1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_trylock(type, member, ptr) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 if (!spin_trylock(&_ret->member)) { \ 179 pcpu_task_unpin(); \ 180 _ret = NULL; \ 181 } \ 182 _ret; \ 183 }) 184 185 #define pcpu_spin_unlock(member, ptr) \ 186 ({ \ 187 spin_unlock(&ptr->member); \ 188 pcpu_task_unpin(); \ 189 }) 190 191 /* struct per_cpu_pages specific helpers. */ 192 #define pcp_spin_lock(ptr) \ 193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 194 195 #define pcp_spin_trylock(ptr) \ 196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 197 198 #define pcp_spin_unlock(ptr) \ 199 pcpu_spin_unlock(lock, ptr) 200 201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 202 DEFINE_PER_CPU(int, numa_node); 203 EXPORT_PER_CPU_SYMBOL(numa_node); 204 #endif 205 206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 207 208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 209 /* 210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 213 * defined in <linux/topology.h>. 214 */ 215 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 216 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 217 #endif 218 219 static DEFINE_MUTEX(pcpu_drain_mutex); 220 221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 222 volatile unsigned long latent_entropy __latent_entropy; 223 EXPORT_SYMBOL(latent_entropy); 224 #endif 225 226 /* 227 * Array of node states. 228 */ 229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 230 [N_POSSIBLE] = NODE_MASK_ALL, 231 [N_ONLINE] = { { [0] = 1UL } }, 232 #ifndef CONFIG_NUMA 233 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 234 #ifdef CONFIG_HIGHMEM 235 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 236 #endif 237 [N_MEMORY] = { { [0] = 1UL } }, 238 [N_CPU] = { { [0] = 1UL } }, 239 #endif /* NUMA */ 240 }; 241 EXPORT_SYMBOL(node_states); 242 243 atomic_long_t _totalram_pages __read_mostly; 244 EXPORT_SYMBOL(_totalram_pages); 245 unsigned long totalreserve_pages __read_mostly; 246 unsigned long totalcma_pages __read_mostly; 247 248 int percpu_pagelist_high_fraction; 249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 251 EXPORT_SYMBOL(init_on_alloc); 252 253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 254 EXPORT_SYMBOL(init_on_free); 255 256 static bool _init_on_alloc_enabled_early __read_mostly 257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 258 static int __init early_init_on_alloc(char *buf) 259 { 260 261 return kstrtobool(buf, &_init_on_alloc_enabled_early); 262 } 263 early_param("init_on_alloc", early_init_on_alloc); 264 265 static bool _init_on_free_enabled_early __read_mostly 266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 267 static int __init early_init_on_free(char *buf) 268 { 269 return kstrtobool(buf, &_init_on_free_enabled_early); 270 } 271 early_param("init_on_free", early_init_on_free); 272 273 /* 274 * A cached value of the page's pageblock's migratetype, used when the page is 275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 276 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 277 * Also the migratetype set in the page does not necessarily match the pcplist 278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 279 * other index - this ensures that it will be put on the correct CMA freelist. 280 */ 281 static inline int get_pcppage_migratetype(struct page *page) 282 { 283 return page->index; 284 } 285 286 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 287 { 288 page->index = migratetype; 289 } 290 291 #ifdef CONFIG_PM_SLEEP 292 /* 293 * The following functions are used by the suspend/hibernate code to temporarily 294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 295 * while devices are suspended. To avoid races with the suspend/hibernate code, 296 * they should always be called with system_transition_mutex held 297 * (gfp_allowed_mask also should only be modified with system_transition_mutex 298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 299 * with that modification). 300 */ 301 302 static gfp_t saved_gfp_mask; 303 304 void pm_restore_gfp_mask(void) 305 { 306 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 307 if (saved_gfp_mask) { 308 gfp_allowed_mask = saved_gfp_mask; 309 saved_gfp_mask = 0; 310 } 311 } 312 313 void pm_restrict_gfp_mask(void) 314 { 315 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 316 WARN_ON(saved_gfp_mask); 317 saved_gfp_mask = gfp_allowed_mask; 318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 319 } 320 321 bool pm_suspended_storage(void) 322 { 323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 324 return false; 325 return true; 326 } 327 #endif /* CONFIG_PM_SLEEP */ 328 329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 330 unsigned int pageblock_order __read_mostly; 331 #endif 332 333 static void __free_pages_ok(struct page *page, unsigned int order, 334 fpi_t fpi_flags); 335 336 /* 337 * results with 256, 32 in the lowmem_reserve sysctl: 338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 339 * 1G machine -> (16M dma, 784M normal, 224M high) 340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 343 * 344 * TBD: should special case ZONE_DMA32 machines here - in those we normally 345 * don't need any ZONE_NORMAL reservation 346 */ 347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 348 #ifdef CONFIG_ZONE_DMA 349 [ZONE_DMA] = 256, 350 #endif 351 #ifdef CONFIG_ZONE_DMA32 352 [ZONE_DMA32] = 256, 353 #endif 354 [ZONE_NORMAL] = 32, 355 #ifdef CONFIG_HIGHMEM 356 [ZONE_HIGHMEM] = 0, 357 #endif 358 [ZONE_MOVABLE] = 0, 359 }; 360 361 static char * const zone_names[MAX_NR_ZONES] = { 362 #ifdef CONFIG_ZONE_DMA 363 "DMA", 364 #endif 365 #ifdef CONFIG_ZONE_DMA32 366 "DMA32", 367 #endif 368 "Normal", 369 #ifdef CONFIG_HIGHMEM 370 "HighMem", 371 #endif 372 "Movable", 373 #ifdef CONFIG_ZONE_DEVICE 374 "Device", 375 #endif 376 }; 377 378 const char * const migratetype_names[MIGRATE_TYPES] = { 379 "Unmovable", 380 "Movable", 381 "Reclaimable", 382 "HighAtomic", 383 #ifdef CONFIG_CMA 384 "CMA", 385 #endif 386 #ifdef CONFIG_MEMORY_ISOLATION 387 "Isolate", 388 #endif 389 }; 390 391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 392 [NULL_COMPOUND_DTOR] = NULL, 393 [COMPOUND_PAGE_DTOR] = free_compound_page, 394 #ifdef CONFIG_HUGETLB_PAGE 395 [HUGETLB_PAGE_DTOR] = free_huge_page, 396 #endif 397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 399 #endif 400 }; 401 402 int min_free_kbytes = 1024; 403 int user_min_free_kbytes = -1; 404 int watermark_boost_factor __read_mostly = 15000; 405 int watermark_scale_factor = 10; 406 407 static unsigned long nr_kernel_pages __initdata; 408 static unsigned long nr_all_pages __initdata; 409 static unsigned long dma_reserve __initdata; 410 411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 413 static unsigned long required_kernelcore __initdata; 414 static unsigned long required_kernelcore_percent __initdata; 415 static unsigned long required_movablecore __initdata; 416 static unsigned long required_movablecore_percent __initdata; 417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 418 bool mirrored_kernelcore __initdata_memblock; 419 420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 421 int movable_zone; 422 EXPORT_SYMBOL(movable_zone); 423 424 #if MAX_NUMNODES > 1 425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 426 unsigned int nr_online_nodes __read_mostly = 1; 427 EXPORT_SYMBOL(nr_node_ids); 428 EXPORT_SYMBOL(nr_online_nodes); 429 #endif 430 431 int page_group_by_mobility_disabled __read_mostly; 432 433 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 434 /* 435 * During boot we initialize deferred pages on-demand, as needed, but once 436 * page_alloc_init_late() has finished, the deferred pages are all initialized, 437 * and we can permanently disable that path. 438 */ 439 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 440 441 static inline bool deferred_pages_enabled(void) 442 { 443 return static_branch_unlikely(&deferred_pages); 444 } 445 446 /* Returns true if the struct page for the pfn is uninitialised */ 447 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 448 { 449 int nid = early_pfn_to_nid(pfn); 450 451 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 452 return true; 453 454 return false; 455 } 456 457 /* 458 * Returns true when the remaining initialisation should be deferred until 459 * later in the boot cycle when it can be parallelised. 460 */ 461 static bool __meminit 462 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 463 { 464 static unsigned long prev_end_pfn, nr_initialised; 465 466 if (early_page_ext_enabled()) 467 return false; 468 /* 469 * prev_end_pfn static that contains the end of previous zone 470 * No need to protect because called very early in boot before smp_init. 471 */ 472 if (prev_end_pfn != end_pfn) { 473 prev_end_pfn = end_pfn; 474 nr_initialised = 0; 475 } 476 477 /* Always populate low zones for address-constrained allocations */ 478 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 479 return false; 480 481 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 482 return true; 483 /* 484 * We start only with one section of pages, more pages are added as 485 * needed until the rest of deferred pages are initialized. 486 */ 487 nr_initialised++; 488 if ((nr_initialised > PAGES_PER_SECTION) && 489 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 490 NODE_DATA(nid)->first_deferred_pfn = pfn; 491 return true; 492 } 493 return false; 494 } 495 #else 496 static inline bool deferred_pages_enabled(void) 497 { 498 return false; 499 } 500 501 static inline bool early_page_uninitialised(unsigned long pfn) 502 { 503 return false; 504 } 505 506 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 507 { 508 return false; 509 } 510 #endif 511 512 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 513 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 514 unsigned long pfn) 515 { 516 #ifdef CONFIG_SPARSEMEM 517 return section_to_usemap(__pfn_to_section(pfn)); 518 #else 519 return page_zone(page)->pageblock_flags; 520 #endif /* CONFIG_SPARSEMEM */ 521 } 522 523 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 524 { 525 #ifdef CONFIG_SPARSEMEM 526 pfn &= (PAGES_PER_SECTION-1); 527 #else 528 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 529 #endif /* CONFIG_SPARSEMEM */ 530 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 531 } 532 533 static __always_inline 534 unsigned long __get_pfnblock_flags_mask(const struct page *page, 535 unsigned long pfn, 536 unsigned long mask) 537 { 538 unsigned long *bitmap; 539 unsigned long bitidx, word_bitidx; 540 unsigned long word; 541 542 bitmap = get_pageblock_bitmap(page, pfn); 543 bitidx = pfn_to_bitidx(page, pfn); 544 word_bitidx = bitidx / BITS_PER_LONG; 545 bitidx &= (BITS_PER_LONG-1); 546 /* 547 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 548 * a consistent read of the memory array, so that results, even though 549 * racy, are not corrupted. 550 */ 551 word = READ_ONCE(bitmap[word_bitidx]); 552 return (word >> bitidx) & mask; 553 } 554 555 /** 556 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 557 * @page: The page within the block of interest 558 * @pfn: The target page frame number 559 * @mask: mask of bits that the caller is interested in 560 * 561 * Return: pageblock_bits flags 562 */ 563 unsigned long get_pfnblock_flags_mask(const struct page *page, 564 unsigned long pfn, unsigned long mask) 565 { 566 return __get_pfnblock_flags_mask(page, pfn, mask); 567 } 568 569 static __always_inline int get_pfnblock_migratetype(const struct page *page, 570 unsigned long pfn) 571 { 572 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 573 } 574 575 /** 576 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 577 * @page: The page within the block of interest 578 * @flags: The flags to set 579 * @pfn: The target page frame number 580 * @mask: mask of bits that the caller is interested in 581 */ 582 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 583 unsigned long pfn, 584 unsigned long mask) 585 { 586 unsigned long *bitmap; 587 unsigned long bitidx, word_bitidx; 588 unsigned long word; 589 590 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 591 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 592 593 bitmap = get_pageblock_bitmap(page, pfn); 594 bitidx = pfn_to_bitidx(page, pfn); 595 word_bitidx = bitidx / BITS_PER_LONG; 596 bitidx &= (BITS_PER_LONG-1); 597 598 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 599 600 mask <<= bitidx; 601 flags <<= bitidx; 602 603 word = READ_ONCE(bitmap[word_bitidx]); 604 do { 605 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 606 } 607 608 void set_pageblock_migratetype(struct page *page, int migratetype) 609 { 610 if (unlikely(page_group_by_mobility_disabled && 611 migratetype < MIGRATE_PCPTYPES)) 612 migratetype = MIGRATE_UNMOVABLE; 613 614 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 615 page_to_pfn(page), MIGRATETYPE_MASK); 616 } 617 618 #ifdef CONFIG_DEBUG_VM 619 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 620 { 621 int ret = 0; 622 unsigned seq; 623 unsigned long pfn = page_to_pfn(page); 624 unsigned long sp, start_pfn; 625 626 do { 627 seq = zone_span_seqbegin(zone); 628 start_pfn = zone->zone_start_pfn; 629 sp = zone->spanned_pages; 630 if (!zone_spans_pfn(zone, pfn)) 631 ret = 1; 632 } while (zone_span_seqretry(zone, seq)); 633 634 if (ret) 635 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 636 pfn, zone_to_nid(zone), zone->name, 637 start_pfn, start_pfn + sp); 638 639 return ret; 640 } 641 642 static int page_is_consistent(struct zone *zone, struct page *page) 643 { 644 if (zone != page_zone(page)) 645 return 0; 646 647 return 1; 648 } 649 /* 650 * Temporary debugging check for pages not lying within a given zone. 651 */ 652 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 653 { 654 if (page_outside_zone_boundaries(zone, page)) 655 return 1; 656 if (!page_is_consistent(zone, page)) 657 return 1; 658 659 return 0; 660 } 661 #else 662 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 663 { 664 return 0; 665 } 666 #endif 667 668 static void bad_page(struct page *page, const char *reason) 669 { 670 static unsigned long resume; 671 static unsigned long nr_shown; 672 static unsigned long nr_unshown; 673 674 /* 675 * Allow a burst of 60 reports, then keep quiet for that minute; 676 * or allow a steady drip of one report per second. 677 */ 678 if (nr_shown == 60) { 679 if (time_before(jiffies, resume)) { 680 nr_unshown++; 681 goto out; 682 } 683 if (nr_unshown) { 684 pr_alert( 685 "BUG: Bad page state: %lu messages suppressed\n", 686 nr_unshown); 687 nr_unshown = 0; 688 } 689 nr_shown = 0; 690 } 691 if (nr_shown++ == 0) 692 resume = jiffies + 60 * HZ; 693 694 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 695 current->comm, page_to_pfn(page)); 696 dump_page(page, reason); 697 698 print_modules(); 699 dump_stack(); 700 out: 701 /* Leave bad fields for debug, except PageBuddy could make trouble */ 702 page_mapcount_reset(page); /* remove PageBuddy */ 703 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 704 } 705 706 static inline unsigned int order_to_pindex(int migratetype, int order) 707 { 708 int base = order; 709 710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 711 if (order > PAGE_ALLOC_COSTLY_ORDER) { 712 VM_BUG_ON(order != pageblock_order); 713 return NR_LOWORDER_PCP_LISTS; 714 } 715 #else 716 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 717 #endif 718 719 return (MIGRATE_PCPTYPES * base) + migratetype; 720 } 721 722 static inline int pindex_to_order(unsigned int pindex) 723 { 724 int order = pindex / MIGRATE_PCPTYPES; 725 726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 727 if (pindex == NR_LOWORDER_PCP_LISTS) 728 order = pageblock_order; 729 #else 730 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 731 #endif 732 733 return order; 734 } 735 736 static inline bool pcp_allowed_order(unsigned int order) 737 { 738 if (order <= PAGE_ALLOC_COSTLY_ORDER) 739 return true; 740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 741 if (order == pageblock_order) 742 return true; 743 #endif 744 return false; 745 } 746 747 static inline void free_the_page(struct page *page, unsigned int order) 748 { 749 if (pcp_allowed_order(order)) /* Via pcp? */ 750 free_unref_page(page, order); 751 else 752 __free_pages_ok(page, order, FPI_NONE); 753 } 754 755 /* 756 * Higher-order pages are called "compound pages". They are structured thusly: 757 * 758 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 759 * 760 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 761 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 762 * 763 * The first tail page's ->compound_dtor holds the offset in array of compound 764 * page destructors. See compound_page_dtors. 765 * 766 * The first tail page's ->compound_order holds the order of allocation. 767 * This usage means that zero-order pages may not be compound. 768 */ 769 770 void free_compound_page(struct page *page) 771 { 772 mem_cgroup_uncharge(page_folio(page)); 773 free_the_page(page, compound_order(page)); 774 } 775 776 static void prep_compound_head(struct page *page, unsigned int order) 777 { 778 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 779 set_compound_order(page, order); 780 atomic_set(compound_mapcount_ptr(page), -1); 781 atomic_set(subpages_mapcount_ptr(page), 0); 782 atomic_set(compound_pincount_ptr(page), 0); 783 } 784 785 static void prep_compound_tail(struct page *head, int tail_idx) 786 { 787 struct page *p = head + tail_idx; 788 789 p->mapping = TAIL_MAPPING; 790 set_compound_head(p, head); 791 set_page_private(p, 0); 792 } 793 794 void prep_compound_page(struct page *page, unsigned int order) 795 { 796 int i; 797 int nr_pages = 1 << order; 798 799 __SetPageHead(page); 800 for (i = 1; i < nr_pages; i++) 801 prep_compound_tail(page, i); 802 803 prep_compound_head(page, order); 804 } 805 806 void destroy_large_folio(struct folio *folio) 807 { 808 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; 809 810 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 811 compound_page_dtors[dtor](&folio->page); 812 } 813 814 #ifdef CONFIG_DEBUG_PAGEALLOC 815 unsigned int _debug_guardpage_minorder; 816 817 bool _debug_pagealloc_enabled_early __read_mostly 818 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 819 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 820 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 821 EXPORT_SYMBOL(_debug_pagealloc_enabled); 822 823 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 824 825 static int __init early_debug_pagealloc(char *buf) 826 { 827 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 828 } 829 early_param("debug_pagealloc", early_debug_pagealloc); 830 831 static int __init debug_guardpage_minorder_setup(char *buf) 832 { 833 unsigned long res; 834 835 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 836 pr_err("Bad debug_guardpage_minorder value\n"); 837 return 0; 838 } 839 _debug_guardpage_minorder = res; 840 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 841 return 0; 842 } 843 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 844 845 static inline bool set_page_guard(struct zone *zone, struct page *page, 846 unsigned int order, int migratetype) 847 { 848 if (!debug_guardpage_enabled()) 849 return false; 850 851 if (order >= debug_guardpage_minorder()) 852 return false; 853 854 __SetPageGuard(page); 855 INIT_LIST_HEAD(&page->buddy_list); 856 set_page_private(page, order); 857 /* Guard pages are not available for any usage */ 858 if (!is_migrate_isolate(migratetype)) 859 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 860 861 return true; 862 } 863 864 static inline void clear_page_guard(struct zone *zone, struct page *page, 865 unsigned int order, int migratetype) 866 { 867 if (!debug_guardpage_enabled()) 868 return; 869 870 __ClearPageGuard(page); 871 872 set_page_private(page, 0); 873 if (!is_migrate_isolate(migratetype)) 874 __mod_zone_freepage_state(zone, (1 << order), migratetype); 875 } 876 #else 877 static inline bool set_page_guard(struct zone *zone, struct page *page, 878 unsigned int order, int migratetype) { return false; } 879 static inline void clear_page_guard(struct zone *zone, struct page *page, 880 unsigned int order, int migratetype) {} 881 #endif 882 883 /* 884 * Enable static keys related to various memory debugging and hardening options. 885 * Some override others, and depend on early params that are evaluated in the 886 * order of appearance. So we need to first gather the full picture of what was 887 * enabled, and then make decisions. 888 */ 889 void __init init_mem_debugging_and_hardening(void) 890 { 891 bool page_poisoning_requested = false; 892 893 #ifdef CONFIG_PAGE_POISONING 894 /* 895 * Page poisoning is debug page alloc for some arches. If 896 * either of those options are enabled, enable poisoning. 897 */ 898 if (page_poisoning_enabled() || 899 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 900 debug_pagealloc_enabled())) { 901 static_branch_enable(&_page_poisoning_enabled); 902 page_poisoning_requested = true; 903 } 904 #endif 905 906 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 907 page_poisoning_requested) { 908 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 909 "will take precedence over init_on_alloc and init_on_free\n"); 910 _init_on_alloc_enabled_early = false; 911 _init_on_free_enabled_early = false; 912 } 913 914 if (_init_on_alloc_enabled_early) 915 static_branch_enable(&init_on_alloc); 916 else 917 static_branch_disable(&init_on_alloc); 918 919 if (_init_on_free_enabled_early) 920 static_branch_enable(&init_on_free); 921 else 922 static_branch_disable(&init_on_free); 923 924 if (IS_ENABLED(CONFIG_KMSAN) && 925 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 926 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 927 928 #ifdef CONFIG_DEBUG_PAGEALLOC 929 if (!debug_pagealloc_enabled()) 930 return; 931 932 static_branch_enable(&_debug_pagealloc_enabled); 933 934 if (!debug_guardpage_minorder()) 935 return; 936 937 static_branch_enable(&_debug_guardpage_enabled); 938 #endif 939 } 940 941 static inline void set_buddy_order(struct page *page, unsigned int order) 942 { 943 set_page_private(page, order); 944 __SetPageBuddy(page); 945 } 946 947 #ifdef CONFIG_COMPACTION 948 static inline struct capture_control *task_capc(struct zone *zone) 949 { 950 struct capture_control *capc = current->capture_control; 951 952 return unlikely(capc) && 953 !(current->flags & PF_KTHREAD) && 954 !capc->page && 955 capc->cc->zone == zone ? capc : NULL; 956 } 957 958 static inline bool 959 compaction_capture(struct capture_control *capc, struct page *page, 960 int order, int migratetype) 961 { 962 if (!capc || order != capc->cc->order) 963 return false; 964 965 /* Do not accidentally pollute CMA or isolated regions*/ 966 if (is_migrate_cma(migratetype) || 967 is_migrate_isolate(migratetype)) 968 return false; 969 970 /* 971 * Do not let lower order allocations pollute a movable pageblock. 972 * This might let an unmovable request use a reclaimable pageblock 973 * and vice-versa but no more than normal fallback logic which can 974 * have trouble finding a high-order free page. 975 */ 976 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 977 return false; 978 979 capc->page = page; 980 return true; 981 } 982 983 #else 984 static inline struct capture_control *task_capc(struct zone *zone) 985 { 986 return NULL; 987 } 988 989 static inline bool 990 compaction_capture(struct capture_control *capc, struct page *page, 991 int order, int migratetype) 992 { 993 return false; 994 } 995 #endif /* CONFIG_COMPACTION */ 996 997 /* Used for pages not on another list */ 998 static inline void add_to_free_list(struct page *page, struct zone *zone, 999 unsigned int order, int migratetype) 1000 { 1001 struct free_area *area = &zone->free_area[order]; 1002 1003 list_add(&page->buddy_list, &area->free_list[migratetype]); 1004 area->nr_free++; 1005 } 1006 1007 /* Used for pages not on another list */ 1008 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1009 unsigned int order, int migratetype) 1010 { 1011 struct free_area *area = &zone->free_area[order]; 1012 1013 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1014 area->nr_free++; 1015 } 1016 1017 /* 1018 * Used for pages which are on another list. Move the pages to the tail 1019 * of the list - so the moved pages won't immediately be considered for 1020 * allocation again (e.g., optimization for memory onlining). 1021 */ 1022 static inline void move_to_free_list(struct page *page, struct zone *zone, 1023 unsigned int order, int migratetype) 1024 { 1025 struct free_area *area = &zone->free_area[order]; 1026 1027 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1028 } 1029 1030 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1031 unsigned int order) 1032 { 1033 /* clear reported state and update reported page count */ 1034 if (page_reported(page)) 1035 __ClearPageReported(page); 1036 1037 list_del(&page->buddy_list); 1038 __ClearPageBuddy(page); 1039 set_page_private(page, 0); 1040 zone->free_area[order].nr_free--; 1041 } 1042 1043 /* 1044 * If this is not the largest possible page, check if the buddy 1045 * of the next-highest order is free. If it is, it's possible 1046 * that pages are being freed that will coalesce soon. In case, 1047 * that is happening, add the free page to the tail of the list 1048 * so it's less likely to be used soon and more likely to be merged 1049 * as a higher order page 1050 */ 1051 static inline bool 1052 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1053 struct page *page, unsigned int order) 1054 { 1055 unsigned long higher_page_pfn; 1056 struct page *higher_page; 1057 1058 if (order >= MAX_ORDER - 2) 1059 return false; 1060 1061 higher_page_pfn = buddy_pfn & pfn; 1062 higher_page = page + (higher_page_pfn - pfn); 1063 1064 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1065 NULL) != NULL; 1066 } 1067 1068 /* 1069 * Freeing function for a buddy system allocator. 1070 * 1071 * The concept of a buddy system is to maintain direct-mapped table 1072 * (containing bit values) for memory blocks of various "orders". 1073 * The bottom level table contains the map for the smallest allocatable 1074 * units of memory (here, pages), and each level above it describes 1075 * pairs of units from the levels below, hence, "buddies". 1076 * At a high level, all that happens here is marking the table entry 1077 * at the bottom level available, and propagating the changes upward 1078 * as necessary, plus some accounting needed to play nicely with other 1079 * parts of the VM system. 1080 * At each level, we keep a list of pages, which are heads of continuous 1081 * free pages of length of (1 << order) and marked with PageBuddy. 1082 * Page's order is recorded in page_private(page) field. 1083 * So when we are allocating or freeing one, we can derive the state of the 1084 * other. That is, if we allocate a small block, and both were 1085 * free, the remainder of the region must be split into blocks. 1086 * If a block is freed, and its buddy is also free, then this 1087 * triggers coalescing into a block of larger size. 1088 * 1089 * -- nyc 1090 */ 1091 1092 static inline void __free_one_page(struct page *page, 1093 unsigned long pfn, 1094 struct zone *zone, unsigned int order, 1095 int migratetype, fpi_t fpi_flags) 1096 { 1097 struct capture_control *capc = task_capc(zone); 1098 unsigned long buddy_pfn = 0; 1099 unsigned long combined_pfn; 1100 struct page *buddy; 1101 bool to_tail; 1102 1103 VM_BUG_ON(!zone_is_initialized(zone)); 1104 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1105 1106 VM_BUG_ON(migratetype == -1); 1107 if (likely(!is_migrate_isolate(migratetype))) 1108 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1109 1110 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1111 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1112 1113 while (order < MAX_ORDER - 1) { 1114 if (compaction_capture(capc, page, order, migratetype)) { 1115 __mod_zone_freepage_state(zone, -(1 << order), 1116 migratetype); 1117 return; 1118 } 1119 1120 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1121 if (!buddy) 1122 goto done_merging; 1123 1124 if (unlikely(order >= pageblock_order)) { 1125 /* 1126 * We want to prevent merge between freepages on pageblock 1127 * without fallbacks and normal pageblock. Without this, 1128 * pageblock isolation could cause incorrect freepage or CMA 1129 * accounting or HIGHATOMIC accounting. 1130 */ 1131 int buddy_mt = get_pageblock_migratetype(buddy); 1132 1133 if (migratetype != buddy_mt 1134 && (!migratetype_is_mergeable(migratetype) || 1135 !migratetype_is_mergeable(buddy_mt))) 1136 goto done_merging; 1137 } 1138 1139 /* 1140 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1141 * merge with it and move up one order. 1142 */ 1143 if (page_is_guard(buddy)) 1144 clear_page_guard(zone, buddy, order, migratetype); 1145 else 1146 del_page_from_free_list(buddy, zone, order); 1147 combined_pfn = buddy_pfn & pfn; 1148 page = page + (combined_pfn - pfn); 1149 pfn = combined_pfn; 1150 order++; 1151 } 1152 1153 done_merging: 1154 set_buddy_order(page, order); 1155 1156 if (fpi_flags & FPI_TO_TAIL) 1157 to_tail = true; 1158 else if (is_shuffle_order(order)) 1159 to_tail = shuffle_pick_tail(); 1160 else 1161 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1162 1163 if (to_tail) 1164 add_to_free_list_tail(page, zone, order, migratetype); 1165 else 1166 add_to_free_list(page, zone, order, migratetype); 1167 1168 /* Notify page reporting subsystem of freed page */ 1169 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1170 page_reporting_notify_free(order); 1171 } 1172 1173 /** 1174 * split_free_page() -- split a free page at split_pfn_offset 1175 * @free_page: the original free page 1176 * @order: the order of the page 1177 * @split_pfn_offset: split offset within the page 1178 * 1179 * Return -ENOENT if the free page is changed, otherwise 0 1180 * 1181 * It is used when the free page crosses two pageblocks with different migratetypes 1182 * at split_pfn_offset within the page. The split free page will be put into 1183 * separate migratetype lists afterwards. Otherwise, the function achieves 1184 * nothing. 1185 */ 1186 int split_free_page(struct page *free_page, 1187 unsigned int order, unsigned long split_pfn_offset) 1188 { 1189 struct zone *zone = page_zone(free_page); 1190 unsigned long free_page_pfn = page_to_pfn(free_page); 1191 unsigned long pfn; 1192 unsigned long flags; 1193 int free_page_order; 1194 int mt; 1195 int ret = 0; 1196 1197 if (split_pfn_offset == 0) 1198 return ret; 1199 1200 spin_lock_irqsave(&zone->lock, flags); 1201 1202 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1203 ret = -ENOENT; 1204 goto out; 1205 } 1206 1207 mt = get_pageblock_migratetype(free_page); 1208 if (likely(!is_migrate_isolate(mt))) 1209 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1210 1211 del_page_from_free_list(free_page, zone, order); 1212 for (pfn = free_page_pfn; 1213 pfn < free_page_pfn + (1UL << order);) { 1214 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1215 1216 free_page_order = min_t(unsigned int, 1217 pfn ? __ffs(pfn) : order, 1218 __fls(split_pfn_offset)); 1219 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1220 mt, FPI_NONE); 1221 pfn += 1UL << free_page_order; 1222 split_pfn_offset -= (1UL << free_page_order); 1223 /* we have done the first part, now switch to second part */ 1224 if (split_pfn_offset == 0) 1225 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1226 } 1227 out: 1228 spin_unlock_irqrestore(&zone->lock, flags); 1229 return ret; 1230 } 1231 /* 1232 * A bad page could be due to a number of fields. Instead of multiple branches, 1233 * try and check multiple fields with one check. The caller must do a detailed 1234 * check if necessary. 1235 */ 1236 static inline bool page_expected_state(struct page *page, 1237 unsigned long check_flags) 1238 { 1239 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1240 return false; 1241 1242 if (unlikely((unsigned long)page->mapping | 1243 page_ref_count(page) | 1244 #ifdef CONFIG_MEMCG 1245 page->memcg_data | 1246 #endif 1247 (page->flags & check_flags))) 1248 return false; 1249 1250 return true; 1251 } 1252 1253 static const char *page_bad_reason(struct page *page, unsigned long flags) 1254 { 1255 const char *bad_reason = NULL; 1256 1257 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1258 bad_reason = "nonzero mapcount"; 1259 if (unlikely(page->mapping != NULL)) 1260 bad_reason = "non-NULL mapping"; 1261 if (unlikely(page_ref_count(page) != 0)) 1262 bad_reason = "nonzero _refcount"; 1263 if (unlikely(page->flags & flags)) { 1264 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1265 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1266 else 1267 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1268 } 1269 #ifdef CONFIG_MEMCG 1270 if (unlikely(page->memcg_data)) 1271 bad_reason = "page still charged to cgroup"; 1272 #endif 1273 return bad_reason; 1274 } 1275 1276 static void free_page_is_bad_report(struct page *page) 1277 { 1278 bad_page(page, 1279 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1280 } 1281 1282 static inline bool free_page_is_bad(struct page *page) 1283 { 1284 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1285 return false; 1286 1287 /* Something has gone sideways, find it */ 1288 free_page_is_bad_report(page); 1289 return true; 1290 } 1291 1292 static int free_tail_pages_check(struct page *head_page, struct page *page) 1293 { 1294 int ret = 1; 1295 1296 /* 1297 * We rely page->lru.next never has bit 0 set, unless the page 1298 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1299 */ 1300 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1301 1302 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1303 ret = 0; 1304 goto out; 1305 } 1306 switch (page - head_page) { 1307 case 1: 1308 /* the first tail page: these may be in place of ->mapping */ 1309 if (unlikely(head_compound_mapcount(head_page))) { 1310 bad_page(page, "nonzero compound_mapcount"); 1311 goto out; 1312 } 1313 if (unlikely(atomic_read(subpages_mapcount_ptr(head_page)))) { 1314 bad_page(page, "nonzero subpages_mapcount"); 1315 goto out; 1316 } 1317 if (unlikely(head_compound_pincount(head_page))) { 1318 bad_page(page, "nonzero compound_pincount"); 1319 goto out; 1320 } 1321 break; 1322 case 2: 1323 /* 1324 * the second tail page: ->mapping is 1325 * deferred_list.next -- ignore value. 1326 */ 1327 break; 1328 default: 1329 if (page->mapping != TAIL_MAPPING) { 1330 bad_page(page, "corrupted mapping in tail page"); 1331 goto out; 1332 } 1333 break; 1334 } 1335 if (unlikely(!PageTail(page))) { 1336 bad_page(page, "PageTail not set"); 1337 goto out; 1338 } 1339 if (unlikely(compound_head(page) != head_page)) { 1340 bad_page(page, "compound_head not consistent"); 1341 goto out; 1342 } 1343 ret = 0; 1344 out: 1345 page->mapping = NULL; 1346 clear_compound_head(page); 1347 return ret; 1348 } 1349 1350 /* 1351 * Skip KASAN memory poisoning when either: 1352 * 1353 * 1. Deferred memory initialization has not yet completed, 1354 * see the explanation below. 1355 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1356 * see the comment next to it. 1357 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1358 * see the comment next to it. 1359 * 1360 * Poisoning pages during deferred memory init will greatly lengthen the 1361 * process and cause problem in large memory systems as the deferred pages 1362 * initialization is done with interrupt disabled. 1363 * 1364 * Assuming that there will be no reference to those newly initialized 1365 * pages before they are ever allocated, this should have no effect on 1366 * KASAN memory tracking as the poison will be properly inserted at page 1367 * allocation time. The only corner case is when pages are allocated by 1368 * on-demand allocation and then freed again before the deferred pages 1369 * initialization is done, but this is not likely to happen. 