1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/module.h> 31 #include <linux/suspend.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/slab.h> 35 #include <linux/ratelimit.h> 36 #include <linux/oom.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/random.h> 49 #include <linux/sort.h> 50 #include <linux/pfn.h> 51 #include <linux/backing-dev.h> 52 #include <linux/fault-inject.h> 53 #include <linux/page-isolation.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/sched/rt.h> 65 #include <linux/sched/mm.h> 66 #include <linux/page_owner.h> 67 #include <linux/page_table_check.h> 68 #include <linux/kthread.h> 69 #include <linux/memcontrol.h> 70 #include <linux/ftrace.h> 71 #include <linux/lockdep.h> 72 #include <linux/nmi.h> 73 #include <linux/psi.h> 74 #include <linux/padata.h> 75 #include <linux/khugepaged.h> 76 #include <linux/buffer_head.h> 77 #include <linux/delayacct.h> 78 #include <asm/sections.h> 79 #include <asm/tlbflush.h> 80 #include <asm/div64.h> 81 #include "internal.h" 82 #include "shuffle.h" 83 #include "page_reporting.h" 84 85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 86 typedef int __bitwise fpi_t; 87 88 /* No special request */ 89 #define FPI_NONE ((__force fpi_t)0) 90 91 /* 92 * Skip free page reporting notification for the (possibly merged) page. 93 * This does not hinder free page reporting from grabbing the page, 94 * reporting it and marking it "reported" - it only skips notifying 95 * the free page reporting infrastructure about a newly freed page. For 96 * example, used when temporarily pulling a page from a freelist and 97 * putting it back unmodified. 98 */ 99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 100 101 /* 102 * Place the (possibly merged) page to the tail of the freelist. Will ignore 103 * page shuffling (relevant code - e.g., memory onlining - is expected to 104 * shuffle the whole zone). 105 * 106 * Note: No code should rely on this flag for correctness - it's purely 107 * to allow for optimizations when handing back either fresh pages 108 * (memory onlining) or untouched pages (page isolation, free page 109 * reporting). 110 */ 111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 112 113 /* 114 * Don't poison memory with KASAN (only for the tag-based modes). 115 * During boot, all non-reserved memblock memory is exposed to page_alloc. 116 * Poisoning all that memory lengthens boot time, especially on systems with 117 * large amount of RAM. This flag is used to skip that poisoning. 118 * This is only done for the tag-based KASAN modes, as those are able to 119 * detect memory corruptions with the memory tags assigned by default. 120 * All memory allocated normally after boot gets poisoned as usual. 121 */ 122 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 123 124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 125 static DEFINE_MUTEX(pcp_batch_high_lock); 126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 127 128 struct pagesets { 129 local_lock_t lock; 130 }; 131 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 132 .lock = INIT_LOCAL_LOCK(lock), 133 }; 134 135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 136 DEFINE_PER_CPU(int, numa_node); 137 EXPORT_PER_CPU_SYMBOL(numa_node); 138 #endif 139 140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 141 142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 143 /* 144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 147 * defined in <linux/topology.h>. 148 */ 149 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 150 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 151 #endif 152 153 /* work_structs for global per-cpu drains */ 154 struct pcpu_drain { 155 struct zone *zone; 156 struct work_struct work; 157 }; 158 static DEFINE_MUTEX(pcpu_drain_mutex); 159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 160 161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 162 volatile unsigned long latent_entropy __latent_entropy; 163 EXPORT_SYMBOL(latent_entropy); 164 #endif 165 166 /* 167 * Array of node states. 168 */ 169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 170 [N_POSSIBLE] = NODE_MASK_ALL, 171 [N_ONLINE] = { { [0] = 1UL } }, 172 #ifndef CONFIG_NUMA 173 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 174 #ifdef CONFIG_HIGHMEM 175 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 176 #endif 177 [N_MEMORY] = { { [0] = 1UL } }, 178 [N_CPU] = { { [0] = 1UL } }, 179 #endif /* NUMA */ 180 }; 181 EXPORT_SYMBOL(node_states); 182 183 atomic_long_t _totalram_pages __read_mostly; 184 EXPORT_SYMBOL(_totalram_pages); 185 unsigned long totalreserve_pages __read_mostly; 186 unsigned long totalcma_pages __read_mostly; 187 188 int percpu_pagelist_high_fraction; 189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 191 EXPORT_SYMBOL(init_on_alloc); 192 193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 194 EXPORT_SYMBOL(init_on_free); 195 196 static bool _init_on_alloc_enabled_early __read_mostly 197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 198 static int __init early_init_on_alloc(char *buf) 199 { 200 201 return kstrtobool(buf, &_init_on_alloc_enabled_early); 202 } 203 early_param("init_on_alloc", early_init_on_alloc); 204 205 static bool _init_on_free_enabled_early __read_mostly 206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 207 static int __init early_init_on_free(char *buf) 208 { 209 return kstrtobool(buf, &_init_on_free_enabled_early); 210 } 211 early_param("init_on_free", early_init_on_free); 212 213 /* 214 * A cached value of the page's pageblock's migratetype, used when the page is 215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 216 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 217 * Also the migratetype set in the page does not necessarily match the pcplist 218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 219 * other index - this ensures that it will be put on the correct CMA freelist. 220 */ 221 static inline int get_pcppage_migratetype(struct page *page) 222 { 223 return page->index; 224 } 225 226 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 227 { 228 page->index = migratetype; 229 } 230 231 #ifdef CONFIG_PM_SLEEP 232 /* 233 * The following functions are used by the suspend/hibernate code to temporarily 234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 235 * while devices are suspended. To avoid races with the suspend/hibernate code, 236 * they should always be called with system_transition_mutex held 237 * (gfp_allowed_mask also should only be modified with system_transition_mutex 238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 239 * with that modification). 240 */ 241 242 static gfp_t saved_gfp_mask; 243 244 void pm_restore_gfp_mask(void) 245 { 246 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 247 if (saved_gfp_mask) { 248 gfp_allowed_mask = saved_gfp_mask; 249 saved_gfp_mask = 0; 250 } 251 } 252 253 void pm_restrict_gfp_mask(void) 254 { 255 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 256 WARN_ON(saved_gfp_mask); 257 saved_gfp_mask = gfp_allowed_mask; 258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 259 } 260 261 bool pm_suspended_storage(void) 262 { 263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 264 return false; 265 return true; 266 } 267 #endif /* CONFIG_PM_SLEEP */ 268 269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 270 unsigned int pageblock_order __read_mostly; 271 #endif 272 273 static void __free_pages_ok(struct page *page, unsigned int order, 274 fpi_t fpi_flags); 275 276 /* 277 * results with 256, 32 in the lowmem_reserve sysctl: 278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 279 * 1G machine -> (16M dma, 784M normal, 224M high) 280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 283 * 284 * TBD: should special case ZONE_DMA32 machines here - in those we normally 285 * don't need any ZONE_NORMAL reservation 286 */ 287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 288 #ifdef CONFIG_ZONE_DMA 289 [ZONE_DMA] = 256, 290 #endif 291 #ifdef CONFIG_ZONE_DMA32 292 [ZONE_DMA32] = 256, 293 #endif 294 [ZONE_NORMAL] = 32, 295 #ifdef CONFIG_HIGHMEM 296 [ZONE_HIGHMEM] = 0, 297 #endif 298 [ZONE_MOVABLE] = 0, 299 }; 300 301 static char * const zone_names[MAX_NR_ZONES] = { 302 #ifdef CONFIG_ZONE_DMA 303 "DMA", 304 #endif 305 #ifdef CONFIG_ZONE_DMA32 306 "DMA32", 307 #endif 308 "Normal", 309 #ifdef CONFIG_HIGHMEM 310 "HighMem", 311 #endif 312 "Movable", 313 #ifdef CONFIG_ZONE_DEVICE 314 "Device", 315 #endif 316 }; 317 318 const char * const migratetype_names[MIGRATE_TYPES] = { 319 "Unmovable", 320 "Movable", 321 "Reclaimable", 322 "HighAtomic", 323 #ifdef CONFIG_CMA 324 "CMA", 325 #endif 326 #ifdef CONFIG_MEMORY_ISOLATION 327 "Isolate", 328 #endif 329 }; 330 331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 332 [NULL_COMPOUND_DTOR] = NULL, 333 [COMPOUND_PAGE_DTOR] = free_compound_page, 334 #ifdef CONFIG_HUGETLB_PAGE 335 [HUGETLB_PAGE_DTOR] = free_huge_page, 336 #endif 337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 339 #endif 340 }; 341 342 int min_free_kbytes = 1024; 343 int user_min_free_kbytes = -1; 344 int watermark_boost_factor __read_mostly = 15000; 345 int watermark_scale_factor = 10; 346 347 static unsigned long nr_kernel_pages __initdata; 348 static unsigned long nr_all_pages __initdata; 349 static unsigned long dma_reserve __initdata; 350 351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 353 static unsigned long required_kernelcore __initdata; 354 static unsigned long required_kernelcore_percent __initdata; 355 static unsigned long required_movablecore __initdata; 356 static unsigned long required_movablecore_percent __initdata; 357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 358 static bool mirrored_kernelcore __meminitdata; 359 360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 361 int movable_zone; 362 EXPORT_SYMBOL(movable_zone); 363 364 #if MAX_NUMNODES > 1 365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 366 unsigned int nr_online_nodes __read_mostly = 1; 367 EXPORT_SYMBOL(nr_node_ids); 368 EXPORT_SYMBOL(nr_online_nodes); 369 #endif 370 371 int page_group_by_mobility_disabled __read_mostly; 372 373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 374 /* 375 * During boot we initialize deferred pages on-demand, as needed, but once 376 * page_alloc_init_late() has finished, the deferred pages are all initialized, 377 * and we can permanently disable that path. 378 */ 379 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 380 381 /* 382 * Calling kasan_poison_pages() only after deferred memory initialization 383 * has completed. Poisoning pages during deferred memory init will greatly 384 * lengthen the process and cause problem in large memory systems as the 385 * deferred pages initialization is done with interrupt disabled. 386 * 387 * Assuming that there will be no reference to those newly initialized 388 * pages before they are ever allocated, this should have no effect on 389 * KASAN memory tracking as the poison will be properly inserted at page 390 * allocation time. The only corner case is when pages are allocated by 391 * on-demand allocation and then freed again before the deferred pages 392 * initialization is done, but this is not likely to happen. 393 */ 394 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 395 { 396 return static_branch_unlikely(&deferred_pages) || 397 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 398 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 399 PageSkipKASanPoison(page); 400 } 401 402 /* Returns true if the struct page for the pfn is uninitialised */ 403 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 404 { 405 int nid = early_pfn_to_nid(pfn); 406 407 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 408 return true; 409 410 return false; 411 } 412 413 /* 414 * Returns true when the remaining initialisation should be deferred until 415 * later in the boot cycle when it can be parallelised. 416 */ 417 static bool __meminit 418 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 419 { 420 static unsigned long prev_end_pfn, nr_initialised; 421 422 /* 423 * prev_end_pfn static that contains the end of previous zone 424 * No need to protect because called very early in boot before smp_init. 425 */ 426 if (prev_end_pfn != end_pfn) { 427 prev_end_pfn = end_pfn; 428 nr_initialised = 0; 429 } 430 431 /* Always populate low zones for address-constrained allocations */ 432 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 433 return false; 434 435 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 436 return true; 437 /* 438 * We start only with one section of pages, more pages are added as 439 * needed until the rest of deferred pages are initialized. 440 */ 441 nr_initialised++; 442 if ((nr_initialised > PAGES_PER_SECTION) && 443 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 444 NODE_DATA(nid)->first_deferred_pfn = pfn; 445 return true; 446 } 447 return false; 448 } 449 #else 450 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 451 { 452 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 453 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 454 PageSkipKASanPoison(page); 455 } 456 457 static inline bool early_page_uninitialised(unsigned long pfn) 458 { 459 return false; 460 } 461 462 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 463 { 464 return false; 465 } 466 #endif 467 468 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 469 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 470 unsigned long pfn) 471 { 472 #ifdef CONFIG_SPARSEMEM 473 return section_to_usemap(__pfn_to_section(pfn)); 474 #else 475 return page_zone(page)->pageblock_flags; 476 #endif /* CONFIG_SPARSEMEM */ 477 } 478 479 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 480 { 481 #ifdef CONFIG_SPARSEMEM 482 pfn &= (PAGES_PER_SECTION-1); 483 #else 484 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 485 #endif /* CONFIG_SPARSEMEM */ 486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 487 } 488 489 static __always_inline 490 unsigned long __get_pfnblock_flags_mask(const struct page *page, 491 unsigned long pfn, 492 unsigned long mask) 493 { 494 unsigned long *bitmap; 495 unsigned long bitidx, word_bitidx; 496 unsigned long word; 497 498 bitmap = get_pageblock_bitmap(page, pfn); 499 bitidx = pfn_to_bitidx(page, pfn); 500 word_bitidx = bitidx / BITS_PER_LONG; 501 bitidx &= (BITS_PER_LONG-1); 502 503 word = bitmap[word_bitidx]; 504 return (word >> bitidx) & mask; 505 } 506 507 /** 508 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 509 * @page: The page within the block of interest 510 * @pfn: The target page frame number 511 * @mask: mask of bits that the caller is interested in 512 * 513 * Return: pageblock_bits flags 514 */ 515 unsigned long get_pfnblock_flags_mask(const struct page *page, 516 unsigned long pfn, unsigned long mask) 517 { 518 return __get_pfnblock_flags_mask(page, pfn, mask); 519 } 520 521 static __always_inline int get_pfnblock_migratetype(const struct page *page, 522 unsigned long pfn) 523 { 524 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 525 } 526 527 /** 528 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 529 * @page: The page within the block of interest 530 * @flags: The flags to set 531 * @pfn: The target page frame number 532 * @mask: mask of bits that the caller is interested in 533 */ 534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 535 unsigned long pfn, 536 unsigned long mask) 537 { 538 unsigned long *bitmap; 539 unsigned long bitidx, word_bitidx; 540 unsigned long old_word, word; 541 542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 543 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 544 545 bitmap = get_pageblock_bitmap(page, pfn); 546 bitidx = pfn_to_bitidx(page, pfn); 547 word_bitidx = bitidx / BITS_PER_LONG; 548 bitidx &= (BITS_PER_LONG-1); 549 550 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 551 552 mask <<= bitidx; 553 flags <<= bitidx; 554 555 word = READ_ONCE(bitmap[word_bitidx]); 556 for (;;) { 557 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 558 if (word == old_word) 559 break; 560 word = old_word; 561 } 562 } 563 564 void set_pageblock_migratetype(struct page *page, int migratetype) 565 { 566 if (unlikely(page_group_by_mobility_disabled && 567 migratetype < MIGRATE_PCPTYPES)) 568 migratetype = MIGRATE_UNMOVABLE; 569 570 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 571 page_to_pfn(page), MIGRATETYPE_MASK); 572 } 573 574 #ifdef CONFIG_DEBUG_VM 575 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 576 { 577 int ret = 0; 578 unsigned seq; 579 unsigned long pfn = page_to_pfn(page); 580 unsigned long sp, start_pfn; 581 582 do { 583 seq = zone_span_seqbegin(zone); 584 start_pfn = zone->zone_start_pfn; 585 sp = zone->spanned_pages; 586 if (!zone_spans_pfn(zone, pfn)) 587 ret = 1; 588 } while (zone_span_seqretry(zone, seq)); 589 590 if (ret) 591 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 592 pfn, zone_to_nid(zone), zone->name, 593 start_pfn, start_pfn + sp); 594 595 return ret; 596 } 597 598 static int page_is_consistent(struct zone *zone, struct page *page) 599 { 600 if (zone != page_zone(page)) 601 return 0; 602 603 return 1; 604 } 605 /* 606 * Temporary debugging check for pages not lying within a given zone. 607 */ 608 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 609 { 610 if (page_outside_zone_boundaries(zone, page)) 611 return 1; 612 if (!page_is_consistent(zone, page)) 613 return 1; 614 615 return 0; 616 } 617 #else 618 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 619 { 620 return 0; 621 } 622 #endif 623 624 static void bad_page(struct page *page, const char *reason) 625 { 626 static unsigned long resume; 627 static unsigned long nr_shown; 628 static unsigned long nr_unshown; 629 630 /* 631 * Allow a burst of 60 reports, then keep quiet for that minute; 632 * or allow a steady drip of one report per second. 633 */ 634 if (nr_shown == 60) { 635 if (time_before(jiffies, resume)) { 636 nr_unshown++; 637 goto out; 638 } 639 if (nr_unshown) { 640 pr_alert( 641 "BUG: Bad page state: %lu messages suppressed\n", 642 nr_unshown); 643 nr_unshown = 0; 644 } 645 nr_shown = 0; 646 } 647 if (nr_shown++ == 0) 648 resume = jiffies + 60 * HZ; 649 650 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 651 current->comm, page_to_pfn(page)); 652 dump_page(page, reason); 653 654 print_modules(); 655 dump_stack(); 656 out: 657 /* Leave bad fields for debug, except PageBuddy could make trouble */ 658 page_mapcount_reset(page); /* remove PageBuddy */ 659 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 660 } 661 662 static inline unsigned int order_to_pindex(int migratetype, int order) 663 { 664 int base = order; 665 666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 667 if (order > PAGE_ALLOC_COSTLY_ORDER) { 668 VM_BUG_ON(order != pageblock_order); 669 base = PAGE_ALLOC_COSTLY_ORDER + 1; 670 } 671 #else 672 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 673 #endif 674 675 return (MIGRATE_PCPTYPES * base) + migratetype; 676 } 677 678 static inline int pindex_to_order(unsigned int pindex) 679 { 680 int order = pindex / MIGRATE_PCPTYPES; 681 682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 683 if (order > PAGE_ALLOC_COSTLY_ORDER) 684 order = pageblock_order; 685 #else 686 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 687 #endif 688 689 return order; 690 } 691 692 static inline bool pcp_allowed_order(unsigned int order) 693 { 694 if (order <= PAGE_ALLOC_COSTLY_ORDER) 695 return true; 696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 697 if (order == pageblock_order) 698 return true; 699 #endif 700 return false; 701 } 702 703 static inline void free_the_page(struct page *page, unsigned int order) 704 { 705 if (pcp_allowed_order(order)) /* Via pcp? */ 706 free_unref_page(page, order); 707 else 708 __free_pages_ok(page, order, FPI_NONE); 709 } 710 711 /* 712 * Higher-order pages are called "compound pages". They are structured thusly: 713 * 714 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 715 * 716 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 717 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 718 * 719 * The first tail page's ->compound_dtor holds the offset in array of compound 720 * page destructors. See compound_page_dtors. 721 * 722 * The first tail page's ->compound_order holds the order of allocation. 723 * This usage means that zero-order pages may not be compound. 724 */ 725 726 void free_compound_page(struct page *page) 727 { 728 mem_cgroup_uncharge(page_folio(page)); 729 free_the_page(page, compound_order(page)); 730 } 731 732 static void prep_compound_head(struct page *page, unsigned int order) 733 { 734 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 735 set_compound_order(page, order); 736 atomic_set(compound_mapcount_ptr(page), -1); 737 if (hpage_pincount_available(page)) 738 atomic_set(compound_pincount_ptr(page), 0); 739 } 740 741 static void prep_compound_tail(struct page *head, int tail_idx) 742 { 743 struct page *p = head + tail_idx; 744 745 p->mapping = TAIL_MAPPING; 746 set_compound_head(p, head); 747 } 748 749 void prep_compound_page(struct page *page, unsigned int order) 750 { 751 int i; 752 int nr_pages = 1 << order; 753 754 __SetPageHead(page); 755 for (i = 1; i < nr_pages; i++) 756 prep_compound_tail(page, i); 757 758 prep_compound_head(page, order); 759 } 760 761 #ifdef CONFIG_DEBUG_PAGEALLOC 762 unsigned int _debug_guardpage_minorder; 763 764 bool _debug_pagealloc_enabled_early __read_mostly 765 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 766 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 767 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 768 EXPORT_SYMBOL(_debug_pagealloc_enabled); 769 770 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 771 772 static int __init early_debug_pagealloc(char *buf) 773 { 774 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 775 } 776 early_param("debug_pagealloc", early_debug_pagealloc); 777 778 static int __init debug_guardpage_minorder_setup(char *buf) 779 { 780 unsigned long res; 781 782 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 783 pr_err("Bad debug_guardpage_minorder value\n"); 784 return 0; 785 } 786 _debug_guardpage_minorder = res; 787 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 788 return 0; 789 } 790 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 791 792 static inline bool set_page_guard(struct zone *zone, struct page *page, 793 unsigned int order, int migratetype) 794 { 795 if (!debug_guardpage_enabled()) 796 return false; 797 798 if (order >= debug_guardpage_minorder()) 799 return false; 800 801 __SetPageGuard(page); 802 INIT_LIST_HEAD(&page->lru); 803 set_page_private(page, order); 804 /* Guard pages are not available for any usage */ 805 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 806 807 return true; 808 } 809 810 static inline void clear_page_guard(struct zone *zone, struct page *page, 811 unsigned int order, int migratetype) 812 { 813 if (!debug_guardpage_enabled()) 814 return; 815 816 __ClearPageGuard(page); 817 818 set_page_private(page, 0); 819 if (!is_migrate_isolate(migratetype)) 820 __mod_zone_freepage_state(zone, (1 << order), migratetype); 821 } 822 #else 823 static inline bool set_page_guard(struct zone *zone, struct page *page, 824 unsigned int order, int migratetype) { return false; } 825 static inline void clear_page_guard(struct zone *zone, struct page *page, 826 unsigned int order, int migratetype) {} 827 #endif 828 829 /* 830 * Enable static keys related to various memory debugging and hardening options. 831 * Some override others, and depend on early params that are evaluated in the 832 * order of appearance. So we need to first gather the full picture of what was 833 * enabled, and then make decisions. 834 */ 835 void init_mem_debugging_and_hardening(void) 836 { 837 bool page_poisoning_requested = false; 838 839 #ifdef CONFIG_PAGE_POISONING 840 /* 841 * Page poisoning is debug page alloc for some arches. If 842 * either of those options are enabled, enable poisoning. 843 */ 844 if (page_poisoning_enabled() || 845 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 846 debug_pagealloc_enabled())) { 847 static_branch_enable(&_page_poisoning_enabled); 848 page_poisoning_requested = true; 849 } 850 #endif 851 852 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 853 page_poisoning_requested) { 854 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 855 "will take precedence over init_on_alloc and init_on_free\n"); 856 _init_on_alloc_enabled_early = false; 857 _init_on_free_enabled_early = false; 858 } 859 860 if (_init_on_alloc_enabled_early) 861 static_branch_enable(&init_on_alloc); 862 else 863 static_branch_disable(&init_on_alloc); 864 865 if (_init_on_free_enabled_early) 866 static_branch_enable(&init_on_free); 867 else 868 static_branch_disable(&init_on_free); 869 870 #ifdef CONFIG_DEBUG_PAGEALLOC 871 if (!debug_pagealloc_enabled()) 872 return; 873 874 static_branch_enable(&_debug_pagealloc_enabled); 875 876 if (!debug_guardpage_minorder()) 877 return; 878 879 static_branch_enable(&_debug_guardpage_enabled); 880 #endif 881 } 882 883 static inline void set_buddy_order(struct page *page, unsigned int order) 884 { 885 set_page_private(page, order); 886 __SetPageBuddy(page); 887 } 888 889 /* 890 * This function checks whether a page is free && is the buddy 891 * we can coalesce a page and its buddy if 892 * (a) the buddy is not in a hole (check before calling!) && 893 * (b) the buddy is in the buddy system && 894 * (c) a page and its buddy have the same order && 895 * (d) a page and its buddy are in the same zone. 896 * 897 * For recording whether a page is in the buddy system, we set PageBuddy. 898 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 899 * 900 * For recording page's order, we use page_private(page). 901 */ 902 static inline bool page_is_buddy(struct page *page, struct page *buddy, 903 unsigned int order) 904 { 905 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 906 return false; 907 908 if (buddy_order(buddy) != order) 909 return false; 910 911 /* 912 * zone check is done late to avoid uselessly calculating 913 * zone/node ids for pages that could never merge. 914 */ 915 if (page_zone_id(page) != page_zone_id(buddy)) 916 return false; 917 918 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 919 920 return true; 921 } 922 923 #ifdef CONFIG_COMPACTION 924 static inline struct capture_control *task_capc(struct zone *zone) 925 { 926 struct capture_control *capc = current->capture_control; 927 928 return unlikely(capc) && 929 !(current->flags & PF_KTHREAD) && 930 !capc->page && 931 capc->cc->zone == zone ? capc : NULL; 932 } 933 934 static inline bool 935 compaction_capture(struct capture_control *capc, struct page *page, 936 int order, int migratetype) 937 { 938 if (!capc || order != capc->cc->order) 939 return false; 940 941 /* Do not accidentally pollute CMA or isolated regions*/ 942 if (is_migrate_cma(migratetype) || 943 is_migrate_isolate(migratetype)) 944 return false; 945 946 /* 947 * Do not let lower order allocations pollute a movable pageblock. 948 * This might let an unmovable request use a reclaimable pageblock 949 * and vice-versa but no more than normal fallback logic which can 950 * have trouble finding a high-order free page. 951 */ 952 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 953 return false; 954 955 capc->page = page; 956 return true; 957 } 958 959 #else 960 static inline struct capture_control *task_capc(struct zone *zone) 961 { 962 return NULL; 963 } 964 965 static inline bool 966 compaction_capture(struct capture_control *capc, struct page *page, 967 int order, int migratetype) 968 { 969 return false; 970 } 971 #endif /* CONFIG_COMPACTION */ 972 973 /* Used for pages not on another list */ 974 static inline void add_to_free_list(struct page *page, struct zone *zone, 975 unsigned int order, int migratetype) 976 { 977 struct free_area *area = &zone->free_area[order]; 978 979 list_add(&page->lru, &area->free_list[migratetype]); 980 area->nr_free++; 981 } 982 983 /* Used for pages not on another list */ 984 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 985 unsigned int order, int migratetype) 986 { 987 struct free_area *area = &zone->free_area[order]; 988 989 list_add_tail(&page->lru, &area->free_list[migratetype]); 990 area->nr_free++; 991 } 992 993 /* 994 * Used for pages which are on another list. Move the pages to the tail 995 * of the list - so the moved pages won't immediately be considered for 996 * allocation again (e.g., optimization for memory onlining). 997 */ 998 static inline void move_to_free_list(struct page *page, struct zone *zone, 999 unsigned int order, int migratetype) 1000 { 1001 struct free_area *area = &zone->free_area[order]; 1002 1003 list_move_tail(&page->lru, &area->free_list[migratetype]); 1004 } 1005 1006 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1007 unsigned int order) 1008 { 1009 /* clear reported state and update reported page count */ 1010 if (page_reported(page)) 1011 __ClearPageReported(page); 1012 1013 list_del(&page->lru); 1014 __ClearPageBuddy(page); 1015 set_page_private(page, 0); 1016 zone->free_area[order].nr_free--; 1017 } 1018 1019 /* 1020 * If this is not the largest possible page, check if the buddy 1021 * of the next-highest order is free. If it is, it's possible 1022 * that pages are being freed that will coalesce soon. In case, 1023 * that is happening, add the free page to the tail of the list 1024 * so it's less likely to be used soon and more likely to be merged 1025 * as a higher order page 1026 */ 1027 static inline bool 1028 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1029 struct page *page, unsigned int order) 1030 { 1031 struct page *higher_page, *higher_buddy; 1032 unsigned long combined_pfn; 1033 1034 if (order >= MAX_ORDER - 2) 1035 return false; 1036 1037 combined_pfn = buddy_pfn & pfn; 1038 higher_page = page + (combined_pfn - pfn); 1039 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1040 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1041 1042 return page_is_buddy(higher_page, higher_buddy, order + 1); 1043 } 1044 1045 /* 1046 * Freeing function for a buddy system allocator. 1047 * 1048 * The concept of a buddy system is to maintain direct-mapped table 1049 * (containing bit values) for memory blocks of various "orders". 1050 * The bottom level table contains the map for the smallest allocatable 1051 * units of memory (here, pages), and each level above it describes 1052 * pairs of units from the levels below, hence, "buddies". 1053 * At a high level, all that happens here is marking the table entry 1054 * at the bottom level available, and propagating the changes upward 1055 * as necessary, plus some accounting needed to play nicely with other 1056 * parts of the VM system. 1057 * At each level, we keep a list of pages, which are heads of continuous 1058 * free pages of length of (1 << order) and marked with PageBuddy. 1059 * Page's order is recorded in page_private(page) field. 1060 * So when we are allocating or freeing one, we can derive the state of the 1061 * other. That is, if we allocate a small block, and both were 1062 * free, the remainder of the region must be split into blocks. 1063 * If a block is freed, and its buddy is also free, then this 1064 * triggers coalescing into a block of larger size. 1065 * 1066 * -- nyc 1067 */ 1068 1069 static inline void __free_one_page(struct page *page, 1070 unsigned long pfn, 1071 struct zone *zone, unsigned int order, 1072 int migratetype, fpi_t fpi_flags) 1073 { 1074 struct capture_control *capc = task_capc(zone); 1075 unsigned long buddy_pfn; 1076 unsigned long combined_pfn; 1077 unsigned int max_order; 1078 struct page *buddy; 1079 bool to_tail; 1080 1081 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1082 1083 VM_BUG_ON(!zone_is_initialized(zone)); 1084 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1085 1086 VM_BUG_ON(migratetype == -1); 1087 if (likely(!is_migrate_isolate(migratetype))) 1088 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1089 1090 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1091 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1092 1093 continue_merging: 1094 while (order < max_order) { 1095 if (compaction_capture(capc, page, order, migratetype)) { 1096 __mod_zone_freepage_state(zone, -(1 << order), 1097 migratetype); 1098 return; 1099 } 1100 buddy_pfn = __find_buddy_pfn(pfn, order); 1101 buddy = page + (buddy_pfn - pfn); 1102 1103 if (!page_is_buddy(page, buddy, order)) 1104 goto done_merging; 1105 /* 1106 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1107 * merge with it and move up one order. 1108 */ 1109 if (page_is_guard(buddy)) 1110 clear_page_guard(zone, buddy, order, migratetype); 1111 else 1112 del_page_from_free_list(buddy, zone, order); 1113 combined_pfn = buddy_pfn & pfn; 1114 page = page + (combined_pfn - pfn); 1115 pfn = combined_pfn; 1116 order++; 1117 } 1118 if (order < MAX_ORDER - 1) { 1119 /* If we are here, it means order is >= pageblock_order. 1120 * We want to prevent merge between freepages on isolate 1121 * pageblock and normal pageblock. Without this, pageblock 1122 * isolation could cause incorrect freepage or CMA accounting. 1123 * 1124 * We don't want to hit this code for the more frequent 1125 * low-order merging. 1126 */ 1127 if (unlikely(has_isolate_pageblock(zone))) { 1128 int buddy_mt; 1129 1130 buddy_pfn = __find_buddy_pfn(pfn, order); 1131 buddy = page + (buddy_pfn - pfn); 1132 buddy_mt = get_pageblock_migratetype(buddy); 1133 1134 if (migratetype != buddy_mt 1135 && (is_migrate_isolate(migratetype) || 1136 is_migrate_isolate(buddy_mt))) 1137 goto done_merging; 1138 } 1139 max_order = order + 1; 1140 goto continue_merging; 1141 } 1142 1143 done_merging: 1144 set_buddy_order(page, order); 1145 1146 if (fpi_flags & FPI_TO_TAIL) 1147 to_tail = true; 1148 else if (is_shuffle_order(order)) 1149 to_tail = shuffle_pick_tail(); 1150 else 1151 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1152 1153 if (to_tail) 1154 add_to_free_list_tail(page, zone, order, migratetype); 1155 else 1156 add_to_free_list(page, zone, order, migratetype); 1157 1158 /* Notify page reporting subsystem of freed page */ 1159 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1160 page_reporting_notify_free(order); 1161 } 1162 1163 /* 1164 * A bad page could be due to a number of fields. Instead of multiple branches, 1165 * try and check multiple fields with one check. The caller must do a detailed 1166 * check if necessary. 1167 */ 1168 static inline bool page_expected_state(struct page *page, 1169 unsigned long check_flags) 1170 { 1171 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1172 return false; 1173 1174 if (unlikely((unsigned long)page->mapping | 1175 page_ref_count(page) | 1176 #ifdef CONFIG_MEMCG 1177 page->memcg_data | 1178 #endif 1179 (page->flags & check_flags))) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 static const char *page_bad_reason(struct page *page, unsigned long flags) 1186 { 1187 const char *bad_reason = NULL; 1188 1189 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1190 bad_reason = "nonzero mapcount"; 1191 if (unlikely(page->mapping != NULL)) 1192 bad_reason = "non-NULL mapping"; 1193 if (unlikely(page_ref_count(page) != 0)) 1194 bad_reason = "nonzero _refcount"; 1195 if (unlikely(page->flags & flags)) { 1196 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1197 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1198 else 1199 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1200 } 1201 #ifdef CONFIG_MEMCG 1202 if (unlikely(page->memcg_data)) 1203 bad_reason = "page still charged to cgroup"; 1204 #endif 1205 return bad_reason; 1206 } 1207 1208 static void check_free_page_bad(struct page *page) 1209 { 1210 bad_page(page, 1211 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1212 } 1213 1214 static inline int check_free_page(struct page *page) 1215 { 1216 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1217 return 0; 1218 1219 /* Something has gone sideways, find it */ 1220 check_free_page_bad(page); 1221 return 1; 1222 } 1223 1224 static int free_tail_pages_check(struct page *head_page, struct page *page) 1225 { 1226 int ret = 1; 1227 1228 /* 1229 * We rely page->lru.next never has bit 0 set, unless the page 1230 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1231 */ 1232 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1233 1234 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1235 ret = 0; 1236 goto out; 1237 } 1238 switch (page - head_page) { 1239 case 1: 1240 /* the first tail page: ->mapping may be compound_mapcount() */ 1241 if (unlikely(compound_mapcount(page))) { 1242 bad_page(page, "nonzero compound_mapcount"); 1243 goto out; 1244 } 1245 break; 1246 case 2: 1247 /* 1248 * the second tail page: ->mapping is 1249 * deferred_list.next -- ignore value. 