xref: /openbmc/linux/mm/page_alloc.c (revision 23c2b932)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71 
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
75 
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80 
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86  * defined in <linux/topology.h>.
87  */
88 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92 
93 /*
94  * Array of node states.
95  */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 	[N_POSSIBLE] = NODE_MASK_ALL,
98 	[N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 	[N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 	[N_CPU] = { { [0] = 1UL } },
108 #endif	/* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111 
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114 
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121 
122 /*
123  * A cached value of the page's pageblock's migratetype, used when the page is
124  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126  * Also the migratetype set in the page does not necessarily match the pcplist
127  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128  * other index - this ensures that it will be put on the correct CMA freelist.
129  */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 	return page->index;
133 }
134 
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 	page->index = migratetype;
138 }
139 
140 #ifdef CONFIG_PM_SLEEP
141 /*
142  * The following functions are used by the suspend/hibernate code to temporarily
143  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144  * while devices are suspended.  To avoid races with the suspend/hibernate code,
145  * they should always be called with pm_mutex held (gfp_allowed_mask also should
146  * only be modified with pm_mutex held, unless the suspend/hibernate code is
147  * guaranteed not to run in parallel with that modification).
148  */
149 
150 static gfp_t saved_gfp_mask;
151 
152 void pm_restore_gfp_mask(void)
153 {
154 	WARN_ON(!mutex_is_locked(&pm_mutex));
155 	if (saved_gfp_mask) {
156 		gfp_allowed_mask = saved_gfp_mask;
157 		saved_gfp_mask = 0;
158 	}
159 }
160 
161 void pm_restrict_gfp_mask(void)
162 {
163 	WARN_ON(!mutex_is_locked(&pm_mutex));
164 	WARN_ON(saved_gfp_mask);
165 	saved_gfp_mask = gfp_allowed_mask;
166 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168 
169 bool pm_suspended_storage(void)
170 {
171 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 		return false;
173 	return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176 
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180 
181 static void __free_pages_ok(struct page *page, unsigned int order);
182 
183 /*
184  * results with 256, 32 in the lowmem_reserve sysctl:
185  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186  *	1G machine -> (16M dma, 784M normal, 224M high)
187  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190  *
191  * TBD: should special case ZONE_DMA32 machines here - in those we normally
192  * don't need any ZONE_NORMAL reservation
193  */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 	 32,
203 #endif
204 	 32,
205 };
206 
207 EXPORT_SYMBOL(totalram_pages);
208 
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 	 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 	 "DMA32",
215 #endif
216 	 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 	 "HighMem",
219 #endif
220 	 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 	 "Device",
223 #endif
224 };
225 
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 	"Unmovable",
228 	"Movable",
229 	"Reclaimable",
230 	"HighAtomic",
231 #ifdef CONFIG_CMA
232 	"CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 	"Isolate",
236 #endif
237 };
238 
239 compound_page_dtor * const compound_page_dtors[] = {
240 	NULL,
241 	free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 	free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 	free_transhuge_page,
247 #endif
248 };
249 
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253 
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257 
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265 
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270 
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277 
278 int page_group_by_mobility_disabled __read_mostly;
279 
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 	pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285 
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 	int nid = early_pfn_to_nid(pfn);
290 
291 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
292 		return true;
293 
294 	return false;
295 }
296 
297 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298 {
299 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
300 		return true;
301 
302 	return false;
303 }
304 
305 /*
306  * Returns false when the remaining initialisation should be deferred until
307  * later in the boot cycle when it can be parallelised.
308  */
309 static inline bool update_defer_init(pg_data_t *pgdat,
310 				unsigned long pfn, unsigned long zone_end,
311 				unsigned long *nr_initialised)
312 {
313 	unsigned long max_initialise;
314 
315 	/* Always populate low zones for address-contrained allocations */
316 	if (zone_end < pgdat_end_pfn(pgdat))
317 		return true;
318 	/*
319 	 * Initialise at least 2G of a node but also take into account that
320 	 * two large system hashes that can take up 1GB for 0.25TB/node.
321 	 */
322 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
323 		(pgdat->node_spanned_pages >> 8));
324 
325 	(*nr_initialised)++;
326 	if ((*nr_initialised > max_initialise) &&
327 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
328 		pgdat->first_deferred_pfn = pfn;
329 		return false;
330 	}
331 
332 	return true;
333 }
334 #else
335 static inline void reset_deferred_meminit(pg_data_t *pgdat)
336 {
337 }
338 
339 static inline bool early_page_uninitialised(unsigned long pfn)
340 {
341 	return false;
342 }
343 
344 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
345 {
346 	return false;
347 }
348 
349 static inline bool update_defer_init(pg_data_t *pgdat,
350 				unsigned long pfn, unsigned long zone_end,
351 				unsigned long *nr_initialised)
352 {
353 	return true;
354 }
355 #endif
356 
357 /* Return a pointer to the bitmap storing bits affecting a block of pages */
358 static inline unsigned long *get_pageblock_bitmap(struct page *page,
359 							unsigned long pfn)
360 {
361 #ifdef CONFIG_SPARSEMEM
362 	return __pfn_to_section(pfn)->pageblock_flags;
363 #else
364 	return page_zone(page)->pageblock_flags;
365 #endif /* CONFIG_SPARSEMEM */
366 }
367 
368 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369 {
370 #ifdef CONFIG_SPARSEMEM
371 	pfn &= (PAGES_PER_SECTION-1);
372 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373 #else
374 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
375 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
376 #endif /* CONFIG_SPARSEMEM */
377 }
378 
379 /**
380  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
381  * @page: The page within the block of interest
382  * @pfn: The target page frame number
383  * @end_bitidx: The last bit of interest to retrieve
384  * @mask: mask of bits that the caller is interested in
385  *
386  * Return: pageblock_bits flags
387  */
388 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 					unsigned long pfn,
390 					unsigned long end_bitidx,
391 					unsigned long mask)
392 {
393 	unsigned long *bitmap;
394 	unsigned long bitidx, word_bitidx;
395 	unsigned long word;
396 
397 	bitmap = get_pageblock_bitmap(page, pfn);
398 	bitidx = pfn_to_bitidx(page, pfn);
399 	word_bitidx = bitidx / BITS_PER_LONG;
400 	bitidx &= (BITS_PER_LONG-1);
401 
402 	word = bitmap[word_bitidx];
403 	bitidx += end_bitidx;
404 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405 }
406 
407 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
408 					unsigned long end_bitidx,
409 					unsigned long mask)
410 {
411 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412 }
413 
414 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415 {
416 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
417 }
418 
419 /**
420  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
421  * @page: The page within the block of interest
422  * @flags: The flags to set
423  * @pfn: The target page frame number
424  * @end_bitidx: The last bit of interest
425  * @mask: mask of bits that the caller is interested in
426  */
427 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 					unsigned long pfn,
429 					unsigned long end_bitidx,
430 					unsigned long mask)
431 {
432 	unsigned long *bitmap;
433 	unsigned long bitidx, word_bitidx;
434 	unsigned long old_word, word;
435 
436 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437 
438 	bitmap = get_pageblock_bitmap(page, pfn);
439 	bitidx = pfn_to_bitidx(page, pfn);
440 	word_bitidx = bitidx / BITS_PER_LONG;
441 	bitidx &= (BITS_PER_LONG-1);
442 
443 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444 
445 	bitidx += end_bitidx;
446 	mask <<= (BITS_PER_LONG - bitidx - 1);
447 	flags <<= (BITS_PER_LONG - bitidx - 1);
448 
449 	word = READ_ONCE(bitmap[word_bitidx]);
450 	for (;;) {
451 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
452 		if (word == old_word)
453 			break;
454 		word = old_word;
455 	}
456 }
457 
458 void set_pageblock_migratetype(struct page *page, int migratetype)
459 {
460 	if (unlikely(page_group_by_mobility_disabled &&
461 		     migratetype < MIGRATE_PCPTYPES))
462 		migratetype = MIGRATE_UNMOVABLE;
463 
464 	set_pageblock_flags_group(page, (unsigned long)migratetype,
465 					PB_migrate, PB_migrate_end);
466 }
467 
468 #ifdef CONFIG_DEBUG_VM
469 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
470 {
471 	int ret = 0;
472 	unsigned seq;
473 	unsigned long pfn = page_to_pfn(page);
474 	unsigned long sp, start_pfn;
475 
476 	do {
477 		seq = zone_span_seqbegin(zone);
478 		start_pfn = zone->zone_start_pfn;
479 		sp = zone->spanned_pages;
480 		if (!zone_spans_pfn(zone, pfn))
481 			ret = 1;
482 	} while (zone_span_seqretry(zone, seq));
483 
484 	if (ret)
485 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
486 			pfn, zone_to_nid(zone), zone->name,
487 			start_pfn, start_pfn + sp);
488 
489 	return ret;
490 }
491 
492 static int page_is_consistent(struct zone *zone, struct page *page)
493 {
494 	if (!pfn_valid_within(page_to_pfn(page)))
495 		return 0;
496 	if (zone != page_zone(page))
497 		return 0;
498 
499 	return 1;
500 }
501 /*
502  * Temporary debugging check for pages not lying within a given zone.
503  */
504 static int bad_range(struct zone *zone, struct page *page)
505 {
506 	if (page_outside_zone_boundaries(zone, page))
507 		return 1;
508 	if (!page_is_consistent(zone, page))
509 		return 1;
510 
511 	return 0;
512 }
513 #else
514 static inline int bad_range(struct zone *zone, struct page *page)
515 {
516 	return 0;
517 }
518 #endif
519 
520 static void bad_page(struct page *page, const char *reason,
521 		unsigned long bad_flags)
522 {
523 	static unsigned long resume;
524 	static unsigned long nr_shown;
525 	static unsigned long nr_unshown;
526 
527 	/*
528 	 * Allow a burst of 60 reports, then keep quiet for that minute;
529 	 * or allow a steady drip of one report per second.
530 	 */
531 	if (nr_shown == 60) {
532 		if (time_before(jiffies, resume)) {
533 			nr_unshown++;
534 			goto out;
535 		}
536 		if (nr_unshown) {
537 			pr_alert(
538 			      "BUG: Bad page state: %lu messages suppressed\n",
539 				nr_unshown);
540 			nr_unshown = 0;
541 		}
542 		nr_shown = 0;
543 	}
544 	if (nr_shown++ == 0)
545 		resume = jiffies + 60 * HZ;
546 
547 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
548 		current->comm, page_to_pfn(page));
549 	__dump_page(page, reason);
550 	bad_flags &= page->flags;
551 	if (bad_flags)
552 		pr_alert("bad because of flags: %#lx(%pGp)\n",
553 						bad_flags, &bad_flags);
554 	dump_page_owner(page);
555 
556 	print_modules();
557 	dump_stack();
558 out:
559 	/* Leave bad fields for debug, except PageBuddy could make trouble */
560 	page_mapcount_reset(page); /* remove PageBuddy */
561 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563 
564 /*
565  * Higher-order pages are called "compound pages".  They are structured thusly:
566  *
567  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
568  *
569  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
570  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
571  *
572  * The first tail page's ->compound_dtor holds the offset in array of compound
573  * page destructors. See compound_page_dtors.
574  *
575  * The first tail page's ->compound_order holds the order of allocation.
576  * This usage means that zero-order pages may not be compound.
577  */
578 
579 void free_compound_page(struct page *page)
580 {
581 	__free_pages_ok(page, compound_order(page));
582 }
583 
584 void prep_compound_page(struct page *page, unsigned int order)
585 {
586 	int i;
587 	int nr_pages = 1 << order;
588 
589 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
590 	set_compound_order(page, order);
591 	__SetPageHead(page);
592 	for (i = 1; i < nr_pages; i++) {
593 		struct page *p = page + i;
594 		set_page_count(p, 0);
595 		p->mapping = TAIL_MAPPING;
596 		set_compound_head(p, page);
597 	}
598 	atomic_set(compound_mapcount_ptr(page), -1);
599 }
600 
601 #ifdef CONFIG_DEBUG_PAGEALLOC
602 unsigned int _debug_guardpage_minorder;
603 bool _debug_pagealloc_enabled __read_mostly
604 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
605 EXPORT_SYMBOL(_debug_pagealloc_enabled);
606 bool _debug_guardpage_enabled __read_mostly;
607 
608 static int __init early_debug_pagealloc(char *buf)
609 {
610 	if (!buf)
611 		return -EINVAL;
612 	return kstrtobool(buf, &_debug_pagealloc_enabled);
613 }
614 early_param("debug_pagealloc", early_debug_pagealloc);
615 
616 static bool need_debug_guardpage(void)
617 {
618 	/* If we don't use debug_pagealloc, we don't need guard page */
619 	if (!debug_pagealloc_enabled())
620 		return false;
621 
622 	return true;
623 }
624 
625 static void init_debug_guardpage(void)
626 {
627 	if (!debug_pagealloc_enabled())
628 		return;
629 
630 	_debug_guardpage_enabled = true;
631 }
632 
633 struct page_ext_operations debug_guardpage_ops = {
634 	.need = need_debug_guardpage,
635 	.init = init_debug_guardpage,
636 };
637 
638 static int __init debug_guardpage_minorder_setup(char *buf)
639 {
640 	unsigned long res;
641 
642 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
643 		pr_err("Bad debug_guardpage_minorder value\n");
644 		return 0;
645 	}
646 	_debug_guardpage_minorder = res;
647 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
648 	return 0;
649 }
650 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
651 
652 static inline void set_page_guard(struct zone *zone, struct page *page,
653 				unsigned int order, int migratetype)
654 {
655 	struct page_ext *page_ext;
656 
657 	if (!debug_guardpage_enabled())
658 		return;
659 
660 	page_ext = lookup_page_ext(page);
661 	if (unlikely(!page_ext))
662 		return;
663 
664 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665 
666 	INIT_LIST_HEAD(&page->lru);
667 	set_page_private(page, order);
668 	/* Guard pages are not available for any usage */
669 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
670 }
671 
672 static inline void clear_page_guard(struct zone *zone, struct page *page,
673 				unsigned int order, int migratetype)
674 {
675 	struct page_ext *page_ext;
676 
677 	if (!debug_guardpage_enabled())
678 		return;
679 
680 	page_ext = lookup_page_ext(page);
681 	if (unlikely(!page_ext))
682 		return;
683 
684 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685 
686 	set_page_private(page, 0);
687 	if (!is_migrate_isolate(migratetype))
688 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
689 }
690 #else
691 struct page_ext_operations debug_guardpage_ops = { NULL, };
692 static inline void set_page_guard(struct zone *zone, struct page *page,
693 				unsigned int order, int migratetype) {}
694 static inline void clear_page_guard(struct zone *zone, struct page *page,
695 				unsigned int order, int migratetype) {}
696 #endif
697 
698 static inline void set_page_order(struct page *page, unsigned int order)
699 {
700 	set_page_private(page, order);
701 	__SetPageBuddy(page);
702 }
703 
704 static inline void rmv_page_order(struct page *page)
705 {
706 	__ClearPageBuddy(page);
707 	set_page_private(page, 0);
708 }
709 
710 /*
711  * This function checks whether a page is free && is the buddy
712  * we can do coalesce a page and its buddy if
713  * (a) the buddy is not in a hole &&
714  * (b) the buddy is in the buddy system &&
715  * (c) a page and its buddy have the same order &&
716  * (d) a page and its buddy are in the same zone.
717  *
718  * For recording whether a page is in the buddy system, we set ->_mapcount
719  * PAGE_BUDDY_MAPCOUNT_VALUE.
720  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
721  * serialized by zone->lock.
722  *
723  * For recording page's order, we use page_private(page).
724  */
725 static inline int page_is_buddy(struct page *page, struct page *buddy,
726 							unsigned int order)
727 {
728 	if (!pfn_valid_within(page_to_pfn(buddy)))
729 		return 0;
730 
731 	if (page_is_guard(buddy) && page_order(buddy) == order) {
732 		if (page_zone_id(page) != page_zone_id(buddy))
733 			return 0;
734 
735 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
736 
737 		return 1;
738 	}
739 
740 	if (PageBuddy(buddy) && page_order(buddy) == order) {
741 		/*
742 		 * zone check is done late to avoid uselessly
743 		 * calculating zone/node ids for pages that could
744 		 * never merge.
745 		 */
746 		if (page_zone_id(page) != page_zone_id(buddy))
747 			return 0;
748 
749 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
750 
751 		return 1;
752 	}
753 	return 0;
754 }
755 
756 /*
757  * Freeing function for a buddy system allocator.
758  *
759  * The concept of a buddy system is to maintain direct-mapped table
760  * (containing bit values) for memory blocks of various "orders".
761  * The bottom level table contains the map for the smallest allocatable
762  * units of memory (here, pages), and each level above it describes
763  * pairs of units from the levels below, hence, "buddies".
764  * At a high level, all that happens here is marking the table entry
765  * at the bottom level available, and propagating the changes upward
766  * as necessary, plus some accounting needed to play nicely with other
767  * parts of the VM system.
768  * At each level, we keep a list of pages, which are heads of continuous
769  * free pages of length of (1 << order) and marked with _mapcount
770  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
771  * field.
772  * So when we are allocating or freeing one, we can derive the state of the
773  * other.  That is, if we allocate a small block, and both were
774  * free, the remainder of the region must be split into blocks.
775  * If a block is freed, and its buddy is also free, then this
776  * triggers coalescing into a block of larger size.
777  *
778  * -- nyc
779  */
780 
781 static inline void __free_one_page(struct page *page,
782 		unsigned long pfn,
783 		struct zone *zone, unsigned int order,
784 		int migratetype)
785 {
786 	unsigned long page_idx;
787 	unsigned long combined_idx;
788 	unsigned long uninitialized_var(buddy_idx);
789 	struct page *buddy;
790 	unsigned int max_order;
791 
792 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
793 
794 	VM_BUG_ON(!zone_is_initialized(zone));
795 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
796 
797 	VM_BUG_ON(migratetype == -1);
798 	if (likely(!is_migrate_isolate(migratetype)))
799 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
800 
801 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
802 
803 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
804 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
805 
806 continue_merging:
807 	while (order < max_order - 1) {
808 		buddy_idx = __find_buddy_index(page_idx, order);
809 		buddy = page + (buddy_idx - page_idx);
810 		if (!page_is_buddy(page, buddy, order))
811 			goto done_merging;
812 		/*
813 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 		 * merge with it and move up one order.
815 		 */
816 		if (page_is_guard(buddy)) {
817 			clear_page_guard(zone, buddy, order, migratetype);
818 		} else {
819 			list_del(&buddy->lru);
820 			zone->free_area[order].nr_free--;
821 			rmv_page_order(buddy);
822 		}
823 		combined_idx = buddy_idx & page_idx;
824 		page = page + (combined_idx - page_idx);
825 		page_idx = combined_idx;
826 		order++;
827 	}
828 	if (max_order < MAX_ORDER) {
829 		/* If we are here, it means order is >= pageblock_order.
830 		 * We want to prevent merge between freepages on isolate
831 		 * pageblock and normal pageblock. Without this, pageblock
832 		 * isolation could cause incorrect freepage or CMA accounting.
833 		 *
834 		 * We don't want to hit this code for the more frequent
835 		 * low-order merging.
836 		 */
837 		if (unlikely(has_isolate_pageblock(zone))) {
838 			int buddy_mt;
839 
840 			buddy_idx = __find_buddy_index(page_idx, order);
841 			buddy = page + (buddy_idx - page_idx);
842 			buddy_mt = get_pageblock_migratetype(buddy);
843 
844 			if (migratetype != buddy_mt
845 					&& (is_migrate_isolate(migratetype) ||
846 						is_migrate_isolate(buddy_mt)))
847 				goto done_merging;
848 		}
849 		max_order++;
850 		goto continue_merging;
851 	}
852 
853 done_merging:
854 	set_page_order(page, order);
855 
856 	/*
857 	 * If this is not the largest possible page, check if the buddy
858 	 * of the next-highest order is free. If it is, it's possible
859 	 * that pages are being freed that will coalesce soon. In case,
860 	 * that is happening, add the free page to the tail of the list
861 	 * so it's less likely to be used soon and more likely to be merged
862 	 * as a higher order page
863 	 */
864 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
865 		struct page *higher_page, *higher_buddy;
866 		combined_idx = buddy_idx & page_idx;
867 		higher_page = page + (combined_idx - page_idx);
868 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
869 		higher_buddy = higher_page + (buddy_idx - combined_idx);
870 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
871 			list_add_tail(&page->lru,
872 				&zone->free_area[order].free_list[migratetype]);
873 			goto out;
874 		}
875 	}
876 
877 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
878 out:
879 	zone->free_area[order].nr_free++;
880 }
881 
882 /*
883  * A bad page could be due to a number of fields. Instead of multiple branches,
884  * try and check multiple fields with one check. The caller must do a detailed
885  * check if necessary.
886  */
887 static inline bool page_expected_state(struct page *page,
888 					unsigned long check_flags)
889 {
890 	if (unlikely(atomic_read(&page->_mapcount) != -1))
891 		return false;
892 
893 	if (unlikely((unsigned long)page->mapping |
894 			page_ref_count(page) |
895 #ifdef CONFIG_MEMCG
896 			(unsigned long)page->mem_cgroup |
897 #endif
898 			(page->flags & check_flags)))
899 		return false;
900 
901 	return true;
902 }
903 
904 static void free_pages_check_bad(struct page *page)
905 {
906 	const char *bad_reason;
907 	unsigned long bad_flags;
908 
909 	bad_reason = NULL;
910 	bad_flags = 0;
911 
912 	if (unlikely(atomic_read(&page->_mapcount) != -1))
913 		bad_reason = "nonzero mapcount";
914 	if (unlikely(page->mapping != NULL))
915 		bad_reason = "non-NULL mapping";
916 	if (unlikely(page_ref_count(page) != 0))
917 		bad_reason = "nonzero _refcount";
918 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
919 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
920 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
921 	}
922 #ifdef CONFIG_MEMCG
923 	if (unlikely(page->mem_cgroup))
924 		bad_reason = "page still charged to cgroup";
925 #endif
926 	bad_page(page, bad_reason, bad_flags);
927 }
928 
929 static inline int free_pages_check(struct page *page)
930 {
931 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
932 		return 0;
933 
934 	/* Something has gone sideways, find it */
935 	free_pages_check_bad(page);
936 	return 1;
937 }
938 
939 static int free_tail_pages_check(struct page *head_page, struct page *page)
940 {
941 	int ret = 1;
942 
943 	/*
944 	 * We rely page->lru.next never has bit 0 set, unless the page
945 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 	 */
947 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948 
949 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
950 		ret = 0;
951 		goto out;
952 	}
953 	switch (page - head_page) {
954 	case 1:
955 		/* the first tail page: ->mapping is compound_mapcount() */
956 		if (unlikely(compound_mapcount(page))) {
957 			bad_page(page, "nonzero compound_mapcount", 0);
958 			goto out;
959 		}
960 		break;
961 	case 2:
962 		/*
963 		 * the second tail page: ->mapping is
964 		 * page_deferred_list().next -- ignore value.
965 		 */
966 		break;
967 	default:
968 		if (page->mapping != TAIL_MAPPING) {
969 			bad_page(page, "corrupted mapping in tail page", 0);
970 			goto out;
971 		}
972 		break;
973 	}
974 	if (unlikely(!PageTail(page))) {
975 		bad_page(page, "PageTail not set", 0);
976 		goto out;
977 	}
978 	if (unlikely(compound_head(page) != head_page)) {
979 		bad_page(page, "compound_head not consistent", 0);
980 		goto out;
981 	}
982 	ret = 0;
983 out:
984 	page->mapping = NULL;
985 	clear_compound_head(page);
986 	return ret;
987 }
988 
989 static __always_inline bool free_pages_prepare(struct page *page,
990 					unsigned int order, bool check_free)
991 {
992 	int bad = 0;
993 
994 	VM_BUG_ON_PAGE(PageTail(page), page);
995 
996 	trace_mm_page_free(page, order);
997 	kmemcheck_free_shadow(page, order);
998 
999 	/*
1000 	 * Check tail pages before head page information is cleared to
1001 	 * avoid checking PageCompound for order-0 pages.
1002 	 */
1003 	if (unlikely(order)) {
1004 		bool compound = PageCompound(page);
1005 		int i;
1006 
1007 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1008 
1009 		for (i = 1; i < (1 << order); i++) {
1010 			if (compound)
1011 				bad += free_tail_pages_check(page, page + i);
1012 			if (unlikely(free_pages_check(page + i))) {
1013 				bad++;
1014 				continue;
1015 			}
1016 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 		}
1018 	}
1019 	if (PageAnonHead(page))
1020 		page->mapping = NULL;
1021 	if (check_free)
1022 		bad += free_pages_check(page);
1023 	if (bad)
1024 		return false;
1025 
1026 	page_cpupid_reset_last(page);
1027 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 	reset_page_owner(page, order);
1029 
1030 	if (!PageHighMem(page)) {
1031 		debug_check_no_locks_freed(page_address(page),
1032 					   PAGE_SIZE << order);
1033 		debug_check_no_obj_freed(page_address(page),
1034 					   PAGE_SIZE << order);
1035 	}
1036 	arch_free_page(page, order);
1037 	kernel_poison_pages(page, 1 << order, 0);
1038 	kernel_map_pages(page, 1 << order, 0);
1039 	kasan_free_pages(page, order);
1040 
1041 	return true;
1042 }
1043 
1044 #ifdef CONFIG_DEBUG_VM
1045 static inline bool free_pcp_prepare(struct page *page)
1046 {
1047 	return free_pages_prepare(page, 0, true);
1048 }
1049 
1050 static inline bool bulkfree_pcp_prepare(struct page *page)
1051 {
1052 	return false;
1053 }
1054 #else
1055 static bool free_pcp_prepare(struct page *page)
1056 {
1057 	return free_pages_prepare(page, 0, false);
1058 }
1059 
1060 static bool bulkfree_pcp_prepare(struct page *page)
1061 {
1062 	return free_pages_check(page);
1063 }
1064 #endif /* CONFIG_DEBUG_VM */
1065 
1066 /*
1067  * Frees a number of pages from the PCP lists
1068  * Assumes all pages on list are in same zone, and of same order.
1069  * count is the number of pages to free.
1070  *
1071  * If the zone was previously in an "all pages pinned" state then look to
1072  * see if this freeing clears that state.
1073  *
1074  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075  * pinned" detection logic.
1076  */
1077 static void free_pcppages_bulk(struct zone *zone, int count,
1078 					struct per_cpu_pages *pcp)
1079 {
1080 	int migratetype = 0;
1081 	int batch_free = 0;
1082 	unsigned long nr_scanned;
1083 	bool isolated_pageblocks;
1084 
1085 	spin_lock(&zone->lock);
1086 	isolated_pageblocks = has_isolate_pageblock(zone);
1087 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1088 	if (nr_scanned)
1089 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1090 
1091 	while (count) {
1092 		struct page *page;
1093 		struct list_head *list;
1094 
1095 		/*
1096 		 * Remove pages from lists in a round-robin fashion. A
1097 		 * batch_free count is maintained that is incremented when an
1098 		 * empty list is encountered.  This is so more pages are freed
1099 		 * off fuller lists instead of spinning excessively around empty
1100 		 * lists
1101 		 */
1102 		do {
1103 			batch_free++;
1104 			if (++migratetype == MIGRATE_PCPTYPES)
1105 				migratetype = 0;
1106 			list = &pcp->lists[migratetype];
1107 		} while (list_empty(list));
1108 
1109 		/* This is the only non-empty list. Free them all. */
1110 		if (batch_free == MIGRATE_PCPTYPES)
1111 			batch_free = count;
1112 
1113 		do {
1114 			int mt;	/* migratetype of the to-be-freed page */
1115 
1116 			page = list_last_entry(list, struct page, lru);
1117 			/* must delete as __free_one_page list manipulates */
1118 			list_del(&page->lru);
1119 
1120 			mt = get_pcppage_migratetype(page);
1121 			/* MIGRATE_ISOLATE page should not go to pcplists */
1122 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1123 			/* Pageblock could have been isolated meanwhile */
1124 			if (unlikely(isolated_pageblocks))
1125 				mt = get_pageblock_migratetype(page);
1126 
1127 			if (bulkfree_pcp_prepare(page))
1128 				continue;
1129 
1130 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1131 			trace_mm_page_pcpu_drain(page, 0, mt);
1132 		} while (--count && --batch_free && !list_empty(list));
1133 	}
1134 	spin_unlock(&zone->lock);
1135 }
1136 
1137 static void free_one_page(struct zone *zone,
1138 				struct page *page, unsigned long pfn,
1139 				unsigned int order,
1140 				int migratetype)
1141 {
1142 	unsigned long nr_scanned;
1143 	spin_lock(&zone->lock);
1144 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1145 	if (nr_scanned)
1146 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1147 
1148 	if (unlikely(has_isolate_pageblock(zone) ||
1149 		is_migrate_isolate(migratetype))) {
1150 		migratetype = get_pfnblock_migratetype(page, pfn);
1151 	}
1152 	__free_one_page(page, pfn, zone, order, migratetype);
1153 	spin_unlock(&zone->lock);
1154 }
1155 
1156 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1157 				unsigned long zone, int nid)
1158 {
1159 	set_page_links(page, zone, nid, pfn);
1160 	init_page_count(page);
1161 	page_mapcount_reset(page);
1162 	page_cpupid_reset_last(page);
1163 
1164 	INIT_LIST_HEAD(&page->lru);
1165 #ifdef WANT_PAGE_VIRTUAL
1166 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 	if (!is_highmem_idx(zone))
1168 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1169 #endif
1170 }
1171 
1172 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1173 					int nid)
1174 {
1175 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176 }
1177 
1178 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179 static void init_reserved_page(unsigned long pfn)
1180 {
1181 	pg_data_t *pgdat;
1182 	int nid, zid;
1183 
1184 	if (!early_page_uninitialised(pfn))
1185 		return;
1186 
1187 	nid = early_pfn_to_nid(pfn);
1188 	pgdat = NODE_DATA(nid);
1189 
1190 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 		struct zone *zone = &pgdat->node_zones[zid];
1192 
1193 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1194 			break;
1195 	}
1196 	__init_single_pfn(pfn, zid, nid);
1197 }
1198 #else
1199 static inline void init_reserved_page(unsigned long pfn)
1200 {
1201 }
1202 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203 
1204 /*
1205  * Initialised pages do not have PageReserved set. This function is
1206  * called for each range allocated by the bootmem allocator and
1207  * marks the pages PageReserved. The remaining valid pages are later
1208  * sent to the buddy page allocator.
