1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 74 DEFINE_PER_CPU(int, numa_node); 75 EXPORT_PER_CPU_SYMBOL(numa_node); 76 #endif 77 78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 79 /* 80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 83 * defined in <linux/topology.h>. 84 */ 85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 86 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 87 #endif 88 89 /* 90 * Array of node states. 91 */ 92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 93 [N_POSSIBLE] = NODE_MASK_ALL, 94 [N_ONLINE] = { { [0] = 1UL } }, 95 #ifndef CONFIG_NUMA 96 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 97 #ifdef CONFIG_HIGHMEM 98 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 99 #endif 100 #ifdef CONFIG_MOVABLE_NODE 101 [N_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 [N_CPU] = { { [0] = 1UL } }, 104 #endif /* NUMA */ 105 }; 106 EXPORT_SYMBOL(node_states); 107 108 /* Protect totalram_pages and zone->managed_pages */ 109 static DEFINE_SPINLOCK(managed_page_count_lock); 110 111 unsigned long totalram_pages __read_mostly; 112 unsigned long totalreserve_pages __read_mostly; 113 /* 114 * When calculating the number of globally allowed dirty pages, there 115 * is a certain number of per-zone reserves that should not be 116 * considered dirtyable memory. This is the sum of those reserves 117 * over all existing zones that contribute dirtyable memory. 118 */ 119 unsigned long dirty_balance_reserve __read_mostly; 120 121 int percpu_pagelist_fraction; 122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 123 124 #ifdef CONFIG_PM_SLEEP 125 /* 126 * The following functions are used by the suspend/hibernate code to temporarily 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 128 * while devices are suspended. To avoid races with the suspend/hibernate code, 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is 131 * guaranteed not to run in parallel with that modification). 132 */ 133 134 static gfp_t saved_gfp_mask; 135 136 void pm_restore_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 if (saved_gfp_mask) { 140 gfp_allowed_mask = saved_gfp_mask; 141 saved_gfp_mask = 0; 142 } 143 } 144 145 void pm_restrict_gfp_mask(void) 146 { 147 WARN_ON(!mutex_is_locked(&pm_mutex)); 148 WARN_ON(saved_gfp_mask); 149 saved_gfp_mask = gfp_allowed_mask; 150 gfp_allowed_mask &= ~GFP_IOFS; 151 } 152 153 bool pm_suspended_storage(void) 154 { 155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 156 return false; 157 return true; 158 } 159 #endif /* CONFIG_PM_SLEEP */ 160 161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 162 int pageblock_order __read_mostly; 163 #endif 164 165 static void __free_pages_ok(struct page *page, unsigned int order); 166 167 /* 168 * results with 256, 32 in the lowmem_reserve sysctl: 169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 170 * 1G machine -> (16M dma, 784M normal, 224M high) 171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 174 * 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally 176 * don't need any ZONE_NORMAL reservation 177 */ 178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 179 #ifdef CONFIG_ZONE_DMA 180 256, 181 #endif 182 #ifdef CONFIG_ZONE_DMA32 183 256, 184 #endif 185 #ifdef CONFIG_HIGHMEM 186 32, 187 #endif 188 32, 189 }; 190 191 EXPORT_SYMBOL(totalram_pages); 192 193 static char * const zone_names[MAX_NR_ZONES] = { 194 #ifdef CONFIG_ZONE_DMA 195 "DMA", 196 #endif 197 #ifdef CONFIG_ZONE_DMA32 198 "DMA32", 199 #endif 200 "Normal", 201 #ifdef CONFIG_HIGHMEM 202 "HighMem", 203 #endif 204 "Movable", 205 }; 206 207 int min_free_kbytes = 1024; 208 int user_min_free_kbytes = -1; 209 210 static unsigned long __meminitdata nr_kernel_pages; 211 static unsigned long __meminitdata nr_all_pages; 212 static unsigned long __meminitdata dma_reserve; 213 214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __initdata required_kernelcore; 218 static unsigned long __initdata required_movablecore; 219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 220 221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 222 int movable_zone; 223 EXPORT_SYMBOL(movable_zone); 224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 225 226 #if MAX_NUMNODES > 1 227 int nr_node_ids __read_mostly = MAX_NUMNODES; 228 int nr_online_nodes __read_mostly = 1; 229 EXPORT_SYMBOL(nr_node_ids); 230 EXPORT_SYMBOL(nr_online_nodes); 231 #endif 232 233 int page_group_by_mobility_disabled __read_mostly; 234 235 void set_pageblock_migratetype(struct page *page, int migratetype) 236 { 237 if (unlikely(page_group_by_mobility_disabled && 238 migratetype < MIGRATE_PCPTYPES)) 239 migratetype = MIGRATE_UNMOVABLE; 240 241 set_pageblock_flags_group(page, (unsigned long)migratetype, 242 PB_migrate, PB_migrate_end); 243 } 244 245 bool oom_killer_disabled __read_mostly; 246 247 #ifdef CONFIG_DEBUG_VM 248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 249 { 250 int ret = 0; 251 unsigned seq; 252 unsigned long pfn = page_to_pfn(page); 253 unsigned long sp, start_pfn; 254 255 do { 256 seq = zone_span_seqbegin(zone); 257 start_pfn = zone->zone_start_pfn; 258 sp = zone->spanned_pages; 259 if (!zone_spans_pfn(zone, pfn)) 260 ret = 1; 261 } while (zone_span_seqretry(zone, seq)); 262 263 if (ret) 264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 265 pfn, zone_to_nid(zone), zone->name, 266 start_pfn, start_pfn + sp); 267 268 return ret; 269 } 270 271 static int page_is_consistent(struct zone *zone, struct page *page) 272 { 273 if (!pfn_valid_within(page_to_pfn(page))) 274 return 0; 275 if (zone != page_zone(page)) 276 return 0; 277 278 return 1; 279 } 280 /* 281 * Temporary debugging check for pages not lying within a given zone. 282 */ 283 static int bad_range(struct zone *zone, struct page *page) 284 { 285 if (page_outside_zone_boundaries(zone, page)) 286 return 1; 287 if (!page_is_consistent(zone, page)) 288 return 1; 289 290 return 0; 291 } 292 #else 293 static inline int bad_range(struct zone *zone, struct page *page) 294 { 295 return 0; 296 } 297 #endif 298 299 static void bad_page(struct page *page, const char *reason, 300 unsigned long bad_flags) 301 { 302 static unsigned long resume; 303 static unsigned long nr_shown; 304 static unsigned long nr_unshown; 305 306 /* Don't complain about poisoned pages */ 307 if (PageHWPoison(page)) { 308 page_mapcount_reset(page); /* remove PageBuddy */ 309 return; 310 } 311 312 /* 313 * Allow a burst of 60 reports, then keep quiet for that minute; 314 * or allow a steady drip of one report per second. 315 */ 316 if (nr_shown == 60) { 317 if (time_before(jiffies, resume)) { 318 nr_unshown++; 319 goto out; 320 } 321 if (nr_unshown) { 322 printk(KERN_ALERT 323 "BUG: Bad page state: %lu messages suppressed\n", 324 nr_unshown); 325 nr_unshown = 0; 326 } 327 nr_shown = 0; 328 } 329 if (nr_shown++ == 0) 330 resume = jiffies + 60 * HZ; 331 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 333 current->comm, page_to_pfn(page)); 334 dump_page_badflags(page, reason, bad_flags); 335 336 print_modules(); 337 dump_stack(); 338 out: 339 /* Leave bad fields for debug, except PageBuddy could make trouble */ 340 page_mapcount_reset(page); /* remove PageBuddy */ 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 342 } 343 344 /* 345 * Higher-order pages are called "compound pages". They are structured thusly: 346 * 347 * The first PAGE_SIZE page is called the "head page". 348 * 349 * The remaining PAGE_SIZE pages are called "tail pages". 350 * 351 * All pages have PG_compound set. All tail pages have their ->first_page 352 * pointing at the head page. 353 * 354 * The first tail page's ->lru.next holds the address of the compound page's 355 * put_page() function. Its ->lru.prev holds the order of allocation. 356 * This usage means that zero-order pages may not be compound. 357 */ 358 359 static void free_compound_page(struct page *page) 360 { 361 __free_pages_ok(page, compound_order(page)); 362 } 363 364 void prep_compound_page(struct page *page, unsigned long order) 365 { 366 int i; 367 int nr_pages = 1 << order; 368 369 set_compound_page_dtor(page, free_compound_page); 370 set_compound_order(page, order); 371 __SetPageHead(page); 372 for (i = 1; i < nr_pages; i++) { 373 struct page *p = page + i; 374 set_page_count(p, 0); 375 p->first_page = page; 376 /* Make sure p->first_page is always valid for PageTail() */ 377 smp_wmb(); 378 __SetPageTail(p); 379 } 380 } 381 382 /* update __split_huge_page_refcount if you change this function */ 383 static int destroy_compound_page(struct page *page, unsigned long order) 384 { 385 int i; 386 int nr_pages = 1 << order; 387 int bad = 0; 388 389 if (unlikely(compound_order(page) != order)) { 390 bad_page(page, "wrong compound order", 0); 391 bad++; 392 } 393 394 __ClearPageHead(page); 395 396 for (i = 1; i < nr_pages; i++) { 397 struct page *p = page + i; 398 399 if (unlikely(!PageTail(p))) { 400 bad_page(page, "PageTail not set", 0); 401 bad++; 402 } else if (unlikely(p->first_page != page)) { 403 bad_page(page, "first_page not consistent", 0); 404 bad++; 405 } 406 __ClearPageTail(p); 407 } 408 409 return bad; 410 } 411 412 static inline void prep_zero_page(struct page *page, unsigned int order, 413 gfp_t gfp_flags) 414 { 415 int i; 416 417 /* 418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 419 * and __GFP_HIGHMEM from hard or soft interrupt context. 420 */ 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 422 for (i = 0; i < (1 << order); i++) 423 clear_highpage(page + i); 424 } 425 426 #ifdef CONFIG_DEBUG_PAGEALLOC 427 unsigned int _debug_guardpage_minorder; 428 429 static int __init debug_guardpage_minorder_setup(char *buf) 430 { 431 unsigned long res; 432 433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 435 return 0; 436 } 437 _debug_guardpage_minorder = res; 438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 439 return 0; 440 } 441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 442 443 static inline void set_page_guard_flag(struct page *page) 444 { 445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 446 } 447 448 static inline void clear_page_guard_flag(struct page *page) 449 { 450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 451 } 452 #else 453 static inline void set_page_guard_flag(struct page *page) { } 454 static inline void clear_page_guard_flag(struct page *page) { } 455 #endif 456 457 static inline void set_page_order(struct page *page, unsigned int order) 458 { 459 set_page_private(page, order); 460 __SetPageBuddy(page); 461 } 462 463 static inline void rmv_page_order(struct page *page) 464 { 465 __ClearPageBuddy(page); 466 set_page_private(page, 0); 467 } 468 469 /* 470 * Locate the struct page for both the matching buddy in our 471 * pair (buddy1) and the combined O(n+1) page they form (page). 472 * 473 * 1) Any buddy B1 will have an order O twin B2 which satisfies 474 * the following equation: 475 * B2 = B1 ^ (1 << O) 476 * For example, if the starting buddy (buddy2) is #8 its order 477 * 1 buddy is #10: 478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 479 * 480 * 2) Any buddy B will have an order O+1 parent P which 481 * satisfies the following equation: 482 * P = B & ~(1 << O) 483 * 484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 485 */ 486 static inline unsigned long 487 __find_buddy_index(unsigned long page_idx, unsigned int order) 488 { 489 return page_idx ^ (1 << order); 490 } 491 492 /* 493 * This function checks whether a page is free && is the buddy 494 * we can do coalesce a page and its buddy if 495 * (a) the buddy is not in a hole && 496 * (b) the buddy is in the buddy system && 497 * (c) a page and its buddy have the same order && 498 * (d) a page and its buddy are in the same zone. 499 * 500 * For recording whether a page is in the buddy system, we set ->_mapcount 501 * PAGE_BUDDY_MAPCOUNT_VALUE. 502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 503 * serialized by zone->lock. 504 * 505 * For recording page's order, we use page_private(page). 506 */ 507 static inline int page_is_buddy(struct page *page, struct page *buddy, 508 unsigned int order) 509 { 510 if (!pfn_valid_within(page_to_pfn(buddy))) 511 return 0; 512 513 if (page_is_guard(buddy) && page_order(buddy) == order) { 514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 515 516 if (page_zone_id(page) != page_zone_id(buddy)) 517 return 0; 518 519 return 1; 520 } 521 522 if (PageBuddy(buddy) && page_order(buddy) == order) { 523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 524 525 /* 526 * zone check is done late to avoid uselessly 527 * calculating zone/node ids for pages that could 528 * never merge. 529 */ 530 if (page_zone_id(page) != page_zone_id(buddy)) 531 return 0; 532 533 return 1; 534 } 535 return 0; 536 } 537 538 /* 539 * Freeing function for a buddy system allocator. 540 * 541 * The concept of a buddy system is to maintain direct-mapped table 542 * (containing bit values) for memory blocks of various "orders". 543 * The bottom level table contains the map for the smallest allocatable 544 * units of memory (here, pages), and each level above it describes 545 * pairs of units from the levels below, hence, "buddies". 546 * At a high level, all that happens here is marking the table entry 547 * at the bottom level available, and propagating the changes upward 548 * as necessary, plus some accounting needed to play nicely with other 549 * parts of the VM system. 550 * At each level, we keep a list of pages, which are heads of continuous 551 * free pages of length of (1 << order) and marked with _mapcount 552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 553 * field. 554 * So when we are allocating or freeing one, we can derive the state of the 555 * other. That is, if we allocate a small block, and both were 556 * free, the remainder of the region must be split into blocks. 557 * If a block is freed, and its buddy is also free, then this 558 * triggers coalescing into a block of larger size. 559 * 560 * -- nyc 561 */ 562 563 static inline void __free_one_page(struct page *page, 564 unsigned long pfn, 565 struct zone *zone, unsigned int order, 566 int migratetype) 567 { 568 unsigned long page_idx; 569 unsigned long combined_idx; 570 unsigned long uninitialized_var(buddy_idx); 571 struct page *buddy; 572 573 VM_BUG_ON(!zone_is_initialized(zone)); 574 575 if (unlikely(PageCompound(page))) 576 if (unlikely(destroy_compound_page(page, order))) 577 return; 578 579 VM_BUG_ON(migratetype == -1); 580 581 page_idx = pfn & ((1 << MAX_ORDER) - 1); 582 583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 584 VM_BUG_ON_PAGE(bad_range(zone, page), page); 585 586 while (order < MAX_ORDER-1) { 587 buddy_idx = __find_buddy_index(page_idx, order); 588 buddy = page + (buddy_idx - page_idx); 589 if (!page_is_buddy(page, buddy, order)) 590 break; 591 /* 592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 593 * merge with it and move up one order. 594 */ 595 if (page_is_guard(buddy)) { 596 clear_page_guard_flag(buddy); 597 set_page_private(page, 0); 598 __mod_zone_freepage_state(zone, 1 << order, 599 migratetype); 600 } else { 601 list_del(&buddy->lru); 602 zone->free_area[order].nr_free--; 603 rmv_page_order(buddy); 604 } 605 combined_idx = buddy_idx & page_idx; 606 page = page + (combined_idx - page_idx); 607 page_idx = combined_idx; 608 order++; 609 } 610 set_page_order(page, order); 611 612 /* 613 * If this is not the largest possible page, check if the buddy 614 * of the next-highest order is free. If it is, it's possible 615 * that pages are being freed that will coalesce soon. In case, 616 * that is happening, add the free page to the tail of the list 617 * so it's less likely to be used soon and more likely to be merged 618 * as a higher order page 619 */ 620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 621 struct page *higher_page, *higher_buddy; 622 combined_idx = buddy_idx & page_idx; 623 higher_page = page + (combined_idx - page_idx); 624 buddy_idx = __find_buddy_index(combined_idx, order + 1); 625 higher_buddy = higher_page + (buddy_idx - combined_idx); 626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 627 list_add_tail(&page->lru, 628 &zone->free_area[order].free_list[migratetype]); 629 goto out; 630 } 631 } 632 633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 634 out: 635 zone->free_area[order].nr_free++; 636 } 637 638 static inline int free_pages_check(struct page *page) 639 { 640 const char *bad_reason = NULL; 641 unsigned long bad_flags = 0; 642 643 if (unlikely(page_mapcount(page))) 644 bad_reason = "nonzero mapcount"; 645 if (unlikely(page->mapping != NULL)) 646 bad_reason = "non-NULL mapping"; 647 if (unlikely(atomic_read(&page->_count) != 0)) 648 bad_reason = "nonzero _count"; 649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 652 } 653 if (unlikely(mem_cgroup_bad_page_check(page))) 654 bad_reason = "cgroup check failed"; 655 if (unlikely(bad_reason)) { 656 bad_page(page, bad_reason, bad_flags); 657 return 1; 658 } 659 page_cpupid_reset_last(page); 660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 662 return 0; 663 } 664 665 /* 666 * Frees a number of pages from the PCP lists 667 * Assumes all pages on list are in same zone, and of same order. 668 * count is the number of pages to free. 669 * 670 * If the zone was previously in an "all pages pinned" state then look to 671 * see if this freeing clears that state. 672 * 673 * And clear the zone's pages_scanned counter, to hold off the "all pages are 674 * pinned" detection logic. 675 */ 676 static void free_pcppages_bulk(struct zone *zone, int count, 677 struct per_cpu_pages *pcp) 678 { 679 int migratetype = 0; 680 int batch_free = 0; 681 int to_free = count; 682 683 spin_lock(&zone->lock); 684 zone->pages_scanned = 0; 685 686 while (to_free) { 687 struct page *page; 688 struct list_head *list; 689 690 /* 691 * Remove pages from lists in a round-robin fashion. A 692 * batch_free count is maintained that is incremented when an 693 * empty list is encountered. This is so more pages are freed 694 * off fuller lists instead of spinning excessively around empty 695 * lists 696 */ 697 do { 698 batch_free++; 699 if (++migratetype == MIGRATE_PCPTYPES) 700 migratetype = 0; 701 list = &pcp->lists[migratetype]; 702 } while (list_empty(list)); 703 704 /* This is the only non-empty list. Free them all. */ 705 if (batch_free == MIGRATE_PCPTYPES) 706 batch_free = to_free; 707 708 do { 709 int mt; /* migratetype of the to-be-freed page */ 710 711 page = list_entry(list->prev, struct page, lru); 712 /* must delete as __free_one_page list manipulates */ 713 list_del(&page->lru); 714 mt = get_freepage_migratetype(page); 715 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 716 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 717 trace_mm_page_pcpu_drain(page, 0, mt); 718 if (likely(!is_migrate_isolate_page(page))) { 719 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 720 if (is_migrate_cma(mt)) 721 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 722 } 723 } while (--to_free && --batch_free && !list_empty(list)); 724 } 725 spin_unlock(&zone->lock); 726 } 727 728 static void free_one_page(struct zone *zone, 729 struct page *page, unsigned long pfn, 730 unsigned int order, 731 int migratetype) 732 { 733 spin_lock(&zone->lock); 734 zone->pages_scanned = 0; 735 736 __free_one_page(page, pfn, zone, order, migratetype); 737 if (unlikely(!is_migrate_isolate(migratetype))) 738 __mod_zone_freepage_state(zone, 1 << order, migratetype); 739 spin_unlock(&zone->lock); 740 } 741 742 static bool free_pages_prepare(struct page *page, unsigned int order) 743 { 744 int i; 745 int bad = 0; 746 747 trace_mm_page_free(page, order); 748 kmemcheck_free_shadow(page, order); 749 750 if (PageAnon(page)) 751 page->mapping = NULL; 752 for (i = 0; i < (1 << order); i++) 753 bad += free_pages_check(page + i); 754 if (bad) 755 return false; 756 757 if (!PageHighMem(page)) { 758 debug_check_no_locks_freed(page_address(page), 759 PAGE_SIZE << order); 760 debug_check_no_obj_freed(page_address(page), 761 PAGE_SIZE << order); 762 } 763 arch_free_page(page, order); 764 kernel_map_pages(page, 1 << order, 0); 765 766 return true; 767 } 768 769 static void __free_pages_ok(struct page *page, unsigned int order) 770 { 771 unsigned long flags; 772 int migratetype; 773 unsigned long pfn = page_to_pfn(page); 774 775 if (!free_pages_prepare(page, order)) 776 return; 777 778 migratetype = get_pfnblock_migratetype(page, pfn); 779 local_irq_save(flags); 780 __count_vm_events(PGFREE, 1 << order); 781 set_freepage_migratetype(page, migratetype); 782 free_one_page(page_zone(page), page, pfn, order, migratetype); 783 local_irq_restore(flags); 784 } 785 786 void __init __free_pages_bootmem(struct page *page, unsigned int order) 787 { 788 unsigned int nr_pages = 1 << order; 789 struct page *p = page; 790 unsigned int loop; 791 792 prefetchw(p); 793 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 794 prefetchw(p + 1); 795 __ClearPageReserved(p); 796 set_page_count(p, 0); 797 } 798 __ClearPageReserved(p); 799 set_page_count(p, 0); 800 801 page_zone(page)->managed_pages += nr_pages; 802 set_page_refcounted(page); 803 __free_pages(page, order); 804 } 805 806 #ifdef CONFIG_CMA 807 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 808 void __init init_cma_reserved_pageblock(struct page *page) 809 { 810 unsigned i = pageblock_nr_pages; 811 struct page *p = page; 812 813 do { 814 __ClearPageReserved(p); 815 set_page_count(p, 0); 816 } while (++p, --i); 817 818 set_page_refcounted(page); 819 set_pageblock_migratetype(page, MIGRATE_CMA); 820 __free_pages(page, pageblock_order); 821 adjust_managed_page_count(page, pageblock_nr_pages); 822 } 823 #endif 824 825 /* 826 * The order of subdivision here is critical for the IO subsystem. 827 * Please do not alter this order without good reasons and regression 828 * testing. Specifically, as large blocks of memory are subdivided, 829 * the order in which smaller blocks are delivered depends on the order 830 * they're subdivided in this function. This is the primary factor 831 * influencing the order in which pages are delivered to the IO 832 * subsystem according to empirical testing, and this is also justified 833 * by considering the behavior of a buddy system containing a single 834 * large block of memory acted on by a series of small allocations. 835 * This behavior is a critical factor in sglist merging's success. 836 * 837 * -- nyc 838 */ 839 static inline void expand(struct zone *zone, struct page *page, 840 int low, int high, struct free_area *area, 841 int migratetype) 842 { 843 unsigned long size = 1 << high; 844 845 while (high > low) { 846 area--; 847 high--; 848 size >>= 1; 849 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 850 851 #ifdef CONFIG_DEBUG_PAGEALLOC 852 if (high < debug_guardpage_minorder()) { 853 /* 854 * Mark as guard pages (or page), that will allow to 855 * merge back to allocator when buddy will be freed. 856 * Corresponding page table entries will not be touched, 857 * pages will stay not present in virtual address space 858 */ 859 INIT_LIST_HEAD(&page[size].lru); 860 set_page_guard_flag(&page[size]); 861 set_page_private(&page[size], high); 862 /* Guard pages are not available for any usage */ 863 __mod_zone_freepage_state(zone, -(1 << high), 864 migratetype); 865 continue; 866 } 867 #endif 868 list_add(&page[size].lru, &area->free_list[migratetype]); 869 area->nr_free++; 870 set_page_order(&page[size], high); 871 } 872 } 873 874 /* 875 * This page is about to be returned from the page allocator 876 */ 877 static inline int check_new_page(struct page *page) 878 { 879 const char *bad_reason = NULL; 880 unsigned long bad_flags = 0; 881 882 if (unlikely(page_mapcount(page))) 883 bad_reason = "nonzero mapcount"; 884 if (unlikely(page->mapping != NULL)) 885 bad_reason = "non-NULL mapping"; 886 if (unlikely(atomic_read(&page->_count) != 0)) 887 bad_reason = "nonzero _count"; 888 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 889 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 890 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 891 } 892 if (unlikely(mem_cgroup_bad_page_check(page))) 893 bad_reason = "cgroup check failed"; 894 if (unlikely(bad_reason)) { 895 bad_page(page, bad_reason, bad_flags); 896 return 1; 897 } 898 return 0; 899 } 900 901 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) 902 { 903 int i; 904 905 for (i = 0; i < (1 << order); i++) { 906 struct page *p = page + i; 907 if (unlikely(check_new_page(p))) 908 return 1; 909 } 910 911 set_page_private(page, 0); 912 set_page_refcounted(page); 913 914 arch_alloc_page(page, order); 915 kernel_map_pages(page, 1 << order, 1); 916 917 if (gfp_flags & __GFP_ZERO) 918 prep_zero_page(page, order, gfp_flags); 919 920 if (order && (gfp_flags & __GFP_COMP)) 921 prep_compound_page(page, order); 922 923 return 0; 924 } 925 926 /* 927 * Go through the free lists for the given migratetype and remove 928 * the smallest available page from the freelists 929 */ 930 static inline 931 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 932 int migratetype) 933 { 934 unsigned int current_order; 935 struct free_area *area; 936 struct page *page; 937 938 /* Find a page of the appropriate size in the preferred list */ 939 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 940 area = &(zone->free_area[current_order]); 941 if (list_empty(&area->free_list[migratetype])) 942 continue; 943 944 page = list_entry(area->free_list[migratetype].next, 945 struct page, lru); 946 list_del(&page->lru); 947 rmv_page_order(page); 948 area->nr_free--; 949 expand(zone, page, order, current_order, area, migratetype); 950 set_freepage_migratetype(page, migratetype); 951 return page; 952 } 953 954 return NULL; 955 } 956 957 958 /* 959 * This array describes the order lists are fallen back to when 960 * the free lists for the desirable migrate type are depleted 961 */ 962 static int fallbacks[MIGRATE_TYPES][4] = { 963 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 964 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 965 #ifdef CONFIG_CMA 966 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 967 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 968 #else 969 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 970 #endif 971 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 972 #ifdef CONFIG_MEMORY_ISOLATION 973 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 974 #endif 975 }; 976 977 /* 978 * Move the free pages in a range to the free lists of the requested type. 979 * Note that start_page and end_pages are not aligned on a pageblock 980 * boundary. If alignment is required, use move_freepages_block() 981 */ 982 int move_freepages(struct zone *zone, 983 struct page *start_page, struct page *end_page, 984 int migratetype) 985 { 986 struct page *page; 987 unsigned long order; 988 int pages_moved = 0; 989 990 #ifndef CONFIG_HOLES_IN_ZONE 991 /* 992 * page_zone is not safe to call in this context when 993 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 994 * anyway as we check zone boundaries in move_freepages_block(). 