1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 int _node_numa_mem_[MAX_NUMNODES]; 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 DEFINE_MUTEX(pcpu_drain_mutex); 107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return section_to_usemap(__pfn_to_section(pfn)); 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 __free_pages_ok(page, compound_order(page)); 674 } 675 676 void prep_compound_page(struct page *page, unsigned int order) 677 { 678 int i; 679 int nr_pages = 1 << order; 680 681 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 682 set_compound_order(page, order); 683 __SetPageHead(page); 684 for (i = 1; i < nr_pages; i++) { 685 struct page *p = page + i; 686 set_page_count(p, 0); 687 p->mapping = TAIL_MAPPING; 688 set_compound_head(p, page); 689 } 690 atomic_set(compound_mapcount_ptr(page), -1); 691 } 692 693 #ifdef CONFIG_DEBUG_PAGEALLOC 694 unsigned int _debug_guardpage_minorder; 695 696 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 697 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 698 #else 699 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 700 #endif 701 EXPORT_SYMBOL(_debug_pagealloc_enabled); 702 703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 704 705 static int __init early_debug_pagealloc(char *buf) 706 { 707 bool enable = false; 708 709 if (kstrtobool(buf, &enable)) 710 return -EINVAL; 711 712 if (enable) 713 static_branch_enable(&_debug_pagealloc_enabled); 714 715 return 0; 716 } 717 early_param("debug_pagealloc", early_debug_pagealloc); 718 719 static void init_debug_guardpage(void) 720 { 721 if (!debug_pagealloc_enabled()) 722 return; 723 724 if (!debug_guardpage_minorder()) 725 return; 726 727 static_branch_enable(&_debug_guardpage_enabled); 728 } 729 730 static int __init debug_guardpage_minorder_setup(char *buf) 731 { 732 unsigned long res; 733 734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 735 pr_err("Bad debug_guardpage_minorder value\n"); 736 return 0; 737 } 738 _debug_guardpage_minorder = res; 739 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 740 return 0; 741 } 742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 743 744 static inline bool set_page_guard(struct zone *zone, struct page *page, 745 unsigned int order, int migratetype) 746 { 747 if (!debug_guardpage_enabled()) 748 return false; 749 750 if (order >= debug_guardpage_minorder()) 751 return false; 752 753 __SetPageGuard(page); 754 INIT_LIST_HEAD(&page->lru); 755 set_page_private(page, order); 756 /* Guard pages are not available for any usage */ 757 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 758 759 return true; 760 } 761 762 static inline void clear_page_guard(struct zone *zone, struct page *page, 763 unsigned int order, int migratetype) 764 { 765 if (!debug_guardpage_enabled()) 766 return; 767 768 __ClearPageGuard(page); 769 770 set_page_private(page, 0); 771 if (!is_migrate_isolate(migratetype)) 772 __mod_zone_freepage_state(zone, (1 << order), migratetype); 773 } 774 #else 775 static inline bool set_page_guard(struct zone *zone, struct page *page, 776 unsigned int order, int migratetype) { return false; } 777 static inline void clear_page_guard(struct zone *zone, struct page *page, 778 unsigned int order, int migratetype) {} 779 #endif 780 781 static inline void set_page_order(struct page *page, unsigned int order) 782 { 783 set_page_private(page, order); 784 __SetPageBuddy(page); 785 } 786 787 /* 788 * This function checks whether a page is free && is the buddy 789 * we can coalesce a page and its buddy if 790 * (a) the buddy is not in a hole (check before calling!) && 791 * (b) the buddy is in the buddy system && 792 * (c) a page and its buddy have the same order && 793 * (d) a page and its buddy are in the same zone. 794 * 795 * For recording whether a page is in the buddy system, we set PageBuddy. 796 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 797 * 798 * For recording page's order, we use page_private(page). 799 */ 800 static inline int page_is_buddy(struct page *page, struct page *buddy, 801 unsigned int order) 802 { 803 if (page_is_guard(buddy) && page_order(buddy) == order) { 804 if (page_zone_id(page) != page_zone_id(buddy)) 805 return 0; 806 807 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 808 809 return 1; 810 } 811 812 if (PageBuddy(buddy) && page_order(buddy) == order) { 813 /* 814 * zone check is done late to avoid uselessly 815 * calculating zone/node ids for pages that could 816 * never merge. 817 */ 818 if (page_zone_id(page) != page_zone_id(buddy)) 819 return 0; 820 821 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 822 823 return 1; 824 } 825 return 0; 826 } 827 828 #ifdef CONFIG_COMPACTION 829 static inline struct capture_control *task_capc(struct zone *zone) 830 { 831 struct capture_control *capc = current->capture_control; 832 833 return capc && 834 !(current->flags & PF_KTHREAD) && 835 !capc->page && 836 capc->cc->zone == zone && 837 capc->cc->direct_compaction ? capc : NULL; 838 } 839 840 static inline bool 841 compaction_capture(struct capture_control *capc, struct page *page, 842 int order, int migratetype) 843 { 844 if (!capc || order != capc->cc->order) 845 return false; 846 847 /* Do not accidentally pollute CMA or isolated regions*/ 848 if (is_migrate_cma(migratetype) || 849 is_migrate_isolate(migratetype)) 850 return false; 851 852 /* 853 * Do not let lower order allocations polluate a movable pageblock. 854 * This might let an unmovable request use a reclaimable pageblock 855 * and vice-versa but no more than normal fallback logic which can 856 * have trouble finding a high-order free page. 857 */ 858 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 859 return false; 860 861 capc->page = page; 862 return true; 863 } 864 865 #else 866 static inline struct capture_control *task_capc(struct zone *zone) 867 { 868 return NULL; 869 } 870 871 static inline bool 872 compaction_capture(struct capture_control *capc, struct page *page, 873 int order, int migratetype) 874 { 875 return false; 876 } 877 #endif /* CONFIG_COMPACTION */ 878 879 /* 880 * Freeing function for a buddy system allocator. 881 * 882 * The concept of a buddy system is to maintain direct-mapped table 883 * (containing bit values) for memory blocks of various "orders". 884 * The bottom level table contains the map for the smallest allocatable 885 * units of memory (here, pages), and each level above it describes 886 * pairs of units from the levels below, hence, "buddies". 887 * At a high level, all that happens here is marking the table entry 888 * at the bottom level available, and propagating the changes upward 889 * as necessary, plus some accounting needed to play nicely with other 890 * parts of the VM system. 891 * At each level, we keep a list of pages, which are heads of continuous 892 * free pages of length of (1 << order) and marked with PageBuddy. 893 * Page's order is recorded in page_private(page) field. 894 * So when we are allocating or freeing one, we can derive the state of the 895 * other. That is, if we allocate a small block, and both were 896 * free, the remainder of the region must be split into blocks. 897 * If a block is freed, and its buddy is also free, then this 898 * triggers coalescing into a block of larger size. 899 * 900 * -- nyc 901 */ 902 903 static inline void __free_one_page(struct page *page, 904 unsigned long pfn, 905 struct zone *zone, unsigned int order, 906 int migratetype) 907 { 908 unsigned long combined_pfn; 909 unsigned long uninitialized_var(buddy_pfn); 910 struct page *buddy; 911 unsigned int max_order; 912 struct capture_control *capc = task_capc(zone); 913 914 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 915 916 VM_BUG_ON(!zone_is_initialized(zone)); 917 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 918 919 VM_BUG_ON(migratetype == -1); 920 if (likely(!is_migrate_isolate(migratetype))) 921 __mod_zone_freepage_state(zone, 1 << order, migratetype); 922 923 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 924 VM_BUG_ON_PAGE(bad_range(zone, page), page); 925 926 continue_merging: 927 while (order < max_order - 1) { 928 if (compaction_capture(capc, page, order, migratetype)) { 929 __mod_zone_freepage_state(zone, -(1 << order), 930 migratetype); 931 return; 932 } 933 buddy_pfn = __find_buddy_pfn(pfn, order); 934 buddy = page + (buddy_pfn - pfn); 935 936 if (!pfn_valid_within(buddy_pfn)) 937 goto done_merging; 938 if (!page_is_buddy(page, buddy, order)) 939 goto done_merging; 940 /* 941 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 942 * merge with it and move up one order. 943 */ 944 if (page_is_guard(buddy)) 945 clear_page_guard(zone, buddy, order, migratetype); 946 else 947 del_page_from_free_area(buddy, &zone->free_area[order]); 948 combined_pfn = buddy_pfn & pfn; 949 page = page + (combined_pfn - pfn); 950 pfn = combined_pfn; 951 order++; 952 } 953 if (max_order < MAX_ORDER) { 954 /* If we are here, it means order is >= pageblock_order. 955 * We want to prevent merge between freepages on isolate 956 * pageblock and normal pageblock. Without this, pageblock 957 * isolation could cause incorrect freepage or CMA accounting. 958 * 959 * We don't want to hit this code for the more frequent 960 * low-order merging. 961 */ 962 if (unlikely(has_isolate_pageblock(zone))) { 963 int buddy_mt; 964 965 buddy_pfn = __find_buddy_pfn(pfn, order); 966 buddy = page + (buddy_pfn - pfn); 967 buddy_mt = get_pageblock_migratetype(buddy); 968 969 if (migratetype != buddy_mt 970 && (is_migrate_isolate(migratetype) || 971 is_migrate_isolate(buddy_mt))) 972 goto done_merging; 973 } 974 max_order++; 975 goto continue_merging; 976 } 977 978 done_merging: 979 set_page_order(page, order); 980 981 /* 982 * If this is not the largest possible page, check if the buddy 983 * of the next-highest order is free. If it is, it's possible 984 * that pages are being freed that will coalesce soon. In case, 985 * that is happening, add the free page to the tail of the list 986 * so it's less likely to be used soon and more likely to be merged 987 * as a higher order page 988 */ 989 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 990 && !is_shuffle_order(order)) { 991 struct page *higher_page, *higher_buddy; 992 combined_pfn = buddy_pfn & pfn; 993 higher_page = page + (combined_pfn - pfn); 994 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 995 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 996 if (pfn_valid_within(buddy_pfn) && 997 page_is_buddy(higher_page, higher_buddy, order + 1)) { 998 add_to_free_area_tail(page, &zone->free_area[order], 999 migratetype); 1000 return; 1001 } 1002 } 1003 1004 if (is_shuffle_order(order)) 1005 add_to_free_area_random(page, &zone->free_area[order], 1006 migratetype); 1007 else 1008 add_to_free_area(page, &zone->free_area[order], migratetype); 1009 1010 } 1011 1012 /* 1013 * A bad page could be due to a number of fields. Instead of multiple branches, 1014 * try and check multiple fields with one check. The caller must do a detailed 1015 * check if necessary. 1016 */ 1017 static inline bool page_expected_state(struct page *page, 1018 unsigned long check_flags) 1019 { 1020 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1021 return false; 1022 1023 if (unlikely((unsigned long)page->mapping | 1024 page_ref_count(page) | 1025 #ifdef CONFIG_MEMCG 1026 (unsigned long)page->mem_cgroup | 1027 #endif 1028 (page->flags & check_flags))) 1029 return false; 1030 1031 return true; 1032 } 1033 1034 static void free_pages_check_bad(struct page *page) 1035 { 1036 const char *bad_reason; 1037 unsigned long bad_flags; 1038 1039 bad_reason = NULL; 1040 bad_flags = 0; 1041 1042 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1043 bad_reason = "nonzero mapcount"; 1044 if (unlikely(page->mapping != NULL)) 1045 bad_reason = "non-NULL mapping"; 1046 if (unlikely(page_ref_count(page) != 0)) 1047 bad_reason = "nonzero _refcount"; 1048 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1049 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1050 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1051 } 1052 #ifdef CONFIG_MEMCG 1053 if (unlikely(page->mem_cgroup)) 1054 bad_reason = "page still charged to cgroup"; 1055 #endif 1056 bad_page(page, bad_reason, bad_flags); 1057 } 1058 1059 static inline int free_pages_check(struct page *page) 1060 { 1061 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1062 return 0; 1063 1064 /* Something has gone sideways, find it */ 1065 free_pages_check_bad(page); 1066 return 1; 1067 } 1068 1069 static int free_tail_pages_check(struct page *head_page, struct page *page) 1070 { 1071 int ret = 1; 1072 1073 /* 1074 * We rely page->lru.next never has bit 0 set, unless the page 1075 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1076 */ 1077 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1078 1079 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1080 ret = 0; 1081 goto out; 1082 } 1083 switch (page - head_page) { 1084 case 1: 1085 /* the first tail page: ->mapping may be compound_mapcount() */ 1086 if (unlikely(compound_mapcount(page))) { 1087 bad_page(page, "nonzero compound_mapcount", 0); 1088 goto out; 1089 } 1090 break; 1091 case 2: 1092 /* 1093 * the second tail page: ->mapping is 1094 * deferred_list.next -- ignore value. 1095 */ 1096 break; 1097 default: 1098 if (page->mapping != TAIL_MAPPING) { 1099 bad_page(page, "corrupted mapping in tail page", 0); 1100 goto out; 1101 } 1102 break; 1103 } 1104 if (unlikely(!PageTail(page))) { 1105 bad_page(page, "PageTail not set", 0); 1106 goto out; 1107 } 1108 if (unlikely(compound_head(page) != head_page)) { 1109 bad_page(page, "compound_head not consistent", 0); 1110 goto out; 1111 } 1112 ret = 0; 1113 out: 1114 page->mapping = NULL; 1115 clear_compound_head(page); 1116 return ret; 1117 } 1118 1119 static void kernel_init_free_pages(struct page *page, int numpages) 1120 { 1121 int i; 1122 1123 for (i = 0; i < numpages; i++) 1124 clear_highpage(page + i); 1125 } 1126 1127 static __always_inline bool free_pages_prepare(struct page *page, 1128 unsigned int order, bool check_free) 1129 { 1130 int bad = 0; 1131 1132 VM_BUG_ON_PAGE(PageTail(page), page); 1133 1134 trace_mm_page_free(page, order); 1135 1136 /* 1137 * Check tail pages before head page information is cleared to 1138 * avoid checking PageCompound for order-0 pages. 1139 */ 1140 if (unlikely(order)) { 1141 bool compound = PageCompound(page); 1142 int i; 1143 1144 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1145 1146 if (compound) 1147 ClearPageDoubleMap(page); 1148 for (i = 1; i < (1 << order); i++) { 1149 if (compound) 1150 bad += free_tail_pages_check(page, page + i); 1151 if (unlikely(free_pages_check(page + i))) { 1152 bad++; 1153 continue; 1154 } 1155 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1156 } 1157 } 1158 if (PageMappingFlags(page)) 1159 page->mapping = NULL; 1160 if (memcg_kmem_enabled() && PageKmemcg(page)) 1161 __memcg_kmem_uncharge(page, order); 1162 if (check_free) 1163 bad += free_pages_check(page); 1164 if (bad) 1165 return false; 1166 1167 page_cpupid_reset_last(page); 1168 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1169 reset_page_owner(page, order); 1170 1171 if (!PageHighMem(page)) { 1172 debug_check_no_locks_freed(page_address(page), 1173 PAGE_SIZE << order); 1174 debug_check_no_obj_freed(page_address(page), 1175 PAGE_SIZE << order); 1176 } 1177 arch_free_page(page, order); 1178 if (want_init_on_free()) 1179 kernel_init_free_pages(page, 1 << order); 1180 1181 kernel_poison_pages(page, 1 << order, 0); 1182 if (debug_pagealloc_enabled()) 1183 kernel_map_pages(page, 1 << order, 0); 1184 1185 kasan_free_nondeferred_pages(page, order); 1186 1187 return true; 1188 } 1189 1190 #ifdef CONFIG_DEBUG_VM 1191 /* 1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1194 * moved from pcp lists to free lists. 1195 */ 1196 static bool free_pcp_prepare(struct page *page) 1197 { 1198 return free_pages_prepare(page, 0, true); 1199 } 1200 1201 static bool bulkfree_pcp_prepare(struct page *page) 1202 { 1203 if (debug_pagealloc_enabled()) 1204 return free_pages_check(page); 1205 else 1206 return false; 1207 } 1208 #else 1209 /* 1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1211 * moving from pcp lists to free list in order to reduce overhead. With 1212 * debug_pagealloc enabled, they are checked also immediately when being freed 1213 * to the pcp lists. 1214 */ 1215 static bool free_pcp_prepare(struct page *page) 1216 { 1217 if (debug_pagealloc_enabled()) 1218 return free_pages_prepare(page, 0, true); 1219 else 1220 return free_pages_prepare(page, 0, false); 1221 } 1222 1223 static bool bulkfree_pcp_prepare(struct page *page) 1224 { 1225 return free_pages_check(page); 1226 } 1227 #endif /* CONFIG_DEBUG_VM */ 1228 1229 static inline void prefetch_buddy(struct page *page) 1230 { 1231 unsigned long pfn = page_to_pfn(page); 1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1233 struct page *buddy = page + (buddy_pfn - pfn); 1234 1235 prefetch(buddy); 1236 } 1237 1238 /* 1239 * Frees a number of pages from the PCP lists 1240 * Assumes all pages on list are in same zone, and of same order. 1241 * count is the number of pages to free. 1242 * 1243 * If the zone was previously in an "all pages pinned" state then look to 1244 * see if this freeing clears that state. 1245 * 1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1247 * pinned" detection logic. 1248 */ 1249 static void free_pcppages_bulk(struct zone *zone, int count, 1250 struct per_cpu_pages *pcp) 1251 { 1252 int migratetype = 0; 1253 int batch_free = 0; 1254 int prefetch_nr = 0; 1255 bool isolated_pageblocks; 1256 struct page *page, *tmp; 1257 LIST_HEAD(head); 1258 1259 while (count) { 1260 struct list_head *list; 1261 1262 /* 1263 * Remove pages from lists in a round-robin fashion. A 1264 * batch_free count is maintained that is incremented when an 1265 * empty list is encountered. This is so more pages are freed 1266 * off fuller lists instead of spinning excessively around empty 1267 * lists 1268 */ 1269 do { 1270 batch_free++; 1271 if (++migratetype == MIGRATE_PCPTYPES) 1272 migratetype = 0; 1273 list = &pcp->lists[migratetype]; 1274 } while (list_empty(list)); 1275 1276 /* This is the only non-empty list. Free them all. */ 1277 if (batch_free == MIGRATE_PCPTYPES) 1278 batch_free = count; 1279 1280 do { 1281 page = list_last_entry(list, struct page, lru); 1282 /* must delete to avoid corrupting pcp list */ 1283 list_del(&page->lru); 1284 pcp->count--; 1285 1286 if (bulkfree_pcp_prepare(page)) 1287 continue; 1288 1289 list_add_tail(&page->lru, &head); 1290 1291 /* 1292 * We are going to put the page back to the global 1293 * pool, prefetch its buddy to speed up later access 1294 * under zone->lock. It is believed the overhead of 1295 * an additional test and calculating buddy_pfn here 1296 * can be offset by reduced memory latency later. To 1297 * avoid excessive prefetching due to large count, only 1298 * prefetch buddy for the first pcp->batch nr of pages. 1299 */ 1300 if (prefetch_nr++ < pcp->batch) 1301 prefetch_buddy(page); 1302 } while (--count && --batch_free && !list_empty(list)); 1303 } 1304 1305 spin_lock(&zone->lock); 1306 isolated_pageblocks = has_isolate_pageblock(zone); 1307 1308 /* 1309 * Use safe version since after __free_one_page(), 1310 * page->lru.next will not point to original list. 1311 */ 1312 list_for_each_entry_safe(page, tmp, &head, lru) { 1313 int mt = get_pcppage_migratetype(page); 1314 /* MIGRATE_ISOLATE page should not go to pcplists */ 1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1316 /* Pageblock could have been isolated meanwhile */ 1317 if (unlikely(isolated_pageblocks)) 1318 mt = get_pageblock_migratetype(page); 1319 1320 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1321 trace_mm_page_pcpu_drain(page, 0, mt); 1322 } 1323 spin_unlock(&zone->lock); 1324 } 1325 1326 static void free_one_page(struct zone *zone, 1327 struct page *page, unsigned long pfn, 1328 unsigned int order, 1329 int migratetype) 1330 { 1331 spin_lock(&zone->lock); 1332 if (unlikely(has_isolate_pageblock(zone) || 1333 is_migrate_isolate(migratetype))) { 1334 migratetype = get_pfnblock_migratetype(page, pfn); 1335 } 1336 __free_one_page(page, pfn, zone, order, migratetype); 1337 spin_unlock(&zone->lock); 1338 } 1339 1340 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1341 unsigned long zone, int nid) 1342 { 1343 mm_zero_struct_page(page); 1344 set_page_links(page, zone, nid, pfn); 1345 init_page_count(page); 1346 page_mapcount_reset(page); 1347 page_cpupid_reset_last(page); 1348 page_kasan_tag_reset(page); 1349 1350 INIT_LIST_HEAD(&page->lru); 1351 #ifdef WANT_PAGE_VIRTUAL 1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1353 if (!is_highmem_idx(zone)) 1354 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1355 #endif 1356 } 1357 1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1359 static void __meminit init_reserved_page(unsigned long pfn) 1360 { 1361 pg_data_t *pgdat; 1362 int nid, zid; 1363 1364 if (!early_page_uninitialised(pfn)) 1365 return; 1366 1367 nid = early_pfn_to_nid(pfn); 1368 pgdat = NODE_DATA(nid); 1369 1370 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1371 struct zone *zone = &pgdat->node_zones[zid]; 1372 1373 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1374 break; 1375 } 1376 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1377 } 1378 #else 1379 static inline void init_reserved_page(unsigned long pfn) 1380 { 1381 } 1382 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1383 1384 /* 1385 * Initialised pages do not have PageReserved set. This function is 1386 * called for each range allocated by the bootmem allocator and 1387 * marks the pages PageReserved. The remaining valid pages are later 1388 * sent to the buddy page allocator. 1389 */ 1390 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1391 { 1392 unsigned long start_pfn = PFN_DOWN(start); 1393 unsigned long end_pfn = PFN_UP(end); 1394 1395 for (; start_pfn < end_pfn; start_pfn++) { 1396 if (pfn_valid(start_pfn)) { 1397 struct page *page = pfn_to_page(start_pfn); 1398 1399 init_reserved_page(start_pfn); 1400 1401 /* Avoid false-positive PageTail() */ 1402 INIT_LIST_HEAD(&page->lru); 1403 1404 /* 1405 * no need for atomic set_bit because the struct 1406 * page is not visible yet so nobody should 1407 * access it yet. 1408 */ 1409 __SetPageReserved(page); 1410 } 1411 } 1412 } 1413 1414 static void __free_pages_ok(struct page *page, unsigned int order) 1415 { 1416 unsigned long flags; 1417 int migratetype; 1418 unsigned long pfn = page_to_pfn(page); 1419 1420 if (!free_pages_prepare(page, order, true)) 1421 return; 1422 1423 migratetype = get_pfnblock_migratetype(page, pfn); 1424 local_irq_save(flags); 1425 __count_vm_events(PGFREE, 1 << order); 1426 free_one_page(page_zone(page), page, pfn, order, migratetype); 1427 local_irq_restore(flags); 1428 } 1429 1430 void __free_pages_core(struct page *page, unsigned int order) 1431 { 1432 unsigned int nr_pages = 1 << order; 1433 struct page *p = page; 1434 unsigned int loop; 1435 1436 prefetchw(p); 1437 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1438 prefetchw(p + 1); 1439 __ClearPageReserved(p); 1440 set_page_count(p, 0); 1441 } 1442 __ClearPageReserved(p); 1443 set_page_count(p, 0); 1444 1445 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1446 set_page_refcounted(page); 1447 __free_pages(page, order); 1448 } 1449 1450 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1452 1453 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1454 1455 int __meminit early_pfn_to_nid(unsigned long pfn) 1456 { 1457 static DEFINE_SPINLOCK(early_pfn_lock); 1458 int nid; 1459 1460 spin_lock(&early_pfn_lock); 1461 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1462 if (nid < 0) 1463 nid = first_online_node; 1464 spin_unlock(&early_pfn_lock); 1465 1466 return nid; 1467 } 1468 #endif 1469 1470 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1471 /* Only safe to use early in boot when initialisation is single-threaded */ 1472 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1473 { 1474 int nid; 1475 1476 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1477 if (nid >= 0 && nid != node) 1478 return false; 1479 return true; 1480 } 1481 1482 #else 1483 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1484 { 1485 return true; 1486 } 1487 #endif 1488 1489 1490 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1491 unsigned int order) 1492 { 1493 if (early_page_uninitialised(pfn)) 1494 return; 1495 __free_pages_core(page, order); 1496 } 1497 1498 /* 1499 * Check that the whole (or subset of) a pageblock given by the interval of 1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1501 * with the migration of free compaction scanner. The scanners then need to 1502 * use only pfn_valid_within() check for arches that allow holes within 1503 * pageblocks. 1504 * 1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1506 * 1507 * It's possible on some configurations to have a setup like node0 node1 node0 1508 * i.e. it's possible that all pages within a zones range of pages do not 1509 * belong to a single zone. We assume that a border between node0 and node1 1510 * can occur within a single pageblock, but not a node0 node1 node0 1511 * interleaving within a single pageblock. It is therefore sufficient to check 1512 * the first and last page of a pageblock and avoid checking each individual 1513 * page in a pageblock. 1514 */ 1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1516 unsigned long end_pfn, struct zone *zone) 1517 { 1518 struct page *start_page; 1519 struct page *end_page; 1520 1521 /* end_pfn is one past the range we are checking */ 1522 end_pfn--; 1523 1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1525 return NULL; 1526 1527 start_page = pfn_to_online_page(start_pfn); 1528 if (!start_page) 1529 return NULL; 1530 1531 if (page_zone(start_page) != zone) 1532 return NULL; 1533 1534 end_page = pfn_to_page(end_pfn); 1535 1536 /* This gives a shorter code than deriving page_zone(end_page) */ 1537 if (page_zone_id(start_page) != page_zone_id(end_page)) 1538 return NULL; 1539 1540 return start_page; 1541 } 1542 1543 void set_zone_contiguous(struct zone *zone) 1544 { 1545 unsigned long block_start_pfn = zone->zone_start_pfn; 1546 unsigned long block_end_pfn; 1547 1548 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1549 for (; block_start_pfn < zone_end_pfn(zone); 1550 block_start_pfn = block_end_pfn, 1551 block_end_pfn += pageblock_nr_pages) { 1552 1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1554 1555 if (!__pageblock_pfn_to_page(block_start_pfn, 1556 block_end_pfn, zone)) 1557 return; 1558 } 1559 1560 /* We confirm that there is no hole */ 1561 zone->contiguous = true; 1562 } 1563 1564 void clear_zone_contiguous(struct zone *zone) 1565 { 1566 zone->contiguous = false; 1567 } 1568 1569 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1570 static void __init deferred_free_range(unsigned long pfn, 1571 unsigned long nr_pages) 1572 { 1573 struct page *page; 1574 unsigned long i; 1575 1576 if (!nr_pages) 1577 return; 1578 1579 page = pfn_to_page(pfn); 1580 1581 /* Free a large naturally-aligned chunk if possible */ 1582 if (nr_pages == pageblock_nr_pages && 1583 (pfn & (pageblock_nr_pages - 1)) == 0) { 1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1585 __free_pages_core(page, pageblock_order); 1586 return; 1587 } 1588 1589 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1590 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1592 __free_pages_core(page, 0); 1593 } 1594 } 1595 1596 /* Completion tracking for deferred_init_memmap() threads */ 1597 static atomic_t pgdat_init_n_undone __initdata; 1598 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1599 1600 static inline void __init pgdat_init_report_one_done(void) 1601 { 1602 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1603 complete(&pgdat_init_all_done_comp); 1604 } 1605 1606 /* 1607 * Returns true if page needs to be initialized or freed to buddy allocator. 1608 * 1609 * First we check if pfn is valid on architectures where it is possible to have 1610 * holes within pageblock_nr_pages. On systems where it is not possible, this 1611 * function is optimized out. 1612 * 1613 * Then, we check if a current large page is valid by only checking the validity 1614 * of the head pfn. 1615 */ 1616 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1617 { 1618 if (!pfn_valid_within(pfn)) 1619 return false; 1620 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1621 return false; 1622 return true; 1623 } 1624 1625 /* 1626 * Free pages to buddy allocator. Try to free aligned pages in 1627 * pageblock_nr_pages sizes. 1628 */ 1629 static void __init deferred_free_pages(unsigned long pfn, 1630 unsigned long end_pfn) 1631 { 1632 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1633 unsigned long nr_free = 0; 1634 1635 for (; pfn < end_pfn; pfn++) { 1636 if (!deferred_pfn_valid(pfn)) { 1637 deferred_free_range(pfn - nr_free, nr_free); 1638 nr_free = 0; 1639 } else if (!(pfn & nr_pgmask)) { 1640 deferred_free_range(pfn - nr_free, nr_free); 1641 nr_free = 1; 1642 touch_nmi_watchdog(); 1643 } else { 1644 nr_free++; 1645 } 1646 } 1647 /* Free the last block of pages to allocator */ 1648 deferred_free_range(pfn - nr_free, nr_free); 1649 } 1650 1651 /* 1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1653 * by performing it only once every pageblock_nr_pages. 1654 * Return number of pages initialized. 1655 */ 1656 static unsigned long __init deferred_init_pages(struct zone *zone, 1657 unsigned long pfn, 1658 unsigned long end_pfn) 1659 { 1660 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1661 int nid = zone_to_nid(zone); 1662 unsigned long nr_pages = 0; 1663 int zid = zone_idx(zone); 1664 struct page *page = NULL; 1665 1666 for (; pfn < end_pfn; pfn++) { 1667 if (!deferred_pfn_valid(pfn)) { 1668 page = NULL; 1669 continue; 1670 } else if (!page || !(pfn & nr_pgmask)) { 1671 page = pfn_to_page(pfn); 1672 touch_nmi_watchdog(); 1673 } else { 1674 page++; 1675 } 1676 __init_single_page(page, pfn, zid, nid); 1677 nr_pages++; 1678 } 1679 return (nr_pages); 1680 } 1681 1682 /* 1683 * This function is meant to pre-load the iterator for the zone init. 1684 * Specifically it walks through the ranges until we are caught up to the 1685 * first_init_pfn value and exits there. If we never encounter the value we 1686 * return false indicating there are no valid ranges left. 1687 */ 1688 static bool __init 1689 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1690 unsigned long *spfn, unsigned long *epfn, 1691 unsigned long first_init_pfn) 1692 { 1693 u64 j; 1694 1695 /* 1696 * Start out by walking through the ranges in this zone that have 1697 * already been initialized. We don't need to do anything with them 1698 * so we just need to flush them out of the system. 