xref: /openbmc/linux/mm/page_alloc.c (revision 2209fda3)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127 
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131 
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 
135 /*
136  * A cached value of the page's pageblock's migratetype, used when the page is
137  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139  * Also the migratetype set in the page does not necessarily match the pcplist
140  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141  * other index - this ensures that it will be put on the correct CMA freelist.
142  */
143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 	return page->index;
146 }
147 
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 	page->index = migratetype;
151 }
152 
153 #ifdef CONFIG_PM_SLEEP
154 /*
155  * The following functions are used by the suspend/hibernate code to temporarily
156  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157  * while devices are suspended.  To avoid races with the suspend/hibernate code,
158  * they should always be called with system_transition_mutex held
159  * (gfp_allowed_mask also should only be modified with system_transition_mutex
160  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
161  * with that modification).
162  */
163 
164 static gfp_t saved_gfp_mask;
165 
166 void pm_restore_gfp_mask(void)
167 {
168 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 	if (saved_gfp_mask) {
170 		gfp_allowed_mask = saved_gfp_mask;
171 		saved_gfp_mask = 0;
172 	}
173 }
174 
175 void pm_restrict_gfp_mask(void)
176 {
177 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 	WARN_ON(saved_gfp_mask);
179 	saved_gfp_mask = gfp_allowed_mask;
180 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182 
183 bool pm_suspended_storage(void)
184 {
185 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 		return false;
187 	return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190 
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194 
195 static void __free_pages_ok(struct page *page, unsigned int order);
196 
197 /*
198  * results with 256, 32 in the lowmem_reserve sysctl:
199  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200  *	1G machine -> (16M dma, 784M normal, 224M high)
201  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204  *
205  * TBD: should special case ZONE_DMA32 machines here - in those we normally
206  * don't need any ZONE_NORMAL reservation
207  */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209 #ifdef CONFIG_ZONE_DMA
210 	[ZONE_DMA] = 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 	[ZONE_DMA32] = 256,
214 #endif
215 	[ZONE_NORMAL] = 32,
216 #ifdef CONFIG_HIGHMEM
217 	[ZONE_HIGHMEM] = 0,
218 #endif
219 	[ZONE_MOVABLE] = 0,
220 };
221 
222 EXPORT_SYMBOL(totalram_pages);
223 
224 static char * const zone_names[MAX_NR_ZONES] = {
225 #ifdef CONFIG_ZONE_DMA
226 	 "DMA",
227 #endif
228 #ifdef CONFIG_ZONE_DMA32
229 	 "DMA32",
230 #endif
231 	 "Normal",
232 #ifdef CONFIG_HIGHMEM
233 	 "HighMem",
234 #endif
235 	 "Movable",
236 #ifdef CONFIG_ZONE_DEVICE
237 	 "Device",
238 #endif
239 };
240 
241 char * const migratetype_names[MIGRATE_TYPES] = {
242 	"Unmovable",
243 	"Movable",
244 	"Reclaimable",
245 	"HighAtomic",
246 #ifdef CONFIG_CMA
247 	"CMA",
248 #endif
249 #ifdef CONFIG_MEMORY_ISOLATION
250 	"Isolate",
251 #endif
252 };
253 
254 compound_page_dtor * const compound_page_dtors[] = {
255 	NULL,
256 	free_compound_page,
257 #ifdef CONFIG_HUGETLB_PAGE
258 	free_huge_page,
259 #endif
260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 	free_transhuge_page,
262 #endif
263 };
264 
265 int min_free_kbytes = 1024;
266 int user_min_free_kbytes = -1;
267 int watermark_scale_factor = 10;
268 
269 static unsigned long nr_kernel_pages __meminitdata;
270 static unsigned long nr_all_pages __meminitdata;
271 static unsigned long dma_reserve __meminitdata;
272 
273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
276 static unsigned long required_kernelcore __initdata;
277 static unsigned long required_kernelcore_percent __initdata;
278 static unsigned long required_movablecore __initdata;
279 static unsigned long required_movablecore_percent __initdata;
280 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
281 static bool mirrored_kernelcore __meminitdata;
282 
283 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 int movable_zone;
285 EXPORT_SYMBOL(movable_zone);
286 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287 
288 #if MAX_NUMNODES > 1
289 int nr_node_ids __read_mostly = MAX_NUMNODES;
290 int nr_online_nodes __read_mostly = 1;
291 EXPORT_SYMBOL(nr_node_ids);
292 EXPORT_SYMBOL(nr_online_nodes);
293 #endif
294 
295 int page_group_by_mobility_disabled __read_mostly;
296 
297 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 {
301 	int nid = early_pfn_to_nid(pfn);
302 
303 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 		return true;
305 
306 	return false;
307 }
308 
309 /*
310  * Returns true when the remaining initialisation should be deferred until
311  * later in the boot cycle when it can be parallelised.
312  */
313 static bool __meminit
314 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
315 {
316 	static unsigned long prev_end_pfn, nr_initialised;
317 
318 	/*
319 	 * prev_end_pfn static that contains the end of previous zone
320 	 * No need to protect because called very early in boot before smp_init.
321 	 */
322 	if (prev_end_pfn != end_pfn) {
323 		prev_end_pfn = end_pfn;
324 		nr_initialised = 0;
325 	}
326 
327 	/* Always populate low zones for address-constrained allocations */
328 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
329 		return false;
330 	nr_initialised++;
331 	if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
332 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
333 		NODE_DATA(nid)->first_deferred_pfn = pfn;
334 		return true;
335 	}
336 	return false;
337 }
338 #else
339 static inline bool early_page_uninitialised(unsigned long pfn)
340 {
341 	return false;
342 }
343 
344 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
345 {
346 	return false;
347 }
348 #endif
349 
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 							unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 	return __pfn_to_section(pfn)->pageblock_flags;
356 #else
357 	return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 }
360 
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 {
363 #ifdef CONFIG_SPARSEMEM
364 	pfn &= (PAGES_PER_SECTION-1);
365 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 #else
367 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
370 }
371 
372 /**
373  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374  * @page: The page within the block of interest
375  * @pfn: The target page frame number
376  * @end_bitidx: The last bit of interest to retrieve
377  * @mask: mask of bits that the caller is interested in
378  *
379  * Return: pageblock_bits flags
380  */
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 					unsigned long pfn,
383 					unsigned long end_bitidx,
384 					unsigned long mask)
385 {
386 	unsigned long *bitmap;
387 	unsigned long bitidx, word_bitidx;
388 	unsigned long word;
389 
390 	bitmap = get_pageblock_bitmap(page, pfn);
391 	bitidx = pfn_to_bitidx(page, pfn);
392 	word_bitidx = bitidx / BITS_PER_LONG;
393 	bitidx &= (BITS_PER_LONG-1);
394 
395 	word = bitmap[word_bitidx];
396 	bitidx += end_bitidx;
397 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398 }
399 
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 					unsigned long end_bitidx,
402 					unsigned long mask)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405 }
406 
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410 }
411 
412 /**
413  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414  * @page: The page within the block of interest
415  * @flags: The flags to set
416  * @pfn: The target page frame number
417  * @end_bitidx: The last bit of interest
418  * @mask: mask of bits that the caller is interested in
419  */
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 					unsigned long pfn,
422 					unsigned long end_bitidx,
423 					unsigned long mask)
424 {
425 	unsigned long *bitmap;
426 	unsigned long bitidx, word_bitidx;
427 	unsigned long old_word, word;
428 
429 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430 
431 	bitmap = get_pageblock_bitmap(page, pfn);
432 	bitidx = pfn_to_bitidx(page, pfn);
433 	word_bitidx = bitidx / BITS_PER_LONG;
434 	bitidx &= (BITS_PER_LONG-1);
435 
436 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437 
438 	bitidx += end_bitidx;
439 	mask <<= (BITS_PER_LONG - bitidx - 1);
440 	flags <<= (BITS_PER_LONG - bitidx - 1);
441 
442 	word = READ_ONCE(bitmap[word_bitidx]);
443 	for (;;) {
444 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 		if (word == old_word)
446 			break;
447 		word = old_word;
448 	}
449 }
450 
451 void set_pageblock_migratetype(struct page *page, int migratetype)
452 {
453 	if (unlikely(page_group_by_mobility_disabled &&
454 		     migratetype < MIGRATE_PCPTYPES))
455 		migratetype = MIGRATE_UNMOVABLE;
456 
457 	set_pageblock_flags_group(page, (unsigned long)migratetype,
458 					PB_migrate, PB_migrate_end);
459 }
460 
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 {
464 	int ret = 0;
465 	unsigned seq;
466 	unsigned long pfn = page_to_pfn(page);
467 	unsigned long sp, start_pfn;
468 
469 	do {
470 		seq = zone_span_seqbegin(zone);
471 		start_pfn = zone->zone_start_pfn;
472 		sp = zone->spanned_pages;
473 		if (!zone_spans_pfn(zone, pfn))
474 			ret = 1;
475 	} while (zone_span_seqretry(zone, seq));
476 
477 	if (ret)
478 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 			pfn, zone_to_nid(zone), zone->name,
480 			start_pfn, start_pfn + sp);
481 
482 	return ret;
483 }
484 
485 static int page_is_consistent(struct zone *zone, struct page *page)
486 {
487 	if (!pfn_valid_within(page_to_pfn(page)))
488 		return 0;
489 	if (zone != page_zone(page))
490 		return 0;
491 
492 	return 1;
493 }
494 /*
495  * Temporary debugging check for pages not lying within a given zone.
496  */
497 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
498 {
499 	if (page_outside_zone_boundaries(zone, page))
500 		return 1;
501 	if (!page_is_consistent(zone, page))
502 		return 1;
503 
504 	return 0;
505 }
506 #else
507 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
508 {
509 	return 0;
510 }
511 #endif
512 
513 static void bad_page(struct page *page, const char *reason,
514 		unsigned long bad_flags)
515 {
516 	static unsigned long resume;
517 	static unsigned long nr_shown;
518 	static unsigned long nr_unshown;
519 
520 	/*
521 	 * Allow a burst of 60 reports, then keep quiet for that minute;
522 	 * or allow a steady drip of one report per second.
523 	 */
524 	if (nr_shown == 60) {
525 		if (time_before(jiffies, resume)) {
526 			nr_unshown++;
527 			goto out;
528 		}
529 		if (nr_unshown) {
530 			pr_alert(
531 			      "BUG: Bad page state: %lu messages suppressed\n",
532 				nr_unshown);
533 			nr_unshown = 0;
534 		}
535 		nr_shown = 0;
536 	}
537 	if (nr_shown++ == 0)
538 		resume = jiffies + 60 * HZ;
539 
540 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
541 		current->comm, page_to_pfn(page));
542 	__dump_page(page, reason);
543 	bad_flags &= page->flags;
544 	if (bad_flags)
545 		pr_alert("bad because of flags: %#lx(%pGp)\n",
546 						bad_flags, &bad_flags);
547 	dump_page_owner(page);
548 
549 	print_modules();
550 	dump_stack();
551 out:
552 	/* Leave bad fields for debug, except PageBuddy could make trouble */
553 	page_mapcount_reset(page); /* remove PageBuddy */
554 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
555 }
556 
557 /*
558  * Higher-order pages are called "compound pages".  They are structured thusly:
559  *
560  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561  *
562  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564  *
565  * The first tail page's ->compound_dtor holds the offset in array of compound
566  * page destructors. See compound_page_dtors.
567  *
568  * The first tail page's ->compound_order holds the order of allocation.
569  * This usage means that zero-order pages may not be compound.
570  */
571 
572 void free_compound_page(struct page *page)
573 {
574 	__free_pages_ok(page, compound_order(page));
575 }
576 
577 void prep_compound_page(struct page *page, unsigned int order)
578 {
579 	int i;
580 	int nr_pages = 1 << order;
581 
582 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 	set_compound_order(page, order);
584 	__SetPageHead(page);
585 	for (i = 1; i < nr_pages; i++) {
586 		struct page *p = page + i;
587 		set_page_count(p, 0);
588 		p->mapping = TAIL_MAPPING;
589 		set_compound_head(p, page);
590 	}
591 	atomic_set(compound_mapcount_ptr(page), -1);
592 }
593 
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
600 
601 static int __init early_debug_pagealloc(char *buf)
602 {
603 	if (!buf)
604 		return -EINVAL;
605 	return kstrtobool(buf, &_debug_pagealloc_enabled);
606 }
607 early_param("debug_pagealloc", early_debug_pagealloc);
608 
609 static bool need_debug_guardpage(void)
610 {
611 	/* If we don't use debug_pagealloc, we don't need guard page */
612 	if (!debug_pagealloc_enabled())
613 		return false;
614 
615 	if (!debug_guardpage_minorder())
616 		return false;
617 
618 	return true;
619 }
620 
621 static void init_debug_guardpage(void)
622 {
623 	if (!debug_pagealloc_enabled())
624 		return;
625 
626 	if (!debug_guardpage_minorder())
627 		return;
628 
629 	_debug_guardpage_enabled = true;
630 }
631 
632 struct page_ext_operations debug_guardpage_ops = {
633 	.need = need_debug_guardpage,
634 	.init = init_debug_guardpage,
635 };
636 
637 static int __init debug_guardpage_minorder_setup(char *buf)
638 {
639 	unsigned long res;
640 
641 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
642 		pr_err("Bad debug_guardpage_minorder value\n");
643 		return 0;
644 	}
645 	_debug_guardpage_minorder = res;
646 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
647 	return 0;
648 }
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650 
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 				unsigned int order, int migratetype)
653 {
654 	struct page_ext *page_ext;
655 
656 	if (!debug_guardpage_enabled())
657 		return false;
658 
659 	if (order >= debug_guardpage_minorder())
660 		return false;
661 
662 	page_ext = lookup_page_ext(page);
663 	if (unlikely(!page_ext))
664 		return false;
665 
666 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667 
668 	INIT_LIST_HEAD(&page->lru);
669 	set_page_private(page, order);
670 	/* Guard pages are not available for any usage */
671 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
672 
673 	return true;
674 }
675 
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 				unsigned int order, int migratetype)
678 {
679 	struct page_ext *page_ext;
680 
681 	if (!debug_guardpage_enabled())
682 		return;
683 
684 	page_ext = lookup_page_ext(page);
685 	if (unlikely(!page_ext))
686 		return;
687 
688 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689 
690 	set_page_private(page, 0);
691 	if (!is_migrate_isolate(migratetype))
692 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
693 }
694 #else
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 			unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 				unsigned int order, int migratetype) {}
700 #endif
701 
702 static inline void set_page_order(struct page *page, unsigned int order)
703 {
704 	set_page_private(page, order);
705 	__SetPageBuddy(page);
706 }
707 
708 static inline void rmv_page_order(struct page *page)
709 {
710 	__ClearPageBuddy(page);
711 	set_page_private(page, 0);
712 }
713 
714 /*
715  * This function checks whether a page is free && is the buddy
716  * we can coalesce a page and its buddy if
717  * (a) the buddy is not in a hole (check before calling!) &&
718  * (b) the buddy is in the buddy system &&
719  * (c) a page and its buddy have the same order &&
720  * (d) a page and its buddy are in the same zone.
721  *
722  * For recording whether a page is in the buddy system, we set PageBuddy.
723  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
724  *
725  * For recording page's order, we use page_private(page).
726  */
727 static inline int page_is_buddy(struct page *page, struct page *buddy,
728 							unsigned int order)
729 {
730 	if (page_is_guard(buddy) && page_order(buddy) == order) {
731 		if (page_zone_id(page) != page_zone_id(buddy))
732 			return 0;
733 
734 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735 
736 		return 1;
737 	}
738 
739 	if (PageBuddy(buddy) && page_order(buddy) == order) {
740 		/*
741 		 * zone check is done late to avoid uselessly
742 		 * calculating zone/node ids for pages that could
743 		 * never merge.
744 		 */
745 		if (page_zone_id(page) != page_zone_id(buddy))
746 			return 0;
747 
748 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749 
750 		return 1;
751 	}
752 	return 0;
753 }
754 
755 /*
756  * Freeing function for a buddy system allocator.
757  *
758  * The concept of a buddy system is to maintain direct-mapped table
759  * (containing bit values) for memory blocks of various "orders".
760  * The bottom level table contains the map for the smallest allocatable
761  * units of memory (here, pages), and each level above it describes
762  * pairs of units from the levels below, hence, "buddies".
763  * At a high level, all that happens here is marking the table entry
764  * at the bottom level available, and propagating the changes upward
765  * as necessary, plus some accounting needed to play nicely with other
766  * parts of the VM system.
767  * At each level, we keep a list of pages, which are heads of continuous
768  * free pages of length of (1 << order) and marked with PageBuddy.
769  * Page's order is recorded in page_private(page) field.
770  * So when we are allocating or freeing one, we can derive the state of the
771  * other.  That is, if we allocate a small block, and both were
772  * free, the remainder of the region must be split into blocks.
773  * If a block is freed, and its buddy is also free, then this
774  * triggers coalescing into a block of larger size.
775  *
776  * -- nyc
777  */
778 
779 static inline void __free_one_page(struct page *page,
780 		unsigned long pfn,
781 		struct zone *zone, unsigned int order,
782 		int migratetype)
783 {
784 	unsigned long combined_pfn;
785 	unsigned long uninitialized_var(buddy_pfn);
786 	struct page *buddy;
787 	unsigned int max_order;
788 
789 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
790 
791 	VM_BUG_ON(!zone_is_initialized(zone));
792 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
793 
794 	VM_BUG_ON(migratetype == -1);
795 	if (likely(!is_migrate_isolate(migratetype)))
796 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
797 
798 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
799 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
800 
801 continue_merging:
802 	while (order < max_order - 1) {
803 		buddy_pfn = __find_buddy_pfn(pfn, order);
804 		buddy = page + (buddy_pfn - pfn);
805 
806 		if (!pfn_valid_within(buddy_pfn))
807 			goto done_merging;
808 		if (!page_is_buddy(page, buddy, order))
809 			goto done_merging;
810 		/*
811 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 		 * merge with it and move up one order.
813 		 */
814 		if (page_is_guard(buddy)) {
815 			clear_page_guard(zone, buddy, order, migratetype);
816 		} else {
817 			list_del(&buddy->lru);
818 			zone->free_area[order].nr_free--;
819 			rmv_page_order(buddy);
820 		}
821 		combined_pfn = buddy_pfn & pfn;
822 		page = page + (combined_pfn - pfn);
823 		pfn = combined_pfn;
824 		order++;
825 	}
826 	if (max_order < MAX_ORDER) {
827 		/* If we are here, it means order is >= pageblock_order.
828 		 * We want to prevent merge between freepages on isolate
829 		 * pageblock and normal pageblock. Without this, pageblock
830 		 * isolation could cause incorrect freepage or CMA accounting.
831 		 *
832 		 * We don't want to hit this code for the more frequent
833 		 * low-order merging.
834 		 */
835 		if (unlikely(has_isolate_pageblock(zone))) {
836 			int buddy_mt;
837 
838 			buddy_pfn = __find_buddy_pfn(pfn, order);
839 			buddy = page + (buddy_pfn - pfn);
840 			buddy_mt = get_pageblock_migratetype(buddy);
841 
842 			if (migratetype != buddy_mt
843 					&& (is_migrate_isolate(migratetype) ||
844 						is_migrate_isolate(buddy_mt)))
845 				goto done_merging;
846 		}
847 		max_order++;
848 		goto continue_merging;
849 	}
850 
851 done_merging:
852 	set_page_order(page, order);
853 
854 	/*
855 	 * If this is not the largest possible page, check if the buddy
856 	 * of the next-highest order is free. If it is, it's possible
857 	 * that pages are being freed that will coalesce soon. In case,
858 	 * that is happening, add the free page to the tail of the list
859 	 * so it's less likely to be used soon and more likely to be merged
860 	 * as a higher order page
861 	 */
862 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
863 		struct page *higher_page, *higher_buddy;
864 		combined_pfn = buddy_pfn & pfn;
865 		higher_page = page + (combined_pfn - pfn);
866 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
867 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
868 		if (pfn_valid_within(buddy_pfn) &&
869 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
870 			list_add_tail(&page->lru,
871 				&zone->free_area[order].free_list[migratetype]);
872 			goto out;
873 		}
874 	}
875 
876 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
877 out:
878 	zone->free_area[order].nr_free++;
879 }
880 
881 /*
882  * A bad page could be due to a number of fields. Instead of multiple branches,
883  * try and check multiple fields with one check. The caller must do a detailed
884  * check if necessary.
885  */
886 static inline bool page_expected_state(struct page *page,
887 					unsigned long check_flags)
888 {
889 	if (unlikely(atomic_read(&page->_mapcount) != -1))
890 		return false;
891 
892 	if (unlikely((unsigned long)page->mapping |
893 			page_ref_count(page) |
894 #ifdef CONFIG_MEMCG
895 			(unsigned long)page->mem_cgroup |
896 #endif
897 			(page->flags & check_flags)))
898 		return false;
899 
900 	return true;
901 }
902 
903 static void free_pages_check_bad(struct page *page)
904 {
905 	const char *bad_reason;
906 	unsigned long bad_flags;
907 
908 	bad_reason = NULL;
909 	bad_flags = 0;
910 
911 	if (unlikely(atomic_read(&page->_mapcount) != -1))
912 		bad_reason = "nonzero mapcount";
913 	if (unlikely(page->mapping != NULL))
914 		bad_reason = "non-NULL mapping";
915 	if (unlikely(page_ref_count(page) != 0))
916 		bad_reason = "nonzero _refcount";
917 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
918 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
919 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 	}
921 #ifdef CONFIG_MEMCG
922 	if (unlikely(page->mem_cgroup))
923 		bad_reason = "page still charged to cgroup";
924 #endif
925 	bad_page(page, bad_reason, bad_flags);
926 }
927 
928 static inline int free_pages_check(struct page *page)
929 {
930 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
931 		return 0;
932 
933 	/* Something has gone sideways, find it */
934 	free_pages_check_bad(page);
935 	return 1;
936 }
937 
938 static int free_tail_pages_check(struct page *head_page, struct page *page)
939 {
940 	int ret = 1;
941 
942 	/*
943 	 * We rely page->lru.next never has bit 0 set, unless the page
944 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 	 */
946 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947 
948 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
949 		ret = 0;
950 		goto out;
951 	}
952 	switch (page - head_page) {
953 	case 1:
954 		/* the first tail page: ->mapping may be compound_mapcount() */
955 		if (unlikely(compound_mapcount(page))) {
956 			bad_page(page, "nonzero compound_mapcount", 0);
957 			goto out;
958 		}
959 		break;
960 	case 2:
961 		/*
962 		 * the second tail page: ->mapping is
963 		 * deferred_list.next -- ignore value.
964 		 */
965 		break;
966 	default:
967 		if (page->mapping != TAIL_MAPPING) {
968 			bad_page(page, "corrupted mapping in tail page", 0);
969 			goto out;
970 		}
971 		break;
972 	}
973 	if (unlikely(!PageTail(page))) {
974 		bad_page(page, "PageTail not set", 0);
975 		goto out;
976 	}
977 	if (unlikely(compound_head(page) != head_page)) {
978 		bad_page(page, "compound_head not consistent", 0);
979 		goto out;
980 	}
981 	ret = 0;
982 out:
983 	page->mapping = NULL;
984 	clear_compound_head(page);
985 	return ret;
986 }
987 
988 static __always_inline bool free_pages_prepare(struct page *page,
989 					unsigned int order, bool check_free)
990 {
991 	int bad = 0;
992 
993 	VM_BUG_ON_PAGE(PageTail(page), page);
994 
995 	trace_mm_page_free(page, order);
996 
997 	/*
998 	 * Check tail pages before head page information is cleared to
999 	 * avoid checking PageCompound for order-0 pages.
1000 	 */
1001 	if (unlikely(order)) {
1002 		bool compound = PageCompound(page);
1003 		int i;
1004 
1005 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1006 
1007 		if (compound)
1008 			ClearPageDoubleMap(page);
1009 		for (i = 1; i < (1 << order); i++) {
1010 			if (compound)
1011 				bad += free_tail_pages_check(page, page + i);
1012 			if (unlikely(free_pages_check(page + i))) {
1013 				bad++;
1014 				continue;
1015 			}
1016 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 		}
1018 	}
1019 	if (PageMappingFlags(page))
1020 		page->mapping = NULL;
1021 	if (memcg_kmem_enabled() && PageKmemcg(page))
1022 		memcg_kmem_uncharge(page, order);
1023 	if (check_free)
1024 		bad += free_pages_check(page);
1025 	if (bad)
1026 		return false;
1027 
1028 	page_cpupid_reset_last(page);
1029 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1030 	reset_page_owner(page, order);
1031 
1032 	if (!PageHighMem(page)) {
1033 		debug_check_no_locks_freed(page_address(page),
1034 					   PAGE_SIZE << order);
1035 		debug_check_no_obj_freed(page_address(page),
1036 					   PAGE_SIZE << order);
1037 	}
1038 	arch_free_page(page, order);
1039 	kernel_poison_pages(page, 1 << order, 0);
1040 	kernel_map_pages(page, 1 << order, 0);
1041 	kasan_free_pages(page, order);
1042 
1043 	return true;
1044 }
1045 
1046 #ifdef CONFIG_DEBUG_VM
1047 static inline bool free_pcp_prepare(struct page *page)
1048 {
1049 	return free_pages_prepare(page, 0, true);
1050 }
1051 
1052 static inline bool bulkfree_pcp_prepare(struct page *page)
1053 {
1054 	return false;
1055 }
1056 #else
1057 static bool free_pcp_prepare(struct page *page)
1058 {
1059 	return free_pages_prepare(page, 0, false);
1060 }
1061 
1062 static bool bulkfree_pcp_prepare(struct page *page)
1063 {
1064 	return free_pages_check(page);
1065 }
1066 #endif /* CONFIG_DEBUG_VM */
1067 
1068 static inline void prefetch_buddy(struct page *page)
1069 {
1070 	unsigned long pfn = page_to_pfn(page);
1071 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1072 	struct page *buddy = page + (buddy_pfn - pfn);
1073 
1074 	prefetch(buddy);
1075 }
1076 
1077 /*
1078  * Frees a number of pages from the PCP lists
1079  * Assumes all pages on list are in same zone, and of same order.
1080  * count is the number of pages to free.
1081  *
1082  * If the zone was previously in an "all pages pinned" state then look to
1083  * see if this freeing clears that state.
1084  *
1085  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086  * pinned" detection logic.
1087  */
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 					struct per_cpu_pages *pcp)
1090 {
1091 	int migratetype = 0;
1092 	int batch_free = 0;
1093 	int prefetch_nr = 0;
1094 	bool isolated_pageblocks;
1095 	struct page *page, *tmp;
1096 	LIST_HEAD(head);
1097 
1098 	while (count) {
1099 		struct list_head *list;
1100 
1101 		/*
1102 		 * Remove pages from lists in a round-robin fashion. A
1103 		 * batch_free count is maintained that is incremented when an
1104 		 * empty list is encountered.  This is so more pages are freed
1105 		 * off fuller lists instead of spinning excessively around empty
1106 		 * lists
1107 		 */
1108 		do {
1109 			batch_free++;
1110 			if (++migratetype == MIGRATE_PCPTYPES)
1111 				migratetype = 0;
1112 			list = &pcp->lists[migratetype];
1113 		} while (list_empty(list));
1114 
1115 		/* This is the only non-empty list. Free them all. */
1116 		if (batch_free == MIGRATE_PCPTYPES)
1117 			batch_free = count;
1118 
1119 		do {
1120 			page = list_last_entry(list, struct page, lru);
1121 			/* must delete to avoid corrupting pcp list */
1122 			list_del(&page->lru);
1123 			pcp->count--;
1124 
1125 			if (bulkfree_pcp_prepare(page))
1126 				continue;
1127 
1128 			list_add_tail(&page->lru, &head);
1129 
1130 			/*
1131 			 * We are going to put the page back to the global
1132 			 * pool, prefetch its buddy to speed up later access
1133 			 * under zone->lock. It is believed the overhead of
1134 			 * an additional test and calculating buddy_pfn here
1135 			 * can be offset by reduced memory latency later. To
1136 			 * avoid excessive prefetching due to large count, only
1137 			 * prefetch buddy for the first pcp->batch nr of pages.
1138 			 */
1139 			if (prefetch_nr++ < pcp->batch)
1140 				prefetch_buddy(page);
1141 		} while (--count && --batch_free && !list_empty(list));
1142 	}
1143 
1144 	spin_lock(&zone->lock);
1145 	isolated_pageblocks = has_isolate_pageblock(zone);
1146 
1147 	/*
1148 	 * Use safe version since after __free_one_page(),
1149 	 * page->lru.next will not point to original list.
1150 	 */
1151 	list_for_each_entry_safe(page, tmp, &head, lru) {
1152 		int mt = get_pcppage_migratetype(page);
1153 		/* MIGRATE_ISOLATE page should not go to pcplists */
1154 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 		/* Pageblock could have been isolated meanwhile */
1156 		if (unlikely(isolated_pageblocks))
1157 			mt = get_pageblock_migratetype(page);
1158 
1159 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1160 		trace_mm_page_pcpu_drain(page, 0, mt);
1161 	}
1162 	spin_unlock(&zone->lock);
1163 }
1164 
1165 static void free_one_page(struct zone *zone,
1166 				struct page *page, unsigned long pfn,
1167 				unsigned int order,
1168 				int migratetype)
1169 {
1170 	spin_lock(&zone->lock);
1171 	if (unlikely(has_isolate_pageblock(zone) ||
1172 		is_migrate_isolate(migratetype))) {
1173 		migratetype = get_pfnblock_migratetype(page, pfn);
1174 	}
1175 	__free_one_page(page, pfn, zone, order, migratetype);
1176 	spin_unlock(&zone->lock);
1177 }
1178 
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 				unsigned long zone, int nid)
1181 {
1182 	mm_zero_struct_page(page);
1183 	set_page_links(page, zone, nid, pfn);
1184 	init_page_count(page);
1185 	page_mapcount_reset(page);
1186 	page_cpupid_reset_last(page);
1187 
1188 	INIT_LIST_HEAD(&page->lru);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 	if (!is_highmem_idx(zone))
1192 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1193 #endif
1194 }
1195 
1196 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1197 static void __meminit init_reserved_page(unsigned long pfn)
1198 {
1199 	pg_data_t *pgdat;
1200 	int nid, zid;
1201 
1202 	if (!early_page_uninitialised(pfn))
1203 		return;
1204 
1205 	nid = early_pfn_to_nid(pfn);
1206 	pgdat = NODE_DATA(nid);
1207 
1208 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1209 		struct zone *zone = &pgdat->node_zones[zid];
1210 
1211 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1212 			break;
1213 	}
1214 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1215 }
1216 #else
1217 static inline void init_reserved_page(unsigned long pfn)
1218 {
1219 }
1220 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1221 
1222 /*
1223  * Initialised pages do not have PageReserved set. This function is
1224  * called for each range allocated by the bootmem allocator and
1225  * marks the pages PageReserved. The remaining valid pages are later
1226  * sent to the buddy page allocator.
