1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/module.h> 31 #include <linux/suspend.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/slab.h> 35 #include <linux/ratelimit.h> 36 #include <linux/oom.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/random.h> 49 #include <linux/sort.h> 50 #include <linux/pfn.h> 51 #include <linux/backing-dev.h> 52 #include <linux/fault-inject.h> 53 #include <linux/page-isolation.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/sched/rt.h> 65 #include <linux/sched/mm.h> 66 #include <linux/page_owner.h> 67 #include <linux/page_table_check.h> 68 #include <linux/kthread.h> 69 #include <linux/memcontrol.h> 70 #include <linux/ftrace.h> 71 #include <linux/lockdep.h> 72 #include <linux/nmi.h> 73 #include <linux/psi.h> 74 #include <linux/padata.h> 75 #include <linux/khugepaged.h> 76 #include <linux/buffer_head.h> 77 #include <linux/delayacct.h> 78 #include <asm/sections.h> 79 #include <asm/tlbflush.h> 80 #include <asm/div64.h> 81 #include "internal.h" 82 #include "shuffle.h" 83 #include "page_reporting.h" 84 85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 86 typedef int __bitwise fpi_t; 87 88 /* No special request */ 89 #define FPI_NONE ((__force fpi_t)0) 90 91 /* 92 * Skip free page reporting notification for the (possibly merged) page. 93 * This does not hinder free page reporting from grabbing the page, 94 * reporting it and marking it "reported" - it only skips notifying 95 * the free page reporting infrastructure about a newly freed page. For 96 * example, used when temporarily pulling a page from a freelist and 97 * putting it back unmodified. 98 */ 99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 100 101 /* 102 * Place the (possibly merged) page to the tail of the freelist. Will ignore 103 * page shuffling (relevant code - e.g., memory onlining - is expected to 104 * shuffle the whole zone). 105 * 106 * Note: No code should rely on this flag for correctness - it's purely 107 * to allow for optimizations when handing back either fresh pages 108 * (memory onlining) or untouched pages (page isolation, free page 109 * reporting). 110 */ 111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 112 113 /* 114 * Don't poison memory with KASAN (only for the tag-based modes). 115 * During boot, all non-reserved memblock memory is exposed to page_alloc. 116 * Poisoning all that memory lengthens boot time, especially on systems with 117 * large amount of RAM. This flag is used to skip that poisoning. 118 * This is only done for the tag-based KASAN modes, as those are able to 119 * detect memory corruptions with the memory tags assigned by default. 120 * All memory allocated normally after boot gets poisoned as usual. 121 */ 122 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 123 124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 125 static DEFINE_MUTEX(pcp_batch_high_lock); 126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 127 128 struct pagesets { 129 local_lock_t lock; 130 }; 131 static DEFINE_PER_CPU(struct pagesets, pagesets) __maybe_unused = { 132 .lock = INIT_LOCAL_LOCK(lock), 133 }; 134 135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 136 DEFINE_PER_CPU(int, numa_node); 137 EXPORT_PER_CPU_SYMBOL(numa_node); 138 #endif 139 140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 141 142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 143 /* 144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 147 * defined in <linux/topology.h>. 148 */ 149 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 150 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 151 #endif 152 153 /* work_structs for global per-cpu drains */ 154 struct pcpu_drain { 155 struct zone *zone; 156 struct work_struct work; 157 }; 158 static DEFINE_MUTEX(pcpu_drain_mutex); 159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 160 161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 162 volatile unsigned long latent_entropy __latent_entropy; 163 EXPORT_SYMBOL(latent_entropy); 164 #endif 165 166 /* 167 * Array of node states. 168 */ 169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 170 [N_POSSIBLE] = NODE_MASK_ALL, 171 [N_ONLINE] = { { [0] = 1UL } }, 172 #ifndef CONFIG_NUMA 173 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 174 #ifdef CONFIG_HIGHMEM 175 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 176 #endif 177 [N_MEMORY] = { { [0] = 1UL } }, 178 [N_CPU] = { { [0] = 1UL } }, 179 #endif /* NUMA */ 180 }; 181 EXPORT_SYMBOL(node_states); 182 183 atomic_long_t _totalram_pages __read_mostly; 184 EXPORT_SYMBOL(_totalram_pages); 185 unsigned long totalreserve_pages __read_mostly; 186 unsigned long totalcma_pages __read_mostly; 187 188 int percpu_pagelist_high_fraction; 189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 191 EXPORT_SYMBOL(init_on_alloc); 192 193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 194 EXPORT_SYMBOL(init_on_free); 195 196 static bool _init_on_alloc_enabled_early __read_mostly 197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 198 static int __init early_init_on_alloc(char *buf) 199 { 200 201 return kstrtobool(buf, &_init_on_alloc_enabled_early); 202 } 203 early_param("init_on_alloc", early_init_on_alloc); 204 205 static bool _init_on_free_enabled_early __read_mostly 206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 207 static int __init early_init_on_free(char *buf) 208 { 209 return kstrtobool(buf, &_init_on_free_enabled_early); 210 } 211 early_param("init_on_free", early_init_on_free); 212 213 /* 214 * A cached value of the page's pageblock's migratetype, used when the page is 215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 216 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 217 * Also the migratetype set in the page does not necessarily match the pcplist 218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 219 * other index - this ensures that it will be put on the correct CMA freelist. 220 */ 221 static inline int get_pcppage_migratetype(struct page *page) 222 { 223 return page->index; 224 } 225 226 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 227 { 228 page->index = migratetype; 229 } 230 231 #ifdef CONFIG_PM_SLEEP 232 /* 233 * The following functions are used by the suspend/hibernate code to temporarily 234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 235 * while devices are suspended. To avoid races with the suspend/hibernate code, 236 * they should always be called with system_transition_mutex held 237 * (gfp_allowed_mask also should only be modified with system_transition_mutex 238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 239 * with that modification). 240 */ 241 242 static gfp_t saved_gfp_mask; 243 244 void pm_restore_gfp_mask(void) 245 { 246 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 247 if (saved_gfp_mask) { 248 gfp_allowed_mask = saved_gfp_mask; 249 saved_gfp_mask = 0; 250 } 251 } 252 253 void pm_restrict_gfp_mask(void) 254 { 255 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 256 WARN_ON(saved_gfp_mask); 257 saved_gfp_mask = gfp_allowed_mask; 258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 259 } 260 261 bool pm_suspended_storage(void) 262 { 263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 264 return false; 265 return true; 266 } 267 #endif /* CONFIG_PM_SLEEP */ 268 269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 270 unsigned int pageblock_order __read_mostly; 271 #endif 272 273 static void __free_pages_ok(struct page *page, unsigned int order, 274 fpi_t fpi_flags); 275 276 /* 277 * results with 256, 32 in the lowmem_reserve sysctl: 278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 279 * 1G machine -> (16M dma, 784M normal, 224M high) 280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 283 * 284 * TBD: should special case ZONE_DMA32 machines here - in those we normally 285 * don't need any ZONE_NORMAL reservation 286 */ 287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 288 #ifdef CONFIG_ZONE_DMA 289 [ZONE_DMA] = 256, 290 #endif 291 #ifdef CONFIG_ZONE_DMA32 292 [ZONE_DMA32] = 256, 293 #endif 294 [ZONE_NORMAL] = 32, 295 #ifdef CONFIG_HIGHMEM 296 [ZONE_HIGHMEM] = 0, 297 #endif 298 [ZONE_MOVABLE] = 0, 299 }; 300 301 static char * const zone_names[MAX_NR_ZONES] = { 302 #ifdef CONFIG_ZONE_DMA 303 "DMA", 304 #endif 305 #ifdef CONFIG_ZONE_DMA32 306 "DMA32", 307 #endif 308 "Normal", 309 #ifdef CONFIG_HIGHMEM 310 "HighMem", 311 #endif 312 "Movable", 313 #ifdef CONFIG_ZONE_DEVICE 314 "Device", 315 #endif 316 }; 317 318 const char * const migratetype_names[MIGRATE_TYPES] = { 319 "Unmovable", 320 "Movable", 321 "Reclaimable", 322 "HighAtomic", 323 #ifdef CONFIG_CMA 324 "CMA", 325 #endif 326 #ifdef CONFIG_MEMORY_ISOLATION 327 "Isolate", 328 #endif 329 }; 330 331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 332 [NULL_COMPOUND_DTOR] = NULL, 333 [COMPOUND_PAGE_DTOR] = free_compound_page, 334 #ifdef CONFIG_HUGETLB_PAGE 335 [HUGETLB_PAGE_DTOR] = free_huge_page, 336 #endif 337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 339 #endif 340 }; 341 342 int min_free_kbytes = 1024; 343 int user_min_free_kbytes = -1; 344 int watermark_boost_factor __read_mostly = 15000; 345 int watermark_scale_factor = 10; 346 347 static unsigned long nr_kernel_pages __initdata; 348 static unsigned long nr_all_pages __initdata; 349 static unsigned long dma_reserve __initdata; 350 351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 353 static unsigned long required_kernelcore __initdata; 354 static unsigned long required_kernelcore_percent __initdata; 355 static unsigned long required_movablecore __initdata; 356 static unsigned long required_movablecore_percent __initdata; 357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 358 static bool mirrored_kernelcore __meminitdata; 359 360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 361 int movable_zone; 362 EXPORT_SYMBOL(movable_zone); 363 364 #if MAX_NUMNODES > 1 365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 366 unsigned int nr_online_nodes __read_mostly = 1; 367 EXPORT_SYMBOL(nr_node_ids); 368 EXPORT_SYMBOL(nr_online_nodes); 369 #endif 370 371 int page_group_by_mobility_disabled __read_mostly; 372 373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 374 /* 375 * During boot we initialize deferred pages on-demand, as needed, but once 376 * page_alloc_init_late() has finished, the deferred pages are all initialized, 377 * and we can permanently disable that path. 378 */ 379 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 380 381 static inline bool deferred_pages_enabled(void) 382 { 383 return static_branch_unlikely(&deferred_pages); 384 } 385 386 /* Returns true if the struct page for the pfn is uninitialised */ 387 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 388 { 389 int nid = early_pfn_to_nid(pfn); 390 391 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 392 return true; 393 394 return false; 395 } 396 397 /* 398 * Returns true when the remaining initialisation should be deferred until 399 * later in the boot cycle when it can be parallelised. 400 */ 401 static bool __meminit 402 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 403 { 404 static unsigned long prev_end_pfn, nr_initialised; 405 406 /* 407 * prev_end_pfn static that contains the end of previous zone 408 * No need to protect because called very early in boot before smp_init. 409 */ 410 if (prev_end_pfn != end_pfn) { 411 prev_end_pfn = end_pfn; 412 nr_initialised = 0; 413 } 414 415 /* Always populate low zones for address-constrained allocations */ 416 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 417 return false; 418 419 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 420 return true; 421 /* 422 * We start only with one section of pages, more pages are added as 423 * needed until the rest of deferred pages are initialized. 424 */ 425 nr_initialised++; 426 if ((nr_initialised > PAGES_PER_SECTION) && 427 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 428 NODE_DATA(nid)->first_deferred_pfn = pfn; 429 return true; 430 } 431 return false; 432 } 433 #else 434 static inline bool deferred_pages_enabled(void) 435 { 436 return false; 437 } 438 439 static inline bool early_page_uninitialised(unsigned long pfn) 440 { 441 return false; 442 } 443 444 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 445 { 446 return false; 447 } 448 #endif 449 450 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 451 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 452 unsigned long pfn) 453 { 454 #ifdef CONFIG_SPARSEMEM 455 return section_to_usemap(__pfn_to_section(pfn)); 456 #else 457 return page_zone(page)->pageblock_flags; 458 #endif /* CONFIG_SPARSEMEM */ 459 } 460 461 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 462 { 463 #ifdef CONFIG_SPARSEMEM 464 pfn &= (PAGES_PER_SECTION-1); 465 #else 466 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 467 #endif /* CONFIG_SPARSEMEM */ 468 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 469 } 470 471 static __always_inline 472 unsigned long __get_pfnblock_flags_mask(const struct page *page, 473 unsigned long pfn, 474 unsigned long mask) 475 { 476 unsigned long *bitmap; 477 unsigned long bitidx, word_bitidx; 478 unsigned long word; 479 480 bitmap = get_pageblock_bitmap(page, pfn); 481 bitidx = pfn_to_bitidx(page, pfn); 482 word_bitidx = bitidx / BITS_PER_LONG; 483 bitidx &= (BITS_PER_LONG-1); 484 485 word = bitmap[word_bitidx]; 486 return (word >> bitidx) & mask; 487 } 488 489 /** 490 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 491 * @page: The page within the block of interest 492 * @pfn: The target page frame number 493 * @mask: mask of bits that the caller is interested in 494 * 495 * Return: pageblock_bits flags 496 */ 497 unsigned long get_pfnblock_flags_mask(const struct page *page, 498 unsigned long pfn, unsigned long mask) 499 { 500 return __get_pfnblock_flags_mask(page, pfn, mask); 501 } 502 503 static __always_inline int get_pfnblock_migratetype(const struct page *page, 504 unsigned long pfn) 505 { 506 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 507 } 508 509 /** 510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 511 * @page: The page within the block of interest 512 * @flags: The flags to set 513 * @pfn: The target page frame number 514 * @mask: mask of bits that the caller is interested in 515 */ 516 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 517 unsigned long pfn, 518 unsigned long mask) 519 { 520 unsigned long *bitmap; 521 unsigned long bitidx, word_bitidx; 522 unsigned long old_word, word; 523 524 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 525 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 526 527 bitmap = get_pageblock_bitmap(page, pfn); 528 bitidx = pfn_to_bitidx(page, pfn); 529 word_bitidx = bitidx / BITS_PER_LONG; 530 bitidx &= (BITS_PER_LONG-1); 531 532 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 533 534 mask <<= bitidx; 535 flags <<= bitidx; 536 537 word = READ_ONCE(bitmap[word_bitidx]); 538 for (;;) { 539 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 540 if (word == old_word) 541 break; 542 word = old_word; 543 } 544 } 545 546 void set_pageblock_migratetype(struct page *page, int migratetype) 547 { 548 if (unlikely(page_group_by_mobility_disabled && 549 migratetype < MIGRATE_PCPTYPES)) 550 migratetype = MIGRATE_UNMOVABLE; 551 552 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 553 page_to_pfn(page), MIGRATETYPE_MASK); 554 } 555 556 #ifdef CONFIG_DEBUG_VM 557 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 558 { 559 int ret = 0; 560 unsigned seq; 561 unsigned long pfn = page_to_pfn(page); 562 unsigned long sp, start_pfn; 563 564 do { 565 seq = zone_span_seqbegin(zone); 566 start_pfn = zone->zone_start_pfn; 567 sp = zone->spanned_pages; 568 if (!zone_spans_pfn(zone, pfn)) 569 ret = 1; 570 } while (zone_span_seqretry(zone, seq)); 571 572 if (ret) 573 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 574 pfn, zone_to_nid(zone), zone->name, 575 start_pfn, start_pfn + sp); 576 577 return ret; 578 } 579 580 static int page_is_consistent(struct zone *zone, struct page *page) 581 { 582 if (zone != page_zone(page)) 583 return 0; 584 585 return 1; 586 } 587 /* 588 * Temporary debugging check for pages not lying within a given zone. 589 */ 590 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 591 { 592 if (page_outside_zone_boundaries(zone, page)) 593 return 1; 594 if (!page_is_consistent(zone, page)) 595 return 1; 596 597 return 0; 598 } 599 #else 600 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 601 { 602 return 0; 603 } 604 #endif 605 606 static void bad_page(struct page *page, const char *reason) 607 { 608 static unsigned long resume; 609 static unsigned long nr_shown; 610 static unsigned long nr_unshown; 611 612 /* 613 * Allow a burst of 60 reports, then keep quiet for that minute; 614 * or allow a steady drip of one report per second. 615 */ 616 if (nr_shown == 60) { 617 if (time_before(jiffies, resume)) { 618 nr_unshown++; 619 goto out; 620 } 621 if (nr_unshown) { 622 pr_alert( 623 "BUG: Bad page state: %lu messages suppressed\n", 624 nr_unshown); 625 nr_unshown = 0; 626 } 627 nr_shown = 0; 628 } 629 if (nr_shown++ == 0) 630 resume = jiffies + 60 * HZ; 631 632 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 633 current->comm, page_to_pfn(page)); 634 dump_page(page, reason); 635 636 print_modules(); 637 dump_stack(); 638 out: 639 /* Leave bad fields for debug, except PageBuddy could make trouble */ 640 page_mapcount_reset(page); /* remove PageBuddy */ 641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 642 } 643 644 static inline unsigned int order_to_pindex(int migratetype, int order) 645 { 646 int base = order; 647 648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 649 if (order > PAGE_ALLOC_COSTLY_ORDER) { 650 VM_BUG_ON(order != pageblock_order); 651 base = PAGE_ALLOC_COSTLY_ORDER + 1; 652 } 653 #else 654 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 655 #endif 656 657 return (MIGRATE_PCPTYPES * base) + migratetype; 658 } 659 660 static inline int pindex_to_order(unsigned int pindex) 661 { 662 int order = pindex / MIGRATE_PCPTYPES; 663 664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 665 if (order > PAGE_ALLOC_COSTLY_ORDER) 666 order = pageblock_order; 667 #else 668 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 669 #endif 670 671 return order; 672 } 673 674 static inline bool pcp_allowed_order(unsigned int order) 675 { 676 if (order <= PAGE_ALLOC_COSTLY_ORDER) 677 return true; 678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 679 if (order == pageblock_order) 680 return true; 681 #endif 682 return false; 683 } 684 685 static inline void free_the_page(struct page *page, unsigned int order) 686 { 687 if (pcp_allowed_order(order)) /* Via pcp? */ 688 free_unref_page(page, order); 689 else 690 __free_pages_ok(page, order, FPI_NONE); 691 } 692 693 /* 694 * Higher-order pages are called "compound pages". They are structured thusly: 695 * 696 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 697 * 698 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 699 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 700 * 701 * The first tail page's ->compound_dtor holds the offset in array of compound 702 * page destructors. See compound_page_dtors. 703 * 704 * The first tail page's ->compound_order holds the order of allocation. 705 * This usage means that zero-order pages may not be compound. 706 */ 707 708 void free_compound_page(struct page *page) 709 { 710 mem_cgroup_uncharge(page_folio(page)); 711 free_the_page(page, compound_order(page)); 712 } 713 714 static void prep_compound_head(struct page *page, unsigned int order) 715 { 716 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 717 set_compound_order(page, order); 718 atomic_set(compound_mapcount_ptr(page), -1); 719 atomic_set(compound_pincount_ptr(page), 0); 720 } 721 722 static void prep_compound_tail(struct page *head, int tail_idx) 723 { 724 struct page *p = head + tail_idx; 725 726 p->mapping = TAIL_MAPPING; 727 set_compound_head(p, head); 728 } 729 730 void prep_compound_page(struct page *page, unsigned int order) 731 { 732 int i; 733 int nr_pages = 1 << order; 734 735 __SetPageHead(page); 736 for (i = 1; i < nr_pages; i++) 737 prep_compound_tail(page, i); 738 739 prep_compound_head(page, order); 740 } 741 742 #ifdef CONFIG_DEBUG_PAGEALLOC 743 unsigned int _debug_guardpage_minorder; 744 745 bool _debug_pagealloc_enabled_early __read_mostly 746 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 747 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 748 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 749 EXPORT_SYMBOL(_debug_pagealloc_enabled); 750 751 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 752 753 static int __init early_debug_pagealloc(char *buf) 754 { 755 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 756 } 757 early_param("debug_pagealloc", early_debug_pagealloc); 758 759 static int __init debug_guardpage_minorder_setup(char *buf) 760 { 761 unsigned long res; 762 763 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 764 pr_err("Bad debug_guardpage_minorder value\n"); 765 return 0; 766 } 767 _debug_guardpage_minorder = res; 768 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 769 return 0; 770 } 771 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 772 773 static inline bool set_page_guard(struct zone *zone, struct page *page, 774 unsigned int order, int migratetype) 775 { 776 if (!debug_guardpage_enabled()) 777 return false; 778 779 if (order >= debug_guardpage_minorder()) 780 return false; 781 782 __SetPageGuard(page); 783 INIT_LIST_HEAD(&page->lru); 784 set_page_private(page, order); 785 /* Guard pages are not available for any usage */ 786 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 787 788 return true; 789 } 790 791 static inline void clear_page_guard(struct zone *zone, struct page *page, 792 unsigned int order, int migratetype) 793 { 794 if (!debug_guardpage_enabled()) 795 return; 796 797 __ClearPageGuard(page); 798 799 set_page_private(page, 0); 800 if (!is_migrate_isolate(migratetype)) 801 __mod_zone_freepage_state(zone, (1 << order), migratetype); 802 } 803 #else 804 static inline bool set_page_guard(struct zone *zone, struct page *page, 805 unsigned int order, int migratetype) { return false; } 806 static inline void clear_page_guard(struct zone *zone, struct page *page, 807 unsigned int order, int migratetype) {} 808 #endif 809 810 /* 811 * Enable static keys related to various memory debugging and hardening options. 812 * Some override others, and depend on early params that are evaluated in the 813 * order of appearance. So we need to first gather the full picture of what was 814 * enabled, and then make decisions. 815 */ 816 void init_mem_debugging_and_hardening(void) 817 { 818 bool page_poisoning_requested = false; 819 820 #ifdef CONFIG_PAGE_POISONING 821 /* 822 * Page poisoning is debug page alloc for some arches. If 823 * either of those options are enabled, enable poisoning. 824 */ 825 if (page_poisoning_enabled() || 826 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 827 debug_pagealloc_enabled())) { 828 static_branch_enable(&_page_poisoning_enabled); 829 page_poisoning_requested = true; 830 } 831 #endif 832 833 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 834 page_poisoning_requested) { 835 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 836 "will take precedence over init_on_alloc and init_on_free\n"); 837 _init_on_alloc_enabled_early = false; 838 _init_on_free_enabled_early = false; 839 } 840 841 if (_init_on_alloc_enabled_early) 842 static_branch_enable(&init_on_alloc); 843 else 844 static_branch_disable(&init_on_alloc); 845 846 if (_init_on_free_enabled_early) 847 static_branch_enable(&init_on_free); 848 else 849 static_branch_disable(&init_on_free); 850 851 #ifdef CONFIG_DEBUG_PAGEALLOC 852 if (!debug_pagealloc_enabled()) 853 return; 854 855 static_branch_enable(&_debug_pagealloc_enabled); 856 857 if (!debug_guardpage_minorder()) 858 return; 859 860 static_branch_enable(&_debug_guardpage_enabled); 861 #endif 862 } 863 864 static inline void set_buddy_order(struct page *page, unsigned int order) 865 { 866 set_page_private(page, order); 867 __SetPageBuddy(page); 868 } 869 870 /* 871 * This function checks whether a page is free && is the buddy 872 * we can coalesce a page and its buddy if 873 * (a) the buddy is not in a hole (check before calling!) && 874 * (b) the buddy is in the buddy system && 875 * (c) a page and its buddy have the same order && 876 * (d) a page and its buddy are in the same zone. 877 * 878 * For recording whether a page is in the buddy system, we set PageBuddy. 879 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 880 * 881 * For recording page's order, we use page_private(page). 882 */ 883 static inline bool page_is_buddy(struct page *page, struct page *buddy, 884 unsigned int order) 885 { 886 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 887 return false; 888 889 if (buddy_order(buddy) != order) 890 return false; 891 892 /* 893 * zone check is done late to avoid uselessly calculating 894 * zone/node ids for pages that could never merge. 895 */ 896 if (page_zone_id(page) != page_zone_id(buddy)) 897 return false; 898 899 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 900 901 return true; 902 } 903 904 #ifdef CONFIG_COMPACTION 905 static inline struct capture_control *task_capc(struct zone *zone) 906 { 907 struct capture_control *capc = current->capture_control; 908 909 return unlikely(capc) && 910 !(current->flags & PF_KTHREAD) && 911 !capc->page && 912 capc->cc->zone == zone ? capc : NULL; 913 } 914 915 static inline bool 916 compaction_capture(struct capture_control *capc, struct page *page, 917 int order, int migratetype) 918 { 919 if (!capc || order != capc->cc->order) 920 return false; 921 922 /* Do not accidentally pollute CMA or isolated regions*/ 923 if (is_migrate_cma(migratetype) || 924 is_migrate_isolate(migratetype)) 925 return false; 926 927 /* 928 * Do not let lower order allocations pollute a movable pageblock. 929 * This might let an unmovable request use a reclaimable pageblock 930 * and vice-versa but no more than normal fallback logic which can 931 * have trouble finding a high-order free page. 932 */ 933 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 934 return false; 935 936 capc->page = page; 937 return true; 938 } 939 940 #else 941 static inline struct capture_control *task_capc(struct zone *zone) 942 { 943 return NULL; 944 } 945 946 static inline bool 947 compaction_capture(struct capture_control *capc, struct page *page, 948 int order, int migratetype) 949 { 950 return false; 951 } 952 #endif /* CONFIG_COMPACTION */ 953 954 /* Used for pages not on another list */ 955 static inline void add_to_free_list(struct page *page, struct zone *zone, 956 unsigned int order, int migratetype) 957 { 958 struct free_area *area = &zone->free_area[order]; 959 960 list_add(&page->lru, &area->free_list[migratetype]); 961 area->nr_free++; 962 } 963 964 /* Used for pages not on another list */ 965 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 966 unsigned int order, int migratetype) 967 { 968 struct free_area *area = &zone->free_area[order]; 969 970 list_add_tail(&page->lru, &area->free_list[migratetype]); 971 area->nr_free++; 972 } 973 974 /* 975 * Used for pages which are on another list. Move the pages to the tail 976 * of the list - so the moved pages won't immediately be considered for 977 * allocation again (e.g., optimization for memory onlining). 978 */ 979 static inline void move_to_free_list(struct page *page, struct zone *zone, 980 unsigned int order, int migratetype) 981 { 982 struct free_area *area = &zone->free_area[order]; 983 984 list_move_tail(&page->lru, &area->free_list[migratetype]); 985 } 986 987 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 988 unsigned int order) 989 { 990 /* clear reported state and update reported page count */ 991 if (page_reported(page)) 992 __ClearPageReported(page); 993 994 list_del(&page->lru); 995 __ClearPageBuddy(page); 996 set_page_private(page, 0); 997 zone->free_area[order].nr_free--; 998 } 999 1000 /* 1001 * If this is not the largest possible page, check if the buddy 1002 * of the next-highest order is free. If it is, it's possible 1003 * that pages are being freed that will coalesce soon. In case, 1004 * that is happening, add the free page to the tail of the list 1005 * so it's less likely to be used soon and more likely to be merged 1006 * as a higher order page 1007 */ 1008 static inline bool 1009 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1010 struct page *page, unsigned int order) 1011 { 1012 struct page *higher_page, *higher_buddy; 1013 unsigned long combined_pfn; 1014 1015 if (order >= MAX_ORDER - 2) 1016 return false; 1017 1018 combined_pfn = buddy_pfn & pfn; 1019 higher_page = page + (combined_pfn - pfn); 1020 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1021 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1022 1023 return page_is_buddy(higher_page, higher_buddy, order + 1); 1024 } 1025 1026 /* 1027 * Freeing function for a buddy system allocator. 1028 * 1029 * The concept of a buddy system is to maintain direct-mapped table 1030 * (containing bit values) for memory blocks of various "orders". 1031 * The bottom level table contains the map for the smallest allocatable 1032 * units of memory (here, pages), and each level above it describes 1033 * pairs of units from the levels below, hence, "buddies". 1034 * At a high level, all that happens here is marking the table entry 1035 * at the bottom level available, and propagating the changes upward 1036 * as necessary, plus some accounting needed to play nicely with other 1037 * parts of the VM system. 1038 * At each level, we keep a list of pages, which are heads of continuous 1039 * free pages of length of (1 << order) and marked with PageBuddy. 1040 * Page's order is recorded in page_private(page) field. 1041 * So when we are allocating or freeing one, we can derive the state of the 1042 * other. That is, if we allocate a small block, and both were 1043 * free, the remainder of the region must be split into blocks. 1044 * If a block is freed, and its buddy is also free, then this 1045 * triggers coalescing into a block of larger size. 1046 * 1047 * -- nyc 1048 */ 1049 1050 static inline void __free_one_page(struct page *page, 1051 unsigned long pfn, 1052 struct zone *zone, unsigned int order, 1053 int migratetype, fpi_t fpi_flags) 1054 { 1055 struct capture_control *capc = task_capc(zone); 1056 unsigned int max_order = pageblock_order; 1057 unsigned long buddy_pfn; 1058 unsigned long combined_pfn; 1059 struct page *buddy; 1060 bool to_tail; 1061 1062 VM_BUG_ON(!zone_is_initialized(zone)); 1063 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1064 1065 VM_BUG_ON(migratetype == -1); 1066 if (likely(!is_migrate_isolate(migratetype))) 1067 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1068 1069 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1070 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1071 1072 continue_merging: 1073 while (order < max_order) { 1074 if (compaction_capture(capc, page, order, migratetype)) { 1075 __mod_zone_freepage_state(zone, -(1 << order), 1076 migratetype); 1077 return; 1078 } 1079 buddy_pfn = __find_buddy_pfn(pfn, order); 1080 buddy = page + (buddy_pfn - pfn); 1081 1082 if (!page_is_buddy(page, buddy, order)) 1083 goto done_merging; 1084 /* 1085 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1086 * merge with it and move up one order. 1087 */ 1088 if (page_is_guard(buddy)) 1089 clear_page_guard(zone, buddy, order, migratetype); 1090 else 1091 del_page_from_free_list(buddy, zone, order); 1092 combined_pfn = buddy_pfn & pfn; 1093 page = page + (combined_pfn - pfn); 1094 pfn = combined_pfn; 1095 order++; 1096 } 1097 if (order < MAX_ORDER - 1) { 1098 /* If we are here, it means order is >= pageblock_order. 1099 * We want to prevent merge between freepages on pageblock 1100 * without fallbacks and normal pageblock. Without this, 1101 * pageblock isolation could cause incorrect freepage or CMA 1102 * accounting or HIGHATOMIC accounting. 1103 * 1104 * We don't want to hit this code for the more frequent 1105 * low-order merging. 1106 */ 1107 int buddy_mt; 1108 1109 buddy_pfn = __find_buddy_pfn(pfn, order); 1110 buddy = page + (buddy_pfn - pfn); 1111 buddy_mt = get_pageblock_migratetype(buddy); 1112 1113 if (migratetype != buddy_mt 1114 && (!migratetype_is_mergeable(migratetype) || 1115 !migratetype_is_mergeable(buddy_mt))) 1116 goto done_merging; 1117 max_order = order + 1; 1118 goto continue_merging; 1119 } 1120 1121 done_merging: 1122 set_buddy_order(page, order); 1123 1124 if (fpi_flags & FPI_TO_TAIL) 1125 to_tail = true; 1126 else if (is_shuffle_order(order)) 1127 to_tail = shuffle_pick_tail(); 1128 else 1129 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1130 1131 if (to_tail) 1132 add_to_free_list_tail(page, zone, order, migratetype); 1133 else 1134 add_to_free_list(page, zone, order, migratetype); 1135 1136 /* Notify page reporting subsystem of freed page */ 1137 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1138 page_reporting_notify_free(order); 1139 } 1140 1141 /* 1142 * A bad page could be due to a number of fields. Instead of multiple branches, 1143 * try and check multiple fields with one check. The caller must do a detailed 1144 * check if necessary. 1145 */ 1146 static inline bool page_expected_state(struct page *page, 1147 unsigned long check_flags) 1148 { 1149 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1150 return false; 1151 1152 if (unlikely((unsigned long)page->mapping | 1153 page_ref_count(page) | 1154 #ifdef CONFIG_MEMCG 1155 page->memcg_data | 1156 #endif 1157 (page->flags & check_flags))) 1158 return false; 1159 1160 return true; 1161 } 1162 1163 static const char *page_bad_reason(struct page *page, unsigned long flags) 1164 { 1165 const char *bad_reason = NULL; 1166 1167 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1168 bad_reason = "nonzero mapcount"; 1169 if (unlikely(page->mapping != NULL)) 1170 bad_reason = "non-NULL mapping"; 1171 if (unlikely(page_ref_count(page) != 0)) 1172 bad_reason = "nonzero _refcount"; 1173 if (unlikely(page->flags & flags)) { 1174 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1175 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1176 else 1177 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1178 } 1179 #ifdef CONFIG_MEMCG 1180 if (unlikely(page->memcg_data)) 1181 bad_reason = "page still charged to cgroup"; 1182 #endif 1183 return bad_reason; 1184 } 1185 1186 static void check_free_page_bad(struct page *page) 1187 { 1188 bad_page(page, 1189 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1190 } 1191 1192 static inline int check_free_page(struct page *page) 1193 { 1194 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1195 return 0; 1196 1197 /* Something has gone sideways, find it */ 1198 check_free_page_bad(page); 1199 return 1; 1200 } 1201 1202 static int free_tail_pages_check(struct page *head_page, struct page *page) 1203 { 1204 int ret = 1; 1205 1206 /* 1207 * We rely page->lru.next never has bit 0 set, unless the page 1208 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1209 */ 1210 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1211 1212 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1213 ret = 0; 1214 goto out; 1215 } 1216 switch (page - head_page) { 1217 case 1: 1218 /* the first tail page: ->mapping may be compound_mapcount() */ 1219 if (unlikely(compound_mapcount(page))) { 1220 bad_page(page, "nonzero compound_mapcount"); 1221 goto out; 1222 } 1223 break; 1224 case 2: 1225 /* 1226 * the second tail page: ->mapping is 1227 * deferred_list.next -- ignore value. 1228 */ 1229 break; 1230 default: 1231 if (page->mapping != TAIL_MAPPING) { 1232 bad_page(page, "corrupted mapping in tail page"); 1233 goto out; 1234 } 1235 break; 1236 } 1237 if (unlikely(!PageTail(page))) { 1238 bad_page(page, "PageTail not set"); 1239 goto out; 1240 } 1241 if (unlikely(compound_head(page) != head_page)) { 1242 bad_page(page, "compound_head not consistent"); 1243 goto out; 1244 } 1245 ret = 0; 1246 out: 1247 page->mapping = NULL; 1248 clear_compound_head(page); 1249 return ret; 1250 } 1251 1252 /* 1253 * Skip KASAN memory poisoning when either: 1254 * 1255 * 1. Deferred memory initialization has not yet completed, 1256 * see the explanation below. 1257 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1258 * see the comment next to it. 1259 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1260 * see the comment next to it. 1261 * 1262 * Poisoning pages during deferred memory init will greatly lengthen the 1263 * process and cause problem in large memory systems as the deferred pages 1264 * initialization is done with interrupt disabled. 