xref: /openbmc/linux/mm/page_alloc.c (revision 206204a1)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114  * When calculating the number of globally allowed dirty pages, there
115  * is a certain number of per-zone reserves that should not be
116  * considered dirtyable memory.  This is the sum of those reserves
117  * over all existing zones that contribute dirtyable memory.
118  */
119 unsigned long dirty_balance_reserve __read_mostly;
120 
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 
124 #ifdef CONFIG_PM_SLEEP
125 /*
126  * The following functions are used by the suspend/hibernate code to temporarily
127  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128  * while devices are suspended.  To avoid races with the suspend/hibernate code,
129  * they should always be called with pm_mutex held (gfp_allowed_mask also should
130  * only be modified with pm_mutex held, unless the suspend/hibernate code is
131  * guaranteed not to run in parallel with that modification).
132  */
133 
134 static gfp_t saved_gfp_mask;
135 
136 void pm_restore_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	if (saved_gfp_mask) {
140 		gfp_allowed_mask = saved_gfp_mask;
141 		saved_gfp_mask = 0;
142 	}
143 }
144 
145 void pm_restrict_gfp_mask(void)
146 {
147 	WARN_ON(!mutex_is_locked(&pm_mutex));
148 	WARN_ON(saved_gfp_mask);
149 	saved_gfp_mask = gfp_allowed_mask;
150 	gfp_allowed_mask &= ~GFP_IOFS;
151 }
152 
153 bool pm_suspended_storage(void)
154 {
155 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 		return false;
157 	return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160 
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164 
165 static void __free_pages_ok(struct page *page, unsigned int order);
166 
167 /*
168  * results with 256, 32 in the lowmem_reserve sysctl:
169  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170  *	1G machine -> (16M dma, 784M normal, 224M high)
171  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174  *
175  * TBD: should special case ZONE_DMA32 machines here - in those we normally
176  * don't need any ZONE_NORMAL reservation
177  */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 	 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 	 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 	 32,
187 #endif
188 	 32,
189 };
190 
191 EXPORT_SYMBOL(totalram_pages);
192 
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 	 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 	 "DMA32",
199 #endif
200 	 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 	 "HighMem",
203 #endif
204 	 "Movable",
205 };
206 
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209 
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213 
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232 
233 int page_group_by_mobility_disabled __read_mostly;
234 
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 	if (unlikely(page_group_by_mobility_disabled &&
238 		     migratetype < MIGRATE_PCPTYPES))
239 		migratetype = MIGRATE_UNMOVABLE;
240 
241 	set_pageblock_flags_group(page, (unsigned long)migratetype,
242 					PB_migrate, PB_migrate_end);
243 }
244 
245 bool oom_killer_disabled __read_mostly;
246 
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 	int ret = 0;
251 	unsigned seq;
252 	unsigned long pfn = page_to_pfn(page);
253 	unsigned long sp, start_pfn;
254 
255 	do {
256 		seq = zone_span_seqbegin(zone);
257 		start_pfn = zone->zone_start_pfn;
258 		sp = zone->spanned_pages;
259 		if (!zone_spans_pfn(zone, pfn))
260 			ret = 1;
261 	} while (zone_span_seqretry(zone, seq));
262 
263 	if (ret)
264 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 			pfn, zone_to_nid(zone), zone->name,
266 			start_pfn, start_pfn + sp);
267 
268 	return ret;
269 }
270 
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 	if (!pfn_valid_within(page_to_pfn(page)))
274 		return 0;
275 	if (zone != page_zone(page))
276 		return 0;
277 
278 	return 1;
279 }
280 /*
281  * Temporary debugging check for pages not lying within a given zone.
282  */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 	if (page_outside_zone_boundaries(zone, page))
286 		return 1;
287 	if (!page_is_consistent(zone, page))
288 		return 1;
289 
290 	return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 	return 0;
296 }
297 #endif
298 
299 static void bad_page(struct page *page, const char *reason,
300 		unsigned long bad_flags)
301 {
302 	static unsigned long resume;
303 	static unsigned long nr_shown;
304 	static unsigned long nr_unshown;
305 
306 	/* Don't complain about poisoned pages */
307 	if (PageHWPoison(page)) {
308 		page_mapcount_reset(page); /* remove PageBuddy */
309 		return;
310 	}
311 
312 	/*
313 	 * Allow a burst of 60 reports, then keep quiet for that minute;
314 	 * or allow a steady drip of one report per second.
315 	 */
316 	if (nr_shown == 60) {
317 		if (time_before(jiffies, resume)) {
318 			nr_unshown++;
319 			goto out;
320 		}
321 		if (nr_unshown) {
322 			printk(KERN_ALERT
323 			      "BUG: Bad page state: %lu messages suppressed\n",
324 				nr_unshown);
325 			nr_unshown = 0;
326 		}
327 		nr_shown = 0;
328 	}
329 	if (nr_shown++ == 0)
330 		resume = jiffies + 60 * HZ;
331 
332 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
333 		current->comm, page_to_pfn(page));
334 	dump_page_badflags(page, reason, bad_flags);
335 
336 	print_modules();
337 	dump_stack();
338 out:
339 	/* Leave bad fields for debug, except PageBuddy could make trouble */
340 	page_mapcount_reset(page); /* remove PageBuddy */
341 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343 
344 /*
345  * Higher-order pages are called "compound pages".  They are structured thusly:
346  *
347  * The first PAGE_SIZE page is called the "head page".
348  *
349  * The remaining PAGE_SIZE pages are called "tail pages".
350  *
351  * All pages have PG_compound set.  All tail pages have their ->first_page
352  * pointing at the head page.
353  *
354  * The first tail page's ->lru.next holds the address of the compound page's
355  * put_page() function.  Its ->lru.prev holds the order of allocation.
356  * This usage means that zero-order pages may not be compound.
357  */
358 
359 static void free_compound_page(struct page *page)
360 {
361 	__free_pages_ok(page, compound_order(page));
362 }
363 
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 	int i;
367 	int nr_pages = 1 << order;
368 
369 	set_compound_page_dtor(page, free_compound_page);
370 	set_compound_order(page, order);
371 	__SetPageHead(page);
372 	for (i = 1; i < nr_pages; i++) {
373 		struct page *p = page + i;
374 		set_page_count(p, 0);
375 		p->first_page = page;
376 		/* Make sure p->first_page is always valid for PageTail() */
377 		smp_wmb();
378 		__SetPageTail(p);
379 	}
380 }
381 
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 	int i;
386 	int nr_pages = 1 << order;
387 	int bad = 0;
388 
389 	if (unlikely(compound_order(page) != order)) {
390 		bad_page(page, "wrong compound order", 0);
391 		bad++;
392 	}
393 
394 	__ClearPageHead(page);
395 
396 	for (i = 1; i < nr_pages; i++) {
397 		struct page *p = page + i;
398 
399 		if (unlikely(!PageTail(p))) {
400 			bad_page(page, "PageTail not set", 0);
401 			bad++;
402 		} else if (unlikely(p->first_page != page)) {
403 			bad_page(page, "first_page not consistent", 0);
404 			bad++;
405 		}
406 		__ClearPageTail(p);
407 	}
408 
409 	return bad;
410 }
411 
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 							gfp_t gfp_flags)
414 {
415 	int i;
416 
417 	/*
418 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 	 */
421 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 	for (i = 0; i < (1 << order); i++)
423 		clear_highpage(page + i);
424 }
425 
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428 
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 	unsigned long res;
432 
433 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
434 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 		return 0;
436 	}
437 	_debug_guardpage_minorder = res;
438 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 	return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442 
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447 
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456 
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 	set_page_private(page, order);
460 	__SetPageBuddy(page);
461 }
462 
463 static inline void rmv_page_order(struct page *page)
464 {
465 	__ClearPageBuddy(page);
466 	set_page_private(page, 0);
467 }
468 
469 /*
470  * Locate the struct page for both the matching buddy in our
471  * pair (buddy1) and the combined O(n+1) page they form (page).
472  *
473  * 1) Any buddy B1 will have an order O twin B2 which satisfies
474  * the following equation:
475  *     B2 = B1 ^ (1 << O)
476  * For example, if the starting buddy (buddy2) is #8 its order
477  * 1 buddy is #10:
478  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479  *
480  * 2) Any buddy B will have an order O+1 parent P which
481  * satisfies the following equation:
482  *     P = B & ~(1 << O)
483  *
484  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
485  */
486 static inline unsigned long
487 __find_buddy_index(unsigned long page_idx, unsigned int order)
488 {
489 	return page_idx ^ (1 << order);
490 }
491 
492 /*
493  * This function checks whether a page is free && is the buddy
494  * we can do coalesce a page and its buddy if
495  * (a) the buddy is not in a hole &&
496  * (b) the buddy is in the buddy system &&
497  * (c) a page and its buddy have the same order &&
498  * (d) a page and its buddy are in the same zone.
499  *
500  * For recording whether a page is in the buddy system, we set ->_mapcount
501  * PAGE_BUDDY_MAPCOUNT_VALUE.
502  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503  * serialized by zone->lock.
504  *
505  * For recording page's order, we use page_private(page).
506  */
507 static inline int page_is_buddy(struct page *page, struct page *buddy,
508 							unsigned int order)
509 {
510 	if (!pfn_valid_within(page_to_pfn(buddy)))
511 		return 0;
512 
513 	if (page_is_guard(buddy) && page_order(buddy) == order) {
514 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
515 
516 		if (page_zone_id(page) != page_zone_id(buddy))
517 			return 0;
518 
519 		return 1;
520 	}
521 
522 	if (PageBuddy(buddy) && page_order(buddy) == order) {
523 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
524 
525 		/*
526 		 * zone check is done late to avoid uselessly
527 		 * calculating zone/node ids for pages that could
528 		 * never merge.
529 		 */
530 		if (page_zone_id(page) != page_zone_id(buddy))
531 			return 0;
532 
533 		return 1;
534 	}
535 	return 0;
536 }
537 
538 /*
539  * Freeing function for a buddy system allocator.
540  *
541  * The concept of a buddy system is to maintain direct-mapped table
542  * (containing bit values) for memory blocks of various "orders".
543  * The bottom level table contains the map for the smallest allocatable
544  * units of memory (here, pages), and each level above it describes
545  * pairs of units from the levels below, hence, "buddies".
546  * At a high level, all that happens here is marking the table entry
547  * at the bottom level available, and propagating the changes upward
548  * as necessary, plus some accounting needed to play nicely with other
549  * parts of the VM system.
550  * At each level, we keep a list of pages, which are heads of continuous
551  * free pages of length of (1 << order) and marked with _mapcount
552  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553  * field.
554  * So when we are allocating or freeing one, we can derive the state of the
555  * other.  That is, if we allocate a small block, and both were
556  * free, the remainder of the region must be split into blocks.
557  * If a block is freed, and its buddy is also free, then this
558  * triggers coalescing into a block of larger size.
559  *
560  * -- nyc
561  */
562 
563 static inline void __free_one_page(struct page *page,
564 		unsigned long pfn,
565 		struct zone *zone, unsigned int order,
566 		int migratetype)
567 {
568 	unsigned long page_idx;
569 	unsigned long combined_idx;
570 	unsigned long uninitialized_var(buddy_idx);
571 	struct page *buddy;
572 
573 	VM_BUG_ON(!zone_is_initialized(zone));
574 
575 	if (unlikely(PageCompound(page)))
576 		if (unlikely(destroy_compound_page(page, order)))
577 			return;
578 
579 	VM_BUG_ON(migratetype == -1);
580 
581 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
582 
583 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
585 
586 	while (order < MAX_ORDER-1) {
587 		buddy_idx = __find_buddy_index(page_idx, order);
588 		buddy = page + (buddy_idx - page_idx);
589 		if (!page_is_buddy(page, buddy, order))
590 			break;
591 		/*
592 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 		 * merge with it and move up one order.
594 		 */
595 		if (page_is_guard(buddy)) {
596 			clear_page_guard_flag(buddy);
597 			set_page_private(page, 0);
598 			__mod_zone_freepage_state(zone, 1 << order,
599 						  migratetype);
600 		} else {
601 			list_del(&buddy->lru);
602 			zone->free_area[order].nr_free--;
603 			rmv_page_order(buddy);
604 		}
605 		combined_idx = buddy_idx & page_idx;
606 		page = page + (combined_idx - page_idx);
607 		page_idx = combined_idx;
608 		order++;
609 	}
610 	set_page_order(page, order);
611 
612 	/*
613 	 * If this is not the largest possible page, check if the buddy
614 	 * of the next-highest order is free. If it is, it's possible
615 	 * that pages are being freed that will coalesce soon. In case,
616 	 * that is happening, add the free page to the tail of the list
617 	 * so it's less likely to be used soon and more likely to be merged
618 	 * as a higher order page
619 	 */
620 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
621 		struct page *higher_page, *higher_buddy;
622 		combined_idx = buddy_idx & page_idx;
623 		higher_page = page + (combined_idx - page_idx);
624 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
625 		higher_buddy = higher_page + (buddy_idx - combined_idx);
626 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 			list_add_tail(&page->lru,
628 				&zone->free_area[order].free_list[migratetype]);
629 			goto out;
630 		}
631 	}
632 
633 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634 out:
635 	zone->free_area[order].nr_free++;
636 }
637 
638 static inline int free_pages_check(struct page *page)
639 {
640 	const char *bad_reason = NULL;
641 	unsigned long bad_flags = 0;
642 
643 	if (unlikely(page_mapcount(page)))
644 		bad_reason = "nonzero mapcount";
645 	if (unlikely(page->mapping != NULL))
646 		bad_reason = "non-NULL mapping";
647 	if (unlikely(atomic_read(&page->_count) != 0))
648 		bad_reason = "nonzero _count";
649 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 	}
653 	if (unlikely(mem_cgroup_bad_page_check(page)))
654 		bad_reason = "cgroup check failed";
655 	if (unlikely(bad_reason)) {
656 		bad_page(page, bad_reason, bad_flags);
657 		return 1;
658 	}
659 	page_cpupid_reset_last(page);
660 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 	return 0;
663 }
664 
665 /*
666  * Frees a number of pages from the PCP lists
667  * Assumes all pages on list are in same zone, and of same order.
668  * count is the number of pages to free.
669  *
670  * If the zone was previously in an "all pages pinned" state then look to
671  * see if this freeing clears that state.
672  *
673  * And clear the zone's pages_scanned counter, to hold off the "all pages are
674  * pinned" detection logic.
675  */
676 static void free_pcppages_bulk(struct zone *zone, int count,
677 					struct per_cpu_pages *pcp)
678 {
679 	int migratetype = 0;
680 	int batch_free = 0;
681 	int to_free = count;
682 
683 	spin_lock(&zone->lock);
684 	zone->pages_scanned = 0;
685 
686 	while (to_free) {
687 		struct page *page;
688 		struct list_head *list;
689 
690 		/*
691 		 * Remove pages from lists in a round-robin fashion. A
692 		 * batch_free count is maintained that is incremented when an
693 		 * empty list is encountered.  This is so more pages are freed
694 		 * off fuller lists instead of spinning excessively around empty
695 		 * lists
696 		 */
697 		do {
698 			batch_free++;
699 			if (++migratetype == MIGRATE_PCPTYPES)
700 				migratetype = 0;
701 			list = &pcp->lists[migratetype];
702 		} while (list_empty(list));
703 
704 		/* This is the only non-empty list. Free them all. */
705 		if (batch_free == MIGRATE_PCPTYPES)
706 			batch_free = to_free;
707 
708 		do {
709 			int mt;	/* migratetype of the to-be-freed page */
710 
711 			page = list_entry(list->prev, struct page, lru);
712 			/* must delete as __free_one_page list manipulates */
713 			list_del(&page->lru);
714 			mt = get_freepage_migratetype(page);
715 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
716 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
717 			trace_mm_page_pcpu_drain(page, 0, mt);
718 			if (likely(!is_migrate_isolate_page(page))) {
719 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
720 				if (is_migrate_cma(mt))
721 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
722 			}
723 		} while (--to_free && --batch_free && !list_empty(list));
724 	}
725 	spin_unlock(&zone->lock);
726 }
727 
728 static void free_one_page(struct zone *zone,
729 				struct page *page, unsigned long pfn,
730 				unsigned int order,
731 				int migratetype)
732 {
733 	spin_lock(&zone->lock);
734 	zone->pages_scanned = 0;
735 
736 	__free_one_page(page, pfn, zone, order, migratetype);
737 	if (unlikely(!is_migrate_isolate(migratetype)))
738 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
739 	spin_unlock(&zone->lock);
740 }
741 
742 static bool free_pages_prepare(struct page *page, unsigned int order)
743 {
744 	int i;
745 	int bad = 0;
746 
747 	trace_mm_page_free(page, order);
748 	kmemcheck_free_shadow(page, order);
749 
750 	if (PageAnon(page))
751 		page->mapping = NULL;
752 	for (i = 0; i < (1 << order); i++)
753 		bad += free_pages_check(page + i);
754 	if (bad)
755 		return false;
756 
757 	if (!PageHighMem(page)) {
758 		debug_check_no_locks_freed(page_address(page),
759 					   PAGE_SIZE << order);
760 		debug_check_no_obj_freed(page_address(page),
761 					   PAGE_SIZE << order);
762 	}
763 	arch_free_page(page, order);
764 	kernel_map_pages(page, 1 << order, 0);
765 
766 	return true;
767 }
768 
769 static void __free_pages_ok(struct page *page, unsigned int order)
770 {
771 	unsigned long flags;
772 	int migratetype;
773 	unsigned long pfn = page_to_pfn(page);
774 
775 	if (!free_pages_prepare(page, order))
776 		return;
777 
778 	migratetype = get_pfnblock_migratetype(page, pfn);
779 	local_irq_save(flags);
780 	__count_vm_events(PGFREE, 1 << order);
781 	set_freepage_migratetype(page, migratetype);
782 	free_one_page(page_zone(page), page, pfn, order, migratetype);
783 	local_irq_restore(flags);
784 }
785 
786 void __init __free_pages_bootmem(struct page *page, unsigned int order)
787 {
788 	unsigned int nr_pages = 1 << order;
789 	struct page *p = page;
790 	unsigned int loop;
791 
792 	prefetchw(p);
793 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
794 		prefetchw(p + 1);
795 		__ClearPageReserved(p);
796 		set_page_count(p, 0);
797 	}
798 	__ClearPageReserved(p);
799 	set_page_count(p, 0);
800 
801 	page_zone(page)->managed_pages += nr_pages;
802 	set_page_refcounted(page);
803 	__free_pages(page, order);
804 }
805 
806 #ifdef CONFIG_CMA
807 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
808 void __init init_cma_reserved_pageblock(struct page *page)
809 {
810 	unsigned i = pageblock_nr_pages;
811 	struct page *p = page;
812 
813 	do {
814 		__ClearPageReserved(p);
815 		set_page_count(p, 0);
816 	} while (++p, --i);
817 
818 	set_page_refcounted(page);
819 	set_pageblock_migratetype(page, MIGRATE_CMA);
820 	__free_pages(page, pageblock_order);
821 	adjust_managed_page_count(page, pageblock_nr_pages);
822 }
823 #endif
824 
825 /*
826  * The order of subdivision here is critical for the IO subsystem.
827  * Please do not alter this order without good reasons and regression
828  * testing. Specifically, as large blocks of memory are subdivided,
829  * the order in which smaller blocks are delivered depends on the order
830  * they're subdivided in this function. This is the primary factor
831  * influencing the order in which pages are delivered to the IO
832  * subsystem according to empirical testing, and this is also justified
833  * by considering the behavior of a buddy system containing a single
834  * large block of memory acted on by a series of small allocations.
835  * This behavior is a critical factor in sglist merging's success.
836  *
837  * -- nyc
838  */
839 static inline void expand(struct zone *zone, struct page *page,
840 	int low, int high, struct free_area *area,
841 	int migratetype)
842 {
843 	unsigned long size = 1 << high;
844 
845 	while (high > low) {
846 		area--;
847 		high--;
848 		size >>= 1;
849 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
850 
851 #ifdef CONFIG_DEBUG_PAGEALLOC
852 		if (high < debug_guardpage_minorder()) {
853 			/*
854 			 * Mark as guard pages (or page), that will allow to
855 			 * merge back to allocator when buddy will be freed.
856 			 * Corresponding page table entries will not be touched,
857 			 * pages will stay not present in virtual address space
858 			 */
859 			INIT_LIST_HEAD(&page[size].lru);
860 			set_page_guard_flag(&page[size]);
861 			set_page_private(&page[size], high);
862 			/* Guard pages are not available for any usage */
863 			__mod_zone_freepage_state(zone, -(1 << high),
864 						  migratetype);
865 			continue;
866 		}
867 #endif
868 		list_add(&page[size].lru, &area->free_list[migratetype]);
869 		area->nr_free++;
870 		set_page_order(&page[size], high);
871 	}
872 }
873 
874 /*
875  * This page is about to be returned from the page allocator
876  */
877 static inline int check_new_page(struct page *page)
878 {
879 	const char *bad_reason = NULL;
880 	unsigned long bad_flags = 0;
881 
882 	if (unlikely(page_mapcount(page)))
883 		bad_reason = "nonzero mapcount";
884 	if (unlikely(page->mapping != NULL))
885 		bad_reason = "non-NULL mapping";
886 	if (unlikely(atomic_read(&page->_count) != 0))
887 		bad_reason = "nonzero _count";
888 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
889 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
890 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
891 	}
892 	if (unlikely(mem_cgroup_bad_page_check(page)))
893 		bad_reason = "cgroup check failed";
894 	if (unlikely(bad_reason)) {
895 		bad_page(page, bad_reason, bad_flags);
896 		return 1;
897 	}
898 	return 0;
899 }
900 
901 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
902 {
903 	int i;
904 
905 	for (i = 0; i < (1 << order); i++) {
906 		struct page *p = page + i;
907 		if (unlikely(check_new_page(p)))
908 			return 1;
909 	}
910 
911 	set_page_private(page, 0);
912 	set_page_refcounted(page);
913 
914 	arch_alloc_page(page, order);
915 	kernel_map_pages(page, 1 << order, 1);
916 
917 	if (gfp_flags & __GFP_ZERO)
918 		prep_zero_page(page, order, gfp_flags);
919 
920 	if (order && (gfp_flags & __GFP_COMP))
921 		prep_compound_page(page, order);
922 
923 	return 0;
924 }
925 
926 /*
927  * Go through the free lists for the given migratetype and remove
928  * the smallest available page from the freelists
929  */
930 static inline
931 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
932 						int migratetype)
933 {
934 	unsigned int current_order;
935 	struct free_area *area;
936 	struct page *page;
937 
938 	/* Find a page of the appropriate size in the preferred list */
939 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
940 		area = &(zone->free_area[current_order]);
941 		if (list_empty(&area->free_list[migratetype]))
942 			continue;
943 
944 		page = list_entry(area->free_list[migratetype].next,
945 							struct page, lru);
946 		list_del(&page->lru);
947 		rmv_page_order(page);
948 		area->nr_free--;
949 		expand(zone, page, order, current_order, area, migratetype);
950 		set_freepage_migratetype(page, migratetype);
951 		return page;
952 	}
953 
954 	return NULL;
955 }
956 
957 
958 /*
959  * This array describes the order lists are fallen back to when
960  * the free lists for the desirable migrate type are depleted
961  */
962 static int fallbacks[MIGRATE_TYPES][4] = {
963 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
964 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
965 #ifdef CONFIG_CMA
966 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
967 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
968 #else
969 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
970 #endif
971 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
972 #ifdef CONFIG_MEMORY_ISOLATION
973 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
974 #endif
975 };
976 
977 /*
978  * Move the free pages in a range to the free lists of the requested type.
979  * Note that start_page and end_pages are not aligned on a pageblock
980  * boundary. If alignment is required, use move_freepages_block()
981  */
982 int move_freepages(struct zone *zone,
983 			  struct page *start_page, struct page *end_page,
984 			  int migratetype)
985 {
986 	struct page *page;
987 	unsigned long order;
988 	int pages_moved = 0;
989 
990 #ifndef CONFIG_HOLES_IN_ZONE
991 	/*
992 	 * page_zone is not safe to call in this context when
993 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
994 	 * anyway as we check zone boundaries in move_freepages_block().
995 	 * Remove at a later date when no bug reports exist related to
996 	 * grouping pages by mobility
997 	 */
998 	BUG_ON(page_zone(start_page) != page_zone(end_page));
999 #endif
1000 
1001 	for (page = start_page; page <= end_page;) {
1002 		/* Make sure we are not inadvertently changing nodes */
1003 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1004 
1005 		if (!pfn_valid_within(page_to_pfn(page))) {
1006 			page++;
1007 			continue;
1008 		}
1009 
1010 		if (!PageBuddy(page)) {
1011 			page++;
1012 			continue;
1013 		}
1014 
1015 		order = page_order(page);
1016 		list_move(&page->lru,
1017 			  &zone->free_area[order].free_list[migratetype]);
1018 		set_freepage_migratetype(page, migratetype);
1019 		page += 1 << order;
1020 		pages_moved += 1 << order;
1021 	}
1022 
1023 	return pages_moved;
1024 }
1025 
1026 int move_freepages_block(struct zone *zone, struct page *page,
1027 				int migratetype)
1028 {
1029 	unsigned long start_pfn, end_pfn;
1030 	struct page *start_page, *end_page;
1031 
1032 	start_pfn = page_to_pfn(page);
1033 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1034 	start_page = pfn_to_page(start_pfn);
1035 	end_page = start_page + pageblock_nr_pages - 1;
1036 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1037 
1038 	/* Do not cross zone boundaries */
1039 	if (!zone_spans_pfn(zone, start_pfn))
1040 		start_page = page;
1041 	if (!zone_spans_pfn(zone, end_pfn))
1042 		return 0;
1043 
1044 	return move_freepages(zone, start_page, end_page, migratetype);
1045 }
1046 
1047 static void change_pageblock_range(struct page *pageblock_page,
1048 					int start_order, int migratetype)
1049 {
1050 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1051 
1052 	while (nr_pageblocks--) {
1053 		set_pageblock_migratetype(pageblock_page, migratetype);
1054 		pageblock_page += pageblock_nr_pages;
1055 	}
1056 }
1057 
1058 /*
1059  * If breaking a large block of pages, move all free pages to the preferred
1060  * allocation list. If falling back for a reclaimable kernel allocation, be
1061  * more aggressive about taking ownership of free pages.