1227  */
1228 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1229 {
1230 	unsigned long start_pfn = PFN_DOWN(start);
1231 	unsigned long end_pfn = PFN_UP(end);
1232 
1233 	for (; start_pfn < end_pfn; start_pfn++) {
1234 		if (pfn_valid(start_pfn)) {
1235 			struct page *page = pfn_to_page(start_pfn);
1236 
1237 			init_reserved_page(start_pfn);
1238 
1239 			/* Avoid false-positive PageTail() */
1240 			INIT_LIST_HEAD(&page->lru);
1241 
1242 			/*
1243 			 * no need for atomic set_bit because the struct
1244 			 * page is not visible yet so nobody should
1245 			 * access it yet.
1246 			 */
1247 			__SetPageReserved(page);
1248 		}
1249 	}
1250 }
1251 
1252 static void __free_pages_ok(struct page *page, unsigned int order)
1253 {
1254 	unsigned long flags;
1255 	int migratetype;
1256 	unsigned long pfn = page_to_pfn(page);
1257 
1258 	if (!free_pages_prepare(page, order, true))
1259 		return;
1260 
1261 	migratetype = get_pfnblock_migratetype(page, pfn);
1262 	local_irq_save(flags);
1263 	__count_vm_events(PGFREE, 1 << order);
1264 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1265 	local_irq_restore(flags);
1266 }
1267 
1268 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1269 {
1270 	unsigned int nr_pages = 1 << order;
1271 	struct page *p = page;
1272 	unsigned int loop;
1273 
1274 	prefetchw(p);
1275 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1276 		prefetchw(p + 1);
1277 		__ClearPageReserved(p);
1278 		set_page_count(p, 0);
1279 	}
1280 	__ClearPageReserved(p);
1281 	set_page_count(p, 0);
1282 
1283 	page_zone(page)->managed_pages += nr_pages;
1284 	set_page_refcounted(page);
1285 	__free_pages(page, order);
1286 }
1287 
1288 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1289 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1290 
1291 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1292 
1293 int __meminit early_pfn_to_nid(unsigned long pfn)
1294 {
1295 	static DEFINE_SPINLOCK(early_pfn_lock);
1296 	int nid;
1297 
1298 	spin_lock(&early_pfn_lock);
1299 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1300 	if (nid < 0)
1301 		nid = first_online_node;
1302 	spin_unlock(&early_pfn_lock);
1303 
1304 	return nid;
1305 }
1306 #endif
1307 
1308 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1309 static inline bool __meminit __maybe_unused
1310 meminit_pfn_in_nid(unsigned long pfn, int node,
1311 		   struct mminit_pfnnid_cache *state)
1312 {
1313 	int nid;
1314 
1315 	nid = __early_pfn_to_nid(pfn, state);
1316 	if (nid >= 0 && nid != node)
1317 		return false;
1318 	return true;
1319 }
1320 
1321 /* Only safe to use early in boot when initialisation is single-threaded */
1322 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323 {
1324 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1325 }
1326 
1327 #else
1328 
1329 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1330 {
1331 	return true;
1332 }
1333 static inline bool __meminit  __maybe_unused
1334 meminit_pfn_in_nid(unsigned long pfn, int node,
1335 		   struct mminit_pfnnid_cache *state)
1336 {
1337 	return true;
1338 }
1339 #endif
1340 
1341 
1342 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1343 							unsigned int order)
1344 {
1345 	if (early_page_uninitialised(pfn))
1346 		return;
1347 	return __free_pages_boot_core(page, order);
1348 }
1349 
1350 /*
1351  * Check that the whole (or subset of) a pageblock given by the interval of
1352  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1353  * with the migration of free compaction scanner. The scanners then need to
1354  * use only pfn_valid_within() check for arches that allow holes within
1355  * pageblocks.
1356  *
1357  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1358  *
1359  * It's possible on some configurations to have a setup like node0 node1 node0
1360  * i.e. it's possible that all pages within a zones range of pages do not
1361  * belong to a single zone. We assume that a border between node0 and node1
1362  * can occur within a single pageblock, but not a node0 node1 node0
1363  * interleaving within a single pageblock. It is therefore sufficient to check
1364  * the first and last page of a pageblock and avoid checking each individual
1365  * page in a pageblock.
1366  */
1367 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1368 				     unsigned long end_pfn, struct zone *zone)
1369 {
1370 	struct page *start_page;
1371 	struct page *end_page;
1372 
1373 	/* end_pfn is one past the range we are checking */
1374 	end_pfn--;
1375 
1376 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1377 		return NULL;
1378 
1379 	start_page = pfn_to_online_page(start_pfn);
1380 	if (!start_page)
1381 		return NULL;
1382 
1383 	if (page_zone(start_page) != zone)
1384 		return NULL;
1385 
1386 	end_page = pfn_to_page(end_pfn);
1387 
1388 	/* This gives a shorter code than deriving page_zone(end_page) */
1389 	if (page_zone_id(start_page) != page_zone_id(end_page))
1390 		return NULL;
1391 
1392 	return start_page;
1393 }
1394 
1395 void set_zone_contiguous(struct zone *zone)
1396 {
1397 	unsigned long block_start_pfn = zone->zone_start_pfn;
1398 	unsigned long block_end_pfn;
1399 
1400 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1401 	for (; block_start_pfn < zone_end_pfn(zone);
1402 			block_start_pfn = block_end_pfn,
1403 			 block_end_pfn += pageblock_nr_pages) {
1404 
1405 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1406 
1407 		if (!__pageblock_pfn_to_page(block_start_pfn,
1408 					     block_end_pfn, zone))
1409 			return;
1410 	}
1411 
1412 	/* We confirm that there is no hole */
1413 	zone->contiguous = true;
1414 }
1415 
1416 void clear_zone_contiguous(struct zone *zone)
1417 {
1418 	zone->contiguous = false;
1419 }
1420 
1421 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1422 static void __init deferred_free_range(unsigned long pfn,
1423 				       unsigned long nr_pages)
1424 {
1425 	struct page *page;
1426 	unsigned long i;
1427 
1428 	if (!nr_pages)
1429 		return;
1430 
1431 	page = pfn_to_page(pfn);
1432 
1433 	/* Free a large naturally-aligned chunk if possible */
1434 	if (nr_pages == pageblock_nr_pages &&
1435 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1436 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1437 		__free_pages_boot_core(page, pageblock_order);
1438 		return;
1439 	}
1440 
1441 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1442 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1443 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1444 		__free_pages_boot_core(page, 0);
1445 	}
1446 }
1447 
1448 /* Completion tracking for deferred_init_memmap() threads */
1449 static atomic_t pgdat_init_n_undone __initdata;
1450 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1451 
1452 static inline void __init pgdat_init_report_one_done(void)
1453 {
1454 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1455 		complete(&pgdat_init_all_done_comp);
1456 }
1457 
1458 /*
1459  * Returns true if page needs to be initialized or freed to buddy allocator.
1460  *
1461  * First we check if pfn is valid on architectures where it is possible to have
1462  * holes within pageblock_nr_pages. On systems where it is not possible, this
1463  * function is optimized out.
1464  *
1465  * Then, we check if a current large page is valid by only checking the validity
1466  * of the head pfn.
1467  *
1468  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1469  * within a node: a pfn is between start and end of a node, but does not belong
1470  * to this memory node.
1471  */
1472 static inline bool __init
1473 deferred_pfn_valid(int nid, unsigned long pfn,
1474 		   struct mminit_pfnnid_cache *nid_init_state)
1475 {
1476 	if (!pfn_valid_within(pfn))
1477 		return false;
1478 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1479 		return false;
1480 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1481 		return false;
1482 	return true;
1483 }
1484 
1485 /*
1486  * Free pages to buddy allocator. Try to free aligned pages in
1487  * pageblock_nr_pages sizes.
1488  */
1489 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1490 				       unsigned long end_pfn)
1491 {
1492 	struct mminit_pfnnid_cache nid_init_state = { };
1493 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1494 	unsigned long nr_free = 0;
1495 
1496 	for (; pfn < end_pfn; pfn++) {
1497 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1498 			deferred_free_range(pfn - nr_free, nr_free);
1499 			nr_free = 0;
1500 		} else if (!(pfn & nr_pgmask)) {
1501 			deferred_free_range(pfn - nr_free, nr_free);
1502 			nr_free = 1;
1503 			touch_nmi_watchdog();
1504 		} else {
1505 			nr_free++;
1506 		}
1507 	}
1508 	/* Free the last block of pages to allocator */
1509 	deferred_free_range(pfn - nr_free, nr_free);
1510 }
1511 
1512 /*
1513  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1514  * by performing it only once every pageblock_nr_pages.
1515  * Return number of pages initialized.
1516  */
1517 static unsigned long  __init deferred_init_pages(int nid, int zid,
1518 						 unsigned long pfn,
1519 						 unsigned long end_pfn)
1520 {
1521 	struct mminit_pfnnid_cache nid_init_state = { };
1522 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1523 	unsigned long nr_pages = 0;
1524 	struct page *page = NULL;
1525 
1526 	for (; pfn < end_pfn; pfn++) {
1527 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1528 			page = NULL;
1529 			continue;
1530 		} else if (!page || !(pfn & nr_pgmask)) {
1531 			page = pfn_to_page(pfn);
1532 			touch_nmi_watchdog();
1533 		} else {
1534 			page++;
1535 		}
1536 		__init_single_page(page, pfn, zid, nid);
1537 		nr_pages++;
1538 	}
1539 	return (nr_pages);
1540 }
1541 
1542 /* Initialise remaining memory on a node */
1543 static int __init deferred_init_memmap(void *data)
1544 {
1545 	pg_data_t *pgdat = data;
1546 	int nid = pgdat->node_id;
1547 	unsigned long start = jiffies;
1548 	unsigned long nr_pages = 0;
1549 	unsigned long spfn, epfn, first_init_pfn, flags;
1550 	phys_addr_t spa, epa;
1551 	int zid;
1552 	struct zone *zone;
1553 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1554 	u64 i;
1555 
1556 	/* Bind memory initialisation thread to a local node if possible */
1557 	if (!cpumask_empty(cpumask))
1558 		set_cpus_allowed_ptr(current, cpumask);
1559 
1560 	pgdat_resize_lock(pgdat, &flags);
1561 	first_init_pfn = pgdat->first_deferred_pfn;
1562 	if (first_init_pfn == ULONG_MAX) {
1563 		pgdat_resize_unlock(pgdat, &flags);
1564 		pgdat_init_report_one_done();
1565 		return 0;
1566 	}
1567 
1568 	/* Sanity check boundaries */
1569 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1570 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1571 	pgdat->first_deferred_pfn = ULONG_MAX;
1572 
1573 	/* Only the highest zone is deferred so find it */
1574 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 		zone = pgdat->node_zones + zid;
1576 		if (first_init_pfn < zone_end_pfn(zone))
1577 			break;
1578 	}
1579 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1580 
1581 	/*
1582 	 * Initialize and free pages. We do it in two loops: first we initialize
1583 	 * struct page, than free to buddy allocator, because while we are
1584 	 * freeing pages we can access pages that are ahead (computing buddy
1585 	 * page in __free_one_page()).
1586 	 */
1587 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1588 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1589 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1590 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1591 	}
1592 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1593 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1594 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1595 		deferred_free_pages(nid, zid, spfn, epfn);
1596 	}
1597 	pgdat_resize_unlock(pgdat, &flags);
1598 
1599 	/* Sanity check that the next zone really is unpopulated */
1600 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1601 
1602 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1603 					jiffies_to_msecs(jiffies - start));
1604 
1605 	pgdat_init_report_one_done();
1606 	return 0;
1607 }
1608 
1609 /*
1610  * During boot we initialize deferred pages on-demand, as needed, but once
1611  * page_alloc_init_late() has finished, the deferred pages are all initialized,
1612  * and we can permanently disable that path.
1613  */
1614 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1615 
1616 /*
1617  * If this zone has deferred pages, try to grow it by initializing enough
1618  * deferred pages to satisfy the allocation specified by order, rounded up to
1619  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1620  * of SECTION_SIZE bytes by initializing struct pages in increments of
1621  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1622  *
1623  * Return true when zone was grown, otherwise return false. We return true even
1624  * when we grow less than requested, to let the caller decide if there are
1625  * enough pages to satisfy the allocation.
1626  *
1627  * Note: We use noinline because this function is needed only during boot, and
1628  * it is called from a __ref function _deferred_grow_zone. This way we are
1629  * making sure that it is not inlined into permanent text section.
1630  */
1631 static noinline bool __init
1632 deferred_grow_zone(struct zone *zone, unsigned int order)
1633 {
1634 	int zid = zone_idx(zone);
1635 	int nid = zone_to_nid(zone);
1636 	pg_data_t *pgdat = NODE_DATA(nid);
1637 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1638 	unsigned long nr_pages = 0;
1639 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1640 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1641 	phys_addr_t spa, epa;
1642 	u64 i;
1643 
1644 	/* Only the last zone may have deferred pages */
1645 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1646 		return false;
1647 
1648 	pgdat_resize_lock(pgdat, &flags);
1649 
1650 	/*
1651 	 * If deferred pages have been initialized while we were waiting for
1652 	 * the lock, return true, as the zone was grown.  The caller will retry
1653 	 * this zone.  We won't return to this function since the caller also
1654 	 * has this static branch.
1655 	 */
1656 	if (!static_branch_unlikely(&deferred_pages)) {
1657 		pgdat_resize_unlock(pgdat, &flags);
1658 		return true;
1659 	}
1660 
1661 	/*
1662 	 * If someone grew this zone while we were waiting for spinlock, return
1663 	 * true, as there might be enough pages already.
1664 	 */
1665 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1666 		pgdat_resize_unlock(pgdat, &flags);
1667 		return true;
1668 	}
1669 
1670 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1671 
1672 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1673 		pgdat_resize_unlock(pgdat, &flags);
1674 		return false;
1675 	}
1676 
1677 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1678 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1679 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1680 
1681 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1682 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1683 			first_deferred_pfn = min(t, epfn);
1684 			nr_pages += deferred_init_pages(nid, zid, spfn,
1685 							first_deferred_pfn);
1686 			spfn = first_deferred_pfn;
1687 		}
1688 
1689 		if (nr_pages >= nr_pages_needed)
1690 			break;
1691 	}
1692 
1693 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1694 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1695 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1696 		deferred_free_pages(nid, zid, spfn, epfn);
1697 
1698 		if (first_deferred_pfn == epfn)
1699 			break;
1700 	}
1701 	pgdat->first_deferred_pfn = first_deferred_pfn;
1702 	pgdat_resize_unlock(pgdat, &flags);
1703 
1704 	return nr_pages > 0;
1705 }
1706 
1707 /*
1708  * deferred_grow_zone() is __init, but it is called from
1709  * get_page_from_freelist() during early boot until deferred_pages permanently
1710  * disables this call. This is why we have refdata wrapper to avoid warning,
1711  * and to ensure that the function body gets unloaded.
1712  */
1713 static bool __ref
1714 _deferred_grow_zone(struct zone *zone, unsigned int order)
1715 {
1716 	return deferred_grow_zone(zone, order);
1717 }
1718 
1719 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1720 
1721 void __init page_alloc_init_late(void)
1722 {
1723 	struct zone *zone;
1724 
1725 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1726 	int nid;
1727 
1728 	/* There will be num_node_state(N_MEMORY) threads */
1729 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1730 	for_each_node_state(nid, N_MEMORY) {
1731 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1732 	}
1733 
1734 	/* Block until all are initialised */
1735 	wait_for_completion(&pgdat_init_all_done_comp);
1736 
1737 	/*
1738 	 * We initialized the rest of the deferred pages.  Permanently disable
1739 	 * on-demand struct page initialization.
1740 	 */
1741 	static_branch_disable(&deferred_pages);
1742 
1743 	/* Reinit limits that are based on free pages after the kernel is up */
1744 	files_maxfiles_init();
1745 #endif
1746 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1747 	/* Discard memblock private memory */
1748 	memblock_discard();
1749 #endif
1750 
1751 	for_each_populated_zone(zone)
1752 		set_zone_contiguous(zone);
1753 }
1754 
1755 #ifdef CONFIG_CMA
1756 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1757 void __init init_cma_reserved_pageblock(struct page *page)
1758 {
1759 	unsigned i = pageblock_nr_pages;
1760 	struct page *p = page;
1761 
1762 	do {
1763 		__ClearPageReserved(p);
1764 		set_page_count(p, 0);
1765 	} while (++p, --i);
1766 
1767 	set_pageblock_migratetype(page, MIGRATE_CMA);
1768 
1769 	if (pageblock_order >= MAX_ORDER) {
1770 		i = pageblock_nr_pages;
1771 		p = page;
1772 		do {
1773 			set_page_refcounted(p);
1774 			__free_pages(p, MAX_ORDER - 1);
1775 			p += MAX_ORDER_NR_PAGES;
1776 		} while (i -= MAX_ORDER_NR_PAGES);
1777 	} else {
1778 		set_page_refcounted(page);
1779 		__free_pages(page, pageblock_order);
1780 	}
1781 
1782 	adjust_managed_page_count(page, pageblock_nr_pages);
1783 }
1784 #endif
1785 
1786 /*
1787  * The order of subdivision here is critical for the IO subsystem.
1788  * Please do not alter this order without good reasons and regression
1789  * testing. Specifically, as large blocks of memory are subdivided,
1790  * the order in which smaller blocks are delivered depends on the order
1791  * they're subdivided in this function. This is the primary factor
1792  * influencing the order in which pages are delivered to the IO
1793  * subsystem according to empirical testing, and this is also justified
1794  * by considering the behavior of a buddy system containing a single
1795  * large block of memory acted on by a series of small allocations.
1796  * This behavior is a critical factor in sglist merging's success.
1797  *
1798  * -- nyc
1799  */
1800 static inline void expand(struct zone *zone, struct page *page,
1801 	int low, int high, struct free_area *area,
1802 	int migratetype)
1803 {
1804 	unsigned long size = 1 << high;
1805 
1806 	while (high > low) {
1807 		area--;
1808 		high--;
1809 		size >>= 1;
1810 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1811 
1812 		/*
1813 		 * Mark as guard pages (or page), that will allow to
1814 		 * merge back to allocator when buddy will be freed.
1815 		 * Corresponding page table entries will not be touched,
1816 		 * pages will stay not present in virtual address space
1817 		 */
1818 		if (set_page_guard(zone, &page[size], high, migratetype))
1819 			continue;
1820 
1821 		list_add(&page[size].lru, &area->free_list[migratetype]);
1822 		area->nr_free++;
1823 		set_page_order(&page[size], high);
1824 	}
1825 }
1826 
1827 static void check_new_page_bad(struct page *page)
1828 {
1829 	const char *bad_reason = NULL;
1830 	unsigned long bad_flags = 0;
1831 
1832 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1833 		bad_reason = "nonzero mapcount";
1834 	if (unlikely(page->mapping != NULL))
1835 		bad_reason = "non-NULL mapping";
1836 	if (unlikely(page_ref_count(page) != 0))
1837 		bad_reason = "nonzero _count";
1838 	if (unlikely(page->flags & __PG_HWPOISON)) {
1839 		bad_reason = "HWPoisoned (hardware-corrupted)";
1840 		bad_flags = __PG_HWPOISON;
1841 		/* Don't complain about hwpoisoned pages */
1842 		page_mapcount_reset(page); /* remove PageBuddy */
1843 		return;
1844 	}
1845 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1846 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1847 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1848 	}
1849 #ifdef CONFIG_MEMCG
1850 	if (unlikely(page->mem_cgroup))
1851 		bad_reason = "page still charged to cgroup";
1852 #endif
1853 	bad_page(page, bad_reason, bad_flags);
1854 }
1855 
1856 /*
1857  * This page is about to be returned from the page allocator
1858  */
1859 static inline int check_new_page(struct page *page)
1860 {
1861 	if (likely(page_expected_state(page,
1862 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1863 		return 0;
1864 
1865 	check_new_page_bad(page);
1866 	return 1;
1867 }
1868 
1869 static inline bool free_pages_prezeroed(void)
1870 {
1871 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1872 		page_poisoning_enabled();
1873 }
1874 
1875 #ifdef CONFIG_DEBUG_VM
1876 static bool check_pcp_refill(struct page *page)
1877 {
1878 	return false;
1879 }
1880 
1881 static bool check_new_pcp(struct page *page)
1882 {
1883 	return check_new_page(page);
1884 }
1885 #else
1886 static bool check_pcp_refill(struct page *page)
1887 {
1888 	return check_new_page(page);
1889 }
1890 static bool check_new_pcp(struct page *page)
1891 {
1892 	return false;
1893 }
1894 #endif /* CONFIG_DEBUG_VM */
1895 
1896 static bool check_new_pages(struct page *page, unsigned int order)
1897 {
1898 	int i;
1899 	for (i = 0; i < (1 << order); i++) {
1900 		struct page *p = page + i;
1901 
1902 		if (unlikely(check_new_page(p)))
1903 			return true;
1904 	}
1905 
1906 	return false;
1907 }
1908 
1909 inline void post_alloc_hook(struct page *page, unsigned int order,
1910 				gfp_t gfp_flags)
1911 {
1912 	set_page_private(page, 0);
1913 	set_page_refcounted(page);
1914 
1915 	arch_alloc_page(page, order);
1916 	kernel_map_pages(page, 1 << order, 1);
1917 	kernel_poison_pages(page, 1 << order, 1);
1918 	kasan_alloc_pages(page, order);
1919 	set_page_owner(page, order, gfp_flags);
1920 }
1921 
1922 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1923 							unsigned int alloc_flags)
1924 {
1925 	int i;
1926 
1927 	post_alloc_hook(page, order, gfp_flags);
1928 
1929 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1930 		for (i = 0; i < (1 << order); i++)
1931 			clear_highpage(page + i);
1932 
1933 	if (order && (gfp_flags & __GFP_COMP))
1934 		prep_compound_page(page, order);
1935 
1936 	/*
1937 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1938 	 * allocate the page. The expectation is that the caller is taking
1939 	 * steps that will free more memory. The caller should avoid the page
1940 	 * being used for !PFMEMALLOC purposes.
1941 	 */
1942 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1943 		set_page_pfmemalloc(page);
1944 	else
1945 		clear_page_pfmemalloc(page);
1946 }
1947 
1948 /*
1949  * Go through the free lists for the given migratetype and remove
1950  * the smallest available page from the freelists
1951  */
1952 static __always_inline
1953 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1954 						int migratetype)
1955 {
1956 	unsigned int current_order;
1957 	struct free_area *area;
1958 	struct page *page;
1959 
1960 	/* Find a page of the appropriate size in the preferred list */
1961 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1962 		area = &(zone->free_area[current_order]);
1963 		page = list_first_entry_or_null(&area->free_list[migratetype],
1964 							struct page, lru);
1965 		if (!page)
1966 			continue;
1967 		list_del(&page->lru);
1968 		rmv_page_order(page);
1969 		area->nr_free--;
1970 		expand(zone, page, order, current_order, area, migratetype);
1971 		set_pcppage_migratetype(page, migratetype);
1972 		return page;
1973 	}
1974 
1975 	return NULL;
1976 }
1977 
1978 
1979 /*
1980  * This array describes the order lists are fallen back to when
1981  * the free lists for the desirable migrate type are depleted
1982  */
1983 static int fallbacks[MIGRATE_TYPES][4] = {
1984 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1985 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1986 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1987 #ifdef CONFIG_CMA
1988 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1989 #endif
1990 #ifdef CONFIG_MEMORY_ISOLATION
1991 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1992 #endif
1993 };
1994 
1995 #ifdef CONFIG_CMA
1996 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1997 					unsigned int order)
1998 {
1999 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2000 }
2001 #else
2002 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2003 					unsigned int order) { return NULL; }
2004 #endif
2005 
2006 /*
2007  * Move the free pages in a range to the free lists of the requested type.
2008  * Note that start_page and end_pages are not aligned on a pageblock
2009  * boundary. If alignment is required, use move_freepages_block()
2010  */
2011 static int move_freepages(struct zone *zone,
2012 			  struct page *start_page, struct page *end_page,
2013 			  int migratetype, int *num_movable)
2014 {
2015 	struct page *page;
2016 	unsigned int order;
2017 	int pages_moved = 0;
2018 
2019 #ifndef CONFIG_HOLES_IN_ZONE
2020 	/*
2021 	 * page_zone is not safe to call in this context when
2022 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2023 	 * anyway as we check zone boundaries in move_freepages_block().
2024 	 * Remove at a later date when no bug reports exist related to
2025 	 * grouping pages by mobility
2026 	 */
2027 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2028 	          pfn_valid(page_to_pfn(end_page)) &&
2029 	          page_zone(start_page) != page_zone(end_page));
2030 #endif
2031 	for (page = start_page; page <= end_page;) {
2032 		if (!pfn_valid_within(page_to_pfn(page))) {
2033 			page++;
2034 			continue;
2035 		}
2036 
2037 		/* Make sure we are not inadvertently changing nodes */
2038 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2039 
2040 		if (!PageBuddy(page)) {
2041 			/*
2042 			 * We assume that pages that could be isolated for
2043 			 * migration are movable. But we don't actually try
2044 			 * isolating, as that would be expensive.
2045 			 */
2046 			if (num_movable &&
2047 					(PageLRU(page) || __PageMovable(page)))
2048 				(*num_movable)++;
2049 
2050 			page++;
2051 			continue;
2052 		}
2053 
2054 		order = page_order(page);
2055 		list_move(&page->lru,
2056 			  &zone->free_area[order].free_list[migratetype]);
2057 		page += 1 << order;
2058 		pages_moved += 1 << order;
2059 	}
2060 
2061 	return pages_moved;
2062 }
2063 
2064 int move_freepages_block(struct zone *zone, struct page *page,
2065 				int migratetype, int *num_movable)
2066 {
2067 	unsigned long start_pfn, end_pfn;
2068 	struct page *start_page, *end_page;
2069 
2070 	if (num_movable)
2071 		*num_movable = 0;
2072 
2073 	start_pfn = page_to_pfn(page);
2074 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2075 	start_page = pfn_to_page(start_pfn);
2076 	end_page = start_page + pageblock_nr_pages - 1;
2077 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2078 
2079 	/* Do not cross zone boundaries */
2080 	if (!zone_spans_pfn(zone, start_pfn))
2081 		start_page = page;
2082 	if (!zone_spans_pfn(zone, end_pfn))
2083 		return 0;
2084 
2085 	return move_freepages(zone, start_page, end_page, migratetype,
2086 								num_movable);
2087 }
2088 
2089 static void change_pageblock_range(struct page *pageblock_page,
2090 					int start_order, int migratetype)
2091 {
2092 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2093 
2094 	while (nr_pageblocks--) {
2095 		set_pageblock_migratetype(pageblock_page, migratetype);
2096 		pageblock_page += pageblock_nr_pages;
2097 	}
2098 }
2099 
2100 /*
2101  * When we are falling back to another migratetype during allocation, try to
2102  * steal extra free pages from the same pageblocks to satisfy further
2103  * allocations, instead of polluting multiple pageblocks.
2104  *
2105  * If we are stealing a relatively large buddy page, it is likely there will
2106  * be more free pages in the pageblock, so try to steal them all. For
2107  * reclaimable and unmovable allocations, we steal regardless of page size,
2108  * as fragmentation caused by those allocations polluting movable pageblocks
2109  * is worse than movable allocations stealing from unmovable and reclaimable
2110  * pageblocks.
2111  */
2112 static bool can_steal_fallback(unsigned int order, int start_mt)
2113 {
2114 	/*
2115 	 * Leaving this order check is intended, although there is
2116 	 * relaxed order check in next check. The reason is that
2117 	 * we can actually steal whole pageblock if this condition met,
2118 	 * but, below check doesn't guarantee it and that is just heuristic
2119 	 * so could be changed anytime.
2120 	 */
2121 	if (order >= pageblock_order)
2122 		return true;
2123 
2124 	if (order >= pageblock_order / 2 ||
2125 		start_mt == MIGRATE_RECLAIMABLE ||
2126 		start_mt == MIGRATE_UNMOVABLE ||
2127 		page_group_by_mobility_disabled)
2128 		return true;
2129 
2130 	return false;
2131 }
2132 
2133 /*
2134  * This function implements actual steal behaviour. If order is large enough,
2135  * we can steal whole pageblock. If not, we first move freepages in this
2136  * pageblock to our migratetype and determine how many already-allocated pages
2137  * are there in the pageblock with a compatible migratetype. If at least half
2138  * of pages are free or compatible, we can change migratetype of the pageblock
2139  * itself, so pages freed in the future will be put on the correct free list.
2140  */
2141 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2142 					int start_type, bool whole_block)
2143 {
2144 	unsigned int current_order = page_order(page);
2145 	struct free_area *area;
2146 	int free_pages, movable_pages, alike_pages;
2147 	int old_block_type;
2148 
2149 	old_block_type = get_pageblock_migratetype(page);
2150 
2151 	/*
2152 	 * This can happen due to races and we want to prevent broken
2153 	 * highatomic accounting.
2154 	 */
2155 	if (is_migrate_highatomic(old_block_type))
2156 		goto single_page;
2157 
2158 	/* Take ownership for orders >= pageblock_order */
2159 	if (current_order >= pageblock_order) {
2160 		change_pageblock_range(page, current_order, start_type);
2161 		goto single_page;
2162 	}
2163 
2164 	/* We are not allowed to try stealing from the whole block */
2165 	if (!whole_block)
2166 		goto single_page;
2167 
2168 	free_pages = move_freepages_block(zone, page, start_type,
2169 						&movable_pages);
2170 	/*
2171 	 * Determine how many pages are compatible with our allocation.
2172 	 * For movable allocation, it's the number of movable pages which
2173 	 * we just obtained. For other types it's a bit more tricky.
2174 	 */
2175 	if (start_type == MIGRATE_MOVABLE) {
2176 		alike_pages = movable_pages;
2177 	} else {
2178 		/*
2179 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2180 		 * to MOVABLE pageblock, consider all non-movable pages as
2181 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2182 		 * vice versa, be conservative since we can't distinguish the
2183 		 * exact migratetype of non-movable pages.
2184 		 */
2185 		if (old_block_type == MIGRATE_MOVABLE)
2186 			alike_pages = pageblock_nr_pages
2187 						- (free_pages + movable_pages);
2188 		else
2189 			alike_pages = 0;
2190 	}
2191 
2192 	/* moving whole block can fail due to zone boundary conditions */
2193 	if (!free_pages)
2194 		goto single_page;
2195 
2196 	/*
2197 	 * If a sufficient number of pages in the block are either free or of
2198 	 * comparable migratability as our allocation, claim the whole block.
2199 	 */
2200 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2201 			page_group_by_mobility_disabled)
2202 		set_pageblock_migratetype(page, start_type);
2203 
2204 	return;
2205 
2206 single_page:
2207 	area = &zone->free_area[current_order];
2208 	list_move(&page->lru, &area->free_list[start_type]);
2209 }
2210 
2211 /*
2212  * Check whether there is a suitable fallback freepage with requested order.
2213  * If only_stealable is true, this function returns fallback_mt only if
2214  * we can steal other freepages all together. This would help to reduce
2215  * fragmentation due to mixed migratetype pages in one pageblock.