1265 * 1266 * Assuming that there will be no reference to those newly initialized 1267 * pages before they are ever allocated, this should have no effect on 1268 * KASAN memory tracking as the poison will be properly inserted at page 1269 * allocation time. The only corner case is when pages are allocated by 1270 * on-demand allocation and then freed again before the deferred pages 1271 * initialization is done, but this is not likely to happen. 1272 */ 1273 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1274 { 1275 return deferred_pages_enabled() || 1276 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1277 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1278 PageSkipKASanPoison(page); 1279 } 1280 1281 static void kernel_init_free_pages(struct page *page, int numpages) 1282 { 1283 int i; 1284 1285 /* s390's use of memset() could override KASAN redzones. */ 1286 kasan_disable_current(); 1287 for (i = 0; i < numpages; i++) { 1288 u8 tag = page_kasan_tag(page + i); 1289 page_kasan_tag_reset(page + i); 1290 clear_highpage(page + i); 1291 page_kasan_tag_set(page + i, tag); 1292 } 1293 kasan_enable_current(); 1294 } 1295 1296 static __always_inline bool free_pages_prepare(struct page *page, 1297 unsigned int order, bool check_free, fpi_t fpi_flags) 1298 { 1299 int bad = 0; 1300 bool init = want_init_on_free(); 1301 1302 VM_BUG_ON_PAGE(PageTail(page), page); 1303 1304 trace_mm_page_free(page, order); 1305 1306 if (unlikely(PageHWPoison(page)) && !order) { 1307 /* 1308 * Do not let hwpoison pages hit pcplists/buddy 1309 * Untie memcg state and reset page's owner 1310 */ 1311 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1312 __memcg_kmem_uncharge_page(page, order); 1313 reset_page_owner(page, order); 1314 page_table_check_free(page, order); 1315 return false; 1316 } 1317 1318 /* 1319 * Check tail pages before head page information is cleared to 1320 * avoid checking PageCompound for order-0 pages. 1321 */ 1322 if (unlikely(order)) { 1323 bool compound = PageCompound(page); 1324 int i; 1325 1326 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1327 1328 if (compound) { 1329 ClearPageDoubleMap(page); 1330 ClearPageHasHWPoisoned(page); 1331 } 1332 for (i = 1; i < (1 << order); i++) { 1333 if (compound) 1334 bad += free_tail_pages_check(page, page + i); 1335 if (unlikely(check_free_page(page + i))) { 1336 bad++; 1337 continue; 1338 } 1339 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1340 } 1341 } 1342 if (PageMappingFlags(page)) 1343 page->mapping = NULL; 1344 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1345 __memcg_kmem_uncharge_page(page, order); 1346 if (check_free) 1347 bad += check_free_page(page); 1348 if (bad) 1349 return false; 1350 1351 page_cpupid_reset_last(page); 1352 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1353 reset_page_owner(page, order); 1354 page_table_check_free(page, order); 1355 1356 if (!PageHighMem(page)) { 1357 debug_check_no_locks_freed(page_address(page), 1358 PAGE_SIZE << order); 1359 debug_check_no_obj_freed(page_address(page), 1360 PAGE_SIZE << order); 1361 } 1362 1363 kernel_poison_pages(page, 1 << order); 1364 1365 /* 1366 * As memory initialization might be integrated into KASAN, 1367 * KASAN poisoning and memory initialization code must be 1368 * kept together to avoid discrepancies in behavior. 1369 * 1370 * With hardware tag-based KASAN, memory tags must be set before the 1371 * page becomes unavailable via debug_pagealloc or arch_free_page. 1372 */ 1373 if (!should_skip_kasan_poison(page, fpi_flags)) { 1374 kasan_poison_pages(page, order, init); 1375 1376 /* Memory is already initialized if KASAN did it internally. */ 1377 if (kasan_has_integrated_init()) 1378 init = false; 1379 } 1380 if (init) 1381 kernel_init_free_pages(page, 1 << order); 1382 1383 /* 1384 * arch_free_page() can make the page's contents inaccessible. s390 1385 * does this. So nothing which can access the page's contents should 1386 * happen after this. 1387 */ 1388 arch_free_page(page, order); 1389 1390 debug_pagealloc_unmap_pages(page, 1 << order); 1391 1392 return true; 1393 } 1394 1395 #ifdef CONFIG_DEBUG_VM 1396 /* 1397 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1398 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1399 * moved from pcp lists to free lists. 1400 */ 1401 static bool free_pcp_prepare(struct page *page, unsigned int order) 1402 { 1403 return free_pages_prepare(page, order, true, FPI_NONE); 1404 } 1405 1406 static bool bulkfree_pcp_prepare(struct page *page) 1407 { 1408 if (debug_pagealloc_enabled_static()) 1409 return check_free_page(page); 1410 else 1411 return false; 1412 } 1413 #else 1414 /* 1415 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1416 * moving from pcp lists to free list in order to reduce overhead. With 1417 * debug_pagealloc enabled, they are checked also immediately when being freed 1418 * to the pcp lists. 1419 */ 1420 static bool free_pcp_prepare(struct page *page, unsigned int order) 1421 { 1422 if (debug_pagealloc_enabled_static()) 1423 return free_pages_prepare(page, order, true, FPI_NONE); 1424 else 1425 return free_pages_prepare(page, order, false, FPI_NONE); 1426 } 1427 1428 static bool bulkfree_pcp_prepare(struct page *page) 1429 { 1430 return check_free_page(page); 1431 } 1432 #endif /* CONFIG_DEBUG_VM */ 1433 1434 /* 1435 * Frees a number of pages from the PCP lists 1436 * Assumes all pages on list are in same zone. 1437 * count is the number of pages to free. 1438 */ 1439 static void free_pcppages_bulk(struct zone *zone, int count, 1440 struct per_cpu_pages *pcp, 1441 int pindex) 1442 { 1443 int min_pindex = 0; 1444 int max_pindex = NR_PCP_LISTS - 1; 1445 unsigned int order; 1446 bool isolated_pageblocks; 1447 struct page *page; 1448 1449 /* 1450 * Ensure proper count is passed which otherwise would stuck in the 1451 * below while (list_empty(list)) loop. 1452 */ 1453 count = min(pcp->count, count); 1454 1455 /* Ensure requested pindex is drained first. */ 1456 pindex = pindex - 1; 1457 1458 /* 1459 * local_lock_irq held so equivalent to spin_lock_irqsave for 1460 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1461 */ 1462 spin_lock(&zone->lock); 1463 isolated_pageblocks = has_isolate_pageblock(zone); 1464 1465 while (count > 0) { 1466 struct list_head *list; 1467 int nr_pages; 1468 1469 /* Remove pages from lists in a round-robin fashion. */ 1470 do { 1471 if (++pindex > max_pindex) 1472 pindex = min_pindex; 1473 list = &pcp->lists[pindex]; 1474 if (!list_empty(list)) 1475 break; 1476 1477 if (pindex == max_pindex) 1478 max_pindex--; 1479 if (pindex == min_pindex) 1480 min_pindex++; 1481 } while (1); 1482 1483 order = pindex_to_order(pindex); 1484 nr_pages = 1 << order; 1485 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1486 do { 1487 int mt; 1488 1489 page = list_last_entry(list, struct page, lru); 1490 mt = get_pcppage_migratetype(page); 1491 1492 /* must delete to avoid corrupting pcp list */ 1493 list_del(&page->lru); 1494 count -= nr_pages; 1495 pcp->count -= nr_pages; 1496 1497 if (bulkfree_pcp_prepare(page)) 1498 continue; 1499 1500 /* MIGRATE_ISOLATE page should not go to pcplists */ 1501 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1502 /* Pageblock could have been isolated meanwhile */ 1503 if (unlikely(isolated_pageblocks)) 1504 mt = get_pageblock_migratetype(page); 1505 1506 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1507 trace_mm_page_pcpu_drain(page, order, mt); 1508 } while (count > 0 && !list_empty(list)); 1509 } 1510 1511 spin_unlock(&zone->lock); 1512 } 1513 1514 static void free_one_page(struct zone *zone, 1515 struct page *page, unsigned long pfn, 1516 unsigned int order, 1517 int migratetype, fpi_t fpi_flags) 1518 { 1519 unsigned long flags; 1520 1521 spin_lock_irqsave(&zone->lock, flags); 1522 if (unlikely(has_isolate_pageblock(zone) || 1523 is_migrate_isolate(migratetype))) { 1524 migratetype = get_pfnblock_migratetype(page, pfn); 1525 } 1526 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1527 spin_unlock_irqrestore(&zone->lock, flags); 1528 } 1529 1530 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1531 unsigned long zone, int nid) 1532 { 1533 mm_zero_struct_page(page); 1534 set_page_links(page, zone, nid, pfn); 1535 init_page_count(page); 1536 page_mapcount_reset(page); 1537 page_cpupid_reset_last(page); 1538 page_kasan_tag_reset(page); 1539 1540 INIT_LIST_HEAD(&page->lru); 1541 #ifdef WANT_PAGE_VIRTUAL 1542 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1543 if (!is_highmem_idx(zone)) 1544 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1545 #endif 1546 } 1547 1548 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1549 static void __meminit init_reserved_page(unsigned long pfn) 1550 { 1551 pg_data_t *pgdat; 1552 int nid, zid; 1553 1554 if (!early_page_uninitialised(pfn)) 1555 return; 1556 1557 nid = early_pfn_to_nid(pfn); 1558 pgdat = NODE_DATA(nid); 1559 1560 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1561 struct zone *zone = &pgdat->node_zones[zid]; 1562 1563 if (zone_spans_pfn(zone, pfn)) 1564 break; 1565 } 1566 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1567 } 1568 #else 1569 static inline void init_reserved_page(unsigned long pfn) 1570 { 1571 } 1572 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1573 1574 /* 1575 * Initialised pages do not have PageReserved set. This function is 1576 * called for each range allocated by the bootmem allocator and 1577 * marks the pages PageReserved. The remaining valid pages are later 1578 * sent to the buddy page allocator. 1579 */ 1580 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1581 { 1582 unsigned long start_pfn = PFN_DOWN(start); 1583 unsigned long end_pfn = PFN_UP(end); 1584 1585 for (; start_pfn < end_pfn; start_pfn++) { 1586 if (pfn_valid(start_pfn)) { 1587 struct page *page = pfn_to_page(start_pfn); 1588 1589 init_reserved_page(start_pfn); 1590 1591 /* Avoid false-positive PageTail() */ 1592 INIT_LIST_HEAD(&page->lru); 1593 1594 /* 1595 * no need for atomic set_bit because the struct 1596 * page is not visible yet so nobody should 1597 * access it yet. 1598 */ 1599 __SetPageReserved(page); 1600 } 1601 } 1602 } 1603 1604 static void __free_pages_ok(struct page *page, unsigned int order, 1605 fpi_t fpi_flags) 1606 { 1607 unsigned long flags; 1608 int migratetype; 1609 unsigned long pfn = page_to_pfn(page); 1610 struct zone *zone = page_zone(page); 1611 1612 if (!free_pages_prepare(page, order, true, fpi_flags)) 1613 return; 1614 1615 migratetype = get_pfnblock_migratetype(page, pfn); 1616 1617 spin_lock_irqsave(&zone->lock, flags); 1618 if (unlikely(has_isolate_pageblock(zone) || 1619 is_migrate_isolate(migratetype))) { 1620 migratetype = get_pfnblock_migratetype(page, pfn); 1621 } 1622 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1623 spin_unlock_irqrestore(&zone->lock, flags); 1624 1625 __count_vm_events(PGFREE, 1 << order); 1626 } 1627 1628 void __free_pages_core(struct page *page, unsigned int order) 1629 { 1630 unsigned int nr_pages = 1 << order; 1631 struct page *p = page; 1632 unsigned int loop; 1633 1634 /* 1635 * When initializing the memmap, __init_single_page() sets the refcount 1636 * of all pages to 1 ("allocated"/"not free"). We have to set the 1637 * refcount of all involved pages to 0. 1638 */ 1639 prefetchw(p); 1640 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1641 prefetchw(p + 1); 1642 __ClearPageReserved(p); 1643 set_page_count(p, 0); 1644 } 1645 __ClearPageReserved(p); 1646 set_page_count(p, 0); 1647 1648 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1649 1650 /* 1651 * Bypass PCP and place fresh pages right to the tail, primarily 1652 * relevant for memory onlining. 1653 */ 1654 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1655 } 1656 1657 #ifdef CONFIG_NUMA 1658 1659 /* 1660 * During memory init memblocks map pfns to nids. The search is expensive and 1661 * this caches recent lookups. The implementation of __early_pfn_to_nid 1662 * treats start/end as pfns. 1663 */ 1664 struct mminit_pfnnid_cache { 1665 unsigned long last_start; 1666 unsigned long last_end; 1667 int last_nid; 1668 }; 1669 1670 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1671 1672 /* 1673 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1674 */ 1675 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1676 struct mminit_pfnnid_cache *state) 1677 { 1678 unsigned long start_pfn, end_pfn; 1679 int nid; 1680 1681 if (state->last_start <= pfn && pfn < state->last_end) 1682 return state->last_nid; 1683 1684 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1685 if (nid != NUMA_NO_NODE) { 1686 state->last_start = start_pfn; 1687 state->last_end = end_pfn; 1688 state->last_nid = nid; 1689 } 1690 1691 return nid; 1692 } 1693 1694 int __meminit early_pfn_to_nid(unsigned long pfn) 1695 { 1696 static DEFINE_SPINLOCK(early_pfn_lock); 1697 int nid; 1698 1699 spin_lock(&early_pfn_lock); 1700 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1701 if (nid < 0) 1702 nid = first_online_node; 1703 spin_unlock(&early_pfn_lock); 1704 1705 return nid; 1706 } 1707 #endif /* CONFIG_NUMA */ 1708 1709 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1710 unsigned int order) 1711 { 1712 if (early_page_uninitialised(pfn)) 1713 return; 1714 __free_pages_core(page, order); 1715 } 1716 1717 /* 1718 * Check that the whole (or subset of) a pageblock given by the interval of 1719 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1720 * with the migration of free compaction scanner. 1721 * 1722 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1723 * 1724 * It's possible on some configurations to have a setup like node0 node1 node0 1725 * i.e. it's possible that all pages within a zones range of pages do not 1726 * belong to a single zone. We assume that a border between node0 and node1 1727 * can occur within a single pageblock, but not a node0 node1 node0 1728 * interleaving within a single pageblock. It is therefore sufficient to check 1729 * the first and last page of a pageblock and avoid checking each individual 1730 * page in a pageblock. 1731 */ 1732 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1733 unsigned long end_pfn, struct zone *zone) 1734 { 1735 struct page *start_page; 1736 struct page *end_page; 1737 1738 /* end_pfn is one past the range we are checking */ 1739 end_pfn--; 1740 1741 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1742 return NULL; 1743 1744 start_page = pfn_to_online_page(start_pfn); 1745 if (!start_page) 1746 return NULL; 1747 1748 if (page_zone(start_page) != zone) 1749 return NULL; 1750 1751 end_page = pfn_to_page(end_pfn); 1752 1753 /* This gives a shorter code than deriving page_zone(end_page) */ 1754 if (page_zone_id(start_page) != page_zone_id(end_page)) 1755 return NULL; 1756 1757 return start_page; 1758 } 1759 1760 void set_zone_contiguous(struct zone *zone) 1761 { 1762 unsigned long block_start_pfn = zone->zone_start_pfn; 1763 unsigned long block_end_pfn; 1764 1765 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1766 for (; block_start_pfn < zone_end_pfn(zone); 1767 block_start_pfn = block_end_pfn, 1768 block_end_pfn += pageblock_nr_pages) { 1769 1770 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1771 1772 if (!__pageblock_pfn_to_page(block_start_pfn, 1773 block_end_pfn, zone)) 1774 return; 1775 cond_resched(); 1776 } 1777 1778 /* We confirm that there is no hole */ 1779 zone->contiguous = true; 1780 } 1781 1782 void clear_zone_contiguous(struct zone *zone) 1783 { 1784 zone->contiguous = false; 1785 } 1786 1787 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1788 static void __init deferred_free_range(unsigned long pfn, 1789 unsigned long nr_pages) 1790 { 1791 struct page *page; 1792 unsigned long i; 1793 1794 if (!nr_pages) 1795 return; 1796 1797 page = pfn_to_page(pfn); 1798 1799 /* Free a large naturally-aligned chunk if possible */ 1800 if (nr_pages == pageblock_nr_pages && 1801 (pfn & (pageblock_nr_pages - 1)) == 0) { 1802 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1803 __free_pages_core(page, pageblock_order); 1804 return; 1805 } 1806 1807 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1808 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1809 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1810 __free_pages_core(page, 0); 1811 } 1812 } 1813 1814 /* Completion tracking for deferred_init_memmap() threads */ 1815 static atomic_t pgdat_init_n_undone __initdata; 1816 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1817 1818 static inline void __init pgdat_init_report_one_done(void) 1819 { 1820 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1821 complete(&pgdat_init_all_done_comp); 1822 } 1823 1824 /* 1825 * Returns true if page needs to be initialized or freed to buddy allocator. 1826 * 1827 * First we check if pfn is valid on architectures where it is possible to have 1828 * holes within pageblock_nr_pages. On systems where it is not possible, this 1829 * function is optimized out. 1830 * 1831 * Then, we check if a current large page is valid by only checking the validity 1832 * of the head pfn. 1833 */ 1834 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1835 { 1836 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1837 return false; 1838 return true; 1839 } 1840 1841 /* 1842 * Free pages to buddy allocator. Try to free aligned pages in 1843 * pageblock_nr_pages sizes. 1844 */ 1845 static void __init deferred_free_pages(unsigned long pfn, 1846 unsigned long end_pfn) 1847 { 1848 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1849 unsigned long nr_free = 0; 1850 1851 for (; pfn < end_pfn; pfn++) { 1852 if (!deferred_pfn_valid(pfn)) { 1853 deferred_free_range(pfn - nr_free, nr_free); 1854 nr_free = 0; 1855 } else if (!(pfn & nr_pgmask)) { 1856 deferred_free_range(pfn - nr_free, nr_free); 1857 nr_free = 1; 1858 } else { 1859 nr_free++; 1860 } 1861 } 1862 /* Free the last block of pages to allocator */ 1863 deferred_free_range(pfn - nr_free, nr_free); 1864 } 1865 1866 /* 1867 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1868 * by performing it only once every pageblock_nr_pages. 1869 * Return number of pages initialized. 1870 */ 1871 static unsigned long __init deferred_init_pages(struct zone *zone, 1872 unsigned long pfn, 1873 unsigned long end_pfn) 1874 { 1875 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1876 int nid = zone_to_nid(zone); 1877 unsigned long nr_pages = 0; 1878 int zid = zone_idx(zone); 1879 struct page *page = NULL; 1880 1881 for (; pfn < end_pfn; pfn++) { 1882 if (!deferred_pfn_valid(pfn)) { 1883 page = NULL; 1884 continue; 1885 } else if (!page || !(pfn & nr_pgmask)) { 1886 page = pfn_to_page(pfn); 1887 } else { 1888 page++; 1889 } 1890 __init_single_page(page, pfn, zid, nid); 1891 nr_pages++; 1892 } 1893 return (nr_pages); 1894 } 1895 1896 /* 1897 * This function is meant to pre-load the iterator for the zone init. 1898 * Specifically it walks through the ranges until we are caught up to the 1899 * first_init_pfn value and exits there. If we never encounter the value we 1900 * return false indicating there are no valid ranges left. 1901 */ 1902 static bool __init 1903 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1904 unsigned long *spfn, unsigned long *epfn, 1905 unsigned long first_init_pfn) 1906 { 1907 u64 j; 1908 1909 /* 1910 * Start out by walking through the ranges in this zone that have 1911 * already been initialized. We don't need to do anything with them 1912 * so we just need to flush them out of the system. 1913 */ 1914 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1915 if (*epfn <= first_init_pfn) 1916 continue; 1917 if (*spfn < first_init_pfn) 1918 *spfn = first_init_pfn; 1919 *i = j; 1920 return true; 1921 } 1922 1923 return false; 1924 } 1925 1926 /* 1927 * Initialize and free pages. We do it in two loops: first we initialize 1928 * struct page, then free to buddy allocator, because while we are 1929 * freeing pages we can access pages that are ahead (computing buddy 1930 * page in __free_one_page()). 1931 * 1932 * In order to try and keep some memory in the cache we have the loop 1933 * broken along max page order boundaries. This way we will not cause 1934 * any issues with the buddy page computation. 1935 */ 1936 static unsigned long __init 1937 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1938 unsigned long *end_pfn) 1939 { 1940 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1941 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1942 unsigned long nr_pages = 0; 1943 u64 j = *i; 1944 1945 /* First we loop through and initialize the page values */ 1946 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1947 unsigned long t; 1948 1949 if (mo_pfn <= *start_pfn) 1950 break; 1951 1952 t = min(mo_pfn, *end_pfn); 1953 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1954 1955 if (mo_pfn < *end_pfn) { 1956 *start_pfn = mo_pfn; 1957 break; 1958 } 1959 } 1960 1961 /* Reset values and now loop through freeing pages as needed */ 1962 swap(j, *i); 1963 1964 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1965 unsigned long t; 1966 1967 if (mo_pfn <= spfn) 1968 break; 1969 1970 t = min(mo_pfn, epfn); 1971 deferred_free_pages(spfn, t); 1972 1973 if (mo_pfn <= epfn) 1974 break; 1975 } 1976 1977 return nr_pages; 1978 } 1979 1980 static void __init 1981 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1982 void *arg) 1983 { 1984 unsigned long spfn, epfn; 1985 struct zone *zone = arg; 1986 u64 i; 1987 1988 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1989 1990 /* 1991 * Initialize and free pages in MAX_ORDER sized increments so that we 1992 * can avoid introducing any issues with the buddy allocator. 1993 */ 1994 while (spfn < end_pfn) { 1995 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1996 cond_resched(); 1997 } 1998 } 1999 2000 /* An arch may override for more concurrency. */ 2001 __weak int __init 2002 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2003 { 2004 return 1; 2005 } 2006 2007 /* Initialise remaining memory on a node */ 2008 static int __init deferred_init_memmap(void *data) 2009 { 2010 pg_data_t *pgdat = data; 2011 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2012 unsigned long spfn = 0, epfn = 0; 2013 unsigned long first_init_pfn, flags; 2014 unsigned long start = jiffies; 2015 struct zone *zone; 2016 int zid, max_threads; 2017 u64 i; 2018 2019 /* Bind memory initialisation thread to a local node if possible */ 2020 if (!cpumask_empty(cpumask)) 2021 set_cpus_allowed_ptr(current, cpumask); 2022 2023 pgdat_resize_lock(pgdat, &flags); 2024 first_init_pfn = pgdat->first_deferred_pfn; 2025 if (first_init_pfn == ULONG_MAX) { 2026 pgdat_resize_unlock(pgdat, &flags); 2027 pgdat_init_report_one_done(); 2028 return 0; 2029 } 2030 2031 /* Sanity check boundaries */ 2032 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2033 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2034 pgdat->first_deferred_pfn = ULONG_MAX; 2035 2036 /* 2037 * Once we unlock here, the zone cannot be grown anymore, thus if an 2038 * interrupt thread must allocate this early in boot, zone must be 2039 * pre-grown prior to start of deferred page initialization. 2040 */ 2041 pgdat_resize_unlock(pgdat, &flags); 2042 2043 /* Only the highest zone is deferred so find it */ 2044 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2045 zone = pgdat->node_zones + zid; 2046 if (first_init_pfn < zone_end_pfn(zone)) 2047 break; 2048 } 2049 2050 /* If the zone is empty somebody else may have cleared out the zone */ 2051 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2052 first_init_pfn)) 2053 goto zone_empty; 2054 2055 max_threads = deferred_page_init_max_threads(cpumask); 2056 2057 while (spfn < epfn) { 2058 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2059 struct padata_mt_job job = { 2060 .thread_fn = deferred_init_memmap_chunk, 2061 .fn_arg = zone, 2062 .start = spfn, 2063 .size = epfn_align - spfn, 2064 .align = PAGES_PER_SECTION, 2065 .min_chunk = PAGES_PER_SECTION, 2066 .max_threads = max_threads, 2067 }; 2068 2069 padata_do_multithreaded(&job); 2070 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2071 epfn_align); 2072 } 2073 zone_empty: 2074 /* Sanity check that the next zone really is unpopulated */ 2075 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2076 2077 pr_info("node %d deferred pages initialised in %ums\n", 2078 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2079 2080 pgdat_init_report_one_done(); 2081 return 0; 2082 } 2083 2084 /* 2085 * If this zone has deferred pages, try to grow it by initializing enough 2086 * deferred pages to satisfy the allocation specified by order, rounded up to 2087 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2088 * of SECTION_SIZE bytes by initializing struct pages in increments of 2089 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2090 * 2091 * Return true when zone was grown, otherwise return false. We return true even 2092 * when we grow less than requested, to let the caller decide if there are 2093 * enough pages to satisfy the allocation. 2094 * 2095 * Note: We use noinline because this function is needed only during boot, and 2096 * it is called from a __ref function _deferred_grow_zone. This way we are 2097 * making sure that it is not inlined into permanent text section. 2098 */ 2099 static noinline bool __init 2100 deferred_grow_zone(struct zone *zone, unsigned int order) 2101 { 2102 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2103 pg_data_t *pgdat = zone->zone_pgdat; 2104 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2105 unsigned long spfn, epfn, flags; 2106 unsigned long nr_pages = 0; 2107 u64 i; 2108 2109 /* Only the last zone may have deferred pages */ 2110 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2111 return false; 2112 2113 pgdat_resize_lock(pgdat, &flags); 2114 2115 /* 2116 * If someone grew this zone while we were waiting for spinlock, return 2117 * true, as there might be enough pages already. 2118 */ 2119 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2120 pgdat_resize_unlock(pgdat, &flags); 2121 return true; 2122 } 2123 2124 /* If the zone is empty somebody else may have cleared out the zone */ 2125 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2126 first_deferred_pfn)) { 2127 pgdat->first_deferred_pfn = ULONG_MAX; 2128 pgdat_resize_unlock(pgdat, &flags); 2129 /* Retry only once. */ 2130 return first_deferred_pfn != ULONG_MAX; 2131 } 2132 2133 /* 2134 * Initialize and free pages in MAX_ORDER sized increments so 2135 * that we can avoid introducing any issues with the buddy 2136 * allocator. 2137 */ 2138 while (spfn < epfn) { 2139 /* update our first deferred PFN for this section */ 2140 first_deferred_pfn = spfn; 2141 2142 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2143 touch_nmi_watchdog(); 2144 2145 /* We should only stop along section boundaries */ 2146 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2147 continue; 2148 2149 /* If our quota has been met we can stop here */ 2150 if (nr_pages >= nr_pages_needed) 2151 break; 2152 } 2153 2154 pgdat->first_deferred_pfn = spfn; 2155 pgdat_resize_unlock(pgdat, &flags); 2156 2157 return nr_pages > 0; 2158 } 2159 2160 /* 2161 * deferred_grow_zone() is __init, but it is called from 2162 * get_page_from_freelist() during early boot until deferred_pages permanently 2163 * disables this call. This is why we have refdata wrapper to avoid warning, 2164 * and to ensure that the function body gets unloaded. 2165 */ 2166 static bool __ref 2167 _deferred_grow_zone(struct zone *zone, unsigned int order) 2168 { 2169 return deferred_grow_zone(zone, order); 2170 } 2171 2172 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2173 2174 void __init page_alloc_init_late(void) 2175 { 2176 struct zone *zone; 2177 int nid; 2178 2179 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2180 2181 /* There will be num_node_state(N_MEMORY) threads */ 2182 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2183 for_each_node_state(nid, N_MEMORY) { 2184 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2185 } 2186 2187 /* Block until all are initialised */ 2188 wait_for_completion(&pgdat_init_all_done_comp); 2189 2190 /* 2191 * We initialized the rest of the deferred pages. Permanently disable 2192 * on-demand struct page initialization. 2193 */ 2194 static_branch_disable(&deferred_pages); 2195 2196 /* Reinit limits that are based on free pages after the kernel is up */ 2197 files_maxfiles_init(); 2198 #endif 2199 2200 buffer_init(); 2201 2202 /* Discard memblock private memory */ 2203 memblock_discard(); 2204 2205 for_each_node_state(nid, N_MEMORY) 2206 shuffle_free_memory(NODE_DATA(nid)); 2207 2208 for_each_populated_zone(zone) 2209 set_zone_contiguous(zone); 2210 } 2211 2212 #ifdef CONFIG_CMA 2213 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2214 void __init init_cma_reserved_pageblock(struct page *page) 2215 { 2216 unsigned i = pageblock_nr_pages; 2217 struct page *p = page; 2218 2219 do { 2220 __ClearPageReserved(p); 2221 set_page_count(p, 0); 2222 } while (++p, --i); 2223 2224 set_pageblock_migratetype(page, MIGRATE_CMA); 2225 set_page_refcounted(page); 2226 __free_pages(page, pageblock_order); 2227 2228 adjust_managed_page_count(page, pageblock_nr_pages); 2229 page_zone(page)->cma_pages += pageblock_nr_pages; 2230 } 2231 #endif 2232 2233 /* 2234 * The order of subdivision here is critical for the IO subsystem. 2235 * Please do not alter this order without good reasons and regression 2236 * testing. Specifically, as large blocks of memory are subdivided, 2237 * the order in which smaller blocks are delivered depends on the order 2238 * they're subdivided in this function. This is the primary factor 2239 * influencing the order in which pages are delivered to the IO 2240 * subsystem according to empirical testing, and this is also justified 2241 * by considering the behavior of a buddy system containing a single 2242 * large block of memory acted on by a series of small allocations. 2243 * This behavior is a critical factor in sglist merging's success. 2244 * 2245 * -- nyc 2246 */ 2247 static inline void expand(struct zone *zone, struct page *page, 2248 int low, int high, int migratetype) 2249 { 2250 unsigned long size = 1 << high; 2251 2252 while (high > low) { 2253 high--; 2254 size >>= 1; 2255 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2256 2257 /* 2258 * Mark as guard pages (or page), that will allow to 2259 * merge back to allocator when buddy will be freed. 2260 * Corresponding page table entries will not be touched, 2261 * pages will stay not present in virtual address space 2262 */ 2263 if (set_page_guard(zone, &page[size], high, migratetype)) 2264 continue; 2265 2266 add_to_free_list(&page[size], zone, high, migratetype); 2267 set_buddy_order(&page[size], high); 2268 } 2269 } 2270 2271 static void check_new_page_bad(struct page *page) 2272 { 2273 if (unlikely(page->flags & __PG_HWPOISON)) { 2274 /* Don't complain about hwpoisoned pages */ 2275 page_mapcount_reset(page); /* remove PageBuddy */ 2276 return; 2277 } 2278 2279 bad_page(page, 2280 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2281 } 2282 2283 /* 2284 * This page is about to be returned from the page allocator 2285 */ 2286 static inline int check_new_page(struct page *page) 2287 { 2288 if (likely(page_expected_state(page, 2289 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2290 return 0; 2291 2292 check_new_page_bad(page); 2293 return 1; 2294 } 2295 2296 static bool check_new_pages(struct page *page, unsigned int order) 2297 { 2298 int i; 2299 for (i = 0; i < (1 << order); i++) { 2300 struct page *p = page + i; 2301 2302 if (unlikely(check_new_page(p))) 2303 return true; 2304 } 2305 2306 return false; 2307 } 2308 2309 #ifdef CONFIG_DEBUG_VM 2310 /* 2311 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2312 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2313 * also checked when pcp lists are refilled from the free lists. 2314 */ 2315 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2316 { 2317 if (debug_pagealloc_enabled_static()) 2318 return check_new_pages(page, order); 2319 else 2320 return false; 2321 } 2322 2323 static inline bool check_new_pcp(struct page *page, unsigned int order) 2324 { 2325 return check_new_pages(page, order); 2326 } 2327 #else 2328 /* 2329 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2330 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2331 * enabled, they are also checked when being allocated from the pcp lists. 2332 */ 2333 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2334 { 2335 return check_new_pages(page, order); 2336 } 2337 static inline bool check_new_pcp(struct page *page, unsigned int order) 2338 { 2339 if (debug_pagealloc_enabled_static()) 2340 return check_new_pages(page, order); 2341 else 2342 return false; 2343 } 2344 #endif /* CONFIG_DEBUG_VM */ 2345 2346 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags) 2347 { 2348 /* Don't skip if a software KASAN mode is enabled. */ 2349 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2350 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2351 return false; 2352 2353 /* Skip, if hardware tag-based KASAN is not enabled. */ 2354 if (!kasan_hw_tags_enabled()) 2355 return true; 2356 2357 /* 2358 * With hardware tag-based KASAN enabled, skip if either: 2359 * 2360 * 1. Memory tags have already been cleared via tag_clear_highpage(). 2361 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON. 2362 */ 2363 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON); 2364 } 2365 2366 static inline bool should_skip_init(gfp_t flags) 2367 { 2368 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2369 if (!kasan_hw_tags_enabled()) 2370 return false; 2371 2372 /* For hardware tag-based KASAN, skip if requested. */ 2373 return (flags & __GFP_SKIP_ZERO); 2374 } 2375 2376 inline void post_alloc_hook(struct page *page, unsigned int order, 2377 gfp_t gfp_flags) 2378 { 2379 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2380 !should_skip_init(gfp_flags); 2381 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2382 2383 set_page_private(page, 0); 2384 set_page_refcounted(page); 2385 2386 arch_alloc_page(page, order); 2387 debug_pagealloc_map_pages(page, 1 << order); 2388 2389 /* 2390 * Page unpoisoning must happen before memory initialization. 2391 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2392 * allocations and the page unpoisoning code will complain. 2393 */ 2394 kernel_unpoison_pages(page, 1 << order); 2395 2396 /* 2397 * As memory initialization might be integrated into KASAN, 2398 * KASAN unpoisoning and memory initializion code must be 2399 * kept together to avoid discrepancies in behavior. 2400 */ 2401 2402 /* 2403 * If memory tags should be zeroed (which happens only when memory 2404 * should be initialized as well). 2405 */ 2406 if (init_tags) { 2407 int i; 2408 2409 /* Initialize both memory and tags. */ 2410 for (i = 0; i != 1 << order; ++i) 2411 tag_clear_highpage(page + i); 2412 2413 /* Note that memory is already initialized by the loop above. */ 2414 init = false; 2415 } 2416 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) { 2417 /* Unpoison shadow memory or set memory tags. */ 2418 kasan_unpoison_pages(page, order, init); 2419 2420 /* Note that memory is already initialized by KASAN. */ 2421 if (kasan_has_integrated_init()) 2422 init = false; 2423 } 2424 /* If memory is still not initialized, do it now. */ 2425 if (init) 2426 kernel_init_free_pages(page, 1 << order); 2427 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2428 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2429 SetPageSkipKASanPoison(page); 2430 2431 set_page_owner(page, order, gfp_flags); 2432 page_table_check_alloc(page, order); 2433 } 2434 2435 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2436 unsigned int alloc_flags) 2437 { 2438 post_alloc_hook(page, order, gfp_flags); 2439 2440 if (order && (gfp_flags & __GFP_COMP)) 2441 prep_compound_page(page, order); 2442 2443 /* 2444 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2445 * allocate the page. The expectation is that the caller is taking 2446 * steps that will free more memory. The caller should avoid the page 2447 * being used for !PFMEMALLOC purposes. 2448 */ 2449 if (alloc_flags & ALLOC_NO_WATERMARKS) 2450 set_page_pfmemalloc(page); 2451 else 2452 clear_page_pfmemalloc(page); 2453 } 2454 2455 /* 2456 * Go through the free lists for the given migratetype and remove 2457 * the smallest available page from the freelists 2458 */ 2459 static __always_inline 2460 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2461 int migratetype) 2462 { 2463 unsigned int current_order; 2464 struct free_area *area; 2465 struct page *page; 2466 2467 /* Find a page of the appropriate size in the preferred list */ 2468 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2469 area = &(zone->free_area[current_order]); 2470 page = get_page_from_free_area(area, migratetype); 2471 if (!page) 2472 continue; 2473 del_page_from_free_list(page, zone, current_order); 2474 expand(zone, page, order, current_order, migratetype); 2475 set_pcppage_migratetype(page, migratetype); 2476 return page; 2477 } 2478 2479 return NULL; 2480 } 2481 2482 2483 /* 2484 * This array describes the order lists are fallen back to when 2485 * the free lists for the desirable migrate type are depleted 2486 * 2487 * The other migratetypes do not have fallbacks. 