1062  *
1063  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1064  * nor move CMA pages to different free lists. We don't want unmovable pages
1065  * to be allocated from MIGRATE_CMA areas.
1066  *
1067  * Returns the new migratetype of the pageblock (or the same old migratetype
1068  * if it was unchanged).
1069  */
1070 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1071 				  int start_type, int fallback_type)
1072 {
1073 	int current_order = page_order(page);
1074 
1075 	/*
1076 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1077 	 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1078 	 * is set to CMA so it is returned to the correct freelist in case
1079 	 * the page ends up being not actually allocated from the pcp lists.
1080 	 */
1081 	if (is_migrate_cma(fallback_type))
1082 		return fallback_type;
1083 
1084 	/* Take ownership for orders >= pageblock_order */
1085 	if (current_order >= pageblock_order) {
1086 		change_pageblock_range(page, current_order, start_type);
1087 		return start_type;
1088 	}
1089 
1090 	if (current_order >= pageblock_order / 2 ||
1091 	    start_type == MIGRATE_RECLAIMABLE ||
1092 	    page_group_by_mobility_disabled) {
1093 		int pages;
1094 
1095 		pages = move_freepages_block(zone, page, start_type);
1096 
1097 		/* Claim the whole block if over half of it is free */
1098 		if (pages >= (1 << (pageblock_order-1)) ||
1099 				page_group_by_mobility_disabled) {
1100 
1101 			set_pageblock_migratetype(page, start_type);
1102 			return start_type;
1103 		}
1104 
1105 	}
1106 
1107 	return fallback_type;
1108 }
1109 
1110 /* Remove an element from the buddy allocator from the fallback list */
1111 static inline struct page *
1112 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1113 {
1114 	struct free_area *area;
1115 	unsigned int current_order;
1116 	struct page *page;
1117 	int migratetype, new_type, i;
1118 
1119 	/* Find the largest possible block of pages in the other list */
1120 	for (current_order = MAX_ORDER-1;
1121 				current_order >= order && current_order <= MAX_ORDER-1;
1122 				--current_order) {
1123 		for (i = 0;; i++) {
1124 			migratetype = fallbacks[start_migratetype][i];
1125 
1126 			/* MIGRATE_RESERVE handled later if necessary */
1127 			if (migratetype == MIGRATE_RESERVE)
1128 				break;
1129 
1130 			area = &(zone->free_area[current_order]);
1131 			if (list_empty(&area->free_list[migratetype]))
1132 				continue;
1133 
1134 			page = list_entry(area->free_list[migratetype].next,
1135 					struct page, lru);
1136 			area->nr_free--;
1137 
1138 			new_type = try_to_steal_freepages(zone, page,
1139 							  start_migratetype,
1140 							  migratetype);
1141 
1142 			/* Remove the page from the freelists */
1143 			list_del(&page->lru);
1144 			rmv_page_order(page);
1145 
1146 			expand(zone, page, order, current_order, area,
1147 			       new_type);
1148 			/* The freepage_migratetype may differ from pageblock's
1149 			 * migratetype depending on the decisions in
1150 			 * try_to_steal_freepages. This is OK as long as it does
1151 			 * not differ for MIGRATE_CMA type.
1152 			 */
1153 			set_freepage_migratetype(page, new_type);
1154 
1155 			trace_mm_page_alloc_extfrag(page, order, current_order,
1156 				start_migratetype, migratetype, new_type);
1157 
1158 			return page;
1159 		}
1160 	}
1161 
1162 	return NULL;
1163 }
1164 
1165 /*
1166  * Do the hard work of removing an element from the buddy allocator.
1167  * Call me with the zone->lock already held.
1168  */
1169 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1170 						int migratetype)
1171 {
1172 	struct page *page;
1173 
1174 retry_reserve:
1175 	page = __rmqueue_smallest(zone, order, migratetype);
1176 
1177 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1178 		page = __rmqueue_fallback(zone, order, migratetype);
1179 
1180 		/*
1181 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1182 		 * is used because __rmqueue_smallest is an inline function
1183 		 * and we want just one call site
1184 		 */
1185 		if (!page) {
1186 			migratetype = MIGRATE_RESERVE;
1187 			goto retry_reserve;
1188 		}
1189 	}
1190 
1191 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1192 	return page;
1193 }
1194 
1195 /*
1196  * Obtain a specified number of elements from the buddy allocator, all under
1197  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1198  * Returns the number of new pages which were placed at *list.
1199  */
1200 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1201 			unsigned long count, struct list_head *list,
1202 			int migratetype, bool cold)
1203 {
1204 	int i;
1205 
1206 	spin_lock(&zone->lock);
1207 	for (i = 0; i < count; ++i) {
1208 		struct page *page = __rmqueue(zone, order, migratetype);
1209 		if (unlikely(page == NULL))
1210 			break;
1211 
1212 		/*
1213 		 * Split buddy pages returned by expand() are received here
1214 		 * in physical page order. The page is added to the callers and
1215 		 * list and the list head then moves forward. From the callers
1216 		 * perspective, the linked list is ordered by page number in
1217 		 * some conditions. This is useful for IO devices that can
1218 		 * merge IO requests if the physical pages are ordered
1219 		 * properly.
1220 		 */
1221 		if (likely(!cold))
1222 			list_add(&page->lru, list);
1223 		else
1224 			list_add_tail(&page->lru, list);
1225 		list = &page->lru;
1226 		if (is_migrate_cma(get_freepage_migratetype(page)))
1227 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1228 					      -(1 << order));
1229 	}
1230 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1231 	spin_unlock(&zone->lock);
1232 	return i;
1233 }
1234 
1235 #ifdef CONFIG_NUMA
1236 /*
1237  * Called from the vmstat counter updater to drain pagesets of this
1238  * currently executing processor on remote nodes after they have
1239  * expired.
1240  *
1241  * Note that this function must be called with the thread pinned to
1242  * a single processor.
1243  */
1244 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1245 {
1246 	unsigned long flags;
1247 	int to_drain;
1248 	unsigned long batch;
1249 
1250 	local_irq_save(flags);
1251 	batch = ACCESS_ONCE(pcp->batch);
1252 	if (pcp->count >= batch)
1253 		to_drain = batch;
1254 	else
1255 		to_drain = pcp->count;
1256 	if (to_drain > 0) {
1257 		free_pcppages_bulk(zone, to_drain, pcp);
1258 		pcp->count -= to_drain;
1259 	}
1260 	local_irq_restore(flags);
1261 }
1262 #endif
1263 
1264 /*
1265  * Drain pages of the indicated processor.
1266  *
1267  * The processor must either be the current processor and the
1268  * thread pinned to the current processor or a processor that
1269  * is not online.
1270  */
1271 static void drain_pages(unsigned int cpu)
1272 {
1273 	unsigned long flags;
1274 	struct zone *zone;
1275 
1276 	for_each_populated_zone(zone) {
1277 		struct per_cpu_pageset *pset;
1278 		struct per_cpu_pages *pcp;
1279 
1280 		local_irq_save(flags);
1281 		pset = per_cpu_ptr(zone->pageset, cpu);
1282 
1283 		pcp = &pset->pcp;
1284 		if (pcp->count) {
1285 			free_pcppages_bulk(zone, pcp->count, pcp);
1286 			pcp->count = 0;
1287 		}
1288 		local_irq_restore(flags);
1289 	}
1290 }
1291 
1292 /*
1293  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1294  */
1295 void drain_local_pages(void *arg)
1296 {
1297 	drain_pages(smp_processor_id());
1298 }
1299 
1300 /*
1301  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1302  *
1303  * Note that this code is protected against sending an IPI to an offline
1304  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1305  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1306  * nothing keeps CPUs from showing up after we populated the cpumask and
1307  * before the call to on_each_cpu_mask().
1308  */
1309 void drain_all_pages(void)
1310 {
1311 	int cpu;
1312 	struct per_cpu_pageset *pcp;
1313 	struct zone *zone;
1314 
1315 	/*
1316 	 * Allocate in the BSS so we wont require allocation in
1317 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1318 	 */
1319 	static cpumask_t cpus_with_pcps;
1320 
1321 	/*
1322 	 * We don't care about racing with CPU hotplug event
1323 	 * as offline notification will cause the notified
1324 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1325 	 * disables preemption as part of its processing
1326 	 */
1327 	for_each_online_cpu(cpu) {
1328 		bool has_pcps = false;
1329 		for_each_populated_zone(zone) {
1330 			pcp = per_cpu_ptr(zone->pageset, cpu);
1331 			if (pcp->pcp.count) {
1332 				has_pcps = true;
1333 				break;
1334 			}
1335 		}
1336 		if (has_pcps)
1337 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1338 		else
1339 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1340 	}
1341 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1342 }
1343 
1344 #ifdef CONFIG_HIBERNATION
1345 
1346 void mark_free_pages(struct zone *zone)
1347 {
1348 	unsigned long pfn, max_zone_pfn;
1349 	unsigned long flags;
1350 	unsigned int order, t;
1351 	struct list_head *curr;
1352 
1353 	if (zone_is_empty(zone))
1354 		return;
1355 
1356 	spin_lock_irqsave(&zone->lock, flags);
1357 
1358 	max_zone_pfn = zone_end_pfn(zone);
1359 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1360 		if (pfn_valid(pfn)) {
1361 			struct page *page = pfn_to_page(pfn);
1362 
1363 			if (!swsusp_page_is_forbidden(page))
1364 				swsusp_unset_page_free(page);
1365 		}
1366 
1367 	for_each_migratetype_order(order, t) {
1368 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1369 			unsigned long i;
1370 
1371 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1372 			for (i = 0; i < (1UL << order); i++)
1373 				swsusp_set_page_free(pfn_to_page(pfn + i));
1374 		}
1375 	}
1376 	spin_unlock_irqrestore(&zone->lock, flags);
1377 }
1378 #endif /* CONFIG_PM */
1379 
1380 /*
1381  * Free a 0-order page
1382  * cold == true ? free a cold page : free a hot page
1383  */
1384 void free_hot_cold_page(struct page *page, bool cold)
1385 {
1386 	struct zone *zone = page_zone(page);
1387 	struct per_cpu_pages *pcp;
1388 	unsigned long flags;
1389 	unsigned long pfn = page_to_pfn(page);
1390 	int migratetype;
1391 
1392 	if (!free_pages_prepare(page, 0))
1393 		return;
1394 
1395 	migratetype = get_pfnblock_migratetype(page, pfn);
1396 	set_freepage_migratetype(page, migratetype);
1397 	local_irq_save(flags);
1398 	__count_vm_event(PGFREE);
1399 
1400 	/*
1401 	 * We only track unmovable, reclaimable and movable on pcp lists.
1402 	 * Free ISOLATE pages back to the allocator because they are being
1403 	 * offlined but treat RESERVE as movable pages so we can get those
1404 	 * areas back if necessary. Otherwise, we may have to free
1405 	 * excessively into the page allocator
1406 	 */
1407 	if (migratetype >= MIGRATE_PCPTYPES) {
1408 		if (unlikely(is_migrate_isolate(migratetype))) {
1409 			free_one_page(zone, page, pfn, 0, migratetype);
1410 			goto out;
1411 		}
1412 		migratetype = MIGRATE_MOVABLE;
1413 	}
1414 
1415 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1416 	if (!cold)
1417 		list_add(&page->lru, &pcp->lists[migratetype]);
1418 	else
1419 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1420 	pcp->count++;
1421 	if (pcp->count >= pcp->high) {
1422 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1423 		free_pcppages_bulk(zone, batch, pcp);
1424 		pcp->count -= batch;
1425 	}
1426 
1427 out:
1428 	local_irq_restore(flags);
1429 }
1430 
1431 /*
1432  * Free a list of 0-order pages
1433  */
1434 void free_hot_cold_page_list(struct list_head *list, bool cold)
1435 {
1436 	struct page *page, *next;
1437 
1438 	list_for_each_entry_safe(page, next, list, lru) {
1439 		trace_mm_page_free_batched(page, cold);
1440 		free_hot_cold_page(page, cold);
1441 	}
1442 }
1443 
1444 /*
1445  * split_page takes a non-compound higher-order page, and splits it into
1446  * n (1<<order) sub-pages: page[0..n]
1447  * Each sub-page must be freed individually.
1448  *
1449  * Note: this is probably too low level an operation for use in drivers.
1450  * Please consult with lkml before using this in your driver.
1451  */
1452 void split_page(struct page *page, unsigned int order)
1453 {
1454 	int i;
1455 
1456 	VM_BUG_ON_PAGE(PageCompound(page), page);
1457 	VM_BUG_ON_PAGE(!page_count(page), page);
1458 
1459 #ifdef CONFIG_KMEMCHECK
1460 	/*
1461 	 * Split shadow pages too, because free(page[0]) would
1462 	 * otherwise free the whole shadow.
1463 	 */
1464 	if (kmemcheck_page_is_tracked(page))
1465 		split_page(virt_to_page(page[0].shadow), order);
1466 #endif
1467 
1468 	for (i = 1; i < (1 << order); i++)
1469 		set_page_refcounted(page + i);
1470 }
1471 EXPORT_SYMBOL_GPL(split_page);
1472 
1473 static int __isolate_free_page(struct page *page, unsigned int order)
1474 {
1475 	unsigned long watermark;
1476 	struct zone *zone;
1477 	int mt;
1478 
1479 	BUG_ON(!PageBuddy(page));
1480 
1481 	zone = page_zone(page);
1482 	mt = get_pageblock_migratetype(page);
1483 
1484 	if (!is_migrate_isolate(mt)) {
1485 		/* Obey watermarks as if the page was being allocated */
1486 		watermark = low_wmark_pages(zone) + (1 << order);
1487 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1488 			return 0;
1489 
1490 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1491 	}
1492 
1493 	/* Remove page from free list */
1494 	list_del(&page->lru);
1495 	zone->free_area[order].nr_free--;
1496 	rmv_page_order(page);
1497 
1498 	/* Set the pageblock if the isolated page is at least a pageblock */
1499 	if (order >= pageblock_order - 1) {
1500 		struct page *endpage = page + (1 << order) - 1;
1501 		for (; page < endpage; page += pageblock_nr_pages) {
1502 			int mt = get_pageblock_migratetype(page);
1503 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1504 				set_pageblock_migratetype(page,
1505 							  MIGRATE_MOVABLE);
1506 		}
1507 	}
1508 
1509 	return 1UL << order;
1510 }
1511 
1512 /*
1513  * Similar to split_page except the page is already free. As this is only
1514  * being used for migration, the migratetype of the block also changes.
1515  * As this is called with interrupts disabled, the caller is responsible
1516  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1517  * are enabled.
1518  *
1519  * Note: this is probably too low level an operation for use in drivers.
1520  * Please consult with lkml before using this in your driver.
1521  */
1522 int split_free_page(struct page *page)
1523 {
1524 	unsigned int order;
1525 	int nr_pages;
1526 
1527 	order = page_order(page);
1528 
1529 	nr_pages = __isolate_free_page(page, order);
1530 	if (!nr_pages)
1531 		return 0;
1532 
1533 	/* Split into individual pages */
1534 	set_page_refcounted(page);
1535 	split_page(page, order);
1536 	return nr_pages;
1537 }
1538 
1539 /*
1540  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1541  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1542  * or two.
1543  */
1544 static inline
1545 struct page *buffered_rmqueue(struct zone *preferred_zone,
1546 			struct zone *zone, unsigned int order,
1547 			gfp_t gfp_flags, int migratetype)
1548 {
1549 	unsigned long flags;
1550 	struct page *page;
1551 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1552 
1553 again:
1554 	if (likely(order == 0)) {
1555 		struct per_cpu_pages *pcp;
1556 		struct list_head *list;
1557 
1558 		local_irq_save(flags);
1559 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1560 		list = &pcp->lists[migratetype];
1561 		if (list_empty(list)) {
1562 			pcp->count += rmqueue_bulk(zone, 0,
1563 					pcp->batch, list,
1564 					migratetype, cold);
1565 			if (unlikely(list_empty(list)))
1566 				goto failed;
1567 		}
1568 
1569 		if (cold)
1570 			page = list_entry(list->prev, struct page, lru);
1571 		else
1572 			page = list_entry(list->next, struct page, lru);
1573 
1574 		list_del(&page->lru);
1575 		pcp->count--;
1576 	} else {
1577 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1578 			/*
1579 			 * __GFP_NOFAIL is not to be used in new code.
1580 			 *
1581 			 * All __GFP_NOFAIL callers should be fixed so that they
1582 			 * properly detect and handle allocation failures.
1583 			 *
1584 			 * We most definitely don't want callers attempting to
1585 			 * allocate greater than order-1 page units with
1586 			 * __GFP_NOFAIL.
1587 			 */
1588 			WARN_ON_ONCE(order > 1);
1589 		}
1590 		spin_lock_irqsave(&zone->lock, flags);
1591 		page = __rmqueue(zone, order, migratetype);
1592 		spin_unlock(&zone->lock);
1593 		if (!page)
1594 			goto failed;
1595 		__mod_zone_freepage_state(zone, -(1 << order),
1596 					  get_freepage_migratetype(page));
1597 	}
1598 
1599 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1600 
1601 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1602 	zone_statistics(preferred_zone, zone, gfp_flags);
1603 	local_irq_restore(flags);
1604 
1605 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1606 	if (prep_new_page(page, order, gfp_flags))
1607 		goto again;
1608 	return page;
1609 
1610 failed:
1611 	local_irq_restore(flags);
1612 	return NULL;
1613 }
1614 
1615 #ifdef CONFIG_FAIL_PAGE_ALLOC
1616 
1617 static struct {
1618 	struct fault_attr attr;
1619 
1620 	u32 ignore_gfp_highmem;
1621 	u32 ignore_gfp_wait;
1622 	u32 min_order;
1623 } fail_page_alloc = {
1624 	.attr = FAULT_ATTR_INITIALIZER,
1625 	.ignore_gfp_wait = 1,
1626 	.ignore_gfp_highmem = 1,
1627 	.min_order = 1,
1628 };
1629 
1630 static int __init setup_fail_page_alloc(char *str)
1631 {
1632 	return setup_fault_attr(&fail_page_alloc.attr, str);
1633 }
1634 __setup("fail_page_alloc=", setup_fail_page_alloc);
1635 
1636 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1637 {
1638 	if (order < fail_page_alloc.min_order)
1639 		return false;
1640 	if (gfp_mask & __GFP_NOFAIL)
1641 		return false;
1642 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1643 		return false;
1644 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1645 		return false;
1646 
1647 	return should_fail(&fail_page_alloc.attr, 1 << order);
1648 }
1649 
1650 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1651 
1652 static int __init fail_page_alloc_debugfs(void)
1653 {
1654 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1655 	struct dentry *dir;
1656 
1657 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1658 					&fail_page_alloc.attr);
1659 	if (IS_ERR(dir))
1660 		return PTR_ERR(dir);
1661 
1662 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1663 				&fail_page_alloc.ignore_gfp_wait))
1664 		goto fail;
1665 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1666 				&fail_page_alloc.ignore_gfp_highmem))
1667 		goto fail;
1668 	if (!debugfs_create_u32("min-order", mode, dir,
1669 				&fail_page_alloc.min_order))
1670 		goto fail;
1671 
1672 	return 0;
1673 fail:
1674 	debugfs_remove_recursive(dir);
1675 
1676 	return -ENOMEM;
1677 }
1678 
1679 late_initcall(fail_page_alloc_debugfs);
1680 
1681 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1682 
1683 #else /* CONFIG_FAIL_PAGE_ALLOC */
1684 
1685 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1686 {
1687 	return false;
1688 }
1689 
1690 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1691 
1692 /*
1693  * Return true if free pages are above 'mark'. This takes into account the order
1694  * of the allocation.
1695  */
1696 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1697 			unsigned long mark, int classzone_idx, int alloc_flags,
1698 			long free_pages)
1699 {
1700 	/* free_pages my go negative - that's OK */
1701 	long min = mark;
1702 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1703 	int o;
1704 	long free_cma = 0;
1705 
1706 	free_pages -= (1 << order) - 1;
1707 	if (alloc_flags & ALLOC_HIGH)
1708 		min -= min / 2;
1709 	if (alloc_flags & ALLOC_HARDER)
1710 		min -= min / 4;
1711 #ifdef CONFIG_CMA
1712 	/* If allocation can't use CMA areas don't use free CMA pages */
1713 	if (!(alloc_flags & ALLOC_CMA))
1714 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1715 #endif
1716 
1717 	if (free_pages - free_cma <= min + lowmem_reserve)
1718 		return false;
1719 	for (o = 0; o < order; o++) {
1720 		/* At the next order, this order's pages become unavailable */
1721 		free_pages -= z->free_area[o].nr_free << o;
1722 
1723 		/* Require fewer higher order pages to be free */
1724 		min >>= 1;
1725 
1726 		if (free_pages <= min)
1727 			return false;
1728 	}
1729 	return true;
1730 }
1731 
1732 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1733 		      int classzone_idx, int alloc_flags)
1734 {
1735 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1736 					zone_page_state(z, NR_FREE_PAGES));
1737 }
1738 
1739 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1740 			unsigned long mark, int classzone_idx, int alloc_flags)
1741 {
1742 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1743 
1744 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1745 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1746 
1747 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1748 								free_pages);
1749 }
1750 
1751 #ifdef CONFIG_NUMA
1752 /*
1753  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1754  * skip over zones that are not allowed by the cpuset, or that have
1755  * been recently (in last second) found to be nearly full.  See further
1756  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1757  * that have to skip over a lot of full or unallowed zones.
1758  *
1759  * If the zonelist cache is present in the passed zonelist, then
1760  * returns a pointer to the allowed node mask (either the current
1761  * tasks mems_allowed, or node_states[N_MEMORY].)
1762  *
1763  * If the zonelist cache is not available for this zonelist, does
1764  * nothing and returns NULL.
1765  *
1766  * If the fullzones BITMAP in the zonelist cache is stale (more than
1767  * a second since last zap'd) then we zap it out (clear its bits.)
1768  *
1769  * We hold off even calling zlc_setup, until after we've checked the
1770  * first zone in the zonelist, on the theory that most allocations will
1771  * be satisfied from that first zone, so best to examine that zone as
1772  * quickly as we can.
1773  */
1774 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1775 {
1776 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1777 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1778 
1779 	zlc = zonelist->zlcache_ptr;
1780 	if (!zlc)
1781 		return NULL;
1782 
1783 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1784 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1785 		zlc->last_full_zap = jiffies;
1786 	}
1787 
1788 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1789 					&cpuset_current_mems_allowed :
1790 					&node_states[N_MEMORY];
1791 	return allowednodes;
1792 }
1793 
1794 /*
1795  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1796  * if it is worth looking at further for free memory:
1797  *  1) Check that the zone isn't thought to be full (doesn't have its
1798  *     bit set in the zonelist_cache fullzones BITMAP).
1799  *  2) Check that the zones node (obtained from the zonelist_cache
1800  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1801  * Return true (non-zero) if zone is worth looking at further, or
1802  * else return false (zero) if it is not.
1803  *
1804  * This check -ignores- the distinction between various watermarks,
1805  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1806  * found to be full for any variation of these watermarks, it will
1807  * be considered full for up to one second by all requests, unless
1808  * we are so low on memory on all allowed nodes that we are forced
1809  * into the second scan of the zonelist.
1810  *
1811  * In the second scan we ignore this zonelist cache and exactly
1812  * apply the watermarks to all zones, even it is slower to do so.
1813  * We are low on memory in the second scan, and should leave no stone
1814  * unturned looking for a free page.
1815  */
1816 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1817 						nodemask_t *allowednodes)
1818 {
1819 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1820 	int i;				/* index of *z in zonelist zones */
1821 	int n;				/* node that zone *z is on */
1822 
1823 	zlc = zonelist->zlcache_ptr;
1824 	if (!zlc)
1825 		return 1;
1826 
1827 	i = z - zonelist->_zonerefs;
1828 	n = zlc->z_to_n[i];
1829 
1830 	/* This zone is worth trying if it is allowed but not full */
1831 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1832 }
1833 
1834 /*
1835  * Given 'z' scanning a zonelist, set the corresponding bit in
1836  * zlc->fullzones, so that subsequent attempts to allocate a page
1837  * from that zone don't waste time re-examining it.
