xref: /openbmc/linux/mm/page_alloc.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87 
88 /* No special request */
89 #define FPI_NONE		((__force fpi_t)0)
90 
91 /*
92  * Skip free page reporting notification for the (possibly merged) page.
93  * This does not hinder free page reporting from grabbing the page,
94  * reporting it and marking it "reported" -  it only skips notifying
95  * the free page reporting infrastructure about a newly freed page. For
96  * example, used when temporarily pulling a page from a freelist and
97  * putting it back unmodified.
98  */
99 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
100 
101 /*
102  * Place the (possibly merged) page to the tail of the freelist. Will ignore
103  * page shuffling (relevant code - e.g., memory onlining - is expected to
104  * shuffle the whole zone).
105  *
106  * Note: No code should rely on this flag for correctness - it's purely
107  *       to allow for optimizations when handing back either fresh pages
108  *       (memory onlining) or untouched pages (page isolation, free page
109  *       reporting).
110  */
111 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
112 
113 /*
114  * Don't poison memory with KASAN (only for the tag-based modes).
115  * During boot, all non-reserved memblock memory is exposed to page_alloc.
116  * Poisoning all that memory lengthens boot time, especially on systems with
117  * large amount of RAM. This flag is used to skip that poisoning.
118  * This is only done for the tag-based KASAN modes, as those are able to
119  * detect memory corruptions with the memory tags assigned by default.
120  * All memory allocated normally after boot gets poisoned as usual.
121  */
122 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
123 
124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125 static DEFINE_MUTEX(pcp_batch_high_lock);
126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
127 
128 struct pagesets {
129 	local_lock_t lock;
130 };
131 static DEFINE_PER_CPU(struct pagesets, pagesets) __maybe_unused = {
132 	.lock = INIT_LOCAL_LOCK(lock),
133 };
134 
135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136 DEFINE_PER_CPU(int, numa_node);
137 EXPORT_PER_CPU_SYMBOL(numa_node);
138 #endif
139 
140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
141 
142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
143 /*
144  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147  * defined in <linux/topology.h>.
148  */
149 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
150 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
151 #endif
152 
153 /* work_structs for global per-cpu drains */
154 struct pcpu_drain {
155 	struct zone *zone;
156 	struct work_struct work;
157 };
158 static DEFINE_MUTEX(pcpu_drain_mutex);
159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
160 
161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
162 volatile unsigned long latent_entropy __latent_entropy;
163 EXPORT_SYMBOL(latent_entropy);
164 #endif
165 
166 /*
167  * Array of node states.
168  */
169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 	[N_POSSIBLE] = NODE_MASK_ALL,
171 	[N_ONLINE] = { { [0] = 1UL } },
172 #ifndef CONFIG_NUMA
173 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
174 #ifdef CONFIG_HIGHMEM
175 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
176 #endif
177 	[N_MEMORY] = { { [0] = 1UL } },
178 	[N_CPU] = { { [0] = 1UL } },
179 #endif	/* NUMA */
180 };
181 EXPORT_SYMBOL(node_states);
182 
183 atomic_long_t _totalram_pages __read_mostly;
184 EXPORT_SYMBOL(_totalram_pages);
185 unsigned long totalreserve_pages __read_mostly;
186 unsigned long totalcma_pages __read_mostly;
187 
188 int percpu_pagelist_high_fraction;
189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
191 EXPORT_SYMBOL(init_on_alloc);
192 
193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
194 EXPORT_SYMBOL(init_on_free);
195 
196 static bool _init_on_alloc_enabled_early __read_mostly
197 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
198 static int __init early_init_on_alloc(char *buf)
199 {
200 
201 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
202 }
203 early_param("init_on_alloc", early_init_on_alloc);
204 
205 static bool _init_on_free_enabled_early __read_mostly
206 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
207 static int __init early_init_on_free(char *buf)
208 {
209 	return kstrtobool(buf, &_init_on_free_enabled_early);
210 }
211 early_param("init_on_free", early_init_on_free);
212 
213 /*
214  * A cached value of the page's pageblock's migratetype, used when the page is
215  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217  * Also the migratetype set in the page does not necessarily match the pcplist
218  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219  * other index - this ensures that it will be put on the correct CMA freelist.
220  */
221 static inline int get_pcppage_migratetype(struct page *page)
222 {
223 	return page->index;
224 }
225 
226 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
227 {
228 	page->index = migratetype;
229 }
230 
231 #ifdef CONFIG_PM_SLEEP
232 /*
233  * The following functions are used by the suspend/hibernate code to temporarily
234  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235  * while devices are suspended.  To avoid races with the suspend/hibernate code,
236  * they should always be called with system_transition_mutex held
237  * (gfp_allowed_mask also should only be modified with system_transition_mutex
238  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239  * with that modification).
240  */
241 
242 static gfp_t saved_gfp_mask;
243 
244 void pm_restore_gfp_mask(void)
245 {
246 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
247 	if (saved_gfp_mask) {
248 		gfp_allowed_mask = saved_gfp_mask;
249 		saved_gfp_mask = 0;
250 	}
251 }
252 
253 void pm_restrict_gfp_mask(void)
254 {
255 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 	WARN_ON(saved_gfp_mask);
257 	saved_gfp_mask = gfp_allowed_mask;
258 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
259 }
260 
261 bool pm_suspended_storage(void)
262 {
263 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
264 		return false;
265 	return true;
266 }
267 #endif /* CONFIG_PM_SLEEP */
268 
269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
270 unsigned int pageblock_order __read_mostly;
271 #endif
272 
273 static void __free_pages_ok(struct page *page, unsigned int order,
274 			    fpi_t fpi_flags);
275 
276 /*
277  * results with 256, 32 in the lowmem_reserve sysctl:
278  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279  *	1G machine -> (16M dma, 784M normal, 224M high)
280  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
282  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
283  *
284  * TBD: should special case ZONE_DMA32 machines here - in those we normally
285  * don't need any ZONE_NORMAL reservation
286  */
287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
288 #ifdef CONFIG_ZONE_DMA
289 	[ZONE_DMA] = 256,
290 #endif
291 #ifdef CONFIG_ZONE_DMA32
292 	[ZONE_DMA32] = 256,
293 #endif
294 	[ZONE_NORMAL] = 32,
295 #ifdef CONFIG_HIGHMEM
296 	[ZONE_HIGHMEM] = 0,
297 #endif
298 	[ZONE_MOVABLE] = 0,
299 };
300 
301 static char * const zone_names[MAX_NR_ZONES] = {
302 #ifdef CONFIG_ZONE_DMA
303 	 "DMA",
304 #endif
305 #ifdef CONFIG_ZONE_DMA32
306 	 "DMA32",
307 #endif
308 	 "Normal",
309 #ifdef CONFIG_HIGHMEM
310 	 "HighMem",
311 #endif
312 	 "Movable",
313 #ifdef CONFIG_ZONE_DEVICE
314 	 "Device",
315 #endif
316 };
317 
318 const char * const migratetype_names[MIGRATE_TYPES] = {
319 	"Unmovable",
320 	"Movable",
321 	"Reclaimable",
322 	"HighAtomic",
323 #ifdef CONFIG_CMA
324 	"CMA",
325 #endif
326 #ifdef CONFIG_MEMORY_ISOLATION
327 	"Isolate",
328 #endif
329 };
330 
331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 	[NULL_COMPOUND_DTOR] = NULL,
333 	[COMPOUND_PAGE_DTOR] = free_compound_page,
334 #ifdef CONFIG_HUGETLB_PAGE
335 	[HUGETLB_PAGE_DTOR] = free_huge_page,
336 #endif
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
339 #endif
340 };
341 
342 int min_free_kbytes = 1024;
343 int user_min_free_kbytes = -1;
344 int watermark_boost_factor __read_mostly = 15000;
345 int watermark_scale_factor = 10;
346 
347 static unsigned long nr_kernel_pages __initdata;
348 static unsigned long nr_all_pages __initdata;
349 static unsigned long dma_reserve __initdata;
350 
351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long required_kernelcore __initdata;
354 static unsigned long required_kernelcore_percent __initdata;
355 static unsigned long required_movablecore __initdata;
356 static unsigned long required_movablecore_percent __initdata;
357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
358 static bool mirrored_kernelcore __meminitdata;
359 
360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361 int movable_zone;
362 EXPORT_SYMBOL(movable_zone);
363 
364 #if MAX_NUMNODES > 1
365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
366 unsigned int nr_online_nodes __read_mostly = 1;
367 EXPORT_SYMBOL(nr_node_ids);
368 EXPORT_SYMBOL(nr_online_nodes);
369 #endif
370 
371 int page_group_by_mobility_disabled __read_mostly;
372 
373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
374 /*
375  * During boot we initialize deferred pages on-demand, as needed, but once
376  * page_alloc_init_late() has finished, the deferred pages are all initialized,
377  * and we can permanently disable that path.
378  */
379 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
380 
381 static inline bool deferred_pages_enabled(void)
382 {
383 	return static_branch_unlikely(&deferred_pages);
384 }
385 
386 /* Returns true if the struct page for the pfn is uninitialised */
387 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
388 {
389 	int nid = early_pfn_to_nid(pfn);
390 
391 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
392 		return true;
393 
394 	return false;
395 }
396 
397 /*
398  * Returns true when the remaining initialisation should be deferred until
399  * later in the boot cycle when it can be parallelised.
400  */
401 static bool __meminit
402 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
403 {
404 	static unsigned long prev_end_pfn, nr_initialised;
405 
406 	/*
407 	 * prev_end_pfn static that contains the end of previous zone
408 	 * No need to protect because called very early in boot before smp_init.
409 	 */
410 	if (prev_end_pfn != end_pfn) {
411 		prev_end_pfn = end_pfn;
412 		nr_initialised = 0;
413 	}
414 
415 	/* Always populate low zones for address-constrained allocations */
416 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
417 		return false;
418 
419 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
420 		return true;
421 	/*
422 	 * We start only with one section of pages, more pages are added as
423 	 * needed until the rest of deferred pages are initialized.
424 	 */
425 	nr_initialised++;
426 	if ((nr_initialised > PAGES_PER_SECTION) &&
427 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 		NODE_DATA(nid)->first_deferred_pfn = pfn;
429 		return true;
430 	}
431 	return false;
432 }
433 #else
434 static inline bool deferred_pages_enabled(void)
435 {
436 	return false;
437 }
438 
439 static inline bool early_page_uninitialised(unsigned long pfn)
440 {
441 	return false;
442 }
443 
444 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
445 {
446 	return false;
447 }
448 #endif
449 
450 /* Return a pointer to the bitmap storing bits affecting a block of pages */
451 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
452 							unsigned long pfn)
453 {
454 #ifdef CONFIG_SPARSEMEM
455 	return section_to_usemap(__pfn_to_section(pfn));
456 #else
457 	return page_zone(page)->pageblock_flags;
458 #endif /* CONFIG_SPARSEMEM */
459 }
460 
461 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
462 {
463 #ifdef CONFIG_SPARSEMEM
464 	pfn &= (PAGES_PER_SECTION-1);
465 #else
466 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
467 #endif /* CONFIG_SPARSEMEM */
468 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
469 }
470 
471 static __always_inline
472 unsigned long __get_pfnblock_flags_mask(const struct page *page,
473 					unsigned long pfn,
474 					unsigned long mask)
475 {
476 	unsigned long *bitmap;
477 	unsigned long bitidx, word_bitidx;
478 	unsigned long word;
479 
480 	bitmap = get_pageblock_bitmap(page, pfn);
481 	bitidx = pfn_to_bitidx(page, pfn);
482 	word_bitidx = bitidx / BITS_PER_LONG;
483 	bitidx &= (BITS_PER_LONG-1);
484 
485 	word = bitmap[word_bitidx];
486 	return (word >> bitidx) & mask;
487 }
488 
489 /**
490  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
491  * @page: The page within the block of interest
492  * @pfn: The target page frame number
493  * @mask: mask of bits that the caller is interested in
494  *
495  * Return: pageblock_bits flags
496  */
497 unsigned long get_pfnblock_flags_mask(const struct page *page,
498 					unsigned long pfn, unsigned long mask)
499 {
500 	return __get_pfnblock_flags_mask(page, pfn, mask);
501 }
502 
503 static __always_inline int get_pfnblock_migratetype(const struct page *page,
504 					unsigned long pfn)
505 {
506 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
507 }
508 
509 /**
510  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511  * @page: The page within the block of interest
512  * @flags: The flags to set
513  * @pfn: The target page frame number
514  * @mask: mask of bits that the caller is interested in
515  */
516 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
517 					unsigned long pfn,
518 					unsigned long mask)
519 {
520 	unsigned long *bitmap;
521 	unsigned long bitidx, word_bitidx;
522 	unsigned long old_word, word;
523 
524 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
525 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
526 
527 	bitmap = get_pageblock_bitmap(page, pfn);
528 	bitidx = pfn_to_bitidx(page, pfn);
529 	word_bitidx = bitidx / BITS_PER_LONG;
530 	bitidx &= (BITS_PER_LONG-1);
531 
532 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
533 
534 	mask <<= bitidx;
535 	flags <<= bitidx;
536 
537 	word = READ_ONCE(bitmap[word_bitidx]);
538 	for (;;) {
539 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
540 		if (word == old_word)
541 			break;
542 		word = old_word;
543 	}
544 }
545 
546 void set_pageblock_migratetype(struct page *page, int migratetype)
547 {
548 	if (unlikely(page_group_by_mobility_disabled &&
549 		     migratetype < MIGRATE_PCPTYPES))
550 		migratetype = MIGRATE_UNMOVABLE;
551 
552 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
553 				page_to_pfn(page), MIGRATETYPE_MASK);
554 }
555 
556 #ifdef CONFIG_DEBUG_VM
557 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
558 {
559 	int ret = 0;
560 	unsigned seq;
561 	unsigned long pfn = page_to_pfn(page);
562 	unsigned long sp, start_pfn;
563 
564 	do {
565 		seq = zone_span_seqbegin(zone);
566 		start_pfn = zone->zone_start_pfn;
567 		sp = zone->spanned_pages;
568 		if (!zone_spans_pfn(zone, pfn))
569 			ret = 1;
570 	} while (zone_span_seqretry(zone, seq));
571 
572 	if (ret)
573 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
574 			pfn, zone_to_nid(zone), zone->name,
575 			start_pfn, start_pfn + sp);
576 
577 	return ret;
578 }
579 
580 static int page_is_consistent(struct zone *zone, struct page *page)
581 {
582 	if (zone != page_zone(page))
583 		return 0;
584 
585 	return 1;
586 }
587 /*
588  * Temporary debugging check for pages not lying within a given zone.
589  */
590 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
591 {
592 	if (page_outside_zone_boundaries(zone, page))
593 		return 1;
594 	if (!page_is_consistent(zone, page))
595 		return 1;
596 
597 	return 0;
598 }
599 #else
600 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
601 {
602 	return 0;
603 }
604 #endif
605 
606 static void bad_page(struct page *page, const char *reason)
607 {
608 	static unsigned long resume;
609 	static unsigned long nr_shown;
610 	static unsigned long nr_unshown;
611 
612 	/*
613 	 * Allow a burst of 60 reports, then keep quiet for that minute;
614 	 * or allow a steady drip of one report per second.
615 	 */
616 	if (nr_shown == 60) {
617 		if (time_before(jiffies, resume)) {
618 			nr_unshown++;
619 			goto out;
620 		}
621 		if (nr_unshown) {
622 			pr_alert(
623 			      "BUG: Bad page state: %lu messages suppressed\n",
624 				nr_unshown);
625 			nr_unshown = 0;
626 		}
627 		nr_shown = 0;
628 	}
629 	if (nr_shown++ == 0)
630 		resume = jiffies + 60 * HZ;
631 
632 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
633 		current->comm, page_to_pfn(page));
634 	dump_page(page, reason);
635 
636 	print_modules();
637 	dump_stack();
638 out:
639 	/* Leave bad fields for debug, except PageBuddy could make trouble */
640 	page_mapcount_reset(page); /* remove PageBuddy */
641 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
642 }
643 
644 static inline unsigned int order_to_pindex(int migratetype, int order)
645 {
646 	int base = order;
647 
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
650 		VM_BUG_ON(order != pageblock_order);
651 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
652 	}
653 #else
654 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
655 #endif
656 
657 	return (MIGRATE_PCPTYPES * base) + migratetype;
658 }
659 
660 static inline int pindex_to_order(unsigned int pindex)
661 {
662 	int order = pindex / MIGRATE_PCPTYPES;
663 
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 	if (order > PAGE_ALLOC_COSTLY_ORDER)
666 		order = pageblock_order;
667 #else
668 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
669 #endif
670 
671 	return order;
672 }
673 
674 static inline bool pcp_allowed_order(unsigned int order)
675 {
676 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
677 		return true;
678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
679 	if (order == pageblock_order)
680 		return true;
681 #endif
682 	return false;
683 }
684 
685 static inline void free_the_page(struct page *page, unsigned int order)
686 {
687 	if (pcp_allowed_order(order))		/* Via pcp? */
688 		free_unref_page(page, order);
689 	else
690 		__free_pages_ok(page, order, FPI_NONE);
691 }
692 
693 /*
694  * Higher-order pages are called "compound pages".  They are structured thusly:
695  *
696  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
697  *
698  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
699  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
700  *
701  * The first tail page's ->compound_dtor holds the offset in array of compound
702  * page destructors. See compound_page_dtors.
703  *
704  * The first tail page's ->compound_order holds the order of allocation.
705  * This usage means that zero-order pages may not be compound.
706  */
707 
708 void free_compound_page(struct page *page)
709 {
710 	mem_cgroup_uncharge(page_folio(page));
711 	free_the_page(page, compound_order(page));
712 }
713 
714 static void prep_compound_head(struct page *page, unsigned int order)
715 {
716 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717 	set_compound_order(page, order);
718 	atomic_set(compound_mapcount_ptr(page), -1);
719 	atomic_set(compound_pincount_ptr(page), 0);
720 }
721 
722 static void prep_compound_tail(struct page *head, int tail_idx)
723 {
724 	struct page *p = head + tail_idx;
725 
726 	p->mapping = TAIL_MAPPING;
727 	set_compound_head(p, head);
728 }
729 
730 void prep_compound_page(struct page *page, unsigned int order)
731 {
732 	int i;
733 	int nr_pages = 1 << order;
734 
735 	__SetPageHead(page);
736 	for (i = 1; i < nr_pages; i++)
737 		prep_compound_tail(page, i);
738 
739 	prep_compound_head(page, order);
740 }
741 
742 #ifdef CONFIG_DEBUG_PAGEALLOC
743 unsigned int _debug_guardpage_minorder;
744 
745 bool _debug_pagealloc_enabled_early __read_mostly
746 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
747 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
748 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
749 EXPORT_SYMBOL(_debug_pagealloc_enabled);
750 
751 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
752 
753 static int __init early_debug_pagealloc(char *buf)
754 {
755 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
756 }
757 early_param("debug_pagealloc", early_debug_pagealloc);
758 
759 static int __init debug_guardpage_minorder_setup(char *buf)
760 {
761 	unsigned long res;
762 
763 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
764 		pr_err("Bad debug_guardpage_minorder value\n");
765 		return 0;
766 	}
767 	_debug_guardpage_minorder = res;
768 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
769 	return 0;
770 }
771 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
772 
773 static inline bool set_page_guard(struct zone *zone, struct page *page,
774 				unsigned int order, int migratetype)
775 {
776 	if (!debug_guardpage_enabled())
777 		return false;
778 
779 	if (order >= debug_guardpage_minorder())
780 		return false;
781 
782 	__SetPageGuard(page);
783 	INIT_LIST_HEAD(&page->lru);
784 	set_page_private(page, order);
785 	/* Guard pages are not available for any usage */
786 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
787 
788 	return true;
789 }
790 
791 static inline void clear_page_guard(struct zone *zone, struct page *page,
792 				unsigned int order, int migratetype)
793 {
794 	if (!debug_guardpage_enabled())
795 		return;
796 
797 	__ClearPageGuard(page);
798 
799 	set_page_private(page, 0);
800 	if (!is_migrate_isolate(migratetype))
801 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
802 }
803 #else
804 static inline bool set_page_guard(struct zone *zone, struct page *page,
805 			unsigned int order, int migratetype) { return false; }
806 static inline void clear_page_guard(struct zone *zone, struct page *page,
807 				unsigned int order, int migratetype) {}
808 #endif
809 
810 /*
811  * Enable static keys related to various memory debugging and hardening options.
812  * Some override others, and depend on early params that are evaluated in the
813  * order of appearance. So we need to first gather the full picture of what was
814  * enabled, and then make decisions.
815  */
816 void init_mem_debugging_and_hardening(void)
817 {
818 	bool page_poisoning_requested = false;
819 
820 #ifdef CONFIG_PAGE_POISONING
821 	/*
822 	 * Page poisoning is debug page alloc for some arches. If
823 	 * either of those options are enabled, enable poisoning.
824 	 */
825 	if (page_poisoning_enabled() ||
826 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
827 	      debug_pagealloc_enabled())) {
828 		static_branch_enable(&_page_poisoning_enabled);
829 		page_poisoning_requested = true;
830 	}
831 #endif
832 
833 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
834 	    page_poisoning_requested) {
835 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
836 			"will take precedence over init_on_alloc and init_on_free\n");
837 		_init_on_alloc_enabled_early = false;
838 		_init_on_free_enabled_early = false;
839 	}
840 
841 	if (_init_on_alloc_enabled_early)
842 		static_branch_enable(&init_on_alloc);
843 	else
844 		static_branch_disable(&init_on_alloc);
845 
846 	if (_init_on_free_enabled_early)
847 		static_branch_enable(&init_on_free);
848 	else
849 		static_branch_disable(&init_on_free);
850 
851 #ifdef CONFIG_DEBUG_PAGEALLOC
852 	if (!debug_pagealloc_enabled())
853 		return;
854 
855 	static_branch_enable(&_debug_pagealloc_enabled);
856 
857 	if (!debug_guardpage_minorder())
858 		return;
859 
860 	static_branch_enable(&_debug_guardpage_enabled);
861 #endif
862 }
863 
864 static inline void set_buddy_order(struct page *page, unsigned int order)
865 {
866 	set_page_private(page, order);
867 	__SetPageBuddy(page);
868 }
869 
870 /*
871  * This function checks whether a page is free && is the buddy
872  * we can coalesce a page and its buddy if
873  * (a) the buddy is not in a hole (check before calling!) &&
874  * (b) the buddy is in the buddy system &&
875  * (c) a page and its buddy have the same order &&
876  * (d) a page and its buddy are in the same zone.
877  *
878  * For recording whether a page is in the buddy system, we set PageBuddy.
879  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
880  *
881  * For recording page's order, we use page_private(page).
882  */
883 static inline bool page_is_buddy(struct page *page, struct page *buddy,
884 							unsigned int order)
885 {
886 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
887 		return false;
888 
889 	if (buddy_order(buddy) != order)
890 		return false;
891 
892 	/*
893 	 * zone check is done late to avoid uselessly calculating
894 	 * zone/node ids for pages that could never merge.
895 	 */
896 	if (page_zone_id(page) != page_zone_id(buddy))
897 		return false;
898 
899 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
900 
901 	return true;
902 }
903 
904 #ifdef CONFIG_COMPACTION
905 static inline struct capture_control *task_capc(struct zone *zone)
906 {
907 	struct capture_control *capc = current->capture_control;
908 
909 	return unlikely(capc) &&
910 		!(current->flags & PF_KTHREAD) &&
911 		!capc->page &&
912 		capc->cc->zone == zone ? capc : NULL;
913 }
914 
915 static inline bool
916 compaction_capture(struct capture_control *capc, struct page *page,
917 		   int order, int migratetype)
918 {
919 	if (!capc || order != capc->cc->order)
920 		return false;
921 
922 	/* Do not accidentally pollute CMA or isolated regions*/
923 	if (is_migrate_cma(migratetype) ||
924 	    is_migrate_isolate(migratetype))
925 		return false;
926 
927 	/*
928 	 * Do not let lower order allocations pollute a movable pageblock.
929 	 * This might let an unmovable request use a reclaimable pageblock
930 	 * and vice-versa but no more than normal fallback logic which can
931 	 * have trouble finding a high-order free page.
932 	 */
933 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
934 		return false;
935 
936 	capc->page = page;
937 	return true;
938 }
939 
940 #else
941 static inline struct capture_control *task_capc(struct zone *zone)
942 {
943 	return NULL;
944 }
945 
946 static inline bool
947 compaction_capture(struct capture_control *capc, struct page *page,
948 		   int order, int migratetype)
949 {
950 	return false;
951 }
952 #endif /* CONFIG_COMPACTION */
953 
954 /* Used for pages not on another list */
955 static inline void add_to_free_list(struct page *page, struct zone *zone,
956 				    unsigned int order, int migratetype)
957 {
958 	struct free_area *area = &zone->free_area[order];
959 
960 	list_add(&page->lru, &area->free_list[migratetype]);
961 	area->nr_free++;
962 }
963 
964 /* Used for pages not on another list */
965 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
966 					 unsigned int order, int migratetype)
967 {
968 	struct free_area *area = &zone->free_area[order];
969 
970 	list_add_tail(&page->lru, &area->free_list[migratetype]);
971 	area->nr_free++;
972 }
973 
974 /*
975  * Used for pages which are on another list. Move the pages to the tail
976  * of the list - so the moved pages won't immediately be considered for
977  * allocation again (e.g., optimization for memory onlining).
978  */
979 static inline void move_to_free_list(struct page *page, struct zone *zone,
980 				     unsigned int order, int migratetype)
981 {
982 	struct free_area *area = &zone->free_area[order];
983 
984 	list_move_tail(&page->lru, &area->free_list[migratetype]);
985 }
986 
987 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
988 					   unsigned int order)
989 {
990 	/* clear reported state and update reported page count */
991 	if (page_reported(page))
992 		__ClearPageReported(page);
993 
994 	list_del(&page->lru);
995 	__ClearPageBuddy(page);
996 	set_page_private(page, 0);
997 	zone->free_area[order].nr_free--;
998 }
999 
1000 /*
1001  * If this is not the largest possible page, check if the buddy
1002  * of the next-highest order is free. If it is, it's possible
1003  * that pages are being freed that will coalesce soon. In case,
1004  * that is happening, add the free page to the tail of the list
1005  * so it's less likely to be used soon and more likely to be merged
1006  * as a higher order page
1007  */
1008 static inline bool
1009 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1010 		   struct page *page, unsigned int order)
1011 {
1012 	struct page *higher_page, *higher_buddy;
1013 	unsigned long combined_pfn;
1014 
1015 	if (order >= MAX_ORDER - 2)
1016 		return false;
1017 
1018 	combined_pfn = buddy_pfn & pfn;
1019 	higher_page = page + (combined_pfn - pfn);
1020 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1021 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1022 
1023 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1024 }
1025 
1026 /*
1027  * Freeing function for a buddy system allocator.
1028  *
1029  * The concept of a buddy system is to maintain direct-mapped table
1030  * (containing bit values) for memory blocks of various "orders".
1031  * The bottom level table contains the map for the smallest allocatable
1032  * units of memory (here, pages), and each level above it describes
1033  * pairs of units from the levels below, hence, "buddies".
1034  * At a high level, all that happens here is marking the table entry
1035  * at the bottom level available, and propagating the changes upward
1036  * as necessary, plus some accounting needed to play nicely with other
1037  * parts of the VM system.
1038  * At each level, we keep a list of pages, which are heads of continuous
1039  * free pages of length of (1 << order) and marked with PageBuddy.
1040  * Page's order is recorded in page_private(page) field.
1041  * So when we are allocating or freeing one, we can derive the state of the
1042  * other.  That is, if we allocate a small block, and both were
1043  * free, the remainder of the region must be split into blocks.
1044  * If a block is freed, and its buddy is also free, then this
1045  * triggers coalescing into a block of larger size.
1046  *
1047  * -- nyc
1048  */
1049 
1050 static inline void __free_one_page(struct page *page,
1051 		unsigned long pfn,
1052 		struct zone *zone, unsigned int order,
1053 		int migratetype, fpi_t fpi_flags)
1054 {
1055 	struct capture_control *capc = task_capc(zone);
1056 	unsigned int max_order = pageblock_order;
1057 	unsigned long buddy_pfn;
1058 	unsigned long combined_pfn;
1059 	struct page *buddy;
1060 	bool to_tail;
1061 
1062 	VM_BUG_ON(!zone_is_initialized(zone));
1063 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1064 
1065 	VM_BUG_ON(migratetype == -1);
1066 	if (likely(!is_migrate_isolate(migratetype)))
1067 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1068 
1069 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1070 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1071 
1072 continue_merging:
1073 	while (order < max_order) {
1074 		if (compaction_capture(capc, page, order, migratetype)) {
1075 			__mod_zone_freepage_state(zone, -(1 << order),
1076 								migratetype);
1077 			return;
1078 		}
1079 		buddy_pfn = __find_buddy_pfn(pfn, order);
1080 		buddy = page + (buddy_pfn - pfn);
1081 
1082 		if (!page_is_buddy(page, buddy, order))
1083 			goto done_merging;
1084 		/*
1085 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1086 		 * merge with it and move up one order.
1087 		 */
1088 		if (page_is_guard(buddy))
1089 			clear_page_guard(zone, buddy, order, migratetype);
1090 		else
1091 			del_page_from_free_list(buddy, zone, order);
1092 		combined_pfn = buddy_pfn & pfn;
1093 		page = page + (combined_pfn - pfn);
1094 		pfn = combined_pfn;
1095 		order++;
1096 	}
1097 	if (order < MAX_ORDER - 1) {
1098 		/* If we are here, it means order is >= pageblock_order.
1099 		 * We want to prevent merge between freepages on pageblock
1100 		 * without fallbacks and normal pageblock. Without this,
1101 		 * pageblock isolation could cause incorrect freepage or CMA
1102 		 * accounting or HIGHATOMIC accounting.
1103 		 *
1104 		 * We don't want to hit this code for the more frequent
1105 		 * low-order merging.
1106 		 */
1107 		int buddy_mt;
1108 
1109 		buddy_pfn = __find_buddy_pfn(pfn, order);
1110 		buddy = page + (buddy_pfn - pfn);
1111 		buddy_mt = get_pageblock_migratetype(buddy);
1112 
1113 		if (migratetype != buddy_mt
1114 				&& (!migratetype_is_mergeable(migratetype) ||
1115 					!migratetype_is_mergeable(buddy_mt)))
1116 			goto done_merging;
1117 		max_order = order + 1;
1118 		goto continue_merging;
1119 	}
1120 
1121 done_merging:
1122 	set_buddy_order(page, order);
1123 
1124 	if (fpi_flags & FPI_TO_TAIL)
1125 		to_tail = true;
1126 	else if (is_shuffle_order(order))
1127 		to_tail = shuffle_pick_tail();
1128 	else
1129 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1130 
1131 	if (to_tail)
1132 		add_to_free_list_tail(page, zone, order, migratetype);
1133 	else
1134 		add_to_free_list(page, zone, order, migratetype);
1135 
1136 	/* Notify page reporting subsystem of freed page */
1137 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1138 		page_reporting_notify_free(order);
1139 }
1140 
1141 /*
1142  * A bad page could be due to a number of fields. Instead of multiple branches,
1143  * try and check multiple fields with one check. The caller must do a detailed
1144  * check if necessary.
1145  */
1146 static inline bool page_expected_state(struct page *page,
1147 					unsigned long check_flags)
1148 {
1149 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1150 		return false;
1151 
1152 	if (unlikely((unsigned long)page->mapping |
1153 			page_ref_count(page) |
1154 #ifdef CONFIG_MEMCG
1155 			page->memcg_data |
1156 #endif
1157 			(page->flags & check_flags)))
1158 		return false;
1159 
1160 	return true;
1161 }
1162 
1163 static const char *page_bad_reason(struct page *page, unsigned long flags)
1164 {
1165 	const char *bad_reason = NULL;
1166 
1167 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1168 		bad_reason = "nonzero mapcount";
1169 	if (unlikely(page->mapping != NULL))
1170 		bad_reason = "non-NULL mapping";
1171 	if (unlikely(page_ref_count(page) != 0))
1172 		bad_reason = "nonzero _refcount";
1173 	if (unlikely(page->flags & flags)) {
1174 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1175 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1176 		else
1177 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1178 	}
1179 #ifdef CONFIG_MEMCG
1180 	if (unlikely(page->memcg_data))
1181 		bad_reason = "page still charged to cgroup";
1182 #endif
1183 	return bad_reason;
1184 }
1185 
1186 static void check_free_page_bad(struct page *page)
1187 {
1188 	bad_page(page,
1189 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1190 }
1191 
1192 static inline int check_free_page(struct page *page)
1193 {
1194 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1195 		return 0;
1196 
1197 	/* Something has gone sideways, find it */
1198 	check_free_page_bad(page);
1199 	return 1;
1200 }
1201 
1202 static int free_tail_pages_check(struct page *head_page, struct page *page)
1203 {
1204 	int ret = 1;
1205 
1206 	/*
1207 	 * We rely page->lru.next never has bit 0 set, unless the page
1208 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1209 	 */
1210 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1211 
1212 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1213 		ret = 0;
1214 		goto out;
1215 	}
1216 	switch (page - head_page) {
1217 	case 1:
1218 		/* the first tail page: ->mapping may be compound_mapcount() */
1219 		if (unlikely(compound_mapcount(page))) {
1220 			bad_page(page, "nonzero compound_mapcount");
1221 			goto out;
1222 		}
1223 		break;
1224 	case 2:
1225 		/*
1226 		 * the second tail page: ->mapping is
1227 		 * deferred_list.next -- ignore value.
1228 		 */
1229 		break;
1230 	default:
1231 		if (page->mapping != TAIL_MAPPING) {
1232 			bad_page(page, "corrupted mapping in tail page");
1233 			goto out;
1234 		}
1235 		break;
1236 	}
1237 	if (unlikely(!PageTail(page))) {
1238 		bad_page(page, "PageTail not set");
1239 		goto out;
1240 	}
1241 	if (unlikely(compound_head(page) != head_page)) {
1242 		bad_page(page, "compound_head not consistent");
1243 		goto out;
1244 	}
1245 	ret = 0;
1246 out:
1247 	page->mapping = NULL;
1248 	clear_compound_head(page);
1249 	return ret;
1250 }
1251 
1252 /*
1253  * Skip KASAN memory poisoning when either:
1254  *
1255  * 1. Deferred memory initialization has not yet completed,
1256  *    see the explanation below.
1257  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1258  *    see the comment next to it.
1259  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1260  *    see the comment next to it.
1261  *
1262  * Poisoning pages during deferred memory init will greatly lengthen the
1263  * process and cause problem in large memory systems as the deferred pages
1264  * initialization is done with interrupt disabled.
1265  *
1266  * Assuming that there will be no reference to those newly initialized
1267  * pages before they are ever allocated, this should have no effect on
1268  * KASAN memory tracking as the poison will be properly inserted at page
1269  * allocation time. The only corner case is when pages are allocated by
1270  * on-demand allocation and then freed again before the deferred pages
1271  * initialization is done, but this is not likely to happen.
1272  */
1273 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1274 {
1275 	return deferred_pages_enabled() ||
1276 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1277 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1278 	       PageSkipKASanPoison(page);
1279 }
1280 
1281 static void kernel_init_free_pages(struct page *page, int numpages)
1282 {
1283 	int i;
1284 
1285 	/* s390's use of memset() could override KASAN redzones. */
1286 	kasan_disable_current();
1287 	for (i = 0; i < numpages; i++) {
1288 		u8 tag = page_kasan_tag(page + i);
1289 		page_kasan_tag_reset(page + i);
1290 		clear_highpage(page + i);
1291 		page_kasan_tag_set(page + i, tag);
1292 	}
1293 	kasan_enable_current();
1294 }
1295 
1296 static __always_inline bool free_pages_prepare(struct page *page,
1297 			unsigned int order, bool check_free, fpi_t fpi_flags)
1298 {
1299 	int bad = 0;
1300 	bool init = want_init_on_free();
1301 
1302 	VM_BUG_ON_PAGE(PageTail(page), page);
1303 
1304 	trace_mm_page_free(page, order);
1305 
1306 	if (unlikely(PageHWPoison(page)) && !order) {
1307 		/*
1308 		 * Do not let hwpoison pages hit pcplists/buddy
1309 		 * Untie memcg state and reset page's owner
1310 		 */
1311 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1312 			__memcg_kmem_uncharge_page(page, order);
1313 		reset_page_owner(page, order);
1314 		page_table_check_free(page, order);
1315 		return false;
1316 	}
1317 
1318 	/*
1319 	 * Check tail pages before head page information is cleared to
1320 	 * avoid checking PageCompound for order-0 pages.