2488 */ 2489 static int fallbacks[MIGRATE_TYPES][3] = { 2490 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2491 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2492 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2493 }; 2494 2495 #ifdef CONFIG_CMA 2496 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2497 unsigned int order) 2498 { 2499 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2500 } 2501 #else 2502 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2503 unsigned int order) { return NULL; } 2504 #endif 2505 2506 /* 2507 * Move the free pages in a range to the freelist tail of the requested type. 2508 * Note that start_page and end_pages are not aligned on a pageblock 2509 * boundary. If alignment is required, use move_freepages_block() 2510 */ 2511 static int move_freepages(struct zone *zone, 2512 unsigned long start_pfn, unsigned long end_pfn, 2513 int migratetype, int *num_movable) 2514 { 2515 struct page *page; 2516 unsigned long pfn; 2517 unsigned int order; 2518 int pages_moved = 0; 2519 2520 for (pfn = start_pfn; pfn <= end_pfn;) { 2521 page = pfn_to_page(pfn); 2522 if (!PageBuddy(page)) { 2523 /* 2524 * We assume that pages that could be isolated for 2525 * migration are movable. But we don't actually try 2526 * isolating, as that would be expensive. 2527 */ 2528 if (num_movable && 2529 (PageLRU(page) || __PageMovable(page))) 2530 (*num_movable)++; 2531 pfn++; 2532 continue; 2533 } 2534 2535 /* Make sure we are not inadvertently changing nodes */ 2536 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2537 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2538 2539 order = buddy_order(page); 2540 move_to_free_list(page, zone, order, migratetype); 2541 pfn += 1 << order; 2542 pages_moved += 1 << order; 2543 } 2544 2545 return pages_moved; 2546 } 2547 2548 int move_freepages_block(struct zone *zone, struct page *page, 2549 int migratetype, int *num_movable) 2550 { 2551 unsigned long start_pfn, end_pfn, pfn; 2552 2553 if (num_movable) 2554 *num_movable = 0; 2555 2556 pfn = page_to_pfn(page); 2557 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2558 end_pfn = start_pfn + pageblock_nr_pages - 1; 2559 2560 /* Do not cross zone boundaries */ 2561 if (!zone_spans_pfn(zone, start_pfn)) 2562 start_pfn = pfn; 2563 if (!zone_spans_pfn(zone, end_pfn)) 2564 return 0; 2565 2566 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2567 num_movable); 2568 } 2569 2570 static void change_pageblock_range(struct page *pageblock_page, 2571 int start_order, int migratetype) 2572 { 2573 int nr_pageblocks = 1 << (start_order - pageblock_order); 2574 2575 while (nr_pageblocks--) { 2576 set_pageblock_migratetype(pageblock_page, migratetype); 2577 pageblock_page += pageblock_nr_pages; 2578 } 2579 } 2580 2581 /* 2582 * When we are falling back to another migratetype during allocation, try to 2583 * steal extra free pages from the same pageblocks to satisfy further 2584 * allocations, instead of polluting multiple pageblocks. 2585 * 2586 * If we are stealing a relatively large buddy page, it is likely there will 2587 * be more free pages in the pageblock, so try to steal them all. For 2588 * reclaimable and unmovable allocations, we steal regardless of page size, 2589 * as fragmentation caused by those allocations polluting movable pageblocks 2590 * is worse than movable allocations stealing from unmovable and reclaimable 2591 * pageblocks. 2592 */ 2593 static bool can_steal_fallback(unsigned int order, int start_mt) 2594 { 2595 /* 2596 * Leaving this order check is intended, although there is 2597 * relaxed order check in next check. The reason is that 2598 * we can actually steal whole pageblock if this condition met, 2599 * but, below check doesn't guarantee it and that is just heuristic 2600 * so could be changed anytime. 2601 */ 2602 if (order >= pageblock_order) 2603 return true; 2604 2605 if (order >= pageblock_order / 2 || 2606 start_mt == MIGRATE_RECLAIMABLE || 2607 start_mt == MIGRATE_UNMOVABLE || 2608 page_group_by_mobility_disabled) 2609 return true; 2610 2611 return false; 2612 } 2613 2614 static inline bool boost_watermark(struct zone *zone) 2615 { 2616 unsigned long max_boost; 2617 2618 if (!watermark_boost_factor) 2619 return false; 2620 /* 2621 * Don't bother in zones that are unlikely to produce results. 2622 * On small machines, including kdump capture kernels running 2623 * in a small area, boosting the watermark can cause an out of 2624 * memory situation immediately. 2625 */ 2626 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2627 return false; 2628 2629 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2630 watermark_boost_factor, 10000); 2631 2632 /* 2633 * high watermark may be uninitialised if fragmentation occurs 2634 * very early in boot so do not boost. We do not fall 2635 * through and boost by pageblock_nr_pages as failing 2636 * allocations that early means that reclaim is not going 2637 * to help and it may even be impossible to reclaim the 2638 * boosted watermark resulting in a hang. 2639 */ 2640 if (!max_boost) 2641 return false; 2642 2643 max_boost = max(pageblock_nr_pages, max_boost); 2644 2645 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2646 max_boost); 2647 2648 return true; 2649 } 2650 2651 /* 2652 * This function implements actual steal behaviour. If order is large enough, 2653 * we can steal whole pageblock. If not, we first move freepages in this 2654 * pageblock to our migratetype and determine how many already-allocated pages 2655 * are there in the pageblock with a compatible migratetype. If at least half 2656 * of pages are free or compatible, we can change migratetype of the pageblock 2657 * itself, so pages freed in the future will be put on the correct free list. 2658 */ 2659 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2660 unsigned int alloc_flags, int start_type, bool whole_block) 2661 { 2662 unsigned int current_order = buddy_order(page); 2663 int free_pages, movable_pages, alike_pages; 2664 int old_block_type; 2665 2666 old_block_type = get_pageblock_migratetype(page); 2667 2668 /* 2669 * This can happen due to races and we want to prevent broken 2670 * highatomic accounting. 2671 */ 2672 if (is_migrate_highatomic(old_block_type)) 2673 goto single_page; 2674 2675 /* Take ownership for orders >= pageblock_order */ 2676 if (current_order >= pageblock_order) { 2677 change_pageblock_range(page, current_order, start_type); 2678 goto single_page; 2679 } 2680 2681 /* 2682 * Boost watermarks to increase reclaim pressure to reduce the 2683 * likelihood of future fallbacks. Wake kswapd now as the node 2684 * may be balanced overall and kswapd will not wake naturally. 2685 */ 2686 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2687 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2688 2689 /* We are not allowed to try stealing from the whole block */ 2690 if (!whole_block) 2691 goto single_page; 2692 2693 free_pages = move_freepages_block(zone, page, start_type, 2694 &movable_pages); 2695 /* 2696 * Determine how many pages are compatible with our allocation. 2697 * For movable allocation, it's the number of movable pages which 2698 * we just obtained. For other types it's a bit more tricky. 2699 */ 2700 if (start_type == MIGRATE_MOVABLE) { 2701 alike_pages = movable_pages; 2702 } else { 2703 /* 2704 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2705 * to MOVABLE pageblock, consider all non-movable pages as 2706 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2707 * vice versa, be conservative since we can't distinguish the 2708 * exact migratetype of non-movable pages. 2709 */ 2710 if (old_block_type == MIGRATE_MOVABLE) 2711 alike_pages = pageblock_nr_pages 2712 - (free_pages + movable_pages); 2713 else 2714 alike_pages = 0; 2715 } 2716 2717 /* moving whole block can fail due to zone boundary conditions */ 2718 if (!free_pages) 2719 goto single_page; 2720 2721 /* 2722 * If a sufficient number of pages in the block are either free or of 2723 * comparable migratability as our allocation, claim the whole block. 2724 */ 2725 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2726 page_group_by_mobility_disabled) 2727 set_pageblock_migratetype(page, start_type); 2728 2729 return; 2730 2731 single_page: 2732 move_to_free_list(page, zone, current_order, start_type); 2733 } 2734 2735 /* 2736 * Check whether there is a suitable fallback freepage with requested order. 2737 * If only_stealable is true, this function returns fallback_mt only if 2738 * we can steal other freepages all together. This would help to reduce 2739 * fragmentation due to mixed migratetype pages in one pageblock. 2740 */ 2741 int find_suitable_fallback(struct free_area *area, unsigned int order, 2742 int migratetype, bool only_stealable, bool *can_steal) 2743 { 2744 int i; 2745 int fallback_mt; 2746 2747 if (area->nr_free == 0) 2748 return -1; 2749 2750 *can_steal = false; 2751 for (i = 0;; i++) { 2752 fallback_mt = fallbacks[migratetype][i]; 2753 if (fallback_mt == MIGRATE_TYPES) 2754 break; 2755 2756 if (free_area_empty(area, fallback_mt)) 2757 continue; 2758 2759 if (can_steal_fallback(order, migratetype)) 2760 *can_steal = true; 2761 2762 if (!only_stealable) 2763 return fallback_mt; 2764 2765 if (*can_steal) 2766 return fallback_mt; 2767 } 2768 2769 return -1; 2770 } 2771 2772 /* 2773 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2774 * there are no empty page blocks that contain a page with a suitable order 2775 */ 2776 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2777 unsigned int alloc_order) 2778 { 2779 int mt; 2780 unsigned long max_managed, flags; 2781 2782 /* 2783 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2784 * Check is race-prone but harmless. 2785 */ 2786 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2787 if (zone->nr_reserved_highatomic >= max_managed) 2788 return; 2789 2790 spin_lock_irqsave(&zone->lock, flags); 2791 2792 /* Recheck the nr_reserved_highatomic limit under the lock */ 2793 if (zone->nr_reserved_highatomic >= max_managed) 2794 goto out_unlock; 2795 2796 /* Yoink! */ 2797 mt = get_pageblock_migratetype(page); 2798 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2799 if (migratetype_is_mergeable(mt)) { 2800 zone->nr_reserved_highatomic += pageblock_nr_pages; 2801 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2802 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2803 } 2804 2805 out_unlock: 2806 spin_unlock_irqrestore(&zone->lock, flags); 2807 } 2808 2809 /* 2810 * Used when an allocation is about to fail under memory pressure. This 2811 * potentially hurts the reliability of high-order allocations when under 2812 * intense memory pressure but failed atomic allocations should be easier 2813 * to recover from than an OOM. 2814 * 2815 * If @force is true, try to unreserve a pageblock even though highatomic 2816 * pageblock is exhausted. 2817 */ 2818 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2819 bool force) 2820 { 2821 struct zonelist *zonelist = ac->zonelist; 2822 unsigned long flags; 2823 struct zoneref *z; 2824 struct zone *zone; 2825 struct page *page; 2826 int order; 2827 bool ret; 2828 2829 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2830 ac->nodemask) { 2831 /* 2832 * Preserve at least one pageblock unless memory pressure 2833 * is really high. 2834 */ 2835 if (!force && zone->nr_reserved_highatomic <= 2836 pageblock_nr_pages) 2837 continue; 2838 2839 spin_lock_irqsave(&zone->lock, flags); 2840 for (order = 0; order < MAX_ORDER; order++) { 2841 struct free_area *area = &(zone->free_area[order]); 2842 2843 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2844 if (!page) 2845 continue; 2846 2847 /* 2848 * In page freeing path, migratetype change is racy so 2849 * we can counter several free pages in a pageblock 2850 * in this loop although we changed the pageblock type 2851 * from highatomic to ac->migratetype. So we should 2852 * adjust the count once. 2853 */ 2854 if (is_migrate_highatomic_page(page)) { 2855 /* 2856 * It should never happen but changes to 2857 * locking could inadvertently allow a per-cpu 2858 * drain to add pages to MIGRATE_HIGHATOMIC 2859 * while unreserving so be safe and watch for 2860 * underflows. 2861 */ 2862 zone->nr_reserved_highatomic -= min( 2863 pageblock_nr_pages, 2864 zone->nr_reserved_highatomic); 2865 } 2866 2867 /* 2868 * Convert to ac->migratetype and avoid the normal 2869 * pageblock stealing heuristics. Minimally, the caller 2870 * is doing the work and needs the pages. More 2871 * importantly, if the block was always converted to 2872 * MIGRATE_UNMOVABLE or another type then the number 2873 * of pageblocks that cannot be completely freed 2874 * may increase. 2875 */ 2876 set_pageblock_migratetype(page, ac->migratetype); 2877 ret = move_freepages_block(zone, page, ac->migratetype, 2878 NULL); 2879 if (ret) { 2880 spin_unlock_irqrestore(&zone->lock, flags); 2881 return ret; 2882 } 2883 } 2884 spin_unlock_irqrestore(&zone->lock, flags); 2885 } 2886 2887 return false; 2888 } 2889 2890 /* 2891 * Try finding a free buddy page on the fallback list and put it on the free 2892 * list of requested migratetype, possibly along with other pages from the same 2893 * block, depending on fragmentation avoidance heuristics. Returns true if 2894 * fallback was found so that __rmqueue_smallest() can grab it. 2895 * 2896 * The use of signed ints for order and current_order is a deliberate 2897 * deviation from the rest of this file, to make the for loop 2898 * condition simpler. 2899 */ 2900 static __always_inline bool 2901 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2902 unsigned int alloc_flags) 2903 { 2904 struct free_area *area; 2905 int current_order; 2906 int min_order = order; 2907 struct page *page; 2908 int fallback_mt; 2909 bool can_steal; 2910 2911 /* 2912 * Do not steal pages from freelists belonging to other pageblocks 2913 * i.e. orders < pageblock_order. If there are no local zones free, 2914 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2915 */ 2916 if (alloc_flags & ALLOC_NOFRAGMENT) 2917 min_order = pageblock_order; 2918 2919 /* 2920 * Find the largest available free page in the other list. This roughly 2921 * approximates finding the pageblock with the most free pages, which 2922 * would be too costly to do exactly. 2923 */ 2924 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2925 --current_order) { 2926 area = &(zone->free_area[current_order]); 2927 fallback_mt = find_suitable_fallback(area, current_order, 2928 start_migratetype, false, &can_steal); 2929 if (fallback_mt == -1) 2930 continue; 2931 2932 /* 2933 * We cannot steal all free pages from the pageblock and the 2934 * requested migratetype is movable. In that case it's better to 2935 * steal and split the smallest available page instead of the 2936 * largest available page, because even if the next movable 2937 * allocation falls back into a different pageblock than this 2938 * one, it won't cause permanent fragmentation. 2939 */ 2940 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2941 && current_order > order) 2942 goto find_smallest; 2943 2944 goto do_steal; 2945 } 2946 2947 return false; 2948 2949 find_smallest: 2950 for (current_order = order; current_order < MAX_ORDER; 2951 current_order++) { 2952 area = &(zone->free_area[current_order]); 2953 fallback_mt = find_suitable_fallback(area, current_order, 2954 start_migratetype, false, &can_steal); 2955 if (fallback_mt != -1) 2956 break; 2957 } 2958 2959 /* 2960 * This should not happen - we already found a suitable fallback 2961 * when looking for the largest page. 2962 */ 2963 VM_BUG_ON(current_order == MAX_ORDER); 2964 2965 do_steal: 2966 page = get_page_from_free_area(area, fallback_mt); 2967 2968 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2969 can_steal); 2970 2971 trace_mm_page_alloc_extfrag(page, order, current_order, 2972 start_migratetype, fallback_mt); 2973 2974 return true; 2975 2976 } 2977 2978 /* 2979 * Do the hard work of removing an element from the buddy allocator. 2980 * Call me with the zone->lock already held. 2981 */ 2982 static __always_inline struct page * 2983 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2984 unsigned int alloc_flags) 2985 { 2986 struct page *page; 2987 2988 if (IS_ENABLED(CONFIG_CMA)) { 2989 /* 2990 * Balance movable allocations between regular and CMA areas by 2991 * allocating from CMA when over half of the zone's free memory 2992 * is in the CMA area. 2993 */ 2994 if (alloc_flags & ALLOC_CMA && 2995 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2996 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2997 page = __rmqueue_cma_fallback(zone, order); 2998 if (page) 2999 goto out; 3000 } 3001 } 3002 retry: 3003 page = __rmqueue_smallest(zone, order, migratetype); 3004 if (unlikely(!page)) { 3005 if (alloc_flags & ALLOC_CMA) 3006 page = __rmqueue_cma_fallback(zone, order); 3007 3008 if (!page && __rmqueue_fallback(zone, order, migratetype, 3009 alloc_flags)) 3010 goto retry; 3011 } 3012 out: 3013 if (page) 3014 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3015 return page; 3016 } 3017 3018 /* 3019 * Obtain a specified number of elements from the buddy allocator, all under 3020 * a single hold of the lock, for efficiency. Add them to the supplied list. 3021 * Returns the number of new pages which were placed at *list. 3022 */ 3023 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3024 unsigned long count, struct list_head *list, 3025 int migratetype, unsigned int alloc_flags) 3026 { 3027 int i, allocated = 0; 3028 3029 /* 3030 * local_lock_irq held so equivalent to spin_lock_irqsave for 3031 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3032 */ 3033 spin_lock(&zone->lock); 3034 for (i = 0; i < count; ++i) { 3035 struct page *page = __rmqueue(zone, order, migratetype, 3036 alloc_flags); 3037 if (unlikely(page == NULL)) 3038 break; 3039 3040 if (unlikely(check_pcp_refill(page, order))) 3041 continue; 3042 3043 /* 3044 * Split buddy pages returned by expand() are received here in 3045 * physical page order. The page is added to the tail of 3046 * caller's list. From the callers perspective, the linked list 3047 * is ordered by page number under some conditions. This is 3048 * useful for IO devices that can forward direction from the 3049 * head, thus also in the physical page order. This is useful 3050 * for IO devices that can merge IO requests if the physical 3051 * pages are ordered properly. 3052 */ 3053 list_add_tail(&page->lru, list); 3054 allocated++; 3055 if (is_migrate_cma(get_pcppage_migratetype(page))) 3056 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3057 -(1 << order)); 3058 } 3059 3060 /* 3061 * i pages were removed from the buddy list even if some leak due 3062 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3063 * on i. Do not confuse with 'allocated' which is the number of 3064 * pages added to the pcp list. 3065 */ 3066 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3067 spin_unlock(&zone->lock); 3068 return allocated; 3069 } 3070 3071 #ifdef CONFIG_NUMA 3072 /* 3073 * Called from the vmstat counter updater to drain pagesets of this 3074 * currently executing processor on remote nodes after they have 3075 * expired. 3076 * 3077 * Note that this function must be called with the thread pinned to 3078 * a single processor. 3079 */ 3080 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3081 { 3082 unsigned long flags; 3083 int to_drain, batch; 3084 3085 local_lock_irqsave(&pagesets.lock, flags); 3086 batch = READ_ONCE(pcp->batch); 3087 to_drain = min(pcp->count, batch); 3088 if (to_drain > 0) 3089 free_pcppages_bulk(zone, to_drain, pcp, 0); 3090 local_unlock_irqrestore(&pagesets.lock, flags); 3091 } 3092 #endif 3093 3094 /* 3095 * Drain pcplists of the indicated processor and zone. 3096 * 3097 * The processor must either be the current processor and the 3098 * thread pinned to the current processor or a processor that 3099 * is not online. 3100 */ 3101 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3102 { 3103 unsigned long flags; 3104 struct per_cpu_pages *pcp; 3105 3106 local_lock_irqsave(&pagesets.lock, flags); 3107 3108 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3109 if (pcp->count) 3110 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3111 3112 local_unlock_irqrestore(&pagesets.lock, flags); 3113 } 3114 3115 /* 3116 * Drain pcplists of all zones on the indicated processor. 3117 * 3118 * The processor must either be the current processor and the 3119 * thread pinned to the current processor or a processor that 3120 * is not online. 3121 */ 3122 static void drain_pages(unsigned int cpu) 3123 { 3124 struct zone *zone; 3125 3126 for_each_populated_zone(zone) { 3127 drain_pages_zone(cpu, zone); 3128 } 3129 } 3130 3131 /* 3132 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3133 * 3134 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3135 * the single zone's pages. 3136 */ 3137 void drain_local_pages(struct zone *zone) 3138 { 3139 int cpu = smp_processor_id(); 3140 3141 if (zone) 3142 drain_pages_zone(cpu, zone); 3143 else 3144 drain_pages(cpu); 3145 } 3146 3147 static void drain_local_pages_wq(struct work_struct *work) 3148 { 3149 struct pcpu_drain *drain; 3150 3151 drain = container_of(work, struct pcpu_drain, work); 3152 3153 /* 3154 * drain_all_pages doesn't use proper cpu hotplug protection so 3155 * we can race with cpu offline when the WQ can move this from 3156 * a cpu pinned worker to an unbound one. We can operate on a different 3157 * cpu which is alright but we also have to make sure to not move to 3158 * a different one. 3159 */ 3160 migrate_disable(); 3161 drain_local_pages(drain->zone); 3162 migrate_enable(); 3163 } 3164 3165 /* 3166 * The implementation of drain_all_pages(), exposing an extra parameter to 3167 * drain on all cpus. 3168 * 3169 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3170 * not empty. The check for non-emptiness can however race with a free to 3171 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3172 * that need the guarantee that every CPU has drained can disable the 3173 * optimizing racy check. 3174 */ 3175 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3176 { 3177 int cpu; 3178 3179 /* 3180 * Allocate in the BSS so we won't require allocation in 3181 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3182 */ 3183 static cpumask_t cpus_with_pcps; 3184 3185 /* 3186 * Make sure nobody triggers this path before mm_percpu_wq is fully 3187 * initialized. 3188 */ 3189 if (WARN_ON_ONCE(!mm_percpu_wq)) 3190 return; 3191 3192 /* 3193 * Do not drain if one is already in progress unless it's specific to 3194 * a zone. Such callers are primarily CMA and memory hotplug and need 3195 * the drain to be complete when the call returns. 3196 */ 3197 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3198 if (!zone) 3199 return; 3200 mutex_lock(&pcpu_drain_mutex); 3201 } 3202 3203 /* 3204 * We don't care about racing with CPU hotplug event 3205 * as offline notification will cause the notified 3206 * cpu to drain that CPU pcps and on_each_cpu_mask 3207 * disables preemption as part of its processing 3208 */ 3209 for_each_online_cpu(cpu) { 3210 struct per_cpu_pages *pcp; 3211 struct zone *z; 3212 bool has_pcps = false; 3213 3214 if (force_all_cpus) { 3215 /* 3216 * The pcp.count check is racy, some callers need a 3217 * guarantee that no cpu is missed. 3218 */ 3219 has_pcps = true; 3220 } else if (zone) { 3221 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3222 if (pcp->count) 3223 has_pcps = true; 3224 } else { 3225 for_each_populated_zone(z) { 3226 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3227 if (pcp->count) { 3228 has_pcps = true; 3229 break; 3230 } 3231 } 3232 } 3233 3234 if (has_pcps) 3235 cpumask_set_cpu(cpu, &cpus_with_pcps); 3236 else 3237 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3238 } 3239 3240 for_each_cpu(cpu, &cpus_with_pcps) { 3241 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3242 3243 drain->zone = zone; 3244 INIT_WORK(&drain->work, drain_local_pages_wq); 3245 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3246 } 3247 for_each_cpu(cpu, &cpus_with_pcps) 3248 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3249 3250 mutex_unlock(&pcpu_drain_mutex); 3251 } 3252 3253 /* 3254 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3255 * 3256 * When zone parameter is non-NULL, spill just the single zone's pages. 3257 * 3258 * Note that this can be extremely slow as the draining happens in a workqueue. 3259 */ 3260 void drain_all_pages(struct zone *zone) 3261 { 3262 __drain_all_pages(zone, false); 3263 } 3264 3265 #ifdef CONFIG_HIBERNATION 3266 3267 /* 3268 * Touch the watchdog for every WD_PAGE_COUNT pages. 3269 */ 3270 #define WD_PAGE_COUNT (128*1024) 3271 3272 void mark_free_pages(struct zone *zone) 3273 { 3274 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3275 unsigned long flags; 3276 unsigned int order, t; 3277 struct page *page; 3278 3279 if (zone_is_empty(zone)) 3280 return; 3281 3282 spin_lock_irqsave(&zone->lock, flags); 3283 3284 max_zone_pfn = zone_end_pfn(zone); 3285 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3286 if (pfn_valid(pfn)) { 3287 page = pfn_to_page(pfn); 3288 3289 if (!--page_count) { 3290 touch_nmi_watchdog(); 3291 page_count = WD_PAGE_COUNT; 3292 } 3293 3294 if (page_zone(page) != zone) 3295 continue; 3296 3297 if (!swsusp_page_is_forbidden(page)) 3298 swsusp_unset_page_free(page); 3299 } 3300 3301 for_each_migratetype_order(order, t) { 3302 list_for_each_entry(page, 3303 &zone->free_area[order].free_list[t], lru) { 3304 unsigned long i; 3305 3306 pfn = page_to_pfn(page); 3307 for (i = 0; i < (1UL << order); i++) { 3308 if (!--page_count) { 3309 touch_nmi_watchdog(); 3310 page_count = WD_PAGE_COUNT; 3311 } 3312 swsusp_set_page_free(pfn_to_page(pfn + i)); 3313 } 3314 } 3315 } 3316 spin_unlock_irqrestore(&zone->lock, flags); 3317 } 3318 #endif /* CONFIG_PM */ 3319 3320 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3321 unsigned int order) 3322 { 3323 int migratetype; 3324 3325 if (!free_pcp_prepare(page, order)) 3326 return false; 3327 3328 migratetype = get_pfnblock_migratetype(page, pfn); 3329 set_pcppage_migratetype(page, migratetype); 3330 return true; 3331 } 3332 3333 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3334 bool free_high) 3335 { 3336 int min_nr_free, max_nr_free; 3337 3338 /* Free everything if batch freeing high-order pages. */ 3339 if (unlikely(free_high)) 3340 return pcp->count; 3341 3342 /* Check for PCP disabled or boot pageset */ 3343 if (unlikely(high < batch)) 3344 return 1; 3345 3346 /* Leave at least pcp->batch pages on the list */ 3347 min_nr_free = batch; 3348 max_nr_free = high - batch; 3349 3350 /* 3351 * Double the number of pages freed each time there is subsequent 3352 * freeing of pages without any allocation. 3353 */ 3354 batch <<= pcp->free_factor; 3355 if (batch < max_nr_free) 3356 pcp->free_factor++; 3357 batch = clamp(batch, min_nr_free, max_nr_free); 3358 3359 return batch; 3360 } 3361 3362 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3363 bool free_high) 3364 { 3365 int high = READ_ONCE(pcp->high); 3366 3367 if (unlikely(!high || free_high)) 3368 return 0; 3369 3370 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3371 return high; 3372 3373 /* 3374 * If reclaim is active, limit the number of pages that can be 3375 * stored on pcp lists 3376 */ 3377 return min(READ_ONCE(pcp->batch) << 2, high); 3378 } 3379 3380 static void free_unref_page_commit(struct page *page, int migratetype, 3381 unsigned int order) 3382 { 3383 struct zone *zone = page_zone(page); 3384 struct per_cpu_pages *pcp; 3385 int high; 3386 int pindex; 3387 bool free_high; 3388 3389 __count_vm_event(PGFREE); 3390 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3391 pindex = order_to_pindex(migratetype, order); 3392 list_add(&page->lru, &pcp->lists[pindex]); 3393 pcp->count += 1 << order; 3394 3395 /* 3396 * As high-order pages other than THP's stored on PCP can contribute 3397 * to fragmentation, limit the number stored when PCP is heavily 3398 * freeing without allocation. The remainder after bulk freeing 3399 * stops will be drained from vmstat refresh context. 3400 */ 3401 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3402 3403 high = nr_pcp_high(pcp, zone, free_high); 3404 if (pcp->count >= high) { 3405 int batch = READ_ONCE(pcp->batch); 3406 3407 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3408 } 3409 } 3410 3411 /* 3412 * Free a pcp page 3413 */ 3414 void free_unref_page(struct page *page, unsigned int order) 3415 { 3416 unsigned long flags; 3417 unsigned long pfn = page_to_pfn(page); 3418 int migratetype; 3419 3420 if (!free_unref_page_prepare(page, pfn, order)) 3421 return; 3422 3423 /* 3424 * We only track unmovable, reclaimable and movable on pcp lists. 3425 * Place ISOLATE pages on the isolated list because they are being 3426 * offlined but treat HIGHATOMIC as movable pages so we can get those 3427 * areas back if necessary. Otherwise, we may have to free 3428 * excessively into the page allocator 3429 */ 3430 migratetype = get_pcppage_migratetype(page); 3431 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3432 if (unlikely(is_migrate_isolate(migratetype))) { 3433 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3434 return; 3435 } 3436 migratetype = MIGRATE_MOVABLE; 3437 } 3438 3439 local_lock_irqsave(&pagesets.lock, flags); 3440 free_unref_page_commit(page, migratetype, order); 3441 local_unlock_irqrestore(&pagesets.lock, flags); 3442 } 3443 3444 /* 3445 * Free a list of 0-order pages 3446 */ 3447 void free_unref_page_list(struct list_head *list) 3448 { 3449 struct page *page, *next; 3450 unsigned long flags; 3451 int batch_count = 0; 3452 int migratetype; 3453 3454 /* Prepare pages for freeing */ 3455 list_for_each_entry_safe(page, next, list, lru) { 3456 unsigned long pfn = page_to_pfn(page); 3457 if (!free_unref_page_prepare(page, pfn, 0)) { 3458 list_del(&page->lru); 3459 continue; 3460 } 3461 3462 /* 3463 * Free isolated pages directly to the allocator, see 3464 * comment in free_unref_page. 3465 */ 3466 migratetype = get_pcppage_migratetype(page); 3467 if (unlikely(is_migrate_isolate(migratetype))) { 3468 list_del(&page->lru); 3469 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3470 continue; 3471 } 3472 } 3473 3474 local_lock_irqsave(&pagesets.lock, flags); 3475 list_for_each_entry_safe(page, next, list, lru) { 3476 /* 3477 * Non-isolated types over MIGRATE_PCPTYPES get added 3478 * to the MIGRATE_MOVABLE pcp list. 3479 */ 3480 migratetype = get_pcppage_migratetype(page); 3481 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3482 migratetype = MIGRATE_MOVABLE; 3483 3484 trace_mm_page_free_batched(page); 3485 free_unref_page_commit(page, migratetype, 0); 3486 3487 /* 3488 * Guard against excessive IRQ disabled times when we get 3489 * a large list of pages to free. 3490 */ 3491 if (++batch_count == SWAP_CLUSTER_MAX) { 3492 local_unlock_irqrestore(&pagesets.lock, flags); 3493 batch_count = 0; 3494 local_lock_irqsave(&pagesets.lock, flags); 3495 } 3496 } 3497 local_unlock_irqrestore(&pagesets.lock, flags); 3498 } 3499 3500 /* 3501 * split_page takes a non-compound higher-order page, and splits it into 3502 * n (1<<order) sub-pages: page[0..n] 3503 * Each sub-page must be freed individually. 3504 * 3505 * Note: this is probably too low level an operation for use in drivers. 3506 * Please consult with lkml before using this in your driver. 3507 */ 3508 void split_page(struct page *page, unsigned int order) 3509 { 3510 int i; 3511 3512 VM_BUG_ON_PAGE(PageCompound(page), page); 3513 VM_BUG_ON_PAGE(!page_count(page), page); 3514 3515 for (i = 1; i < (1 << order); i++) 3516 set_page_refcounted(page + i); 3517 split_page_owner(page, 1 << order); 3518 split_page_memcg(page, 1 << order); 3519 } 3520 EXPORT_SYMBOL_GPL(split_page); 3521 3522 int __isolate_free_page(struct page *page, unsigned int order) 3523 { 3524 unsigned long watermark; 3525 struct zone *zone; 3526 int mt; 3527 3528 BUG_ON(!PageBuddy(page)); 3529 3530 zone = page_zone(page); 3531 mt = get_pageblock_migratetype(page); 3532 3533 if (!is_migrate_isolate(mt)) { 3534 /* 3535 * Obey watermarks as if the page was being allocated. We can 3536 * emulate a high-order watermark check with a raised order-0 3537 * watermark, because we already know our high-order page 3538 * exists. 3539 */ 3540 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3541 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3542 return 0; 3543 3544 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3545 } 3546 3547 /* Remove page from free list */ 3548 3549 del_page_from_free_list(page, zone, order); 3550 3551 /* 3552 * Set the pageblock if the isolated page is at least half of a 3553 * pageblock 3554 */ 3555 if (order >= pageblock_order - 1) { 3556 struct page *endpage = page + (1 << order) - 1; 3557 for (; page < endpage; page += pageblock_nr_pages) { 3558 int mt = get_pageblock_migratetype(page); 3559 /* 3560 * Only change normal pageblocks (i.e., they can merge 3561 * with others) 3562 */ 3563 if (migratetype_is_mergeable(mt)) 3564 set_pageblock_migratetype(page, 3565 MIGRATE_MOVABLE); 3566 } 3567 } 3568 3569 3570 return 1UL << order; 3571 } 3572 3573 /** 3574 * __putback_isolated_page - Return a now-isolated page back where we got it 3575 * @page: Page that was isolated 3576 * @order: Order of the isolated page 3577 * @mt: The page's pageblock's migratetype 3578 * 3579 * This function is meant to return a page pulled from the free lists via 3580 * __isolate_free_page back to the free lists they were pulled from. 3581 */ 3582 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3583 { 3584 struct zone *zone = page_zone(page); 3585 3586 /* zone lock should be held when this function is called */ 3587 lockdep_assert_held(&zone->lock); 3588 3589 /* Return isolated page to tail of freelist. */ 3590 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3591 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3592 } 3593 3594 /* 3595 * Update NUMA hit/miss statistics 3596 * 3597 * Must be called with interrupts disabled. 3598 */ 3599 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3600 long nr_account) 3601 { 3602 #ifdef CONFIG_NUMA 3603 enum numa_stat_item local_stat = NUMA_LOCAL; 3604 3605 /* skip numa counters update if numa stats is disabled */ 3606 if (!static_branch_likely(&vm_numa_stat_key)) 3607 return; 3608 3609 if (zone_to_nid(z) != numa_node_id()) 3610 local_stat = NUMA_OTHER; 3611 3612 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3613 __count_numa_events(z, NUMA_HIT, nr_account); 3614 else { 3615 __count_numa_events(z, NUMA_MISS, nr_account); 3616 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3617 } 3618 __count_numa_events(z, local_stat, nr_account); 3619 #endif 3620 } 3621 3622 /* Remove page from the per-cpu list, caller must protect the list */ 3623 static inline 3624 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3625 int migratetype, 3626 unsigned int alloc_flags, 3627 struct per_cpu_pages *pcp, 3628 struct list_head *list) 3629 { 3630 struct page *page; 3631 3632 do { 3633 if (list_empty(list)) { 3634 int batch = READ_ONCE(pcp->batch); 3635 int alloced; 3636 3637 /* 3638 * Scale batch relative to order if batch implies 3639 * free pages can be stored on the PCP. Batch can 3640 * be 1 for small zones or for boot pagesets which 3641 * should never store free pages as the pages may 3642 * belong to arbitrary zones. 3643 */ 3644 if (batch > 1) 3645 batch = max(batch >> order, 2); 3646 alloced = rmqueue_bulk(zone, order, 3647 batch, list, 3648 migratetype, alloc_flags); 3649 3650 pcp->count += alloced << order; 3651 if (unlikely(list_empty(list))) 3652 return NULL; 3653 } 3654 3655 page = list_first_entry(list, struct page, lru); 3656 list_del(&page->lru); 3657 pcp->count -= 1 << order; 3658 } while (check_new_pcp(page, order)); 3659 3660 return page; 3661 } 3662 3663 /* Lock and remove page from the per-cpu list */ 3664 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3665 struct zone *zone, unsigned int order, 3666 gfp_t gfp_flags, int migratetype, 3667 unsigned int alloc_flags) 3668 { 3669 struct per_cpu_pages *pcp; 3670 struct list_head *list; 3671 struct page *page; 3672 unsigned long flags; 3673 3674 local_lock_irqsave(&pagesets.lock, flags); 3675 3676 /* 3677 * On allocation, reduce the number of pages that are batch freed. 3678 * See nr_pcp_free() where free_factor is increased for subsequent 3679 * frees. 