1838  */
1839 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1840 {
1841 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1842 	int i;				/* index of *z in zonelist zones */
1843 
1844 	zlc = zonelist->zlcache_ptr;
1845 	if (!zlc)
1846 		return;
1847 
1848 	i = z - zonelist->_zonerefs;
1849 
1850 	set_bit(i, zlc->fullzones);
1851 }
1852 
1853 /*
1854  * clear all zones full, called after direct reclaim makes progress so that
1855  * a zone that was recently full is not skipped over for up to a second
1856  */
1857 static void zlc_clear_zones_full(struct zonelist *zonelist)
1858 {
1859 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1860 
1861 	zlc = zonelist->zlcache_ptr;
1862 	if (!zlc)
1863 		return;
1864 
1865 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1866 }
1867 
1868 static bool zone_local(struct zone *local_zone, struct zone *zone)
1869 {
1870 	return local_zone->node == zone->node;
1871 }
1872 
1873 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1874 {
1875 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1876 				RECLAIM_DISTANCE;
1877 }
1878 
1879 #else	/* CONFIG_NUMA */
1880 
1881 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1882 {
1883 	return NULL;
1884 }
1885 
1886 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1887 				nodemask_t *allowednodes)
1888 {
1889 	return 1;
1890 }
1891 
1892 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1893 {
1894 }
1895 
1896 static void zlc_clear_zones_full(struct zonelist *zonelist)
1897 {
1898 }
1899 
1900 static bool zone_local(struct zone *local_zone, struct zone *zone)
1901 {
1902 	return true;
1903 }
1904 
1905 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1906 {
1907 	return true;
1908 }
1909 
1910 #endif	/* CONFIG_NUMA */
1911 
1912 /*
1913  * get_page_from_freelist goes through the zonelist trying to allocate
1914  * a page.
1915  */
1916 static struct page *
1917 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1918 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1919 		struct zone *preferred_zone, int classzone_idx, int migratetype)
1920 {
1921 	struct zoneref *z;
1922 	struct page *page = NULL;
1923 	struct zone *zone;
1924 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1925 	int zlc_active = 0;		/* set if using zonelist_cache */
1926 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1927 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1928 				(gfp_mask & __GFP_WRITE);
1929 
1930 zonelist_scan:
1931 	/*
1932 	 * Scan zonelist, looking for a zone with enough free.
1933 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1934 	 */
1935 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1936 						high_zoneidx, nodemask) {
1937 		unsigned long mark;
1938 
1939 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1940 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 				continue;
1942 		if (cpusets_enabled() &&
1943 			(alloc_flags & ALLOC_CPUSET) &&
1944 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1945 				continue;
1946 		/*
1947 		 * Distribute pages in proportion to the individual
1948 		 * zone size to ensure fair page aging.  The zone a
1949 		 * page was allocated in should have no effect on the
1950 		 * time the page has in memory before being reclaimed.
1951 		 */
1952 		if (alloc_flags & ALLOC_FAIR) {
1953 			if (!zone_local(preferred_zone, zone))
1954 				continue;
1955 			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1956 				continue;
1957 		}
1958 		/*
1959 		 * When allocating a page cache page for writing, we
1960 		 * want to get it from a zone that is within its dirty
1961 		 * limit, such that no single zone holds more than its
1962 		 * proportional share of globally allowed dirty pages.
1963 		 * The dirty limits take into account the zone's
1964 		 * lowmem reserves and high watermark so that kswapd
1965 		 * should be able to balance it without having to
1966 		 * write pages from its LRU list.
1967 		 *
1968 		 * This may look like it could increase pressure on
1969 		 * lower zones by failing allocations in higher zones
1970 		 * before they are full.  But the pages that do spill
1971 		 * over are limited as the lower zones are protected
1972 		 * by this very same mechanism.  It should not become
1973 		 * a practical burden to them.
1974 		 *
1975 		 * XXX: For now, allow allocations to potentially
1976 		 * exceed the per-zone dirty limit in the slowpath
1977 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1978 		 * which is important when on a NUMA setup the allowed
1979 		 * zones are together not big enough to reach the
1980 		 * global limit.  The proper fix for these situations
1981 		 * will require awareness of zones in the
1982 		 * dirty-throttling and the flusher threads.
1983 		 */
1984 		if (consider_zone_dirty && !zone_dirty_ok(zone))
1985 			continue;
1986 
1987 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1988 		if (!zone_watermark_ok(zone, order, mark,
1989 				       classzone_idx, alloc_flags)) {
1990 			int ret;
1991 
1992 			/* Checked here to keep the fast path fast */
1993 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1994 			if (alloc_flags & ALLOC_NO_WATERMARKS)
1995 				goto try_this_zone;
1996 
1997 			if (IS_ENABLED(CONFIG_NUMA) &&
1998 					!did_zlc_setup && nr_online_nodes > 1) {
1999 				/*
2000 				 * we do zlc_setup if there are multiple nodes
2001 				 * and before considering the first zone allowed
2002 				 * by the cpuset.
2003 				 */
2004 				allowednodes = zlc_setup(zonelist, alloc_flags);
2005 				zlc_active = 1;
2006 				did_zlc_setup = 1;
2007 			}
2008 
2009 			if (zone_reclaim_mode == 0 ||
2010 			    !zone_allows_reclaim(preferred_zone, zone))
2011 				goto this_zone_full;
2012 
2013 			/*
2014 			 * As we may have just activated ZLC, check if the first
2015 			 * eligible zone has failed zone_reclaim recently.
2016 			 */
2017 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2018 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2019 				continue;
2020 
2021 			ret = zone_reclaim(zone, gfp_mask, order);
2022 			switch (ret) {
2023 			case ZONE_RECLAIM_NOSCAN:
2024 				/* did not scan */
2025 				continue;
2026 			case ZONE_RECLAIM_FULL:
2027 				/* scanned but unreclaimable */
2028 				continue;
2029 			default:
2030 				/* did we reclaim enough */
2031 				if (zone_watermark_ok(zone, order, mark,
2032 						classzone_idx, alloc_flags))
2033 					goto try_this_zone;
2034 
2035 				/*
2036 				 * Failed to reclaim enough to meet watermark.
2037 				 * Only mark the zone full if checking the min
2038 				 * watermark or if we failed to reclaim just
2039 				 * 1<<order pages or else the page allocator
2040 				 * fastpath will prematurely mark zones full
2041 				 * when the watermark is between the low and
2042 				 * min watermarks.
2043 				 */
2044 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2045 				    ret == ZONE_RECLAIM_SOME)
2046 					goto this_zone_full;
2047 
2048 				continue;
2049 			}
2050 		}
2051 
2052 try_this_zone:
2053 		page = buffered_rmqueue(preferred_zone, zone, order,
2054 						gfp_mask, migratetype);
2055 		if (page)
2056 			break;
2057 this_zone_full:
2058 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2059 			zlc_mark_zone_full(zonelist, z);
2060 	}
2061 
2062 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2063 		/* Disable zlc cache for second zonelist scan */
2064 		zlc_active = 0;
2065 		goto zonelist_scan;
2066 	}
2067 
2068 	if (page)
2069 		/*
2070 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2071 		 * necessary to allocate the page. The expectation is
2072 		 * that the caller is taking steps that will free more
2073 		 * memory. The caller should avoid the page being used
2074 		 * for !PFMEMALLOC purposes.
2075 		 */
2076 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2077 
2078 	return page;
2079 }
2080 
2081 /*
2082  * Large machines with many possible nodes should not always dump per-node
2083  * meminfo in irq context.
2084  */
2085 static inline bool should_suppress_show_mem(void)
2086 {
2087 	bool ret = false;
2088 
2089 #if NODES_SHIFT > 8
2090 	ret = in_interrupt();
2091 #endif
2092 	return ret;
2093 }
2094 
2095 static DEFINE_RATELIMIT_STATE(nopage_rs,
2096 		DEFAULT_RATELIMIT_INTERVAL,
2097 		DEFAULT_RATELIMIT_BURST);
2098 
2099 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2100 {
2101 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2102 
2103 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2104 	    debug_guardpage_minorder() > 0)
2105 		return;
2106 
2107 	/*
2108 	 * This documents exceptions given to allocations in certain
2109 	 * contexts that are allowed to allocate outside current's set
2110 	 * of allowed nodes.
2111 	 */
2112 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2113 		if (test_thread_flag(TIF_MEMDIE) ||
2114 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2115 			filter &= ~SHOW_MEM_FILTER_NODES;
2116 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2117 		filter &= ~SHOW_MEM_FILTER_NODES;
2118 
2119 	if (fmt) {
2120 		struct va_format vaf;
2121 		va_list args;
2122 
2123 		va_start(args, fmt);
2124 
2125 		vaf.fmt = fmt;
2126 		vaf.va = &args;
2127 
2128 		pr_warn("%pV", &vaf);
2129 
2130 		va_end(args);
2131 	}
2132 
2133 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2134 		current->comm, order, gfp_mask);
2135 
2136 	dump_stack();
2137 	if (!should_suppress_show_mem())
2138 		show_mem(filter);
2139 }
2140 
2141 static inline int
2142 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2143 				unsigned long did_some_progress,
2144 				unsigned long pages_reclaimed)
2145 {
2146 	/* Do not loop if specifically requested */
2147 	if (gfp_mask & __GFP_NORETRY)
2148 		return 0;
2149 
2150 	/* Always retry if specifically requested */
2151 	if (gfp_mask & __GFP_NOFAIL)
2152 		return 1;
2153 
2154 	/*
2155 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2156 	 * making forward progress without invoking OOM. Suspend also disables
2157 	 * storage devices so kswapd will not help. Bail if we are suspending.
2158 	 */
2159 	if (!did_some_progress && pm_suspended_storage())
2160 		return 0;
2161 
2162 	/*
2163 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2164 	 * means __GFP_NOFAIL, but that may not be true in other
2165 	 * implementations.
2166 	 */
2167 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2168 		return 1;
2169 
2170 	/*
2171 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2172 	 * specified, then we retry until we no longer reclaim any pages
2173 	 * (above), or we've reclaimed an order of pages at least as
2174 	 * large as the allocation's order. In both cases, if the
2175 	 * allocation still fails, we stop retrying.
2176 	 */
2177 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2178 		return 1;
2179 
2180 	return 0;
2181 }
2182 
2183 static inline struct page *
2184 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2185 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2186 	nodemask_t *nodemask, struct zone *preferred_zone,
2187 	int classzone_idx, int migratetype)
2188 {
2189 	struct page *page;
2190 
2191 	/* Acquire the OOM killer lock for the zones in zonelist */
2192 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2193 		schedule_timeout_uninterruptible(1);
2194 		return NULL;
2195 	}
2196 
2197 	/*
2198 	 * Go through the zonelist yet one more time, keep very high watermark
2199 	 * here, this is only to catch a parallel oom killing, we must fail if
2200 	 * we're still under heavy pressure.
2201 	 */
2202 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2203 		order, zonelist, high_zoneidx,
2204 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2205 		preferred_zone, classzone_idx, migratetype);
2206 	if (page)
2207 		goto out;
2208 
2209 	if (!(gfp_mask & __GFP_NOFAIL)) {
2210 		/* The OOM killer will not help higher order allocs */
2211 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2212 			goto out;
2213 		/* The OOM killer does not needlessly kill tasks for lowmem */
2214 		if (high_zoneidx < ZONE_NORMAL)
2215 			goto out;
2216 		/*
2217 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2218 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2219 		 * The caller should handle page allocation failure by itself if
2220 		 * it specifies __GFP_THISNODE.
2221 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2222 		 */
2223 		if (gfp_mask & __GFP_THISNODE)
2224 			goto out;
2225 	}
2226 	/* Exhausted what can be done so it's blamo time */
2227 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2228 
2229 out:
2230 	clear_zonelist_oom(zonelist, gfp_mask);
2231 	return page;
2232 }
2233 
2234 #ifdef CONFIG_COMPACTION
2235 /* Try memory compaction for high-order allocations before reclaim */
2236 static struct page *
2237 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2238 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2239 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2240 	int classzone_idx, int migratetype, enum migrate_mode mode,
2241 	bool *contended_compaction, bool *deferred_compaction,
2242 	unsigned long *did_some_progress)
2243 {
2244 	if (!order)
2245 		return NULL;
2246 
2247 	if (compaction_deferred(preferred_zone, order)) {
2248 		*deferred_compaction = true;
2249 		return NULL;
2250 	}
2251 
2252 	current->flags |= PF_MEMALLOC;
2253 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2254 						nodemask, mode,
2255 						contended_compaction);
2256 	current->flags &= ~PF_MEMALLOC;
2257 
2258 	if (*did_some_progress != COMPACT_SKIPPED) {
2259 		struct page *page;
2260 
2261 		/* Page migration frees to the PCP lists but we want merging */
2262 		drain_pages(get_cpu());
2263 		put_cpu();
2264 
2265 		page = get_page_from_freelist(gfp_mask, nodemask,
2266 				order, zonelist, high_zoneidx,
2267 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2268 				preferred_zone, classzone_idx, migratetype);
2269 		if (page) {
2270 			preferred_zone->compact_blockskip_flush = false;
2271 			compaction_defer_reset(preferred_zone, order, true);
2272 			count_vm_event(COMPACTSUCCESS);
2273 			return page;
2274 		}
2275 
2276 		/*
2277 		 * It's bad if compaction run occurs and fails.
2278 		 * The most likely reason is that pages exist,
2279 		 * but not enough to satisfy watermarks.
2280 		 */
2281 		count_vm_event(COMPACTFAIL);
2282 
2283 		/*
2284 		 * As async compaction considers a subset of pageblocks, only
2285 		 * defer if the failure was a sync compaction failure.
2286 		 */
2287 		if (mode != MIGRATE_ASYNC)
2288 			defer_compaction(preferred_zone, order);
2289 
2290 		cond_resched();
2291 	}
2292 
2293 	return NULL;
2294 }
2295 #else
2296 static inline struct page *
2297 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2298 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2299 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2300 	int classzone_idx, int migratetype,
2301 	enum migrate_mode mode, bool *contended_compaction,
2302 	bool *deferred_compaction, unsigned long *did_some_progress)
2303 {
2304 	return NULL;
2305 }
2306 #endif /* CONFIG_COMPACTION */
2307 
2308 /* Perform direct synchronous page reclaim */
2309 static int
2310 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2311 		  nodemask_t *nodemask)
2312 {
2313 	struct reclaim_state reclaim_state;
2314 	int progress;
2315 
2316 	cond_resched();
2317 
2318 	/* We now go into synchronous reclaim */
2319 	cpuset_memory_pressure_bump();
2320 	current->flags |= PF_MEMALLOC;
2321 	lockdep_set_current_reclaim_state(gfp_mask);
2322 	reclaim_state.reclaimed_slab = 0;
2323 	current->reclaim_state = &reclaim_state;
2324 
2325 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2326 
2327 	current->reclaim_state = NULL;
2328 	lockdep_clear_current_reclaim_state();
2329 	current->flags &= ~PF_MEMALLOC;
2330 
2331 	cond_resched();
2332 
2333 	return progress;
2334 }
2335 
2336 /* The really slow allocator path where we enter direct reclaim */
2337 static inline struct page *
2338 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2339 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2340 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2341 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2342 {
2343 	struct page *page = NULL;
2344 	bool drained = false;
2345 
2346 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2347 					       nodemask);
2348 	if (unlikely(!(*did_some_progress)))
2349 		return NULL;
2350 
2351 	/* After successful reclaim, reconsider all zones for allocation */
2352 	if (IS_ENABLED(CONFIG_NUMA))
2353 		zlc_clear_zones_full(zonelist);
2354 
2355 retry:
2356 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2357 					zonelist, high_zoneidx,
2358 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2359 					preferred_zone, classzone_idx,
2360 					migratetype);
2361 
2362 	/*
2363 	 * If an allocation failed after direct reclaim, it could be because
2364 	 * pages are pinned on the per-cpu lists. Drain them and try again
2365 	 */
2366 	if (!page && !drained) {
2367 		drain_all_pages();
2368 		drained = true;
2369 		goto retry;
2370 	}
2371 
2372 	return page;
2373 }
2374 
2375 /*
2376  * This is called in the allocator slow-path if the allocation request is of
2377  * sufficient urgency to ignore watermarks and take other desperate measures
2378  */
2379 static inline struct page *
2380 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2381 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2382 	nodemask_t *nodemask, struct zone *preferred_zone,
2383 	int classzone_idx, int migratetype)
2384 {
2385 	struct page *page;
2386 
2387 	do {
2388 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2389 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2390 			preferred_zone, classzone_idx, migratetype);
2391 
2392 		if (!page && gfp_mask & __GFP_NOFAIL)
2393 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2394 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2395 
2396 	return page;
2397 }
2398 
2399 static void reset_alloc_batches(struct zonelist *zonelist,
2400 				enum zone_type high_zoneidx,
2401 				struct zone *preferred_zone)
2402 {
2403 	struct zoneref *z;
2404 	struct zone *zone;
2405 
2406 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2407 		/*
2408 		 * Only reset the batches of zones that were actually
2409 		 * considered in the fairness pass, we don't want to
2410 		 * trash fairness information for zones that are not
2411 		 * actually part of this zonelist's round-robin cycle.
2412 		 */
2413 		if (!zone_local(preferred_zone, zone))
2414 			continue;
2415 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2416 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2417 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2418 	}
2419 }
2420 
2421 static void wake_all_kswapds(unsigned int order,
2422 			     struct zonelist *zonelist,
2423 			     enum zone_type high_zoneidx,
2424 			     struct zone *preferred_zone)
2425 {
2426 	struct zoneref *z;
2427 	struct zone *zone;
2428 
2429 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2430 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2431 }
2432 
2433 static inline int
2434 gfp_to_alloc_flags(gfp_t gfp_mask)
2435 {
2436 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2437 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2438 
2439 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2440 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2441 
2442 	/*
2443 	 * The caller may dip into page reserves a bit more if the caller
2444 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2445 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2446 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2447 	 */
2448 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2449 
2450 	if (!wait) {
2451 		/*
2452 		 * Not worth trying to allocate harder for
2453 		 * __GFP_NOMEMALLOC even if it can't schedule.
2454 		 */
2455 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2456 			alloc_flags |= ALLOC_HARDER;
2457 		/*
2458 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2459 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2460 		 */
2461 		alloc_flags &= ~ALLOC_CPUSET;
2462 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2463 		alloc_flags |= ALLOC_HARDER;
2464 
2465 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2466 		if (gfp_mask & __GFP_MEMALLOC)
2467 			alloc_flags |= ALLOC_NO_WATERMARKS;
2468 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2469 			alloc_flags |= ALLOC_NO_WATERMARKS;
2470 		else if (!in_interrupt() &&
2471 				((current->flags & PF_MEMALLOC) ||
2472 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2473 			alloc_flags |= ALLOC_NO_WATERMARKS;
2474 	}
2475 #ifdef CONFIG_CMA
2476 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2477 		alloc_flags |= ALLOC_CMA;
2478 #endif
2479 	return alloc_flags;
2480 }
2481 
2482 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2483 {
2484 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2485 }
2486 
2487 static inline struct page *
2488 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2489 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2490 	nodemask_t *nodemask, struct zone *preferred_zone,
2491 	int classzone_idx, int migratetype)
2492 {
2493 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2494 	struct page *page = NULL;
2495 	int alloc_flags;
2496 	unsigned long pages_reclaimed = 0;
2497 	unsigned long did_some_progress;
2498 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2499 	bool deferred_compaction = false;
2500 	bool contended_compaction = false;
2501 
2502 	/*
2503 	 * In the slowpath, we sanity check order to avoid ever trying to
2504 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2505 	 * be using allocators in order of preference for an area that is
2506 	 * too large.
2507 	 */
2508 	if (order >= MAX_ORDER) {
2509 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2510 		return NULL;
2511 	}
2512 
2513 	/*
2514 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2515 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2516 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2517 	 * using a larger set of nodes after it has established that the
2518 	 * allowed per node queues are empty and that nodes are
2519 	 * over allocated.
2520 	 */
2521 	if (IS_ENABLED(CONFIG_NUMA) &&
2522 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2523 		goto nopage;
2524 
2525 restart:
2526 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2527 		wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2528 
2529 	/*
2530 	 * OK, we're below the kswapd watermark and have kicked background
2531 	 * reclaim. Now things get more complex, so set up alloc_flags according
2532 	 * to how we want to proceed.
2533 	 */
2534 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2535 
2536 	/*
2537 	 * Find the true preferred zone if the allocation is unconstrained by
2538 	 * cpusets.
2539 	 */
2540 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2541 		struct zoneref *preferred_zoneref;
2542 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2543 				NULL, &preferred_zone);
2544 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2545 	}
2546 
2547 rebalance:
2548 	/* This is the last chance, in general, before the goto nopage. */
2549 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2550 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2551 			preferred_zone, classzone_idx, migratetype);
2552 	if (page)
2553 		goto got_pg;
2554 
2555 	/* Allocate without watermarks if the context allows */
2556 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2557 		/*
2558 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2559 		 * the allocation is high priority and these type of
2560 		 * allocations are system rather than user orientated
2561 		 */
2562 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2563 
2564 		page = __alloc_pages_high_priority(gfp_mask, order,
2565 				zonelist, high_zoneidx, nodemask,
2566 				preferred_zone, classzone_idx, migratetype);
2567 		if (page) {
2568 			goto got_pg;
2569 		}
2570 	}
2571 
2572 	/* Atomic allocations - we can't balance anything */
2573 	if (!wait) {
2574 		/*
2575 		 * All existing users of the deprecated __GFP_NOFAIL are
2576 		 * blockable, so warn of any new users that actually allow this
2577 		 * type of allocation to fail.
2578 		 */
2579 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2580 		goto nopage;
2581 	}
2582 
2583 	/* Avoid recursion of direct reclaim */
2584 	if (current->flags & PF_MEMALLOC)
2585 		goto nopage;
2586 
2587 	/* Avoid allocations with no watermarks from looping endlessly */
2588 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2589 		goto nopage;
2590 
2591 	/*
2592 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2593 	 * attempts after direct reclaim are synchronous
2594 	 */
2595 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2596 					high_zoneidx, nodemask, alloc_flags,
2597 					preferred_zone,
2598 					classzone_idx, migratetype,
2599 					migration_mode, &contended_compaction,
2600 					&deferred_compaction,
2601 					&did_some_progress);
2602 	if (page)
2603 		goto got_pg;
2604 
2605 	/*
2606 	 * It can become very expensive to allocate transparent hugepages at
2607 	 * fault, so use asynchronous memory compaction for THP unless it is
2608 	 * khugepaged trying to collapse.
2609 	 */
2610 	if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2611 		migration_mode = MIGRATE_SYNC_LIGHT;
2612 
2613 	/*
2614 	 * If compaction is deferred for high-order allocations, it is because
2615 	 * sync compaction recently failed. In this is the case and the caller
2616 	 * requested a movable allocation that does not heavily disrupt the
2617 	 * system then fail the allocation instead of entering direct reclaim.
2618 	 */
2619 	if ((deferred_compaction || contended_compaction) &&
2620 						(gfp_mask & __GFP_NO_KSWAPD))
2621 		goto nopage;
2622 
2623 	/* Try direct reclaim and then allocating */
2624 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2625 					zonelist, high_zoneidx,
2626 					nodemask,
2627 					alloc_flags, preferred_zone,
2628 					classzone_idx, migratetype,
2629 					&did_some_progress);
2630 	if (page)
2631 		goto got_pg;
2632 
2633 	/*
2634 	 * If we failed to make any progress reclaiming, then we are
2635 	 * running out of options and have to consider going OOM
2636 	 */
2637 	if (!did_some_progress) {
2638 		if (oom_gfp_allowed(gfp_mask)) {
2639 			if (oom_killer_disabled)
2640 				goto nopage;
2641 			/* Coredumps can quickly deplete all memory reserves */
2642 			if ((current->flags & PF_DUMPCORE) &&
2643 			    !(gfp_mask & __GFP_NOFAIL))
2644 				goto nopage;
2645 			page = __alloc_pages_may_oom(gfp_mask, order,
2646 					zonelist, high_zoneidx,
2647 					nodemask, preferred_zone,
2648 					classzone_idx, migratetype);
2649 			if (page)
2650 				goto got_pg;
2651 
2652 			if (!(gfp_mask & __GFP_NOFAIL)) {
2653 				/*
2654 				 * The oom killer is not called for high-order
2655 				 * allocations that may fail, so if no progress
2656 				 * is being made, there are no other options and
2657 				 * retrying is unlikely to help.
2658 				 */
2659 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2660 					goto nopage;
2661 				/*
2662 				 * The oom killer is not called for lowmem
2663 				 * allocations to prevent needlessly killing
2664 				 * innocent tasks.
2665 				 */
2666 				if (high_zoneidx < ZONE_NORMAL)
2667 					goto nopage;
2668 			}
2669 
2670 			goto restart;
2671 		}
2672 	}
2673 
2674 	/* Check if we should retry the allocation */
2675 	pages_reclaimed += did_some_progress;
2676 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2677 						pages_reclaimed)) {
2678 		/* Wait for some write requests to complete then retry */
2679 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2680 		goto rebalance;
2681 	} else {
2682 		/*
2683 		 * High-order allocations do not necessarily loop after
2684 		 * direct reclaim and reclaim/compaction depends on compaction
2685 		 * being called after reclaim so call directly if necessary
2686 		 */
2687 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2688 					high_zoneidx, nodemask, alloc_flags,
2689 					preferred_zone,
2690 					classzone_idx, migratetype,
2691 					migration_mode, &contended_compaction,
2692 					&deferred_compaction,
2693 					&did_some_progress);
2694 		if (page)
2695 			goto got_pg;
2696 	}
2697 
2698 nopage:
2699 	warn_alloc_failed(gfp_mask, order, NULL);
2700 	return page;
2701 got_pg:
2702 	if (kmemcheck_enabled)
2703 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2704 
2705 	return page;
2706 }
2707 
2708 /*
2709  * This is the 'heart' of the zoned buddy allocator.