1209  */
1210 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1211 {
1212 	unsigned long start_pfn = PFN_DOWN(start);
1213 	unsigned long end_pfn = PFN_UP(end);
1214 
1215 	for (; start_pfn < end_pfn; start_pfn++) {
1216 		if (pfn_valid(start_pfn)) {
1217 			struct page *page = pfn_to_page(start_pfn);
1218 
1219 			init_reserved_page(start_pfn);
1220 
1221 			/* Avoid false-positive PageTail() */
1222 			INIT_LIST_HEAD(&page->lru);
1223 
1224 			SetPageReserved(page);
1225 		}
1226 	}
1227 }
1228 
1229 static void __free_pages_ok(struct page *page, unsigned int order)
1230 {
1231 	unsigned long flags;
1232 	int migratetype;
1233 	unsigned long pfn = page_to_pfn(page);
1234 
1235 	if (!free_pages_prepare(page, order, true))
1236 		return;
1237 
1238 	migratetype = get_pfnblock_migratetype(page, pfn);
1239 	local_irq_save(flags);
1240 	__count_vm_events(PGFREE, 1 << order);
1241 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1242 	local_irq_restore(flags);
1243 }
1244 
1245 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1246 {
1247 	unsigned int nr_pages = 1 << order;
1248 	struct page *p = page;
1249 	unsigned int loop;
1250 
1251 	prefetchw(p);
1252 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1253 		prefetchw(p + 1);
1254 		__ClearPageReserved(p);
1255 		set_page_count(p, 0);
1256 	}
1257 	__ClearPageReserved(p);
1258 	set_page_count(p, 0);
1259 
1260 	page_zone(page)->managed_pages += nr_pages;
1261 	set_page_refcounted(page);
1262 	__free_pages(page, order);
1263 }
1264 
1265 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1266 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1267 
1268 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1269 
1270 int __meminit early_pfn_to_nid(unsigned long pfn)
1271 {
1272 	static DEFINE_SPINLOCK(early_pfn_lock);
1273 	int nid;
1274 
1275 	spin_lock(&early_pfn_lock);
1276 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1277 	if (nid < 0)
1278 		nid = first_online_node;
1279 	spin_unlock(&early_pfn_lock);
1280 
1281 	return nid;
1282 }
1283 #endif
1284 
1285 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1286 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1287 					struct mminit_pfnnid_cache *state)
1288 {
1289 	int nid;
1290 
1291 	nid = __early_pfn_to_nid(pfn, state);
1292 	if (nid >= 0 && nid != node)
1293 		return false;
1294 	return true;
1295 }
1296 
1297 /* Only safe to use early in boot when initialisation is single-threaded */
1298 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1299 {
1300 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1301 }
1302 
1303 #else
1304 
1305 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306 {
1307 	return true;
1308 }
1309 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1310 					struct mminit_pfnnid_cache *state)
1311 {
1312 	return true;
1313 }
1314 #endif
1315 
1316 
1317 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1318 							unsigned int order)
1319 {
1320 	if (early_page_uninitialised(pfn))
1321 		return;
1322 	return __free_pages_boot_core(page, order);
1323 }
1324 
1325 /*
1326  * Check that the whole (or subset of) a pageblock given by the interval of
1327  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1328  * with the migration of free compaction scanner. The scanners then need to
1329  * use only pfn_valid_within() check for arches that allow holes within
1330  * pageblocks.
1331  *
1332  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333  *
1334  * It's possible on some configurations to have a setup like node0 node1 node0
1335  * i.e. it's possible that all pages within a zones range of pages do not
1336  * belong to a single zone. We assume that a border between node0 and node1
1337  * can occur within a single pageblock, but not a node0 node1 node0
1338  * interleaving within a single pageblock. It is therefore sufficient to check
1339  * the first and last page of a pageblock and avoid checking each individual
1340  * page in a pageblock.
1341  */
1342 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1343 				     unsigned long end_pfn, struct zone *zone)
1344 {
1345 	struct page *start_page;
1346 	struct page *end_page;
1347 
1348 	/* end_pfn is one past the range we are checking */
1349 	end_pfn--;
1350 
1351 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1352 		return NULL;
1353 
1354 	start_page = pfn_to_page(start_pfn);
1355 
1356 	if (page_zone(start_page) != zone)
1357 		return NULL;
1358 
1359 	end_page = pfn_to_page(end_pfn);
1360 
1361 	/* This gives a shorter code than deriving page_zone(end_page) */
1362 	if (page_zone_id(start_page) != page_zone_id(end_page))
1363 		return NULL;
1364 
1365 	return start_page;
1366 }
1367 
1368 void set_zone_contiguous(struct zone *zone)
1369 {
1370 	unsigned long block_start_pfn = zone->zone_start_pfn;
1371 	unsigned long block_end_pfn;
1372 
1373 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1374 	for (; block_start_pfn < zone_end_pfn(zone);
1375 			block_start_pfn = block_end_pfn,
1376 			 block_end_pfn += pageblock_nr_pages) {
1377 
1378 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1379 
1380 		if (!__pageblock_pfn_to_page(block_start_pfn,
1381 					     block_end_pfn, zone))
1382 			return;
1383 	}
1384 
1385 	/* We confirm that there is no hole */
1386 	zone->contiguous = true;
1387 }
1388 
1389 void clear_zone_contiguous(struct zone *zone)
1390 {
1391 	zone->contiguous = false;
1392 }
1393 
1394 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1395 static void __init deferred_free_range(struct page *page,
1396 					unsigned long pfn, int nr_pages)
1397 {
1398 	int i;
1399 
1400 	if (!page)
1401 		return;
1402 
1403 	/* Free a large naturally-aligned chunk if possible */
1404 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1405 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1406 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1407 		__free_pages_boot_core(page, MAX_ORDER-1);
1408 		return;
1409 	}
1410 
1411 	for (i = 0; i < nr_pages; i++, page++)
1412 		__free_pages_boot_core(page, 0);
1413 }
1414 
1415 /* Completion tracking for deferred_init_memmap() threads */
1416 static atomic_t pgdat_init_n_undone __initdata;
1417 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1418 
1419 static inline void __init pgdat_init_report_one_done(void)
1420 {
1421 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1422 		complete(&pgdat_init_all_done_comp);
1423 }
1424 
1425 /* Initialise remaining memory on a node */
1426 static int __init deferred_init_memmap(void *data)
1427 {
1428 	pg_data_t *pgdat = data;
1429 	int nid = pgdat->node_id;
1430 	struct mminit_pfnnid_cache nid_init_state = { };
1431 	unsigned long start = jiffies;
1432 	unsigned long nr_pages = 0;
1433 	unsigned long walk_start, walk_end;
1434 	int i, zid;
1435 	struct zone *zone;
1436 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1437 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1438 
1439 	if (first_init_pfn == ULONG_MAX) {
1440 		pgdat_init_report_one_done();
1441 		return 0;
1442 	}
1443 
1444 	/* Bind memory initialisation thread to a local node if possible */
1445 	if (!cpumask_empty(cpumask))
1446 		set_cpus_allowed_ptr(current, cpumask);
1447 
1448 	/* Sanity check boundaries */
1449 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1450 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1451 	pgdat->first_deferred_pfn = ULONG_MAX;
1452 
1453 	/* Only the highest zone is deferred so find it */
1454 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 		zone = pgdat->node_zones + zid;
1456 		if (first_init_pfn < zone_end_pfn(zone))
1457 			break;
1458 	}
1459 
1460 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1461 		unsigned long pfn, end_pfn;
1462 		struct page *page = NULL;
1463 		struct page *free_base_page = NULL;
1464 		unsigned long free_base_pfn = 0;
1465 		int nr_to_free = 0;
1466 
1467 		end_pfn = min(walk_end, zone_end_pfn(zone));
1468 		pfn = first_init_pfn;
1469 		if (pfn < walk_start)
1470 			pfn = walk_start;
1471 		if (pfn < zone->zone_start_pfn)
1472 			pfn = zone->zone_start_pfn;
1473 
1474 		for (; pfn < end_pfn; pfn++) {
1475 			if (!pfn_valid_within(pfn))
1476 				goto free_range;
1477 
1478 			/*
1479 			 * Ensure pfn_valid is checked every
1480 			 * MAX_ORDER_NR_PAGES for memory holes
1481 			 */
1482 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1483 				if (!pfn_valid(pfn)) {
1484 					page = NULL;
1485 					goto free_range;
1486 				}
1487 			}
1488 
1489 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1490 				page = NULL;
1491 				goto free_range;
1492 			}
1493 
1494 			/* Minimise pfn page lookups and scheduler checks */
1495 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1496 				page++;
1497 			} else {
1498 				nr_pages += nr_to_free;
1499 				deferred_free_range(free_base_page,
1500 						free_base_pfn, nr_to_free);
1501 				free_base_page = NULL;
1502 				free_base_pfn = nr_to_free = 0;
1503 
1504 				page = pfn_to_page(pfn);
1505 				cond_resched();
1506 			}
1507 
1508 			if (page->flags) {
1509 				VM_BUG_ON(page_zone(page) != zone);
1510 				goto free_range;
1511 			}
1512 
1513 			__init_single_page(page, pfn, zid, nid);
1514 			if (!free_base_page) {
1515 				free_base_page = page;
1516 				free_base_pfn = pfn;
1517 				nr_to_free = 0;
1518 			}
1519 			nr_to_free++;
1520 
1521 			/* Where possible, batch up pages for a single free */
1522 			continue;
1523 free_range:
1524 			/* Free the current block of pages to allocator */
1525 			nr_pages += nr_to_free;
1526 			deferred_free_range(free_base_page, free_base_pfn,
1527 								nr_to_free);
1528 			free_base_page = NULL;
1529 			free_base_pfn = nr_to_free = 0;
1530 		}
1531 
1532 		first_init_pfn = max(end_pfn, first_init_pfn);
1533 	}
1534 
1535 	/* Sanity check that the next zone really is unpopulated */
1536 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1537 
1538 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1539 					jiffies_to_msecs(jiffies - start));
1540 
1541 	pgdat_init_report_one_done();
1542 	return 0;
1543 }
1544 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1545 
1546 void __init page_alloc_init_late(void)
1547 {
1548 	struct zone *zone;
1549 
1550 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1551 	int nid;
1552 
1553 	/* There will be num_node_state(N_MEMORY) threads */
1554 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1555 	for_each_node_state(nid, N_MEMORY) {
1556 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1557 	}
1558 
1559 	/* Block until all are initialised */
1560 	wait_for_completion(&pgdat_init_all_done_comp);
1561 
1562 	/* Reinit limits that are based on free pages after the kernel is up */
1563 	files_maxfiles_init();
1564 #endif
1565 
1566 	for_each_populated_zone(zone)
1567 		set_zone_contiguous(zone);
1568 }
1569 
1570 #ifdef CONFIG_CMA
1571 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1572 void __init init_cma_reserved_pageblock(struct page *page)
1573 {
1574 	unsigned i = pageblock_nr_pages;
1575 	struct page *p = page;
1576 
1577 	do {
1578 		__ClearPageReserved(p);
1579 		set_page_count(p, 0);
1580 	} while (++p, --i);
1581 
1582 	set_pageblock_migratetype(page, MIGRATE_CMA);
1583 
1584 	if (pageblock_order >= MAX_ORDER) {
1585 		i = pageblock_nr_pages;
1586 		p = page;
1587 		do {
1588 			set_page_refcounted(p);
1589 			__free_pages(p, MAX_ORDER - 1);
1590 			p += MAX_ORDER_NR_PAGES;
1591 		} while (i -= MAX_ORDER_NR_PAGES);
1592 	} else {
1593 		set_page_refcounted(page);
1594 		__free_pages(page, pageblock_order);
1595 	}
1596 
1597 	adjust_managed_page_count(page, pageblock_nr_pages);
1598 }
1599 #endif
1600 
1601 /*
1602  * The order of subdivision here is critical for the IO subsystem.
1603  * Please do not alter this order without good reasons and regression
1604  * testing. Specifically, as large blocks of memory are subdivided,
1605  * the order in which smaller blocks are delivered depends on the order
1606  * they're subdivided in this function. This is the primary factor
1607  * influencing the order in which pages are delivered to the IO
1608  * subsystem according to empirical testing, and this is also justified
1609  * by considering the behavior of a buddy system containing a single
1610  * large block of memory acted on by a series of small allocations.
1611  * This behavior is a critical factor in sglist merging's success.
1612  *
1613  * -- nyc
1614  */
1615 static inline void expand(struct zone *zone, struct page *page,
1616 	int low, int high, struct free_area *area,
1617 	int migratetype)
1618 {
1619 	unsigned long size = 1 << high;
1620 
1621 	while (high > low) {
1622 		area--;
1623 		high--;
1624 		size >>= 1;
1625 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1626 
1627 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1628 			debug_guardpage_enabled() &&
1629 			high < debug_guardpage_minorder()) {
1630 			/*
1631 			 * Mark as guard pages (or page), that will allow to
1632 			 * merge back to allocator when buddy will be freed.
1633 			 * Corresponding page table entries will not be touched,
1634 			 * pages will stay not present in virtual address space
1635 			 */
1636 			set_page_guard(zone, &page[size], high, migratetype);
1637 			continue;
1638 		}
1639 		list_add(&page[size].lru, &area->free_list[migratetype]);
1640 		area->nr_free++;
1641 		set_page_order(&page[size], high);
1642 	}
1643 }
1644 
1645 static void check_new_page_bad(struct page *page)
1646 {
1647 	const char *bad_reason = NULL;
1648 	unsigned long bad_flags = 0;
1649 
1650 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1651 		bad_reason = "nonzero mapcount";
1652 	if (unlikely(page->mapping != NULL))
1653 		bad_reason = "non-NULL mapping";
1654 	if (unlikely(page_ref_count(page) != 0))
1655 		bad_reason = "nonzero _count";
1656 	if (unlikely(page->flags & __PG_HWPOISON)) {
1657 		bad_reason = "HWPoisoned (hardware-corrupted)";
1658 		bad_flags = __PG_HWPOISON;
1659 		/* Don't complain about hwpoisoned pages */
1660 		page_mapcount_reset(page); /* remove PageBuddy */
1661 		return;
1662 	}
1663 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1664 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1666 	}
1667 #ifdef CONFIG_MEMCG
1668 	if (unlikely(page->mem_cgroup))
1669 		bad_reason = "page still charged to cgroup";
1670 #endif
1671 	bad_page(page, bad_reason, bad_flags);
1672 }
1673 
1674 /*
1675  * This page is about to be returned from the page allocator
1676  */
1677 static inline int check_new_page(struct page *page)
1678 {
1679 	if (likely(page_expected_state(page,
1680 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1681 		return 0;
1682 
1683 	check_new_page_bad(page);
1684 	return 1;
1685 }
1686 
1687 static inline bool free_pages_prezeroed(bool poisoned)
1688 {
1689 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1690 		page_poisoning_enabled() && poisoned;
1691 }
1692 
1693 #ifdef CONFIG_DEBUG_VM
1694 static bool check_pcp_refill(struct page *page)
1695 {
1696 	return false;
1697 }
1698 
1699 static bool check_new_pcp(struct page *page)
1700 {
1701 	return check_new_page(page);
1702 }
1703 #else
1704 static bool check_pcp_refill(struct page *page)
1705 {
1706 	return check_new_page(page);
1707 }
1708 static bool check_new_pcp(struct page *page)
1709 {
1710 	return false;
1711 }
1712 #endif /* CONFIG_DEBUG_VM */
1713 
1714 static bool check_new_pages(struct page *page, unsigned int order)
1715 {
1716 	int i;
1717 	for (i = 0; i < (1 << order); i++) {
1718 		struct page *p = page + i;
1719 
1720 		if (unlikely(check_new_page(p)))
1721 			return true;
1722 	}
1723 
1724 	return false;
1725 }
1726 
1727 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1728 							unsigned int alloc_flags)
1729 {
1730 	int i;
1731 	bool poisoned = true;
1732 
1733 	for (i = 0; i < (1 << order); i++) {
1734 		struct page *p = page + i;
1735 		if (poisoned)
1736 			poisoned &= page_is_poisoned(p);
1737 	}
1738 
1739 	set_page_private(page, 0);
1740 	set_page_refcounted(page);
1741 
1742 	arch_alloc_page(page, order);
1743 	kernel_map_pages(page, 1 << order, 1);
1744 	kernel_poison_pages(page, 1 << order, 1);
1745 	kasan_alloc_pages(page, order);
1746 
1747 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1748 		for (i = 0; i < (1 << order); i++)
1749 			clear_highpage(page + i);
1750 
1751 	if (order && (gfp_flags & __GFP_COMP))
1752 		prep_compound_page(page, order);
1753 
1754 	set_page_owner(page, order, gfp_flags);
1755 
1756 	/*
1757 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1758 	 * allocate the page. The expectation is that the caller is taking
1759 	 * steps that will free more memory. The caller should avoid the page
1760 	 * being used for !PFMEMALLOC purposes.
1761 	 */
1762 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1763 		set_page_pfmemalloc(page);
1764 	else
1765 		clear_page_pfmemalloc(page);
1766 }
1767 
1768 /*
1769  * Go through the free lists for the given migratetype and remove
1770  * the smallest available page from the freelists
1771  */
1772 static inline
1773 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1774 						int migratetype)
1775 {
1776 	unsigned int current_order;
1777 	struct free_area *area;
1778 	struct page *page;
1779 
1780 	/* Find a page of the appropriate size in the preferred list */
1781 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1782 		area = &(zone->free_area[current_order]);
1783 		page = list_first_entry_or_null(&area->free_list[migratetype],
1784 							struct page, lru);
1785 		if (!page)
1786 			continue;
1787 		list_del(&page->lru);
1788 		rmv_page_order(page);
1789 		area->nr_free--;
1790 		expand(zone, page, order, current_order, area, migratetype);
1791 		set_pcppage_migratetype(page, migratetype);
1792 		return page;
1793 	}
1794 
1795 	return NULL;
1796 }
1797 
1798 
1799 /*
1800  * This array describes the order lists are fallen back to when
1801  * the free lists for the desirable migrate type are depleted
1802  */
1803 static int fallbacks[MIGRATE_TYPES][4] = {
1804 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1805 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1806 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1807 #ifdef CONFIG_CMA
1808 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1809 #endif
1810 #ifdef CONFIG_MEMORY_ISOLATION
1811 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1812 #endif
1813 };
1814 
1815 #ifdef CONFIG_CMA
1816 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1817 					unsigned int order)
1818 {
1819 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1820 }
1821 #else
1822 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1823 					unsigned int order) { return NULL; }
1824 #endif
1825 
1826 /*
1827  * Move the free pages in a range to the free lists of the requested type.
1828  * Note that start_page and end_pages are not aligned on a pageblock
1829  * boundary. If alignment is required, use move_freepages_block()
1830  */
1831 int move_freepages(struct zone *zone,
1832 			  struct page *start_page, struct page *end_page,
1833 			  int migratetype)
1834 {
1835 	struct page *page;
1836 	unsigned int order;
1837 	int pages_moved = 0;
1838 
1839 #ifndef CONFIG_HOLES_IN_ZONE
1840 	/*
1841 	 * page_zone is not safe to call in this context when
1842 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1843 	 * anyway as we check zone boundaries in move_freepages_block().
1844 	 * Remove at a later date when no bug reports exist related to
1845 	 * grouping pages by mobility
1846 	 */
1847 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1848 #endif
1849 
1850 	for (page = start_page; page <= end_page;) {
1851 		/* Make sure we are not inadvertently changing nodes */
1852 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1853 
1854 		if (!pfn_valid_within(page_to_pfn(page))) {
1855 			page++;
1856 			continue;
1857 		}
1858 
1859 		if (!PageBuddy(page)) {
1860 			page++;
1861 			continue;
1862 		}
1863 
1864 		order = page_order(page);
1865 		list_move(&page->lru,
1866 			  &zone->free_area[order].free_list[migratetype]);
1867 		page += 1 << order;
1868 		pages_moved += 1 << order;
1869 	}
1870 
1871 	return pages_moved;
1872 }
1873 
1874 int move_freepages_block(struct zone *zone, struct page *page,
1875 				int migratetype)
1876 {
1877 	unsigned long start_pfn, end_pfn;
1878 	struct page *start_page, *end_page;
1879 
1880 	start_pfn = page_to_pfn(page);
1881 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1882 	start_page = pfn_to_page(start_pfn);
1883 	end_page = start_page + pageblock_nr_pages - 1;
1884 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1885 
1886 	/* Do not cross zone boundaries */
1887 	if (!zone_spans_pfn(zone, start_pfn))
1888 		start_page = page;
1889 	if (!zone_spans_pfn(zone, end_pfn))
1890 		return 0;
1891 
1892 	return move_freepages(zone, start_page, end_page, migratetype);
1893 }
1894 
1895 static void change_pageblock_range(struct page *pageblock_page,
1896 					int start_order, int migratetype)
1897 {
1898 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1899 
1900 	while (nr_pageblocks--) {
1901 		set_pageblock_migratetype(pageblock_page, migratetype);
1902 		pageblock_page += pageblock_nr_pages;
1903 	}
1904 }
1905 
1906 /*
1907  * When we are falling back to another migratetype during allocation, try to
1908  * steal extra free pages from the same pageblocks to satisfy further
1909  * allocations, instead of polluting multiple pageblocks.
1910  *
1911  * If we are stealing a relatively large buddy page, it is likely there will
1912  * be more free pages in the pageblock, so try to steal them all. For
1913  * reclaimable and unmovable allocations, we steal regardless of page size,
1914  * as fragmentation caused by those allocations polluting movable pageblocks
1915  * is worse than movable allocations stealing from unmovable and reclaimable
1916  * pageblocks.
1917  */
1918 static bool can_steal_fallback(unsigned int order, int start_mt)
1919 {
1920 	/*
1921 	 * Leaving this order check is intended, although there is
1922 	 * relaxed order check in next check. The reason is that
1923 	 * we can actually steal whole pageblock if this condition met,
1924 	 * but, below check doesn't guarantee it and that is just heuristic
1925 	 * so could be changed anytime.
1926 	 */
1927 	if (order >= pageblock_order)
1928 		return true;
1929 
1930 	if (order >= pageblock_order / 2 ||
1931 		start_mt == MIGRATE_RECLAIMABLE ||
1932 		start_mt == MIGRATE_UNMOVABLE ||
1933 		page_group_by_mobility_disabled)
1934 		return true;
1935 
1936 	return false;
1937 }
1938 
1939 /*
1940  * This function implements actual steal behaviour. If order is large enough,
1941  * we can steal whole pageblock. If not, we first move freepages in this
1942  * pageblock and check whether half of pages are moved or not. If half of
1943  * pages are moved, we can change migratetype of pageblock and permanently
1944  * use it's pages as requested migratetype in the future.
1945  */
1946 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1947 							  int start_type)
1948 {
1949 	unsigned int current_order = page_order(page);
1950 	int pages;
1951 
1952 	/* Take ownership for orders >= pageblock_order */
1953 	if (current_order >= pageblock_order) {
1954 		change_pageblock_range(page, current_order, start_type);
1955 		return;
1956 	}
1957 
1958 	pages = move_freepages_block(zone, page, start_type);
1959 
1960 	/* Claim the whole block if over half of it is free */
1961 	if (pages >= (1 << (pageblock_order-1)) ||
1962 			page_group_by_mobility_disabled)
1963 		set_pageblock_migratetype(page, start_type);
1964 }
1965 
1966 /*
1967  * Check whether there is a suitable fallback freepage with requested order.
1968  * If only_stealable is true, this function returns fallback_mt only if
1969  * we can steal other freepages all together. This would help to reduce
1970  * fragmentation due to mixed migratetype pages in one pageblock.
1971  */
1972 int find_suitable_fallback(struct free_area *area, unsigned int order,
1973 			int migratetype, bool only_stealable, bool *can_steal)
1974 {
1975 	int i;
1976 	int fallback_mt;
1977 
1978 	if (area->nr_free == 0)
1979 		return -1;
1980 
1981 	*can_steal = false;
1982 	for (i = 0;; i++) {
1983 		fallback_mt = fallbacks[migratetype][i];
1984 		if (fallback_mt == MIGRATE_TYPES)
1985 			break;
1986 
1987 		if (list_empty(&area->free_list[fallback_mt]))
1988 			continue;
1989 
1990 		if (can_steal_fallback(order, migratetype))
1991 			*can_steal = true;
1992 
1993 		if (!only_stealable)
1994 			return fallback_mt;
1995 
1996 		if (*can_steal)
1997 			return fallback_mt;
1998 	}
1999 
2000 	return -1;
2001 }
2002 
2003 /*
2004  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2005  * there are no empty page blocks that contain a page with a suitable order
2006  */
2007 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2008 				unsigned int alloc_order)
2009 {
2010 	int mt;
2011 	unsigned long max_managed, flags;
2012 
2013 	/*
2014 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2015 	 * Check is race-prone but harmless.
2016 	 */
2017 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2018 	if (zone->nr_reserved_highatomic >= max_managed)
2019 		return;
2020 
2021 	spin_lock_irqsave(&zone->lock, flags);
2022 
2023 	/* Recheck the nr_reserved_highatomic limit under the lock */
2024 	if (zone->nr_reserved_highatomic >= max_managed)
2025 		goto out_unlock;
2026 
2027 	/* Yoink! */
2028 	mt = get_pageblock_migratetype(page);
2029 	if (mt != MIGRATE_HIGHATOMIC &&
2030 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2031 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2032 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2033 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2034 	}
2035 
2036 out_unlock:
2037 	spin_unlock_irqrestore(&zone->lock, flags);
2038 }
2039 
2040 /*
2041  * Used when an allocation is about to fail under memory pressure. This
2042  * potentially hurts the reliability of high-order allocations when under
2043  * intense memory pressure but failed atomic allocations should be easier
2044  * to recover from than an OOM.
2045  */
2046 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2047 {
2048 	struct zonelist *zonelist = ac->zonelist;
2049 	unsigned long flags;
2050 	struct zoneref *z;
2051 	struct zone *zone;
2052 	struct page *page;
2053 	int order;
2054 
2055 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2056 								ac->nodemask) {
2057 		/* Preserve at least one pageblock */
2058 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2059 			continue;
2060 
2061 		spin_lock_irqsave(&zone->lock, flags);
2062 		for (order = 0; order < MAX_ORDER; order++) {
2063 			struct free_area *area = &(zone->free_area[order]);
2064 
2065 			page = list_first_entry_or_null(
2066 					&area->free_list[MIGRATE_HIGHATOMIC],
2067 					struct page, lru);
2068 			if (!page)
2069 				continue;
2070 
2071 			/*
2072 			 * It should never happen but changes to locking could
2073 			 * inadvertently allow a per-cpu drain to add pages
2074 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2075 			 * and watch for underflows.
2076 			 */
2077 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2078 				zone->nr_reserved_highatomic);
2079 
2080 			/*
2081 			 * Convert to ac->migratetype and avoid the normal
2082 			 * pageblock stealing heuristics. Minimally, the caller
2083 			 * is doing the work and needs the pages. More
2084 			 * importantly, if the block was always converted to
2085 			 * MIGRATE_UNMOVABLE or another type then the number
2086 			 * of pageblocks that cannot be completely freed
2087 			 * may increase.