1370 */ 1371 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1372 { 1373 return deferred_pages_enabled() || 1374 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1375 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1376 PageSkipKASanPoison(page); 1377 } 1378 1379 static void kernel_init_pages(struct page *page, int numpages) 1380 { 1381 int i; 1382 1383 /* s390's use of memset() could override KASAN redzones. */ 1384 kasan_disable_current(); 1385 for (i = 0; i < numpages; i++) 1386 clear_highpage_kasan_tagged(page + i); 1387 kasan_enable_current(); 1388 } 1389 1390 static __always_inline bool free_pages_prepare(struct page *page, 1391 unsigned int order, bool check_free, fpi_t fpi_flags) 1392 { 1393 int bad = 0; 1394 bool init = want_init_on_free(); 1395 1396 VM_BUG_ON_PAGE(PageTail(page), page); 1397 1398 trace_mm_page_free(page, order); 1399 kmsan_free_page(page, order); 1400 1401 if (unlikely(PageHWPoison(page)) && !order) { 1402 /* 1403 * Do not let hwpoison pages hit pcplists/buddy 1404 * Untie memcg state and reset page's owner 1405 */ 1406 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1407 __memcg_kmem_uncharge_page(page, order); 1408 reset_page_owner(page, order); 1409 page_table_check_free(page, order); 1410 return false; 1411 } 1412 1413 /* 1414 * Check tail pages before head page information is cleared to 1415 * avoid checking PageCompound for order-0 pages. 1416 */ 1417 if (unlikely(order)) { 1418 bool compound = PageCompound(page); 1419 int i; 1420 1421 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1422 1423 if (compound) 1424 ClearPageHasHWPoisoned(page); 1425 for (i = 1; i < (1 << order); i++) { 1426 if (compound) 1427 bad += free_tail_pages_check(page, page + i); 1428 if (unlikely(free_page_is_bad(page + i))) { 1429 bad++; 1430 continue; 1431 } 1432 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1433 } 1434 } 1435 if (PageMappingFlags(page)) 1436 page->mapping = NULL; 1437 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1438 __memcg_kmem_uncharge_page(page, order); 1439 if (check_free && free_page_is_bad(page)) 1440 bad++; 1441 if (bad) 1442 return false; 1443 1444 page_cpupid_reset_last(page); 1445 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1446 reset_page_owner(page, order); 1447 page_table_check_free(page, order); 1448 1449 if (!PageHighMem(page)) { 1450 debug_check_no_locks_freed(page_address(page), 1451 PAGE_SIZE << order); 1452 debug_check_no_obj_freed(page_address(page), 1453 PAGE_SIZE << order); 1454 } 1455 1456 kernel_poison_pages(page, 1 << order); 1457 1458 /* 1459 * As memory initialization might be integrated into KASAN, 1460 * KASAN poisoning and memory initialization code must be 1461 * kept together to avoid discrepancies in behavior. 1462 * 1463 * With hardware tag-based KASAN, memory tags must be set before the 1464 * page becomes unavailable via debug_pagealloc or arch_free_page. 1465 */ 1466 if (!should_skip_kasan_poison(page, fpi_flags)) { 1467 kasan_poison_pages(page, order, init); 1468 1469 /* Memory is already initialized if KASAN did it internally. */ 1470 if (kasan_has_integrated_init()) 1471 init = false; 1472 } 1473 if (init) 1474 kernel_init_pages(page, 1 << order); 1475 1476 /* 1477 * arch_free_page() can make the page's contents inaccessible. s390 1478 * does this. So nothing which can access the page's contents should 1479 * happen after this. 1480 */ 1481 arch_free_page(page, order); 1482 1483 debug_pagealloc_unmap_pages(page, 1 << order); 1484 1485 return true; 1486 } 1487 1488 #ifdef CONFIG_DEBUG_VM 1489 /* 1490 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1491 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1492 * moved from pcp lists to free lists. 1493 */ 1494 static bool free_pcp_prepare(struct page *page, unsigned int order) 1495 { 1496 return free_pages_prepare(page, order, true, FPI_NONE); 1497 } 1498 1499 /* return true if this page has an inappropriate state */ 1500 static bool bulkfree_pcp_prepare(struct page *page) 1501 { 1502 if (debug_pagealloc_enabled_static()) 1503 return free_page_is_bad(page); 1504 else 1505 return false; 1506 } 1507 #else 1508 /* 1509 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1510 * moving from pcp lists to free list in order to reduce overhead. With 1511 * debug_pagealloc enabled, they are checked also immediately when being freed 1512 * to the pcp lists. 1513 */ 1514 static bool free_pcp_prepare(struct page *page, unsigned int order) 1515 { 1516 if (debug_pagealloc_enabled_static()) 1517 return free_pages_prepare(page, order, true, FPI_NONE); 1518 else 1519 return free_pages_prepare(page, order, false, FPI_NONE); 1520 } 1521 1522 static bool bulkfree_pcp_prepare(struct page *page) 1523 { 1524 return free_page_is_bad(page); 1525 } 1526 #endif /* CONFIG_DEBUG_VM */ 1527 1528 /* 1529 * Frees a number of pages from the PCP lists 1530 * Assumes all pages on list are in same zone. 1531 * count is the number of pages to free. 1532 */ 1533 static void free_pcppages_bulk(struct zone *zone, int count, 1534 struct per_cpu_pages *pcp, 1535 int pindex) 1536 { 1537 unsigned long flags; 1538 int min_pindex = 0; 1539 int max_pindex = NR_PCP_LISTS - 1; 1540 unsigned int order; 1541 bool isolated_pageblocks; 1542 struct page *page; 1543 1544 /* 1545 * Ensure proper count is passed which otherwise would stuck in the 1546 * below while (list_empty(list)) loop. 1547 */ 1548 count = min(pcp->count, count); 1549 1550 /* Ensure requested pindex is drained first. */ 1551 pindex = pindex - 1; 1552 1553 spin_lock_irqsave(&zone->lock, flags); 1554 isolated_pageblocks = has_isolate_pageblock(zone); 1555 1556 while (count > 0) { 1557 struct list_head *list; 1558 int nr_pages; 1559 1560 /* Remove pages from lists in a round-robin fashion. */ 1561 do { 1562 if (++pindex > max_pindex) 1563 pindex = min_pindex; 1564 list = &pcp->lists[pindex]; 1565 if (!list_empty(list)) 1566 break; 1567 1568 if (pindex == max_pindex) 1569 max_pindex--; 1570 if (pindex == min_pindex) 1571 min_pindex++; 1572 } while (1); 1573 1574 order = pindex_to_order(pindex); 1575 nr_pages = 1 << order; 1576 do { 1577 int mt; 1578 1579 page = list_last_entry(list, struct page, pcp_list); 1580 mt = get_pcppage_migratetype(page); 1581 1582 /* must delete to avoid corrupting pcp list */ 1583 list_del(&page->pcp_list); 1584 count -= nr_pages; 1585 pcp->count -= nr_pages; 1586 1587 if (bulkfree_pcp_prepare(page)) 1588 continue; 1589 1590 /* MIGRATE_ISOLATE page should not go to pcplists */ 1591 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1592 /* Pageblock could have been isolated meanwhile */ 1593 if (unlikely(isolated_pageblocks)) 1594 mt = get_pageblock_migratetype(page); 1595 1596 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1597 trace_mm_page_pcpu_drain(page, order, mt); 1598 } while (count > 0 && !list_empty(list)); 1599 } 1600 1601 spin_unlock_irqrestore(&zone->lock, flags); 1602 } 1603 1604 static void free_one_page(struct zone *zone, 1605 struct page *page, unsigned long pfn, 1606 unsigned int order, 1607 int migratetype, fpi_t fpi_flags) 1608 { 1609 unsigned long flags; 1610 1611 spin_lock_irqsave(&zone->lock, flags); 1612 if (unlikely(has_isolate_pageblock(zone) || 1613 is_migrate_isolate(migratetype))) { 1614 migratetype = get_pfnblock_migratetype(page, pfn); 1615 } 1616 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1617 spin_unlock_irqrestore(&zone->lock, flags); 1618 } 1619 1620 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1621 unsigned long zone, int nid) 1622 { 1623 mm_zero_struct_page(page); 1624 set_page_links(page, zone, nid, pfn); 1625 init_page_count(page); 1626 page_mapcount_reset(page); 1627 page_cpupid_reset_last(page); 1628 page_kasan_tag_reset(page); 1629 1630 INIT_LIST_HEAD(&page->lru); 1631 #ifdef WANT_PAGE_VIRTUAL 1632 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1633 if (!is_highmem_idx(zone)) 1634 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1635 #endif 1636 } 1637 1638 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1639 static void __meminit init_reserved_page(unsigned long pfn) 1640 { 1641 pg_data_t *pgdat; 1642 int nid, zid; 1643 1644 if (!early_page_uninitialised(pfn)) 1645 return; 1646 1647 nid = early_pfn_to_nid(pfn); 1648 pgdat = NODE_DATA(nid); 1649 1650 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1651 struct zone *zone = &pgdat->node_zones[zid]; 1652 1653 if (zone_spans_pfn(zone, pfn)) 1654 break; 1655 } 1656 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1657 } 1658 #else 1659 static inline void init_reserved_page(unsigned long pfn) 1660 { 1661 } 1662 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1663 1664 /* 1665 * Initialised pages do not have PageReserved set. This function is 1666 * called for each range allocated by the bootmem allocator and 1667 * marks the pages PageReserved. The remaining valid pages are later 1668 * sent to the buddy page allocator. 1669 */ 1670 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1671 { 1672 unsigned long start_pfn = PFN_DOWN(start); 1673 unsigned long end_pfn = PFN_UP(end); 1674 1675 for (; start_pfn < end_pfn; start_pfn++) { 1676 if (pfn_valid(start_pfn)) { 1677 struct page *page = pfn_to_page(start_pfn); 1678 1679 init_reserved_page(start_pfn); 1680 1681 /* Avoid false-positive PageTail() */ 1682 INIT_LIST_HEAD(&page->lru); 1683 1684 /* 1685 * no need for atomic set_bit because the struct 1686 * page is not visible yet so nobody should 1687 * access it yet. 1688 */ 1689 __SetPageReserved(page); 1690 } 1691 } 1692 } 1693 1694 static void __free_pages_ok(struct page *page, unsigned int order, 1695 fpi_t fpi_flags) 1696 { 1697 unsigned long flags; 1698 int migratetype; 1699 unsigned long pfn = page_to_pfn(page); 1700 struct zone *zone = page_zone(page); 1701 1702 if (!free_pages_prepare(page, order, true, fpi_flags)) 1703 return; 1704 1705 /* 1706 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1707 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1708 * This will reduce the lock holding time. 1709 */ 1710 migratetype = get_pfnblock_migratetype(page, pfn); 1711 1712 spin_lock_irqsave(&zone->lock, flags); 1713 if (unlikely(has_isolate_pageblock(zone) || 1714 is_migrate_isolate(migratetype))) { 1715 migratetype = get_pfnblock_migratetype(page, pfn); 1716 } 1717 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1718 spin_unlock_irqrestore(&zone->lock, flags); 1719 1720 __count_vm_events(PGFREE, 1 << order); 1721 } 1722 1723 void __free_pages_core(struct page *page, unsigned int order) 1724 { 1725 unsigned int nr_pages = 1 << order; 1726 struct page *p = page; 1727 unsigned int loop; 1728 1729 /* 1730 * When initializing the memmap, __init_single_page() sets the refcount 1731 * of all pages to 1 ("allocated"/"not free"). We have to set the 1732 * refcount of all involved pages to 0. 1733 */ 1734 prefetchw(p); 1735 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1736 prefetchw(p + 1); 1737 __ClearPageReserved(p); 1738 set_page_count(p, 0); 1739 } 1740 __ClearPageReserved(p); 1741 set_page_count(p, 0); 1742 1743 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1744 1745 /* 1746 * Bypass PCP and place fresh pages right to the tail, primarily 1747 * relevant for memory onlining. 1748 */ 1749 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1750 } 1751 1752 #ifdef CONFIG_NUMA 1753 1754 /* 1755 * During memory init memblocks map pfns to nids. The search is expensive and 1756 * this caches recent lookups. The implementation of __early_pfn_to_nid 1757 * treats start/end as pfns. 1758 */ 1759 struct mminit_pfnnid_cache { 1760 unsigned long last_start; 1761 unsigned long last_end; 1762 int last_nid; 1763 }; 1764 1765 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1766 1767 /* 1768 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1769 */ 1770 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1771 struct mminit_pfnnid_cache *state) 1772 { 1773 unsigned long start_pfn, end_pfn; 1774 int nid; 1775 1776 if (state->last_start <= pfn && pfn < state->last_end) 1777 return state->last_nid; 1778 1779 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1780 if (nid != NUMA_NO_NODE) { 1781 state->last_start = start_pfn; 1782 state->last_end = end_pfn; 1783 state->last_nid = nid; 1784 } 1785 1786 return nid; 1787 } 1788 1789 int __meminit early_pfn_to_nid(unsigned long pfn) 1790 { 1791 static DEFINE_SPINLOCK(early_pfn_lock); 1792 int nid; 1793 1794 spin_lock(&early_pfn_lock); 1795 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1796 if (nid < 0) 1797 nid = first_online_node; 1798 spin_unlock(&early_pfn_lock); 1799 1800 return nid; 1801 } 1802 #endif /* CONFIG_NUMA */ 1803 1804 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1805 unsigned int order) 1806 { 1807 if (early_page_uninitialised(pfn)) 1808 return; 1809 if (!kmsan_memblock_free_pages(page, order)) { 1810 /* KMSAN will take care of these pages. */ 1811 return; 1812 } 1813 __free_pages_core(page, order); 1814 } 1815 1816 /* 1817 * Check that the whole (or subset of) a pageblock given by the interval of 1818 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1819 * with the migration of free compaction scanner. 1820 * 1821 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1822 * 1823 * It's possible on some configurations to have a setup like node0 node1 node0 1824 * i.e. it's possible that all pages within a zones range of pages do not 1825 * belong to a single zone. We assume that a border between node0 and node1 1826 * can occur within a single pageblock, but not a node0 node1 node0 1827 * interleaving within a single pageblock. It is therefore sufficient to check 1828 * the first and last page of a pageblock and avoid checking each individual 1829 * page in a pageblock. 1830 */ 1831 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1832 unsigned long end_pfn, struct zone *zone) 1833 { 1834 struct page *start_page; 1835 struct page *end_page; 1836 1837 /* end_pfn is one past the range we are checking */ 1838 end_pfn--; 1839 1840 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1841 return NULL; 1842 1843 start_page = pfn_to_online_page(start_pfn); 1844 if (!start_page) 1845 return NULL; 1846 1847 if (page_zone(start_page) != zone) 1848 return NULL; 1849 1850 end_page = pfn_to_page(end_pfn); 1851 1852 /* This gives a shorter code than deriving page_zone(end_page) */ 1853 if (page_zone_id(start_page) != page_zone_id(end_page)) 1854 return NULL; 1855 1856 return start_page; 1857 } 1858 1859 void set_zone_contiguous(struct zone *zone) 1860 { 1861 unsigned long block_start_pfn = zone->zone_start_pfn; 1862 unsigned long block_end_pfn; 1863 1864 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1865 for (; block_start_pfn < zone_end_pfn(zone); 1866 block_start_pfn = block_end_pfn, 1867 block_end_pfn += pageblock_nr_pages) { 1868 1869 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1870 1871 if (!__pageblock_pfn_to_page(block_start_pfn, 1872 block_end_pfn, zone)) 1873 return; 1874 cond_resched(); 1875 } 1876 1877 /* We confirm that there is no hole */ 1878 zone->contiguous = true; 1879 } 1880 1881 void clear_zone_contiguous(struct zone *zone) 1882 { 1883 zone->contiguous = false; 1884 } 1885 1886 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1887 static void __init deferred_free_range(unsigned long pfn, 1888 unsigned long nr_pages) 1889 { 1890 struct page *page; 1891 unsigned long i; 1892 1893 if (!nr_pages) 1894 return; 1895 1896 page = pfn_to_page(pfn); 1897 1898 /* Free a large naturally-aligned chunk if possible */ 1899 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1900 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1901 __free_pages_core(page, pageblock_order); 1902 return; 1903 } 1904 1905 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1906 if (pageblock_aligned(pfn)) 1907 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1908 __free_pages_core(page, 0); 1909 } 1910 } 1911 1912 /* Completion tracking for deferred_init_memmap() threads */ 1913 static atomic_t pgdat_init_n_undone __initdata; 1914 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1915 1916 static inline void __init pgdat_init_report_one_done(void) 1917 { 1918 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1919 complete(&pgdat_init_all_done_comp); 1920 } 1921 1922 /* 1923 * Returns true if page needs to be initialized or freed to buddy allocator. 1924 * 1925 * We check if a current large page is valid by only checking the validity 1926 * of the head pfn. 1927 */ 1928 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1929 { 1930 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1931 return false; 1932 return true; 1933 } 1934 1935 /* 1936 * Free pages to buddy allocator. Try to free aligned pages in 1937 * pageblock_nr_pages sizes. 1938 */ 1939 static void __init deferred_free_pages(unsigned long pfn, 1940 unsigned long end_pfn) 1941 { 1942 unsigned long nr_free = 0; 1943 1944 for (; pfn < end_pfn; pfn++) { 1945 if (!deferred_pfn_valid(pfn)) { 1946 deferred_free_range(pfn - nr_free, nr_free); 1947 nr_free = 0; 1948 } else if (pageblock_aligned(pfn)) { 1949 deferred_free_range(pfn - nr_free, nr_free); 1950 nr_free = 1; 1951 } else { 1952 nr_free++; 1953 } 1954 } 1955 /* Free the last block of pages to allocator */ 1956 deferred_free_range(pfn - nr_free, nr_free); 1957 } 1958 1959 /* 1960 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1961 * by performing it only once every pageblock_nr_pages. 1962 * Return number of pages initialized. 1963 */ 1964 static unsigned long __init deferred_init_pages(struct zone *zone, 1965 unsigned long pfn, 1966 unsigned long end_pfn) 1967 { 1968 int nid = zone_to_nid(zone); 1969 unsigned long nr_pages = 0; 1970 int zid = zone_idx(zone); 1971 struct page *page = NULL; 1972 1973 for (; pfn < end_pfn; pfn++) { 1974 if (!deferred_pfn_valid(pfn)) { 1975 page = NULL; 1976 continue; 1977 } else if (!page || pageblock_aligned(pfn)) { 1978 page = pfn_to_page(pfn); 1979 } else { 1980 page++; 1981 } 1982 __init_single_page(page, pfn, zid, nid); 1983 nr_pages++; 1984 } 1985 return (nr_pages); 1986 } 1987 1988 /* 1989 * This function is meant to pre-load the iterator for the zone init. 1990 * Specifically it walks through the ranges until we are caught up to the 1991 * first_init_pfn value and exits there. If we never encounter the value we 1992 * return false indicating there are no valid ranges left. 1993 */ 1994 static bool __init 1995 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1996 unsigned long *spfn, unsigned long *epfn, 1997 unsigned long first_init_pfn) 1998 { 1999 u64 j; 2000 2001 /* 2002 * Start out by walking through the ranges in this zone that have 2003 * already been initialized. We don't need to do anything with them 2004 * so we just need to flush them out of the system. 2005 */ 2006 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2007 if (*epfn <= first_init_pfn) 2008 continue; 2009 if (*spfn < first_init_pfn) 2010 *spfn = first_init_pfn; 2011 *i = j; 2012 return true; 2013 } 2014 2015 return false; 2016 } 2017 2018 /* 2019 * Initialize and free pages. We do it in two loops: first we initialize 2020 * struct page, then free to buddy allocator, because while we are 2021 * freeing pages we can access pages that are ahead (computing buddy 2022 * page in __free_one_page()). 2023 * 2024 * In order to try and keep some memory in the cache we have the loop 2025 * broken along max page order boundaries. This way we will not cause 2026 * any issues with the buddy page computation. 2027 */ 2028 static unsigned long __init 2029 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2030 unsigned long *end_pfn) 2031 { 2032 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2033 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2034 unsigned long nr_pages = 0; 2035 u64 j = *i; 2036 2037 /* First we loop through and initialize the page values */ 2038 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2039 unsigned long t; 2040 2041 if (mo_pfn <= *start_pfn) 2042 break; 2043 2044 t = min(mo_pfn, *end_pfn); 2045 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2046 2047 if (mo_pfn < *end_pfn) { 2048 *start_pfn = mo_pfn; 2049 break; 2050 } 2051 } 2052 2053 /* Reset values and now loop through freeing pages as needed */ 2054 swap(j, *i); 2055 2056 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2057 unsigned long t; 2058 2059 if (mo_pfn <= spfn) 2060 break; 2061 2062 t = min(mo_pfn, epfn); 2063 deferred_free_pages(spfn, t); 2064 2065 if (mo_pfn <= epfn) 2066 break; 2067 } 2068 2069 return nr_pages; 2070 } 2071 2072 static void __init 2073 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2074 void *arg) 2075 { 2076 unsigned long spfn, epfn; 2077 struct zone *zone = arg; 2078 u64 i; 2079 2080 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2081 2082 /* 2083 * Initialize and free pages in MAX_ORDER sized increments so that we 2084 * can avoid introducing any issues with the buddy allocator. 2085 */ 2086 while (spfn < end_pfn) { 2087 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2088 cond_resched(); 2089 } 2090 } 2091 2092 /* An arch may override for more concurrency. */ 2093 __weak int __init 2094 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2095 { 2096 return 1; 2097 } 2098 2099 /* Initialise remaining memory on a node */ 2100 static int __init deferred_init_memmap(void *data) 2101 { 2102 pg_data_t *pgdat = data; 2103 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2104 unsigned long spfn = 0, epfn = 0; 2105 unsigned long first_init_pfn, flags; 2106 unsigned long start = jiffies; 2107 struct zone *zone; 2108 int zid, max_threads; 2109 u64 i; 2110 2111 /* Bind memory initialisation thread to a local node if possible */ 2112 if (!cpumask_empty(cpumask)) 2113 set_cpus_allowed_ptr(current, cpumask); 2114 2115 pgdat_resize_lock(pgdat, &flags); 2116 first_init_pfn = pgdat->first_deferred_pfn; 2117 if (first_init_pfn == ULONG_MAX) { 2118 pgdat_resize_unlock(pgdat, &flags); 2119 pgdat_init_report_one_done(); 2120 return 0; 2121 } 2122 2123 /* Sanity check boundaries */ 2124 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2125 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2126 pgdat->first_deferred_pfn = ULONG_MAX; 2127 2128 /* 2129 * Once we unlock here, the zone cannot be grown anymore, thus if an 2130 * interrupt thread must allocate this early in boot, zone must be 2131 * pre-grown prior to start of deferred page initialization. 2132 */ 2133 pgdat_resize_unlock(pgdat, &flags); 2134 2135 /* Only the highest zone is deferred so find it */ 2136 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2137 zone = pgdat->node_zones + zid; 2138 if (first_init_pfn < zone_end_pfn(zone)) 2139 break; 2140 } 2141 2142 /* If the zone is empty somebody else may have cleared out the zone */ 2143 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2144 first_init_pfn)) 2145 goto zone_empty; 2146 2147 max_threads = deferred_page_init_max_threads(cpumask); 2148 2149 while (spfn < epfn) { 2150 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2151 struct padata_mt_job job = { 2152 .thread_fn = deferred_init_memmap_chunk, 2153 .fn_arg = zone, 2154 .start = spfn, 2155 .size = epfn_align - spfn, 2156 .align = PAGES_PER_SECTION, 2157 .min_chunk = PAGES_PER_SECTION, 2158 .max_threads = max_threads, 2159 }; 2160 2161 padata_do_multithreaded(&job); 2162 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2163 epfn_align); 2164 } 2165 zone_empty: 2166 /* Sanity check that the next zone really is unpopulated */ 2167 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2168 2169 pr_info("node %d deferred pages initialised in %ums\n", 2170 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2171 2172 pgdat_init_report_one_done(); 2173 return 0; 2174 } 2175 2176 /* 2177 * If this zone has deferred pages, try to grow it by initializing enough 2178 * deferred pages to satisfy the allocation specified by order, rounded up to 2179 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2180 * of SECTION_SIZE bytes by initializing struct pages in increments of 2181 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2182 * 2183 * Return true when zone was grown, otherwise return false. We return true even 2184 * when we grow less than requested, to let the caller decide if there are 2185 * enough pages to satisfy the allocation. 2186 * 2187 * Note: We use noinline because this function is needed only during boot, and 2188 * it is called from a __ref function _deferred_grow_zone. This way we are 2189 * making sure that it is not inlined into permanent text section. 2190 */ 2191 static noinline bool __init 2192 deferred_grow_zone(struct zone *zone, unsigned int order) 2193 { 2194 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2195 pg_data_t *pgdat = zone->zone_pgdat; 2196 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2197 unsigned long spfn, epfn, flags; 2198 unsigned long nr_pages = 0; 2199 u64 i; 2200 2201 /* Only the last zone may have deferred pages */ 2202 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2203 return false; 2204 2205 pgdat_resize_lock(pgdat, &flags); 2206 2207 /* 2208 * If someone grew this zone while we were waiting for spinlock, return 2209 * true, as there might be enough pages already. 2210 */ 2211 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2212 pgdat_resize_unlock(pgdat, &flags); 2213 return true; 2214 } 2215 2216 /* If the zone is empty somebody else may have cleared out the zone */ 2217 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2218 first_deferred_pfn)) { 2219 pgdat->first_deferred_pfn = ULONG_MAX; 2220 pgdat_resize_unlock(pgdat, &flags); 2221 /* Retry only once. */ 2222 return first_deferred_pfn != ULONG_MAX; 2223 } 2224 2225 /* 2226 * Initialize and free pages in MAX_ORDER sized increments so 2227 * that we can avoid introducing any issues with the buddy 2228 * allocator. 2229 */ 2230 while (spfn < epfn) { 2231 /* update our first deferred PFN for this section */ 2232 first_deferred_pfn = spfn; 2233 2234 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2235 touch_nmi_watchdog(); 2236 2237 /* We should only stop along section boundaries */ 2238 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2239 continue; 2240 2241 /* If our quota has been met we can stop here */ 2242 if (nr_pages >= nr_pages_needed) 2243 break; 2244 } 2245 2246 pgdat->first_deferred_pfn = spfn; 2247 pgdat_resize_unlock(pgdat, &flags); 2248 2249 return nr_pages > 0; 2250 } 2251 2252 /* 2253 * deferred_grow_zone() is __init, but it is called from 2254 * get_page_from_freelist() during early boot until deferred_pages permanently 2255 * disables this call. This is why we have refdata wrapper to avoid warning, 2256 * and to ensure that the function body gets unloaded. 2257 */ 2258 static bool __ref 2259 _deferred_grow_zone(struct zone *zone, unsigned int order) 2260 { 2261 return deferred_grow_zone(zone, order); 2262 } 2263 2264 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2265 2266 void __init page_alloc_init_late(void) 2267 { 2268 struct zone *zone; 2269 int nid; 2270 2271 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2272 2273 /* There will be num_node_state(N_MEMORY) threads */ 2274 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2275 for_each_node_state(nid, N_MEMORY) { 2276 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2277 } 2278 2279 /* Block until all are initialised */ 2280 wait_for_completion(&pgdat_init_all_done_comp); 2281 2282 /* 2283 * We initialized the rest of the deferred pages. Permanently disable 2284 * on-demand struct page initialization. 2285 */ 2286 static_branch_disable(&deferred_pages); 2287 2288 /* Reinit limits that are based on free pages after the kernel is up */ 2289 files_maxfiles_init(); 2290 #endif 2291 2292 buffer_init(); 2293 2294 /* Discard memblock private memory */ 2295 memblock_discard(); 2296 2297 for_each_node_state(nid, N_MEMORY) 2298 shuffle_free_memory(NODE_DATA(nid)); 2299 2300 for_each_populated_zone(zone) 2301 set_zone_contiguous(zone); 2302 } 2303 2304 #ifdef CONFIG_CMA 2305 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2306 void __init init_cma_reserved_pageblock(struct page *page) 2307 { 2308 unsigned i = pageblock_nr_pages; 2309 struct page *p = page; 2310 2311 do { 2312 __ClearPageReserved(p); 2313 set_page_count(p, 0); 2314 } while (++p, --i); 2315 2316 set_pageblock_migratetype(page, MIGRATE_CMA); 2317 set_page_refcounted(page); 2318 __free_pages(page, pageblock_order); 2319 2320 adjust_managed_page_count(page, pageblock_nr_pages); 2321 page_zone(page)->cma_pages += pageblock_nr_pages; 2322 } 2323 #endif 2324 2325 /* 2326 * The order of subdivision here is critical for the IO subsystem. 2327 * Please do not alter this order without good reasons and regression 2328 * testing. Specifically, as large blocks of memory are subdivided, 2329 * the order in which smaller blocks are delivered depends on the order 2330 * they're subdivided in this function. This is the primary factor 2331 * influencing the order in which pages are delivered to the IO 2332 * subsystem according to empirical testing, and this is also justified 2333 * by considering the behavior of a buddy system containing a single 2334 * large block of memory acted on by a series of small allocations. 2335 * This behavior is a critical factor in sglist merging's success. 2336 * 2337 * -- nyc 2338 */ 2339 static inline void expand(struct zone *zone, struct page *page, 2340 int low, int high, int migratetype) 2341 { 2342 unsigned long size = 1 << high; 2343 2344 while (high > low) { 2345 high--; 2346 size >>= 1; 2347 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2348 2349 /* 2350 * Mark as guard pages (or page), that will allow to 2351 * merge back to allocator when buddy will be freed. 2352 * Corresponding page table entries will not be touched, 2353 * pages will stay not present in virtual address space 2354 */ 2355 if (set_page_guard(zone, &page[size], high, migratetype)) 2356 continue; 2357 2358 add_to_free_list(&page[size], zone, high, migratetype); 2359 set_buddy_order(&page[size], high); 2360 } 2361 } 2362 2363 static void check_new_page_bad(struct page *page) 2364 { 2365 if (unlikely(page->flags & __PG_HWPOISON)) { 2366 /* Don't complain about hwpoisoned pages */ 2367 page_mapcount_reset(page); /* remove PageBuddy */ 2368 return; 2369 } 2370 2371 bad_page(page, 2372 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2373 } 2374 2375 /* 2376 * This page is about to be returned from the page allocator 2377 */ 2378 static inline int check_new_page(struct page *page) 2379 { 2380 if (likely(page_expected_state(page, 2381 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2382 return 0; 2383 2384 check_new_page_bad(page); 2385 return 1; 2386 } 2387 2388 static bool check_new_pages(struct page *page, unsigned int order) 2389 { 2390 int i; 2391 for (i = 0; i < (1 << order); i++) { 2392 struct page *p = page + i; 2393 2394 if (unlikely(check_new_page(p))) 2395 return true; 2396 } 2397 2398 return false; 2399 } 2400 2401 #ifdef CONFIG_DEBUG_VM 2402 /* 2403 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2404 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2405 * also checked when pcp lists are refilled from the free lists. 2406 */ 2407 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2408 { 2409 if (debug_pagealloc_enabled_static()) 2410 return check_new_pages(page, order); 2411 else 2412 return false; 2413 } 2414 2415 static inline bool check_new_pcp(struct page *page, unsigned int order) 2416 { 2417 return check_new_pages(page, order); 2418 } 2419 #else 2420 /* 2421 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2422 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2423 * enabled, they are also checked when being allocated from the pcp lists. 2424 */ 2425 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2426 { 2427 return check_new_pages(page, order); 2428 } 2429 static inline bool check_new_pcp(struct page *page, unsigned int order) 2430 { 2431 if (debug_pagealloc_enabled_static()) 2432 return check_new_pages(page, order); 2433 else 2434 return false; 2435 } 2436 #endif /* CONFIG_DEBUG_VM */ 2437 2438 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2439 { 2440 /* Don't skip if a software KASAN mode is enabled. */ 2441 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2442 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2443 return false; 2444 2445 /* Skip, if hardware tag-based KASAN is not enabled. */ 2446 if (!kasan_hw_tags_enabled()) 2447 return true; 2448 2449 /* 2450 * With hardware tag-based KASAN enabled, skip if this has been 2451 * requested via __GFP_SKIP_KASAN_UNPOISON. 2452 */ 2453 return flags & __GFP_SKIP_KASAN_UNPOISON; 2454 } 2455 2456 static inline bool should_skip_init(gfp_t flags) 2457 { 2458 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2459 if (!kasan_hw_tags_enabled()) 2460 return false; 2461 2462 /* For hardware tag-based KASAN, skip if requested. */ 2463 return (flags & __GFP_SKIP_ZERO); 2464 } 2465 2466 inline void post_alloc_hook(struct page *page, unsigned int order, 2467 gfp_t gfp_flags) 2468 { 2469 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2470 !should_skip_init(gfp_flags); 2471 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2472 int i; 2473 2474 set_page_private(page, 0); 2475 set_page_refcounted(page); 2476 2477 arch_alloc_page(page, order); 2478 debug_pagealloc_map_pages(page, 1 << order); 2479 2480 /* 2481 * Page unpoisoning must happen before memory initialization. 2482 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2483 * allocations and the page unpoisoning code will complain. 2484 */ 2485 kernel_unpoison_pages(page, 1 << order); 2486 2487 /* 2488 * As memory initialization might be integrated into KASAN, 2489 * KASAN unpoisoning and memory initializion code must be 2490 * kept together to avoid discrepancies in behavior. 2491 */ 2492 2493 /* 2494 * If memory tags should be zeroed (which happens only when memory 2495 * should be initialized as well). 2496 */ 2497 if (init_tags) { 2498 /* Initialize both memory and tags. */ 2499 for (i = 0; i != 1 << order; ++i) 2500 tag_clear_highpage(page + i); 2501 2502 /* Note that memory is already initialized by the loop above. */ 2503 init = false; 2504 } 2505 if (!should_skip_kasan_unpoison(gfp_flags)) { 2506 /* Unpoison shadow memory or set memory tags. */ 2507 kasan_unpoison_pages(page, order, init); 2508 2509 /* Note that memory is already initialized by KASAN. */ 2510 if (kasan_has_integrated_init()) 2511 init = false; 2512 } else { 2513 /* Ensure page_address() dereferencing does not fault. */ 2514 for (i = 0; i != 1 << order; ++i) 2515 page_kasan_tag_reset(page + i); 2516 } 2517 /* If memory is still not initialized, do it now. */ 2518 if (init) 2519 kernel_init_pages(page, 1 << order); 2520 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2521 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2522 SetPageSkipKASanPoison(page); 2523 2524 set_page_owner(page, order, gfp_flags); 2525 page_table_check_alloc(page, order); 2526 } 2527 2528 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2529 unsigned int alloc_flags) 2530 { 2531 post_alloc_hook(page, order, gfp_flags); 2532 2533 if (order && (gfp_flags & __GFP_COMP)) 2534 prep_compound_page(page, order); 2535 2536 /* 2537 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2538 * allocate the page. The expectation is that the caller is taking 2539 * steps that will free more memory. The caller should avoid the page 2540 * being used for !PFMEMALLOC purposes. 2541 */ 2542 if (alloc_flags & ALLOC_NO_WATERMARKS) 2543 set_page_pfmemalloc(page); 2544 else 2545 clear_page_pfmemalloc(page); 2546 } 2547 2548 /* 2549 * Go through the free lists for the given migratetype and remove 2550 * the smallest available page from the freelists 2551 */ 2552 static __always_inline 2553 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2554 int migratetype) 2555 { 2556 unsigned int current_order; 2557 struct free_area *area; 2558 struct page *page; 2559 2560 /* Find a page of the appropriate size in the preferred list */ 2561 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2562 area = &(zone->free_area[current_order]); 2563 page = get_page_from_free_area(area, migratetype); 2564 if (!page) 2565 continue; 2566 del_page_from_free_list(page, zone, current_order); 2567 expand(zone, page, order, current_order, migratetype); 2568 set_pcppage_migratetype(page, migratetype); 2569 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2570 pcp_allowed_order(order) && 2571 migratetype < MIGRATE_PCPTYPES); 2572 return page; 2573 } 2574 2575 return NULL; 2576 } 2577 2578 2579 /* 2580 * This array describes the order lists are fallen back to when 2581 * the free lists for the desirable migrate type are depleted 2582 * 2583 * The other migratetypes do not have fallbacks. 