2710  */
2711 struct page *
2712 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2713 			struct zonelist *zonelist, nodemask_t *nodemask)
2714 {
2715 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2716 	struct zone *preferred_zone;
2717 	struct zoneref *preferred_zoneref;
2718 	struct page *page = NULL;
2719 	int migratetype = allocflags_to_migratetype(gfp_mask);
2720 	unsigned int cpuset_mems_cookie;
2721 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2722 	int classzone_idx;
2723 
2724 	gfp_mask &= gfp_allowed_mask;
2725 
2726 	lockdep_trace_alloc(gfp_mask);
2727 
2728 	might_sleep_if(gfp_mask & __GFP_WAIT);
2729 
2730 	if (should_fail_alloc_page(gfp_mask, order))
2731 		return NULL;
2732 
2733 	/*
2734 	 * Check the zones suitable for the gfp_mask contain at least one
2735 	 * valid zone. It's possible to have an empty zonelist as a result
2736 	 * of GFP_THISNODE and a memoryless node
2737 	 */
2738 	if (unlikely(!zonelist->_zonerefs->zone))
2739 		return NULL;
2740 
2741 retry_cpuset:
2742 	cpuset_mems_cookie = read_mems_allowed_begin();
2743 
2744 	/* The preferred zone is used for statistics later */
2745 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2746 				nodemask ? : &cpuset_current_mems_allowed,
2747 				&preferred_zone);
2748 	if (!preferred_zone)
2749 		goto out;
2750 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2751 
2752 #ifdef CONFIG_CMA
2753 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2754 		alloc_flags |= ALLOC_CMA;
2755 #endif
2756 retry:
2757 	/* First allocation attempt */
2758 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2759 			zonelist, high_zoneidx, alloc_flags,
2760 			preferred_zone, classzone_idx, migratetype);
2761 	if (unlikely(!page)) {
2762 		/*
2763 		 * The first pass makes sure allocations are spread
2764 		 * fairly within the local node.  However, the local
2765 		 * node might have free pages left after the fairness
2766 		 * batches are exhausted, and remote zones haven't
2767 		 * even been considered yet.  Try once more without
2768 		 * fairness, and include remote zones now, before
2769 		 * entering the slowpath and waking kswapd: prefer
2770 		 * spilling to a remote zone over swapping locally.
2771 		 */
2772 		if (alloc_flags & ALLOC_FAIR) {
2773 			reset_alloc_batches(zonelist, high_zoneidx,
2774 					    preferred_zone);
2775 			alloc_flags &= ~ALLOC_FAIR;
2776 			goto retry;
2777 		}
2778 		/*
2779 		 * Runtime PM, block IO and its error handling path
2780 		 * can deadlock because I/O on the device might not
2781 		 * complete.
2782 		 */
2783 		gfp_mask = memalloc_noio_flags(gfp_mask);
2784 		page = __alloc_pages_slowpath(gfp_mask, order,
2785 				zonelist, high_zoneidx, nodemask,
2786 				preferred_zone, classzone_idx, migratetype);
2787 	}
2788 
2789 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2790 
2791 out:
2792 	/*
2793 	 * When updating a task's mems_allowed, it is possible to race with
2794 	 * parallel threads in such a way that an allocation can fail while
2795 	 * the mask is being updated. If a page allocation is about to fail,
2796 	 * check if the cpuset changed during allocation and if so, retry.
2797 	 */
2798 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2799 		goto retry_cpuset;
2800 
2801 	return page;
2802 }
2803 EXPORT_SYMBOL(__alloc_pages_nodemask);
2804 
2805 /*
2806  * Common helper functions.
2807  */
2808 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2809 {
2810 	struct page *page;
2811 
2812 	/*
2813 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2814 	 * a highmem page
2815 	 */
2816 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2817 
2818 	page = alloc_pages(gfp_mask, order);
2819 	if (!page)
2820 		return 0;
2821 	return (unsigned long) page_address(page);
2822 }
2823 EXPORT_SYMBOL(__get_free_pages);
2824 
2825 unsigned long get_zeroed_page(gfp_t gfp_mask)
2826 {
2827 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2828 }
2829 EXPORT_SYMBOL(get_zeroed_page);
2830 
2831 void __free_pages(struct page *page, unsigned int order)
2832 {
2833 	if (put_page_testzero(page)) {
2834 		if (order == 0)
2835 			free_hot_cold_page(page, false);
2836 		else
2837 			__free_pages_ok(page, order);
2838 	}
2839 }
2840 
2841 EXPORT_SYMBOL(__free_pages);
2842 
2843 void free_pages(unsigned long addr, unsigned int order)
2844 {
2845 	if (addr != 0) {
2846 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2847 		__free_pages(virt_to_page((void *)addr), order);
2848 	}
2849 }
2850 
2851 EXPORT_SYMBOL(free_pages);
2852 
2853 /*
2854  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2855  * of the current memory cgroup.
2856  *
2857  * It should be used when the caller would like to use kmalloc, but since the
2858  * allocation is large, it has to fall back to the page allocator.
2859  */
2860 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2861 {
2862 	struct page *page;
2863 	struct mem_cgroup *memcg = NULL;
2864 
2865 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2866 		return NULL;
2867 	page = alloc_pages(gfp_mask, order);
2868 	memcg_kmem_commit_charge(page, memcg, order);
2869 	return page;
2870 }
2871 
2872 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2873 {
2874 	struct page *page;
2875 	struct mem_cgroup *memcg = NULL;
2876 
2877 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2878 		return NULL;
2879 	page = alloc_pages_node(nid, gfp_mask, order);
2880 	memcg_kmem_commit_charge(page, memcg, order);
2881 	return page;
2882 }
2883 
2884 /*
2885  * __free_kmem_pages and free_kmem_pages will free pages allocated with
2886  * alloc_kmem_pages.
2887  */
2888 void __free_kmem_pages(struct page *page, unsigned int order)
2889 {
2890 	memcg_kmem_uncharge_pages(page, order);
2891 	__free_pages(page, order);
2892 }
2893 
2894 void free_kmem_pages(unsigned long addr, unsigned int order)
2895 {
2896 	if (addr != 0) {
2897 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2898 		__free_kmem_pages(virt_to_page((void *)addr), order);
2899 	}
2900 }
2901 
2902 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2903 {
2904 	if (addr) {
2905 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2906 		unsigned long used = addr + PAGE_ALIGN(size);
2907 
2908 		split_page(virt_to_page((void *)addr), order);
2909 		while (used < alloc_end) {
2910 			free_page(used);
2911 			used += PAGE_SIZE;
2912 		}
2913 	}
2914 	return (void *)addr;
2915 }
2916 
2917 /**
2918  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2919  * @size: the number of bytes to allocate
2920  * @gfp_mask: GFP flags for the allocation
2921  *
2922  * This function is similar to alloc_pages(), except that it allocates the
2923  * minimum number of pages to satisfy the request.  alloc_pages() can only
2924  * allocate memory in power-of-two pages.
2925  *
2926  * This function is also limited by MAX_ORDER.
2927  *
2928  * Memory allocated by this function must be released by free_pages_exact().
2929  */
2930 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2931 {
2932 	unsigned int order = get_order(size);
2933 	unsigned long addr;
2934 
2935 	addr = __get_free_pages(gfp_mask, order);
2936 	return make_alloc_exact(addr, order, size);
2937 }
2938 EXPORT_SYMBOL(alloc_pages_exact);
2939 
2940 /**
2941  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2942  *			   pages on a node.
2943  * @nid: the preferred node ID where memory should be allocated
2944  * @size: the number of bytes to allocate
2945  * @gfp_mask: GFP flags for the allocation
2946  *
2947  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2948  * back.
2949  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2950  * but is not exact.
2951  */
2952 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2953 {
2954 	unsigned order = get_order(size);
2955 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2956 	if (!p)
2957 		return NULL;
2958 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2959 }
2960 EXPORT_SYMBOL(alloc_pages_exact_nid);
2961 
2962 /**
2963  * free_pages_exact - release memory allocated via alloc_pages_exact()
2964  * @virt: the value returned by alloc_pages_exact.
2965  * @size: size of allocation, same value as passed to alloc_pages_exact().
2966  *
2967  * Release the memory allocated by a previous call to alloc_pages_exact.
2968  */
2969 void free_pages_exact(void *virt, size_t size)
2970 {
2971 	unsigned long addr = (unsigned long)virt;
2972 	unsigned long end = addr + PAGE_ALIGN(size);
2973 
2974 	while (addr < end) {
2975 		free_page(addr);
2976 		addr += PAGE_SIZE;
2977 	}
2978 }
2979 EXPORT_SYMBOL(free_pages_exact);
2980 
2981 /**
2982  * nr_free_zone_pages - count number of pages beyond high watermark
2983  * @offset: The zone index of the highest zone
2984  *
2985  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2986  * high watermark within all zones at or below a given zone index.  For each
2987  * zone, the number of pages is calculated as:
2988  *     managed_pages - high_pages
2989  */
2990 static unsigned long nr_free_zone_pages(int offset)
2991 {
2992 	struct zoneref *z;
2993 	struct zone *zone;
2994 
2995 	/* Just pick one node, since fallback list is circular */
2996 	unsigned long sum = 0;
2997 
2998 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2999 
3000 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3001 		unsigned long size = zone->managed_pages;
3002 		unsigned long high = high_wmark_pages(zone);
3003 		if (size > high)
3004 			sum += size - high;
3005 	}
3006 
3007 	return sum;
3008 }
3009 
3010 /**
3011  * nr_free_buffer_pages - count number of pages beyond high watermark
3012  *
3013  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3014  * watermark within ZONE_DMA and ZONE_NORMAL.
3015  */
3016 unsigned long nr_free_buffer_pages(void)
3017 {
3018 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3019 }
3020 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3021 
3022 /**
3023  * nr_free_pagecache_pages - count number of pages beyond high watermark
3024  *
3025  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3026  * high watermark within all zones.
3027  */
3028 unsigned long nr_free_pagecache_pages(void)
3029 {
3030 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3031 }
3032 
3033 static inline void show_node(struct zone *zone)
3034 {
3035 	if (IS_ENABLED(CONFIG_NUMA))
3036 		printk("Node %d ", zone_to_nid(zone));
3037 }
3038 
3039 void si_meminfo(struct sysinfo *val)
3040 {
3041 	val->totalram = totalram_pages;
3042 	val->sharedram = 0;
3043 	val->freeram = global_page_state(NR_FREE_PAGES);
3044 	val->bufferram = nr_blockdev_pages();
3045 	val->totalhigh = totalhigh_pages;
3046 	val->freehigh = nr_free_highpages();
3047 	val->mem_unit = PAGE_SIZE;
3048 }
3049 
3050 EXPORT_SYMBOL(si_meminfo);
3051 
3052 #ifdef CONFIG_NUMA
3053 void si_meminfo_node(struct sysinfo *val, int nid)
3054 {
3055 	int zone_type;		/* needs to be signed */
3056 	unsigned long managed_pages = 0;
3057 	pg_data_t *pgdat = NODE_DATA(nid);
3058 
3059 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3060 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3061 	val->totalram = managed_pages;
3062 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3063 #ifdef CONFIG_HIGHMEM
3064 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3065 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3066 			NR_FREE_PAGES);
3067 #else
3068 	val->totalhigh = 0;
3069 	val->freehigh = 0;
3070 #endif
3071 	val->mem_unit = PAGE_SIZE;
3072 }
3073 #endif
3074 
3075 /*
3076  * Determine whether the node should be displayed or not, depending on whether
3077  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3078  */
3079 bool skip_free_areas_node(unsigned int flags, int nid)
3080 {
3081 	bool ret = false;
3082 	unsigned int cpuset_mems_cookie;
3083 
3084 	if (!(flags & SHOW_MEM_FILTER_NODES))
3085 		goto out;
3086 
3087 	do {
3088 		cpuset_mems_cookie = read_mems_allowed_begin();
3089 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3090 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3091 out:
3092 	return ret;
3093 }
3094 
3095 #define K(x) ((x) << (PAGE_SHIFT-10))
3096 
3097 static void show_migration_types(unsigned char type)
3098 {
3099 	static const char types[MIGRATE_TYPES] = {
3100 		[MIGRATE_UNMOVABLE]	= 'U',
3101 		[MIGRATE_RECLAIMABLE]	= 'E',
3102 		[MIGRATE_MOVABLE]	= 'M',
3103 		[MIGRATE_RESERVE]	= 'R',
3104 #ifdef CONFIG_CMA
3105 		[MIGRATE_CMA]		= 'C',
3106 #endif
3107 #ifdef CONFIG_MEMORY_ISOLATION
3108 		[MIGRATE_ISOLATE]	= 'I',
3109 #endif
3110 	};
3111 	char tmp[MIGRATE_TYPES + 1];
3112 	char *p = tmp;
3113 	int i;
3114 
3115 	for (i = 0; i < MIGRATE_TYPES; i++) {
3116 		if (type & (1 << i))
3117 			*p++ = types[i];
3118 	}
3119 
3120 	*p = '\0';
3121 	printk("(%s) ", tmp);
3122 }
3123 
3124 /*
3125  * Show free area list (used inside shift_scroll-lock stuff)
3126  * We also calculate the percentage fragmentation. We do this by counting the
3127  * memory on each free list with the exception of the first item on the list.
3128  * Suppresses nodes that are not allowed by current's cpuset if
3129  * SHOW_MEM_FILTER_NODES is passed.
3130  */
3131 void show_free_areas(unsigned int filter)
3132 {
3133 	int cpu;
3134 	struct zone *zone;
3135 
3136 	for_each_populated_zone(zone) {
3137 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3138 			continue;
3139 		show_node(zone);
3140 		printk("%s per-cpu:\n", zone->name);
3141 
3142 		for_each_online_cpu(cpu) {
3143 			struct per_cpu_pageset *pageset;
3144 
3145 			pageset = per_cpu_ptr(zone->pageset, cpu);
3146 
3147 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3148 			       cpu, pageset->pcp.high,
3149 			       pageset->pcp.batch, pageset->pcp.count);
3150 		}
3151 	}
3152 
3153 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3154 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3155 		" unevictable:%lu"
3156 		" dirty:%lu writeback:%lu unstable:%lu\n"
3157 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3158 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3159 		" free_cma:%lu\n",
3160 		global_page_state(NR_ACTIVE_ANON),
3161 		global_page_state(NR_INACTIVE_ANON),
3162 		global_page_state(NR_ISOLATED_ANON),
3163 		global_page_state(NR_ACTIVE_FILE),
3164 		global_page_state(NR_INACTIVE_FILE),
3165 		global_page_state(NR_ISOLATED_FILE),
3166 		global_page_state(NR_UNEVICTABLE),
3167 		global_page_state(NR_FILE_DIRTY),
3168 		global_page_state(NR_WRITEBACK),
3169 		global_page_state(NR_UNSTABLE_NFS),
3170 		global_page_state(NR_FREE_PAGES),
3171 		global_page_state(NR_SLAB_RECLAIMABLE),
3172 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3173 		global_page_state(NR_FILE_MAPPED),
3174 		global_page_state(NR_SHMEM),
3175 		global_page_state(NR_PAGETABLE),
3176 		global_page_state(NR_BOUNCE),
3177 		global_page_state(NR_FREE_CMA_PAGES));
3178 
3179 	for_each_populated_zone(zone) {
3180 		int i;
3181 
3182 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3183 			continue;
3184 		show_node(zone);
3185 		printk("%s"
3186 			" free:%lukB"
3187 			" min:%lukB"
3188 			" low:%lukB"
3189 			" high:%lukB"
3190 			" active_anon:%lukB"
3191 			" inactive_anon:%lukB"
3192 			" active_file:%lukB"
3193 			" inactive_file:%lukB"
3194 			" unevictable:%lukB"
3195 			" isolated(anon):%lukB"
3196 			" isolated(file):%lukB"
3197 			" present:%lukB"
3198 			" managed:%lukB"
3199 			" mlocked:%lukB"
3200 			" dirty:%lukB"
3201 			" writeback:%lukB"
3202 			" mapped:%lukB"
3203 			" shmem:%lukB"
3204 			" slab_reclaimable:%lukB"
3205 			" slab_unreclaimable:%lukB"
3206 			" kernel_stack:%lukB"
3207 			" pagetables:%lukB"
3208 			" unstable:%lukB"
3209 			" bounce:%lukB"
3210 			" free_cma:%lukB"
3211 			" writeback_tmp:%lukB"
3212 			" pages_scanned:%lu"
3213 			" all_unreclaimable? %s"
3214 			"\n",
3215 			zone->name,
3216 			K(zone_page_state(zone, NR_FREE_PAGES)),
3217 			K(min_wmark_pages(zone)),
3218 			K(low_wmark_pages(zone)),
3219 			K(high_wmark_pages(zone)),
3220 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3221 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3222 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3223 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3224 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3225 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3226 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3227 			K(zone->present_pages),
3228 			K(zone->managed_pages),
3229 			K(zone_page_state(zone, NR_MLOCK)),
3230 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3231 			K(zone_page_state(zone, NR_WRITEBACK)),
3232 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3233 			K(zone_page_state(zone, NR_SHMEM)),
3234 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3235 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3236 			zone_page_state(zone, NR_KERNEL_STACK) *
3237 				THREAD_SIZE / 1024,
3238 			K(zone_page_state(zone, NR_PAGETABLE)),
3239 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3240 			K(zone_page_state(zone, NR_BOUNCE)),
3241 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3242 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3243 			zone->pages_scanned,
3244 			(!zone_reclaimable(zone) ? "yes" : "no")
3245 			);
3246 		printk("lowmem_reserve[]:");
3247 		for (i = 0; i < MAX_NR_ZONES; i++)
3248 			printk(" %lu", zone->lowmem_reserve[i]);
3249 		printk("\n");
3250 	}
3251 
3252 	for_each_populated_zone(zone) {
3253 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3254 		unsigned char types[MAX_ORDER];
3255 
3256 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3257 			continue;
3258 		show_node(zone);
3259 		printk("%s: ", zone->name);
3260 
3261 		spin_lock_irqsave(&zone->lock, flags);
3262 		for (order = 0; order < MAX_ORDER; order++) {
3263 			struct free_area *area = &zone->free_area[order];
3264 			int type;
3265 
3266 			nr[order] = area->nr_free;
3267 			total += nr[order] << order;
3268 
3269 			types[order] = 0;
3270 			for (type = 0; type < MIGRATE_TYPES; type++) {
3271 				if (!list_empty(&area->free_list[type]))
3272 					types[order] |= 1 << type;
3273 			}
3274 		}
3275 		spin_unlock_irqrestore(&zone->lock, flags);
3276 		for (order = 0; order < MAX_ORDER; order++) {
3277 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3278 			if (nr[order])
3279 				show_migration_types(types[order]);
3280 		}
3281 		printk("= %lukB\n", K(total));
3282 	}
3283 
3284 	hugetlb_show_meminfo();
3285 
3286 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3287 
3288 	show_swap_cache_info();
3289 }
3290 
3291 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3292 {
3293 	zoneref->zone = zone;
3294 	zoneref->zone_idx = zone_idx(zone);
3295 }
3296 
3297 /*
3298  * Builds allocation fallback zone lists.
3299  *
3300  * Add all populated zones of a node to the zonelist.
3301  */
3302 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3303 				int nr_zones)
3304 {
3305 	struct zone *zone;
3306 	enum zone_type zone_type = MAX_NR_ZONES;
3307 
3308 	do {
3309 		zone_type--;
3310 		zone = pgdat->node_zones + zone_type;
3311 		if (populated_zone(zone)) {
3312 			zoneref_set_zone(zone,
3313 				&zonelist->_zonerefs[nr_zones++]);
3314 			check_highest_zone(zone_type);
3315 		}
3316 	} while (zone_type);
3317 
3318 	return nr_zones;
3319 }
3320 
3321 
3322 /*
3323  *  zonelist_order:
3324  *  0 = automatic detection of better ordering.
3325  *  1 = order by ([node] distance, -zonetype)
3326  *  2 = order by (-zonetype, [node] distance)
3327  *
3328  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3329  *  the same zonelist. So only NUMA can configure this param.
3330  */
3331 #define ZONELIST_ORDER_DEFAULT  0
3332 #define ZONELIST_ORDER_NODE     1
3333 #define ZONELIST_ORDER_ZONE     2
3334 
3335 /* zonelist order in the kernel.
3336  * set_zonelist_order() will set this to NODE or ZONE.
3337  */
3338 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3339 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3340 
3341 
3342 #ifdef CONFIG_NUMA
3343 /* The value user specified ....changed by config */
3344 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3345 /* string for sysctl */
3346 #define NUMA_ZONELIST_ORDER_LEN	16
3347 char numa_zonelist_order[16] = "default";
3348 
3349 /*
3350  * interface for configure zonelist ordering.
3351  * command line option "numa_zonelist_order"
3352  *	= "[dD]efault	- default, automatic configuration.
3353  *	= "[nN]ode 	- order by node locality, then by zone within node
3354  *	= "[zZ]one      - order by zone, then by locality within zone
3355  */
3356 
3357 static int __parse_numa_zonelist_order(char *s)
3358 {
3359 	if (*s == 'd' || *s == 'D') {
3360 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3361 	} else if (*s == 'n' || *s == 'N') {
3362 		user_zonelist_order = ZONELIST_ORDER_NODE;
3363 	} else if (*s == 'z' || *s == 'Z') {
3364 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3365 	} else {
3366 		printk(KERN_WARNING
3367 			"Ignoring invalid numa_zonelist_order value:  "
3368 			"%s\n", s);
3369 		return -EINVAL;
3370 	}
3371 	return 0;
3372 }
3373 
3374 static __init int setup_numa_zonelist_order(char *s)
3375 {
3376 	int ret;
3377 
3378 	if (!s)
3379 		return 0;
3380 
3381 	ret = __parse_numa_zonelist_order(s);
3382 	if (ret == 0)
3383 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3384 
3385 	return ret;
3386 }
3387 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3388 
3389 /*
3390  * sysctl handler for numa_zonelist_order
3391  */
3392 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3393 		void __user *buffer, size_t *length,
3394 		loff_t *ppos)
3395 {
3396 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3397 	int ret;
3398 	static DEFINE_MUTEX(zl_order_mutex);
3399 
3400 	mutex_lock(&zl_order_mutex);
3401 	if (write) {
3402 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3403 			ret = -EINVAL;
3404 			goto out;
3405 		}
3406 		strcpy(saved_string, (char *)table->data);
3407 	}
3408 	ret = proc_dostring(table, write, buffer, length, ppos);
3409 	if (ret)
3410 		goto out;
3411 	if (write) {
3412 		int oldval = user_zonelist_order;
3413 
3414 		ret = __parse_numa_zonelist_order((char *)table->data);
3415 		if (ret) {
3416 			/*
3417 			 * bogus value.  restore saved string
3418 			 */
3419 			strncpy((char *)table->data, saved_string,
3420 				NUMA_ZONELIST_ORDER_LEN);
3421 			user_zonelist_order = oldval;
3422 		} else if (oldval != user_zonelist_order) {
3423 			mutex_lock(&zonelists_mutex);
3424 			build_all_zonelists(NULL, NULL);
3425 			mutex_unlock(&zonelists_mutex);
3426 		}
3427 	}
3428 out:
3429 	mutex_unlock(&zl_order_mutex);
3430 	return ret;
3431 }
3432 
3433 
3434 #define MAX_NODE_LOAD (nr_online_nodes)
3435 static int node_load[MAX_NUMNODES];
3436 
3437 /**
3438  * find_next_best_node - find the next node that should appear in a given node's fallback list
3439  * @node: node whose fallback list we're appending
3440  * @used_node_mask: nodemask_t of already used nodes
3441  *
3442  * We use a number of factors to determine which is the next node that should
3443  * appear on a given node's fallback list.  The node should not have appeared
3444  * already in @node's fallback list, and it should be the next closest node
3445  * according to the distance array (which contains arbitrary distance values
3446  * from each node to each node in the system), and should also prefer nodes
3447  * with no CPUs, since presumably they'll have very little allocation pressure
3448  * on them otherwise.
3449  * It returns -1 if no node is found.
3450  */
3451 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3452 {
3453 	int n, val;
3454 	int min_val = INT_MAX;
3455 	int best_node = NUMA_NO_NODE;
3456 	const struct cpumask *tmp = cpumask_of_node(0);
3457 
3458 	/* Use the local node if we haven't already */
3459 	if (!node_isset(node, *used_node_mask)) {
3460 		node_set(node, *used_node_mask);
3461 		return node;
3462 	}
3463 
3464 	for_each_node_state(n, N_MEMORY) {
3465 
3466 		/* Don't want a node to appear more than once */
3467 		if (node_isset(n, *used_node_mask))
3468 			continue;
3469 
3470 		/* Use the distance array to find the distance */
3471 		val = node_distance(node, n);
3472 
3473 		/* Penalize nodes under us ("prefer the next node") */
3474 		val += (n < node);
3475 
3476 		/* Give preference to headless and unused nodes */
3477 		tmp = cpumask_of_node(n);
3478 		if (!cpumask_empty(tmp))
3479 			val += PENALTY_FOR_NODE_WITH_CPUS;
3480 
3481 		/* Slight preference for less loaded node */
3482 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3483 		val += node_load[n];
3484 
3485 		if (val < min_val) {
3486 			min_val = val;
3487 			best_node = n;
3488 		}
3489 	}
3490 
3491 	if (best_node >= 0)
3492 		node_set(best_node, *used_node_mask);
3493 
3494 	return best_node;
3495 }
3496 
3497 
3498 /*
3499  * Build zonelists ordered by node and zones within node.