3680 */ 3681 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3682 pcp->free_factor >>= 1; 3683 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3684 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3685 local_unlock_irqrestore(&pagesets.lock, flags); 3686 if (page) { 3687 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3688 zone_statistics(preferred_zone, zone, 1); 3689 } 3690 return page; 3691 } 3692 3693 /* 3694 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3695 */ 3696 static inline 3697 struct page *rmqueue(struct zone *preferred_zone, 3698 struct zone *zone, unsigned int order, 3699 gfp_t gfp_flags, unsigned int alloc_flags, 3700 int migratetype) 3701 { 3702 unsigned long flags; 3703 struct page *page; 3704 3705 if (likely(pcp_allowed_order(order))) { 3706 /* 3707 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3708 * we need to skip it when CMA area isn't allowed. 3709 */ 3710 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3711 migratetype != MIGRATE_MOVABLE) { 3712 page = rmqueue_pcplist(preferred_zone, zone, order, 3713 gfp_flags, migratetype, alloc_flags); 3714 goto out; 3715 } 3716 } 3717 3718 /* 3719 * We most definitely don't want callers attempting to 3720 * allocate greater than order-1 page units with __GFP_NOFAIL. 3721 */ 3722 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3723 3724 do { 3725 page = NULL; 3726 spin_lock_irqsave(&zone->lock, flags); 3727 /* 3728 * order-0 request can reach here when the pcplist is skipped 3729 * due to non-CMA allocation context. HIGHATOMIC area is 3730 * reserved for high-order atomic allocation, so order-0 3731 * request should skip it. 3732 */ 3733 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3734 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3735 if (page) 3736 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3737 } 3738 if (!page) { 3739 page = __rmqueue(zone, order, migratetype, alloc_flags); 3740 if (!page) 3741 goto failed; 3742 } 3743 __mod_zone_freepage_state(zone, -(1 << order), 3744 get_pcppage_migratetype(page)); 3745 spin_unlock_irqrestore(&zone->lock, flags); 3746 } while (check_new_pages(page, order)); 3747 3748 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3749 zone_statistics(preferred_zone, zone, 1); 3750 3751 out: 3752 /* Separate test+clear to avoid unnecessary atomics */ 3753 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3754 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3755 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3756 } 3757 3758 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3759 return page; 3760 3761 failed: 3762 spin_unlock_irqrestore(&zone->lock, flags); 3763 return NULL; 3764 } 3765 3766 #ifdef CONFIG_FAIL_PAGE_ALLOC 3767 3768 static struct { 3769 struct fault_attr attr; 3770 3771 bool ignore_gfp_highmem; 3772 bool ignore_gfp_reclaim; 3773 u32 min_order; 3774 } fail_page_alloc = { 3775 .attr = FAULT_ATTR_INITIALIZER, 3776 .ignore_gfp_reclaim = true, 3777 .ignore_gfp_highmem = true, 3778 .min_order = 1, 3779 }; 3780 3781 static int __init setup_fail_page_alloc(char *str) 3782 { 3783 return setup_fault_attr(&fail_page_alloc.attr, str); 3784 } 3785 __setup("fail_page_alloc=", setup_fail_page_alloc); 3786 3787 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3788 { 3789 if (order < fail_page_alloc.min_order) 3790 return false; 3791 if (gfp_mask & __GFP_NOFAIL) 3792 return false; 3793 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3794 return false; 3795 if (fail_page_alloc.ignore_gfp_reclaim && 3796 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3797 return false; 3798 3799 return should_fail(&fail_page_alloc.attr, 1 << order); 3800 } 3801 3802 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3803 3804 static int __init fail_page_alloc_debugfs(void) 3805 { 3806 umode_t mode = S_IFREG | 0600; 3807 struct dentry *dir; 3808 3809 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3810 &fail_page_alloc.attr); 3811 3812 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3813 &fail_page_alloc.ignore_gfp_reclaim); 3814 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3815 &fail_page_alloc.ignore_gfp_highmem); 3816 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3817 3818 return 0; 3819 } 3820 3821 late_initcall(fail_page_alloc_debugfs); 3822 3823 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3824 3825 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3826 3827 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3828 { 3829 return false; 3830 } 3831 3832 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3833 3834 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3835 { 3836 return __should_fail_alloc_page(gfp_mask, order); 3837 } 3838 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3839 3840 static inline long __zone_watermark_unusable_free(struct zone *z, 3841 unsigned int order, unsigned int alloc_flags) 3842 { 3843 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3844 long unusable_free = (1 << order) - 1; 3845 3846 /* 3847 * If the caller does not have rights to ALLOC_HARDER then subtract 3848 * the high-atomic reserves. This will over-estimate the size of the 3849 * atomic reserve but it avoids a search. 3850 */ 3851 if (likely(!alloc_harder)) 3852 unusable_free += z->nr_reserved_highatomic; 3853 3854 #ifdef CONFIG_CMA 3855 /* If allocation can't use CMA areas don't use free CMA pages */ 3856 if (!(alloc_flags & ALLOC_CMA)) 3857 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3858 #endif 3859 3860 return unusable_free; 3861 } 3862 3863 /* 3864 * Return true if free base pages are above 'mark'. For high-order checks it 3865 * will return true of the order-0 watermark is reached and there is at least 3866 * one free page of a suitable size. Checking now avoids taking the zone lock 3867 * to check in the allocation paths if no pages are free. 3868 */ 3869 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3870 int highest_zoneidx, unsigned int alloc_flags, 3871 long free_pages) 3872 { 3873 long min = mark; 3874 int o; 3875 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3876 3877 /* free_pages may go negative - that's OK */ 3878 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3879 3880 if (alloc_flags & ALLOC_HIGH) 3881 min -= min / 2; 3882 3883 if (unlikely(alloc_harder)) { 3884 /* 3885 * OOM victims can try even harder than normal ALLOC_HARDER 3886 * users on the grounds that it's definitely going to be in 3887 * the exit path shortly and free memory. Any allocation it 3888 * makes during the free path will be small and short-lived. 3889 */ 3890 if (alloc_flags & ALLOC_OOM) 3891 min -= min / 2; 3892 else 3893 min -= min / 4; 3894 } 3895 3896 /* 3897 * Check watermarks for an order-0 allocation request. If these 3898 * are not met, then a high-order request also cannot go ahead 3899 * even if a suitable page happened to be free. 3900 */ 3901 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3902 return false; 3903 3904 /* If this is an order-0 request then the watermark is fine */ 3905 if (!order) 3906 return true; 3907 3908 /* For a high-order request, check at least one suitable page is free */ 3909 for (o = order; o < MAX_ORDER; o++) { 3910 struct free_area *area = &z->free_area[o]; 3911 int mt; 3912 3913 if (!area->nr_free) 3914 continue; 3915 3916 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3917 if (!free_area_empty(area, mt)) 3918 return true; 3919 } 3920 3921 #ifdef CONFIG_CMA 3922 if ((alloc_flags & ALLOC_CMA) && 3923 !free_area_empty(area, MIGRATE_CMA)) { 3924 return true; 3925 } 3926 #endif 3927 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3928 return true; 3929 } 3930 return false; 3931 } 3932 3933 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3934 int highest_zoneidx, unsigned int alloc_flags) 3935 { 3936 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3937 zone_page_state(z, NR_FREE_PAGES)); 3938 } 3939 3940 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3941 unsigned long mark, int highest_zoneidx, 3942 unsigned int alloc_flags, gfp_t gfp_mask) 3943 { 3944 long free_pages; 3945 3946 free_pages = zone_page_state(z, NR_FREE_PAGES); 3947 3948 /* 3949 * Fast check for order-0 only. If this fails then the reserves 3950 * need to be calculated. 3951 */ 3952 if (!order) { 3953 long fast_free; 3954 3955 fast_free = free_pages; 3956 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3957 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3958 return true; 3959 } 3960 3961 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3962 free_pages)) 3963 return true; 3964 /* 3965 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3966 * when checking the min watermark. The min watermark is the 3967 * point where boosting is ignored so that kswapd is woken up 3968 * when below the low watermark. 3969 */ 3970 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3971 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3972 mark = z->_watermark[WMARK_MIN]; 3973 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3974 alloc_flags, free_pages); 3975 } 3976 3977 return false; 3978 } 3979 3980 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3981 unsigned long mark, int highest_zoneidx) 3982 { 3983 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3984 3985 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3986 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3987 3988 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3989 free_pages); 3990 } 3991 3992 #ifdef CONFIG_NUMA 3993 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3994 3995 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3996 { 3997 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3998 node_reclaim_distance; 3999 } 4000 #else /* CONFIG_NUMA */ 4001 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4002 { 4003 return true; 4004 } 4005 #endif /* CONFIG_NUMA */ 4006 4007 /* 4008 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4009 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4010 * premature use of a lower zone may cause lowmem pressure problems that 4011 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4012 * probably too small. It only makes sense to spread allocations to avoid 4013 * fragmentation between the Normal and DMA32 zones. 4014 */ 4015 static inline unsigned int 4016 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4017 { 4018 unsigned int alloc_flags; 4019 4020 /* 4021 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4022 * to save a branch. 4023 */ 4024 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4025 4026 #ifdef CONFIG_ZONE_DMA32 4027 if (!zone) 4028 return alloc_flags; 4029 4030 if (zone_idx(zone) != ZONE_NORMAL) 4031 return alloc_flags; 4032 4033 /* 4034 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4035 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4036 * on UMA that if Normal is populated then so is DMA32. 4037 */ 4038 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4039 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4040 return alloc_flags; 4041 4042 alloc_flags |= ALLOC_NOFRAGMENT; 4043 #endif /* CONFIG_ZONE_DMA32 */ 4044 return alloc_flags; 4045 } 4046 4047 /* Must be called after current_gfp_context() which can change gfp_mask */ 4048 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4049 unsigned int alloc_flags) 4050 { 4051 #ifdef CONFIG_CMA 4052 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4053 alloc_flags |= ALLOC_CMA; 4054 #endif 4055 return alloc_flags; 4056 } 4057 4058 /* 4059 * get_page_from_freelist goes through the zonelist trying to allocate 4060 * a page. 4061 */ 4062 static struct page * 4063 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4064 const struct alloc_context *ac) 4065 { 4066 struct zoneref *z; 4067 struct zone *zone; 4068 struct pglist_data *last_pgdat_dirty_limit = NULL; 4069 bool no_fallback; 4070 4071 retry: 4072 /* 4073 * Scan zonelist, looking for a zone with enough free. 4074 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4075 */ 4076 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4077 z = ac->preferred_zoneref; 4078 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4079 ac->nodemask) { 4080 struct page *page; 4081 unsigned long mark; 4082 4083 if (cpusets_enabled() && 4084 (alloc_flags & ALLOC_CPUSET) && 4085 !__cpuset_zone_allowed(zone, gfp_mask)) 4086 continue; 4087 /* 4088 * When allocating a page cache page for writing, we 4089 * want to get it from a node that is within its dirty 4090 * limit, such that no single node holds more than its 4091 * proportional share of globally allowed dirty pages. 4092 * The dirty limits take into account the node's 4093 * lowmem reserves and high watermark so that kswapd 4094 * should be able to balance it without having to 4095 * write pages from its LRU list. 4096 * 4097 * XXX: For now, allow allocations to potentially 4098 * exceed the per-node dirty limit in the slowpath 4099 * (spread_dirty_pages unset) before going into reclaim, 4100 * which is important when on a NUMA setup the allowed 4101 * nodes are together not big enough to reach the 4102 * global limit. The proper fix for these situations 4103 * will require awareness of nodes in the 4104 * dirty-throttling and the flusher threads. 4105 */ 4106 if (ac->spread_dirty_pages) { 4107 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4108 continue; 4109 4110 if (!node_dirty_ok(zone->zone_pgdat)) { 4111 last_pgdat_dirty_limit = zone->zone_pgdat; 4112 continue; 4113 } 4114 } 4115 4116 if (no_fallback && nr_online_nodes > 1 && 4117 zone != ac->preferred_zoneref->zone) { 4118 int local_nid; 4119 4120 /* 4121 * If moving to a remote node, retry but allow 4122 * fragmenting fallbacks. Locality is more important 4123 * than fragmentation avoidance. 4124 */ 4125 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4126 if (zone_to_nid(zone) != local_nid) { 4127 alloc_flags &= ~ALLOC_NOFRAGMENT; 4128 goto retry; 4129 } 4130 } 4131 4132 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4133 if (!zone_watermark_fast(zone, order, mark, 4134 ac->highest_zoneidx, alloc_flags, 4135 gfp_mask)) { 4136 int ret; 4137 4138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4139 /* 4140 * Watermark failed for this zone, but see if we can 4141 * grow this zone if it contains deferred pages. 4142 */ 4143 if (static_branch_unlikely(&deferred_pages)) { 4144 if (_deferred_grow_zone(zone, order)) 4145 goto try_this_zone; 4146 } 4147 #endif 4148 /* Checked here to keep the fast path fast */ 4149 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4150 if (alloc_flags & ALLOC_NO_WATERMARKS) 4151 goto try_this_zone; 4152 4153 if (!node_reclaim_enabled() || 4154 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4155 continue; 4156 4157 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4158 switch (ret) { 4159 case NODE_RECLAIM_NOSCAN: 4160 /* did not scan */ 4161 continue; 4162 case NODE_RECLAIM_FULL: 4163 /* scanned but unreclaimable */ 4164 continue; 4165 default: 4166 /* did we reclaim enough */ 4167 if (zone_watermark_ok(zone, order, mark, 4168 ac->highest_zoneidx, alloc_flags)) 4169 goto try_this_zone; 4170 4171 continue; 4172 } 4173 } 4174 4175 try_this_zone: 4176 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4177 gfp_mask, alloc_flags, ac->migratetype); 4178 if (page) { 4179 prep_new_page(page, order, gfp_mask, alloc_flags); 4180 4181 /* 4182 * If this is a high-order atomic allocation then check 4183 * if the pageblock should be reserved for the future 4184 */ 4185 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4186 reserve_highatomic_pageblock(page, zone, order); 4187 4188 return page; 4189 } else { 4190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4191 /* Try again if zone has deferred pages */ 4192 if (static_branch_unlikely(&deferred_pages)) { 4193 if (_deferred_grow_zone(zone, order)) 4194 goto try_this_zone; 4195 } 4196 #endif 4197 } 4198 } 4199 4200 /* 4201 * It's possible on a UMA machine to get through all zones that are 4202 * fragmented. If avoiding fragmentation, reset and try again. 4203 */ 4204 if (no_fallback) { 4205 alloc_flags &= ~ALLOC_NOFRAGMENT; 4206 goto retry; 4207 } 4208 4209 return NULL; 4210 } 4211 4212 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4213 { 4214 unsigned int filter = SHOW_MEM_FILTER_NODES; 4215 4216 /* 4217 * This documents exceptions given to allocations in certain 4218 * contexts that are allowed to allocate outside current's set 4219 * of allowed nodes. 4220 */ 4221 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4222 if (tsk_is_oom_victim(current) || 4223 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4224 filter &= ~SHOW_MEM_FILTER_NODES; 4225 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4226 filter &= ~SHOW_MEM_FILTER_NODES; 4227 4228 show_mem(filter, nodemask); 4229 } 4230 4231 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4232 { 4233 struct va_format vaf; 4234 va_list args; 4235 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4236 4237 if ((gfp_mask & __GFP_NOWARN) || 4238 !__ratelimit(&nopage_rs) || 4239 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4240 return; 4241 4242 va_start(args, fmt); 4243 vaf.fmt = fmt; 4244 vaf.va = &args; 4245 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4246 current->comm, &vaf, gfp_mask, &gfp_mask, 4247 nodemask_pr_args(nodemask)); 4248 va_end(args); 4249 4250 cpuset_print_current_mems_allowed(); 4251 pr_cont("\n"); 4252 dump_stack(); 4253 warn_alloc_show_mem(gfp_mask, nodemask); 4254 } 4255 4256 static inline struct page * 4257 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4258 unsigned int alloc_flags, 4259 const struct alloc_context *ac) 4260 { 4261 struct page *page; 4262 4263 page = get_page_from_freelist(gfp_mask, order, 4264 alloc_flags|ALLOC_CPUSET, ac); 4265 /* 4266 * fallback to ignore cpuset restriction if our nodes 4267 * are depleted 4268 */ 4269 if (!page) 4270 page = get_page_from_freelist(gfp_mask, order, 4271 alloc_flags, ac); 4272 4273 return page; 4274 } 4275 4276 static inline struct page * 4277 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4278 const struct alloc_context *ac, unsigned long *did_some_progress) 4279 { 4280 struct oom_control oc = { 4281 .zonelist = ac->zonelist, 4282 .nodemask = ac->nodemask, 4283 .memcg = NULL, 4284 .gfp_mask = gfp_mask, 4285 .order = order, 4286 }; 4287 struct page *page; 4288 4289 *did_some_progress = 0; 4290 4291 /* 4292 * Acquire the oom lock. If that fails, somebody else is 4293 * making progress for us. 4294 */ 4295 if (!mutex_trylock(&oom_lock)) { 4296 *did_some_progress = 1; 4297 schedule_timeout_uninterruptible(1); 4298 return NULL; 4299 } 4300 4301 /* 4302 * Go through the zonelist yet one more time, keep very high watermark 4303 * here, this is only to catch a parallel oom killing, we must fail if 4304 * we're still under heavy pressure. But make sure that this reclaim 4305 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4306 * allocation which will never fail due to oom_lock already held. 4307 */ 4308 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4309 ~__GFP_DIRECT_RECLAIM, order, 4310 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4311 if (page) 4312 goto out; 4313 4314 /* Coredumps can quickly deplete all memory reserves */ 4315 if (current->flags & PF_DUMPCORE) 4316 goto out; 4317 /* The OOM killer will not help higher order allocs */ 4318 if (order > PAGE_ALLOC_COSTLY_ORDER) 4319 goto out; 4320 /* 4321 * We have already exhausted all our reclaim opportunities without any 4322 * success so it is time to admit defeat. We will skip the OOM killer 4323 * because it is very likely that the caller has a more reasonable 4324 * fallback than shooting a random task. 4325 * 4326 * The OOM killer may not free memory on a specific node. 4327 */ 4328 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4329 goto out; 4330 /* The OOM killer does not needlessly kill tasks for lowmem */ 4331 if (ac->highest_zoneidx < ZONE_NORMAL) 4332 goto out; 4333 if (pm_suspended_storage()) 4334 goto out; 4335 /* 4336 * XXX: GFP_NOFS allocations should rather fail than rely on 4337 * other request to make a forward progress. 4338 * We are in an unfortunate situation where out_of_memory cannot 4339 * do much for this context but let's try it to at least get 4340 * access to memory reserved if the current task is killed (see 4341 * out_of_memory). Once filesystems are ready to handle allocation 4342 * failures more gracefully we should just bail out here. 4343 */ 4344 4345 /* Exhausted what can be done so it's blame time */ 4346 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4347 *did_some_progress = 1; 4348 4349 /* 4350 * Help non-failing allocations by giving them access to memory 4351 * reserves 4352 */ 4353 if (gfp_mask & __GFP_NOFAIL) 4354 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4355 ALLOC_NO_WATERMARKS, ac); 4356 } 4357 out: 4358 mutex_unlock(&oom_lock); 4359 return page; 4360 } 4361 4362 /* 4363 * Maximum number of compaction retries with a progress before OOM 4364 * killer is consider as the only way to move forward. 4365 */ 4366 #define MAX_COMPACT_RETRIES 16 4367 4368 #ifdef CONFIG_COMPACTION 4369 /* Try memory compaction for high-order allocations before reclaim */ 4370 static struct page * 4371 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4372 unsigned int alloc_flags, const struct alloc_context *ac, 4373 enum compact_priority prio, enum compact_result *compact_result) 4374 { 4375 struct page *page = NULL; 4376 unsigned long pflags; 4377 unsigned int noreclaim_flag; 4378 4379 if (!order) 4380 return NULL; 4381 4382 psi_memstall_enter(&pflags); 4383 delayacct_compact_start(); 4384 noreclaim_flag = memalloc_noreclaim_save(); 4385 4386 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4387 prio, &page); 4388 4389 memalloc_noreclaim_restore(noreclaim_flag); 4390 psi_memstall_leave(&pflags); 4391 delayacct_compact_end(); 4392 4393 if (*compact_result == COMPACT_SKIPPED) 4394 return NULL; 4395 /* 4396 * At least in one zone compaction wasn't deferred or skipped, so let's 4397 * count a compaction stall 4398 */ 4399 count_vm_event(COMPACTSTALL); 4400 4401 /* Prep a captured page if available */ 4402 if (page) 4403 prep_new_page(page, order, gfp_mask, alloc_flags); 4404 4405 /* Try get a page from the freelist if available */ 4406 if (!page) 4407 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4408 4409 if (page) { 4410 struct zone *zone = page_zone(page); 4411 4412 zone->compact_blockskip_flush = false; 4413 compaction_defer_reset(zone, order, true); 4414 count_vm_event(COMPACTSUCCESS); 4415 return page; 4416 } 4417 4418 /* 4419 * It's bad if compaction run occurs and fails. The most likely reason 4420 * is that pages exist, but not enough to satisfy watermarks. 4421 */ 4422 count_vm_event(COMPACTFAIL); 4423 4424 cond_resched(); 4425 4426 return NULL; 4427 } 4428 4429 static inline bool 4430 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4431 enum compact_result compact_result, 4432 enum compact_priority *compact_priority, 4433 int *compaction_retries) 4434 { 4435 int max_retries = MAX_COMPACT_RETRIES; 4436 int min_priority; 4437 bool ret = false; 4438 int retries = *compaction_retries; 4439 enum compact_priority priority = *compact_priority; 4440 4441 if (!order) 4442 return false; 4443 4444 if (fatal_signal_pending(current)) 4445 return false; 4446 4447 if (compaction_made_progress(compact_result)) 4448 (*compaction_retries)++; 4449 4450 /* 4451 * compaction considers all the zone as desperately out of memory 4452 * so it doesn't really make much sense to retry except when the 4453 * failure could be caused by insufficient priority 4454 */ 4455 if (compaction_failed(compact_result)) 4456 goto check_priority; 4457 4458 /* 4459 * compaction was skipped because there are not enough order-0 pages 4460 * to work with, so we retry only if it looks like reclaim can help. 4461 */ 4462 if (compaction_needs_reclaim(compact_result)) { 4463 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4464 goto out; 4465 } 4466 4467 /* 4468 * make sure the compaction wasn't deferred or didn't bail out early 4469 * due to locks contention before we declare that we should give up. 4470 * But the next retry should use a higher priority if allowed, so 4471 * we don't just keep bailing out endlessly. 4472 */ 4473 if (compaction_withdrawn(compact_result)) { 4474 goto check_priority; 4475 } 4476 4477 /* 4478 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4479 * costly ones because they are de facto nofail and invoke OOM 4480 * killer to move on while costly can fail and users are ready 4481 * to cope with that. 1/4 retries is rather arbitrary but we 4482 * would need much more detailed feedback from compaction to 4483 * make a better decision. 4484 */ 4485 if (order > PAGE_ALLOC_COSTLY_ORDER) 4486 max_retries /= 4; 4487 if (*compaction_retries <= max_retries) { 4488 ret = true; 4489 goto out; 4490 } 4491 4492 /* 4493 * Make sure there are attempts at the highest priority if we exhausted 4494 * all retries or failed at the lower priorities. 4495 */ 4496 check_priority: 4497 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4498 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4499 4500 if (*compact_priority > min_priority) { 4501 (*compact_priority)--; 4502 *compaction_retries = 0; 4503 ret = true; 4504 } 4505 out: 4506 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4507 return ret; 4508 } 4509 #else 4510 static inline struct page * 4511 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4512 unsigned int alloc_flags, const struct alloc_context *ac, 4513 enum compact_priority prio, enum compact_result *compact_result) 4514 { 4515 *compact_result = COMPACT_SKIPPED; 4516 return NULL; 4517 } 4518 4519 static inline bool 4520 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4521 enum compact_result compact_result, 4522 enum compact_priority *compact_priority, 4523 int *compaction_retries) 4524 { 4525 struct zone *zone; 4526 struct zoneref *z; 4527 4528 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4529 return false; 4530 4531 /* 4532 * There are setups with compaction disabled which would prefer to loop 4533 * inside the allocator rather than hit the oom killer prematurely. 4534 * Let's give them a good hope and keep retrying while the order-0 4535 * watermarks are OK. 4536 */ 4537 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4538 ac->highest_zoneidx, ac->nodemask) { 4539 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4540 ac->highest_zoneidx, alloc_flags)) 4541 return true; 4542 } 4543 return false; 4544 } 4545 #endif /* CONFIG_COMPACTION */ 4546 4547 #ifdef CONFIG_LOCKDEP 4548 static struct lockdep_map __fs_reclaim_map = 4549 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4550 4551 static bool __need_reclaim(gfp_t gfp_mask) 4552 { 4553 /* no reclaim without waiting on it */ 4554 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4555 return false; 4556 4557 /* this guy won't enter reclaim */ 4558 if (current->flags & PF_MEMALLOC) 4559 return false; 4560 4561 if (gfp_mask & __GFP_NOLOCKDEP) 4562 return false; 4563 4564 return true; 4565 } 4566 4567 void __fs_reclaim_acquire(unsigned long ip) 4568 { 4569 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4570 } 4571 4572 void __fs_reclaim_release(unsigned long ip) 4573 { 4574 lock_release(&__fs_reclaim_map, ip); 4575 } 4576 4577 void fs_reclaim_acquire(gfp_t gfp_mask) 4578 { 4579 gfp_mask = current_gfp_context(gfp_mask); 4580 4581 if (__need_reclaim(gfp_mask)) { 4582 if (gfp_mask & __GFP_FS) 4583 __fs_reclaim_acquire(_RET_IP_); 4584 4585 #ifdef CONFIG_MMU_NOTIFIER 4586 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4587 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4588 #endif 4589 4590 } 4591 } 4592 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4593 4594 void fs_reclaim_release(gfp_t gfp_mask) 4595 { 4596 gfp_mask = current_gfp_context(gfp_mask); 4597 4598 if (__need_reclaim(gfp_mask)) { 4599 if (gfp_mask & __GFP_FS) 4600 __fs_reclaim_release(_RET_IP_); 4601 } 4602 } 4603 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4604 #endif 4605 4606 /* Perform direct synchronous page reclaim */ 4607 static unsigned long 4608 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4609 const struct alloc_context *ac) 4610 { 4611 unsigned int noreclaim_flag; 4612 unsigned long progress; 4613 4614 cond_resched(); 4615 4616 /* We now go into synchronous reclaim */ 4617 cpuset_memory_pressure_bump(); 4618 fs_reclaim_acquire(gfp_mask); 4619 noreclaim_flag = memalloc_noreclaim_save(); 4620 4621 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4622 ac->nodemask); 4623 4624 memalloc_noreclaim_restore(noreclaim_flag); 4625 fs_reclaim_release(gfp_mask); 4626 4627 cond_resched(); 4628 4629 return progress; 4630 } 4631 4632 /* The really slow allocator path where we enter direct reclaim */ 4633 static inline struct page * 4634 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4635 unsigned int alloc_flags, const struct alloc_context *ac, 4636 unsigned long *did_some_progress) 4637 { 4638 struct page *page = NULL; 4639 unsigned long pflags; 4640 bool drained = false; 4641 4642 psi_memstall_enter(&pflags); 4643 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4644 if (unlikely(!(*did_some_progress))) 4645 goto out; 4646 4647 retry: 4648 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4649 4650 /* 4651 * If an allocation failed after direct reclaim, it could be because 4652 * pages are pinned on the per-cpu lists or in high alloc reserves. 4653 * Shrink them and try again 4654 */ 4655 if (!page && !drained) { 4656 unreserve_highatomic_pageblock(ac, false); 4657 drain_all_pages(NULL); 4658 drained = true; 4659 goto retry; 4660 } 4661 out: 4662 psi_memstall_leave(&pflags); 4663 4664 return page; 4665 } 4666 4667 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4668 const struct alloc_context *ac) 4669 { 4670 struct zoneref *z; 4671 struct zone *zone; 4672 pg_data_t *last_pgdat = NULL; 4673 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4674 4675 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4676 ac->nodemask) { 4677 if (last_pgdat != zone->zone_pgdat) 4678 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4679 last_pgdat = zone->zone_pgdat; 4680 } 4681 } 4682 4683 static inline unsigned int 4684 gfp_to_alloc_flags(gfp_t gfp_mask) 4685 { 4686 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4687 4688 /* 4689 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4690 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4691 * to save two branches. 4692 */ 4693 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4694 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4695 4696 /* 4697 * The caller may dip into page reserves a bit more if the caller 4698 * cannot run direct reclaim, or if the caller has realtime scheduling 4699 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4700 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4701 */ 4702 alloc_flags |= (__force int) 4703 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4704 4705 if (gfp_mask & __GFP_ATOMIC) { 4706 /* 4707 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4708 * if it can't schedule. 4709 */ 4710 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4711 alloc_flags |= ALLOC_HARDER; 4712 /* 4713 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4714 * comment for __cpuset_node_allowed(). 4715 */ 4716 alloc_flags &= ~ALLOC_CPUSET; 4717 } else if (unlikely(rt_task(current)) && in_task()) 4718 alloc_flags |= ALLOC_HARDER; 4719 4720 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4721 4722 return alloc_flags; 4723 } 4724 4725 static bool oom_reserves_allowed(struct task_struct *tsk) 4726 { 4727 if (!tsk_is_oom_victim(tsk)) 4728 return false; 4729 4730 /* 4731 * !MMU doesn't have oom reaper so give access to memory reserves 4732 * only to the thread with TIF_MEMDIE set 4733 */ 4734 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4735 return false; 4736 4737 return true; 4738 } 4739 4740 /* 4741 * Distinguish requests which really need access to full memory 4742 * reserves from oom victims which can live with a portion of it 4743 */ 4744 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4745 { 4746 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4747 return 0; 4748 if (gfp_mask & __GFP_MEMALLOC) 4749 return ALLOC_NO_WATERMARKS; 4750 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4751 return ALLOC_NO_WATERMARKS; 4752 if (!in_interrupt()) { 4753 if (current->flags & PF_MEMALLOC) 4754 return ALLOC_NO_WATERMARKS; 4755 else if (oom_reserves_allowed(current)) 4756 return ALLOC_OOM; 4757 } 4758 4759 return 0; 4760 } 4761 4762 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4763 { 4764 return !!__gfp_pfmemalloc_flags(gfp_mask); 4765 } 4766 4767 /* 4768 * Checks whether it makes sense to retry the reclaim to make a forward progress 4769 * for the given allocation request. 4770 * 4771 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4772 * without success, or when we couldn't even meet the watermark if we 4773 * reclaimed all remaining pages on the LRU lists. 4774 * 4775 * Returns true if a retry is viable or false to enter the oom path. 4776 */ 4777 static inline bool 4778 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4779 struct alloc_context *ac, int alloc_flags, 4780 bool did_some_progress, int *no_progress_loops) 4781 { 4782 struct zone *zone; 4783 struct zoneref *z; 4784 bool ret = false; 4785 4786 /* 4787 * Costly allocations might have made a progress but this doesn't mean 4788 * their order will become available due to high fragmentation so 4789 * always increment the no progress counter for them 4790 */ 4791 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4792 *no_progress_loops = 0; 4793 else 4794 (*no_progress_loops)++; 4795 4796 /* 4797 * Make sure we converge to OOM if we cannot make any progress 4798 * several times in the row. 4799 */ 4800 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4801 /* Before OOM, exhaust highatomic_reserve */ 4802 return unreserve_highatomic_pageblock(ac, true); 4803 } 4804 4805 /* 4806 * Keep reclaiming pages while there is a chance this will lead 4807 * somewhere. If none of the target zones can satisfy our allocation 4808 * request even if all reclaimable pages are considered then we are 4809 * screwed and have to go OOM. 4810 */ 4811 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4812 ac->highest_zoneidx, ac->nodemask) { 4813 unsigned long available; 4814 unsigned long reclaimable; 4815 unsigned long min_wmark = min_wmark_pages(zone); 4816 bool wmark; 4817 4818 available = reclaimable = zone_reclaimable_pages(zone); 4819 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4820 4821 /* 4822 * Would the allocation succeed if we reclaimed all 4823 * reclaimable pages? 4824 */ 4825 wmark = __zone_watermark_ok(zone, order, min_wmark, 4826 ac->highest_zoneidx, alloc_flags, available); 4827 trace_reclaim_retry_zone(z, order, reclaimable, 4828 available, min_wmark, *no_progress_loops, wmark); 4829 if (wmark) { 4830 ret = true; 4831 break; 4832 } 4833 } 4834 4835 /* 4836 * Memory allocation/reclaim might be called from a WQ context and the 4837 * current implementation of the WQ concurrency control doesn't 4838 * recognize that a particular WQ is congested if the worker thread is 4839 * looping without ever sleeping. Therefore we have to do a short sleep 4840 * here rather than calling cond_resched(). 4841 */ 4842 if (current->flags & PF_WQ_WORKER) 4843 schedule_timeout_uninterruptible(1); 4844 else 4845 cond_resched(); 4846 return ret; 4847 } 4848 4849 static inline bool 4850 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4851 { 4852 /* 4853 * It's possible that cpuset's mems_allowed and the nodemask from 4854 * mempolicy don't intersect. This should be normally dealt with by 4855 * policy_nodemask(), but it's possible to race with cpuset update in 4856 * such a way the check therein was true, and then it became false 4857 * before we got our cpuset_mems_cookie here. 4858 * This assumes that for all allocations, ac->nodemask can come only 4859 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4860 * when it does not intersect with the cpuset restrictions) or the 4861 * caller can deal with a violated nodemask. 4862 */ 4863 if (cpusets_enabled() && ac->nodemask && 4864 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4865 ac->nodemask = NULL; 4866 return true; 4867 } 4868 4869 /* 4870 * When updating a task's mems_allowed or mempolicy nodemask, it is 4871 * possible to race with parallel threads in such a way that our 4872 * allocation can fail while the mask is being updated. If we are about 4873 * to fail, check if the cpuset changed during allocation and if so, 4874 * retry. 4875 */ 4876 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4877 return true; 4878 4879 return false; 4880 } 4881 4882 static inline struct page * 4883 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4884 struct alloc_context *ac) 4885 { 4886 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4887 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4888 struct page *page = NULL; 4889 unsigned int alloc_flags; 4890 unsigned long did_some_progress; 4891 enum compact_priority compact_priority; 4892 enum compact_result compact_result; 4893 int compaction_retries; 4894 int no_progress_loops; 4895 unsigned int cpuset_mems_cookie; 4896 int reserve_flags; 4897 4898 /* 4899 * We also sanity check to catch abuse of atomic reserves being used by 4900 * callers that are not in atomic context. 