3106 } 3107 } 3108 #endif 3109 3110 /* 3111 * Drain pcplists of the indicated processor and zone. 3112 */ 3113 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3114 { 3115 struct per_cpu_pages *pcp; 3116 3117 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3118 if (pcp->count) { 3119 spin_lock(&pcp->lock); 3120 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3121 spin_unlock(&pcp->lock); 3122 } 3123 } 3124 3125 /* 3126 * Drain pcplists of all zones on the indicated processor. 3127 */ 3128 static void drain_pages(unsigned int cpu) 3129 { 3130 struct zone *zone; 3131 3132 for_each_populated_zone(zone) { 3133 drain_pages_zone(cpu, zone); 3134 } 3135 } 3136 3137 /* 3138 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3139 */ 3140 void drain_local_pages(struct zone *zone) 3141 { 3142 int cpu = smp_processor_id(); 3143 3144 if (zone) 3145 drain_pages_zone(cpu, zone); 3146 else 3147 drain_pages(cpu); 3148 } 3149 3150 /* 3151 * The implementation of drain_all_pages(), exposing an extra parameter to 3152 * drain on all cpus. 3153 * 3154 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3155 * not empty. The check for non-emptiness can however race with a free to 3156 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3157 * that need the guarantee that every CPU has drained can disable the 3158 * optimizing racy check. 3159 */ 3160 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3161 { 3162 int cpu; 3163 3164 /* 3165 * Allocate in the BSS so we won't require allocation in 3166 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3167 */ 3168 static cpumask_t cpus_with_pcps; 3169 3170 /* 3171 * Do not drain if one is already in progress unless it's specific to 3172 * a zone. Such callers are primarily CMA and memory hotplug and need 3173 * the drain to be complete when the call returns. 3174 */ 3175 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3176 if (!zone) 3177 return; 3178 mutex_lock(&pcpu_drain_mutex); 3179 } 3180 3181 /* 3182 * We don't care about racing with CPU hotplug event 3183 * as offline notification will cause the notified 3184 * cpu to drain that CPU pcps and on_each_cpu_mask 3185 * disables preemption as part of its processing 3186 */ 3187 for_each_online_cpu(cpu) { 3188 struct per_cpu_pages *pcp; 3189 struct zone *z; 3190 bool has_pcps = false; 3191 3192 if (force_all_cpus) { 3193 /* 3194 * The pcp.count check is racy, some callers need a 3195 * guarantee that no cpu is missed. 3196 */ 3197 has_pcps = true; 3198 } else if (zone) { 3199 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3200 if (pcp->count) 3201 has_pcps = true; 3202 } else { 3203 for_each_populated_zone(z) { 3204 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3205 if (pcp->count) { 3206 has_pcps = true; 3207 break; 3208 } 3209 } 3210 } 3211 3212 if (has_pcps) 3213 cpumask_set_cpu(cpu, &cpus_with_pcps); 3214 else 3215 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3216 } 3217 3218 for_each_cpu(cpu, &cpus_with_pcps) { 3219 if (zone) 3220 drain_pages_zone(cpu, zone); 3221 else 3222 drain_pages(cpu); 3223 } 3224 3225 mutex_unlock(&pcpu_drain_mutex); 3226 } 3227 3228 /* 3229 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3230 * 3231 * When zone parameter is non-NULL, spill just the single zone's pages. 3232 */ 3233 void drain_all_pages(struct zone *zone) 3234 { 3235 __drain_all_pages(zone, false); 3236 } 3237 3238 #ifdef CONFIG_HIBERNATION 3239 3240 /* 3241 * Touch the watchdog for every WD_PAGE_COUNT pages. 3242 */ 3243 #define WD_PAGE_COUNT (128*1024) 3244 3245 void mark_free_pages(struct zone *zone) 3246 { 3247 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3248 unsigned long flags; 3249 unsigned int order, t; 3250 struct page *page; 3251 3252 if (zone_is_empty(zone)) 3253 return; 3254 3255 spin_lock_irqsave(&zone->lock, flags); 3256 3257 max_zone_pfn = zone_end_pfn(zone); 3258 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3259 if (pfn_valid(pfn)) { 3260 page = pfn_to_page(pfn); 3261 3262 if (!--page_count) { 3263 touch_nmi_watchdog(); 3264 page_count = WD_PAGE_COUNT; 3265 } 3266 3267 if (page_zone(page) != zone) 3268 continue; 3269 3270 if (!swsusp_page_is_forbidden(page)) 3271 swsusp_unset_page_free(page); 3272 } 3273 3274 for_each_migratetype_order(order, t) { 3275 list_for_each_entry(page, 3276 &zone->free_area[order].free_list[t], buddy_list) { 3277 unsigned long i; 3278 3279 pfn = page_to_pfn(page); 3280 for (i = 0; i < (1UL << order); i++) { 3281 if (!--page_count) { 3282 touch_nmi_watchdog(); 3283 page_count = WD_PAGE_COUNT; 3284 } 3285 swsusp_set_page_free(pfn_to_page(pfn + i)); 3286 } 3287 } 3288 } 3289 spin_unlock_irqrestore(&zone->lock, flags); 3290 } 3291 #endif /* CONFIG_PM */ 3292 3293 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3294 unsigned int order) 3295 { 3296 int migratetype; 3297 3298 if (!free_pages_prepare(page, order, FPI_NONE)) 3299 return false; 3300 3301 migratetype = get_pfnblock_migratetype(page, pfn); 3302 set_pcppage_migratetype(page, migratetype); 3303 return true; 3304 } 3305 3306 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3307 bool free_high) 3308 { 3309 int min_nr_free, max_nr_free; 3310 3311 /* Free everything if batch freeing high-order pages. */ 3312 if (unlikely(free_high)) 3313 return pcp->count; 3314 3315 /* Check for PCP disabled or boot pageset */ 3316 if (unlikely(high < batch)) 3317 return 1; 3318 3319 /* Leave at least pcp->batch pages on the list */ 3320 min_nr_free = batch; 3321 max_nr_free = high - batch; 3322 3323 /* 3324 * Double the number of pages freed each time there is subsequent 3325 * freeing of pages without any allocation. 3326 */ 3327 batch <<= pcp->free_factor; 3328 if (batch < max_nr_free) 3329 pcp->free_factor++; 3330 batch = clamp(batch, min_nr_free, max_nr_free); 3331 3332 return batch; 3333 } 3334 3335 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3336 bool free_high) 3337 { 3338 int high = READ_ONCE(pcp->high); 3339 3340 if (unlikely(!high || free_high)) 3341 return 0; 3342 3343 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3344 return high; 3345 3346 /* 3347 * If reclaim is active, limit the number of pages that can be 3348 * stored on pcp lists 3349 */ 3350 return min(READ_ONCE(pcp->batch) << 2, high); 3351 } 3352 3353 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3354 struct page *page, int migratetype, 3355 unsigned int order) 3356 { 3357 int high; 3358 int pindex; 3359 bool free_high; 3360 3361 __count_vm_events(PGFREE, 1 << order); 3362 pindex = order_to_pindex(migratetype, order); 3363 list_add(&page->pcp_list, &pcp->lists[pindex]); 3364 pcp->count += 1 << order; 3365 3366 /* 3367 * As high-order pages other than THP's stored on PCP can contribute 3368 * to fragmentation, limit the number stored when PCP is heavily 3369 * freeing without allocation. The remainder after bulk freeing 3370 * stops will be drained from vmstat refresh context. 3371 */ 3372 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3373 3374 high = nr_pcp_high(pcp, zone, free_high); 3375 if (pcp->count >= high) { 3376 int batch = READ_ONCE(pcp->batch); 3377 3378 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3379 } 3380 } 3381 3382 /* 3383 * Free a pcp page 3384 */ 3385 void free_unref_page(struct page *page, unsigned int order) 3386 { 3387 unsigned long __maybe_unused UP_flags; 3388 struct per_cpu_pages *pcp; 3389 struct zone *zone; 3390 unsigned long pfn = page_to_pfn(page); 3391 int migratetype; 3392 3393 if (!free_unref_page_prepare(page, pfn, order)) 3394 return; 3395 3396 /* 3397 * We only track unmovable, reclaimable and movable on pcp lists. 3398 * Place ISOLATE pages on the isolated list because they are being 3399 * offlined but treat HIGHATOMIC as movable pages so we can get those 3400 * areas back if necessary. Otherwise, we may have to free 3401 * excessively into the page allocator 3402 */ 3403 migratetype = get_pcppage_migratetype(page); 3404 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3405 if (unlikely(is_migrate_isolate(migratetype))) { 3406 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3407 return; 3408 } 3409 migratetype = MIGRATE_MOVABLE; 3410 } 3411 3412 zone = page_zone(page); 3413 pcp_trylock_prepare(UP_flags); 3414 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3415 if (pcp) { 3416 free_unref_page_commit(zone, pcp, page, migratetype, order); 3417 pcp_spin_unlock(pcp); 3418 } else { 3419 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3420 } 3421 pcp_trylock_finish(UP_flags); 3422 } 3423 3424 /* 3425 * Free a list of 0-order pages 3426 */ 3427 void free_unref_page_list(struct list_head *list) 3428 { 3429 unsigned long __maybe_unused UP_flags; 3430 struct page *page, *next; 3431 struct per_cpu_pages *pcp = NULL; 3432 struct zone *locked_zone = NULL; 3433 int batch_count = 0; 3434 int migratetype; 3435 3436 /* Prepare pages for freeing */ 3437 list_for_each_entry_safe(page, next, list, lru) { 3438 unsigned long pfn = page_to_pfn(page); 3439 if (!free_unref_page_prepare(page, pfn, 0)) { 3440 list_del(&page->lru); 3441 continue; 3442 } 3443 3444 /* 3445 * Free isolated pages directly to the allocator, see 3446 * comment in free_unref_page. 3447 */ 3448 migratetype = get_pcppage_migratetype(page); 3449 if (unlikely(is_migrate_isolate(migratetype))) { 3450 list_del(&page->lru); 3451 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3452 continue; 3453 } 3454 } 3455 3456 list_for_each_entry_safe(page, next, list, lru) { 3457 struct zone *zone = page_zone(page); 3458 3459 list_del(&page->lru); 3460 migratetype = get_pcppage_migratetype(page); 3461 3462 /* 3463 * Either different zone requiring a different pcp lock or 3464 * excessive lock hold times when freeing a large list of 3465 * pages. 3466 */ 3467 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 3468 if (pcp) { 3469 pcp_spin_unlock(pcp); 3470 pcp_trylock_finish(UP_flags); 3471 } 3472 3473 batch_count = 0; 3474 3475 /* 3476 * trylock is necessary as pages may be getting freed 3477 * from IRQ or SoftIRQ context after an IO completion. 3478 */ 3479 pcp_trylock_prepare(UP_flags); 3480 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3481 if (unlikely(!pcp)) { 3482 pcp_trylock_finish(UP_flags); 3483 free_one_page(zone, page, page_to_pfn(page), 3484 0, migratetype, FPI_NONE); 3485 locked_zone = NULL; 3486 continue; 3487 } 3488 locked_zone = zone; 3489 } 3490 3491 /* 3492 * Non-isolated types over MIGRATE_PCPTYPES get added 3493 * to the MIGRATE_MOVABLE pcp list. 3494 */ 3495 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3496 migratetype = MIGRATE_MOVABLE; 3497 3498 trace_mm_page_free_batched(page); 3499 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3500 batch_count++; 3501 } 3502 3503 if (pcp) { 3504 pcp_spin_unlock(pcp); 3505 pcp_trylock_finish(UP_flags); 3506 } 3507 } 3508 3509 /* 3510 * split_page takes a non-compound higher-order page, and splits it into 3511 * n (1<<order) sub-pages: page[0..n] 3512 * Each sub-page must be freed individually. 3513 * 3514 * Note: this is probably too low level an operation for use in drivers. 3515 * Please consult with lkml before using this in your driver. 3516 */ 3517 void split_page(struct page *page, unsigned int order) 3518 { 3519 int i; 3520 3521 VM_BUG_ON_PAGE(PageCompound(page), page); 3522 VM_BUG_ON_PAGE(!page_count(page), page); 3523 3524 for (i = 1; i < (1 << order); i++) 3525 set_page_refcounted(page + i); 3526 split_page_owner(page, 1 << order); 3527 split_page_memcg(page, 1 << order); 3528 } 3529 EXPORT_SYMBOL_GPL(split_page); 3530 3531 int __isolate_free_page(struct page *page, unsigned int order) 3532 { 3533 struct zone *zone = page_zone(page); 3534 int mt = get_pageblock_migratetype(page); 3535 3536 if (!is_migrate_isolate(mt)) { 3537 unsigned long watermark; 3538 /* 3539 * Obey watermarks as if the page was being allocated. We can 3540 * emulate a high-order watermark check with a raised order-0 3541 * watermark, because we already know our high-order page 3542 * exists. 3543 */ 3544 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3545 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3546 return 0; 3547 3548 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3549 } 3550 3551 del_page_from_free_list(page, zone, order); 3552 3553 /* 3554 * Set the pageblock if the isolated page is at least half of a 3555 * pageblock 3556 */ 3557 if (order >= pageblock_order - 1) { 3558 struct page *endpage = page + (1 << order) - 1; 3559 for (; page < endpage; page += pageblock_nr_pages) { 3560 int mt = get_pageblock_migratetype(page); 3561 /* 3562 * Only change normal pageblocks (i.e., they can merge 3563 * with others) 3564 */ 3565 if (migratetype_is_mergeable(mt)) 3566 set_pageblock_migratetype(page, 3567 MIGRATE_MOVABLE); 3568 } 3569 } 3570 3571 return 1UL << order; 3572 } 3573 3574 /** 3575 * __putback_isolated_page - Return a now-isolated page back where we got it 3576 * @page: Page that was isolated 3577 * @order: Order of the isolated page 3578 * @mt: The page's pageblock's migratetype 3579 * 3580 * This function is meant to return a page pulled from the free lists via 3581 * __isolate_free_page back to the free lists they were pulled from. 3582 */ 3583 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3584 { 3585 struct zone *zone = page_zone(page); 3586 3587 /* zone lock should be held when this function is called */ 3588 lockdep_assert_held(&zone->lock); 3589 3590 /* Return isolated page to tail of freelist. */ 3591 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3592 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3593 } 3594 3595 /* 3596 * Update NUMA hit/miss statistics 3597 */ 3598 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3599 long nr_account) 3600 { 3601 #ifdef CONFIG_NUMA 3602 enum numa_stat_item local_stat = NUMA_LOCAL; 3603 3604 /* skip numa counters update if numa stats is disabled */ 3605 if (!static_branch_likely(&vm_numa_stat_key)) 3606 return; 3607 3608 if (zone_to_nid(z) != numa_node_id()) 3609 local_stat = NUMA_OTHER; 3610 3611 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3612 __count_numa_events(z, NUMA_HIT, nr_account); 3613 else { 3614 __count_numa_events(z, NUMA_MISS, nr_account); 3615 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3616 } 3617 __count_numa_events(z, local_stat, nr_account); 3618 #endif 3619 } 3620 3621 static __always_inline 3622 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3623 unsigned int order, unsigned int alloc_flags, 3624 int migratetype) 3625 { 3626 struct page *page; 3627 unsigned long flags; 3628 3629 do { 3630 page = NULL; 3631 spin_lock_irqsave(&zone->lock, flags); 3632 /* 3633 * order-0 request can reach here when the pcplist is skipped 3634 * due to non-CMA allocation context. HIGHATOMIC area is 3635 * reserved for high-order atomic allocation, so order-0 3636 * request should skip it. 3637 */ 3638 if (alloc_flags & ALLOC_HIGHATOMIC) 3639 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3640 if (!page) { 3641 page = __rmqueue(zone, order, migratetype, alloc_flags); 3642 3643 /* 3644 * If the allocation fails, allow OOM handling access 3645 * to HIGHATOMIC reserves as failing now is worse than 3646 * failing a high-order atomic allocation in the 3647 * future. 3648 */ 3649 if (!page && (alloc_flags & ALLOC_OOM)) 3650 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3651 3652 if (!page) { 3653 spin_unlock_irqrestore(&zone->lock, flags); 3654 return NULL; 3655 } 3656 } 3657 __mod_zone_freepage_state(zone, -(1 << order), 3658 get_pcppage_migratetype(page)); 3659 spin_unlock_irqrestore(&zone->lock, flags); 3660 } while (check_new_pages(page, order)); 3661 3662 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3663 zone_statistics(preferred_zone, zone, 1); 3664 3665 return page; 3666 } 3667 3668 /* Remove page from the per-cpu list, caller must protect the list */ 3669 static inline 3670 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3671 int migratetype, 3672 unsigned int alloc_flags, 3673 struct per_cpu_pages *pcp, 3674 struct list_head *list) 3675 { 3676 struct page *page; 3677 3678 do { 3679 if (list_empty(list)) { 3680 int batch = READ_ONCE(pcp->batch); 3681 int alloced; 3682 3683 /* 3684 * Scale batch relative to order if batch implies 3685 * free pages can be stored on the PCP. Batch can 3686 * be 1 for small zones or for boot pagesets which 3687 * should never store free pages as the pages may 3688 * belong to arbitrary zones. 3689 */ 3690 if (batch > 1) 3691 batch = max(batch >> order, 2); 3692 alloced = rmqueue_bulk(zone, order, 3693 batch, list, 3694 migratetype, alloc_flags); 3695 3696 pcp->count += alloced << order; 3697 if (unlikely(list_empty(list))) 3698 return NULL; 3699 } 3700 3701 page = list_first_entry(list, struct page, pcp_list); 3702 list_del(&page->pcp_list); 3703 pcp->count -= 1 << order; 3704 } while (check_new_pages(page, order)); 3705 3706 return page; 3707 } 3708 3709 /* Lock and remove page from the per-cpu list */ 3710 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3711 struct zone *zone, unsigned int order, 3712 int migratetype, unsigned int alloc_flags) 3713 { 3714 struct per_cpu_pages *pcp; 3715 struct list_head *list; 3716 struct page *page; 3717 unsigned long __maybe_unused UP_flags; 3718 3719 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3720 pcp_trylock_prepare(UP_flags); 3721 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3722 if (!pcp) { 3723 pcp_trylock_finish(UP_flags); 3724 return NULL; 3725 } 3726 3727 /* 3728 * On allocation, reduce the number of pages that are batch freed. 3729 * See nr_pcp_free() where free_factor is increased for subsequent 3730 * frees. 3731 */ 3732 pcp->free_factor >>= 1; 3733 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3734 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3735 pcp_spin_unlock(pcp); 3736 pcp_trylock_finish(UP_flags); 3737 if (page) { 3738 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3739 zone_statistics(preferred_zone, zone, 1); 3740 } 3741 return page; 3742 } 3743 3744 /* 3745 * Allocate a page from the given zone. 3746 * Use pcplists for THP or "cheap" high-order allocations. 3747 */ 3748 3749 /* 3750 * Do not instrument rmqueue() with KMSAN. This function may call 3751 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3752 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3753 * may call rmqueue() again, which will result in a deadlock. 3754 */ 3755 __no_sanitize_memory 3756 static inline 3757 struct page *rmqueue(struct zone *preferred_zone, 3758 struct zone *zone, unsigned int order, 3759 gfp_t gfp_flags, unsigned int alloc_flags, 3760 int migratetype) 3761 { 3762 struct page *page; 3763 3764 /* 3765 * We most definitely don't want callers attempting to 3766 * allocate greater than order-1 page units with __GFP_NOFAIL. 3767 */ 3768 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3769 3770 if (likely(pcp_allowed_order(order))) { 3771 /* 3772 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3773 * we need to skip it when CMA area isn't allowed. 3774 */ 3775 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3776 migratetype != MIGRATE_MOVABLE) { 3777 page = rmqueue_pcplist(preferred_zone, zone, order, 3778 migratetype, alloc_flags); 3779 if (likely(page)) 3780 goto out; 3781 } 3782 } 3783 3784 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3785 migratetype); 3786 3787 out: 3788 /* Separate test+clear to avoid unnecessary atomics */ 3789 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3790 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3791 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3792 } 3793 3794 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3795 return page; 3796 } 3797 3798 #ifdef CONFIG_FAIL_PAGE_ALLOC 3799 3800 static struct { 3801 struct fault_attr attr; 3802 3803 bool ignore_gfp_highmem; 3804 bool ignore_gfp_reclaim; 3805 u32 min_order; 3806 } fail_page_alloc = { 3807 .attr = FAULT_ATTR_INITIALIZER, 3808 .ignore_gfp_reclaim = true, 3809 .ignore_gfp_highmem = true, 3810 .min_order = 1, 3811 }; 3812 3813 static int __init setup_fail_page_alloc(char *str) 3814 { 3815 return setup_fault_attr(&fail_page_alloc.attr, str); 3816 } 3817 __setup("fail_page_alloc=", setup_fail_page_alloc); 3818 3819 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3820 { 3821 int flags = 0; 3822 3823 if (order < fail_page_alloc.min_order) 3824 return false; 3825 if (gfp_mask & __GFP_NOFAIL) 3826 return false; 3827 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3828 return false; 3829 if (fail_page_alloc.ignore_gfp_reclaim && 3830 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3831 return false; 3832 3833 /* See comment in __should_failslab() */ 3834 if (gfp_mask & __GFP_NOWARN) 3835 flags |= FAULT_NOWARN; 3836 3837 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags); 3838 } 3839 3840 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3841 3842 static int __init fail_page_alloc_debugfs(void) 3843 { 3844 umode_t mode = S_IFREG | 0600; 3845 struct dentry *dir; 3846 3847 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3848 &fail_page_alloc.attr); 3849 3850 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3851 &fail_page_alloc.ignore_gfp_reclaim); 3852 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3853 &fail_page_alloc.ignore_gfp_highmem); 3854 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3855 3856 return 0; 3857 } 3858 3859 late_initcall(fail_page_alloc_debugfs); 3860 3861 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3862 3863 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3864 3865 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3866 { 3867 return false; 3868 } 3869 3870 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3871 3872 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3873 { 3874 return __should_fail_alloc_page(gfp_mask, order); 3875 } 3876 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3877 3878 static inline long __zone_watermark_unusable_free(struct zone *z, 3879 unsigned int order, unsigned int alloc_flags) 3880 { 3881 long unusable_free = (1 << order) - 1; 3882 3883 /* 3884 * If the caller does not have rights to reserves below the min 3885 * watermark then subtract the high-atomic reserves. This will 3886 * over-estimate the size of the atomic reserve but it avoids a search. 3887 */ 3888 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3889 unusable_free += z->nr_reserved_highatomic; 3890 3891 #ifdef CONFIG_CMA 3892 /* If allocation can't use CMA areas don't use free CMA pages */ 3893 if (!(alloc_flags & ALLOC_CMA)) 3894 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3895 #endif 3896 3897 return unusable_free; 3898 } 3899 3900 /* 3901 * Return true if free base pages are above 'mark'. For high-order checks it 3902 * will return true of the order-0 watermark is reached and there is at least 3903 * one free page of a suitable size. Checking now avoids taking the zone lock 3904 * to check in the allocation paths if no pages are free. 3905 */ 3906 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3907 int highest_zoneidx, unsigned int alloc_flags, 3908 long free_pages) 3909 { 3910 long min = mark; 3911 int o; 3912 3913 /* free_pages may go negative - that's OK */ 3914 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3915 3916 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3917 /* 3918 * __GFP_HIGH allows access to 50% of the min reserve as well 3919 * as OOM. 3920 */ 3921 if (alloc_flags & ALLOC_MIN_RESERVE) { 3922 min -= min / 2; 3923 3924 /* 3925 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3926 * access more reserves than just __GFP_HIGH. Other 3927 * non-blocking allocations requests such as GFP_NOWAIT 3928 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3929 * access to the min reserve. 3930 */ 3931 if (alloc_flags & ALLOC_NON_BLOCK) 3932 min -= min / 4; 3933 } 3934 3935 /* 3936 * OOM victims can try even harder than the normal reserve 3937 * users on the grounds that it's definitely going to be in 3938 * the exit path shortly and free memory. Any allocation it 3939 * makes during the free path will be small and short-lived. 3940 */ 3941 if (alloc_flags & ALLOC_OOM) 3942 min -= min / 2; 3943 } 3944 3945 /* 3946 * Check watermarks for an order-0 allocation request. If these 3947 * are not met, then a high-order request also cannot go ahead 3948 * even if a suitable page happened to be free. 3949 */ 3950 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3951 return false; 3952 3953 /* If this is an order-0 request then the watermark is fine */ 3954 if (!order) 3955 return true; 3956 3957 /* For a high-order request, check at least one suitable page is free */ 3958 for (o = order; o < MAX_ORDER; o++) { 3959 struct free_area *area = &z->free_area[o]; 3960 int mt; 3961 3962 if (!area->nr_free) 3963 continue; 3964 3965 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3966 if (!free_area_empty(area, mt)) 3967 return true; 3968 } 3969 3970 #ifdef CONFIG_CMA 3971 if ((alloc_flags & ALLOC_CMA) && 3972 !free_area_empty(area, MIGRATE_CMA)) { 3973 return true; 3974 } 3975 #endif 3976 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3977 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3978 return true; 3979 } 3980 } 3981 return false; 3982 } 3983 3984 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3985 int highest_zoneidx, unsigned int alloc_flags) 3986 { 3987 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3988 zone_page_state(z, NR_FREE_PAGES)); 3989 } 3990 3991 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3992 unsigned long mark, int highest_zoneidx, 3993 unsigned int alloc_flags, gfp_t gfp_mask) 3994 { 3995 long free_pages; 3996 3997 free_pages = zone_page_state(z, NR_FREE_PAGES); 3998 3999 /* 4000 * Fast check for order-0 only. If this fails then the reserves 4001 * need to be calculated. 