995 * Remove at a later date when no bug reports exist related to 996 * grouping pages by mobility 997 */ 998 BUG_ON(page_zone(start_page) != page_zone(end_page)); 999 #endif 1000 1001 for (page = start_page; page <= end_page;) { 1002 /* Make sure we are not inadvertently changing nodes */ 1003 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1004 1005 if (!pfn_valid_within(page_to_pfn(page))) { 1006 page++; 1007 continue; 1008 } 1009 1010 if (!PageBuddy(page)) { 1011 page++; 1012 continue; 1013 } 1014 1015 order = page_order(page); 1016 list_move(&page->lru, 1017 &zone->free_area[order].free_list[migratetype]); 1018 set_freepage_migratetype(page, migratetype); 1019 page += 1 << order; 1020 pages_moved += 1 << order; 1021 } 1022 1023 return pages_moved; 1024 } 1025 1026 int move_freepages_block(struct zone *zone, struct page *page, 1027 int migratetype) 1028 { 1029 unsigned long start_pfn, end_pfn; 1030 struct page *start_page, *end_page; 1031 1032 start_pfn = page_to_pfn(page); 1033 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1034 start_page = pfn_to_page(start_pfn); 1035 end_page = start_page + pageblock_nr_pages - 1; 1036 end_pfn = start_pfn + pageblock_nr_pages - 1; 1037 1038 /* Do not cross zone boundaries */ 1039 if (!zone_spans_pfn(zone, start_pfn)) 1040 start_page = page; 1041 if (!zone_spans_pfn(zone, end_pfn)) 1042 return 0; 1043 1044 return move_freepages(zone, start_page, end_page, migratetype); 1045 } 1046 1047 static void change_pageblock_range(struct page *pageblock_page, 1048 int start_order, int migratetype) 1049 { 1050 int nr_pageblocks = 1 << (start_order - pageblock_order); 1051 1052 while (nr_pageblocks--) { 1053 set_pageblock_migratetype(pageblock_page, migratetype); 1054 pageblock_page += pageblock_nr_pages; 1055 } 1056 } 1057 1058 /* 1059 * If breaking a large block of pages, move all free pages to the preferred 1060 * allocation list. If falling back for a reclaimable kernel allocation, be 1061 * more aggressive about taking ownership of free pages. 1062 * 1063 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1064 * nor move CMA pages to different free lists. We don't want unmovable pages 1065 * to be allocated from MIGRATE_CMA areas. 1066 * 1067 * Returns the new migratetype of the pageblock (or the same old migratetype 1068 * if it was unchanged). 1069 */ 1070 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1071 int start_type, int fallback_type) 1072 { 1073 int current_order = page_order(page); 1074 1075 /* 1076 * When borrowing from MIGRATE_CMA, we need to release the excess 1077 * buddy pages to CMA itself. We also ensure the freepage_migratetype 1078 * is set to CMA so it is returned to the correct freelist in case 1079 * the page ends up being not actually allocated from the pcp lists. 1080 */ 1081 if (is_migrate_cma(fallback_type)) 1082 return fallback_type; 1083 1084 /* Take ownership for orders >= pageblock_order */ 1085 if (current_order >= pageblock_order) { 1086 change_pageblock_range(page, current_order, start_type); 1087 return start_type; 1088 } 1089 1090 if (current_order >= pageblock_order / 2 || 1091 start_type == MIGRATE_RECLAIMABLE || 1092 page_group_by_mobility_disabled) { 1093 int pages; 1094 1095 pages = move_freepages_block(zone, page, start_type); 1096 1097 /* Claim the whole block if over half of it is free */ 1098 if (pages >= (1 << (pageblock_order-1)) || 1099 page_group_by_mobility_disabled) { 1100 1101 set_pageblock_migratetype(page, start_type); 1102 return start_type; 1103 } 1104 1105 } 1106 1107 return fallback_type; 1108 } 1109 1110 /* Remove an element from the buddy allocator from the fallback list */ 1111 static inline struct page * 1112 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1113 { 1114 struct free_area *area; 1115 unsigned int current_order; 1116 struct page *page; 1117 int migratetype, new_type, i; 1118 1119 /* Find the largest possible block of pages in the other list */ 1120 for (current_order = MAX_ORDER-1; 1121 current_order >= order && current_order <= MAX_ORDER-1; 1122 --current_order) { 1123 for (i = 0;; i++) { 1124 migratetype = fallbacks[start_migratetype][i]; 1125 1126 /* MIGRATE_RESERVE handled later if necessary */ 1127 if (migratetype == MIGRATE_RESERVE) 1128 break; 1129 1130 area = &(zone->free_area[current_order]); 1131 if (list_empty(&area->free_list[migratetype])) 1132 continue; 1133 1134 page = list_entry(area->free_list[migratetype].next, 1135 struct page, lru); 1136 area->nr_free--; 1137 1138 new_type = try_to_steal_freepages(zone, page, 1139 start_migratetype, 1140 migratetype); 1141 1142 /* Remove the page from the freelists */ 1143 list_del(&page->lru); 1144 rmv_page_order(page); 1145 1146 expand(zone, page, order, current_order, area, 1147 new_type); 1148 /* The freepage_migratetype may differ from pageblock's 1149 * migratetype depending on the decisions in 1150 * try_to_steal_freepages. This is OK as long as it does 1151 * not differ for MIGRATE_CMA type. 1152 */ 1153 set_freepage_migratetype(page, new_type); 1154 1155 trace_mm_page_alloc_extfrag(page, order, current_order, 1156 start_migratetype, migratetype, new_type); 1157 1158 return page; 1159 } 1160 } 1161 1162 return NULL; 1163 } 1164 1165 /* 1166 * Do the hard work of removing an element from the buddy allocator. 1167 * Call me with the zone->lock already held. 1168 */ 1169 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1170 int migratetype) 1171 { 1172 struct page *page; 1173 1174 retry_reserve: 1175 page = __rmqueue_smallest(zone, order, migratetype); 1176 1177 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1178 page = __rmqueue_fallback(zone, order, migratetype); 1179 1180 /* 1181 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1182 * is used because __rmqueue_smallest is an inline function 1183 * and we want just one call site 1184 */ 1185 if (!page) { 1186 migratetype = MIGRATE_RESERVE; 1187 goto retry_reserve; 1188 } 1189 } 1190 1191 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1192 return page; 1193 } 1194 1195 /* 1196 * Obtain a specified number of elements from the buddy allocator, all under 1197 * a single hold of the lock, for efficiency. Add them to the supplied list. 1198 * Returns the number of new pages which were placed at *list. 1199 */ 1200 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1201 unsigned long count, struct list_head *list, 1202 int migratetype, bool cold) 1203 { 1204 int i; 1205 1206 spin_lock(&zone->lock); 1207 for (i = 0; i < count; ++i) { 1208 struct page *page = __rmqueue(zone, order, migratetype); 1209 if (unlikely(page == NULL)) 1210 break; 1211 1212 /* 1213 * Split buddy pages returned by expand() are received here 1214 * in physical page order. The page is added to the callers and 1215 * list and the list head then moves forward. From the callers 1216 * perspective, the linked list is ordered by page number in 1217 * some conditions. This is useful for IO devices that can 1218 * merge IO requests if the physical pages are ordered 1219 * properly. 1220 */ 1221 if (likely(!cold)) 1222 list_add(&page->lru, list); 1223 else 1224 list_add_tail(&page->lru, list); 1225 list = &page->lru; 1226 if (is_migrate_cma(get_freepage_migratetype(page))) 1227 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1228 -(1 << order)); 1229 } 1230 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1231 spin_unlock(&zone->lock); 1232 return i; 1233 } 1234 1235 #ifdef CONFIG_NUMA 1236 /* 1237 * Called from the vmstat counter updater to drain pagesets of this 1238 * currently executing processor on remote nodes after they have 1239 * expired. 1240 * 1241 * Note that this function must be called with the thread pinned to 1242 * a single processor. 1243 */ 1244 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1245 { 1246 unsigned long flags; 1247 int to_drain; 1248 unsigned long batch; 1249 1250 local_irq_save(flags); 1251 batch = ACCESS_ONCE(pcp->batch); 1252 if (pcp->count >= batch) 1253 to_drain = batch; 1254 else 1255 to_drain = pcp->count; 1256 if (to_drain > 0) { 1257 free_pcppages_bulk(zone, to_drain, pcp); 1258 pcp->count -= to_drain; 1259 } 1260 local_irq_restore(flags); 1261 } 1262 #endif 1263 1264 /* 1265 * Drain pages of the indicated processor. 1266 * 1267 * The processor must either be the current processor and the 1268 * thread pinned to the current processor or a processor that 1269 * is not online. 1270 */ 1271 static void drain_pages(unsigned int cpu) 1272 { 1273 unsigned long flags; 1274 struct zone *zone; 1275 1276 for_each_populated_zone(zone) { 1277 struct per_cpu_pageset *pset; 1278 struct per_cpu_pages *pcp; 1279 1280 local_irq_save(flags); 1281 pset = per_cpu_ptr(zone->pageset, cpu); 1282 1283 pcp = &pset->pcp; 1284 if (pcp->count) { 1285 free_pcppages_bulk(zone, pcp->count, pcp); 1286 pcp->count = 0; 1287 } 1288 local_irq_restore(flags); 1289 } 1290 } 1291 1292 /* 1293 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1294 */ 1295 void drain_local_pages(void *arg) 1296 { 1297 drain_pages(smp_processor_id()); 1298 } 1299 1300 /* 1301 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1302 * 1303 * Note that this code is protected against sending an IPI to an offline 1304 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1305 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1306 * nothing keeps CPUs from showing up after we populated the cpumask and 1307 * before the call to on_each_cpu_mask(). 1308 */ 1309 void drain_all_pages(void) 1310 { 1311 int cpu; 1312 struct per_cpu_pageset *pcp; 1313 struct zone *zone; 1314 1315 /* 1316 * Allocate in the BSS so we wont require allocation in 1317 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1318 */ 1319 static cpumask_t cpus_with_pcps; 1320 1321 /* 1322 * We don't care about racing with CPU hotplug event 1323 * as offline notification will cause the notified 1324 * cpu to drain that CPU pcps and on_each_cpu_mask 1325 * disables preemption as part of its processing 1326 */ 1327 for_each_online_cpu(cpu) { 1328 bool has_pcps = false; 1329 for_each_populated_zone(zone) { 1330 pcp = per_cpu_ptr(zone->pageset, cpu); 1331 if (pcp->pcp.count) { 1332 has_pcps = true; 1333 break; 1334 } 1335 } 1336 if (has_pcps) 1337 cpumask_set_cpu(cpu, &cpus_with_pcps); 1338 else 1339 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1340 } 1341 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1342 } 1343 1344 #ifdef CONFIG_HIBERNATION 1345 1346 void mark_free_pages(struct zone *zone) 1347 { 1348 unsigned long pfn, max_zone_pfn; 1349 unsigned long flags; 1350 unsigned int order, t; 1351 struct list_head *curr; 1352 1353 if (zone_is_empty(zone)) 1354 return; 1355 1356 spin_lock_irqsave(&zone->lock, flags); 1357 1358 max_zone_pfn = zone_end_pfn(zone); 1359 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1360 if (pfn_valid(pfn)) { 1361 struct page *page = pfn_to_page(pfn); 1362 1363 if (!swsusp_page_is_forbidden(page)) 1364 swsusp_unset_page_free(page); 1365 } 1366 1367 for_each_migratetype_order(order, t) { 1368 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1369 unsigned long i; 1370 1371 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1372 for (i = 0; i < (1UL << order); i++) 1373 swsusp_set_page_free(pfn_to_page(pfn + i)); 1374 } 1375 } 1376 spin_unlock_irqrestore(&zone->lock, flags); 1377 } 1378 #endif /* CONFIG_PM */ 1379 1380 /* 1381 * Free a 0-order page 1382 * cold == true ? free a cold page : free a hot page 1383 */ 1384 void free_hot_cold_page(struct page *page, bool cold) 1385 { 1386 struct zone *zone = page_zone(page); 1387 struct per_cpu_pages *pcp; 1388 unsigned long flags; 1389 unsigned long pfn = page_to_pfn(page); 1390 int migratetype; 1391 1392 if (!free_pages_prepare(page, 0)) 1393 return; 1394 1395 migratetype = get_pfnblock_migratetype(page, pfn); 1396 set_freepage_migratetype(page, migratetype); 1397 local_irq_save(flags); 1398 __count_vm_event(PGFREE); 1399 1400 /* 1401 * We only track unmovable, reclaimable and movable on pcp lists. 1402 * Free ISOLATE pages back to the allocator because they are being 1403 * offlined but treat RESERVE as movable pages so we can get those 1404 * areas back if necessary. Otherwise, we may have to free 1405 * excessively into the page allocator 1406 */ 1407 if (migratetype >= MIGRATE_PCPTYPES) { 1408 if (unlikely(is_migrate_isolate(migratetype))) { 1409 free_one_page(zone, page, pfn, 0, migratetype); 1410 goto out; 1411 } 1412 migratetype = MIGRATE_MOVABLE; 1413 } 1414 1415 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1416 if (!cold) 1417 list_add(&page->lru, &pcp->lists[migratetype]); 1418 else 1419 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1420 pcp->count++; 1421 if (pcp->count >= pcp->high) { 1422 unsigned long batch = ACCESS_ONCE(pcp->batch); 1423 free_pcppages_bulk(zone, batch, pcp); 1424 pcp->count -= batch; 1425 } 1426 1427 out: 1428 local_irq_restore(flags); 1429 } 1430 1431 /* 1432 * Free a list of 0-order pages 1433 */ 1434 void free_hot_cold_page_list(struct list_head *list, bool cold) 1435 { 1436 struct page *page, *next; 1437 1438 list_for_each_entry_safe(page, next, list, lru) { 1439 trace_mm_page_free_batched(page, cold); 1440 free_hot_cold_page(page, cold); 1441 } 1442 } 1443 1444 /* 1445 * split_page takes a non-compound higher-order page, and splits it into 1446 * n (1<<order) sub-pages: page[0..n] 1447 * Each sub-page must be freed individually. 1448 * 1449 * Note: this is probably too low level an operation for use in drivers. 1450 * Please consult with lkml before using this in your driver. 1451 */ 1452 void split_page(struct page *page, unsigned int order) 1453 { 1454 int i; 1455 1456 VM_BUG_ON_PAGE(PageCompound(page), page); 1457 VM_BUG_ON_PAGE(!page_count(page), page); 1458 1459 #ifdef CONFIG_KMEMCHECK 1460 /* 1461 * Split shadow pages too, because free(page[0]) would 1462 * otherwise free the whole shadow. 1463 */ 1464 if (kmemcheck_page_is_tracked(page)) 1465 split_page(virt_to_page(page[0].shadow), order); 1466 #endif 1467 1468 for (i = 1; i < (1 << order); i++) 1469 set_page_refcounted(page + i); 1470 } 1471 EXPORT_SYMBOL_GPL(split_page); 1472 1473 static int __isolate_free_page(struct page *page, unsigned int order) 1474 { 1475 unsigned long watermark; 1476 struct zone *zone; 1477 int mt; 1478 1479 BUG_ON(!PageBuddy(page)); 1480 1481 zone = page_zone(page); 1482 mt = get_pageblock_migratetype(page); 1483 1484 if (!is_migrate_isolate(mt)) { 1485 /* Obey watermarks as if the page was being allocated */ 1486 watermark = low_wmark_pages(zone) + (1 << order); 1487 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1488 return 0; 1489 1490 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1491 } 1492 1493 /* Remove page from free list */ 1494 list_del(&page->lru); 1495 zone->free_area[order].nr_free--; 1496 rmv_page_order(page); 1497 1498 /* Set the pageblock if the isolated page is at least a pageblock */ 1499 if (order >= pageblock_order - 1) { 1500 struct page *endpage = page + (1 << order) - 1; 1501 for (; page < endpage; page += pageblock_nr_pages) { 1502 int mt = get_pageblock_migratetype(page); 1503 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1504 set_pageblock_migratetype(page, 1505 MIGRATE_MOVABLE); 1506 } 1507 } 1508 1509 return 1UL << order; 1510 } 1511 1512 /* 1513 * Similar to split_page except the page is already free. As this is only 1514 * being used for migration, the migratetype of the block also changes. 1515 * As this is called with interrupts disabled, the caller is responsible 1516 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1517 * are enabled. 1518 * 1519 * Note: this is probably too low level an operation for use in drivers. 1520 * Please consult with lkml before using this in your driver. 1521 */ 1522 int split_free_page(struct page *page) 1523 { 1524 unsigned int order; 1525 int nr_pages; 1526 1527 order = page_order(page); 1528 1529 nr_pages = __isolate_free_page(page, order); 1530 if (!nr_pages) 1531 return 0; 1532 1533 /* Split into individual pages */ 1534 set_page_refcounted(page); 1535 split_page(page, order); 1536 return nr_pages; 1537 } 1538 1539 /* 1540 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1541 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1542 * or two. 1543 */ 1544 static inline 1545 struct page *buffered_rmqueue(struct zone *preferred_zone, 1546 struct zone *zone, unsigned int order, 1547 gfp_t gfp_flags, int migratetype) 1548 { 1549 unsigned long flags; 1550 struct page *page; 1551 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1552 1553 again: 1554 if (likely(order == 0)) { 1555 struct per_cpu_pages *pcp; 1556 struct list_head *list; 1557 1558 local_irq_save(flags); 1559 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1560 list = &pcp->lists[migratetype]; 1561 if (list_empty(list)) { 1562 pcp->count += rmqueue_bulk(zone, 0, 1563 pcp->batch, list, 1564 migratetype, cold); 1565 if (unlikely(list_empty(list))) 1566 goto failed; 1567 } 1568 1569 if (cold) 1570 page = list_entry(list->prev, struct page, lru); 1571 else 1572 page = list_entry(list->next, struct page, lru); 1573 1574 list_del(&page->lru); 1575 pcp->count--; 1576 } else { 1577 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1578 /* 1579 * __GFP_NOFAIL is not to be used in new code. 1580 * 1581 * All __GFP_NOFAIL callers should be fixed so that they 1582 * properly detect and handle allocation failures. 1583 * 1584 * We most definitely don't want callers attempting to 1585 * allocate greater than order-1 page units with 1586 * __GFP_NOFAIL. 1587 */ 1588 WARN_ON_ONCE(order > 1); 1589 } 1590 spin_lock_irqsave(&zone->lock, flags); 1591 page = __rmqueue(zone, order, migratetype); 1592 spin_unlock(&zone->lock); 1593 if (!page) 1594 goto failed; 1595 __mod_zone_freepage_state(zone, -(1 << order), 1596 get_freepage_migratetype(page)); 1597 } 1598 1599 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1600 1601 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1602 zone_statistics(preferred_zone, zone, gfp_flags); 1603 local_irq_restore(flags); 1604 1605 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1606 if (prep_new_page(page, order, gfp_flags)) 1607 goto again; 1608 return page; 1609 1610 failed: 1611 local_irq_restore(flags); 1612 return NULL; 1613 } 1614 1615 #ifdef CONFIG_FAIL_PAGE_ALLOC 1616 1617 static struct { 1618 struct fault_attr attr; 1619 1620 u32 ignore_gfp_highmem; 1621 u32 ignore_gfp_wait; 1622 u32 min_order; 1623 } fail_page_alloc = { 1624 .attr = FAULT_ATTR_INITIALIZER, 1625 .ignore_gfp_wait = 1, 1626 .ignore_gfp_highmem = 1, 1627 .min_order = 1, 1628 }; 1629 1630 static int __init setup_fail_page_alloc(char *str) 1631 { 1632 return setup_fault_attr(&fail_page_alloc.attr, str); 1633 } 1634 __setup("fail_page_alloc=", setup_fail_page_alloc); 1635 1636 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1637 { 1638 if (order < fail_page_alloc.min_order) 1639 return false; 1640 if (gfp_mask & __GFP_NOFAIL) 1641 return false; 1642 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1643 return false; 1644 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1645 return false; 1646 1647 return should_fail(&fail_page_alloc.attr, 1 << order); 1648 } 1649 1650 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1651 1652 static int __init fail_page_alloc_debugfs(void) 1653 { 1654 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1655 struct dentry *dir; 1656 1657 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1658 &fail_page_alloc.attr); 1659 if (IS_ERR(dir)) 1660 return PTR_ERR(dir); 1661 1662 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1663 &fail_page_alloc.ignore_gfp_wait)) 1664 goto fail; 1665 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1666 &fail_page_alloc.ignore_gfp_highmem)) 1667 goto fail; 1668 if (!debugfs_create_u32("min-order", mode, dir, 1669 &fail_page_alloc.min_order)) 1670 goto fail; 1671 1672 return 0; 1673 fail: 1674 debugfs_remove_recursive(dir); 1675 1676 return -ENOMEM; 1677 } 1678 1679 late_initcall(fail_page_alloc_debugfs); 1680 1681 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1682 1683 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1684 1685 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1686 { 1687 return false; 1688 } 1689 1690 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1691 1692 /* 1693 * Return true if free pages are above 'mark'. This takes into account the order 1694 * of the allocation. 1695 */ 1696 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1697 unsigned long mark, int classzone_idx, int alloc_flags, 1698 long free_pages) 1699 { 1700 /* free_pages my go negative - that's OK */ 1701 long min = mark; 1702 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1703 int o; 1704 long free_cma = 0; 1705 1706 free_pages -= (1 << order) - 1; 1707 if (alloc_flags & ALLOC_HIGH) 1708 min -= min / 2; 1709 if (alloc_flags & ALLOC_HARDER) 1710 min -= min / 4; 1711 #ifdef CONFIG_CMA 1712 /* If allocation can't use CMA areas don't use free CMA pages */ 1713 if (!(alloc_flags & ALLOC_CMA)) 1714 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1715 #endif 1716 1717 if (free_pages - free_cma <= min + lowmem_reserve) 1718 return false; 1719 for (o = 0; o < order; o++) { 1720 /* At the next order, this order's pages become unavailable */ 1721 free_pages -= z->free_area[o].nr_free << o; 1722 1723 /* Require fewer higher order pages to be free */ 1724 min >>= 1; 1725 1726 if (free_pages <= min) 1727 return false; 1728 } 1729 return true; 1730 } 1731 1732 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1733 int classzone_idx, int alloc_flags) 1734 { 1735 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1736 zone_page_state(z, NR_FREE_PAGES)); 1737 } 1738 1739 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1740 unsigned long mark, int classzone_idx, int alloc_flags) 1741 { 1742 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1743 1744 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1745 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1746 1747 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1748 free_pages); 1749 } 1750 1751 #ifdef CONFIG_NUMA 1752 /* 1753 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1754 * skip over zones that are not allowed by the cpuset, or that have 1755 * been recently (in last second) found to be nearly full. See further 1756 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1757 * that have to skip over a lot of full or unallowed zones. 1758 * 1759 * If the zonelist cache is present in the passed zonelist, then 1760 * returns a pointer to the allowed node mask (either the current 1761 * tasks mems_allowed, or node_states[N_MEMORY].) 