1699 */ 1700 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1701 if (*epfn <= first_init_pfn) 1702 continue; 1703 if (*spfn < first_init_pfn) 1704 *spfn = first_init_pfn; 1705 *i = j; 1706 return true; 1707 } 1708 1709 return false; 1710 } 1711 1712 /* 1713 * Initialize and free pages. We do it in two loops: first we initialize 1714 * struct page, then free to buddy allocator, because while we are 1715 * freeing pages we can access pages that are ahead (computing buddy 1716 * page in __free_one_page()). 1717 * 1718 * In order to try and keep some memory in the cache we have the loop 1719 * broken along max page order boundaries. This way we will not cause 1720 * any issues with the buddy page computation. 1721 */ 1722 static unsigned long __init 1723 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1724 unsigned long *end_pfn) 1725 { 1726 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1727 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1728 unsigned long nr_pages = 0; 1729 u64 j = *i; 1730 1731 /* First we loop through and initialize the page values */ 1732 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1733 unsigned long t; 1734 1735 if (mo_pfn <= *start_pfn) 1736 break; 1737 1738 t = min(mo_pfn, *end_pfn); 1739 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1740 1741 if (mo_pfn < *end_pfn) { 1742 *start_pfn = mo_pfn; 1743 break; 1744 } 1745 } 1746 1747 /* Reset values and now loop through freeing pages as needed */ 1748 swap(j, *i); 1749 1750 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1751 unsigned long t; 1752 1753 if (mo_pfn <= spfn) 1754 break; 1755 1756 t = min(mo_pfn, epfn); 1757 deferred_free_pages(spfn, t); 1758 1759 if (mo_pfn <= epfn) 1760 break; 1761 } 1762 1763 return nr_pages; 1764 } 1765 1766 /* Initialise remaining memory on a node */ 1767 static int __init deferred_init_memmap(void *data) 1768 { 1769 pg_data_t *pgdat = data; 1770 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1771 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1772 unsigned long first_init_pfn, flags; 1773 unsigned long start = jiffies; 1774 struct zone *zone; 1775 int zid; 1776 u64 i; 1777 1778 /* Bind memory initialisation thread to a local node if possible */ 1779 if (!cpumask_empty(cpumask)) 1780 set_cpus_allowed_ptr(current, cpumask); 1781 1782 pgdat_resize_lock(pgdat, &flags); 1783 first_init_pfn = pgdat->first_deferred_pfn; 1784 if (first_init_pfn == ULONG_MAX) { 1785 pgdat_resize_unlock(pgdat, &flags); 1786 pgdat_init_report_one_done(); 1787 return 0; 1788 } 1789 1790 /* Sanity check boundaries */ 1791 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1792 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1793 pgdat->first_deferred_pfn = ULONG_MAX; 1794 1795 /* Only the highest zone is deferred so find it */ 1796 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1797 zone = pgdat->node_zones + zid; 1798 if (first_init_pfn < zone_end_pfn(zone)) 1799 break; 1800 } 1801 1802 /* If the zone is empty somebody else may have cleared out the zone */ 1803 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1804 first_init_pfn)) 1805 goto zone_empty; 1806 1807 /* 1808 * Initialize and free pages in MAX_ORDER sized increments so 1809 * that we can avoid introducing any issues with the buddy 1810 * allocator. 1811 */ 1812 while (spfn < epfn) 1813 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1814 zone_empty: 1815 pgdat_resize_unlock(pgdat, &flags); 1816 1817 /* Sanity check that the next zone really is unpopulated */ 1818 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1819 1820 pr_info("node %d initialised, %lu pages in %ums\n", 1821 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1822 1823 pgdat_init_report_one_done(); 1824 return 0; 1825 } 1826 1827 /* 1828 * If this zone has deferred pages, try to grow it by initializing enough 1829 * deferred pages to satisfy the allocation specified by order, rounded up to 1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1831 * of SECTION_SIZE bytes by initializing struct pages in increments of 1832 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1833 * 1834 * Return true when zone was grown, otherwise return false. We return true even 1835 * when we grow less than requested, to let the caller decide if there are 1836 * enough pages to satisfy the allocation. 1837 * 1838 * Note: We use noinline because this function is needed only during boot, and 1839 * it is called from a __ref function _deferred_grow_zone. This way we are 1840 * making sure that it is not inlined into permanent text section. 1841 */ 1842 static noinline bool __init 1843 deferred_grow_zone(struct zone *zone, unsigned int order) 1844 { 1845 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1846 pg_data_t *pgdat = zone->zone_pgdat; 1847 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1848 unsigned long spfn, epfn, flags; 1849 unsigned long nr_pages = 0; 1850 u64 i; 1851 1852 /* Only the last zone may have deferred pages */ 1853 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1854 return false; 1855 1856 pgdat_resize_lock(pgdat, &flags); 1857 1858 /* 1859 * If deferred pages have been initialized while we were waiting for 1860 * the lock, return true, as the zone was grown. The caller will retry 1861 * this zone. We won't return to this function since the caller also 1862 * has this static branch. 1863 */ 1864 if (!static_branch_unlikely(&deferred_pages)) { 1865 pgdat_resize_unlock(pgdat, &flags); 1866 return true; 1867 } 1868 1869 /* 1870 * If someone grew this zone while we were waiting for spinlock, return 1871 * true, as there might be enough pages already. 1872 */ 1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1874 pgdat_resize_unlock(pgdat, &flags); 1875 return true; 1876 } 1877 1878 /* If the zone is empty somebody else may have cleared out the zone */ 1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1880 first_deferred_pfn)) { 1881 pgdat->first_deferred_pfn = ULONG_MAX; 1882 pgdat_resize_unlock(pgdat, &flags); 1883 /* Retry only once. */ 1884 return first_deferred_pfn != ULONG_MAX; 1885 } 1886 1887 /* 1888 * Initialize and free pages in MAX_ORDER sized increments so 1889 * that we can avoid introducing any issues with the buddy 1890 * allocator. 1891 */ 1892 while (spfn < epfn) { 1893 /* update our first deferred PFN for this section */ 1894 first_deferred_pfn = spfn; 1895 1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1897 1898 /* We should only stop along section boundaries */ 1899 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1900 continue; 1901 1902 /* If our quota has been met we can stop here */ 1903 if (nr_pages >= nr_pages_needed) 1904 break; 1905 } 1906 1907 pgdat->first_deferred_pfn = spfn; 1908 pgdat_resize_unlock(pgdat, &flags); 1909 1910 return nr_pages > 0; 1911 } 1912 1913 /* 1914 * deferred_grow_zone() is __init, but it is called from 1915 * get_page_from_freelist() during early boot until deferred_pages permanently 1916 * disables this call. This is why we have refdata wrapper to avoid warning, 1917 * and to ensure that the function body gets unloaded. 1918 */ 1919 static bool __ref 1920 _deferred_grow_zone(struct zone *zone, unsigned int order) 1921 { 1922 return deferred_grow_zone(zone, order); 1923 } 1924 1925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1926 1927 void __init page_alloc_init_late(void) 1928 { 1929 struct zone *zone; 1930 int nid; 1931 1932 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1933 1934 /* There will be num_node_state(N_MEMORY) threads */ 1935 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1936 for_each_node_state(nid, N_MEMORY) { 1937 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1938 } 1939 1940 /* Block until all are initialised */ 1941 wait_for_completion(&pgdat_init_all_done_comp); 1942 1943 /* 1944 * We initialized the rest of the deferred pages. Permanently disable 1945 * on-demand struct page initialization. 1946 */ 1947 static_branch_disable(&deferred_pages); 1948 1949 /* Reinit limits that are based on free pages after the kernel is up */ 1950 files_maxfiles_init(); 1951 #endif 1952 1953 /* Discard memblock private memory */ 1954 memblock_discard(); 1955 1956 for_each_node_state(nid, N_MEMORY) 1957 shuffle_free_memory(NODE_DATA(nid)); 1958 1959 for_each_populated_zone(zone) 1960 set_zone_contiguous(zone); 1961 1962 #ifdef CONFIG_DEBUG_PAGEALLOC 1963 init_debug_guardpage(); 1964 #endif 1965 } 1966 1967 #ifdef CONFIG_CMA 1968 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1969 void __init init_cma_reserved_pageblock(struct page *page) 1970 { 1971 unsigned i = pageblock_nr_pages; 1972 struct page *p = page; 1973 1974 do { 1975 __ClearPageReserved(p); 1976 set_page_count(p, 0); 1977 } while (++p, --i); 1978 1979 set_pageblock_migratetype(page, MIGRATE_CMA); 1980 1981 if (pageblock_order >= MAX_ORDER) { 1982 i = pageblock_nr_pages; 1983 p = page; 1984 do { 1985 set_page_refcounted(p); 1986 __free_pages(p, MAX_ORDER - 1); 1987 p += MAX_ORDER_NR_PAGES; 1988 } while (i -= MAX_ORDER_NR_PAGES); 1989 } else { 1990 set_page_refcounted(page); 1991 __free_pages(page, pageblock_order); 1992 } 1993 1994 adjust_managed_page_count(page, pageblock_nr_pages); 1995 } 1996 #endif 1997 1998 /* 1999 * The order of subdivision here is critical for the IO subsystem. 2000 * Please do not alter this order without good reasons and regression 2001 * testing. Specifically, as large blocks of memory are subdivided, 2002 * the order in which smaller blocks are delivered depends on the order 2003 * they're subdivided in this function. This is the primary factor 2004 * influencing the order in which pages are delivered to the IO 2005 * subsystem according to empirical testing, and this is also justified 2006 * by considering the behavior of a buddy system containing a single 2007 * large block of memory acted on by a series of small allocations. 2008 * This behavior is a critical factor in sglist merging's success. 2009 * 2010 * -- nyc 2011 */ 2012 static inline void expand(struct zone *zone, struct page *page, 2013 int low, int high, struct free_area *area, 2014 int migratetype) 2015 { 2016 unsigned long size = 1 << high; 2017 2018 while (high > low) { 2019 area--; 2020 high--; 2021 size >>= 1; 2022 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2023 2024 /* 2025 * Mark as guard pages (or page), that will allow to 2026 * merge back to allocator when buddy will be freed. 2027 * Corresponding page table entries will not be touched, 2028 * pages will stay not present in virtual address space 2029 */ 2030 if (set_page_guard(zone, &page[size], high, migratetype)) 2031 continue; 2032 2033 add_to_free_area(&page[size], area, migratetype); 2034 set_page_order(&page[size], high); 2035 } 2036 } 2037 2038 static void check_new_page_bad(struct page *page) 2039 { 2040 const char *bad_reason = NULL; 2041 unsigned long bad_flags = 0; 2042 2043 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2044 bad_reason = "nonzero mapcount"; 2045 if (unlikely(page->mapping != NULL)) 2046 bad_reason = "non-NULL mapping"; 2047 if (unlikely(page_ref_count(page) != 0)) 2048 bad_reason = "nonzero _refcount"; 2049 if (unlikely(page->flags & __PG_HWPOISON)) { 2050 bad_reason = "HWPoisoned (hardware-corrupted)"; 2051 bad_flags = __PG_HWPOISON; 2052 /* Don't complain about hwpoisoned pages */ 2053 page_mapcount_reset(page); /* remove PageBuddy */ 2054 return; 2055 } 2056 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2057 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2058 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2059 } 2060 #ifdef CONFIG_MEMCG 2061 if (unlikely(page->mem_cgroup)) 2062 bad_reason = "page still charged to cgroup"; 2063 #endif 2064 bad_page(page, bad_reason, bad_flags); 2065 } 2066 2067 /* 2068 * This page is about to be returned from the page allocator 2069 */ 2070 static inline int check_new_page(struct page *page) 2071 { 2072 if (likely(page_expected_state(page, 2073 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2074 return 0; 2075 2076 check_new_page_bad(page); 2077 return 1; 2078 } 2079 2080 static inline bool free_pages_prezeroed(void) 2081 { 2082 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2083 page_poisoning_enabled()) || want_init_on_free(); 2084 } 2085 2086 #ifdef CONFIG_DEBUG_VM 2087 /* 2088 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2089 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2090 * also checked when pcp lists are refilled from the free lists. 2091 */ 2092 static inline bool check_pcp_refill(struct page *page) 2093 { 2094 if (debug_pagealloc_enabled()) 2095 return check_new_page(page); 2096 else 2097 return false; 2098 } 2099 2100 static inline bool check_new_pcp(struct page *page) 2101 { 2102 return check_new_page(page); 2103 } 2104 #else 2105 /* 2106 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2107 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2108 * enabled, they are also checked when being allocated from the pcp lists. 2109 */ 2110 static inline bool check_pcp_refill(struct page *page) 2111 { 2112 return check_new_page(page); 2113 } 2114 static inline bool check_new_pcp(struct page *page) 2115 { 2116 if (debug_pagealloc_enabled()) 2117 return check_new_page(page); 2118 else 2119 return false; 2120 } 2121 #endif /* CONFIG_DEBUG_VM */ 2122 2123 static bool check_new_pages(struct page *page, unsigned int order) 2124 { 2125 int i; 2126 for (i = 0; i < (1 << order); i++) { 2127 struct page *p = page + i; 2128 2129 if (unlikely(check_new_page(p))) 2130 return true; 2131 } 2132 2133 return false; 2134 } 2135 2136 inline void post_alloc_hook(struct page *page, unsigned int order, 2137 gfp_t gfp_flags) 2138 { 2139 set_page_private(page, 0); 2140 set_page_refcounted(page); 2141 2142 arch_alloc_page(page, order); 2143 if (debug_pagealloc_enabled()) 2144 kernel_map_pages(page, 1 << order, 1); 2145 kasan_alloc_pages(page, order); 2146 kernel_poison_pages(page, 1 << order, 1); 2147 set_page_owner(page, order, gfp_flags); 2148 } 2149 2150 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2151 unsigned int alloc_flags) 2152 { 2153 post_alloc_hook(page, order, gfp_flags); 2154 2155 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2156 kernel_init_free_pages(page, 1 << order); 2157 2158 if (order && (gfp_flags & __GFP_COMP)) 2159 prep_compound_page(page, order); 2160 2161 /* 2162 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2163 * allocate the page. The expectation is that the caller is taking 2164 * steps that will free more memory. The caller should avoid the page 2165 * being used for !PFMEMALLOC purposes. 2166 */ 2167 if (alloc_flags & ALLOC_NO_WATERMARKS) 2168 set_page_pfmemalloc(page); 2169 else 2170 clear_page_pfmemalloc(page); 2171 } 2172 2173 /* 2174 * Go through the free lists for the given migratetype and remove 2175 * the smallest available page from the freelists 2176 */ 2177 static __always_inline 2178 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2179 int migratetype) 2180 { 2181 unsigned int current_order; 2182 struct free_area *area; 2183 struct page *page; 2184 2185 /* Find a page of the appropriate size in the preferred list */ 2186 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2187 area = &(zone->free_area[current_order]); 2188 page = get_page_from_free_area(area, migratetype); 2189 if (!page) 2190 continue; 2191 del_page_from_free_area(page, area); 2192 expand(zone, page, order, current_order, area, migratetype); 2193 set_pcppage_migratetype(page, migratetype); 2194 return page; 2195 } 2196 2197 return NULL; 2198 } 2199 2200 2201 /* 2202 * This array describes the order lists are fallen back to when 2203 * the free lists for the desirable migrate type are depleted 2204 */ 2205 static int fallbacks[MIGRATE_TYPES][4] = { 2206 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2207 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2208 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2209 #ifdef CONFIG_CMA 2210 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2211 #endif 2212 #ifdef CONFIG_MEMORY_ISOLATION 2213 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2214 #endif 2215 }; 2216 2217 #ifdef CONFIG_CMA 2218 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2219 unsigned int order) 2220 { 2221 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2222 } 2223 #else 2224 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2225 unsigned int order) { return NULL; } 2226 #endif 2227 2228 /* 2229 * Move the free pages in a range to the free lists of the requested type. 2230 * Note that start_page and end_pages are not aligned on a pageblock 2231 * boundary. If alignment is required, use move_freepages_block() 2232 */ 2233 static int move_freepages(struct zone *zone, 2234 struct page *start_page, struct page *end_page, 2235 int migratetype, int *num_movable) 2236 { 2237 struct page *page; 2238 unsigned int order; 2239 int pages_moved = 0; 2240 2241 #ifndef CONFIG_HOLES_IN_ZONE 2242 /* 2243 * page_zone is not safe to call in this context when 2244 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2245 * anyway as we check zone boundaries in move_freepages_block(). 2246 * Remove at a later date when no bug reports exist related to 2247 * grouping pages by mobility 2248 */ 2249 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2250 pfn_valid(page_to_pfn(end_page)) && 2251 page_zone(start_page) != page_zone(end_page)); 2252 #endif 2253 for (page = start_page; page <= end_page;) { 2254 if (!pfn_valid_within(page_to_pfn(page))) { 2255 page++; 2256 continue; 2257 } 2258 2259 /* Make sure we are not inadvertently changing nodes */ 2260 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2261 2262 if (!PageBuddy(page)) { 2263 /* 2264 * We assume that pages that could be isolated for 2265 * migration are movable. But we don't actually try 2266 * isolating, as that would be expensive. 2267 */ 2268 if (num_movable && 2269 (PageLRU(page) || __PageMovable(page))) 2270 (*num_movable)++; 2271 2272 page++; 2273 continue; 2274 } 2275 2276 order = page_order(page); 2277 move_to_free_area(page, &zone->free_area[order], migratetype); 2278 page += 1 << order; 2279 pages_moved += 1 << order; 2280 } 2281 2282 return pages_moved; 2283 } 2284 2285 int move_freepages_block(struct zone *zone, struct page *page, 2286 int migratetype, int *num_movable) 2287 { 2288 unsigned long start_pfn, end_pfn; 2289 struct page *start_page, *end_page; 2290 2291 if (num_movable) 2292 *num_movable = 0; 2293 2294 start_pfn = page_to_pfn(page); 2295 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2296 start_page = pfn_to_page(start_pfn); 2297 end_page = start_page + pageblock_nr_pages - 1; 2298 end_pfn = start_pfn + pageblock_nr_pages - 1; 2299 2300 /* Do not cross zone boundaries */ 2301 if (!zone_spans_pfn(zone, start_pfn)) 2302 start_page = page; 2303 if (!zone_spans_pfn(zone, end_pfn)) 2304 return 0; 2305 2306 return move_freepages(zone, start_page, end_page, migratetype, 2307 num_movable); 2308 } 2309 2310 static void change_pageblock_range(struct page *pageblock_page, 2311 int start_order, int migratetype) 2312 { 2313 int nr_pageblocks = 1 << (start_order - pageblock_order); 2314 2315 while (nr_pageblocks--) { 2316 set_pageblock_migratetype(pageblock_page, migratetype); 2317 pageblock_page += pageblock_nr_pages; 2318 } 2319 } 2320 2321 /* 2322 * When we are falling back to another migratetype during allocation, try to 2323 * steal extra free pages from the same pageblocks to satisfy further 2324 * allocations, instead of polluting multiple pageblocks. 2325 * 2326 * If we are stealing a relatively large buddy page, it is likely there will 2327 * be more free pages in the pageblock, so try to steal them all. For 2328 * reclaimable and unmovable allocations, we steal regardless of page size, 2329 * as fragmentation caused by those allocations polluting movable pageblocks 2330 * is worse than movable allocations stealing from unmovable and reclaimable 2331 * pageblocks. 2332 */ 2333 static bool can_steal_fallback(unsigned int order, int start_mt) 2334 { 2335 /* 2336 * Leaving this order check is intended, although there is 2337 * relaxed order check in next check. The reason is that 2338 * we can actually steal whole pageblock if this condition met, 2339 * but, below check doesn't guarantee it and that is just heuristic 2340 * so could be changed anytime. 2341 */ 2342 if (order >= pageblock_order) 2343 return true; 2344 2345 if (order >= pageblock_order / 2 || 2346 start_mt == MIGRATE_RECLAIMABLE || 2347 start_mt == MIGRATE_UNMOVABLE || 2348 page_group_by_mobility_disabled) 2349 return true; 2350 2351 return false; 2352 } 2353 2354 static inline void boost_watermark(struct zone *zone) 2355 { 2356 unsigned long max_boost; 2357 2358 if (!watermark_boost_factor) 2359 return; 2360 2361 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2362 watermark_boost_factor, 10000); 2363 2364 /* 2365 * high watermark may be uninitialised if fragmentation occurs 2366 * very early in boot so do not boost. We do not fall 2367 * through and boost by pageblock_nr_pages as failing 2368 * allocations that early means that reclaim is not going 2369 * to help and it may even be impossible to reclaim the 2370 * boosted watermark resulting in a hang. 2371 */ 2372 if (!max_boost) 2373 return; 2374 2375 max_boost = max(pageblock_nr_pages, max_boost); 2376 2377 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2378 max_boost); 2379 } 2380 2381 /* 2382 * This function implements actual steal behaviour. If order is large enough, 2383 * we can steal whole pageblock. If not, we first move freepages in this 2384 * pageblock to our migratetype and determine how many already-allocated pages 2385 * are there in the pageblock with a compatible migratetype. If at least half 2386 * of pages are free or compatible, we can change migratetype of the pageblock 2387 * itself, so pages freed in the future will be put on the correct free list. 2388 */ 2389 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2390 unsigned int alloc_flags, int start_type, bool whole_block) 2391 { 2392 unsigned int current_order = page_order(page); 2393 struct free_area *area; 2394 int free_pages, movable_pages, alike_pages; 2395 int old_block_type; 2396 2397 old_block_type = get_pageblock_migratetype(page); 2398 2399 /* 2400 * This can happen due to races and we want to prevent broken 2401 * highatomic accounting. 2402 */ 2403 if (is_migrate_highatomic(old_block_type)) 2404 goto single_page; 2405 2406 /* Take ownership for orders >= pageblock_order */ 2407 if (current_order >= pageblock_order) { 2408 change_pageblock_range(page, current_order, start_type); 2409 goto single_page; 2410 } 2411 2412 /* 2413 * Boost watermarks to increase reclaim pressure to reduce the 2414 * likelihood of future fallbacks. Wake kswapd now as the node 2415 * may be balanced overall and kswapd will not wake naturally. 2416 */ 2417 boost_watermark(zone); 2418 if (alloc_flags & ALLOC_KSWAPD) 2419 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2420 2421 /* We are not allowed to try stealing from the whole block */ 2422 if (!whole_block) 2423 goto single_page; 2424 2425 free_pages = move_freepages_block(zone, page, start_type, 2426 &movable_pages); 2427 /* 2428 * Determine how many pages are compatible with our allocation. 2429 * For movable allocation, it's the number of movable pages which 2430 * we just obtained. For other types it's a bit more tricky. 2431 */ 2432 if (start_type == MIGRATE_MOVABLE) { 2433 alike_pages = movable_pages; 2434 } else { 2435 /* 2436 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2437 * to MOVABLE pageblock, consider all non-movable pages as 2438 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2439 * vice versa, be conservative since we can't distinguish the 2440 * exact migratetype of non-movable pages. 2441 */ 2442 if (old_block_type == MIGRATE_MOVABLE) 2443 alike_pages = pageblock_nr_pages 2444 - (free_pages + movable_pages); 2445 else 2446 alike_pages = 0; 2447 } 2448 2449 /* moving whole block can fail due to zone boundary conditions */ 2450 if (!free_pages) 2451 goto single_page; 2452 2453 /* 2454 * If a sufficient number of pages in the block are either free or of 2455 * comparable migratability as our allocation, claim the whole block. 2456 */ 2457 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2458 page_group_by_mobility_disabled) 2459 set_pageblock_migratetype(page, start_type); 2460 2461 return; 2462 2463 single_page: 2464 area = &zone->free_area[current_order]; 2465 move_to_free_area(page, area, start_type); 2466 } 2467 2468 /* 2469 * Check whether there is a suitable fallback freepage with requested order. 2470 * If only_stealable is true, this function returns fallback_mt only if 2471 * we can steal other freepages all together. This would help to reduce 2472 * fragmentation due to mixed migratetype pages in one pageblock. 2473 */ 2474 int find_suitable_fallback(struct free_area *area, unsigned int order, 2475 int migratetype, bool only_stealable, bool *can_steal) 2476 { 2477 int i; 2478 int fallback_mt; 2479 2480 if (area->nr_free == 0) 2481 return -1; 2482 2483 *can_steal = false; 2484 for (i = 0;; i++) { 2485 fallback_mt = fallbacks[migratetype][i]; 2486 if (fallback_mt == MIGRATE_TYPES) 2487 break; 2488 2489 if (free_area_empty(area, fallback_mt)) 2490 continue; 2491 2492 if (can_steal_fallback(order, migratetype)) 2493 *can_steal = true; 2494 2495 if (!only_stealable) 2496 return fallback_mt; 2497 2498 if (*can_steal) 2499 return fallback_mt; 2500 } 2501 2502 return -1; 2503 } 2504 2505 /* 2506 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2507 * there are no empty page blocks that contain a page with a suitable order 2508 */ 2509 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2510 unsigned int alloc_order) 2511 { 2512 int mt; 2513 unsigned long max_managed, flags; 2514 2515 /* 2516 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2517 * Check is race-prone but harmless. 2518 */ 2519 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2520 if (zone->nr_reserved_highatomic >= max_managed) 2521 return; 2522 2523 spin_lock_irqsave(&zone->lock, flags); 2524 2525 /* Recheck the nr_reserved_highatomic limit under the lock */ 2526 if (zone->nr_reserved_highatomic >= max_managed) 2527 goto out_unlock; 2528 2529 /* Yoink! */ 2530 mt = get_pageblock_migratetype(page); 2531 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2532 && !is_migrate_cma(mt)) { 2533 zone->nr_reserved_highatomic += pageblock_nr_pages; 2534 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2535 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2536 } 2537 2538 out_unlock: 2539 spin_unlock_irqrestore(&zone->lock, flags); 2540 } 2541 2542 /* 2543 * Used when an allocation is about to fail under memory pressure. This 2544 * potentially hurts the reliability of high-order allocations when under 2545 * intense memory pressure but failed atomic allocations should be easier 2546 * to recover from than an OOM. 2547 * 2548 * If @force is true, try to unreserve a pageblock even though highatomic 2549 * pageblock is exhausted. 2550 */ 2551 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2552 bool force) 2553 { 2554 struct zonelist *zonelist = ac->zonelist; 2555 unsigned long flags; 2556 struct zoneref *z; 2557 struct zone *zone; 2558 struct page *page; 2559 int order; 2560 bool ret; 2561 2562 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2563 ac->nodemask) { 2564 /* 2565 * Preserve at least one pageblock unless memory pressure 2566 * is really high. 2567 */ 2568 if (!force && zone->nr_reserved_highatomic <= 2569 pageblock_nr_pages) 2570 continue; 2571 2572 spin_lock_irqsave(&zone->lock, flags); 2573 for (order = 0; order < MAX_ORDER; order++) { 2574 struct free_area *area = &(zone->free_area[order]); 2575 2576 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2577 if (!page) 2578 continue; 2579 2580 /* 2581 * In page freeing path, migratetype change is racy so 2582 * we can counter several free pages in a pageblock 2583 * in this loop althoug we changed the pageblock type 2584 * from highatomic to ac->migratetype. So we should 2585 * adjust the count once. 2586 */ 2587 if (is_migrate_highatomic_page(page)) { 2588 /* 2589 * It should never happen but changes to 2590 * locking could inadvertently allow a per-cpu 2591 * drain to add pages to MIGRATE_HIGHATOMIC 2592 * while unreserving so be safe and watch for 2593 * underflows. 2594 */ 2595 zone->nr_reserved_highatomic -= min( 2596 pageblock_nr_pages, 2597 zone->nr_reserved_highatomic); 2598 } 2599 2600 /* 2601 * Convert to ac->migratetype and avoid the normal 2602 * pageblock stealing heuristics. Minimally, the caller 2603 * is doing the work and needs the pages. More 2604 * importantly, if the block was always converted to 2605 * MIGRATE_UNMOVABLE or another type then the number 2606 * of pageblocks that cannot be completely freed 2607 * may increase. 2608 */ 2609 set_pageblock_migratetype(page, ac->migratetype); 2610 ret = move_freepages_block(zone, page, ac->migratetype, 2611 NULL); 2612 if (ret) { 2613 spin_unlock_irqrestore(&zone->lock, flags); 2614 return ret; 2615 } 2616 } 2617 spin_unlock_irqrestore(&zone->lock, flags); 2618 } 2619 2620 return false; 2621 } 2622 2623 /* 2624 * Try finding a free buddy page on the fallback list and put it on the free 2625 * list of requested migratetype, possibly along with other pages from the same 2626 * block, depending on fragmentation avoidance heuristics. Returns true if 2627 * fallback was found so that __rmqueue_smallest() can grab it. 2628 * 2629 * The use of signed ints for order and current_order is a deliberate 2630 * deviation from the rest of this file, to make the for loop 2631 * condition simpler. 2632 */ 2633 static __always_inline bool 2634 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2635 unsigned int alloc_flags) 2636 { 2637 struct free_area *area; 2638 int current_order; 2639 int min_order = order; 2640 struct page *page; 2641 int fallback_mt; 2642 bool can_steal; 2643 2644 /* 2645 * Do not steal pages from freelists belonging to other pageblocks 2646 * i.e. orders < pageblock_order. If there are no local zones free, 2647 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2648 */ 2649 if (alloc_flags & ALLOC_NOFRAGMENT) 2650 min_order = pageblock_order; 2651 2652 /* 2653 * Find the largest available free page in the other list. This roughly 2654 * approximates finding the pageblock with the most free pages, which 2655 * would be too costly to do exactly. 