4002 */ 4003 if (!order) { 4004 long usable_free; 4005 long reserved; 4006 4007 usable_free = free_pages; 4008 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4009 4010 /* reserved may over estimate high-atomic reserves. */ 4011 usable_free -= min(usable_free, reserved); 4012 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4013 return true; 4014 } 4015 4016 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4017 free_pages)) 4018 return true; 4019 4020 /* 4021 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 4022 * when checking the min watermark. The min watermark is the 4023 * point where boosting is ignored so that kswapd is woken up 4024 * when below the low watermark. 4025 */ 4026 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 4027 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4028 mark = z->_watermark[WMARK_MIN]; 4029 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4030 alloc_flags, free_pages); 4031 } 4032 4033 return false; 4034 } 4035 4036 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4037 unsigned long mark, int highest_zoneidx) 4038 { 4039 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4040 4041 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4042 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4043 4044 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4045 free_pages); 4046 } 4047 4048 #ifdef CONFIG_NUMA 4049 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4050 4051 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4052 { 4053 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4054 node_reclaim_distance; 4055 } 4056 #else /* CONFIG_NUMA */ 4057 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4058 { 4059 return true; 4060 } 4061 #endif /* CONFIG_NUMA */ 4062 4063 /* 4064 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4065 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4066 * premature use of a lower zone may cause lowmem pressure problems that 4067 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4068 * probably too small. It only makes sense to spread allocations to avoid 4069 * fragmentation between the Normal and DMA32 zones. 4070 */ 4071 static inline unsigned int 4072 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4073 { 4074 unsigned int alloc_flags; 4075 4076 /* 4077 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4078 * to save a branch. 4079 */ 4080 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4081 4082 #ifdef CONFIG_ZONE_DMA32 4083 if (!zone) 4084 return alloc_flags; 4085 4086 if (zone_idx(zone) != ZONE_NORMAL) 4087 return alloc_flags; 4088 4089 /* 4090 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4091 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4092 * on UMA that if Normal is populated then so is DMA32. 4093 */ 4094 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4095 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4096 return alloc_flags; 4097 4098 alloc_flags |= ALLOC_NOFRAGMENT; 4099 #endif /* CONFIG_ZONE_DMA32 */ 4100 return alloc_flags; 4101 } 4102 4103 /* Must be called after current_gfp_context() which can change gfp_mask */ 4104 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4105 unsigned int alloc_flags) 4106 { 4107 #ifdef CONFIG_CMA 4108 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4109 alloc_flags |= ALLOC_CMA; 4110 #endif 4111 return alloc_flags; 4112 } 4113 4114 /* 4115 * get_page_from_freelist goes through the zonelist trying to allocate 4116 * a page. 4117 */ 4118 static struct page * 4119 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4120 const struct alloc_context *ac) 4121 { 4122 struct zoneref *z; 4123 struct zone *zone; 4124 struct pglist_data *last_pgdat = NULL; 4125 bool last_pgdat_dirty_ok = false; 4126 bool no_fallback; 4127 4128 retry: 4129 /* 4130 * Scan zonelist, looking for a zone with enough free. 4131 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4132 */ 4133 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4134 z = ac->preferred_zoneref; 4135 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4136 ac->nodemask) { 4137 struct page *page; 4138 unsigned long mark; 4139 4140 if (cpusets_enabled() && 4141 (alloc_flags & ALLOC_CPUSET) && 4142 !__cpuset_zone_allowed(zone, gfp_mask)) 4143 continue; 4144 /* 4145 * When allocating a page cache page for writing, we 4146 * want to get it from a node that is within its dirty 4147 * limit, such that no single node holds more than its 4148 * proportional share of globally allowed dirty pages. 4149 * The dirty limits take into account the node's 4150 * lowmem reserves and high watermark so that kswapd 4151 * should be able to balance it without having to 4152 * write pages from its LRU list. 4153 * 4154 * XXX: For now, allow allocations to potentially 4155 * exceed the per-node dirty limit in the slowpath 4156 * (spread_dirty_pages unset) before going into reclaim, 4157 * which is important when on a NUMA setup the allowed 4158 * nodes are together not big enough to reach the 4159 * global limit. The proper fix for these situations 4160 * will require awareness of nodes in the 4161 * dirty-throttling and the flusher threads. 4162 */ 4163 if (ac->spread_dirty_pages) { 4164 if (last_pgdat != zone->zone_pgdat) { 4165 last_pgdat = zone->zone_pgdat; 4166 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4167 } 4168 4169 if (!last_pgdat_dirty_ok) 4170 continue; 4171 } 4172 4173 if (no_fallback && nr_online_nodes > 1 && 4174 zone != ac->preferred_zoneref->zone) { 4175 int local_nid; 4176 4177 /* 4178 * If moving to a remote node, retry but allow 4179 * fragmenting fallbacks. Locality is more important 4180 * than fragmentation avoidance. 4181 */ 4182 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4183 if (zone_to_nid(zone) != local_nid) { 4184 alloc_flags &= ~ALLOC_NOFRAGMENT; 4185 goto retry; 4186 } 4187 } 4188 4189 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4190 if (!zone_watermark_fast(zone, order, mark, 4191 ac->highest_zoneidx, alloc_flags, 4192 gfp_mask)) { 4193 int ret; 4194 4195 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4196 /* 4197 * Watermark failed for this zone, but see if we can 4198 * grow this zone if it contains deferred pages. 4199 */ 4200 if (deferred_pages_enabled()) { 4201 if (_deferred_grow_zone(zone, order)) 4202 goto try_this_zone; 4203 } 4204 #endif 4205 /* Checked here to keep the fast path fast */ 4206 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4207 if (alloc_flags & ALLOC_NO_WATERMARKS) 4208 goto try_this_zone; 4209 4210 if (!node_reclaim_enabled() || 4211 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4212 continue; 4213 4214 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4215 switch (ret) { 4216 case NODE_RECLAIM_NOSCAN: 4217 /* did not scan */ 4218 continue; 4219 case NODE_RECLAIM_FULL: 4220 /* scanned but unreclaimable */ 4221 continue; 4222 default: 4223 /* did we reclaim enough */ 4224 if (zone_watermark_ok(zone, order, mark, 4225 ac->highest_zoneidx, alloc_flags)) 4226 goto try_this_zone; 4227 4228 continue; 4229 } 4230 } 4231 4232 try_this_zone: 4233 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4234 gfp_mask, alloc_flags, ac->migratetype); 4235 if (page) { 4236 prep_new_page(page, order, gfp_mask, alloc_flags); 4237 4238 /* 4239 * If this is a high-order atomic allocation then check 4240 * if the pageblock should be reserved for the future 4241 */ 4242 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 4243 reserve_highatomic_pageblock(page, zone, order); 4244 4245 return page; 4246 } else { 4247 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4248 /* Try again if zone has deferred pages */ 4249 if (deferred_pages_enabled()) { 4250 if (_deferred_grow_zone(zone, order)) 4251 goto try_this_zone; 4252 } 4253 #endif 4254 } 4255 } 4256 4257 /* 4258 * It's possible on a UMA machine to get through all zones that are 4259 * fragmented. If avoiding fragmentation, reset and try again. 4260 */ 4261 if (no_fallback) { 4262 alloc_flags &= ~ALLOC_NOFRAGMENT; 4263 goto retry; 4264 } 4265 4266 return NULL; 4267 } 4268 4269 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4270 { 4271 unsigned int filter = SHOW_MEM_FILTER_NODES; 4272 4273 /* 4274 * This documents exceptions given to allocations in certain 4275 * contexts that are allowed to allocate outside current's set 4276 * of allowed nodes. 4277 */ 4278 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4279 if (tsk_is_oom_victim(current) || 4280 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4281 filter &= ~SHOW_MEM_FILTER_NODES; 4282 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4283 filter &= ~SHOW_MEM_FILTER_NODES; 4284 4285 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4286 } 4287 4288 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4289 { 4290 struct va_format vaf; 4291 va_list args; 4292 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4293 4294 if ((gfp_mask & __GFP_NOWARN) || 4295 !__ratelimit(&nopage_rs) || 4296 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4297 return; 4298 4299 va_start(args, fmt); 4300 vaf.fmt = fmt; 4301 vaf.va = &args; 4302 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4303 current->comm, &vaf, gfp_mask, &gfp_mask, 4304 nodemask_pr_args(nodemask)); 4305 va_end(args); 4306 4307 cpuset_print_current_mems_allowed(); 4308 pr_cont("\n"); 4309 dump_stack(); 4310 warn_alloc_show_mem(gfp_mask, nodemask); 4311 } 4312 4313 static inline struct page * 4314 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4315 unsigned int alloc_flags, 4316 const struct alloc_context *ac) 4317 { 4318 struct page *page; 4319 4320 page = get_page_from_freelist(gfp_mask, order, 4321 alloc_flags|ALLOC_CPUSET, ac); 4322 /* 4323 * fallback to ignore cpuset restriction if our nodes 4324 * are depleted 4325 */ 4326 if (!page) 4327 page = get_page_from_freelist(gfp_mask, order, 4328 alloc_flags, ac); 4329 4330 return page; 4331 } 4332 4333 static inline struct page * 4334 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4335 const struct alloc_context *ac, unsigned long *did_some_progress) 4336 { 4337 struct oom_control oc = { 4338 .zonelist = ac->zonelist, 4339 .nodemask = ac->nodemask, 4340 .memcg = NULL, 4341 .gfp_mask = gfp_mask, 4342 .order = order, 4343 }; 4344 struct page *page; 4345 4346 *did_some_progress = 0; 4347 4348 /* 4349 * Acquire the oom lock. If that fails, somebody else is 4350 * making progress for us. 4351 */ 4352 if (!mutex_trylock(&oom_lock)) { 4353 *did_some_progress = 1; 4354 schedule_timeout_uninterruptible(1); 4355 return NULL; 4356 } 4357 4358 /* 4359 * Go through the zonelist yet one more time, keep very high watermark 4360 * here, this is only to catch a parallel oom killing, we must fail if 4361 * we're still under heavy pressure. But make sure that this reclaim 4362 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4363 * allocation which will never fail due to oom_lock already held. 4364 */ 4365 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4366 ~__GFP_DIRECT_RECLAIM, order, 4367 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4368 if (page) 4369 goto out; 4370 4371 /* Coredumps can quickly deplete all memory reserves */ 4372 if (current->flags & PF_DUMPCORE) 4373 goto out; 4374 /* The OOM killer will not help higher order allocs */ 4375 if (order > PAGE_ALLOC_COSTLY_ORDER) 4376 goto out; 4377 /* 4378 * We have already exhausted all our reclaim opportunities without any 4379 * success so it is time to admit defeat. We will skip the OOM killer 4380 * because it is very likely that the caller has a more reasonable 4381 * fallback than shooting a random task. 4382 * 4383 * The OOM killer may not free memory on a specific node. 4384 */ 4385 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4386 goto out; 4387 /* The OOM killer does not needlessly kill tasks for lowmem */ 4388 if (ac->highest_zoneidx < ZONE_NORMAL) 4389 goto out; 4390 if (pm_suspended_storage()) 4391 goto out; 4392 /* 4393 * XXX: GFP_NOFS allocations should rather fail than rely on 4394 * other request to make a forward progress. 4395 * We are in an unfortunate situation where out_of_memory cannot 4396 * do much for this context but let's try it to at least get 4397 * access to memory reserved if the current task is killed (see 4398 * out_of_memory). Once filesystems are ready to handle allocation 4399 * failures more gracefully we should just bail out here. 4400 */ 4401 4402 /* Exhausted what can be done so it's blame time */ 4403 if (out_of_memory(&oc) || 4404 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4405 *did_some_progress = 1; 4406 4407 /* 4408 * Help non-failing allocations by giving them access to memory 4409 * reserves 4410 */ 4411 if (gfp_mask & __GFP_NOFAIL) 4412 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4413 ALLOC_NO_WATERMARKS, ac); 4414 } 4415 out: 4416 mutex_unlock(&oom_lock); 4417 return page; 4418 } 4419 4420 /* 4421 * Maximum number of compaction retries with a progress before OOM 4422 * killer is consider as the only way to move forward. 4423 */ 4424 #define MAX_COMPACT_RETRIES 16 4425 4426 #ifdef CONFIG_COMPACTION 4427 /* Try memory compaction for high-order allocations before reclaim */ 4428 static struct page * 4429 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4430 unsigned int alloc_flags, const struct alloc_context *ac, 4431 enum compact_priority prio, enum compact_result *compact_result) 4432 { 4433 struct page *page = NULL; 4434 unsigned long pflags; 4435 unsigned int noreclaim_flag; 4436 4437 if (!order) 4438 return NULL; 4439 4440 psi_memstall_enter(&pflags); 4441 delayacct_compact_start(); 4442 noreclaim_flag = memalloc_noreclaim_save(); 4443 4444 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4445 prio, &page); 4446 4447 memalloc_noreclaim_restore(noreclaim_flag); 4448 psi_memstall_leave(&pflags); 4449 delayacct_compact_end(); 4450 4451 if (*compact_result == COMPACT_SKIPPED) 4452 return NULL; 4453 /* 4454 * At least in one zone compaction wasn't deferred or skipped, so let's 4455 * count a compaction stall 4456 */ 4457 count_vm_event(COMPACTSTALL); 4458 4459 /* Prep a captured page if available */ 4460 if (page) 4461 prep_new_page(page, order, gfp_mask, alloc_flags); 4462 4463 /* Try get a page from the freelist if available */ 4464 if (!page) 4465 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4466 4467 if (page) { 4468 struct zone *zone = page_zone(page); 4469 4470 zone->compact_blockskip_flush = false; 4471 compaction_defer_reset(zone, order, true); 4472 count_vm_event(COMPACTSUCCESS); 4473 return page; 4474 } 4475 4476 /* 4477 * It's bad if compaction run occurs and fails. The most likely reason 4478 * is that pages exist, but not enough to satisfy watermarks. 4479 */ 4480 count_vm_event(COMPACTFAIL); 4481 4482 cond_resched(); 4483 4484 return NULL; 4485 } 4486 4487 static inline bool 4488 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4489 enum compact_result compact_result, 4490 enum compact_priority *compact_priority, 4491 int *compaction_retries) 4492 { 4493 int max_retries = MAX_COMPACT_RETRIES; 4494 int min_priority; 4495 bool ret = false; 4496 int retries = *compaction_retries; 4497 enum compact_priority priority = *compact_priority; 4498 4499 if (!order) 4500 return false; 4501 4502 if (fatal_signal_pending(current)) 4503 return false; 4504 4505 if (compaction_made_progress(compact_result)) 4506 (*compaction_retries)++; 4507 4508 /* 4509 * compaction considers all the zone as desperately out of memory 4510 * so it doesn't really make much sense to retry except when the 4511 * failure could be caused by insufficient priority 4512 */ 4513 if (compaction_failed(compact_result)) 4514 goto check_priority; 4515 4516 /* 4517 * compaction was skipped because there are not enough order-0 pages 4518 * to work with, so we retry only if it looks like reclaim can help. 4519 */ 4520 if (compaction_needs_reclaim(compact_result)) { 4521 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4522 goto out; 4523 } 4524 4525 /* 4526 * make sure the compaction wasn't deferred or didn't bail out early 4527 * due to locks contention before we declare that we should give up. 4528 * But the next retry should use a higher priority if allowed, so 4529 * we don't just keep bailing out endlessly. 4530 */ 4531 if (compaction_withdrawn(compact_result)) { 4532 goto check_priority; 4533 } 4534 4535 /* 4536 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4537 * costly ones because they are de facto nofail and invoke OOM 4538 * killer to move on while costly can fail and users are ready 4539 * to cope with that. 1/4 retries is rather arbitrary but we 4540 * would need much more detailed feedback from compaction to 4541 * make a better decision. 4542 */ 4543 if (order > PAGE_ALLOC_COSTLY_ORDER) 4544 max_retries /= 4; 4545 if (*compaction_retries <= max_retries) { 4546 ret = true; 4547 goto out; 4548 } 4549 4550 /* 4551 * Make sure there are attempts at the highest priority if we exhausted 4552 * all retries or failed at the lower priorities. 4553 */ 4554 check_priority: 4555 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4556 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4557 4558 if (*compact_priority > min_priority) { 4559 (*compact_priority)--; 4560 *compaction_retries = 0; 4561 ret = true; 4562 } 4563 out: 4564 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4565 return ret; 4566 } 4567 #else 4568 static inline struct page * 4569 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4570 unsigned int alloc_flags, const struct alloc_context *ac, 4571 enum compact_priority prio, enum compact_result *compact_result) 4572 { 4573 *compact_result = COMPACT_SKIPPED; 4574 return NULL; 4575 } 4576 4577 static inline bool 4578 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4579 enum compact_result compact_result, 4580 enum compact_priority *compact_priority, 4581 int *compaction_retries) 4582 { 4583 struct zone *zone; 4584 struct zoneref *z; 4585 4586 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4587 return false; 4588 4589 /* 4590 * There are setups with compaction disabled which would prefer to loop 4591 * inside the allocator rather than hit the oom killer prematurely. 4592 * Let's give them a good hope and keep retrying while the order-0 4593 * watermarks are OK. 4594 */ 4595 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4596 ac->highest_zoneidx, ac->nodemask) { 4597 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4598 ac->highest_zoneidx, alloc_flags)) 4599 return true; 4600 } 4601 return false; 4602 } 4603 #endif /* CONFIG_COMPACTION */ 4604 4605 #ifdef CONFIG_LOCKDEP 4606 static struct lockdep_map __fs_reclaim_map = 4607 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4608 4609 static bool __need_reclaim(gfp_t gfp_mask) 4610 { 4611 /* no reclaim without waiting on it */ 4612 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4613 return false; 4614 4615 /* this guy won't enter reclaim */ 4616 if (current->flags & PF_MEMALLOC) 4617 return false; 4618 4619 if (gfp_mask & __GFP_NOLOCKDEP) 4620 return false; 4621 4622 return true; 4623 } 4624 4625 void __fs_reclaim_acquire(unsigned long ip) 4626 { 4627 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4628 } 4629 4630 void __fs_reclaim_release(unsigned long ip) 4631 { 4632 lock_release(&__fs_reclaim_map, ip); 4633 } 4634 4635 void fs_reclaim_acquire(gfp_t gfp_mask) 4636 { 4637 gfp_mask = current_gfp_context(gfp_mask); 4638 4639 if (__need_reclaim(gfp_mask)) { 4640 if (gfp_mask & __GFP_FS) 4641 __fs_reclaim_acquire(_RET_IP_); 4642 4643 #ifdef CONFIG_MMU_NOTIFIER 4644 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4645 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4646 #endif 4647 4648 } 4649 } 4650 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4651 4652 void fs_reclaim_release(gfp_t gfp_mask) 4653 { 4654 gfp_mask = current_gfp_context(gfp_mask); 4655 4656 if (__need_reclaim(gfp_mask)) { 4657 if (gfp_mask & __GFP_FS) 4658 __fs_reclaim_release(_RET_IP_); 4659 } 4660 } 4661 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4662 #endif 4663 4664 /* 4665 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4666 * have been rebuilt so allocation retries. Reader side does not lock and 4667 * retries the allocation if zonelist changes. Writer side is protected by the 4668 * embedded spin_lock. 4669 */ 4670 static DEFINE_SEQLOCK(zonelist_update_seq); 4671 4672 static unsigned int zonelist_iter_begin(void) 4673 { 4674 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4675 return read_seqbegin(&zonelist_update_seq); 4676 4677 return 0; 4678 } 4679 4680 static unsigned int check_retry_zonelist(unsigned int seq) 4681 { 4682 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4683 return read_seqretry(&zonelist_update_seq, seq); 4684 4685 return seq; 4686 } 4687 4688 /* Perform direct synchronous page reclaim */ 4689 static unsigned long 4690 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4691 const struct alloc_context *ac) 4692 { 4693 unsigned int noreclaim_flag; 4694 unsigned long progress; 4695 4696 cond_resched(); 4697 4698 /* We now go into synchronous reclaim */ 4699 cpuset_memory_pressure_bump(); 4700 fs_reclaim_acquire(gfp_mask); 4701 noreclaim_flag = memalloc_noreclaim_save(); 4702 4703 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4704 ac->nodemask); 4705 4706 memalloc_noreclaim_restore(noreclaim_flag); 4707 fs_reclaim_release(gfp_mask); 4708 4709 cond_resched(); 4710 4711 return progress; 4712 } 4713 4714 /* The really slow allocator path where we enter direct reclaim */ 4715 static inline struct page * 4716 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4717 unsigned int alloc_flags, const struct alloc_context *ac, 4718 unsigned long *did_some_progress) 4719 { 4720 struct page *page = NULL; 4721 unsigned long pflags; 4722 bool drained = false; 4723 4724 psi_memstall_enter(&pflags); 4725 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4726 if (unlikely(!(*did_some_progress))) 4727 goto out; 4728 4729 retry: 4730 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4731 4732 /* 4733 * If an allocation failed after direct reclaim, it could be because 4734 * pages are pinned on the per-cpu lists or in high alloc reserves. 4735 * Shrink them and try again 4736 */ 4737 if (!page && !drained) { 4738 unreserve_highatomic_pageblock(ac, false); 4739 drain_all_pages(NULL); 4740 drained = true; 4741 goto retry; 4742 } 4743 out: 4744 psi_memstall_leave(&pflags); 4745 4746 return page; 4747 } 4748 4749 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4750 const struct alloc_context *ac) 4751 { 4752 struct zoneref *z; 4753 struct zone *zone; 4754 pg_data_t *last_pgdat = NULL; 4755 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4756 4757 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4758 ac->nodemask) { 4759 if (!managed_zone(zone)) 4760 continue; 4761 if (last_pgdat != zone->zone_pgdat) { 4762 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4763 last_pgdat = zone->zone_pgdat; 4764 } 4765 } 4766 } 4767 4768 static inline unsigned int 4769 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4770 { 4771 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4772 4773 /* 4774 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4775 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4776 * to save two branches. 4777 */ 4778 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4779 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4780 4781 /* 4782 * The caller may dip into page reserves a bit more if the caller 4783 * cannot run direct reclaim, or if the caller has realtime scheduling 4784 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4785 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4786 */ 4787 alloc_flags |= (__force int) 4788 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4789 4790 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4791 /* 4792 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4793 * if it can't schedule. 4794 */ 4795 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4796 alloc_flags |= ALLOC_NON_BLOCK; 4797 4798 if (order > 0) 4799 alloc_flags |= ALLOC_HIGHATOMIC; 4800 } 4801 4802 /* 4803 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4804 * GFP_ATOMIC) rather than fail, see the comment for 4805 * __cpuset_node_allowed(). 