4901 */ 4902 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4903 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4904 gfp_mask &= ~__GFP_ATOMIC; 4905 4906 retry_cpuset: 4907 compaction_retries = 0; 4908 no_progress_loops = 0; 4909 compact_priority = DEF_COMPACT_PRIORITY; 4910 cpuset_mems_cookie = read_mems_allowed_begin(); 4911 4912 /* 4913 * The fast path uses conservative alloc_flags to succeed only until 4914 * kswapd needs to be woken up, and to avoid the cost of setting up 4915 * alloc_flags precisely. So we do that now. 4916 */ 4917 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4918 4919 /* 4920 * We need to recalculate the starting point for the zonelist iterator 4921 * because we might have used different nodemask in the fast path, or 4922 * there was a cpuset modification and we are retrying - otherwise we 4923 * could end up iterating over non-eligible zones endlessly. 4924 */ 4925 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4926 ac->highest_zoneidx, ac->nodemask); 4927 if (!ac->preferred_zoneref->zone) 4928 goto nopage; 4929 4930 /* 4931 * Check for insane configurations where the cpuset doesn't contain 4932 * any suitable zone to satisfy the request - e.g. non-movable 4933 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4934 */ 4935 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4936 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4937 ac->highest_zoneidx, 4938 &cpuset_current_mems_allowed); 4939 if (!z->zone) 4940 goto nopage; 4941 } 4942 4943 if (alloc_flags & ALLOC_KSWAPD) 4944 wake_all_kswapds(order, gfp_mask, ac); 4945 4946 /* 4947 * The adjusted alloc_flags might result in immediate success, so try 4948 * that first 4949 */ 4950 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4951 if (page) 4952 goto got_pg; 4953 4954 /* 4955 * For costly allocations, try direct compaction first, as it's likely 4956 * that we have enough base pages and don't need to reclaim. For non- 4957 * movable high-order allocations, do that as well, as compaction will 4958 * try prevent permanent fragmentation by migrating from blocks of the 4959 * same migratetype. 4960 * Don't try this for allocations that are allowed to ignore 4961 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4962 */ 4963 if (can_direct_reclaim && 4964 (costly_order || 4965 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4966 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4967 page = __alloc_pages_direct_compact(gfp_mask, order, 4968 alloc_flags, ac, 4969 INIT_COMPACT_PRIORITY, 4970 &compact_result); 4971 if (page) 4972 goto got_pg; 4973 4974 /* 4975 * Checks for costly allocations with __GFP_NORETRY, which 4976 * includes some THP page fault allocations 4977 */ 4978 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4979 /* 4980 * If allocating entire pageblock(s) and compaction 4981 * failed because all zones are below low watermarks 4982 * or is prohibited because it recently failed at this 4983 * order, fail immediately unless the allocator has 4984 * requested compaction and reclaim retry. 4985 * 4986 * Reclaim is 4987 * - potentially very expensive because zones are far 4988 * below their low watermarks or this is part of very 4989 * bursty high order allocations, 4990 * - not guaranteed to help because isolate_freepages() 4991 * may not iterate over freed pages as part of its 4992 * linear scan, and 4993 * - unlikely to make entire pageblocks free on its 4994 * own. 4995 */ 4996 if (compact_result == COMPACT_SKIPPED || 4997 compact_result == COMPACT_DEFERRED) 4998 goto nopage; 4999 5000 /* 5001 * Looks like reclaim/compaction is worth trying, but 5002 * sync compaction could be very expensive, so keep 5003 * using async compaction. 5004 */ 5005 compact_priority = INIT_COMPACT_PRIORITY; 5006 } 5007 } 5008 5009 retry: 5010 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5011 if (alloc_flags & ALLOC_KSWAPD) 5012 wake_all_kswapds(order, gfp_mask, ac); 5013 5014 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5015 if (reserve_flags) 5016 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5017 5018 /* 5019 * Reset the nodemask and zonelist iterators if memory policies can be 5020 * ignored. These allocations are high priority and system rather than 5021 * user oriented. 5022 */ 5023 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5024 ac->nodemask = NULL; 5025 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5026 ac->highest_zoneidx, ac->nodemask); 5027 } 5028 5029 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5030 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5031 if (page) 5032 goto got_pg; 5033 5034 /* Caller is not willing to reclaim, we can't balance anything */ 5035 if (!can_direct_reclaim) 5036 goto nopage; 5037 5038 /* Avoid recursion of direct reclaim */ 5039 if (current->flags & PF_MEMALLOC) 5040 goto nopage; 5041 5042 /* Try direct reclaim and then allocating */ 5043 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5044 &did_some_progress); 5045 if (page) 5046 goto got_pg; 5047 5048 /* Try direct compaction and then allocating */ 5049 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5050 compact_priority, &compact_result); 5051 if (page) 5052 goto got_pg; 5053 5054 /* Do not loop if specifically requested */ 5055 if (gfp_mask & __GFP_NORETRY) 5056 goto nopage; 5057 5058 /* 5059 * Do not retry costly high order allocations unless they are 5060 * __GFP_RETRY_MAYFAIL 5061 */ 5062 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5063 goto nopage; 5064 5065 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5066 did_some_progress > 0, &no_progress_loops)) 5067 goto retry; 5068 5069 /* 5070 * It doesn't make any sense to retry for the compaction if the order-0 5071 * reclaim is not able to make any progress because the current 5072 * implementation of the compaction depends on the sufficient amount 5073 * of free memory (see __compaction_suitable) 5074 */ 5075 if (did_some_progress > 0 && 5076 should_compact_retry(ac, order, alloc_flags, 5077 compact_result, &compact_priority, 5078 &compaction_retries)) 5079 goto retry; 5080 5081 5082 /* Deal with possible cpuset update races before we start OOM killing */ 5083 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5084 goto retry_cpuset; 5085 5086 /* Reclaim has failed us, start killing things */ 5087 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5088 if (page) 5089 goto got_pg; 5090 5091 /* Avoid allocations with no watermarks from looping endlessly */ 5092 if (tsk_is_oom_victim(current) && 5093 (alloc_flags & ALLOC_OOM || 5094 (gfp_mask & __GFP_NOMEMALLOC))) 5095 goto nopage; 5096 5097 /* Retry as long as the OOM killer is making progress */ 5098 if (did_some_progress) { 5099 no_progress_loops = 0; 5100 goto retry; 5101 } 5102 5103 nopage: 5104 /* Deal with possible cpuset update races before we fail */ 5105 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5106 goto retry_cpuset; 5107 5108 /* 5109 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5110 * we always retry 5111 */ 5112 if (gfp_mask & __GFP_NOFAIL) { 5113 /* 5114 * All existing users of the __GFP_NOFAIL are blockable, so warn 5115 * of any new users that actually require GFP_NOWAIT 5116 */ 5117 if (WARN_ON_ONCE(!can_direct_reclaim)) 5118 goto fail; 5119 5120 /* 5121 * PF_MEMALLOC request from this context is rather bizarre 5122 * because we cannot reclaim anything and only can loop waiting 5123 * for somebody to do a work for us 5124 */ 5125 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5126 5127 /* 5128 * non failing costly orders are a hard requirement which we 5129 * are not prepared for much so let's warn about these users 5130 * so that we can identify them and convert them to something 5131 * else. 5132 */ 5133 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5134 5135 /* 5136 * Help non-failing allocations by giving them access to memory 5137 * reserves but do not use ALLOC_NO_WATERMARKS because this 5138 * could deplete whole memory reserves which would just make 5139 * the situation worse 5140 */ 5141 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5142 if (page) 5143 goto got_pg; 5144 5145 cond_resched(); 5146 goto retry; 5147 } 5148 fail: 5149 warn_alloc(gfp_mask, ac->nodemask, 5150 "page allocation failure: order:%u", order); 5151 got_pg: 5152 return page; 5153 } 5154 5155 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5156 int preferred_nid, nodemask_t *nodemask, 5157 struct alloc_context *ac, gfp_t *alloc_gfp, 5158 unsigned int *alloc_flags) 5159 { 5160 ac->highest_zoneidx = gfp_zone(gfp_mask); 5161 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5162 ac->nodemask = nodemask; 5163 ac->migratetype = gfp_migratetype(gfp_mask); 5164 5165 if (cpusets_enabled()) { 5166 *alloc_gfp |= __GFP_HARDWALL; 5167 /* 5168 * When we are in the interrupt context, it is irrelevant 5169 * to the current task context. It means that any node ok. 5170 */ 5171 if (in_task() && !ac->nodemask) 5172 ac->nodemask = &cpuset_current_mems_allowed; 5173 else 5174 *alloc_flags |= ALLOC_CPUSET; 5175 } 5176 5177 fs_reclaim_acquire(gfp_mask); 5178 fs_reclaim_release(gfp_mask); 5179 5180 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5181 5182 if (should_fail_alloc_page(gfp_mask, order)) 5183 return false; 5184 5185 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5186 5187 /* Dirty zone balancing only done in the fast path */ 5188 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5189 5190 /* 5191 * The preferred zone is used for statistics but crucially it is 5192 * also used as the starting point for the zonelist iterator. It 5193 * may get reset for allocations that ignore memory policies. 5194 */ 5195 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5196 ac->highest_zoneidx, ac->nodemask); 5197 5198 return true; 5199 } 5200 5201 /* 5202 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5203 * @gfp: GFP flags for the allocation 5204 * @preferred_nid: The preferred NUMA node ID to allocate from 5205 * @nodemask: Set of nodes to allocate from, may be NULL 5206 * @nr_pages: The number of pages desired on the list or array 5207 * @page_list: Optional list to store the allocated pages 5208 * @page_array: Optional array to store the pages 5209 * 5210 * This is a batched version of the page allocator that attempts to 5211 * allocate nr_pages quickly. Pages are added to page_list if page_list 5212 * is not NULL, otherwise it is assumed that the page_array is valid. 5213 * 5214 * For lists, nr_pages is the number of pages that should be allocated. 5215 * 5216 * For arrays, only NULL elements are populated with pages and nr_pages 5217 * is the maximum number of pages that will be stored in the array. 5218 * 5219 * Returns the number of pages on the list or array. 5220 */ 5221 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5222 nodemask_t *nodemask, int nr_pages, 5223 struct list_head *page_list, 5224 struct page **page_array) 5225 { 5226 struct page *page; 5227 unsigned long flags; 5228 struct zone *zone; 5229 struct zoneref *z; 5230 struct per_cpu_pages *pcp; 5231 struct list_head *pcp_list; 5232 struct alloc_context ac; 5233 gfp_t alloc_gfp; 5234 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5235 int nr_populated = 0, nr_account = 0; 5236 5237 /* 5238 * Skip populated array elements to determine if any pages need 5239 * to be allocated before disabling IRQs. 5240 */ 5241 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5242 nr_populated++; 5243 5244 /* No pages requested? */ 5245 if (unlikely(nr_pages <= 0)) 5246 goto out; 5247 5248 /* Already populated array? */ 5249 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5250 goto out; 5251 5252 /* Bulk allocator does not support memcg accounting. */ 5253 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5254 goto failed; 5255 5256 /* Use the single page allocator for one page. */ 5257 if (nr_pages - nr_populated == 1) 5258 goto failed; 5259 5260 #ifdef CONFIG_PAGE_OWNER 5261 /* 5262 * PAGE_OWNER may recurse into the allocator to allocate space to 5263 * save the stack with pagesets.lock held. Releasing/reacquiring 5264 * removes much of the performance benefit of bulk allocation so 5265 * force the caller to allocate one page at a time as it'll have 5266 * similar performance to added complexity to the bulk allocator. 5267 */ 5268 if (static_branch_unlikely(&page_owner_inited)) 5269 goto failed; 5270 #endif 5271 5272 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5273 gfp &= gfp_allowed_mask; 5274 alloc_gfp = gfp; 5275 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5276 goto out; 5277 gfp = alloc_gfp; 5278 5279 /* Find an allowed local zone that meets the low watermark. */ 5280 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5281 unsigned long mark; 5282 5283 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5284 !__cpuset_zone_allowed(zone, gfp)) { 5285 continue; 5286 } 5287 5288 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5289 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5290 goto failed; 5291 } 5292 5293 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5294 if (zone_watermark_fast(zone, 0, mark, 5295 zonelist_zone_idx(ac.preferred_zoneref), 5296 alloc_flags, gfp)) { 5297 break; 5298 } 5299 } 5300 5301 /* 5302 * If there are no allowed local zones that meets the watermarks then 5303 * try to allocate a single page and reclaim if necessary. 5304 */ 5305 if (unlikely(!zone)) 5306 goto failed; 5307 5308 /* Attempt the batch allocation */ 5309 local_lock_irqsave(&pagesets.lock, flags); 5310 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5311 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5312 5313 while (nr_populated < nr_pages) { 5314 5315 /* Skip existing pages */ 5316 if (page_array && page_array[nr_populated]) { 5317 nr_populated++; 5318 continue; 5319 } 5320 5321 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5322 pcp, pcp_list); 5323 if (unlikely(!page)) { 5324 /* Try and get at least one page */ 5325 if (!nr_populated) 5326 goto failed_irq; 5327 break; 5328 } 5329 nr_account++; 5330 5331 prep_new_page(page, 0, gfp, 0); 5332 if (page_list) 5333 list_add(&page->lru, page_list); 5334 else 5335 page_array[nr_populated] = page; 5336 nr_populated++; 5337 } 5338 5339 local_unlock_irqrestore(&pagesets.lock, flags); 5340 5341 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5342 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5343 5344 out: 5345 return nr_populated; 5346 5347 failed_irq: 5348 local_unlock_irqrestore(&pagesets.lock, flags); 5349 5350 failed: 5351 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5352 if (page) { 5353 if (page_list) 5354 list_add(&page->lru, page_list); 5355 else 5356 page_array[nr_populated] = page; 5357 nr_populated++; 5358 } 5359 5360 goto out; 5361 } 5362 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5363 5364 /* 5365 * This is the 'heart' of the zoned buddy allocator. 5366 */ 5367 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5368 nodemask_t *nodemask) 5369 { 5370 struct page *page; 5371 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5372 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5373 struct alloc_context ac = { }; 5374 5375 /* 5376 * There are several places where we assume that the order value is sane 5377 * so bail out early if the request is out of bound. 5378 */ 5379 if (unlikely(order >= MAX_ORDER)) { 5380 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5381 return NULL; 5382 } 5383 5384 gfp &= gfp_allowed_mask; 5385 /* 5386 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5387 * resp. GFP_NOIO which has to be inherited for all allocation requests 5388 * from a particular context which has been marked by 5389 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5390 * movable zones are not used during allocation. 5391 */ 5392 gfp = current_gfp_context(gfp); 5393 alloc_gfp = gfp; 5394 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5395 &alloc_gfp, &alloc_flags)) 5396 return NULL; 5397 5398 /* 5399 * Forbid the first pass from falling back to types that fragment 5400 * memory until all local zones are considered. 5401 */ 5402 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5403 5404 /* First allocation attempt */ 5405 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5406 if (likely(page)) 5407 goto out; 5408 5409 alloc_gfp = gfp; 5410 ac.spread_dirty_pages = false; 5411 5412 /* 5413 * Restore the original nodemask if it was potentially replaced with 5414 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5415 */ 5416 ac.nodemask = nodemask; 5417 5418 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5419 5420 out: 5421 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5422 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5423 __free_pages(page, order); 5424 page = NULL; 5425 } 5426 5427 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5428 5429 return page; 5430 } 5431 EXPORT_SYMBOL(__alloc_pages); 5432 5433 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5434 nodemask_t *nodemask) 5435 { 5436 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5437 preferred_nid, nodemask); 5438 5439 if (page && order > 1) 5440 prep_transhuge_page(page); 5441 return (struct folio *)page; 5442 } 5443 EXPORT_SYMBOL(__folio_alloc); 5444 5445 /* 5446 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5447 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5448 * you need to access high mem. 5449 */ 5450 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5451 { 5452 struct page *page; 5453 5454 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5455 if (!page) 5456 return 0; 5457 return (unsigned long) page_address(page); 5458 } 5459 EXPORT_SYMBOL(__get_free_pages); 5460 5461 unsigned long get_zeroed_page(gfp_t gfp_mask) 5462 { 5463 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5464 } 5465 EXPORT_SYMBOL(get_zeroed_page); 5466 5467 /** 5468 * __free_pages - Free pages allocated with alloc_pages(). 5469 * @page: The page pointer returned from alloc_pages(). 5470 * @order: The order of the allocation. 5471 * 5472 * This function can free multi-page allocations that are not compound 5473 * pages. It does not check that the @order passed in matches that of 5474 * the allocation, so it is easy to leak memory. Freeing more memory 5475 * than was allocated will probably emit a warning. 5476 * 5477 * If the last reference to this page is speculative, it will be released 5478 * by put_page() which only frees the first page of a non-compound 5479 * allocation. To prevent the remaining pages from being leaked, we free 5480 * the subsequent pages here. If you want to use the page's reference 5481 * count to decide when to free the allocation, you should allocate a 5482 * compound page, and use put_page() instead of __free_pages(). 5483 * 5484 * Context: May be called in interrupt context or while holding a normal 5485 * spinlock, but not in NMI context or while holding a raw spinlock. 5486 */ 5487 void __free_pages(struct page *page, unsigned int order) 5488 { 5489 if (put_page_testzero(page)) 5490 free_the_page(page, order); 5491 else if (!PageHead(page)) 5492 while (order-- > 0) 5493 free_the_page(page + (1 << order), order); 5494 } 5495 EXPORT_SYMBOL(__free_pages); 5496 5497 void free_pages(unsigned long addr, unsigned int order) 5498 { 5499 if (addr != 0) { 5500 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5501 __free_pages(virt_to_page((void *)addr), order); 5502 } 5503 } 5504 5505 EXPORT_SYMBOL(free_pages); 5506 5507 /* 5508 * Page Fragment: 5509 * An arbitrary-length arbitrary-offset area of memory which resides 5510 * within a 0 or higher order page. Multiple fragments within that page 5511 * are individually refcounted, in the page's reference counter. 5512 * 5513 * The page_frag functions below provide a simple allocation framework for 5514 * page fragments. This is used by the network stack and network device 5515 * drivers to provide a backing region of memory for use as either an 5516 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5517 */ 5518 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5519 gfp_t gfp_mask) 5520 { 5521 struct page *page = NULL; 5522 gfp_t gfp = gfp_mask; 5523 5524 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5525 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5526 __GFP_NOMEMALLOC; 5527 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5528 PAGE_FRAG_CACHE_MAX_ORDER); 5529 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5530 #endif 5531 if (unlikely(!page)) 5532 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5533 5534 nc->va = page ? page_address(page) : NULL; 5535 5536 return page; 5537 } 5538 5539 void __page_frag_cache_drain(struct page *page, unsigned int count) 5540 { 5541 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5542 5543 if (page_ref_sub_and_test(page, count)) 5544 free_the_page(page, compound_order(page)); 5545 } 5546 EXPORT_SYMBOL(__page_frag_cache_drain); 5547 5548 void *page_frag_alloc_align(struct page_frag_cache *nc, 5549 unsigned int fragsz, gfp_t gfp_mask, 5550 unsigned int align_mask) 5551 { 5552 unsigned int size = PAGE_SIZE; 5553 struct page *page; 5554 int offset; 5555 5556 if (unlikely(!nc->va)) { 5557 refill: 5558 page = __page_frag_cache_refill(nc, gfp_mask); 5559 if (!page) 5560 return NULL; 5561 5562 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5563 /* if size can vary use size else just use PAGE_SIZE */ 5564 size = nc->size; 5565 #endif 5566 /* Even if we own the page, we do not use atomic_set(). 5567 * This would break get_page_unless_zero() users. 5568 */ 5569 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5570 5571 /* reset page count bias and offset to start of new frag */ 5572 nc->pfmemalloc = page_is_pfmemalloc(page); 5573 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5574 nc->offset = size; 5575 } 5576 5577 offset = nc->offset - fragsz; 5578 if (unlikely(offset < 0)) { 5579 page = virt_to_page(nc->va); 5580 5581 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5582 goto refill; 5583 5584 if (unlikely(nc->pfmemalloc)) { 5585 free_the_page(page, compound_order(page)); 5586 goto refill; 5587 } 5588 5589 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5590 /* if size can vary use size else just use PAGE_SIZE */ 5591 size = nc->size; 5592 #endif 5593 /* OK, page count is 0, we can safely set it */ 5594 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5595 5596 /* reset page count bias and offset to start of new frag */ 5597 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5598 offset = size - fragsz; 5599 } 5600 5601 nc->pagecnt_bias--; 5602 offset &= align_mask; 5603 nc->offset = offset; 5604 5605 return nc->va + offset; 5606 } 5607 EXPORT_SYMBOL(page_frag_alloc_align); 5608 5609 /* 5610 * Frees a page fragment allocated out of either a compound or order 0 page. 5611 */ 5612 void page_frag_free(void *addr) 5613 { 5614 struct page *page = virt_to_head_page(addr); 5615 5616 if (unlikely(put_page_testzero(page))) 5617 free_the_page(page, compound_order(page)); 5618 } 5619 EXPORT_SYMBOL(page_frag_free); 5620 5621 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5622 size_t size) 5623 { 5624 if (addr) { 5625 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5626 unsigned long used = addr + PAGE_ALIGN(size); 5627 5628 split_page(virt_to_page((void *)addr), order); 5629 while (used < alloc_end) { 5630 free_page(used); 5631 used += PAGE_SIZE; 5632 } 5633 } 5634 return (void *)addr; 5635 } 5636 5637 /** 5638 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5639 * @size: the number of bytes to allocate 5640 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5641 * 5642 * This function is similar to alloc_pages(), except that it allocates the 5643 * minimum number of pages to satisfy the request. alloc_pages() can only 5644 * allocate memory in power-of-two pages. 5645 * 5646 * This function is also limited by MAX_ORDER. 5647 * 5648 * Memory allocated by this function must be released by free_pages_exact(). 5649 * 5650 * Return: pointer to the allocated area or %NULL in case of error. 5651 */ 5652 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5653 { 5654 unsigned int order = get_order(size); 5655 unsigned long addr; 5656 5657 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5658 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5659 5660 addr = __get_free_pages(gfp_mask, order); 5661 return make_alloc_exact(addr, order, size); 5662 } 5663 EXPORT_SYMBOL(alloc_pages_exact); 5664 5665 /** 5666 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5667 * pages on a node. 5668 * @nid: the preferred node ID where memory should be allocated 5669 * @size: the number of bytes to allocate 5670 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5671 * 5672 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5673 * back. 5674 * 5675 * Return: pointer to the allocated area or %NULL in case of error. 5676 */ 5677 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5678 { 5679 unsigned int order = get_order(size); 5680 struct page *p; 5681 5682 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5683 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5684 5685 p = alloc_pages_node(nid, gfp_mask, order); 5686 if (!p) 5687 return NULL; 5688 return make_alloc_exact((unsigned long)page_address(p), order, size); 5689 } 5690 5691 /** 5692 * free_pages_exact - release memory allocated via alloc_pages_exact() 5693 * @virt: the value returned by alloc_pages_exact. 5694 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5695 * 5696 * Release the memory allocated by a previous call to alloc_pages_exact. 5697 */ 5698 void free_pages_exact(void *virt, size_t size) 5699 { 5700 unsigned long addr = (unsigned long)virt; 5701 unsigned long end = addr + PAGE_ALIGN(size); 5702 5703 while (addr < end) { 5704 free_page(addr); 5705 addr += PAGE_SIZE; 5706 } 5707 } 5708 EXPORT_SYMBOL(free_pages_exact); 5709 5710 /** 5711 * nr_free_zone_pages - count number of pages beyond high watermark 5712 * @offset: The zone index of the highest zone 5713 * 5714 * nr_free_zone_pages() counts the number of pages which are beyond the 5715 * high watermark within all zones at or below a given zone index. For each 5716 * zone, the number of pages is calculated as: 5717 * 5718 * nr_free_zone_pages = managed_pages - high_pages 5719 * 5720 * Return: number of pages beyond high watermark. 5721 */ 5722 static unsigned long nr_free_zone_pages(int offset) 5723 { 5724 struct zoneref *z; 5725 struct zone *zone; 5726 5727 /* Just pick one node, since fallback list is circular */ 5728 unsigned long sum = 0; 5729 5730 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5731 5732 for_each_zone_zonelist(zone, z, zonelist, offset) { 5733 unsigned long size = zone_managed_pages(zone); 5734 unsigned long high = high_wmark_pages(zone); 5735 if (size > high) 5736 sum += size - high; 5737 } 5738 5739 return sum; 5740 } 5741 5742 /** 5743 * nr_free_buffer_pages - count number of pages beyond high watermark 5744 * 5745 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5746 * watermark within ZONE_DMA and ZONE_NORMAL. 5747 * 5748 * Return: number of pages beyond high watermark within ZONE_DMA and 5749 * ZONE_NORMAL. 5750 */ 5751 unsigned long nr_free_buffer_pages(void) 5752 { 5753 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5754 } 5755 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5756 5757 static inline void show_node(struct zone *zone) 5758 { 5759 if (IS_ENABLED(CONFIG_NUMA)) 5760 printk("Node %d ", zone_to_nid(zone)); 5761 } 5762 5763 long si_mem_available(void) 5764 { 5765 long available; 5766 unsigned long pagecache; 5767 unsigned long wmark_low = 0; 5768 unsigned long pages[NR_LRU_LISTS]; 5769 unsigned long reclaimable; 5770 struct zone *zone; 5771 int lru; 5772 5773 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5774 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5775 5776 for_each_zone(zone) 5777 wmark_low += low_wmark_pages(zone); 5778 5779 /* 5780 * Estimate the amount of memory available for userspace allocations, 5781 * without causing swapping. 5782 */ 5783 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5784 5785 /* 5786 * Not all the page cache can be freed, otherwise the system will 5787 * start swapping. Assume at least half of the page cache, or the 5788 * low watermark worth of cache, needs to stay. 5789 */ 5790 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5791 pagecache -= min(pagecache / 2, wmark_low); 5792 available += pagecache; 5793 5794 /* 5795 * Part of the reclaimable slab and other kernel memory consists of 5796 * items that are in use, and cannot be freed. Cap this estimate at the 5797 * low watermark. 5798 */ 5799 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5800 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5801 available += reclaimable - min(reclaimable / 2, wmark_low); 5802 5803 if (available < 0) 5804 available = 0; 5805 return available; 5806 } 5807 EXPORT_SYMBOL_GPL(si_mem_available); 5808 5809 void si_meminfo(struct sysinfo *val) 5810 { 5811 val->totalram = totalram_pages(); 5812 val->sharedram = global_node_page_state(NR_SHMEM); 5813 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5814 val->bufferram = nr_blockdev_pages(); 5815 val->totalhigh = totalhigh_pages(); 5816 val->freehigh = nr_free_highpages(); 5817 val->mem_unit = PAGE_SIZE; 5818 } 5819 5820 EXPORT_SYMBOL(si_meminfo); 5821 5822 #ifdef CONFIG_NUMA 5823 void si_meminfo_node(struct sysinfo *val, int nid) 5824 { 5825 int zone_type; /* needs to be signed */ 5826 unsigned long managed_pages = 0; 5827 unsigned long managed_highpages = 0; 5828 unsigned long free_highpages = 0; 5829 pg_data_t *pgdat = NODE_DATA(nid); 5830 5831 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5832 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5833 val->totalram = managed_pages; 5834 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5835 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5836 #ifdef CONFIG_HIGHMEM 5837 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5838 struct zone *zone = &pgdat->node_zones[zone_type]; 5839 5840 if (is_highmem(zone)) { 5841 managed_highpages += zone_managed_pages(zone); 5842 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5843 } 5844 } 5845 val->totalhigh = managed_highpages; 5846 val->freehigh = free_highpages; 5847 #else 5848 val->totalhigh = managed_highpages; 5849 val->freehigh = free_highpages; 5850 #endif 5851 val->mem_unit = PAGE_SIZE; 5852 } 5853 #endif 5854 5855 /* 5856 * Determine whether the node should be displayed or not, depending on whether 5857 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5858 */ 5859 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5860 { 5861 if (!(flags & SHOW_MEM_FILTER_NODES)) 5862 return false; 5863 5864 /* 5865 * no node mask - aka implicit memory numa policy. Do not bother with 5866 * the synchronization - read_mems_allowed_begin - because we do not 5867 * have to be precise here. 5868 */ 5869 if (!nodemask) 5870 nodemask = &cpuset_current_mems_allowed; 5871 5872 return !node_isset(nid, *nodemask); 5873 } 5874 5875 #define K(x) ((x) << (PAGE_SHIFT-10)) 5876 5877 static void show_migration_types(unsigned char type) 5878 { 5879 static const char types[MIGRATE_TYPES] = { 5880 [MIGRATE_UNMOVABLE] = 'U', 5881 [MIGRATE_MOVABLE] = 'M', 5882 [MIGRATE_RECLAIMABLE] = 'E', 5883 [MIGRATE_HIGHATOMIC] = 'H', 5884 #ifdef CONFIG_CMA 5885 [MIGRATE_CMA] = 'C', 5886 #endif 5887 #ifdef CONFIG_MEMORY_ISOLATION 5888 [MIGRATE_ISOLATE] = 'I', 5889 #endif 5890 }; 5891 char tmp[MIGRATE_TYPES + 1]; 5892 char *p = tmp; 5893 int i; 5894 5895 for (i = 0; i < MIGRATE_TYPES; i++) { 5896 if (type & (1 << i)) 5897 *p++ = types[i]; 5898 } 5899 5900 *p = '\0'; 5901 printk(KERN_CONT "(%s) ", tmp); 5902 } 5903 5904 /* 5905 * Show free area list (used inside shift_scroll-lock stuff) 5906 * We also calculate the percentage fragmentation. We do this by counting the 5907 * memory on each free list with the exception of the first item on the list. 5908 * 5909 * Bits in @filter: 5910 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5911 * cpuset. 5912 */ 5913 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5914 { 5915 unsigned long free_pcp = 0; 5916 int cpu; 5917 struct zone *zone; 5918 pg_data_t *pgdat; 5919 5920 for_each_populated_zone(zone) { 5921 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5922 continue; 5923 5924 for_each_online_cpu(cpu) 5925 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5926 } 5927 5928 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5929 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5930 " unevictable:%lu dirty:%lu writeback:%lu\n" 5931 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5932 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5933 " kernel_misc_reclaimable:%lu\n" 5934 " free:%lu free_pcp:%lu free_cma:%lu\n", 5935 global_node_page_state(NR_ACTIVE_ANON), 5936 global_node_page_state(NR_INACTIVE_ANON), 5937 global_node_page_state(NR_ISOLATED_ANON), 5938 global_node_page_state(NR_ACTIVE_FILE), 5939 global_node_page_state(NR_INACTIVE_FILE), 5940 global_node_page_state(NR_ISOLATED_FILE), 5941 global_node_page_state(NR_UNEVICTABLE), 5942 global_node_page_state(NR_FILE_DIRTY), 5943 global_node_page_state(NR_WRITEBACK), 5944 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5945 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5946 global_node_page_state(NR_FILE_MAPPED), 5947 global_node_page_state(NR_SHMEM), 5948 global_node_page_state(NR_PAGETABLE), 5949 global_zone_page_state(NR_BOUNCE), 5950 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5951 global_zone_page_state(NR_FREE_PAGES), 5952 free_pcp, 5953 global_zone_page_state(NR_FREE_CMA_PAGES)); 5954 5955 for_each_online_pgdat(pgdat) { 5956 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5957 continue; 5958 5959 printk("Node %d" 5960 " active_anon:%lukB" 5961 " inactive_anon:%lukB" 5962 " active_file:%lukB" 5963 " inactive_file:%lukB" 5964 " unevictable:%lukB" 5965 " isolated(anon):%lukB" 5966 " isolated(file):%lukB" 5967 " mapped:%lukB" 5968 " dirty:%lukB" 5969 " writeback:%lukB" 5970 " shmem:%lukB" 5971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5972 " shmem_thp: %lukB" 5973 " shmem_pmdmapped: %lukB" 5974 " anon_thp: %lukB" 5975 #endif 5976 " writeback_tmp:%lukB" 5977 " kernel_stack:%lukB" 5978 #ifdef CONFIG_SHADOW_CALL_STACK 5979 " shadow_call_stack:%lukB" 5980 #endif 5981 " pagetables:%lukB" 5982 " all_unreclaimable? %s" 5983 "\n", 5984 pgdat->node_id, 5985 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5986 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5987 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5988 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5989 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5990 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5991 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5992 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5993 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5994 K(node_page_state(pgdat, NR_WRITEBACK)), 5995 K(node_page_state(pgdat, NR_SHMEM)), 5996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5997 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5998 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5999 K(node_page_state(pgdat, NR_ANON_THPS)), 6000 #endif 6001 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6002 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6003 #ifdef CONFIG_SHADOW_CALL_STACK 6004 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6005 #endif 6006 K(node_page_state(pgdat, NR_PAGETABLE)), 6007 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6008 "yes" : "no"); 6009 } 6010 6011 for_each_populated_zone(zone) { 6012 int i; 6013 6014 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6015 continue; 6016 6017 free_pcp = 0; 6018 for_each_online_cpu(cpu) 6019 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6020 6021 show_node(zone); 6022 printk(KERN_CONT 6023 "%s" 6024 " free:%lukB" 6025 " boost:%lukB" 6026 " min:%lukB" 6027 " low:%lukB" 6028 " high:%lukB" 6029 " reserved_highatomic:%luKB" 6030 " active_anon:%lukB" 6031 " inactive_anon:%lukB" 6032 " active_file:%lukB" 6033 " inactive_file:%lukB" 6034 " unevictable:%lukB" 6035 " writepending:%lukB" 6036 " present:%lukB" 6037 " managed:%lukB" 6038 " mlocked:%lukB" 6039 " bounce:%lukB" 6040 " free_pcp:%lukB" 6041 " local_pcp:%ukB" 6042 " free_cma:%lukB" 6043 "\n", 6044 zone->name, 6045 K(zone_page_state(zone, NR_FREE_PAGES)), 6046 K(zone->watermark_boost), 6047 K(min_wmark_pages(zone)), 6048 K(low_wmark_pages(zone)), 6049 K(high_wmark_pages(zone)), 6050 K(zone->nr_reserved_highatomic), 6051 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6052 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6053 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6054 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6055 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6056 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6057 K(zone->present_pages), 6058 K(zone_managed_pages(zone)), 6059 K(zone_page_state(zone, NR_MLOCK)), 6060 K(zone_page_state(zone, NR_BOUNCE)), 6061 K(free_pcp), 6062 K(this_cpu_read(zone->per_cpu_pageset->count)), 6063 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6064 printk("lowmem_reserve[]:"); 6065 for (i = 0; i < MAX_NR_ZONES; i++) 6066 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6067 printk(KERN_CONT "\n"); 6068 } 6069 6070 for_each_populated_zone(zone) { 6071 unsigned int order; 6072 unsigned long nr[MAX_ORDER], flags, total = 0; 6073 unsigned char types[MAX_ORDER]; 6074 6075 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6076 continue; 6077 show_node(zone); 6078 printk(KERN_CONT "%s: ", zone->name); 6079 6080 spin_lock_irqsave(&zone->lock, flags); 6081 for (order = 0; order < MAX_ORDER; order++) { 6082 struct free_area *area = &zone->free_area[order]; 6083 int type; 6084 6085 nr[order] = area->nr_free; 6086 total += nr[order] << order; 6087 6088 types[order] = 0; 6089 for (type = 0; type < MIGRATE_TYPES; type++) { 6090 if (!free_area_empty(area, type)) 6091 types[order] |= 1 << type; 6092 } 6093 } 6094 spin_unlock_irqrestore(&zone->lock, flags); 6095 for (order = 0; order < MAX_ORDER; order++) { 6096 printk(KERN_CONT "%lu*%lukB ", 6097 nr[order], K(1UL) << order); 6098 if (nr[order]) 6099 show_migration_types(types[order]); 6100 } 6101 printk(KERN_CONT "= %lukB\n", K(total)); 6102 } 6103 6104 hugetlb_show_meminfo(); 6105 6106 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6107 6108 show_swap_cache_info(); 6109 } 6110 6111 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6112 { 6113 zoneref->zone = zone; 6114 zoneref->zone_idx = zone_idx(zone); 6115 } 6116 6117 /* 6118 * Builds allocation fallback zone lists. 