1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 124 125 struct pagesets { 126 local_lock_t lock; 127 }; 128 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 129 .lock = INIT_LOCAL_LOCK(lock), 130 }; 131 132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 133 DEFINE_PER_CPU(int, numa_node); 134 EXPORT_PER_CPU_SYMBOL(numa_node); 135 #endif 136 137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 138 139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 140 /* 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 144 * defined in <linux/topology.h>. 145 */ 146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 147 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 148 #endif 149 150 /* work_structs for global per-cpu drains */ 151 struct pcpu_drain { 152 struct zone *zone; 153 struct work_struct work; 154 }; 155 static DEFINE_MUTEX(pcpu_drain_mutex); 156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 157 158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 159 volatile unsigned long latent_entropy __latent_entropy; 160 EXPORT_SYMBOL(latent_entropy); 161 #endif 162 163 /* 164 * Array of node states. 165 */ 166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 167 [N_POSSIBLE] = NODE_MASK_ALL, 168 [N_ONLINE] = { { [0] = 1UL } }, 169 #ifndef CONFIG_NUMA 170 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 171 #ifdef CONFIG_HIGHMEM 172 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 173 #endif 174 [N_MEMORY] = { { [0] = 1UL } }, 175 [N_CPU] = { { [0] = 1UL } }, 176 #endif /* NUMA */ 177 }; 178 EXPORT_SYMBOL(node_states); 179 180 atomic_long_t _totalram_pages __read_mostly; 181 EXPORT_SYMBOL(_totalram_pages); 182 unsigned long totalreserve_pages __read_mostly; 183 unsigned long totalcma_pages __read_mostly; 184 185 int percpu_pagelist_high_fraction; 186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 188 EXPORT_SYMBOL(init_on_alloc); 189 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 191 EXPORT_SYMBOL(init_on_free); 192 193 static bool _init_on_alloc_enabled_early __read_mostly 194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 195 static int __init early_init_on_alloc(char *buf) 196 { 197 198 return kstrtobool(buf, &_init_on_alloc_enabled_early); 199 } 200 early_param("init_on_alloc", early_init_on_alloc); 201 202 static bool _init_on_free_enabled_early __read_mostly 203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 204 static int __init early_init_on_free(char *buf) 205 { 206 return kstrtobool(buf, &_init_on_free_enabled_early); 207 } 208 early_param("init_on_free", early_init_on_free); 209 210 /* 211 * A cached value of the page's pageblock's migratetype, used when the page is 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 214 * Also the migratetype set in the page does not necessarily match the pcplist 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 216 * other index - this ensures that it will be put on the correct CMA freelist. 217 */ 218 static inline int get_pcppage_migratetype(struct page *page) 219 { 220 return page->index; 221 } 222 223 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 224 { 225 page->index = migratetype; 226 } 227 228 #ifdef CONFIG_PM_SLEEP 229 /* 230 * The following functions are used by the suspend/hibernate code to temporarily 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 232 * while devices are suspended. To avoid races with the suspend/hibernate code, 233 * they should always be called with system_transition_mutex held 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 236 * with that modification). 237 */ 238 239 static gfp_t saved_gfp_mask; 240 241 void pm_restore_gfp_mask(void) 242 { 243 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 244 if (saved_gfp_mask) { 245 gfp_allowed_mask = saved_gfp_mask; 246 saved_gfp_mask = 0; 247 } 248 } 249 250 void pm_restrict_gfp_mask(void) 251 { 252 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 253 WARN_ON(saved_gfp_mask); 254 saved_gfp_mask = gfp_allowed_mask; 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 256 } 257 258 bool pm_suspended_storage(void) 259 { 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 261 return false; 262 return true; 263 } 264 #endif /* CONFIG_PM_SLEEP */ 265 266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 267 unsigned int pageblock_order __read_mostly; 268 #endif 269 270 static void __free_pages_ok(struct page *page, unsigned int order, 271 fpi_t fpi_flags); 272 273 /* 274 * results with 256, 32 in the lowmem_reserve sysctl: 275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 276 * 1G machine -> (16M dma, 784M normal, 224M high) 277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 280 * 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally 282 * don't need any ZONE_NORMAL reservation 283 */ 284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 285 #ifdef CONFIG_ZONE_DMA 286 [ZONE_DMA] = 256, 287 #endif 288 #ifdef CONFIG_ZONE_DMA32 289 [ZONE_DMA32] = 256, 290 #endif 291 [ZONE_NORMAL] = 32, 292 #ifdef CONFIG_HIGHMEM 293 [ZONE_HIGHMEM] = 0, 294 #endif 295 [ZONE_MOVABLE] = 0, 296 }; 297 298 static char * const zone_names[MAX_NR_ZONES] = { 299 #ifdef CONFIG_ZONE_DMA 300 "DMA", 301 #endif 302 #ifdef CONFIG_ZONE_DMA32 303 "DMA32", 304 #endif 305 "Normal", 306 #ifdef CONFIG_HIGHMEM 307 "HighMem", 308 #endif 309 "Movable", 310 #ifdef CONFIG_ZONE_DEVICE 311 "Device", 312 #endif 313 }; 314 315 const char * const migratetype_names[MIGRATE_TYPES] = { 316 "Unmovable", 317 "Movable", 318 "Reclaimable", 319 "HighAtomic", 320 #ifdef CONFIG_CMA 321 "CMA", 322 #endif 323 #ifdef CONFIG_MEMORY_ISOLATION 324 "Isolate", 325 #endif 326 }; 327 328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 329 [NULL_COMPOUND_DTOR] = NULL, 330 [COMPOUND_PAGE_DTOR] = free_compound_page, 331 #ifdef CONFIG_HUGETLB_PAGE 332 [HUGETLB_PAGE_DTOR] = free_huge_page, 333 #endif 334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 336 #endif 337 }; 338 339 int min_free_kbytes = 1024; 340 int user_min_free_kbytes = -1; 341 int watermark_boost_factor __read_mostly = 15000; 342 int watermark_scale_factor = 10; 343 344 static unsigned long nr_kernel_pages __initdata; 345 static unsigned long nr_all_pages __initdata; 346 static unsigned long dma_reserve __initdata; 347 348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 350 static unsigned long required_kernelcore __initdata; 351 static unsigned long required_kernelcore_percent __initdata; 352 static unsigned long required_movablecore __initdata; 353 static unsigned long required_movablecore_percent __initdata; 354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 355 static bool mirrored_kernelcore __meminitdata; 356 357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 358 int movable_zone; 359 EXPORT_SYMBOL(movable_zone); 360 361 #if MAX_NUMNODES > 1 362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 363 unsigned int nr_online_nodes __read_mostly = 1; 364 EXPORT_SYMBOL(nr_node_ids); 365 EXPORT_SYMBOL(nr_online_nodes); 366 #endif 367 368 int page_group_by_mobility_disabled __read_mostly; 369 370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 371 /* 372 * During boot we initialize deferred pages on-demand, as needed, but once 373 * page_alloc_init_late() has finished, the deferred pages are all initialized, 374 * and we can permanently disable that path. 375 */ 376 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 377 378 /* 379 * Calling kasan_poison_pages() only after deferred memory initialization 380 * has completed. Poisoning pages during deferred memory init will greatly 381 * lengthen the process and cause problem in large memory systems as the 382 * deferred pages initialization is done with interrupt disabled. 383 * 384 * Assuming that there will be no reference to those newly initialized 385 * pages before they are ever allocated, this should have no effect on 386 * KASAN memory tracking as the poison will be properly inserted at page 387 * allocation time. The only corner case is when pages are allocated by 388 * on-demand allocation and then freed again before the deferred pages 389 * initialization is done, but this is not likely to happen. 390 */ 391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 392 { 393 return static_branch_unlikely(&deferred_pages) || 394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 395 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 396 PageSkipKASanPoison(page); 397 } 398 399 /* Returns true if the struct page for the pfn is uninitialised */ 400 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 401 { 402 int nid = early_pfn_to_nid(pfn); 403 404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 405 return true; 406 407 return false; 408 } 409 410 /* 411 * Returns true when the remaining initialisation should be deferred until 412 * later in the boot cycle when it can be parallelised. 413 */ 414 static bool __meminit 415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 416 { 417 static unsigned long prev_end_pfn, nr_initialised; 418 419 /* 420 * prev_end_pfn static that contains the end of previous zone 421 * No need to protect because called very early in boot before smp_init. 422 */ 423 if (prev_end_pfn != end_pfn) { 424 prev_end_pfn = end_pfn; 425 nr_initialised = 0; 426 } 427 428 /* Always populate low zones for address-constrained allocations */ 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 430 return false; 431 432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 433 return true; 434 /* 435 * We start only with one section of pages, more pages are added as 436 * needed until the rest of deferred pages are initialized. 437 */ 438 nr_initialised++; 439 if ((nr_initialised > PAGES_PER_SECTION) && 440 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 441 NODE_DATA(nid)->first_deferred_pfn = pfn; 442 return true; 443 } 444 return false; 445 } 446 #else 447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 448 { 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 450 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 451 PageSkipKASanPoison(page); 452 } 453 454 static inline bool early_page_uninitialised(unsigned long pfn) 455 { 456 return false; 457 } 458 459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 460 { 461 return false; 462 } 463 #endif 464 465 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 466 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 467 unsigned long pfn) 468 { 469 #ifdef CONFIG_SPARSEMEM 470 return section_to_usemap(__pfn_to_section(pfn)); 471 #else 472 return page_zone(page)->pageblock_flags; 473 #endif /* CONFIG_SPARSEMEM */ 474 } 475 476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 477 { 478 #ifdef CONFIG_SPARSEMEM 479 pfn &= (PAGES_PER_SECTION-1); 480 #else 481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 482 #endif /* CONFIG_SPARSEMEM */ 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 484 } 485 486 static __always_inline 487 unsigned long __get_pfnblock_flags_mask(const struct page *page, 488 unsigned long pfn, 489 unsigned long mask) 490 { 491 unsigned long *bitmap; 492 unsigned long bitidx, word_bitidx; 493 unsigned long word; 494 495 bitmap = get_pageblock_bitmap(page, pfn); 496 bitidx = pfn_to_bitidx(page, pfn); 497 word_bitidx = bitidx / BITS_PER_LONG; 498 bitidx &= (BITS_PER_LONG-1); 499 500 word = bitmap[word_bitidx]; 501 return (word >> bitidx) & mask; 502 } 503 504 /** 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 506 * @page: The page within the block of interest 507 * @pfn: The target page frame number 508 * @mask: mask of bits that the caller is interested in 509 * 510 * Return: pageblock_bits flags 511 */ 512 unsigned long get_pfnblock_flags_mask(const struct page *page, 513 unsigned long pfn, unsigned long mask) 514 { 515 return __get_pfnblock_flags_mask(page, pfn, mask); 516 } 517 518 static __always_inline int get_pfnblock_migratetype(const struct page *page, 519 unsigned long pfn) 520 { 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 522 } 523 524 /** 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 526 * @page: The page within the block of interest 527 * @flags: The flags to set 528 * @pfn: The target page frame number 529 * @mask: mask of bits that the caller is interested in 530 */ 531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 532 unsigned long pfn, 533 unsigned long mask) 534 { 535 unsigned long *bitmap; 536 unsigned long bitidx, word_bitidx; 537 unsigned long old_word, word; 538 539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 541 542 bitmap = get_pageblock_bitmap(page, pfn); 543 bitidx = pfn_to_bitidx(page, pfn); 544 word_bitidx = bitidx / BITS_PER_LONG; 545 bitidx &= (BITS_PER_LONG-1); 546 547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 548 549 mask <<= bitidx; 550 flags <<= bitidx; 551 552 word = READ_ONCE(bitmap[word_bitidx]); 553 for (;;) { 554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 555 if (word == old_word) 556 break; 557 word = old_word; 558 } 559 } 560 561 void set_pageblock_migratetype(struct page *page, int migratetype) 562 { 563 if (unlikely(page_group_by_mobility_disabled && 564 migratetype < MIGRATE_PCPTYPES)) 565 migratetype = MIGRATE_UNMOVABLE; 566 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 568 page_to_pfn(page), MIGRATETYPE_MASK); 569 } 570 571 #ifdef CONFIG_DEBUG_VM 572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 573 { 574 int ret = 0; 575 unsigned seq; 576 unsigned long pfn = page_to_pfn(page); 577 unsigned long sp, start_pfn; 578 579 do { 580 seq = zone_span_seqbegin(zone); 581 start_pfn = zone->zone_start_pfn; 582 sp = zone->spanned_pages; 583 if (!zone_spans_pfn(zone, pfn)) 584 ret = 1; 585 } while (zone_span_seqretry(zone, seq)); 586 587 if (ret) 588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 589 pfn, zone_to_nid(zone), zone->name, 590 start_pfn, start_pfn + sp); 591 592 return ret; 593 } 594 595 static int page_is_consistent(struct zone *zone, struct page *page) 596 { 597 if (zone != page_zone(page)) 598 return 0; 599 600 return 1; 601 } 602 /* 603 * Temporary debugging check for pages not lying within a given zone. 604 */ 605 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 if (page_outside_zone_boundaries(zone, page)) 608 return 1; 609 if (!page_is_consistent(zone, page)) 610 return 1; 611 612 return 0; 613 } 614 #else 615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 616 { 617 return 0; 618 } 619 #endif 620 621 static void bad_page(struct page *page, const char *reason) 622 { 623 static unsigned long resume; 624 static unsigned long nr_shown; 625 static unsigned long nr_unshown; 626 627 /* 628 * Allow a burst of 60 reports, then keep quiet for that minute; 629 * or allow a steady drip of one report per second. 630 */ 631 if (nr_shown == 60) { 632 if (time_before(jiffies, resume)) { 633 nr_unshown++; 634 goto out; 635 } 636 if (nr_unshown) { 637 pr_alert( 638 "BUG: Bad page state: %lu messages suppressed\n", 639 nr_unshown); 640 nr_unshown = 0; 641 } 642 nr_shown = 0; 643 } 644 if (nr_shown++ == 0) 645 resume = jiffies + 60 * HZ; 646 647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 648 current->comm, page_to_pfn(page)); 649 dump_page(page, reason); 650 651 print_modules(); 652 dump_stack(); 653 out: 654 /* Leave bad fields for debug, except PageBuddy could make trouble */ 655 page_mapcount_reset(page); /* remove PageBuddy */ 656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 657 } 658 659 static inline unsigned int order_to_pindex(int migratetype, int order) 660 { 661 int base = order; 662 663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 664 if (order > PAGE_ALLOC_COSTLY_ORDER) { 665 VM_BUG_ON(order != pageblock_order); 666 base = PAGE_ALLOC_COSTLY_ORDER + 1; 667 } 668 #else 669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 670 #endif 671 672 return (MIGRATE_PCPTYPES * base) + migratetype; 673 } 674 675 static inline int pindex_to_order(unsigned int pindex) 676 { 677 int order = pindex / MIGRATE_PCPTYPES; 678 679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 680 if (order > PAGE_ALLOC_COSTLY_ORDER) { 681 order = pageblock_order; 682 VM_BUG_ON(order != pageblock_order); 683 } 684 #else 685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 686 #endif 687 688 return order; 689 } 690 691 static inline bool pcp_allowed_order(unsigned int order) 692 { 693 if (order <= PAGE_ALLOC_COSTLY_ORDER) 694 return true; 695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 696 if (order == pageblock_order) 697 return true; 698 #endif 699 return false; 700 } 701 702 static inline void free_the_page(struct page *page, unsigned int order) 703 { 704 if (pcp_allowed_order(order)) /* Via pcp? */ 705 free_unref_page(page, order); 706 else 707 __free_pages_ok(page, order, FPI_NONE); 708 } 709 710 /* 711 * Higher-order pages are called "compound pages". They are structured thusly: 712 * 713 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 714 * 715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 717 * 718 * The first tail page's ->compound_dtor holds the offset in array of compound 719 * page destructors. See compound_page_dtors. 720 * 721 * The first tail page's ->compound_order holds the order of allocation. 722 * This usage means that zero-order pages may not be compound. 723 */ 724 725 void free_compound_page(struct page *page) 726 { 727 mem_cgroup_uncharge(page_folio(page)); 728 free_the_page(page, compound_order(page)); 729 } 730 731 void prep_compound_page(struct page *page, unsigned int order) 732 { 733 int i; 734 int nr_pages = 1 << order; 735 736 __SetPageHead(page); 737 for (i = 1; i < nr_pages; i++) { 738 struct page *p = page + i; 739 p->mapping = TAIL_MAPPING; 740 set_compound_head(p, page); 741 } 742 743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 744 set_compound_order(page, order); 745 atomic_set(compound_mapcount_ptr(page), -1); 746 if (hpage_pincount_available(page)) 747 atomic_set(compound_pincount_ptr(page), 0); 748 } 749 750 #ifdef CONFIG_DEBUG_PAGEALLOC 751 unsigned int _debug_guardpage_minorder; 752 753 bool _debug_pagealloc_enabled_early __read_mostly 754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 755 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 756 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 757 EXPORT_SYMBOL(_debug_pagealloc_enabled); 758 759 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 760 761 static int __init early_debug_pagealloc(char *buf) 762 { 763 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 764 } 765 early_param("debug_pagealloc", early_debug_pagealloc); 766 767 static int __init debug_guardpage_minorder_setup(char *buf) 768 { 769 unsigned long res; 770 771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 772 pr_err("Bad debug_guardpage_minorder value\n"); 773 return 0; 774 } 775 _debug_guardpage_minorder = res; 776 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 777 return 0; 778 } 779 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 780 781 static inline bool set_page_guard(struct zone *zone, struct page *page, 782 unsigned int order, int migratetype) 783 { 784 if (!debug_guardpage_enabled()) 785 return false; 786 787 if (order >= debug_guardpage_minorder()) 788 return false; 789 790 __SetPageGuard(page); 791 INIT_LIST_HEAD(&page->lru); 792 set_page_private(page, order); 793 /* Guard pages are not available for any usage */ 794 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 795 796 return true; 797 } 798 799 static inline void clear_page_guard(struct zone *zone, struct page *page, 800 unsigned int order, int migratetype) 801 { 802 if (!debug_guardpage_enabled()) 803 return; 804 805 __ClearPageGuard(page); 806 807 set_page_private(page, 0); 808 if (!is_migrate_isolate(migratetype)) 809 __mod_zone_freepage_state(zone, (1 << order), migratetype); 810 } 811 #else 812 static inline bool set_page_guard(struct zone *zone, struct page *page, 813 unsigned int order, int migratetype) { return false; } 814 static inline void clear_page_guard(struct zone *zone, struct page *page, 815 unsigned int order, int migratetype) {} 816 #endif 817 818 /* 819 * Enable static keys related to various memory debugging and hardening options. 820 * Some override others, and depend on early params that are evaluated in the 821 * order of appearance. So we need to first gather the full picture of what was 822 * enabled, and then make decisions. 823 */ 824 void init_mem_debugging_and_hardening(void) 825 { 826 bool page_poisoning_requested = false; 827 828 #ifdef CONFIG_PAGE_POISONING 829 /* 830 * Page poisoning is debug page alloc for some arches. If 831 * either of those options are enabled, enable poisoning. 832 */ 833 if (page_poisoning_enabled() || 834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 835 debug_pagealloc_enabled())) { 836 static_branch_enable(&_page_poisoning_enabled); 837 page_poisoning_requested = true; 838 } 839 #endif 840 841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 842 page_poisoning_requested) { 843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 844 "will take precedence over init_on_alloc and init_on_free\n"); 845 _init_on_alloc_enabled_early = false; 846 _init_on_free_enabled_early = false; 847 } 848 849 if (_init_on_alloc_enabled_early) 850 static_branch_enable(&init_on_alloc); 851 else 852 static_branch_disable(&init_on_alloc); 853 854 if (_init_on_free_enabled_early) 855 static_branch_enable(&init_on_free); 856 else 857 static_branch_disable(&init_on_free); 858 859 #ifdef CONFIG_DEBUG_PAGEALLOC 860 if (!debug_pagealloc_enabled()) 861 return; 862 863 static_branch_enable(&_debug_pagealloc_enabled); 864 865 if (!debug_guardpage_minorder()) 866 return; 867 868 static_branch_enable(&_debug_guardpage_enabled); 869 #endif 870 } 871 872 static inline void set_buddy_order(struct page *page, unsigned int order) 873 { 874 set_page_private(page, order); 875 __SetPageBuddy(page); 876 } 877 878 /* 879 * This function checks whether a page is free && is the buddy 880 * we can coalesce a page and its buddy if 881 * (a) the buddy is not in a hole (check before calling!) && 882 * (b) the buddy is in the buddy system && 883 * (c) a page and its buddy have the same order && 884 * (d) a page and its buddy are in the same zone. 885 * 886 * For recording whether a page is in the buddy system, we set PageBuddy. 887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 888 * 889 * For recording page's order, we use page_private(page). 890 */ 891 static inline bool page_is_buddy(struct page *page, struct page *buddy, 892 unsigned int order) 893 { 894 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 895 return false; 896 897 if (buddy_order(buddy) != order) 898 return false; 899 900 /* 901 * zone check is done late to avoid uselessly calculating 902 * zone/node ids for pages that could never merge. 903 */ 904 if (page_zone_id(page) != page_zone_id(buddy)) 905 return false; 906 907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 908 909 return true; 910 } 911 912 #ifdef CONFIG_COMPACTION 913 static inline struct capture_control *task_capc(struct zone *zone) 914 { 915 struct capture_control *capc = current->capture_control; 916 917 return unlikely(capc) && 918 !(current->flags & PF_KTHREAD) && 919 !capc->page && 920 capc->cc->zone == zone ? capc : NULL; 921 } 922 923 static inline bool 924 compaction_capture(struct capture_control *capc, struct page *page, 925 int order, int migratetype) 926 { 927 if (!capc || order != capc->cc->order) 928 return false; 929 930 /* Do not accidentally pollute CMA or isolated regions*/ 931 if (is_migrate_cma(migratetype) || 932 is_migrate_isolate(migratetype)) 933 return false; 934 935 /* 936 * Do not let lower order allocations pollute a movable pageblock. 937 * This might let an unmovable request use a reclaimable pageblock 938 * and vice-versa but no more than normal fallback logic which can 939 * have trouble finding a high-order free page. 940 */ 941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 942 return false; 943 944 capc->page = page; 945 return true; 946 } 947 948 #else 949 static inline struct capture_control *task_capc(struct zone *zone) 950 { 951 return NULL; 952 } 953 954 static inline bool 955 compaction_capture(struct capture_control *capc, struct page *page, 956 int order, int migratetype) 957 { 958 return false; 959 } 960 #endif /* CONFIG_COMPACTION */ 961 962 /* Used for pages not on another list */ 963 static inline void add_to_free_list(struct page *page, struct zone *zone, 964 unsigned int order, int migratetype) 965 { 966 struct free_area *area = &zone->free_area[order]; 967 968 list_add(&page->lru, &area->free_list[migratetype]); 969 area->nr_free++; 970 } 971 972 /* Used for pages not on another list */ 973 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 974 unsigned int order, int migratetype) 975 { 976 struct free_area *area = &zone->free_area[order]; 977 978 list_add_tail(&page->lru, &area->free_list[migratetype]); 979 area->nr_free++; 980 } 981 982 /* 983 * Used for pages which are on another list. Move the pages to the tail 984 * of the list - so the moved pages won't immediately be considered for 985 * allocation again (e.g., optimization for memory onlining). 986 */ 987 static inline void move_to_free_list(struct page *page, struct zone *zone, 988 unsigned int order, int migratetype) 989 { 990 struct free_area *area = &zone->free_area[order]; 991 992 list_move_tail(&page->lru, &area->free_list[migratetype]); 993 } 994 995 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 996 unsigned int order) 997 { 998 /* clear reported state and update reported page count */ 999 if (page_reported(page)) 1000 __ClearPageReported(page); 1001 1002 list_del(&page->lru); 1003 __ClearPageBuddy(page); 1004 set_page_private(page, 0); 1005 zone->free_area[order].nr_free--; 1006 } 1007 1008 /* 1009 * If this is not the largest possible page, check if the buddy 1010 * of the next-highest order is free. If it is, it's possible 1011 * that pages are being freed that will coalesce soon. In case, 1012 * that is happening, add the free page to the tail of the list 1013 * so it's less likely to be used soon and more likely to be merged 1014 * as a higher order page 1015 */ 1016 static inline bool 1017 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1018 struct page *page, unsigned int order) 1019 { 1020 struct page *higher_page, *higher_buddy; 1021 unsigned long combined_pfn; 1022 1023 if (order >= MAX_ORDER - 2) 1024 return false; 1025 1026 combined_pfn = buddy_pfn & pfn; 1027 higher_page = page + (combined_pfn - pfn); 1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1030 1031 return page_is_buddy(higher_page, higher_buddy, order + 1); 1032 } 1033 1034 /* 1035 * Freeing function for a buddy system allocator. 1036 * 1037 * The concept of a buddy system is to maintain direct-mapped table 1038 * (containing bit values) for memory blocks of various "orders". 1039 * The bottom level table contains the map for the smallest allocatable 1040 * units of memory (here, pages), and each level above it describes 1041 * pairs of units from the levels below, hence, "buddies". 1042 * At a high level, all that happens here is marking the table entry 1043 * at the bottom level available, and propagating the changes upward 1044 * as necessary, plus some accounting needed to play nicely with other 1045 * parts of the VM system. 1046 * At each level, we keep a list of pages, which are heads of continuous 1047 * free pages of length of (1 << order) and marked with PageBuddy. 1048 * Page's order is recorded in page_private(page) field. 1049 * So when we are allocating or freeing one, we can derive the state of the 1050 * other. That is, if we allocate a small block, and both were 1051 * free, the remainder of the region must be split into blocks. 1052 * If a block is freed, and its buddy is also free, then this 1053 * triggers coalescing into a block of larger size. 1054 * 1055 * -- nyc 1056 */ 1057 1058 static inline void __free_one_page(struct page *page, 1059 unsigned long pfn, 1060 struct zone *zone, unsigned int order, 1061 int migratetype, fpi_t fpi_flags) 1062 { 1063 struct capture_control *capc = task_capc(zone); 1064 unsigned long buddy_pfn; 1065 unsigned long combined_pfn; 1066 unsigned int max_order; 1067 struct page *buddy; 1068 bool to_tail; 1069 1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1071 1072 VM_BUG_ON(!zone_is_initialized(zone)); 1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1074 1075 VM_BUG_ON(migratetype == -1); 1076 if (likely(!is_migrate_isolate(migratetype))) 1077 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1078 1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1080 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1081 1082 continue_merging: 1083 while (order < max_order) { 1084 if (compaction_capture(capc, page, order, migratetype)) { 1085 __mod_zone_freepage_state(zone, -(1 << order), 1086 migratetype); 1087 return; 1088 } 1089 buddy_pfn = __find_buddy_pfn(pfn, order); 1090 buddy = page + (buddy_pfn - pfn); 1091 1092 if (!page_is_buddy(page, buddy, order)) 1093 goto done_merging; 1094 /* 1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1096 * merge with it and move up one order. 1097 */ 1098 if (page_is_guard(buddy)) 1099 clear_page_guard(zone, buddy, order, migratetype); 1100 else 1101 del_page_from_free_list(buddy, zone, order); 1102 combined_pfn = buddy_pfn & pfn; 1103 page = page + (combined_pfn - pfn); 1104 pfn = combined_pfn; 1105 order++; 1106 } 1107 if (order < MAX_ORDER - 1) { 1108 /* If we are here, it means order is >= pageblock_order. 1109 * We want to prevent merge between freepages on isolate 1110 * pageblock and normal pageblock. Without this, pageblock 1111 * isolation could cause incorrect freepage or CMA accounting. 1112 * 1113 * We don't want to hit this code for the more frequent 1114 * low-order merging. 1115 */ 1116 if (unlikely(has_isolate_pageblock(zone))) { 1117 int buddy_mt; 1118 1119 buddy_pfn = __find_buddy_pfn(pfn, order); 1120 buddy = page + (buddy_pfn - pfn); 1121 buddy_mt = get_pageblock_migratetype(buddy); 1122 1123 if (migratetype != buddy_mt 1124 && (is_migrate_isolate(migratetype) || 1125 is_migrate_isolate(buddy_mt))) 1126 goto done_merging; 1127 } 1128 max_order = order + 1; 1129 goto continue_merging; 1130 } 1131 1132 done_merging: 1133 set_buddy_order(page, order); 1134 1135 if (fpi_flags & FPI_TO_TAIL) 1136 to_tail = true; 1137 else if (is_shuffle_order(order)) 1138 to_tail = shuffle_pick_tail(); 1139 else 1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1141 1142 if (to_tail) 1143 add_to_free_list_tail(page, zone, order, migratetype); 1144 else 1145 add_to_free_list(page, zone, order, migratetype); 1146 1147 /* Notify page reporting subsystem of freed page */ 1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1149 page_reporting_notify_free(order); 1150 } 1151 1152 /* 1153 * A bad page could be due to a number of fields. Instead of multiple branches, 1154 * try and check multiple fields with one check. The caller must do a detailed 1155 * check if necessary. 1156 */ 1157 static inline bool page_expected_state(struct page *page, 1158 unsigned long check_flags) 1159 { 1160 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1161 return false; 1162 1163 if (unlikely((unsigned long)page->mapping | 1164 page_ref_count(page) | 1165 #ifdef CONFIG_MEMCG 1166 page->memcg_data | 1167 #endif 1168 (page->flags & check_flags))) 1169 return false; 1170 1171 return true; 1172 } 1173 1174 static const char *page_bad_reason(struct page *page, unsigned long flags) 1175 { 1176 const char *bad_reason = NULL; 1177 1178 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1179 bad_reason = "nonzero mapcount"; 1180 if (unlikely(page->mapping != NULL)) 1181 bad_reason = "non-NULL mapping"; 1182 if (unlikely(page_ref_count(page) != 0)) 1183 bad_reason = "nonzero _refcount"; 1184 if (unlikely(page->flags & flags)) { 1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1187 else 1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1189 } 1190 #ifdef CONFIG_MEMCG 1191 if (unlikely(page->memcg_data)) 1192 bad_reason = "page still charged to cgroup"; 1193 #endif 1194 return bad_reason; 1195 } 1196 1197 static void check_free_page_bad(struct page *page) 1198 { 1199 bad_page(page, 1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1201 } 1202 1203 static inline int check_free_page(struct page *page) 1204 { 1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1206 return 0; 1207 1208 /* Something has gone sideways, find it */ 1209 check_free_page_bad(page); 1210 return 1; 1211 } 1212 1213 static int free_tail_pages_check(struct page *head_page, struct page *page) 1214 { 1215 int ret = 1; 1216 1217 /* 1218 * We rely page->lru.next never has bit 0 set, unless the page 1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1220 */ 1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1222 1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1224 ret = 0; 1225 goto out; 1226 } 1227 switch (page - head_page) { 1228 case 1: 1229 /* the first tail page: ->mapping may be compound_mapcount() */ 1230 if (unlikely(compound_mapcount(page))) { 1231 bad_page(page, "nonzero compound_mapcount"); 1232 goto out; 1233 } 1234 break; 1235 case 2: 1236 /* 1237 * the second tail page: ->mapping is 1238 * deferred_list.next -- ignore value. 1239 */ 1240 break; 1241 default: 1242 if (page->mapping != TAIL_MAPPING) { 1243 bad_page(page, "corrupted mapping in tail page"); 1244 goto out; 1245 } 1246 break; 1247 } 1248 if (unlikely(!PageTail(page))) { 1249 bad_page(page, "PageTail not set"); 1250 goto out; 1251 } 1252 if (unlikely(compound_head(page) != head_page)) { 1253 bad_page(page, "compound_head not consistent"); 1254 goto out; 1255 } 1256 ret = 0; 1257 out: 1258 page->mapping = NULL; 1259 clear_compound_head(page); 1260 return ret; 1261 } 1262 1263 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1264 { 1265 int i; 1266 1267 if (zero_tags) { 1268 for (i = 0; i < numpages; i++) 1269 tag_clear_highpage(page + i); 1270 return; 1271 } 1272 1273 /* s390's use of memset() could override KASAN redzones. */ 1274 kasan_disable_current(); 1275 for (i = 0; i < numpages; i++) { 1276 u8 tag = page_kasan_tag(page + i); 1277 page_kasan_tag_reset(page + i); 1278 clear_highpage(page + i); 1279 page_kasan_tag_set(page + i, tag); 1280 } 1281 kasan_enable_current(); 1282 } 1283 1284 static __always_inline bool free_pages_prepare(struct page *page, 1285 unsigned int order, bool check_free, fpi_t fpi_flags) 1286 { 1287 int bad = 0; 1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1289 1290 VM_BUG_ON_PAGE(PageTail(page), page); 1291 1292 trace_mm_page_free(page, order); 1293 1294 if (unlikely(PageHWPoison(page)) && !order) { 1295 /* 1296 * Do not let hwpoison pages hit pcplists/buddy 1297 * Untie memcg state and reset page's owner 1298 */ 1299 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1300 __memcg_kmem_uncharge_page(page, order); 1301 reset_page_owner(page, order); 1302 return false; 1303 } 1304 1305 /* 1306 * Check tail pages before head page information is cleared to 1307 * avoid checking PageCompound for order-0 pages. 1308 */ 1309 if (unlikely(order)) { 1310 bool compound = PageCompound(page); 1311 int i; 1312 1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1314 1315 if (compound) { 1316 ClearPageDoubleMap(page); 1317 ClearPageHasHWPoisoned(page); 1318 } 1319 for (i = 1; i < (1 << order); i++) { 1320 if (compound) 1321 bad += free_tail_pages_check(page, page + i); 1322 if (unlikely(check_free_page(page + i))) { 1323 bad++; 1324 continue; 1325 } 1326 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1327 } 1328 } 1329 if (PageMappingFlags(page)) 1330 page->mapping = NULL; 1331 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1332 __memcg_kmem_uncharge_page(page, order); 1333 if (check_free) 1334 bad += check_free_page(page); 1335 if (bad) 1336 return false; 1337 1338 page_cpupid_reset_last(page); 1339 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1340 reset_page_owner(page, order); 1341 1342 if (!PageHighMem(page)) { 1343 debug_check_no_locks_freed(page_address(page), 1344 PAGE_SIZE << order); 1345 debug_check_no_obj_freed(page_address(page), 1346 PAGE_SIZE << order); 1347 } 1348 1349 kernel_poison_pages(page, 1 << order); 1350 1351 /* 1352 * As memory initialization might be integrated into KASAN, 1353 * kasan_free_pages and kernel_init_free_pages must be 1354 * kept together to avoid discrepancies in behavior. 