4806 */ 4807 if (alloc_flags & ALLOC_MIN_RESERVE) 4808 alloc_flags &= ~ALLOC_CPUSET; 4809 } else if (unlikely(rt_task(current)) && in_task()) 4810 alloc_flags |= ALLOC_MIN_RESERVE; 4811 4812 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4813 4814 return alloc_flags; 4815 } 4816 4817 static bool oom_reserves_allowed(struct task_struct *tsk) 4818 { 4819 if (!tsk_is_oom_victim(tsk)) 4820 return false; 4821 4822 /* 4823 * !MMU doesn't have oom reaper so give access to memory reserves 4824 * only to the thread with TIF_MEMDIE set 4825 */ 4826 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4827 return false; 4828 4829 return true; 4830 } 4831 4832 /* 4833 * Distinguish requests which really need access to full memory 4834 * reserves from oom victims which can live with a portion of it 4835 */ 4836 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4837 { 4838 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4839 return 0; 4840 if (gfp_mask & __GFP_MEMALLOC) 4841 return ALLOC_NO_WATERMARKS; 4842 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4843 return ALLOC_NO_WATERMARKS; 4844 if (!in_interrupt()) { 4845 if (current->flags & PF_MEMALLOC) 4846 return ALLOC_NO_WATERMARKS; 4847 else if (oom_reserves_allowed(current)) 4848 return ALLOC_OOM; 4849 } 4850 4851 return 0; 4852 } 4853 4854 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4855 { 4856 return !!__gfp_pfmemalloc_flags(gfp_mask); 4857 } 4858 4859 /* 4860 * Checks whether it makes sense to retry the reclaim to make a forward progress 4861 * for the given allocation request. 4862 * 4863 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4864 * without success, or when we couldn't even meet the watermark if we 4865 * reclaimed all remaining pages on the LRU lists. 4866 * 4867 * Returns true if a retry is viable or false to enter the oom path. 4868 */ 4869 static inline bool 4870 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4871 struct alloc_context *ac, int alloc_flags, 4872 bool did_some_progress, int *no_progress_loops) 4873 { 4874 struct zone *zone; 4875 struct zoneref *z; 4876 bool ret = false; 4877 4878 /* 4879 * Costly allocations might have made a progress but this doesn't mean 4880 * their order will become available due to high fragmentation so 4881 * always increment the no progress counter for them 4882 */ 4883 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4884 *no_progress_loops = 0; 4885 else 4886 (*no_progress_loops)++; 4887 4888 /* 4889 * Make sure we converge to OOM if we cannot make any progress 4890 * several times in the row. 4891 */ 4892 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4893 /* Before OOM, exhaust highatomic_reserve */ 4894 return unreserve_highatomic_pageblock(ac, true); 4895 } 4896 4897 /* 4898 * Keep reclaiming pages while there is a chance this will lead 4899 * somewhere. If none of the target zones can satisfy our allocation 4900 * request even if all reclaimable pages are considered then we are 4901 * screwed and have to go OOM. 4902 */ 4903 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4904 ac->highest_zoneidx, ac->nodemask) { 4905 unsigned long available; 4906 unsigned long reclaimable; 4907 unsigned long min_wmark = min_wmark_pages(zone); 4908 bool wmark; 4909 4910 available = reclaimable = zone_reclaimable_pages(zone); 4911 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4912 4913 /* 4914 * Would the allocation succeed if we reclaimed all 4915 * reclaimable pages? 4916 */ 4917 wmark = __zone_watermark_ok(zone, order, min_wmark, 4918 ac->highest_zoneidx, alloc_flags, available); 4919 trace_reclaim_retry_zone(z, order, reclaimable, 4920 available, min_wmark, *no_progress_loops, wmark); 4921 if (wmark) { 4922 ret = true; 4923 break; 4924 } 4925 } 4926 4927 /* 4928 * Memory allocation/reclaim might be called from a WQ context and the 4929 * current implementation of the WQ concurrency control doesn't 4930 * recognize that a particular WQ is congested if the worker thread is 4931 * looping without ever sleeping. Therefore we have to do a short sleep 4932 * here rather than calling cond_resched(). 4933 */ 4934 if (current->flags & PF_WQ_WORKER) 4935 schedule_timeout_uninterruptible(1); 4936 else 4937 cond_resched(); 4938 return ret; 4939 } 4940 4941 static inline bool 4942 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4943 { 4944 /* 4945 * It's possible that cpuset's mems_allowed and the nodemask from 4946 * mempolicy don't intersect. This should be normally dealt with by 4947 * policy_nodemask(), but it's possible to race with cpuset update in 4948 * such a way the check therein was true, and then it became false 4949 * before we got our cpuset_mems_cookie here. 4950 * This assumes that for all allocations, ac->nodemask can come only 4951 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4952 * when it does not intersect with the cpuset restrictions) or the 4953 * caller can deal with a violated nodemask. 4954 */ 4955 if (cpusets_enabled() && ac->nodemask && 4956 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4957 ac->nodemask = NULL; 4958 return true; 4959 } 4960 4961 /* 4962 * When updating a task's mems_allowed or mempolicy nodemask, it is 4963 * possible to race with parallel threads in such a way that our 4964 * allocation can fail while the mask is being updated. If we are about 4965 * to fail, check if the cpuset changed during allocation and if so, 4966 * retry. 4967 */ 4968 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4969 return true; 4970 4971 return false; 4972 } 4973 4974 static inline struct page * 4975 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4976 struct alloc_context *ac) 4977 { 4978 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4979 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4980 struct page *page = NULL; 4981 unsigned int alloc_flags; 4982 unsigned long did_some_progress; 4983 enum compact_priority compact_priority; 4984 enum compact_result compact_result; 4985 int compaction_retries; 4986 int no_progress_loops; 4987 unsigned int cpuset_mems_cookie; 4988 unsigned int zonelist_iter_cookie; 4989 int reserve_flags; 4990 4991 restart: 4992 compaction_retries = 0; 4993 no_progress_loops = 0; 4994 compact_priority = DEF_COMPACT_PRIORITY; 4995 cpuset_mems_cookie = read_mems_allowed_begin(); 4996 zonelist_iter_cookie = zonelist_iter_begin(); 4997 4998 /* 4999 * The fast path uses conservative alloc_flags to succeed only until 5000 * kswapd needs to be woken up, and to avoid the cost of setting up 5001 * alloc_flags precisely. So we do that now. 5002 */ 5003 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 5004 5005 /* 5006 * We need to recalculate the starting point for the zonelist iterator 5007 * because we might have used different nodemask in the fast path, or 5008 * there was a cpuset modification and we are retrying - otherwise we 5009 * could end up iterating over non-eligible zones endlessly. 5010 */ 5011 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5012 ac->highest_zoneidx, ac->nodemask); 5013 if (!ac->preferred_zoneref->zone) 5014 goto nopage; 5015 5016 /* 5017 * Check for insane configurations where the cpuset doesn't contain 5018 * any suitable zone to satisfy the request - e.g. non-movable 5019 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5020 */ 5021 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5022 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5023 ac->highest_zoneidx, 5024 &cpuset_current_mems_allowed); 5025 if (!z->zone) 5026 goto nopage; 5027 } 5028 5029 if (alloc_flags & ALLOC_KSWAPD) 5030 wake_all_kswapds(order, gfp_mask, ac); 5031 5032 /* 5033 * The adjusted alloc_flags might result in immediate success, so try 5034 * that first 5035 */ 5036 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5037 if (page) 5038 goto got_pg; 5039 5040 /* 5041 * For costly allocations, try direct compaction first, as it's likely 5042 * that we have enough base pages and don't need to reclaim. For non- 5043 * movable high-order allocations, do that as well, as compaction will 5044 * try prevent permanent fragmentation by migrating from blocks of the 5045 * same migratetype. 5046 * Don't try this for allocations that are allowed to ignore 5047 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5048 */ 5049 if (can_direct_reclaim && 5050 (costly_order || 5051 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5052 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5053 page = __alloc_pages_direct_compact(gfp_mask, order, 5054 alloc_flags, ac, 5055 INIT_COMPACT_PRIORITY, 5056 &compact_result); 5057 if (page) 5058 goto got_pg; 5059 5060 /* 5061 * Checks for costly allocations with __GFP_NORETRY, which 5062 * includes some THP page fault allocations 5063 */ 5064 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5065 /* 5066 * If allocating entire pageblock(s) and compaction 5067 * failed because all zones are below low watermarks 5068 * or is prohibited because it recently failed at this 5069 * order, fail immediately unless the allocator has 5070 * requested compaction and reclaim retry. 5071 * 5072 * Reclaim is 5073 * - potentially very expensive because zones are far 5074 * below their low watermarks or this is part of very 5075 * bursty high order allocations, 5076 * - not guaranteed to help because isolate_freepages() 5077 * may not iterate over freed pages as part of its 5078 * linear scan, and 5079 * - unlikely to make entire pageblocks free on its 5080 * own. 5081 */ 5082 if (compact_result == COMPACT_SKIPPED || 5083 compact_result == COMPACT_DEFERRED) 5084 goto nopage; 5085 5086 /* 5087 * Looks like reclaim/compaction is worth trying, but 5088 * sync compaction could be very expensive, so keep 5089 * using async compaction. 5090 */ 5091 compact_priority = INIT_COMPACT_PRIORITY; 5092 } 5093 } 5094 5095 retry: 5096 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5097 if (alloc_flags & ALLOC_KSWAPD) 5098 wake_all_kswapds(order, gfp_mask, ac); 5099 5100 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5101 if (reserve_flags) 5102 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 5103 (alloc_flags & ALLOC_KSWAPD); 5104 5105 /* 5106 * Reset the nodemask and zonelist iterators if memory policies can be 5107 * ignored. These allocations are high priority and system rather than 5108 * user oriented. 5109 */ 5110 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5111 ac->nodemask = NULL; 5112 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5113 ac->highest_zoneidx, ac->nodemask); 5114 } 5115 5116 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5117 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5118 if (page) 5119 goto got_pg; 5120 5121 /* Caller is not willing to reclaim, we can't balance anything */ 5122 if (!can_direct_reclaim) 5123 goto nopage; 5124 5125 /* Avoid recursion of direct reclaim */ 5126 if (current->flags & PF_MEMALLOC) 5127 goto nopage; 5128 5129 /* Try direct reclaim and then allocating */ 5130 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5131 &did_some_progress); 5132 if (page) 5133 goto got_pg; 5134 5135 /* Try direct compaction and then allocating */ 5136 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5137 compact_priority, &compact_result); 5138 if (page) 5139 goto got_pg; 5140 5141 /* Do not loop if specifically requested */ 5142 if (gfp_mask & __GFP_NORETRY) 5143 goto nopage; 5144 5145 /* 5146 * Do not retry costly high order allocations unless they are 5147 * __GFP_RETRY_MAYFAIL 5148 */ 5149 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5150 goto nopage; 5151 5152 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5153 did_some_progress > 0, &no_progress_loops)) 5154 goto retry; 5155 5156 /* 5157 * It doesn't make any sense to retry for the compaction if the order-0 5158 * reclaim is not able to make any progress because the current 5159 * implementation of the compaction depends on the sufficient amount 5160 * of free memory (see __compaction_suitable) 5161 */ 5162 if (did_some_progress > 0 && 5163 should_compact_retry(ac, order, alloc_flags, 5164 compact_result, &compact_priority, 5165 &compaction_retries)) 5166 goto retry; 5167 5168 5169 /* 5170 * Deal with possible cpuset update races or zonelist updates to avoid 5171 * a unnecessary OOM kill. 5172 */ 5173 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5174 check_retry_zonelist(zonelist_iter_cookie)) 5175 goto restart; 5176 5177 /* Reclaim has failed us, start killing things */ 5178 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5179 if (page) 5180 goto got_pg; 5181 5182 /* Avoid allocations with no watermarks from looping endlessly */ 5183 if (tsk_is_oom_victim(current) && 5184 (alloc_flags & ALLOC_OOM || 5185 (gfp_mask & __GFP_NOMEMALLOC))) 5186 goto nopage; 5187 5188 /* Retry as long as the OOM killer is making progress */ 5189 if (did_some_progress) { 5190 no_progress_loops = 0; 5191 goto retry; 5192 } 5193 5194 nopage: 5195 /* 5196 * Deal with possible cpuset update races or zonelist updates to avoid 5197 * a unnecessary OOM kill. 5198 */ 5199 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5200 check_retry_zonelist(zonelist_iter_cookie)) 5201 goto restart; 5202 5203 /* 5204 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5205 * we always retry 5206 */ 5207 if (gfp_mask & __GFP_NOFAIL) { 5208 /* 5209 * All existing users of the __GFP_NOFAIL are blockable, so warn 5210 * of any new users that actually require GFP_NOWAIT 5211 */ 5212 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5213 goto fail; 5214 5215 /* 5216 * PF_MEMALLOC request from this context is rather bizarre 5217 * because we cannot reclaim anything and only can loop waiting 5218 * for somebody to do a work for us 5219 */ 5220 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5221 5222 /* 5223 * non failing costly orders are a hard requirement which we 5224 * are not prepared for much so let's warn about these users 5225 * so that we can identify them and convert them to something 5226 * else. 5227 */ 5228 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 5229 5230 /* 5231 * Help non-failing allocations by giving some access to memory 5232 * reserves normally used for high priority non-blocking 5233 * allocations but do not use ALLOC_NO_WATERMARKS because this 5234 * could deplete whole memory reserves which would just make 5235 * the situation worse. 5236 */ 5237 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 5238 if (page) 5239 goto got_pg; 5240 5241 cond_resched(); 5242 goto retry; 5243 } 5244 fail: 5245 warn_alloc(gfp_mask, ac->nodemask, 5246 "page allocation failure: order:%u", order); 5247 got_pg: 5248 return page; 5249 } 5250 5251 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5252 int preferred_nid, nodemask_t *nodemask, 5253 struct alloc_context *ac, gfp_t *alloc_gfp, 5254 unsigned int *alloc_flags) 5255 { 5256 ac->highest_zoneidx = gfp_zone(gfp_mask); 5257 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5258 ac->nodemask = nodemask; 5259 ac->migratetype = gfp_migratetype(gfp_mask); 5260 5261 if (cpusets_enabled()) { 5262 *alloc_gfp |= __GFP_HARDWALL; 5263 /* 5264 * When we are in the interrupt context, it is irrelevant 5265 * to the current task context. It means that any node ok. 5266 */ 5267 if (in_task() && !ac->nodemask) 5268 ac->nodemask = &cpuset_current_mems_allowed; 5269 else 5270 *alloc_flags |= ALLOC_CPUSET; 5271 } 5272 5273 might_alloc(gfp_mask); 5274 5275 if (should_fail_alloc_page(gfp_mask, order)) 5276 return false; 5277 5278 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5279 5280 /* Dirty zone balancing only done in the fast path */ 5281 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5282 5283 /* 5284 * The preferred zone is used for statistics but crucially it is 5285 * also used as the starting point for the zonelist iterator. It 5286 * may get reset for allocations that ignore memory policies. 5287 */ 5288 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5289 ac->highest_zoneidx, ac->nodemask); 5290 5291 return true; 5292 } 5293 5294 /* 5295 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5296 * @gfp: GFP flags for the allocation 5297 * @preferred_nid: The preferred NUMA node ID to allocate from 5298 * @nodemask: Set of nodes to allocate from, may be NULL 5299 * @nr_pages: The number of pages desired on the list or array 5300 * @page_list: Optional list to store the allocated pages 5301 * @page_array: Optional array to store the pages 5302 * 5303 * This is a batched version of the page allocator that attempts to 5304 * allocate nr_pages quickly. Pages are added to page_list if page_list 5305 * is not NULL, otherwise it is assumed that the page_array is valid. 5306 * 5307 * For lists, nr_pages is the number of pages that should be allocated. 5308 * 5309 * For arrays, only NULL elements are populated with pages and nr_pages 5310 * is the maximum number of pages that will be stored in the array. 5311 * 5312 * Returns the number of pages on the list or array. 5313 */ 5314 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5315 nodemask_t *nodemask, int nr_pages, 5316 struct list_head *page_list, 5317 struct page **page_array) 5318 { 5319 struct page *page; 5320 unsigned long __maybe_unused UP_flags; 5321 struct zone *zone; 5322 struct zoneref *z; 5323 struct per_cpu_pages *pcp; 5324 struct list_head *pcp_list; 5325 struct alloc_context ac; 5326 gfp_t alloc_gfp; 5327 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5328 int nr_populated = 0, nr_account = 0; 5329 5330 /* 5331 * Skip populated array elements to determine if any pages need 5332 * to be allocated before disabling IRQs. 5333 */ 5334 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5335 nr_populated++; 5336 5337 /* No pages requested? */ 5338 if (unlikely(nr_pages <= 0)) 5339 goto out; 5340 5341 /* Already populated array? */ 5342 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5343 goto out; 5344 5345 /* Bulk allocator does not support memcg accounting. */ 5346 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 5347 goto failed; 5348 5349 /* Use the single page allocator for one page. */ 5350 if (nr_pages - nr_populated == 1) 5351 goto failed; 5352 5353 #ifdef CONFIG_PAGE_OWNER 5354 /* 5355 * PAGE_OWNER may recurse into the allocator to allocate space to 5356 * save the stack with pagesets.lock held. Releasing/reacquiring 5357 * removes much of the performance benefit of bulk allocation so 5358 * force the caller to allocate one page at a time as it'll have 5359 * similar performance to added complexity to the bulk allocator. 5360 */ 5361 if (static_branch_unlikely(&page_owner_inited)) 5362 goto failed; 5363 #endif 5364 5365 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5366 gfp &= gfp_allowed_mask; 5367 alloc_gfp = gfp; 5368 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5369 goto out; 5370 gfp = alloc_gfp; 5371 5372 /* Find an allowed local zone that meets the low watermark. */ 5373 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5374 unsigned long mark; 5375 5376 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5377 !__cpuset_zone_allowed(zone, gfp)) { 5378 continue; 5379 } 5380 5381 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5382 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5383 goto failed; 5384 } 5385 5386 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5387 if (zone_watermark_fast(zone, 0, mark, 5388 zonelist_zone_idx(ac.preferred_zoneref), 5389 alloc_flags, gfp)) { 5390 break; 5391 } 5392 } 5393 5394 /* 5395 * If there are no allowed local zones that meets the watermarks then 5396 * try to allocate a single page and reclaim if necessary. 5397 */ 5398 if (unlikely(!zone)) 5399 goto failed; 5400 5401 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5402 pcp_trylock_prepare(UP_flags); 5403 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5404 if (!pcp) 5405 goto failed_irq; 5406 5407 /* Attempt the batch allocation */ 5408 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5409 while (nr_populated < nr_pages) { 5410 5411 /* Skip existing pages */ 5412 if (page_array && page_array[nr_populated]) { 5413 nr_populated++; 5414 continue; 5415 } 5416 5417 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5418 pcp, pcp_list); 5419 if (unlikely(!page)) { 5420 /* Try and allocate at least one page */ 5421 if (!nr_account) { 5422 pcp_spin_unlock(pcp); 5423 goto failed_irq; 5424 } 5425 break; 5426 } 5427 nr_account++; 5428 5429 prep_new_page(page, 0, gfp, 0); 5430 if (page_list) 5431 list_add(&page->lru, page_list); 5432 else 5433 page_array[nr_populated] = page; 5434 nr_populated++; 5435 } 5436 5437 pcp_spin_unlock(pcp); 5438 pcp_trylock_finish(UP_flags); 5439 5440 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5441 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5442 5443 out: 5444 return nr_populated; 5445 5446 failed_irq: 5447 pcp_trylock_finish(UP_flags); 5448 5449 failed: 5450 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5451 if (page) { 5452 if (page_list) 5453 list_add(&page->lru, page_list); 5454 else 5455 page_array[nr_populated] = page; 5456 nr_populated++; 5457 } 5458 5459 goto out; 5460 } 5461 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5462 5463 /* 5464 * This is the 'heart' of the zoned buddy allocator. 5465 */ 5466 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5467 nodemask_t *nodemask) 5468 { 5469 struct page *page; 5470 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5471 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5472 struct alloc_context ac = { }; 5473 5474 /* 5475 * There are several places where we assume that the order value is sane 5476 * so bail out early if the request is out of bound. 5477 */ 5478 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5479 return NULL; 5480 5481 gfp &= gfp_allowed_mask; 5482 /* 5483 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5484 * resp. GFP_NOIO which has to be inherited for all allocation requests 5485 * from a particular context which has been marked by 5486 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5487 * movable zones are not used during allocation. 5488 */ 5489 gfp = current_gfp_context(gfp); 5490 alloc_gfp = gfp; 5491 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5492 &alloc_gfp, &alloc_flags)) 5493 return NULL; 5494 5495 /* 5496 * Forbid the first pass from falling back to types that fragment 5497 * memory until all local zones are considered. 5498 */ 5499 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5500 5501 /* First allocation attempt */ 5502 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5503 if (likely(page)) 5504 goto out; 5505 5506 alloc_gfp = gfp; 5507 ac.spread_dirty_pages = false; 5508 5509 /* 5510 * Restore the original nodemask if it was potentially replaced with 5511 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5512 */ 5513 ac.nodemask = nodemask; 5514 5515 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5516 5517 out: 5518 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5519 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5520 __free_pages(page, order); 5521 page = NULL; 5522 } 5523 5524 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5525 kmsan_alloc_page(page, order, alloc_gfp); 5526 5527 return page; 5528 } 5529 EXPORT_SYMBOL(__alloc_pages); 5530 5531 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5532 nodemask_t *nodemask) 5533 { 5534 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5535 preferred_nid, nodemask); 5536 5537 if (page && order > 1) 5538 prep_transhuge_page(page); 5539 return (struct folio *)page; 5540 } 5541 EXPORT_SYMBOL(__folio_alloc); 5542 5543 /* 5544 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5545 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5546 * you need to access high mem. 5547 */ 5548 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5549 { 5550 struct page *page; 5551 5552 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5553 if (!page) 5554 return 0; 5555 return (unsigned long) page_address(page); 5556 } 5557 EXPORT_SYMBOL(__get_free_pages); 5558 5559 unsigned long get_zeroed_page(gfp_t gfp_mask) 5560 { 5561 return __get_free_page(gfp_mask | __GFP_ZERO); 5562 } 5563 EXPORT_SYMBOL(get_zeroed_page); 5564 5565 /** 5566 * __free_pages - Free pages allocated with alloc_pages(). 5567 * @page: The page pointer returned from alloc_pages(). 5568 * @order: The order of the allocation. 5569 * 5570 * This function can free multi-page allocations that are not compound 5571 * pages. It does not check that the @order passed in matches that of 5572 * the allocation, so it is easy to leak memory. Freeing more memory 5573 * than was allocated will probably emit a warning. 5574 * 5575 * If the last reference to this page is speculative, it will be released 5576 * by put_page() which only frees the first page of a non-compound 5577 * allocation. To prevent the remaining pages from being leaked, we free 5578 * the subsequent pages here. If you want to use the page's reference 5579 * count to decide when to free the allocation, you should allocate a 5580 * compound page, and use put_page() instead of __free_pages(). 5581 * 5582 * Context: May be called in interrupt context or while holding a normal 5583 * spinlock, but not in NMI context or while holding a raw spinlock. 