2216  */
2217 int find_suitable_fallback(struct free_area *area, unsigned int order,
2218 			int migratetype, bool only_stealable, bool *can_steal)
2219 {
2220 	int i;
2221 	int fallback_mt;
2222 
2223 	if (area->nr_free == 0)
2224 		return -1;
2225 
2226 	*can_steal = false;
2227 	for (i = 0;; i++) {
2228 		fallback_mt = fallbacks[migratetype][i];
2229 		if (fallback_mt == MIGRATE_TYPES)
2230 			break;
2231 
2232 		if (list_empty(&area->free_list[fallback_mt]))
2233 			continue;
2234 
2235 		if (can_steal_fallback(order, migratetype))
2236 			*can_steal = true;
2237 
2238 		if (!only_stealable)
2239 			return fallback_mt;
2240 
2241 		if (*can_steal)
2242 			return fallback_mt;
2243 	}
2244 
2245 	return -1;
2246 }
2247 
2248 /*
2249  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2250  * there are no empty page blocks that contain a page with a suitable order
2251  */
2252 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2253 				unsigned int alloc_order)
2254 {
2255 	int mt;
2256 	unsigned long max_managed, flags;
2257 
2258 	/*
2259 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2260 	 * Check is race-prone but harmless.
2261 	 */
2262 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2263 	if (zone->nr_reserved_highatomic >= max_managed)
2264 		return;
2265 
2266 	spin_lock_irqsave(&zone->lock, flags);
2267 
2268 	/* Recheck the nr_reserved_highatomic limit under the lock */
2269 	if (zone->nr_reserved_highatomic >= max_managed)
2270 		goto out_unlock;
2271 
2272 	/* Yoink! */
2273 	mt = get_pageblock_migratetype(page);
2274 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2275 	    && !is_migrate_cma(mt)) {
2276 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2277 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2278 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2279 	}
2280 
2281 out_unlock:
2282 	spin_unlock_irqrestore(&zone->lock, flags);
2283 }
2284 
2285 /*
2286  * Used when an allocation is about to fail under memory pressure. This
2287  * potentially hurts the reliability of high-order allocations when under
2288  * intense memory pressure but failed atomic allocations should be easier
2289  * to recover from than an OOM.
2290  *
2291  * If @force is true, try to unreserve a pageblock even though highatomic
2292  * pageblock is exhausted.
2293  */
2294 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2295 						bool force)
2296 {
2297 	struct zonelist *zonelist = ac->zonelist;
2298 	unsigned long flags;
2299 	struct zoneref *z;
2300 	struct zone *zone;
2301 	struct page *page;
2302 	int order;
2303 	bool ret;
2304 
2305 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2306 								ac->nodemask) {
2307 		/*
2308 		 * Preserve at least one pageblock unless memory pressure
2309 		 * is really high.
2310 		 */
2311 		if (!force && zone->nr_reserved_highatomic <=
2312 					pageblock_nr_pages)
2313 			continue;
2314 
2315 		spin_lock_irqsave(&zone->lock, flags);
2316 		for (order = 0; order < MAX_ORDER; order++) {
2317 			struct free_area *area = &(zone->free_area[order]);
2318 
2319 			page = list_first_entry_or_null(
2320 					&area->free_list[MIGRATE_HIGHATOMIC],
2321 					struct page, lru);
2322 			if (!page)
2323 				continue;
2324 
2325 			/*
2326 			 * In page freeing path, migratetype change is racy so
2327 			 * we can counter several free pages in a pageblock
2328 			 * in this loop althoug we changed the pageblock type
2329 			 * from highatomic to ac->migratetype. So we should
2330 			 * adjust the count once.
2331 			 */
2332 			if (is_migrate_highatomic_page(page)) {
2333 				/*
2334 				 * It should never happen but changes to
2335 				 * locking could inadvertently allow a per-cpu
2336 				 * drain to add pages to MIGRATE_HIGHATOMIC
2337 				 * while unreserving so be safe and watch for
2338 				 * underflows.
2339 				 */
2340 				zone->nr_reserved_highatomic -= min(
2341 						pageblock_nr_pages,
2342 						zone->nr_reserved_highatomic);
2343 			}
2344 
2345 			/*
2346 			 * Convert to ac->migratetype and avoid the normal
2347 			 * pageblock stealing heuristics. Minimally, the caller
2348 			 * is doing the work and needs the pages. More
2349 			 * importantly, if the block was always converted to
2350 			 * MIGRATE_UNMOVABLE or another type then the number
2351 			 * of pageblocks that cannot be completely freed
2352 			 * may increase.
2353 			 */
2354 			set_pageblock_migratetype(page, ac->migratetype);
2355 			ret = move_freepages_block(zone, page, ac->migratetype,
2356 									NULL);
2357 			if (ret) {
2358 				spin_unlock_irqrestore(&zone->lock, flags);
2359 				return ret;
2360 			}
2361 		}
2362 		spin_unlock_irqrestore(&zone->lock, flags);
2363 	}
2364 
2365 	return false;
2366 }
2367 
2368 /*
2369  * Try finding a free buddy page on the fallback list and put it on the free
2370  * list of requested migratetype, possibly along with other pages from the same
2371  * block, depending on fragmentation avoidance heuristics. Returns true if
2372  * fallback was found so that __rmqueue_smallest() can grab it.
2373  *
2374  * The use of signed ints for order and current_order is a deliberate
2375  * deviation from the rest of this file, to make the for loop
2376  * condition simpler.
2377  */
2378 static __always_inline bool
2379 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2380 {
2381 	struct free_area *area;
2382 	int current_order;
2383 	struct page *page;
2384 	int fallback_mt;
2385 	bool can_steal;
2386 
2387 	/*
2388 	 * Find the largest available free page in the other list. This roughly
2389 	 * approximates finding the pageblock with the most free pages, which
2390 	 * would be too costly to do exactly.
2391 	 */
2392 	for (current_order = MAX_ORDER - 1; current_order >= order;
2393 				--current_order) {
2394 		area = &(zone->free_area[current_order]);
2395 		fallback_mt = find_suitable_fallback(area, current_order,
2396 				start_migratetype, false, &can_steal);
2397 		if (fallback_mt == -1)
2398 			continue;
2399 
2400 		/*
2401 		 * We cannot steal all free pages from the pageblock and the
2402 		 * requested migratetype is movable. In that case it's better to
2403 		 * steal and split the smallest available page instead of the
2404 		 * largest available page, because even if the next movable
2405 		 * allocation falls back into a different pageblock than this
2406 		 * one, it won't cause permanent fragmentation.
2407 		 */
2408 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2409 					&& current_order > order)
2410 			goto find_smallest;
2411 
2412 		goto do_steal;
2413 	}
2414 
2415 	return false;
2416 
2417 find_smallest:
2418 	for (current_order = order; current_order < MAX_ORDER;
2419 							current_order++) {
2420 		area = &(zone->free_area[current_order]);
2421 		fallback_mt = find_suitable_fallback(area, current_order,
2422 				start_migratetype, false, &can_steal);
2423 		if (fallback_mt != -1)
2424 			break;
2425 	}
2426 
2427 	/*
2428 	 * This should not happen - we already found a suitable fallback
2429 	 * when looking for the largest page.
2430 	 */
2431 	VM_BUG_ON(current_order == MAX_ORDER);
2432 
2433 do_steal:
2434 	page = list_first_entry(&area->free_list[fallback_mt],
2435 							struct page, lru);
2436 
2437 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2438 
2439 	trace_mm_page_alloc_extfrag(page, order, current_order,
2440 		start_migratetype, fallback_mt);
2441 
2442 	return true;
2443 
2444 }
2445 
2446 /*
2447  * Do the hard work of removing an element from the buddy allocator.
2448  * Call me with the zone->lock already held.
2449  */
2450 static __always_inline struct page *
2451 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2452 {
2453 	struct page *page;
2454 
2455 retry:
2456 	page = __rmqueue_smallest(zone, order, migratetype);
2457 	if (unlikely(!page)) {
2458 		if (migratetype == MIGRATE_MOVABLE)
2459 			page = __rmqueue_cma_fallback(zone, order);
2460 
2461 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2462 			goto retry;
2463 	}
2464 
2465 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2466 	return page;
2467 }
2468 
2469 /*
2470  * Obtain a specified number of elements from the buddy allocator, all under
2471  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2472  * Returns the number of new pages which were placed at *list.
2473  */
2474 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2475 			unsigned long count, struct list_head *list,
2476 			int migratetype)
2477 {
2478 	int i, alloced = 0;
2479 
2480 	spin_lock(&zone->lock);
2481 	for (i = 0; i < count; ++i) {
2482 		struct page *page = __rmqueue(zone, order, migratetype);
2483 		if (unlikely(page == NULL))
2484 			break;
2485 
2486 		if (unlikely(check_pcp_refill(page)))
2487 			continue;
2488 
2489 		/*
2490 		 * Split buddy pages returned by expand() are received here in
2491 		 * physical page order. The page is added to the tail of
2492 		 * caller's list. From the callers perspective, the linked list
2493 		 * is ordered by page number under some conditions. This is
2494 		 * useful for IO devices that can forward direction from the
2495 		 * head, thus also in the physical page order. This is useful
2496 		 * for IO devices that can merge IO requests if the physical
2497 		 * pages are ordered properly.
2498 		 */
2499 		list_add_tail(&page->lru, list);
2500 		alloced++;
2501 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2502 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2503 					      -(1 << order));
2504 	}
2505 
2506 	/*
2507 	 * i pages were removed from the buddy list even if some leak due
2508 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2509 	 * on i. Do not confuse with 'alloced' which is the number of
2510 	 * pages added to the pcp list.
2511 	 */
2512 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2513 	spin_unlock(&zone->lock);
2514 	return alloced;
2515 }
2516 
2517 #ifdef CONFIG_NUMA
2518 /*
2519  * Called from the vmstat counter updater to drain pagesets of this
2520  * currently executing processor on remote nodes after they have
2521  * expired.
2522  *
2523  * Note that this function must be called with the thread pinned to
2524  * a single processor.
2525  */
2526 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2527 {
2528 	unsigned long flags;
2529 	int to_drain, batch;
2530 
2531 	local_irq_save(flags);
2532 	batch = READ_ONCE(pcp->batch);
2533 	to_drain = min(pcp->count, batch);
2534 	if (to_drain > 0)
2535 		free_pcppages_bulk(zone, to_drain, pcp);
2536 	local_irq_restore(flags);
2537 }
2538 #endif
2539 
2540 /*
2541  * Drain pcplists of the indicated processor and zone.
2542  *
2543  * The processor must either be the current processor and the
2544  * thread pinned to the current processor or a processor that
2545  * is not online.
2546  */
2547 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2548 {
2549 	unsigned long flags;
2550 	struct per_cpu_pageset *pset;
2551 	struct per_cpu_pages *pcp;
2552 
2553 	local_irq_save(flags);
2554 	pset = per_cpu_ptr(zone->pageset, cpu);
2555 
2556 	pcp = &pset->pcp;
2557 	if (pcp->count)
2558 		free_pcppages_bulk(zone, pcp->count, pcp);
2559 	local_irq_restore(flags);
2560 }
2561 
2562 /*
2563  * Drain pcplists of all zones on the indicated processor.
2564  *
2565  * The processor must either be the current processor and the
2566  * thread pinned to the current processor or a processor that
2567  * is not online.
2568  */
2569 static void drain_pages(unsigned int cpu)
2570 {
2571 	struct zone *zone;
2572 
2573 	for_each_populated_zone(zone) {
2574 		drain_pages_zone(cpu, zone);
2575 	}
2576 }
2577 
2578 /*
2579  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2580  *
2581  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2582  * the single zone's pages.
2583  */
2584 void drain_local_pages(struct zone *zone)
2585 {
2586 	int cpu = smp_processor_id();
2587 
2588 	if (zone)
2589 		drain_pages_zone(cpu, zone);
2590 	else
2591 		drain_pages(cpu);
2592 }
2593 
2594 static void drain_local_pages_wq(struct work_struct *work)
2595 {
2596 	/*
2597 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2598 	 * we can race with cpu offline when the WQ can move this from
2599 	 * a cpu pinned worker to an unbound one. We can operate on a different
2600 	 * cpu which is allright but we also have to make sure to not move to
2601 	 * a different one.
2602 	 */
2603 	preempt_disable();
2604 	drain_local_pages(NULL);
2605 	preempt_enable();
2606 }
2607 
2608 /*
2609  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2610  *
2611  * When zone parameter is non-NULL, spill just the single zone's pages.
2612  *
2613  * Note that this can be extremely slow as the draining happens in a workqueue.
2614  */
2615 void drain_all_pages(struct zone *zone)
2616 {
2617 	int cpu;
2618 
2619 	/*
2620 	 * Allocate in the BSS so we wont require allocation in
2621 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2622 	 */
2623 	static cpumask_t cpus_with_pcps;
2624 
2625 	/*
2626 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2627 	 * initialized.
2628 	 */
2629 	if (WARN_ON_ONCE(!mm_percpu_wq))
2630 		return;
2631 
2632 	/*
2633 	 * Do not drain if one is already in progress unless it's specific to
2634 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2635 	 * the drain to be complete when the call returns.
2636 	 */
2637 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2638 		if (!zone)
2639 			return;
2640 		mutex_lock(&pcpu_drain_mutex);
2641 	}
2642 
2643 	/*
2644 	 * We don't care about racing with CPU hotplug event
2645 	 * as offline notification will cause the notified
2646 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2647 	 * disables preemption as part of its processing
2648 	 */
2649 	for_each_online_cpu(cpu) {
2650 		struct per_cpu_pageset *pcp;
2651 		struct zone *z;
2652 		bool has_pcps = false;
2653 
2654 		if (zone) {
2655 			pcp = per_cpu_ptr(zone->pageset, cpu);
2656 			if (pcp->pcp.count)
2657 				has_pcps = true;
2658 		} else {
2659 			for_each_populated_zone(z) {
2660 				pcp = per_cpu_ptr(z->pageset, cpu);
2661 				if (pcp->pcp.count) {
2662 					has_pcps = true;
2663 					break;
2664 				}
2665 			}
2666 		}
2667 
2668 		if (has_pcps)
2669 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2670 		else
2671 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2672 	}
2673 
2674 	for_each_cpu(cpu, &cpus_with_pcps) {
2675 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2676 		INIT_WORK(work, drain_local_pages_wq);
2677 		queue_work_on(cpu, mm_percpu_wq, work);
2678 	}
2679 	for_each_cpu(cpu, &cpus_with_pcps)
2680 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2681 
2682 	mutex_unlock(&pcpu_drain_mutex);
2683 }
2684 
2685 #ifdef CONFIG_HIBERNATION
2686 
2687 /*
2688  * Touch the watchdog for every WD_PAGE_COUNT pages.
2689  */
2690 #define WD_PAGE_COUNT	(128*1024)
2691 
2692 void mark_free_pages(struct zone *zone)
2693 {
2694 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2695 	unsigned long flags;
2696 	unsigned int order, t;
2697 	struct page *page;
2698 
2699 	if (zone_is_empty(zone))
2700 		return;
2701 
2702 	spin_lock_irqsave(&zone->lock, flags);
2703 
2704 	max_zone_pfn = zone_end_pfn(zone);
2705 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2706 		if (pfn_valid(pfn)) {
2707 			page = pfn_to_page(pfn);
2708 
2709 			if (!--page_count) {
2710 				touch_nmi_watchdog();
2711 				page_count = WD_PAGE_COUNT;
2712 			}
2713 
2714 			if (page_zone(page) != zone)
2715 				continue;
2716 
2717 			if (!swsusp_page_is_forbidden(page))
2718 				swsusp_unset_page_free(page);
2719 		}
2720 
2721 	for_each_migratetype_order(order, t) {
2722 		list_for_each_entry(page,
2723 				&zone->free_area[order].free_list[t], lru) {
2724 			unsigned long i;
2725 
2726 			pfn = page_to_pfn(page);
2727 			for (i = 0; i < (1UL << order); i++) {
2728 				if (!--page_count) {
2729 					touch_nmi_watchdog();
2730 					page_count = WD_PAGE_COUNT;
2731 				}
2732 				swsusp_set_page_free(pfn_to_page(pfn + i));
2733 			}
2734 		}
2735 	}
2736 	spin_unlock_irqrestore(&zone->lock, flags);
2737 }
2738 #endif /* CONFIG_PM */
2739 
2740 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2741 {
2742 	int migratetype;
2743 
2744 	if (!free_pcp_prepare(page))
2745 		return false;
2746 
2747 	migratetype = get_pfnblock_migratetype(page, pfn);
2748 	set_pcppage_migratetype(page, migratetype);
2749 	return true;
2750 }
2751 
2752 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2753 {
2754 	struct zone *zone = page_zone(page);
2755 	struct per_cpu_pages *pcp;
2756 	int migratetype;
2757 
2758 	migratetype = get_pcppage_migratetype(page);
2759 	__count_vm_event(PGFREE);
2760 
2761 	/*
2762 	 * We only track unmovable, reclaimable and movable on pcp lists.
2763 	 * Free ISOLATE pages back to the allocator because they are being
2764 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2765 	 * areas back if necessary. Otherwise, we may have to free
2766 	 * excessively into the page allocator
2767 	 */
2768 	if (migratetype >= MIGRATE_PCPTYPES) {
2769 		if (unlikely(is_migrate_isolate(migratetype))) {
2770 			free_one_page(zone, page, pfn, 0, migratetype);
2771 			return;
2772 		}
2773 		migratetype = MIGRATE_MOVABLE;
2774 	}
2775 
2776 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2777 	list_add(&page->lru, &pcp->lists[migratetype]);
2778 	pcp->count++;
2779 	if (pcp->count >= pcp->high) {
2780 		unsigned long batch = READ_ONCE(pcp->batch);
2781 		free_pcppages_bulk(zone, batch, pcp);
2782 	}
2783 }
2784 
2785 /*
2786  * Free a 0-order page
2787  */
2788 void free_unref_page(struct page *page)
2789 {
2790 	unsigned long flags;
2791 	unsigned long pfn = page_to_pfn(page);
2792 
2793 	if (!free_unref_page_prepare(page, pfn))
2794 		return;
2795 
2796 	local_irq_save(flags);
2797 	free_unref_page_commit(page, pfn);
2798 	local_irq_restore(flags);
2799 }
2800 
2801 /*
2802  * Free a list of 0-order pages
2803  */
2804 void free_unref_page_list(struct list_head *list)
2805 {
2806 	struct page *page, *next;
2807 	unsigned long flags, pfn;
2808 	int batch_count = 0;
2809 
2810 	/* Prepare pages for freeing */
2811 	list_for_each_entry_safe(page, next, list, lru) {
2812 		pfn = page_to_pfn(page);
2813 		if (!free_unref_page_prepare(page, pfn))
2814 			list_del(&page->lru);
2815 		set_page_private(page, pfn);
2816 	}
2817 
2818 	local_irq_save(flags);
2819 	list_for_each_entry_safe(page, next, list, lru) {
2820 		unsigned long pfn = page_private(page);
2821 
2822 		set_page_private(page, 0);
2823 		trace_mm_page_free_batched(page);
2824 		free_unref_page_commit(page, pfn);
2825 
2826 		/*
2827 		 * Guard against excessive IRQ disabled times when we get
2828 		 * a large list of pages to free.
2829 		 */
2830 		if (++batch_count == SWAP_CLUSTER_MAX) {
2831 			local_irq_restore(flags);
2832 			batch_count = 0;
2833 			local_irq_save(flags);
2834 		}
2835 	}
2836 	local_irq_restore(flags);
2837 }
2838 
2839 /*
2840  * split_page takes a non-compound higher-order page, and splits it into
2841  * n (1<<order) sub-pages: page[0..n]
2842  * Each sub-page must be freed individually.
2843  *
2844  * Note: this is probably too low level an operation for use in drivers.
2845  * Please consult with lkml before using this in your driver.
2846  */
2847 void split_page(struct page *page, unsigned int order)
2848 {
2849 	int i;
2850 
2851 	VM_BUG_ON_PAGE(PageCompound(page), page);
2852 	VM_BUG_ON_PAGE(!page_count(page), page);
2853 
2854 	for (i = 1; i < (1 << order); i++)
2855 		set_page_refcounted(page + i);
2856 	split_page_owner(page, order);
2857 }
2858 EXPORT_SYMBOL_GPL(split_page);
2859 
2860 int __isolate_free_page(struct page *page, unsigned int order)
2861 {
2862 	unsigned long watermark;
2863 	struct zone *zone;
2864 	int mt;
2865 
2866 	BUG_ON(!PageBuddy(page));
2867 
2868 	zone = page_zone(page);
2869 	mt = get_pageblock_migratetype(page);
2870 
2871 	if (!is_migrate_isolate(mt)) {
2872 		/*
2873 		 * Obey watermarks as if the page was being allocated. We can
2874 		 * emulate a high-order watermark check with a raised order-0
2875 		 * watermark, because we already know our high-order page
2876 		 * exists.
2877 		 */
2878 		watermark = min_wmark_pages(zone) + (1UL << order);
2879 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2880 			return 0;
2881 
2882 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2883 	}
2884 
2885 	/* Remove page from free list */
2886 	list_del(&page->lru);
2887 	zone->free_area[order].nr_free--;
2888 	rmv_page_order(page);
2889 
2890 	/*
2891 	 * Set the pageblock if the isolated page is at least half of a
2892 	 * pageblock
2893 	 */
2894 	if (order >= pageblock_order - 1) {
2895 		struct page *endpage = page + (1 << order) - 1;
2896 		for (; page < endpage; page += pageblock_nr_pages) {
2897 			int mt = get_pageblock_migratetype(page);
2898 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2899 			    && !is_migrate_highatomic(mt))
2900 				set_pageblock_migratetype(page,
2901 							  MIGRATE_MOVABLE);
2902 		}
2903 	}
2904 
2905 
2906 	return 1UL << order;
2907 }
2908 
2909 /*
2910  * Update NUMA hit/miss statistics
2911  *
2912  * Must be called with interrupts disabled.
2913  */
2914 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2915 {
2916 #ifdef CONFIG_NUMA
2917 	enum numa_stat_item local_stat = NUMA_LOCAL;
2918 
2919 	/* skip numa counters update if numa stats is disabled */
2920 	if (!static_branch_likely(&vm_numa_stat_key))
2921 		return;
2922 
2923 	if (zone_to_nid(z) != numa_node_id())
2924 		local_stat = NUMA_OTHER;
2925 
2926 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2927 		__inc_numa_state(z, NUMA_HIT);
2928 	else {
2929 		__inc_numa_state(z, NUMA_MISS);
2930 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2931 	}
2932 	__inc_numa_state(z, local_stat);
2933 #endif
2934 }
2935 
2936 /* Remove page from the per-cpu list, caller must protect the list */
2937 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2938 			struct per_cpu_pages *pcp,
2939 			struct list_head *list)
2940 {
2941 	struct page *page;
2942 
2943 	do {
2944 		if (list_empty(list)) {
2945 			pcp->count += rmqueue_bulk(zone, 0,
2946 					pcp->batch, list,
2947 					migratetype);
2948 			if (unlikely(list_empty(list)))
2949 				return NULL;
2950 		}
2951 
2952 		page = list_first_entry(list, struct page, lru);
2953 		list_del(&page->lru);
2954 		pcp->count--;
2955 	} while (check_new_pcp(page));
2956 
2957 	return page;
2958 }
2959 
2960 /* Lock and remove page from the per-cpu list */
2961 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2962 			struct zone *zone, unsigned int order,
2963 			gfp_t gfp_flags, int migratetype)
2964 {
2965 	struct per_cpu_pages *pcp;
2966 	struct list_head *list;
2967 	struct page *page;
2968 	unsigned long flags;
2969 
2970 	local_irq_save(flags);
2971 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2972 	list = &pcp->lists[migratetype];
2973 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2974 	if (page) {
2975 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2976 		zone_statistics(preferred_zone, zone);
2977 	}
2978 	local_irq_restore(flags);
2979 	return page;
2980 }
2981 
2982 /*
2983  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2984  */
2985 static inline
2986 struct page *rmqueue(struct zone *preferred_zone,
2987 			struct zone *zone, unsigned int order,
2988 			gfp_t gfp_flags, unsigned int alloc_flags,
2989 			int migratetype)
2990 {
2991 	unsigned long flags;
2992 	struct page *page;
2993 
2994 	if (likely(order == 0)) {
2995 		page = rmqueue_pcplist(preferred_zone, zone, order,
2996 				gfp_flags, migratetype);
2997 		goto out;
2998 	}
2999 
3000 	/*
3001 	 * We most definitely don't want callers attempting to
3002 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3003 	 */
3004 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3005 	spin_lock_irqsave(&zone->lock, flags);
3006 
3007 	do {
3008 		page = NULL;
3009 		if (alloc_flags & ALLOC_HARDER) {
3010 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3011 			if (page)
3012 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3013 		}
3014 		if (!page)
3015 			page = __rmqueue(zone, order, migratetype);
3016 	} while (page && check_new_pages(page, order));
3017 	spin_unlock(&zone->lock);
3018 	if (!page)
3019 		goto failed;
3020 	__mod_zone_freepage_state(zone, -(1 << order),
3021 				  get_pcppage_migratetype(page));
3022 
3023 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3024 	zone_statistics(preferred_zone, zone);
3025 	local_irq_restore(flags);
3026 
3027 out:
3028 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3029 	return page;
3030 
3031 failed:
3032 	local_irq_restore(flags);
3033 	return NULL;
3034 }
3035 
3036 #ifdef CONFIG_FAIL_PAGE_ALLOC
3037 
3038 static struct {
3039 	struct fault_attr attr;
3040 
3041 	bool ignore_gfp_highmem;
3042 	bool ignore_gfp_reclaim;
3043 	u32 min_order;
3044 } fail_page_alloc = {
3045 	.attr = FAULT_ATTR_INITIALIZER,
3046 	.ignore_gfp_reclaim = true,
3047 	.ignore_gfp_highmem = true,
3048 	.min_order = 1,
3049 };
3050 
3051 static int __init setup_fail_page_alloc(char *str)
3052 {
3053 	return setup_fault_attr(&fail_page_alloc.attr, str);
3054 }
3055 __setup("fail_page_alloc=", setup_fail_page_alloc);
3056 
3057 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3058 {
3059 	if (order < fail_page_alloc.min_order)
3060 		return false;
3061 	if (gfp_mask & __GFP_NOFAIL)
3062 		return false;
3063 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3064 		return false;
3065 	if (fail_page_alloc.ignore_gfp_reclaim &&
3066 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3067 		return false;
3068 
3069 	return should_fail(&fail_page_alloc.attr, 1 << order);
3070 }
3071 
3072 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3073 
3074 static int __init fail_page_alloc_debugfs(void)
3075 {
3076 	umode_t mode = S_IFREG | 0600;
3077 	struct dentry *dir;
3078 
3079 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3080 					&fail_page_alloc.attr);
3081 	if (IS_ERR(dir))
3082 		return PTR_ERR(dir);
3083 
3084 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3085 				&fail_page_alloc.ignore_gfp_reclaim))
3086 		goto fail;
3087 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3088 				&fail_page_alloc.ignore_gfp_highmem))
3089 		goto fail;
3090 	if (!debugfs_create_u32("min-order", mode, dir,
3091 				&fail_page_alloc.min_order))
3092 		goto fail;
3093 
3094 	return 0;
3095 fail:
3096 	debugfs_remove_recursive(dir);
3097 
3098 	return -ENOMEM;
3099 }
3100 
3101 late_initcall(fail_page_alloc_debugfs);
3102 
3103 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3104 
3105 #else /* CONFIG_FAIL_PAGE_ALLOC */
3106 
3107 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3108 {
3109 	return false;
3110 }
3111 
3112 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3113 
3114 /*
3115  * Return true if free base pages are above 'mark'. For high-order checks it
3116  * will return true of the order-0 watermark is reached and there is at least
3117  * one free page of a suitable size. Checking now avoids taking the zone lock
3118  * to check in the allocation paths if no pages are free.
3119  */
3120 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3121 			 int classzone_idx, unsigned int alloc_flags,
3122 			 long free_pages)
3123 {
3124 	long min = mark;
3125 	int o;
3126 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3127 
3128 	/* free_pages may go negative - that's OK */
3129 	free_pages -= (1 << order) - 1;
3130 
3131 	if (alloc_flags & ALLOC_HIGH)
3132 		min -= min / 2;
3133 
3134 	/*
3135 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3136 	 * the high-atomic reserves. This will over-estimate the size of the
3137 	 * atomic reserve but it avoids a search.
3138 	 */
3139 	if (likely(!alloc_harder)) {
3140 		free_pages -= z->nr_reserved_highatomic;
3141 	} else {
3142 		/*
3143 		 * OOM victims can try even harder than normal ALLOC_HARDER
3144 		 * users on the grounds that it's definitely going to be in
3145 		 * the exit path shortly and free memory. Any allocation it
3146 		 * makes during the free path will be small and short-lived.
3147 		 */
3148 		if (alloc_flags & ALLOC_OOM)
3149 			min -= min / 2;
3150 		else
3151 			min -= min / 4;
3152 	}
3153 
3154 
3155 #ifdef CONFIG_CMA
3156 	/* If allocation can't use CMA areas don't use free CMA pages */
3157 	if (!(alloc_flags & ALLOC_CMA))
3158 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3159 #endif
3160 
3161 	/*
3162 	 * Check watermarks for an order-0 allocation request. If these
3163 	 * are not met, then a high-order request also cannot go ahead
3164 	 * even if a suitable page happened to be free.
3165 	 */
3166 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3167 		return false;
3168 
3169 	/* If this is an order-0 request then the watermark is fine */
3170 	if (!order)
3171 		return true;
3172 
3173 	/* For a high-order request, check at least one suitable page is free */
3174 	for (o = order; o < MAX_ORDER; o++) {
3175 		struct free_area *area = &z->free_area[o];
3176 		int mt;
3177 
3178 		if (!area->nr_free)
3179 			continue;
3180 
3181 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3182 			if (!list_empty(&area->free_list[mt]))
3183 				return true;
3184 		}
3185 
3186 #ifdef CONFIG_CMA
3187 		if ((alloc_flags & ALLOC_CMA) &&
3188 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3189 			return true;
3190 		}
3191 #endif
3192 		if (alloc_harder &&
3193 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3194 			return true;
3195 	}
3196 	return false;
3197 }
3198 
3199 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3200 		      int classzone_idx, unsigned int alloc_flags)
3201 {
3202 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3203 					zone_page_state(z, NR_FREE_PAGES));
3204 }
3205 
3206 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3207 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3208 {
3209 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3210 	long cma_pages = 0;
3211 
3212 #ifdef CONFIG_CMA
3213 	/* If allocation can't use CMA areas don't use free CMA pages */
3214 	if (!(alloc_flags & ALLOC_CMA))
3215 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3216 #endif
3217 
3218 	/*
3219 	 * Fast check for order-0 only. If this fails then the reserves
3220 	 * need to be calculated. There is a corner case where the check
3221 	 * passes but only the high-order atomic reserve are free. If
3222 	 * the caller is !atomic then it'll uselessly search the free
3223 	 * list. That corner case is then slower but it is harmless.
3224 	 */
3225 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3226 		return true;
3227 
3228 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3229 					free_pages);
3230 }
3231 
3232 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3233 			unsigned long mark, int classzone_idx)
3234 {
3235 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3236 
3237 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3238 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3239 
3240 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3241 								free_pages);
3242 }
3243 
3244 #ifdef CONFIG_NUMA
3245 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3246 {
3247 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3248 				RECLAIM_DISTANCE;
3249 }
3250 #else	/* CONFIG_NUMA */
3251 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3252 {
3253 	return true;
3254 }
3255 #endif	/* CONFIG_NUMA */
3256 
3257 /*
3258  * get_page_from_freelist goes through the zonelist trying to allocate
3259  * a page.