6119 * 6120 * Add all populated zones of a node to the zonelist. 6121 */ 6122 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6123 { 6124 struct zone *zone; 6125 enum zone_type zone_type = MAX_NR_ZONES; 6126 int nr_zones = 0; 6127 6128 do { 6129 zone_type--; 6130 zone = pgdat->node_zones + zone_type; 6131 if (managed_zone(zone)) { 6132 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6133 check_highest_zone(zone_type); 6134 } 6135 } while (zone_type); 6136 6137 return nr_zones; 6138 } 6139 6140 #ifdef CONFIG_NUMA 6141 6142 static int __parse_numa_zonelist_order(char *s) 6143 { 6144 /* 6145 * We used to support different zonelists modes but they turned 6146 * out to be just not useful. Let's keep the warning in place 6147 * if somebody still use the cmd line parameter so that we do 6148 * not fail it silently 6149 */ 6150 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6151 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6152 return -EINVAL; 6153 } 6154 return 0; 6155 } 6156 6157 char numa_zonelist_order[] = "Node"; 6158 6159 /* 6160 * sysctl handler for numa_zonelist_order 6161 */ 6162 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6163 void *buffer, size_t *length, loff_t *ppos) 6164 { 6165 if (write) 6166 return __parse_numa_zonelist_order(buffer); 6167 return proc_dostring(table, write, buffer, length, ppos); 6168 } 6169 6170 6171 #define MAX_NODE_LOAD (nr_online_nodes) 6172 static int node_load[MAX_NUMNODES]; 6173 6174 /** 6175 * find_next_best_node - find the next node that should appear in a given node's fallback list 6176 * @node: node whose fallback list we're appending 6177 * @used_node_mask: nodemask_t of already used nodes 6178 * 6179 * We use a number of factors to determine which is the next node that should 6180 * appear on a given node's fallback list. The node should not have appeared 6181 * already in @node's fallback list, and it should be the next closest node 6182 * according to the distance array (which contains arbitrary distance values 6183 * from each node to each node in the system), and should also prefer nodes 6184 * with no CPUs, since presumably they'll have very little allocation pressure 6185 * on them otherwise. 6186 * 6187 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6188 */ 6189 int find_next_best_node(int node, nodemask_t *used_node_mask) 6190 { 6191 int n, val; 6192 int min_val = INT_MAX; 6193 int best_node = NUMA_NO_NODE; 6194 6195 /* Use the local node if we haven't already */ 6196 if (!node_isset(node, *used_node_mask)) { 6197 node_set(node, *used_node_mask); 6198 return node; 6199 } 6200 6201 for_each_node_state(n, N_MEMORY) { 6202 6203 /* Don't want a node to appear more than once */ 6204 if (node_isset(n, *used_node_mask)) 6205 continue; 6206 6207 /* Use the distance array to find the distance */ 6208 val = node_distance(node, n); 6209 6210 /* Penalize nodes under us ("prefer the next node") */ 6211 val += (n < node); 6212 6213 /* Give preference to headless and unused nodes */ 6214 if (!cpumask_empty(cpumask_of_node(n))) 6215 val += PENALTY_FOR_NODE_WITH_CPUS; 6216 6217 /* Slight preference for less loaded node */ 6218 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6219 val += node_load[n]; 6220 6221 if (val < min_val) { 6222 min_val = val; 6223 best_node = n; 6224 } 6225 } 6226 6227 if (best_node >= 0) 6228 node_set(best_node, *used_node_mask); 6229 6230 return best_node; 6231 } 6232 6233 6234 /* 6235 * Build zonelists ordered by node and zones within node. 6236 * This results in maximum locality--normal zone overflows into local 6237 * DMA zone, if any--but risks exhausting DMA zone. 6238 */ 6239 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6240 unsigned nr_nodes) 6241 { 6242 struct zoneref *zonerefs; 6243 int i; 6244 6245 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6246 6247 for (i = 0; i < nr_nodes; i++) { 6248 int nr_zones; 6249 6250 pg_data_t *node = NODE_DATA(node_order[i]); 6251 6252 nr_zones = build_zonerefs_node(node, zonerefs); 6253 zonerefs += nr_zones; 6254 } 6255 zonerefs->zone = NULL; 6256 zonerefs->zone_idx = 0; 6257 } 6258 6259 /* 6260 * Build gfp_thisnode zonelists 6261 */ 6262 static void build_thisnode_zonelists(pg_data_t *pgdat) 6263 { 6264 struct zoneref *zonerefs; 6265 int nr_zones; 6266 6267 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6268 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6269 zonerefs += nr_zones; 6270 zonerefs->zone = NULL; 6271 zonerefs->zone_idx = 0; 6272 } 6273 6274 /* 6275 * Build zonelists ordered by zone and nodes within zones. 6276 * This results in conserving DMA zone[s] until all Normal memory is 6277 * exhausted, but results in overflowing to remote node while memory 6278 * may still exist in local DMA zone. 6279 */ 6280 6281 static void build_zonelists(pg_data_t *pgdat) 6282 { 6283 static int node_order[MAX_NUMNODES]; 6284 int node, load, nr_nodes = 0; 6285 nodemask_t used_mask = NODE_MASK_NONE; 6286 int local_node, prev_node; 6287 6288 /* NUMA-aware ordering of nodes */ 6289 local_node = pgdat->node_id; 6290 load = nr_online_nodes; 6291 prev_node = local_node; 6292 6293 memset(node_order, 0, sizeof(node_order)); 6294 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6295 /* 6296 * We don't want to pressure a particular node. 6297 * So adding penalty to the first node in same 6298 * distance group to make it round-robin. 6299 */ 6300 if (node_distance(local_node, node) != 6301 node_distance(local_node, prev_node)) 6302 node_load[node] += load; 6303 6304 node_order[nr_nodes++] = node; 6305 prev_node = node; 6306 load--; 6307 } 6308 6309 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6310 build_thisnode_zonelists(pgdat); 6311 pr_info("Fallback order for Node %d: ", local_node); 6312 for (node = 0; node < nr_nodes; node++) 6313 pr_cont("%d ", node_order[node]); 6314 pr_cont("\n"); 6315 } 6316 6317 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6318 /* 6319 * Return node id of node used for "local" allocations. 6320 * I.e., first node id of first zone in arg node's generic zonelist. 6321 * Used for initializing percpu 'numa_mem', which is used primarily 6322 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6323 */ 6324 int local_memory_node(int node) 6325 { 6326 struct zoneref *z; 6327 6328 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6329 gfp_zone(GFP_KERNEL), 6330 NULL); 6331 return zone_to_nid(z->zone); 6332 } 6333 #endif 6334 6335 static void setup_min_unmapped_ratio(void); 6336 static void setup_min_slab_ratio(void); 6337 #else /* CONFIG_NUMA */ 6338 6339 static void build_zonelists(pg_data_t *pgdat) 6340 { 6341 int node, local_node; 6342 struct zoneref *zonerefs; 6343 int nr_zones; 6344 6345 local_node = pgdat->node_id; 6346 6347 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6348 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6349 zonerefs += nr_zones; 6350 6351 /* 6352 * Now we build the zonelist so that it contains the zones 6353 * of all the other nodes. 6354 * We don't want to pressure a particular node, so when 6355 * building the zones for node N, we make sure that the 6356 * zones coming right after the local ones are those from 6357 * node N+1 (modulo N) 6358 */ 6359 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6360 if (!node_online(node)) 6361 continue; 6362 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6363 zonerefs += nr_zones; 6364 } 6365 for (node = 0; node < local_node; node++) { 6366 if (!node_online(node)) 6367 continue; 6368 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6369 zonerefs += nr_zones; 6370 } 6371 6372 zonerefs->zone = NULL; 6373 zonerefs->zone_idx = 0; 6374 } 6375 6376 #endif /* CONFIG_NUMA */ 6377 6378 /* 6379 * Boot pageset table. One per cpu which is going to be used for all 6380 * zones and all nodes. The parameters will be set in such a way 6381 * that an item put on a list will immediately be handed over to 6382 * the buddy list. This is safe since pageset manipulation is done 6383 * with interrupts disabled. 6384 * 6385 * The boot_pagesets must be kept even after bootup is complete for 6386 * unused processors and/or zones. They do play a role for bootstrapping 6387 * hotplugged processors. 6388 * 6389 * zoneinfo_show() and maybe other functions do 6390 * not check if the processor is online before following the pageset pointer. 6391 * Other parts of the kernel may not check if the zone is available. 6392 */ 6393 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6394 /* These effectively disable the pcplists in the boot pageset completely */ 6395 #define BOOT_PAGESET_HIGH 0 6396 #define BOOT_PAGESET_BATCH 1 6397 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6398 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6399 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6400 6401 static void __build_all_zonelists(void *data) 6402 { 6403 int nid; 6404 int __maybe_unused cpu; 6405 pg_data_t *self = data; 6406 static DEFINE_SPINLOCK(lock); 6407 6408 spin_lock(&lock); 6409 6410 #ifdef CONFIG_NUMA 6411 memset(node_load, 0, sizeof(node_load)); 6412 #endif 6413 6414 /* 6415 * This node is hotadded and no memory is yet present. So just 6416 * building zonelists is fine - no need to touch other nodes. 6417 */ 6418 if (self && !node_online(self->node_id)) { 6419 build_zonelists(self); 6420 } else { 6421 /* 6422 * All possible nodes have pgdat preallocated 6423 * in free_area_init 6424 */ 6425 for_each_node(nid) { 6426 pg_data_t *pgdat = NODE_DATA(nid); 6427 6428 build_zonelists(pgdat); 6429 } 6430 6431 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6432 /* 6433 * We now know the "local memory node" for each node-- 6434 * i.e., the node of the first zone in the generic zonelist. 6435 * Set up numa_mem percpu variable for on-line cpus. During 6436 * boot, only the boot cpu should be on-line; we'll init the 6437 * secondary cpus' numa_mem as they come on-line. During 6438 * node/memory hotplug, we'll fixup all on-line cpus. 6439 */ 6440 for_each_online_cpu(cpu) 6441 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6442 #endif 6443 } 6444 6445 spin_unlock(&lock); 6446 } 6447 6448 static noinline void __init 6449 build_all_zonelists_init(void) 6450 { 6451 int cpu; 6452 6453 __build_all_zonelists(NULL); 6454 6455 /* 6456 * Initialize the boot_pagesets that are going to be used 6457 * for bootstrapping processors. The real pagesets for 6458 * each zone will be allocated later when the per cpu 6459 * allocator is available. 6460 * 6461 * boot_pagesets are used also for bootstrapping offline 6462 * cpus if the system is already booted because the pagesets 6463 * are needed to initialize allocators on a specific cpu too. 6464 * F.e. the percpu allocator needs the page allocator which 6465 * needs the percpu allocator in order to allocate its pagesets 6466 * (a chicken-egg dilemma). 6467 */ 6468 for_each_possible_cpu(cpu) 6469 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6470 6471 mminit_verify_zonelist(); 6472 cpuset_init_current_mems_allowed(); 6473 } 6474 6475 /* 6476 * unless system_state == SYSTEM_BOOTING. 6477 * 6478 * __ref due to call of __init annotated helper build_all_zonelists_init 6479 * [protected by SYSTEM_BOOTING]. 6480 */ 6481 void __ref build_all_zonelists(pg_data_t *pgdat) 6482 { 6483 unsigned long vm_total_pages; 6484 6485 if (system_state == SYSTEM_BOOTING) { 6486 build_all_zonelists_init(); 6487 } else { 6488 __build_all_zonelists(pgdat); 6489 /* cpuset refresh routine should be here */ 6490 } 6491 /* Get the number of free pages beyond high watermark in all zones. */ 6492 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6493 /* 6494 * Disable grouping by mobility if the number of pages in the 6495 * system is too low to allow the mechanism to work. It would be 6496 * more accurate, but expensive to check per-zone. This check is 6497 * made on memory-hotadd so a system can start with mobility 6498 * disabled and enable it later 6499 */ 6500 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6501 page_group_by_mobility_disabled = 1; 6502 else 6503 page_group_by_mobility_disabled = 0; 6504 6505 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6506 nr_online_nodes, 6507 page_group_by_mobility_disabled ? "off" : "on", 6508 vm_total_pages); 6509 #ifdef CONFIG_NUMA 6510 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6511 #endif 6512 } 6513 6514 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6515 static bool __meminit 6516 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6517 { 6518 static struct memblock_region *r; 6519 6520 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6521 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6522 for_each_mem_region(r) { 6523 if (*pfn < memblock_region_memory_end_pfn(r)) 6524 break; 6525 } 6526 } 6527 if (*pfn >= memblock_region_memory_base_pfn(r) && 6528 memblock_is_mirror(r)) { 6529 *pfn = memblock_region_memory_end_pfn(r); 6530 return true; 6531 } 6532 } 6533 return false; 6534 } 6535 6536 /* 6537 * Initially all pages are reserved - free ones are freed 6538 * up by memblock_free_all() once the early boot process is 6539 * done. Non-atomic initialization, single-pass. 6540 * 6541 * All aligned pageblocks are initialized to the specified migratetype 6542 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6543 * zone stats (e.g., nr_isolate_pageblock) are touched. 6544 */ 6545 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6546 unsigned long start_pfn, unsigned long zone_end_pfn, 6547 enum meminit_context context, 6548 struct vmem_altmap *altmap, int migratetype) 6549 { 6550 unsigned long pfn, end_pfn = start_pfn + size; 6551 struct page *page; 6552 6553 if (highest_memmap_pfn < end_pfn - 1) 6554 highest_memmap_pfn = end_pfn - 1; 6555 6556 #ifdef CONFIG_ZONE_DEVICE 6557 /* 6558 * Honor reservation requested by the driver for this ZONE_DEVICE 6559 * memory. We limit the total number of pages to initialize to just 6560 * those that might contain the memory mapping. We will defer the 6561 * ZONE_DEVICE page initialization until after we have released 6562 * the hotplug lock. 6563 */ 6564 if (zone == ZONE_DEVICE) { 6565 if (!altmap) 6566 return; 6567 6568 if (start_pfn == altmap->base_pfn) 6569 start_pfn += altmap->reserve; 6570 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6571 } 6572 #endif 6573 6574 for (pfn = start_pfn; pfn < end_pfn; ) { 6575 /* 6576 * There can be holes in boot-time mem_map[]s handed to this 6577 * function. They do not exist on hotplugged memory. 6578 */ 6579 if (context == MEMINIT_EARLY) { 6580 if (overlap_memmap_init(zone, &pfn)) 6581 continue; 6582 if (defer_init(nid, pfn, zone_end_pfn)) 6583 break; 6584 } 6585 6586 page = pfn_to_page(pfn); 6587 __init_single_page(page, pfn, zone, nid); 6588 if (context == MEMINIT_HOTPLUG) 6589 __SetPageReserved(page); 6590 6591 /* 6592 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6593 * such that unmovable allocations won't be scattered all 6594 * over the place during system boot. 6595 */ 6596 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6597 set_pageblock_migratetype(page, migratetype); 6598 cond_resched(); 6599 } 6600 pfn++; 6601 } 6602 } 6603 6604 #ifdef CONFIG_ZONE_DEVICE 6605 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6606 unsigned long zone_idx, int nid, 6607 struct dev_pagemap *pgmap) 6608 { 6609 6610 __init_single_page(page, pfn, zone_idx, nid); 6611 6612 /* 6613 * Mark page reserved as it will need to wait for onlining 6614 * phase for it to be fully associated with a zone. 6615 * 6616 * We can use the non-atomic __set_bit operation for setting 6617 * the flag as we are still initializing the pages. 6618 */ 6619 __SetPageReserved(page); 6620 6621 /* 6622 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6623 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6624 * ever freed or placed on a driver-private list. 6625 */ 6626 page->pgmap = pgmap; 6627 page->zone_device_data = NULL; 6628 6629 /* 6630 * Mark the block movable so that blocks are reserved for 6631 * movable at startup. This will force kernel allocations 6632 * to reserve their blocks rather than leaking throughout 6633 * the address space during boot when many long-lived 6634 * kernel allocations are made. 6635 * 6636 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6637 * because this is done early in section_activate() 6638 */ 6639 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6640 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6641 cond_resched(); 6642 } 6643 } 6644 6645 static void __ref memmap_init_compound(struct page *head, 6646 unsigned long head_pfn, 6647 unsigned long zone_idx, int nid, 6648 struct dev_pagemap *pgmap, 6649 unsigned long nr_pages) 6650 { 6651 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6652 unsigned int order = pgmap->vmemmap_shift; 6653 6654 __SetPageHead(head); 6655 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6656 struct page *page = pfn_to_page(pfn); 6657 6658 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6659 prep_compound_tail(head, pfn - head_pfn); 6660 set_page_count(page, 0); 6661 6662 /* 6663 * The first tail page stores compound_mapcount_ptr() and 6664 * compound_order() and the second tail page stores 6665 * compound_pincount_ptr(). Call prep_compound_head() after 6666 * the first and second tail pages have been initialized to 6667 * not have the data overwritten. 6668 */ 6669 if (pfn == head_pfn + 2) 6670 prep_compound_head(head, order); 6671 } 6672 } 6673 6674 void __ref memmap_init_zone_device(struct zone *zone, 6675 unsigned long start_pfn, 6676 unsigned long nr_pages, 6677 struct dev_pagemap *pgmap) 6678 { 6679 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6680 struct pglist_data *pgdat = zone->zone_pgdat; 6681 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6682 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6683 unsigned long zone_idx = zone_idx(zone); 6684 unsigned long start = jiffies; 6685 int nid = pgdat->node_id; 6686 6687 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6688 return; 6689 6690 /* 6691 * The call to memmap_init should have already taken care 6692 * of the pages reserved for the memmap, so we can just jump to 6693 * the end of that region and start processing the device pages. 6694 */ 6695 if (altmap) { 6696 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6697 nr_pages = end_pfn - start_pfn; 6698 } 6699 6700 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6701 struct page *page = pfn_to_page(pfn); 6702 6703 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6704 6705 if (pfns_per_compound == 1) 6706 continue; 6707 6708 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6709 pfns_per_compound); 6710 } 6711 6712 pr_info("%s initialised %lu pages in %ums\n", __func__, 6713 nr_pages, jiffies_to_msecs(jiffies - start)); 6714 } 6715 6716 #endif 6717 static void __meminit zone_init_free_lists(struct zone *zone) 6718 { 6719 unsigned int order, t; 6720 for_each_migratetype_order(order, t) { 6721 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6722 zone->free_area[order].nr_free = 0; 6723 } 6724 } 6725 6726 /* 6727 * Only struct pages that correspond to ranges defined by memblock.memory 6728 * are zeroed and initialized by going through __init_single_page() during 6729 * memmap_init_zone_range(). 6730 * 6731 * But, there could be struct pages that correspond to holes in 6732 * memblock.memory. This can happen because of the following reasons: 6733 * - physical memory bank size is not necessarily the exact multiple of the 6734 * arbitrary section size 6735 * - early reserved memory may not be listed in memblock.memory 6736 * - memory layouts defined with memmap= kernel parameter may not align 6737 * nicely with memmap sections 6738 * 6739 * Explicitly initialize those struct pages so that: 6740 * - PG_Reserved is set 6741 * - zone and node links point to zone and node that span the page if the 6742 * hole is in the middle of a zone 6743 * - zone and node links point to adjacent zone/node if the hole falls on 6744 * the zone boundary; the pages in such holes will be prepended to the 6745 * zone/node above the hole except for the trailing pages in the last 6746 * section that will be appended to the zone/node below. 6747 */ 6748 static void __init init_unavailable_range(unsigned long spfn, 6749 unsigned long epfn, 6750 int zone, int node) 6751 { 6752 unsigned long pfn; 6753 u64 pgcnt = 0; 6754 6755 for (pfn = spfn; pfn < epfn; pfn++) { 6756 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6757 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6758 + pageblock_nr_pages - 1; 6759 continue; 6760 } 6761 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6762 __SetPageReserved(pfn_to_page(pfn)); 6763 pgcnt++; 6764 } 6765 6766 if (pgcnt) 6767 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6768 node, zone_names[zone], pgcnt); 6769 } 6770 6771 static void __init memmap_init_zone_range(struct zone *zone, 6772 unsigned long start_pfn, 6773 unsigned long end_pfn, 6774 unsigned long *hole_pfn) 6775 { 6776 unsigned long zone_start_pfn = zone->zone_start_pfn; 6777 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6778 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6779 6780 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6781 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6782 6783 if (start_pfn >= end_pfn) 6784 return; 6785 6786 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6787 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6788 6789 if (*hole_pfn < start_pfn) 6790 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6791 6792 *hole_pfn = end_pfn; 6793 } 6794 6795 static void __init memmap_init(void) 6796 { 6797 unsigned long start_pfn, end_pfn; 6798 unsigned long hole_pfn = 0; 6799 int i, j, zone_id = 0, nid; 6800 6801 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6802 struct pglist_data *node = NODE_DATA(nid); 6803 6804 for (j = 0; j < MAX_NR_ZONES; j++) { 6805 struct zone *zone = node->node_zones + j; 6806 6807 if (!populated_zone(zone)) 6808 continue; 6809 6810 memmap_init_zone_range(zone, start_pfn, end_pfn, 6811 &hole_pfn); 6812 zone_id = j; 6813 } 6814 } 6815 6816 #ifdef CONFIG_SPARSEMEM 6817 /* 6818 * Initialize the memory map for hole in the range [memory_end, 6819 * section_end]. 6820 * Append the pages in this hole to the highest zone in the last 6821 * node. 6822 * The call to init_unavailable_range() is outside the ifdef to 6823 * silence the compiler warining about zone_id set but not used; 6824 * for FLATMEM it is a nop anyway 6825 */ 6826 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6827 if (hole_pfn < end_pfn) 6828 #endif 6829 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6830 } 6831 6832 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6833 phys_addr_t min_addr, int nid, bool exact_nid) 6834 { 6835 void *ptr; 6836 6837 if (exact_nid) 6838 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6839 MEMBLOCK_ALLOC_ACCESSIBLE, 6840 nid); 6841 else 6842 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6843 MEMBLOCK_ALLOC_ACCESSIBLE, 6844 nid); 6845 6846 if (ptr && size > 0) 6847 page_init_poison(ptr, size); 6848 6849 return ptr; 6850 } 6851 6852 static int zone_batchsize(struct zone *zone) 6853 { 6854 #ifdef CONFIG_MMU 6855 int batch; 6856 6857 /* 6858 * The number of pages to batch allocate is either ~0.1% 6859 * of the zone or 1MB, whichever is smaller. The batch 6860 * size is striking a balance between allocation latency 6861 * and zone lock contention. 6862 */ 6863 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6864 batch /= 4; /* We effectively *= 4 below */ 6865 if (batch < 1) 6866 batch = 1; 6867 6868 /* 6869 * Clamp the batch to a 2^n - 1 value. Having a power 6870 * of 2 value was found to be more likely to have 6871 * suboptimal cache aliasing properties in some cases. 6872 * 6873 * For example if 2 tasks are alternately allocating 6874 * batches of pages, one task can end up with a lot 6875 * of pages of one half of the possible page colors 6876 * and the other with pages of the other colors. 6877 */ 6878 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6879 6880 return batch; 6881 6882 #else 6883 /* The deferral and batching of frees should be suppressed under NOMMU 6884 * conditions. 6885 * 6886 * The problem is that NOMMU needs to be able to allocate large chunks 6887 * of contiguous memory as there's no hardware page translation to 6888 * assemble apparent contiguous memory from discontiguous pages. 6889 * 6890 * Queueing large contiguous runs of pages for batching, however, 6891 * causes the pages to actually be freed in smaller chunks. As there 6892 * can be a significant delay between the individual batches being 6893 * recycled, this leads to the once large chunks of space being 6894 * fragmented and becoming unavailable for high-order allocations. 6895 */ 6896 return 0; 6897 #endif 6898 } 6899 6900 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6901 { 6902 #ifdef CONFIG_MMU 6903 int high; 6904 int nr_split_cpus; 6905 unsigned long total_pages; 6906 6907 if (!percpu_pagelist_high_fraction) { 6908 /* 6909 * By default, the high value of the pcp is based on the zone 6910 * low watermark so that if they are full then background 6911 * reclaim will not be started prematurely. 6912 */ 6913 total_pages = low_wmark_pages(zone); 6914 } else { 6915 /* 6916 * If percpu_pagelist_high_fraction is configured, the high 6917 * value is based on a fraction of the managed pages in the 6918 * zone. 6919 */ 6920 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6921 } 6922 6923 /* 6924 * Split the high value across all online CPUs local to the zone. Note 6925 * that early in boot that CPUs may not be online yet and that during 6926 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6927 * onlined. For memory nodes that have no CPUs, split pcp->high across 6928 * all online CPUs to mitigate the risk that reclaim is triggered 6929 * prematurely due to pages stored on pcp lists. 6930 */ 6931 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6932 if (!nr_split_cpus) 6933 nr_split_cpus = num_online_cpus(); 6934 high = total_pages / nr_split_cpus; 6935 6936 /* 6937 * Ensure high is at least batch*4. The multiple is based on the 6938 * historical relationship between high and batch. 6939 */ 6940 high = max(high, batch << 2); 6941 6942 return high; 6943 #else 6944 return 0; 6945 #endif 6946 } 6947 6948 /* 6949 * pcp->high and pcp->batch values are related and generally batch is lower 6950 * than high. They are also related to pcp->count such that count is lower 6951 * than high, and as soon as it reaches high, the pcplist is flushed. 6952 * 6953 * However, guaranteeing these relations at all times would require e.g. write 6954 * barriers here but also careful usage of read barriers at the read side, and 6955 * thus be prone to error and bad for performance. Thus the update only prevents 6956 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6957 * can cope with those fields changing asynchronously, and fully trust only the 6958 * pcp->count field on the local CPU with interrupts disabled. 6959 * 6960 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6961 * outside of boot time (or some other assurance that no concurrent updaters 6962 * exist). 6963 */ 6964 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6965 unsigned long batch) 6966 { 6967 WRITE_ONCE(pcp->batch, batch); 6968 WRITE_ONCE(pcp->high, high); 6969 } 6970 6971 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6972 { 6973 int pindex; 6974 6975 memset(pcp, 0, sizeof(*pcp)); 6976 memset(pzstats, 0, sizeof(*pzstats)); 6977 6978 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6979 INIT_LIST_HEAD(&pcp->lists[pindex]); 6980 6981 /* 6982 * Set batch and high values safe for a boot pageset. A true percpu 6983 * pageset's initialization will update them subsequently. Here we don't 6984 * need to be as careful as pageset_update() as nobody can access the 6985 * pageset yet. 6986 */ 6987 pcp->high = BOOT_PAGESET_HIGH; 6988 pcp->batch = BOOT_PAGESET_BATCH; 6989 pcp->free_factor = 0; 6990 } 6991 6992 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6993 unsigned long batch) 6994 { 6995 struct per_cpu_pages *pcp; 6996 int cpu; 6997 6998 for_each_possible_cpu(cpu) { 6999 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7000 pageset_update(pcp, high, batch); 7001 } 7002 } 7003 7004 /* 7005 * Calculate and set new high and batch values for all per-cpu pagesets of a 7006 * zone based on the zone's size. 7007 */ 7008 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7009 { 7010 int new_high, new_batch; 7011 7012 new_batch = max(1, zone_batchsize(zone)); 7013 new_high = zone_highsize(zone, new_batch, cpu_online); 7014 7015 if (zone->pageset_high == new_high && 7016 zone->pageset_batch == new_batch) 7017 return; 7018 7019 zone->pageset_high = new_high; 7020 zone->pageset_batch = new_batch; 7021 7022 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7023 } 7024 7025 void __meminit setup_zone_pageset(struct zone *zone) 7026 { 7027 int cpu; 7028 7029 /* Size may be 0 on !SMP && !NUMA */ 7030 if (sizeof(struct per_cpu_zonestat) > 0) 7031 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7032 7033 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7034 for_each_possible_cpu(cpu) { 7035 struct per_cpu_pages *pcp; 7036 struct per_cpu_zonestat *pzstats; 7037 7038 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7039 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7040 per_cpu_pages_init(pcp, pzstats); 7041 } 7042 7043 zone_set_pageset_high_and_batch(zone, 0); 7044 } 7045 7046 /* 7047 * Allocate per cpu pagesets and initialize them. 7048 * Before this call only boot pagesets were available. 7049 */ 7050 void __init setup_per_cpu_pageset(void) 7051 { 7052 struct pglist_data *pgdat; 7053 struct zone *zone; 7054 int __maybe_unused cpu; 7055 7056 for_each_populated_zone(zone) 7057 setup_zone_pageset(zone); 7058 7059 #ifdef CONFIG_NUMA 7060 /* 7061 * Unpopulated zones continue using the boot pagesets. 7062 * The numa stats for these pagesets need to be reset. 7063 * Otherwise, they will end up skewing the stats of 7064 * the nodes these zones are associated with. 7065 */ 7066 for_each_possible_cpu(cpu) { 7067 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7068 memset(pzstats->vm_numa_event, 0, 7069 sizeof(pzstats->vm_numa_event)); 7070 } 7071 #endif 7072 7073 for_each_online_pgdat(pgdat) 7074 pgdat->per_cpu_nodestats = 7075 alloc_percpu(struct per_cpu_nodestat); 7076 } 7077 7078 static __meminit void zone_pcp_init(struct zone *zone) 7079 { 7080 /* 7081 * per cpu subsystem is not up at this point. The following code 7082 * relies on the ability of the linker to provide the 7083 * offset of a (static) per cpu variable into the per cpu area. 7084 */ 7085 zone->per_cpu_pageset = &boot_pageset; 7086 zone->per_cpu_zonestats = &boot_zonestats; 7087 zone->pageset_high = BOOT_PAGESET_HIGH; 7088 zone->pageset_batch = BOOT_PAGESET_BATCH; 7089 7090 if (populated_zone(zone)) 7091 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7092 zone->present_pages, zone_batchsize(zone)); 7093 } 7094 7095 void __meminit init_currently_empty_zone(struct zone *zone, 7096 unsigned long zone_start_pfn, 7097 unsigned long size) 7098 { 7099 struct pglist_data *pgdat = zone->zone_pgdat; 7100 int zone_idx = zone_idx(zone) + 1; 7101 7102 if (zone_idx > pgdat->nr_zones) 7103 pgdat->nr_zones = zone_idx; 7104 7105 zone->zone_start_pfn = zone_start_pfn; 7106 7107 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7108 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7109 pgdat->node_id, 7110 (unsigned long)zone_idx(zone), 7111 zone_start_pfn, (zone_start_pfn + size)); 7112 7113 zone_init_free_lists(zone); 7114 zone->initialized = 1; 7115 } 7116 7117 /** 7118 * get_pfn_range_for_nid - Return the start and end page frames for a node 7119 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7120 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7121 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7122 * 7123 * It returns the start and end page frame of a node based on information 7124 * provided by memblock_set_node(). If called for a node 7125 * with no available memory, a warning is printed and the start and end 7126 * PFNs will be 0. 7127 */ 7128 void __init get_pfn_range_for_nid(unsigned int nid, 7129 unsigned long *start_pfn, unsigned long *end_pfn) 7130 { 7131 unsigned long this_start_pfn, this_end_pfn; 7132 int i; 7133 7134 *start_pfn = -1UL; 7135 *end_pfn = 0; 7136 7137 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7138 *start_pfn = min(*start_pfn, this_start_pfn); 7139 *end_pfn = max(*end_pfn, this_end_pfn); 7140 } 7141 7142 if (*start_pfn == -1UL) 7143 *start_pfn = 0; 7144 } 7145 7146 /* 7147 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7148 * assumption is made that zones within a node are ordered in monotonic 7149 * increasing memory addresses so that the "highest" populated zone is used 7150 */ 7151 static void __init find_usable_zone_for_movable(void) 7152 { 7153 int zone_index; 7154 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7155 if (zone_index == ZONE_MOVABLE) 7156 continue; 7157 7158 if (arch_zone_highest_possible_pfn[zone_index] > 7159 arch_zone_lowest_possible_pfn[zone_index]) 7160 break; 7161 } 7162 7163 VM_BUG_ON(zone_index == -1); 7164 movable_zone = zone_index; 7165 } 7166 7167 /* 7168 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7169 * because it is sized independent of architecture. Unlike the other zones, 7170 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7171 * in each node depending on the size of each node and how evenly kernelcore 7172 * is distributed. This helper function adjusts the zone ranges 7173 * provided by the architecture for a given node by using the end of the 7174 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7175 * zones within a node are in order of monotonic increases memory addresses 7176 */ 7177 static void __init adjust_zone_range_for_zone_movable(int nid, 7178 unsigned long zone_type, 7179 unsigned long node_start_pfn, 7180 unsigned long node_end_pfn, 7181 unsigned long *zone_start_pfn, 7182 unsigned long *zone_end_pfn) 7183 { 7184 /* Only adjust if ZONE_MOVABLE is on this node */ 7185 if (zone_movable_pfn[nid]) { 7186 /* Size ZONE_MOVABLE */ 7187 if (zone_type == ZONE_MOVABLE) { 7188 *zone_start_pfn = zone_movable_pfn[nid]; 7189 *zone_end_pfn = min(node_end_pfn, 7190 arch_zone_highest_possible_pfn[movable_zone]); 7191 7192 /* Adjust for ZONE_MOVABLE starting within this range */ 7193 } else if (!mirrored_kernelcore && 7194 *zone_start_pfn < zone_movable_pfn[nid] && 7195 *zone_end_pfn > zone_movable_pfn[nid]) { 7196 *zone_end_pfn = zone_movable_pfn[nid]; 7197 7198 /* Check if this whole range is within ZONE_MOVABLE */ 7199 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7200 *zone_start_pfn = *zone_end_pfn; 7201 } 7202 } 7203 7204 /* 7205 * Return the number of pages a zone spans in a node, including holes 7206 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7207 */ 7208 static unsigned long __init zone_spanned_pages_in_node(int nid, 7209 unsigned long zone_type, 7210 unsigned long node_start_pfn, 7211 unsigned long node_end_pfn, 7212 unsigned long *zone_start_pfn, 7213 unsigned long *zone_end_pfn) 7214 { 7215 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7216 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7217 /* When hotadd a new node from cpu_up(), the node should be empty */ 7218 if (!node_start_pfn && !node_end_pfn) 7219 return 0; 7220 7221 /* Get the start and end of the zone */ 7222 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7223 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7224 adjust_zone_range_for_zone_movable(nid, zone_type, 7225 node_start_pfn, node_end_pfn, 7226 zone_start_pfn, zone_end_pfn); 7227 7228 /* Check that this node has pages within the zone's required range */ 7229 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7230 return 0; 7231 7232 /* Move the zone boundaries inside the node if necessary */ 7233 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7234 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7235 7236 /* Return the spanned pages */ 7237 return *zone_end_pfn - *zone_start_pfn; 7238 } 7239 7240 /* 7241 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7242 * then all holes in the requested range will be accounted for. 7243 */ 7244 unsigned long __init __absent_pages_in_range(int nid, 7245 unsigned long range_start_pfn, 7246 unsigned long range_end_pfn) 7247 { 7248 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7249 unsigned long start_pfn, end_pfn; 7250 int i; 7251 7252 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7253 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7254 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7255 nr_absent -= end_pfn - start_pfn; 7256 } 7257 return nr_absent; 7258 } 7259 7260 /** 7261 * absent_pages_in_range - Return number of page frames in holes within a range 7262 * @start_pfn: The start PFN to start searching for holes 7263 * @end_pfn: The end PFN to stop searching for holes 7264 * 7265 * Return: the number of pages frames in memory holes within a range. 