1250 */ 1251 break; 1252 default: 1253 if (page->mapping != TAIL_MAPPING) { 1254 bad_page(page, "corrupted mapping in tail page"); 1255 goto out; 1256 } 1257 break; 1258 } 1259 if (unlikely(!PageTail(page))) { 1260 bad_page(page, "PageTail not set"); 1261 goto out; 1262 } 1263 if (unlikely(compound_head(page) != head_page)) { 1264 bad_page(page, "compound_head not consistent"); 1265 goto out; 1266 } 1267 ret = 0; 1268 out: 1269 page->mapping = NULL; 1270 clear_compound_head(page); 1271 return ret; 1272 } 1273 1274 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1275 { 1276 int i; 1277 1278 if (zero_tags) { 1279 for (i = 0; i < numpages; i++) 1280 tag_clear_highpage(page + i); 1281 return; 1282 } 1283 1284 /* s390's use of memset() could override KASAN redzones. */ 1285 kasan_disable_current(); 1286 for (i = 0; i < numpages; i++) { 1287 u8 tag = page_kasan_tag(page + i); 1288 page_kasan_tag_reset(page + i); 1289 clear_highpage(page + i); 1290 page_kasan_tag_set(page + i, tag); 1291 } 1292 kasan_enable_current(); 1293 } 1294 1295 static __always_inline bool free_pages_prepare(struct page *page, 1296 unsigned int order, bool check_free, fpi_t fpi_flags) 1297 { 1298 int bad = 0; 1299 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1300 1301 VM_BUG_ON_PAGE(PageTail(page), page); 1302 1303 trace_mm_page_free(page, order); 1304 1305 if (unlikely(PageHWPoison(page)) && !order) { 1306 /* 1307 * Do not let hwpoison pages hit pcplists/buddy 1308 * Untie memcg state and reset page's owner 1309 */ 1310 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1311 __memcg_kmem_uncharge_page(page, order); 1312 reset_page_owner(page, order); 1313 page_table_check_free(page, order); 1314 return false; 1315 } 1316 1317 /* 1318 * Check tail pages before head page information is cleared to 1319 * avoid checking PageCompound for order-0 pages. 1320 */ 1321 if (unlikely(order)) { 1322 bool compound = PageCompound(page); 1323 int i; 1324 1325 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1326 1327 if (compound) { 1328 ClearPageDoubleMap(page); 1329 ClearPageHasHWPoisoned(page); 1330 } 1331 for (i = 1; i < (1 << order); i++) { 1332 if (compound) 1333 bad += free_tail_pages_check(page, page + i); 1334 if (unlikely(check_free_page(page + i))) { 1335 bad++; 1336 continue; 1337 } 1338 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1339 } 1340 } 1341 if (PageMappingFlags(page)) 1342 page->mapping = NULL; 1343 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1344 __memcg_kmem_uncharge_page(page, order); 1345 if (check_free) 1346 bad += check_free_page(page); 1347 if (bad) 1348 return false; 1349 1350 page_cpupid_reset_last(page); 1351 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1352 reset_page_owner(page, order); 1353 page_table_check_free(page, order); 1354 1355 if (!PageHighMem(page)) { 1356 debug_check_no_locks_freed(page_address(page), 1357 PAGE_SIZE << order); 1358 debug_check_no_obj_freed(page_address(page), 1359 PAGE_SIZE << order); 1360 } 1361 1362 kernel_poison_pages(page, 1 << order); 1363 1364 /* 1365 * As memory initialization might be integrated into KASAN, 1366 * kasan_free_pages and kernel_init_free_pages must be 1367 * kept together to avoid discrepancies in behavior. 1368 * 1369 * With hardware tag-based KASAN, memory tags must be set before the 1370 * page becomes unavailable via debug_pagealloc or arch_free_page. 1371 */ 1372 if (kasan_has_integrated_init()) { 1373 if (!skip_kasan_poison) 1374 kasan_free_pages(page, order); 1375 } else { 1376 bool init = want_init_on_free(); 1377 1378 if (init) 1379 kernel_init_free_pages(page, 1 << order, false); 1380 if (!skip_kasan_poison) 1381 kasan_poison_pages(page, order, init); 1382 } 1383 1384 /* 1385 * arch_free_page() can make the page's contents inaccessible. s390 1386 * does this. So nothing which can access the page's contents should 1387 * happen after this. 1388 */ 1389 arch_free_page(page, order); 1390 1391 debug_pagealloc_unmap_pages(page, 1 << order); 1392 1393 return true; 1394 } 1395 1396 #ifdef CONFIG_DEBUG_VM 1397 /* 1398 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1399 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1400 * moved from pcp lists to free lists. 1401 */ 1402 static bool free_pcp_prepare(struct page *page, unsigned int order) 1403 { 1404 return free_pages_prepare(page, order, true, FPI_NONE); 1405 } 1406 1407 static bool bulkfree_pcp_prepare(struct page *page) 1408 { 1409 if (debug_pagealloc_enabled_static()) 1410 return check_free_page(page); 1411 else 1412 return false; 1413 } 1414 #else 1415 /* 1416 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1417 * moving from pcp lists to free list in order to reduce overhead. With 1418 * debug_pagealloc enabled, they are checked also immediately when being freed 1419 * to the pcp lists. 1420 */ 1421 static bool free_pcp_prepare(struct page *page, unsigned int order) 1422 { 1423 if (debug_pagealloc_enabled_static()) 1424 return free_pages_prepare(page, order, true, FPI_NONE); 1425 else 1426 return free_pages_prepare(page, order, false, FPI_NONE); 1427 } 1428 1429 static bool bulkfree_pcp_prepare(struct page *page) 1430 { 1431 return check_free_page(page); 1432 } 1433 #endif /* CONFIG_DEBUG_VM */ 1434 1435 static inline void prefetch_buddy(struct page *page) 1436 { 1437 unsigned long pfn = page_to_pfn(page); 1438 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1439 struct page *buddy = page + (buddy_pfn - pfn); 1440 1441 prefetch(buddy); 1442 } 1443 1444 /* 1445 * Frees a number of pages from the PCP lists 1446 * Assumes all pages on list are in same zone. 1447 * count is the number of pages to free. 1448 */ 1449 static void free_pcppages_bulk(struct zone *zone, int count, 1450 struct per_cpu_pages *pcp) 1451 { 1452 int pindex = 0; 1453 int batch_free = 0; 1454 int nr_freed = 0; 1455 unsigned int order; 1456 int prefetch_nr = READ_ONCE(pcp->batch); 1457 bool isolated_pageblocks; 1458 struct page *page, *tmp; 1459 LIST_HEAD(head); 1460 1461 /* 1462 * Ensure proper count is passed which otherwise would stuck in the 1463 * below while (list_empty(list)) loop. 1464 */ 1465 count = min(pcp->count, count); 1466 while (count > 0) { 1467 struct list_head *list; 1468 1469 /* 1470 * Remove pages from lists in a round-robin fashion. A 1471 * batch_free count is maintained that is incremented when an 1472 * empty list is encountered. This is so more pages are freed 1473 * off fuller lists instead of spinning excessively around empty 1474 * lists 1475 */ 1476 do { 1477 batch_free++; 1478 if (++pindex == NR_PCP_LISTS) 1479 pindex = 0; 1480 list = &pcp->lists[pindex]; 1481 } while (list_empty(list)); 1482 1483 /* This is the only non-empty list. Free them all. */ 1484 if (batch_free == NR_PCP_LISTS) 1485 batch_free = count; 1486 1487 order = pindex_to_order(pindex); 1488 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1489 do { 1490 page = list_last_entry(list, struct page, lru); 1491 /* must delete to avoid corrupting pcp list */ 1492 list_del(&page->lru); 1493 nr_freed += 1 << order; 1494 count -= 1 << order; 1495 1496 if (bulkfree_pcp_prepare(page)) 1497 continue; 1498 1499 /* Encode order with the migratetype */ 1500 page->index <<= NR_PCP_ORDER_WIDTH; 1501 page->index |= order; 1502 1503 list_add_tail(&page->lru, &head); 1504 1505 /* 1506 * We are going to put the page back to the global 1507 * pool, prefetch its buddy to speed up later access 1508 * under zone->lock. It is believed the overhead of 1509 * an additional test and calculating buddy_pfn here 1510 * can be offset by reduced memory latency later. To 1511 * avoid excessive prefetching due to large count, only 1512 * prefetch buddy for the first pcp->batch nr of pages. 1513 */ 1514 if (prefetch_nr) { 1515 prefetch_buddy(page); 1516 prefetch_nr--; 1517 } 1518 } while (count > 0 && --batch_free && !list_empty(list)); 1519 } 1520 pcp->count -= nr_freed; 1521 1522 /* 1523 * local_lock_irq held so equivalent to spin_lock_irqsave for 1524 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1525 */ 1526 spin_lock(&zone->lock); 1527 isolated_pageblocks = has_isolate_pageblock(zone); 1528 1529 /* 1530 * Use safe version since after __free_one_page(), 1531 * page->lru.next will not point to original list. 1532 */ 1533 list_for_each_entry_safe(page, tmp, &head, lru) { 1534 int mt = get_pcppage_migratetype(page); 1535 1536 /* mt has been encoded with the order (see above) */ 1537 order = mt & NR_PCP_ORDER_MASK; 1538 mt >>= NR_PCP_ORDER_WIDTH; 1539 1540 /* MIGRATE_ISOLATE page should not go to pcplists */ 1541 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1542 /* Pageblock could have been isolated meanwhile */ 1543 if (unlikely(isolated_pageblocks)) 1544 mt = get_pageblock_migratetype(page); 1545 1546 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1547 trace_mm_page_pcpu_drain(page, order, mt); 1548 } 1549 spin_unlock(&zone->lock); 1550 } 1551 1552 static void free_one_page(struct zone *zone, 1553 struct page *page, unsigned long pfn, 1554 unsigned int order, 1555 int migratetype, fpi_t fpi_flags) 1556 { 1557 unsigned long flags; 1558 1559 spin_lock_irqsave(&zone->lock, flags); 1560 if (unlikely(has_isolate_pageblock(zone) || 1561 is_migrate_isolate(migratetype))) { 1562 migratetype = get_pfnblock_migratetype(page, pfn); 1563 } 1564 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1565 spin_unlock_irqrestore(&zone->lock, flags); 1566 } 1567 1568 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1569 unsigned long zone, int nid) 1570 { 1571 mm_zero_struct_page(page); 1572 set_page_links(page, zone, nid, pfn); 1573 init_page_count(page); 1574 page_mapcount_reset(page); 1575 page_cpupid_reset_last(page); 1576 page_kasan_tag_reset(page); 1577 1578 INIT_LIST_HEAD(&page->lru); 1579 #ifdef WANT_PAGE_VIRTUAL 1580 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1581 if (!is_highmem_idx(zone)) 1582 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1583 #endif 1584 } 1585 1586 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1587 static void __meminit init_reserved_page(unsigned long pfn) 1588 { 1589 pg_data_t *pgdat; 1590 int nid, zid; 1591 1592 if (!early_page_uninitialised(pfn)) 1593 return; 1594 1595 nid = early_pfn_to_nid(pfn); 1596 pgdat = NODE_DATA(nid); 1597 1598 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1599 struct zone *zone = &pgdat->node_zones[zid]; 1600 1601 if (zone_spans_pfn(zone, pfn)) 1602 break; 1603 } 1604 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1605 } 1606 #else 1607 static inline void init_reserved_page(unsigned long pfn) 1608 { 1609 } 1610 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1611 1612 /* 1613 * Initialised pages do not have PageReserved set. This function is 1614 * called for each range allocated by the bootmem allocator and 1615 * marks the pages PageReserved. The remaining valid pages are later 1616 * sent to the buddy page allocator. 1617 */ 1618 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1619 { 1620 unsigned long start_pfn = PFN_DOWN(start); 1621 unsigned long end_pfn = PFN_UP(end); 1622 1623 for (; start_pfn < end_pfn; start_pfn++) { 1624 if (pfn_valid(start_pfn)) { 1625 struct page *page = pfn_to_page(start_pfn); 1626 1627 init_reserved_page(start_pfn); 1628 1629 /* Avoid false-positive PageTail() */ 1630 INIT_LIST_HEAD(&page->lru); 1631 1632 /* 1633 * no need for atomic set_bit because the struct 1634 * page is not visible yet so nobody should 1635 * access it yet. 1636 */ 1637 __SetPageReserved(page); 1638 } 1639 } 1640 } 1641 1642 static void __free_pages_ok(struct page *page, unsigned int order, 1643 fpi_t fpi_flags) 1644 { 1645 unsigned long flags; 1646 int migratetype; 1647 unsigned long pfn = page_to_pfn(page); 1648 struct zone *zone = page_zone(page); 1649 1650 if (!free_pages_prepare(page, order, true, fpi_flags)) 1651 return; 1652 1653 migratetype = get_pfnblock_migratetype(page, pfn); 1654 1655 spin_lock_irqsave(&zone->lock, flags); 1656 if (unlikely(has_isolate_pageblock(zone) || 1657 is_migrate_isolate(migratetype))) { 1658 migratetype = get_pfnblock_migratetype(page, pfn); 1659 } 1660 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1661 spin_unlock_irqrestore(&zone->lock, flags); 1662 1663 __count_vm_events(PGFREE, 1 << order); 1664 } 1665 1666 void __free_pages_core(struct page *page, unsigned int order) 1667 { 1668 unsigned int nr_pages = 1 << order; 1669 struct page *p = page; 1670 unsigned int loop; 1671 1672 /* 1673 * When initializing the memmap, __init_single_page() sets the refcount 1674 * of all pages to 1 ("allocated"/"not free"). We have to set the 1675 * refcount of all involved pages to 0. 1676 */ 1677 prefetchw(p); 1678 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1679 prefetchw(p + 1); 1680 __ClearPageReserved(p); 1681 set_page_count(p, 0); 1682 } 1683 __ClearPageReserved(p); 1684 set_page_count(p, 0); 1685 1686 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1687 1688 /* 1689 * Bypass PCP and place fresh pages right to the tail, primarily 1690 * relevant for memory onlining. 1691 */ 1692 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1693 } 1694 1695 #ifdef CONFIG_NUMA 1696 1697 /* 1698 * During memory init memblocks map pfns to nids. The search is expensive and 1699 * this caches recent lookups. The implementation of __early_pfn_to_nid 1700 * treats start/end as pfns. 1701 */ 1702 struct mminit_pfnnid_cache { 1703 unsigned long last_start; 1704 unsigned long last_end; 1705 int last_nid; 1706 }; 1707 1708 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1709 1710 /* 1711 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1712 */ 1713 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1714 struct mminit_pfnnid_cache *state) 1715 { 1716 unsigned long start_pfn, end_pfn; 1717 int nid; 1718 1719 if (state->last_start <= pfn && pfn < state->last_end) 1720 return state->last_nid; 1721 1722 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1723 if (nid != NUMA_NO_NODE) { 1724 state->last_start = start_pfn; 1725 state->last_end = end_pfn; 1726 state->last_nid = nid; 1727 } 1728 1729 return nid; 1730 } 1731 1732 int __meminit early_pfn_to_nid(unsigned long pfn) 1733 { 1734 static DEFINE_SPINLOCK(early_pfn_lock); 1735 int nid; 1736 1737 spin_lock(&early_pfn_lock); 1738 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1739 if (nid < 0) 1740 nid = first_online_node; 1741 spin_unlock(&early_pfn_lock); 1742 1743 return nid; 1744 } 1745 #endif /* CONFIG_NUMA */ 1746 1747 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1748 unsigned int order) 1749 { 1750 if (early_page_uninitialised(pfn)) 1751 return; 1752 __free_pages_core(page, order); 1753 } 1754 1755 /* 1756 * Check that the whole (or subset of) a pageblock given by the interval of 1757 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1758 * with the migration of free compaction scanner. 1759 * 1760 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1761 * 1762 * It's possible on some configurations to have a setup like node0 node1 node0 1763 * i.e. it's possible that all pages within a zones range of pages do not 1764 * belong to a single zone. We assume that a border between node0 and node1 1765 * can occur within a single pageblock, but not a node0 node1 node0 1766 * interleaving within a single pageblock. It is therefore sufficient to check 1767 * the first and last page of a pageblock and avoid checking each individual 1768 * page in a pageblock. 1769 */ 1770 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1771 unsigned long end_pfn, struct zone *zone) 1772 { 1773 struct page *start_page; 1774 struct page *end_page; 1775 1776 /* end_pfn is one past the range we are checking */ 1777 end_pfn--; 1778 1779 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1780 return NULL; 1781 1782 start_page = pfn_to_online_page(start_pfn); 1783 if (!start_page) 1784 return NULL; 1785 1786 if (page_zone(start_page) != zone) 1787 return NULL; 1788 1789 end_page = pfn_to_page(end_pfn); 1790 1791 /* This gives a shorter code than deriving page_zone(end_page) */ 1792 if (page_zone_id(start_page) != page_zone_id(end_page)) 1793 return NULL; 1794 1795 return start_page; 1796 } 1797 1798 void set_zone_contiguous(struct zone *zone) 1799 { 1800 unsigned long block_start_pfn = zone->zone_start_pfn; 1801 unsigned long block_end_pfn; 1802 1803 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1804 for (; block_start_pfn < zone_end_pfn(zone); 1805 block_start_pfn = block_end_pfn, 1806 block_end_pfn += pageblock_nr_pages) { 1807 1808 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1809 1810 if (!__pageblock_pfn_to_page(block_start_pfn, 1811 block_end_pfn, zone)) 1812 return; 1813 cond_resched(); 1814 } 1815 1816 /* We confirm that there is no hole */ 1817 zone->contiguous = true; 1818 } 1819 1820 void clear_zone_contiguous(struct zone *zone) 1821 { 1822 zone->contiguous = false; 1823 } 1824 1825 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1826 static void __init deferred_free_range(unsigned long pfn, 1827 unsigned long nr_pages) 1828 { 1829 struct page *page; 1830 unsigned long i; 1831 1832 if (!nr_pages) 1833 return; 1834 1835 page = pfn_to_page(pfn); 1836 1837 /* Free a large naturally-aligned chunk if possible */ 1838 if (nr_pages == pageblock_nr_pages && 1839 (pfn & (pageblock_nr_pages - 1)) == 0) { 1840 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1841 __free_pages_core(page, pageblock_order); 1842 return; 1843 } 1844 1845 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1846 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1847 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1848 __free_pages_core(page, 0); 1849 } 1850 } 1851 1852 /* Completion tracking for deferred_init_memmap() threads */ 1853 static atomic_t pgdat_init_n_undone __initdata; 1854 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1855 1856 static inline void __init pgdat_init_report_one_done(void) 1857 { 1858 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1859 complete(&pgdat_init_all_done_comp); 1860 } 1861 1862 /* 1863 * Returns true if page needs to be initialized or freed to buddy allocator. 1864 * 1865 * First we check if pfn is valid on architectures where it is possible to have 1866 * holes within pageblock_nr_pages. On systems where it is not possible, this 1867 * function is optimized out. 1868 * 1869 * Then, we check if a current large page is valid by only checking the validity 1870 * of the head pfn. 1871 */ 1872 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1873 { 1874 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1875 return false; 1876 return true; 1877 } 1878 1879 /* 1880 * Free pages to buddy allocator. Try to free aligned pages in 1881 * pageblock_nr_pages sizes. 1882 */ 1883 static void __init deferred_free_pages(unsigned long pfn, 1884 unsigned long end_pfn) 1885 { 1886 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1887 unsigned long nr_free = 0; 1888 1889 for (; pfn < end_pfn; pfn++) { 1890 if (!deferred_pfn_valid(pfn)) { 1891 deferred_free_range(pfn - nr_free, nr_free); 1892 nr_free = 0; 1893 } else if (!(pfn & nr_pgmask)) { 1894 deferred_free_range(pfn - nr_free, nr_free); 1895 nr_free = 1; 1896 } else { 1897 nr_free++; 1898 } 1899 } 1900 /* Free the last block of pages to allocator */ 1901 deferred_free_range(pfn - nr_free, nr_free); 1902 } 1903 1904 /* 1905 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1906 * by performing it only once every pageblock_nr_pages. 1907 * Return number of pages initialized. 1908 */ 1909 static unsigned long __init deferred_init_pages(struct zone *zone, 1910 unsigned long pfn, 1911 unsigned long end_pfn) 1912 { 1913 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1914 int nid = zone_to_nid(zone); 1915 unsigned long nr_pages = 0; 1916 int zid = zone_idx(zone); 1917 struct page *page = NULL; 1918 1919 for (; pfn < end_pfn; pfn++) { 1920 if (!deferred_pfn_valid(pfn)) { 1921 page = NULL; 1922 continue; 1923 } else if (!page || !(pfn & nr_pgmask)) { 1924 page = pfn_to_page(pfn); 1925 } else { 1926 page++; 1927 } 1928 __init_single_page(page, pfn, zid, nid); 1929 nr_pages++; 1930 } 1931 return (nr_pages); 1932 } 1933 1934 /* 1935 * This function is meant to pre-load the iterator for the zone init. 1936 * Specifically it walks through the ranges until we are caught up to the 1937 * first_init_pfn value and exits there. If we never encounter the value we 1938 * return false indicating there are no valid ranges left. 1939 */ 1940 static bool __init 1941 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1942 unsigned long *spfn, unsigned long *epfn, 1943 unsigned long first_init_pfn) 1944 { 1945 u64 j; 1946 1947 /* 1948 * Start out by walking through the ranges in this zone that have 1949 * already been initialized. We don't need to do anything with them 1950 * so we just need to flush them out of the system. 1951 */ 1952 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1953 if (*epfn <= first_init_pfn) 1954 continue; 1955 if (*spfn < first_init_pfn) 1956 *spfn = first_init_pfn; 1957 *i = j; 1958 return true; 1959 } 1960 1961 return false; 1962 } 1963 1964 /* 1965 * Initialize and free pages. We do it in two loops: first we initialize 1966 * struct page, then free to buddy allocator, because while we are 1967 * freeing pages we can access pages that are ahead (computing buddy 1968 * page in __free_one_page()). 1969 * 1970 * In order to try and keep some memory in the cache we have the loop 1971 * broken along max page order boundaries. This way we will not cause 1972 * any issues with the buddy page computation. 1973 */ 1974 static unsigned long __init 1975 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1976 unsigned long *end_pfn) 1977 { 1978 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1979 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1980 unsigned long nr_pages = 0; 1981 u64 j = *i; 1982 1983 /* First we loop through and initialize the page values */ 1984 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1985 unsigned long t; 1986 1987 if (mo_pfn <= *start_pfn) 1988 break; 1989 1990 t = min(mo_pfn, *end_pfn); 1991 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1992 1993 if (mo_pfn < *end_pfn) { 1994 *start_pfn = mo_pfn; 1995 break; 1996 } 1997 } 1998 1999 /* Reset values and now loop through freeing pages as needed */ 2000 swap(j, *i); 2001 2002 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2003 unsigned long t; 2004 2005 if (mo_pfn <= spfn) 2006 break; 2007 2008 t = min(mo_pfn, epfn); 2009 deferred_free_pages(spfn, t); 2010 2011 if (mo_pfn <= epfn) 2012 break; 2013 } 2014 2015 return nr_pages; 2016 } 2017 2018 static void __init 2019 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2020 void *arg) 2021 { 2022 unsigned long spfn, epfn; 2023 struct zone *zone = arg; 2024 u64 i; 2025 2026 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2027 2028 /* 2029 * Initialize and free pages in MAX_ORDER sized increments so that we 2030 * can avoid introducing any issues with the buddy allocator. 2031 */ 2032 while (spfn < end_pfn) { 2033 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2034 cond_resched(); 2035 } 2036 } 2037 2038 /* An arch may override for more concurrency. */ 2039 __weak int __init 2040 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2041 { 2042 return 1; 2043 } 2044 2045 /* Initialise remaining memory on a node */ 2046 static int __init deferred_init_memmap(void *data) 2047 { 2048 pg_data_t *pgdat = data; 2049 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2050 unsigned long spfn = 0, epfn = 0; 2051 unsigned long first_init_pfn, flags; 2052 unsigned long start = jiffies; 2053 struct zone *zone; 2054 int zid, max_threads; 2055 u64 i; 2056 2057 /* Bind memory initialisation thread to a local node if possible */ 2058 if (!cpumask_empty(cpumask)) 2059 set_cpus_allowed_ptr(current, cpumask); 2060 2061 pgdat_resize_lock(pgdat, &flags); 2062 first_init_pfn = pgdat->first_deferred_pfn; 2063 if (first_init_pfn == ULONG_MAX) { 2064 pgdat_resize_unlock(pgdat, &flags); 2065 pgdat_init_report_one_done(); 2066 return 0; 2067 } 2068 2069 /* Sanity check boundaries */ 2070 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2071 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2072 pgdat->first_deferred_pfn = ULONG_MAX; 2073 2074 /* 2075 * Once we unlock here, the zone cannot be grown anymore, thus if an 2076 * interrupt thread must allocate this early in boot, zone must be 2077 * pre-grown prior to start of deferred page initialization. 2078 */ 2079 pgdat_resize_unlock(pgdat, &flags); 2080 2081 /* Only the highest zone is deferred so find it */ 2082 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2083 zone = pgdat->node_zones + zid; 2084 if (first_init_pfn < zone_end_pfn(zone)) 2085 break; 2086 } 2087 2088 /* If the zone is empty somebody else may have cleared out the zone */ 2089 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2090 first_init_pfn)) 2091 goto zone_empty; 2092 2093 max_threads = deferred_page_init_max_threads(cpumask); 2094 2095 while (spfn < epfn) { 2096 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2097 struct padata_mt_job job = { 2098 .thread_fn = deferred_init_memmap_chunk, 2099 .fn_arg = zone, 2100 .start = spfn, 2101 .size = epfn_align - spfn, 2102 .align = PAGES_PER_SECTION, 2103 .min_chunk = PAGES_PER_SECTION, 2104 .max_threads = max_threads, 2105 }; 2106 2107 padata_do_multithreaded(&job); 2108 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2109 epfn_align); 2110 } 2111 zone_empty: 2112 /* Sanity check that the next zone really is unpopulated */ 2113 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2114 2115 pr_info("node %d deferred pages initialised in %ums\n", 2116 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2117 2118 pgdat_init_report_one_done(); 2119 return 0; 2120 } 2121 2122 /* 2123 * If this zone has deferred pages, try to grow it by initializing enough 2124 * deferred pages to satisfy the allocation specified by order, rounded up to 2125 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2126 * of SECTION_SIZE bytes by initializing struct pages in increments of 2127 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2128 * 2129 * Return true when zone was grown, otherwise return false. We return true even 2130 * when we grow less than requested, to let the caller decide if there are 2131 * enough pages to satisfy the allocation. 2132 * 2133 * Note: We use noinline because this function is needed only during boot, and 2134 * it is called from a __ref function _deferred_grow_zone. This way we are 2135 * making sure that it is not inlined into permanent text section. 2136 */ 2137 static noinline bool __init 2138 deferred_grow_zone(struct zone *zone, unsigned int order) 2139 { 2140 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2141 pg_data_t *pgdat = zone->zone_pgdat; 2142 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2143 unsigned long spfn, epfn, flags; 2144 unsigned long nr_pages = 0; 2145 u64 i; 2146 2147 /* Only the last zone may have deferred pages */ 2148 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2149 return false; 2150 2151 pgdat_resize_lock(pgdat, &flags); 2152 2153 /* 2154 * If someone grew this zone while we were waiting for spinlock, return 2155 * true, as there might be enough pages already. 2156 */ 2157 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2158 pgdat_resize_unlock(pgdat, &flags); 2159 return true; 2160 } 2161 2162 /* If the zone is empty somebody else may have cleared out the zone */ 2163 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2164 first_deferred_pfn)) { 2165 pgdat->first_deferred_pfn = ULONG_MAX; 2166 pgdat_resize_unlock(pgdat, &flags); 2167 /* Retry only once. */ 2168 return first_deferred_pfn != ULONG_MAX; 2169 } 2170 2171 /* 2172 * Initialize and free pages in MAX_ORDER sized increments so 2173 * that we can avoid introducing any issues with the buddy 2174 * allocator. 2175 */ 2176 while (spfn < epfn) { 2177 /* update our first deferred PFN for this section */ 2178 first_deferred_pfn = spfn; 2179 2180 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2181 touch_nmi_watchdog(); 2182 2183 /* We should only stop along section boundaries */ 2184 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2185 continue; 2186 2187 /* If our quota has been met we can stop here */ 2188 if (nr_pages >= nr_pages_needed) 2189 break; 2190 } 2191 2192 pgdat->first_deferred_pfn = spfn; 2193 pgdat_resize_unlock(pgdat, &flags); 2194 2195 return nr_pages > 0; 2196 } 2197 2198 /* 2199 * deferred_grow_zone() is __init, but it is called from 2200 * get_page_from_freelist() during early boot until deferred_pages permanently 2201 * disables this call. This is why we have refdata wrapper to avoid warning, 2202 * and to ensure that the function body gets unloaded. 2203 */ 2204 static bool __ref 2205 _deferred_grow_zone(struct zone *zone, unsigned int order) 2206 { 2207 return deferred_grow_zone(zone, order); 2208 } 2209 2210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2211 2212 void __init page_alloc_init_late(void) 2213 { 2214 struct zone *zone; 2215 int nid; 2216 2217 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2218 2219 /* There will be num_node_state(N_MEMORY) threads */ 2220 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2221 for_each_node_state(nid, N_MEMORY) { 2222 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2223 } 2224 2225 /* Block until all are initialised */ 2226 wait_for_completion(&pgdat_init_all_done_comp); 2227 2228 /* 2229 * We initialized the rest of the deferred pages. Permanently disable 2230 * on-demand struct page initialization. 2231 */ 2232 static_branch_disable(&deferred_pages); 2233 2234 /* Reinit limits that are based on free pages after the kernel is up */ 2235 files_maxfiles_init(); 2236 #endif 2237 2238 buffer_init(); 2239 2240 /* Discard memblock private memory */ 2241 memblock_discard(); 2242 2243 for_each_node_state(nid, N_MEMORY) 2244 shuffle_free_memory(NODE_DATA(nid)); 2245 2246 for_each_populated_zone(zone) 2247 set_zone_contiguous(zone); 2248 } 2249 2250 #ifdef CONFIG_CMA 2251 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2252 void __init init_cma_reserved_pageblock(struct page *page) 2253 { 2254 unsigned i = pageblock_nr_pages; 2255 struct page *p = page; 2256 2257 do { 2258 __ClearPageReserved(p); 2259 set_page_count(p, 0); 2260 } while (++p, --i); 2261 2262 set_pageblock_migratetype(page, MIGRATE_CMA); 2263 2264 if (pageblock_order >= MAX_ORDER) { 2265 i = pageblock_nr_pages; 2266 p = page; 2267 do { 2268 set_page_refcounted(p); 2269 __free_pages(p, MAX_ORDER - 1); 2270 p += MAX_ORDER_NR_PAGES; 2271 } while (i -= MAX_ORDER_NR_PAGES); 2272 } else { 2273 set_page_refcounted(page); 2274 __free_pages(page, pageblock_order); 2275 } 2276 2277 adjust_managed_page_count(page, pageblock_nr_pages); 2278 page_zone(page)->cma_pages += pageblock_nr_pages; 2279 } 2280 #endif 2281 2282 /* 2283 * The order of subdivision here is critical for the IO subsystem. 2284 * Please do not alter this order without good reasons and regression 2285 * testing. Specifically, as large blocks of memory are subdivided, 2286 * the order in which smaller blocks are delivered depends on the order 2287 * they're subdivided in this function. This is the primary factor 2288 * influencing the order in which pages are delivered to the IO 2289 * subsystem according to empirical testing, and this is also justified 2290 * by considering the behavior of a buddy system containing a single 2291 * large block of memory acted on by a series of small allocations. 2292 * This behavior is a critical factor in sglist merging's success. 2293 * 2294 * -- nyc 2295 */ 2296 static inline void expand(struct zone *zone, struct page *page, 2297 int low, int high, int migratetype) 2298 { 2299 unsigned long size = 1 << high; 2300 2301 while (high > low) { 2302 high--; 2303 size >>= 1; 2304 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2305 2306 /* 2307 * Mark as guard pages (or page), that will allow to 2308 * merge back to allocator when buddy will be freed. 2309 * Corresponding page table entries will not be touched, 2310 * pages will stay not present in virtual address space 2311 */ 2312 if (set_page_guard(zone, &page[size], high, migratetype)) 2313 continue; 2314 2315 add_to_free_list(&page[size], zone, high, migratetype); 2316 set_buddy_order(&page[size], high); 2317 } 2318 } 2319 2320 static void check_new_page_bad(struct page *page) 2321 { 2322 if (unlikely(page->flags & __PG_HWPOISON)) { 2323 /* Don't complain about hwpoisoned pages */ 2324 page_mapcount_reset(page); /* remove PageBuddy */ 2325 return; 2326 } 2327 2328 bad_page(page, 2329 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2330 } 2331 2332 /* 2333 * This page is about to be returned from the page allocator 2334 */ 2335 static inline int check_new_page(struct page *page) 2336 { 2337 if (likely(page_expected_state(page, 2338 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2339 return 0; 2340 2341 check_new_page_bad(page); 2342 return 1; 2343 } 2344 2345 #ifdef CONFIG_DEBUG_VM 2346 /* 2347 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2348 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2349 * also checked when pcp lists are refilled from the free lists. 2350 */ 2351 static inline bool check_pcp_refill(struct page *page) 2352 { 2353 if (debug_pagealloc_enabled_static()) 2354 return check_new_page(page); 2355 else 2356 return false; 2357 } 2358 2359 static inline bool check_new_pcp(struct page *page) 2360 { 2361 return check_new_page(page); 2362 } 2363 #else 2364 /* 2365 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2366 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2367 * enabled, they are also checked when being allocated from the pcp lists. 2368 */ 2369 static inline bool check_pcp_refill(struct page *page) 2370 { 2371 return check_new_page(page); 2372 } 2373 static inline bool check_new_pcp(struct page *page) 2374 { 2375 if (debug_pagealloc_enabled_static()) 2376 return check_new_page(page); 2377 else 2378 return false; 2379 } 2380 #endif /* CONFIG_DEBUG_VM */ 2381 2382 static bool check_new_pages(struct page *page, unsigned int order) 2383 { 2384 int i; 2385 for (i = 0; i < (1 << order); i++) { 2386 struct page *p = page + i; 2387 2388 if (unlikely(check_new_page(p))) 2389 return true; 2390 } 2391 2392 return false; 2393 } 2394 2395 inline void post_alloc_hook(struct page *page, unsigned int order, 2396 gfp_t gfp_flags) 2397 { 2398 set_page_private(page, 0); 2399 set_page_refcounted(page); 2400 2401 arch_alloc_page(page, order); 2402 debug_pagealloc_map_pages(page, 1 << order); 2403 2404 /* 2405 * Page unpoisoning must happen before memory initialization. 2406 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2407 * allocations and the page unpoisoning code will complain. 2408 */ 2409 kernel_unpoison_pages(page, 1 << order); 2410 2411 /* 2412 * As memory initialization might be integrated into KASAN, 2413 * kasan_alloc_pages and kernel_init_free_pages must be 2414 * kept together to avoid discrepancies in behavior. 2415 */ 2416 if (kasan_has_integrated_init()) { 2417 kasan_alloc_pages(page, order, gfp_flags); 2418 } else { 2419 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2420 2421 kasan_unpoison_pages(page, order, init); 2422 if (init) 2423 kernel_init_free_pages(page, 1 << order, 2424 gfp_flags & __GFP_ZEROTAGS); 2425 } 2426 2427 set_page_owner(page, order, gfp_flags); 2428 page_table_check_alloc(page, order); 2429 } 2430 2431 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2432 unsigned int alloc_flags) 2433 { 2434 post_alloc_hook(page, order, gfp_flags); 2435 2436 if (order && (gfp_flags & __GFP_COMP)) 2437 prep_compound_page(page, order); 2438 2439 /* 2440 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2441 * allocate the page. The expectation is that the caller is taking 2442 * steps that will free more memory. The caller should avoid the page 2443 * being used for !PFMEMALLOC purposes. 