1762 * 1763 * If the zonelist cache is not available for this zonelist, does 1764 * nothing and returns NULL. 1765 * 1766 * If the fullzones BITMAP in the zonelist cache is stale (more than 1767 * a second since last zap'd) then we zap it out (clear its bits.) 1768 * 1769 * We hold off even calling zlc_setup, until after we've checked the 1770 * first zone in the zonelist, on the theory that most allocations will 1771 * be satisfied from that first zone, so best to examine that zone as 1772 * quickly as we can. 1773 */ 1774 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1775 { 1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1777 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1778 1779 zlc = zonelist->zlcache_ptr; 1780 if (!zlc) 1781 return NULL; 1782 1783 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1784 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1785 zlc->last_full_zap = jiffies; 1786 } 1787 1788 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1789 &cpuset_current_mems_allowed : 1790 &node_states[N_MEMORY]; 1791 return allowednodes; 1792 } 1793 1794 /* 1795 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1796 * if it is worth looking at further for free memory: 1797 * 1) Check that the zone isn't thought to be full (doesn't have its 1798 * bit set in the zonelist_cache fullzones BITMAP). 1799 * 2) Check that the zones node (obtained from the zonelist_cache 1800 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1801 * Return true (non-zero) if zone is worth looking at further, or 1802 * else return false (zero) if it is not. 1803 * 1804 * This check -ignores- the distinction between various watermarks, 1805 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1806 * found to be full for any variation of these watermarks, it will 1807 * be considered full for up to one second by all requests, unless 1808 * we are so low on memory on all allowed nodes that we are forced 1809 * into the second scan of the zonelist. 1810 * 1811 * In the second scan we ignore this zonelist cache and exactly 1812 * apply the watermarks to all zones, even it is slower to do so. 1813 * We are low on memory in the second scan, and should leave no stone 1814 * unturned looking for a free page. 1815 */ 1816 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1817 nodemask_t *allowednodes) 1818 { 1819 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1820 int i; /* index of *z in zonelist zones */ 1821 int n; /* node that zone *z is on */ 1822 1823 zlc = zonelist->zlcache_ptr; 1824 if (!zlc) 1825 return 1; 1826 1827 i = z - zonelist->_zonerefs; 1828 n = zlc->z_to_n[i]; 1829 1830 /* This zone is worth trying if it is allowed but not full */ 1831 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1832 } 1833 1834 /* 1835 * Given 'z' scanning a zonelist, set the corresponding bit in 1836 * zlc->fullzones, so that subsequent attempts to allocate a page 1837 * from that zone don't waste time re-examining it. 1838 */ 1839 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1840 { 1841 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1842 int i; /* index of *z in zonelist zones */ 1843 1844 zlc = zonelist->zlcache_ptr; 1845 if (!zlc) 1846 return; 1847 1848 i = z - zonelist->_zonerefs; 1849 1850 set_bit(i, zlc->fullzones); 1851 } 1852 1853 /* 1854 * clear all zones full, called after direct reclaim makes progress so that 1855 * a zone that was recently full is not skipped over for up to a second 1856 */ 1857 static void zlc_clear_zones_full(struct zonelist *zonelist) 1858 { 1859 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1860 1861 zlc = zonelist->zlcache_ptr; 1862 if (!zlc) 1863 return; 1864 1865 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1866 } 1867 1868 static bool zone_local(struct zone *local_zone, struct zone *zone) 1869 { 1870 return local_zone->node == zone->node; 1871 } 1872 1873 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1874 { 1875 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1876 RECLAIM_DISTANCE; 1877 } 1878 1879 #else /* CONFIG_NUMA */ 1880 1881 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1882 { 1883 return NULL; 1884 } 1885 1886 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1887 nodemask_t *allowednodes) 1888 { 1889 return 1; 1890 } 1891 1892 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1893 { 1894 } 1895 1896 static void zlc_clear_zones_full(struct zonelist *zonelist) 1897 { 1898 } 1899 1900 static bool zone_local(struct zone *local_zone, struct zone *zone) 1901 { 1902 return true; 1903 } 1904 1905 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1906 { 1907 return true; 1908 } 1909 1910 #endif /* CONFIG_NUMA */ 1911 1912 /* 1913 * get_page_from_freelist goes through the zonelist trying to allocate 1914 * a page. 1915 */ 1916 static struct page * 1917 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1918 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1919 struct zone *preferred_zone, int classzone_idx, int migratetype) 1920 { 1921 struct zoneref *z; 1922 struct page *page = NULL; 1923 struct zone *zone; 1924 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1925 int zlc_active = 0; /* set if using zonelist_cache */ 1926 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1927 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 1928 (gfp_mask & __GFP_WRITE); 1929 1930 zonelist_scan: 1931 /* 1932 * Scan zonelist, looking for a zone with enough free. 1933 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1934 */ 1935 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1936 high_zoneidx, nodemask) { 1937 unsigned long mark; 1938 1939 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1940 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1941 continue; 1942 if (cpusets_enabled() && 1943 (alloc_flags & ALLOC_CPUSET) && 1944 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1945 continue; 1946 /* 1947 * Distribute pages in proportion to the individual 1948 * zone size to ensure fair page aging. The zone a 1949 * page was allocated in should have no effect on the 1950 * time the page has in memory before being reclaimed. 1951 */ 1952 if (alloc_flags & ALLOC_FAIR) { 1953 if (!zone_local(preferred_zone, zone)) 1954 continue; 1955 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) 1956 continue; 1957 } 1958 /* 1959 * When allocating a page cache page for writing, we 1960 * want to get it from a zone that is within its dirty 1961 * limit, such that no single zone holds more than its 1962 * proportional share of globally allowed dirty pages. 1963 * The dirty limits take into account the zone's 1964 * lowmem reserves and high watermark so that kswapd 1965 * should be able to balance it without having to 1966 * write pages from its LRU list. 1967 * 1968 * This may look like it could increase pressure on 1969 * lower zones by failing allocations in higher zones 1970 * before they are full. But the pages that do spill 1971 * over are limited as the lower zones are protected 1972 * by this very same mechanism. It should not become 1973 * a practical burden to them. 1974 * 1975 * XXX: For now, allow allocations to potentially 1976 * exceed the per-zone dirty limit in the slowpath 1977 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1978 * which is important when on a NUMA setup the allowed 1979 * zones are together not big enough to reach the 1980 * global limit. The proper fix for these situations 1981 * will require awareness of zones in the 1982 * dirty-throttling and the flusher threads. 1983 */ 1984 if (consider_zone_dirty && !zone_dirty_ok(zone)) 1985 continue; 1986 1987 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1988 if (!zone_watermark_ok(zone, order, mark, 1989 classzone_idx, alloc_flags)) { 1990 int ret; 1991 1992 /* Checked here to keep the fast path fast */ 1993 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1994 if (alloc_flags & ALLOC_NO_WATERMARKS) 1995 goto try_this_zone; 1996 1997 if (IS_ENABLED(CONFIG_NUMA) && 1998 !did_zlc_setup && nr_online_nodes > 1) { 1999 /* 2000 * we do zlc_setup if there are multiple nodes 2001 * and before considering the first zone allowed 2002 * by the cpuset. 2003 */ 2004 allowednodes = zlc_setup(zonelist, alloc_flags); 2005 zlc_active = 1; 2006 did_zlc_setup = 1; 2007 } 2008 2009 if (zone_reclaim_mode == 0 || 2010 !zone_allows_reclaim(preferred_zone, zone)) 2011 goto this_zone_full; 2012 2013 /* 2014 * As we may have just activated ZLC, check if the first 2015 * eligible zone has failed zone_reclaim recently. 2016 */ 2017 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2018 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2019 continue; 2020 2021 ret = zone_reclaim(zone, gfp_mask, order); 2022 switch (ret) { 2023 case ZONE_RECLAIM_NOSCAN: 2024 /* did not scan */ 2025 continue; 2026 case ZONE_RECLAIM_FULL: 2027 /* scanned but unreclaimable */ 2028 continue; 2029 default: 2030 /* did we reclaim enough */ 2031 if (zone_watermark_ok(zone, order, mark, 2032 classzone_idx, alloc_flags)) 2033 goto try_this_zone; 2034 2035 /* 2036 * Failed to reclaim enough to meet watermark. 2037 * Only mark the zone full if checking the min 2038 * watermark or if we failed to reclaim just 2039 * 1<<order pages or else the page allocator 2040 * fastpath will prematurely mark zones full 2041 * when the watermark is between the low and 2042 * min watermarks. 2043 */ 2044 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2045 ret == ZONE_RECLAIM_SOME) 2046 goto this_zone_full; 2047 2048 continue; 2049 } 2050 } 2051 2052 try_this_zone: 2053 page = buffered_rmqueue(preferred_zone, zone, order, 2054 gfp_mask, migratetype); 2055 if (page) 2056 break; 2057 this_zone_full: 2058 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2059 zlc_mark_zone_full(zonelist, z); 2060 } 2061 2062 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 2063 /* Disable zlc cache for second zonelist scan */ 2064 zlc_active = 0; 2065 goto zonelist_scan; 2066 } 2067 2068 if (page) 2069 /* 2070 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2071 * necessary to allocate the page. The expectation is 2072 * that the caller is taking steps that will free more 2073 * memory. The caller should avoid the page being used 2074 * for !PFMEMALLOC purposes. 2075 */ 2076 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2077 2078 return page; 2079 } 2080 2081 /* 2082 * Large machines with many possible nodes should not always dump per-node 2083 * meminfo in irq context. 2084 */ 2085 static inline bool should_suppress_show_mem(void) 2086 { 2087 bool ret = false; 2088 2089 #if NODES_SHIFT > 8 2090 ret = in_interrupt(); 2091 #endif 2092 return ret; 2093 } 2094 2095 static DEFINE_RATELIMIT_STATE(nopage_rs, 2096 DEFAULT_RATELIMIT_INTERVAL, 2097 DEFAULT_RATELIMIT_BURST); 2098 2099 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2100 { 2101 unsigned int filter = SHOW_MEM_FILTER_NODES; 2102 2103 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2104 debug_guardpage_minorder() > 0) 2105 return; 2106 2107 /* 2108 * This documents exceptions given to allocations in certain 2109 * contexts that are allowed to allocate outside current's set 2110 * of allowed nodes. 2111 */ 2112 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2113 if (test_thread_flag(TIF_MEMDIE) || 2114 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2115 filter &= ~SHOW_MEM_FILTER_NODES; 2116 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2117 filter &= ~SHOW_MEM_FILTER_NODES; 2118 2119 if (fmt) { 2120 struct va_format vaf; 2121 va_list args; 2122 2123 va_start(args, fmt); 2124 2125 vaf.fmt = fmt; 2126 vaf.va = &args; 2127 2128 pr_warn("%pV", &vaf); 2129 2130 va_end(args); 2131 } 2132 2133 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2134 current->comm, order, gfp_mask); 2135 2136 dump_stack(); 2137 if (!should_suppress_show_mem()) 2138 show_mem(filter); 2139 } 2140 2141 static inline int 2142 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2143 unsigned long did_some_progress, 2144 unsigned long pages_reclaimed) 2145 { 2146 /* Do not loop if specifically requested */ 2147 if (gfp_mask & __GFP_NORETRY) 2148 return 0; 2149 2150 /* Always retry if specifically requested */ 2151 if (gfp_mask & __GFP_NOFAIL) 2152 return 1; 2153 2154 /* 2155 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2156 * making forward progress without invoking OOM. Suspend also disables 2157 * storage devices so kswapd will not help. Bail if we are suspending. 2158 */ 2159 if (!did_some_progress && pm_suspended_storage()) 2160 return 0; 2161 2162 /* 2163 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2164 * means __GFP_NOFAIL, but that may not be true in other 2165 * implementations. 2166 */ 2167 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2168 return 1; 2169 2170 /* 2171 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2172 * specified, then we retry until we no longer reclaim any pages 2173 * (above), or we've reclaimed an order of pages at least as 2174 * large as the allocation's order. In both cases, if the 2175 * allocation still fails, we stop retrying. 2176 */ 2177 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2178 return 1; 2179 2180 return 0; 2181 } 2182 2183 static inline struct page * 2184 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2185 struct zonelist *zonelist, enum zone_type high_zoneidx, 2186 nodemask_t *nodemask, struct zone *preferred_zone, 2187 int classzone_idx, int migratetype) 2188 { 2189 struct page *page; 2190 2191 /* Acquire the OOM killer lock for the zones in zonelist */ 2192 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2193 schedule_timeout_uninterruptible(1); 2194 return NULL; 2195 } 2196 2197 /* 2198 * Go through the zonelist yet one more time, keep very high watermark 2199 * here, this is only to catch a parallel oom killing, we must fail if 2200 * we're still under heavy pressure. 2201 */ 2202 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2203 order, zonelist, high_zoneidx, 2204 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2205 preferred_zone, classzone_idx, migratetype); 2206 if (page) 2207 goto out; 2208 2209 if (!(gfp_mask & __GFP_NOFAIL)) { 2210 /* The OOM killer will not help higher order allocs */ 2211 if (order > PAGE_ALLOC_COSTLY_ORDER) 2212 goto out; 2213 /* The OOM killer does not needlessly kill tasks for lowmem */ 2214 if (high_zoneidx < ZONE_NORMAL) 2215 goto out; 2216 /* 2217 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2218 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2219 * The caller should handle page allocation failure by itself if 2220 * it specifies __GFP_THISNODE. 2221 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2222 */ 2223 if (gfp_mask & __GFP_THISNODE) 2224 goto out; 2225 } 2226 /* Exhausted what can be done so it's blamo time */ 2227 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2228 2229 out: 2230 clear_zonelist_oom(zonelist, gfp_mask); 2231 return page; 2232 } 2233 2234 #ifdef CONFIG_COMPACTION 2235 /* Try memory compaction for high-order allocations before reclaim */ 2236 static struct page * 2237 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2238 struct zonelist *zonelist, enum zone_type high_zoneidx, 2239 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2240 int classzone_idx, int migratetype, enum migrate_mode mode, 2241 bool *contended_compaction, bool *deferred_compaction, 2242 unsigned long *did_some_progress) 2243 { 2244 if (!order) 2245 return NULL; 2246 2247 if (compaction_deferred(preferred_zone, order)) { 2248 *deferred_compaction = true; 2249 return NULL; 2250 } 2251 2252 current->flags |= PF_MEMALLOC; 2253 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2254 nodemask, mode, 2255 contended_compaction); 2256 current->flags &= ~PF_MEMALLOC; 2257 2258 if (*did_some_progress != COMPACT_SKIPPED) { 2259 struct page *page; 2260 2261 /* Page migration frees to the PCP lists but we want merging */ 2262 drain_pages(get_cpu()); 2263 put_cpu(); 2264 2265 page = get_page_from_freelist(gfp_mask, nodemask, 2266 order, zonelist, high_zoneidx, 2267 alloc_flags & ~ALLOC_NO_WATERMARKS, 2268 preferred_zone, classzone_idx, migratetype); 2269 if (page) { 2270 preferred_zone->compact_blockskip_flush = false; 2271 compaction_defer_reset(preferred_zone, order, true); 2272 count_vm_event(COMPACTSUCCESS); 2273 return page; 2274 } 2275 2276 /* 2277 * It's bad if compaction run occurs and fails. 2278 * The most likely reason is that pages exist, 2279 * but not enough to satisfy watermarks. 2280 */ 2281 count_vm_event(COMPACTFAIL); 2282 2283 /* 2284 * As async compaction considers a subset of pageblocks, only 2285 * defer if the failure was a sync compaction failure. 2286 */ 2287 if (mode != MIGRATE_ASYNC) 2288 defer_compaction(preferred_zone, order); 2289 2290 cond_resched(); 2291 } 2292 2293 return NULL; 2294 } 2295 #else 2296 static inline struct page * 2297 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2298 struct zonelist *zonelist, enum zone_type high_zoneidx, 2299 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2300 int classzone_idx, int migratetype, 2301 enum migrate_mode mode, bool *contended_compaction, 2302 bool *deferred_compaction, unsigned long *did_some_progress) 2303 { 2304 return NULL; 2305 } 2306 #endif /* CONFIG_COMPACTION */ 2307 2308 /* Perform direct synchronous page reclaim */ 2309 static int 2310 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2311 nodemask_t *nodemask) 2312 { 2313 struct reclaim_state reclaim_state; 2314 int progress; 2315 2316 cond_resched(); 2317 2318 /* We now go into synchronous reclaim */ 2319 cpuset_memory_pressure_bump(); 2320 current->flags |= PF_MEMALLOC; 2321 lockdep_set_current_reclaim_state(gfp_mask); 2322 reclaim_state.reclaimed_slab = 0; 2323 current->reclaim_state = &reclaim_state; 2324 2325 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2326 2327 current->reclaim_state = NULL; 2328 lockdep_clear_current_reclaim_state(); 2329 current->flags &= ~PF_MEMALLOC; 2330 2331 cond_resched(); 2332 2333 return progress; 2334 } 2335 2336 /* The really slow allocator path where we enter direct reclaim */ 2337 static inline struct page * 2338 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2339 struct zonelist *zonelist, enum zone_type high_zoneidx, 2340 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2341 int classzone_idx, int migratetype, unsigned long *did_some_progress) 2342 { 2343 struct page *page = NULL; 2344 bool drained = false; 2345 2346 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2347 nodemask); 2348 if (unlikely(!(*did_some_progress))) 2349 return NULL; 2350 2351 /* After successful reclaim, reconsider all zones for allocation */ 2352 if (IS_ENABLED(CONFIG_NUMA)) 2353 zlc_clear_zones_full(zonelist); 2354 2355 retry: 2356 page = get_page_from_freelist(gfp_mask, nodemask, order, 2357 zonelist, high_zoneidx, 2358 alloc_flags & ~ALLOC_NO_WATERMARKS, 2359 preferred_zone, classzone_idx, 2360 migratetype); 2361 2362 /* 2363 * If an allocation failed after direct reclaim, it could be because 2364 * pages are pinned on the per-cpu lists. Drain them and try again 2365 */ 2366 if (!page && !drained) { 2367 drain_all_pages(); 2368 drained = true; 2369 goto retry; 2370 } 2371 2372 return page; 2373 } 2374 2375 /* 2376 * This is called in the allocator slow-path if the allocation request is of 2377 * sufficient urgency to ignore watermarks and take other desperate measures 2378 */ 2379 static inline struct page * 2380 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2381 struct zonelist *zonelist, enum zone_type high_zoneidx, 2382 nodemask_t *nodemask, struct zone *preferred_zone, 2383 int classzone_idx, int migratetype) 2384 { 2385 struct page *page; 2386 2387 do { 2388 page = get_page_from_freelist(gfp_mask, nodemask, order, 2389 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2390 preferred_zone, classzone_idx, migratetype); 2391 2392 if (!page && gfp_mask & __GFP_NOFAIL) 2393 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2394 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2395 2396 return page; 2397 } 2398 2399 static void reset_alloc_batches(struct zonelist *zonelist, 2400 enum zone_type high_zoneidx, 2401 struct zone *preferred_zone) 2402 { 2403 struct zoneref *z; 2404 struct zone *zone; 2405 2406 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 2407 /* 2408 * Only reset the batches of zones that were actually 2409 * considered in the fairness pass, we don't want to 2410 * trash fairness information for zones that are not 2411 * actually part of this zonelist's round-robin cycle. 2412 */ 2413 if (!zone_local(preferred_zone, zone)) 2414 continue; 2415 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2416 high_wmark_pages(zone) - low_wmark_pages(zone) - 2417 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2418 } 2419 } 2420 2421 static void wake_all_kswapds(unsigned int order, 2422 struct zonelist *zonelist, 2423 enum zone_type high_zoneidx, 2424 struct zone *preferred_zone) 2425 { 2426 struct zoneref *z; 2427 struct zone *zone; 2428 2429 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2430 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2431 } 2432 2433 static inline int 2434 gfp_to_alloc_flags(gfp_t gfp_mask) 2435 { 2436 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2437 const gfp_t wait = gfp_mask & __GFP_WAIT; 2438 2439 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2440 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2441 2442 /* 2443 * The caller may dip into page reserves a bit more if the caller 2444 * cannot run direct reclaim, or if the caller has realtime scheduling 2445 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2446 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2447 */ 2448 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2449 2450 if (!wait) { 2451 /* 2452 * Not worth trying to allocate harder for 2453 * __GFP_NOMEMALLOC even if it can't schedule. 2454 */ 2455 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2456 alloc_flags |= ALLOC_HARDER; 2457 /* 2458 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2459 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2460 */ 2461 alloc_flags &= ~ALLOC_CPUSET; 2462 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2463 alloc_flags |= ALLOC_HARDER; 2464 2465 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2466 if (gfp_mask & __GFP_MEMALLOC) 2467 alloc_flags |= ALLOC_NO_WATERMARKS; 2468 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2469 alloc_flags |= ALLOC_NO_WATERMARKS; 2470 else if (!in_interrupt() && 2471 ((current->flags & PF_MEMALLOC) || 2472 unlikely(test_thread_flag(TIF_MEMDIE)))) 2473 alloc_flags |= ALLOC_NO_WATERMARKS; 2474 } 2475 #ifdef CONFIG_CMA 2476 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2477 alloc_flags |= ALLOC_CMA; 2478 #endif 2479 return alloc_flags; 2480 } 2481 2482 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2483 { 2484 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2485 } 2486 2487 static inline struct page * 2488 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2489 struct zonelist *zonelist, enum zone_type high_zoneidx, 2490 nodemask_t *nodemask, struct zone *preferred_zone, 2491 int classzone_idx, int migratetype) 2492 { 2493 const gfp_t wait = gfp_mask & __GFP_WAIT; 2494 struct page *page = NULL; 2495 int alloc_flags; 2496 unsigned long pages_reclaimed = 0; 2497 unsigned long did_some_progress; 2498 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2499 bool deferred_compaction = false; 2500 bool contended_compaction = false; 2501 2502 /* 2503 * In the slowpath, we sanity check order to avoid ever trying to 2504 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2505 * be using allocators in order of preference for an area that is 2506 * too large. 2507 */ 2508 if (order >= MAX_ORDER) { 2509 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2510 return NULL; 2511 } 2512 2513 /* 2514 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2515 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2516 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2517 * using a larger set of nodes after it has established that the 2518 * allowed per node queues are empty and that nodes are 2519 * over allocated. 2520 */ 2521 if (IS_ENABLED(CONFIG_NUMA) && 2522 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2523 goto nopage; 2524 2525 restart: 2526 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2527 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone); 2528 2529 /* 2530 * OK, we're below the kswapd watermark and have kicked background 2531 * reclaim. Now things get more complex, so set up alloc_flags according 2532 * to how we want to proceed. 2533 */ 2534 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2535 2536 /* 2537 * Find the true preferred zone if the allocation is unconstrained by 2538 * cpusets. 