2088 			 */
2089 			set_pageblock_migratetype(page, ac->migratetype);
2090 			move_freepages_block(zone, page, ac->migratetype);
2091 			spin_unlock_irqrestore(&zone->lock, flags);
2092 			return;
2093 		}
2094 		spin_unlock_irqrestore(&zone->lock, flags);
2095 	}
2096 }
2097 
2098 /* Remove an element from the buddy allocator from the fallback list */
2099 static inline struct page *
2100 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2101 {
2102 	struct free_area *area;
2103 	unsigned int current_order;
2104 	struct page *page;
2105 	int fallback_mt;
2106 	bool can_steal;
2107 
2108 	/* Find the largest possible block of pages in the other list */
2109 	for (current_order = MAX_ORDER-1;
2110 				current_order >= order && current_order <= MAX_ORDER-1;
2111 				--current_order) {
2112 		area = &(zone->free_area[current_order]);
2113 		fallback_mt = find_suitable_fallback(area, current_order,
2114 				start_migratetype, false, &can_steal);
2115 		if (fallback_mt == -1)
2116 			continue;
2117 
2118 		page = list_first_entry(&area->free_list[fallback_mt],
2119 						struct page, lru);
2120 		if (can_steal)
2121 			steal_suitable_fallback(zone, page, start_migratetype);
2122 
2123 		/* Remove the page from the freelists */
2124 		area->nr_free--;
2125 		list_del(&page->lru);
2126 		rmv_page_order(page);
2127 
2128 		expand(zone, page, order, current_order, area,
2129 					start_migratetype);
2130 		/*
2131 		 * The pcppage_migratetype may differ from pageblock's
2132 		 * migratetype depending on the decisions in
2133 		 * find_suitable_fallback(). This is OK as long as it does not
2134 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2135 		 * fallback only via special __rmqueue_cma_fallback() function
2136 		 */
2137 		set_pcppage_migratetype(page, start_migratetype);
2138 
2139 		trace_mm_page_alloc_extfrag(page, order, current_order,
2140 			start_migratetype, fallback_mt);
2141 
2142 		return page;
2143 	}
2144 
2145 	return NULL;
2146 }
2147 
2148 /*
2149  * Do the hard work of removing an element from the buddy allocator.
2150  * Call me with the zone->lock already held.
2151  */
2152 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2153 				int migratetype)
2154 {
2155 	struct page *page;
2156 
2157 	page = __rmqueue_smallest(zone, order, migratetype);
2158 	if (unlikely(!page)) {
2159 		if (migratetype == MIGRATE_MOVABLE)
2160 			page = __rmqueue_cma_fallback(zone, order);
2161 
2162 		if (!page)
2163 			page = __rmqueue_fallback(zone, order, migratetype);
2164 	}
2165 
2166 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2167 	return page;
2168 }
2169 
2170 /*
2171  * Obtain a specified number of elements from the buddy allocator, all under
2172  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2173  * Returns the number of new pages which were placed at *list.
2174  */
2175 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2176 			unsigned long count, struct list_head *list,
2177 			int migratetype, bool cold)
2178 {
2179 	int i;
2180 
2181 	spin_lock(&zone->lock);
2182 	for (i = 0; i < count; ++i) {
2183 		struct page *page = __rmqueue(zone, order, migratetype);
2184 		if (unlikely(page == NULL))
2185 			break;
2186 
2187 		if (unlikely(check_pcp_refill(page)))
2188 			continue;
2189 
2190 		/*
2191 		 * Split buddy pages returned by expand() are received here
2192 		 * in physical page order. The page is added to the callers and
2193 		 * list and the list head then moves forward. From the callers
2194 		 * perspective, the linked list is ordered by page number in
2195 		 * some conditions. This is useful for IO devices that can
2196 		 * merge IO requests if the physical pages are ordered
2197 		 * properly.
2198 		 */
2199 		if (likely(!cold))
2200 			list_add(&page->lru, list);
2201 		else
2202 			list_add_tail(&page->lru, list);
2203 		list = &page->lru;
2204 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2205 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2206 					      -(1 << order));
2207 	}
2208 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2209 	spin_unlock(&zone->lock);
2210 	return i;
2211 }
2212 
2213 #ifdef CONFIG_NUMA
2214 /*
2215  * Called from the vmstat counter updater to drain pagesets of this
2216  * currently executing processor on remote nodes after they have
2217  * expired.
2218  *
2219  * Note that this function must be called with the thread pinned to
2220  * a single processor.
2221  */
2222 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2223 {
2224 	unsigned long flags;
2225 	int to_drain, batch;
2226 
2227 	local_irq_save(flags);
2228 	batch = READ_ONCE(pcp->batch);
2229 	to_drain = min(pcp->count, batch);
2230 	if (to_drain > 0) {
2231 		free_pcppages_bulk(zone, to_drain, pcp);
2232 		pcp->count -= to_drain;
2233 	}
2234 	local_irq_restore(flags);
2235 }
2236 #endif
2237 
2238 /*
2239  * Drain pcplists of the indicated processor and zone.
2240  *
2241  * The processor must either be the current processor and the
2242  * thread pinned to the current processor or a processor that
2243  * is not online.
2244  */
2245 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2246 {
2247 	unsigned long flags;
2248 	struct per_cpu_pageset *pset;
2249 	struct per_cpu_pages *pcp;
2250 
2251 	local_irq_save(flags);
2252 	pset = per_cpu_ptr(zone->pageset, cpu);
2253 
2254 	pcp = &pset->pcp;
2255 	if (pcp->count) {
2256 		free_pcppages_bulk(zone, pcp->count, pcp);
2257 		pcp->count = 0;
2258 	}
2259 	local_irq_restore(flags);
2260 }
2261 
2262 /*
2263  * Drain pcplists of all zones on the indicated processor.
2264  *
2265  * The processor must either be the current processor and the
2266  * thread pinned to the current processor or a processor that
2267  * is not online.
2268  */
2269 static void drain_pages(unsigned int cpu)
2270 {
2271 	struct zone *zone;
2272 
2273 	for_each_populated_zone(zone) {
2274 		drain_pages_zone(cpu, zone);
2275 	}
2276 }
2277 
2278 /*
2279  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2280  *
2281  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2282  * the single zone's pages.
2283  */
2284 void drain_local_pages(struct zone *zone)
2285 {
2286 	int cpu = smp_processor_id();
2287 
2288 	if (zone)
2289 		drain_pages_zone(cpu, zone);
2290 	else
2291 		drain_pages(cpu);
2292 }
2293 
2294 /*
2295  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2296  *
2297  * When zone parameter is non-NULL, spill just the single zone's pages.
2298  *
2299  * Note that this code is protected against sending an IPI to an offline
2300  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2301  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2302  * nothing keeps CPUs from showing up after we populated the cpumask and
2303  * before the call to on_each_cpu_mask().
2304  */
2305 void drain_all_pages(struct zone *zone)
2306 {
2307 	int cpu;
2308 
2309 	/*
2310 	 * Allocate in the BSS so we wont require allocation in
2311 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2312 	 */
2313 	static cpumask_t cpus_with_pcps;
2314 
2315 	/*
2316 	 * We don't care about racing with CPU hotplug event
2317 	 * as offline notification will cause the notified
2318 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2319 	 * disables preemption as part of its processing
2320 	 */
2321 	for_each_online_cpu(cpu) {
2322 		struct per_cpu_pageset *pcp;
2323 		struct zone *z;
2324 		bool has_pcps = false;
2325 
2326 		if (zone) {
2327 			pcp = per_cpu_ptr(zone->pageset, cpu);
2328 			if (pcp->pcp.count)
2329 				has_pcps = true;
2330 		} else {
2331 			for_each_populated_zone(z) {
2332 				pcp = per_cpu_ptr(z->pageset, cpu);
2333 				if (pcp->pcp.count) {
2334 					has_pcps = true;
2335 					break;
2336 				}
2337 			}
2338 		}
2339 
2340 		if (has_pcps)
2341 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2342 		else
2343 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2344 	}
2345 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2346 								zone, 1);
2347 }
2348 
2349 #ifdef CONFIG_HIBERNATION
2350 
2351 void mark_free_pages(struct zone *zone)
2352 {
2353 	unsigned long pfn, max_zone_pfn;
2354 	unsigned long flags;
2355 	unsigned int order, t;
2356 	struct page *page;
2357 
2358 	if (zone_is_empty(zone))
2359 		return;
2360 
2361 	spin_lock_irqsave(&zone->lock, flags);
2362 
2363 	max_zone_pfn = zone_end_pfn(zone);
2364 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2365 		if (pfn_valid(pfn)) {
2366 			page = pfn_to_page(pfn);
2367 
2368 			if (page_zone(page) != zone)
2369 				continue;
2370 
2371 			if (!swsusp_page_is_forbidden(page))
2372 				swsusp_unset_page_free(page);
2373 		}
2374 
2375 	for_each_migratetype_order(order, t) {
2376 		list_for_each_entry(page,
2377 				&zone->free_area[order].free_list[t], lru) {
2378 			unsigned long i;
2379 
2380 			pfn = page_to_pfn(page);
2381 			for (i = 0; i < (1UL << order); i++)
2382 				swsusp_set_page_free(pfn_to_page(pfn + i));
2383 		}
2384 	}
2385 	spin_unlock_irqrestore(&zone->lock, flags);
2386 }
2387 #endif /* CONFIG_PM */
2388 
2389 /*
2390  * Free a 0-order page
2391  * cold == true ? free a cold page : free a hot page
2392  */
2393 void free_hot_cold_page(struct page *page, bool cold)
2394 {
2395 	struct zone *zone = page_zone(page);
2396 	struct per_cpu_pages *pcp;
2397 	unsigned long flags;
2398 	unsigned long pfn = page_to_pfn(page);
2399 	int migratetype;
2400 
2401 	if (!free_pcp_prepare(page))
2402 		return;
2403 
2404 	migratetype = get_pfnblock_migratetype(page, pfn);
2405 	set_pcppage_migratetype(page, migratetype);
2406 	local_irq_save(flags);
2407 	__count_vm_event(PGFREE);
2408 
2409 	/*
2410 	 * We only track unmovable, reclaimable and movable on pcp lists.
2411 	 * Free ISOLATE pages back to the allocator because they are being
2412 	 * offlined but treat RESERVE as movable pages so we can get those
2413 	 * areas back if necessary. Otherwise, we may have to free
2414 	 * excessively into the page allocator
2415 	 */
2416 	if (migratetype >= MIGRATE_PCPTYPES) {
2417 		if (unlikely(is_migrate_isolate(migratetype))) {
2418 			free_one_page(zone, page, pfn, 0, migratetype);
2419 			goto out;
2420 		}
2421 		migratetype = MIGRATE_MOVABLE;
2422 	}
2423 
2424 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2425 	if (!cold)
2426 		list_add(&page->lru, &pcp->lists[migratetype]);
2427 	else
2428 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2429 	pcp->count++;
2430 	if (pcp->count >= pcp->high) {
2431 		unsigned long batch = READ_ONCE(pcp->batch);
2432 		free_pcppages_bulk(zone, batch, pcp);
2433 		pcp->count -= batch;
2434 	}
2435 
2436 out:
2437 	local_irq_restore(flags);
2438 }
2439 
2440 /*
2441  * Free a list of 0-order pages
2442  */
2443 void free_hot_cold_page_list(struct list_head *list, bool cold)
2444 {
2445 	struct page *page, *next;
2446 
2447 	list_for_each_entry_safe(page, next, list, lru) {
2448 		trace_mm_page_free_batched(page, cold);
2449 		free_hot_cold_page(page, cold);
2450 	}
2451 }
2452 
2453 /*
2454  * split_page takes a non-compound higher-order page, and splits it into
2455  * n (1<<order) sub-pages: page[0..n]
2456  * Each sub-page must be freed individually.
2457  *
2458  * Note: this is probably too low level an operation for use in drivers.
2459  * Please consult with lkml before using this in your driver.
2460  */
2461 void split_page(struct page *page, unsigned int order)
2462 {
2463 	int i;
2464 	gfp_t gfp_mask;
2465 
2466 	VM_BUG_ON_PAGE(PageCompound(page), page);
2467 	VM_BUG_ON_PAGE(!page_count(page), page);
2468 
2469 #ifdef CONFIG_KMEMCHECK
2470 	/*
2471 	 * Split shadow pages too, because free(page[0]) would
2472 	 * otherwise free the whole shadow.
2473 	 */
2474 	if (kmemcheck_page_is_tracked(page))
2475 		split_page(virt_to_page(page[0].shadow), order);
2476 #endif
2477 
2478 	gfp_mask = get_page_owner_gfp(page);
2479 	set_page_owner(page, 0, gfp_mask);
2480 	for (i = 1; i < (1 << order); i++) {
2481 		set_page_refcounted(page + i);
2482 		set_page_owner(page + i, 0, gfp_mask);
2483 	}
2484 }
2485 EXPORT_SYMBOL_GPL(split_page);
2486 
2487 int __isolate_free_page(struct page *page, unsigned int order)
2488 {
2489 	unsigned long watermark;
2490 	struct zone *zone;
2491 	int mt;
2492 
2493 	BUG_ON(!PageBuddy(page));
2494 
2495 	zone = page_zone(page);
2496 	mt = get_pageblock_migratetype(page);
2497 
2498 	if (!is_migrate_isolate(mt)) {
2499 		/* Obey watermarks as if the page was being allocated */
2500 		watermark = low_wmark_pages(zone) + (1 << order);
2501 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2502 			return 0;
2503 
2504 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2505 	}
2506 
2507 	/* Remove page from free list */
2508 	list_del(&page->lru);
2509 	zone->free_area[order].nr_free--;
2510 	rmv_page_order(page);
2511 
2512 	set_page_owner(page, order, __GFP_MOVABLE);
2513 
2514 	/* Set the pageblock if the isolated page is at least a pageblock */
2515 	if (order >= pageblock_order - 1) {
2516 		struct page *endpage = page + (1 << order) - 1;
2517 		for (; page < endpage; page += pageblock_nr_pages) {
2518 			int mt = get_pageblock_migratetype(page);
2519 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2520 				set_pageblock_migratetype(page,
2521 							  MIGRATE_MOVABLE);
2522 		}
2523 	}
2524 
2525 
2526 	return 1UL << order;
2527 }
2528 
2529 /*
2530  * Similar to split_page except the page is already free. As this is only
2531  * being used for migration, the migratetype of the block also changes.
2532  * As this is called with interrupts disabled, the caller is responsible
2533  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2534  * are enabled.
2535  *
2536  * Note: this is probably too low level an operation for use in drivers.
2537  * Please consult with lkml before using this in your driver.
2538  */
2539 int split_free_page(struct page *page)
2540 {
2541 	unsigned int order;
2542 	int nr_pages;
2543 
2544 	order = page_order(page);
2545 
2546 	nr_pages = __isolate_free_page(page, order);
2547 	if (!nr_pages)
2548 		return 0;
2549 
2550 	/* Split into individual pages */
2551 	set_page_refcounted(page);
2552 	split_page(page, order);
2553 	return nr_pages;
2554 }
2555 
2556 /*
2557  * Update NUMA hit/miss statistics
2558  *
2559  * Must be called with interrupts disabled.
2560  *
2561  * When __GFP_OTHER_NODE is set assume the node of the preferred
2562  * zone is the local node. This is useful for daemons who allocate
2563  * memory on behalf of other processes.
2564  */
2565 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2566 								gfp_t flags)
2567 {
2568 #ifdef CONFIG_NUMA
2569 	int local_nid = numa_node_id();
2570 	enum zone_stat_item local_stat = NUMA_LOCAL;
2571 
2572 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2573 		local_stat = NUMA_OTHER;
2574 		local_nid = preferred_zone->node;
2575 	}
2576 
2577 	if (z->node == local_nid) {
2578 		__inc_zone_state(z, NUMA_HIT);
2579 		__inc_zone_state(z, local_stat);
2580 	} else {
2581 		__inc_zone_state(z, NUMA_MISS);
2582 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2583 	}
2584 #endif
2585 }
2586 
2587 /*
2588  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2589  */
2590 static inline
2591 struct page *buffered_rmqueue(struct zone *preferred_zone,
2592 			struct zone *zone, unsigned int order,
2593 			gfp_t gfp_flags, unsigned int alloc_flags,
2594 			int migratetype)
2595 {
2596 	unsigned long flags;
2597 	struct page *page;
2598 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2599 
2600 	if (likely(order == 0)) {
2601 		struct per_cpu_pages *pcp;
2602 		struct list_head *list;
2603 
2604 		local_irq_save(flags);
2605 		do {
2606 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2607 			list = &pcp->lists[migratetype];
2608 			if (list_empty(list)) {
2609 				pcp->count += rmqueue_bulk(zone, 0,
2610 						pcp->batch, list,
2611 						migratetype, cold);
2612 				if (unlikely(list_empty(list)))
2613 					goto failed;
2614 			}
2615 
2616 			if (cold)
2617 				page = list_last_entry(list, struct page, lru);
2618 			else
2619 				page = list_first_entry(list, struct page, lru);
2620 
2621 			__dec_zone_state(zone, NR_ALLOC_BATCH);
2622 			list_del(&page->lru);
2623 			pcp->count--;
2624 
2625 		} while (check_new_pcp(page));
2626 	} else {
2627 		/*
2628 		 * We most definitely don't want callers attempting to
2629 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2630 		 */
2631 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2632 		spin_lock_irqsave(&zone->lock, flags);
2633 
2634 		do {
2635 			page = NULL;
2636 			if (alloc_flags & ALLOC_HARDER) {
2637 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2638 				if (page)
2639 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2640 			}
2641 			if (!page)
2642 				page = __rmqueue(zone, order, migratetype);
2643 		} while (page && check_new_pages(page, order));
2644 		spin_unlock(&zone->lock);
2645 		if (!page)
2646 			goto failed;
2647 		__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2648 		__mod_zone_freepage_state(zone, -(1 << order),
2649 					  get_pcppage_migratetype(page));
2650 	}
2651 
2652 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2653 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2654 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2655 
2656 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2657 	zone_statistics(preferred_zone, zone, gfp_flags);
2658 	local_irq_restore(flags);
2659 
2660 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2661 	return page;
2662 
2663 failed:
2664 	local_irq_restore(flags);
2665 	return NULL;
2666 }
2667 
2668 #ifdef CONFIG_FAIL_PAGE_ALLOC
2669 
2670 static struct {
2671 	struct fault_attr attr;
2672 
2673 	bool ignore_gfp_highmem;
2674 	bool ignore_gfp_reclaim;
2675 	u32 min_order;
2676 } fail_page_alloc = {
2677 	.attr = FAULT_ATTR_INITIALIZER,
2678 	.ignore_gfp_reclaim = true,
2679 	.ignore_gfp_highmem = true,
2680 	.min_order = 1,
2681 };
2682 
2683 static int __init setup_fail_page_alloc(char *str)
2684 {
2685 	return setup_fault_attr(&fail_page_alloc.attr, str);
2686 }
2687 __setup("fail_page_alloc=", setup_fail_page_alloc);
2688 
2689 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2690 {
2691 	if (order < fail_page_alloc.min_order)
2692 		return false;
2693 	if (gfp_mask & __GFP_NOFAIL)
2694 		return false;
2695 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2696 		return false;
2697 	if (fail_page_alloc.ignore_gfp_reclaim &&
2698 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2699 		return false;
2700 
2701 	return should_fail(&fail_page_alloc.attr, 1 << order);
2702 }
2703 
2704 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2705 
2706 static int __init fail_page_alloc_debugfs(void)
2707 {
2708 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2709 	struct dentry *dir;
2710 
2711 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2712 					&fail_page_alloc.attr);
2713 	if (IS_ERR(dir))
2714 		return PTR_ERR(dir);
2715 
2716 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2717 				&fail_page_alloc.ignore_gfp_reclaim))
2718 		goto fail;
2719 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2720 				&fail_page_alloc.ignore_gfp_highmem))
2721 		goto fail;
2722 	if (!debugfs_create_u32("min-order", mode, dir,
2723 				&fail_page_alloc.min_order))
2724 		goto fail;
2725 
2726 	return 0;
2727 fail:
2728 	debugfs_remove_recursive(dir);
2729 
2730 	return -ENOMEM;
2731 }
2732 
2733 late_initcall(fail_page_alloc_debugfs);
2734 
2735 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2736 
2737 #else /* CONFIG_FAIL_PAGE_ALLOC */
2738 
2739 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2740 {
2741 	return false;
2742 }
2743 
2744 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2745 
2746 /*
2747  * Return true if free base pages are above 'mark'. For high-order checks it
2748  * will return true of the order-0 watermark is reached and there is at least
2749  * one free page of a suitable size. Checking now avoids taking the zone lock
2750  * to check in the allocation paths if no pages are free.
2751  */
2752 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2753 			 int classzone_idx, unsigned int alloc_flags,
2754 			 long free_pages)
2755 {
2756 	long min = mark;
2757 	int o;
2758 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2759 
2760 	/* free_pages may go negative - that's OK */
2761 	free_pages -= (1 << order) - 1;
2762 
2763 	if (alloc_flags & ALLOC_HIGH)
2764 		min -= min / 2;
2765 
2766 	/*
2767 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2768 	 * the high-atomic reserves. This will over-estimate the size of the
2769 	 * atomic reserve but it avoids a search.
2770 	 */
2771 	if (likely(!alloc_harder))
2772 		free_pages -= z->nr_reserved_highatomic;
2773 	else
2774 		min -= min / 4;
2775 
2776 #ifdef CONFIG_CMA
2777 	/* If allocation can't use CMA areas don't use free CMA pages */
2778 	if (!(alloc_flags & ALLOC_CMA))
2779 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2780 #endif
2781 
2782 	/*
2783 	 * Check watermarks for an order-0 allocation request. If these
2784 	 * are not met, then a high-order request also cannot go ahead
2785 	 * even if a suitable page happened to be free.
2786 	 */
2787 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2788 		return false;
2789 
2790 	/* If this is an order-0 request then the watermark is fine */
2791 	if (!order)
2792 		return true;
2793 
2794 	/* For a high-order request, check at least one suitable page is free */
2795 	for (o = order; o < MAX_ORDER; o++) {
2796 		struct free_area *area = &z->free_area[o];
2797 		int mt;
2798 
2799 		if (!area->nr_free)
2800 			continue;
2801 
2802 		if (alloc_harder)
2803 			return true;
2804 
2805 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2806 			if (!list_empty(&area->free_list[mt]))
2807 				return true;
2808 		}
2809 
2810 #ifdef CONFIG_CMA
2811 		if ((alloc_flags & ALLOC_CMA) &&
2812 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2813 			return true;
2814 		}
2815 #endif
2816 	}
2817 	return false;
2818 }
2819 
2820 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2821 		      int classzone_idx, unsigned int alloc_flags)
2822 {
2823 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2824 					zone_page_state(z, NR_FREE_PAGES));
2825 }
2826 
2827 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2828 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2829 {
2830 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2831 	long cma_pages = 0;
2832 
2833 #ifdef CONFIG_CMA
2834 	/* If allocation can't use CMA areas don't use free CMA pages */
2835 	if (!(alloc_flags & ALLOC_CMA))
2836 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2837 #endif
2838 
2839 	/*
2840 	 * Fast check for order-0 only. If this fails then the reserves
2841 	 * need to be calculated. There is a corner case where the check
2842 	 * passes but only the high-order atomic reserve are free. If
2843 	 * the caller is !atomic then it'll uselessly search the free
2844 	 * list. That corner case is then slower but it is harmless.
2845 	 */
2846 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2847 		return true;
2848 
2849 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2850 					free_pages);
2851 }
2852 
2853 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2854 			unsigned long mark, int classzone_idx)
2855 {
2856 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2857 
2858 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2859 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2860 
2861 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2862 								free_pages);
2863 }
2864 
2865 #ifdef CONFIG_NUMA
2866 static bool zone_local(struct zone *local_zone, struct zone *zone)
2867 {
2868 	return local_zone->node == zone->node;
2869 }
2870 
2871 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2872 {
2873 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2874 				RECLAIM_DISTANCE;
2875 }
2876 #else	/* CONFIG_NUMA */
2877 static bool zone_local(struct zone *local_zone, struct zone *zone)
2878 {
2879 	return true;
2880 }
2881 
2882 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2883 {
2884 	return true;
2885 }
2886 #endif	/* CONFIG_NUMA */
2887 
2888 static void reset_alloc_batches(struct zone *preferred_zone)
2889 {
2890 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2891 
2892 	do {
2893 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2894 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2895 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2896 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2897 	} while (zone++ != preferred_zone);
2898 }
2899 
2900 /*
2901  * get_page_from_freelist goes through the zonelist trying to allocate
2902  * a page.
2903  */
2904 static struct page *
2905 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2906 						const struct alloc_context *ac)
2907 {
2908 	struct zoneref *z = ac->preferred_zoneref;
2909 	struct zone *zone;
2910 	bool fair_skipped = false;
2911 	bool apply_fair = (alloc_flags & ALLOC_FAIR);
2912 
2913 zonelist_scan:
2914 	/*
2915 	 * Scan zonelist, looking for a zone with enough free.
2916 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2917 	 */
2918 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2919 								ac->nodemask) {
2920 		struct page *page;
2921 		unsigned long mark;
2922 
2923 		if (cpusets_enabled() &&
2924 			(alloc_flags & ALLOC_CPUSET) &&
2925 			!__cpuset_zone_allowed(zone, gfp_mask))
2926 				continue;
2927 		/*
2928 		 * Distribute pages in proportion to the individual
2929 		 * zone size to ensure fair page aging.  The zone a
2930 		 * page was allocated in should have no effect on the
2931 		 * time the page has in memory before being reclaimed.
2932 		 */
2933 		if (apply_fair) {
2934 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2935 				fair_skipped = true;
2936 				continue;
2937 			}
2938 			if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2939 				if (fair_skipped)
2940 					goto reset_fair;
2941 				apply_fair = false;
2942 			}
2943 		}
2944 		/*
2945 		 * When allocating a page cache page for writing, we
2946 		 * want to get it from a zone that is within its dirty
2947 		 * limit, such that no single zone holds more than its
2948 		 * proportional share of globally allowed dirty pages.
2949 		 * The dirty limits take into account the zone's
2950 		 * lowmem reserves and high watermark so that kswapd
2951 		 * should be able to balance it without having to
2952 		 * write pages from its LRU list.
2953 		 *
2954 		 * This may look like it could increase pressure on
2955 		 * lower zones by failing allocations in higher zones
2956 		 * before they are full.  But the pages that do spill
2957 		 * over are limited as the lower zones are protected
2958 		 * by this very same mechanism.  It should not become
2959 		 * a practical burden to them.
2960 		 *
2961 		 * XXX: For now, allow allocations to potentially
2962 		 * exceed the per-zone dirty limit in the slowpath
2963 		 * (spread_dirty_pages unset) before going into reclaim,
2964 		 * which is important when on a NUMA setup the allowed
2965 		 * zones are together not big enough to reach the
2966 		 * global limit.  The proper fix for these situations
2967 		 * will require awareness of zones in the
2968 		 * dirty-throttling and the flusher threads.
2969 		 */
2970 		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2971 			continue;
2972 
2973 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2974 		if (!zone_watermark_fast(zone, order, mark,
2975 				       ac_classzone_idx(ac), alloc_flags)) {
2976 			int ret;
2977 
2978 			/* Checked here to keep the fast path fast */
2979 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2980 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2981 				goto try_this_zone;
2982 
2983 			if (zone_reclaim_mode == 0 ||
2984 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2985 				continue;
2986 
2987 			ret = zone_reclaim(zone, gfp_mask, order);
2988 			switch (ret) {
2989 			case ZONE_RECLAIM_NOSCAN:
2990 				/* did not scan */
2991 				continue;
2992 			case ZONE_RECLAIM_FULL:
2993 				/* scanned but unreclaimable */
2994 				continue;
2995 			default:
2996 				/* did we reclaim enough */
2997 				if (zone_watermark_ok(zone, order, mark,
2998 						ac_classzone_idx(ac), alloc_flags))
2999 					goto try_this_zone;
3000 
3001 				continue;
3002 			}
3003 		}
3004 
3005 try_this_zone:
3006 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
3007 				gfp_mask, alloc_flags, ac->migratetype);
3008 		if (page) {
3009 			prep_new_page(page, order, gfp_mask, alloc_flags);
3010 
3011 			/*
3012 			 * If this is a high-order atomic allocation then check
3013 			 * if the pageblock should be reserved for the future
3014 			 */
3015 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3016 				reserve_highatomic_pageblock(page, zone, order);
3017 
3018 			return page;
3019 		}
3020 	}
3021 
3022 	/*
3023 	 * The first pass makes sure allocations are spread fairly within the
3024 	 * local node.  However, the local node might have free pages left
3025 	 * after the fairness batches are exhausted, and remote zones haven't
3026 	 * even been considered yet.  Try once more without fairness, and
3027 	 * include remote zones now, before entering the slowpath and waking
3028 	 * kswapd: prefer spilling to a remote zone over swapping locally.
3029 	 */
3030 	if (fair_skipped) {
3031 reset_fair:
3032 		apply_fair = false;
3033 		fair_skipped = false;
3034 		reset_alloc_batches(ac->preferred_zoneref->zone);
3035 		z = ac->preferred_zoneref;
3036 		goto zonelist_scan;
3037 	}
3038 
3039 	return NULL;
3040 }
3041 
3042 /*
3043  * Large machines with many possible nodes should not always dump per-node
3044  * meminfo in irq context.