2656 */ 2657 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2658 --current_order) { 2659 area = &(zone->free_area[current_order]); 2660 fallback_mt = find_suitable_fallback(area, current_order, 2661 start_migratetype, false, &can_steal); 2662 if (fallback_mt == -1) 2663 continue; 2664 2665 /* 2666 * We cannot steal all free pages from the pageblock and the 2667 * requested migratetype is movable. In that case it's better to 2668 * steal and split the smallest available page instead of the 2669 * largest available page, because even if the next movable 2670 * allocation falls back into a different pageblock than this 2671 * one, it won't cause permanent fragmentation. 2672 */ 2673 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2674 && current_order > order) 2675 goto find_smallest; 2676 2677 goto do_steal; 2678 } 2679 2680 return false; 2681 2682 find_smallest: 2683 for (current_order = order; current_order < MAX_ORDER; 2684 current_order++) { 2685 area = &(zone->free_area[current_order]); 2686 fallback_mt = find_suitable_fallback(area, current_order, 2687 start_migratetype, false, &can_steal); 2688 if (fallback_mt != -1) 2689 break; 2690 } 2691 2692 /* 2693 * This should not happen - we already found a suitable fallback 2694 * when looking for the largest page. 2695 */ 2696 VM_BUG_ON(current_order == MAX_ORDER); 2697 2698 do_steal: 2699 page = get_page_from_free_area(area, fallback_mt); 2700 2701 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2702 can_steal); 2703 2704 trace_mm_page_alloc_extfrag(page, order, current_order, 2705 start_migratetype, fallback_mt); 2706 2707 return true; 2708 2709 } 2710 2711 /* 2712 * Do the hard work of removing an element from the buddy allocator. 2713 * Call me with the zone->lock already held. 2714 */ 2715 static __always_inline struct page * 2716 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2717 unsigned int alloc_flags) 2718 { 2719 struct page *page; 2720 2721 retry: 2722 page = __rmqueue_smallest(zone, order, migratetype); 2723 if (unlikely(!page)) { 2724 if (migratetype == MIGRATE_MOVABLE) 2725 page = __rmqueue_cma_fallback(zone, order); 2726 2727 if (!page && __rmqueue_fallback(zone, order, migratetype, 2728 alloc_flags)) 2729 goto retry; 2730 } 2731 2732 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2733 return page; 2734 } 2735 2736 /* 2737 * Obtain a specified number of elements from the buddy allocator, all under 2738 * a single hold of the lock, for efficiency. Add them to the supplied list. 2739 * Returns the number of new pages which were placed at *list. 2740 */ 2741 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2742 unsigned long count, struct list_head *list, 2743 int migratetype, unsigned int alloc_flags) 2744 { 2745 int i, alloced = 0; 2746 2747 spin_lock(&zone->lock); 2748 for (i = 0; i < count; ++i) { 2749 struct page *page = __rmqueue(zone, order, migratetype, 2750 alloc_flags); 2751 if (unlikely(page == NULL)) 2752 break; 2753 2754 if (unlikely(check_pcp_refill(page))) 2755 continue; 2756 2757 /* 2758 * Split buddy pages returned by expand() are received here in 2759 * physical page order. The page is added to the tail of 2760 * caller's list. From the callers perspective, the linked list 2761 * is ordered by page number under some conditions. This is 2762 * useful for IO devices that can forward direction from the 2763 * head, thus also in the physical page order. This is useful 2764 * for IO devices that can merge IO requests if the physical 2765 * pages are ordered properly. 2766 */ 2767 list_add_tail(&page->lru, list); 2768 alloced++; 2769 if (is_migrate_cma(get_pcppage_migratetype(page))) 2770 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2771 -(1 << order)); 2772 } 2773 2774 /* 2775 * i pages were removed from the buddy list even if some leak due 2776 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2777 * on i. Do not confuse with 'alloced' which is the number of 2778 * pages added to the pcp list. 2779 */ 2780 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2781 spin_unlock(&zone->lock); 2782 return alloced; 2783 } 2784 2785 #ifdef CONFIG_NUMA 2786 /* 2787 * Called from the vmstat counter updater to drain pagesets of this 2788 * currently executing processor on remote nodes after they have 2789 * expired. 2790 * 2791 * Note that this function must be called with the thread pinned to 2792 * a single processor. 2793 */ 2794 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2795 { 2796 unsigned long flags; 2797 int to_drain, batch; 2798 2799 local_irq_save(flags); 2800 batch = READ_ONCE(pcp->batch); 2801 to_drain = min(pcp->count, batch); 2802 if (to_drain > 0) 2803 free_pcppages_bulk(zone, to_drain, pcp); 2804 local_irq_restore(flags); 2805 } 2806 #endif 2807 2808 /* 2809 * Drain pcplists of the indicated processor and zone. 2810 * 2811 * The processor must either be the current processor and the 2812 * thread pinned to the current processor or a processor that 2813 * is not online. 2814 */ 2815 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2816 { 2817 unsigned long flags; 2818 struct per_cpu_pageset *pset; 2819 struct per_cpu_pages *pcp; 2820 2821 local_irq_save(flags); 2822 pset = per_cpu_ptr(zone->pageset, cpu); 2823 2824 pcp = &pset->pcp; 2825 if (pcp->count) 2826 free_pcppages_bulk(zone, pcp->count, pcp); 2827 local_irq_restore(flags); 2828 } 2829 2830 /* 2831 * Drain pcplists of all zones on the indicated processor. 2832 * 2833 * The processor must either be the current processor and the 2834 * thread pinned to the current processor or a processor that 2835 * is not online. 2836 */ 2837 static void drain_pages(unsigned int cpu) 2838 { 2839 struct zone *zone; 2840 2841 for_each_populated_zone(zone) { 2842 drain_pages_zone(cpu, zone); 2843 } 2844 } 2845 2846 /* 2847 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2848 * 2849 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2850 * the single zone's pages. 2851 */ 2852 void drain_local_pages(struct zone *zone) 2853 { 2854 int cpu = smp_processor_id(); 2855 2856 if (zone) 2857 drain_pages_zone(cpu, zone); 2858 else 2859 drain_pages(cpu); 2860 } 2861 2862 static void drain_local_pages_wq(struct work_struct *work) 2863 { 2864 struct pcpu_drain *drain; 2865 2866 drain = container_of(work, struct pcpu_drain, work); 2867 2868 /* 2869 * drain_all_pages doesn't use proper cpu hotplug protection so 2870 * we can race with cpu offline when the WQ can move this from 2871 * a cpu pinned worker to an unbound one. We can operate on a different 2872 * cpu which is allright but we also have to make sure to not move to 2873 * a different one. 2874 */ 2875 preempt_disable(); 2876 drain_local_pages(drain->zone); 2877 preempt_enable(); 2878 } 2879 2880 /* 2881 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2882 * 2883 * When zone parameter is non-NULL, spill just the single zone's pages. 2884 * 2885 * Note that this can be extremely slow as the draining happens in a workqueue. 2886 */ 2887 void drain_all_pages(struct zone *zone) 2888 { 2889 int cpu; 2890 2891 /* 2892 * Allocate in the BSS so we wont require allocation in 2893 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2894 */ 2895 static cpumask_t cpus_with_pcps; 2896 2897 /* 2898 * Make sure nobody triggers this path before mm_percpu_wq is fully 2899 * initialized. 2900 */ 2901 if (WARN_ON_ONCE(!mm_percpu_wq)) 2902 return; 2903 2904 /* 2905 * Do not drain if one is already in progress unless it's specific to 2906 * a zone. Such callers are primarily CMA and memory hotplug and need 2907 * the drain to be complete when the call returns. 2908 */ 2909 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2910 if (!zone) 2911 return; 2912 mutex_lock(&pcpu_drain_mutex); 2913 } 2914 2915 /* 2916 * We don't care about racing with CPU hotplug event 2917 * as offline notification will cause the notified 2918 * cpu to drain that CPU pcps and on_each_cpu_mask 2919 * disables preemption as part of its processing 2920 */ 2921 for_each_online_cpu(cpu) { 2922 struct per_cpu_pageset *pcp; 2923 struct zone *z; 2924 bool has_pcps = false; 2925 2926 if (zone) { 2927 pcp = per_cpu_ptr(zone->pageset, cpu); 2928 if (pcp->pcp.count) 2929 has_pcps = true; 2930 } else { 2931 for_each_populated_zone(z) { 2932 pcp = per_cpu_ptr(z->pageset, cpu); 2933 if (pcp->pcp.count) { 2934 has_pcps = true; 2935 break; 2936 } 2937 } 2938 } 2939 2940 if (has_pcps) 2941 cpumask_set_cpu(cpu, &cpus_with_pcps); 2942 else 2943 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2944 } 2945 2946 for_each_cpu(cpu, &cpus_with_pcps) { 2947 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2948 2949 drain->zone = zone; 2950 INIT_WORK(&drain->work, drain_local_pages_wq); 2951 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2952 } 2953 for_each_cpu(cpu, &cpus_with_pcps) 2954 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2955 2956 mutex_unlock(&pcpu_drain_mutex); 2957 } 2958 2959 #ifdef CONFIG_HIBERNATION 2960 2961 /* 2962 * Touch the watchdog for every WD_PAGE_COUNT pages. 2963 */ 2964 #define WD_PAGE_COUNT (128*1024) 2965 2966 void mark_free_pages(struct zone *zone) 2967 { 2968 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2969 unsigned long flags; 2970 unsigned int order, t; 2971 struct page *page; 2972 2973 if (zone_is_empty(zone)) 2974 return; 2975 2976 spin_lock_irqsave(&zone->lock, flags); 2977 2978 max_zone_pfn = zone_end_pfn(zone); 2979 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2980 if (pfn_valid(pfn)) { 2981 page = pfn_to_page(pfn); 2982 2983 if (!--page_count) { 2984 touch_nmi_watchdog(); 2985 page_count = WD_PAGE_COUNT; 2986 } 2987 2988 if (page_zone(page) != zone) 2989 continue; 2990 2991 if (!swsusp_page_is_forbidden(page)) 2992 swsusp_unset_page_free(page); 2993 } 2994 2995 for_each_migratetype_order(order, t) { 2996 list_for_each_entry(page, 2997 &zone->free_area[order].free_list[t], lru) { 2998 unsigned long i; 2999 3000 pfn = page_to_pfn(page); 3001 for (i = 0; i < (1UL << order); i++) { 3002 if (!--page_count) { 3003 touch_nmi_watchdog(); 3004 page_count = WD_PAGE_COUNT; 3005 } 3006 swsusp_set_page_free(pfn_to_page(pfn + i)); 3007 } 3008 } 3009 } 3010 spin_unlock_irqrestore(&zone->lock, flags); 3011 } 3012 #endif /* CONFIG_PM */ 3013 3014 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3015 { 3016 int migratetype; 3017 3018 if (!free_pcp_prepare(page)) 3019 return false; 3020 3021 migratetype = get_pfnblock_migratetype(page, pfn); 3022 set_pcppage_migratetype(page, migratetype); 3023 return true; 3024 } 3025 3026 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3027 { 3028 struct zone *zone = page_zone(page); 3029 struct per_cpu_pages *pcp; 3030 int migratetype; 3031 3032 migratetype = get_pcppage_migratetype(page); 3033 __count_vm_event(PGFREE); 3034 3035 /* 3036 * We only track unmovable, reclaimable and movable on pcp lists. 3037 * Free ISOLATE pages back to the allocator because they are being 3038 * offlined but treat HIGHATOMIC as movable pages so we can get those 3039 * areas back if necessary. Otherwise, we may have to free 3040 * excessively into the page allocator 3041 */ 3042 if (migratetype >= MIGRATE_PCPTYPES) { 3043 if (unlikely(is_migrate_isolate(migratetype))) { 3044 free_one_page(zone, page, pfn, 0, migratetype); 3045 return; 3046 } 3047 migratetype = MIGRATE_MOVABLE; 3048 } 3049 3050 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3051 list_add(&page->lru, &pcp->lists[migratetype]); 3052 pcp->count++; 3053 if (pcp->count >= pcp->high) { 3054 unsigned long batch = READ_ONCE(pcp->batch); 3055 free_pcppages_bulk(zone, batch, pcp); 3056 } 3057 } 3058 3059 /* 3060 * Free a 0-order page 3061 */ 3062 void free_unref_page(struct page *page) 3063 { 3064 unsigned long flags; 3065 unsigned long pfn = page_to_pfn(page); 3066 3067 if (!free_unref_page_prepare(page, pfn)) 3068 return; 3069 3070 local_irq_save(flags); 3071 free_unref_page_commit(page, pfn); 3072 local_irq_restore(flags); 3073 } 3074 3075 /* 3076 * Free a list of 0-order pages 3077 */ 3078 void free_unref_page_list(struct list_head *list) 3079 { 3080 struct page *page, *next; 3081 unsigned long flags, pfn; 3082 int batch_count = 0; 3083 3084 /* Prepare pages for freeing */ 3085 list_for_each_entry_safe(page, next, list, lru) { 3086 pfn = page_to_pfn(page); 3087 if (!free_unref_page_prepare(page, pfn)) 3088 list_del(&page->lru); 3089 set_page_private(page, pfn); 3090 } 3091 3092 local_irq_save(flags); 3093 list_for_each_entry_safe(page, next, list, lru) { 3094 unsigned long pfn = page_private(page); 3095 3096 set_page_private(page, 0); 3097 trace_mm_page_free_batched(page); 3098 free_unref_page_commit(page, pfn); 3099 3100 /* 3101 * Guard against excessive IRQ disabled times when we get 3102 * a large list of pages to free. 3103 */ 3104 if (++batch_count == SWAP_CLUSTER_MAX) { 3105 local_irq_restore(flags); 3106 batch_count = 0; 3107 local_irq_save(flags); 3108 } 3109 } 3110 local_irq_restore(flags); 3111 } 3112 3113 /* 3114 * split_page takes a non-compound higher-order page, and splits it into 3115 * n (1<<order) sub-pages: page[0..n] 3116 * Each sub-page must be freed individually. 3117 * 3118 * Note: this is probably too low level an operation for use in drivers. 3119 * Please consult with lkml before using this in your driver. 3120 */ 3121 void split_page(struct page *page, unsigned int order) 3122 { 3123 int i; 3124 3125 VM_BUG_ON_PAGE(PageCompound(page), page); 3126 VM_BUG_ON_PAGE(!page_count(page), page); 3127 3128 for (i = 1; i < (1 << order); i++) 3129 set_page_refcounted(page + i); 3130 split_page_owner(page, order); 3131 } 3132 EXPORT_SYMBOL_GPL(split_page); 3133 3134 int __isolate_free_page(struct page *page, unsigned int order) 3135 { 3136 struct free_area *area = &page_zone(page)->free_area[order]; 3137 unsigned long watermark; 3138 struct zone *zone; 3139 int mt; 3140 3141 BUG_ON(!PageBuddy(page)); 3142 3143 zone = page_zone(page); 3144 mt = get_pageblock_migratetype(page); 3145 3146 if (!is_migrate_isolate(mt)) { 3147 /* 3148 * Obey watermarks as if the page was being allocated. We can 3149 * emulate a high-order watermark check with a raised order-0 3150 * watermark, because we already know our high-order page 3151 * exists. 3152 */ 3153 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3154 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3155 return 0; 3156 3157 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3158 } 3159 3160 /* Remove page from free list */ 3161 3162 del_page_from_free_area(page, area); 3163 3164 /* 3165 * Set the pageblock if the isolated page is at least half of a 3166 * pageblock 3167 */ 3168 if (order >= pageblock_order - 1) { 3169 struct page *endpage = page + (1 << order) - 1; 3170 for (; page < endpage; page += pageblock_nr_pages) { 3171 int mt = get_pageblock_migratetype(page); 3172 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3173 && !is_migrate_highatomic(mt)) 3174 set_pageblock_migratetype(page, 3175 MIGRATE_MOVABLE); 3176 } 3177 } 3178 3179 3180 return 1UL << order; 3181 } 3182 3183 /* 3184 * Update NUMA hit/miss statistics 3185 * 3186 * Must be called with interrupts disabled. 3187 */ 3188 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3189 { 3190 #ifdef CONFIG_NUMA 3191 enum numa_stat_item local_stat = NUMA_LOCAL; 3192 3193 /* skip numa counters update if numa stats is disabled */ 3194 if (!static_branch_likely(&vm_numa_stat_key)) 3195 return; 3196 3197 if (zone_to_nid(z) != numa_node_id()) 3198 local_stat = NUMA_OTHER; 3199 3200 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3201 __inc_numa_state(z, NUMA_HIT); 3202 else { 3203 __inc_numa_state(z, NUMA_MISS); 3204 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3205 } 3206 __inc_numa_state(z, local_stat); 3207 #endif 3208 } 3209 3210 /* Remove page from the per-cpu list, caller must protect the list */ 3211 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3212 unsigned int alloc_flags, 3213 struct per_cpu_pages *pcp, 3214 struct list_head *list) 3215 { 3216 struct page *page; 3217 3218 do { 3219 if (list_empty(list)) { 3220 pcp->count += rmqueue_bulk(zone, 0, 3221 pcp->batch, list, 3222 migratetype, alloc_flags); 3223 if (unlikely(list_empty(list))) 3224 return NULL; 3225 } 3226 3227 page = list_first_entry(list, struct page, lru); 3228 list_del(&page->lru); 3229 pcp->count--; 3230 } while (check_new_pcp(page)); 3231 3232 return page; 3233 } 3234 3235 /* Lock and remove page from the per-cpu list */ 3236 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3237 struct zone *zone, gfp_t gfp_flags, 3238 int migratetype, unsigned int alloc_flags) 3239 { 3240 struct per_cpu_pages *pcp; 3241 struct list_head *list; 3242 struct page *page; 3243 unsigned long flags; 3244 3245 local_irq_save(flags); 3246 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3247 list = &pcp->lists[migratetype]; 3248 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3249 if (page) { 3250 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3251 zone_statistics(preferred_zone, zone); 3252 } 3253 local_irq_restore(flags); 3254 return page; 3255 } 3256 3257 /* 3258 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3259 */ 3260 static inline 3261 struct page *rmqueue(struct zone *preferred_zone, 3262 struct zone *zone, unsigned int order, 3263 gfp_t gfp_flags, unsigned int alloc_flags, 3264 int migratetype) 3265 { 3266 unsigned long flags; 3267 struct page *page; 3268 3269 if (likely(order == 0)) { 3270 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3271 migratetype, alloc_flags); 3272 goto out; 3273 } 3274 3275 /* 3276 * We most definitely don't want callers attempting to 3277 * allocate greater than order-1 page units with __GFP_NOFAIL. 3278 */ 3279 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3280 spin_lock_irqsave(&zone->lock, flags); 3281 3282 do { 3283 page = NULL; 3284 if (alloc_flags & ALLOC_HARDER) { 3285 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3286 if (page) 3287 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3288 } 3289 if (!page) 3290 page = __rmqueue(zone, order, migratetype, alloc_flags); 3291 } while (page && check_new_pages(page, order)); 3292 spin_unlock(&zone->lock); 3293 if (!page) 3294 goto failed; 3295 __mod_zone_freepage_state(zone, -(1 << order), 3296 get_pcppage_migratetype(page)); 3297 3298 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3299 zone_statistics(preferred_zone, zone); 3300 local_irq_restore(flags); 3301 3302 out: 3303 /* Separate test+clear to avoid unnecessary atomics */ 3304 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3305 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3306 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3307 } 3308 3309 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3310 return page; 3311 3312 failed: 3313 local_irq_restore(flags); 3314 return NULL; 3315 } 3316 3317 #ifdef CONFIG_FAIL_PAGE_ALLOC 3318 3319 static struct { 3320 struct fault_attr attr; 3321 3322 bool ignore_gfp_highmem; 3323 bool ignore_gfp_reclaim; 3324 u32 min_order; 3325 } fail_page_alloc = { 3326 .attr = FAULT_ATTR_INITIALIZER, 3327 .ignore_gfp_reclaim = true, 3328 .ignore_gfp_highmem = true, 3329 .min_order = 1, 3330 }; 3331 3332 static int __init setup_fail_page_alloc(char *str) 3333 { 3334 return setup_fault_attr(&fail_page_alloc.attr, str); 3335 } 3336 __setup("fail_page_alloc=", setup_fail_page_alloc); 3337 3338 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3339 { 3340 if (order < fail_page_alloc.min_order) 3341 return false; 3342 if (gfp_mask & __GFP_NOFAIL) 3343 return false; 3344 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3345 return false; 3346 if (fail_page_alloc.ignore_gfp_reclaim && 3347 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3348 return false; 3349 3350 return should_fail(&fail_page_alloc.attr, 1 << order); 3351 } 3352 3353 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3354 3355 static int __init fail_page_alloc_debugfs(void) 3356 { 3357 umode_t mode = S_IFREG | 0600; 3358 struct dentry *dir; 3359 3360 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3361 &fail_page_alloc.attr); 3362 3363 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3364 &fail_page_alloc.ignore_gfp_reclaim); 3365 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3366 &fail_page_alloc.ignore_gfp_highmem); 3367 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3368 3369 return 0; 3370 } 3371 3372 late_initcall(fail_page_alloc_debugfs); 3373 3374 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3375 3376 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3377 3378 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3379 { 3380 return false; 3381 } 3382 3383 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3384 3385 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3386 { 3387 return __should_fail_alloc_page(gfp_mask, order); 3388 } 3389 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3390 3391 /* 3392 * Return true if free base pages are above 'mark'. For high-order checks it 3393 * will return true of the order-0 watermark is reached and there is at least 3394 * one free page of a suitable size. Checking now avoids taking the zone lock 3395 * to check in the allocation paths if no pages are free. 3396 */ 3397 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3398 int classzone_idx, unsigned int alloc_flags, 3399 long free_pages) 3400 { 3401 long min = mark; 3402 int o; 3403 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3404 3405 /* free_pages may go negative - that's OK */ 3406 free_pages -= (1 << order) - 1; 3407 3408 if (alloc_flags & ALLOC_HIGH) 3409 min -= min / 2; 3410 3411 /* 3412 * If the caller does not have rights to ALLOC_HARDER then subtract 3413 * the high-atomic reserves. This will over-estimate the size of the 3414 * atomic reserve but it avoids a search. 3415 */ 3416 if (likely(!alloc_harder)) { 3417 free_pages -= z->nr_reserved_highatomic; 3418 } else { 3419 /* 3420 * OOM victims can try even harder than normal ALLOC_HARDER 3421 * users on the grounds that it's definitely going to be in 3422 * the exit path shortly and free memory. Any allocation it 3423 * makes during the free path will be small and short-lived. 3424 */ 3425 if (alloc_flags & ALLOC_OOM) 3426 min -= min / 2; 3427 else 3428 min -= min / 4; 3429 } 3430 3431 3432 #ifdef CONFIG_CMA 3433 /* If allocation can't use CMA areas don't use free CMA pages */ 3434 if (!(alloc_flags & ALLOC_CMA)) 3435 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3436 #endif 3437 3438 /* 3439 * Check watermarks for an order-0 allocation request. If these 3440 * are not met, then a high-order request also cannot go ahead 3441 * even if a suitable page happened to be free. 3442 */ 3443 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3444 return false; 3445 3446 /* If this is an order-0 request then the watermark is fine */ 3447 if (!order) 3448 return true; 3449 3450 /* For a high-order request, check at least one suitable page is free */ 3451 for (o = order; o < MAX_ORDER; o++) { 3452 struct free_area *area = &z->free_area[o]; 3453 int mt; 3454 3455 if (!area->nr_free) 3456 continue; 3457 3458 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3459 if (!free_area_empty(area, mt)) 3460 return true; 3461 } 3462 3463 #ifdef CONFIG_CMA 3464 if ((alloc_flags & ALLOC_CMA) && 3465 !free_area_empty(area, MIGRATE_CMA)) { 3466 return true; 3467 } 3468 #endif 3469 if (alloc_harder && 3470 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3471 return true; 3472 } 3473 return false; 3474 } 3475 3476 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3477 int classzone_idx, unsigned int alloc_flags) 3478 { 3479 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3480 zone_page_state(z, NR_FREE_PAGES)); 3481 } 3482 3483 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3484 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3485 { 3486 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3487 long cma_pages = 0; 3488 3489 #ifdef CONFIG_CMA 3490 /* If allocation can't use CMA areas don't use free CMA pages */ 3491 if (!(alloc_flags & ALLOC_CMA)) 3492 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3493 #endif 3494 3495 /* 3496 * Fast check for order-0 only. If this fails then the reserves 3497 * need to be calculated. There is a corner case where the check 3498 * passes but only the high-order atomic reserve are free. If 3499 * the caller is !atomic then it'll uselessly search the free 3500 * list. That corner case is then slower but it is harmless. 3501 */ 3502 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3503 return true; 3504 3505 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3506 free_pages); 3507 } 3508 3509 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3510 unsigned long mark, int classzone_idx) 3511 { 3512 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3513 3514 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3515 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3516 3517 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3518 free_pages); 3519 } 3520 3521 #ifdef CONFIG_NUMA 3522 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3523 { 3524 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3525 RECLAIM_DISTANCE; 3526 } 3527 #else /* CONFIG_NUMA */ 3528 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3529 { 3530 return true; 3531 } 3532 #endif /* CONFIG_NUMA */ 3533 3534 /* 3535 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3536 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3537 * premature use of a lower zone may cause lowmem pressure problems that 3538 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3539 * probably too small. It only makes sense to spread allocations to avoid 3540 * fragmentation between the Normal and DMA32 zones. 3541 */ 3542 static inline unsigned int 3543 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3544 { 3545 unsigned int alloc_flags = 0; 3546 3547 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3548 alloc_flags |= ALLOC_KSWAPD; 3549 3550 #ifdef CONFIG_ZONE_DMA32 3551 if (!zone) 3552 return alloc_flags; 3553 3554 if (zone_idx(zone) != ZONE_NORMAL) 3555 return alloc_flags; 3556 3557 /* 3558 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3559 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3560 * on UMA that if Normal is populated then so is DMA32. 3561 */ 3562 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3563 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3564 return alloc_flags; 3565 3566 alloc_flags |= ALLOC_NOFRAGMENT; 3567 #endif /* CONFIG_ZONE_DMA32 */ 3568 return alloc_flags; 3569 } 3570 3571 /* 3572 * get_page_from_freelist goes through the zonelist trying to allocate 3573 * a page. 3574 */ 3575 static struct page * 3576 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3577 const struct alloc_context *ac) 3578 { 3579 struct zoneref *z; 3580 struct zone *zone; 3581 struct pglist_data *last_pgdat_dirty_limit = NULL; 3582 bool no_fallback; 3583 3584 retry: 3585 /* 3586 * Scan zonelist, looking for a zone with enough free. 3587 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3588 */ 3589 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3590 z = ac->preferred_zoneref; 3591 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3592 ac->nodemask) { 3593 struct page *page; 3594 unsigned long mark; 3595 3596 if (cpusets_enabled() && 3597 (alloc_flags & ALLOC_CPUSET) && 3598 !__cpuset_zone_allowed(zone, gfp_mask)) 3599 continue; 3600 /* 3601 * When allocating a page cache page for writing, we 3602 * want to get it from a node that is within its dirty 3603 * limit, such that no single node holds more than its 3604 * proportional share of globally allowed dirty pages. 3605 * The dirty limits take into account the node's 3606 * lowmem reserves and high watermark so that kswapd 3607 * should be able to balance it without having to 3608 * write pages from its LRU list. 3609 * 3610 * XXX: For now, allow allocations to potentially 3611 * exceed the per-node dirty limit in the slowpath 3612 * (spread_dirty_pages unset) before going into reclaim, 3613 * which is important when on a NUMA setup the allowed 3614 * nodes are together not big enough to reach the 3615 * global limit. The proper fix for these situations 3616 * will require awareness of nodes in the 3617 * dirty-throttling and the flusher threads. 3618 */ 3619 if (ac->spread_dirty_pages) { 3620 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3621 continue; 3622 3623 if (!node_dirty_ok(zone->zone_pgdat)) { 3624 last_pgdat_dirty_limit = zone->zone_pgdat; 3625 continue; 3626 } 3627 } 3628 3629 if (no_fallback && nr_online_nodes > 1 && 3630 zone != ac->preferred_zoneref->zone) { 3631 int local_nid; 3632 3633 /* 3634 * If moving to a remote node, retry but allow 3635 * fragmenting fallbacks. Locality is more important 3636 * than fragmentation avoidance. 3637 */ 3638 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3639 if (zone_to_nid(zone) != local_nid) { 3640 alloc_flags &= ~ALLOC_NOFRAGMENT; 3641 goto retry; 3642 } 3643 } 3644 3645 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3646 if (!zone_watermark_fast(zone, order, mark, 3647 ac_classzone_idx(ac), alloc_flags)) { 3648 int ret; 3649 3650 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3651 /* 3652 * Watermark failed for this zone, but see if we can 3653 * grow this zone if it contains deferred pages. 