2539 */ 2540 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { 2541 struct zoneref *preferred_zoneref; 2542 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2543 NULL, &preferred_zone); 2544 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2545 } 2546 2547 rebalance: 2548 /* This is the last chance, in general, before the goto nopage. */ 2549 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2550 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2551 preferred_zone, classzone_idx, migratetype); 2552 if (page) 2553 goto got_pg; 2554 2555 /* Allocate without watermarks if the context allows */ 2556 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2557 /* 2558 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2559 * the allocation is high priority and these type of 2560 * allocations are system rather than user orientated 2561 */ 2562 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2563 2564 page = __alloc_pages_high_priority(gfp_mask, order, 2565 zonelist, high_zoneidx, nodemask, 2566 preferred_zone, classzone_idx, migratetype); 2567 if (page) { 2568 goto got_pg; 2569 } 2570 } 2571 2572 /* Atomic allocations - we can't balance anything */ 2573 if (!wait) { 2574 /* 2575 * All existing users of the deprecated __GFP_NOFAIL are 2576 * blockable, so warn of any new users that actually allow this 2577 * type of allocation to fail. 2578 */ 2579 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2580 goto nopage; 2581 } 2582 2583 /* Avoid recursion of direct reclaim */ 2584 if (current->flags & PF_MEMALLOC) 2585 goto nopage; 2586 2587 /* Avoid allocations with no watermarks from looping endlessly */ 2588 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2589 goto nopage; 2590 2591 /* 2592 * Try direct compaction. The first pass is asynchronous. Subsequent 2593 * attempts after direct reclaim are synchronous 2594 */ 2595 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2596 high_zoneidx, nodemask, alloc_flags, 2597 preferred_zone, 2598 classzone_idx, migratetype, 2599 migration_mode, &contended_compaction, 2600 &deferred_compaction, 2601 &did_some_progress); 2602 if (page) 2603 goto got_pg; 2604 2605 /* 2606 * It can become very expensive to allocate transparent hugepages at 2607 * fault, so use asynchronous memory compaction for THP unless it is 2608 * khugepaged trying to collapse. 2609 */ 2610 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD)) 2611 migration_mode = MIGRATE_SYNC_LIGHT; 2612 2613 /* 2614 * If compaction is deferred for high-order allocations, it is because 2615 * sync compaction recently failed. In this is the case and the caller 2616 * requested a movable allocation that does not heavily disrupt the 2617 * system then fail the allocation instead of entering direct reclaim. 2618 */ 2619 if ((deferred_compaction || contended_compaction) && 2620 (gfp_mask & __GFP_NO_KSWAPD)) 2621 goto nopage; 2622 2623 /* Try direct reclaim and then allocating */ 2624 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2625 zonelist, high_zoneidx, 2626 nodemask, 2627 alloc_flags, preferred_zone, 2628 classzone_idx, migratetype, 2629 &did_some_progress); 2630 if (page) 2631 goto got_pg; 2632 2633 /* 2634 * If we failed to make any progress reclaiming, then we are 2635 * running out of options and have to consider going OOM 2636 */ 2637 if (!did_some_progress) { 2638 if (oom_gfp_allowed(gfp_mask)) { 2639 if (oom_killer_disabled) 2640 goto nopage; 2641 /* Coredumps can quickly deplete all memory reserves */ 2642 if ((current->flags & PF_DUMPCORE) && 2643 !(gfp_mask & __GFP_NOFAIL)) 2644 goto nopage; 2645 page = __alloc_pages_may_oom(gfp_mask, order, 2646 zonelist, high_zoneidx, 2647 nodemask, preferred_zone, 2648 classzone_idx, migratetype); 2649 if (page) 2650 goto got_pg; 2651 2652 if (!(gfp_mask & __GFP_NOFAIL)) { 2653 /* 2654 * The oom killer is not called for high-order 2655 * allocations that may fail, so if no progress 2656 * is being made, there are no other options and 2657 * retrying is unlikely to help. 2658 */ 2659 if (order > PAGE_ALLOC_COSTLY_ORDER) 2660 goto nopage; 2661 /* 2662 * The oom killer is not called for lowmem 2663 * allocations to prevent needlessly killing 2664 * innocent tasks. 2665 */ 2666 if (high_zoneidx < ZONE_NORMAL) 2667 goto nopage; 2668 } 2669 2670 goto restart; 2671 } 2672 } 2673 2674 /* Check if we should retry the allocation */ 2675 pages_reclaimed += did_some_progress; 2676 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2677 pages_reclaimed)) { 2678 /* Wait for some write requests to complete then retry */ 2679 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2680 goto rebalance; 2681 } else { 2682 /* 2683 * High-order allocations do not necessarily loop after 2684 * direct reclaim and reclaim/compaction depends on compaction 2685 * being called after reclaim so call directly if necessary 2686 */ 2687 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2688 high_zoneidx, nodemask, alloc_flags, 2689 preferred_zone, 2690 classzone_idx, migratetype, 2691 migration_mode, &contended_compaction, 2692 &deferred_compaction, 2693 &did_some_progress); 2694 if (page) 2695 goto got_pg; 2696 } 2697 2698 nopage: 2699 warn_alloc_failed(gfp_mask, order, NULL); 2700 return page; 2701 got_pg: 2702 if (kmemcheck_enabled) 2703 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2704 2705 return page; 2706 } 2707 2708 /* 2709 * This is the 'heart' of the zoned buddy allocator. 2710 */ 2711 struct page * 2712 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2713 struct zonelist *zonelist, nodemask_t *nodemask) 2714 { 2715 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2716 struct zone *preferred_zone; 2717 struct zoneref *preferred_zoneref; 2718 struct page *page = NULL; 2719 int migratetype = allocflags_to_migratetype(gfp_mask); 2720 unsigned int cpuset_mems_cookie; 2721 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2722 int classzone_idx; 2723 2724 gfp_mask &= gfp_allowed_mask; 2725 2726 lockdep_trace_alloc(gfp_mask); 2727 2728 might_sleep_if(gfp_mask & __GFP_WAIT); 2729 2730 if (should_fail_alloc_page(gfp_mask, order)) 2731 return NULL; 2732 2733 /* 2734 * Check the zones suitable for the gfp_mask contain at least one 2735 * valid zone. It's possible to have an empty zonelist as a result 2736 * of GFP_THISNODE and a memoryless node 2737 */ 2738 if (unlikely(!zonelist->_zonerefs->zone)) 2739 return NULL; 2740 2741 retry_cpuset: 2742 cpuset_mems_cookie = read_mems_allowed_begin(); 2743 2744 /* The preferred zone is used for statistics later */ 2745 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2746 nodemask ? : &cpuset_current_mems_allowed, 2747 &preferred_zone); 2748 if (!preferred_zone) 2749 goto out; 2750 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2751 2752 #ifdef CONFIG_CMA 2753 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2754 alloc_flags |= ALLOC_CMA; 2755 #endif 2756 retry: 2757 /* First allocation attempt */ 2758 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2759 zonelist, high_zoneidx, alloc_flags, 2760 preferred_zone, classzone_idx, migratetype); 2761 if (unlikely(!page)) { 2762 /* 2763 * The first pass makes sure allocations are spread 2764 * fairly within the local node. However, the local 2765 * node might have free pages left after the fairness 2766 * batches are exhausted, and remote zones haven't 2767 * even been considered yet. Try once more without 2768 * fairness, and include remote zones now, before 2769 * entering the slowpath and waking kswapd: prefer 2770 * spilling to a remote zone over swapping locally. 2771 */ 2772 if (alloc_flags & ALLOC_FAIR) { 2773 reset_alloc_batches(zonelist, high_zoneidx, 2774 preferred_zone); 2775 alloc_flags &= ~ALLOC_FAIR; 2776 goto retry; 2777 } 2778 /* 2779 * Runtime PM, block IO and its error handling path 2780 * can deadlock because I/O on the device might not 2781 * complete. 2782 */ 2783 gfp_mask = memalloc_noio_flags(gfp_mask); 2784 page = __alloc_pages_slowpath(gfp_mask, order, 2785 zonelist, high_zoneidx, nodemask, 2786 preferred_zone, classzone_idx, migratetype); 2787 } 2788 2789 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2790 2791 out: 2792 /* 2793 * When updating a task's mems_allowed, it is possible to race with 2794 * parallel threads in such a way that an allocation can fail while 2795 * the mask is being updated. If a page allocation is about to fail, 2796 * check if the cpuset changed during allocation and if so, retry. 2797 */ 2798 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2799 goto retry_cpuset; 2800 2801 return page; 2802 } 2803 EXPORT_SYMBOL(__alloc_pages_nodemask); 2804 2805 /* 2806 * Common helper functions. 2807 */ 2808 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2809 { 2810 struct page *page; 2811 2812 /* 2813 * __get_free_pages() returns a 32-bit address, which cannot represent 2814 * a highmem page 2815 */ 2816 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2817 2818 page = alloc_pages(gfp_mask, order); 2819 if (!page) 2820 return 0; 2821 return (unsigned long) page_address(page); 2822 } 2823 EXPORT_SYMBOL(__get_free_pages); 2824 2825 unsigned long get_zeroed_page(gfp_t gfp_mask) 2826 { 2827 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2828 } 2829 EXPORT_SYMBOL(get_zeroed_page); 2830 2831 void __free_pages(struct page *page, unsigned int order) 2832 { 2833 if (put_page_testzero(page)) { 2834 if (order == 0) 2835 free_hot_cold_page(page, false); 2836 else 2837 __free_pages_ok(page, order); 2838 } 2839 } 2840 2841 EXPORT_SYMBOL(__free_pages); 2842 2843 void free_pages(unsigned long addr, unsigned int order) 2844 { 2845 if (addr != 0) { 2846 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2847 __free_pages(virt_to_page((void *)addr), order); 2848 } 2849 } 2850 2851 EXPORT_SYMBOL(free_pages); 2852 2853 /* 2854 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2855 * of the current memory cgroup. 2856 * 2857 * It should be used when the caller would like to use kmalloc, but since the 2858 * allocation is large, it has to fall back to the page allocator. 2859 */ 2860 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2861 { 2862 struct page *page; 2863 struct mem_cgroup *memcg = NULL; 2864 2865 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2866 return NULL; 2867 page = alloc_pages(gfp_mask, order); 2868 memcg_kmem_commit_charge(page, memcg, order); 2869 return page; 2870 } 2871 2872 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2873 { 2874 struct page *page; 2875 struct mem_cgroup *memcg = NULL; 2876 2877 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2878 return NULL; 2879 page = alloc_pages_node(nid, gfp_mask, order); 2880 memcg_kmem_commit_charge(page, memcg, order); 2881 return page; 2882 } 2883 2884 /* 2885 * __free_kmem_pages and free_kmem_pages will free pages allocated with 2886 * alloc_kmem_pages. 2887 */ 2888 void __free_kmem_pages(struct page *page, unsigned int order) 2889 { 2890 memcg_kmem_uncharge_pages(page, order); 2891 __free_pages(page, order); 2892 } 2893 2894 void free_kmem_pages(unsigned long addr, unsigned int order) 2895 { 2896 if (addr != 0) { 2897 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2898 __free_kmem_pages(virt_to_page((void *)addr), order); 2899 } 2900 } 2901 2902 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2903 { 2904 if (addr) { 2905 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2906 unsigned long used = addr + PAGE_ALIGN(size); 2907 2908 split_page(virt_to_page((void *)addr), order); 2909 while (used < alloc_end) { 2910 free_page(used); 2911 used += PAGE_SIZE; 2912 } 2913 } 2914 return (void *)addr; 2915 } 2916 2917 /** 2918 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2919 * @size: the number of bytes to allocate 2920 * @gfp_mask: GFP flags for the allocation 2921 * 2922 * This function is similar to alloc_pages(), except that it allocates the 2923 * minimum number of pages to satisfy the request. alloc_pages() can only 2924 * allocate memory in power-of-two pages. 2925 * 2926 * This function is also limited by MAX_ORDER. 2927 * 2928 * Memory allocated by this function must be released by free_pages_exact(). 2929 */ 2930 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2931 { 2932 unsigned int order = get_order(size); 2933 unsigned long addr; 2934 2935 addr = __get_free_pages(gfp_mask, order); 2936 return make_alloc_exact(addr, order, size); 2937 } 2938 EXPORT_SYMBOL(alloc_pages_exact); 2939 2940 /** 2941 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2942 * pages on a node. 2943 * @nid: the preferred node ID where memory should be allocated 2944 * @size: the number of bytes to allocate 2945 * @gfp_mask: GFP flags for the allocation 2946 * 2947 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2948 * back. 2949 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2950 * but is not exact. 2951 */ 2952 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2953 { 2954 unsigned order = get_order(size); 2955 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2956 if (!p) 2957 return NULL; 2958 return make_alloc_exact((unsigned long)page_address(p), order, size); 2959 } 2960 EXPORT_SYMBOL(alloc_pages_exact_nid); 2961 2962 /** 2963 * free_pages_exact - release memory allocated via alloc_pages_exact() 2964 * @virt: the value returned by alloc_pages_exact. 2965 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2966 * 2967 * Release the memory allocated by a previous call to alloc_pages_exact. 2968 */ 2969 void free_pages_exact(void *virt, size_t size) 2970 { 2971 unsigned long addr = (unsigned long)virt; 2972 unsigned long end = addr + PAGE_ALIGN(size); 2973 2974 while (addr < end) { 2975 free_page(addr); 2976 addr += PAGE_SIZE; 2977 } 2978 } 2979 EXPORT_SYMBOL(free_pages_exact); 2980 2981 /** 2982 * nr_free_zone_pages - count number of pages beyond high watermark 2983 * @offset: The zone index of the highest zone 2984 * 2985 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2986 * high watermark within all zones at or below a given zone index. For each 2987 * zone, the number of pages is calculated as: 2988 * managed_pages - high_pages 2989 */ 2990 static unsigned long nr_free_zone_pages(int offset) 2991 { 2992 struct zoneref *z; 2993 struct zone *zone; 2994 2995 /* Just pick one node, since fallback list is circular */ 2996 unsigned long sum = 0; 2997 2998 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2999 3000 for_each_zone_zonelist(zone, z, zonelist, offset) { 3001 unsigned long size = zone->managed_pages; 3002 unsigned long high = high_wmark_pages(zone); 3003 if (size > high) 3004 sum += size - high; 3005 } 3006 3007 return sum; 3008 } 3009 3010 /** 3011 * nr_free_buffer_pages - count number of pages beyond high watermark 3012 * 3013 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3014 * watermark within ZONE_DMA and ZONE_NORMAL. 3015 */ 3016 unsigned long nr_free_buffer_pages(void) 3017 { 3018 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3019 } 3020 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3021 3022 /** 3023 * nr_free_pagecache_pages - count number of pages beyond high watermark 3024 * 3025 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3026 * high watermark within all zones. 3027 */ 3028 unsigned long nr_free_pagecache_pages(void) 3029 { 3030 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3031 } 3032 3033 static inline void show_node(struct zone *zone) 3034 { 3035 if (IS_ENABLED(CONFIG_NUMA)) 3036 printk("Node %d ", zone_to_nid(zone)); 3037 } 3038 3039 void si_meminfo(struct sysinfo *val) 3040 { 3041 val->totalram = totalram_pages; 3042 val->sharedram = 0; 3043 val->freeram = global_page_state(NR_FREE_PAGES); 3044 val->bufferram = nr_blockdev_pages(); 3045 val->totalhigh = totalhigh_pages; 3046 val->freehigh = nr_free_highpages(); 3047 val->mem_unit = PAGE_SIZE; 3048 } 3049 3050 EXPORT_SYMBOL(si_meminfo); 3051 3052 #ifdef CONFIG_NUMA 3053 void si_meminfo_node(struct sysinfo *val, int nid) 3054 { 3055 int zone_type; /* needs to be signed */ 3056 unsigned long managed_pages = 0; 3057 pg_data_t *pgdat = NODE_DATA(nid); 3058 3059 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3060 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3061 val->totalram = managed_pages; 3062 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3063 #ifdef CONFIG_HIGHMEM 3064 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3065 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3066 NR_FREE_PAGES); 3067 #else 3068 val->totalhigh = 0; 3069 val->freehigh = 0; 3070 #endif 3071 val->mem_unit = PAGE_SIZE; 3072 } 3073 #endif 3074 3075 /* 3076 * Determine whether the node should be displayed or not, depending on whether 3077 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3078 */ 3079 bool skip_free_areas_node(unsigned int flags, int nid) 3080 { 3081 bool ret = false; 3082 unsigned int cpuset_mems_cookie; 3083 3084 if (!(flags & SHOW_MEM_FILTER_NODES)) 3085 goto out; 3086 3087 do { 3088 cpuset_mems_cookie = read_mems_allowed_begin(); 3089 ret = !node_isset(nid, cpuset_current_mems_allowed); 3090 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3091 out: 3092 return ret; 3093 } 3094 3095 #define K(x) ((x) << (PAGE_SHIFT-10)) 3096 3097 static void show_migration_types(unsigned char type) 3098 { 3099 static const char types[MIGRATE_TYPES] = { 3100 [MIGRATE_UNMOVABLE] = 'U', 3101 [MIGRATE_RECLAIMABLE] = 'E', 3102 [MIGRATE_MOVABLE] = 'M', 3103 [MIGRATE_RESERVE] = 'R', 3104 #ifdef CONFIG_CMA 3105 [MIGRATE_CMA] = 'C', 3106 #endif 3107 #ifdef CONFIG_MEMORY_ISOLATION 3108 [MIGRATE_ISOLATE] = 'I', 3109 #endif 3110 }; 3111 char tmp[MIGRATE_TYPES + 1]; 3112 char *p = tmp; 3113 int i; 3114 3115 for (i = 0; i < MIGRATE_TYPES; i++) { 3116 if (type & (1 << i)) 3117 *p++ = types[i]; 3118 } 3119 3120 *p = '\0'; 3121 printk("(%s) ", tmp); 3122 } 3123 3124 /* 3125 * Show free area list (used inside shift_scroll-lock stuff) 3126 * We also calculate the percentage fragmentation. We do this by counting the 3127 * memory on each free list with the exception of the first item on the list. 3128 * Suppresses nodes that are not allowed by current's cpuset if 3129 * SHOW_MEM_FILTER_NODES is passed. 3130 */ 3131 void show_free_areas(unsigned int filter) 3132 { 3133 int cpu; 3134 struct zone *zone; 3135 3136 for_each_populated_zone(zone) { 3137 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3138 continue; 3139 show_node(zone); 3140 printk("%s per-cpu:\n", zone->name); 3141 3142 for_each_online_cpu(cpu) { 3143 struct per_cpu_pageset *pageset; 3144 3145 pageset = per_cpu_ptr(zone->pageset, cpu); 3146 3147 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3148 cpu, pageset->pcp.high, 3149 pageset->pcp.batch, pageset->pcp.count); 3150 } 3151 } 3152 3153 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3154 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3155 " unevictable:%lu" 3156 " dirty:%lu writeback:%lu unstable:%lu\n" 3157 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3158 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3159 " free_cma:%lu\n", 3160 global_page_state(NR_ACTIVE_ANON), 3161 global_page_state(NR_INACTIVE_ANON), 3162 global_page_state(NR_ISOLATED_ANON), 3163 global_page_state(NR_ACTIVE_FILE), 3164 global_page_state(NR_INACTIVE_FILE), 3165 global_page_state(NR_ISOLATED_FILE), 3166 global_page_state(NR_UNEVICTABLE), 3167 global_page_state(NR_FILE_DIRTY), 3168 global_page_state(NR_WRITEBACK), 3169 global_page_state(NR_UNSTABLE_NFS), 3170 global_page_state(NR_FREE_PAGES), 3171 global_page_state(NR_SLAB_RECLAIMABLE), 3172 global_page_state(NR_SLAB_UNRECLAIMABLE), 3173 global_page_state(NR_FILE_MAPPED), 3174 global_page_state(NR_SHMEM), 3175 global_page_state(NR_PAGETABLE), 3176 global_page_state(NR_BOUNCE), 3177 global_page_state(NR_FREE_CMA_PAGES)); 3178 3179 for_each_populated_zone(zone) { 3180 int i; 3181 3182 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3183 continue; 3184 show_node(zone); 3185 printk("%s" 3186 " free:%lukB" 3187 " min:%lukB" 3188 " low:%lukB" 3189 " high:%lukB" 3190 " active_anon:%lukB" 3191 " inactive_anon:%lukB" 3192 " active_file:%lukB" 3193 " inactive_file:%lukB" 3194 " unevictable:%lukB" 3195 " isolated(anon):%lukB" 3196 " isolated(file):%lukB" 3197 " present:%lukB" 3198 " managed:%lukB" 3199 " mlocked:%lukB" 3200 " dirty:%lukB" 3201 " writeback:%lukB" 3202 " mapped:%lukB" 3203 " shmem:%lukB" 3204 " slab_reclaimable:%lukB" 3205 " slab_unreclaimable:%lukB" 3206 " kernel_stack:%lukB" 3207 " pagetables:%lukB" 3208 " unstable:%lukB" 3209 " bounce:%lukB" 3210 " free_cma:%lukB" 3211 " writeback_tmp:%lukB" 3212 " pages_scanned:%lu" 3213 " all_unreclaimable? %s" 3214 "\n", 3215 zone->name, 3216 K(zone_page_state(zone, NR_FREE_PAGES)), 3217 K(min_wmark_pages(zone)), 3218 K(low_wmark_pages(zone)), 3219 K(high_wmark_pages(zone)), 3220 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3221 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3222 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3223 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3224 K(zone_page_state(zone, NR_UNEVICTABLE)), 3225 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3226 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3227 K(zone->present_pages), 3228 K(zone->managed_pages), 3229 K(zone_page_state(zone, NR_MLOCK)), 3230 K(zone_page_state(zone, NR_FILE_DIRTY)), 3231 K(zone_page_state(zone, NR_WRITEBACK)), 3232 K(zone_page_state(zone, NR_FILE_MAPPED)), 3233 K(zone_page_state(zone, NR_SHMEM)), 3234 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3235 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3236 zone_page_state(zone, NR_KERNEL_STACK) * 3237 THREAD_SIZE / 1024, 3238 K(zone_page_state(zone, NR_PAGETABLE)), 3239 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3240 K(zone_page_state(zone, NR_BOUNCE)), 3241 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3242 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3243 zone->pages_scanned, 3244 (!zone_reclaimable(zone) ? "yes" : "no") 3245 ); 3246 printk("lowmem_reserve[]:"); 3247 for (i = 0; i < MAX_NR_ZONES; i++) 3248 printk(" %lu", zone->lowmem_reserve[i]); 3249 printk("\n"); 3250 } 3251 3252 for_each_populated_zone(zone) { 3253 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3254 unsigned char types[MAX_ORDER]; 3255 3256 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3257 continue; 3258 show_node(zone); 3259 printk("%s: ", zone->name); 3260 3261 spin_lock_irqsave(&zone->lock, flags); 3262 for (order = 0; order < MAX_ORDER; order++) { 3263 struct free_area *area = &zone->free_area[order]; 3264 int type; 3265 3266 nr[order] = area->nr_free; 3267 total += nr[order] << order; 3268 3269 types[order] = 0; 3270 for (type = 0; type < MIGRATE_TYPES; type++) { 3271 if (!list_empty(&area->free_list[type])) 3272 types[order] |= 1 << type; 3273 } 3274 } 3275 spin_unlock_irqrestore(&zone->lock, flags); 3276 for (order = 0; order < MAX_ORDER; order++) { 3277 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3278 if (nr[order]) 3279 show_migration_types(types[order]); 3280 } 3281 printk("= %lukB\n", K(total)); 3282 } 3283 3284 hugetlb_show_meminfo(); 3285 3286 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3287 3288 show_swap_cache_info(); 3289 } 3290 3291 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3292 { 3293 zoneref->zone = zone; 3294 zoneref->zone_idx = zone_idx(zone); 3295 } 3296 3297 /* 3298 * Builds allocation fallback zone lists. 3299 * 3300 * Add all populated zones of a node to the zonelist. 3301 */ 3302 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3303 int nr_zones) 3304 { 3305 struct zone *zone; 3306 enum zone_type zone_type = MAX_NR_ZONES; 3307 3308 do { 3309 zone_type--; 3310 zone = pgdat->node_zones + zone_type; 3311 if (populated_zone(zone)) { 3312 zoneref_set_zone(zone, 3313 &zonelist->_zonerefs[nr_zones++]); 3314 check_highest_zone(zone_type); 3315 } 3316 } while (zone_type); 3317 3318 return nr_zones; 3319 } 3320 3321 3322 /* 3323 * zonelist_order: 3324 * 0 = automatic detection of better ordering. 3325 * 1 = order by ([node] distance, -zonetype) 3326 * 2 = order by (-zonetype, [node] distance) 3327 * 3328 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3329 * the same zonelist. So only NUMA can configure this param. 3330 */ 3331 #define ZONELIST_ORDER_DEFAULT 0 3332 #define ZONELIST_ORDER_NODE 1 3333 #define ZONELIST_ORDER_ZONE 2 3334 3335 /* zonelist order in the kernel. 3336 * set_zonelist_order() will set this to NODE or ZONE. 3337 */ 3338 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3339 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3340 3341 3342 #ifdef CONFIG_NUMA 3343 /* The value user specified ....changed by config */ 3344 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3345 /* string for sysctl */ 3346 #define NUMA_ZONELIST_ORDER_LEN 16 3347 char numa_zonelist_order[16] = "default"; 3348 3349 /* 3350 * interface for configure zonelist ordering. 3351 * command line option "numa_zonelist_order" 3352 * = "[dD]efault - default, automatic configuration. 