1321 	 */
1322 	if (unlikely(order)) {
1323 		bool compound = PageCompound(page);
1324 		int i;
1325 
1326 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1327 
1328 		if (compound) {
1329 			ClearPageDoubleMap(page);
1330 			ClearPageHasHWPoisoned(page);
1331 		}
1332 		for (i = 1; i < (1 << order); i++) {
1333 			if (compound)
1334 				bad += free_tail_pages_check(page, page + i);
1335 			if (unlikely(check_free_page(page + i))) {
1336 				bad++;
1337 				continue;
1338 			}
1339 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1340 		}
1341 	}
1342 	if (PageMappingFlags(page))
1343 		page->mapping = NULL;
1344 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1345 		__memcg_kmem_uncharge_page(page, order);
1346 	if (check_free)
1347 		bad += check_free_page(page);
1348 	if (bad)
1349 		return false;
1350 
1351 	page_cpupid_reset_last(page);
1352 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1353 	reset_page_owner(page, order);
1354 	page_table_check_free(page, order);
1355 
1356 	if (!PageHighMem(page)) {
1357 		debug_check_no_locks_freed(page_address(page),
1358 					   PAGE_SIZE << order);
1359 		debug_check_no_obj_freed(page_address(page),
1360 					   PAGE_SIZE << order);
1361 	}
1362 
1363 	kernel_poison_pages(page, 1 << order);
1364 
1365 	/*
1366 	 * As memory initialization might be integrated into KASAN,
1367 	 * KASAN poisoning and memory initialization code must be
1368 	 * kept together to avoid discrepancies in behavior.
1369 	 *
1370 	 * With hardware tag-based KASAN, memory tags must be set before the
1371 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1372 	 */
1373 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1374 		kasan_poison_pages(page, order, init);
1375 
1376 		/* Memory is already initialized if KASAN did it internally. */
1377 		if (kasan_has_integrated_init())
1378 			init = false;
1379 	}
1380 	if (init)
1381 		kernel_init_free_pages(page, 1 << order);
1382 
1383 	/*
1384 	 * arch_free_page() can make the page's contents inaccessible.  s390
1385 	 * does this.  So nothing which can access the page's contents should
1386 	 * happen after this.
1387 	 */
1388 	arch_free_page(page, order);
1389 
1390 	debug_pagealloc_unmap_pages(page, 1 << order);
1391 
1392 	return true;
1393 }
1394 
1395 #ifdef CONFIG_DEBUG_VM
1396 /*
1397  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1398  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1399  * moved from pcp lists to free lists.
1400  */
1401 static bool free_pcp_prepare(struct page *page, unsigned int order)
1402 {
1403 	return free_pages_prepare(page, order, true, FPI_NONE);
1404 }
1405 
1406 static bool bulkfree_pcp_prepare(struct page *page)
1407 {
1408 	if (debug_pagealloc_enabled_static())
1409 		return check_free_page(page);
1410 	else
1411 		return false;
1412 }
1413 #else
1414 /*
1415  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1416  * moving from pcp lists to free list in order to reduce overhead. With
1417  * debug_pagealloc enabled, they are checked also immediately when being freed
1418  * to the pcp lists.
1419  */
1420 static bool free_pcp_prepare(struct page *page, unsigned int order)
1421 {
1422 	if (debug_pagealloc_enabled_static())
1423 		return free_pages_prepare(page, order, true, FPI_NONE);
1424 	else
1425 		return free_pages_prepare(page, order, false, FPI_NONE);
1426 }
1427 
1428 static bool bulkfree_pcp_prepare(struct page *page)
1429 {
1430 	return check_free_page(page);
1431 }
1432 #endif /* CONFIG_DEBUG_VM */
1433 
1434 /*
1435  * Frees a number of pages from the PCP lists
1436  * Assumes all pages on list are in same zone.
1437  * count is the number of pages to free.
1438  */
1439 static void free_pcppages_bulk(struct zone *zone, int count,
1440 					struct per_cpu_pages *pcp,
1441 					int pindex)
1442 {
1443 	int min_pindex = 0;
1444 	int max_pindex = NR_PCP_LISTS - 1;
1445 	unsigned int order;
1446 	bool isolated_pageblocks;
1447 	struct page *page;
1448 
1449 	/*
1450 	 * Ensure proper count is passed which otherwise would stuck in the
1451 	 * below while (list_empty(list)) loop.
1452 	 */
1453 	count = min(pcp->count, count);
1454 
1455 	/* Ensure requested pindex is drained first. */
1456 	pindex = pindex - 1;
1457 
1458 	/*
1459 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1460 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1461 	 */
1462 	spin_lock(&zone->lock);
1463 	isolated_pageblocks = has_isolate_pageblock(zone);
1464 
1465 	while (count > 0) {
1466 		struct list_head *list;
1467 		int nr_pages;
1468 
1469 		/* Remove pages from lists in a round-robin fashion. */
1470 		do {
1471 			if (++pindex > max_pindex)
1472 				pindex = min_pindex;
1473 			list = &pcp->lists[pindex];
1474 			if (!list_empty(list))
1475 				break;
1476 
1477 			if (pindex == max_pindex)
1478 				max_pindex--;
1479 			if (pindex == min_pindex)
1480 				min_pindex++;
1481 		} while (1);
1482 
1483 		order = pindex_to_order(pindex);
1484 		nr_pages = 1 << order;
1485 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1486 		do {
1487 			int mt;
1488 
1489 			page = list_last_entry(list, struct page, lru);
1490 			mt = get_pcppage_migratetype(page);
1491 
1492 			/* must delete to avoid corrupting pcp list */
1493 			list_del(&page->lru);
1494 			count -= nr_pages;
1495 			pcp->count -= nr_pages;
1496 
1497 			if (bulkfree_pcp_prepare(page))
1498 				continue;
1499 
1500 			/* MIGRATE_ISOLATE page should not go to pcplists */
1501 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1502 			/* Pageblock could have been isolated meanwhile */
1503 			if (unlikely(isolated_pageblocks))
1504 				mt = get_pageblock_migratetype(page);
1505 
1506 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1507 			trace_mm_page_pcpu_drain(page, order, mt);
1508 		} while (count > 0 && !list_empty(list));
1509 	}
1510 
1511 	spin_unlock(&zone->lock);
1512 }
1513 
1514 static void free_one_page(struct zone *zone,
1515 				struct page *page, unsigned long pfn,
1516 				unsigned int order,
1517 				int migratetype, fpi_t fpi_flags)
1518 {
1519 	unsigned long flags;
1520 
1521 	spin_lock_irqsave(&zone->lock, flags);
1522 	if (unlikely(has_isolate_pageblock(zone) ||
1523 		is_migrate_isolate(migratetype))) {
1524 		migratetype = get_pfnblock_migratetype(page, pfn);
1525 	}
1526 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1527 	spin_unlock_irqrestore(&zone->lock, flags);
1528 }
1529 
1530 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1531 				unsigned long zone, int nid)
1532 {
1533 	mm_zero_struct_page(page);
1534 	set_page_links(page, zone, nid, pfn);
1535 	init_page_count(page);
1536 	page_mapcount_reset(page);
1537 	page_cpupid_reset_last(page);
1538 	page_kasan_tag_reset(page);
1539 
1540 	INIT_LIST_HEAD(&page->lru);
1541 #ifdef WANT_PAGE_VIRTUAL
1542 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1543 	if (!is_highmem_idx(zone))
1544 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1545 #endif
1546 }
1547 
1548 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1549 static void __meminit init_reserved_page(unsigned long pfn)
1550 {
1551 	pg_data_t *pgdat;
1552 	int nid, zid;
1553 
1554 	if (!early_page_uninitialised(pfn))
1555 		return;
1556 
1557 	nid = early_pfn_to_nid(pfn);
1558 	pgdat = NODE_DATA(nid);
1559 
1560 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1561 		struct zone *zone = &pgdat->node_zones[zid];
1562 
1563 		if (zone_spans_pfn(zone, pfn))
1564 			break;
1565 	}
1566 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1567 }
1568 #else
1569 static inline void init_reserved_page(unsigned long pfn)
1570 {
1571 }
1572 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1573 
1574 /*
1575  * Initialised pages do not have PageReserved set. This function is
1576  * called for each range allocated by the bootmem allocator and
1577  * marks the pages PageReserved. The remaining valid pages are later
1578  * sent to the buddy page allocator.
1579  */
1580 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1581 {
1582 	unsigned long start_pfn = PFN_DOWN(start);
1583 	unsigned long end_pfn = PFN_UP(end);
1584 
1585 	for (; start_pfn < end_pfn; start_pfn++) {
1586 		if (pfn_valid(start_pfn)) {
1587 			struct page *page = pfn_to_page(start_pfn);
1588 
1589 			init_reserved_page(start_pfn);
1590 
1591 			/* Avoid false-positive PageTail() */
1592 			INIT_LIST_HEAD(&page->lru);
1593 
1594 			/*
1595 			 * no need for atomic set_bit because the struct
1596 			 * page is not visible yet so nobody should
1597 			 * access it yet.
1598 			 */
1599 			__SetPageReserved(page);
1600 		}
1601 	}
1602 }
1603 
1604 static void __free_pages_ok(struct page *page, unsigned int order,
1605 			    fpi_t fpi_flags)
1606 {
1607 	unsigned long flags;
1608 	int migratetype;
1609 	unsigned long pfn = page_to_pfn(page);
1610 	struct zone *zone = page_zone(page);
1611 
1612 	if (!free_pages_prepare(page, order, true, fpi_flags))
1613 		return;
1614 
1615 	migratetype = get_pfnblock_migratetype(page, pfn);
1616 
1617 	spin_lock_irqsave(&zone->lock, flags);
1618 	if (unlikely(has_isolate_pageblock(zone) ||
1619 		is_migrate_isolate(migratetype))) {
1620 		migratetype = get_pfnblock_migratetype(page, pfn);
1621 	}
1622 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1623 	spin_unlock_irqrestore(&zone->lock, flags);
1624 
1625 	__count_vm_events(PGFREE, 1 << order);
1626 }
1627 
1628 void __free_pages_core(struct page *page, unsigned int order)
1629 {
1630 	unsigned int nr_pages = 1 << order;
1631 	struct page *p = page;
1632 	unsigned int loop;
1633 
1634 	/*
1635 	 * When initializing the memmap, __init_single_page() sets the refcount
1636 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1637 	 * refcount of all involved pages to 0.
1638 	 */
1639 	prefetchw(p);
1640 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1641 		prefetchw(p + 1);
1642 		__ClearPageReserved(p);
1643 		set_page_count(p, 0);
1644 	}
1645 	__ClearPageReserved(p);
1646 	set_page_count(p, 0);
1647 
1648 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1649 
1650 	/*
1651 	 * Bypass PCP and place fresh pages right to the tail, primarily
1652 	 * relevant for memory onlining.
1653 	 */
1654 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1655 }
1656 
1657 #ifdef CONFIG_NUMA
1658 
1659 /*
1660  * During memory init memblocks map pfns to nids. The search is expensive and
1661  * this caches recent lookups. The implementation of __early_pfn_to_nid
1662  * treats start/end as pfns.
1663  */
1664 struct mminit_pfnnid_cache {
1665 	unsigned long last_start;
1666 	unsigned long last_end;
1667 	int last_nid;
1668 };
1669 
1670 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1671 
1672 /*
1673  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1674  */
1675 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1676 					struct mminit_pfnnid_cache *state)
1677 {
1678 	unsigned long start_pfn, end_pfn;
1679 	int nid;
1680 
1681 	if (state->last_start <= pfn && pfn < state->last_end)
1682 		return state->last_nid;
1683 
1684 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1685 	if (nid != NUMA_NO_NODE) {
1686 		state->last_start = start_pfn;
1687 		state->last_end = end_pfn;
1688 		state->last_nid = nid;
1689 	}
1690 
1691 	return nid;
1692 }
1693 
1694 int __meminit early_pfn_to_nid(unsigned long pfn)
1695 {
1696 	static DEFINE_SPINLOCK(early_pfn_lock);
1697 	int nid;
1698 
1699 	spin_lock(&early_pfn_lock);
1700 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1701 	if (nid < 0)
1702 		nid = first_online_node;
1703 	spin_unlock(&early_pfn_lock);
1704 
1705 	return nid;
1706 }
1707 #endif /* CONFIG_NUMA */
1708 
1709 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1710 							unsigned int order)
1711 {
1712 	if (early_page_uninitialised(pfn))
1713 		return;
1714 	__free_pages_core(page, order);
1715 }
1716 
1717 /*
1718  * Check that the whole (or subset of) a pageblock given by the interval of
1719  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1720  * with the migration of free compaction scanner.
1721  *
1722  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1723  *
1724  * It's possible on some configurations to have a setup like node0 node1 node0
1725  * i.e. it's possible that all pages within a zones range of pages do not
1726  * belong to a single zone. We assume that a border between node0 and node1
1727  * can occur within a single pageblock, but not a node0 node1 node0
1728  * interleaving within a single pageblock. It is therefore sufficient to check
1729  * the first and last page of a pageblock and avoid checking each individual
1730  * page in a pageblock.
1731  */
1732 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1733 				     unsigned long end_pfn, struct zone *zone)
1734 {
1735 	struct page *start_page;
1736 	struct page *end_page;
1737 
1738 	/* end_pfn is one past the range we are checking */
1739 	end_pfn--;
1740 
1741 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1742 		return NULL;
1743 
1744 	start_page = pfn_to_online_page(start_pfn);
1745 	if (!start_page)
1746 		return NULL;
1747 
1748 	if (page_zone(start_page) != zone)
1749 		return NULL;
1750 
1751 	end_page = pfn_to_page(end_pfn);
1752 
1753 	/* This gives a shorter code than deriving page_zone(end_page) */
1754 	if (page_zone_id(start_page) != page_zone_id(end_page))
1755 		return NULL;
1756 
1757 	return start_page;
1758 }
1759 
1760 void set_zone_contiguous(struct zone *zone)
1761 {
1762 	unsigned long block_start_pfn = zone->zone_start_pfn;
1763 	unsigned long block_end_pfn;
1764 
1765 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1766 	for (; block_start_pfn < zone_end_pfn(zone);
1767 			block_start_pfn = block_end_pfn,
1768 			 block_end_pfn += pageblock_nr_pages) {
1769 
1770 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1771 
1772 		if (!__pageblock_pfn_to_page(block_start_pfn,
1773 					     block_end_pfn, zone))
1774 			return;
1775 		cond_resched();
1776 	}
1777 
1778 	/* We confirm that there is no hole */
1779 	zone->contiguous = true;
1780 }
1781 
1782 void clear_zone_contiguous(struct zone *zone)
1783 {
1784 	zone->contiguous = false;
1785 }
1786 
1787 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1788 static void __init deferred_free_range(unsigned long pfn,
1789 				       unsigned long nr_pages)
1790 {
1791 	struct page *page;
1792 	unsigned long i;
1793 
1794 	if (!nr_pages)
1795 		return;
1796 
1797 	page = pfn_to_page(pfn);
1798 
1799 	/* Free a large naturally-aligned chunk if possible */
1800 	if (nr_pages == pageblock_nr_pages &&
1801 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1802 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1803 		__free_pages_core(page, pageblock_order);
1804 		return;
1805 	}
1806 
1807 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1808 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1809 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1810 		__free_pages_core(page, 0);
1811 	}
1812 }
1813 
1814 /* Completion tracking for deferred_init_memmap() threads */
1815 static atomic_t pgdat_init_n_undone __initdata;
1816 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1817 
1818 static inline void __init pgdat_init_report_one_done(void)
1819 {
1820 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1821 		complete(&pgdat_init_all_done_comp);
1822 }
1823 
1824 /*
1825  * Returns true if page needs to be initialized or freed to buddy allocator.
1826  *
1827  * First we check if pfn is valid on architectures where it is possible to have
1828  * holes within pageblock_nr_pages. On systems where it is not possible, this
1829  * function is optimized out.
1830  *
1831  * Then, we check if a current large page is valid by only checking the validity
1832  * of the head pfn.
1833  */
1834 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1835 {
1836 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1837 		return false;
1838 	return true;
1839 }
1840 
1841 /*
1842  * Free pages to buddy allocator. Try to free aligned pages in
1843  * pageblock_nr_pages sizes.
1844  */
1845 static void __init deferred_free_pages(unsigned long pfn,
1846 				       unsigned long end_pfn)
1847 {
1848 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1849 	unsigned long nr_free = 0;
1850 
1851 	for (; pfn < end_pfn; pfn++) {
1852 		if (!deferred_pfn_valid(pfn)) {
1853 			deferred_free_range(pfn - nr_free, nr_free);
1854 			nr_free = 0;
1855 		} else if (!(pfn & nr_pgmask)) {
1856 			deferred_free_range(pfn - nr_free, nr_free);
1857 			nr_free = 1;
1858 		} else {
1859 			nr_free++;
1860 		}
1861 	}
1862 	/* Free the last block of pages to allocator */
1863 	deferred_free_range(pfn - nr_free, nr_free);
1864 }
1865 
1866 /*
1867  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1868  * by performing it only once every pageblock_nr_pages.
1869  * Return number of pages initialized.
1870  */
1871 static unsigned long  __init deferred_init_pages(struct zone *zone,
1872 						 unsigned long pfn,
1873 						 unsigned long end_pfn)
1874 {
1875 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1876 	int nid = zone_to_nid(zone);
1877 	unsigned long nr_pages = 0;
1878 	int zid = zone_idx(zone);
1879 	struct page *page = NULL;
1880 
1881 	for (; pfn < end_pfn; pfn++) {
1882 		if (!deferred_pfn_valid(pfn)) {
1883 			page = NULL;
1884 			continue;
1885 		} else if (!page || !(pfn & nr_pgmask)) {
1886 			page = pfn_to_page(pfn);
1887 		} else {
1888 			page++;
1889 		}
1890 		__init_single_page(page, pfn, zid, nid);
1891 		nr_pages++;
1892 	}
1893 	return (nr_pages);
1894 }
1895 
1896 /*
1897  * This function is meant to pre-load the iterator for the zone init.
1898  * Specifically it walks through the ranges until we are caught up to the
1899  * first_init_pfn value and exits there. If we never encounter the value we
1900  * return false indicating there are no valid ranges left.
1901  */
1902 static bool __init
1903 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1904 				    unsigned long *spfn, unsigned long *epfn,
1905 				    unsigned long first_init_pfn)
1906 {
1907 	u64 j;
1908 
1909 	/*
1910 	 * Start out by walking through the ranges in this zone that have
1911 	 * already been initialized. We don't need to do anything with them
1912 	 * so we just need to flush them out of the system.
1913 	 */
1914 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1915 		if (*epfn <= first_init_pfn)
1916 			continue;
1917 		if (*spfn < first_init_pfn)
1918 			*spfn = first_init_pfn;
1919 		*i = j;
1920 		return true;
1921 	}
1922 
1923 	return false;
1924 }
1925 
1926 /*
1927  * Initialize and free pages. We do it in two loops: first we initialize
1928  * struct page, then free to buddy allocator, because while we are
1929  * freeing pages we can access pages that are ahead (computing buddy
1930  * page in __free_one_page()).
1931  *
1932  * In order to try and keep some memory in the cache we have the loop
1933  * broken along max page order boundaries. This way we will not cause
1934  * any issues with the buddy page computation.
1935  */
1936 static unsigned long __init
1937 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1938 		       unsigned long *end_pfn)
1939 {
1940 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1941 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1942 	unsigned long nr_pages = 0;
1943 	u64 j = *i;
1944 
1945 	/* First we loop through and initialize the page values */
1946 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1947 		unsigned long t;
1948 
1949 		if (mo_pfn <= *start_pfn)
1950 			break;
1951 
1952 		t = min(mo_pfn, *end_pfn);
1953 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1954 
1955 		if (mo_pfn < *end_pfn) {
1956 			*start_pfn = mo_pfn;
1957 			break;
1958 		}
1959 	}
1960 
1961 	/* Reset values and now loop through freeing pages as needed */
1962 	swap(j, *i);
1963 
1964 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1965 		unsigned long t;
1966 
1967 		if (mo_pfn <= spfn)
1968 			break;
1969 
1970 		t = min(mo_pfn, epfn);
1971 		deferred_free_pages(spfn, t);
1972 
1973 		if (mo_pfn <= epfn)
1974 			break;
1975 	}
1976 
1977 	return nr_pages;
1978 }
1979 
1980 static void __init
1981 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1982 			   void *arg)
1983 {
1984 	unsigned long spfn, epfn;
1985 	struct zone *zone = arg;
1986 	u64 i;
1987 
1988 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1989 
1990 	/*
1991 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1992 	 * can avoid introducing any issues with the buddy allocator.
1993 	 */
1994 	while (spfn < end_pfn) {
1995 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1996 		cond_resched();
1997 	}
1998 }
1999 
2000 /* An arch may override for more concurrency. */
2001 __weak int __init
2002 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2003 {
2004 	return 1;
2005 }
2006 
2007 /* Initialise remaining memory on a node */
2008 static int __init deferred_init_memmap(void *data)
2009 {
2010 	pg_data_t *pgdat = data;
2011 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2012 	unsigned long spfn = 0, epfn = 0;
2013 	unsigned long first_init_pfn, flags;
2014 	unsigned long start = jiffies;
2015 	struct zone *zone;
2016 	int zid, max_threads;
2017 	u64 i;
2018 
2019 	/* Bind memory initialisation thread to a local node if possible */
2020 	if (!cpumask_empty(cpumask))
2021 		set_cpus_allowed_ptr(current, cpumask);
2022 
2023 	pgdat_resize_lock(pgdat, &flags);
2024 	first_init_pfn = pgdat->first_deferred_pfn;
2025 	if (first_init_pfn == ULONG_MAX) {
2026 		pgdat_resize_unlock(pgdat, &flags);
2027 		pgdat_init_report_one_done();
2028 		return 0;
2029 	}
2030 
2031 	/* Sanity check boundaries */
2032 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2033 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2034 	pgdat->first_deferred_pfn = ULONG_MAX;
2035 
2036 	/*
2037 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2038 	 * interrupt thread must allocate this early in boot, zone must be
2039 	 * pre-grown prior to start of deferred page initialization.
2040 	 */
2041 	pgdat_resize_unlock(pgdat, &flags);
2042 
2043 	/* Only the highest zone is deferred so find it */
2044 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2045 		zone = pgdat->node_zones + zid;
2046 		if (first_init_pfn < zone_end_pfn(zone))
2047 			break;
2048 	}
2049 
2050 	/* If the zone is empty somebody else may have cleared out the zone */
2051 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2052 						 first_init_pfn))
2053 		goto zone_empty;
2054 
2055 	max_threads = deferred_page_init_max_threads(cpumask);
2056 
2057 	while (spfn < epfn) {
2058 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2059 		struct padata_mt_job job = {
2060 			.thread_fn   = deferred_init_memmap_chunk,
2061 			.fn_arg      = zone,
2062 			.start       = spfn,
2063 			.size        = epfn_align - spfn,
2064 			.align       = PAGES_PER_SECTION,
2065 			.min_chunk   = PAGES_PER_SECTION,
2066 			.max_threads = max_threads,
2067 		};
2068 
2069 		padata_do_multithreaded(&job);
2070 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2071 						    epfn_align);
2072 	}
2073 zone_empty:
2074 	/* Sanity check that the next zone really is unpopulated */
2075 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2076 
2077 	pr_info("node %d deferred pages initialised in %ums\n",
2078 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2079 
2080 	pgdat_init_report_one_done();
2081 	return 0;
2082 }
2083 
2084 /*
2085  * If this zone has deferred pages, try to grow it by initializing enough
2086  * deferred pages to satisfy the allocation specified by order, rounded up to
2087  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2088  * of SECTION_SIZE bytes by initializing struct pages in increments of
2089  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2090  *
2091  * Return true when zone was grown, otherwise return false. We return true even
2092  * when we grow less than requested, to let the caller decide if there are
2093  * enough pages to satisfy the allocation.
2094  *
2095  * Note: We use noinline because this function is needed only during boot, and
2096  * it is called from a __ref function _deferred_grow_zone. This way we are
2097  * making sure that it is not inlined into permanent text section.
2098  */
2099 static noinline bool __init
2100 deferred_grow_zone(struct zone *zone, unsigned int order)
2101 {
2102 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2103 	pg_data_t *pgdat = zone->zone_pgdat;
2104 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2105 	unsigned long spfn, epfn, flags;
2106 	unsigned long nr_pages = 0;
2107 	u64 i;
2108 
2109 	/* Only the last zone may have deferred pages */
2110 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2111 		return false;
2112 
2113 	pgdat_resize_lock(pgdat, &flags);
2114 
2115 	/*
2116 	 * If someone grew this zone while we were waiting for spinlock, return
2117 	 * true, as there might be enough pages already.
2118 	 */
2119 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2120 		pgdat_resize_unlock(pgdat, &flags);
2121 		return true;
2122 	}
2123 
2124 	/* If the zone is empty somebody else may have cleared out the zone */
2125 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2126 						 first_deferred_pfn)) {
2127 		pgdat->first_deferred_pfn = ULONG_MAX;
2128 		pgdat_resize_unlock(pgdat, &flags);
2129 		/* Retry only once. */
2130 		return first_deferred_pfn != ULONG_MAX;
2131 	}
2132 
2133 	/*
2134 	 * Initialize and free pages in MAX_ORDER sized increments so
2135 	 * that we can avoid introducing any issues with the buddy
2136 	 * allocator.
2137 	 */
2138 	while (spfn < epfn) {
2139 		/* update our first deferred PFN for this section */
2140 		first_deferred_pfn = spfn;
2141 
2142 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2143 		touch_nmi_watchdog();
2144 
2145 		/* We should only stop along section boundaries */
2146 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2147 			continue;
2148 
2149 		/* If our quota has been met we can stop here */
2150 		if (nr_pages >= nr_pages_needed)
2151 			break;
2152 	}
2153 
2154 	pgdat->first_deferred_pfn = spfn;
2155 	pgdat_resize_unlock(pgdat, &flags);
2156 
2157 	return nr_pages > 0;
2158 }
2159 
2160 /*
2161  * deferred_grow_zone() is __init, but it is called from
2162  * get_page_from_freelist() during early boot until deferred_pages permanently
2163  * disables this call. This is why we have refdata wrapper to avoid warning,
2164  * and to ensure that the function body gets unloaded.
2165  */
2166 static bool __ref
2167 _deferred_grow_zone(struct zone *zone, unsigned int order)
2168 {
2169 	return deferred_grow_zone(zone, order);
2170 }
2171 
2172 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2173 
2174 void __init page_alloc_init_late(void)
2175 {
2176 	struct zone *zone;
2177 	int nid;
2178 
2179 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2180 
2181 	/* There will be num_node_state(N_MEMORY) threads */
2182 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2183 	for_each_node_state(nid, N_MEMORY) {
2184 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2185 	}
2186 
2187 	/* Block until all are initialised */
2188 	wait_for_completion(&pgdat_init_all_done_comp);
2189 
2190 	/*
2191 	 * We initialized the rest of the deferred pages.  Permanently disable
2192 	 * on-demand struct page initialization.
2193 	 */
2194 	static_branch_disable(&deferred_pages);
2195 
2196 	/* Reinit limits that are based on free pages after the kernel is up */
2197 	files_maxfiles_init();
2198 #endif
2199 
2200 	buffer_init();
2201 
2202 	/* Discard memblock private memory */
2203 	memblock_discard();
2204 
2205 	for_each_node_state(nid, N_MEMORY)
2206 		shuffle_free_memory(NODE_DATA(nid));
2207 
2208 	for_each_populated_zone(zone)
2209 		set_zone_contiguous(zone);
2210 }
2211 
2212 #ifdef CONFIG_CMA
2213 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2214 void __init init_cma_reserved_pageblock(struct page *page)
2215 {
2216 	unsigned i = pageblock_nr_pages;
2217 	struct page *p = page;
2218 
2219 	do {
2220 		__ClearPageReserved(p);
2221 		set_page_count(p, 0);
2222 	} while (++p, --i);
2223 
2224 	set_pageblock_migratetype(page, MIGRATE_CMA);
2225 	set_page_refcounted(page);
2226 	__free_pages(page, pageblock_order);
2227 
2228 	adjust_managed_page_count(page, pageblock_nr_pages);
2229 	page_zone(page)->cma_pages += pageblock_nr_pages;
2230 }
2231 #endif
2232 
2233 /*
2234  * The order of subdivision here is critical for the IO subsystem.
2235  * Please do not alter this order without good reasons and regression
2236  * testing. Specifically, as large blocks of memory are subdivided,
2237  * the order in which smaller blocks are delivered depends on the order
2238  * they're subdivided in this function. This is the primary factor
2239  * influencing the order in which pages are delivered to the IO
2240  * subsystem according to empirical testing, and this is also justified
2241  * by considering the behavior of a buddy system containing a single
2242  * large block of memory acted on by a series of small allocations.
2243  * This behavior is a critical factor in sglist merging's success.
2244  *
2245  * -- nyc
2246  */
2247 static inline void expand(struct zone *zone, struct page *page,
2248 	int low, int high, int migratetype)
2249 {
2250 	unsigned long size = 1 << high;
2251 
2252 	while (high > low) {
2253 		high--;
2254 		size >>= 1;
2255 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2256 
2257 		/*
2258 		 * Mark as guard pages (or page), that will allow to
2259 		 * merge back to allocator when buddy will be freed.
2260 		 * Corresponding page table entries will not be touched,
2261 		 * pages will stay not present in virtual address space
2262 		 */
2263 		if (set_page_guard(zone, &page[size], high, migratetype))
2264 			continue;
2265 
2266 		add_to_free_list(&page[size], zone, high, migratetype);
2267 		set_buddy_order(&page[size], high);
2268 	}
2269 }
2270 
2271 static void check_new_page_bad(struct page *page)
2272 {
2273 	if (unlikely(page->flags & __PG_HWPOISON)) {
2274 		/* Don't complain about hwpoisoned pages */
2275 		page_mapcount_reset(page); /* remove PageBuddy */
2276 		return;
2277 	}
2278 
2279 	bad_page(page,
2280 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2281 }
2282 
2283 /*
2284  * This page is about to be returned from the page allocator
2285  */
2286 static inline int check_new_page(struct page *page)
2287 {
2288 	if (likely(page_expected_state(page,
2289 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2290 		return 0;
2291 
2292 	check_new_page_bad(page);
2293 	return 1;
2294 }
2295 
2296 static bool check_new_pages(struct page *page, unsigned int order)
2297 {
2298 	int i;
2299 	for (i = 0; i < (1 << order); i++) {
2300 		struct page *p = page + i;
2301 
2302 		if (unlikely(check_new_page(p)))
2303 			return true;
2304 	}
2305 
2306 	return false;
2307 }
2308 
2309 #ifdef CONFIG_DEBUG_VM
2310 /*
2311  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2312  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2313  * also checked when pcp lists are refilled from the free lists.
2314  */
2315 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2316 {
2317 	if (debug_pagealloc_enabled_static())
2318 		return check_new_pages(page, order);
2319 	else
2320 		return false;
2321 }
2322 
2323 static inline bool check_new_pcp(struct page *page, unsigned int order)
2324 {
2325 	return check_new_pages(page, order);
2326 }
2327 #else
2328 /*
2329  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2330  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2331  * enabled, they are also checked when being allocated from the pcp lists.
2332  */
2333 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2334 {
2335 	return check_new_pages(page, order);
2336 }
2337 static inline bool check_new_pcp(struct page *page, unsigned int order)
2338 {
2339 	if (debug_pagealloc_enabled_static())
2340 		return check_new_pages(page, order);
2341 	else
2342 		return false;
2343 }
2344 #endif /* CONFIG_DEBUG_VM */
2345 
2346 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2347 {
2348 	/* Don't skip if a software KASAN mode is enabled. */
2349 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2350 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2351 		return false;
2352 
2353 	/* Skip, if hardware tag-based KASAN is not enabled. */
2354 	if (!kasan_hw_tags_enabled())
2355 		return true;
2356 
2357 	/*
2358 	 * With hardware tag-based KASAN enabled, skip if either:
2359 	 *
2360 	 * 1. Memory tags have already been cleared via tag_clear_highpage().
2361 	 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2362 	 */
2363 	return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2364 }
2365 
2366 static inline bool should_skip_init(gfp_t flags)
2367 {
2368 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2369 	if (!kasan_hw_tags_enabled())
2370 		return false;
2371 
2372 	/* For hardware tag-based KASAN, skip if requested. */
2373 	return (flags & __GFP_SKIP_ZERO);
2374 }
2375 
2376 inline void post_alloc_hook(struct page *page, unsigned int order,
2377 				gfp_t gfp_flags)
2378 {
2379 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2380 			!should_skip_init(gfp_flags);
2381 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2382 
2383 	set_page_private(page, 0);
2384 	set_page_refcounted(page);
2385 
2386 	arch_alloc_page(page, order);
2387 	debug_pagealloc_map_pages(page, 1 << order);
2388 
2389 	/*
2390 	 * Page unpoisoning must happen before memory initialization.
2391 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2392 	 * allocations and the page unpoisoning code will complain.
2393 	 */
2394 	kernel_unpoison_pages(page, 1 << order);
2395 
2396 	/*
2397 	 * As memory initialization might be integrated into KASAN,
2398 	 * KASAN unpoisoning and memory initializion code must be
2399 	 * kept together to avoid discrepancies in behavior.
2400 	 */
2401 
2402 	/*
2403 	 * If memory tags should be zeroed (which happens only when memory
2404 	 * should be initialized as well).
2405 	 */
2406 	if (init_tags) {
2407 		int i;
2408 
2409 		/* Initialize both memory and tags. */
2410 		for (i = 0; i != 1 << order; ++i)
2411 			tag_clear_highpage(page + i);
2412 
2413 		/* Note that memory is already initialized by the loop above. */
2414 		init = false;
2415 	}
2416 	if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2417 		/* Unpoison shadow memory or set memory tags. */
2418 		kasan_unpoison_pages(page, order, init);
2419 
2420 		/* Note that memory is already initialized by KASAN. */
2421 		if (kasan_has_integrated_init())
2422 			init = false;
2423 	}
2424 	/* If memory is still not initialized, do it now. */
2425 	if (init)
2426 		kernel_init_free_pages(page, 1 << order);
2427 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2428 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2429 		SetPageSkipKASanPoison(page);
2430 
2431 	set_page_owner(page, order, gfp_flags);
2432 	page_table_check_alloc(page, order);
2433 }
2434 
2435 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2436 							unsigned int alloc_flags)
2437 {
2438 	post_alloc_hook(page, order, gfp_flags);
2439 
2440 	if (order && (gfp_flags & __GFP_COMP))
2441 		prep_compound_page(page, order);
2442 
2443 	/*
2444 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2445 	 * allocate the page. The expectation is that the caller is taking
2446 	 * steps that will free more memory. The caller should avoid the page
2447 	 * being used for !PFMEMALLOC purposes.
2448 	 */
2449 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2450 		set_page_pfmemalloc(page);
2451 	else
2452 		clear_page_pfmemalloc(page);
2453 }
2454 
2455 /*
2456  * Go through the free lists for the given migratetype and remove
2457  * the smallest available page from the freelists
2458  */
2459 static __always_inline
2460 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2461 						int migratetype)
2462 {
2463 	unsigned int current_order;
2464 	struct free_area *area;
2465 	struct page *page;
2466 
2467 	/* Find a page of the appropriate size in the preferred list */
2468 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2469 		area = &(zone->free_area[current_order]);
2470 		page = get_page_from_free_area(area, migratetype);
2471 		if (!page)
2472 			continue;
2473 		del_page_from_free_list(page, zone, current_order);
2474 		expand(zone, page, order, current_order, migratetype);
2475 		set_pcppage_migratetype(page, migratetype);
2476 		return page;
2477 	}
2478 
2479 	return NULL;
2480 }
2481 
2482 
2483 /*
2484  * This array describes the order lists are fallen back to when
2485  * the free lists for the desirable migrate type are depleted
2486  *
2487  * The other migratetypes do not have fallbacks.
2488  */
2489 static int fallbacks[MIGRATE_TYPES][3] = {
2490 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2491 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2492 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2493 };
2494 
2495 #ifdef CONFIG_CMA
2496 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2497 					unsigned int order)
2498 {
2499 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2500 }
2501 #else
2502 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2503 					unsigned int order) { return NULL; }
2504 #endif
2505 
2506 /*
2507  * Move the free pages in a range to the freelist tail of the requested type.
2508  * Note that start_page and end_pages are not aligned on a pageblock
2509  * boundary. If alignment is required, use move_freepages_block()
2510  */
2511 static int move_freepages(struct zone *zone,
2512 			  unsigned long start_pfn, unsigned long end_pfn,
2513 			  int migratetype, int *num_movable)
2514 {
2515 	struct page *page;
2516 	unsigned long pfn;
2517 	unsigned int order;
2518 	int pages_moved = 0;
2519 
2520 	for (pfn = start_pfn; pfn <= end_pfn;) {
2521 		page = pfn_to_page(pfn);
2522 		if (!PageBuddy(page)) {
2523 			/*
2524 			 * We assume that pages that could be isolated for
2525 			 * migration are movable. But we don't actually try
2526 			 * isolating, as that would be expensive.