3500  * This results in maximum locality--normal zone overflows into local
3501  * DMA zone, if any--but risks exhausting DMA zone.
3502  */
3503 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3504 {
3505 	int j;
3506 	struct zonelist *zonelist;
3507 
3508 	zonelist = &pgdat->node_zonelists[0];
3509 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3510 		;
3511 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3512 	zonelist->_zonerefs[j].zone = NULL;
3513 	zonelist->_zonerefs[j].zone_idx = 0;
3514 }
3515 
3516 /*
3517  * Build gfp_thisnode zonelists
3518  */
3519 static void build_thisnode_zonelists(pg_data_t *pgdat)
3520 {
3521 	int j;
3522 	struct zonelist *zonelist;
3523 
3524 	zonelist = &pgdat->node_zonelists[1];
3525 	j = build_zonelists_node(pgdat, zonelist, 0);
3526 	zonelist->_zonerefs[j].zone = NULL;
3527 	zonelist->_zonerefs[j].zone_idx = 0;
3528 }
3529 
3530 /*
3531  * Build zonelists ordered by zone and nodes within zones.
3532  * This results in conserving DMA zone[s] until all Normal memory is
3533  * exhausted, but results in overflowing to remote node while memory
3534  * may still exist in local DMA zone.
3535  */
3536 static int node_order[MAX_NUMNODES];
3537 
3538 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3539 {
3540 	int pos, j, node;
3541 	int zone_type;		/* needs to be signed */
3542 	struct zone *z;
3543 	struct zonelist *zonelist;
3544 
3545 	zonelist = &pgdat->node_zonelists[0];
3546 	pos = 0;
3547 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3548 		for (j = 0; j < nr_nodes; j++) {
3549 			node = node_order[j];
3550 			z = &NODE_DATA(node)->node_zones[zone_type];
3551 			if (populated_zone(z)) {
3552 				zoneref_set_zone(z,
3553 					&zonelist->_zonerefs[pos++]);
3554 				check_highest_zone(zone_type);
3555 			}
3556 		}
3557 	}
3558 	zonelist->_zonerefs[pos].zone = NULL;
3559 	zonelist->_zonerefs[pos].zone_idx = 0;
3560 }
3561 
3562 static int default_zonelist_order(void)
3563 {
3564 	int nid, zone_type;
3565 	unsigned long low_kmem_size, total_size;
3566 	struct zone *z;
3567 	int average_size;
3568 	/*
3569 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3570 	 * If they are really small and used heavily, the system can fall
3571 	 * into OOM very easily.
3572 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3573 	 */
3574 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3575 	low_kmem_size = 0;
3576 	total_size = 0;
3577 	for_each_online_node(nid) {
3578 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3579 			z = &NODE_DATA(nid)->node_zones[zone_type];
3580 			if (populated_zone(z)) {
3581 				if (zone_type < ZONE_NORMAL)
3582 					low_kmem_size += z->managed_pages;
3583 				total_size += z->managed_pages;
3584 			} else if (zone_type == ZONE_NORMAL) {
3585 				/*
3586 				 * If any node has only lowmem, then node order
3587 				 * is preferred to allow kernel allocations
3588 				 * locally; otherwise, they can easily infringe
3589 				 * on other nodes when there is an abundance of
3590 				 * lowmem available to allocate from.
3591 				 */
3592 				return ZONELIST_ORDER_NODE;
3593 			}
3594 		}
3595 	}
3596 	if (!low_kmem_size ||  /* there are no DMA area. */
3597 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3598 		return ZONELIST_ORDER_NODE;
3599 	/*
3600 	 * look into each node's config.
3601 	 * If there is a node whose DMA/DMA32 memory is very big area on
3602 	 * local memory, NODE_ORDER may be suitable.
3603 	 */
3604 	average_size = total_size /
3605 				(nodes_weight(node_states[N_MEMORY]) + 1);
3606 	for_each_online_node(nid) {
3607 		low_kmem_size = 0;
3608 		total_size = 0;
3609 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3610 			z = &NODE_DATA(nid)->node_zones[zone_type];
3611 			if (populated_zone(z)) {
3612 				if (zone_type < ZONE_NORMAL)
3613 					low_kmem_size += z->present_pages;
3614 				total_size += z->present_pages;
3615 			}
3616 		}
3617 		if (low_kmem_size &&
3618 		    total_size > average_size && /* ignore small node */
3619 		    low_kmem_size > total_size * 70/100)
3620 			return ZONELIST_ORDER_NODE;
3621 	}
3622 	return ZONELIST_ORDER_ZONE;
3623 }
3624 
3625 static void set_zonelist_order(void)
3626 {
3627 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3628 		current_zonelist_order = default_zonelist_order();
3629 	else
3630 		current_zonelist_order = user_zonelist_order;
3631 }
3632 
3633 static void build_zonelists(pg_data_t *pgdat)
3634 {
3635 	int j, node, load;
3636 	enum zone_type i;
3637 	nodemask_t used_mask;
3638 	int local_node, prev_node;
3639 	struct zonelist *zonelist;
3640 	int order = current_zonelist_order;
3641 
3642 	/* initialize zonelists */
3643 	for (i = 0; i < MAX_ZONELISTS; i++) {
3644 		zonelist = pgdat->node_zonelists + i;
3645 		zonelist->_zonerefs[0].zone = NULL;
3646 		zonelist->_zonerefs[0].zone_idx = 0;
3647 	}
3648 
3649 	/* NUMA-aware ordering of nodes */
3650 	local_node = pgdat->node_id;
3651 	load = nr_online_nodes;
3652 	prev_node = local_node;
3653 	nodes_clear(used_mask);
3654 
3655 	memset(node_order, 0, sizeof(node_order));
3656 	j = 0;
3657 
3658 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3659 		/*
3660 		 * We don't want to pressure a particular node.
3661 		 * So adding penalty to the first node in same
3662 		 * distance group to make it round-robin.
3663 		 */
3664 		if (node_distance(local_node, node) !=
3665 		    node_distance(local_node, prev_node))
3666 			node_load[node] = load;
3667 
3668 		prev_node = node;
3669 		load--;
3670 		if (order == ZONELIST_ORDER_NODE)
3671 			build_zonelists_in_node_order(pgdat, node);
3672 		else
3673 			node_order[j++] = node;	/* remember order */
3674 	}
3675 
3676 	if (order == ZONELIST_ORDER_ZONE) {
3677 		/* calculate node order -- i.e., DMA last! */
3678 		build_zonelists_in_zone_order(pgdat, j);
3679 	}
3680 
3681 	build_thisnode_zonelists(pgdat);
3682 }
3683 
3684 /* Construct the zonelist performance cache - see further mmzone.h */
3685 static void build_zonelist_cache(pg_data_t *pgdat)
3686 {
3687 	struct zonelist *zonelist;
3688 	struct zonelist_cache *zlc;
3689 	struct zoneref *z;
3690 
3691 	zonelist = &pgdat->node_zonelists[0];
3692 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3693 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3694 	for (z = zonelist->_zonerefs; z->zone; z++)
3695 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3696 }
3697 
3698 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3699 /*
3700  * Return node id of node used for "local" allocations.
3701  * I.e., first node id of first zone in arg node's generic zonelist.
3702  * Used for initializing percpu 'numa_mem', which is used primarily
3703  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3704  */
3705 int local_memory_node(int node)
3706 {
3707 	struct zone *zone;
3708 
3709 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3710 				   gfp_zone(GFP_KERNEL),
3711 				   NULL,
3712 				   &zone);
3713 	return zone->node;
3714 }
3715 #endif
3716 
3717 #else	/* CONFIG_NUMA */
3718 
3719 static void set_zonelist_order(void)
3720 {
3721 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3722 }
3723 
3724 static void build_zonelists(pg_data_t *pgdat)
3725 {
3726 	int node, local_node;
3727 	enum zone_type j;
3728 	struct zonelist *zonelist;
3729 
3730 	local_node = pgdat->node_id;
3731 
3732 	zonelist = &pgdat->node_zonelists[0];
3733 	j = build_zonelists_node(pgdat, zonelist, 0);
3734 
3735 	/*
3736 	 * Now we build the zonelist so that it contains the zones
3737 	 * of all the other nodes.
3738 	 * We don't want to pressure a particular node, so when
3739 	 * building the zones for node N, we make sure that the
3740 	 * zones coming right after the local ones are those from
3741 	 * node N+1 (modulo N)
3742 	 */
3743 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3744 		if (!node_online(node))
3745 			continue;
3746 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3747 	}
3748 	for (node = 0; node < local_node; node++) {
3749 		if (!node_online(node))
3750 			continue;
3751 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3752 	}
3753 
3754 	zonelist->_zonerefs[j].zone = NULL;
3755 	zonelist->_zonerefs[j].zone_idx = 0;
3756 }
3757 
3758 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3759 static void build_zonelist_cache(pg_data_t *pgdat)
3760 {
3761 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3762 }
3763 
3764 #endif	/* CONFIG_NUMA */
3765 
3766 /*
3767  * Boot pageset table. One per cpu which is going to be used for all
3768  * zones and all nodes. The parameters will be set in such a way
3769  * that an item put on a list will immediately be handed over to
3770  * the buddy list. This is safe since pageset manipulation is done
3771  * with interrupts disabled.
3772  *
3773  * The boot_pagesets must be kept even after bootup is complete for
3774  * unused processors and/or zones. They do play a role for bootstrapping
3775  * hotplugged processors.
3776  *
3777  * zoneinfo_show() and maybe other functions do
3778  * not check if the processor is online before following the pageset pointer.
3779  * Other parts of the kernel may not check if the zone is available.
3780  */
3781 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3782 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3783 static void setup_zone_pageset(struct zone *zone);
3784 
3785 /*
3786  * Global mutex to protect against size modification of zonelists
3787  * as well as to serialize pageset setup for the new populated zone.
3788  */
3789 DEFINE_MUTEX(zonelists_mutex);
3790 
3791 /* return values int ....just for stop_machine() */
3792 static int __build_all_zonelists(void *data)
3793 {
3794 	int nid;
3795 	int cpu;
3796 	pg_data_t *self = data;
3797 
3798 #ifdef CONFIG_NUMA
3799 	memset(node_load, 0, sizeof(node_load));
3800 #endif
3801 
3802 	if (self && !node_online(self->node_id)) {
3803 		build_zonelists(self);
3804 		build_zonelist_cache(self);
3805 	}
3806 
3807 	for_each_online_node(nid) {
3808 		pg_data_t *pgdat = NODE_DATA(nid);
3809 
3810 		build_zonelists(pgdat);
3811 		build_zonelist_cache(pgdat);
3812 	}
3813 
3814 	/*
3815 	 * Initialize the boot_pagesets that are going to be used
3816 	 * for bootstrapping processors. The real pagesets for
3817 	 * each zone will be allocated later when the per cpu
3818 	 * allocator is available.
3819 	 *
3820 	 * boot_pagesets are used also for bootstrapping offline
3821 	 * cpus if the system is already booted because the pagesets
3822 	 * are needed to initialize allocators on a specific cpu too.
3823 	 * F.e. the percpu allocator needs the page allocator which
3824 	 * needs the percpu allocator in order to allocate its pagesets
3825 	 * (a chicken-egg dilemma).
3826 	 */
3827 	for_each_possible_cpu(cpu) {
3828 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3829 
3830 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3831 		/*
3832 		 * We now know the "local memory node" for each node--
3833 		 * i.e., the node of the first zone in the generic zonelist.
3834 		 * Set up numa_mem percpu variable for on-line cpus.  During
3835 		 * boot, only the boot cpu should be on-line;  we'll init the
3836 		 * secondary cpus' numa_mem as they come on-line.  During
3837 		 * node/memory hotplug, we'll fixup all on-line cpus.
3838 		 */
3839 		if (cpu_online(cpu))
3840 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3841 #endif
3842 	}
3843 
3844 	return 0;
3845 }
3846 
3847 /*
3848  * Called with zonelists_mutex held always
3849  * unless system_state == SYSTEM_BOOTING.
3850  */
3851 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3852 {
3853 	set_zonelist_order();
3854 
3855 	if (system_state == SYSTEM_BOOTING) {
3856 		__build_all_zonelists(NULL);
3857 		mminit_verify_zonelist();
3858 		cpuset_init_current_mems_allowed();
3859 	} else {
3860 #ifdef CONFIG_MEMORY_HOTPLUG
3861 		if (zone)
3862 			setup_zone_pageset(zone);
3863 #endif
3864 		/* we have to stop all cpus to guarantee there is no user
3865 		   of zonelist */
3866 		stop_machine(__build_all_zonelists, pgdat, NULL);
3867 		/* cpuset refresh routine should be here */
3868 	}
3869 	vm_total_pages = nr_free_pagecache_pages();
3870 	/*
3871 	 * Disable grouping by mobility if the number of pages in the
3872 	 * system is too low to allow the mechanism to work. It would be
3873 	 * more accurate, but expensive to check per-zone. This check is
3874 	 * made on memory-hotadd so a system can start with mobility
3875 	 * disabled and enable it later
3876 	 */
3877 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3878 		page_group_by_mobility_disabled = 1;
3879 	else
3880 		page_group_by_mobility_disabled = 0;
3881 
3882 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3883 		"Total pages: %ld\n",
3884 			nr_online_nodes,
3885 			zonelist_order_name[current_zonelist_order],
3886 			page_group_by_mobility_disabled ? "off" : "on",
3887 			vm_total_pages);
3888 #ifdef CONFIG_NUMA
3889 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3890 #endif
3891 }
3892 
3893 /*
3894  * Helper functions to size the waitqueue hash table.
3895  * Essentially these want to choose hash table sizes sufficiently
3896  * large so that collisions trying to wait on pages are rare.
3897  * But in fact, the number of active page waitqueues on typical
3898  * systems is ridiculously low, less than 200. So this is even
3899  * conservative, even though it seems large.
3900  *
3901  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3902  * waitqueues, i.e. the size of the waitq table given the number of pages.
3903  */
3904 #define PAGES_PER_WAITQUEUE	256
3905 
3906 #ifndef CONFIG_MEMORY_HOTPLUG
3907 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3908 {
3909 	unsigned long size = 1;
3910 
3911 	pages /= PAGES_PER_WAITQUEUE;
3912 
3913 	while (size < pages)
3914 		size <<= 1;
3915 
3916 	/*
3917 	 * Once we have dozens or even hundreds of threads sleeping
3918 	 * on IO we've got bigger problems than wait queue collision.
3919 	 * Limit the size of the wait table to a reasonable size.
3920 	 */
3921 	size = min(size, 4096UL);
3922 
3923 	return max(size, 4UL);
3924 }
3925 #else
3926 /*
3927  * A zone's size might be changed by hot-add, so it is not possible to determine
3928  * a suitable size for its wait_table.  So we use the maximum size now.
3929  *
3930  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3931  *
3932  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3933  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3934  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3935  *
3936  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3937  * or more by the traditional way. (See above).  It equals:
3938  *
3939  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3940  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3941  *    powerpc (64K page size)             : =  (32G +16M)byte.
3942  */
3943 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3944 {
3945 	return 4096UL;
3946 }
3947 #endif
3948 
3949 /*
3950  * This is an integer logarithm so that shifts can be used later
3951  * to extract the more random high bits from the multiplicative
3952  * hash function before the remainder is taken.
3953  */
3954 static inline unsigned long wait_table_bits(unsigned long size)
3955 {
3956 	return ffz(~size);
3957 }
3958 
3959 /*
3960  * Check if a pageblock contains reserved pages
3961  */
3962 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3963 {
3964 	unsigned long pfn;
3965 
3966 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3967 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3968 			return 1;
3969 	}
3970 	return 0;
3971 }
3972 
3973 /*
3974  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3975  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3976  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3977  * higher will lead to a bigger reserve which will get freed as contiguous
3978  * blocks as reclaim kicks in
3979  */
3980 static void setup_zone_migrate_reserve(struct zone *zone)
3981 {
3982 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3983 	struct page *page;
3984 	unsigned long block_migratetype;
3985 	int reserve;
3986 	int old_reserve;
3987 
3988 	/*
3989 	 * Get the start pfn, end pfn and the number of blocks to reserve
3990 	 * We have to be careful to be aligned to pageblock_nr_pages to
3991 	 * make sure that we always check pfn_valid for the first page in
3992 	 * the block.
3993 	 */
3994 	start_pfn = zone->zone_start_pfn;
3995 	end_pfn = zone_end_pfn(zone);
3996 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3997 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3998 							pageblock_order;
3999 
4000 	/*
4001 	 * Reserve blocks are generally in place to help high-order atomic
4002 	 * allocations that are short-lived. A min_free_kbytes value that
4003 	 * would result in more than 2 reserve blocks for atomic allocations
4004 	 * is assumed to be in place to help anti-fragmentation for the
4005 	 * future allocation of hugepages at runtime.
4006 	 */
4007 	reserve = min(2, reserve);
4008 	old_reserve = zone->nr_migrate_reserve_block;
4009 
4010 	/* When memory hot-add, we almost always need to do nothing */
4011 	if (reserve == old_reserve)
4012 		return;
4013 	zone->nr_migrate_reserve_block = reserve;
4014 
4015 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4016 		if (!pfn_valid(pfn))
4017 			continue;
4018 		page = pfn_to_page(pfn);
4019 
4020 		/* Watch out for overlapping nodes */
4021 		if (page_to_nid(page) != zone_to_nid(zone))
4022 			continue;
4023 
4024 		block_migratetype = get_pageblock_migratetype(page);
4025 
4026 		/* Only test what is necessary when the reserves are not met */
4027 		if (reserve > 0) {
4028 			/*
4029 			 * Blocks with reserved pages will never free, skip
4030 			 * them.
4031 			 */
4032 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4033 			if (pageblock_is_reserved(pfn, block_end_pfn))
4034 				continue;
4035 
4036 			/* If this block is reserved, account for it */
4037 			if (block_migratetype == MIGRATE_RESERVE) {
4038 				reserve--;
4039 				continue;
4040 			}
4041 
4042 			/* Suitable for reserving if this block is movable */
4043 			if (block_migratetype == MIGRATE_MOVABLE) {
4044 				set_pageblock_migratetype(page,
4045 							MIGRATE_RESERVE);
4046 				move_freepages_block(zone, page,
4047 							MIGRATE_RESERVE);
4048 				reserve--;
4049 				continue;
4050 			}
4051 		} else if (!old_reserve) {
4052 			/*
4053 			 * At boot time we don't need to scan the whole zone
4054 			 * for turning off MIGRATE_RESERVE.
4055 			 */
4056 			break;
4057 		}
4058 
4059 		/*
4060 		 * If the reserve is met and this is a previous reserved block,
4061 		 * take it back
4062 		 */
4063 		if (block_migratetype == MIGRATE_RESERVE) {
4064 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4065 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4066 		}
4067 	}
4068 }
4069 
4070 /*
4071  * Initially all pages are reserved - free ones are freed
4072  * up by free_all_bootmem() once the early boot process is
4073  * done. Non-atomic initialization, single-pass.
4074  */
4075 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4076 		unsigned long start_pfn, enum memmap_context context)
4077 {
4078 	struct page *page;
4079 	unsigned long end_pfn = start_pfn + size;
4080 	unsigned long pfn;
4081 	struct zone *z;
4082 
4083 	if (highest_memmap_pfn < end_pfn - 1)
4084 		highest_memmap_pfn = end_pfn - 1;
4085 
4086 	z = &NODE_DATA(nid)->node_zones[zone];
4087 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4088 		/*
4089 		 * There can be holes in boot-time mem_map[]s
4090 		 * handed to this function.  They do not
4091 		 * exist on hotplugged memory.
4092 		 */
4093 		if (context == MEMMAP_EARLY) {
4094 			if (!early_pfn_valid(pfn))
4095 				continue;
4096 			if (!early_pfn_in_nid(pfn, nid))
4097 				continue;
4098 		}
4099 		page = pfn_to_page(pfn);
4100 		set_page_links(page, zone, nid, pfn);
4101 		mminit_verify_page_links(page, zone, nid, pfn);
4102 		init_page_count(page);
4103 		page_mapcount_reset(page);
4104 		page_cpupid_reset_last(page);
4105 		SetPageReserved(page);
4106 		/*
4107 		 * Mark the block movable so that blocks are reserved for
4108 		 * movable at startup. This will force kernel allocations
4109 		 * to reserve their blocks rather than leaking throughout
4110 		 * the address space during boot when many long-lived
4111 		 * kernel allocations are made. Later some blocks near
4112 		 * the start are marked MIGRATE_RESERVE by
4113 		 * setup_zone_migrate_reserve()
4114 		 *
4115 		 * bitmap is created for zone's valid pfn range. but memmap
4116 		 * can be created for invalid pages (for alignment)
4117 		 * check here not to call set_pageblock_migratetype() against
4118 		 * pfn out of zone.
4119 		 */
4120 		if ((z->zone_start_pfn <= pfn)
4121 		    && (pfn < zone_end_pfn(z))
4122 		    && !(pfn & (pageblock_nr_pages - 1)))
4123 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4124 
4125 		INIT_LIST_HEAD(&page->lru);
4126 #ifdef WANT_PAGE_VIRTUAL
4127 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4128 		if (!is_highmem_idx(zone))
4129 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4130 #endif
4131 	}
4132 }
4133 
4134 static void __meminit zone_init_free_lists(struct zone *zone)
4135 {
4136 	unsigned int order, t;
4137 	for_each_migratetype_order(order, t) {
4138 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4139 		zone->free_area[order].nr_free = 0;
4140 	}
4141 }
4142 
4143 #ifndef __HAVE_ARCH_MEMMAP_INIT
4144 #define memmap_init(size, nid, zone, start_pfn) \
4145 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4146 #endif
4147 
4148 static int __meminit zone_batchsize(struct zone *zone)
4149 {
4150 #ifdef CONFIG_MMU
4151 	int batch;
4152 
4153 	/*
4154 	 * The per-cpu-pages pools are set to around 1000th of the
4155 	 * size of the zone.  But no more than 1/2 of a meg.
4156 	 *
4157 	 * OK, so we don't know how big the cache is.  So guess.
4158 	 */
4159 	batch = zone->managed_pages / 1024;
4160 	if (batch * PAGE_SIZE > 512 * 1024)
4161 		batch = (512 * 1024) / PAGE_SIZE;
4162 	batch /= 4;		/* We effectively *= 4 below */
4163 	if (batch < 1)
4164 		batch = 1;
4165 
4166 	/*
4167 	 * Clamp the batch to a 2^n - 1 value. Having a power
4168 	 * of 2 value was found to be more likely to have
4169 	 * suboptimal cache aliasing properties in some cases.
4170 	 *
4171 	 * For example if 2 tasks are alternately allocating
4172 	 * batches of pages, one task can end up with a lot
4173 	 * of pages of one half of the possible page colors
4174 	 * and the other with pages of the other colors.
4175 	 */
4176 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4177 
4178 	return batch;
4179 
4180 #else
4181 	/* The deferral and batching of frees should be suppressed under NOMMU
4182 	 * conditions.
4183 	 *
4184 	 * The problem is that NOMMU needs to be able to allocate large chunks
4185 	 * of contiguous memory as there's no hardware page translation to
4186 	 * assemble apparent contiguous memory from discontiguous pages.
4187 	 *
4188 	 * Queueing large contiguous runs of pages for batching, however,
4189 	 * causes the pages to actually be freed in smaller chunks.  As there
4190 	 * can be a significant delay between the individual batches being
4191 	 * recycled, this leads to the once large chunks of space being
4192 	 * fragmented and becoming unavailable for high-order allocations.
4193 	 */
4194 	return 0;
4195 #endif
4196 }
4197 
4198 /*
4199  * pcp->high and pcp->batch values are related and dependent on one another:
4200  * ->batch must never be higher then ->high.
4201  * The following function updates them in a safe manner without read side
4202  * locking.
4203  *
4204  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4205  * those fields changing asynchronously (acording the the above rule).
4206  *
4207  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4208  * outside of boot time (or some other assurance that no concurrent updaters
4209  * exist).
4210  */
4211 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4212 		unsigned long batch)
4213 {
4214        /* start with a fail safe value for batch */
4215 	pcp->batch = 1;
4216 	smp_wmb();
4217 
4218        /* Update high, then batch, in order */
4219 	pcp->high = high;
4220 	smp_wmb();
4221 
4222 	pcp->batch = batch;
4223 }
4224 
4225 /* a companion to pageset_set_high() */
4226 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4227 {
4228 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4229 }
4230 
4231 static void pageset_init(struct per_cpu_pageset *p)
4232 {
4233 	struct per_cpu_pages *pcp;
4234 	int migratetype;
4235 
4236 	memset(p, 0, sizeof(*p));
4237 
4238 	pcp = &p->pcp;
4239 	pcp->count = 0;
4240 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4241 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4242 }
4243 
4244 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4245 {
4246 	pageset_init(p);
4247 	pageset_set_batch(p, batch);
4248 }
4249 
4250 /*
4251  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4252  * to the value high for the pageset p.