5584 */ 5585 void __free_pages(struct page *page, unsigned int order) 5586 { 5587 /* get PageHead before we drop reference */ 5588 int head = PageHead(page); 5589 5590 if (put_page_testzero(page)) 5591 free_the_page(page, order); 5592 else if (!head) 5593 while (order-- > 0) 5594 free_the_page(page + (1 << order), order); 5595 } 5596 EXPORT_SYMBOL(__free_pages); 5597 5598 void free_pages(unsigned long addr, unsigned int order) 5599 { 5600 if (addr != 0) { 5601 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5602 __free_pages(virt_to_page((void *)addr), order); 5603 } 5604 } 5605 5606 EXPORT_SYMBOL(free_pages); 5607 5608 /* 5609 * Page Fragment: 5610 * An arbitrary-length arbitrary-offset area of memory which resides 5611 * within a 0 or higher order page. Multiple fragments within that page 5612 * are individually refcounted, in the page's reference counter. 5613 * 5614 * The page_frag functions below provide a simple allocation framework for 5615 * page fragments. This is used by the network stack and network device 5616 * drivers to provide a backing region of memory for use as either an 5617 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5618 */ 5619 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5620 gfp_t gfp_mask) 5621 { 5622 struct page *page = NULL; 5623 gfp_t gfp = gfp_mask; 5624 5625 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5626 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5627 __GFP_NOMEMALLOC; 5628 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5629 PAGE_FRAG_CACHE_MAX_ORDER); 5630 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5631 #endif 5632 if (unlikely(!page)) 5633 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5634 5635 nc->va = page ? page_address(page) : NULL; 5636 5637 return page; 5638 } 5639 5640 void __page_frag_cache_drain(struct page *page, unsigned int count) 5641 { 5642 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5643 5644 if (page_ref_sub_and_test(page, count)) 5645 free_the_page(page, compound_order(page)); 5646 } 5647 EXPORT_SYMBOL(__page_frag_cache_drain); 5648 5649 void *page_frag_alloc_align(struct page_frag_cache *nc, 5650 unsigned int fragsz, gfp_t gfp_mask, 5651 unsigned int align_mask) 5652 { 5653 unsigned int size = PAGE_SIZE; 5654 struct page *page; 5655 int offset; 5656 5657 if (unlikely(!nc->va)) { 5658 refill: 5659 page = __page_frag_cache_refill(nc, gfp_mask); 5660 if (!page) 5661 return NULL; 5662 5663 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5664 /* if size can vary use size else just use PAGE_SIZE */ 5665 size = nc->size; 5666 #endif 5667 /* Even if we own the page, we do not use atomic_set(). 5668 * This would break get_page_unless_zero() users. 5669 */ 5670 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5671 5672 /* reset page count bias and offset to start of new frag */ 5673 nc->pfmemalloc = page_is_pfmemalloc(page); 5674 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5675 nc->offset = size; 5676 } 5677 5678 offset = nc->offset - fragsz; 5679 if (unlikely(offset < 0)) { 5680 page = virt_to_page(nc->va); 5681 5682 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5683 goto refill; 5684 5685 if (unlikely(nc->pfmemalloc)) { 5686 free_the_page(page, compound_order(page)); 5687 goto refill; 5688 } 5689 5690 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5691 /* if size can vary use size else just use PAGE_SIZE */ 5692 size = nc->size; 5693 #endif 5694 /* OK, page count is 0, we can safely set it */ 5695 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5696 5697 /* reset page count bias and offset to start of new frag */ 5698 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5699 offset = size - fragsz; 5700 if (unlikely(offset < 0)) { 5701 /* 5702 * The caller is trying to allocate a fragment 5703 * with fragsz > PAGE_SIZE but the cache isn't big 5704 * enough to satisfy the request, this may 5705 * happen in low memory conditions. 5706 * We don't release the cache page because 5707 * it could make memory pressure worse 5708 * so we simply return NULL here. 5709 */ 5710 return NULL; 5711 } 5712 } 5713 5714 nc->pagecnt_bias--; 5715 offset &= align_mask; 5716 nc->offset = offset; 5717 5718 return nc->va + offset; 5719 } 5720 EXPORT_SYMBOL(page_frag_alloc_align); 5721 5722 /* 5723 * Frees a page fragment allocated out of either a compound or order 0 page. 5724 */ 5725 void page_frag_free(void *addr) 5726 { 5727 struct page *page = virt_to_head_page(addr); 5728 5729 if (unlikely(put_page_testzero(page))) 5730 free_the_page(page, compound_order(page)); 5731 } 5732 EXPORT_SYMBOL(page_frag_free); 5733 5734 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5735 size_t size) 5736 { 5737 if (addr) { 5738 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5739 struct page *page = virt_to_page((void *)addr); 5740 struct page *last = page + nr; 5741 5742 split_page_owner(page, 1 << order); 5743 split_page_memcg(page, 1 << order); 5744 while (page < --last) 5745 set_page_refcounted(last); 5746 5747 last = page + (1UL << order); 5748 for (page += nr; page < last; page++) 5749 __free_pages_ok(page, 0, FPI_TO_TAIL); 5750 } 5751 return (void *)addr; 5752 } 5753 5754 /** 5755 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5756 * @size: the number of bytes to allocate 5757 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5758 * 5759 * This function is similar to alloc_pages(), except that it allocates the 5760 * minimum number of pages to satisfy the request. alloc_pages() can only 5761 * allocate memory in power-of-two pages. 5762 * 5763 * This function is also limited by MAX_ORDER. 5764 * 5765 * Memory allocated by this function must be released by free_pages_exact(). 5766 * 5767 * Return: pointer to the allocated area or %NULL in case of error. 5768 */ 5769 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5770 { 5771 unsigned int order = get_order(size); 5772 unsigned long addr; 5773 5774 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5775 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5776 5777 addr = __get_free_pages(gfp_mask, order); 5778 return make_alloc_exact(addr, order, size); 5779 } 5780 EXPORT_SYMBOL(alloc_pages_exact); 5781 5782 /** 5783 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5784 * pages on a node. 5785 * @nid: the preferred node ID where memory should be allocated 5786 * @size: the number of bytes to allocate 5787 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5788 * 5789 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5790 * back. 5791 * 5792 * Return: pointer to the allocated area or %NULL in case of error. 5793 */ 5794 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5795 { 5796 unsigned int order = get_order(size); 5797 struct page *p; 5798 5799 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5800 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5801 5802 p = alloc_pages_node(nid, gfp_mask, order); 5803 if (!p) 5804 return NULL; 5805 return make_alloc_exact((unsigned long)page_address(p), order, size); 5806 } 5807 5808 /** 5809 * free_pages_exact - release memory allocated via alloc_pages_exact() 5810 * @virt: the value returned by alloc_pages_exact. 5811 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5812 * 5813 * Release the memory allocated by a previous call to alloc_pages_exact. 5814 */ 5815 void free_pages_exact(void *virt, size_t size) 5816 { 5817 unsigned long addr = (unsigned long)virt; 5818 unsigned long end = addr + PAGE_ALIGN(size); 5819 5820 while (addr < end) { 5821 free_page(addr); 5822 addr += PAGE_SIZE; 5823 } 5824 } 5825 EXPORT_SYMBOL(free_pages_exact); 5826 5827 /** 5828 * nr_free_zone_pages - count number of pages beyond high watermark 5829 * @offset: The zone index of the highest zone 5830 * 5831 * nr_free_zone_pages() counts the number of pages which are beyond the 5832 * high watermark within all zones at or below a given zone index. For each 5833 * zone, the number of pages is calculated as: 5834 * 5835 * nr_free_zone_pages = managed_pages - high_pages 5836 * 5837 * Return: number of pages beyond high watermark. 5838 */ 5839 static unsigned long nr_free_zone_pages(int offset) 5840 { 5841 struct zoneref *z; 5842 struct zone *zone; 5843 5844 /* Just pick one node, since fallback list is circular */ 5845 unsigned long sum = 0; 5846 5847 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5848 5849 for_each_zone_zonelist(zone, z, zonelist, offset) { 5850 unsigned long size = zone_managed_pages(zone); 5851 unsigned long high = high_wmark_pages(zone); 5852 if (size > high) 5853 sum += size - high; 5854 } 5855 5856 return sum; 5857 } 5858 5859 /** 5860 * nr_free_buffer_pages - count number of pages beyond high watermark 5861 * 5862 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5863 * watermark within ZONE_DMA and ZONE_NORMAL. 5864 * 5865 * Return: number of pages beyond high watermark within ZONE_DMA and 5866 * ZONE_NORMAL. 5867 */ 5868 unsigned long nr_free_buffer_pages(void) 5869 { 5870 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5871 } 5872 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5873 5874 static inline void show_node(struct zone *zone) 5875 { 5876 if (IS_ENABLED(CONFIG_NUMA)) 5877 printk("Node %d ", zone_to_nid(zone)); 5878 } 5879 5880 long si_mem_available(void) 5881 { 5882 long available; 5883 unsigned long pagecache; 5884 unsigned long wmark_low = 0; 5885 unsigned long pages[NR_LRU_LISTS]; 5886 unsigned long reclaimable; 5887 struct zone *zone; 5888 int lru; 5889 5890 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5891 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5892 5893 for_each_zone(zone) 5894 wmark_low += low_wmark_pages(zone); 5895 5896 /* 5897 * Estimate the amount of memory available for userspace allocations, 5898 * without causing swapping or OOM. 5899 */ 5900 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5901 5902 /* 5903 * Not all the page cache can be freed, otherwise the system will 5904 * start swapping or thrashing. Assume at least half of the page 5905 * cache, or the low watermark worth of cache, needs to stay. 5906 */ 5907 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5908 pagecache -= min(pagecache / 2, wmark_low); 5909 available += pagecache; 5910 5911 /* 5912 * Part of the reclaimable slab and other kernel memory consists of 5913 * items that are in use, and cannot be freed. Cap this estimate at the 5914 * low watermark. 5915 */ 5916 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5917 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5918 available += reclaimable - min(reclaimable / 2, wmark_low); 5919 5920 if (available < 0) 5921 available = 0; 5922 return available; 5923 } 5924 EXPORT_SYMBOL_GPL(si_mem_available); 5925 5926 void si_meminfo(struct sysinfo *val) 5927 { 5928 val->totalram = totalram_pages(); 5929 val->sharedram = global_node_page_state(NR_SHMEM); 5930 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5931 val->bufferram = nr_blockdev_pages(); 5932 val->totalhigh = totalhigh_pages(); 5933 val->freehigh = nr_free_highpages(); 5934 val->mem_unit = PAGE_SIZE; 5935 } 5936 5937 EXPORT_SYMBOL(si_meminfo); 5938 5939 #ifdef CONFIG_NUMA 5940 void si_meminfo_node(struct sysinfo *val, int nid) 5941 { 5942 int zone_type; /* needs to be signed */ 5943 unsigned long managed_pages = 0; 5944 unsigned long managed_highpages = 0; 5945 unsigned long free_highpages = 0; 5946 pg_data_t *pgdat = NODE_DATA(nid); 5947 5948 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5949 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5950 val->totalram = managed_pages; 5951 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5952 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5953 #ifdef CONFIG_HIGHMEM 5954 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5955 struct zone *zone = &pgdat->node_zones[zone_type]; 5956 5957 if (is_highmem(zone)) { 5958 managed_highpages += zone_managed_pages(zone); 5959 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5960 } 5961 } 5962 val->totalhigh = managed_highpages; 5963 val->freehigh = free_highpages; 5964 #else 5965 val->totalhigh = managed_highpages; 5966 val->freehigh = free_highpages; 5967 #endif 5968 val->mem_unit = PAGE_SIZE; 5969 } 5970 #endif 5971 5972 /* 5973 * Determine whether the node should be displayed or not, depending on whether 5974 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5975 */ 5976 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5977 { 5978 if (!(flags & SHOW_MEM_FILTER_NODES)) 5979 return false; 5980 5981 /* 5982 * no node mask - aka implicit memory numa policy. Do not bother with 5983 * the synchronization - read_mems_allowed_begin - because we do not 5984 * have to be precise here. 5985 */ 5986 if (!nodemask) 5987 nodemask = &cpuset_current_mems_allowed; 5988 5989 return !node_isset(nid, *nodemask); 5990 } 5991 5992 #define K(x) ((x) << (PAGE_SHIFT-10)) 5993 5994 static void show_migration_types(unsigned char type) 5995 { 5996 static const char types[MIGRATE_TYPES] = { 5997 [MIGRATE_UNMOVABLE] = 'U', 5998 [MIGRATE_MOVABLE] = 'M', 5999 [MIGRATE_RECLAIMABLE] = 'E', 6000 [MIGRATE_HIGHATOMIC] = 'H', 6001 #ifdef CONFIG_CMA 6002 [MIGRATE_CMA] = 'C', 6003 #endif 6004 #ifdef CONFIG_MEMORY_ISOLATION 6005 [MIGRATE_ISOLATE] = 'I', 6006 #endif 6007 }; 6008 char tmp[MIGRATE_TYPES + 1]; 6009 char *p = tmp; 6010 int i; 6011 6012 for (i = 0; i < MIGRATE_TYPES; i++) { 6013 if (type & (1 << i)) 6014 *p++ = types[i]; 6015 } 6016 6017 *p = '\0'; 6018 printk(KERN_CONT "(%s) ", tmp); 6019 } 6020 6021 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6022 { 6023 int zone_idx; 6024 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6025 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6026 return true; 6027 return false; 6028 } 6029 6030 /* 6031 * Show free area list (used inside shift_scroll-lock stuff) 6032 * We also calculate the percentage fragmentation. We do this by counting the 6033 * memory on each free list with the exception of the first item on the list. 6034 * 6035 * Bits in @filter: 6036 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6037 * cpuset. 6038 */ 6039 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6040 { 6041 unsigned long free_pcp = 0; 6042 int cpu, nid; 6043 struct zone *zone; 6044 pg_data_t *pgdat; 6045 6046 for_each_populated_zone(zone) { 6047 if (zone_idx(zone) > max_zone_idx) 6048 continue; 6049 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6050 continue; 6051 6052 for_each_online_cpu(cpu) 6053 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6054 } 6055 6056 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6057 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6058 " unevictable:%lu dirty:%lu writeback:%lu\n" 6059 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6060 " mapped:%lu shmem:%lu pagetables:%lu\n" 6061 " sec_pagetables:%lu bounce:%lu\n" 6062 " kernel_misc_reclaimable:%lu\n" 6063 " free:%lu free_pcp:%lu free_cma:%lu\n", 6064 global_node_page_state(NR_ACTIVE_ANON), 6065 global_node_page_state(NR_INACTIVE_ANON), 6066 global_node_page_state(NR_ISOLATED_ANON), 6067 global_node_page_state(NR_ACTIVE_FILE), 6068 global_node_page_state(NR_INACTIVE_FILE), 6069 global_node_page_state(NR_ISOLATED_FILE), 6070 global_node_page_state(NR_UNEVICTABLE), 6071 global_node_page_state(NR_FILE_DIRTY), 6072 global_node_page_state(NR_WRITEBACK), 6073 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6074 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6075 global_node_page_state(NR_FILE_MAPPED), 6076 global_node_page_state(NR_SHMEM), 6077 global_node_page_state(NR_PAGETABLE), 6078 global_node_page_state(NR_SECONDARY_PAGETABLE), 6079 global_zone_page_state(NR_BOUNCE), 6080 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6081 global_zone_page_state(NR_FREE_PAGES), 6082 free_pcp, 6083 global_zone_page_state(NR_FREE_CMA_PAGES)); 6084 6085 for_each_online_pgdat(pgdat) { 6086 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6087 continue; 6088 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6089 continue; 6090 6091 printk("Node %d" 6092 " active_anon:%lukB" 6093 " inactive_anon:%lukB" 6094 " active_file:%lukB" 6095 " inactive_file:%lukB" 6096 " unevictable:%lukB" 6097 " isolated(anon):%lukB" 6098 " isolated(file):%lukB" 6099 " mapped:%lukB" 6100 " dirty:%lukB" 6101 " writeback:%lukB" 6102 " shmem:%lukB" 6103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6104 " shmem_thp: %lukB" 6105 " shmem_pmdmapped: %lukB" 6106 " anon_thp: %lukB" 6107 #endif 6108 " writeback_tmp:%lukB" 6109 " kernel_stack:%lukB" 6110 #ifdef CONFIG_SHADOW_CALL_STACK 6111 " shadow_call_stack:%lukB" 6112 #endif 6113 " pagetables:%lukB" 6114 " sec_pagetables:%lukB" 6115 " all_unreclaimable? %s" 6116 "\n", 6117 pgdat->node_id, 6118 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6119 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6120 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6121 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6122 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6123 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6124 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6125 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6126 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6127 K(node_page_state(pgdat, NR_WRITEBACK)), 6128 K(node_page_state(pgdat, NR_SHMEM)), 6129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6130 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6131 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6132 K(node_page_state(pgdat, NR_ANON_THPS)), 6133 #endif 6134 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6135 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6136 #ifdef CONFIG_SHADOW_CALL_STACK 6137 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6138 #endif 6139 K(node_page_state(pgdat, NR_PAGETABLE)), 6140 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 6141 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6142 "yes" : "no"); 6143 } 6144 6145 for_each_populated_zone(zone) { 6146 int i; 6147 6148 if (zone_idx(zone) > max_zone_idx) 6149 continue; 6150 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6151 continue; 6152 6153 free_pcp = 0; 6154 for_each_online_cpu(cpu) 6155 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6156 6157 show_node(zone); 6158 printk(KERN_CONT 6159 "%s" 6160 " free:%lukB" 6161 " boost:%lukB" 6162 " min:%lukB" 6163 " low:%lukB" 6164 " high:%lukB" 6165 " reserved_highatomic:%luKB" 6166 " active_anon:%lukB" 6167 " inactive_anon:%lukB" 6168 " active_file:%lukB" 6169 " inactive_file:%lukB" 6170 " unevictable:%lukB" 6171 " writepending:%lukB" 6172 " present:%lukB" 6173 " managed:%lukB" 6174 " mlocked:%lukB" 6175 " bounce:%lukB" 6176 " free_pcp:%lukB" 6177 " local_pcp:%ukB" 6178 " free_cma:%lukB" 6179 "\n", 6180 zone->name, 6181 K(zone_page_state(zone, NR_FREE_PAGES)), 6182 K(zone->watermark_boost), 6183 K(min_wmark_pages(zone)), 6184 K(low_wmark_pages(zone)), 6185 K(high_wmark_pages(zone)), 6186 K(zone->nr_reserved_highatomic), 6187 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6188 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6189 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6190 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6191 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6192 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6193 K(zone->present_pages), 6194 K(zone_managed_pages(zone)), 6195 K(zone_page_state(zone, NR_MLOCK)), 6196 K(zone_page_state(zone, NR_BOUNCE)), 6197 K(free_pcp), 6198 K(this_cpu_read(zone->per_cpu_pageset->count)), 6199 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6200 printk("lowmem_reserve[]:"); 6201 for (i = 0; i < MAX_NR_ZONES; i++) 6202 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6203 printk(KERN_CONT "\n"); 6204 } 6205 6206 for_each_populated_zone(zone) { 6207 unsigned int order; 6208 unsigned long nr[MAX_ORDER], flags, total = 0; 6209 unsigned char types[MAX_ORDER]; 6210 6211 if (zone_idx(zone) > max_zone_idx) 6212 continue; 6213 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6214 continue; 6215 show_node(zone); 6216 printk(KERN_CONT "%s: ", zone->name); 6217 6218 spin_lock_irqsave(&zone->lock, flags); 6219 for (order = 0; order < MAX_ORDER; order++) { 6220 struct free_area *area = &zone->free_area[order]; 6221 int type; 6222 6223 nr[order] = area->nr_free; 6224 total += nr[order] << order; 6225 6226 types[order] = 0; 6227 for (type = 0; type < MIGRATE_TYPES; type++) { 6228 if (!free_area_empty(area, type)) 6229 types[order] |= 1 << type; 6230 } 6231 } 6232 spin_unlock_irqrestore(&zone->lock, flags); 6233 for (order = 0; order < MAX_ORDER; order++) { 6234 printk(KERN_CONT "%lu*%lukB ", 6235 nr[order], K(1UL) << order); 6236 if (nr[order]) 6237 show_migration_types(types[order]); 6238 } 6239 printk(KERN_CONT "= %lukB\n", K(total)); 6240 } 6241 6242 for_each_online_node(nid) { 6243 if (show_mem_node_skip(filter, nid, nodemask)) 6244 continue; 6245 hugetlb_show_meminfo_node(nid); 6246 } 6247 6248 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6249 6250 show_swap_cache_info(); 6251 } 6252 6253 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6254 { 6255 zoneref->zone = zone; 6256 zoneref->zone_idx = zone_idx(zone); 6257 } 6258 6259 /* 6260 * Builds allocation fallback zone lists. 6261 * 6262 * Add all populated zones of a node to the zonelist. 6263 */ 6264 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6265 { 6266 struct zone *zone; 6267 enum zone_type zone_type = MAX_NR_ZONES; 6268 int nr_zones = 0; 6269 6270 do { 6271 zone_type--; 6272 zone = pgdat->node_zones + zone_type; 6273 if (populated_zone(zone)) { 6274 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6275 check_highest_zone(zone_type); 6276 } 6277 } while (zone_type); 6278 6279 return nr_zones; 6280 } 6281 6282 #ifdef CONFIG_NUMA 6283 6284 static int __parse_numa_zonelist_order(char *s) 6285 { 6286 /* 6287 * We used to support different zonelists modes but they turned 6288 * out to be just not useful. Let's keep the warning in place 6289 * if somebody still use the cmd line parameter so that we do 6290 * not fail it silently 6291 */ 6292 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6293 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6294 return -EINVAL; 6295 } 6296 return 0; 6297 } 6298 6299 char numa_zonelist_order[] = "Node"; 6300 6301 /* 6302 * sysctl handler for numa_zonelist_order 6303 */ 6304 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6305 void *buffer, size_t *length, loff_t *ppos) 6306 { 6307 if (write) 6308 return __parse_numa_zonelist_order(buffer); 6309 return proc_dostring(table, write, buffer, length, ppos); 6310 } 6311 6312 6313 static int node_load[MAX_NUMNODES]; 6314 6315 /** 6316 * find_next_best_node - find the next node that should appear in a given node's fallback list 6317 * @node: node whose fallback list we're appending 6318 * @used_node_mask: nodemask_t of already used nodes 6319 * 6320 * We use a number of factors to determine which is the next node that should 6321 * appear on a given node's fallback list. The node should not have appeared 6322 * already in @node's fallback list, and it should be the next closest node 6323 * according to the distance array (which contains arbitrary distance values 6324 * from each node to each node in the system), and should also prefer nodes 6325 * with no CPUs, since presumably they'll have very little allocation pressure 6326 * on them otherwise. 6327 * 6328 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6329 */ 6330 int find_next_best_node(int node, nodemask_t *used_node_mask) 6331 { 6332 int n, val; 6333 int min_val = INT_MAX; 6334 int best_node = NUMA_NO_NODE; 6335 6336 /* Use the local node if we haven't already */ 6337 if (!node_isset(node, *used_node_mask)) { 6338 node_set(node, *used_node_mask); 6339 return node; 6340 } 6341 6342 for_each_node_state(n, N_MEMORY) { 6343 6344 /* Don't want a node to appear more than once */ 6345 if (node_isset(n, *used_node_mask)) 6346 continue; 6347 6348 /* Use the distance array to find the distance */ 6349 val = node_distance(node, n); 6350 6351 /* Penalize nodes under us ("prefer the next node") */ 6352 val += (n < node); 6353 6354 /* Give preference to headless and unused nodes */ 6355 if (!cpumask_empty(cpumask_of_node(n))) 6356 val += PENALTY_FOR_NODE_WITH_CPUS; 6357 6358 /* Slight preference for less loaded node */ 6359 val *= MAX_NUMNODES; 6360 val += node_load[n]; 6361 6362 if (val < min_val) { 6363 min_val = val; 6364 best_node = n; 6365 } 6366 } 6367 6368 if (best_node >= 0) 6369 node_set(best_node, *used_node_mask); 6370 6371 return best_node; 6372 } 6373 6374 6375 /* 6376 * Build zonelists ordered by node and zones within node. 6377 * This results in maximum locality--normal zone overflows into local 6378 * DMA zone, if any--but risks exhausting DMA zone. 6379 */ 6380 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6381 unsigned nr_nodes) 6382 { 6383 struct zoneref *zonerefs; 6384 int i; 6385 6386 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6387 6388 for (i = 0; i < nr_nodes; i++) { 6389 int nr_zones; 6390 6391 pg_data_t *node = NODE_DATA(node_order[i]); 6392 6393 nr_zones = build_zonerefs_node(node, zonerefs); 6394 zonerefs += nr_zones; 6395 } 6396 zonerefs->zone = NULL; 6397 zonerefs->zone_idx = 0; 6398 } 6399 6400 /* 6401 * Build gfp_thisnode zonelists 6402 */ 6403 static void build_thisnode_zonelists(pg_data_t *pgdat) 6404 { 6405 struct zoneref *zonerefs; 6406 int nr_zones; 6407 6408 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6409 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6410 zonerefs += nr_zones; 6411 zonerefs->zone = NULL; 6412 zonerefs->zone_idx = 0; 6413 } 6414 6415 /* 6416 * Build zonelists ordered by zone and nodes within zones. 