3045  */
3046 static inline bool should_suppress_show_mem(void)
3047 {
3048 	bool ret = false;
3049 
3050 #if NODES_SHIFT > 8
3051 	ret = in_interrupt();
3052 #endif
3053 	return ret;
3054 }
3055 
3056 static DEFINE_RATELIMIT_STATE(nopage_rs,
3057 		DEFAULT_RATELIMIT_INTERVAL,
3058 		DEFAULT_RATELIMIT_BURST);
3059 
3060 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3061 {
3062 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3063 
3064 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3065 	    debug_guardpage_minorder() > 0)
3066 		return;
3067 
3068 	/*
3069 	 * This documents exceptions given to allocations in certain
3070 	 * contexts that are allowed to allocate outside current's set
3071 	 * of allowed nodes.
3072 	 */
3073 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3074 		if (test_thread_flag(TIF_MEMDIE) ||
3075 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3076 			filter &= ~SHOW_MEM_FILTER_NODES;
3077 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3078 		filter &= ~SHOW_MEM_FILTER_NODES;
3079 
3080 	if (fmt) {
3081 		struct va_format vaf;
3082 		va_list args;
3083 
3084 		va_start(args, fmt);
3085 
3086 		vaf.fmt = fmt;
3087 		vaf.va = &args;
3088 
3089 		pr_warn("%pV", &vaf);
3090 
3091 		va_end(args);
3092 	}
3093 
3094 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3095 		current->comm, order, gfp_mask, &gfp_mask);
3096 	dump_stack();
3097 	if (!should_suppress_show_mem())
3098 		show_mem(filter);
3099 }
3100 
3101 static inline struct page *
3102 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3103 	const struct alloc_context *ac, unsigned long *did_some_progress)
3104 {
3105 	struct oom_control oc = {
3106 		.zonelist = ac->zonelist,
3107 		.nodemask = ac->nodemask,
3108 		.gfp_mask = gfp_mask,
3109 		.order = order,
3110 	};
3111 	struct page *page;
3112 
3113 	*did_some_progress = 0;
3114 
3115 	/*
3116 	 * Acquire the oom lock.  If that fails, somebody else is
3117 	 * making progress for us.
3118 	 */
3119 	if (!mutex_trylock(&oom_lock)) {
3120 		*did_some_progress = 1;
3121 		schedule_timeout_uninterruptible(1);
3122 		return NULL;
3123 	}
3124 
3125 	/*
3126 	 * Go through the zonelist yet one more time, keep very high watermark
3127 	 * here, this is only to catch a parallel oom killing, we must fail if
3128 	 * we're still under heavy pressure.
3129 	 */
3130 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3131 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3132 	if (page)
3133 		goto out;
3134 
3135 	if (!(gfp_mask & __GFP_NOFAIL)) {
3136 		/* Coredumps can quickly deplete all memory reserves */
3137 		if (current->flags & PF_DUMPCORE)
3138 			goto out;
3139 		/* The OOM killer will not help higher order allocs */
3140 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3141 			goto out;
3142 		/* The OOM killer does not needlessly kill tasks for lowmem */
3143 		if (ac->high_zoneidx < ZONE_NORMAL)
3144 			goto out;
3145 		if (pm_suspended_storage())
3146 			goto out;
3147 		/*
3148 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3149 		 * other request to make a forward progress.
3150 		 * We are in an unfortunate situation where out_of_memory cannot
3151 		 * do much for this context but let's try it to at least get
3152 		 * access to memory reserved if the current task is killed (see
3153 		 * out_of_memory). Once filesystems are ready to handle allocation
3154 		 * failures more gracefully we should just bail out here.
3155 		 */
3156 
3157 		/* The OOM killer may not free memory on a specific node */
3158 		if (gfp_mask & __GFP_THISNODE)
3159 			goto out;
3160 	}
3161 	/* Exhausted what can be done so it's blamo time */
3162 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3163 		*did_some_progress = 1;
3164 
3165 		if (gfp_mask & __GFP_NOFAIL) {
3166 			page = get_page_from_freelist(gfp_mask, order,
3167 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3168 			/*
3169 			 * fallback to ignore cpuset restriction if our nodes
3170 			 * are depleted
3171 			 */
3172 			if (!page)
3173 				page = get_page_from_freelist(gfp_mask, order,
3174 					ALLOC_NO_WATERMARKS, ac);
3175 		}
3176 	}
3177 out:
3178 	mutex_unlock(&oom_lock);
3179 	return page;
3180 }
3181 
3182 
3183 /*
3184  * Maximum number of compaction retries wit a progress before OOM
3185  * killer is consider as the only way to move forward.
3186  */
3187 #define MAX_COMPACT_RETRIES 16
3188 
3189 #ifdef CONFIG_COMPACTION
3190 /* Try memory compaction for high-order allocations before reclaim */
3191 static struct page *
3192 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3193 		unsigned int alloc_flags, const struct alloc_context *ac,
3194 		enum migrate_mode mode, enum compact_result *compact_result)
3195 {
3196 	struct page *page;
3197 	int contended_compaction;
3198 
3199 	if (!order)
3200 		return NULL;
3201 
3202 	current->flags |= PF_MEMALLOC;
3203 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3204 						mode, &contended_compaction);
3205 	current->flags &= ~PF_MEMALLOC;
3206 
3207 	if (*compact_result <= COMPACT_INACTIVE)
3208 		return NULL;
3209 
3210 	/*
3211 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3212 	 * count a compaction stall
3213 	 */
3214 	count_vm_event(COMPACTSTALL);
3215 
3216 	page = get_page_from_freelist(gfp_mask, order,
3217 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3218 
3219 	if (page) {
3220 		struct zone *zone = page_zone(page);
3221 
3222 		zone->compact_blockskip_flush = false;
3223 		compaction_defer_reset(zone, order, true);
3224 		count_vm_event(COMPACTSUCCESS);
3225 		return page;
3226 	}
3227 
3228 	/*
3229 	 * It's bad if compaction run occurs and fails. The most likely reason
3230 	 * is that pages exist, but not enough to satisfy watermarks.
3231 	 */
3232 	count_vm_event(COMPACTFAIL);
3233 
3234 	/*
3235 	 * In all zones where compaction was attempted (and not
3236 	 * deferred or skipped), lock contention has been detected.
3237 	 * For THP allocation we do not want to disrupt the others
3238 	 * so we fallback to base pages instead.
3239 	 */
3240 	if (contended_compaction == COMPACT_CONTENDED_LOCK)
3241 		*compact_result = COMPACT_CONTENDED;
3242 
3243 	/*
3244 	 * If compaction was aborted due to need_resched(), we do not
3245 	 * want to further increase allocation latency, unless it is
3246 	 * khugepaged trying to collapse.
3247 	 */
3248 	if (contended_compaction == COMPACT_CONTENDED_SCHED
3249 		&& !(current->flags & PF_KTHREAD))
3250 		*compact_result = COMPACT_CONTENDED;
3251 
3252 	cond_resched();
3253 
3254 	return NULL;
3255 }
3256 
3257 static inline bool
3258 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3259 		     enum compact_result compact_result, enum migrate_mode *migrate_mode,
3260 		     int compaction_retries)
3261 {
3262 	int max_retries = MAX_COMPACT_RETRIES;
3263 
3264 	if (!order)
3265 		return false;
3266 
3267 	/*
3268 	 * compaction considers all the zone as desperately out of memory
3269 	 * so it doesn't really make much sense to retry except when the
3270 	 * failure could be caused by weak migration mode.
3271 	 */
3272 	if (compaction_failed(compact_result)) {
3273 		if (*migrate_mode == MIGRATE_ASYNC) {
3274 			*migrate_mode = MIGRATE_SYNC_LIGHT;
3275 			return true;
3276 		}
3277 		return false;
3278 	}
3279 
3280 	/*
3281 	 * make sure the compaction wasn't deferred or didn't bail out early
3282 	 * due to locks contention before we declare that we should give up.
3283 	 * But do not retry if the given zonelist is not suitable for
3284 	 * compaction.
3285 	 */
3286 	if (compaction_withdrawn(compact_result))
3287 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3288 
3289 	/*
3290 	 * !costly requests are much more important than __GFP_REPEAT
3291 	 * costly ones because they are de facto nofail and invoke OOM
3292 	 * killer to move on while costly can fail and users are ready
3293 	 * to cope with that. 1/4 retries is rather arbitrary but we
3294 	 * would need much more detailed feedback from compaction to
3295 	 * make a better decision.
3296 	 */
3297 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3298 		max_retries /= 4;
3299 	if (compaction_retries <= max_retries)
3300 		return true;
3301 
3302 	return false;
3303 }
3304 #else
3305 static inline struct page *
3306 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3307 		unsigned int alloc_flags, const struct alloc_context *ac,
3308 		enum migrate_mode mode, enum compact_result *compact_result)
3309 {
3310 	*compact_result = COMPACT_SKIPPED;
3311 	return NULL;
3312 }
3313 
3314 static inline bool
3315 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3316 		     enum compact_result compact_result,
3317 		     enum migrate_mode *migrate_mode,
3318 		     int compaction_retries)
3319 {
3320 	struct zone *zone;
3321 	struct zoneref *z;
3322 
3323 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3324 		return false;
3325 
3326 	/*
3327 	 * There are setups with compaction disabled which would prefer to loop
3328 	 * inside the allocator rather than hit the oom killer prematurely.
3329 	 * Let's give them a good hope and keep retrying while the order-0
3330 	 * watermarks are OK.
3331 	 */
3332 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3333 					ac->nodemask) {
3334 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3335 					ac_classzone_idx(ac), alloc_flags))
3336 			return true;
3337 	}
3338 	return false;
3339 }
3340 #endif /* CONFIG_COMPACTION */
3341 
3342 /* Perform direct synchronous page reclaim */
3343 static int
3344 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3345 					const struct alloc_context *ac)
3346 {
3347 	struct reclaim_state reclaim_state;
3348 	int progress;
3349 
3350 	cond_resched();
3351 
3352 	/* We now go into synchronous reclaim */
3353 	cpuset_memory_pressure_bump();
3354 	current->flags |= PF_MEMALLOC;
3355 	lockdep_set_current_reclaim_state(gfp_mask);
3356 	reclaim_state.reclaimed_slab = 0;
3357 	current->reclaim_state = &reclaim_state;
3358 
3359 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3360 								ac->nodemask);
3361 
3362 	current->reclaim_state = NULL;
3363 	lockdep_clear_current_reclaim_state();
3364 	current->flags &= ~PF_MEMALLOC;
3365 
3366 	cond_resched();
3367 
3368 	return progress;
3369 }
3370 
3371 /* The really slow allocator path where we enter direct reclaim */
3372 static inline struct page *
3373 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3374 		unsigned int alloc_flags, const struct alloc_context *ac,
3375 		unsigned long *did_some_progress)
3376 {
3377 	struct page *page = NULL;
3378 	bool drained = false;
3379 
3380 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3381 	if (unlikely(!(*did_some_progress)))
3382 		return NULL;
3383 
3384 retry:
3385 	page = get_page_from_freelist(gfp_mask, order,
3386 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3387 
3388 	/*
3389 	 * If an allocation failed after direct reclaim, it could be because
3390 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3391 	 * Shrink them them and try again
3392 	 */
3393 	if (!page && !drained) {
3394 		unreserve_highatomic_pageblock(ac);
3395 		drain_all_pages(NULL);
3396 		drained = true;
3397 		goto retry;
3398 	}
3399 
3400 	return page;
3401 }
3402 
3403 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3404 {
3405 	struct zoneref *z;
3406 	struct zone *zone;
3407 
3408 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3409 						ac->high_zoneidx, ac->nodemask)
3410 		wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3411 }
3412 
3413 static inline unsigned int
3414 gfp_to_alloc_flags(gfp_t gfp_mask)
3415 {
3416 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3417 
3418 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3419 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3420 
3421 	/*
3422 	 * The caller may dip into page reserves a bit more if the caller
3423 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3424 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3425 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3426 	 */
3427 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3428 
3429 	if (gfp_mask & __GFP_ATOMIC) {
3430 		/*
3431 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3432 		 * if it can't schedule.
3433 		 */
3434 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3435 			alloc_flags |= ALLOC_HARDER;
3436 		/*
3437 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3438 		 * comment for __cpuset_node_allowed().
3439 		 */
3440 		alloc_flags &= ~ALLOC_CPUSET;
3441 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3442 		alloc_flags |= ALLOC_HARDER;
3443 
3444 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3445 		if (gfp_mask & __GFP_MEMALLOC)
3446 			alloc_flags |= ALLOC_NO_WATERMARKS;
3447 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3448 			alloc_flags |= ALLOC_NO_WATERMARKS;
3449 		else if (!in_interrupt() &&
3450 				((current->flags & PF_MEMALLOC) ||
3451 				 unlikely(test_thread_flag(TIF_MEMDIE))))
3452 			alloc_flags |= ALLOC_NO_WATERMARKS;
3453 	}
3454 #ifdef CONFIG_CMA
3455 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3456 		alloc_flags |= ALLOC_CMA;
3457 #endif
3458 	return alloc_flags;
3459 }
3460 
3461 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3462 {
3463 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3464 }
3465 
3466 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3467 {
3468 	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3469 }
3470 
3471 /*
3472  * Maximum number of reclaim retries without any progress before OOM killer
3473  * is consider as the only way to move forward.
3474  */
3475 #define MAX_RECLAIM_RETRIES 16
3476 
3477 /*
3478  * Checks whether it makes sense to retry the reclaim to make a forward progress
3479  * for the given allocation request.
3480  * The reclaim feedback represented by did_some_progress (any progress during
3481  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3482  * any progress in a row) is considered as well as the reclaimable pages on the
3483  * applicable zone list (with a backoff mechanism which is a function of
3484  * no_progress_loops).
3485  *
3486  * Returns true if a retry is viable or false to enter the oom path.
3487  */
3488 static inline bool
3489 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3490 		     struct alloc_context *ac, int alloc_flags,
3491 		     bool did_some_progress, int no_progress_loops)
3492 {
3493 	struct zone *zone;
3494 	struct zoneref *z;
3495 
3496 	/*
3497 	 * Make sure we converge to OOM if we cannot make any progress
3498 	 * several times in the row.
3499 	 */
3500 	if (no_progress_loops > MAX_RECLAIM_RETRIES)
3501 		return false;
3502 
3503 	/*
3504 	 * Keep reclaiming pages while there is a chance this will lead somewhere.
3505 	 * If none of the target zones can satisfy our allocation request even
3506 	 * if all reclaimable pages are considered then we are screwed and have
3507 	 * to go OOM.
3508 	 */
3509 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3510 					ac->nodemask) {
3511 		unsigned long available;
3512 		unsigned long reclaimable;
3513 
3514 		available = reclaimable = zone_reclaimable_pages(zone);
3515 		available -= DIV_ROUND_UP(no_progress_loops * available,
3516 					  MAX_RECLAIM_RETRIES);
3517 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3518 
3519 		/*
3520 		 * Would the allocation succeed if we reclaimed the whole
3521 		 * available?
3522 		 */
3523 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3524 				ac_classzone_idx(ac), alloc_flags, available)) {
3525 			/*
3526 			 * If we didn't make any progress and have a lot of
3527 			 * dirty + writeback pages then we should wait for
3528 			 * an IO to complete to slow down the reclaim and
3529 			 * prevent from pre mature OOM
3530 			 */
3531 			if (!did_some_progress) {
3532 				unsigned long writeback;
3533 				unsigned long dirty;
3534 
3535 				writeback = zone_page_state_snapshot(zone,
3536 								     NR_WRITEBACK);
3537 				dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3538 
3539 				if (2*(writeback + dirty) > reclaimable) {
3540 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3541 					return true;
3542 				}
3543 			}
3544 
3545 			/*
3546 			 * Memory allocation/reclaim might be called from a WQ
3547 			 * context and the current implementation of the WQ
3548 			 * concurrency control doesn't recognize that
3549 			 * a particular WQ is congested if the worker thread is
3550 			 * looping without ever sleeping. Therefore we have to
3551 			 * do a short sleep here rather than calling
3552 			 * cond_resched().
3553 			 */
3554 			if (current->flags & PF_WQ_WORKER)
3555 				schedule_timeout_uninterruptible(1);
3556 			else
3557 				cond_resched();
3558 
3559 			return true;
3560 		}
3561 	}
3562 
3563 	return false;
3564 }
3565 
3566 static inline struct page *
3567 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3568 						struct alloc_context *ac)
3569 {
3570 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3571 	struct page *page = NULL;
3572 	unsigned int alloc_flags;
3573 	unsigned long did_some_progress;
3574 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3575 	enum compact_result compact_result;
3576 	int compaction_retries = 0;
3577 	int no_progress_loops = 0;
3578 
3579 	/*
3580 	 * In the slowpath, we sanity check order to avoid ever trying to
3581 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3582 	 * be using allocators in order of preference for an area that is
3583 	 * too large.
3584 	 */
3585 	if (order >= MAX_ORDER) {
3586 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3587 		return NULL;
3588 	}
3589 
3590 	/*
3591 	 * We also sanity check to catch abuse of atomic reserves being used by
3592 	 * callers that are not in atomic context.
3593 	 */
3594 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3595 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3596 		gfp_mask &= ~__GFP_ATOMIC;
3597 
3598 retry:
3599 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3600 		wake_all_kswapds(order, ac);
3601 
3602 	/*
3603 	 * OK, we're below the kswapd watermark and have kicked background
3604 	 * reclaim. Now things get more complex, so set up alloc_flags according
3605 	 * to how we want to proceed.
3606 	 */
3607 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3608 
3609 	/*
3610 	 * Reset the zonelist iterators if memory policies can be ignored.
3611 	 * These allocations are high priority and system rather than user
3612 	 * orientated.
3613 	 */
3614 	if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3615 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3616 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3617 					ac->high_zoneidx, ac->nodemask);
3618 	}
3619 
3620 	/* This is the last chance, in general, before the goto nopage. */
3621 	page = get_page_from_freelist(gfp_mask, order,
3622 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3623 	if (page)
3624 		goto got_pg;
3625 
3626 	/* Allocate without watermarks if the context allows */
3627 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3628 		page = get_page_from_freelist(gfp_mask, order,
3629 						ALLOC_NO_WATERMARKS, ac);
3630 		if (page)
3631 			goto got_pg;
3632 	}
3633 
3634 	/* Caller is not willing to reclaim, we can't balance anything */
3635 	if (!can_direct_reclaim) {
3636 		/*
3637 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3638 		 * of any new users that actually allow this type of allocation
3639 		 * to fail.
3640 		 */
3641 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3642 		goto nopage;
3643 	}
3644 
3645 	/* Avoid recursion of direct reclaim */
3646 	if (current->flags & PF_MEMALLOC) {
3647 		/*
3648 		 * __GFP_NOFAIL request from this context is rather bizarre
3649 		 * because we cannot reclaim anything and only can loop waiting
3650 		 * for somebody to do a work for us.
3651 		 */
3652 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3653 			cond_resched();
3654 			goto retry;
3655 		}
3656 		goto nopage;
3657 	}
3658 
3659 	/* Avoid allocations with no watermarks from looping endlessly */
3660 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3661 		goto nopage;
3662 
3663 	/*
3664 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3665 	 * attempts after direct reclaim are synchronous
3666 	 */
3667 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3668 					migration_mode,
3669 					&compact_result);
3670 	if (page)
3671 		goto got_pg;
3672 
3673 	/* Checks for THP-specific high-order allocations */
3674 	if (is_thp_gfp_mask(gfp_mask)) {
3675 		/*
3676 		 * If compaction is deferred for high-order allocations, it is
3677 		 * because sync compaction recently failed. If this is the case
3678 		 * and the caller requested a THP allocation, we do not want
3679 		 * to heavily disrupt the system, so we fail the allocation
3680 		 * instead of entering direct reclaim.
3681 		 */
3682 		if (compact_result == COMPACT_DEFERRED)
3683 			goto nopage;
3684 
3685 		/*
3686 		 * Compaction is contended so rather back off than cause
3687 		 * excessive stalls.
3688 		 */
3689 		if(compact_result == COMPACT_CONTENDED)
3690 			goto nopage;
3691 	}
3692 
3693 	if (order && compaction_made_progress(compact_result))
3694 		compaction_retries++;
3695 
3696 	/* Try direct reclaim and then allocating */
3697 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3698 							&did_some_progress);
3699 	if (page)
3700 		goto got_pg;
3701 
3702 	/* Do not loop if specifically requested */
3703 	if (gfp_mask & __GFP_NORETRY)
3704 		goto noretry;
3705 
3706 	/*
3707 	 * Do not retry costly high order allocations unless they are
3708 	 * __GFP_REPEAT
3709 	 */
3710 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3711 		goto noretry;
3712 
3713 	/*
3714 	 * Costly allocations might have made a progress but this doesn't mean
3715 	 * their order will become available due to high fragmentation so
3716 	 * always increment the no progress counter for them
3717 	 */
3718 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3719 		no_progress_loops = 0;
3720 	else
3721 		no_progress_loops++;
3722 
3723 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3724 				 did_some_progress > 0, no_progress_loops))
3725 		goto retry;
3726 
3727 	/*
3728 	 * It doesn't make any sense to retry for the compaction if the order-0
3729 	 * reclaim is not able to make any progress because the current
3730 	 * implementation of the compaction depends on the sufficient amount
3731 	 * of free memory (see __compaction_suitable)
3732 	 */
3733 	if (did_some_progress > 0 &&
3734 			should_compact_retry(ac, order, alloc_flags,
3735 				compact_result, &migration_mode,
3736 				compaction_retries))
3737 		goto retry;
3738 
3739 	/* Reclaim has failed us, start killing things */
3740 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3741 	if (page)
3742 		goto got_pg;
3743 
3744 	/* Retry as long as the OOM killer is making progress */
3745 	if (did_some_progress) {
3746 		no_progress_loops = 0;
3747 		goto retry;
3748 	}
3749 
3750 noretry:
3751 	/*
3752 	 * High-order allocations do not necessarily loop after direct reclaim
3753 	 * and reclaim/compaction depends on compaction being called after
3754 	 * reclaim so call directly if necessary.
3755 	 * It can become very expensive to allocate transparent hugepages at
3756 	 * fault, so use asynchronous memory compaction for THP unless it is
3757 	 * khugepaged trying to collapse. All other requests should tolerate
3758 	 * at least light sync migration.
3759 	 */
3760 	if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3761 		migration_mode = MIGRATE_ASYNC;
3762 	else
3763 		migration_mode = MIGRATE_SYNC_LIGHT;
3764 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3765 					    ac, migration_mode,
3766 					    &compact_result);
3767 	if (page)
3768 		goto got_pg;
3769 nopage:
3770 	warn_alloc_failed(gfp_mask, order, NULL);
3771 got_pg:
3772 	return page;
3773 }
3774 
3775 /*
3776  * This is the 'heart' of the zoned buddy allocator.
3777  */
3778 struct page *
3779 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3780 			struct zonelist *zonelist, nodemask_t *nodemask)
3781 {
3782 	struct page *page;
3783 	unsigned int cpuset_mems_cookie;
3784 	unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3785 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3786 	struct alloc_context ac = {
3787 		.high_zoneidx = gfp_zone(gfp_mask),
3788 		.zonelist = zonelist,
3789 		.nodemask = nodemask,
3790 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3791 	};
3792 
3793 	if (cpusets_enabled()) {
3794 		alloc_mask |= __GFP_HARDWALL;
3795 		alloc_flags |= ALLOC_CPUSET;
3796 		if (!ac.nodemask)
3797 			ac.nodemask = &cpuset_current_mems_allowed;
3798 	}
3799 
3800 	gfp_mask &= gfp_allowed_mask;
3801 
3802 	lockdep_trace_alloc(gfp_mask);
3803 
3804 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3805 
3806 	if (should_fail_alloc_page(gfp_mask, order))
3807 		return NULL;
3808 
3809 	/*
3810 	 * Check the zones suitable for the gfp_mask contain at least one
3811 	 * valid zone. It's possible to have an empty zonelist as a result
3812 	 * of __GFP_THISNODE and a memoryless node
3813 	 */
3814 	if (unlikely(!zonelist->_zonerefs->zone))
3815 		return NULL;
3816 
3817 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3818 		alloc_flags |= ALLOC_CMA;
3819 
3820 retry_cpuset:
3821 	cpuset_mems_cookie = read_mems_allowed_begin();
3822 
3823 	/* Dirty zone balancing only done in the fast path */
3824 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3825 
3826 	/*
3827 	 * The preferred zone is used for statistics but crucially it is
3828 	 * also used as the starting point for the zonelist iterator. It
3829 	 * may get reset for allocations that ignore memory policies.
3830 	 */
3831 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3832 					ac.high_zoneidx, ac.nodemask);
3833 	if (!ac.preferred_zoneref) {
3834 		page = NULL;
3835 		goto no_zone;
3836 	}
3837 
3838 	/* First allocation attempt */
3839 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3840 	if (likely(page))
3841 		goto out;
3842 
3843 	/*
3844 	 * Runtime PM, block IO and its error handling path can deadlock
3845 	 * because I/O on the device might not complete.
3846 	 */
3847 	alloc_mask = memalloc_noio_flags(gfp_mask);
3848 	ac.spread_dirty_pages = false;
3849 
3850 	/*
3851 	 * Restore the original nodemask if it was potentially replaced with
3852 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3853 	 */
3854 	if (cpusets_enabled())
3855 		ac.nodemask = nodemask;
3856 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3857 
3858 no_zone:
3859 	/*
3860 	 * When updating a task's mems_allowed, it is possible to race with
3861 	 * parallel threads in such a way that an allocation can fail while
3862 	 * the mask is being updated. If a page allocation is about to fail,
3863 	 * check if the cpuset changed during allocation and if so, retry.
3864 	 */
3865 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3866 		alloc_mask = gfp_mask;
3867 		goto retry_cpuset;
3868 	}
3869 
3870 out:
3871 	if (kmemcheck_enabled && page)
3872 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3873 
3874 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3875 
3876 	return page;
3877 }
3878 EXPORT_SYMBOL(__alloc_pages_nodemask);
3879 
3880 /*
3881  * Common helper functions.
3882  */
3883 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3884 {
3885 	struct page *page;
3886 
3887 	/*
3888 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3889 	 * a highmem page
3890 	 */
3891 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3892 
3893 	page = alloc_pages(gfp_mask, order);
3894 	if (!page)
3895 		return 0;
3896 	return (unsigned long) page_address(page);
3897 }
3898 EXPORT_SYMBOL(__get_free_pages);
3899 
3900 unsigned long get_zeroed_page(gfp_t gfp_mask)
3901 {
3902 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3903 }
3904 EXPORT_SYMBOL(get_zeroed_page);
3905 
3906 void __free_pages(struct page *page, unsigned int order)
3907 {
3908 	if (put_page_testzero(page)) {
3909 		if (order == 0)
3910 			free_hot_cold_page(page, false);
3911 		else
3912 			__free_pages_ok(page, order);
3913 	}
3914 }
3915 
3916 EXPORT_SYMBOL(__free_pages);
3917 
3918 void free_pages(unsigned long addr, unsigned int order)
3919 {
3920 	if (addr != 0) {
3921 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3922 		__free_pages(virt_to_page((void *)addr), order);
3923 	}
3924 }
3925 
3926 EXPORT_SYMBOL(free_pages);
3927 
3928 /*
3929  * Page Fragment:
3930  *  An arbitrary-length arbitrary-offset area of memory which resides
3931  *  within a 0 or higher order page.  Multiple fragments within that page
3932  *  are individually refcounted, in the page's reference counter.
3933  *
3934  * The page_frag functions below provide a simple allocation framework for
3935  * page fragments.  This is used by the network stack and network device
3936  * drivers to provide a backing region of memory for use as either an
3937  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3938  */
3939 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3940 				       gfp_t gfp_mask)
3941 {
3942 	struct page *page = NULL;
3943 	gfp_t gfp = gfp_mask;
3944 
3945 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3946 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3947 		    __GFP_NOMEMALLOC;
3948 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3949 				PAGE_FRAG_CACHE_MAX_ORDER);
3950 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3951 #endif
3952 	if (unlikely(!page))
3953 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3954 
3955 	nc->va = page ? page_address(page) : NULL;
3956 
3957 	return page;
3958 }
3959 
3960 void *__alloc_page_frag(struct page_frag_cache *nc,
3961 			unsigned int fragsz, gfp_t gfp_mask)
3962 {
3963 	unsigned int size = PAGE_SIZE;
3964 	struct page *page;
3965 	int offset;
3966 
3967 	if (unlikely(!nc->va)) {
3968 refill:
3969 		page = __page_frag_refill(nc, gfp_mask);
3970 		if (!page)
3971 			return NULL;
3972 
3973 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3974 		/* if size can vary use size else just use PAGE_SIZE */
3975 		size = nc->size;
3976 #endif
3977 		/* Even if we own the page, we do not use atomic_set().
3978 		 * This would break get_page_unless_zero() users.