2584 */ 2585 static int fallbacks[MIGRATE_TYPES][3] = { 2586 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2587 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2588 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2589 }; 2590 2591 #ifdef CONFIG_CMA 2592 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2593 unsigned int order) 2594 { 2595 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2596 } 2597 #else 2598 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2599 unsigned int order) { return NULL; } 2600 #endif 2601 2602 /* 2603 * Move the free pages in a range to the freelist tail of the requested type. 2604 * Note that start_page and end_pages are not aligned on a pageblock 2605 * boundary. If alignment is required, use move_freepages_block() 2606 */ 2607 static int move_freepages(struct zone *zone, 2608 unsigned long start_pfn, unsigned long end_pfn, 2609 int migratetype, int *num_movable) 2610 { 2611 struct page *page; 2612 unsigned long pfn; 2613 unsigned int order; 2614 int pages_moved = 0; 2615 2616 for (pfn = start_pfn; pfn <= end_pfn;) { 2617 page = pfn_to_page(pfn); 2618 if (!PageBuddy(page)) { 2619 /* 2620 * We assume that pages that could be isolated for 2621 * migration are movable. But we don't actually try 2622 * isolating, as that would be expensive. 2623 */ 2624 if (num_movable && 2625 (PageLRU(page) || __PageMovable(page))) 2626 (*num_movable)++; 2627 pfn++; 2628 continue; 2629 } 2630 2631 /* Make sure we are not inadvertently changing nodes */ 2632 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2633 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2634 2635 order = buddy_order(page); 2636 move_to_free_list(page, zone, order, migratetype); 2637 pfn += 1 << order; 2638 pages_moved += 1 << order; 2639 } 2640 2641 return pages_moved; 2642 } 2643 2644 int move_freepages_block(struct zone *zone, struct page *page, 2645 int migratetype, int *num_movable) 2646 { 2647 unsigned long start_pfn, end_pfn, pfn; 2648 2649 if (num_movable) 2650 *num_movable = 0; 2651 2652 pfn = page_to_pfn(page); 2653 start_pfn = pageblock_start_pfn(pfn); 2654 end_pfn = pageblock_end_pfn(pfn) - 1; 2655 2656 /* Do not cross zone boundaries */ 2657 if (!zone_spans_pfn(zone, start_pfn)) 2658 start_pfn = pfn; 2659 if (!zone_spans_pfn(zone, end_pfn)) 2660 return 0; 2661 2662 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2663 num_movable); 2664 } 2665 2666 static void change_pageblock_range(struct page *pageblock_page, 2667 int start_order, int migratetype) 2668 { 2669 int nr_pageblocks = 1 << (start_order - pageblock_order); 2670 2671 while (nr_pageblocks--) { 2672 set_pageblock_migratetype(pageblock_page, migratetype); 2673 pageblock_page += pageblock_nr_pages; 2674 } 2675 } 2676 2677 /* 2678 * When we are falling back to another migratetype during allocation, try to 2679 * steal extra free pages from the same pageblocks to satisfy further 2680 * allocations, instead of polluting multiple pageblocks. 2681 * 2682 * If we are stealing a relatively large buddy page, it is likely there will 2683 * be more free pages in the pageblock, so try to steal them all. For 2684 * reclaimable and unmovable allocations, we steal regardless of page size, 2685 * as fragmentation caused by those allocations polluting movable pageblocks 2686 * is worse than movable allocations stealing from unmovable and reclaimable 2687 * pageblocks. 2688 */ 2689 static bool can_steal_fallback(unsigned int order, int start_mt) 2690 { 2691 /* 2692 * Leaving this order check is intended, although there is 2693 * relaxed order check in next check. The reason is that 2694 * we can actually steal whole pageblock if this condition met, 2695 * but, below check doesn't guarantee it and that is just heuristic 2696 * so could be changed anytime. 2697 */ 2698 if (order >= pageblock_order) 2699 return true; 2700 2701 if (order >= pageblock_order / 2 || 2702 start_mt == MIGRATE_RECLAIMABLE || 2703 start_mt == MIGRATE_UNMOVABLE || 2704 page_group_by_mobility_disabled) 2705 return true; 2706 2707 return false; 2708 } 2709 2710 static inline bool boost_watermark(struct zone *zone) 2711 { 2712 unsigned long max_boost; 2713 2714 if (!watermark_boost_factor) 2715 return false; 2716 /* 2717 * Don't bother in zones that are unlikely to produce results. 2718 * On small machines, including kdump capture kernels running 2719 * in a small area, boosting the watermark can cause an out of 2720 * memory situation immediately. 2721 */ 2722 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2723 return false; 2724 2725 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2726 watermark_boost_factor, 10000); 2727 2728 /* 2729 * high watermark may be uninitialised if fragmentation occurs 2730 * very early in boot so do not boost. We do not fall 2731 * through and boost by pageblock_nr_pages as failing 2732 * allocations that early means that reclaim is not going 2733 * to help and it may even be impossible to reclaim the 2734 * boosted watermark resulting in a hang. 2735 */ 2736 if (!max_boost) 2737 return false; 2738 2739 max_boost = max(pageblock_nr_pages, max_boost); 2740 2741 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2742 max_boost); 2743 2744 return true; 2745 } 2746 2747 /* 2748 * This function implements actual steal behaviour. If order is large enough, 2749 * we can steal whole pageblock. If not, we first move freepages in this 2750 * pageblock to our migratetype and determine how many already-allocated pages 2751 * are there in the pageblock with a compatible migratetype. If at least half 2752 * of pages are free or compatible, we can change migratetype of the pageblock 2753 * itself, so pages freed in the future will be put on the correct free list. 2754 */ 2755 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2756 unsigned int alloc_flags, int start_type, bool whole_block) 2757 { 2758 unsigned int current_order = buddy_order(page); 2759 int free_pages, movable_pages, alike_pages; 2760 int old_block_type; 2761 2762 old_block_type = get_pageblock_migratetype(page); 2763 2764 /* 2765 * This can happen due to races and we want to prevent broken 2766 * highatomic accounting. 2767 */ 2768 if (is_migrate_highatomic(old_block_type)) 2769 goto single_page; 2770 2771 /* Take ownership for orders >= pageblock_order */ 2772 if (current_order >= pageblock_order) { 2773 change_pageblock_range(page, current_order, start_type); 2774 goto single_page; 2775 } 2776 2777 /* 2778 * Boost watermarks to increase reclaim pressure to reduce the 2779 * likelihood of future fallbacks. Wake kswapd now as the node 2780 * may be balanced overall and kswapd will not wake naturally. 2781 */ 2782 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2783 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2784 2785 /* We are not allowed to try stealing from the whole block */ 2786 if (!whole_block) 2787 goto single_page; 2788 2789 free_pages = move_freepages_block(zone, page, start_type, 2790 &movable_pages); 2791 /* 2792 * Determine how many pages are compatible with our allocation. 2793 * For movable allocation, it's the number of movable pages which 2794 * we just obtained. For other types it's a bit more tricky. 2795 */ 2796 if (start_type == MIGRATE_MOVABLE) { 2797 alike_pages = movable_pages; 2798 } else { 2799 /* 2800 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2801 * to MOVABLE pageblock, consider all non-movable pages as 2802 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2803 * vice versa, be conservative since we can't distinguish the 2804 * exact migratetype of non-movable pages. 2805 */ 2806 if (old_block_type == MIGRATE_MOVABLE) 2807 alike_pages = pageblock_nr_pages 2808 - (free_pages + movable_pages); 2809 else 2810 alike_pages = 0; 2811 } 2812 2813 /* moving whole block can fail due to zone boundary conditions */ 2814 if (!free_pages) 2815 goto single_page; 2816 2817 /* 2818 * If a sufficient number of pages in the block are either free or of 2819 * comparable migratability as our allocation, claim the whole block. 2820 */ 2821 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2822 page_group_by_mobility_disabled) 2823 set_pageblock_migratetype(page, start_type); 2824 2825 return; 2826 2827 single_page: 2828 move_to_free_list(page, zone, current_order, start_type); 2829 } 2830 2831 /* 2832 * Check whether there is a suitable fallback freepage with requested order. 2833 * If only_stealable is true, this function returns fallback_mt only if 2834 * we can steal other freepages all together. This would help to reduce 2835 * fragmentation due to mixed migratetype pages in one pageblock. 2836 */ 2837 int find_suitable_fallback(struct free_area *area, unsigned int order, 2838 int migratetype, bool only_stealable, bool *can_steal) 2839 { 2840 int i; 2841 int fallback_mt; 2842 2843 if (area->nr_free == 0) 2844 return -1; 2845 2846 *can_steal = false; 2847 for (i = 0;; i++) { 2848 fallback_mt = fallbacks[migratetype][i]; 2849 if (fallback_mt == MIGRATE_TYPES) 2850 break; 2851 2852 if (free_area_empty(area, fallback_mt)) 2853 continue; 2854 2855 if (can_steal_fallback(order, migratetype)) 2856 *can_steal = true; 2857 2858 if (!only_stealable) 2859 return fallback_mt; 2860 2861 if (*can_steal) 2862 return fallback_mt; 2863 } 2864 2865 return -1; 2866 } 2867 2868 /* 2869 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2870 * there are no empty page blocks that contain a page with a suitable order 2871 */ 2872 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2873 unsigned int alloc_order) 2874 { 2875 int mt; 2876 unsigned long max_managed, flags; 2877 2878 /* 2879 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2880 * Check is race-prone but harmless. 2881 */ 2882 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2883 if (zone->nr_reserved_highatomic >= max_managed) 2884 return; 2885 2886 spin_lock_irqsave(&zone->lock, flags); 2887 2888 /* Recheck the nr_reserved_highatomic limit under the lock */ 2889 if (zone->nr_reserved_highatomic >= max_managed) 2890 goto out_unlock; 2891 2892 /* Yoink! */ 2893 mt = get_pageblock_migratetype(page); 2894 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2895 if (migratetype_is_mergeable(mt)) { 2896 zone->nr_reserved_highatomic += pageblock_nr_pages; 2897 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2898 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2899 } 2900 2901 out_unlock: 2902 spin_unlock_irqrestore(&zone->lock, flags); 2903 } 2904 2905 /* 2906 * Used when an allocation is about to fail under memory pressure. This 2907 * potentially hurts the reliability of high-order allocations when under 2908 * intense memory pressure but failed atomic allocations should be easier 2909 * to recover from than an OOM. 2910 * 2911 * If @force is true, try to unreserve a pageblock even though highatomic 2912 * pageblock is exhausted. 2913 */ 2914 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2915 bool force) 2916 { 2917 struct zonelist *zonelist = ac->zonelist; 2918 unsigned long flags; 2919 struct zoneref *z; 2920 struct zone *zone; 2921 struct page *page; 2922 int order; 2923 bool ret; 2924 2925 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2926 ac->nodemask) { 2927 /* 2928 * Preserve at least one pageblock unless memory pressure 2929 * is really high. 2930 */ 2931 if (!force && zone->nr_reserved_highatomic <= 2932 pageblock_nr_pages) 2933 continue; 2934 2935 spin_lock_irqsave(&zone->lock, flags); 2936 for (order = 0; order < MAX_ORDER; order++) { 2937 struct free_area *area = &(zone->free_area[order]); 2938 2939 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2940 if (!page) 2941 continue; 2942 2943 /* 2944 * In page freeing path, migratetype change is racy so 2945 * we can counter several free pages in a pageblock 2946 * in this loop although we changed the pageblock type 2947 * from highatomic to ac->migratetype. So we should 2948 * adjust the count once. 2949 */ 2950 if (is_migrate_highatomic_page(page)) { 2951 /* 2952 * It should never happen but changes to 2953 * locking could inadvertently allow a per-cpu 2954 * drain to add pages to MIGRATE_HIGHATOMIC 2955 * while unreserving so be safe and watch for 2956 * underflows. 2957 */ 2958 zone->nr_reserved_highatomic -= min( 2959 pageblock_nr_pages, 2960 zone->nr_reserved_highatomic); 2961 } 2962 2963 /* 2964 * Convert to ac->migratetype and avoid the normal 2965 * pageblock stealing heuristics. Minimally, the caller 2966 * is doing the work and needs the pages. More 2967 * importantly, if the block was always converted to 2968 * MIGRATE_UNMOVABLE or another type then the number 2969 * of pageblocks that cannot be completely freed 2970 * may increase. 2971 */ 2972 set_pageblock_migratetype(page, ac->migratetype); 2973 ret = move_freepages_block(zone, page, ac->migratetype, 2974 NULL); 2975 if (ret) { 2976 spin_unlock_irqrestore(&zone->lock, flags); 2977 return ret; 2978 } 2979 } 2980 spin_unlock_irqrestore(&zone->lock, flags); 2981 } 2982 2983 return false; 2984 } 2985 2986 /* 2987 * Try finding a free buddy page on the fallback list and put it on the free 2988 * list of requested migratetype, possibly along with other pages from the same 2989 * block, depending on fragmentation avoidance heuristics. Returns true if 2990 * fallback was found so that __rmqueue_smallest() can grab it. 2991 * 2992 * The use of signed ints for order and current_order is a deliberate 2993 * deviation from the rest of this file, to make the for loop 2994 * condition simpler. 2995 */ 2996 static __always_inline bool 2997 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2998 unsigned int alloc_flags) 2999 { 3000 struct free_area *area; 3001 int current_order; 3002 int min_order = order; 3003 struct page *page; 3004 int fallback_mt; 3005 bool can_steal; 3006 3007 /* 3008 * Do not steal pages from freelists belonging to other pageblocks 3009 * i.e. orders < pageblock_order. If there are no local zones free, 3010 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3011 */ 3012 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3013 min_order = pageblock_order; 3014 3015 /* 3016 * Find the largest available free page in the other list. This roughly 3017 * approximates finding the pageblock with the most free pages, which 3018 * would be too costly to do exactly. 3019 */ 3020 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3021 --current_order) { 3022 area = &(zone->free_area[current_order]); 3023 fallback_mt = find_suitable_fallback(area, current_order, 3024 start_migratetype, false, &can_steal); 3025 if (fallback_mt == -1) 3026 continue; 3027 3028 /* 3029 * We cannot steal all free pages from the pageblock and the 3030 * requested migratetype is movable. In that case it's better to 3031 * steal and split the smallest available page instead of the 3032 * largest available page, because even if the next movable 3033 * allocation falls back into a different pageblock than this 3034 * one, it won't cause permanent fragmentation. 3035 */ 3036 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3037 && current_order > order) 3038 goto find_smallest; 3039 3040 goto do_steal; 3041 } 3042 3043 return false; 3044 3045 find_smallest: 3046 for (current_order = order; current_order < MAX_ORDER; 3047 current_order++) { 3048 area = &(zone->free_area[current_order]); 3049 fallback_mt = find_suitable_fallback(area, current_order, 3050 start_migratetype, false, &can_steal); 3051 if (fallback_mt != -1) 3052 break; 3053 } 3054 3055 /* 3056 * This should not happen - we already found a suitable fallback 3057 * when looking for the largest page. 3058 */ 3059 VM_BUG_ON(current_order == MAX_ORDER); 3060 3061 do_steal: 3062 page = get_page_from_free_area(area, fallback_mt); 3063 3064 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3065 can_steal); 3066 3067 trace_mm_page_alloc_extfrag(page, order, current_order, 3068 start_migratetype, fallback_mt); 3069 3070 return true; 3071 3072 } 3073 3074 /* 3075 * Do the hard work of removing an element from the buddy allocator. 3076 * Call me with the zone->lock already held. 3077 */ 3078 static __always_inline struct page * 3079 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3080 unsigned int alloc_flags) 3081 { 3082 struct page *page; 3083 3084 if (IS_ENABLED(CONFIG_CMA)) { 3085 /* 3086 * Balance movable allocations between regular and CMA areas by 3087 * allocating from CMA when over half of the zone's free memory 3088 * is in the CMA area. 3089 */ 3090 if (alloc_flags & ALLOC_CMA && 3091 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3092 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3093 page = __rmqueue_cma_fallback(zone, order); 3094 if (page) 3095 return page; 3096 } 3097 } 3098 retry: 3099 page = __rmqueue_smallest(zone, order, migratetype); 3100 if (unlikely(!page)) { 3101 if (alloc_flags & ALLOC_CMA) 3102 page = __rmqueue_cma_fallback(zone, order); 3103 3104 if (!page && __rmqueue_fallback(zone, order, migratetype, 3105 alloc_flags)) 3106 goto retry; 3107 } 3108 return page; 3109 } 3110 3111 /* 3112 * Obtain a specified number of elements from the buddy allocator, all under 3113 * a single hold of the lock, for efficiency. Add them to the supplied list. 3114 * Returns the number of new pages which were placed at *list. 3115 */ 3116 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3117 unsigned long count, struct list_head *list, 3118 int migratetype, unsigned int alloc_flags) 3119 { 3120 unsigned long flags; 3121 int i, allocated = 0; 3122 3123 spin_lock_irqsave(&zone->lock, flags); 3124 for (i = 0; i < count; ++i) { 3125 struct page *page = __rmqueue(zone, order, migratetype, 3126 alloc_flags); 3127 if (unlikely(page == NULL)) 3128 break; 3129 3130 if (unlikely(check_pcp_refill(page, order))) 3131 continue; 3132 3133 /* 3134 * Split buddy pages returned by expand() are received here in 3135 * physical page order. The page is added to the tail of 3136 * caller's list. From the callers perspective, the linked list 3137 * is ordered by page number under some conditions. This is 3138 * useful for IO devices that can forward direction from the 3139 * head, thus also in the physical page order. This is useful 3140 * for IO devices that can merge IO requests if the physical 3141 * pages are ordered properly. 3142 */ 3143 list_add_tail(&page->pcp_list, list); 3144 allocated++; 3145 if (is_migrate_cma(get_pcppage_migratetype(page))) 3146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3147 -(1 << order)); 3148 } 3149 3150 /* 3151 * i pages were removed from the buddy list even if some leak due 3152 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3153 * on i. Do not confuse with 'allocated' which is the number of 3154 * pages added to the pcp list. 3155 */ 3156 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3157 spin_unlock_irqrestore(&zone->lock, flags); 3158 return allocated; 3159 } 3160 3161 #ifdef CONFIG_NUMA 3162 /* 3163 * Called from the vmstat counter updater to drain pagesets of this 3164 * currently executing processor on remote nodes after they have 3165 * expired. 3166 */ 3167 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3168 { 3169 int to_drain, batch; 3170 3171 batch = READ_ONCE(pcp->batch); 3172 to_drain = min(pcp->count, batch); 3173 if (to_drain > 0) { 3174 spin_lock(&pcp->lock); 3175 free_pcppages_bulk(zone, to_drain, pcp, 0); 3176 spin_unlock(&pcp->lock); 3177 } 3178 } 3179 #endif 3180 3181 /* 3182 * Drain pcplists of the indicated processor and zone. 3183 */ 3184 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3185 { 3186 struct per_cpu_pages *pcp; 3187 3188 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3189 if (pcp->count) { 3190 spin_lock(&pcp->lock); 3191 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3192 spin_unlock(&pcp->lock); 3193 } 3194 } 3195 3196 /* 3197 * Drain pcplists of all zones on the indicated processor. 3198 */ 3199 static void drain_pages(unsigned int cpu) 3200 { 3201 struct zone *zone; 3202 3203 for_each_populated_zone(zone) { 3204 drain_pages_zone(cpu, zone); 3205 } 3206 } 3207 3208 /* 3209 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3210 */ 3211 void drain_local_pages(struct zone *zone) 3212 { 3213 int cpu = smp_processor_id(); 3214 3215 if (zone) 3216 drain_pages_zone(cpu, zone); 3217 else 3218 drain_pages(cpu); 3219 } 3220 3221 /* 3222 * The implementation of drain_all_pages(), exposing an extra parameter to 3223 * drain on all cpus. 3224 * 3225 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3226 * not empty. The check for non-emptiness can however race with a free to 3227 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3228 * that need the guarantee that every CPU has drained can disable the 3229 * optimizing racy check. 3230 */ 3231 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3232 { 3233 int cpu; 3234 3235 /* 3236 * Allocate in the BSS so we won't require allocation in 3237 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3238 */ 3239 static cpumask_t cpus_with_pcps; 3240 3241 /* 3242 * Do not drain if one is already in progress unless it's specific to 3243 * a zone. Such callers are primarily CMA and memory hotplug and need 3244 * the drain to be complete when the call returns. 3245 */ 3246 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3247 if (!zone) 3248 return; 3249 mutex_lock(&pcpu_drain_mutex); 3250 } 3251 3252 /* 3253 * We don't care about racing with CPU hotplug event 3254 * as offline notification will cause the notified 3255 * cpu to drain that CPU pcps and on_each_cpu_mask 3256 * disables preemption as part of its processing 3257 */ 3258 for_each_online_cpu(cpu) { 3259 struct per_cpu_pages *pcp; 3260 struct zone *z; 3261 bool has_pcps = false; 3262 3263 if (force_all_cpus) { 3264 /* 3265 * The pcp.count check is racy, some callers need a 3266 * guarantee that no cpu is missed. 3267 */ 3268 has_pcps = true; 3269 } else if (zone) { 3270 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3271 if (pcp->count) 3272 has_pcps = true; 3273 } else { 3274 for_each_populated_zone(z) { 3275 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3276 if (pcp->count) { 3277 has_pcps = true; 3278 break; 3279 } 3280 } 3281 } 3282 3283 if (has_pcps) 3284 cpumask_set_cpu(cpu, &cpus_with_pcps); 3285 else 3286 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3287 } 3288 3289 for_each_cpu(cpu, &cpus_with_pcps) { 3290 if (zone) 3291 drain_pages_zone(cpu, zone); 3292 else 3293 drain_pages(cpu); 3294 } 3295 3296 mutex_unlock(&pcpu_drain_mutex); 3297 } 3298 3299 /* 3300 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3301 * 3302 * When zone parameter is non-NULL, spill just the single zone's pages. 3303 */ 3304 void drain_all_pages(struct zone *zone) 3305 { 3306 __drain_all_pages(zone, false); 3307 } 3308 3309 #ifdef CONFIG_HIBERNATION 3310 3311 /* 3312 * Touch the watchdog for every WD_PAGE_COUNT pages. 3313 */ 3314 #define WD_PAGE_COUNT (128*1024) 3315 3316 void mark_free_pages(struct zone *zone) 3317 { 3318 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3319 unsigned long flags; 3320 unsigned int order, t; 3321 struct page *page; 3322 3323 if (zone_is_empty(zone)) 3324 return; 3325 3326 spin_lock_irqsave(&zone->lock, flags); 3327 3328 max_zone_pfn = zone_end_pfn(zone); 3329 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3330 if (pfn_valid(pfn)) { 3331 page = pfn_to_page(pfn); 3332 3333 if (!--page_count) { 3334 touch_nmi_watchdog(); 3335 page_count = WD_PAGE_COUNT; 3336 } 3337 3338 if (page_zone(page) != zone) 3339 continue; 3340 3341 if (!swsusp_page_is_forbidden(page)) 3342 swsusp_unset_page_free(page); 3343 } 3344 3345 for_each_migratetype_order(order, t) { 3346 list_for_each_entry(page, 3347 &zone->free_area[order].free_list[t], buddy_list) { 3348 unsigned long i; 3349 3350 pfn = page_to_pfn(page); 3351 for (i = 0; i < (1UL << order); i++) { 3352 if (!--page_count) { 3353 touch_nmi_watchdog(); 3354 page_count = WD_PAGE_COUNT; 3355 } 3356 swsusp_set_page_free(pfn_to_page(pfn + i)); 3357 } 3358 } 3359 } 3360 spin_unlock_irqrestore(&zone->lock, flags); 3361 } 3362 #endif /* CONFIG_PM */ 3363 3364 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3365 unsigned int order) 3366 { 3367 int migratetype; 3368 3369 if (!free_pcp_prepare(page, order)) 3370 return false; 3371 3372 migratetype = get_pfnblock_migratetype(page, pfn); 3373 set_pcppage_migratetype(page, migratetype); 3374 return true; 3375 } 3376 3377 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3378 bool free_high) 3379 { 3380 int min_nr_free, max_nr_free; 3381 3382 /* Free everything if batch freeing high-order pages. */ 3383 if (unlikely(free_high)) 3384 return pcp->count; 3385 3386 /* Check for PCP disabled or boot pageset */ 3387 if (unlikely(high < batch)) 3388 return 1; 3389 3390 /* Leave at least pcp->batch pages on the list */ 3391 min_nr_free = batch; 3392 max_nr_free = high - batch; 3393 3394 /* 3395 * Double the number of pages freed each time there is subsequent 3396 * freeing of pages without any allocation. 3397 */ 3398 batch <<= pcp->free_factor; 3399 if (batch < max_nr_free) 3400 pcp->free_factor++; 3401 batch = clamp(batch, min_nr_free, max_nr_free); 3402 3403 return batch; 3404 } 3405 3406 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3407 bool free_high) 3408 { 3409 int high = READ_ONCE(pcp->high); 3410 3411 if (unlikely(!high || free_high)) 3412 return 0; 3413 3414 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3415 return high; 3416 3417 /* 3418 * If reclaim is active, limit the number of pages that can be 3419 * stored on pcp lists 3420 */ 3421 return min(READ_ONCE(pcp->batch) << 2, high); 3422 } 3423 3424 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3425 struct page *page, int migratetype, 3426 unsigned int order) 3427 { 3428 int high; 3429 int pindex; 3430 bool free_high; 3431 3432 __count_vm_events(PGFREE, 1 << order); 3433 pindex = order_to_pindex(migratetype, order); 3434 list_add(&page->pcp_list, &pcp->lists[pindex]); 3435 pcp->count += 1 << order; 3436 3437 /* 3438 * As high-order pages other than THP's stored on PCP can contribute 3439 * to fragmentation, limit the number stored when PCP is heavily 3440 * freeing without allocation. The remainder after bulk freeing 3441 * stops will be drained from vmstat refresh context. 3442 */ 3443 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3444 3445 high = nr_pcp_high(pcp, zone, free_high); 3446 if (pcp->count >= high) { 3447 int batch = READ_ONCE(pcp->batch); 3448 3449 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3450 } 3451 } 3452 3453 /* 3454 * Free a pcp page 3455 */ 3456 void free_unref_page(struct page *page, unsigned int order) 3457 { 3458 unsigned long __maybe_unused UP_flags; 3459 struct per_cpu_pages *pcp; 3460 struct zone *zone; 3461 unsigned long pfn = page_to_pfn(page); 3462 int migratetype; 3463 3464 if (!free_unref_page_prepare(page, pfn, order)) 3465 return; 3466 3467 /* 3468 * We only track unmovable, reclaimable and movable on pcp lists. 3469 * Place ISOLATE pages on the isolated list because they are being 3470 * offlined but treat HIGHATOMIC as movable pages so we can get those 3471 * areas back if necessary. Otherwise, we may have to free 3472 * excessively into the page allocator 3473 */ 3474 migratetype = get_pcppage_migratetype(page); 3475 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3476 if (unlikely(is_migrate_isolate(migratetype))) { 3477 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3478 return; 3479 } 3480 migratetype = MIGRATE_MOVABLE; 3481 } 3482 3483 zone = page_zone(page); 3484 pcp_trylock_prepare(UP_flags); 3485 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3486 if (pcp) { 3487 free_unref_page_commit(zone, pcp, page, migratetype, order); 3488 pcp_spin_unlock(pcp); 3489 } else { 3490 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3491 } 3492 pcp_trylock_finish(UP_flags); 3493 } 3494 3495 /* 3496 * Free a list of 0-order pages 3497 */ 3498 void free_unref_page_list(struct list_head *list) 3499 { 3500 unsigned long __maybe_unused UP_flags; 3501 struct page *page, *next; 3502 struct per_cpu_pages *pcp = NULL; 3503 struct zone *locked_zone = NULL; 3504 int batch_count = 0; 3505 int migratetype; 3506 3507 /* Prepare pages for freeing */ 3508 list_for_each_entry_safe(page, next, list, lru) { 3509 unsigned long pfn = page_to_pfn(page); 3510 if (!free_unref_page_prepare(page, pfn, 0)) { 3511 list_del(&page->lru); 3512 continue; 3513 } 3514 3515 /* 3516 * Free isolated pages directly to the allocator, see 3517 * comment in free_unref_page. 3518 */ 3519 migratetype = get_pcppage_migratetype(page); 3520 if (unlikely(is_migrate_isolate(migratetype))) { 3521 list_del(&page->lru); 3522 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3523 continue; 3524 } 3525 } 3526 3527 list_for_each_entry_safe(page, next, list, lru) { 3528 struct zone *zone = page_zone(page); 3529 3530 list_del(&page->lru); 3531 migratetype = get_pcppage_migratetype(page); 3532 3533 /* 3534 * Either different zone requiring a different pcp lock or 3535 * excessive lock hold times when freeing a large list of 3536 * pages. 3537 */ 3538 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 3539 if (pcp) { 3540 pcp_spin_unlock(pcp); 3541 pcp_trylock_finish(UP_flags); 3542 } 3543 3544 batch_count = 0; 3545 3546 /* 3547 * trylock is necessary as pages may be getting freed 3548 * from IRQ or SoftIRQ context after an IO completion. 3549 */ 3550 pcp_trylock_prepare(UP_flags); 3551 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3552 if (unlikely(!pcp)) { 3553 pcp_trylock_finish(UP_flags); 3554 free_one_page(zone, page, page_to_pfn(page), 3555 0, migratetype, FPI_NONE); 3556 locked_zone = NULL; 3557 continue; 3558 } 3559 locked_zone = zone; 3560 } 3561 3562 /* 3563 * Non-isolated types over MIGRATE_PCPTYPES get added 3564 * to the MIGRATE_MOVABLE pcp list. 3565 */ 3566 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3567 migratetype = MIGRATE_MOVABLE; 3568 3569 trace_mm_page_free_batched(page); 3570 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3571 batch_count++; 3572 } 3573 3574 if (pcp) { 3575 pcp_spin_unlock(pcp); 3576 pcp_trylock_finish(UP_flags); 3577 } 3578 } 3579 3580 /* 3581 * split_page takes a non-compound higher-order page, and splits it into 3582 * n (1<<order) sub-pages: page[0..n] 3583 * Each sub-page must be freed individually. 3584 * 3585 * Note: this is probably too low level an operation for use in drivers. 3586 * Please consult with lkml before using this in your driver. 3587 */ 3588 void split_page(struct page *page, unsigned int order) 3589 { 3590 int i; 3591 3592 VM_BUG_ON_PAGE(PageCompound(page), page); 3593 VM_BUG_ON_PAGE(!page_count(page), page); 3594 3595 for (i = 1; i < (1 << order); i++) 3596 set_page_refcounted(page + i); 3597 split_page_owner(page, 1 << order); 3598 split_page_memcg(page, 1 << order); 3599 } 3600 EXPORT_SYMBOL_GPL(split_page); 3601 3602 int __isolate_free_page(struct page *page, unsigned int order) 3603 { 3604 struct zone *zone = page_zone(page); 3605 int mt = get_pageblock_migratetype(page); 3606 3607 if (!is_migrate_isolate(mt)) { 3608 unsigned long watermark; 3609 /* 3610 * Obey watermarks as if the page was being allocated. We can 3611 * emulate a high-order watermark check with a raised order-0 3612 * watermark, because we already know our high-order page 3613 * exists. 3614 */ 3615 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3616 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3617 return 0; 3618 3619 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3620 } 3621 3622 del_page_from_free_list(page, zone, order); 3623 3624 /* 3625 * Set the pageblock if the isolated page is at least half of a 3626 * pageblock 3627 */ 3628 if (order >= pageblock_order - 1) { 3629 struct page *endpage = page + (1 << order) - 1; 3630 for (; page < endpage; page += pageblock_nr_pages) { 3631 int mt = get_pageblock_migratetype(page); 3632 /* 3633 * Only change normal pageblocks (i.e., they can merge 3634 * with others) 3635 */ 3636 if (migratetype_is_mergeable(mt)) 3637 set_pageblock_migratetype(page, 3638 MIGRATE_MOVABLE); 3639 } 3640 } 3641 3642 return 1UL << order; 3643 } 3644 3645 /** 3646 * __putback_isolated_page - Return a now-isolated page back where we got it 3647 * @page: Page that was isolated 3648 * @order: Order of the isolated page 3649 * @mt: The page's pageblock's migratetype 3650 * 3651 * This function is meant to return a page pulled from the free lists via 3652 * __isolate_free_page back to the free lists they were pulled from. 3653 */ 3654 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3655 { 3656 struct zone *zone = page_zone(page); 3657 3658 /* zone lock should be held when this function is called */ 3659 lockdep_assert_held(&zone->lock); 3660 3661 /* Return isolated page to tail of freelist. */ 3662 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3663 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3664 } 3665 3666 /* 3667 * Update NUMA hit/miss statistics 3668 */ 3669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3670 long nr_account) 3671 { 3672 #ifdef CONFIG_NUMA 3673 enum numa_stat_item local_stat = NUMA_LOCAL; 3674 3675 /* skip numa counters update if numa stats is disabled */ 3676 if (!static_branch_likely(&vm_numa_stat_key)) 3677 return; 3678 3679 if (zone_to_nid(z) != numa_node_id()) 3680 local_stat = NUMA_OTHER; 3681 3682 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3683 __count_numa_events(z, NUMA_HIT, nr_account); 3684 else { 3685 __count_numa_events(z, NUMA_MISS, nr_account); 3686 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3687 } 3688 __count_numa_events(z, local_stat, nr_account); 3689 #endif 3690 } 3691 3692 static __always_inline 3693 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3694 unsigned int order, unsigned int alloc_flags, 3695 int migratetype) 3696 { 3697 struct page *page; 3698 unsigned long flags; 3699 3700 do { 3701 page = NULL; 3702 spin_lock_irqsave(&zone->lock, flags); 3703 /* 3704 * order-0 request can reach here when the pcplist is skipped 3705 * due to non-CMA allocation context. HIGHATOMIC area is 3706 * reserved for high-order atomic allocation, so order-0 3707 * request should skip it. 3708 */ 3709 if (order > 0 && alloc_flags & ALLOC_HARDER) 3710 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3711 if (!page) { 3712 page = __rmqueue(zone, order, migratetype, alloc_flags); 3713 if (!page) { 3714 spin_unlock_irqrestore(&zone->lock, flags); 3715 return NULL; 3716 } 3717 } 3718 __mod_zone_freepage_state(zone, -(1 << order), 3719 get_pcppage_migratetype(page)); 3720 spin_unlock_irqrestore(&zone->lock, flags); 3721 } while (check_new_pages(page, order)); 3722 3723 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3724 zone_statistics(preferred_zone, zone, 1); 3725 3726 return page; 3727 } 3728 3729 /* Remove page from the per-cpu list, caller must protect the list */ 3730 static inline 3731 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3732 int migratetype, 3733 unsigned int alloc_flags, 3734 struct per_cpu_pages *pcp, 3735 struct list_head *list) 3736 { 3737 struct page *page; 3738 3739 do { 3740 if (list_empty(list)) { 3741 int batch = READ_ONCE(pcp->batch); 3742 int alloced; 3743 3744 /* 3745 * Scale batch relative to order if batch implies 3746 * free pages can be stored on the PCP. Batch can 3747 * be 1 for small zones or for boot pagesets which 3748 * should never store free pages as the pages may 3749 * belong to arbitrary zones. 3750 */ 3751 if (batch > 1) 3752 batch = max(batch >> order, 2); 3753 alloced = rmqueue_bulk(zone, order, 3754 batch, list, 3755 migratetype, alloc_flags); 3756 3757 pcp->count += alloced << order; 3758 if (unlikely(list_empty(list))) 3759 return NULL; 3760 } 3761 3762 page = list_first_entry(list, struct page, pcp_list); 3763 list_del(&page->pcp_list); 3764 pcp->count -= 1 << order; 3765 } while (check_new_pcp(page, order)); 3766 3767 return page; 3768 } 3769 3770 /* Lock and remove page from the per-cpu list */ 3771 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3772 struct zone *zone, unsigned int order, 3773 int migratetype, unsigned int alloc_flags) 3774 { 3775 struct per_cpu_pages *pcp; 3776 struct list_head *list; 3777 struct page *page; 3778 unsigned long __maybe_unused UP_flags; 3779 3780 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3781 pcp_trylock_prepare(UP_flags); 3782 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3783 if (!pcp) { 3784 pcp_trylock_finish(UP_flags); 3785 return NULL; 3786 } 3787 3788 /* 3789 * On allocation, reduce the number of pages that are batch freed. 3790 * See nr_pcp_free() where free_factor is increased for subsequent 3791 * frees. 3792 */ 3793 pcp->free_factor >>= 1; 3794 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3795 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3796 pcp_spin_unlock(pcp); 3797 pcp_trylock_finish(UP_flags); 3798 if (page) { 3799 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3800 zone_statistics(preferred_zone, zone, 1); 3801 } 3802 return page; 3803 } 3804 3805 /* 3806 * Allocate a page from the given zone. 3807 * Use pcplists for THP or "cheap" high-order allocations. 3808 */ 3809 3810 /* 3811 * Do not instrument rmqueue() with KMSAN. This function may call 3812 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3813 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3814 * may call rmqueue() again, which will result in a deadlock. 