3260  */
3261 static struct page *
3262 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3263 						const struct alloc_context *ac)
3264 {
3265 	struct zoneref *z = ac->preferred_zoneref;
3266 	struct zone *zone;
3267 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3268 
3269 	/*
3270 	 * Scan zonelist, looking for a zone with enough free.
3271 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3272 	 */
3273 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3274 								ac->nodemask) {
3275 		struct page *page;
3276 		unsigned long mark;
3277 
3278 		if (cpusets_enabled() &&
3279 			(alloc_flags & ALLOC_CPUSET) &&
3280 			!__cpuset_zone_allowed(zone, gfp_mask))
3281 				continue;
3282 		/*
3283 		 * When allocating a page cache page for writing, we
3284 		 * want to get it from a node that is within its dirty
3285 		 * limit, such that no single node holds more than its
3286 		 * proportional share of globally allowed dirty pages.
3287 		 * The dirty limits take into account the node's
3288 		 * lowmem reserves and high watermark so that kswapd
3289 		 * should be able to balance it without having to
3290 		 * write pages from its LRU list.
3291 		 *
3292 		 * XXX: For now, allow allocations to potentially
3293 		 * exceed the per-node dirty limit in the slowpath
3294 		 * (spread_dirty_pages unset) before going into reclaim,
3295 		 * which is important when on a NUMA setup the allowed
3296 		 * nodes are together not big enough to reach the
3297 		 * global limit.  The proper fix for these situations
3298 		 * will require awareness of nodes in the
3299 		 * dirty-throttling and the flusher threads.
3300 		 */
3301 		if (ac->spread_dirty_pages) {
3302 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3303 				continue;
3304 
3305 			if (!node_dirty_ok(zone->zone_pgdat)) {
3306 				last_pgdat_dirty_limit = zone->zone_pgdat;
3307 				continue;
3308 			}
3309 		}
3310 
3311 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3312 		if (!zone_watermark_fast(zone, order, mark,
3313 				       ac_classzone_idx(ac), alloc_flags)) {
3314 			int ret;
3315 
3316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3317 			/*
3318 			 * Watermark failed for this zone, but see if we can
3319 			 * grow this zone if it contains deferred pages.
3320 			 */
3321 			if (static_branch_unlikely(&deferred_pages)) {
3322 				if (_deferred_grow_zone(zone, order))
3323 					goto try_this_zone;
3324 			}
3325 #endif
3326 			/* Checked here to keep the fast path fast */
3327 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3328 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3329 				goto try_this_zone;
3330 
3331 			if (node_reclaim_mode == 0 ||
3332 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3333 				continue;
3334 
3335 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3336 			switch (ret) {
3337 			case NODE_RECLAIM_NOSCAN:
3338 				/* did not scan */
3339 				continue;
3340 			case NODE_RECLAIM_FULL:
3341 				/* scanned but unreclaimable */
3342 				continue;
3343 			default:
3344 				/* did we reclaim enough */
3345 				if (zone_watermark_ok(zone, order, mark,
3346 						ac_classzone_idx(ac), alloc_flags))
3347 					goto try_this_zone;
3348 
3349 				continue;
3350 			}
3351 		}
3352 
3353 try_this_zone:
3354 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3355 				gfp_mask, alloc_flags, ac->migratetype);
3356 		if (page) {
3357 			prep_new_page(page, order, gfp_mask, alloc_flags);
3358 
3359 			/*
3360 			 * If this is a high-order atomic allocation then check
3361 			 * if the pageblock should be reserved for the future
3362 			 */
3363 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3364 				reserve_highatomic_pageblock(page, zone, order);
3365 
3366 			return page;
3367 		} else {
3368 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3369 			/* Try again if zone has deferred pages */
3370 			if (static_branch_unlikely(&deferred_pages)) {
3371 				if (_deferred_grow_zone(zone, order))
3372 					goto try_this_zone;
3373 			}
3374 #endif
3375 		}
3376 	}
3377 
3378 	return NULL;
3379 }
3380 
3381 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3382 {
3383 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3384 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3385 
3386 	if (!__ratelimit(&show_mem_rs))
3387 		return;
3388 
3389 	/*
3390 	 * This documents exceptions given to allocations in certain
3391 	 * contexts that are allowed to allocate outside current's set
3392 	 * of allowed nodes.
3393 	 */
3394 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3395 		if (tsk_is_oom_victim(current) ||
3396 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3397 			filter &= ~SHOW_MEM_FILTER_NODES;
3398 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3399 		filter &= ~SHOW_MEM_FILTER_NODES;
3400 
3401 	show_mem(filter, nodemask);
3402 }
3403 
3404 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3405 {
3406 	struct va_format vaf;
3407 	va_list args;
3408 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3409 				      DEFAULT_RATELIMIT_BURST);
3410 
3411 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3412 		return;
3413 
3414 	va_start(args, fmt);
3415 	vaf.fmt = fmt;
3416 	vaf.va = &args;
3417 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3418 			current->comm, &vaf, gfp_mask, &gfp_mask,
3419 			nodemask_pr_args(nodemask));
3420 	va_end(args);
3421 
3422 	cpuset_print_current_mems_allowed();
3423 
3424 	dump_stack();
3425 	warn_alloc_show_mem(gfp_mask, nodemask);
3426 }
3427 
3428 static inline struct page *
3429 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3430 			      unsigned int alloc_flags,
3431 			      const struct alloc_context *ac)
3432 {
3433 	struct page *page;
3434 
3435 	page = get_page_from_freelist(gfp_mask, order,
3436 			alloc_flags|ALLOC_CPUSET, ac);
3437 	/*
3438 	 * fallback to ignore cpuset restriction if our nodes
3439 	 * are depleted
3440 	 */
3441 	if (!page)
3442 		page = get_page_from_freelist(gfp_mask, order,
3443 				alloc_flags, ac);
3444 
3445 	return page;
3446 }
3447 
3448 static inline struct page *
3449 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3450 	const struct alloc_context *ac, unsigned long *did_some_progress)
3451 {
3452 	struct oom_control oc = {
3453 		.zonelist = ac->zonelist,
3454 		.nodemask = ac->nodemask,
3455 		.memcg = NULL,
3456 		.gfp_mask = gfp_mask,
3457 		.order = order,
3458 	};
3459 	struct page *page;
3460 
3461 	*did_some_progress = 0;
3462 
3463 	/*
3464 	 * Acquire the oom lock.  If that fails, somebody else is
3465 	 * making progress for us.
3466 	 */
3467 	if (!mutex_trylock(&oom_lock)) {
3468 		*did_some_progress = 1;
3469 		schedule_timeout_uninterruptible(1);
3470 		return NULL;
3471 	}
3472 
3473 	/*
3474 	 * Go through the zonelist yet one more time, keep very high watermark
3475 	 * here, this is only to catch a parallel oom killing, we must fail if
3476 	 * we're still under heavy pressure. But make sure that this reclaim
3477 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3478 	 * allocation which will never fail due to oom_lock already held.
3479 	 */
3480 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3481 				      ~__GFP_DIRECT_RECLAIM, order,
3482 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3483 	if (page)
3484 		goto out;
3485 
3486 	/* Coredumps can quickly deplete all memory reserves */
3487 	if (current->flags & PF_DUMPCORE)
3488 		goto out;
3489 	/* The OOM killer will not help higher order allocs */
3490 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3491 		goto out;
3492 	/*
3493 	 * We have already exhausted all our reclaim opportunities without any
3494 	 * success so it is time to admit defeat. We will skip the OOM killer
3495 	 * because it is very likely that the caller has a more reasonable
3496 	 * fallback than shooting a random task.
3497 	 */
3498 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3499 		goto out;
3500 	/* The OOM killer does not needlessly kill tasks for lowmem */
3501 	if (ac->high_zoneidx < ZONE_NORMAL)
3502 		goto out;
3503 	if (pm_suspended_storage())
3504 		goto out;
3505 	/*
3506 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3507 	 * other request to make a forward progress.
3508 	 * We are in an unfortunate situation where out_of_memory cannot
3509 	 * do much for this context but let's try it to at least get
3510 	 * access to memory reserved if the current task is killed (see
3511 	 * out_of_memory). Once filesystems are ready to handle allocation
3512 	 * failures more gracefully we should just bail out here.
3513 	 */
3514 
3515 	/* The OOM killer may not free memory on a specific node */
3516 	if (gfp_mask & __GFP_THISNODE)
3517 		goto out;
3518 
3519 	/* Exhausted what can be done so it's blame time */
3520 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3521 		*did_some_progress = 1;
3522 
3523 		/*
3524 		 * Help non-failing allocations by giving them access to memory
3525 		 * reserves
3526 		 */
3527 		if (gfp_mask & __GFP_NOFAIL)
3528 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3529 					ALLOC_NO_WATERMARKS, ac);
3530 	}
3531 out:
3532 	mutex_unlock(&oom_lock);
3533 	return page;
3534 }
3535 
3536 /*
3537  * Maximum number of compaction retries wit a progress before OOM
3538  * killer is consider as the only way to move forward.
3539  */
3540 #define MAX_COMPACT_RETRIES 16
3541 
3542 #ifdef CONFIG_COMPACTION
3543 /* Try memory compaction for high-order allocations before reclaim */
3544 static struct page *
3545 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3546 		unsigned int alloc_flags, const struct alloc_context *ac,
3547 		enum compact_priority prio, enum compact_result *compact_result)
3548 {
3549 	struct page *page;
3550 	unsigned long pflags;
3551 	unsigned int noreclaim_flag;
3552 
3553 	if (!order)
3554 		return NULL;
3555 
3556 	psi_memstall_enter(&pflags);
3557 	noreclaim_flag = memalloc_noreclaim_save();
3558 
3559 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3560 									prio);
3561 
3562 	memalloc_noreclaim_restore(noreclaim_flag);
3563 	psi_memstall_leave(&pflags);
3564 
3565 	if (*compact_result <= COMPACT_INACTIVE)
3566 		return NULL;
3567 
3568 	/*
3569 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3570 	 * count a compaction stall
3571 	 */
3572 	count_vm_event(COMPACTSTALL);
3573 
3574 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3575 
3576 	if (page) {
3577 		struct zone *zone = page_zone(page);
3578 
3579 		zone->compact_blockskip_flush = false;
3580 		compaction_defer_reset(zone, order, true);
3581 		count_vm_event(COMPACTSUCCESS);
3582 		return page;
3583 	}
3584 
3585 	/*
3586 	 * It's bad if compaction run occurs and fails. The most likely reason
3587 	 * is that pages exist, but not enough to satisfy watermarks.
3588 	 */
3589 	count_vm_event(COMPACTFAIL);
3590 
3591 	cond_resched();
3592 
3593 	return NULL;
3594 }
3595 
3596 static inline bool
3597 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598 		     enum compact_result compact_result,
3599 		     enum compact_priority *compact_priority,
3600 		     int *compaction_retries)
3601 {
3602 	int max_retries = MAX_COMPACT_RETRIES;
3603 	int min_priority;
3604 	bool ret = false;
3605 	int retries = *compaction_retries;
3606 	enum compact_priority priority = *compact_priority;
3607 
3608 	if (!order)
3609 		return false;
3610 
3611 	if (compaction_made_progress(compact_result))
3612 		(*compaction_retries)++;
3613 
3614 	/*
3615 	 * compaction considers all the zone as desperately out of memory
3616 	 * so it doesn't really make much sense to retry except when the
3617 	 * failure could be caused by insufficient priority
3618 	 */
3619 	if (compaction_failed(compact_result))
3620 		goto check_priority;
3621 
3622 	/*
3623 	 * make sure the compaction wasn't deferred or didn't bail out early
3624 	 * due to locks contention before we declare that we should give up.
3625 	 * But do not retry if the given zonelist is not suitable for
3626 	 * compaction.
3627 	 */
3628 	if (compaction_withdrawn(compact_result)) {
3629 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630 		goto out;
3631 	}
3632 
3633 	/*
3634 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635 	 * costly ones because they are de facto nofail and invoke OOM
3636 	 * killer to move on while costly can fail and users are ready
3637 	 * to cope with that. 1/4 retries is rather arbitrary but we
3638 	 * would need much more detailed feedback from compaction to
3639 	 * make a better decision.
3640 	 */
3641 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3642 		max_retries /= 4;
3643 	if (*compaction_retries <= max_retries) {
3644 		ret = true;
3645 		goto out;
3646 	}
3647 
3648 	/*
3649 	 * Make sure there are attempts at the highest priority if we exhausted
3650 	 * all retries or failed at the lower priorities.
3651 	 */
3652 check_priority:
3653 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655 
3656 	if (*compact_priority > min_priority) {
3657 		(*compact_priority)--;
3658 		*compaction_retries = 0;
3659 		ret = true;
3660 	}
3661 out:
3662 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663 	return ret;
3664 }
3665 #else
3666 static inline struct page *
3667 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668 		unsigned int alloc_flags, const struct alloc_context *ac,
3669 		enum compact_priority prio, enum compact_result *compact_result)
3670 {
3671 	*compact_result = COMPACT_SKIPPED;
3672 	return NULL;
3673 }
3674 
3675 static inline bool
3676 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677 		     enum compact_result compact_result,
3678 		     enum compact_priority *compact_priority,
3679 		     int *compaction_retries)
3680 {
3681 	struct zone *zone;
3682 	struct zoneref *z;
3683 
3684 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685 		return false;
3686 
3687 	/*
3688 	 * There are setups with compaction disabled which would prefer to loop
3689 	 * inside the allocator rather than hit the oom killer prematurely.
3690 	 * Let's give them a good hope and keep retrying while the order-0
3691 	 * watermarks are OK.
3692 	 */
3693 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694 					ac->nodemask) {
3695 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696 					ac_classzone_idx(ac), alloc_flags))
3697 			return true;
3698 	}
3699 	return false;
3700 }
3701 #endif /* CONFIG_COMPACTION */
3702 
3703 #ifdef CONFIG_LOCKDEP
3704 static struct lockdep_map __fs_reclaim_map =
3705 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706 
3707 static bool __need_fs_reclaim(gfp_t gfp_mask)
3708 {
3709 	gfp_mask = current_gfp_context(gfp_mask);
3710 
3711 	/* no reclaim without waiting on it */
3712 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713 		return false;
3714 
3715 	/* this guy won't enter reclaim */
3716 	if (current->flags & PF_MEMALLOC)
3717 		return false;
3718 
3719 	/* We're only interested __GFP_FS allocations for now */
3720 	if (!(gfp_mask & __GFP_FS))
3721 		return false;
3722 
3723 	if (gfp_mask & __GFP_NOLOCKDEP)
3724 		return false;
3725 
3726 	return true;
3727 }
3728 
3729 void __fs_reclaim_acquire(void)
3730 {
3731 	lock_map_acquire(&__fs_reclaim_map);
3732 }
3733 
3734 void __fs_reclaim_release(void)
3735 {
3736 	lock_map_release(&__fs_reclaim_map);
3737 }
3738 
3739 void fs_reclaim_acquire(gfp_t gfp_mask)
3740 {
3741 	if (__need_fs_reclaim(gfp_mask))
3742 		__fs_reclaim_acquire();
3743 }
3744 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3745 
3746 void fs_reclaim_release(gfp_t gfp_mask)
3747 {
3748 	if (__need_fs_reclaim(gfp_mask))
3749 		__fs_reclaim_release();
3750 }
3751 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3752 #endif
3753 
3754 /* Perform direct synchronous page reclaim */
3755 static int
3756 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3757 					const struct alloc_context *ac)
3758 {
3759 	struct reclaim_state reclaim_state;
3760 	int progress;
3761 	unsigned int noreclaim_flag;
3762 	unsigned long pflags;
3763 
3764 	cond_resched();
3765 
3766 	/* We now go into synchronous reclaim */
3767 	cpuset_memory_pressure_bump();
3768 	psi_memstall_enter(&pflags);
3769 	fs_reclaim_acquire(gfp_mask);
3770 	noreclaim_flag = memalloc_noreclaim_save();
3771 	reclaim_state.reclaimed_slab = 0;
3772 	current->reclaim_state = &reclaim_state;
3773 
3774 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3775 								ac->nodemask);
3776 
3777 	current->reclaim_state = NULL;
3778 	memalloc_noreclaim_restore(noreclaim_flag);
3779 	fs_reclaim_release(gfp_mask);
3780 	psi_memstall_leave(&pflags);
3781 
3782 	cond_resched();
3783 
3784 	return progress;
3785 }
3786 
3787 /* The really slow allocator path where we enter direct reclaim */
3788 static inline struct page *
3789 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3790 		unsigned int alloc_flags, const struct alloc_context *ac,
3791 		unsigned long *did_some_progress)
3792 {
3793 	struct page *page = NULL;
3794 	bool drained = false;
3795 
3796 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3797 	if (unlikely(!(*did_some_progress)))
3798 		return NULL;
3799 
3800 retry:
3801 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3802 
3803 	/*
3804 	 * If an allocation failed after direct reclaim, it could be because
3805 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806 	 * Shrink them them and try again
3807 	 */
3808 	if (!page && !drained) {
3809 		unreserve_highatomic_pageblock(ac, false);
3810 		drain_all_pages(NULL);
3811 		drained = true;
3812 		goto retry;
3813 	}
3814 
3815 	return page;
3816 }
3817 
3818 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3819 			     const struct alloc_context *ac)
3820 {
3821 	struct zoneref *z;
3822 	struct zone *zone;
3823 	pg_data_t *last_pgdat = NULL;
3824 	enum zone_type high_zoneidx = ac->high_zoneidx;
3825 
3826 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3827 					ac->nodemask) {
3828 		if (last_pgdat != zone->zone_pgdat)
3829 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3830 		last_pgdat = zone->zone_pgdat;
3831 	}
3832 }
3833 
3834 static inline unsigned int
3835 gfp_to_alloc_flags(gfp_t gfp_mask)
3836 {
3837 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3838 
3839 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3840 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3841 
3842 	/*
3843 	 * The caller may dip into page reserves a bit more if the caller
3844 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3845 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3846 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3847 	 */
3848 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3849 
3850 	if (gfp_mask & __GFP_ATOMIC) {
3851 		/*
3852 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3853 		 * if it can't schedule.
3854 		 */
3855 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3856 			alloc_flags |= ALLOC_HARDER;
3857 		/*
3858 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3859 		 * comment for __cpuset_node_allowed().
3860 		 */
3861 		alloc_flags &= ~ALLOC_CPUSET;
3862 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3863 		alloc_flags |= ALLOC_HARDER;
3864 
3865 #ifdef CONFIG_CMA
3866 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3867 		alloc_flags |= ALLOC_CMA;
3868 #endif
3869 	return alloc_flags;
3870 }
3871 
3872 static bool oom_reserves_allowed(struct task_struct *tsk)
3873 {
3874 	if (!tsk_is_oom_victim(tsk))
3875 		return false;
3876 
3877 	/*
3878 	 * !MMU doesn't have oom reaper so give access to memory reserves
3879 	 * only to the thread with TIF_MEMDIE set
3880 	 */
3881 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3882 		return false;
3883 
3884 	return true;
3885 }
3886 
3887 /*
3888  * Distinguish requests which really need access to full memory
3889  * reserves from oom victims which can live with a portion of it
3890  */
3891 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3892 {
3893 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3894 		return 0;
3895 	if (gfp_mask & __GFP_MEMALLOC)
3896 		return ALLOC_NO_WATERMARKS;
3897 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3898 		return ALLOC_NO_WATERMARKS;
3899 	if (!in_interrupt()) {
3900 		if (current->flags & PF_MEMALLOC)
3901 			return ALLOC_NO_WATERMARKS;
3902 		else if (oom_reserves_allowed(current))
3903 			return ALLOC_OOM;
3904 	}
3905 
3906 	return 0;
3907 }
3908 
3909 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3910 {
3911 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3912 }
3913 
3914 /*
3915  * Checks whether it makes sense to retry the reclaim to make a forward progress
3916  * for the given allocation request.
3917  *
3918  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3919  * without success, or when we couldn't even meet the watermark if we
3920  * reclaimed all remaining pages on the LRU lists.
3921  *
3922  * Returns true if a retry is viable or false to enter the oom path.
3923  */
3924 static inline bool
3925 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3926 		     struct alloc_context *ac, int alloc_flags,
3927 		     bool did_some_progress, int *no_progress_loops)
3928 {
3929 	struct zone *zone;
3930 	struct zoneref *z;
3931 	bool ret = false;
3932 
3933 	/*
3934 	 * Costly allocations might have made a progress but this doesn't mean
3935 	 * their order will become available due to high fragmentation so
3936 	 * always increment the no progress counter for them
3937 	 */
3938 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3939 		*no_progress_loops = 0;
3940 	else
3941 		(*no_progress_loops)++;
3942 
3943 	/*
3944 	 * Make sure we converge to OOM if we cannot make any progress
3945 	 * several times in the row.
3946 	 */
3947 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3948 		/* Before OOM, exhaust highatomic_reserve */
3949 		return unreserve_highatomic_pageblock(ac, true);
3950 	}
3951 
3952 	/*
3953 	 * Keep reclaiming pages while there is a chance this will lead
3954 	 * somewhere.  If none of the target zones can satisfy our allocation
3955 	 * request even if all reclaimable pages are considered then we are
3956 	 * screwed and have to go OOM.
3957 	 */
3958 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3959 					ac->nodemask) {
3960 		unsigned long available;
3961 		unsigned long reclaimable;
3962 		unsigned long min_wmark = min_wmark_pages(zone);
3963 		bool wmark;
3964 
3965 		available = reclaimable = zone_reclaimable_pages(zone);
3966 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3967 
3968 		/*
3969 		 * Would the allocation succeed if we reclaimed all
3970 		 * reclaimable pages?
3971 		 */
3972 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3973 				ac_classzone_idx(ac), alloc_flags, available);
3974 		trace_reclaim_retry_zone(z, order, reclaimable,
3975 				available, min_wmark, *no_progress_loops, wmark);
3976 		if (wmark) {
3977 			/*
3978 			 * If we didn't make any progress and have a lot of
3979 			 * dirty + writeback pages then we should wait for
3980 			 * an IO to complete to slow down the reclaim and
3981 			 * prevent from pre mature OOM
3982 			 */
3983 			if (!did_some_progress) {
3984 				unsigned long write_pending;
3985 
3986 				write_pending = zone_page_state_snapshot(zone,
3987 							NR_ZONE_WRITE_PENDING);
3988 
3989 				if (2 * write_pending > reclaimable) {
3990 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3991 					return true;
3992 				}
3993 			}
3994 
3995 			ret = true;
3996 			goto out;
3997 		}
3998 	}
3999 
4000 out:
4001 	/*
4002 	 * Memory allocation/reclaim might be called from a WQ context and the
4003 	 * current implementation of the WQ concurrency control doesn't
4004 	 * recognize that a particular WQ is congested if the worker thread is
4005 	 * looping without ever sleeping. Therefore we have to do a short sleep
4006 	 * here rather than calling cond_resched().
4007 	 */
4008 	if (current->flags & PF_WQ_WORKER)
4009 		schedule_timeout_uninterruptible(1);
4010 	else
4011 		cond_resched();
4012 	return ret;
4013 }
4014 
4015 static inline bool
4016 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4017 {
4018 	/*
4019 	 * It's possible that cpuset's mems_allowed and the nodemask from
4020 	 * mempolicy don't intersect. This should be normally dealt with by
4021 	 * policy_nodemask(), but it's possible to race with cpuset update in
4022 	 * such a way the check therein was true, and then it became false
4023 	 * before we got our cpuset_mems_cookie here.
4024 	 * This assumes that for all allocations, ac->nodemask can come only
4025 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4026 	 * when it does not intersect with the cpuset restrictions) or the
4027 	 * caller can deal with a violated nodemask.
4028 	 */
4029 	if (cpusets_enabled() && ac->nodemask &&
4030 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4031 		ac->nodemask = NULL;
4032 		return true;
4033 	}
4034 
4035 	/*
4036 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4037 	 * possible to race with parallel threads in such a way that our
4038 	 * allocation can fail while the mask is being updated. If we are about
4039 	 * to fail, check if the cpuset changed during allocation and if so,
4040 	 * retry.
4041 	 */
4042 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4043 		return true;
4044 
4045 	return false;
4046 }
4047 
4048 static inline struct page *
4049 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4050 						struct alloc_context *ac)
4051 {
4052 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4053 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4054 	struct page *page = NULL;
4055 	unsigned int alloc_flags;
4056 	unsigned long did_some_progress;
4057 	enum compact_priority compact_priority;
4058 	enum compact_result compact_result;
4059 	int compaction_retries;
4060 	int no_progress_loops;
4061 	unsigned int cpuset_mems_cookie;
4062 	int reserve_flags;
4063 
4064 	/*
4065 	 * In the slowpath, we sanity check order to avoid ever trying to
4066 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4067 	 * be using allocators in order of preference for an area that is
4068 	 * too large.
4069 	 */
4070 	if (order >= MAX_ORDER) {
4071 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4072 		return NULL;
4073 	}
4074 
4075 	/*
4076 	 * We also sanity check to catch abuse of atomic reserves being used by
4077 	 * callers that are not in atomic context.
4078 	 */
4079 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4080 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4081 		gfp_mask &= ~__GFP_ATOMIC;
4082 
4083 retry_cpuset:
4084 	compaction_retries = 0;
4085 	no_progress_loops = 0;
4086 	compact_priority = DEF_COMPACT_PRIORITY;
4087 	cpuset_mems_cookie = read_mems_allowed_begin();
4088 
4089 	/*
4090 	 * The fast path uses conservative alloc_flags to succeed only until
4091 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4092 	 * alloc_flags precisely. So we do that now.
4093 	 */
4094 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4095 
4096 	/*
4097 	 * We need to recalculate the starting point for the zonelist iterator
4098 	 * because we might have used different nodemask in the fast path, or
4099 	 * there was a cpuset modification and we are retrying - otherwise we
4100 	 * could end up iterating over non-eligible zones endlessly.
4101 	 */
4102 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4103 					ac->high_zoneidx, ac->nodemask);
4104 	if (!ac->preferred_zoneref->zone)
4105 		goto nopage;
4106 
4107 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4108 		wake_all_kswapds(order, gfp_mask, ac);
4109 
4110 	/*
4111 	 * The adjusted alloc_flags might result in immediate success, so try
4112 	 * that first
4113 	 */
4114 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4115 	if (page)
4116 		goto got_pg;
4117 
4118 	/*
4119 	 * For costly allocations, try direct compaction first, as it's likely
4120 	 * that we have enough base pages and don't need to reclaim. For non-
4121 	 * movable high-order allocations, do that as well, as compaction will
4122 	 * try prevent permanent fragmentation by migrating from blocks of the
4123 	 * same migratetype.
4124 	 * Don't try this for allocations that are allowed to ignore
4125 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4126 	 */
4127 	if (can_direct_reclaim &&
4128 			(costly_order ||
4129 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4130 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4131 		page = __alloc_pages_direct_compact(gfp_mask, order,
4132 						alloc_flags, ac,
4133 						INIT_COMPACT_PRIORITY,
4134 						&compact_result);
4135 		if (page)
4136 			goto got_pg;
4137 
4138 		/*
4139 		 * Checks for costly allocations with __GFP_NORETRY, which
4140 		 * includes THP page fault allocations
4141 		 */
4142 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4143 			/*
4144 			 * If compaction is deferred for high-order allocations,
4145 			 * it is because sync compaction recently failed. If
4146 			 * this is the case and the caller requested a THP
4147 			 * allocation, we do not want to heavily disrupt the
4148 			 * system, so we fail the allocation instead of entering
4149 			 * direct reclaim.
4150 			 */
4151 			if (compact_result == COMPACT_DEFERRED)
4152 				goto nopage;
4153 
4154 			/*
4155 			 * Looks like reclaim/compaction is worth trying, but
4156 			 * sync compaction could be very expensive, so keep
4157 			 * using async compaction.
4158 			 */
4159 			compact_priority = INIT_COMPACT_PRIORITY;
4160 		}
4161 	}
4162 
4163 retry:
4164 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4165 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4166 		wake_all_kswapds(order, gfp_mask, ac);
4167 
4168 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4169 	if (reserve_flags)
4170 		alloc_flags = reserve_flags;
4171 
4172 	/*
4173 	 * Reset the nodemask and zonelist iterators if memory policies can be
4174 	 * ignored. These allocations are high priority and system rather than
4175 	 * user oriented.
4176 	 */
4177 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4178 		ac->nodemask = NULL;
4179 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4180 					ac->high_zoneidx, ac->nodemask);
4181 	}
4182 
4183 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4184 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4185 	if (page)
4186 		goto got_pg;
4187 
4188 	/* Caller is not willing to reclaim, we can't balance anything */
4189 	if (!can_direct_reclaim)
4190 		goto nopage;
4191 
4192 	/* Avoid recursion of direct reclaim */
4193 	if (current->flags & PF_MEMALLOC)
4194 		goto nopage;
4195 
4196 	/* Try direct reclaim and then allocating */
4197 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4198 							&did_some_progress);
4199 	if (page)
4200 		goto got_pg;
4201 
4202 	/* Try direct compaction and then allocating */
4203 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4204 					compact_priority, &compact_result);
4205 	if (page)
4206 		goto got_pg;
4207 
4208 	/* Do not loop if specifically requested */
4209 	if (gfp_mask & __GFP_NORETRY)
4210 		goto nopage;
4211 
4212 	/*
4213 	 * Do not retry costly high order allocations unless they are
4214 	 * __GFP_RETRY_MAYFAIL
4215 	 */
4216 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4217 		goto nopage;
4218 
4219 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4220 				 did_some_progress > 0, &no_progress_loops))
4221 		goto retry;
4222 
4223 	/*
4224 	 * It doesn't make any sense to retry for the compaction if the order-0
4225 	 * reclaim is not able to make any progress because the current
4226 	 * implementation of the compaction depends on the sufficient amount
4227 	 * of free memory (see __compaction_suitable)
4228 	 */
4229 	if (did_some_progress > 0 &&
4230 			should_compact_retry(ac, order, alloc_flags,
4231 				compact_result, &compact_priority,
4232 				&compaction_retries))
4233 		goto retry;
4234 
4235 
4236 	/* Deal with possible cpuset update races before we start OOM killing */
4237 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4238 		goto retry_cpuset;
4239 
4240 	/* Reclaim has failed us, start killing things */
4241 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4242 	if (page)
4243 		goto got_pg;
4244 
4245 	/* Avoid allocations with no watermarks from looping endlessly */
4246 	if (tsk_is_oom_victim(current) &&
4247 	    (alloc_flags == ALLOC_OOM ||
4248 	     (gfp_mask & __GFP_NOMEMALLOC)))
4249 		goto nopage;
4250 
4251 	/* Retry as long as the OOM killer is making progress */
4252 	if (did_some_progress) {
4253 		no_progress_loops = 0;
4254 		goto retry;
4255 	}
4256 
4257 nopage:
4258 	/* Deal with possible cpuset update races before we fail */
4259 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4260 		goto retry_cpuset;
4261 
4262 	/*
4263 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4264 	 * we always retry
4265 	 */
4266 	if (gfp_mask & __GFP_NOFAIL) {
4267 		/*
4268 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4269 		 * of any new users that actually require GFP_NOWAIT
4270 		 */
4271 		if (WARN_ON_ONCE(!can_direct_reclaim))
4272 			goto fail;
4273 
4274 		/*
4275 		 * PF_MEMALLOC request from this context is rather bizarre
4276 		 * because we cannot reclaim anything and only can loop waiting
4277 		 * for somebody to do a work for us
4278 		 */
4279 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4280 
4281 		/*
4282 		 * non failing costly orders are a hard requirement which we
4283 		 * are not prepared for much so let's warn about these users
4284 		 * so that we can identify them and convert them to something
4285 		 * else.