1355 * 1356 * With hardware tag-based KASAN, memory tags must be set before the 1357 * page becomes unavailable via debug_pagealloc or arch_free_page. 1358 */ 1359 if (kasan_has_integrated_init()) { 1360 if (!skip_kasan_poison) 1361 kasan_free_pages(page, order); 1362 } else { 1363 bool init = want_init_on_free(); 1364 1365 if (init) 1366 kernel_init_free_pages(page, 1 << order, false); 1367 if (!skip_kasan_poison) 1368 kasan_poison_pages(page, order, init); 1369 } 1370 1371 /* 1372 * arch_free_page() can make the page's contents inaccessible. s390 1373 * does this. So nothing which can access the page's contents should 1374 * happen after this. 1375 */ 1376 arch_free_page(page, order); 1377 1378 debug_pagealloc_unmap_pages(page, 1 << order); 1379 1380 return true; 1381 } 1382 1383 #ifdef CONFIG_DEBUG_VM 1384 /* 1385 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1386 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1387 * moved from pcp lists to free lists. 1388 */ 1389 static bool free_pcp_prepare(struct page *page, unsigned int order) 1390 { 1391 return free_pages_prepare(page, order, true, FPI_NONE); 1392 } 1393 1394 static bool bulkfree_pcp_prepare(struct page *page) 1395 { 1396 if (debug_pagealloc_enabled_static()) 1397 return check_free_page(page); 1398 else 1399 return false; 1400 } 1401 #else 1402 /* 1403 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1404 * moving from pcp lists to free list in order to reduce overhead. With 1405 * debug_pagealloc enabled, they are checked also immediately when being freed 1406 * to the pcp lists. 1407 */ 1408 static bool free_pcp_prepare(struct page *page, unsigned int order) 1409 { 1410 if (debug_pagealloc_enabled_static()) 1411 return free_pages_prepare(page, order, true, FPI_NONE); 1412 else 1413 return free_pages_prepare(page, order, false, FPI_NONE); 1414 } 1415 1416 static bool bulkfree_pcp_prepare(struct page *page) 1417 { 1418 return check_free_page(page); 1419 } 1420 #endif /* CONFIG_DEBUG_VM */ 1421 1422 static inline void prefetch_buddy(struct page *page) 1423 { 1424 unsigned long pfn = page_to_pfn(page); 1425 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1426 struct page *buddy = page + (buddy_pfn - pfn); 1427 1428 prefetch(buddy); 1429 } 1430 1431 /* 1432 * Frees a number of pages from the PCP lists 1433 * Assumes all pages on list are in same zone, and of same order. 1434 * count is the number of pages to free. 1435 * 1436 * If the zone was previously in an "all pages pinned" state then look to 1437 * see if this freeing clears that state. 1438 * 1439 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1440 * pinned" detection logic. 1441 */ 1442 static void free_pcppages_bulk(struct zone *zone, int count, 1443 struct per_cpu_pages *pcp) 1444 { 1445 int pindex = 0; 1446 int batch_free = 0; 1447 int nr_freed = 0; 1448 unsigned int order; 1449 int prefetch_nr = READ_ONCE(pcp->batch); 1450 bool isolated_pageblocks; 1451 struct page *page, *tmp; 1452 LIST_HEAD(head); 1453 1454 /* 1455 * Ensure proper count is passed which otherwise would stuck in the 1456 * below while (list_empty(list)) loop. 1457 */ 1458 count = min(pcp->count, count); 1459 while (count > 0) { 1460 struct list_head *list; 1461 1462 /* 1463 * Remove pages from lists in a round-robin fashion. A 1464 * batch_free count is maintained that is incremented when an 1465 * empty list is encountered. This is so more pages are freed 1466 * off fuller lists instead of spinning excessively around empty 1467 * lists 1468 */ 1469 do { 1470 batch_free++; 1471 if (++pindex == NR_PCP_LISTS) 1472 pindex = 0; 1473 list = &pcp->lists[pindex]; 1474 } while (list_empty(list)); 1475 1476 /* This is the only non-empty list. Free them all. */ 1477 if (batch_free == NR_PCP_LISTS) 1478 batch_free = count; 1479 1480 order = pindex_to_order(pindex); 1481 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1482 do { 1483 page = list_last_entry(list, struct page, lru); 1484 /* must delete to avoid corrupting pcp list */ 1485 list_del(&page->lru); 1486 nr_freed += 1 << order; 1487 count -= 1 << order; 1488 1489 if (bulkfree_pcp_prepare(page)) 1490 continue; 1491 1492 /* Encode order with the migratetype */ 1493 page->index <<= NR_PCP_ORDER_WIDTH; 1494 page->index |= order; 1495 1496 list_add_tail(&page->lru, &head); 1497 1498 /* 1499 * We are going to put the page back to the global 1500 * pool, prefetch its buddy to speed up later access 1501 * under zone->lock. It is believed the overhead of 1502 * an additional test and calculating buddy_pfn here 1503 * can be offset by reduced memory latency later. To 1504 * avoid excessive prefetching due to large count, only 1505 * prefetch buddy for the first pcp->batch nr of pages. 1506 */ 1507 if (prefetch_nr) { 1508 prefetch_buddy(page); 1509 prefetch_nr--; 1510 } 1511 } while (count > 0 && --batch_free && !list_empty(list)); 1512 } 1513 pcp->count -= nr_freed; 1514 1515 /* 1516 * local_lock_irq held so equivalent to spin_lock_irqsave for 1517 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1518 */ 1519 spin_lock(&zone->lock); 1520 isolated_pageblocks = has_isolate_pageblock(zone); 1521 1522 /* 1523 * Use safe version since after __free_one_page(), 1524 * page->lru.next will not point to original list. 1525 */ 1526 list_for_each_entry_safe(page, tmp, &head, lru) { 1527 int mt = get_pcppage_migratetype(page); 1528 1529 /* mt has been encoded with the order (see above) */ 1530 order = mt & NR_PCP_ORDER_MASK; 1531 mt >>= NR_PCP_ORDER_WIDTH; 1532 1533 /* MIGRATE_ISOLATE page should not go to pcplists */ 1534 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1535 /* Pageblock could have been isolated meanwhile */ 1536 if (unlikely(isolated_pageblocks)) 1537 mt = get_pageblock_migratetype(page); 1538 1539 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1540 trace_mm_page_pcpu_drain(page, order, mt); 1541 } 1542 spin_unlock(&zone->lock); 1543 } 1544 1545 static void free_one_page(struct zone *zone, 1546 struct page *page, unsigned long pfn, 1547 unsigned int order, 1548 int migratetype, fpi_t fpi_flags) 1549 { 1550 unsigned long flags; 1551 1552 spin_lock_irqsave(&zone->lock, flags); 1553 if (unlikely(has_isolate_pageblock(zone) || 1554 is_migrate_isolate(migratetype))) { 1555 migratetype = get_pfnblock_migratetype(page, pfn); 1556 } 1557 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1558 spin_unlock_irqrestore(&zone->lock, flags); 1559 } 1560 1561 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1562 unsigned long zone, int nid) 1563 { 1564 mm_zero_struct_page(page); 1565 set_page_links(page, zone, nid, pfn); 1566 init_page_count(page); 1567 page_mapcount_reset(page); 1568 page_cpupid_reset_last(page); 1569 page_kasan_tag_reset(page); 1570 1571 INIT_LIST_HEAD(&page->lru); 1572 #ifdef WANT_PAGE_VIRTUAL 1573 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1574 if (!is_highmem_idx(zone)) 1575 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1576 #endif 1577 } 1578 1579 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1580 static void __meminit init_reserved_page(unsigned long pfn) 1581 { 1582 pg_data_t *pgdat; 1583 int nid, zid; 1584 1585 if (!early_page_uninitialised(pfn)) 1586 return; 1587 1588 nid = early_pfn_to_nid(pfn); 1589 pgdat = NODE_DATA(nid); 1590 1591 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1592 struct zone *zone = &pgdat->node_zones[zid]; 1593 1594 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1595 break; 1596 } 1597 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1598 } 1599 #else 1600 static inline void init_reserved_page(unsigned long pfn) 1601 { 1602 } 1603 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1604 1605 /* 1606 * Initialised pages do not have PageReserved set. This function is 1607 * called for each range allocated by the bootmem allocator and 1608 * marks the pages PageReserved. The remaining valid pages are later 1609 * sent to the buddy page allocator. 1610 */ 1611 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1612 { 1613 unsigned long start_pfn = PFN_DOWN(start); 1614 unsigned long end_pfn = PFN_UP(end); 1615 1616 for (; start_pfn < end_pfn; start_pfn++) { 1617 if (pfn_valid(start_pfn)) { 1618 struct page *page = pfn_to_page(start_pfn); 1619 1620 init_reserved_page(start_pfn); 1621 1622 /* Avoid false-positive PageTail() */ 1623 INIT_LIST_HEAD(&page->lru); 1624 1625 /* 1626 * no need for atomic set_bit because the struct 1627 * page is not visible yet so nobody should 1628 * access it yet. 1629 */ 1630 __SetPageReserved(page); 1631 } 1632 } 1633 } 1634 1635 static void __free_pages_ok(struct page *page, unsigned int order, 1636 fpi_t fpi_flags) 1637 { 1638 unsigned long flags; 1639 int migratetype; 1640 unsigned long pfn = page_to_pfn(page); 1641 struct zone *zone = page_zone(page); 1642 1643 if (!free_pages_prepare(page, order, true, fpi_flags)) 1644 return; 1645 1646 migratetype = get_pfnblock_migratetype(page, pfn); 1647 1648 spin_lock_irqsave(&zone->lock, flags); 1649 if (unlikely(has_isolate_pageblock(zone) || 1650 is_migrate_isolate(migratetype))) { 1651 migratetype = get_pfnblock_migratetype(page, pfn); 1652 } 1653 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1654 spin_unlock_irqrestore(&zone->lock, flags); 1655 1656 __count_vm_events(PGFREE, 1 << order); 1657 } 1658 1659 void __free_pages_core(struct page *page, unsigned int order) 1660 { 1661 unsigned int nr_pages = 1 << order; 1662 struct page *p = page; 1663 unsigned int loop; 1664 1665 /* 1666 * When initializing the memmap, __init_single_page() sets the refcount 1667 * of all pages to 1 ("allocated"/"not free"). We have to set the 1668 * refcount of all involved pages to 0. 1669 */ 1670 prefetchw(p); 1671 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1672 prefetchw(p + 1); 1673 __ClearPageReserved(p); 1674 set_page_count(p, 0); 1675 } 1676 __ClearPageReserved(p); 1677 set_page_count(p, 0); 1678 1679 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1680 1681 /* 1682 * Bypass PCP and place fresh pages right to the tail, primarily 1683 * relevant for memory onlining. 1684 */ 1685 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1686 } 1687 1688 #ifdef CONFIG_NUMA 1689 1690 /* 1691 * During memory init memblocks map pfns to nids. The search is expensive and 1692 * this caches recent lookups. The implementation of __early_pfn_to_nid 1693 * treats start/end as pfns. 1694 */ 1695 struct mminit_pfnnid_cache { 1696 unsigned long last_start; 1697 unsigned long last_end; 1698 int last_nid; 1699 }; 1700 1701 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1702 1703 /* 1704 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1705 */ 1706 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1707 struct mminit_pfnnid_cache *state) 1708 { 1709 unsigned long start_pfn, end_pfn; 1710 int nid; 1711 1712 if (state->last_start <= pfn && pfn < state->last_end) 1713 return state->last_nid; 1714 1715 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1716 if (nid != NUMA_NO_NODE) { 1717 state->last_start = start_pfn; 1718 state->last_end = end_pfn; 1719 state->last_nid = nid; 1720 } 1721 1722 return nid; 1723 } 1724 1725 int __meminit early_pfn_to_nid(unsigned long pfn) 1726 { 1727 static DEFINE_SPINLOCK(early_pfn_lock); 1728 int nid; 1729 1730 spin_lock(&early_pfn_lock); 1731 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1732 if (nid < 0) 1733 nid = first_online_node; 1734 spin_unlock(&early_pfn_lock); 1735 1736 return nid; 1737 } 1738 #endif /* CONFIG_NUMA */ 1739 1740 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1741 unsigned int order) 1742 { 1743 if (early_page_uninitialised(pfn)) 1744 return; 1745 __free_pages_core(page, order); 1746 } 1747 1748 /* 1749 * Check that the whole (or subset of) a pageblock given by the interval of 1750 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1751 * with the migration of free compaction scanner. 1752 * 1753 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1754 * 1755 * It's possible on some configurations to have a setup like node0 node1 node0 1756 * i.e. it's possible that all pages within a zones range of pages do not 1757 * belong to a single zone. We assume that a border between node0 and node1 1758 * can occur within a single pageblock, but not a node0 node1 node0 1759 * interleaving within a single pageblock. It is therefore sufficient to check 1760 * the first and last page of a pageblock and avoid checking each individual 1761 * page in a pageblock. 1762 */ 1763 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1764 unsigned long end_pfn, struct zone *zone) 1765 { 1766 struct page *start_page; 1767 struct page *end_page; 1768 1769 /* end_pfn is one past the range we are checking */ 1770 end_pfn--; 1771 1772 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1773 return NULL; 1774 1775 start_page = pfn_to_online_page(start_pfn); 1776 if (!start_page) 1777 return NULL; 1778 1779 if (page_zone(start_page) != zone) 1780 return NULL; 1781 1782 end_page = pfn_to_page(end_pfn); 1783 1784 /* This gives a shorter code than deriving page_zone(end_page) */ 1785 if (page_zone_id(start_page) != page_zone_id(end_page)) 1786 return NULL; 1787 1788 return start_page; 1789 } 1790 1791 void set_zone_contiguous(struct zone *zone) 1792 { 1793 unsigned long block_start_pfn = zone->zone_start_pfn; 1794 unsigned long block_end_pfn; 1795 1796 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1797 for (; block_start_pfn < zone_end_pfn(zone); 1798 block_start_pfn = block_end_pfn, 1799 block_end_pfn += pageblock_nr_pages) { 1800 1801 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1802 1803 if (!__pageblock_pfn_to_page(block_start_pfn, 1804 block_end_pfn, zone)) 1805 return; 1806 cond_resched(); 1807 } 1808 1809 /* We confirm that there is no hole */ 1810 zone->contiguous = true; 1811 } 1812 1813 void clear_zone_contiguous(struct zone *zone) 1814 { 1815 zone->contiguous = false; 1816 } 1817 1818 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1819 static void __init deferred_free_range(unsigned long pfn, 1820 unsigned long nr_pages) 1821 { 1822 struct page *page; 1823 unsigned long i; 1824 1825 if (!nr_pages) 1826 return; 1827 1828 page = pfn_to_page(pfn); 1829 1830 /* Free a large naturally-aligned chunk if possible */ 1831 if (nr_pages == pageblock_nr_pages && 1832 (pfn & (pageblock_nr_pages - 1)) == 0) { 1833 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1834 __free_pages_core(page, pageblock_order); 1835 return; 1836 } 1837 1838 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1839 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1840 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1841 __free_pages_core(page, 0); 1842 } 1843 } 1844 1845 /* Completion tracking for deferred_init_memmap() threads */ 1846 static atomic_t pgdat_init_n_undone __initdata; 1847 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1848 1849 static inline void __init pgdat_init_report_one_done(void) 1850 { 1851 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1852 complete(&pgdat_init_all_done_comp); 1853 } 1854 1855 /* 1856 * Returns true if page needs to be initialized or freed to buddy allocator. 1857 * 1858 * First we check if pfn is valid on architectures where it is possible to have 1859 * holes within pageblock_nr_pages. On systems where it is not possible, this 1860 * function is optimized out. 1861 * 1862 * Then, we check if a current large page is valid by only checking the validity 1863 * of the head pfn. 1864 */ 1865 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1866 { 1867 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1868 return false; 1869 return true; 1870 } 1871 1872 /* 1873 * Free pages to buddy allocator. Try to free aligned pages in 1874 * pageblock_nr_pages sizes. 1875 */ 1876 static void __init deferred_free_pages(unsigned long pfn, 1877 unsigned long end_pfn) 1878 { 1879 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1880 unsigned long nr_free = 0; 1881 1882 for (; pfn < end_pfn; pfn++) { 1883 if (!deferred_pfn_valid(pfn)) { 1884 deferred_free_range(pfn - nr_free, nr_free); 1885 nr_free = 0; 1886 } else if (!(pfn & nr_pgmask)) { 1887 deferred_free_range(pfn - nr_free, nr_free); 1888 nr_free = 1; 1889 } else { 1890 nr_free++; 1891 } 1892 } 1893 /* Free the last block of pages to allocator */ 1894 deferred_free_range(pfn - nr_free, nr_free); 1895 } 1896 1897 /* 1898 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1899 * by performing it only once every pageblock_nr_pages. 1900 * Return number of pages initialized. 1901 */ 1902 static unsigned long __init deferred_init_pages(struct zone *zone, 1903 unsigned long pfn, 1904 unsigned long end_pfn) 1905 { 1906 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1907 int nid = zone_to_nid(zone); 1908 unsigned long nr_pages = 0; 1909 int zid = zone_idx(zone); 1910 struct page *page = NULL; 1911 1912 for (; pfn < end_pfn; pfn++) { 1913 if (!deferred_pfn_valid(pfn)) { 1914 page = NULL; 1915 continue; 1916 } else if (!page || !(pfn & nr_pgmask)) { 1917 page = pfn_to_page(pfn); 1918 } else { 1919 page++; 1920 } 1921 __init_single_page(page, pfn, zid, nid); 1922 nr_pages++; 1923 } 1924 return (nr_pages); 1925 } 1926 1927 /* 1928 * This function is meant to pre-load the iterator for the zone init. 1929 * Specifically it walks through the ranges until we are caught up to the 1930 * first_init_pfn value and exits there. If we never encounter the value we 1931 * return false indicating there are no valid ranges left. 1932 */ 1933 static bool __init 1934 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1935 unsigned long *spfn, unsigned long *epfn, 1936 unsigned long first_init_pfn) 1937 { 1938 u64 j; 1939 1940 /* 1941 * Start out by walking through the ranges in this zone that have 1942 * already been initialized. We don't need to do anything with them 1943 * so we just need to flush them out of the system. 1944 */ 1945 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1946 if (*epfn <= first_init_pfn) 1947 continue; 1948 if (*spfn < first_init_pfn) 1949 *spfn = first_init_pfn; 1950 *i = j; 1951 return true; 1952 } 1953 1954 return false; 1955 } 1956 1957 /* 1958 * Initialize and free pages. We do it in two loops: first we initialize 1959 * struct page, then free to buddy allocator, because while we are 1960 * freeing pages we can access pages that are ahead (computing buddy 1961 * page in __free_one_page()). 1962 * 1963 * In order to try and keep some memory in the cache we have the loop 1964 * broken along max page order boundaries. This way we will not cause 1965 * any issues with the buddy page computation. 1966 */ 1967 static unsigned long __init 1968 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1969 unsigned long *end_pfn) 1970 { 1971 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1972 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1973 unsigned long nr_pages = 0; 1974 u64 j = *i; 1975 1976 /* First we loop through and initialize the page values */ 1977 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1978 unsigned long t; 1979 1980 if (mo_pfn <= *start_pfn) 1981 break; 1982 1983 t = min(mo_pfn, *end_pfn); 1984 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1985 1986 if (mo_pfn < *end_pfn) { 1987 *start_pfn = mo_pfn; 1988 break; 1989 } 1990 } 1991 1992 /* Reset values and now loop through freeing pages as needed */ 1993 swap(j, *i); 1994 1995 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1996 unsigned long t; 1997 1998 if (mo_pfn <= spfn) 1999 break; 2000 2001 t = min(mo_pfn, epfn); 2002 deferred_free_pages(spfn, t); 2003 2004 if (mo_pfn <= epfn) 2005 break; 2006 } 2007 2008 return nr_pages; 2009 } 2010 2011 static void __init 2012 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2013 void *arg) 2014 { 2015 unsigned long spfn, epfn; 2016 struct zone *zone = arg; 2017 u64 i; 2018 2019 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2020 2021 /* 2022 * Initialize and free pages in MAX_ORDER sized increments so that we 2023 * can avoid introducing any issues with the buddy allocator. 2024 */ 2025 while (spfn < end_pfn) { 2026 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2027 cond_resched(); 2028 } 2029 } 2030 2031 /* An arch may override for more concurrency. */ 2032 __weak int __init 2033 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2034 { 2035 return 1; 2036 } 2037 2038 /* Initialise remaining memory on a node */ 2039 static int __init deferred_init_memmap(void *data) 2040 { 2041 pg_data_t *pgdat = data; 2042 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2043 unsigned long spfn = 0, epfn = 0; 2044 unsigned long first_init_pfn, flags; 2045 unsigned long start = jiffies; 2046 struct zone *zone; 2047 int zid, max_threads; 2048 u64 i; 2049 2050 /* Bind memory initialisation thread to a local node if possible */ 2051 if (!cpumask_empty(cpumask)) 2052 set_cpus_allowed_ptr(current, cpumask); 2053 2054 pgdat_resize_lock(pgdat, &flags); 2055 first_init_pfn = pgdat->first_deferred_pfn; 2056 if (first_init_pfn == ULONG_MAX) { 2057 pgdat_resize_unlock(pgdat, &flags); 2058 pgdat_init_report_one_done(); 2059 return 0; 2060 } 2061 2062 /* Sanity check boundaries */ 2063 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2064 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2065 pgdat->first_deferred_pfn = ULONG_MAX; 2066 2067 /* 2068 * Once we unlock here, the zone cannot be grown anymore, thus if an 2069 * interrupt thread must allocate this early in boot, zone must be 2070 * pre-grown prior to start of deferred page initialization. 2071 */ 2072 pgdat_resize_unlock(pgdat, &flags); 2073 2074 /* Only the highest zone is deferred so find it */ 2075 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2076 zone = pgdat->node_zones + zid; 2077 if (first_init_pfn < zone_end_pfn(zone)) 2078 break; 2079 } 2080 2081 /* If the zone is empty somebody else may have cleared out the zone */ 2082 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2083 first_init_pfn)) 2084 goto zone_empty; 2085 2086 max_threads = deferred_page_init_max_threads(cpumask); 2087 2088 while (spfn < epfn) { 2089 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2090 struct padata_mt_job job = { 2091 .thread_fn = deferred_init_memmap_chunk, 2092 .fn_arg = zone, 2093 .start = spfn, 2094 .size = epfn_align - spfn, 2095 .align = PAGES_PER_SECTION, 2096 .min_chunk = PAGES_PER_SECTION, 2097 .max_threads = max_threads, 2098 }; 2099 2100 padata_do_multithreaded(&job); 2101 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2102 epfn_align); 2103 } 2104 zone_empty: 2105 /* Sanity check that the next zone really is unpopulated */ 2106 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2107 2108 pr_info("node %d deferred pages initialised in %ums\n", 2109 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2110 2111 pgdat_init_report_one_done(); 2112 return 0; 2113 } 2114 2115 /* 2116 * If this zone has deferred pages, try to grow it by initializing enough 2117 * deferred pages to satisfy the allocation specified by order, rounded up to 2118 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2119 * of SECTION_SIZE bytes by initializing struct pages in increments of 2120 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2121 * 2122 * Return true when zone was grown, otherwise return false. We return true even 2123 * when we grow less than requested, to let the caller decide if there are 2124 * enough pages to satisfy the allocation. 2125 * 2126 * Note: We use noinline because this function is needed only during boot, and 2127 * it is called from a __ref function _deferred_grow_zone. This way we are 2128 * making sure that it is not inlined into permanent text section. 2129 */ 2130 static noinline bool __init 2131 deferred_grow_zone(struct zone *zone, unsigned int order) 2132 { 2133 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2134 pg_data_t *pgdat = zone->zone_pgdat; 2135 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2136 unsigned long spfn, epfn, flags; 2137 unsigned long nr_pages = 0; 2138 u64 i; 2139 2140 /* Only the last zone may have deferred pages */ 2141 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2142 return false; 2143 2144 pgdat_resize_lock(pgdat, &flags); 2145 2146 /* 2147 * If someone grew this zone while we were waiting for spinlock, return 2148 * true, as there might be enough pages already. 2149 */ 2150 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2151 pgdat_resize_unlock(pgdat, &flags); 2152 return true; 2153 } 2154 2155 /* If the zone is empty somebody else may have cleared out the zone */ 2156 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2157 first_deferred_pfn)) { 2158 pgdat->first_deferred_pfn = ULONG_MAX; 2159 pgdat_resize_unlock(pgdat, &flags); 2160 /* Retry only once. */ 2161 return first_deferred_pfn != ULONG_MAX; 2162 } 2163 2164 /* 2165 * Initialize and free pages in MAX_ORDER sized increments so 2166 * that we can avoid introducing any issues with the buddy 2167 * allocator. 2168 */ 2169 while (spfn < epfn) { 2170 /* update our first deferred PFN for this section */ 2171 first_deferred_pfn = spfn; 2172 2173 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2174 touch_nmi_watchdog(); 2175 2176 /* We should only stop along section boundaries */ 2177 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2178 continue; 2179 2180 /* If our quota has been met we can stop here */ 2181 if (nr_pages >= nr_pages_needed) 2182 break; 2183 } 2184 2185 pgdat->first_deferred_pfn = spfn; 2186 pgdat_resize_unlock(pgdat, &flags); 2187 2188 return nr_pages > 0; 2189 } 2190 2191 /* 2192 * deferred_grow_zone() is __init, but it is called from 2193 * get_page_from_freelist() during early boot until deferred_pages permanently 2194 * disables this call. This is why we have refdata wrapper to avoid warning, 2195 * and to ensure that the function body gets unloaded. 2196 */ 2197 static bool __ref 2198 _deferred_grow_zone(struct zone *zone, unsigned int order) 2199 { 2200 return deferred_grow_zone(zone, order); 2201 } 2202 2203 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2204 2205 void __init page_alloc_init_late(void) 2206 { 2207 struct zone *zone; 2208 int nid; 2209 2210 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2211 2212 /* There will be num_node_state(N_MEMORY) threads */ 2213 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2214 for_each_node_state(nid, N_MEMORY) { 2215 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2216 } 2217 2218 /* Block until all are initialised */ 2219 wait_for_completion(&pgdat_init_all_done_comp); 2220 2221 /* 2222 * We initialized the rest of the deferred pages. Permanently disable 2223 * on-demand struct page initialization. 2224 */ 2225 static_branch_disable(&deferred_pages); 2226 2227 /* Reinit limits that are based on free pages after the kernel is up */ 2228 files_maxfiles_init(); 2229 #endif 2230 2231 buffer_init(); 2232 2233 /* Discard memblock private memory */ 2234 memblock_discard(); 2235 2236 for_each_node_state(nid, N_MEMORY) 2237 shuffle_free_memory(NODE_DATA(nid)); 2238 2239 for_each_populated_zone(zone) 2240 set_zone_contiguous(zone); 2241 } 2242 2243 #ifdef CONFIG_CMA 2244 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2245 void __init init_cma_reserved_pageblock(struct page *page) 2246 { 2247 unsigned i = pageblock_nr_pages; 2248 struct page *p = page; 2249 2250 do { 2251 __ClearPageReserved(p); 2252 set_page_count(p, 0); 2253 } while (++p, --i); 2254 2255 set_pageblock_migratetype(page, MIGRATE_CMA); 2256 2257 if (pageblock_order >= MAX_ORDER) { 2258 i = pageblock_nr_pages; 2259 p = page; 2260 do { 2261 set_page_refcounted(p); 2262 __free_pages(p, MAX_ORDER - 1); 2263 p += MAX_ORDER_NR_PAGES; 2264 } while (i -= MAX_ORDER_NR_PAGES); 2265 } else { 2266 set_page_refcounted(page); 2267 __free_pages(page, pageblock_order); 2268 } 2269 2270 adjust_managed_page_count(page, pageblock_nr_pages); 2271 page_zone(page)->cma_pages += pageblock_nr_pages; 2272 } 2273 #endif 2274 2275 /* 2276 * The order of subdivision here is critical for the IO subsystem. 2277 * Please do not alter this order without good reasons and regression 2278 * testing. Specifically, as large blocks of memory are subdivided, 2279 * the order in which smaller blocks are delivered depends on the order 2280 * they're subdivided in this function. This is the primary factor 2281 * influencing the order in which pages are delivered to the IO 2282 * subsystem according to empirical testing, and this is also justified 2283 * by considering the behavior of a buddy system containing a single 2284 * large block of memory acted on by a series of small allocations. 2285 * This behavior is a critical factor in sglist merging's success. 2286 * 2287 * -- nyc 2288 */ 2289 static inline void expand(struct zone *zone, struct page *page, 2290 int low, int high, int migratetype) 2291 { 2292 unsigned long size = 1 << high; 2293 2294 while (high > low) { 2295 high--; 2296 size >>= 1; 2297 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2298 2299 /* 2300 * Mark as guard pages (or page), that will allow to 2301 * merge back to allocator when buddy will be freed. 2302 * Corresponding page table entries will not be touched, 2303 * pages will stay not present in virtual address space 2304 */ 2305 if (set_page_guard(zone, &page[size], high, migratetype)) 2306 continue; 2307 2308 add_to_free_list(&page[size], zone, high, migratetype); 2309 set_buddy_order(&page[size], high); 2310 } 2311 } 2312 2313 static void check_new_page_bad(struct page *page) 2314 { 2315 if (unlikely(page->flags & __PG_HWPOISON)) { 2316 /* Don't complain about hwpoisoned pages */ 2317 page_mapcount_reset(page); /* remove PageBuddy */ 2318 return; 2319 } 2320 2321 bad_page(page, 2322 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2323 } 2324 2325 /* 2326 * This page is about to be returned from the page allocator 2327 */ 2328 static inline int check_new_page(struct page *page) 2329 { 2330 if (likely(page_expected_state(page, 2331 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2332 return 0; 2333 2334 check_new_page_bad(page); 2335 return 1; 2336 } 2337 2338 #ifdef CONFIG_DEBUG_VM 2339 /* 2340 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2341 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2342 * also checked when pcp lists are refilled from the free lists. 2343 */ 2344 static inline bool check_pcp_refill(struct page *page) 2345 { 2346 if (debug_pagealloc_enabled_static()) 2347 return check_new_page(page); 2348 else 2349 return false; 2350 } 2351 2352 static inline bool check_new_pcp(struct page *page) 2353 { 2354 return check_new_page(page); 2355 } 2356 #else 2357 /* 2358 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2359 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2360 * enabled, they are also checked when being allocated from the pcp lists. 2361 */ 2362 static inline bool check_pcp_refill(struct page *page) 2363 { 2364 return check_new_page(page); 2365 } 2366 static inline bool check_new_pcp(struct page *page) 2367 { 2368 if (debug_pagealloc_enabled_static()) 2369 return check_new_page(page); 2370 else 2371 return false; 2372 } 2373 #endif /* CONFIG_DEBUG_VM */ 2374 2375 static bool check_new_pages(struct page *page, unsigned int order) 2376 { 2377 int i; 2378 for (i = 0; i < (1 << order); i++) { 2379 struct page *p = page + i; 2380 2381 if (unlikely(check_new_page(p))) 2382 return true; 2383 } 2384 2385 return false; 2386 } 2387 2388 inline void post_alloc_hook(struct page *page, unsigned int order, 2389 gfp_t gfp_flags) 2390 { 2391 set_page_private(page, 0); 2392 set_page_refcounted(page); 2393 2394 arch_alloc_page(page, order); 2395 debug_pagealloc_map_pages(page, 1 << order); 2396 2397 /* 2398 * Page unpoisoning must happen before memory initialization. 2399 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2400 * allocations and the page unpoisoning code will complain. 2401 */ 2402 kernel_unpoison_pages(page, 1 << order); 2403 2404 /* 2405 * As memory initialization might be integrated into KASAN, 2406 * kasan_alloc_pages and kernel_init_free_pages must be 2407 * kept together to avoid discrepancies in behavior. 2408 */ 2409 if (kasan_has_integrated_init()) { 2410 kasan_alloc_pages(page, order, gfp_flags); 2411 } else { 2412 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2413 2414 kasan_unpoison_pages(page, order, init); 2415 if (init) 2416 kernel_init_free_pages(page, 1 << order, 2417 gfp_flags & __GFP_ZEROTAGS); 2418 } 2419 2420 set_page_owner(page, order, gfp_flags); 2421 } 2422 2423 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2424 unsigned int alloc_flags) 2425 { 2426 post_alloc_hook(page, order, gfp_flags); 2427 2428 if (order && (gfp_flags & __GFP_COMP)) 2429 prep_compound_page(page, order); 2430 2431 /* 2432 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2433 * allocate the page. The expectation is that the caller is taking 2434 * steps that will free more memory. The caller should avoid the page 2435 * being used for !PFMEMALLOC purposes. 2436 */ 2437 if (alloc_flags & ALLOC_NO_WATERMARKS) 2438 set_page_pfmemalloc(page); 2439 else 2440 clear_page_pfmemalloc(page); 2441 } 2442 2443 /* 2444 * Go through the free lists for the given migratetype and remove 2445 * the smallest available page from the freelists 2446 */ 2447 static __always_inline 2448 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2449 int migratetype) 2450 { 2451 unsigned int current_order; 2452 struct free_area *area; 2453 struct page *page; 2454 2455 /* Find a page of the appropriate size in the preferred list */ 2456 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2457 area = &(zone->free_area[current_order]); 2458 page = get_page_from_free_area(area, migratetype); 2459 if (!page) 2460 continue; 2461 del_page_from_free_list(page, zone, current_order); 2462 expand(zone, page, order, current_order, migratetype); 2463 set_pcppage_migratetype(page, migratetype); 2464 return page; 2465 } 2466 2467 return NULL; 2468 } 2469 2470 2471 /* 2472 * This array describes the order lists are fallen back to when 2473 * the free lists for the desirable migrate type are depleted 2474 */ 2475 static int fallbacks[MIGRATE_TYPES][3] = { 2476 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2477 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2478 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2479 #ifdef CONFIG_CMA 2480 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2481 #endif 2482 #ifdef CONFIG_MEMORY_ISOLATION 2483 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2484 #endif 2485 }; 2486 2487 #ifdef CONFIG_CMA 2488 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2489 unsigned int order) 2490 { 2491 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2492 } 2493 #else 2494 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2495 unsigned int order) { return NULL; } 2496 #endif 2497 2498 /* 2499 * Move the free pages in a range to the freelist tail of the requested type. 2500 * Note that start_page and end_pages are not aligned on a pageblock 2501 * boundary. If alignment is required, use move_freepages_block() 2502 */ 2503 static int move_freepages(struct zone *zone, 2504 unsigned long start_pfn, unsigned long end_pfn, 2505 int migratetype, int *num_movable) 2506 { 2507 struct page *page; 2508 unsigned long pfn; 2509 unsigned int order; 2510 int pages_moved = 0; 2511 2512 for (pfn = start_pfn; pfn <= end_pfn;) { 2513 page = pfn_to_page(pfn); 2514 if (!PageBuddy(page)) { 2515 /* 2516 * We assume that pages that could be isolated for 2517 * migration are movable. But we don't actually try 2518 * isolating, as that would be expensive. 