3815 */ 3816 __no_sanitize_memory 3817 static inline 3818 struct page *rmqueue(struct zone *preferred_zone, 3819 struct zone *zone, unsigned int order, 3820 gfp_t gfp_flags, unsigned int alloc_flags, 3821 int migratetype) 3822 { 3823 struct page *page; 3824 3825 /* 3826 * We most definitely don't want callers attempting to 3827 * allocate greater than order-1 page units with __GFP_NOFAIL. 3828 */ 3829 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3830 3831 if (likely(pcp_allowed_order(order))) { 3832 /* 3833 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3834 * we need to skip it when CMA area isn't allowed. 3835 */ 3836 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3837 migratetype != MIGRATE_MOVABLE) { 3838 page = rmqueue_pcplist(preferred_zone, zone, order, 3839 migratetype, alloc_flags); 3840 if (likely(page)) 3841 goto out; 3842 } 3843 } 3844 3845 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3846 migratetype); 3847 3848 out: 3849 /* Separate test+clear to avoid unnecessary atomics */ 3850 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3851 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3852 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3853 } 3854 3855 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3856 return page; 3857 } 3858 3859 #ifdef CONFIG_FAIL_PAGE_ALLOC 3860 3861 static struct { 3862 struct fault_attr attr; 3863 3864 bool ignore_gfp_highmem; 3865 bool ignore_gfp_reclaim; 3866 u32 min_order; 3867 } fail_page_alloc = { 3868 .attr = FAULT_ATTR_INITIALIZER, 3869 .ignore_gfp_reclaim = true, 3870 .ignore_gfp_highmem = true, 3871 .min_order = 1, 3872 }; 3873 3874 static int __init setup_fail_page_alloc(char *str) 3875 { 3876 return setup_fault_attr(&fail_page_alloc.attr, str); 3877 } 3878 __setup("fail_page_alloc=", setup_fail_page_alloc); 3879 3880 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3881 { 3882 int flags = 0; 3883 3884 if (order < fail_page_alloc.min_order) 3885 return false; 3886 if (gfp_mask & __GFP_NOFAIL) 3887 return false; 3888 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3889 return false; 3890 if (fail_page_alloc.ignore_gfp_reclaim && 3891 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3892 return false; 3893 3894 /* See comment in __should_failslab() */ 3895 if (gfp_mask & __GFP_NOWARN) 3896 flags |= FAULT_NOWARN; 3897 3898 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags); 3899 } 3900 3901 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3902 3903 static int __init fail_page_alloc_debugfs(void) 3904 { 3905 umode_t mode = S_IFREG | 0600; 3906 struct dentry *dir; 3907 3908 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3909 &fail_page_alloc.attr); 3910 3911 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3912 &fail_page_alloc.ignore_gfp_reclaim); 3913 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3914 &fail_page_alloc.ignore_gfp_highmem); 3915 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3916 3917 return 0; 3918 } 3919 3920 late_initcall(fail_page_alloc_debugfs); 3921 3922 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3923 3924 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3925 3926 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3927 { 3928 return false; 3929 } 3930 3931 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3932 3933 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3934 { 3935 return __should_fail_alloc_page(gfp_mask, order); 3936 } 3937 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3938 3939 static inline long __zone_watermark_unusable_free(struct zone *z, 3940 unsigned int order, unsigned int alloc_flags) 3941 { 3942 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3943 long unusable_free = (1 << order) - 1; 3944 3945 /* 3946 * If the caller does not have rights to ALLOC_HARDER then subtract 3947 * the high-atomic reserves. This will over-estimate the size of the 3948 * atomic reserve but it avoids a search. 3949 */ 3950 if (likely(!alloc_harder)) 3951 unusable_free += z->nr_reserved_highatomic; 3952 3953 #ifdef CONFIG_CMA 3954 /* If allocation can't use CMA areas don't use free CMA pages */ 3955 if (!(alloc_flags & ALLOC_CMA)) 3956 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3957 #endif 3958 3959 return unusable_free; 3960 } 3961 3962 /* 3963 * Return true if free base pages are above 'mark'. For high-order checks it 3964 * will return true of the order-0 watermark is reached and there is at least 3965 * one free page of a suitable size. Checking now avoids taking the zone lock 3966 * to check in the allocation paths if no pages are free. 3967 */ 3968 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3969 int highest_zoneidx, unsigned int alloc_flags, 3970 long free_pages) 3971 { 3972 long min = mark; 3973 int o; 3974 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3975 3976 /* free_pages may go negative - that's OK */ 3977 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3978 3979 if (alloc_flags & ALLOC_HIGH) 3980 min -= min / 2; 3981 3982 if (unlikely(alloc_harder)) { 3983 /* 3984 * OOM victims can try even harder than normal ALLOC_HARDER 3985 * users on the grounds that it's definitely going to be in 3986 * the exit path shortly and free memory. Any allocation it 3987 * makes during the free path will be small and short-lived. 3988 */ 3989 if (alloc_flags & ALLOC_OOM) 3990 min -= min / 2; 3991 else 3992 min -= min / 4; 3993 } 3994 3995 /* 3996 * Check watermarks for an order-0 allocation request. If these 3997 * are not met, then a high-order request also cannot go ahead 3998 * even if a suitable page happened to be free. 3999 */ 4000 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4001 return false; 4002 4003 /* If this is an order-0 request then the watermark is fine */ 4004 if (!order) 4005 return true; 4006 4007 /* For a high-order request, check at least one suitable page is free */ 4008 for (o = order; o < MAX_ORDER; o++) { 4009 struct free_area *area = &z->free_area[o]; 4010 int mt; 4011 4012 if (!area->nr_free) 4013 continue; 4014 4015 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4016 if (!free_area_empty(area, mt)) 4017 return true; 4018 } 4019 4020 #ifdef CONFIG_CMA 4021 if ((alloc_flags & ALLOC_CMA) && 4022 !free_area_empty(area, MIGRATE_CMA)) { 4023 return true; 4024 } 4025 #endif 4026 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4027 return true; 4028 } 4029 return false; 4030 } 4031 4032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4033 int highest_zoneidx, unsigned int alloc_flags) 4034 { 4035 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4036 zone_page_state(z, NR_FREE_PAGES)); 4037 } 4038 4039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4040 unsigned long mark, int highest_zoneidx, 4041 unsigned int alloc_flags, gfp_t gfp_mask) 4042 { 4043 long free_pages; 4044 4045 free_pages = zone_page_state(z, NR_FREE_PAGES); 4046 4047 /* 4048 * Fast check for order-0 only. If this fails then the reserves 4049 * need to be calculated. 4050 */ 4051 if (!order) { 4052 long usable_free; 4053 long reserved; 4054 4055 usable_free = free_pages; 4056 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4057 4058 /* reserved may over estimate high-atomic reserves. */ 4059 usable_free -= min(usable_free, reserved); 4060 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4061 return true; 4062 } 4063 4064 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4065 free_pages)) 4066 return true; 4067 /* 4068 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4069 * when checking the min watermark. The min watermark is the 4070 * point where boosting is ignored so that kswapd is woken up 4071 * when below the low watermark. 4072 */ 4073 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4074 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4075 mark = z->_watermark[WMARK_MIN]; 4076 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4077 alloc_flags, free_pages); 4078 } 4079 4080 return false; 4081 } 4082 4083 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4084 unsigned long mark, int highest_zoneidx) 4085 { 4086 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4087 4088 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4089 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4090 4091 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4092 free_pages); 4093 } 4094 4095 #ifdef CONFIG_NUMA 4096 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4097 4098 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4099 { 4100 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4101 node_reclaim_distance; 4102 } 4103 #else /* CONFIG_NUMA */ 4104 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4105 { 4106 return true; 4107 } 4108 #endif /* CONFIG_NUMA */ 4109 4110 /* 4111 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4112 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4113 * premature use of a lower zone may cause lowmem pressure problems that 4114 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4115 * probably too small. It only makes sense to spread allocations to avoid 4116 * fragmentation between the Normal and DMA32 zones. 4117 */ 4118 static inline unsigned int 4119 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4120 { 4121 unsigned int alloc_flags; 4122 4123 /* 4124 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4125 * to save a branch. 4126 */ 4127 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4128 4129 #ifdef CONFIG_ZONE_DMA32 4130 if (!zone) 4131 return alloc_flags; 4132 4133 if (zone_idx(zone) != ZONE_NORMAL) 4134 return alloc_flags; 4135 4136 /* 4137 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4138 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4139 * on UMA that if Normal is populated then so is DMA32. 4140 */ 4141 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4142 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4143 return alloc_flags; 4144 4145 alloc_flags |= ALLOC_NOFRAGMENT; 4146 #endif /* CONFIG_ZONE_DMA32 */ 4147 return alloc_flags; 4148 } 4149 4150 /* Must be called after current_gfp_context() which can change gfp_mask */ 4151 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4152 unsigned int alloc_flags) 4153 { 4154 #ifdef CONFIG_CMA 4155 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4156 alloc_flags |= ALLOC_CMA; 4157 #endif 4158 return alloc_flags; 4159 } 4160 4161 /* 4162 * get_page_from_freelist goes through the zonelist trying to allocate 4163 * a page. 4164 */ 4165 static struct page * 4166 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4167 const struct alloc_context *ac) 4168 { 4169 struct zoneref *z; 4170 struct zone *zone; 4171 struct pglist_data *last_pgdat = NULL; 4172 bool last_pgdat_dirty_ok = false; 4173 bool no_fallback; 4174 4175 retry: 4176 /* 4177 * Scan zonelist, looking for a zone with enough free. 4178 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4179 */ 4180 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4181 z = ac->preferred_zoneref; 4182 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4183 ac->nodemask) { 4184 struct page *page; 4185 unsigned long mark; 4186 4187 if (cpusets_enabled() && 4188 (alloc_flags & ALLOC_CPUSET) && 4189 !__cpuset_zone_allowed(zone, gfp_mask)) 4190 continue; 4191 /* 4192 * When allocating a page cache page for writing, we 4193 * want to get it from a node that is within its dirty 4194 * limit, such that no single node holds more than its 4195 * proportional share of globally allowed dirty pages. 4196 * The dirty limits take into account the node's 4197 * lowmem reserves and high watermark so that kswapd 4198 * should be able to balance it without having to 4199 * write pages from its LRU list. 4200 * 4201 * XXX: For now, allow allocations to potentially 4202 * exceed the per-node dirty limit in the slowpath 4203 * (spread_dirty_pages unset) before going into reclaim, 4204 * which is important when on a NUMA setup the allowed 4205 * nodes are together not big enough to reach the 4206 * global limit. The proper fix for these situations 4207 * will require awareness of nodes in the 4208 * dirty-throttling and the flusher threads. 4209 */ 4210 if (ac->spread_dirty_pages) { 4211 if (last_pgdat != zone->zone_pgdat) { 4212 last_pgdat = zone->zone_pgdat; 4213 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4214 } 4215 4216 if (!last_pgdat_dirty_ok) 4217 continue; 4218 } 4219 4220 if (no_fallback && nr_online_nodes > 1 && 4221 zone != ac->preferred_zoneref->zone) { 4222 int local_nid; 4223 4224 /* 4225 * If moving to a remote node, retry but allow 4226 * fragmenting fallbacks. Locality is more important 4227 * than fragmentation avoidance. 4228 */ 4229 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4230 if (zone_to_nid(zone) != local_nid) { 4231 alloc_flags &= ~ALLOC_NOFRAGMENT; 4232 goto retry; 4233 } 4234 } 4235 4236 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4237 if (!zone_watermark_fast(zone, order, mark, 4238 ac->highest_zoneidx, alloc_flags, 4239 gfp_mask)) { 4240 int ret; 4241 4242 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4243 /* 4244 * Watermark failed for this zone, but see if we can 4245 * grow this zone if it contains deferred pages. 4246 */ 4247 if (static_branch_unlikely(&deferred_pages)) { 4248 if (_deferred_grow_zone(zone, order)) 4249 goto try_this_zone; 4250 } 4251 #endif 4252 /* Checked here to keep the fast path fast */ 4253 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4254 if (alloc_flags & ALLOC_NO_WATERMARKS) 4255 goto try_this_zone; 4256 4257 if (!node_reclaim_enabled() || 4258 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4259 continue; 4260 4261 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4262 switch (ret) { 4263 case NODE_RECLAIM_NOSCAN: 4264 /* did not scan */ 4265 continue; 4266 case NODE_RECLAIM_FULL: 4267 /* scanned but unreclaimable */ 4268 continue; 4269 default: 4270 /* did we reclaim enough */ 4271 if (zone_watermark_ok(zone, order, mark, 4272 ac->highest_zoneidx, alloc_flags)) 4273 goto try_this_zone; 4274 4275 continue; 4276 } 4277 } 4278 4279 try_this_zone: 4280 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4281 gfp_mask, alloc_flags, ac->migratetype); 4282 if (page) { 4283 prep_new_page(page, order, gfp_mask, alloc_flags); 4284 4285 /* 4286 * If this is a high-order atomic allocation then check 4287 * if the pageblock should be reserved for the future 4288 */ 4289 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4290 reserve_highatomic_pageblock(page, zone, order); 4291 4292 return page; 4293 } else { 4294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4295 /* Try again if zone has deferred pages */ 4296 if (static_branch_unlikely(&deferred_pages)) { 4297 if (_deferred_grow_zone(zone, order)) 4298 goto try_this_zone; 4299 } 4300 #endif 4301 } 4302 } 4303 4304 /* 4305 * It's possible on a UMA machine to get through all zones that are 4306 * fragmented. If avoiding fragmentation, reset and try again. 4307 */ 4308 if (no_fallback) { 4309 alloc_flags &= ~ALLOC_NOFRAGMENT; 4310 goto retry; 4311 } 4312 4313 return NULL; 4314 } 4315 4316 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4317 { 4318 unsigned int filter = SHOW_MEM_FILTER_NODES; 4319 4320 /* 4321 * This documents exceptions given to allocations in certain 4322 * contexts that are allowed to allocate outside current's set 4323 * of allowed nodes. 4324 */ 4325 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4326 if (tsk_is_oom_victim(current) || 4327 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4328 filter &= ~SHOW_MEM_FILTER_NODES; 4329 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4330 filter &= ~SHOW_MEM_FILTER_NODES; 4331 4332 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4333 } 4334 4335 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4336 { 4337 struct va_format vaf; 4338 va_list args; 4339 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4340 4341 if ((gfp_mask & __GFP_NOWARN) || 4342 !__ratelimit(&nopage_rs) || 4343 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4344 return; 4345 4346 va_start(args, fmt); 4347 vaf.fmt = fmt; 4348 vaf.va = &args; 4349 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4350 current->comm, &vaf, gfp_mask, &gfp_mask, 4351 nodemask_pr_args(nodemask)); 4352 va_end(args); 4353 4354 cpuset_print_current_mems_allowed(); 4355 pr_cont("\n"); 4356 dump_stack(); 4357 warn_alloc_show_mem(gfp_mask, nodemask); 4358 } 4359 4360 static inline struct page * 4361 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4362 unsigned int alloc_flags, 4363 const struct alloc_context *ac) 4364 { 4365 struct page *page; 4366 4367 page = get_page_from_freelist(gfp_mask, order, 4368 alloc_flags|ALLOC_CPUSET, ac); 4369 /* 4370 * fallback to ignore cpuset restriction if our nodes 4371 * are depleted 4372 */ 4373 if (!page) 4374 page = get_page_from_freelist(gfp_mask, order, 4375 alloc_flags, ac); 4376 4377 return page; 4378 } 4379 4380 static inline struct page * 4381 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4382 const struct alloc_context *ac, unsigned long *did_some_progress) 4383 { 4384 struct oom_control oc = { 4385 .zonelist = ac->zonelist, 4386 .nodemask = ac->nodemask, 4387 .memcg = NULL, 4388 .gfp_mask = gfp_mask, 4389 .order = order, 4390 }; 4391 struct page *page; 4392 4393 *did_some_progress = 0; 4394 4395 /* 4396 * Acquire the oom lock. If that fails, somebody else is 4397 * making progress for us. 4398 */ 4399 if (!mutex_trylock(&oom_lock)) { 4400 *did_some_progress = 1; 4401 schedule_timeout_uninterruptible(1); 4402 return NULL; 4403 } 4404 4405 /* 4406 * Go through the zonelist yet one more time, keep very high watermark 4407 * here, this is only to catch a parallel oom killing, we must fail if 4408 * we're still under heavy pressure. But make sure that this reclaim 4409 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4410 * allocation which will never fail due to oom_lock already held. 4411 */ 4412 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4413 ~__GFP_DIRECT_RECLAIM, order, 4414 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4415 if (page) 4416 goto out; 4417 4418 /* Coredumps can quickly deplete all memory reserves */ 4419 if (current->flags & PF_DUMPCORE) 4420 goto out; 4421 /* The OOM killer will not help higher order allocs */ 4422 if (order > PAGE_ALLOC_COSTLY_ORDER) 4423 goto out; 4424 /* 4425 * We have already exhausted all our reclaim opportunities without any 4426 * success so it is time to admit defeat. We will skip the OOM killer 4427 * because it is very likely that the caller has a more reasonable 4428 * fallback than shooting a random task. 4429 * 4430 * The OOM killer may not free memory on a specific node. 4431 */ 4432 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4433 goto out; 4434 /* The OOM killer does not needlessly kill tasks for lowmem */ 4435 if (ac->highest_zoneidx < ZONE_NORMAL) 4436 goto out; 4437 if (pm_suspended_storage()) 4438 goto out; 4439 /* 4440 * XXX: GFP_NOFS allocations should rather fail than rely on 4441 * other request to make a forward progress. 4442 * We are in an unfortunate situation where out_of_memory cannot 4443 * do much for this context but let's try it to at least get 4444 * access to memory reserved if the current task is killed (see 4445 * out_of_memory). Once filesystems are ready to handle allocation 4446 * failures more gracefully we should just bail out here. 4447 */ 4448 4449 /* Exhausted what can be done so it's blame time */ 4450 if (out_of_memory(&oc) || 4451 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4452 *did_some_progress = 1; 4453 4454 /* 4455 * Help non-failing allocations by giving them access to memory 4456 * reserves 4457 */ 4458 if (gfp_mask & __GFP_NOFAIL) 4459 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4460 ALLOC_NO_WATERMARKS, ac); 4461 } 4462 out: 4463 mutex_unlock(&oom_lock); 4464 return page; 4465 } 4466 4467 /* 4468 * Maximum number of compaction retries with a progress before OOM 4469 * killer is consider as the only way to move forward. 4470 */ 4471 #define MAX_COMPACT_RETRIES 16 4472 4473 #ifdef CONFIG_COMPACTION 4474 /* Try memory compaction for high-order allocations before reclaim */ 4475 static struct page * 4476 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4477 unsigned int alloc_flags, const struct alloc_context *ac, 4478 enum compact_priority prio, enum compact_result *compact_result) 4479 { 4480 struct page *page = NULL; 4481 unsigned long pflags; 4482 unsigned int noreclaim_flag; 4483 4484 if (!order) 4485 return NULL; 4486 4487 psi_memstall_enter(&pflags); 4488 delayacct_compact_start(); 4489 noreclaim_flag = memalloc_noreclaim_save(); 4490 4491 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4492 prio, &page); 4493 4494 memalloc_noreclaim_restore(noreclaim_flag); 4495 psi_memstall_leave(&pflags); 4496 delayacct_compact_end(); 4497 4498 if (*compact_result == COMPACT_SKIPPED) 4499 return NULL; 4500 /* 4501 * At least in one zone compaction wasn't deferred or skipped, so let's 4502 * count a compaction stall 4503 */ 4504 count_vm_event(COMPACTSTALL); 4505 4506 /* Prep a captured page if available */ 4507 if (page) 4508 prep_new_page(page, order, gfp_mask, alloc_flags); 4509 4510 /* Try get a page from the freelist if available */ 4511 if (!page) 4512 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4513 4514 if (page) { 4515 struct zone *zone = page_zone(page); 4516 4517 zone->compact_blockskip_flush = false; 4518 compaction_defer_reset(zone, order, true); 4519 count_vm_event(COMPACTSUCCESS); 4520 return page; 4521 } 4522 4523 /* 4524 * It's bad if compaction run occurs and fails. The most likely reason 4525 * is that pages exist, but not enough to satisfy watermarks. 4526 */ 4527 count_vm_event(COMPACTFAIL); 4528 4529 cond_resched(); 4530 4531 return NULL; 4532 } 4533 4534 static inline bool 4535 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4536 enum compact_result compact_result, 4537 enum compact_priority *compact_priority, 4538 int *compaction_retries) 4539 { 4540 int max_retries = MAX_COMPACT_RETRIES; 4541 int min_priority; 4542 bool ret = false; 4543 int retries = *compaction_retries; 4544 enum compact_priority priority = *compact_priority; 4545 4546 if (!order) 4547 return false; 4548 4549 if (fatal_signal_pending(current)) 4550 return false; 4551 4552 if (compaction_made_progress(compact_result)) 4553 (*compaction_retries)++; 4554 4555 /* 4556 * compaction considers all the zone as desperately out of memory 4557 * so it doesn't really make much sense to retry except when the 4558 * failure could be caused by insufficient priority 4559 */ 4560 if (compaction_failed(compact_result)) 4561 goto check_priority; 4562 4563 /* 4564 * compaction was skipped because there are not enough order-0 pages 4565 * to work with, so we retry only if it looks like reclaim can help. 4566 */ 4567 if (compaction_needs_reclaim(compact_result)) { 4568 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4569 goto out; 4570 } 4571 4572 /* 4573 * make sure the compaction wasn't deferred or didn't bail out early 4574 * due to locks contention before we declare that we should give up. 4575 * But the next retry should use a higher priority if allowed, so 4576 * we don't just keep bailing out endlessly. 4577 */ 4578 if (compaction_withdrawn(compact_result)) { 4579 goto check_priority; 4580 } 4581 4582 /* 4583 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4584 * costly ones because they are de facto nofail and invoke OOM 4585 * killer to move on while costly can fail and users are ready 4586 * to cope with that. 1/4 retries is rather arbitrary but we 4587 * would need much more detailed feedback from compaction to 4588 * make a better decision. 4589 */ 4590 if (order > PAGE_ALLOC_COSTLY_ORDER) 4591 max_retries /= 4; 4592 if (*compaction_retries <= max_retries) { 4593 ret = true; 4594 goto out; 4595 } 4596 4597 /* 4598 * Make sure there are attempts at the highest priority if we exhausted 4599 * all retries or failed at the lower priorities. 4600 */ 4601 check_priority: 4602 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4603 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4604 4605 if (*compact_priority > min_priority) { 4606 (*compact_priority)--; 4607 *compaction_retries = 0; 4608 ret = true; 4609 } 4610 out: 4611 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4612 return ret; 4613 } 4614 #else 4615 static inline struct page * 4616 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4617 unsigned int alloc_flags, const struct alloc_context *ac, 4618 enum compact_priority prio, enum compact_result *compact_result) 4619 { 4620 *compact_result = COMPACT_SKIPPED; 4621 return NULL; 4622 } 4623 4624 static inline bool 4625 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4626 enum compact_result compact_result, 4627 enum compact_priority *compact_priority, 4628 int *compaction_retries) 4629 { 4630 struct zone *zone; 4631 struct zoneref *z; 4632 4633 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4634 return false; 4635 4636 /* 4637 * There are setups with compaction disabled which would prefer to loop 4638 * inside the allocator rather than hit the oom killer prematurely. 4639 * Let's give them a good hope and keep retrying while the order-0 4640 * watermarks are OK. 4641 */ 4642 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4643 ac->highest_zoneidx, ac->nodemask) { 4644 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4645 ac->highest_zoneidx, alloc_flags)) 4646 return true; 4647 } 4648 return false; 4649 } 4650 #endif /* CONFIG_COMPACTION */ 4651 4652 #ifdef CONFIG_LOCKDEP 4653 static struct lockdep_map __fs_reclaim_map = 4654 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4655 4656 static bool __need_reclaim(gfp_t gfp_mask) 4657 { 4658 /* no reclaim without waiting on it */ 4659 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4660 return false; 4661 4662 /* this guy won't enter reclaim */ 4663 if (current->flags & PF_MEMALLOC) 4664 return false; 4665 4666 if (gfp_mask & __GFP_NOLOCKDEP) 4667 return false; 4668 4669 return true; 4670 } 4671 4672 void __fs_reclaim_acquire(unsigned long ip) 4673 { 4674 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4675 } 4676 4677 void __fs_reclaim_release(unsigned long ip) 4678 { 4679 lock_release(&__fs_reclaim_map, ip); 4680 } 4681 4682 void fs_reclaim_acquire(gfp_t gfp_mask) 4683 { 4684 gfp_mask = current_gfp_context(gfp_mask); 4685 4686 if (__need_reclaim(gfp_mask)) { 4687 if (gfp_mask & __GFP_FS) 4688 __fs_reclaim_acquire(_RET_IP_); 4689 4690 #ifdef CONFIG_MMU_NOTIFIER 4691 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4692 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4693 #endif 4694 4695 } 4696 } 4697 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4698 4699 void fs_reclaim_release(gfp_t gfp_mask) 4700 { 4701 gfp_mask = current_gfp_context(gfp_mask); 4702 4703 if (__need_reclaim(gfp_mask)) { 4704 if (gfp_mask & __GFP_FS) 4705 __fs_reclaim_release(_RET_IP_); 4706 } 4707 } 4708 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4709 #endif 4710 4711 /* 4712 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4713 * have been rebuilt so allocation retries. Reader side does not lock and 4714 * retries the allocation if zonelist changes. Writer side is protected by the 4715 * embedded spin_lock. 4716 */ 4717 static DEFINE_SEQLOCK(zonelist_update_seq); 4718 4719 static unsigned int zonelist_iter_begin(void) 4720 { 4721 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4722 return read_seqbegin(&zonelist_update_seq); 4723 4724 return 0; 4725 } 4726 4727 static unsigned int check_retry_zonelist(unsigned int seq) 4728 { 4729 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4730 return read_seqretry(&zonelist_update_seq, seq); 4731 4732 return seq; 4733 } 4734 4735 /* Perform direct synchronous page reclaim */ 4736 static unsigned long 4737 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4738 const struct alloc_context *ac) 4739 { 4740 unsigned int noreclaim_flag; 4741 unsigned long progress; 4742 4743 cond_resched(); 4744 4745 /* We now go into synchronous reclaim */ 4746 cpuset_memory_pressure_bump(); 4747 fs_reclaim_acquire(gfp_mask); 4748 noreclaim_flag = memalloc_noreclaim_save(); 4749 4750 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4751 ac->nodemask); 4752 4753 memalloc_noreclaim_restore(noreclaim_flag); 4754 fs_reclaim_release(gfp_mask); 4755 4756 cond_resched(); 4757 4758 return progress; 4759 } 4760 4761 /* The really slow allocator path where we enter direct reclaim */ 4762 static inline struct page * 4763 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4764 unsigned int alloc_flags, const struct alloc_context *ac, 4765 unsigned long *did_some_progress) 4766 { 4767 struct page *page = NULL; 4768 unsigned long pflags; 4769 bool drained = false; 4770 4771 psi_memstall_enter(&pflags); 4772 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4773 if (unlikely(!(*did_some_progress))) 4774 goto out; 4775 4776 retry: 4777 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4778 4779 /* 4780 * If an allocation failed after direct reclaim, it could be because 4781 * pages are pinned on the per-cpu lists or in high alloc reserves. 4782 * Shrink them and try again 4783 */ 4784 if (!page && !drained) { 4785 unreserve_highatomic_pageblock(ac, false); 4786 drain_all_pages(NULL); 4787 drained = true; 4788 goto retry; 4789 } 4790 out: 4791 psi_memstall_leave(&pflags); 4792 4793 return page; 4794 } 4795 4796 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4797 const struct alloc_context *ac) 4798 { 4799 struct zoneref *z; 4800 struct zone *zone; 4801 pg_data_t *last_pgdat = NULL; 4802 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4803 4804 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4805 ac->nodemask) { 4806 if (!managed_zone(zone)) 4807 continue; 4808 if (last_pgdat != zone->zone_pgdat) { 4809 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4810 last_pgdat = zone->zone_pgdat; 4811 } 4812 } 4813 } 4814 4815 static inline unsigned int 4816 gfp_to_alloc_flags(gfp_t gfp_mask) 4817 { 4818 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4819 4820 /* 4821 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4822 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4823 * to save two branches. 4824 */ 4825 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4826 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4827 4828 /* 4829 * The caller may dip into page reserves a bit more if the caller 4830 * cannot run direct reclaim, or if the caller has realtime scheduling 4831 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4832 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4833 */ 4834 alloc_flags |= (__force int) 4835 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4836 4837 if (gfp_mask & __GFP_ATOMIC) { 4838 /* 4839 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4840 * if it can't schedule. 4841 */ 4842 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4843 alloc_flags |= ALLOC_HARDER; 4844 /* 4845 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4846 * comment for __cpuset_node_allowed(). 4847 */ 4848 alloc_flags &= ~ALLOC_CPUSET; 4849 } else if (unlikely(rt_task(current)) && in_task()) 4850 alloc_flags |= ALLOC_HARDER; 4851 4852 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4853 4854 return alloc_flags; 4855 } 4856 4857 static bool oom_reserves_allowed(struct task_struct *tsk) 4858 { 4859 if (!tsk_is_oom_victim(tsk)) 4860 return false; 4861 4862 /* 4863 * !MMU doesn't have oom reaper so give access to memory reserves 4864 * only to the thread with TIF_MEMDIE set 4865 */ 4866 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4867 return false; 4868 4869 return true; 4870 } 4871 4872 /* 4873 * Distinguish requests which really need access to full memory 4874 * reserves from oom victims which can live with a portion of it 4875 */ 4876 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4877 { 4878 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4879 return 0; 4880 if (gfp_mask & __GFP_MEMALLOC) 4881 return ALLOC_NO_WATERMARKS; 4882 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4883 return ALLOC_NO_WATERMARKS; 4884 if (!in_interrupt()) { 4885 if (current->flags & PF_MEMALLOC) 4886 return ALLOC_NO_WATERMARKS; 4887 else if (oom_reserves_allowed(current)) 4888 return ALLOC_OOM; 4889 } 4890 4891 return 0; 4892 } 4893 4894 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4895 { 4896 return !!__gfp_pfmemalloc_flags(gfp_mask); 4897 } 4898 4899 /* 4900 * Checks whether it makes sense to retry the reclaim to make a forward progress 4901 * for the given allocation request. 4902 * 4903 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4904 * without success, or when we couldn't even meet the watermark if we 4905 * reclaimed all remaining pages on the LRU lists. 4906 * 4907 * Returns true if a retry is viable or false to enter the oom path. 4908 */ 4909 static inline bool 4910 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4911 struct alloc_context *ac, int alloc_flags, 4912 bool did_some_progress, int *no_progress_loops) 4913 { 4914 struct zone *zone; 4915 struct zoneref *z; 4916 bool ret = false; 4917 4918 /* 4919 * Costly allocations might have made a progress but this doesn't mean 4920 * their order will become available due to high fragmentation so 4921 * always increment the no progress counter for them 4922 */ 4923 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4924 *no_progress_loops = 0; 4925 else 4926 (*no_progress_loops)++; 4927 4928 /* 4929 * Make sure we converge to OOM if we cannot make any progress 4930 * several times in the row. 4931 */ 4932 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4933 /* Before OOM, exhaust highatomic_reserve */ 4934 return unreserve_highatomic_pageblock(ac, true); 4935 } 4936 4937 /* 4938 * Keep reclaiming pages while there is a chance this will lead 4939 * somewhere. If none of the target zones can satisfy our allocation 4940 * request even if all reclaimable pages are considered then we are 4941 * screwed and have to go OOM. 4942 */ 4943 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4944 ac->highest_zoneidx, ac->nodemask) { 4945 unsigned long available; 4946 unsigned long reclaimable; 4947 unsigned long min_wmark = min_wmark_pages(zone); 4948 bool wmark; 4949 4950 available = reclaimable = zone_reclaimable_pages(zone); 4951 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4952 4953 /* 4954 * Would the allocation succeed if we reclaimed all 4955 * reclaimable pages? 4956 */ 4957 wmark = __zone_watermark_ok(zone, order, min_wmark, 4958 ac->highest_zoneidx, alloc_flags, available); 4959 trace_reclaim_retry_zone(z, order, reclaimable, 4960 available, min_wmark, *no_progress_loops, wmark); 4961 if (wmark) { 4962 ret = true; 4963 break; 4964 } 4965 } 4966 4967 /* 4968 * Memory allocation/reclaim might be called from a WQ context and the 4969 * current implementation of the WQ concurrency control doesn't 4970 * recognize that a particular WQ is congested if the worker thread is 4971 * looping without ever sleeping. Therefore we have to do a short sleep 4972 * here rather than calling cond_resched(). 4973 */ 4974 if (current->flags & PF_WQ_WORKER) 4975 schedule_timeout_uninterruptible(1); 4976 else 4977 cond_resched(); 4978 return ret; 4979 } 4980 4981 static inline bool 4982 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4983 { 4984 /* 4985 * It's possible that cpuset's mems_allowed and the nodemask from 4986 * mempolicy don't intersect. This should be normally dealt with by 4987 * policy_nodemask(), but it's possible to race with cpuset update in 4988 * such a way the check therein was true, and then it became false 4989 * before we got our cpuset_mems_cookie here. 4990 * This assumes that for all allocations, ac->nodemask can come only 4991 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4992 * when it does not intersect with the cpuset restrictions) or the 4993 * caller can deal with a violated nodemask. 4994 */ 4995 if (cpusets_enabled() && ac->nodemask && 4996 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4997 ac->nodemask = NULL; 4998 return true; 4999 } 5000 5001 /* 5002 * When updating a task's mems_allowed or mempolicy nodemask, it is 5003 * possible to race with parallel threads in such a way that our 5004 * allocation can fail while the mask is being updated. If we are about 5005 * to fail, check if the cpuset changed during allocation and if so, 5006 * retry. 