2444 */ 2445 if (alloc_flags & ALLOC_NO_WATERMARKS) 2446 set_page_pfmemalloc(page); 2447 else 2448 clear_page_pfmemalloc(page); 2449 } 2450 2451 /* 2452 * Go through the free lists for the given migratetype and remove 2453 * the smallest available page from the freelists 2454 */ 2455 static __always_inline 2456 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2457 int migratetype) 2458 { 2459 unsigned int current_order; 2460 struct free_area *area; 2461 struct page *page; 2462 2463 /* Find a page of the appropriate size in the preferred list */ 2464 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2465 area = &(zone->free_area[current_order]); 2466 page = get_page_from_free_area(area, migratetype); 2467 if (!page) 2468 continue; 2469 del_page_from_free_list(page, zone, current_order); 2470 expand(zone, page, order, current_order, migratetype); 2471 set_pcppage_migratetype(page, migratetype); 2472 return page; 2473 } 2474 2475 return NULL; 2476 } 2477 2478 2479 /* 2480 * This array describes the order lists are fallen back to when 2481 * the free lists for the desirable migrate type are depleted 2482 */ 2483 static int fallbacks[MIGRATE_TYPES][3] = { 2484 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2485 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2486 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2487 #ifdef CONFIG_CMA 2488 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2489 #endif 2490 #ifdef CONFIG_MEMORY_ISOLATION 2491 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2492 #endif 2493 }; 2494 2495 #ifdef CONFIG_CMA 2496 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2497 unsigned int order) 2498 { 2499 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2500 } 2501 #else 2502 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2503 unsigned int order) { return NULL; } 2504 #endif 2505 2506 /* 2507 * Move the free pages in a range to the freelist tail of the requested type. 2508 * Note that start_page and end_pages are not aligned on a pageblock 2509 * boundary. If alignment is required, use move_freepages_block() 2510 */ 2511 static int move_freepages(struct zone *zone, 2512 unsigned long start_pfn, unsigned long end_pfn, 2513 int migratetype, int *num_movable) 2514 { 2515 struct page *page; 2516 unsigned long pfn; 2517 unsigned int order; 2518 int pages_moved = 0; 2519 2520 for (pfn = start_pfn; pfn <= end_pfn;) { 2521 page = pfn_to_page(pfn); 2522 if (!PageBuddy(page)) { 2523 /* 2524 * We assume that pages that could be isolated for 2525 * migration are movable. But we don't actually try 2526 * isolating, as that would be expensive. 2527 */ 2528 if (num_movable && 2529 (PageLRU(page) || __PageMovable(page))) 2530 (*num_movable)++; 2531 pfn++; 2532 continue; 2533 } 2534 2535 /* Make sure we are not inadvertently changing nodes */ 2536 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2537 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2538 2539 order = buddy_order(page); 2540 move_to_free_list(page, zone, order, migratetype); 2541 pfn += 1 << order; 2542 pages_moved += 1 << order; 2543 } 2544 2545 return pages_moved; 2546 } 2547 2548 int move_freepages_block(struct zone *zone, struct page *page, 2549 int migratetype, int *num_movable) 2550 { 2551 unsigned long start_pfn, end_pfn, pfn; 2552 2553 if (num_movable) 2554 *num_movable = 0; 2555 2556 pfn = page_to_pfn(page); 2557 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2558 end_pfn = start_pfn + pageblock_nr_pages - 1; 2559 2560 /* Do not cross zone boundaries */ 2561 if (!zone_spans_pfn(zone, start_pfn)) 2562 start_pfn = pfn; 2563 if (!zone_spans_pfn(zone, end_pfn)) 2564 return 0; 2565 2566 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2567 num_movable); 2568 } 2569 2570 static void change_pageblock_range(struct page *pageblock_page, 2571 int start_order, int migratetype) 2572 { 2573 int nr_pageblocks = 1 << (start_order - pageblock_order); 2574 2575 while (nr_pageblocks--) { 2576 set_pageblock_migratetype(pageblock_page, migratetype); 2577 pageblock_page += pageblock_nr_pages; 2578 } 2579 } 2580 2581 /* 2582 * When we are falling back to another migratetype during allocation, try to 2583 * steal extra free pages from the same pageblocks to satisfy further 2584 * allocations, instead of polluting multiple pageblocks. 2585 * 2586 * If we are stealing a relatively large buddy page, it is likely there will 2587 * be more free pages in the pageblock, so try to steal them all. For 2588 * reclaimable and unmovable allocations, we steal regardless of page size, 2589 * as fragmentation caused by those allocations polluting movable pageblocks 2590 * is worse than movable allocations stealing from unmovable and reclaimable 2591 * pageblocks. 2592 */ 2593 static bool can_steal_fallback(unsigned int order, int start_mt) 2594 { 2595 /* 2596 * Leaving this order check is intended, although there is 2597 * relaxed order check in next check. The reason is that 2598 * we can actually steal whole pageblock if this condition met, 2599 * but, below check doesn't guarantee it and that is just heuristic 2600 * so could be changed anytime. 2601 */ 2602 if (order >= pageblock_order) 2603 return true; 2604 2605 if (order >= pageblock_order / 2 || 2606 start_mt == MIGRATE_RECLAIMABLE || 2607 start_mt == MIGRATE_UNMOVABLE || 2608 page_group_by_mobility_disabled) 2609 return true; 2610 2611 return false; 2612 } 2613 2614 static inline bool boost_watermark(struct zone *zone) 2615 { 2616 unsigned long max_boost; 2617 2618 if (!watermark_boost_factor) 2619 return false; 2620 /* 2621 * Don't bother in zones that are unlikely to produce results. 2622 * On small machines, including kdump capture kernels running 2623 * in a small area, boosting the watermark can cause an out of 2624 * memory situation immediately. 2625 */ 2626 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2627 return false; 2628 2629 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2630 watermark_boost_factor, 10000); 2631 2632 /* 2633 * high watermark may be uninitialised if fragmentation occurs 2634 * very early in boot so do not boost. We do not fall 2635 * through and boost by pageblock_nr_pages as failing 2636 * allocations that early means that reclaim is not going 2637 * to help and it may even be impossible to reclaim the 2638 * boosted watermark resulting in a hang. 2639 */ 2640 if (!max_boost) 2641 return false; 2642 2643 max_boost = max(pageblock_nr_pages, max_boost); 2644 2645 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2646 max_boost); 2647 2648 return true; 2649 } 2650 2651 /* 2652 * This function implements actual steal behaviour. If order is large enough, 2653 * we can steal whole pageblock. If not, we first move freepages in this 2654 * pageblock to our migratetype and determine how many already-allocated pages 2655 * are there in the pageblock with a compatible migratetype. If at least half 2656 * of pages are free or compatible, we can change migratetype of the pageblock 2657 * itself, so pages freed in the future will be put on the correct free list. 2658 */ 2659 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2660 unsigned int alloc_flags, int start_type, bool whole_block) 2661 { 2662 unsigned int current_order = buddy_order(page); 2663 int free_pages, movable_pages, alike_pages; 2664 int old_block_type; 2665 2666 old_block_type = get_pageblock_migratetype(page); 2667 2668 /* 2669 * This can happen due to races and we want to prevent broken 2670 * highatomic accounting. 2671 */ 2672 if (is_migrate_highatomic(old_block_type)) 2673 goto single_page; 2674 2675 /* Take ownership for orders >= pageblock_order */ 2676 if (current_order >= pageblock_order) { 2677 change_pageblock_range(page, current_order, start_type); 2678 goto single_page; 2679 } 2680 2681 /* 2682 * Boost watermarks to increase reclaim pressure to reduce the 2683 * likelihood of future fallbacks. Wake kswapd now as the node 2684 * may be balanced overall and kswapd will not wake naturally. 2685 */ 2686 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2687 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2688 2689 /* We are not allowed to try stealing from the whole block */ 2690 if (!whole_block) 2691 goto single_page; 2692 2693 free_pages = move_freepages_block(zone, page, start_type, 2694 &movable_pages); 2695 /* 2696 * Determine how many pages are compatible with our allocation. 2697 * For movable allocation, it's the number of movable pages which 2698 * we just obtained. For other types it's a bit more tricky. 2699 */ 2700 if (start_type == MIGRATE_MOVABLE) { 2701 alike_pages = movable_pages; 2702 } else { 2703 /* 2704 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2705 * to MOVABLE pageblock, consider all non-movable pages as 2706 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2707 * vice versa, be conservative since we can't distinguish the 2708 * exact migratetype of non-movable pages. 2709 */ 2710 if (old_block_type == MIGRATE_MOVABLE) 2711 alike_pages = pageblock_nr_pages 2712 - (free_pages + movable_pages); 2713 else 2714 alike_pages = 0; 2715 } 2716 2717 /* moving whole block can fail due to zone boundary conditions */ 2718 if (!free_pages) 2719 goto single_page; 2720 2721 /* 2722 * If a sufficient number of pages in the block are either free or of 2723 * comparable migratability as our allocation, claim the whole block. 2724 */ 2725 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2726 page_group_by_mobility_disabled) 2727 set_pageblock_migratetype(page, start_type); 2728 2729 return; 2730 2731 single_page: 2732 move_to_free_list(page, zone, current_order, start_type); 2733 } 2734 2735 /* 2736 * Check whether there is a suitable fallback freepage with requested order. 2737 * If only_stealable is true, this function returns fallback_mt only if 2738 * we can steal other freepages all together. This would help to reduce 2739 * fragmentation due to mixed migratetype pages in one pageblock. 2740 */ 2741 int find_suitable_fallback(struct free_area *area, unsigned int order, 2742 int migratetype, bool only_stealable, bool *can_steal) 2743 { 2744 int i; 2745 int fallback_mt; 2746 2747 if (area->nr_free == 0) 2748 return -1; 2749 2750 *can_steal = false; 2751 for (i = 0;; i++) { 2752 fallback_mt = fallbacks[migratetype][i]; 2753 if (fallback_mt == MIGRATE_TYPES) 2754 break; 2755 2756 if (free_area_empty(area, fallback_mt)) 2757 continue; 2758 2759 if (can_steal_fallback(order, migratetype)) 2760 *can_steal = true; 2761 2762 if (!only_stealable) 2763 return fallback_mt; 2764 2765 if (*can_steal) 2766 return fallback_mt; 2767 } 2768 2769 return -1; 2770 } 2771 2772 /* 2773 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2774 * there are no empty page blocks that contain a page with a suitable order 2775 */ 2776 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2777 unsigned int alloc_order) 2778 { 2779 int mt; 2780 unsigned long max_managed, flags; 2781 2782 /* 2783 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2784 * Check is race-prone but harmless. 2785 */ 2786 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2787 if (zone->nr_reserved_highatomic >= max_managed) 2788 return; 2789 2790 spin_lock_irqsave(&zone->lock, flags); 2791 2792 /* Recheck the nr_reserved_highatomic limit under the lock */ 2793 if (zone->nr_reserved_highatomic >= max_managed) 2794 goto out_unlock; 2795 2796 /* Yoink! */ 2797 mt = get_pageblock_migratetype(page); 2798 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2799 && !is_migrate_cma(mt)) { 2800 zone->nr_reserved_highatomic += pageblock_nr_pages; 2801 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2802 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2803 } 2804 2805 out_unlock: 2806 spin_unlock_irqrestore(&zone->lock, flags); 2807 } 2808 2809 /* 2810 * Used when an allocation is about to fail under memory pressure. This 2811 * potentially hurts the reliability of high-order allocations when under 2812 * intense memory pressure but failed atomic allocations should be easier 2813 * to recover from than an OOM. 2814 * 2815 * If @force is true, try to unreserve a pageblock even though highatomic 2816 * pageblock is exhausted. 2817 */ 2818 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2819 bool force) 2820 { 2821 struct zonelist *zonelist = ac->zonelist; 2822 unsigned long flags; 2823 struct zoneref *z; 2824 struct zone *zone; 2825 struct page *page; 2826 int order; 2827 bool ret; 2828 2829 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2830 ac->nodemask) { 2831 /* 2832 * Preserve at least one pageblock unless memory pressure 2833 * is really high. 2834 */ 2835 if (!force && zone->nr_reserved_highatomic <= 2836 pageblock_nr_pages) 2837 continue; 2838 2839 spin_lock_irqsave(&zone->lock, flags); 2840 for (order = 0; order < MAX_ORDER; order++) { 2841 struct free_area *area = &(zone->free_area[order]); 2842 2843 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2844 if (!page) 2845 continue; 2846 2847 /* 2848 * In page freeing path, migratetype change is racy so 2849 * we can counter several free pages in a pageblock 2850 * in this loop although we changed the pageblock type 2851 * from highatomic to ac->migratetype. So we should 2852 * adjust the count once. 2853 */ 2854 if (is_migrate_highatomic_page(page)) { 2855 /* 2856 * It should never happen but changes to 2857 * locking could inadvertently allow a per-cpu 2858 * drain to add pages to MIGRATE_HIGHATOMIC 2859 * while unreserving so be safe and watch for 2860 * underflows. 2861 */ 2862 zone->nr_reserved_highatomic -= min( 2863 pageblock_nr_pages, 2864 zone->nr_reserved_highatomic); 2865 } 2866 2867 /* 2868 * Convert to ac->migratetype and avoid the normal 2869 * pageblock stealing heuristics. Minimally, the caller 2870 * is doing the work and needs the pages. More 2871 * importantly, if the block was always converted to 2872 * MIGRATE_UNMOVABLE or another type then the number 2873 * of pageblocks that cannot be completely freed 2874 * may increase. 2875 */ 2876 set_pageblock_migratetype(page, ac->migratetype); 2877 ret = move_freepages_block(zone, page, ac->migratetype, 2878 NULL); 2879 if (ret) { 2880 spin_unlock_irqrestore(&zone->lock, flags); 2881 return ret; 2882 } 2883 } 2884 spin_unlock_irqrestore(&zone->lock, flags); 2885 } 2886 2887 return false; 2888 } 2889 2890 /* 2891 * Try finding a free buddy page on the fallback list and put it on the free 2892 * list of requested migratetype, possibly along with other pages from the same 2893 * block, depending on fragmentation avoidance heuristics. Returns true if 2894 * fallback was found so that __rmqueue_smallest() can grab it. 2895 * 2896 * The use of signed ints for order and current_order is a deliberate 2897 * deviation from the rest of this file, to make the for loop 2898 * condition simpler. 2899 */ 2900 static __always_inline bool 2901 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2902 unsigned int alloc_flags) 2903 { 2904 struct free_area *area; 2905 int current_order; 2906 int min_order = order; 2907 struct page *page; 2908 int fallback_mt; 2909 bool can_steal; 2910 2911 /* 2912 * Do not steal pages from freelists belonging to other pageblocks 2913 * i.e. orders < pageblock_order. If there are no local zones free, 2914 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2915 */ 2916 if (alloc_flags & ALLOC_NOFRAGMENT) 2917 min_order = pageblock_order; 2918 2919 /* 2920 * Find the largest available free page in the other list. This roughly 2921 * approximates finding the pageblock with the most free pages, which 2922 * would be too costly to do exactly. 2923 */ 2924 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2925 --current_order) { 2926 area = &(zone->free_area[current_order]); 2927 fallback_mt = find_suitable_fallback(area, current_order, 2928 start_migratetype, false, &can_steal); 2929 if (fallback_mt == -1) 2930 continue; 2931 2932 /* 2933 * We cannot steal all free pages from the pageblock and the 2934 * requested migratetype is movable. In that case it's better to 2935 * steal and split the smallest available page instead of the 2936 * largest available page, because even if the next movable 2937 * allocation falls back into a different pageblock than this 2938 * one, it won't cause permanent fragmentation. 2939 */ 2940 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2941 && current_order > order) 2942 goto find_smallest; 2943 2944 goto do_steal; 2945 } 2946 2947 return false; 2948 2949 find_smallest: 2950 for (current_order = order; current_order < MAX_ORDER; 2951 current_order++) { 2952 area = &(zone->free_area[current_order]); 2953 fallback_mt = find_suitable_fallback(area, current_order, 2954 start_migratetype, false, &can_steal); 2955 if (fallback_mt != -1) 2956 break; 2957 } 2958 2959 /* 2960 * This should not happen - we already found a suitable fallback 2961 * when looking for the largest page. 2962 */ 2963 VM_BUG_ON(current_order == MAX_ORDER); 2964 2965 do_steal: 2966 page = get_page_from_free_area(area, fallback_mt); 2967 2968 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2969 can_steal); 2970 2971 trace_mm_page_alloc_extfrag(page, order, current_order, 2972 start_migratetype, fallback_mt); 2973 2974 return true; 2975 2976 } 2977 2978 /* 2979 * Do the hard work of removing an element from the buddy allocator. 2980 * Call me with the zone->lock already held. 2981 */ 2982 static __always_inline struct page * 2983 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2984 unsigned int alloc_flags) 2985 { 2986 struct page *page; 2987 2988 if (IS_ENABLED(CONFIG_CMA)) { 2989 /* 2990 * Balance movable allocations between regular and CMA areas by 2991 * allocating from CMA when over half of the zone's free memory 2992 * is in the CMA area. 2993 */ 2994 if (alloc_flags & ALLOC_CMA && 2995 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2996 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2997 page = __rmqueue_cma_fallback(zone, order); 2998 if (page) 2999 goto out; 3000 } 3001 } 3002 retry: 3003 page = __rmqueue_smallest(zone, order, migratetype); 3004 if (unlikely(!page)) { 3005 if (alloc_flags & ALLOC_CMA) 3006 page = __rmqueue_cma_fallback(zone, order); 3007 3008 if (!page && __rmqueue_fallback(zone, order, migratetype, 3009 alloc_flags)) 3010 goto retry; 3011 } 3012 out: 3013 if (page) 3014 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3015 return page; 3016 } 3017 3018 /* 3019 * Obtain a specified number of elements from the buddy allocator, all under 3020 * a single hold of the lock, for efficiency. Add them to the supplied list. 3021 * Returns the number of new pages which were placed at *list. 3022 */ 3023 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3024 unsigned long count, struct list_head *list, 3025 int migratetype, unsigned int alloc_flags) 3026 { 3027 int i, allocated = 0; 3028 3029 /* 3030 * local_lock_irq held so equivalent to spin_lock_irqsave for 3031 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3032 */ 3033 spin_lock(&zone->lock); 3034 for (i = 0; i < count; ++i) { 3035 struct page *page = __rmqueue(zone, order, migratetype, 3036 alloc_flags); 3037 if (unlikely(page == NULL)) 3038 break; 3039 3040 if (unlikely(check_pcp_refill(page))) 3041 continue; 3042 3043 /* 3044 * Split buddy pages returned by expand() are received here in 3045 * physical page order. The page is added to the tail of 3046 * caller's list. From the callers perspective, the linked list 3047 * is ordered by page number under some conditions. This is 3048 * useful for IO devices that can forward direction from the 3049 * head, thus also in the physical page order. This is useful 3050 * for IO devices that can merge IO requests if the physical 3051 * pages are ordered properly. 3052 */ 3053 list_add_tail(&page->lru, list); 3054 allocated++; 3055 if (is_migrate_cma(get_pcppage_migratetype(page))) 3056 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3057 -(1 << order)); 3058 } 3059 3060 /* 3061 * i pages were removed from the buddy list even if some leak due 3062 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3063 * on i. Do not confuse with 'allocated' which is the number of 3064 * pages added to the pcp list. 3065 */ 3066 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3067 spin_unlock(&zone->lock); 3068 return allocated; 3069 } 3070 3071 #ifdef CONFIG_NUMA 3072 /* 3073 * Called from the vmstat counter updater to drain pagesets of this 3074 * currently executing processor on remote nodes after they have 3075 * expired. 3076 * 3077 * Note that this function must be called with the thread pinned to 3078 * a single processor. 3079 */ 3080 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3081 { 3082 unsigned long flags; 3083 int to_drain, batch; 3084 3085 local_lock_irqsave(&pagesets.lock, flags); 3086 batch = READ_ONCE(pcp->batch); 3087 to_drain = min(pcp->count, batch); 3088 if (to_drain > 0) 3089 free_pcppages_bulk(zone, to_drain, pcp); 3090 local_unlock_irqrestore(&pagesets.lock, flags); 3091 } 3092 #endif 3093 3094 /* 3095 * Drain pcplists of the indicated processor and zone. 3096 * 3097 * The processor must either be the current processor and the 3098 * thread pinned to the current processor or a processor that 3099 * is not online. 3100 */ 3101 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3102 { 3103 unsigned long flags; 3104 struct per_cpu_pages *pcp; 3105 3106 local_lock_irqsave(&pagesets.lock, flags); 3107 3108 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3109 if (pcp->count) 3110 free_pcppages_bulk(zone, pcp->count, pcp); 3111 3112 local_unlock_irqrestore(&pagesets.lock, flags); 3113 } 3114 3115 /* 3116 * Drain pcplists of all zones on the indicated processor. 3117 * 3118 * The processor must either be the current processor and the 3119 * thread pinned to the current processor or a processor that 3120 * is not online. 3121 */ 3122 static void drain_pages(unsigned int cpu) 3123 { 3124 struct zone *zone; 3125 3126 for_each_populated_zone(zone) { 3127 drain_pages_zone(cpu, zone); 3128 } 3129 } 3130 3131 /* 3132 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3133 * 3134 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3135 * the single zone's pages. 3136 */ 3137 void drain_local_pages(struct zone *zone) 3138 { 3139 int cpu = smp_processor_id(); 3140 3141 if (zone) 3142 drain_pages_zone(cpu, zone); 3143 else 3144 drain_pages(cpu); 3145 } 3146 3147 static void drain_local_pages_wq(struct work_struct *work) 3148 { 3149 struct pcpu_drain *drain; 3150 3151 drain = container_of(work, struct pcpu_drain, work); 3152 3153 /* 3154 * drain_all_pages doesn't use proper cpu hotplug protection so 3155 * we can race with cpu offline when the WQ can move this from 3156 * a cpu pinned worker to an unbound one. We can operate on a different 3157 * cpu which is alright but we also have to make sure to not move to 3158 * a different one. 3159 */ 3160 migrate_disable(); 3161 drain_local_pages(drain->zone); 3162 migrate_enable(); 3163 } 3164 3165 /* 3166 * The implementation of drain_all_pages(), exposing an extra parameter to 3167 * drain on all cpus. 3168 * 3169 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3170 * not empty. The check for non-emptiness can however race with a free to 3171 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3172 * that need the guarantee that every CPU has drained can disable the 3173 * optimizing racy check. 3174 */ 3175 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3176 { 3177 int cpu; 3178 3179 /* 3180 * Allocate in the BSS so we won't require allocation in 3181 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3182 */ 3183 static cpumask_t cpus_with_pcps; 3184 3185 /* 3186 * Make sure nobody triggers this path before mm_percpu_wq is fully 3187 * initialized. 3188 */ 3189 if (WARN_ON_ONCE(!mm_percpu_wq)) 3190 return; 3191 3192 /* 3193 * Do not drain if one is already in progress unless it's specific to 3194 * a zone. Such callers are primarily CMA and memory hotplug and need 3195 * the drain to be complete when the call returns. 3196 */ 3197 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3198 if (!zone) 3199 return; 3200 mutex_lock(&pcpu_drain_mutex); 3201 } 3202 3203 /* 3204 * We don't care about racing with CPU hotplug event 3205 * as offline notification will cause the notified 3206 * cpu to drain that CPU pcps and on_each_cpu_mask 3207 * disables preemption as part of its processing 3208 */ 3209 for_each_online_cpu(cpu) { 3210 struct per_cpu_pages *pcp; 3211 struct zone *z; 3212 bool has_pcps = false; 3213 3214 if (force_all_cpus) { 3215 /* 3216 * The pcp.count check is racy, some callers need a 3217 * guarantee that no cpu is missed. 3218 */ 3219 has_pcps = true; 3220 } else if (zone) { 3221 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3222 if (pcp->count) 3223 has_pcps = true; 3224 } else { 3225 for_each_populated_zone(z) { 3226 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3227 if (pcp->count) { 3228 has_pcps = true; 3229 break; 3230 } 3231 } 3232 } 3233 3234 if (has_pcps) 3235 cpumask_set_cpu(cpu, &cpus_with_pcps); 3236 else 3237 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3238 } 3239 3240 for_each_cpu(cpu, &cpus_with_pcps) { 3241 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3242 3243 drain->zone = zone; 3244 INIT_WORK(&drain->work, drain_local_pages_wq); 3245 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3246 } 3247 for_each_cpu(cpu, &cpus_with_pcps) 3248 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3249 3250 mutex_unlock(&pcpu_drain_mutex); 3251 } 3252 3253 /* 3254 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3255 * 3256 * When zone parameter is non-NULL, spill just the single zone's pages. 3257 * 3258 * Note that this can be extremely slow as the draining happens in a workqueue. 3259 */ 3260 void drain_all_pages(struct zone *zone) 3261 { 3262 __drain_all_pages(zone, false); 3263 } 3264 3265 #ifdef CONFIG_HIBERNATION 3266 3267 /* 3268 * Touch the watchdog for every WD_PAGE_COUNT pages. 3269 */ 3270 #define WD_PAGE_COUNT (128*1024) 3271 3272 void mark_free_pages(struct zone *zone) 3273 { 3274 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3275 unsigned long flags; 3276 unsigned int order, t; 3277 struct page *page; 3278 3279 if (zone_is_empty(zone)) 3280 return; 3281 3282 spin_lock_irqsave(&zone->lock, flags); 3283 3284 max_zone_pfn = zone_end_pfn(zone); 3285 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3286 if (pfn_valid(pfn)) { 3287 page = pfn_to_page(pfn); 3288 3289 if (!--page_count) { 3290 touch_nmi_watchdog(); 3291 page_count = WD_PAGE_COUNT; 3292 } 3293 3294 if (page_zone(page) != zone) 3295 continue; 3296 3297 if (!swsusp_page_is_forbidden(page)) 3298 swsusp_unset_page_free(page); 3299 } 3300 3301 for_each_migratetype_order(order, t) { 3302 list_for_each_entry(page, 3303 &zone->free_area[order].free_list[t], lru) { 3304 unsigned long i; 3305 3306 pfn = page_to_pfn(page); 3307 for (i = 0; i < (1UL << order); i++) { 3308 if (!--page_count) { 3309 touch_nmi_watchdog(); 3310 page_count = WD_PAGE_COUNT; 3311 } 3312 swsusp_set_page_free(pfn_to_page(pfn + i)); 3313 } 3314 } 3315 } 3316 spin_unlock_irqrestore(&zone->lock, flags); 3317 } 3318 #endif /* CONFIG_PM */ 3319 3320 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3321 unsigned int order) 3322 { 3323 int migratetype; 3324 3325 if (!free_pcp_prepare(page, order)) 3326 return false; 3327 3328 migratetype = get_pfnblock_migratetype(page, pfn); 3329 set_pcppage_migratetype(page, migratetype); 3330 return true; 3331 } 3332 3333 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3334 { 3335 int min_nr_free, max_nr_free; 3336 3337 /* Check for PCP disabled or boot pageset */ 3338 if (unlikely(high < batch)) 3339 return 1; 3340 3341 /* Leave at least pcp->batch pages on the list */ 3342 min_nr_free = batch; 3343 max_nr_free = high - batch; 3344 3345 /* 3346 * Double the number of pages freed each time there is subsequent 3347 * freeing of pages without any allocation. 3348 */ 3349 batch <<= pcp->free_factor; 3350 if (batch < max_nr_free) 3351 pcp->free_factor++; 3352 batch = clamp(batch, min_nr_free, max_nr_free); 3353 3354 return batch; 3355 } 3356 3357 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3358 { 3359 int high = READ_ONCE(pcp->high); 3360 3361 if (unlikely(!high)) 3362 return 0; 3363 3364 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3365 return high; 3366 3367 /* 3368 * If reclaim is active, limit the number of pages that can be 3369 * stored on pcp lists 3370 */ 3371 return min(READ_ONCE(pcp->batch) << 2, high); 3372 } 3373 3374 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3375 int migratetype, unsigned int order) 3376 { 3377 struct zone *zone = page_zone(page); 3378 struct per_cpu_pages *pcp; 3379 int high; 3380 int pindex; 3381 3382 __count_vm_event(PGFREE); 3383 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3384 pindex = order_to_pindex(migratetype, order); 3385 list_add(&page->lru, &pcp->lists[pindex]); 3386 pcp->count += 1 << order; 3387 high = nr_pcp_high(pcp, zone); 3388 if (pcp->count >= high) { 3389 int batch = READ_ONCE(pcp->batch); 3390 3391 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3392 } 3393 } 3394 3395 /* 3396 * Free a pcp page 3397 */ 3398 void free_unref_page(struct page *page, unsigned int order) 3399 { 3400 unsigned long flags; 3401 unsigned long pfn = page_to_pfn(page); 3402 int migratetype; 3403 3404 if (!free_unref_page_prepare(page, pfn, order)) 3405 return; 3406 3407 /* 3408 * We only track unmovable, reclaimable and movable on pcp lists. 3409 * Place ISOLATE pages on the isolated list because they are being 3410 * offlined but treat HIGHATOMIC as movable pages so we can get those 3411 * areas back if necessary. Otherwise, we may have to free 3412 * excessively into the page allocator 3413 */ 3414 migratetype = get_pcppage_migratetype(page); 3415 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3416 if (unlikely(is_migrate_isolate(migratetype))) { 3417 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3418 return; 3419 } 3420 migratetype = MIGRATE_MOVABLE; 3421 } 3422 3423 local_lock_irqsave(&pagesets.lock, flags); 3424 free_unref_page_commit(page, pfn, migratetype, order); 3425 local_unlock_irqrestore(&pagesets.lock, flags); 3426 } 3427 3428 /* 3429 * Free a list of 0-order pages 3430 */ 3431 void free_unref_page_list(struct list_head *list) 3432 { 3433 struct page *page, *next; 3434 unsigned long flags, pfn; 3435 int batch_count = 0; 3436 int migratetype; 3437 3438 /* Prepare pages for freeing */ 3439 list_for_each_entry_safe(page, next, list, lru) { 3440 pfn = page_to_pfn(page); 3441 if (!free_unref_page_prepare(page, pfn, 0)) { 3442 list_del(&page->lru); 3443 continue; 3444 } 3445 3446 /* 3447 * Free isolated pages directly to the allocator, see 3448 * comment in free_unref_page. 3449 */ 3450 migratetype = get_pcppage_migratetype(page); 3451 if (unlikely(is_migrate_isolate(migratetype))) { 3452 list_del(&page->lru); 3453 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3454 continue; 3455 } 3456 3457 set_page_private(page, pfn); 3458 } 3459 3460 local_lock_irqsave(&pagesets.lock, flags); 3461 list_for_each_entry_safe(page, next, list, lru) { 3462 pfn = page_private(page); 3463 set_page_private(page, 0); 3464 3465 /* 3466 * Non-isolated types over MIGRATE_PCPTYPES get added 3467 * to the MIGRATE_MOVABLE pcp list. 3468 */ 3469 migratetype = get_pcppage_migratetype(page); 3470 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3471 migratetype = MIGRATE_MOVABLE; 3472 3473 trace_mm_page_free_batched(page); 3474 free_unref_page_commit(page, pfn, migratetype, 0); 3475 3476 /* 3477 * Guard against excessive IRQ disabled times when we get 3478 * a large list of pages to free. 3479 */ 3480 if (++batch_count == SWAP_CLUSTER_MAX) { 3481 local_unlock_irqrestore(&pagesets.lock, flags); 3482 batch_count = 0; 3483 local_lock_irqsave(&pagesets.lock, flags); 3484 } 3485 } 3486 local_unlock_irqrestore(&pagesets.lock, flags); 3487 } 3488 3489 /* 3490 * split_page takes a non-compound higher-order page, and splits it into 3491 * n (1<<order) sub-pages: page[0..n] 3492 * Each sub-page must be freed individually. 3493 * 3494 * Note: this is probably too low level an operation for use in drivers. 3495 * Please consult with lkml before using this in your driver. 3496 */ 3497 void split_page(struct page *page, unsigned int order) 3498 { 3499 int i; 3500 3501 VM_BUG_ON_PAGE(PageCompound(page), page); 3502 VM_BUG_ON_PAGE(!page_count(page), page); 3503 3504 for (i = 1; i < (1 << order); i++) 3505 set_page_refcounted(page + i); 3506 split_page_owner(page, 1 << order); 3507 split_page_memcg(page, 1 << order); 3508 } 3509 EXPORT_SYMBOL_GPL(split_page); 3510 3511 int __isolate_free_page(struct page *page, unsigned int order) 3512 { 3513 unsigned long watermark; 3514 struct zone *zone; 3515 int mt; 3516 3517 BUG_ON(!PageBuddy(page)); 3518 3519 zone = page_zone(page); 3520 mt = get_pageblock_migratetype(page); 3521 3522 if (!is_migrate_isolate(mt)) { 3523 /* 3524 * Obey watermarks as if the page was being allocated. We can 3525 * emulate a high-order watermark check with a raised order-0 3526 * watermark, because we already know our high-order page 3527 * exists. 3528 */ 3529 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3530 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3531 return 0; 3532 3533 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3534 } 3535 3536 /* Remove page from free list */ 3537 3538 del_page_from_free_list(page, zone, order); 3539 3540 /* 3541 * Set the pageblock if the isolated page is at least half of a 3542 * pageblock 3543 */ 3544 if (order >= pageblock_order - 1) { 3545 struct page *endpage = page + (1 << order) - 1; 3546 for (; page < endpage; page += pageblock_nr_pages) { 3547 int mt = get_pageblock_migratetype(page); 3548 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3549 && !is_migrate_highatomic(mt)) 3550 set_pageblock_migratetype(page, 3551 MIGRATE_MOVABLE); 3552 } 3553 } 3554 3555 3556 return 1UL << order; 3557 } 3558 3559 /** 3560 * __putback_isolated_page - Return a now-isolated page back where we got it 3561 * @page: Page that was isolated 3562 * @order: Order of the isolated page 3563 * @mt: The page's pageblock's migratetype 3564 * 3565 * This function is meant to return a page pulled from the free lists via 3566 * __isolate_free_page back to the free lists they were pulled from. 3567 */ 3568 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3569 { 3570 struct zone *zone = page_zone(page); 3571 3572 /* zone lock should be held when this function is called */ 3573 lockdep_assert_held(&zone->lock); 3574 3575 /* Return isolated page to tail of freelist. */ 3576 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3577 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3578 } 3579 3580 /* 3581 * Update NUMA hit/miss statistics 3582 * 3583 * Must be called with interrupts disabled. 3584 */ 3585 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3586 long nr_account) 3587 { 3588 #ifdef CONFIG_NUMA 3589 enum numa_stat_item local_stat = NUMA_LOCAL; 3590 3591 /* skip numa counters update if numa stats is disabled */ 3592 if (!static_branch_likely(&vm_numa_stat_key)) 3593 return; 3594 3595 if (zone_to_nid(z) != numa_node_id()) 3596 local_stat = NUMA_OTHER; 3597 3598 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3599 __count_numa_events(z, NUMA_HIT, nr_account); 3600 else { 3601 __count_numa_events(z, NUMA_MISS, nr_account); 3602 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3603 } 3604 __count_numa_events(z, local_stat, nr_account); 3605 #endif 3606 } 3607 3608 /* Remove page from the per-cpu list, caller must protect the list */ 3609 static inline 3610 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3611 int migratetype, 3612 unsigned int alloc_flags, 3613 struct per_cpu_pages *pcp, 3614 struct list_head *list) 3615 { 3616 struct page *page; 3617 3618 do { 3619 if (list_empty(list)) { 3620 int batch = READ_ONCE(pcp->batch); 3621 int alloced; 3622 3623 /* 3624 * Scale batch relative to order if batch implies 3625 * free pages can be stored on the PCP. Batch can 3626 * be 1 for small zones or for boot pagesets which 3627 * should never store free pages as the pages may 3628 * belong to arbitrary zones. 3629 */ 3630 if (batch > 1) 3631 batch = max(batch >> order, 2); 3632 alloced = rmqueue_bulk(zone, order, 3633 batch, list, 3634 migratetype, alloc_flags); 3635 3636 pcp->count += alloced << order; 3637 if (unlikely(list_empty(list))) 3638 return NULL; 3639 } 3640 3641 page = list_first_entry(list, struct page, lru); 3642 list_del(&page->lru); 3643 pcp->count -= 1 << order; 3644 } while (check_new_pcp(page)); 3645 3646 return page; 3647 } 3648 3649 /* Lock and remove page from the per-cpu list */ 3650 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3651 struct zone *zone, unsigned int order, 3652 gfp_t gfp_flags, int migratetype, 3653 unsigned int alloc_flags) 3654 { 3655 struct per_cpu_pages *pcp; 3656 struct list_head *list; 3657 struct page *page; 3658 unsigned long flags; 3659 3660 local_lock_irqsave(&pagesets.lock, flags); 3661 3662 /* 3663 * On allocation, reduce the number of pages that are batch freed. 3664 * See nr_pcp_free() where free_factor is increased for subsequent 3665 * frees. 