3353 * = "[nN]ode - order by node locality, then by zone within node 3354 * = "[zZ]one - order by zone, then by locality within zone 3355 */ 3356 3357 static int __parse_numa_zonelist_order(char *s) 3358 { 3359 if (*s == 'd' || *s == 'D') { 3360 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3361 } else if (*s == 'n' || *s == 'N') { 3362 user_zonelist_order = ZONELIST_ORDER_NODE; 3363 } else if (*s == 'z' || *s == 'Z') { 3364 user_zonelist_order = ZONELIST_ORDER_ZONE; 3365 } else { 3366 printk(KERN_WARNING 3367 "Ignoring invalid numa_zonelist_order value: " 3368 "%s\n", s); 3369 return -EINVAL; 3370 } 3371 return 0; 3372 } 3373 3374 static __init int setup_numa_zonelist_order(char *s) 3375 { 3376 int ret; 3377 3378 if (!s) 3379 return 0; 3380 3381 ret = __parse_numa_zonelist_order(s); 3382 if (ret == 0) 3383 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3384 3385 return ret; 3386 } 3387 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3388 3389 /* 3390 * sysctl handler for numa_zonelist_order 3391 */ 3392 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3393 void __user *buffer, size_t *length, 3394 loff_t *ppos) 3395 { 3396 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3397 int ret; 3398 static DEFINE_MUTEX(zl_order_mutex); 3399 3400 mutex_lock(&zl_order_mutex); 3401 if (write) { 3402 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3403 ret = -EINVAL; 3404 goto out; 3405 } 3406 strcpy(saved_string, (char *)table->data); 3407 } 3408 ret = proc_dostring(table, write, buffer, length, ppos); 3409 if (ret) 3410 goto out; 3411 if (write) { 3412 int oldval = user_zonelist_order; 3413 3414 ret = __parse_numa_zonelist_order((char *)table->data); 3415 if (ret) { 3416 /* 3417 * bogus value. restore saved string 3418 */ 3419 strncpy((char *)table->data, saved_string, 3420 NUMA_ZONELIST_ORDER_LEN); 3421 user_zonelist_order = oldval; 3422 } else if (oldval != user_zonelist_order) { 3423 mutex_lock(&zonelists_mutex); 3424 build_all_zonelists(NULL, NULL); 3425 mutex_unlock(&zonelists_mutex); 3426 } 3427 } 3428 out: 3429 mutex_unlock(&zl_order_mutex); 3430 return ret; 3431 } 3432 3433 3434 #define MAX_NODE_LOAD (nr_online_nodes) 3435 static int node_load[MAX_NUMNODES]; 3436 3437 /** 3438 * find_next_best_node - find the next node that should appear in a given node's fallback list 3439 * @node: node whose fallback list we're appending 3440 * @used_node_mask: nodemask_t of already used nodes 3441 * 3442 * We use a number of factors to determine which is the next node that should 3443 * appear on a given node's fallback list. The node should not have appeared 3444 * already in @node's fallback list, and it should be the next closest node 3445 * according to the distance array (which contains arbitrary distance values 3446 * from each node to each node in the system), and should also prefer nodes 3447 * with no CPUs, since presumably they'll have very little allocation pressure 3448 * on them otherwise. 3449 * It returns -1 if no node is found. 3450 */ 3451 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3452 { 3453 int n, val; 3454 int min_val = INT_MAX; 3455 int best_node = NUMA_NO_NODE; 3456 const struct cpumask *tmp = cpumask_of_node(0); 3457 3458 /* Use the local node if we haven't already */ 3459 if (!node_isset(node, *used_node_mask)) { 3460 node_set(node, *used_node_mask); 3461 return node; 3462 } 3463 3464 for_each_node_state(n, N_MEMORY) { 3465 3466 /* Don't want a node to appear more than once */ 3467 if (node_isset(n, *used_node_mask)) 3468 continue; 3469 3470 /* Use the distance array to find the distance */ 3471 val = node_distance(node, n); 3472 3473 /* Penalize nodes under us ("prefer the next node") */ 3474 val += (n < node); 3475 3476 /* Give preference to headless and unused nodes */ 3477 tmp = cpumask_of_node(n); 3478 if (!cpumask_empty(tmp)) 3479 val += PENALTY_FOR_NODE_WITH_CPUS; 3480 3481 /* Slight preference for less loaded node */ 3482 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3483 val += node_load[n]; 3484 3485 if (val < min_val) { 3486 min_val = val; 3487 best_node = n; 3488 } 3489 } 3490 3491 if (best_node >= 0) 3492 node_set(best_node, *used_node_mask); 3493 3494 return best_node; 3495 } 3496 3497 3498 /* 3499 * Build zonelists ordered by node and zones within node. 3500 * This results in maximum locality--normal zone overflows into local 3501 * DMA zone, if any--but risks exhausting DMA zone. 3502 */ 3503 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3504 { 3505 int j; 3506 struct zonelist *zonelist; 3507 3508 zonelist = &pgdat->node_zonelists[0]; 3509 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3510 ; 3511 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3512 zonelist->_zonerefs[j].zone = NULL; 3513 zonelist->_zonerefs[j].zone_idx = 0; 3514 } 3515 3516 /* 3517 * Build gfp_thisnode zonelists 3518 */ 3519 static void build_thisnode_zonelists(pg_data_t *pgdat) 3520 { 3521 int j; 3522 struct zonelist *zonelist; 3523 3524 zonelist = &pgdat->node_zonelists[1]; 3525 j = build_zonelists_node(pgdat, zonelist, 0); 3526 zonelist->_zonerefs[j].zone = NULL; 3527 zonelist->_zonerefs[j].zone_idx = 0; 3528 } 3529 3530 /* 3531 * Build zonelists ordered by zone and nodes within zones. 3532 * This results in conserving DMA zone[s] until all Normal memory is 3533 * exhausted, but results in overflowing to remote node while memory 3534 * may still exist in local DMA zone. 3535 */ 3536 static int node_order[MAX_NUMNODES]; 3537 3538 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3539 { 3540 int pos, j, node; 3541 int zone_type; /* needs to be signed */ 3542 struct zone *z; 3543 struct zonelist *zonelist; 3544 3545 zonelist = &pgdat->node_zonelists[0]; 3546 pos = 0; 3547 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3548 for (j = 0; j < nr_nodes; j++) { 3549 node = node_order[j]; 3550 z = &NODE_DATA(node)->node_zones[zone_type]; 3551 if (populated_zone(z)) { 3552 zoneref_set_zone(z, 3553 &zonelist->_zonerefs[pos++]); 3554 check_highest_zone(zone_type); 3555 } 3556 } 3557 } 3558 zonelist->_zonerefs[pos].zone = NULL; 3559 zonelist->_zonerefs[pos].zone_idx = 0; 3560 } 3561 3562 static int default_zonelist_order(void) 3563 { 3564 int nid, zone_type; 3565 unsigned long low_kmem_size, total_size; 3566 struct zone *z; 3567 int average_size; 3568 /* 3569 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3570 * If they are really small and used heavily, the system can fall 3571 * into OOM very easily. 3572 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3573 */ 3574 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3575 low_kmem_size = 0; 3576 total_size = 0; 3577 for_each_online_node(nid) { 3578 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3579 z = &NODE_DATA(nid)->node_zones[zone_type]; 3580 if (populated_zone(z)) { 3581 if (zone_type < ZONE_NORMAL) 3582 low_kmem_size += z->managed_pages; 3583 total_size += z->managed_pages; 3584 } else if (zone_type == ZONE_NORMAL) { 3585 /* 3586 * If any node has only lowmem, then node order 3587 * is preferred to allow kernel allocations 3588 * locally; otherwise, they can easily infringe 3589 * on other nodes when there is an abundance of 3590 * lowmem available to allocate from. 3591 */ 3592 return ZONELIST_ORDER_NODE; 3593 } 3594 } 3595 } 3596 if (!low_kmem_size || /* there are no DMA area. */ 3597 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3598 return ZONELIST_ORDER_NODE; 3599 /* 3600 * look into each node's config. 3601 * If there is a node whose DMA/DMA32 memory is very big area on 3602 * local memory, NODE_ORDER may be suitable. 3603 */ 3604 average_size = total_size / 3605 (nodes_weight(node_states[N_MEMORY]) + 1); 3606 for_each_online_node(nid) { 3607 low_kmem_size = 0; 3608 total_size = 0; 3609 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3610 z = &NODE_DATA(nid)->node_zones[zone_type]; 3611 if (populated_zone(z)) { 3612 if (zone_type < ZONE_NORMAL) 3613 low_kmem_size += z->present_pages; 3614 total_size += z->present_pages; 3615 } 3616 } 3617 if (low_kmem_size && 3618 total_size > average_size && /* ignore small node */ 3619 low_kmem_size > total_size * 70/100) 3620 return ZONELIST_ORDER_NODE; 3621 } 3622 return ZONELIST_ORDER_ZONE; 3623 } 3624 3625 static void set_zonelist_order(void) 3626 { 3627 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3628 current_zonelist_order = default_zonelist_order(); 3629 else 3630 current_zonelist_order = user_zonelist_order; 3631 } 3632 3633 static void build_zonelists(pg_data_t *pgdat) 3634 { 3635 int j, node, load; 3636 enum zone_type i; 3637 nodemask_t used_mask; 3638 int local_node, prev_node; 3639 struct zonelist *zonelist; 3640 int order = current_zonelist_order; 3641 3642 /* initialize zonelists */ 3643 for (i = 0; i < MAX_ZONELISTS; i++) { 3644 zonelist = pgdat->node_zonelists + i; 3645 zonelist->_zonerefs[0].zone = NULL; 3646 zonelist->_zonerefs[0].zone_idx = 0; 3647 } 3648 3649 /* NUMA-aware ordering of nodes */ 3650 local_node = pgdat->node_id; 3651 load = nr_online_nodes; 3652 prev_node = local_node; 3653 nodes_clear(used_mask); 3654 3655 memset(node_order, 0, sizeof(node_order)); 3656 j = 0; 3657 3658 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3659 /* 3660 * We don't want to pressure a particular node. 3661 * So adding penalty to the first node in same 3662 * distance group to make it round-robin. 3663 */ 3664 if (node_distance(local_node, node) != 3665 node_distance(local_node, prev_node)) 3666 node_load[node] = load; 3667 3668 prev_node = node; 3669 load--; 3670 if (order == ZONELIST_ORDER_NODE) 3671 build_zonelists_in_node_order(pgdat, node); 3672 else 3673 node_order[j++] = node; /* remember order */ 3674 } 3675 3676 if (order == ZONELIST_ORDER_ZONE) { 3677 /* calculate node order -- i.e., DMA last! */ 3678 build_zonelists_in_zone_order(pgdat, j); 3679 } 3680 3681 build_thisnode_zonelists(pgdat); 3682 } 3683 3684 /* Construct the zonelist performance cache - see further mmzone.h */ 3685 static void build_zonelist_cache(pg_data_t *pgdat) 3686 { 3687 struct zonelist *zonelist; 3688 struct zonelist_cache *zlc; 3689 struct zoneref *z; 3690 3691 zonelist = &pgdat->node_zonelists[0]; 3692 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3693 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3694 for (z = zonelist->_zonerefs; z->zone; z++) 3695 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3696 } 3697 3698 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3699 /* 3700 * Return node id of node used for "local" allocations. 3701 * I.e., first node id of first zone in arg node's generic zonelist. 3702 * Used for initializing percpu 'numa_mem', which is used primarily 3703 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3704 */ 3705 int local_memory_node(int node) 3706 { 3707 struct zone *zone; 3708 3709 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3710 gfp_zone(GFP_KERNEL), 3711 NULL, 3712 &zone); 3713 return zone->node; 3714 } 3715 #endif 3716 3717 #else /* CONFIG_NUMA */ 3718 3719 static void set_zonelist_order(void) 3720 { 3721 current_zonelist_order = ZONELIST_ORDER_ZONE; 3722 } 3723 3724 static void build_zonelists(pg_data_t *pgdat) 3725 { 3726 int node, local_node; 3727 enum zone_type j; 3728 struct zonelist *zonelist; 3729 3730 local_node = pgdat->node_id; 3731 3732 zonelist = &pgdat->node_zonelists[0]; 3733 j = build_zonelists_node(pgdat, zonelist, 0); 3734 3735 /* 3736 * Now we build the zonelist so that it contains the zones 3737 * of all the other nodes. 3738 * We don't want to pressure a particular node, so when 3739 * building the zones for node N, we make sure that the 3740 * zones coming right after the local ones are those from 3741 * node N+1 (modulo N) 3742 */ 3743 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3744 if (!node_online(node)) 3745 continue; 3746 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3747 } 3748 for (node = 0; node < local_node; node++) { 3749 if (!node_online(node)) 3750 continue; 3751 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3752 } 3753 3754 zonelist->_zonerefs[j].zone = NULL; 3755 zonelist->_zonerefs[j].zone_idx = 0; 3756 } 3757 3758 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3759 static void build_zonelist_cache(pg_data_t *pgdat) 3760 { 3761 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3762 } 3763 3764 #endif /* CONFIG_NUMA */ 3765 3766 /* 3767 * Boot pageset table. One per cpu which is going to be used for all 3768 * zones and all nodes. The parameters will be set in such a way 3769 * that an item put on a list will immediately be handed over to 3770 * the buddy list. This is safe since pageset manipulation is done 3771 * with interrupts disabled. 3772 * 3773 * The boot_pagesets must be kept even after bootup is complete for 3774 * unused processors and/or zones. They do play a role for bootstrapping 3775 * hotplugged processors. 3776 * 3777 * zoneinfo_show() and maybe other functions do 3778 * not check if the processor is online before following the pageset pointer. 3779 * Other parts of the kernel may not check if the zone is available. 3780 */ 3781 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3782 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3783 static void setup_zone_pageset(struct zone *zone); 3784 3785 /* 3786 * Global mutex to protect against size modification of zonelists 3787 * as well as to serialize pageset setup for the new populated zone. 3788 */ 3789 DEFINE_MUTEX(zonelists_mutex); 3790 3791 /* return values int ....just for stop_machine() */ 3792 static int __build_all_zonelists(void *data) 3793 { 3794 int nid; 3795 int cpu; 3796 pg_data_t *self = data; 3797 3798 #ifdef CONFIG_NUMA 3799 memset(node_load, 0, sizeof(node_load)); 3800 #endif 3801 3802 if (self && !node_online(self->node_id)) { 3803 build_zonelists(self); 3804 build_zonelist_cache(self); 3805 } 3806 3807 for_each_online_node(nid) { 3808 pg_data_t *pgdat = NODE_DATA(nid); 3809 3810 build_zonelists(pgdat); 3811 build_zonelist_cache(pgdat); 3812 } 3813 3814 /* 3815 * Initialize the boot_pagesets that are going to be used 3816 * for bootstrapping processors. The real pagesets for 3817 * each zone will be allocated later when the per cpu 3818 * allocator is available. 3819 * 3820 * boot_pagesets are used also for bootstrapping offline 3821 * cpus if the system is already booted because the pagesets 3822 * are needed to initialize allocators on a specific cpu too. 3823 * F.e. the percpu allocator needs the page allocator which 3824 * needs the percpu allocator in order to allocate its pagesets 3825 * (a chicken-egg dilemma). 3826 */ 3827 for_each_possible_cpu(cpu) { 3828 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3829 3830 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3831 /* 3832 * We now know the "local memory node" for each node-- 3833 * i.e., the node of the first zone in the generic zonelist. 3834 * Set up numa_mem percpu variable for on-line cpus. During 3835 * boot, only the boot cpu should be on-line; we'll init the 3836 * secondary cpus' numa_mem as they come on-line. During 3837 * node/memory hotplug, we'll fixup all on-line cpus. 3838 */ 3839 if (cpu_online(cpu)) 3840 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3841 #endif 3842 } 3843 3844 return 0; 3845 } 3846 3847 /* 3848 * Called with zonelists_mutex held always 3849 * unless system_state == SYSTEM_BOOTING. 3850 */ 3851 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3852 { 3853 set_zonelist_order(); 3854 3855 if (system_state == SYSTEM_BOOTING) { 3856 __build_all_zonelists(NULL); 3857 mminit_verify_zonelist(); 3858 cpuset_init_current_mems_allowed(); 3859 } else { 3860 #ifdef CONFIG_MEMORY_HOTPLUG 3861 if (zone) 3862 setup_zone_pageset(zone); 3863 #endif 3864 /* we have to stop all cpus to guarantee there is no user 3865 of zonelist */ 3866 stop_machine(__build_all_zonelists, pgdat, NULL); 3867 /* cpuset refresh routine should be here */ 3868 } 3869 vm_total_pages = nr_free_pagecache_pages(); 3870 /* 3871 * Disable grouping by mobility if the number of pages in the 3872 * system is too low to allow the mechanism to work. It would be 3873 * more accurate, but expensive to check per-zone. This check is 3874 * made on memory-hotadd so a system can start with mobility 3875 * disabled and enable it later 3876 */ 3877 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3878 page_group_by_mobility_disabled = 1; 3879 else 3880 page_group_by_mobility_disabled = 0; 3881 3882 printk("Built %i zonelists in %s order, mobility grouping %s. " 3883 "Total pages: %ld\n", 3884 nr_online_nodes, 3885 zonelist_order_name[current_zonelist_order], 3886 page_group_by_mobility_disabled ? "off" : "on", 3887 vm_total_pages); 3888 #ifdef CONFIG_NUMA 3889 printk("Policy zone: %s\n", zone_names[policy_zone]); 3890 #endif 3891 } 3892 3893 /* 3894 * Helper functions to size the waitqueue hash table. 3895 * Essentially these want to choose hash table sizes sufficiently 3896 * large so that collisions trying to wait on pages are rare. 3897 * But in fact, the number of active page waitqueues on typical 3898 * systems is ridiculously low, less than 200. So this is even 3899 * conservative, even though it seems large. 3900 * 3901 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3902 * waitqueues, i.e. the size of the waitq table given the number of pages. 3903 */ 3904 #define PAGES_PER_WAITQUEUE 256 3905 3906 #ifndef CONFIG_MEMORY_HOTPLUG 3907 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3908 { 3909 unsigned long size = 1; 3910 3911 pages /= PAGES_PER_WAITQUEUE; 3912 3913 while (size < pages) 3914 size <<= 1; 3915 3916 /* 3917 * Once we have dozens or even hundreds of threads sleeping 3918 * on IO we've got bigger problems than wait queue collision. 3919 * Limit the size of the wait table to a reasonable size. 3920 */ 3921 size = min(size, 4096UL); 3922 3923 return max(size, 4UL); 3924 } 3925 #else 3926 /* 3927 * A zone's size might be changed by hot-add, so it is not possible to determine 3928 * a suitable size for its wait_table. So we use the maximum size now. 3929 * 3930 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3931 * 3932 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3933 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3934 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3935 * 3936 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3937 * or more by the traditional way. (See above). It equals: 3938 * 3939 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3940 * ia64(16K page size) : = ( 8G + 4M)byte. 3941 * powerpc (64K page size) : = (32G +16M)byte. 3942 */ 3943 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3944 { 3945 return 4096UL; 3946 } 3947 #endif 3948 3949 /* 3950 * This is an integer logarithm so that shifts can be used later 3951 * to extract the more random high bits from the multiplicative 3952 * hash function before the remainder is taken. 3953 */ 3954 static inline unsigned long wait_table_bits(unsigned long size) 3955 { 3956 return ffz(~size); 3957 } 3958 3959 /* 3960 * Check if a pageblock contains reserved pages 3961 */ 3962 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3963 { 3964 unsigned long pfn; 3965 3966 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3967 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3968 return 1; 3969 } 3970 return 0; 3971 } 3972 3973 /* 3974 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3975 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3976 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3977 * higher will lead to a bigger reserve which will get freed as contiguous 3978 * blocks as reclaim kicks in 3979 */ 3980 static void setup_zone_migrate_reserve(struct zone *zone) 3981 { 3982 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3983 struct page *page; 3984 unsigned long block_migratetype; 3985 int reserve; 3986 int old_reserve; 3987 3988 /* 3989 * Get the start pfn, end pfn and the number of blocks to reserve 3990 * We have to be careful to be aligned to pageblock_nr_pages to 3991 * make sure that we always check pfn_valid for the first page in 3992 * the block. 3993 */ 3994 start_pfn = zone->zone_start_pfn; 3995 end_pfn = zone_end_pfn(zone); 3996 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3997 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3998 pageblock_order; 3999 4000 /* 4001 * Reserve blocks are generally in place to help high-order atomic 4002 * allocations that are short-lived. A min_free_kbytes value that 4003 * would result in more than 2 reserve blocks for atomic allocations 4004 * is assumed to be in place to help anti-fragmentation for the 4005 * future allocation of hugepages at runtime. 4006 */ 4007 reserve = min(2, reserve); 4008 old_reserve = zone->nr_migrate_reserve_block; 4009 4010 /* When memory hot-add, we almost always need to do nothing */ 4011 if (reserve == old_reserve) 4012 return; 4013 zone->nr_migrate_reserve_block = reserve; 4014 4015 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4016 if (!pfn_valid(pfn)) 4017 continue; 4018 page = pfn_to_page(pfn); 4019 4020 /* Watch out for overlapping nodes */ 4021 if (page_to_nid(page) != zone_to_nid(zone)) 4022 continue; 4023 4024 block_migratetype = get_pageblock_migratetype(page); 4025 4026 /* Only test what is necessary when the reserves are not met */ 4027 if (reserve > 0) { 4028 /* 4029 * Blocks with reserved pages will never free, skip 4030 * them. 4031 */ 4032 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4033 if (pageblock_is_reserved(pfn, block_end_pfn)) 4034 continue; 4035 4036 /* If this block is reserved, account for it */ 4037 if (block_migratetype == MIGRATE_RESERVE) { 4038 reserve--; 4039 continue; 4040 } 4041 4042 /* Suitable for reserving if this block is movable */ 4043 if (block_migratetype == MIGRATE_MOVABLE) { 4044 set_pageblock_migratetype(page, 4045 MIGRATE_RESERVE); 4046 move_freepages_block(zone, page, 4047 MIGRATE_RESERVE); 4048 reserve--; 4049 continue; 4050 } 4051 } else if (!old_reserve) { 4052 /* 4053 * At boot time we don't need to scan the whole zone 4054 * for turning off MIGRATE_RESERVE. 4055 */ 4056 break; 4057 } 4058 4059 /* 4060 * If the reserve is met and this is a previous reserved block, 4061 * take it back 4062 */ 4063 if (block_migratetype == MIGRATE_RESERVE) { 4064 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4065 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4066 } 4067 } 4068 } 4069 4070 /* 4071 * Initially all pages are reserved - free ones are freed 4072 * up by free_all_bootmem() once the early boot process is 4073 * done. Non-atomic initialization, single-pass. 4074 */ 4075 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4076 unsigned long start_pfn, enum memmap_context context) 4077 { 4078 struct page *page; 4079 unsigned long end_pfn = start_pfn + size; 4080 unsigned long pfn; 4081 struct zone *z; 4082 4083 if (highest_memmap_pfn < end_pfn - 1) 4084 highest_memmap_pfn = end_pfn - 1; 4085 4086 z = &NODE_DATA(nid)->node_zones[zone]; 4087 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4088 /* 4089 * There can be holes in boot-time mem_map[]s 4090 * handed to this function. They do not 4091 * exist on hotplugged memory. 4092 */ 4093 if (context == MEMMAP_EARLY) { 4094 if (!early_pfn_valid(pfn)) 4095 continue; 4096 if (!early_pfn_in_nid(pfn, nid)) 4097 continue; 4098 } 4099 page = pfn_to_page(pfn); 4100 set_page_links(page, zone, nid, pfn); 4101 mminit_verify_page_links(page, zone, nid, pfn); 4102 init_page_count(page); 4103 page_mapcount_reset(page); 4104 page_cpupid_reset_last(page); 4105 SetPageReserved(page); 4106 /* 4107 * Mark the block movable so that blocks are reserved for 4108 * movable at startup. This will force kernel allocations 4109 * to reserve their blocks rather than leaking throughout 4110 * the address space during boot when many long-lived 4111 * kernel allocations are made. Later some blocks near 4112 * the start are marked MIGRATE_RESERVE by 4113 * setup_zone_migrate_reserve() 4114 * 4115 * bitmap is created for zone's valid pfn range. but memmap 4116 * can be created for invalid pages (for alignment) 4117 * check here not to call set_pageblock_migratetype() against 4118 * pfn out of zone. 4119 */ 4120 if ((z->zone_start_pfn <= pfn) 4121 && (pfn < zone_end_pfn(z)) 4122 && !(pfn & (pageblock_nr_pages - 1))) 4123 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4124 4125 INIT_LIST_HEAD(&page->lru); 4126 #ifdef WANT_PAGE_VIRTUAL 4127 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4128 if (!is_highmem_idx(zone)) 4129 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4130 #endif 4131 } 4132 } 4133 4134 static void __meminit zone_init_free_lists(struct zone *zone) 4135 { 4136 unsigned int order, t; 4137 for_each_migratetype_order(order, t) { 4138 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4139 zone->free_area[order].nr_free = 0; 4140 } 4141 } 4142 4143 #ifndef __HAVE_ARCH_MEMMAP_INIT 4144 #define memmap_init(size, nid, zone, start_pfn) \ 4145 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4146 #endif 4147 4148 static int __meminit zone_batchsize(struct zone *zone) 4149 { 4150 #ifdef CONFIG_MMU 4151 int batch; 4152 4153 /* 4154 * The per-cpu-pages pools are set to around 1000th of the 4155 * size of the zone. But no more than 1/2 of a meg. 4156 * 4157 * OK, so we don't know how big the cache is. So guess. 4158 */ 4159 batch = zone->managed_pages / 1024; 4160 if (batch * PAGE_SIZE > 512 * 1024) 4161 batch = (512 * 1024) / PAGE_SIZE; 4162 batch /= 4; /* We effectively *= 4 below */ 4163 if (batch < 1) 4164 batch = 1; 4165 4166 /* 4167 * Clamp the batch to a 2^n - 1 value. Having a power 4168 * of 2 value was found to be more likely to have 4169 * suboptimal cache aliasing properties in some cases. 4170 * 4171 * For example if 2 tasks are alternately allocating 4172 * batches of pages, one task can end up with a lot 4173 * of pages of one half of the possible page colors 4174 * and the other with pages of the other colors. 