2519 */ 2520 if (num_movable && 2521 (PageLRU(page) || __PageMovable(page))) 2522 (*num_movable)++; 2523 pfn++; 2524 continue; 2525 } 2526 2527 /* Make sure we are not inadvertently changing nodes */ 2528 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2529 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2530 2531 order = buddy_order(page); 2532 move_to_free_list(page, zone, order, migratetype); 2533 pfn += 1 << order; 2534 pages_moved += 1 << order; 2535 } 2536 2537 return pages_moved; 2538 } 2539 2540 int move_freepages_block(struct zone *zone, struct page *page, 2541 int migratetype, int *num_movable) 2542 { 2543 unsigned long start_pfn, end_pfn, pfn; 2544 2545 if (num_movable) 2546 *num_movable = 0; 2547 2548 pfn = page_to_pfn(page); 2549 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2550 end_pfn = start_pfn + pageblock_nr_pages - 1; 2551 2552 /* Do not cross zone boundaries */ 2553 if (!zone_spans_pfn(zone, start_pfn)) 2554 start_pfn = pfn; 2555 if (!zone_spans_pfn(zone, end_pfn)) 2556 return 0; 2557 2558 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2559 num_movable); 2560 } 2561 2562 static void change_pageblock_range(struct page *pageblock_page, 2563 int start_order, int migratetype) 2564 { 2565 int nr_pageblocks = 1 << (start_order - pageblock_order); 2566 2567 while (nr_pageblocks--) { 2568 set_pageblock_migratetype(pageblock_page, migratetype); 2569 pageblock_page += pageblock_nr_pages; 2570 } 2571 } 2572 2573 /* 2574 * When we are falling back to another migratetype during allocation, try to 2575 * steal extra free pages from the same pageblocks to satisfy further 2576 * allocations, instead of polluting multiple pageblocks. 2577 * 2578 * If we are stealing a relatively large buddy page, it is likely there will 2579 * be more free pages in the pageblock, so try to steal them all. For 2580 * reclaimable and unmovable allocations, we steal regardless of page size, 2581 * as fragmentation caused by those allocations polluting movable pageblocks 2582 * is worse than movable allocations stealing from unmovable and reclaimable 2583 * pageblocks. 2584 */ 2585 static bool can_steal_fallback(unsigned int order, int start_mt) 2586 { 2587 /* 2588 * Leaving this order check is intended, although there is 2589 * relaxed order check in next check. The reason is that 2590 * we can actually steal whole pageblock if this condition met, 2591 * but, below check doesn't guarantee it and that is just heuristic 2592 * so could be changed anytime. 2593 */ 2594 if (order >= pageblock_order) 2595 return true; 2596 2597 if (order >= pageblock_order / 2 || 2598 start_mt == MIGRATE_RECLAIMABLE || 2599 start_mt == MIGRATE_UNMOVABLE || 2600 page_group_by_mobility_disabled) 2601 return true; 2602 2603 return false; 2604 } 2605 2606 static inline bool boost_watermark(struct zone *zone) 2607 { 2608 unsigned long max_boost; 2609 2610 if (!watermark_boost_factor) 2611 return false; 2612 /* 2613 * Don't bother in zones that are unlikely to produce results. 2614 * On small machines, including kdump capture kernels running 2615 * in a small area, boosting the watermark can cause an out of 2616 * memory situation immediately. 2617 */ 2618 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2619 return false; 2620 2621 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2622 watermark_boost_factor, 10000); 2623 2624 /* 2625 * high watermark may be uninitialised if fragmentation occurs 2626 * very early in boot so do not boost. We do not fall 2627 * through and boost by pageblock_nr_pages as failing 2628 * allocations that early means that reclaim is not going 2629 * to help and it may even be impossible to reclaim the 2630 * boosted watermark resulting in a hang. 2631 */ 2632 if (!max_boost) 2633 return false; 2634 2635 max_boost = max(pageblock_nr_pages, max_boost); 2636 2637 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2638 max_boost); 2639 2640 return true; 2641 } 2642 2643 /* 2644 * This function implements actual steal behaviour. If order is large enough, 2645 * we can steal whole pageblock. If not, we first move freepages in this 2646 * pageblock to our migratetype and determine how many already-allocated pages 2647 * are there in the pageblock with a compatible migratetype. If at least half 2648 * of pages are free or compatible, we can change migratetype of the pageblock 2649 * itself, so pages freed in the future will be put on the correct free list. 2650 */ 2651 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2652 unsigned int alloc_flags, int start_type, bool whole_block) 2653 { 2654 unsigned int current_order = buddy_order(page); 2655 int free_pages, movable_pages, alike_pages; 2656 int old_block_type; 2657 2658 old_block_type = get_pageblock_migratetype(page); 2659 2660 /* 2661 * This can happen due to races and we want to prevent broken 2662 * highatomic accounting. 2663 */ 2664 if (is_migrate_highatomic(old_block_type)) 2665 goto single_page; 2666 2667 /* Take ownership for orders >= pageblock_order */ 2668 if (current_order >= pageblock_order) { 2669 change_pageblock_range(page, current_order, start_type); 2670 goto single_page; 2671 } 2672 2673 /* 2674 * Boost watermarks to increase reclaim pressure to reduce the 2675 * likelihood of future fallbacks. Wake kswapd now as the node 2676 * may be balanced overall and kswapd will not wake naturally. 2677 */ 2678 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2679 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2680 2681 /* We are not allowed to try stealing from the whole block */ 2682 if (!whole_block) 2683 goto single_page; 2684 2685 free_pages = move_freepages_block(zone, page, start_type, 2686 &movable_pages); 2687 /* 2688 * Determine how many pages are compatible with our allocation. 2689 * For movable allocation, it's the number of movable pages which 2690 * we just obtained. For other types it's a bit more tricky. 2691 */ 2692 if (start_type == MIGRATE_MOVABLE) { 2693 alike_pages = movable_pages; 2694 } else { 2695 /* 2696 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2697 * to MOVABLE pageblock, consider all non-movable pages as 2698 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2699 * vice versa, be conservative since we can't distinguish the 2700 * exact migratetype of non-movable pages. 2701 */ 2702 if (old_block_type == MIGRATE_MOVABLE) 2703 alike_pages = pageblock_nr_pages 2704 - (free_pages + movable_pages); 2705 else 2706 alike_pages = 0; 2707 } 2708 2709 /* moving whole block can fail due to zone boundary conditions */ 2710 if (!free_pages) 2711 goto single_page; 2712 2713 /* 2714 * If a sufficient number of pages in the block are either free or of 2715 * comparable migratability as our allocation, claim the whole block. 2716 */ 2717 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2718 page_group_by_mobility_disabled) 2719 set_pageblock_migratetype(page, start_type); 2720 2721 return; 2722 2723 single_page: 2724 move_to_free_list(page, zone, current_order, start_type); 2725 } 2726 2727 /* 2728 * Check whether there is a suitable fallback freepage with requested order. 2729 * If only_stealable is true, this function returns fallback_mt only if 2730 * we can steal other freepages all together. This would help to reduce 2731 * fragmentation due to mixed migratetype pages in one pageblock. 2732 */ 2733 int find_suitable_fallback(struct free_area *area, unsigned int order, 2734 int migratetype, bool only_stealable, bool *can_steal) 2735 { 2736 int i; 2737 int fallback_mt; 2738 2739 if (area->nr_free == 0) 2740 return -1; 2741 2742 *can_steal = false; 2743 for (i = 0;; i++) { 2744 fallback_mt = fallbacks[migratetype][i]; 2745 if (fallback_mt == MIGRATE_TYPES) 2746 break; 2747 2748 if (free_area_empty(area, fallback_mt)) 2749 continue; 2750 2751 if (can_steal_fallback(order, migratetype)) 2752 *can_steal = true; 2753 2754 if (!only_stealable) 2755 return fallback_mt; 2756 2757 if (*can_steal) 2758 return fallback_mt; 2759 } 2760 2761 return -1; 2762 } 2763 2764 /* 2765 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2766 * there are no empty page blocks that contain a page with a suitable order 2767 */ 2768 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2769 unsigned int alloc_order) 2770 { 2771 int mt; 2772 unsigned long max_managed, flags; 2773 2774 /* 2775 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2776 * Check is race-prone but harmless. 2777 */ 2778 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2779 if (zone->nr_reserved_highatomic >= max_managed) 2780 return; 2781 2782 spin_lock_irqsave(&zone->lock, flags); 2783 2784 /* Recheck the nr_reserved_highatomic limit under the lock */ 2785 if (zone->nr_reserved_highatomic >= max_managed) 2786 goto out_unlock; 2787 2788 /* Yoink! */ 2789 mt = get_pageblock_migratetype(page); 2790 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2791 && !is_migrate_cma(mt)) { 2792 zone->nr_reserved_highatomic += pageblock_nr_pages; 2793 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2794 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2795 } 2796 2797 out_unlock: 2798 spin_unlock_irqrestore(&zone->lock, flags); 2799 } 2800 2801 /* 2802 * Used when an allocation is about to fail under memory pressure. This 2803 * potentially hurts the reliability of high-order allocations when under 2804 * intense memory pressure but failed atomic allocations should be easier 2805 * to recover from than an OOM. 2806 * 2807 * If @force is true, try to unreserve a pageblock even though highatomic 2808 * pageblock is exhausted. 2809 */ 2810 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2811 bool force) 2812 { 2813 struct zonelist *zonelist = ac->zonelist; 2814 unsigned long flags; 2815 struct zoneref *z; 2816 struct zone *zone; 2817 struct page *page; 2818 int order; 2819 bool ret; 2820 2821 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2822 ac->nodemask) { 2823 /* 2824 * Preserve at least one pageblock unless memory pressure 2825 * is really high. 2826 */ 2827 if (!force && zone->nr_reserved_highatomic <= 2828 pageblock_nr_pages) 2829 continue; 2830 2831 spin_lock_irqsave(&zone->lock, flags); 2832 for (order = 0; order < MAX_ORDER; order++) { 2833 struct free_area *area = &(zone->free_area[order]); 2834 2835 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2836 if (!page) 2837 continue; 2838 2839 /* 2840 * In page freeing path, migratetype change is racy so 2841 * we can counter several free pages in a pageblock 2842 * in this loop although we changed the pageblock type 2843 * from highatomic to ac->migratetype. So we should 2844 * adjust the count once. 2845 */ 2846 if (is_migrate_highatomic_page(page)) { 2847 /* 2848 * It should never happen but changes to 2849 * locking could inadvertently allow a per-cpu 2850 * drain to add pages to MIGRATE_HIGHATOMIC 2851 * while unreserving so be safe and watch for 2852 * underflows. 2853 */ 2854 zone->nr_reserved_highatomic -= min( 2855 pageblock_nr_pages, 2856 zone->nr_reserved_highatomic); 2857 } 2858 2859 /* 2860 * Convert to ac->migratetype and avoid the normal 2861 * pageblock stealing heuristics. Minimally, the caller 2862 * is doing the work and needs the pages. More 2863 * importantly, if the block was always converted to 2864 * MIGRATE_UNMOVABLE or another type then the number 2865 * of pageblocks that cannot be completely freed 2866 * may increase. 2867 */ 2868 set_pageblock_migratetype(page, ac->migratetype); 2869 ret = move_freepages_block(zone, page, ac->migratetype, 2870 NULL); 2871 if (ret) { 2872 spin_unlock_irqrestore(&zone->lock, flags); 2873 return ret; 2874 } 2875 } 2876 spin_unlock_irqrestore(&zone->lock, flags); 2877 } 2878 2879 return false; 2880 } 2881 2882 /* 2883 * Try finding a free buddy page on the fallback list and put it on the free 2884 * list of requested migratetype, possibly along with other pages from the same 2885 * block, depending on fragmentation avoidance heuristics. Returns true if 2886 * fallback was found so that __rmqueue_smallest() can grab it. 2887 * 2888 * The use of signed ints for order and current_order is a deliberate 2889 * deviation from the rest of this file, to make the for loop 2890 * condition simpler. 2891 */ 2892 static __always_inline bool 2893 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2894 unsigned int alloc_flags) 2895 { 2896 struct free_area *area; 2897 int current_order; 2898 int min_order = order; 2899 struct page *page; 2900 int fallback_mt; 2901 bool can_steal; 2902 2903 /* 2904 * Do not steal pages from freelists belonging to other pageblocks 2905 * i.e. orders < pageblock_order. If there are no local zones free, 2906 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2907 */ 2908 if (alloc_flags & ALLOC_NOFRAGMENT) 2909 min_order = pageblock_order; 2910 2911 /* 2912 * Find the largest available free page in the other list. This roughly 2913 * approximates finding the pageblock with the most free pages, which 2914 * would be too costly to do exactly. 2915 */ 2916 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2917 --current_order) { 2918 area = &(zone->free_area[current_order]); 2919 fallback_mt = find_suitable_fallback(area, current_order, 2920 start_migratetype, false, &can_steal); 2921 if (fallback_mt == -1) 2922 continue; 2923 2924 /* 2925 * We cannot steal all free pages from the pageblock and the 2926 * requested migratetype is movable. In that case it's better to 2927 * steal and split the smallest available page instead of the 2928 * largest available page, because even if the next movable 2929 * allocation falls back into a different pageblock than this 2930 * one, it won't cause permanent fragmentation. 2931 */ 2932 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2933 && current_order > order) 2934 goto find_smallest; 2935 2936 goto do_steal; 2937 } 2938 2939 return false; 2940 2941 find_smallest: 2942 for (current_order = order; current_order < MAX_ORDER; 2943 current_order++) { 2944 area = &(zone->free_area[current_order]); 2945 fallback_mt = find_suitable_fallback(area, current_order, 2946 start_migratetype, false, &can_steal); 2947 if (fallback_mt != -1) 2948 break; 2949 } 2950 2951 /* 2952 * This should not happen - we already found a suitable fallback 2953 * when looking for the largest page. 2954 */ 2955 VM_BUG_ON(current_order == MAX_ORDER); 2956 2957 do_steal: 2958 page = get_page_from_free_area(area, fallback_mt); 2959 2960 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2961 can_steal); 2962 2963 trace_mm_page_alloc_extfrag(page, order, current_order, 2964 start_migratetype, fallback_mt); 2965 2966 return true; 2967 2968 } 2969 2970 /* 2971 * Do the hard work of removing an element from the buddy allocator. 2972 * Call me with the zone->lock already held. 2973 */ 2974 static __always_inline struct page * 2975 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2976 unsigned int alloc_flags) 2977 { 2978 struct page *page; 2979 2980 if (IS_ENABLED(CONFIG_CMA)) { 2981 /* 2982 * Balance movable allocations between regular and CMA areas by 2983 * allocating from CMA when over half of the zone's free memory 2984 * is in the CMA area. 2985 */ 2986 if (alloc_flags & ALLOC_CMA && 2987 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2988 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2989 page = __rmqueue_cma_fallback(zone, order); 2990 if (page) 2991 goto out; 2992 } 2993 } 2994 retry: 2995 page = __rmqueue_smallest(zone, order, migratetype); 2996 if (unlikely(!page)) { 2997 if (alloc_flags & ALLOC_CMA) 2998 page = __rmqueue_cma_fallback(zone, order); 2999 3000 if (!page && __rmqueue_fallback(zone, order, migratetype, 3001 alloc_flags)) 3002 goto retry; 3003 } 3004 out: 3005 if (page) 3006 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3007 return page; 3008 } 3009 3010 /* 3011 * Obtain a specified number of elements from the buddy allocator, all under 3012 * a single hold of the lock, for efficiency. Add them to the supplied list. 3013 * Returns the number of new pages which were placed at *list. 3014 */ 3015 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3016 unsigned long count, struct list_head *list, 3017 int migratetype, unsigned int alloc_flags) 3018 { 3019 int i, allocated = 0; 3020 3021 /* 3022 * local_lock_irq held so equivalent to spin_lock_irqsave for 3023 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3024 */ 3025 spin_lock(&zone->lock); 3026 for (i = 0; i < count; ++i) { 3027 struct page *page = __rmqueue(zone, order, migratetype, 3028 alloc_flags); 3029 if (unlikely(page == NULL)) 3030 break; 3031 3032 if (unlikely(check_pcp_refill(page))) 3033 continue; 3034 3035 /* 3036 * Split buddy pages returned by expand() are received here in 3037 * physical page order. The page is added to the tail of 3038 * caller's list. From the callers perspective, the linked list 3039 * is ordered by page number under some conditions. This is 3040 * useful for IO devices that can forward direction from the 3041 * head, thus also in the physical page order. This is useful 3042 * for IO devices that can merge IO requests if the physical 3043 * pages are ordered properly. 3044 */ 3045 list_add_tail(&page->lru, list); 3046 allocated++; 3047 if (is_migrate_cma(get_pcppage_migratetype(page))) 3048 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3049 -(1 << order)); 3050 } 3051 3052 /* 3053 * i pages were removed from the buddy list even if some leak due 3054 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3055 * on i. Do not confuse with 'allocated' which is the number of 3056 * pages added to the pcp list. 3057 */ 3058 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3059 spin_unlock(&zone->lock); 3060 return allocated; 3061 } 3062 3063 #ifdef CONFIG_NUMA 3064 /* 3065 * Called from the vmstat counter updater to drain pagesets of this 3066 * currently executing processor on remote nodes after they have 3067 * expired. 3068 * 3069 * Note that this function must be called with the thread pinned to 3070 * a single processor. 3071 */ 3072 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3073 { 3074 unsigned long flags; 3075 int to_drain, batch; 3076 3077 local_lock_irqsave(&pagesets.lock, flags); 3078 batch = READ_ONCE(pcp->batch); 3079 to_drain = min(pcp->count, batch); 3080 if (to_drain > 0) 3081 free_pcppages_bulk(zone, to_drain, pcp); 3082 local_unlock_irqrestore(&pagesets.lock, flags); 3083 } 3084 #endif 3085 3086 /* 3087 * Drain pcplists of the indicated processor and zone. 3088 * 3089 * The processor must either be the current processor and the 3090 * thread pinned to the current processor or a processor that 3091 * is not online. 3092 */ 3093 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3094 { 3095 unsigned long flags; 3096 struct per_cpu_pages *pcp; 3097 3098 local_lock_irqsave(&pagesets.lock, flags); 3099 3100 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3101 if (pcp->count) 3102 free_pcppages_bulk(zone, pcp->count, pcp); 3103 3104 local_unlock_irqrestore(&pagesets.lock, flags); 3105 } 3106 3107 /* 3108 * Drain pcplists of all zones on the indicated processor. 3109 * 3110 * The processor must either be the current processor and the 3111 * thread pinned to the current processor or a processor that 3112 * is not online. 3113 */ 3114 static void drain_pages(unsigned int cpu) 3115 { 3116 struct zone *zone; 3117 3118 for_each_populated_zone(zone) { 3119 drain_pages_zone(cpu, zone); 3120 } 3121 } 3122 3123 /* 3124 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3125 * 3126 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3127 * the single zone's pages. 3128 */ 3129 void drain_local_pages(struct zone *zone) 3130 { 3131 int cpu = smp_processor_id(); 3132 3133 if (zone) 3134 drain_pages_zone(cpu, zone); 3135 else 3136 drain_pages(cpu); 3137 } 3138 3139 static void drain_local_pages_wq(struct work_struct *work) 3140 { 3141 struct pcpu_drain *drain; 3142 3143 drain = container_of(work, struct pcpu_drain, work); 3144 3145 /* 3146 * drain_all_pages doesn't use proper cpu hotplug protection so 3147 * we can race with cpu offline when the WQ can move this from 3148 * a cpu pinned worker to an unbound one. We can operate on a different 3149 * cpu which is alright but we also have to make sure to not move to 3150 * a different one. 3151 */ 3152 preempt_disable(); 3153 drain_local_pages(drain->zone); 3154 preempt_enable(); 3155 } 3156 3157 /* 3158 * The implementation of drain_all_pages(), exposing an extra parameter to 3159 * drain on all cpus. 3160 * 3161 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3162 * not empty. The check for non-emptiness can however race with a free to 3163 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3164 * that need the guarantee that every CPU has drained can disable the 3165 * optimizing racy check. 3166 */ 3167 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3168 { 3169 int cpu; 3170 3171 /* 3172 * Allocate in the BSS so we won't require allocation in 3173 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3174 */ 3175 static cpumask_t cpus_with_pcps; 3176 3177 /* 3178 * Make sure nobody triggers this path before mm_percpu_wq is fully 3179 * initialized. 3180 */ 3181 if (WARN_ON_ONCE(!mm_percpu_wq)) 3182 return; 3183 3184 /* 3185 * Do not drain if one is already in progress unless it's specific to 3186 * a zone. Such callers are primarily CMA and memory hotplug and need 3187 * the drain to be complete when the call returns. 3188 */ 3189 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3190 if (!zone) 3191 return; 3192 mutex_lock(&pcpu_drain_mutex); 3193 } 3194 3195 /* 3196 * We don't care about racing with CPU hotplug event 3197 * as offline notification will cause the notified 3198 * cpu to drain that CPU pcps and on_each_cpu_mask 3199 * disables preemption as part of its processing 3200 */ 3201 for_each_online_cpu(cpu) { 3202 struct per_cpu_pages *pcp; 3203 struct zone *z; 3204 bool has_pcps = false; 3205 3206 if (force_all_cpus) { 3207 /* 3208 * The pcp.count check is racy, some callers need a 3209 * guarantee that no cpu is missed. 3210 */ 3211 has_pcps = true; 3212 } else if (zone) { 3213 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3214 if (pcp->count) 3215 has_pcps = true; 3216 } else { 3217 for_each_populated_zone(z) { 3218 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3219 if (pcp->count) { 3220 has_pcps = true; 3221 break; 3222 } 3223 } 3224 } 3225 3226 if (has_pcps) 3227 cpumask_set_cpu(cpu, &cpus_with_pcps); 3228 else 3229 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3230 } 3231 3232 for_each_cpu(cpu, &cpus_with_pcps) { 3233 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3234 3235 drain->zone = zone; 3236 INIT_WORK(&drain->work, drain_local_pages_wq); 3237 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3238 } 3239 for_each_cpu(cpu, &cpus_with_pcps) 3240 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3241 3242 mutex_unlock(&pcpu_drain_mutex); 3243 } 3244 3245 /* 3246 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3247 * 3248 * When zone parameter is non-NULL, spill just the single zone's pages. 3249 * 3250 * Note that this can be extremely slow as the draining happens in a workqueue. 3251 */ 3252 void drain_all_pages(struct zone *zone) 3253 { 3254 __drain_all_pages(zone, false); 3255 } 3256 3257 #ifdef CONFIG_HIBERNATION 3258 3259 /* 3260 * Touch the watchdog for every WD_PAGE_COUNT pages. 3261 */ 3262 #define WD_PAGE_COUNT (128*1024) 3263 3264 void mark_free_pages(struct zone *zone) 3265 { 3266 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3267 unsigned long flags; 3268 unsigned int order, t; 3269 struct page *page; 3270 3271 if (zone_is_empty(zone)) 3272 return; 3273 3274 spin_lock_irqsave(&zone->lock, flags); 3275 3276 max_zone_pfn = zone_end_pfn(zone); 3277 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3278 if (pfn_valid(pfn)) { 3279 page = pfn_to_page(pfn); 3280 3281 if (!--page_count) { 3282 touch_nmi_watchdog(); 3283 page_count = WD_PAGE_COUNT; 3284 } 3285 3286 if (page_zone(page) != zone) 3287 continue; 3288 3289 if (!swsusp_page_is_forbidden(page)) 3290 swsusp_unset_page_free(page); 3291 } 3292 3293 for_each_migratetype_order(order, t) { 3294 list_for_each_entry(page, 3295 &zone->free_area[order].free_list[t], lru) { 3296 unsigned long i; 3297 3298 pfn = page_to_pfn(page); 3299 for (i = 0; i < (1UL << order); i++) { 3300 if (!--page_count) { 3301 touch_nmi_watchdog(); 3302 page_count = WD_PAGE_COUNT; 3303 } 3304 swsusp_set_page_free(pfn_to_page(pfn + i)); 3305 } 3306 } 3307 } 3308 spin_unlock_irqrestore(&zone->lock, flags); 3309 } 3310 #endif /* CONFIG_PM */ 3311 3312 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3313 unsigned int order) 3314 { 3315 int migratetype; 3316 3317 if (!free_pcp_prepare(page, order)) 3318 return false; 3319 3320 migratetype = get_pfnblock_migratetype(page, pfn); 3321 set_pcppage_migratetype(page, migratetype); 3322 return true; 3323 } 3324 3325 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3326 { 3327 int min_nr_free, max_nr_free; 3328 3329 /* Check for PCP disabled or boot pageset */ 3330 if (unlikely(high < batch)) 3331 return 1; 3332 3333 /* Leave at least pcp->batch pages on the list */ 3334 min_nr_free = batch; 3335 max_nr_free = high - batch; 3336 3337 /* 3338 * Double the number of pages freed each time there is subsequent 3339 * freeing of pages without any allocation. 3340 */ 3341 batch <<= pcp->free_factor; 3342 if (batch < max_nr_free) 3343 pcp->free_factor++; 3344 batch = clamp(batch, min_nr_free, max_nr_free); 3345 3346 return batch; 3347 } 3348 3349 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3350 { 3351 int high = READ_ONCE(pcp->high); 3352 3353 if (unlikely(!high)) 3354 return 0; 3355 3356 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3357 return high; 3358 3359 /* 3360 * If reclaim is active, limit the number of pages that can be 3361 * stored on pcp lists 3362 */ 3363 return min(READ_ONCE(pcp->batch) << 2, high); 3364 } 3365 3366 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3367 int migratetype, unsigned int order) 3368 { 3369 struct zone *zone = page_zone(page); 3370 struct per_cpu_pages *pcp; 3371 int high; 3372 int pindex; 3373 3374 __count_vm_event(PGFREE); 3375 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3376 pindex = order_to_pindex(migratetype, order); 3377 list_add(&page->lru, &pcp->lists[pindex]); 3378 pcp->count += 1 << order; 3379 high = nr_pcp_high(pcp, zone); 3380 if (pcp->count >= high) { 3381 int batch = READ_ONCE(pcp->batch); 3382 3383 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3384 } 3385 } 3386 3387 /* 3388 * Free a pcp page 3389 */ 3390 void free_unref_page(struct page *page, unsigned int order) 3391 { 3392 unsigned long flags; 3393 unsigned long pfn = page_to_pfn(page); 3394 int migratetype; 3395 3396 if (!free_unref_page_prepare(page, pfn, order)) 3397 return; 3398 3399 /* 3400 * We only track unmovable, reclaimable and movable on pcp lists. 3401 * Place ISOLATE pages on the isolated list because they are being 3402 * offlined but treat HIGHATOMIC as movable pages so we can get those 3403 * areas back if necessary. Otherwise, we may have to free 3404 * excessively into the page allocator 3405 */ 3406 migratetype = get_pcppage_migratetype(page); 3407 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3408 if (unlikely(is_migrate_isolate(migratetype))) { 3409 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3410 return; 3411 } 3412 migratetype = MIGRATE_MOVABLE; 3413 } 3414 3415 local_lock_irqsave(&pagesets.lock, flags); 3416 free_unref_page_commit(page, pfn, migratetype, order); 3417 local_unlock_irqrestore(&pagesets.lock, flags); 3418 } 3419 3420 /* 3421 * Free a list of 0-order pages 3422 */ 3423 void free_unref_page_list(struct list_head *list) 3424 { 3425 struct page *page, *next; 3426 unsigned long flags, pfn; 3427 int batch_count = 0; 3428 int migratetype; 3429 3430 /* Prepare pages for freeing */ 3431 list_for_each_entry_safe(page, next, list, lru) { 3432 pfn = page_to_pfn(page); 3433 if (!free_unref_page_prepare(page, pfn, 0)) { 3434 list_del(&page->lru); 3435 continue; 3436 } 3437 3438 /* 3439 * Free isolated pages directly to the allocator, see 3440 * comment in free_unref_page. 3441 */ 3442 migratetype = get_pcppage_migratetype(page); 3443 if (unlikely(is_migrate_isolate(migratetype))) { 3444 list_del(&page->lru); 3445 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3446 continue; 3447 } 3448 3449 set_page_private(page, pfn); 3450 } 3451 3452 local_lock_irqsave(&pagesets.lock, flags); 3453 list_for_each_entry_safe(page, next, list, lru) { 3454 pfn = page_private(page); 3455 set_page_private(page, 0); 3456 3457 /* 3458 * Non-isolated types over MIGRATE_PCPTYPES get added 3459 * to the MIGRATE_MOVABLE pcp list. 3460 */ 3461 migratetype = get_pcppage_migratetype(page); 3462 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3463 migratetype = MIGRATE_MOVABLE; 3464 3465 trace_mm_page_free_batched(page); 3466 free_unref_page_commit(page, pfn, migratetype, 0); 3467 3468 /* 3469 * Guard against excessive IRQ disabled times when we get 3470 * a large list of pages to free. 3471 */ 3472 if (++batch_count == SWAP_CLUSTER_MAX) { 3473 local_unlock_irqrestore(&pagesets.lock, flags); 3474 batch_count = 0; 3475 local_lock_irqsave(&pagesets.lock, flags); 3476 } 3477 } 3478 local_unlock_irqrestore(&pagesets.lock, flags); 3479 } 3480 3481 /* 3482 * split_page takes a non-compound higher-order page, and splits it into 3483 * n (1<<order) sub-pages: page[0..n] 3484 * Each sub-page must be freed individually. 3485 * 3486 * Note: this is probably too low level an operation for use in drivers. 3487 * Please consult with lkml before using this in your driver. 3488 */ 3489 void split_page(struct page *page, unsigned int order) 3490 { 3491 int i; 3492 3493 VM_BUG_ON_PAGE(PageCompound(page), page); 3494 VM_BUG_ON_PAGE(!page_count(page), page); 3495 3496 for (i = 1; i < (1 << order); i++) 3497 set_page_refcounted(page + i); 3498 split_page_owner(page, 1 << order); 3499 split_page_memcg(page, 1 << order); 3500 } 3501 EXPORT_SYMBOL_GPL(split_page); 3502 3503 int __isolate_free_page(struct page *page, unsigned int order) 3504 { 3505 unsigned long watermark; 3506 struct zone *zone; 3507 int mt; 3508 3509 BUG_ON(!PageBuddy(page)); 3510 3511 zone = page_zone(page); 3512 mt = get_pageblock_migratetype(page); 3513 3514 if (!is_migrate_isolate(mt)) { 3515 /* 3516 * Obey watermarks as if the page was being allocated. We can 3517 * emulate a high-order watermark check with a raised order-0 3518 * watermark, because we already know our high-order page 3519 * exists. 3520 */ 3521 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3522 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3523 return 0; 3524 3525 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3526 } 3527 3528 /* Remove page from free list */ 3529 3530 del_page_from_free_list(page, zone, order); 3531 3532 /* 3533 * Set the pageblock if the isolated page is at least half of a 3534 * pageblock 3535 */ 3536 if (order >= pageblock_order - 1) { 3537 struct page *endpage = page + (1 << order) - 1; 3538 for (; page < endpage; page += pageblock_nr_pages) { 3539 int mt = get_pageblock_migratetype(page); 3540 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3541 && !is_migrate_highatomic(mt)) 3542 set_pageblock_migratetype(page, 3543 MIGRATE_MOVABLE); 3544 } 3545 } 3546 3547 3548 return 1UL << order; 3549 } 3550 3551 /** 3552 * __putback_isolated_page - Return a now-isolated page back where we got it 3553 * @page: Page that was isolated 3554 * @order: Order of the isolated page 3555 * @mt: The page's pageblock's migratetype 3556 * 3557 * This function is meant to return a page pulled from the free lists via 3558 * __isolate_free_page back to the free lists they were pulled from. 3559 */ 3560 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3561 { 3562 struct zone *zone = page_zone(page); 3563 3564 /* zone lock should be held when this function is called */ 3565 lockdep_assert_held(&zone->lock); 3566 3567 /* Return isolated page to tail of freelist. */ 3568 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3569 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3570 } 3571 3572 /* 3573 * Update NUMA hit/miss statistics 3574 * 3575 * Must be called with interrupts disabled. 3576 */ 3577 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3578 long nr_account) 3579 { 3580 #ifdef CONFIG_NUMA 3581 enum numa_stat_item local_stat = NUMA_LOCAL; 3582 3583 /* skip numa counters update if numa stats is disabled */ 3584 if (!static_branch_likely(&vm_numa_stat_key)) 3585 return; 3586 3587 if (zone_to_nid(z) != numa_node_id()) 3588 local_stat = NUMA_OTHER; 3589 3590 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3591 __count_numa_events(z, NUMA_HIT, nr_account); 3592 else { 3593 __count_numa_events(z, NUMA_MISS, nr_account); 3594 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3595 } 3596 __count_numa_events(z, local_stat, nr_account); 3597 #endif 3598 } 3599 3600 /* Remove page from the per-cpu list, caller must protect the list */ 3601 static inline 3602 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3603 int migratetype, 3604 unsigned int alloc_flags, 3605 struct per_cpu_pages *pcp, 3606 struct list_head *list) 3607 { 3608 struct page *page; 3609 3610 do { 3611 if (list_empty(list)) { 3612 int batch = READ_ONCE(pcp->batch); 3613 int alloced; 3614 3615 /* 3616 * Scale batch relative to order if batch implies 3617 * free pages can be stored on the PCP. Batch can 3618 * be 1 for small zones or for boot pagesets which 3619 * should never store free pages as the pages may 3620 * belong to arbitrary zones. 3621 */ 3622 if (batch > 1) 3623 batch = max(batch >> order, 2); 3624 alloced = rmqueue_bulk(zone, order, 3625 batch, list, 3626 migratetype, alloc_flags); 3627 3628 pcp->count += alloced << order; 3629 if (unlikely(list_empty(list))) 3630 return NULL; 3631 } 3632 3633 page = list_first_entry(list, struct page, lru); 3634 list_del(&page->lru); 3635 pcp->count -= 1 << order; 3636 } while (check_new_pcp(page)); 3637 3638 return page; 3639 } 3640 3641 /* Lock and remove page from the per-cpu list */ 3642 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3643 struct zone *zone, unsigned int order, 3644 gfp_t gfp_flags, int migratetype, 3645 unsigned int alloc_flags) 3646 { 3647 struct per_cpu_pages *pcp; 3648 struct list_head *list; 3649 struct page *page; 3650 unsigned long flags; 3651 3652 local_lock_irqsave(&pagesets.lock, flags); 3653 3654 /* 3655 * On allocation, reduce the number of pages that are batch freed. 3656 * See nr_pcp_free() where free_factor is increased for subsequent 3657 * frees. 3658 */ 3659 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3660 pcp->free_factor >>= 1; 3661 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3662 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3663 local_unlock_irqrestore(&pagesets.lock, flags); 3664 if (page) { 3665 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3666 zone_statistics(preferred_zone, zone, 1); 3667 } 3668 return page; 3669 } 3670 3671 /* 3672 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3673 */ 3674 static inline 3675 struct page *rmqueue(struct zone *preferred_zone, 3676 struct zone *zone, unsigned int order, 3677 gfp_t gfp_flags, unsigned int alloc_flags, 3678 int migratetype) 3679 { 3680 unsigned long flags; 3681 struct page *page; 3682 3683 if (likely(pcp_allowed_order(order))) { 3684 /* 3685 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3686 * we need to skip it when CMA area isn't allowed. 3687 */ 3688 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3689 migratetype != MIGRATE_MOVABLE) { 3690 page = rmqueue_pcplist(preferred_zone, zone, order, 3691 gfp_flags, migratetype, alloc_flags); 3692 goto out; 3693 } 3694 } 3695 3696 /* 3697 * We most definitely don't want callers attempting to 3698 * allocate greater than order-1 page units with __GFP_NOFAIL. 