6417 * This results in conserving DMA zone[s] until all Normal memory is 6418 * exhausted, but results in overflowing to remote node while memory 6419 * may still exist in local DMA zone. 6420 */ 6421 6422 static void build_zonelists(pg_data_t *pgdat) 6423 { 6424 static int node_order[MAX_NUMNODES]; 6425 int node, nr_nodes = 0; 6426 nodemask_t used_mask = NODE_MASK_NONE; 6427 int local_node, prev_node; 6428 6429 /* NUMA-aware ordering of nodes */ 6430 local_node = pgdat->node_id; 6431 prev_node = local_node; 6432 6433 memset(node_order, 0, sizeof(node_order)); 6434 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6435 /* 6436 * We don't want to pressure a particular node. 6437 * So adding penalty to the first node in same 6438 * distance group to make it round-robin. 6439 */ 6440 if (node_distance(local_node, node) != 6441 node_distance(local_node, prev_node)) 6442 node_load[node] += 1; 6443 6444 node_order[nr_nodes++] = node; 6445 prev_node = node; 6446 } 6447 6448 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6449 build_thisnode_zonelists(pgdat); 6450 pr_info("Fallback order for Node %d: ", local_node); 6451 for (node = 0; node < nr_nodes; node++) 6452 pr_cont("%d ", node_order[node]); 6453 pr_cont("\n"); 6454 } 6455 6456 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6457 /* 6458 * Return node id of node used for "local" allocations. 6459 * I.e., first node id of first zone in arg node's generic zonelist. 6460 * Used for initializing percpu 'numa_mem', which is used primarily 6461 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6462 */ 6463 int local_memory_node(int node) 6464 { 6465 struct zoneref *z; 6466 6467 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6468 gfp_zone(GFP_KERNEL), 6469 NULL); 6470 return zone_to_nid(z->zone); 6471 } 6472 #endif 6473 6474 static void setup_min_unmapped_ratio(void); 6475 static void setup_min_slab_ratio(void); 6476 #else /* CONFIG_NUMA */ 6477 6478 static void build_zonelists(pg_data_t *pgdat) 6479 { 6480 int node, local_node; 6481 struct zoneref *zonerefs; 6482 int nr_zones; 6483 6484 local_node = pgdat->node_id; 6485 6486 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6487 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6488 zonerefs += nr_zones; 6489 6490 /* 6491 * Now we build the zonelist so that it contains the zones 6492 * of all the other nodes. 6493 * We don't want to pressure a particular node, so when 6494 * building the zones for node N, we make sure that the 6495 * zones coming right after the local ones are those from 6496 * node N+1 (modulo N) 6497 */ 6498 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6499 if (!node_online(node)) 6500 continue; 6501 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6502 zonerefs += nr_zones; 6503 } 6504 for (node = 0; node < local_node; node++) { 6505 if (!node_online(node)) 6506 continue; 6507 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6508 zonerefs += nr_zones; 6509 } 6510 6511 zonerefs->zone = NULL; 6512 zonerefs->zone_idx = 0; 6513 } 6514 6515 #endif /* CONFIG_NUMA */ 6516 6517 /* 6518 * Boot pageset table. One per cpu which is going to be used for all 6519 * zones and all nodes. The parameters will be set in such a way 6520 * that an item put on a list will immediately be handed over to 6521 * the buddy list. This is safe since pageset manipulation is done 6522 * with interrupts disabled. 6523 * 6524 * The boot_pagesets must be kept even after bootup is complete for 6525 * unused processors and/or zones. They do play a role for bootstrapping 6526 * hotplugged processors. 6527 * 6528 * zoneinfo_show() and maybe other functions do 6529 * not check if the processor is online before following the pageset pointer. 6530 * Other parts of the kernel may not check if the zone is available. 6531 */ 6532 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6533 /* These effectively disable the pcplists in the boot pageset completely */ 6534 #define BOOT_PAGESET_HIGH 0 6535 #define BOOT_PAGESET_BATCH 1 6536 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6537 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6538 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6539 6540 static void __build_all_zonelists(void *data) 6541 { 6542 int nid; 6543 int __maybe_unused cpu; 6544 pg_data_t *self = data; 6545 6546 write_seqlock(&zonelist_update_seq); 6547 6548 #ifdef CONFIG_NUMA 6549 memset(node_load, 0, sizeof(node_load)); 6550 #endif 6551 6552 /* 6553 * This node is hotadded and no memory is yet present. So just 6554 * building zonelists is fine - no need to touch other nodes. 6555 */ 6556 if (self && !node_online(self->node_id)) { 6557 build_zonelists(self); 6558 } else { 6559 /* 6560 * All possible nodes have pgdat preallocated 6561 * in free_area_init 6562 */ 6563 for_each_node(nid) { 6564 pg_data_t *pgdat = NODE_DATA(nid); 6565 6566 build_zonelists(pgdat); 6567 } 6568 6569 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6570 /* 6571 * We now know the "local memory node" for each node-- 6572 * i.e., the node of the first zone in the generic zonelist. 6573 * Set up numa_mem percpu variable for on-line cpus. During 6574 * boot, only the boot cpu should be on-line; we'll init the 6575 * secondary cpus' numa_mem as they come on-line. During 6576 * node/memory hotplug, we'll fixup all on-line cpus. 6577 */ 6578 for_each_online_cpu(cpu) 6579 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6580 #endif 6581 } 6582 6583 write_sequnlock(&zonelist_update_seq); 6584 } 6585 6586 static noinline void __init 6587 build_all_zonelists_init(void) 6588 { 6589 int cpu; 6590 6591 __build_all_zonelists(NULL); 6592 6593 /* 6594 * Initialize the boot_pagesets that are going to be used 6595 * for bootstrapping processors. The real pagesets for 6596 * each zone will be allocated later when the per cpu 6597 * allocator is available. 6598 * 6599 * boot_pagesets are used also for bootstrapping offline 6600 * cpus if the system is already booted because the pagesets 6601 * are needed to initialize allocators on a specific cpu too. 6602 * F.e. the percpu allocator needs the page allocator which 6603 * needs the percpu allocator in order to allocate its pagesets 6604 * (a chicken-egg dilemma). 6605 */ 6606 for_each_possible_cpu(cpu) 6607 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6608 6609 mminit_verify_zonelist(); 6610 cpuset_init_current_mems_allowed(); 6611 } 6612 6613 /* 6614 * unless system_state == SYSTEM_BOOTING. 6615 * 6616 * __ref due to call of __init annotated helper build_all_zonelists_init 6617 * [protected by SYSTEM_BOOTING]. 6618 */ 6619 void __ref build_all_zonelists(pg_data_t *pgdat) 6620 { 6621 unsigned long vm_total_pages; 6622 6623 if (system_state == SYSTEM_BOOTING) { 6624 build_all_zonelists_init(); 6625 } else { 6626 __build_all_zonelists(pgdat); 6627 /* cpuset refresh routine should be here */ 6628 } 6629 /* Get the number of free pages beyond high watermark in all zones. */ 6630 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6631 /* 6632 * Disable grouping by mobility if the number of pages in the 6633 * system is too low to allow the mechanism to work. It would be 6634 * more accurate, but expensive to check per-zone. This check is 6635 * made on memory-hotadd so a system can start with mobility 6636 * disabled and enable it later 6637 */ 6638 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6639 page_group_by_mobility_disabled = 1; 6640 else 6641 page_group_by_mobility_disabled = 0; 6642 6643 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6644 nr_online_nodes, 6645 page_group_by_mobility_disabled ? "off" : "on", 6646 vm_total_pages); 6647 #ifdef CONFIG_NUMA 6648 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6649 #endif 6650 } 6651 6652 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6653 static bool __meminit 6654 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6655 { 6656 static struct memblock_region *r; 6657 6658 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6659 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6660 for_each_mem_region(r) { 6661 if (*pfn < memblock_region_memory_end_pfn(r)) 6662 break; 6663 } 6664 } 6665 if (*pfn >= memblock_region_memory_base_pfn(r) && 6666 memblock_is_mirror(r)) { 6667 *pfn = memblock_region_memory_end_pfn(r); 6668 return true; 6669 } 6670 } 6671 return false; 6672 } 6673 6674 /* 6675 * Initially all pages are reserved - free ones are freed 6676 * up by memblock_free_all() once the early boot process is 6677 * done. Non-atomic initialization, single-pass. 6678 * 6679 * All aligned pageblocks are initialized to the specified migratetype 6680 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6681 * zone stats (e.g., nr_isolate_pageblock) are touched. 6682 */ 6683 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6684 unsigned long start_pfn, unsigned long zone_end_pfn, 6685 enum meminit_context context, 6686 struct vmem_altmap *altmap, int migratetype) 6687 { 6688 unsigned long pfn, end_pfn = start_pfn + size; 6689 struct page *page; 6690 6691 if (highest_memmap_pfn < end_pfn - 1) 6692 highest_memmap_pfn = end_pfn - 1; 6693 6694 #ifdef CONFIG_ZONE_DEVICE 6695 /* 6696 * Honor reservation requested by the driver for this ZONE_DEVICE 6697 * memory. We limit the total number of pages to initialize to just 6698 * those that might contain the memory mapping. We will defer the 6699 * ZONE_DEVICE page initialization until after we have released 6700 * the hotplug lock. 6701 */ 6702 if (zone == ZONE_DEVICE) { 6703 if (!altmap) 6704 return; 6705 6706 if (start_pfn == altmap->base_pfn) 6707 start_pfn += altmap->reserve; 6708 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6709 } 6710 #endif 6711 6712 for (pfn = start_pfn; pfn < end_pfn; ) { 6713 /* 6714 * There can be holes in boot-time mem_map[]s handed to this 6715 * function. They do not exist on hotplugged memory. 6716 */ 6717 if (context == MEMINIT_EARLY) { 6718 if (overlap_memmap_init(zone, &pfn)) 6719 continue; 6720 if (defer_init(nid, pfn, zone_end_pfn)) { 6721 deferred_struct_pages = true; 6722 break; 6723 } 6724 } 6725 6726 page = pfn_to_page(pfn); 6727 __init_single_page(page, pfn, zone, nid); 6728 if (context == MEMINIT_HOTPLUG) 6729 __SetPageReserved(page); 6730 6731 /* 6732 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6733 * such that unmovable allocations won't be scattered all 6734 * over the place during system boot. 6735 */ 6736 if (pageblock_aligned(pfn)) { 6737 set_pageblock_migratetype(page, migratetype); 6738 cond_resched(); 6739 } 6740 pfn++; 6741 } 6742 } 6743 6744 #ifdef CONFIG_ZONE_DEVICE 6745 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6746 unsigned long zone_idx, int nid, 6747 struct dev_pagemap *pgmap) 6748 { 6749 6750 __init_single_page(page, pfn, zone_idx, nid); 6751 6752 /* 6753 * Mark page reserved as it will need to wait for onlining 6754 * phase for it to be fully associated with a zone. 6755 * 6756 * We can use the non-atomic __set_bit operation for setting 6757 * the flag as we are still initializing the pages. 6758 */ 6759 __SetPageReserved(page); 6760 6761 /* 6762 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6763 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6764 * ever freed or placed on a driver-private list. 6765 */ 6766 page->pgmap = pgmap; 6767 page->zone_device_data = NULL; 6768 6769 /* 6770 * Mark the block movable so that blocks are reserved for 6771 * movable at startup. This will force kernel allocations 6772 * to reserve their blocks rather than leaking throughout 6773 * the address space during boot when many long-lived 6774 * kernel allocations are made. 6775 * 6776 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6777 * because this is done early in section_activate() 6778 */ 6779 if (pageblock_aligned(pfn)) { 6780 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6781 cond_resched(); 6782 } 6783 6784 /* 6785 * ZONE_DEVICE pages are released directly to the driver page allocator 6786 * which will set the page count to 1 when allocating the page. 6787 */ 6788 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 6789 pgmap->type == MEMORY_DEVICE_COHERENT) 6790 set_page_count(page, 0); 6791 } 6792 6793 /* 6794 * With compound page geometry and when struct pages are stored in ram most 6795 * tail pages are reused. Consequently, the amount of unique struct pages to 6796 * initialize is a lot smaller that the total amount of struct pages being 6797 * mapped. This is a paired / mild layering violation with explicit knowledge 6798 * of how the sparse_vmemmap internals handle compound pages in the lack 6799 * of an altmap. See vmemmap_populate_compound_pages(). 6800 */ 6801 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6802 unsigned long nr_pages) 6803 { 6804 return is_power_of_2(sizeof(struct page)) && 6805 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6806 } 6807 6808 static void __ref memmap_init_compound(struct page *head, 6809 unsigned long head_pfn, 6810 unsigned long zone_idx, int nid, 6811 struct dev_pagemap *pgmap, 6812 unsigned long nr_pages) 6813 { 6814 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6815 unsigned int order = pgmap->vmemmap_shift; 6816 6817 __SetPageHead(head); 6818 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6819 struct page *page = pfn_to_page(pfn); 6820 6821 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6822 prep_compound_tail(head, pfn - head_pfn); 6823 set_page_count(page, 0); 6824 6825 /* 6826 * The first tail page stores important compound page info. 6827 * Call prep_compound_head() after the first tail page has 6828 * been initialized, to not have the data overwritten. 6829 */ 6830 if (pfn == head_pfn + 1) 6831 prep_compound_head(head, order); 6832 } 6833 } 6834 6835 void __ref memmap_init_zone_device(struct zone *zone, 6836 unsigned long start_pfn, 6837 unsigned long nr_pages, 6838 struct dev_pagemap *pgmap) 6839 { 6840 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6841 struct pglist_data *pgdat = zone->zone_pgdat; 6842 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6843 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6844 unsigned long zone_idx = zone_idx(zone); 6845 unsigned long start = jiffies; 6846 int nid = pgdat->node_id; 6847 6848 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 6849 return; 6850 6851 /* 6852 * The call to memmap_init should have already taken care 6853 * of the pages reserved for the memmap, so we can just jump to 6854 * the end of that region and start processing the device pages. 6855 */ 6856 if (altmap) { 6857 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6858 nr_pages = end_pfn - start_pfn; 6859 } 6860 6861 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6862 struct page *page = pfn_to_page(pfn); 6863 6864 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6865 6866 if (pfns_per_compound == 1) 6867 continue; 6868 6869 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6870 compound_nr_pages(altmap, pfns_per_compound)); 6871 } 6872 6873 pr_info("%s initialised %lu pages in %ums\n", __func__, 6874 nr_pages, jiffies_to_msecs(jiffies - start)); 6875 } 6876 6877 #endif 6878 static void __meminit zone_init_free_lists(struct zone *zone) 6879 { 6880 unsigned int order, t; 6881 for_each_migratetype_order(order, t) { 6882 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6883 zone->free_area[order].nr_free = 0; 6884 } 6885 } 6886 6887 /* 6888 * Only struct pages that correspond to ranges defined by memblock.memory 6889 * are zeroed and initialized by going through __init_single_page() during 6890 * memmap_init_zone_range(). 6891 * 6892 * But, there could be struct pages that correspond to holes in 6893 * memblock.memory. This can happen because of the following reasons: 6894 * - physical memory bank size is not necessarily the exact multiple of the 6895 * arbitrary section size 6896 * - early reserved memory may not be listed in memblock.memory 6897 * - memory layouts defined with memmap= kernel parameter may not align 6898 * nicely with memmap sections 6899 * 6900 * Explicitly initialize those struct pages so that: 6901 * - PG_Reserved is set 6902 * - zone and node links point to zone and node that span the page if the 6903 * hole is in the middle of a zone 6904 * - zone and node links point to adjacent zone/node if the hole falls on 6905 * the zone boundary; the pages in such holes will be prepended to the 6906 * zone/node above the hole except for the trailing pages in the last 6907 * section that will be appended to the zone/node below. 6908 */ 6909 static void __init init_unavailable_range(unsigned long spfn, 6910 unsigned long epfn, 6911 int zone, int node) 6912 { 6913 unsigned long pfn; 6914 u64 pgcnt = 0; 6915 6916 for (pfn = spfn; pfn < epfn; pfn++) { 6917 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6918 pfn = pageblock_end_pfn(pfn) - 1; 6919 continue; 6920 } 6921 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6922 __SetPageReserved(pfn_to_page(pfn)); 6923 pgcnt++; 6924 } 6925 6926 if (pgcnt) 6927 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6928 node, zone_names[zone], pgcnt); 6929 } 6930 6931 static void __init memmap_init_zone_range(struct zone *zone, 6932 unsigned long start_pfn, 6933 unsigned long end_pfn, 6934 unsigned long *hole_pfn) 6935 { 6936 unsigned long zone_start_pfn = zone->zone_start_pfn; 6937 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6938 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6939 6940 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6941 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6942 6943 if (start_pfn >= end_pfn) 6944 return; 6945 6946 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6947 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6948 6949 if (*hole_pfn < start_pfn) 6950 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6951 6952 *hole_pfn = end_pfn; 6953 } 6954 6955 static void __init memmap_init(void) 6956 { 6957 unsigned long start_pfn, end_pfn; 6958 unsigned long hole_pfn = 0; 6959 int i, j, zone_id = 0, nid; 6960 6961 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6962 struct pglist_data *node = NODE_DATA(nid); 6963 6964 for (j = 0; j < MAX_NR_ZONES; j++) { 6965 struct zone *zone = node->node_zones + j; 6966 6967 if (!populated_zone(zone)) 6968 continue; 6969 6970 memmap_init_zone_range(zone, start_pfn, end_pfn, 6971 &hole_pfn); 6972 zone_id = j; 6973 } 6974 } 6975 6976 #ifdef CONFIG_SPARSEMEM 6977 /* 6978 * Initialize the memory map for hole in the range [memory_end, 6979 * section_end]. 6980 * Append the pages in this hole to the highest zone in the last 6981 * node. 6982 * The call to init_unavailable_range() is outside the ifdef to 6983 * silence the compiler warining about zone_id set but not used; 6984 * for FLATMEM it is a nop anyway 6985 */ 6986 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6987 if (hole_pfn < end_pfn) 6988 #endif 6989 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6990 } 6991 6992 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6993 phys_addr_t min_addr, int nid, bool exact_nid) 6994 { 6995 void *ptr; 6996 6997 if (exact_nid) 6998 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6999 MEMBLOCK_ALLOC_ACCESSIBLE, 7000 nid); 7001 else 7002 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7003 MEMBLOCK_ALLOC_ACCESSIBLE, 7004 nid); 7005 7006 if (ptr && size > 0) 7007 page_init_poison(ptr, size); 7008 7009 return ptr; 7010 } 7011 7012 static int zone_batchsize(struct zone *zone) 7013 { 7014 #ifdef CONFIG_MMU 7015 int batch; 7016 7017 /* 7018 * The number of pages to batch allocate is either ~0.1% 7019 * of the zone or 1MB, whichever is smaller. The batch 7020 * size is striking a balance between allocation latency 7021 * and zone lock contention. 7022 */ 7023 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 7024 batch /= 4; /* We effectively *= 4 below */ 7025 if (batch < 1) 7026 batch = 1; 7027 7028 /* 7029 * Clamp the batch to a 2^n - 1 value. Having a power 7030 * of 2 value was found to be more likely to have 7031 * suboptimal cache aliasing properties in some cases. 7032 * 7033 * For example if 2 tasks are alternately allocating 7034 * batches of pages, one task can end up with a lot 7035 * of pages of one half of the possible page colors 7036 * and the other with pages of the other colors. 7037 */ 7038 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7039 7040 return batch; 7041 7042 #else 7043 /* The deferral and batching of frees should be suppressed under NOMMU 7044 * conditions. 7045 * 7046 * The problem is that NOMMU needs to be able to allocate large chunks 7047 * of contiguous memory as there's no hardware page translation to 7048 * assemble apparent contiguous memory from discontiguous pages. 7049 * 7050 * Queueing large contiguous runs of pages for batching, however, 7051 * causes the pages to actually be freed in smaller chunks. As there 7052 * can be a significant delay between the individual batches being 7053 * recycled, this leads to the once large chunks of space being 7054 * fragmented and becoming unavailable for high-order allocations. 7055 */ 7056 return 0; 7057 #endif 7058 } 7059 7060 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7061 { 7062 #ifdef CONFIG_MMU 7063 int high; 7064 int nr_split_cpus; 7065 unsigned long total_pages; 7066 7067 if (!percpu_pagelist_high_fraction) { 7068 /* 7069 * By default, the high value of the pcp is based on the zone 7070 * low watermark so that if they are full then background 7071 * reclaim will not be started prematurely. 7072 */ 7073 total_pages = low_wmark_pages(zone); 7074 } else { 7075 /* 7076 * If percpu_pagelist_high_fraction is configured, the high 7077 * value is based on a fraction of the managed pages in the 7078 * zone. 7079 */ 7080 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7081 } 7082 7083 /* 7084 * Split the high value across all online CPUs local to the zone. Note 7085 * that early in boot that CPUs may not be online yet and that during 7086 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7087 * onlined. For memory nodes that have no CPUs, split pcp->high across 7088 * all online CPUs to mitigate the risk that reclaim is triggered 7089 * prematurely due to pages stored on pcp lists. 7090 */ 7091 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7092 if (!nr_split_cpus) 7093 nr_split_cpus = num_online_cpus(); 7094 high = total_pages / nr_split_cpus; 7095 7096 /* 7097 * Ensure high is at least batch*4. The multiple is based on the 7098 * historical relationship between high and batch. 7099 */ 7100 high = max(high, batch << 2); 7101 7102 return high; 7103 #else 7104 return 0; 7105 #endif 7106 } 7107 7108 /* 7109 * pcp->high and pcp->batch values are related and generally batch is lower 7110 * than high. They are also related to pcp->count such that count is lower 7111 * than high, and as soon as it reaches high, the pcplist is flushed. 7112 * 7113 * However, guaranteeing these relations at all times would require e.g. write 7114 * barriers here but also careful usage of read barriers at the read side, and 7115 * thus be prone to error and bad for performance. Thus the update only prevents 7116 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7117 * can cope with those fields changing asynchronously, and fully trust only the 7118 * pcp->count field on the local CPU with interrupts disabled. 7119 * 7120 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7121 * outside of boot time (or some other assurance that no concurrent updaters 7122 * exist). 7123 */ 7124 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7125 unsigned long batch) 7126 { 7127 WRITE_ONCE(pcp->batch, batch); 7128 WRITE_ONCE(pcp->high, high); 7129 } 7130 7131 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7132 { 7133 int pindex; 7134 7135 memset(pcp, 0, sizeof(*pcp)); 7136 memset(pzstats, 0, sizeof(*pzstats)); 7137 7138 spin_lock_init(&pcp->lock); 7139 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7140 INIT_LIST_HEAD(&pcp->lists[pindex]); 7141 7142 /* 7143 * Set batch and high values safe for a boot pageset. A true percpu 7144 * pageset's initialization will update them subsequently. Here we don't 7145 * need to be as careful as pageset_update() as nobody can access the 7146 * pageset yet. 7147 */ 7148 pcp->high = BOOT_PAGESET_HIGH; 7149 pcp->batch = BOOT_PAGESET_BATCH; 7150 pcp->free_factor = 0; 7151 } 7152 7153 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7154 unsigned long batch) 7155 { 7156 struct per_cpu_pages *pcp; 7157 int cpu; 7158 7159 for_each_possible_cpu(cpu) { 7160 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7161 pageset_update(pcp, high, batch); 7162 } 7163 } 7164 7165 /* 7166 * Calculate and set new high and batch values for all per-cpu pagesets of a 7167 * zone based on the zone's size. 7168 */ 7169 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7170 { 7171 int new_high, new_batch; 7172 7173 new_batch = max(1, zone_batchsize(zone)); 7174 new_high = zone_highsize(zone, new_batch, cpu_online); 7175 7176 if (zone->pageset_high == new_high && 7177 zone->pageset_batch == new_batch) 7178 return; 7179 7180 zone->pageset_high = new_high; 7181 zone->pageset_batch = new_batch; 7182 7183 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7184 } 7185 7186 void __meminit setup_zone_pageset(struct zone *zone) 7187 { 7188 int cpu; 7189 7190 /* Size may be 0 on !SMP && !NUMA */ 7191 if (sizeof(struct per_cpu_zonestat) > 0) 7192 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7193 7194 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7195 for_each_possible_cpu(cpu) { 7196 struct per_cpu_pages *pcp; 7197 struct per_cpu_zonestat *pzstats; 7198 7199 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7200 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7201 per_cpu_pages_init(pcp, pzstats); 7202 } 7203 7204 zone_set_pageset_high_and_batch(zone, 0); 7205 } 7206 7207 /* 7208 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7209 * page high values need to be recalculated. 