3979 		 */
3980 		page_ref_add(page, size - 1);
3981 
3982 		/* reset page count bias and offset to start of new frag */
3983 		nc->pfmemalloc = page_is_pfmemalloc(page);
3984 		nc->pagecnt_bias = size;
3985 		nc->offset = size;
3986 	}
3987 
3988 	offset = nc->offset - fragsz;
3989 	if (unlikely(offset < 0)) {
3990 		page = virt_to_page(nc->va);
3991 
3992 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3993 			goto refill;
3994 
3995 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3996 		/* if size can vary use size else just use PAGE_SIZE */
3997 		size = nc->size;
3998 #endif
3999 		/* OK, page count is 0, we can safely set it */
4000 		set_page_count(page, size);
4001 
4002 		/* reset page count bias and offset to start of new frag */
4003 		nc->pagecnt_bias = size;
4004 		offset = size - fragsz;
4005 	}
4006 
4007 	nc->pagecnt_bias--;
4008 	nc->offset = offset;
4009 
4010 	return nc->va + offset;
4011 }
4012 EXPORT_SYMBOL(__alloc_page_frag);
4013 
4014 /*
4015  * Frees a page fragment allocated out of either a compound or order 0 page.
4016  */
4017 void __free_page_frag(void *addr)
4018 {
4019 	struct page *page = virt_to_head_page(addr);
4020 
4021 	if (unlikely(put_page_testzero(page)))
4022 		__free_pages_ok(page, compound_order(page));
4023 }
4024 EXPORT_SYMBOL(__free_page_frag);
4025 
4026 /*
4027  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
4028  * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4029  * equivalent to alloc_pages.
4030  *
4031  * It should be used when the caller would like to use kmalloc, but since the
4032  * allocation is large, it has to fall back to the page allocator.
4033  */
4034 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4035 {
4036 	struct page *page;
4037 
4038 	page = alloc_pages(gfp_mask, order);
4039 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4040 		__free_pages(page, order);
4041 		page = NULL;
4042 	}
4043 	return page;
4044 }
4045 
4046 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4047 {
4048 	struct page *page;
4049 
4050 	page = alloc_pages_node(nid, gfp_mask, order);
4051 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4052 		__free_pages(page, order);
4053 		page = NULL;
4054 	}
4055 	return page;
4056 }
4057 
4058 /*
4059  * __free_kmem_pages and free_kmem_pages will free pages allocated with
4060  * alloc_kmem_pages.
4061  */
4062 void __free_kmem_pages(struct page *page, unsigned int order)
4063 {
4064 	memcg_kmem_uncharge(page, order);
4065 	__free_pages(page, order);
4066 }
4067 
4068 void free_kmem_pages(unsigned long addr, unsigned int order)
4069 {
4070 	if (addr != 0) {
4071 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4072 		__free_kmem_pages(virt_to_page((void *)addr), order);
4073 	}
4074 }
4075 
4076 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4077 		size_t size)
4078 {
4079 	if (addr) {
4080 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4081 		unsigned long used = addr + PAGE_ALIGN(size);
4082 
4083 		split_page(virt_to_page((void *)addr), order);
4084 		while (used < alloc_end) {
4085 			free_page(used);
4086 			used += PAGE_SIZE;
4087 		}
4088 	}
4089 	return (void *)addr;
4090 }
4091 
4092 /**
4093  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4094  * @size: the number of bytes to allocate
4095  * @gfp_mask: GFP flags for the allocation
4096  *
4097  * This function is similar to alloc_pages(), except that it allocates the
4098  * minimum number of pages to satisfy the request.  alloc_pages() can only
4099  * allocate memory in power-of-two pages.
4100  *
4101  * This function is also limited by MAX_ORDER.
4102  *
4103  * Memory allocated by this function must be released by free_pages_exact().
4104  */
4105 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4106 {
4107 	unsigned int order = get_order(size);
4108 	unsigned long addr;
4109 
4110 	addr = __get_free_pages(gfp_mask, order);
4111 	return make_alloc_exact(addr, order, size);
4112 }
4113 EXPORT_SYMBOL(alloc_pages_exact);
4114 
4115 /**
4116  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4117  *			   pages on a node.
4118  * @nid: the preferred node ID where memory should be allocated
4119  * @size: the number of bytes to allocate
4120  * @gfp_mask: GFP flags for the allocation
4121  *
4122  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4123  * back.
4124  */
4125 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4126 {
4127 	unsigned int order = get_order(size);
4128 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4129 	if (!p)
4130 		return NULL;
4131 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4132 }
4133 
4134 /**
4135  * free_pages_exact - release memory allocated via alloc_pages_exact()
4136  * @virt: the value returned by alloc_pages_exact.
4137  * @size: size of allocation, same value as passed to alloc_pages_exact().
4138  *
4139  * Release the memory allocated by a previous call to alloc_pages_exact.
4140  */
4141 void free_pages_exact(void *virt, size_t size)
4142 {
4143 	unsigned long addr = (unsigned long)virt;
4144 	unsigned long end = addr + PAGE_ALIGN(size);
4145 
4146 	while (addr < end) {
4147 		free_page(addr);
4148 		addr += PAGE_SIZE;
4149 	}
4150 }
4151 EXPORT_SYMBOL(free_pages_exact);
4152 
4153 /**
4154  * nr_free_zone_pages - count number of pages beyond high watermark
4155  * @offset: The zone index of the highest zone
4156  *
4157  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4158  * high watermark within all zones at or below a given zone index.  For each
4159  * zone, the number of pages is calculated as:
4160  *     managed_pages - high_pages
4161  */
4162 static unsigned long nr_free_zone_pages(int offset)
4163 {
4164 	struct zoneref *z;
4165 	struct zone *zone;
4166 
4167 	/* Just pick one node, since fallback list is circular */
4168 	unsigned long sum = 0;
4169 
4170 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4171 
4172 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4173 		unsigned long size = zone->managed_pages;
4174 		unsigned long high = high_wmark_pages(zone);
4175 		if (size > high)
4176 			sum += size - high;
4177 	}
4178 
4179 	return sum;
4180 }
4181 
4182 /**
4183  * nr_free_buffer_pages - count number of pages beyond high watermark
4184  *
4185  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4186  * watermark within ZONE_DMA and ZONE_NORMAL.
4187  */
4188 unsigned long nr_free_buffer_pages(void)
4189 {
4190 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4191 }
4192 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4193 
4194 /**
4195  * nr_free_pagecache_pages - count number of pages beyond high watermark
4196  *
4197  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4198  * high watermark within all zones.
4199  */
4200 unsigned long nr_free_pagecache_pages(void)
4201 {
4202 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4203 }
4204 
4205 static inline void show_node(struct zone *zone)
4206 {
4207 	if (IS_ENABLED(CONFIG_NUMA))
4208 		printk("Node %d ", zone_to_nid(zone));
4209 }
4210 
4211 long si_mem_available(void)
4212 {
4213 	long available;
4214 	unsigned long pagecache;
4215 	unsigned long wmark_low = 0;
4216 	unsigned long pages[NR_LRU_LISTS];
4217 	struct zone *zone;
4218 	int lru;
4219 
4220 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4221 		pages[lru] = global_page_state(NR_LRU_BASE + lru);
4222 
4223 	for_each_zone(zone)
4224 		wmark_low += zone->watermark[WMARK_LOW];
4225 
4226 	/*
4227 	 * Estimate the amount of memory available for userspace allocations,
4228 	 * without causing swapping.
4229 	 */
4230 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4231 
4232 	/*
4233 	 * Not all the page cache can be freed, otherwise the system will
4234 	 * start swapping. Assume at least half of the page cache, or the
4235 	 * low watermark worth of cache, needs to stay.
4236 	 */
4237 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4238 	pagecache -= min(pagecache / 2, wmark_low);
4239 	available += pagecache;
4240 
4241 	/*
4242 	 * Part of the reclaimable slab consists of items that are in use,
4243 	 * and cannot be freed. Cap this estimate at the low watermark.
4244 	 */
4245 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4246 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4247 
4248 	if (available < 0)
4249 		available = 0;
4250 	return available;
4251 }
4252 EXPORT_SYMBOL_GPL(si_mem_available);
4253 
4254 void si_meminfo(struct sysinfo *val)
4255 {
4256 	val->totalram = totalram_pages;
4257 	val->sharedram = global_page_state(NR_SHMEM);
4258 	val->freeram = global_page_state(NR_FREE_PAGES);
4259 	val->bufferram = nr_blockdev_pages();
4260 	val->totalhigh = totalhigh_pages;
4261 	val->freehigh = nr_free_highpages();
4262 	val->mem_unit = PAGE_SIZE;
4263 }
4264 
4265 EXPORT_SYMBOL(si_meminfo);
4266 
4267 #ifdef CONFIG_NUMA
4268 void si_meminfo_node(struct sysinfo *val, int nid)
4269 {
4270 	int zone_type;		/* needs to be signed */
4271 	unsigned long managed_pages = 0;
4272 	unsigned long managed_highpages = 0;
4273 	unsigned long free_highpages = 0;
4274 	pg_data_t *pgdat = NODE_DATA(nid);
4275 
4276 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4277 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4278 	val->totalram = managed_pages;
4279 	val->sharedram = node_page_state(nid, NR_SHMEM);
4280 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
4281 #ifdef CONFIG_HIGHMEM
4282 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4283 		struct zone *zone = &pgdat->node_zones[zone_type];
4284 
4285 		if (is_highmem(zone)) {
4286 			managed_highpages += zone->managed_pages;
4287 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4288 		}
4289 	}
4290 	val->totalhigh = managed_highpages;
4291 	val->freehigh = free_highpages;
4292 #else
4293 	val->totalhigh = managed_highpages;
4294 	val->freehigh = free_highpages;
4295 #endif
4296 	val->mem_unit = PAGE_SIZE;
4297 }
4298 #endif
4299 
4300 /*
4301  * Determine whether the node should be displayed or not, depending on whether
4302  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4303  */
4304 bool skip_free_areas_node(unsigned int flags, int nid)
4305 {
4306 	bool ret = false;
4307 	unsigned int cpuset_mems_cookie;
4308 
4309 	if (!(flags & SHOW_MEM_FILTER_NODES))
4310 		goto out;
4311 
4312 	do {
4313 		cpuset_mems_cookie = read_mems_allowed_begin();
4314 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4315 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4316 out:
4317 	return ret;
4318 }
4319 
4320 #define K(x) ((x) << (PAGE_SHIFT-10))
4321 
4322 static void show_migration_types(unsigned char type)
4323 {
4324 	static const char types[MIGRATE_TYPES] = {
4325 		[MIGRATE_UNMOVABLE]	= 'U',
4326 		[MIGRATE_MOVABLE]	= 'M',
4327 		[MIGRATE_RECLAIMABLE]	= 'E',
4328 		[MIGRATE_HIGHATOMIC]	= 'H',
4329 #ifdef CONFIG_CMA
4330 		[MIGRATE_CMA]		= 'C',
4331 #endif
4332 #ifdef CONFIG_MEMORY_ISOLATION
4333 		[MIGRATE_ISOLATE]	= 'I',
4334 #endif
4335 	};
4336 	char tmp[MIGRATE_TYPES + 1];
4337 	char *p = tmp;
4338 	int i;
4339 
4340 	for (i = 0; i < MIGRATE_TYPES; i++) {
4341 		if (type & (1 << i))
4342 			*p++ = types[i];
4343 	}
4344 
4345 	*p = '\0';
4346 	printk("(%s) ", tmp);
4347 }
4348 
4349 /*
4350  * Show free area list (used inside shift_scroll-lock stuff)
4351  * We also calculate the percentage fragmentation. We do this by counting the
4352  * memory on each free list with the exception of the first item on the list.
4353  *
4354  * Bits in @filter:
4355  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4356  *   cpuset.
4357  */
4358 void show_free_areas(unsigned int filter)
4359 {
4360 	unsigned long free_pcp = 0;
4361 	int cpu;
4362 	struct zone *zone;
4363 
4364 	for_each_populated_zone(zone) {
4365 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4366 			continue;
4367 
4368 		for_each_online_cpu(cpu)
4369 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4370 	}
4371 
4372 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4373 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4374 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4375 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4376 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4377 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4378 		global_page_state(NR_ACTIVE_ANON),
4379 		global_page_state(NR_INACTIVE_ANON),
4380 		global_page_state(NR_ISOLATED_ANON),
4381 		global_page_state(NR_ACTIVE_FILE),
4382 		global_page_state(NR_INACTIVE_FILE),
4383 		global_page_state(NR_ISOLATED_FILE),
4384 		global_page_state(NR_UNEVICTABLE),
4385 		global_page_state(NR_FILE_DIRTY),
4386 		global_page_state(NR_WRITEBACK),
4387 		global_page_state(NR_UNSTABLE_NFS),
4388 		global_page_state(NR_SLAB_RECLAIMABLE),
4389 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4390 		global_page_state(NR_FILE_MAPPED),
4391 		global_page_state(NR_SHMEM),
4392 		global_page_state(NR_PAGETABLE),
4393 		global_page_state(NR_BOUNCE),
4394 		global_page_state(NR_FREE_PAGES),
4395 		free_pcp,
4396 		global_page_state(NR_FREE_CMA_PAGES));
4397 
4398 	for_each_populated_zone(zone) {
4399 		int i;
4400 
4401 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4402 			continue;
4403 
4404 		free_pcp = 0;
4405 		for_each_online_cpu(cpu)
4406 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4407 
4408 		show_node(zone);
4409 		printk("%s"
4410 			" free:%lukB"
4411 			" min:%lukB"
4412 			" low:%lukB"
4413 			" high:%lukB"
4414 			" active_anon:%lukB"
4415 			" inactive_anon:%lukB"
4416 			" active_file:%lukB"
4417 			" inactive_file:%lukB"
4418 			" unevictable:%lukB"
4419 			" isolated(anon):%lukB"
4420 			" isolated(file):%lukB"
4421 			" present:%lukB"
4422 			" managed:%lukB"
4423 			" mlocked:%lukB"
4424 			" dirty:%lukB"
4425 			" writeback:%lukB"
4426 			" mapped:%lukB"
4427 			" shmem:%lukB"
4428 			" slab_reclaimable:%lukB"
4429 			" slab_unreclaimable:%lukB"
4430 			" kernel_stack:%lukB"
4431 			" pagetables:%lukB"
4432 			" unstable:%lukB"
4433 			" bounce:%lukB"
4434 			" free_pcp:%lukB"
4435 			" local_pcp:%ukB"
4436 			" free_cma:%lukB"
4437 			" writeback_tmp:%lukB"
4438 			" pages_scanned:%lu"
4439 			" all_unreclaimable? %s"
4440 			"\n",
4441 			zone->name,
4442 			K(zone_page_state(zone, NR_FREE_PAGES)),
4443 			K(min_wmark_pages(zone)),
4444 			K(low_wmark_pages(zone)),
4445 			K(high_wmark_pages(zone)),
4446 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
4447 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
4448 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
4449 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
4450 			K(zone_page_state(zone, NR_UNEVICTABLE)),
4451 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
4452 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
4453 			K(zone->present_pages),
4454 			K(zone->managed_pages),
4455 			K(zone_page_state(zone, NR_MLOCK)),
4456 			K(zone_page_state(zone, NR_FILE_DIRTY)),
4457 			K(zone_page_state(zone, NR_WRITEBACK)),
4458 			K(zone_page_state(zone, NR_FILE_MAPPED)),
4459 			K(zone_page_state(zone, NR_SHMEM)),
4460 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4461 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4462 			zone_page_state(zone, NR_KERNEL_STACK) *
4463 				THREAD_SIZE / 1024,
4464 			K(zone_page_state(zone, NR_PAGETABLE)),
4465 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4466 			K(zone_page_state(zone, NR_BOUNCE)),
4467 			K(free_pcp),
4468 			K(this_cpu_read(zone->pageset->pcp.count)),
4469 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4470 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4471 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
4472 			(!zone_reclaimable(zone) ? "yes" : "no")
4473 			);
4474 		printk("lowmem_reserve[]:");
4475 		for (i = 0; i < MAX_NR_ZONES; i++)
4476 			printk(" %ld", zone->lowmem_reserve[i]);
4477 		printk("\n");
4478 	}
4479 
4480 	for_each_populated_zone(zone) {
4481 		unsigned int order;
4482 		unsigned long nr[MAX_ORDER], flags, total = 0;
4483 		unsigned char types[MAX_ORDER];
4484 
4485 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4486 			continue;
4487 		show_node(zone);
4488 		printk("%s: ", zone->name);
4489 
4490 		spin_lock_irqsave(&zone->lock, flags);
4491 		for (order = 0; order < MAX_ORDER; order++) {
4492 			struct free_area *area = &zone->free_area[order];
4493 			int type;
4494 
4495 			nr[order] = area->nr_free;
4496 			total += nr[order] << order;
4497 
4498 			types[order] = 0;
4499 			for (type = 0; type < MIGRATE_TYPES; type++) {
4500 				if (!list_empty(&area->free_list[type]))
4501 					types[order] |= 1 << type;
4502 			}
4503 		}
4504 		spin_unlock_irqrestore(&zone->lock, flags);
4505 		for (order = 0; order < MAX_ORDER; order++) {
4506 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4507 			if (nr[order])
4508 				show_migration_types(types[order]);
4509 		}
4510 		printk("= %lukB\n", K(total));
4511 	}
4512 
4513 	hugetlb_show_meminfo();
4514 
4515 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4516 
4517 	show_swap_cache_info();
4518 }
4519 
4520 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4521 {
4522 	zoneref->zone = zone;
4523 	zoneref->zone_idx = zone_idx(zone);
4524 }
4525 
4526 /*
4527  * Builds allocation fallback zone lists.
4528  *
4529  * Add all populated zones of a node to the zonelist.
4530  */
4531 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4532 				int nr_zones)
4533 {
4534 	struct zone *zone;
4535 	enum zone_type zone_type = MAX_NR_ZONES;
4536 
4537 	do {
4538 		zone_type--;
4539 		zone = pgdat->node_zones + zone_type;
4540 		if (populated_zone(zone)) {
4541 			zoneref_set_zone(zone,
4542 				&zonelist->_zonerefs[nr_zones++]);
4543 			check_highest_zone(zone_type);
4544 		}
4545 	} while (zone_type);
4546 
4547 	return nr_zones;
4548 }
4549 
4550 
4551 /*
4552  *  zonelist_order:
4553  *  0 = automatic detection of better ordering.
4554  *  1 = order by ([node] distance, -zonetype)
4555  *  2 = order by (-zonetype, [node] distance)
4556  *
4557  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4558  *  the same zonelist. So only NUMA can configure this param.
4559  */
4560 #define ZONELIST_ORDER_DEFAULT  0
4561 #define ZONELIST_ORDER_NODE     1
4562 #define ZONELIST_ORDER_ZONE     2
4563 
4564 /* zonelist order in the kernel.
4565  * set_zonelist_order() will set this to NODE or ZONE.
4566  */
4567 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4568 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4569 
4570 
4571 #ifdef CONFIG_NUMA
4572 /* The value user specified ....changed by config */
4573 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4574 /* string for sysctl */
4575 #define NUMA_ZONELIST_ORDER_LEN	16
4576 char numa_zonelist_order[16] = "default";
4577 
4578 /*
4579  * interface for configure zonelist ordering.
4580  * command line option "numa_zonelist_order"
4581  *	= "[dD]efault	- default, automatic configuration.
4582  *	= "[nN]ode 	- order by node locality, then by zone within node
4583  *	= "[zZ]one      - order by zone, then by locality within zone
4584  */
4585 
4586 static int __parse_numa_zonelist_order(char *s)
4587 {
4588 	if (*s == 'd' || *s == 'D') {
4589 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4590 	} else if (*s == 'n' || *s == 'N') {
4591 		user_zonelist_order = ZONELIST_ORDER_NODE;
4592 	} else if (*s == 'z' || *s == 'Z') {
4593 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4594 	} else {
4595 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4596 		return -EINVAL;
4597 	}
4598 	return 0;
4599 }
4600 
4601 static __init int setup_numa_zonelist_order(char *s)
4602 {
4603 	int ret;
4604 
4605 	if (!s)
4606 		return 0;
4607 
4608 	ret = __parse_numa_zonelist_order(s);
4609 	if (ret == 0)
4610 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4611 
4612 	return ret;
4613 }
4614 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4615 
4616 /*
4617  * sysctl handler for numa_zonelist_order
4618  */
4619 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4620 		void __user *buffer, size_t *length,
4621 		loff_t *ppos)
4622 {
4623 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4624 	int ret;
4625 	static DEFINE_MUTEX(zl_order_mutex);
4626 
4627 	mutex_lock(&zl_order_mutex);
4628 	if (write) {
4629 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4630 			ret = -EINVAL;
4631 			goto out;
4632 		}
4633 		strcpy(saved_string, (char *)table->data);
4634 	}
4635 	ret = proc_dostring(table, write, buffer, length, ppos);
4636 	if (ret)
4637 		goto out;
4638 	if (write) {
4639 		int oldval = user_zonelist_order;
4640 
4641 		ret = __parse_numa_zonelist_order((char *)table->data);
4642 		if (ret) {
4643 			/*
4644 			 * bogus value.  restore saved string
4645 			 */
4646 			strncpy((char *)table->data, saved_string,
4647 				NUMA_ZONELIST_ORDER_LEN);
4648 			user_zonelist_order = oldval;
4649 		} else if (oldval != user_zonelist_order) {
4650 			mutex_lock(&zonelists_mutex);
4651 			build_all_zonelists(NULL, NULL);
4652 			mutex_unlock(&zonelists_mutex);
4653 		}
4654 	}
4655 out:
4656 	mutex_unlock(&zl_order_mutex);
4657 	return ret;
4658 }
4659 
4660 
4661 #define MAX_NODE_LOAD (nr_online_nodes)
4662 static int node_load[MAX_NUMNODES];
4663 
4664 /**
4665  * find_next_best_node - find the next node that should appear in a given node's fallback list
4666  * @node: node whose fallback list we're appending
4667  * @used_node_mask: nodemask_t of already used nodes
4668  *
4669  * We use a number of factors to determine which is the next node that should
4670  * appear on a given node's fallback list.  The node should not have appeared
4671  * already in @node's fallback list, and it should be the next closest node
4672  * according to the distance array (which contains arbitrary distance values
4673  * from each node to each node in the system), and should also prefer nodes
4674  * with no CPUs, since presumably they'll have very little allocation pressure
4675  * on them otherwise.
4676  * It returns -1 if no node is found.
4677  */
4678 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4679 {
4680 	int n, val;
4681 	int min_val = INT_MAX;
4682 	int best_node = NUMA_NO_NODE;
4683 	const struct cpumask *tmp = cpumask_of_node(0);
4684 
4685 	/* Use the local node if we haven't already */
4686 	if (!node_isset(node, *used_node_mask)) {
4687 		node_set(node, *used_node_mask);
4688 		return node;
4689 	}
4690 
4691 	for_each_node_state(n, N_MEMORY) {
4692 
4693 		/* Don't want a node to appear more than once */
4694 		if (node_isset(n, *used_node_mask))
4695 			continue;
4696 
4697 		/* Use the distance array to find the distance */
4698 		val = node_distance(node, n);
4699 
4700 		/* Penalize nodes under us ("prefer the next node") */
4701 		val += (n < node);
4702 
4703 		/* Give preference to headless and unused nodes */
4704 		tmp = cpumask_of_node(n);
4705 		if (!cpumask_empty(tmp))
4706 			val += PENALTY_FOR_NODE_WITH_CPUS;
4707 
4708 		/* Slight preference for less loaded node */
4709 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4710 		val += node_load[n];
4711 
4712 		if (val < min_val) {
4713 			min_val = val;
4714 			best_node = n;
4715 		}
4716 	}
4717 
4718 	if (best_node >= 0)
4719 		node_set(best_node, *used_node_mask);
4720 
4721 	return best_node;
4722 }
4723 
4724 
4725 /*
4726  * Build zonelists ordered by node and zones within node.
4727  * This results in maximum locality--normal zone overflows into local
4728  * DMA zone, if any--but risks exhausting DMA zone.
4729  */
4730 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4731 {
4732 	int j;
4733 	struct zonelist *zonelist;
4734 
4735 	zonelist = &pgdat->node_zonelists[0];
4736 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4737 		;
4738 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4739 	zonelist->_zonerefs[j].zone = NULL;
4740 	zonelist->_zonerefs[j].zone_idx = 0;
4741 }
4742 
4743 /*
4744  * Build gfp_thisnode zonelists
4745  */
4746 static void build_thisnode_zonelists(pg_data_t *pgdat)
4747 {
4748 	int j;
4749 	struct zonelist *zonelist;
4750 
4751 	zonelist = &pgdat->node_zonelists[1];
4752 	j = build_zonelists_node(pgdat, zonelist, 0);
4753 	zonelist->_zonerefs[j].zone = NULL;
4754 	zonelist->_zonerefs[j].zone_idx = 0;
4755 }
4756 
4757 /*
4758  * Build zonelists ordered by zone and nodes within zones.
4759  * This results in conserving DMA zone[s] until all Normal memory is
4760  * exhausted, but results in overflowing to remote node while memory
4761  * may still exist in local DMA zone.
4762  */
4763 static int node_order[MAX_NUMNODES];
4764 
4765 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4766 {
4767 	int pos, j, node;
4768 	int zone_type;		/* needs to be signed */
4769 	struct zone *z;
4770 	struct zonelist *zonelist;
4771 
4772 	zonelist = &pgdat->node_zonelists[0];
4773 	pos = 0;
4774 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4775 		for (j = 0; j < nr_nodes; j++) {
4776 			node = node_order[j];
4777 			z = &NODE_DATA(node)->node_zones[zone_type];
4778 			if (populated_zone(z)) {
4779 				zoneref_set_zone(z,
4780 					&zonelist->_zonerefs[pos++]);
4781 				check_highest_zone(zone_type);
4782 			}
4783 		}
4784 	}
4785 	zonelist->_zonerefs[pos].zone = NULL;
4786 	zonelist->_zonerefs[pos].zone_idx = 0;
4787 }
4788 
4789 #if defined(CONFIG_64BIT)
4790 /*
4791  * Devices that require DMA32/DMA are relatively rare and do not justify a
4792  * penalty to every machine in case the specialised case applies. Default
4793  * to Node-ordering on 64-bit NUMA machines
4794  */
4795 static int default_zonelist_order(void)
4796 {
4797 	return ZONELIST_ORDER_NODE;
4798 }
4799 #else
4800 /*
4801  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4802  * by the kernel. If processes running on node 0 deplete the low memory zone
4803  * then reclaim will occur more frequency increasing stalls and potentially
4804  * be easier to OOM if a large percentage of the zone is under writeback or
4805  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4806  * Hence, default to zone ordering on 32-bit.
4807  */
4808 static int default_zonelist_order(void)
4809 {
4810 	return ZONELIST_ORDER_ZONE;
4811 }
4812 #endif /* CONFIG_64BIT */
4813 
4814 static void set_zonelist_order(void)
4815 {
4816 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4817 		current_zonelist_order = default_zonelist_order();
4818 	else
4819 		current_zonelist_order = user_zonelist_order;
4820 }
4821 
4822 static void build_zonelists(pg_data_t *pgdat)
4823 {
4824 	int i, node, load;
4825 	nodemask_t used_mask;
4826 	int local_node, prev_node;
4827 	struct zonelist *zonelist;
4828 	unsigned int order = current_zonelist_order;
4829 
4830 	/* initialize zonelists */
4831 	for (i = 0; i < MAX_ZONELISTS; i++) {
4832 		zonelist = pgdat->node_zonelists + i;
4833 		zonelist->_zonerefs[0].zone = NULL;
4834 		zonelist->_zonerefs[0].zone_idx = 0;
4835 	}
4836 
4837 	/* NUMA-aware ordering of nodes */
4838 	local_node = pgdat->node_id;
4839 	load = nr_online_nodes;
4840 	prev_node = local_node;
4841 	nodes_clear(used_mask);
4842 
4843 	memset(node_order, 0, sizeof(node_order));
4844 	i = 0;
4845 
4846 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4847 		/*
4848 		 * We don't want to pressure a particular node.
4849 		 * So adding penalty to the first node in same
4850 		 * distance group to make it round-robin.
4851 		 */
4852 		if (node_distance(local_node, node) !=
4853 		    node_distance(local_node, prev_node))
4854 			node_load[node] = load;
4855 
4856 		prev_node = node;
4857 		load--;
4858 		if (order == ZONELIST_ORDER_NODE)
4859 			build_zonelists_in_node_order(pgdat, node);
4860 		else
4861 			node_order[i++] = node;	/* remember order */
4862 	}
4863 
4864 	if (order == ZONELIST_ORDER_ZONE) {
4865 		/* calculate node order -- i.e., DMA last! */
4866 		build_zonelists_in_zone_order(pgdat, i);
4867 	}
4868 
4869 	build_thisnode_zonelists(pgdat);
4870 }
4871 
4872 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4873 /*
4874  * Return node id of node used for "local" allocations.
4875  * I.e., first node id of first zone in arg node's generic zonelist.