5007 */ 5008 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5009 return true; 5010 5011 return false; 5012 } 5013 5014 static inline struct page * 5015 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5016 struct alloc_context *ac) 5017 { 5018 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5019 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5020 struct page *page = NULL; 5021 unsigned int alloc_flags; 5022 unsigned long did_some_progress; 5023 enum compact_priority compact_priority; 5024 enum compact_result compact_result; 5025 int compaction_retries; 5026 int no_progress_loops; 5027 unsigned int cpuset_mems_cookie; 5028 unsigned int zonelist_iter_cookie; 5029 int reserve_flags; 5030 5031 /* 5032 * We also sanity check to catch abuse of atomic reserves being used by 5033 * callers that are not in atomic context. 5034 */ 5035 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5036 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5037 gfp_mask &= ~__GFP_ATOMIC; 5038 5039 restart: 5040 compaction_retries = 0; 5041 no_progress_loops = 0; 5042 compact_priority = DEF_COMPACT_PRIORITY; 5043 cpuset_mems_cookie = read_mems_allowed_begin(); 5044 zonelist_iter_cookie = zonelist_iter_begin(); 5045 5046 /* 5047 * The fast path uses conservative alloc_flags to succeed only until 5048 * kswapd needs to be woken up, and to avoid the cost of setting up 5049 * alloc_flags precisely. So we do that now. 5050 */ 5051 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5052 5053 /* 5054 * We need to recalculate the starting point for the zonelist iterator 5055 * because we might have used different nodemask in the fast path, or 5056 * there was a cpuset modification and we are retrying - otherwise we 5057 * could end up iterating over non-eligible zones endlessly. 5058 */ 5059 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5060 ac->highest_zoneidx, ac->nodemask); 5061 if (!ac->preferred_zoneref->zone) 5062 goto nopage; 5063 5064 /* 5065 * Check for insane configurations where the cpuset doesn't contain 5066 * any suitable zone to satisfy the request - e.g. non-movable 5067 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5068 */ 5069 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5070 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5071 ac->highest_zoneidx, 5072 &cpuset_current_mems_allowed); 5073 if (!z->zone) 5074 goto nopage; 5075 } 5076 5077 if (alloc_flags & ALLOC_KSWAPD) 5078 wake_all_kswapds(order, gfp_mask, ac); 5079 5080 /* 5081 * The adjusted alloc_flags might result in immediate success, so try 5082 * that first 5083 */ 5084 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5085 if (page) 5086 goto got_pg; 5087 5088 /* 5089 * For costly allocations, try direct compaction first, as it's likely 5090 * that we have enough base pages and don't need to reclaim. For non- 5091 * movable high-order allocations, do that as well, as compaction will 5092 * try prevent permanent fragmentation by migrating from blocks of the 5093 * same migratetype. 5094 * Don't try this for allocations that are allowed to ignore 5095 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5096 */ 5097 if (can_direct_reclaim && 5098 (costly_order || 5099 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5100 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5101 page = __alloc_pages_direct_compact(gfp_mask, order, 5102 alloc_flags, ac, 5103 INIT_COMPACT_PRIORITY, 5104 &compact_result); 5105 if (page) 5106 goto got_pg; 5107 5108 /* 5109 * Checks for costly allocations with __GFP_NORETRY, which 5110 * includes some THP page fault allocations 5111 */ 5112 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5113 /* 5114 * If allocating entire pageblock(s) and compaction 5115 * failed because all zones are below low watermarks 5116 * or is prohibited because it recently failed at this 5117 * order, fail immediately unless the allocator has 5118 * requested compaction and reclaim retry. 5119 * 5120 * Reclaim is 5121 * - potentially very expensive because zones are far 5122 * below their low watermarks or this is part of very 5123 * bursty high order allocations, 5124 * - not guaranteed to help because isolate_freepages() 5125 * may not iterate over freed pages as part of its 5126 * linear scan, and 5127 * - unlikely to make entire pageblocks free on its 5128 * own. 5129 */ 5130 if (compact_result == COMPACT_SKIPPED || 5131 compact_result == COMPACT_DEFERRED) 5132 goto nopage; 5133 5134 /* 5135 * Looks like reclaim/compaction is worth trying, but 5136 * sync compaction could be very expensive, so keep 5137 * using async compaction. 5138 */ 5139 compact_priority = INIT_COMPACT_PRIORITY; 5140 } 5141 } 5142 5143 retry: 5144 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5145 if (alloc_flags & ALLOC_KSWAPD) 5146 wake_all_kswapds(order, gfp_mask, ac); 5147 5148 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5149 if (reserve_flags) 5150 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 5151 (alloc_flags & ALLOC_KSWAPD); 5152 5153 /* 5154 * Reset the nodemask and zonelist iterators if memory policies can be 5155 * ignored. These allocations are high priority and system rather than 5156 * user oriented. 5157 */ 5158 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5159 ac->nodemask = NULL; 5160 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5161 ac->highest_zoneidx, ac->nodemask); 5162 } 5163 5164 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5165 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5166 if (page) 5167 goto got_pg; 5168 5169 /* Caller is not willing to reclaim, we can't balance anything */ 5170 if (!can_direct_reclaim) 5171 goto nopage; 5172 5173 /* Avoid recursion of direct reclaim */ 5174 if (current->flags & PF_MEMALLOC) 5175 goto nopage; 5176 5177 /* Try direct reclaim and then allocating */ 5178 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5179 &did_some_progress); 5180 if (page) 5181 goto got_pg; 5182 5183 /* Try direct compaction and then allocating */ 5184 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5185 compact_priority, &compact_result); 5186 if (page) 5187 goto got_pg; 5188 5189 /* Do not loop if specifically requested */ 5190 if (gfp_mask & __GFP_NORETRY) 5191 goto nopage; 5192 5193 /* 5194 * Do not retry costly high order allocations unless they are 5195 * __GFP_RETRY_MAYFAIL 5196 */ 5197 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5198 goto nopage; 5199 5200 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5201 did_some_progress > 0, &no_progress_loops)) 5202 goto retry; 5203 5204 /* 5205 * It doesn't make any sense to retry for the compaction if the order-0 5206 * reclaim is not able to make any progress because the current 5207 * implementation of the compaction depends on the sufficient amount 5208 * of free memory (see __compaction_suitable) 5209 */ 5210 if (did_some_progress > 0 && 5211 should_compact_retry(ac, order, alloc_flags, 5212 compact_result, &compact_priority, 5213 &compaction_retries)) 5214 goto retry; 5215 5216 5217 /* 5218 * Deal with possible cpuset update races or zonelist updates to avoid 5219 * a unnecessary OOM kill. 5220 */ 5221 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5222 check_retry_zonelist(zonelist_iter_cookie)) 5223 goto restart; 5224 5225 /* Reclaim has failed us, start killing things */ 5226 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5227 if (page) 5228 goto got_pg; 5229 5230 /* Avoid allocations with no watermarks from looping endlessly */ 5231 if (tsk_is_oom_victim(current) && 5232 (alloc_flags & ALLOC_OOM || 5233 (gfp_mask & __GFP_NOMEMALLOC))) 5234 goto nopage; 5235 5236 /* Retry as long as the OOM killer is making progress */ 5237 if (did_some_progress) { 5238 no_progress_loops = 0; 5239 goto retry; 5240 } 5241 5242 nopage: 5243 /* 5244 * Deal with possible cpuset update races or zonelist updates to avoid 5245 * a unnecessary OOM kill. 5246 */ 5247 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5248 check_retry_zonelist(zonelist_iter_cookie)) 5249 goto restart; 5250 5251 /* 5252 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5253 * we always retry 5254 */ 5255 if (gfp_mask & __GFP_NOFAIL) { 5256 /* 5257 * All existing users of the __GFP_NOFAIL are blockable, so warn 5258 * of any new users that actually require GFP_NOWAIT 5259 */ 5260 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5261 goto fail; 5262 5263 /* 5264 * PF_MEMALLOC request from this context is rather bizarre 5265 * because we cannot reclaim anything and only can loop waiting 5266 * for somebody to do a work for us 5267 */ 5268 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5269 5270 /* 5271 * non failing costly orders are a hard requirement which we 5272 * are not prepared for much so let's warn about these users 5273 * so that we can identify them and convert them to something 5274 * else. 5275 */ 5276 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 5277 5278 /* 5279 * Help non-failing allocations by giving them access to memory 5280 * reserves but do not use ALLOC_NO_WATERMARKS because this 5281 * could deplete whole memory reserves which would just make 5282 * the situation worse 5283 */ 5284 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5285 if (page) 5286 goto got_pg; 5287 5288 cond_resched(); 5289 goto retry; 5290 } 5291 fail: 5292 warn_alloc(gfp_mask, ac->nodemask, 5293 "page allocation failure: order:%u", order); 5294 got_pg: 5295 return page; 5296 } 5297 5298 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5299 int preferred_nid, nodemask_t *nodemask, 5300 struct alloc_context *ac, gfp_t *alloc_gfp, 5301 unsigned int *alloc_flags) 5302 { 5303 ac->highest_zoneidx = gfp_zone(gfp_mask); 5304 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5305 ac->nodemask = nodemask; 5306 ac->migratetype = gfp_migratetype(gfp_mask); 5307 5308 if (cpusets_enabled()) { 5309 *alloc_gfp |= __GFP_HARDWALL; 5310 /* 5311 * When we are in the interrupt context, it is irrelevant 5312 * to the current task context. It means that any node ok. 5313 */ 5314 if (in_task() && !ac->nodemask) 5315 ac->nodemask = &cpuset_current_mems_allowed; 5316 else 5317 *alloc_flags |= ALLOC_CPUSET; 5318 } 5319 5320 might_alloc(gfp_mask); 5321 5322 if (should_fail_alloc_page(gfp_mask, order)) 5323 return false; 5324 5325 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5326 5327 /* Dirty zone balancing only done in the fast path */ 5328 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5329 5330 /* 5331 * The preferred zone is used for statistics but crucially it is 5332 * also used as the starting point for the zonelist iterator. It 5333 * may get reset for allocations that ignore memory policies. 5334 */ 5335 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5336 ac->highest_zoneidx, ac->nodemask); 5337 5338 return true; 5339 } 5340 5341 /* 5342 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5343 * @gfp: GFP flags for the allocation 5344 * @preferred_nid: The preferred NUMA node ID to allocate from 5345 * @nodemask: Set of nodes to allocate from, may be NULL 5346 * @nr_pages: The number of pages desired on the list or array 5347 * @page_list: Optional list to store the allocated pages 5348 * @page_array: Optional array to store the pages 5349 * 5350 * This is a batched version of the page allocator that attempts to 5351 * allocate nr_pages quickly. Pages are added to page_list if page_list 5352 * is not NULL, otherwise it is assumed that the page_array is valid. 5353 * 5354 * For lists, nr_pages is the number of pages that should be allocated. 5355 * 5356 * For arrays, only NULL elements are populated with pages and nr_pages 5357 * is the maximum number of pages that will be stored in the array. 5358 * 5359 * Returns the number of pages on the list or array. 5360 */ 5361 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5362 nodemask_t *nodemask, int nr_pages, 5363 struct list_head *page_list, 5364 struct page **page_array) 5365 { 5366 struct page *page; 5367 unsigned long __maybe_unused UP_flags; 5368 struct zone *zone; 5369 struct zoneref *z; 5370 struct per_cpu_pages *pcp; 5371 struct list_head *pcp_list; 5372 struct alloc_context ac; 5373 gfp_t alloc_gfp; 5374 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5375 int nr_populated = 0, nr_account = 0; 5376 5377 /* 5378 * Skip populated array elements to determine if any pages need 5379 * to be allocated before disabling IRQs. 5380 */ 5381 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5382 nr_populated++; 5383 5384 /* No pages requested? */ 5385 if (unlikely(nr_pages <= 0)) 5386 goto out; 5387 5388 /* Already populated array? */ 5389 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5390 goto out; 5391 5392 /* Bulk allocator does not support memcg accounting. */ 5393 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5394 goto failed; 5395 5396 /* Use the single page allocator for one page. */ 5397 if (nr_pages - nr_populated == 1) 5398 goto failed; 5399 5400 #ifdef CONFIG_PAGE_OWNER 5401 /* 5402 * PAGE_OWNER may recurse into the allocator to allocate space to 5403 * save the stack with pagesets.lock held. Releasing/reacquiring 5404 * removes much of the performance benefit of bulk allocation so 5405 * force the caller to allocate one page at a time as it'll have 5406 * similar performance to added complexity to the bulk allocator. 5407 */ 5408 if (static_branch_unlikely(&page_owner_inited)) 5409 goto failed; 5410 #endif 5411 5412 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5413 gfp &= gfp_allowed_mask; 5414 alloc_gfp = gfp; 5415 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5416 goto out; 5417 gfp = alloc_gfp; 5418 5419 /* Find an allowed local zone that meets the low watermark. */ 5420 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5421 unsigned long mark; 5422 5423 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5424 !__cpuset_zone_allowed(zone, gfp)) { 5425 continue; 5426 } 5427 5428 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5429 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5430 goto failed; 5431 } 5432 5433 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5434 if (zone_watermark_fast(zone, 0, mark, 5435 zonelist_zone_idx(ac.preferred_zoneref), 5436 alloc_flags, gfp)) { 5437 break; 5438 } 5439 } 5440 5441 /* 5442 * If there are no allowed local zones that meets the watermarks then 5443 * try to allocate a single page and reclaim if necessary. 5444 */ 5445 if (unlikely(!zone)) 5446 goto failed; 5447 5448 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5449 pcp_trylock_prepare(UP_flags); 5450 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5451 if (!pcp) 5452 goto failed_irq; 5453 5454 /* Attempt the batch allocation */ 5455 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5456 while (nr_populated < nr_pages) { 5457 5458 /* Skip existing pages */ 5459 if (page_array && page_array[nr_populated]) { 5460 nr_populated++; 5461 continue; 5462 } 5463 5464 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5465 pcp, pcp_list); 5466 if (unlikely(!page)) { 5467 /* Try and allocate at least one page */ 5468 if (!nr_account) { 5469 pcp_spin_unlock(pcp); 5470 goto failed_irq; 5471 } 5472 break; 5473 } 5474 nr_account++; 5475 5476 prep_new_page(page, 0, gfp, 0); 5477 if (page_list) 5478 list_add(&page->lru, page_list); 5479 else 5480 page_array[nr_populated] = page; 5481 nr_populated++; 5482 } 5483 5484 pcp_spin_unlock(pcp); 5485 pcp_trylock_finish(UP_flags); 5486 5487 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5488 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5489 5490 out: 5491 return nr_populated; 5492 5493 failed_irq: 5494 pcp_trylock_finish(UP_flags); 5495 5496 failed: 5497 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5498 if (page) { 5499 if (page_list) 5500 list_add(&page->lru, page_list); 5501 else 5502 page_array[nr_populated] = page; 5503 nr_populated++; 5504 } 5505 5506 goto out; 5507 } 5508 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5509 5510 /* 5511 * This is the 'heart' of the zoned buddy allocator. 5512 */ 5513 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5514 nodemask_t *nodemask) 5515 { 5516 struct page *page; 5517 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5518 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5519 struct alloc_context ac = { }; 5520 5521 /* 5522 * There are several places where we assume that the order value is sane 5523 * so bail out early if the request is out of bound. 5524 */ 5525 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5526 return NULL; 5527 5528 gfp &= gfp_allowed_mask; 5529 /* 5530 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5531 * resp. GFP_NOIO which has to be inherited for all allocation requests 5532 * from a particular context which has been marked by 5533 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5534 * movable zones are not used during allocation. 5535 */ 5536 gfp = current_gfp_context(gfp); 5537 alloc_gfp = gfp; 5538 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5539 &alloc_gfp, &alloc_flags)) 5540 return NULL; 5541 5542 /* 5543 * Forbid the first pass from falling back to types that fragment 5544 * memory until all local zones are considered. 5545 */ 5546 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5547 5548 /* First allocation attempt */ 5549 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5550 if (likely(page)) 5551 goto out; 5552 5553 alloc_gfp = gfp; 5554 ac.spread_dirty_pages = false; 5555 5556 /* 5557 * Restore the original nodemask if it was potentially replaced with 5558 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5559 */ 5560 ac.nodemask = nodemask; 5561 5562 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5563 5564 out: 5565 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5566 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5567 __free_pages(page, order); 5568 page = NULL; 5569 } 5570 5571 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5572 kmsan_alloc_page(page, order, alloc_gfp); 5573 5574 return page; 5575 } 5576 EXPORT_SYMBOL(__alloc_pages); 5577 5578 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5579 nodemask_t *nodemask) 5580 { 5581 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5582 preferred_nid, nodemask); 5583 5584 if (page && order > 1) 5585 prep_transhuge_page(page); 5586 return (struct folio *)page; 5587 } 5588 EXPORT_SYMBOL(__folio_alloc); 5589 5590 /* 5591 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5592 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5593 * you need to access high mem. 5594 */ 5595 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5596 { 5597 struct page *page; 5598 5599 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5600 if (!page) 5601 return 0; 5602 return (unsigned long) page_address(page); 5603 } 5604 EXPORT_SYMBOL(__get_free_pages); 5605 5606 unsigned long get_zeroed_page(gfp_t gfp_mask) 5607 { 5608 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5609 } 5610 EXPORT_SYMBOL(get_zeroed_page); 5611 5612 /** 5613 * __free_pages - Free pages allocated with alloc_pages(). 5614 * @page: The page pointer returned from alloc_pages(). 5615 * @order: The order of the allocation. 5616 * 5617 * This function can free multi-page allocations that are not compound 5618 * pages. It does not check that the @order passed in matches that of 5619 * the allocation, so it is easy to leak memory. Freeing more memory 5620 * than was allocated will probably emit a warning. 5621 * 5622 * If the last reference to this page is speculative, it will be released 5623 * by put_page() which only frees the first page of a non-compound 5624 * allocation. To prevent the remaining pages from being leaked, we free 5625 * the subsequent pages here. If you want to use the page's reference 5626 * count to decide when to free the allocation, you should allocate a 5627 * compound page, and use put_page() instead of __free_pages(). 5628 * 5629 * Context: May be called in interrupt context or while holding a normal 5630 * spinlock, but not in NMI context or while holding a raw spinlock. 5631 */ 5632 void __free_pages(struct page *page, unsigned int order) 5633 { 5634 /* get PageHead before we drop reference */ 5635 int head = PageHead(page); 5636 5637 if (put_page_testzero(page)) 5638 free_the_page(page, order); 5639 else if (!head) 5640 while (order-- > 0) 5641 free_the_page(page + (1 << order), order); 5642 } 5643 EXPORT_SYMBOL(__free_pages); 5644 5645 void free_pages(unsigned long addr, unsigned int order) 5646 { 5647 if (addr != 0) { 5648 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5649 __free_pages(virt_to_page((void *)addr), order); 5650 } 5651 } 5652 5653 EXPORT_SYMBOL(free_pages); 5654 5655 /* 5656 * Page Fragment: 5657 * An arbitrary-length arbitrary-offset area of memory which resides 5658 * within a 0 or higher order page. Multiple fragments within that page 5659 * are individually refcounted, in the page's reference counter. 5660 * 5661 * The page_frag functions below provide a simple allocation framework for 5662 * page fragments. This is used by the network stack and network device 5663 * drivers to provide a backing region of memory for use as either an 5664 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5665 */ 5666 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5667 gfp_t gfp_mask) 5668 { 5669 struct page *page = NULL; 5670 gfp_t gfp = gfp_mask; 5671 5672 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5673 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5674 __GFP_NOMEMALLOC; 5675 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5676 PAGE_FRAG_CACHE_MAX_ORDER); 5677 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5678 #endif 5679 if (unlikely(!page)) 5680 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5681 5682 nc->va = page ? page_address(page) : NULL; 5683 5684 return page; 5685 } 5686 5687 void __page_frag_cache_drain(struct page *page, unsigned int count) 5688 { 5689 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5690 5691 if (page_ref_sub_and_test(page, count)) 5692 free_the_page(page, compound_order(page)); 5693 } 5694 EXPORT_SYMBOL(__page_frag_cache_drain); 5695 5696 void *page_frag_alloc_align(struct page_frag_cache *nc, 5697 unsigned int fragsz, gfp_t gfp_mask, 5698 unsigned int align_mask) 5699 { 5700 unsigned int size = PAGE_SIZE; 5701 struct page *page; 5702 int offset; 5703 5704 if (unlikely(!nc->va)) { 5705 refill: 5706 page = __page_frag_cache_refill(nc, gfp_mask); 5707 if (!page) 5708 return NULL; 5709 5710 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5711 /* if size can vary use size else just use PAGE_SIZE */ 5712 size = nc->size; 5713 #endif 5714 /* Even if we own the page, we do not use atomic_set(). 5715 * This would break get_page_unless_zero() users. 5716 */ 5717 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5718 5719 /* reset page count bias and offset to start of new frag */ 5720 nc->pfmemalloc = page_is_pfmemalloc(page); 5721 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5722 nc->offset = size; 5723 } 5724 5725 offset = nc->offset - fragsz; 5726 if (unlikely(offset < 0)) { 5727 page = virt_to_page(nc->va); 5728 5729 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5730 goto refill; 5731 5732 if (unlikely(nc->pfmemalloc)) { 5733 free_the_page(page, compound_order(page)); 5734 goto refill; 5735 } 5736 5737 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5738 /* if size can vary use size else just use PAGE_SIZE */ 5739 size = nc->size; 5740 #endif 5741 /* OK, page count is 0, we can safely set it */ 5742 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5743 5744 /* reset page count bias and offset to start of new frag */ 5745 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5746 offset = size - fragsz; 5747 if (unlikely(offset < 0)) { 5748 /* 5749 * The caller is trying to allocate a fragment 5750 * with fragsz > PAGE_SIZE but the cache isn't big 5751 * enough to satisfy the request, this may 5752 * happen in low memory conditions. 5753 * We don't release the cache page because 5754 * it could make memory pressure worse 5755 * so we simply return NULL here. 5756 */ 5757 return NULL; 5758 } 5759 } 5760 5761 nc->pagecnt_bias--; 5762 offset &= align_mask; 5763 nc->offset = offset; 5764 5765 return nc->va + offset; 5766 } 5767 EXPORT_SYMBOL(page_frag_alloc_align); 5768 5769 /* 5770 * Frees a page fragment allocated out of either a compound or order 0 page. 5771 */ 5772 void page_frag_free(void *addr) 5773 { 5774 struct page *page = virt_to_head_page(addr); 5775 5776 if (unlikely(put_page_testzero(page))) 5777 free_the_page(page, compound_order(page)); 5778 } 5779 EXPORT_SYMBOL(page_frag_free); 5780 5781 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5782 size_t size) 5783 { 5784 if (addr) { 5785 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5786 struct page *page = virt_to_page((void *)addr); 5787 struct page *last = page + nr; 5788 5789 split_page_owner(page, 1 << order); 5790 split_page_memcg(page, 1 << order); 5791 while (page < --last) 5792 set_page_refcounted(last); 5793 5794 last = page + (1UL << order); 5795 for (page += nr; page < last; page++) 5796 __free_pages_ok(page, 0, FPI_TO_TAIL); 5797 } 5798 return (void *)addr; 5799 } 5800 5801 /** 5802 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5803 * @size: the number of bytes to allocate 5804 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5805 * 5806 * This function is similar to alloc_pages(), except that it allocates the 5807 * minimum number of pages to satisfy the request. alloc_pages() can only 5808 * allocate memory in power-of-two pages. 5809 * 5810 * This function is also limited by MAX_ORDER. 5811 * 5812 * Memory allocated by this function must be released by free_pages_exact(). 5813 * 5814 * Return: pointer to the allocated area or %NULL in case of error. 5815 */ 5816 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5817 { 5818 unsigned int order = get_order(size); 5819 unsigned long addr; 5820 5821 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5822 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5823 5824 addr = __get_free_pages(gfp_mask, order); 5825 return make_alloc_exact(addr, order, size); 5826 } 5827 EXPORT_SYMBOL(alloc_pages_exact); 5828 5829 /** 5830 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5831 * pages on a node. 5832 * @nid: the preferred node ID where memory should be allocated 5833 * @size: the number of bytes to allocate 5834 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5835 * 5836 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5837 * back. 5838 * 5839 * Return: pointer to the allocated area or %NULL in case of error. 5840 */ 5841 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5842 { 5843 unsigned int order = get_order(size); 5844 struct page *p; 5845 5846 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5847 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5848 5849 p = alloc_pages_node(nid, gfp_mask, order); 5850 if (!p) 5851 return NULL; 5852 return make_alloc_exact((unsigned long)page_address(p), order, size); 5853 } 5854 5855 /** 5856 * free_pages_exact - release memory allocated via alloc_pages_exact() 5857 * @virt: the value returned by alloc_pages_exact. 5858 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5859 * 5860 * Release the memory allocated by a previous call to alloc_pages_exact. 5861 */ 5862 void free_pages_exact(void *virt, size_t size) 5863 { 5864 unsigned long addr = (unsigned long)virt; 5865 unsigned long end = addr + PAGE_ALIGN(size); 5866 5867 while (addr < end) { 5868 free_page(addr); 5869 addr += PAGE_SIZE; 5870 } 5871 } 5872 EXPORT_SYMBOL(free_pages_exact); 5873 5874 /** 5875 * nr_free_zone_pages - count number of pages beyond high watermark 5876 * @offset: The zone index of the highest zone 5877 * 5878 * nr_free_zone_pages() counts the number of pages which are beyond the 5879 * high watermark within all zones at or below a given zone index. For each 5880 * zone, the number of pages is calculated as: 5881 * 5882 * nr_free_zone_pages = managed_pages - high_pages 5883 * 5884 * Return: number of pages beyond high watermark. 5885 */ 5886 static unsigned long nr_free_zone_pages(int offset) 5887 { 5888 struct zoneref *z; 5889 struct zone *zone; 5890 5891 /* Just pick one node, since fallback list is circular */ 5892 unsigned long sum = 0; 5893 5894 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5895 5896 for_each_zone_zonelist(zone, z, zonelist, offset) { 5897 unsigned long size = zone_managed_pages(zone); 5898 unsigned long high = high_wmark_pages(zone); 5899 if (size > high) 5900 sum += size - high; 5901 } 5902 5903 return sum; 5904 } 5905 5906 /** 5907 * nr_free_buffer_pages - count number of pages beyond high watermark 5908 * 5909 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5910 * watermark within ZONE_DMA and ZONE_NORMAL. 5911 * 5912 * Return: number of pages beyond high watermark within ZONE_DMA and 5913 * ZONE_NORMAL. 5914 */ 5915 unsigned long nr_free_buffer_pages(void) 5916 { 5917 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5918 } 5919 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5920 5921 static inline void show_node(struct zone *zone) 5922 { 5923 if (IS_ENABLED(CONFIG_NUMA)) 5924 printk("Node %d ", zone_to_nid(zone)); 5925 } 5926 5927 long si_mem_available(void) 5928 { 5929 long available; 5930 unsigned long pagecache; 5931 unsigned long wmark_low = 0; 5932 unsigned long pages[NR_LRU_LISTS]; 5933 unsigned long reclaimable; 5934 struct zone *zone; 5935 int lru; 5936 5937 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5938 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5939 5940 for_each_zone(zone) 5941 wmark_low += low_wmark_pages(zone); 5942 5943 /* 5944 * Estimate the amount of memory available for userspace allocations, 5945 * without causing swapping or OOM. 5946 */ 5947 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5948 5949 /* 5950 * Not all the page cache can be freed, otherwise the system will 5951 * start swapping or thrashing. Assume at least half of the page 5952 * cache, or the low watermark worth of cache, needs to stay. 5953 */ 5954 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5955 pagecache -= min(pagecache / 2, wmark_low); 5956 available += pagecache; 5957 5958 /* 5959 * Part of the reclaimable slab and other kernel memory consists of 5960 * items that are in use, and cannot be freed. Cap this estimate at the 5961 * low watermark. 5962 */ 5963 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5964 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5965 available += reclaimable - min(reclaimable / 2, wmark_low); 5966 5967 if (available < 0) 5968 available = 0; 5969 return available; 5970 } 5971 EXPORT_SYMBOL_GPL(si_mem_available); 5972 5973 void si_meminfo(struct sysinfo *val) 5974 { 5975 val->totalram = totalram_pages(); 5976 val->sharedram = global_node_page_state(NR_SHMEM); 5977 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5978 val->bufferram = nr_blockdev_pages(); 5979 val->totalhigh = totalhigh_pages(); 5980 val->freehigh = nr_free_highpages(); 5981 val->mem_unit = PAGE_SIZE; 5982 } 5983 5984 EXPORT_SYMBOL(si_meminfo); 5985 5986 #ifdef CONFIG_NUMA 5987 void si_meminfo_node(struct sysinfo *val, int nid) 5988 { 5989 int zone_type; /* needs to be signed */ 5990 unsigned long managed_pages = 0; 5991 unsigned long managed_highpages = 0; 5992 unsigned long free_highpages = 0; 5993 pg_data_t *pgdat = NODE_DATA(nid); 5994 5995 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5996 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5997 val->totalram = managed_pages; 5998 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5999 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 6000 #ifdef CONFIG_HIGHMEM 6001 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 6002 struct zone *zone = &pgdat->node_zones[zone_type]; 6003 6004 if (is_highmem(zone)) { 6005 managed_highpages += zone_managed_pages(zone); 6006 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 6007 } 6008 } 6009 val->totalhigh = managed_highpages; 6010 val->freehigh = free_highpages; 6011 #else 6012 val->totalhigh = managed_highpages; 6013 val->freehigh = free_highpages; 6014 #endif 6015 val->mem_unit = PAGE_SIZE; 6016 } 6017 #endif 6018 6019 /* 6020 * Determine whether the node should be displayed or not, depending on whether 6021 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6022 */ 6023 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6024 { 6025 if (!(flags & SHOW_MEM_FILTER_NODES)) 6026 return false; 6027 6028 /* 6029 * no node mask - aka implicit memory numa policy. Do not bother with 6030 * the synchronization - read_mems_allowed_begin - because we do not 6031 * have to be precise here. 6032 */ 6033 if (!nodemask) 6034 nodemask = &cpuset_current_mems_allowed; 6035 6036 return !node_isset(nid, *nodemask); 6037 } 6038 6039 #define K(x) ((x) << (PAGE_SHIFT-10)) 6040 6041 static void show_migration_types(unsigned char type) 6042 { 6043 static const char types[MIGRATE_TYPES] = { 6044 [MIGRATE_UNMOVABLE] = 'U', 6045 [MIGRATE_MOVABLE] = 'M', 6046 [MIGRATE_RECLAIMABLE] = 'E', 6047 [MIGRATE_HIGHATOMIC] = 'H', 6048 #ifdef CONFIG_CMA 6049 [MIGRATE_CMA] = 'C', 6050 #endif 6051 #ifdef CONFIG_MEMORY_ISOLATION 6052 [MIGRATE_ISOLATE] = 'I', 6053 #endif 6054 }; 6055 char tmp[MIGRATE_TYPES + 1]; 6056 char *p = tmp; 6057 int i; 6058 6059 for (i = 0; i < MIGRATE_TYPES; i++) { 6060 if (type & (1 << i)) 6061 *p++ = types[i]; 6062 } 6063 6064 *p = '\0'; 6065 printk(KERN_CONT "(%s) ", tmp); 6066 } 6067 6068 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6069 { 6070 int zone_idx; 6071 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6072 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6073 return true; 6074 return false; 6075 } 6076 6077 /* 6078 * Show free area list (used inside shift_scroll-lock stuff) 6079 * We also calculate the percentage fragmentation. We do this by counting the 6080 * memory on each free list with the exception of the first item on the list. 6081 * 6082 * Bits in @filter: 6083 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6084 * cpuset. 