7210 */ 7211 static void zone_pcp_update(struct zone *zone, int cpu_online) 7212 { 7213 mutex_lock(&pcp_batch_high_lock); 7214 zone_set_pageset_high_and_batch(zone, cpu_online); 7215 mutex_unlock(&pcp_batch_high_lock); 7216 } 7217 7218 /* 7219 * Allocate per cpu pagesets and initialize them. 7220 * Before this call only boot pagesets were available. 7221 */ 7222 void __init setup_per_cpu_pageset(void) 7223 { 7224 struct pglist_data *pgdat; 7225 struct zone *zone; 7226 int __maybe_unused cpu; 7227 7228 for_each_populated_zone(zone) 7229 setup_zone_pageset(zone); 7230 7231 #ifdef CONFIG_NUMA 7232 /* 7233 * Unpopulated zones continue using the boot pagesets. 7234 * The numa stats for these pagesets need to be reset. 7235 * Otherwise, they will end up skewing the stats of 7236 * the nodes these zones are associated with. 7237 */ 7238 for_each_possible_cpu(cpu) { 7239 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7240 memset(pzstats->vm_numa_event, 0, 7241 sizeof(pzstats->vm_numa_event)); 7242 } 7243 #endif 7244 7245 for_each_online_pgdat(pgdat) 7246 pgdat->per_cpu_nodestats = 7247 alloc_percpu(struct per_cpu_nodestat); 7248 } 7249 7250 static __meminit void zone_pcp_init(struct zone *zone) 7251 { 7252 /* 7253 * per cpu subsystem is not up at this point. The following code 7254 * relies on the ability of the linker to provide the 7255 * offset of a (static) per cpu variable into the per cpu area. 7256 */ 7257 zone->per_cpu_pageset = &boot_pageset; 7258 zone->per_cpu_zonestats = &boot_zonestats; 7259 zone->pageset_high = BOOT_PAGESET_HIGH; 7260 zone->pageset_batch = BOOT_PAGESET_BATCH; 7261 7262 if (populated_zone(zone)) 7263 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7264 zone->present_pages, zone_batchsize(zone)); 7265 } 7266 7267 void __meminit init_currently_empty_zone(struct zone *zone, 7268 unsigned long zone_start_pfn, 7269 unsigned long size) 7270 { 7271 struct pglist_data *pgdat = zone->zone_pgdat; 7272 int zone_idx = zone_idx(zone) + 1; 7273 7274 if (zone_idx > pgdat->nr_zones) 7275 pgdat->nr_zones = zone_idx; 7276 7277 zone->zone_start_pfn = zone_start_pfn; 7278 7279 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7280 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7281 pgdat->node_id, 7282 (unsigned long)zone_idx(zone), 7283 zone_start_pfn, (zone_start_pfn + size)); 7284 7285 zone_init_free_lists(zone); 7286 zone->initialized = 1; 7287 } 7288 7289 /** 7290 * get_pfn_range_for_nid - Return the start and end page frames for a node 7291 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7292 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7293 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7294 * 7295 * It returns the start and end page frame of a node based on information 7296 * provided by memblock_set_node(). If called for a node 7297 * with no available memory, a warning is printed and the start and end 7298 * PFNs will be 0. 7299 */ 7300 void __init get_pfn_range_for_nid(unsigned int nid, 7301 unsigned long *start_pfn, unsigned long *end_pfn) 7302 { 7303 unsigned long this_start_pfn, this_end_pfn; 7304 int i; 7305 7306 *start_pfn = -1UL; 7307 *end_pfn = 0; 7308 7309 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7310 *start_pfn = min(*start_pfn, this_start_pfn); 7311 *end_pfn = max(*end_pfn, this_end_pfn); 7312 } 7313 7314 if (*start_pfn == -1UL) 7315 *start_pfn = 0; 7316 } 7317 7318 /* 7319 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7320 * assumption is made that zones within a node are ordered in monotonic 7321 * increasing memory addresses so that the "highest" populated zone is used 7322 */ 7323 static void __init find_usable_zone_for_movable(void) 7324 { 7325 int zone_index; 7326 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7327 if (zone_index == ZONE_MOVABLE) 7328 continue; 7329 7330 if (arch_zone_highest_possible_pfn[zone_index] > 7331 arch_zone_lowest_possible_pfn[zone_index]) 7332 break; 7333 } 7334 7335 VM_BUG_ON(zone_index == -1); 7336 movable_zone = zone_index; 7337 } 7338 7339 /* 7340 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7341 * because it is sized independent of architecture. Unlike the other zones, 7342 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7343 * in each node depending on the size of each node and how evenly kernelcore 7344 * is distributed. This helper function adjusts the zone ranges 7345 * provided by the architecture for a given node by using the end of the 7346 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7347 * zones within a node are in order of monotonic increases memory addresses 7348 */ 7349 static void __init adjust_zone_range_for_zone_movable(int nid, 7350 unsigned long zone_type, 7351 unsigned long node_start_pfn, 7352 unsigned long node_end_pfn, 7353 unsigned long *zone_start_pfn, 7354 unsigned long *zone_end_pfn) 7355 { 7356 /* Only adjust if ZONE_MOVABLE is on this node */ 7357 if (zone_movable_pfn[nid]) { 7358 /* Size ZONE_MOVABLE */ 7359 if (zone_type == ZONE_MOVABLE) { 7360 *zone_start_pfn = zone_movable_pfn[nid]; 7361 *zone_end_pfn = min(node_end_pfn, 7362 arch_zone_highest_possible_pfn[movable_zone]); 7363 7364 /* Adjust for ZONE_MOVABLE starting within this range */ 7365 } else if (!mirrored_kernelcore && 7366 *zone_start_pfn < zone_movable_pfn[nid] && 7367 *zone_end_pfn > zone_movable_pfn[nid]) { 7368 *zone_end_pfn = zone_movable_pfn[nid]; 7369 7370 /* Check if this whole range is within ZONE_MOVABLE */ 7371 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7372 *zone_start_pfn = *zone_end_pfn; 7373 } 7374 } 7375 7376 /* 7377 * Return the number of pages a zone spans in a node, including holes 7378 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7379 */ 7380 static unsigned long __init zone_spanned_pages_in_node(int nid, 7381 unsigned long zone_type, 7382 unsigned long node_start_pfn, 7383 unsigned long node_end_pfn, 7384 unsigned long *zone_start_pfn, 7385 unsigned long *zone_end_pfn) 7386 { 7387 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7388 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7389 /* When hotadd a new node from cpu_up(), the node should be empty */ 7390 if (!node_start_pfn && !node_end_pfn) 7391 return 0; 7392 7393 /* Get the start and end of the zone */ 7394 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7395 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7396 adjust_zone_range_for_zone_movable(nid, zone_type, 7397 node_start_pfn, node_end_pfn, 7398 zone_start_pfn, zone_end_pfn); 7399 7400 /* Check that this node has pages within the zone's required range */ 7401 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7402 return 0; 7403 7404 /* Move the zone boundaries inside the node if necessary */ 7405 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7406 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7407 7408 /* Return the spanned pages */ 7409 return *zone_end_pfn - *zone_start_pfn; 7410 } 7411 7412 /* 7413 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7414 * then all holes in the requested range will be accounted for. 7415 */ 7416 unsigned long __init __absent_pages_in_range(int nid, 7417 unsigned long range_start_pfn, 7418 unsigned long range_end_pfn) 7419 { 7420 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7421 unsigned long start_pfn, end_pfn; 7422 int i; 7423 7424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7425 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7426 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7427 nr_absent -= end_pfn - start_pfn; 7428 } 7429 return nr_absent; 7430 } 7431 7432 /** 7433 * absent_pages_in_range - Return number of page frames in holes within a range 7434 * @start_pfn: The start PFN to start searching for holes 7435 * @end_pfn: The end PFN to stop searching for holes 7436 * 7437 * Return: the number of pages frames in memory holes within a range. 7438 */ 7439 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7440 unsigned long end_pfn) 7441 { 7442 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7443 } 7444 7445 /* Return the number of page frames in holes in a zone on a node */ 7446 static unsigned long __init zone_absent_pages_in_node(int nid, 7447 unsigned long zone_type, 7448 unsigned long node_start_pfn, 7449 unsigned long node_end_pfn) 7450 { 7451 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7452 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7453 unsigned long zone_start_pfn, zone_end_pfn; 7454 unsigned long nr_absent; 7455 7456 /* When hotadd a new node from cpu_up(), the node should be empty */ 7457 if (!node_start_pfn && !node_end_pfn) 7458 return 0; 7459 7460 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7461 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7462 7463 adjust_zone_range_for_zone_movable(nid, zone_type, 7464 node_start_pfn, node_end_pfn, 7465 &zone_start_pfn, &zone_end_pfn); 7466 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7467 7468 /* 7469 * ZONE_MOVABLE handling. 7470 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7471 * and vice versa. 7472 */ 7473 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7474 unsigned long start_pfn, end_pfn; 7475 struct memblock_region *r; 7476 7477 for_each_mem_region(r) { 7478 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7479 zone_start_pfn, zone_end_pfn); 7480 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7481 zone_start_pfn, zone_end_pfn); 7482 7483 if (zone_type == ZONE_MOVABLE && 7484 memblock_is_mirror(r)) 7485 nr_absent += end_pfn - start_pfn; 7486 7487 if (zone_type == ZONE_NORMAL && 7488 !memblock_is_mirror(r)) 7489 nr_absent += end_pfn - start_pfn; 7490 } 7491 } 7492 7493 return nr_absent; 7494 } 7495 7496 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7497 unsigned long node_start_pfn, 7498 unsigned long node_end_pfn) 7499 { 7500 unsigned long realtotalpages = 0, totalpages = 0; 7501 enum zone_type i; 7502 7503 for (i = 0; i < MAX_NR_ZONES; i++) { 7504 struct zone *zone = pgdat->node_zones + i; 7505 unsigned long zone_start_pfn, zone_end_pfn; 7506 unsigned long spanned, absent; 7507 unsigned long size, real_size; 7508 7509 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7510 node_start_pfn, 7511 node_end_pfn, 7512 &zone_start_pfn, 7513 &zone_end_pfn); 7514 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7515 node_start_pfn, 7516 node_end_pfn); 7517 7518 size = spanned; 7519 real_size = size - absent; 7520 7521 if (size) 7522 zone->zone_start_pfn = zone_start_pfn; 7523 else 7524 zone->zone_start_pfn = 0; 7525 zone->spanned_pages = size; 7526 zone->present_pages = real_size; 7527 #if defined(CONFIG_MEMORY_HOTPLUG) 7528 zone->present_early_pages = real_size; 7529 #endif 7530 7531 totalpages += size; 7532 realtotalpages += real_size; 7533 } 7534 7535 pgdat->node_spanned_pages = totalpages; 7536 pgdat->node_present_pages = realtotalpages; 7537 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7538 } 7539 7540 #ifndef CONFIG_SPARSEMEM 7541 /* 7542 * Calculate the size of the zone->blockflags rounded to an unsigned long 7543 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7544 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7545 * round what is now in bits to nearest long in bits, then return it in 7546 * bytes. 7547 */ 7548 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7549 { 7550 unsigned long usemapsize; 7551 7552 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7553 usemapsize = roundup(zonesize, pageblock_nr_pages); 7554 usemapsize = usemapsize >> pageblock_order; 7555 usemapsize *= NR_PAGEBLOCK_BITS; 7556 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7557 7558 return usemapsize / 8; 7559 } 7560 7561 static void __ref setup_usemap(struct zone *zone) 7562 { 7563 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7564 zone->spanned_pages); 7565 zone->pageblock_flags = NULL; 7566 if (usemapsize) { 7567 zone->pageblock_flags = 7568 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7569 zone_to_nid(zone)); 7570 if (!zone->pageblock_flags) 7571 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7572 usemapsize, zone->name, zone_to_nid(zone)); 7573 } 7574 } 7575 #else 7576 static inline void setup_usemap(struct zone *zone) {} 7577 #endif /* CONFIG_SPARSEMEM */ 7578 7579 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7580 7581 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7582 void __init set_pageblock_order(void) 7583 { 7584 unsigned int order = MAX_ORDER - 1; 7585 7586 /* Check that pageblock_nr_pages has not already been setup */ 7587 if (pageblock_order) 7588 return; 7589 7590 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7591 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7592 order = HUGETLB_PAGE_ORDER; 7593 7594 /* 7595 * Assume the largest contiguous order of interest is a huge page. 7596 * This value may be variable depending on boot parameters on IA64 and 7597 * powerpc. 7598 */ 7599 pageblock_order = order; 7600 } 7601 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7602 7603 /* 7604 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7605 * is unused as pageblock_order is set at compile-time. See 7606 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7607 * the kernel config 7608 */ 7609 void __init set_pageblock_order(void) 7610 { 7611 } 7612 7613 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7614 7615 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7616 unsigned long present_pages) 7617 { 7618 unsigned long pages = spanned_pages; 7619 7620 /* 7621 * Provide a more accurate estimation if there are holes within 7622 * the zone and SPARSEMEM is in use. If there are holes within the 7623 * zone, each populated memory region may cost us one or two extra 7624 * memmap pages due to alignment because memmap pages for each 7625 * populated regions may not be naturally aligned on page boundary. 7626 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7627 */ 7628 if (spanned_pages > present_pages + (present_pages >> 4) && 7629 IS_ENABLED(CONFIG_SPARSEMEM)) 7630 pages = present_pages; 7631 7632 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7633 } 7634 7635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7636 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7637 { 7638 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7639 7640 spin_lock_init(&ds_queue->split_queue_lock); 7641 INIT_LIST_HEAD(&ds_queue->split_queue); 7642 ds_queue->split_queue_len = 0; 7643 } 7644 #else 7645 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7646 #endif 7647 7648 #ifdef CONFIG_COMPACTION 7649 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7650 { 7651 init_waitqueue_head(&pgdat->kcompactd_wait); 7652 } 7653 #else 7654 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7655 #endif 7656 7657 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7658 { 7659 int i; 7660 7661 pgdat_resize_init(pgdat); 7662 pgdat_kswapd_lock_init(pgdat); 7663 7664 pgdat_init_split_queue(pgdat); 7665 pgdat_init_kcompactd(pgdat); 7666 7667 init_waitqueue_head(&pgdat->kswapd_wait); 7668 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7669 7670 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7671 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7672 7673 pgdat_page_ext_init(pgdat); 7674 lruvec_init(&pgdat->__lruvec); 7675 } 7676 7677 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7678 unsigned long remaining_pages) 7679 { 7680 atomic_long_set(&zone->managed_pages, remaining_pages); 7681 zone_set_nid(zone, nid); 7682 zone->name = zone_names[idx]; 7683 zone->zone_pgdat = NODE_DATA(nid); 7684 spin_lock_init(&zone->lock); 7685 zone_seqlock_init(zone); 7686 zone_pcp_init(zone); 7687 } 7688 7689 /* 7690 * Set up the zone data structures 7691 * - init pgdat internals 7692 * - init all zones belonging to this node 7693 * 7694 * NOTE: this function is only called during memory hotplug 7695 */ 7696 #ifdef CONFIG_MEMORY_HOTPLUG 7697 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7698 { 7699 int nid = pgdat->node_id; 7700 enum zone_type z; 7701 int cpu; 7702 7703 pgdat_init_internals(pgdat); 7704 7705 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7706 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7707 7708 /* 7709 * Reset the nr_zones, order and highest_zoneidx before reuse. 7710 * Note that kswapd will init kswapd_highest_zoneidx properly 7711 * when it starts in the near future. 7712 */ 7713 pgdat->nr_zones = 0; 7714 pgdat->kswapd_order = 0; 7715 pgdat->kswapd_highest_zoneidx = 0; 7716 pgdat->node_start_pfn = 0; 7717 for_each_online_cpu(cpu) { 7718 struct per_cpu_nodestat *p; 7719 7720 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7721 memset(p, 0, sizeof(*p)); 7722 } 7723 7724 for (z = 0; z < MAX_NR_ZONES; z++) 7725 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7726 } 7727 #endif 7728 7729 /* 7730 * Set up the zone data structures: 7731 * - mark all pages reserved 7732 * - mark all memory queues empty 7733 * - clear the memory bitmaps 7734 * 7735 * NOTE: pgdat should get zeroed by caller. 7736 * NOTE: this function is only called during early init. 7737 */ 7738 static void __init free_area_init_core(struct pglist_data *pgdat) 7739 { 7740 enum zone_type j; 7741 int nid = pgdat->node_id; 7742 7743 pgdat_init_internals(pgdat); 7744 pgdat->per_cpu_nodestats = &boot_nodestats; 7745 7746 for (j = 0; j < MAX_NR_ZONES; j++) { 7747 struct zone *zone = pgdat->node_zones + j; 7748 unsigned long size, freesize, memmap_pages; 7749 7750 size = zone->spanned_pages; 7751 freesize = zone->present_pages; 7752 7753 /* 7754 * Adjust freesize so that it accounts for how much memory 7755 * is used by this zone for memmap. This affects the watermark 7756 * and per-cpu initialisations 7757 */ 7758 memmap_pages = calc_memmap_size(size, freesize); 7759 if (!is_highmem_idx(j)) { 7760 if (freesize >= memmap_pages) { 7761 freesize -= memmap_pages; 7762 if (memmap_pages) 7763 pr_debug(" %s zone: %lu pages used for memmap\n", 7764 zone_names[j], memmap_pages); 7765 } else 7766 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7767 zone_names[j], memmap_pages, freesize); 7768 } 7769 7770 /* Account for reserved pages */ 7771 if (j == 0 && freesize > dma_reserve) { 7772 freesize -= dma_reserve; 7773 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7774 } 7775 7776 if (!is_highmem_idx(j)) 7777 nr_kernel_pages += freesize; 7778 /* Charge for highmem memmap if there are enough kernel pages */ 7779 else if (nr_kernel_pages > memmap_pages * 2) 7780 nr_kernel_pages -= memmap_pages; 7781 nr_all_pages += freesize; 7782 7783 /* 7784 * Set an approximate value for lowmem here, it will be adjusted 7785 * when the bootmem allocator frees pages into the buddy system. 7786 * And all highmem pages will be managed by the buddy system. 7787 */ 7788 zone_init_internals(zone, j, nid, freesize); 7789 7790 if (!size) 7791 continue; 7792 7793 set_pageblock_order(); 7794 setup_usemap(zone); 7795 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7796 } 7797 } 7798 7799 #ifdef CONFIG_FLATMEM 7800 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7801 { 7802 unsigned long __maybe_unused start = 0; 7803 unsigned long __maybe_unused offset = 0; 7804 7805 /* Skip empty nodes */ 7806 if (!pgdat->node_spanned_pages) 7807 return; 7808 7809 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7810 offset = pgdat->node_start_pfn - start; 7811 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7812 if (!pgdat->node_mem_map) { 7813 unsigned long size, end; 7814 struct page *map; 7815 7816 /* 7817 * The zone's endpoints aren't required to be MAX_ORDER 7818 * aligned but the node_mem_map endpoints must be in order 7819 * for the buddy allocator to function correctly. 7820 */ 7821 end = pgdat_end_pfn(pgdat); 7822 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7823 size = (end - start) * sizeof(struct page); 7824 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7825 pgdat->node_id, false); 7826 if (!map) 7827 panic("Failed to allocate %ld bytes for node %d memory map\n", 7828 size, pgdat->node_id); 7829 pgdat->node_mem_map = map + offset; 7830 } 7831 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7832 __func__, pgdat->node_id, (unsigned long)pgdat, 7833 (unsigned long)pgdat->node_mem_map); 7834 #ifndef CONFIG_NUMA 7835 /* 7836 * With no DISCONTIG, the global mem_map is just set as node 0's 7837 */ 7838 if (pgdat == NODE_DATA(0)) { 7839 mem_map = NODE_DATA(0)->node_mem_map; 7840 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7841 mem_map -= offset; 7842 } 7843 #endif 7844 } 7845 #else 7846 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7847 #endif /* CONFIG_FLATMEM */ 7848 7849 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7850 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7851 { 7852 pgdat->first_deferred_pfn = ULONG_MAX; 7853 } 7854 #else 7855 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7856 #endif 7857 7858 static void __init free_area_init_node(int nid) 7859 { 7860 pg_data_t *pgdat = NODE_DATA(nid); 7861 unsigned long start_pfn = 0; 7862 unsigned long end_pfn = 0; 7863 7864 /* pg_data_t should be reset to zero when it's allocated */ 7865 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7866 7867 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7868 7869 pgdat->node_id = nid; 7870 pgdat->node_start_pfn = start_pfn; 7871 pgdat->per_cpu_nodestats = NULL; 7872 7873 if (start_pfn != end_pfn) { 7874 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7875 (u64)start_pfn << PAGE_SHIFT, 7876 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7877 } else { 7878 pr_info("Initmem setup node %d as memoryless\n", nid); 7879 } 7880 7881 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7882 7883 alloc_node_mem_map(pgdat); 7884 pgdat_set_deferred_range(pgdat); 7885 7886 free_area_init_core(pgdat); 7887 lru_gen_init_pgdat(pgdat); 7888 } 7889 7890 static void __init free_area_init_memoryless_node(int nid) 7891 { 7892 free_area_init_node(nid); 7893 } 7894 7895 #if MAX_NUMNODES > 1 7896 /* 7897 * Figure out the number of possible node ids. 7898 */ 7899 void __init setup_nr_node_ids(void) 7900 { 7901 unsigned int highest; 7902 7903 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7904 nr_node_ids = highest + 1; 7905 } 7906 #endif 7907 7908 /** 7909 * node_map_pfn_alignment - determine the maximum internode alignment 7910 * 7911 * This function should be called after node map is populated and sorted. 7912 * It calculates the maximum power of two alignment which can distinguish 7913 * all the nodes. 7914 * 7915 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7916 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7917 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7918 * shifted, 1GiB is enough and this function will indicate so. 7919 * 7920 * This is used to test whether pfn -> nid mapping of the chosen memory 7921 * model has fine enough granularity to avoid incorrect mapping for the 7922 * populated node map. 7923 * 7924 * Return: the determined alignment in pfn's. 0 if there is no alignment 7925 * requirement (single node). 7926 */ 7927 unsigned long __init node_map_pfn_alignment(void) 7928 { 7929 unsigned long accl_mask = 0, last_end = 0; 7930 unsigned long start, end, mask; 7931 int last_nid = NUMA_NO_NODE; 7932 int i, nid; 7933 7934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7935 if (!start || last_nid < 0 || last_nid == nid) { 7936 last_nid = nid; 7937 last_end = end; 7938 continue; 7939 } 7940 7941 /* 7942 * Start with a mask granular enough to pin-point to the 7943 * start pfn and tick off bits one-by-one until it becomes 7944 * too coarse to separate the current node from the last. 7945 */ 7946 mask = ~((1 << __ffs(start)) - 1); 7947 while (mask && last_end <= (start & (mask << 1))) 7948 mask <<= 1; 7949 7950 /* accumulate all internode masks */ 7951 accl_mask |= mask; 7952 } 7953 7954 /* convert mask to number of pages */ 7955 return ~accl_mask + 1; 7956 } 7957 7958 /* 7959 * early_calculate_totalpages() 7960 * Sum pages in active regions for movable zone. 7961 * Populate N_MEMORY for calculating usable_nodes. 