3699 */ 3700 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3701 spin_lock_irqsave(&zone->lock, flags); 3702 3703 do { 3704 page = NULL; 3705 /* 3706 * order-0 request can reach here when the pcplist is skipped 3707 * due to non-CMA allocation context. HIGHATOMIC area is 3708 * reserved for high-order atomic allocation, so order-0 3709 * request should skip it. 3710 */ 3711 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3712 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3713 if (page) 3714 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3715 } 3716 if (!page) 3717 page = __rmqueue(zone, order, migratetype, alloc_flags); 3718 } while (page && check_new_pages(page, order)); 3719 if (!page) 3720 goto failed; 3721 3722 __mod_zone_freepage_state(zone, -(1 << order), 3723 get_pcppage_migratetype(page)); 3724 spin_unlock_irqrestore(&zone->lock, flags); 3725 3726 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3727 zone_statistics(preferred_zone, zone, 1); 3728 3729 out: 3730 /* Separate test+clear to avoid unnecessary atomics */ 3731 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3732 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3733 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3734 } 3735 3736 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3737 return page; 3738 3739 failed: 3740 spin_unlock_irqrestore(&zone->lock, flags); 3741 return NULL; 3742 } 3743 3744 #ifdef CONFIG_FAIL_PAGE_ALLOC 3745 3746 static struct { 3747 struct fault_attr attr; 3748 3749 bool ignore_gfp_highmem; 3750 bool ignore_gfp_reclaim; 3751 u32 min_order; 3752 } fail_page_alloc = { 3753 .attr = FAULT_ATTR_INITIALIZER, 3754 .ignore_gfp_reclaim = true, 3755 .ignore_gfp_highmem = true, 3756 .min_order = 1, 3757 }; 3758 3759 static int __init setup_fail_page_alloc(char *str) 3760 { 3761 return setup_fault_attr(&fail_page_alloc.attr, str); 3762 } 3763 __setup("fail_page_alloc=", setup_fail_page_alloc); 3764 3765 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3766 { 3767 if (order < fail_page_alloc.min_order) 3768 return false; 3769 if (gfp_mask & __GFP_NOFAIL) 3770 return false; 3771 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3772 return false; 3773 if (fail_page_alloc.ignore_gfp_reclaim && 3774 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3775 return false; 3776 3777 return should_fail(&fail_page_alloc.attr, 1 << order); 3778 } 3779 3780 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3781 3782 static int __init fail_page_alloc_debugfs(void) 3783 { 3784 umode_t mode = S_IFREG | 0600; 3785 struct dentry *dir; 3786 3787 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3788 &fail_page_alloc.attr); 3789 3790 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3791 &fail_page_alloc.ignore_gfp_reclaim); 3792 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3793 &fail_page_alloc.ignore_gfp_highmem); 3794 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3795 3796 return 0; 3797 } 3798 3799 late_initcall(fail_page_alloc_debugfs); 3800 3801 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3802 3803 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3804 3805 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3806 { 3807 return false; 3808 } 3809 3810 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3811 3812 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3813 { 3814 return __should_fail_alloc_page(gfp_mask, order); 3815 } 3816 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3817 3818 static inline long __zone_watermark_unusable_free(struct zone *z, 3819 unsigned int order, unsigned int alloc_flags) 3820 { 3821 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3822 long unusable_free = (1 << order) - 1; 3823 3824 /* 3825 * If the caller does not have rights to ALLOC_HARDER then subtract 3826 * the high-atomic reserves. This will over-estimate the size of the 3827 * atomic reserve but it avoids a search. 3828 */ 3829 if (likely(!alloc_harder)) 3830 unusable_free += z->nr_reserved_highatomic; 3831 3832 #ifdef CONFIG_CMA 3833 /* If allocation can't use CMA areas don't use free CMA pages */ 3834 if (!(alloc_flags & ALLOC_CMA)) 3835 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3836 #endif 3837 3838 return unusable_free; 3839 } 3840 3841 /* 3842 * Return true if free base pages are above 'mark'. For high-order checks it 3843 * will return true of the order-0 watermark is reached and there is at least 3844 * one free page of a suitable size. Checking now avoids taking the zone lock 3845 * to check in the allocation paths if no pages are free. 3846 */ 3847 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3848 int highest_zoneidx, unsigned int alloc_flags, 3849 long free_pages) 3850 { 3851 long min = mark; 3852 int o; 3853 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3854 3855 /* free_pages may go negative - that's OK */ 3856 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3857 3858 if (alloc_flags & ALLOC_HIGH) 3859 min -= min / 2; 3860 3861 if (unlikely(alloc_harder)) { 3862 /* 3863 * OOM victims can try even harder than normal ALLOC_HARDER 3864 * users on the grounds that it's definitely going to be in 3865 * the exit path shortly and free memory. Any allocation it 3866 * makes during the free path will be small and short-lived. 3867 */ 3868 if (alloc_flags & ALLOC_OOM) 3869 min -= min / 2; 3870 else 3871 min -= min / 4; 3872 } 3873 3874 /* 3875 * Check watermarks for an order-0 allocation request. If these 3876 * are not met, then a high-order request also cannot go ahead 3877 * even if a suitable page happened to be free. 3878 */ 3879 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3880 return false; 3881 3882 /* If this is an order-0 request then the watermark is fine */ 3883 if (!order) 3884 return true; 3885 3886 /* For a high-order request, check at least one suitable page is free */ 3887 for (o = order; o < MAX_ORDER; o++) { 3888 struct free_area *area = &z->free_area[o]; 3889 int mt; 3890 3891 if (!area->nr_free) 3892 continue; 3893 3894 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3895 if (!free_area_empty(area, mt)) 3896 return true; 3897 } 3898 3899 #ifdef CONFIG_CMA 3900 if ((alloc_flags & ALLOC_CMA) && 3901 !free_area_empty(area, MIGRATE_CMA)) { 3902 return true; 3903 } 3904 #endif 3905 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3906 return true; 3907 } 3908 return false; 3909 } 3910 3911 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3912 int highest_zoneidx, unsigned int alloc_flags) 3913 { 3914 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3915 zone_page_state(z, NR_FREE_PAGES)); 3916 } 3917 3918 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3919 unsigned long mark, int highest_zoneidx, 3920 unsigned int alloc_flags, gfp_t gfp_mask) 3921 { 3922 long free_pages; 3923 3924 free_pages = zone_page_state(z, NR_FREE_PAGES); 3925 3926 /* 3927 * Fast check for order-0 only. If this fails then the reserves 3928 * need to be calculated. 3929 */ 3930 if (!order) { 3931 long fast_free; 3932 3933 fast_free = free_pages; 3934 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3935 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3936 return true; 3937 } 3938 3939 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3940 free_pages)) 3941 return true; 3942 /* 3943 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3944 * when checking the min watermark. The min watermark is the 3945 * point where boosting is ignored so that kswapd is woken up 3946 * when below the low watermark. 3947 */ 3948 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3949 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3950 mark = z->_watermark[WMARK_MIN]; 3951 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3952 alloc_flags, free_pages); 3953 } 3954 3955 return false; 3956 } 3957 3958 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3959 unsigned long mark, int highest_zoneidx) 3960 { 3961 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3962 3963 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3964 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3965 3966 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3967 free_pages); 3968 } 3969 3970 #ifdef CONFIG_NUMA 3971 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3972 { 3973 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3974 node_reclaim_distance; 3975 } 3976 #else /* CONFIG_NUMA */ 3977 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3978 { 3979 return true; 3980 } 3981 #endif /* CONFIG_NUMA */ 3982 3983 /* 3984 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3985 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3986 * premature use of a lower zone may cause lowmem pressure problems that 3987 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3988 * probably too small. It only makes sense to spread allocations to avoid 3989 * fragmentation between the Normal and DMA32 zones. 3990 */ 3991 static inline unsigned int 3992 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3993 { 3994 unsigned int alloc_flags; 3995 3996 /* 3997 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3998 * to save a branch. 3999 */ 4000 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4001 4002 #ifdef CONFIG_ZONE_DMA32 4003 if (!zone) 4004 return alloc_flags; 4005 4006 if (zone_idx(zone) != ZONE_NORMAL) 4007 return alloc_flags; 4008 4009 /* 4010 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4011 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4012 * on UMA that if Normal is populated then so is DMA32. 4013 */ 4014 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4015 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4016 return alloc_flags; 4017 4018 alloc_flags |= ALLOC_NOFRAGMENT; 4019 #endif /* CONFIG_ZONE_DMA32 */ 4020 return alloc_flags; 4021 } 4022 4023 /* Must be called after current_gfp_context() which can change gfp_mask */ 4024 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4025 unsigned int alloc_flags) 4026 { 4027 #ifdef CONFIG_CMA 4028 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4029 alloc_flags |= ALLOC_CMA; 4030 #endif 4031 return alloc_flags; 4032 } 4033 4034 /* 4035 * get_page_from_freelist goes through the zonelist trying to allocate 4036 * a page. 4037 */ 4038 static struct page * 4039 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4040 const struct alloc_context *ac) 4041 { 4042 struct zoneref *z; 4043 struct zone *zone; 4044 struct pglist_data *last_pgdat_dirty_limit = NULL; 4045 bool no_fallback; 4046 4047 retry: 4048 /* 4049 * Scan zonelist, looking for a zone with enough free. 4050 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4051 */ 4052 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4053 z = ac->preferred_zoneref; 4054 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4055 ac->nodemask) { 4056 struct page *page; 4057 unsigned long mark; 4058 4059 if (cpusets_enabled() && 4060 (alloc_flags & ALLOC_CPUSET) && 4061 !__cpuset_zone_allowed(zone, gfp_mask)) 4062 continue; 4063 /* 4064 * When allocating a page cache page for writing, we 4065 * want to get it from a node that is within its dirty 4066 * limit, such that no single node holds more than its 4067 * proportional share of globally allowed dirty pages. 4068 * The dirty limits take into account the node's 4069 * lowmem reserves and high watermark so that kswapd 4070 * should be able to balance it without having to 4071 * write pages from its LRU list. 4072 * 4073 * XXX: For now, allow allocations to potentially 4074 * exceed the per-node dirty limit in the slowpath 4075 * (spread_dirty_pages unset) before going into reclaim, 4076 * which is important when on a NUMA setup the allowed 4077 * nodes are together not big enough to reach the 4078 * global limit. The proper fix for these situations 4079 * will require awareness of nodes in the 4080 * dirty-throttling and the flusher threads. 4081 */ 4082 if (ac->spread_dirty_pages) { 4083 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4084 continue; 4085 4086 if (!node_dirty_ok(zone->zone_pgdat)) { 4087 last_pgdat_dirty_limit = zone->zone_pgdat; 4088 continue; 4089 } 4090 } 4091 4092 if (no_fallback && nr_online_nodes > 1 && 4093 zone != ac->preferred_zoneref->zone) { 4094 int local_nid; 4095 4096 /* 4097 * If moving to a remote node, retry but allow 4098 * fragmenting fallbacks. Locality is more important 4099 * than fragmentation avoidance. 4100 */ 4101 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4102 if (zone_to_nid(zone) != local_nid) { 4103 alloc_flags &= ~ALLOC_NOFRAGMENT; 4104 goto retry; 4105 } 4106 } 4107 4108 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4109 if (!zone_watermark_fast(zone, order, mark, 4110 ac->highest_zoneidx, alloc_flags, 4111 gfp_mask)) { 4112 int ret; 4113 4114 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4115 /* 4116 * Watermark failed for this zone, but see if we can 4117 * grow this zone if it contains deferred pages. 4118 */ 4119 if (static_branch_unlikely(&deferred_pages)) { 4120 if (_deferred_grow_zone(zone, order)) 4121 goto try_this_zone; 4122 } 4123 #endif 4124 /* Checked here to keep the fast path fast */ 4125 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4126 if (alloc_flags & ALLOC_NO_WATERMARKS) 4127 goto try_this_zone; 4128 4129 if (!node_reclaim_enabled() || 4130 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4131 continue; 4132 4133 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4134 switch (ret) { 4135 case NODE_RECLAIM_NOSCAN: 4136 /* did not scan */ 4137 continue; 4138 case NODE_RECLAIM_FULL: 4139 /* scanned but unreclaimable */ 4140 continue; 4141 default: 4142 /* did we reclaim enough */ 4143 if (zone_watermark_ok(zone, order, mark, 4144 ac->highest_zoneidx, alloc_flags)) 4145 goto try_this_zone; 4146 4147 continue; 4148 } 4149 } 4150 4151 try_this_zone: 4152 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4153 gfp_mask, alloc_flags, ac->migratetype); 4154 if (page) { 4155 prep_new_page(page, order, gfp_mask, alloc_flags); 4156 4157 /* 4158 * If this is a high-order atomic allocation then check 4159 * if the pageblock should be reserved for the future 4160 */ 4161 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4162 reserve_highatomic_pageblock(page, zone, order); 4163 4164 return page; 4165 } else { 4166 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4167 /* Try again if zone has deferred pages */ 4168 if (static_branch_unlikely(&deferred_pages)) { 4169 if (_deferred_grow_zone(zone, order)) 4170 goto try_this_zone; 4171 } 4172 #endif 4173 } 4174 } 4175 4176 /* 4177 * It's possible on a UMA machine to get through all zones that are 4178 * fragmented. If avoiding fragmentation, reset and try again. 4179 */ 4180 if (no_fallback) { 4181 alloc_flags &= ~ALLOC_NOFRAGMENT; 4182 goto retry; 4183 } 4184 4185 return NULL; 4186 } 4187 4188 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4189 { 4190 unsigned int filter = SHOW_MEM_FILTER_NODES; 4191 4192 /* 4193 * This documents exceptions given to allocations in certain 4194 * contexts that are allowed to allocate outside current's set 4195 * of allowed nodes. 4196 */ 4197 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4198 if (tsk_is_oom_victim(current) || 4199 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4200 filter &= ~SHOW_MEM_FILTER_NODES; 4201 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4202 filter &= ~SHOW_MEM_FILTER_NODES; 4203 4204 show_mem(filter, nodemask); 4205 } 4206 4207 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4208 { 4209 struct va_format vaf; 4210 va_list args; 4211 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4212 4213 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4214 return; 4215 4216 va_start(args, fmt); 4217 vaf.fmt = fmt; 4218 vaf.va = &args; 4219 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4220 current->comm, &vaf, gfp_mask, &gfp_mask, 4221 nodemask_pr_args(nodemask)); 4222 va_end(args); 4223 4224 cpuset_print_current_mems_allowed(); 4225 pr_cont("\n"); 4226 dump_stack(); 4227 warn_alloc_show_mem(gfp_mask, nodemask); 4228 } 4229 4230 static inline struct page * 4231 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4232 unsigned int alloc_flags, 4233 const struct alloc_context *ac) 4234 { 4235 struct page *page; 4236 4237 page = get_page_from_freelist(gfp_mask, order, 4238 alloc_flags|ALLOC_CPUSET, ac); 4239 /* 4240 * fallback to ignore cpuset restriction if our nodes 4241 * are depleted 4242 */ 4243 if (!page) 4244 page = get_page_from_freelist(gfp_mask, order, 4245 alloc_flags, ac); 4246 4247 return page; 4248 } 4249 4250 static inline struct page * 4251 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4252 const struct alloc_context *ac, unsigned long *did_some_progress) 4253 { 4254 struct oom_control oc = { 4255 .zonelist = ac->zonelist, 4256 .nodemask = ac->nodemask, 4257 .memcg = NULL, 4258 .gfp_mask = gfp_mask, 4259 .order = order, 4260 }; 4261 struct page *page; 4262 4263 *did_some_progress = 0; 4264 4265 /* 4266 * Acquire the oom lock. If that fails, somebody else is 4267 * making progress for us. 4268 */ 4269 if (!mutex_trylock(&oom_lock)) { 4270 *did_some_progress = 1; 4271 schedule_timeout_uninterruptible(1); 4272 return NULL; 4273 } 4274 4275 /* 4276 * Go through the zonelist yet one more time, keep very high watermark 4277 * here, this is only to catch a parallel oom killing, we must fail if 4278 * we're still under heavy pressure. But make sure that this reclaim 4279 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4280 * allocation which will never fail due to oom_lock already held. 4281 */ 4282 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4283 ~__GFP_DIRECT_RECLAIM, order, 4284 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4285 if (page) 4286 goto out; 4287 4288 /* Coredumps can quickly deplete all memory reserves */ 4289 if (current->flags & PF_DUMPCORE) 4290 goto out; 4291 /* The OOM killer will not help higher order allocs */ 4292 if (order > PAGE_ALLOC_COSTLY_ORDER) 4293 goto out; 4294 /* 4295 * We have already exhausted all our reclaim opportunities without any 4296 * success so it is time to admit defeat. We will skip the OOM killer 4297 * because it is very likely that the caller has a more reasonable 4298 * fallback than shooting a random task. 4299 * 4300 * The OOM killer may not free memory on a specific node. 4301 */ 4302 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4303 goto out; 4304 /* The OOM killer does not needlessly kill tasks for lowmem */ 4305 if (ac->highest_zoneidx < ZONE_NORMAL) 4306 goto out; 4307 if (pm_suspended_storage()) 4308 goto out; 4309 /* 4310 * XXX: GFP_NOFS allocations should rather fail than rely on 4311 * other request to make a forward progress. 4312 * We are in an unfortunate situation where out_of_memory cannot 4313 * do much for this context but let's try it to at least get 4314 * access to memory reserved if the current task is killed (see 4315 * out_of_memory). Once filesystems are ready to handle allocation 4316 * failures more gracefully we should just bail out here. 4317 */ 4318 4319 /* Exhausted what can be done so it's blame time */ 4320 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4321 *did_some_progress = 1; 4322 4323 /* 4324 * Help non-failing allocations by giving them access to memory 4325 * reserves 4326 */ 4327 if (gfp_mask & __GFP_NOFAIL) 4328 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4329 ALLOC_NO_WATERMARKS, ac); 4330 } 4331 out: 4332 mutex_unlock(&oom_lock); 4333 return page; 4334 } 4335 4336 /* 4337 * Maximum number of compaction retries with a progress before OOM 4338 * killer is consider as the only way to move forward. 4339 */ 4340 #define MAX_COMPACT_RETRIES 16 4341 4342 #ifdef CONFIG_COMPACTION 4343 /* Try memory compaction for high-order allocations before reclaim */ 4344 static struct page * 4345 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4346 unsigned int alloc_flags, const struct alloc_context *ac, 4347 enum compact_priority prio, enum compact_result *compact_result) 4348 { 4349 struct page *page = NULL; 4350 unsigned long pflags; 4351 unsigned int noreclaim_flag; 4352 4353 if (!order) 4354 return NULL; 4355 4356 psi_memstall_enter(&pflags); 4357 noreclaim_flag = memalloc_noreclaim_save(); 4358 4359 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4360 prio, &page); 4361 4362 memalloc_noreclaim_restore(noreclaim_flag); 4363 psi_memstall_leave(&pflags); 4364 4365 if (*compact_result == COMPACT_SKIPPED) 4366 return NULL; 4367 /* 4368 * At least in one zone compaction wasn't deferred or skipped, so let's 4369 * count a compaction stall 4370 */ 4371 count_vm_event(COMPACTSTALL); 4372 4373 /* Prep a captured page if available */ 4374 if (page) 4375 prep_new_page(page, order, gfp_mask, alloc_flags); 4376 4377 /* Try get a page from the freelist if available */ 4378 if (!page) 4379 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4380 4381 if (page) { 4382 struct zone *zone = page_zone(page); 4383 4384 zone->compact_blockskip_flush = false; 4385 compaction_defer_reset(zone, order, true); 4386 count_vm_event(COMPACTSUCCESS); 4387 return page; 4388 } 4389 4390 /* 4391 * It's bad if compaction run occurs and fails. The most likely reason 4392 * is that pages exist, but not enough to satisfy watermarks. 4393 */ 4394 count_vm_event(COMPACTFAIL); 4395 4396 cond_resched(); 4397 4398 return NULL; 4399 } 4400 4401 static inline bool 4402 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4403 enum compact_result compact_result, 4404 enum compact_priority *compact_priority, 4405 int *compaction_retries) 4406 { 4407 int max_retries = MAX_COMPACT_RETRIES; 4408 int min_priority; 4409 bool ret = false; 4410 int retries = *compaction_retries; 4411 enum compact_priority priority = *compact_priority; 4412 4413 if (!order) 4414 return false; 4415 4416 if (fatal_signal_pending(current)) 4417 return false; 4418 4419 if (compaction_made_progress(compact_result)) 4420 (*compaction_retries)++; 4421 4422 /* 4423 * compaction considers all the zone as desperately out of memory 4424 * so it doesn't really make much sense to retry except when the 4425 * failure could be caused by insufficient priority 4426 */ 4427 if (compaction_failed(compact_result)) 4428 goto check_priority; 4429 4430 /* 4431 * compaction was skipped because there are not enough order-0 pages 4432 * to work with, so we retry only if it looks like reclaim can help. 4433 */ 4434 if (compaction_needs_reclaim(compact_result)) { 4435 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4436 goto out; 4437 } 4438 4439 /* 4440 * make sure the compaction wasn't deferred or didn't bail out early 4441 * due to locks contention before we declare that we should give up. 4442 * But the next retry should use a higher priority if allowed, so 4443 * we don't just keep bailing out endlessly. 4444 */ 4445 if (compaction_withdrawn(compact_result)) { 4446 goto check_priority; 4447 } 4448 4449 /* 4450 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4451 * costly ones because they are de facto nofail and invoke OOM 4452 * killer to move on while costly can fail and users are ready 4453 * to cope with that. 1/4 retries is rather arbitrary but we 4454 * would need much more detailed feedback from compaction to 4455 * make a better decision. 4456 */ 4457 if (order > PAGE_ALLOC_COSTLY_ORDER) 4458 max_retries /= 4; 4459 if (*compaction_retries <= max_retries) { 4460 ret = true; 4461 goto out; 4462 } 4463 4464 /* 4465 * Make sure there are attempts at the highest priority if we exhausted 4466 * all retries or failed at the lower priorities. 4467 */ 4468 check_priority: 4469 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4470 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4471 4472 if (*compact_priority > min_priority) { 4473 (*compact_priority)--; 4474 *compaction_retries = 0; 4475 ret = true; 4476 } 4477 out: 4478 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4479 return ret; 4480 } 4481 #else 4482 static inline struct page * 4483 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4484 unsigned int alloc_flags, const struct alloc_context *ac, 4485 enum compact_priority prio, enum compact_result *compact_result) 4486 { 4487 *compact_result = COMPACT_SKIPPED; 4488 return NULL; 4489 } 4490 4491 static inline bool 4492 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4493 enum compact_result compact_result, 4494 enum compact_priority *compact_priority, 4495 int *compaction_retries) 4496 { 4497 struct zone *zone; 4498 struct zoneref *z; 4499 4500 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4501 return false; 4502 4503 /* 4504 * There are setups with compaction disabled which would prefer to loop 4505 * inside the allocator rather than hit the oom killer prematurely. 4506 * Let's give them a good hope and keep retrying while the order-0 4507 * watermarks are OK. 4508 */ 4509 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4510 ac->highest_zoneidx, ac->nodemask) { 4511 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4512 ac->highest_zoneidx, alloc_flags)) 4513 return true; 4514 } 4515 return false; 4516 } 4517 #endif /* CONFIG_COMPACTION */ 4518 4519 #ifdef CONFIG_LOCKDEP 4520 static struct lockdep_map __fs_reclaim_map = 4521 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4522 4523 static bool __need_reclaim(gfp_t gfp_mask) 4524 { 4525 /* no reclaim without waiting on it */ 4526 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4527 return false; 4528 4529 /* this guy won't enter reclaim */ 4530 if (current->flags & PF_MEMALLOC) 4531 return false; 4532 4533 if (gfp_mask & __GFP_NOLOCKDEP) 4534 return false; 4535 4536 return true; 4537 } 4538 4539 void __fs_reclaim_acquire(unsigned long ip) 4540 { 4541 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4542 } 4543 4544 void __fs_reclaim_release(unsigned long ip) 4545 { 4546 lock_release(&__fs_reclaim_map, ip); 4547 } 4548 4549 void fs_reclaim_acquire(gfp_t gfp_mask) 4550 { 4551 gfp_mask = current_gfp_context(gfp_mask); 4552 4553 if (__need_reclaim(gfp_mask)) { 4554 if (gfp_mask & __GFP_FS) 4555 __fs_reclaim_acquire(_RET_IP_); 4556 4557 #ifdef CONFIG_MMU_NOTIFIER 4558 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4559 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4560 #endif 4561 4562 } 4563 } 4564 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4565 4566 void fs_reclaim_release(gfp_t gfp_mask) 4567 { 4568 gfp_mask = current_gfp_context(gfp_mask); 4569 4570 if (__need_reclaim(gfp_mask)) { 4571 if (gfp_mask & __GFP_FS) 4572 __fs_reclaim_release(_RET_IP_); 4573 } 4574 } 4575 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4576 #endif 4577 4578 /* Perform direct synchronous page reclaim */ 4579 static unsigned long 4580 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4581 const struct alloc_context *ac) 4582 { 4583 unsigned int noreclaim_flag; 4584 unsigned long pflags, progress; 4585 4586 cond_resched(); 4587 4588 /* We now go into synchronous reclaim */ 4589 cpuset_memory_pressure_bump(); 4590 psi_memstall_enter(&pflags); 4591 fs_reclaim_acquire(gfp_mask); 4592 noreclaim_flag = memalloc_noreclaim_save(); 4593 4594 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4595 ac->nodemask); 4596 4597 memalloc_noreclaim_restore(noreclaim_flag); 4598 fs_reclaim_release(gfp_mask); 4599 psi_memstall_leave(&pflags); 4600 4601 cond_resched(); 4602 4603 return progress; 4604 } 4605 4606 /* The really slow allocator path where we enter direct reclaim */ 4607 static inline struct page * 4608 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4609 unsigned int alloc_flags, const struct alloc_context *ac, 4610 unsigned long *did_some_progress) 4611 { 4612 struct page *page = NULL; 4613 bool drained = false; 4614 4615 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4616 if (unlikely(!(*did_some_progress))) 4617 return NULL; 4618 4619 retry: 4620 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4621 4622 /* 4623 * If an allocation failed after direct reclaim, it could be because 4624 * pages are pinned on the per-cpu lists or in high alloc reserves. 4625 * Shrink them and try again 4626 */ 4627 if (!page && !drained) { 4628 unreserve_highatomic_pageblock(ac, false); 4629 drain_all_pages(NULL); 4630 drained = true; 4631 goto retry; 4632 } 4633 4634 return page; 4635 } 4636 4637 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4638 const struct alloc_context *ac) 4639 { 4640 struct zoneref *z; 4641 struct zone *zone; 4642 pg_data_t *last_pgdat = NULL; 4643 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4644 4645 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4646 ac->nodemask) { 4647 if (last_pgdat != zone->zone_pgdat) 4648 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4649 last_pgdat = zone->zone_pgdat; 4650 } 4651 } 4652 4653 static inline unsigned int 4654 gfp_to_alloc_flags(gfp_t gfp_mask) 4655 { 4656 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4657 4658 /* 4659 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4660 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4661 * to save two branches. 4662 */ 4663 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4664 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4665 4666 /* 4667 * The caller may dip into page reserves a bit more if the caller 4668 * cannot run direct reclaim, or if the caller has realtime scheduling 4669 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4670 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4671 */ 4672 alloc_flags |= (__force int) 4673 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4674 4675 if (gfp_mask & __GFP_ATOMIC) { 4676 /* 4677 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4678 * if it can't schedule. 4679 */ 4680 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4681 alloc_flags |= ALLOC_HARDER; 4682 /* 4683 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4684 * comment for __cpuset_node_allowed(). 4685 */ 4686 alloc_flags &= ~ALLOC_CPUSET; 4687 } else if (unlikely(rt_task(current)) && in_task()) 4688 alloc_flags |= ALLOC_HARDER; 4689 4690 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4691 4692 return alloc_flags; 4693 } 4694 4695 static bool oom_reserves_allowed(struct task_struct *tsk) 4696 { 4697 if (!tsk_is_oom_victim(tsk)) 4698 return false; 4699 4700 /* 4701 * !MMU doesn't have oom reaper so give access to memory reserves 4702 * only to the thread with TIF_MEMDIE set 4703 */ 4704 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4705 return false; 4706 4707 return true; 4708 } 4709 4710 /* 4711 * Distinguish requests which really need access to full memory 4712 * reserves from oom victims which can live with a portion of it 4713 */ 4714 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4715 { 4716 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4717 return 0; 4718 if (gfp_mask & __GFP_MEMALLOC) 4719 return ALLOC_NO_WATERMARKS; 4720 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4721 return ALLOC_NO_WATERMARKS; 4722 if (!in_interrupt()) { 4723 if (current->flags & PF_MEMALLOC) 4724 return ALLOC_NO_WATERMARKS; 4725 else if (oom_reserves_allowed(current)) 4726 return ALLOC_OOM; 4727 } 4728 4729 return 0; 4730 } 4731 4732 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4733 { 4734 return !!__gfp_pfmemalloc_flags(gfp_mask); 4735 } 4736 4737 /* 4738 * Checks whether it makes sense to retry the reclaim to make a forward progress 4739 * for the given allocation request. 4740 * 4741 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4742 * without success, or when we couldn't even meet the watermark if we 4743 * reclaimed all remaining pages on the LRU lists. 4744 * 4745 * Returns true if a retry is viable or false to enter the oom path. 4746 */ 4747 static inline bool 4748 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4749 struct alloc_context *ac, int alloc_flags, 4750 bool did_some_progress, int *no_progress_loops) 4751 { 4752 struct zone *zone; 4753 struct zoneref *z; 4754 bool ret = false; 4755 4756 /* 4757 * Costly allocations might have made a progress but this doesn't mean 4758 * their order will become available due to high fragmentation so 4759 * always increment the no progress counter for them 4760 */ 4761 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4762 *no_progress_loops = 0; 4763 else 4764 (*no_progress_loops)++; 4765 4766 /* 4767 * Make sure we converge to OOM if we cannot make any progress 4768 * several times in the row. 4769 */ 4770 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4771 /* Before OOM, exhaust highatomic_reserve */ 4772 return unreserve_highatomic_pageblock(ac, true); 4773 } 4774 4775 /* 4776 * Keep reclaiming pages while there is a chance this will lead 4777 * somewhere. If none of the target zones can satisfy our allocation 4778 * request even if all reclaimable pages are considered then we are 4779 * screwed and have to go OOM. 4780 */ 4781 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4782 ac->highest_zoneidx, ac->nodemask) { 4783 unsigned long available; 4784 unsigned long reclaimable; 4785 unsigned long min_wmark = min_wmark_pages(zone); 4786 bool wmark; 4787 4788 available = reclaimable = zone_reclaimable_pages(zone); 4789 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4790 4791 /* 4792 * Would the allocation succeed if we reclaimed all 4793 * reclaimable pages? 4794 */ 4795 wmark = __zone_watermark_ok(zone, order, min_wmark, 4796 ac->highest_zoneidx, alloc_flags, available); 4797 trace_reclaim_retry_zone(z, order, reclaimable, 4798 available, min_wmark, *no_progress_loops, wmark); 4799 if (wmark) { 4800 /* 4801 * If we didn't make any progress and have a lot of 4802 * dirty + writeback pages then we should wait for 4803 * an IO to complete to slow down the reclaim and 4804 * prevent from pre mature OOM 4805 */ 4806 if (!did_some_progress) { 4807 unsigned long write_pending; 4808 4809 write_pending = zone_page_state_snapshot(zone, 4810 NR_ZONE_WRITE_PENDING); 4811 4812 if (2 * write_pending > reclaimable) { 4813 congestion_wait(BLK_RW_ASYNC, HZ/10); 4814 return true; 4815 } 4816 } 4817 4818 ret = true; 4819 goto out; 4820 } 4821 } 4822 4823 out: 4824 /* 4825 * Memory allocation/reclaim might be called from a WQ context and the 4826 * current implementation of the WQ concurrency control doesn't 4827 * recognize that a particular WQ is congested if the worker thread is 4828 * looping without ever sleeping. Therefore we have to do a short sleep 4829 * here rather than calling cond_resched(). 4830 */ 4831 if (current->flags & PF_WQ_WORKER) 4832 schedule_timeout_uninterruptible(1); 4833 else 4834 cond_resched(); 4835 return ret; 4836 } 4837 4838 static inline bool 4839 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4840 { 4841 /* 4842 * It's possible that cpuset's mems_allowed and the nodemask from 4843 * mempolicy don't intersect. This should be normally dealt with by 4844 * policy_nodemask(), but it's possible to race with cpuset update in 4845 * such a way the check therein was true, and then it became false 4846 * before we got our cpuset_mems_cookie here. 4847 * This assumes that for all allocations, ac->nodemask can come only 4848 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4849 * when it does not intersect with the cpuset restrictions) or the 4850 * caller can deal with a violated nodemask. 4851 */ 4852 if (cpusets_enabled() && ac->nodemask && 4853 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4854 ac->nodemask = NULL; 4855 return true; 4856 } 4857 4858 /* 4859 * When updating a task's mems_allowed or mempolicy nodemask, it is 4860 * possible to race with parallel threads in such a way that our 4861 * allocation can fail while the mask is being updated. If we are about 4862 * to fail, check if the cpuset changed during allocation and if so, 4863 * retry. 