3666 */ 3667 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3668 pcp->free_factor >>= 1; 3669 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3670 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3671 local_unlock_irqrestore(&pagesets.lock, flags); 3672 if (page) { 3673 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3674 zone_statistics(preferred_zone, zone, 1); 3675 } 3676 return page; 3677 } 3678 3679 /* 3680 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3681 */ 3682 static inline 3683 struct page *rmqueue(struct zone *preferred_zone, 3684 struct zone *zone, unsigned int order, 3685 gfp_t gfp_flags, unsigned int alloc_flags, 3686 int migratetype) 3687 { 3688 unsigned long flags; 3689 struct page *page; 3690 3691 if (likely(pcp_allowed_order(order))) { 3692 /* 3693 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3694 * we need to skip it when CMA area isn't allowed. 3695 */ 3696 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3697 migratetype != MIGRATE_MOVABLE) { 3698 page = rmqueue_pcplist(preferred_zone, zone, order, 3699 gfp_flags, migratetype, alloc_flags); 3700 goto out; 3701 } 3702 } 3703 3704 /* 3705 * We most definitely don't want callers attempting to 3706 * allocate greater than order-1 page units with __GFP_NOFAIL. 3707 */ 3708 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3709 spin_lock_irqsave(&zone->lock, flags); 3710 3711 do { 3712 page = NULL; 3713 /* 3714 * order-0 request can reach here when the pcplist is skipped 3715 * due to non-CMA allocation context. HIGHATOMIC area is 3716 * reserved for high-order atomic allocation, so order-0 3717 * request should skip it. 3718 */ 3719 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3720 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3721 if (page) 3722 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3723 } 3724 if (!page) 3725 page = __rmqueue(zone, order, migratetype, alloc_flags); 3726 } while (page && check_new_pages(page, order)); 3727 if (!page) 3728 goto failed; 3729 3730 __mod_zone_freepage_state(zone, -(1 << order), 3731 get_pcppage_migratetype(page)); 3732 spin_unlock_irqrestore(&zone->lock, flags); 3733 3734 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3735 zone_statistics(preferred_zone, zone, 1); 3736 3737 out: 3738 /* Separate test+clear to avoid unnecessary atomics */ 3739 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3740 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3741 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3742 } 3743 3744 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3745 return page; 3746 3747 failed: 3748 spin_unlock_irqrestore(&zone->lock, flags); 3749 return NULL; 3750 } 3751 3752 #ifdef CONFIG_FAIL_PAGE_ALLOC 3753 3754 static struct { 3755 struct fault_attr attr; 3756 3757 bool ignore_gfp_highmem; 3758 bool ignore_gfp_reclaim; 3759 u32 min_order; 3760 } fail_page_alloc = { 3761 .attr = FAULT_ATTR_INITIALIZER, 3762 .ignore_gfp_reclaim = true, 3763 .ignore_gfp_highmem = true, 3764 .min_order = 1, 3765 }; 3766 3767 static int __init setup_fail_page_alloc(char *str) 3768 { 3769 return setup_fault_attr(&fail_page_alloc.attr, str); 3770 } 3771 __setup("fail_page_alloc=", setup_fail_page_alloc); 3772 3773 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3774 { 3775 if (order < fail_page_alloc.min_order) 3776 return false; 3777 if (gfp_mask & __GFP_NOFAIL) 3778 return false; 3779 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3780 return false; 3781 if (fail_page_alloc.ignore_gfp_reclaim && 3782 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3783 return false; 3784 3785 return should_fail(&fail_page_alloc.attr, 1 << order); 3786 } 3787 3788 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3789 3790 static int __init fail_page_alloc_debugfs(void) 3791 { 3792 umode_t mode = S_IFREG | 0600; 3793 struct dentry *dir; 3794 3795 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3796 &fail_page_alloc.attr); 3797 3798 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3799 &fail_page_alloc.ignore_gfp_reclaim); 3800 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3801 &fail_page_alloc.ignore_gfp_highmem); 3802 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3803 3804 return 0; 3805 } 3806 3807 late_initcall(fail_page_alloc_debugfs); 3808 3809 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3810 3811 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3812 3813 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3814 { 3815 return false; 3816 } 3817 3818 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3819 3820 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3821 { 3822 return __should_fail_alloc_page(gfp_mask, order); 3823 } 3824 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3825 3826 static inline long __zone_watermark_unusable_free(struct zone *z, 3827 unsigned int order, unsigned int alloc_flags) 3828 { 3829 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3830 long unusable_free = (1 << order) - 1; 3831 3832 /* 3833 * If the caller does not have rights to ALLOC_HARDER then subtract 3834 * the high-atomic reserves. This will over-estimate the size of the 3835 * atomic reserve but it avoids a search. 3836 */ 3837 if (likely(!alloc_harder)) 3838 unusable_free += z->nr_reserved_highatomic; 3839 3840 #ifdef CONFIG_CMA 3841 /* If allocation can't use CMA areas don't use free CMA pages */ 3842 if (!(alloc_flags & ALLOC_CMA)) 3843 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3844 #endif 3845 3846 return unusable_free; 3847 } 3848 3849 /* 3850 * Return true if free base pages are above 'mark'. For high-order checks it 3851 * will return true of the order-0 watermark is reached and there is at least 3852 * one free page of a suitable size. Checking now avoids taking the zone lock 3853 * to check in the allocation paths if no pages are free. 3854 */ 3855 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3856 int highest_zoneidx, unsigned int alloc_flags, 3857 long free_pages) 3858 { 3859 long min = mark; 3860 int o; 3861 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3862 3863 /* free_pages may go negative - that's OK */ 3864 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3865 3866 if (alloc_flags & ALLOC_HIGH) 3867 min -= min / 2; 3868 3869 if (unlikely(alloc_harder)) { 3870 /* 3871 * OOM victims can try even harder than normal ALLOC_HARDER 3872 * users on the grounds that it's definitely going to be in 3873 * the exit path shortly and free memory. Any allocation it 3874 * makes during the free path will be small and short-lived. 3875 */ 3876 if (alloc_flags & ALLOC_OOM) 3877 min -= min / 2; 3878 else 3879 min -= min / 4; 3880 } 3881 3882 /* 3883 * Check watermarks for an order-0 allocation request. If these 3884 * are not met, then a high-order request also cannot go ahead 3885 * even if a suitable page happened to be free. 3886 */ 3887 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3888 return false; 3889 3890 /* If this is an order-0 request then the watermark is fine */ 3891 if (!order) 3892 return true; 3893 3894 /* For a high-order request, check at least one suitable page is free */ 3895 for (o = order; o < MAX_ORDER; o++) { 3896 struct free_area *area = &z->free_area[o]; 3897 int mt; 3898 3899 if (!area->nr_free) 3900 continue; 3901 3902 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3903 if (!free_area_empty(area, mt)) 3904 return true; 3905 } 3906 3907 #ifdef CONFIG_CMA 3908 if ((alloc_flags & ALLOC_CMA) && 3909 !free_area_empty(area, MIGRATE_CMA)) { 3910 return true; 3911 } 3912 #endif 3913 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3914 return true; 3915 } 3916 return false; 3917 } 3918 3919 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3920 int highest_zoneidx, unsigned int alloc_flags) 3921 { 3922 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3923 zone_page_state(z, NR_FREE_PAGES)); 3924 } 3925 3926 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3927 unsigned long mark, int highest_zoneidx, 3928 unsigned int alloc_flags, gfp_t gfp_mask) 3929 { 3930 long free_pages; 3931 3932 free_pages = zone_page_state(z, NR_FREE_PAGES); 3933 3934 /* 3935 * Fast check for order-0 only. If this fails then the reserves 3936 * need to be calculated. 3937 */ 3938 if (!order) { 3939 long fast_free; 3940 3941 fast_free = free_pages; 3942 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3943 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3944 return true; 3945 } 3946 3947 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3948 free_pages)) 3949 return true; 3950 /* 3951 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3952 * when checking the min watermark. The min watermark is the 3953 * point where boosting is ignored so that kswapd is woken up 3954 * when below the low watermark. 3955 */ 3956 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3957 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3958 mark = z->_watermark[WMARK_MIN]; 3959 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3960 alloc_flags, free_pages); 3961 } 3962 3963 return false; 3964 } 3965 3966 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3967 unsigned long mark, int highest_zoneidx) 3968 { 3969 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3970 3971 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3972 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3973 3974 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3975 free_pages); 3976 } 3977 3978 #ifdef CONFIG_NUMA 3979 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3980 3981 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3982 { 3983 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3984 node_reclaim_distance; 3985 } 3986 #else /* CONFIG_NUMA */ 3987 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3988 { 3989 return true; 3990 } 3991 #endif /* CONFIG_NUMA */ 3992 3993 /* 3994 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3995 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3996 * premature use of a lower zone may cause lowmem pressure problems that 3997 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3998 * probably too small. It only makes sense to spread allocations to avoid 3999 * fragmentation between the Normal and DMA32 zones. 4000 */ 4001 static inline unsigned int 4002 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4003 { 4004 unsigned int alloc_flags; 4005 4006 /* 4007 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4008 * to save a branch. 4009 */ 4010 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4011 4012 #ifdef CONFIG_ZONE_DMA32 4013 if (!zone) 4014 return alloc_flags; 4015 4016 if (zone_idx(zone) != ZONE_NORMAL) 4017 return alloc_flags; 4018 4019 /* 4020 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4021 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4022 * on UMA that if Normal is populated then so is DMA32. 4023 */ 4024 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4025 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4026 return alloc_flags; 4027 4028 alloc_flags |= ALLOC_NOFRAGMENT; 4029 #endif /* CONFIG_ZONE_DMA32 */ 4030 return alloc_flags; 4031 } 4032 4033 /* Must be called after current_gfp_context() which can change gfp_mask */ 4034 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4035 unsigned int alloc_flags) 4036 { 4037 #ifdef CONFIG_CMA 4038 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4039 alloc_flags |= ALLOC_CMA; 4040 #endif 4041 return alloc_flags; 4042 } 4043 4044 /* 4045 * get_page_from_freelist goes through the zonelist trying to allocate 4046 * a page. 4047 */ 4048 static struct page * 4049 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4050 const struct alloc_context *ac) 4051 { 4052 struct zoneref *z; 4053 struct zone *zone; 4054 struct pglist_data *last_pgdat_dirty_limit = NULL; 4055 bool no_fallback; 4056 4057 retry: 4058 /* 4059 * Scan zonelist, looking for a zone with enough free. 4060 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4061 */ 4062 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4063 z = ac->preferred_zoneref; 4064 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4065 ac->nodemask) { 4066 struct page *page; 4067 unsigned long mark; 4068 4069 if (cpusets_enabled() && 4070 (alloc_flags & ALLOC_CPUSET) && 4071 !__cpuset_zone_allowed(zone, gfp_mask)) 4072 continue; 4073 /* 4074 * When allocating a page cache page for writing, we 4075 * want to get it from a node that is within its dirty 4076 * limit, such that no single node holds more than its 4077 * proportional share of globally allowed dirty pages. 4078 * The dirty limits take into account the node's 4079 * lowmem reserves and high watermark so that kswapd 4080 * should be able to balance it without having to 4081 * write pages from its LRU list. 4082 * 4083 * XXX: For now, allow allocations to potentially 4084 * exceed the per-node dirty limit in the slowpath 4085 * (spread_dirty_pages unset) before going into reclaim, 4086 * which is important when on a NUMA setup the allowed 4087 * nodes are together not big enough to reach the 4088 * global limit. The proper fix for these situations 4089 * will require awareness of nodes in the 4090 * dirty-throttling and the flusher threads. 4091 */ 4092 if (ac->spread_dirty_pages) { 4093 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4094 continue; 4095 4096 if (!node_dirty_ok(zone->zone_pgdat)) { 4097 last_pgdat_dirty_limit = zone->zone_pgdat; 4098 continue; 4099 } 4100 } 4101 4102 if (no_fallback && nr_online_nodes > 1 && 4103 zone != ac->preferred_zoneref->zone) { 4104 int local_nid; 4105 4106 /* 4107 * If moving to a remote node, retry but allow 4108 * fragmenting fallbacks. Locality is more important 4109 * than fragmentation avoidance. 4110 */ 4111 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4112 if (zone_to_nid(zone) != local_nid) { 4113 alloc_flags &= ~ALLOC_NOFRAGMENT; 4114 goto retry; 4115 } 4116 } 4117 4118 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4119 if (!zone_watermark_fast(zone, order, mark, 4120 ac->highest_zoneidx, alloc_flags, 4121 gfp_mask)) { 4122 int ret; 4123 4124 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4125 /* 4126 * Watermark failed for this zone, but see if we can 4127 * grow this zone if it contains deferred pages. 4128 */ 4129 if (static_branch_unlikely(&deferred_pages)) { 4130 if (_deferred_grow_zone(zone, order)) 4131 goto try_this_zone; 4132 } 4133 #endif 4134 /* Checked here to keep the fast path fast */ 4135 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4136 if (alloc_flags & ALLOC_NO_WATERMARKS) 4137 goto try_this_zone; 4138 4139 if (!node_reclaim_enabled() || 4140 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4141 continue; 4142 4143 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4144 switch (ret) { 4145 case NODE_RECLAIM_NOSCAN: 4146 /* did not scan */ 4147 continue; 4148 case NODE_RECLAIM_FULL: 4149 /* scanned but unreclaimable */ 4150 continue; 4151 default: 4152 /* did we reclaim enough */ 4153 if (zone_watermark_ok(zone, order, mark, 4154 ac->highest_zoneidx, alloc_flags)) 4155 goto try_this_zone; 4156 4157 continue; 4158 } 4159 } 4160 4161 try_this_zone: 4162 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4163 gfp_mask, alloc_flags, ac->migratetype); 4164 if (page) { 4165 prep_new_page(page, order, gfp_mask, alloc_flags); 4166 4167 /* 4168 * If this is a high-order atomic allocation then check 4169 * if the pageblock should be reserved for the future 4170 */ 4171 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4172 reserve_highatomic_pageblock(page, zone, order); 4173 4174 return page; 4175 } else { 4176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4177 /* Try again if zone has deferred pages */ 4178 if (static_branch_unlikely(&deferred_pages)) { 4179 if (_deferred_grow_zone(zone, order)) 4180 goto try_this_zone; 4181 } 4182 #endif 4183 } 4184 } 4185 4186 /* 4187 * It's possible on a UMA machine to get through all zones that are 4188 * fragmented. If avoiding fragmentation, reset and try again. 4189 */ 4190 if (no_fallback) { 4191 alloc_flags &= ~ALLOC_NOFRAGMENT; 4192 goto retry; 4193 } 4194 4195 return NULL; 4196 } 4197 4198 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4199 { 4200 unsigned int filter = SHOW_MEM_FILTER_NODES; 4201 4202 /* 4203 * This documents exceptions given to allocations in certain 4204 * contexts that are allowed to allocate outside current's set 4205 * of allowed nodes. 4206 */ 4207 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4208 if (tsk_is_oom_victim(current) || 4209 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4210 filter &= ~SHOW_MEM_FILTER_NODES; 4211 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4212 filter &= ~SHOW_MEM_FILTER_NODES; 4213 4214 show_mem(filter, nodemask); 4215 } 4216 4217 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4218 { 4219 struct va_format vaf; 4220 va_list args; 4221 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4222 4223 if ((gfp_mask & __GFP_NOWARN) || 4224 !__ratelimit(&nopage_rs) || 4225 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4226 return; 4227 4228 va_start(args, fmt); 4229 vaf.fmt = fmt; 4230 vaf.va = &args; 4231 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4232 current->comm, &vaf, gfp_mask, &gfp_mask, 4233 nodemask_pr_args(nodemask)); 4234 va_end(args); 4235 4236 cpuset_print_current_mems_allowed(); 4237 pr_cont("\n"); 4238 dump_stack(); 4239 warn_alloc_show_mem(gfp_mask, nodemask); 4240 } 4241 4242 static inline struct page * 4243 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4244 unsigned int alloc_flags, 4245 const struct alloc_context *ac) 4246 { 4247 struct page *page; 4248 4249 page = get_page_from_freelist(gfp_mask, order, 4250 alloc_flags|ALLOC_CPUSET, ac); 4251 /* 4252 * fallback to ignore cpuset restriction if our nodes 4253 * are depleted 4254 */ 4255 if (!page) 4256 page = get_page_from_freelist(gfp_mask, order, 4257 alloc_flags, ac); 4258 4259 return page; 4260 } 4261 4262 static inline struct page * 4263 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4264 const struct alloc_context *ac, unsigned long *did_some_progress) 4265 { 4266 struct oom_control oc = { 4267 .zonelist = ac->zonelist, 4268 .nodemask = ac->nodemask, 4269 .memcg = NULL, 4270 .gfp_mask = gfp_mask, 4271 .order = order, 4272 }; 4273 struct page *page; 4274 4275 *did_some_progress = 0; 4276 4277 /* 4278 * Acquire the oom lock. If that fails, somebody else is 4279 * making progress for us. 4280 */ 4281 if (!mutex_trylock(&oom_lock)) { 4282 *did_some_progress = 1; 4283 schedule_timeout_uninterruptible(1); 4284 return NULL; 4285 } 4286 4287 /* 4288 * Go through the zonelist yet one more time, keep very high watermark 4289 * here, this is only to catch a parallel oom killing, we must fail if 4290 * we're still under heavy pressure. But make sure that this reclaim 4291 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4292 * allocation which will never fail due to oom_lock already held. 4293 */ 4294 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4295 ~__GFP_DIRECT_RECLAIM, order, 4296 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4297 if (page) 4298 goto out; 4299 4300 /* Coredumps can quickly deplete all memory reserves */ 4301 if (current->flags & PF_DUMPCORE) 4302 goto out; 4303 /* The OOM killer will not help higher order allocs */ 4304 if (order > PAGE_ALLOC_COSTLY_ORDER) 4305 goto out; 4306 /* 4307 * We have already exhausted all our reclaim opportunities without any 4308 * success so it is time to admit defeat. We will skip the OOM killer 4309 * because it is very likely that the caller has a more reasonable 4310 * fallback than shooting a random task. 4311 * 4312 * The OOM killer may not free memory on a specific node. 4313 */ 4314 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4315 goto out; 4316 /* The OOM killer does not needlessly kill tasks for lowmem */ 4317 if (ac->highest_zoneidx < ZONE_NORMAL) 4318 goto out; 4319 if (pm_suspended_storage()) 4320 goto out; 4321 /* 4322 * XXX: GFP_NOFS allocations should rather fail than rely on 4323 * other request to make a forward progress. 4324 * We are in an unfortunate situation where out_of_memory cannot 4325 * do much for this context but let's try it to at least get 4326 * access to memory reserved if the current task is killed (see 4327 * out_of_memory). Once filesystems are ready to handle allocation 4328 * failures more gracefully we should just bail out here. 4329 */ 4330 4331 /* Exhausted what can be done so it's blame time */ 4332 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4333 *did_some_progress = 1; 4334 4335 /* 4336 * Help non-failing allocations by giving them access to memory 4337 * reserves 4338 */ 4339 if (gfp_mask & __GFP_NOFAIL) 4340 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4341 ALLOC_NO_WATERMARKS, ac); 4342 } 4343 out: 4344 mutex_unlock(&oom_lock); 4345 return page; 4346 } 4347 4348 /* 4349 * Maximum number of compaction retries with a progress before OOM 4350 * killer is consider as the only way to move forward. 4351 */ 4352 #define MAX_COMPACT_RETRIES 16 4353 4354 #ifdef CONFIG_COMPACTION 4355 /* Try memory compaction for high-order allocations before reclaim */ 4356 static struct page * 4357 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4358 unsigned int alloc_flags, const struct alloc_context *ac, 4359 enum compact_priority prio, enum compact_result *compact_result) 4360 { 4361 struct page *page = NULL; 4362 unsigned long pflags; 4363 unsigned int noreclaim_flag; 4364 4365 if (!order) 4366 return NULL; 4367 4368 psi_memstall_enter(&pflags); 4369 delayacct_compact_start(); 4370 noreclaim_flag = memalloc_noreclaim_save(); 4371 4372 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4373 prio, &page); 4374 4375 memalloc_noreclaim_restore(noreclaim_flag); 4376 psi_memstall_leave(&pflags); 4377 delayacct_compact_end(); 4378 4379 if (*compact_result == COMPACT_SKIPPED) 4380 return NULL; 4381 /* 4382 * At least in one zone compaction wasn't deferred or skipped, so let's 4383 * count a compaction stall 4384 */ 4385 count_vm_event(COMPACTSTALL); 4386 4387 /* Prep a captured page if available */ 4388 if (page) 4389 prep_new_page(page, order, gfp_mask, alloc_flags); 4390 4391 /* Try get a page from the freelist if available */ 4392 if (!page) 4393 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4394 4395 if (page) { 4396 struct zone *zone = page_zone(page); 4397 4398 zone->compact_blockskip_flush = false; 4399 compaction_defer_reset(zone, order, true); 4400 count_vm_event(COMPACTSUCCESS); 4401 return page; 4402 } 4403 4404 /* 4405 * It's bad if compaction run occurs and fails. The most likely reason 4406 * is that pages exist, but not enough to satisfy watermarks. 4407 */ 4408 count_vm_event(COMPACTFAIL); 4409 4410 cond_resched(); 4411 4412 return NULL; 4413 } 4414 4415 static inline bool 4416 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4417 enum compact_result compact_result, 4418 enum compact_priority *compact_priority, 4419 int *compaction_retries) 4420 { 4421 int max_retries = MAX_COMPACT_RETRIES; 4422 int min_priority; 4423 bool ret = false; 4424 int retries = *compaction_retries; 4425 enum compact_priority priority = *compact_priority; 4426 4427 if (!order) 4428 return false; 4429 4430 if (fatal_signal_pending(current)) 4431 return false; 4432 4433 if (compaction_made_progress(compact_result)) 4434 (*compaction_retries)++; 4435 4436 /* 4437 * compaction considers all the zone as desperately out of memory 4438 * so it doesn't really make much sense to retry except when the 4439 * failure could be caused by insufficient priority 4440 */ 4441 if (compaction_failed(compact_result)) 4442 goto check_priority; 4443 4444 /* 4445 * compaction was skipped because there are not enough order-0 pages 4446 * to work with, so we retry only if it looks like reclaim can help. 4447 */ 4448 if (compaction_needs_reclaim(compact_result)) { 4449 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4450 goto out; 4451 } 4452 4453 /* 4454 * make sure the compaction wasn't deferred or didn't bail out early 4455 * due to locks contention before we declare that we should give up. 4456 * But the next retry should use a higher priority if allowed, so 4457 * we don't just keep bailing out endlessly. 4458 */ 4459 if (compaction_withdrawn(compact_result)) { 4460 goto check_priority; 4461 } 4462 4463 /* 4464 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4465 * costly ones because they are de facto nofail and invoke OOM 4466 * killer to move on while costly can fail and users are ready 4467 * to cope with that. 1/4 retries is rather arbitrary but we 4468 * would need much more detailed feedback from compaction to 4469 * make a better decision. 4470 */ 4471 if (order > PAGE_ALLOC_COSTLY_ORDER) 4472 max_retries /= 4; 4473 if (*compaction_retries <= max_retries) { 4474 ret = true; 4475 goto out; 4476 } 4477 4478 /* 4479 * Make sure there are attempts at the highest priority if we exhausted 4480 * all retries or failed at the lower priorities. 4481 */ 4482 check_priority: 4483 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4484 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4485 4486 if (*compact_priority > min_priority) { 4487 (*compact_priority)--; 4488 *compaction_retries = 0; 4489 ret = true; 4490 } 4491 out: 4492 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4493 return ret; 4494 } 4495 #else 4496 static inline struct page * 4497 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4498 unsigned int alloc_flags, const struct alloc_context *ac, 4499 enum compact_priority prio, enum compact_result *compact_result) 4500 { 4501 *compact_result = COMPACT_SKIPPED; 4502 return NULL; 4503 } 4504 4505 static inline bool 4506 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4507 enum compact_result compact_result, 4508 enum compact_priority *compact_priority, 4509 int *compaction_retries) 4510 { 4511 struct zone *zone; 4512 struct zoneref *z; 4513 4514 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4515 return false; 4516 4517 /* 4518 * There are setups with compaction disabled which would prefer to loop 4519 * inside the allocator rather than hit the oom killer prematurely. 4520 * Let's give them a good hope and keep retrying while the order-0 4521 * watermarks are OK. 4522 */ 4523 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4524 ac->highest_zoneidx, ac->nodemask) { 4525 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4526 ac->highest_zoneidx, alloc_flags)) 4527 return true; 4528 } 4529 return false; 4530 } 4531 #endif /* CONFIG_COMPACTION */ 4532 4533 #ifdef CONFIG_LOCKDEP 4534 static struct lockdep_map __fs_reclaim_map = 4535 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4536 4537 static bool __need_reclaim(gfp_t gfp_mask) 4538 { 4539 /* no reclaim without waiting on it */ 4540 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4541 return false; 4542 4543 /* this guy won't enter reclaim */ 4544 if (current->flags & PF_MEMALLOC) 4545 return false; 4546 4547 if (gfp_mask & __GFP_NOLOCKDEP) 4548 return false; 4549 4550 return true; 4551 } 4552 4553 void __fs_reclaim_acquire(unsigned long ip) 4554 { 4555 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4556 } 4557 4558 void __fs_reclaim_release(unsigned long ip) 4559 { 4560 lock_release(&__fs_reclaim_map, ip); 4561 } 4562 4563 void fs_reclaim_acquire(gfp_t gfp_mask) 4564 { 4565 gfp_mask = current_gfp_context(gfp_mask); 4566 4567 if (__need_reclaim(gfp_mask)) { 4568 if (gfp_mask & __GFP_FS) 4569 __fs_reclaim_acquire(_RET_IP_); 4570 4571 #ifdef CONFIG_MMU_NOTIFIER 4572 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4573 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4574 #endif 4575 4576 } 4577 } 4578 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4579 4580 void fs_reclaim_release(gfp_t gfp_mask) 4581 { 4582 gfp_mask = current_gfp_context(gfp_mask); 4583 4584 if (__need_reclaim(gfp_mask)) { 4585 if (gfp_mask & __GFP_FS) 4586 __fs_reclaim_release(_RET_IP_); 4587 } 4588 } 4589 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4590 #endif 4591 4592 /* Perform direct synchronous page reclaim */ 4593 static unsigned long 4594 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4595 const struct alloc_context *ac) 4596 { 4597 unsigned int noreclaim_flag; 4598 unsigned long pflags, progress; 4599 4600 cond_resched(); 4601 4602 /* We now go into synchronous reclaim */ 4603 cpuset_memory_pressure_bump(); 4604 psi_memstall_enter(&pflags); 4605 fs_reclaim_acquire(gfp_mask); 4606 noreclaim_flag = memalloc_noreclaim_save(); 4607 4608 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4609 ac->nodemask); 4610 4611 memalloc_noreclaim_restore(noreclaim_flag); 4612 fs_reclaim_release(gfp_mask); 4613 psi_memstall_leave(&pflags); 4614 4615 cond_resched(); 4616 4617 return progress; 4618 } 4619 4620 /* The really slow allocator path where we enter direct reclaim */ 4621 static inline struct page * 4622 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4623 unsigned int alloc_flags, const struct alloc_context *ac, 4624 unsigned long *did_some_progress) 4625 { 4626 struct page *page = NULL; 4627 bool drained = false; 4628 4629 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4630 if (unlikely(!(*did_some_progress))) 4631 return NULL; 4632 4633 retry: 4634 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4635 4636 /* 4637 * If an allocation failed after direct reclaim, it could be because 4638 * pages are pinned on the per-cpu lists or in high alloc reserves. 4639 * Shrink them and try again 4640 */ 4641 if (!page && !drained) { 4642 unreserve_highatomic_pageblock(ac, false); 4643 drain_all_pages(NULL); 4644 drained = true; 4645 goto retry; 4646 } 4647 4648 return page; 4649 } 4650 4651 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4652 const struct alloc_context *ac) 4653 { 4654 struct zoneref *z; 4655 struct zone *zone; 4656 pg_data_t *last_pgdat = NULL; 4657 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4658 4659 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4660 ac->nodemask) { 4661 if (last_pgdat != zone->zone_pgdat) 4662 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4663 last_pgdat = zone->zone_pgdat; 4664 } 4665 } 4666 4667 static inline unsigned int 4668 gfp_to_alloc_flags(gfp_t gfp_mask) 4669 { 4670 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4671 4672 /* 4673 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4674 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4675 * to save two branches. 4676 */ 4677 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4678 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4679 4680 /* 4681 * The caller may dip into page reserves a bit more if the caller 4682 * cannot run direct reclaim, or if the caller has realtime scheduling 4683 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4684 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4685 */ 4686 alloc_flags |= (__force int) 4687 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4688 4689 if (gfp_mask & __GFP_ATOMIC) { 4690 /* 4691 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4692 * if it can't schedule. 4693 */ 4694 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4695 alloc_flags |= ALLOC_HARDER; 4696 /* 4697 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4698 * comment for __cpuset_node_allowed(). 4699 */ 4700 alloc_flags &= ~ALLOC_CPUSET; 4701 } else if (unlikely(rt_task(current)) && in_task()) 4702 alloc_flags |= ALLOC_HARDER; 4703 4704 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4705 4706 return alloc_flags; 4707 } 4708 4709 static bool oom_reserves_allowed(struct task_struct *tsk) 4710 { 4711 if (!tsk_is_oom_victim(tsk)) 4712 return false; 4713 4714 /* 4715 * !MMU doesn't have oom reaper so give access to memory reserves 4716 * only to the thread with TIF_MEMDIE set 4717 */ 4718 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4719 return false; 4720 4721 return true; 4722 } 4723 4724 /* 4725 * Distinguish requests which really need access to full memory 4726 * reserves from oom victims which can live with a portion of it 4727 */ 4728 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4729 { 4730 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4731 return 0; 4732 if (gfp_mask & __GFP_MEMALLOC) 4733 return ALLOC_NO_WATERMARKS; 4734 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4735 return ALLOC_NO_WATERMARKS; 4736 if (!in_interrupt()) { 4737 if (current->flags & PF_MEMALLOC) 4738 return ALLOC_NO_WATERMARKS; 4739 else if (oom_reserves_allowed(current)) 4740 return ALLOC_OOM; 4741 } 4742 4743 return 0; 4744 } 4745 4746 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4747 { 4748 return !!__gfp_pfmemalloc_flags(gfp_mask); 4749 } 4750 4751 /* 4752 * Checks whether it makes sense to retry the reclaim to make a forward progress 4753 * for the given allocation request. 4754 * 4755 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4756 * without success, or when we couldn't even meet the watermark if we 4757 * reclaimed all remaining pages on the LRU lists. 4758 * 4759 * Returns true if a retry is viable or false to enter the oom path. 4760 */ 4761 static inline bool 4762 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4763 struct alloc_context *ac, int alloc_flags, 4764 bool did_some_progress, int *no_progress_loops) 4765 { 4766 struct zone *zone; 4767 struct zoneref *z; 4768 bool ret = false; 4769 4770 /* 4771 * Costly allocations might have made a progress but this doesn't mean 4772 * their order will become available due to high fragmentation so 4773 * always increment the no progress counter for them 4774 */ 4775 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4776 *no_progress_loops = 0; 4777 else 4778 (*no_progress_loops)++; 4779 4780 /* 4781 * Make sure we converge to OOM if we cannot make any progress 4782 * several times in the row. 4783 */ 4784 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4785 /* Before OOM, exhaust highatomic_reserve */ 4786 return unreserve_highatomic_pageblock(ac, true); 4787 } 4788 4789 /* 4790 * Keep reclaiming pages while there is a chance this will lead 4791 * somewhere. If none of the target zones can satisfy our allocation 4792 * request even if all reclaimable pages are considered then we are 4793 * screwed and have to go OOM. 4794 */ 4795 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4796 ac->highest_zoneidx, ac->nodemask) { 4797 unsigned long available; 4798 unsigned long reclaimable; 4799 unsigned long min_wmark = min_wmark_pages(zone); 4800 bool wmark; 4801 4802 available = reclaimable = zone_reclaimable_pages(zone); 4803 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4804 4805 /* 4806 * Would the allocation succeed if we reclaimed all 4807 * reclaimable pages? 4808 */ 4809 wmark = __zone_watermark_ok(zone, order, min_wmark, 4810 ac->highest_zoneidx, alloc_flags, available); 4811 trace_reclaim_retry_zone(z, order, reclaimable, 4812 available, min_wmark, *no_progress_loops, wmark); 4813 if (wmark) { 4814 ret = true; 4815 break; 4816 } 4817 } 4818 4819 /* 4820 * Memory allocation/reclaim might be called from a WQ context and the 4821 * current implementation of the WQ concurrency control doesn't 4822 * recognize that a particular WQ is congested if the worker thread is 4823 * looping without ever sleeping. Therefore we have to do a short sleep 4824 * here rather than calling cond_resched(). 4825 */ 4826 if (current->flags & PF_WQ_WORKER) 4827 schedule_timeout_uninterruptible(1); 4828 else 4829 cond_resched(); 4830 return ret; 4831 } 4832 4833 static inline bool 4834 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4835 { 4836 /* 4837 * It's possible that cpuset's mems_allowed and the nodemask from 4838 * mempolicy don't intersect. This should be normally dealt with by 4839 * policy_nodemask(), but it's possible to race with cpuset update in 4840 * such a way the check therein was true, and then it became false 4841 * before we got our cpuset_mems_cookie here. 4842 * This assumes that for all allocations, ac->nodemask can come only 4843 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4844 * when it does not intersect with the cpuset restrictions) or the 4845 * caller can deal with a violated nodemask. 4846 */ 4847 if (cpusets_enabled() && ac->nodemask && 4848 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4849 ac->nodemask = NULL; 4850 return true; 4851 } 4852 4853 /* 4854 * When updating a task's mems_allowed or mempolicy nodemask, it is 4855 * possible to race with parallel threads in such a way that our 4856 * allocation can fail while the mask is being updated. If we are about 4857 * to fail, check if the cpuset changed during allocation and if so, 4858 * retry. 