3654 */ 3655 if (static_branch_unlikely(&deferred_pages)) { 3656 if (_deferred_grow_zone(zone, order)) 3657 goto try_this_zone; 3658 } 3659 #endif 3660 /* Checked here to keep the fast path fast */ 3661 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3662 if (alloc_flags & ALLOC_NO_WATERMARKS) 3663 goto try_this_zone; 3664 3665 if (node_reclaim_mode == 0 || 3666 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3667 continue; 3668 3669 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3670 switch (ret) { 3671 case NODE_RECLAIM_NOSCAN: 3672 /* did not scan */ 3673 continue; 3674 case NODE_RECLAIM_FULL: 3675 /* scanned but unreclaimable */ 3676 continue; 3677 default: 3678 /* did we reclaim enough */ 3679 if (zone_watermark_ok(zone, order, mark, 3680 ac_classzone_idx(ac), alloc_flags)) 3681 goto try_this_zone; 3682 3683 continue; 3684 } 3685 } 3686 3687 try_this_zone: 3688 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3689 gfp_mask, alloc_flags, ac->migratetype); 3690 if (page) { 3691 prep_new_page(page, order, gfp_mask, alloc_flags); 3692 3693 /* 3694 * If this is a high-order atomic allocation then check 3695 * if the pageblock should be reserved for the future 3696 */ 3697 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3698 reserve_highatomic_pageblock(page, zone, order); 3699 3700 return page; 3701 } else { 3702 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3703 /* Try again if zone has deferred pages */ 3704 if (static_branch_unlikely(&deferred_pages)) { 3705 if (_deferred_grow_zone(zone, order)) 3706 goto try_this_zone; 3707 } 3708 #endif 3709 } 3710 } 3711 3712 /* 3713 * It's possible on a UMA machine to get through all zones that are 3714 * fragmented. If avoiding fragmentation, reset and try again. 3715 */ 3716 if (no_fallback) { 3717 alloc_flags &= ~ALLOC_NOFRAGMENT; 3718 goto retry; 3719 } 3720 3721 return NULL; 3722 } 3723 3724 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3725 { 3726 unsigned int filter = SHOW_MEM_FILTER_NODES; 3727 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3728 3729 if (!__ratelimit(&show_mem_rs)) 3730 return; 3731 3732 /* 3733 * This documents exceptions given to allocations in certain 3734 * contexts that are allowed to allocate outside current's set 3735 * of allowed nodes. 3736 */ 3737 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3738 if (tsk_is_oom_victim(current) || 3739 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3740 filter &= ~SHOW_MEM_FILTER_NODES; 3741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3742 filter &= ~SHOW_MEM_FILTER_NODES; 3743 3744 show_mem(filter, nodemask); 3745 } 3746 3747 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3748 { 3749 struct va_format vaf; 3750 va_list args; 3751 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3752 DEFAULT_RATELIMIT_BURST); 3753 3754 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3755 return; 3756 3757 va_start(args, fmt); 3758 vaf.fmt = fmt; 3759 vaf.va = &args; 3760 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3761 current->comm, &vaf, gfp_mask, &gfp_mask, 3762 nodemask_pr_args(nodemask)); 3763 va_end(args); 3764 3765 cpuset_print_current_mems_allowed(); 3766 pr_cont("\n"); 3767 dump_stack(); 3768 warn_alloc_show_mem(gfp_mask, nodemask); 3769 } 3770 3771 static inline struct page * 3772 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3773 unsigned int alloc_flags, 3774 const struct alloc_context *ac) 3775 { 3776 struct page *page; 3777 3778 page = get_page_from_freelist(gfp_mask, order, 3779 alloc_flags|ALLOC_CPUSET, ac); 3780 /* 3781 * fallback to ignore cpuset restriction if our nodes 3782 * are depleted 3783 */ 3784 if (!page) 3785 page = get_page_from_freelist(gfp_mask, order, 3786 alloc_flags, ac); 3787 3788 return page; 3789 } 3790 3791 static inline struct page * 3792 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3793 const struct alloc_context *ac, unsigned long *did_some_progress) 3794 { 3795 struct oom_control oc = { 3796 .zonelist = ac->zonelist, 3797 .nodemask = ac->nodemask, 3798 .memcg = NULL, 3799 .gfp_mask = gfp_mask, 3800 .order = order, 3801 }; 3802 struct page *page; 3803 3804 *did_some_progress = 0; 3805 3806 /* 3807 * Acquire the oom lock. If that fails, somebody else is 3808 * making progress for us. 3809 */ 3810 if (!mutex_trylock(&oom_lock)) { 3811 *did_some_progress = 1; 3812 schedule_timeout_uninterruptible(1); 3813 return NULL; 3814 } 3815 3816 /* 3817 * Go through the zonelist yet one more time, keep very high watermark 3818 * here, this is only to catch a parallel oom killing, we must fail if 3819 * we're still under heavy pressure. But make sure that this reclaim 3820 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3821 * allocation which will never fail due to oom_lock already held. 3822 */ 3823 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3824 ~__GFP_DIRECT_RECLAIM, order, 3825 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3826 if (page) 3827 goto out; 3828 3829 /* Coredumps can quickly deplete all memory reserves */ 3830 if (current->flags & PF_DUMPCORE) 3831 goto out; 3832 /* The OOM killer will not help higher order allocs */ 3833 if (order > PAGE_ALLOC_COSTLY_ORDER) 3834 goto out; 3835 /* 3836 * We have already exhausted all our reclaim opportunities without any 3837 * success so it is time to admit defeat. We will skip the OOM killer 3838 * because it is very likely that the caller has a more reasonable 3839 * fallback than shooting a random task. 3840 */ 3841 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3842 goto out; 3843 /* The OOM killer does not needlessly kill tasks for lowmem */ 3844 if (ac->high_zoneidx < ZONE_NORMAL) 3845 goto out; 3846 if (pm_suspended_storage()) 3847 goto out; 3848 /* 3849 * XXX: GFP_NOFS allocations should rather fail than rely on 3850 * other request to make a forward progress. 3851 * We are in an unfortunate situation where out_of_memory cannot 3852 * do much for this context but let's try it to at least get 3853 * access to memory reserved if the current task is killed (see 3854 * out_of_memory). Once filesystems are ready to handle allocation 3855 * failures more gracefully we should just bail out here. 3856 */ 3857 3858 /* The OOM killer may not free memory on a specific node */ 3859 if (gfp_mask & __GFP_THISNODE) 3860 goto out; 3861 3862 /* Exhausted what can be done so it's blame time */ 3863 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3864 *did_some_progress = 1; 3865 3866 /* 3867 * Help non-failing allocations by giving them access to memory 3868 * reserves 3869 */ 3870 if (gfp_mask & __GFP_NOFAIL) 3871 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3872 ALLOC_NO_WATERMARKS, ac); 3873 } 3874 out: 3875 mutex_unlock(&oom_lock); 3876 return page; 3877 } 3878 3879 /* 3880 * Maximum number of compaction retries wit a progress before OOM 3881 * killer is consider as the only way to move forward. 3882 */ 3883 #define MAX_COMPACT_RETRIES 16 3884 3885 #ifdef CONFIG_COMPACTION 3886 /* Try memory compaction for high-order allocations before reclaim */ 3887 static struct page * 3888 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3889 unsigned int alloc_flags, const struct alloc_context *ac, 3890 enum compact_priority prio, enum compact_result *compact_result) 3891 { 3892 struct page *page = NULL; 3893 unsigned long pflags; 3894 unsigned int noreclaim_flag; 3895 3896 if (!order) 3897 return NULL; 3898 3899 psi_memstall_enter(&pflags); 3900 noreclaim_flag = memalloc_noreclaim_save(); 3901 3902 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3903 prio, &page); 3904 3905 memalloc_noreclaim_restore(noreclaim_flag); 3906 psi_memstall_leave(&pflags); 3907 3908 /* 3909 * At least in one zone compaction wasn't deferred or skipped, so let's 3910 * count a compaction stall 3911 */ 3912 count_vm_event(COMPACTSTALL); 3913 3914 /* Prep a captured page if available */ 3915 if (page) 3916 prep_new_page(page, order, gfp_mask, alloc_flags); 3917 3918 /* Try get a page from the freelist if available */ 3919 if (!page) 3920 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3921 3922 if (page) { 3923 struct zone *zone = page_zone(page); 3924 3925 zone->compact_blockskip_flush = false; 3926 compaction_defer_reset(zone, order, true); 3927 count_vm_event(COMPACTSUCCESS); 3928 return page; 3929 } 3930 3931 /* 3932 * It's bad if compaction run occurs and fails. The most likely reason 3933 * is that pages exist, but not enough to satisfy watermarks. 3934 */ 3935 count_vm_event(COMPACTFAIL); 3936 3937 cond_resched(); 3938 3939 return NULL; 3940 } 3941 3942 static inline bool 3943 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3944 enum compact_result compact_result, 3945 enum compact_priority *compact_priority, 3946 int *compaction_retries) 3947 { 3948 int max_retries = MAX_COMPACT_RETRIES; 3949 int min_priority; 3950 bool ret = false; 3951 int retries = *compaction_retries; 3952 enum compact_priority priority = *compact_priority; 3953 3954 if (!order) 3955 return false; 3956 3957 if (compaction_made_progress(compact_result)) 3958 (*compaction_retries)++; 3959 3960 /* 3961 * compaction considers all the zone as desperately out of memory 3962 * so it doesn't really make much sense to retry except when the 3963 * failure could be caused by insufficient priority 3964 */ 3965 if (compaction_failed(compact_result)) 3966 goto check_priority; 3967 3968 /* 3969 * make sure the compaction wasn't deferred or didn't bail out early 3970 * due to locks contention before we declare that we should give up. 3971 * But do not retry if the given zonelist is not suitable for 3972 * compaction. 3973 */ 3974 if (compaction_withdrawn(compact_result)) { 3975 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3976 goto out; 3977 } 3978 3979 /* 3980 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3981 * costly ones because they are de facto nofail and invoke OOM 3982 * killer to move on while costly can fail and users are ready 3983 * to cope with that. 1/4 retries is rather arbitrary but we 3984 * would need much more detailed feedback from compaction to 3985 * make a better decision. 3986 */ 3987 if (order > PAGE_ALLOC_COSTLY_ORDER) 3988 max_retries /= 4; 3989 if (*compaction_retries <= max_retries) { 3990 ret = true; 3991 goto out; 3992 } 3993 3994 /* 3995 * Make sure there are attempts at the highest priority if we exhausted 3996 * all retries or failed at the lower priorities. 3997 */ 3998 check_priority: 3999 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4000 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4001 4002 if (*compact_priority > min_priority) { 4003 (*compact_priority)--; 4004 *compaction_retries = 0; 4005 ret = true; 4006 } 4007 out: 4008 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4009 return ret; 4010 } 4011 #else 4012 static inline struct page * 4013 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4014 unsigned int alloc_flags, const struct alloc_context *ac, 4015 enum compact_priority prio, enum compact_result *compact_result) 4016 { 4017 *compact_result = COMPACT_SKIPPED; 4018 return NULL; 4019 } 4020 4021 static inline bool 4022 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4023 enum compact_result compact_result, 4024 enum compact_priority *compact_priority, 4025 int *compaction_retries) 4026 { 4027 struct zone *zone; 4028 struct zoneref *z; 4029 4030 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4031 return false; 4032 4033 /* 4034 * There are setups with compaction disabled which would prefer to loop 4035 * inside the allocator rather than hit the oom killer prematurely. 4036 * Let's give them a good hope and keep retrying while the order-0 4037 * watermarks are OK. 4038 */ 4039 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4040 ac->nodemask) { 4041 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4042 ac_classzone_idx(ac), alloc_flags)) 4043 return true; 4044 } 4045 return false; 4046 } 4047 #endif /* CONFIG_COMPACTION */ 4048 4049 #ifdef CONFIG_LOCKDEP 4050 static struct lockdep_map __fs_reclaim_map = 4051 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4052 4053 static bool __need_fs_reclaim(gfp_t gfp_mask) 4054 { 4055 gfp_mask = current_gfp_context(gfp_mask); 4056 4057 /* no reclaim without waiting on it */ 4058 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4059 return false; 4060 4061 /* this guy won't enter reclaim */ 4062 if (current->flags & PF_MEMALLOC) 4063 return false; 4064 4065 /* We're only interested __GFP_FS allocations for now */ 4066 if (!(gfp_mask & __GFP_FS)) 4067 return false; 4068 4069 if (gfp_mask & __GFP_NOLOCKDEP) 4070 return false; 4071 4072 return true; 4073 } 4074 4075 void __fs_reclaim_acquire(void) 4076 { 4077 lock_map_acquire(&__fs_reclaim_map); 4078 } 4079 4080 void __fs_reclaim_release(void) 4081 { 4082 lock_map_release(&__fs_reclaim_map); 4083 } 4084 4085 void fs_reclaim_acquire(gfp_t gfp_mask) 4086 { 4087 if (__need_fs_reclaim(gfp_mask)) 4088 __fs_reclaim_acquire(); 4089 } 4090 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4091 4092 void fs_reclaim_release(gfp_t gfp_mask) 4093 { 4094 if (__need_fs_reclaim(gfp_mask)) 4095 __fs_reclaim_release(); 4096 } 4097 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4098 #endif 4099 4100 /* Perform direct synchronous page reclaim */ 4101 static int 4102 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4103 const struct alloc_context *ac) 4104 { 4105 int progress; 4106 unsigned int noreclaim_flag; 4107 unsigned long pflags; 4108 4109 cond_resched(); 4110 4111 /* We now go into synchronous reclaim */ 4112 cpuset_memory_pressure_bump(); 4113 psi_memstall_enter(&pflags); 4114 fs_reclaim_acquire(gfp_mask); 4115 noreclaim_flag = memalloc_noreclaim_save(); 4116 4117 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4118 ac->nodemask); 4119 4120 memalloc_noreclaim_restore(noreclaim_flag); 4121 fs_reclaim_release(gfp_mask); 4122 psi_memstall_leave(&pflags); 4123 4124 cond_resched(); 4125 4126 return progress; 4127 } 4128 4129 /* The really slow allocator path where we enter direct reclaim */ 4130 static inline struct page * 4131 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4132 unsigned int alloc_flags, const struct alloc_context *ac, 4133 unsigned long *did_some_progress) 4134 { 4135 struct page *page = NULL; 4136 bool drained = false; 4137 4138 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4139 if (unlikely(!(*did_some_progress))) 4140 return NULL; 4141 4142 retry: 4143 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4144 4145 /* 4146 * If an allocation failed after direct reclaim, it could be because 4147 * pages are pinned on the per-cpu lists or in high alloc reserves. 4148 * Shrink them them and try again 4149 */ 4150 if (!page && !drained) { 4151 unreserve_highatomic_pageblock(ac, false); 4152 drain_all_pages(NULL); 4153 drained = true; 4154 goto retry; 4155 } 4156 4157 return page; 4158 } 4159 4160 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4161 const struct alloc_context *ac) 4162 { 4163 struct zoneref *z; 4164 struct zone *zone; 4165 pg_data_t *last_pgdat = NULL; 4166 enum zone_type high_zoneidx = ac->high_zoneidx; 4167 4168 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4169 ac->nodemask) { 4170 if (last_pgdat != zone->zone_pgdat) 4171 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4172 last_pgdat = zone->zone_pgdat; 4173 } 4174 } 4175 4176 static inline unsigned int 4177 gfp_to_alloc_flags(gfp_t gfp_mask) 4178 { 4179 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4180 4181 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4182 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4183 4184 /* 4185 * The caller may dip into page reserves a bit more if the caller 4186 * cannot run direct reclaim, or if the caller has realtime scheduling 4187 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4188 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4189 */ 4190 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4191 4192 if (gfp_mask & __GFP_ATOMIC) { 4193 /* 4194 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4195 * if it can't schedule. 4196 */ 4197 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4198 alloc_flags |= ALLOC_HARDER; 4199 /* 4200 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4201 * comment for __cpuset_node_allowed(). 4202 */ 4203 alloc_flags &= ~ALLOC_CPUSET; 4204 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4205 alloc_flags |= ALLOC_HARDER; 4206 4207 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4208 alloc_flags |= ALLOC_KSWAPD; 4209 4210 #ifdef CONFIG_CMA 4211 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4212 alloc_flags |= ALLOC_CMA; 4213 #endif 4214 return alloc_flags; 4215 } 4216 4217 static bool oom_reserves_allowed(struct task_struct *tsk) 4218 { 4219 if (!tsk_is_oom_victim(tsk)) 4220 return false; 4221 4222 /* 4223 * !MMU doesn't have oom reaper so give access to memory reserves 4224 * only to the thread with TIF_MEMDIE set 4225 */ 4226 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4227 return false; 4228 4229 return true; 4230 } 4231 4232 /* 4233 * Distinguish requests which really need access to full memory 4234 * reserves from oom victims which can live with a portion of it 4235 */ 4236 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4237 { 4238 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4239 return 0; 4240 if (gfp_mask & __GFP_MEMALLOC) 4241 return ALLOC_NO_WATERMARKS; 4242 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4243 return ALLOC_NO_WATERMARKS; 4244 if (!in_interrupt()) { 4245 if (current->flags & PF_MEMALLOC) 4246 return ALLOC_NO_WATERMARKS; 4247 else if (oom_reserves_allowed(current)) 4248 return ALLOC_OOM; 4249 } 4250 4251 return 0; 4252 } 4253 4254 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4255 { 4256 return !!__gfp_pfmemalloc_flags(gfp_mask); 4257 } 4258 4259 /* 4260 * Checks whether it makes sense to retry the reclaim to make a forward progress 4261 * for the given allocation request. 4262 * 4263 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4264 * without success, or when we couldn't even meet the watermark if we 4265 * reclaimed all remaining pages on the LRU lists. 4266 * 4267 * Returns true if a retry is viable or false to enter the oom path. 4268 */ 4269 static inline bool 4270 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4271 struct alloc_context *ac, int alloc_flags, 4272 bool did_some_progress, int *no_progress_loops) 4273 { 4274 struct zone *zone; 4275 struct zoneref *z; 4276 bool ret = false; 4277 4278 /* 4279 * Costly allocations might have made a progress but this doesn't mean 4280 * their order will become available due to high fragmentation so 4281 * always increment the no progress counter for them 4282 */ 4283 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4284 *no_progress_loops = 0; 4285 else 4286 (*no_progress_loops)++; 4287 4288 /* 4289 * Make sure we converge to OOM if we cannot make any progress 4290 * several times in the row. 4291 */ 4292 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4293 /* Before OOM, exhaust highatomic_reserve */ 4294 return unreserve_highatomic_pageblock(ac, true); 4295 } 4296 4297 /* 4298 * Keep reclaiming pages while there is a chance this will lead 4299 * somewhere. If none of the target zones can satisfy our allocation 4300 * request even if all reclaimable pages are considered then we are 4301 * screwed and have to go OOM. 4302 */ 4303 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4304 ac->nodemask) { 4305 unsigned long available; 4306 unsigned long reclaimable; 4307 unsigned long min_wmark = min_wmark_pages(zone); 4308 bool wmark; 4309 4310 available = reclaimable = zone_reclaimable_pages(zone); 4311 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4312 4313 /* 4314 * Would the allocation succeed if we reclaimed all 4315 * reclaimable pages? 4316 */ 4317 wmark = __zone_watermark_ok(zone, order, min_wmark, 4318 ac_classzone_idx(ac), alloc_flags, available); 4319 trace_reclaim_retry_zone(z, order, reclaimable, 4320 available, min_wmark, *no_progress_loops, wmark); 4321 if (wmark) { 4322 /* 4323 * If we didn't make any progress and have a lot of 4324 * dirty + writeback pages then we should wait for 4325 * an IO to complete to slow down the reclaim and 4326 * prevent from pre mature OOM 4327 */ 4328 if (!did_some_progress) { 4329 unsigned long write_pending; 4330 4331 write_pending = zone_page_state_snapshot(zone, 4332 NR_ZONE_WRITE_PENDING); 4333 4334 if (2 * write_pending > reclaimable) { 4335 congestion_wait(BLK_RW_ASYNC, HZ/10); 4336 return true; 4337 } 4338 } 4339 4340 ret = true; 4341 goto out; 4342 } 4343 } 4344 4345 out: 4346 /* 4347 * Memory allocation/reclaim might be called from a WQ context and the 4348 * current implementation of the WQ concurrency control doesn't 4349 * recognize that a particular WQ is congested if the worker thread is 4350 * looping without ever sleeping. Therefore we have to do a short sleep 4351 * here rather than calling cond_resched(). 4352 */ 4353 if (current->flags & PF_WQ_WORKER) 4354 schedule_timeout_uninterruptible(1); 4355 else 4356 cond_resched(); 4357 return ret; 4358 } 4359 4360 static inline bool 4361 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4362 { 4363 /* 4364 * It's possible that cpuset's mems_allowed and the nodemask from 4365 * mempolicy don't intersect. This should be normally dealt with by 4366 * policy_nodemask(), but it's possible to race with cpuset update in 4367 * such a way the check therein was true, and then it became false 4368 * before we got our cpuset_mems_cookie here. 4369 * This assumes that for all allocations, ac->nodemask can come only 4370 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4371 * when it does not intersect with the cpuset restrictions) or the 4372 * caller can deal with a violated nodemask. 4373 */ 4374 if (cpusets_enabled() && ac->nodemask && 4375 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4376 ac->nodemask = NULL; 4377 return true; 4378 } 4379 4380 /* 4381 * When updating a task's mems_allowed or mempolicy nodemask, it is 4382 * possible to race with parallel threads in such a way that our 4383 * allocation can fail while the mask is being updated. If we are about 4384 * to fail, check if the cpuset changed during allocation and if so, 4385 * retry. 4386 */ 4387 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4388 return true; 4389 4390 return false; 4391 } 4392 4393 static inline struct page * 4394 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4395 struct alloc_context *ac) 4396 { 4397 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4398 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4399 struct page *page = NULL; 4400 unsigned int alloc_flags; 4401 unsigned long did_some_progress; 4402 enum compact_priority compact_priority; 4403 enum compact_result compact_result; 4404 int compaction_retries; 4405 int no_progress_loops; 4406 unsigned int cpuset_mems_cookie; 4407 int reserve_flags; 4408 4409 /* 4410 * We also sanity check to catch abuse of atomic reserves being used by 4411 * callers that are not in atomic context. 4412 */ 4413 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4414 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4415 gfp_mask &= ~__GFP_ATOMIC; 4416 4417 retry_cpuset: 4418 compaction_retries = 0; 4419 no_progress_loops = 0; 4420 compact_priority = DEF_COMPACT_PRIORITY; 4421 cpuset_mems_cookie = read_mems_allowed_begin(); 4422 4423 /* 4424 * The fast path uses conservative alloc_flags to succeed only until 4425 * kswapd needs to be woken up, and to avoid the cost of setting up 4426 * alloc_flags precisely. So we do that now. 4427 */ 4428 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4429 4430 /* 4431 * We need to recalculate the starting point for the zonelist iterator 4432 * because we might have used different nodemask in the fast path, or 4433 * there was a cpuset modification and we are retrying - otherwise we 4434 * could end up iterating over non-eligible zones endlessly. 4435 */ 4436 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4437 ac->high_zoneidx, ac->nodemask); 4438 if (!ac->preferred_zoneref->zone) 4439 goto nopage; 4440 4441 if (alloc_flags & ALLOC_KSWAPD) 4442 wake_all_kswapds(order, gfp_mask, ac); 4443 4444 /* 4445 * The adjusted alloc_flags might result in immediate success, so try 4446 * that first 4447 */ 4448 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4449 if (page) 4450 goto got_pg; 4451 4452 /* 4453 * For costly allocations, try direct compaction first, as it's likely 4454 * that we have enough base pages and don't need to reclaim. For non- 4455 * movable high-order allocations, do that as well, as compaction will 4456 * try prevent permanent fragmentation by migrating from blocks of the 4457 * same migratetype. 4458 * Don't try this for allocations that are allowed to ignore 4459 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4460 */ 4461 if (can_direct_reclaim && 4462 (costly_order || 4463 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4464 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4465 page = __alloc_pages_direct_compact(gfp_mask, order, 4466 alloc_flags, ac, 4467 INIT_COMPACT_PRIORITY, 4468 &compact_result); 4469 if (page) 4470 goto got_pg; 4471 4472 /* 4473 * Checks for costly allocations with __GFP_NORETRY, which 4474 * includes THP page fault allocations 4475 */ 4476 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4477 /* 4478 * If compaction is deferred for high-order allocations, 4479 * it is because sync compaction recently failed. If 4480 * this is the case and the caller requested a THP 4481 * allocation, we do not want to heavily disrupt the 4482 * system, so we fail the allocation instead of entering 4483 * direct reclaim. 4484 */ 4485 if (compact_result == COMPACT_DEFERRED) 4486 goto nopage; 4487 4488 /* 4489 * Looks like reclaim/compaction is worth trying, but 4490 * sync compaction could be very expensive, so keep 4491 * using async compaction. 4492 */ 4493 compact_priority = INIT_COMPACT_PRIORITY; 4494 } 4495 } 4496 4497 retry: 4498 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4499 if (alloc_flags & ALLOC_KSWAPD) 4500 wake_all_kswapds(order, gfp_mask, ac); 4501 4502 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4503 if (reserve_flags) 4504 alloc_flags = reserve_flags; 4505 4506 /* 4507 * Reset the nodemask and zonelist iterators if memory policies can be 4508 * ignored. These allocations are high priority and system rather than 4509 * user oriented. 4510 */ 4511 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4512 ac->nodemask = NULL; 4513 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4514 ac->high_zoneidx, ac->nodemask); 4515 } 4516 4517 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4518 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4519 if (page) 4520 goto got_pg; 4521 4522 /* Caller is not willing to reclaim, we can't balance anything */ 4523 if (!can_direct_reclaim) 4524 goto nopage; 4525 4526 /* Avoid recursion of direct reclaim */ 4527 if (current->flags & PF_MEMALLOC) 4528 goto nopage; 4529 4530 /* Try direct reclaim and then allocating */ 4531 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4532 &did_some_progress); 4533 if (page) 4534 goto got_pg; 4535 4536 /* Try direct compaction and then allocating */ 4537 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4538 compact_priority, &compact_result); 4539 if (page) 4540 goto got_pg; 4541 4542 /* Do not loop if specifically requested */ 4543 if (gfp_mask & __GFP_NORETRY) 4544 goto nopage; 4545 4546 /* 4547 * Do not retry costly high order allocations unless they are 4548 * __GFP_RETRY_MAYFAIL 4549 */ 4550 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4551 goto nopage; 4552 4553 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4554 did_some_progress > 0, &no_progress_loops)) 4555 goto retry; 4556 4557 /* 4558 * It doesn't make any sense to retry for the compaction if the order-0 4559 * reclaim is not able to make any progress because the current 4560 * implementation of the compaction depends on the sufficient amount 4561 * of free memory (see __compaction_suitable) 4562 */ 4563 if (did_some_progress > 0 && 4564 should_compact_retry(ac, order, alloc_flags, 4565 compact_result, &compact_priority, 4566 &compaction_retries)) 4567 goto retry; 4568 4569 4570 /* Deal with possible cpuset update races before we start OOM killing */ 4571 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4572 goto retry_cpuset; 4573 4574 /* Reclaim has failed us, start killing things */ 4575 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4576 if (page) 4577 goto got_pg; 4578 4579 /* Avoid allocations with no watermarks from looping endlessly */ 4580 if (tsk_is_oom_victim(current) && 4581 (alloc_flags == ALLOC_OOM || 4582 (gfp_mask & __GFP_NOMEMALLOC))) 4583 goto nopage; 4584 4585 /* Retry as long as the OOM killer is making progress */ 4586 if (did_some_progress) { 4587 no_progress_loops = 0; 4588 goto retry; 4589 } 4590 4591 nopage: 4592 /* Deal with possible cpuset update races before we fail */ 4593 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4594 goto retry_cpuset; 4595 4596 /* 4597 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4598 * we always retry 4599 */ 4600 if (gfp_mask & __GFP_NOFAIL) { 4601 /* 4602 * All existing users of the __GFP_NOFAIL are blockable, so warn 4603 * of any new users that actually require GFP_NOWAIT 4604 */ 4605 if (WARN_ON_ONCE(!can_direct_reclaim)) 4606 goto fail; 4607 4608 /* 4609 * PF_MEMALLOC request from this context is rather bizarre 4610 * because we cannot reclaim anything and only can loop waiting 4611 * for somebody to do a work for us 4612 */ 4613 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4614 4615 /* 4616 * non failing costly orders are a hard requirement which we 4617 * are not prepared for much so let's warn about these users 4618 * so that we can identify them and convert them to something 4619 * else. 4620 */ 4621 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4622 4623 /* 4624 * Help non-failing allocations by giving them access to memory 4625 * reserves but do not use ALLOC_NO_WATERMARKS because this 4626 * could deplete whole memory reserves which would just make 4627 * the situation worse 4628 */ 4629 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4630 if (page) 4631 goto got_pg; 4632 4633 cond_resched(); 4634 goto retry; 4635 } 4636 fail: 4637 warn_alloc(gfp_mask, ac->nodemask, 4638 "page allocation failure: order:%u", order); 4639 got_pg: 4640 return page; 4641 } 4642 4643 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4644 int preferred_nid, nodemask_t *nodemask, 4645 struct alloc_context *ac, gfp_t *alloc_mask, 4646 unsigned int *alloc_flags) 4647 { 4648 ac->high_zoneidx = gfp_zone(gfp_mask); 4649 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4650 ac->nodemask = nodemask; 4651 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4652 4653 if (cpusets_enabled()) { 4654 *alloc_mask |= __GFP_HARDWALL; 4655 if (!ac->nodemask) 4656 ac->nodemask = &cpuset_current_mems_allowed; 4657 else 4658 *alloc_flags |= ALLOC_CPUSET; 4659 } 4660 4661 fs_reclaim_acquire(gfp_mask); 4662 fs_reclaim_release(gfp_mask); 4663 4664 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4665 4666 if (should_fail_alloc_page(gfp_mask, order)) 4667 return false; 4668 4669 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4670 *alloc_flags |= ALLOC_CMA; 4671 4672 return true; 4673 } 4674 4675 /* Determine whether to spread dirty pages and what the first usable zone */ 4676 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4677 { 4678 /* Dirty zone balancing only done in the fast path */ 4679 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4680 4681 /* 4682 * The preferred zone is used for statistics but crucially it is 4683 * also used as the starting point for the zonelist iterator. It 4684 * may get reset for allocations that ignore memory policies. 