4253  */
4254 static void pageset_set_high(struct per_cpu_pageset *p,
4255 				unsigned long high)
4256 {
4257 	unsigned long batch = max(1UL, high / 4);
4258 	if ((high / 4) > (PAGE_SHIFT * 8))
4259 		batch = PAGE_SHIFT * 8;
4260 
4261 	pageset_update(&p->pcp, high, batch);
4262 }
4263 
4264 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4265 		struct per_cpu_pageset *pcp)
4266 {
4267 	if (percpu_pagelist_fraction)
4268 		pageset_set_high(pcp,
4269 			(zone->managed_pages /
4270 				percpu_pagelist_fraction));
4271 	else
4272 		pageset_set_batch(pcp, zone_batchsize(zone));
4273 }
4274 
4275 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4276 {
4277 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4278 
4279 	pageset_init(pcp);
4280 	pageset_set_high_and_batch(zone, pcp);
4281 }
4282 
4283 static void __meminit setup_zone_pageset(struct zone *zone)
4284 {
4285 	int cpu;
4286 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4287 	for_each_possible_cpu(cpu)
4288 		zone_pageset_init(zone, cpu);
4289 }
4290 
4291 /*
4292  * Allocate per cpu pagesets and initialize them.
4293  * Before this call only boot pagesets were available.
4294  */
4295 void __init setup_per_cpu_pageset(void)
4296 {
4297 	struct zone *zone;
4298 
4299 	for_each_populated_zone(zone)
4300 		setup_zone_pageset(zone);
4301 }
4302 
4303 static noinline __init_refok
4304 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4305 {
4306 	int i;
4307 	size_t alloc_size;
4308 
4309 	/*
4310 	 * The per-page waitqueue mechanism uses hashed waitqueues
4311 	 * per zone.
4312 	 */
4313 	zone->wait_table_hash_nr_entries =
4314 		 wait_table_hash_nr_entries(zone_size_pages);
4315 	zone->wait_table_bits =
4316 		wait_table_bits(zone->wait_table_hash_nr_entries);
4317 	alloc_size = zone->wait_table_hash_nr_entries
4318 					* sizeof(wait_queue_head_t);
4319 
4320 	if (!slab_is_available()) {
4321 		zone->wait_table = (wait_queue_head_t *)
4322 			memblock_virt_alloc_node_nopanic(
4323 				alloc_size, zone->zone_pgdat->node_id);
4324 	} else {
4325 		/*
4326 		 * This case means that a zone whose size was 0 gets new memory
4327 		 * via memory hot-add.
4328 		 * But it may be the case that a new node was hot-added.  In
4329 		 * this case vmalloc() will not be able to use this new node's
4330 		 * memory - this wait_table must be initialized to use this new
4331 		 * node itself as well.
4332 		 * To use this new node's memory, further consideration will be
4333 		 * necessary.
4334 		 */
4335 		zone->wait_table = vmalloc(alloc_size);
4336 	}
4337 	if (!zone->wait_table)
4338 		return -ENOMEM;
4339 
4340 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4341 		init_waitqueue_head(zone->wait_table + i);
4342 
4343 	return 0;
4344 }
4345 
4346 static __meminit void zone_pcp_init(struct zone *zone)
4347 {
4348 	/*
4349 	 * per cpu subsystem is not up at this point. The following code
4350 	 * relies on the ability of the linker to provide the
4351 	 * offset of a (static) per cpu variable into the per cpu area.
4352 	 */
4353 	zone->pageset = &boot_pageset;
4354 
4355 	if (populated_zone(zone))
4356 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4357 			zone->name, zone->present_pages,
4358 					 zone_batchsize(zone));
4359 }
4360 
4361 int __meminit init_currently_empty_zone(struct zone *zone,
4362 					unsigned long zone_start_pfn,
4363 					unsigned long size,
4364 					enum memmap_context context)
4365 {
4366 	struct pglist_data *pgdat = zone->zone_pgdat;
4367 	int ret;
4368 	ret = zone_wait_table_init(zone, size);
4369 	if (ret)
4370 		return ret;
4371 	pgdat->nr_zones = zone_idx(zone) + 1;
4372 
4373 	zone->zone_start_pfn = zone_start_pfn;
4374 
4375 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4376 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4377 			pgdat->node_id,
4378 			(unsigned long)zone_idx(zone),
4379 			zone_start_pfn, (zone_start_pfn + size));
4380 
4381 	zone_init_free_lists(zone);
4382 
4383 	return 0;
4384 }
4385 
4386 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4387 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4388 /*
4389  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4390  */
4391 int __meminit __early_pfn_to_nid(unsigned long pfn)
4392 {
4393 	unsigned long start_pfn, end_pfn;
4394 	int nid;
4395 	/*
4396 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4397 	 * when the kernel is running single-threaded.
4398 	 */
4399 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4400 	static int __meminitdata last_nid;
4401 
4402 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4403 		return last_nid;
4404 
4405 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4406 	if (nid != -1) {
4407 		last_start_pfn = start_pfn;
4408 		last_end_pfn = end_pfn;
4409 		last_nid = nid;
4410 	}
4411 
4412 	return nid;
4413 }
4414 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4415 
4416 int __meminit early_pfn_to_nid(unsigned long pfn)
4417 {
4418 	int nid;
4419 
4420 	nid = __early_pfn_to_nid(pfn);
4421 	if (nid >= 0)
4422 		return nid;
4423 	/* just returns 0 */
4424 	return 0;
4425 }
4426 
4427 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4428 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4429 {
4430 	int nid;
4431 
4432 	nid = __early_pfn_to_nid(pfn);
4433 	if (nid >= 0 && nid != node)
4434 		return false;
4435 	return true;
4436 }
4437 #endif
4438 
4439 /**
4440  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4441  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4442  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4443  *
4444  * If an architecture guarantees that all ranges registered contain no holes
4445  * and may be freed, this this function may be used instead of calling
4446  * memblock_free_early_nid() manually.
4447  */
4448 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4449 {
4450 	unsigned long start_pfn, end_pfn;
4451 	int i, this_nid;
4452 
4453 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4454 		start_pfn = min(start_pfn, max_low_pfn);
4455 		end_pfn = min(end_pfn, max_low_pfn);
4456 
4457 		if (start_pfn < end_pfn)
4458 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4459 					(end_pfn - start_pfn) << PAGE_SHIFT,
4460 					this_nid);
4461 	}
4462 }
4463 
4464 /**
4465  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4466  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4467  *
4468  * If an architecture guarantees that all ranges registered contain no holes and may
4469  * be freed, this function may be used instead of calling memory_present() manually.
4470  */
4471 void __init sparse_memory_present_with_active_regions(int nid)
4472 {
4473 	unsigned long start_pfn, end_pfn;
4474 	int i, this_nid;
4475 
4476 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4477 		memory_present(this_nid, start_pfn, end_pfn);
4478 }
4479 
4480 /**
4481  * get_pfn_range_for_nid - Return the start and end page frames for a node
4482  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4483  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4484  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4485  *
4486  * It returns the start and end page frame of a node based on information
4487  * provided by memblock_set_node(). If called for a node
4488  * with no available memory, a warning is printed and the start and end
4489  * PFNs will be 0.
4490  */
4491 void __meminit get_pfn_range_for_nid(unsigned int nid,
4492 			unsigned long *start_pfn, unsigned long *end_pfn)
4493 {
4494 	unsigned long this_start_pfn, this_end_pfn;
4495 	int i;
4496 
4497 	*start_pfn = -1UL;
4498 	*end_pfn = 0;
4499 
4500 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4501 		*start_pfn = min(*start_pfn, this_start_pfn);
4502 		*end_pfn = max(*end_pfn, this_end_pfn);
4503 	}
4504 
4505 	if (*start_pfn == -1UL)
4506 		*start_pfn = 0;
4507 }
4508 
4509 /*
4510  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4511  * assumption is made that zones within a node are ordered in monotonic
4512  * increasing memory addresses so that the "highest" populated zone is used
4513  */
4514 static void __init find_usable_zone_for_movable(void)
4515 {
4516 	int zone_index;
4517 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4518 		if (zone_index == ZONE_MOVABLE)
4519 			continue;
4520 
4521 		if (arch_zone_highest_possible_pfn[zone_index] >
4522 				arch_zone_lowest_possible_pfn[zone_index])
4523 			break;
4524 	}
4525 
4526 	VM_BUG_ON(zone_index == -1);
4527 	movable_zone = zone_index;
4528 }
4529 
4530 /*
4531  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4532  * because it is sized independent of architecture. Unlike the other zones,
4533  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4534  * in each node depending on the size of each node and how evenly kernelcore
4535  * is distributed. This helper function adjusts the zone ranges
4536  * provided by the architecture for a given node by using the end of the
4537  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4538  * zones within a node are in order of monotonic increases memory addresses
4539  */
4540 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4541 					unsigned long zone_type,
4542 					unsigned long node_start_pfn,
4543 					unsigned long node_end_pfn,
4544 					unsigned long *zone_start_pfn,
4545 					unsigned long *zone_end_pfn)
4546 {
4547 	/* Only adjust if ZONE_MOVABLE is on this node */
4548 	if (zone_movable_pfn[nid]) {
4549 		/* Size ZONE_MOVABLE */
4550 		if (zone_type == ZONE_MOVABLE) {
4551 			*zone_start_pfn = zone_movable_pfn[nid];
4552 			*zone_end_pfn = min(node_end_pfn,
4553 				arch_zone_highest_possible_pfn[movable_zone]);
4554 
4555 		/* Adjust for ZONE_MOVABLE starting within this range */
4556 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4557 				*zone_end_pfn > zone_movable_pfn[nid]) {
4558 			*zone_end_pfn = zone_movable_pfn[nid];
4559 
4560 		/* Check if this whole range is within ZONE_MOVABLE */
4561 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4562 			*zone_start_pfn = *zone_end_pfn;
4563 	}
4564 }
4565 
4566 /*
4567  * Return the number of pages a zone spans in a node, including holes
4568  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4569  */
4570 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4571 					unsigned long zone_type,
4572 					unsigned long node_start_pfn,
4573 					unsigned long node_end_pfn,
4574 					unsigned long *ignored)
4575 {
4576 	unsigned long zone_start_pfn, zone_end_pfn;
4577 
4578 	/* Get the start and end of the zone */
4579 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4580 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4581 	adjust_zone_range_for_zone_movable(nid, zone_type,
4582 				node_start_pfn, node_end_pfn,
4583 				&zone_start_pfn, &zone_end_pfn);
4584 
4585 	/* Check that this node has pages within the zone's required range */
4586 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4587 		return 0;
4588 
4589 	/* Move the zone boundaries inside the node if necessary */
4590 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4591 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4592 
4593 	/* Return the spanned pages */
4594 	return zone_end_pfn - zone_start_pfn;
4595 }
4596 
4597 /*
4598  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4599  * then all holes in the requested range will be accounted for.
4600  */
4601 unsigned long __meminit __absent_pages_in_range(int nid,
4602 				unsigned long range_start_pfn,
4603 				unsigned long range_end_pfn)
4604 {
4605 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4606 	unsigned long start_pfn, end_pfn;
4607 	int i;
4608 
4609 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4610 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4611 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4612 		nr_absent -= end_pfn - start_pfn;
4613 	}
4614 	return nr_absent;
4615 }
4616 
4617 /**
4618  * absent_pages_in_range - Return number of page frames in holes within a range
4619  * @start_pfn: The start PFN to start searching for holes
4620  * @end_pfn: The end PFN to stop searching for holes
4621  *
4622  * It returns the number of pages frames in memory holes within a range.
4623  */
4624 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4625 							unsigned long end_pfn)
4626 {
4627 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4628 }
4629 
4630 /* Return the number of page frames in holes in a zone on a node */
4631 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4632 					unsigned long zone_type,
4633 					unsigned long node_start_pfn,
4634 					unsigned long node_end_pfn,
4635 					unsigned long *ignored)
4636 {
4637 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4638 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4639 	unsigned long zone_start_pfn, zone_end_pfn;
4640 
4641 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4642 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4643 
4644 	adjust_zone_range_for_zone_movable(nid, zone_type,
4645 			node_start_pfn, node_end_pfn,
4646 			&zone_start_pfn, &zone_end_pfn);
4647 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4648 }
4649 
4650 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4651 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4652 					unsigned long zone_type,
4653 					unsigned long node_start_pfn,
4654 					unsigned long node_end_pfn,
4655 					unsigned long *zones_size)
4656 {
4657 	return zones_size[zone_type];
4658 }
4659 
4660 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4661 						unsigned long zone_type,
4662 						unsigned long node_start_pfn,
4663 						unsigned long node_end_pfn,
4664 						unsigned long *zholes_size)
4665 {
4666 	if (!zholes_size)
4667 		return 0;
4668 
4669 	return zholes_size[zone_type];
4670 }
4671 
4672 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4673 
4674 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4675 						unsigned long node_start_pfn,
4676 						unsigned long node_end_pfn,
4677 						unsigned long *zones_size,
4678 						unsigned long *zholes_size)
4679 {
4680 	unsigned long realtotalpages, totalpages = 0;
4681 	enum zone_type i;
4682 
4683 	for (i = 0; i < MAX_NR_ZONES; i++)
4684 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4685 							 node_start_pfn,
4686 							 node_end_pfn,
4687 							 zones_size);
4688 	pgdat->node_spanned_pages = totalpages;
4689 
4690 	realtotalpages = totalpages;
4691 	for (i = 0; i < MAX_NR_ZONES; i++)
4692 		realtotalpages -=
4693 			zone_absent_pages_in_node(pgdat->node_id, i,
4694 						  node_start_pfn, node_end_pfn,
4695 						  zholes_size);
4696 	pgdat->node_present_pages = realtotalpages;
4697 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4698 							realtotalpages);
4699 }
4700 
4701 #ifndef CONFIG_SPARSEMEM
4702 /*
4703  * Calculate the size of the zone->blockflags rounded to an unsigned long
4704  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4705  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4706  * round what is now in bits to nearest long in bits, then return it in
4707  * bytes.
4708  */
4709 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4710 {
4711 	unsigned long usemapsize;
4712 
4713 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4714 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4715 	usemapsize = usemapsize >> pageblock_order;
4716 	usemapsize *= NR_PAGEBLOCK_BITS;
4717 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4718 
4719 	return usemapsize / 8;
4720 }
4721 
4722 static void __init setup_usemap(struct pglist_data *pgdat,
4723 				struct zone *zone,
4724 				unsigned long zone_start_pfn,
4725 				unsigned long zonesize)
4726 {
4727 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4728 	zone->pageblock_flags = NULL;
4729 	if (usemapsize)
4730 		zone->pageblock_flags =
4731 			memblock_virt_alloc_node_nopanic(usemapsize,
4732 							 pgdat->node_id);
4733 }
4734 #else
4735 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4736 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4737 #endif /* CONFIG_SPARSEMEM */
4738 
4739 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4740 
4741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4742 void __paginginit set_pageblock_order(void)
4743 {
4744 	unsigned int order;
4745 
4746 	/* Check that pageblock_nr_pages has not already been setup */
4747 	if (pageblock_order)
4748 		return;
4749 
4750 	if (HPAGE_SHIFT > PAGE_SHIFT)
4751 		order = HUGETLB_PAGE_ORDER;
4752 	else
4753 		order = MAX_ORDER - 1;
4754 
4755 	/*
4756 	 * Assume the largest contiguous order of interest is a huge page.
4757 	 * This value may be variable depending on boot parameters on IA64 and
4758 	 * powerpc.
4759 	 */
4760 	pageblock_order = order;
4761 }
4762 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4763 
4764 /*
4765  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4766  * is unused as pageblock_order is set at compile-time. See
4767  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4768  * the kernel config
4769  */
4770 void __paginginit set_pageblock_order(void)
4771 {
4772 }
4773 
4774 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4775 
4776 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4777 						   unsigned long present_pages)
4778 {
4779 	unsigned long pages = spanned_pages;
4780 
4781 	/*
4782 	 * Provide a more accurate estimation if there are holes within
4783 	 * the zone and SPARSEMEM is in use. If there are holes within the
4784 	 * zone, each populated memory region may cost us one or two extra
4785 	 * memmap pages due to alignment because memmap pages for each
4786 	 * populated regions may not naturally algined on page boundary.
4787 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4788 	 */
4789 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4790 	    IS_ENABLED(CONFIG_SPARSEMEM))
4791 		pages = present_pages;
4792 
4793 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4794 }
4795 
4796 /*
4797  * Set up the zone data structures:
4798  *   - mark all pages reserved
4799  *   - mark all memory queues empty
4800  *   - clear the memory bitmaps
4801  *
4802  * NOTE: pgdat should get zeroed by caller.
4803  */
4804 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4805 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4806 		unsigned long *zones_size, unsigned long *zholes_size)
4807 {
4808 	enum zone_type j;
4809 	int nid = pgdat->node_id;
4810 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4811 	int ret;
4812 
4813 	pgdat_resize_init(pgdat);
4814 #ifdef CONFIG_NUMA_BALANCING
4815 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4816 	pgdat->numabalancing_migrate_nr_pages = 0;
4817 	pgdat->numabalancing_migrate_next_window = jiffies;
4818 #endif
4819 	init_waitqueue_head(&pgdat->kswapd_wait);
4820 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4821 	pgdat_page_cgroup_init(pgdat);
4822 
4823 	for (j = 0; j < MAX_NR_ZONES; j++) {
4824 		struct zone *zone = pgdat->node_zones + j;
4825 		unsigned long size, realsize, freesize, memmap_pages;
4826 
4827 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4828 						  node_end_pfn, zones_size);
4829 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4830 								node_start_pfn,
4831 								node_end_pfn,
4832 								zholes_size);
4833 
4834 		/*
4835 		 * Adjust freesize so that it accounts for how much memory
4836 		 * is used by this zone for memmap. This affects the watermark
4837 		 * and per-cpu initialisations
4838 		 */
4839 		memmap_pages = calc_memmap_size(size, realsize);
4840 		if (freesize >= memmap_pages) {
4841 			freesize -= memmap_pages;
4842 			if (memmap_pages)
4843 				printk(KERN_DEBUG
4844 				       "  %s zone: %lu pages used for memmap\n",
4845 				       zone_names[j], memmap_pages);
4846 		} else
4847 			printk(KERN_WARNING
4848 				"  %s zone: %lu pages exceeds freesize %lu\n",
4849 				zone_names[j], memmap_pages, freesize);
4850 
4851 		/* Account for reserved pages */
4852 		if (j == 0 && freesize > dma_reserve) {
4853 			freesize -= dma_reserve;
4854 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4855 					zone_names[0], dma_reserve);
4856 		}
4857 
4858 		if (!is_highmem_idx(j))
4859 			nr_kernel_pages += freesize;
4860 		/* Charge for highmem memmap if there are enough kernel pages */
4861 		else if (nr_kernel_pages > memmap_pages * 2)
4862 			nr_kernel_pages -= memmap_pages;
4863 		nr_all_pages += freesize;
4864 
4865 		zone->spanned_pages = size;
4866 		zone->present_pages = realsize;
4867 		/*
4868 		 * Set an approximate value for lowmem here, it will be adjusted
4869 		 * when the bootmem allocator frees pages into the buddy system.
4870 		 * And all highmem pages will be managed by the buddy system.
4871 		 */
4872 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4873 #ifdef CONFIG_NUMA
4874 		zone->node = nid;
4875 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4876 						/ 100;
4877 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4878 #endif
4879 		zone->name = zone_names[j];
4880 		spin_lock_init(&zone->lock);
4881 		spin_lock_init(&zone->lru_lock);
4882 		zone_seqlock_init(zone);
4883 		zone->zone_pgdat = pgdat;
4884 		zone_pcp_init(zone);
4885 
4886 		/* For bootup, initialized properly in watermark setup */
4887 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4888 
4889 		lruvec_init(&zone->lruvec);
4890 		if (!size)
4891 			continue;
4892 
4893 		set_pageblock_order();
4894 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4895 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4896 						size, MEMMAP_EARLY);
4897 		BUG_ON(ret);
4898 		memmap_init(size, nid, j, zone_start_pfn);
4899 		zone_start_pfn += size;
4900 	}
4901 }
4902 
4903 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4904 {
4905 	/* Skip empty nodes */
4906 	if (!pgdat->node_spanned_pages)
4907 		return;
4908 
4909 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4910 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4911 	if (!pgdat->node_mem_map) {
4912 		unsigned long size, start, end;
4913 		struct page *map;
4914 
4915 		/*
4916 		 * The zone's endpoints aren't required to be MAX_ORDER
4917 		 * aligned but the node_mem_map endpoints must be in order
4918 		 * for the buddy allocator to function correctly.
4919 		 */
4920 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4921 		end = pgdat_end_pfn(pgdat);
4922 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4923 		size =  (end - start) * sizeof(struct page);
4924 		map = alloc_remap(pgdat->node_id, size);
4925 		if (!map)
4926 			map = memblock_virt_alloc_node_nopanic(size,
4927 							       pgdat->node_id);
4928 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4929 	}
4930 #ifndef CONFIG_NEED_MULTIPLE_NODES
4931 	/*
4932 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4933 	 */
4934 	if (pgdat == NODE_DATA(0)) {
4935 		mem_map = NODE_DATA(0)->node_mem_map;
4936 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4937 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4938 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4939 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4940 	}
4941 #endif
4942 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4943 }
4944 
4945 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4946 		unsigned long node_start_pfn, unsigned long *zholes_size)
4947 {
4948 	pg_data_t *pgdat = NODE_DATA(nid);
4949 	unsigned long start_pfn = 0;
4950 	unsigned long end_pfn = 0;
4951 
4952 	/* pg_data_t should be reset to zero when it's allocated */
4953 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4954 
4955 	pgdat->node_id = nid;
4956 	pgdat->node_start_pfn = node_start_pfn;
4957 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4958 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4959 #endif
4960 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4961 				  zones_size, zholes_size);
4962 
4963 	alloc_node_mem_map(pgdat);
4964 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4965 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4966 		nid, (unsigned long)pgdat,
4967 		(unsigned long)pgdat->node_mem_map);
4968 #endif
4969 
4970 	free_area_init_core(pgdat, start_pfn, end_pfn,
4971 			    zones_size, zholes_size);
4972 }
4973 
4974 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4975 
4976 #if MAX_NUMNODES > 1
4977 /*
4978  * Figure out the number of possible node ids.
4979  */
4980 void __init setup_nr_node_ids(void)
4981 {
4982 	unsigned int node;
4983 	unsigned int highest = 0;
4984 
4985 	for_each_node_mask(node, node_possible_map)
4986 		highest = node;
4987 	nr_node_ids = highest + 1;
4988 }
4989 #endif
4990 
4991 /**
4992  * node_map_pfn_alignment - determine the maximum internode alignment
4993  *
4994  * This function should be called after node map is populated and sorted.
4995  * It calculates the maximum power of two alignment which can distinguish
4996  * all the nodes.
4997  *
4998  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4999  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5000  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5001  * shifted, 1GiB is enough and this function will indicate so.
5002  *
5003  * This is used to test whether pfn -> nid mapping of the chosen memory
5004  * model has fine enough granularity to avoid incorrect mapping for the
5005  * populated node map.
5006  *
5007  * Returns the determined alignment in pfn's.  0 if there is no alignment
5008  * requirement (single node).
5009  */
5010 unsigned long __init node_map_pfn_alignment(void)
5011 {
5012 	unsigned long accl_mask = 0, last_end = 0;
5013 	unsigned long start, end, mask;
5014 	int last_nid = -1;
5015 	int i, nid;
5016 
5017 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5018 		if (!start || last_nid < 0 || last_nid == nid) {
5019 			last_nid = nid;
5020 			last_end = end;
5021 			continue;
5022 		}
5023 
5024 		/*
5025 		 * Start with a mask granular enough to pin-point to the
5026 		 * start pfn and tick off bits one-by-one until it becomes
5027 		 * too coarse to separate the current node from the last.
5028 		 */
5029 		mask = ~((1 << __ffs(start)) - 1);
5030 		while (mask && last_end <= (start & (mask << 1)))
5031 			mask <<= 1;
5032 
5033 		/* accumulate all internode masks */
5034 		accl_mask |= mask;
5035 	}
5036 
5037 	/* convert mask to number of pages */
5038 	return ~accl_mask + 1;
5039 }
5040 
5041 /* Find the lowest pfn for a node */
5042 static unsigned long __init find_min_pfn_for_node(int nid)
5043 {
5044 	unsigned long min_pfn = ULONG_MAX;
5045 	unsigned long start_pfn;
5046 	int i;
5047 
5048 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5049 		min_pfn = min(min_pfn, start_pfn);
5050 
5051 	if (min_pfn == ULONG_MAX) {
5052 		printk(KERN_WARNING
5053 			"Could not find start_pfn for node %d\n", nid);
5054 		return 0;
5055 	}
5056 
5057 	return min_pfn;
5058 }
5059 
5060 /**
5061  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5062  *
5063  * It returns the minimum PFN based on information provided via
5064  * memblock_set_node().