6085 */ 6086 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6087 { 6088 unsigned long free_pcp = 0; 6089 int cpu, nid; 6090 struct zone *zone; 6091 pg_data_t *pgdat; 6092 6093 for_each_populated_zone(zone) { 6094 if (zone_idx(zone) > max_zone_idx) 6095 continue; 6096 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6097 continue; 6098 6099 for_each_online_cpu(cpu) 6100 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6101 } 6102 6103 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6104 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6105 " unevictable:%lu dirty:%lu writeback:%lu\n" 6106 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6107 " mapped:%lu shmem:%lu pagetables:%lu\n" 6108 " sec_pagetables:%lu bounce:%lu\n" 6109 " kernel_misc_reclaimable:%lu\n" 6110 " free:%lu free_pcp:%lu free_cma:%lu\n", 6111 global_node_page_state(NR_ACTIVE_ANON), 6112 global_node_page_state(NR_INACTIVE_ANON), 6113 global_node_page_state(NR_ISOLATED_ANON), 6114 global_node_page_state(NR_ACTIVE_FILE), 6115 global_node_page_state(NR_INACTIVE_FILE), 6116 global_node_page_state(NR_ISOLATED_FILE), 6117 global_node_page_state(NR_UNEVICTABLE), 6118 global_node_page_state(NR_FILE_DIRTY), 6119 global_node_page_state(NR_WRITEBACK), 6120 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6121 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6122 global_node_page_state(NR_FILE_MAPPED), 6123 global_node_page_state(NR_SHMEM), 6124 global_node_page_state(NR_PAGETABLE), 6125 global_node_page_state(NR_SECONDARY_PAGETABLE), 6126 global_zone_page_state(NR_BOUNCE), 6127 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6128 global_zone_page_state(NR_FREE_PAGES), 6129 free_pcp, 6130 global_zone_page_state(NR_FREE_CMA_PAGES)); 6131 6132 for_each_online_pgdat(pgdat) { 6133 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6134 continue; 6135 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6136 continue; 6137 6138 printk("Node %d" 6139 " active_anon:%lukB" 6140 " inactive_anon:%lukB" 6141 " active_file:%lukB" 6142 " inactive_file:%lukB" 6143 " unevictable:%lukB" 6144 " isolated(anon):%lukB" 6145 " isolated(file):%lukB" 6146 " mapped:%lukB" 6147 " dirty:%lukB" 6148 " writeback:%lukB" 6149 " shmem:%lukB" 6150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6151 " shmem_thp: %lukB" 6152 " shmem_pmdmapped: %lukB" 6153 " anon_thp: %lukB" 6154 #endif 6155 " writeback_tmp:%lukB" 6156 " kernel_stack:%lukB" 6157 #ifdef CONFIG_SHADOW_CALL_STACK 6158 " shadow_call_stack:%lukB" 6159 #endif 6160 " pagetables:%lukB" 6161 " sec_pagetables:%lukB" 6162 " all_unreclaimable? %s" 6163 "\n", 6164 pgdat->node_id, 6165 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6166 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6167 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6168 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6169 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6170 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6171 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6172 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6173 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6174 K(node_page_state(pgdat, NR_WRITEBACK)), 6175 K(node_page_state(pgdat, NR_SHMEM)), 6176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6177 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6178 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6179 K(node_page_state(pgdat, NR_ANON_THPS)), 6180 #endif 6181 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6182 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6183 #ifdef CONFIG_SHADOW_CALL_STACK 6184 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6185 #endif 6186 K(node_page_state(pgdat, NR_PAGETABLE)), 6187 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 6188 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6189 "yes" : "no"); 6190 } 6191 6192 for_each_populated_zone(zone) { 6193 int i; 6194 6195 if (zone_idx(zone) > max_zone_idx) 6196 continue; 6197 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6198 continue; 6199 6200 free_pcp = 0; 6201 for_each_online_cpu(cpu) 6202 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6203 6204 show_node(zone); 6205 printk(KERN_CONT 6206 "%s" 6207 " free:%lukB" 6208 " boost:%lukB" 6209 " min:%lukB" 6210 " low:%lukB" 6211 " high:%lukB" 6212 " reserved_highatomic:%luKB" 6213 " active_anon:%lukB" 6214 " inactive_anon:%lukB" 6215 " active_file:%lukB" 6216 " inactive_file:%lukB" 6217 " unevictable:%lukB" 6218 " writepending:%lukB" 6219 " present:%lukB" 6220 " managed:%lukB" 6221 " mlocked:%lukB" 6222 " bounce:%lukB" 6223 " free_pcp:%lukB" 6224 " local_pcp:%ukB" 6225 " free_cma:%lukB" 6226 "\n", 6227 zone->name, 6228 K(zone_page_state(zone, NR_FREE_PAGES)), 6229 K(zone->watermark_boost), 6230 K(min_wmark_pages(zone)), 6231 K(low_wmark_pages(zone)), 6232 K(high_wmark_pages(zone)), 6233 K(zone->nr_reserved_highatomic), 6234 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6235 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6236 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6237 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6238 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6239 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6240 K(zone->present_pages), 6241 K(zone_managed_pages(zone)), 6242 K(zone_page_state(zone, NR_MLOCK)), 6243 K(zone_page_state(zone, NR_BOUNCE)), 6244 K(free_pcp), 6245 K(this_cpu_read(zone->per_cpu_pageset->count)), 6246 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6247 printk("lowmem_reserve[]:"); 6248 for (i = 0; i < MAX_NR_ZONES; i++) 6249 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6250 printk(KERN_CONT "\n"); 6251 } 6252 6253 for_each_populated_zone(zone) { 6254 unsigned int order; 6255 unsigned long nr[MAX_ORDER], flags, total = 0; 6256 unsigned char types[MAX_ORDER]; 6257 6258 if (zone_idx(zone) > max_zone_idx) 6259 continue; 6260 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6261 continue; 6262 show_node(zone); 6263 printk(KERN_CONT "%s: ", zone->name); 6264 6265 spin_lock_irqsave(&zone->lock, flags); 6266 for (order = 0; order < MAX_ORDER; order++) { 6267 struct free_area *area = &zone->free_area[order]; 6268 int type; 6269 6270 nr[order] = area->nr_free; 6271 total += nr[order] << order; 6272 6273 types[order] = 0; 6274 for (type = 0; type < MIGRATE_TYPES; type++) { 6275 if (!free_area_empty(area, type)) 6276 types[order] |= 1 << type; 6277 } 6278 } 6279 spin_unlock_irqrestore(&zone->lock, flags); 6280 for (order = 0; order < MAX_ORDER; order++) { 6281 printk(KERN_CONT "%lu*%lukB ", 6282 nr[order], K(1UL) << order); 6283 if (nr[order]) 6284 show_migration_types(types[order]); 6285 } 6286 printk(KERN_CONT "= %lukB\n", K(total)); 6287 } 6288 6289 for_each_online_node(nid) { 6290 if (show_mem_node_skip(filter, nid, nodemask)) 6291 continue; 6292 hugetlb_show_meminfo_node(nid); 6293 } 6294 6295 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6296 6297 show_swap_cache_info(); 6298 } 6299 6300 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6301 { 6302 zoneref->zone = zone; 6303 zoneref->zone_idx = zone_idx(zone); 6304 } 6305 6306 /* 6307 * Builds allocation fallback zone lists. 6308 * 6309 * Add all populated zones of a node to the zonelist. 6310 */ 6311 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6312 { 6313 struct zone *zone; 6314 enum zone_type zone_type = MAX_NR_ZONES; 6315 int nr_zones = 0; 6316 6317 do { 6318 zone_type--; 6319 zone = pgdat->node_zones + zone_type; 6320 if (populated_zone(zone)) { 6321 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6322 check_highest_zone(zone_type); 6323 } 6324 } while (zone_type); 6325 6326 return nr_zones; 6327 } 6328 6329 #ifdef CONFIG_NUMA 6330 6331 static int __parse_numa_zonelist_order(char *s) 6332 { 6333 /* 6334 * We used to support different zonelists modes but they turned 6335 * out to be just not useful. Let's keep the warning in place 6336 * if somebody still use the cmd line parameter so that we do 6337 * not fail it silently 6338 */ 6339 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6340 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6341 return -EINVAL; 6342 } 6343 return 0; 6344 } 6345 6346 char numa_zonelist_order[] = "Node"; 6347 6348 /* 6349 * sysctl handler for numa_zonelist_order 6350 */ 6351 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6352 void *buffer, size_t *length, loff_t *ppos) 6353 { 6354 if (write) 6355 return __parse_numa_zonelist_order(buffer); 6356 return proc_dostring(table, write, buffer, length, ppos); 6357 } 6358 6359 6360 static int node_load[MAX_NUMNODES]; 6361 6362 /** 6363 * find_next_best_node - find the next node that should appear in a given node's fallback list 6364 * @node: node whose fallback list we're appending 6365 * @used_node_mask: nodemask_t of already used nodes 6366 * 6367 * We use a number of factors to determine which is the next node that should 6368 * appear on a given node's fallback list. The node should not have appeared 6369 * already in @node's fallback list, and it should be the next closest node 6370 * according to the distance array (which contains arbitrary distance values 6371 * from each node to each node in the system), and should also prefer nodes 6372 * with no CPUs, since presumably they'll have very little allocation pressure 6373 * on them otherwise. 6374 * 6375 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6376 */ 6377 int find_next_best_node(int node, nodemask_t *used_node_mask) 6378 { 6379 int n, val; 6380 int min_val = INT_MAX; 6381 int best_node = NUMA_NO_NODE; 6382 6383 /* Use the local node if we haven't already */ 6384 if (!node_isset(node, *used_node_mask)) { 6385 node_set(node, *used_node_mask); 6386 return node; 6387 } 6388 6389 for_each_node_state(n, N_MEMORY) { 6390 6391 /* Don't want a node to appear more than once */ 6392 if (node_isset(n, *used_node_mask)) 6393 continue; 6394 6395 /* Use the distance array to find the distance */ 6396 val = node_distance(node, n); 6397 6398 /* Penalize nodes under us ("prefer the next node") */ 6399 val += (n < node); 6400 6401 /* Give preference to headless and unused nodes */ 6402 if (!cpumask_empty(cpumask_of_node(n))) 6403 val += PENALTY_FOR_NODE_WITH_CPUS; 6404 6405 /* Slight preference for less loaded node */ 6406 val *= MAX_NUMNODES; 6407 val += node_load[n]; 6408 6409 if (val < min_val) { 6410 min_val = val; 6411 best_node = n; 6412 } 6413 } 6414 6415 if (best_node >= 0) 6416 node_set(best_node, *used_node_mask); 6417 6418 return best_node; 6419 } 6420 6421 6422 /* 6423 * Build zonelists ordered by node and zones within node. 6424 * This results in maximum locality--normal zone overflows into local 6425 * DMA zone, if any--but risks exhausting DMA zone. 6426 */ 6427 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6428 unsigned nr_nodes) 6429 { 6430 struct zoneref *zonerefs; 6431 int i; 6432 6433 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6434 6435 for (i = 0; i < nr_nodes; i++) { 6436 int nr_zones; 6437 6438 pg_data_t *node = NODE_DATA(node_order[i]); 6439 6440 nr_zones = build_zonerefs_node(node, zonerefs); 6441 zonerefs += nr_zones; 6442 } 6443 zonerefs->zone = NULL; 6444 zonerefs->zone_idx = 0; 6445 } 6446 6447 /* 6448 * Build gfp_thisnode zonelists 6449 */ 6450 static void build_thisnode_zonelists(pg_data_t *pgdat) 6451 { 6452 struct zoneref *zonerefs; 6453 int nr_zones; 6454 6455 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6456 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6457 zonerefs += nr_zones; 6458 zonerefs->zone = NULL; 6459 zonerefs->zone_idx = 0; 6460 } 6461 6462 /* 6463 * Build zonelists ordered by zone and nodes within zones. 6464 * This results in conserving DMA zone[s] until all Normal memory is 6465 * exhausted, but results in overflowing to remote node while memory 6466 * may still exist in local DMA zone. 6467 */ 6468 6469 static void build_zonelists(pg_data_t *pgdat) 6470 { 6471 static int node_order[MAX_NUMNODES]; 6472 int node, nr_nodes = 0; 6473 nodemask_t used_mask = NODE_MASK_NONE; 6474 int local_node, prev_node; 6475 6476 /* NUMA-aware ordering of nodes */ 6477 local_node = pgdat->node_id; 6478 prev_node = local_node; 6479 6480 memset(node_order, 0, sizeof(node_order)); 6481 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6482 /* 6483 * We don't want to pressure a particular node. 6484 * So adding penalty to the first node in same 6485 * distance group to make it round-robin. 6486 */ 6487 if (node_distance(local_node, node) != 6488 node_distance(local_node, prev_node)) 6489 node_load[node] += 1; 6490 6491 node_order[nr_nodes++] = node; 6492 prev_node = node; 6493 } 6494 6495 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6496 build_thisnode_zonelists(pgdat); 6497 pr_info("Fallback order for Node %d: ", local_node); 6498 for (node = 0; node < nr_nodes; node++) 6499 pr_cont("%d ", node_order[node]); 6500 pr_cont("\n"); 6501 } 6502 6503 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6504 /* 6505 * Return node id of node used for "local" allocations. 6506 * I.e., first node id of first zone in arg node's generic zonelist. 6507 * Used for initializing percpu 'numa_mem', which is used primarily 6508 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6509 */ 6510 int local_memory_node(int node) 6511 { 6512 struct zoneref *z; 6513 6514 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6515 gfp_zone(GFP_KERNEL), 6516 NULL); 6517 return zone_to_nid(z->zone); 6518 } 6519 #endif 6520 6521 static void setup_min_unmapped_ratio(void); 6522 static void setup_min_slab_ratio(void); 6523 #else /* CONFIG_NUMA */ 6524 6525 static void build_zonelists(pg_data_t *pgdat) 6526 { 6527 int node, local_node; 6528 struct zoneref *zonerefs; 6529 int nr_zones; 6530 6531 local_node = pgdat->node_id; 6532 6533 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6534 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6535 zonerefs += nr_zones; 6536 6537 /* 6538 * Now we build the zonelist so that it contains the zones 6539 * of all the other nodes. 6540 * We don't want to pressure a particular node, so when 6541 * building the zones for node N, we make sure that the 6542 * zones coming right after the local ones are those from 6543 * node N+1 (modulo N) 6544 */ 6545 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6546 if (!node_online(node)) 6547 continue; 6548 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6549 zonerefs += nr_zones; 6550 } 6551 for (node = 0; node < local_node; node++) { 6552 if (!node_online(node)) 6553 continue; 6554 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6555 zonerefs += nr_zones; 6556 } 6557 6558 zonerefs->zone = NULL; 6559 zonerefs->zone_idx = 0; 6560 } 6561 6562 #endif /* CONFIG_NUMA */ 6563 6564 /* 6565 * Boot pageset table. One per cpu which is going to be used for all 6566 * zones and all nodes. The parameters will be set in such a way 6567 * that an item put on a list will immediately be handed over to 6568 * the buddy list. This is safe since pageset manipulation is done 6569 * with interrupts disabled. 6570 * 6571 * The boot_pagesets must be kept even after bootup is complete for 6572 * unused processors and/or zones. They do play a role for bootstrapping 6573 * hotplugged processors. 6574 * 6575 * zoneinfo_show() and maybe other functions do 6576 * not check if the processor is online before following the pageset pointer. 6577 * Other parts of the kernel may not check if the zone is available. 6578 */ 6579 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6580 /* These effectively disable the pcplists in the boot pageset completely */ 6581 #define BOOT_PAGESET_HIGH 0 6582 #define BOOT_PAGESET_BATCH 1 6583 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6584 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6585 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6586 6587 static void __build_all_zonelists(void *data) 6588 { 6589 int nid; 6590 int __maybe_unused cpu; 6591 pg_data_t *self = data; 6592 6593 write_seqlock(&zonelist_update_seq); 6594 6595 #ifdef CONFIG_NUMA 6596 memset(node_load, 0, sizeof(node_load)); 6597 #endif 6598 6599 /* 6600 * This node is hotadded and no memory is yet present. So just 6601 * building zonelists is fine - no need to touch other nodes. 6602 */ 6603 if (self && !node_online(self->node_id)) { 6604 build_zonelists(self); 6605 } else { 6606 /* 6607 * All possible nodes have pgdat preallocated 6608 * in free_area_init 6609 */ 6610 for_each_node(nid) { 6611 pg_data_t *pgdat = NODE_DATA(nid); 6612 6613 build_zonelists(pgdat); 6614 } 6615 6616 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6617 /* 6618 * We now know the "local memory node" for each node-- 6619 * i.e., the node of the first zone in the generic zonelist. 6620 * Set up numa_mem percpu variable for on-line cpus. During 6621 * boot, only the boot cpu should be on-line; we'll init the 6622 * secondary cpus' numa_mem as they come on-line. During 6623 * node/memory hotplug, we'll fixup all on-line cpus. 6624 */ 6625 for_each_online_cpu(cpu) 6626 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6627 #endif 6628 } 6629 6630 write_sequnlock(&zonelist_update_seq); 6631 } 6632 6633 static noinline void __init 6634 build_all_zonelists_init(void) 6635 { 6636 int cpu; 6637 6638 __build_all_zonelists(NULL); 6639 6640 /* 6641 * Initialize the boot_pagesets that are going to be used 6642 * for bootstrapping processors. The real pagesets for 6643 * each zone will be allocated later when the per cpu 6644 * allocator is available. 6645 * 6646 * boot_pagesets are used also for bootstrapping offline 6647 * cpus if the system is already booted because the pagesets 6648 * are needed to initialize allocators on a specific cpu too. 6649 * F.e. the percpu allocator needs the page allocator which 6650 * needs the percpu allocator in order to allocate its pagesets 6651 * (a chicken-egg dilemma). 6652 */ 6653 for_each_possible_cpu(cpu) 6654 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6655 6656 mminit_verify_zonelist(); 6657 cpuset_init_current_mems_allowed(); 6658 } 6659 6660 /* 6661 * unless system_state == SYSTEM_BOOTING. 6662 * 6663 * __ref due to call of __init annotated helper build_all_zonelists_init 6664 * [protected by SYSTEM_BOOTING]. 6665 */ 6666 void __ref build_all_zonelists(pg_data_t *pgdat) 6667 { 6668 unsigned long vm_total_pages; 6669 6670 if (system_state == SYSTEM_BOOTING) { 6671 build_all_zonelists_init(); 6672 } else { 6673 __build_all_zonelists(pgdat); 6674 /* cpuset refresh routine should be here */ 6675 } 6676 /* Get the number of free pages beyond high watermark in all zones. */ 6677 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6678 /* 6679 * Disable grouping by mobility if the number of pages in the 6680 * system is too low to allow the mechanism to work. It would be 6681 * more accurate, but expensive to check per-zone. This check is 6682 * made on memory-hotadd so a system can start with mobility 6683 * disabled and enable it later 6684 */ 6685 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6686 page_group_by_mobility_disabled = 1; 6687 else 6688 page_group_by_mobility_disabled = 0; 6689 6690 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6691 nr_online_nodes, 6692 page_group_by_mobility_disabled ? "off" : "on", 6693 vm_total_pages); 6694 #ifdef CONFIG_NUMA 6695 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6696 #endif 6697 } 6698 6699 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6700 static bool __meminit 6701 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6702 { 6703 static struct memblock_region *r; 6704 6705 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6706 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6707 for_each_mem_region(r) { 6708 if (*pfn < memblock_region_memory_end_pfn(r)) 6709 break; 6710 } 6711 } 6712 if (*pfn >= memblock_region_memory_base_pfn(r) && 6713 memblock_is_mirror(r)) { 6714 *pfn = memblock_region_memory_end_pfn(r); 6715 return true; 6716 } 6717 } 6718 return false; 6719 } 6720 6721 /* 6722 * Initially all pages are reserved - free ones are freed 6723 * up by memblock_free_all() once the early boot process is 6724 * done. Non-atomic initialization, single-pass. 6725 * 6726 * All aligned pageblocks are initialized to the specified migratetype 6727 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6728 * zone stats (e.g., nr_isolate_pageblock) are touched. 6729 */ 6730 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6731 unsigned long start_pfn, unsigned long zone_end_pfn, 6732 enum meminit_context context, 6733 struct vmem_altmap *altmap, int migratetype) 6734 { 6735 unsigned long pfn, end_pfn = start_pfn + size; 6736 struct page *page; 6737 6738 if (highest_memmap_pfn < end_pfn - 1) 6739 highest_memmap_pfn = end_pfn - 1; 6740 6741 #ifdef CONFIG_ZONE_DEVICE 6742 /* 6743 * Honor reservation requested by the driver for this ZONE_DEVICE 6744 * memory. We limit the total number of pages to initialize to just 6745 * those that might contain the memory mapping. We will defer the 6746 * ZONE_DEVICE page initialization until after we have released 6747 * the hotplug lock. 6748 */ 6749 if (zone == ZONE_DEVICE) { 6750 if (!altmap) 6751 return; 6752 6753 if (start_pfn == altmap->base_pfn) 6754 start_pfn += altmap->reserve; 6755 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6756 } 6757 #endif 6758 6759 for (pfn = start_pfn; pfn < end_pfn; ) { 6760 /* 6761 * There can be holes in boot-time mem_map[]s handed to this 6762 * function. They do not exist on hotplugged memory. 6763 */ 6764 if (context == MEMINIT_EARLY) { 6765 if (overlap_memmap_init(zone, &pfn)) 6766 continue; 6767 if (defer_init(nid, pfn, zone_end_pfn)) 6768 break; 6769 } 6770 6771 page = pfn_to_page(pfn); 6772 __init_single_page(page, pfn, zone, nid); 6773 if (context == MEMINIT_HOTPLUG) 6774 __SetPageReserved(page); 6775 6776 /* 6777 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6778 * such that unmovable allocations won't be scattered all 6779 * over the place during system boot. 6780 */ 6781 if (pageblock_aligned(pfn)) { 6782 set_pageblock_migratetype(page, migratetype); 6783 cond_resched(); 6784 } 6785 pfn++; 6786 } 6787 } 6788 6789 #ifdef CONFIG_ZONE_DEVICE 6790 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6791 unsigned long zone_idx, int nid, 6792 struct dev_pagemap *pgmap) 6793 { 6794 6795 __init_single_page(page, pfn, zone_idx, nid); 6796 6797 /* 6798 * Mark page reserved as it will need to wait for onlining 6799 * phase for it to be fully associated with a zone. 6800 * 6801 * We can use the non-atomic __set_bit operation for setting 6802 * the flag as we are still initializing the pages. 6803 */ 6804 __SetPageReserved(page); 6805 6806 /* 6807 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6808 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6809 * ever freed or placed on a driver-private list. 6810 */ 6811 page->pgmap = pgmap; 6812 page->zone_device_data = NULL; 6813 6814 /* 6815 * Mark the block movable so that blocks are reserved for 6816 * movable at startup. This will force kernel allocations 6817 * to reserve their blocks rather than leaking throughout 6818 * the address space during boot when many long-lived 6819 * kernel allocations are made. 6820 * 6821 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6822 * because this is done early in section_activate() 6823 */ 6824 if (pageblock_aligned(pfn)) { 6825 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6826 cond_resched(); 6827 } 6828 6829 /* 6830 * ZONE_DEVICE pages are released directly to the driver page allocator 6831 * which will set the page count to 1 when allocating the page. 6832 */ 6833 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 6834 pgmap->type == MEMORY_DEVICE_COHERENT) 6835 set_page_count(page, 0); 6836 } 6837 6838 /* 6839 * With compound page geometry and when struct pages are stored in ram most 6840 * tail pages are reused. Consequently, the amount of unique struct pages to 6841 * initialize is a lot smaller that the total amount of struct pages being 6842 * mapped. This is a paired / mild layering violation with explicit knowledge 6843 * of how the sparse_vmemmap internals handle compound pages in the lack 6844 * of an altmap. See vmemmap_populate_compound_pages(). 6845 */ 6846 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6847 unsigned long nr_pages) 6848 { 6849 return is_power_of_2(sizeof(struct page)) && 6850 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6851 } 6852 6853 static void __ref memmap_init_compound(struct page *head, 6854 unsigned long head_pfn, 6855 unsigned long zone_idx, int nid, 6856 struct dev_pagemap *pgmap, 6857 unsigned long nr_pages) 6858 { 6859 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6860 unsigned int order = pgmap->vmemmap_shift; 6861 6862 __SetPageHead(head); 6863 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6864 struct page *page = pfn_to_page(pfn); 6865 6866 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6867 prep_compound_tail(head, pfn - head_pfn); 6868 set_page_count(page, 0); 6869 6870 /* 6871 * The first tail page stores important compound page info. 6872 * Call prep_compound_head() after the first tail page has 6873 * been initialized, to not have the data overwritten. 6874 */ 6875 if (pfn == head_pfn + 1) 6876 prep_compound_head(head, order); 6877 } 6878 } 6879 6880 void __ref memmap_init_zone_device(struct zone *zone, 6881 unsigned long start_pfn, 6882 unsigned long nr_pages, 6883 struct dev_pagemap *pgmap) 6884 { 6885 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6886 struct pglist_data *pgdat = zone->zone_pgdat; 6887 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6888 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6889 unsigned long zone_idx = zone_idx(zone); 6890 unsigned long start = jiffies; 6891 int nid = pgdat->node_id; 6892 6893 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 6894 return; 6895 6896 /* 6897 * The call to memmap_init should have already taken care 6898 * of the pages reserved for the memmap, so we can just jump to 6899 * the end of that region and start processing the device pages. 6900 */ 6901 if (altmap) { 6902 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6903 nr_pages = end_pfn - start_pfn; 6904 } 6905 6906 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6907 struct page *page = pfn_to_page(pfn); 6908 6909 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6910 6911 if (pfns_per_compound == 1) 6912 continue; 6913 6914 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6915 compound_nr_pages(altmap, pfns_per_compound)); 6916 } 6917 6918 pr_info("%s initialised %lu pages in %ums\n", __func__, 6919 nr_pages, jiffies_to_msecs(jiffies - start)); 6920 } 6921 6922 #endif 6923 static void __meminit zone_init_free_lists(struct zone *zone) 6924 { 6925 unsigned int order, t; 6926 for_each_migratetype_order(order, t) { 6927 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6928 zone->free_area[order].nr_free = 0; 6929 } 6930 } 6931 6932 /* 6933 * Only struct pages that correspond to ranges defined by memblock.memory 6934 * are zeroed and initialized by going through __init_single_page() during 6935 * memmap_init_zone_range(). 6936 * 6937 * But, there could be struct pages that correspond to holes in 6938 * memblock.memory. This can happen because of the following reasons: 6939 * - physical memory bank size is not necessarily the exact multiple of the 6940 * arbitrary section size 6941 * - early reserved memory may not be listed in memblock.memory 6942 * - memory layouts defined with memmap= kernel parameter may not align 6943 * nicely with memmap sections 6944 * 6945 * Explicitly initialize those struct pages so that: 6946 * - PG_Reserved is set 6947 * - zone and node links point to zone and node that span the page if the 6948 * hole is in the middle of a zone 6949 * - zone and node links point to adjacent zone/node if the hole falls on 6950 * the zone boundary; the pages in such holes will be prepended to the 6951 * zone/node above the hole except for the trailing pages in the last 6952 * section that will be appended to the zone/node below. 6953 */ 6954 static void __init init_unavailable_range(unsigned long spfn, 6955 unsigned long epfn, 6956 int zone, int node) 6957 { 6958 unsigned long pfn; 6959 u64 pgcnt = 0; 6960 6961 for (pfn = spfn; pfn < epfn; pfn++) { 6962 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6963 pfn = pageblock_end_pfn(pfn) - 1; 6964 continue; 6965 } 6966 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6967 __SetPageReserved(pfn_to_page(pfn)); 6968 pgcnt++; 6969 } 6970 6971 if (pgcnt) 6972 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6973 node, zone_names[zone], pgcnt); 6974 } 6975 6976 static void __init memmap_init_zone_range(struct zone *zone, 6977 unsigned long start_pfn, 6978 unsigned long end_pfn, 6979 unsigned long *hole_pfn) 6980 { 6981 unsigned long zone_start_pfn = zone->zone_start_pfn; 6982 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6983 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6984 6985 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6986 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6987 6988 if (start_pfn >= end_pfn) 6989 return; 6990 6991 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6992 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6993 6994 if (*hole_pfn < start_pfn) 6995 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6996 6997 *hole_pfn = end_pfn; 6998 } 6999 7000 static void __init memmap_init(void) 7001 { 7002 unsigned long start_pfn, end_pfn; 7003 unsigned long hole_pfn = 0; 7004 int i, j, zone_id = 0, nid; 7005 7006 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7007 struct pglist_data *node = NODE_DATA(nid); 7008 7009 for (j = 0; j < MAX_NR_ZONES; j++) { 7010 struct zone *zone = node->node_zones + j; 7011 7012 if (!populated_zone(zone)) 7013 continue; 7014 7015 memmap_init_zone_range(zone, start_pfn, end_pfn, 7016 &hole_pfn); 7017 zone_id = j; 7018 } 7019 } 7020 7021 #ifdef CONFIG_SPARSEMEM 7022 /* 7023 * Initialize the memory map for hole in the range [memory_end, 7024 * section_end]. 7025 * Append the pages in this hole to the highest zone in the last 7026 * node. 7027 * The call to init_unavailable_range() is outside the ifdef to 7028 * silence the compiler warining about zone_id set but not used; 7029 * for FLATMEM it is a nop anyway 7030 */ 7031 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7032 if (hole_pfn < end_pfn) 7033 #endif 7034 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7035 } 7036 7037 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7038 phys_addr_t min_addr, int nid, bool exact_nid) 7039 { 7040 void *ptr; 7041 7042 if (exact_nid) 7043 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7044 MEMBLOCK_ALLOC_ACCESSIBLE, 7045 nid); 7046 else 7047 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7048 MEMBLOCK_ALLOC_ACCESSIBLE, 7049 nid); 7050 7051 if (ptr && size > 0) 7052 page_init_poison(ptr, size); 7053 7054 return ptr; 7055 } 7056 7057 static int zone_batchsize(struct zone *zone) 7058 { 7059 #ifdef CONFIG_MMU 7060 int batch; 7061 7062 /* 7063 * The number of pages to batch allocate is either ~0.1% 7064 * of the zone or 1MB, whichever is smaller. The batch 7065 * size is striking a balance between allocation latency 7066 * and zone lock contention. 7067 */ 7068 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 7069 batch /= 4; /* We effectively *= 4 below */ 7070 if (batch < 1) 7071 batch = 1; 7072 7073 /* 7074 * Clamp the batch to a 2^n - 1 value. Having a power 7075 * of 2 value was found to be more likely to have 7076 * suboptimal cache aliasing properties in some cases. 7077 * 7078 * For example if 2 tasks are alternately allocating 7079 * batches of pages, one task can end up with a lot 7080 * of pages of one half of the possible page colors 7081 * and the other with pages of the other colors. 7082 */ 7083 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7084 7085 return batch; 7086 7087 #else 7088 /* The deferral and batching of frees should be suppressed under NOMMU 7089 * conditions. 7090 * 7091 * The problem is that NOMMU needs to be able to allocate large chunks 7092 * of contiguous memory as there's no hardware page translation to 7093 * assemble apparent contiguous memory from discontiguous pages. 7094 * 7095 * Queueing large contiguous runs of pages for batching, however, 7096 * causes the pages to actually be freed in smaller chunks. As there 7097 * can be a significant delay between the individual batches being 7098 * recycled, this leads to the once large chunks of space being 7099 * fragmented and becoming unavailable for high-order allocations. 7100 */ 7101 return 0; 7102 #endif 7103 } 7104 7105 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7106 { 7107 #ifdef CONFIG_MMU 7108 int high; 7109 int nr_split_cpus; 7110 unsigned long total_pages; 7111 7112 if (!percpu_pagelist_high_fraction) { 7113 /* 7114 * By default, the high value of the pcp is based on the zone 7115 * low watermark so that if they are full then background 7116 * reclaim will not be started prematurely. 7117 */ 7118 total_pages = low_wmark_pages(zone); 7119 } else { 7120 /* 7121 * If percpu_pagelist_high_fraction is configured, the high 7122 * value is based on a fraction of the managed pages in the 7123 * zone. 7124 */ 7125 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7126 } 7127 7128 /* 7129 * Split the high value across all online CPUs local to the zone. Note 7130 * that early in boot that CPUs may not be online yet and that during 7131 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7132 * onlined. For memory nodes that have no CPUs, split pcp->high across 7133 * all online CPUs to mitigate the risk that reclaim is triggered 7134 * prematurely due to pages stored on pcp lists. 7135 */ 7136 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7137 if (!nr_split_cpus) 7138 nr_split_cpus = num_online_cpus(); 7139 high = total_pages / nr_split_cpus; 7140 7141 /* 7142 * Ensure high is at least batch*4. The multiple is based on the 7143 * historical relationship between high and batch. 7144 */ 7145 high = max(high, batch << 2); 7146 7147 return high; 7148 #else 7149 return 0; 7150 #endif 7151 } 7152 7153 /* 7154 * pcp->high and pcp->batch values are related and generally batch is lower 7155 * than high. They are also related to pcp->count such that count is lower 7156 * than high, and as soon as it reaches high, the pcplist is flushed. 7157 * 7158 * However, guaranteeing these relations at all times would require e.g. write 7159 * barriers here but also careful usage of read barriers at the read side, and 7160 * thus be prone to error and bad for performance. Thus the update only prevents 7161 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7162 * can cope with those fields changing asynchronously, and fully trust only the 7163 * pcp->count field on the local CPU with interrupts disabled. 7164 * 7165 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7166 * outside of boot time (or some other assurance that no concurrent updaters 7167 * exist). 7168 */ 7169 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7170 unsigned long batch) 7171 { 7172 WRITE_ONCE(pcp->batch, batch); 7173 WRITE_ONCE(pcp->high, high); 7174 } 7175 7176 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7177 { 7178 int pindex; 7179 7180 memset(pcp, 0, sizeof(*pcp)); 7181 memset(pzstats, 0, sizeof(*pzstats)); 7182 7183 spin_lock_init(&pcp->lock); 7184 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7185 INIT_LIST_HEAD(&pcp->lists[pindex]); 7186 7187 /* 7188 * Set batch and high values safe for a boot pageset. A true percpu 7189 * pageset's initialization will update them subsequently. Here we don't 7190 * need to be as careful as pageset_update() as nobody can access the 7191 * pageset yet. 7192 */ 7193 pcp->high = BOOT_PAGESET_HIGH; 7194 pcp->batch = BOOT_PAGESET_BATCH; 7195 pcp->free_factor = 0; 7196 } 7197 7198 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7199 unsigned long batch) 7200 { 7201 struct per_cpu_pages *pcp; 7202 int cpu; 7203 7204 for_each_possible_cpu(cpu) { 7205 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7206 pageset_update(pcp, high, batch); 7207 } 7208 } 7209 7210 /* 7211 * Calculate and set new high and batch values for all per-cpu pagesets of a 7212 * zone based on the zone's size. 7213 */ 7214 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7215 { 7216 int new_high, new_batch; 7217 7218 new_batch = max(1, zone_batchsize(zone)); 7219 new_high = zone_highsize(zone, new_batch, cpu_online); 7220 7221 if (zone->pageset_high == new_high && 7222 zone->pageset_batch == new_batch) 7223 return; 7224 7225 zone->pageset_high = new_high; 7226 zone->pageset_batch = new_batch; 7227 7228 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7229 } 7230 7231 void __meminit setup_zone_pageset(struct zone *zone) 7232 { 7233 int cpu; 7234 7235 /* Size may be 0 on !SMP && !NUMA */ 7236 if (sizeof(struct per_cpu_zonestat) > 0) 7237 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7238 7239 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7240 for_each_possible_cpu(cpu) { 7241 struct per_cpu_pages *pcp; 7242 struct per_cpu_zonestat *pzstats; 7243 7244 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7245 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7246 per_cpu_pages_init(pcp, pzstats); 7247 } 7248 7249 zone_set_pageset_high_and_batch(zone, 0); 7250 } 7251 7252 /* 7253 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7254 * page high values need to be recalculated. 7255 */ 7256 static void zone_pcp_update(struct zone *zone, int cpu_online) 7257 { 7258 mutex_lock(&pcp_batch_high_lock); 7259 zone_set_pageset_high_and_batch(zone, cpu_online); 7260 mutex_unlock(&pcp_batch_high_lock); 7261 } 7262 7263 /* 7264 * Allocate per cpu pagesets and initialize them. 7265 * Before this call only boot pagesets were available. 7266 */ 7267 void __init setup_per_cpu_pageset(void) 7268 { 7269 struct pglist_data *pgdat; 7270 struct zone *zone; 7271 int __maybe_unused cpu; 7272 7273 for_each_populated_zone(zone) 7274 setup_zone_pageset(zone); 7275 7276 #ifdef CONFIG_NUMA 7277 /* 7278 * Unpopulated zones continue using the boot pagesets. 7279 * The numa stats for these pagesets need to be reset. 