4859 */ 4860 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4861 return true; 4862 4863 return false; 4864 } 4865 4866 static inline struct page * 4867 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4868 struct alloc_context *ac) 4869 { 4870 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4871 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4872 struct page *page = NULL; 4873 unsigned int alloc_flags; 4874 unsigned long did_some_progress; 4875 enum compact_priority compact_priority; 4876 enum compact_result compact_result; 4877 int compaction_retries; 4878 int no_progress_loops; 4879 unsigned int cpuset_mems_cookie; 4880 int reserve_flags; 4881 4882 /* 4883 * We also sanity check to catch abuse of atomic reserves being used by 4884 * callers that are not in atomic context. 4885 */ 4886 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4887 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4888 gfp_mask &= ~__GFP_ATOMIC; 4889 4890 retry_cpuset: 4891 compaction_retries = 0; 4892 no_progress_loops = 0; 4893 compact_priority = DEF_COMPACT_PRIORITY; 4894 cpuset_mems_cookie = read_mems_allowed_begin(); 4895 4896 /* 4897 * The fast path uses conservative alloc_flags to succeed only until 4898 * kswapd needs to be woken up, and to avoid the cost of setting up 4899 * alloc_flags precisely. So we do that now. 4900 */ 4901 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4902 4903 /* 4904 * We need to recalculate the starting point for the zonelist iterator 4905 * because we might have used different nodemask in the fast path, or 4906 * there was a cpuset modification and we are retrying - otherwise we 4907 * could end up iterating over non-eligible zones endlessly. 4908 */ 4909 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4910 ac->highest_zoneidx, ac->nodemask); 4911 if (!ac->preferred_zoneref->zone) 4912 goto nopage; 4913 4914 /* 4915 * Check for insane configurations where the cpuset doesn't contain 4916 * any suitable zone to satisfy the request - e.g. non-movable 4917 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4918 */ 4919 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4920 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4921 ac->highest_zoneidx, 4922 &cpuset_current_mems_allowed); 4923 if (!z->zone) 4924 goto nopage; 4925 } 4926 4927 if (alloc_flags & ALLOC_KSWAPD) 4928 wake_all_kswapds(order, gfp_mask, ac); 4929 4930 /* 4931 * The adjusted alloc_flags might result in immediate success, so try 4932 * that first 4933 */ 4934 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4935 if (page) 4936 goto got_pg; 4937 4938 /* 4939 * For costly allocations, try direct compaction first, as it's likely 4940 * that we have enough base pages and don't need to reclaim. For non- 4941 * movable high-order allocations, do that as well, as compaction will 4942 * try prevent permanent fragmentation by migrating from blocks of the 4943 * same migratetype. 4944 * Don't try this for allocations that are allowed to ignore 4945 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4946 */ 4947 if (can_direct_reclaim && 4948 (costly_order || 4949 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4950 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4951 page = __alloc_pages_direct_compact(gfp_mask, order, 4952 alloc_flags, ac, 4953 INIT_COMPACT_PRIORITY, 4954 &compact_result); 4955 if (page) 4956 goto got_pg; 4957 4958 /* 4959 * Checks for costly allocations with __GFP_NORETRY, which 4960 * includes some THP page fault allocations 4961 */ 4962 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4963 /* 4964 * If allocating entire pageblock(s) and compaction 4965 * failed because all zones are below low watermarks 4966 * or is prohibited because it recently failed at this 4967 * order, fail immediately unless the allocator has 4968 * requested compaction and reclaim retry. 4969 * 4970 * Reclaim is 4971 * - potentially very expensive because zones are far 4972 * below their low watermarks or this is part of very 4973 * bursty high order allocations, 4974 * - not guaranteed to help because isolate_freepages() 4975 * may not iterate over freed pages as part of its 4976 * linear scan, and 4977 * - unlikely to make entire pageblocks free on its 4978 * own. 4979 */ 4980 if (compact_result == COMPACT_SKIPPED || 4981 compact_result == COMPACT_DEFERRED) 4982 goto nopage; 4983 4984 /* 4985 * Looks like reclaim/compaction is worth trying, but 4986 * sync compaction could be very expensive, so keep 4987 * using async compaction. 4988 */ 4989 compact_priority = INIT_COMPACT_PRIORITY; 4990 } 4991 } 4992 4993 retry: 4994 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4995 if (alloc_flags & ALLOC_KSWAPD) 4996 wake_all_kswapds(order, gfp_mask, ac); 4997 4998 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4999 if (reserve_flags) 5000 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5001 5002 /* 5003 * Reset the nodemask and zonelist iterators if memory policies can be 5004 * ignored. These allocations are high priority and system rather than 5005 * user oriented. 5006 */ 5007 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5008 ac->nodemask = NULL; 5009 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5010 ac->highest_zoneidx, ac->nodemask); 5011 } 5012 5013 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5014 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5015 if (page) 5016 goto got_pg; 5017 5018 /* Caller is not willing to reclaim, we can't balance anything */ 5019 if (!can_direct_reclaim) 5020 goto nopage; 5021 5022 /* Avoid recursion of direct reclaim */ 5023 if (current->flags & PF_MEMALLOC) 5024 goto nopage; 5025 5026 /* Try direct reclaim and then allocating */ 5027 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5028 &did_some_progress); 5029 if (page) 5030 goto got_pg; 5031 5032 /* Try direct compaction and then allocating */ 5033 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5034 compact_priority, &compact_result); 5035 if (page) 5036 goto got_pg; 5037 5038 /* Do not loop if specifically requested */ 5039 if (gfp_mask & __GFP_NORETRY) 5040 goto nopage; 5041 5042 /* 5043 * Do not retry costly high order allocations unless they are 5044 * __GFP_RETRY_MAYFAIL 5045 */ 5046 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5047 goto nopage; 5048 5049 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5050 did_some_progress > 0, &no_progress_loops)) 5051 goto retry; 5052 5053 /* 5054 * It doesn't make any sense to retry for the compaction if the order-0 5055 * reclaim is not able to make any progress because the current 5056 * implementation of the compaction depends on the sufficient amount 5057 * of free memory (see __compaction_suitable) 5058 */ 5059 if (did_some_progress > 0 && 5060 should_compact_retry(ac, order, alloc_flags, 5061 compact_result, &compact_priority, 5062 &compaction_retries)) 5063 goto retry; 5064 5065 5066 /* Deal with possible cpuset update races before we start OOM killing */ 5067 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5068 goto retry_cpuset; 5069 5070 /* Reclaim has failed us, start killing things */ 5071 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5072 if (page) 5073 goto got_pg; 5074 5075 /* Avoid allocations with no watermarks from looping endlessly */ 5076 if (tsk_is_oom_victim(current) && 5077 (alloc_flags & ALLOC_OOM || 5078 (gfp_mask & __GFP_NOMEMALLOC))) 5079 goto nopage; 5080 5081 /* Retry as long as the OOM killer is making progress */ 5082 if (did_some_progress) { 5083 no_progress_loops = 0; 5084 goto retry; 5085 } 5086 5087 nopage: 5088 /* Deal with possible cpuset update races before we fail */ 5089 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5090 goto retry_cpuset; 5091 5092 /* 5093 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5094 * we always retry 5095 */ 5096 if (gfp_mask & __GFP_NOFAIL) { 5097 /* 5098 * All existing users of the __GFP_NOFAIL are blockable, so warn 5099 * of any new users that actually require GFP_NOWAIT 5100 */ 5101 if (WARN_ON_ONCE(!can_direct_reclaim)) 5102 goto fail; 5103 5104 /* 5105 * PF_MEMALLOC request from this context is rather bizarre 5106 * because we cannot reclaim anything and only can loop waiting 5107 * for somebody to do a work for us 5108 */ 5109 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5110 5111 /* 5112 * non failing costly orders are a hard requirement which we 5113 * are not prepared for much so let's warn about these users 5114 * so that we can identify them and convert them to something 5115 * else. 5116 */ 5117 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5118 5119 /* 5120 * Help non-failing allocations by giving them access to memory 5121 * reserves but do not use ALLOC_NO_WATERMARKS because this 5122 * could deplete whole memory reserves which would just make 5123 * the situation worse 5124 */ 5125 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5126 if (page) 5127 goto got_pg; 5128 5129 cond_resched(); 5130 goto retry; 5131 } 5132 fail: 5133 warn_alloc(gfp_mask, ac->nodemask, 5134 "page allocation failure: order:%u", order); 5135 got_pg: 5136 return page; 5137 } 5138 5139 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5140 int preferred_nid, nodemask_t *nodemask, 5141 struct alloc_context *ac, gfp_t *alloc_gfp, 5142 unsigned int *alloc_flags) 5143 { 5144 ac->highest_zoneidx = gfp_zone(gfp_mask); 5145 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5146 ac->nodemask = nodemask; 5147 ac->migratetype = gfp_migratetype(gfp_mask); 5148 5149 if (cpusets_enabled()) { 5150 *alloc_gfp |= __GFP_HARDWALL; 5151 /* 5152 * When we are in the interrupt context, it is irrelevant 5153 * to the current task context. It means that any node ok. 5154 */ 5155 if (in_task() && !ac->nodemask) 5156 ac->nodemask = &cpuset_current_mems_allowed; 5157 else 5158 *alloc_flags |= ALLOC_CPUSET; 5159 } 5160 5161 fs_reclaim_acquire(gfp_mask); 5162 fs_reclaim_release(gfp_mask); 5163 5164 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5165 5166 if (should_fail_alloc_page(gfp_mask, order)) 5167 return false; 5168 5169 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5170 5171 /* Dirty zone balancing only done in the fast path */ 5172 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5173 5174 /* 5175 * The preferred zone is used for statistics but crucially it is 5176 * also used as the starting point for the zonelist iterator. It 5177 * may get reset for allocations that ignore memory policies. 5178 */ 5179 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5180 ac->highest_zoneidx, ac->nodemask); 5181 5182 return true; 5183 } 5184 5185 /* 5186 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5187 * @gfp: GFP flags for the allocation 5188 * @preferred_nid: The preferred NUMA node ID to allocate from 5189 * @nodemask: Set of nodes to allocate from, may be NULL 5190 * @nr_pages: The number of pages desired on the list or array 5191 * @page_list: Optional list to store the allocated pages 5192 * @page_array: Optional array to store the pages 5193 * 5194 * This is a batched version of the page allocator that attempts to 5195 * allocate nr_pages quickly. Pages are added to page_list if page_list 5196 * is not NULL, otherwise it is assumed that the page_array is valid. 5197 * 5198 * For lists, nr_pages is the number of pages that should be allocated. 5199 * 5200 * For arrays, only NULL elements are populated with pages and nr_pages 5201 * is the maximum number of pages that will be stored in the array. 5202 * 5203 * Returns the number of pages on the list or array. 5204 */ 5205 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5206 nodemask_t *nodemask, int nr_pages, 5207 struct list_head *page_list, 5208 struct page **page_array) 5209 { 5210 struct page *page; 5211 unsigned long flags; 5212 struct zone *zone; 5213 struct zoneref *z; 5214 struct per_cpu_pages *pcp; 5215 struct list_head *pcp_list; 5216 struct alloc_context ac; 5217 gfp_t alloc_gfp; 5218 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5219 int nr_populated = 0, nr_account = 0; 5220 5221 /* 5222 * Skip populated array elements to determine if any pages need 5223 * to be allocated before disabling IRQs. 5224 */ 5225 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5226 nr_populated++; 5227 5228 /* No pages requested? */ 5229 if (unlikely(nr_pages <= 0)) 5230 goto out; 5231 5232 /* Already populated array? */ 5233 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5234 goto out; 5235 5236 /* Bulk allocator does not support memcg accounting. */ 5237 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5238 goto failed; 5239 5240 /* Use the single page allocator for one page. */ 5241 if (nr_pages - nr_populated == 1) 5242 goto failed; 5243 5244 #ifdef CONFIG_PAGE_OWNER 5245 /* 5246 * PAGE_OWNER may recurse into the allocator to allocate space to 5247 * save the stack with pagesets.lock held. Releasing/reacquiring 5248 * removes much of the performance benefit of bulk allocation so 5249 * force the caller to allocate one page at a time as it'll have 5250 * similar performance to added complexity to the bulk allocator. 5251 */ 5252 if (static_branch_unlikely(&page_owner_inited)) 5253 goto failed; 5254 #endif 5255 5256 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5257 gfp &= gfp_allowed_mask; 5258 alloc_gfp = gfp; 5259 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5260 goto out; 5261 gfp = alloc_gfp; 5262 5263 /* Find an allowed local zone that meets the low watermark. */ 5264 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5265 unsigned long mark; 5266 5267 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5268 !__cpuset_zone_allowed(zone, gfp)) { 5269 continue; 5270 } 5271 5272 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5273 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5274 goto failed; 5275 } 5276 5277 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5278 if (zone_watermark_fast(zone, 0, mark, 5279 zonelist_zone_idx(ac.preferred_zoneref), 5280 alloc_flags, gfp)) { 5281 break; 5282 } 5283 } 5284 5285 /* 5286 * If there are no allowed local zones that meets the watermarks then 5287 * try to allocate a single page and reclaim if necessary. 5288 */ 5289 if (unlikely(!zone)) 5290 goto failed; 5291 5292 /* Attempt the batch allocation */ 5293 local_lock_irqsave(&pagesets.lock, flags); 5294 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5295 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5296 5297 while (nr_populated < nr_pages) { 5298 5299 /* Skip existing pages */ 5300 if (page_array && page_array[nr_populated]) { 5301 nr_populated++; 5302 continue; 5303 } 5304 5305 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5306 pcp, pcp_list); 5307 if (unlikely(!page)) { 5308 /* Try and get at least one page */ 5309 if (!nr_populated) 5310 goto failed_irq; 5311 break; 5312 } 5313 nr_account++; 5314 5315 prep_new_page(page, 0, gfp, 0); 5316 if (page_list) 5317 list_add(&page->lru, page_list); 5318 else 5319 page_array[nr_populated] = page; 5320 nr_populated++; 5321 } 5322 5323 local_unlock_irqrestore(&pagesets.lock, flags); 5324 5325 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5326 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5327 5328 out: 5329 return nr_populated; 5330 5331 failed_irq: 5332 local_unlock_irqrestore(&pagesets.lock, flags); 5333 5334 failed: 5335 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5336 if (page) { 5337 if (page_list) 5338 list_add(&page->lru, page_list); 5339 else 5340 page_array[nr_populated] = page; 5341 nr_populated++; 5342 } 5343 5344 goto out; 5345 } 5346 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5347 5348 /* 5349 * This is the 'heart' of the zoned buddy allocator. 5350 */ 5351 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5352 nodemask_t *nodemask) 5353 { 5354 struct page *page; 5355 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5356 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5357 struct alloc_context ac = { }; 5358 5359 /* 5360 * There are several places where we assume that the order value is sane 5361 * so bail out early if the request is out of bound. 5362 */ 5363 if (unlikely(order >= MAX_ORDER)) { 5364 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5365 return NULL; 5366 } 5367 5368 gfp &= gfp_allowed_mask; 5369 /* 5370 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5371 * resp. GFP_NOIO which has to be inherited for all allocation requests 5372 * from a particular context which has been marked by 5373 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5374 * movable zones are not used during allocation. 5375 */ 5376 gfp = current_gfp_context(gfp); 5377 alloc_gfp = gfp; 5378 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5379 &alloc_gfp, &alloc_flags)) 5380 return NULL; 5381 5382 /* 5383 * Forbid the first pass from falling back to types that fragment 5384 * memory until all local zones are considered. 5385 */ 5386 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5387 5388 /* First allocation attempt */ 5389 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5390 if (likely(page)) 5391 goto out; 5392 5393 alloc_gfp = gfp; 5394 ac.spread_dirty_pages = false; 5395 5396 /* 5397 * Restore the original nodemask if it was potentially replaced with 5398 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5399 */ 5400 ac.nodemask = nodemask; 5401 5402 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5403 5404 out: 5405 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5406 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5407 __free_pages(page, order); 5408 page = NULL; 5409 } 5410 5411 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5412 5413 return page; 5414 } 5415 EXPORT_SYMBOL(__alloc_pages); 5416 5417 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5418 nodemask_t *nodemask) 5419 { 5420 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5421 preferred_nid, nodemask); 5422 5423 if (page && order > 1) 5424 prep_transhuge_page(page); 5425 return (struct folio *)page; 5426 } 5427 EXPORT_SYMBOL(__folio_alloc); 5428 5429 /* 5430 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5431 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5432 * you need to access high mem. 5433 */ 5434 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5435 { 5436 struct page *page; 5437 5438 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5439 if (!page) 5440 return 0; 5441 return (unsigned long) page_address(page); 5442 } 5443 EXPORT_SYMBOL(__get_free_pages); 5444 5445 unsigned long get_zeroed_page(gfp_t gfp_mask) 5446 { 5447 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5448 } 5449 EXPORT_SYMBOL(get_zeroed_page); 5450 5451 /** 5452 * __free_pages - Free pages allocated with alloc_pages(). 5453 * @page: The page pointer returned from alloc_pages(). 5454 * @order: The order of the allocation. 5455 * 5456 * This function can free multi-page allocations that are not compound 5457 * pages. It does not check that the @order passed in matches that of 5458 * the allocation, so it is easy to leak memory. Freeing more memory 5459 * than was allocated will probably emit a warning. 5460 * 5461 * If the last reference to this page is speculative, it will be released 5462 * by put_page() which only frees the first page of a non-compound 5463 * allocation. To prevent the remaining pages from being leaked, we free 5464 * the subsequent pages here. If you want to use the page's reference 5465 * count to decide when to free the allocation, you should allocate a 5466 * compound page, and use put_page() instead of __free_pages(). 5467 * 5468 * Context: May be called in interrupt context or while holding a normal 5469 * spinlock, but not in NMI context or while holding a raw spinlock. 5470 */ 5471 void __free_pages(struct page *page, unsigned int order) 5472 { 5473 if (put_page_testzero(page)) 5474 free_the_page(page, order); 5475 else if (!PageHead(page)) 5476 while (order-- > 0) 5477 free_the_page(page + (1 << order), order); 5478 } 5479 EXPORT_SYMBOL(__free_pages); 5480 5481 void free_pages(unsigned long addr, unsigned int order) 5482 { 5483 if (addr != 0) { 5484 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5485 __free_pages(virt_to_page((void *)addr), order); 5486 } 5487 } 5488 5489 EXPORT_SYMBOL(free_pages); 5490 5491 /* 5492 * Page Fragment: 5493 * An arbitrary-length arbitrary-offset area of memory which resides 5494 * within a 0 or higher order page. Multiple fragments within that page 5495 * are individually refcounted, in the page's reference counter. 5496 * 5497 * The page_frag functions below provide a simple allocation framework for 5498 * page fragments. This is used by the network stack and network device 5499 * drivers to provide a backing region of memory for use as either an 5500 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5501 */ 5502 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5503 gfp_t gfp_mask) 5504 { 5505 struct page *page = NULL; 5506 gfp_t gfp = gfp_mask; 5507 5508 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5509 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5510 __GFP_NOMEMALLOC; 5511 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5512 PAGE_FRAG_CACHE_MAX_ORDER); 5513 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5514 #endif 5515 if (unlikely(!page)) 5516 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5517 5518 nc->va = page ? page_address(page) : NULL; 5519 5520 return page; 5521 } 5522 5523 void __page_frag_cache_drain(struct page *page, unsigned int count) 5524 { 5525 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5526 5527 if (page_ref_sub_and_test(page, count)) 5528 free_the_page(page, compound_order(page)); 5529 } 5530 EXPORT_SYMBOL(__page_frag_cache_drain); 5531 5532 void *page_frag_alloc_align(struct page_frag_cache *nc, 5533 unsigned int fragsz, gfp_t gfp_mask, 5534 unsigned int align_mask) 5535 { 5536 unsigned int size = PAGE_SIZE; 5537 struct page *page; 5538 int offset; 5539 5540 if (unlikely(!nc->va)) { 5541 refill: 5542 page = __page_frag_cache_refill(nc, gfp_mask); 5543 if (!page) 5544 return NULL; 5545 5546 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5547 /* if size can vary use size else just use PAGE_SIZE */ 5548 size = nc->size; 5549 #endif 5550 /* Even if we own the page, we do not use atomic_set(). 5551 * This would break get_page_unless_zero() users. 5552 */ 5553 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5554 5555 /* reset page count bias and offset to start of new frag */ 5556 nc->pfmemalloc = page_is_pfmemalloc(page); 5557 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5558 nc->offset = size; 5559 } 5560 5561 offset = nc->offset - fragsz; 5562 if (unlikely(offset < 0)) { 5563 page = virt_to_page(nc->va); 5564 5565 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5566 goto refill; 5567 5568 if (unlikely(nc->pfmemalloc)) { 5569 free_the_page(page, compound_order(page)); 5570 goto refill; 5571 } 5572 5573 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5574 /* if size can vary use size else just use PAGE_SIZE */ 5575 size = nc->size; 5576 #endif 5577 /* OK, page count is 0, we can safely set it */ 5578 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5579 5580 /* reset page count bias and offset to start of new frag */ 5581 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5582 offset = size - fragsz; 5583 } 5584 5585 nc->pagecnt_bias--; 5586 offset &= align_mask; 5587 nc->offset = offset; 5588 5589 return nc->va + offset; 5590 } 5591 EXPORT_SYMBOL(page_frag_alloc_align); 5592 5593 /* 5594 * Frees a page fragment allocated out of either a compound or order 0 page. 5595 */ 5596 void page_frag_free(void *addr) 5597 { 5598 struct page *page = virt_to_head_page(addr); 5599 5600 if (unlikely(put_page_testzero(page))) 5601 free_the_page(page, compound_order(page)); 5602 } 5603 EXPORT_SYMBOL(page_frag_free); 5604 5605 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5606 size_t size) 5607 { 5608 if (addr) { 5609 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5610 unsigned long used = addr + PAGE_ALIGN(size); 5611 5612 split_page(virt_to_page((void *)addr), order); 5613 while (used < alloc_end) { 5614 free_page(used); 5615 used += PAGE_SIZE; 5616 } 5617 } 5618 return (void *)addr; 5619 } 5620 5621 /** 5622 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5623 * @size: the number of bytes to allocate 5624 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5625 * 5626 * This function is similar to alloc_pages(), except that it allocates the 5627 * minimum number of pages to satisfy the request. alloc_pages() can only 5628 * allocate memory in power-of-two pages. 5629 * 5630 * This function is also limited by MAX_ORDER. 5631 * 5632 * Memory allocated by this function must be released by free_pages_exact(). 5633 * 5634 * Return: pointer to the allocated area or %NULL in case of error. 5635 */ 5636 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5637 { 5638 unsigned int order = get_order(size); 5639 unsigned long addr; 5640 5641 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5642 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5643 5644 addr = __get_free_pages(gfp_mask, order); 5645 return make_alloc_exact(addr, order, size); 5646 } 5647 EXPORT_SYMBOL(alloc_pages_exact); 5648 5649 /** 5650 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5651 * pages on a node. 5652 * @nid: the preferred node ID where memory should be allocated 5653 * @size: the number of bytes to allocate 5654 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5655 * 5656 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5657 * back. 5658 * 5659 * Return: pointer to the allocated area or %NULL in case of error. 5660 */ 5661 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5662 { 5663 unsigned int order = get_order(size); 5664 struct page *p; 5665 5666 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5667 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5668 5669 p = alloc_pages_node(nid, gfp_mask, order); 5670 if (!p) 5671 return NULL; 5672 return make_alloc_exact((unsigned long)page_address(p), order, size); 5673 } 5674 5675 /** 5676 * free_pages_exact - release memory allocated via alloc_pages_exact() 5677 * @virt: the value returned by alloc_pages_exact. 5678 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5679 * 5680 * Release the memory allocated by a previous call to alloc_pages_exact. 5681 */ 5682 void free_pages_exact(void *virt, size_t size) 5683 { 5684 unsigned long addr = (unsigned long)virt; 5685 unsigned long end = addr + PAGE_ALIGN(size); 5686 5687 while (addr < end) { 5688 free_page(addr); 5689 addr += PAGE_SIZE; 5690 } 5691 } 5692 EXPORT_SYMBOL(free_pages_exact); 5693 5694 /** 5695 * nr_free_zone_pages - count number of pages beyond high watermark 5696 * @offset: The zone index of the highest zone 5697 * 5698 * nr_free_zone_pages() counts the number of pages which are beyond the 5699 * high watermark within all zones at or below a given zone index. For each 5700 * zone, the number of pages is calculated as: 5701 * 5702 * nr_free_zone_pages = managed_pages - high_pages 5703 * 5704 * Return: number of pages beyond high watermark. 5705 */ 5706 static unsigned long nr_free_zone_pages(int offset) 5707 { 5708 struct zoneref *z; 5709 struct zone *zone; 5710 5711 /* Just pick one node, since fallback list is circular */ 5712 unsigned long sum = 0; 5713 5714 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5715 5716 for_each_zone_zonelist(zone, z, zonelist, offset) { 5717 unsigned long size = zone_managed_pages(zone); 5718 unsigned long high = high_wmark_pages(zone); 5719 if (size > high) 5720 sum += size - high; 5721 } 5722 5723 return sum; 5724 } 5725 5726 /** 5727 * nr_free_buffer_pages - count number of pages beyond high watermark 5728 * 5729 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5730 * watermark within ZONE_DMA and ZONE_NORMAL. 5731 * 5732 * Return: number of pages beyond high watermark within ZONE_DMA and 5733 * ZONE_NORMAL. 5734 */ 5735 unsigned long nr_free_buffer_pages(void) 5736 { 5737 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5738 } 5739 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5740 5741 static inline void show_node(struct zone *zone) 5742 { 5743 if (IS_ENABLED(CONFIG_NUMA)) 5744 printk("Node %d ", zone_to_nid(zone)); 5745 } 5746 5747 long si_mem_available(void) 5748 { 5749 long available; 5750 unsigned long pagecache; 5751 unsigned long wmark_low = 0; 5752 unsigned long pages[NR_LRU_LISTS]; 5753 unsigned long reclaimable; 5754 struct zone *zone; 5755 int lru; 5756 5757 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5758 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5759 5760 for_each_zone(zone) 5761 wmark_low += low_wmark_pages(zone); 5762 5763 /* 5764 * Estimate the amount of memory available for userspace allocations, 5765 * without causing swapping. 5766 */ 5767 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5768 5769 /* 5770 * Not all the page cache can be freed, otherwise the system will 5771 * start swapping. Assume at least half of the page cache, or the 5772 * low watermark worth of cache, needs to stay. 5773 */ 5774 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5775 pagecache -= min(pagecache / 2, wmark_low); 5776 available += pagecache; 5777 5778 /* 5779 * Part of the reclaimable slab and other kernel memory consists of 5780 * items that are in use, and cannot be freed. Cap this estimate at the 5781 * low watermark. 5782 */ 5783 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5784 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5785 available += reclaimable - min(reclaimable / 2, wmark_low); 5786 5787 if (available < 0) 5788 available = 0; 5789 return available; 5790 } 5791 EXPORT_SYMBOL_GPL(si_mem_available); 5792 5793 void si_meminfo(struct sysinfo *val) 5794 { 5795 val->totalram = totalram_pages(); 5796 val->sharedram = global_node_page_state(NR_SHMEM); 5797 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5798 val->bufferram = nr_blockdev_pages(); 5799 val->totalhigh = totalhigh_pages(); 5800 val->freehigh = nr_free_highpages(); 5801 val->mem_unit = PAGE_SIZE; 5802 } 5803 5804 EXPORT_SYMBOL(si_meminfo); 5805 5806 #ifdef CONFIG_NUMA 5807 void si_meminfo_node(struct sysinfo *val, int nid) 5808 { 5809 int zone_type; /* needs to be signed */ 5810 unsigned long managed_pages = 0; 5811 unsigned long managed_highpages = 0; 5812 unsigned long free_highpages = 0; 5813 pg_data_t *pgdat = NODE_DATA(nid); 5814 5815 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5816 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5817 val->totalram = managed_pages; 5818 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5819 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5820 #ifdef CONFIG_HIGHMEM 5821 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5822 struct zone *zone = &pgdat->node_zones[zone_type]; 5823 5824 if (is_highmem(zone)) { 5825 managed_highpages += zone_managed_pages(zone); 5826 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5827 } 5828 } 5829 val->totalhigh = managed_highpages; 5830 val->freehigh = free_highpages; 5831 #else 5832 val->totalhigh = managed_highpages; 5833 val->freehigh = free_highpages; 5834 #endif 5835 val->mem_unit = PAGE_SIZE; 5836 } 5837 #endif 5838 5839 /* 5840 * Determine whether the node should be displayed or not, depending on whether 5841 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5842 */ 5843 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5844 { 5845 if (!(flags & SHOW_MEM_FILTER_NODES)) 5846 return false; 5847 5848 /* 5849 * no node mask - aka implicit memory numa policy. Do not bother with 5850 * the synchronization - read_mems_allowed_begin - because we do not 5851 * have to be precise here. 5852 */ 5853 if (!nodemask) 5854 nodemask = &cpuset_current_mems_allowed; 5855 5856 return !node_isset(nid, *nodemask); 5857 } 5858 5859 #define K(x) ((x) << (PAGE_SHIFT-10)) 5860 5861 static void show_migration_types(unsigned char type) 5862 { 5863 static const char types[MIGRATE_TYPES] = { 5864 [MIGRATE_UNMOVABLE] = 'U', 5865 [MIGRATE_MOVABLE] = 'M', 5866 [MIGRATE_RECLAIMABLE] = 'E', 5867 [MIGRATE_HIGHATOMIC] = 'H', 5868 #ifdef CONFIG_CMA 5869 [MIGRATE_CMA] = 'C', 5870 #endif 5871 #ifdef CONFIG_MEMORY_ISOLATION 5872 [MIGRATE_ISOLATE] = 'I', 5873 #endif 5874 }; 5875 char tmp[MIGRATE_TYPES + 1]; 5876 char *p = tmp; 5877 int i; 5878 5879 for (i = 0; i < MIGRATE_TYPES; i++) { 5880 if (type & (1 << i)) 5881 *p++ = types[i]; 5882 } 5883 5884 *p = '\0'; 5885 printk(KERN_CONT "(%s) ", tmp); 5886 } 5887 5888 /* 5889 * Show free area list (used inside shift_scroll-lock stuff) 5890 * We also calculate the percentage fragmentation. We do this by counting the 5891 * memory on each free list with the exception of the first item on the list. 5892 * 5893 * Bits in @filter: 5894 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5895 * cpuset. 5896 */ 5897 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5898 { 5899 unsigned long free_pcp = 0; 5900 int cpu; 5901 struct zone *zone; 5902 pg_data_t *pgdat; 5903 5904 for_each_populated_zone(zone) { 5905 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5906 continue; 5907 5908 for_each_online_cpu(cpu) 5909 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5910 } 5911 5912 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5913 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5914 " unevictable:%lu dirty:%lu writeback:%lu\n" 5915 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5916 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5917 " kernel_misc_reclaimable:%lu\n" 5918 " free:%lu free_pcp:%lu free_cma:%lu\n", 5919 global_node_page_state(NR_ACTIVE_ANON), 5920 global_node_page_state(NR_INACTIVE_ANON), 5921 global_node_page_state(NR_ISOLATED_ANON), 5922 global_node_page_state(NR_ACTIVE_FILE), 5923 global_node_page_state(NR_INACTIVE_FILE), 5924 global_node_page_state(NR_ISOLATED_FILE), 5925 global_node_page_state(NR_UNEVICTABLE), 5926 global_node_page_state(NR_FILE_DIRTY), 5927 global_node_page_state(NR_WRITEBACK), 5928 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5929 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5930 global_node_page_state(NR_FILE_MAPPED), 5931 global_node_page_state(NR_SHMEM), 5932 global_node_page_state(NR_PAGETABLE), 5933 global_zone_page_state(NR_BOUNCE), 5934 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5935 global_zone_page_state(NR_FREE_PAGES), 5936 free_pcp, 5937 global_zone_page_state(NR_FREE_CMA_PAGES)); 5938 5939 for_each_online_pgdat(pgdat) { 5940 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5941 continue; 5942 5943 printk("Node %d" 5944 " active_anon:%lukB" 5945 " inactive_anon:%lukB" 5946 " active_file:%lukB" 5947 " inactive_file:%lukB" 5948 " unevictable:%lukB" 5949 " isolated(anon):%lukB" 5950 " isolated(file):%lukB" 5951 " mapped:%lukB" 5952 " dirty:%lukB" 5953 " writeback:%lukB" 5954 " shmem:%lukB" 5955 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5956 " shmem_thp: %lukB" 5957 " shmem_pmdmapped: %lukB" 5958 " anon_thp: %lukB" 5959 #endif 5960 " writeback_tmp:%lukB" 5961 " kernel_stack:%lukB" 5962 #ifdef CONFIG_SHADOW_CALL_STACK 5963 " shadow_call_stack:%lukB" 5964 #endif 5965 " pagetables:%lukB" 5966 " all_unreclaimable? %s" 5967 "\n", 5968 pgdat->node_id, 5969 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5970 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5971 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5972 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5973 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5974 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5975 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5976 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5977 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5978 K(node_page_state(pgdat, NR_WRITEBACK)), 5979 K(node_page_state(pgdat, NR_SHMEM)), 5980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5981 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5982 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5983 K(node_page_state(pgdat, NR_ANON_THPS)), 5984 #endif 5985 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5986 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5987 #ifdef CONFIG_SHADOW_CALL_STACK 5988 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5989 #endif 5990 K(node_page_state(pgdat, NR_PAGETABLE)), 5991 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5992 "yes" : "no"); 5993 } 5994 5995 for_each_populated_zone(zone) { 5996 int i; 5997 5998 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5999 continue; 6000 6001 free_pcp = 0; 6002 for_each_online_cpu(cpu) 6003 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6004 6005 show_node(zone); 6006 printk(KERN_CONT 6007 "%s" 6008 " free:%lukB" 6009 " boost:%lukB" 6010 " min:%lukB" 6011 " low:%lukB" 6012 " high:%lukB" 6013 " reserved_highatomic:%luKB" 6014 " active_anon:%lukB" 6015 " inactive_anon:%lukB" 6016 " active_file:%lukB" 6017 " inactive_file:%lukB" 6018 " unevictable:%lukB" 6019 " writepending:%lukB" 6020 " present:%lukB" 6021 " managed:%lukB" 6022 " mlocked:%lukB" 6023 " bounce:%lukB" 6024 " free_pcp:%lukB" 6025 " local_pcp:%ukB" 6026 " free_cma:%lukB" 6027 "\n", 6028 zone->name, 6029 K(zone_page_state(zone, NR_FREE_PAGES)), 6030 K(zone->watermark_boost), 6031 K(min_wmark_pages(zone)), 6032 K(low_wmark_pages(zone)), 6033 K(high_wmark_pages(zone)), 6034 K(zone->nr_reserved_highatomic), 6035 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6036 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6037 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6038 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6039 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6040 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6041 K(zone->present_pages), 6042 K(zone_managed_pages(zone)), 6043 K(zone_page_state(zone, NR_MLOCK)), 6044 K(zone_page_state(zone, NR_BOUNCE)), 6045 K(free_pcp), 6046 K(this_cpu_read(zone->per_cpu_pageset->count)), 6047 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6048 printk("lowmem_reserve[]:"); 6049 for (i = 0; i < MAX_NR_ZONES; i++) 6050 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6051 printk(KERN_CONT "\n"); 6052 } 6053 6054 for_each_populated_zone(zone) { 6055 unsigned int order; 6056 unsigned long nr[MAX_ORDER], flags, total = 0; 6057 unsigned char types[MAX_ORDER]; 6058 6059 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6060 continue; 6061 show_node(zone); 6062 printk(KERN_CONT "%s: ", zone->name); 6063 6064 spin_lock_irqsave(&zone->lock, flags); 6065 for (order = 0; order < MAX_ORDER; order++) { 6066 struct free_area *area = &zone->free_area[order]; 6067 int type; 6068 6069 nr[order] = area->nr_free; 6070 total += nr[order] << order; 6071 6072 types[order] = 0; 6073 for (type = 0; type < MIGRATE_TYPES; type++) { 6074 if (!free_area_empty(area, type)) 6075 types[order] |= 1 << type; 6076 } 6077 } 6078 spin_unlock_irqrestore(&zone->lock, flags); 6079 for (order = 0; order < MAX_ORDER; order++) { 6080 printk(KERN_CONT "%lu*%lukB ", 6081 nr[order], K(1UL) << order); 6082 if (nr[order]) 6083 show_migration_types(types[order]); 6084 } 6085 printk(KERN_CONT "= %lukB\n", K(total)); 6086 } 6087 6088 hugetlb_show_meminfo(); 6089 6090 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6091 6092 show_swap_cache_info(); 6093 } 6094 6095 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6096 { 6097 zoneref->zone = zone; 6098 zoneref->zone_idx = zone_idx(zone); 6099 } 6100 6101 /* 6102 * Builds allocation fallback zone lists. 