4685 */ 4686 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4687 ac->high_zoneidx, ac->nodemask); 4688 } 4689 4690 /* 4691 * This is the 'heart' of the zoned buddy allocator. 4692 */ 4693 struct page * 4694 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4695 nodemask_t *nodemask) 4696 { 4697 struct page *page; 4698 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4699 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4700 struct alloc_context ac = { }; 4701 4702 /* 4703 * There are several places where we assume that the order value is sane 4704 * so bail out early if the request is out of bound. 4705 */ 4706 if (unlikely(order >= MAX_ORDER)) { 4707 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4708 return NULL; 4709 } 4710 4711 gfp_mask &= gfp_allowed_mask; 4712 alloc_mask = gfp_mask; 4713 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4714 return NULL; 4715 4716 finalise_ac(gfp_mask, &ac); 4717 4718 /* 4719 * Forbid the first pass from falling back to types that fragment 4720 * memory until all local zones are considered. 4721 */ 4722 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4723 4724 /* First allocation attempt */ 4725 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4726 if (likely(page)) 4727 goto out; 4728 4729 /* 4730 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4731 * resp. GFP_NOIO which has to be inherited for all allocation requests 4732 * from a particular context which has been marked by 4733 * memalloc_no{fs,io}_{save,restore}. 4734 */ 4735 alloc_mask = current_gfp_context(gfp_mask); 4736 ac.spread_dirty_pages = false; 4737 4738 /* 4739 * Restore the original nodemask if it was potentially replaced with 4740 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4741 */ 4742 if (unlikely(ac.nodemask != nodemask)) 4743 ac.nodemask = nodemask; 4744 4745 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4746 4747 out: 4748 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4749 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4750 __free_pages(page, order); 4751 page = NULL; 4752 } 4753 4754 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4755 4756 return page; 4757 } 4758 EXPORT_SYMBOL(__alloc_pages_nodemask); 4759 4760 /* 4761 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4762 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4763 * you need to access high mem. 4764 */ 4765 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4766 { 4767 struct page *page; 4768 4769 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4770 if (!page) 4771 return 0; 4772 return (unsigned long) page_address(page); 4773 } 4774 EXPORT_SYMBOL(__get_free_pages); 4775 4776 unsigned long get_zeroed_page(gfp_t gfp_mask) 4777 { 4778 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4779 } 4780 EXPORT_SYMBOL(get_zeroed_page); 4781 4782 static inline void free_the_page(struct page *page, unsigned int order) 4783 { 4784 if (order == 0) /* Via pcp? */ 4785 free_unref_page(page); 4786 else 4787 __free_pages_ok(page, order); 4788 } 4789 4790 void __free_pages(struct page *page, unsigned int order) 4791 { 4792 if (put_page_testzero(page)) 4793 free_the_page(page, order); 4794 } 4795 EXPORT_SYMBOL(__free_pages); 4796 4797 void free_pages(unsigned long addr, unsigned int order) 4798 { 4799 if (addr != 0) { 4800 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4801 __free_pages(virt_to_page((void *)addr), order); 4802 } 4803 } 4804 4805 EXPORT_SYMBOL(free_pages); 4806 4807 /* 4808 * Page Fragment: 4809 * An arbitrary-length arbitrary-offset area of memory which resides 4810 * within a 0 or higher order page. Multiple fragments within that page 4811 * are individually refcounted, in the page's reference counter. 4812 * 4813 * The page_frag functions below provide a simple allocation framework for 4814 * page fragments. This is used by the network stack and network device 4815 * drivers to provide a backing region of memory for use as either an 4816 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4817 */ 4818 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4819 gfp_t gfp_mask) 4820 { 4821 struct page *page = NULL; 4822 gfp_t gfp = gfp_mask; 4823 4824 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4825 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4826 __GFP_NOMEMALLOC; 4827 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4828 PAGE_FRAG_CACHE_MAX_ORDER); 4829 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4830 #endif 4831 if (unlikely(!page)) 4832 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4833 4834 nc->va = page ? page_address(page) : NULL; 4835 4836 return page; 4837 } 4838 4839 void __page_frag_cache_drain(struct page *page, unsigned int count) 4840 { 4841 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4842 4843 if (page_ref_sub_and_test(page, count)) 4844 free_the_page(page, compound_order(page)); 4845 } 4846 EXPORT_SYMBOL(__page_frag_cache_drain); 4847 4848 void *page_frag_alloc(struct page_frag_cache *nc, 4849 unsigned int fragsz, gfp_t gfp_mask) 4850 { 4851 unsigned int size = PAGE_SIZE; 4852 struct page *page; 4853 int offset; 4854 4855 if (unlikely(!nc->va)) { 4856 refill: 4857 page = __page_frag_cache_refill(nc, gfp_mask); 4858 if (!page) 4859 return NULL; 4860 4861 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4862 /* if size can vary use size else just use PAGE_SIZE */ 4863 size = nc->size; 4864 #endif 4865 /* Even if we own the page, we do not use atomic_set(). 4866 * This would break get_page_unless_zero() users. 4867 */ 4868 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4869 4870 /* reset page count bias and offset to start of new frag */ 4871 nc->pfmemalloc = page_is_pfmemalloc(page); 4872 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4873 nc->offset = size; 4874 } 4875 4876 offset = nc->offset - fragsz; 4877 if (unlikely(offset < 0)) { 4878 page = virt_to_page(nc->va); 4879 4880 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4881 goto refill; 4882 4883 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4884 /* if size can vary use size else just use PAGE_SIZE */ 4885 size = nc->size; 4886 #endif 4887 /* OK, page count is 0, we can safely set it */ 4888 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4889 4890 /* reset page count bias and offset to start of new frag */ 4891 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4892 offset = size - fragsz; 4893 } 4894 4895 nc->pagecnt_bias--; 4896 nc->offset = offset; 4897 4898 return nc->va + offset; 4899 } 4900 EXPORT_SYMBOL(page_frag_alloc); 4901 4902 /* 4903 * Frees a page fragment allocated out of either a compound or order 0 page. 4904 */ 4905 void page_frag_free(void *addr) 4906 { 4907 struct page *page = virt_to_head_page(addr); 4908 4909 if (unlikely(put_page_testzero(page))) 4910 free_the_page(page, compound_order(page)); 4911 } 4912 EXPORT_SYMBOL(page_frag_free); 4913 4914 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4915 size_t size) 4916 { 4917 if (addr) { 4918 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4919 unsigned long used = addr + PAGE_ALIGN(size); 4920 4921 split_page(virt_to_page((void *)addr), order); 4922 while (used < alloc_end) { 4923 free_page(used); 4924 used += PAGE_SIZE; 4925 } 4926 } 4927 return (void *)addr; 4928 } 4929 4930 /** 4931 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4932 * @size: the number of bytes to allocate 4933 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4934 * 4935 * This function is similar to alloc_pages(), except that it allocates the 4936 * minimum number of pages to satisfy the request. alloc_pages() can only 4937 * allocate memory in power-of-two pages. 4938 * 4939 * This function is also limited by MAX_ORDER. 4940 * 4941 * Memory allocated by this function must be released by free_pages_exact(). 4942 * 4943 * Return: pointer to the allocated area or %NULL in case of error. 4944 */ 4945 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4946 { 4947 unsigned int order = get_order(size); 4948 unsigned long addr; 4949 4950 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4951 gfp_mask &= ~__GFP_COMP; 4952 4953 addr = __get_free_pages(gfp_mask, order); 4954 return make_alloc_exact(addr, order, size); 4955 } 4956 EXPORT_SYMBOL(alloc_pages_exact); 4957 4958 /** 4959 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4960 * pages on a node. 4961 * @nid: the preferred node ID where memory should be allocated 4962 * @size: the number of bytes to allocate 4963 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4964 * 4965 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4966 * back. 4967 * 4968 * Return: pointer to the allocated area or %NULL in case of error. 4969 */ 4970 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4971 { 4972 unsigned int order = get_order(size); 4973 struct page *p; 4974 4975 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4976 gfp_mask &= ~__GFP_COMP; 4977 4978 p = alloc_pages_node(nid, gfp_mask, order); 4979 if (!p) 4980 return NULL; 4981 return make_alloc_exact((unsigned long)page_address(p), order, size); 4982 } 4983 4984 /** 4985 * free_pages_exact - release memory allocated via alloc_pages_exact() 4986 * @virt: the value returned by alloc_pages_exact. 4987 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4988 * 4989 * Release the memory allocated by a previous call to alloc_pages_exact. 4990 */ 4991 void free_pages_exact(void *virt, size_t size) 4992 { 4993 unsigned long addr = (unsigned long)virt; 4994 unsigned long end = addr + PAGE_ALIGN(size); 4995 4996 while (addr < end) { 4997 free_page(addr); 4998 addr += PAGE_SIZE; 4999 } 5000 } 5001 EXPORT_SYMBOL(free_pages_exact); 5002 5003 /** 5004 * nr_free_zone_pages - count number of pages beyond high watermark 5005 * @offset: The zone index of the highest zone 5006 * 5007 * nr_free_zone_pages() counts the number of pages which are beyond the 5008 * high watermark within all zones at or below a given zone index. For each 5009 * zone, the number of pages is calculated as: 5010 * 5011 * nr_free_zone_pages = managed_pages - high_pages 5012 * 5013 * Return: number of pages beyond high watermark. 5014 */ 5015 static unsigned long nr_free_zone_pages(int offset) 5016 { 5017 struct zoneref *z; 5018 struct zone *zone; 5019 5020 /* Just pick one node, since fallback list is circular */ 5021 unsigned long sum = 0; 5022 5023 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5024 5025 for_each_zone_zonelist(zone, z, zonelist, offset) { 5026 unsigned long size = zone_managed_pages(zone); 5027 unsigned long high = high_wmark_pages(zone); 5028 if (size > high) 5029 sum += size - high; 5030 } 5031 5032 return sum; 5033 } 5034 5035 /** 5036 * nr_free_buffer_pages - count number of pages beyond high watermark 5037 * 5038 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5039 * watermark within ZONE_DMA and ZONE_NORMAL. 5040 * 5041 * Return: number of pages beyond high watermark within ZONE_DMA and 5042 * ZONE_NORMAL. 5043 */ 5044 unsigned long nr_free_buffer_pages(void) 5045 { 5046 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5047 } 5048 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5049 5050 /** 5051 * nr_free_pagecache_pages - count number of pages beyond high watermark 5052 * 5053 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5054 * high watermark within all zones. 5055 * 5056 * Return: number of pages beyond high watermark within all zones. 5057 */ 5058 unsigned long nr_free_pagecache_pages(void) 5059 { 5060 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5061 } 5062 5063 static inline void show_node(struct zone *zone) 5064 { 5065 if (IS_ENABLED(CONFIG_NUMA)) 5066 printk("Node %d ", zone_to_nid(zone)); 5067 } 5068 5069 long si_mem_available(void) 5070 { 5071 long available; 5072 unsigned long pagecache; 5073 unsigned long wmark_low = 0; 5074 unsigned long pages[NR_LRU_LISTS]; 5075 unsigned long reclaimable; 5076 struct zone *zone; 5077 int lru; 5078 5079 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5080 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5081 5082 for_each_zone(zone) 5083 wmark_low += low_wmark_pages(zone); 5084 5085 /* 5086 * Estimate the amount of memory available for userspace allocations, 5087 * without causing swapping. 5088 */ 5089 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5090 5091 /* 5092 * Not all the page cache can be freed, otherwise the system will 5093 * start swapping. Assume at least half of the page cache, or the 5094 * low watermark worth of cache, needs to stay. 5095 */ 5096 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5097 pagecache -= min(pagecache / 2, wmark_low); 5098 available += pagecache; 5099 5100 /* 5101 * Part of the reclaimable slab and other kernel memory consists of 5102 * items that are in use, and cannot be freed. Cap this estimate at the 5103 * low watermark. 5104 */ 5105 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5106 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5107 available += reclaimable - min(reclaimable / 2, wmark_low); 5108 5109 if (available < 0) 5110 available = 0; 5111 return available; 5112 } 5113 EXPORT_SYMBOL_GPL(si_mem_available); 5114 5115 void si_meminfo(struct sysinfo *val) 5116 { 5117 val->totalram = totalram_pages(); 5118 val->sharedram = global_node_page_state(NR_SHMEM); 5119 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5120 val->bufferram = nr_blockdev_pages(); 5121 val->totalhigh = totalhigh_pages(); 5122 val->freehigh = nr_free_highpages(); 5123 val->mem_unit = PAGE_SIZE; 5124 } 5125 5126 EXPORT_SYMBOL(si_meminfo); 5127 5128 #ifdef CONFIG_NUMA 5129 void si_meminfo_node(struct sysinfo *val, int nid) 5130 { 5131 int zone_type; /* needs to be signed */ 5132 unsigned long managed_pages = 0; 5133 unsigned long managed_highpages = 0; 5134 unsigned long free_highpages = 0; 5135 pg_data_t *pgdat = NODE_DATA(nid); 5136 5137 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5138 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5139 val->totalram = managed_pages; 5140 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5141 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5142 #ifdef CONFIG_HIGHMEM 5143 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5144 struct zone *zone = &pgdat->node_zones[zone_type]; 5145 5146 if (is_highmem(zone)) { 5147 managed_highpages += zone_managed_pages(zone); 5148 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5149 } 5150 } 5151 val->totalhigh = managed_highpages; 5152 val->freehigh = free_highpages; 5153 #else 5154 val->totalhigh = managed_highpages; 5155 val->freehigh = free_highpages; 5156 #endif 5157 val->mem_unit = PAGE_SIZE; 5158 } 5159 #endif 5160 5161 /* 5162 * Determine whether the node should be displayed or not, depending on whether 5163 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5164 */ 5165 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5166 { 5167 if (!(flags & SHOW_MEM_FILTER_NODES)) 5168 return false; 5169 5170 /* 5171 * no node mask - aka implicit memory numa policy. Do not bother with 5172 * the synchronization - read_mems_allowed_begin - because we do not 5173 * have to be precise here. 5174 */ 5175 if (!nodemask) 5176 nodemask = &cpuset_current_mems_allowed; 5177 5178 return !node_isset(nid, *nodemask); 5179 } 5180 5181 #define K(x) ((x) << (PAGE_SHIFT-10)) 5182 5183 static void show_migration_types(unsigned char type) 5184 { 5185 static const char types[MIGRATE_TYPES] = { 5186 [MIGRATE_UNMOVABLE] = 'U', 5187 [MIGRATE_MOVABLE] = 'M', 5188 [MIGRATE_RECLAIMABLE] = 'E', 5189 [MIGRATE_HIGHATOMIC] = 'H', 5190 #ifdef CONFIG_CMA 5191 [MIGRATE_CMA] = 'C', 5192 #endif 5193 #ifdef CONFIG_MEMORY_ISOLATION 5194 [MIGRATE_ISOLATE] = 'I', 5195 #endif 5196 }; 5197 char tmp[MIGRATE_TYPES + 1]; 5198 char *p = tmp; 5199 int i; 5200 5201 for (i = 0; i < MIGRATE_TYPES; i++) { 5202 if (type & (1 << i)) 5203 *p++ = types[i]; 5204 } 5205 5206 *p = '\0'; 5207 printk(KERN_CONT "(%s) ", tmp); 5208 } 5209 5210 /* 5211 * Show free area list (used inside shift_scroll-lock stuff) 5212 * We also calculate the percentage fragmentation. We do this by counting the 5213 * memory on each free list with the exception of the first item on the list. 5214 * 5215 * Bits in @filter: 5216 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5217 * cpuset. 5218 */ 5219 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5220 { 5221 unsigned long free_pcp = 0; 5222 int cpu; 5223 struct zone *zone; 5224 pg_data_t *pgdat; 5225 5226 for_each_populated_zone(zone) { 5227 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5228 continue; 5229 5230 for_each_online_cpu(cpu) 5231 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5232 } 5233 5234 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5235 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5236 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5237 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5238 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5239 " free:%lu free_pcp:%lu free_cma:%lu\n", 5240 global_node_page_state(NR_ACTIVE_ANON), 5241 global_node_page_state(NR_INACTIVE_ANON), 5242 global_node_page_state(NR_ISOLATED_ANON), 5243 global_node_page_state(NR_ACTIVE_FILE), 5244 global_node_page_state(NR_INACTIVE_FILE), 5245 global_node_page_state(NR_ISOLATED_FILE), 5246 global_node_page_state(NR_UNEVICTABLE), 5247 global_node_page_state(NR_FILE_DIRTY), 5248 global_node_page_state(NR_WRITEBACK), 5249 global_node_page_state(NR_UNSTABLE_NFS), 5250 global_node_page_state(NR_SLAB_RECLAIMABLE), 5251 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5252 global_node_page_state(NR_FILE_MAPPED), 5253 global_node_page_state(NR_SHMEM), 5254 global_zone_page_state(NR_PAGETABLE), 5255 global_zone_page_state(NR_BOUNCE), 5256 global_zone_page_state(NR_FREE_PAGES), 5257 free_pcp, 5258 global_zone_page_state(NR_FREE_CMA_PAGES)); 5259 5260 for_each_online_pgdat(pgdat) { 5261 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5262 continue; 5263 5264 printk("Node %d" 5265 " active_anon:%lukB" 5266 " inactive_anon:%lukB" 5267 " active_file:%lukB" 5268 " inactive_file:%lukB" 5269 " unevictable:%lukB" 5270 " isolated(anon):%lukB" 5271 " isolated(file):%lukB" 5272 " mapped:%lukB" 5273 " dirty:%lukB" 5274 " writeback:%lukB" 5275 " shmem:%lukB" 5276 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5277 " shmem_thp: %lukB" 5278 " shmem_pmdmapped: %lukB" 5279 " anon_thp: %lukB" 5280 #endif 5281 " writeback_tmp:%lukB" 5282 " unstable:%lukB" 5283 " all_unreclaimable? %s" 5284 "\n", 5285 pgdat->node_id, 5286 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5287 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5288 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5289 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5290 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5291 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5292 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5293 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5294 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5295 K(node_page_state(pgdat, NR_WRITEBACK)), 5296 K(node_page_state(pgdat, NR_SHMEM)), 5297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5298 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5299 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5300 * HPAGE_PMD_NR), 5301 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5302 #endif 5303 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5304 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5305 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5306 "yes" : "no"); 5307 } 5308 5309 for_each_populated_zone(zone) { 5310 int i; 5311 5312 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5313 continue; 5314 5315 free_pcp = 0; 5316 for_each_online_cpu(cpu) 5317 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5318 5319 show_node(zone); 5320 printk(KERN_CONT 5321 "%s" 5322 " free:%lukB" 5323 " min:%lukB" 5324 " low:%lukB" 5325 " high:%lukB" 5326 " active_anon:%lukB" 5327 " inactive_anon:%lukB" 5328 " active_file:%lukB" 5329 " inactive_file:%lukB" 5330 " unevictable:%lukB" 5331 " writepending:%lukB" 5332 " present:%lukB" 5333 " managed:%lukB" 5334 " mlocked:%lukB" 5335 " kernel_stack:%lukB" 5336 " pagetables:%lukB" 5337 " bounce:%lukB" 5338 " free_pcp:%lukB" 5339 " local_pcp:%ukB" 5340 " free_cma:%lukB" 5341 "\n", 5342 zone->name, 5343 K(zone_page_state(zone, NR_FREE_PAGES)), 5344 K(min_wmark_pages(zone)), 5345 K(low_wmark_pages(zone)), 5346 K(high_wmark_pages(zone)), 5347 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5348 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5349 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5350 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5351 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5352 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5353 K(zone->present_pages), 5354 K(zone_managed_pages(zone)), 5355 K(zone_page_state(zone, NR_MLOCK)), 5356 zone_page_state(zone, NR_KERNEL_STACK_KB), 5357 K(zone_page_state(zone, NR_PAGETABLE)), 5358 K(zone_page_state(zone, NR_BOUNCE)), 5359 K(free_pcp), 5360 K(this_cpu_read(zone->pageset->pcp.count)), 5361 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5362 printk("lowmem_reserve[]:"); 5363 for (i = 0; i < MAX_NR_ZONES; i++) 5364 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5365 printk(KERN_CONT "\n"); 5366 } 5367 5368 for_each_populated_zone(zone) { 5369 unsigned int order; 5370 unsigned long nr[MAX_ORDER], flags, total = 0; 5371 unsigned char types[MAX_ORDER]; 5372 5373 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5374 continue; 5375 show_node(zone); 5376 printk(KERN_CONT "%s: ", zone->name); 5377 5378 spin_lock_irqsave(&zone->lock, flags); 5379 for (order = 0; order < MAX_ORDER; order++) { 5380 struct free_area *area = &zone->free_area[order]; 5381 int type; 5382 5383 nr[order] = area->nr_free; 5384 total += nr[order] << order; 5385 5386 types[order] = 0; 5387 for (type = 0; type < MIGRATE_TYPES; type++) { 5388 if (!free_area_empty(area, type)) 5389 types[order] |= 1 << type; 5390 } 5391 } 5392 spin_unlock_irqrestore(&zone->lock, flags); 5393 for (order = 0; order < MAX_ORDER; order++) { 5394 printk(KERN_CONT "%lu*%lukB ", 5395 nr[order], K(1UL) << order); 5396 if (nr[order]) 5397 show_migration_types(types[order]); 5398 } 5399 printk(KERN_CONT "= %lukB\n", K(total)); 5400 } 5401 5402 hugetlb_show_meminfo(); 5403 5404 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5405 5406 show_swap_cache_info(); 5407 } 5408 5409 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5410 { 5411 zoneref->zone = zone; 5412 zoneref->zone_idx = zone_idx(zone); 5413 } 5414 5415 /* 5416 * Builds allocation fallback zone lists. 5417 * 5418 * Add all populated zones of a node to the zonelist. 5419 */ 5420 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5421 { 5422 struct zone *zone; 5423 enum zone_type zone_type = MAX_NR_ZONES; 5424 int nr_zones = 0; 5425 5426 do { 5427 zone_type--; 5428 zone = pgdat->node_zones + zone_type; 5429 if (managed_zone(zone)) { 5430 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5431 check_highest_zone(zone_type); 5432 } 5433 } while (zone_type); 5434 5435 return nr_zones; 5436 } 5437 5438 #ifdef CONFIG_NUMA 5439 5440 static int __parse_numa_zonelist_order(char *s) 5441 { 5442 /* 5443 * We used to support different zonlists modes but they turned 5444 * out to be just not useful. Let's keep the warning in place 5445 * if somebody still use the cmd line parameter so that we do 5446 * not fail it silently 5447 */ 5448 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5449 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5450 return -EINVAL; 5451 } 5452 return 0; 5453 } 5454 5455 static __init int setup_numa_zonelist_order(char *s) 5456 { 5457 if (!s) 5458 return 0; 5459 5460 return __parse_numa_zonelist_order(s); 5461 } 5462 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5463 5464 char numa_zonelist_order[] = "Node"; 5465 5466 /* 5467 * sysctl handler for numa_zonelist_order 5468 */ 5469 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5470 void __user *buffer, size_t *length, 5471 loff_t *ppos) 5472 { 5473 char *str; 5474 int ret; 5475 5476 if (!write) 5477 return proc_dostring(table, write, buffer, length, ppos); 5478 str = memdup_user_nul(buffer, 16); 5479 if (IS_ERR(str)) 5480 return PTR_ERR(str); 5481 5482 ret = __parse_numa_zonelist_order(str); 5483 kfree(str); 5484 return ret; 5485 } 5486 5487 5488 #define MAX_NODE_LOAD (nr_online_nodes) 5489 static int node_load[MAX_NUMNODES]; 5490 5491 /** 5492 * find_next_best_node - find the next node that should appear in a given node's fallback list 5493 * @node: node whose fallback list we're appending 5494 * @used_node_mask: nodemask_t of already used nodes 5495 * 5496 * We use a number of factors to determine which is the next node that should 5497 * appear on a given node's fallback list. The node should not have appeared 5498 * already in @node's fallback list, and it should be the next closest node 5499 * according to the distance array (which contains arbitrary distance values 5500 * from each node to each node in the system), and should also prefer nodes 5501 * with no CPUs, since presumably they'll have very little allocation pressure 5502 * on them otherwise. 5503 * 5504 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5505 */ 5506 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5507 { 5508 int n, val; 5509 int min_val = INT_MAX; 5510 int best_node = NUMA_NO_NODE; 5511 const struct cpumask *tmp = cpumask_of_node(0); 5512 5513 /* Use the local node if we haven't already */ 5514 if (!node_isset(node, *used_node_mask)) { 5515 node_set(node, *used_node_mask); 5516 return node; 5517 } 5518 5519 for_each_node_state(n, N_MEMORY) { 5520 5521 /* Don't want a node to appear more than once */ 5522 if (node_isset(n, *used_node_mask)) 5523 continue; 5524 5525 /* Use the distance array to find the distance */ 5526 val = node_distance(node, n); 5527 5528 /* Penalize nodes under us ("prefer the next node") */ 5529 val += (n < node); 5530 5531 /* Give preference to headless and unused nodes */ 5532 tmp = cpumask_of_node(n); 5533 if (!cpumask_empty(tmp)) 5534 val += PENALTY_FOR_NODE_WITH_CPUS; 5535 5536 /* Slight preference for less loaded node */ 5537 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5538 val += node_load[n]; 5539 5540 if (val < min_val) { 5541 min_val = val; 5542 best_node = n; 5543 } 5544 } 5545 5546 if (best_node >= 0) 5547 node_set(best_node, *used_node_mask); 5548 5549 return best_node; 5550 } 5551 5552 5553 /* 5554 * Build zonelists ordered by node and zones within node. 5555 * This results in maximum locality--normal zone overflows into local 5556 * DMA zone, if any--but risks exhausting DMA zone. 5557 */ 5558 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5559 unsigned nr_nodes) 5560 { 5561 struct zoneref *zonerefs; 5562 int i; 5563 5564 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5565 5566 for (i = 0; i < nr_nodes; i++) { 5567 int nr_zones; 5568 5569 pg_data_t *node = NODE_DATA(node_order[i]); 5570 5571 nr_zones = build_zonerefs_node(node, zonerefs); 5572 zonerefs += nr_zones; 5573 } 5574 zonerefs->zone = NULL; 5575 zonerefs->zone_idx = 0; 5576 } 5577 5578 /* 5579 * Build gfp_thisnode zonelists 5580 */ 5581 static void build_thisnode_zonelists(pg_data_t *pgdat) 5582 { 5583 struct zoneref *zonerefs; 5584 int nr_zones; 5585 5586 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5587 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5588 zonerefs += nr_zones; 5589 zonerefs->zone = NULL; 5590 zonerefs->zone_idx = 0; 5591 } 5592 5593 /* 5594 * Build zonelists ordered by zone and nodes within zones. 5595 * This results in conserving DMA zone[s] until all Normal memory is 5596 * exhausted, but results in overflowing to remote node while memory 5597 * may still exist in local DMA zone. 5598 */ 5599 5600 static void build_zonelists(pg_data_t *pgdat) 5601 { 5602 static int node_order[MAX_NUMNODES]; 5603 int node, load, nr_nodes = 0; 5604 nodemask_t used_mask; 5605 int local_node, prev_node; 5606 5607 /* NUMA-aware ordering of nodes */ 5608 local_node = pgdat->node_id; 5609 load = nr_online_nodes; 5610 prev_node = local_node; 5611 nodes_clear(used_mask); 5612 5613 memset(node_order, 0, sizeof(node_order)); 5614 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5615 /* 5616 * We don't want to pressure a particular node. 5617 * So adding penalty to the first node in same 5618 * distance group to make it round-robin. 5619 */ 5620 if (node_distance(local_node, node) != 5621 node_distance(local_node, prev_node)) 5622 node_load[node] = load; 5623 5624 node_order[nr_nodes++] = node; 5625 prev_node = node; 5626 load--; 5627 } 5628 5629 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5630 build_thisnode_zonelists(pgdat); 5631 } 5632 5633 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5634 /* 5635 * Return node id of node used for "local" allocations. 5636 * I.e., first node id of first zone in arg node's generic zonelist. 5637 * Used for initializing percpu 'numa_mem', which is used primarily 5638 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5639 */ 5640 int local_memory_node(int node) 5641 { 5642 struct zoneref *z; 5643 5644 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5645 gfp_zone(GFP_KERNEL), 5646 NULL); 5647 return zone_to_nid(z->zone); 5648 } 5649 #endif 5650 5651 static void setup_min_unmapped_ratio(void); 5652 static void setup_min_slab_ratio(void); 5653 #else /* CONFIG_NUMA */ 5654 5655 static void build_zonelists(pg_data_t *pgdat) 5656 { 5657 int node, local_node; 5658 struct zoneref *zonerefs; 5659 int nr_zones; 5660 5661 local_node = pgdat->node_id; 5662 5663 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5664 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5665 zonerefs += nr_zones; 5666 5667 /* 5668 * Now we build the zonelist so that it contains the zones 5669 * of all the other nodes. 