7266 */ 7267 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7268 unsigned long end_pfn) 7269 { 7270 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7271 } 7272 7273 /* Return the number of page frames in holes in a zone on a node */ 7274 static unsigned long __init zone_absent_pages_in_node(int nid, 7275 unsigned long zone_type, 7276 unsigned long node_start_pfn, 7277 unsigned long node_end_pfn) 7278 { 7279 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7280 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7281 unsigned long zone_start_pfn, zone_end_pfn; 7282 unsigned long nr_absent; 7283 7284 /* When hotadd a new node from cpu_up(), the node should be empty */ 7285 if (!node_start_pfn && !node_end_pfn) 7286 return 0; 7287 7288 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7289 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7290 7291 adjust_zone_range_for_zone_movable(nid, zone_type, 7292 node_start_pfn, node_end_pfn, 7293 &zone_start_pfn, &zone_end_pfn); 7294 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7295 7296 /* 7297 * ZONE_MOVABLE handling. 7298 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7299 * and vice versa. 7300 */ 7301 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7302 unsigned long start_pfn, end_pfn; 7303 struct memblock_region *r; 7304 7305 for_each_mem_region(r) { 7306 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7307 zone_start_pfn, zone_end_pfn); 7308 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7309 zone_start_pfn, zone_end_pfn); 7310 7311 if (zone_type == ZONE_MOVABLE && 7312 memblock_is_mirror(r)) 7313 nr_absent += end_pfn - start_pfn; 7314 7315 if (zone_type == ZONE_NORMAL && 7316 !memblock_is_mirror(r)) 7317 nr_absent += end_pfn - start_pfn; 7318 } 7319 } 7320 7321 return nr_absent; 7322 } 7323 7324 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7325 unsigned long node_start_pfn, 7326 unsigned long node_end_pfn) 7327 { 7328 unsigned long realtotalpages = 0, totalpages = 0; 7329 enum zone_type i; 7330 7331 for (i = 0; i < MAX_NR_ZONES; i++) { 7332 struct zone *zone = pgdat->node_zones + i; 7333 unsigned long zone_start_pfn, zone_end_pfn; 7334 unsigned long spanned, absent; 7335 unsigned long size, real_size; 7336 7337 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7338 node_start_pfn, 7339 node_end_pfn, 7340 &zone_start_pfn, 7341 &zone_end_pfn); 7342 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7343 node_start_pfn, 7344 node_end_pfn); 7345 7346 size = spanned; 7347 real_size = size - absent; 7348 7349 if (size) 7350 zone->zone_start_pfn = zone_start_pfn; 7351 else 7352 zone->zone_start_pfn = 0; 7353 zone->spanned_pages = size; 7354 zone->present_pages = real_size; 7355 #if defined(CONFIG_MEMORY_HOTPLUG) 7356 zone->present_early_pages = real_size; 7357 #endif 7358 7359 totalpages += size; 7360 realtotalpages += real_size; 7361 } 7362 7363 pgdat->node_spanned_pages = totalpages; 7364 pgdat->node_present_pages = realtotalpages; 7365 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7366 } 7367 7368 #ifndef CONFIG_SPARSEMEM 7369 /* 7370 * Calculate the size of the zone->blockflags rounded to an unsigned long 7371 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7372 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7373 * round what is now in bits to nearest long in bits, then return it in 7374 * bytes. 7375 */ 7376 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7377 { 7378 unsigned long usemapsize; 7379 7380 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7381 usemapsize = roundup(zonesize, pageblock_nr_pages); 7382 usemapsize = usemapsize >> pageblock_order; 7383 usemapsize *= NR_PAGEBLOCK_BITS; 7384 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7385 7386 return usemapsize / 8; 7387 } 7388 7389 static void __ref setup_usemap(struct zone *zone) 7390 { 7391 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7392 zone->spanned_pages); 7393 zone->pageblock_flags = NULL; 7394 if (usemapsize) { 7395 zone->pageblock_flags = 7396 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7397 zone_to_nid(zone)); 7398 if (!zone->pageblock_flags) 7399 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7400 usemapsize, zone->name, zone_to_nid(zone)); 7401 } 7402 } 7403 #else 7404 static inline void setup_usemap(struct zone *zone) {} 7405 #endif /* CONFIG_SPARSEMEM */ 7406 7407 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7408 7409 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7410 void __init set_pageblock_order(void) 7411 { 7412 unsigned int order = MAX_ORDER - 1; 7413 7414 /* Check that pageblock_nr_pages has not already been setup */ 7415 if (pageblock_order) 7416 return; 7417 7418 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7419 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7420 order = HUGETLB_PAGE_ORDER; 7421 7422 /* 7423 * Assume the largest contiguous order of interest is a huge page. 7424 * This value may be variable depending on boot parameters on IA64 and 7425 * powerpc. 7426 */ 7427 pageblock_order = order; 7428 } 7429 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7430 7431 /* 7432 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7433 * is unused as pageblock_order is set at compile-time. See 7434 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7435 * the kernel config 7436 */ 7437 void __init set_pageblock_order(void) 7438 { 7439 } 7440 7441 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7442 7443 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7444 unsigned long present_pages) 7445 { 7446 unsigned long pages = spanned_pages; 7447 7448 /* 7449 * Provide a more accurate estimation if there are holes within 7450 * the zone and SPARSEMEM is in use. If there are holes within the 7451 * zone, each populated memory region may cost us one or two extra 7452 * memmap pages due to alignment because memmap pages for each 7453 * populated regions may not be naturally aligned on page boundary. 7454 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7455 */ 7456 if (spanned_pages > present_pages + (present_pages >> 4) && 7457 IS_ENABLED(CONFIG_SPARSEMEM)) 7458 pages = present_pages; 7459 7460 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7461 } 7462 7463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7464 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7465 { 7466 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7467 7468 spin_lock_init(&ds_queue->split_queue_lock); 7469 INIT_LIST_HEAD(&ds_queue->split_queue); 7470 ds_queue->split_queue_len = 0; 7471 } 7472 #else 7473 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7474 #endif 7475 7476 #ifdef CONFIG_COMPACTION 7477 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7478 { 7479 init_waitqueue_head(&pgdat->kcompactd_wait); 7480 } 7481 #else 7482 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7483 #endif 7484 7485 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7486 { 7487 int i; 7488 7489 pgdat_resize_init(pgdat); 7490 7491 pgdat_init_split_queue(pgdat); 7492 pgdat_init_kcompactd(pgdat); 7493 7494 init_waitqueue_head(&pgdat->kswapd_wait); 7495 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7496 7497 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7498 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7499 7500 pgdat_page_ext_init(pgdat); 7501 lruvec_init(&pgdat->__lruvec); 7502 } 7503 7504 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7505 unsigned long remaining_pages) 7506 { 7507 atomic_long_set(&zone->managed_pages, remaining_pages); 7508 zone_set_nid(zone, nid); 7509 zone->name = zone_names[idx]; 7510 zone->zone_pgdat = NODE_DATA(nid); 7511 spin_lock_init(&zone->lock); 7512 zone_seqlock_init(zone); 7513 zone_pcp_init(zone); 7514 } 7515 7516 /* 7517 * Set up the zone data structures 7518 * - init pgdat internals 7519 * - init all zones belonging to this node 7520 * 7521 * NOTE: this function is only called during memory hotplug 7522 */ 7523 #ifdef CONFIG_MEMORY_HOTPLUG 7524 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7525 { 7526 int nid = pgdat->node_id; 7527 enum zone_type z; 7528 int cpu; 7529 7530 pgdat_init_internals(pgdat); 7531 7532 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7533 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7534 7535 /* 7536 * Reset the nr_zones, order and highest_zoneidx before reuse. 7537 * Note that kswapd will init kswapd_highest_zoneidx properly 7538 * when it starts in the near future. 7539 */ 7540 pgdat->nr_zones = 0; 7541 pgdat->kswapd_order = 0; 7542 pgdat->kswapd_highest_zoneidx = 0; 7543 pgdat->node_start_pfn = 0; 7544 for_each_online_cpu(cpu) { 7545 struct per_cpu_nodestat *p; 7546 7547 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7548 memset(p, 0, sizeof(*p)); 7549 } 7550 7551 for (z = 0; z < MAX_NR_ZONES; z++) 7552 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7553 } 7554 #endif 7555 7556 /* 7557 * Set up the zone data structures: 7558 * - mark all pages reserved 7559 * - mark all memory queues empty 7560 * - clear the memory bitmaps 7561 * 7562 * NOTE: pgdat should get zeroed by caller. 7563 * NOTE: this function is only called during early init. 7564 */ 7565 static void __init free_area_init_core(struct pglist_data *pgdat) 7566 { 7567 enum zone_type j; 7568 int nid = pgdat->node_id; 7569 7570 pgdat_init_internals(pgdat); 7571 pgdat->per_cpu_nodestats = &boot_nodestats; 7572 7573 for (j = 0; j < MAX_NR_ZONES; j++) { 7574 struct zone *zone = pgdat->node_zones + j; 7575 unsigned long size, freesize, memmap_pages; 7576 7577 size = zone->spanned_pages; 7578 freesize = zone->present_pages; 7579 7580 /* 7581 * Adjust freesize so that it accounts for how much memory 7582 * is used by this zone for memmap. This affects the watermark 7583 * and per-cpu initialisations 7584 */ 7585 memmap_pages = calc_memmap_size(size, freesize); 7586 if (!is_highmem_idx(j)) { 7587 if (freesize >= memmap_pages) { 7588 freesize -= memmap_pages; 7589 if (memmap_pages) 7590 pr_debug(" %s zone: %lu pages used for memmap\n", 7591 zone_names[j], memmap_pages); 7592 } else 7593 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7594 zone_names[j], memmap_pages, freesize); 7595 } 7596 7597 /* Account for reserved pages */ 7598 if (j == 0 && freesize > dma_reserve) { 7599 freesize -= dma_reserve; 7600 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7601 } 7602 7603 if (!is_highmem_idx(j)) 7604 nr_kernel_pages += freesize; 7605 /* Charge for highmem memmap if there are enough kernel pages */ 7606 else if (nr_kernel_pages > memmap_pages * 2) 7607 nr_kernel_pages -= memmap_pages; 7608 nr_all_pages += freesize; 7609 7610 /* 7611 * Set an approximate value for lowmem here, it will be adjusted 7612 * when the bootmem allocator frees pages into the buddy system. 7613 * And all highmem pages will be managed by the buddy system. 7614 */ 7615 zone_init_internals(zone, j, nid, freesize); 7616 7617 if (!size) 7618 continue; 7619 7620 set_pageblock_order(); 7621 setup_usemap(zone); 7622 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7623 } 7624 } 7625 7626 #ifdef CONFIG_FLATMEM 7627 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7628 { 7629 unsigned long __maybe_unused start = 0; 7630 unsigned long __maybe_unused offset = 0; 7631 7632 /* Skip empty nodes */ 7633 if (!pgdat->node_spanned_pages) 7634 return; 7635 7636 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7637 offset = pgdat->node_start_pfn - start; 7638 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7639 if (!pgdat->node_mem_map) { 7640 unsigned long size, end; 7641 struct page *map; 7642 7643 /* 7644 * The zone's endpoints aren't required to be MAX_ORDER 7645 * aligned but the node_mem_map endpoints must be in order 7646 * for the buddy allocator to function correctly. 7647 */ 7648 end = pgdat_end_pfn(pgdat); 7649 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7650 size = (end - start) * sizeof(struct page); 7651 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7652 pgdat->node_id, false); 7653 if (!map) 7654 panic("Failed to allocate %ld bytes for node %d memory map\n", 7655 size, pgdat->node_id); 7656 pgdat->node_mem_map = map + offset; 7657 } 7658 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7659 __func__, pgdat->node_id, (unsigned long)pgdat, 7660 (unsigned long)pgdat->node_mem_map); 7661 #ifndef CONFIG_NUMA 7662 /* 7663 * With no DISCONTIG, the global mem_map is just set as node 0's 7664 */ 7665 if (pgdat == NODE_DATA(0)) { 7666 mem_map = NODE_DATA(0)->node_mem_map; 7667 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7668 mem_map -= offset; 7669 } 7670 #endif 7671 } 7672 #else 7673 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7674 #endif /* CONFIG_FLATMEM */ 7675 7676 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7677 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7678 { 7679 pgdat->first_deferred_pfn = ULONG_MAX; 7680 } 7681 #else 7682 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7683 #endif 7684 7685 static void __init free_area_init_node(int nid) 7686 { 7687 pg_data_t *pgdat = NODE_DATA(nid); 7688 unsigned long start_pfn = 0; 7689 unsigned long end_pfn = 0; 7690 7691 /* pg_data_t should be reset to zero when it's allocated */ 7692 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7693 7694 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7695 7696 pgdat->node_id = nid; 7697 pgdat->node_start_pfn = start_pfn; 7698 pgdat->per_cpu_nodestats = NULL; 7699 7700 if (start_pfn != end_pfn) { 7701 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7702 (u64)start_pfn << PAGE_SHIFT, 7703 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7704 } else { 7705 pr_info("Initmem setup node %d as memoryless\n", nid); 7706 } 7707 7708 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7709 7710 alloc_node_mem_map(pgdat); 7711 pgdat_set_deferred_range(pgdat); 7712 7713 free_area_init_core(pgdat); 7714 } 7715 7716 static void __init free_area_init_memoryless_node(int nid) 7717 { 7718 free_area_init_node(nid); 7719 } 7720 7721 #if MAX_NUMNODES > 1 7722 /* 7723 * Figure out the number of possible node ids. 7724 */ 7725 void __init setup_nr_node_ids(void) 7726 { 7727 unsigned int highest; 7728 7729 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7730 nr_node_ids = highest + 1; 7731 } 7732 #endif 7733 7734 /** 7735 * node_map_pfn_alignment - determine the maximum internode alignment 7736 * 7737 * This function should be called after node map is populated and sorted. 7738 * It calculates the maximum power of two alignment which can distinguish 7739 * all the nodes. 7740 * 7741 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7742 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7743 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7744 * shifted, 1GiB is enough and this function will indicate so. 7745 * 7746 * This is used to test whether pfn -> nid mapping of the chosen memory 7747 * model has fine enough granularity to avoid incorrect mapping for the 7748 * populated node map. 7749 * 7750 * Return: the determined alignment in pfn's. 0 if there is no alignment 7751 * requirement (single node). 7752 */ 7753 unsigned long __init node_map_pfn_alignment(void) 7754 { 7755 unsigned long accl_mask = 0, last_end = 0; 7756 unsigned long start, end, mask; 7757 int last_nid = NUMA_NO_NODE; 7758 int i, nid; 7759 7760 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7761 if (!start || last_nid < 0 || last_nid == nid) { 7762 last_nid = nid; 7763 last_end = end; 7764 continue; 7765 } 7766 7767 /* 7768 * Start with a mask granular enough to pin-point to the 7769 * start pfn and tick off bits one-by-one until it becomes 7770 * too coarse to separate the current node from the last. 7771 */ 7772 mask = ~((1 << __ffs(start)) - 1); 7773 while (mask && last_end <= (start & (mask << 1))) 7774 mask <<= 1; 7775 7776 /* accumulate all internode masks */ 7777 accl_mask |= mask; 7778 } 7779 7780 /* convert mask to number of pages */ 7781 return ~accl_mask + 1; 7782 } 7783 7784 /** 7785 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7786 * 7787 * Return: the minimum PFN based on information provided via 7788 * memblock_set_node(). 7789 */ 7790 unsigned long __init find_min_pfn_with_active_regions(void) 7791 { 7792 return PHYS_PFN(memblock_start_of_DRAM()); 7793 } 7794 7795 /* 7796 * early_calculate_totalpages() 7797 * Sum pages in active regions for movable zone. 7798 * Populate N_MEMORY for calculating usable_nodes. 7799 */ 7800 static unsigned long __init early_calculate_totalpages(void) 7801 { 7802 unsigned long totalpages = 0; 7803 unsigned long start_pfn, end_pfn; 7804 int i, nid; 7805 7806 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7807 unsigned long pages = end_pfn - start_pfn; 7808 7809 totalpages += pages; 7810 if (pages) 7811 node_set_state(nid, N_MEMORY); 7812 } 7813 return totalpages; 7814 } 7815 7816 /* 7817 * Find the PFN the Movable zone begins in each node. Kernel memory 7818 * is spread evenly between nodes as long as the nodes have enough 7819 * memory. When they don't, some nodes will have more kernelcore than 7820 * others 7821 */ 7822 static void __init find_zone_movable_pfns_for_nodes(void) 7823 { 7824 int i, nid; 7825 unsigned long usable_startpfn; 7826 unsigned long kernelcore_node, kernelcore_remaining; 7827 /* save the state before borrow the nodemask */ 7828 nodemask_t saved_node_state = node_states[N_MEMORY]; 7829 unsigned long totalpages = early_calculate_totalpages(); 7830 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7831 struct memblock_region *r; 7832 7833 /* Need to find movable_zone earlier when movable_node is specified. */ 7834 find_usable_zone_for_movable(); 7835 7836 /* 7837 * If movable_node is specified, ignore kernelcore and movablecore 7838 * options. 7839 */ 7840 if (movable_node_is_enabled()) { 7841 for_each_mem_region(r) { 7842 if (!memblock_is_hotpluggable(r)) 7843 continue; 7844 7845 nid = memblock_get_region_node(r); 7846 7847 usable_startpfn = PFN_DOWN(r->base); 7848 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7849 min(usable_startpfn, zone_movable_pfn[nid]) : 7850 usable_startpfn; 7851 } 7852 7853 goto out2; 7854 } 7855 7856 /* 7857 * If kernelcore=mirror is specified, ignore movablecore option 7858 */ 7859 if (mirrored_kernelcore) { 7860 bool mem_below_4gb_not_mirrored = false; 7861 7862 for_each_mem_region(r) { 7863 if (memblock_is_mirror(r)) 7864 continue; 7865 7866 nid = memblock_get_region_node(r); 7867 7868 usable_startpfn = memblock_region_memory_base_pfn(r); 7869 7870 if (usable_startpfn < 0x100000) { 7871 mem_below_4gb_not_mirrored = true; 7872 continue; 7873 } 7874 7875 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7876 min(usable_startpfn, zone_movable_pfn[nid]) : 7877 usable_startpfn; 7878 } 7879 7880 if (mem_below_4gb_not_mirrored) 7881 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7882 7883 goto out2; 7884 } 7885 7886 /* 7887 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7888 * amount of necessary memory. 7889 */ 7890 if (required_kernelcore_percent) 7891 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7892 10000UL; 7893 if (required_movablecore_percent) 7894 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7895 10000UL; 7896 7897 /* 7898 * If movablecore= was specified, calculate what size of 7899 * kernelcore that corresponds so that memory usable for 7900 * any allocation type is evenly spread. If both kernelcore 7901 * and movablecore are specified, then the value of kernelcore 7902 * will be used for required_kernelcore if it's greater than 7903 * what movablecore would have allowed. 7904 */ 7905 if (required_movablecore) { 7906 unsigned long corepages; 7907 7908 /* 7909 * Round-up so that ZONE_MOVABLE is at least as large as what 7910 * was requested by the user 7911 */ 7912 required_movablecore = 7913 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7914 required_movablecore = min(totalpages, required_movablecore); 7915 corepages = totalpages - required_movablecore; 7916 7917 required_kernelcore = max(required_kernelcore, corepages); 7918 } 7919 7920 /* 7921 * If kernelcore was not specified or kernelcore size is larger 7922 * than totalpages, there is no ZONE_MOVABLE. 7923 */ 7924 if (!required_kernelcore || required_kernelcore >= totalpages) 7925 goto out; 7926 7927 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7928 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7929 7930 restart: 7931 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7932 kernelcore_node = required_kernelcore / usable_nodes; 7933 for_each_node_state(nid, N_MEMORY) { 7934 unsigned long start_pfn, end_pfn; 7935 7936 /* 7937 * Recalculate kernelcore_node if the division per node 7938 * now exceeds what is necessary to satisfy the requested 7939 * amount of memory for the kernel 7940 */ 7941 if (required_kernelcore < kernelcore_node) 7942 kernelcore_node = required_kernelcore / usable_nodes; 7943 7944 /* 7945 * As the map is walked, we track how much memory is usable 7946 * by the kernel using kernelcore_remaining. When it is 7947 * 0, the rest of the node is usable by ZONE_MOVABLE 7948 */ 7949 kernelcore_remaining = kernelcore_node; 7950 7951 /* Go through each range of PFNs within this node */ 7952 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7953 unsigned long size_pages; 7954 7955 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7956 if (start_pfn >= end_pfn) 7957 continue; 7958 7959 /* Account for what is only usable for kernelcore */ 7960 if (start_pfn < usable_startpfn) { 7961 unsigned long kernel_pages; 7962 kernel_pages = min(end_pfn, usable_startpfn) 7963 - start_pfn; 7964 7965 kernelcore_remaining -= min(kernel_pages, 7966 kernelcore_remaining); 7967 required_kernelcore -= min(kernel_pages, 7968 required_kernelcore); 7969 7970 /* Continue if range is now fully accounted */ 7971 if (end_pfn <= usable_startpfn) { 7972 7973 /* 7974 * Push zone_movable_pfn to the end so 7975 * that if we have to rebalance 7976 * kernelcore across nodes, we will 7977 * not double account here 7978 */ 7979 zone_movable_pfn[nid] = end_pfn; 7980 continue; 7981 } 7982 start_pfn = usable_startpfn; 7983 } 7984 7985 /* 7986 * The usable PFN range for ZONE_MOVABLE is from 7987 * start_pfn->end_pfn. Calculate size_pages as the 7988 * number of pages used as kernelcore 7989 */ 7990 size_pages = end_pfn - start_pfn; 7991 if (size_pages > kernelcore_remaining) 7992 size_pages = kernelcore_remaining; 7993 zone_movable_pfn[nid] = start_pfn + size_pages; 7994 7995 /* 7996 * Some kernelcore has been met, update counts and 7997 * break if the kernelcore for this node has been 7998 * satisfied 7999 */ 8000 required_kernelcore -= min(required_kernelcore, 8001 size_pages); 8002 kernelcore_remaining -= size_pages; 8003 if (!kernelcore_remaining) 8004 break; 8005 } 8006 } 8007 8008 /* 8009 * If there is still required_kernelcore, we do another pass with one 8010 * less node in the count. This will push zone_movable_pfn[nid] further 8011 * along on the nodes that still have memory until kernelcore is 8012 * satisfied 8013 */ 8014 usable_nodes--; 8015 if (usable_nodes && required_kernelcore > usable_nodes) 8016 goto restart; 8017 8018 out2: 8019 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8020 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8021 unsigned long start_pfn, end_pfn; 8022 8023 zone_movable_pfn[nid] = 8024 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8025 8026 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8027 if (zone_movable_pfn[nid] >= end_pfn) 8028 zone_movable_pfn[nid] = 0; 8029 } 8030 8031 out: 8032 /* restore the node_state */ 8033 node_states[N_MEMORY] = saved_node_state; 8034 } 8035 8036 /* Any regular or high memory on that node ? */ 8037 static void check_for_memory(pg_data_t *pgdat, int nid) 8038 { 8039 enum zone_type zone_type; 8040 8041 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8042 struct zone *zone = &pgdat->node_zones[zone_type]; 8043 if (populated_zone(zone)) { 8044 if (IS_ENABLED(CONFIG_HIGHMEM)) 8045 node_set_state(nid, N_HIGH_MEMORY); 8046 if (zone_type <= ZONE_NORMAL) 8047 node_set_state(nid, N_NORMAL_MEMORY); 8048 break; 8049 } 8050 } 8051 } 8052 8053 /* 8054 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8055 * such cases we allow max_zone_pfn sorted in the descending order 8056 */ 8057 bool __weak arch_has_descending_max_zone_pfns(void) 8058 { 8059 return false; 8060 } 8061 8062 /** 8063 * free_area_init - Initialise all pg_data_t and zone data 8064 * @max_zone_pfn: an array of max PFNs for each zone 8065 * 8066 * This will call free_area_init_node() for each active node in the system. 8067 * Using the page ranges provided by memblock_set_node(), the size of each 8068 * zone in each node and their holes is calculated. If the maximum PFN 8069 * between two adjacent zones match, it is assumed that the zone is empty. 8070 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8071 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8072 * starts where the previous one ended. For example, ZONE_DMA32 starts 8073 * at arch_max_dma_pfn. 8074 */ 8075 void __init free_area_init(unsigned long *max_zone_pfn) 8076 { 8077 unsigned long start_pfn, end_pfn; 8078 int i, nid, zone; 8079 bool descending; 8080 8081 /* Record where the zone boundaries are */ 8082 memset(arch_zone_lowest_possible_pfn, 0, 8083 sizeof(arch_zone_lowest_possible_pfn)); 8084 memset(arch_zone_highest_possible_pfn, 0, 8085 sizeof(arch_zone_highest_possible_pfn)); 8086 8087 start_pfn = find_min_pfn_with_active_regions(); 8088 descending = arch_has_descending_max_zone_pfns(); 8089 8090 for (i = 0; i < MAX_NR_ZONES; i++) { 8091 if (descending) 8092 zone = MAX_NR_ZONES - i - 1; 8093 else 8094 zone = i; 8095 8096 if (zone == ZONE_MOVABLE) 8097 continue; 8098 8099 end_pfn = max(max_zone_pfn[zone], start_pfn); 8100 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8101 arch_zone_highest_possible_pfn[zone] = end_pfn; 8102 8103 start_pfn = end_pfn; 8104 } 8105 8106 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8107 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8108 find_zone_movable_pfns_for_nodes(); 8109 8110 /* Print out the zone ranges */ 8111 pr_info("Zone ranges:\n"); 8112 for (i = 0; i < MAX_NR_ZONES; i++) { 8113 if (i == ZONE_MOVABLE) 8114 continue; 8115 pr_info(" %-8s ", zone_names[i]); 8116 if (arch_zone_lowest_possible_pfn[i] == 8117 arch_zone_highest_possible_pfn[i]) 8118 pr_cont("empty\n"); 8119 else 8120 pr_cont("[mem %#018Lx-%#018Lx]\n", 8121 (u64)arch_zone_lowest_possible_pfn[i] 8122 << PAGE_SHIFT, 8123 ((u64)arch_zone_highest_possible_pfn[i] 8124 << PAGE_SHIFT) - 1); 8125 } 8126 8127 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8128 pr_info("Movable zone start for each node\n"); 8129 for (i = 0; i < MAX_NUMNODES; i++) { 8130 if (zone_movable_pfn[i]) 8131 pr_info(" Node %d: %#018Lx\n", i, 8132 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8133 } 8134 8135 /* 8136 * Print out the early node map, and initialize the 8137 * subsection-map relative to active online memory ranges to 8138 * enable future "sub-section" extensions of the memory map. 8139 */ 8140 pr_info("Early memory node ranges\n"); 8141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8142 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8143 (u64)start_pfn << PAGE_SHIFT, 8144 ((u64)end_pfn << PAGE_SHIFT) - 1); 8145 subsection_map_init(start_pfn, end_pfn - start_pfn); 8146 } 8147 8148 /* Initialise every node */ 8149 mminit_verify_pageflags_layout(); 8150 setup_nr_node_ids(); 8151 for_each_node(nid) { 8152 pg_data_t *pgdat; 8153 8154 if (!node_online(nid)) { 8155 pr_info("Initializing node %d as memoryless\n", nid); 8156 8157 /* Allocator not initialized yet */ 8158 pgdat = arch_alloc_nodedata(nid); 8159 if (!pgdat) { 8160 pr_err("Cannot allocate %zuB for node %d.\n", 8161 sizeof(*pgdat), nid); 8162 continue; 8163 } 8164 arch_refresh_nodedata(nid, pgdat); 8165 free_area_init_memoryless_node(nid); 8166 8167 /* 8168 * We do not want to confuse userspace by sysfs 8169 * files/directories for node without any memory 8170 * attached to it, so this node is not marked as 8171 * N_MEMORY and not marked online so that no sysfs 8172 * hierarchy will be created via register_one_node for 8173 * it. The pgdat will get fully initialized by 8174 * hotadd_init_pgdat() when memory is hotplugged into 8175 * this node. 8176 */ 8177 continue; 8178 } 8179 8180 pgdat = NODE_DATA(nid); 8181 free_area_init_node(nid); 8182 8183 /* Any memory on that node */ 8184 if (pgdat->node_present_pages) 8185 node_set_state(nid, N_MEMORY); 8186 check_for_memory(pgdat, nid); 8187 } 8188 8189 memmap_init(); 8190 } 8191 8192 static int __init cmdline_parse_core(char *p, unsigned long *core, 8193 unsigned long *percent) 8194 { 8195 unsigned long long coremem; 8196 char *endptr; 8197 8198 if (!p) 8199 return -EINVAL; 8200 8201 /* Value may be a percentage of total memory, otherwise bytes */ 8202 coremem = simple_strtoull(p, &endptr, 0); 8203 if (*endptr == '%') { 8204 /* Paranoid check for percent values greater than 100 */ 8205 WARN_ON(coremem > 100); 8206 8207 *percent = coremem; 8208 } else { 8209 coremem = memparse(p, &p); 8210 /* Paranoid check that UL is enough for the coremem value */ 8211 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8212 8213 *core = coremem >> PAGE_SHIFT; 8214 *percent = 0UL; 8215 } 8216 return 0; 8217 } 8218 8219 /* 8220 * kernelcore=size sets the amount of memory for use for allocations that 8221 * cannot be reclaimed or migrated. 8222 */ 8223 static int __init cmdline_parse_kernelcore(char *p) 8224 { 8225 /* parse kernelcore=mirror */ 8226 if (parse_option_str(p, "mirror")) { 8227 mirrored_kernelcore = true; 8228 return 0; 8229 } 8230 8231 return cmdline_parse_core(p, &required_kernelcore, 8232 &required_kernelcore_percent); 8233 } 8234 8235 /* 8236 * movablecore=size sets the amount of memory for use for allocations that 8237 * can be reclaimed or migrated. 8238 */ 8239 static int __init cmdline_parse_movablecore(char *p) 8240 { 8241 return cmdline_parse_core(p, &required_movablecore, 8242 &required_movablecore_percent); 8243 } 8244 8245 early_param("kernelcore", cmdline_parse_kernelcore); 8246 early_param("movablecore", cmdline_parse_movablecore); 8247 8248 void adjust_managed_page_count(struct page *page, long count) 8249 { 8250 atomic_long_add(count, &page_zone(page)->managed_pages); 8251 totalram_pages_add(count); 8252 #ifdef CONFIG_HIGHMEM 8253 if (PageHighMem(page)) 8254 totalhigh_pages_add(count); 8255 #endif 8256 } 8257 EXPORT_SYMBOL(adjust_managed_page_count); 8258 8259 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8260 { 8261 void *pos; 8262 unsigned long pages = 0; 8263 8264 start = (void *)PAGE_ALIGN((unsigned long)start); 8265 end = (void *)((unsigned long)end & PAGE_MASK); 8266 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8267 struct page *page = virt_to_page(pos); 8268 void *direct_map_addr; 8269 8270 /* 8271 * 'direct_map_addr' might be different from 'pos' 8272 * because some architectures' virt_to_page() 8273 * work with aliases. Getting the direct map 8274 * address ensures that we get a _writeable_ 8275 * alias for the memset(). 8276 */ 8277 direct_map_addr = page_address(page); 8278 /* 8279 * Perform a kasan-unchecked memset() since this memory 8280 * has not been initialized. 8281 */ 8282 direct_map_addr = kasan_reset_tag(direct_map_addr); 8283 if ((unsigned int)poison <= 0xFF) 8284 memset(direct_map_addr, poison, PAGE_SIZE); 8285 8286 free_reserved_page(page); 8287 } 8288 8289 if (pages && s) 8290 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8291 8292 return pages; 8293 } 8294 8295 void __init mem_init_print_info(void) 8296 { 8297 unsigned long physpages, codesize, datasize, rosize, bss_size; 8298 unsigned long init_code_size, init_data_size; 8299 8300 physpages = get_num_physpages(); 8301 codesize = _etext - _stext; 8302 datasize = _edata - _sdata; 8303 rosize = __end_rodata - __start_rodata; 8304 bss_size = __bss_stop - __bss_start; 8305 init_data_size = __init_end - __init_begin; 8306 init_code_size = _einittext - _sinittext; 8307 8308 /* 8309 * Detect special cases and adjust section sizes accordingly: 8310 * 1) .init.* may be embedded into .data sections 8311 * 2) .init.text.* may be out of [__init_begin, __init_end], 8312 * please refer to arch/tile/kernel/vmlinux.lds.S. 8313 * 3) .rodata.* may be embedded into .text or .data sections. 8314 */ 8315 #define adj_init_size(start, end, size, pos, adj) \ 8316 do { \ 8317 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8318 size -= adj; \ 8319 } while (0) 8320 8321 adj_init_size(__init_begin, __init_end, init_data_size, 8322 _sinittext, init_code_size); 8323 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8324 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8325 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8326 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8327 8328 #undef adj_init_size 8329 8330 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8331 #ifdef CONFIG_HIGHMEM 8332 ", %luK highmem" 8333 #endif 8334 ")\n", 8335 K(nr_free_pages()), K(physpages), 8336 codesize >> 10, datasize >> 10, rosize >> 10, 8337 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8338 K(physpages - totalram_pages() - totalcma_pages), 8339 K(totalcma_pages) 8340 #ifdef CONFIG_HIGHMEM 8341 , K(totalhigh_pages()) 8342 #endif 8343 ); 8344 } 8345 8346 /** 8347 * set_dma_reserve - set the specified number of pages reserved in the first zone 8348 * @new_dma_reserve: The number of pages to mark reserved 8349 * 8350 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8351 * In the DMA zone, a significant percentage may be consumed by kernel image 8352 * and other unfreeable allocations which can skew the watermarks badly. This 8353 * function may optionally be used to account for unfreeable pages in the 8354 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8355 * smaller per-cpu batchsize. 8356 */ 8357 void __init set_dma_reserve(unsigned long new_dma_reserve) 8358 { 8359 dma_reserve = new_dma_reserve; 8360 } 8361 8362 static int page_alloc_cpu_dead(unsigned int cpu) 8363 { 8364 struct zone *zone; 8365 8366 lru_add_drain_cpu(cpu); 8367 drain_pages(cpu); 8368 8369 /* 8370 * Spill the event counters of the dead processor 8371 * into the current processors event counters. 8372 * This artificially elevates the count of the current 8373 * processor. 8374 */ 8375 vm_events_fold_cpu(cpu); 8376 8377 /* 8378 * Zero the differential counters of the dead processor 8379 * so that the vm statistics are consistent. 8380 * 8381 * This is only okay since the processor is dead and cannot 8382 * race with what we are doing. 