6103 * 6104 * Add all populated zones of a node to the zonelist. 6105 */ 6106 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6107 { 6108 struct zone *zone; 6109 enum zone_type zone_type = MAX_NR_ZONES; 6110 int nr_zones = 0; 6111 6112 do { 6113 zone_type--; 6114 zone = pgdat->node_zones + zone_type; 6115 if (managed_zone(zone)) { 6116 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6117 check_highest_zone(zone_type); 6118 } 6119 } while (zone_type); 6120 6121 return nr_zones; 6122 } 6123 6124 #ifdef CONFIG_NUMA 6125 6126 static int __parse_numa_zonelist_order(char *s) 6127 { 6128 /* 6129 * We used to support different zonelists modes but they turned 6130 * out to be just not useful. Let's keep the warning in place 6131 * if somebody still use the cmd line parameter so that we do 6132 * not fail it silently 6133 */ 6134 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6135 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6136 return -EINVAL; 6137 } 6138 return 0; 6139 } 6140 6141 char numa_zonelist_order[] = "Node"; 6142 6143 /* 6144 * sysctl handler for numa_zonelist_order 6145 */ 6146 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6147 void *buffer, size_t *length, loff_t *ppos) 6148 { 6149 if (write) 6150 return __parse_numa_zonelist_order(buffer); 6151 return proc_dostring(table, write, buffer, length, ppos); 6152 } 6153 6154 6155 #define MAX_NODE_LOAD (nr_online_nodes) 6156 static int node_load[MAX_NUMNODES]; 6157 6158 /** 6159 * find_next_best_node - find the next node that should appear in a given node's fallback list 6160 * @node: node whose fallback list we're appending 6161 * @used_node_mask: nodemask_t of already used nodes 6162 * 6163 * We use a number of factors to determine which is the next node that should 6164 * appear on a given node's fallback list. The node should not have appeared 6165 * already in @node's fallback list, and it should be the next closest node 6166 * according to the distance array (which contains arbitrary distance values 6167 * from each node to each node in the system), and should also prefer nodes 6168 * with no CPUs, since presumably they'll have very little allocation pressure 6169 * on them otherwise. 6170 * 6171 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6172 */ 6173 int find_next_best_node(int node, nodemask_t *used_node_mask) 6174 { 6175 int n, val; 6176 int min_val = INT_MAX; 6177 int best_node = NUMA_NO_NODE; 6178 6179 /* Use the local node if we haven't already */ 6180 if (!node_isset(node, *used_node_mask)) { 6181 node_set(node, *used_node_mask); 6182 return node; 6183 } 6184 6185 for_each_node_state(n, N_MEMORY) { 6186 6187 /* Don't want a node to appear more than once */ 6188 if (node_isset(n, *used_node_mask)) 6189 continue; 6190 6191 /* Use the distance array to find the distance */ 6192 val = node_distance(node, n); 6193 6194 /* Penalize nodes under us ("prefer the next node") */ 6195 val += (n < node); 6196 6197 /* Give preference to headless and unused nodes */ 6198 if (!cpumask_empty(cpumask_of_node(n))) 6199 val += PENALTY_FOR_NODE_WITH_CPUS; 6200 6201 /* Slight preference for less loaded node */ 6202 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6203 val += node_load[n]; 6204 6205 if (val < min_val) { 6206 min_val = val; 6207 best_node = n; 6208 } 6209 } 6210 6211 if (best_node >= 0) 6212 node_set(best_node, *used_node_mask); 6213 6214 return best_node; 6215 } 6216 6217 6218 /* 6219 * Build zonelists ordered by node and zones within node. 6220 * This results in maximum locality--normal zone overflows into local 6221 * DMA zone, if any--but risks exhausting DMA zone. 6222 */ 6223 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6224 unsigned nr_nodes) 6225 { 6226 struct zoneref *zonerefs; 6227 int i; 6228 6229 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6230 6231 for (i = 0; i < nr_nodes; i++) { 6232 int nr_zones; 6233 6234 pg_data_t *node = NODE_DATA(node_order[i]); 6235 6236 nr_zones = build_zonerefs_node(node, zonerefs); 6237 zonerefs += nr_zones; 6238 } 6239 zonerefs->zone = NULL; 6240 zonerefs->zone_idx = 0; 6241 } 6242 6243 /* 6244 * Build gfp_thisnode zonelists 6245 */ 6246 static void build_thisnode_zonelists(pg_data_t *pgdat) 6247 { 6248 struct zoneref *zonerefs; 6249 int nr_zones; 6250 6251 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6252 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6253 zonerefs += nr_zones; 6254 zonerefs->zone = NULL; 6255 zonerefs->zone_idx = 0; 6256 } 6257 6258 /* 6259 * Build zonelists ordered by zone and nodes within zones. 6260 * This results in conserving DMA zone[s] until all Normal memory is 6261 * exhausted, but results in overflowing to remote node while memory 6262 * may still exist in local DMA zone. 6263 */ 6264 6265 static void build_zonelists(pg_data_t *pgdat) 6266 { 6267 static int node_order[MAX_NUMNODES]; 6268 int node, load, nr_nodes = 0; 6269 nodemask_t used_mask = NODE_MASK_NONE; 6270 int local_node, prev_node; 6271 6272 /* NUMA-aware ordering of nodes */ 6273 local_node = pgdat->node_id; 6274 load = nr_online_nodes; 6275 prev_node = local_node; 6276 6277 memset(node_order, 0, sizeof(node_order)); 6278 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6279 /* 6280 * We don't want to pressure a particular node. 6281 * So adding penalty to the first node in same 6282 * distance group to make it round-robin. 6283 */ 6284 if (node_distance(local_node, node) != 6285 node_distance(local_node, prev_node)) 6286 node_load[node] += load; 6287 6288 node_order[nr_nodes++] = node; 6289 prev_node = node; 6290 load--; 6291 } 6292 6293 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6294 build_thisnode_zonelists(pgdat); 6295 pr_info("Fallback order for Node %d: ", local_node); 6296 for (node = 0; node < nr_nodes; node++) 6297 pr_cont("%d ", node_order[node]); 6298 pr_cont("\n"); 6299 } 6300 6301 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6302 /* 6303 * Return node id of node used for "local" allocations. 6304 * I.e., first node id of first zone in arg node's generic zonelist. 6305 * Used for initializing percpu 'numa_mem', which is used primarily 6306 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6307 */ 6308 int local_memory_node(int node) 6309 { 6310 struct zoneref *z; 6311 6312 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6313 gfp_zone(GFP_KERNEL), 6314 NULL); 6315 return zone_to_nid(z->zone); 6316 } 6317 #endif 6318 6319 static void setup_min_unmapped_ratio(void); 6320 static void setup_min_slab_ratio(void); 6321 #else /* CONFIG_NUMA */ 6322 6323 static void build_zonelists(pg_data_t *pgdat) 6324 { 6325 int node, local_node; 6326 struct zoneref *zonerefs; 6327 int nr_zones; 6328 6329 local_node = pgdat->node_id; 6330 6331 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6332 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6333 zonerefs += nr_zones; 6334 6335 /* 6336 * Now we build the zonelist so that it contains the zones 6337 * of all the other nodes. 6338 * We don't want to pressure a particular node, so when 6339 * building the zones for node N, we make sure that the 6340 * zones coming right after the local ones are those from 6341 * node N+1 (modulo N) 6342 */ 6343 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6344 if (!node_online(node)) 6345 continue; 6346 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6347 zonerefs += nr_zones; 6348 } 6349 for (node = 0; node < local_node; node++) { 6350 if (!node_online(node)) 6351 continue; 6352 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6353 zonerefs += nr_zones; 6354 } 6355 6356 zonerefs->zone = NULL; 6357 zonerefs->zone_idx = 0; 6358 } 6359 6360 #endif /* CONFIG_NUMA */ 6361 6362 /* 6363 * Boot pageset table. One per cpu which is going to be used for all 6364 * zones and all nodes. The parameters will be set in such a way 6365 * that an item put on a list will immediately be handed over to 6366 * the buddy list. This is safe since pageset manipulation is done 6367 * with interrupts disabled. 6368 * 6369 * The boot_pagesets must be kept even after bootup is complete for 6370 * unused processors and/or zones. They do play a role for bootstrapping 6371 * hotplugged processors. 6372 * 6373 * zoneinfo_show() and maybe other functions do 6374 * not check if the processor is online before following the pageset pointer. 6375 * Other parts of the kernel may not check if the zone is available. 6376 */ 6377 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6378 /* These effectively disable the pcplists in the boot pageset completely */ 6379 #define BOOT_PAGESET_HIGH 0 6380 #define BOOT_PAGESET_BATCH 1 6381 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6382 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6383 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6384 6385 static void __build_all_zonelists(void *data) 6386 { 6387 int nid; 6388 int __maybe_unused cpu; 6389 pg_data_t *self = data; 6390 static DEFINE_SPINLOCK(lock); 6391 6392 spin_lock(&lock); 6393 6394 #ifdef CONFIG_NUMA 6395 memset(node_load, 0, sizeof(node_load)); 6396 #endif 6397 6398 /* 6399 * This node is hotadded and no memory is yet present. So just 6400 * building zonelists is fine - no need to touch other nodes. 6401 */ 6402 if (self && !node_online(self->node_id)) { 6403 build_zonelists(self); 6404 } else { 6405 for_each_online_node(nid) { 6406 pg_data_t *pgdat = NODE_DATA(nid); 6407 6408 build_zonelists(pgdat); 6409 } 6410 6411 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6412 /* 6413 * We now know the "local memory node" for each node-- 6414 * i.e., the node of the first zone in the generic zonelist. 6415 * Set up numa_mem percpu variable for on-line cpus. During 6416 * boot, only the boot cpu should be on-line; we'll init the 6417 * secondary cpus' numa_mem as they come on-line. During 6418 * node/memory hotplug, we'll fixup all on-line cpus. 6419 */ 6420 for_each_online_cpu(cpu) 6421 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6422 #endif 6423 } 6424 6425 spin_unlock(&lock); 6426 } 6427 6428 static noinline void __init 6429 build_all_zonelists_init(void) 6430 { 6431 int cpu; 6432 6433 __build_all_zonelists(NULL); 6434 6435 /* 6436 * Initialize the boot_pagesets that are going to be used 6437 * for bootstrapping processors. The real pagesets for 6438 * each zone will be allocated later when the per cpu 6439 * allocator is available. 6440 * 6441 * boot_pagesets are used also for bootstrapping offline 6442 * cpus if the system is already booted because the pagesets 6443 * are needed to initialize allocators on a specific cpu too. 6444 * F.e. the percpu allocator needs the page allocator which 6445 * needs the percpu allocator in order to allocate its pagesets 6446 * (a chicken-egg dilemma). 6447 */ 6448 for_each_possible_cpu(cpu) 6449 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6450 6451 mminit_verify_zonelist(); 6452 cpuset_init_current_mems_allowed(); 6453 } 6454 6455 /* 6456 * unless system_state == SYSTEM_BOOTING. 6457 * 6458 * __ref due to call of __init annotated helper build_all_zonelists_init 6459 * [protected by SYSTEM_BOOTING]. 6460 */ 6461 void __ref build_all_zonelists(pg_data_t *pgdat) 6462 { 6463 unsigned long vm_total_pages; 6464 6465 if (system_state == SYSTEM_BOOTING) { 6466 build_all_zonelists_init(); 6467 } else { 6468 __build_all_zonelists(pgdat); 6469 /* cpuset refresh routine should be here */ 6470 } 6471 /* Get the number of free pages beyond high watermark in all zones. */ 6472 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6473 /* 6474 * Disable grouping by mobility if the number of pages in the 6475 * system is too low to allow the mechanism to work. It would be 6476 * more accurate, but expensive to check per-zone. This check is 6477 * made on memory-hotadd so a system can start with mobility 6478 * disabled and enable it later 6479 */ 6480 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6481 page_group_by_mobility_disabled = 1; 6482 else 6483 page_group_by_mobility_disabled = 0; 6484 6485 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6486 nr_online_nodes, 6487 page_group_by_mobility_disabled ? "off" : "on", 6488 vm_total_pages); 6489 #ifdef CONFIG_NUMA 6490 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6491 #endif 6492 } 6493 6494 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6495 static bool __meminit 6496 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6497 { 6498 static struct memblock_region *r; 6499 6500 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6501 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6502 for_each_mem_region(r) { 6503 if (*pfn < memblock_region_memory_end_pfn(r)) 6504 break; 6505 } 6506 } 6507 if (*pfn >= memblock_region_memory_base_pfn(r) && 6508 memblock_is_mirror(r)) { 6509 *pfn = memblock_region_memory_end_pfn(r); 6510 return true; 6511 } 6512 } 6513 return false; 6514 } 6515 6516 /* 6517 * Initially all pages are reserved - free ones are freed 6518 * up by memblock_free_all() once the early boot process is 6519 * done. Non-atomic initialization, single-pass. 6520 * 6521 * All aligned pageblocks are initialized to the specified migratetype 6522 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6523 * zone stats (e.g., nr_isolate_pageblock) are touched. 6524 */ 6525 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6526 unsigned long start_pfn, unsigned long zone_end_pfn, 6527 enum meminit_context context, 6528 struct vmem_altmap *altmap, int migratetype) 6529 { 6530 unsigned long pfn, end_pfn = start_pfn + size; 6531 struct page *page; 6532 6533 if (highest_memmap_pfn < end_pfn - 1) 6534 highest_memmap_pfn = end_pfn - 1; 6535 6536 #ifdef CONFIG_ZONE_DEVICE 6537 /* 6538 * Honor reservation requested by the driver for this ZONE_DEVICE 6539 * memory. We limit the total number of pages to initialize to just 6540 * those that might contain the memory mapping. We will defer the 6541 * ZONE_DEVICE page initialization until after we have released 6542 * the hotplug lock. 6543 */ 6544 if (zone == ZONE_DEVICE) { 6545 if (!altmap) 6546 return; 6547 6548 if (start_pfn == altmap->base_pfn) 6549 start_pfn += altmap->reserve; 6550 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6551 } 6552 #endif 6553 6554 for (pfn = start_pfn; pfn < end_pfn; ) { 6555 /* 6556 * There can be holes in boot-time mem_map[]s handed to this 6557 * function. They do not exist on hotplugged memory. 6558 */ 6559 if (context == MEMINIT_EARLY) { 6560 if (overlap_memmap_init(zone, &pfn)) 6561 continue; 6562 if (defer_init(nid, pfn, zone_end_pfn)) 6563 break; 6564 } 6565 6566 page = pfn_to_page(pfn); 6567 __init_single_page(page, pfn, zone, nid); 6568 if (context == MEMINIT_HOTPLUG) 6569 __SetPageReserved(page); 6570 6571 /* 6572 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6573 * such that unmovable allocations won't be scattered all 6574 * over the place during system boot. 6575 */ 6576 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6577 set_pageblock_migratetype(page, migratetype); 6578 cond_resched(); 6579 } 6580 pfn++; 6581 } 6582 } 6583 6584 #ifdef CONFIG_ZONE_DEVICE 6585 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6586 unsigned long zone_idx, int nid, 6587 struct dev_pagemap *pgmap) 6588 { 6589 6590 __init_single_page(page, pfn, zone_idx, nid); 6591 6592 /* 6593 * Mark page reserved as it will need to wait for onlining 6594 * phase for it to be fully associated with a zone. 6595 * 6596 * We can use the non-atomic __set_bit operation for setting 6597 * the flag as we are still initializing the pages. 6598 */ 6599 __SetPageReserved(page); 6600 6601 /* 6602 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6603 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6604 * ever freed or placed on a driver-private list. 6605 */ 6606 page->pgmap = pgmap; 6607 page->zone_device_data = NULL; 6608 6609 /* 6610 * Mark the block movable so that blocks are reserved for 6611 * movable at startup. This will force kernel allocations 6612 * to reserve their blocks rather than leaking throughout 6613 * the address space during boot when many long-lived 6614 * kernel allocations are made. 6615 * 6616 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6617 * because this is done early in section_activate() 6618 */ 6619 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6620 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6621 cond_resched(); 6622 } 6623 } 6624 6625 static void __ref memmap_init_compound(struct page *head, 6626 unsigned long head_pfn, 6627 unsigned long zone_idx, int nid, 6628 struct dev_pagemap *pgmap, 6629 unsigned long nr_pages) 6630 { 6631 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6632 unsigned int order = pgmap->vmemmap_shift; 6633 6634 __SetPageHead(head); 6635 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6636 struct page *page = pfn_to_page(pfn); 6637 6638 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6639 prep_compound_tail(head, pfn - head_pfn); 6640 set_page_count(page, 0); 6641 6642 /* 6643 * The first tail page stores compound_mapcount_ptr() and 6644 * compound_order() and the second tail page stores 6645 * compound_pincount_ptr(). Call prep_compound_head() after 6646 * the first and second tail pages have been initialized to 6647 * not have the data overwritten. 6648 */ 6649 if (pfn == head_pfn + 2) 6650 prep_compound_head(head, order); 6651 } 6652 } 6653 6654 void __ref memmap_init_zone_device(struct zone *zone, 6655 unsigned long start_pfn, 6656 unsigned long nr_pages, 6657 struct dev_pagemap *pgmap) 6658 { 6659 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6660 struct pglist_data *pgdat = zone->zone_pgdat; 6661 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6662 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6663 unsigned long zone_idx = zone_idx(zone); 6664 unsigned long start = jiffies; 6665 int nid = pgdat->node_id; 6666 6667 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6668 return; 6669 6670 /* 6671 * The call to memmap_init should have already taken care 6672 * of the pages reserved for the memmap, so we can just jump to 6673 * the end of that region and start processing the device pages. 6674 */ 6675 if (altmap) { 6676 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6677 nr_pages = end_pfn - start_pfn; 6678 } 6679 6680 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6681 struct page *page = pfn_to_page(pfn); 6682 6683 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6684 6685 if (pfns_per_compound == 1) 6686 continue; 6687 6688 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6689 pfns_per_compound); 6690 } 6691 6692 pr_info("%s initialised %lu pages in %ums\n", __func__, 6693 nr_pages, jiffies_to_msecs(jiffies - start)); 6694 } 6695 6696 #endif 6697 static void __meminit zone_init_free_lists(struct zone *zone) 6698 { 6699 unsigned int order, t; 6700 for_each_migratetype_order(order, t) { 6701 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6702 zone->free_area[order].nr_free = 0; 6703 } 6704 } 6705 6706 /* 6707 * Only struct pages that correspond to ranges defined by memblock.memory 6708 * are zeroed and initialized by going through __init_single_page() during 6709 * memmap_init_zone_range(). 6710 * 6711 * But, there could be struct pages that correspond to holes in 6712 * memblock.memory. This can happen because of the following reasons: 6713 * - physical memory bank size is not necessarily the exact multiple of the 6714 * arbitrary section size 6715 * - early reserved memory may not be listed in memblock.memory 6716 * - memory layouts defined with memmap= kernel parameter may not align 6717 * nicely with memmap sections 6718 * 6719 * Explicitly initialize those struct pages so that: 6720 * - PG_Reserved is set 6721 * - zone and node links point to zone and node that span the page if the 6722 * hole is in the middle of a zone 6723 * - zone and node links point to adjacent zone/node if the hole falls on 6724 * the zone boundary; the pages in such holes will be prepended to the 6725 * zone/node above the hole except for the trailing pages in the last 6726 * section that will be appended to the zone/node below. 6727 */ 6728 static void __init init_unavailable_range(unsigned long spfn, 6729 unsigned long epfn, 6730 int zone, int node) 6731 { 6732 unsigned long pfn; 6733 u64 pgcnt = 0; 6734 6735 for (pfn = spfn; pfn < epfn; pfn++) { 6736 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6737 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6738 + pageblock_nr_pages - 1; 6739 continue; 6740 } 6741 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6742 __SetPageReserved(pfn_to_page(pfn)); 6743 pgcnt++; 6744 } 6745 6746 if (pgcnt) 6747 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6748 node, zone_names[zone], pgcnt); 6749 } 6750 6751 static void __init memmap_init_zone_range(struct zone *zone, 6752 unsigned long start_pfn, 6753 unsigned long end_pfn, 6754 unsigned long *hole_pfn) 6755 { 6756 unsigned long zone_start_pfn = zone->zone_start_pfn; 6757 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6758 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6759 6760 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6761 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6762 6763 if (start_pfn >= end_pfn) 6764 return; 6765 6766 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6767 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6768 6769 if (*hole_pfn < start_pfn) 6770 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6771 6772 *hole_pfn = end_pfn; 6773 } 6774 6775 static void __init memmap_init(void) 6776 { 6777 unsigned long start_pfn, end_pfn; 6778 unsigned long hole_pfn = 0; 6779 int i, j, zone_id = 0, nid; 6780 6781 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6782 struct pglist_data *node = NODE_DATA(nid); 6783 6784 for (j = 0; j < MAX_NR_ZONES; j++) { 6785 struct zone *zone = node->node_zones + j; 6786 6787 if (!populated_zone(zone)) 6788 continue; 6789 6790 memmap_init_zone_range(zone, start_pfn, end_pfn, 6791 &hole_pfn); 6792 zone_id = j; 6793 } 6794 } 6795 6796 #ifdef CONFIG_SPARSEMEM 6797 /* 6798 * Initialize the memory map for hole in the range [memory_end, 6799 * section_end]. 6800 * Append the pages in this hole to the highest zone in the last 6801 * node. 6802 * The call to init_unavailable_range() is outside the ifdef to 6803 * silence the compiler warining about zone_id set but not used; 6804 * for FLATMEM it is a nop anyway 6805 */ 6806 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6807 if (hole_pfn < end_pfn) 6808 #endif 6809 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6810 } 6811 6812 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6813 phys_addr_t min_addr, int nid, bool exact_nid) 6814 { 6815 void *ptr; 6816 6817 if (exact_nid) 6818 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6819 MEMBLOCK_ALLOC_ACCESSIBLE, 6820 nid); 6821 else 6822 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6823 MEMBLOCK_ALLOC_ACCESSIBLE, 6824 nid); 6825 6826 if (ptr && size > 0) 6827 page_init_poison(ptr, size); 6828 6829 return ptr; 6830 } 6831 6832 static int zone_batchsize(struct zone *zone) 6833 { 6834 #ifdef CONFIG_MMU 6835 int batch; 6836 6837 /* 6838 * The number of pages to batch allocate is either ~0.1% 6839 * of the zone or 1MB, whichever is smaller. The batch 6840 * size is striking a balance between allocation latency 6841 * and zone lock contention. 6842 */ 6843 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6844 batch /= 4; /* We effectively *= 4 below */ 6845 if (batch < 1) 6846 batch = 1; 6847 6848 /* 6849 * Clamp the batch to a 2^n - 1 value. Having a power 6850 * of 2 value was found to be more likely to have 6851 * suboptimal cache aliasing properties in some cases. 6852 * 6853 * For example if 2 tasks are alternately allocating 6854 * batches of pages, one task can end up with a lot 6855 * of pages of one half of the possible page colors 6856 * and the other with pages of the other colors. 6857 */ 6858 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6859 6860 return batch; 6861 6862 #else 6863 /* The deferral and batching of frees should be suppressed under NOMMU 6864 * conditions. 6865 * 6866 * The problem is that NOMMU needs to be able to allocate large chunks 6867 * of contiguous memory as there's no hardware page translation to 6868 * assemble apparent contiguous memory from discontiguous pages. 6869 * 6870 * Queueing large contiguous runs of pages for batching, however, 6871 * causes the pages to actually be freed in smaller chunks. As there 6872 * can be a significant delay between the individual batches being 6873 * recycled, this leads to the once large chunks of space being 6874 * fragmented and becoming unavailable for high-order allocations. 6875 */ 6876 return 0; 6877 #endif 6878 } 6879 6880 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6881 { 6882 #ifdef CONFIG_MMU 6883 int high; 6884 int nr_split_cpus; 6885 unsigned long total_pages; 6886 6887 if (!percpu_pagelist_high_fraction) { 6888 /* 6889 * By default, the high value of the pcp is based on the zone 6890 * low watermark so that if they are full then background 6891 * reclaim will not be started prematurely. 6892 */ 6893 total_pages = low_wmark_pages(zone); 6894 } else { 6895 /* 6896 * If percpu_pagelist_high_fraction is configured, the high 6897 * value is based on a fraction of the managed pages in the 6898 * zone. 6899 */ 6900 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6901 } 6902 6903 /* 6904 * Split the high value across all online CPUs local to the zone. Note 6905 * that early in boot that CPUs may not be online yet and that during 6906 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6907 * onlined. For memory nodes that have no CPUs, split pcp->high across 6908 * all online CPUs to mitigate the risk that reclaim is triggered 6909 * prematurely due to pages stored on pcp lists. 6910 */ 6911 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6912 if (!nr_split_cpus) 6913 nr_split_cpus = num_online_cpus(); 6914 high = total_pages / nr_split_cpus; 6915 6916 /* 6917 * Ensure high is at least batch*4. The multiple is based on the 6918 * historical relationship between high and batch. 6919 */ 6920 high = max(high, batch << 2); 6921 6922 return high; 6923 #else 6924 return 0; 6925 #endif 6926 } 6927 6928 /* 6929 * pcp->high and pcp->batch values are related and generally batch is lower 6930 * than high. They are also related to pcp->count such that count is lower 6931 * than high, and as soon as it reaches high, the pcplist is flushed. 6932 * 6933 * However, guaranteeing these relations at all times would require e.g. write 6934 * barriers here but also careful usage of read barriers at the read side, and 6935 * thus be prone to error and bad for performance. Thus the update only prevents 6936 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6937 * can cope with those fields changing asynchronously, and fully trust only the 6938 * pcp->count field on the local CPU with interrupts disabled. 6939 * 6940 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6941 * outside of boot time (or some other assurance that no concurrent updaters 6942 * exist). 6943 */ 6944 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6945 unsigned long batch) 6946 { 6947 WRITE_ONCE(pcp->batch, batch); 6948 WRITE_ONCE(pcp->high, high); 6949 } 6950 6951 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6952 { 6953 int pindex; 6954 6955 memset(pcp, 0, sizeof(*pcp)); 6956 memset(pzstats, 0, sizeof(*pzstats)); 6957 6958 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6959 INIT_LIST_HEAD(&pcp->lists[pindex]); 6960 6961 /* 6962 * Set batch and high values safe for a boot pageset. A true percpu 6963 * pageset's initialization will update them subsequently. Here we don't 6964 * need to be as careful as pageset_update() as nobody can access the 6965 * pageset yet. 6966 */ 6967 pcp->high = BOOT_PAGESET_HIGH; 6968 pcp->batch = BOOT_PAGESET_BATCH; 6969 pcp->free_factor = 0; 6970 } 6971 6972 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6973 unsigned long batch) 6974 { 6975 struct per_cpu_pages *pcp; 6976 int cpu; 6977 6978 for_each_possible_cpu(cpu) { 6979 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6980 pageset_update(pcp, high, batch); 6981 } 6982 } 6983 6984 /* 6985 * Calculate and set new high and batch values for all per-cpu pagesets of a 6986 * zone based on the zone's size. 6987 */ 6988 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6989 { 6990 int new_high, new_batch; 6991 6992 new_batch = max(1, zone_batchsize(zone)); 6993 new_high = zone_highsize(zone, new_batch, cpu_online); 6994 6995 if (zone->pageset_high == new_high && 6996 zone->pageset_batch == new_batch) 6997 return; 6998 6999 zone->pageset_high = new_high; 7000 zone->pageset_batch = new_batch; 7001 7002 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7003 } 7004 7005 void __meminit setup_zone_pageset(struct zone *zone) 7006 { 7007 int cpu; 7008 7009 /* Size may be 0 on !SMP && !NUMA */ 7010 if (sizeof(struct per_cpu_zonestat) > 0) 7011 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7012 7013 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7014 for_each_possible_cpu(cpu) { 7015 struct per_cpu_pages *pcp; 7016 struct per_cpu_zonestat *pzstats; 7017 7018 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7019 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7020 per_cpu_pages_init(pcp, pzstats); 7021 } 7022 7023 zone_set_pageset_high_and_batch(zone, 0); 7024 } 7025 7026 /* 7027 * Allocate per cpu pagesets and initialize them. 7028 * Before this call only boot pagesets were available. 7029 */ 7030 void __init setup_per_cpu_pageset(void) 7031 { 7032 struct pglist_data *pgdat; 7033 struct zone *zone; 7034 int __maybe_unused cpu; 7035 7036 for_each_populated_zone(zone) 7037 setup_zone_pageset(zone); 7038 7039 #ifdef CONFIG_NUMA 7040 /* 7041 * Unpopulated zones continue using the boot pagesets. 7042 * The numa stats for these pagesets need to be reset. 7043 * Otherwise, they will end up skewing the stats of 7044 * the nodes these zones are associated with. 7045 */ 7046 for_each_possible_cpu(cpu) { 7047 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7048 memset(pzstats->vm_numa_event, 0, 7049 sizeof(pzstats->vm_numa_event)); 7050 } 7051 #endif 7052 7053 for_each_online_pgdat(pgdat) 7054 pgdat->per_cpu_nodestats = 7055 alloc_percpu(struct per_cpu_nodestat); 7056 } 7057 7058 static __meminit void zone_pcp_init(struct zone *zone) 7059 { 7060 /* 7061 * per cpu subsystem is not up at this point. The following code 7062 * relies on the ability of the linker to provide the 7063 * offset of a (static) per cpu variable into the per cpu area. 7064 */ 7065 zone->per_cpu_pageset = &boot_pageset; 7066 zone->per_cpu_zonestats = &boot_zonestats; 7067 zone->pageset_high = BOOT_PAGESET_HIGH; 7068 zone->pageset_batch = BOOT_PAGESET_BATCH; 7069 7070 if (populated_zone(zone)) 7071 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7072 zone->present_pages, zone_batchsize(zone)); 7073 } 7074 7075 void __meminit init_currently_empty_zone(struct zone *zone, 7076 unsigned long zone_start_pfn, 7077 unsigned long size) 7078 { 7079 struct pglist_data *pgdat = zone->zone_pgdat; 7080 int zone_idx = zone_idx(zone) + 1; 7081 7082 if (zone_idx > pgdat->nr_zones) 7083 pgdat->nr_zones = zone_idx; 7084 7085 zone->zone_start_pfn = zone_start_pfn; 7086 7087 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7088 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7089 pgdat->node_id, 7090 (unsigned long)zone_idx(zone), 7091 zone_start_pfn, (zone_start_pfn + size)); 7092 7093 zone_init_free_lists(zone); 7094 zone->initialized = 1; 7095 } 7096 7097 /** 7098 * get_pfn_range_for_nid - Return the start and end page frames for a node 7099 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7100 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7101 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7102 * 7103 * It returns the start and end page frame of a node based on information 7104 * provided by memblock_set_node(). If called for a node 7105 * with no available memory, a warning is printed and the start and end 7106 * PFNs will be 0. 