4864 */ 4865 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4866 return true; 4867 4868 return false; 4869 } 4870 4871 static inline struct page * 4872 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4873 struct alloc_context *ac) 4874 { 4875 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4876 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4877 struct page *page = NULL; 4878 unsigned int alloc_flags; 4879 unsigned long did_some_progress; 4880 enum compact_priority compact_priority; 4881 enum compact_result compact_result; 4882 int compaction_retries; 4883 int no_progress_loops; 4884 unsigned int cpuset_mems_cookie; 4885 int reserve_flags; 4886 4887 /* 4888 * We also sanity check to catch abuse of atomic reserves being used by 4889 * callers that are not in atomic context. 4890 */ 4891 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4892 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4893 gfp_mask &= ~__GFP_ATOMIC; 4894 4895 retry_cpuset: 4896 compaction_retries = 0; 4897 no_progress_loops = 0; 4898 compact_priority = DEF_COMPACT_PRIORITY; 4899 cpuset_mems_cookie = read_mems_allowed_begin(); 4900 4901 /* 4902 * The fast path uses conservative alloc_flags to succeed only until 4903 * kswapd needs to be woken up, and to avoid the cost of setting up 4904 * alloc_flags precisely. So we do that now. 4905 */ 4906 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4907 4908 /* 4909 * We need to recalculate the starting point for the zonelist iterator 4910 * because we might have used different nodemask in the fast path, or 4911 * there was a cpuset modification and we are retrying - otherwise we 4912 * could end up iterating over non-eligible zones endlessly. 4913 */ 4914 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4915 ac->highest_zoneidx, ac->nodemask); 4916 if (!ac->preferred_zoneref->zone) 4917 goto nopage; 4918 4919 if (alloc_flags & ALLOC_KSWAPD) 4920 wake_all_kswapds(order, gfp_mask, ac); 4921 4922 /* 4923 * The adjusted alloc_flags might result in immediate success, so try 4924 * that first 4925 */ 4926 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4927 if (page) 4928 goto got_pg; 4929 4930 /* 4931 * For costly allocations, try direct compaction first, as it's likely 4932 * that we have enough base pages and don't need to reclaim. For non- 4933 * movable high-order allocations, do that as well, as compaction will 4934 * try prevent permanent fragmentation by migrating from blocks of the 4935 * same migratetype. 4936 * Don't try this for allocations that are allowed to ignore 4937 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4938 */ 4939 if (can_direct_reclaim && 4940 (costly_order || 4941 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4942 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4943 page = __alloc_pages_direct_compact(gfp_mask, order, 4944 alloc_flags, ac, 4945 INIT_COMPACT_PRIORITY, 4946 &compact_result); 4947 if (page) 4948 goto got_pg; 4949 4950 /* 4951 * Checks for costly allocations with __GFP_NORETRY, which 4952 * includes some THP page fault allocations 4953 */ 4954 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4955 /* 4956 * If allocating entire pageblock(s) and compaction 4957 * failed because all zones are below low watermarks 4958 * or is prohibited because it recently failed at this 4959 * order, fail immediately unless the allocator has 4960 * requested compaction and reclaim retry. 4961 * 4962 * Reclaim is 4963 * - potentially very expensive because zones are far 4964 * below their low watermarks or this is part of very 4965 * bursty high order allocations, 4966 * - not guaranteed to help because isolate_freepages() 4967 * may not iterate over freed pages as part of its 4968 * linear scan, and 4969 * - unlikely to make entire pageblocks free on its 4970 * own. 4971 */ 4972 if (compact_result == COMPACT_SKIPPED || 4973 compact_result == COMPACT_DEFERRED) 4974 goto nopage; 4975 4976 /* 4977 * Looks like reclaim/compaction is worth trying, but 4978 * sync compaction could be very expensive, so keep 4979 * using async compaction. 4980 */ 4981 compact_priority = INIT_COMPACT_PRIORITY; 4982 } 4983 } 4984 4985 retry: 4986 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4987 if (alloc_flags & ALLOC_KSWAPD) 4988 wake_all_kswapds(order, gfp_mask, ac); 4989 4990 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4991 if (reserve_flags) 4992 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4993 4994 /* 4995 * Reset the nodemask and zonelist iterators if memory policies can be 4996 * ignored. These allocations are high priority and system rather than 4997 * user oriented. 4998 */ 4999 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5000 ac->nodemask = NULL; 5001 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5002 ac->highest_zoneidx, ac->nodemask); 5003 } 5004 5005 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5006 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5007 if (page) 5008 goto got_pg; 5009 5010 /* Caller is not willing to reclaim, we can't balance anything */ 5011 if (!can_direct_reclaim) 5012 goto nopage; 5013 5014 /* Avoid recursion of direct reclaim */ 5015 if (current->flags & PF_MEMALLOC) 5016 goto nopage; 5017 5018 /* Try direct reclaim and then allocating */ 5019 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5020 &did_some_progress); 5021 if (page) 5022 goto got_pg; 5023 5024 /* Try direct compaction and then allocating */ 5025 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5026 compact_priority, &compact_result); 5027 if (page) 5028 goto got_pg; 5029 5030 /* Do not loop if specifically requested */ 5031 if (gfp_mask & __GFP_NORETRY) 5032 goto nopage; 5033 5034 /* 5035 * Do not retry costly high order allocations unless they are 5036 * __GFP_RETRY_MAYFAIL 5037 */ 5038 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5039 goto nopage; 5040 5041 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5042 did_some_progress > 0, &no_progress_loops)) 5043 goto retry; 5044 5045 /* 5046 * It doesn't make any sense to retry for the compaction if the order-0 5047 * reclaim is not able to make any progress because the current 5048 * implementation of the compaction depends on the sufficient amount 5049 * of free memory (see __compaction_suitable) 5050 */ 5051 if (did_some_progress > 0 && 5052 should_compact_retry(ac, order, alloc_flags, 5053 compact_result, &compact_priority, 5054 &compaction_retries)) 5055 goto retry; 5056 5057 5058 /* Deal with possible cpuset update races before we start OOM killing */ 5059 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5060 goto retry_cpuset; 5061 5062 /* Reclaim has failed us, start killing things */ 5063 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5064 if (page) 5065 goto got_pg; 5066 5067 /* Avoid allocations with no watermarks from looping endlessly */ 5068 if (tsk_is_oom_victim(current) && 5069 (alloc_flags & ALLOC_OOM || 5070 (gfp_mask & __GFP_NOMEMALLOC))) 5071 goto nopage; 5072 5073 /* Retry as long as the OOM killer is making progress */ 5074 if (did_some_progress) { 5075 no_progress_loops = 0; 5076 goto retry; 5077 } 5078 5079 nopage: 5080 /* Deal with possible cpuset update races before we fail */ 5081 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5082 goto retry_cpuset; 5083 5084 /* 5085 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5086 * we always retry 5087 */ 5088 if (gfp_mask & __GFP_NOFAIL) { 5089 /* 5090 * All existing users of the __GFP_NOFAIL are blockable, so warn 5091 * of any new users that actually require GFP_NOWAIT 5092 */ 5093 if (WARN_ON_ONCE(!can_direct_reclaim)) 5094 goto fail; 5095 5096 /* 5097 * PF_MEMALLOC request from this context is rather bizarre 5098 * because we cannot reclaim anything and only can loop waiting 5099 * for somebody to do a work for us 5100 */ 5101 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5102 5103 /* 5104 * non failing costly orders are a hard requirement which we 5105 * are not prepared for much so let's warn about these users 5106 * so that we can identify them and convert them to something 5107 * else. 5108 */ 5109 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5110 5111 /* 5112 * Help non-failing allocations by giving them access to memory 5113 * reserves but do not use ALLOC_NO_WATERMARKS because this 5114 * could deplete whole memory reserves which would just make 5115 * the situation worse 5116 */ 5117 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5118 if (page) 5119 goto got_pg; 5120 5121 cond_resched(); 5122 goto retry; 5123 } 5124 fail: 5125 warn_alloc(gfp_mask, ac->nodemask, 5126 "page allocation failure: order:%u", order); 5127 got_pg: 5128 return page; 5129 } 5130 5131 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5132 int preferred_nid, nodemask_t *nodemask, 5133 struct alloc_context *ac, gfp_t *alloc_gfp, 5134 unsigned int *alloc_flags) 5135 { 5136 ac->highest_zoneidx = gfp_zone(gfp_mask); 5137 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5138 ac->nodemask = nodemask; 5139 ac->migratetype = gfp_migratetype(gfp_mask); 5140 5141 if (cpusets_enabled()) { 5142 *alloc_gfp |= __GFP_HARDWALL; 5143 /* 5144 * When we are in the interrupt context, it is irrelevant 5145 * to the current task context. It means that any node ok. 5146 */ 5147 if (in_task() && !ac->nodemask) 5148 ac->nodemask = &cpuset_current_mems_allowed; 5149 else 5150 *alloc_flags |= ALLOC_CPUSET; 5151 } 5152 5153 fs_reclaim_acquire(gfp_mask); 5154 fs_reclaim_release(gfp_mask); 5155 5156 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5157 5158 if (should_fail_alloc_page(gfp_mask, order)) 5159 return false; 5160 5161 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5162 5163 /* Dirty zone balancing only done in the fast path */ 5164 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5165 5166 /* 5167 * The preferred zone is used for statistics but crucially it is 5168 * also used as the starting point for the zonelist iterator. It 5169 * may get reset for allocations that ignore memory policies. 5170 */ 5171 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5172 ac->highest_zoneidx, ac->nodemask); 5173 5174 return true; 5175 } 5176 5177 /* 5178 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5179 * @gfp: GFP flags for the allocation 5180 * @preferred_nid: The preferred NUMA node ID to allocate from 5181 * @nodemask: Set of nodes to allocate from, may be NULL 5182 * @nr_pages: The number of pages desired on the list or array 5183 * @page_list: Optional list to store the allocated pages 5184 * @page_array: Optional array to store the pages 5185 * 5186 * This is a batched version of the page allocator that attempts to 5187 * allocate nr_pages quickly. Pages are added to page_list if page_list 5188 * is not NULL, otherwise it is assumed that the page_array is valid. 5189 * 5190 * For lists, nr_pages is the number of pages that should be allocated. 5191 * 5192 * For arrays, only NULL elements are populated with pages and nr_pages 5193 * is the maximum number of pages that will be stored in the array. 5194 * 5195 * Returns the number of pages on the list or array. 5196 */ 5197 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5198 nodemask_t *nodemask, int nr_pages, 5199 struct list_head *page_list, 5200 struct page **page_array) 5201 { 5202 struct page *page; 5203 unsigned long flags; 5204 struct zone *zone; 5205 struct zoneref *z; 5206 struct per_cpu_pages *pcp; 5207 struct list_head *pcp_list; 5208 struct alloc_context ac; 5209 gfp_t alloc_gfp; 5210 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5211 int nr_populated = 0, nr_account = 0; 5212 5213 /* 5214 * Skip populated array elements to determine if any pages need 5215 * to be allocated before disabling IRQs. 5216 */ 5217 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5218 nr_populated++; 5219 5220 /* No pages requested? */ 5221 if (unlikely(nr_pages <= 0)) 5222 goto out; 5223 5224 /* Already populated array? */ 5225 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5226 goto out; 5227 5228 /* Bulk allocator does not support memcg accounting. */ 5229 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5230 goto failed; 5231 5232 /* Use the single page allocator for one page. */ 5233 if (nr_pages - nr_populated == 1) 5234 goto failed; 5235 5236 #ifdef CONFIG_PAGE_OWNER 5237 /* 5238 * PAGE_OWNER may recurse into the allocator to allocate space to 5239 * save the stack with pagesets.lock held. Releasing/reacquiring 5240 * removes much of the performance benefit of bulk allocation so 5241 * force the caller to allocate one page at a time as it'll have 5242 * similar performance to added complexity to the bulk allocator. 5243 */ 5244 if (static_branch_unlikely(&page_owner_inited)) 5245 goto failed; 5246 #endif 5247 5248 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5249 gfp &= gfp_allowed_mask; 5250 alloc_gfp = gfp; 5251 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5252 goto out; 5253 gfp = alloc_gfp; 5254 5255 /* Find an allowed local zone that meets the low watermark. */ 5256 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5257 unsigned long mark; 5258 5259 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5260 !__cpuset_zone_allowed(zone, gfp)) { 5261 continue; 5262 } 5263 5264 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5265 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5266 goto failed; 5267 } 5268 5269 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5270 if (zone_watermark_fast(zone, 0, mark, 5271 zonelist_zone_idx(ac.preferred_zoneref), 5272 alloc_flags, gfp)) { 5273 break; 5274 } 5275 } 5276 5277 /* 5278 * If there are no allowed local zones that meets the watermarks then 5279 * try to allocate a single page and reclaim if necessary. 5280 */ 5281 if (unlikely(!zone)) 5282 goto failed; 5283 5284 /* Attempt the batch allocation */ 5285 local_lock_irqsave(&pagesets.lock, flags); 5286 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5287 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5288 5289 while (nr_populated < nr_pages) { 5290 5291 /* Skip existing pages */ 5292 if (page_array && page_array[nr_populated]) { 5293 nr_populated++; 5294 continue; 5295 } 5296 5297 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5298 pcp, pcp_list); 5299 if (unlikely(!page)) { 5300 /* Try and get at least one page */ 5301 if (!nr_populated) 5302 goto failed_irq; 5303 break; 5304 } 5305 nr_account++; 5306 5307 prep_new_page(page, 0, gfp, 0); 5308 if (page_list) 5309 list_add(&page->lru, page_list); 5310 else 5311 page_array[nr_populated] = page; 5312 nr_populated++; 5313 } 5314 5315 local_unlock_irqrestore(&pagesets.lock, flags); 5316 5317 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5318 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5319 5320 out: 5321 return nr_populated; 5322 5323 failed_irq: 5324 local_unlock_irqrestore(&pagesets.lock, flags); 5325 5326 failed: 5327 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5328 if (page) { 5329 if (page_list) 5330 list_add(&page->lru, page_list); 5331 else 5332 page_array[nr_populated] = page; 5333 nr_populated++; 5334 } 5335 5336 goto out; 5337 } 5338 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5339 5340 /* 5341 * This is the 'heart' of the zoned buddy allocator. 5342 */ 5343 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5344 nodemask_t *nodemask) 5345 { 5346 struct page *page; 5347 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5348 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5349 struct alloc_context ac = { }; 5350 5351 /* 5352 * There are several places where we assume that the order value is sane 5353 * so bail out early if the request is out of bound. 5354 */ 5355 if (unlikely(order >= MAX_ORDER)) { 5356 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5357 return NULL; 5358 } 5359 5360 gfp &= gfp_allowed_mask; 5361 /* 5362 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5363 * resp. GFP_NOIO which has to be inherited for all allocation requests 5364 * from a particular context which has been marked by 5365 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5366 * movable zones are not used during allocation. 5367 */ 5368 gfp = current_gfp_context(gfp); 5369 alloc_gfp = gfp; 5370 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5371 &alloc_gfp, &alloc_flags)) 5372 return NULL; 5373 5374 /* 5375 * Forbid the first pass from falling back to types that fragment 5376 * memory until all local zones are considered. 5377 */ 5378 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5379 5380 /* First allocation attempt */ 5381 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5382 if (likely(page)) 5383 goto out; 5384 5385 alloc_gfp = gfp; 5386 ac.spread_dirty_pages = false; 5387 5388 /* 5389 * Restore the original nodemask if it was potentially replaced with 5390 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5391 */ 5392 ac.nodemask = nodemask; 5393 5394 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5395 5396 out: 5397 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5398 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5399 __free_pages(page, order); 5400 page = NULL; 5401 } 5402 5403 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5404 5405 return page; 5406 } 5407 EXPORT_SYMBOL(__alloc_pages); 5408 5409 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5410 nodemask_t *nodemask) 5411 { 5412 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5413 preferred_nid, nodemask); 5414 5415 if (page && order > 1) 5416 prep_transhuge_page(page); 5417 return (struct folio *)page; 5418 } 5419 EXPORT_SYMBOL(__folio_alloc); 5420 5421 /* 5422 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5423 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5424 * you need to access high mem. 5425 */ 5426 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5427 { 5428 struct page *page; 5429 5430 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5431 if (!page) 5432 return 0; 5433 return (unsigned long) page_address(page); 5434 } 5435 EXPORT_SYMBOL(__get_free_pages); 5436 5437 unsigned long get_zeroed_page(gfp_t gfp_mask) 5438 { 5439 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5440 } 5441 EXPORT_SYMBOL(get_zeroed_page); 5442 5443 /** 5444 * __free_pages - Free pages allocated with alloc_pages(). 5445 * @page: The page pointer returned from alloc_pages(). 5446 * @order: The order of the allocation. 5447 * 5448 * This function can free multi-page allocations that are not compound 5449 * pages. It does not check that the @order passed in matches that of 5450 * the allocation, so it is easy to leak memory. Freeing more memory 5451 * than was allocated will probably emit a warning. 5452 * 5453 * If the last reference to this page is speculative, it will be released 5454 * by put_page() which only frees the first page of a non-compound 5455 * allocation. To prevent the remaining pages from being leaked, we free 5456 * the subsequent pages here. If you want to use the page's reference 5457 * count to decide when to free the allocation, you should allocate a 5458 * compound page, and use put_page() instead of __free_pages(). 5459 * 5460 * Context: May be called in interrupt context or while holding a normal 5461 * spinlock, but not in NMI context or while holding a raw spinlock. 5462 */ 5463 void __free_pages(struct page *page, unsigned int order) 5464 { 5465 if (put_page_testzero(page)) 5466 free_the_page(page, order); 5467 else if (!PageHead(page)) 5468 while (order-- > 0) 5469 free_the_page(page + (1 << order), order); 5470 } 5471 EXPORT_SYMBOL(__free_pages); 5472 5473 void free_pages(unsigned long addr, unsigned int order) 5474 { 5475 if (addr != 0) { 5476 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5477 __free_pages(virt_to_page((void *)addr), order); 5478 } 5479 } 5480 5481 EXPORT_SYMBOL(free_pages); 5482 5483 /* 5484 * Page Fragment: 5485 * An arbitrary-length arbitrary-offset area of memory which resides 5486 * within a 0 or higher order page. Multiple fragments within that page 5487 * are individually refcounted, in the page's reference counter. 5488 * 5489 * The page_frag functions below provide a simple allocation framework for 5490 * page fragments. This is used by the network stack and network device 5491 * drivers to provide a backing region of memory for use as either an 5492 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5493 */ 5494 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5495 gfp_t gfp_mask) 5496 { 5497 struct page *page = NULL; 5498 gfp_t gfp = gfp_mask; 5499 5500 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5501 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5502 __GFP_NOMEMALLOC; 5503 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5504 PAGE_FRAG_CACHE_MAX_ORDER); 5505 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5506 #endif 5507 if (unlikely(!page)) 5508 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5509 5510 nc->va = page ? page_address(page) : NULL; 5511 5512 return page; 5513 } 5514 5515 void __page_frag_cache_drain(struct page *page, unsigned int count) 5516 { 5517 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5518 5519 if (page_ref_sub_and_test(page, count)) 5520 free_the_page(page, compound_order(page)); 5521 } 5522 EXPORT_SYMBOL(__page_frag_cache_drain); 5523 5524 void *page_frag_alloc_align(struct page_frag_cache *nc, 5525 unsigned int fragsz, gfp_t gfp_mask, 5526 unsigned int align_mask) 5527 { 5528 unsigned int size = PAGE_SIZE; 5529 struct page *page; 5530 int offset; 5531 5532 if (unlikely(!nc->va)) { 5533 refill: 5534 page = __page_frag_cache_refill(nc, gfp_mask); 5535 if (!page) 5536 return NULL; 5537 5538 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5539 /* if size can vary use size else just use PAGE_SIZE */ 5540 size = nc->size; 5541 #endif 5542 /* Even if we own the page, we do not use atomic_set(). 5543 * This would break get_page_unless_zero() users. 5544 */ 5545 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5546 5547 /* reset page count bias and offset to start of new frag */ 5548 nc->pfmemalloc = page_is_pfmemalloc(page); 5549 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5550 nc->offset = size; 5551 } 5552 5553 offset = nc->offset - fragsz; 5554 if (unlikely(offset < 0)) { 5555 page = virt_to_page(nc->va); 5556 5557 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5558 goto refill; 5559 5560 if (unlikely(nc->pfmemalloc)) { 5561 free_the_page(page, compound_order(page)); 5562 goto refill; 5563 } 5564 5565 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5566 /* if size can vary use size else just use PAGE_SIZE */ 5567 size = nc->size; 5568 #endif 5569 /* OK, page count is 0, we can safely set it */ 5570 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5571 5572 /* reset page count bias and offset to start of new frag */ 5573 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5574 offset = size - fragsz; 5575 } 5576 5577 nc->pagecnt_bias--; 5578 offset &= align_mask; 5579 nc->offset = offset; 5580 5581 return nc->va + offset; 5582 } 5583 EXPORT_SYMBOL(page_frag_alloc_align); 5584 5585 /* 5586 * Frees a page fragment allocated out of either a compound or order 0 page. 5587 */ 5588 void page_frag_free(void *addr) 5589 { 5590 struct page *page = virt_to_head_page(addr); 5591 5592 if (unlikely(put_page_testzero(page))) 5593 free_the_page(page, compound_order(page)); 5594 } 5595 EXPORT_SYMBOL(page_frag_free); 5596 5597 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5598 size_t size) 5599 { 5600 if (addr) { 5601 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5602 unsigned long used = addr + PAGE_ALIGN(size); 5603 5604 split_page(virt_to_page((void *)addr), order); 5605 while (used < alloc_end) { 5606 free_page(used); 5607 used += PAGE_SIZE; 5608 } 5609 } 5610 return (void *)addr; 5611 } 5612 5613 /** 5614 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5615 * @size: the number of bytes to allocate 5616 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5617 * 5618 * This function is similar to alloc_pages(), except that it allocates the 5619 * minimum number of pages to satisfy the request. alloc_pages() can only 5620 * allocate memory in power-of-two pages. 5621 * 5622 * This function is also limited by MAX_ORDER. 5623 * 5624 * Memory allocated by this function must be released by free_pages_exact(). 5625 * 5626 * Return: pointer to the allocated area or %NULL in case of error. 5627 */ 5628 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5629 { 5630 unsigned int order = get_order(size); 5631 unsigned long addr; 5632 5633 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5634 gfp_mask &= ~__GFP_COMP; 5635 5636 addr = __get_free_pages(gfp_mask, order); 5637 return make_alloc_exact(addr, order, size); 5638 } 5639 EXPORT_SYMBOL(alloc_pages_exact); 5640 5641 /** 5642 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5643 * pages on a node. 5644 * @nid: the preferred node ID where memory should be allocated 5645 * @size: the number of bytes to allocate 5646 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5647 * 5648 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5649 * back. 5650 * 5651 * Return: pointer to the allocated area or %NULL in case of error. 5652 */ 5653 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5654 { 5655 unsigned int order = get_order(size); 5656 struct page *p; 5657 5658 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5659 gfp_mask &= ~__GFP_COMP; 5660 5661 p = alloc_pages_node(nid, gfp_mask, order); 5662 if (!p) 5663 return NULL; 5664 return make_alloc_exact((unsigned long)page_address(p), order, size); 5665 } 5666 5667 /** 5668 * free_pages_exact - release memory allocated via alloc_pages_exact() 5669 * @virt: the value returned by alloc_pages_exact. 5670 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5671 * 5672 * Release the memory allocated by a previous call to alloc_pages_exact. 5673 */ 5674 void free_pages_exact(void *virt, size_t size) 5675 { 5676 unsigned long addr = (unsigned long)virt; 5677 unsigned long end = addr + PAGE_ALIGN(size); 5678 5679 while (addr < end) { 5680 free_page(addr); 5681 addr += PAGE_SIZE; 5682 } 5683 } 5684 EXPORT_SYMBOL(free_pages_exact); 5685 5686 /** 5687 * nr_free_zone_pages - count number of pages beyond high watermark 5688 * @offset: The zone index of the highest zone 5689 * 5690 * nr_free_zone_pages() counts the number of pages which are beyond the 5691 * high watermark within all zones at or below a given zone index. For each 5692 * zone, the number of pages is calculated as: 5693 * 5694 * nr_free_zone_pages = managed_pages - high_pages 5695 * 5696 * Return: number of pages beyond high watermark. 5697 */ 5698 static unsigned long nr_free_zone_pages(int offset) 5699 { 5700 struct zoneref *z; 5701 struct zone *zone; 5702 5703 /* Just pick one node, since fallback list is circular */ 5704 unsigned long sum = 0; 5705 5706 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5707 5708 for_each_zone_zonelist(zone, z, zonelist, offset) { 5709 unsigned long size = zone_managed_pages(zone); 5710 unsigned long high = high_wmark_pages(zone); 5711 if (size > high) 5712 sum += size - high; 5713 } 5714 5715 return sum; 5716 } 5717 5718 /** 5719 * nr_free_buffer_pages - count number of pages beyond high watermark 5720 * 5721 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5722 * watermark within ZONE_DMA and ZONE_NORMAL. 5723 * 5724 * Return: number of pages beyond high watermark within ZONE_DMA and 5725 * ZONE_NORMAL. 5726 */ 5727 unsigned long nr_free_buffer_pages(void) 5728 { 5729 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5730 } 5731 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5732 5733 static inline void show_node(struct zone *zone) 5734 { 5735 if (IS_ENABLED(CONFIG_NUMA)) 5736 printk("Node %d ", zone_to_nid(zone)); 5737 } 5738 5739 long si_mem_available(void) 5740 { 5741 long available; 5742 unsigned long pagecache; 5743 unsigned long wmark_low = 0; 5744 unsigned long pages[NR_LRU_LISTS]; 5745 unsigned long reclaimable; 5746 struct zone *zone; 5747 int lru; 5748 5749 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5750 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5751 5752 for_each_zone(zone) 5753 wmark_low += low_wmark_pages(zone); 5754 5755 /* 5756 * Estimate the amount of memory available for userspace allocations, 5757 * without causing swapping. 5758 */ 5759 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5760 5761 /* 5762 * Not all the page cache can be freed, otherwise the system will 5763 * start swapping. Assume at least half of the page cache, or the 5764 * low watermark worth of cache, needs to stay. 5765 */ 5766 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5767 pagecache -= min(pagecache / 2, wmark_low); 5768 available += pagecache; 5769 5770 /* 5771 * Part of the reclaimable slab and other kernel memory consists of 5772 * items that are in use, and cannot be freed. Cap this estimate at the 5773 * low watermark. 5774 */ 5775 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5776 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5777 available += reclaimable - min(reclaimable / 2, wmark_low); 5778 5779 if (available < 0) 5780 available = 0; 5781 return available; 5782 } 5783 EXPORT_SYMBOL_GPL(si_mem_available); 5784 5785 void si_meminfo(struct sysinfo *val) 5786 { 5787 val->totalram = totalram_pages(); 5788 val->sharedram = global_node_page_state(NR_SHMEM); 5789 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5790 val->bufferram = nr_blockdev_pages(); 5791 val->totalhigh = totalhigh_pages(); 5792 val->freehigh = nr_free_highpages(); 5793 val->mem_unit = PAGE_SIZE; 5794 } 5795 5796 EXPORT_SYMBOL(si_meminfo); 5797 5798 #ifdef CONFIG_NUMA 5799 void si_meminfo_node(struct sysinfo *val, int nid) 5800 { 5801 int zone_type; /* needs to be signed */ 5802 unsigned long managed_pages = 0; 5803 unsigned long managed_highpages = 0; 5804 unsigned long free_highpages = 0; 5805 pg_data_t *pgdat = NODE_DATA(nid); 5806 5807 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5808 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5809 val->totalram = managed_pages; 5810 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5811 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5812 #ifdef CONFIG_HIGHMEM 5813 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5814 struct zone *zone = &pgdat->node_zones[zone_type]; 5815 5816 if (is_highmem(zone)) { 5817 managed_highpages += zone_managed_pages(zone); 5818 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5819 } 5820 } 5821 val->totalhigh = managed_highpages; 5822 val->freehigh = free_highpages; 5823 #else 5824 val->totalhigh = managed_highpages; 5825 val->freehigh = free_highpages; 5826 #endif 5827 val->mem_unit = PAGE_SIZE; 5828 } 5829 #endif 5830 5831 /* 5832 * Determine whether the node should be displayed or not, depending on whether 5833 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5834 */ 5835 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5836 { 5837 if (!(flags & SHOW_MEM_FILTER_NODES)) 5838 return false; 5839 5840 /* 5841 * no node mask - aka implicit memory numa policy. Do not bother with 5842 * the synchronization - read_mems_allowed_begin - because we do not 5843 * have to be precise here. 5844 */ 5845 if (!nodemask) 5846 nodemask = &cpuset_current_mems_allowed; 5847 5848 return !node_isset(nid, *nodemask); 5849 } 5850 5851 #define K(x) ((x) << (PAGE_SHIFT-10)) 5852 5853 static void show_migration_types(unsigned char type) 5854 { 5855 static const char types[MIGRATE_TYPES] = { 5856 [MIGRATE_UNMOVABLE] = 'U', 5857 [MIGRATE_MOVABLE] = 'M', 5858 [MIGRATE_RECLAIMABLE] = 'E', 5859 [MIGRATE_HIGHATOMIC] = 'H', 5860 #ifdef CONFIG_CMA 5861 [MIGRATE_CMA] = 'C', 5862 #endif 5863 #ifdef CONFIG_MEMORY_ISOLATION 5864 [MIGRATE_ISOLATE] = 'I', 5865 #endif 5866 }; 5867 char tmp[MIGRATE_TYPES + 1]; 5868 char *p = tmp; 5869 int i; 5870 5871 for (i = 0; i < MIGRATE_TYPES; i++) { 5872 if (type & (1 << i)) 5873 *p++ = types[i]; 5874 } 5875 5876 *p = '\0'; 5877 printk(KERN_CONT "(%s) ", tmp); 5878 } 5879 5880 /* 5881 * Show free area list (used inside shift_scroll-lock stuff) 5882 * We also calculate the percentage fragmentation. We do this by counting the 5883 * memory on each free list with the exception of the first item on the list. 5884 * 5885 * Bits in @filter: 5886 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5887 * cpuset. 5888 */ 5889 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5890 { 5891 unsigned long free_pcp = 0; 5892 int cpu; 5893 struct zone *zone; 5894 pg_data_t *pgdat; 5895 5896 for_each_populated_zone(zone) { 5897 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5898 continue; 5899 5900 for_each_online_cpu(cpu) 5901 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5902 } 5903 5904 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5905 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5906 " unevictable:%lu dirty:%lu writeback:%lu\n" 5907 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5908 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5909 " kernel_misc_reclaimable:%lu\n" 5910 " free:%lu free_pcp:%lu free_cma:%lu\n", 5911 global_node_page_state(NR_ACTIVE_ANON), 5912 global_node_page_state(NR_INACTIVE_ANON), 5913 global_node_page_state(NR_ISOLATED_ANON), 5914 global_node_page_state(NR_ACTIVE_FILE), 5915 global_node_page_state(NR_INACTIVE_FILE), 5916 global_node_page_state(NR_ISOLATED_FILE), 5917 global_node_page_state(NR_UNEVICTABLE), 5918 global_node_page_state(NR_FILE_DIRTY), 5919 global_node_page_state(NR_WRITEBACK), 5920 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5921 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5922 global_node_page_state(NR_FILE_MAPPED), 5923 global_node_page_state(NR_SHMEM), 5924 global_node_page_state(NR_PAGETABLE), 5925 global_zone_page_state(NR_BOUNCE), 5926 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5927 global_zone_page_state(NR_FREE_PAGES), 5928 free_pcp, 5929 global_zone_page_state(NR_FREE_CMA_PAGES)); 5930 5931 for_each_online_pgdat(pgdat) { 5932 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5933 continue; 5934 5935 printk("Node %d" 5936 " active_anon:%lukB" 5937 " inactive_anon:%lukB" 5938 " active_file:%lukB" 5939 " inactive_file:%lukB" 5940 " unevictable:%lukB" 5941 " isolated(anon):%lukB" 5942 " isolated(file):%lukB" 5943 " mapped:%lukB" 5944 " dirty:%lukB" 5945 " writeback:%lukB" 5946 " shmem:%lukB" 5947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5948 " shmem_thp: %lukB" 5949 " shmem_pmdmapped: %lukB" 5950 " anon_thp: %lukB" 5951 #endif 5952 " writeback_tmp:%lukB" 5953 " kernel_stack:%lukB" 5954 #ifdef CONFIG_SHADOW_CALL_STACK 5955 " shadow_call_stack:%lukB" 5956 #endif 5957 " pagetables:%lukB" 5958 " all_unreclaimable? %s" 5959 "\n", 5960 pgdat->node_id, 5961 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5962 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5963 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5964 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5965 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5966 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5967 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5968 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5969 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5970 K(node_page_state(pgdat, NR_WRITEBACK)), 5971 K(node_page_state(pgdat, NR_SHMEM)), 5972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5973 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5974 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5975 K(node_page_state(pgdat, NR_ANON_THPS)), 5976 #endif 5977 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5978 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5979 #ifdef CONFIG_SHADOW_CALL_STACK 5980 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5981 #endif 5982 K(node_page_state(pgdat, NR_PAGETABLE)), 5983 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5984 "yes" : "no"); 5985 } 5986 5987 for_each_populated_zone(zone) { 5988 int i; 5989 5990 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5991 continue; 5992 5993 free_pcp = 0; 5994 for_each_online_cpu(cpu) 5995 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5996 5997 show_node(zone); 5998 printk(KERN_CONT 5999 "%s" 6000 " free:%lukB" 6001 " min:%lukB" 6002 " low:%lukB" 6003 " high:%lukB" 6004 " reserved_highatomic:%luKB" 6005 " active_anon:%lukB" 6006 " inactive_anon:%lukB" 6007 " active_file:%lukB" 6008 " inactive_file:%lukB" 6009 " unevictable:%lukB" 6010 " writepending:%lukB" 6011 " present:%lukB" 6012 " managed:%lukB" 6013 " mlocked:%lukB" 6014 " bounce:%lukB" 6015 " free_pcp:%lukB" 6016 " local_pcp:%ukB" 6017 " free_cma:%lukB" 6018 "\n", 6019 zone->name, 6020 K(zone_page_state(zone, NR_FREE_PAGES)), 6021 K(min_wmark_pages(zone)), 6022 K(low_wmark_pages(zone)), 6023 K(high_wmark_pages(zone)), 6024 K(zone->nr_reserved_highatomic), 6025 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6026 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6027 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6028 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6029 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6030 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6031 K(zone->present_pages), 6032 K(zone_managed_pages(zone)), 6033 K(zone_page_state(zone, NR_MLOCK)), 6034 K(zone_page_state(zone, NR_BOUNCE)), 6035 K(free_pcp), 6036 K(this_cpu_read(zone->per_cpu_pageset->count)), 6037 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6038 printk("lowmem_reserve[]:"); 6039 for (i = 0; i < MAX_NR_ZONES; i++) 6040 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6041 printk(KERN_CONT "\n"); 6042 } 6043 6044 for_each_populated_zone(zone) { 6045 unsigned int order; 6046 unsigned long nr[MAX_ORDER], flags, total = 0; 6047 unsigned char types[MAX_ORDER]; 6048 6049 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6050 continue; 6051 show_node(zone); 6052 printk(KERN_CONT "%s: ", zone->name); 6053 6054 spin_lock_irqsave(&zone->lock, flags); 6055 for (order = 0; order < MAX_ORDER; order++) { 6056 struct free_area *area = &zone->free_area[order]; 6057 int type; 6058 6059 nr[order] = area->nr_free; 6060 total += nr[order] << order; 6061 6062 types[order] = 0; 6063 for (type = 0; type < MIGRATE_TYPES; type++) { 6064 if (!free_area_empty(area, type)) 6065 types[order] |= 1 << type; 6066 } 6067 } 6068 spin_unlock_irqrestore(&zone->lock, flags); 6069 for (order = 0; order < MAX_ORDER; order++) { 6070 printk(KERN_CONT "%lu*%lukB ", 6071 nr[order], K(1UL) << order); 6072 if (nr[order]) 6073 show_migration_types(types[order]); 6074 } 6075 printk(KERN_CONT "= %lukB\n", K(total)); 6076 } 6077 6078 hugetlb_show_meminfo(); 6079 6080 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6081 6082 show_swap_cache_info(); 6083 } 6084 6085 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6086 { 6087 zoneref->zone = zone; 6088 zoneref->zone_idx = zone_idx(zone); 6089 } 6090 6091 /* 6092 * Builds allocation fallback zone lists. 