8383 */ 8384 cpu_vm_stats_fold(cpu); 8385 8386 for_each_populated_zone(zone) 8387 zone_pcp_update(zone, 0); 8388 8389 return 0; 8390 } 8391 8392 static int page_alloc_cpu_online(unsigned int cpu) 8393 { 8394 struct zone *zone; 8395 8396 for_each_populated_zone(zone) 8397 zone_pcp_update(zone, 1); 8398 return 0; 8399 } 8400 8401 #ifdef CONFIG_NUMA 8402 int hashdist = HASHDIST_DEFAULT; 8403 8404 static int __init set_hashdist(char *str) 8405 { 8406 if (!str) 8407 return 0; 8408 hashdist = simple_strtoul(str, &str, 0); 8409 return 1; 8410 } 8411 __setup("hashdist=", set_hashdist); 8412 #endif 8413 8414 void __init page_alloc_init(void) 8415 { 8416 int ret; 8417 8418 #ifdef CONFIG_NUMA 8419 if (num_node_state(N_MEMORY) == 1) 8420 hashdist = 0; 8421 #endif 8422 8423 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8424 "mm/page_alloc:pcp", 8425 page_alloc_cpu_online, 8426 page_alloc_cpu_dead); 8427 WARN_ON(ret < 0); 8428 } 8429 8430 /* 8431 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8432 * or min_free_kbytes changes. 8433 */ 8434 static void calculate_totalreserve_pages(void) 8435 { 8436 struct pglist_data *pgdat; 8437 unsigned long reserve_pages = 0; 8438 enum zone_type i, j; 8439 8440 for_each_online_pgdat(pgdat) { 8441 8442 pgdat->totalreserve_pages = 0; 8443 8444 for (i = 0; i < MAX_NR_ZONES; i++) { 8445 struct zone *zone = pgdat->node_zones + i; 8446 long max = 0; 8447 unsigned long managed_pages = zone_managed_pages(zone); 8448 8449 /* Find valid and maximum lowmem_reserve in the zone */ 8450 for (j = i; j < MAX_NR_ZONES; j++) { 8451 if (zone->lowmem_reserve[j] > max) 8452 max = zone->lowmem_reserve[j]; 8453 } 8454 8455 /* we treat the high watermark as reserved pages. */ 8456 max += high_wmark_pages(zone); 8457 8458 if (max > managed_pages) 8459 max = managed_pages; 8460 8461 pgdat->totalreserve_pages += max; 8462 8463 reserve_pages += max; 8464 } 8465 } 8466 totalreserve_pages = reserve_pages; 8467 } 8468 8469 /* 8470 * setup_per_zone_lowmem_reserve - called whenever 8471 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8472 * has a correct pages reserved value, so an adequate number of 8473 * pages are left in the zone after a successful __alloc_pages(). 8474 */ 8475 static void setup_per_zone_lowmem_reserve(void) 8476 { 8477 struct pglist_data *pgdat; 8478 enum zone_type i, j; 8479 8480 for_each_online_pgdat(pgdat) { 8481 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8482 struct zone *zone = &pgdat->node_zones[i]; 8483 int ratio = sysctl_lowmem_reserve_ratio[i]; 8484 bool clear = !ratio || !zone_managed_pages(zone); 8485 unsigned long managed_pages = 0; 8486 8487 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8488 struct zone *upper_zone = &pgdat->node_zones[j]; 8489 8490 managed_pages += zone_managed_pages(upper_zone); 8491 8492 if (clear) 8493 zone->lowmem_reserve[j] = 0; 8494 else 8495 zone->lowmem_reserve[j] = managed_pages / ratio; 8496 } 8497 } 8498 } 8499 8500 /* update totalreserve_pages */ 8501 calculate_totalreserve_pages(); 8502 } 8503 8504 static void __setup_per_zone_wmarks(void) 8505 { 8506 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8507 unsigned long lowmem_pages = 0; 8508 struct zone *zone; 8509 unsigned long flags; 8510 8511 /* Calculate total number of !ZONE_HIGHMEM pages */ 8512 for_each_zone(zone) { 8513 if (!is_highmem(zone)) 8514 lowmem_pages += zone_managed_pages(zone); 8515 } 8516 8517 for_each_zone(zone) { 8518 u64 tmp; 8519 8520 spin_lock_irqsave(&zone->lock, flags); 8521 tmp = (u64)pages_min * zone_managed_pages(zone); 8522 do_div(tmp, lowmem_pages); 8523 if (is_highmem(zone)) { 8524 /* 8525 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8526 * need highmem pages, so cap pages_min to a small 8527 * value here. 8528 * 8529 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8530 * deltas control async page reclaim, and so should 8531 * not be capped for highmem. 8532 */ 8533 unsigned long min_pages; 8534 8535 min_pages = zone_managed_pages(zone) / 1024; 8536 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8537 zone->_watermark[WMARK_MIN] = min_pages; 8538 } else { 8539 /* 8540 * If it's a lowmem zone, reserve a number of pages 8541 * proportionate to the zone's size. 8542 */ 8543 zone->_watermark[WMARK_MIN] = tmp; 8544 } 8545 8546 /* 8547 * Set the kswapd watermarks distance according to the 8548 * scale factor in proportion to available memory, but 8549 * ensure a minimum size on small systems. 8550 */ 8551 tmp = max_t(u64, tmp >> 2, 8552 mult_frac(zone_managed_pages(zone), 8553 watermark_scale_factor, 10000)); 8554 8555 zone->watermark_boost = 0; 8556 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8557 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8558 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8559 8560 spin_unlock_irqrestore(&zone->lock, flags); 8561 } 8562 8563 /* update totalreserve_pages */ 8564 calculate_totalreserve_pages(); 8565 } 8566 8567 /** 8568 * setup_per_zone_wmarks - called when min_free_kbytes changes 8569 * or when memory is hot-{added|removed} 8570 * 8571 * Ensures that the watermark[min,low,high] values for each zone are set 8572 * correctly with respect to min_free_kbytes. 8573 */ 8574 void setup_per_zone_wmarks(void) 8575 { 8576 struct zone *zone; 8577 static DEFINE_SPINLOCK(lock); 8578 8579 spin_lock(&lock); 8580 __setup_per_zone_wmarks(); 8581 spin_unlock(&lock); 8582 8583 /* 8584 * The watermark size have changed so update the pcpu batch 8585 * and high limits or the limits may be inappropriate. 8586 */ 8587 for_each_zone(zone) 8588 zone_pcp_update(zone, 0); 8589 } 8590 8591 /* 8592 * Initialise min_free_kbytes. 8593 * 8594 * For small machines we want it small (128k min). For large machines 8595 * we want it large (256MB max). But it is not linear, because network 8596 * bandwidth does not increase linearly with machine size. We use 8597 * 8598 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8599 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8600 * 8601 * which yields 8602 * 8603 * 16MB: 512k 8604 * 32MB: 724k 8605 * 64MB: 1024k 8606 * 128MB: 1448k 8607 * 256MB: 2048k 8608 * 512MB: 2896k 8609 * 1024MB: 4096k 8610 * 2048MB: 5792k 8611 * 4096MB: 8192k 8612 * 8192MB: 11584k 8613 * 16384MB: 16384k 8614 */ 8615 void calculate_min_free_kbytes(void) 8616 { 8617 unsigned long lowmem_kbytes; 8618 int new_min_free_kbytes; 8619 8620 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8621 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8622 8623 if (new_min_free_kbytes > user_min_free_kbytes) 8624 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8625 else 8626 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8627 new_min_free_kbytes, user_min_free_kbytes); 8628 8629 } 8630 8631 int __meminit init_per_zone_wmark_min(void) 8632 { 8633 calculate_min_free_kbytes(); 8634 setup_per_zone_wmarks(); 8635 refresh_zone_stat_thresholds(); 8636 setup_per_zone_lowmem_reserve(); 8637 8638 #ifdef CONFIG_NUMA 8639 setup_min_unmapped_ratio(); 8640 setup_min_slab_ratio(); 8641 #endif 8642 8643 khugepaged_min_free_kbytes_update(); 8644 8645 return 0; 8646 } 8647 postcore_initcall(init_per_zone_wmark_min) 8648 8649 /* 8650 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8651 * that we can call two helper functions whenever min_free_kbytes 8652 * changes. 8653 */ 8654 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8655 void *buffer, size_t *length, loff_t *ppos) 8656 { 8657 int rc; 8658 8659 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8660 if (rc) 8661 return rc; 8662 8663 if (write) { 8664 user_min_free_kbytes = min_free_kbytes; 8665 setup_per_zone_wmarks(); 8666 } 8667 return 0; 8668 } 8669 8670 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8671 void *buffer, size_t *length, loff_t *ppos) 8672 { 8673 int rc; 8674 8675 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8676 if (rc) 8677 return rc; 8678 8679 if (write) 8680 setup_per_zone_wmarks(); 8681 8682 return 0; 8683 } 8684 8685 #ifdef CONFIG_NUMA 8686 static void setup_min_unmapped_ratio(void) 8687 { 8688 pg_data_t *pgdat; 8689 struct zone *zone; 8690 8691 for_each_online_pgdat(pgdat) 8692 pgdat->min_unmapped_pages = 0; 8693 8694 for_each_zone(zone) 8695 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8696 sysctl_min_unmapped_ratio) / 100; 8697 } 8698 8699 8700 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8701 void *buffer, size_t *length, loff_t *ppos) 8702 { 8703 int rc; 8704 8705 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8706 if (rc) 8707 return rc; 8708 8709 setup_min_unmapped_ratio(); 8710 8711 return 0; 8712 } 8713 8714 static void setup_min_slab_ratio(void) 8715 { 8716 pg_data_t *pgdat; 8717 struct zone *zone; 8718 8719 for_each_online_pgdat(pgdat) 8720 pgdat->min_slab_pages = 0; 8721 8722 for_each_zone(zone) 8723 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8724 sysctl_min_slab_ratio) / 100; 8725 } 8726 8727 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8728 void *buffer, size_t *length, loff_t *ppos) 8729 { 8730 int rc; 8731 8732 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8733 if (rc) 8734 return rc; 8735 8736 setup_min_slab_ratio(); 8737 8738 return 0; 8739 } 8740 #endif 8741 8742 /* 8743 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8744 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8745 * whenever sysctl_lowmem_reserve_ratio changes. 8746 * 8747 * The reserve ratio obviously has absolutely no relation with the 8748 * minimum watermarks. The lowmem reserve ratio can only make sense 8749 * if in function of the boot time zone sizes. 8750 */ 8751 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8752 void *buffer, size_t *length, loff_t *ppos) 8753 { 8754 int i; 8755 8756 proc_dointvec_minmax(table, write, buffer, length, ppos); 8757 8758 for (i = 0; i < MAX_NR_ZONES; i++) { 8759 if (sysctl_lowmem_reserve_ratio[i] < 1) 8760 sysctl_lowmem_reserve_ratio[i] = 0; 8761 } 8762 8763 setup_per_zone_lowmem_reserve(); 8764 return 0; 8765 } 8766 8767 /* 8768 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8769 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8770 * pagelist can have before it gets flushed back to buddy allocator. 8771 */ 8772 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8773 int write, void *buffer, size_t *length, loff_t *ppos) 8774 { 8775 struct zone *zone; 8776 int old_percpu_pagelist_high_fraction; 8777 int ret; 8778 8779 mutex_lock(&pcp_batch_high_lock); 8780 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8781 8782 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8783 if (!write || ret < 0) 8784 goto out; 8785 8786 /* Sanity checking to avoid pcp imbalance */ 8787 if (percpu_pagelist_high_fraction && 8788 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8789 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8790 ret = -EINVAL; 8791 goto out; 8792 } 8793 8794 /* No change? */ 8795 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8796 goto out; 8797 8798 for_each_populated_zone(zone) 8799 zone_set_pageset_high_and_batch(zone, 0); 8800 out: 8801 mutex_unlock(&pcp_batch_high_lock); 8802 return ret; 8803 } 8804 8805 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8806 /* 8807 * Returns the number of pages that arch has reserved but 8808 * is not known to alloc_large_system_hash(). 8809 */ 8810 static unsigned long __init arch_reserved_kernel_pages(void) 8811 { 8812 return 0; 8813 } 8814 #endif 8815 8816 /* 8817 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8818 * machines. As memory size is increased the scale is also increased but at 8819 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8820 * quadruples the scale is increased by one, which means the size of hash table 8821 * only doubles, instead of quadrupling as well. 8822 * Because 32-bit systems cannot have large physical memory, where this scaling 8823 * makes sense, it is disabled on such platforms. 8824 */ 8825 #if __BITS_PER_LONG > 32 8826 #define ADAPT_SCALE_BASE (64ul << 30) 8827 #define ADAPT_SCALE_SHIFT 2 8828 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8829 #endif 8830 8831 /* 8832 * allocate a large system hash table from bootmem 8833 * - it is assumed that the hash table must contain an exact power-of-2 8834 * quantity of entries 8835 * - limit is the number of hash buckets, not the total allocation size 8836 */ 8837 void *__init alloc_large_system_hash(const char *tablename, 8838 unsigned long bucketsize, 8839 unsigned long numentries, 8840 int scale, 8841 int flags, 8842 unsigned int *_hash_shift, 8843 unsigned int *_hash_mask, 8844 unsigned long low_limit, 8845 unsigned long high_limit) 8846 { 8847 unsigned long long max = high_limit; 8848 unsigned long log2qty, size; 8849 void *table = NULL; 8850 gfp_t gfp_flags; 8851 bool virt; 8852 bool huge; 8853 8854 /* allow the kernel cmdline to have a say */ 8855 if (!numentries) { 8856 /* round applicable memory size up to nearest megabyte */ 8857 numentries = nr_kernel_pages; 8858 numentries -= arch_reserved_kernel_pages(); 8859 8860 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8861 if (PAGE_SHIFT < 20) 8862 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8863 8864 #if __BITS_PER_LONG > 32 8865 if (!high_limit) { 8866 unsigned long adapt; 8867 8868 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8869 adapt <<= ADAPT_SCALE_SHIFT) 8870 scale++; 8871 } 8872 #endif 8873 8874 /* limit to 1 bucket per 2^scale bytes of low memory */ 8875 if (scale > PAGE_SHIFT) 8876 numentries >>= (scale - PAGE_SHIFT); 8877 else 8878 numentries <<= (PAGE_SHIFT - scale); 8879 8880 /* Make sure we've got at least a 0-order allocation.. */ 8881 if (unlikely(flags & HASH_SMALL)) { 8882 /* Makes no sense without HASH_EARLY */ 8883 WARN_ON(!(flags & HASH_EARLY)); 8884 if (!(numentries >> *_hash_shift)) { 8885 numentries = 1UL << *_hash_shift; 8886 BUG_ON(!numentries); 8887 } 8888 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8889 numentries = PAGE_SIZE / bucketsize; 8890 } 8891 numentries = roundup_pow_of_two(numentries); 8892 8893 /* limit allocation size to 1/16 total memory by default */ 8894 if (max == 0) { 8895 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8896 do_div(max, bucketsize); 8897 } 8898 max = min(max, 0x80000000ULL); 8899 8900 if (numentries < low_limit) 8901 numentries = low_limit; 8902 if (numentries > max) 8903 numentries = max; 8904 8905 log2qty = ilog2(numentries); 8906 8907 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8908 do { 8909 virt = false; 8910 size = bucketsize << log2qty; 8911 if (flags & HASH_EARLY) { 8912 if (flags & HASH_ZERO) 8913 table = memblock_alloc(size, SMP_CACHE_BYTES); 8914 else 8915 table = memblock_alloc_raw(size, 8916 SMP_CACHE_BYTES); 8917 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8918 table = __vmalloc(size, gfp_flags); 8919 virt = true; 8920 if (table) 8921 huge = is_vm_area_hugepages(table); 8922 } else { 8923 /* 8924 * If bucketsize is not a power-of-two, we may free 8925 * some pages at the end of hash table which 8926 * alloc_pages_exact() automatically does 8927 */ 8928 table = alloc_pages_exact(size, gfp_flags); 8929 kmemleak_alloc(table, size, 1, gfp_flags); 8930 } 8931 } while (!table && size > PAGE_SIZE && --log2qty); 8932 8933 if (!table) 8934 panic("Failed to allocate %s hash table\n", tablename); 8935 8936 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8937 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8938 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8939 8940 if (_hash_shift) 8941 *_hash_shift = log2qty; 8942 if (_hash_mask) 8943 *_hash_mask = (1 << log2qty) - 1; 8944 8945 return table; 8946 } 8947 8948 /* 8949 * This function checks whether pageblock includes unmovable pages or not. 8950 * 8951 * PageLRU check without isolation or lru_lock could race so that 8952 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8953 * check without lock_page also may miss some movable non-lru pages at 8954 * race condition. So you can't expect this function should be exact. 8955 * 8956 * Returns a page without holding a reference. If the caller wants to 8957 * dereference that page (e.g., dumping), it has to make sure that it 8958 * cannot get removed (e.g., via memory unplug) concurrently. 8959 * 8960 */ 8961 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8962 int migratetype, int flags) 8963 { 8964 unsigned long iter = 0; 8965 unsigned long pfn = page_to_pfn(page); 8966 unsigned long offset = pfn % pageblock_nr_pages; 8967 8968 if (is_migrate_cma_page(page)) { 8969 /* 8970 * CMA allocations (alloc_contig_range) really need to mark 8971 * isolate CMA pageblocks even when they are not movable in fact 8972 * so consider them movable here. 8973 */ 8974 if (is_migrate_cma(migratetype)) 8975 return NULL; 8976 8977 return page; 8978 } 8979 8980 for (; iter < pageblock_nr_pages - offset; iter++) { 8981 page = pfn_to_page(pfn + iter); 8982 8983 /* 8984 * Both, bootmem allocations and memory holes are marked 8985 * PG_reserved and are unmovable. We can even have unmovable 8986 * allocations inside ZONE_MOVABLE, for example when 8987 * specifying "movablecore". 8988 */ 8989 if (PageReserved(page)) 8990 return page; 8991 8992 /* 8993 * If the zone is movable and we have ruled out all reserved 8994 * pages then it should be reasonably safe to assume the rest 8995 * is movable. 8996 */ 8997 if (zone_idx(zone) == ZONE_MOVABLE) 8998 continue; 8999 9000 /* 9001 * Hugepages are not in LRU lists, but they're movable. 9002 * THPs are on the LRU, but need to be counted as #small pages. 9003 * We need not scan over tail pages because we don't 9004 * handle each tail page individually in migration. 9005 */ 9006 if (PageHuge(page) || PageTransCompound(page)) { 9007 struct page *head = compound_head(page); 9008 unsigned int skip_pages; 9009 9010 if (PageHuge(page)) { 9011 if (!hugepage_migration_supported(page_hstate(head))) 9012 return page; 9013 } else if (!PageLRU(head) && !__PageMovable(head)) { 9014 return page; 9015 } 9016 9017 skip_pages = compound_nr(head) - (page - head); 9018 iter += skip_pages - 1; 9019 continue; 9020 } 9021 9022 /* 9023 * We can't use page_count without pin a page 9024 * because another CPU can free compound page. 9025 * This check already skips compound tails of THP 9026 * because their page->_refcount is zero at all time. 9027 */ 9028 if (!page_ref_count(page)) { 9029 if (PageBuddy(page)) 9030 iter += (1 << buddy_order(page)) - 1; 9031 continue; 9032 } 9033 9034 /* 9035 * The HWPoisoned page may be not in buddy system, and 9036 * page_count() is not 0. 9037 */ 9038 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 9039 continue; 9040 9041 /* 9042 * We treat all PageOffline() pages as movable when offlining 9043 * to give drivers a chance to decrement their reference count 9044 * in MEM_GOING_OFFLINE in order to indicate that these pages 9045 * can be offlined as there are no direct references anymore. 9046 * For actually unmovable PageOffline() where the driver does 9047 * not support this, we will fail later when trying to actually 9048 * move these pages that still have a reference count > 0. 9049 * (false negatives in this function only) 9050 */ 9051 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 9052 continue; 9053 9054 if (__PageMovable(page) || PageLRU(page)) 9055 continue; 9056 9057 /* 9058 * If there are RECLAIMABLE pages, we need to check 9059 * it. But now, memory offline itself doesn't call 9060 * shrink_node_slabs() and it still to be fixed. 9061 */ 9062 return page; 9063 } 9064 return NULL; 9065 } 9066 9067 #ifdef CONFIG_CONTIG_ALLOC 9068 static unsigned long pfn_max_align_down(unsigned long pfn) 9069 { 9070 return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES); 9071 } 9072 9073 static unsigned long pfn_max_align_up(unsigned long pfn) 9074 { 9075 return ALIGN(pfn, MAX_ORDER_NR_PAGES); 9076 } 9077 9078 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9079 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9080 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9081 static void alloc_contig_dump_pages(struct list_head *page_list) 9082 { 9083 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9084 9085 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9086 struct page *page; 9087 9088 dump_stack(); 9089 list_for_each_entry(page, page_list, lru) 9090 dump_page(page, "migration failure"); 9091 } 9092 } 9093 #else 9094 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9095 { 9096 } 9097 #endif 9098 9099 /* [start, end) must belong to a single zone. */ 9100 static int __alloc_contig_migrate_range(struct compact_control *cc, 9101 unsigned long start, unsigned long end) 9102 { 9103 /* This function is based on compact_zone() from compaction.c. */ 9104 unsigned int nr_reclaimed; 9105 unsigned long pfn = start; 9106 unsigned int tries = 0; 9107 int ret = 0; 9108 struct migration_target_control mtc = { 9109 .nid = zone_to_nid(cc->zone), 9110 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9111 }; 9112 9113 lru_cache_disable(); 9114 9115 while (pfn < end || !list_empty(&cc->migratepages)) { 9116 if (fatal_signal_pending(current)) { 9117 ret = -EINTR; 9118 break; 9119 } 9120 9121 if (list_empty(&cc->migratepages)) { 9122 cc->nr_migratepages = 0; 9123 ret = isolate_migratepages_range(cc, pfn, end); 9124 if (ret && ret != -EAGAIN) 9125 break; 9126 pfn = cc->migrate_pfn; 9127 tries = 0; 9128 } else if (++tries == 5) { 9129 ret = -EBUSY; 9130 break; 9131 } 9132 9133 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9134 &cc->migratepages); 9135 cc->nr_migratepages -= nr_reclaimed; 9136 9137 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9138 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9139 9140 /* 9141 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9142 * to retry again over this error, so do the same here. 9143 */ 9144 if (ret == -ENOMEM) 9145 break; 9146 } 9147 9148 lru_cache_enable(); 9149 if (ret < 0) { 9150 if (ret == -EBUSY) 9151 alloc_contig_dump_pages(&cc->migratepages); 9152 putback_movable_pages(&cc->migratepages); 9153 return ret; 9154 } 9155 return 0; 9156 } 9157 9158 /** 9159 * alloc_contig_range() -- tries to allocate given range of pages 9160 * @start: start PFN to allocate 9161 * @end: one-past-the-last PFN to allocate 9162 * @migratetype: migratetype of the underlying pageblocks (either 9163 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9164 * in range must have the same migratetype and it must 9165 * be either of the two. 9166 * @gfp_mask: GFP mask to use during compaction 9167 * 9168 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9169 * aligned. The PFN range must belong to a single zone. 9170 * 9171 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9172 * pageblocks in the range. Once isolated, the pageblocks should not 9173 * be modified by others. 9174 * 9175 * Return: zero on success or negative error code. On success all 9176 * pages which PFN is in [start, end) are allocated for the caller and 9177 * need to be freed with free_contig_range(). 9178 */ 9179 int alloc_contig_range(unsigned long start, unsigned long end, 9180 unsigned migratetype, gfp_t gfp_mask) 9181 { 9182 unsigned long outer_start, outer_end; 9183 unsigned int order; 9184 int ret = 0; 9185 9186 struct compact_control cc = { 9187 .nr_migratepages = 0, 9188 .order = -1, 9189 .zone = page_zone(pfn_to_page(start)), 9190 .mode = MIGRATE_SYNC, 9191 .ignore_skip_hint = true, 9192 .no_set_skip_hint = true, 9193 .gfp_mask = current_gfp_context(gfp_mask), 9194 .alloc_contig = true, 9195 }; 9196 INIT_LIST_HEAD(&cc.migratepages); 9197 9198 /* 9199 * What we do here is we mark all pageblocks in range as 9200 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9201 * have different sizes, and due to the way page allocator 9202 * work, we align the range to biggest of the two pages so 9203 * that page allocator won't try to merge buddies from 9204 * different pageblocks and change MIGRATE_ISOLATE to some 9205 * other migration type. 9206 * 9207 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9208 * migrate the pages from an unaligned range (ie. pages that 9209 * we are interested in). This will put all the pages in 9210 * range back to page allocator as MIGRATE_ISOLATE. 9211 * 9212 * When this is done, we take the pages in range from page 9213 * allocator removing them from the buddy system. This way 9214 * page allocator will never consider using them. 9215 * 9216 * This lets us mark the pageblocks back as 9217 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9218 * aligned range but not in the unaligned, original range are 9219 * put back to page allocator so that buddy can use them. 9220 */ 9221 9222 ret = start_isolate_page_range(pfn_max_align_down(start), 9223 pfn_max_align_up(end), migratetype, 0); 9224 if (ret) 9225 return ret; 9226 9227 drain_all_pages(cc.zone); 9228 9229 /* 9230 * In case of -EBUSY, we'd like to know which page causes problem. 9231 * So, just fall through. test_pages_isolated() has a tracepoint 9232 * which will report the busy page. 9233 * 9234 * It is possible that busy pages could become available before 9235 * the call to test_pages_isolated, and the range will actually be 9236 * allocated. So, if we fall through be sure to clear ret so that 9237 * -EBUSY is not accidentally used or returned to caller. 9238 */ 9239 ret = __alloc_contig_migrate_range(&cc, start, end); 9240 if (ret && ret != -EBUSY) 9241 goto done; 9242 ret = 0; 9243 9244 /* 9245 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9246 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9247 * more, all pages in [start, end) are free in page allocator. 9248 * What we are going to do is to allocate all pages from 9249 * [start, end) (that is remove them from page allocator). 9250 * 9251 * The only problem is that pages at the beginning and at the 9252 * end of interesting range may be not aligned with pages that 9253 * page allocator holds, ie. they can be part of higher order 9254 * pages. Because of this, we reserve the bigger range and 9255 * once this is done free the pages we are not interested in. 9256 * 9257 * We don't have to hold zone->lock here because the pages are 9258 * isolated thus they won't get removed from buddy. 9259 */ 9260 9261 order = 0; 9262 outer_start = start; 9263 while (!PageBuddy(pfn_to_page(outer_start))) { 9264 if (++order >= MAX_ORDER) { 9265 outer_start = start; 9266 break; 9267 } 9268 outer_start &= ~0UL << order; 9269 } 9270 9271 if (outer_start != start) { 9272 order = buddy_order(pfn_to_page(outer_start)); 9273 9274 /* 9275 * outer_start page could be small order buddy page and 9276 * it doesn't include start page. Adjust outer_start 9277 * in this case to report failed page properly 9278 * on tracepoint in test_pages_isolated() 9279 */ 9280 if (outer_start + (1UL << order) <= start) 9281 outer_start = start; 9282 } 9283 9284 /* Make sure the range is really isolated. */ 9285 if (test_pages_isolated(outer_start, end, 0)) { 9286 ret = -EBUSY; 9287 goto done; 9288 } 9289 9290 /* Grab isolated pages from freelists. */ 9291 outer_end = isolate_freepages_range(&cc, outer_start, end); 9292 if (!outer_end) { 9293 ret = -EBUSY; 9294 goto done; 9295 } 9296 9297 /* Free head and tail (if any) */ 9298 if (start != outer_start) 9299 free_contig_range(outer_start, start - outer_start); 9300 if (end != outer_end) 9301 free_contig_range(end, outer_end - end); 9302 9303 done: 9304 undo_isolate_page_range(pfn_max_align_down(start), 9305 pfn_max_align_up(end), migratetype); 9306 return ret; 9307 } 9308 EXPORT_SYMBOL(alloc_contig_range); 9309 9310 static int __alloc_contig_pages(unsigned long start_pfn, 9311 unsigned long nr_pages, gfp_t gfp_mask) 9312 { 9313 unsigned long end_pfn = start_pfn + nr_pages; 9314 9315 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9316 gfp_mask); 9317 } 9318 9319 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9320 unsigned long nr_pages) 9321 { 9322 unsigned long i, end_pfn = start_pfn + nr_pages; 9323 struct page *page; 9324 9325 for (i = start_pfn; i < end_pfn; i++) { 9326 page = pfn_to_online_page(i); 9327 if (!page) 9328 return false; 9329 9330 if (page_zone(page) != z) 9331 return false; 9332 9333 if (PageReserved(page)) 9334 return false; 9335 } 9336 return true; 9337 } 9338 9339 static bool zone_spans_last_pfn(const struct zone *zone, 9340 unsigned long start_pfn, unsigned long nr_pages) 9341 { 9342 unsigned long last_pfn = start_pfn + nr_pages - 1; 9343 9344 return zone_spans_pfn(zone, last_pfn); 9345 } 9346 9347 /** 9348 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9349 * @nr_pages: Number of contiguous pages to allocate 9350 * @gfp_mask: GFP mask to limit search and used during compaction 9351 * @nid: Target node 9352 * @nodemask: Mask for other possible nodes 9353 * 9354 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9355 * on an applicable zonelist to find a contiguous pfn range which can then be 9356 * tried for allocation with alloc_contig_range(). This routine is intended 9357 * for allocation requests which can not be fulfilled with the buddy allocator. 9358 * 9359 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9360 * power of two, then allocated range is also guaranteed to be aligned to same 9361 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9362 * 9363 * Allocated pages can be freed with free_contig_range() or by manually calling 9364 * __free_page() on each allocated page. 9365 * 9366 * Return: pointer to contiguous pages on success, or NULL if not successful. 9367 */ 9368 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9369 int nid, nodemask_t *nodemask) 9370 { 9371 unsigned long ret, pfn, flags; 9372 struct zonelist *zonelist; 9373 struct zone *zone; 9374 struct zoneref *z; 9375 9376 zonelist = node_zonelist(nid, gfp_mask); 9377 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9378 gfp_zone(gfp_mask), nodemask) { 9379 spin_lock_irqsave(&zone->lock, flags); 9380 9381 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9382 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9383 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9384 /* 9385 * We release the zone lock here because 9386 * alloc_contig_range() will also lock the zone 9387 * at some point. If there's an allocation 9388 * spinning on this lock, it may win the race 9389 * and cause alloc_contig_range() to fail... 9390 */ 9391 spin_unlock_irqrestore(&zone->lock, flags); 9392 ret = __alloc_contig_pages(pfn, nr_pages, 9393 gfp_mask); 9394 if (!ret) 9395 return pfn_to_page(pfn); 9396 spin_lock_irqsave(&zone->lock, flags); 9397 } 9398 pfn += nr_pages; 9399 } 9400 spin_unlock_irqrestore(&zone->lock, flags); 9401 } 9402 return NULL; 9403 } 9404 #endif /* CONFIG_CONTIG_ALLOC */ 9405 9406 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9407 { 9408 unsigned long count = 0; 9409 9410 for (; nr_pages--; pfn++) { 9411 struct page *page = pfn_to_page(pfn); 9412 9413 count += page_count(page) != 1; 9414 __free_page(page); 9415 } 9416 WARN(count != 0, "%lu pages are still in use!\n", count); 9417 } 9418 EXPORT_SYMBOL(free_contig_range); 9419 9420 /* 9421 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9422 * page high values need to be recalculated. 9423 */ 9424 void zone_pcp_update(struct zone *zone, int cpu_online) 9425 { 9426 mutex_lock(&pcp_batch_high_lock); 9427 zone_set_pageset_high_and_batch(zone, cpu_online); 9428 mutex_unlock(&pcp_batch_high_lock); 9429 } 9430 9431 /* 9432 * Effectively disable pcplists for the zone by setting the high limit to 0 9433 * and draining all cpus. A concurrent page freeing on another CPU that's about 9434 * to put the page on pcplist will either finish before the drain and the page 9435 * will be drained, or observe the new high limit and skip the pcplist. 9436 * 9437 * Must be paired with a call to zone_pcp_enable(). 9438 */ 9439 void zone_pcp_disable(struct zone *zone) 9440 { 9441 mutex_lock(&pcp_batch_high_lock); 9442 __zone_set_pageset_high_and_batch(zone, 0, 1); 9443 __drain_all_pages(zone, true); 9444 } 9445 9446 void zone_pcp_enable(struct zone *zone) 9447 { 9448 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9449 mutex_unlock(&pcp_batch_high_lock); 9450 } 9451 9452 void zone_pcp_reset(struct zone *zone) 9453 { 9454 int cpu; 9455 struct per_cpu_zonestat *pzstats; 9456 9457 if (zone->per_cpu_pageset != &boot_pageset) { 9458 for_each_online_cpu(cpu) { 9459 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9460 drain_zonestat(zone, pzstats); 9461 } 9462 free_percpu(zone->per_cpu_pageset); 9463 free_percpu(zone->per_cpu_zonestats); 9464 zone->per_cpu_pageset = &boot_pageset; 9465 zone->per_cpu_zonestats = &boot_zonestats; 9466 } 9467 } 9468 9469 #ifdef CONFIG_MEMORY_HOTREMOVE 9470 /* 9471 * All pages in the range must be in a single zone, must not contain holes, 9472 * must span full sections, and must be isolated before calling this function. 9473 */ 9474 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9475 { 9476 unsigned long pfn = start_pfn; 9477 struct page *page; 9478 struct zone *zone; 9479 unsigned int order; 9480 unsigned long flags; 9481 9482 offline_mem_sections(pfn, end_pfn); 9483 zone = page_zone(pfn_to_page(pfn)); 9484 spin_lock_irqsave(&zone->lock, flags); 9485 while (pfn < end_pfn) { 9486 page = pfn_to_page(pfn); 9487 /* 9488 * The HWPoisoned page may be not in buddy system, and 9489 * page_count() is not 0. 9490 */ 9491 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9492 pfn++; 9493 continue; 9494 } 9495 /* 9496 * At this point all remaining PageOffline() pages have a 9497 * reference count of 0 and can simply be skipped. 9498 */ 9499 if (PageOffline(page)) { 9500 BUG_ON(page_count(page)); 9501 BUG_ON(PageBuddy(page)); 9502 pfn++; 9503 continue; 9504 } 9505 9506 BUG_ON(page_count(page)); 9507 BUG_ON(!PageBuddy(page)); 9508 order = buddy_order(page); 9509 del_page_from_free_list(page, zone, order); 9510 pfn += (1 << order); 9511 } 9512 spin_unlock_irqrestore(&zone->lock, flags); 9513 } 9514 #endif 9515 9516 /* 9517 * This function returns a stable result only if called under zone lock. 9518 */ 9519 bool is_free_buddy_page(struct page *page) 9520 { 9521 unsigned long pfn = page_to_pfn(page); 9522 unsigned int order; 9523 9524 for (order = 0; order < MAX_ORDER; order++) { 9525 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9526 9527 if (PageBuddy(page_head) && 9528 buddy_order_unsafe(page_head) >= order) 9529 break; 9530 } 9531 9532 return order < MAX_ORDER; 9533 } 9534 EXPORT_SYMBOL(is_free_buddy_page); 9535 9536 #ifdef CONFIG_MEMORY_FAILURE 9537 /* 9538 * Break down a higher-order page in sub-pages, and keep our target out of 9539 * buddy allocator. 9540 */ 9541 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9542 struct page *target, int low, int high, 9543 int migratetype) 9544 { 9545 unsigned long size = 1 << high; 9546 struct page *current_buddy, *next_page; 9547 9548 while (high > low) { 9549 high--; 9550 size >>= 1; 9551 9552 if (target >= &page[size]) { 9553 next_page = page + size; 9554 current_buddy = page; 9555 } else { 9556 next_page = page; 9557 current_buddy = page + size; 9558 } 9559 9560 if (set_page_guard(zone, current_buddy, high, migratetype)) 9561 continue; 9562 9563 if (current_buddy != target) { 9564 add_to_free_list(current_buddy, zone, high, migratetype); 9565 set_buddy_order(current_buddy, high); 9566 page = next_page; 9567 } 9568 } 9569 } 9570 9571 /* 9572 * Take a page that will be marked as poisoned off the buddy allocator. 9573 */ 9574 bool take_page_off_buddy(struct page *page) 9575 { 9576 struct zone *zone = page_zone(page); 9577 unsigned long pfn = page_to_pfn(page); 9578 unsigned long flags; 9579 unsigned int order; 9580 bool ret = false; 9581 9582 spin_lock_irqsave(&zone->lock, flags); 9583 for (order = 0; order < MAX_ORDER; order++) { 9584 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9585 int page_order = buddy_order(page_head); 9586 9587 if (PageBuddy(page_head) && page_order >= order) { 9588 unsigned long pfn_head = page_to_pfn(page_head); 9589 int migratetype = get_pfnblock_migratetype(page_head, 9590 pfn_head); 9591 9592 del_page_from_free_list(page_head, zone, page_order); 9593 break_down_buddy_pages(zone, page_head, page, 0, 9594 page_order, migratetype); 9595 SetPageHWPoisonTakenOff(page); 9596 if (!is_migrate_isolate(migratetype)) 9597 __mod_zone_freepage_state(zone, -1, migratetype); 9598 ret = true; 9599 break; 9600 } 9601 if (page_count(page_head) > 0) 9602 break; 9603 } 9604 spin_unlock_irqrestore(&zone->lock, flags); 9605 return ret; 9606 } 9607 9608 /* 9609 * Cancel takeoff done by take_page_off_buddy(). 9610 */ 9611 bool put_page_back_buddy(struct page *page) 9612 { 9613 struct zone *zone = page_zone(page); 9614 unsigned long pfn = page_to_pfn(page); 9615 unsigned long flags; 9616 int migratetype = get_pfnblock_migratetype(page, pfn); 9617 bool ret = false; 9618 9619 spin_lock_irqsave(&zone->lock, flags); 9620 if (put_page_testzero(page)) { 9621 ClearPageHWPoisonTakenOff(page); 9622 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9623 if (TestClearPageHWPoison(page)) { 9624 num_poisoned_pages_dec(); 9625 ret = true; 9626 } 9627 } 9628 spin_unlock_irqrestore(&zone->lock, flags); 9629 9630 return ret; 9631 } 9632 #endif 9633 9634 #ifdef CONFIG_ZONE_DMA 9635 bool has_managed_dma(void) 9636 { 9637 struct pglist_data *pgdat; 9638 9639 for_each_online_pgdat(pgdat) { 9640 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9641 9642 if (managed_zone(zone)) 9643 return true; 9644 } 9645 return false; 9646 } 9647 #endif /* CONFIG_ZONE_DMA */ 9648