4175 */ 4176 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4177 4178 return batch; 4179 4180 #else 4181 /* The deferral and batching of frees should be suppressed under NOMMU 4182 * conditions. 4183 * 4184 * The problem is that NOMMU needs to be able to allocate large chunks 4185 * of contiguous memory as there's no hardware page translation to 4186 * assemble apparent contiguous memory from discontiguous pages. 4187 * 4188 * Queueing large contiguous runs of pages for batching, however, 4189 * causes the pages to actually be freed in smaller chunks. As there 4190 * can be a significant delay between the individual batches being 4191 * recycled, this leads to the once large chunks of space being 4192 * fragmented and becoming unavailable for high-order allocations. 4193 */ 4194 return 0; 4195 #endif 4196 } 4197 4198 /* 4199 * pcp->high and pcp->batch values are related and dependent on one another: 4200 * ->batch must never be higher then ->high. 4201 * The following function updates them in a safe manner without read side 4202 * locking. 4203 * 4204 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4205 * those fields changing asynchronously (acording the the above rule). 4206 * 4207 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4208 * outside of boot time (or some other assurance that no concurrent updaters 4209 * exist). 4210 */ 4211 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4212 unsigned long batch) 4213 { 4214 /* start with a fail safe value for batch */ 4215 pcp->batch = 1; 4216 smp_wmb(); 4217 4218 /* Update high, then batch, in order */ 4219 pcp->high = high; 4220 smp_wmb(); 4221 4222 pcp->batch = batch; 4223 } 4224 4225 /* a companion to pageset_set_high() */ 4226 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4227 { 4228 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4229 } 4230 4231 static void pageset_init(struct per_cpu_pageset *p) 4232 { 4233 struct per_cpu_pages *pcp; 4234 int migratetype; 4235 4236 memset(p, 0, sizeof(*p)); 4237 4238 pcp = &p->pcp; 4239 pcp->count = 0; 4240 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4241 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4242 } 4243 4244 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4245 { 4246 pageset_init(p); 4247 pageset_set_batch(p, batch); 4248 } 4249 4250 /* 4251 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4252 * to the value high for the pageset p. 4253 */ 4254 static void pageset_set_high(struct per_cpu_pageset *p, 4255 unsigned long high) 4256 { 4257 unsigned long batch = max(1UL, high / 4); 4258 if ((high / 4) > (PAGE_SHIFT * 8)) 4259 batch = PAGE_SHIFT * 8; 4260 4261 pageset_update(&p->pcp, high, batch); 4262 } 4263 4264 static void __meminit pageset_set_high_and_batch(struct zone *zone, 4265 struct per_cpu_pageset *pcp) 4266 { 4267 if (percpu_pagelist_fraction) 4268 pageset_set_high(pcp, 4269 (zone->managed_pages / 4270 percpu_pagelist_fraction)); 4271 else 4272 pageset_set_batch(pcp, zone_batchsize(zone)); 4273 } 4274 4275 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4276 { 4277 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4278 4279 pageset_init(pcp); 4280 pageset_set_high_and_batch(zone, pcp); 4281 } 4282 4283 static void __meminit setup_zone_pageset(struct zone *zone) 4284 { 4285 int cpu; 4286 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4287 for_each_possible_cpu(cpu) 4288 zone_pageset_init(zone, cpu); 4289 } 4290 4291 /* 4292 * Allocate per cpu pagesets and initialize them. 4293 * Before this call only boot pagesets were available. 4294 */ 4295 void __init setup_per_cpu_pageset(void) 4296 { 4297 struct zone *zone; 4298 4299 for_each_populated_zone(zone) 4300 setup_zone_pageset(zone); 4301 } 4302 4303 static noinline __init_refok 4304 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4305 { 4306 int i; 4307 size_t alloc_size; 4308 4309 /* 4310 * The per-page waitqueue mechanism uses hashed waitqueues 4311 * per zone. 4312 */ 4313 zone->wait_table_hash_nr_entries = 4314 wait_table_hash_nr_entries(zone_size_pages); 4315 zone->wait_table_bits = 4316 wait_table_bits(zone->wait_table_hash_nr_entries); 4317 alloc_size = zone->wait_table_hash_nr_entries 4318 * sizeof(wait_queue_head_t); 4319 4320 if (!slab_is_available()) { 4321 zone->wait_table = (wait_queue_head_t *) 4322 memblock_virt_alloc_node_nopanic( 4323 alloc_size, zone->zone_pgdat->node_id); 4324 } else { 4325 /* 4326 * This case means that a zone whose size was 0 gets new memory 4327 * via memory hot-add. 4328 * But it may be the case that a new node was hot-added. In 4329 * this case vmalloc() will not be able to use this new node's 4330 * memory - this wait_table must be initialized to use this new 4331 * node itself as well. 4332 * To use this new node's memory, further consideration will be 4333 * necessary. 4334 */ 4335 zone->wait_table = vmalloc(alloc_size); 4336 } 4337 if (!zone->wait_table) 4338 return -ENOMEM; 4339 4340 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4341 init_waitqueue_head(zone->wait_table + i); 4342 4343 return 0; 4344 } 4345 4346 static __meminit void zone_pcp_init(struct zone *zone) 4347 { 4348 /* 4349 * per cpu subsystem is not up at this point. The following code 4350 * relies on the ability of the linker to provide the 4351 * offset of a (static) per cpu variable into the per cpu area. 4352 */ 4353 zone->pageset = &boot_pageset; 4354 4355 if (populated_zone(zone)) 4356 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4357 zone->name, zone->present_pages, 4358 zone_batchsize(zone)); 4359 } 4360 4361 int __meminit init_currently_empty_zone(struct zone *zone, 4362 unsigned long zone_start_pfn, 4363 unsigned long size, 4364 enum memmap_context context) 4365 { 4366 struct pglist_data *pgdat = zone->zone_pgdat; 4367 int ret; 4368 ret = zone_wait_table_init(zone, size); 4369 if (ret) 4370 return ret; 4371 pgdat->nr_zones = zone_idx(zone) + 1; 4372 4373 zone->zone_start_pfn = zone_start_pfn; 4374 4375 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4376 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4377 pgdat->node_id, 4378 (unsigned long)zone_idx(zone), 4379 zone_start_pfn, (zone_start_pfn + size)); 4380 4381 zone_init_free_lists(zone); 4382 4383 return 0; 4384 } 4385 4386 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4387 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4388 /* 4389 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4390 */ 4391 int __meminit __early_pfn_to_nid(unsigned long pfn) 4392 { 4393 unsigned long start_pfn, end_pfn; 4394 int nid; 4395 /* 4396 * NOTE: The following SMP-unsafe globals are only used early in boot 4397 * when the kernel is running single-threaded. 4398 */ 4399 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4400 static int __meminitdata last_nid; 4401 4402 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4403 return last_nid; 4404 4405 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4406 if (nid != -1) { 4407 last_start_pfn = start_pfn; 4408 last_end_pfn = end_pfn; 4409 last_nid = nid; 4410 } 4411 4412 return nid; 4413 } 4414 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4415 4416 int __meminit early_pfn_to_nid(unsigned long pfn) 4417 { 4418 int nid; 4419 4420 nid = __early_pfn_to_nid(pfn); 4421 if (nid >= 0) 4422 return nid; 4423 /* just returns 0 */ 4424 return 0; 4425 } 4426 4427 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4428 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4429 { 4430 int nid; 4431 4432 nid = __early_pfn_to_nid(pfn); 4433 if (nid >= 0 && nid != node) 4434 return false; 4435 return true; 4436 } 4437 #endif 4438 4439 /** 4440 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4441 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4442 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4443 * 4444 * If an architecture guarantees that all ranges registered contain no holes 4445 * and may be freed, this this function may be used instead of calling 4446 * memblock_free_early_nid() manually. 4447 */ 4448 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4449 { 4450 unsigned long start_pfn, end_pfn; 4451 int i, this_nid; 4452 4453 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4454 start_pfn = min(start_pfn, max_low_pfn); 4455 end_pfn = min(end_pfn, max_low_pfn); 4456 4457 if (start_pfn < end_pfn) 4458 memblock_free_early_nid(PFN_PHYS(start_pfn), 4459 (end_pfn - start_pfn) << PAGE_SHIFT, 4460 this_nid); 4461 } 4462 } 4463 4464 /** 4465 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4466 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4467 * 4468 * If an architecture guarantees that all ranges registered contain no holes and may 4469 * be freed, this function may be used instead of calling memory_present() manually. 4470 */ 4471 void __init sparse_memory_present_with_active_regions(int nid) 4472 { 4473 unsigned long start_pfn, end_pfn; 4474 int i, this_nid; 4475 4476 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4477 memory_present(this_nid, start_pfn, end_pfn); 4478 } 4479 4480 /** 4481 * get_pfn_range_for_nid - Return the start and end page frames for a node 4482 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4483 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4484 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4485 * 4486 * It returns the start and end page frame of a node based on information 4487 * provided by memblock_set_node(). If called for a node 4488 * with no available memory, a warning is printed and the start and end 4489 * PFNs will be 0. 4490 */ 4491 void __meminit get_pfn_range_for_nid(unsigned int nid, 4492 unsigned long *start_pfn, unsigned long *end_pfn) 4493 { 4494 unsigned long this_start_pfn, this_end_pfn; 4495 int i; 4496 4497 *start_pfn = -1UL; 4498 *end_pfn = 0; 4499 4500 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4501 *start_pfn = min(*start_pfn, this_start_pfn); 4502 *end_pfn = max(*end_pfn, this_end_pfn); 4503 } 4504 4505 if (*start_pfn == -1UL) 4506 *start_pfn = 0; 4507 } 4508 4509 /* 4510 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4511 * assumption is made that zones within a node are ordered in monotonic 4512 * increasing memory addresses so that the "highest" populated zone is used 4513 */ 4514 static void __init find_usable_zone_for_movable(void) 4515 { 4516 int zone_index; 4517 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4518 if (zone_index == ZONE_MOVABLE) 4519 continue; 4520 4521 if (arch_zone_highest_possible_pfn[zone_index] > 4522 arch_zone_lowest_possible_pfn[zone_index]) 4523 break; 4524 } 4525 4526 VM_BUG_ON(zone_index == -1); 4527 movable_zone = zone_index; 4528 } 4529 4530 /* 4531 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4532 * because it is sized independent of architecture. Unlike the other zones, 4533 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4534 * in each node depending on the size of each node and how evenly kernelcore 4535 * is distributed. This helper function adjusts the zone ranges 4536 * provided by the architecture for a given node by using the end of the 4537 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4538 * zones within a node are in order of monotonic increases memory addresses 4539 */ 4540 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4541 unsigned long zone_type, 4542 unsigned long node_start_pfn, 4543 unsigned long node_end_pfn, 4544 unsigned long *zone_start_pfn, 4545 unsigned long *zone_end_pfn) 4546 { 4547 /* Only adjust if ZONE_MOVABLE is on this node */ 4548 if (zone_movable_pfn[nid]) { 4549 /* Size ZONE_MOVABLE */ 4550 if (zone_type == ZONE_MOVABLE) { 4551 *zone_start_pfn = zone_movable_pfn[nid]; 4552 *zone_end_pfn = min(node_end_pfn, 4553 arch_zone_highest_possible_pfn[movable_zone]); 4554 4555 /* Adjust for ZONE_MOVABLE starting within this range */ 4556 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4557 *zone_end_pfn > zone_movable_pfn[nid]) { 4558 *zone_end_pfn = zone_movable_pfn[nid]; 4559 4560 /* Check if this whole range is within ZONE_MOVABLE */ 4561 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4562 *zone_start_pfn = *zone_end_pfn; 4563 } 4564 } 4565 4566 /* 4567 * Return the number of pages a zone spans in a node, including holes 4568 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4569 */ 4570 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4571 unsigned long zone_type, 4572 unsigned long node_start_pfn, 4573 unsigned long node_end_pfn, 4574 unsigned long *ignored) 4575 { 4576 unsigned long zone_start_pfn, zone_end_pfn; 4577 4578 /* Get the start and end of the zone */ 4579 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4580 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4581 adjust_zone_range_for_zone_movable(nid, zone_type, 4582 node_start_pfn, node_end_pfn, 4583 &zone_start_pfn, &zone_end_pfn); 4584 4585 /* Check that this node has pages within the zone's required range */ 4586 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4587 return 0; 4588 4589 /* Move the zone boundaries inside the node if necessary */ 4590 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4591 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4592 4593 /* Return the spanned pages */ 4594 return zone_end_pfn - zone_start_pfn; 4595 } 4596 4597 /* 4598 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4599 * then all holes in the requested range will be accounted for. 4600 */ 4601 unsigned long __meminit __absent_pages_in_range(int nid, 4602 unsigned long range_start_pfn, 4603 unsigned long range_end_pfn) 4604 { 4605 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4606 unsigned long start_pfn, end_pfn; 4607 int i; 4608 4609 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4610 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4611 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4612 nr_absent -= end_pfn - start_pfn; 4613 } 4614 return nr_absent; 4615 } 4616 4617 /** 4618 * absent_pages_in_range - Return number of page frames in holes within a range 4619 * @start_pfn: The start PFN to start searching for holes 4620 * @end_pfn: The end PFN to stop searching for holes 4621 * 4622 * It returns the number of pages frames in memory holes within a range. 4623 */ 4624 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4625 unsigned long end_pfn) 4626 { 4627 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4628 } 4629 4630 /* Return the number of page frames in holes in a zone on a node */ 4631 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4632 unsigned long zone_type, 4633 unsigned long node_start_pfn, 4634 unsigned long node_end_pfn, 4635 unsigned long *ignored) 4636 { 4637 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4638 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4639 unsigned long zone_start_pfn, zone_end_pfn; 4640 4641 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4642 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4643 4644 adjust_zone_range_for_zone_movable(nid, zone_type, 4645 node_start_pfn, node_end_pfn, 4646 &zone_start_pfn, &zone_end_pfn); 4647 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4648 } 4649 4650 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4651 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4652 unsigned long zone_type, 4653 unsigned long node_start_pfn, 4654 unsigned long node_end_pfn, 4655 unsigned long *zones_size) 4656 { 4657 return zones_size[zone_type]; 4658 } 4659 4660 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4661 unsigned long zone_type, 4662 unsigned long node_start_pfn, 4663 unsigned long node_end_pfn, 4664 unsigned long *zholes_size) 4665 { 4666 if (!zholes_size) 4667 return 0; 4668 4669 return zholes_size[zone_type]; 4670 } 4671 4672 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4673 4674 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4675 unsigned long node_start_pfn, 4676 unsigned long node_end_pfn, 4677 unsigned long *zones_size, 4678 unsigned long *zholes_size) 4679 { 4680 unsigned long realtotalpages, totalpages = 0; 4681 enum zone_type i; 4682 4683 for (i = 0; i < MAX_NR_ZONES; i++) 4684 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4685 node_start_pfn, 4686 node_end_pfn, 4687 zones_size); 4688 pgdat->node_spanned_pages = totalpages; 4689 4690 realtotalpages = totalpages; 4691 for (i = 0; i < MAX_NR_ZONES; i++) 4692 realtotalpages -= 4693 zone_absent_pages_in_node(pgdat->node_id, i, 4694 node_start_pfn, node_end_pfn, 4695 zholes_size); 4696 pgdat->node_present_pages = realtotalpages; 4697 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4698 realtotalpages); 4699 } 4700 4701 #ifndef CONFIG_SPARSEMEM 4702 /* 4703 * Calculate the size of the zone->blockflags rounded to an unsigned long 4704 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4705 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4706 * round what is now in bits to nearest long in bits, then return it in 4707 * bytes. 4708 */ 4709 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4710 { 4711 unsigned long usemapsize; 4712 4713 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4714 usemapsize = roundup(zonesize, pageblock_nr_pages); 4715 usemapsize = usemapsize >> pageblock_order; 4716 usemapsize *= NR_PAGEBLOCK_BITS; 4717 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4718 4719 return usemapsize / 8; 4720 } 4721 4722 static void __init setup_usemap(struct pglist_data *pgdat, 4723 struct zone *zone, 4724 unsigned long zone_start_pfn, 4725 unsigned long zonesize) 4726 { 4727 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4728 zone->pageblock_flags = NULL; 4729 if (usemapsize) 4730 zone->pageblock_flags = 4731 memblock_virt_alloc_node_nopanic(usemapsize, 4732 pgdat->node_id); 4733 } 4734 #else 4735 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4736 unsigned long zone_start_pfn, unsigned long zonesize) {} 4737 #endif /* CONFIG_SPARSEMEM */ 4738 4739 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4740 4741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4742 void __paginginit set_pageblock_order(void) 4743 { 4744 unsigned int order; 4745 4746 /* Check that pageblock_nr_pages has not already been setup */ 4747 if (pageblock_order) 4748 return; 4749 4750 if (HPAGE_SHIFT > PAGE_SHIFT) 4751 order = HUGETLB_PAGE_ORDER; 4752 else 4753 order = MAX_ORDER - 1; 4754 4755 /* 4756 * Assume the largest contiguous order of interest is a huge page. 4757 * This value may be variable depending on boot parameters on IA64 and 4758 * powerpc. 4759 */ 4760 pageblock_order = order; 4761 } 4762 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4763 4764 /* 4765 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4766 * is unused as pageblock_order is set at compile-time. See 4767 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4768 * the kernel config 4769 */ 4770 void __paginginit set_pageblock_order(void) 4771 { 4772 } 4773 4774 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4775 4776 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4777 unsigned long present_pages) 4778 { 4779 unsigned long pages = spanned_pages; 4780 4781 /* 4782 * Provide a more accurate estimation if there are holes within 4783 * the zone and SPARSEMEM is in use. If there are holes within the 4784 * zone, each populated memory region may cost us one or two extra 4785 * memmap pages due to alignment because memmap pages for each 4786 * populated regions may not naturally algined on page boundary. 4787 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4788 */ 4789 if (spanned_pages > present_pages + (present_pages >> 4) && 4790 IS_ENABLED(CONFIG_SPARSEMEM)) 4791 pages = present_pages; 4792 4793 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4794 } 4795 4796 /* 4797 * Set up the zone data structures: 4798 * - mark all pages reserved 4799 * - mark all memory queues empty 4800 * - clear the memory bitmaps 4801 * 4802 * NOTE: pgdat should get zeroed by caller. 4803 */ 4804 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4805 unsigned long node_start_pfn, unsigned long node_end_pfn, 4806 unsigned long *zones_size, unsigned long *zholes_size) 4807 { 4808 enum zone_type j; 4809 int nid = pgdat->node_id; 4810 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4811 int ret; 4812 4813 pgdat_resize_init(pgdat); 4814 #ifdef CONFIG_NUMA_BALANCING 4815 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4816 pgdat->numabalancing_migrate_nr_pages = 0; 4817 pgdat->numabalancing_migrate_next_window = jiffies; 4818 #endif 4819 init_waitqueue_head(&pgdat->kswapd_wait); 4820 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4821 pgdat_page_cgroup_init(pgdat); 4822 4823 for (j = 0; j < MAX_NR_ZONES; j++) { 4824 struct zone *zone = pgdat->node_zones + j; 4825 unsigned long size, realsize, freesize, memmap_pages; 4826 4827 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4828 node_end_pfn, zones_size); 4829 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4830 node_start_pfn, 4831 node_end_pfn, 4832 zholes_size); 4833 4834 /* 4835 * Adjust freesize so that it accounts for how much memory 4836 * is used by this zone for memmap. This affects the watermark 4837 * and per-cpu initialisations 4838 */ 4839 memmap_pages = calc_memmap_size(size, realsize); 4840 if (freesize >= memmap_pages) { 4841 freesize -= memmap_pages; 4842 if (memmap_pages) 4843 printk(KERN_DEBUG 4844 " %s zone: %lu pages used for memmap\n", 4845 zone_names[j], memmap_pages); 4846 } else 4847 printk(KERN_WARNING 4848 " %s zone: %lu pages exceeds freesize %lu\n", 4849 zone_names[j], memmap_pages, freesize); 4850 4851 /* Account for reserved pages */ 4852 if (j == 0 && freesize > dma_reserve) { 4853 freesize -= dma_reserve; 4854 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4855 zone_names[0], dma_reserve); 4856 } 4857 4858 if (!is_highmem_idx(j)) 4859 nr_kernel_pages += freesize; 4860 /* Charge for highmem memmap if there are enough kernel pages */ 4861 else if (nr_kernel_pages > memmap_pages * 2) 4862 nr_kernel_pages -= memmap_pages; 4863 nr_all_pages += freesize; 4864 4865 zone->spanned_pages = size; 4866 zone->present_pages = realsize; 4867 /* 4868 * Set an approximate value for lowmem here, it will be adjusted 4869 * when the bootmem allocator frees pages into the buddy system. 4870 * And all highmem pages will be managed by the buddy system. 4871 */ 4872 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4873 #ifdef CONFIG_NUMA 4874 zone->node = nid; 4875 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4876 / 100; 4877 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4878 #endif 4879 zone->name = zone_names[j]; 4880 spin_lock_init(&zone->lock); 4881 spin_lock_init(&zone->lru_lock); 4882 zone_seqlock_init(zone); 4883 zone->zone_pgdat = pgdat; 4884 zone_pcp_init(zone); 4885 4886 /* For bootup, initialized properly in watermark setup */ 4887 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4888 4889 lruvec_init(&zone->lruvec); 4890 if (!size) 4891 continue; 4892 4893 set_pageblock_order(); 4894 setup_usemap(pgdat, zone, zone_start_pfn, size); 4895 ret = init_currently_empty_zone(zone, zone_start_pfn, 4896 size, MEMMAP_EARLY); 4897 BUG_ON(ret); 4898 memmap_init(size, nid, j, zone_start_pfn); 4899 zone_start_pfn += size; 4900 } 4901 } 4902 4903 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4904 { 4905 /* Skip empty nodes */ 4906 if (!pgdat->node_spanned_pages) 4907 return; 4908 4909 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4910 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4911 if (!pgdat->node_mem_map) { 4912 unsigned long size, start, end; 4913 struct page *map; 4914 4915 /* 4916 * The zone's endpoints aren't required to be MAX_ORDER 4917 * aligned but the node_mem_map endpoints must be in order 4918 * for the buddy allocator to function correctly. 4919 */ 4920 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4921 end = pgdat_end_pfn(pgdat); 4922 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4923 size = (end - start) * sizeof(struct page); 4924 map = alloc_remap(pgdat->node_id, size); 4925 if (!map) 4926 map = memblock_virt_alloc_node_nopanic(size, 4927 pgdat->node_id); 4928 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4929 } 4930 #ifndef CONFIG_NEED_MULTIPLE_NODES 4931 /* 4932 * With no DISCONTIG, the global mem_map is just set as node 0's 4933 */ 4934 if (pgdat == NODE_DATA(0)) { 4935 mem_map = NODE_DATA(0)->node_mem_map; 4936 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4937 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4938 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4939 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4940 } 4941 #endif 4942 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4943 } 4944 4945 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4946 unsigned long node_start_pfn, unsigned long *zholes_size) 4947 { 4948 pg_data_t *pgdat = NODE_DATA(nid); 4949 unsigned long start_pfn = 0; 4950 unsigned long end_pfn = 0; 4951 4952 /* pg_data_t should be reset to zero when it's allocated */ 4953 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4954 4955 pgdat->node_id = nid; 4956 pgdat->node_start_pfn = node_start_pfn; 4957 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4958 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4959 #endif 4960 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4961 zones_size, zholes_size); 4962 4963 alloc_node_mem_map(pgdat); 4964 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4965 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4966 nid, (unsigned long)pgdat, 4967 (unsigned long)pgdat->node_mem_map); 4968 #endif 4969 4970 free_area_init_core(pgdat, start_pfn, end_pfn, 4971 zones_size, zholes_size); 4972 } 4973 4974 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4975 4976 #if MAX_NUMNODES > 1 4977 /* 4978 * Figure out the number of possible node ids. 4979 */ 4980 void __init setup_nr_node_ids(void) 4981 { 4982 unsigned int node; 4983 unsigned int highest = 0; 4984 4985 for_each_node_mask(node, node_possible_map) 4986 highest = node; 4987 nr_node_ids = highest + 1; 4988 } 4989 #endif 4990 4991 /** 4992 * node_map_pfn_alignment - determine the maximum internode alignment 4993 * 4994 * This function should be called after node map is populated and sorted. 