7280 * Otherwise, they will end up skewing the stats of 7281 * the nodes these zones are associated with. 7282 */ 7283 for_each_possible_cpu(cpu) { 7284 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7285 memset(pzstats->vm_numa_event, 0, 7286 sizeof(pzstats->vm_numa_event)); 7287 } 7288 #endif 7289 7290 for_each_online_pgdat(pgdat) 7291 pgdat->per_cpu_nodestats = 7292 alloc_percpu(struct per_cpu_nodestat); 7293 } 7294 7295 static __meminit void zone_pcp_init(struct zone *zone) 7296 { 7297 /* 7298 * per cpu subsystem is not up at this point. The following code 7299 * relies on the ability of the linker to provide the 7300 * offset of a (static) per cpu variable into the per cpu area. 7301 */ 7302 zone->per_cpu_pageset = &boot_pageset; 7303 zone->per_cpu_zonestats = &boot_zonestats; 7304 zone->pageset_high = BOOT_PAGESET_HIGH; 7305 zone->pageset_batch = BOOT_PAGESET_BATCH; 7306 7307 if (populated_zone(zone)) 7308 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7309 zone->present_pages, zone_batchsize(zone)); 7310 } 7311 7312 void __meminit init_currently_empty_zone(struct zone *zone, 7313 unsigned long zone_start_pfn, 7314 unsigned long size) 7315 { 7316 struct pglist_data *pgdat = zone->zone_pgdat; 7317 int zone_idx = zone_idx(zone) + 1; 7318 7319 if (zone_idx > pgdat->nr_zones) 7320 pgdat->nr_zones = zone_idx; 7321 7322 zone->zone_start_pfn = zone_start_pfn; 7323 7324 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7325 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7326 pgdat->node_id, 7327 (unsigned long)zone_idx(zone), 7328 zone_start_pfn, (zone_start_pfn + size)); 7329 7330 zone_init_free_lists(zone); 7331 zone->initialized = 1; 7332 } 7333 7334 /** 7335 * get_pfn_range_for_nid - Return the start and end page frames for a node 7336 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7337 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7338 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7339 * 7340 * It returns the start and end page frame of a node based on information 7341 * provided by memblock_set_node(). If called for a node 7342 * with no available memory, a warning is printed and the start and end 7343 * PFNs will be 0. 7344 */ 7345 void __init get_pfn_range_for_nid(unsigned int nid, 7346 unsigned long *start_pfn, unsigned long *end_pfn) 7347 { 7348 unsigned long this_start_pfn, this_end_pfn; 7349 int i; 7350 7351 *start_pfn = -1UL; 7352 *end_pfn = 0; 7353 7354 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7355 *start_pfn = min(*start_pfn, this_start_pfn); 7356 *end_pfn = max(*end_pfn, this_end_pfn); 7357 } 7358 7359 if (*start_pfn == -1UL) 7360 *start_pfn = 0; 7361 } 7362 7363 /* 7364 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7365 * assumption is made that zones within a node are ordered in monotonic 7366 * increasing memory addresses so that the "highest" populated zone is used 7367 */ 7368 static void __init find_usable_zone_for_movable(void) 7369 { 7370 int zone_index; 7371 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7372 if (zone_index == ZONE_MOVABLE) 7373 continue; 7374 7375 if (arch_zone_highest_possible_pfn[zone_index] > 7376 arch_zone_lowest_possible_pfn[zone_index]) 7377 break; 7378 } 7379 7380 VM_BUG_ON(zone_index == -1); 7381 movable_zone = zone_index; 7382 } 7383 7384 /* 7385 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7386 * because it is sized independent of architecture. Unlike the other zones, 7387 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7388 * in each node depending on the size of each node and how evenly kernelcore 7389 * is distributed. This helper function adjusts the zone ranges 7390 * provided by the architecture for a given node by using the end of the 7391 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7392 * zones within a node are in order of monotonic increases memory addresses 7393 */ 7394 static void __init adjust_zone_range_for_zone_movable(int nid, 7395 unsigned long zone_type, 7396 unsigned long node_start_pfn, 7397 unsigned long node_end_pfn, 7398 unsigned long *zone_start_pfn, 7399 unsigned long *zone_end_pfn) 7400 { 7401 /* Only adjust if ZONE_MOVABLE is on this node */ 7402 if (zone_movable_pfn[nid]) { 7403 /* Size ZONE_MOVABLE */ 7404 if (zone_type == ZONE_MOVABLE) { 7405 *zone_start_pfn = zone_movable_pfn[nid]; 7406 *zone_end_pfn = min(node_end_pfn, 7407 arch_zone_highest_possible_pfn[movable_zone]); 7408 7409 /* Adjust for ZONE_MOVABLE starting within this range */ 7410 } else if (!mirrored_kernelcore && 7411 *zone_start_pfn < zone_movable_pfn[nid] && 7412 *zone_end_pfn > zone_movable_pfn[nid]) { 7413 *zone_end_pfn = zone_movable_pfn[nid]; 7414 7415 /* Check if this whole range is within ZONE_MOVABLE */ 7416 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7417 *zone_start_pfn = *zone_end_pfn; 7418 } 7419 } 7420 7421 /* 7422 * Return the number of pages a zone spans in a node, including holes 7423 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7424 */ 7425 static unsigned long __init zone_spanned_pages_in_node(int nid, 7426 unsigned long zone_type, 7427 unsigned long node_start_pfn, 7428 unsigned long node_end_pfn, 7429 unsigned long *zone_start_pfn, 7430 unsigned long *zone_end_pfn) 7431 { 7432 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7433 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7434 /* When hotadd a new node from cpu_up(), the node should be empty */ 7435 if (!node_start_pfn && !node_end_pfn) 7436 return 0; 7437 7438 /* Get the start and end of the zone */ 7439 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7440 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7441 adjust_zone_range_for_zone_movable(nid, zone_type, 7442 node_start_pfn, node_end_pfn, 7443 zone_start_pfn, zone_end_pfn); 7444 7445 /* Check that this node has pages within the zone's required range */ 7446 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7447 return 0; 7448 7449 /* Move the zone boundaries inside the node if necessary */ 7450 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7451 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7452 7453 /* Return the spanned pages */ 7454 return *zone_end_pfn - *zone_start_pfn; 7455 } 7456 7457 /* 7458 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7459 * then all holes in the requested range will be accounted for. 7460 */ 7461 unsigned long __init __absent_pages_in_range(int nid, 7462 unsigned long range_start_pfn, 7463 unsigned long range_end_pfn) 7464 { 7465 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7466 unsigned long start_pfn, end_pfn; 7467 int i; 7468 7469 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7470 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7471 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7472 nr_absent -= end_pfn - start_pfn; 7473 } 7474 return nr_absent; 7475 } 7476 7477 /** 7478 * absent_pages_in_range - Return number of page frames in holes within a range 7479 * @start_pfn: The start PFN to start searching for holes 7480 * @end_pfn: The end PFN to stop searching for holes 7481 * 7482 * Return: the number of pages frames in memory holes within a range. 7483 */ 7484 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7485 unsigned long end_pfn) 7486 { 7487 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7488 } 7489 7490 /* Return the number of page frames in holes in a zone on a node */ 7491 static unsigned long __init zone_absent_pages_in_node(int nid, 7492 unsigned long zone_type, 7493 unsigned long node_start_pfn, 7494 unsigned long node_end_pfn) 7495 { 7496 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7497 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7498 unsigned long zone_start_pfn, zone_end_pfn; 7499 unsigned long nr_absent; 7500 7501 /* When hotadd a new node from cpu_up(), the node should be empty */ 7502 if (!node_start_pfn && !node_end_pfn) 7503 return 0; 7504 7505 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7506 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7507 7508 adjust_zone_range_for_zone_movable(nid, zone_type, 7509 node_start_pfn, node_end_pfn, 7510 &zone_start_pfn, &zone_end_pfn); 7511 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7512 7513 /* 7514 * ZONE_MOVABLE handling. 7515 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7516 * and vice versa. 7517 */ 7518 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7519 unsigned long start_pfn, end_pfn; 7520 struct memblock_region *r; 7521 7522 for_each_mem_region(r) { 7523 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7524 zone_start_pfn, zone_end_pfn); 7525 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7526 zone_start_pfn, zone_end_pfn); 7527 7528 if (zone_type == ZONE_MOVABLE && 7529 memblock_is_mirror(r)) 7530 nr_absent += end_pfn - start_pfn; 7531 7532 if (zone_type == ZONE_NORMAL && 7533 !memblock_is_mirror(r)) 7534 nr_absent += end_pfn - start_pfn; 7535 } 7536 } 7537 7538 return nr_absent; 7539 } 7540 7541 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7542 unsigned long node_start_pfn, 7543 unsigned long node_end_pfn) 7544 { 7545 unsigned long realtotalpages = 0, totalpages = 0; 7546 enum zone_type i; 7547 7548 for (i = 0; i < MAX_NR_ZONES; i++) { 7549 struct zone *zone = pgdat->node_zones + i; 7550 unsigned long zone_start_pfn, zone_end_pfn; 7551 unsigned long spanned, absent; 7552 unsigned long size, real_size; 7553 7554 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7555 node_start_pfn, 7556 node_end_pfn, 7557 &zone_start_pfn, 7558 &zone_end_pfn); 7559 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7560 node_start_pfn, 7561 node_end_pfn); 7562 7563 size = spanned; 7564 real_size = size - absent; 7565 7566 if (size) 7567 zone->zone_start_pfn = zone_start_pfn; 7568 else 7569 zone->zone_start_pfn = 0; 7570 zone->spanned_pages = size; 7571 zone->present_pages = real_size; 7572 #if defined(CONFIG_MEMORY_HOTPLUG) 7573 zone->present_early_pages = real_size; 7574 #endif 7575 7576 totalpages += size; 7577 realtotalpages += real_size; 7578 } 7579 7580 pgdat->node_spanned_pages = totalpages; 7581 pgdat->node_present_pages = realtotalpages; 7582 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7583 } 7584 7585 #ifndef CONFIG_SPARSEMEM 7586 /* 7587 * Calculate the size of the zone->blockflags rounded to an unsigned long 7588 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7589 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7590 * round what is now in bits to nearest long in bits, then return it in 7591 * bytes. 7592 */ 7593 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7594 { 7595 unsigned long usemapsize; 7596 7597 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7598 usemapsize = roundup(zonesize, pageblock_nr_pages); 7599 usemapsize = usemapsize >> pageblock_order; 7600 usemapsize *= NR_PAGEBLOCK_BITS; 7601 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7602 7603 return usemapsize / 8; 7604 } 7605 7606 static void __ref setup_usemap(struct zone *zone) 7607 { 7608 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7609 zone->spanned_pages); 7610 zone->pageblock_flags = NULL; 7611 if (usemapsize) { 7612 zone->pageblock_flags = 7613 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7614 zone_to_nid(zone)); 7615 if (!zone->pageblock_flags) 7616 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7617 usemapsize, zone->name, zone_to_nid(zone)); 7618 } 7619 } 7620 #else 7621 static inline void setup_usemap(struct zone *zone) {} 7622 #endif /* CONFIG_SPARSEMEM */ 7623 7624 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7625 7626 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7627 void __init set_pageblock_order(void) 7628 { 7629 unsigned int order = MAX_ORDER - 1; 7630 7631 /* Check that pageblock_nr_pages has not already been setup */ 7632 if (pageblock_order) 7633 return; 7634 7635 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7636 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7637 order = HUGETLB_PAGE_ORDER; 7638 7639 /* 7640 * Assume the largest contiguous order of interest is a huge page. 7641 * This value may be variable depending on boot parameters on IA64 and 7642 * powerpc. 7643 */ 7644 pageblock_order = order; 7645 } 7646 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7647 7648 /* 7649 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7650 * is unused as pageblock_order is set at compile-time. See 7651 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7652 * the kernel config 7653 */ 7654 void __init set_pageblock_order(void) 7655 { 7656 } 7657 7658 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7659 7660 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7661 unsigned long present_pages) 7662 { 7663 unsigned long pages = spanned_pages; 7664 7665 /* 7666 * Provide a more accurate estimation if there are holes within 7667 * the zone and SPARSEMEM is in use. If there are holes within the 7668 * zone, each populated memory region may cost us one or two extra 7669 * memmap pages due to alignment because memmap pages for each 7670 * populated regions may not be naturally aligned on page boundary. 7671 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7672 */ 7673 if (spanned_pages > present_pages + (present_pages >> 4) && 7674 IS_ENABLED(CONFIG_SPARSEMEM)) 7675 pages = present_pages; 7676 7677 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7678 } 7679 7680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7681 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7682 { 7683 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7684 7685 spin_lock_init(&ds_queue->split_queue_lock); 7686 INIT_LIST_HEAD(&ds_queue->split_queue); 7687 ds_queue->split_queue_len = 0; 7688 } 7689 #else 7690 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7691 #endif 7692 7693 #ifdef CONFIG_COMPACTION 7694 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7695 { 7696 init_waitqueue_head(&pgdat->kcompactd_wait); 7697 } 7698 #else 7699 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7700 #endif 7701 7702 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7703 { 7704 int i; 7705 7706 pgdat_resize_init(pgdat); 7707 pgdat_kswapd_lock_init(pgdat); 7708 7709 pgdat_init_split_queue(pgdat); 7710 pgdat_init_kcompactd(pgdat); 7711 7712 init_waitqueue_head(&pgdat->kswapd_wait); 7713 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7714 7715 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7716 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7717 7718 pgdat_page_ext_init(pgdat); 7719 lruvec_init(&pgdat->__lruvec); 7720 } 7721 7722 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7723 unsigned long remaining_pages) 7724 { 7725 atomic_long_set(&zone->managed_pages, remaining_pages); 7726 zone_set_nid(zone, nid); 7727 zone->name = zone_names[idx]; 7728 zone->zone_pgdat = NODE_DATA(nid); 7729 spin_lock_init(&zone->lock); 7730 zone_seqlock_init(zone); 7731 zone_pcp_init(zone); 7732 } 7733 7734 /* 7735 * Set up the zone data structures 7736 * - init pgdat internals 7737 * - init all zones belonging to this node 7738 * 7739 * NOTE: this function is only called during memory hotplug 7740 */ 7741 #ifdef CONFIG_MEMORY_HOTPLUG 7742 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7743 { 7744 int nid = pgdat->node_id; 7745 enum zone_type z; 7746 int cpu; 7747 7748 pgdat_init_internals(pgdat); 7749 7750 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7751 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7752 7753 /* 7754 * Reset the nr_zones, order and highest_zoneidx before reuse. 7755 * Note that kswapd will init kswapd_highest_zoneidx properly 7756 * when it starts in the near future. 7757 */ 7758 pgdat->nr_zones = 0; 7759 pgdat->kswapd_order = 0; 7760 pgdat->kswapd_highest_zoneidx = 0; 7761 pgdat->node_start_pfn = 0; 7762 for_each_online_cpu(cpu) { 7763 struct per_cpu_nodestat *p; 7764 7765 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7766 memset(p, 0, sizeof(*p)); 7767 } 7768 7769 for (z = 0; z < MAX_NR_ZONES; z++) 7770 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7771 } 7772 #endif 7773 7774 /* 7775 * Set up the zone data structures: 7776 * - mark all pages reserved 7777 * - mark all memory queues empty 7778 * - clear the memory bitmaps 7779 * 7780 * NOTE: pgdat should get zeroed by caller. 7781 * NOTE: this function is only called during early init. 7782 */ 7783 static void __init free_area_init_core(struct pglist_data *pgdat) 7784 { 7785 enum zone_type j; 7786 int nid = pgdat->node_id; 7787 7788 pgdat_init_internals(pgdat); 7789 pgdat->per_cpu_nodestats = &boot_nodestats; 7790 7791 for (j = 0; j < MAX_NR_ZONES; j++) { 7792 struct zone *zone = pgdat->node_zones + j; 7793 unsigned long size, freesize, memmap_pages; 7794 7795 size = zone->spanned_pages; 7796 freesize = zone->present_pages; 7797 7798 /* 7799 * Adjust freesize so that it accounts for how much memory 7800 * is used by this zone for memmap. This affects the watermark 7801 * and per-cpu initialisations 7802 */ 7803 memmap_pages = calc_memmap_size(size, freesize); 7804 if (!is_highmem_idx(j)) { 7805 if (freesize >= memmap_pages) { 7806 freesize -= memmap_pages; 7807 if (memmap_pages) 7808 pr_debug(" %s zone: %lu pages used for memmap\n", 7809 zone_names[j], memmap_pages); 7810 } else 7811 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7812 zone_names[j], memmap_pages, freesize); 7813 } 7814 7815 /* Account for reserved pages */ 7816 if (j == 0 && freesize > dma_reserve) { 7817 freesize -= dma_reserve; 7818 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7819 } 7820 7821 if (!is_highmem_idx(j)) 7822 nr_kernel_pages += freesize; 7823 /* Charge for highmem memmap if there are enough kernel pages */ 7824 else if (nr_kernel_pages > memmap_pages * 2) 7825 nr_kernel_pages -= memmap_pages; 7826 nr_all_pages += freesize; 7827 7828 /* 7829 * Set an approximate value for lowmem here, it will be adjusted 7830 * when the bootmem allocator frees pages into the buddy system. 7831 * And all highmem pages will be managed by the buddy system. 7832 */ 7833 zone_init_internals(zone, j, nid, freesize); 7834 7835 if (!size) 7836 continue; 7837 7838 set_pageblock_order(); 7839 setup_usemap(zone); 7840 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7841 } 7842 } 7843 7844 #ifdef CONFIG_FLATMEM 7845 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7846 { 7847 unsigned long __maybe_unused start = 0; 7848 unsigned long __maybe_unused offset = 0; 7849 7850 /* Skip empty nodes */ 7851 if (!pgdat->node_spanned_pages) 7852 return; 7853 7854 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7855 offset = pgdat->node_start_pfn - start; 7856 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7857 if (!pgdat->node_mem_map) { 7858 unsigned long size, end; 7859 struct page *map; 7860 7861 /* 7862 * The zone's endpoints aren't required to be MAX_ORDER 7863 * aligned but the node_mem_map endpoints must be in order 7864 * for the buddy allocator to function correctly. 7865 */ 7866 end = pgdat_end_pfn(pgdat); 7867 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7868 size = (end - start) * sizeof(struct page); 7869 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7870 pgdat->node_id, false); 7871 if (!map) 7872 panic("Failed to allocate %ld bytes for node %d memory map\n", 7873 size, pgdat->node_id); 7874 pgdat->node_mem_map = map + offset; 7875 } 7876 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7877 __func__, pgdat->node_id, (unsigned long)pgdat, 7878 (unsigned long)pgdat->node_mem_map); 7879 #ifndef CONFIG_NUMA 7880 /* 7881 * With no DISCONTIG, the global mem_map is just set as node 0's 7882 */ 7883 if (pgdat == NODE_DATA(0)) { 7884 mem_map = NODE_DATA(0)->node_mem_map; 7885 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7886 mem_map -= offset; 7887 } 7888 #endif 7889 } 7890 #else 7891 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7892 #endif /* CONFIG_FLATMEM */ 7893 7894 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7895 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7896 { 7897 pgdat->first_deferred_pfn = ULONG_MAX; 7898 } 7899 #else 7900 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7901 #endif 7902 7903 static void __init free_area_init_node(int nid) 7904 { 7905 pg_data_t *pgdat = NODE_DATA(nid); 7906 unsigned long start_pfn = 0; 7907 unsigned long end_pfn = 0; 7908 7909 /* pg_data_t should be reset to zero when it's allocated */ 7910 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7911 7912 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7913 7914 pgdat->node_id = nid; 7915 pgdat->node_start_pfn = start_pfn; 7916 pgdat->per_cpu_nodestats = NULL; 7917 7918 if (start_pfn != end_pfn) { 7919 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7920 (u64)start_pfn << PAGE_SHIFT, 7921 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7922 } else { 7923 pr_info("Initmem setup node %d as memoryless\n", nid); 7924 } 7925 7926 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7927 7928 alloc_node_mem_map(pgdat); 7929 pgdat_set_deferred_range(pgdat); 7930 7931 free_area_init_core(pgdat); 7932 } 7933 7934 static void __init free_area_init_memoryless_node(int nid) 7935 { 7936 free_area_init_node(nid); 7937 } 7938 7939 #if MAX_NUMNODES > 1 7940 /* 7941 * Figure out the number of possible node ids. 7942 */ 7943 void __init setup_nr_node_ids(void) 7944 { 7945 unsigned int highest; 7946 7947 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7948 nr_node_ids = highest + 1; 7949 } 7950 #endif 7951 7952 /** 7953 * node_map_pfn_alignment - determine the maximum internode alignment 7954 * 7955 * This function should be called after node map is populated and sorted. 7956 * It calculates the maximum power of two alignment which can distinguish 7957 * all the nodes. 7958 * 7959 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7960 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7961 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7962 * shifted, 1GiB is enough and this function will indicate so. 7963 * 7964 * This is used to test whether pfn -> nid mapping of the chosen memory 7965 * model has fine enough granularity to avoid incorrect mapping for the 7966 * populated node map. 7967 * 7968 * Return: the determined alignment in pfn's. 0 if there is no alignment 7969 * requirement (single node). 7970 */ 7971 unsigned long __init node_map_pfn_alignment(void) 7972 { 7973 unsigned long accl_mask = 0, last_end = 0; 7974 unsigned long start, end, mask; 7975 int last_nid = NUMA_NO_NODE; 7976 int i, nid; 7977 7978 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7979 if (!start || last_nid < 0 || last_nid == nid) { 7980 last_nid = nid; 7981 last_end = end; 7982 continue; 7983 } 7984 7985 /* 7986 * Start with a mask granular enough to pin-point to the 7987 * start pfn and tick off bits one-by-one until it becomes 7988 * too coarse to separate the current node from the last. 7989 */ 7990 mask = ~((1 << __ffs(start)) - 1); 7991 while (mask && last_end <= (start & (mask << 1))) 7992 mask <<= 1; 7993 7994 /* accumulate all internode masks */ 7995 accl_mask |= mask; 7996 } 7997 7998 /* convert mask to number of pages */ 7999 return ~accl_mask + 1; 8000 } 8001 8002 /* 8003 * early_calculate_totalpages() 8004 * Sum pages in active regions for movable zone. 8005 * Populate N_MEMORY for calculating usable_nodes. 8006 */ 8007 static unsigned long __init early_calculate_totalpages(void) 8008 { 8009 unsigned long totalpages = 0; 8010 unsigned long start_pfn, end_pfn; 8011 int i, nid; 8012 8013 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8014 unsigned long pages = end_pfn - start_pfn; 8015 8016 totalpages += pages; 8017 if (pages) 8018 node_set_state(nid, N_MEMORY); 8019 } 8020 return totalpages; 8021 } 8022 8023 /* 8024 * Find the PFN the Movable zone begins in each node. Kernel memory 8025 * is spread evenly between nodes as long as the nodes have enough 8026 * memory. When they don't, some nodes will have more kernelcore than 8027 * others 8028 */ 8029 static void __init find_zone_movable_pfns_for_nodes(void) 8030 { 8031 int i, nid; 8032 unsigned long usable_startpfn; 8033 unsigned long kernelcore_node, kernelcore_remaining; 8034 /* save the state before borrow the nodemask */ 8035 nodemask_t saved_node_state = node_states[N_MEMORY]; 8036 unsigned long totalpages = early_calculate_totalpages(); 8037 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8038 struct memblock_region *r; 8039 8040 /* Need to find movable_zone earlier when movable_node is specified. */ 8041 find_usable_zone_for_movable(); 8042 8043 /* 8044 * If movable_node is specified, ignore kernelcore and movablecore 8045 * options. 8046 */ 8047 if (movable_node_is_enabled()) { 8048 for_each_mem_region(r) { 8049 if (!memblock_is_hotpluggable(r)) 8050 continue; 8051 8052 nid = memblock_get_region_node(r); 8053 8054 usable_startpfn = PFN_DOWN(r->base); 8055 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8056 min(usable_startpfn, zone_movable_pfn[nid]) : 8057 usable_startpfn; 8058 } 8059 8060 goto out2; 8061 } 8062 8063 /* 8064 * If kernelcore=mirror is specified, ignore movablecore option 8065 */ 8066 if (mirrored_kernelcore) { 8067 bool mem_below_4gb_not_mirrored = false; 8068 8069 for_each_mem_region(r) { 8070 if (memblock_is_mirror(r)) 8071 continue; 8072 8073 nid = memblock_get_region_node(r); 8074 8075 usable_startpfn = memblock_region_memory_base_pfn(r); 8076 8077 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8078 mem_below_4gb_not_mirrored = true; 8079 continue; 8080 } 8081 8082 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8083 min(usable_startpfn, zone_movable_pfn[nid]) : 8084 usable_startpfn; 8085 } 8086 8087 if (mem_below_4gb_not_mirrored) 8088 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8089 8090 goto out2; 8091 } 8092 8093 /* 8094 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8095 * amount of necessary memory. 8096 */ 8097 if (required_kernelcore_percent) 8098 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8099 10000UL; 8100 if (required_movablecore_percent) 8101 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8102 10000UL; 8103 8104 /* 8105 * If movablecore= was specified, calculate what size of 8106 * kernelcore that corresponds so that memory usable for 8107 * any allocation type is evenly spread. If both kernelcore 8108 * and movablecore are specified, then the value of kernelcore 8109 * will be used for required_kernelcore if it's greater than 8110 * what movablecore would have allowed. 8111 */ 8112 if (required_movablecore) { 8113 unsigned long corepages; 8114 8115 /* 8116 * Round-up so that ZONE_MOVABLE is at least as large as what 8117 * was requested by the user 8118 */ 8119 required_movablecore = 8120 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8121 required_movablecore = min(totalpages, required_movablecore); 8122 corepages = totalpages - required_movablecore; 8123 8124 required_kernelcore = max(required_kernelcore, corepages); 8125 } 8126 8127 /* 8128 * If kernelcore was not specified or kernelcore size is larger 8129 * than totalpages, there is no ZONE_MOVABLE. 8130 */ 8131 if (!required_kernelcore || required_kernelcore >= totalpages) 8132 goto out; 8133 8134 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8135 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8136 8137 restart: 8138 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8139 kernelcore_node = required_kernelcore / usable_nodes; 8140 for_each_node_state(nid, N_MEMORY) { 8141 unsigned long start_pfn, end_pfn; 8142 8143 /* 8144 * Recalculate kernelcore_node if the division per node 8145 * now exceeds what is necessary to satisfy the requested 8146 * amount of memory for the kernel 8147 */ 8148 if (required_kernelcore < kernelcore_node) 8149 kernelcore_node = required_kernelcore / usable_nodes; 8150 8151 /* 8152 * As the map is walked, we track how much memory is usable 8153 * by the kernel using kernelcore_remaining. When it is 8154 * 0, the rest of the node is usable by ZONE_MOVABLE 8155 */ 8156 kernelcore_remaining = kernelcore_node; 8157 8158 /* Go through each range of PFNs within this node */ 8159 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8160 unsigned long size_pages; 8161 8162 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8163 if (start_pfn >= end_pfn) 8164 continue; 8165 8166 /* Account for what is only usable for kernelcore */ 8167 if (start_pfn < usable_startpfn) { 8168 unsigned long kernel_pages; 8169 kernel_pages = min(end_pfn, usable_startpfn) 8170 - start_pfn; 8171 8172 kernelcore_remaining -= min(kernel_pages, 8173 kernelcore_remaining); 8174 required_kernelcore -= min(kernel_pages, 8175 required_kernelcore); 8176 8177 /* Continue if range is now fully accounted */ 8178 if (end_pfn <= usable_startpfn) { 8179 8180 /* 8181 * Push zone_movable_pfn to the end so 8182 * that if we have to rebalance 8183 * kernelcore across nodes, we will 8184 * not double account here 8185 */ 8186 zone_movable_pfn[nid] = end_pfn; 8187 continue; 8188 } 8189 start_pfn = usable_startpfn; 8190 } 8191 8192 /* 8193 * The usable PFN range for ZONE_MOVABLE is from 8194 * start_pfn->end_pfn. Calculate size_pages as the 8195 * number of pages used as kernelcore 8196 */ 8197 size_pages = end_pfn - start_pfn; 8198 if (size_pages > kernelcore_remaining) 8199 size_pages = kernelcore_remaining; 8200 zone_movable_pfn[nid] = start_pfn + size_pages; 8201 8202 /* 8203 * Some kernelcore has been met, update counts and 8204 * break if the kernelcore for this node has been 8205 * satisfied 8206 */ 8207 required_kernelcore -= min(required_kernelcore, 8208 size_pages); 8209 kernelcore_remaining -= size_pages; 8210 if (!kernelcore_remaining) 8211 break; 8212 } 8213 } 8214 8215 /* 8216 * If there is still required_kernelcore, we do another pass with one 8217 * less node in the count. This will push zone_movable_pfn[nid] further 8218 * along on the nodes that still have memory until kernelcore is 8219 * satisfied 8220 */ 8221 usable_nodes--; 8222 if (usable_nodes && required_kernelcore > usable_nodes) 8223 goto restart; 8224 8225 out2: 8226 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8227 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8228 unsigned long start_pfn, end_pfn; 8229 8230 zone_movable_pfn[nid] = 8231 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8232 8233 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8234 if (zone_movable_pfn[nid] >= end_pfn) 8235 zone_movable_pfn[nid] = 0; 8236 } 8237 8238 out: 8239 /* restore the node_state */ 8240 node_states[N_MEMORY] = saved_node_state; 8241 } 8242 8243 /* Any regular or high memory on that node ? */ 8244 static void check_for_memory(pg_data_t *pgdat, int nid) 8245 { 8246 enum zone_type zone_type; 8247 8248 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8249 struct zone *zone = &pgdat->node_zones[zone_type]; 8250 if (populated_zone(zone)) { 8251 if (IS_ENABLED(CONFIG_HIGHMEM)) 8252 node_set_state(nid, N_HIGH_MEMORY); 8253 if (zone_type <= ZONE_NORMAL) 8254 node_set_state(nid, N_NORMAL_MEMORY); 8255 break; 8256 } 8257 } 8258 } 8259 8260 /* 8261 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8262 * such cases we allow max_zone_pfn sorted in the descending order 8263 */ 8264 bool __weak arch_has_descending_max_zone_pfns(void) 8265 { 8266 return false; 8267 } 8268 8269 /** 8270 * free_area_init - Initialise all pg_data_t and zone data 8271 * @max_zone_pfn: an array of max PFNs for each zone 8272 * 8273 * This will call free_area_init_node() for each active node in the system. 8274 * Using the page ranges provided by memblock_set_node(), the size of each 8275 * zone in each node and their holes is calculated. If the maximum PFN 8276 * between two adjacent zones match, it is assumed that the zone is empty. 8277 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8278 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8279 * starts where the previous one ended. For example, ZONE_DMA32 starts 8280 * at arch_max_dma_pfn. 8281 */ 8282 void __init free_area_init(unsigned long *max_zone_pfn) 8283 { 8284 unsigned long start_pfn, end_pfn; 8285 int i, nid, zone; 8286 bool descending; 8287 8288 /* Record where the zone boundaries are */ 8289 memset(arch_zone_lowest_possible_pfn, 0, 8290 sizeof(arch_zone_lowest_possible_pfn)); 8291 memset(arch_zone_highest_possible_pfn, 0, 8292 sizeof(arch_zone_highest_possible_pfn)); 8293 8294 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8295 descending = arch_has_descending_max_zone_pfns(); 8296 8297 for (i = 0; i < MAX_NR_ZONES; i++) { 8298 if (descending) 8299 zone = MAX_NR_ZONES - i - 1; 8300 else 8301 zone = i; 8302 8303 if (zone == ZONE_MOVABLE) 8304 continue; 8305 8306 end_pfn = max(max_zone_pfn[zone], start_pfn); 8307 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8308 arch_zone_highest_possible_pfn[zone] = end_pfn; 8309 8310 start_pfn = end_pfn; 8311 } 8312 8313 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8314 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8315 find_zone_movable_pfns_for_nodes(); 8316 8317 /* Print out the zone ranges */ 8318 pr_info("Zone ranges:\n"); 8319 for (i = 0; i < MAX_NR_ZONES; i++) { 8320 if (i == ZONE_MOVABLE) 8321 continue; 8322 pr_info(" %-8s ", zone_names[i]); 8323 if (arch_zone_lowest_possible_pfn[i] == 8324 arch_zone_highest_possible_pfn[i]) 8325 pr_cont("empty\n"); 8326 else 8327 pr_cont("[mem %#018Lx-%#018Lx]\n", 8328 (u64)arch_zone_lowest_possible_pfn[i] 8329 << PAGE_SHIFT, 8330 ((u64)arch_zone_highest_possible_pfn[i] 8331 << PAGE_SHIFT) - 1); 8332 } 8333 8334 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8335 pr_info("Movable zone start for each node\n"); 8336 for (i = 0; i < MAX_NUMNODES; i++) { 8337 if (zone_movable_pfn[i]) 8338 pr_info(" Node %d: %#018Lx\n", i, 8339 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8340 } 8341 8342 /* 8343 * Print out the early node map, and initialize the 8344 * subsection-map relative to active online memory ranges to 8345 * enable future "sub-section" extensions of the memory map. 8346 */ 8347 pr_info("Early memory node ranges\n"); 8348 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8349 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8350 (u64)start_pfn << PAGE_SHIFT, 8351 ((u64)end_pfn << PAGE_SHIFT) - 1); 8352 subsection_map_init(start_pfn, end_pfn - start_pfn); 8353 } 8354 8355 /* Initialise every node */ 8356 mminit_verify_pageflags_layout(); 8357 setup_nr_node_ids(); 8358 for_each_node(nid) { 8359 pg_data_t *pgdat; 8360 8361 if (!node_online(nid)) { 8362 pr_info("Initializing node %d as memoryless\n", nid); 8363 8364 /* Allocator not initialized yet */ 8365 pgdat = arch_alloc_nodedata(nid); 8366 if (!pgdat) { 8367 pr_err("Cannot allocate %zuB for node %d.\n", 8368 sizeof(*pgdat), nid); 8369 continue; 8370 } 8371 arch_refresh_nodedata(nid, pgdat); 8372 free_area_init_memoryless_node(nid); 8373 8374 /* 8375 * We do not want to confuse userspace by sysfs 8376 * files/directories for node without any memory 8377 * attached to it, so this node is not marked as 8378 * N_MEMORY and not marked online so that no sysfs 8379 * hierarchy will be created via register_one_node for 8380 * it. The pgdat will get fully initialized by 8381 * hotadd_init_pgdat() when memory is hotplugged into 8382 * this node. 8383 */ 8384 continue; 8385 } 8386 8387 pgdat = NODE_DATA(nid); 8388 free_area_init_node(nid); 8389 8390 /* Any memory on that node */ 8391 if (pgdat->node_present_pages) 8392 node_set_state(nid, N_MEMORY); 8393 check_for_memory(pgdat, nid); 8394 } 8395 8396 memmap_init(); 8397 } 8398 8399 static int __init cmdline_parse_core(char *p, unsigned long *core, 8400 unsigned long *percent) 8401 { 8402 unsigned long long coremem; 8403 char *endptr; 8404 8405 if (!p) 8406 return -EINVAL; 8407 8408 /* Value may be a percentage of total memory, otherwise bytes */ 8409 coremem = simple_strtoull(p, &endptr, 0); 8410 if (*endptr == '%') { 8411 /* Paranoid check for percent values greater than 100 */ 8412 WARN_ON(coremem > 100); 8413 8414 *percent = coremem; 8415 } else { 8416 coremem = memparse(p, &p); 8417 /* Paranoid check that UL is enough for the coremem value */ 8418 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8419 8420 *core = coremem >> PAGE_SHIFT; 8421 *percent = 0UL; 8422 } 8423 return 0; 8424 } 8425 8426 /* 8427 * kernelcore=size sets the amount of memory for use for allocations that 8428 * cannot be reclaimed or migrated. 8429 */ 8430 static int __init cmdline_parse_kernelcore(char *p) 8431 { 8432 /* parse kernelcore=mirror */ 8433 if (parse_option_str(p, "mirror")) { 8434 mirrored_kernelcore = true; 8435 return 0; 8436 } 8437 8438 return cmdline_parse_core(p, &required_kernelcore, 8439 &required_kernelcore_percent); 8440 } 8441 8442 /* 8443 * movablecore=size sets the amount of memory for use for allocations that 8444 * can be reclaimed or migrated. 8445 */ 8446 static int __init cmdline_parse_movablecore(char *p) 8447 { 8448 return cmdline_parse_core(p, &required_movablecore, 8449 &required_movablecore_percent); 8450 } 8451 8452 early_param("kernelcore", cmdline_parse_kernelcore); 8453 early_param("movablecore", cmdline_parse_movablecore); 8454 8455 void adjust_managed_page_count(struct page *page, long count) 8456 { 8457 atomic_long_add(count, &page_zone(page)->managed_pages); 8458 totalram_pages_add(count); 8459 #ifdef CONFIG_HIGHMEM 8460 if (PageHighMem(page)) 8461 totalhigh_pages_add(count); 8462 #endif 8463 } 8464 EXPORT_SYMBOL(adjust_managed_page_count); 8465 8466 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8467 { 8468 void *pos; 8469 unsigned long pages = 0; 8470 8471 start = (void *)PAGE_ALIGN((unsigned long)start); 8472 end = (void *)((unsigned long)end & PAGE_MASK); 8473 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8474 struct page *page = virt_to_page(pos); 8475 void *direct_map_addr; 8476 8477 /* 8478 * 'direct_map_addr' might be different from 'pos' 8479 * because some architectures' virt_to_page() 8480 * work with aliases. Getting the direct map 8481 * address ensures that we get a _writeable_ 8482 * alias for the memset(). 