7962 */ 7963 static unsigned long __init early_calculate_totalpages(void) 7964 { 7965 unsigned long totalpages = 0; 7966 unsigned long start_pfn, end_pfn; 7967 int i, nid; 7968 7969 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7970 unsigned long pages = end_pfn - start_pfn; 7971 7972 totalpages += pages; 7973 if (pages) 7974 node_set_state(nid, N_MEMORY); 7975 } 7976 return totalpages; 7977 } 7978 7979 /* 7980 * Find the PFN the Movable zone begins in each node. Kernel memory 7981 * is spread evenly between nodes as long as the nodes have enough 7982 * memory. When they don't, some nodes will have more kernelcore than 7983 * others 7984 */ 7985 static void __init find_zone_movable_pfns_for_nodes(void) 7986 { 7987 int i, nid; 7988 unsigned long usable_startpfn; 7989 unsigned long kernelcore_node, kernelcore_remaining; 7990 /* save the state before borrow the nodemask */ 7991 nodemask_t saved_node_state = node_states[N_MEMORY]; 7992 unsigned long totalpages = early_calculate_totalpages(); 7993 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7994 struct memblock_region *r; 7995 7996 /* Need to find movable_zone earlier when movable_node is specified. */ 7997 find_usable_zone_for_movable(); 7998 7999 /* 8000 * If movable_node is specified, ignore kernelcore and movablecore 8001 * options. 8002 */ 8003 if (movable_node_is_enabled()) { 8004 for_each_mem_region(r) { 8005 if (!memblock_is_hotpluggable(r)) 8006 continue; 8007 8008 nid = memblock_get_region_node(r); 8009 8010 usable_startpfn = PFN_DOWN(r->base); 8011 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8012 min(usable_startpfn, zone_movable_pfn[nid]) : 8013 usable_startpfn; 8014 } 8015 8016 goto out2; 8017 } 8018 8019 /* 8020 * If kernelcore=mirror is specified, ignore movablecore option 8021 */ 8022 if (mirrored_kernelcore) { 8023 bool mem_below_4gb_not_mirrored = false; 8024 8025 for_each_mem_region(r) { 8026 if (memblock_is_mirror(r)) 8027 continue; 8028 8029 nid = memblock_get_region_node(r); 8030 8031 usable_startpfn = memblock_region_memory_base_pfn(r); 8032 8033 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8034 mem_below_4gb_not_mirrored = true; 8035 continue; 8036 } 8037 8038 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8039 min(usable_startpfn, zone_movable_pfn[nid]) : 8040 usable_startpfn; 8041 } 8042 8043 if (mem_below_4gb_not_mirrored) 8044 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8045 8046 goto out2; 8047 } 8048 8049 /* 8050 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8051 * amount of necessary memory. 8052 */ 8053 if (required_kernelcore_percent) 8054 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8055 10000UL; 8056 if (required_movablecore_percent) 8057 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8058 10000UL; 8059 8060 /* 8061 * If movablecore= was specified, calculate what size of 8062 * kernelcore that corresponds so that memory usable for 8063 * any allocation type is evenly spread. If both kernelcore 8064 * and movablecore are specified, then the value of kernelcore 8065 * will be used for required_kernelcore if it's greater than 8066 * what movablecore would have allowed. 8067 */ 8068 if (required_movablecore) { 8069 unsigned long corepages; 8070 8071 /* 8072 * Round-up so that ZONE_MOVABLE is at least as large as what 8073 * was requested by the user 8074 */ 8075 required_movablecore = 8076 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8077 required_movablecore = min(totalpages, required_movablecore); 8078 corepages = totalpages - required_movablecore; 8079 8080 required_kernelcore = max(required_kernelcore, corepages); 8081 } 8082 8083 /* 8084 * If kernelcore was not specified or kernelcore size is larger 8085 * than totalpages, there is no ZONE_MOVABLE. 8086 */ 8087 if (!required_kernelcore || required_kernelcore >= totalpages) 8088 goto out; 8089 8090 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8091 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8092 8093 restart: 8094 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8095 kernelcore_node = required_kernelcore / usable_nodes; 8096 for_each_node_state(nid, N_MEMORY) { 8097 unsigned long start_pfn, end_pfn; 8098 8099 /* 8100 * Recalculate kernelcore_node if the division per node 8101 * now exceeds what is necessary to satisfy the requested 8102 * amount of memory for the kernel 8103 */ 8104 if (required_kernelcore < kernelcore_node) 8105 kernelcore_node = required_kernelcore / usable_nodes; 8106 8107 /* 8108 * As the map is walked, we track how much memory is usable 8109 * by the kernel using kernelcore_remaining. When it is 8110 * 0, the rest of the node is usable by ZONE_MOVABLE 8111 */ 8112 kernelcore_remaining = kernelcore_node; 8113 8114 /* Go through each range of PFNs within this node */ 8115 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8116 unsigned long size_pages; 8117 8118 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8119 if (start_pfn >= end_pfn) 8120 continue; 8121 8122 /* Account for what is only usable for kernelcore */ 8123 if (start_pfn < usable_startpfn) { 8124 unsigned long kernel_pages; 8125 kernel_pages = min(end_pfn, usable_startpfn) 8126 - start_pfn; 8127 8128 kernelcore_remaining -= min(kernel_pages, 8129 kernelcore_remaining); 8130 required_kernelcore -= min(kernel_pages, 8131 required_kernelcore); 8132 8133 /* Continue if range is now fully accounted */ 8134 if (end_pfn <= usable_startpfn) { 8135 8136 /* 8137 * Push zone_movable_pfn to the end so 8138 * that if we have to rebalance 8139 * kernelcore across nodes, we will 8140 * not double account here 8141 */ 8142 zone_movable_pfn[nid] = end_pfn; 8143 continue; 8144 } 8145 start_pfn = usable_startpfn; 8146 } 8147 8148 /* 8149 * The usable PFN range for ZONE_MOVABLE is from 8150 * start_pfn->end_pfn. Calculate size_pages as the 8151 * number of pages used as kernelcore 8152 */ 8153 size_pages = end_pfn - start_pfn; 8154 if (size_pages > kernelcore_remaining) 8155 size_pages = kernelcore_remaining; 8156 zone_movable_pfn[nid] = start_pfn + size_pages; 8157 8158 /* 8159 * Some kernelcore has been met, update counts and 8160 * break if the kernelcore for this node has been 8161 * satisfied 8162 */ 8163 required_kernelcore -= min(required_kernelcore, 8164 size_pages); 8165 kernelcore_remaining -= size_pages; 8166 if (!kernelcore_remaining) 8167 break; 8168 } 8169 } 8170 8171 /* 8172 * If there is still required_kernelcore, we do another pass with one 8173 * less node in the count. This will push zone_movable_pfn[nid] further 8174 * along on the nodes that still have memory until kernelcore is 8175 * satisfied 8176 */ 8177 usable_nodes--; 8178 if (usable_nodes && required_kernelcore > usable_nodes) 8179 goto restart; 8180 8181 out2: 8182 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8183 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8184 unsigned long start_pfn, end_pfn; 8185 8186 zone_movable_pfn[nid] = 8187 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8188 8189 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8190 if (zone_movable_pfn[nid] >= end_pfn) 8191 zone_movable_pfn[nid] = 0; 8192 } 8193 8194 out: 8195 /* restore the node_state */ 8196 node_states[N_MEMORY] = saved_node_state; 8197 } 8198 8199 /* Any regular or high memory on that node ? */ 8200 static void check_for_memory(pg_data_t *pgdat, int nid) 8201 { 8202 enum zone_type zone_type; 8203 8204 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8205 struct zone *zone = &pgdat->node_zones[zone_type]; 8206 if (populated_zone(zone)) { 8207 if (IS_ENABLED(CONFIG_HIGHMEM)) 8208 node_set_state(nid, N_HIGH_MEMORY); 8209 if (zone_type <= ZONE_NORMAL) 8210 node_set_state(nid, N_NORMAL_MEMORY); 8211 break; 8212 } 8213 } 8214 } 8215 8216 /* 8217 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8218 * such cases we allow max_zone_pfn sorted in the descending order 8219 */ 8220 bool __weak arch_has_descending_max_zone_pfns(void) 8221 { 8222 return false; 8223 } 8224 8225 /** 8226 * free_area_init - Initialise all pg_data_t and zone data 8227 * @max_zone_pfn: an array of max PFNs for each zone 8228 * 8229 * This will call free_area_init_node() for each active node in the system. 8230 * Using the page ranges provided by memblock_set_node(), the size of each 8231 * zone in each node and their holes is calculated. If the maximum PFN 8232 * between two adjacent zones match, it is assumed that the zone is empty. 8233 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8234 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8235 * starts where the previous one ended. For example, ZONE_DMA32 starts 8236 * at arch_max_dma_pfn. 8237 */ 8238 void __init free_area_init(unsigned long *max_zone_pfn) 8239 { 8240 unsigned long start_pfn, end_pfn; 8241 int i, nid, zone; 8242 bool descending; 8243 8244 /* Record where the zone boundaries are */ 8245 memset(arch_zone_lowest_possible_pfn, 0, 8246 sizeof(arch_zone_lowest_possible_pfn)); 8247 memset(arch_zone_highest_possible_pfn, 0, 8248 sizeof(arch_zone_highest_possible_pfn)); 8249 8250 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8251 descending = arch_has_descending_max_zone_pfns(); 8252 8253 for (i = 0; i < MAX_NR_ZONES; i++) { 8254 if (descending) 8255 zone = MAX_NR_ZONES - i - 1; 8256 else 8257 zone = i; 8258 8259 if (zone == ZONE_MOVABLE) 8260 continue; 8261 8262 end_pfn = max(max_zone_pfn[zone], start_pfn); 8263 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8264 arch_zone_highest_possible_pfn[zone] = end_pfn; 8265 8266 start_pfn = end_pfn; 8267 } 8268 8269 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8270 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8271 find_zone_movable_pfns_for_nodes(); 8272 8273 /* Print out the zone ranges */ 8274 pr_info("Zone ranges:\n"); 8275 for (i = 0; i < MAX_NR_ZONES; i++) { 8276 if (i == ZONE_MOVABLE) 8277 continue; 8278 pr_info(" %-8s ", zone_names[i]); 8279 if (arch_zone_lowest_possible_pfn[i] == 8280 arch_zone_highest_possible_pfn[i]) 8281 pr_cont("empty\n"); 8282 else 8283 pr_cont("[mem %#018Lx-%#018Lx]\n", 8284 (u64)arch_zone_lowest_possible_pfn[i] 8285 << PAGE_SHIFT, 8286 ((u64)arch_zone_highest_possible_pfn[i] 8287 << PAGE_SHIFT) - 1); 8288 } 8289 8290 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8291 pr_info("Movable zone start for each node\n"); 8292 for (i = 0; i < MAX_NUMNODES; i++) { 8293 if (zone_movable_pfn[i]) 8294 pr_info(" Node %d: %#018Lx\n", i, 8295 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8296 } 8297 8298 /* 8299 * Print out the early node map, and initialize the 8300 * subsection-map relative to active online memory ranges to 8301 * enable future "sub-section" extensions of the memory map. 8302 */ 8303 pr_info("Early memory node ranges\n"); 8304 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8305 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8306 (u64)start_pfn << PAGE_SHIFT, 8307 ((u64)end_pfn << PAGE_SHIFT) - 1); 8308 subsection_map_init(start_pfn, end_pfn - start_pfn); 8309 } 8310 8311 /* Initialise every node */ 8312 mminit_verify_pageflags_layout(); 8313 setup_nr_node_ids(); 8314 for_each_node(nid) { 8315 pg_data_t *pgdat; 8316 8317 if (!node_online(nid)) { 8318 pr_info("Initializing node %d as memoryless\n", nid); 8319 8320 /* Allocator not initialized yet */ 8321 pgdat = arch_alloc_nodedata(nid); 8322 if (!pgdat) 8323 panic("Cannot allocate %zuB for node %d.\n", 8324 sizeof(*pgdat), nid); 8325 arch_refresh_nodedata(nid, pgdat); 8326 free_area_init_memoryless_node(nid); 8327 8328 /* 8329 * We do not want to confuse userspace by sysfs 8330 * files/directories for node without any memory 8331 * attached to it, so this node is not marked as 8332 * N_MEMORY and not marked online so that no sysfs 8333 * hierarchy will be created via register_one_node for 8334 * it. The pgdat will get fully initialized by 8335 * hotadd_init_pgdat() when memory is hotplugged into 8336 * this node. 8337 */ 8338 continue; 8339 } 8340 8341 pgdat = NODE_DATA(nid); 8342 free_area_init_node(nid); 8343 8344 /* Any memory on that node */ 8345 if (pgdat->node_present_pages) 8346 node_set_state(nid, N_MEMORY); 8347 check_for_memory(pgdat, nid); 8348 } 8349 8350 memmap_init(); 8351 } 8352 8353 static int __init cmdline_parse_core(char *p, unsigned long *core, 8354 unsigned long *percent) 8355 { 8356 unsigned long long coremem; 8357 char *endptr; 8358 8359 if (!p) 8360 return -EINVAL; 8361 8362 /* Value may be a percentage of total memory, otherwise bytes */ 8363 coremem = simple_strtoull(p, &endptr, 0); 8364 if (*endptr == '%') { 8365 /* Paranoid check for percent values greater than 100 */ 8366 WARN_ON(coremem > 100); 8367 8368 *percent = coremem; 8369 } else { 8370 coremem = memparse(p, &p); 8371 /* Paranoid check that UL is enough for the coremem value */ 8372 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8373 8374 *core = coremem >> PAGE_SHIFT; 8375 *percent = 0UL; 8376 } 8377 return 0; 8378 } 8379 8380 /* 8381 * kernelcore=size sets the amount of memory for use for allocations that 8382 * cannot be reclaimed or migrated. 8383 */ 8384 static int __init cmdline_parse_kernelcore(char *p) 8385 { 8386 /* parse kernelcore=mirror */ 8387 if (parse_option_str(p, "mirror")) { 8388 mirrored_kernelcore = true; 8389 return 0; 8390 } 8391 8392 return cmdline_parse_core(p, &required_kernelcore, 8393 &required_kernelcore_percent); 8394 } 8395 8396 /* 8397 * movablecore=size sets the amount of memory for use for allocations that 8398 * can be reclaimed or migrated. 8399 */ 8400 static int __init cmdline_parse_movablecore(char *p) 8401 { 8402 return cmdline_parse_core(p, &required_movablecore, 8403 &required_movablecore_percent); 8404 } 8405 8406 early_param("kernelcore", cmdline_parse_kernelcore); 8407 early_param("movablecore", cmdline_parse_movablecore); 8408 8409 void adjust_managed_page_count(struct page *page, long count) 8410 { 8411 atomic_long_add(count, &page_zone(page)->managed_pages); 8412 totalram_pages_add(count); 8413 #ifdef CONFIG_HIGHMEM 8414 if (PageHighMem(page)) 8415 totalhigh_pages_add(count); 8416 #endif 8417 } 8418 EXPORT_SYMBOL(adjust_managed_page_count); 8419 8420 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8421 { 8422 void *pos; 8423 unsigned long pages = 0; 8424 8425 start = (void *)PAGE_ALIGN((unsigned long)start); 8426 end = (void *)((unsigned long)end & PAGE_MASK); 8427 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8428 struct page *page = virt_to_page(pos); 8429 void *direct_map_addr; 8430 8431 /* 8432 * 'direct_map_addr' might be different from 'pos' 8433 * because some architectures' virt_to_page() 8434 * work with aliases. Getting the direct map 8435 * address ensures that we get a _writeable_ 8436 * alias for the memset(). 8437 */ 8438 direct_map_addr = page_address(page); 8439 /* 8440 * Perform a kasan-unchecked memset() since this memory 8441 * has not been initialized. 8442 */ 8443 direct_map_addr = kasan_reset_tag(direct_map_addr); 8444 if ((unsigned int)poison <= 0xFF) 8445 memset(direct_map_addr, poison, PAGE_SIZE); 8446 8447 free_reserved_page(page); 8448 } 8449 8450 if (pages && s) 8451 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8452 8453 return pages; 8454 } 8455 8456 void __init mem_init_print_info(void) 8457 { 8458 unsigned long physpages, codesize, datasize, rosize, bss_size; 8459 unsigned long init_code_size, init_data_size; 8460 8461 physpages = get_num_physpages(); 8462 codesize = _etext - _stext; 8463 datasize = _edata - _sdata; 8464 rosize = __end_rodata - __start_rodata; 8465 bss_size = __bss_stop - __bss_start; 8466 init_data_size = __init_end - __init_begin; 8467 init_code_size = _einittext - _sinittext; 8468 8469 /* 8470 * Detect special cases and adjust section sizes accordingly: 8471 * 1) .init.* may be embedded into .data sections 8472 * 2) .init.text.* may be out of [__init_begin, __init_end], 8473 * please refer to arch/tile/kernel/vmlinux.lds.S. 8474 * 3) .rodata.* may be embedded into .text or .data sections. 8475 */ 8476 #define adj_init_size(start, end, size, pos, adj) \ 8477 do { \ 8478 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8479 size -= adj; \ 8480 } while (0) 8481 8482 adj_init_size(__init_begin, __init_end, init_data_size, 8483 _sinittext, init_code_size); 8484 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8485 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8486 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8487 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8488 8489 #undef adj_init_size 8490 8491 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8492 #ifdef CONFIG_HIGHMEM 8493 ", %luK highmem" 8494 #endif 8495 ")\n", 8496 K(nr_free_pages()), K(physpages), 8497 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 8498 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 8499 K(physpages - totalram_pages() - totalcma_pages), 8500 K(totalcma_pages) 8501 #ifdef CONFIG_HIGHMEM 8502 , K(totalhigh_pages()) 8503 #endif 8504 ); 8505 } 8506 8507 /** 8508 * set_dma_reserve - set the specified number of pages reserved in the first zone 8509 * @new_dma_reserve: The number of pages to mark reserved 8510 * 8511 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8512 * In the DMA zone, a significant percentage may be consumed by kernel image 8513 * and other unfreeable allocations which can skew the watermarks badly. This 8514 * function may optionally be used to account for unfreeable pages in the 8515 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8516 * smaller per-cpu batchsize. 8517 */ 8518 void __init set_dma_reserve(unsigned long new_dma_reserve) 8519 { 8520 dma_reserve = new_dma_reserve; 8521 } 8522 8523 static int page_alloc_cpu_dead(unsigned int cpu) 8524 { 8525 struct zone *zone; 8526 8527 lru_add_drain_cpu(cpu); 8528 mlock_drain_remote(cpu); 8529 drain_pages(cpu); 8530 8531 /* 8532 * Spill the event counters of the dead processor 8533 * into the current processors event counters. 8534 * This artificially elevates the count of the current 8535 * processor. 8536 */ 8537 vm_events_fold_cpu(cpu); 8538 8539 /* 8540 * Zero the differential counters of the dead processor 8541 * so that the vm statistics are consistent. 8542 * 8543 * This is only okay since the processor is dead and cannot 8544 * race with what we are doing. 8545 */ 8546 cpu_vm_stats_fold(cpu); 8547 8548 for_each_populated_zone(zone) 8549 zone_pcp_update(zone, 0); 8550 8551 return 0; 8552 } 8553 8554 static int page_alloc_cpu_online(unsigned int cpu) 8555 { 8556 struct zone *zone; 8557 8558 for_each_populated_zone(zone) 8559 zone_pcp_update(zone, 1); 8560 return 0; 8561 } 8562 8563 #ifdef CONFIG_NUMA 8564 int hashdist = HASHDIST_DEFAULT; 8565 8566 static int __init set_hashdist(char *str) 8567 { 8568 if (!str) 8569 return 0; 8570 hashdist = simple_strtoul(str, &str, 0); 8571 return 1; 8572 } 8573 __setup("hashdist=", set_hashdist); 8574 #endif 8575 8576 void __init page_alloc_init(void) 8577 { 8578 int ret; 8579 8580 #ifdef CONFIG_NUMA 8581 if (num_node_state(N_MEMORY) == 1) 8582 hashdist = 0; 8583 #endif 8584 8585 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8586 "mm/page_alloc:pcp", 8587 page_alloc_cpu_online, 8588 page_alloc_cpu_dead); 8589 WARN_ON(ret < 0); 8590 } 8591 8592 /* 8593 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8594 * or min_free_kbytes changes. 8595 */ 8596 static void calculate_totalreserve_pages(void) 8597 { 8598 struct pglist_data *pgdat; 8599 unsigned long reserve_pages = 0; 8600 enum zone_type i, j; 8601 8602 for_each_online_pgdat(pgdat) { 8603 8604 pgdat->totalreserve_pages = 0; 8605 8606 for (i = 0; i < MAX_NR_ZONES; i++) { 8607 struct zone *zone = pgdat->node_zones + i; 8608 long max = 0; 8609 unsigned long managed_pages = zone_managed_pages(zone); 8610 8611 /* Find valid and maximum lowmem_reserve in the zone */ 8612 for (j = i; j < MAX_NR_ZONES; j++) { 8613 if (zone->lowmem_reserve[j] > max) 8614 max = zone->lowmem_reserve[j]; 8615 } 8616 8617 /* we treat the high watermark as reserved pages. */ 8618 max += high_wmark_pages(zone); 8619 8620 if (max > managed_pages) 8621 max = managed_pages; 8622 8623 pgdat->totalreserve_pages += max; 8624 8625 reserve_pages += max; 8626 } 8627 } 8628 totalreserve_pages = reserve_pages; 8629 } 8630 8631 /* 8632 * setup_per_zone_lowmem_reserve - called whenever 8633 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8634 * has a correct pages reserved value, so an adequate number of 8635 * pages are left in the zone after a successful __alloc_pages(). 8636 */ 8637 static void setup_per_zone_lowmem_reserve(void) 8638 { 8639 struct pglist_data *pgdat; 8640 enum zone_type i, j; 8641 8642 for_each_online_pgdat(pgdat) { 8643 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8644 struct zone *zone = &pgdat->node_zones[i]; 8645 int ratio = sysctl_lowmem_reserve_ratio[i]; 8646 bool clear = !ratio || !zone_managed_pages(zone); 8647 unsigned long managed_pages = 0; 8648 8649 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8650 struct zone *upper_zone = &pgdat->node_zones[j]; 8651 8652 managed_pages += zone_managed_pages(upper_zone); 8653 8654 if (clear) 8655 zone->lowmem_reserve[j] = 0; 8656 else 8657 zone->lowmem_reserve[j] = managed_pages / ratio; 8658 } 8659 } 8660 } 8661 8662 /* update totalreserve_pages */ 8663 calculate_totalreserve_pages(); 8664 } 8665 8666 static void __setup_per_zone_wmarks(void) 8667 { 8668 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8669 unsigned long lowmem_pages = 0; 8670 struct zone *zone; 8671 unsigned long flags; 8672 8673 /* Calculate total number of !ZONE_HIGHMEM pages */ 8674 for_each_zone(zone) { 8675 if (!is_highmem(zone)) 8676 lowmem_pages += zone_managed_pages(zone); 8677 } 8678 8679 for_each_zone(zone) { 8680 u64 tmp; 8681 8682 spin_lock_irqsave(&zone->lock, flags); 8683 tmp = (u64)pages_min * zone_managed_pages(zone); 8684 do_div(tmp, lowmem_pages); 8685 if (is_highmem(zone)) { 8686 /* 8687 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8688 * need highmem pages, so cap pages_min to a small 8689 * value here. 8690 * 8691 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8692 * deltas control async page reclaim, and so should 8693 * not be capped for highmem. 8694 */ 8695 unsigned long min_pages; 8696 8697 min_pages = zone_managed_pages(zone) / 1024; 8698 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8699 zone->_watermark[WMARK_MIN] = min_pages; 8700 } else { 8701 /* 8702 * If it's a lowmem zone, reserve a number of pages 8703 * proportionate to the zone's size. 8704 */ 8705 zone->_watermark[WMARK_MIN] = tmp; 8706 } 8707 8708 /* 8709 * Set the kswapd watermarks distance according to the 8710 * scale factor in proportion to available memory, but 8711 * ensure a minimum size on small systems. 8712 */ 8713 tmp = max_t(u64, tmp >> 2, 8714 mult_frac(zone_managed_pages(zone), 8715 watermark_scale_factor, 10000)); 8716 8717 zone->watermark_boost = 0; 8718 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8719 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8720 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8721 8722 spin_unlock_irqrestore(&zone->lock, flags); 8723 } 8724 8725 /* update totalreserve_pages */ 8726 calculate_totalreserve_pages(); 8727 } 8728 8729 /** 8730 * setup_per_zone_wmarks - called when min_free_kbytes changes 8731 * or when memory is hot-{added|removed} 8732 * 8733 * Ensures that the watermark[min,low,high] values for each zone are set 8734 * correctly with respect to min_free_kbytes. 8735 */ 8736 void setup_per_zone_wmarks(void) 8737 { 8738 struct zone *zone; 8739 static DEFINE_SPINLOCK(lock); 8740 8741 spin_lock(&lock); 8742 __setup_per_zone_wmarks(); 8743 spin_unlock(&lock); 8744 8745 /* 8746 * The watermark size have changed so update the pcpu batch 8747 * and high limits or the limits may be inappropriate. 8748 */ 8749 for_each_zone(zone) 8750 zone_pcp_update(zone, 0); 8751 } 8752 8753 /* 8754 * Initialise min_free_kbytes. 8755 * 8756 * For small machines we want it small (128k min). For large machines 8757 * we want it large (256MB max). But it is not linear, because network 8758 * bandwidth does not increase linearly with machine size. We use 8759 * 8760 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8761 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8762 * 8763 * which yields 8764 * 8765 * 16MB: 512k 8766 * 32MB: 724k 8767 * 64MB: 1024k 8768 * 128MB: 1448k 8769 * 256MB: 2048k 8770 * 512MB: 2896k 8771 * 1024MB: 4096k 8772 * 2048MB: 5792k 8773 * 4096MB: 8192k 8774 * 8192MB: 11584k 8775 * 16384MB: 16384k 8776 */ 8777 void calculate_min_free_kbytes(void) 8778 { 8779 unsigned long lowmem_kbytes; 8780 int new_min_free_kbytes; 8781 8782 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8783 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8784 8785 if (new_min_free_kbytes > user_min_free_kbytes) 8786 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8787 else 8788 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8789 new_min_free_kbytes, user_min_free_kbytes); 8790 8791 } 8792 8793 int __meminit init_per_zone_wmark_min(void) 8794 { 8795 calculate_min_free_kbytes(); 8796 setup_per_zone_wmarks(); 8797 refresh_zone_stat_thresholds(); 8798 setup_per_zone_lowmem_reserve(); 8799 8800 #ifdef CONFIG_NUMA 8801 setup_min_unmapped_ratio(); 8802 setup_min_slab_ratio(); 8803 #endif 8804 8805 khugepaged_min_free_kbytes_update(); 8806 8807 return 0; 8808 } 8809 postcore_initcall(init_per_zone_wmark_min) 8810 8811 /* 8812 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8813 * that we can call two helper functions whenever min_free_kbytes 8814 * changes. 