4995 * It calculates the maximum power of two alignment which can distinguish 4996 * all the nodes. 4997 * 4998 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4999 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5000 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5001 * shifted, 1GiB is enough and this function will indicate so. 5002 * 5003 * This is used to test whether pfn -> nid mapping of the chosen memory 5004 * model has fine enough granularity to avoid incorrect mapping for the 5005 * populated node map. 5006 * 5007 * Returns the determined alignment in pfn's. 0 if there is no alignment 5008 * requirement (single node). 5009 */ 5010 unsigned long __init node_map_pfn_alignment(void) 5011 { 5012 unsigned long accl_mask = 0, last_end = 0; 5013 unsigned long start, end, mask; 5014 int last_nid = -1; 5015 int i, nid; 5016 5017 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5018 if (!start || last_nid < 0 || last_nid == nid) { 5019 last_nid = nid; 5020 last_end = end; 5021 continue; 5022 } 5023 5024 /* 5025 * Start with a mask granular enough to pin-point to the 5026 * start pfn and tick off bits one-by-one until it becomes 5027 * too coarse to separate the current node from the last. 5028 */ 5029 mask = ~((1 << __ffs(start)) - 1); 5030 while (mask && last_end <= (start & (mask << 1))) 5031 mask <<= 1; 5032 5033 /* accumulate all internode masks */ 5034 accl_mask |= mask; 5035 } 5036 5037 /* convert mask to number of pages */ 5038 return ~accl_mask + 1; 5039 } 5040 5041 /* Find the lowest pfn for a node */ 5042 static unsigned long __init find_min_pfn_for_node(int nid) 5043 { 5044 unsigned long min_pfn = ULONG_MAX; 5045 unsigned long start_pfn; 5046 int i; 5047 5048 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5049 min_pfn = min(min_pfn, start_pfn); 5050 5051 if (min_pfn == ULONG_MAX) { 5052 printk(KERN_WARNING 5053 "Could not find start_pfn for node %d\n", nid); 5054 return 0; 5055 } 5056 5057 return min_pfn; 5058 } 5059 5060 /** 5061 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5062 * 5063 * It returns the minimum PFN based on information provided via 5064 * memblock_set_node(). 5065 */ 5066 unsigned long __init find_min_pfn_with_active_regions(void) 5067 { 5068 return find_min_pfn_for_node(MAX_NUMNODES); 5069 } 5070 5071 /* 5072 * early_calculate_totalpages() 5073 * Sum pages in active regions for movable zone. 5074 * Populate N_MEMORY for calculating usable_nodes. 5075 */ 5076 static unsigned long __init early_calculate_totalpages(void) 5077 { 5078 unsigned long totalpages = 0; 5079 unsigned long start_pfn, end_pfn; 5080 int i, nid; 5081 5082 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5083 unsigned long pages = end_pfn - start_pfn; 5084 5085 totalpages += pages; 5086 if (pages) 5087 node_set_state(nid, N_MEMORY); 5088 } 5089 return totalpages; 5090 } 5091 5092 /* 5093 * Find the PFN the Movable zone begins in each node. Kernel memory 5094 * is spread evenly between nodes as long as the nodes have enough 5095 * memory. When they don't, some nodes will have more kernelcore than 5096 * others 5097 */ 5098 static void __init find_zone_movable_pfns_for_nodes(void) 5099 { 5100 int i, nid; 5101 unsigned long usable_startpfn; 5102 unsigned long kernelcore_node, kernelcore_remaining; 5103 /* save the state before borrow the nodemask */ 5104 nodemask_t saved_node_state = node_states[N_MEMORY]; 5105 unsigned long totalpages = early_calculate_totalpages(); 5106 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5107 struct memblock_region *r; 5108 5109 /* Need to find movable_zone earlier when movable_node is specified. */ 5110 find_usable_zone_for_movable(); 5111 5112 /* 5113 * If movable_node is specified, ignore kernelcore and movablecore 5114 * options. 5115 */ 5116 if (movable_node_is_enabled()) { 5117 for_each_memblock(memory, r) { 5118 if (!memblock_is_hotpluggable(r)) 5119 continue; 5120 5121 nid = r->nid; 5122 5123 usable_startpfn = PFN_DOWN(r->base); 5124 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5125 min(usable_startpfn, zone_movable_pfn[nid]) : 5126 usable_startpfn; 5127 } 5128 5129 goto out2; 5130 } 5131 5132 /* 5133 * If movablecore=nn[KMG] was specified, calculate what size of 5134 * kernelcore that corresponds so that memory usable for 5135 * any allocation type is evenly spread. If both kernelcore 5136 * and movablecore are specified, then the value of kernelcore 5137 * will be used for required_kernelcore if it's greater than 5138 * what movablecore would have allowed. 5139 */ 5140 if (required_movablecore) { 5141 unsigned long corepages; 5142 5143 /* 5144 * Round-up so that ZONE_MOVABLE is at least as large as what 5145 * was requested by the user 5146 */ 5147 required_movablecore = 5148 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5149 corepages = totalpages - required_movablecore; 5150 5151 required_kernelcore = max(required_kernelcore, corepages); 5152 } 5153 5154 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5155 if (!required_kernelcore) 5156 goto out; 5157 5158 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5159 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5160 5161 restart: 5162 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5163 kernelcore_node = required_kernelcore / usable_nodes; 5164 for_each_node_state(nid, N_MEMORY) { 5165 unsigned long start_pfn, end_pfn; 5166 5167 /* 5168 * Recalculate kernelcore_node if the division per node 5169 * now exceeds what is necessary to satisfy the requested 5170 * amount of memory for the kernel 5171 */ 5172 if (required_kernelcore < kernelcore_node) 5173 kernelcore_node = required_kernelcore / usable_nodes; 5174 5175 /* 5176 * As the map is walked, we track how much memory is usable 5177 * by the kernel using kernelcore_remaining. When it is 5178 * 0, the rest of the node is usable by ZONE_MOVABLE 5179 */ 5180 kernelcore_remaining = kernelcore_node; 5181 5182 /* Go through each range of PFNs within this node */ 5183 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5184 unsigned long size_pages; 5185 5186 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5187 if (start_pfn >= end_pfn) 5188 continue; 5189 5190 /* Account for what is only usable for kernelcore */ 5191 if (start_pfn < usable_startpfn) { 5192 unsigned long kernel_pages; 5193 kernel_pages = min(end_pfn, usable_startpfn) 5194 - start_pfn; 5195 5196 kernelcore_remaining -= min(kernel_pages, 5197 kernelcore_remaining); 5198 required_kernelcore -= min(kernel_pages, 5199 required_kernelcore); 5200 5201 /* Continue if range is now fully accounted */ 5202 if (end_pfn <= usable_startpfn) { 5203 5204 /* 5205 * Push zone_movable_pfn to the end so 5206 * that if we have to rebalance 5207 * kernelcore across nodes, we will 5208 * not double account here 5209 */ 5210 zone_movable_pfn[nid] = end_pfn; 5211 continue; 5212 } 5213 start_pfn = usable_startpfn; 5214 } 5215 5216 /* 5217 * The usable PFN range for ZONE_MOVABLE is from 5218 * start_pfn->end_pfn. Calculate size_pages as the 5219 * number of pages used as kernelcore 5220 */ 5221 size_pages = end_pfn - start_pfn; 5222 if (size_pages > kernelcore_remaining) 5223 size_pages = kernelcore_remaining; 5224 zone_movable_pfn[nid] = start_pfn + size_pages; 5225 5226 /* 5227 * Some kernelcore has been met, update counts and 5228 * break if the kernelcore for this node has been 5229 * satisfied 5230 */ 5231 required_kernelcore -= min(required_kernelcore, 5232 size_pages); 5233 kernelcore_remaining -= size_pages; 5234 if (!kernelcore_remaining) 5235 break; 5236 } 5237 } 5238 5239 /* 5240 * If there is still required_kernelcore, we do another pass with one 5241 * less node in the count. This will push zone_movable_pfn[nid] further 5242 * along on the nodes that still have memory until kernelcore is 5243 * satisfied 5244 */ 5245 usable_nodes--; 5246 if (usable_nodes && required_kernelcore > usable_nodes) 5247 goto restart; 5248 5249 out2: 5250 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5251 for (nid = 0; nid < MAX_NUMNODES; nid++) 5252 zone_movable_pfn[nid] = 5253 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5254 5255 out: 5256 /* restore the node_state */ 5257 node_states[N_MEMORY] = saved_node_state; 5258 } 5259 5260 /* Any regular or high memory on that node ? */ 5261 static void check_for_memory(pg_data_t *pgdat, int nid) 5262 { 5263 enum zone_type zone_type; 5264 5265 if (N_MEMORY == N_NORMAL_MEMORY) 5266 return; 5267 5268 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5269 struct zone *zone = &pgdat->node_zones[zone_type]; 5270 if (populated_zone(zone)) { 5271 node_set_state(nid, N_HIGH_MEMORY); 5272 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5273 zone_type <= ZONE_NORMAL) 5274 node_set_state(nid, N_NORMAL_MEMORY); 5275 break; 5276 } 5277 } 5278 } 5279 5280 /** 5281 * free_area_init_nodes - Initialise all pg_data_t and zone data 5282 * @max_zone_pfn: an array of max PFNs for each zone 5283 * 5284 * This will call free_area_init_node() for each active node in the system. 5285 * Using the page ranges provided by memblock_set_node(), the size of each 5286 * zone in each node and their holes is calculated. If the maximum PFN 5287 * between two adjacent zones match, it is assumed that the zone is empty. 5288 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5289 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5290 * starts where the previous one ended. For example, ZONE_DMA32 starts 5291 * at arch_max_dma_pfn. 5292 */ 5293 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5294 { 5295 unsigned long start_pfn, end_pfn; 5296 int i, nid; 5297 5298 /* Record where the zone boundaries are */ 5299 memset(arch_zone_lowest_possible_pfn, 0, 5300 sizeof(arch_zone_lowest_possible_pfn)); 5301 memset(arch_zone_highest_possible_pfn, 0, 5302 sizeof(arch_zone_highest_possible_pfn)); 5303 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5304 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5305 for (i = 1; i < MAX_NR_ZONES; i++) { 5306 if (i == ZONE_MOVABLE) 5307 continue; 5308 arch_zone_lowest_possible_pfn[i] = 5309 arch_zone_highest_possible_pfn[i-1]; 5310 arch_zone_highest_possible_pfn[i] = 5311 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5312 } 5313 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5314 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5315 5316 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5317 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5318 find_zone_movable_pfns_for_nodes(); 5319 5320 /* Print out the zone ranges */ 5321 printk("Zone ranges:\n"); 5322 for (i = 0; i < MAX_NR_ZONES; i++) { 5323 if (i == ZONE_MOVABLE) 5324 continue; 5325 printk(KERN_CONT " %-8s ", zone_names[i]); 5326 if (arch_zone_lowest_possible_pfn[i] == 5327 arch_zone_highest_possible_pfn[i]) 5328 printk(KERN_CONT "empty\n"); 5329 else 5330 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5331 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5332 (arch_zone_highest_possible_pfn[i] 5333 << PAGE_SHIFT) - 1); 5334 } 5335 5336 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5337 printk("Movable zone start for each node\n"); 5338 for (i = 0; i < MAX_NUMNODES; i++) { 5339 if (zone_movable_pfn[i]) 5340 printk(" Node %d: %#010lx\n", i, 5341 zone_movable_pfn[i] << PAGE_SHIFT); 5342 } 5343 5344 /* Print out the early node map */ 5345 printk("Early memory node ranges\n"); 5346 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5347 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5348 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5349 5350 /* Initialise every node */ 5351 mminit_verify_pageflags_layout(); 5352 setup_nr_node_ids(); 5353 for_each_online_node(nid) { 5354 pg_data_t *pgdat = NODE_DATA(nid); 5355 free_area_init_node(nid, NULL, 5356 find_min_pfn_for_node(nid), NULL); 5357 5358 /* Any memory on that node */ 5359 if (pgdat->node_present_pages) 5360 node_set_state(nid, N_MEMORY); 5361 check_for_memory(pgdat, nid); 5362 } 5363 } 5364 5365 static int __init cmdline_parse_core(char *p, unsigned long *core) 5366 { 5367 unsigned long long coremem; 5368 if (!p) 5369 return -EINVAL; 5370 5371 coremem = memparse(p, &p); 5372 *core = coremem >> PAGE_SHIFT; 5373 5374 /* Paranoid check that UL is enough for the coremem value */ 5375 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5376 5377 return 0; 5378 } 5379 5380 /* 5381 * kernelcore=size sets the amount of memory for use for allocations that 5382 * cannot be reclaimed or migrated. 5383 */ 5384 static int __init cmdline_parse_kernelcore(char *p) 5385 { 5386 return cmdline_parse_core(p, &required_kernelcore); 5387 } 5388 5389 /* 5390 * movablecore=size sets the amount of memory for use for allocations that 5391 * can be reclaimed or migrated. 5392 */ 5393 static int __init cmdline_parse_movablecore(char *p) 5394 { 5395 return cmdline_parse_core(p, &required_movablecore); 5396 } 5397 5398 early_param("kernelcore", cmdline_parse_kernelcore); 5399 early_param("movablecore", cmdline_parse_movablecore); 5400 5401 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5402 5403 void adjust_managed_page_count(struct page *page, long count) 5404 { 5405 spin_lock(&managed_page_count_lock); 5406 page_zone(page)->managed_pages += count; 5407 totalram_pages += count; 5408 #ifdef CONFIG_HIGHMEM 5409 if (PageHighMem(page)) 5410 totalhigh_pages += count; 5411 #endif 5412 spin_unlock(&managed_page_count_lock); 5413 } 5414 EXPORT_SYMBOL(adjust_managed_page_count); 5415 5416 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5417 { 5418 void *pos; 5419 unsigned long pages = 0; 5420 5421 start = (void *)PAGE_ALIGN((unsigned long)start); 5422 end = (void *)((unsigned long)end & PAGE_MASK); 5423 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5424 if ((unsigned int)poison <= 0xFF) 5425 memset(pos, poison, PAGE_SIZE); 5426 free_reserved_page(virt_to_page(pos)); 5427 } 5428 5429 if (pages && s) 5430 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5431 s, pages << (PAGE_SHIFT - 10), start, end); 5432 5433 return pages; 5434 } 5435 EXPORT_SYMBOL(free_reserved_area); 5436 5437 #ifdef CONFIG_HIGHMEM 5438 void free_highmem_page(struct page *page) 5439 { 5440 __free_reserved_page(page); 5441 totalram_pages++; 5442 page_zone(page)->managed_pages++; 5443 totalhigh_pages++; 5444 } 5445 #endif 5446 5447 5448 void __init mem_init_print_info(const char *str) 5449 { 5450 unsigned long physpages, codesize, datasize, rosize, bss_size; 5451 unsigned long init_code_size, init_data_size; 5452 5453 physpages = get_num_physpages(); 5454 codesize = _etext - _stext; 5455 datasize = _edata - _sdata; 5456 rosize = __end_rodata - __start_rodata; 5457 bss_size = __bss_stop - __bss_start; 5458 init_data_size = __init_end - __init_begin; 5459 init_code_size = _einittext - _sinittext; 5460 5461 /* 5462 * Detect special cases and adjust section sizes accordingly: 5463 * 1) .init.* may be embedded into .data sections 5464 * 2) .init.text.* may be out of [__init_begin, __init_end], 5465 * please refer to arch/tile/kernel/vmlinux.lds.S. 5466 * 3) .rodata.* may be embedded into .text or .data sections. 5467 */ 5468 #define adj_init_size(start, end, size, pos, adj) \ 5469 do { \ 5470 if (start <= pos && pos < end && size > adj) \ 5471 size -= adj; \ 5472 } while (0) 5473 5474 adj_init_size(__init_begin, __init_end, init_data_size, 5475 _sinittext, init_code_size); 5476 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5477 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5478 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5479 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5480 5481 #undef adj_init_size 5482 5483 printk("Memory: %luK/%luK available " 5484 "(%luK kernel code, %luK rwdata, %luK rodata, " 5485 "%luK init, %luK bss, %luK reserved" 5486 #ifdef CONFIG_HIGHMEM 5487 ", %luK highmem" 5488 #endif 5489 "%s%s)\n", 5490 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5491 codesize >> 10, datasize >> 10, rosize >> 10, 5492 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5493 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5494 #ifdef CONFIG_HIGHMEM 5495 totalhigh_pages << (PAGE_SHIFT-10), 5496 #endif 5497 str ? ", " : "", str ? str : ""); 5498 } 5499 5500 /** 5501 * set_dma_reserve - set the specified number of pages reserved in the first zone 5502 * @new_dma_reserve: The number of pages to mark reserved 5503 * 5504 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5505 * In the DMA zone, a significant percentage may be consumed by kernel image 5506 * and other unfreeable allocations which can skew the watermarks badly. This 5507 * function may optionally be used to account for unfreeable pages in the 5508 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5509 * smaller per-cpu batchsize. 5510 */ 5511 void __init set_dma_reserve(unsigned long new_dma_reserve) 5512 { 5513 dma_reserve = new_dma_reserve; 5514 } 5515 5516 void __init free_area_init(unsigned long *zones_size) 5517 { 5518 free_area_init_node(0, zones_size, 5519 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5520 } 5521 5522 static int page_alloc_cpu_notify(struct notifier_block *self, 5523 unsigned long action, void *hcpu) 5524 { 5525 int cpu = (unsigned long)hcpu; 5526 5527 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5528 lru_add_drain_cpu(cpu); 5529 drain_pages(cpu); 5530 5531 /* 5532 * Spill the event counters of the dead processor 5533 * into the current processors event counters. 5534 * This artificially elevates the count of the current 5535 * processor. 5536 */ 5537 vm_events_fold_cpu(cpu); 5538 5539 /* 5540 * Zero the differential counters of the dead processor 5541 * so that the vm statistics are consistent. 5542 * 5543 * This is only okay since the processor is dead and cannot 5544 * race with what we are doing. 5545 */ 5546 cpu_vm_stats_fold(cpu); 5547 } 5548 return NOTIFY_OK; 5549 } 5550 5551 void __init page_alloc_init(void) 5552 { 5553 hotcpu_notifier(page_alloc_cpu_notify, 0); 5554 } 5555 5556 /* 5557 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5558 * or min_free_kbytes changes. 5559 */ 5560 static void calculate_totalreserve_pages(void) 5561 { 5562 struct pglist_data *pgdat; 5563 unsigned long reserve_pages = 0; 5564 enum zone_type i, j; 5565 5566 for_each_online_pgdat(pgdat) { 5567 for (i = 0; i < MAX_NR_ZONES; i++) { 5568 struct zone *zone = pgdat->node_zones + i; 5569 unsigned long max = 0; 5570 5571 /* Find valid and maximum lowmem_reserve in the zone */ 5572 for (j = i; j < MAX_NR_ZONES; j++) { 5573 if (zone->lowmem_reserve[j] > max) 5574 max = zone->lowmem_reserve[j]; 5575 } 5576 5577 /* we treat the high watermark as reserved pages. */ 5578 max += high_wmark_pages(zone); 5579 5580 if (max > zone->managed_pages) 5581 max = zone->managed_pages; 5582 reserve_pages += max; 5583 /* 5584 * Lowmem reserves are not available to 5585 * GFP_HIGHUSER page cache allocations and 5586 * kswapd tries to balance zones to their high 5587 * watermark. As a result, neither should be 5588 * regarded as dirtyable memory, to prevent a 5589 * situation where reclaim has to clean pages 5590 * in order to balance the zones. 5591 */ 5592 zone->dirty_balance_reserve = max; 5593 } 5594 } 5595 dirty_balance_reserve = reserve_pages; 5596 totalreserve_pages = reserve_pages; 5597 } 5598 5599 /* 5600 * setup_per_zone_lowmem_reserve - called whenever 5601 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5602 * has a correct pages reserved value, so an adequate number of 5603 * pages are left in the zone after a successful __alloc_pages(). 5604 */ 5605 static void setup_per_zone_lowmem_reserve(void) 5606 { 5607 struct pglist_data *pgdat; 5608 enum zone_type j, idx; 5609 5610 for_each_online_pgdat(pgdat) { 5611 for (j = 0; j < MAX_NR_ZONES; j++) { 5612 struct zone *zone = pgdat->node_zones + j; 5613 unsigned long managed_pages = zone->managed_pages; 5614 5615 zone->lowmem_reserve[j] = 0; 5616 5617 idx = j; 5618 while (idx) { 5619 struct zone *lower_zone; 5620 5621 idx--; 5622 5623 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5624 sysctl_lowmem_reserve_ratio[idx] = 1; 5625 5626 lower_zone = pgdat->node_zones + idx; 5627 lower_zone->lowmem_reserve[j] = managed_pages / 5628 sysctl_lowmem_reserve_ratio[idx]; 5629 managed_pages += lower_zone->managed_pages; 5630 } 5631 } 5632 } 5633 5634 /* update totalreserve_pages */ 5635 calculate_totalreserve_pages(); 5636 } 5637 5638 static void __setup_per_zone_wmarks(void) 5639 { 5640 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5641 unsigned long lowmem_pages = 0; 5642 struct zone *zone; 5643 unsigned long flags; 5644 5645 /* Calculate total number of !ZONE_HIGHMEM pages */ 5646 for_each_zone(zone) { 5647 if (!is_highmem(zone)) 5648 lowmem_pages += zone->managed_pages; 5649 } 5650 5651 for_each_zone(zone) { 5652 u64 tmp; 5653 5654 spin_lock_irqsave(&zone->lock, flags); 5655 tmp = (u64)pages_min * zone->managed_pages; 5656 do_div(tmp, lowmem_pages); 5657 if (is_highmem(zone)) { 5658 /* 5659 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5660 * need highmem pages, so cap pages_min to a small 5661 * value here. 5662 * 5663 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5664 * deltas controls asynch page reclaim, and so should 5665 * not be capped for highmem. 5666 */ 5667 unsigned long min_pages; 5668 5669 min_pages = zone->managed_pages / 1024; 5670 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5671 zone->watermark[WMARK_MIN] = min_pages; 5672 } else { 5673 /* 5674 * If it's a lowmem zone, reserve a number of pages 5675 * proportionate to the zone's size. 5676 */ 5677 zone->watermark[WMARK_MIN] = tmp; 5678 } 5679 5680 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5681 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5682 5683 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5684 high_wmark_pages(zone) - 5685 low_wmark_pages(zone) - 5686 zone_page_state(zone, NR_ALLOC_BATCH)); 5687 5688 setup_zone_migrate_reserve(zone); 5689 spin_unlock_irqrestore(&zone->lock, flags); 5690 } 5691 5692 /* update totalreserve_pages */ 5693 calculate_totalreserve_pages(); 5694 } 5695 5696 /** 5697 * setup_per_zone_wmarks - called when min_free_kbytes changes 5698 * or when memory is hot-{added|removed} 5699 * 5700 * Ensures that the watermark[min,low,high] values for each zone are set 5701 * correctly with respect to min_free_kbytes. 5702 */ 5703 void setup_per_zone_wmarks(void) 5704 { 5705 mutex_lock(&zonelists_mutex); 5706 __setup_per_zone_wmarks(); 5707 mutex_unlock(&zonelists_mutex); 5708 } 5709 5710 /* 5711 * The inactive anon list should be small enough that the VM never has to 5712 * do too much work, but large enough that each inactive page has a chance 5713 * to be referenced again before it is swapped out. 5714 * 5715 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5716 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5717 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5718 * the anonymous pages are kept on the inactive list. 5719 * 5720 * total target max 5721 * memory ratio inactive anon 5722 * ------------------------------------- 5723 * 10MB 1 5MB 5724 * 100MB 1 50MB 5725 * 1GB 3 250MB 5726 * 10GB 10 0.9GB 5727 * 100GB 31 3GB 5728 * 1TB 101 10GB 5729 * 10TB 320 32GB 5730 */ 5731 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5732 { 5733 unsigned int gb, ratio; 5734 5735 /* Zone size in gigabytes */ 5736 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5737 if (gb) 5738 ratio = int_sqrt(10 * gb); 5739 else 5740 ratio = 1; 5741 5742 zone->inactive_ratio = ratio; 5743 } 5744 5745 static void __meminit setup_per_zone_inactive_ratio(void) 5746 { 5747 struct zone *zone; 5748 5749 for_each_zone(zone) 5750 calculate_zone_inactive_ratio(zone); 5751 } 5752 5753 /* 5754 * Initialise min_free_kbytes. 