6093 * 6094 * Add all populated zones of a node to the zonelist. 6095 */ 6096 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6097 { 6098 struct zone *zone; 6099 enum zone_type zone_type = MAX_NR_ZONES; 6100 int nr_zones = 0; 6101 6102 do { 6103 zone_type--; 6104 zone = pgdat->node_zones + zone_type; 6105 if (managed_zone(zone)) { 6106 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6107 check_highest_zone(zone_type); 6108 } 6109 } while (zone_type); 6110 6111 return nr_zones; 6112 } 6113 6114 #ifdef CONFIG_NUMA 6115 6116 static int __parse_numa_zonelist_order(char *s) 6117 { 6118 /* 6119 * We used to support different zonelists modes but they turned 6120 * out to be just not useful. Let's keep the warning in place 6121 * if somebody still use the cmd line parameter so that we do 6122 * not fail it silently 6123 */ 6124 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6125 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6126 return -EINVAL; 6127 } 6128 return 0; 6129 } 6130 6131 char numa_zonelist_order[] = "Node"; 6132 6133 /* 6134 * sysctl handler for numa_zonelist_order 6135 */ 6136 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6137 void *buffer, size_t *length, loff_t *ppos) 6138 { 6139 if (write) 6140 return __parse_numa_zonelist_order(buffer); 6141 return proc_dostring(table, write, buffer, length, ppos); 6142 } 6143 6144 6145 #define MAX_NODE_LOAD (nr_online_nodes) 6146 static int node_load[MAX_NUMNODES]; 6147 6148 /** 6149 * find_next_best_node - find the next node that should appear in a given node's fallback list 6150 * @node: node whose fallback list we're appending 6151 * @used_node_mask: nodemask_t of already used nodes 6152 * 6153 * We use a number of factors to determine which is the next node that should 6154 * appear on a given node's fallback list. The node should not have appeared 6155 * already in @node's fallback list, and it should be the next closest node 6156 * according to the distance array (which contains arbitrary distance values 6157 * from each node to each node in the system), and should also prefer nodes 6158 * with no CPUs, since presumably they'll have very little allocation pressure 6159 * on them otherwise. 6160 * 6161 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6162 */ 6163 int find_next_best_node(int node, nodemask_t *used_node_mask) 6164 { 6165 int n, val; 6166 int min_val = INT_MAX; 6167 int best_node = NUMA_NO_NODE; 6168 6169 /* Use the local node if we haven't already */ 6170 if (!node_isset(node, *used_node_mask)) { 6171 node_set(node, *used_node_mask); 6172 return node; 6173 } 6174 6175 for_each_node_state(n, N_MEMORY) { 6176 6177 /* Don't want a node to appear more than once */ 6178 if (node_isset(n, *used_node_mask)) 6179 continue; 6180 6181 /* Use the distance array to find the distance */ 6182 val = node_distance(node, n); 6183 6184 /* Penalize nodes under us ("prefer the next node") */ 6185 val += (n < node); 6186 6187 /* Give preference to headless and unused nodes */ 6188 if (!cpumask_empty(cpumask_of_node(n))) 6189 val += PENALTY_FOR_NODE_WITH_CPUS; 6190 6191 /* Slight preference for less loaded node */ 6192 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6193 val += node_load[n]; 6194 6195 if (val < min_val) { 6196 min_val = val; 6197 best_node = n; 6198 } 6199 } 6200 6201 if (best_node >= 0) 6202 node_set(best_node, *used_node_mask); 6203 6204 return best_node; 6205 } 6206 6207 6208 /* 6209 * Build zonelists ordered by node and zones within node. 6210 * This results in maximum locality--normal zone overflows into local 6211 * DMA zone, if any--but risks exhausting DMA zone. 6212 */ 6213 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6214 unsigned nr_nodes) 6215 { 6216 struct zoneref *zonerefs; 6217 int i; 6218 6219 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6220 6221 for (i = 0; i < nr_nodes; i++) { 6222 int nr_zones; 6223 6224 pg_data_t *node = NODE_DATA(node_order[i]); 6225 6226 nr_zones = build_zonerefs_node(node, zonerefs); 6227 zonerefs += nr_zones; 6228 } 6229 zonerefs->zone = NULL; 6230 zonerefs->zone_idx = 0; 6231 } 6232 6233 /* 6234 * Build gfp_thisnode zonelists 6235 */ 6236 static void build_thisnode_zonelists(pg_data_t *pgdat) 6237 { 6238 struct zoneref *zonerefs; 6239 int nr_zones; 6240 6241 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6242 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6243 zonerefs += nr_zones; 6244 zonerefs->zone = NULL; 6245 zonerefs->zone_idx = 0; 6246 } 6247 6248 /* 6249 * Build zonelists ordered by zone and nodes within zones. 6250 * This results in conserving DMA zone[s] until all Normal memory is 6251 * exhausted, but results in overflowing to remote node while memory 6252 * may still exist in local DMA zone. 6253 */ 6254 6255 static void build_zonelists(pg_data_t *pgdat) 6256 { 6257 static int node_order[MAX_NUMNODES]; 6258 int node, load, nr_nodes = 0; 6259 nodemask_t used_mask = NODE_MASK_NONE; 6260 int local_node, prev_node; 6261 6262 /* NUMA-aware ordering of nodes */ 6263 local_node = pgdat->node_id; 6264 load = nr_online_nodes; 6265 prev_node = local_node; 6266 6267 memset(node_order, 0, sizeof(node_order)); 6268 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6269 /* 6270 * We don't want to pressure a particular node. 6271 * So adding penalty to the first node in same 6272 * distance group to make it round-robin. 6273 */ 6274 if (node_distance(local_node, node) != 6275 node_distance(local_node, prev_node)) 6276 node_load[node] = load; 6277 6278 node_order[nr_nodes++] = node; 6279 prev_node = node; 6280 load--; 6281 } 6282 6283 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6284 build_thisnode_zonelists(pgdat); 6285 } 6286 6287 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6288 /* 6289 * Return node id of node used for "local" allocations. 6290 * I.e., first node id of first zone in arg node's generic zonelist. 6291 * Used for initializing percpu 'numa_mem', which is used primarily 6292 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6293 */ 6294 int local_memory_node(int node) 6295 { 6296 struct zoneref *z; 6297 6298 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6299 gfp_zone(GFP_KERNEL), 6300 NULL); 6301 return zone_to_nid(z->zone); 6302 } 6303 #endif 6304 6305 static void setup_min_unmapped_ratio(void); 6306 static void setup_min_slab_ratio(void); 6307 #else /* CONFIG_NUMA */ 6308 6309 static void build_zonelists(pg_data_t *pgdat) 6310 { 6311 int node, local_node; 6312 struct zoneref *zonerefs; 6313 int nr_zones; 6314 6315 local_node = pgdat->node_id; 6316 6317 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6318 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6319 zonerefs += nr_zones; 6320 6321 /* 6322 * Now we build the zonelist so that it contains the zones 6323 * of all the other nodes. 6324 * We don't want to pressure a particular node, so when 6325 * building the zones for node N, we make sure that the 6326 * zones coming right after the local ones are those from 6327 * node N+1 (modulo N) 6328 */ 6329 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6330 if (!node_online(node)) 6331 continue; 6332 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6333 zonerefs += nr_zones; 6334 } 6335 for (node = 0; node < local_node; node++) { 6336 if (!node_online(node)) 6337 continue; 6338 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6339 zonerefs += nr_zones; 6340 } 6341 6342 zonerefs->zone = NULL; 6343 zonerefs->zone_idx = 0; 6344 } 6345 6346 #endif /* CONFIG_NUMA */ 6347 6348 /* 6349 * Boot pageset table. One per cpu which is going to be used for all 6350 * zones and all nodes. The parameters will be set in such a way 6351 * that an item put on a list will immediately be handed over to 6352 * the buddy list. This is safe since pageset manipulation is done 6353 * with interrupts disabled. 6354 * 6355 * The boot_pagesets must be kept even after bootup is complete for 6356 * unused processors and/or zones. They do play a role for bootstrapping 6357 * hotplugged processors. 6358 * 6359 * zoneinfo_show() and maybe other functions do 6360 * not check if the processor is online before following the pageset pointer. 6361 * Other parts of the kernel may not check if the zone is available. 6362 */ 6363 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6364 /* These effectively disable the pcplists in the boot pageset completely */ 6365 #define BOOT_PAGESET_HIGH 0 6366 #define BOOT_PAGESET_BATCH 1 6367 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6368 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6369 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6370 6371 static void __build_all_zonelists(void *data) 6372 { 6373 int nid; 6374 int __maybe_unused cpu; 6375 pg_data_t *self = data; 6376 static DEFINE_SPINLOCK(lock); 6377 6378 spin_lock(&lock); 6379 6380 #ifdef CONFIG_NUMA 6381 memset(node_load, 0, sizeof(node_load)); 6382 #endif 6383 6384 /* 6385 * This node is hotadded and no memory is yet present. So just 6386 * building zonelists is fine - no need to touch other nodes. 6387 */ 6388 if (self && !node_online(self->node_id)) { 6389 build_zonelists(self); 6390 } else { 6391 for_each_online_node(nid) { 6392 pg_data_t *pgdat = NODE_DATA(nid); 6393 6394 build_zonelists(pgdat); 6395 } 6396 6397 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6398 /* 6399 * We now know the "local memory node" for each node-- 6400 * i.e., the node of the first zone in the generic zonelist. 6401 * Set up numa_mem percpu variable for on-line cpus. During 6402 * boot, only the boot cpu should be on-line; we'll init the 6403 * secondary cpus' numa_mem as they come on-line. During 6404 * node/memory hotplug, we'll fixup all on-line cpus. 6405 */ 6406 for_each_online_cpu(cpu) 6407 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6408 #endif 6409 } 6410 6411 spin_unlock(&lock); 6412 } 6413 6414 static noinline void __init 6415 build_all_zonelists_init(void) 6416 { 6417 int cpu; 6418 6419 __build_all_zonelists(NULL); 6420 6421 /* 6422 * Initialize the boot_pagesets that are going to be used 6423 * for bootstrapping processors. The real pagesets for 6424 * each zone will be allocated later when the per cpu 6425 * allocator is available. 6426 * 6427 * boot_pagesets are used also for bootstrapping offline 6428 * cpus if the system is already booted because the pagesets 6429 * are needed to initialize allocators on a specific cpu too. 6430 * F.e. the percpu allocator needs the page allocator which 6431 * needs the percpu allocator in order to allocate its pagesets 6432 * (a chicken-egg dilemma). 6433 */ 6434 for_each_possible_cpu(cpu) 6435 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6436 6437 mminit_verify_zonelist(); 6438 cpuset_init_current_mems_allowed(); 6439 } 6440 6441 /* 6442 * unless system_state == SYSTEM_BOOTING. 6443 * 6444 * __ref due to call of __init annotated helper build_all_zonelists_init 6445 * [protected by SYSTEM_BOOTING]. 6446 */ 6447 void __ref build_all_zonelists(pg_data_t *pgdat) 6448 { 6449 unsigned long vm_total_pages; 6450 6451 if (system_state == SYSTEM_BOOTING) { 6452 build_all_zonelists_init(); 6453 } else { 6454 __build_all_zonelists(pgdat); 6455 /* cpuset refresh routine should be here */ 6456 } 6457 /* Get the number of free pages beyond high watermark in all zones. */ 6458 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6459 /* 6460 * Disable grouping by mobility if the number of pages in the 6461 * system is too low to allow the mechanism to work. It would be 6462 * more accurate, but expensive to check per-zone. This check is 6463 * made on memory-hotadd so a system can start with mobility 6464 * disabled and enable it later 6465 */ 6466 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6467 page_group_by_mobility_disabled = 1; 6468 else 6469 page_group_by_mobility_disabled = 0; 6470 6471 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6472 nr_online_nodes, 6473 page_group_by_mobility_disabled ? "off" : "on", 6474 vm_total_pages); 6475 #ifdef CONFIG_NUMA 6476 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6477 #endif 6478 } 6479 6480 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6481 static bool __meminit 6482 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6483 { 6484 static struct memblock_region *r; 6485 6486 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6487 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6488 for_each_mem_region(r) { 6489 if (*pfn < memblock_region_memory_end_pfn(r)) 6490 break; 6491 } 6492 } 6493 if (*pfn >= memblock_region_memory_base_pfn(r) && 6494 memblock_is_mirror(r)) { 6495 *pfn = memblock_region_memory_end_pfn(r); 6496 return true; 6497 } 6498 } 6499 return false; 6500 } 6501 6502 /* 6503 * Initially all pages are reserved - free ones are freed 6504 * up by memblock_free_all() once the early boot process is 6505 * done. Non-atomic initialization, single-pass. 6506 * 6507 * All aligned pageblocks are initialized to the specified migratetype 6508 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6509 * zone stats (e.g., nr_isolate_pageblock) are touched. 6510 */ 6511 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6512 unsigned long start_pfn, unsigned long zone_end_pfn, 6513 enum meminit_context context, 6514 struct vmem_altmap *altmap, int migratetype) 6515 { 6516 unsigned long pfn, end_pfn = start_pfn + size; 6517 struct page *page; 6518 6519 if (highest_memmap_pfn < end_pfn - 1) 6520 highest_memmap_pfn = end_pfn - 1; 6521 6522 #ifdef CONFIG_ZONE_DEVICE 6523 /* 6524 * Honor reservation requested by the driver for this ZONE_DEVICE 6525 * memory. We limit the total number of pages to initialize to just 6526 * those that might contain the memory mapping. We will defer the 6527 * ZONE_DEVICE page initialization until after we have released 6528 * the hotplug lock. 6529 */ 6530 if (zone == ZONE_DEVICE) { 6531 if (!altmap) 6532 return; 6533 6534 if (start_pfn == altmap->base_pfn) 6535 start_pfn += altmap->reserve; 6536 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6537 } 6538 #endif 6539 6540 for (pfn = start_pfn; pfn < end_pfn; ) { 6541 /* 6542 * There can be holes in boot-time mem_map[]s handed to this 6543 * function. They do not exist on hotplugged memory. 6544 */ 6545 if (context == MEMINIT_EARLY) { 6546 if (overlap_memmap_init(zone, &pfn)) 6547 continue; 6548 if (defer_init(nid, pfn, zone_end_pfn)) 6549 break; 6550 } 6551 6552 page = pfn_to_page(pfn); 6553 __init_single_page(page, pfn, zone, nid); 6554 if (context == MEMINIT_HOTPLUG) 6555 __SetPageReserved(page); 6556 6557 /* 6558 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6559 * such that unmovable allocations won't be scattered all 6560 * over the place during system boot. 6561 */ 6562 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6563 set_pageblock_migratetype(page, migratetype); 6564 cond_resched(); 6565 } 6566 pfn++; 6567 } 6568 } 6569 6570 #ifdef CONFIG_ZONE_DEVICE 6571 void __ref memmap_init_zone_device(struct zone *zone, 6572 unsigned long start_pfn, 6573 unsigned long nr_pages, 6574 struct dev_pagemap *pgmap) 6575 { 6576 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6577 struct pglist_data *pgdat = zone->zone_pgdat; 6578 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6579 unsigned long zone_idx = zone_idx(zone); 6580 unsigned long start = jiffies; 6581 int nid = pgdat->node_id; 6582 6583 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6584 return; 6585 6586 /* 6587 * The call to memmap_init should have already taken care 6588 * of the pages reserved for the memmap, so we can just jump to 6589 * the end of that region and start processing the device pages. 6590 */ 6591 if (altmap) { 6592 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6593 nr_pages = end_pfn - start_pfn; 6594 } 6595 6596 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6597 struct page *page = pfn_to_page(pfn); 6598 6599 __init_single_page(page, pfn, zone_idx, nid); 6600 6601 /* 6602 * Mark page reserved as it will need to wait for onlining 6603 * phase for it to be fully associated with a zone. 6604 * 6605 * We can use the non-atomic __set_bit operation for setting 6606 * the flag as we are still initializing the pages. 6607 */ 6608 __SetPageReserved(page); 6609 6610 /* 6611 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6612 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6613 * ever freed or placed on a driver-private list. 6614 */ 6615 page->pgmap = pgmap; 6616 page->zone_device_data = NULL; 6617 6618 /* 6619 * Mark the block movable so that blocks are reserved for 6620 * movable at startup. This will force kernel allocations 6621 * to reserve their blocks rather than leaking throughout 6622 * the address space during boot when many long-lived 6623 * kernel allocations are made. 6624 * 6625 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6626 * because this is done early in section_activate() 6627 */ 6628 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6629 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6630 cond_resched(); 6631 } 6632 } 6633 6634 pr_info("%s initialised %lu pages in %ums\n", __func__, 6635 nr_pages, jiffies_to_msecs(jiffies - start)); 6636 } 6637 6638 #endif 6639 static void __meminit zone_init_free_lists(struct zone *zone) 6640 { 6641 unsigned int order, t; 6642 for_each_migratetype_order(order, t) { 6643 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6644 zone->free_area[order].nr_free = 0; 6645 } 6646 } 6647 6648 /* 6649 * Only struct pages that correspond to ranges defined by memblock.memory 6650 * are zeroed and initialized by going through __init_single_page() during 6651 * memmap_init_zone_range(). 6652 * 6653 * But, there could be struct pages that correspond to holes in 6654 * memblock.memory. This can happen because of the following reasons: 6655 * - physical memory bank size is not necessarily the exact multiple of the 6656 * arbitrary section size 6657 * - early reserved memory may not be listed in memblock.memory 6658 * - memory layouts defined with memmap= kernel parameter may not align 6659 * nicely with memmap sections 6660 * 6661 * Explicitly initialize those struct pages so that: 6662 * - PG_Reserved is set 6663 * - zone and node links point to zone and node that span the page if the 6664 * hole is in the middle of a zone 6665 * - zone and node links point to adjacent zone/node if the hole falls on 6666 * the zone boundary; the pages in such holes will be prepended to the 6667 * zone/node above the hole except for the trailing pages in the last 6668 * section that will be appended to the zone/node below. 6669 */ 6670 static void __init init_unavailable_range(unsigned long spfn, 6671 unsigned long epfn, 6672 int zone, int node) 6673 { 6674 unsigned long pfn; 6675 u64 pgcnt = 0; 6676 6677 for (pfn = spfn; pfn < epfn; pfn++) { 6678 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6679 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6680 + pageblock_nr_pages - 1; 6681 continue; 6682 } 6683 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6684 __SetPageReserved(pfn_to_page(pfn)); 6685 pgcnt++; 6686 } 6687 6688 if (pgcnt) 6689 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6690 node, zone_names[zone], pgcnt); 6691 } 6692 6693 static void __init memmap_init_zone_range(struct zone *zone, 6694 unsigned long start_pfn, 6695 unsigned long end_pfn, 6696 unsigned long *hole_pfn) 6697 { 6698 unsigned long zone_start_pfn = zone->zone_start_pfn; 6699 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6700 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6701 6702 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6703 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6704 6705 if (start_pfn >= end_pfn) 6706 return; 6707 6708 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6709 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6710 6711 if (*hole_pfn < start_pfn) 6712 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6713 6714 *hole_pfn = end_pfn; 6715 } 6716 6717 static void __init memmap_init(void) 6718 { 6719 unsigned long start_pfn, end_pfn; 6720 unsigned long hole_pfn = 0; 6721 int i, j, zone_id = 0, nid; 6722 6723 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6724 struct pglist_data *node = NODE_DATA(nid); 6725 6726 for (j = 0; j < MAX_NR_ZONES; j++) { 6727 struct zone *zone = node->node_zones + j; 6728 6729 if (!populated_zone(zone)) 6730 continue; 6731 6732 memmap_init_zone_range(zone, start_pfn, end_pfn, 6733 &hole_pfn); 6734 zone_id = j; 6735 } 6736 } 6737 6738 #ifdef CONFIG_SPARSEMEM 6739 /* 6740 * Initialize the memory map for hole in the range [memory_end, 6741 * section_end]. 6742 * Append the pages in this hole to the highest zone in the last 6743 * node. 6744 * The call to init_unavailable_range() is outside the ifdef to 6745 * silence the compiler warining about zone_id set but not used; 6746 * for FLATMEM it is a nop anyway 6747 */ 6748 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6749 if (hole_pfn < end_pfn) 6750 #endif 6751 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6752 } 6753 6754 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6755 phys_addr_t min_addr, int nid, bool exact_nid) 6756 { 6757 void *ptr; 6758 6759 if (exact_nid) 6760 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6761 MEMBLOCK_ALLOC_ACCESSIBLE, 6762 nid); 6763 else 6764 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6765 MEMBLOCK_ALLOC_ACCESSIBLE, 6766 nid); 6767 6768 if (ptr && size > 0) 6769 page_init_poison(ptr, size); 6770 6771 return ptr; 6772 } 6773 6774 static int zone_batchsize(struct zone *zone) 6775 { 6776 #ifdef CONFIG_MMU 6777 int batch; 6778 6779 /* 6780 * The number of pages to batch allocate is either ~0.1% 6781 * of the zone or 1MB, whichever is smaller. The batch 6782 * size is striking a balance between allocation latency 6783 * and zone lock contention. 6784 */ 6785 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6786 batch /= 4; /* We effectively *= 4 below */ 6787 if (batch < 1) 6788 batch = 1; 6789 6790 /* 6791 * Clamp the batch to a 2^n - 1 value. Having a power 6792 * of 2 value was found to be more likely to have 6793 * suboptimal cache aliasing properties in some cases. 6794 * 6795 * For example if 2 tasks are alternately allocating 6796 * batches of pages, one task can end up with a lot 6797 * of pages of one half of the possible page colors 6798 * and the other with pages of the other colors. 6799 */ 6800 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6801 6802 return batch; 6803 6804 #else 6805 /* The deferral and batching of frees should be suppressed under NOMMU 6806 * conditions. 6807 * 6808 * The problem is that NOMMU needs to be able to allocate large chunks 6809 * of contiguous memory as there's no hardware page translation to 6810 * assemble apparent contiguous memory from discontiguous pages. 6811 * 6812 * Queueing large contiguous runs of pages for batching, however, 6813 * causes the pages to actually be freed in smaller chunks. As there 6814 * can be a significant delay between the individual batches being 6815 * recycled, this leads to the once large chunks of space being 6816 * fragmented and becoming unavailable for high-order allocations. 6817 */ 6818 return 0; 6819 #endif 6820 } 6821 6822 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6823 { 6824 #ifdef CONFIG_MMU 6825 int high; 6826 int nr_split_cpus; 6827 unsigned long total_pages; 6828 6829 if (!percpu_pagelist_high_fraction) { 6830 /* 6831 * By default, the high value of the pcp is based on the zone 6832 * low watermark so that if they are full then background 6833 * reclaim will not be started prematurely. 6834 */ 6835 total_pages = low_wmark_pages(zone); 6836 } else { 6837 /* 6838 * If percpu_pagelist_high_fraction is configured, the high 6839 * value is based on a fraction of the managed pages in the 6840 * zone. 6841 */ 6842 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6843 } 6844 6845 /* 6846 * Split the high value across all online CPUs local to the zone. Note 6847 * that early in boot that CPUs may not be online yet and that during 6848 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6849 * onlined. For memory nodes that have no CPUs, split pcp->high across 6850 * all online CPUs to mitigate the risk that reclaim is triggered 6851 * prematurely due to pages stored on pcp lists. 6852 */ 6853 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6854 if (!nr_split_cpus) 6855 nr_split_cpus = num_online_cpus(); 6856 high = total_pages / nr_split_cpus; 6857 6858 /* 6859 * Ensure high is at least batch*4. The multiple is based on the 6860 * historical relationship between high and batch. 6861 */ 6862 high = max(high, batch << 2); 6863 6864 return high; 6865 #else 6866 return 0; 6867 #endif 6868 } 6869 6870 /* 6871 * pcp->high and pcp->batch values are related and generally batch is lower 6872 * than high. They are also related to pcp->count such that count is lower 6873 * than high, and as soon as it reaches high, the pcplist is flushed. 6874 * 6875 * However, guaranteeing these relations at all times would require e.g. write 6876 * barriers here but also careful usage of read barriers at the read side, and 6877 * thus be prone to error and bad for performance. Thus the update only prevents 6878 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6879 * can cope with those fields changing asynchronously, and fully trust only the 6880 * pcp->count field on the local CPU with interrupts disabled. 6881 * 6882 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6883 * outside of boot time (or some other assurance that no concurrent updaters 6884 * exist). 6885 */ 6886 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6887 unsigned long batch) 6888 { 6889 WRITE_ONCE(pcp->batch, batch); 6890 WRITE_ONCE(pcp->high, high); 6891 } 6892 6893 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6894 { 6895 int pindex; 6896 6897 memset(pcp, 0, sizeof(*pcp)); 6898 memset(pzstats, 0, sizeof(*pzstats)); 6899 6900 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6901 INIT_LIST_HEAD(&pcp->lists[pindex]); 6902 6903 /* 6904 * Set batch and high values safe for a boot pageset. A true percpu 6905 * pageset's initialization will update them subsequently. Here we don't 6906 * need to be as careful as pageset_update() as nobody can access the 6907 * pageset yet. 6908 */ 6909 pcp->high = BOOT_PAGESET_HIGH; 6910 pcp->batch = BOOT_PAGESET_BATCH; 6911 pcp->free_factor = 0; 6912 } 6913 6914 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6915 unsigned long batch) 6916 { 6917 struct per_cpu_pages *pcp; 6918 int cpu; 6919 6920 for_each_possible_cpu(cpu) { 6921 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6922 pageset_update(pcp, high, batch); 6923 } 6924 } 6925 6926 /* 6927 * Calculate and set new high and batch values for all per-cpu pagesets of a 6928 * zone based on the zone's size. 6929 */ 6930 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6931 { 6932 int new_high, new_batch; 6933 6934 new_batch = max(1, zone_batchsize(zone)); 6935 new_high = zone_highsize(zone, new_batch, cpu_online); 6936 6937 if (zone->pageset_high == new_high && 6938 zone->pageset_batch == new_batch) 6939 return; 6940 6941 zone->pageset_high = new_high; 6942 zone->pageset_batch = new_batch; 6943 6944 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6945 } 6946 6947 void __meminit setup_zone_pageset(struct zone *zone) 6948 { 6949 int cpu; 6950 6951 /* Size may be 0 on !SMP && !NUMA */ 6952 if (sizeof(struct per_cpu_zonestat) > 0) 6953 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6954 6955 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6956 for_each_possible_cpu(cpu) { 6957 struct per_cpu_pages *pcp; 6958 struct per_cpu_zonestat *pzstats; 6959 6960 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6961 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6962 per_cpu_pages_init(pcp, pzstats); 6963 } 6964 6965 zone_set_pageset_high_and_batch(zone, 0); 6966 } 6967 6968 /* 6969 * Allocate per cpu pagesets and initialize them. 6970 * Before this call only boot pagesets were available. 6971 */ 6972 void __init setup_per_cpu_pageset(void) 6973 { 6974 struct pglist_data *pgdat; 6975 struct zone *zone; 6976 int __maybe_unused cpu; 6977 6978 for_each_populated_zone(zone) 6979 setup_zone_pageset(zone); 6980 6981 #ifdef CONFIG_NUMA 6982 /* 6983 * Unpopulated zones continue using the boot pagesets. 6984 * The numa stats for these pagesets need to be reset. 6985 * Otherwise, they will end up skewing the stats of 6986 * the nodes these zones are associated with. 6987 */ 6988 for_each_possible_cpu(cpu) { 6989 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6990 memset(pzstats->vm_numa_event, 0, 6991 sizeof(pzstats->vm_numa_event)); 6992 } 6993 #endif 6994 6995 for_each_online_pgdat(pgdat) 6996 pgdat->per_cpu_nodestats = 6997 alloc_percpu(struct per_cpu_nodestat); 6998 } 6999 7000 static __meminit void zone_pcp_init(struct zone *zone) 7001 { 7002 /* 7003 * per cpu subsystem is not up at this point. The following code 7004 * relies on the ability of the linker to provide the 7005 * offset of a (static) per cpu variable into the per cpu area. 7006 */ 7007 zone->per_cpu_pageset = &boot_pageset; 7008 zone->per_cpu_zonestats = &boot_zonestats; 7009 zone->pageset_high = BOOT_PAGESET_HIGH; 7010 zone->pageset_batch = BOOT_PAGESET_BATCH; 7011 7012 if (populated_zone(zone)) 7013 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7014 zone->present_pages, zone_batchsize(zone)); 7015 } 7016 7017 void __meminit init_currently_empty_zone(struct zone *zone, 7018 unsigned long zone_start_pfn, 7019 unsigned long size) 7020 { 7021 struct pglist_data *pgdat = zone->zone_pgdat; 7022 int zone_idx = zone_idx(zone) + 1; 7023 7024 if (zone_idx > pgdat->nr_zones) 7025 pgdat->nr_zones = zone_idx; 7026 7027 zone->zone_start_pfn = zone_start_pfn; 7028 7029 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7030 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7031 pgdat->node_id, 7032 (unsigned long)zone_idx(zone), 7033 zone_start_pfn, (zone_start_pfn + size)); 7034 7035 zone_init_free_lists(zone); 7036 zone->initialized = 1; 7037 } 7038 7039 /** 7040 * get_pfn_range_for_nid - Return the start and end page frames for a node 7041 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7042 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7043 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7044 * 7045 * It returns the start and end page frame of a node based on information 7046 * provided by memblock_set_node(). If called for a node 7047 * with no available memory, a warning is printed and the start and end 7048 * PFNs will be 0. 