4286 		 */
4287 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4288 
4289 		/*
4290 		 * Help non-failing allocations by giving them access to memory
4291 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4292 		 * could deplete whole memory reserves which would just make
4293 		 * the situation worse
4294 		 */
4295 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4296 		if (page)
4297 			goto got_pg;
4298 
4299 		cond_resched();
4300 		goto retry;
4301 	}
4302 fail:
4303 	warn_alloc(gfp_mask, ac->nodemask,
4304 			"page allocation failure: order:%u", order);
4305 got_pg:
4306 	return page;
4307 }
4308 
4309 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4310 		int preferred_nid, nodemask_t *nodemask,
4311 		struct alloc_context *ac, gfp_t *alloc_mask,
4312 		unsigned int *alloc_flags)
4313 {
4314 	ac->high_zoneidx = gfp_zone(gfp_mask);
4315 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4316 	ac->nodemask = nodemask;
4317 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4318 
4319 	if (cpusets_enabled()) {
4320 		*alloc_mask |= __GFP_HARDWALL;
4321 		if (!ac->nodemask)
4322 			ac->nodemask = &cpuset_current_mems_allowed;
4323 		else
4324 			*alloc_flags |= ALLOC_CPUSET;
4325 	}
4326 
4327 	fs_reclaim_acquire(gfp_mask);
4328 	fs_reclaim_release(gfp_mask);
4329 
4330 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4331 
4332 	if (should_fail_alloc_page(gfp_mask, order))
4333 		return false;
4334 
4335 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4336 		*alloc_flags |= ALLOC_CMA;
4337 
4338 	return true;
4339 }
4340 
4341 /* Determine whether to spread dirty pages and what the first usable zone */
4342 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4343 {
4344 	/* Dirty zone balancing only done in the fast path */
4345 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4346 
4347 	/*
4348 	 * The preferred zone is used for statistics but crucially it is
4349 	 * also used as the starting point for the zonelist iterator. It
4350 	 * may get reset for allocations that ignore memory policies.
4351 	 */
4352 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4353 					ac->high_zoneidx, ac->nodemask);
4354 }
4355 
4356 /*
4357  * This is the 'heart' of the zoned buddy allocator.
4358  */
4359 struct page *
4360 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4361 							nodemask_t *nodemask)
4362 {
4363 	struct page *page;
4364 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4365 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4366 	struct alloc_context ac = { };
4367 
4368 	gfp_mask &= gfp_allowed_mask;
4369 	alloc_mask = gfp_mask;
4370 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4371 		return NULL;
4372 
4373 	finalise_ac(gfp_mask, &ac);
4374 
4375 	/* First allocation attempt */
4376 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4377 	if (likely(page))
4378 		goto out;
4379 
4380 	/*
4381 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4382 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4383 	 * from a particular context which has been marked by
4384 	 * memalloc_no{fs,io}_{save,restore}.
4385 	 */
4386 	alloc_mask = current_gfp_context(gfp_mask);
4387 	ac.spread_dirty_pages = false;
4388 
4389 	/*
4390 	 * Restore the original nodemask if it was potentially replaced with
4391 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4392 	 */
4393 	if (unlikely(ac.nodemask != nodemask))
4394 		ac.nodemask = nodemask;
4395 
4396 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4397 
4398 out:
4399 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4400 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4401 		__free_pages(page, order);
4402 		page = NULL;
4403 	}
4404 
4405 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4406 
4407 	return page;
4408 }
4409 EXPORT_SYMBOL(__alloc_pages_nodemask);
4410 
4411 /*
4412  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4413  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4414  * you need to access high mem.
4415  */
4416 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4417 {
4418 	struct page *page;
4419 
4420 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4421 	if (!page)
4422 		return 0;
4423 	return (unsigned long) page_address(page);
4424 }
4425 EXPORT_SYMBOL(__get_free_pages);
4426 
4427 unsigned long get_zeroed_page(gfp_t gfp_mask)
4428 {
4429 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4430 }
4431 EXPORT_SYMBOL(get_zeroed_page);
4432 
4433 void __free_pages(struct page *page, unsigned int order)
4434 {
4435 	if (put_page_testzero(page)) {
4436 		if (order == 0)
4437 			free_unref_page(page);
4438 		else
4439 			__free_pages_ok(page, order);
4440 	}
4441 }
4442 
4443 EXPORT_SYMBOL(__free_pages);
4444 
4445 void free_pages(unsigned long addr, unsigned int order)
4446 {
4447 	if (addr != 0) {
4448 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4449 		__free_pages(virt_to_page((void *)addr), order);
4450 	}
4451 }
4452 
4453 EXPORT_SYMBOL(free_pages);
4454 
4455 /*
4456  * Page Fragment:
4457  *  An arbitrary-length arbitrary-offset area of memory which resides
4458  *  within a 0 or higher order page.  Multiple fragments within that page
4459  *  are individually refcounted, in the page's reference counter.
4460  *
4461  * The page_frag functions below provide a simple allocation framework for
4462  * page fragments.  This is used by the network stack and network device
4463  * drivers to provide a backing region of memory for use as either an
4464  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4465  */
4466 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4467 					     gfp_t gfp_mask)
4468 {
4469 	struct page *page = NULL;
4470 	gfp_t gfp = gfp_mask;
4471 
4472 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4473 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4474 		    __GFP_NOMEMALLOC;
4475 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4476 				PAGE_FRAG_CACHE_MAX_ORDER);
4477 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4478 #endif
4479 	if (unlikely(!page))
4480 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4481 
4482 	nc->va = page ? page_address(page) : NULL;
4483 
4484 	return page;
4485 }
4486 
4487 void __page_frag_cache_drain(struct page *page, unsigned int count)
4488 {
4489 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4490 
4491 	if (page_ref_sub_and_test(page, count)) {
4492 		unsigned int order = compound_order(page);
4493 
4494 		if (order == 0)
4495 			free_unref_page(page);
4496 		else
4497 			__free_pages_ok(page, order);
4498 	}
4499 }
4500 EXPORT_SYMBOL(__page_frag_cache_drain);
4501 
4502 void *page_frag_alloc(struct page_frag_cache *nc,
4503 		      unsigned int fragsz, gfp_t gfp_mask)
4504 {
4505 	unsigned int size = PAGE_SIZE;
4506 	struct page *page;
4507 	int offset;
4508 
4509 	if (unlikely(!nc->va)) {
4510 refill:
4511 		page = __page_frag_cache_refill(nc, gfp_mask);
4512 		if (!page)
4513 			return NULL;
4514 
4515 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4516 		/* if size can vary use size else just use PAGE_SIZE */
4517 		size = nc->size;
4518 #endif
4519 		/* Even if we own the page, we do not use atomic_set().
4520 		 * This would break get_page_unless_zero() users.
4521 		 */
4522 		page_ref_add(page, size - 1);
4523 
4524 		/* reset page count bias and offset to start of new frag */
4525 		nc->pfmemalloc = page_is_pfmemalloc(page);
4526 		nc->pagecnt_bias = size;
4527 		nc->offset = size;
4528 	}
4529 
4530 	offset = nc->offset - fragsz;
4531 	if (unlikely(offset < 0)) {
4532 		page = virt_to_page(nc->va);
4533 
4534 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4535 			goto refill;
4536 
4537 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4538 		/* if size can vary use size else just use PAGE_SIZE */
4539 		size = nc->size;
4540 #endif
4541 		/* OK, page count is 0, we can safely set it */
4542 		set_page_count(page, size);
4543 
4544 		/* reset page count bias and offset to start of new frag */
4545 		nc->pagecnt_bias = size;
4546 		offset = size - fragsz;
4547 	}
4548 
4549 	nc->pagecnt_bias--;
4550 	nc->offset = offset;
4551 
4552 	return nc->va + offset;
4553 }
4554 EXPORT_SYMBOL(page_frag_alloc);
4555 
4556 /*
4557  * Frees a page fragment allocated out of either a compound or order 0 page.
4558  */
4559 void page_frag_free(void *addr)
4560 {
4561 	struct page *page = virt_to_head_page(addr);
4562 
4563 	if (unlikely(put_page_testzero(page)))
4564 		__free_pages_ok(page, compound_order(page));
4565 }
4566 EXPORT_SYMBOL(page_frag_free);
4567 
4568 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4569 		size_t size)
4570 {
4571 	if (addr) {
4572 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4573 		unsigned long used = addr + PAGE_ALIGN(size);
4574 
4575 		split_page(virt_to_page((void *)addr), order);
4576 		while (used < alloc_end) {
4577 			free_page(used);
4578 			used += PAGE_SIZE;
4579 		}
4580 	}
4581 	return (void *)addr;
4582 }
4583 
4584 /**
4585  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4586  * @size: the number of bytes to allocate
4587  * @gfp_mask: GFP flags for the allocation
4588  *
4589  * This function is similar to alloc_pages(), except that it allocates the
4590  * minimum number of pages to satisfy the request.  alloc_pages() can only
4591  * allocate memory in power-of-two pages.
4592  *
4593  * This function is also limited by MAX_ORDER.
4594  *
4595  * Memory allocated by this function must be released by free_pages_exact().
4596  */
4597 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4598 {
4599 	unsigned int order = get_order(size);
4600 	unsigned long addr;
4601 
4602 	addr = __get_free_pages(gfp_mask, order);
4603 	return make_alloc_exact(addr, order, size);
4604 }
4605 EXPORT_SYMBOL(alloc_pages_exact);
4606 
4607 /**
4608  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4609  *			   pages on a node.
4610  * @nid: the preferred node ID where memory should be allocated
4611  * @size: the number of bytes to allocate
4612  * @gfp_mask: GFP flags for the allocation
4613  *
4614  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4615  * back.
4616  */
4617 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4618 {
4619 	unsigned int order = get_order(size);
4620 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4621 	if (!p)
4622 		return NULL;
4623 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4624 }
4625 
4626 /**
4627  * free_pages_exact - release memory allocated via alloc_pages_exact()
4628  * @virt: the value returned by alloc_pages_exact.
4629  * @size: size of allocation, same value as passed to alloc_pages_exact().
4630  *
4631  * Release the memory allocated by a previous call to alloc_pages_exact.
4632  */
4633 void free_pages_exact(void *virt, size_t size)
4634 {
4635 	unsigned long addr = (unsigned long)virt;
4636 	unsigned long end = addr + PAGE_ALIGN(size);
4637 
4638 	while (addr < end) {
4639 		free_page(addr);
4640 		addr += PAGE_SIZE;
4641 	}
4642 }
4643 EXPORT_SYMBOL(free_pages_exact);
4644 
4645 /**
4646  * nr_free_zone_pages - count number of pages beyond high watermark
4647  * @offset: The zone index of the highest zone
4648  *
4649  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4650  * high watermark within all zones at or below a given zone index.  For each
4651  * zone, the number of pages is calculated as:
4652  *
4653  *     nr_free_zone_pages = managed_pages - high_pages
4654  */
4655 static unsigned long nr_free_zone_pages(int offset)
4656 {
4657 	struct zoneref *z;
4658 	struct zone *zone;
4659 
4660 	/* Just pick one node, since fallback list is circular */
4661 	unsigned long sum = 0;
4662 
4663 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4664 
4665 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4666 		unsigned long size = zone->managed_pages;
4667 		unsigned long high = high_wmark_pages(zone);
4668 		if (size > high)
4669 			sum += size - high;
4670 	}
4671 
4672 	return sum;
4673 }
4674 
4675 /**
4676  * nr_free_buffer_pages - count number of pages beyond high watermark
4677  *
4678  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4679  * watermark within ZONE_DMA and ZONE_NORMAL.
4680  */
4681 unsigned long nr_free_buffer_pages(void)
4682 {
4683 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4684 }
4685 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4686 
4687 /**
4688  * nr_free_pagecache_pages - count number of pages beyond high watermark
4689  *
4690  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4691  * high watermark within all zones.
4692  */
4693 unsigned long nr_free_pagecache_pages(void)
4694 {
4695 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4696 }
4697 
4698 static inline void show_node(struct zone *zone)
4699 {
4700 	if (IS_ENABLED(CONFIG_NUMA))
4701 		printk("Node %d ", zone_to_nid(zone));
4702 }
4703 
4704 long si_mem_available(void)
4705 {
4706 	long available;
4707 	unsigned long pagecache;
4708 	unsigned long wmark_low = 0;
4709 	unsigned long pages[NR_LRU_LISTS];
4710 	unsigned long reclaimable;
4711 	struct zone *zone;
4712 	int lru;
4713 
4714 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4715 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4716 
4717 	for_each_zone(zone)
4718 		wmark_low += zone->watermark[WMARK_LOW];
4719 
4720 	/*
4721 	 * Estimate the amount of memory available for userspace allocations,
4722 	 * without causing swapping.
4723 	 */
4724 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4725 
4726 	/*
4727 	 * Not all the page cache can be freed, otherwise the system will
4728 	 * start swapping. Assume at least half of the page cache, or the
4729 	 * low watermark worth of cache, needs to stay.
4730 	 */
4731 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4732 	pagecache -= min(pagecache / 2, wmark_low);
4733 	available += pagecache;
4734 
4735 	/*
4736 	 * Part of the reclaimable slab and other kernel memory consists of
4737 	 * items that are in use, and cannot be freed. Cap this estimate at the
4738 	 * low watermark.
4739 	 */
4740 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4741 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4742 	available += reclaimable - min(reclaimable / 2, wmark_low);
4743 
4744 	if (available < 0)
4745 		available = 0;
4746 	return available;
4747 }
4748 EXPORT_SYMBOL_GPL(si_mem_available);
4749 
4750 void si_meminfo(struct sysinfo *val)
4751 {
4752 	val->totalram = totalram_pages;
4753 	val->sharedram = global_node_page_state(NR_SHMEM);
4754 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4755 	val->bufferram = nr_blockdev_pages();
4756 	val->totalhigh = totalhigh_pages;
4757 	val->freehigh = nr_free_highpages();
4758 	val->mem_unit = PAGE_SIZE;
4759 }
4760 
4761 EXPORT_SYMBOL(si_meminfo);
4762 
4763 #ifdef CONFIG_NUMA
4764 void si_meminfo_node(struct sysinfo *val, int nid)
4765 {
4766 	int zone_type;		/* needs to be signed */
4767 	unsigned long managed_pages = 0;
4768 	unsigned long managed_highpages = 0;
4769 	unsigned long free_highpages = 0;
4770 	pg_data_t *pgdat = NODE_DATA(nid);
4771 
4772 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4773 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4774 	val->totalram = managed_pages;
4775 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4776 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4777 #ifdef CONFIG_HIGHMEM
4778 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4779 		struct zone *zone = &pgdat->node_zones[zone_type];
4780 
4781 		if (is_highmem(zone)) {
4782 			managed_highpages += zone->managed_pages;
4783 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4784 		}
4785 	}
4786 	val->totalhigh = managed_highpages;
4787 	val->freehigh = free_highpages;
4788 #else
4789 	val->totalhigh = managed_highpages;
4790 	val->freehigh = free_highpages;
4791 #endif
4792 	val->mem_unit = PAGE_SIZE;
4793 }
4794 #endif
4795 
4796 /*
4797  * Determine whether the node should be displayed or not, depending on whether
4798  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4799  */
4800 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4801 {
4802 	if (!(flags & SHOW_MEM_FILTER_NODES))
4803 		return false;
4804 
4805 	/*
4806 	 * no node mask - aka implicit memory numa policy. Do not bother with
4807 	 * the synchronization - read_mems_allowed_begin - because we do not
4808 	 * have to be precise here.
4809 	 */
4810 	if (!nodemask)
4811 		nodemask = &cpuset_current_mems_allowed;
4812 
4813 	return !node_isset(nid, *nodemask);
4814 }
4815 
4816 #define K(x) ((x) << (PAGE_SHIFT-10))
4817 
4818 static void show_migration_types(unsigned char type)
4819 {
4820 	static const char types[MIGRATE_TYPES] = {
4821 		[MIGRATE_UNMOVABLE]	= 'U',
4822 		[MIGRATE_MOVABLE]	= 'M',
4823 		[MIGRATE_RECLAIMABLE]	= 'E',
4824 		[MIGRATE_HIGHATOMIC]	= 'H',
4825 #ifdef CONFIG_CMA
4826 		[MIGRATE_CMA]		= 'C',
4827 #endif
4828 #ifdef CONFIG_MEMORY_ISOLATION
4829 		[MIGRATE_ISOLATE]	= 'I',
4830 #endif
4831 	};
4832 	char tmp[MIGRATE_TYPES + 1];
4833 	char *p = tmp;
4834 	int i;
4835 
4836 	for (i = 0; i < MIGRATE_TYPES; i++) {
4837 		if (type & (1 << i))
4838 			*p++ = types[i];
4839 	}
4840 
4841 	*p = '\0';
4842 	printk(KERN_CONT "(%s) ", tmp);
4843 }
4844 
4845 /*
4846  * Show free area list (used inside shift_scroll-lock stuff)
4847  * We also calculate the percentage fragmentation. We do this by counting the
4848  * memory on each free list with the exception of the first item on the list.
4849  *
4850  * Bits in @filter:
4851  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4852  *   cpuset.
4853  */
4854 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4855 {
4856 	unsigned long free_pcp = 0;
4857 	int cpu;
4858 	struct zone *zone;
4859 	pg_data_t *pgdat;
4860 
4861 	for_each_populated_zone(zone) {
4862 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4863 			continue;
4864 
4865 		for_each_online_cpu(cpu)
4866 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4867 	}
4868 
4869 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4870 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4871 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4872 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4873 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4874 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4875 		global_node_page_state(NR_ACTIVE_ANON),
4876 		global_node_page_state(NR_INACTIVE_ANON),
4877 		global_node_page_state(NR_ISOLATED_ANON),
4878 		global_node_page_state(NR_ACTIVE_FILE),
4879 		global_node_page_state(NR_INACTIVE_FILE),
4880 		global_node_page_state(NR_ISOLATED_FILE),
4881 		global_node_page_state(NR_UNEVICTABLE),
4882 		global_node_page_state(NR_FILE_DIRTY),
4883 		global_node_page_state(NR_WRITEBACK),
4884 		global_node_page_state(NR_UNSTABLE_NFS),
4885 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4886 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4887 		global_node_page_state(NR_FILE_MAPPED),
4888 		global_node_page_state(NR_SHMEM),
4889 		global_zone_page_state(NR_PAGETABLE),
4890 		global_zone_page_state(NR_BOUNCE),
4891 		global_zone_page_state(NR_FREE_PAGES),
4892 		free_pcp,
4893 		global_zone_page_state(NR_FREE_CMA_PAGES));
4894 
4895 	for_each_online_pgdat(pgdat) {
4896 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4897 			continue;
4898 
4899 		printk("Node %d"
4900 			" active_anon:%lukB"
4901 			" inactive_anon:%lukB"
4902 			" active_file:%lukB"
4903 			" inactive_file:%lukB"
4904 			" unevictable:%lukB"
4905 			" isolated(anon):%lukB"
4906 			" isolated(file):%lukB"
4907 			" mapped:%lukB"
4908 			" dirty:%lukB"
4909 			" writeback:%lukB"
4910 			" shmem:%lukB"
4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4912 			" shmem_thp: %lukB"
4913 			" shmem_pmdmapped: %lukB"
4914 			" anon_thp: %lukB"
4915 #endif
4916 			" writeback_tmp:%lukB"
4917 			" unstable:%lukB"
4918 			" all_unreclaimable? %s"
4919 			"\n",
4920 			pgdat->node_id,
4921 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4922 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4923 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4924 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4925 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4926 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4927 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4928 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4929 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4930 			K(node_page_state(pgdat, NR_WRITEBACK)),
4931 			K(node_page_state(pgdat, NR_SHMEM)),
4932 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4933 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4934 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4935 					* HPAGE_PMD_NR),
4936 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4937 #endif
4938 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4939 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4940 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4941 				"yes" : "no");
4942 	}
4943 
4944 	for_each_populated_zone(zone) {
4945 		int i;
4946 
4947 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4948 			continue;
4949 
4950 		free_pcp = 0;
4951 		for_each_online_cpu(cpu)
4952 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4953 
4954 		show_node(zone);
4955 		printk(KERN_CONT
4956 			"%s"
4957 			" free:%lukB"
4958 			" min:%lukB"
4959 			" low:%lukB"
4960 			" high:%lukB"
4961 			" active_anon:%lukB"
4962 			" inactive_anon:%lukB"
4963 			" active_file:%lukB"
4964 			" inactive_file:%lukB"
4965 			" unevictable:%lukB"
4966 			" writepending:%lukB"
4967 			" present:%lukB"
4968 			" managed:%lukB"
4969 			" mlocked:%lukB"
4970 			" kernel_stack:%lukB"
4971 			" pagetables:%lukB"
4972 			" bounce:%lukB"
4973 			" free_pcp:%lukB"
4974 			" local_pcp:%ukB"
4975 			" free_cma:%lukB"
4976 			"\n",
4977 			zone->name,
4978 			K(zone_page_state(zone, NR_FREE_PAGES)),
4979 			K(min_wmark_pages(zone)),
4980 			K(low_wmark_pages(zone)),
4981 			K(high_wmark_pages(zone)),
4982 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4983 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4984 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4985 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4986 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4987 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4988 			K(zone->present_pages),
4989 			K(zone->managed_pages),
4990 			K(zone_page_state(zone, NR_MLOCK)),
4991 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4992 			K(zone_page_state(zone, NR_PAGETABLE)),
4993 			K(zone_page_state(zone, NR_BOUNCE)),
4994 			K(free_pcp),
4995 			K(this_cpu_read(zone->pageset->pcp.count)),
4996 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4997 		printk("lowmem_reserve[]:");
4998 		for (i = 0; i < MAX_NR_ZONES; i++)
4999 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5000 		printk(KERN_CONT "\n");
5001 	}
5002 
5003 	for_each_populated_zone(zone) {
5004 		unsigned int order;
5005 		unsigned long nr[MAX_ORDER], flags, total = 0;
5006 		unsigned char types[MAX_ORDER];
5007 
5008 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5009 			continue;
5010 		show_node(zone);
5011 		printk(KERN_CONT "%s: ", zone->name);
5012 
5013 		spin_lock_irqsave(&zone->lock, flags);
5014 		for (order = 0; order < MAX_ORDER; order++) {
5015 			struct free_area *area = &zone->free_area[order];
5016 			int type;
5017 
5018 			nr[order] = area->nr_free;
5019 			total += nr[order] << order;
5020 
5021 			types[order] = 0;
5022 			for (type = 0; type < MIGRATE_TYPES; type++) {
5023 				if (!list_empty(&area->free_list[type]))
5024 					types[order] |= 1 << type;
5025 			}
5026 		}
5027 		spin_unlock_irqrestore(&zone->lock, flags);
5028 		for (order = 0; order < MAX_ORDER; order++) {
5029 			printk(KERN_CONT "%lu*%lukB ",
5030 			       nr[order], K(1UL) << order);
5031 			if (nr[order])
5032 				show_migration_types(types[order]);
5033 		}
5034 		printk(KERN_CONT "= %lukB\n", K(total));
5035 	}
5036 
5037 	hugetlb_show_meminfo();
5038 
5039 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5040 
5041 	show_swap_cache_info();
5042 }
5043 
5044 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5045 {
5046 	zoneref->zone = zone;
5047 	zoneref->zone_idx = zone_idx(zone);
5048 }
5049 
5050 /*
5051  * Builds allocation fallback zone lists.
5052  *
5053  * Add all populated zones of a node to the zonelist.
5054  */
5055 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5056 {
5057 	struct zone *zone;
5058 	enum zone_type zone_type = MAX_NR_ZONES;
5059 	int nr_zones = 0;
5060 
5061 	do {
5062 		zone_type--;
5063 		zone = pgdat->node_zones + zone_type;
5064 		if (managed_zone(zone)) {
5065 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5066 			check_highest_zone(zone_type);
5067 		}
5068 	} while (zone_type);
5069 
5070 	return nr_zones;
5071 }
5072 
5073 #ifdef CONFIG_NUMA
5074 
5075 static int __parse_numa_zonelist_order(char *s)
5076 {
5077 	/*
5078 	 * We used to support different zonlists modes but they turned
5079 	 * out to be just not useful. Let's keep the warning in place
5080 	 * if somebody still use the cmd line parameter so that we do
5081 	 * not fail it silently
5082 	 */
5083 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5084 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5085 		return -EINVAL;
5086 	}
5087 	return 0;
5088 }
5089 
5090 static __init int setup_numa_zonelist_order(char *s)
5091 {
5092 	if (!s)
5093 		return 0;
5094 
5095 	return __parse_numa_zonelist_order(s);
5096 }
5097 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5098 
5099 char numa_zonelist_order[] = "Node";
5100 
5101 /*
5102  * sysctl handler for numa_zonelist_order
5103  */
5104 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5105 		void __user *buffer, size_t *length,
5106 		loff_t *ppos)
5107 {
5108 	char *str;
5109 	int ret;
5110 
5111 	if (!write)
5112 		return proc_dostring(table, write, buffer, length, ppos);
5113 	str = memdup_user_nul(buffer, 16);
5114 	if (IS_ERR(str))
5115 		return PTR_ERR(str);
5116 
5117 	ret = __parse_numa_zonelist_order(str);
5118 	kfree(str);
5119 	return ret;
5120 }
5121 
5122 
5123 #define MAX_NODE_LOAD (nr_online_nodes)
5124 static int node_load[MAX_NUMNODES];
5125 
5126 /**
5127  * find_next_best_node - find the next node that should appear in a given node's fallback list
5128  * @node: node whose fallback list we're appending
5129  * @used_node_mask: nodemask_t of already used nodes
5130  *
5131  * We use a number of factors to determine which is the next node that should
5132  * appear on a given node's fallback list.  The node should not have appeared
5133  * already in @node's fallback list, and it should be the next closest node
5134  * according to the distance array (which contains arbitrary distance values
5135  * from each node to each node in the system), and should also prefer nodes
5136  * with no CPUs, since presumably they'll have very little allocation pressure
5137  * on them otherwise.
5138  * It returns -1 if no node is found.
5139  */
5140 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5141 {
5142 	int n, val;
5143 	int min_val = INT_MAX;
5144 	int best_node = NUMA_NO_NODE;
5145 	const struct cpumask *tmp = cpumask_of_node(0);
5146 
5147 	/* Use the local node if we haven't already */
5148 	if (!node_isset(node, *used_node_mask)) {
5149 		node_set(node, *used_node_mask);
5150 		return node;
5151 	}
5152 
5153 	for_each_node_state(n, N_MEMORY) {
5154 
5155 		/* Don't want a node to appear more than once */
5156 		if (node_isset(n, *used_node_mask))
5157 			continue;
5158 
5159 		/* Use the distance array to find the distance */
5160 		val = node_distance(node, n);
5161 
5162 		/* Penalize nodes under us ("prefer the next node") */
5163 		val += (n < node);
5164 
5165 		/* Give preference to headless and unused nodes */
5166 		tmp = cpumask_of_node(n);
5167 		if (!cpumask_empty(tmp))
5168 			val += PENALTY_FOR_NODE_WITH_CPUS;
5169 
5170 		/* Slight preference for less loaded node */
5171 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5172 		val += node_load[n];
5173 
5174 		if (val < min_val) {
5175 			min_val = val;
5176 			best_node = n;
5177 		}
5178 	}
5179 
5180 	if (best_node >= 0)
5181 		node_set(best_node, *used_node_mask);
5182 
5183 	return best_node;
5184 }
5185 
5186 
5187 /*
5188  * Build zonelists ordered by node and zones within node.
5189  * This results in maximum locality--normal zone overflows into local
5190  * DMA zone, if any--but risks exhausting DMA zone.
5191  */
5192 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5193 		unsigned nr_nodes)
5194 {
5195 	struct zoneref *zonerefs;
5196 	int i;
5197 
5198 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5199 
5200 	for (i = 0; i < nr_nodes; i++) {
5201 		int nr_zones;
5202 
5203 		pg_data_t *node = NODE_DATA(node_order[i]);
5204 
5205 		nr_zones = build_zonerefs_node(node, zonerefs);
5206 		zonerefs += nr_zones;
5207 	}
5208 	zonerefs->zone = NULL;
5209 	zonerefs->zone_idx = 0;
5210 }
5211 
5212 /*
5213  * Build gfp_thisnode zonelists
5214  */
5215 static void build_thisnode_zonelists(pg_data_t *pgdat)
5216 {
5217 	struct zoneref *zonerefs;
5218 	int nr_zones;
5219 
5220 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5221 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5222 	zonerefs += nr_zones;
5223 	zonerefs->zone = NULL;
5224 	zonerefs->zone_idx = 0;
5225 }
5226 
5227 /*
5228  * Build zonelists ordered by zone and nodes within zones.
5229  * This results in conserving DMA zone[s] until all Normal memory is
5230  * exhausted, but results in overflowing to remote node while memory
5231  * may still exist in local DMA zone.
5232  */
5233 
5234 static void build_zonelists(pg_data_t *pgdat)
5235 {
5236 	static int node_order[MAX_NUMNODES];
5237 	int node, load, nr_nodes = 0;
5238 	nodemask_t used_mask;
5239 	int local_node, prev_node;
5240 
5241 	/* NUMA-aware ordering of nodes */
5242 	local_node = pgdat->node_id;
5243 	load = nr_online_nodes;
5244 	prev_node = local_node;
5245 	nodes_clear(used_mask);
5246 
5247 	memset(node_order, 0, sizeof(node_order));
5248 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5249 		/*
5250 		 * We don't want to pressure a particular node.
5251 		 * So adding penalty to the first node in same
5252 		 * distance group to make it round-robin.
5253 		 */
5254 		if (node_distance(local_node, node) !=
5255 		    node_distance(local_node, prev_node))
5256 			node_load[node] = load;
5257 
5258 		node_order[nr_nodes++] = node;
5259 		prev_node = node;
5260 		load--;
5261 	}
5262 
5263 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5264 	build_thisnode_zonelists(pgdat);
5265 }
5266 
5267 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5268 /*
5269  * Return node id of node used for "local" allocations.
5270  * I.e., first node id of first zone in arg node's generic zonelist.
5271  * Used for initializing percpu 'numa_mem', which is used primarily
5272  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5273  */
5274 int local_memory_node(int node)
5275 {
5276 	struct zoneref *z;
5277 
5278 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5279 				   gfp_zone(GFP_KERNEL),
5280 				   NULL);
5281 	return zone_to_nid(z->zone);
5282 }
5283 #endif
5284 
5285 static void setup_min_unmapped_ratio(void);
5286 static void setup_min_slab_ratio(void);
5287 #else	/* CONFIG_NUMA */
5288 
5289 static void build_zonelists(pg_data_t *pgdat)
5290 {
5291 	int node, local_node;
5292 	struct zoneref *zonerefs;
5293 	int nr_zones;
5294 
5295 	local_node = pgdat->node_id;
5296 
5297 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5298 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5299 	zonerefs += nr_zones;
5300 
5301 	/*
5302 	 * Now we build the zonelist so that it contains the zones
5303 	 * of all the other nodes.