5670 * We don't want to pressure a particular node, so when 5671 * building the zones for node N, we make sure that the 5672 * zones coming right after the local ones are those from 5673 * node N+1 (modulo N) 5674 */ 5675 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5676 if (!node_online(node)) 5677 continue; 5678 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5679 zonerefs += nr_zones; 5680 } 5681 for (node = 0; node < local_node; node++) { 5682 if (!node_online(node)) 5683 continue; 5684 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5685 zonerefs += nr_zones; 5686 } 5687 5688 zonerefs->zone = NULL; 5689 zonerefs->zone_idx = 0; 5690 } 5691 5692 #endif /* CONFIG_NUMA */ 5693 5694 /* 5695 * Boot pageset table. One per cpu which is going to be used for all 5696 * zones and all nodes. The parameters will be set in such a way 5697 * that an item put on a list will immediately be handed over to 5698 * the buddy list. This is safe since pageset manipulation is done 5699 * with interrupts disabled. 5700 * 5701 * The boot_pagesets must be kept even after bootup is complete for 5702 * unused processors and/or zones. They do play a role for bootstrapping 5703 * hotplugged processors. 5704 * 5705 * zoneinfo_show() and maybe other functions do 5706 * not check if the processor is online before following the pageset pointer. 5707 * Other parts of the kernel may not check if the zone is available. 5708 */ 5709 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5710 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5711 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5712 5713 static void __build_all_zonelists(void *data) 5714 { 5715 int nid; 5716 int __maybe_unused cpu; 5717 pg_data_t *self = data; 5718 static DEFINE_SPINLOCK(lock); 5719 5720 spin_lock(&lock); 5721 5722 #ifdef CONFIG_NUMA 5723 memset(node_load, 0, sizeof(node_load)); 5724 #endif 5725 5726 /* 5727 * This node is hotadded and no memory is yet present. So just 5728 * building zonelists is fine - no need to touch other nodes. 5729 */ 5730 if (self && !node_online(self->node_id)) { 5731 build_zonelists(self); 5732 } else { 5733 for_each_online_node(nid) { 5734 pg_data_t *pgdat = NODE_DATA(nid); 5735 5736 build_zonelists(pgdat); 5737 } 5738 5739 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5740 /* 5741 * We now know the "local memory node" for each node-- 5742 * i.e., the node of the first zone in the generic zonelist. 5743 * Set up numa_mem percpu variable for on-line cpus. During 5744 * boot, only the boot cpu should be on-line; we'll init the 5745 * secondary cpus' numa_mem as they come on-line. During 5746 * node/memory hotplug, we'll fixup all on-line cpus. 5747 */ 5748 for_each_online_cpu(cpu) 5749 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5750 #endif 5751 } 5752 5753 spin_unlock(&lock); 5754 } 5755 5756 static noinline void __init 5757 build_all_zonelists_init(void) 5758 { 5759 int cpu; 5760 5761 __build_all_zonelists(NULL); 5762 5763 /* 5764 * Initialize the boot_pagesets that are going to be used 5765 * for bootstrapping processors. The real pagesets for 5766 * each zone will be allocated later when the per cpu 5767 * allocator is available. 5768 * 5769 * boot_pagesets are used also for bootstrapping offline 5770 * cpus if the system is already booted because the pagesets 5771 * are needed to initialize allocators on a specific cpu too. 5772 * F.e. the percpu allocator needs the page allocator which 5773 * needs the percpu allocator in order to allocate its pagesets 5774 * (a chicken-egg dilemma). 5775 */ 5776 for_each_possible_cpu(cpu) 5777 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5778 5779 mminit_verify_zonelist(); 5780 cpuset_init_current_mems_allowed(); 5781 } 5782 5783 /* 5784 * unless system_state == SYSTEM_BOOTING. 5785 * 5786 * __ref due to call of __init annotated helper build_all_zonelists_init 5787 * [protected by SYSTEM_BOOTING]. 5788 */ 5789 void __ref build_all_zonelists(pg_data_t *pgdat) 5790 { 5791 if (system_state == SYSTEM_BOOTING) { 5792 build_all_zonelists_init(); 5793 } else { 5794 __build_all_zonelists(pgdat); 5795 /* cpuset refresh routine should be here */ 5796 } 5797 vm_total_pages = nr_free_pagecache_pages(); 5798 /* 5799 * Disable grouping by mobility if the number of pages in the 5800 * system is too low to allow the mechanism to work. It would be 5801 * more accurate, but expensive to check per-zone. This check is 5802 * made on memory-hotadd so a system can start with mobility 5803 * disabled and enable it later 5804 */ 5805 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5806 page_group_by_mobility_disabled = 1; 5807 else 5808 page_group_by_mobility_disabled = 0; 5809 5810 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5811 nr_online_nodes, 5812 page_group_by_mobility_disabled ? "off" : "on", 5813 vm_total_pages); 5814 #ifdef CONFIG_NUMA 5815 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5816 #endif 5817 } 5818 5819 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5820 static bool __meminit 5821 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5822 { 5823 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5824 static struct memblock_region *r; 5825 5826 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5827 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5828 for_each_memblock(memory, r) { 5829 if (*pfn < memblock_region_memory_end_pfn(r)) 5830 break; 5831 } 5832 } 5833 if (*pfn >= memblock_region_memory_base_pfn(r) && 5834 memblock_is_mirror(r)) { 5835 *pfn = memblock_region_memory_end_pfn(r); 5836 return true; 5837 } 5838 } 5839 #endif 5840 return false; 5841 } 5842 5843 /* 5844 * Initially all pages are reserved - free ones are freed 5845 * up by memblock_free_all() once the early boot process is 5846 * done. Non-atomic initialization, single-pass. 5847 */ 5848 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5849 unsigned long start_pfn, enum memmap_context context, 5850 struct vmem_altmap *altmap) 5851 { 5852 unsigned long pfn, end_pfn = start_pfn + size; 5853 struct page *page; 5854 5855 if (highest_memmap_pfn < end_pfn - 1) 5856 highest_memmap_pfn = end_pfn - 1; 5857 5858 #ifdef CONFIG_ZONE_DEVICE 5859 /* 5860 * Honor reservation requested by the driver for this ZONE_DEVICE 5861 * memory. We limit the total number of pages to initialize to just 5862 * those that might contain the memory mapping. We will defer the 5863 * ZONE_DEVICE page initialization until after we have released 5864 * the hotplug lock. 5865 */ 5866 if (zone == ZONE_DEVICE) { 5867 if (!altmap) 5868 return; 5869 5870 if (start_pfn == altmap->base_pfn) 5871 start_pfn += altmap->reserve; 5872 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5873 } 5874 #endif 5875 5876 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5877 /* 5878 * There can be holes in boot-time mem_map[]s handed to this 5879 * function. They do not exist on hotplugged memory. 5880 */ 5881 if (context == MEMMAP_EARLY) { 5882 if (!early_pfn_valid(pfn)) 5883 continue; 5884 if (!early_pfn_in_nid(pfn, nid)) 5885 continue; 5886 if (overlap_memmap_init(zone, &pfn)) 5887 continue; 5888 if (defer_init(nid, pfn, end_pfn)) 5889 break; 5890 } 5891 5892 page = pfn_to_page(pfn); 5893 __init_single_page(page, pfn, zone, nid); 5894 if (context == MEMMAP_HOTPLUG) 5895 __SetPageReserved(page); 5896 5897 /* 5898 * Mark the block movable so that blocks are reserved for 5899 * movable at startup. This will force kernel allocations 5900 * to reserve their blocks rather than leaking throughout 5901 * the address space during boot when many long-lived 5902 * kernel allocations are made. 5903 * 5904 * bitmap is created for zone's valid pfn range. but memmap 5905 * can be created for invalid pages (for alignment) 5906 * check here not to call set_pageblock_migratetype() against 5907 * pfn out of zone. 5908 */ 5909 if (!(pfn & (pageblock_nr_pages - 1))) { 5910 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5911 cond_resched(); 5912 } 5913 } 5914 } 5915 5916 #ifdef CONFIG_ZONE_DEVICE 5917 void __ref memmap_init_zone_device(struct zone *zone, 5918 unsigned long start_pfn, 5919 unsigned long size, 5920 struct dev_pagemap *pgmap) 5921 { 5922 unsigned long pfn, end_pfn = start_pfn + size; 5923 struct pglist_data *pgdat = zone->zone_pgdat; 5924 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 5925 unsigned long zone_idx = zone_idx(zone); 5926 unsigned long start = jiffies; 5927 int nid = pgdat->node_id; 5928 5929 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 5930 return; 5931 5932 /* 5933 * The call to memmap_init_zone should have already taken care 5934 * of the pages reserved for the memmap, so we can just jump to 5935 * the end of that region and start processing the device pages. 5936 */ 5937 if (altmap) { 5938 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5939 size = end_pfn - start_pfn; 5940 } 5941 5942 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5943 struct page *page = pfn_to_page(pfn); 5944 5945 __init_single_page(page, pfn, zone_idx, nid); 5946 5947 /* 5948 * Mark page reserved as it will need to wait for onlining 5949 * phase for it to be fully associated with a zone. 5950 * 5951 * We can use the non-atomic __set_bit operation for setting 5952 * the flag as we are still initializing the pages. 5953 */ 5954 __SetPageReserved(page); 5955 5956 /* 5957 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 5958 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 5959 * ever freed or placed on a driver-private list. 5960 */ 5961 page->pgmap = pgmap; 5962 page->zone_device_data = NULL; 5963 5964 /* 5965 * Mark the block movable so that blocks are reserved for 5966 * movable at startup. This will force kernel allocations 5967 * to reserve their blocks rather than leaking throughout 5968 * the address space during boot when many long-lived 5969 * kernel allocations are made. 5970 * 5971 * bitmap is created for zone's valid pfn range. but memmap 5972 * can be created for invalid pages (for alignment) 5973 * check here not to call set_pageblock_migratetype() against 5974 * pfn out of zone. 5975 * 5976 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5977 * because this is done early in section_activate() 5978 */ 5979 if (!(pfn & (pageblock_nr_pages - 1))) { 5980 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5981 cond_resched(); 5982 } 5983 } 5984 5985 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5986 size, jiffies_to_msecs(jiffies - start)); 5987 } 5988 5989 #endif 5990 static void __meminit zone_init_free_lists(struct zone *zone) 5991 { 5992 unsigned int order, t; 5993 for_each_migratetype_order(order, t) { 5994 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5995 zone->free_area[order].nr_free = 0; 5996 } 5997 } 5998 5999 void __meminit __weak memmap_init(unsigned long size, int nid, 6000 unsigned long zone, unsigned long start_pfn) 6001 { 6002 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6003 } 6004 6005 static int zone_batchsize(struct zone *zone) 6006 { 6007 #ifdef CONFIG_MMU 6008 int batch; 6009 6010 /* 6011 * The per-cpu-pages pools are set to around 1000th of the 6012 * size of the zone. 6013 */ 6014 batch = zone_managed_pages(zone) / 1024; 6015 /* But no more than a meg. */ 6016 if (batch * PAGE_SIZE > 1024 * 1024) 6017 batch = (1024 * 1024) / PAGE_SIZE; 6018 batch /= 4; /* We effectively *= 4 below */ 6019 if (batch < 1) 6020 batch = 1; 6021 6022 /* 6023 * Clamp the batch to a 2^n - 1 value. Having a power 6024 * of 2 value was found to be more likely to have 6025 * suboptimal cache aliasing properties in some cases. 6026 * 6027 * For example if 2 tasks are alternately allocating 6028 * batches of pages, one task can end up with a lot 6029 * of pages of one half of the possible page colors 6030 * and the other with pages of the other colors. 6031 */ 6032 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6033 6034 return batch; 6035 6036 #else 6037 /* The deferral and batching of frees should be suppressed under NOMMU 6038 * conditions. 6039 * 6040 * The problem is that NOMMU needs to be able to allocate large chunks 6041 * of contiguous memory as there's no hardware page translation to 6042 * assemble apparent contiguous memory from discontiguous pages. 6043 * 6044 * Queueing large contiguous runs of pages for batching, however, 6045 * causes the pages to actually be freed in smaller chunks. As there 6046 * can be a significant delay between the individual batches being 6047 * recycled, this leads to the once large chunks of space being 6048 * fragmented and becoming unavailable for high-order allocations. 6049 */ 6050 return 0; 6051 #endif 6052 } 6053 6054 /* 6055 * pcp->high and pcp->batch values are related and dependent on one another: 6056 * ->batch must never be higher then ->high. 6057 * The following function updates them in a safe manner without read side 6058 * locking. 6059 * 6060 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6061 * those fields changing asynchronously (acording the the above rule). 6062 * 6063 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6064 * outside of boot time (or some other assurance that no concurrent updaters 6065 * exist). 6066 */ 6067 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6068 unsigned long batch) 6069 { 6070 /* start with a fail safe value for batch */ 6071 pcp->batch = 1; 6072 smp_wmb(); 6073 6074 /* Update high, then batch, in order */ 6075 pcp->high = high; 6076 smp_wmb(); 6077 6078 pcp->batch = batch; 6079 } 6080 6081 /* a companion to pageset_set_high() */ 6082 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6083 { 6084 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6085 } 6086 6087 static void pageset_init(struct per_cpu_pageset *p) 6088 { 6089 struct per_cpu_pages *pcp; 6090 int migratetype; 6091 6092 memset(p, 0, sizeof(*p)); 6093 6094 pcp = &p->pcp; 6095 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6096 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6097 } 6098 6099 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6100 { 6101 pageset_init(p); 6102 pageset_set_batch(p, batch); 6103 } 6104 6105 /* 6106 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6107 * to the value high for the pageset p. 6108 */ 6109 static void pageset_set_high(struct per_cpu_pageset *p, 6110 unsigned long high) 6111 { 6112 unsigned long batch = max(1UL, high / 4); 6113 if ((high / 4) > (PAGE_SHIFT * 8)) 6114 batch = PAGE_SHIFT * 8; 6115 6116 pageset_update(&p->pcp, high, batch); 6117 } 6118 6119 static void pageset_set_high_and_batch(struct zone *zone, 6120 struct per_cpu_pageset *pcp) 6121 { 6122 if (percpu_pagelist_fraction) 6123 pageset_set_high(pcp, 6124 (zone_managed_pages(zone) / 6125 percpu_pagelist_fraction)); 6126 else 6127 pageset_set_batch(pcp, zone_batchsize(zone)); 6128 } 6129 6130 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6131 { 6132 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6133 6134 pageset_init(pcp); 6135 pageset_set_high_and_batch(zone, pcp); 6136 } 6137 6138 void __meminit setup_zone_pageset(struct zone *zone) 6139 { 6140 int cpu; 6141 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6142 for_each_possible_cpu(cpu) 6143 zone_pageset_init(zone, cpu); 6144 } 6145 6146 /* 6147 * Allocate per cpu pagesets and initialize them. 6148 * Before this call only boot pagesets were available. 6149 */ 6150 void __init setup_per_cpu_pageset(void) 6151 { 6152 struct pglist_data *pgdat; 6153 struct zone *zone; 6154 6155 for_each_populated_zone(zone) 6156 setup_zone_pageset(zone); 6157 6158 for_each_online_pgdat(pgdat) 6159 pgdat->per_cpu_nodestats = 6160 alloc_percpu(struct per_cpu_nodestat); 6161 } 6162 6163 static __meminit void zone_pcp_init(struct zone *zone) 6164 { 6165 /* 6166 * per cpu subsystem is not up at this point. The following code 6167 * relies on the ability of the linker to provide the 6168 * offset of a (static) per cpu variable into the per cpu area. 6169 */ 6170 zone->pageset = &boot_pageset; 6171 6172 if (populated_zone(zone)) 6173 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6174 zone->name, zone->present_pages, 6175 zone_batchsize(zone)); 6176 } 6177 6178 void __meminit init_currently_empty_zone(struct zone *zone, 6179 unsigned long zone_start_pfn, 6180 unsigned long size) 6181 { 6182 struct pglist_data *pgdat = zone->zone_pgdat; 6183 int zone_idx = zone_idx(zone) + 1; 6184 6185 if (zone_idx > pgdat->nr_zones) 6186 pgdat->nr_zones = zone_idx; 6187 6188 zone->zone_start_pfn = zone_start_pfn; 6189 6190 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6191 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6192 pgdat->node_id, 6193 (unsigned long)zone_idx(zone), 6194 zone_start_pfn, (zone_start_pfn + size)); 6195 6196 zone_init_free_lists(zone); 6197 zone->initialized = 1; 6198 } 6199 6200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6201 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6202 6203 /* 6204 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6205 */ 6206 int __meminit __early_pfn_to_nid(unsigned long pfn, 6207 struct mminit_pfnnid_cache *state) 6208 { 6209 unsigned long start_pfn, end_pfn; 6210 int nid; 6211 6212 if (state->last_start <= pfn && pfn < state->last_end) 6213 return state->last_nid; 6214 6215 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6216 if (nid != NUMA_NO_NODE) { 6217 state->last_start = start_pfn; 6218 state->last_end = end_pfn; 6219 state->last_nid = nid; 6220 } 6221 6222 return nid; 6223 } 6224 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6225 6226 /** 6227 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6228 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6229 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6230 * 6231 * If an architecture guarantees that all ranges registered contain no holes 6232 * and may be freed, this this function may be used instead of calling 6233 * memblock_free_early_nid() manually. 6234 */ 6235 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6236 { 6237 unsigned long start_pfn, end_pfn; 6238 int i, this_nid; 6239 6240 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6241 start_pfn = min(start_pfn, max_low_pfn); 6242 end_pfn = min(end_pfn, max_low_pfn); 6243 6244 if (start_pfn < end_pfn) 6245 memblock_free_early_nid(PFN_PHYS(start_pfn), 6246 (end_pfn - start_pfn) << PAGE_SHIFT, 6247 this_nid); 6248 } 6249 } 6250 6251 /** 6252 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6253 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6254 * 6255 * If an architecture guarantees that all ranges registered contain no holes and may 6256 * be freed, this function may be used instead of calling memory_present() manually. 6257 */ 6258 void __init sparse_memory_present_with_active_regions(int nid) 6259 { 6260 unsigned long start_pfn, end_pfn; 6261 int i, this_nid; 6262 6263 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6264 memory_present(this_nid, start_pfn, end_pfn); 6265 } 6266 6267 /** 6268 * get_pfn_range_for_nid - Return the start and end page frames for a node 6269 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6270 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6271 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6272 * 6273 * It returns the start and end page frame of a node based on information 6274 * provided by memblock_set_node(). If called for a node 6275 * with no available memory, a warning is printed and the start and end 6276 * PFNs will be 0. 6277 */ 6278 void __init get_pfn_range_for_nid(unsigned int nid, 6279 unsigned long *start_pfn, unsigned long *end_pfn) 6280 { 6281 unsigned long this_start_pfn, this_end_pfn; 6282 int i; 6283 6284 *start_pfn = -1UL; 6285 *end_pfn = 0; 6286 6287 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6288 *start_pfn = min(*start_pfn, this_start_pfn); 6289 *end_pfn = max(*end_pfn, this_end_pfn); 6290 } 6291 6292 if (*start_pfn == -1UL) 6293 *start_pfn = 0; 6294 } 6295 6296 /* 6297 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6298 * assumption is made that zones within a node are ordered in monotonic 6299 * increasing memory addresses so that the "highest" populated zone is used 6300 */ 6301 static void __init find_usable_zone_for_movable(void) 6302 { 6303 int zone_index; 6304 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6305 if (zone_index == ZONE_MOVABLE) 6306 continue; 6307 6308 if (arch_zone_highest_possible_pfn[zone_index] > 6309 arch_zone_lowest_possible_pfn[zone_index]) 6310 break; 6311 } 6312 6313 VM_BUG_ON(zone_index == -1); 6314 movable_zone = zone_index; 6315 } 6316 6317 /* 6318 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6319 * because it is sized independent of architecture. Unlike the other zones, 6320 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6321 * in each node depending on the size of each node and how evenly kernelcore 6322 * is distributed. This helper function adjusts the zone ranges 6323 * provided by the architecture for a given node by using the end of the 6324 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6325 * zones within a node are in order of monotonic increases memory addresses 6326 */ 6327 static void __init adjust_zone_range_for_zone_movable(int nid, 6328 unsigned long zone_type, 6329 unsigned long node_start_pfn, 6330 unsigned long node_end_pfn, 6331 unsigned long *zone_start_pfn, 6332 unsigned long *zone_end_pfn) 6333 { 6334 /* Only adjust if ZONE_MOVABLE is on this node */ 6335 if (zone_movable_pfn[nid]) { 6336 /* Size ZONE_MOVABLE */ 6337 if (zone_type == ZONE_MOVABLE) { 6338 *zone_start_pfn = zone_movable_pfn[nid]; 6339 *zone_end_pfn = min(node_end_pfn, 6340 arch_zone_highest_possible_pfn[movable_zone]); 6341 6342 /* Adjust for ZONE_MOVABLE starting within this range */ 6343 } else if (!mirrored_kernelcore && 6344 *zone_start_pfn < zone_movable_pfn[nid] && 6345 *zone_end_pfn > zone_movable_pfn[nid]) { 6346 *zone_end_pfn = zone_movable_pfn[nid]; 6347 6348 /* Check if this whole range is within ZONE_MOVABLE */ 6349 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6350 *zone_start_pfn = *zone_end_pfn; 6351 } 6352 } 6353 6354 /* 6355 * Return the number of pages a zone spans in a node, including holes 6356 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6357 */ 6358 static unsigned long __init zone_spanned_pages_in_node(int nid, 6359 unsigned long zone_type, 6360 unsigned long node_start_pfn, 6361 unsigned long node_end_pfn, 6362 unsigned long *zone_start_pfn, 6363 unsigned long *zone_end_pfn, 6364 unsigned long *ignored) 6365 { 6366 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6367 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6368 /* When hotadd a new node from cpu_up(), the node should be empty */ 6369 if (!node_start_pfn && !node_end_pfn) 6370 return 0; 6371 6372 /* Get the start and end of the zone */ 6373 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6374 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6375 adjust_zone_range_for_zone_movable(nid, zone_type, 6376 node_start_pfn, node_end_pfn, 6377 zone_start_pfn, zone_end_pfn); 6378 6379 /* Check that this node has pages within the zone's required range */ 6380 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6381 return 0; 6382 6383 /* Move the zone boundaries inside the node if necessary */ 6384 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6385 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6386 6387 /* Return the spanned pages */ 6388 return *zone_end_pfn - *zone_start_pfn; 6389 } 6390 6391 /* 6392 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6393 * then all holes in the requested range will be accounted for. 6394 */ 6395 unsigned long __init __absent_pages_in_range(int nid, 6396 unsigned long range_start_pfn, 6397 unsigned long range_end_pfn) 6398 { 6399 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6400 unsigned long start_pfn, end_pfn; 6401 int i; 6402 6403 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6404 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6405 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6406 nr_absent -= end_pfn - start_pfn; 6407 } 6408 return nr_absent; 6409 } 6410 6411 /** 6412 * absent_pages_in_range - Return number of page frames in holes within a range 6413 * @start_pfn: The start PFN to start searching for holes 6414 * @end_pfn: The end PFN to stop searching for holes 6415 * 6416 * Return: the number of pages frames in memory holes within a range. 6417 */ 6418 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6419 unsigned long end_pfn) 6420 { 6421 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6422 } 6423 6424 /* Return the number of page frames in holes in a zone on a node */ 6425 static unsigned long __init zone_absent_pages_in_node(int nid, 6426 unsigned long zone_type, 6427 unsigned long node_start_pfn, 6428 unsigned long node_end_pfn, 6429 unsigned long *ignored) 6430 { 6431 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6432 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6433 unsigned long zone_start_pfn, zone_end_pfn; 6434 unsigned long nr_absent; 6435 6436 /* When hotadd a new node from cpu_up(), the node should be empty */ 6437 if (!node_start_pfn && !node_end_pfn) 6438 return 0; 6439 6440 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6441 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6442 6443 adjust_zone_range_for_zone_movable(nid, zone_type, 6444 node_start_pfn, node_end_pfn, 6445 &zone_start_pfn, &zone_end_pfn); 6446 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6447 6448 /* 6449 * ZONE_MOVABLE handling. 6450 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6451 * and vice versa. 6452 */ 6453 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6454 unsigned long start_pfn, end_pfn; 6455 struct memblock_region *r; 6456 6457 for_each_memblock(memory, r) { 6458 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6459 zone_start_pfn, zone_end_pfn); 6460 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6461 zone_start_pfn, zone_end_pfn); 6462 6463 if (zone_type == ZONE_MOVABLE && 6464 memblock_is_mirror(r)) 6465 nr_absent += end_pfn - start_pfn; 6466 6467 if (zone_type == ZONE_NORMAL && 6468 !memblock_is_mirror(r)) 6469 nr_absent += end_pfn - start_pfn; 6470 } 6471 } 6472 6473 return nr_absent; 6474 } 6475 6476 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6477 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6478 unsigned long zone_type, 6479 unsigned long node_start_pfn, 6480 unsigned long node_end_pfn, 6481 unsigned long *zone_start_pfn, 6482 unsigned long *zone_end_pfn, 6483 unsigned long *zones_size) 6484 { 6485 unsigned int zone; 6486 6487 *zone_start_pfn = node_start_pfn; 6488 for (zone = 0; zone < zone_type; zone++) 6489 *zone_start_pfn += zones_size[zone]; 6490 6491 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6492 6493 return zones_size[zone_type]; 6494 } 6495 6496 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6497 unsigned long zone_type, 6498 unsigned long node_start_pfn, 6499 unsigned long node_end_pfn, 6500 unsigned long *zholes_size) 6501 { 6502 if (!zholes_size) 6503 return 0; 6504 6505 return zholes_size[zone_type]; 6506 } 6507 6508 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6509 6510 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6511 unsigned long node_start_pfn, 6512 unsigned long node_end_pfn, 6513 unsigned long *zones_size, 6514 unsigned long *zholes_size) 6515 { 6516 unsigned long realtotalpages = 0, totalpages = 0; 6517 enum zone_type i; 6518 6519 for (i = 0; i < MAX_NR_ZONES; i++) { 6520 struct zone *zone = pgdat->node_zones + i; 6521 unsigned long zone_start_pfn, zone_end_pfn; 6522 unsigned long size, real_size; 6523 6524 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6525 node_start_pfn, 6526 node_end_pfn, 6527 &zone_start_pfn, 6528 &zone_end_pfn, 6529 zones_size); 6530 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6531 node_start_pfn, node_end_pfn, 6532 zholes_size); 6533 if (size) 6534 zone->zone_start_pfn = zone_start_pfn; 6535 else 6536 zone->zone_start_pfn = 0; 6537 zone->spanned_pages = size; 6538 zone->present_pages = real_size; 6539 6540 totalpages += size; 6541 realtotalpages += real_size; 6542 } 6543 6544 pgdat->node_spanned_pages = totalpages; 6545 pgdat->node_present_pages = realtotalpages; 6546 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6547 realtotalpages); 6548 } 6549 6550 #ifndef CONFIG_SPARSEMEM 6551 /* 6552 * Calculate the size of the zone->blockflags rounded to an unsigned long 6553 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6554 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6555 * round what is now in bits to nearest long in bits, then return it in 6556 * bytes. 6557 */ 6558 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6559 { 6560 unsigned long usemapsize; 6561 6562 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6563 usemapsize = roundup(zonesize, pageblock_nr_pages); 6564 usemapsize = usemapsize >> pageblock_order; 6565 usemapsize *= NR_PAGEBLOCK_BITS; 6566 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6567 6568 return usemapsize / 8; 6569 } 6570 6571 static void __ref setup_usemap(struct pglist_data *pgdat, 6572 struct zone *zone, 6573 unsigned long zone_start_pfn, 6574 unsigned long zonesize) 6575 { 6576 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6577 zone->pageblock_flags = NULL; 6578 if (usemapsize) { 6579 zone->pageblock_flags = 6580 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6581 pgdat->node_id); 6582 if (!zone->pageblock_flags) 6583 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6584 usemapsize, zone->name, pgdat->node_id); 6585 } 6586 } 6587 #else 6588 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6589 unsigned long zone_start_pfn, unsigned long zonesize) {} 6590 #endif /* CONFIG_SPARSEMEM */ 6591 6592 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6593 6594 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6595 void __init set_pageblock_order(void) 6596 { 6597 unsigned int order; 6598 6599 /* Check that pageblock_nr_pages has not already been setup */ 6600 if (pageblock_order) 6601 return; 6602 6603 if (HPAGE_SHIFT > PAGE_SHIFT) 6604 order = HUGETLB_PAGE_ORDER; 6605 else 6606 order = MAX_ORDER - 1; 6607 6608 /* 6609 * Assume the largest contiguous order of interest is a huge page. 6610 * This value may be variable depending on boot parameters on IA64 and 6611 * powerpc. 