2527 			 */
2528 			if (num_movable &&
2529 					(PageLRU(page) || __PageMovable(page)))
2530 				(*num_movable)++;
2531 			pfn++;
2532 			continue;
2533 		}
2534 
2535 		/* Make sure we are not inadvertently changing nodes */
2536 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2537 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2538 
2539 		order = buddy_order(page);
2540 		move_to_free_list(page, zone, order, migratetype);
2541 		pfn += 1 << order;
2542 		pages_moved += 1 << order;
2543 	}
2544 
2545 	return pages_moved;
2546 }
2547 
2548 int move_freepages_block(struct zone *zone, struct page *page,
2549 				int migratetype, int *num_movable)
2550 {
2551 	unsigned long start_pfn, end_pfn, pfn;
2552 
2553 	if (num_movable)
2554 		*num_movable = 0;
2555 
2556 	pfn = page_to_pfn(page);
2557 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2558 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2559 
2560 	/* Do not cross zone boundaries */
2561 	if (!zone_spans_pfn(zone, start_pfn))
2562 		start_pfn = pfn;
2563 	if (!zone_spans_pfn(zone, end_pfn))
2564 		return 0;
2565 
2566 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2567 								num_movable);
2568 }
2569 
2570 static void change_pageblock_range(struct page *pageblock_page,
2571 					int start_order, int migratetype)
2572 {
2573 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2574 
2575 	while (nr_pageblocks--) {
2576 		set_pageblock_migratetype(pageblock_page, migratetype);
2577 		pageblock_page += pageblock_nr_pages;
2578 	}
2579 }
2580 
2581 /*
2582  * When we are falling back to another migratetype during allocation, try to
2583  * steal extra free pages from the same pageblocks to satisfy further
2584  * allocations, instead of polluting multiple pageblocks.
2585  *
2586  * If we are stealing a relatively large buddy page, it is likely there will
2587  * be more free pages in the pageblock, so try to steal them all. For
2588  * reclaimable and unmovable allocations, we steal regardless of page size,
2589  * as fragmentation caused by those allocations polluting movable pageblocks
2590  * is worse than movable allocations stealing from unmovable and reclaimable
2591  * pageblocks.
2592  */
2593 static bool can_steal_fallback(unsigned int order, int start_mt)
2594 {
2595 	/*
2596 	 * Leaving this order check is intended, although there is
2597 	 * relaxed order check in next check. The reason is that
2598 	 * we can actually steal whole pageblock if this condition met,
2599 	 * but, below check doesn't guarantee it and that is just heuristic
2600 	 * so could be changed anytime.
2601 	 */
2602 	if (order >= pageblock_order)
2603 		return true;
2604 
2605 	if (order >= pageblock_order / 2 ||
2606 		start_mt == MIGRATE_RECLAIMABLE ||
2607 		start_mt == MIGRATE_UNMOVABLE ||
2608 		page_group_by_mobility_disabled)
2609 		return true;
2610 
2611 	return false;
2612 }
2613 
2614 static inline bool boost_watermark(struct zone *zone)
2615 {
2616 	unsigned long max_boost;
2617 
2618 	if (!watermark_boost_factor)
2619 		return false;
2620 	/*
2621 	 * Don't bother in zones that are unlikely to produce results.
2622 	 * On small machines, including kdump capture kernels running
2623 	 * in a small area, boosting the watermark can cause an out of
2624 	 * memory situation immediately.
2625 	 */
2626 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2627 		return false;
2628 
2629 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2630 			watermark_boost_factor, 10000);
2631 
2632 	/*
2633 	 * high watermark may be uninitialised if fragmentation occurs
2634 	 * very early in boot so do not boost. We do not fall
2635 	 * through and boost by pageblock_nr_pages as failing
2636 	 * allocations that early means that reclaim is not going
2637 	 * to help and it may even be impossible to reclaim the
2638 	 * boosted watermark resulting in a hang.
2639 	 */
2640 	if (!max_boost)
2641 		return false;
2642 
2643 	max_boost = max(pageblock_nr_pages, max_boost);
2644 
2645 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2646 		max_boost);
2647 
2648 	return true;
2649 }
2650 
2651 /*
2652  * This function implements actual steal behaviour. If order is large enough,
2653  * we can steal whole pageblock. If not, we first move freepages in this
2654  * pageblock to our migratetype and determine how many already-allocated pages
2655  * are there in the pageblock with a compatible migratetype. If at least half
2656  * of pages are free or compatible, we can change migratetype of the pageblock
2657  * itself, so pages freed in the future will be put on the correct free list.
2658  */
2659 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2660 		unsigned int alloc_flags, int start_type, bool whole_block)
2661 {
2662 	unsigned int current_order = buddy_order(page);
2663 	int free_pages, movable_pages, alike_pages;
2664 	int old_block_type;
2665 
2666 	old_block_type = get_pageblock_migratetype(page);
2667 
2668 	/*
2669 	 * This can happen due to races and we want to prevent broken
2670 	 * highatomic accounting.
2671 	 */
2672 	if (is_migrate_highatomic(old_block_type))
2673 		goto single_page;
2674 
2675 	/* Take ownership for orders >= pageblock_order */
2676 	if (current_order >= pageblock_order) {
2677 		change_pageblock_range(page, current_order, start_type);
2678 		goto single_page;
2679 	}
2680 
2681 	/*
2682 	 * Boost watermarks to increase reclaim pressure to reduce the
2683 	 * likelihood of future fallbacks. Wake kswapd now as the node
2684 	 * may be balanced overall and kswapd will not wake naturally.
2685 	 */
2686 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2687 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2688 
2689 	/* We are not allowed to try stealing from the whole block */
2690 	if (!whole_block)
2691 		goto single_page;
2692 
2693 	free_pages = move_freepages_block(zone, page, start_type,
2694 						&movable_pages);
2695 	/*
2696 	 * Determine how many pages are compatible with our allocation.
2697 	 * For movable allocation, it's the number of movable pages which
2698 	 * we just obtained. For other types it's a bit more tricky.
2699 	 */
2700 	if (start_type == MIGRATE_MOVABLE) {
2701 		alike_pages = movable_pages;
2702 	} else {
2703 		/*
2704 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2705 		 * to MOVABLE pageblock, consider all non-movable pages as
2706 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2707 		 * vice versa, be conservative since we can't distinguish the
2708 		 * exact migratetype of non-movable pages.
2709 		 */
2710 		if (old_block_type == MIGRATE_MOVABLE)
2711 			alike_pages = pageblock_nr_pages
2712 						- (free_pages + movable_pages);
2713 		else
2714 			alike_pages = 0;
2715 	}
2716 
2717 	/* moving whole block can fail due to zone boundary conditions */
2718 	if (!free_pages)
2719 		goto single_page;
2720 
2721 	/*
2722 	 * If a sufficient number of pages in the block are either free or of
2723 	 * comparable migratability as our allocation, claim the whole block.
2724 	 */
2725 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2726 			page_group_by_mobility_disabled)
2727 		set_pageblock_migratetype(page, start_type);
2728 
2729 	return;
2730 
2731 single_page:
2732 	move_to_free_list(page, zone, current_order, start_type);
2733 }
2734 
2735 /*
2736  * Check whether there is a suitable fallback freepage with requested order.
2737  * If only_stealable is true, this function returns fallback_mt only if
2738  * we can steal other freepages all together. This would help to reduce
2739  * fragmentation due to mixed migratetype pages in one pageblock.
2740  */
2741 int find_suitable_fallback(struct free_area *area, unsigned int order,
2742 			int migratetype, bool only_stealable, bool *can_steal)
2743 {
2744 	int i;
2745 	int fallback_mt;
2746 
2747 	if (area->nr_free == 0)
2748 		return -1;
2749 
2750 	*can_steal = false;
2751 	for (i = 0;; i++) {
2752 		fallback_mt = fallbacks[migratetype][i];
2753 		if (fallback_mt == MIGRATE_TYPES)
2754 			break;
2755 
2756 		if (free_area_empty(area, fallback_mt))
2757 			continue;
2758 
2759 		if (can_steal_fallback(order, migratetype))
2760 			*can_steal = true;
2761 
2762 		if (!only_stealable)
2763 			return fallback_mt;
2764 
2765 		if (*can_steal)
2766 			return fallback_mt;
2767 	}
2768 
2769 	return -1;
2770 }
2771 
2772 /*
2773  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2774  * there are no empty page blocks that contain a page with a suitable order
2775  */
2776 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2777 				unsigned int alloc_order)
2778 {
2779 	int mt;
2780 	unsigned long max_managed, flags;
2781 
2782 	/*
2783 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2784 	 * Check is race-prone but harmless.
2785 	 */
2786 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2787 	if (zone->nr_reserved_highatomic >= max_managed)
2788 		return;
2789 
2790 	spin_lock_irqsave(&zone->lock, flags);
2791 
2792 	/* Recheck the nr_reserved_highatomic limit under the lock */
2793 	if (zone->nr_reserved_highatomic >= max_managed)
2794 		goto out_unlock;
2795 
2796 	/* Yoink! */
2797 	mt = get_pageblock_migratetype(page);
2798 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2799 	if (migratetype_is_mergeable(mt)) {
2800 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2801 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2802 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2803 	}
2804 
2805 out_unlock:
2806 	spin_unlock_irqrestore(&zone->lock, flags);
2807 }
2808 
2809 /*
2810  * Used when an allocation is about to fail under memory pressure. This
2811  * potentially hurts the reliability of high-order allocations when under
2812  * intense memory pressure but failed atomic allocations should be easier
2813  * to recover from than an OOM.
2814  *
2815  * If @force is true, try to unreserve a pageblock even though highatomic
2816  * pageblock is exhausted.
2817  */
2818 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2819 						bool force)
2820 {
2821 	struct zonelist *zonelist = ac->zonelist;
2822 	unsigned long flags;
2823 	struct zoneref *z;
2824 	struct zone *zone;
2825 	struct page *page;
2826 	int order;
2827 	bool ret;
2828 
2829 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2830 								ac->nodemask) {
2831 		/*
2832 		 * Preserve at least one pageblock unless memory pressure
2833 		 * is really high.
2834 		 */
2835 		if (!force && zone->nr_reserved_highatomic <=
2836 					pageblock_nr_pages)
2837 			continue;
2838 
2839 		spin_lock_irqsave(&zone->lock, flags);
2840 		for (order = 0; order < MAX_ORDER; order++) {
2841 			struct free_area *area = &(zone->free_area[order]);
2842 
2843 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2844 			if (!page)
2845 				continue;
2846 
2847 			/*
2848 			 * In page freeing path, migratetype change is racy so
2849 			 * we can counter several free pages in a pageblock
2850 			 * in this loop although we changed the pageblock type
2851 			 * from highatomic to ac->migratetype. So we should
2852 			 * adjust the count once.
2853 			 */
2854 			if (is_migrate_highatomic_page(page)) {
2855 				/*
2856 				 * It should never happen but changes to
2857 				 * locking could inadvertently allow a per-cpu
2858 				 * drain to add pages to MIGRATE_HIGHATOMIC
2859 				 * while unreserving so be safe and watch for
2860 				 * underflows.
2861 				 */
2862 				zone->nr_reserved_highatomic -= min(
2863 						pageblock_nr_pages,
2864 						zone->nr_reserved_highatomic);
2865 			}
2866 
2867 			/*
2868 			 * Convert to ac->migratetype and avoid the normal
2869 			 * pageblock stealing heuristics. Minimally, the caller
2870 			 * is doing the work and needs the pages. More
2871 			 * importantly, if the block was always converted to
2872 			 * MIGRATE_UNMOVABLE or another type then the number
2873 			 * of pageblocks that cannot be completely freed
2874 			 * may increase.
2875 			 */
2876 			set_pageblock_migratetype(page, ac->migratetype);
2877 			ret = move_freepages_block(zone, page, ac->migratetype,
2878 									NULL);
2879 			if (ret) {
2880 				spin_unlock_irqrestore(&zone->lock, flags);
2881 				return ret;
2882 			}
2883 		}
2884 		spin_unlock_irqrestore(&zone->lock, flags);
2885 	}
2886 
2887 	return false;
2888 }
2889 
2890 /*
2891  * Try finding a free buddy page on the fallback list and put it on the free
2892  * list of requested migratetype, possibly along with other pages from the same
2893  * block, depending on fragmentation avoidance heuristics. Returns true if
2894  * fallback was found so that __rmqueue_smallest() can grab it.
2895  *
2896  * The use of signed ints for order and current_order is a deliberate
2897  * deviation from the rest of this file, to make the for loop
2898  * condition simpler.
2899  */
2900 static __always_inline bool
2901 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2902 						unsigned int alloc_flags)
2903 {
2904 	struct free_area *area;
2905 	int current_order;
2906 	int min_order = order;
2907 	struct page *page;
2908 	int fallback_mt;
2909 	bool can_steal;
2910 
2911 	/*
2912 	 * Do not steal pages from freelists belonging to other pageblocks
2913 	 * i.e. orders < pageblock_order. If there are no local zones free,
2914 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2915 	 */
2916 	if (alloc_flags & ALLOC_NOFRAGMENT)
2917 		min_order = pageblock_order;
2918 
2919 	/*
2920 	 * Find the largest available free page in the other list. This roughly
2921 	 * approximates finding the pageblock with the most free pages, which
2922 	 * would be too costly to do exactly.
2923 	 */
2924 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2925 				--current_order) {
2926 		area = &(zone->free_area[current_order]);
2927 		fallback_mt = find_suitable_fallback(area, current_order,
2928 				start_migratetype, false, &can_steal);
2929 		if (fallback_mt == -1)
2930 			continue;
2931 
2932 		/*
2933 		 * We cannot steal all free pages from the pageblock and the
2934 		 * requested migratetype is movable. In that case it's better to
2935 		 * steal and split the smallest available page instead of the
2936 		 * largest available page, because even if the next movable
2937 		 * allocation falls back into a different pageblock than this
2938 		 * one, it won't cause permanent fragmentation.
2939 		 */
2940 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2941 					&& current_order > order)
2942 			goto find_smallest;
2943 
2944 		goto do_steal;
2945 	}
2946 
2947 	return false;
2948 
2949 find_smallest:
2950 	for (current_order = order; current_order < MAX_ORDER;
2951 							current_order++) {
2952 		area = &(zone->free_area[current_order]);
2953 		fallback_mt = find_suitable_fallback(area, current_order,
2954 				start_migratetype, false, &can_steal);
2955 		if (fallback_mt != -1)
2956 			break;
2957 	}
2958 
2959 	/*
2960 	 * This should not happen - we already found a suitable fallback
2961 	 * when looking for the largest page.
2962 	 */
2963 	VM_BUG_ON(current_order == MAX_ORDER);
2964 
2965 do_steal:
2966 	page = get_page_from_free_area(area, fallback_mt);
2967 
2968 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2969 								can_steal);
2970 
2971 	trace_mm_page_alloc_extfrag(page, order, current_order,
2972 		start_migratetype, fallback_mt);
2973 
2974 	return true;
2975 
2976 }
2977 
2978 /*
2979  * Do the hard work of removing an element from the buddy allocator.
2980  * Call me with the zone->lock already held.
2981  */
2982 static __always_inline struct page *
2983 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2984 						unsigned int alloc_flags)
2985 {
2986 	struct page *page;
2987 
2988 	if (IS_ENABLED(CONFIG_CMA)) {
2989 		/*
2990 		 * Balance movable allocations between regular and CMA areas by
2991 		 * allocating from CMA when over half of the zone's free memory
2992 		 * is in the CMA area.
2993 		 */
2994 		if (alloc_flags & ALLOC_CMA &&
2995 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2996 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2997 			page = __rmqueue_cma_fallback(zone, order);
2998 			if (page)
2999 				goto out;
3000 		}
3001 	}
3002 retry:
3003 	page = __rmqueue_smallest(zone, order, migratetype);
3004 	if (unlikely(!page)) {
3005 		if (alloc_flags & ALLOC_CMA)
3006 			page = __rmqueue_cma_fallback(zone, order);
3007 
3008 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3009 								alloc_flags))
3010 			goto retry;
3011 	}
3012 out:
3013 	if (page)
3014 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3015 	return page;
3016 }
3017 
3018 /*
3019  * Obtain a specified number of elements from the buddy allocator, all under
3020  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3021  * Returns the number of new pages which were placed at *list.
3022  */
3023 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3024 			unsigned long count, struct list_head *list,
3025 			int migratetype, unsigned int alloc_flags)
3026 {
3027 	int i, allocated = 0;
3028 
3029 	/*
3030 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3031 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3032 	 */
3033 	spin_lock(&zone->lock);
3034 	for (i = 0; i < count; ++i) {
3035 		struct page *page = __rmqueue(zone, order, migratetype,
3036 								alloc_flags);
3037 		if (unlikely(page == NULL))
3038 			break;
3039 
3040 		if (unlikely(check_pcp_refill(page, order)))
3041 			continue;
3042 
3043 		/*
3044 		 * Split buddy pages returned by expand() are received here in
3045 		 * physical page order. The page is added to the tail of
3046 		 * caller's list. From the callers perspective, the linked list
3047 		 * is ordered by page number under some conditions. This is
3048 		 * useful for IO devices that can forward direction from the
3049 		 * head, thus also in the physical page order. This is useful
3050 		 * for IO devices that can merge IO requests if the physical
3051 		 * pages are ordered properly.
3052 		 */
3053 		list_add_tail(&page->lru, list);
3054 		allocated++;
3055 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3056 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3057 					      -(1 << order));
3058 	}
3059 
3060 	/*
3061 	 * i pages were removed from the buddy list even if some leak due
3062 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3063 	 * on i. Do not confuse with 'allocated' which is the number of
3064 	 * pages added to the pcp list.
3065 	 */
3066 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3067 	spin_unlock(&zone->lock);
3068 	return allocated;
3069 }
3070 
3071 #ifdef CONFIG_NUMA
3072 /*
3073  * Called from the vmstat counter updater to drain pagesets of this
3074  * currently executing processor on remote nodes after they have
3075  * expired.
3076  *
3077  * Note that this function must be called with the thread pinned to
3078  * a single processor.
3079  */
3080 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3081 {
3082 	unsigned long flags;
3083 	int to_drain, batch;
3084 
3085 	local_lock_irqsave(&pagesets.lock, flags);
3086 	batch = READ_ONCE(pcp->batch);
3087 	to_drain = min(pcp->count, batch);
3088 	if (to_drain > 0)
3089 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3090 	local_unlock_irqrestore(&pagesets.lock, flags);
3091 }
3092 #endif
3093 
3094 /*
3095  * Drain pcplists of the indicated processor and zone.
3096  *
3097  * The processor must either be the current processor and the
3098  * thread pinned to the current processor or a processor that
3099  * is not online.
3100  */
3101 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3102 {
3103 	unsigned long flags;
3104 	struct per_cpu_pages *pcp;
3105 
3106 	local_lock_irqsave(&pagesets.lock, flags);
3107 
3108 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3109 	if (pcp->count)
3110 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3111 
3112 	local_unlock_irqrestore(&pagesets.lock, flags);
3113 }
3114 
3115 /*
3116  * Drain pcplists of all zones on the indicated processor.
3117  *
3118  * The processor must either be the current processor and the
3119  * thread pinned to the current processor or a processor that
3120  * is not online.
3121  */
3122 static void drain_pages(unsigned int cpu)
3123 {
3124 	struct zone *zone;
3125 
3126 	for_each_populated_zone(zone) {
3127 		drain_pages_zone(cpu, zone);
3128 	}
3129 }
3130 
3131 /*
3132  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3133  *
3134  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3135  * the single zone's pages.
3136  */
3137 void drain_local_pages(struct zone *zone)
3138 {
3139 	int cpu = smp_processor_id();
3140 
3141 	if (zone)
3142 		drain_pages_zone(cpu, zone);
3143 	else
3144 		drain_pages(cpu);
3145 }
3146 
3147 static void drain_local_pages_wq(struct work_struct *work)
3148 {
3149 	struct pcpu_drain *drain;
3150 
3151 	drain = container_of(work, struct pcpu_drain, work);
3152 
3153 	/*
3154 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3155 	 * we can race with cpu offline when the WQ can move this from
3156 	 * a cpu pinned worker to an unbound one. We can operate on a different
3157 	 * cpu which is alright but we also have to make sure to not move to
3158 	 * a different one.
3159 	 */
3160 	migrate_disable();
3161 	drain_local_pages(drain->zone);
3162 	migrate_enable();
3163 }
3164 
3165 /*
3166  * The implementation of drain_all_pages(), exposing an extra parameter to
3167  * drain on all cpus.
3168  *
3169  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3170  * not empty. The check for non-emptiness can however race with a free to
3171  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3172  * that need the guarantee that every CPU has drained can disable the
3173  * optimizing racy check.
3174  */
3175 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3176 {
3177 	int cpu;
3178 
3179 	/*
3180 	 * Allocate in the BSS so we won't require allocation in
3181 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3182 	 */
3183 	static cpumask_t cpus_with_pcps;
3184 
3185 	/*
3186 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3187 	 * initialized.
3188 	 */
3189 	if (WARN_ON_ONCE(!mm_percpu_wq))
3190 		return;
3191 
3192 	/*
3193 	 * Do not drain if one is already in progress unless it's specific to
3194 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3195 	 * the drain to be complete when the call returns.
3196 	 */
3197 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3198 		if (!zone)
3199 			return;
3200 		mutex_lock(&pcpu_drain_mutex);
3201 	}
3202 
3203 	/*
3204 	 * We don't care about racing with CPU hotplug event
3205 	 * as offline notification will cause the notified
3206 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3207 	 * disables preemption as part of its processing
3208 	 */
3209 	for_each_online_cpu(cpu) {
3210 		struct per_cpu_pages *pcp;
3211 		struct zone *z;
3212 		bool has_pcps = false;
3213 
3214 		if (force_all_cpus) {
3215 			/*
3216 			 * The pcp.count check is racy, some callers need a
3217 			 * guarantee that no cpu is missed.
3218 			 */
3219 			has_pcps = true;
3220 		} else if (zone) {
3221 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3222 			if (pcp->count)
3223 				has_pcps = true;
3224 		} else {
3225 			for_each_populated_zone(z) {
3226 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3227 				if (pcp->count) {
3228 					has_pcps = true;
3229 					break;
3230 				}
3231 			}
3232 		}
3233 
3234 		if (has_pcps)
3235 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3236 		else
3237 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3238 	}
3239 
3240 	for_each_cpu(cpu, &cpus_with_pcps) {
3241 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3242 
3243 		drain->zone = zone;
3244 		INIT_WORK(&drain->work, drain_local_pages_wq);
3245 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3246 	}
3247 	for_each_cpu(cpu, &cpus_with_pcps)
3248 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3249 
3250 	mutex_unlock(&pcpu_drain_mutex);
3251 }
3252 
3253 /*
3254  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3255  *
3256  * When zone parameter is non-NULL, spill just the single zone's pages.
3257  *
3258  * Note that this can be extremely slow as the draining happens in a workqueue.
3259  */
3260 void drain_all_pages(struct zone *zone)
3261 {
3262 	__drain_all_pages(zone, false);
3263 }
3264 
3265 #ifdef CONFIG_HIBERNATION
3266 
3267 /*
3268  * Touch the watchdog for every WD_PAGE_COUNT pages.
3269  */
3270 #define WD_PAGE_COUNT	(128*1024)
3271 
3272 void mark_free_pages(struct zone *zone)
3273 {
3274 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3275 	unsigned long flags;
3276 	unsigned int order, t;
3277 	struct page *page;
3278 
3279 	if (zone_is_empty(zone))
3280 		return;
3281 
3282 	spin_lock_irqsave(&zone->lock, flags);
3283 
3284 	max_zone_pfn = zone_end_pfn(zone);
3285 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3286 		if (pfn_valid(pfn)) {
3287 			page = pfn_to_page(pfn);
3288 
3289 			if (!--page_count) {
3290 				touch_nmi_watchdog();
3291 				page_count = WD_PAGE_COUNT;
3292 			}
3293 
3294 			if (page_zone(page) != zone)
3295 				continue;
3296 
3297 			if (!swsusp_page_is_forbidden(page))
3298 				swsusp_unset_page_free(page);
3299 		}
3300 
3301 	for_each_migratetype_order(order, t) {
3302 		list_for_each_entry(page,
3303 				&zone->free_area[order].free_list[t], lru) {
3304 			unsigned long i;
3305 
3306 			pfn = page_to_pfn(page);
3307 			for (i = 0; i < (1UL << order); i++) {
3308 				if (!--page_count) {
3309 					touch_nmi_watchdog();
3310 					page_count = WD_PAGE_COUNT;
3311 				}
3312 				swsusp_set_page_free(pfn_to_page(pfn + i));
3313 			}
3314 		}
3315 	}
3316 	spin_unlock_irqrestore(&zone->lock, flags);
3317 }
3318 #endif /* CONFIG_PM */
3319 
3320 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3321 							unsigned int order)
3322 {
3323 	int migratetype;
3324 
3325 	if (!free_pcp_prepare(page, order))
3326 		return false;
3327 
3328 	migratetype = get_pfnblock_migratetype(page, pfn);
3329 	set_pcppage_migratetype(page, migratetype);
3330 	return true;
3331 }
3332 
3333 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3334 		       bool free_high)
3335 {
3336 	int min_nr_free, max_nr_free;
3337 
3338 	/* Free everything if batch freeing high-order pages. */
3339 	if (unlikely(free_high))
3340 		return pcp->count;
3341 
3342 	/* Check for PCP disabled or boot pageset */
3343 	if (unlikely(high < batch))
3344 		return 1;
3345 
3346 	/* Leave at least pcp->batch pages on the list */
3347 	min_nr_free = batch;
3348 	max_nr_free = high - batch;
3349 
3350 	/*
3351 	 * Double the number of pages freed each time there is subsequent
3352 	 * freeing of pages without any allocation.
3353 	 */
3354 	batch <<= pcp->free_factor;
3355 	if (batch < max_nr_free)
3356 		pcp->free_factor++;
3357 	batch = clamp(batch, min_nr_free, max_nr_free);
3358 
3359 	return batch;
3360 }
3361 
3362 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3363 		       bool free_high)
3364 {
3365 	int high = READ_ONCE(pcp->high);
3366 
3367 	if (unlikely(!high || free_high))
3368 		return 0;
3369 
3370 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3371 		return high;
3372 
3373 	/*
3374 	 * If reclaim is active, limit the number of pages that can be
3375 	 * stored on pcp lists
3376 	 */
3377 	return min(READ_ONCE(pcp->batch) << 2, high);
3378 }
3379 
3380 static void free_unref_page_commit(struct page *page, int migratetype,
3381 				   unsigned int order)
3382 {
3383 	struct zone *zone = page_zone(page);
3384 	struct per_cpu_pages *pcp;
3385 	int high;
3386 	int pindex;
3387 	bool free_high;
3388 
3389 	__count_vm_event(PGFREE);
3390 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3391 	pindex = order_to_pindex(migratetype, order);
3392 	list_add(&page->lru, &pcp->lists[pindex]);
3393 	pcp->count += 1 << order;
3394 
3395 	/*
3396 	 * As high-order pages other than THP's stored on PCP can contribute
3397 	 * to fragmentation, limit the number stored when PCP is heavily
3398 	 * freeing without allocation. The remainder after bulk freeing
3399 	 * stops will be drained from vmstat refresh context.
3400 	 */
3401 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3402 
3403 	high = nr_pcp_high(pcp, zone, free_high);
3404 	if (pcp->count >= high) {
3405 		int batch = READ_ONCE(pcp->batch);
3406 
3407 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3408 	}
3409 }
3410 
3411 /*
3412  * Free a pcp page
3413  */
3414 void free_unref_page(struct page *page, unsigned int order)
3415 {
3416 	unsigned long flags;
3417 	unsigned long pfn = page_to_pfn(page);
3418 	int migratetype;
3419 
3420 	if (!free_unref_page_prepare(page, pfn, order))
3421 		return;
3422 
3423 	/*
3424 	 * We only track unmovable, reclaimable and movable on pcp lists.
3425 	 * Place ISOLATE pages on the isolated list because they are being
3426 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3427 	 * areas back if necessary. Otherwise, we may have to free
3428 	 * excessively into the page allocator
3429 	 */
3430 	migratetype = get_pcppage_migratetype(page);
3431 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3432 		if (unlikely(is_migrate_isolate(migratetype))) {
3433 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3434 			return;
3435 		}
3436 		migratetype = MIGRATE_MOVABLE;
3437 	}
3438 
3439 	local_lock_irqsave(&pagesets.lock, flags);
3440 	free_unref_page_commit(page, migratetype, order);
3441 	local_unlock_irqrestore(&pagesets.lock, flags);
3442 }
3443 
3444 /*
3445  * Free a list of 0-order pages
3446  */
3447 void free_unref_page_list(struct list_head *list)
3448 {
3449 	struct page *page, *next;
3450 	unsigned long flags;
3451 	int batch_count = 0;
3452 	int migratetype;
3453 
3454 	/* Prepare pages for freeing */
3455 	list_for_each_entry_safe(page, next, list, lru) {
3456 		unsigned long pfn = page_to_pfn(page);
3457 		if (!free_unref_page_prepare(page, pfn, 0)) {
3458 			list_del(&page->lru);
3459 			continue;
3460 		}
3461 
3462 		/*
3463 		 * Free isolated pages directly to the allocator, see
3464 		 * comment in free_unref_page.
3465 		 */
3466 		migratetype = get_pcppage_migratetype(page);
3467 		if (unlikely(is_migrate_isolate(migratetype))) {
3468 			list_del(&page->lru);
3469 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3470 			continue;
3471 		}
3472 	}
3473 
3474 	local_lock_irqsave(&pagesets.lock, flags);
3475 	list_for_each_entry_safe(page, next, list, lru) {
3476 		/*
3477 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3478 		 * to the MIGRATE_MOVABLE pcp list.
3479 		 */
3480 		migratetype = get_pcppage_migratetype(page);
3481 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3482 			migratetype = MIGRATE_MOVABLE;
3483 
3484 		trace_mm_page_free_batched(page);
3485 		free_unref_page_commit(page, migratetype, 0);
3486 
3487 		/*
3488 		 * Guard against excessive IRQ disabled times when we get
3489 		 * a large list of pages to free.
3490 		 */
3491 		if (++batch_count == SWAP_CLUSTER_MAX) {
3492 			local_unlock_irqrestore(&pagesets.lock, flags);
3493 			batch_count = 0;
3494 			local_lock_irqsave(&pagesets.lock, flags);
3495 		}
3496 	}
3497 	local_unlock_irqrestore(&pagesets.lock, flags);
3498 }
3499 
3500 /*
3501  * split_page takes a non-compound higher-order page, and splits it into
3502  * n (1<<order) sub-pages: page[0..n]
3503  * Each sub-page must be freed individually.
3504  *
3505  * Note: this is probably too low level an operation for use in drivers.
3506  * Please consult with lkml before using this in your driver.
3507  */
3508 void split_page(struct page *page, unsigned int order)
3509 {
3510 	int i;
3511 
3512 	VM_BUG_ON_PAGE(PageCompound(page), page);
3513 	VM_BUG_ON_PAGE(!page_count(page), page);
3514 
3515 	for (i = 1; i < (1 << order); i++)
3516 		set_page_refcounted(page + i);
3517 	split_page_owner(page, 1 << order);
3518 	split_page_memcg(page, 1 << order);
3519 }
3520 EXPORT_SYMBOL_GPL(split_page);
3521 
3522 int __isolate_free_page(struct page *page, unsigned int order)
3523 {
3524 	unsigned long watermark;
3525 	struct zone *zone;
3526 	int mt;
3527 
3528 	BUG_ON(!PageBuddy(page));
3529 
3530 	zone = page_zone(page);
3531 	mt = get_pageblock_migratetype(page);
3532 
3533 	if (!is_migrate_isolate(mt)) {
3534 		/*
3535 		 * Obey watermarks as if the page was being allocated. We can
3536 		 * emulate a high-order watermark check with a raised order-0
3537 		 * watermark, because we already know our high-order page
3538 		 * exists.
3539 		 */
3540 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3541 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3542 			return 0;
3543 
3544 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3545 	}
3546 
3547 	/* Remove page from free list */
3548 
3549 	del_page_from_free_list(page, zone, order);
3550 
3551 	/*
3552 	 * Set the pageblock if the isolated page is at least half of a
3553 	 * pageblock
3554 	 */
3555 	if (order >= pageblock_order - 1) {
3556 		struct page *endpage = page + (1 << order) - 1;
3557 		for (; page < endpage; page += pageblock_nr_pages) {
3558 			int mt = get_pageblock_migratetype(page);
3559 			/*
3560 			 * Only change normal pageblocks (i.e., they can merge
3561 			 * with others)
3562 			 */
3563 			if (migratetype_is_mergeable(mt))
3564 				set_pageblock_migratetype(page,
3565 							  MIGRATE_MOVABLE);
3566 		}
3567 	}
3568 
3569 
3570 	return 1UL << order;
3571 }
3572 
3573 /**
3574  * __putback_isolated_page - Return a now-isolated page back where we got it
3575  * @page: Page that was isolated
3576  * @order: Order of the isolated page
3577  * @mt: The page's pageblock's migratetype
3578  *
3579  * This function is meant to return a page pulled from the free lists via
3580  * __isolate_free_page back to the free lists they were pulled from.
3581  */
3582 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3583 {
3584 	struct zone *zone = page_zone(page);
3585 
3586 	/* zone lock should be held when this function is called */
3587 	lockdep_assert_held(&zone->lock);
3588 
3589 	/* Return isolated page to tail of freelist. */
3590 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3591 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3592 }
3593 
3594 /*
3595  * Update NUMA hit/miss statistics
3596  *
3597  * Must be called with interrupts disabled.
3598  */
3599 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3600 				   long nr_account)
3601 {
3602 #ifdef CONFIG_NUMA
3603 	enum numa_stat_item local_stat = NUMA_LOCAL;
3604 
3605 	/* skip numa counters update if numa stats is disabled */
3606 	if (!static_branch_likely(&vm_numa_stat_key))
3607 		return;
3608 
3609 	if (zone_to_nid(z) != numa_node_id())
3610 		local_stat = NUMA_OTHER;
3611 
3612 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3613 		__count_numa_events(z, NUMA_HIT, nr_account);
3614 	else {
3615 		__count_numa_events(z, NUMA_MISS, nr_account);
3616 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3617 	}
3618 	__count_numa_events(z, local_stat, nr_account);
3619 #endif
3620 }
3621 
3622 /* Remove page from the per-cpu list, caller must protect the list */
3623 static inline
3624 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3625 			int migratetype,
3626 			unsigned int alloc_flags,
3627 			struct per_cpu_pages *pcp,
3628 			struct list_head *list)
3629 {
3630 	struct page *page;
3631 
3632 	do {
3633 		if (list_empty(list)) {
3634 			int batch = READ_ONCE(pcp->batch);
3635 			int alloced;
3636 
3637 			/*
3638 			 * Scale batch relative to order if batch implies
3639 			 * free pages can be stored on the PCP. Batch can
3640 			 * be 1 for small zones or for boot pagesets which
3641 			 * should never store free pages as the pages may
3642 			 * belong to arbitrary zones.
3643 			 */
3644 			if (batch > 1)
3645 				batch = max(batch >> order, 2);
3646 			alloced = rmqueue_bulk(zone, order,
3647 					batch, list,
3648 					migratetype, alloc_flags);
3649 
3650 			pcp->count += alloced << order;
3651 			if (unlikely(list_empty(list)))
3652 				return NULL;
3653 		}
3654 
3655 		page = list_first_entry(list, struct page, lru);
3656 		list_del(&page->lru);
3657 		pcp->count -= 1 << order;
3658 	} while (check_new_pcp(page, order));
3659 
3660 	return page;
3661 }
3662 
3663 /* Lock and remove page from the per-cpu list */
3664 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3665 			struct zone *zone, unsigned int order,
3666 			gfp_t gfp_flags, int migratetype,
3667 			unsigned int alloc_flags)
3668 {
3669 	struct per_cpu_pages *pcp;
3670 	struct list_head *list;
3671 	struct page *page;
3672 	unsigned long flags;
3673 
3674 	local_lock_irqsave(&pagesets.lock, flags);
3675 
3676 	/*
3677 	 * On allocation, reduce the number of pages that are batch freed.
3678 	 * See nr_pcp_free() where free_factor is increased for subsequent
3679 	 * frees.
3680 	 */
3681 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3682 	pcp->free_factor >>= 1;
3683 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3684 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3685 	local_unlock_irqrestore(&pagesets.lock, flags);
3686 	if (page) {
3687 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3688 		zone_statistics(preferred_zone, zone, 1);
3689 	}
3690 	return page;
3691 }
3692 
3693 /*
3694  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3695  */
3696 static inline
3697 struct page *rmqueue(struct zone *preferred_zone,
3698 			struct zone *zone, unsigned int order,
3699 			gfp_t gfp_flags, unsigned int alloc_flags,
3700 			int migratetype)
3701 {
3702 	unsigned long flags;
3703 	struct page *page;
3704 
3705 	if (likely(pcp_allowed_order(order))) {
3706 		/*
3707 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3708 		 * we need to skip it when CMA area isn't allowed.
3709 		 */
3710 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3711 				migratetype != MIGRATE_MOVABLE) {
3712 			page = rmqueue_pcplist(preferred_zone, zone, order,
3713 					gfp_flags, migratetype, alloc_flags);
3714 			goto out;
3715 		}
3716 	}
3717 
3718 	/*
3719 	 * We most definitely don't want callers attempting to
3720 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3721 	 */
3722 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3723 
3724 	do {
3725 		page = NULL;
3726 		spin_lock_irqsave(&zone->lock, flags);
3727 		/*
3728 		 * order-0 request can reach here when the pcplist is skipped
3729 		 * due to non-CMA allocation context. HIGHATOMIC area is
3730 		 * reserved for high-order atomic allocation, so order-0
3731 		 * request should skip it.