5304 	 * We don't want to pressure a particular node, so when
5305 	 * building the zones for node N, we make sure that the
5306 	 * zones coming right after the local ones are those from
5307 	 * node N+1 (modulo N)
5308 	 */
5309 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5310 		if (!node_online(node))
5311 			continue;
5312 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5313 		zonerefs += nr_zones;
5314 	}
5315 	for (node = 0; node < local_node; node++) {
5316 		if (!node_online(node))
5317 			continue;
5318 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5319 		zonerefs += nr_zones;
5320 	}
5321 
5322 	zonerefs->zone = NULL;
5323 	zonerefs->zone_idx = 0;
5324 }
5325 
5326 #endif	/* CONFIG_NUMA */
5327 
5328 /*
5329  * Boot pageset table. One per cpu which is going to be used for all
5330  * zones and all nodes. The parameters will be set in such a way
5331  * that an item put on a list will immediately be handed over to
5332  * the buddy list. This is safe since pageset manipulation is done
5333  * with interrupts disabled.
5334  *
5335  * The boot_pagesets must be kept even after bootup is complete for
5336  * unused processors and/or zones. They do play a role for bootstrapping
5337  * hotplugged processors.
5338  *
5339  * zoneinfo_show() and maybe other functions do
5340  * not check if the processor is online before following the pageset pointer.
5341  * Other parts of the kernel may not check if the zone is available.
5342  */
5343 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5344 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5345 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5346 
5347 static void __build_all_zonelists(void *data)
5348 {
5349 	int nid;
5350 	int __maybe_unused cpu;
5351 	pg_data_t *self = data;
5352 	static DEFINE_SPINLOCK(lock);
5353 
5354 	spin_lock(&lock);
5355 
5356 #ifdef CONFIG_NUMA
5357 	memset(node_load, 0, sizeof(node_load));
5358 #endif
5359 
5360 	/*
5361 	 * This node is hotadded and no memory is yet present.   So just
5362 	 * building zonelists is fine - no need to touch other nodes.
5363 	 */
5364 	if (self && !node_online(self->node_id)) {
5365 		build_zonelists(self);
5366 	} else {
5367 		for_each_online_node(nid) {
5368 			pg_data_t *pgdat = NODE_DATA(nid);
5369 
5370 			build_zonelists(pgdat);
5371 		}
5372 
5373 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5374 		/*
5375 		 * We now know the "local memory node" for each node--
5376 		 * i.e., the node of the first zone in the generic zonelist.
5377 		 * Set up numa_mem percpu variable for on-line cpus.  During
5378 		 * boot, only the boot cpu should be on-line;  we'll init the
5379 		 * secondary cpus' numa_mem as they come on-line.  During
5380 		 * node/memory hotplug, we'll fixup all on-line cpus.
5381 		 */
5382 		for_each_online_cpu(cpu)
5383 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5384 #endif
5385 	}
5386 
5387 	spin_unlock(&lock);
5388 }
5389 
5390 static noinline void __init
5391 build_all_zonelists_init(void)
5392 {
5393 	int cpu;
5394 
5395 	__build_all_zonelists(NULL);
5396 
5397 	/*
5398 	 * Initialize the boot_pagesets that are going to be used
5399 	 * for bootstrapping processors. The real pagesets for
5400 	 * each zone will be allocated later when the per cpu
5401 	 * allocator is available.
5402 	 *
5403 	 * boot_pagesets are used also for bootstrapping offline
5404 	 * cpus if the system is already booted because the pagesets
5405 	 * are needed to initialize allocators on a specific cpu too.
5406 	 * F.e. the percpu allocator needs the page allocator which
5407 	 * needs the percpu allocator in order to allocate its pagesets
5408 	 * (a chicken-egg dilemma).
5409 	 */
5410 	for_each_possible_cpu(cpu)
5411 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5412 
5413 	mminit_verify_zonelist();
5414 	cpuset_init_current_mems_allowed();
5415 }
5416 
5417 /*
5418  * unless system_state == SYSTEM_BOOTING.
5419  *
5420  * __ref due to call of __init annotated helper build_all_zonelists_init
5421  * [protected by SYSTEM_BOOTING].
5422  */
5423 void __ref build_all_zonelists(pg_data_t *pgdat)
5424 {
5425 	if (system_state == SYSTEM_BOOTING) {
5426 		build_all_zonelists_init();
5427 	} else {
5428 		__build_all_zonelists(pgdat);
5429 		/* cpuset refresh routine should be here */
5430 	}
5431 	vm_total_pages = nr_free_pagecache_pages();
5432 	/*
5433 	 * Disable grouping by mobility if the number of pages in the
5434 	 * system is too low to allow the mechanism to work. It would be
5435 	 * more accurate, but expensive to check per-zone. This check is
5436 	 * made on memory-hotadd so a system can start with mobility
5437 	 * disabled and enable it later
5438 	 */
5439 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5440 		page_group_by_mobility_disabled = 1;
5441 	else
5442 		page_group_by_mobility_disabled = 0;
5443 
5444 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5445 		nr_online_nodes,
5446 		page_group_by_mobility_disabled ? "off" : "on",
5447 		vm_total_pages);
5448 #ifdef CONFIG_NUMA
5449 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5450 #endif
5451 }
5452 
5453 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5454 static bool __meminit
5455 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5456 {
5457 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5458 	static struct memblock_region *r;
5459 
5460 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5461 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5462 			for_each_memblock(memory, r) {
5463 				if (*pfn < memblock_region_memory_end_pfn(r))
5464 					break;
5465 			}
5466 		}
5467 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5468 		    memblock_is_mirror(r)) {
5469 			*pfn = memblock_region_memory_end_pfn(r);
5470 			return true;
5471 		}
5472 	}
5473 #endif
5474 	return false;
5475 }
5476 
5477 /*
5478  * Initially all pages are reserved - free ones are freed
5479  * up by free_all_bootmem() once the early boot process is
5480  * done. Non-atomic initialization, single-pass.
5481  */
5482 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5483 		unsigned long start_pfn, enum memmap_context context,
5484 		struct vmem_altmap *altmap)
5485 {
5486 	unsigned long pfn, end_pfn = start_pfn + size;
5487 	struct page *page;
5488 
5489 	if (highest_memmap_pfn < end_pfn - 1)
5490 		highest_memmap_pfn = end_pfn - 1;
5491 
5492 #ifdef CONFIG_ZONE_DEVICE
5493 	/*
5494 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5495 	 * memory. We limit the total number of pages to initialize to just
5496 	 * those that might contain the memory mapping. We will defer the
5497 	 * ZONE_DEVICE page initialization until after we have released
5498 	 * the hotplug lock.
5499 	 */
5500 	if (zone == ZONE_DEVICE) {
5501 		if (!altmap)
5502 			return;
5503 
5504 		if (start_pfn == altmap->base_pfn)
5505 			start_pfn += altmap->reserve;
5506 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5507 	}
5508 #endif
5509 
5510 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5511 		/*
5512 		 * There can be holes in boot-time mem_map[]s handed to this
5513 		 * function.  They do not exist on hotplugged memory.
5514 		 */
5515 		if (context == MEMMAP_EARLY) {
5516 			if (!early_pfn_valid(pfn))
5517 				continue;
5518 			if (!early_pfn_in_nid(pfn, nid))
5519 				continue;
5520 			if (overlap_memmap_init(zone, &pfn))
5521 				continue;
5522 			if (defer_init(nid, pfn, end_pfn))
5523 				break;
5524 		}
5525 
5526 		page = pfn_to_page(pfn);
5527 		__init_single_page(page, pfn, zone, nid);
5528 		if (context == MEMMAP_HOTPLUG)
5529 			__SetPageReserved(page);
5530 
5531 		/*
5532 		 * Mark the block movable so that blocks are reserved for
5533 		 * movable at startup. This will force kernel allocations
5534 		 * to reserve their blocks rather than leaking throughout
5535 		 * the address space during boot when many long-lived
5536 		 * kernel allocations are made.
5537 		 *
5538 		 * bitmap is created for zone's valid pfn range. but memmap
5539 		 * can be created for invalid pages (for alignment)
5540 		 * check here not to call set_pageblock_migratetype() against
5541 		 * pfn out of zone.
5542 		 */
5543 		if (!(pfn & (pageblock_nr_pages - 1))) {
5544 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5545 			cond_resched();
5546 		}
5547 	}
5548 }
5549 
5550 #ifdef CONFIG_ZONE_DEVICE
5551 void __ref memmap_init_zone_device(struct zone *zone,
5552 				   unsigned long start_pfn,
5553 				   unsigned long size,
5554 				   struct dev_pagemap *pgmap)
5555 {
5556 	unsigned long pfn, end_pfn = start_pfn + size;
5557 	struct pglist_data *pgdat = zone->zone_pgdat;
5558 	unsigned long zone_idx = zone_idx(zone);
5559 	unsigned long start = jiffies;
5560 	int nid = pgdat->node_id;
5561 
5562 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5563 		return;
5564 
5565 	/*
5566 	 * The call to memmap_init_zone should have already taken care
5567 	 * of the pages reserved for the memmap, so we can just jump to
5568 	 * the end of that region and start processing the device pages.
5569 	 */
5570 	if (pgmap->altmap_valid) {
5571 		struct vmem_altmap *altmap = &pgmap->altmap;
5572 
5573 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5574 		size = end_pfn - start_pfn;
5575 	}
5576 
5577 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5578 		struct page *page = pfn_to_page(pfn);
5579 
5580 		__init_single_page(page, pfn, zone_idx, nid);
5581 
5582 		/*
5583 		 * Mark page reserved as it will need to wait for onlining
5584 		 * phase for it to be fully associated with a zone.
5585 		 *
5586 		 * We can use the non-atomic __set_bit operation for setting
5587 		 * the flag as we are still initializing the pages.
5588 		 */
5589 		__SetPageReserved(page);
5590 
5591 		/*
5592 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5593 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5594 		 * page is ever freed or placed on a driver-private list.
5595 		 */
5596 		page->pgmap = pgmap;
5597 		page->hmm_data = 0;
5598 
5599 		/*
5600 		 * Mark the block movable so that blocks are reserved for
5601 		 * movable at startup. This will force kernel allocations
5602 		 * to reserve their blocks rather than leaking throughout
5603 		 * the address space during boot when many long-lived
5604 		 * kernel allocations are made.
5605 		 *
5606 		 * bitmap is created for zone's valid pfn range. but memmap
5607 		 * can be created for invalid pages (for alignment)
5608 		 * check here not to call set_pageblock_migratetype() against
5609 		 * pfn out of zone.
5610 		 *
5611 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5612 		 * because this is done early in sparse_add_one_section
5613 		 */
5614 		if (!(pfn & (pageblock_nr_pages - 1))) {
5615 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5616 			cond_resched();
5617 		}
5618 	}
5619 
5620 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5621 		size, jiffies_to_msecs(jiffies - start));
5622 }
5623 
5624 #endif
5625 static void __meminit zone_init_free_lists(struct zone *zone)
5626 {
5627 	unsigned int order, t;
5628 	for_each_migratetype_order(order, t) {
5629 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5630 		zone->free_area[order].nr_free = 0;
5631 	}
5632 }
5633 
5634 void __meminit __weak memmap_init(unsigned long size, int nid,
5635 				  unsigned long zone, unsigned long start_pfn)
5636 {
5637 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5638 }
5639 
5640 static int zone_batchsize(struct zone *zone)
5641 {
5642 #ifdef CONFIG_MMU
5643 	int batch;
5644 
5645 	/*
5646 	 * The per-cpu-pages pools are set to around 1000th of the
5647 	 * size of the zone.
5648 	 */
5649 	batch = zone->managed_pages / 1024;
5650 	/* But no more than a meg. */
5651 	if (batch * PAGE_SIZE > 1024 * 1024)
5652 		batch = (1024 * 1024) / PAGE_SIZE;
5653 	batch /= 4;		/* We effectively *= 4 below */
5654 	if (batch < 1)
5655 		batch = 1;
5656 
5657 	/*
5658 	 * Clamp the batch to a 2^n - 1 value. Having a power
5659 	 * of 2 value was found to be more likely to have
5660 	 * suboptimal cache aliasing properties in some cases.
5661 	 *
5662 	 * For example if 2 tasks are alternately allocating
5663 	 * batches of pages, one task can end up with a lot
5664 	 * of pages of one half of the possible page colors
5665 	 * and the other with pages of the other colors.
5666 	 */
5667 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5668 
5669 	return batch;
5670 
5671 #else
5672 	/* The deferral and batching of frees should be suppressed under NOMMU
5673 	 * conditions.
5674 	 *
5675 	 * The problem is that NOMMU needs to be able to allocate large chunks
5676 	 * of contiguous memory as there's no hardware page translation to
5677 	 * assemble apparent contiguous memory from discontiguous pages.
5678 	 *
5679 	 * Queueing large contiguous runs of pages for batching, however,
5680 	 * causes the pages to actually be freed in smaller chunks.  As there
5681 	 * can be a significant delay between the individual batches being
5682 	 * recycled, this leads to the once large chunks of space being
5683 	 * fragmented and becoming unavailable for high-order allocations.
5684 	 */
5685 	return 0;
5686 #endif
5687 }
5688 
5689 /*
5690  * pcp->high and pcp->batch values are related and dependent on one another:
5691  * ->batch must never be higher then ->high.
5692  * The following function updates them in a safe manner without read side
5693  * locking.
5694  *
5695  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5696  * those fields changing asynchronously (acording the the above rule).
5697  *
5698  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5699  * outside of boot time (or some other assurance that no concurrent updaters
5700  * exist).
5701  */
5702 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5703 		unsigned long batch)
5704 {
5705        /* start with a fail safe value for batch */
5706 	pcp->batch = 1;
5707 	smp_wmb();
5708 
5709        /* Update high, then batch, in order */
5710 	pcp->high = high;
5711 	smp_wmb();
5712 
5713 	pcp->batch = batch;
5714 }
5715 
5716 /* a companion to pageset_set_high() */
5717 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5718 {
5719 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5720 }
5721 
5722 static void pageset_init(struct per_cpu_pageset *p)
5723 {
5724 	struct per_cpu_pages *pcp;
5725 	int migratetype;
5726 
5727 	memset(p, 0, sizeof(*p));
5728 
5729 	pcp = &p->pcp;
5730 	pcp->count = 0;
5731 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5732 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5733 }
5734 
5735 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5736 {
5737 	pageset_init(p);
5738 	pageset_set_batch(p, batch);
5739 }
5740 
5741 /*
5742  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5743  * to the value high for the pageset p.
5744  */
5745 static void pageset_set_high(struct per_cpu_pageset *p,
5746 				unsigned long high)
5747 {
5748 	unsigned long batch = max(1UL, high / 4);
5749 	if ((high / 4) > (PAGE_SHIFT * 8))
5750 		batch = PAGE_SHIFT * 8;
5751 
5752 	pageset_update(&p->pcp, high, batch);
5753 }
5754 
5755 static void pageset_set_high_and_batch(struct zone *zone,
5756 				       struct per_cpu_pageset *pcp)
5757 {
5758 	if (percpu_pagelist_fraction)
5759 		pageset_set_high(pcp,
5760 			(zone->managed_pages /
5761 				percpu_pagelist_fraction));
5762 	else
5763 		pageset_set_batch(pcp, zone_batchsize(zone));
5764 }
5765 
5766 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5767 {
5768 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5769 
5770 	pageset_init(pcp);
5771 	pageset_set_high_and_batch(zone, pcp);
5772 }
5773 
5774 void __meminit setup_zone_pageset(struct zone *zone)
5775 {
5776 	int cpu;
5777 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5778 	for_each_possible_cpu(cpu)
5779 		zone_pageset_init(zone, cpu);
5780 }
5781 
5782 /*
5783  * Allocate per cpu pagesets and initialize them.
5784  * Before this call only boot pagesets were available.
5785  */
5786 void __init setup_per_cpu_pageset(void)
5787 {
5788 	struct pglist_data *pgdat;
5789 	struct zone *zone;
5790 
5791 	for_each_populated_zone(zone)
5792 		setup_zone_pageset(zone);
5793 
5794 	for_each_online_pgdat(pgdat)
5795 		pgdat->per_cpu_nodestats =
5796 			alloc_percpu(struct per_cpu_nodestat);
5797 }
5798 
5799 static __meminit void zone_pcp_init(struct zone *zone)
5800 {
5801 	/*
5802 	 * per cpu subsystem is not up at this point. The following code
5803 	 * relies on the ability of the linker to provide the
5804 	 * offset of a (static) per cpu variable into the per cpu area.
5805 	 */
5806 	zone->pageset = &boot_pageset;
5807 
5808 	if (populated_zone(zone))
5809 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5810 			zone->name, zone->present_pages,
5811 					 zone_batchsize(zone));
5812 }
5813 
5814 void __meminit init_currently_empty_zone(struct zone *zone,
5815 					unsigned long zone_start_pfn,
5816 					unsigned long size)
5817 {
5818 	struct pglist_data *pgdat = zone->zone_pgdat;
5819 
5820 	pgdat->nr_zones = zone_idx(zone) + 1;
5821 
5822 	zone->zone_start_pfn = zone_start_pfn;
5823 
5824 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5825 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5826 			pgdat->node_id,
5827 			(unsigned long)zone_idx(zone),
5828 			zone_start_pfn, (zone_start_pfn + size));
5829 
5830 	zone_init_free_lists(zone);
5831 	zone->initialized = 1;
5832 }
5833 
5834 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5835 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5836 
5837 /*
5838  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5839  */
5840 int __meminit __early_pfn_to_nid(unsigned long pfn,
5841 					struct mminit_pfnnid_cache *state)
5842 {
5843 	unsigned long start_pfn, end_pfn;
5844 	int nid;
5845 
5846 	if (state->last_start <= pfn && pfn < state->last_end)
5847 		return state->last_nid;
5848 
5849 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5850 	if (nid != -1) {
5851 		state->last_start = start_pfn;
5852 		state->last_end = end_pfn;
5853 		state->last_nid = nid;
5854 	}
5855 
5856 	return nid;
5857 }
5858 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5859 
5860 /**
5861  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5862  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5863  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5864  *
5865  * If an architecture guarantees that all ranges registered contain no holes
5866  * and may be freed, this this function may be used instead of calling
5867  * memblock_free_early_nid() manually.
5868  */
5869 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5870 {
5871 	unsigned long start_pfn, end_pfn;
5872 	int i, this_nid;
5873 
5874 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5875 		start_pfn = min(start_pfn, max_low_pfn);
5876 		end_pfn = min(end_pfn, max_low_pfn);
5877 
5878 		if (start_pfn < end_pfn)
5879 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5880 					(end_pfn - start_pfn) << PAGE_SHIFT,
5881 					this_nid);
5882 	}
5883 }
5884 
5885 /**
5886  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5887  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5888  *
5889  * If an architecture guarantees that all ranges registered contain no holes and may
5890  * be freed, this function may be used instead of calling memory_present() manually.
5891  */
5892 void __init sparse_memory_present_with_active_regions(int nid)
5893 {
5894 	unsigned long start_pfn, end_pfn;
5895 	int i, this_nid;
5896 
5897 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5898 		memory_present(this_nid, start_pfn, end_pfn);
5899 }
5900 
5901 /**
5902  * get_pfn_range_for_nid - Return the start and end page frames for a node
5903  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5904  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5905  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5906  *
5907  * It returns the start and end page frame of a node based on information
5908  * provided by memblock_set_node(). If called for a node
5909  * with no available memory, a warning is printed and the start and end
5910  * PFNs will be 0.
5911  */
5912 void __meminit get_pfn_range_for_nid(unsigned int nid,
5913 			unsigned long *start_pfn, unsigned long *end_pfn)
5914 {
5915 	unsigned long this_start_pfn, this_end_pfn;
5916 	int i;
5917 
5918 	*start_pfn = -1UL;
5919 	*end_pfn = 0;
5920 
5921 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5922 		*start_pfn = min(*start_pfn, this_start_pfn);
5923 		*end_pfn = max(*end_pfn, this_end_pfn);
5924 	}
5925 
5926 	if (*start_pfn == -1UL)
5927 		*start_pfn = 0;
5928 }
5929 
5930 /*
5931  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5932  * assumption is made that zones within a node are ordered in monotonic
5933  * increasing memory addresses so that the "highest" populated zone is used
5934  */
5935 static void __init find_usable_zone_for_movable(void)
5936 {
5937 	int zone_index;
5938 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5939 		if (zone_index == ZONE_MOVABLE)
5940 			continue;
5941 
5942 		if (arch_zone_highest_possible_pfn[zone_index] >
5943 				arch_zone_lowest_possible_pfn[zone_index])
5944 			break;
5945 	}
5946 
5947 	VM_BUG_ON(zone_index == -1);
5948 	movable_zone = zone_index;
5949 }
5950 
5951 /*
5952  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5953  * because it is sized independent of architecture. Unlike the other zones,
5954  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5955  * in each node depending on the size of each node and how evenly kernelcore
5956  * is distributed. This helper function adjusts the zone ranges
5957  * provided by the architecture for a given node by using the end of the
5958  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5959  * zones within a node are in order of monotonic increases memory addresses
5960  */
5961 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5962 					unsigned long zone_type,
5963 					unsigned long node_start_pfn,
5964 					unsigned long node_end_pfn,
5965 					unsigned long *zone_start_pfn,
5966 					unsigned long *zone_end_pfn)
5967 {
5968 	/* Only adjust if ZONE_MOVABLE is on this node */
5969 	if (zone_movable_pfn[nid]) {
5970 		/* Size ZONE_MOVABLE */
5971 		if (zone_type == ZONE_MOVABLE) {
5972 			*zone_start_pfn = zone_movable_pfn[nid];
5973 			*zone_end_pfn = min(node_end_pfn,
5974 				arch_zone_highest_possible_pfn[movable_zone]);
5975 
5976 		/* Adjust for ZONE_MOVABLE starting within this range */
5977 		} else if (!mirrored_kernelcore &&
5978 			*zone_start_pfn < zone_movable_pfn[nid] &&
5979 			*zone_end_pfn > zone_movable_pfn[nid]) {
5980 			*zone_end_pfn = zone_movable_pfn[nid];
5981 
5982 		/* Check if this whole range is within ZONE_MOVABLE */
5983 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5984 			*zone_start_pfn = *zone_end_pfn;
5985 	}
5986 }
5987 
5988 /*
5989  * Return the number of pages a zone spans in a node, including holes
5990  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5991  */
5992 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5993 					unsigned long zone_type,
5994 					unsigned long node_start_pfn,
5995 					unsigned long node_end_pfn,
5996 					unsigned long *zone_start_pfn,
5997 					unsigned long *zone_end_pfn,
5998 					unsigned long *ignored)
5999 {
6000 	/* When hotadd a new node from cpu_up(), the node should be empty */
6001 	if (!node_start_pfn && !node_end_pfn)
6002 		return 0;
6003 
6004 	/* Get the start and end of the zone */
6005 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6006 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6007 	adjust_zone_range_for_zone_movable(nid, zone_type,
6008 				node_start_pfn, node_end_pfn,
6009 				zone_start_pfn, zone_end_pfn);
6010 
6011 	/* Check that this node has pages within the zone's required range */
6012 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6013 		return 0;
6014 
6015 	/* Move the zone boundaries inside the node if necessary */
6016 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6017 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6018 
6019 	/* Return the spanned pages */
6020 	return *zone_end_pfn - *zone_start_pfn;
6021 }
6022 
6023 /*
6024  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6025  * then all holes in the requested range will be accounted for.
6026  */
6027 unsigned long __meminit __absent_pages_in_range(int nid,
6028 				unsigned long range_start_pfn,
6029 				unsigned long range_end_pfn)
6030 {
6031 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6032 	unsigned long start_pfn, end_pfn;
6033 	int i;
6034 
6035 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6036 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6037 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6038 		nr_absent -= end_pfn - start_pfn;
6039 	}
6040 	return nr_absent;
6041 }
6042 
6043 /**
6044  * absent_pages_in_range - Return number of page frames in holes within a range
6045  * @start_pfn: The start PFN to start searching for holes
6046  * @end_pfn: The end PFN to stop searching for holes
6047  *
6048  * It returns the number of pages frames in memory holes within a range.
6049  */
6050 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6051 							unsigned long end_pfn)
6052 {
6053 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6054 }
6055 
6056 /* Return the number of page frames in holes in a zone on a node */
6057 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6058 					unsigned long zone_type,
6059 					unsigned long node_start_pfn,
6060 					unsigned long node_end_pfn,
6061 					unsigned long *ignored)
6062 {
6063 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6064 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6065 	unsigned long zone_start_pfn, zone_end_pfn;
6066 	unsigned long nr_absent;
6067 
6068 	/* When hotadd a new node from cpu_up(), the node should be empty */
6069 	if (!node_start_pfn && !node_end_pfn)
6070 		return 0;
6071 
6072 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6073 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6074 
6075 	adjust_zone_range_for_zone_movable(nid, zone_type,
6076 			node_start_pfn, node_end_pfn,
6077 			&zone_start_pfn, &zone_end_pfn);
6078 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6079 
6080 	/*
6081 	 * ZONE_MOVABLE handling.
6082 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6083 	 * and vice versa.
6084 	 */
6085 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6086 		unsigned long start_pfn, end_pfn;
6087 		struct memblock_region *r;
6088 
6089 		for_each_memblock(memory, r) {
6090 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6091 					  zone_start_pfn, zone_end_pfn);
6092 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6093 					zone_start_pfn, zone_end_pfn);
6094 
6095 			if (zone_type == ZONE_MOVABLE &&
6096 			    memblock_is_mirror(r))
6097 				nr_absent += end_pfn - start_pfn;
6098 
6099 			if (zone_type == ZONE_NORMAL &&
6100 			    !memblock_is_mirror(r))
6101 				nr_absent += end_pfn - start_pfn;
6102 		}
6103 	}
6104 
6105 	return nr_absent;
6106 }
6107 
6108 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6109 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6110 					unsigned long zone_type,
6111 					unsigned long node_start_pfn,
6112 					unsigned long node_end_pfn,
6113 					unsigned long *zone_start_pfn,
6114 					unsigned long *zone_end_pfn,
6115 					unsigned long *zones_size)
6116 {
6117 	unsigned int zone;
6118 
6119 	*zone_start_pfn = node_start_pfn;
6120 	for (zone = 0; zone < zone_type; zone++)
6121 		*zone_start_pfn += zones_size[zone];
6122 
6123 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6124 
6125 	return zones_size[zone_type];
6126 }
6127 
6128 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6129 						unsigned long zone_type,
6130 						unsigned long node_start_pfn,
6131 						unsigned long node_end_pfn,
6132 						unsigned long *zholes_size)
6133 {
6134 	if (!zholes_size)
6135 		return 0;
6136 
6137 	return zholes_size[zone_type];
6138 }
6139 
6140 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6141 
6142 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6143 						unsigned long node_start_pfn,
6144 						unsigned long node_end_pfn,
6145 						unsigned long *zones_size,
6146 						unsigned long *zholes_size)
6147 {
6148 	unsigned long realtotalpages = 0, totalpages = 0;
6149 	enum zone_type i;
6150 
6151 	for (i = 0; i < MAX_NR_ZONES; i++) {
6152 		struct zone *zone = pgdat->node_zones + i;
6153 		unsigned long zone_start_pfn, zone_end_pfn;
6154 		unsigned long size, real_size;
6155 
6156 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6157 						  node_start_pfn,
6158 						  node_end_pfn,
6159 						  &zone_start_pfn,
6160 						  &zone_end_pfn,
6161 						  zones_size);
6162 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6163 						  node_start_pfn, node_end_pfn,
6164 						  zholes_size);
6165 		if (size)
6166 			zone->zone_start_pfn = zone_start_pfn;
6167 		else
6168 			zone->zone_start_pfn = 0;
6169 		zone->spanned_pages = size;
6170 		zone->present_pages = real_size;
6171 
6172 		totalpages += size;
6173 		realtotalpages += real_size;
6174 	}
6175 
6176 	pgdat->node_spanned_pages = totalpages;
6177 	pgdat->node_present_pages = realtotalpages;
6178 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6179 							realtotalpages);
6180 }
6181 
6182 #ifndef CONFIG_SPARSEMEM
6183 /*
6184  * Calculate the size of the zone->blockflags rounded to an unsigned long
6185  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6186  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6187  * round what is now in bits to nearest long in bits, then return it in
6188  * bytes.
6189  */
6190 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6191 {
6192 	unsigned long usemapsize;
6193 
6194 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6195 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6196 	usemapsize = usemapsize >> pageblock_order;
6197 	usemapsize *= NR_PAGEBLOCK_BITS;
6198 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6199 
6200 	return usemapsize / 8;
6201 }
6202 
6203 static void __ref setup_usemap(struct pglist_data *pgdat,
6204 				struct zone *zone,
6205 				unsigned long zone_start_pfn,
6206 				unsigned long zonesize)
6207 {
6208 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6209 	zone->pageblock_flags = NULL;
6210 	if (usemapsize)
6211 		zone->pageblock_flags =
6212 			memblock_virt_alloc_node_nopanic(usemapsize,
6213 							 pgdat->node_id);
6214 }
6215 #else
6216 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6217 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6218 #endif /* CONFIG_SPARSEMEM */
6219 
6220 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6221 
6222 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6223 void __init set_pageblock_order(void)
6224 {
6225 	unsigned int order;
6226 
6227 	/* Check that pageblock_nr_pages has not already been setup */
6228 	if (pageblock_order)
6229 		return;
6230 
6231 	if (HPAGE_SHIFT > PAGE_SHIFT)
6232 		order = HUGETLB_PAGE_ORDER;
6233 	else
6234 		order = MAX_ORDER - 1;
6235 
6236 	/*
6237 	 * Assume the largest contiguous order of interest is a huge page.
6238 	 * This value may be variable depending on boot parameters on IA64 and
6239 	 * powerpc.
6240 	 */
6241 	pageblock_order = order;
6242 }
6243 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6244 
6245 /*
6246  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6247  * is unused as pageblock_order is set at compile-time. See
6248  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6249  * the kernel config
6250  */
6251 void __init set_pageblock_order(void)
6252 {
6253 }
6254 
6255 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6256 
6257 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6258 						unsigned long present_pages)
6259 {
6260 	unsigned long pages = spanned_pages;
6261 
6262 	/*
6263 	 * Provide a more accurate estimation if there are holes within
6264 	 * the zone and SPARSEMEM is in use. If there are holes within the
6265 	 * zone, each populated memory region may cost us one or two extra
6266 	 * memmap pages due to alignment because memmap pages for each
6267 	 * populated regions may not be naturally aligned on page boundary.