6612 */ 6613 pageblock_order = order; 6614 } 6615 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6616 6617 /* 6618 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6619 * is unused as pageblock_order is set at compile-time. See 6620 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6621 * the kernel config 6622 */ 6623 void __init set_pageblock_order(void) 6624 { 6625 } 6626 6627 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6628 6629 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6630 unsigned long present_pages) 6631 { 6632 unsigned long pages = spanned_pages; 6633 6634 /* 6635 * Provide a more accurate estimation if there are holes within 6636 * the zone and SPARSEMEM is in use. If there are holes within the 6637 * zone, each populated memory region may cost us one or two extra 6638 * memmap pages due to alignment because memmap pages for each 6639 * populated regions may not be naturally aligned on page boundary. 6640 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6641 */ 6642 if (spanned_pages > present_pages + (present_pages >> 4) && 6643 IS_ENABLED(CONFIG_SPARSEMEM)) 6644 pages = present_pages; 6645 6646 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6647 } 6648 6649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6650 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6651 { 6652 spin_lock_init(&pgdat->split_queue_lock); 6653 INIT_LIST_HEAD(&pgdat->split_queue); 6654 pgdat->split_queue_len = 0; 6655 } 6656 #else 6657 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6658 #endif 6659 6660 #ifdef CONFIG_COMPACTION 6661 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6662 { 6663 init_waitqueue_head(&pgdat->kcompactd_wait); 6664 } 6665 #else 6666 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6667 #endif 6668 6669 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6670 { 6671 pgdat_resize_init(pgdat); 6672 6673 pgdat_init_split_queue(pgdat); 6674 pgdat_init_kcompactd(pgdat); 6675 6676 init_waitqueue_head(&pgdat->kswapd_wait); 6677 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6678 6679 pgdat_page_ext_init(pgdat); 6680 spin_lock_init(&pgdat->lru_lock); 6681 lruvec_init(node_lruvec(pgdat)); 6682 } 6683 6684 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6685 unsigned long remaining_pages) 6686 { 6687 atomic_long_set(&zone->managed_pages, remaining_pages); 6688 zone_set_nid(zone, nid); 6689 zone->name = zone_names[idx]; 6690 zone->zone_pgdat = NODE_DATA(nid); 6691 spin_lock_init(&zone->lock); 6692 zone_seqlock_init(zone); 6693 zone_pcp_init(zone); 6694 } 6695 6696 /* 6697 * Set up the zone data structures 6698 * - init pgdat internals 6699 * - init all zones belonging to this node 6700 * 6701 * NOTE: this function is only called during memory hotplug 6702 */ 6703 #ifdef CONFIG_MEMORY_HOTPLUG 6704 void __ref free_area_init_core_hotplug(int nid) 6705 { 6706 enum zone_type z; 6707 pg_data_t *pgdat = NODE_DATA(nid); 6708 6709 pgdat_init_internals(pgdat); 6710 for (z = 0; z < MAX_NR_ZONES; z++) 6711 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6712 } 6713 #endif 6714 6715 /* 6716 * Set up the zone data structures: 6717 * - mark all pages reserved 6718 * - mark all memory queues empty 6719 * - clear the memory bitmaps 6720 * 6721 * NOTE: pgdat should get zeroed by caller. 6722 * NOTE: this function is only called during early init. 6723 */ 6724 static void __init free_area_init_core(struct pglist_data *pgdat) 6725 { 6726 enum zone_type j; 6727 int nid = pgdat->node_id; 6728 6729 pgdat_init_internals(pgdat); 6730 pgdat->per_cpu_nodestats = &boot_nodestats; 6731 6732 for (j = 0; j < MAX_NR_ZONES; j++) { 6733 struct zone *zone = pgdat->node_zones + j; 6734 unsigned long size, freesize, memmap_pages; 6735 unsigned long zone_start_pfn = zone->zone_start_pfn; 6736 6737 size = zone->spanned_pages; 6738 freesize = zone->present_pages; 6739 6740 /* 6741 * Adjust freesize so that it accounts for how much memory 6742 * is used by this zone for memmap. This affects the watermark 6743 * and per-cpu initialisations 6744 */ 6745 memmap_pages = calc_memmap_size(size, freesize); 6746 if (!is_highmem_idx(j)) { 6747 if (freesize >= memmap_pages) { 6748 freesize -= memmap_pages; 6749 if (memmap_pages) 6750 printk(KERN_DEBUG 6751 " %s zone: %lu pages used for memmap\n", 6752 zone_names[j], memmap_pages); 6753 } else 6754 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6755 zone_names[j], memmap_pages, freesize); 6756 } 6757 6758 /* Account for reserved pages */ 6759 if (j == 0 && freesize > dma_reserve) { 6760 freesize -= dma_reserve; 6761 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6762 zone_names[0], dma_reserve); 6763 } 6764 6765 if (!is_highmem_idx(j)) 6766 nr_kernel_pages += freesize; 6767 /* Charge for highmem memmap if there are enough kernel pages */ 6768 else if (nr_kernel_pages > memmap_pages * 2) 6769 nr_kernel_pages -= memmap_pages; 6770 nr_all_pages += freesize; 6771 6772 /* 6773 * Set an approximate value for lowmem here, it will be adjusted 6774 * when the bootmem allocator frees pages into the buddy system. 6775 * And all highmem pages will be managed by the buddy system. 6776 */ 6777 zone_init_internals(zone, j, nid, freesize); 6778 6779 if (!size) 6780 continue; 6781 6782 set_pageblock_order(); 6783 setup_usemap(pgdat, zone, zone_start_pfn, size); 6784 init_currently_empty_zone(zone, zone_start_pfn, size); 6785 memmap_init(size, nid, j, zone_start_pfn); 6786 } 6787 } 6788 6789 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6790 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6791 { 6792 unsigned long __maybe_unused start = 0; 6793 unsigned long __maybe_unused offset = 0; 6794 6795 /* Skip empty nodes */ 6796 if (!pgdat->node_spanned_pages) 6797 return; 6798 6799 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6800 offset = pgdat->node_start_pfn - start; 6801 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6802 if (!pgdat->node_mem_map) { 6803 unsigned long size, end; 6804 struct page *map; 6805 6806 /* 6807 * The zone's endpoints aren't required to be MAX_ORDER 6808 * aligned but the node_mem_map endpoints must be in order 6809 * for the buddy allocator to function correctly. 6810 */ 6811 end = pgdat_end_pfn(pgdat); 6812 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6813 size = (end - start) * sizeof(struct page); 6814 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6815 pgdat->node_id); 6816 if (!map) 6817 panic("Failed to allocate %ld bytes for node %d memory map\n", 6818 size, pgdat->node_id); 6819 pgdat->node_mem_map = map + offset; 6820 } 6821 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6822 __func__, pgdat->node_id, (unsigned long)pgdat, 6823 (unsigned long)pgdat->node_mem_map); 6824 #ifndef CONFIG_NEED_MULTIPLE_NODES 6825 /* 6826 * With no DISCONTIG, the global mem_map is just set as node 0's 6827 */ 6828 if (pgdat == NODE_DATA(0)) { 6829 mem_map = NODE_DATA(0)->node_mem_map; 6830 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6831 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6832 mem_map -= offset; 6833 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6834 } 6835 #endif 6836 } 6837 #else 6838 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6839 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6840 6841 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6842 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6843 { 6844 pgdat->first_deferred_pfn = ULONG_MAX; 6845 } 6846 #else 6847 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6848 #endif 6849 6850 void __init free_area_init_node(int nid, unsigned long *zones_size, 6851 unsigned long node_start_pfn, 6852 unsigned long *zholes_size) 6853 { 6854 pg_data_t *pgdat = NODE_DATA(nid); 6855 unsigned long start_pfn = 0; 6856 unsigned long end_pfn = 0; 6857 6858 /* pg_data_t should be reset to zero when it's allocated */ 6859 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6860 6861 pgdat->node_id = nid; 6862 pgdat->node_start_pfn = node_start_pfn; 6863 pgdat->per_cpu_nodestats = NULL; 6864 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6865 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6866 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6867 (u64)start_pfn << PAGE_SHIFT, 6868 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6869 #else 6870 start_pfn = node_start_pfn; 6871 #endif 6872 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6873 zones_size, zholes_size); 6874 6875 alloc_node_mem_map(pgdat); 6876 pgdat_set_deferred_range(pgdat); 6877 6878 free_area_init_core(pgdat); 6879 } 6880 6881 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6882 /* 6883 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6884 * pages zeroed 6885 */ 6886 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6887 { 6888 unsigned long pfn; 6889 u64 pgcnt = 0; 6890 6891 for (pfn = spfn; pfn < epfn; pfn++) { 6892 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6893 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6894 + pageblock_nr_pages - 1; 6895 continue; 6896 } 6897 mm_zero_struct_page(pfn_to_page(pfn)); 6898 pgcnt++; 6899 } 6900 6901 return pgcnt; 6902 } 6903 6904 /* 6905 * Only struct pages that are backed by physical memory are zeroed and 6906 * initialized by going through __init_single_page(). But, there are some 6907 * struct pages which are reserved in memblock allocator and their fields 6908 * may be accessed (for example page_to_pfn() on some configuration accesses 6909 * flags). We must explicitly zero those struct pages. 6910 * 6911 * This function also addresses a similar issue where struct pages are left 6912 * uninitialized because the physical address range is not covered by 6913 * memblock.memory or memblock.reserved. That could happen when memblock 6914 * layout is manually configured via memmap=. 6915 */ 6916 void __init zero_resv_unavail(void) 6917 { 6918 phys_addr_t start, end; 6919 u64 i, pgcnt; 6920 phys_addr_t next = 0; 6921 6922 /* 6923 * Loop through unavailable ranges not covered by memblock.memory. 6924 */ 6925 pgcnt = 0; 6926 for_each_mem_range(i, &memblock.memory, NULL, 6927 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6928 if (next < start) 6929 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6930 next = end; 6931 } 6932 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6933 6934 /* 6935 * Struct pages that do not have backing memory. This could be because 6936 * firmware is using some of this memory, or for some other reasons. 6937 */ 6938 if (pgcnt) 6939 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6940 } 6941 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6942 6943 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6944 6945 #if MAX_NUMNODES > 1 6946 /* 6947 * Figure out the number of possible node ids. 6948 */ 6949 void __init setup_nr_node_ids(void) 6950 { 6951 unsigned int highest; 6952 6953 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6954 nr_node_ids = highest + 1; 6955 } 6956 #endif 6957 6958 /** 6959 * node_map_pfn_alignment - determine the maximum internode alignment 6960 * 6961 * This function should be called after node map is populated and sorted. 6962 * It calculates the maximum power of two alignment which can distinguish 6963 * all the nodes. 6964 * 6965 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6966 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6967 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6968 * shifted, 1GiB is enough and this function will indicate so. 6969 * 6970 * This is used to test whether pfn -> nid mapping of the chosen memory 6971 * model has fine enough granularity to avoid incorrect mapping for the 6972 * populated node map. 6973 * 6974 * Return: the determined alignment in pfn's. 0 if there is no alignment 6975 * requirement (single node). 6976 */ 6977 unsigned long __init node_map_pfn_alignment(void) 6978 { 6979 unsigned long accl_mask = 0, last_end = 0; 6980 unsigned long start, end, mask; 6981 int last_nid = NUMA_NO_NODE; 6982 int i, nid; 6983 6984 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6985 if (!start || last_nid < 0 || last_nid == nid) { 6986 last_nid = nid; 6987 last_end = end; 6988 continue; 6989 } 6990 6991 /* 6992 * Start with a mask granular enough to pin-point to the 6993 * start pfn and tick off bits one-by-one until it becomes 6994 * too coarse to separate the current node from the last. 6995 */ 6996 mask = ~((1 << __ffs(start)) - 1); 6997 while (mask && last_end <= (start & (mask << 1))) 6998 mask <<= 1; 6999 7000 /* accumulate all internode masks */ 7001 accl_mask |= mask; 7002 } 7003 7004 /* convert mask to number of pages */ 7005 return ~accl_mask + 1; 7006 } 7007 7008 /* Find the lowest pfn for a node */ 7009 static unsigned long __init find_min_pfn_for_node(int nid) 7010 { 7011 unsigned long min_pfn = ULONG_MAX; 7012 unsigned long start_pfn; 7013 int i; 7014 7015 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7016 min_pfn = min(min_pfn, start_pfn); 7017 7018 if (min_pfn == ULONG_MAX) { 7019 pr_warn("Could not find start_pfn for node %d\n", nid); 7020 return 0; 7021 } 7022 7023 return min_pfn; 7024 } 7025 7026 /** 7027 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7028 * 7029 * Return: the minimum PFN based on information provided via 7030 * memblock_set_node(). 7031 */ 7032 unsigned long __init find_min_pfn_with_active_regions(void) 7033 { 7034 return find_min_pfn_for_node(MAX_NUMNODES); 7035 } 7036 7037 /* 7038 * early_calculate_totalpages() 7039 * Sum pages in active regions for movable zone. 7040 * Populate N_MEMORY for calculating usable_nodes. 7041 */ 7042 static unsigned long __init early_calculate_totalpages(void) 7043 { 7044 unsigned long totalpages = 0; 7045 unsigned long start_pfn, end_pfn; 7046 int i, nid; 7047 7048 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7049 unsigned long pages = end_pfn - start_pfn; 7050 7051 totalpages += pages; 7052 if (pages) 7053 node_set_state(nid, N_MEMORY); 7054 } 7055 return totalpages; 7056 } 7057 7058 /* 7059 * Find the PFN the Movable zone begins in each node. Kernel memory 7060 * is spread evenly between nodes as long as the nodes have enough 7061 * memory. When they don't, some nodes will have more kernelcore than 7062 * others 7063 */ 7064 static void __init find_zone_movable_pfns_for_nodes(void) 7065 { 7066 int i, nid; 7067 unsigned long usable_startpfn; 7068 unsigned long kernelcore_node, kernelcore_remaining; 7069 /* save the state before borrow the nodemask */ 7070 nodemask_t saved_node_state = node_states[N_MEMORY]; 7071 unsigned long totalpages = early_calculate_totalpages(); 7072 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7073 struct memblock_region *r; 7074 7075 /* Need to find movable_zone earlier when movable_node is specified. */ 7076 find_usable_zone_for_movable(); 7077 7078 /* 7079 * If movable_node is specified, ignore kernelcore and movablecore 7080 * options. 7081 */ 7082 if (movable_node_is_enabled()) { 7083 for_each_memblock(memory, r) { 7084 if (!memblock_is_hotpluggable(r)) 7085 continue; 7086 7087 nid = r->nid; 7088 7089 usable_startpfn = PFN_DOWN(r->base); 7090 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7091 min(usable_startpfn, zone_movable_pfn[nid]) : 7092 usable_startpfn; 7093 } 7094 7095 goto out2; 7096 } 7097 7098 /* 7099 * If kernelcore=mirror is specified, ignore movablecore option 7100 */ 7101 if (mirrored_kernelcore) { 7102 bool mem_below_4gb_not_mirrored = false; 7103 7104 for_each_memblock(memory, r) { 7105 if (memblock_is_mirror(r)) 7106 continue; 7107 7108 nid = r->nid; 7109 7110 usable_startpfn = memblock_region_memory_base_pfn(r); 7111 7112 if (usable_startpfn < 0x100000) { 7113 mem_below_4gb_not_mirrored = true; 7114 continue; 7115 } 7116 7117 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7118 min(usable_startpfn, zone_movable_pfn[nid]) : 7119 usable_startpfn; 7120 } 7121 7122 if (mem_below_4gb_not_mirrored) 7123 pr_warn("This configuration results in unmirrored kernel memory."); 7124 7125 goto out2; 7126 } 7127 7128 /* 7129 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7130 * amount of necessary memory. 7131 */ 7132 if (required_kernelcore_percent) 7133 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7134 10000UL; 7135 if (required_movablecore_percent) 7136 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7137 10000UL; 7138 7139 /* 7140 * If movablecore= was specified, calculate what size of 7141 * kernelcore that corresponds so that memory usable for 7142 * any allocation type is evenly spread. If both kernelcore 7143 * and movablecore are specified, then the value of kernelcore 7144 * will be used for required_kernelcore if it's greater than 7145 * what movablecore would have allowed. 7146 */ 7147 if (required_movablecore) { 7148 unsigned long corepages; 7149 7150 /* 7151 * Round-up so that ZONE_MOVABLE is at least as large as what 7152 * was requested by the user 7153 */ 7154 required_movablecore = 7155 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7156 required_movablecore = min(totalpages, required_movablecore); 7157 corepages = totalpages - required_movablecore; 7158 7159 required_kernelcore = max(required_kernelcore, corepages); 7160 } 7161 7162 /* 7163 * If kernelcore was not specified or kernelcore size is larger 7164 * than totalpages, there is no ZONE_MOVABLE. 7165 */ 7166 if (!required_kernelcore || required_kernelcore >= totalpages) 7167 goto out; 7168 7169 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7170 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7171 7172 restart: 7173 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7174 kernelcore_node = required_kernelcore / usable_nodes; 7175 for_each_node_state(nid, N_MEMORY) { 7176 unsigned long start_pfn, end_pfn; 7177 7178 /* 7179 * Recalculate kernelcore_node if the division per node 7180 * now exceeds what is necessary to satisfy the requested 7181 * amount of memory for the kernel 7182 */ 7183 if (required_kernelcore < kernelcore_node) 7184 kernelcore_node = required_kernelcore / usable_nodes; 7185 7186 /* 7187 * As the map is walked, we track how much memory is usable 7188 * by the kernel using kernelcore_remaining. When it is 7189 * 0, the rest of the node is usable by ZONE_MOVABLE 7190 */ 7191 kernelcore_remaining = kernelcore_node; 7192 7193 /* Go through each range of PFNs within this node */ 7194 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7195 unsigned long size_pages; 7196 7197 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7198 if (start_pfn >= end_pfn) 7199 continue; 7200 7201 /* Account for what is only usable for kernelcore */ 7202 if (start_pfn < usable_startpfn) { 7203 unsigned long kernel_pages; 7204 kernel_pages = min(end_pfn, usable_startpfn) 7205 - start_pfn; 7206 7207 kernelcore_remaining -= min(kernel_pages, 7208 kernelcore_remaining); 7209 required_kernelcore -= min(kernel_pages, 7210 required_kernelcore); 7211 7212 /* Continue if range is now fully accounted */ 7213 if (end_pfn <= usable_startpfn) { 7214 7215 /* 7216 * Push zone_movable_pfn to the end so 7217 * that if we have to rebalance 7218 * kernelcore across nodes, we will 7219 * not double account here 7220 */ 7221 zone_movable_pfn[nid] = end_pfn; 7222 continue; 7223 } 7224 start_pfn = usable_startpfn; 7225 } 7226 7227 /* 7228 * The usable PFN range for ZONE_MOVABLE is from 7229 * start_pfn->end_pfn. Calculate size_pages as the 7230 * number of pages used as kernelcore 7231 */ 7232 size_pages = end_pfn - start_pfn; 7233 if (size_pages > kernelcore_remaining) 7234 size_pages = kernelcore_remaining; 7235 zone_movable_pfn[nid] = start_pfn + size_pages; 7236 7237 /* 7238 * Some kernelcore has been met, update counts and 7239 * break if the kernelcore for this node has been 7240 * satisfied 7241 */ 7242 required_kernelcore -= min(required_kernelcore, 7243 size_pages); 7244 kernelcore_remaining -= size_pages; 7245 if (!kernelcore_remaining) 7246 break; 7247 } 7248 } 7249 7250 /* 7251 * If there is still required_kernelcore, we do another pass with one 7252 * less node in the count. This will push zone_movable_pfn[nid] further 7253 * along on the nodes that still have memory until kernelcore is 7254 * satisfied 7255 */ 7256 usable_nodes--; 7257 if (usable_nodes && required_kernelcore > usable_nodes) 7258 goto restart; 7259 7260 out2: 7261 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7262 for (nid = 0; nid < MAX_NUMNODES; nid++) 7263 zone_movable_pfn[nid] = 7264 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7265 7266 out: 7267 /* restore the node_state */ 7268 node_states[N_MEMORY] = saved_node_state; 7269 } 7270 7271 /* Any regular or high memory on that node ? */ 7272 static void check_for_memory(pg_data_t *pgdat, int nid) 7273 { 7274 enum zone_type zone_type; 7275 7276 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7277 struct zone *zone = &pgdat->node_zones[zone_type]; 7278 if (populated_zone(zone)) { 7279 if (IS_ENABLED(CONFIG_HIGHMEM)) 7280 node_set_state(nid, N_HIGH_MEMORY); 7281 if (zone_type <= ZONE_NORMAL) 7282 node_set_state(nid, N_NORMAL_MEMORY); 7283 break; 7284 } 7285 } 7286 } 7287 7288 /** 7289 * free_area_init_nodes - Initialise all pg_data_t and zone data 7290 * @max_zone_pfn: an array of max PFNs for each zone 7291 * 7292 * This will call free_area_init_node() for each active node in the system. 7293 * Using the page ranges provided by memblock_set_node(), the size of each 7294 * zone in each node and their holes is calculated. If the maximum PFN 7295 * between two adjacent zones match, it is assumed that the zone is empty. 7296 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7297 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7298 * starts where the previous one ended. For example, ZONE_DMA32 starts 7299 * at arch_max_dma_pfn. 7300 */ 7301 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7302 { 7303 unsigned long start_pfn, end_pfn; 7304 int i, nid; 7305 7306 /* Record where the zone boundaries are */ 7307 memset(arch_zone_lowest_possible_pfn, 0, 7308 sizeof(arch_zone_lowest_possible_pfn)); 7309 memset(arch_zone_highest_possible_pfn, 0, 7310 sizeof(arch_zone_highest_possible_pfn)); 7311 7312 start_pfn = find_min_pfn_with_active_regions(); 7313 7314 for (i = 0; i < MAX_NR_ZONES; i++) { 7315 if (i == ZONE_MOVABLE) 7316 continue; 7317 7318 end_pfn = max(max_zone_pfn[i], start_pfn); 7319 arch_zone_lowest_possible_pfn[i] = start_pfn; 7320 arch_zone_highest_possible_pfn[i] = end_pfn; 7321 7322 start_pfn = end_pfn; 7323 } 7324 7325 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7326 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7327 find_zone_movable_pfns_for_nodes(); 7328 7329 /* Print out the zone ranges */ 7330 pr_info("Zone ranges:\n"); 7331 for (i = 0; i < MAX_NR_ZONES; i++) { 7332 if (i == ZONE_MOVABLE) 7333 continue; 7334 pr_info(" %-8s ", zone_names[i]); 7335 if (arch_zone_lowest_possible_pfn[i] == 7336 arch_zone_highest_possible_pfn[i]) 7337 pr_cont("empty\n"); 7338 else 7339 pr_cont("[mem %#018Lx-%#018Lx]\n", 7340 (u64)arch_zone_lowest_possible_pfn[i] 7341 << PAGE_SHIFT, 7342 ((u64)arch_zone_highest_possible_pfn[i] 7343 << PAGE_SHIFT) - 1); 7344 } 7345 7346 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7347 pr_info("Movable zone start for each node\n"); 7348 for (i = 0; i < MAX_NUMNODES; i++) { 7349 if (zone_movable_pfn[i]) 7350 pr_info(" Node %d: %#018Lx\n", i, 7351 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7352 } 7353 7354 /* 7355 * Print out the early node map, and initialize the 7356 * subsection-map relative to active online memory ranges to 7357 * enable future "sub-section" extensions of the memory map. 7358 */ 7359 pr_info("Early memory node ranges\n"); 7360 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7361 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7362 (u64)start_pfn << PAGE_SHIFT, 7363 ((u64)end_pfn << PAGE_SHIFT) - 1); 7364 subsection_map_init(start_pfn, end_pfn - start_pfn); 7365 } 7366 7367 /* Initialise every node */ 7368 mminit_verify_pageflags_layout(); 7369 setup_nr_node_ids(); 7370 zero_resv_unavail(); 7371 for_each_online_node(nid) { 7372 pg_data_t *pgdat = NODE_DATA(nid); 7373 free_area_init_node(nid, NULL, 7374 find_min_pfn_for_node(nid), NULL); 7375 7376 /* Any memory on that node */ 7377 if (pgdat->node_present_pages) 7378 node_set_state(nid, N_MEMORY); 7379 check_for_memory(pgdat, nid); 7380 } 7381 } 7382 7383 static int __init cmdline_parse_core(char *p, unsigned long *core, 7384 unsigned long *percent) 7385 { 7386 unsigned long long coremem; 7387 char *endptr; 7388 7389 if (!p) 7390 return -EINVAL; 7391 7392 /* Value may be a percentage of total memory, otherwise bytes */ 7393 coremem = simple_strtoull(p, &endptr, 0); 7394 if (*endptr == '%') { 7395 /* Paranoid check for percent values greater than 100 */ 7396 WARN_ON(coremem > 100); 7397 7398 *percent = coremem; 7399 } else { 7400 coremem = memparse(p, &p); 7401 /* Paranoid check that UL is enough for the coremem value */ 7402 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7403 7404 *core = coremem >> PAGE_SHIFT; 7405 *percent = 0UL; 7406 } 7407 return 0; 7408 } 7409 7410 /* 7411 * kernelcore=size sets the amount of memory for use for allocations that 7412 * cannot be reclaimed or migrated. 7413 */ 7414 static int __init cmdline_parse_kernelcore(char *p) 7415 { 7416 /* parse kernelcore=mirror */ 7417 if (parse_option_str(p, "mirror")) { 7418 mirrored_kernelcore = true; 7419 return 0; 7420 } 7421 7422 return cmdline_parse_core(p, &required_kernelcore, 7423 &required_kernelcore_percent); 7424 } 7425 7426 /* 7427 * movablecore=size sets the amount of memory for use for allocations that 7428 * can be reclaimed or migrated. 7429 */ 7430 static int __init cmdline_parse_movablecore(char *p) 7431 { 7432 return cmdline_parse_core(p, &required_movablecore, 7433 &required_movablecore_percent); 7434 } 7435 7436 early_param("kernelcore", cmdline_parse_kernelcore); 7437 early_param("movablecore", cmdline_parse_movablecore); 7438 7439 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7440 7441 void adjust_managed_page_count(struct page *page, long count) 7442 { 7443 atomic_long_add(count, &page_zone(page)->managed_pages); 7444 totalram_pages_add(count); 7445 #ifdef CONFIG_HIGHMEM 7446 if (PageHighMem(page)) 7447 totalhigh_pages_add(count); 7448 #endif 7449 } 7450 EXPORT_SYMBOL(adjust_managed_page_count); 7451 7452 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7453 { 7454 void *pos; 7455 unsigned long pages = 0; 7456 7457 start = (void *)PAGE_ALIGN((unsigned long)start); 7458 end = (void *)((unsigned long)end & PAGE_MASK); 7459 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7460 struct page *page = virt_to_page(pos); 7461 void *direct_map_addr; 7462 7463 /* 7464 * 'direct_map_addr' might be different from 'pos' 7465 * because some architectures' virt_to_page() 7466 * work with aliases. Getting the direct map 7467 * address ensures that we get a _writeable_ 7468 * alias for the memset(). 7469 */ 7470 direct_map_addr = page_address(page); 7471 if ((unsigned int)poison <= 0xFF) 7472 memset(direct_map_addr, poison, PAGE_SIZE); 7473 7474 free_reserved_page(page); 7475 } 7476 7477 if (pages && s) 7478 pr_info("Freeing %s memory: %ldK\n", 7479 s, pages << (PAGE_SHIFT - 10)); 7480 7481 return pages; 7482 } 7483 7484 #ifdef CONFIG_HIGHMEM 7485 void free_highmem_page(struct page *page) 7486 { 7487 __free_reserved_page(page); 7488 totalram_pages_inc(); 7489 atomic_long_inc(&page_zone(page)->managed_pages); 7490 totalhigh_pages_inc(); 7491 } 7492 #endif 7493 7494 7495 void __init mem_init_print_info(const char *str) 7496 { 7497 unsigned long physpages, codesize, datasize, rosize, bss_size; 7498 unsigned long init_code_size, init_data_size; 7499 7500 physpages = get_num_physpages(); 7501 codesize = _etext - _stext; 7502 datasize = _edata - _sdata; 7503 rosize = __end_rodata - __start_rodata; 7504 bss_size = __bss_stop - __bss_start; 7505 init_data_size = __init_end - __init_begin; 7506 init_code_size = _einittext - _sinittext; 7507 7508 /* 7509 * Detect special cases and adjust section sizes accordingly: 7510 * 1) .init.* may be embedded into .data sections 7511 * 2) .init.text.* may be out of [__init_begin, __init_end], 7512 * please refer to arch/tile/kernel/vmlinux.lds.S. 7513 * 3) .rodata.* may be embedded into .text or .data sections. 7514 */ 7515 #define adj_init_size(start, end, size, pos, adj) \ 7516 do { \ 7517 if (start <= pos && pos < end && size > adj) \ 7518 size -= adj; \ 7519 } while (0) 7520 7521 adj_init_size(__init_begin, __init_end, init_data_size, 7522 _sinittext, init_code_size); 7523 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7524 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7525 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7526 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7527 7528 #undef adj_init_size 7529 7530 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7531 #ifdef CONFIG_HIGHMEM 7532 ", %luK highmem" 7533 #endif 7534 "%s%s)\n", 7535 nr_free_pages() << (PAGE_SHIFT - 10), 7536 physpages << (PAGE_SHIFT - 10), 7537 codesize >> 10, datasize >> 10, rosize >> 10, 7538 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7539 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7540 totalcma_pages << (PAGE_SHIFT - 10), 7541 #ifdef CONFIG_HIGHMEM 7542 totalhigh_pages() << (PAGE_SHIFT - 10), 7543 #endif 7544 str ? ", " : "", str ? str : ""); 7545 } 7546 7547 /** 7548 * set_dma_reserve - set the specified number of pages reserved in the first zone 7549 * @new_dma_reserve: The number of pages to mark reserved 7550 * 7551 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7552 * In the DMA zone, a significant percentage may be consumed by kernel image 7553 * and other unfreeable allocations which can skew the watermarks badly. This 7554 * function may optionally be used to account for unfreeable pages in the 7555 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7556 * smaller per-cpu batchsize. 7557 */ 7558 void __init set_dma_reserve(unsigned long new_dma_reserve) 7559 { 7560 dma_reserve = new_dma_reserve; 7561 } 7562 7563 void __init free_area_init(unsigned long *zones_size) 7564 { 7565 zero_resv_unavail(); 7566 free_area_init_node(0, zones_size, 7567 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7568 } 7569 7570 static int page_alloc_cpu_dead(unsigned int cpu) 7571 { 7572 7573 lru_add_drain_cpu(cpu); 7574 drain_pages(cpu); 7575 7576 /* 7577 * Spill the event counters of the dead processor 7578 * into the current processors event counters. 7579 * This artificially elevates the count of the current 7580 * processor. 7581 */ 7582 vm_events_fold_cpu(cpu); 7583 7584 /* 7585 * Zero the differential counters of the dead processor 7586 * so that the vm statistics are consistent. 