5755 * 5756 * For small machines we want it small (128k min). For large machines 5757 * we want it large (64MB max). But it is not linear, because network 5758 * bandwidth does not increase linearly with machine size. We use 5759 * 5760 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5761 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5762 * 5763 * which yields 5764 * 5765 * 16MB: 512k 5766 * 32MB: 724k 5767 * 64MB: 1024k 5768 * 128MB: 1448k 5769 * 256MB: 2048k 5770 * 512MB: 2896k 5771 * 1024MB: 4096k 5772 * 2048MB: 5792k 5773 * 4096MB: 8192k 5774 * 8192MB: 11584k 5775 * 16384MB: 16384k 5776 */ 5777 int __meminit init_per_zone_wmark_min(void) 5778 { 5779 unsigned long lowmem_kbytes; 5780 int new_min_free_kbytes; 5781 5782 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5783 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5784 5785 if (new_min_free_kbytes > user_min_free_kbytes) { 5786 min_free_kbytes = new_min_free_kbytes; 5787 if (min_free_kbytes < 128) 5788 min_free_kbytes = 128; 5789 if (min_free_kbytes > 65536) 5790 min_free_kbytes = 65536; 5791 } else { 5792 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5793 new_min_free_kbytes, user_min_free_kbytes); 5794 } 5795 setup_per_zone_wmarks(); 5796 refresh_zone_stat_thresholds(); 5797 setup_per_zone_lowmem_reserve(); 5798 setup_per_zone_inactive_ratio(); 5799 return 0; 5800 } 5801 module_init(init_per_zone_wmark_min) 5802 5803 /* 5804 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5805 * that we can call two helper functions whenever min_free_kbytes 5806 * changes. 5807 */ 5808 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5809 void __user *buffer, size_t *length, loff_t *ppos) 5810 { 5811 int rc; 5812 5813 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5814 if (rc) 5815 return rc; 5816 5817 if (write) { 5818 user_min_free_kbytes = min_free_kbytes; 5819 setup_per_zone_wmarks(); 5820 } 5821 return 0; 5822 } 5823 5824 #ifdef CONFIG_NUMA 5825 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5826 void __user *buffer, size_t *length, loff_t *ppos) 5827 { 5828 struct zone *zone; 5829 int rc; 5830 5831 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5832 if (rc) 5833 return rc; 5834 5835 for_each_zone(zone) 5836 zone->min_unmapped_pages = (zone->managed_pages * 5837 sysctl_min_unmapped_ratio) / 100; 5838 return 0; 5839 } 5840 5841 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5842 void __user *buffer, size_t *length, loff_t *ppos) 5843 { 5844 struct zone *zone; 5845 int rc; 5846 5847 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5848 if (rc) 5849 return rc; 5850 5851 for_each_zone(zone) 5852 zone->min_slab_pages = (zone->managed_pages * 5853 sysctl_min_slab_ratio) / 100; 5854 return 0; 5855 } 5856 #endif 5857 5858 /* 5859 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5860 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5861 * whenever sysctl_lowmem_reserve_ratio changes. 5862 * 5863 * The reserve ratio obviously has absolutely no relation with the 5864 * minimum watermarks. The lowmem reserve ratio can only make sense 5865 * if in function of the boot time zone sizes. 5866 */ 5867 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5868 void __user *buffer, size_t *length, loff_t *ppos) 5869 { 5870 proc_dointvec_minmax(table, write, buffer, length, ppos); 5871 setup_per_zone_lowmem_reserve(); 5872 return 0; 5873 } 5874 5875 /* 5876 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5877 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5878 * pagelist can have before it gets flushed back to buddy allocator. 5879 */ 5880 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5881 void __user *buffer, size_t *length, loff_t *ppos) 5882 { 5883 struct zone *zone; 5884 unsigned int cpu; 5885 int ret; 5886 5887 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5888 if (!write || (ret < 0)) 5889 return ret; 5890 5891 mutex_lock(&pcp_batch_high_lock); 5892 for_each_populated_zone(zone) { 5893 unsigned long high; 5894 high = zone->managed_pages / percpu_pagelist_fraction; 5895 for_each_possible_cpu(cpu) 5896 pageset_set_high(per_cpu_ptr(zone->pageset, cpu), 5897 high); 5898 } 5899 mutex_unlock(&pcp_batch_high_lock); 5900 return 0; 5901 } 5902 5903 int hashdist = HASHDIST_DEFAULT; 5904 5905 #ifdef CONFIG_NUMA 5906 static int __init set_hashdist(char *str) 5907 { 5908 if (!str) 5909 return 0; 5910 hashdist = simple_strtoul(str, &str, 0); 5911 return 1; 5912 } 5913 __setup("hashdist=", set_hashdist); 5914 #endif 5915 5916 /* 5917 * allocate a large system hash table from bootmem 5918 * - it is assumed that the hash table must contain an exact power-of-2 5919 * quantity of entries 5920 * - limit is the number of hash buckets, not the total allocation size 5921 */ 5922 void *__init alloc_large_system_hash(const char *tablename, 5923 unsigned long bucketsize, 5924 unsigned long numentries, 5925 int scale, 5926 int flags, 5927 unsigned int *_hash_shift, 5928 unsigned int *_hash_mask, 5929 unsigned long low_limit, 5930 unsigned long high_limit) 5931 { 5932 unsigned long long max = high_limit; 5933 unsigned long log2qty, size; 5934 void *table = NULL; 5935 5936 /* allow the kernel cmdline to have a say */ 5937 if (!numentries) { 5938 /* round applicable memory size up to nearest megabyte */ 5939 numentries = nr_kernel_pages; 5940 5941 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5942 if (PAGE_SHIFT < 20) 5943 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5944 5945 /* limit to 1 bucket per 2^scale bytes of low memory */ 5946 if (scale > PAGE_SHIFT) 5947 numentries >>= (scale - PAGE_SHIFT); 5948 else 5949 numentries <<= (PAGE_SHIFT - scale); 5950 5951 /* Make sure we've got at least a 0-order allocation.. */ 5952 if (unlikely(flags & HASH_SMALL)) { 5953 /* Makes no sense without HASH_EARLY */ 5954 WARN_ON(!(flags & HASH_EARLY)); 5955 if (!(numentries >> *_hash_shift)) { 5956 numentries = 1UL << *_hash_shift; 5957 BUG_ON(!numentries); 5958 } 5959 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5960 numentries = PAGE_SIZE / bucketsize; 5961 } 5962 numentries = roundup_pow_of_two(numentries); 5963 5964 /* limit allocation size to 1/16 total memory by default */ 5965 if (max == 0) { 5966 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5967 do_div(max, bucketsize); 5968 } 5969 max = min(max, 0x80000000ULL); 5970 5971 if (numentries < low_limit) 5972 numentries = low_limit; 5973 if (numentries > max) 5974 numentries = max; 5975 5976 log2qty = ilog2(numentries); 5977 5978 do { 5979 size = bucketsize << log2qty; 5980 if (flags & HASH_EARLY) 5981 table = memblock_virt_alloc_nopanic(size, 0); 5982 else if (hashdist) 5983 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5984 else { 5985 /* 5986 * If bucketsize is not a power-of-two, we may free 5987 * some pages at the end of hash table which 5988 * alloc_pages_exact() automatically does 5989 */ 5990 if (get_order(size) < MAX_ORDER) { 5991 table = alloc_pages_exact(size, GFP_ATOMIC); 5992 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5993 } 5994 } 5995 } while (!table && size > PAGE_SIZE && --log2qty); 5996 5997 if (!table) 5998 panic("Failed to allocate %s hash table\n", tablename); 5999 6000 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6001 tablename, 6002 (1UL << log2qty), 6003 ilog2(size) - PAGE_SHIFT, 6004 size); 6005 6006 if (_hash_shift) 6007 *_hash_shift = log2qty; 6008 if (_hash_mask) 6009 *_hash_mask = (1 << log2qty) - 1; 6010 6011 return table; 6012 } 6013 6014 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6015 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6016 unsigned long pfn) 6017 { 6018 #ifdef CONFIG_SPARSEMEM 6019 return __pfn_to_section(pfn)->pageblock_flags; 6020 #else 6021 return zone->pageblock_flags; 6022 #endif /* CONFIG_SPARSEMEM */ 6023 } 6024 6025 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6026 { 6027 #ifdef CONFIG_SPARSEMEM 6028 pfn &= (PAGES_PER_SECTION-1); 6029 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6030 #else 6031 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6032 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6033 #endif /* CONFIG_SPARSEMEM */ 6034 } 6035 6036 /** 6037 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 6038 * @page: The page within the block of interest 6039 * @start_bitidx: The first bit of interest to retrieve 6040 * @end_bitidx: The last bit of interest 6041 * returns pageblock_bits flags 6042 */ 6043 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6044 unsigned long end_bitidx, 6045 unsigned long mask) 6046 { 6047 struct zone *zone; 6048 unsigned long *bitmap; 6049 unsigned long bitidx, word_bitidx; 6050 unsigned long word; 6051 6052 zone = page_zone(page); 6053 bitmap = get_pageblock_bitmap(zone, pfn); 6054 bitidx = pfn_to_bitidx(zone, pfn); 6055 word_bitidx = bitidx / BITS_PER_LONG; 6056 bitidx &= (BITS_PER_LONG-1); 6057 6058 word = bitmap[word_bitidx]; 6059 bitidx += end_bitidx; 6060 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6061 } 6062 6063 /** 6064 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6065 * @page: The page within the block of interest 6066 * @start_bitidx: The first bit of interest 6067 * @end_bitidx: The last bit of interest 6068 * @flags: The flags to set 6069 */ 6070 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6071 unsigned long pfn, 6072 unsigned long end_bitidx, 6073 unsigned long mask) 6074 { 6075 struct zone *zone; 6076 unsigned long *bitmap; 6077 unsigned long bitidx, word_bitidx; 6078 unsigned long old_word, word; 6079 6080 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6081 6082 zone = page_zone(page); 6083 bitmap = get_pageblock_bitmap(zone, pfn); 6084 bitidx = pfn_to_bitidx(zone, pfn); 6085 word_bitidx = bitidx / BITS_PER_LONG; 6086 bitidx &= (BITS_PER_LONG-1); 6087 6088 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6089 6090 bitidx += end_bitidx; 6091 mask <<= (BITS_PER_LONG - bitidx - 1); 6092 flags <<= (BITS_PER_LONG - bitidx - 1); 6093 6094 word = ACCESS_ONCE(bitmap[word_bitidx]); 6095 for (;;) { 6096 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6097 if (word == old_word) 6098 break; 6099 word = old_word; 6100 } 6101 } 6102 6103 /* 6104 * This function checks whether pageblock includes unmovable pages or not. 6105 * If @count is not zero, it is okay to include less @count unmovable pages 6106 * 6107 * PageLRU check without isolation or lru_lock could race so that 6108 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6109 * expect this function should be exact. 6110 */ 6111 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6112 bool skip_hwpoisoned_pages) 6113 { 6114 unsigned long pfn, iter, found; 6115 int mt; 6116 6117 /* 6118 * For avoiding noise data, lru_add_drain_all() should be called 6119 * If ZONE_MOVABLE, the zone never contains unmovable pages 6120 */ 6121 if (zone_idx(zone) == ZONE_MOVABLE) 6122 return false; 6123 mt = get_pageblock_migratetype(page); 6124 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6125 return false; 6126 6127 pfn = page_to_pfn(page); 6128 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6129 unsigned long check = pfn + iter; 6130 6131 if (!pfn_valid_within(check)) 6132 continue; 6133 6134 page = pfn_to_page(check); 6135 6136 /* 6137 * Hugepages are not in LRU lists, but they're movable. 6138 * We need not scan over tail pages bacause we don't 6139 * handle each tail page individually in migration. 6140 */ 6141 if (PageHuge(page)) { 6142 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6143 continue; 6144 } 6145 6146 /* 6147 * We can't use page_count without pin a page 6148 * because another CPU can free compound page. 6149 * This check already skips compound tails of THP 6150 * because their page->_count is zero at all time. 6151 */ 6152 if (!atomic_read(&page->_count)) { 6153 if (PageBuddy(page)) 6154 iter += (1 << page_order(page)) - 1; 6155 continue; 6156 } 6157 6158 /* 6159 * The HWPoisoned page may be not in buddy system, and 6160 * page_count() is not 0. 6161 */ 6162 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6163 continue; 6164 6165 if (!PageLRU(page)) 6166 found++; 6167 /* 6168 * If there are RECLAIMABLE pages, we need to check it. 6169 * But now, memory offline itself doesn't call shrink_slab() 6170 * and it still to be fixed. 6171 */ 6172 /* 6173 * If the page is not RAM, page_count()should be 0. 6174 * we don't need more check. This is an _used_ not-movable page. 6175 * 6176 * The problematic thing here is PG_reserved pages. PG_reserved 6177 * is set to both of a memory hole page and a _used_ kernel 6178 * page at boot. 6179 */ 6180 if (found > count) 6181 return true; 6182 } 6183 return false; 6184 } 6185 6186 bool is_pageblock_removable_nolock(struct page *page) 6187 { 6188 struct zone *zone; 6189 unsigned long pfn; 6190 6191 /* 6192 * We have to be careful here because we are iterating over memory 6193 * sections which are not zone aware so we might end up outside of 6194 * the zone but still within the section. 6195 * We have to take care about the node as well. If the node is offline 6196 * its NODE_DATA will be NULL - see page_zone. 6197 */ 6198 if (!node_online(page_to_nid(page))) 6199 return false; 6200 6201 zone = page_zone(page); 6202 pfn = page_to_pfn(page); 6203 if (!zone_spans_pfn(zone, pfn)) 6204 return false; 6205 6206 return !has_unmovable_pages(zone, page, 0, true); 6207 } 6208 6209 #ifdef CONFIG_CMA 6210 6211 static unsigned long pfn_max_align_down(unsigned long pfn) 6212 { 6213 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6214 pageblock_nr_pages) - 1); 6215 } 6216 6217 static unsigned long pfn_max_align_up(unsigned long pfn) 6218 { 6219 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6220 pageblock_nr_pages)); 6221 } 6222 6223 /* [start, end) must belong to a single zone. */ 6224 static int __alloc_contig_migrate_range(struct compact_control *cc, 6225 unsigned long start, unsigned long end) 6226 { 6227 /* This function is based on compact_zone() from compaction.c. */ 6228 unsigned long nr_reclaimed; 6229 unsigned long pfn = start; 6230 unsigned int tries = 0; 6231 int ret = 0; 6232 6233 migrate_prep(); 6234 6235 while (pfn < end || !list_empty(&cc->migratepages)) { 6236 if (fatal_signal_pending(current)) { 6237 ret = -EINTR; 6238 break; 6239 } 6240 6241 if (list_empty(&cc->migratepages)) { 6242 cc->nr_migratepages = 0; 6243 pfn = isolate_migratepages_range(cc->zone, cc, 6244 pfn, end, true); 6245 if (!pfn) { 6246 ret = -EINTR; 6247 break; 6248 } 6249 tries = 0; 6250 } else if (++tries == 5) { 6251 ret = ret < 0 ? ret : -EBUSY; 6252 break; 6253 } 6254 6255 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6256 &cc->migratepages); 6257 cc->nr_migratepages -= nr_reclaimed; 6258 6259 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6260 NULL, 0, cc->mode, MR_CMA); 6261 } 6262 if (ret < 0) { 6263 putback_movable_pages(&cc->migratepages); 6264 return ret; 6265 } 6266 return 0; 6267 } 6268 6269 /** 6270 * alloc_contig_range() -- tries to allocate given range of pages 6271 * @start: start PFN to allocate 6272 * @end: one-past-the-last PFN to allocate 6273 * @migratetype: migratetype of the underlaying pageblocks (either 6274 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6275 * in range must have the same migratetype and it must 6276 * be either of the two. 6277 * 6278 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6279 * aligned, however it's the caller's responsibility to guarantee that 6280 * we are the only thread that changes migrate type of pageblocks the 6281 * pages fall in. 6282 * 6283 * The PFN range must belong to a single zone. 6284 * 6285 * Returns zero on success or negative error code. On success all 6286 * pages which PFN is in [start, end) are allocated for the caller and 6287 * need to be freed with free_contig_range(). 6288 */ 6289 int alloc_contig_range(unsigned long start, unsigned long end, 6290 unsigned migratetype) 6291 { 6292 unsigned long outer_start, outer_end; 6293 int ret = 0, order; 6294 6295 struct compact_control cc = { 6296 .nr_migratepages = 0, 6297 .order = -1, 6298 .zone = page_zone(pfn_to_page(start)), 6299 .mode = MIGRATE_SYNC, 6300 .ignore_skip_hint = true, 6301 }; 6302 INIT_LIST_HEAD(&cc.migratepages); 6303 6304 /* 6305 * What we do here is we mark all pageblocks in range as 6306 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6307 * have different sizes, and due to the way page allocator 6308 * work, we align the range to biggest of the two pages so 6309 * that page allocator won't try to merge buddies from 6310 * different pageblocks and change MIGRATE_ISOLATE to some 6311 * other migration type. 6312 * 6313 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6314 * migrate the pages from an unaligned range (ie. pages that 6315 * we are interested in). This will put all the pages in 6316 * range back to page allocator as MIGRATE_ISOLATE. 6317 * 6318 * When this is done, we take the pages in range from page 6319 * allocator removing them from the buddy system. This way 6320 * page allocator will never consider using them. 6321 * 6322 * This lets us mark the pageblocks back as 6323 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6324 * aligned range but not in the unaligned, original range are 6325 * put back to page allocator so that buddy can use them. 6326 */ 6327 6328 ret = start_isolate_page_range(pfn_max_align_down(start), 6329 pfn_max_align_up(end), migratetype, 6330 false); 6331 if (ret) 6332 return ret; 6333 6334 ret = __alloc_contig_migrate_range(&cc, start, end); 6335 if (ret) 6336 goto done; 6337 6338 /* 6339 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6340 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6341 * more, all pages in [start, end) are free in page allocator. 6342 * What we are going to do is to allocate all pages from 6343 * [start, end) (that is remove them from page allocator). 6344 * 6345 * The only problem is that pages at the beginning and at the 6346 * end of interesting range may be not aligned with pages that 6347 * page allocator holds, ie. they can be part of higher order 6348 * pages. Because of this, we reserve the bigger range and 6349 * once this is done free the pages we are not interested in. 6350 * 6351 * We don't have to hold zone->lock here because the pages are 6352 * isolated thus they won't get removed from buddy. 6353 */ 6354 6355 lru_add_drain_all(); 6356 drain_all_pages(); 6357 6358 order = 0; 6359 outer_start = start; 6360 while (!PageBuddy(pfn_to_page(outer_start))) { 6361 if (++order >= MAX_ORDER) { 6362 ret = -EBUSY; 6363 goto done; 6364 } 6365 outer_start &= ~0UL << order; 6366 } 6367 6368 /* Make sure the range is really isolated. */ 6369 if (test_pages_isolated(outer_start, end, false)) { 6370 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6371 outer_start, end); 6372 ret = -EBUSY; 6373 goto done; 6374 } 6375 6376 6377 /* Grab isolated pages from freelists. */ 6378 outer_end = isolate_freepages_range(&cc, outer_start, end); 6379 if (!outer_end) { 6380 ret = -EBUSY; 6381 goto done; 6382 } 6383 6384 /* Free head and tail (if any) */ 6385 if (start != outer_start) 6386 free_contig_range(outer_start, start - outer_start); 6387 if (end != outer_end) 6388 free_contig_range(end, outer_end - end); 6389 6390 done: 6391 undo_isolate_page_range(pfn_max_align_down(start), 6392 pfn_max_align_up(end), migratetype); 6393 return ret; 6394 } 6395 6396 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6397 { 6398 unsigned int count = 0; 6399 6400 for (; nr_pages--; pfn++) { 6401 struct page *page = pfn_to_page(pfn); 6402 6403 count += page_count(page) != 1; 6404 __free_page(page); 6405 } 6406 WARN(count != 0, "%d pages are still in use!\n", count); 6407 } 6408 #endif 6409 6410 #ifdef CONFIG_MEMORY_HOTPLUG 6411 /* 6412 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6413 * page high values need to be recalulated. 6414 */ 6415 void __meminit zone_pcp_update(struct zone *zone) 6416 { 6417 unsigned cpu; 6418 mutex_lock(&pcp_batch_high_lock); 6419 for_each_possible_cpu(cpu) 6420 pageset_set_high_and_batch(zone, 6421 per_cpu_ptr(zone->pageset, cpu)); 6422 mutex_unlock(&pcp_batch_high_lock); 6423 } 6424 #endif 6425 6426 void zone_pcp_reset(struct zone *zone) 6427 { 6428 unsigned long flags; 6429 int cpu; 6430 struct per_cpu_pageset *pset; 6431 6432 /* avoid races with drain_pages() */ 6433 local_irq_save(flags); 6434 if (zone->pageset != &boot_pageset) { 6435 for_each_online_cpu(cpu) { 6436 pset = per_cpu_ptr(zone->pageset, cpu); 6437 drain_zonestat(zone, pset); 6438 } 6439 free_percpu(zone->pageset); 6440 zone->pageset = &boot_pageset; 6441 } 6442 local_irq_restore(flags); 6443 } 6444 6445 #ifdef CONFIG_MEMORY_HOTREMOVE 6446 /* 6447 * All pages in the range must be isolated before calling this. 6448 */ 6449 void 6450 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6451 { 6452 struct page *page; 6453 struct zone *zone; 6454 unsigned int order, i; 6455 unsigned long pfn; 6456 unsigned long flags; 6457 /* find the first valid pfn */ 6458 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6459 if (pfn_valid(pfn)) 6460 break; 6461 if (pfn == end_pfn) 6462 return; 6463 zone = page_zone(pfn_to_page(pfn)); 6464 spin_lock_irqsave(&zone->lock, flags); 6465 pfn = start_pfn; 6466 while (pfn < end_pfn) { 6467 if (!pfn_valid(pfn)) { 6468 pfn++; 6469 continue; 6470 } 6471 page = pfn_to_page(pfn); 6472 /* 6473 * The HWPoisoned page may be not in buddy system, and 6474 * page_count() is not 0. 6475 */ 6476 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6477 pfn++; 6478 SetPageReserved(page); 6479 continue; 6480 } 6481 6482 BUG_ON(page_count(page)); 6483 BUG_ON(!PageBuddy(page)); 6484 order = page_order(page); 6485 #ifdef CONFIG_DEBUG_VM 6486 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6487 pfn, 1 << order, end_pfn); 6488 #endif 6489 list_del(&page->lru); 6490 rmv_page_order(page); 6491 zone->free_area[order].nr_free--; 6492 for (i = 0; i < (1 << order); i++) 6493 SetPageReserved((page+i)); 6494 pfn += (1 << order); 6495 } 6496 spin_unlock_irqrestore(&zone->lock, flags); 6497 } 6498 #endif 6499 6500 #ifdef CONFIG_MEMORY_FAILURE 6501 bool is_free_buddy_page(struct page *page) 6502 { 6503 struct zone *zone = page_zone(page); 6504 unsigned long pfn = page_to_pfn(page); 6505 unsigned long flags; 6506 unsigned int order; 6507 6508 spin_lock_irqsave(&zone->lock, flags); 6509 for (order = 0; order < MAX_ORDER; order++) { 6510 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6511 6512 if (PageBuddy(page_head) && page_order(page_head) >= order) 6513 break; 6514 } 6515 spin_unlock_irqrestore(&zone->lock, flags); 6516 6517 return order < MAX_ORDER; 6518 } 6519 #endif 6520 6521 static const struct trace_print_flags pageflag_names[] = { 6522 {1UL << PG_locked, "locked" }, 6523 {1UL << PG_error, "error" }, 6524 {1UL << PG_referenced, "referenced" }, 6525 {1UL << PG_uptodate, "uptodate" }, 6526 {1UL << PG_dirty, "dirty" }, 6527 {1UL << PG_lru, "lru" }, 6528 {1UL << PG_active, "active" }, 6529 {1UL << PG_slab, "slab" }, 6530 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6531 {1UL << PG_arch_1, "arch_1" }, 6532 {1UL << PG_reserved, "reserved" }, 6533 {1UL << PG_private, "private" }, 6534 {1UL << PG_private_2, "private_2" }, 6535 {1UL << PG_writeback, "writeback" }, 6536 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6537 {1UL << PG_head, "head" }, 6538 {1UL << PG_tail, "tail" }, 6539 #else 6540 {1UL << PG_compound, "compound" }, 6541 #endif 6542 {1UL << PG_swapcache, "swapcache" }, 6543 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6544 {1UL << PG_reclaim, "reclaim" }, 6545 {1UL << PG_swapbacked, "swapbacked" }, 6546 {1UL << PG_unevictable, "unevictable" }, 6547 #ifdef CONFIG_MMU 6548 {1UL << PG_mlocked, "mlocked" }, 6549 #endif 6550 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6551 {1UL << PG_uncached, "uncached" }, 6552 #endif 6553 #ifdef CONFIG_MEMORY_FAILURE 6554 {1UL << PG_hwpoison, "hwpoison" }, 6555 #endif 6556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6557 {1UL << PG_compound_lock, "compound_lock" }, 6558 #endif 6559 }; 6560 6561 static void dump_page_flags(unsigned long flags) 6562 { 6563 const char *delim = ""; 6564 unsigned long mask; 6565 int i; 6566 6567 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6568 6569 printk(KERN_ALERT "page flags: %#lx(", flags); 6570 6571 /* remove zone id */ 6572 flags &= (1UL << NR_PAGEFLAGS) - 1; 6573 6574 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6575 6576 mask = pageflag_names[i].mask; 6577 if ((flags & mask) != mask) 6578 continue; 6579 6580 flags &= ~mask; 6581 printk("%s%s", delim, pageflag_names[i].name); 6582 delim = "|"; 6583 } 6584 6585 /* check for left over flags */ 6586 if (flags) 6587 printk("%s%#lx", delim, flags); 6588 6589 printk(")\n"); 6590 } 6591 6592 void dump_page_badflags(struct page *page, const char *reason, 6593 unsigned long badflags) 6594 { 6595 printk(KERN_ALERT 6596 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6597 page, atomic_read(&page->_count), page_mapcount(page), 6598 page->mapping, page->index); 6599 dump_page_flags(page->flags); 6600 if (reason) 6601 pr_alert("page dumped because: %s\n", reason); 6602 if (page->flags & badflags) { 6603 pr_alert("bad because of flags:\n"); 6604 dump_page_flags(page->flags & badflags); 6605 } 6606 mem_cgroup_print_bad_page(page); 6607 } 6608 6609 void dump_page(struct page *page, const char *reason) 6610 { 6611 dump_page_badflags(page, reason, 0); 6612 } 6613 EXPORT_SYMBOL(dump_page); 6614