6268 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6269 	 */
6270 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6271 	    IS_ENABLED(CONFIG_SPARSEMEM))
6272 		pages = present_pages;
6273 
6274 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6275 }
6276 
6277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6278 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6279 {
6280 	spin_lock_init(&pgdat->split_queue_lock);
6281 	INIT_LIST_HEAD(&pgdat->split_queue);
6282 	pgdat->split_queue_len = 0;
6283 }
6284 #else
6285 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6286 #endif
6287 
6288 #ifdef CONFIG_COMPACTION
6289 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6290 {
6291 	init_waitqueue_head(&pgdat->kcompactd_wait);
6292 }
6293 #else
6294 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6295 #endif
6296 
6297 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6298 {
6299 	pgdat_resize_init(pgdat);
6300 
6301 	pgdat_init_split_queue(pgdat);
6302 	pgdat_init_kcompactd(pgdat);
6303 
6304 	init_waitqueue_head(&pgdat->kswapd_wait);
6305 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6306 
6307 	pgdat_page_ext_init(pgdat);
6308 	spin_lock_init(&pgdat->lru_lock);
6309 	lruvec_init(node_lruvec(pgdat));
6310 }
6311 
6312 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6313 							unsigned long remaining_pages)
6314 {
6315 	zone->managed_pages = remaining_pages;
6316 	zone_set_nid(zone, nid);
6317 	zone->name = zone_names[idx];
6318 	zone->zone_pgdat = NODE_DATA(nid);
6319 	spin_lock_init(&zone->lock);
6320 	zone_seqlock_init(zone);
6321 	zone_pcp_init(zone);
6322 }
6323 
6324 /*
6325  * Set up the zone data structures
6326  * - init pgdat internals
6327  * - init all zones belonging to this node
6328  *
6329  * NOTE: this function is only called during memory hotplug
6330  */
6331 #ifdef CONFIG_MEMORY_HOTPLUG
6332 void __ref free_area_init_core_hotplug(int nid)
6333 {
6334 	enum zone_type z;
6335 	pg_data_t *pgdat = NODE_DATA(nid);
6336 
6337 	pgdat_init_internals(pgdat);
6338 	for (z = 0; z < MAX_NR_ZONES; z++)
6339 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6340 }
6341 #endif
6342 
6343 /*
6344  * Set up the zone data structures:
6345  *   - mark all pages reserved
6346  *   - mark all memory queues empty
6347  *   - clear the memory bitmaps
6348  *
6349  * NOTE: pgdat should get zeroed by caller.
6350  * NOTE: this function is only called during early init.
6351  */
6352 static void __init free_area_init_core(struct pglist_data *pgdat)
6353 {
6354 	enum zone_type j;
6355 	int nid = pgdat->node_id;
6356 
6357 	pgdat_init_internals(pgdat);
6358 	pgdat->per_cpu_nodestats = &boot_nodestats;
6359 
6360 	for (j = 0; j < MAX_NR_ZONES; j++) {
6361 		struct zone *zone = pgdat->node_zones + j;
6362 		unsigned long size, freesize, memmap_pages;
6363 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6364 
6365 		size = zone->spanned_pages;
6366 		freesize = zone->present_pages;
6367 
6368 		/*
6369 		 * Adjust freesize so that it accounts for how much memory
6370 		 * is used by this zone for memmap. This affects the watermark
6371 		 * and per-cpu initialisations
6372 		 */
6373 		memmap_pages = calc_memmap_size(size, freesize);
6374 		if (!is_highmem_idx(j)) {
6375 			if (freesize >= memmap_pages) {
6376 				freesize -= memmap_pages;
6377 				if (memmap_pages)
6378 					printk(KERN_DEBUG
6379 					       "  %s zone: %lu pages used for memmap\n",
6380 					       zone_names[j], memmap_pages);
6381 			} else
6382 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6383 					zone_names[j], memmap_pages, freesize);
6384 		}
6385 
6386 		/* Account for reserved pages */
6387 		if (j == 0 && freesize > dma_reserve) {
6388 			freesize -= dma_reserve;
6389 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6390 					zone_names[0], dma_reserve);
6391 		}
6392 
6393 		if (!is_highmem_idx(j))
6394 			nr_kernel_pages += freesize;
6395 		/* Charge for highmem memmap if there are enough kernel pages */
6396 		else if (nr_kernel_pages > memmap_pages * 2)
6397 			nr_kernel_pages -= memmap_pages;
6398 		nr_all_pages += freesize;
6399 
6400 		/*
6401 		 * Set an approximate value for lowmem here, it will be adjusted
6402 		 * when the bootmem allocator frees pages into the buddy system.
6403 		 * And all highmem pages will be managed by the buddy system.
6404 		 */
6405 		zone_init_internals(zone, j, nid, freesize);
6406 
6407 		if (!size)
6408 			continue;
6409 
6410 		set_pageblock_order();
6411 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6412 		init_currently_empty_zone(zone, zone_start_pfn, size);
6413 		memmap_init(size, nid, j, zone_start_pfn);
6414 	}
6415 }
6416 
6417 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6418 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6419 {
6420 	unsigned long __maybe_unused start = 0;
6421 	unsigned long __maybe_unused offset = 0;
6422 
6423 	/* Skip empty nodes */
6424 	if (!pgdat->node_spanned_pages)
6425 		return;
6426 
6427 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6428 	offset = pgdat->node_start_pfn - start;
6429 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6430 	if (!pgdat->node_mem_map) {
6431 		unsigned long size, end;
6432 		struct page *map;
6433 
6434 		/*
6435 		 * The zone's endpoints aren't required to be MAX_ORDER
6436 		 * aligned but the node_mem_map endpoints must be in order
6437 		 * for the buddy allocator to function correctly.
6438 		 */
6439 		end = pgdat_end_pfn(pgdat);
6440 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6441 		size =  (end - start) * sizeof(struct page);
6442 		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6443 		pgdat->node_mem_map = map + offset;
6444 	}
6445 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6446 				__func__, pgdat->node_id, (unsigned long)pgdat,
6447 				(unsigned long)pgdat->node_mem_map);
6448 #ifndef CONFIG_NEED_MULTIPLE_NODES
6449 	/*
6450 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6451 	 */
6452 	if (pgdat == NODE_DATA(0)) {
6453 		mem_map = NODE_DATA(0)->node_mem_map;
6454 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6455 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6456 			mem_map -= offset;
6457 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6458 	}
6459 #endif
6460 }
6461 #else
6462 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6463 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6464 
6465 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6466 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6467 {
6468 	/*
6469 	 * We start only with one section of pages, more pages are added as
6470 	 * needed until the rest of deferred pages are initialized.
6471 	 */
6472 	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6473 						pgdat->node_spanned_pages);
6474 	pgdat->first_deferred_pfn = ULONG_MAX;
6475 }
6476 #else
6477 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6478 #endif
6479 
6480 void __init free_area_init_node(int nid, unsigned long *zones_size,
6481 				   unsigned long node_start_pfn,
6482 				   unsigned long *zholes_size)
6483 {
6484 	pg_data_t *pgdat = NODE_DATA(nid);
6485 	unsigned long start_pfn = 0;
6486 	unsigned long end_pfn = 0;
6487 
6488 	/* pg_data_t should be reset to zero when it's allocated */
6489 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6490 
6491 	pgdat->node_id = nid;
6492 	pgdat->node_start_pfn = node_start_pfn;
6493 	pgdat->per_cpu_nodestats = NULL;
6494 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6495 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6496 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6497 		(u64)start_pfn << PAGE_SHIFT,
6498 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6499 #else
6500 	start_pfn = node_start_pfn;
6501 #endif
6502 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6503 				  zones_size, zholes_size);
6504 
6505 	alloc_node_mem_map(pgdat);
6506 	pgdat_set_deferred_range(pgdat);
6507 
6508 	free_area_init_core(pgdat);
6509 }
6510 
6511 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6512 
6513 /*
6514  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6515  * pages zeroed
6516  */
6517 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6518 {
6519 	unsigned long pfn;
6520 	u64 pgcnt = 0;
6521 
6522 	for (pfn = spfn; pfn < epfn; pfn++) {
6523 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6524 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6525 				+ pageblock_nr_pages - 1;
6526 			continue;
6527 		}
6528 		mm_zero_struct_page(pfn_to_page(pfn));
6529 		pgcnt++;
6530 	}
6531 
6532 	return pgcnt;
6533 }
6534 
6535 /*
6536  * Only struct pages that are backed by physical memory are zeroed and
6537  * initialized by going through __init_single_page(). But, there are some
6538  * struct pages which are reserved in memblock allocator and their fields
6539  * may be accessed (for example page_to_pfn() on some configuration accesses
6540  * flags). We must explicitly zero those struct pages.
6541  *
6542  * This function also addresses a similar issue where struct pages are left
6543  * uninitialized because the physical address range is not covered by
6544  * memblock.memory or memblock.reserved. That could happen when memblock
6545  * layout is manually configured via memmap=.
6546  */
6547 void __init zero_resv_unavail(void)
6548 {
6549 	phys_addr_t start, end;
6550 	u64 i, pgcnt;
6551 	phys_addr_t next = 0;
6552 
6553 	/*
6554 	 * Loop through unavailable ranges not covered by memblock.memory.
6555 	 */
6556 	pgcnt = 0;
6557 	for_each_mem_range(i, &memblock.memory, NULL,
6558 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6559 		if (next < start)
6560 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6561 		next = end;
6562 	}
6563 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6564 
6565 	/*
6566 	 * Struct pages that do not have backing memory. This could be because
6567 	 * firmware is using some of this memory, or for some other reasons.
6568 	 */
6569 	if (pgcnt)
6570 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6571 }
6572 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6573 
6574 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6575 
6576 #if MAX_NUMNODES > 1
6577 /*
6578  * Figure out the number of possible node ids.
6579  */
6580 void __init setup_nr_node_ids(void)
6581 {
6582 	unsigned int highest;
6583 
6584 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6585 	nr_node_ids = highest + 1;
6586 }
6587 #endif
6588 
6589 /**
6590  * node_map_pfn_alignment - determine the maximum internode alignment
6591  *
6592  * This function should be called after node map is populated and sorted.
6593  * It calculates the maximum power of two alignment which can distinguish
6594  * all the nodes.
6595  *
6596  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6597  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6598  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6599  * shifted, 1GiB is enough and this function will indicate so.
6600  *
6601  * This is used to test whether pfn -> nid mapping of the chosen memory
6602  * model has fine enough granularity to avoid incorrect mapping for the
6603  * populated node map.
6604  *
6605  * Returns the determined alignment in pfn's.  0 if there is no alignment
6606  * requirement (single node).
6607  */
6608 unsigned long __init node_map_pfn_alignment(void)
6609 {
6610 	unsigned long accl_mask = 0, last_end = 0;
6611 	unsigned long start, end, mask;
6612 	int last_nid = -1;
6613 	int i, nid;
6614 
6615 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6616 		if (!start || last_nid < 0 || last_nid == nid) {
6617 			last_nid = nid;
6618 			last_end = end;
6619 			continue;
6620 		}
6621 
6622 		/*
6623 		 * Start with a mask granular enough to pin-point to the
6624 		 * start pfn and tick off bits one-by-one until it becomes
6625 		 * too coarse to separate the current node from the last.
6626 		 */
6627 		mask = ~((1 << __ffs(start)) - 1);
6628 		while (mask && last_end <= (start & (mask << 1)))
6629 			mask <<= 1;
6630 
6631 		/* accumulate all internode masks */
6632 		accl_mask |= mask;
6633 	}
6634 
6635 	/* convert mask to number of pages */
6636 	return ~accl_mask + 1;
6637 }
6638 
6639 /* Find the lowest pfn for a node */
6640 static unsigned long __init find_min_pfn_for_node(int nid)
6641 {
6642 	unsigned long min_pfn = ULONG_MAX;
6643 	unsigned long start_pfn;
6644 	int i;
6645 
6646 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6647 		min_pfn = min(min_pfn, start_pfn);
6648 
6649 	if (min_pfn == ULONG_MAX) {
6650 		pr_warn("Could not find start_pfn for node %d\n", nid);
6651 		return 0;
6652 	}
6653 
6654 	return min_pfn;
6655 }
6656 
6657 /**
6658  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6659  *
6660  * It returns the minimum PFN based on information provided via
6661  * memblock_set_node().
6662  */
6663 unsigned long __init find_min_pfn_with_active_regions(void)
6664 {
6665 	return find_min_pfn_for_node(MAX_NUMNODES);
6666 }
6667 
6668 /*
6669  * early_calculate_totalpages()
6670  * Sum pages in active regions for movable zone.
6671  * Populate N_MEMORY for calculating usable_nodes.
6672  */
6673 static unsigned long __init early_calculate_totalpages(void)
6674 {
6675 	unsigned long totalpages = 0;
6676 	unsigned long start_pfn, end_pfn;
6677 	int i, nid;
6678 
6679 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6680 		unsigned long pages = end_pfn - start_pfn;
6681 
6682 		totalpages += pages;
6683 		if (pages)
6684 			node_set_state(nid, N_MEMORY);
6685 	}
6686 	return totalpages;
6687 }
6688 
6689 /*
6690  * Find the PFN the Movable zone begins in each node. Kernel memory
6691  * is spread evenly between nodes as long as the nodes have enough
6692  * memory. When they don't, some nodes will have more kernelcore than
6693  * others
6694  */
6695 static void __init find_zone_movable_pfns_for_nodes(void)
6696 {
6697 	int i, nid;
6698 	unsigned long usable_startpfn;
6699 	unsigned long kernelcore_node, kernelcore_remaining;
6700 	/* save the state before borrow the nodemask */
6701 	nodemask_t saved_node_state = node_states[N_MEMORY];
6702 	unsigned long totalpages = early_calculate_totalpages();
6703 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6704 	struct memblock_region *r;
6705 
6706 	/* Need to find movable_zone earlier when movable_node is specified. */
6707 	find_usable_zone_for_movable();
6708 
6709 	/*
6710 	 * If movable_node is specified, ignore kernelcore and movablecore
6711 	 * options.
6712 	 */
6713 	if (movable_node_is_enabled()) {
6714 		for_each_memblock(memory, r) {
6715 			if (!memblock_is_hotpluggable(r))
6716 				continue;
6717 
6718 			nid = r->nid;
6719 
6720 			usable_startpfn = PFN_DOWN(r->base);
6721 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6722 				min(usable_startpfn, zone_movable_pfn[nid]) :
6723 				usable_startpfn;
6724 		}
6725 
6726 		goto out2;
6727 	}
6728 
6729 	/*
6730 	 * If kernelcore=mirror is specified, ignore movablecore option
6731 	 */
6732 	if (mirrored_kernelcore) {
6733 		bool mem_below_4gb_not_mirrored = false;
6734 
6735 		for_each_memblock(memory, r) {
6736 			if (memblock_is_mirror(r))
6737 				continue;
6738 
6739 			nid = r->nid;
6740 
6741 			usable_startpfn = memblock_region_memory_base_pfn(r);
6742 
6743 			if (usable_startpfn < 0x100000) {
6744 				mem_below_4gb_not_mirrored = true;
6745 				continue;
6746 			}
6747 
6748 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6749 				min(usable_startpfn, zone_movable_pfn[nid]) :
6750 				usable_startpfn;
6751 		}
6752 
6753 		if (mem_below_4gb_not_mirrored)
6754 			pr_warn("This configuration results in unmirrored kernel memory.");
6755 
6756 		goto out2;
6757 	}
6758 
6759 	/*
6760 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6761 	 * amount of necessary memory.
6762 	 */
6763 	if (required_kernelcore_percent)
6764 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6765 				       10000UL;
6766 	if (required_movablecore_percent)
6767 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6768 					10000UL;
6769 
6770 	/*
6771 	 * If movablecore= was specified, calculate what size of
6772 	 * kernelcore that corresponds so that memory usable for
6773 	 * any allocation type is evenly spread. If both kernelcore
6774 	 * and movablecore are specified, then the value of kernelcore
6775 	 * will be used for required_kernelcore if it's greater than
6776 	 * what movablecore would have allowed.
6777 	 */
6778 	if (required_movablecore) {
6779 		unsigned long corepages;
6780 
6781 		/*
6782 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6783 		 * was requested by the user
6784 		 */
6785 		required_movablecore =
6786 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6787 		required_movablecore = min(totalpages, required_movablecore);
6788 		corepages = totalpages - required_movablecore;
6789 
6790 		required_kernelcore = max(required_kernelcore, corepages);
6791 	}
6792 
6793 	/*
6794 	 * If kernelcore was not specified or kernelcore size is larger
6795 	 * than totalpages, there is no ZONE_MOVABLE.
6796 	 */
6797 	if (!required_kernelcore || required_kernelcore >= totalpages)
6798 		goto out;
6799 
6800 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6801 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6802 
6803 restart:
6804 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6805 	kernelcore_node = required_kernelcore / usable_nodes;
6806 	for_each_node_state(nid, N_MEMORY) {
6807 		unsigned long start_pfn, end_pfn;
6808 
6809 		/*
6810 		 * Recalculate kernelcore_node if the division per node
6811 		 * now exceeds what is necessary to satisfy the requested
6812 		 * amount of memory for the kernel
6813 		 */
6814 		if (required_kernelcore < kernelcore_node)
6815 			kernelcore_node = required_kernelcore / usable_nodes;
6816 
6817 		/*
6818 		 * As the map is walked, we track how much memory is usable
6819 		 * by the kernel using kernelcore_remaining. When it is
6820 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6821 		 */
6822 		kernelcore_remaining = kernelcore_node;
6823 
6824 		/* Go through each range of PFNs within this node */
6825 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6826 			unsigned long size_pages;
6827 
6828 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6829 			if (start_pfn >= end_pfn)
6830 				continue;
6831 
6832 			/* Account for what is only usable for kernelcore */
6833 			if (start_pfn < usable_startpfn) {
6834 				unsigned long kernel_pages;
6835 				kernel_pages = min(end_pfn, usable_startpfn)
6836 								- start_pfn;
6837 
6838 				kernelcore_remaining -= min(kernel_pages,
6839 							kernelcore_remaining);
6840 				required_kernelcore -= min(kernel_pages,
6841 							required_kernelcore);
6842 
6843 				/* Continue if range is now fully accounted */
6844 				if (end_pfn <= usable_startpfn) {
6845 
6846 					/*
6847 					 * Push zone_movable_pfn to the end so
6848 					 * that if we have to rebalance
6849 					 * kernelcore across nodes, we will
6850 					 * not double account here
6851 					 */
6852 					zone_movable_pfn[nid] = end_pfn;
6853 					continue;
6854 				}
6855 				start_pfn = usable_startpfn;
6856 			}
6857 
6858 			/*
6859 			 * The usable PFN range for ZONE_MOVABLE is from
6860 			 * start_pfn->end_pfn. Calculate size_pages as the
6861 			 * number of pages used as kernelcore
6862 			 */
6863 			size_pages = end_pfn - start_pfn;
6864 			if (size_pages > kernelcore_remaining)
6865 				size_pages = kernelcore_remaining;
6866 			zone_movable_pfn[nid] = start_pfn + size_pages;
6867 
6868 			/*
6869 			 * Some kernelcore has been met, update counts and
6870 			 * break if the kernelcore for this node has been
6871 			 * satisfied
6872 			 */
6873 			required_kernelcore -= min(required_kernelcore,
6874 								size_pages);
6875 			kernelcore_remaining -= size_pages;
6876 			if (!kernelcore_remaining)
6877 				break;
6878 		}
6879 	}
6880 
6881 	/*
6882 	 * If there is still required_kernelcore, we do another pass with one
6883 	 * less node in the count. This will push zone_movable_pfn[nid] further
6884 	 * along on the nodes that still have memory until kernelcore is
6885 	 * satisfied
6886 	 */
6887 	usable_nodes--;
6888 	if (usable_nodes && required_kernelcore > usable_nodes)
6889 		goto restart;
6890 
6891 out2:
6892 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6893 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6894 		zone_movable_pfn[nid] =
6895 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6896 
6897 out:
6898 	/* restore the node_state */
6899 	node_states[N_MEMORY] = saved_node_state;
6900 }
6901 
6902 /* Any regular or high memory on that node ? */
6903 static void check_for_memory(pg_data_t *pgdat, int nid)
6904 {
6905 	enum zone_type zone_type;
6906 
6907 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6908 		struct zone *zone = &pgdat->node_zones[zone_type];
6909 		if (populated_zone(zone)) {
6910 			if (IS_ENABLED(CONFIG_HIGHMEM))
6911 				node_set_state(nid, N_HIGH_MEMORY);
6912 			if (zone_type <= ZONE_NORMAL)
6913 				node_set_state(nid, N_NORMAL_MEMORY);
6914 			break;
6915 		}
6916 	}
6917 }
6918 
6919 /**
6920  * free_area_init_nodes - Initialise all pg_data_t and zone data
6921  * @max_zone_pfn: an array of max PFNs for each zone
6922  *
6923  * This will call free_area_init_node() for each active node in the system.
6924  * Using the page ranges provided by memblock_set_node(), the size of each
6925  * zone in each node and their holes is calculated. If the maximum PFN
6926  * between two adjacent zones match, it is assumed that the zone is empty.
6927  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6928  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6929  * starts where the previous one ended. For example, ZONE_DMA32 starts
6930  * at arch_max_dma_pfn.
6931  */
6932 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6933 {
6934 	unsigned long start_pfn, end_pfn;
6935 	int i, nid;
6936 
6937 	/* Record where the zone boundaries are */
6938 	memset(arch_zone_lowest_possible_pfn, 0,
6939 				sizeof(arch_zone_lowest_possible_pfn));
6940 	memset(arch_zone_highest_possible_pfn, 0,
6941 				sizeof(arch_zone_highest_possible_pfn));
6942 
6943 	start_pfn = find_min_pfn_with_active_regions();
6944 
6945 	for (i = 0; i < MAX_NR_ZONES; i++) {
6946 		if (i == ZONE_MOVABLE)
6947 			continue;
6948 
6949 		end_pfn = max(max_zone_pfn[i], start_pfn);
6950 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6951 		arch_zone_highest_possible_pfn[i] = end_pfn;
6952 
6953 		start_pfn = end_pfn;
6954 	}
6955 
6956 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6957 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6958 	find_zone_movable_pfns_for_nodes();
6959 
6960 	/* Print out the zone ranges */
6961 	pr_info("Zone ranges:\n");
6962 	for (i = 0; i < MAX_NR_ZONES; i++) {
6963 		if (i == ZONE_MOVABLE)
6964 			continue;
6965 		pr_info("  %-8s ", zone_names[i]);
6966 		if (arch_zone_lowest_possible_pfn[i] ==
6967 				arch_zone_highest_possible_pfn[i])
6968 			pr_cont("empty\n");
6969 		else
6970 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6971 				(u64)arch_zone_lowest_possible_pfn[i]
6972 					<< PAGE_SHIFT,
6973 				((u64)arch_zone_highest_possible_pfn[i]
6974 					<< PAGE_SHIFT) - 1);
6975 	}
6976 
6977 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6978 	pr_info("Movable zone start for each node\n");
6979 	for (i = 0; i < MAX_NUMNODES; i++) {
6980 		if (zone_movable_pfn[i])
6981 			pr_info("  Node %d: %#018Lx\n", i,
6982 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6983 	}
6984 
6985 	/* Print out the early node map */
6986 	pr_info("Early memory node ranges\n");
6987 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6988 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6989 			(u64)start_pfn << PAGE_SHIFT,
6990 			((u64)end_pfn << PAGE_SHIFT) - 1);
6991 
6992 	/* Initialise every node */
6993 	mminit_verify_pageflags_layout();
6994 	setup_nr_node_ids();
6995 	zero_resv_unavail();
6996 	for_each_online_node(nid) {
6997 		pg_data_t *pgdat = NODE_DATA(nid);
6998 		free_area_init_node(nid, NULL,
6999 				find_min_pfn_for_node(nid), NULL);
7000 
7001 		/* Any memory on that node */
7002 		if (pgdat->node_present_pages)
7003 			node_set_state(nid, N_MEMORY);
7004 		check_for_memory(pgdat, nid);
7005 	}
7006 }
7007 
7008 static int __init cmdline_parse_core(char *p, unsigned long *core,
7009 				     unsigned long *percent)
7010 {
7011 	unsigned long long coremem;
7012 	char *endptr;
7013 
7014 	if (!p)
7015 		return -EINVAL;
7016 
7017 	/* Value may be a percentage of total memory, otherwise bytes */
7018 	coremem = simple_strtoull(p, &endptr, 0);
7019 	if (*endptr == '%') {
7020 		/* Paranoid check for percent values greater than 100 */
7021 		WARN_ON(coremem > 100);
7022 
7023 		*percent = coremem;
7024 	} else {
7025 		coremem = memparse(p, &p);
7026 		/* Paranoid check that UL is enough for the coremem value */
7027 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7028 
7029 		*core = coremem >> PAGE_SHIFT;
7030 		*percent = 0UL;
7031 	}
7032 	return 0;
7033 }
7034 
7035 /*
7036  * kernelcore=size sets the amount of memory for use for allocations that
7037  * cannot be reclaimed or migrated.
7038  */
7039 static int __init cmdline_parse_kernelcore(char *p)
7040 {
7041 	/* parse kernelcore=mirror */
7042 	if (parse_option_str(p, "mirror")) {
7043 		mirrored_kernelcore = true;
7044 		return 0;
7045 	}
7046 
7047 	return cmdline_parse_core(p, &required_kernelcore,
7048 				  &required_kernelcore_percent);
7049 }
7050 
7051 /*
7052  * movablecore=size sets the amount of memory for use for allocations that
7053  * can be reclaimed or migrated.
7054  */
7055 static int __init cmdline_parse_movablecore(char *p)
7056 {
7057 	return cmdline_parse_core(p, &required_movablecore,
7058 				  &required_movablecore_percent);
7059 }
7060 
7061 early_param("kernelcore", cmdline_parse_kernelcore);
7062 early_param("movablecore", cmdline_parse_movablecore);
7063 
7064 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7065 
7066 void adjust_managed_page_count(struct page *page, long count)
7067 {
7068 	spin_lock(&managed_page_count_lock);
7069 	page_zone(page)->managed_pages += count;
7070 	totalram_pages += count;
7071 #ifdef CONFIG_HIGHMEM
7072 	if (PageHighMem(page))
7073 		totalhigh_pages += count;
7074 #endif
7075 	spin_unlock(&managed_page_count_lock);
7076 }
7077 EXPORT_SYMBOL(adjust_managed_page_count);
7078 
7079 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7080 {
7081 	void *pos;
7082 	unsigned long pages = 0;
7083 
7084 	start = (void *)PAGE_ALIGN((unsigned long)start);
7085 	end = (void *)((unsigned long)end & PAGE_MASK);
7086 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7087 		struct page *page = virt_to_page(pos);
7088 		void *direct_map_addr;
7089 
7090 		/*
7091 		 * 'direct_map_addr' might be different from 'pos'
7092 		 * because some architectures' virt_to_page()
7093 		 * work with aliases.  Getting the direct map
7094 		 * address ensures that we get a _writeable_
7095 		 * alias for the memset().
7096 		 */
7097 		direct_map_addr = page_address(page);
7098 		if ((unsigned int)poison <= 0xFF)
7099 			memset(direct_map_addr, poison, PAGE_SIZE);
7100 
7101 		free_reserved_page(page);
7102 	}
7103 
7104 	if (pages && s)
7105 		pr_info("Freeing %s memory: %ldK\n",
7106 			s, pages << (PAGE_SHIFT - 10));
7107 
7108 	return pages;
7109 }
7110 EXPORT_SYMBOL(free_reserved_area);
7111 
7112 #ifdef	CONFIG_HIGHMEM
7113 void free_highmem_page(struct page *page)
7114 {
7115 	__free_reserved_page(page);
7116 	totalram_pages++;
7117 	page_zone(page)->managed_pages++;
7118 	totalhigh_pages++;
7119 }
7120 #endif
7121 
7122 
7123 void __init mem_init_print_info(const char *str)
7124 {
7125 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7126 	unsigned long init_code_size, init_data_size;
7127 
7128 	physpages = get_num_physpages();
7129 	codesize = _etext - _stext;
7130 	datasize = _edata - _sdata;
7131 	rosize = __end_rodata - __start_rodata;
7132 	bss_size = __bss_stop - __bss_start;
7133 	init_data_size = __init_end - __init_begin;
7134 	init_code_size = _einittext - _sinittext;
7135 
7136 	/*
7137 	 * Detect special cases and adjust section sizes accordingly:
7138 	 * 1) .init.* may be embedded into .data sections
7139 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7140 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7141 	 * 3) .rodata.* may be embedded into .text or .data sections.
7142 	 */
7143 #define adj_init_size(start, end, size, pos, adj) \
7144 	do { \
7145 		if (start <= pos && pos < end && size > adj) \
7146 			size -= adj; \
7147 	} while (0)
7148 
7149 	adj_init_size(__init_begin, __init_end, init_data_size,
7150 		     _sinittext, init_code_size);
7151 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7152 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7153 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7154 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7155 
7156 #undef	adj_init_size
7157 
7158 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7159 #ifdef	CONFIG_HIGHMEM
7160 		", %luK highmem"
7161 #endif
7162 		"%s%s)\n",
7163 		nr_free_pages() << (PAGE_SHIFT - 10),
7164 		physpages << (PAGE_SHIFT - 10),
7165 		codesize >> 10, datasize >> 10, rosize >> 10,
7166 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7167 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7168 		totalcma_pages << (PAGE_SHIFT - 10),
7169 #ifdef	CONFIG_HIGHMEM
7170 		totalhigh_pages << (PAGE_SHIFT - 10),
7171 #endif
7172 		str ? ", " : "", str ? str : "");
7173 }
7174 
7175 /**
7176  * set_dma_reserve - set the specified number of pages reserved in the first zone
7177  * @new_dma_reserve: The number of pages to mark reserved
7178  *
7179  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7180  * In the DMA zone, a significant percentage may be consumed by kernel image
7181  * and other unfreeable allocations which can skew the watermarks badly. This
7182  * function may optionally be used to account for unfreeable pages in the
7183  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7184  * smaller per-cpu batchsize.
7185  */
7186 void __init set_dma_reserve(unsigned long new_dma_reserve)
7187 {
7188 	dma_reserve = new_dma_reserve;
7189 }
7190 
7191 void __init free_area_init(unsigned long *zones_size)
7192 {
7193 	zero_resv_unavail();
7194 	free_area_init_node(0, zones_size,
7195 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7196 }
7197 
7198 static int page_alloc_cpu_dead(unsigned int cpu)
7199 {
7200 
7201 	lru_add_drain_cpu(cpu);
7202 	drain_pages(cpu);
7203 
7204 	/*
7205 	 * Spill the event counters of the dead processor
7206 	 * into the current processors event counters.
7207 	 * This artificially elevates the count of the current
7208 	 * processor.
7209 	 */
7210 	vm_events_fold_cpu(cpu);
7211 
7212 	/*
7213 	 * Zero the differential counters of the dead processor
7214 	 * so that the vm statistics are consistent.
7215 	 *
7216 	 * This is only okay since the processor is dead and cannot
7217 	 * race with what we are doing.
7218 	 */
7219 	cpu_vm_stats_fold(cpu);
7220 	return 0;
7221 }
7222 
7223 void __init page_alloc_init(void)
7224 {
7225 	int ret;
7226 
7227 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7228 					"mm/page_alloc:dead", NULL,
7229 					page_alloc_cpu_dead);
7230 	WARN_ON(ret < 0);
7231 }
7232 
7233 /*
7234  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7235  *	or min_free_kbytes changes.