8815 */ 8816 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8817 void *buffer, size_t *length, loff_t *ppos) 8818 { 8819 int rc; 8820 8821 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8822 if (rc) 8823 return rc; 8824 8825 if (write) { 8826 user_min_free_kbytes = min_free_kbytes; 8827 setup_per_zone_wmarks(); 8828 } 8829 return 0; 8830 } 8831 8832 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8833 void *buffer, size_t *length, loff_t *ppos) 8834 { 8835 int rc; 8836 8837 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8838 if (rc) 8839 return rc; 8840 8841 if (write) 8842 setup_per_zone_wmarks(); 8843 8844 return 0; 8845 } 8846 8847 #ifdef CONFIG_NUMA 8848 static void setup_min_unmapped_ratio(void) 8849 { 8850 pg_data_t *pgdat; 8851 struct zone *zone; 8852 8853 for_each_online_pgdat(pgdat) 8854 pgdat->min_unmapped_pages = 0; 8855 8856 for_each_zone(zone) 8857 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8858 sysctl_min_unmapped_ratio) / 100; 8859 } 8860 8861 8862 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8863 void *buffer, size_t *length, loff_t *ppos) 8864 { 8865 int rc; 8866 8867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8868 if (rc) 8869 return rc; 8870 8871 setup_min_unmapped_ratio(); 8872 8873 return 0; 8874 } 8875 8876 static void setup_min_slab_ratio(void) 8877 { 8878 pg_data_t *pgdat; 8879 struct zone *zone; 8880 8881 for_each_online_pgdat(pgdat) 8882 pgdat->min_slab_pages = 0; 8883 8884 for_each_zone(zone) 8885 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8886 sysctl_min_slab_ratio) / 100; 8887 } 8888 8889 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8890 void *buffer, size_t *length, loff_t *ppos) 8891 { 8892 int rc; 8893 8894 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8895 if (rc) 8896 return rc; 8897 8898 setup_min_slab_ratio(); 8899 8900 return 0; 8901 } 8902 #endif 8903 8904 /* 8905 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8906 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8907 * whenever sysctl_lowmem_reserve_ratio changes. 8908 * 8909 * The reserve ratio obviously has absolutely no relation with the 8910 * minimum watermarks. The lowmem reserve ratio can only make sense 8911 * if in function of the boot time zone sizes. 8912 */ 8913 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8914 void *buffer, size_t *length, loff_t *ppos) 8915 { 8916 int i; 8917 8918 proc_dointvec_minmax(table, write, buffer, length, ppos); 8919 8920 for (i = 0; i < MAX_NR_ZONES; i++) { 8921 if (sysctl_lowmem_reserve_ratio[i] < 1) 8922 sysctl_lowmem_reserve_ratio[i] = 0; 8923 } 8924 8925 setup_per_zone_lowmem_reserve(); 8926 return 0; 8927 } 8928 8929 /* 8930 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8931 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8932 * pagelist can have before it gets flushed back to buddy allocator. 8933 */ 8934 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8935 int write, void *buffer, size_t *length, loff_t *ppos) 8936 { 8937 struct zone *zone; 8938 int old_percpu_pagelist_high_fraction; 8939 int ret; 8940 8941 mutex_lock(&pcp_batch_high_lock); 8942 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8943 8944 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8945 if (!write || ret < 0) 8946 goto out; 8947 8948 /* Sanity checking to avoid pcp imbalance */ 8949 if (percpu_pagelist_high_fraction && 8950 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8951 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8952 ret = -EINVAL; 8953 goto out; 8954 } 8955 8956 /* No change? */ 8957 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8958 goto out; 8959 8960 for_each_populated_zone(zone) 8961 zone_set_pageset_high_and_batch(zone, 0); 8962 out: 8963 mutex_unlock(&pcp_batch_high_lock); 8964 return ret; 8965 } 8966 8967 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8968 /* 8969 * Returns the number of pages that arch has reserved but 8970 * is not known to alloc_large_system_hash(). 8971 */ 8972 static unsigned long __init arch_reserved_kernel_pages(void) 8973 { 8974 return 0; 8975 } 8976 #endif 8977 8978 /* 8979 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8980 * machines. As memory size is increased the scale is also increased but at 8981 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8982 * quadruples the scale is increased by one, which means the size of hash table 8983 * only doubles, instead of quadrupling as well. 8984 * Because 32-bit systems cannot have large physical memory, where this scaling 8985 * makes sense, it is disabled on such platforms. 8986 */ 8987 #if __BITS_PER_LONG > 32 8988 #define ADAPT_SCALE_BASE (64ul << 30) 8989 #define ADAPT_SCALE_SHIFT 2 8990 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8991 #endif 8992 8993 /* 8994 * allocate a large system hash table from bootmem 8995 * - it is assumed that the hash table must contain an exact power-of-2 8996 * quantity of entries 8997 * - limit is the number of hash buckets, not the total allocation size 8998 */ 8999 void *__init alloc_large_system_hash(const char *tablename, 9000 unsigned long bucketsize, 9001 unsigned long numentries, 9002 int scale, 9003 int flags, 9004 unsigned int *_hash_shift, 9005 unsigned int *_hash_mask, 9006 unsigned long low_limit, 9007 unsigned long high_limit) 9008 { 9009 unsigned long long max = high_limit; 9010 unsigned long log2qty, size; 9011 void *table; 9012 gfp_t gfp_flags; 9013 bool virt; 9014 bool huge; 9015 9016 /* allow the kernel cmdline to have a say */ 9017 if (!numentries) { 9018 /* round applicable memory size up to nearest megabyte */ 9019 numentries = nr_kernel_pages; 9020 numentries -= arch_reserved_kernel_pages(); 9021 9022 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9023 if (PAGE_SIZE < SZ_1M) 9024 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 9025 9026 #if __BITS_PER_LONG > 32 9027 if (!high_limit) { 9028 unsigned long adapt; 9029 9030 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9031 adapt <<= ADAPT_SCALE_SHIFT) 9032 scale++; 9033 } 9034 #endif 9035 9036 /* limit to 1 bucket per 2^scale bytes of low memory */ 9037 if (scale > PAGE_SHIFT) 9038 numentries >>= (scale - PAGE_SHIFT); 9039 else 9040 numentries <<= (PAGE_SHIFT - scale); 9041 9042 /* Make sure we've got at least a 0-order allocation.. */ 9043 if (unlikely(flags & HASH_SMALL)) { 9044 /* Makes no sense without HASH_EARLY */ 9045 WARN_ON(!(flags & HASH_EARLY)); 9046 if (!(numentries >> *_hash_shift)) { 9047 numentries = 1UL << *_hash_shift; 9048 BUG_ON(!numentries); 9049 } 9050 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9051 numentries = PAGE_SIZE / bucketsize; 9052 } 9053 numentries = roundup_pow_of_two(numentries); 9054 9055 /* limit allocation size to 1/16 total memory by default */ 9056 if (max == 0) { 9057 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9058 do_div(max, bucketsize); 9059 } 9060 max = min(max, 0x80000000ULL); 9061 9062 if (numentries < low_limit) 9063 numentries = low_limit; 9064 if (numentries > max) 9065 numentries = max; 9066 9067 log2qty = ilog2(numentries); 9068 9069 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9070 do { 9071 virt = false; 9072 size = bucketsize << log2qty; 9073 if (flags & HASH_EARLY) { 9074 if (flags & HASH_ZERO) 9075 table = memblock_alloc(size, SMP_CACHE_BYTES); 9076 else 9077 table = memblock_alloc_raw(size, 9078 SMP_CACHE_BYTES); 9079 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9080 table = vmalloc_huge(size, gfp_flags); 9081 virt = true; 9082 if (table) 9083 huge = is_vm_area_hugepages(table); 9084 } else { 9085 /* 9086 * If bucketsize is not a power-of-two, we may free 9087 * some pages at the end of hash table which 9088 * alloc_pages_exact() automatically does 9089 */ 9090 table = alloc_pages_exact(size, gfp_flags); 9091 kmemleak_alloc(table, size, 1, gfp_flags); 9092 } 9093 } while (!table && size > PAGE_SIZE && --log2qty); 9094 9095 if (!table) 9096 panic("Failed to allocate %s hash table\n", tablename); 9097 9098 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9099 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9100 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9101 9102 if (_hash_shift) 9103 *_hash_shift = log2qty; 9104 if (_hash_mask) 9105 *_hash_mask = (1 << log2qty) - 1; 9106 9107 return table; 9108 } 9109 9110 #ifdef CONFIG_CONTIG_ALLOC 9111 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9113 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9114 static void alloc_contig_dump_pages(struct list_head *page_list) 9115 { 9116 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9117 9118 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9119 struct page *page; 9120 9121 dump_stack(); 9122 list_for_each_entry(page, page_list, lru) 9123 dump_page(page, "migration failure"); 9124 } 9125 } 9126 #else 9127 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9128 { 9129 } 9130 #endif 9131 9132 /* [start, end) must belong to a single zone. */ 9133 int __alloc_contig_migrate_range(struct compact_control *cc, 9134 unsigned long start, unsigned long end) 9135 { 9136 /* This function is based on compact_zone() from compaction.c. */ 9137 unsigned int nr_reclaimed; 9138 unsigned long pfn = start; 9139 unsigned int tries = 0; 9140 int ret = 0; 9141 struct migration_target_control mtc = { 9142 .nid = zone_to_nid(cc->zone), 9143 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9144 }; 9145 9146 lru_cache_disable(); 9147 9148 while (pfn < end || !list_empty(&cc->migratepages)) { 9149 if (fatal_signal_pending(current)) { 9150 ret = -EINTR; 9151 break; 9152 } 9153 9154 if (list_empty(&cc->migratepages)) { 9155 cc->nr_migratepages = 0; 9156 ret = isolate_migratepages_range(cc, pfn, end); 9157 if (ret && ret != -EAGAIN) 9158 break; 9159 pfn = cc->migrate_pfn; 9160 tries = 0; 9161 } else if (++tries == 5) { 9162 ret = -EBUSY; 9163 break; 9164 } 9165 9166 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9167 &cc->migratepages); 9168 cc->nr_migratepages -= nr_reclaimed; 9169 9170 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9171 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9172 9173 /* 9174 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9175 * to retry again over this error, so do the same here. 9176 */ 9177 if (ret == -ENOMEM) 9178 break; 9179 } 9180 9181 lru_cache_enable(); 9182 if (ret < 0) { 9183 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9184 alloc_contig_dump_pages(&cc->migratepages); 9185 putback_movable_pages(&cc->migratepages); 9186 return ret; 9187 } 9188 return 0; 9189 } 9190 9191 /** 9192 * alloc_contig_range() -- tries to allocate given range of pages 9193 * @start: start PFN to allocate 9194 * @end: one-past-the-last PFN to allocate 9195 * @migratetype: migratetype of the underlying pageblocks (either 9196 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9197 * in range must have the same migratetype and it must 9198 * be either of the two. 9199 * @gfp_mask: GFP mask to use during compaction 9200 * 9201 * The PFN range does not have to be pageblock aligned. The PFN range must 9202 * belong to a single zone. 9203 * 9204 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9205 * pageblocks in the range. Once isolated, the pageblocks should not 9206 * be modified by others. 9207 * 9208 * Return: zero on success or negative error code. On success all 9209 * pages which PFN is in [start, end) are allocated for the caller and 9210 * need to be freed with free_contig_range(). 9211 */ 9212 int alloc_contig_range(unsigned long start, unsigned long end, 9213 unsigned migratetype, gfp_t gfp_mask) 9214 { 9215 unsigned long outer_start, outer_end; 9216 int order; 9217 int ret = 0; 9218 9219 struct compact_control cc = { 9220 .nr_migratepages = 0, 9221 .order = -1, 9222 .zone = page_zone(pfn_to_page(start)), 9223 .mode = MIGRATE_SYNC, 9224 .ignore_skip_hint = true, 9225 .no_set_skip_hint = true, 9226 .gfp_mask = current_gfp_context(gfp_mask), 9227 .alloc_contig = true, 9228 }; 9229 INIT_LIST_HEAD(&cc.migratepages); 9230 9231 /* 9232 * What we do here is we mark all pageblocks in range as 9233 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9234 * have different sizes, and due to the way page allocator 9235 * work, start_isolate_page_range() has special handlings for this. 9236 * 9237 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9238 * migrate the pages from an unaligned range (ie. pages that 9239 * we are interested in). This will put all the pages in 9240 * range back to page allocator as MIGRATE_ISOLATE. 9241 * 9242 * When this is done, we take the pages in range from page 9243 * allocator removing them from the buddy system. This way 9244 * page allocator will never consider using them. 9245 * 9246 * This lets us mark the pageblocks back as 9247 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9248 * aligned range but not in the unaligned, original range are 9249 * put back to page allocator so that buddy can use them. 9250 */ 9251 9252 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9253 if (ret) 9254 goto done; 9255 9256 drain_all_pages(cc.zone); 9257 9258 /* 9259 * In case of -EBUSY, we'd like to know which page causes problem. 9260 * So, just fall through. test_pages_isolated() has a tracepoint 9261 * which will report the busy page. 9262 * 9263 * It is possible that busy pages could become available before 9264 * the call to test_pages_isolated, and the range will actually be 9265 * allocated. So, if we fall through be sure to clear ret so that 9266 * -EBUSY is not accidentally used or returned to caller. 9267 */ 9268 ret = __alloc_contig_migrate_range(&cc, start, end); 9269 if (ret && ret != -EBUSY) 9270 goto done; 9271 ret = 0; 9272 9273 /* 9274 * Pages from [start, end) are within a pageblock_nr_pages 9275 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9276 * more, all pages in [start, end) are free in page allocator. 9277 * What we are going to do is to allocate all pages from 9278 * [start, end) (that is remove them from page allocator). 9279 * 9280 * The only problem is that pages at the beginning and at the 9281 * end of interesting range may be not aligned with pages that 9282 * page allocator holds, ie. they can be part of higher order 9283 * pages. Because of this, we reserve the bigger range and 9284 * once this is done free the pages we are not interested in. 9285 * 9286 * We don't have to hold zone->lock here because the pages are 9287 * isolated thus they won't get removed from buddy. 9288 */ 9289 9290 order = 0; 9291 outer_start = start; 9292 while (!PageBuddy(pfn_to_page(outer_start))) { 9293 if (++order >= MAX_ORDER) { 9294 outer_start = start; 9295 break; 9296 } 9297 outer_start &= ~0UL << order; 9298 } 9299 9300 if (outer_start != start) { 9301 order = buddy_order(pfn_to_page(outer_start)); 9302 9303 /* 9304 * outer_start page could be small order buddy page and 9305 * it doesn't include start page. Adjust outer_start 9306 * in this case to report failed page properly 9307 * on tracepoint in test_pages_isolated() 9308 */ 9309 if (outer_start + (1UL << order) <= start) 9310 outer_start = start; 9311 } 9312 9313 /* Make sure the range is really isolated. */ 9314 if (test_pages_isolated(outer_start, end, 0)) { 9315 ret = -EBUSY; 9316 goto done; 9317 } 9318 9319 /* Grab isolated pages from freelists. */ 9320 outer_end = isolate_freepages_range(&cc, outer_start, end); 9321 if (!outer_end) { 9322 ret = -EBUSY; 9323 goto done; 9324 } 9325 9326 /* Free head and tail (if any) */ 9327 if (start != outer_start) 9328 free_contig_range(outer_start, start - outer_start); 9329 if (end != outer_end) 9330 free_contig_range(end, outer_end - end); 9331 9332 done: 9333 undo_isolate_page_range(start, end, migratetype); 9334 return ret; 9335 } 9336 EXPORT_SYMBOL(alloc_contig_range); 9337 9338 static int __alloc_contig_pages(unsigned long start_pfn, 9339 unsigned long nr_pages, gfp_t gfp_mask) 9340 { 9341 unsigned long end_pfn = start_pfn + nr_pages; 9342 9343 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9344 gfp_mask); 9345 } 9346 9347 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9348 unsigned long nr_pages) 9349 { 9350 unsigned long i, end_pfn = start_pfn + nr_pages; 9351 struct page *page; 9352 9353 for (i = start_pfn; i < end_pfn; i++) { 9354 page = pfn_to_online_page(i); 9355 if (!page) 9356 return false; 9357 9358 if (page_zone(page) != z) 9359 return false; 9360 9361 if (PageReserved(page)) 9362 return false; 9363 } 9364 return true; 9365 } 9366 9367 static bool zone_spans_last_pfn(const struct zone *zone, 9368 unsigned long start_pfn, unsigned long nr_pages) 9369 { 9370 unsigned long last_pfn = start_pfn + nr_pages - 1; 9371 9372 return zone_spans_pfn(zone, last_pfn); 9373 } 9374 9375 /** 9376 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9377 * @nr_pages: Number of contiguous pages to allocate 9378 * @gfp_mask: GFP mask to limit search and used during compaction 9379 * @nid: Target node 9380 * @nodemask: Mask for other possible nodes 9381 * 9382 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9383 * on an applicable zonelist to find a contiguous pfn range which can then be 9384 * tried for allocation with alloc_contig_range(). This routine is intended 9385 * for allocation requests which can not be fulfilled with the buddy allocator. 9386 * 9387 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9388 * power of two, then allocated range is also guaranteed to be aligned to same 9389 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9390 * 9391 * Allocated pages can be freed with free_contig_range() or by manually calling 9392 * __free_page() on each allocated page. 9393 * 9394 * Return: pointer to contiguous pages on success, or NULL if not successful. 9395 */ 9396 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9397 int nid, nodemask_t *nodemask) 9398 { 9399 unsigned long ret, pfn, flags; 9400 struct zonelist *zonelist; 9401 struct zone *zone; 9402 struct zoneref *z; 9403 9404 zonelist = node_zonelist(nid, gfp_mask); 9405 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9406 gfp_zone(gfp_mask), nodemask) { 9407 spin_lock_irqsave(&zone->lock, flags); 9408 9409 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9410 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9411 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9412 /* 9413 * We release the zone lock here because 9414 * alloc_contig_range() will also lock the zone 9415 * at some point. If there's an allocation 9416 * spinning on this lock, it may win the race 9417 * and cause alloc_contig_range() to fail... 9418 */ 9419 spin_unlock_irqrestore(&zone->lock, flags); 9420 ret = __alloc_contig_pages(pfn, nr_pages, 9421 gfp_mask); 9422 if (!ret) 9423 return pfn_to_page(pfn); 9424 spin_lock_irqsave(&zone->lock, flags); 9425 } 9426 pfn += nr_pages; 9427 } 9428 spin_unlock_irqrestore(&zone->lock, flags); 9429 } 9430 return NULL; 9431 } 9432 #endif /* CONFIG_CONTIG_ALLOC */ 9433 9434 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9435 { 9436 unsigned long count = 0; 9437 9438 for (; nr_pages--; pfn++) { 9439 struct page *page = pfn_to_page(pfn); 9440 9441 count += page_count(page) != 1; 9442 __free_page(page); 9443 } 9444 WARN(count != 0, "%lu pages are still in use!\n", count); 9445 } 9446 EXPORT_SYMBOL(free_contig_range); 9447 9448 /* 9449 * Effectively disable pcplists for the zone by setting the high limit to 0 9450 * and draining all cpus. A concurrent page freeing on another CPU that's about 9451 * to put the page on pcplist will either finish before the drain and the page 9452 * will be drained, or observe the new high limit and skip the pcplist. 9453 * 9454 * Must be paired with a call to zone_pcp_enable(). 9455 */ 9456 void zone_pcp_disable(struct zone *zone) 9457 { 9458 mutex_lock(&pcp_batch_high_lock); 9459 __zone_set_pageset_high_and_batch(zone, 0, 1); 9460 __drain_all_pages(zone, true); 9461 } 9462 9463 void zone_pcp_enable(struct zone *zone) 9464 { 9465 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9466 mutex_unlock(&pcp_batch_high_lock); 9467 } 9468 9469 void zone_pcp_reset(struct zone *zone) 9470 { 9471 int cpu; 9472 struct per_cpu_zonestat *pzstats; 9473 9474 if (zone->per_cpu_pageset != &boot_pageset) { 9475 for_each_online_cpu(cpu) { 9476 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9477 drain_zonestat(zone, pzstats); 9478 } 9479 free_percpu(zone->per_cpu_pageset); 9480 zone->per_cpu_pageset = &boot_pageset; 9481 if (zone->per_cpu_zonestats != &boot_zonestats) { 9482 free_percpu(zone->per_cpu_zonestats); 9483 zone->per_cpu_zonestats = &boot_zonestats; 9484 } 9485 } 9486 } 9487 9488 #ifdef CONFIG_MEMORY_HOTREMOVE 9489 /* 9490 * All pages in the range must be in a single zone, must not contain holes, 9491 * must span full sections, and must be isolated before calling this function. 9492 */ 9493 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9494 { 9495 unsigned long pfn = start_pfn; 9496 struct page *page; 9497 struct zone *zone; 9498 unsigned int order; 9499 unsigned long flags; 9500 9501 offline_mem_sections(pfn, end_pfn); 9502 zone = page_zone(pfn_to_page(pfn)); 9503 spin_lock_irqsave(&zone->lock, flags); 9504 while (pfn < end_pfn) { 9505 page = pfn_to_page(pfn); 9506 /* 9507 * The HWPoisoned page may be not in buddy system, and 9508 * page_count() is not 0. 9509 */ 9510 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9511 pfn++; 9512 continue; 9513 } 9514 /* 9515 * At this point all remaining PageOffline() pages have a 9516 * reference count of 0 and can simply be skipped. 9517 */ 9518 if (PageOffline(page)) { 9519 BUG_ON(page_count(page)); 9520 BUG_ON(PageBuddy(page)); 9521 pfn++; 9522 continue; 9523 } 9524 9525 BUG_ON(page_count(page)); 9526 BUG_ON(!PageBuddy(page)); 9527 order = buddy_order(page); 9528 del_page_from_free_list(page, zone, order); 9529 pfn += (1 << order); 9530 } 9531 spin_unlock_irqrestore(&zone->lock, flags); 9532 } 9533 #endif 9534 9535 /* 9536 * This function returns a stable result only if called under zone lock. 9537 */ 9538 bool is_free_buddy_page(struct page *page) 9539 { 9540 unsigned long pfn = page_to_pfn(page); 9541 unsigned int order; 9542 9543 for (order = 0; order < MAX_ORDER; order++) { 9544 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9545 9546 if (PageBuddy(page_head) && 9547 buddy_order_unsafe(page_head) >= order) 9548 break; 9549 } 9550 9551 return order < MAX_ORDER; 9552 } 9553 EXPORT_SYMBOL(is_free_buddy_page); 9554 9555 #ifdef CONFIG_MEMORY_FAILURE 9556 /* 9557 * Break down a higher-order page in sub-pages, and keep our target out of 9558 * buddy allocator. 9559 */ 9560 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9561 struct page *target, int low, int high, 9562 int migratetype) 9563 { 9564 unsigned long size = 1 << high; 9565 struct page *current_buddy, *next_page; 9566 9567 while (high > low) { 9568 high--; 9569 size >>= 1; 9570 9571 if (target >= &page[size]) { 9572 next_page = page + size; 9573 current_buddy = page; 9574 } else { 9575 next_page = page; 9576 current_buddy = page + size; 9577 } 9578 9579 if (set_page_guard(zone, current_buddy, high, migratetype)) 9580 continue; 9581 9582 if (current_buddy != target) { 9583 add_to_free_list(current_buddy, zone, high, migratetype); 9584 set_buddy_order(current_buddy, high); 9585 page = next_page; 9586 } 9587 } 9588 } 9589 9590 /* 9591 * Take a page that will be marked as poisoned off the buddy allocator. 9592 */ 9593 bool take_page_off_buddy(struct page *page) 9594 { 9595 struct zone *zone = page_zone(page); 9596 unsigned long pfn = page_to_pfn(page); 9597 unsigned long flags; 9598 unsigned int order; 9599 bool ret = false; 9600 9601 spin_lock_irqsave(&zone->lock, flags); 9602 for (order = 0; order < MAX_ORDER; order++) { 9603 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9604 int page_order = buddy_order(page_head); 9605 9606 if (PageBuddy(page_head) && page_order >= order) { 9607 unsigned long pfn_head = page_to_pfn(page_head); 9608 int migratetype = get_pfnblock_migratetype(page_head, 9609 pfn_head); 9610 9611 del_page_from_free_list(page_head, zone, page_order); 9612 break_down_buddy_pages(zone, page_head, page, 0, 9613 page_order, migratetype); 9614 SetPageHWPoisonTakenOff(page); 9615 if (!is_migrate_isolate(migratetype)) 9616 __mod_zone_freepage_state(zone, -1, migratetype); 9617 ret = true; 9618 break; 9619 } 9620 if (page_count(page_head) > 0) 9621 break; 9622 } 9623 spin_unlock_irqrestore(&zone->lock, flags); 9624 return ret; 9625 } 9626 9627 /* 9628 * Cancel takeoff done by take_page_off_buddy(). 9629 */ 9630 bool put_page_back_buddy(struct page *page) 9631 { 9632 struct zone *zone = page_zone(page); 9633 unsigned long pfn = page_to_pfn(page); 9634 unsigned long flags; 9635 int migratetype = get_pfnblock_migratetype(page, pfn); 9636 bool ret = false; 9637 9638 spin_lock_irqsave(&zone->lock, flags); 9639 if (put_page_testzero(page)) { 9640 ClearPageHWPoisonTakenOff(page); 9641 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9642 if (TestClearPageHWPoison(page)) { 9643 ret = true; 9644 } 9645 } 9646 spin_unlock_irqrestore(&zone->lock, flags); 9647 9648 return ret; 9649 } 9650 #endif 9651 9652 #ifdef CONFIG_ZONE_DMA 9653 bool has_managed_dma(void) 9654 { 9655 struct pglist_data *pgdat; 9656 9657 for_each_online_pgdat(pgdat) { 9658 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9659 9660 if (managed_zone(zone)) 9661 return true; 9662 } 9663 return false; 9664 } 9665 #endif /* CONFIG_ZONE_DMA */ 9666