4876  * Used for initializing percpu 'numa_mem', which is used primarily
4877  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4878  */
4879 int local_memory_node(int node)
4880 {
4881 	struct zoneref *z;
4882 
4883 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4884 				   gfp_zone(GFP_KERNEL),
4885 				   NULL);
4886 	return z->zone->node;
4887 }
4888 #endif
4889 
4890 #else	/* CONFIG_NUMA */
4891 
4892 static void set_zonelist_order(void)
4893 {
4894 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4895 }
4896 
4897 static void build_zonelists(pg_data_t *pgdat)
4898 {
4899 	int node, local_node;
4900 	enum zone_type j;
4901 	struct zonelist *zonelist;
4902 
4903 	local_node = pgdat->node_id;
4904 
4905 	zonelist = &pgdat->node_zonelists[0];
4906 	j = build_zonelists_node(pgdat, zonelist, 0);
4907 
4908 	/*
4909 	 * Now we build the zonelist so that it contains the zones
4910 	 * of all the other nodes.
4911 	 * We don't want to pressure a particular node, so when
4912 	 * building the zones for node N, we make sure that the
4913 	 * zones coming right after the local ones are those from
4914 	 * node N+1 (modulo N)
4915 	 */
4916 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4917 		if (!node_online(node))
4918 			continue;
4919 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4920 	}
4921 	for (node = 0; node < local_node; node++) {
4922 		if (!node_online(node))
4923 			continue;
4924 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4925 	}
4926 
4927 	zonelist->_zonerefs[j].zone = NULL;
4928 	zonelist->_zonerefs[j].zone_idx = 0;
4929 }
4930 
4931 #endif	/* CONFIG_NUMA */
4932 
4933 /*
4934  * Boot pageset table. One per cpu which is going to be used for all
4935  * zones and all nodes. The parameters will be set in such a way
4936  * that an item put on a list will immediately be handed over to
4937  * the buddy list. This is safe since pageset manipulation is done
4938  * with interrupts disabled.
4939  *
4940  * The boot_pagesets must be kept even after bootup is complete for
4941  * unused processors and/or zones. They do play a role for bootstrapping
4942  * hotplugged processors.
4943  *
4944  * zoneinfo_show() and maybe other functions do
4945  * not check if the processor is online before following the pageset pointer.
4946  * Other parts of the kernel may not check if the zone is available.
4947  */
4948 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4949 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4950 static void setup_zone_pageset(struct zone *zone);
4951 
4952 /*
4953  * Global mutex to protect against size modification of zonelists
4954  * as well as to serialize pageset setup for the new populated zone.
4955  */
4956 DEFINE_MUTEX(zonelists_mutex);
4957 
4958 /* return values int ....just for stop_machine() */
4959 static int __build_all_zonelists(void *data)
4960 {
4961 	int nid;
4962 	int cpu;
4963 	pg_data_t *self = data;
4964 
4965 #ifdef CONFIG_NUMA
4966 	memset(node_load, 0, sizeof(node_load));
4967 #endif
4968 
4969 	if (self && !node_online(self->node_id)) {
4970 		build_zonelists(self);
4971 	}
4972 
4973 	for_each_online_node(nid) {
4974 		pg_data_t *pgdat = NODE_DATA(nid);
4975 
4976 		build_zonelists(pgdat);
4977 	}
4978 
4979 	/*
4980 	 * Initialize the boot_pagesets that are going to be used
4981 	 * for bootstrapping processors. The real pagesets for
4982 	 * each zone will be allocated later when the per cpu
4983 	 * allocator is available.
4984 	 *
4985 	 * boot_pagesets are used also for bootstrapping offline
4986 	 * cpus if the system is already booted because the pagesets
4987 	 * are needed to initialize allocators on a specific cpu too.
4988 	 * F.e. the percpu allocator needs the page allocator which
4989 	 * needs the percpu allocator in order to allocate its pagesets
4990 	 * (a chicken-egg dilemma).
4991 	 */
4992 	for_each_possible_cpu(cpu) {
4993 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4994 
4995 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4996 		/*
4997 		 * We now know the "local memory node" for each node--
4998 		 * i.e., the node of the first zone in the generic zonelist.
4999 		 * Set up numa_mem percpu variable for on-line cpus.  During
5000 		 * boot, only the boot cpu should be on-line;  we'll init the
5001 		 * secondary cpus' numa_mem as they come on-line.  During
5002 		 * node/memory hotplug, we'll fixup all on-line cpus.
5003 		 */
5004 		if (cpu_online(cpu))
5005 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5006 #endif
5007 	}
5008 
5009 	return 0;
5010 }
5011 
5012 static noinline void __init
5013 build_all_zonelists_init(void)
5014 {
5015 	__build_all_zonelists(NULL);
5016 	mminit_verify_zonelist();
5017 	cpuset_init_current_mems_allowed();
5018 }
5019 
5020 /*
5021  * Called with zonelists_mutex held always
5022  * unless system_state == SYSTEM_BOOTING.
5023  *
5024  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5025  * [we're only called with non-NULL zone through __meminit paths] and
5026  * (2) call of __init annotated helper build_all_zonelists_init
5027  * [protected by SYSTEM_BOOTING].
5028  */
5029 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5030 {
5031 	set_zonelist_order();
5032 
5033 	if (system_state == SYSTEM_BOOTING) {
5034 		build_all_zonelists_init();
5035 	} else {
5036 #ifdef CONFIG_MEMORY_HOTPLUG
5037 		if (zone)
5038 			setup_zone_pageset(zone);
5039 #endif
5040 		/* we have to stop all cpus to guarantee there is no user
5041 		   of zonelist */
5042 		stop_machine(__build_all_zonelists, pgdat, NULL);
5043 		/* cpuset refresh routine should be here */
5044 	}
5045 	vm_total_pages = nr_free_pagecache_pages();
5046 	/*
5047 	 * Disable grouping by mobility if the number of pages in the
5048 	 * system is too low to allow the mechanism to work. It would be
5049 	 * more accurate, but expensive to check per-zone. This check is
5050 	 * made on memory-hotadd so a system can start with mobility
5051 	 * disabled and enable it later
5052 	 */
5053 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5054 		page_group_by_mobility_disabled = 1;
5055 	else
5056 		page_group_by_mobility_disabled = 0;
5057 
5058 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5059 		nr_online_nodes,
5060 		zonelist_order_name[current_zonelist_order],
5061 		page_group_by_mobility_disabled ? "off" : "on",
5062 		vm_total_pages);
5063 #ifdef CONFIG_NUMA
5064 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5065 #endif
5066 }
5067 
5068 /*
5069  * Helper functions to size the waitqueue hash table.
5070  * Essentially these want to choose hash table sizes sufficiently
5071  * large so that collisions trying to wait on pages are rare.
5072  * But in fact, the number of active page waitqueues on typical
5073  * systems is ridiculously low, less than 200. So this is even
5074  * conservative, even though it seems large.
5075  *
5076  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5077  * waitqueues, i.e. the size of the waitq table given the number of pages.
5078  */
5079 #define PAGES_PER_WAITQUEUE	256
5080 
5081 #ifndef CONFIG_MEMORY_HOTPLUG
5082 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5083 {
5084 	unsigned long size = 1;
5085 
5086 	pages /= PAGES_PER_WAITQUEUE;
5087 
5088 	while (size < pages)
5089 		size <<= 1;
5090 
5091 	/*
5092 	 * Once we have dozens or even hundreds of threads sleeping
5093 	 * on IO we've got bigger problems than wait queue collision.
5094 	 * Limit the size of the wait table to a reasonable size.
5095 	 */
5096 	size = min(size, 4096UL);
5097 
5098 	return max(size, 4UL);
5099 }
5100 #else
5101 /*
5102  * A zone's size might be changed by hot-add, so it is not possible to determine
5103  * a suitable size for its wait_table.  So we use the maximum size now.
5104  *
5105  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
5106  *
5107  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
5108  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5109  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
5110  *
5111  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5112  * or more by the traditional way. (See above).  It equals:
5113  *
5114  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
5115  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
5116  *    powerpc (64K page size)             : =  (32G +16M)byte.
5117  */
5118 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5119 {
5120 	return 4096UL;
5121 }
5122 #endif
5123 
5124 /*
5125  * This is an integer logarithm so that shifts can be used later
5126  * to extract the more random high bits from the multiplicative
5127  * hash function before the remainder is taken.
5128  */
5129 static inline unsigned long wait_table_bits(unsigned long size)
5130 {
5131 	return ffz(~size);
5132 }
5133 
5134 /*
5135  * Initially all pages are reserved - free ones are freed
5136  * up by free_all_bootmem() once the early boot process is
5137  * done. Non-atomic initialization, single-pass.
5138  */
5139 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5140 		unsigned long start_pfn, enum memmap_context context)
5141 {
5142 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5143 	unsigned long end_pfn = start_pfn + size;
5144 	pg_data_t *pgdat = NODE_DATA(nid);
5145 	unsigned long pfn;
5146 	unsigned long nr_initialised = 0;
5147 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5148 	struct memblock_region *r = NULL, *tmp;
5149 #endif
5150 
5151 	if (highest_memmap_pfn < end_pfn - 1)
5152 		highest_memmap_pfn = end_pfn - 1;
5153 
5154 	/*
5155 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5156 	 * memory
5157 	 */
5158 	if (altmap && start_pfn == altmap->base_pfn)
5159 		start_pfn += altmap->reserve;
5160 
5161 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5162 		/*
5163 		 * There can be holes in boot-time mem_map[]s handed to this
5164 		 * function.  They do not exist on hotplugged memory.
5165 		 */
5166 		if (context != MEMMAP_EARLY)
5167 			goto not_early;
5168 
5169 		if (!early_pfn_valid(pfn))
5170 			continue;
5171 		if (!early_pfn_in_nid(pfn, nid))
5172 			continue;
5173 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5174 			break;
5175 
5176 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5177 		/*
5178 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5179 		 * from zone_movable_pfn[nid] to end of each node should be
5180 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5181 		 */
5182 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
5183 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5184 				continue;
5185 
5186 		/*
5187 		 * Check given memblock attribute by firmware which can affect
5188 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5189 		 * mirrored, it's an overlapped memmap init. skip it.
5190 		 */
5191 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5192 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5193 				for_each_memblock(memory, tmp)
5194 					if (pfn < memblock_region_memory_end_pfn(tmp))
5195 						break;
5196 				r = tmp;
5197 			}
5198 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5199 			    memblock_is_mirror(r)) {
5200 				/* already initialized as NORMAL */
5201 				pfn = memblock_region_memory_end_pfn(r);
5202 				continue;
5203 			}
5204 		}
5205 #endif
5206 
5207 not_early:
5208 		/*
5209 		 * Mark the block movable so that blocks are reserved for
5210 		 * movable at startup. This will force kernel allocations
5211 		 * to reserve their blocks rather than leaking throughout
5212 		 * the address space during boot when many long-lived
5213 		 * kernel allocations are made.
5214 		 *
5215 		 * bitmap is created for zone's valid pfn range. but memmap
5216 		 * can be created for invalid pages (for alignment)
5217 		 * check here not to call set_pageblock_migratetype() against
5218 		 * pfn out of zone.
5219 		 */
5220 		if (!(pfn & (pageblock_nr_pages - 1))) {
5221 			struct page *page = pfn_to_page(pfn);
5222 
5223 			__init_single_page(page, pfn, zone, nid);
5224 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5225 		} else {
5226 			__init_single_pfn(pfn, zone, nid);
5227 		}
5228 	}
5229 }
5230 
5231 static void __meminit zone_init_free_lists(struct zone *zone)
5232 {
5233 	unsigned int order, t;
5234 	for_each_migratetype_order(order, t) {
5235 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5236 		zone->free_area[order].nr_free = 0;
5237 	}
5238 }
5239 
5240 #ifndef __HAVE_ARCH_MEMMAP_INIT
5241 #define memmap_init(size, nid, zone, start_pfn) \
5242 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5243 #endif
5244 
5245 static int zone_batchsize(struct zone *zone)
5246 {
5247 #ifdef CONFIG_MMU
5248 	int batch;
5249 
5250 	/*
5251 	 * The per-cpu-pages pools are set to around 1000th of the
5252 	 * size of the zone.  But no more than 1/2 of a meg.
5253 	 *
5254 	 * OK, so we don't know how big the cache is.  So guess.
5255 	 */
5256 	batch = zone->managed_pages / 1024;
5257 	if (batch * PAGE_SIZE > 512 * 1024)
5258 		batch = (512 * 1024) / PAGE_SIZE;
5259 	batch /= 4;		/* We effectively *= 4 below */
5260 	if (batch < 1)
5261 		batch = 1;
5262 
5263 	/*
5264 	 * Clamp the batch to a 2^n - 1 value. Having a power
5265 	 * of 2 value was found to be more likely to have
5266 	 * suboptimal cache aliasing properties in some cases.
5267 	 *
5268 	 * For example if 2 tasks are alternately allocating
5269 	 * batches of pages, one task can end up with a lot
5270 	 * of pages of one half of the possible page colors
5271 	 * and the other with pages of the other colors.
5272 	 */
5273 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5274 
5275 	return batch;
5276 
5277 #else
5278 	/* The deferral and batching of frees should be suppressed under NOMMU
5279 	 * conditions.
5280 	 *
5281 	 * The problem is that NOMMU needs to be able to allocate large chunks
5282 	 * of contiguous memory as there's no hardware page translation to
5283 	 * assemble apparent contiguous memory from discontiguous pages.
5284 	 *
5285 	 * Queueing large contiguous runs of pages for batching, however,
5286 	 * causes the pages to actually be freed in smaller chunks.  As there
5287 	 * can be a significant delay between the individual batches being
5288 	 * recycled, this leads to the once large chunks of space being
5289 	 * fragmented and becoming unavailable for high-order allocations.
5290 	 */
5291 	return 0;
5292 #endif
5293 }
5294 
5295 /*
5296  * pcp->high and pcp->batch values are related and dependent on one another:
5297  * ->batch must never be higher then ->high.
5298  * The following function updates them in a safe manner without read side
5299  * locking.
5300  *
5301  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5302  * those fields changing asynchronously (acording the the above rule).
5303  *
5304  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5305  * outside of boot time (or some other assurance that no concurrent updaters
5306  * exist).
5307  */
5308 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5309 		unsigned long batch)
5310 {
5311        /* start with a fail safe value for batch */
5312 	pcp->batch = 1;
5313 	smp_wmb();
5314 
5315        /* Update high, then batch, in order */
5316 	pcp->high = high;
5317 	smp_wmb();
5318 
5319 	pcp->batch = batch;
5320 }
5321 
5322 /* a companion to pageset_set_high() */
5323 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5324 {
5325 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5326 }
5327 
5328 static void pageset_init(struct per_cpu_pageset *p)
5329 {
5330 	struct per_cpu_pages *pcp;
5331 	int migratetype;
5332 
5333 	memset(p, 0, sizeof(*p));
5334 
5335 	pcp = &p->pcp;
5336 	pcp->count = 0;
5337 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5338 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5339 }
5340 
5341 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5342 {
5343 	pageset_init(p);
5344 	pageset_set_batch(p, batch);
5345 }
5346 
5347 /*
5348  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5349  * to the value high for the pageset p.
5350  */
5351 static void pageset_set_high(struct per_cpu_pageset *p,
5352 				unsigned long high)
5353 {
5354 	unsigned long batch = max(1UL, high / 4);
5355 	if ((high / 4) > (PAGE_SHIFT * 8))
5356 		batch = PAGE_SHIFT * 8;
5357 
5358 	pageset_update(&p->pcp, high, batch);
5359 }
5360 
5361 static void pageset_set_high_and_batch(struct zone *zone,
5362 				       struct per_cpu_pageset *pcp)
5363 {
5364 	if (percpu_pagelist_fraction)
5365 		pageset_set_high(pcp,
5366 			(zone->managed_pages /
5367 				percpu_pagelist_fraction));
5368 	else
5369 		pageset_set_batch(pcp, zone_batchsize(zone));
5370 }
5371 
5372 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5373 {
5374 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5375 
5376 	pageset_init(pcp);
5377 	pageset_set_high_and_batch(zone, pcp);
5378 }
5379 
5380 static void __meminit setup_zone_pageset(struct zone *zone)
5381 {
5382 	int cpu;
5383 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5384 	for_each_possible_cpu(cpu)
5385 		zone_pageset_init(zone, cpu);
5386 }
5387 
5388 /*
5389  * Allocate per cpu pagesets and initialize them.
5390  * Before this call only boot pagesets were available.
5391  */
5392 void __init setup_per_cpu_pageset(void)
5393 {
5394 	struct zone *zone;
5395 
5396 	for_each_populated_zone(zone)
5397 		setup_zone_pageset(zone);
5398 }
5399 
5400 static noinline __init_refok
5401 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5402 {
5403 	int i;
5404 	size_t alloc_size;
5405 
5406 	/*
5407 	 * The per-page waitqueue mechanism uses hashed waitqueues
5408 	 * per zone.
5409 	 */
5410 	zone->wait_table_hash_nr_entries =
5411 		 wait_table_hash_nr_entries(zone_size_pages);
5412 	zone->wait_table_bits =
5413 		wait_table_bits(zone->wait_table_hash_nr_entries);
5414 	alloc_size = zone->wait_table_hash_nr_entries
5415 					* sizeof(wait_queue_head_t);
5416 
5417 	if (!slab_is_available()) {
5418 		zone->wait_table = (wait_queue_head_t *)
5419 			memblock_virt_alloc_node_nopanic(
5420 				alloc_size, zone->zone_pgdat->node_id);
5421 	} else {
5422 		/*
5423 		 * This case means that a zone whose size was 0 gets new memory
5424 		 * via memory hot-add.
5425 		 * But it may be the case that a new node was hot-added.  In
5426 		 * this case vmalloc() will not be able to use this new node's
5427 		 * memory - this wait_table must be initialized to use this new
5428 		 * node itself as well.
5429 		 * To use this new node's memory, further consideration will be
5430 		 * necessary.
5431 		 */
5432 		zone->wait_table = vmalloc(alloc_size);
5433 	}
5434 	if (!zone->wait_table)
5435 		return -ENOMEM;
5436 
5437 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5438 		init_waitqueue_head(zone->wait_table + i);
5439 
5440 	return 0;
5441 }
5442 
5443 static __meminit void zone_pcp_init(struct zone *zone)
5444 {
5445 	/*
5446 	 * per cpu subsystem is not up at this point. The following code
5447 	 * relies on the ability of the linker to provide the
5448 	 * offset of a (static) per cpu variable into the per cpu area.
5449 	 */
5450 	zone->pageset = &boot_pageset;
5451 
5452 	if (populated_zone(zone))
5453 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5454 			zone->name, zone->present_pages,
5455 					 zone_batchsize(zone));
5456 }
5457 
5458 int __meminit init_currently_empty_zone(struct zone *zone,
5459 					unsigned long zone_start_pfn,
5460 					unsigned long size)
5461 {
5462 	struct pglist_data *pgdat = zone->zone_pgdat;
5463 	int ret;
5464 	ret = zone_wait_table_init(zone, size);
5465 	if (ret)
5466 		return ret;
5467 	pgdat->nr_zones = zone_idx(zone) + 1;
5468 
5469 	zone->zone_start_pfn = zone_start_pfn;
5470 
5471 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5472 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5473 			pgdat->node_id,
5474 			(unsigned long)zone_idx(zone),
5475 			zone_start_pfn, (zone_start_pfn + size));
5476 
5477 	zone_init_free_lists(zone);
5478 
5479 	return 0;
5480 }
5481 
5482 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5483 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5484 
5485 /*
5486  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5487  */
5488 int __meminit __early_pfn_to_nid(unsigned long pfn,
5489 					struct mminit_pfnnid_cache *state)
5490 {
5491 	unsigned long start_pfn, end_pfn;
5492 	int nid;
5493 
5494 	if (state->last_start <= pfn && pfn < state->last_end)
5495 		return state->last_nid;
5496 
5497 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5498 	if (nid != -1) {
5499 		state->last_start = start_pfn;
5500 		state->last_end = end_pfn;
5501 		state->last_nid = nid;
5502 	}
5503 
5504 	return nid;
5505 }
5506 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5507 
5508 /**
5509  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5510  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5511  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5512  *
5513  * If an architecture guarantees that all ranges registered contain no holes
5514  * and may be freed, this this function may be used instead of calling
5515  * memblock_free_early_nid() manually.
5516  */
5517 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5518 {
5519 	unsigned long start_pfn, end_pfn;
5520 	int i, this_nid;
5521 
5522 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5523 		start_pfn = min(start_pfn, max_low_pfn);
5524 		end_pfn = min(end_pfn, max_low_pfn);
5525 
5526 		if (start_pfn < end_pfn)
5527 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5528 					(end_pfn - start_pfn) << PAGE_SHIFT,
5529 					this_nid);
5530 	}
5531 }
5532 
5533 /**
5534  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5535  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5536  *
5537  * If an architecture guarantees that all ranges registered contain no holes and may
5538  * be freed, this function may be used instead of calling memory_present() manually.
5539  */
5540 void __init sparse_memory_present_with_active_regions(int nid)
5541 {
5542 	unsigned long start_pfn, end_pfn;
5543 	int i, this_nid;
5544 
5545 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5546 		memory_present(this_nid, start_pfn, end_pfn);
5547 }
5548 
5549 /**
5550  * get_pfn_range_for_nid - Return the start and end page frames for a node
5551  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5552  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5553  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5554  *
5555  * It returns the start and end page frame of a node based on information
5556  * provided by memblock_set_node(). If called for a node
5557  * with no available memory, a warning is printed and the start and end
5558  * PFNs will be 0.
5559  */
5560 void __meminit get_pfn_range_for_nid(unsigned int nid,
5561 			unsigned long *start_pfn, unsigned long *end_pfn)
5562 {
5563 	unsigned long this_start_pfn, this_end_pfn;
5564 	int i;
5565 
5566 	*start_pfn = -1UL;
5567 	*end_pfn = 0;
5568 
5569 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5570 		*start_pfn = min(*start_pfn, this_start_pfn);
5571 		*end_pfn = max(*end_pfn, this_end_pfn);
5572 	}
5573 
5574 	if (*start_pfn == -1UL)
5575 		*start_pfn = 0;
5576 }
5577 
5578 /*
5579  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5580  * assumption is made that zones within a node are ordered in monotonic
5581  * increasing memory addresses so that the "highest" populated zone is used
5582  */
5583 static void __init find_usable_zone_for_movable(void)
5584 {
5585 	int zone_index;
5586 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5587 		if (zone_index == ZONE_MOVABLE)
5588 			continue;
5589 
5590 		if (arch_zone_highest_possible_pfn[zone_index] >
5591 				arch_zone_lowest_possible_pfn[zone_index])
5592 			break;
5593 	}
5594 
5595 	VM_BUG_ON(zone_index == -1);
5596 	movable_zone = zone_index;
5597 }
5598 
5599 /*
5600  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5601  * because it is sized independent of architecture. Unlike the other zones,
5602  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5603  * in each node depending on the size of each node and how evenly kernelcore
5604  * is distributed. This helper function adjusts the zone ranges
5605  * provided by the architecture for a given node by using the end of the
5606  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5607  * zones within a node are in order of monotonic increases memory addresses
5608  */
5609 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5610 					unsigned long zone_type,
5611 					unsigned long node_start_pfn,
5612 					unsigned long node_end_pfn,
5613 					unsigned long *zone_start_pfn,
5614 					unsigned long *zone_end_pfn)
5615 {
5616 	/* Only adjust if ZONE_MOVABLE is on this node */
5617 	if (zone_movable_pfn[nid]) {
5618 		/* Size ZONE_MOVABLE */
5619 		if (zone_type == ZONE_MOVABLE) {
5620 			*zone_start_pfn = zone_movable_pfn[nid];
5621 			*zone_end_pfn = min(node_end_pfn,
5622 				arch_zone_highest_possible_pfn[movable_zone]);
5623 
5624 		/* Check if this whole range is within ZONE_MOVABLE */
5625 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5626 			*zone_start_pfn = *zone_end_pfn;
5627 	}
5628 }
5629 
5630 /*
5631  * Return the number of pages a zone spans in a node, including holes
5632  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5633  */
5634 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5635 					unsigned long zone_type,
5636 					unsigned long node_start_pfn,
5637 					unsigned long node_end_pfn,
5638 					unsigned long *zone_start_pfn,
5639 					unsigned long *zone_end_pfn,
5640 					unsigned long *ignored)
5641 {
5642 	/* When hotadd a new node from cpu_up(), the node should be empty */
5643 	if (!node_start_pfn && !node_end_pfn)
5644 		return 0;
5645 
5646 	/* Get the start and end of the zone */
5647 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5648 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5649 	adjust_zone_range_for_zone_movable(nid, zone_type,
5650 				node_start_pfn, node_end_pfn,
5651 				zone_start_pfn, zone_end_pfn);
5652 
5653 	/* Check that this node has pages within the zone's required range */
5654 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5655 		return 0;
5656 
5657 	/* Move the zone boundaries inside the node if necessary */
5658 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5659 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5660 
5661 	/* Return the spanned pages */
5662 	return *zone_end_pfn - *zone_start_pfn;
5663 }
5664 
5665 /*
5666  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5667  * then all holes in the requested range will be accounted for.
5668  */
5669 unsigned long __meminit __absent_pages_in_range(int nid,
5670 				unsigned long range_start_pfn,
5671 				unsigned long range_end_pfn)
5672 {
5673 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5674 	unsigned long start_pfn, end_pfn;
5675 	int i;
5676 
5677 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5678 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5679 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5680 		nr_absent -= end_pfn - start_pfn;
5681 	}
5682 	return nr_absent;
5683 }
5684 
5685 /**
5686  * absent_pages_in_range - Return number of page frames in holes within a range
5687  * @start_pfn: The start PFN to start searching for holes
5688  * @end_pfn: The end PFN to stop searching for holes
5689  *
5690  * It returns the number of pages frames in memory holes within a range.
5691  */
5692 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5693 							unsigned long end_pfn)
5694 {
5695 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5696 }
5697 
5698 /* Return the number of page frames in holes in a zone on a node */
5699 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5700 					unsigned long zone_type,
5701 					unsigned long node_start_pfn,
5702 					unsigned long node_end_pfn,
5703 					unsigned long *ignored)
5704 {
5705 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5706 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5707 	unsigned long zone_start_pfn, zone_end_pfn;
5708 	unsigned long nr_absent;
5709 
5710 	/* When hotadd a new node from cpu_up(), the node should be empty */
5711 	if (!node_start_pfn && !node_end_pfn)
5712 		return 0;
5713 
5714 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5715 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5716 
5717 	adjust_zone_range_for_zone_movable(nid, zone_type,
5718 			node_start_pfn, node_end_pfn,
5719 			&zone_start_pfn, &zone_end_pfn);
5720 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5721 
5722 	/*
5723 	 * ZONE_MOVABLE handling.
5724 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5725 	 * and vice versa.
5726 	 */
5727 	if (zone_movable_pfn[nid]) {
5728 		if (mirrored_kernelcore) {
5729 			unsigned long start_pfn, end_pfn;
5730 			struct memblock_region *r;
5731 
5732 			for_each_memblock(memory, r) {
5733 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5734 						  zone_start_pfn, zone_end_pfn);
5735 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5736 						zone_start_pfn, zone_end_pfn);
5737 
5738 				if (zone_type == ZONE_MOVABLE &&
5739 				    memblock_is_mirror(r))
5740 					nr_absent += end_pfn - start_pfn;
5741 
5742 				if (zone_type == ZONE_NORMAL &&
5743 				    !memblock_is_mirror(r))
5744 					nr_absent += end_pfn - start_pfn;
5745 			}
5746 		} else {
5747 			if (zone_type == ZONE_NORMAL)
5748 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5749 		}
5750 	}
5751 
5752 	return nr_absent;
5753 }
5754 
5755 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5756 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5757 					unsigned long zone_type,
5758 					unsigned long node_start_pfn,
5759 					unsigned long node_end_pfn,
5760 					unsigned long *zone_start_pfn,
5761 					unsigned long *zone_end_pfn,
5762 					unsigned long *zones_size)
5763 {
5764 	unsigned int zone;
5765 
5766 	*zone_start_pfn = node_start_pfn;
5767 	for (zone = 0; zone < zone_type; zone++)
5768 		*zone_start_pfn += zones_size[zone];
5769 
5770 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5771 
5772 	return zones_size[zone_type];
5773 }
5774 
5775 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5776 						unsigned long zone_type,
5777 						unsigned long node_start_pfn,
5778 						unsigned long node_end_pfn,
5779 						unsigned long *zholes_size)
5780 {
5781 	if (!zholes_size)
5782 		return 0;
5783 
5784 	return zholes_size[zone_type];
5785 }
5786 
5787 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5788 
5789 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5790 						unsigned long node_start_pfn,
5791 						unsigned long node_end_pfn,
5792 						unsigned long *zones_size,
5793 						unsigned long *zholes_size)
5794 {
5795 	unsigned long realtotalpages = 0, totalpages = 0;
5796 	enum zone_type i;
5797 
5798 	for (i = 0; i < MAX_NR_ZONES; i++) {
5799 		struct zone *zone = pgdat->node_zones + i;
5800 		unsigned long zone_start_pfn, zone_end_pfn;
5801 		unsigned long size, real_size;
5802 
5803 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5804 						  node_start_pfn,
5805 						  node_end_pfn,
5806 						  &zone_start_pfn,
5807 						  &zone_end_pfn,
5808 						  zones_size);
5809 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5810 						  node_start_pfn, node_end_pfn,
5811 						  zholes_size);
5812 		if (size)
5813 			zone->zone_start_pfn = zone_start_pfn;
5814 		else
5815 			zone->zone_start_pfn = 0;
5816 		zone->spanned_pages = size;
5817 		zone->present_pages = real_size;
5818 
5819 		totalpages += size;
5820 		realtotalpages += real_size;
5821 	}
5822 
5823 	pgdat->node_spanned_pages = totalpages;
5824 	pgdat->node_present_pages = realtotalpages;
5825 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5826 							realtotalpages);
5827 }
5828 
5829 #ifndef CONFIG_SPARSEMEM
5830 /*
5831  * Calculate the size of the zone->blockflags rounded to an unsigned long
5832  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5833  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5834  * round what is now in bits to nearest long in bits, then return it in
5835  * bytes.