7107 */ 7108 void __init get_pfn_range_for_nid(unsigned int nid, 7109 unsigned long *start_pfn, unsigned long *end_pfn) 7110 { 7111 unsigned long this_start_pfn, this_end_pfn; 7112 int i; 7113 7114 *start_pfn = -1UL; 7115 *end_pfn = 0; 7116 7117 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7118 *start_pfn = min(*start_pfn, this_start_pfn); 7119 *end_pfn = max(*end_pfn, this_end_pfn); 7120 } 7121 7122 if (*start_pfn == -1UL) 7123 *start_pfn = 0; 7124 } 7125 7126 /* 7127 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7128 * assumption is made that zones within a node are ordered in monotonic 7129 * increasing memory addresses so that the "highest" populated zone is used 7130 */ 7131 static void __init find_usable_zone_for_movable(void) 7132 { 7133 int zone_index; 7134 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7135 if (zone_index == ZONE_MOVABLE) 7136 continue; 7137 7138 if (arch_zone_highest_possible_pfn[zone_index] > 7139 arch_zone_lowest_possible_pfn[zone_index]) 7140 break; 7141 } 7142 7143 VM_BUG_ON(zone_index == -1); 7144 movable_zone = zone_index; 7145 } 7146 7147 /* 7148 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7149 * because it is sized independent of architecture. Unlike the other zones, 7150 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7151 * in each node depending on the size of each node and how evenly kernelcore 7152 * is distributed. This helper function adjusts the zone ranges 7153 * provided by the architecture for a given node by using the end of the 7154 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7155 * zones within a node are in order of monotonic increases memory addresses 7156 */ 7157 static void __init adjust_zone_range_for_zone_movable(int nid, 7158 unsigned long zone_type, 7159 unsigned long node_start_pfn, 7160 unsigned long node_end_pfn, 7161 unsigned long *zone_start_pfn, 7162 unsigned long *zone_end_pfn) 7163 { 7164 /* Only adjust if ZONE_MOVABLE is on this node */ 7165 if (zone_movable_pfn[nid]) { 7166 /* Size ZONE_MOVABLE */ 7167 if (zone_type == ZONE_MOVABLE) { 7168 *zone_start_pfn = zone_movable_pfn[nid]; 7169 *zone_end_pfn = min(node_end_pfn, 7170 arch_zone_highest_possible_pfn[movable_zone]); 7171 7172 /* Adjust for ZONE_MOVABLE starting within this range */ 7173 } else if (!mirrored_kernelcore && 7174 *zone_start_pfn < zone_movable_pfn[nid] && 7175 *zone_end_pfn > zone_movable_pfn[nid]) { 7176 *zone_end_pfn = zone_movable_pfn[nid]; 7177 7178 /* Check if this whole range is within ZONE_MOVABLE */ 7179 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7180 *zone_start_pfn = *zone_end_pfn; 7181 } 7182 } 7183 7184 /* 7185 * Return the number of pages a zone spans in a node, including holes 7186 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7187 */ 7188 static unsigned long __init zone_spanned_pages_in_node(int nid, 7189 unsigned long zone_type, 7190 unsigned long node_start_pfn, 7191 unsigned long node_end_pfn, 7192 unsigned long *zone_start_pfn, 7193 unsigned long *zone_end_pfn) 7194 { 7195 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7196 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7197 /* When hotadd a new node from cpu_up(), the node should be empty */ 7198 if (!node_start_pfn && !node_end_pfn) 7199 return 0; 7200 7201 /* Get the start and end of the zone */ 7202 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7203 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7204 adjust_zone_range_for_zone_movable(nid, zone_type, 7205 node_start_pfn, node_end_pfn, 7206 zone_start_pfn, zone_end_pfn); 7207 7208 /* Check that this node has pages within the zone's required range */ 7209 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7210 return 0; 7211 7212 /* Move the zone boundaries inside the node if necessary */ 7213 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7214 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7215 7216 /* Return the spanned pages */ 7217 return *zone_end_pfn - *zone_start_pfn; 7218 } 7219 7220 /* 7221 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7222 * then all holes in the requested range will be accounted for. 7223 */ 7224 unsigned long __init __absent_pages_in_range(int nid, 7225 unsigned long range_start_pfn, 7226 unsigned long range_end_pfn) 7227 { 7228 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7229 unsigned long start_pfn, end_pfn; 7230 int i; 7231 7232 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7233 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7234 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7235 nr_absent -= end_pfn - start_pfn; 7236 } 7237 return nr_absent; 7238 } 7239 7240 /** 7241 * absent_pages_in_range - Return number of page frames in holes within a range 7242 * @start_pfn: The start PFN to start searching for holes 7243 * @end_pfn: The end PFN to stop searching for holes 7244 * 7245 * Return: the number of pages frames in memory holes within a range. 7246 */ 7247 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7248 unsigned long end_pfn) 7249 { 7250 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7251 } 7252 7253 /* Return the number of page frames in holes in a zone on a node */ 7254 static unsigned long __init zone_absent_pages_in_node(int nid, 7255 unsigned long zone_type, 7256 unsigned long node_start_pfn, 7257 unsigned long node_end_pfn) 7258 { 7259 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7260 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7261 unsigned long zone_start_pfn, zone_end_pfn; 7262 unsigned long nr_absent; 7263 7264 /* When hotadd a new node from cpu_up(), the node should be empty */ 7265 if (!node_start_pfn && !node_end_pfn) 7266 return 0; 7267 7268 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7269 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7270 7271 adjust_zone_range_for_zone_movable(nid, zone_type, 7272 node_start_pfn, node_end_pfn, 7273 &zone_start_pfn, &zone_end_pfn); 7274 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7275 7276 /* 7277 * ZONE_MOVABLE handling. 7278 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7279 * and vice versa. 7280 */ 7281 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7282 unsigned long start_pfn, end_pfn; 7283 struct memblock_region *r; 7284 7285 for_each_mem_region(r) { 7286 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7287 zone_start_pfn, zone_end_pfn); 7288 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7289 zone_start_pfn, zone_end_pfn); 7290 7291 if (zone_type == ZONE_MOVABLE && 7292 memblock_is_mirror(r)) 7293 nr_absent += end_pfn - start_pfn; 7294 7295 if (zone_type == ZONE_NORMAL && 7296 !memblock_is_mirror(r)) 7297 nr_absent += end_pfn - start_pfn; 7298 } 7299 } 7300 7301 return nr_absent; 7302 } 7303 7304 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7305 unsigned long node_start_pfn, 7306 unsigned long node_end_pfn) 7307 { 7308 unsigned long realtotalpages = 0, totalpages = 0; 7309 enum zone_type i; 7310 7311 for (i = 0; i < MAX_NR_ZONES; i++) { 7312 struct zone *zone = pgdat->node_zones + i; 7313 unsigned long zone_start_pfn, zone_end_pfn; 7314 unsigned long spanned, absent; 7315 unsigned long size, real_size; 7316 7317 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7318 node_start_pfn, 7319 node_end_pfn, 7320 &zone_start_pfn, 7321 &zone_end_pfn); 7322 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7323 node_start_pfn, 7324 node_end_pfn); 7325 7326 size = spanned; 7327 real_size = size - absent; 7328 7329 if (size) 7330 zone->zone_start_pfn = zone_start_pfn; 7331 else 7332 zone->zone_start_pfn = 0; 7333 zone->spanned_pages = size; 7334 zone->present_pages = real_size; 7335 #if defined(CONFIG_MEMORY_HOTPLUG) 7336 zone->present_early_pages = real_size; 7337 #endif 7338 7339 totalpages += size; 7340 realtotalpages += real_size; 7341 } 7342 7343 pgdat->node_spanned_pages = totalpages; 7344 pgdat->node_present_pages = realtotalpages; 7345 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7346 } 7347 7348 #ifndef CONFIG_SPARSEMEM 7349 /* 7350 * Calculate the size of the zone->blockflags rounded to an unsigned long 7351 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7352 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7353 * round what is now in bits to nearest long in bits, then return it in 7354 * bytes. 7355 */ 7356 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7357 { 7358 unsigned long usemapsize; 7359 7360 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7361 usemapsize = roundup(zonesize, pageblock_nr_pages); 7362 usemapsize = usemapsize >> pageblock_order; 7363 usemapsize *= NR_PAGEBLOCK_BITS; 7364 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7365 7366 return usemapsize / 8; 7367 } 7368 7369 static void __ref setup_usemap(struct zone *zone) 7370 { 7371 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7372 zone->spanned_pages); 7373 zone->pageblock_flags = NULL; 7374 if (usemapsize) { 7375 zone->pageblock_flags = 7376 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7377 zone_to_nid(zone)); 7378 if (!zone->pageblock_flags) 7379 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7380 usemapsize, zone->name, zone_to_nid(zone)); 7381 } 7382 } 7383 #else 7384 static inline void setup_usemap(struct zone *zone) {} 7385 #endif /* CONFIG_SPARSEMEM */ 7386 7387 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7388 7389 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7390 void __init set_pageblock_order(void) 7391 { 7392 unsigned int order; 7393 7394 /* Check that pageblock_nr_pages has not already been setup */ 7395 if (pageblock_order) 7396 return; 7397 7398 if (HPAGE_SHIFT > PAGE_SHIFT) 7399 order = HUGETLB_PAGE_ORDER; 7400 else 7401 order = MAX_ORDER - 1; 7402 7403 /* 7404 * Assume the largest contiguous order of interest is a huge page. 7405 * This value may be variable depending on boot parameters on IA64 and 7406 * powerpc. 7407 */ 7408 pageblock_order = order; 7409 } 7410 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7411 7412 /* 7413 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7414 * is unused as pageblock_order is set at compile-time. See 7415 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7416 * the kernel config 7417 */ 7418 void __init set_pageblock_order(void) 7419 { 7420 } 7421 7422 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7423 7424 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7425 unsigned long present_pages) 7426 { 7427 unsigned long pages = spanned_pages; 7428 7429 /* 7430 * Provide a more accurate estimation if there are holes within 7431 * the zone and SPARSEMEM is in use. If there are holes within the 7432 * zone, each populated memory region may cost us one or two extra 7433 * memmap pages due to alignment because memmap pages for each 7434 * populated regions may not be naturally aligned on page boundary. 7435 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7436 */ 7437 if (spanned_pages > present_pages + (present_pages >> 4) && 7438 IS_ENABLED(CONFIG_SPARSEMEM)) 7439 pages = present_pages; 7440 7441 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7442 } 7443 7444 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7445 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7446 { 7447 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7448 7449 spin_lock_init(&ds_queue->split_queue_lock); 7450 INIT_LIST_HEAD(&ds_queue->split_queue); 7451 ds_queue->split_queue_len = 0; 7452 } 7453 #else 7454 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7455 #endif 7456 7457 #ifdef CONFIG_COMPACTION 7458 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7459 { 7460 init_waitqueue_head(&pgdat->kcompactd_wait); 7461 } 7462 #else 7463 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7464 #endif 7465 7466 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7467 { 7468 int i; 7469 7470 pgdat_resize_init(pgdat); 7471 7472 pgdat_init_split_queue(pgdat); 7473 pgdat_init_kcompactd(pgdat); 7474 7475 init_waitqueue_head(&pgdat->kswapd_wait); 7476 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7477 7478 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7479 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7480 7481 pgdat_page_ext_init(pgdat); 7482 lruvec_init(&pgdat->__lruvec); 7483 } 7484 7485 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7486 unsigned long remaining_pages) 7487 { 7488 atomic_long_set(&zone->managed_pages, remaining_pages); 7489 zone_set_nid(zone, nid); 7490 zone->name = zone_names[idx]; 7491 zone->zone_pgdat = NODE_DATA(nid); 7492 spin_lock_init(&zone->lock); 7493 zone_seqlock_init(zone); 7494 zone_pcp_init(zone); 7495 } 7496 7497 /* 7498 * Set up the zone data structures 7499 * - init pgdat internals 7500 * - init all zones belonging to this node 7501 * 7502 * NOTE: this function is only called during memory hotplug 7503 */ 7504 #ifdef CONFIG_MEMORY_HOTPLUG 7505 void __ref free_area_init_core_hotplug(int nid) 7506 { 7507 enum zone_type z; 7508 pg_data_t *pgdat = NODE_DATA(nid); 7509 7510 pgdat_init_internals(pgdat); 7511 for (z = 0; z < MAX_NR_ZONES; z++) 7512 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7513 } 7514 #endif 7515 7516 /* 7517 * Set up the zone data structures: 7518 * - mark all pages reserved 7519 * - mark all memory queues empty 7520 * - clear the memory bitmaps 7521 * 7522 * NOTE: pgdat should get zeroed by caller. 7523 * NOTE: this function is only called during early init. 7524 */ 7525 static void __init free_area_init_core(struct pglist_data *pgdat) 7526 { 7527 enum zone_type j; 7528 int nid = pgdat->node_id; 7529 7530 pgdat_init_internals(pgdat); 7531 pgdat->per_cpu_nodestats = &boot_nodestats; 7532 7533 for (j = 0; j < MAX_NR_ZONES; j++) { 7534 struct zone *zone = pgdat->node_zones + j; 7535 unsigned long size, freesize, memmap_pages; 7536 7537 size = zone->spanned_pages; 7538 freesize = zone->present_pages; 7539 7540 /* 7541 * Adjust freesize so that it accounts for how much memory 7542 * is used by this zone for memmap. This affects the watermark 7543 * and per-cpu initialisations 7544 */ 7545 memmap_pages = calc_memmap_size(size, freesize); 7546 if (!is_highmem_idx(j)) { 7547 if (freesize >= memmap_pages) { 7548 freesize -= memmap_pages; 7549 if (memmap_pages) 7550 pr_debug(" %s zone: %lu pages used for memmap\n", 7551 zone_names[j], memmap_pages); 7552 } else 7553 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7554 zone_names[j], memmap_pages, freesize); 7555 } 7556 7557 /* Account for reserved pages */ 7558 if (j == 0 && freesize > dma_reserve) { 7559 freesize -= dma_reserve; 7560 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7561 } 7562 7563 if (!is_highmem_idx(j)) 7564 nr_kernel_pages += freesize; 7565 /* Charge for highmem memmap if there are enough kernel pages */ 7566 else if (nr_kernel_pages > memmap_pages * 2) 7567 nr_kernel_pages -= memmap_pages; 7568 nr_all_pages += freesize; 7569 7570 /* 7571 * Set an approximate value for lowmem here, it will be adjusted 7572 * when the bootmem allocator frees pages into the buddy system. 7573 * And all highmem pages will be managed by the buddy system. 7574 */ 7575 zone_init_internals(zone, j, nid, freesize); 7576 7577 if (!size) 7578 continue; 7579 7580 set_pageblock_order(); 7581 setup_usemap(zone); 7582 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7583 } 7584 } 7585 7586 #ifdef CONFIG_FLATMEM 7587 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7588 { 7589 unsigned long __maybe_unused start = 0; 7590 unsigned long __maybe_unused offset = 0; 7591 7592 /* Skip empty nodes */ 7593 if (!pgdat->node_spanned_pages) 7594 return; 7595 7596 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7597 offset = pgdat->node_start_pfn - start; 7598 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7599 if (!pgdat->node_mem_map) { 7600 unsigned long size, end; 7601 struct page *map; 7602 7603 /* 7604 * The zone's endpoints aren't required to be MAX_ORDER 7605 * aligned but the node_mem_map endpoints must be in order 7606 * for the buddy allocator to function correctly. 7607 */ 7608 end = pgdat_end_pfn(pgdat); 7609 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7610 size = (end - start) * sizeof(struct page); 7611 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7612 pgdat->node_id, false); 7613 if (!map) 7614 panic("Failed to allocate %ld bytes for node %d memory map\n", 7615 size, pgdat->node_id); 7616 pgdat->node_mem_map = map + offset; 7617 } 7618 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7619 __func__, pgdat->node_id, (unsigned long)pgdat, 7620 (unsigned long)pgdat->node_mem_map); 7621 #ifndef CONFIG_NUMA 7622 /* 7623 * With no DISCONTIG, the global mem_map is just set as node 0's 7624 */ 7625 if (pgdat == NODE_DATA(0)) { 7626 mem_map = NODE_DATA(0)->node_mem_map; 7627 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7628 mem_map -= offset; 7629 } 7630 #endif 7631 } 7632 #else 7633 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7634 #endif /* CONFIG_FLATMEM */ 7635 7636 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7637 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7638 { 7639 pgdat->first_deferred_pfn = ULONG_MAX; 7640 } 7641 #else 7642 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7643 #endif 7644 7645 static void __init free_area_init_node(int nid) 7646 { 7647 pg_data_t *pgdat = NODE_DATA(nid); 7648 unsigned long start_pfn = 0; 7649 unsigned long end_pfn = 0; 7650 7651 /* pg_data_t should be reset to zero when it's allocated */ 7652 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7653 7654 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7655 7656 pgdat->node_id = nid; 7657 pgdat->node_start_pfn = start_pfn; 7658 pgdat->per_cpu_nodestats = NULL; 7659 7660 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7661 (u64)start_pfn << PAGE_SHIFT, 7662 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7663 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7664 7665 alloc_node_mem_map(pgdat); 7666 pgdat_set_deferred_range(pgdat); 7667 7668 free_area_init_core(pgdat); 7669 } 7670 7671 void __init free_area_init_memoryless_node(int nid) 7672 { 7673 free_area_init_node(nid); 7674 } 7675 7676 #if MAX_NUMNODES > 1 7677 /* 7678 * Figure out the number of possible node ids. 7679 */ 7680 void __init setup_nr_node_ids(void) 7681 { 7682 unsigned int highest; 7683 7684 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7685 nr_node_ids = highest + 1; 7686 } 7687 #endif 7688 7689 /** 7690 * node_map_pfn_alignment - determine the maximum internode alignment 7691 * 7692 * This function should be called after node map is populated and sorted. 7693 * It calculates the maximum power of two alignment which can distinguish 7694 * all the nodes. 7695 * 7696 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7697 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7698 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7699 * shifted, 1GiB is enough and this function will indicate so. 7700 * 7701 * This is used to test whether pfn -> nid mapping of the chosen memory 7702 * model has fine enough granularity to avoid incorrect mapping for the 7703 * populated node map. 7704 * 7705 * Return: the determined alignment in pfn's. 0 if there is no alignment 7706 * requirement (single node). 7707 */ 7708 unsigned long __init node_map_pfn_alignment(void) 7709 { 7710 unsigned long accl_mask = 0, last_end = 0; 7711 unsigned long start, end, mask; 7712 int last_nid = NUMA_NO_NODE; 7713 int i, nid; 7714 7715 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7716 if (!start || last_nid < 0 || last_nid == nid) { 7717 last_nid = nid; 7718 last_end = end; 7719 continue; 7720 } 7721 7722 /* 7723 * Start with a mask granular enough to pin-point to the 7724 * start pfn and tick off bits one-by-one until it becomes 7725 * too coarse to separate the current node from the last. 7726 */ 7727 mask = ~((1 << __ffs(start)) - 1); 7728 while (mask && last_end <= (start & (mask << 1))) 7729 mask <<= 1; 7730 7731 /* accumulate all internode masks */ 7732 accl_mask |= mask; 7733 } 7734 7735 /* convert mask to number of pages */ 7736 return ~accl_mask + 1; 7737 } 7738 7739 /** 7740 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7741 * 7742 * Return: the minimum PFN based on information provided via 7743 * memblock_set_node(). 7744 */ 7745 unsigned long __init find_min_pfn_with_active_regions(void) 7746 { 7747 return PHYS_PFN(memblock_start_of_DRAM()); 7748 } 7749 7750 /* 7751 * early_calculate_totalpages() 7752 * Sum pages in active regions for movable zone. 7753 * Populate N_MEMORY for calculating usable_nodes. 7754 */ 7755 static unsigned long __init early_calculate_totalpages(void) 7756 { 7757 unsigned long totalpages = 0; 7758 unsigned long start_pfn, end_pfn; 7759 int i, nid; 7760 7761 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7762 unsigned long pages = end_pfn - start_pfn; 7763 7764 totalpages += pages; 7765 if (pages) 7766 node_set_state(nid, N_MEMORY); 7767 } 7768 return totalpages; 7769 } 7770 7771 /* 7772 * Find the PFN the Movable zone begins in each node. Kernel memory 7773 * is spread evenly between nodes as long as the nodes have enough 7774 * memory. When they don't, some nodes will have more kernelcore than 7775 * others 7776 */ 7777 static void __init find_zone_movable_pfns_for_nodes(void) 7778 { 7779 int i, nid; 7780 unsigned long usable_startpfn; 7781 unsigned long kernelcore_node, kernelcore_remaining; 7782 /* save the state before borrow the nodemask */ 7783 nodemask_t saved_node_state = node_states[N_MEMORY]; 7784 unsigned long totalpages = early_calculate_totalpages(); 7785 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7786 struct memblock_region *r; 7787 7788 /* Need to find movable_zone earlier when movable_node is specified. */ 7789 find_usable_zone_for_movable(); 7790 7791 /* 7792 * If movable_node is specified, ignore kernelcore and movablecore 7793 * options. 7794 */ 7795 if (movable_node_is_enabled()) { 7796 for_each_mem_region(r) { 7797 if (!memblock_is_hotpluggable(r)) 7798 continue; 7799 7800 nid = memblock_get_region_node(r); 7801 7802 usable_startpfn = PFN_DOWN(r->base); 7803 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7804 min(usable_startpfn, zone_movable_pfn[nid]) : 7805 usable_startpfn; 7806 } 7807 7808 goto out2; 7809 } 7810 7811 /* 7812 * If kernelcore=mirror is specified, ignore movablecore option 7813 */ 7814 if (mirrored_kernelcore) { 7815 bool mem_below_4gb_not_mirrored = false; 7816 7817 for_each_mem_region(r) { 7818 if (memblock_is_mirror(r)) 7819 continue; 7820 7821 nid = memblock_get_region_node(r); 7822 7823 usable_startpfn = memblock_region_memory_base_pfn(r); 7824 7825 if (usable_startpfn < 0x100000) { 7826 mem_below_4gb_not_mirrored = true; 7827 continue; 7828 } 7829 7830 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7831 min(usable_startpfn, zone_movable_pfn[nid]) : 7832 usable_startpfn; 7833 } 7834 7835 if (mem_below_4gb_not_mirrored) 7836 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7837 7838 goto out2; 7839 } 7840 7841 /* 7842 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7843 * amount of necessary memory. 7844 */ 7845 if (required_kernelcore_percent) 7846 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7847 10000UL; 7848 if (required_movablecore_percent) 7849 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7850 10000UL; 7851 7852 /* 7853 * If movablecore= was specified, calculate what size of 7854 * kernelcore that corresponds so that memory usable for 7855 * any allocation type is evenly spread. If both kernelcore 7856 * and movablecore are specified, then the value of kernelcore 7857 * will be used for required_kernelcore if it's greater than 7858 * what movablecore would have allowed. 7859 */ 7860 if (required_movablecore) { 7861 unsigned long corepages; 7862 7863 /* 7864 * Round-up so that ZONE_MOVABLE is at least as large as what 7865 * was requested by the user 7866 */ 7867 required_movablecore = 7868 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7869 required_movablecore = min(totalpages, required_movablecore); 7870 corepages = totalpages - required_movablecore; 7871 7872 required_kernelcore = max(required_kernelcore, corepages); 7873 } 7874 7875 /* 7876 * If kernelcore was not specified or kernelcore size is larger 7877 * than totalpages, there is no ZONE_MOVABLE. 7878 */ 7879 if (!required_kernelcore || required_kernelcore >= totalpages) 7880 goto out; 7881 7882 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7883 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7884 7885 restart: 7886 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7887 kernelcore_node = required_kernelcore / usable_nodes; 7888 for_each_node_state(nid, N_MEMORY) { 7889 unsigned long start_pfn, end_pfn; 7890 7891 /* 7892 * Recalculate kernelcore_node if the division per node 7893 * now exceeds what is necessary to satisfy the requested 7894 * amount of memory for the kernel 7895 */ 7896 if (required_kernelcore < kernelcore_node) 7897 kernelcore_node = required_kernelcore / usable_nodes; 7898 7899 /* 7900 * As the map is walked, we track how much memory is usable 7901 * by the kernel using kernelcore_remaining. When it is 7902 * 0, the rest of the node is usable by ZONE_MOVABLE 7903 */ 7904 kernelcore_remaining = kernelcore_node; 7905 7906 /* Go through each range of PFNs within this node */ 7907 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7908 unsigned long size_pages; 7909 7910 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7911 if (start_pfn >= end_pfn) 7912 continue; 7913 7914 /* Account for what is only usable for kernelcore */ 7915 if (start_pfn < usable_startpfn) { 7916 unsigned long kernel_pages; 7917 kernel_pages = min(end_pfn, usable_startpfn) 7918 - start_pfn; 7919 7920 kernelcore_remaining -= min(kernel_pages, 7921 kernelcore_remaining); 7922 required_kernelcore -= min(kernel_pages, 7923 required_kernelcore); 7924 7925 /* Continue if range is now fully accounted */ 7926 if (end_pfn <= usable_startpfn) { 7927 7928 /* 7929 * Push zone_movable_pfn to the end so 7930 * that if we have to rebalance 7931 * kernelcore across nodes, we will 7932 * not double account here 7933 */ 7934 zone_movable_pfn[nid] = end_pfn; 7935 continue; 7936 } 7937 start_pfn = usable_startpfn; 7938 } 7939 7940 /* 7941 * The usable PFN range for ZONE_MOVABLE is from 7942 * start_pfn->end_pfn. Calculate size_pages as the 7943 * number of pages used as kernelcore 7944 */ 7945 size_pages = end_pfn - start_pfn; 7946 if (size_pages > kernelcore_remaining) 7947 size_pages = kernelcore_remaining; 7948 zone_movable_pfn[nid] = start_pfn + size_pages; 7949 7950 /* 7951 * Some kernelcore has been met, update counts and 7952 * break if the kernelcore for this node has been 7953 * satisfied 7954 */ 7955 required_kernelcore -= min(required_kernelcore, 7956 size_pages); 7957 kernelcore_remaining -= size_pages; 7958 if (!kernelcore_remaining) 7959 break; 7960 } 7961 } 7962 7963 /* 7964 * If there is still required_kernelcore, we do another pass with one 7965 * less node in the count. This will push zone_movable_pfn[nid] further 7966 * along on the nodes that still have memory until kernelcore is 7967 * satisfied 7968 */ 7969 usable_nodes--; 7970 if (usable_nodes && required_kernelcore > usable_nodes) 7971 goto restart; 7972 7973 out2: 7974 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7975 for (nid = 0; nid < MAX_NUMNODES; nid++) 7976 zone_movable_pfn[nid] = 7977 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7978 7979 out: 7980 /* restore the node_state */ 7981 node_states[N_MEMORY] = saved_node_state; 7982 } 7983 7984 /* Any regular or high memory on that node ? */ 7985 static void check_for_memory(pg_data_t *pgdat, int nid) 7986 { 7987 enum zone_type zone_type; 7988 7989 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7990 struct zone *zone = &pgdat->node_zones[zone_type]; 7991 if (populated_zone(zone)) { 7992 if (IS_ENABLED(CONFIG_HIGHMEM)) 7993 node_set_state(nid, N_HIGH_MEMORY); 7994 if (zone_type <= ZONE_NORMAL) 7995 node_set_state(nid, N_NORMAL_MEMORY); 7996 break; 7997 } 7998 } 7999 } 8000 8001 /* 8002 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8003 * such cases we allow max_zone_pfn sorted in the descending order 8004 */ 8005 bool __weak arch_has_descending_max_zone_pfns(void) 8006 { 8007 return false; 8008 } 8009 8010 /** 8011 * free_area_init - Initialise all pg_data_t and zone data 8012 * @max_zone_pfn: an array of max PFNs for each zone 8013 * 8014 * This will call free_area_init_node() for each active node in the system. 8015 * Using the page ranges provided by memblock_set_node(), the size of each 8016 * zone in each node and their holes is calculated. If the maximum PFN 8017 * between two adjacent zones match, it is assumed that the zone is empty. 8018 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8019 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8020 * starts where the previous one ended. For example, ZONE_DMA32 starts 8021 * at arch_max_dma_pfn. 8022 */ 8023 void __init free_area_init(unsigned long *max_zone_pfn) 8024 { 8025 unsigned long start_pfn, end_pfn; 8026 int i, nid, zone; 8027 bool descending; 8028 8029 /* Record where the zone boundaries are */ 8030 memset(arch_zone_lowest_possible_pfn, 0, 8031 sizeof(arch_zone_lowest_possible_pfn)); 8032 memset(arch_zone_highest_possible_pfn, 0, 8033 sizeof(arch_zone_highest_possible_pfn)); 8034 8035 start_pfn = find_min_pfn_with_active_regions(); 8036 descending = arch_has_descending_max_zone_pfns(); 8037 8038 for (i = 0; i < MAX_NR_ZONES; i++) { 8039 if (descending) 8040 zone = MAX_NR_ZONES - i - 1; 8041 else 8042 zone = i; 8043 8044 if (zone == ZONE_MOVABLE) 8045 continue; 8046 8047 end_pfn = max(max_zone_pfn[zone], start_pfn); 8048 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8049 arch_zone_highest_possible_pfn[zone] = end_pfn; 8050 8051 start_pfn = end_pfn; 8052 } 8053 8054 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8055 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8056 find_zone_movable_pfns_for_nodes(); 8057 8058 /* Print out the zone ranges */ 8059 pr_info("Zone ranges:\n"); 8060 for (i = 0; i < MAX_NR_ZONES; i++) { 8061 if (i == ZONE_MOVABLE) 8062 continue; 8063 pr_info(" %-8s ", zone_names[i]); 8064 if (arch_zone_lowest_possible_pfn[i] == 8065 arch_zone_highest_possible_pfn[i]) 8066 pr_cont("empty\n"); 8067 else 8068 pr_cont("[mem %#018Lx-%#018Lx]\n", 8069 (u64)arch_zone_lowest_possible_pfn[i] 8070 << PAGE_SHIFT, 8071 ((u64)arch_zone_highest_possible_pfn[i] 8072 << PAGE_SHIFT) - 1); 8073 } 8074 8075 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8076 pr_info("Movable zone start for each node\n"); 8077 for (i = 0; i < MAX_NUMNODES; i++) { 8078 if (zone_movable_pfn[i]) 8079 pr_info(" Node %d: %#018Lx\n", i, 8080 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8081 } 8082 8083 /* 8084 * Print out the early node map, and initialize the 8085 * subsection-map relative to active online memory ranges to 8086 * enable future "sub-section" extensions of the memory map. 8087 */ 8088 pr_info("Early memory node ranges\n"); 8089 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8090 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8091 (u64)start_pfn << PAGE_SHIFT, 8092 ((u64)end_pfn << PAGE_SHIFT) - 1); 8093 subsection_map_init(start_pfn, end_pfn - start_pfn); 8094 } 8095 8096 /* Initialise every node */ 8097 mminit_verify_pageflags_layout(); 8098 setup_nr_node_ids(); 8099 for_each_online_node(nid) { 8100 pg_data_t *pgdat = NODE_DATA(nid); 8101 free_area_init_node(nid); 8102 8103 /* Any memory on that node */ 8104 if (pgdat->node_present_pages) 8105 node_set_state(nid, N_MEMORY); 8106 check_for_memory(pgdat, nid); 8107 } 8108 8109 memmap_init(); 8110 } 8111 8112 static int __init cmdline_parse_core(char *p, unsigned long *core, 8113 unsigned long *percent) 8114 { 8115 unsigned long long coremem; 8116 char *endptr; 8117 8118 if (!p) 8119 return -EINVAL; 8120 8121 /* Value may be a percentage of total memory, otherwise bytes */ 8122 coremem = simple_strtoull(p, &endptr, 0); 8123 if (*endptr == '%') { 8124 /* Paranoid check for percent values greater than 100 */ 8125 WARN_ON(coremem > 100); 8126 8127 *percent = coremem; 8128 } else { 8129 coremem = memparse(p, &p); 8130 /* Paranoid check that UL is enough for the coremem value */ 8131 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8132 8133 *core = coremem >> PAGE_SHIFT; 8134 *percent = 0UL; 8135 } 8136 return 0; 8137 } 8138 8139 /* 8140 * kernelcore=size sets the amount of memory for use for allocations that 8141 * cannot be reclaimed or migrated. 8142 */ 8143 static int __init cmdline_parse_kernelcore(char *p) 8144 { 8145 /* parse kernelcore=mirror */ 8146 if (parse_option_str(p, "mirror")) { 8147 mirrored_kernelcore = true; 8148 return 0; 8149 } 8150 8151 return cmdline_parse_core(p, &required_kernelcore, 8152 &required_kernelcore_percent); 8153 } 8154 8155 /* 8156 * movablecore=size sets the amount of memory for use for allocations that 8157 * can be reclaimed or migrated. 8158 */ 8159 static int __init cmdline_parse_movablecore(char *p) 8160 { 8161 return cmdline_parse_core(p, &required_movablecore, 8162 &required_movablecore_percent); 8163 } 8164 8165 early_param("kernelcore", cmdline_parse_kernelcore); 8166 early_param("movablecore", cmdline_parse_movablecore); 8167 8168 void adjust_managed_page_count(struct page *page, long count) 8169 { 8170 atomic_long_add(count, &page_zone(page)->managed_pages); 8171 totalram_pages_add(count); 8172 #ifdef CONFIG_HIGHMEM 8173 if (PageHighMem(page)) 8174 totalhigh_pages_add(count); 8175 #endif 8176 } 8177 EXPORT_SYMBOL(adjust_managed_page_count); 8178 8179 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8180 { 8181 void *pos; 8182 unsigned long pages = 0; 8183 8184 start = (void *)PAGE_ALIGN((unsigned long)start); 8185 end = (void *)((unsigned long)end & PAGE_MASK); 8186 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8187 struct page *page = virt_to_page(pos); 8188 void *direct_map_addr; 8189 8190 /* 8191 * 'direct_map_addr' might be different from 'pos' 8192 * because some architectures' virt_to_page() 8193 * work with aliases. Getting the direct map 8194 * address ensures that we get a _writeable_ 8195 * alias for the memset(). 8196 */ 8197 direct_map_addr = page_address(page); 8198 /* 8199 * Perform a kasan-unchecked memset() since this memory 8200 * has not been initialized. 8201 */ 8202 direct_map_addr = kasan_reset_tag(direct_map_addr); 8203 if ((unsigned int)poison <= 0xFF) 8204 memset(direct_map_addr, poison, PAGE_SIZE); 8205 8206 free_reserved_page(page); 8207 } 8208 8209 if (pages && s) 8210 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8211 8212 return pages; 8213 } 8214 8215 void __init mem_init_print_info(void) 8216 { 8217 unsigned long physpages, codesize, datasize, rosize, bss_size; 8218 unsigned long init_code_size, init_data_size; 8219 8220 physpages = get_num_physpages(); 8221 codesize = _etext - _stext; 8222 datasize = _edata - _sdata; 8223 rosize = __end_rodata - __start_rodata; 8224 bss_size = __bss_stop - __bss_start; 8225 init_data_size = __init_end - __init_begin; 8226 init_code_size = _einittext - _sinittext; 8227 8228 /* 8229 * Detect special cases and adjust section sizes accordingly: 8230 * 1) .init.* may be embedded into .data sections 8231 * 2) .init.text.* may be out of [__init_begin, __init_end], 8232 * please refer to arch/tile/kernel/vmlinux.lds.S. 8233 * 3) .rodata.* may be embedded into .text or .data sections. 8234 */ 8235 #define adj_init_size(start, end, size, pos, adj) \ 8236 do { \ 8237 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8238 size -= adj; \ 8239 } while (0) 8240 8241 adj_init_size(__init_begin, __init_end, init_data_size, 8242 _sinittext, init_code_size); 8243 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8244 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8245 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8246 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8247 8248 #undef adj_init_size 8249 8250 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8251 #ifdef CONFIG_HIGHMEM 8252 ", %luK highmem" 8253 #endif 8254 ")\n", 8255 K(nr_free_pages()), K(physpages), 8256 codesize >> 10, datasize >> 10, rosize >> 10, 8257 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8258 K(physpages - totalram_pages() - totalcma_pages), 8259 K(totalcma_pages) 8260 #ifdef CONFIG_HIGHMEM 8261 , K(totalhigh_pages()) 8262 #endif 8263 ); 8264 } 8265 8266 /** 8267 * set_dma_reserve - set the specified number of pages reserved in the first zone 8268 * @new_dma_reserve: The number of pages to mark reserved 8269 * 8270 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8271 * In the DMA zone, a significant percentage may be consumed by kernel image 8272 * and other unfreeable allocations which can skew the watermarks badly. This 8273 * function may optionally be used to account for unfreeable pages in the 8274 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8275 * smaller per-cpu batchsize. 8276 */ 8277 void __init set_dma_reserve(unsigned long new_dma_reserve) 8278 { 8279 dma_reserve = new_dma_reserve; 8280 } 8281 8282 static int page_alloc_cpu_dead(unsigned int cpu) 8283 { 8284 struct zone *zone; 8285 8286 lru_add_drain_cpu(cpu); 8287 drain_pages(cpu); 8288 8289 /* 8290 * Spill the event counters of the dead processor 8291 * into the current processors event counters. 8292 * This artificially elevates the count of the current 8293 * processor. 8294 */ 8295 vm_events_fold_cpu(cpu); 8296 8297 /* 8298 * Zero the differential counters of the dead processor 8299 * so that the vm statistics are consistent. 8300 * 8301 * This is only okay since the processor is dead and cannot 8302 * race with what we are doing. 8303 */ 8304 cpu_vm_stats_fold(cpu); 8305 8306 for_each_populated_zone(zone) 8307 zone_pcp_update(zone, 0); 8308 8309 return 0; 8310 } 8311 8312 static int page_alloc_cpu_online(unsigned int cpu) 8313 { 8314 struct zone *zone; 8315 8316 for_each_populated_zone(zone) 8317 zone_pcp_update(zone, 1); 8318 return 0; 8319 } 8320 8321 #ifdef CONFIG_NUMA 8322 int hashdist = HASHDIST_DEFAULT; 8323 8324 static int __init set_hashdist(char *str) 8325 { 8326 if (!str) 8327 return 0; 8328 hashdist = simple_strtoul(str, &str, 0); 8329 return 1; 8330 } 8331 __setup("hashdist=", set_hashdist); 8332 #endif 8333 8334 void __init page_alloc_init(void) 8335 { 8336 int ret; 8337 8338 #ifdef CONFIG_NUMA 8339 if (num_node_state(N_MEMORY) == 1) 8340 hashdist = 0; 8341 #endif 8342 8343 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8344 "mm/page_alloc:pcp", 8345 page_alloc_cpu_online, 8346 page_alloc_cpu_dead); 8347 WARN_ON(ret < 0); 8348 } 8349 8350 /* 8351 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8352 * or min_free_kbytes changes. 