7236  */
7237 static void calculate_totalreserve_pages(void)
7238 {
7239 	struct pglist_data *pgdat;
7240 	unsigned long reserve_pages = 0;
7241 	enum zone_type i, j;
7242 
7243 	for_each_online_pgdat(pgdat) {
7244 
7245 		pgdat->totalreserve_pages = 0;
7246 
7247 		for (i = 0; i < MAX_NR_ZONES; i++) {
7248 			struct zone *zone = pgdat->node_zones + i;
7249 			long max = 0;
7250 
7251 			/* Find valid and maximum lowmem_reserve in the zone */
7252 			for (j = i; j < MAX_NR_ZONES; j++) {
7253 				if (zone->lowmem_reserve[j] > max)
7254 					max = zone->lowmem_reserve[j];
7255 			}
7256 
7257 			/* we treat the high watermark as reserved pages. */
7258 			max += high_wmark_pages(zone);
7259 
7260 			if (max > zone->managed_pages)
7261 				max = zone->managed_pages;
7262 
7263 			pgdat->totalreserve_pages += max;
7264 
7265 			reserve_pages += max;
7266 		}
7267 	}
7268 	totalreserve_pages = reserve_pages;
7269 }
7270 
7271 /*
7272  * setup_per_zone_lowmem_reserve - called whenever
7273  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7274  *	has a correct pages reserved value, so an adequate number of
7275  *	pages are left in the zone after a successful __alloc_pages().
7276  */
7277 static void setup_per_zone_lowmem_reserve(void)
7278 {
7279 	struct pglist_data *pgdat;
7280 	enum zone_type j, idx;
7281 
7282 	for_each_online_pgdat(pgdat) {
7283 		for (j = 0; j < MAX_NR_ZONES; j++) {
7284 			struct zone *zone = pgdat->node_zones + j;
7285 			unsigned long managed_pages = zone->managed_pages;
7286 
7287 			zone->lowmem_reserve[j] = 0;
7288 
7289 			idx = j;
7290 			while (idx) {
7291 				struct zone *lower_zone;
7292 
7293 				idx--;
7294 				lower_zone = pgdat->node_zones + idx;
7295 
7296 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7297 					sysctl_lowmem_reserve_ratio[idx] = 0;
7298 					lower_zone->lowmem_reserve[j] = 0;
7299 				} else {
7300 					lower_zone->lowmem_reserve[j] =
7301 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7302 				}
7303 				managed_pages += lower_zone->managed_pages;
7304 			}
7305 		}
7306 	}
7307 
7308 	/* update totalreserve_pages */
7309 	calculate_totalreserve_pages();
7310 }
7311 
7312 static void __setup_per_zone_wmarks(void)
7313 {
7314 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7315 	unsigned long lowmem_pages = 0;
7316 	struct zone *zone;
7317 	unsigned long flags;
7318 
7319 	/* Calculate total number of !ZONE_HIGHMEM pages */
7320 	for_each_zone(zone) {
7321 		if (!is_highmem(zone))
7322 			lowmem_pages += zone->managed_pages;
7323 	}
7324 
7325 	for_each_zone(zone) {
7326 		u64 tmp;
7327 
7328 		spin_lock_irqsave(&zone->lock, flags);
7329 		tmp = (u64)pages_min * zone->managed_pages;
7330 		do_div(tmp, lowmem_pages);
7331 		if (is_highmem(zone)) {
7332 			/*
7333 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7334 			 * need highmem pages, so cap pages_min to a small
7335 			 * value here.
7336 			 *
7337 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7338 			 * deltas control asynch page reclaim, and so should
7339 			 * not be capped for highmem.
7340 			 */
7341 			unsigned long min_pages;
7342 
7343 			min_pages = zone->managed_pages / 1024;
7344 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7345 			zone->watermark[WMARK_MIN] = min_pages;
7346 		} else {
7347 			/*
7348 			 * If it's a lowmem zone, reserve a number of pages
7349 			 * proportionate to the zone's size.
7350 			 */
7351 			zone->watermark[WMARK_MIN] = tmp;
7352 		}
7353 
7354 		/*
7355 		 * Set the kswapd watermarks distance according to the
7356 		 * scale factor in proportion to available memory, but
7357 		 * ensure a minimum size on small systems.
7358 		 */
7359 		tmp = max_t(u64, tmp >> 2,
7360 			    mult_frac(zone->managed_pages,
7361 				      watermark_scale_factor, 10000));
7362 
7363 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7364 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7365 
7366 		spin_unlock_irqrestore(&zone->lock, flags);
7367 	}
7368 
7369 	/* update totalreserve_pages */
7370 	calculate_totalreserve_pages();
7371 }
7372 
7373 /**
7374  * setup_per_zone_wmarks - called when min_free_kbytes changes
7375  * or when memory is hot-{added|removed}
7376  *
7377  * Ensures that the watermark[min,low,high] values for each zone are set
7378  * correctly with respect to min_free_kbytes.
7379  */
7380 void setup_per_zone_wmarks(void)
7381 {
7382 	static DEFINE_SPINLOCK(lock);
7383 
7384 	spin_lock(&lock);
7385 	__setup_per_zone_wmarks();
7386 	spin_unlock(&lock);
7387 }
7388 
7389 /*
7390  * Initialise min_free_kbytes.
7391  *
7392  * For small machines we want it small (128k min).  For large machines
7393  * we want it large (64MB max).  But it is not linear, because network
7394  * bandwidth does not increase linearly with machine size.  We use
7395  *
7396  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7397  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7398  *
7399  * which yields
7400  *
7401  * 16MB:	512k
7402  * 32MB:	724k
7403  * 64MB:	1024k
7404  * 128MB:	1448k
7405  * 256MB:	2048k
7406  * 512MB:	2896k
7407  * 1024MB:	4096k
7408  * 2048MB:	5792k
7409  * 4096MB:	8192k
7410  * 8192MB:	11584k
7411  * 16384MB:	16384k
7412  */
7413 int __meminit init_per_zone_wmark_min(void)
7414 {
7415 	unsigned long lowmem_kbytes;
7416 	int new_min_free_kbytes;
7417 
7418 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7419 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7420 
7421 	if (new_min_free_kbytes > user_min_free_kbytes) {
7422 		min_free_kbytes = new_min_free_kbytes;
7423 		if (min_free_kbytes < 128)
7424 			min_free_kbytes = 128;
7425 		if (min_free_kbytes > 65536)
7426 			min_free_kbytes = 65536;
7427 	} else {
7428 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7429 				new_min_free_kbytes, user_min_free_kbytes);
7430 	}
7431 	setup_per_zone_wmarks();
7432 	refresh_zone_stat_thresholds();
7433 	setup_per_zone_lowmem_reserve();
7434 
7435 #ifdef CONFIG_NUMA
7436 	setup_min_unmapped_ratio();
7437 	setup_min_slab_ratio();
7438 #endif
7439 
7440 	return 0;
7441 }
7442 core_initcall(init_per_zone_wmark_min)
7443 
7444 /*
7445  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7446  *	that we can call two helper functions whenever min_free_kbytes
7447  *	changes.
7448  */
7449 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7450 	void __user *buffer, size_t *length, loff_t *ppos)
7451 {
7452 	int rc;
7453 
7454 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7455 	if (rc)
7456 		return rc;
7457 
7458 	if (write) {
7459 		user_min_free_kbytes = min_free_kbytes;
7460 		setup_per_zone_wmarks();
7461 	}
7462 	return 0;
7463 }
7464 
7465 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7466 	void __user *buffer, size_t *length, loff_t *ppos)
7467 {
7468 	int rc;
7469 
7470 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7471 	if (rc)
7472 		return rc;
7473 
7474 	if (write)
7475 		setup_per_zone_wmarks();
7476 
7477 	return 0;
7478 }
7479 
7480 #ifdef CONFIG_NUMA
7481 static void setup_min_unmapped_ratio(void)
7482 {
7483 	pg_data_t *pgdat;
7484 	struct zone *zone;
7485 
7486 	for_each_online_pgdat(pgdat)
7487 		pgdat->min_unmapped_pages = 0;
7488 
7489 	for_each_zone(zone)
7490 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7491 				sysctl_min_unmapped_ratio) / 100;
7492 }
7493 
7494 
7495 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7496 	void __user *buffer, size_t *length, loff_t *ppos)
7497 {
7498 	int rc;
7499 
7500 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7501 	if (rc)
7502 		return rc;
7503 
7504 	setup_min_unmapped_ratio();
7505 
7506 	return 0;
7507 }
7508 
7509 static void setup_min_slab_ratio(void)
7510 {
7511 	pg_data_t *pgdat;
7512 	struct zone *zone;
7513 
7514 	for_each_online_pgdat(pgdat)
7515 		pgdat->min_slab_pages = 0;
7516 
7517 	for_each_zone(zone)
7518 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7519 				sysctl_min_slab_ratio) / 100;
7520 }
7521 
7522 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7523 	void __user *buffer, size_t *length, loff_t *ppos)
7524 {
7525 	int rc;
7526 
7527 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7528 	if (rc)
7529 		return rc;
7530 
7531 	setup_min_slab_ratio();
7532 
7533 	return 0;
7534 }
7535 #endif
7536 
7537 /*
7538  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7539  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7540  *	whenever sysctl_lowmem_reserve_ratio changes.
7541  *
7542  * The reserve ratio obviously has absolutely no relation with the
7543  * minimum watermarks. The lowmem reserve ratio can only make sense
7544  * if in function of the boot time zone sizes.
7545  */
7546 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7547 	void __user *buffer, size_t *length, loff_t *ppos)
7548 {
7549 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7550 	setup_per_zone_lowmem_reserve();
7551 	return 0;
7552 }
7553 
7554 /*
7555  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7556  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7557  * pagelist can have before it gets flushed back to buddy allocator.
7558  */
7559 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7560 	void __user *buffer, size_t *length, loff_t *ppos)
7561 {
7562 	struct zone *zone;
7563 	int old_percpu_pagelist_fraction;
7564 	int ret;
7565 
7566 	mutex_lock(&pcp_batch_high_lock);
7567 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7568 
7569 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7570 	if (!write || ret < 0)
7571 		goto out;
7572 
7573 	/* Sanity checking to avoid pcp imbalance */
7574 	if (percpu_pagelist_fraction &&
7575 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7576 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7577 		ret = -EINVAL;
7578 		goto out;
7579 	}
7580 
7581 	/* No change? */
7582 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7583 		goto out;
7584 
7585 	for_each_populated_zone(zone) {
7586 		unsigned int cpu;
7587 
7588 		for_each_possible_cpu(cpu)
7589 			pageset_set_high_and_batch(zone,
7590 					per_cpu_ptr(zone->pageset, cpu));
7591 	}
7592 out:
7593 	mutex_unlock(&pcp_batch_high_lock);
7594 	return ret;
7595 }
7596 
7597 #ifdef CONFIG_NUMA
7598 int hashdist = HASHDIST_DEFAULT;
7599 
7600 static int __init set_hashdist(char *str)
7601 {
7602 	if (!str)
7603 		return 0;
7604 	hashdist = simple_strtoul(str, &str, 0);
7605 	return 1;
7606 }
7607 __setup("hashdist=", set_hashdist);
7608 #endif
7609 
7610 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7611 /*
7612  * Returns the number of pages that arch has reserved but
7613  * is not known to alloc_large_system_hash().
7614  */
7615 static unsigned long __init arch_reserved_kernel_pages(void)
7616 {
7617 	return 0;
7618 }
7619 #endif
7620 
7621 /*
7622  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7623  * machines. As memory size is increased the scale is also increased but at
7624  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7625  * quadruples the scale is increased by one, which means the size of hash table
7626  * only doubles, instead of quadrupling as well.
7627  * Because 32-bit systems cannot have large physical memory, where this scaling
7628  * makes sense, it is disabled on such platforms.
7629  */
7630 #if __BITS_PER_LONG > 32
7631 #define ADAPT_SCALE_BASE	(64ul << 30)
7632 #define ADAPT_SCALE_SHIFT	2
7633 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7634 #endif
7635 
7636 /*
7637  * allocate a large system hash table from bootmem
7638  * - it is assumed that the hash table must contain an exact power-of-2
7639  *   quantity of entries
7640  * - limit is the number of hash buckets, not the total allocation size
7641  */
7642 void *__init alloc_large_system_hash(const char *tablename,
7643 				     unsigned long bucketsize,
7644 				     unsigned long numentries,
7645 				     int scale,
7646 				     int flags,
7647 				     unsigned int *_hash_shift,
7648 				     unsigned int *_hash_mask,
7649 				     unsigned long low_limit,
7650 				     unsigned long high_limit)
7651 {
7652 	unsigned long long max = high_limit;
7653 	unsigned long log2qty, size;
7654 	void *table = NULL;
7655 	gfp_t gfp_flags;
7656 
7657 	/* allow the kernel cmdline to have a say */
7658 	if (!numentries) {
7659 		/* round applicable memory size up to nearest megabyte */
7660 		numentries = nr_kernel_pages;
7661 		numentries -= arch_reserved_kernel_pages();
7662 
7663 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7664 		if (PAGE_SHIFT < 20)
7665 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7666 
7667 #if __BITS_PER_LONG > 32
7668 		if (!high_limit) {
7669 			unsigned long adapt;
7670 
7671 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7672 			     adapt <<= ADAPT_SCALE_SHIFT)
7673 				scale++;
7674 		}
7675 #endif
7676 
7677 		/* limit to 1 bucket per 2^scale bytes of low memory */
7678 		if (scale > PAGE_SHIFT)
7679 			numentries >>= (scale - PAGE_SHIFT);
7680 		else
7681 			numentries <<= (PAGE_SHIFT - scale);
7682 
7683 		/* Make sure we've got at least a 0-order allocation.. */
7684 		if (unlikely(flags & HASH_SMALL)) {
7685 			/* Makes no sense without HASH_EARLY */
7686 			WARN_ON(!(flags & HASH_EARLY));
7687 			if (!(numentries >> *_hash_shift)) {
7688 				numentries = 1UL << *_hash_shift;
7689 				BUG_ON(!numentries);
7690 			}
7691 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7692 			numentries = PAGE_SIZE / bucketsize;
7693 	}
7694 	numentries = roundup_pow_of_two(numentries);
7695 
7696 	/* limit allocation size to 1/16 total memory by default */
7697 	if (max == 0) {
7698 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7699 		do_div(max, bucketsize);
7700 	}
7701 	max = min(max, 0x80000000ULL);
7702 
7703 	if (numentries < low_limit)
7704 		numentries = low_limit;
7705 	if (numentries > max)
7706 		numentries = max;
7707 
7708 	log2qty = ilog2(numentries);
7709 
7710 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7711 	do {
7712 		size = bucketsize << log2qty;
7713 		if (flags & HASH_EARLY) {
7714 			if (flags & HASH_ZERO)
7715 				table = memblock_virt_alloc_nopanic(size, 0);
7716 			else
7717 				table = memblock_virt_alloc_raw(size, 0);
7718 		} else if (hashdist) {
7719 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7720 		} else {
7721 			/*
7722 			 * If bucketsize is not a power-of-two, we may free
7723 			 * some pages at the end of hash table which
7724 			 * alloc_pages_exact() automatically does
7725 			 */
7726 			if (get_order(size) < MAX_ORDER) {
7727 				table = alloc_pages_exact(size, gfp_flags);
7728 				kmemleak_alloc(table, size, 1, gfp_flags);
7729 			}
7730 		}
7731 	} while (!table && size > PAGE_SIZE && --log2qty);
7732 
7733 	if (!table)
7734 		panic("Failed to allocate %s hash table\n", tablename);
7735 
7736 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7737 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7738 
7739 	if (_hash_shift)
7740 		*_hash_shift = log2qty;
7741 	if (_hash_mask)
7742 		*_hash_mask = (1 << log2qty) - 1;
7743 
7744 	return table;
7745 }
7746 
7747 /*
7748  * This function checks whether pageblock includes unmovable pages or not.
7749  * If @count is not zero, it is okay to include less @count unmovable pages
7750  *
7751  * PageLRU check without isolation or lru_lock could race so that
7752  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7753  * check without lock_page also may miss some movable non-lru pages at
7754  * race condition. So you can't expect this function should be exact.
7755  */
7756 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7757 			 int migratetype,
7758 			 bool skip_hwpoisoned_pages)
7759 {
7760 	unsigned long pfn, iter, found;
7761 
7762 	/*
7763 	 * TODO we could make this much more efficient by not checking every
7764 	 * page in the range if we know all of them are in MOVABLE_ZONE and
7765 	 * that the movable zone guarantees that pages are migratable but
7766 	 * the later is not the case right now unfortunatelly. E.g. movablecore
7767 	 * can still lead to having bootmem allocations in zone_movable.
7768 	 */
7769 
7770 	/*
7771 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7772 	 * CMA pageblocks even when they are not movable in fact so consider
7773 	 * them movable here.
7774 	 */
7775 	if (is_migrate_cma(migratetype) &&
7776 			is_migrate_cma(get_pageblock_migratetype(page)))
7777 		return false;
7778 
7779 	pfn = page_to_pfn(page);
7780 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7781 		unsigned long check = pfn + iter;
7782 
7783 		if (!pfn_valid_within(check))
7784 			continue;
7785 
7786 		page = pfn_to_page(check);
7787 
7788 		if (PageReserved(page))
7789 			goto unmovable;
7790 
7791 		/*
7792 		 * Hugepages are not in LRU lists, but they're movable.
7793 		 * We need not scan over tail pages bacause we don't
7794 		 * handle each tail page individually in migration.
7795 		 */
7796 		if (PageHuge(page)) {
7797 
7798 			if (!hugepage_migration_supported(page_hstate(page)))
7799 				goto unmovable;
7800 
7801 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7802 			continue;
7803 		}
7804 
7805 		/*
7806 		 * We can't use page_count without pin a page
7807 		 * because another CPU can free compound page.
7808 		 * This check already skips compound tails of THP
7809 		 * because their page->_refcount is zero at all time.
7810 		 */
7811 		if (!page_ref_count(page)) {
7812 			if (PageBuddy(page))
7813 				iter += (1 << page_order(page)) - 1;
7814 			continue;
7815 		}
7816 
7817 		/*
7818 		 * The HWPoisoned page may be not in buddy system, and
7819 		 * page_count() is not 0.
7820 		 */
7821 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7822 			continue;
7823 
7824 		if (__PageMovable(page))
7825 			continue;
7826 
7827 		if (!PageLRU(page))
7828 			found++;
7829 		/*
7830 		 * If there are RECLAIMABLE pages, we need to check
7831 		 * it.  But now, memory offline itself doesn't call
7832 		 * shrink_node_slabs() and it still to be fixed.
7833 		 */
7834 		/*
7835 		 * If the page is not RAM, page_count()should be 0.
7836 		 * we don't need more check. This is an _used_ not-movable page.
7837 		 *
7838 		 * The problematic thing here is PG_reserved pages. PG_reserved
7839 		 * is set to both of a memory hole page and a _used_ kernel
7840 		 * page at boot.
7841 		 */
7842 		if (found > count)
7843 			goto unmovable;
7844 	}
7845 	return false;
7846 unmovable:
7847 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7848 	return true;
7849 }
7850 
7851 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7852 
7853 static unsigned long pfn_max_align_down(unsigned long pfn)
7854 {
7855 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7856 			     pageblock_nr_pages) - 1);
7857 }
7858 
7859 static unsigned long pfn_max_align_up(unsigned long pfn)
7860 {
7861 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7862 				pageblock_nr_pages));
7863 }
7864 
7865 /* [start, end) must belong to a single zone. */
7866 static int __alloc_contig_migrate_range(struct compact_control *cc,
7867 					unsigned long start, unsigned long end)
7868 {
7869 	/* This function is based on compact_zone() from compaction.c. */
7870 	unsigned long nr_reclaimed;
7871 	unsigned long pfn = start;
7872 	unsigned int tries = 0;
7873 	int ret = 0;
7874 
7875 	migrate_prep();
7876 
7877 	while (pfn < end || !list_empty(&cc->migratepages)) {
7878 		if (fatal_signal_pending(current)) {
7879 			ret = -EINTR;
7880 			break;
7881 		}
7882 
7883 		if (list_empty(&cc->migratepages)) {
7884 			cc->nr_migratepages = 0;
7885 			pfn = isolate_migratepages_range(cc, pfn, end);
7886 			if (!pfn) {
7887 				ret = -EINTR;
7888 				break;
7889 			}
7890 			tries = 0;
7891 		} else if (++tries == 5) {
7892 			ret = ret < 0 ? ret : -EBUSY;
7893 			break;
7894 		}
7895 
7896 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7897 							&cc->migratepages);
7898 		cc->nr_migratepages -= nr_reclaimed;
7899 
7900 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7901 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7902 	}
7903 	if (ret < 0) {
7904 		putback_movable_pages(&cc->migratepages);
7905 		return ret;
7906 	}
7907 	return 0;
7908 }
7909 
7910 /**
7911  * alloc_contig_range() -- tries to allocate given range of pages
7912  * @start:	start PFN to allocate
7913  * @end:	one-past-the-last PFN to allocate
7914  * @migratetype:	migratetype of the underlaying pageblocks (either
7915  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7916  *			in range must have the same migratetype and it must
7917  *			be either of the two.
7918  * @gfp_mask:	GFP mask to use during compaction
7919  *
7920  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7921  * aligned.  The PFN range must belong to a single zone.
7922  *
7923  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7924  * pageblocks in the range.  Once isolated, the pageblocks should not
7925  * be modified by others.
7926  *
7927  * Returns zero on success or negative error code.  On success all
7928  * pages which PFN is in [start, end) are allocated for the caller and
7929  * need to be freed with free_contig_range().
7930  */
7931 int alloc_contig_range(unsigned long start, unsigned long end,
7932 		       unsigned migratetype, gfp_t gfp_mask)
7933 {
7934 	unsigned long outer_start, outer_end;
7935 	unsigned int order;
7936 	int ret = 0;
7937 
7938 	struct compact_control cc = {
7939 		.nr_migratepages = 0,
7940 		.order = -1,
7941 		.zone = page_zone(pfn_to_page(start)),
7942 		.mode = MIGRATE_SYNC,
7943 		.ignore_skip_hint = true,
7944 		.no_set_skip_hint = true,
7945 		.gfp_mask = current_gfp_context(gfp_mask),
7946 	};
7947 	INIT_LIST_HEAD(&cc.migratepages);
7948 
7949 	/*
7950 	 * What we do here is we mark all pageblocks in range as
7951 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7952 	 * have different sizes, and due to the way page allocator
7953 	 * work, we align the range to biggest of the two pages so
7954 	 * that page allocator won't try to merge buddies from
7955 	 * different pageblocks and change MIGRATE_ISOLATE to some
7956 	 * other migration type.
7957 	 *
7958 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7959 	 * migrate the pages from an unaligned range (ie. pages that
7960 	 * we are interested in).  This will put all the pages in
7961 	 * range back to page allocator as MIGRATE_ISOLATE.
7962 	 *
7963 	 * When this is done, we take the pages in range from page
7964 	 * allocator removing them from the buddy system.  This way
7965 	 * page allocator will never consider using them.
7966 	 *
7967 	 * This lets us mark the pageblocks back as
7968 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7969 	 * aligned range but not in the unaligned, original range are
7970 	 * put back to page allocator so that buddy can use them.
7971 	 */
7972 
7973 	ret = start_isolate_page_range(pfn_max_align_down(start),
7974 				       pfn_max_align_up(end), migratetype,
7975 				       false);
7976 	if (ret)
7977 		return ret;
7978 
7979 	/*
7980 	 * In case of -EBUSY, we'd like to know which page causes problem.
7981 	 * So, just fall through. test_pages_isolated() has a tracepoint
7982 	 * which will report the busy page.
7983 	 *
7984 	 * It is possible that busy pages could become available before
7985 	 * the call to test_pages_isolated, and the range will actually be
7986 	 * allocated.  So, if we fall through be sure to clear ret so that
7987 	 * -EBUSY is not accidentally used or returned to caller.
7988 	 */
7989 	ret = __alloc_contig_migrate_range(&cc, start, end);
7990 	if (ret && ret != -EBUSY)
7991 		goto done;
7992 	ret =0;
7993 
7994 	/*
7995 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7996 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7997 	 * more, all pages in [start, end) are free in page allocator.
7998 	 * What we are going to do is to allocate all pages from
7999 	 * [start, end) (that is remove them from page allocator).
8000 	 *
8001 	 * The only problem is that pages at the beginning and at the
8002 	 * end of interesting range may be not aligned with pages that
8003 	 * page allocator holds, ie. they can be part of higher order
8004 	 * pages.  Because of this, we reserve the bigger range and
8005 	 * once this is done free the pages we are not interested in.
8006 	 *
8007 	 * We don't have to hold zone->lock here because the pages are
8008 	 * isolated thus they won't get removed from buddy.
8009 	 */
8010 
8011 	lru_add_drain_all();
8012 	drain_all_pages(cc.zone);
8013 
8014 	order = 0;
8015 	outer_start = start;
8016 	while (!PageBuddy(pfn_to_page(outer_start))) {
8017 		if (++order >= MAX_ORDER) {
8018 			outer_start = start;
8019 			break;
8020 		}
8021 		outer_start &= ~0UL << order;
8022 	}
8023 
8024 	if (outer_start != start) {
8025 		order = page_order(pfn_to_page(outer_start));
8026 
8027 		/*
8028 		 * outer_start page could be small order buddy page and
8029 		 * it doesn't include start page. Adjust outer_start
8030 		 * in this case to report failed page properly
8031 		 * on tracepoint in test_pages_isolated()
8032 		 */
8033 		if (outer_start + (1UL << order) <= start)
8034 			outer_start = start;
8035 	}
8036 
8037 	/* Make sure the range is really isolated. */
8038 	if (test_pages_isolated(outer_start, end, false)) {
8039 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8040 			__func__, outer_start, end);
8041 		ret = -EBUSY;
8042 		goto done;
8043 	}
8044 
8045 	/* Grab isolated pages from freelists. */
8046 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8047 	if (!outer_end) {
8048 		ret = -EBUSY;
8049 		goto done;
8050 	}
8051 
8052 	/* Free head and tail (if any) */
8053 	if (start != outer_start)
8054 		free_contig_range(outer_start, start - outer_start);
8055 	if (end != outer_end)
8056 		free_contig_range(end, outer_end - end);
8057 
8058 done:
8059 	undo_isolate_page_range(pfn_max_align_down(start),
8060 				pfn_max_align_up(end), migratetype);
8061 	return ret;
8062 }
8063 
8064 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8065 {
8066 	unsigned int count = 0;
8067 
8068 	for (; nr_pages--; pfn++) {
8069 		struct page *page = pfn_to_page(pfn);
8070 
8071 		count += page_count(page) != 1;
8072 		__free_page(page);
8073 	}
8074 	WARN(count != 0, "%d pages are still in use!\n", count);
8075 }
8076 #endif
8077 
8078 #ifdef CONFIG_MEMORY_HOTPLUG
8079 /*
8080  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8081  * page high values need to be recalulated.
8082  */
8083 void __meminit zone_pcp_update(struct zone *zone)
8084 {
8085 	unsigned cpu;
8086 	mutex_lock(&pcp_batch_high_lock);
8087 	for_each_possible_cpu(cpu)
8088 		pageset_set_high_and_batch(zone,
8089 				per_cpu_ptr(zone->pageset, cpu));
8090 	mutex_unlock(&pcp_batch_high_lock);
8091 }
8092 #endif
8093 
8094 void zone_pcp_reset(struct zone *zone)
8095 {
8096 	unsigned long flags;
8097 	int cpu;
8098 	struct per_cpu_pageset *pset;
8099 
8100 	/* avoid races with drain_pages()  */
8101 	local_irq_save(flags);
8102 	if (zone->pageset != &boot_pageset) {
8103 		for_each_online_cpu(cpu) {
8104 			pset = per_cpu_ptr(zone->pageset, cpu);
8105 			drain_zonestat(zone, pset);
8106 		}
8107 		free_percpu(zone->pageset);
8108 		zone->pageset = &boot_pageset;
8109 	}
8110 	local_irq_restore(flags);
8111 }
8112 
8113 #ifdef CONFIG_MEMORY_HOTREMOVE
8114 /*
8115  * All pages in the range must be in a single zone and isolated
8116  * before calling this.
8117  */
8118 void
8119 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8120 {
8121 	struct page *page;
8122 	struct zone *zone;
8123 	unsigned int order, i;
8124 	unsigned long pfn;
8125 	unsigned long flags;
8126 	/* find the first valid pfn */
8127 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8128 		if (pfn_valid(pfn))
8129 			break;
8130 	if (pfn == end_pfn)
8131 		return;
8132 	offline_mem_sections(pfn, end_pfn);
8133 	zone = page_zone(pfn_to_page(pfn));
8134 	spin_lock_irqsave(&zone->lock, flags);
8135 	pfn = start_pfn;
8136 	while (pfn < end_pfn) {
8137 		if (!pfn_valid(pfn)) {
8138 			pfn++;
8139 			continue;
8140 		}
8141 		page = pfn_to_page(pfn);
8142 		/*
8143 		 * The HWPoisoned page may be not in buddy system, and
8144 		 * page_count() is not 0.
8145 		 */
8146 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8147 			pfn++;
8148 			SetPageReserved(page);
8149 			continue;
8150 		}
8151 
8152 		BUG_ON(page_count(page));
8153 		BUG_ON(!PageBuddy(page));
8154 		order = page_order(page);
8155 #ifdef CONFIG_DEBUG_VM
8156 		pr_info("remove from free list %lx %d %lx\n",
8157 			pfn, 1 << order, end_pfn);
8158 #endif
8159 		list_del(&page->lru);
8160 		rmv_page_order(page);
8161 		zone->free_area[order].nr_free--;
8162 		for (i = 0; i < (1 << order); i++)
8163 			SetPageReserved((page+i));
8164 		pfn += (1 << order);
8165 	}
8166 	spin_unlock_irqrestore(&zone->lock, flags);
8167 }
8168 #endif
8169 
8170 bool is_free_buddy_page(struct page *page)
8171 {
8172 	struct zone *zone = page_zone(page);
8173 	unsigned long pfn = page_to_pfn(page);
8174 	unsigned long flags;
8175 	unsigned int order;
8176 
8177 	spin_lock_irqsave(&zone->lock, flags);
8178 	for (order = 0; order < MAX_ORDER; order++) {
8179 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8180 
8181 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8182 			break;
8183 	}
8184 	spin_unlock_irqrestore(&zone->lock, flags);
8185 
8186 	return order < MAX_ORDER;
8187 }
8188 
8189 #ifdef CONFIG_MEMORY_FAILURE
8190 /*
8191  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8192  * test is performed under the zone lock to prevent a race against page
8193  * allocation.
8194  */
8195 bool set_hwpoison_free_buddy_page(struct page *page)
8196 {
8197 	struct zone *zone = page_zone(page);
8198 	unsigned long pfn = page_to_pfn(page);
8199 	unsigned long flags;
8200 	unsigned int order;
8201 	bool hwpoisoned = false;
8202 
8203 	spin_lock_irqsave(&zone->lock, flags);
8204 	for (order = 0; order < MAX_ORDER; order++) {
8205 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8206 
8207 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8208 			if (!TestSetPageHWPoison(page))
8209 				hwpoisoned = true;
8210 			break;
8211 		}
8212 	}
8213 	spin_unlock_irqrestore(&zone->lock, flags);
8214 
8215 	return hwpoisoned;
8216 }
8217 #endif
8218