5836  */
5837 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5838 {
5839 	unsigned long usemapsize;
5840 
5841 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5842 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5843 	usemapsize = usemapsize >> pageblock_order;
5844 	usemapsize *= NR_PAGEBLOCK_BITS;
5845 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5846 
5847 	return usemapsize / 8;
5848 }
5849 
5850 static void __init setup_usemap(struct pglist_data *pgdat,
5851 				struct zone *zone,
5852 				unsigned long zone_start_pfn,
5853 				unsigned long zonesize)
5854 {
5855 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5856 	zone->pageblock_flags = NULL;
5857 	if (usemapsize)
5858 		zone->pageblock_flags =
5859 			memblock_virt_alloc_node_nopanic(usemapsize,
5860 							 pgdat->node_id);
5861 }
5862 #else
5863 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5864 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5865 #endif /* CONFIG_SPARSEMEM */
5866 
5867 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5868 
5869 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5870 void __paginginit set_pageblock_order(void)
5871 {
5872 	unsigned int order;
5873 
5874 	/* Check that pageblock_nr_pages has not already been setup */
5875 	if (pageblock_order)
5876 		return;
5877 
5878 	if (HPAGE_SHIFT > PAGE_SHIFT)
5879 		order = HUGETLB_PAGE_ORDER;
5880 	else
5881 		order = MAX_ORDER - 1;
5882 
5883 	/*
5884 	 * Assume the largest contiguous order of interest is a huge page.
5885 	 * This value may be variable depending on boot parameters on IA64 and
5886 	 * powerpc.
5887 	 */
5888 	pageblock_order = order;
5889 }
5890 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5891 
5892 /*
5893  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5894  * is unused as pageblock_order is set at compile-time. See
5895  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5896  * the kernel config
5897  */
5898 void __paginginit set_pageblock_order(void)
5899 {
5900 }
5901 
5902 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5903 
5904 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5905 						   unsigned long present_pages)
5906 {
5907 	unsigned long pages = spanned_pages;
5908 
5909 	/*
5910 	 * Provide a more accurate estimation if there are holes within
5911 	 * the zone and SPARSEMEM is in use. If there are holes within the
5912 	 * zone, each populated memory region may cost us one or two extra
5913 	 * memmap pages due to alignment because memmap pages for each
5914 	 * populated regions may not naturally algined on page boundary.
5915 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5916 	 */
5917 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5918 	    IS_ENABLED(CONFIG_SPARSEMEM))
5919 		pages = present_pages;
5920 
5921 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5922 }
5923 
5924 /*
5925  * Set up the zone data structures:
5926  *   - mark all pages reserved
5927  *   - mark all memory queues empty
5928  *   - clear the memory bitmaps
5929  *
5930  * NOTE: pgdat should get zeroed by caller.
5931  */
5932 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5933 {
5934 	enum zone_type j;
5935 	int nid = pgdat->node_id;
5936 	int ret;
5937 
5938 	pgdat_resize_init(pgdat);
5939 #ifdef CONFIG_NUMA_BALANCING
5940 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5941 	pgdat->numabalancing_migrate_nr_pages = 0;
5942 	pgdat->numabalancing_migrate_next_window = jiffies;
5943 #endif
5944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5945 	spin_lock_init(&pgdat->split_queue_lock);
5946 	INIT_LIST_HEAD(&pgdat->split_queue);
5947 	pgdat->split_queue_len = 0;
5948 #endif
5949 	init_waitqueue_head(&pgdat->kswapd_wait);
5950 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5951 #ifdef CONFIG_COMPACTION
5952 	init_waitqueue_head(&pgdat->kcompactd_wait);
5953 #endif
5954 	pgdat_page_ext_init(pgdat);
5955 
5956 	for (j = 0; j < MAX_NR_ZONES; j++) {
5957 		struct zone *zone = pgdat->node_zones + j;
5958 		unsigned long size, realsize, freesize, memmap_pages;
5959 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5960 
5961 		size = zone->spanned_pages;
5962 		realsize = freesize = zone->present_pages;
5963 
5964 		/*
5965 		 * Adjust freesize so that it accounts for how much memory
5966 		 * is used by this zone for memmap. This affects the watermark
5967 		 * and per-cpu initialisations
5968 		 */
5969 		memmap_pages = calc_memmap_size(size, realsize);
5970 		if (!is_highmem_idx(j)) {
5971 			if (freesize >= memmap_pages) {
5972 				freesize -= memmap_pages;
5973 				if (memmap_pages)
5974 					printk(KERN_DEBUG
5975 					       "  %s zone: %lu pages used for memmap\n",
5976 					       zone_names[j], memmap_pages);
5977 			} else
5978 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5979 					zone_names[j], memmap_pages, freesize);
5980 		}
5981 
5982 		/* Account for reserved pages */
5983 		if (j == 0 && freesize > dma_reserve) {
5984 			freesize -= dma_reserve;
5985 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5986 					zone_names[0], dma_reserve);
5987 		}
5988 
5989 		if (!is_highmem_idx(j))
5990 			nr_kernel_pages += freesize;
5991 		/* Charge for highmem memmap if there are enough kernel pages */
5992 		else if (nr_kernel_pages > memmap_pages * 2)
5993 			nr_kernel_pages -= memmap_pages;
5994 		nr_all_pages += freesize;
5995 
5996 		/*
5997 		 * Set an approximate value for lowmem here, it will be adjusted
5998 		 * when the bootmem allocator frees pages into the buddy system.
5999 		 * And all highmem pages will be managed by the buddy system.
6000 		 */
6001 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6002 #ifdef CONFIG_NUMA
6003 		zone->node = nid;
6004 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
6005 						/ 100;
6006 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
6007 #endif
6008 		zone->name = zone_names[j];
6009 		spin_lock_init(&zone->lock);
6010 		spin_lock_init(&zone->lru_lock);
6011 		zone_seqlock_init(zone);
6012 		zone->zone_pgdat = pgdat;
6013 		zone_pcp_init(zone);
6014 
6015 		/* For bootup, initialized properly in watermark setup */
6016 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6017 
6018 		lruvec_init(&zone->lruvec);
6019 		if (!size)
6020 			continue;
6021 
6022 		set_pageblock_order();
6023 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6024 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6025 		BUG_ON(ret);
6026 		memmap_init(size, nid, j, zone_start_pfn);
6027 	}
6028 }
6029 
6030 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
6031 {
6032 	unsigned long __maybe_unused start = 0;
6033 	unsigned long __maybe_unused offset = 0;
6034 
6035 	/* Skip empty nodes */
6036 	if (!pgdat->node_spanned_pages)
6037 		return;
6038 
6039 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6040 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6041 	offset = pgdat->node_start_pfn - start;
6042 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6043 	if (!pgdat->node_mem_map) {
6044 		unsigned long size, end;
6045 		struct page *map;
6046 
6047 		/*
6048 		 * The zone's endpoints aren't required to be MAX_ORDER
6049 		 * aligned but the node_mem_map endpoints must be in order
6050 		 * for the buddy allocator to function correctly.
6051 		 */
6052 		end = pgdat_end_pfn(pgdat);
6053 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6054 		size =  (end - start) * sizeof(struct page);
6055 		map = alloc_remap(pgdat->node_id, size);
6056 		if (!map)
6057 			map = memblock_virt_alloc_node_nopanic(size,
6058 							       pgdat->node_id);
6059 		pgdat->node_mem_map = map + offset;
6060 	}
6061 #ifndef CONFIG_NEED_MULTIPLE_NODES
6062 	/*
6063 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6064 	 */
6065 	if (pgdat == NODE_DATA(0)) {
6066 		mem_map = NODE_DATA(0)->node_mem_map;
6067 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6068 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6069 			mem_map -= offset;
6070 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6071 	}
6072 #endif
6073 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6074 }
6075 
6076 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6077 		unsigned long node_start_pfn, unsigned long *zholes_size)
6078 {
6079 	pg_data_t *pgdat = NODE_DATA(nid);
6080 	unsigned long start_pfn = 0;
6081 	unsigned long end_pfn = 0;
6082 
6083 	/* pg_data_t should be reset to zero when it's allocated */
6084 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
6085 
6086 	reset_deferred_meminit(pgdat);
6087 	pgdat->node_id = nid;
6088 	pgdat->node_start_pfn = node_start_pfn;
6089 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6090 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6091 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6092 		(u64)start_pfn << PAGE_SHIFT,
6093 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6094 #else
6095 	start_pfn = node_start_pfn;
6096 #endif
6097 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6098 				  zones_size, zholes_size);
6099 
6100 	alloc_node_mem_map(pgdat);
6101 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6102 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6103 		nid, (unsigned long)pgdat,
6104 		(unsigned long)pgdat->node_mem_map);
6105 #endif
6106 
6107 	free_area_init_core(pgdat);
6108 }
6109 
6110 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6111 
6112 #if MAX_NUMNODES > 1
6113 /*
6114  * Figure out the number of possible node ids.
6115  */
6116 void __init setup_nr_node_ids(void)
6117 {
6118 	unsigned int highest;
6119 
6120 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6121 	nr_node_ids = highest + 1;
6122 }
6123 #endif
6124 
6125 /**
6126  * node_map_pfn_alignment - determine the maximum internode alignment
6127  *
6128  * This function should be called after node map is populated and sorted.
6129  * It calculates the maximum power of two alignment which can distinguish
6130  * all the nodes.
6131  *
6132  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6133  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6134  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6135  * shifted, 1GiB is enough and this function will indicate so.
6136  *
6137  * This is used to test whether pfn -> nid mapping of the chosen memory
6138  * model has fine enough granularity to avoid incorrect mapping for the
6139  * populated node map.
6140  *
6141  * Returns the determined alignment in pfn's.  0 if there is no alignment
6142  * requirement (single node).
6143  */
6144 unsigned long __init node_map_pfn_alignment(void)
6145 {
6146 	unsigned long accl_mask = 0, last_end = 0;
6147 	unsigned long start, end, mask;
6148 	int last_nid = -1;
6149 	int i, nid;
6150 
6151 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6152 		if (!start || last_nid < 0 || last_nid == nid) {
6153 			last_nid = nid;
6154 			last_end = end;
6155 			continue;
6156 		}
6157 
6158 		/*
6159 		 * Start with a mask granular enough to pin-point to the
6160 		 * start pfn and tick off bits one-by-one until it becomes
6161 		 * too coarse to separate the current node from the last.
6162 		 */
6163 		mask = ~((1 << __ffs(start)) - 1);
6164 		while (mask && last_end <= (start & (mask << 1)))
6165 			mask <<= 1;
6166 
6167 		/* accumulate all internode masks */
6168 		accl_mask |= mask;
6169 	}
6170 
6171 	/* convert mask to number of pages */
6172 	return ~accl_mask + 1;
6173 }
6174 
6175 /* Find the lowest pfn for a node */
6176 static unsigned long __init find_min_pfn_for_node(int nid)
6177 {
6178 	unsigned long min_pfn = ULONG_MAX;
6179 	unsigned long start_pfn;
6180 	int i;
6181 
6182 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6183 		min_pfn = min(min_pfn, start_pfn);
6184 
6185 	if (min_pfn == ULONG_MAX) {
6186 		pr_warn("Could not find start_pfn for node %d\n", nid);
6187 		return 0;
6188 	}
6189 
6190 	return min_pfn;
6191 }
6192 
6193 /**
6194  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6195  *
6196  * It returns the minimum PFN based on information provided via
6197  * memblock_set_node().
6198  */
6199 unsigned long __init find_min_pfn_with_active_regions(void)
6200 {
6201 	return find_min_pfn_for_node(MAX_NUMNODES);
6202 }
6203 
6204 /*
6205  * early_calculate_totalpages()
6206  * Sum pages in active regions for movable zone.
6207  * Populate N_MEMORY for calculating usable_nodes.
6208  */
6209 static unsigned long __init early_calculate_totalpages(void)
6210 {
6211 	unsigned long totalpages = 0;
6212 	unsigned long start_pfn, end_pfn;
6213 	int i, nid;
6214 
6215 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6216 		unsigned long pages = end_pfn - start_pfn;
6217 
6218 		totalpages += pages;
6219 		if (pages)
6220 			node_set_state(nid, N_MEMORY);
6221 	}
6222 	return totalpages;
6223 }
6224 
6225 /*
6226  * Find the PFN the Movable zone begins in each node. Kernel memory
6227  * is spread evenly between nodes as long as the nodes have enough
6228  * memory. When they don't, some nodes will have more kernelcore than
6229  * others
6230  */
6231 static void __init find_zone_movable_pfns_for_nodes(void)
6232 {
6233 	int i, nid;
6234 	unsigned long usable_startpfn;
6235 	unsigned long kernelcore_node, kernelcore_remaining;
6236 	/* save the state before borrow the nodemask */
6237 	nodemask_t saved_node_state = node_states[N_MEMORY];
6238 	unsigned long totalpages = early_calculate_totalpages();
6239 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6240 	struct memblock_region *r;
6241 
6242 	/* Need to find movable_zone earlier when movable_node is specified. */
6243 	find_usable_zone_for_movable();
6244 
6245 	/*
6246 	 * If movable_node is specified, ignore kernelcore and movablecore
6247 	 * options.
6248 	 */
6249 	if (movable_node_is_enabled()) {
6250 		for_each_memblock(memory, r) {
6251 			if (!memblock_is_hotpluggable(r))
6252 				continue;
6253 
6254 			nid = r->nid;
6255 
6256 			usable_startpfn = PFN_DOWN(r->base);
6257 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6258 				min(usable_startpfn, zone_movable_pfn[nid]) :
6259 				usable_startpfn;
6260 		}
6261 
6262 		goto out2;
6263 	}
6264 
6265 	/*
6266 	 * If kernelcore=mirror is specified, ignore movablecore option
6267 	 */
6268 	if (mirrored_kernelcore) {
6269 		bool mem_below_4gb_not_mirrored = false;
6270 
6271 		for_each_memblock(memory, r) {
6272 			if (memblock_is_mirror(r))
6273 				continue;
6274 
6275 			nid = r->nid;
6276 
6277 			usable_startpfn = memblock_region_memory_base_pfn(r);
6278 
6279 			if (usable_startpfn < 0x100000) {
6280 				mem_below_4gb_not_mirrored = true;
6281 				continue;
6282 			}
6283 
6284 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6285 				min(usable_startpfn, zone_movable_pfn[nid]) :
6286 				usable_startpfn;
6287 		}
6288 
6289 		if (mem_below_4gb_not_mirrored)
6290 			pr_warn("This configuration results in unmirrored kernel memory.");
6291 
6292 		goto out2;
6293 	}
6294 
6295 	/*
6296 	 * If movablecore=nn[KMG] was specified, calculate what size of
6297 	 * kernelcore that corresponds so that memory usable for
6298 	 * any allocation type is evenly spread. If both kernelcore
6299 	 * and movablecore are specified, then the value of kernelcore
6300 	 * will be used for required_kernelcore if it's greater than
6301 	 * what movablecore would have allowed.
6302 	 */
6303 	if (required_movablecore) {
6304 		unsigned long corepages;
6305 
6306 		/*
6307 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6308 		 * was requested by the user
6309 		 */
6310 		required_movablecore =
6311 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6312 		required_movablecore = min(totalpages, required_movablecore);
6313 		corepages = totalpages - required_movablecore;
6314 
6315 		required_kernelcore = max(required_kernelcore, corepages);
6316 	}
6317 
6318 	/*
6319 	 * If kernelcore was not specified or kernelcore size is larger
6320 	 * than totalpages, there is no ZONE_MOVABLE.
6321 	 */
6322 	if (!required_kernelcore || required_kernelcore >= totalpages)
6323 		goto out;
6324 
6325 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6326 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6327 
6328 restart:
6329 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6330 	kernelcore_node = required_kernelcore / usable_nodes;
6331 	for_each_node_state(nid, N_MEMORY) {
6332 		unsigned long start_pfn, end_pfn;
6333 
6334 		/*
6335 		 * Recalculate kernelcore_node if the division per node
6336 		 * now exceeds what is necessary to satisfy the requested
6337 		 * amount of memory for the kernel
6338 		 */
6339 		if (required_kernelcore < kernelcore_node)
6340 			kernelcore_node = required_kernelcore / usable_nodes;
6341 
6342 		/*
6343 		 * As the map is walked, we track how much memory is usable
6344 		 * by the kernel using kernelcore_remaining. When it is
6345 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6346 		 */
6347 		kernelcore_remaining = kernelcore_node;
6348 
6349 		/* Go through each range of PFNs within this node */
6350 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6351 			unsigned long size_pages;
6352 
6353 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6354 			if (start_pfn >= end_pfn)
6355 				continue;
6356 
6357 			/* Account for what is only usable for kernelcore */
6358 			if (start_pfn < usable_startpfn) {
6359 				unsigned long kernel_pages;
6360 				kernel_pages = min(end_pfn, usable_startpfn)
6361 								- start_pfn;
6362 
6363 				kernelcore_remaining -= min(kernel_pages,
6364 							kernelcore_remaining);
6365 				required_kernelcore -= min(kernel_pages,
6366 							required_kernelcore);
6367 
6368 				/* Continue if range is now fully accounted */
6369 				if (end_pfn <= usable_startpfn) {
6370 
6371 					/*
6372 					 * Push zone_movable_pfn to the end so
6373 					 * that if we have to rebalance
6374 					 * kernelcore across nodes, we will
6375 					 * not double account here
6376 					 */
6377 					zone_movable_pfn[nid] = end_pfn;
6378 					continue;
6379 				}
6380 				start_pfn = usable_startpfn;
6381 			}
6382 
6383 			/*
6384 			 * The usable PFN range for ZONE_MOVABLE is from
6385 			 * start_pfn->end_pfn. Calculate size_pages as the
6386 			 * number of pages used as kernelcore
6387 			 */
6388 			size_pages = end_pfn - start_pfn;
6389 			if (size_pages > kernelcore_remaining)
6390 				size_pages = kernelcore_remaining;
6391 			zone_movable_pfn[nid] = start_pfn + size_pages;
6392 
6393 			/*
6394 			 * Some kernelcore has been met, update counts and
6395 			 * break if the kernelcore for this node has been
6396 			 * satisfied
6397 			 */
6398 			required_kernelcore -= min(required_kernelcore,
6399 								size_pages);
6400 			kernelcore_remaining -= size_pages;
6401 			if (!kernelcore_remaining)
6402 				break;
6403 		}
6404 	}
6405 
6406 	/*
6407 	 * If there is still required_kernelcore, we do another pass with one
6408 	 * less node in the count. This will push zone_movable_pfn[nid] further
6409 	 * along on the nodes that still have memory until kernelcore is
6410 	 * satisfied
6411 	 */
6412 	usable_nodes--;
6413 	if (usable_nodes && required_kernelcore > usable_nodes)
6414 		goto restart;
6415 
6416 out2:
6417 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6418 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6419 		zone_movable_pfn[nid] =
6420 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6421 
6422 out:
6423 	/* restore the node_state */
6424 	node_states[N_MEMORY] = saved_node_state;
6425 }
6426 
6427 /* Any regular or high memory on that node ? */
6428 static void check_for_memory(pg_data_t *pgdat, int nid)
6429 {
6430 	enum zone_type zone_type;
6431 
6432 	if (N_MEMORY == N_NORMAL_MEMORY)
6433 		return;
6434 
6435 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6436 		struct zone *zone = &pgdat->node_zones[zone_type];
6437 		if (populated_zone(zone)) {
6438 			node_set_state(nid, N_HIGH_MEMORY);
6439 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6440 			    zone_type <= ZONE_NORMAL)
6441 				node_set_state(nid, N_NORMAL_MEMORY);
6442 			break;
6443 		}
6444 	}
6445 }
6446 
6447 /**
6448  * free_area_init_nodes - Initialise all pg_data_t and zone data
6449  * @max_zone_pfn: an array of max PFNs for each zone
6450  *
6451  * This will call free_area_init_node() for each active node in the system.
6452  * Using the page ranges provided by memblock_set_node(), the size of each
6453  * zone in each node and their holes is calculated. If the maximum PFN
6454  * between two adjacent zones match, it is assumed that the zone is empty.
6455  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6456  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6457  * starts where the previous one ended. For example, ZONE_DMA32 starts
6458  * at arch_max_dma_pfn.
6459  */
6460 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6461 {
6462 	unsigned long start_pfn, end_pfn;
6463 	int i, nid;
6464 
6465 	/* Record where the zone boundaries are */
6466 	memset(arch_zone_lowest_possible_pfn, 0,
6467 				sizeof(arch_zone_lowest_possible_pfn));
6468 	memset(arch_zone_highest_possible_pfn, 0,
6469 				sizeof(arch_zone_highest_possible_pfn));
6470 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6471 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6472 	for (i = 1; i < MAX_NR_ZONES; i++) {
6473 		if (i == ZONE_MOVABLE)
6474 			continue;
6475 		arch_zone_lowest_possible_pfn[i] =
6476 			arch_zone_highest_possible_pfn[i-1];
6477 		arch_zone_highest_possible_pfn[i] =
6478 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6479 	}
6480 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6481 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6482 
6483 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6484 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6485 	find_zone_movable_pfns_for_nodes();
6486 
6487 	/* Print out the zone ranges */
6488 	pr_info("Zone ranges:\n");
6489 	for (i = 0; i < MAX_NR_ZONES; i++) {
6490 		if (i == ZONE_MOVABLE)
6491 			continue;
6492 		pr_info("  %-8s ", zone_names[i]);
6493 		if (arch_zone_lowest_possible_pfn[i] ==
6494 				arch_zone_highest_possible_pfn[i])
6495 			pr_cont("empty\n");
6496 		else
6497 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6498 				(u64)arch_zone_lowest_possible_pfn[i]
6499 					<< PAGE_SHIFT,
6500 				((u64)arch_zone_highest_possible_pfn[i]
6501 					<< PAGE_SHIFT) - 1);
6502 	}
6503 
6504 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6505 	pr_info("Movable zone start for each node\n");
6506 	for (i = 0; i < MAX_NUMNODES; i++) {
6507 		if (zone_movable_pfn[i])
6508 			pr_info("  Node %d: %#018Lx\n", i,
6509 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6510 	}
6511 
6512 	/* Print out the early node map */
6513 	pr_info("Early memory node ranges\n");
6514 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6515 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6516 			(u64)start_pfn << PAGE_SHIFT,
6517 			((u64)end_pfn << PAGE_SHIFT) - 1);
6518 
6519 	/* Initialise every node */
6520 	mminit_verify_pageflags_layout();
6521 	setup_nr_node_ids();
6522 	for_each_online_node(nid) {
6523 		pg_data_t *pgdat = NODE_DATA(nid);
6524 		free_area_init_node(nid, NULL,
6525 				find_min_pfn_for_node(nid), NULL);
6526 
6527 		/* Any memory on that node */
6528 		if (pgdat->node_present_pages)
6529 			node_set_state(nid, N_MEMORY);
6530 		check_for_memory(pgdat, nid);
6531 	}
6532 }
6533 
6534 static int __init cmdline_parse_core(char *p, unsigned long *core)
6535 {
6536 	unsigned long long coremem;
6537 	if (!p)
6538 		return -EINVAL;
6539 
6540 	coremem = memparse(p, &p);
6541 	*core = coremem >> PAGE_SHIFT;
6542 
6543 	/* Paranoid check that UL is enough for the coremem value */
6544 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6545 
6546 	return 0;
6547 }
6548 
6549 /*
6550  * kernelcore=size sets the amount of memory for use for allocations that
6551  * cannot be reclaimed or migrated.
6552  */
6553 static int __init cmdline_parse_kernelcore(char *p)
6554 {
6555 	/* parse kernelcore=mirror */
6556 	if (parse_option_str(p, "mirror")) {
6557 		mirrored_kernelcore = true;
6558 		return 0;
6559 	}
6560 
6561 	return cmdline_parse_core(p, &required_kernelcore);
6562 }
6563 
6564 /*
6565  * movablecore=size sets the amount of memory for use for allocations that
6566  * can be reclaimed or migrated.
6567  */
6568 static int __init cmdline_parse_movablecore(char *p)
6569 {
6570 	return cmdline_parse_core(p, &required_movablecore);
6571 }
6572 
6573 early_param("kernelcore", cmdline_parse_kernelcore);
6574 early_param("movablecore", cmdline_parse_movablecore);
6575 
6576 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6577 
6578 void adjust_managed_page_count(struct page *page, long count)
6579 {
6580 	spin_lock(&managed_page_count_lock);
6581 	page_zone(page)->managed_pages += count;
6582 	totalram_pages += count;
6583 #ifdef CONFIG_HIGHMEM
6584 	if (PageHighMem(page))
6585 		totalhigh_pages += count;
6586 #endif
6587 	spin_unlock(&managed_page_count_lock);
6588 }
6589 EXPORT_SYMBOL(adjust_managed_page_count);
6590 
6591 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6592 {
6593 	void *pos;
6594 	unsigned long pages = 0;
6595 
6596 	start = (void *)PAGE_ALIGN((unsigned long)start);
6597 	end = (void *)((unsigned long)end & PAGE_MASK);
6598 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6599 		if ((unsigned int)poison <= 0xFF)
6600 			memset(pos, poison, PAGE_SIZE);
6601 		free_reserved_page(virt_to_page(pos));
6602 	}
6603 
6604 	if (pages && s)
6605 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6606 			s, pages << (PAGE_SHIFT - 10), start, end);
6607 
6608 	return pages;
6609 }
6610 EXPORT_SYMBOL(free_reserved_area);
6611 
6612 #ifdef	CONFIG_HIGHMEM
6613 void free_highmem_page(struct page *page)
6614 {
6615 	__free_reserved_page(page);
6616 	totalram_pages++;
6617 	page_zone(page)->managed_pages++;
6618 	totalhigh_pages++;
6619 }
6620 #endif
6621 
6622 
6623 void __init mem_init_print_info(const char *str)
6624 {
6625 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6626 	unsigned long init_code_size, init_data_size;
6627 
6628 	physpages = get_num_physpages();
6629 	codesize = _etext - _stext;
6630 	datasize = _edata - _sdata;
6631 	rosize = __end_rodata - __start_rodata;
6632 	bss_size = __bss_stop - __bss_start;
6633 	init_data_size = __init_end - __init_begin;
6634 	init_code_size = _einittext - _sinittext;
6635 
6636 	/*
6637 	 * Detect special cases and adjust section sizes accordingly:
6638 	 * 1) .init.* may be embedded into .data sections
6639 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6640 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6641 	 * 3) .rodata.* may be embedded into .text or .data sections.
6642 	 */
6643 #define adj_init_size(start, end, size, pos, adj) \
6644 	do { \
6645 		if (start <= pos && pos < end && size > adj) \
6646 			size -= adj; \
6647 	} while (0)
6648 
6649 	adj_init_size(__init_begin, __init_end, init_data_size,
6650 		     _sinittext, init_code_size);
6651 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6652 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6653 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6654 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6655 
6656 #undef	adj_init_size
6657 
6658 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6659 #ifdef	CONFIG_HIGHMEM
6660 		", %luK highmem"
6661 #endif
6662 		"%s%s)\n",
6663 		nr_free_pages() << (PAGE_SHIFT - 10),
6664 		physpages << (PAGE_SHIFT - 10),
6665 		codesize >> 10, datasize >> 10, rosize >> 10,
6666 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6667 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6668 		totalcma_pages << (PAGE_SHIFT - 10),
6669 #ifdef	CONFIG_HIGHMEM
6670 		totalhigh_pages << (PAGE_SHIFT - 10),
6671 #endif
6672 		str ? ", " : "", str ? str : "");
6673 }
6674 
6675 /**
6676  * set_dma_reserve - set the specified number of pages reserved in the first zone
6677  * @new_dma_reserve: The number of pages to mark reserved
6678  *
6679  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6680  * In the DMA zone, a significant percentage may be consumed by kernel image
6681  * and other unfreeable allocations which can skew the watermarks badly. This
6682  * function may optionally be used to account for unfreeable pages in the
6683  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6684  * smaller per-cpu batchsize.