3732 		 */
3733 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3734 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3735 			if (page)
3736 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3737 		}
3738 		if (!page) {
3739 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3740 			if (!page)
3741 				goto failed;
3742 		}
3743 		__mod_zone_freepage_state(zone, -(1 << order),
3744 					  get_pcppage_migratetype(page));
3745 		spin_unlock_irqrestore(&zone->lock, flags);
3746 	} while (check_new_pages(page, order));
3747 
3748 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3749 	zone_statistics(preferred_zone, zone, 1);
3750 
3751 out:
3752 	/* Separate test+clear to avoid unnecessary atomics */
3753 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3754 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3755 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3756 	}
3757 
3758 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3759 	return page;
3760 
3761 failed:
3762 	spin_unlock_irqrestore(&zone->lock, flags);
3763 	return NULL;
3764 }
3765 
3766 #ifdef CONFIG_FAIL_PAGE_ALLOC
3767 
3768 static struct {
3769 	struct fault_attr attr;
3770 
3771 	bool ignore_gfp_highmem;
3772 	bool ignore_gfp_reclaim;
3773 	u32 min_order;
3774 } fail_page_alloc = {
3775 	.attr = FAULT_ATTR_INITIALIZER,
3776 	.ignore_gfp_reclaim = true,
3777 	.ignore_gfp_highmem = true,
3778 	.min_order = 1,
3779 };
3780 
3781 static int __init setup_fail_page_alloc(char *str)
3782 {
3783 	return setup_fault_attr(&fail_page_alloc.attr, str);
3784 }
3785 __setup("fail_page_alloc=", setup_fail_page_alloc);
3786 
3787 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3788 {
3789 	if (order < fail_page_alloc.min_order)
3790 		return false;
3791 	if (gfp_mask & __GFP_NOFAIL)
3792 		return false;
3793 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3794 		return false;
3795 	if (fail_page_alloc.ignore_gfp_reclaim &&
3796 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3797 		return false;
3798 
3799 	return should_fail(&fail_page_alloc.attr, 1 << order);
3800 }
3801 
3802 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3803 
3804 static int __init fail_page_alloc_debugfs(void)
3805 {
3806 	umode_t mode = S_IFREG | 0600;
3807 	struct dentry *dir;
3808 
3809 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3810 					&fail_page_alloc.attr);
3811 
3812 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3813 			    &fail_page_alloc.ignore_gfp_reclaim);
3814 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3815 			    &fail_page_alloc.ignore_gfp_highmem);
3816 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3817 
3818 	return 0;
3819 }
3820 
3821 late_initcall(fail_page_alloc_debugfs);
3822 
3823 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3824 
3825 #else /* CONFIG_FAIL_PAGE_ALLOC */
3826 
3827 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3828 {
3829 	return false;
3830 }
3831 
3832 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3833 
3834 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3835 {
3836 	return __should_fail_alloc_page(gfp_mask, order);
3837 }
3838 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3839 
3840 static inline long __zone_watermark_unusable_free(struct zone *z,
3841 				unsigned int order, unsigned int alloc_flags)
3842 {
3843 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3844 	long unusable_free = (1 << order) - 1;
3845 
3846 	/*
3847 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3848 	 * the high-atomic reserves. This will over-estimate the size of the
3849 	 * atomic reserve but it avoids a search.
3850 	 */
3851 	if (likely(!alloc_harder))
3852 		unusable_free += z->nr_reserved_highatomic;
3853 
3854 #ifdef CONFIG_CMA
3855 	/* If allocation can't use CMA areas don't use free CMA pages */
3856 	if (!(alloc_flags & ALLOC_CMA))
3857 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3858 #endif
3859 
3860 	return unusable_free;
3861 }
3862 
3863 /*
3864  * Return true if free base pages are above 'mark'. For high-order checks it
3865  * will return true of the order-0 watermark is reached and there is at least
3866  * one free page of a suitable size. Checking now avoids taking the zone lock
3867  * to check in the allocation paths if no pages are free.
3868  */
3869 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3870 			 int highest_zoneidx, unsigned int alloc_flags,
3871 			 long free_pages)
3872 {
3873 	long min = mark;
3874 	int o;
3875 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3876 
3877 	/* free_pages may go negative - that's OK */
3878 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3879 
3880 	if (alloc_flags & ALLOC_HIGH)
3881 		min -= min / 2;
3882 
3883 	if (unlikely(alloc_harder)) {
3884 		/*
3885 		 * OOM victims can try even harder than normal ALLOC_HARDER
3886 		 * users on the grounds that it's definitely going to be in
3887 		 * the exit path shortly and free memory. Any allocation it
3888 		 * makes during the free path will be small and short-lived.
3889 		 */
3890 		if (alloc_flags & ALLOC_OOM)
3891 			min -= min / 2;
3892 		else
3893 			min -= min / 4;
3894 	}
3895 
3896 	/*
3897 	 * Check watermarks for an order-0 allocation request. If these
3898 	 * are not met, then a high-order request also cannot go ahead
3899 	 * even if a suitable page happened to be free.
3900 	 */
3901 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3902 		return false;
3903 
3904 	/* If this is an order-0 request then the watermark is fine */
3905 	if (!order)
3906 		return true;
3907 
3908 	/* For a high-order request, check at least one suitable page is free */
3909 	for (o = order; o < MAX_ORDER; o++) {
3910 		struct free_area *area = &z->free_area[o];
3911 		int mt;
3912 
3913 		if (!area->nr_free)
3914 			continue;
3915 
3916 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3917 			if (!free_area_empty(area, mt))
3918 				return true;
3919 		}
3920 
3921 #ifdef CONFIG_CMA
3922 		if ((alloc_flags & ALLOC_CMA) &&
3923 		    !free_area_empty(area, MIGRATE_CMA)) {
3924 			return true;
3925 		}
3926 #endif
3927 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3928 			return true;
3929 	}
3930 	return false;
3931 }
3932 
3933 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3934 		      int highest_zoneidx, unsigned int alloc_flags)
3935 {
3936 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3937 					zone_page_state(z, NR_FREE_PAGES));
3938 }
3939 
3940 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3941 				unsigned long mark, int highest_zoneidx,
3942 				unsigned int alloc_flags, gfp_t gfp_mask)
3943 {
3944 	long free_pages;
3945 
3946 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3947 
3948 	/*
3949 	 * Fast check for order-0 only. If this fails then the reserves
3950 	 * need to be calculated.
3951 	 */
3952 	if (!order) {
3953 		long fast_free;
3954 
3955 		fast_free = free_pages;
3956 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3957 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3958 			return true;
3959 	}
3960 
3961 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3962 					free_pages))
3963 		return true;
3964 	/*
3965 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3966 	 * when checking the min watermark. The min watermark is the
3967 	 * point where boosting is ignored so that kswapd is woken up
3968 	 * when below the low watermark.
3969 	 */
3970 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3971 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3972 		mark = z->_watermark[WMARK_MIN];
3973 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3974 					alloc_flags, free_pages);
3975 	}
3976 
3977 	return false;
3978 }
3979 
3980 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3981 			unsigned long mark, int highest_zoneidx)
3982 {
3983 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3984 
3985 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3986 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3987 
3988 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3989 								free_pages);
3990 }
3991 
3992 #ifdef CONFIG_NUMA
3993 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3994 
3995 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3996 {
3997 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3998 				node_reclaim_distance;
3999 }
4000 #else	/* CONFIG_NUMA */
4001 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4002 {
4003 	return true;
4004 }
4005 #endif	/* CONFIG_NUMA */
4006 
4007 /*
4008  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4009  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4010  * premature use of a lower zone may cause lowmem pressure problems that
4011  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4012  * probably too small. It only makes sense to spread allocations to avoid
4013  * fragmentation between the Normal and DMA32 zones.
4014  */
4015 static inline unsigned int
4016 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4017 {
4018 	unsigned int alloc_flags;
4019 
4020 	/*
4021 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4022 	 * to save a branch.
4023 	 */
4024 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4025 
4026 #ifdef CONFIG_ZONE_DMA32
4027 	if (!zone)
4028 		return alloc_flags;
4029 
4030 	if (zone_idx(zone) != ZONE_NORMAL)
4031 		return alloc_flags;
4032 
4033 	/*
4034 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4035 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4036 	 * on UMA that if Normal is populated then so is DMA32.
4037 	 */
4038 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4039 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4040 		return alloc_flags;
4041 
4042 	alloc_flags |= ALLOC_NOFRAGMENT;
4043 #endif /* CONFIG_ZONE_DMA32 */
4044 	return alloc_flags;
4045 }
4046 
4047 /* Must be called after current_gfp_context() which can change gfp_mask */
4048 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4049 						  unsigned int alloc_flags)
4050 {
4051 #ifdef CONFIG_CMA
4052 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4053 		alloc_flags |= ALLOC_CMA;
4054 #endif
4055 	return alloc_flags;
4056 }
4057 
4058 /*
4059  * get_page_from_freelist goes through the zonelist trying to allocate
4060  * a page.
4061  */
4062 static struct page *
4063 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4064 						const struct alloc_context *ac)
4065 {
4066 	struct zoneref *z;
4067 	struct zone *zone;
4068 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4069 	bool no_fallback;
4070 
4071 retry:
4072 	/*
4073 	 * Scan zonelist, looking for a zone with enough free.
4074 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4075 	 */
4076 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4077 	z = ac->preferred_zoneref;
4078 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4079 					ac->nodemask) {
4080 		struct page *page;
4081 		unsigned long mark;
4082 
4083 		if (cpusets_enabled() &&
4084 			(alloc_flags & ALLOC_CPUSET) &&
4085 			!__cpuset_zone_allowed(zone, gfp_mask))
4086 				continue;
4087 		/*
4088 		 * When allocating a page cache page for writing, we
4089 		 * want to get it from a node that is within its dirty
4090 		 * limit, such that no single node holds more than its
4091 		 * proportional share of globally allowed dirty pages.
4092 		 * The dirty limits take into account the node's
4093 		 * lowmem reserves and high watermark so that kswapd
4094 		 * should be able to balance it without having to
4095 		 * write pages from its LRU list.
4096 		 *
4097 		 * XXX: For now, allow allocations to potentially
4098 		 * exceed the per-node dirty limit in the slowpath
4099 		 * (spread_dirty_pages unset) before going into reclaim,
4100 		 * which is important when on a NUMA setup the allowed
4101 		 * nodes are together not big enough to reach the
4102 		 * global limit.  The proper fix for these situations
4103 		 * will require awareness of nodes in the
4104 		 * dirty-throttling and the flusher threads.
4105 		 */
4106 		if (ac->spread_dirty_pages) {
4107 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4108 				continue;
4109 
4110 			if (!node_dirty_ok(zone->zone_pgdat)) {
4111 				last_pgdat_dirty_limit = zone->zone_pgdat;
4112 				continue;
4113 			}
4114 		}
4115 
4116 		if (no_fallback && nr_online_nodes > 1 &&
4117 		    zone != ac->preferred_zoneref->zone) {
4118 			int local_nid;
4119 
4120 			/*
4121 			 * If moving to a remote node, retry but allow
4122 			 * fragmenting fallbacks. Locality is more important
4123 			 * than fragmentation avoidance.
4124 			 */
4125 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4126 			if (zone_to_nid(zone) != local_nid) {
4127 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4128 				goto retry;
4129 			}
4130 		}
4131 
4132 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4133 		if (!zone_watermark_fast(zone, order, mark,
4134 				       ac->highest_zoneidx, alloc_flags,
4135 				       gfp_mask)) {
4136 			int ret;
4137 
4138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4139 			/*
4140 			 * Watermark failed for this zone, but see if we can
4141 			 * grow this zone if it contains deferred pages.
4142 			 */
4143 			if (static_branch_unlikely(&deferred_pages)) {
4144 				if (_deferred_grow_zone(zone, order))
4145 					goto try_this_zone;
4146 			}
4147 #endif
4148 			/* Checked here to keep the fast path fast */
4149 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4150 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4151 				goto try_this_zone;
4152 
4153 			if (!node_reclaim_enabled() ||
4154 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4155 				continue;
4156 
4157 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4158 			switch (ret) {
4159 			case NODE_RECLAIM_NOSCAN:
4160 				/* did not scan */
4161 				continue;
4162 			case NODE_RECLAIM_FULL:
4163 				/* scanned but unreclaimable */
4164 				continue;
4165 			default:
4166 				/* did we reclaim enough */
4167 				if (zone_watermark_ok(zone, order, mark,
4168 					ac->highest_zoneidx, alloc_flags))
4169 					goto try_this_zone;
4170 
4171 				continue;
4172 			}
4173 		}
4174 
4175 try_this_zone:
4176 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4177 				gfp_mask, alloc_flags, ac->migratetype);
4178 		if (page) {
4179 			prep_new_page(page, order, gfp_mask, alloc_flags);
4180 
4181 			/*
4182 			 * If this is a high-order atomic allocation then check
4183 			 * if the pageblock should be reserved for the future
4184 			 */
4185 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4186 				reserve_highatomic_pageblock(page, zone, order);
4187 
4188 			return page;
4189 		} else {
4190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4191 			/* Try again if zone has deferred pages */
4192 			if (static_branch_unlikely(&deferred_pages)) {
4193 				if (_deferred_grow_zone(zone, order))
4194 					goto try_this_zone;
4195 			}
4196 #endif
4197 		}
4198 	}
4199 
4200 	/*
4201 	 * It's possible on a UMA machine to get through all zones that are
4202 	 * fragmented. If avoiding fragmentation, reset and try again.
4203 	 */
4204 	if (no_fallback) {
4205 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4206 		goto retry;
4207 	}
4208 
4209 	return NULL;
4210 }
4211 
4212 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4213 {
4214 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4215 
4216 	/*
4217 	 * This documents exceptions given to allocations in certain
4218 	 * contexts that are allowed to allocate outside current's set
4219 	 * of allowed nodes.
4220 	 */
4221 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4222 		if (tsk_is_oom_victim(current) ||
4223 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4224 			filter &= ~SHOW_MEM_FILTER_NODES;
4225 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4226 		filter &= ~SHOW_MEM_FILTER_NODES;
4227 
4228 	show_mem(filter, nodemask);
4229 }
4230 
4231 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4232 {
4233 	struct va_format vaf;
4234 	va_list args;
4235 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4236 
4237 	if ((gfp_mask & __GFP_NOWARN) ||
4238 	     !__ratelimit(&nopage_rs) ||
4239 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4240 		return;
4241 
4242 	va_start(args, fmt);
4243 	vaf.fmt = fmt;
4244 	vaf.va = &args;
4245 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4246 			current->comm, &vaf, gfp_mask, &gfp_mask,
4247 			nodemask_pr_args(nodemask));
4248 	va_end(args);
4249 
4250 	cpuset_print_current_mems_allowed();
4251 	pr_cont("\n");
4252 	dump_stack();
4253 	warn_alloc_show_mem(gfp_mask, nodemask);
4254 }
4255 
4256 static inline struct page *
4257 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4258 			      unsigned int alloc_flags,
4259 			      const struct alloc_context *ac)
4260 {
4261 	struct page *page;
4262 
4263 	page = get_page_from_freelist(gfp_mask, order,
4264 			alloc_flags|ALLOC_CPUSET, ac);
4265 	/*
4266 	 * fallback to ignore cpuset restriction if our nodes
4267 	 * are depleted
4268 	 */
4269 	if (!page)
4270 		page = get_page_from_freelist(gfp_mask, order,
4271 				alloc_flags, ac);
4272 
4273 	return page;
4274 }
4275 
4276 static inline struct page *
4277 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4278 	const struct alloc_context *ac, unsigned long *did_some_progress)
4279 {
4280 	struct oom_control oc = {
4281 		.zonelist = ac->zonelist,
4282 		.nodemask = ac->nodemask,
4283 		.memcg = NULL,
4284 		.gfp_mask = gfp_mask,
4285 		.order = order,
4286 	};
4287 	struct page *page;
4288 
4289 	*did_some_progress = 0;
4290 
4291 	/*
4292 	 * Acquire the oom lock.  If that fails, somebody else is
4293 	 * making progress for us.
4294 	 */
4295 	if (!mutex_trylock(&oom_lock)) {
4296 		*did_some_progress = 1;
4297 		schedule_timeout_uninterruptible(1);
4298 		return NULL;
4299 	}
4300 
4301 	/*
4302 	 * Go through the zonelist yet one more time, keep very high watermark
4303 	 * here, this is only to catch a parallel oom killing, we must fail if
4304 	 * we're still under heavy pressure. But make sure that this reclaim
4305 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4306 	 * allocation which will never fail due to oom_lock already held.
4307 	 */
4308 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4309 				      ~__GFP_DIRECT_RECLAIM, order,
4310 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4311 	if (page)
4312 		goto out;
4313 
4314 	/* Coredumps can quickly deplete all memory reserves */
4315 	if (current->flags & PF_DUMPCORE)
4316 		goto out;
4317 	/* The OOM killer will not help higher order allocs */
4318 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4319 		goto out;
4320 	/*
4321 	 * We have already exhausted all our reclaim opportunities without any
4322 	 * success so it is time to admit defeat. We will skip the OOM killer
4323 	 * because it is very likely that the caller has a more reasonable
4324 	 * fallback than shooting a random task.
4325 	 *
4326 	 * The OOM killer may not free memory on a specific node.
4327 	 */
4328 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4329 		goto out;
4330 	/* The OOM killer does not needlessly kill tasks for lowmem */
4331 	if (ac->highest_zoneidx < ZONE_NORMAL)
4332 		goto out;
4333 	if (pm_suspended_storage())
4334 		goto out;
4335 	/*
4336 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4337 	 * other request to make a forward progress.
4338 	 * We are in an unfortunate situation where out_of_memory cannot
4339 	 * do much for this context but let's try it to at least get
4340 	 * access to memory reserved if the current task is killed (see
4341 	 * out_of_memory). Once filesystems are ready to handle allocation
4342 	 * failures more gracefully we should just bail out here.
4343 	 */
4344 
4345 	/* Exhausted what can be done so it's blame time */
4346 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4347 		*did_some_progress = 1;
4348 
4349 		/*
4350 		 * Help non-failing allocations by giving them access to memory
4351 		 * reserves
4352 		 */
4353 		if (gfp_mask & __GFP_NOFAIL)
4354 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4355 					ALLOC_NO_WATERMARKS, ac);
4356 	}
4357 out:
4358 	mutex_unlock(&oom_lock);
4359 	return page;
4360 }
4361 
4362 /*
4363  * Maximum number of compaction retries with a progress before OOM
4364  * killer is consider as the only way to move forward.
4365  */
4366 #define MAX_COMPACT_RETRIES 16
4367 
4368 #ifdef CONFIG_COMPACTION
4369 /* Try memory compaction for high-order allocations before reclaim */
4370 static struct page *
4371 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4372 		unsigned int alloc_flags, const struct alloc_context *ac,
4373 		enum compact_priority prio, enum compact_result *compact_result)
4374 {
4375 	struct page *page = NULL;
4376 	unsigned long pflags;
4377 	unsigned int noreclaim_flag;
4378 
4379 	if (!order)
4380 		return NULL;
4381 
4382 	psi_memstall_enter(&pflags);
4383 	delayacct_compact_start();
4384 	noreclaim_flag = memalloc_noreclaim_save();
4385 
4386 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4387 								prio, &page);
4388 
4389 	memalloc_noreclaim_restore(noreclaim_flag);
4390 	psi_memstall_leave(&pflags);
4391 	delayacct_compact_end();
4392 
4393 	if (*compact_result == COMPACT_SKIPPED)
4394 		return NULL;
4395 	/*
4396 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4397 	 * count a compaction stall
4398 	 */
4399 	count_vm_event(COMPACTSTALL);
4400 
4401 	/* Prep a captured page if available */
4402 	if (page)
4403 		prep_new_page(page, order, gfp_mask, alloc_flags);
4404 
4405 	/* Try get a page from the freelist if available */
4406 	if (!page)
4407 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4408 
4409 	if (page) {
4410 		struct zone *zone = page_zone(page);
4411 
4412 		zone->compact_blockskip_flush = false;
4413 		compaction_defer_reset(zone, order, true);
4414 		count_vm_event(COMPACTSUCCESS);
4415 		return page;
4416 	}
4417 
4418 	/*
4419 	 * It's bad if compaction run occurs and fails. The most likely reason
4420 	 * is that pages exist, but not enough to satisfy watermarks.
4421 	 */
4422 	count_vm_event(COMPACTFAIL);
4423 
4424 	cond_resched();
4425 
4426 	return NULL;
4427 }
4428 
4429 static inline bool
4430 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4431 		     enum compact_result compact_result,
4432 		     enum compact_priority *compact_priority,
4433 		     int *compaction_retries)
4434 {
4435 	int max_retries = MAX_COMPACT_RETRIES;
4436 	int min_priority;
4437 	bool ret = false;
4438 	int retries = *compaction_retries;
4439 	enum compact_priority priority = *compact_priority;
4440 
4441 	if (!order)
4442 		return false;
4443 
4444 	if (fatal_signal_pending(current))
4445 		return false;
4446 
4447 	if (compaction_made_progress(compact_result))
4448 		(*compaction_retries)++;
4449 
4450 	/*
4451 	 * compaction considers all the zone as desperately out of memory
4452 	 * so it doesn't really make much sense to retry except when the
4453 	 * failure could be caused by insufficient priority
4454 	 */
4455 	if (compaction_failed(compact_result))
4456 		goto check_priority;
4457 
4458 	/*
4459 	 * compaction was skipped because there are not enough order-0 pages
4460 	 * to work with, so we retry only if it looks like reclaim can help.
4461 	 */
4462 	if (compaction_needs_reclaim(compact_result)) {
4463 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4464 		goto out;
4465 	}
4466 
4467 	/*
4468 	 * make sure the compaction wasn't deferred or didn't bail out early
4469 	 * due to locks contention before we declare that we should give up.
4470 	 * But the next retry should use a higher priority if allowed, so
4471 	 * we don't just keep bailing out endlessly.
4472 	 */
4473 	if (compaction_withdrawn(compact_result)) {
4474 		goto check_priority;
4475 	}
4476 
4477 	/*
4478 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4479 	 * costly ones because they are de facto nofail and invoke OOM
4480 	 * killer to move on while costly can fail and users are ready
4481 	 * to cope with that. 1/4 retries is rather arbitrary but we
4482 	 * would need much more detailed feedback from compaction to
4483 	 * make a better decision.
4484 	 */
4485 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4486 		max_retries /= 4;
4487 	if (*compaction_retries <= max_retries) {
4488 		ret = true;
4489 		goto out;
4490 	}
4491 
4492 	/*
4493 	 * Make sure there are attempts at the highest priority if we exhausted
4494 	 * all retries or failed at the lower priorities.
4495 	 */
4496 check_priority:
4497 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4498 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4499 
4500 	if (*compact_priority > min_priority) {
4501 		(*compact_priority)--;
4502 		*compaction_retries = 0;
4503 		ret = true;
4504 	}
4505 out:
4506 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4507 	return ret;
4508 }
4509 #else
4510 static inline struct page *
4511 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4512 		unsigned int alloc_flags, const struct alloc_context *ac,
4513 		enum compact_priority prio, enum compact_result *compact_result)
4514 {
4515 	*compact_result = COMPACT_SKIPPED;
4516 	return NULL;
4517 }
4518 
4519 static inline bool
4520 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4521 		     enum compact_result compact_result,
4522 		     enum compact_priority *compact_priority,
4523 		     int *compaction_retries)
4524 {
4525 	struct zone *zone;
4526 	struct zoneref *z;
4527 
4528 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4529 		return false;
4530 
4531 	/*
4532 	 * There are setups with compaction disabled which would prefer to loop
4533 	 * inside the allocator rather than hit the oom killer prematurely.
4534 	 * Let's give them a good hope and keep retrying while the order-0
4535 	 * watermarks are OK.
4536 	 */
4537 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4538 				ac->highest_zoneidx, ac->nodemask) {
4539 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4540 					ac->highest_zoneidx, alloc_flags))
4541 			return true;
4542 	}
4543 	return false;
4544 }
4545 #endif /* CONFIG_COMPACTION */
4546 
4547 #ifdef CONFIG_LOCKDEP
4548 static struct lockdep_map __fs_reclaim_map =
4549 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4550 
4551 static bool __need_reclaim(gfp_t gfp_mask)
4552 {
4553 	/* no reclaim without waiting on it */
4554 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4555 		return false;
4556 
4557 	/* this guy won't enter reclaim */
4558 	if (current->flags & PF_MEMALLOC)
4559 		return false;
4560 
4561 	if (gfp_mask & __GFP_NOLOCKDEP)
4562 		return false;
4563 
4564 	return true;
4565 }
4566 
4567 void __fs_reclaim_acquire(unsigned long ip)
4568 {
4569 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4570 }
4571 
4572 void __fs_reclaim_release(unsigned long ip)
4573 {
4574 	lock_release(&__fs_reclaim_map, ip);
4575 }
4576 
4577 void fs_reclaim_acquire(gfp_t gfp_mask)
4578 {
4579 	gfp_mask = current_gfp_context(gfp_mask);
4580 
4581 	if (__need_reclaim(gfp_mask)) {
4582 		if (gfp_mask & __GFP_FS)
4583 			__fs_reclaim_acquire(_RET_IP_);
4584 
4585 #ifdef CONFIG_MMU_NOTIFIER
4586 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4587 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4588 #endif
4589 
4590 	}
4591 }
4592 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4593 
4594 void fs_reclaim_release(gfp_t gfp_mask)
4595 {
4596 	gfp_mask = current_gfp_context(gfp_mask);
4597 
4598 	if (__need_reclaim(gfp_mask)) {
4599 		if (gfp_mask & __GFP_FS)
4600 			__fs_reclaim_release(_RET_IP_);
4601 	}
4602 }
4603 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4604 #endif
4605 
4606 /* Perform direct synchronous page reclaim */
4607 static unsigned long
4608 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4609 					const struct alloc_context *ac)
4610 {
4611 	unsigned int noreclaim_flag;
4612 	unsigned long progress;
4613 
4614 	cond_resched();
4615 
4616 	/* We now go into synchronous reclaim */
4617 	cpuset_memory_pressure_bump();
4618 	fs_reclaim_acquire(gfp_mask);
4619 	noreclaim_flag = memalloc_noreclaim_save();
4620 
4621 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4622 								ac->nodemask);
4623 
4624 	memalloc_noreclaim_restore(noreclaim_flag);
4625 	fs_reclaim_release(gfp_mask);
4626 
4627 	cond_resched();
4628 
4629 	return progress;
4630 }
4631 
4632 /* The really slow allocator path where we enter direct reclaim */
4633 static inline struct page *
4634 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4635 		unsigned int alloc_flags, const struct alloc_context *ac,
4636 		unsigned long *did_some_progress)
4637 {
4638 	struct page *page = NULL;
4639 	unsigned long pflags;
4640 	bool drained = false;
4641 
4642 	psi_memstall_enter(&pflags);
4643 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4644 	if (unlikely(!(*did_some_progress)))
4645 		goto out;
4646 
4647 retry:
4648 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4649 
4650 	/*
4651 	 * If an allocation failed after direct reclaim, it could be because
4652 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4653 	 * Shrink them and try again
4654 	 */
4655 	if (!page && !drained) {
4656 		unreserve_highatomic_pageblock(ac, false);
4657 		drain_all_pages(NULL);
4658 		drained = true;
4659 		goto retry;
4660 	}
4661 out:
4662 	psi_memstall_leave(&pflags);
4663 
4664 	return page;
4665 }
4666 
4667 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4668 			     const struct alloc_context *ac)
4669 {
4670 	struct zoneref *z;
4671 	struct zone *zone;
4672 	pg_data_t *last_pgdat = NULL;
4673 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4674 
4675 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4676 					ac->nodemask) {
4677 		if (last_pgdat != zone->zone_pgdat)
4678 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4679 		last_pgdat = zone->zone_pgdat;
4680 	}
4681 }
4682 
4683 static inline unsigned int
4684 gfp_to_alloc_flags(gfp_t gfp_mask)
4685 {
4686 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4687 
4688 	/*
4689 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4690 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4691 	 * to save two branches.
4692 	 */
4693 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4694 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4695 
4696 	/*
4697 	 * The caller may dip into page reserves a bit more if the caller
4698 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4699 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4700 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4701 	 */
4702 	alloc_flags |= (__force int)
4703 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4704 
4705 	if (gfp_mask & __GFP_ATOMIC) {
4706 		/*
4707 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4708 		 * if it can't schedule.
4709 		 */
4710 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4711 			alloc_flags |= ALLOC_HARDER;
4712 		/*
4713 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4714 		 * comment for __cpuset_node_allowed().
4715 		 */
4716 		alloc_flags &= ~ALLOC_CPUSET;
4717 	} else if (unlikely(rt_task(current)) && in_task())
4718 		alloc_flags |= ALLOC_HARDER;
4719 
4720 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4721 
4722 	return alloc_flags;
4723 }
4724 
4725 static bool oom_reserves_allowed(struct task_struct *tsk)
4726 {
4727 	if (!tsk_is_oom_victim(tsk))
4728 		return false;
4729 
4730 	/*
4731 	 * !MMU doesn't have oom reaper so give access to memory reserves
4732 	 * only to the thread with TIF_MEMDIE set
4733 	 */
4734 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4735 		return false;
4736 
4737 	return true;
4738 }
4739 
4740 /*
4741  * Distinguish requests which really need access to full memory
4742  * reserves from oom victims which can live with a portion of it
4743  */
4744 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4745 {
4746 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4747 		return 0;
4748 	if (gfp_mask & __GFP_MEMALLOC)
4749 		return ALLOC_NO_WATERMARKS;
4750 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4751 		return ALLOC_NO_WATERMARKS;
4752 	if (!in_interrupt()) {
4753 		if (current->flags & PF_MEMALLOC)
4754 			return ALLOC_NO_WATERMARKS;
4755 		else if (oom_reserves_allowed(current))
4756 			return ALLOC_OOM;
4757 	}
4758 
4759 	return 0;
4760 }
4761 
4762 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4763 {
4764 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4765 }
4766 
4767 /*
4768  * Checks whether it makes sense to retry the reclaim to make a forward progress
4769  * for the given allocation request.
4770  *
4771  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4772  * without success, or when we couldn't even meet the watermark if we
4773  * reclaimed all remaining pages on the LRU lists.
4774  *
4775  * Returns true if a retry is viable or false to enter the oom path.
4776  */
4777 static inline bool
4778 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4779 		     struct alloc_context *ac, int alloc_flags,
4780 		     bool did_some_progress, int *no_progress_loops)
4781 {
4782 	struct zone *zone;
4783 	struct zoneref *z;
4784 	bool ret = false;
4785 
4786 	/*
4787 	 * Costly allocations might have made a progress but this doesn't mean
4788 	 * their order will become available due to high fragmentation so
4789 	 * always increment the no progress counter for them
4790 	 */
4791 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4792 		*no_progress_loops = 0;
4793 	else
4794 		(*no_progress_loops)++;
4795 
4796 	/*
4797 	 * Make sure we converge to OOM if we cannot make any progress
4798 	 * several times in the row.
4799 	 */
4800 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4801 		/* Before OOM, exhaust highatomic_reserve */
4802 		return unreserve_highatomic_pageblock(ac, true);
4803 	}
4804 
4805 	/*
4806 	 * Keep reclaiming pages while there is a chance this will lead
4807 	 * somewhere.  If none of the target zones can satisfy our allocation
4808 	 * request even if all reclaimable pages are considered then we are
4809 	 * screwed and have to go OOM.
4810 	 */
4811 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4812 				ac->highest_zoneidx, ac->nodemask) {
4813 		unsigned long available;
4814 		unsigned long reclaimable;
4815 		unsigned long min_wmark = min_wmark_pages(zone);
4816 		bool wmark;
4817 
4818 		available = reclaimable = zone_reclaimable_pages(zone);
4819 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4820 
4821 		/*
4822 		 * Would the allocation succeed if we reclaimed all
4823 		 * reclaimable pages?
4824 		 */
4825 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4826 				ac->highest_zoneidx, alloc_flags, available);
4827 		trace_reclaim_retry_zone(z, order, reclaimable,
4828 				available, min_wmark, *no_progress_loops, wmark);
4829 		if (wmark) {
4830 			ret = true;
4831 			break;
4832 		}
4833 	}
4834 
4835 	/*
4836 	 * Memory allocation/reclaim might be called from a WQ context and the
4837 	 * current implementation of the WQ concurrency control doesn't
4838 	 * recognize that a particular WQ is congested if the worker thread is
4839 	 * looping without ever sleeping. Therefore we have to do a short sleep
4840 	 * here rather than calling cond_resched().
4841 	 */
4842 	if (current->flags & PF_WQ_WORKER)
4843 		schedule_timeout_uninterruptible(1);
4844 	else
4845 		cond_resched();
4846 	return ret;
4847 }
4848 
4849 static inline bool
4850 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4851 {
4852 	/*
4853 	 * It's possible that cpuset's mems_allowed and the nodemask from
4854 	 * mempolicy don't intersect. This should be normally dealt with by
4855 	 * policy_nodemask(), but it's possible to race with cpuset update in
4856 	 * such a way the check therein was true, and then it became false
4857 	 * before we got our cpuset_mems_cookie here.
4858 	 * This assumes that for all allocations, ac->nodemask can come only
4859 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4860 	 * when it does not intersect with the cpuset restrictions) or the
4861 	 * caller can deal with a violated nodemask.
4862 	 */
4863 	if (cpusets_enabled() && ac->nodemask &&
4864 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4865 		ac->nodemask = NULL;
4866 		return true;
4867 	}
4868 
4869 	/*
4870 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4871 	 * possible to race with parallel threads in such a way that our
4872 	 * allocation can fail while the mask is being updated. If we are about
4873 	 * to fail, check if the cpuset changed during allocation and if so,
4874 	 * retry.
4875 	 */
4876 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4877 		return true;
4878 
4879 	return false;
4880 }
4881 
4882 static inline struct page *
4883 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4884 						struct alloc_context *ac)
4885 {
4886 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4887 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4888 	struct page *page = NULL;
4889 	unsigned int alloc_flags;
4890 	unsigned long did_some_progress;
4891 	enum compact_priority compact_priority;
4892 	enum compact_result compact_result;
4893 	int compaction_retries;
4894 	int no_progress_loops;
4895 	unsigned int cpuset_mems_cookie;
4896 	int reserve_flags;
4897 
4898 	/*
4899 	 * We also sanity check to catch abuse of atomic reserves being used by
4900 	 * callers that are not in atomic context.
4901 	 */
4902 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4903 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4904 		gfp_mask &= ~__GFP_ATOMIC;
4905 
4906 retry_cpuset:
4907 	compaction_retries = 0;
4908 	no_progress_loops = 0;
4909 	compact_priority = DEF_COMPACT_PRIORITY;
4910 	cpuset_mems_cookie = read_mems_allowed_begin();
4911 
4912 	/*
4913 	 * The fast path uses conservative alloc_flags to succeed only until
4914 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4915 	 * alloc_flags precisely. So we do that now.
4916 	 */
4917 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4918 
4919 	/*
4920 	 * We need to recalculate the starting point for the zonelist iterator
4921 	 * because we might have used different nodemask in the fast path, or
4922 	 * there was a cpuset modification and we are retrying - otherwise we
4923 	 * could end up iterating over non-eligible zones endlessly.
4924 	 */
4925 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4926 					ac->highest_zoneidx, ac->nodemask);
4927 	if (!ac->preferred_zoneref->zone)
4928 		goto nopage;
4929 
4930 	/*
4931 	 * Check for insane configurations where the cpuset doesn't contain
4932 	 * any suitable zone to satisfy the request - e.g. non-movable
4933 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4934 	 */
4935 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4936 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4937 					ac->highest_zoneidx,
4938 					&cpuset_current_mems_allowed);
4939 		if (!z->zone)
4940 			goto nopage;
4941 	}
4942 
4943 	if (alloc_flags & ALLOC_KSWAPD)
4944 		wake_all_kswapds(order, gfp_mask, ac);
4945 
4946 	/*
4947 	 * The adjusted alloc_flags might result in immediate success, so try
4948 	 * that first
4949 	 */
4950 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4951 	if (page)
4952 		goto got_pg;
4953 
4954 	/*
4955 	 * For costly allocations, try direct compaction first, as it's likely
4956 	 * that we have enough base pages and don't need to reclaim. For non-
4957 	 * movable high-order allocations, do that as well, as compaction will
4958 	 * try prevent permanent fragmentation by migrating from blocks of the
4959 	 * same migratetype.