8353 */ 8354 static void calculate_totalreserve_pages(void) 8355 { 8356 struct pglist_data *pgdat; 8357 unsigned long reserve_pages = 0; 8358 enum zone_type i, j; 8359 8360 for_each_online_pgdat(pgdat) { 8361 8362 pgdat->totalreserve_pages = 0; 8363 8364 for (i = 0; i < MAX_NR_ZONES; i++) { 8365 struct zone *zone = pgdat->node_zones + i; 8366 long max = 0; 8367 unsigned long managed_pages = zone_managed_pages(zone); 8368 8369 /* Find valid and maximum lowmem_reserve in the zone */ 8370 for (j = i; j < MAX_NR_ZONES; j++) { 8371 if (zone->lowmem_reserve[j] > max) 8372 max = zone->lowmem_reserve[j]; 8373 } 8374 8375 /* we treat the high watermark as reserved pages. */ 8376 max += high_wmark_pages(zone); 8377 8378 if (max > managed_pages) 8379 max = managed_pages; 8380 8381 pgdat->totalreserve_pages += max; 8382 8383 reserve_pages += max; 8384 } 8385 } 8386 totalreserve_pages = reserve_pages; 8387 } 8388 8389 /* 8390 * setup_per_zone_lowmem_reserve - called whenever 8391 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8392 * has a correct pages reserved value, so an adequate number of 8393 * pages are left in the zone after a successful __alloc_pages(). 8394 */ 8395 static void setup_per_zone_lowmem_reserve(void) 8396 { 8397 struct pglist_data *pgdat; 8398 enum zone_type i, j; 8399 8400 for_each_online_pgdat(pgdat) { 8401 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8402 struct zone *zone = &pgdat->node_zones[i]; 8403 int ratio = sysctl_lowmem_reserve_ratio[i]; 8404 bool clear = !ratio || !zone_managed_pages(zone); 8405 unsigned long managed_pages = 0; 8406 8407 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8408 struct zone *upper_zone = &pgdat->node_zones[j]; 8409 8410 managed_pages += zone_managed_pages(upper_zone); 8411 8412 if (clear) 8413 zone->lowmem_reserve[j] = 0; 8414 else 8415 zone->lowmem_reserve[j] = managed_pages / ratio; 8416 } 8417 } 8418 } 8419 8420 /* update totalreserve_pages */ 8421 calculate_totalreserve_pages(); 8422 } 8423 8424 static void __setup_per_zone_wmarks(void) 8425 { 8426 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8427 unsigned long lowmem_pages = 0; 8428 struct zone *zone; 8429 unsigned long flags; 8430 8431 /* Calculate total number of !ZONE_HIGHMEM pages */ 8432 for_each_zone(zone) { 8433 if (!is_highmem(zone)) 8434 lowmem_pages += zone_managed_pages(zone); 8435 } 8436 8437 for_each_zone(zone) { 8438 u64 tmp; 8439 8440 spin_lock_irqsave(&zone->lock, flags); 8441 tmp = (u64)pages_min * zone_managed_pages(zone); 8442 do_div(tmp, lowmem_pages); 8443 if (is_highmem(zone)) { 8444 /* 8445 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8446 * need highmem pages, so cap pages_min to a small 8447 * value here. 8448 * 8449 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8450 * deltas control async page reclaim, and so should 8451 * not be capped for highmem. 8452 */ 8453 unsigned long min_pages; 8454 8455 min_pages = zone_managed_pages(zone) / 1024; 8456 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8457 zone->_watermark[WMARK_MIN] = min_pages; 8458 } else { 8459 /* 8460 * If it's a lowmem zone, reserve a number of pages 8461 * proportionate to the zone's size. 8462 */ 8463 zone->_watermark[WMARK_MIN] = tmp; 8464 } 8465 8466 /* 8467 * Set the kswapd watermarks distance according to the 8468 * scale factor in proportion to available memory, but 8469 * ensure a minimum size on small systems. 8470 */ 8471 tmp = max_t(u64, tmp >> 2, 8472 mult_frac(zone_managed_pages(zone), 8473 watermark_scale_factor, 10000)); 8474 8475 zone->watermark_boost = 0; 8476 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8477 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8478 8479 spin_unlock_irqrestore(&zone->lock, flags); 8480 } 8481 8482 /* update totalreserve_pages */ 8483 calculate_totalreserve_pages(); 8484 } 8485 8486 /** 8487 * setup_per_zone_wmarks - called when min_free_kbytes changes 8488 * or when memory is hot-{added|removed} 8489 * 8490 * Ensures that the watermark[min,low,high] values for each zone are set 8491 * correctly with respect to min_free_kbytes. 8492 */ 8493 void setup_per_zone_wmarks(void) 8494 { 8495 struct zone *zone; 8496 static DEFINE_SPINLOCK(lock); 8497 8498 spin_lock(&lock); 8499 __setup_per_zone_wmarks(); 8500 spin_unlock(&lock); 8501 8502 /* 8503 * The watermark size have changed so update the pcpu batch 8504 * and high limits or the limits may be inappropriate. 8505 */ 8506 for_each_zone(zone) 8507 zone_pcp_update(zone, 0); 8508 } 8509 8510 /* 8511 * Initialise min_free_kbytes. 8512 * 8513 * For small machines we want it small (128k min). For large machines 8514 * we want it large (256MB max). But it is not linear, because network 8515 * bandwidth does not increase linearly with machine size. We use 8516 * 8517 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8518 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8519 * 8520 * which yields 8521 * 8522 * 16MB: 512k 8523 * 32MB: 724k 8524 * 64MB: 1024k 8525 * 128MB: 1448k 8526 * 256MB: 2048k 8527 * 512MB: 2896k 8528 * 1024MB: 4096k 8529 * 2048MB: 5792k 8530 * 4096MB: 8192k 8531 * 8192MB: 11584k 8532 * 16384MB: 16384k 8533 */ 8534 void calculate_min_free_kbytes(void) 8535 { 8536 unsigned long lowmem_kbytes; 8537 int new_min_free_kbytes; 8538 8539 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8540 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8541 8542 if (new_min_free_kbytes > user_min_free_kbytes) 8543 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8544 else 8545 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8546 new_min_free_kbytes, user_min_free_kbytes); 8547 8548 } 8549 8550 int __meminit init_per_zone_wmark_min(void) 8551 { 8552 calculate_min_free_kbytes(); 8553 setup_per_zone_wmarks(); 8554 refresh_zone_stat_thresholds(); 8555 setup_per_zone_lowmem_reserve(); 8556 8557 #ifdef CONFIG_NUMA 8558 setup_min_unmapped_ratio(); 8559 setup_min_slab_ratio(); 8560 #endif 8561 8562 khugepaged_min_free_kbytes_update(); 8563 8564 return 0; 8565 } 8566 postcore_initcall(init_per_zone_wmark_min) 8567 8568 /* 8569 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8570 * that we can call two helper functions whenever min_free_kbytes 8571 * changes. 8572 */ 8573 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8574 void *buffer, size_t *length, loff_t *ppos) 8575 { 8576 int rc; 8577 8578 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8579 if (rc) 8580 return rc; 8581 8582 if (write) { 8583 user_min_free_kbytes = min_free_kbytes; 8584 setup_per_zone_wmarks(); 8585 } 8586 return 0; 8587 } 8588 8589 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8590 void *buffer, size_t *length, loff_t *ppos) 8591 { 8592 int rc; 8593 8594 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8595 if (rc) 8596 return rc; 8597 8598 if (write) 8599 setup_per_zone_wmarks(); 8600 8601 return 0; 8602 } 8603 8604 #ifdef CONFIG_NUMA 8605 static void setup_min_unmapped_ratio(void) 8606 { 8607 pg_data_t *pgdat; 8608 struct zone *zone; 8609 8610 for_each_online_pgdat(pgdat) 8611 pgdat->min_unmapped_pages = 0; 8612 8613 for_each_zone(zone) 8614 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8615 sysctl_min_unmapped_ratio) / 100; 8616 } 8617 8618 8619 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8620 void *buffer, size_t *length, loff_t *ppos) 8621 { 8622 int rc; 8623 8624 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8625 if (rc) 8626 return rc; 8627 8628 setup_min_unmapped_ratio(); 8629 8630 return 0; 8631 } 8632 8633 static void setup_min_slab_ratio(void) 8634 { 8635 pg_data_t *pgdat; 8636 struct zone *zone; 8637 8638 for_each_online_pgdat(pgdat) 8639 pgdat->min_slab_pages = 0; 8640 8641 for_each_zone(zone) 8642 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8643 sysctl_min_slab_ratio) / 100; 8644 } 8645 8646 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8647 void *buffer, size_t *length, loff_t *ppos) 8648 { 8649 int rc; 8650 8651 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8652 if (rc) 8653 return rc; 8654 8655 setup_min_slab_ratio(); 8656 8657 return 0; 8658 } 8659 #endif 8660 8661 /* 8662 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8663 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8664 * whenever sysctl_lowmem_reserve_ratio changes. 8665 * 8666 * The reserve ratio obviously has absolutely no relation with the 8667 * minimum watermarks. The lowmem reserve ratio can only make sense 8668 * if in function of the boot time zone sizes. 8669 */ 8670 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8671 void *buffer, size_t *length, loff_t *ppos) 8672 { 8673 int i; 8674 8675 proc_dointvec_minmax(table, write, buffer, length, ppos); 8676 8677 for (i = 0; i < MAX_NR_ZONES; i++) { 8678 if (sysctl_lowmem_reserve_ratio[i] < 1) 8679 sysctl_lowmem_reserve_ratio[i] = 0; 8680 } 8681 8682 setup_per_zone_lowmem_reserve(); 8683 return 0; 8684 } 8685 8686 /* 8687 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8688 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8689 * pagelist can have before it gets flushed back to buddy allocator. 8690 */ 8691 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8692 int write, void *buffer, size_t *length, loff_t *ppos) 8693 { 8694 struct zone *zone; 8695 int old_percpu_pagelist_high_fraction; 8696 int ret; 8697 8698 mutex_lock(&pcp_batch_high_lock); 8699 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8700 8701 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8702 if (!write || ret < 0) 8703 goto out; 8704 8705 /* Sanity checking to avoid pcp imbalance */ 8706 if (percpu_pagelist_high_fraction && 8707 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8708 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8709 ret = -EINVAL; 8710 goto out; 8711 } 8712 8713 /* No change? */ 8714 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8715 goto out; 8716 8717 for_each_populated_zone(zone) 8718 zone_set_pageset_high_and_batch(zone, 0); 8719 out: 8720 mutex_unlock(&pcp_batch_high_lock); 8721 return ret; 8722 } 8723 8724 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8725 /* 8726 * Returns the number of pages that arch has reserved but 8727 * is not known to alloc_large_system_hash(). 8728 */ 8729 static unsigned long __init arch_reserved_kernel_pages(void) 8730 { 8731 return 0; 8732 } 8733 #endif 8734 8735 /* 8736 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8737 * machines. As memory size is increased the scale is also increased but at 8738 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8739 * quadruples the scale is increased by one, which means the size of hash table 8740 * only doubles, instead of quadrupling as well. 8741 * Because 32-bit systems cannot have large physical memory, where this scaling 8742 * makes sense, it is disabled on such platforms. 8743 */ 8744 #if __BITS_PER_LONG > 32 8745 #define ADAPT_SCALE_BASE (64ul << 30) 8746 #define ADAPT_SCALE_SHIFT 2 8747 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8748 #endif 8749 8750 /* 8751 * allocate a large system hash table from bootmem 8752 * - it is assumed that the hash table must contain an exact power-of-2 8753 * quantity of entries 8754 * - limit is the number of hash buckets, not the total allocation size 8755 */ 8756 void *__init alloc_large_system_hash(const char *tablename, 8757 unsigned long bucketsize, 8758 unsigned long numentries, 8759 int scale, 8760 int flags, 8761 unsigned int *_hash_shift, 8762 unsigned int *_hash_mask, 8763 unsigned long low_limit, 8764 unsigned long high_limit) 8765 { 8766 unsigned long long max = high_limit; 8767 unsigned long log2qty, size; 8768 void *table = NULL; 8769 gfp_t gfp_flags; 8770 bool virt; 8771 bool huge; 8772 8773 /* allow the kernel cmdline to have a say */ 8774 if (!numentries) { 8775 /* round applicable memory size up to nearest megabyte */ 8776 numentries = nr_kernel_pages; 8777 numentries -= arch_reserved_kernel_pages(); 8778 8779 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8780 if (PAGE_SHIFT < 20) 8781 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8782 8783 #if __BITS_PER_LONG > 32 8784 if (!high_limit) { 8785 unsigned long adapt; 8786 8787 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8788 adapt <<= ADAPT_SCALE_SHIFT) 8789 scale++; 8790 } 8791 #endif 8792 8793 /* limit to 1 bucket per 2^scale bytes of low memory */ 8794 if (scale > PAGE_SHIFT) 8795 numentries >>= (scale - PAGE_SHIFT); 8796 else 8797 numentries <<= (PAGE_SHIFT - scale); 8798 8799 /* Make sure we've got at least a 0-order allocation.. */ 8800 if (unlikely(flags & HASH_SMALL)) { 8801 /* Makes no sense without HASH_EARLY */ 8802 WARN_ON(!(flags & HASH_EARLY)); 8803 if (!(numentries >> *_hash_shift)) { 8804 numentries = 1UL << *_hash_shift; 8805 BUG_ON(!numentries); 8806 } 8807 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8808 numentries = PAGE_SIZE / bucketsize; 8809 } 8810 numentries = roundup_pow_of_two(numentries); 8811 8812 /* limit allocation size to 1/16 total memory by default */ 8813 if (max == 0) { 8814 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8815 do_div(max, bucketsize); 8816 } 8817 max = min(max, 0x80000000ULL); 8818 8819 if (numentries < low_limit) 8820 numentries = low_limit; 8821 if (numentries > max) 8822 numentries = max; 8823 8824 log2qty = ilog2(numentries); 8825 8826 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8827 do { 8828 virt = false; 8829 size = bucketsize << log2qty; 8830 if (flags & HASH_EARLY) { 8831 if (flags & HASH_ZERO) 8832 table = memblock_alloc(size, SMP_CACHE_BYTES); 8833 else 8834 table = memblock_alloc_raw(size, 8835 SMP_CACHE_BYTES); 8836 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8837 table = __vmalloc(size, gfp_flags); 8838 virt = true; 8839 if (table) 8840 huge = is_vm_area_hugepages(table); 8841 } else { 8842 /* 8843 * If bucketsize is not a power-of-two, we may free 8844 * some pages at the end of hash table which 8845 * alloc_pages_exact() automatically does 8846 */ 8847 table = alloc_pages_exact(size, gfp_flags); 8848 kmemleak_alloc(table, size, 1, gfp_flags); 8849 } 8850 } while (!table && size > PAGE_SIZE && --log2qty); 8851 8852 if (!table) 8853 panic("Failed to allocate %s hash table\n", tablename); 8854 8855 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8856 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8857 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8858 8859 if (_hash_shift) 8860 *_hash_shift = log2qty; 8861 if (_hash_mask) 8862 *_hash_mask = (1 << log2qty) - 1; 8863 8864 return table; 8865 } 8866 8867 /* 8868 * This function checks whether pageblock includes unmovable pages or not. 8869 * 8870 * PageLRU check without isolation or lru_lock could race so that 8871 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8872 * check without lock_page also may miss some movable non-lru pages at 8873 * race condition. So you can't expect this function should be exact. 8874 * 8875 * Returns a page without holding a reference. If the caller wants to 8876 * dereference that page (e.g., dumping), it has to make sure that it 8877 * cannot get removed (e.g., via memory unplug) concurrently. 8878 * 8879 */ 8880 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8881 int migratetype, int flags) 8882 { 8883 unsigned long iter = 0; 8884 unsigned long pfn = page_to_pfn(page); 8885 unsigned long offset = pfn % pageblock_nr_pages; 8886 8887 if (is_migrate_cma_page(page)) { 8888 /* 8889 * CMA allocations (alloc_contig_range) really need to mark 8890 * isolate CMA pageblocks even when they are not movable in fact 8891 * so consider them movable here. 8892 */ 8893 if (is_migrate_cma(migratetype)) 8894 return NULL; 8895 8896 return page; 8897 } 8898 8899 for (; iter < pageblock_nr_pages - offset; iter++) { 8900 page = pfn_to_page(pfn + iter); 8901 8902 /* 8903 * Both, bootmem allocations and memory holes are marked 8904 * PG_reserved and are unmovable. We can even have unmovable 8905 * allocations inside ZONE_MOVABLE, for example when 8906 * specifying "movablecore". 8907 */ 8908 if (PageReserved(page)) 8909 return page; 8910 8911 /* 8912 * If the zone is movable and we have ruled out all reserved 8913 * pages then it should be reasonably safe to assume the rest 8914 * is movable. 8915 */ 8916 if (zone_idx(zone) == ZONE_MOVABLE) 8917 continue; 8918 8919 /* 8920 * Hugepages are not in LRU lists, but they're movable. 8921 * THPs are on the LRU, but need to be counted as #small pages. 8922 * We need not scan over tail pages because we don't 8923 * handle each tail page individually in migration. 8924 */ 8925 if (PageHuge(page) || PageTransCompound(page)) { 8926 struct page *head = compound_head(page); 8927 unsigned int skip_pages; 8928 8929 if (PageHuge(page)) { 8930 if (!hugepage_migration_supported(page_hstate(head))) 8931 return page; 8932 } else if (!PageLRU(head) && !__PageMovable(head)) { 8933 return page; 8934 } 8935 8936 skip_pages = compound_nr(head) - (page - head); 8937 iter += skip_pages - 1; 8938 continue; 8939 } 8940 8941 /* 8942 * We can't use page_count without pin a page 8943 * because another CPU can free compound page. 8944 * This check already skips compound tails of THP 8945 * because their page->_refcount is zero at all time. 8946 */ 8947 if (!page_ref_count(page)) { 8948 if (PageBuddy(page)) 8949 iter += (1 << buddy_order(page)) - 1; 8950 continue; 8951 } 8952 8953 /* 8954 * The HWPoisoned page may be not in buddy system, and 8955 * page_count() is not 0. 8956 */ 8957 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8958 continue; 8959 8960 /* 8961 * We treat all PageOffline() pages as movable when offlining 8962 * to give drivers a chance to decrement their reference count 8963 * in MEM_GOING_OFFLINE in order to indicate that these pages 8964 * can be offlined as there are no direct references anymore. 8965 * For actually unmovable PageOffline() where the driver does 8966 * not support this, we will fail later when trying to actually 8967 * move these pages that still have a reference count > 0. 8968 * (false negatives in this function only) 8969 */ 8970 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8971 continue; 8972 8973 if (__PageMovable(page) || PageLRU(page)) 8974 continue; 8975 8976 /* 8977 * If there are RECLAIMABLE pages, we need to check 8978 * it. But now, memory offline itself doesn't call 8979 * shrink_node_slabs() and it still to be fixed. 8980 */ 8981 return page; 8982 } 8983 return NULL; 8984 } 8985 8986 #ifdef CONFIG_CONTIG_ALLOC 8987 static unsigned long pfn_max_align_down(unsigned long pfn) 8988 { 8989 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8990 pageblock_nr_pages) - 1); 8991 } 8992 8993 static unsigned long pfn_max_align_up(unsigned long pfn) 8994 { 8995 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8996 pageblock_nr_pages)); 8997 } 8998 8999 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9000 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9001 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9002 static void alloc_contig_dump_pages(struct list_head *page_list) 9003 { 9004 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9005 9006 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9007 struct page *page; 9008 9009 dump_stack(); 9010 list_for_each_entry(page, page_list, lru) 9011 dump_page(page, "migration failure"); 9012 } 9013 } 9014 #else 9015 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9016 { 9017 } 9018 #endif 9019 9020 /* [start, end) must belong to a single zone. */ 9021 static int __alloc_contig_migrate_range(struct compact_control *cc, 9022 unsigned long start, unsigned long end) 9023 { 9024 /* This function is based on compact_zone() from compaction.c. */ 9025 unsigned int nr_reclaimed; 9026 unsigned long pfn = start; 9027 unsigned int tries = 0; 9028 int ret = 0; 9029 struct migration_target_control mtc = { 9030 .nid = zone_to_nid(cc->zone), 9031 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9032 }; 9033 9034 lru_cache_disable(); 9035 9036 while (pfn < end || !list_empty(&cc->migratepages)) { 9037 if (fatal_signal_pending(current)) { 9038 ret = -EINTR; 9039 break; 9040 } 9041 9042 if (list_empty(&cc->migratepages)) { 9043 cc->nr_migratepages = 0; 9044 ret = isolate_migratepages_range(cc, pfn, end); 9045 if (ret && ret != -EAGAIN) 9046 break; 9047 pfn = cc->migrate_pfn; 9048 tries = 0; 9049 } else if (++tries == 5) { 9050 ret = -EBUSY; 9051 break; 9052 } 9053 9054 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9055 &cc->migratepages); 9056 cc->nr_migratepages -= nr_reclaimed; 9057 9058 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9059 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9060 9061 /* 9062 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9063 * to retry again over this error, so do the same here. 9064 */ 9065 if (ret == -ENOMEM) 9066 break; 9067 } 9068 9069 lru_cache_enable(); 9070 if (ret < 0) { 9071 if (ret == -EBUSY) 9072 alloc_contig_dump_pages(&cc->migratepages); 9073 putback_movable_pages(&cc->migratepages); 9074 return ret; 9075 } 9076 return 0; 9077 } 9078 9079 /** 9080 * alloc_contig_range() -- tries to allocate given range of pages 9081 * @start: start PFN to allocate 9082 * @end: one-past-the-last PFN to allocate 9083 * @migratetype: migratetype of the underlying pageblocks (either 9084 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9085 * in range must have the same migratetype and it must 9086 * be either of the two. 9087 * @gfp_mask: GFP mask to use during compaction 9088 * 9089 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9090 * aligned. The PFN range must belong to a single zone. 9091 * 9092 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9093 * pageblocks in the range. Once isolated, the pageblocks should not 9094 * be modified by others. 9095 * 9096 * Return: zero on success or negative error code. On success all 9097 * pages which PFN is in [start, end) are allocated for the caller and 9098 * need to be freed with free_contig_range(). 9099 */ 9100 int alloc_contig_range(unsigned long start, unsigned long end, 9101 unsigned migratetype, gfp_t gfp_mask) 9102 { 9103 unsigned long outer_start, outer_end; 9104 unsigned int order; 9105 int ret = 0; 9106 9107 struct compact_control cc = { 9108 .nr_migratepages = 0, 9109 .order = -1, 9110 .zone = page_zone(pfn_to_page(start)), 9111 .mode = MIGRATE_SYNC, 9112 .ignore_skip_hint = true, 9113 .no_set_skip_hint = true, 9114 .gfp_mask = current_gfp_context(gfp_mask), 9115 .alloc_contig = true, 9116 }; 9117 INIT_LIST_HEAD(&cc.migratepages); 9118 9119 /* 9120 * What we do here is we mark all pageblocks in range as 9121 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9122 * have different sizes, and due to the way page allocator 9123 * work, we align the range to biggest of the two pages so 9124 * that page allocator won't try to merge buddies from 9125 * different pageblocks and change MIGRATE_ISOLATE to some 9126 * other migration type. 9127 * 9128 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9129 * migrate the pages from an unaligned range (ie. pages that 9130 * we are interested in). This will put all the pages in 9131 * range back to page allocator as MIGRATE_ISOLATE. 9132 * 9133 * When this is done, we take the pages in range from page 9134 * allocator removing them from the buddy system. This way 9135 * page allocator will never consider using them. 9136 * 9137 * This lets us mark the pageblocks back as 9138 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9139 * aligned range but not in the unaligned, original range are 9140 * put back to page allocator so that buddy can use them. 9141 */ 9142 9143 ret = start_isolate_page_range(pfn_max_align_down(start), 9144 pfn_max_align_up(end), migratetype, 0); 9145 if (ret) 9146 return ret; 9147 9148 drain_all_pages(cc.zone); 9149 9150 /* 9151 * In case of -EBUSY, we'd like to know which page causes problem. 9152 * So, just fall through. test_pages_isolated() has a tracepoint 9153 * which will report the busy page. 9154 * 9155 * It is possible that busy pages could become available before 9156 * the call to test_pages_isolated, and the range will actually be 9157 * allocated. So, if we fall through be sure to clear ret so that 9158 * -EBUSY is not accidentally used or returned to caller. 9159 */ 9160 ret = __alloc_contig_migrate_range(&cc, start, end); 9161 if (ret && ret != -EBUSY) 9162 goto done; 9163 ret = 0; 9164 9165 /* 9166 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9167 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9168 * more, all pages in [start, end) are free in page allocator. 9169 * What we are going to do is to allocate all pages from 9170 * [start, end) (that is remove them from page allocator). 9171 * 9172 * The only problem is that pages at the beginning and at the 9173 * end of interesting range may be not aligned with pages that 9174 * page allocator holds, ie. they can be part of higher order 9175 * pages. Because of this, we reserve the bigger range and 9176 * once this is done free the pages we are not interested in. 9177 * 9178 * We don't have to hold zone->lock here because the pages are 9179 * isolated thus they won't get removed from buddy. 9180 */ 9181 9182 order = 0; 9183 outer_start = start; 9184 while (!PageBuddy(pfn_to_page(outer_start))) { 9185 if (++order >= MAX_ORDER) { 9186 outer_start = start; 9187 break; 9188 } 9189 outer_start &= ~0UL << order; 9190 } 9191 9192 if (outer_start != start) { 9193 order = buddy_order(pfn_to_page(outer_start)); 9194 9195 /* 9196 * outer_start page could be small order buddy page and 9197 * it doesn't include start page. Adjust outer_start 9198 * in this case to report failed page properly 9199 * on tracepoint in test_pages_isolated() 9200 */ 9201 if (outer_start + (1UL << order) <= start) 9202 outer_start = start; 9203 } 9204 9205 /* Make sure the range is really isolated. */ 9206 if (test_pages_isolated(outer_start, end, 0)) { 9207 ret = -EBUSY; 9208 goto done; 9209 } 9210 9211 /* Grab isolated pages from freelists. */ 9212 outer_end = isolate_freepages_range(&cc, outer_start, end); 9213 if (!outer_end) { 9214 ret = -EBUSY; 9215 goto done; 9216 } 9217 9218 /* Free head and tail (if any) */ 9219 if (start != outer_start) 9220 free_contig_range(outer_start, start - outer_start); 9221 if (end != outer_end) 9222 free_contig_range(end, outer_end - end); 9223 9224 done: 9225 undo_isolate_page_range(pfn_max_align_down(start), 9226 pfn_max_align_up(end), migratetype); 9227 return ret; 9228 } 9229 EXPORT_SYMBOL(alloc_contig_range); 9230 9231 static int __alloc_contig_pages(unsigned long start_pfn, 9232 unsigned long nr_pages, gfp_t gfp_mask) 9233 { 9234 unsigned long end_pfn = start_pfn + nr_pages; 9235 9236 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9237 gfp_mask); 9238 } 9239 9240 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9241 unsigned long nr_pages) 9242 { 9243 unsigned long i, end_pfn = start_pfn + nr_pages; 9244 struct page *page; 9245 9246 for (i = start_pfn; i < end_pfn; i++) { 9247 page = pfn_to_online_page(i); 9248 if (!page) 9249 return false; 9250 9251 if (page_zone(page) != z) 9252 return false; 9253 9254 if (PageReserved(page)) 9255 return false; 9256 } 9257 return true; 9258 } 9259 9260 static bool zone_spans_last_pfn(const struct zone *zone, 9261 unsigned long start_pfn, unsigned long nr_pages) 9262 { 9263 unsigned long last_pfn = start_pfn + nr_pages - 1; 9264 9265 return zone_spans_pfn(zone, last_pfn); 9266 } 9267 9268 /** 9269 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9270 * @nr_pages: Number of contiguous pages to allocate 9271 * @gfp_mask: GFP mask to limit search and used during compaction 9272 * @nid: Target node 9273 * @nodemask: Mask for other possible nodes 9274 * 9275 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9276 * on an applicable zonelist to find a contiguous pfn range which can then be 9277 * tried for allocation with alloc_contig_range(). This routine is intended 9278 * for allocation requests which can not be fulfilled with the buddy allocator. 9279 * 9280 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9281 * power of two, then allocated range is also guaranteed to be aligned to same 9282 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9283 * 9284 * Allocated pages can be freed with free_contig_range() or by manually calling 9285 * __free_page() on each allocated page. 9286 * 9287 * Return: pointer to contiguous pages on success, or NULL if not successful. 9288 */ 9289 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9290 int nid, nodemask_t *nodemask) 9291 { 9292 unsigned long ret, pfn, flags; 9293 struct zonelist *zonelist; 9294 struct zone *zone; 9295 struct zoneref *z; 9296 9297 zonelist = node_zonelist(nid, gfp_mask); 9298 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9299 gfp_zone(gfp_mask), nodemask) { 9300 spin_lock_irqsave(&zone->lock, flags); 9301 9302 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9303 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9304 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9305 /* 9306 * We release the zone lock here because 9307 * alloc_contig_range() will also lock the zone 9308 * at some point. If there's an allocation 9309 * spinning on this lock, it may win the race 9310 * and cause alloc_contig_range() to fail... 9311 */ 9312 spin_unlock_irqrestore(&zone->lock, flags); 9313 ret = __alloc_contig_pages(pfn, nr_pages, 9314 gfp_mask); 9315 if (!ret) 9316 return pfn_to_page(pfn); 9317 spin_lock_irqsave(&zone->lock, flags); 9318 } 9319 pfn += nr_pages; 9320 } 9321 spin_unlock_irqrestore(&zone->lock, flags); 9322 } 9323 return NULL; 9324 } 9325 #endif /* CONFIG_CONTIG_ALLOC */ 9326 9327 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9328 { 9329 unsigned long count = 0; 9330 9331 for (; nr_pages--; pfn++) { 9332 struct page *page = pfn_to_page(pfn); 9333 9334 count += page_count(page) != 1; 9335 __free_page(page); 9336 } 9337 WARN(count != 0, "%lu pages are still in use!\n", count); 9338 } 9339 EXPORT_SYMBOL(free_contig_range); 9340 9341 /* 9342 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9343 * page high values need to be recalculated. 9344 */ 9345 void zone_pcp_update(struct zone *zone, int cpu_online) 9346 { 9347 mutex_lock(&pcp_batch_high_lock); 9348 zone_set_pageset_high_and_batch(zone, cpu_online); 9349 mutex_unlock(&pcp_batch_high_lock); 9350 } 9351 9352 /* 9353 * Effectively disable pcplists for the zone by setting the high limit to 0 9354 * and draining all cpus. A concurrent page freeing on another CPU that's about 9355 * to put the page on pcplist will either finish before the drain and the page 9356 * will be drained, or observe the new high limit and skip the pcplist. 9357 * 9358 * Must be paired with a call to zone_pcp_enable(). 9359 */ 9360 void zone_pcp_disable(struct zone *zone) 9361 { 9362 mutex_lock(&pcp_batch_high_lock); 9363 __zone_set_pageset_high_and_batch(zone, 0, 1); 9364 __drain_all_pages(zone, true); 9365 } 9366 9367 void zone_pcp_enable(struct zone *zone) 9368 { 9369 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9370 mutex_unlock(&pcp_batch_high_lock); 9371 } 9372 9373 void zone_pcp_reset(struct zone *zone) 9374 { 9375 int cpu; 9376 struct per_cpu_zonestat *pzstats; 9377 9378 if (zone->per_cpu_pageset != &boot_pageset) { 9379 for_each_online_cpu(cpu) { 9380 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9381 drain_zonestat(zone, pzstats); 9382 } 9383 free_percpu(zone->per_cpu_pageset); 9384 free_percpu(zone->per_cpu_zonestats); 9385 zone->per_cpu_pageset = &boot_pageset; 9386 zone->per_cpu_zonestats = &boot_zonestats; 9387 } 9388 } 9389 9390 #ifdef CONFIG_MEMORY_HOTREMOVE 9391 /* 9392 * All pages in the range must be in a single zone, must not contain holes, 9393 * must span full sections, and must be isolated before calling this function. 9394 */ 9395 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9396 { 9397 unsigned long pfn = start_pfn; 9398 struct page *page; 9399 struct zone *zone; 9400 unsigned int order; 9401 unsigned long flags; 9402 9403 offline_mem_sections(pfn, end_pfn); 9404 zone = page_zone(pfn_to_page(pfn)); 9405 spin_lock_irqsave(&zone->lock, flags); 9406 while (pfn < end_pfn) { 9407 page = pfn_to_page(pfn); 9408 /* 9409 * The HWPoisoned page may be not in buddy system, and 9410 * page_count() is not 0. 9411 */ 9412 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9413 pfn++; 9414 continue; 9415 } 9416 /* 9417 * At this point all remaining PageOffline() pages have a 9418 * reference count of 0 and can simply be skipped. 9419 */ 9420 if (PageOffline(page)) { 9421 BUG_ON(page_count(page)); 9422 BUG_ON(PageBuddy(page)); 9423 pfn++; 9424 continue; 9425 } 9426 9427 BUG_ON(page_count(page)); 9428 BUG_ON(!PageBuddy(page)); 9429 order = buddy_order(page); 9430 del_page_from_free_list(page, zone, order); 9431 pfn += (1 << order); 9432 } 9433 spin_unlock_irqrestore(&zone->lock, flags); 9434 } 9435 #endif 9436 9437 /* 9438 * This function returns a stable result only if called under zone lock. 9439 */ 9440 bool is_free_buddy_page(struct page *page) 9441 { 9442 unsigned long pfn = page_to_pfn(page); 9443 unsigned int order; 9444 9445 for (order = 0; order < MAX_ORDER; order++) { 9446 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9447 9448 if (PageBuddy(page_head) && 9449 buddy_order_unsafe(page_head) >= order) 9450 break; 9451 } 9452 9453 return order < MAX_ORDER; 9454 } 9455 9456 #ifdef CONFIG_MEMORY_FAILURE 9457 /* 9458 * Break down a higher-order page in sub-pages, and keep our target out of 9459 * buddy allocator. 9460 */ 9461 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9462 struct page *target, int low, int high, 9463 int migratetype) 9464 { 9465 unsigned long size = 1 << high; 9466 struct page *current_buddy, *next_page; 9467 9468 while (high > low) { 9469 high--; 9470 size >>= 1; 9471 9472 if (target >= &page[size]) { 9473 next_page = page + size; 9474 current_buddy = page; 9475 } else { 9476 next_page = page; 9477 current_buddy = page + size; 9478 } 9479 9480 if (set_page_guard(zone, current_buddy, high, migratetype)) 9481 continue; 9482 9483 if (current_buddy != target) { 9484 add_to_free_list(current_buddy, zone, high, migratetype); 9485 set_buddy_order(current_buddy, high); 9486 page = next_page; 9487 } 9488 } 9489 } 9490 9491 /* 9492 * Take a page that will be marked as poisoned off the buddy allocator. 9493 */ 9494 bool take_page_off_buddy(struct page *page) 9495 { 9496 struct zone *zone = page_zone(page); 9497 unsigned long pfn = page_to_pfn(page); 9498 unsigned long flags; 9499 unsigned int order; 9500 bool ret = false; 9501 9502 spin_lock_irqsave(&zone->lock, flags); 9503 for (order = 0; order < MAX_ORDER; order++) { 9504 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9505 int page_order = buddy_order(page_head); 9506 9507 if (PageBuddy(page_head) && page_order >= order) { 9508 unsigned long pfn_head = page_to_pfn(page_head); 9509 int migratetype = get_pfnblock_migratetype(page_head, 9510 pfn_head); 9511 9512 del_page_from_free_list(page_head, zone, page_order); 9513 break_down_buddy_pages(zone, page_head, page, 0, 9514 page_order, migratetype); 9515 SetPageHWPoisonTakenOff(page); 9516 if (!is_migrate_isolate(migratetype)) 9517 __mod_zone_freepage_state(zone, -1, migratetype); 9518 ret = true; 9519 break; 9520 } 9521 if (page_count(page_head) > 0) 9522 break; 9523 } 9524 spin_unlock_irqrestore(&zone->lock, flags); 9525 return ret; 9526 } 9527 9528 /* 9529 * Cancel takeoff done by take_page_off_buddy(). 9530 */ 9531 bool put_page_back_buddy(struct page *page) 9532 { 9533 struct zone *zone = page_zone(page); 9534 unsigned long pfn = page_to_pfn(page); 9535 unsigned long flags; 9536 int migratetype = get_pfnblock_migratetype(page, pfn); 9537 bool ret = false; 9538 9539 spin_lock_irqsave(&zone->lock, flags); 9540 if (put_page_testzero(page)) { 9541 ClearPageHWPoisonTakenOff(page); 9542 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9543 if (TestClearPageHWPoison(page)) { 9544 num_poisoned_pages_dec(); 9545 ret = true; 9546 } 9547 } 9548 spin_unlock_irqrestore(&zone->lock, flags); 9549 9550 return ret; 9551 } 9552 #endif 9553 9554 #ifdef CONFIG_ZONE_DMA 9555 bool has_managed_dma(void) 9556 { 9557 struct pglist_data *pgdat; 9558 9559 for_each_online_pgdat(pgdat) { 9560 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9561 9562 if (managed_zone(zone)) 9563 return true; 9564 } 9565 return false; 9566 } 9567 #endif /* CONFIG_ZONE_DMA */ 9568