6685  */
6686 void __init set_dma_reserve(unsigned long new_dma_reserve)
6687 {
6688 	dma_reserve = new_dma_reserve;
6689 }
6690 
6691 void __init free_area_init(unsigned long *zones_size)
6692 {
6693 	free_area_init_node(0, zones_size,
6694 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6695 }
6696 
6697 static int page_alloc_cpu_notify(struct notifier_block *self,
6698 				 unsigned long action, void *hcpu)
6699 {
6700 	int cpu = (unsigned long)hcpu;
6701 
6702 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6703 		lru_add_drain_cpu(cpu);
6704 		drain_pages(cpu);
6705 
6706 		/*
6707 		 * Spill the event counters of the dead processor
6708 		 * into the current processors event counters.
6709 		 * This artificially elevates the count of the current
6710 		 * processor.
6711 		 */
6712 		vm_events_fold_cpu(cpu);
6713 
6714 		/*
6715 		 * Zero the differential counters of the dead processor
6716 		 * so that the vm statistics are consistent.
6717 		 *
6718 		 * This is only okay since the processor is dead and cannot
6719 		 * race with what we are doing.
6720 		 */
6721 		cpu_vm_stats_fold(cpu);
6722 	}
6723 	return NOTIFY_OK;
6724 }
6725 
6726 void __init page_alloc_init(void)
6727 {
6728 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6729 }
6730 
6731 /*
6732  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6733  *	or min_free_kbytes changes.
6734  */
6735 static void calculate_totalreserve_pages(void)
6736 {
6737 	struct pglist_data *pgdat;
6738 	unsigned long reserve_pages = 0;
6739 	enum zone_type i, j;
6740 
6741 	for_each_online_pgdat(pgdat) {
6742 		for (i = 0; i < MAX_NR_ZONES; i++) {
6743 			struct zone *zone = pgdat->node_zones + i;
6744 			long max = 0;
6745 
6746 			/* Find valid and maximum lowmem_reserve in the zone */
6747 			for (j = i; j < MAX_NR_ZONES; j++) {
6748 				if (zone->lowmem_reserve[j] > max)
6749 					max = zone->lowmem_reserve[j];
6750 			}
6751 
6752 			/* we treat the high watermark as reserved pages. */
6753 			max += high_wmark_pages(zone);
6754 
6755 			if (max > zone->managed_pages)
6756 				max = zone->managed_pages;
6757 
6758 			zone->totalreserve_pages = max;
6759 
6760 			reserve_pages += max;
6761 		}
6762 	}
6763 	totalreserve_pages = reserve_pages;
6764 }
6765 
6766 /*
6767  * setup_per_zone_lowmem_reserve - called whenever
6768  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6769  *	has a correct pages reserved value, so an adequate number of
6770  *	pages are left in the zone after a successful __alloc_pages().
6771  */
6772 static void setup_per_zone_lowmem_reserve(void)
6773 {
6774 	struct pglist_data *pgdat;
6775 	enum zone_type j, idx;
6776 
6777 	for_each_online_pgdat(pgdat) {
6778 		for (j = 0; j < MAX_NR_ZONES; j++) {
6779 			struct zone *zone = pgdat->node_zones + j;
6780 			unsigned long managed_pages = zone->managed_pages;
6781 
6782 			zone->lowmem_reserve[j] = 0;
6783 
6784 			idx = j;
6785 			while (idx) {
6786 				struct zone *lower_zone;
6787 
6788 				idx--;
6789 
6790 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6791 					sysctl_lowmem_reserve_ratio[idx] = 1;
6792 
6793 				lower_zone = pgdat->node_zones + idx;
6794 				lower_zone->lowmem_reserve[j] = managed_pages /
6795 					sysctl_lowmem_reserve_ratio[idx];
6796 				managed_pages += lower_zone->managed_pages;
6797 			}
6798 		}
6799 	}
6800 
6801 	/* update totalreserve_pages */
6802 	calculate_totalreserve_pages();
6803 }
6804 
6805 static void __setup_per_zone_wmarks(void)
6806 {
6807 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6808 	unsigned long lowmem_pages = 0;
6809 	struct zone *zone;
6810 	unsigned long flags;
6811 
6812 	/* Calculate total number of !ZONE_HIGHMEM pages */
6813 	for_each_zone(zone) {
6814 		if (!is_highmem(zone))
6815 			lowmem_pages += zone->managed_pages;
6816 	}
6817 
6818 	for_each_zone(zone) {
6819 		u64 tmp;
6820 
6821 		spin_lock_irqsave(&zone->lock, flags);
6822 		tmp = (u64)pages_min * zone->managed_pages;
6823 		do_div(tmp, lowmem_pages);
6824 		if (is_highmem(zone)) {
6825 			/*
6826 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6827 			 * need highmem pages, so cap pages_min to a small
6828 			 * value here.
6829 			 *
6830 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6831 			 * deltas control asynch page reclaim, and so should
6832 			 * not be capped for highmem.
6833 			 */
6834 			unsigned long min_pages;
6835 
6836 			min_pages = zone->managed_pages / 1024;
6837 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6838 			zone->watermark[WMARK_MIN] = min_pages;
6839 		} else {
6840 			/*
6841 			 * If it's a lowmem zone, reserve a number of pages
6842 			 * proportionate to the zone's size.
6843 			 */
6844 			zone->watermark[WMARK_MIN] = tmp;
6845 		}
6846 
6847 		/*
6848 		 * Set the kswapd watermarks distance according to the
6849 		 * scale factor in proportion to available memory, but
6850 		 * ensure a minimum size on small systems.
6851 		 */
6852 		tmp = max_t(u64, tmp >> 2,
6853 			    mult_frac(zone->managed_pages,
6854 				      watermark_scale_factor, 10000));
6855 
6856 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6857 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6858 
6859 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6860 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6861 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6862 
6863 		spin_unlock_irqrestore(&zone->lock, flags);
6864 	}
6865 
6866 	/* update totalreserve_pages */
6867 	calculate_totalreserve_pages();
6868 }
6869 
6870 /**
6871  * setup_per_zone_wmarks - called when min_free_kbytes changes
6872  * or when memory is hot-{added|removed}
6873  *
6874  * Ensures that the watermark[min,low,high] values for each zone are set
6875  * correctly with respect to min_free_kbytes.
6876  */
6877 void setup_per_zone_wmarks(void)
6878 {
6879 	mutex_lock(&zonelists_mutex);
6880 	__setup_per_zone_wmarks();
6881 	mutex_unlock(&zonelists_mutex);
6882 }
6883 
6884 /*
6885  * Initialise min_free_kbytes.
6886  *
6887  * For small machines we want it small (128k min).  For large machines
6888  * we want it large (64MB max).  But it is not linear, because network
6889  * bandwidth does not increase linearly with machine size.  We use
6890  *
6891  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6892  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6893  *
6894  * which yields
6895  *
6896  * 16MB:	512k
6897  * 32MB:	724k
6898  * 64MB:	1024k
6899  * 128MB:	1448k
6900  * 256MB:	2048k
6901  * 512MB:	2896k
6902  * 1024MB:	4096k
6903  * 2048MB:	5792k
6904  * 4096MB:	8192k
6905  * 8192MB:	11584k
6906  * 16384MB:	16384k
6907  */
6908 int __meminit init_per_zone_wmark_min(void)
6909 {
6910 	unsigned long lowmem_kbytes;
6911 	int new_min_free_kbytes;
6912 
6913 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6914 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6915 
6916 	if (new_min_free_kbytes > user_min_free_kbytes) {
6917 		min_free_kbytes = new_min_free_kbytes;
6918 		if (min_free_kbytes < 128)
6919 			min_free_kbytes = 128;
6920 		if (min_free_kbytes > 65536)
6921 			min_free_kbytes = 65536;
6922 	} else {
6923 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6924 				new_min_free_kbytes, user_min_free_kbytes);
6925 	}
6926 	setup_per_zone_wmarks();
6927 	refresh_zone_stat_thresholds();
6928 	setup_per_zone_lowmem_reserve();
6929 	return 0;
6930 }
6931 core_initcall(init_per_zone_wmark_min)
6932 
6933 /*
6934  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6935  *	that we can call two helper functions whenever min_free_kbytes
6936  *	changes.
6937  */
6938 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6939 	void __user *buffer, size_t *length, loff_t *ppos)
6940 {
6941 	int rc;
6942 
6943 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6944 	if (rc)
6945 		return rc;
6946 
6947 	if (write) {
6948 		user_min_free_kbytes = min_free_kbytes;
6949 		setup_per_zone_wmarks();
6950 	}
6951 	return 0;
6952 }
6953 
6954 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6955 	void __user *buffer, size_t *length, loff_t *ppos)
6956 {
6957 	int rc;
6958 
6959 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6960 	if (rc)
6961 		return rc;
6962 
6963 	if (write)
6964 		setup_per_zone_wmarks();
6965 
6966 	return 0;
6967 }
6968 
6969 #ifdef CONFIG_NUMA
6970 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6971 	void __user *buffer, size_t *length, loff_t *ppos)
6972 {
6973 	struct zone *zone;
6974 	int rc;
6975 
6976 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6977 	if (rc)
6978 		return rc;
6979 
6980 	for_each_zone(zone)
6981 		zone->min_unmapped_pages = (zone->managed_pages *
6982 				sysctl_min_unmapped_ratio) / 100;
6983 	return 0;
6984 }
6985 
6986 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6987 	void __user *buffer, size_t *length, loff_t *ppos)
6988 {
6989 	struct zone *zone;
6990 	int rc;
6991 
6992 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6993 	if (rc)
6994 		return rc;
6995 
6996 	for_each_zone(zone)
6997 		zone->min_slab_pages = (zone->managed_pages *
6998 				sysctl_min_slab_ratio) / 100;
6999 	return 0;
7000 }
7001 #endif
7002 
7003 /*
7004  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7005  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7006  *	whenever sysctl_lowmem_reserve_ratio changes.
7007  *
7008  * The reserve ratio obviously has absolutely no relation with the
7009  * minimum watermarks. The lowmem reserve ratio can only make sense
7010  * if in function of the boot time zone sizes.
7011  */
7012 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7013 	void __user *buffer, size_t *length, loff_t *ppos)
7014 {
7015 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7016 	setup_per_zone_lowmem_reserve();
7017 	return 0;
7018 }
7019 
7020 /*
7021  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7022  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7023  * pagelist can have before it gets flushed back to buddy allocator.
7024  */
7025 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7026 	void __user *buffer, size_t *length, loff_t *ppos)
7027 {
7028 	struct zone *zone;
7029 	int old_percpu_pagelist_fraction;
7030 	int ret;
7031 
7032 	mutex_lock(&pcp_batch_high_lock);
7033 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7034 
7035 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7036 	if (!write || ret < 0)
7037 		goto out;
7038 
7039 	/* Sanity checking to avoid pcp imbalance */
7040 	if (percpu_pagelist_fraction &&
7041 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7042 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7043 		ret = -EINVAL;
7044 		goto out;
7045 	}
7046 
7047 	/* No change? */
7048 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7049 		goto out;
7050 
7051 	for_each_populated_zone(zone) {
7052 		unsigned int cpu;
7053 
7054 		for_each_possible_cpu(cpu)
7055 			pageset_set_high_and_batch(zone,
7056 					per_cpu_ptr(zone->pageset, cpu));
7057 	}
7058 out:
7059 	mutex_unlock(&pcp_batch_high_lock);
7060 	return ret;
7061 }
7062 
7063 #ifdef CONFIG_NUMA
7064 int hashdist = HASHDIST_DEFAULT;
7065 
7066 static int __init set_hashdist(char *str)
7067 {
7068 	if (!str)
7069 		return 0;
7070 	hashdist = simple_strtoul(str, &str, 0);
7071 	return 1;
7072 }
7073 __setup("hashdist=", set_hashdist);
7074 #endif
7075 
7076 /*
7077  * allocate a large system hash table from bootmem
7078  * - it is assumed that the hash table must contain an exact power-of-2
7079  *   quantity of entries
7080  * - limit is the number of hash buckets, not the total allocation size
7081  */
7082 void *__init alloc_large_system_hash(const char *tablename,
7083 				     unsigned long bucketsize,
7084 				     unsigned long numentries,
7085 				     int scale,
7086 				     int flags,
7087 				     unsigned int *_hash_shift,
7088 				     unsigned int *_hash_mask,
7089 				     unsigned long low_limit,
7090 				     unsigned long high_limit)
7091 {
7092 	unsigned long long max = high_limit;
7093 	unsigned long log2qty, size;
7094 	void *table = NULL;
7095 
7096 	/* allow the kernel cmdline to have a say */
7097 	if (!numentries) {
7098 		/* round applicable memory size up to nearest megabyte */
7099 		numentries = nr_kernel_pages;
7100 
7101 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7102 		if (PAGE_SHIFT < 20)
7103 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7104 
7105 		/* limit to 1 bucket per 2^scale bytes of low memory */
7106 		if (scale > PAGE_SHIFT)
7107 			numentries >>= (scale - PAGE_SHIFT);
7108 		else
7109 			numentries <<= (PAGE_SHIFT - scale);
7110 
7111 		/* Make sure we've got at least a 0-order allocation.. */
7112 		if (unlikely(flags & HASH_SMALL)) {
7113 			/* Makes no sense without HASH_EARLY */
7114 			WARN_ON(!(flags & HASH_EARLY));
7115 			if (!(numentries >> *_hash_shift)) {
7116 				numentries = 1UL << *_hash_shift;
7117 				BUG_ON(!numentries);
7118 			}
7119 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7120 			numentries = PAGE_SIZE / bucketsize;
7121 	}
7122 	numentries = roundup_pow_of_two(numentries);
7123 
7124 	/* limit allocation size to 1/16 total memory by default */
7125 	if (max == 0) {
7126 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7127 		do_div(max, bucketsize);
7128 	}
7129 	max = min(max, 0x80000000ULL);
7130 
7131 	if (numentries < low_limit)
7132 		numentries = low_limit;
7133 	if (numentries > max)
7134 		numentries = max;
7135 
7136 	log2qty = ilog2(numentries);
7137 
7138 	do {
7139 		size = bucketsize << log2qty;
7140 		if (flags & HASH_EARLY)
7141 			table = memblock_virt_alloc_nopanic(size, 0);
7142 		else if (hashdist)
7143 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7144 		else {
7145 			/*
7146 			 * If bucketsize is not a power-of-two, we may free
7147 			 * some pages at the end of hash table which
7148 			 * alloc_pages_exact() automatically does
7149 			 */
7150 			if (get_order(size) < MAX_ORDER) {
7151 				table = alloc_pages_exact(size, GFP_ATOMIC);
7152 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7153 			}
7154 		}
7155 	} while (!table && size > PAGE_SIZE && --log2qty);
7156 
7157 	if (!table)
7158 		panic("Failed to allocate %s hash table\n", tablename);
7159 
7160 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7161 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7162 
7163 	if (_hash_shift)
7164 		*_hash_shift = log2qty;
7165 	if (_hash_mask)
7166 		*_hash_mask = (1 << log2qty) - 1;
7167 
7168 	return table;
7169 }
7170 
7171 /*
7172  * This function checks whether pageblock includes unmovable pages or not.
7173  * If @count is not zero, it is okay to include less @count unmovable pages
7174  *
7175  * PageLRU check without isolation or lru_lock could race so that
7176  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7177  * expect this function should be exact.
7178  */
7179 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7180 			 bool skip_hwpoisoned_pages)
7181 {
7182 	unsigned long pfn, iter, found;
7183 	int mt;
7184 
7185 	/*
7186 	 * For avoiding noise data, lru_add_drain_all() should be called
7187 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7188 	 */
7189 	if (zone_idx(zone) == ZONE_MOVABLE)
7190 		return false;
7191 	mt = get_pageblock_migratetype(page);
7192 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7193 		return false;
7194 
7195 	pfn = page_to_pfn(page);
7196 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7197 		unsigned long check = pfn + iter;
7198 
7199 		if (!pfn_valid_within(check))
7200 			continue;
7201 
7202 		page = pfn_to_page(check);
7203 
7204 		/*
7205 		 * Hugepages are not in LRU lists, but they're movable.
7206 		 * We need not scan over tail pages bacause we don't
7207 		 * handle each tail page individually in migration.
7208 		 */
7209 		if (PageHuge(page)) {
7210 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7211 			continue;
7212 		}
7213 
7214 		/*
7215 		 * We can't use page_count without pin a page
7216 		 * because another CPU can free compound page.
7217 		 * This check already skips compound tails of THP
7218 		 * because their page->_refcount is zero at all time.
7219 		 */
7220 		if (!page_ref_count(page)) {
7221 			if (PageBuddy(page))
7222 				iter += (1 << page_order(page)) - 1;
7223 			continue;
7224 		}
7225 
7226 		/*
7227 		 * The HWPoisoned page may be not in buddy system, and
7228 		 * page_count() is not 0.
7229 		 */
7230 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7231 			continue;
7232 
7233 		if (!PageLRU(page))
7234 			found++;
7235 		/*
7236 		 * If there are RECLAIMABLE pages, we need to check
7237 		 * it.  But now, memory offline itself doesn't call
7238 		 * shrink_node_slabs() and it still to be fixed.
7239 		 */
7240 		/*
7241 		 * If the page is not RAM, page_count()should be 0.
7242 		 * we don't need more check. This is an _used_ not-movable page.
7243 		 *
7244 		 * The problematic thing here is PG_reserved pages. PG_reserved
7245 		 * is set to both of a memory hole page and a _used_ kernel
7246 		 * page at boot.
7247 		 */
7248 		if (found > count)
7249 			return true;
7250 	}
7251 	return false;
7252 }
7253 
7254 bool is_pageblock_removable_nolock(struct page *page)
7255 {
7256 	struct zone *zone;
7257 	unsigned long pfn;
7258 
7259 	/*
7260 	 * We have to be careful here because we are iterating over memory
7261 	 * sections which are not zone aware so we might end up outside of
7262 	 * the zone but still within the section.
7263 	 * We have to take care about the node as well. If the node is offline
7264 	 * its NODE_DATA will be NULL - see page_zone.
7265 	 */
7266 	if (!node_online(page_to_nid(page)))
7267 		return false;
7268 
7269 	zone = page_zone(page);
7270 	pfn = page_to_pfn(page);
7271 	if (!zone_spans_pfn(zone, pfn))
7272 		return false;
7273 
7274 	return !has_unmovable_pages(zone, page, 0, true);
7275 }
7276 
7277 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7278 
7279 static unsigned long pfn_max_align_down(unsigned long pfn)
7280 {
7281 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7282 			     pageblock_nr_pages) - 1);
7283 }
7284 
7285 static unsigned long pfn_max_align_up(unsigned long pfn)
7286 {
7287 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7288 				pageblock_nr_pages));
7289 }
7290 
7291 /* [start, end) must belong to a single zone. */
7292 static int __alloc_contig_migrate_range(struct compact_control *cc,
7293 					unsigned long start, unsigned long end)
7294 {
7295 	/* This function is based on compact_zone() from compaction.c. */
7296 	unsigned long nr_reclaimed;
7297 	unsigned long pfn = start;
7298 	unsigned int tries = 0;
7299 	int ret = 0;
7300 
7301 	migrate_prep();
7302 
7303 	while (pfn < end || !list_empty(&cc->migratepages)) {
7304 		if (fatal_signal_pending(current)) {
7305 			ret = -EINTR;
7306 			break;
7307 		}
7308 
7309 		if (list_empty(&cc->migratepages)) {
7310 			cc->nr_migratepages = 0;
7311 			pfn = isolate_migratepages_range(cc, pfn, end);
7312 			if (!pfn) {
7313 				ret = -EINTR;
7314 				break;
7315 			}
7316 			tries = 0;
7317 		} else if (++tries == 5) {
7318 			ret = ret < 0 ? ret : -EBUSY;
7319 			break;
7320 		}
7321 
7322 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7323 							&cc->migratepages);
7324 		cc->nr_migratepages -= nr_reclaimed;
7325 
7326 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7327 				    NULL, 0, cc->mode, MR_CMA);
7328 	}
7329 	if (ret < 0) {
7330 		putback_movable_pages(&cc->migratepages);
7331 		return ret;
7332 	}
7333 	return 0;
7334 }
7335 
7336 /**
7337  * alloc_contig_range() -- tries to allocate given range of pages
7338  * @start:	start PFN to allocate
7339  * @end:	one-past-the-last PFN to allocate
7340  * @migratetype:	migratetype of the underlaying pageblocks (either
7341  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7342  *			in range must have the same migratetype and it must
7343  *			be either of the two.
7344  *
7345  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7346  * aligned, however it's the caller's responsibility to guarantee that
7347  * we are the only thread that changes migrate type of pageblocks the
7348  * pages fall in.
7349  *
7350  * The PFN range must belong to a single zone.
7351  *
7352  * Returns zero on success or negative error code.  On success all
7353  * pages which PFN is in [start, end) are allocated for the caller and
7354  * need to be freed with free_contig_range().
7355  */
7356 int alloc_contig_range(unsigned long start, unsigned long end,
7357 		       unsigned migratetype)
7358 {
7359 	unsigned long outer_start, outer_end;
7360 	unsigned int order;
7361 	int ret = 0;
7362 
7363 	struct compact_control cc = {
7364 		.nr_migratepages = 0,
7365 		.order = -1,
7366 		.zone = page_zone(pfn_to_page(start)),
7367 		.mode = MIGRATE_SYNC,
7368 		.ignore_skip_hint = true,
7369 	};
7370 	INIT_LIST_HEAD(&cc.migratepages);
7371 
7372 	/*
7373 	 * What we do here is we mark all pageblocks in range as
7374 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7375 	 * have different sizes, and due to the way page allocator
7376 	 * work, we align the range to biggest of the two pages so
7377 	 * that page allocator won't try to merge buddies from
7378 	 * different pageblocks and change MIGRATE_ISOLATE to some
7379 	 * other migration type.
7380 	 *
7381 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7382 	 * migrate the pages from an unaligned range (ie. pages that
7383 	 * we are interested in).  This will put all the pages in
7384 	 * range back to page allocator as MIGRATE_ISOLATE.
7385 	 *
7386 	 * When this is done, we take the pages in range from page
7387 	 * allocator removing them from the buddy system.  This way
7388 	 * page allocator will never consider using them.
7389 	 *
7390 	 * This lets us mark the pageblocks back as
7391 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7392 	 * aligned range but not in the unaligned, original range are
7393 	 * put back to page allocator so that buddy can use them.
7394 	 */
7395 
7396 	ret = start_isolate_page_range(pfn_max_align_down(start),
7397 				       pfn_max_align_up(end), migratetype,
7398 				       false);
7399 	if (ret)
7400 		return ret;
7401 
7402 	/*
7403 	 * In case of -EBUSY, we'd like to know which page causes problem.
7404 	 * So, just fall through. We will check it in test_pages_isolated().
7405 	 */
7406 	ret = __alloc_contig_migrate_range(&cc, start, end);
7407 	if (ret && ret != -EBUSY)
7408 		goto done;
7409 
7410 	/*
7411 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7412 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7413 	 * more, all pages in [start, end) are free in page allocator.
7414 	 * What we are going to do is to allocate all pages from
7415 	 * [start, end) (that is remove them from page allocator).
7416 	 *
7417 	 * The only problem is that pages at the beginning and at the
7418 	 * end of interesting range may be not aligned with pages that
7419 	 * page allocator holds, ie. they can be part of higher order
7420 	 * pages.  Because of this, we reserve the bigger range and
7421 	 * once this is done free the pages we are not interested in.
7422 	 *
7423 	 * We don't have to hold zone->lock here because the pages are
7424 	 * isolated thus they won't get removed from buddy.
7425 	 */
7426 
7427 	lru_add_drain_all();
7428 	drain_all_pages(cc.zone);
7429 
7430 	order = 0;
7431 	outer_start = start;
7432 	while (!PageBuddy(pfn_to_page(outer_start))) {
7433 		if (++order >= MAX_ORDER) {
7434 			outer_start = start;
7435 			break;
7436 		}
7437 		outer_start &= ~0UL << order;
7438 	}
7439 
7440 	if (outer_start != start) {
7441 		order = page_order(pfn_to_page(outer_start));
7442 
7443 		/*
7444 		 * outer_start page could be small order buddy page and
7445 		 * it doesn't include start page. Adjust outer_start
7446 		 * in this case to report failed page properly
7447 		 * on tracepoint in test_pages_isolated()
7448 		 */
7449 		if (outer_start + (1UL << order) <= start)
7450 			outer_start = start;
7451 	}
7452 
7453 	/* Make sure the range is really isolated. */
7454 	if (test_pages_isolated(outer_start, end, false)) {
7455 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7456 			__func__, outer_start, end);
7457 		ret = -EBUSY;
7458 		goto done;
7459 	}
7460 
7461 	/* Grab isolated pages from freelists. */
7462 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7463 	if (!outer_end) {
7464 		ret = -EBUSY;
7465 		goto done;
7466 	}
7467 
7468 	/* Free head and tail (if any) */
7469 	if (start != outer_start)
7470 		free_contig_range(outer_start, start - outer_start);
7471 	if (end != outer_end)
7472 		free_contig_range(end, outer_end - end);
7473 
7474 done:
7475 	undo_isolate_page_range(pfn_max_align_down(start),
7476 				pfn_max_align_up(end), migratetype);
7477 	return ret;
7478 }
7479 
7480 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7481 {
7482 	unsigned int count = 0;
7483 
7484 	for (; nr_pages--; pfn++) {
7485 		struct page *page = pfn_to_page(pfn);
7486 
7487 		count += page_count(page) != 1;
7488 		__free_page(page);
7489 	}
7490 	WARN(count != 0, "%d pages are still in use!\n", count);
7491 }
7492 #endif
7493 
7494 #ifdef CONFIG_MEMORY_HOTPLUG
7495 /*
7496  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7497  * page high values need to be recalulated.
7498  */
7499 void __meminit zone_pcp_update(struct zone *zone)
7500 {
7501 	unsigned cpu;
7502 	mutex_lock(&pcp_batch_high_lock);
7503 	for_each_possible_cpu(cpu)
7504 		pageset_set_high_and_batch(zone,
7505 				per_cpu_ptr(zone->pageset, cpu));
7506 	mutex_unlock(&pcp_batch_high_lock);
7507 }
7508 #endif
7509 
7510 void zone_pcp_reset(struct zone *zone)
7511 {
7512 	unsigned long flags;
7513 	int cpu;
7514 	struct per_cpu_pageset *pset;
7515 
7516 	/* avoid races with drain_pages()  */
7517 	local_irq_save(flags);
7518 	if (zone->pageset != &boot_pageset) {
7519 		for_each_online_cpu(cpu) {
7520 			pset = per_cpu_ptr(zone->pageset, cpu);
7521 			drain_zonestat(zone, pset);
7522 		}
7523 		free_percpu(zone->pageset);
7524 		zone->pageset = &boot_pageset;
7525 	}
7526 	local_irq_restore(flags);
7527 }
7528 
7529 #ifdef CONFIG_MEMORY_HOTREMOVE
7530 /*
7531  * All pages in the range must be in a single zone and isolated
7532  * before calling this.
7533  */
7534 void
7535 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7536 {
7537 	struct page *page;
7538 	struct zone *zone;
7539 	unsigned int order, i;
7540 	unsigned long pfn;
7541 	unsigned long flags;
7542 	/* find the first valid pfn */
7543 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7544 		if (pfn_valid(pfn))
7545 			break;
7546 	if (pfn == end_pfn)
7547 		return;
7548 	zone = page_zone(pfn_to_page(pfn));
7549 	spin_lock_irqsave(&zone->lock, flags);
7550 	pfn = start_pfn;
7551 	while (pfn < end_pfn) {
7552 		if (!pfn_valid(pfn)) {
7553 			pfn++;
7554 			continue;
7555 		}
7556 		page = pfn_to_page(pfn);
7557 		/*
7558 		 * The HWPoisoned page may be not in buddy system, and
7559 		 * page_count() is not 0.
7560 		 */
7561 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7562 			pfn++;
7563 			SetPageReserved(page);
7564 			continue;
7565 		}
7566 
7567 		BUG_ON(page_count(page));
7568 		BUG_ON(!PageBuddy(page));
7569 		order = page_order(page);
7570 #ifdef CONFIG_DEBUG_VM
7571 		pr_info("remove from free list %lx %d %lx\n",
7572 			pfn, 1 << order, end_pfn);
7573 #endif
7574 		list_del(&page->lru);
7575 		rmv_page_order(page);
7576 		zone->free_area[order].nr_free--;
7577 		for (i = 0; i < (1 << order); i++)
7578 			SetPageReserved((page+i));
7579 		pfn += (1 << order);
7580 	}
7581 	spin_unlock_irqrestore(&zone->lock, flags);
7582 }
7583 #endif
7584 
7585 bool is_free_buddy_page(struct page *page)
7586 {
7587 	struct zone *zone = page_zone(page);
7588 	unsigned long pfn = page_to_pfn(page);
7589 	unsigned long flags;
7590 	unsigned int order;
7591 
7592 	spin_lock_irqsave(&zone->lock, flags);
7593 	for (order = 0; order < MAX_ORDER; order++) {
7594 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7595 
7596 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7597 			break;
7598 	}
7599 	spin_unlock_irqrestore(&zone->lock, flags);
7600 
7601 	return order < MAX_ORDER;
7602 }
7603