4960 	 * Don't try this for allocations that are allowed to ignore
4961 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4962 	 */
4963 	if (can_direct_reclaim &&
4964 			(costly_order ||
4965 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4966 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4967 		page = __alloc_pages_direct_compact(gfp_mask, order,
4968 						alloc_flags, ac,
4969 						INIT_COMPACT_PRIORITY,
4970 						&compact_result);
4971 		if (page)
4972 			goto got_pg;
4973 
4974 		/*
4975 		 * Checks for costly allocations with __GFP_NORETRY, which
4976 		 * includes some THP page fault allocations
4977 		 */
4978 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4979 			/*
4980 			 * If allocating entire pageblock(s) and compaction
4981 			 * failed because all zones are below low watermarks
4982 			 * or is prohibited because it recently failed at this
4983 			 * order, fail immediately unless the allocator has
4984 			 * requested compaction and reclaim retry.
4985 			 *
4986 			 * Reclaim is
4987 			 *  - potentially very expensive because zones are far
4988 			 *    below their low watermarks or this is part of very
4989 			 *    bursty high order allocations,
4990 			 *  - not guaranteed to help because isolate_freepages()
4991 			 *    may not iterate over freed pages as part of its
4992 			 *    linear scan, and
4993 			 *  - unlikely to make entire pageblocks free on its
4994 			 *    own.
4995 			 */
4996 			if (compact_result == COMPACT_SKIPPED ||
4997 			    compact_result == COMPACT_DEFERRED)
4998 				goto nopage;
4999 
5000 			/*
5001 			 * Looks like reclaim/compaction is worth trying, but
5002 			 * sync compaction could be very expensive, so keep
5003 			 * using async compaction.
5004 			 */
5005 			compact_priority = INIT_COMPACT_PRIORITY;
5006 		}
5007 	}
5008 
5009 retry:
5010 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5011 	if (alloc_flags & ALLOC_KSWAPD)
5012 		wake_all_kswapds(order, gfp_mask, ac);
5013 
5014 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5015 	if (reserve_flags)
5016 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5017 
5018 	/*
5019 	 * Reset the nodemask and zonelist iterators if memory policies can be
5020 	 * ignored. These allocations are high priority and system rather than
5021 	 * user oriented.
5022 	 */
5023 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5024 		ac->nodemask = NULL;
5025 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5026 					ac->highest_zoneidx, ac->nodemask);
5027 	}
5028 
5029 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5030 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5031 	if (page)
5032 		goto got_pg;
5033 
5034 	/* Caller is not willing to reclaim, we can't balance anything */
5035 	if (!can_direct_reclaim)
5036 		goto nopage;
5037 
5038 	/* Avoid recursion of direct reclaim */
5039 	if (current->flags & PF_MEMALLOC)
5040 		goto nopage;
5041 
5042 	/* Try direct reclaim and then allocating */
5043 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5044 							&did_some_progress);
5045 	if (page)
5046 		goto got_pg;
5047 
5048 	/* Try direct compaction and then allocating */
5049 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5050 					compact_priority, &compact_result);
5051 	if (page)
5052 		goto got_pg;
5053 
5054 	/* Do not loop if specifically requested */
5055 	if (gfp_mask & __GFP_NORETRY)
5056 		goto nopage;
5057 
5058 	/*
5059 	 * Do not retry costly high order allocations unless they are
5060 	 * __GFP_RETRY_MAYFAIL
5061 	 */
5062 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5063 		goto nopage;
5064 
5065 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5066 				 did_some_progress > 0, &no_progress_loops))
5067 		goto retry;
5068 
5069 	/*
5070 	 * It doesn't make any sense to retry for the compaction if the order-0
5071 	 * reclaim is not able to make any progress because the current
5072 	 * implementation of the compaction depends on the sufficient amount
5073 	 * of free memory (see __compaction_suitable)
5074 	 */
5075 	if (did_some_progress > 0 &&
5076 			should_compact_retry(ac, order, alloc_flags,
5077 				compact_result, &compact_priority,
5078 				&compaction_retries))
5079 		goto retry;
5080 
5081 
5082 	/* Deal with possible cpuset update races before we start OOM killing */
5083 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5084 		goto retry_cpuset;
5085 
5086 	/* Reclaim has failed us, start killing things */
5087 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5088 	if (page)
5089 		goto got_pg;
5090 
5091 	/* Avoid allocations with no watermarks from looping endlessly */
5092 	if (tsk_is_oom_victim(current) &&
5093 	    (alloc_flags & ALLOC_OOM ||
5094 	     (gfp_mask & __GFP_NOMEMALLOC)))
5095 		goto nopage;
5096 
5097 	/* Retry as long as the OOM killer is making progress */
5098 	if (did_some_progress) {
5099 		no_progress_loops = 0;
5100 		goto retry;
5101 	}
5102 
5103 nopage:
5104 	/* Deal with possible cpuset update races before we fail */
5105 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5106 		goto retry_cpuset;
5107 
5108 	/*
5109 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5110 	 * we always retry
5111 	 */
5112 	if (gfp_mask & __GFP_NOFAIL) {
5113 		/*
5114 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5115 		 * of any new users that actually require GFP_NOWAIT
5116 		 */
5117 		if (WARN_ON_ONCE(!can_direct_reclaim))
5118 			goto fail;
5119 
5120 		/*
5121 		 * PF_MEMALLOC request from this context is rather bizarre
5122 		 * because we cannot reclaim anything and only can loop waiting
5123 		 * for somebody to do a work for us
5124 		 */
5125 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5126 
5127 		/*
5128 		 * non failing costly orders are a hard requirement which we
5129 		 * are not prepared for much so let's warn about these users
5130 		 * so that we can identify them and convert them to something
5131 		 * else.
5132 		 */
5133 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5134 
5135 		/*
5136 		 * Help non-failing allocations by giving them access to memory
5137 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5138 		 * could deplete whole memory reserves which would just make
5139 		 * the situation worse
5140 		 */
5141 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5142 		if (page)
5143 			goto got_pg;
5144 
5145 		cond_resched();
5146 		goto retry;
5147 	}
5148 fail:
5149 	warn_alloc(gfp_mask, ac->nodemask,
5150 			"page allocation failure: order:%u", order);
5151 got_pg:
5152 	return page;
5153 }
5154 
5155 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5156 		int preferred_nid, nodemask_t *nodemask,
5157 		struct alloc_context *ac, gfp_t *alloc_gfp,
5158 		unsigned int *alloc_flags)
5159 {
5160 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5161 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5162 	ac->nodemask = nodemask;
5163 	ac->migratetype = gfp_migratetype(gfp_mask);
5164 
5165 	if (cpusets_enabled()) {
5166 		*alloc_gfp |= __GFP_HARDWALL;
5167 		/*
5168 		 * When we are in the interrupt context, it is irrelevant
5169 		 * to the current task context. It means that any node ok.
5170 		 */
5171 		if (in_task() && !ac->nodemask)
5172 			ac->nodemask = &cpuset_current_mems_allowed;
5173 		else
5174 			*alloc_flags |= ALLOC_CPUSET;
5175 	}
5176 
5177 	fs_reclaim_acquire(gfp_mask);
5178 	fs_reclaim_release(gfp_mask);
5179 
5180 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5181 
5182 	if (should_fail_alloc_page(gfp_mask, order))
5183 		return false;
5184 
5185 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5186 
5187 	/* Dirty zone balancing only done in the fast path */
5188 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5189 
5190 	/*
5191 	 * The preferred zone is used for statistics but crucially it is
5192 	 * also used as the starting point for the zonelist iterator. It
5193 	 * may get reset for allocations that ignore memory policies.
5194 	 */
5195 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5196 					ac->highest_zoneidx, ac->nodemask);
5197 
5198 	return true;
5199 }
5200 
5201 /*
5202  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5203  * @gfp: GFP flags for the allocation
5204  * @preferred_nid: The preferred NUMA node ID to allocate from
5205  * @nodemask: Set of nodes to allocate from, may be NULL
5206  * @nr_pages: The number of pages desired on the list or array
5207  * @page_list: Optional list to store the allocated pages
5208  * @page_array: Optional array to store the pages
5209  *
5210  * This is a batched version of the page allocator that attempts to
5211  * allocate nr_pages quickly. Pages are added to page_list if page_list
5212  * is not NULL, otherwise it is assumed that the page_array is valid.
5213  *
5214  * For lists, nr_pages is the number of pages that should be allocated.
5215  *
5216  * For arrays, only NULL elements are populated with pages and nr_pages
5217  * is the maximum number of pages that will be stored in the array.
5218  *
5219  * Returns the number of pages on the list or array.
5220  */
5221 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5222 			nodemask_t *nodemask, int nr_pages,
5223 			struct list_head *page_list,
5224 			struct page **page_array)
5225 {
5226 	struct page *page;
5227 	unsigned long flags;
5228 	struct zone *zone;
5229 	struct zoneref *z;
5230 	struct per_cpu_pages *pcp;
5231 	struct list_head *pcp_list;
5232 	struct alloc_context ac;
5233 	gfp_t alloc_gfp;
5234 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5235 	int nr_populated = 0, nr_account = 0;
5236 
5237 	/*
5238 	 * Skip populated array elements to determine if any pages need
5239 	 * to be allocated before disabling IRQs.
5240 	 */
5241 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5242 		nr_populated++;
5243 
5244 	/* No pages requested? */
5245 	if (unlikely(nr_pages <= 0))
5246 		goto out;
5247 
5248 	/* Already populated array? */
5249 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5250 		goto out;
5251 
5252 	/* Bulk allocator does not support memcg accounting. */
5253 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5254 		goto failed;
5255 
5256 	/* Use the single page allocator for one page. */
5257 	if (nr_pages - nr_populated == 1)
5258 		goto failed;
5259 
5260 #ifdef CONFIG_PAGE_OWNER
5261 	/*
5262 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5263 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5264 	 * removes much of the performance benefit of bulk allocation so
5265 	 * force the caller to allocate one page at a time as it'll have
5266 	 * similar performance to added complexity to the bulk allocator.
5267 	 */
5268 	if (static_branch_unlikely(&page_owner_inited))
5269 		goto failed;
5270 #endif
5271 
5272 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5273 	gfp &= gfp_allowed_mask;
5274 	alloc_gfp = gfp;
5275 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5276 		goto out;
5277 	gfp = alloc_gfp;
5278 
5279 	/* Find an allowed local zone that meets the low watermark. */
5280 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5281 		unsigned long mark;
5282 
5283 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5284 		    !__cpuset_zone_allowed(zone, gfp)) {
5285 			continue;
5286 		}
5287 
5288 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5289 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5290 			goto failed;
5291 		}
5292 
5293 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5294 		if (zone_watermark_fast(zone, 0,  mark,
5295 				zonelist_zone_idx(ac.preferred_zoneref),
5296 				alloc_flags, gfp)) {
5297 			break;
5298 		}
5299 	}
5300 
5301 	/*
5302 	 * If there are no allowed local zones that meets the watermarks then
5303 	 * try to allocate a single page and reclaim if necessary.
5304 	 */
5305 	if (unlikely(!zone))
5306 		goto failed;
5307 
5308 	/* Attempt the batch allocation */
5309 	local_lock_irqsave(&pagesets.lock, flags);
5310 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5311 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5312 
5313 	while (nr_populated < nr_pages) {
5314 
5315 		/* Skip existing pages */
5316 		if (page_array && page_array[nr_populated]) {
5317 			nr_populated++;
5318 			continue;
5319 		}
5320 
5321 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5322 								pcp, pcp_list);
5323 		if (unlikely(!page)) {
5324 			/* Try and get at least one page */
5325 			if (!nr_populated)
5326 				goto failed_irq;
5327 			break;
5328 		}
5329 		nr_account++;
5330 
5331 		prep_new_page(page, 0, gfp, 0);
5332 		if (page_list)
5333 			list_add(&page->lru, page_list);
5334 		else
5335 			page_array[nr_populated] = page;
5336 		nr_populated++;
5337 	}
5338 
5339 	local_unlock_irqrestore(&pagesets.lock, flags);
5340 
5341 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5342 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5343 
5344 out:
5345 	return nr_populated;
5346 
5347 failed_irq:
5348 	local_unlock_irqrestore(&pagesets.lock, flags);
5349 
5350 failed:
5351 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5352 	if (page) {
5353 		if (page_list)
5354 			list_add(&page->lru, page_list);
5355 		else
5356 			page_array[nr_populated] = page;
5357 		nr_populated++;
5358 	}
5359 
5360 	goto out;
5361 }
5362 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5363 
5364 /*
5365  * This is the 'heart' of the zoned buddy allocator.
5366  */
5367 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5368 							nodemask_t *nodemask)
5369 {
5370 	struct page *page;
5371 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5372 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5373 	struct alloc_context ac = { };
5374 
5375 	/*
5376 	 * There are several places where we assume that the order value is sane
5377 	 * so bail out early if the request is out of bound.
5378 	 */
5379 	if (unlikely(order >= MAX_ORDER)) {
5380 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5381 		return NULL;
5382 	}
5383 
5384 	gfp &= gfp_allowed_mask;
5385 	/*
5386 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5387 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5388 	 * from a particular context which has been marked by
5389 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5390 	 * movable zones are not used during allocation.
5391 	 */
5392 	gfp = current_gfp_context(gfp);
5393 	alloc_gfp = gfp;
5394 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5395 			&alloc_gfp, &alloc_flags))
5396 		return NULL;
5397 
5398 	/*
5399 	 * Forbid the first pass from falling back to types that fragment
5400 	 * memory until all local zones are considered.
5401 	 */
5402 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5403 
5404 	/* First allocation attempt */
5405 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5406 	if (likely(page))
5407 		goto out;
5408 
5409 	alloc_gfp = gfp;
5410 	ac.spread_dirty_pages = false;
5411 
5412 	/*
5413 	 * Restore the original nodemask if it was potentially replaced with
5414 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5415 	 */
5416 	ac.nodemask = nodemask;
5417 
5418 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5419 
5420 out:
5421 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5422 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5423 		__free_pages(page, order);
5424 		page = NULL;
5425 	}
5426 
5427 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5428 
5429 	return page;
5430 }
5431 EXPORT_SYMBOL(__alloc_pages);
5432 
5433 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5434 		nodemask_t *nodemask)
5435 {
5436 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5437 			preferred_nid, nodemask);
5438 
5439 	if (page && order > 1)
5440 		prep_transhuge_page(page);
5441 	return (struct folio *)page;
5442 }
5443 EXPORT_SYMBOL(__folio_alloc);
5444 
5445 /*
5446  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5447  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5448  * you need to access high mem.
5449  */
5450 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5451 {
5452 	struct page *page;
5453 
5454 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5455 	if (!page)
5456 		return 0;
5457 	return (unsigned long) page_address(page);
5458 }
5459 EXPORT_SYMBOL(__get_free_pages);
5460 
5461 unsigned long get_zeroed_page(gfp_t gfp_mask)
5462 {
5463 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5464 }
5465 EXPORT_SYMBOL(get_zeroed_page);
5466 
5467 /**
5468  * __free_pages - Free pages allocated with alloc_pages().
5469  * @page: The page pointer returned from alloc_pages().
5470  * @order: The order of the allocation.
5471  *
5472  * This function can free multi-page allocations that are not compound
5473  * pages.  It does not check that the @order passed in matches that of
5474  * the allocation, so it is easy to leak memory.  Freeing more memory
5475  * than was allocated will probably emit a warning.
5476  *
5477  * If the last reference to this page is speculative, it will be released
5478  * by put_page() which only frees the first page of a non-compound
5479  * allocation.  To prevent the remaining pages from being leaked, we free
5480  * the subsequent pages here.  If you want to use the page's reference
5481  * count to decide when to free the allocation, you should allocate a
5482  * compound page, and use put_page() instead of __free_pages().
5483  *
5484  * Context: May be called in interrupt context or while holding a normal
5485  * spinlock, but not in NMI context or while holding a raw spinlock.
5486  */
5487 void __free_pages(struct page *page, unsigned int order)
5488 {
5489 	if (put_page_testzero(page))
5490 		free_the_page(page, order);
5491 	else if (!PageHead(page))
5492 		while (order-- > 0)
5493 			free_the_page(page + (1 << order), order);
5494 }
5495 EXPORT_SYMBOL(__free_pages);
5496 
5497 void free_pages(unsigned long addr, unsigned int order)
5498 {
5499 	if (addr != 0) {
5500 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5501 		__free_pages(virt_to_page((void *)addr), order);
5502 	}
5503 }
5504 
5505 EXPORT_SYMBOL(free_pages);
5506 
5507 /*
5508  * Page Fragment:
5509  *  An arbitrary-length arbitrary-offset area of memory which resides
5510  *  within a 0 or higher order page.  Multiple fragments within that page
5511  *  are individually refcounted, in the page's reference counter.
5512  *
5513  * The page_frag functions below provide a simple allocation framework for
5514  * page fragments.  This is used by the network stack and network device
5515  * drivers to provide a backing region of memory for use as either an
5516  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5517  */
5518 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5519 					     gfp_t gfp_mask)
5520 {
5521 	struct page *page = NULL;
5522 	gfp_t gfp = gfp_mask;
5523 
5524 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5525 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5526 		    __GFP_NOMEMALLOC;
5527 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5528 				PAGE_FRAG_CACHE_MAX_ORDER);
5529 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5530 #endif
5531 	if (unlikely(!page))
5532 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5533 
5534 	nc->va = page ? page_address(page) : NULL;
5535 
5536 	return page;
5537 }
5538 
5539 void __page_frag_cache_drain(struct page *page, unsigned int count)
5540 {
5541 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5542 
5543 	if (page_ref_sub_and_test(page, count))
5544 		free_the_page(page, compound_order(page));
5545 }
5546 EXPORT_SYMBOL(__page_frag_cache_drain);
5547 
5548 void *page_frag_alloc_align(struct page_frag_cache *nc,
5549 		      unsigned int fragsz, gfp_t gfp_mask,
5550 		      unsigned int align_mask)
5551 {
5552 	unsigned int size = PAGE_SIZE;
5553 	struct page *page;
5554 	int offset;
5555 
5556 	if (unlikely(!nc->va)) {
5557 refill:
5558 		page = __page_frag_cache_refill(nc, gfp_mask);
5559 		if (!page)
5560 			return NULL;
5561 
5562 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5563 		/* if size can vary use size else just use PAGE_SIZE */
5564 		size = nc->size;
5565 #endif
5566 		/* Even if we own the page, we do not use atomic_set().
5567 		 * This would break get_page_unless_zero() users.
5568 		 */
5569 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5570 
5571 		/* reset page count bias and offset to start of new frag */
5572 		nc->pfmemalloc = page_is_pfmemalloc(page);
5573 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5574 		nc->offset = size;
5575 	}
5576 
5577 	offset = nc->offset - fragsz;
5578 	if (unlikely(offset < 0)) {
5579 		page = virt_to_page(nc->va);
5580 
5581 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5582 			goto refill;
5583 
5584 		if (unlikely(nc->pfmemalloc)) {
5585 			free_the_page(page, compound_order(page));
5586 			goto refill;
5587 		}
5588 
5589 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5590 		/* if size can vary use size else just use PAGE_SIZE */
5591 		size = nc->size;
5592 #endif
5593 		/* OK, page count is 0, we can safely set it */
5594 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5595 
5596 		/* reset page count bias and offset to start of new frag */
5597 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5598 		offset = size - fragsz;
5599 	}
5600 
5601 	nc->pagecnt_bias--;
5602 	offset &= align_mask;
5603 	nc->offset = offset;
5604 
5605 	return nc->va + offset;
5606 }
5607 EXPORT_SYMBOL(page_frag_alloc_align);
5608 
5609 /*
5610  * Frees a page fragment allocated out of either a compound or order 0 page.
5611  */
5612 void page_frag_free(void *addr)
5613 {
5614 	struct page *page = virt_to_head_page(addr);
5615 
5616 	if (unlikely(put_page_testzero(page)))
5617 		free_the_page(page, compound_order(page));
5618 }
5619 EXPORT_SYMBOL(page_frag_free);
5620 
5621 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5622 		size_t size)
5623 {
5624 	if (addr) {
5625 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5626 		unsigned long used = addr + PAGE_ALIGN(size);
5627 
5628 		split_page(virt_to_page((void *)addr), order);
5629 		while (used < alloc_end) {
5630 			free_page(used);
5631 			used += PAGE_SIZE;
5632 		}
5633 	}
5634 	return (void *)addr;
5635 }
5636 
5637 /**
5638  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5639  * @size: the number of bytes to allocate
5640  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5641  *
5642  * This function is similar to alloc_pages(), except that it allocates the
5643  * minimum number of pages to satisfy the request.  alloc_pages() can only
5644  * allocate memory in power-of-two pages.
5645  *
5646  * This function is also limited by MAX_ORDER.
5647  *
5648  * Memory allocated by this function must be released by free_pages_exact().
5649  *
5650  * Return: pointer to the allocated area or %NULL in case of error.
5651  */
5652 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5653 {
5654 	unsigned int order = get_order(size);
5655 	unsigned long addr;
5656 
5657 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5658 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5659 
5660 	addr = __get_free_pages(gfp_mask, order);
5661 	return make_alloc_exact(addr, order, size);
5662 }
5663 EXPORT_SYMBOL(alloc_pages_exact);
5664 
5665 /**
5666  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5667  *			   pages on a node.
5668  * @nid: the preferred node ID where memory should be allocated
5669  * @size: the number of bytes to allocate
5670  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5671  *
5672  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5673  * back.
5674  *
5675  * Return: pointer to the allocated area or %NULL in case of error.
5676  */
5677 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5678 {
5679 	unsigned int order = get_order(size);
5680 	struct page *p;
5681 
5682 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5683 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5684 
5685 	p = alloc_pages_node(nid, gfp_mask, order);
5686 	if (!p)
5687 		return NULL;
5688 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5689 }
5690 
5691 /**
5692  * free_pages_exact - release memory allocated via alloc_pages_exact()
5693  * @virt: the value returned by alloc_pages_exact.
5694  * @size: size of allocation, same value as passed to alloc_pages_exact().
5695  *
5696  * Release the memory allocated by a previous call to alloc_pages_exact.
5697  */
5698 void free_pages_exact(void *virt, size_t size)
5699 {
5700 	unsigned long addr = (unsigned long)virt;
5701 	unsigned long end = addr + PAGE_ALIGN(size);
5702 
5703 	while (addr < end) {
5704 		free_page(addr);
5705 		addr += PAGE_SIZE;
5706 	}
5707 }
5708 EXPORT_SYMBOL(free_pages_exact);
5709 
5710 /**
5711  * nr_free_zone_pages - count number of pages beyond high watermark
5712  * @offset: The zone index of the highest zone
5713  *
5714  * nr_free_zone_pages() counts the number of pages which are beyond the
5715  * high watermark within all zones at or below a given zone index.  For each
5716  * zone, the number of pages is calculated as:
5717  *
5718  *     nr_free_zone_pages = managed_pages - high_pages
5719  *
5720  * Return: number of pages beyond high watermark.
5721  */
5722 static unsigned long nr_free_zone_pages(int offset)
5723 {
5724 	struct zoneref *z;
5725 	struct zone *zone;
5726 
5727 	/* Just pick one node, since fallback list is circular */
5728 	unsigned long sum = 0;
5729 
5730 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5731 
5732 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5733 		unsigned long size = zone_managed_pages(zone);
5734 		unsigned long high = high_wmark_pages(zone);
5735 		if (size > high)
5736 			sum += size - high;
5737 	}
5738 
5739 	return sum;
5740 }
5741 
5742 /**
5743  * nr_free_buffer_pages - count number of pages beyond high watermark
5744  *
5745  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5746  * watermark within ZONE_DMA and ZONE_NORMAL.
5747  *
5748  * Return: number of pages beyond high watermark within ZONE_DMA and
5749  * ZONE_NORMAL.
5750  */
5751 unsigned long nr_free_buffer_pages(void)
5752 {
5753 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5754 }
5755 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5756 
5757 static inline void show_node(struct zone *zone)
5758 {
5759 	if (IS_ENABLED(CONFIG_NUMA))
5760 		printk("Node %d ", zone_to_nid(zone));
5761 }
5762 
5763 long si_mem_available(void)
5764 {
5765 	long available;
5766 	unsigned long pagecache;
5767 	unsigned long wmark_low = 0;
5768 	unsigned long pages[NR_LRU_LISTS];
5769 	unsigned long reclaimable;
5770 	struct zone *zone;
5771 	int lru;
5772 
5773 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5774 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5775 
5776 	for_each_zone(zone)
5777 		wmark_low += low_wmark_pages(zone);
5778 
5779 	/*
5780 	 * Estimate the amount of memory available for userspace allocations,
5781 	 * without causing swapping.
5782 	 */
5783 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5784 
5785 	/*
5786 	 * Not all the page cache can be freed, otherwise the system will
5787 	 * start swapping. Assume at least half of the page cache, or the
5788 	 * low watermark worth of cache, needs to stay.
5789 	 */
5790 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5791 	pagecache -= min(pagecache / 2, wmark_low);
5792 	available += pagecache;
5793 
5794 	/*
5795 	 * Part of the reclaimable slab and other kernel memory consists of
5796 	 * items that are in use, and cannot be freed. Cap this estimate at the
5797 	 * low watermark.
5798 	 */
5799 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5800 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5801 	available += reclaimable - min(reclaimable / 2, wmark_low);
5802 
5803 	if (available < 0)
5804 		available = 0;
5805 	return available;
5806 }
5807 EXPORT_SYMBOL_GPL(si_mem_available);
5808 
5809 void si_meminfo(struct sysinfo *val)
5810 {
5811 	val->totalram = totalram_pages();
5812 	val->sharedram = global_node_page_state(NR_SHMEM);
5813 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5814 	val->bufferram = nr_blockdev_pages();
5815 	val->totalhigh = totalhigh_pages();
5816 	val->freehigh = nr_free_highpages();
5817 	val->mem_unit = PAGE_SIZE;
5818 }
5819 
5820 EXPORT_SYMBOL(si_meminfo);
5821 
5822 #ifdef CONFIG_NUMA
5823 void si_meminfo_node(struct sysinfo *val, int nid)
5824 {
5825 	int zone_type;		/* needs to be signed */
5826 	unsigned long managed_pages = 0;
5827 	unsigned long managed_highpages = 0;
5828 	unsigned long free_highpages = 0;
5829 	pg_data_t *pgdat = NODE_DATA(nid);
5830 
5831 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5832 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5833 	val->totalram = managed_pages;
5834 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5835 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5836 #ifdef CONFIG_HIGHMEM
5837 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5838 		struct zone *zone = &pgdat->node_zones[zone_type];
5839 
5840 		if (is_highmem(zone)) {
5841 			managed_highpages += zone_managed_pages(zone);
5842 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5843 		}
5844 	}
5845 	val->totalhigh = managed_highpages;
5846 	val->freehigh = free_highpages;
5847 #else
5848 	val->totalhigh = managed_highpages;
5849 	val->freehigh = free_highpages;
5850 #endif
5851 	val->mem_unit = PAGE_SIZE;
5852 }
5853 #endif
5854 
5855 /*
5856  * Determine whether the node should be displayed or not, depending on whether
5857  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5858  */
5859 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5860 {
5861 	if (!(flags & SHOW_MEM_FILTER_NODES))
5862 		return false;
5863 
5864 	/*
5865 	 * no node mask - aka implicit memory numa policy. Do not bother with
5866 	 * the synchronization - read_mems_allowed_begin - because we do not
5867 	 * have to be precise here.
5868 	 */
5869 	if (!nodemask)
5870 		nodemask = &cpuset_current_mems_allowed;
5871 
5872 	return !node_isset(nid, *nodemask);
5873 }
5874 
5875 #define K(x) ((x) << (PAGE_SHIFT-10))
5876 
5877 static void show_migration_types(unsigned char type)
5878 {
5879 	static const char types[MIGRATE_TYPES] = {
5880 		[MIGRATE_UNMOVABLE]	= 'U',
5881 		[MIGRATE_MOVABLE]	= 'M',
5882 		[MIGRATE_RECLAIMABLE]	= 'E',
5883 		[MIGRATE_HIGHATOMIC]	= 'H',
5884 #ifdef CONFIG_CMA
5885 		[MIGRATE_CMA]		= 'C',
5886 #endif
5887 #ifdef CONFIG_MEMORY_ISOLATION
5888 		[MIGRATE_ISOLATE]	= 'I',
5889 #endif
5890 	};
5891 	char tmp[MIGRATE_TYPES + 1];
5892 	char *p = tmp;
5893 	int i;
5894 
5895 	for (i = 0; i < MIGRATE_TYPES; i++) {
5896 		if (type & (1 << i))
5897 			*p++ = types[i];
5898 	}
5899 
5900 	*p = '\0';
5901 	printk(KERN_CONT "(%s) ", tmp);
5902 }
5903 
5904 /*
5905  * Show free area list (used inside shift_scroll-lock stuff)
5906  * We also calculate the percentage fragmentation. We do this by counting the
5907  * memory on each free list with the exception of the first item on the list.
5908  *
5909  * Bits in @filter:
5910  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5911  *   cpuset.
5912  */
5913 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5914 {
5915 	unsigned long free_pcp = 0;
5916 	int cpu;
5917 	struct zone *zone;
5918 	pg_data_t *pgdat;
5919 
5920 	for_each_populated_zone(zone) {
5921 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5922 			continue;
5923 
5924 		for_each_online_cpu(cpu)
5925 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5926 	}
5927 
5928 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5929 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5930 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5931 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5932 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5933 		" kernel_misc_reclaimable:%lu\n"
5934 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5935 		global_node_page_state(NR_ACTIVE_ANON),
5936 		global_node_page_state(NR_INACTIVE_ANON),
5937 		global_node_page_state(NR_ISOLATED_ANON),
5938 		global_node_page_state(NR_ACTIVE_FILE),
5939 		global_node_page_state(NR_INACTIVE_FILE),
5940 		global_node_page_state(NR_ISOLATED_FILE),
5941 		global_node_page_state(NR_UNEVICTABLE),
5942 		global_node_page_state(NR_FILE_DIRTY),
5943 		global_node_page_state(NR_WRITEBACK),
5944 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5945 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5946 		global_node_page_state(NR_FILE_MAPPED),
5947 		global_node_page_state(NR_SHMEM),
5948 		global_node_page_state(NR_PAGETABLE),
5949 		global_zone_page_state(NR_BOUNCE),
5950 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5951 		global_zone_page_state(NR_FREE_PAGES),
5952 		free_pcp,
5953 		global_zone_page_state(NR_FREE_CMA_PAGES));
5954 
5955 	for_each_online_pgdat(pgdat) {
5956 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5957 			continue;
5958 
5959 		printk("Node %d"
5960 			" active_anon:%lukB"
5961 			" inactive_anon:%lukB"
5962 			" active_file:%lukB"
5963 			" inactive_file:%lukB"
5964 			" unevictable:%lukB"
5965 			" isolated(anon):%lukB"
5966 			" isolated(file):%lukB"
5967 			" mapped:%lukB"
5968 			" dirty:%lukB"
5969 			" writeback:%lukB"
5970 			" shmem:%lukB"
5971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5972 			" shmem_thp: %lukB"
5973 			" shmem_pmdmapped: %lukB"
5974 			" anon_thp: %lukB"
5975 #endif
5976 			" writeback_tmp:%lukB"
5977 			" kernel_stack:%lukB"
5978 #ifdef CONFIG_SHADOW_CALL_STACK
5979 			" shadow_call_stack:%lukB"
5980 #endif
5981 			" pagetables:%lukB"
5982 			" all_unreclaimable? %s"
5983 			"\n",
5984 			pgdat->node_id,
5985 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5986 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5987 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5988 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5989 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5990 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5991 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5992 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5993 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5994 			K(node_page_state(pgdat, NR_WRITEBACK)),
5995 			K(node_page_state(pgdat, NR_SHMEM)),
5996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5997 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5998 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5999 			K(node_page_state(pgdat, NR_ANON_THPS)),
6000 #endif
6001 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6002 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6003 #ifdef CONFIG_SHADOW_CALL_STACK
6004 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6005 #endif
6006 			K(node_page_state(pgdat, NR_PAGETABLE)),
6007 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6008 				"yes" : "no");
6009 	}
6010 
6011 	for_each_populated_zone(zone) {
6012 		int i;
6013 
6014 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6015 			continue;
6016 
6017 		free_pcp = 0;
6018 		for_each_online_cpu(cpu)
6019 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6020 
6021 		show_node(zone);
6022 		printk(KERN_CONT
6023 			"%s"
6024 			" free:%lukB"
6025 			" boost:%lukB"
6026 			" min:%lukB"
6027 			" low:%lukB"
6028 			" high:%lukB"
6029 			" reserved_highatomic:%luKB"
6030 			" active_anon:%lukB"
6031 			" inactive_anon:%lukB"
6032 			" active_file:%lukB"
6033 			" inactive_file:%lukB"
6034 			" unevictable:%lukB"
6035 			" writepending:%lukB"
6036 			" present:%lukB"
6037 			" managed:%lukB"
6038 			" mlocked:%lukB"
6039 			" bounce:%lukB"
6040 			" free_pcp:%lukB"
6041 			" local_pcp:%ukB"
6042 			" free_cma:%lukB"
6043 			"\n",
6044 			zone->name,
6045 			K(zone_page_state(zone, NR_FREE_PAGES)),
6046 			K(zone->watermark_boost),
6047 			K(min_wmark_pages(zone)),
6048 			K(low_wmark_pages(zone)),
6049 			K(high_wmark_pages(zone)),
6050 			K(zone->nr_reserved_highatomic),
6051 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6052 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6053 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6054 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6055 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6056 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6057 			K(zone->present_pages),
6058 			K(zone_managed_pages(zone)),
6059 			K(zone_page_state(zone, NR_MLOCK)),
6060 			K(zone_page_state(zone, NR_BOUNCE)),
6061 			K(free_pcp),
6062 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6063 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6064 		printk("lowmem_reserve[]:");
6065 		for (i = 0; i < MAX_NR_ZONES; i++)
6066 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6067 		printk(KERN_CONT "\n");
6068 	}
6069 
6070 	for_each_populated_zone(zone) {
6071 		unsigned int order;
6072 		unsigned long nr[MAX_ORDER], flags, total = 0;
6073 		unsigned char types[MAX_ORDER];
6074 
6075 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6076 			continue;
6077 		show_node(zone);
6078 		printk(KERN_CONT "%s: ", zone->name);
6079 
6080 		spin_lock_irqsave(&zone->lock, flags);
6081 		for (order = 0; order < MAX_ORDER; order++) {
6082 			struct free_area *area = &zone->free_area[order];
6083 			int type;
6084 
6085 			nr[order] = area->nr_free;
6086 			total += nr[order] << order;
6087 
6088 			types[order] = 0;
6089 			for (type = 0; type < MIGRATE_TYPES; type++) {
6090 				if (!free_area_empty(area, type))
6091 					types[order] |= 1 << type;
6092 			}
6093 		}
6094 		spin_unlock_irqrestore(&zone->lock, flags);
6095 		for (order = 0; order < MAX_ORDER; order++) {
6096 			printk(KERN_CONT "%lu*%lukB ",
6097 			       nr[order], K(1UL) << order);
6098 			if (nr[order])
6099 				show_migration_types(types[order]);
6100 		}
6101 		printk(KERN_CONT "= %lukB\n", K(total));
6102 	}
6103 
6104 	hugetlb_show_meminfo();
6105 
6106 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6107 
6108 	show_swap_cache_info();
6109 }
6110 
6111 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6112 {
6113 	zoneref->zone = zone;
6114 	zoneref->zone_idx = zone_idx(zone);
6115 }
6116 
6117 /*
6118  * Builds allocation fallback zone lists.
6119  *
6120  * Add all populated zones of a node to the zonelist.
6121  */
6122 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6123 {
6124 	struct zone *zone;
6125 	enum zone_type zone_type = MAX_NR_ZONES;
6126 	int nr_zones = 0;
6127 
6128 	do {
6129 		zone_type--;
6130 		zone = pgdat->node_zones + zone_type;
6131 		if (managed_zone(zone)) {
6132 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6133 			check_highest_zone(zone_type);
6134 		}
6135 	} while (zone_type);
6136 
6137 	return nr_zones;
6138 }
6139 
6140 #ifdef CONFIG_NUMA
6141 
6142 static int __parse_numa_zonelist_order(char *s)
6143 {
6144 	/*
6145 	 * We used to support different zonelists modes but they turned
6146 	 * out to be just not useful. Let's keep the warning in place
6147 	 * if somebody still use the cmd line parameter so that we do
6148 	 * not fail it silently
6149 	 */
6150 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6151 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6152 		return -EINVAL;
6153 	}
6154 	return 0;
6155 }
6156 
6157 char numa_zonelist_order[] = "Node";
6158 
6159 /*
6160  * sysctl handler for numa_zonelist_order
6161  */
6162 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6163 		void *buffer, size_t *length, loff_t *ppos)
6164 {
6165 	if (write)
6166 		return __parse_numa_zonelist_order(buffer);
6167 	return proc_dostring(table, write, buffer, length, ppos);
6168 }
6169 
6170 
6171 #define MAX_NODE_LOAD (nr_online_nodes)
6172 static int node_load[MAX_NUMNODES];
6173 
6174 /**
6175  * find_next_best_node - find the next node that should appear in a given node's fallback list
6176  * @node: node whose fallback list we're appending
6177  * @used_node_mask: nodemask_t of already used nodes
6178  *
6179  * We use a number of factors to determine which is the next node that should
6180  * appear on a given node's fallback list.  The node should not have appeared
6181  * already in @node's fallback list, and it should be the next closest node
6182  * according to the distance array (which contains arbitrary distance values
6183  * from each node to each node in the system), and should also prefer nodes
6184  * with no CPUs, since presumably they'll have very little allocation pressure
6185  * on them otherwise.