7049 */ 7050 void __init get_pfn_range_for_nid(unsigned int nid, 7051 unsigned long *start_pfn, unsigned long *end_pfn) 7052 { 7053 unsigned long this_start_pfn, this_end_pfn; 7054 int i; 7055 7056 *start_pfn = -1UL; 7057 *end_pfn = 0; 7058 7059 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7060 *start_pfn = min(*start_pfn, this_start_pfn); 7061 *end_pfn = max(*end_pfn, this_end_pfn); 7062 } 7063 7064 if (*start_pfn == -1UL) 7065 *start_pfn = 0; 7066 } 7067 7068 /* 7069 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7070 * assumption is made that zones within a node are ordered in monotonic 7071 * increasing memory addresses so that the "highest" populated zone is used 7072 */ 7073 static void __init find_usable_zone_for_movable(void) 7074 { 7075 int zone_index; 7076 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7077 if (zone_index == ZONE_MOVABLE) 7078 continue; 7079 7080 if (arch_zone_highest_possible_pfn[zone_index] > 7081 arch_zone_lowest_possible_pfn[zone_index]) 7082 break; 7083 } 7084 7085 VM_BUG_ON(zone_index == -1); 7086 movable_zone = zone_index; 7087 } 7088 7089 /* 7090 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7091 * because it is sized independent of architecture. Unlike the other zones, 7092 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7093 * in each node depending on the size of each node and how evenly kernelcore 7094 * is distributed. This helper function adjusts the zone ranges 7095 * provided by the architecture for a given node by using the end of the 7096 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7097 * zones within a node are in order of monotonic increases memory addresses 7098 */ 7099 static void __init adjust_zone_range_for_zone_movable(int nid, 7100 unsigned long zone_type, 7101 unsigned long node_start_pfn, 7102 unsigned long node_end_pfn, 7103 unsigned long *zone_start_pfn, 7104 unsigned long *zone_end_pfn) 7105 { 7106 /* Only adjust if ZONE_MOVABLE is on this node */ 7107 if (zone_movable_pfn[nid]) { 7108 /* Size ZONE_MOVABLE */ 7109 if (zone_type == ZONE_MOVABLE) { 7110 *zone_start_pfn = zone_movable_pfn[nid]; 7111 *zone_end_pfn = min(node_end_pfn, 7112 arch_zone_highest_possible_pfn[movable_zone]); 7113 7114 /* Adjust for ZONE_MOVABLE starting within this range */ 7115 } else if (!mirrored_kernelcore && 7116 *zone_start_pfn < zone_movable_pfn[nid] && 7117 *zone_end_pfn > zone_movable_pfn[nid]) { 7118 *zone_end_pfn = zone_movable_pfn[nid]; 7119 7120 /* Check if this whole range is within ZONE_MOVABLE */ 7121 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7122 *zone_start_pfn = *zone_end_pfn; 7123 } 7124 } 7125 7126 /* 7127 * Return the number of pages a zone spans in a node, including holes 7128 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7129 */ 7130 static unsigned long __init zone_spanned_pages_in_node(int nid, 7131 unsigned long zone_type, 7132 unsigned long node_start_pfn, 7133 unsigned long node_end_pfn, 7134 unsigned long *zone_start_pfn, 7135 unsigned long *zone_end_pfn) 7136 { 7137 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7138 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7139 /* When hotadd a new node from cpu_up(), the node should be empty */ 7140 if (!node_start_pfn && !node_end_pfn) 7141 return 0; 7142 7143 /* Get the start and end of the zone */ 7144 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7145 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7146 adjust_zone_range_for_zone_movable(nid, zone_type, 7147 node_start_pfn, node_end_pfn, 7148 zone_start_pfn, zone_end_pfn); 7149 7150 /* Check that this node has pages within the zone's required range */ 7151 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7152 return 0; 7153 7154 /* Move the zone boundaries inside the node if necessary */ 7155 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7156 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7157 7158 /* Return the spanned pages */ 7159 return *zone_end_pfn - *zone_start_pfn; 7160 } 7161 7162 /* 7163 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7164 * then all holes in the requested range will be accounted for. 7165 */ 7166 unsigned long __init __absent_pages_in_range(int nid, 7167 unsigned long range_start_pfn, 7168 unsigned long range_end_pfn) 7169 { 7170 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7171 unsigned long start_pfn, end_pfn; 7172 int i; 7173 7174 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7175 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7176 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7177 nr_absent -= end_pfn - start_pfn; 7178 } 7179 return nr_absent; 7180 } 7181 7182 /** 7183 * absent_pages_in_range - Return number of page frames in holes within a range 7184 * @start_pfn: The start PFN to start searching for holes 7185 * @end_pfn: The end PFN to stop searching for holes 7186 * 7187 * Return: the number of pages frames in memory holes within a range. 7188 */ 7189 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7190 unsigned long end_pfn) 7191 { 7192 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7193 } 7194 7195 /* Return the number of page frames in holes in a zone on a node */ 7196 static unsigned long __init zone_absent_pages_in_node(int nid, 7197 unsigned long zone_type, 7198 unsigned long node_start_pfn, 7199 unsigned long node_end_pfn) 7200 { 7201 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7202 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7203 unsigned long zone_start_pfn, zone_end_pfn; 7204 unsigned long nr_absent; 7205 7206 /* When hotadd a new node from cpu_up(), the node should be empty */ 7207 if (!node_start_pfn && !node_end_pfn) 7208 return 0; 7209 7210 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7211 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7212 7213 adjust_zone_range_for_zone_movable(nid, zone_type, 7214 node_start_pfn, node_end_pfn, 7215 &zone_start_pfn, &zone_end_pfn); 7216 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7217 7218 /* 7219 * ZONE_MOVABLE handling. 7220 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7221 * and vice versa. 7222 */ 7223 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7224 unsigned long start_pfn, end_pfn; 7225 struct memblock_region *r; 7226 7227 for_each_mem_region(r) { 7228 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7229 zone_start_pfn, zone_end_pfn); 7230 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7231 zone_start_pfn, zone_end_pfn); 7232 7233 if (zone_type == ZONE_MOVABLE && 7234 memblock_is_mirror(r)) 7235 nr_absent += end_pfn - start_pfn; 7236 7237 if (zone_type == ZONE_NORMAL && 7238 !memblock_is_mirror(r)) 7239 nr_absent += end_pfn - start_pfn; 7240 } 7241 } 7242 7243 return nr_absent; 7244 } 7245 7246 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7247 unsigned long node_start_pfn, 7248 unsigned long node_end_pfn) 7249 { 7250 unsigned long realtotalpages = 0, totalpages = 0; 7251 enum zone_type i; 7252 7253 for (i = 0; i < MAX_NR_ZONES; i++) { 7254 struct zone *zone = pgdat->node_zones + i; 7255 unsigned long zone_start_pfn, zone_end_pfn; 7256 unsigned long spanned, absent; 7257 unsigned long size, real_size; 7258 7259 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7260 node_start_pfn, 7261 node_end_pfn, 7262 &zone_start_pfn, 7263 &zone_end_pfn); 7264 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7265 node_start_pfn, 7266 node_end_pfn); 7267 7268 size = spanned; 7269 real_size = size - absent; 7270 7271 if (size) 7272 zone->zone_start_pfn = zone_start_pfn; 7273 else 7274 zone->zone_start_pfn = 0; 7275 zone->spanned_pages = size; 7276 zone->present_pages = real_size; 7277 #if defined(CONFIG_MEMORY_HOTPLUG) 7278 zone->present_early_pages = real_size; 7279 #endif 7280 7281 totalpages += size; 7282 realtotalpages += real_size; 7283 } 7284 7285 pgdat->node_spanned_pages = totalpages; 7286 pgdat->node_present_pages = realtotalpages; 7287 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7288 } 7289 7290 #ifndef CONFIG_SPARSEMEM 7291 /* 7292 * Calculate the size of the zone->blockflags rounded to an unsigned long 7293 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7294 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7295 * round what is now in bits to nearest long in bits, then return it in 7296 * bytes. 7297 */ 7298 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7299 { 7300 unsigned long usemapsize; 7301 7302 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7303 usemapsize = roundup(zonesize, pageblock_nr_pages); 7304 usemapsize = usemapsize >> pageblock_order; 7305 usemapsize *= NR_PAGEBLOCK_BITS; 7306 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7307 7308 return usemapsize / 8; 7309 } 7310 7311 static void __ref setup_usemap(struct zone *zone) 7312 { 7313 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7314 zone->spanned_pages); 7315 zone->pageblock_flags = NULL; 7316 if (usemapsize) { 7317 zone->pageblock_flags = 7318 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7319 zone_to_nid(zone)); 7320 if (!zone->pageblock_flags) 7321 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7322 usemapsize, zone->name, zone_to_nid(zone)); 7323 } 7324 } 7325 #else 7326 static inline void setup_usemap(struct zone *zone) {} 7327 #endif /* CONFIG_SPARSEMEM */ 7328 7329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7330 7331 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7332 void __init set_pageblock_order(void) 7333 { 7334 unsigned int order; 7335 7336 /* Check that pageblock_nr_pages has not already been setup */ 7337 if (pageblock_order) 7338 return; 7339 7340 if (HPAGE_SHIFT > PAGE_SHIFT) 7341 order = HUGETLB_PAGE_ORDER; 7342 else 7343 order = MAX_ORDER - 1; 7344 7345 /* 7346 * Assume the largest contiguous order of interest is a huge page. 7347 * This value may be variable depending on boot parameters on IA64 and 7348 * powerpc. 7349 */ 7350 pageblock_order = order; 7351 } 7352 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7353 7354 /* 7355 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7356 * is unused as pageblock_order is set at compile-time. See 7357 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7358 * the kernel config 7359 */ 7360 void __init set_pageblock_order(void) 7361 { 7362 } 7363 7364 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7365 7366 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7367 unsigned long present_pages) 7368 { 7369 unsigned long pages = spanned_pages; 7370 7371 /* 7372 * Provide a more accurate estimation if there are holes within 7373 * the zone and SPARSEMEM is in use. If there are holes within the 7374 * zone, each populated memory region may cost us one or two extra 7375 * memmap pages due to alignment because memmap pages for each 7376 * populated regions may not be naturally aligned on page boundary. 7377 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7378 */ 7379 if (spanned_pages > present_pages + (present_pages >> 4) && 7380 IS_ENABLED(CONFIG_SPARSEMEM)) 7381 pages = present_pages; 7382 7383 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7384 } 7385 7386 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7387 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7388 { 7389 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7390 7391 spin_lock_init(&ds_queue->split_queue_lock); 7392 INIT_LIST_HEAD(&ds_queue->split_queue); 7393 ds_queue->split_queue_len = 0; 7394 } 7395 #else 7396 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7397 #endif 7398 7399 #ifdef CONFIG_COMPACTION 7400 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7401 { 7402 init_waitqueue_head(&pgdat->kcompactd_wait); 7403 } 7404 #else 7405 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7406 #endif 7407 7408 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7409 { 7410 pgdat_resize_init(pgdat); 7411 7412 pgdat_init_split_queue(pgdat); 7413 pgdat_init_kcompactd(pgdat); 7414 7415 init_waitqueue_head(&pgdat->kswapd_wait); 7416 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7417 7418 pgdat_page_ext_init(pgdat); 7419 lruvec_init(&pgdat->__lruvec); 7420 } 7421 7422 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7423 unsigned long remaining_pages) 7424 { 7425 atomic_long_set(&zone->managed_pages, remaining_pages); 7426 zone_set_nid(zone, nid); 7427 zone->name = zone_names[idx]; 7428 zone->zone_pgdat = NODE_DATA(nid); 7429 spin_lock_init(&zone->lock); 7430 zone_seqlock_init(zone); 7431 zone_pcp_init(zone); 7432 } 7433 7434 /* 7435 * Set up the zone data structures 7436 * - init pgdat internals 7437 * - init all zones belonging to this node 7438 * 7439 * NOTE: this function is only called during memory hotplug 7440 */ 7441 #ifdef CONFIG_MEMORY_HOTPLUG 7442 void __ref free_area_init_core_hotplug(int nid) 7443 { 7444 enum zone_type z; 7445 pg_data_t *pgdat = NODE_DATA(nid); 7446 7447 pgdat_init_internals(pgdat); 7448 for (z = 0; z < MAX_NR_ZONES; z++) 7449 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7450 } 7451 #endif 7452 7453 /* 7454 * Set up the zone data structures: 7455 * - mark all pages reserved 7456 * - mark all memory queues empty 7457 * - clear the memory bitmaps 7458 * 7459 * NOTE: pgdat should get zeroed by caller. 7460 * NOTE: this function is only called during early init. 7461 */ 7462 static void __init free_area_init_core(struct pglist_data *pgdat) 7463 { 7464 enum zone_type j; 7465 int nid = pgdat->node_id; 7466 7467 pgdat_init_internals(pgdat); 7468 pgdat->per_cpu_nodestats = &boot_nodestats; 7469 7470 for (j = 0; j < MAX_NR_ZONES; j++) { 7471 struct zone *zone = pgdat->node_zones + j; 7472 unsigned long size, freesize, memmap_pages; 7473 7474 size = zone->spanned_pages; 7475 freesize = zone->present_pages; 7476 7477 /* 7478 * Adjust freesize so that it accounts for how much memory 7479 * is used by this zone for memmap. This affects the watermark 7480 * and per-cpu initialisations 7481 */ 7482 memmap_pages = calc_memmap_size(size, freesize); 7483 if (!is_highmem_idx(j)) { 7484 if (freesize >= memmap_pages) { 7485 freesize -= memmap_pages; 7486 if (memmap_pages) 7487 pr_debug(" %s zone: %lu pages used for memmap\n", 7488 zone_names[j], memmap_pages); 7489 } else 7490 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7491 zone_names[j], memmap_pages, freesize); 7492 } 7493 7494 /* Account for reserved pages */ 7495 if (j == 0 && freesize > dma_reserve) { 7496 freesize -= dma_reserve; 7497 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7498 } 7499 7500 if (!is_highmem_idx(j)) 7501 nr_kernel_pages += freesize; 7502 /* Charge for highmem memmap if there are enough kernel pages */ 7503 else if (nr_kernel_pages > memmap_pages * 2) 7504 nr_kernel_pages -= memmap_pages; 7505 nr_all_pages += freesize; 7506 7507 /* 7508 * Set an approximate value for lowmem here, it will be adjusted 7509 * when the bootmem allocator frees pages into the buddy system. 7510 * And all highmem pages will be managed by the buddy system. 7511 */ 7512 zone_init_internals(zone, j, nid, freesize); 7513 7514 if (!size) 7515 continue; 7516 7517 set_pageblock_order(); 7518 setup_usemap(zone); 7519 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7520 } 7521 } 7522 7523 #ifdef CONFIG_FLATMEM 7524 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7525 { 7526 unsigned long __maybe_unused start = 0; 7527 unsigned long __maybe_unused offset = 0; 7528 7529 /* Skip empty nodes */ 7530 if (!pgdat->node_spanned_pages) 7531 return; 7532 7533 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7534 offset = pgdat->node_start_pfn - start; 7535 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7536 if (!pgdat->node_mem_map) { 7537 unsigned long size, end; 7538 struct page *map; 7539 7540 /* 7541 * The zone's endpoints aren't required to be MAX_ORDER 7542 * aligned but the node_mem_map endpoints must be in order 7543 * for the buddy allocator to function correctly. 7544 */ 7545 end = pgdat_end_pfn(pgdat); 7546 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7547 size = (end - start) * sizeof(struct page); 7548 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7549 pgdat->node_id, false); 7550 if (!map) 7551 panic("Failed to allocate %ld bytes for node %d memory map\n", 7552 size, pgdat->node_id); 7553 pgdat->node_mem_map = map + offset; 7554 } 7555 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7556 __func__, pgdat->node_id, (unsigned long)pgdat, 7557 (unsigned long)pgdat->node_mem_map); 7558 #ifndef CONFIG_NUMA 7559 /* 7560 * With no DISCONTIG, the global mem_map is just set as node 0's 7561 */ 7562 if (pgdat == NODE_DATA(0)) { 7563 mem_map = NODE_DATA(0)->node_mem_map; 7564 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7565 mem_map -= offset; 7566 } 7567 #endif 7568 } 7569 #else 7570 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7571 #endif /* CONFIG_FLATMEM */ 7572 7573 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7574 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7575 { 7576 pgdat->first_deferred_pfn = ULONG_MAX; 7577 } 7578 #else 7579 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7580 #endif 7581 7582 static void __init free_area_init_node(int nid) 7583 { 7584 pg_data_t *pgdat = NODE_DATA(nid); 7585 unsigned long start_pfn = 0; 7586 unsigned long end_pfn = 0; 7587 7588 /* pg_data_t should be reset to zero when it's allocated */ 7589 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7590 7591 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7592 7593 pgdat->node_id = nid; 7594 pgdat->node_start_pfn = start_pfn; 7595 pgdat->per_cpu_nodestats = NULL; 7596 7597 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7598 (u64)start_pfn << PAGE_SHIFT, 7599 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7600 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7601 7602 alloc_node_mem_map(pgdat); 7603 pgdat_set_deferred_range(pgdat); 7604 7605 free_area_init_core(pgdat); 7606 } 7607 7608 void __init free_area_init_memoryless_node(int nid) 7609 { 7610 free_area_init_node(nid); 7611 } 7612 7613 #if MAX_NUMNODES > 1 7614 /* 7615 * Figure out the number of possible node ids. 7616 */ 7617 void __init setup_nr_node_ids(void) 7618 { 7619 unsigned int highest; 7620 7621 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7622 nr_node_ids = highest + 1; 7623 } 7624 #endif 7625 7626 /** 7627 * node_map_pfn_alignment - determine the maximum internode alignment 7628 * 7629 * This function should be called after node map is populated and sorted. 7630 * It calculates the maximum power of two alignment which can distinguish 7631 * all the nodes. 7632 * 7633 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7634 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7635 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7636 * shifted, 1GiB is enough and this function will indicate so. 7637 * 7638 * This is used to test whether pfn -> nid mapping of the chosen memory 7639 * model has fine enough granularity to avoid incorrect mapping for the 7640 * populated node map. 7641 * 7642 * Return: the determined alignment in pfn's. 0 if there is no alignment 7643 * requirement (single node). 7644 */ 7645 unsigned long __init node_map_pfn_alignment(void) 7646 { 7647 unsigned long accl_mask = 0, last_end = 0; 7648 unsigned long start, end, mask; 7649 int last_nid = NUMA_NO_NODE; 7650 int i, nid; 7651 7652 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7653 if (!start || last_nid < 0 || last_nid == nid) { 7654 last_nid = nid; 7655 last_end = end; 7656 continue; 7657 } 7658 7659 /* 7660 * Start with a mask granular enough to pin-point to the 7661 * start pfn and tick off bits one-by-one until it becomes 7662 * too coarse to separate the current node from the last. 7663 */ 7664 mask = ~((1 << __ffs(start)) - 1); 7665 while (mask && last_end <= (start & (mask << 1))) 7666 mask <<= 1; 7667 7668 /* accumulate all internode masks */ 7669 accl_mask |= mask; 7670 } 7671 7672 /* convert mask to number of pages */ 7673 return ~accl_mask + 1; 7674 } 7675 7676 /** 7677 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7678 * 7679 * Return: the minimum PFN based on information provided via 7680 * memblock_set_node(). 7681 */ 7682 unsigned long __init find_min_pfn_with_active_regions(void) 7683 { 7684 return PHYS_PFN(memblock_start_of_DRAM()); 7685 } 7686 7687 /* 7688 * early_calculate_totalpages() 7689 * Sum pages in active regions for movable zone. 7690 * Populate N_MEMORY for calculating usable_nodes. 7691 */ 7692 static unsigned long __init early_calculate_totalpages(void) 7693 { 7694 unsigned long totalpages = 0; 7695 unsigned long start_pfn, end_pfn; 7696 int i, nid; 7697 7698 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7699 unsigned long pages = end_pfn - start_pfn; 7700 7701 totalpages += pages; 7702 if (pages) 7703 node_set_state(nid, N_MEMORY); 7704 } 7705 return totalpages; 7706 } 7707 7708 /* 7709 * Find the PFN the Movable zone begins in each node. Kernel memory 7710 * is spread evenly between nodes as long as the nodes have enough 7711 * memory. When they don't, some nodes will have more kernelcore than 7712 * others 7713 */ 7714 static void __init find_zone_movable_pfns_for_nodes(void) 7715 { 7716 int i, nid; 7717 unsigned long usable_startpfn; 7718 unsigned long kernelcore_node, kernelcore_remaining; 7719 /* save the state before borrow the nodemask */ 7720 nodemask_t saved_node_state = node_states[N_MEMORY]; 7721 unsigned long totalpages = early_calculate_totalpages(); 7722 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7723 struct memblock_region *r; 7724 7725 /* Need to find movable_zone earlier when movable_node is specified. */ 7726 find_usable_zone_for_movable(); 7727 7728 /* 7729 * If movable_node is specified, ignore kernelcore and movablecore 7730 * options. 7731 */ 7732 if (movable_node_is_enabled()) { 7733 for_each_mem_region(r) { 7734 if (!memblock_is_hotpluggable(r)) 7735 continue; 7736 7737 nid = memblock_get_region_node(r); 7738 7739 usable_startpfn = PFN_DOWN(r->base); 7740 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7741 min(usable_startpfn, zone_movable_pfn[nid]) : 7742 usable_startpfn; 7743 } 7744 7745 goto out2; 7746 } 7747 7748 /* 7749 * If kernelcore=mirror is specified, ignore movablecore option 7750 */ 7751 if (mirrored_kernelcore) { 7752 bool mem_below_4gb_not_mirrored = false; 7753 7754 for_each_mem_region(r) { 7755 if (memblock_is_mirror(r)) 7756 continue; 7757 7758 nid = memblock_get_region_node(r); 7759 7760 usable_startpfn = memblock_region_memory_base_pfn(r); 7761 7762 if (usable_startpfn < 0x100000) { 7763 mem_below_4gb_not_mirrored = true; 7764 continue; 7765 } 7766 7767 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7768 min(usable_startpfn, zone_movable_pfn[nid]) : 7769 usable_startpfn; 7770 } 7771 7772 if (mem_below_4gb_not_mirrored) 7773 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7774 7775 goto out2; 7776 } 7777 7778 /* 7779 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7780 * amount of necessary memory. 7781 */ 7782 if (required_kernelcore_percent) 7783 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7784 10000UL; 7785 if (required_movablecore_percent) 7786 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7787 10000UL; 7788 7789 /* 7790 * If movablecore= was specified, calculate what size of 7791 * kernelcore that corresponds so that memory usable for 7792 * any allocation type is evenly spread. If both kernelcore 7793 * and movablecore are specified, then the value of kernelcore 7794 * will be used for required_kernelcore if it's greater than 7795 * what movablecore would have allowed. 7796 */ 7797 if (required_movablecore) { 7798 unsigned long corepages; 7799 7800 /* 7801 * Round-up so that ZONE_MOVABLE is at least as large as what 7802 * was requested by the user 7803 */ 7804 required_movablecore = 7805 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7806 required_movablecore = min(totalpages, required_movablecore); 7807 corepages = totalpages - required_movablecore; 7808 7809 required_kernelcore = max(required_kernelcore, corepages); 7810 } 7811 7812 /* 7813 * If kernelcore was not specified or kernelcore size is larger 7814 * than totalpages, there is no ZONE_MOVABLE. 7815 */ 7816 if (!required_kernelcore || required_kernelcore >= totalpages) 7817 goto out; 7818 7819 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7820 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7821 7822 restart: 7823 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7824 kernelcore_node = required_kernelcore / usable_nodes; 7825 for_each_node_state(nid, N_MEMORY) { 7826 unsigned long start_pfn, end_pfn; 7827 7828 /* 7829 * Recalculate kernelcore_node if the division per node 7830 * now exceeds what is necessary to satisfy the requested 7831 * amount of memory for the kernel 7832 */ 7833 if (required_kernelcore < kernelcore_node) 7834 kernelcore_node = required_kernelcore / usable_nodes; 7835 7836 /* 7837 * As the map is walked, we track how much memory is usable 7838 * by the kernel using kernelcore_remaining. When it is 7839 * 0, the rest of the node is usable by ZONE_MOVABLE 7840 */ 7841 kernelcore_remaining = kernelcore_node; 7842 7843 /* Go through each range of PFNs within this node */ 7844 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7845 unsigned long size_pages; 7846 7847 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7848 if (start_pfn >= end_pfn) 7849 continue; 7850 7851 /* Account for what is only usable for kernelcore */ 7852 if (start_pfn < usable_startpfn) { 7853 unsigned long kernel_pages; 7854 kernel_pages = min(end_pfn, usable_startpfn) 7855 - start_pfn; 7856 7857 kernelcore_remaining -= min(kernel_pages, 7858 kernelcore_remaining); 7859 required_kernelcore -= min(kernel_pages, 7860 required_kernelcore); 7861 7862 /* Continue if range is now fully accounted */ 7863 if (end_pfn <= usable_startpfn) { 7864 7865 /* 7866 * Push zone_movable_pfn to the end so 7867 * that if we have to rebalance 7868 * kernelcore across nodes, we will 7869 * not double account here 7870 */ 7871 zone_movable_pfn[nid] = end_pfn; 7872 continue; 7873 } 7874 start_pfn = usable_startpfn; 7875 } 7876 7877 /* 7878 * The usable PFN range for ZONE_MOVABLE is from 7879 * start_pfn->end_pfn. Calculate size_pages as the 7880 * number of pages used as kernelcore 7881 */ 7882 size_pages = end_pfn - start_pfn; 7883 if (size_pages > kernelcore_remaining) 7884 size_pages = kernelcore_remaining; 7885 zone_movable_pfn[nid] = start_pfn + size_pages; 7886 7887 /* 7888 * Some kernelcore has been met, update counts and 7889 * break if the kernelcore for this node has been 7890 * satisfied 7891 */ 7892 required_kernelcore -= min(required_kernelcore, 7893 size_pages); 7894 kernelcore_remaining -= size_pages; 7895 if (!kernelcore_remaining) 7896 break; 7897 } 7898 } 7899 7900 /* 7901 * If there is still required_kernelcore, we do another pass with one 7902 * less node in the count. This will push zone_movable_pfn[nid] further 7903 * along on the nodes that still have memory until kernelcore is 7904 * satisfied 7905 */ 7906 usable_nodes--; 7907 if (usable_nodes && required_kernelcore > usable_nodes) 7908 goto restart; 7909 7910 out2: 7911 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7912 for (nid = 0; nid < MAX_NUMNODES; nid++) 7913 zone_movable_pfn[nid] = 7914 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7915 7916 out: 7917 /* restore the node_state */ 7918 node_states[N_MEMORY] = saved_node_state; 7919 } 7920 7921 /* Any regular or high memory on that node ? */ 7922 static void check_for_memory(pg_data_t *pgdat, int nid) 7923 { 7924 enum zone_type zone_type; 7925 7926 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7927 struct zone *zone = &pgdat->node_zones[zone_type]; 7928 if (populated_zone(zone)) { 7929 if (IS_ENABLED(CONFIG_HIGHMEM)) 7930 node_set_state(nid, N_HIGH_MEMORY); 7931 if (zone_type <= ZONE_NORMAL) 7932 node_set_state(nid, N_NORMAL_MEMORY); 7933 break; 7934 } 7935 } 7936 } 7937 7938 /* 7939 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7940 * such cases we allow max_zone_pfn sorted in the descending order 7941 */ 7942 bool __weak arch_has_descending_max_zone_pfns(void) 7943 { 7944 return false; 7945 } 7946 7947 /** 7948 * free_area_init - Initialise all pg_data_t and zone data 7949 * @max_zone_pfn: an array of max PFNs for each zone 7950 * 7951 * This will call free_area_init_node() for each active node in the system. 7952 * Using the page ranges provided by memblock_set_node(), the size of each 7953 * zone in each node and their holes is calculated. If the maximum PFN 7954 * between two adjacent zones match, it is assumed that the zone is empty. 7955 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7956 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7957 * starts where the previous one ended. For example, ZONE_DMA32 starts 7958 * at arch_max_dma_pfn. 7959 */ 7960 void __init free_area_init(unsigned long *max_zone_pfn) 7961 { 7962 unsigned long start_pfn, end_pfn; 7963 int i, nid, zone; 7964 bool descending; 7965 7966 /* Record where the zone boundaries are */ 7967 memset(arch_zone_lowest_possible_pfn, 0, 7968 sizeof(arch_zone_lowest_possible_pfn)); 7969 memset(arch_zone_highest_possible_pfn, 0, 7970 sizeof(arch_zone_highest_possible_pfn)); 7971 7972 start_pfn = find_min_pfn_with_active_regions(); 7973 descending = arch_has_descending_max_zone_pfns(); 7974 7975 for (i = 0; i < MAX_NR_ZONES; i++) { 7976 if (descending) 7977 zone = MAX_NR_ZONES - i - 1; 7978 else 7979 zone = i; 7980 7981 if (zone == ZONE_MOVABLE) 7982 continue; 7983 7984 end_pfn = max(max_zone_pfn[zone], start_pfn); 7985 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7986 arch_zone_highest_possible_pfn[zone] = end_pfn; 7987 7988 start_pfn = end_pfn; 7989 } 7990 7991 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7992 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7993 find_zone_movable_pfns_for_nodes(); 7994 7995 /* Print out the zone ranges */ 7996 pr_info("Zone ranges:\n"); 7997 for (i = 0; i < MAX_NR_ZONES; i++) { 7998 if (i == ZONE_MOVABLE) 7999 continue; 8000 pr_info(" %-8s ", zone_names[i]); 8001 if (arch_zone_lowest_possible_pfn[i] == 8002 arch_zone_highest_possible_pfn[i]) 8003 pr_cont("empty\n"); 8004 else 8005 pr_cont("[mem %#018Lx-%#018Lx]\n", 8006 (u64)arch_zone_lowest_possible_pfn[i] 8007 << PAGE_SHIFT, 8008 ((u64)arch_zone_highest_possible_pfn[i] 8009 << PAGE_SHIFT) - 1); 8010 } 8011 8012 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8013 pr_info("Movable zone start for each node\n"); 8014 for (i = 0; i < MAX_NUMNODES; i++) { 8015 if (zone_movable_pfn[i]) 8016 pr_info(" Node %d: %#018Lx\n", i, 8017 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8018 } 8019 8020 /* 8021 * Print out the early node map, and initialize the 8022 * subsection-map relative to active online memory ranges to 8023 * enable future "sub-section" extensions of the memory map. 8024 */ 8025 pr_info("Early memory node ranges\n"); 8026 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8027 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8028 (u64)start_pfn << PAGE_SHIFT, 8029 ((u64)end_pfn << PAGE_SHIFT) - 1); 8030 subsection_map_init(start_pfn, end_pfn - start_pfn); 8031 } 8032 8033 /* Initialise every node */ 8034 mminit_verify_pageflags_layout(); 8035 setup_nr_node_ids(); 8036 for_each_online_node(nid) { 8037 pg_data_t *pgdat = NODE_DATA(nid); 8038 free_area_init_node(nid); 8039 8040 /* Any memory on that node */ 8041 if (pgdat->node_present_pages) 8042 node_set_state(nid, N_MEMORY); 8043 check_for_memory(pgdat, nid); 8044 } 8045 8046 memmap_init(); 8047 } 8048 8049 static int __init cmdline_parse_core(char *p, unsigned long *core, 8050 unsigned long *percent) 8051 { 8052 unsigned long long coremem; 8053 char *endptr; 8054 8055 if (!p) 8056 return -EINVAL; 8057 8058 /* Value may be a percentage of total memory, otherwise bytes */ 8059 coremem = simple_strtoull(p, &endptr, 0); 8060 if (*endptr == '%') { 8061 /* Paranoid check for percent values greater than 100 */ 8062 WARN_ON(coremem > 100); 8063 8064 *percent = coremem; 8065 } else { 8066 coremem = memparse(p, &p); 8067 /* Paranoid check that UL is enough for the coremem value */ 8068 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8069 8070 *core = coremem >> PAGE_SHIFT; 8071 *percent = 0UL; 8072 } 8073 return 0; 8074 } 8075 8076 /* 8077 * kernelcore=size sets the amount of memory for use for allocations that 8078 * cannot be reclaimed or migrated. 8079 */ 8080 static int __init cmdline_parse_kernelcore(char *p) 8081 { 8082 /* parse kernelcore=mirror */ 8083 if (parse_option_str(p, "mirror")) { 8084 mirrored_kernelcore = true; 8085 return 0; 8086 } 8087 8088 return cmdline_parse_core(p, &required_kernelcore, 8089 &required_kernelcore_percent); 8090 } 8091 8092 /* 8093 * movablecore=size sets the amount of memory for use for allocations that 8094 * can be reclaimed or migrated. 8095 */ 8096 static int __init cmdline_parse_movablecore(char *p) 8097 { 8098 return cmdline_parse_core(p, &required_movablecore, 8099 &required_movablecore_percent); 8100 } 8101 8102 early_param("kernelcore", cmdline_parse_kernelcore); 8103 early_param("movablecore", cmdline_parse_movablecore); 8104 8105 void adjust_managed_page_count(struct page *page, long count) 8106 { 8107 atomic_long_add(count, &page_zone(page)->managed_pages); 8108 totalram_pages_add(count); 8109 #ifdef CONFIG_HIGHMEM 8110 if (PageHighMem(page)) 8111 totalhigh_pages_add(count); 8112 #endif 8113 } 8114 EXPORT_SYMBOL(adjust_managed_page_count); 8115 8116 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8117 { 8118 void *pos; 8119 unsigned long pages = 0; 8120 8121 start = (void *)PAGE_ALIGN((unsigned long)start); 8122 end = (void *)((unsigned long)end & PAGE_MASK); 8123 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8124 struct page *page = virt_to_page(pos); 8125 void *direct_map_addr; 8126 8127 /* 8128 * 'direct_map_addr' might be different from 'pos' 8129 * because some architectures' virt_to_page() 8130 * work with aliases. Getting the direct map 8131 * address ensures that we get a _writeable_ 8132 * alias for the memset(). 8133 */ 8134 direct_map_addr = page_address(page); 8135 /* 8136 * Perform a kasan-unchecked memset() since this memory 8137 * has not been initialized. 8138 */ 8139 direct_map_addr = kasan_reset_tag(direct_map_addr); 8140 if ((unsigned int)poison <= 0xFF) 8141 memset(direct_map_addr, poison, PAGE_SIZE); 8142 8143 free_reserved_page(page); 8144 } 8145 8146 if (pages && s) 8147 pr_info("Freeing %s memory: %ldK\n", 8148 s, pages << (PAGE_SHIFT - 10)); 8149 8150 return pages; 8151 } 8152 8153 void __init mem_init_print_info(void) 8154 { 8155 unsigned long physpages, codesize, datasize, rosize, bss_size; 8156 unsigned long init_code_size, init_data_size; 8157 8158 physpages = get_num_physpages(); 8159 codesize = _etext - _stext; 8160 datasize = _edata - _sdata; 8161 rosize = __end_rodata - __start_rodata; 8162 bss_size = __bss_stop - __bss_start; 8163 init_data_size = __init_end - __init_begin; 8164 init_code_size = _einittext - _sinittext; 8165 8166 /* 8167 * Detect special cases and adjust section sizes accordingly: 8168 * 1) .init.* may be embedded into .data sections 8169 * 2) .init.text.* may be out of [__init_begin, __init_end], 8170 * please refer to arch/tile/kernel/vmlinux.lds.S. 8171 * 3) .rodata.* may be embedded into .text or .data sections. 8172 */ 8173 #define adj_init_size(start, end, size, pos, adj) \ 8174 do { \ 8175 if (start <= pos && pos < end && size > adj) \ 8176 size -= adj; \ 8177 } while (0) 8178 8179 adj_init_size(__init_begin, __init_end, init_data_size, 8180 _sinittext, init_code_size); 8181 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8182 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8183 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8184 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8185 8186 #undef adj_init_size 8187 8188 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8189 #ifdef CONFIG_HIGHMEM 8190 ", %luK highmem" 8191 #endif 8192 ")\n", 8193 nr_free_pages() << (PAGE_SHIFT - 10), 8194 physpages << (PAGE_SHIFT - 10), 8195 codesize >> 10, datasize >> 10, rosize >> 10, 8196 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8197 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 8198 totalcma_pages << (PAGE_SHIFT - 10) 8199 #ifdef CONFIG_HIGHMEM 8200 , totalhigh_pages() << (PAGE_SHIFT - 10) 8201 #endif 8202 ); 8203 } 8204 8205 /** 8206 * set_dma_reserve - set the specified number of pages reserved in the first zone 8207 * @new_dma_reserve: The number of pages to mark reserved 8208 * 8209 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8210 * In the DMA zone, a significant percentage may be consumed by kernel image 8211 * and other unfreeable allocations which can skew the watermarks badly. This 8212 * function may optionally be used to account for unfreeable pages in the 8213 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8214 * smaller per-cpu batchsize. 8215 */ 8216 void __init set_dma_reserve(unsigned long new_dma_reserve) 8217 { 8218 dma_reserve = new_dma_reserve; 8219 } 8220 8221 static int page_alloc_cpu_dead(unsigned int cpu) 8222 { 8223 struct zone *zone; 8224 8225 lru_add_drain_cpu(cpu); 8226 drain_pages(cpu); 8227 8228 /* 8229 * Spill the event counters of the dead processor 8230 * into the current processors event counters. 8231 * This artificially elevates the count of the current 8232 * processor. 8233 */ 8234 vm_events_fold_cpu(cpu); 8235 8236 /* 8237 * Zero the differential counters of the dead processor 8238 * so that the vm statistics are consistent. 8239 * 8240 * This is only okay since the processor is dead and cannot 8241 * race with what we are doing. 