8483 */ 8484 direct_map_addr = page_address(page); 8485 /* 8486 * Perform a kasan-unchecked memset() since this memory 8487 * has not been initialized. 8488 */ 8489 direct_map_addr = kasan_reset_tag(direct_map_addr); 8490 if ((unsigned int)poison <= 0xFF) 8491 memset(direct_map_addr, poison, PAGE_SIZE); 8492 8493 free_reserved_page(page); 8494 } 8495 8496 if (pages && s) 8497 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8498 8499 return pages; 8500 } 8501 8502 void __init mem_init_print_info(void) 8503 { 8504 unsigned long physpages, codesize, datasize, rosize, bss_size; 8505 unsigned long init_code_size, init_data_size; 8506 8507 physpages = get_num_physpages(); 8508 codesize = _etext - _stext; 8509 datasize = _edata - _sdata; 8510 rosize = __end_rodata - __start_rodata; 8511 bss_size = __bss_stop - __bss_start; 8512 init_data_size = __init_end - __init_begin; 8513 init_code_size = _einittext - _sinittext; 8514 8515 /* 8516 * Detect special cases and adjust section sizes accordingly: 8517 * 1) .init.* may be embedded into .data sections 8518 * 2) .init.text.* may be out of [__init_begin, __init_end], 8519 * please refer to arch/tile/kernel/vmlinux.lds.S. 8520 * 3) .rodata.* may be embedded into .text or .data sections. 8521 */ 8522 #define adj_init_size(start, end, size, pos, adj) \ 8523 do { \ 8524 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8525 size -= adj; \ 8526 } while (0) 8527 8528 adj_init_size(__init_begin, __init_end, init_data_size, 8529 _sinittext, init_code_size); 8530 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8531 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8532 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8533 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8534 8535 #undef adj_init_size 8536 8537 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8538 #ifdef CONFIG_HIGHMEM 8539 ", %luK highmem" 8540 #endif 8541 ")\n", 8542 K(nr_free_pages()), K(physpages), 8543 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 8544 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 8545 K(physpages - totalram_pages() - totalcma_pages), 8546 K(totalcma_pages) 8547 #ifdef CONFIG_HIGHMEM 8548 , K(totalhigh_pages()) 8549 #endif 8550 ); 8551 } 8552 8553 /** 8554 * set_dma_reserve - set the specified number of pages reserved in the first zone 8555 * @new_dma_reserve: The number of pages to mark reserved 8556 * 8557 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8558 * In the DMA zone, a significant percentage may be consumed by kernel image 8559 * and other unfreeable allocations which can skew the watermarks badly. This 8560 * function may optionally be used to account for unfreeable pages in the 8561 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8562 * smaller per-cpu batchsize. 8563 */ 8564 void __init set_dma_reserve(unsigned long new_dma_reserve) 8565 { 8566 dma_reserve = new_dma_reserve; 8567 } 8568 8569 static int page_alloc_cpu_dead(unsigned int cpu) 8570 { 8571 struct zone *zone; 8572 8573 lru_add_drain_cpu(cpu); 8574 mlock_page_drain_remote(cpu); 8575 drain_pages(cpu); 8576 8577 /* 8578 * Spill the event counters of the dead processor 8579 * into the current processors event counters. 8580 * This artificially elevates the count of the current 8581 * processor. 8582 */ 8583 vm_events_fold_cpu(cpu); 8584 8585 /* 8586 * Zero the differential counters of the dead processor 8587 * so that the vm statistics are consistent. 8588 * 8589 * This is only okay since the processor is dead and cannot 8590 * race with what we are doing. 8591 */ 8592 cpu_vm_stats_fold(cpu); 8593 8594 for_each_populated_zone(zone) 8595 zone_pcp_update(zone, 0); 8596 8597 return 0; 8598 } 8599 8600 static int page_alloc_cpu_online(unsigned int cpu) 8601 { 8602 struct zone *zone; 8603 8604 for_each_populated_zone(zone) 8605 zone_pcp_update(zone, 1); 8606 return 0; 8607 } 8608 8609 #ifdef CONFIG_NUMA 8610 int hashdist = HASHDIST_DEFAULT; 8611 8612 static int __init set_hashdist(char *str) 8613 { 8614 if (!str) 8615 return 0; 8616 hashdist = simple_strtoul(str, &str, 0); 8617 return 1; 8618 } 8619 __setup("hashdist=", set_hashdist); 8620 #endif 8621 8622 void __init page_alloc_init(void) 8623 { 8624 int ret; 8625 8626 #ifdef CONFIG_NUMA 8627 if (num_node_state(N_MEMORY) == 1) 8628 hashdist = 0; 8629 #endif 8630 8631 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8632 "mm/page_alloc:pcp", 8633 page_alloc_cpu_online, 8634 page_alloc_cpu_dead); 8635 WARN_ON(ret < 0); 8636 } 8637 8638 /* 8639 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8640 * or min_free_kbytes changes. 8641 */ 8642 static void calculate_totalreserve_pages(void) 8643 { 8644 struct pglist_data *pgdat; 8645 unsigned long reserve_pages = 0; 8646 enum zone_type i, j; 8647 8648 for_each_online_pgdat(pgdat) { 8649 8650 pgdat->totalreserve_pages = 0; 8651 8652 for (i = 0; i < MAX_NR_ZONES; i++) { 8653 struct zone *zone = pgdat->node_zones + i; 8654 long max = 0; 8655 unsigned long managed_pages = zone_managed_pages(zone); 8656 8657 /* Find valid and maximum lowmem_reserve in the zone */ 8658 for (j = i; j < MAX_NR_ZONES; j++) { 8659 if (zone->lowmem_reserve[j] > max) 8660 max = zone->lowmem_reserve[j]; 8661 } 8662 8663 /* we treat the high watermark as reserved pages. */ 8664 max += high_wmark_pages(zone); 8665 8666 if (max > managed_pages) 8667 max = managed_pages; 8668 8669 pgdat->totalreserve_pages += max; 8670 8671 reserve_pages += max; 8672 } 8673 } 8674 totalreserve_pages = reserve_pages; 8675 } 8676 8677 /* 8678 * setup_per_zone_lowmem_reserve - called whenever 8679 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8680 * has a correct pages reserved value, so an adequate number of 8681 * pages are left in the zone after a successful __alloc_pages(). 8682 */ 8683 static void setup_per_zone_lowmem_reserve(void) 8684 { 8685 struct pglist_data *pgdat; 8686 enum zone_type i, j; 8687 8688 for_each_online_pgdat(pgdat) { 8689 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8690 struct zone *zone = &pgdat->node_zones[i]; 8691 int ratio = sysctl_lowmem_reserve_ratio[i]; 8692 bool clear = !ratio || !zone_managed_pages(zone); 8693 unsigned long managed_pages = 0; 8694 8695 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8696 struct zone *upper_zone = &pgdat->node_zones[j]; 8697 8698 managed_pages += zone_managed_pages(upper_zone); 8699 8700 if (clear) 8701 zone->lowmem_reserve[j] = 0; 8702 else 8703 zone->lowmem_reserve[j] = managed_pages / ratio; 8704 } 8705 } 8706 } 8707 8708 /* update totalreserve_pages */ 8709 calculate_totalreserve_pages(); 8710 } 8711 8712 static void __setup_per_zone_wmarks(void) 8713 { 8714 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8715 unsigned long lowmem_pages = 0; 8716 struct zone *zone; 8717 unsigned long flags; 8718 8719 /* Calculate total number of !ZONE_HIGHMEM pages */ 8720 for_each_zone(zone) { 8721 if (!is_highmem(zone)) 8722 lowmem_pages += zone_managed_pages(zone); 8723 } 8724 8725 for_each_zone(zone) { 8726 u64 tmp; 8727 8728 spin_lock_irqsave(&zone->lock, flags); 8729 tmp = (u64)pages_min * zone_managed_pages(zone); 8730 do_div(tmp, lowmem_pages); 8731 if (is_highmem(zone)) { 8732 /* 8733 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8734 * need highmem pages, so cap pages_min to a small 8735 * value here. 8736 * 8737 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8738 * deltas control async page reclaim, and so should 8739 * not be capped for highmem. 8740 */ 8741 unsigned long min_pages; 8742 8743 min_pages = zone_managed_pages(zone) / 1024; 8744 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8745 zone->_watermark[WMARK_MIN] = min_pages; 8746 } else { 8747 /* 8748 * If it's a lowmem zone, reserve a number of pages 8749 * proportionate to the zone's size. 8750 */ 8751 zone->_watermark[WMARK_MIN] = tmp; 8752 } 8753 8754 /* 8755 * Set the kswapd watermarks distance according to the 8756 * scale factor in proportion to available memory, but 8757 * ensure a minimum size on small systems. 8758 */ 8759 tmp = max_t(u64, tmp >> 2, 8760 mult_frac(zone_managed_pages(zone), 8761 watermark_scale_factor, 10000)); 8762 8763 zone->watermark_boost = 0; 8764 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8765 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8766 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8767 8768 spin_unlock_irqrestore(&zone->lock, flags); 8769 } 8770 8771 /* update totalreserve_pages */ 8772 calculate_totalreserve_pages(); 8773 } 8774 8775 /** 8776 * setup_per_zone_wmarks - called when min_free_kbytes changes 8777 * or when memory is hot-{added|removed} 8778 * 8779 * Ensures that the watermark[min,low,high] values for each zone are set 8780 * correctly with respect to min_free_kbytes. 8781 */ 8782 void setup_per_zone_wmarks(void) 8783 { 8784 struct zone *zone; 8785 static DEFINE_SPINLOCK(lock); 8786 8787 spin_lock(&lock); 8788 __setup_per_zone_wmarks(); 8789 spin_unlock(&lock); 8790 8791 /* 8792 * The watermark size have changed so update the pcpu batch 8793 * and high limits or the limits may be inappropriate. 8794 */ 8795 for_each_zone(zone) 8796 zone_pcp_update(zone, 0); 8797 } 8798 8799 /* 8800 * Initialise min_free_kbytes. 8801 * 8802 * For small machines we want it small (128k min). For large machines 8803 * we want it large (256MB max). But it is not linear, because network 8804 * bandwidth does not increase linearly with machine size. We use 8805 * 8806 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8807 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8808 * 8809 * which yields 8810 * 8811 * 16MB: 512k 8812 * 32MB: 724k 8813 * 64MB: 1024k 8814 * 128MB: 1448k 8815 * 256MB: 2048k 8816 * 512MB: 2896k 8817 * 1024MB: 4096k 8818 * 2048MB: 5792k 8819 * 4096MB: 8192k 8820 * 8192MB: 11584k 8821 * 16384MB: 16384k 8822 */ 8823 void calculate_min_free_kbytes(void) 8824 { 8825 unsigned long lowmem_kbytes; 8826 int new_min_free_kbytes; 8827 8828 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8829 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8830 8831 if (new_min_free_kbytes > user_min_free_kbytes) 8832 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8833 else 8834 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8835 new_min_free_kbytes, user_min_free_kbytes); 8836 8837 } 8838 8839 int __meminit init_per_zone_wmark_min(void) 8840 { 8841 calculate_min_free_kbytes(); 8842 setup_per_zone_wmarks(); 8843 refresh_zone_stat_thresholds(); 8844 setup_per_zone_lowmem_reserve(); 8845 8846 #ifdef CONFIG_NUMA 8847 setup_min_unmapped_ratio(); 8848 setup_min_slab_ratio(); 8849 #endif 8850 8851 khugepaged_min_free_kbytes_update(); 8852 8853 return 0; 8854 } 8855 postcore_initcall(init_per_zone_wmark_min) 8856 8857 /* 8858 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8859 * that we can call two helper functions whenever min_free_kbytes 8860 * changes. 8861 */ 8862 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8863 void *buffer, size_t *length, loff_t *ppos) 8864 { 8865 int rc; 8866 8867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8868 if (rc) 8869 return rc; 8870 8871 if (write) { 8872 user_min_free_kbytes = min_free_kbytes; 8873 setup_per_zone_wmarks(); 8874 } 8875 return 0; 8876 } 8877 8878 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8879 void *buffer, size_t *length, loff_t *ppos) 8880 { 8881 int rc; 8882 8883 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8884 if (rc) 8885 return rc; 8886 8887 if (write) 8888 setup_per_zone_wmarks(); 8889 8890 return 0; 8891 } 8892 8893 #ifdef CONFIG_NUMA 8894 static void setup_min_unmapped_ratio(void) 8895 { 8896 pg_data_t *pgdat; 8897 struct zone *zone; 8898 8899 for_each_online_pgdat(pgdat) 8900 pgdat->min_unmapped_pages = 0; 8901 8902 for_each_zone(zone) 8903 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8904 sysctl_min_unmapped_ratio) / 100; 8905 } 8906 8907 8908 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8909 void *buffer, size_t *length, loff_t *ppos) 8910 { 8911 int rc; 8912 8913 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8914 if (rc) 8915 return rc; 8916 8917 setup_min_unmapped_ratio(); 8918 8919 return 0; 8920 } 8921 8922 static void setup_min_slab_ratio(void) 8923 { 8924 pg_data_t *pgdat; 8925 struct zone *zone; 8926 8927 for_each_online_pgdat(pgdat) 8928 pgdat->min_slab_pages = 0; 8929 8930 for_each_zone(zone) 8931 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8932 sysctl_min_slab_ratio) / 100; 8933 } 8934 8935 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8936 void *buffer, size_t *length, loff_t *ppos) 8937 { 8938 int rc; 8939 8940 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8941 if (rc) 8942 return rc; 8943 8944 setup_min_slab_ratio(); 8945 8946 return 0; 8947 } 8948 #endif 8949 8950 /* 8951 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8952 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8953 * whenever sysctl_lowmem_reserve_ratio changes. 8954 * 8955 * The reserve ratio obviously has absolutely no relation with the 8956 * minimum watermarks. The lowmem reserve ratio can only make sense 8957 * if in function of the boot time zone sizes. 8958 */ 8959 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8960 void *buffer, size_t *length, loff_t *ppos) 8961 { 8962 int i; 8963 8964 proc_dointvec_minmax(table, write, buffer, length, ppos); 8965 8966 for (i = 0; i < MAX_NR_ZONES; i++) { 8967 if (sysctl_lowmem_reserve_ratio[i] < 1) 8968 sysctl_lowmem_reserve_ratio[i] = 0; 8969 } 8970 8971 setup_per_zone_lowmem_reserve(); 8972 return 0; 8973 } 8974 8975 /* 8976 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8977 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8978 * pagelist can have before it gets flushed back to buddy allocator. 8979 */ 8980 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8981 int write, void *buffer, size_t *length, loff_t *ppos) 8982 { 8983 struct zone *zone; 8984 int old_percpu_pagelist_high_fraction; 8985 int ret; 8986 8987 mutex_lock(&pcp_batch_high_lock); 8988 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8989 8990 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8991 if (!write || ret < 0) 8992 goto out; 8993 8994 /* Sanity checking to avoid pcp imbalance */ 8995 if (percpu_pagelist_high_fraction && 8996 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8997 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8998 ret = -EINVAL; 8999 goto out; 9000 } 9001 9002 /* No change? */ 9003 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 9004 goto out; 9005 9006 for_each_populated_zone(zone) 9007 zone_set_pageset_high_and_batch(zone, 0); 9008 out: 9009 mutex_unlock(&pcp_batch_high_lock); 9010 return ret; 9011 } 9012 9013 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 9014 /* 9015 * Returns the number of pages that arch has reserved but 9016 * is not known to alloc_large_system_hash(). 9017 */ 9018 static unsigned long __init arch_reserved_kernel_pages(void) 9019 { 9020 return 0; 9021 } 9022 #endif 9023 9024 /* 9025 * Adaptive scale is meant to reduce sizes of hash tables on large memory 9026 * machines. As memory size is increased the scale is also increased but at 9027 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9028 * quadruples the scale is increased by one, which means the size of hash table 9029 * only doubles, instead of quadrupling as well. 9030 * Because 32-bit systems cannot have large physical memory, where this scaling 9031 * makes sense, it is disabled on such platforms. 9032 */ 9033 #if __BITS_PER_LONG > 32 9034 #define ADAPT_SCALE_BASE (64ul << 30) 9035 #define ADAPT_SCALE_SHIFT 2 9036 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9037 #endif 9038 9039 /* 9040 * allocate a large system hash table from bootmem 9041 * - it is assumed that the hash table must contain an exact power-of-2 9042 * quantity of entries 9043 * - limit is the number of hash buckets, not the total allocation size 9044 */ 9045 void *__init alloc_large_system_hash(const char *tablename, 9046 unsigned long bucketsize, 9047 unsigned long numentries, 9048 int scale, 9049 int flags, 9050 unsigned int *_hash_shift, 9051 unsigned int *_hash_mask, 9052 unsigned long low_limit, 9053 unsigned long high_limit) 9054 { 9055 unsigned long long max = high_limit; 9056 unsigned long log2qty, size; 9057 void *table; 9058 gfp_t gfp_flags; 9059 bool virt; 9060 bool huge; 9061 9062 /* allow the kernel cmdline to have a say */ 9063 if (!numentries) { 9064 /* round applicable memory size up to nearest megabyte */ 9065 numentries = nr_kernel_pages; 9066 numentries -= arch_reserved_kernel_pages(); 9067 9068 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9069 if (PAGE_SIZE < SZ_1M) 9070 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 9071 9072 #if __BITS_PER_LONG > 32 9073 if (!high_limit) { 9074 unsigned long adapt; 9075 9076 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9077 adapt <<= ADAPT_SCALE_SHIFT) 9078 scale++; 9079 } 9080 #endif 9081 9082 /* limit to 1 bucket per 2^scale bytes of low memory */ 9083 if (scale > PAGE_SHIFT) 9084 numentries >>= (scale - PAGE_SHIFT); 9085 else 9086 numentries <<= (PAGE_SHIFT - scale); 9087 9088 /* Make sure we've got at least a 0-order allocation.. */ 9089 if (unlikely(flags & HASH_SMALL)) { 9090 /* Makes no sense without HASH_EARLY */ 9091 WARN_ON(!(flags & HASH_EARLY)); 9092 if (!(numentries >> *_hash_shift)) { 9093 numentries = 1UL << *_hash_shift; 9094 BUG_ON(!numentries); 9095 } 9096 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9097 numentries = PAGE_SIZE / bucketsize; 9098 } 9099 numentries = roundup_pow_of_two(numentries); 9100 9101 /* limit allocation size to 1/16 total memory by default */ 9102 if (max == 0) { 9103 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9104 do_div(max, bucketsize); 9105 } 9106 max = min(max, 0x80000000ULL); 9107 9108 if (numentries < low_limit) 9109 numentries = low_limit; 9110 if (numentries > max) 9111 numentries = max; 9112 9113 log2qty = ilog2(numentries); 9114 9115 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9116 do { 9117 virt = false; 9118 size = bucketsize << log2qty; 9119 if (flags & HASH_EARLY) { 9120 if (flags & HASH_ZERO) 9121 table = memblock_alloc(size, SMP_CACHE_BYTES); 9122 else 9123 table = memblock_alloc_raw(size, 9124 SMP_CACHE_BYTES); 9125 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9126 table = vmalloc_huge(size, gfp_flags); 9127 virt = true; 9128 if (table) 9129 huge = is_vm_area_hugepages(table); 9130 } else { 9131 /* 9132 * If bucketsize is not a power-of-two, we may free 9133 * some pages at the end of hash table which 9134 * alloc_pages_exact() automatically does 9135 */ 9136 table = alloc_pages_exact(size, gfp_flags); 9137 kmemleak_alloc(table, size, 1, gfp_flags); 9138 } 9139 } while (!table && size > PAGE_SIZE && --log2qty); 9140 9141 if (!table) 9142 panic("Failed to allocate %s hash table\n", tablename); 9143 9144 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9145 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9146 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9147 9148 if (_hash_shift) 9149 *_hash_shift = log2qty; 9150 if (_hash_mask) 9151 *_hash_mask = (1 << log2qty) - 1; 9152 9153 return table; 9154 } 9155 9156 #ifdef CONFIG_CONTIG_ALLOC 9157 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9158 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9159 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9160 static void alloc_contig_dump_pages(struct list_head *page_list) 9161 { 9162 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9163 9164 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9165 struct page *page; 9166 9167 dump_stack(); 9168 list_for_each_entry(page, page_list, lru) 9169 dump_page(page, "migration failure"); 9170 } 9171 } 9172 #else 9173 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9174 { 9175 } 9176 #endif 9177 9178 /* [start, end) must belong to a single zone. */ 9179 int __alloc_contig_migrate_range(struct compact_control *cc, 9180 unsigned long start, unsigned long end) 9181 { 9182 /* This function is based on compact_zone() from compaction.c. */ 9183 unsigned int nr_reclaimed; 9184 unsigned long pfn = start; 9185 unsigned int tries = 0; 9186 int ret = 0; 9187 struct migration_target_control mtc = { 9188 .nid = zone_to_nid(cc->zone), 9189 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9190 }; 9191 9192 lru_cache_disable(); 9193 9194 while (pfn < end || !list_empty(&cc->migratepages)) { 9195 if (fatal_signal_pending(current)) { 9196 ret = -EINTR; 9197 break; 9198 } 9199 9200 if (list_empty(&cc->migratepages)) { 9201 cc->nr_migratepages = 0; 9202 ret = isolate_migratepages_range(cc, pfn, end); 9203 if (ret && ret != -EAGAIN) 9204 break; 9205 pfn = cc->migrate_pfn; 9206 tries = 0; 9207 } else if (++tries == 5) { 9208 ret = -EBUSY; 9209 break; 9210 } 9211 9212 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9213 &cc->migratepages); 9214 cc->nr_migratepages -= nr_reclaimed; 9215 9216 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9217 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9218 9219 /* 9220 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9221 * to retry again over this error, so do the same here. 9222 */ 9223 if (ret == -ENOMEM) 9224 break; 9225 } 9226 9227 lru_cache_enable(); 9228 if (ret < 0) { 9229 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9230 alloc_contig_dump_pages(&cc->migratepages); 9231 putback_movable_pages(&cc->migratepages); 9232 return ret; 9233 } 9234 return 0; 9235 } 9236 9237 /** 9238 * alloc_contig_range() -- tries to allocate given range of pages 9239 * @start: start PFN to allocate 9240 * @end: one-past-the-last PFN to allocate 9241 * @migratetype: migratetype of the underlying pageblocks (either 9242 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9243 * in range must have the same migratetype and it must 9244 * be either of the two. 9245 * @gfp_mask: GFP mask to use during compaction 9246 * 9247 * The PFN range does not have to be pageblock aligned. The PFN range must 9248 * belong to a single zone. 9249 * 9250 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9251 * pageblocks in the range. Once isolated, the pageblocks should not 9252 * be modified by others. 9253 * 9254 * Return: zero on success or negative error code. On success all 9255 * pages which PFN is in [start, end) are allocated for the caller and 9256 * need to be freed with free_contig_range(). 9257 */ 9258 int alloc_contig_range(unsigned long start, unsigned long end, 9259 unsigned migratetype, gfp_t gfp_mask) 9260 { 9261 unsigned long outer_start, outer_end; 9262 int order; 9263 int ret = 0; 9264 9265 struct compact_control cc = { 9266 .nr_migratepages = 0, 9267 .order = -1, 9268 .zone = page_zone(pfn_to_page(start)), 9269 .mode = MIGRATE_SYNC, 9270 .ignore_skip_hint = true, 9271 .no_set_skip_hint = true, 9272 .gfp_mask = current_gfp_context(gfp_mask), 9273 .alloc_contig = true, 9274 }; 9275 INIT_LIST_HEAD(&cc.migratepages); 9276 9277 /* 9278 * What we do here is we mark all pageblocks in range as 9279 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9280 * have different sizes, and due to the way page allocator 9281 * work, start_isolate_page_range() has special handlings for this. 9282 * 9283 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9284 * migrate the pages from an unaligned range (ie. pages that 9285 * we are interested in). This will put all the pages in 9286 * range back to page allocator as MIGRATE_ISOLATE. 9287 * 9288 * When this is done, we take the pages in range from page 9289 * allocator removing them from the buddy system. This way 9290 * page allocator will never consider using them. 9291 * 9292 * This lets us mark the pageblocks back as 9293 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9294 * aligned range but not in the unaligned, original range are 9295 * put back to page allocator so that buddy can use them. 9296 */ 9297 9298 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9299 if (ret) 9300 goto done; 9301 9302 drain_all_pages(cc.zone); 9303 9304 /* 9305 * In case of -EBUSY, we'd like to know which page causes problem. 9306 * So, just fall through. test_pages_isolated() has a tracepoint 9307 * which will report the busy page. 9308 * 9309 * It is possible that busy pages could become available before 9310 * the call to test_pages_isolated, and the range will actually be 9311 * allocated. So, if we fall through be sure to clear ret so that 9312 * -EBUSY is not accidentally used or returned to caller. 9313 */ 9314 ret = __alloc_contig_migrate_range(&cc, start, end); 9315 if (ret && ret != -EBUSY) 9316 goto done; 9317 ret = 0; 9318 9319 /* 9320 * Pages from [start, end) are within a pageblock_nr_pages 9321 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9322 * more, all pages in [start, end) are free in page allocator. 9323 * What we are going to do is to allocate all pages from 9324 * [start, end) (that is remove them from page allocator). 9325 * 9326 * The only problem is that pages at the beginning and at the 9327 * end of interesting range may be not aligned with pages that 9328 * page allocator holds, ie. they can be part of higher order 9329 * pages. Because of this, we reserve the bigger range and 9330 * once this is done free the pages we are not interested in. 9331 * 9332 * We don't have to hold zone->lock here because the pages are 9333 * isolated thus they won't get removed from buddy. 9334 */ 9335 9336 order = 0; 9337 outer_start = start; 9338 while (!PageBuddy(pfn_to_page(outer_start))) { 9339 if (++order >= MAX_ORDER) { 9340 outer_start = start; 9341 break; 9342 } 9343 outer_start &= ~0UL << order; 9344 } 9345 9346 if (outer_start != start) { 9347 order = buddy_order(pfn_to_page(outer_start)); 9348 9349 /* 9350 * outer_start page could be small order buddy page and 9351 * it doesn't include start page. Adjust outer_start 9352 * in this case to report failed page properly 9353 * on tracepoint in test_pages_isolated() 9354 */ 9355 if (outer_start + (1UL << order) <= start) 9356 outer_start = start; 9357 } 9358 9359 /* Make sure the range is really isolated. */ 9360 if (test_pages_isolated(outer_start, end, 0)) { 9361 ret = -EBUSY; 9362 goto done; 9363 } 9364 9365 /* Grab isolated pages from freelists. */ 9366 outer_end = isolate_freepages_range(&cc, outer_start, end); 9367 if (!outer_end) { 9368 ret = -EBUSY; 9369 goto done; 9370 } 9371 9372 /* Free head and tail (if any) */ 9373 if (start != outer_start) 9374 free_contig_range(outer_start, start - outer_start); 9375 if (end != outer_end) 9376 free_contig_range(end, outer_end - end); 9377 9378 done: 9379 undo_isolate_page_range(start, end, migratetype); 9380 return ret; 9381 } 9382 EXPORT_SYMBOL(alloc_contig_range); 9383 9384 static int __alloc_contig_pages(unsigned long start_pfn, 9385 unsigned long nr_pages, gfp_t gfp_mask) 9386 { 9387 unsigned long end_pfn = start_pfn + nr_pages; 9388 9389 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9390 gfp_mask); 9391 } 9392 9393 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9394 unsigned long nr_pages) 9395 { 9396 unsigned long i, end_pfn = start_pfn + nr_pages; 9397 struct page *page; 9398 9399 for (i = start_pfn; i < end_pfn; i++) { 9400 page = pfn_to_online_page(i); 9401 if (!page) 9402 return false; 9403 9404 if (page_zone(page) != z) 9405 return false; 9406 9407 if (PageReserved(page)) 9408 return false; 9409 } 9410 return true; 9411 } 9412 9413 static bool zone_spans_last_pfn(const struct zone *zone, 9414 unsigned long start_pfn, unsigned long nr_pages) 9415 { 9416 unsigned long last_pfn = start_pfn + nr_pages - 1; 9417 9418 return zone_spans_pfn(zone, last_pfn); 9419 } 9420 9421 /** 9422 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9423 * @nr_pages: Number of contiguous pages to allocate 9424 * @gfp_mask: GFP mask to limit search and used during compaction 9425 * @nid: Target node 9426 * @nodemask: Mask for other possible nodes 9427 * 9428 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9429 * on an applicable zonelist to find a contiguous pfn range which can then be 9430 * tried for allocation with alloc_contig_range(). This routine is intended 9431 * for allocation requests which can not be fulfilled with the buddy allocator. 9432 * 9433 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9434 * power of two, then allocated range is also guaranteed to be aligned to same 9435 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9436 * 9437 * Allocated pages can be freed with free_contig_range() or by manually calling 9438 * __free_page() on each allocated page. 9439 * 9440 * Return: pointer to contiguous pages on success, or NULL if not successful. 9441 */ 9442 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9443 int nid, nodemask_t *nodemask) 9444 { 9445 unsigned long ret, pfn, flags; 9446 struct zonelist *zonelist; 9447 struct zone *zone; 9448 struct zoneref *z; 9449 9450 zonelist = node_zonelist(nid, gfp_mask); 9451 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9452 gfp_zone(gfp_mask), nodemask) { 9453 spin_lock_irqsave(&zone->lock, flags); 9454 9455 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9456 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9457 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9458 /* 9459 * We release the zone lock here because 9460 * alloc_contig_range() will also lock the zone 9461 * at some point. If there's an allocation 9462 * spinning on this lock, it may win the race 9463 * and cause alloc_contig_range() to fail... 9464 */ 9465 spin_unlock_irqrestore(&zone->lock, flags); 9466 ret = __alloc_contig_pages(pfn, nr_pages, 9467 gfp_mask); 9468 if (!ret) 9469 return pfn_to_page(pfn); 9470 spin_lock_irqsave(&zone->lock, flags); 9471 } 9472 pfn += nr_pages; 9473 } 9474 spin_unlock_irqrestore(&zone->lock, flags); 9475 } 9476 return NULL; 9477 } 9478 #endif /* CONFIG_CONTIG_ALLOC */ 9479 9480 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9481 { 9482 unsigned long count = 0; 9483 9484 for (; nr_pages--; pfn++) { 9485 struct page *page = pfn_to_page(pfn); 9486 9487 count += page_count(page) != 1; 9488 __free_page(page); 9489 } 9490 WARN(count != 0, "%lu pages are still in use!\n", count); 9491 } 9492 EXPORT_SYMBOL(free_contig_range); 9493 9494 /* 9495 * Effectively disable pcplists for the zone by setting the high limit to 0 9496 * and draining all cpus. A concurrent page freeing on another CPU that's about 9497 * to put the page on pcplist will either finish before the drain and the page 9498 * will be drained, or observe the new high limit and skip the pcplist. 9499 * 9500 * Must be paired with a call to zone_pcp_enable(). 9501 */ 9502 void zone_pcp_disable(struct zone *zone) 9503 { 9504 mutex_lock(&pcp_batch_high_lock); 9505 __zone_set_pageset_high_and_batch(zone, 0, 1); 9506 __drain_all_pages(zone, true); 9507 } 9508 9509 void zone_pcp_enable(struct zone *zone) 9510 { 9511 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9512 mutex_unlock(&pcp_batch_high_lock); 9513 } 9514 9515 void zone_pcp_reset(struct zone *zone) 9516 { 9517 int cpu; 9518 struct per_cpu_zonestat *pzstats; 9519 9520 if (zone->per_cpu_pageset != &boot_pageset) { 9521 for_each_online_cpu(cpu) { 9522 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9523 drain_zonestat(zone, pzstats); 9524 } 9525 free_percpu(zone->per_cpu_pageset); 9526 zone->per_cpu_pageset = &boot_pageset; 9527 if (zone->per_cpu_zonestats != &boot_zonestats) { 9528 free_percpu(zone->per_cpu_zonestats); 9529 zone->per_cpu_zonestats = &boot_zonestats; 9530 } 9531 } 9532 } 9533 9534 #ifdef CONFIG_MEMORY_HOTREMOVE 9535 /* 9536 * All pages in the range must be in a single zone, must not contain holes, 9537 * must span full sections, and must be isolated before calling this function. 9538 */ 9539 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9540 { 9541 unsigned long pfn = start_pfn; 9542 struct page *page; 9543 struct zone *zone; 9544 unsigned int order; 9545 unsigned long flags; 9546 9547 offline_mem_sections(pfn, end_pfn); 9548 zone = page_zone(pfn_to_page(pfn)); 9549 spin_lock_irqsave(&zone->lock, flags); 9550 while (pfn < end_pfn) { 9551 page = pfn_to_page(pfn); 9552 /* 9553 * The HWPoisoned page may be not in buddy system, and 9554 * page_count() is not 0. 9555 */ 9556 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9557 pfn++; 9558 continue; 9559 } 9560 /* 9561 * At this point all remaining PageOffline() pages have a 9562 * reference count of 0 and can simply be skipped. 9563 */ 9564 if (PageOffline(page)) { 9565 BUG_ON(page_count(page)); 9566 BUG_ON(PageBuddy(page)); 9567 pfn++; 9568 continue; 9569 } 9570 9571 BUG_ON(page_count(page)); 9572 BUG_ON(!PageBuddy(page)); 9573 order = buddy_order(page); 9574 del_page_from_free_list(page, zone, order); 9575 pfn += (1 << order); 9576 } 9577 spin_unlock_irqrestore(&zone->lock, flags); 9578 } 9579 #endif 9580 9581 /* 9582 * This function returns a stable result only if called under zone lock. 9583 */ 9584 bool is_free_buddy_page(struct page *page) 9585 { 9586 unsigned long pfn = page_to_pfn(page); 9587 unsigned int order; 9588 9589 for (order = 0; order < MAX_ORDER; order++) { 9590 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9591 9592 if (PageBuddy(page_head) && 9593 buddy_order_unsafe(page_head) >= order) 9594 break; 9595 } 9596 9597 return order < MAX_ORDER; 9598 } 9599 EXPORT_SYMBOL(is_free_buddy_page); 9600 9601 #ifdef CONFIG_MEMORY_FAILURE 9602 /* 9603 * Break down a higher-order page in sub-pages, and keep our target out of 9604 * buddy allocator. 9605 */ 9606 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9607 struct page *target, int low, int high, 9608 int migratetype) 9609 { 9610 unsigned long size = 1 << high; 9611 struct page *current_buddy, *next_page; 9612 9613 while (high > low) { 9614 high--; 9615 size >>= 1; 9616 9617 if (target >= &page[size]) { 9618 next_page = page + size; 9619 current_buddy = page; 9620 } else { 9621 next_page = page; 9622 current_buddy = page + size; 9623 } 9624 9625 if (set_page_guard(zone, current_buddy, high, migratetype)) 9626 continue; 9627 9628 if (current_buddy != target) { 9629 add_to_free_list(current_buddy, zone, high, migratetype); 9630 set_buddy_order(current_buddy, high); 9631 page = next_page; 9632 } 9633 } 9634 } 9635 9636 /* 9637 * Take a page that will be marked as poisoned off the buddy allocator. 9638 */ 9639 bool take_page_off_buddy(struct page *page) 9640 { 9641 struct zone *zone = page_zone(page); 9642 unsigned long pfn = page_to_pfn(page); 9643 unsigned long flags; 9644 unsigned int order; 9645 bool ret = false; 9646 9647 spin_lock_irqsave(&zone->lock, flags); 9648 for (order = 0; order < MAX_ORDER; order++) { 9649 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9650 int page_order = buddy_order(page_head); 9651 9652 if (PageBuddy(page_head) && page_order >= order) { 9653 unsigned long pfn_head = page_to_pfn(page_head); 9654 int migratetype = get_pfnblock_migratetype(page_head, 9655 pfn_head); 9656 9657 del_page_from_free_list(page_head, zone, page_order); 9658 break_down_buddy_pages(zone, page_head, page, 0, 9659 page_order, migratetype); 9660 SetPageHWPoisonTakenOff(page); 9661 if (!is_migrate_isolate(migratetype)) 9662 __mod_zone_freepage_state(zone, -1, migratetype); 9663 ret = true; 9664 break; 9665 } 9666 if (page_count(page_head) > 0) 9667 break; 9668 } 9669 spin_unlock_irqrestore(&zone->lock, flags); 9670 return ret; 9671 } 9672 9673 /* 9674 * Cancel takeoff done by take_page_off_buddy(). 9675 */ 9676 bool put_page_back_buddy(struct page *page) 9677 { 9678 struct zone *zone = page_zone(page); 9679 unsigned long pfn = page_to_pfn(page); 9680 unsigned long flags; 9681 int migratetype = get_pfnblock_migratetype(page, pfn); 9682 bool ret = false; 9683 9684 spin_lock_irqsave(&zone->lock, flags); 9685 if (put_page_testzero(page)) { 9686 ClearPageHWPoisonTakenOff(page); 9687 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9688 if (TestClearPageHWPoison(page)) { 9689 ret = true; 9690 } 9691 } 9692 spin_unlock_irqrestore(&zone->lock, flags); 9693 9694 return ret; 9695 } 9696 #endif 9697 9698 #ifdef CONFIG_ZONE_DMA 9699 bool has_managed_dma(void) 9700 { 9701 struct pglist_data *pgdat; 9702 9703 for_each_online_pgdat(pgdat) { 9704 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9705 9706 if (managed_zone(zone)) 9707 return true; 9708 } 9709 return false; 9710 } 9711 #endif /* CONFIG_ZONE_DMA */ 9712