6186  *
6187  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6188  */
6189 int find_next_best_node(int node, nodemask_t *used_node_mask)
6190 {
6191 	int n, val;
6192 	int min_val = INT_MAX;
6193 	int best_node = NUMA_NO_NODE;
6194 
6195 	/* Use the local node if we haven't already */
6196 	if (!node_isset(node, *used_node_mask)) {
6197 		node_set(node, *used_node_mask);
6198 		return node;
6199 	}
6200 
6201 	for_each_node_state(n, N_MEMORY) {
6202 
6203 		/* Don't want a node to appear more than once */
6204 		if (node_isset(n, *used_node_mask))
6205 			continue;
6206 
6207 		/* Use the distance array to find the distance */
6208 		val = node_distance(node, n);
6209 
6210 		/* Penalize nodes under us ("prefer the next node") */
6211 		val += (n < node);
6212 
6213 		/* Give preference to headless and unused nodes */
6214 		if (!cpumask_empty(cpumask_of_node(n)))
6215 			val += PENALTY_FOR_NODE_WITH_CPUS;
6216 
6217 		/* Slight preference for less loaded node */
6218 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6219 		val += node_load[n];
6220 
6221 		if (val < min_val) {
6222 			min_val = val;
6223 			best_node = n;
6224 		}
6225 	}
6226 
6227 	if (best_node >= 0)
6228 		node_set(best_node, *used_node_mask);
6229 
6230 	return best_node;
6231 }
6232 
6233 
6234 /*
6235  * Build zonelists ordered by node and zones within node.
6236  * This results in maximum locality--normal zone overflows into local
6237  * DMA zone, if any--but risks exhausting DMA zone.
6238  */
6239 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6240 		unsigned nr_nodes)
6241 {
6242 	struct zoneref *zonerefs;
6243 	int i;
6244 
6245 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6246 
6247 	for (i = 0; i < nr_nodes; i++) {
6248 		int nr_zones;
6249 
6250 		pg_data_t *node = NODE_DATA(node_order[i]);
6251 
6252 		nr_zones = build_zonerefs_node(node, zonerefs);
6253 		zonerefs += nr_zones;
6254 	}
6255 	zonerefs->zone = NULL;
6256 	zonerefs->zone_idx = 0;
6257 }
6258 
6259 /*
6260  * Build gfp_thisnode zonelists
6261  */
6262 static void build_thisnode_zonelists(pg_data_t *pgdat)
6263 {
6264 	struct zoneref *zonerefs;
6265 	int nr_zones;
6266 
6267 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6268 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6269 	zonerefs += nr_zones;
6270 	zonerefs->zone = NULL;
6271 	zonerefs->zone_idx = 0;
6272 }
6273 
6274 /*
6275  * Build zonelists ordered by zone and nodes within zones.
6276  * This results in conserving DMA zone[s] until all Normal memory is
6277  * exhausted, but results in overflowing to remote node while memory
6278  * may still exist in local DMA zone.
6279  */
6280 
6281 static void build_zonelists(pg_data_t *pgdat)
6282 {
6283 	static int node_order[MAX_NUMNODES];
6284 	int node, load, nr_nodes = 0;
6285 	nodemask_t used_mask = NODE_MASK_NONE;
6286 	int local_node, prev_node;
6287 
6288 	/* NUMA-aware ordering of nodes */
6289 	local_node = pgdat->node_id;
6290 	load = nr_online_nodes;
6291 	prev_node = local_node;
6292 
6293 	memset(node_order, 0, sizeof(node_order));
6294 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6295 		/*
6296 		 * We don't want to pressure a particular node.
6297 		 * So adding penalty to the first node in same
6298 		 * distance group to make it round-robin.
6299 		 */
6300 		if (node_distance(local_node, node) !=
6301 		    node_distance(local_node, prev_node))
6302 			node_load[node] += load;
6303 
6304 		node_order[nr_nodes++] = node;
6305 		prev_node = node;
6306 		load--;
6307 	}
6308 
6309 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6310 	build_thisnode_zonelists(pgdat);
6311 	pr_info("Fallback order for Node %d: ", local_node);
6312 	for (node = 0; node < nr_nodes; node++)
6313 		pr_cont("%d ", node_order[node]);
6314 	pr_cont("\n");
6315 }
6316 
6317 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6318 /*
6319  * Return node id of node used for "local" allocations.
6320  * I.e., first node id of first zone in arg node's generic zonelist.
6321  * Used for initializing percpu 'numa_mem', which is used primarily
6322  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6323  */
6324 int local_memory_node(int node)
6325 {
6326 	struct zoneref *z;
6327 
6328 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6329 				   gfp_zone(GFP_KERNEL),
6330 				   NULL);
6331 	return zone_to_nid(z->zone);
6332 }
6333 #endif
6334 
6335 static void setup_min_unmapped_ratio(void);
6336 static void setup_min_slab_ratio(void);
6337 #else	/* CONFIG_NUMA */
6338 
6339 static void build_zonelists(pg_data_t *pgdat)
6340 {
6341 	int node, local_node;
6342 	struct zoneref *zonerefs;
6343 	int nr_zones;
6344 
6345 	local_node = pgdat->node_id;
6346 
6347 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6348 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6349 	zonerefs += nr_zones;
6350 
6351 	/*
6352 	 * Now we build the zonelist so that it contains the zones
6353 	 * of all the other nodes.
6354 	 * We don't want to pressure a particular node, so when
6355 	 * building the zones for node N, we make sure that the
6356 	 * zones coming right after the local ones are those from
6357 	 * node N+1 (modulo N)
6358 	 */
6359 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6360 		if (!node_online(node))
6361 			continue;
6362 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6363 		zonerefs += nr_zones;
6364 	}
6365 	for (node = 0; node < local_node; node++) {
6366 		if (!node_online(node))
6367 			continue;
6368 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6369 		zonerefs += nr_zones;
6370 	}
6371 
6372 	zonerefs->zone = NULL;
6373 	zonerefs->zone_idx = 0;
6374 }
6375 
6376 #endif	/* CONFIG_NUMA */
6377 
6378 /*
6379  * Boot pageset table. One per cpu which is going to be used for all
6380  * zones and all nodes. The parameters will be set in such a way
6381  * that an item put on a list will immediately be handed over to
6382  * the buddy list. This is safe since pageset manipulation is done
6383  * with interrupts disabled.
6384  *
6385  * The boot_pagesets must be kept even after bootup is complete for
6386  * unused processors and/or zones. They do play a role for bootstrapping
6387  * hotplugged processors.
6388  *
6389  * zoneinfo_show() and maybe other functions do
6390  * not check if the processor is online before following the pageset pointer.
6391  * Other parts of the kernel may not check if the zone is available.
6392  */
6393 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6394 /* These effectively disable the pcplists in the boot pageset completely */
6395 #define BOOT_PAGESET_HIGH	0
6396 #define BOOT_PAGESET_BATCH	1
6397 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6398 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6399 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6400 
6401 static void __build_all_zonelists(void *data)
6402 {
6403 	int nid;
6404 	int __maybe_unused cpu;
6405 	pg_data_t *self = data;
6406 	static DEFINE_SPINLOCK(lock);
6407 
6408 	spin_lock(&lock);
6409 
6410 #ifdef CONFIG_NUMA
6411 	memset(node_load, 0, sizeof(node_load));
6412 #endif
6413 
6414 	/*
6415 	 * This node is hotadded and no memory is yet present.   So just
6416 	 * building zonelists is fine - no need to touch other nodes.
6417 	 */
6418 	if (self && !node_online(self->node_id)) {
6419 		build_zonelists(self);
6420 	} else {
6421 		/*
6422 		 * All possible nodes have pgdat preallocated
6423 		 * in free_area_init
6424 		 */
6425 		for_each_node(nid) {
6426 			pg_data_t *pgdat = NODE_DATA(nid);
6427 
6428 			build_zonelists(pgdat);
6429 		}
6430 
6431 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6432 		/*
6433 		 * We now know the "local memory node" for each node--
6434 		 * i.e., the node of the first zone in the generic zonelist.
6435 		 * Set up numa_mem percpu variable for on-line cpus.  During
6436 		 * boot, only the boot cpu should be on-line;  we'll init the
6437 		 * secondary cpus' numa_mem as they come on-line.  During
6438 		 * node/memory hotplug, we'll fixup all on-line cpus.
6439 		 */
6440 		for_each_online_cpu(cpu)
6441 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6442 #endif
6443 	}
6444 
6445 	spin_unlock(&lock);
6446 }
6447 
6448 static noinline void __init
6449 build_all_zonelists_init(void)
6450 {
6451 	int cpu;
6452 
6453 	__build_all_zonelists(NULL);
6454 
6455 	/*
6456 	 * Initialize the boot_pagesets that are going to be used
6457 	 * for bootstrapping processors. The real pagesets for
6458 	 * each zone will be allocated later when the per cpu
6459 	 * allocator is available.
6460 	 *
6461 	 * boot_pagesets are used also for bootstrapping offline
6462 	 * cpus if the system is already booted because the pagesets
6463 	 * are needed to initialize allocators on a specific cpu too.
6464 	 * F.e. the percpu allocator needs the page allocator which
6465 	 * needs the percpu allocator in order to allocate its pagesets
6466 	 * (a chicken-egg dilemma).
6467 	 */
6468 	for_each_possible_cpu(cpu)
6469 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6470 
6471 	mminit_verify_zonelist();
6472 	cpuset_init_current_mems_allowed();
6473 }
6474 
6475 /*
6476  * unless system_state == SYSTEM_BOOTING.
6477  *
6478  * __ref due to call of __init annotated helper build_all_zonelists_init
6479  * [protected by SYSTEM_BOOTING].
6480  */
6481 void __ref build_all_zonelists(pg_data_t *pgdat)
6482 {
6483 	unsigned long vm_total_pages;
6484 
6485 	if (system_state == SYSTEM_BOOTING) {
6486 		build_all_zonelists_init();
6487 	} else {
6488 		__build_all_zonelists(pgdat);
6489 		/* cpuset refresh routine should be here */
6490 	}
6491 	/* Get the number of free pages beyond high watermark in all zones. */
6492 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6493 	/*
6494 	 * Disable grouping by mobility if the number of pages in the
6495 	 * system is too low to allow the mechanism to work. It would be
6496 	 * more accurate, but expensive to check per-zone. This check is
6497 	 * made on memory-hotadd so a system can start with mobility
6498 	 * disabled and enable it later
6499 	 */
6500 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6501 		page_group_by_mobility_disabled = 1;
6502 	else
6503 		page_group_by_mobility_disabled = 0;
6504 
6505 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6506 		nr_online_nodes,
6507 		page_group_by_mobility_disabled ? "off" : "on",
6508 		vm_total_pages);
6509 #ifdef CONFIG_NUMA
6510 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6511 #endif
6512 }
6513 
6514 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6515 static bool __meminit
6516 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6517 {
6518 	static struct memblock_region *r;
6519 
6520 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6521 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6522 			for_each_mem_region(r) {
6523 				if (*pfn < memblock_region_memory_end_pfn(r))
6524 					break;
6525 			}
6526 		}
6527 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6528 		    memblock_is_mirror(r)) {
6529 			*pfn = memblock_region_memory_end_pfn(r);
6530 			return true;
6531 		}
6532 	}
6533 	return false;
6534 }
6535 
6536 /*
6537  * Initially all pages are reserved - free ones are freed
6538  * up by memblock_free_all() once the early boot process is
6539  * done. Non-atomic initialization, single-pass.
6540  *
6541  * All aligned pageblocks are initialized to the specified migratetype
6542  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6543  * zone stats (e.g., nr_isolate_pageblock) are touched.
6544  */
6545 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6546 		unsigned long start_pfn, unsigned long zone_end_pfn,
6547 		enum meminit_context context,
6548 		struct vmem_altmap *altmap, int migratetype)
6549 {
6550 	unsigned long pfn, end_pfn = start_pfn + size;
6551 	struct page *page;
6552 
6553 	if (highest_memmap_pfn < end_pfn - 1)
6554 		highest_memmap_pfn = end_pfn - 1;
6555 
6556 #ifdef CONFIG_ZONE_DEVICE
6557 	/*
6558 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6559 	 * memory. We limit the total number of pages to initialize to just
6560 	 * those that might contain the memory mapping. We will defer the
6561 	 * ZONE_DEVICE page initialization until after we have released
6562 	 * the hotplug lock.
6563 	 */
6564 	if (zone == ZONE_DEVICE) {
6565 		if (!altmap)
6566 			return;
6567 
6568 		if (start_pfn == altmap->base_pfn)
6569 			start_pfn += altmap->reserve;
6570 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6571 	}
6572 #endif
6573 
6574 	for (pfn = start_pfn; pfn < end_pfn; ) {
6575 		/*
6576 		 * There can be holes in boot-time mem_map[]s handed to this
6577 		 * function.  They do not exist on hotplugged memory.
6578 		 */
6579 		if (context == MEMINIT_EARLY) {
6580 			if (overlap_memmap_init(zone, &pfn))
6581 				continue;
6582 			if (defer_init(nid, pfn, zone_end_pfn))
6583 				break;
6584 		}
6585 
6586 		page = pfn_to_page(pfn);
6587 		__init_single_page(page, pfn, zone, nid);
6588 		if (context == MEMINIT_HOTPLUG)
6589 			__SetPageReserved(page);
6590 
6591 		/*
6592 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6593 		 * such that unmovable allocations won't be scattered all
6594 		 * over the place during system boot.
6595 		 */
6596 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6597 			set_pageblock_migratetype(page, migratetype);
6598 			cond_resched();
6599 		}
6600 		pfn++;
6601 	}
6602 }
6603 
6604 #ifdef CONFIG_ZONE_DEVICE
6605 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6606 					  unsigned long zone_idx, int nid,
6607 					  struct dev_pagemap *pgmap)
6608 {
6609 
6610 	__init_single_page(page, pfn, zone_idx, nid);
6611 
6612 	/*
6613 	 * Mark page reserved as it will need to wait for onlining
6614 	 * phase for it to be fully associated with a zone.
6615 	 *
6616 	 * We can use the non-atomic __set_bit operation for setting
6617 	 * the flag as we are still initializing the pages.
6618 	 */
6619 	__SetPageReserved(page);
6620 
6621 	/*
6622 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6623 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6624 	 * ever freed or placed on a driver-private list.
6625 	 */
6626 	page->pgmap = pgmap;
6627 	page->zone_device_data = NULL;
6628 
6629 	/*
6630 	 * Mark the block movable so that blocks are reserved for
6631 	 * movable at startup. This will force kernel allocations
6632 	 * to reserve their blocks rather than leaking throughout
6633 	 * the address space during boot when many long-lived
6634 	 * kernel allocations are made.
6635 	 *
6636 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6637 	 * because this is done early in section_activate()
6638 	 */
6639 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6640 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6641 		cond_resched();
6642 	}
6643 }
6644 
6645 static void __ref memmap_init_compound(struct page *head,
6646 				       unsigned long head_pfn,
6647 				       unsigned long zone_idx, int nid,
6648 				       struct dev_pagemap *pgmap,
6649 				       unsigned long nr_pages)
6650 {
6651 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6652 	unsigned int order = pgmap->vmemmap_shift;
6653 
6654 	__SetPageHead(head);
6655 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6656 		struct page *page = pfn_to_page(pfn);
6657 
6658 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6659 		prep_compound_tail(head, pfn - head_pfn);
6660 		set_page_count(page, 0);
6661 
6662 		/*
6663 		 * The first tail page stores compound_mapcount_ptr() and
6664 		 * compound_order() and the second tail page stores
6665 		 * compound_pincount_ptr(). Call prep_compound_head() after
6666 		 * the first and second tail pages have been initialized to
6667 		 * not have the data overwritten.
6668 		 */
6669 		if (pfn == head_pfn + 2)
6670 			prep_compound_head(head, order);
6671 	}
6672 }
6673 
6674 void __ref memmap_init_zone_device(struct zone *zone,
6675 				   unsigned long start_pfn,
6676 				   unsigned long nr_pages,
6677 				   struct dev_pagemap *pgmap)
6678 {
6679 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6680 	struct pglist_data *pgdat = zone->zone_pgdat;
6681 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6682 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6683 	unsigned long zone_idx = zone_idx(zone);
6684 	unsigned long start = jiffies;
6685 	int nid = pgdat->node_id;
6686 
6687 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6688 		return;
6689 
6690 	/*
6691 	 * The call to memmap_init should have already taken care
6692 	 * of the pages reserved for the memmap, so we can just jump to
6693 	 * the end of that region and start processing the device pages.
6694 	 */
6695 	if (altmap) {
6696 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6697 		nr_pages = end_pfn - start_pfn;
6698 	}
6699 
6700 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6701 		struct page *page = pfn_to_page(pfn);
6702 
6703 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6704 
6705 		if (pfns_per_compound == 1)
6706 			continue;
6707 
6708 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6709 				     pfns_per_compound);
6710 	}
6711 
6712 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6713 		nr_pages, jiffies_to_msecs(jiffies - start));
6714 }
6715 
6716 #endif
6717 static void __meminit zone_init_free_lists(struct zone *zone)
6718 {
6719 	unsigned int order, t;
6720 	for_each_migratetype_order(order, t) {
6721 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6722 		zone->free_area[order].nr_free = 0;
6723 	}
6724 }
6725 
6726 /*
6727  * Only struct pages that correspond to ranges defined by memblock.memory
6728  * are zeroed and initialized by going through __init_single_page() during
6729  * memmap_init_zone_range().
6730  *
6731  * But, there could be struct pages that correspond to holes in
6732  * memblock.memory. This can happen because of the following reasons:
6733  * - physical memory bank size is not necessarily the exact multiple of the
6734  *   arbitrary section size
6735  * - early reserved memory may not be listed in memblock.memory
6736  * - memory layouts defined with memmap= kernel parameter may not align
6737  *   nicely with memmap sections
6738  *
6739  * Explicitly initialize those struct pages so that:
6740  * - PG_Reserved is set
6741  * - zone and node links point to zone and node that span the page if the
6742  *   hole is in the middle of a zone
6743  * - zone and node links point to adjacent zone/node if the hole falls on
6744  *   the zone boundary; the pages in such holes will be prepended to the
6745  *   zone/node above the hole except for the trailing pages in the last
6746  *   section that will be appended to the zone/node below.
6747  */
6748 static void __init init_unavailable_range(unsigned long spfn,
6749 					  unsigned long epfn,
6750 					  int zone, int node)
6751 {
6752 	unsigned long pfn;
6753 	u64 pgcnt = 0;
6754 
6755 	for (pfn = spfn; pfn < epfn; pfn++) {
6756 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6757 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6758 				+ pageblock_nr_pages - 1;
6759 			continue;
6760 		}
6761 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6762 		__SetPageReserved(pfn_to_page(pfn));
6763 		pgcnt++;
6764 	}
6765 
6766 	if (pgcnt)
6767 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6768 			node, zone_names[zone], pgcnt);
6769 }
6770 
6771 static void __init memmap_init_zone_range(struct zone *zone,
6772 					  unsigned long start_pfn,
6773 					  unsigned long end_pfn,
6774 					  unsigned long *hole_pfn)
6775 {
6776 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6777 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6778 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6779 
6780 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6781 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6782 
6783 	if (start_pfn >= end_pfn)
6784 		return;
6785 
6786 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6787 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6788 
6789 	if (*hole_pfn < start_pfn)
6790 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6791 
6792 	*hole_pfn = end_pfn;
6793 }
6794 
6795 static void __init memmap_init(void)
6796 {
6797 	unsigned long start_pfn, end_pfn;
6798 	unsigned long hole_pfn = 0;
6799 	int i, j, zone_id = 0, nid;
6800 
6801 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6802 		struct pglist_data *node = NODE_DATA(nid);
6803 
6804 		for (j = 0; j < MAX_NR_ZONES; j++) {
6805 			struct zone *zone = node->node_zones + j;
6806 
6807 			if (!populated_zone(zone))
6808 				continue;
6809 
6810 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6811 					       &hole_pfn);
6812 			zone_id = j;
6813 		}
6814 	}
6815 
6816 #ifdef CONFIG_SPARSEMEM
6817 	/*
6818 	 * Initialize the memory map for hole in the range [memory_end,
6819 	 * section_end].
6820 	 * Append the pages in this hole to the highest zone in the last
6821 	 * node.
6822 	 * The call to init_unavailable_range() is outside the ifdef to
6823 	 * silence the compiler warining about zone_id set but not used;
6824 	 * for FLATMEM it is a nop anyway
6825 	 */
6826 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6827 	if (hole_pfn < end_pfn)
6828 #endif
6829 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6830 }
6831 
6832 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6833 			  phys_addr_t min_addr, int nid, bool exact_nid)
6834 {
6835 	void *ptr;
6836 
6837 	if (exact_nid)
6838 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6839 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6840 						   nid);
6841 	else
6842 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6843 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6844 						 nid);
6845 
6846 	if (ptr && size > 0)
6847 		page_init_poison(ptr, size);
6848 
6849 	return ptr;
6850 }
6851 
6852 static int zone_batchsize(struct zone *zone)
6853 {
6854 #ifdef CONFIG_MMU
6855 	int batch;
6856 
6857 	/*
6858 	 * The number of pages to batch allocate is either ~0.1%
6859 	 * of the zone or 1MB, whichever is smaller. The batch
6860 	 * size is striking a balance between allocation latency
6861 	 * and zone lock contention.
6862 	 */
6863 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6864 	batch /= 4;		/* We effectively *= 4 below */
6865 	if (batch < 1)
6866 		batch = 1;
6867 
6868 	/*
6869 	 * Clamp the batch to a 2^n - 1 value. Having a power
6870 	 * of 2 value was found to be more likely to have
6871 	 * suboptimal cache aliasing properties in some cases.
6872 	 *
6873 	 * For example if 2 tasks are alternately allocating
6874 	 * batches of pages, one task can end up with a lot
6875 	 * of pages of one half of the possible page colors
6876 	 * and the other with pages of the other colors.
6877 	 */
6878 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6879 
6880 	return batch;
6881 
6882 #else
6883 	/* The deferral and batching of frees should be suppressed under NOMMU
6884 	 * conditions.
6885 	 *
6886 	 * The problem is that NOMMU needs to be able to allocate large chunks
6887 	 * of contiguous memory as there's no hardware page translation to
6888 	 * assemble apparent contiguous memory from discontiguous pages.
6889 	 *
6890 	 * Queueing large contiguous runs of pages for batching, however,
6891 	 * causes the pages to actually be freed in smaller chunks.  As there
6892 	 * can be a significant delay between the individual batches being
6893 	 * recycled, this leads to the once large chunks of space being
6894 	 * fragmented and becoming unavailable for high-order allocations.
6895 	 */
6896 	return 0;
6897 #endif
6898 }
6899 
6900 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6901 {
6902 #ifdef CONFIG_MMU
6903 	int high;
6904 	int nr_split_cpus;
6905 	unsigned long total_pages;
6906 
6907 	if (!percpu_pagelist_high_fraction) {
6908 		/*
6909 		 * By default, the high value of the pcp is based on the zone
6910 		 * low watermark so that if they are full then background
6911 		 * reclaim will not be started prematurely.
6912 		 */
6913 		total_pages = low_wmark_pages(zone);
6914 	} else {
6915 		/*
6916 		 * If percpu_pagelist_high_fraction is configured, the high
6917 		 * value is based on a fraction of the managed pages in the
6918 		 * zone.
6919 		 */
6920 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6921 	}
6922 
6923 	/*
6924 	 * Split the high value across all online CPUs local to the zone. Note
6925 	 * that early in boot that CPUs may not be online yet and that during
6926 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6927 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6928 	 * all online CPUs to mitigate the risk that reclaim is triggered
6929 	 * prematurely due to pages stored on pcp lists.
6930 	 */
6931 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6932 	if (!nr_split_cpus)
6933 		nr_split_cpus = num_online_cpus();
6934 	high = total_pages / nr_split_cpus;
6935 
6936 	/*
6937 	 * Ensure high is at least batch*4. The multiple is based on the
6938 	 * historical relationship between high and batch.
6939 	 */
6940 	high = max(high, batch << 2);
6941 
6942 	return high;
6943 #else
6944 	return 0;
6945 #endif
6946 }
6947 
6948 /*
6949  * pcp->high and pcp->batch values are related and generally batch is lower
6950  * than high. They are also related to pcp->count such that count is lower
6951  * than high, and as soon as it reaches high, the pcplist is flushed.
6952  *
6953  * However, guaranteeing these relations at all times would require e.g. write
6954  * barriers here but also careful usage of read barriers at the read side, and
6955  * thus be prone to error and bad for performance. Thus the update only prevents
6956  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6957  * can cope with those fields changing asynchronously, and fully trust only the
6958  * pcp->count field on the local CPU with interrupts disabled.
6959  *
6960  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6961  * outside of boot time (or some other assurance that no concurrent updaters
6962  * exist).
6963  */
6964 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6965 		unsigned long batch)
6966 {
6967 	WRITE_ONCE(pcp->batch, batch);
6968 	WRITE_ONCE(pcp->high, high);
6969 }
6970 
6971 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6972 {
6973 	int pindex;
6974 
6975 	memset(pcp, 0, sizeof(*pcp));
6976 	memset(pzstats, 0, sizeof(*pzstats));
6977 
6978 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6979 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6980 
6981 	/*
6982 	 * Set batch and high values safe for a boot pageset. A true percpu
6983 	 * pageset's initialization will update them subsequently. Here we don't
6984 	 * need to be as careful as pageset_update() as nobody can access the
6985 	 * pageset yet.
6986 	 */
6987 	pcp->high = BOOT_PAGESET_HIGH;
6988 	pcp->batch = BOOT_PAGESET_BATCH;
6989 	pcp->free_factor = 0;
6990 }
6991 
6992 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6993 		unsigned long batch)
6994 {
6995 	struct per_cpu_pages *pcp;
6996 	int cpu;
6997 
6998 	for_each_possible_cpu(cpu) {
6999 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7000 		pageset_update(pcp, high, batch);
7001 	}
7002 }
7003 
7004 /*
7005  * Calculate and set new high and batch values for all per-cpu pagesets of a
7006  * zone based on the zone's size.
7007  */
7008 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7009 {
7010 	int new_high, new_batch;
7011 
7012 	new_batch = max(1, zone_batchsize(zone));
7013 	new_high = zone_highsize(zone, new_batch, cpu_online);
7014 
7015 	if (zone->pageset_high == new_high &&
7016 	    zone->pageset_batch == new_batch)
7017 		return;
7018 
7019 	zone->pageset_high = new_high;
7020 	zone->pageset_batch = new_batch;
7021 
7022 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7023 }
7024 
7025 void __meminit setup_zone_pageset(struct zone *zone)
7026 {
7027 	int cpu;
7028 
7029 	/* Size may be 0 on !SMP && !NUMA */
7030 	if (sizeof(struct per_cpu_zonestat) > 0)
7031 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7032 
7033 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7034 	for_each_possible_cpu(cpu) {
7035 		struct per_cpu_pages *pcp;
7036 		struct per_cpu_zonestat *pzstats;
7037 
7038 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7039 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7040 		per_cpu_pages_init(pcp, pzstats);
7041 	}
7042 
7043 	zone_set_pageset_high_and_batch(zone, 0);
7044 }
7045 
7046 /*
7047  * Allocate per cpu pagesets and initialize them.
7048  * Before this call only boot pagesets were available.
7049  */
7050 void __init setup_per_cpu_pageset(void)
7051 {
7052 	struct pglist_data *pgdat;
7053 	struct zone *zone;
7054 	int __maybe_unused cpu;
7055 
7056 	for_each_populated_zone(zone)
7057 		setup_zone_pageset(zone);
7058 
7059 #ifdef CONFIG_NUMA
7060 	/*
7061 	 * Unpopulated zones continue using the boot pagesets.
7062 	 * The numa stats for these pagesets need to be reset.
7063 	 * Otherwise, they will end up skewing the stats of
7064 	 * the nodes these zones are associated with.
7065 	 */
7066 	for_each_possible_cpu(cpu) {
7067 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7068 		memset(pzstats->vm_numa_event, 0,
7069 		       sizeof(pzstats->vm_numa_event));
7070 	}
7071 #endif
7072 
7073 	for_each_online_pgdat(pgdat)
7074 		pgdat->per_cpu_nodestats =
7075 			alloc_percpu(struct per_cpu_nodestat);
7076 }
7077 
7078 static __meminit void zone_pcp_init(struct zone *zone)
7079 {
7080 	/*
7081 	 * per cpu subsystem is not up at this point. The following code
7082 	 * relies on the ability of the linker to provide the
7083 	 * offset of a (static) per cpu variable into the per cpu area.
7084 	 */
7085 	zone->per_cpu_pageset = &boot_pageset;
7086 	zone->per_cpu_zonestats = &boot_zonestats;
7087 	zone->pageset_high = BOOT_PAGESET_HIGH;
7088 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7089 
7090 	if (populated_zone(zone))
7091 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7092 			 zone->present_pages, zone_batchsize(zone));
7093 }
7094 
7095 void __meminit init_currently_empty_zone(struct zone *zone,
7096 					unsigned long zone_start_pfn,
7097 					unsigned long size)
7098 {
7099 	struct pglist_data *pgdat = zone->zone_pgdat;
7100 	int zone_idx = zone_idx(zone) + 1;
7101 
7102 	if (zone_idx > pgdat->nr_zones)
7103 		pgdat->nr_zones = zone_idx;
7104 
7105 	zone->zone_start_pfn = zone_start_pfn;
7106 
7107 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7108 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7109 			pgdat->node_id,
7110 			(unsigned long)zone_idx(zone),
7111 			zone_start_pfn, (zone_start_pfn + size));
7112 
7113 	zone_init_free_lists(zone);
7114 	zone->initialized = 1;
7115 }
7116 
7117 /**
7118  * get_pfn_range_for_nid - Return the start and end page frames for a node
7119  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7120  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7121  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7122  *
7123  * It returns the start and end page frame of a node based on information
7124  * provided by memblock_set_node(). If called for a node
7125  * with no available memory, a warning is printed and the start and end
7126  * PFNs will be 0.
7127  */
7128 void __init get_pfn_range_for_nid(unsigned int nid,
7129 			unsigned long *start_pfn, unsigned long *end_pfn)
7130 {
7131 	unsigned long this_start_pfn, this_end_pfn;
7132 	int i;
7133 
7134 	*start_pfn = -1UL;
7135 	*end_pfn = 0;
7136 
7137 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7138 		*start_pfn = min(*start_pfn, this_start_pfn);
7139 		*end_pfn = max(*end_pfn, this_end_pfn);
7140 	}
7141 
7142 	if (*start_pfn == -1UL)
7143 		*start_pfn = 0;
7144 }
7145 
7146 /*
7147  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7148  * assumption is made that zones within a node are ordered in monotonic
7149  * increasing memory addresses so that the "highest" populated zone is used
7150  */
7151 static void __init find_usable_zone_for_movable(void)
7152 {
7153 	int zone_index;
7154 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7155 		if (zone_index == ZONE_MOVABLE)
7156 			continue;
7157 
7158 		if (arch_zone_highest_possible_pfn[zone_index] >
7159 				arch_zone_lowest_possible_pfn[zone_index])
7160 			break;
7161 	}
7162 
7163 	VM_BUG_ON(zone_index == -1);
7164 	movable_zone = zone_index;
7165 }
7166 
7167 /*
7168  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7169  * because it is sized independent of architecture. Unlike the other zones,
7170  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7171  * in each node depending on the size of each node and how evenly kernelcore
7172  * is distributed. This helper function adjusts the zone ranges
7173  * provided by the architecture for a given node by using the end of the
7174  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7175  * zones within a node are in order of monotonic increases memory addresses
7176  */
7177 static void __init adjust_zone_range_for_zone_movable(int nid,
7178 					unsigned long zone_type,
7179 					unsigned long node_start_pfn,
7180 					unsigned long node_end_pfn,
7181 					unsigned long *zone_start_pfn,
7182 					unsigned long *zone_end_pfn)
7183 {
7184 	/* Only adjust if ZONE_MOVABLE is on this node */
7185 	if (zone_movable_pfn[nid]) {
7186 		/* Size ZONE_MOVABLE */
7187 		if (zone_type == ZONE_MOVABLE) {
7188 			*zone_start_pfn = zone_movable_pfn[nid];
7189 			*zone_end_pfn = min(node_end_pfn,
7190 				arch_zone_highest_possible_pfn[movable_zone]);
7191 
7192 		/* Adjust for ZONE_MOVABLE starting within this range */
7193 		} else if (!mirrored_kernelcore &&
7194 			*zone_start_pfn < zone_movable_pfn[nid] &&
7195 			*zone_end_pfn > zone_movable_pfn[nid]) {
7196 			*zone_end_pfn = zone_movable_pfn[nid];
7197 
7198 		/* Check if this whole range is within ZONE_MOVABLE */
7199 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7200 			*zone_start_pfn = *zone_end_pfn;
7201 	}
7202 }
7203 
7204 /*
7205  * Return the number of pages a zone spans in a node, including holes
7206  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7207  */
7208 static unsigned long __init zone_spanned_pages_in_node(int nid,
7209 					unsigned long zone_type,
7210 					unsigned long node_start_pfn,
7211 					unsigned long node_end_pfn,
7212 					unsigned long *zone_start_pfn,
7213 					unsigned long *zone_end_pfn)
7214 {
7215 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7216 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7217 	/* When hotadd a new node from cpu_up(), the node should be empty */
7218 	if (!node_start_pfn && !node_end_pfn)
7219 		return 0;
7220 
7221 	/* Get the start and end of the zone */
7222 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7223 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7224 	adjust_zone_range_for_zone_movable(nid, zone_type,
7225 				node_start_pfn, node_end_pfn,
7226 				zone_start_pfn, zone_end_pfn);
7227 
7228 	/* Check that this node has pages within the zone's required range */
7229 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7230 		return 0;
7231 
7232 	/* Move the zone boundaries inside the node if necessary */
7233 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7234 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7235 
7236 	/* Return the spanned pages */
7237 	return *zone_end_pfn - *zone_start_pfn;
7238 }
7239 
7240 /*
7241  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7242  * then all holes in the requested range will be accounted for.
7243  */
7244 unsigned long __init __absent_pages_in_range(int nid,
7245 				unsigned long range_start_pfn,
7246 				unsigned long range_end_pfn)
7247 {
7248 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7249 	unsigned long start_pfn, end_pfn;
7250 	int i;
7251 
7252 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7253 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7254 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7255 		nr_absent -= end_pfn - start_pfn;
7256 	}
7257 	return nr_absent;
7258 }
7259 
7260 /**
7261  * absent_pages_in_range - Return number of page frames in holes within a range
7262  * @start_pfn: The start PFN to start searching for holes
7263  * @end_pfn: The end PFN to stop searching for holes
7264  *
7265  * Return: the number of pages frames in memory holes within a range.
7266  */
7267 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7268 							unsigned long end_pfn)
7269 {
7270 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7271 }
7272 
7273 /* Return the number of page frames in holes in a zone on a node */
7274 static unsigned long __init zone_absent_pages_in_node(int nid,
7275 					unsigned long zone_type,
7276 					unsigned long node_start_pfn,
7277 					unsigned long node_end_pfn)
7278 {
7279 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7280 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7281 	unsigned long zone_start_pfn, zone_end_pfn;
7282 	unsigned long nr_absent;
7283 
7284 	/* When hotadd a new node from cpu_up(), the node should be empty */
7285 	if (!node_start_pfn && !node_end_pfn)
7286 		return 0;
7287 
7288 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7289 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7290 
7291 	adjust_zone_range_for_zone_movable(nid, zone_type,
7292 			node_start_pfn, node_end_pfn,
7293 			&zone_start_pfn, &zone_end_pfn);
7294 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7295 
7296 	/*
7297 	 * ZONE_MOVABLE handling.
7298 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7299 	 * and vice versa.