8242 */ 8243 cpu_vm_stats_fold(cpu); 8244 8245 for_each_populated_zone(zone) 8246 zone_pcp_update(zone, 0); 8247 8248 return 0; 8249 } 8250 8251 static int page_alloc_cpu_online(unsigned int cpu) 8252 { 8253 struct zone *zone; 8254 8255 for_each_populated_zone(zone) 8256 zone_pcp_update(zone, 1); 8257 return 0; 8258 } 8259 8260 #ifdef CONFIG_NUMA 8261 int hashdist = HASHDIST_DEFAULT; 8262 8263 static int __init set_hashdist(char *str) 8264 { 8265 if (!str) 8266 return 0; 8267 hashdist = simple_strtoul(str, &str, 0); 8268 return 1; 8269 } 8270 __setup("hashdist=", set_hashdist); 8271 #endif 8272 8273 void __init page_alloc_init(void) 8274 { 8275 int ret; 8276 8277 #ifdef CONFIG_NUMA 8278 if (num_node_state(N_MEMORY) == 1) 8279 hashdist = 0; 8280 #endif 8281 8282 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8283 "mm/page_alloc:pcp", 8284 page_alloc_cpu_online, 8285 page_alloc_cpu_dead); 8286 WARN_ON(ret < 0); 8287 } 8288 8289 /* 8290 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8291 * or min_free_kbytes changes. 8292 */ 8293 static void calculate_totalreserve_pages(void) 8294 { 8295 struct pglist_data *pgdat; 8296 unsigned long reserve_pages = 0; 8297 enum zone_type i, j; 8298 8299 for_each_online_pgdat(pgdat) { 8300 8301 pgdat->totalreserve_pages = 0; 8302 8303 for (i = 0; i < MAX_NR_ZONES; i++) { 8304 struct zone *zone = pgdat->node_zones + i; 8305 long max = 0; 8306 unsigned long managed_pages = zone_managed_pages(zone); 8307 8308 /* Find valid and maximum lowmem_reserve in the zone */ 8309 for (j = i; j < MAX_NR_ZONES; j++) { 8310 if (zone->lowmem_reserve[j] > max) 8311 max = zone->lowmem_reserve[j]; 8312 } 8313 8314 /* we treat the high watermark as reserved pages. */ 8315 max += high_wmark_pages(zone); 8316 8317 if (max > managed_pages) 8318 max = managed_pages; 8319 8320 pgdat->totalreserve_pages += max; 8321 8322 reserve_pages += max; 8323 } 8324 } 8325 totalreserve_pages = reserve_pages; 8326 } 8327 8328 /* 8329 * setup_per_zone_lowmem_reserve - called whenever 8330 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8331 * has a correct pages reserved value, so an adequate number of 8332 * pages are left in the zone after a successful __alloc_pages(). 8333 */ 8334 static void setup_per_zone_lowmem_reserve(void) 8335 { 8336 struct pglist_data *pgdat; 8337 enum zone_type i, j; 8338 8339 for_each_online_pgdat(pgdat) { 8340 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8341 struct zone *zone = &pgdat->node_zones[i]; 8342 int ratio = sysctl_lowmem_reserve_ratio[i]; 8343 bool clear = !ratio || !zone_managed_pages(zone); 8344 unsigned long managed_pages = 0; 8345 8346 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8347 struct zone *upper_zone = &pgdat->node_zones[j]; 8348 8349 managed_pages += zone_managed_pages(upper_zone); 8350 8351 if (clear) 8352 zone->lowmem_reserve[j] = 0; 8353 else 8354 zone->lowmem_reserve[j] = managed_pages / ratio; 8355 } 8356 } 8357 } 8358 8359 /* update totalreserve_pages */ 8360 calculate_totalreserve_pages(); 8361 } 8362 8363 static void __setup_per_zone_wmarks(void) 8364 { 8365 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8366 unsigned long lowmem_pages = 0; 8367 struct zone *zone; 8368 unsigned long flags; 8369 8370 /* Calculate total number of !ZONE_HIGHMEM pages */ 8371 for_each_zone(zone) { 8372 if (!is_highmem(zone)) 8373 lowmem_pages += zone_managed_pages(zone); 8374 } 8375 8376 for_each_zone(zone) { 8377 u64 tmp; 8378 8379 spin_lock_irqsave(&zone->lock, flags); 8380 tmp = (u64)pages_min * zone_managed_pages(zone); 8381 do_div(tmp, lowmem_pages); 8382 if (is_highmem(zone)) { 8383 /* 8384 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8385 * need highmem pages, so cap pages_min to a small 8386 * value here. 8387 * 8388 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8389 * deltas control async page reclaim, and so should 8390 * not be capped for highmem. 8391 */ 8392 unsigned long min_pages; 8393 8394 min_pages = zone_managed_pages(zone) / 1024; 8395 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8396 zone->_watermark[WMARK_MIN] = min_pages; 8397 } else { 8398 /* 8399 * If it's a lowmem zone, reserve a number of pages 8400 * proportionate to the zone's size. 8401 */ 8402 zone->_watermark[WMARK_MIN] = tmp; 8403 } 8404 8405 /* 8406 * Set the kswapd watermarks distance according to the 8407 * scale factor in proportion to available memory, but 8408 * ensure a minimum size on small systems. 8409 */ 8410 tmp = max_t(u64, tmp >> 2, 8411 mult_frac(zone_managed_pages(zone), 8412 watermark_scale_factor, 10000)); 8413 8414 zone->watermark_boost = 0; 8415 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8416 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8417 8418 spin_unlock_irqrestore(&zone->lock, flags); 8419 } 8420 8421 /* update totalreserve_pages */ 8422 calculate_totalreserve_pages(); 8423 } 8424 8425 /** 8426 * setup_per_zone_wmarks - called when min_free_kbytes changes 8427 * or when memory is hot-{added|removed} 8428 * 8429 * Ensures that the watermark[min,low,high] values for each zone are set 8430 * correctly with respect to min_free_kbytes. 8431 */ 8432 void setup_per_zone_wmarks(void) 8433 { 8434 struct zone *zone; 8435 static DEFINE_SPINLOCK(lock); 8436 8437 spin_lock(&lock); 8438 __setup_per_zone_wmarks(); 8439 spin_unlock(&lock); 8440 8441 /* 8442 * The watermark size have changed so update the pcpu batch 8443 * and high limits or the limits may be inappropriate. 8444 */ 8445 for_each_zone(zone) 8446 zone_pcp_update(zone, 0); 8447 } 8448 8449 /* 8450 * Initialise min_free_kbytes. 8451 * 8452 * For small machines we want it small (128k min). For large machines 8453 * we want it large (256MB max). But it is not linear, because network 8454 * bandwidth does not increase linearly with machine size. We use 8455 * 8456 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8457 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8458 * 8459 * which yields 8460 * 8461 * 16MB: 512k 8462 * 32MB: 724k 8463 * 64MB: 1024k 8464 * 128MB: 1448k 8465 * 256MB: 2048k 8466 * 512MB: 2896k 8467 * 1024MB: 4096k 8468 * 2048MB: 5792k 8469 * 4096MB: 8192k 8470 * 8192MB: 11584k 8471 * 16384MB: 16384k 8472 */ 8473 int __meminit init_per_zone_wmark_min(void) 8474 { 8475 unsigned long lowmem_kbytes; 8476 int new_min_free_kbytes; 8477 8478 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8479 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8480 8481 if (new_min_free_kbytes > user_min_free_kbytes) { 8482 min_free_kbytes = new_min_free_kbytes; 8483 if (min_free_kbytes < 128) 8484 min_free_kbytes = 128; 8485 if (min_free_kbytes > 262144) 8486 min_free_kbytes = 262144; 8487 } else { 8488 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8489 new_min_free_kbytes, user_min_free_kbytes); 8490 } 8491 setup_per_zone_wmarks(); 8492 refresh_zone_stat_thresholds(); 8493 setup_per_zone_lowmem_reserve(); 8494 8495 #ifdef CONFIG_NUMA 8496 setup_min_unmapped_ratio(); 8497 setup_min_slab_ratio(); 8498 #endif 8499 8500 khugepaged_min_free_kbytes_update(); 8501 8502 return 0; 8503 } 8504 postcore_initcall(init_per_zone_wmark_min) 8505 8506 /* 8507 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8508 * that we can call two helper functions whenever min_free_kbytes 8509 * changes. 8510 */ 8511 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8512 void *buffer, size_t *length, loff_t *ppos) 8513 { 8514 int rc; 8515 8516 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8517 if (rc) 8518 return rc; 8519 8520 if (write) { 8521 user_min_free_kbytes = min_free_kbytes; 8522 setup_per_zone_wmarks(); 8523 } 8524 return 0; 8525 } 8526 8527 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8528 void *buffer, size_t *length, loff_t *ppos) 8529 { 8530 int rc; 8531 8532 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8533 if (rc) 8534 return rc; 8535 8536 if (write) 8537 setup_per_zone_wmarks(); 8538 8539 return 0; 8540 } 8541 8542 #ifdef CONFIG_NUMA 8543 static void setup_min_unmapped_ratio(void) 8544 { 8545 pg_data_t *pgdat; 8546 struct zone *zone; 8547 8548 for_each_online_pgdat(pgdat) 8549 pgdat->min_unmapped_pages = 0; 8550 8551 for_each_zone(zone) 8552 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8553 sysctl_min_unmapped_ratio) / 100; 8554 } 8555 8556 8557 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8558 void *buffer, size_t *length, loff_t *ppos) 8559 { 8560 int rc; 8561 8562 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8563 if (rc) 8564 return rc; 8565 8566 setup_min_unmapped_ratio(); 8567 8568 return 0; 8569 } 8570 8571 static void setup_min_slab_ratio(void) 8572 { 8573 pg_data_t *pgdat; 8574 struct zone *zone; 8575 8576 for_each_online_pgdat(pgdat) 8577 pgdat->min_slab_pages = 0; 8578 8579 for_each_zone(zone) 8580 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8581 sysctl_min_slab_ratio) / 100; 8582 } 8583 8584 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8585 void *buffer, size_t *length, loff_t *ppos) 8586 { 8587 int rc; 8588 8589 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8590 if (rc) 8591 return rc; 8592 8593 setup_min_slab_ratio(); 8594 8595 return 0; 8596 } 8597 #endif 8598 8599 /* 8600 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8601 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8602 * whenever sysctl_lowmem_reserve_ratio changes. 8603 * 8604 * The reserve ratio obviously has absolutely no relation with the 8605 * minimum watermarks. The lowmem reserve ratio can only make sense 8606 * if in function of the boot time zone sizes. 8607 */ 8608 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8609 void *buffer, size_t *length, loff_t *ppos) 8610 { 8611 int i; 8612 8613 proc_dointvec_minmax(table, write, buffer, length, ppos); 8614 8615 for (i = 0; i < MAX_NR_ZONES; i++) { 8616 if (sysctl_lowmem_reserve_ratio[i] < 1) 8617 sysctl_lowmem_reserve_ratio[i] = 0; 8618 } 8619 8620 setup_per_zone_lowmem_reserve(); 8621 return 0; 8622 } 8623 8624 /* 8625 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8626 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8627 * pagelist can have before it gets flushed back to buddy allocator. 8628 */ 8629 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8630 int write, void *buffer, size_t *length, loff_t *ppos) 8631 { 8632 struct zone *zone; 8633 int old_percpu_pagelist_high_fraction; 8634 int ret; 8635 8636 mutex_lock(&pcp_batch_high_lock); 8637 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8638 8639 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8640 if (!write || ret < 0) 8641 goto out; 8642 8643 /* Sanity checking to avoid pcp imbalance */ 8644 if (percpu_pagelist_high_fraction && 8645 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8646 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8647 ret = -EINVAL; 8648 goto out; 8649 } 8650 8651 /* No change? */ 8652 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8653 goto out; 8654 8655 for_each_populated_zone(zone) 8656 zone_set_pageset_high_and_batch(zone, 0); 8657 out: 8658 mutex_unlock(&pcp_batch_high_lock); 8659 return ret; 8660 } 8661 8662 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8663 /* 8664 * Returns the number of pages that arch has reserved but 8665 * is not known to alloc_large_system_hash(). 8666 */ 8667 static unsigned long __init arch_reserved_kernel_pages(void) 8668 { 8669 return 0; 8670 } 8671 #endif 8672 8673 /* 8674 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8675 * machines. As memory size is increased the scale is also increased but at 8676 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8677 * quadruples the scale is increased by one, which means the size of hash table 8678 * only doubles, instead of quadrupling as well. 8679 * Because 32-bit systems cannot have large physical memory, where this scaling 8680 * makes sense, it is disabled on such platforms. 8681 */ 8682 #if __BITS_PER_LONG > 32 8683 #define ADAPT_SCALE_BASE (64ul << 30) 8684 #define ADAPT_SCALE_SHIFT 2 8685 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8686 #endif 8687 8688 /* 8689 * allocate a large system hash table from bootmem 8690 * - it is assumed that the hash table must contain an exact power-of-2 8691 * quantity of entries 8692 * - limit is the number of hash buckets, not the total allocation size 8693 */ 8694 void *__init alloc_large_system_hash(const char *tablename, 8695 unsigned long bucketsize, 8696 unsigned long numentries, 8697 int scale, 8698 int flags, 8699 unsigned int *_hash_shift, 8700 unsigned int *_hash_mask, 8701 unsigned long low_limit, 8702 unsigned long high_limit) 8703 { 8704 unsigned long long max = high_limit; 8705 unsigned long log2qty, size; 8706 void *table = NULL; 8707 gfp_t gfp_flags; 8708 bool virt; 8709 bool huge; 8710 8711 /* allow the kernel cmdline to have a say */ 8712 if (!numentries) { 8713 /* round applicable memory size up to nearest megabyte */ 8714 numentries = nr_kernel_pages; 8715 numentries -= arch_reserved_kernel_pages(); 8716 8717 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8718 if (PAGE_SHIFT < 20) 8719 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8720 8721 #if __BITS_PER_LONG > 32 8722 if (!high_limit) { 8723 unsigned long adapt; 8724 8725 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8726 adapt <<= ADAPT_SCALE_SHIFT) 8727 scale++; 8728 } 8729 #endif 8730 8731 /* limit to 1 bucket per 2^scale bytes of low memory */ 8732 if (scale > PAGE_SHIFT) 8733 numentries >>= (scale - PAGE_SHIFT); 8734 else 8735 numentries <<= (PAGE_SHIFT - scale); 8736 8737 /* Make sure we've got at least a 0-order allocation.. */ 8738 if (unlikely(flags & HASH_SMALL)) { 8739 /* Makes no sense without HASH_EARLY */ 8740 WARN_ON(!(flags & HASH_EARLY)); 8741 if (!(numentries >> *_hash_shift)) { 8742 numentries = 1UL << *_hash_shift; 8743 BUG_ON(!numentries); 8744 } 8745 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8746 numentries = PAGE_SIZE / bucketsize; 8747 } 8748 numentries = roundup_pow_of_two(numentries); 8749 8750 /* limit allocation size to 1/16 total memory by default */ 8751 if (max == 0) { 8752 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8753 do_div(max, bucketsize); 8754 } 8755 max = min(max, 0x80000000ULL); 8756 8757 if (numentries < low_limit) 8758 numentries = low_limit; 8759 if (numentries > max) 8760 numentries = max; 8761 8762 log2qty = ilog2(numentries); 8763 8764 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8765 do { 8766 virt = false; 8767 size = bucketsize << log2qty; 8768 if (flags & HASH_EARLY) { 8769 if (flags & HASH_ZERO) 8770 table = memblock_alloc(size, SMP_CACHE_BYTES); 8771 else 8772 table = memblock_alloc_raw(size, 8773 SMP_CACHE_BYTES); 8774 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8775 table = __vmalloc(size, gfp_flags); 8776 virt = true; 8777 huge = is_vm_area_hugepages(table); 8778 } else { 8779 /* 8780 * If bucketsize is not a power-of-two, we may free 8781 * some pages at the end of hash table which 8782 * alloc_pages_exact() automatically does 8783 */ 8784 table = alloc_pages_exact(size, gfp_flags); 8785 kmemleak_alloc(table, size, 1, gfp_flags); 8786 } 8787 } while (!table && size > PAGE_SIZE && --log2qty); 8788 8789 if (!table) 8790 panic("Failed to allocate %s hash table\n", tablename); 8791 8792 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8793 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8794 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8795 8796 if (_hash_shift) 8797 *_hash_shift = log2qty; 8798 if (_hash_mask) 8799 *_hash_mask = (1 << log2qty) - 1; 8800 8801 return table; 8802 } 8803 8804 /* 8805 * This function checks whether pageblock includes unmovable pages or not. 8806 * 8807 * PageLRU check without isolation or lru_lock could race so that 8808 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8809 * check without lock_page also may miss some movable non-lru pages at 8810 * race condition. So you can't expect this function should be exact. 8811 * 8812 * Returns a page without holding a reference. If the caller wants to 8813 * dereference that page (e.g., dumping), it has to make sure that it 8814 * cannot get removed (e.g., via memory unplug) concurrently. 8815 * 8816 */ 8817 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8818 int migratetype, int flags) 8819 { 8820 unsigned long iter = 0; 8821 unsigned long pfn = page_to_pfn(page); 8822 unsigned long offset = pfn % pageblock_nr_pages; 8823 8824 if (is_migrate_cma_page(page)) { 8825 /* 8826 * CMA allocations (alloc_contig_range) really need to mark 8827 * isolate CMA pageblocks even when they are not movable in fact 8828 * so consider them movable here. 8829 */ 8830 if (is_migrate_cma(migratetype)) 8831 return NULL; 8832 8833 return page; 8834 } 8835 8836 for (; iter < pageblock_nr_pages - offset; iter++) { 8837 page = pfn_to_page(pfn + iter); 8838 8839 /* 8840 * Both, bootmem allocations and memory holes are marked 8841 * PG_reserved and are unmovable. We can even have unmovable 8842 * allocations inside ZONE_MOVABLE, for example when 8843 * specifying "movablecore". 8844 */ 8845 if (PageReserved(page)) 8846 return page; 8847 8848 /* 8849 * If the zone is movable and we have ruled out all reserved 8850 * pages then it should be reasonably safe to assume the rest 8851 * is movable. 8852 */ 8853 if (zone_idx(zone) == ZONE_MOVABLE) 8854 continue; 8855 8856 /* 8857 * Hugepages are not in LRU lists, but they're movable. 8858 * THPs are on the LRU, but need to be counted as #small pages. 8859 * We need not scan over tail pages because we don't 8860 * handle each tail page individually in migration. 8861 */ 8862 if (PageHuge(page) || PageTransCompound(page)) { 8863 struct page *head = compound_head(page); 8864 unsigned int skip_pages; 8865 8866 if (PageHuge(page)) { 8867 if (!hugepage_migration_supported(page_hstate(head))) 8868 return page; 8869 } else if (!PageLRU(head) && !__PageMovable(head)) { 8870 return page; 8871 } 8872 8873 skip_pages = compound_nr(head) - (page - head); 8874 iter += skip_pages - 1; 8875 continue; 8876 } 8877 8878 /* 8879 * We can't use page_count without pin a page 8880 * because another CPU can free compound page. 8881 * This check already skips compound tails of THP 8882 * because their page->_refcount is zero at all time. 8883 */ 8884 if (!page_ref_count(page)) { 8885 if (PageBuddy(page)) 8886 iter += (1 << buddy_order(page)) - 1; 8887 continue; 8888 } 8889 8890 /* 8891 * The HWPoisoned page may be not in buddy system, and 8892 * page_count() is not 0. 8893 */ 8894 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8895 continue; 8896 8897 /* 8898 * We treat all PageOffline() pages as movable when offlining 8899 * to give drivers a chance to decrement their reference count 8900 * in MEM_GOING_OFFLINE in order to indicate that these pages 8901 * can be offlined as there are no direct references anymore. 8902 * For actually unmovable PageOffline() where the driver does 8903 * not support this, we will fail later when trying to actually 8904 * move these pages that still have a reference count > 0. 8905 * (false negatives in this function only) 8906 */ 8907 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8908 continue; 8909 8910 if (__PageMovable(page) || PageLRU(page)) 8911 continue; 8912 8913 /* 8914 * If there are RECLAIMABLE pages, we need to check 8915 * it. But now, memory offline itself doesn't call 8916 * shrink_node_slabs() and it still to be fixed. 8917 */ 8918 return page; 8919 } 8920 return NULL; 8921 } 8922 8923 #ifdef CONFIG_CONTIG_ALLOC 8924 static unsigned long pfn_max_align_down(unsigned long pfn) 8925 { 8926 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8927 pageblock_nr_pages) - 1); 8928 } 8929 8930 static unsigned long pfn_max_align_up(unsigned long pfn) 8931 { 8932 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8933 pageblock_nr_pages)); 8934 } 8935 8936 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8937 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8938 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8939 static void alloc_contig_dump_pages(struct list_head *page_list) 8940 { 8941 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8942 8943 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8944 struct page *page; 8945 8946 dump_stack(); 8947 list_for_each_entry(page, page_list, lru) 8948 dump_page(page, "migration failure"); 8949 } 8950 } 8951 #else 8952 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8953 { 8954 } 8955 #endif 8956 8957 /* [start, end) must belong to a single zone. */ 8958 static int __alloc_contig_migrate_range(struct compact_control *cc, 8959 unsigned long start, unsigned long end) 8960 { 8961 /* This function is based on compact_zone() from compaction.c. */ 8962 unsigned int nr_reclaimed; 8963 unsigned long pfn = start; 8964 unsigned int tries = 0; 8965 int ret = 0; 8966 struct migration_target_control mtc = { 8967 .nid = zone_to_nid(cc->zone), 8968 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8969 }; 8970 8971 lru_cache_disable(); 8972 8973 while (pfn < end || !list_empty(&cc->migratepages)) { 8974 if (fatal_signal_pending(current)) { 8975 ret = -EINTR; 8976 break; 8977 } 8978 8979 if (list_empty(&cc->migratepages)) { 8980 cc->nr_migratepages = 0; 8981 ret = isolate_migratepages_range(cc, pfn, end); 8982 if (ret && ret != -EAGAIN) 8983 break; 8984 pfn = cc->migrate_pfn; 8985 tries = 0; 8986 } else if (++tries == 5) { 8987 ret = -EBUSY; 8988 break; 8989 } 8990 8991 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8992 &cc->migratepages); 8993 cc->nr_migratepages -= nr_reclaimed; 8994 8995 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8996 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 8997 8998 /* 8999 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9000 * to retry again over this error, so do the same here. 9001 */ 9002 if (ret == -ENOMEM) 9003 break; 9004 } 9005 9006 lru_cache_enable(); 9007 if (ret < 0) { 9008 if (ret == -EBUSY) 9009 alloc_contig_dump_pages(&cc->migratepages); 9010 putback_movable_pages(&cc->migratepages); 9011 return ret; 9012 } 9013 return 0; 9014 } 9015 9016 /** 9017 * alloc_contig_range() -- tries to allocate given range of pages 9018 * @start: start PFN to allocate 9019 * @end: one-past-the-last PFN to allocate 9020 * @migratetype: migratetype of the underlying pageblocks (either 9021 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9022 * in range must have the same migratetype and it must 9023 * be either of the two. 9024 * @gfp_mask: GFP mask to use during compaction 9025 * 9026 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9027 * aligned. The PFN range must belong to a single zone. 9028 * 9029 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9030 * pageblocks in the range. Once isolated, the pageblocks should not 9031 * be modified by others. 9032 * 9033 * Return: zero on success or negative error code. On success all 9034 * pages which PFN is in [start, end) are allocated for the caller and 9035 * need to be freed with free_contig_range(). 9036 */ 9037 int alloc_contig_range(unsigned long start, unsigned long end, 9038 unsigned migratetype, gfp_t gfp_mask) 9039 { 9040 unsigned long outer_start, outer_end; 9041 unsigned int order; 9042 int ret = 0; 9043 9044 struct compact_control cc = { 9045 .nr_migratepages = 0, 9046 .order = -1, 9047 .zone = page_zone(pfn_to_page(start)), 9048 .mode = MIGRATE_SYNC, 9049 .ignore_skip_hint = true, 9050 .no_set_skip_hint = true, 9051 .gfp_mask = current_gfp_context(gfp_mask), 9052 .alloc_contig = true, 9053 }; 9054 INIT_LIST_HEAD(&cc.migratepages); 9055 9056 /* 9057 * What we do here is we mark all pageblocks in range as 9058 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9059 * have different sizes, and due to the way page allocator 9060 * work, we align the range to biggest of the two pages so 9061 * that page allocator won't try to merge buddies from 9062 * different pageblocks and change MIGRATE_ISOLATE to some 9063 * other migration type. 9064 * 9065 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9066 * migrate the pages from an unaligned range (ie. pages that 9067 * we are interested in). This will put all the pages in 9068 * range back to page allocator as MIGRATE_ISOLATE. 9069 * 9070 * When this is done, we take the pages in range from page 9071 * allocator removing them from the buddy system. This way 9072 * page allocator will never consider using them. 9073 * 9074 * This lets us mark the pageblocks back as 9075 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9076 * aligned range but not in the unaligned, original range are 9077 * put back to page allocator so that buddy can use them. 9078 */ 9079 9080 ret = start_isolate_page_range(pfn_max_align_down(start), 9081 pfn_max_align_up(end), migratetype, 0); 9082 if (ret) 9083 return ret; 9084 9085 drain_all_pages(cc.zone); 9086 9087 /* 9088 * In case of -EBUSY, we'd like to know which page causes problem. 9089 * So, just fall through. test_pages_isolated() has a tracepoint 9090 * which will report the busy page. 9091 * 9092 * It is possible that busy pages could become available before 9093 * the call to test_pages_isolated, and the range will actually be 9094 * allocated. So, if we fall through be sure to clear ret so that 9095 * -EBUSY is not accidentally used or returned to caller. 9096 */ 9097 ret = __alloc_contig_migrate_range(&cc, start, end); 9098 if (ret && ret != -EBUSY) 9099 goto done; 9100 ret = 0; 9101 9102 /* 9103 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9104 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9105 * more, all pages in [start, end) are free in page allocator. 9106 * What we are going to do is to allocate all pages from 9107 * [start, end) (that is remove them from page allocator). 9108 * 9109 * The only problem is that pages at the beginning and at the 9110 * end of interesting range may be not aligned with pages that 9111 * page allocator holds, ie. they can be part of higher order 9112 * pages. Because of this, we reserve the bigger range and 9113 * once this is done free the pages we are not interested in. 9114 * 9115 * We don't have to hold zone->lock here because the pages are 9116 * isolated thus they won't get removed from buddy. 9117 */ 9118 9119 order = 0; 9120 outer_start = start; 9121 while (!PageBuddy(pfn_to_page(outer_start))) { 9122 if (++order >= MAX_ORDER) { 9123 outer_start = start; 9124 break; 9125 } 9126 outer_start &= ~0UL << order; 9127 } 9128 9129 if (outer_start != start) { 9130 order = buddy_order(pfn_to_page(outer_start)); 9131 9132 /* 9133 * outer_start page could be small order buddy page and 9134 * it doesn't include start page. Adjust outer_start 9135 * in this case to report failed page properly 9136 * on tracepoint in test_pages_isolated() 9137 */ 9138 if (outer_start + (1UL << order) <= start) 9139 outer_start = start; 9140 } 9141 9142 /* Make sure the range is really isolated. */ 9143 if (test_pages_isolated(outer_start, end, 0)) { 9144 ret = -EBUSY; 9145 goto done; 9146 } 9147 9148 /* Grab isolated pages from freelists. */ 9149 outer_end = isolate_freepages_range(&cc, outer_start, end); 9150 if (!outer_end) { 9151 ret = -EBUSY; 9152 goto done; 9153 } 9154 9155 /* Free head and tail (if any) */ 9156 if (start != outer_start) 9157 free_contig_range(outer_start, start - outer_start); 9158 if (end != outer_end) 9159 free_contig_range(end, outer_end - end); 9160 9161 done: 9162 undo_isolate_page_range(pfn_max_align_down(start), 9163 pfn_max_align_up(end), migratetype); 9164 return ret; 9165 } 9166 EXPORT_SYMBOL(alloc_contig_range); 9167 9168 static int __alloc_contig_pages(unsigned long start_pfn, 9169 unsigned long nr_pages, gfp_t gfp_mask) 9170 { 9171 unsigned long end_pfn = start_pfn + nr_pages; 9172 9173 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9174 gfp_mask); 9175 } 9176 9177 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9178 unsigned long nr_pages) 9179 { 9180 unsigned long i, end_pfn = start_pfn + nr_pages; 9181 struct page *page; 9182 9183 for (i = start_pfn; i < end_pfn; i++) { 9184 page = pfn_to_online_page(i); 9185 if (!page) 9186 return false; 9187 9188 if (page_zone(page) != z) 9189 return false; 9190 9191 if (PageReserved(page)) 9192 return false; 9193 } 9194 return true; 9195 } 9196 9197 static bool zone_spans_last_pfn(const struct zone *zone, 9198 unsigned long start_pfn, unsigned long nr_pages) 9199 { 9200 unsigned long last_pfn = start_pfn + nr_pages - 1; 9201 9202 return zone_spans_pfn(zone, last_pfn); 9203 } 9204 9205 /** 9206 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9207 * @nr_pages: Number of contiguous pages to allocate 9208 * @gfp_mask: GFP mask to limit search and used during compaction 9209 * @nid: Target node 9210 * @nodemask: Mask for other possible nodes 9211 * 9212 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9213 * on an applicable zonelist to find a contiguous pfn range which can then be 9214 * tried for allocation with alloc_contig_range(). This routine is intended 9215 * for allocation requests which can not be fulfilled with the buddy allocator. 9216 * 9217 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9218 * power of two then the alignment is guaranteed to be to the given nr_pages 9219 * (e.g. 1GB request would be aligned to 1GB). 9220 * 9221 * Allocated pages can be freed with free_contig_range() or by manually calling 9222 * __free_page() on each allocated page. 9223 * 9224 * Return: pointer to contiguous pages on success, or NULL if not successful. 9225 */ 9226 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9227 int nid, nodemask_t *nodemask) 9228 { 9229 unsigned long ret, pfn, flags; 9230 struct zonelist *zonelist; 9231 struct zone *zone; 9232 struct zoneref *z; 9233 9234 zonelist = node_zonelist(nid, gfp_mask); 9235 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9236 gfp_zone(gfp_mask), nodemask) { 9237 spin_lock_irqsave(&zone->lock, flags); 9238 9239 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9240 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9241 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9242 /* 9243 * We release the zone lock here because 9244 * alloc_contig_range() will also lock the zone 9245 * at some point. If there's an allocation 9246 * spinning on this lock, it may win the race 9247 * and cause alloc_contig_range() to fail... 9248 */ 9249 spin_unlock_irqrestore(&zone->lock, flags); 9250 ret = __alloc_contig_pages(pfn, nr_pages, 9251 gfp_mask); 9252 if (!ret) 9253 return pfn_to_page(pfn); 9254 spin_lock_irqsave(&zone->lock, flags); 9255 } 9256 pfn += nr_pages; 9257 } 9258 spin_unlock_irqrestore(&zone->lock, flags); 9259 } 9260 return NULL; 9261 } 9262 #endif /* CONFIG_CONTIG_ALLOC */ 9263 9264 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9265 { 9266 unsigned long count = 0; 9267 9268 for (; nr_pages--; pfn++) { 9269 struct page *page = pfn_to_page(pfn); 9270 9271 count += page_count(page) != 1; 9272 __free_page(page); 9273 } 9274 WARN(count != 0, "%lu pages are still in use!\n", count); 9275 } 9276 EXPORT_SYMBOL(free_contig_range); 9277 9278 /* 9279 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9280 * page high values need to be recalculated. 9281 */ 9282 void zone_pcp_update(struct zone *zone, int cpu_online) 9283 { 9284 mutex_lock(&pcp_batch_high_lock); 9285 zone_set_pageset_high_and_batch(zone, cpu_online); 9286 mutex_unlock(&pcp_batch_high_lock); 9287 } 9288 9289 /* 9290 * Effectively disable pcplists for the zone by setting the high limit to 0 9291 * and draining all cpus. A concurrent page freeing on another CPU that's about 9292 * to put the page on pcplist will either finish before the drain and the page 9293 * will be drained, or observe the new high limit and skip the pcplist. 9294 * 9295 * Must be paired with a call to zone_pcp_enable(). 9296 */ 9297 void zone_pcp_disable(struct zone *zone) 9298 { 9299 mutex_lock(&pcp_batch_high_lock); 9300 __zone_set_pageset_high_and_batch(zone, 0, 1); 9301 __drain_all_pages(zone, true); 9302 } 9303 9304 void zone_pcp_enable(struct zone *zone) 9305 { 9306 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9307 mutex_unlock(&pcp_batch_high_lock); 9308 } 9309 9310 void zone_pcp_reset(struct zone *zone) 9311 { 9312 int cpu; 9313 struct per_cpu_zonestat *pzstats; 9314 9315 if (zone->per_cpu_pageset != &boot_pageset) { 9316 for_each_online_cpu(cpu) { 9317 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9318 drain_zonestat(zone, pzstats); 9319 } 9320 free_percpu(zone->per_cpu_pageset); 9321 free_percpu(zone->per_cpu_zonestats); 9322 zone->per_cpu_pageset = &boot_pageset; 9323 zone->per_cpu_zonestats = &boot_zonestats; 9324 } 9325 } 9326 9327 #ifdef CONFIG_MEMORY_HOTREMOVE 9328 /* 9329 * All pages in the range must be in a single zone, must not contain holes, 9330 * must span full sections, and must be isolated before calling this function. 9331 */ 9332 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9333 { 9334 unsigned long pfn = start_pfn; 9335 struct page *page; 9336 struct zone *zone; 9337 unsigned int order; 9338 unsigned long flags; 9339 9340 offline_mem_sections(pfn, end_pfn); 9341 zone = page_zone(pfn_to_page(pfn)); 9342 spin_lock_irqsave(&zone->lock, flags); 9343 while (pfn < end_pfn) { 9344 page = pfn_to_page(pfn); 9345 /* 9346 * The HWPoisoned page may be not in buddy system, and 9347 * page_count() is not 0. 9348 */ 9349 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9350 pfn++; 9351 continue; 9352 } 9353 /* 9354 * At this point all remaining PageOffline() pages have a 9355 * reference count of 0 and can simply be skipped. 9356 */ 9357 if (PageOffline(page)) { 9358 BUG_ON(page_count(page)); 9359 BUG_ON(PageBuddy(page)); 9360 pfn++; 9361 continue; 9362 } 9363 9364 BUG_ON(page_count(page)); 9365 BUG_ON(!PageBuddy(page)); 9366 order = buddy_order(page); 9367 del_page_from_free_list(page, zone, order); 9368 pfn += (1 << order); 9369 } 9370 spin_unlock_irqrestore(&zone->lock, flags); 9371 } 9372 #endif 9373 9374 bool is_free_buddy_page(struct page *page) 9375 { 9376 struct zone *zone = page_zone(page); 9377 unsigned long pfn = page_to_pfn(page); 9378 unsigned long flags; 9379 unsigned int order; 9380 9381 spin_lock_irqsave(&zone->lock, flags); 9382 for (order = 0; order < MAX_ORDER; order++) { 9383 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9384 9385 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 9386 break; 9387 } 9388 spin_unlock_irqrestore(&zone->lock, flags); 9389 9390 return order < MAX_ORDER; 9391 } 9392 9393 #ifdef CONFIG_MEMORY_FAILURE 9394 /* 9395 * Break down a higher-order page in sub-pages, and keep our target out of 9396 * buddy allocator. 9397 */ 9398 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9399 struct page *target, int low, int high, 9400 int migratetype) 9401 { 9402 unsigned long size = 1 << high; 9403 struct page *current_buddy, *next_page; 9404 9405 while (high > low) { 9406 high--; 9407 size >>= 1; 9408 9409 if (target >= &page[size]) { 9410 next_page = page + size; 9411 current_buddy = page; 9412 } else { 9413 next_page = page; 9414 current_buddy = page + size; 9415 } 9416 9417 if (set_page_guard(zone, current_buddy, high, migratetype)) 9418 continue; 9419 9420 if (current_buddy != target) { 9421 add_to_free_list(current_buddy, zone, high, migratetype); 9422 set_buddy_order(current_buddy, high); 9423 page = next_page; 9424 } 9425 } 9426 } 9427 9428 /* 9429 * Take a page that will be marked as poisoned off the buddy allocator. 9430 */ 9431 bool take_page_off_buddy(struct page *page) 9432 { 9433 struct zone *zone = page_zone(page); 9434 unsigned long pfn = page_to_pfn(page); 9435 unsigned long flags; 9436 unsigned int order; 9437 bool ret = false; 9438 9439 spin_lock_irqsave(&zone->lock, flags); 9440 for (order = 0; order < MAX_ORDER; order++) { 9441 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9442 int page_order = buddy_order(page_head); 9443 9444 if (PageBuddy(page_head) && page_order >= order) { 9445 unsigned long pfn_head = page_to_pfn(page_head); 9446 int migratetype = get_pfnblock_migratetype(page_head, 9447 pfn_head); 9448 9449 del_page_from_free_list(page_head, zone, page_order); 9450 break_down_buddy_pages(zone, page_head, page, 0, 9451 page_order, migratetype); 9452 if (!is_migrate_isolate(migratetype)) 9453 __mod_zone_freepage_state(zone, -1, migratetype); 9454 ret = true; 9455 break; 9456 } 9457 if (page_count(page_head) > 0) 9458 break; 9459 } 9460 spin_unlock_irqrestore(&zone->lock, flags); 9461 return ret; 9462 } 9463 #endif 9464