7587 * 7588 * This is only okay since the processor is dead and cannot 7589 * race with what we are doing. 7590 */ 7591 cpu_vm_stats_fold(cpu); 7592 return 0; 7593 } 7594 7595 #ifdef CONFIG_NUMA 7596 int hashdist = HASHDIST_DEFAULT; 7597 7598 static int __init set_hashdist(char *str) 7599 { 7600 if (!str) 7601 return 0; 7602 hashdist = simple_strtoul(str, &str, 0); 7603 return 1; 7604 } 7605 __setup("hashdist=", set_hashdist); 7606 #endif 7607 7608 void __init page_alloc_init(void) 7609 { 7610 int ret; 7611 7612 #ifdef CONFIG_NUMA 7613 if (num_node_state(N_MEMORY) == 1) 7614 hashdist = 0; 7615 #endif 7616 7617 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7618 "mm/page_alloc:dead", NULL, 7619 page_alloc_cpu_dead); 7620 WARN_ON(ret < 0); 7621 } 7622 7623 /* 7624 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7625 * or min_free_kbytes changes. 7626 */ 7627 static void calculate_totalreserve_pages(void) 7628 { 7629 struct pglist_data *pgdat; 7630 unsigned long reserve_pages = 0; 7631 enum zone_type i, j; 7632 7633 for_each_online_pgdat(pgdat) { 7634 7635 pgdat->totalreserve_pages = 0; 7636 7637 for (i = 0; i < MAX_NR_ZONES; i++) { 7638 struct zone *zone = pgdat->node_zones + i; 7639 long max = 0; 7640 unsigned long managed_pages = zone_managed_pages(zone); 7641 7642 /* Find valid and maximum lowmem_reserve in the zone */ 7643 for (j = i; j < MAX_NR_ZONES; j++) { 7644 if (zone->lowmem_reserve[j] > max) 7645 max = zone->lowmem_reserve[j]; 7646 } 7647 7648 /* we treat the high watermark as reserved pages. */ 7649 max += high_wmark_pages(zone); 7650 7651 if (max > managed_pages) 7652 max = managed_pages; 7653 7654 pgdat->totalreserve_pages += max; 7655 7656 reserve_pages += max; 7657 } 7658 } 7659 totalreserve_pages = reserve_pages; 7660 } 7661 7662 /* 7663 * setup_per_zone_lowmem_reserve - called whenever 7664 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7665 * has a correct pages reserved value, so an adequate number of 7666 * pages are left in the zone after a successful __alloc_pages(). 7667 */ 7668 static void setup_per_zone_lowmem_reserve(void) 7669 { 7670 struct pglist_data *pgdat; 7671 enum zone_type j, idx; 7672 7673 for_each_online_pgdat(pgdat) { 7674 for (j = 0; j < MAX_NR_ZONES; j++) { 7675 struct zone *zone = pgdat->node_zones + j; 7676 unsigned long managed_pages = zone_managed_pages(zone); 7677 7678 zone->lowmem_reserve[j] = 0; 7679 7680 idx = j; 7681 while (idx) { 7682 struct zone *lower_zone; 7683 7684 idx--; 7685 lower_zone = pgdat->node_zones + idx; 7686 7687 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7688 sysctl_lowmem_reserve_ratio[idx] = 0; 7689 lower_zone->lowmem_reserve[j] = 0; 7690 } else { 7691 lower_zone->lowmem_reserve[j] = 7692 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7693 } 7694 managed_pages += zone_managed_pages(lower_zone); 7695 } 7696 } 7697 } 7698 7699 /* update totalreserve_pages */ 7700 calculate_totalreserve_pages(); 7701 } 7702 7703 static void __setup_per_zone_wmarks(void) 7704 { 7705 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7706 unsigned long lowmem_pages = 0; 7707 struct zone *zone; 7708 unsigned long flags; 7709 7710 /* Calculate total number of !ZONE_HIGHMEM pages */ 7711 for_each_zone(zone) { 7712 if (!is_highmem(zone)) 7713 lowmem_pages += zone_managed_pages(zone); 7714 } 7715 7716 for_each_zone(zone) { 7717 u64 tmp; 7718 7719 spin_lock_irqsave(&zone->lock, flags); 7720 tmp = (u64)pages_min * zone_managed_pages(zone); 7721 do_div(tmp, lowmem_pages); 7722 if (is_highmem(zone)) { 7723 /* 7724 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7725 * need highmem pages, so cap pages_min to a small 7726 * value here. 7727 * 7728 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7729 * deltas control async page reclaim, and so should 7730 * not be capped for highmem. 7731 */ 7732 unsigned long min_pages; 7733 7734 min_pages = zone_managed_pages(zone) / 1024; 7735 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7736 zone->_watermark[WMARK_MIN] = min_pages; 7737 } else { 7738 /* 7739 * If it's a lowmem zone, reserve a number of pages 7740 * proportionate to the zone's size. 7741 */ 7742 zone->_watermark[WMARK_MIN] = tmp; 7743 } 7744 7745 /* 7746 * Set the kswapd watermarks distance according to the 7747 * scale factor in proportion to available memory, but 7748 * ensure a minimum size on small systems. 7749 */ 7750 tmp = max_t(u64, tmp >> 2, 7751 mult_frac(zone_managed_pages(zone), 7752 watermark_scale_factor, 10000)); 7753 7754 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7755 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7756 zone->watermark_boost = 0; 7757 7758 spin_unlock_irqrestore(&zone->lock, flags); 7759 } 7760 7761 /* update totalreserve_pages */ 7762 calculate_totalreserve_pages(); 7763 } 7764 7765 /** 7766 * setup_per_zone_wmarks - called when min_free_kbytes changes 7767 * or when memory is hot-{added|removed} 7768 * 7769 * Ensures that the watermark[min,low,high] values for each zone are set 7770 * correctly with respect to min_free_kbytes. 7771 */ 7772 void setup_per_zone_wmarks(void) 7773 { 7774 static DEFINE_SPINLOCK(lock); 7775 7776 spin_lock(&lock); 7777 __setup_per_zone_wmarks(); 7778 spin_unlock(&lock); 7779 } 7780 7781 /* 7782 * Initialise min_free_kbytes. 7783 * 7784 * For small machines we want it small (128k min). For large machines 7785 * we want it large (64MB max). But it is not linear, because network 7786 * bandwidth does not increase linearly with machine size. We use 7787 * 7788 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7789 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7790 * 7791 * which yields 7792 * 7793 * 16MB: 512k 7794 * 32MB: 724k 7795 * 64MB: 1024k 7796 * 128MB: 1448k 7797 * 256MB: 2048k 7798 * 512MB: 2896k 7799 * 1024MB: 4096k 7800 * 2048MB: 5792k 7801 * 4096MB: 8192k 7802 * 8192MB: 11584k 7803 * 16384MB: 16384k 7804 */ 7805 int __meminit init_per_zone_wmark_min(void) 7806 { 7807 unsigned long lowmem_kbytes; 7808 int new_min_free_kbytes; 7809 7810 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7811 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7812 7813 if (new_min_free_kbytes > user_min_free_kbytes) { 7814 min_free_kbytes = new_min_free_kbytes; 7815 if (min_free_kbytes < 128) 7816 min_free_kbytes = 128; 7817 if (min_free_kbytes > 65536) 7818 min_free_kbytes = 65536; 7819 } else { 7820 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7821 new_min_free_kbytes, user_min_free_kbytes); 7822 } 7823 setup_per_zone_wmarks(); 7824 refresh_zone_stat_thresholds(); 7825 setup_per_zone_lowmem_reserve(); 7826 7827 #ifdef CONFIG_NUMA 7828 setup_min_unmapped_ratio(); 7829 setup_min_slab_ratio(); 7830 #endif 7831 7832 return 0; 7833 } 7834 core_initcall(init_per_zone_wmark_min) 7835 7836 /* 7837 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7838 * that we can call two helper functions whenever min_free_kbytes 7839 * changes. 7840 */ 7841 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7842 void __user *buffer, size_t *length, loff_t *ppos) 7843 { 7844 int rc; 7845 7846 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7847 if (rc) 7848 return rc; 7849 7850 if (write) { 7851 user_min_free_kbytes = min_free_kbytes; 7852 setup_per_zone_wmarks(); 7853 } 7854 return 0; 7855 } 7856 7857 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7858 void __user *buffer, size_t *length, loff_t *ppos) 7859 { 7860 int rc; 7861 7862 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7863 if (rc) 7864 return rc; 7865 7866 return 0; 7867 } 7868 7869 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7870 void __user *buffer, size_t *length, loff_t *ppos) 7871 { 7872 int rc; 7873 7874 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7875 if (rc) 7876 return rc; 7877 7878 if (write) 7879 setup_per_zone_wmarks(); 7880 7881 return 0; 7882 } 7883 7884 #ifdef CONFIG_NUMA 7885 static void setup_min_unmapped_ratio(void) 7886 { 7887 pg_data_t *pgdat; 7888 struct zone *zone; 7889 7890 for_each_online_pgdat(pgdat) 7891 pgdat->min_unmapped_pages = 0; 7892 7893 for_each_zone(zone) 7894 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7895 sysctl_min_unmapped_ratio) / 100; 7896 } 7897 7898 7899 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7900 void __user *buffer, size_t *length, loff_t *ppos) 7901 { 7902 int rc; 7903 7904 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7905 if (rc) 7906 return rc; 7907 7908 setup_min_unmapped_ratio(); 7909 7910 return 0; 7911 } 7912 7913 static void setup_min_slab_ratio(void) 7914 { 7915 pg_data_t *pgdat; 7916 struct zone *zone; 7917 7918 for_each_online_pgdat(pgdat) 7919 pgdat->min_slab_pages = 0; 7920 7921 for_each_zone(zone) 7922 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7923 sysctl_min_slab_ratio) / 100; 7924 } 7925 7926 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7927 void __user *buffer, size_t *length, loff_t *ppos) 7928 { 7929 int rc; 7930 7931 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7932 if (rc) 7933 return rc; 7934 7935 setup_min_slab_ratio(); 7936 7937 return 0; 7938 } 7939 #endif 7940 7941 /* 7942 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7943 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7944 * whenever sysctl_lowmem_reserve_ratio changes. 7945 * 7946 * The reserve ratio obviously has absolutely no relation with the 7947 * minimum watermarks. The lowmem reserve ratio can only make sense 7948 * if in function of the boot time zone sizes. 7949 */ 7950 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7951 void __user *buffer, size_t *length, loff_t *ppos) 7952 { 7953 proc_dointvec_minmax(table, write, buffer, length, ppos); 7954 setup_per_zone_lowmem_reserve(); 7955 return 0; 7956 } 7957 7958 /* 7959 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7960 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7961 * pagelist can have before it gets flushed back to buddy allocator. 7962 */ 7963 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7964 void __user *buffer, size_t *length, loff_t *ppos) 7965 { 7966 struct zone *zone; 7967 int old_percpu_pagelist_fraction; 7968 int ret; 7969 7970 mutex_lock(&pcp_batch_high_lock); 7971 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7972 7973 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7974 if (!write || ret < 0) 7975 goto out; 7976 7977 /* Sanity checking to avoid pcp imbalance */ 7978 if (percpu_pagelist_fraction && 7979 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7980 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7981 ret = -EINVAL; 7982 goto out; 7983 } 7984 7985 /* No change? */ 7986 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7987 goto out; 7988 7989 for_each_populated_zone(zone) { 7990 unsigned int cpu; 7991 7992 for_each_possible_cpu(cpu) 7993 pageset_set_high_and_batch(zone, 7994 per_cpu_ptr(zone->pageset, cpu)); 7995 } 7996 out: 7997 mutex_unlock(&pcp_batch_high_lock); 7998 return ret; 7999 } 8000 8001 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8002 /* 8003 * Returns the number of pages that arch has reserved but 8004 * is not known to alloc_large_system_hash(). 8005 */ 8006 static unsigned long __init arch_reserved_kernel_pages(void) 8007 { 8008 return 0; 8009 } 8010 #endif 8011 8012 /* 8013 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8014 * machines. As memory size is increased the scale is also increased but at 8015 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8016 * quadruples the scale is increased by one, which means the size of hash table 8017 * only doubles, instead of quadrupling as well. 8018 * Because 32-bit systems cannot have large physical memory, where this scaling 8019 * makes sense, it is disabled on such platforms. 8020 */ 8021 #if __BITS_PER_LONG > 32 8022 #define ADAPT_SCALE_BASE (64ul << 30) 8023 #define ADAPT_SCALE_SHIFT 2 8024 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8025 #endif 8026 8027 /* 8028 * allocate a large system hash table from bootmem 8029 * - it is assumed that the hash table must contain an exact power-of-2 8030 * quantity of entries 8031 * - limit is the number of hash buckets, not the total allocation size 8032 */ 8033 void *__init alloc_large_system_hash(const char *tablename, 8034 unsigned long bucketsize, 8035 unsigned long numentries, 8036 int scale, 8037 int flags, 8038 unsigned int *_hash_shift, 8039 unsigned int *_hash_mask, 8040 unsigned long low_limit, 8041 unsigned long high_limit) 8042 { 8043 unsigned long long max = high_limit; 8044 unsigned long log2qty, size; 8045 void *table = NULL; 8046 gfp_t gfp_flags; 8047 bool virt; 8048 8049 /* allow the kernel cmdline to have a say */ 8050 if (!numentries) { 8051 /* round applicable memory size up to nearest megabyte */ 8052 numentries = nr_kernel_pages; 8053 numentries -= arch_reserved_kernel_pages(); 8054 8055 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8056 if (PAGE_SHIFT < 20) 8057 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8058 8059 #if __BITS_PER_LONG > 32 8060 if (!high_limit) { 8061 unsigned long adapt; 8062 8063 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8064 adapt <<= ADAPT_SCALE_SHIFT) 8065 scale++; 8066 } 8067 #endif 8068 8069 /* limit to 1 bucket per 2^scale bytes of low memory */ 8070 if (scale > PAGE_SHIFT) 8071 numentries >>= (scale - PAGE_SHIFT); 8072 else 8073 numentries <<= (PAGE_SHIFT - scale); 8074 8075 /* Make sure we've got at least a 0-order allocation.. */ 8076 if (unlikely(flags & HASH_SMALL)) { 8077 /* Makes no sense without HASH_EARLY */ 8078 WARN_ON(!(flags & HASH_EARLY)); 8079 if (!(numentries >> *_hash_shift)) { 8080 numentries = 1UL << *_hash_shift; 8081 BUG_ON(!numentries); 8082 } 8083 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8084 numentries = PAGE_SIZE / bucketsize; 8085 } 8086 numentries = roundup_pow_of_two(numentries); 8087 8088 /* limit allocation size to 1/16 total memory by default */ 8089 if (max == 0) { 8090 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8091 do_div(max, bucketsize); 8092 } 8093 max = min(max, 0x80000000ULL); 8094 8095 if (numentries < low_limit) 8096 numentries = low_limit; 8097 if (numentries > max) 8098 numentries = max; 8099 8100 log2qty = ilog2(numentries); 8101 8102 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8103 do { 8104 virt = false; 8105 size = bucketsize << log2qty; 8106 if (flags & HASH_EARLY) { 8107 if (flags & HASH_ZERO) 8108 table = memblock_alloc(size, SMP_CACHE_BYTES); 8109 else 8110 table = memblock_alloc_raw(size, 8111 SMP_CACHE_BYTES); 8112 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8113 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8114 virt = true; 8115 } else { 8116 /* 8117 * If bucketsize is not a power-of-two, we may free 8118 * some pages at the end of hash table which 8119 * alloc_pages_exact() automatically does 8120 */ 8121 table = alloc_pages_exact(size, gfp_flags); 8122 kmemleak_alloc(table, size, 1, gfp_flags); 8123 } 8124 } while (!table && size > PAGE_SIZE && --log2qty); 8125 8126 if (!table) 8127 panic("Failed to allocate %s hash table\n", tablename); 8128 8129 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8130 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8131 virt ? "vmalloc" : "linear"); 8132 8133 if (_hash_shift) 8134 *_hash_shift = log2qty; 8135 if (_hash_mask) 8136 *_hash_mask = (1 << log2qty) - 1; 8137 8138 return table; 8139 } 8140 8141 /* 8142 * This function checks whether pageblock includes unmovable pages or not. 8143 * If @count is not zero, it is okay to include less @count unmovable pages 8144 * 8145 * PageLRU check without isolation or lru_lock could race so that 8146 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8147 * check without lock_page also may miss some movable non-lru pages at 8148 * race condition. So you can't expect this function should be exact. 8149 */ 8150 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8151 int migratetype, int flags) 8152 { 8153 unsigned long found; 8154 unsigned long iter = 0; 8155 unsigned long pfn = page_to_pfn(page); 8156 const char *reason = "unmovable page"; 8157 8158 /* 8159 * TODO we could make this much more efficient by not checking every 8160 * page in the range if we know all of them are in MOVABLE_ZONE and 8161 * that the movable zone guarantees that pages are migratable but 8162 * the later is not the case right now unfortunatelly. E.g. movablecore 8163 * can still lead to having bootmem allocations in zone_movable. 8164 */ 8165 8166 if (is_migrate_cma_page(page)) { 8167 /* 8168 * CMA allocations (alloc_contig_range) really need to mark 8169 * isolate CMA pageblocks even when they are not movable in fact 8170 * so consider them movable here. 8171 */ 8172 if (is_migrate_cma(migratetype)) 8173 return false; 8174 8175 reason = "CMA page"; 8176 goto unmovable; 8177 } 8178 8179 for (found = 0; iter < pageblock_nr_pages; iter++) { 8180 unsigned long check = pfn + iter; 8181 8182 if (!pfn_valid_within(check)) 8183 continue; 8184 8185 page = pfn_to_page(check); 8186 8187 if (PageReserved(page)) 8188 goto unmovable; 8189 8190 /* 8191 * If the zone is movable and we have ruled out all reserved 8192 * pages then it should be reasonably safe to assume the rest 8193 * is movable. 8194 */ 8195 if (zone_idx(zone) == ZONE_MOVABLE) 8196 continue; 8197 8198 /* 8199 * Hugepages are not in LRU lists, but they're movable. 8200 * We need not scan over tail pages because we don't 8201 * handle each tail page individually in migration. 8202 */ 8203 if (PageHuge(page)) { 8204 struct page *head = compound_head(page); 8205 unsigned int skip_pages; 8206 8207 if (!hugepage_migration_supported(page_hstate(head))) 8208 goto unmovable; 8209 8210 skip_pages = (1 << compound_order(head)) - (page - head); 8211 iter += skip_pages - 1; 8212 continue; 8213 } 8214 8215 /* 8216 * We can't use page_count without pin a page 8217 * because another CPU can free compound page. 8218 * This check already skips compound tails of THP 8219 * because their page->_refcount is zero at all time. 8220 */ 8221 if (!page_ref_count(page)) { 8222 if (PageBuddy(page)) 8223 iter += (1 << page_order(page)) - 1; 8224 continue; 8225 } 8226 8227 /* 8228 * The HWPoisoned page may be not in buddy system, and 8229 * page_count() is not 0. 8230 */ 8231 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8232 continue; 8233 8234 if (__PageMovable(page)) 8235 continue; 8236 8237 if (!PageLRU(page)) 8238 found++; 8239 /* 8240 * If there are RECLAIMABLE pages, we need to check 8241 * it. But now, memory offline itself doesn't call 8242 * shrink_node_slabs() and it still to be fixed. 8243 */ 8244 /* 8245 * If the page is not RAM, page_count()should be 0. 8246 * we don't need more check. This is an _used_ not-movable page. 8247 * 8248 * The problematic thing here is PG_reserved pages. PG_reserved 8249 * is set to both of a memory hole page and a _used_ kernel 8250 * page at boot. 8251 */ 8252 if (found > count) 8253 goto unmovable; 8254 } 8255 return false; 8256 unmovable: 8257 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8258 if (flags & REPORT_FAILURE) 8259 dump_page(pfn_to_page(pfn + iter), reason); 8260 return true; 8261 } 8262 8263 #ifdef CONFIG_CONTIG_ALLOC 8264 static unsigned long pfn_max_align_down(unsigned long pfn) 8265 { 8266 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8267 pageblock_nr_pages) - 1); 8268 } 8269 8270 static unsigned long pfn_max_align_up(unsigned long pfn) 8271 { 8272 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8273 pageblock_nr_pages)); 8274 } 8275 8276 /* [start, end) must belong to a single zone. */ 8277 static int __alloc_contig_migrate_range(struct compact_control *cc, 8278 unsigned long start, unsigned long end) 8279 { 8280 /* This function is based on compact_zone() from compaction.c. */ 8281 unsigned long nr_reclaimed; 8282 unsigned long pfn = start; 8283 unsigned int tries = 0; 8284 int ret = 0; 8285 8286 migrate_prep(); 8287 8288 while (pfn < end || !list_empty(&cc->migratepages)) { 8289 if (fatal_signal_pending(current)) { 8290 ret = -EINTR; 8291 break; 8292 } 8293 8294 if (list_empty(&cc->migratepages)) { 8295 cc->nr_migratepages = 0; 8296 pfn = isolate_migratepages_range(cc, pfn, end); 8297 if (!pfn) { 8298 ret = -EINTR; 8299 break; 8300 } 8301 tries = 0; 8302 } else if (++tries == 5) { 8303 ret = ret < 0 ? ret : -EBUSY; 8304 break; 8305 } 8306 8307 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8308 &cc->migratepages); 8309 cc->nr_migratepages -= nr_reclaimed; 8310 8311 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8312 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8313 } 8314 if (ret < 0) { 8315 putback_movable_pages(&cc->migratepages); 8316 return ret; 8317 } 8318 return 0; 8319 } 8320 8321 /** 8322 * alloc_contig_range() -- tries to allocate given range of pages 8323 * @start: start PFN to allocate 8324 * @end: one-past-the-last PFN to allocate 8325 * @migratetype: migratetype of the underlaying pageblocks (either 8326 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8327 * in range must have the same migratetype and it must 8328 * be either of the two. 8329 * @gfp_mask: GFP mask to use during compaction 8330 * 8331 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8332 * aligned. The PFN range must belong to a single zone. 8333 * 8334 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8335 * pageblocks in the range. Once isolated, the pageblocks should not 8336 * be modified by others. 8337 * 8338 * Return: zero on success or negative error code. On success all 8339 * pages which PFN is in [start, end) are allocated for the caller and 8340 * need to be freed with free_contig_range(). 8341 */ 8342 int alloc_contig_range(unsigned long start, unsigned long end, 8343 unsigned migratetype, gfp_t gfp_mask) 8344 { 8345 unsigned long outer_start, outer_end; 8346 unsigned int order; 8347 int ret = 0; 8348 8349 struct compact_control cc = { 8350 .nr_migratepages = 0, 8351 .order = -1, 8352 .zone = page_zone(pfn_to_page(start)), 8353 .mode = MIGRATE_SYNC, 8354 .ignore_skip_hint = true, 8355 .no_set_skip_hint = true, 8356 .gfp_mask = current_gfp_context(gfp_mask), 8357 }; 8358 INIT_LIST_HEAD(&cc.migratepages); 8359 8360 /* 8361 * What we do here is we mark all pageblocks in range as 8362 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8363 * have different sizes, and due to the way page allocator 8364 * work, we align the range to biggest of the two pages so 8365 * that page allocator won't try to merge buddies from 8366 * different pageblocks and change MIGRATE_ISOLATE to some 8367 * other migration type. 8368 * 8369 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8370 * migrate the pages from an unaligned range (ie. pages that 8371 * we are interested in). This will put all the pages in 8372 * range back to page allocator as MIGRATE_ISOLATE. 8373 * 8374 * When this is done, we take the pages in range from page 8375 * allocator removing them from the buddy system. This way 8376 * page allocator will never consider using them. 8377 * 8378 * This lets us mark the pageblocks back as 8379 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8380 * aligned range but not in the unaligned, original range are 8381 * put back to page allocator so that buddy can use them. 8382 */ 8383 8384 ret = start_isolate_page_range(pfn_max_align_down(start), 8385 pfn_max_align_up(end), migratetype, 0); 8386 if (ret < 0) 8387 return ret; 8388 8389 /* 8390 * In case of -EBUSY, we'd like to know which page causes problem. 8391 * So, just fall through. test_pages_isolated() has a tracepoint 8392 * which will report the busy page. 8393 * 8394 * It is possible that busy pages could become available before 8395 * the call to test_pages_isolated, and the range will actually be 8396 * allocated. So, if we fall through be sure to clear ret so that 8397 * -EBUSY is not accidentally used or returned to caller. 8398 */ 8399 ret = __alloc_contig_migrate_range(&cc, start, end); 8400 if (ret && ret != -EBUSY) 8401 goto done; 8402 ret =0; 8403 8404 /* 8405 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8406 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8407 * more, all pages in [start, end) are free in page allocator. 8408 * What we are going to do is to allocate all pages from 8409 * [start, end) (that is remove them from page allocator). 8410 * 8411 * The only problem is that pages at the beginning and at the 8412 * end of interesting range may be not aligned with pages that 8413 * page allocator holds, ie. they can be part of higher order 8414 * pages. Because of this, we reserve the bigger range and 8415 * once this is done free the pages we are not interested in. 8416 * 8417 * We don't have to hold zone->lock here because the pages are 8418 * isolated thus they won't get removed from buddy. 8419 */ 8420 8421 lru_add_drain_all(); 8422 8423 order = 0; 8424 outer_start = start; 8425 while (!PageBuddy(pfn_to_page(outer_start))) { 8426 if (++order >= MAX_ORDER) { 8427 outer_start = start; 8428 break; 8429 } 8430 outer_start &= ~0UL << order; 8431 } 8432 8433 if (outer_start != start) { 8434 order = page_order(pfn_to_page(outer_start)); 8435 8436 /* 8437 * outer_start page could be small order buddy page and 8438 * it doesn't include start page. Adjust outer_start 8439 * in this case to report failed page properly 8440 * on tracepoint in test_pages_isolated() 8441 */ 8442 if (outer_start + (1UL << order) <= start) 8443 outer_start = start; 8444 } 8445 8446 /* Make sure the range is really isolated. */ 8447 if (test_pages_isolated(outer_start, end, false)) { 8448 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8449 __func__, outer_start, end); 8450 ret = -EBUSY; 8451 goto done; 8452 } 8453 8454 /* Grab isolated pages from freelists. */ 8455 outer_end = isolate_freepages_range(&cc, outer_start, end); 8456 if (!outer_end) { 8457 ret = -EBUSY; 8458 goto done; 8459 } 8460 8461 /* Free head and tail (if any) */ 8462 if (start != outer_start) 8463 free_contig_range(outer_start, start - outer_start); 8464 if (end != outer_end) 8465 free_contig_range(end, outer_end - end); 8466 8467 done: 8468 undo_isolate_page_range(pfn_max_align_down(start), 8469 pfn_max_align_up(end), migratetype); 8470 return ret; 8471 } 8472 #endif /* CONFIG_CONTIG_ALLOC */ 8473 8474 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8475 { 8476 unsigned int count = 0; 8477 8478 for (; nr_pages--; pfn++) { 8479 struct page *page = pfn_to_page(pfn); 8480 8481 count += page_count(page) != 1; 8482 __free_page(page); 8483 } 8484 WARN(count != 0, "%d pages are still in use!\n", count); 8485 } 8486 8487 #ifdef CONFIG_MEMORY_HOTPLUG 8488 /* 8489 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8490 * page high values need to be recalulated. 8491 */ 8492 void __meminit zone_pcp_update(struct zone *zone) 8493 { 8494 unsigned cpu; 8495 mutex_lock(&pcp_batch_high_lock); 8496 for_each_possible_cpu(cpu) 8497 pageset_set_high_and_batch(zone, 8498 per_cpu_ptr(zone->pageset, cpu)); 8499 mutex_unlock(&pcp_batch_high_lock); 8500 } 8501 #endif 8502 8503 void zone_pcp_reset(struct zone *zone) 8504 { 8505 unsigned long flags; 8506 int cpu; 8507 struct per_cpu_pageset *pset; 8508 8509 /* avoid races with drain_pages() */ 8510 local_irq_save(flags); 8511 if (zone->pageset != &boot_pageset) { 8512 for_each_online_cpu(cpu) { 8513 pset = per_cpu_ptr(zone->pageset, cpu); 8514 drain_zonestat(zone, pset); 8515 } 8516 free_percpu(zone->pageset); 8517 zone->pageset = &boot_pageset; 8518 } 8519 local_irq_restore(flags); 8520 } 8521 8522 #ifdef CONFIG_MEMORY_HOTREMOVE 8523 /* 8524 * All pages in the range must be in a single zone and isolated 8525 * before calling this. 8526 */ 8527 unsigned long 8528 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8529 { 8530 struct page *page; 8531 struct zone *zone; 8532 unsigned int order, i; 8533 unsigned long pfn; 8534 unsigned long flags; 8535 unsigned long offlined_pages = 0; 8536 8537 /* find the first valid pfn */ 8538 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8539 if (pfn_valid(pfn)) 8540 break; 8541 if (pfn == end_pfn) 8542 return offlined_pages; 8543 8544 offline_mem_sections(pfn, end_pfn); 8545 zone = page_zone(pfn_to_page(pfn)); 8546 spin_lock_irqsave(&zone->lock, flags); 8547 pfn = start_pfn; 8548 while (pfn < end_pfn) { 8549 if (!pfn_valid(pfn)) { 8550 pfn++; 8551 continue; 8552 } 8553 page = pfn_to_page(pfn); 8554 /* 8555 * The HWPoisoned page may be not in buddy system, and 8556 * page_count() is not 0. 8557 */ 8558 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8559 pfn++; 8560 SetPageReserved(page); 8561 offlined_pages++; 8562 continue; 8563 } 8564 8565 BUG_ON(page_count(page)); 8566 BUG_ON(!PageBuddy(page)); 8567 order = page_order(page); 8568 offlined_pages += 1 << order; 8569 #ifdef CONFIG_DEBUG_VM 8570 pr_info("remove from free list %lx %d %lx\n", 8571 pfn, 1 << order, end_pfn); 8572 #endif 8573 del_page_from_free_area(page, &zone->free_area[order]); 8574 for (i = 0; i < (1 << order); i++) 8575 SetPageReserved((page+i)); 8576 pfn += (1 << order); 8577 } 8578 spin_unlock_irqrestore(&zone->lock, flags); 8579 8580 return offlined_pages; 8581 } 8582 #endif 8583 8584 bool is_free_buddy_page(struct page *page) 8585 { 8586 struct zone *zone = page_zone(page); 8587 unsigned long pfn = page_to_pfn(page); 8588 unsigned long flags; 8589 unsigned int order; 8590 8591 spin_lock_irqsave(&zone->lock, flags); 8592 for (order = 0; order < MAX_ORDER; order++) { 8593 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8594 8595 if (PageBuddy(page_head) && page_order(page_head) >= order) 8596 break; 8597 } 8598 spin_unlock_irqrestore(&zone->lock, flags); 8599 8600 return order < MAX_ORDER; 8601 } 8602 8603 #ifdef CONFIG_MEMORY_FAILURE 8604 /* 8605 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8606 * test is performed under the zone lock to prevent a race against page 8607 * allocation. 8608 */ 8609 bool set_hwpoison_free_buddy_page(struct page *page) 8610 { 8611 struct zone *zone = page_zone(page); 8612 unsigned long pfn = page_to_pfn(page); 8613 unsigned long flags; 8614 unsigned int order; 8615 bool hwpoisoned = false; 8616 8617 spin_lock_irqsave(&zone->lock, flags); 8618 for (order = 0; order < MAX_ORDER; order++) { 8619 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8620 8621 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8622 if (!TestSetPageHWPoison(page)) 8623 hwpoisoned = true; 8624 break; 8625 } 8626 } 8627 spin_unlock_irqrestore(&zone->lock, flags); 8628 8629 return hwpoisoned; 8630 } 8631 #endif 8632