7300 	 */
7301 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7302 		unsigned long start_pfn, end_pfn;
7303 		struct memblock_region *r;
7304 
7305 		for_each_mem_region(r) {
7306 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7307 					  zone_start_pfn, zone_end_pfn);
7308 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7309 					zone_start_pfn, zone_end_pfn);
7310 
7311 			if (zone_type == ZONE_MOVABLE &&
7312 			    memblock_is_mirror(r))
7313 				nr_absent += end_pfn - start_pfn;
7314 
7315 			if (zone_type == ZONE_NORMAL &&
7316 			    !memblock_is_mirror(r))
7317 				nr_absent += end_pfn - start_pfn;
7318 		}
7319 	}
7320 
7321 	return nr_absent;
7322 }
7323 
7324 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7325 						unsigned long node_start_pfn,
7326 						unsigned long node_end_pfn)
7327 {
7328 	unsigned long realtotalpages = 0, totalpages = 0;
7329 	enum zone_type i;
7330 
7331 	for (i = 0; i < MAX_NR_ZONES; i++) {
7332 		struct zone *zone = pgdat->node_zones + i;
7333 		unsigned long zone_start_pfn, zone_end_pfn;
7334 		unsigned long spanned, absent;
7335 		unsigned long size, real_size;
7336 
7337 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7338 						     node_start_pfn,
7339 						     node_end_pfn,
7340 						     &zone_start_pfn,
7341 						     &zone_end_pfn);
7342 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7343 						   node_start_pfn,
7344 						   node_end_pfn);
7345 
7346 		size = spanned;
7347 		real_size = size - absent;
7348 
7349 		if (size)
7350 			zone->zone_start_pfn = zone_start_pfn;
7351 		else
7352 			zone->zone_start_pfn = 0;
7353 		zone->spanned_pages = size;
7354 		zone->present_pages = real_size;
7355 #if defined(CONFIG_MEMORY_HOTPLUG)
7356 		zone->present_early_pages = real_size;
7357 #endif
7358 
7359 		totalpages += size;
7360 		realtotalpages += real_size;
7361 	}
7362 
7363 	pgdat->node_spanned_pages = totalpages;
7364 	pgdat->node_present_pages = realtotalpages;
7365 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7366 }
7367 
7368 #ifndef CONFIG_SPARSEMEM
7369 /*
7370  * Calculate the size of the zone->blockflags rounded to an unsigned long
7371  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7372  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7373  * round what is now in bits to nearest long in bits, then return it in
7374  * bytes.
7375  */
7376 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7377 {
7378 	unsigned long usemapsize;
7379 
7380 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7381 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7382 	usemapsize = usemapsize >> pageblock_order;
7383 	usemapsize *= NR_PAGEBLOCK_BITS;
7384 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7385 
7386 	return usemapsize / 8;
7387 }
7388 
7389 static void __ref setup_usemap(struct zone *zone)
7390 {
7391 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7392 					       zone->spanned_pages);
7393 	zone->pageblock_flags = NULL;
7394 	if (usemapsize) {
7395 		zone->pageblock_flags =
7396 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7397 					    zone_to_nid(zone));
7398 		if (!zone->pageblock_flags)
7399 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7400 			      usemapsize, zone->name, zone_to_nid(zone));
7401 	}
7402 }
7403 #else
7404 static inline void setup_usemap(struct zone *zone) {}
7405 #endif /* CONFIG_SPARSEMEM */
7406 
7407 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7408 
7409 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7410 void __init set_pageblock_order(void)
7411 {
7412 	unsigned int order = MAX_ORDER - 1;
7413 
7414 	/* Check that pageblock_nr_pages has not already been setup */
7415 	if (pageblock_order)
7416 		return;
7417 
7418 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7419 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7420 		order = HUGETLB_PAGE_ORDER;
7421 
7422 	/*
7423 	 * Assume the largest contiguous order of interest is a huge page.
7424 	 * This value may be variable depending on boot parameters on IA64 and
7425 	 * powerpc.
7426 	 */
7427 	pageblock_order = order;
7428 }
7429 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7430 
7431 /*
7432  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7433  * is unused as pageblock_order is set at compile-time. See
7434  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7435  * the kernel config
7436  */
7437 void __init set_pageblock_order(void)
7438 {
7439 }
7440 
7441 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7442 
7443 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7444 						unsigned long present_pages)
7445 {
7446 	unsigned long pages = spanned_pages;
7447 
7448 	/*
7449 	 * Provide a more accurate estimation if there are holes within
7450 	 * the zone and SPARSEMEM is in use. If there are holes within the
7451 	 * zone, each populated memory region may cost us one or two extra
7452 	 * memmap pages due to alignment because memmap pages for each
7453 	 * populated regions may not be naturally aligned on page boundary.
7454 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7455 	 */
7456 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7457 	    IS_ENABLED(CONFIG_SPARSEMEM))
7458 		pages = present_pages;
7459 
7460 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7461 }
7462 
7463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7464 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7465 {
7466 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7467 
7468 	spin_lock_init(&ds_queue->split_queue_lock);
7469 	INIT_LIST_HEAD(&ds_queue->split_queue);
7470 	ds_queue->split_queue_len = 0;
7471 }
7472 #else
7473 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7474 #endif
7475 
7476 #ifdef CONFIG_COMPACTION
7477 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7478 {
7479 	init_waitqueue_head(&pgdat->kcompactd_wait);
7480 }
7481 #else
7482 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7483 #endif
7484 
7485 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7486 {
7487 	int i;
7488 
7489 	pgdat_resize_init(pgdat);
7490 
7491 	pgdat_init_split_queue(pgdat);
7492 	pgdat_init_kcompactd(pgdat);
7493 
7494 	init_waitqueue_head(&pgdat->kswapd_wait);
7495 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7496 
7497 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7498 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7499 
7500 	pgdat_page_ext_init(pgdat);
7501 	lruvec_init(&pgdat->__lruvec);
7502 }
7503 
7504 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7505 							unsigned long remaining_pages)
7506 {
7507 	atomic_long_set(&zone->managed_pages, remaining_pages);
7508 	zone_set_nid(zone, nid);
7509 	zone->name = zone_names[idx];
7510 	zone->zone_pgdat = NODE_DATA(nid);
7511 	spin_lock_init(&zone->lock);
7512 	zone_seqlock_init(zone);
7513 	zone_pcp_init(zone);
7514 }
7515 
7516 /*
7517  * Set up the zone data structures
7518  * - init pgdat internals
7519  * - init all zones belonging to this node
7520  *
7521  * NOTE: this function is only called during memory hotplug
7522  */
7523 #ifdef CONFIG_MEMORY_HOTPLUG
7524 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7525 {
7526 	int nid = pgdat->node_id;
7527 	enum zone_type z;
7528 	int cpu;
7529 
7530 	pgdat_init_internals(pgdat);
7531 
7532 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7533 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7534 
7535 	/*
7536 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7537 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7538 	 * when it starts in the near future.
7539 	 */
7540 	pgdat->nr_zones = 0;
7541 	pgdat->kswapd_order = 0;
7542 	pgdat->kswapd_highest_zoneidx = 0;
7543 	pgdat->node_start_pfn = 0;
7544 	for_each_online_cpu(cpu) {
7545 		struct per_cpu_nodestat *p;
7546 
7547 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7548 		memset(p, 0, sizeof(*p));
7549 	}
7550 
7551 	for (z = 0; z < MAX_NR_ZONES; z++)
7552 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7553 }
7554 #endif
7555 
7556 /*
7557  * Set up the zone data structures:
7558  *   - mark all pages reserved
7559  *   - mark all memory queues empty
7560  *   - clear the memory bitmaps
7561  *
7562  * NOTE: pgdat should get zeroed by caller.
7563  * NOTE: this function is only called during early init.
7564  */
7565 static void __init free_area_init_core(struct pglist_data *pgdat)
7566 {
7567 	enum zone_type j;
7568 	int nid = pgdat->node_id;
7569 
7570 	pgdat_init_internals(pgdat);
7571 	pgdat->per_cpu_nodestats = &boot_nodestats;
7572 
7573 	for (j = 0; j < MAX_NR_ZONES; j++) {
7574 		struct zone *zone = pgdat->node_zones + j;
7575 		unsigned long size, freesize, memmap_pages;
7576 
7577 		size = zone->spanned_pages;
7578 		freesize = zone->present_pages;
7579 
7580 		/*
7581 		 * Adjust freesize so that it accounts for how much memory
7582 		 * is used by this zone for memmap. This affects the watermark
7583 		 * and per-cpu initialisations
7584 		 */
7585 		memmap_pages = calc_memmap_size(size, freesize);
7586 		if (!is_highmem_idx(j)) {
7587 			if (freesize >= memmap_pages) {
7588 				freesize -= memmap_pages;
7589 				if (memmap_pages)
7590 					pr_debug("  %s zone: %lu pages used for memmap\n",
7591 						 zone_names[j], memmap_pages);
7592 			} else
7593 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7594 					zone_names[j], memmap_pages, freesize);
7595 		}
7596 
7597 		/* Account for reserved pages */
7598 		if (j == 0 && freesize > dma_reserve) {
7599 			freesize -= dma_reserve;
7600 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7601 		}
7602 
7603 		if (!is_highmem_idx(j))
7604 			nr_kernel_pages += freesize;
7605 		/* Charge for highmem memmap if there are enough kernel pages */
7606 		else if (nr_kernel_pages > memmap_pages * 2)
7607 			nr_kernel_pages -= memmap_pages;
7608 		nr_all_pages += freesize;
7609 
7610 		/*
7611 		 * Set an approximate value for lowmem here, it will be adjusted
7612 		 * when the bootmem allocator frees pages into the buddy system.
7613 		 * And all highmem pages will be managed by the buddy system.
7614 		 */
7615 		zone_init_internals(zone, j, nid, freesize);
7616 
7617 		if (!size)
7618 			continue;
7619 
7620 		set_pageblock_order();
7621 		setup_usemap(zone);
7622 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7623 	}
7624 }
7625 
7626 #ifdef CONFIG_FLATMEM
7627 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7628 {
7629 	unsigned long __maybe_unused start = 0;
7630 	unsigned long __maybe_unused offset = 0;
7631 
7632 	/* Skip empty nodes */
7633 	if (!pgdat->node_spanned_pages)
7634 		return;
7635 
7636 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7637 	offset = pgdat->node_start_pfn - start;
7638 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7639 	if (!pgdat->node_mem_map) {
7640 		unsigned long size, end;
7641 		struct page *map;
7642 
7643 		/*
7644 		 * The zone's endpoints aren't required to be MAX_ORDER
7645 		 * aligned but the node_mem_map endpoints must be in order
7646 		 * for the buddy allocator to function correctly.
7647 		 */
7648 		end = pgdat_end_pfn(pgdat);
7649 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7650 		size =  (end - start) * sizeof(struct page);
7651 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7652 				   pgdat->node_id, false);
7653 		if (!map)
7654 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7655 			      size, pgdat->node_id);
7656 		pgdat->node_mem_map = map + offset;
7657 	}
7658 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7659 				__func__, pgdat->node_id, (unsigned long)pgdat,
7660 				(unsigned long)pgdat->node_mem_map);
7661 #ifndef CONFIG_NUMA
7662 	/*
7663 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7664 	 */
7665 	if (pgdat == NODE_DATA(0)) {
7666 		mem_map = NODE_DATA(0)->node_mem_map;
7667 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7668 			mem_map -= offset;
7669 	}
7670 #endif
7671 }
7672 #else
7673 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7674 #endif /* CONFIG_FLATMEM */
7675 
7676 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7677 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7678 {
7679 	pgdat->first_deferred_pfn = ULONG_MAX;
7680 }
7681 #else
7682 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7683 #endif
7684 
7685 static void __init free_area_init_node(int nid)
7686 {
7687 	pg_data_t *pgdat = NODE_DATA(nid);
7688 	unsigned long start_pfn = 0;
7689 	unsigned long end_pfn = 0;
7690 
7691 	/* pg_data_t should be reset to zero when it's allocated */
7692 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7693 
7694 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7695 
7696 	pgdat->node_id = nid;
7697 	pgdat->node_start_pfn = start_pfn;
7698 	pgdat->per_cpu_nodestats = NULL;
7699 
7700 	if (start_pfn != end_pfn) {
7701 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7702 			(u64)start_pfn << PAGE_SHIFT,
7703 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7704 	} else {
7705 		pr_info("Initmem setup node %d as memoryless\n", nid);
7706 	}
7707 
7708 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7709 
7710 	alloc_node_mem_map(pgdat);
7711 	pgdat_set_deferred_range(pgdat);
7712 
7713 	free_area_init_core(pgdat);
7714 }
7715 
7716 static void __init free_area_init_memoryless_node(int nid)
7717 {
7718 	free_area_init_node(nid);
7719 }
7720 
7721 #if MAX_NUMNODES > 1
7722 /*
7723  * Figure out the number of possible node ids.
7724  */
7725 void __init setup_nr_node_ids(void)
7726 {
7727 	unsigned int highest;
7728 
7729 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7730 	nr_node_ids = highest + 1;
7731 }
7732 #endif
7733 
7734 /**
7735  * node_map_pfn_alignment - determine the maximum internode alignment
7736  *
7737  * This function should be called after node map is populated and sorted.
7738  * It calculates the maximum power of two alignment which can distinguish
7739  * all the nodes.
7740  *
7741  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7742  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7743  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7744  * shifted, 1GiB is enough and this function will indicate so.
7745  *
7746  * This is used to test whether pfn -> nid mapping of the chosen memory
7747  * model has fine enough granularity to avoid incorrect mapping for the
7748  * populated node map.
7749  *
7750  * Return: the determined alignment in pfn's.  0 if there is no alignment
7751  * requirement (single node).
7752  */
7753 unsigned long __init node_map_pfn_alignment(void)
7754 {
7755 	unsigned long accl_mask = 0, last_end = 0;
7756 	unsigned long start, end, mask;
7757 	int last_nid = NUMA_NO_NODE;
7758 	int i, nid;
7759 
7760 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7761 		if (!start || last_nid < 0 || last_nid == nid) {
7762 			last_nid = nid;
7763 			last_end = end;
7764 			continue;
7765 		}
7766 
7767 		/*
7768 		 * Start with a mask granular enough to pin-point to the
7769 		 * start pfn and tick off bits one-by-one until it becomes
7770 		 * too coarse to separate the current node from the last.
7771 		 */
7772 		mask = ~((1 << __ffs(start)) - 1);
7773 		while (mask && last_end <= (start & (mask << 1)))
7774 			mask <<= 1;
7775 
7776 		/* accumulate all internode masks */
7777 		accl_mask |= mask;
7778 	}
7779 
7780 	/* convert mask to number of pages */
7781 	return ~accl_mask + 1;
7782 }
7783 
7784 /**
7785  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7786  *
7787  * Return: the minimum PFN based on information provided via
7788  * memblock_set_node().
7789  */
7790 unsigned long __init find_min_pfn_with_active_regions(void)
7791 {
7792 	return PHYS_PFN(memblock_start_of_DRAM());
7793 }
7794 
7795 /*
7796  * early_calculate_totalpages()
7797  * Sum pages in active regions for movable zone.
7798  * Populate N_MEMORY for calculating usable_nodes.
7799  */
7800 static unsigned long __init early_calculate_totalpages(void)
7801 {
7802 	unsigned long totalpages = 0;
7803 	unsigned long start_pfn, end_pfn;
7804 	int i, nid;
7805 
7806 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7807 		unsigned long pages = end_pfn - start_pfn;
7808 
7809 		totalpages += pages;
7810 		if (pages)
7811 			node_set_state(nid, N_MEMORY);
7812 	}
7813 	return totalpages;
7814 }
7815 
7816 /*
7817  * Find the PFN the Movable zone begins in each node. Kernel memory
7818  * is spread evenly between nodes as long as the nodes have enough
7819  * memory. When they don't, some nodes will have more kernelcore than
7820  * others
7821  */
7822 static void __init find_zone_movable_pfns_for_nodes(void)
7823 {
7824 	int i, nid;
7825 	unsigned long usable_startpfn;
7826 	unsigned long kernelcore_node, kernelcore_remaining;
7827 	/* save the state before borrow the nodemask */
7828 	nodemask_t saved_node_state = node_states[N_MEMORY];
7829 	unsigned long totalpages = early_calculate_totalpages();
7830 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7831 	struct memblock_region *r;
7832 
7833 	/* Need to find movable_zone earlier when movable_node is specified. */
7834 	find_usable_zone_for_movable();
7835 
7836 	/*
7837 	 * If movable_node is specified, ignore kernelcore and movablecore
7838 	 * options.
7839 	 */
7840 	if (movable_node_is_enabled()) {
7841 		for_each_mem_region(r) {
7842 			if (!memblock_is_hotpluggable(r))
7843 				continue;
7844 
7845 			nid = memblock_get_region_node(r);
7846 
7847 			usable_startpfn = PFN_DOWN(r->base);
7848 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7849 				min(usable_startpfn, zone_movable_pfn[nid]) :
7850 				usable_startpfn;
7851 		}
7852 
7853 		goto out2;
7854 	}
7855 
7856 	/*
7857 	 * If kernelcore=mirror is specified, ignore movablecore option
7858 	 */
7859 	if (mirrored_kernelcore) {
7860 		bool mem_below_4gb_not_mirrored = false;
7861 
7862 		for_each_mem_region(r) {
7863 			if (memblock_is_mirror(r))
7864 				continue;
7865 
7866 			nid = memblock_get_region_node(r);
7867 
7868 			usable_startpfn = memblock_region_memory_base_pfn(r);
7869 
7870 			if (usable_startpfn < 0x100000) {
7871 				mem_below_4gb_not_mirrored = true;
7872 				continue;
7873 			}
7874 
7875 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7876 				min(usable_startpfn, zone_movable_pfn[nid]) :
7877 				usable_startpfn;
7878 		}
7879 
7880 		if (mem_below_4gb_not_mirrored)
7881 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7882 
7883 		goto out2;
7884 	}
7885 
7886 	/*
7887 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7888 	 * amount of necessary memory.
7889 	 */
7890 	if (required_kernelcore_percent)
7891 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7892 				       10000UL;
7893 	if (required_movablecore_percent)
7894 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7895 					10000UL;
7896 
7897 	/*
7898 	 * If movablecore= was specified, calculate what size of
7899 	 * kernelcore that corresponds so that memory usable for
7900 	 * any allocation type is evenly spread. If both kernelcore
7901 	 * and movablecore are specified, then the value of kernelcore
7902 	 * will be used for required_kernelcore if it's greater than
7903 	 * what movablecore would have allowed.
7904 	 */
7905 	if (required_movablecore) {
7906 		unsigned long corepages;
7907 
7908 		/*
7909 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7910 		 * was requested by the user
7911 		 */
7912 		required_movablecore =
7913 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7914 		required_movablecore = min(totalpages, required_movablecore);
7915 		corepages = totalpages - required_movablecore;
7916 
7917 		required_kernelcore = max(required_kernelcore, corepages);
7918 	}
7919 
7920 	/*
7921 	 * If kernelcore was not specified or kernelcore size is larger
7922 	 * than totalpages, there is no ZONE_MOVABLE.
7923 	 */
7924 	if (!required_kernelcore || required_kernelcore >= totalpages)
7925 		goto out;
7926 
7927 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7928 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7929 
7930 restart:
7931 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7932 	kernelcore_node = required_kernelcore / usable_nodes;
7933 	for_each_node_state(nid, N_MEMORY) {
7934 		unsigned long start_pfn, end_pfn;
7935 
7936 		/*
7937 		 * Recalculate kernelcore_node if the division per node
7938 		 * now exceeds what is necessary to satisfy the requested
7939 		 * amount of memory for the kernel
7940 		 */
7941 		if (required_kernelcore < kernelcore_node)
7942 			kernelcore_node = required_kernelcore / usable_nodes;
7943 
7944 		/*
7945 		 * As the map is walked, we track how much memory is usable
7946 		 * by the kernel using kernelcore_remaining. When it is
7947 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7948 		 */
7949 		kernelcore_remaining = kernelcore_node;
7950 
7951 		/* Go through each range of PFNs within this node */
7952 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7953 			unsigned long size_pages;
7954 
7955 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7956 			if (start_pfn >= end_pfn)
7957 				continue;
7958 
7959 			/* Account for what is only usable for kernelcore */
7960 			if (start_pfn < usable_startpfn) {
7961 				unsigned long kernel_pages;
7962 				kernel_pages = min(end_pfn, usable_startpfn)
7963 								- start_pfn;
7964 
7965 				kernelcore_remaining -= min(kernel_pages,
7966 							kernelcore_remaining);
7967 				required_kernelcore -= min(kernel_pages,
7968 							required_kernelcore);
7969 
7970 				/* Continue if range is now fully accounted */
7971 				if (end_pfn <= usable_startpfn) {
7972 
7973 					/*
7974 					 * Push zone_movable_pfn to the end so
7975 					 * that if we have to rebalance
7976 					 * kernelcore across nodes, we will
7977 					 * not double account here
7978 					 */
7979 					zone_movable_pfn[nid] = end_pfn;
7980 					continue;
7981 				}
7982 				start_pfn = usable_startpfn;
7983 			}
7984 
7985 			/*
7986 			 * The usable PFN range for ZONE_MOVABLE is from
7987 			 * start_pfn->end_pfn. Calculate size_pages as the
7988 			 * number of pages used as kernelcore
7989 			 */
7990 			size_pages = end_pfn - start_pfn;
7991 			if (size_pages > kernelcore_remaining)
7992 				size_pages = kernelcore_remaining;
7993 			zone_movable_pfn[nid] = start_pfn + size_pages;
7994 
7995 			/*
7996 			 * Some kernelcore has been met, update counts and
7997 			 * break if the kernelcore for this node has been
7998 			 * satisfied
7999 			 */
8000 			required_kernelcore -= min(required_kernelcore,
8001 								size_pages);
8002 			kernelcore_remaining -= size_pages;
8003 			if (!kernelcore_remaining)
8004 				break;
8005 		}
8006 	}
8007 
8008 	/*
8009 	 * If there is still required_kernelcore, we do another pass with one
8010 	 * less node in the count. This will push zone_movable_pfn[nid] further
8011 	 * along on the nodes that still have memory until kernelcore is
8012 	 * satisfied
8013 	 */
8014 	usable_nodes--;
8015 	if (usable_nodes && required_kernelcore > usable_nodes)
8016 		goto restart;
8017 
8018 out2:
8019 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8020 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8021 		unsigned long start_pfn, end_pfn;
8022 
8023 		zone_movable_pfn[nid] =
8024 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8025 
8026 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8027 		if (zone_movable_pfn[nid] >= end_pfn)
8028 			zone_movable_pfn[nid] = 0;
8029 	}
8030 
8031 out:
8032 	/* restore the node_state */
8033 	node_states[N_MEMORY] = saved_node_state;
8034 }
8035 
8036 /* Any regular or high memory on that node ? */
8037 static void check_for_memory(pg_data_t *pgdat, int nid)
8038 {
8039 	enum zone_type zone_type;
8040 
8041 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8042 		struct zone *zone = &pgdat->node_zones[zone_type];
8043 		if (populated_zone(zone)) {
8044 			if (IS_ENABLED(CONFIG_HIGHMEM))
8045 				node_set_state(nid, N_HIGH_MEMORY);
8046 			if (zone_type <= ZONE_NORMAL)
8047 				node_set_state(nid, N_NORMAL_MEMORY);
8048 			break;
8049 		}
8050 	}
8051 }
8052 
8053 /*
8054  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8055  * such cases we allow max_zone_pfn sorted in the descending order
8056  */
8057 bool __weak arch_has_descending_max_zone_pfns(void)
8058 {
8059 	return false;
8060 }
8061 
8062 /**
8063  * free_area_init - Initialise all pg_data_t and zone data
8064  * @max_zone_pfn: an array of max PFNs for each zone
8065  *
8066  * This will call free_area_init_node() for each active node in the system.
8067  * Using the page ranges provided by memblock_set_node(), the size of each
8068  * zone in each node and their holes is calculated. If the maximum PFN
8069  * between two adjacent zones match, it is assumed that the zone is empty.
8070  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8071  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8072  * starts where the previous one ended. For example, ZONE_DMA32 starts
8073  * at arch_max_dma_pfn.
8074  */
8075 void __init free_area_init(unsigned long *max_zone_pfn)
8076 {
8077 	unsigned long start_pfn, end_pfn;
8078 	int i, nid, zone;
8079 	bool descending;
8080 
8081 	/* Record where the zone boundaries are */
8082 	memset(arch_zone_lowest_possible_pfn, 0,
8083 				sizeof(arch_zone_lowest_possible_pfn));
8084 	memset(arch_zone_highest_possible_pfn, 0,
8085 				sizeof(arch_zone_highest_possible_pfn));
8086 
8087 	start_pfn = find_min_pfn_with_active_regions();
8088 	descending = arch_has_descending_max_zone_pfns();
8089 
8090 	for (i = 0; i < MAX_NR_ZONES; i++) {
8091 		if (descending)
8092 			zone = MAX_NR_ZONES - i - 1;
8093 		else
8094 			zone = i;
8095 
8096 		if (zone == ZONE_MOVABLE)
8097 			continue;
8098 
8099 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8100 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8101 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8102 
8103 		start_pfn = end_pfn;
8104 	}
8105 
8106 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8107 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8108 	find_zone_movable_pfns_for_nodes();
8109 
8110 	/* Print out the zone ranges */
8111 	pr_info("Zone ranges:\n");
8112 	for (i = 0; i < MAX_NR_ZONES; i++) {
8113 		if (i == ZONE_MOVABLE)
8114 			continue;
8115 		pr_info("  %-8s ", zone_names[i]);
8116 		if (arch_zone_lowest_possible_pfn[i] ==
8117 				arch_zone_highest_possible_pfn[i])
8118 			pr_cont("empty\n");
8119 		else
8120 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8121 				(u64)arch_zone_lowest_possible_pfn[i]
8122 					<< PAGE_SHIFT,
8123 				((u64)arch_zone_highest_possible_pfn[i]
8124 					<< PAGE_SHIFT) - 1);
8125 	}
8126 
8127 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8128 	pr_info("Movable zone start for each node\n");
8129 	for (i = 0; i < MAX_NUMNODES; i++) {
8130 		if (zone_movable_pfn[i])
8131 			pr_info("  Node %d: %#018Lx\n", i,
8132 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8133 	}
8134 
8135 	/*
8136 	 * Print out the early node map, and initialize the
8137 	 * subsection-map relative to active online memory ranges to
8138 	 * enable future "sub-section" extensions of the memory map.
8139 	 */
8140 	pr_info("Early memory node ranges\n");
8141 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8142 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8143 			(u64)start_pfn << PAGE_SHIFT,
8144 			((u64)end_pfn << PAGE_SHIFT) - 1);
8145 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8146 	}
8147 
8148 	/* Initialise every node */
8149 	mminit_verify_pageflags_layout();
8150 	setup_nr_node_ids();
8151 	for_each_node(nid) {
8152 		pg_data_t *pgdat;
8153 
8154 		if (!node_online(nid)) {
8155 			pr_info("Initializing node %d as memoryless\n", nid);
8156 
8157 			/* Allocator not initialized yet */
8158 			pgdat = arch_alloc_nodedata(nid);
8159 			if (!pgdat) {
8160 				pr_err("Cannot allocate %zuB for node %d.\n",
8161 						sizeof(*pgdat), nid);
8162 				continue;
8163 			}
8164 			arch_refresh_nodedata(nid, pgdat);
8165 			free_area_init_memoryless_node(nid);
8166 
8167 			/*
8168 			 * We do not want to confuse userspace by sysfs
8169 			 * files/directories for node without any memory
8170 			 * attached to it, so this node is not marked as
8171 			 * N_MEMORY and not marked online so that no sysfs
8172 			 * hierarchy will be created via register_one_node for
8173 			 * it. The pgdat will get fully initialized by
8174 			 * hotadd_init_pgdat() when memory is hotplugged into
8175 			 * this node.
8176 			 */
8177 			continue;
8178 		}
8179 
8180 		pgdat = NODE_DATA(nid);
8181 		free_area_init_node(nid);
8182 
8183 		/* Any memory on that node */
8184 		if (pgdat->node_present_pages)
8185 			node_set_state(nid, N_MEMORY);
8186 		check_for_memory(pgdat, nid);
8187 	}
8188 
8189 	memmap_init();
8190 }
8191 
8192 static int __init cmdline_parse_core(char *p, unsigned long *core,
8193 				     unsigned long *percent)
8194 {
8195 	unsigned long long coremem;
8196 	char *endptr;
8197 
8198 	if (!p)
8199 		return -EINVAL;
8200 
8201 	/* Value may be a percentage of total memory, otherwise bytes */
8202 	coremem = simple_strtoull(p, &endptr, 0);
8203 	if (*endptr == '%') {
8204 		/* Paranoid check for percent values greater than 100 */
8205 		WARN_ON(coremem > 100);
8206 
8207 		*percent = coremem;
8208 	} else {
8209 		coremem = memparse(p, &p);
8210 		/* Paranoid check that UL is enough for the coremem value */
8211 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8212 
8213 		*core = coremem >> PAGE_SHIFT;
8214 		*percent = 0UL;
8215 	}
8216 	return 0;
8217 }
8218 
8219 /*
8220  * kernelcore=size sets the amount of memory for use for allocations that
8221  * cannot be reclaimed or migrated.
8222  */
8223 static int __init cmdline_parse_kernelcore(char *p)
8224 {
8225 	/* parse kernelcore=mirror */
8226 	if (parse_option_str(p, "mirror")) {
8227 		mirrored_kernelcore = true;
8228 		return 0;
8229 	}
8230 
8231 	return cmdline_parse_core(p, &required_kernelcore,
8232 				  &required_kernelcore_percent);
8233 }
8234 
8235 /*
8236  * movablecore=size sets the amount of memory for use for allocations that
8237  * can be reclaimed or migrated.
8238  */
8239 static int __init cmdline_parse_movablecore(char *p)
8240 {
8241 	return cmdline_parse_core(p, &required_movablecore,
8242 				  &required_movablecore_percent);
8243 }
8244 
8245 early_param("kernelcore", cmdline_parse_kernelcore);
8246 early_param("movablecore", cmdline_parse_movablecore);
8247 
8248 void adjust_managed_page_count(struct page *page, long count)
8249 {
8250 	atomic_long_add(count, &page_zone(page)->managed_pages);
8251 	totalram_pages_add(count);
8252 #ifdef CONFIG_HIGHMEM
8253 	if (PageHighMem(page))
8254 		totalhigh_pages_add(count);
8255 #endif
8256 }
8257 EXPORT_SYMBOL(adjust_managed_page_count);
8258 
8259 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8260 {
8261 	void *pos;
8262 	unsigned long pages = 0;
8263 
8264 	start = (void *)PAGE_ALIGN((unsigned long)start);
8265 	end = (void *)((unsigned long)end & PAGE_MASK);
8266 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8267 		struct page *page = virt_to_page(pos);
8268 		void *direct_map_addr;
8269 
8270 		/*
8271 		 * 'direct_map_addr' might be different from 'pos'
8272 		 * because some architectures' virt_to_page()
8273 		 * work with aliases.  Getting the direct map
8274 		 * address ensures that we get a _writeable_
8275 		 * alias for the memset().
8276 		 */
8277 		direct_map_addr = page_address(page);
8278 		/*
8279 		 * Perform a kasan-unchecked memset() since this memory
8280 		 * has not been initialized.
8281 		 */
8282 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8283 		if ((unsigned int)poison <= 0xFF)
8284 			memset(direct_map_addr, poison, PAGE_SIZE);
8285 
8286 		free_reserved_page(page);
8287 	}
8288 
8289 	if (pages && s)
8290 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8291 
8292 	return pages;
8293 }
8294 
8295 void __init mem_init_print_info(void)
8296 {
8297 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8298 	unsigned long init_code_size, init_data_size;
8299 
8300 	physpages = get_num_physpages();
8301 	codesize = _etext - _stext;
8302 	datasize = _edata - _sdata;
8303 	rosize = __end_rodata - __start_rodata;
8304 	bss_size = __bss_stop - __bss_start;
8305 	init_data_size = __init_end - __init_begin;
8306 	init_code_size = _einittext - _sinittext;
8307 
8308 	/*
8309 	 * Detect special cases and adjust section sizes accordingly:
8310 	 * 1) .init.* may be embedded into .data sections
8311 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8312 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8313 	 * 3) .rodata.* may be embedded into .text or .data sections.
8314 	 */
8315 #define adj_init_size(start, end, size, pos, adj) \
8316 	do { \
8317 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8318 			size -= adj; \
8319 	} while (0)
8320 
8321 	adj_init_size(__init_begin, __init_end, init_data_size,
8322 		     _sinittext, init_code_size);
8323 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8324 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8325 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8326 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8327 
8328 #undef	adj_init_size
8329 
8330 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8331 #ifdef	CONFIG_HIGHMEM
8332 		", %luK highmem"
8333 #endif
8334 		")\n",
8335 		K(nr_free_pages()), K(physpages),
8336 		codesize >> 10, datasize >> 10, rosize >> 10,
8337 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8338 		K(physpages - totalram_pages() - totalcma_pages),
8339 		K(totalcma_pages)
8340 #ifdef	CONFIG_HIGHMEM
8341 		, K(totalhigh_pages())
8342 #endif
8343 		);
8344 }
8345 
8346 /**
8347  * set_dma_reserve - set the specified number of pages reserved in the first zone
8348  * @new_dma_reserve: The number of pages to mark reserved
8349  *
8350  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8351  * In the DMA zone, a significant percentage may be consumed by kernel image
8352  * and other unfreeable allocations which can skew the watermarks badly. This
8353  * function may optionally be used to account for unfreeable pages in the
8354  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8355  * smaller per-cpu batchsize.
8356  */
8357 void __init set_dma_reserve(unsigned long new_dma_reserve)
8358 {
8359 	dma_reserve = new_dma_reserve;
8360 }
8361 
8362 static int page_alloc_cpu_dead(unsigned int cpu)
8363 {
8364 	struct zone *zone;
8365 
8366 	lru_add_drain_cpu(cpu);
8367 	drain_pages(cpu);
8368 
8369 	/*
8370 	 * Spill the event counters of the dead processor
8371 	 * into the current processors event counters.
8372 	 * This artificially elevates the count of the current
8373 	 * processor.
8374 	 */
8375 	vm_events_fold_cpu(cpu);
8376 
8377 	/*
8378 	 * Zero the differential counters of the dead processor
8379 	 * so that the vm statistics are consistent.
8380 	 *
8381 	 * This is only okay since the processor is dead and cannot
8382 	 * race with what we are doing.
8383 	 */
8384 	cpu_vm_stats_fold(cpu);
8385 
8386 	for_each_populated_zone(zone)
8387 		zone_pcp_update(zone, 0);
8388 
8389 	return 0;
8390 }
8391 
8392 static int page_alloc_cpu_online(unsigned int cpu)
8393 {
8394 	struct zone *zone;
8395 
8396 	for_each_populated_zone(zone)
8397 		zone_pcp_update(zone, 1);
8398 	return 0;
8399 }
8400 
8401 #ifdef CONFIG_NUMA
8402 int hashdist = HASHDIST_DEFAULT;
8403 
8404 static int __init set_hashdist(char *str)
8405 {
8406 	if (!str)
8407 		return 0;
8408 	hashdist = simple_strtoul(str, &str, 0);
8409 	return 1;
8410 }
8411 __setup("hashdist=", set_hashdist);
8412 #endif
8413 
8414 void __init page_alloc_init(void)
8415 {
8416 	int ret;
8417 
8418 #ifdef CONFIG_NUMA
8419 	if (num_node_state(N_MEMORY) == 1)
8420 		hashdist = 0;
8421 #endif
8422 
8423 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8424 					"mm/page_alloc:pcp",
8425 					page_alloc_cpu_online,
8426 					page_alloc_cpu_dead);
8427 	WARN_ON(ret < 0);
8428 }
8429 
8430 /*
8431  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8432  *	or min_free_kbytes changes.
8433  */
8434 static void calculate_totalreserve_pages(void)
8435 {
8436 	struct pglist_data *pgdat;
8437 	unsigned long reserve_pages = 0;
8438 	enum zone_type i, j;
8439 
8440 	for_each_online_pgdat(pgdat) {
8441 
8442 		pgdat->totalreserve_pages = 0;
8443 
8444 		for (i = 0; i < MAX_NR_ZONES; i++) {
8445 			struct zone *zone = pgdat->node_zones + i;
8446 			long max = 0;
8447 			unsigned long managed_pages = zone_managed_pages(zone);
8448 
8449 			/* Find valid and maximum lowmem_reserve in the zone */
8450 			for (j = i; j < MAX_NR_ZONES; j++) {
8451 				if (zone->lowmem_reserve[j] > max)
8452 					max = zone->lowmem_reserve[j];
8453 			}
8454 
8455 			/* we treat the high watermark as reserved pages. */
8456 			max += high_wmark_pages(zone);
8457 
8458 			if (max > managed_pages)
8459 				max = managed_pages;
8460 
8461 			pgdat->totalreserve_pages += max;
8462 
8463 			reserve_pages += max;
8464 		}
8465 	}
8466 	totalreserve_pages = reserve_pages;
8467 }
8468 
8469 /*
8470  * setup_per_zone_lowmem_reserve - called whenever
8471  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8472  *	has a correct pages reserved value, so an adequate number of
8473  *	pages are left in the zone after a successful __alloc_pages().