5065  */
5066 unsigned long __init find_min_pfn_with_active_regions(void)
5067 {
5068 	return find_min_pfn_for_node(MAX_NUMNODES);
5069 }
5070 
5071 /*
5072  * early_calculate_totalpages()
5073  * Sum pages in active regions for movable zone.
5074  * Populate N_MEMORY for calculating usable_nodes.
5075  */
5076 static unsigned long __init early_calculate_totalpages(void)
5077 {
5078 	unsigned long totalpages = 0;
5079 	unsigned long start_pfn, end_pfn;
5080 	int i, nid;
5081 
5082 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5083 		unsigned long pages = end_pfn - start_pfn;
5084 
5085 		totalpages += pages;
5086 		if (pages)
5087 			node_set_state(nid, N_MEMORY);
5088 	}
5089 	return totalpages;
5090 }
5091 
5092 /*
5093  * Find the PFN the Movable zone begins in each node. Kernel memory
5094  * is spread evenly between nodes as long as the nodes have enough
5095  * memory. When they don't, some nodes will have more kernelcore than
5096  * others
5097  */
5098 static void __init find_zone_movable_pfns_for_nodes(void)
5099 {
5100 	int i, nid;
5101 	unsigned long usable_startpfn;
5102 	unsigned long kernelcore_node, kernelcore_remaining;
5103 	/* save the state before borrow the nodemask */
5104 	nodemask_t saved_node_state = node_states[N_MEMORY];
5105 	unsigned long totalpages = early_calculate_totalpages();
5106 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5107 	struct memblock_region *r;
5108 
5109 	/* Need to find movable_zone earlier when movable_node is specified. */
5110 	find_usable_zone_for_movable();
5111 
5112 	/*
5113 	 * If movable_node is specified, ignore kernelcore and movablecore
5114 	 * options.
5115 	 */
5116 	if (movable_node_is_enabled()) {
5117 		for_each_memblock(memory, r) {
5118 			if (!memblock_is_hotpluggable(r))
5119 				continue;
5120 
5121 			nid = r->nid;
5122 
5123 			usable_startpfn = PFN_DOWN(r->base);
5124 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5125 				min(usable_startpfn, zone_movable_pfn[nid]) :
5126 				usable_startpfn;
5127 		}
5128 
5129 		goto out2;
5130 	}
5131 
5132 	/*
5133 	 * If movablecore=nn[KMG] was specified, calculate what size of
5134 	 * kernelcore that corresponds so that memory usable for
5135 	 * any allocation type is evenly spread. If both kernelcore
5136 	 * and movablecore are specified, then the value of kernelcore
5137 	 * will be used for required_kernelcore if it's greater than
5138 	 * what movablecore would have allowed.
5139 	 */
5140 	if (required_movablecore) {
5141 		unsigned long corepages;
5142 
5143 		/*
5144 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5145 		 * was requested by the user
5146 		 */
5147 		required_movablecore =
5148 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5149 		corepages = totalpages - required_movablecore;
5150 
5151 		required_kernelcore = max(required_kernelcore, corepages);
5152 	}
5153 
5154 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5155 	if (!required_kernelcore)
5156 		goto out;
5157 
5158 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5159 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5160 
5161 restart:
5162 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5163 	kernelcore_node = required_kernelcore / usable_nodes;
5164 	for_each_node_state(nid, N_MEMORY) {
5165 		unsigned long start_pfn, end_pfn;
5166 
5167 		/*
5168 		 * Recalculate kernelcore_node if the division per node
5169 		 * now exceeds what is necessary to satisfy the requested
5170 		 * amount of memory for the kernel
5171 		 */
5172 		if (required_kernelcore < kernelcore_node)
5173 			kernelcore_node = required_kernelcore / usable_nodes;
5174 
5175 		/*
5176 		 * As the map is walked, we track how much memory is usable
5177 		 * by the kernel using kernelcore_remaining. When it is
5178 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5179 		 */
5180 		kernelcore_remaining = kernelcore_node;
5181 
5182 		/* Go through each range of PFNs within this node */
5183 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5184 			unsigned long size_pages;
5185 
5186 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5187 			if (start_pfn >= end_pfn)
5188 				continue;
5189 
5190 			/* Account for what is only usable for kernelcore */
5191 			if (start_pfn < usable_startpfn) {
5192 				unsigned long kernel_pages;
5193 				kernel_pages = min(end_pfn, usable_startpfn)
5194 								- start_pfn;
5195 
5196 				kernelcore_remaining -= min(kernel_pages,
5197 							kernelcore_remaining);
5198 				required_kernelcore -= min(kernel_pages,
5199 							required_kernelcore);
5200 
5201 				/* Continue if range is now fully accounted */
5202 				if (end_pfn <= usable_startpfn) {
5203 
5204 					/*
5205 					 * Push zone_movable_pfn to the end so
5206 					 * that if we have to rebalance
5207 					 * kernelcore across nodes, we will
5208 					 * not double account here
5209 					 */
5210 					zone_movable_pfn[nid] = end_pfn;
5211 					continue;
5212 				}
5213 				start_pfn = usable_startpfn;
5214 			}
5215 
5216 			/*
5217 			 * The usable PFN range for ZONE_MOVABLE is from
5218 			 * start_pfn->end_pfn. Calculate size_pages as the
5219 			 * number of pages used as kernelcore
5220 			 */
5221 			size_pages = end_pfn - start_pfn;
5222 			if (size_pages > kernelcore_remaining)
5223 				size_pages = kernelcore_remaining;
5224 			zone_movable_pfn[nid] = start_pfn + size_pages;
5225 
5226 			/*
5227 			 * Some kernelcore has been met, update counts and
5228 			 * break if the kernelcore for this node has been
5229 			 * satisfied
5230 			 */
5231 			required_kernelcore -= min(required_kernelcore,
5232 								size_pages);
5233 			kernelcore_remaining -= size_pages;
5234 			if (!kernelcore_remaining)
5235 				break;
5236 		}
5237 	}
5238 
5239 	/*
5240 	 * If there is still required_kernelcore, we do another pass with one
5241 	 * less node in the count. This will push zone_movable_pfn[nid] further
5242 	 * along on the nodes that still have memory until kernelcore is
5243 	 * satisfied
5244 	 */
5245 	usable_nodes--;
5246 	if (usable_nodes && required_kernelcore > usable_nodes)
5247 		goto restart;
5248 
5249 out2:
5250 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5251 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5252 		zone_movable_pfn[nid] =
5253 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5254 
5255 out:
5256 	/* restore the node_state */
5257 	node_states[N_MEMORY] = saved_node_state;
5258 }
5259 
5260 /* Any regular or high memory on that node ? */
5261 static void check_for_memory(pg_data_t *pgdat, int nid)
5262 {
5263 	enum zone_type zone_type;
5264 
5265 	if (N_MEMORY == N_NORMAL_MEMORY)
5266 		return;
5267 
5268 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5269 		struct zone *zone = &pgdat->node_zones[zone_type];
5270 		if (populated_zone(zone)) {
5271 			node_set_state(nid, N_HIGH_MEMORY);
5272 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5273 			    zone_type <= ZONE_NORMAL)
5274 				node_set_state(nid, N_NORMAL_MEMORY);
5275 			break;
5276 		}
5277 	}
5278 }
5279 
5280 /**
5281  * free_area_init_nodes - Initialise all pg_data_t and zone data
5282  * @max_zone_pfn: an array of max PFNs for each zone
5283  *
5284  * This will call free_area_init_node() for each active node in the system.
5285  * Using the page ranges provided by memblock_set_node(), the size of each
5286  * zone in each node and their holes is calculated. If the maximum PFN
5287  * between two adjacent zones match, it is assumed that the zone is empty.
5288  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5289  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5290  * starts where the previous one ended. For example, ZONE_DMA32 starts
5291  * at arch_max_dma_pfn.
5292  */
5293 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5294 {
5295 	unsigned long start_pfn, end_pfn;
5296 	int i, nid;
5297 
5298 	/* Record where the zone boundaries are */
5299 	memset(arch_zone_lowest_possible_pfn, 0,
5300 				sizeof(arch_zone_lowest_possible_pfn));
5301 	memset(arch_zone_highest_possible_pfn, 0,
5302 				sizeof(arch_zone_highest_possible_pfn));
5303 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5304 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5305 	for (i = 1; i < MAX_NR_ZONES; i++) {
5306 		if (i == ZONE_MOVABLE)
5307 			continue;
5308 		arch_zone_lowest_possible_pfn[i] =
5309 			arch_zone_highest_possible_pfn[i-1];
5310 		arch_zone_highest_possible_pfn[i] =
5311 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5312 	}
5313 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5314 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5315 
5316 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5317 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5318 	find_zone_movable_pfns_for_nodes();
5319 
5320 	/* Print out the zone ranges */
5321 	printk("Zone ranges:\n");
5322 	for (i = 0; i < MAX_NR_ZONES; i++) {
5323 		if (i == ZONE_MOVABLE)
5324 			continue;
5325 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5326 		if (arch_zone_lowest_possible_pfn[i] ==
5327 				arch_zone_highest_possible_pfn[i])
5328 			printk(KERN_CONT "empty\n");
5329 		else
5330 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5331 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5332 				(arch_zone_highest_possible_pfn[i]
5333 					<< PAGE_SHIFT) - 1);
5334 	}
5335 
5336 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5337 	printk("Movable zone start for each node\n");
5338 	for (i = 0; i < MAX_NUMNODES; i++) {
5339 		if (zone_movable_pfn[i])
5340 			printk("  Node %d: %#010lx\n", i,
5341 			       zone_movable_pfn[i] << PAGE_SHIFT);
5342 	}
5343 
5344 	/* Print out the early node map */
5345 	printk("Early memory node ranges\n");
5346 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5347 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5348 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5349 
5350 	/* Initialise every node */
5351 	mminit_verify_pageflags_layout();
5352 	setup_nr_node_ids();
5353 	for_each_online_node(nid) {
5354 		pg_data_t *pgdat = NODE_DATA(nid);
5355 		free_area_init_node(nid, NULL,
5356 				find_min_pfn_for_node(nid), NULL);
5357 
5358 		/* Any memory on that node */
5359 		if (pgdat->node_present_pages)
5360 			node_set_state(nid, N_MEMORY);
5361 		check_for_memory(pgdat, nid);
5362 	}
5363 }
5364 
5365 static int __init cmdline_parse_core(char *p, unsigned long *core)
5366 {
5367 	unsigned long long coremem;
5368 	if (!p)
5369 		return -EINVAL;
5370 
5371 	coremem = memparse(p, &p);
5372 	*core = coremem >> PAGE_SHIFT;
5373 
5374 	/* Paranoid check that UL is enough for the coremem value */
5375 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5376 
5377 	return 0;
5378 }
5379 
5380 /*
5381  * kernelcore=size sets the amount of memory for use for allocations that
5382  * cannot be reclaimed or migrated.
5383  */
5384 static int __init cmdline_parse_kernelcore(char *p)
5385 {
5386 	return cmdline_parse_core(p, &required_kernelcore);
5387 }
5388 
5389 /*
5390  * movablecore=size sets the amount of memory for use for allocations that
5391  * can be reclaimed or migrated.
5392  */
5393 static int __init cmdline_parse_movablecore(char *p)
5394 {
5395 	return cmdline_parse_core(p, &required_movablecore);
5396 }
5397 
5398 early_param("kernelcore", cmdline_parse_kernelcore);
5399 early_param("movablecore", cmdline_parse_movablecore);
5400 
5401 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5402 
5403 void adjust_managed_page_count(struct page *page, long count)
5404 {
5405 	spin_lock(&managed_page_count_lock);
5406 	page_zone(page)->managed_pages += count;
5407 	totalram_pages += count;
5408 #ifdef CONFIG_HIGHMEM
5409 	if (PageHighMem(page))
5410 		totalhigh_pages += count;
5411 #endif
5412 	spin_unlock(&managed_page_count_lock);
5413 }
5414 EXPORT_SYMBOL(adjust_managed_page_count);
5415 
5416 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5417 {
5418 	void *pos;
5419 	unsigned long pages = 0;
5420 
5421 	start = (void *)PAGE_ALIGN((unsigned long)start);
5422 	end = (void *)((unsigned long)end & PAGE_MASK);
5423 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5424 		if ((unsigned int)poison <= 0xFF)
5425 			memset(pos, poison, PAGE_SIZE);
5426 		free_reserved_page(virt_to_page(pos));
5427 	}
5428 
5429 	if (pages && s)
5430 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5431 			s, pages << (PAGE_SHIFT - 10), start, end);
5432 
5433 	return pages;
5434 }
5435 EXPORT_SYMBOL(free_reserved_area);
5436 
5437 #ifdef	CONFIG_HIGHMEM
5438 void free_highmem_page(struct page *page)
5439 {
5440 	__free_reserved_page(page);
5441 	totalram_pages++;
5442 	page_zone(page)->managed_pages++;
5443 	totalhigh_pages++;
5444 }
5445 #endif
5446 
5447 
5448 void __init mem_init_print_info(const char *str)
5449 {
5450 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5451 	unsigned long init_code_size, init_data_size;
5452 
5453 	physpages = get_num_physpages();
5454 	codesize = _etext - _stext;
5455 	datasize = _edata - _sdata;
5456 	rosize = __end_rodata - __start_rodata;
5457 	bss_size = __bss_stop - __bss_start;
5458 	init_data_size = __init_end - __init_begin;
5459 	init_code_size = _einittext - _sinittext;
5460 
5461 	/*
5462 	 * Detect special cases and adjust section sizes accordingly:
5463 	 * 1) .init.* may be embedded into .data sections
5464 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5465 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5466 	 * 3) .rodata.* may be embedded into .text or .data sections.
5467 	 */
5468 #define adj_init_size(start, end, size, pos, adj) \
5469 	do { \
5470 		if (start <= pos && pos < end && size > adj) \
5471 			size -= adj; \
5472 	} while (0)
5473 
5474 	adj_init_size(__init_begin, __init_end, init_data_size,
5475 		     _sinittext, init_code_size);
5476 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5477 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5478 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5479 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5480 
5481 #undef	adj_init_size
5482 
5483 	printk("Memory: %luK/%luK available "
5484 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5485 	       "%luK init, %luK bss, %luK reserved"
5486 #ifdef	CONFIG_HIGHMEM
5487 	       ", %luK highmem"
5488 #endif
5489 	       "%s%s)\n",
5490 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5491 	       codesize >> 10, datasize >> 10, rosize >> 10,
5492 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5493 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5494 #ifdef	CONFIG_HIGHMEM
5495 	       totalhigh_pages << (PAGE_SHIFT-10),
5496 #endif
5497 	       str ? ", " : "", str ? str : "");
5498 }
5499 
5500 /**
5501  * set_dma_reserve - set the specified number of pages reserved in the first zone
5502  * @new_dma_reserve: The number of pages to mark reserved
5503  *
5504  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5505  * In the DMA zone, a significant percentage may be consumed by kernel image
5506  * and other unfreeable allocations which can skew the watermarks badly. This
5507  * function may optionally be used to account for unfreeable pages in the
5508  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5509  * smaller per-cpu batchsize.
5510  */
5511 void __init set_dma_reserve(unsigned long new_dma_reserve)
5512 {
5513 	dma_reserve = new_dma_reserve;
5514 }
5515 
5516 void __init free_area_init(unsigned long *zones_size)
5517 {
5518 	free_area_init_node(0, zones_size,
5519 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5520 }
5521 
5522 static int page_alloc_cpu_notify(struct notifier_block *self,
5523 				 unsigned long action, void *hcpu)
5524 {
5525 	int cpu = (unsigned long)hcpu;
5526 
5527 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5528 		lru_add_drain_cpu(cpu);
5529 		drain_pages(cpu);
5530 
5531 		/*
5532 		 * Spill the event counters of the dead processor
5533 		 * into the current processors event counters.
5534 		 * This artificially elevates the count of the current
5535 		 * processor.
5536 		 */
5537 		vm_events_fold_cpu(cpu);
5538 
5539 		/*
5540 		 * Zero the differential counters of the dead processor
5541 		 * so that the vm statistics are consistent.
5542 		 *
5543 		 * This is only okay since the processor is dead and cannot
5544 		 * race with what we are doing.
5545 		 */
5546 		cpu_vm_stats_fold(cpu);
5547 	}
5548 	return NOTIFY_OK;
5549 }
5550 
5551 void __init page_alloc_init(void)
5552 {
5553 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5554 }
5555 
5556 /*
5557  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5558  *	or min_free_kbytes changes.
5559  */
5560 static void calculate_totalreserve_pages(void)
5561 {
5562 	struct pglist_data *pgdat;
5563 	unsigned long reserve_pages = 0;
5564 	enum zone_type i, j;
5565 
5566 	for_each_online_pgdat(pgdat) {
5567 		for (i = 0; i < MAX_NR_ZONES; i++) {
5568 			struct zone *zone = pgdat->node_zones + i;
5569 			unsigned long max = 0;
5570 
5571 			/* Find valid and maximum lowmem_reserve in the zone */
5572 			for (j = i; j < MAX_NR_ZONES; j++) {
5573 				if (zone->lowmem_reserve[j] > max)
5574 					max = zone->lowmem_reserve[j];
5575 			}
5576 
5577 			/* we treat the high watermark as reserved pages. */
5578 			max += high_wmark_pages(zone);
5579 
5580 			if (max > zone->managed_pages)
5581 				max = zone->managed_pages;
5582 			reserve_pages += max;
5583 			/*
5584 			 * Lowmem reserves are not available to
5585 			 * GFP_HIGHUSER page cache allocations and
5586 			 * kswapd tries to balance zones to their high
5587 			 * watermark.  As a result, neither should be
5588 			 * regarded as dirtyable memory, to prevent a
5589 			 * situation where reclaim has to clean pages
5590 			 * in order to balance the zones.
5591 			 */
5592 			zone->dirty_balance_reserve = max;
5593 		}
5594 	}
5595 	dirty_balance_reserve = reserve_pages;
5596 	totalreserve_pages = reserve_pages;
5597 }
5598 
5599 /*
5600  * setup_per_zone_lowmem_reserve - called whenever
5601  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5602  *	has a correct pages reserved value, so an adequate number of
5603  *	pages are left in the zone after a successful __alloc_pages().
5604  */
5605 static void setup_per_zone_lowmem_reserve(void)
5606 {
5607 	struct pglist_data *pgdat;
5608 	enum zone_type j, idx;
5609 
5610 	for_each_online_pgdat(pgdat) {
5611 		for (j = 0; j < MAX_NR_ZONES; j++) {
5612 			struct zone *zone = pgdat->node_zones + j;
5613 			unsigned long managed_pages = zone->managed_pages;
5614 
5615 			zone->lowmem_reserve[j] = 0;
5616 
5617 			idx = j;
5618 			while (idx) {
5619 				struct zone *lower_zone;
5620 
5621 				idx--;
5622 
5623 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5624 					sysctl_lowmem_reserve_ratio[idx] = 1;
5625 
5626 				lower_zone = pgdat->node_zones + idx;
5627 				lower_zone->lowmem_reserve[j] = managed_pages /
5628 					sysctl_lowmem_reserve_ratio[idx];
5629 				managed_pages += lower_zone->managed_pages;
5630 			}
5631 		}
5632 	}
5633 
5634 	/* update totalreserve_pages */
5635 	calculate_totalreserve_pages();
5636 }
5637 
5638 static void __setup_per_zone_wmarks(void)
5639 {
5640 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5641 	unsigned long lowmem_pages = 0;
5642 	struct zone *zone;
5643 	unsigned long flags;
5644 
5645 	/* Calculate total number of !ZONE_HIGHMEM pages */
5646 	for_each_zone(zone) {
5647 		if (!is_highmem(zone))
5648 			lowmem_pages += zone->managed_pages;
5649 	}
5650 
5651 	for_each_zone(zone) {
5652 		u64 tmp;
5653 
5654 		spin_lock_irqsave(&zone->lock, flags);
5655 		tmp = (u64)pages_min * zone->managed_pages;
5656 		do_div(tmp, lowmem_pages);
5657 		if (is_highmem(zone)) {
5658 			/*
5659 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5660 			 * need highmem pages, so cap pages_min to a small
5661 			 * value here.
5662 			 *
5663 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5664 			 * deltas controls asynch page reclaim, and so should
5665 			 * not be capped for highmem.
5666 			 */
5667 			unsigned long min_pages;
5668 
5669 			min_pages = zone->managed_pages / 1024;
5670 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5671 			zone->watermark[WMARK_MIN] = min_pages;
5672 		} else {
5673 			/*
5674 			 * If it's a lowmem zone, reserve a number of pages
5675 			 * proportionate to the zone's size.
5676 			 */
5677 			zone->watermark[WMARK_MIN] = tmp;
5678 		}
5679 
5680 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5681 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5682 
5683 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5684 				      high_wmark_pages(zone) -
5685 				      low_wmark_pages(zone) -
5686 				      zone_page_state(zone, NR_ALLOC_BATCH));
5687 
5688 		setup_zone_migrate_reserve(zone);
5689 		spin_unlock_irqrestore(&zone->lock, flags);
5690 	}
5691 
5692 	/* update totalreserve_pages */
5693 	calculate_totalreserve_pages();
5694 }
5695 
5696 /**
5697  * setup_per_zone_wmarks - called when min_free_kbytes changes
5698  * or when memory is hot-{added|removed}
5699  *
5700  * Ensures that the watermark[min,low,high] values for each zone are set
5701  * correctly with respect to min_free_kbytes.
5702  */
5703 void setup_per_zone_wmarks(void)
5704 {
5705 	mutex_lock(&zonelists_mutex);
5706 	__setup_per_zone_wmarks();
5707 	mutex_unlock(&zonelists_mutex);
5708 }
5709 
5710 /*
5711  * The inactive anon list should be small enough that the VM never has to
5712  * do too much work, but large enough that each inactive page has a chance
5713  * to be referenced again before it is swapped out.
5714  *
5715  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5716  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5717  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5718  * the anonymous pages are kept on the inactive list.
5719  *
5720  * total     target    max
5721  * memory    ratio     inactive anon
5722  * -------------------------------------
5723  *   10MB       1         5MB
5724  *  100MB       1        50MB
5725  *    1GB       3       250MB
5726  *   10GB      10       0.9GB
5727  *  100GB      31         3GB
5728  *    1TB     101        10GB
5729  *   10TB     320        32GB
5730  */
5731 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5732 {
5733 	unsigned int gb, ratio;
5734 
5735 	/* Zone size in gigabytes */
5736 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5737 	if (gb)
5738 		ratio = int_sqrt(10 * gb);
5739 	else
5740 		ratio = 1;
5741 
5742 	zone->inactive_ratio = ratio;
5743 }
5744 
5745 static void __meminit setup_per_zone_inactive_ratio(void)
5746 {
5747 	struct zone *zone;
5748 
5749 	for_each_zone(zone)
5750 		calculate_zone_inactive_ratio(zone);
5751 }
5752 
5753 /*
5754  * Initialise min_free_kbytes.
5755  *
5756  * For small machines we want it small (128k min).  For large machines
5757  * we want it large (64MB max).  But it is not linear, because network
5758  * bandwidth does not increase linearly with machine size.  We use
5759  *
5760  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5761  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5762  *
5763  * which yields
5764  *
5765  * 16MB:	512k
5766  * 32MB:	724k
5767  * 64MB:	1024k
5768  * 128MB:	1448k
5769  * 256MB:	2048k
5770  * 512MB:	2896k
5771  * 1024MB:	4096k
5772  * 2048MB:	5792k
5773  * 4096MB:	8192k
5774  * 8192MB:	11584k
5775  * 16384MB:	16384k
5776  */
5777 int __meminit init_per_zone_wmark_min(void)
5778 {
5779 	unsigned long lowmem_kbytes;
5780 	int new_min_free_kbytes;
5781 
5782 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5783 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5784 
5785 	if (new_min_free_kbytes > user_min_free_kbytes) {
5786 		min_free_kbytes = new_min_free_kbytes;
5787 		if (min_free_kbytes < 128)
5788 			min_free_kbytes = 128;
5789 		if (min_free_kbytes > 65536)
5790 			min_free_kbytes = 65536;
5791 	} else {
5792 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5793 				new_min_free_kbytes, user_min_free_kbytes);
5794 	}
5795 	setup_per_zone_wmarks();
5796 	refresh_zone_stat_thresholds();
5797 	setup_per_zone_lowmem_reserve();
5798 	setup_per_zone_inactive_ratio();
5799 	return 0;
5800 }
5801 module_init(init_per_zone_wmark_min)
5802 
5803 /*
5804  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5805  *	that we can call two helper functions whenever min_free_kbytes
5806  *	changes.
5807  */
5808 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5809 	void __user *buffer, size_t *length, loff_t *ppos)
5810 {
5811 	int rc;
5812 
5813 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5814 	if (rc)
5815 		return rc;
5816 
5817 	if (write) {
5818 		user_min_free_kbytes = min_free_kbytes;
5819 		setup_per_zone_wmarks();
5820 	}
5821 	return 0;
5822 }
5823 
5824 #ifdef CONFIG_NUMA
5825 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5826 	void __user *buffer, size_t *length, loff_t *ppos)
5827 {
5828 	struct zone *zone;
5829 	int rc;
5830 
5831 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5832 	if (rc)
5833 		return rc;
5834 
5835 	for_each_zone(zone)
5836 		zone->min_unmapped_pages = (zone->managed_pages *
5837 				sysctl_min_unmapped_ratio) / 100;
5838 	return 0;
5839 }
5840 
5841 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5842 	void __user *buffer, size_t *length, loff_t *ppos)
5843 {
5844 	struct zone *zone;
5845 	int rc;
5846 
5847 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5848 	if (rc)
5849 		return rc;
5850 
5851 	for_each_zone(zone)
5852 		zone->min_slab_pages = (zone->managed_pages *
5853 				sysctl_min_slab_ratio) / 100;
5854 	return 0;
5855 }
5856 #endif
5857 
5858 /*
5859  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5860  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5861  *	whenever sysctl_lowmem_reserve_ratio changes.