8474  */
8475 static void setup_per_zone_lowmem_reserve(void)
8476 {
8477 	struct pglist_data *pgdat;
8478 	enum zone_type i, j;
8479 
8480 	for_each_online_pgdat(pgdat) {
8481 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8482 			struct zone *zone = &pgdat->node_zones[i];
8483 			int ratio = sysctl_lowmem_reserve_ratio[i];
8484 			bool clear = !ratio || !zone_managed_pages(zone);
8485 			unsigned long managed_pages = 0;
8486 
8487 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8488 				struct zone *upper_zone = &pgdat->node_zones[j];
8489 
8490 				managed_pages += zone_managed_pages(upper_zone);
8491 
8492 				if (clear)
8493 					zone->lowmem_reserve[j] = 0;
8494 				else
8495 					zone->lowmem_reserve[j] = managed_pages / ratio;
8496 			}
8497 		}
8498 	}
8499 
8500 	/* update totalreserve_pages */
8501 	calculate_totalreserve_pages();
8502 }
8503 
8504 static void __setup_per_zone_wmarks(void)
8505 {
8506 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8507 	unsigned long lowmem_pages = 0;
8508 	struct zone *zone;
8509 	unsigned long flags;
8510 
8511 	/* Calculate total number of !ZONE_HIGHMEM pages */
8512 	for_each_zone(zone) {
8513 		if (!is_highmem(zone))
8514 			lowmem_pages += zone_managed_pages(zone);
8515 	}
8516 
8517 	for_each_zone(zone) {
8518 		u64 tmp;
8519 
8520 		spin_lock_irqsave(&zone->lock, flags);
8521 		tmp = (u64)pages_min * zone_managed_pages(zone);
8522 		do_div(tmp, lowmem_pages);
8523 		if (is_highmem(zone)) {
8524 			/*
8525 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8526 			 * need highmem pages, so cap pages_min to a small
8527 			 * value here.
8528 			 *
8529 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8530 			 * deltas control async page reclaim, and so should
8531 			 * not be capped for highmem.
8532 			 */
8533 			unsigned long min_pages;
8534 
8535 			min_pages = zone_managed_pages(zone) / 1024;
8536 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8537 			zone->_watermark[WMARK_MIN] = min_pages;
8538 		} else {
8539 			/*
8540 			 * If it's a lowmem zone, reserve a number of pages
8541 			 * proportionate to the zone's size.
8542 			 */
8543 			zone->_watermark[WMARK_MIN] = tmp;
8544 		}
8545 
8546 		/*
8547 		 * Set the kswapd watermarks distance according to the
8548 		 * scale factor in proportion to available memory, but
8549 		 * ensure a minimum size on small systems.
8550 		 */
8551 		tmp = max_t(u64, tmp >> 2,
8552 			    mult_frac(zone_managed_pages(zone),
8553 				      watermark_scale_factor, 10000));
8554 
8555 		zone->watermark_boost = 0;
8556 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8557 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8558 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8559 
8560 		spin_unlock_irqrestore(&zone->lock, flags);
8561 	}
8562 
8563 	/* update totalreserve_pages */
8564 	calculate_totalreserve_pages();
8565 }
8566 
8567 /**
8568  * setup_per_zone_wmarks - called when min_free_kbytes changes
8569  * or when memory is hot-{added|removed}
8570  *
8571  * Ensures that the watermark[min,low,high] values for each zone are set
8572  * correctly with respect to min_free_kbytes.
8573  */
8574 void setup_per_zone_wmarks(void)
8575 {
8576 	struct zone *zone;
8577 	static DEFINE_SPINLOCK(lock);
8578 
8579 	spin_lock(&lock);
8580 	__setup_per_zone_wmarks();
8581 	spin_unlock(&lock);
8582 
8583 	/*
8584 	 * The watermark size have changed so update the pcpu batch
8585 	 * and high limits or the limits may be inappropriate.
8586 	 */
8587 	for_each_zone(zone)
8588 		zone_pcp_update(zone, 0);
8589 }
8590 
8591 /*
8592  * Initialise min_free_kbytes.
8593  *
8594  * For small machines we want it small (128k min).  For large machines
8595  * we want it large (256MB max).  But it is not linear, because network
8596  * bandwidth does not increase linearly with machine size.  We use
8597  *
8598  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8599  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8600  *
8601  * which yields
8602  *
8603  * 16MB:	512k
8604  * 32MB:	724k
8605  * 64MB:	1024k
8606  * 128MB:	1448k
8607  * 256MB:	2048k
8608  * 512MB:	2896k
8609  * 1024MB:	4096k
8610  * 2048MB:	5792k
8611  * 4096MB:	8192k
8612  * 8192MB:	11584k
8613  * 16384MB:	16384k
8614  */
8615 void calculate_min_free_kbytes(void)
8616 {
8617 	unsigned long lowmem_kbytes;
8618 	int new_min_free_kbytes;
8619 
8620 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8621 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8622 
8623 	if (new_min_free_kbytes > user_min_free_kbytes)
8624 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8625 	else
8626 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8627 				new_min_free_kbytes, user_min_free_kbytes);
8628 
8629 }
8630 
8631 int __meminit init_per_zone_wmark_min(void)
8632 {
8633 	calculate_min_free_kbytes();
8634 	setup_per_zone_wmarks();
8635 	refresh_zone_stat_thresholds();
8636 	setup_per_zone_lowmem_reserve();
8637 
8638 #ifdef CONFIG_NUMA
8639 	setup_min_unmapped_ratio();
8640 	setup_min_slab_ratio();
8641 #endif
8642 
8643 	khugepaged_min_free_kbytes_update();
8644 
8645 	return 0;
8646 }
8647 postcore_initcall(init_per_zone_wmark_min)
8648 
8649 /*
8650  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8651  *	that we can call two helper functions whenever min_free_kbytes
8652  *	changes.
8653  */
8654 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8655 		void *buffer, size_t *length, loff_t *ppos)
8656 {
8657 	int rc;
8658 
8659 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8660 	if (rc)
8661 		return rc;
8662 
8663 	if (write) {
8664 		user_min_free_kbytes = min_free_kbytes;
8665 		setup_per_zone_wmarks();
8666 	}
8667 	return 0;
8668 }
8669 
8670 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8671 		void *buffer, size_t *length, loff_t *ppos)
8672 {
8673 	int rc;
8674 
8675 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8676 	if (rc)
8677 		return rc;
8678 
8679 	if (write)
8680 		setup_per_zone_wmarks();
8681 
8682 	return 0;
8683 }
8684 
8685 #ifdef CONFIG_NUMA
8686 static void setup_min_unmapped_ratio(void)
8687 {
8688 	pg_data_t *pgdat;
8689 	struct zone *zone;
8690 
8691 	for_each_online_pgdat(pgdat)
8692 		pgdat->min_unmapped_pages = 0;
8693 
8694 	for_each_zone(zone)
8695 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8696 						         sysctl_min_unmapped_ratio) / 100;
8697 }
8698 
8699 
8700 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8701 		void *buffer, size_t *length, loff_t *ppos)
8702 {
8703 	int rc;
8704 
8705 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8706 	if (rc)
8707 		return rc;
8708 
8709 	setup_min_unmapped_ratio();
8710 
8711 	return 0;
8712 }
8713 
8714 static void setup_min_slab_ratio(void)
8715 {
8716 	pg_data_t *pgdat;
8717 	struct zone *zone;
8718 
8719 	for_each_online_pgdat(pgdat)
8720 		pgdat->min_slab_pages = 0;
8721 
8722 	for_each_zone(zone)
8723 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8724 						     sysctl_min_slab_ratio) / 100;
8725 }
8726 
8727 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8728 		void *buffer, size_t *length, loff_t *ppos)
8729 {
8730 	int rc;
8731 
8732 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8733 	if (rc)
8734 		return rc;
8735 
8736 	setup_min_slab_ratio();
8737 
8738 	return 0;
8739 }
8740 #endif
8741 
8742 /*
8743  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8744  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8745  *	whenever sysctl_lowmem_reserve_ratio changes.
8746  *
8747  * The reserve ratio obviously has absolutely no relation with the
8748  * minimum watermarks. The lowmem reserve ratio can only make sense
8749  * if in function of the boot time zone sizes.
8750  */
8751 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8752 		void *buffer, size_t *length, loff_t *ppos)
8753 {
8754 	int i;
8755 
8756 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8757 
8758 	for (i = 0; i < MAX_NR_ZONES; i++) {
8759 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8760 			sysctl_lowmem_reserve_ratio[i] = 0;
8761 	}
8762 
8763 	setup_per_zone_lowmem_reserve();
8764 	return 0;
8765 }
8766 
8767 /*
8768  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8769  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8770  * pagelist can have before it gets flushed back to buddy allocator.
8771  */
8772 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8773 		int write, void *buffer, size_t *length, loff_t *ppos)
8774 {
8775 	struct zone *zone;
8776 	int old_percpu_pagelist_high_fraction;
8777 	int ret;
8778 
8779 	mutex_lock(&pcp_batch_high_lock);
8780 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8781 
8782 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8783 	if (!write || ret < 0)
8784 		goto out;
8785 
8786 	/* Sanity checking to avoid pcp imbalance */
8787 	if (percpu_pagelist_high_fraction &&
8788 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8789 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8790 		ret = -EINVAL;
8791 		goto out;
8792 	}
8793 
8794 	/* No change? */
8795 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8796 		goto out;
8797 
8798 	for_each_populated_zone(zone)
8799 		zone_set_pageset_high_and_batch(zone, 0);
8800 out:
8801 	mutex_unlock(&pcp_batch_high_lock);
8802 	return ret;
8803 }
8804 
8805 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8806 /*
8807  * Returns the number of pages that arch has reserved but
8808  * is not known to alloc_large_system_hash().
8809  */
8810 static unsigned long __init arch_reserved_kernel_pages(void)
8811 {
8812 	return 0;
8813 }
8814 #endif
8815 
8816 /*
8817  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8818  * machines. As memory size is increased the scale is also increased but at
8819  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8820  * quadruples the scale is increased by one, which means the size of hash table
8821  * only doubles, instead of quadrupling as well.
8822  * Because 32-bit systems cannot have large physical memory, where this scaling
8823  * makes sense, it is disabled on such platforms.
8824  */
8825 #if __BITS_PER_LONG > 32
8826 #define ADAPT_SCALE_BASE	(64ul << 30)
8827 #define ADAPT_SCALE_SHIFT	2
8828 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8829 #endif
8830 
8831 /*
8832  * allocate a large system hash table from bootmem
8833  * - it is assumed that the hash table must contain an exact power-of-2
8834  *   quantity of entries
8835  * - limit is the number of hash buckets, not the total allocation size
8836  */
8837 void *__init alloc_large_system_hash(const char *tablename,
8838 				     unsigned long bucketsize,
8839 				     unsigned long numentries,
8840 				     int scale,
8841 				     int flags,
8842 				     unsigned int *_hash_shift,
8843 				     unsigned int *_hash_mask,
8844 				     unsigned long low_limit,
8845 				     unsigned long high_limit)
8846 {
8847 	unsigned long long max = high_limit;
8848 	unsigned long log2qty, size;
8849 	void *table = NULL;
8850 	gfp_t gfp_flags;
8851 	bool virt;
8852 	bool huge;
8853 
8854 	/* allow the kernel cmdline to have a say */
8855 	if (!numentries) {
8856 		/* round applicable memory size up to nearest megabyte */
8857 		numentries = nr_kernel_pages;
8858 		numentries -= arch_reserved_kernel_pages();
8859 
8860 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8861 		if (PAGE_SHIFT < 20)
8862 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8863 
8864 #if __BITS_PER_LONG > 32
8865 		if (!high_limit) {
8866 			unsigned long adapt;
8867 
8868 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8869 			     adapt <<= ADAPT_SCALE_SHIFT)
8870 				scale++;
8871 		}
8872 #endif
8873 
8874 		/* limit to 1 bucket per 2^scale bytes of low memory */
8875 		if (scale > PAGE_SHIFT)
8876 			numentries >>= (scale - PAGE_SHIFT);
8877 		else
8878 			numentries <<= (PAGE_SHIFT - scale);
8879 
8880 		/* Make sure we've got at least a 0-order allocation.. */
8881 		if (unlikely(flags & HASH_SMALL)) {
8882 			/* Makes no sense without HASH_EARLY */
8883 			WARN_ON(!(flags & HASH_EARLY));
8884 			if (!(numentries >> *_hash_shift)) {
8885 				numentries = 1UL << *_hash_shift;
8886 				BUG_ON(!numentries);
8887 			}
8888 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8889 			numentries = PAGE_SIZE / bucketsize;
8890 	}
8891 	numentries = roundup_pow_of_two(numentries);
8892 
8893 	/* limit allocation size to 1/16 total memory by default */
8894 	if (max == 0) {
8895 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8896 		do_div(max, bucketsize);
8897 	}
8898 	max = min(max, 0x80000000ULL);
8899 
8900 	if (numentries < low_limit)
8901 		numentries = low_limit;
8902 	if (numentries > max)
8903 		numentries = max;
8904 
8905 	log2qty = ilog2(numentries);
8906 
8907 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8908 	do {
8909 		virt = false;
8910 		size = bucketsize << log2qty;
8911 		if (flags & HASH_EARLY) {
8912 			if (flags & HASH_ZERO)
8913 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8914 			else
8915 				table = memblock_alloc_raw(size,
8916 							   SMP_CACHE_BYTES);
8917 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8918 			table = __vmalloc(size, gfp_flags);
8919 			virt = true;
8920 			if (table)
8921 				huge = is_vm_area_hugepages(table);
8922 		} else {
8923 			/*
8924 			 * If bucketsize is not a power-of-two, we may free
8925 			 * some pages at the end of hash table which
8926 			 * alloc_pages_exact() automatically does
8927 			 */
8928 			table = alloc_pages_exact(size, gfp_flags);
8929 			kmemleak_alloc(table, size, 1, gfp_flags);
8930 		}
8931 	} while (!table && size > PAGE_SIZE && --log2qty);
8932 
8933 	if (!table)
8934 		panic("Failed to allocate %s hash table\n", tablename);
8935 
8936 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8937 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8938 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8939 
8940 	if (_hash_shift)
8941 		*_hash_shift = log2qty;
8942 	if (_hash_mask)
8943 		*_hash_mask = (1 << log2qty) - 1;
8944 
8945 	return table;
8946 }
8947 
8948 /*
8949  * This function checks whether pageblock includes unmovable pages or not.
8950  *
8951  * PageLRU check without isolation or lru_lock could race so that
8952  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8953  * check without lock_page also may miss some movable non-lru pages at
8954  * race condition. So you can't expect this function should be exact.
8955  *
8956  * Returns a page without holding a reference. If the caller wants to
8957  * dereference that page (e.g., dumping), it has to make sure that it
8958  * cannot get removed (e.g., via memory unplug) concurrently.
8959  *
8960  */
8961 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8962 				 int migratetype, int flags)
8963 {
8964 	unsigned long iter = 0;
8965 	unsigned long pfn = page_to_pfn(page);
8966 	unsigned long offset = pfn % pageblock_nr_pages;
8967 
8968 	if (is_migrate_cma_page(page)) {
8969 		/*
8970 		 * CMA allocations (alloc_contig_range) really need to mark
8971 		 * isolate CMA pageblocks even when they are not movable in fact
8972 		 * so consider them movable here.
8973 		 */
8974 		if (is_migrate_cma(migratetype))
8975 			return NULL;
8976 
8977 		return page;
8978 	}
8979 
8980 	for (; iter < pageblock_nr_pages - offset; iter++) {
8981 		page = pfn_to_page(pfn + iter);
8982 
8983 		/*
8984 		 * Both, bootmem allocations and memory holes are marked
8985 		 * PG_reserved and are unmovable. We can even have unmovable
8986 		 * allocations inside ZONE_MOVABLE, for example when
8987 		 * specifying "movablecore".
8988 		 */
8989 		if (PageReserved(page))
8990 			return page;
8991 
8992 		/*
8993 		 * If the zone is movable and we have ruled out all reserved
8994 		 * pages then it should be reasonably safe to assume the rest
8995 		 * is movable.
8996 		 */
8997 		if (zone_idx(zone) == ZONE_MOVABLE)
8998 			continue;
8999 
9000 		/*
9001 		 * Hugepages are not in LRU lists, but they're movable.
9002 		 * THPs are on the LRU, but need to be counted as #small pages.
9003 		 * We need not scan over tail pages because we don't
9004 		 * handle each tail page individually in migration.
9005 		 */
9006 		if (PageHuge(page) || PageTransCompound(page)) {
9007 			struct page *head = compound_head(page);
9008 			unsigned int skip_pages;
9009 
9010 			if (PageHuge(page)) {
9011 				if (!hugepage_migration_supported(page_hstate(head)))
9012 					return page;
9013 			} else if (!PageLRU(head) && !__PageMovable(head)) {
9014 				return page;
9015 			}
9016 
9017 			skip_pages = compound_nr(head) - (page - head);
9018 			iter += skip_pages - 1;
9019 			continue;
9020 		}
9021 
9022 		/*
9023 		 * We can't use page_count without pin a page
9024 		 * because another CPU can free compound page.
9025 		 * This check already skips compound tails of THP
9026 		 * because their page->_refcount is zero at all time.
9027 		 */
9028 		if (!page_ref_count(page)) {
9029 			if (PageBuddy(page))
9030 				iter += (1 << buddy_order(page)) - 1;
9031 			continue;
9032 		}
9033 
9034 		/*
9035 		 * The HWPoisoned page may be not in buddy system, and
9036 		 * page_count() is not 0.
9037 		 */
9038 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
9039 			continue;
9040 
9041 		/*
9042 		 * We treat all PageOffline() pages as movable when offlining
9043 		 * to give drivers a chance to decrement their reference count
9044 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
9045 		 * can be offlined as there are no direct references anymore.
9046 		 * For actually unmovable PageOffline() where the driver does
9047 		 * not support this, we will fail later when trying to actually
9048 		 * move these pages that still have a reference count > 0.
9049 		 * (false negatives in this function only)
9050 		 */
9051 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9052 			continue;
9053 
9054 		if (__PageMovable(page) || PageLRU(page))
9055 			continue;
9056 
9057 		/*
9058 		 * If there are RECLAIMABLE pages, we need to check
9059 		 * it.  But now, memory offline itself doesn't call
9060 		 * shrink_node_slabs() and it still to be fixed.
9061 		 */
9062 		return page;
9063 	}
9064 	return NULL;
9065 }
9066 
9067 #ifdef CONFIG_CONTIG_ALLOC
9068 static unsigned long pfn_max_align_down(unsigned long pfn)
9069 {
9070 	return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
9071 }
9072 
9073 static unsigned long pfn_max_align_up(unsigned long pfn)
9074 {
9075 	return ALIGN(pfn, MAX_ORDER_NR_PAGES);
9076 }
9077 
9078 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9079 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9080 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9081 static void alloc_contig_dump_pages(struct list_head *page_list)
9082 {
9083 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9084 
9085 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9086 		struct page *page;
9087 
9088 		dump_stack();
9089 		list_for_each_entry(page, page_list, lru)
9090 			dump_page(page, "migration failure");
9091 	}
9092 }
9093 #else
9094 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9095 {
9096 }
9097 #endif
9098 
9099 /* [start, end) must belong to a single zone. */
9100 static int __alloc_contig_migrate_range(struct compact_control *cc,
9101 					unsigned long start, unsigned long end)
9102 {
9103 	/* This function is based on compact_zone() from compaction.c. */
9104 	unsigned int nr_reclaimed;
9105 	unsigned long pfn = start;
9106 	unsigned int tries = 0;
9107 	int ret = 0;
9108 	struct migration_target_control mtc = {
9109 		.nid = zone_to_nid(cc->zone),
9110 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9111 	};
9112 
9113 	lru_cache_disable();
9114 
9115 	while (pfn < end || !list_empty(&cc->migratepages)) {
9116 		if (fatal_signal_pending(current)) {
9117 			ret = -EINTR;
9118 			break;
9119 		}
9120 
9121 		if (list_empty(&cc->migratepages)) {
9122 			cc->nr_migratepages = 0;
9123 			ret = isolate_migratepages_range(cc, pfn, end);
9124 			if (ret && ret != -EAGAIN)
9125 				break;
9126 			pfn = cc->migrate_pfn;
9127 			tries = 0;
9128 		} else if (++tries == 5) {
9129 			ret = -EBUSY;
9130 			break;
9131 		}
9132 
9133 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9134 							&cc->migratepages);
9135 		cc->nr_migratepages -= nr_reclaimed;
9136 
9137 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9138 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9139 
9140 		/*
9141 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9142 		 * to retry again over this error, so do the same here.
9143 		 */
9144 		if (ret == -ENOMEM)
9145 			break;
9146 	}
9147 
9148 	lru_cache_enable();
9149 	if (ret < 0) {
9150 		if (ret == -EBUSY)
9151 			alloc_contig_dump_pages(&cc->migratepages);
9152 		putback_movable_pages(&cc->migratepages);
9153 		return ret;
9154 	}
9155 	return 0;
9156 }
9157 
9158 /**
9159  * alloc_contig_range() -- tries to allocate given range of pages
9160  * @start:	start PFN to allocate
9161  * @end:	one-past-the-last PFN to allocate
9162  * @migratetype:	migratetype of the underlying pageblocks (either
9163  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9164  *			in range must have the same migratetype and it must
9165  *			be either of the two.
9166  * @gfp_mask:	GFP mask to use during compaction
9167  *
9168  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9169  * aligned.  The PFN range must belong to a single zone.
9170  *
9171  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9172  * pageblocks in the range.  Once isolated, the pageblocks should not
9173  * be modified by others.
9174  *
9175  * Return: zero on success or negative error code.  On success all
9176  * pages which PFN is in [start, end) are allocated for the caller and
9177  * need to be freed with free_contig_range().
9178  */
9179 int alloc_contig_range(unsigned long start, unsigned long end,
9180 		       unsigned migratetype, gfp_t gfp_mask)
9181 {
9182 	unsigned long outer_start, outer_end;
9183 	unsigned int order;
9184 	int ret = 0;
9185 
9186 	struct compact_control cc = {
9187 		.nr_migratepages = 0,
9188 		.order = -1,
9189 		.zone = page_zone(pfn_to_page(start)),
9190 		.mode = MIGRATE_SYNC,
9191 		.ignore_skip_hint = true,
9192 		.no_set_skip_hint = true,
9193 		.gfp_mask = current_gfp_context(gfp_mask),
9194 		.alloc_contig = true,
9195 	};
9196 	INIT_LIST_HEAD(&cc.migratepages);
9197 
9198 	/*
9199 	 * What we do here is we mark all pageblocks in range as
9200 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9201 	 * have different sizes, and due to the way page allocator
9202 	 * work, we align the range to biggest of the two pages so
9203 	 * that page allocator won't try to merge buddies from
9204 	 * different pageblocks and change MIGRATE_ISOLATE to some
9205 	 * other migration type.
9206 	 *
9207 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9208 	 * migrate the pages from an unaligned range (ie. pages that
9209 	 * we are interested in).  This will put all the pages in
9210 	 * range back to page allocator as MIGRATE_ISOLATE.
9211 	 *
9212 	 * When this is done, we take the pages in range from page
9213 	 * allocator removing them from the buddy system.  This way
9214 	 * page allocator will never consider using them.
9215 	 *
9216 	 * This lets us mark the pageblocks back as
9217 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9218 	 * aligned range but not in the unaligned, original range are
9219 	 * put back to page allocator so that buddy can use them.
9220 	 */
9221 
9222 	ret = start_isolate_page_range(pfn_max_align_down(start),
9223 				       pfn_max_align_up(end), migratetype, 0);
9224 	if (ret)
9225 		return ret;
9226 
9227 	drain_all_pages(cc.zone);
9228 
9229 	/*
9230 	 * In case of -EBUSY, we'd like to know which page causes problem.
9231 	 * So, just fall through. test_pages_isolated() has a tracepoint
9232 	 * which will report the busy page.
9233 	 *
9234 	 * It is possible that busy pages could become available before
9235 	 * the call to test_pages_isolated, and the range will actually be
9236 	 * allocated.  So, if we fall through be sure to clear ret so that
9237 	 * -EBUSY is not accidentally used or returned to caller.
9238 	 */
9239 	ret = __alloc_contig_migrate_range(&cc, start, end);
9240 	if (ret && ret != -EBUSY)
9241 		goto done;
9242 	ret = 0;
9243 
9244 	/*
9245 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9246 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9247 	 * more, all pages in [start, end) are free in page allocator.
9248 	 * What we are going to do is to allocate all pages from
9249 	 * [start, end) (that is remove them from page allocator).
9250 	 *
9251 	 * The only problem is that pages at the beginning and at the
9252 	 * end of interesting range may be not aligned with pages that
9253 	 * page allocator holds, ie. they can be part of higher order
9254 	 * pages.  Because of this, we reserve the bigger range and
9255 	 * once this is done free the pages we are not interested in.
9256 	 *
9257 	 * We don't have to hold zone->lock here because the pages are
9258 	 * isolated thus they won't get removed from buddy.
9259 	 */
9260 
9261 	order = 0;
9262 	outer_start = start;
9263 	while (!PageBuddy(pfn_to_page(outer_start))) {
9264 		if (++order >= MAX_ORDER) {
9265 			outer_start = start;
9266 			break;
9267 		}
9268 		outer_start &= ~0UL << order;
9269 	}
9270 
9271 	if (outer_start != start) {
9272 		order = buddy_order(pfn_to_page(outer_start));
9273 
9274 		/*
9275 		 * outer_start page could be small order buddy page and
9276 		 * it doesn't include start page. Adjust outer_start
9277 		 * in this case to report failed page properly
9278 		 * on tracepoint in test_pages_isolated()
9279 		 */
9280 		if (outer_start + (1UL << order) <= start)
9281 			outer_start = start;
9282 	}
9283 
9284 	/* Make sure the range is really isolated. */
9285 	if (test_pages_isolated(outer_start, end, 0)) {
9286 		ret = -EBUSY;
9287 		goto done;
9288 	}
9289 
9290 	/* Grab isolated pages from freelists. */
9291 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9292 	if (!outer_end) {
9293 		ret = -EBUSY;
9294 		goto done;
9295 	}
9296 
9297 	/* Free head and tail (if any) */
9298 	if (start != outer_start)
9299 		free_contig_range(outer_start, start - outer_start);
9300 	if (end != outer_end)
9301 		free_contig_range(end, outer_end - end);
9302 
9303 done:
9304 	undo_isolate_page_range(pfn_max_align_down(start),
9305 				pfn_max_align_up(end), migratetype);
9306 	return ret;
9307 }
9308 EXPORT_SYMBOL(alloc_contig_range);
9309 
9310 static int __alloc_contig_pages(unsigned long start_pfn,
9311 				unsigned long nr_pages, gfp_t gfp_mask)
9312 {
9313 	unsigned long end_pfn = start_pfn + nr_pages;
9314 
9315 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9316 				  gfp_mask);
9317 }
9318 
9319 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9320 				   unsigned long nr_pages)
9321 {
9322 	unsigned long i, end_pfn = start_pfn + nr_pages;
9323 	struct page *page;
9324 
9325 	for (i = start_pfn; i < end_pfn; i++) {
9326 		page = pfn_to_online_page(i);
9327 		if (!page)
9328 			return false;
9329 
9330 		if (page_zone(page) != z)
9331 			return false;
9332 
9333 		if (PageReserved(page))
9334 			return false;
9335 	}
9336 	return true;
9337 }
9338 
9339 static bool zone_spans_last_pfn(const struct zone *zone,
9340 				unsigned long start_pfn, unsigned long nr_pages)
9341 {
9342 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9343 
9344 	return zone_spans_pfn(zone, last_pfn);
9345 }
9346 
9347 /**
9348  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9349  * @nr_pages:	Number of contiguous pages to allocate
9350  * @gfp_mask:	GFP mask to limit search and used during compaction
9351  * @nid:	Target node
9352  * @nodemask:	Mask for other possible nodes
9353  *
9354  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9355  * on an applicable zonelist to find a contiguous pfn range which can then be
9356  * tried for allocation with alloc_contig_range(). This routine is intended
9357  * for allocation requests which can not be fulfilled with the buddy allocator.
9358  *
9359  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9360  * power of two, then allocated range is also guaranteed to be aligned to same
9361  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9362  *
9363  * Allocated pages can be freed with free_contig_range() or by manually calling
9364  * __free_page() on each allocated page.
9365  *
9366  * Return: pointer to contiguous pages on success, or NULL if not successful.
9367  */
9368 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9369 				int nid, nodemask_t *nodemask)
9370 {
9371 	unsigned long ret, pfn, flags;
9372 	struct zonelist *zonelist;
9373 	struct zone *zone;
9374 	struct zoneref *z;
9375 
9376 	zonelist = node_zonelist(nid, gfp_mask);
9377 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9378 					gfp_zone(gfp_mask), nodemask) {
9379 		spin_lock_irqsave(&zone->lock, flags);
9380 
9381 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9382 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9383 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9384 				/*
9385 				 * We release the zone lock here because
9386 				 * alloc_contig_range() will also lock the zone
9387 				 * at some point. If there's an allocation
9388 				 * spinning on this lock, it may win the race
9389 				 * and cause alloc_contig_range() to fail...
9390 				 */
9391 				spin_unlock_irqrestore(&zone->lock, flags);
9392 				ret = __alloc_contig_pages(pfn, nr_pages,
9393 							gfp_mask);
9394 				if (!ret)
9395 					return pfn_to_page(pfn);
9396 				spin_lock_irqsave(&zone->lock, flags);
9397 			}
9398 			pfn += nr_pages;
9399 		}
9400 		spin_unlock_irqrestore(&zone->lock, flags);
9401 	}
9402 	return NULL;
9403 }
9404 #endif /* CONFIG_CONTIG_ALLOC */
9405 
9406 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9407 {
9408 	unsigned long count = 0;
9409 
9410 	for (; nr_pages--; pfn++) {
9411 		struct page *page = pfn_to_page(pfn);
9412 
9413 		count += page_count(page) != 1;
9414 		__free_page(page);
9415 	}
9416 	WARN(count != 0, "%lu pages are still in use!\n", count);
9417 }
9418 EXPORT_SYMBOL(free_contig_range);
9419 
9420 /*
9421  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9422  * page high values need to be recalculated.
9423  */
9424 void zone_pcp_update(struct zone *zone, int cpu_online)
9425 {
9426 	mutex_lock(&pcp_batch_high_lock);
9427 	zone_set_pageset_high_and_batch(zone, cpu_online);
9428 	mutex_unlock(&pcp_batch_high_lock);
9429 }
9430 
9431 /*
9432  * Effectively disable pcplists for the zone by setting the high limit to 0
9433  * and draining all cpus. A concurrent page freeing on another CPU that's about
9434  * to put the page on pcplist will either finish before the drain and the page
9435  * will be drained, or observe the new high limit and skip the pcplist.
9436  *
9437  * Must be paired with a call to zone_pcp_enable().
9438  */
9439 void zone_pcp_disable(struct zone *zone)
9440 {
9441 	mutex_lock(&pcp_batch_high_lock);
9442 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9443 	__drain_all_pages(zone, true);
9444 }
9445 
9446 void zone_pcp_enable(struct zone *zone)
9447 {
9448 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9449 	mutex_unlock(&pcp_batch_high_lock);
9450 }
9451 
9452 void zone_pcp_reset(struct zone *zone)
9453 {
9454 	int cpu;
9455 	struct per_cpu_zonestat *pzstats;
9456 
9457 	if (zone->per_cpu_pageset != &boot_pageset) {
9458 		for_each_online_cpu(cpu) {
9459 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9460 			drain_zonestat(zone, pzstats);
9461 		}
9462 		free_percpu(zone->per_cpu_pageset);
9463 		free_percpu(zone->per_cpu_zonestats);
9464 		zone->per_cpu_pageset = &boot_pageset;
9465 		zone->per_cpu_zonestats = &boot_zonestats;
9466 	}
9467 }
9468 
9469 #ifdef CONFIG_MEMORY_HOTREMOVE
9470 /*
9471  * All pages in the range must be in a single zone, must not contain holes,
9472  * must span full sections, and must be isolated before calling this function.
9473  */
9474 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9475 {
9476 	unsigned long pfn = start_pfn;
9477 	struct page *page;
9478 	struct zone *zone;
9479 	unsigned int order;
9480 	unsigned long flags;
9481 
9482 	offline_mem_sections(pfn, end_pfn);
9483 	zone = page_zone(pfn_to_page(pfn));
9484 	spin_lock_irqsave(&zone->lock, flags);
9485 	while (pfn < end_pfn) {
9486 		page = pfn_to_page(pfn);
9487 		/*
9488 		 * The HWPoisoned page may be not in buddy system, and
9489 		 * page_count() is not 0.
9490 		 */
9491 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9492 			pfn++;
9493 			continue;
9494 		}
9495 		/*
9496 		 * At this point all remaining PageOffline() pages have a
9497 		 * reference count of 0 and can simply be skipped.
9498 		 */
9499 		if (PageOffline(page)) {
9500 			BUG_ON(page_count(page));
9501 			BUG_ON(PageBuddy(page));
9502 			pfn++;
9503 			continue;
9504 		}
9505 
9506 		BUG_ON(page_count(page));
9507 		BUG_ON(!PageBuddy(page));
9508 		order = buddy_order(page);
9509 		del_page_from_free_list(page, zone, order);
9510 		pfn += (1 << order);
9511 	}
9512 	spin_unlock_irqrestore(&zone->lock, flags);
9513 }
9514 #endif
9515 
9516 /*
9517  * This function returns a stable result only if called under zone lock.
9518  */
9519 bool is_free_buddy_page(struct page *page)
9520 {
9521 	unsigned long pfn = page_to_pfn(page);
9522 	unsigned int order;
9523 
9524 	for (order = 0; order < MAX_ORDER; order++) {
9525 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9526 
9527 		if (PageBuddy(page_head) &&
9528 		    buddy_order_unsafe(page_head) >= order)
9529 			break;
9530 	}
9531 
9532 	return order < MAX_ORDER;
9533 }
9534 EXPORT_SYMBOL(is_free_buddy_page);
9535 
9536 #ifdef CONFIG_MEMORY_FAILURE
9537 /*
9538  * Break down a higher-order page in sub-pages, and keep our target out of
9539  * buddy allocator.
9540  */
9541 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9542 				   struct page *target, int low, int high,
9543 				   int migratetype)
9544 {
9545 	unsigned long size = 1 << high;
9546 	struct page *current_buddy, *next_page;
9547 
9548 	while (high > low) {
9549 		high--;
9550 		size >>= 1;
9551 
9552 		if (target >= &page[size]) {
9553 			next_page = page + size;
9554 			current_buddy = page;
9555 		} else {
9556 			next_page = page;
9557 			current_buddy = page + size;
9558 		}
9559 
9560 		if (set_page_guard(zone, current_buddy, high, migratetype))
9561 			continue;
9562 
9563 		if (current_buddy != target) {
9564 			add_to_free_list(current_buddy, zone, high, migratetype);
9565 			set_buddy_order(current_buddy, high);
9566 			page = next_page;
9567 		}
9568 	}
9569 }
9570 
9571 /*
9572  * Take a page that will be marked as poisoned off the buddy allocator.
9573  */
9574 bool take_page_off_buddy(struct page *page)
9575 {
9576 	struct zone *zone = page_zone(page);
9577 	unsigned long pfn = page_to_pfn(page);
9578 	unsigned long flags;
9579 	unsigned int order;
9580 	bool ret = false;
9581 
9582 	spin_lock_irqsave(&zone->lock, flags);
9583 	for (order = 0; order < MAX_ORDER; order++) {
9584 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9585 		int page_order = buddy_order(page_head);
9586 
9587 		if (PageBuddy(page_head) && page_order >= order) {
9588 			unsigned long pfn_head = page_to_pfn(page_head);
9589 			int migratetype = get_pfnblock_migratetype(page_head,
9590 								   pfn_head);
9591 
9592 			del_page_from_free_list(page_head, zone, page_order);
9593 			break_down_buddy_pages(zone, page_head, page, 0,
9594 						page_order, migratetype);
9595 			SetPageHWPoisonTakenOff(page);
9596 			if (!is_migrate_isolate(migratetype))
9597 				__mod_zone_freepage_state(zone, -1, migratetype);
9598 			ret = true;
9599 			break;
9600 		}
9601 		if (page_count(page_head) > 0)
9602 			break;
9603 	}
9604 	spin_unlock_irqrestore(&zone->lock, flags);
9605 	return ret;
9606 }
9607 
9608 /*
9609  * Cancel takeoff done by take_page_off_buddy().
9610  */
9611 bool put_page_back_buddy(struct page *page)
9612 {
9613 	struct zone *zone = page_zone(page);
9614 	unsigned long pfn = page_to_pfn(page);
9615 	unsigned long flags;
9616 	int migratetype = get_pfnblock_migratetype(page, pfn);
9617 	bool ret = false;
9618 
9619 	spin_lock_irqsave(&zone->lock, flags);
9620 	if (put_page_testzero(page)) {
9621 		ClearPageHWPoisonTakenOff(page);
9622 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9623 		if (TestClearPageHWPoison(page)) {
9624 			num_poisoned_pages_dec();
9625 			ret = true;
9626 		}
9627 	}
9628 	spin_unlock_irqrestore(&zone->lock, flags);
9629 
9630 	return ret;
9631 }
9632 #endif
9633 
9634 #ifdef CONFIG_ZONE_DMA
9635 bool has_managed_dma(void)
9636 {
9637 	struct pglist_data *pgdat;
9638 
9639 	for_each_online_pgdat(pgdat) {
9640 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9641 
9642 		if (managed_zone(zone))
9643 			return true;
9644 	}
9645 	return false;
9646 }
9647 #endif /* CONFIG_ZONE_DMA */
9648