5862  *
5863  * The reserve ratio obviously has absolutely no relation with the
5864  * minimum watermarks. The lowmem reserve ratio can only make sense
5865  * if in function of the boot time zone sizes.
5866  */
5867 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5868 	void __user *buffer, size_t *length, loff_t *ppos)
5869 {
5870 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5871 	setup_per_zone_lowmem_reserve();
5872 	return 0;
5873 }
5874 
5875 /*
5876  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5877  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5878  * pagelist can have before it gets flushed back to buddy allocator.
5879  */
5880 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5881 	void __user *buffer, size_t *length, loff_t *ppos)
5882 {
5883 	struct zone *zone;
5884 	unsigned int cpu;
5885 	int ret;
5886 
5887 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5888 	if (!write || (ret < 0))
5889 		return ret;
5890 
5891 	mutex_lock(&pcp_batch_high_lock);
5892 	for_each_populated_zone(zone) {
5893 		unsigned long  high;
5894 		high = zone->managed_pages / percpu_pagelist_fraction;
5895 		for_each_possible_cpu(cpu)
5896 			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5897 					 high);
5898 	}
5899 	mutex_unlock(&pcp_batch_high_lock);
5900 	return 0;
5901 }
5902 
5903 int hashdist = HASHDIST_DEFAULT;
5904 
5905 #ifdef CONFIG_NUMA
5906 static int __init set_hashdist(char *str)
5907 {
5908 	if (!str)
5909 		return 0;
5910 	hashdist = simple_strtoul(str, &str, 0);
5911 	return 1;
5912 }
5913 __setup("hashdist=", set_hashdist);
5914 #endif
5915 
5916 /*
5917  * allocate a large system hash table from bootmem
5918  * - it is assumed that the hash table must contain an exact power-of-2
5919  *   quantity of entries
5920  * - limit is the number of hash buckets, not the total allocation size
5921  */
5922 void *__init alloc_large_system_hash(const char *tablename,
5923 				     unsigned long bucketsize,
5924 				     unsigned long numentries,
5925 				     int scale,
5926 				     int flags,
5927 				     unsigned int *_hash_shift,
5928 				     unsigned int *_hash_mask,
5929 				     unsigned long low_limit,
5930 				     unsigned long high_limit)
5931 {
5932 	unsigned long long max = high_limit;
5933 	unsigned long log2qty, size;
5934 	void *table = NULL;
5935 
5936 	/* allow the kernel cmdline to have a say */
5937 	if (!numentries) {
5938 		/* round applicable memory size up to nearest megabyte */
5939 		numentries = nr_kernel_pages;
5940 
5941 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5942 		if (PAGE_SHIFT < 20)
5943 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5944 
5945 		/* limit to 1 bucket per 2^scale bytes of low memory */
5946 		if (scale > PAGE_SHIFT)
5947 			numentries >>= (scale - PAGE_SHIFT);
5948 		else
5949 			numentries <<= (PAGE_SHIFT - scale);
5950 
5951 		/* Make sure we've got at least a 0-order allocation.. */
5952 		if (unlikely(flags & HASH_SMALL)) {
5953 			/* Makes no sense without HASH_EARLY */
5954 			WARN_ON(!(flags & HASH_EARLY));
5955 			if (!(numentries >> *_hash_shift)) {
5956 				numentries = 1UL << *_hash_shift;
5957 				BUG_ON(!numentries);
5958 			}
5959 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5960 			numentries = PAGE_SIZE / bucketsize;
5961 	}
5962 	numentries = roundup_pow_of_two(numentries);
5963 
5964 	/* limit allocation size to 1/16 total memory by default */
5965 	if (max == 0) {
5966 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5967 		do_div(max, bucketsize);
5968 	}
5969 	max = min(max, 0x80000000ULL);
5970 
5971 	if (numentries < low_limit)
5972 		numentries = low_limit;
5973 	if (numentries > max)
5974 		numentries = max;
5975 
5976 	log2qty = ilog2(numentries);
5977 
5978 	do {
5979 		size = bucketsize << log2qty;
5980 		if (flags & HASH_EARLY)
5981 			table = memblock_virt_alloc_nopanic(size, 0);
5982 		else if (hashdist)
5983 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5984 		else {
5985 			/*
5986 			 * If bucketsize is not a power-of-two, we may free
5987 			 * some pages at the end of hash table which
5988 			 * alloc_pages_exact() automatically does
5989 			 */
5990 			if (get_order(size) < MAX_ORDER) {
5991 				table = alloc_pages_exact(size, GFP_ATOMIC);
5992 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5993 			}
5994 		}
5995 	} while (!table && size > PAGE_SIZE && --log2qty);
5996 
5997 	if (!table)
5998 		panic("Failed to allocate %s hash table\n", tablename);
5999 
6000 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6001 	       tablename,
6002 	       (1UL << log2qty),
6003 	       ilog2(size) - PAGE_SHIFT,
6004 	       size);
6005 
6006 	if (_hash_shift)
6007 		*_hash_shift = log2qty;
6008 	if (_hash_mask)
6009 		*_hash_mask = (1 << log2qty) - 1;
6010 
6011 	return table;
6012 }
6013 
6014 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6015 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6016 							unsigned long pfn)
6017 {
6018 #ifdef CONFIG_SPARSEMEM
6019 	return __pfn_to_section(pfn)->pageblock_flags;
6020 #else
6021 	return zone->pageblock_flags;
6022 #endif /* CONFIG_SPARSEMEM */
6023 }
6024 
6025 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6026 {
6027 #ifdef CONFIG_SPARSEMEM
6028 	pfn &= (PAGES_PER_SECTION-1);
6029 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6030 #else
6031 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6032 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6033 #endif /* CONFIG_SPARSEMEM */
6034 }
6035 
6036 /**
6037  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6038  * @page: The page within the block of interest
6039  * @start_bitidx: The first bit of interest to retrieve
6040  * @end_bitidx: The last bit of interest
6041  * returns pageblock_bits flags
6042  */
6043 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6044 					unsigned long end_bitidx,
6045 					unsigned long mask)
6046 {
6047 	struct zone *zone;
6048 	unsigned long *bitmap;
6049 	unsigned long bitidx, word_bitidx;
6050 	unsigned long word;
6051 
6052 	zone = page_zone(page);
6053 	bitmap = get_pageblock_bitmap(zone, pfn);
6054 	bitidx = pfn_to_bitidx(zone, pfn);
6055 	word_bitidx = bitidx / BITS_PER_LONG;
6056 	bitidx &= (BITS_PER_LONG-1);
6057 
6058 	word = bitmap[word_bitidx];
6059 	bitidx += end_bitidx;
6060 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6061 }
6062 
6063 /**
6064  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6065  * @page: The page within the block of interest
6066  * @start_bitidx: The first bit of interest
6067  * @end_bitidx: The last bit of interest
6068  * @flags: The flags to set
6069  */
6070 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6071 					unsigned long pfn,
6072 					unsigned long end_bitidx,
6073 					unsigned long mask)
6074 {
6075 	struct zone *zone;
6076 	unsigned long *bitmap;
6077 	unsigned long bitidx, word_bitidx;
6078 	unsigned long old_word, word;
6079 
6080 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6081 
6082 	zone = page_zone(page);
6083 	bitmap = get_pageblock_bitmap(zone, pfn);
6084 	bitidx = pfn_to_bitidx(zone, pfn);
6085 	word_bitidx = bitidx / BITS_PER_LONG;
6086 	bitidx &= (BITS_PER_LONG-1);
6087 
6088 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6089 
6090 	bitidx += end_bitidx;
6091 	mask <<= (BITS_PER_LONG - bitidx - 1);
6092 	flags <<= (BITS_PER_LONG - bitidx - 1);
6093 
6094 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6095 	for (;;) {
6096 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6097 		if (word == old_word)
6098 			break;
6099 		word = old_word;
6100 	}
6101 }
6102 
6103 /*
6104  * This function checks whether pageblock includes unmovable pages or not.
6105  * If @count is not zero, it is okay to include less @count unmovable pages
6106  *
6107  * PageLRU check without isolation or lru_lock could race so that
6108  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6109  * expect this function should be exact.
6110  */
6111 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6112 			 bool skip_hwpoisoned_pages)
6113 {
6114 	unsigned long pfn, iter, found;
6115 	int mt;
6116 
6117 	/*
6118 	 * For avoiding noise data, lru_add_drain_all() should be called
6119 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6120 	 */
6121 	if (zone_idx(zone) == ZONE_MOVABLE)
6122 		return false;
6123 	mt = get_pageblock_migratetype(page);
6124 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6125 		return false;
6126 
6127 	pfn = page_to_pfn(page);
6128 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6129 		unsigned long check = pfn + iter;
6130 
6131 		if (!pfn_valid_within(check))
6132 			continue;
6133 
6134 		page = pfn_to_page(check);
6135 
6136 		/*
6137 		 * Hugepages are not in LRU lists, but they're movable.
6138 		 * We need not scan over tail pages bacause we don't
6139 		 * handle each tail page individually in migration.
6140 		 */
6141 		if (PageHuge(page)) {
6142 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6143 			continue;
6144 		}
6145 
6146 		/*
6147 		 * We can't use page_count without pin a page
6148 		 * because another CPU can free compound page.
6149 		 * This check already skips compound tails of THP
6150 		 * because their page->_count is zero at all time.
6151 		 */
6152 		if (!atomic_read(&page->_count)) {
6153 			if (PageBuddy(page))
6154 				iter += (1 << page_order(page)) - 1;
6155 			continue;
6156 		}
6157 
6158 		/*
6159 		 * The HWPoisoned page may be not in buddy system, and
6160 		 * page_count() is not 0.
6161 		 */
6162 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6163 			continue;
6164 
6165 		if (!PageLRU(page))
6166 			found++;
6167 		/*
6168 		 * If there are RECLAIMABLE pages, we need to check it.
6169 		 * But now, memory offline itself doesn't call shrink_slab()
6170 		 * and it still to be fixed.
6171 		 */
6172 		/*
6173 		 * If the page is not RAM, page_count()should be 0.
6174 		 * we don't need more check. This is an _used_ not-movable page.
6175 		 *
6176 		 * The problematic thing here is PG_reserved pages. PG_reserved
6177 		 * is set to both of a memory hole page and a _used_ kernel
6178 		 * page at boot.
6179 		 */
6180 		if (found > count)
6181 			return true;
6182 	}
6183 	return false;
6184 }
6185 
6186 bool is_pageblock_removable_nolock(struct page *page)
6187 {
6188 	struct zone *zone;
6189 	unsigned long pfn;
6190 
6191 	/*
6192 	 * We have to be careful here because we are iterating over memory
6193 	 * sections which are not zone aware so we might end up outside of
6194 	 * the zone but still within the section.
6195 	 * We have to take care about the node as well. If the node is offline
6196 	 * its NODE_DATA will be NULL - see page_zone.
6197 	 */
6198 	if (!node_online(page_to_nid(page)))
6199 		return false;
6200 
6201 	zone = page_zone(page);
6202 	pfn = page_to_pfn(page);
6203 	if (!zone_spans_pfn(zone, pfn))
6204 		return false;
6205 
6206 	return !has_unmovable_pages(zone, page, 0, true);
6207 }
6208 
6209 #ifdef CONFIG_CMA
6210 
6211 static unsigned long pfn_max_align_down(unsigned long pfn)
6212 {
6213 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6214 			     pageblock_nr_pages) - 1);
6215 }
6216 
6217 static unsigned long pfn_max_align_up(unsigned long pfn)
6218 {
6219 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6220 				pageblock_nr_pages));
6221 }
6222 
6223 /* [start, end) must belong to a single zone. */
6224 static int __alloc_contig_migrate_range(struct compact_control *cc,
6225 					unsigned long start, unsigned long end)
6226 {
6227 	/* This function is based on compact_zone() from compaction.c. */
6228 	unsigned long nr_reclaimed;
6229 	unsigned long pfn = start;
6230 	unsigned int tries = 0;
6231 	int ret = 0;
6232 
6233 	migrate_prep();
6234 
6235 	while (pfn < end || !list_empty(&cc->migratepages)) {
6236 		if (fatal_signal_pending(current)) {
6237 			ret = -EINTR;
6238 			break;
6239 		}
6240 
6241 		if (list_empty(&cc->migratepages)) {
6242 			cc->nr_migratepages = 0;
6243 			pfn = isolate_migratepages_range(cc->zone, cc,
6244 							 pfn, end, true);
6245 			if (!pfn) {
6246 				ret = -EINTR;
6247 				break;
6248 			}
6249 			tries = 0;
6250 		} else if (++tries == 5) {
6251 			ret = ret < 0 ? ret : -EBUSY;
6252 			break;
6253 		}
6254 
6255 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6256 							&cc->migratepages);
6257 		cc->nr_migratepages -= nr_reclaimed;
6258 
6259 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6260 				    NULL, 0, cc->mode, MR_CMA);
6261 	}
6262 	if (ret < 0) {
6263 		putback_movable_pages(&cc->migratepages);
6264 		return ret;
6265 	}
6266 	return 0;
6267 }
6268 
6269 /**
6270  * alloc_contig_range() -- tries to allocate given range of pages
6271  * @start:	start PFN to allocate
6272  * @end:	one-past-the-last PFN to allocate
6273  * @migratetype:	migratetype of the underlaying pageblocks (either
6274  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6275  *			in range must have the same migratetype and it must
6276  *			be either of the two.
6277  *
6278  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6279  * aligned, however it's the caller's responsibility to guarantee that
6280  * we are the only thread that changes migrate type of pageblocks the
6281  * pages fall in.
6282  *
6283  * The PFN range must belong to a single zone.
6284  *
6285  * Returns zero on success or negative error code.  On success all
6286  * pages which PFN is in [start, end) are allocated for the caller and
6287  * need to be freed with free_contig_range().
6288  */
6289 int alloc_contig_range(unsigned long start, unsigned long end,
6290 		       unsigned migratetype)
6291 {
6292 	unsigned long outer_start, outer_end;
6293 	int ret = 0, order;
6294 
6295 	struct compact_control cc = {
6296 		.nr_migratepages = 0,
6297 		.order = -1,
6298 		.zone = page_zone(pfn_to_page(start)),
6299 		.mode = MIGRATE_SYNC,
6300 		.ignore_skip_hint = true,
6301 	};
6302 	INIT_LIST_HEAD(&cc.migratepages);
6303 
6304 	/*
6305 	 * What we do here is we mark all pageblocks in range as
6306 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6307 	 * have different sizes, and due to the way page allocator
6308 	 * work, we align the range to biggest of the two pages so
6309 	 * that page allocator won't try to merge buddies from
6310 	 * different pageblocks and change MIGRATE_ISOLATE to some
6311 	 * other migration type.
6312 	 *
6313 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6314 	 * migrate the pages from an unaligned range (ie. pages that
6315 	 * we are interested in).  This will put all the pages in
6316 	 * range back to page allocator as MIGRATE_ISOLATE.
6317 	 *
6318 	 * When this is done, we take the pages in range from page
6319 	 * allocator removing them from the buddy system.  This way
6320 	 * page allocator will never consider using them.
6321 	 *
6322 	 * This lets us mark the pageblocks back as
6323 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6324 	 * aligned range but not in the unaligned, original range are
6325 	 * put back to page allocator so that buddy can use them.
6326 	 */
6327 
6328 	ret = start_isolate_page_range(pfn_max_align_down(start),
6329 				       pfn_max_align_up(end), migratetype,
6330 				       false);
6331 	if (ret)
6332 		return ret;
6333 
6334 	ret = __alloc_contig_migrate_range(&cc, start, end);
6335 	if (ret)
6336 		goto done;
6337 
6338 	/*
6339 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6340 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6341 	 * more, all pages in [start, end) are free in page allocator.
6342 	 * What we are going to do is to allocate all pages from
6343 	 * [start, end) (that is remove them from page allocator).
6344 	 *
6345 	 * The only problem is that pages at the beginning and at the
6346 	 * end of interesting range may be not aligned with pages that
6347 	 * page allocator holds, ie. they can be part of higher order
6348 	 * pages.  Because of this, we reserve the bigger range and
6349 	 * once this is done free the pages we are not interested in.
6350 	 *
6351 	 * We don't have to hold zone->lock here because the pages are
6352 	 * isolated thus they won't get removed from buddy.
6353 	 */
6354 
6355 	lru_add_drain_all();
6356 	drain_all_pages();
6357 
6358 	order = 0;
6359 	outer_start = start;
6360 	while (!PageBuddy(pfn_to_page(outer_start))) {
6361 		if (++order >= MAX_ORDER) {
6362 			ret = -EBUSY;
6363 			goto done;
6364 		}
6365 		outer_start &= ~0UL << order;
6366 	}
6367 
6368 	/* Make sure the range is really isolated. */
6369 	if (test_pages_isolated(outer_start, end, false)) {
6370 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6371 		       outer_start, end);
6372 		ret = -EBUSY;
6373 		goto done;
6374 	}
6375 
6376 
6377 	/* Grab isolated pages from freelists. */
6378 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6379 	if (!outer_end) {
6380 		ret = -EBUSY;
6381 		goto done;
6382 	}
6383 
6384 	/* Free head and tail (if any) */
6385 	if (start != outer_start)
6386 		free_contig_range(outer_start, start - outer_start);
6387 	if (end != outer_end)
6388 		free_contig_range(end, outer_end - end);
6389 
6390 done:
6391 	undo_isolate_page_range(pfn_max_align_down(start),
6392 				pfn_max_align_up(end), migratetype);
6393 	return ret;
6394 }
6395 
6396 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6397 {
6398 	unsigned int count = 0;
6399 
6400 	for (; nr_pages--; pfn++) {
6401 		struct page *page = pfn_to_page(pfn);
6402 
6403 		count += page_count(page) != 1;
6404 		__free_page(page);
6405 	}
6406 	WARN(count != 0, "%d pages are still in use!\n", count);
6407 }
6408 #endif
6409 
6410 #ifdef CONFIG_MEMORY_HOTPLUG
6411 /*
6412  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6413  * page high values need to be recalulated.
6414  */
6415 void __meminit zone_pcp_update(struct zone *zone)
6416 {
6417 	unsigned cpu;
6418 	mutex_lock(&pcp_batch_high_lock);
6419 	for_each_possible_cpu(cpu)
6420 		pageset_set_high_and_batch(zone,
6421 				per_cpu_ptr(zone->pageset, cpu));
6422 	mutex_unlock(&pcp_batch_high_lock);
6423 }
6424 #endif
6425 
6426 void zone_pcp_reset(struct zone *zone)
6427 {
6428 	unsigned long flags;
6429 	int cpu;
6430 	struct per_cpu_pageset *pset;
6431 
6432 	/* avoid races with drain_pages()  */
6433 	local_irq_save(flags);
6434 	if (zone->pageset != &boot_pageset) {
6435 		for_each_online_cpu(cpu) {
6436 			pset = per_cpu_ptr(zone->pageset, cpu);
6437 			drain_zonestat(zone, pset);
6438 		}
6439 		free_percpu(zone->pageset);
6440 		zone->pageset = &boot_pageset;
6441 	}
6442 	local_irq_restore(flags);
6443 }
6444 
6445 #ifdef CONFIG_MEMORY_HOTREMOVE
6446 /*
6447  * All pages in the range must be isolated before calling this.
6448  */
6449 void
6450 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6451 {
6452 	struct page *page;
6453 	struct zone *zone;
6454 	unsigned int order, i;
6455 	unsigned long pfn;
6456 	unsigned long flags;
6457 	/* find the first valid pfn */
6458 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6459 		if (pfn_valid(pfn))
6460 			break;
6461 	if (pfn == end_pfn)
6462 		return;
6463 	zone = page_zone(pfn_to_page(pfn));
6464 	spin_lock_irqsave(&zone->lock, flags);
6465 	pfn = start_pfn;
6466 	while (pfn < end_pfn) {
6467 		if (!pfn_valid(pfn)) {
6468 			pfn++;
6469 			continue;
6470 		}
6471 		page = pfn_to_page(pfn);
6472 		/*
6473 		 * The HWPoisoned page may be not in buddy system, and
6474 		 * page_count() is not 0.
6475 		 */
6476 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6477 			pfn++;
6478 			SetPageReserved(page);
6479 			continue;
6480 		}
6481 
6482 		BUG_ON(page_count(page));
6483 		BUG_ON(!PageBuddy(page));
6484 		order = page_order(page);
6485 #ifdef CONFIG_DEBUG_VM
6486 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6487 		       pfn, 1 << order, end_pfn);
6488 #endif
6489 		list_del(&page->lru);
6490 		rmv_page_order(page);
6491 		zone->free_area[order].nr_free--;
6492 		for (i = 0; i < (1 << order); i++)
6493 			SetPageReserved((page+i));
6494 		pfn += (1 << order);
6495 	}
6496 	spin_unlock_irqrestore(&zone->lock, flags);
6497 }
6498 #endif
6499 
6500 #ifdef CONFIG_MEMORY_FAILURE
6501 bool is_free_buddy_page(struct page *page)
6502 {
6503 	struct zone *zone = page_zone(page);
6504 	unsigned long pfn = page_to_pfn(page);
6505 	unsigned long flags;
6506 	unsigned int order;
6507 
6508 	spin_lock_irqsave(&zone->lock, flags);
6509 	for (order = 0; order < MAX_ORDER; order++) {
6510 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6511 
6512 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6513 			break;
6514 	}
6515 	spin_unlock_irqrestore(&zone->lock, flags);
6516 
6517 	return order < MAX_ORDER;
6518 }
6519 #endif
6520 
6521 static const struct trace_print_flags pageflag_names[] = {
6522 	{1UL << PG_locked,		"locked"	},
6523 	{1UL << PG_error,		"error"		},
6524 	{1UL << PG_referenced,		"referenced"	},
6525 	{1UL << PG_uptodate,		"uptodate"	},
6526 	{1UL << PG_dirty,		"dirty"		},
6527 	{1UL << PG_lru,			"lru"		},
6528 	{1UL << PG_active,		"active"	},
6529 	{1UL << PG_slab,		"slab"		},
6530 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6531 	{1UL << PG_arch_1,		"arch_1"	},
6532 	{1UL << PG_reserved,		"reserved"	},
6533 	{1UL << PG_private,		"private"	},
6534 	{1UL << PG_private_2,		"private_2"	},
6535 	{1UL << PG_writeback,		"writeback"	},
6536 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6537 	{1UL << PG_head,		"head"		},
6538 	{1UL << PG_tail,		"tail"		},
6539 #else
6540 	{1UL << PG_compound,		"compound"	},
6541 #endif
6542 	{1UL << PG_swapcache,		"swapcache"	},
6543 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6544 	{1UL << PG_reclaim,		"reclaim"	},
6545 	{1UL << PG_swapbacked,		"swapbacked"	},
6546 	{1UL << PG_unevictable,		"unevictable"	},
6547 #ifdef CONFIG_MMU
6548 	{1UL << PG_mlocked,		"mlocked"	},
6549 #endif
6550 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6551 	{1UL << PG_uncached,		"uncached"	},
6552 #endif
6553 #ifdef CONFIG_MEMORY_FAILURE
6554 	{1UL << PG_hwpoison,		"hwpoison"	},
6555 #endif
6556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6557 	{1UL << PG_compound_lock,	"compound_lock"	},
6558 #endif
6559 };
6560 
6561 static void dump_page_flags(unsigned long flags)
6562 {
6563 	const char *delim = "";
6564 	unsigned long mask;
6565 	int i;
6566 
6567 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6568 
6569 	printk(KERN_ALERT "page flags: %#lx(", flags);
6570 
6571 	/* remove zone id */
6572 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6573 
6574 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6575 
6576 		mask = pageflag_names[i].mask;
6577 		if ((flags & mask) != mask)
6578 			continue;
6579 
6580 		flags &= ~mask;
6581 		printk("%s%s", delim, pageflag_names[i].name);
6582 		delim = "|";
6583 	}
6584 
6585 	/* check for left over flags */
6586 	if (flags)
6587 		printk("%s%#lx", delim, flags);
6588 
6589 	printk(")\n");
6590 }
6591 
6592 void dump_page_badflags(struct page *page, const char *reason,
6593 		unsigned long badflags)
6594 {
6595 	printk(KERN_ALERT
6596 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6597 		page, atomic_read(&page->_count), page_mapcount(page),
6598 		page->mapping, page->index);
6599 	dump_page_flags(page->flags);
6600 	if (reason)
6601 		pr_alert("page dumped because: %s\n", reason);
6602 	if (page->flags & badflags) {
6603 		pr_alert("bad because of flags:\n");
6604 		dump_page_flags(page->flags & badflags);
6605 	}
6606 	mem_cgroup_print_bad_page(page);
6607 }
6608 
6609 void dump_page(struct page *page, const char *reason)
6610 {
6611 	dump_page_badflags(page, reason, 0);
6612 }
6613 EXPORT_SYMBOL(dump_page);
6614